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Preface

Sincethe publication of thefirst edition of Nonlinear Fiber Opticsin 1989, this
field has virtually exploded. A mgjor factor behind such tremendous growth
was the advent of fiber amplifiers, made by doping silica or fluoride fibers
with rare-earth ions such as erbium and neodymium. Such amplifiers revo-
lutionized the design of fiber-optic communication systems, including those
making use of optical solitons whose very existence stems from the presence
of nonlinear effects in optical fibers. Optical amplifiers permit propagation of
lightwave signals over thousands of kilometers as they can compensate for al
losses encountered by the signal in the optical domain. At the same time, fiber
amplifiers enable the use of massive wavel ength-division multiplexing (WDM)
and have led to the development of lightwave systems with capacities exceed-
ing 1 Th/s. Nonlinear fiber optics plays an increasingly important role in the
design of such high-capacity lightwave systems. In fact, an understanding of
various nonlinear effects occurring inside optical fibersisamost aprerequisite
for alightwave-system designer.

While preparing the third edition of Nonlinear Fiber Optics, my intention
was to bring the book up to date so that it remains a unique source of com-
prehensive coverage on the subject of nonlinear fiber optics. An attempt was
made to include recent research results on all topics relevant to the field of
nonlinear fiber optics. Such an ambitious objective increased the size of the
book to the extent that it was necessary to split it into two separate books, thus
creating this new book Applications of Nonlinear Fiber Optics. The third edi-
tion of Nonlinear Fiber Optics deals with the fundamental aspects of thefield.
This book is devoted to the applications of nonlinear fiber optics, and its use
requires knowledge of the fundamentals covered in Nonlinear Fiber Optics.
Please note that when an equation or section number is prefaced with the
letter A, that indicatesthat thetopiciscovered in more detail in the third
edition of of Nonlinear Fiber Optics.

Xiii



Xiv Preface

Most of the material in this volume is new. The first three chapters deal
with three important fiber-optic components—fiber-based gratings, couplers,
and interferometers—that serve as the building blocks of lightwave technol-
ogy. Inview of the enormous impact of rare-earth-doped fibers, amplifiers and
lasers made by using such fibers are covered in Chapters 4 and 5. The last
three chapters describe important applications of nonlinear fiber optics and are
devoted to pulse-compression techniques, fiber-optic communication systems,
and soliton-based transmission schemes. This volume should serve well the
need of the scientific community interested in such fields as ultrafast phenom-
ena, optical amplifiers and lasers, and optical communications. It will aso
be useful to graduate students as well as scientists and engineers involved in
lightwave technol ogy.

The potential readership is likely to consist of senior undergraduate stu-
dents, graduate students enrolled in the M.S. and Ph.D. programs, engineers
and technicians involved with the telecommunication industry, and scientists
working in the fields of fiber optics and optical communications. This volume
may be a useful text for graduate and senior-level courses dealing with nonlin-
ear optics, fiber optics, or optical communications that are designed to provide
mastery of the fundamental aspects. Some universities may even opt to offer a
high-level graduate course devoted solely to nonlinear fiber optics. The prob-
lems provided at the end of each chapter should be useful to instructors of such
acourse.

Many individuals have contributed either directly or indirectly to the com-
pletion of this book. | am thankful to all of them, especially to my students,
whose curiosity led to several improvements. Some of my colleagues have
helped me in preparing this book. | thank Taras Lakoba, Zhi Liao, Natalia
Litchinitser, Bishnu Pal, and Stojan Radic for reading several chapters and
making helpful suggestions. | am grateful to many readers for their feedback.
Last, but not least, | thank my wife, Anne, and my daughters, Sipra, Caroline,
and Claire, for understanding why | needed to spend many weekends on the
book instead of spending time with them.

Govind P. Agrawal
Rochester, NY



Chapter 1

Fiber Gratings

Silicafibers can change their optical properties permanently when they are ex-
posed to intense radiation from alaser operating in the blue or ultraviolet spec-
tral region. This photosensitive effect can be used to induce periodic changes
in the refractive index aong the fiber length, resulting in the formation of an
intracore Bragg grating. Fiber gratings can be designed to operate over awide
range of wavel engths extending from the ultraviolet to theinfrared region. The
wavelength region near 1.5 umis of particular interest because of its relevance
to fiber-optic communication systems. In this chapter on fiber gratings, the em-
phasis is on the role of the nonlinear effects. Sections 1.1 and 1.2 discuss the
physical mechanism responsible for photosensitivity and various techniques
used to make fiber gratings. The coupled-mode theory is described in Section
1.3, where the concept of the photonic bandgap is aso introduced. Section
1.4 is devoted to the nonlinear effects occurring under continuous-wave (CW)
conditions. Time-dependent features such as modulation instability, optical
solitons, and optical switching are covered in Sections 1.5 and 1.6. Section 1.7
considers nonuniform and long-period gratings together with photonic-crystal
fibers.

1.1 Basic Concepts

Diffraction gratings constitute a standard optical component and are used rou-
tinely in various optical instruments such as a spectrometer. The underlying
principle was discovered more than 200 years ago [1]. From a practical stand-

point, a diffraction grating is defined as any optical element capable of im-

1



2 Fiber Gratings

i 00000000010

Figure 1.1 Schematic illustration of a fiber grating. Dark and light shaded regions
within the fiber core show periodic variations of the refractive index.

posing a periodic variation in the amplitude or phase of light incident on it.
Clearly, an optical medium whose refractive index varies periodically acts as
agrating since it imposes a periodic variation of phase when light propagates
through it. Such gratings are called index gratings.

1.1.1 Bragg Diffraction

The diffraction theory of gratings shows that when light is incident at an an-
gle 6, (measured with respect to the planes of constant refractive index), it is
diffracted at an angle 6 such that [1]

sin@ —sing = mA./(A), (1.1.1)

where A isthe grating period, A /nisthe wavelength of light inside the medium
with an average refractive index n, and m is the order of Bragg diffraction.
This condition can be thought of as a phase-matching condition, similar to that
occurring in the case of Brillouin scattering or four-wave mixing, and can be
written as

ki —kgq = mkg, (1.1.2

wherek; and k ; arethe wave vectors associated with theincident and diffracted
light. The grating wave vector kg has magnitude 27 /A and points in the di-
rection in which the refractive index of the medium is changing in a periodic
manner.

In the case of single-mode fibers, all three vectors lie aong the fiber axis.
As aresult, k; = —k; and the diffracted light propagates backward. Thus, as
shown schematically in Fig. 1.1, afiber grating acts as areflector for a specific
wavelength of light for which the phase-matching condition is satisfied. In
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terms of theangles appearing in Eq. (1.1.1), § =r/2and 6, = —r/2. If m=1,

the period of the grating is related to the vacuum wavelength as A = 2nA.
This condition is known as the Bragg condition, and gratings satisfying it are
referred to as Bragg gratings. Physically, the Bragg condition ensures that
weak reflections occurring throughout the grating add up in phase to produce
astrong reflection. For afiber grating reflecting light in the wavelength region
near 1.5 um, the grating period A ~ 0.5 um.

Bragg gratings inside optical fiberswerefirst formed in 1978 by irradiating
a germanium-doped silica fiber for a few minutes with an intense argon-ion
laser beam [2]. The grating period was fixed by the argon-ion laser wave-
length, and the grating reflected light only within a narrow region around that
wavelength. It wasrealized that the 4% reflection occurring at the two fiber—air
interfaces created a standing-wave pattern and that the laser light was absorbed
only inthebright regions. Asaresult, the glass structure changed in such away
that the refractive index increased permanently in the bright regions. Although
this phenomenon attracted some attention during the next 10 years [3]{15], it
was not until 1989 that fiber gratings became atopic of intense investigation,
fueled partly by the observation of second-harmonic generation in photosensi-
tive fibers. The impetus for this resurgence of interest was provided by a 1989
paper in which a side-exposed holographic technique was used to make fiber
gratings with controllable period [16].

Because of its relevance to fiber-optic communication systems, the holo-
graphic technigue was quickly adopted to produce fiber gratings in the wave-
length region near 1.55 um [17]. Considerable work was done during the early
1990s to understand the physical mechanism behind photosensitivity of fibers
and to develop techniques that were capable of making large changesin the re-
fractive index [18]-{48]. By 1995, fiber gratings were available commercialy,
and by 1997 they became a standard component of lightwave technology. In
1999, two books devoted entirely to fiber gratings focused on applications re-
lated to fiber sensors and fiber-optic communication systems [49], [50].

1.1.2 Photosensitivity

There is considerable evidence that photosensitivity of optical fibers is due
to defect formation inside the core of Ge-doped silica fibers [28]{30]. As
mentioned in Section A.1.2, the fiber core is often doped with germania to
increase its refractive index and introduce an index step at the core-cladding
interface. The Ge concentration is typicaly 3-5%.
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The presence of Ge atoms in the fiber core leads to formation of oxygen-
deficient bonds (such as Si-Ge, S-Si, and Ge-Ge bonds), which act as defects
in the silica matrix [49]. The most common defect is the GeO defect. It forms
a defect band with an energy gap of about 5 eV (energy required to break the
bond). Single-photon absorption of 244-nm radiation from an excimer laser
(or two-photon absorption of 488-nm light from an argon-ion laser) breaks
these defect bonds and creates GeE’ centers. Extra electrons associated with
GeE' centers are free to move within the glass matrix until they are trapped at
hole-defect sitesto form color centers known as Ge(1) and Ge(2). Such modifi-
cations in the glass structure change the absorption spectrum o/(®). However,
changes in the absorption also affect the refractive index since Ac and An are
related through the Kramers—Kronig relation [51]

n_ C [“Aa(w)do
An@) =2 )y 2—a?

(1.1.3)
Even though absorption modifications occur mainly in the ultraviolet region,
the refractive index can change even in the visible or infrared region. More-
over, since index changes occur only in the regions of fiber core where the
ultraviolet light is absorbed, a periodic intensity pattern is transformed into
an index grating. Typicaly, index change An is ~ 10~ in the 1.3- to 1.6-
um wavelength range, but can exceed 0.001 in fibers with high Ge concentra-
tion [34].

The presence of GeO defects is crucia for photosensitivity to occur in
optical fibers. However, standard telecommunication fibers rarely have more
than 3% of Ge atomsin their core, resulting in relatively small index changes.
The use of other dopants such as phosphorus, boron, and aluminum can en-
hance the photosensitivity (and the amount of index change) to some extent,
but these dopants also tend to increase fiber losses. It was discovered in the
early 1990s that the amount of index change induced by ultraviolet absorption
can be enhanced by two orders of magnitude (An > 0.01) by soaking the fiber
in hydrogen gas at high pressures (200 atm) and room temperature [39]. The
density of Ge-Si oxygen-deficient bonds increases in hydrogen-soaked fibers
because hydrogen can recombine with oxygen atoms. Once hydrogenated, the
fiber needs to be stored at low temperature to maintain its photosensitivity.
However, gratings made in such fibers remain intact over long periods of time,
indicating the nearly permanent nature of the resulting index changes [46].
Hydrogen soaking is commonly used for making fiber gratings.
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It should be stressed that understanding of the exact physical mechanism
behind photosensitivity is far from complete, and more than one mechanism
may beinvolved [52]. Localized heating can also affect grating formation. For
instance, in fibers with astrong grating (index change > 0.001), damage tracks
were seen when the grating was examined under an optical microscope [34];
these tracks were due to localized heating to severa thousand degrees of the
core region where ultraviolet light was most strongly absorbed. At such high
temperatures the local structure of amorphous silica can change considerably
because of melting.

1.2 Fabrication Techniques

Fiber gratings can be made by using several different techniques, each having
its own merits. This section discusses briefly four major techniques commonly
used for making fiber gratings: the single-beam internal technique, the dual-
beam holographic technique, the phase mask technique, and the point-by-point
fabrication technique. The reader is referred to Chapter 3 of Ref. [49] for
further details.

12.1 Single-Beam Internal Technique

In thistechnique, used in the original 1978 experiment [2], asingle laser beam,
often obtained from an argon-ion laser operating in asingle mode near 488 nm,
is launched into a germanium-doped silica fiber. The light reflected from the
near end of the fiber is then monitored. The reflectivity is initialy about 4%,
as expected for afiber—air interface. However, it gradually begins to increase
with time and can exceed 90% after a few minutes when the Bragg grating
is completely formed [4]. Figure 1.2 shows the increase in reflectivity with
time, observed in the 1978 experiment for a 1-m-long fiber having a numerical
aperture of 0.1 and a core diameter of 2.5 um. Measured reflectivity of 44%
after 8 minutes of exposure implies more than 80% reflectivity of the Bragg
grating when coupling losses are accounted for.

Grating formation is initiated by the light reflected from the far end of the
fiber and propagating in the backward direction. The two counterpropagat-
ing waves interfere and create a standing-wave pattern with periodicity 4/2n,
where A is the laser wavelength and n'is the mode index at that wavelength.
Therefractive index of silicaismodified locally in theregions of high intensity,
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Figure 1.2 Increase in reflectivity with time during grating formation. Insets show
the reflection and transmission spectra of the grating. (After Ref. [2], (©American
Ingtitute of Physics)

resulting in a periodic index variation along the fiber length. Even though the
index grating isquite weak initially (4% far-end reflectivity), it reinforces itself
through akind of runaway process. Sincethe grating period is exactly the same
asthe standing-wave period, the Bragg condition is satisfied for the laser wave-
length. Asaresult, some forward-traveling light is reflected backward through
distributed feedback, which strengthens the grating, which in turn increases
feedback. The process stops when the photoinduced index change saturates.
Optical fibers with an intracore Bragg grating act as a narrowband reflection
filter. Thetwo insetsin Fig. 1.2 show the measured reflection and transmission
spectra of such afiber grating. The full width at half maximum (FWHM) of
these spectrais only about 200 MHz.

A disadvantage of the single-beam internal method is that the grating can
be used only near the wavelength of the laser used to make it. Since Ge-doped
silica fibers exhibit little photosensitivity at wavelengths longer than 0.5 um,
such gratings cannot be used in the 1.3- to 1.6-um wavelength region that is
important for optical communications. A dual-beam holographic technique,
discussed next, solves this problem.

1.2.2 Dual-Beam Holographic Technique

The dual-beam holographic technique, shown schematically in Fig. 1.3, makes
use of an external interferometric scheme similar to that used for holography.
Two optical beams, obtained from the same laser (operating in the ultraviol et
region) and making an angle 20 are made to interfere at the exposed core of an
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Fiber
Cylindrical

Figure 1.3 Schematic illustration of the dual-beam holographic technique.

optical fiber [16]. A cylindrical lensis used to expand the beam aong the fiber
length. Similar to the single-beam scheme, the interference pattern creates an
index grating. However, the grating period A is related to the ultraviolet laser
wavelength Ay, and the angle 26 made by the two interfering beams through
the smple relation

A= Ay/(25iN6). (122

The most important feature of the holographic technique is that the grat-
ing period A can be varied over a wide range by simply adjusting the angle
0 (see Fig. 1.3). The wavelength A at which the grating will reflect light is
related to A as A = 2nA. Since A can be significantly larger than Ay, Bragg
gratings operating in the visible or infrared region can be fabricated by the
dual-beam holographic method even when A, isin the ultraviolet region. Ina
1989 experiment, Bragg gratings reflecting 580-nm light were made by expos-
ing the 4.4-mm-long core region of a photosensitive fiber for 5 minutes with
244-nm ultraviolet radiation [16]. Reflectivity measurements indicated that the
refractive index changes were ~ 10° in the bright regions of the interference
pattern. Bragg gratings formed by the dual-beam holographic technique were
stable and remained unchanged even when the fiber was heated to 500°C.

Because of their practical importance, Bragg gratings operating in the 1.55-
um region were made in 1990 [17]. Since then, several variations of the basic
technigue have been used to make such gratings in a practica manner. An
inherent problem for the dual-beam holographic technique is that it requires
an ultraviolet laser with excellent temporal and spatial coherence. Excimer
lasers commonly used for this purpose have relatively poor beam quality and
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require special care to maintain the interference pattern over the fiber core over
aduration of several minutes.

It turns out that high-reflectivity fiber gratings can be written by using a
single excimer laser pulse (with typical duration of 20 ns) if the pulse energy
is large enough [31]—-{34]. Extensive measurements on gratings made by this
technigue indicate a threshold-like phenomenon near a pulse energy level of
about 35 mJ [34]. For lower pulse energies, the grating is relatively weak
since index changes are only about 10-°. By contrast, index changes of about
103 are possible for pulse energies above 40 mJ. Bragg gratings with nearly
100% reflectivity have been made by using a single 40-mJ pulse at the 248-nm
wavelength. The gratings remained stable at temperatures as high as800°C. A
short exposure time has an added advantage. The typical rate at which afiber
is drawn from a preform is about 1 m/s. Since the fiber moves only 20 nmin
20 ns, and since this displacement isasmall fraction of the grating period A, a
grating can be written during the drawing stage while the fiber is being pulled
and before it is sleeved [35]. This feature makes the single-pulse holographic
technigue quite useful from a practical standpoint.

1.2.3 Phase Mask Technique

This nonholographic technique uses a photolithographic process commonly
employed for fabrication of integrated electronic circuits. The basic ideais to
use a phase mask with a periodicity related to the grating period [36]. The
phase mask acts as a master grating that is transferred to the fiber using a
suitable method. In one readization of this technique [37], the phase mask
was made on a quartz substrate on which a patterned layer of chromium was
deposited using electron-beam lithography in combination with reactive-ion
etching. Phase variations induced in the 242-nm radiation passing through the
phase mask trandate into a periodic intensity pattern similar to that produced
by the holographic technique. Photosensitivity of the fiber converts intensity
variations into an index grating of the same periodicity as that of the phase
mask.

The chief advantage of the phase mask method is that the demands on the
tempora and spatial coherence of the ultraviolet beam are much less strin-
gent because of the noninterferometric nature of the technique. In fact, even
a nonlaser source such as an ultraviolet lamp can be used. Furthermore, the
phase mask technique allows fabrication of fiber gratings with a variable pe-
riod (chirped gratings) and can also be used to tailor the periodic index profile
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Figure 1.4 Schematic illustration of a phase mask interferometer used for making
fiber gratings. (After Ref. [49], reprinted by permission of Academic Press)

aong the grating length. It is aso possible to vary the Bragg wavelength over
some range for a fixed mask periodicity by using a converging or diverging
wavefront during the photolithographic process [41]. On the other hand, the
quality of fiber grating (Iength, uniformity, etc.) depends completely on the
master phase mask, and al imperfections are reproduced precisely. Nonethe-
less, gratings with 5-mm length and 94% reflectivity were madein 1993, show-
ing the potential of this technique [37].

The phase mask can aso be used to form an interferometer using the ge-
ometry shown in Fig. 1.4. The ultraviolet laser beam falls normally on the
phase mask and is diffracted into several beams in the Raman—Nath scattering
regime. The zeroth-order beam (direct transmission) is blocked or canceled
by an appropriate technique. The two first-order diffracted beams interfere on
the fiber surface and form a periodic intensity pattern. The grating period is
exactly one-half of the phase mask period. In effect, the phase mask produces
both the reference and object beams required for holographic recording.

There are several advantages of using a phase mask interferometer. It is
insensitive to the lateral translation of the incident laser beam and tolerant of
any beam-pointing instability. Relatively long fiber gratings can be made by
moving two side mirrors while maintaining their mutual separation. In fact,
the two mirrors can be replaced by a single silica block that reflects the two
beams internally through total internal reflection, resulting in a compact and
stable interferometer [49]. The length of the grating formed inside the fiber
coreislimited by the size and optical quality of the silica block.

Long gratings can be formed by scanning the phase mask or by translating
the optical fiber itself such that different parts of the optical fiber are exposed
to the two interfering beams. In this way, multiple short gratings are formed
in succession in the same fiber. Any discontinuity or overlap between the
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two neighboring gratings, resulting from positional inaccuracies, leads to the
so-called stitching errors (also called phase errors) that can affect the qual-
ity of the whole grating substantially if left uncontrolled. Nevertheless, this
technique was used in 1993 to produce a 5-cm-long grating [42]. Since then,
gratings longer than 1 meter have been made with success [53] by employing
techniques that minimize phase errors [54].

1.2.4 Point-by-Point Fabrication Technique

This nonholographic scanning technique bypasses the need of a master phase
mask and fabricates the grating directly on the fiber, period by period, by ex-
posing short sections of width w to a single high-energy pulse [18]. The fiber
is trandated by a distance A — w before the next pulse arrives, resulting in a
periodic index pattern such that only afraction w/A in each period has ahigher
refractive index. The method is referred to as point-by-point fabrication since
agrating is fabricated period by period even though the period A is typically
below 1 um. The technique works by focusing the spot size of the ultravio-
let laser beam so tightly that only a short section of width w is exposed to it.
Typically, w is chosen to be A/2 athough it could be a different fraction if so
desired.

There are a few practical limitations of this technique. First, only short
fiber gratings (< 1 cm) are typically produced because of the time-consuming
nature of the point-to-point fabrication method. Second, it is hard to control
the movement of a trandation stage accurately enough to make this scheme
practical for long gratings. Third, it is not easy to focus the laser beam to a
small spot size that is only a fraction of the grating period. Recall that the
period of afirst-order grating is about 0.5 um at 1.55 um and becomes even
smaller at shorter wavelengths. For this reason, the technique was first demon-
strated in 1993 by making a 360-pm-long, third-order grating with a 1.59-um
period [38]. The third-order grating still reflected about 70% of the incident
1.55-umlight. From afundamental standpoint, an optical beam can be focused
to a spot size as small as the wavelength. Thus, the 248-nm laser commonly
used in grating fabrication should be able to provide afirst-order grating in the
wavelength range from 1.3 to 1.6 um with proper focusing optics similar to
that used for fabrication of integrated circuits.

The point-by-point fabrication method is quite suitable for long-period
gratings in which the grating period exceeds 10 um and even can be longer
than 100 um, depending on the application [55]-{57]. Such gratings can
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be used for mode conversion (power transfer from one mode to another) or
polarization conversion (power transfer between two orthogonally polarized
modes). Their filtering characteristics have been used for flattening the gain
profile of erbium-doped fiber amplifiers and for mode conversion in all-fiber
multimode devices.

1.3 Grating Characteristics

Two different approaches have been used to study how a Bragg grating affects
wave propagation in optical fibers. In one approach, Bloch formalism—used
commonly for describing motion of electrons in semiconductors—is applied
to Bragg gratings [58]. In ancther, forward- and backward-propagating waves
are treated independently, and the Bragg grating provides a coupling between
them. This method is known as the coupled-mode theory and has been used
with considerable success in several different contexts. In this section we de-
rive the nonlinear coupled-mode equations and use them to discuss propaga-
tion of low-intensity CW light through a Bragg grating. We aso introduce the
concept of photonic bandgap and use it to show how aBragg grating introduces
alarge amount of dispersion.

1.3.1 Coupled-Mode Equations

Wave propagation in alinear periodic medium has been studied extensively us-

ing coupled-mode theory [59]-{61]. Thistheory has been applied to distributed-
feedback (DFB) semiconductor lasers [62], among other things. In the case of

optical fibers, we need to include both the nonlinear changes and the periodic
variation of the refractive index by using

A(®,2) = N(w) +n,|E[>+ 8ngy(2), (1.3.2)

where n, is the nonlinear parameter and éry(z) accounts for periodic index
variations inside the grating. The coupled-mode theory can be generalized to
include the fiber nonlinearity since the nonlinear index change n2|E|2 in Eq.
(1.3.1) isso small that it can be treated as a perturbation [63].

The starting point consists of solving Maxwell’s equations with the refrac-
tive index given in Eq. (1.3.1). However, as discussed in Section A.2.3, if the
nonlinear effects are relatively weak, we can work in the frequency domain
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and solve the Helmholtz equation
V2E +?(w,2)0?/c?E = 0, (1.3.2)

where E denotes the Fourier transform of the electric field with respect to time.
Noting that iis a periodic function of z, it is useful to expand ény(z) in a
Fourier series as

ong(z) = i onmexp[2rim(z/A)]. (1.3.3)

M=—cc

Since both the forward- and backward-propagating waves should be included,
E in Eq. (1.3.2) isof theform

E(r ’ (D) =F (X7 y) [Af (27 (D) exp(IBBZ) +Ab(zv (D) exp(_iBBZ)]v (134)

where Bz = /A is the Bragg wave number for a first-order grating. It isre-
lated to the Bragg wavelength through the Bragg condition A5 = 2nA and can
be used to define the Bragg frequency as wg = mc/(NA). Transverse varia-
tions for the two counterpropagating waves are governed by the same modal
distribution F(x,y) in asingle-mode fiber.

Using Egs. (1.3.1)«(1.3.4), assuming that A, and A vary slowly with zand
keeping only the nearly phase-matched terms, the frequency-domain coupled-
mode equations become [59]-{61]

O i(8(0) + ABIA +ixR, (135)
_aaizb = i[8(w) + ABIA, +iKA,, (1.3.6)

where 6 isameasure of detuning from the Bragg frequency and is defined as

6(w) = (n/c)(w — wg) = B(w) - Pg. (13.7)

The nonlinear effects are included through A defined as in Eq. (A.2.3.20).
The coupling coefficient k governs the grating-induced coupling between the
forward and backward waves. For afirst-order grating, x is given by

_ ko JJZ. 80y |F(x,y)|*dxdy
SIS IF(xy)|?dxdy

(1.3.8)
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Inthisgeneral form, x caninclude transverse variations of 6y occurring when
the photoinduced index change is not uniform over the core area. For atrans-
versely uniform grating k = 2wén; /A, as can be inferred from Eq. (1.3.8) by
taking 6n, as constant and using k, = 2 /A. For a sinusoidal grating of the
form éng = nycos(2z/A), 6n; = ny/2 and the coupling coefficient is given
by Kk = mna/A.

Equations (1.3.5) and (1.3.6) can be converted to time domain by following
the procedure outlined in Section A.2.3. We assume that the total electric field
can be written as

E(r,t) = 2F(x y)[A; (zt)€Pe? + A (z 1) PeZe 1! 1 c.c., (1.3.9)

where ay, is the frequency at which the pulse spectrum is centered. We expand
B(w) in Eq. (1.3.7) in aTaylor series as

B(w) = By+ (0 — @p) By + (0 — @0) 2By + 2 (0 — wp) 3B+ (1.3.10)

and retain terms up to second order in w — w,,. The resulting equations can be
converted into time domain by replacing o — w,, with the differential operator
i(d/at). The resulting coupled-mode equations become

aA |[3 o
+ﬁ1 at 22 at2 +_Af

= i8A; +ikA +iv(|A 2+ 2/A DA,  (1.3.11)
0 d 92
Ab Bla%:b |g2 atAZb 2Ab

=i8A, +iKkA; +iv(|AP+2IA DA, (1312

where 0 in Eq. (1.3.7) isevaluated at @ = @, and becomes 6 = (wy — wg)/Vg.
In fact, the 6 term can be eliminated from the coupled-mode equations if o,
isreplaced by wg in Eq. (1.3.9). The other parameters have the same meaning
asin Section A.2.3. Specifically, B, = 1/vgy is related inversely to the group
velocity, B, governs the group-velocity dispersion (GVD), and the nonlinear
parameter yisrelated ton, asy = n,m,/(CA4 ), where A isthe effective core
area as defined in EQ. (A.2.3.29).

The nonlinear terms in the time-domain coupled-mode equations contain
the contributions of both self-phase modulation (SPM) and cross-phase mod-
ulation (XPM). The origin of the factor of 2 in the XPM term is discussed in
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Section A.7.1. In fact, the coupled-mode equations are similar to and should
be compared with Egs. (A.7.1.15) and (A.7.1.16), which govern propagation
of two copropagating waves inside optical fibers. The two major differences
are: (i) the negative sign appearing in front of the dA /dztermin Eq. (1.3.11)

because of backward propagation of A and (ii) the presence of linear coupling
between the counterpropagating waves governed by the parameter k. Both of
these differences change the character of wave propagation profoundly. Before
discussing the general case, it is instructive to consider the case in which the
nonlinear effects are so weak that the fiber acts as a linear medium.

1.3.2 CW Solution inthelLinear Case

In this section, we will focus on the linear case in which the nonlinear effects
are negligible. When the SPM and XPM terms are neglected in Egs. (1.3.11)
and (1.3.12), the resulting linear equations can be solved easily in the Fourier
domain. In fact, we can use Egs. (1.3.5) and (1.3.6). These frequency-domain
coupled-mode equations include GVD to all orders. After setting the nonlinear
contribution AJ to zero, we obtain

oA, . .
a—g — 6Af + IKAb7 (1313)
—aaizb = i8A, +ixA,, (1.3.14)

where §(w) isgiven by Eq. (1.3.7).
A general solution of these linear equations takes the form
A;(2) = A exp(igz) + A, exp(—iqz), (1.3.15)
A (2) = B, exp(iqz) + B, exp(—iqz), (1.3.16)

where q isto be determined. The constants A, A,, B;, and B, are interdepen-
dent and satisfy the following four relations:

(q—38)A, =xB,,  (q+8)B, = —KA,, (1.3.17)
(q—8)B,=kA,,  (q+8)A, = —«kB,. (1.3.18)

These equations are satisfied for nonzero values of A, A,, B;, and B, if the
possible values of g obey the dispersion relation

q=+Vv62— k2 (1.3.19)
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Figure 1.5 Dispersion curves showing variation of § with g and the existence of the
photonic bandgap for afiber grating.

This eguation is of paramount importance for gratings. Its implications will
become clear soon.

One can eliminate A, and B, by using Egs. (1.3.15)—<1.3.18) and write the
general solution in terms of an effective reflection coefficient r(q) as

A;(2) = A exp(iqz) +r(q)B, exp(—igz), (1.3.20)
Ay(2) = Byexp(—ia2) + 1 (A)A, exp(ic), (1:321)
where 5
_4-o__ K
ra)=——= T (1.3.22)

The q dependence of r and the dispersion relation (1.3.19) indicate that both
the magnitude and the phase of backward reflection depend on the frequency
. The sign ambiguity in Eg. (1.3.19) can be resolved by choosing the sign of
g such that |r(q)| < 1.

1.3.3 Photonic Bandgap, or Stop Band

The dispersion relation of Bragg gratings exhibits an important property seen
clearly inFig. 1.5, where Eq. (1.3.19) isplotted. If the frequency detuning 6 of
theincident light fallsin therange —x < 6 < k, q becomes purely imaginary.
Most of the incident field is reflected in that case since the grating does not
support a propagating wave. The range |8| < «x is referred to as the photonic
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bandgap, in analogy with the electronic energy bands occurring in crystals. It
is also called the stop band since light stops transmitting through the grating
when its frequency falls within the photonic bandgap.

To understand what happens when optical pulses propagate inside a fiber
grating with their carrier frequency w, outside the stop band but close to
its edges, note that the effective propagation constant of the forward- and
backward-propagating waves from Egs. (1.3.4) and (1.3.15) is Be = Bg £ q,
where gisgiven by Eqg. (1.3.19) and isafunction of optical frequency through
0. This frequency dependence of B indicates that a grating will exhibit dis-
persive effects even if it was fabricated in a nondispersive medium. In optical
fibers, grating-induced dispersion adds to the material and waveguide disper-
sion. In fact, the contribution of grating dominates among all sources respon-
sible for dispersion. To see this more clearly, we expand fe in a Taylor series
inaway similar to Eq. (1.3.10) around the carrier frequency w, of the pulse.
Theresult is given by

Be(@) = B+ (0 — wg) B + 5(0 — wg)*BF + (0 — ) B + -+, (1.3.23)
where B3 withm=1,2,... isdefined as

d™q 1\™d™q
g:—% — - ..
Bm da)m <Vg> d6m7 (1324)

where derivatives are evaluated at w = w,. The superscript g denotes that
the dispersive effects have their origin in the grating. In Eq. (1.3.24), v is
the group velocity of pulse in the absence of the grating (x = 0). It occurs
naturally when the frequency dependence of n is taken into account in Eq.
(1.3.7). Dispersion of vy is neglected in Eq. (1.3.24) but can be included easily.

Consider first the group velocity of the pulse inside the grating. Using
Ve = 1/B7 and Eq. (1.3.24), it is given by

Vg = +vgy/1— k2/82, (1.3.25)

where the choice of + signs depends on whether the pulse is moving in the
forward or the backward direction. Far from the band edges (|8| > «), optical
pulse is unaffected by the grating and travels at the group velocity expected in
the absence of the grating. However, as |d| approaches x, the group velocity
decreases and becomes zero at the two edges of the stop band where |§| = k.
Thus, close to the photonic bandgap, an optical pulse experiences considerable
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sowing down inside a fiber grating. As an example, its speed is reduced by
50% when |8]/x ~ 1.18.

Second- and third-order dispersive properties of the grating are governed
by B3 and B3, respectively. Using Eq. (1.3.24) together with the dispersion
relation, these parameters are given by

2
g_ M (1.3.26)

o SR
2~ (62— k2)3/2 B3 = (62— x2)5/2"

The grating-induced GV D, governed by the parameter 33, depends on the sign
of detuning 6. The GVD is anomalous on the upper branch of the dispersion
curve in Fig. 1.5, where ¢ is positive and the carrier frequency exceeds the
Bragg frequency. In contrast, GVD becomes normal (Bg > 0) on the lower
branch of the dispersion curve, where § is negative and the carrier frequency
is smaller than the Bragg frequency. Notice that the third-order dispersion
remains positive on both branches of the dispersion curve. Also note that both
B and B become infinitely large at the two edges of the stop band.

The dispersive properties of a fiber grating are quite different than those
of auniform fiber. Firgt, [329 changes sign on the two sides of the stop band
centered at the Bragg wavelength, whose location is easily controlled and can
be in any region of the optical spectrum. This is in sharp contrast with 3,
for uniform fibers, which changes sign at the zero-dispersion wavelength that
can be varied only in arange from 1.3 to 1.6 um. Second, 3 is anomalous
on the shorter wavelength side of the stop band whereas 3, for fibers becomes
anomal ous for wavelengths longer than the zero-dispersion wavelength. Third,
the magnitude of [329 exceeds that of B, by alarge factor. Figure 1.6 shows how
B3 varies with detuning & for several values of k. As seen there, |33 can
exceed 100 ps?/cm for a fiber grating. This feature can be used for disper-
sion compensation in the transmission geometry [64]. Typically, a 10-cm-long
grating can compensate the GV D acquired over fiber lengths of 50 km or more.
Chirped gratings, discussed later in this chapter, can provide even more disper-
sion when the incident light is inside the stop band, although they reflect the
dispersion-compensated signal [65].

1.3.4 Gratingasan Optical Filter

What happens to optical pulses incident on afiber grating depends very much
on the location of the pulse spectrum with respect to the stop band associated
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Figure 1.6 Grating-induced GVD plotted as a function of 6 for several values of the
coupling coefficient x.

with the grating. If the pulse spectrum falls entirely within the stop band, the
entire pulse is reflected by the grating. On the other hand, if a part of the
pulse spectrum is outside the stop band, that part will be transmitted through
the grating. The shape of the reflected and transmitted pulses will be quite
different than that of the incident pul se because of the splitting of the spectrum
and the dispersive properties of the fiber grating. If the peak power of pulses
is small enough that nonlinear effects are negligible, we can first caculate
the reflection and transmission coefficients for each spectral component. The
shape of the transmitted and reflected pulses is then obtained by integrating
over the spectrum of the incident pulse. Considerable distortion can occur
when the pulse spectrum is either wider than the stop band or when it lies in
the vicinity of a stop-band edge.

Thereflection and transmission coefficients can be calculated by using Egs.
(1.3.20) and (1.3.21) with the appropriate boundary conditions. Consider a
grating of length L and assume that light is incident only at the front end,
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Figure 1.7 (a) The reflectivity |rq|? and (b) the phase of r4 plotted as a function of
detuning 6 for two values of kL.

located at z= 0. The reflection coefficient is then given by

_ A0 Byt+r(g)A
rg= R0 At (q)B;. (1.3.27)

If we use the boundary condition A, (L) = 0in Eq. (1.3.21),
B, = —r(q)A, exp(2igL). (1.3.28)
Using this value of B, and r(q) from Eq. (1.3.22) in Eq. (1.3.27), we obtain

B ixsin(qlL)
~ qcos(gL) —issin(gL)’

g (1.3.29)
The transmission coefficient ty can be obtained in a similar manner. The fre-
quency dependence of ry and ty shows the filter characteristics associated with
afiber grating.

Figure 1.7 shows the reflectivity |rg|2 and the phase of ry as a function of
detuning 6 for two values of kL. The grating reflectivity within the stop band
approaches 100% for kL = 3 or larger. Maximum reflectivity occurs at the
center of the stop band and, by setting 6 = 0 in Eq. (1.3.29), isgiven by

Rmax = |rg|* = tanh?(xL). (1.3.30)
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Figure 1.8 Measured and calculated reflectivity spectra for a fiber grating operating
near 1.3 um. (After Ref. [33])

For kL = 2, Rnax = 0.93. The condition kL > 2 with k¥ = 2zén, /A can be
used to estimate the grating length required for high reflectivity inside the stop
band. For dn, =~ 10~% and A = 1.55 um, L should exceed 5 mm to yield
kL > 2. These requirements are easily met in practice. Indeed, reflectivitiesin
excess of 99% were achieved for agrating length of 1.5 cm [34].

1.3.5 Experimental Verification

The coupled-mode theory has been quite successful in explaining the observed
features of fiber gratings. Asan example, Figure 1.8 shows the measured re-
flectivity spectrum for a Bragg grating operating near 1.3 um [33]. The fitted
curve was calculated using Eq. (1.3.29). The 94% peak reflectivity indicates
kL ~ 2 for this grating. The stop band is about 1.7-nm wide. These measured
values were used to deduce a grating length of 0.84 mm and an index change
of 1.2 x 10~3. The coupled-mode theory explains the observed reflection and
transmission spectra of fiber gratings quite well.

Anundesirable feature seenin Figs. 1.7 and 1.8 from a practical standpoint
is the presence of multiple sidebands located on each side of the stop band.
These sidebands originate from weak reflections occurring at the two grating
endswheretherefractive index changes suddenly compared to its value outside
the grating region. Even though the change in refractive index istypically less
than 1%, the reflections at the two grating ends form a Fabry—Perot cavity
with its own wavel ength-dependent transmission. An apodization technique is
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Figure 1.9 (a) Schematic variation of refractive index and (b) measured reflectivity
spectrum for an apodized fiber grating. (After Ref. [66])

commonly used to remove the sidebands seen in Figs. 1.7 and 1.8 [49]. In this
technique, theintensity of the ultraviolet |aser beam used to form the grating is
made nonuniform in such away that the intensity drops to zero gradually near
the two grating ends.

Figure 1.9(a) shows schematically the periodic index variation in an apodi-
zed fiber grating. In atransition region of width L; near the grating ends, the
value of the coupling coefficient k increases from zero to its maximum value.
These buffer zones can suppress the sidebands almost completely, resulting in
fiber gratings with practically useful filter characteristics. Figure 1.9(b) shows
the measured reflectivity spectrum for a 7.5-cm-long apodized fiber grating
made by the scanning phase mask technique. The reflectivity exceeds 90%
within the stop band, about 0.17-nm wide and centered at the Bragg wave-
length of 1.053 um, chosen to coincide with the wavelength of an Nd:YLF
laser [66]. From the stop-band width, the coupling coefficient x is estimated
to be about 7 cm~. Note the sharp drop in reflectivity at both edges of the
stop band and a complete absence of sidebands.

The same apodized fiber grating was used to investigate dispersive prop-
erties in the vicinity of a stop-band edge by transmitting 80-ps pulses (nearly
Gaussian shape) through it [66]. Figure 1.10 shows the variation of the pulse
width (a) and changes in the propagation delay during pulse transmission (b) as
afunction of the detuning 6 from the Bragg wavel ength on the upper branch of
the dispersion curve. The most interesting feature is the increase in the arrival
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Figure 1.10 (a) Measured pulse width (FWHM) of 80-ps input pulses and (b) their
arrival time as a function of detuning 6 for an apodized 7.5-cm-long fiber grating.
Solid lines show the prediction of the coupled-mode theory. (After Ref. [66])

time observed as the laser is tuned close to the stop-band edge because of the
reduced group velocity. Doubling of the arrival time for § close to 900 m—1
shows that the pulse speed was only 50% of that expected in the absence of the
grating. Thisresult is in complete agreement with the prediction of coupled-
mode theory.

Changes in the pulse width seen in Figure 1.10 can be attributed mostly
to the grating-induced GVD effectsin Eq. (1.3.26). The large broadening ob-
served near the stop-band edge is due to an increase in |3]. Slight compres-
sion near § = 1200 m~! is due to asmall amount of SPM that chirps the pulse.
Indeed, it was necessary to include the y term in Egs. (1.3.11) and (1.3.12)
to fit the experimental data. The nonlinear effects became quite significant at
higher power levels. We turn to this issue next.

1.4 CW Nonlinear Effects

Wave propagation in a nonlinear, one-dimensional, periodic medium has been
studied in several different contexts [67]-{87]. In the case of afiber grating,
the presence of an intensity-dependent term in Eq. (1.3.1) leads to SPM and
XPM of counterpropagating waves. These nonlinear effects can be included
by solving the nonlinear coupled-mode equations, Egs. (1.3.11) and (1.3.12).
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In this section, these equations are used to study the nonlinear effects for CW
beams. The time-dependent effects are discussed in later sections.

1.4.1 Nonlinear Dispersion Curves

In almost all cases of practical interest, the B, term can be neglected in Egs.
(1.3.11) and (1.3.12). For typica grating lengths (< 1 m), the loss term can
aso be neglected by setting oo = 0. The nonlinear coupled-mode equations
then take the following form:

i%+i_%+5p\ + kA, + YA P+ 2A [PA =0, (14.1)
9z v It ¢+ KA + V(A Apl“)A; =0, o
dJ i d

L% L L0 S kA, + 1A+ 2A A =0, (14.2)
dz vy ot

where vy is the group velocity far from the stop band associated with the grat-
ing. These equations exhibit many interesting nonlinear effects. We begin by
considering the CW solution of Egs. (1.4.1) and (1.4.2) without imposing any
boundary conditions. Even though this is unredistic from a practical stand-
point, the resulting dispersion curves provide considerable physical insight.
Note that all grating-induced dispersive effects are included in these equations
through the k term.

To solve Egs. (1.4.1) and (1.4.2) in the CW limit, we neglect the time-
derivative term and assume the following form for the solution:

A; = u;exp(igz), A, = u,exp(igz), (1.4.3)

where u; and u,, are constant along the grating length. By introducing a pa-
rameter f = u, /u, that describes how the total power P, = u? + u2 is divided
between the forward- and backward-propagating waves, 1 and u, can be writ-

ten as
0 0
_ o YL I 144
VIR TV I (144

The parameter f can be positive or negative. For values of |f| > 1, the back-
ward wave dominates. By using Egs. (1.4.1)—<(1.4.4), both q and 6 are found
to depend on f and are given by

K(1-f2) yR1-f2 5__K(1+f2)_3yP0
2f 2 1+ 2’ N 2f 2

(14.5)
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Figure1.11 Nonlinear dispersion curves showing variation of § with gfor yP,/x =2
(@) and 5 (b) when k¥ = 5 cm~2. Dashed curves show the linear case (y = 0).

To understand the physical meaning of Eq. (1.4.5), let us first consider
the low-power case so that nonlinear effects are negligible. If weset y =10
in Eq. (1.4.5), it is easy to show that ¢ = 2 — k2. This is precisely the
dispersion relation (1.3.19) obtained previously. As f changes, g and & trace
the dispersion curves shown in Fig. 1.5. In fact, f < O on the upper branch
while positive values of f belong to the lower branch. The two edges of the
stop band occur at f = +1. From a practical standpoint, the detuning 6 of the
CW beam from the Bragg frequency determines the value of f, which inturn
fixes the values of g from Eq. (1.4.5). The group velocity inside the grating
also depends on f and is given by

do 1—f2

As expected, V; becomes zero at the edges of the stop band corresponding to
f = +1. Note that Vi; becomes negative for |f| > 1. Thisis not surprising if
we note that the backward-propagating wave is more intense in that case. The
speed of light is reduced considerably as the CW-beam frequency approaches
an edge of the stop band. As an example, it reduces by 50% when f2 equals
V3or3.

Equation (1.4.5) can be used to find how the dispersion curves are affected
by the fiber nonlinearity. Figure 1.11 shows such curves at two power levels.
The nonlinear effects change the upper branch of the dispersion curve qual-
itatively, leading to the formation a loop beyond a critical power level. This
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critical value of R, can be found by looking for the value of f at which g be-
comes zero while | f| # 1. From Eq. (1.4.5), we find that this can occur when

f = fo=—(yPy/2K) + 1/ (YPy/2K)2 — 1. (1.4.7)

Thus, aloop is formed only on the upper branch where f < 0. Moreover, it
can form only when the total power R, > P, where P, = 2x /7. Physicaly, an
increase in the mode index through the nonlinear term in Eq. (1.3.1) increases
the Bragg wavel ength and shifts the stop band toward lower frequencies. Since
the amount of shift depends on the total power R, light at a frequency close to
the edge of the upper branch can be shifted out of resonance with changes in
its power. If the nonlinear parameter y were negative (self-defocusing medium
with n, < 0), the loop will form on the lower branch in Fig. 1.11, asis aso
evident from Eq. (1.4.7).

1.4.2 Optical Bistability

The simple CW solution given in Eq. (1.4.3) is modified considerably when
boundary conditions are introduced at the two grating ends. For a finite-size
grating, the simplest manifestation of the nonlinear effects occurs through op-
tical bistability, first predicted in 1979 [67].

Consider a CW beam incident at one end of the grating and ask how the
fiber nonlinearity would affect its transmission through the grating. It is clear
that both the beam intensity and its wavelength with respect to the stop band
will play an important role. Mathematically, we should solve Egs. (1.4.1) and
(1.4.2) after imposing the appropriate boundary conditionsat z=0andz= L.
These equations are quite similar to those occurring in Section A.6.3 and can
be solved in terms of the elliptic functions by using the same technique used
there [67]. The analytic solution is somewhat complicated and provides only
an implicit relation for the transmitted power at z= L. We refer to Ref. [79]
for details.

Figure 1.12 shows the transmitted versus incident power [both normalized
to a critical power Ry = 4/(3yL)] for severa detuning values within the stop
band by taking xL = 2. The S-shaped curves are well known in the context
of optical bistability occurring when a nonlinear medium is placed inside a
cavity [88]. In fact, the middle branch of these curves with negative slope
is unstable, and the transmitted power exhibits bistability with hysteresis, as
shown by the arrows on the solid curve. At low powers, transmittivity issmall,
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Figure 1.12 Transmitted versus incident power for three values of detuning within
the stop band. (After Ref. [67], ©American Institute of Physics)

as expected from the linear theory since the nonlinear effects are relatively
weak. However, above a certain input power, most of the incident power is
transmitted. Switching from a low-to-high transmission state can be under-
stood qualitatively by noting that the effective detuning 6 in Egs. (1.4.1) and
(1.4.2) becomes power dependent because of the nonlinear contribution to the
refractive index in Eq. (1.3.1). Thus, light that is mostly reflected at low pow-
ers because its wavelength is inside the stop band may tune itself out of the
stop band and get transmitted when the nonlinear index change becomes large
enough. In asense, the situation is similar to that discussed in Section A.10.3,
where SPM helped to satisfy the phase-matching condition associated with
four-wave mixing.

The observation of optical bistability in fiber gratings is hampered by the
large switching power required (R > Py > 1 kW). It turns out that the switch-
ing power can be reduced by a factor of 100 or more by introducing a /2
phase shift in the middle of the fiber grating. Such gratings are called 1 /4-
shifted or phase-shifted gratings since a distance of A /4 (haf grating pe-
riod) corresponds to a /2 phase shift. They are used routinely for making
distributed-feedback (DFB) semiconductor lasers[62]. Their usefor fiber grat-
ings was suggested in 1994 [89]. The /2 phase shift opens anarrow transmis-
sion window within the stop band of the grating. Figure 1.13(a) compares the
transmission spectra for the uniform and phase-shifted gratings at low powers.
At high powers, the central peak bends toward left, as seen in the traces in
Fig. 1.13(b). It is this bending that leads to low-threshold optical switching
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Figure1.13 (&) Transmission spectrum of afiber grating with (solid curve) and with-
out (dashed curve) rr/2 phase shift. (b) Bending of the central transmission peak with
increasing power (normalized to the critical power). (After Ref. [82)])

in phase-shifted fiber gratings [82]. The elliptic-function solution of uniform
gratings can be used to construct the multivalued solution for a A /4-shifted
grating [83]. It turns out that the presence of a phase-shifted region lowers the
switching power considerably.

The bistable switching does not always lead to a constant output power
when aCW beam istransmitted through agrating. Asearly as 1982, numerical
solutions of Egs. (1.4.1) and (1.4.2) showed that transmitted power can become
not only periodic but also chaotic under certain conditions [68]. In physical
terms, portions of the upper branch in Fig. 1.12 may become unstable. Asa
result, the output becomes periodic or chaotic once the beam intensity exceeds
the switching threshold. This behavior has been observed experimentally and
is discussed in Section 1.6. In Section 1.5, we turn to another instability that
occurs even when the CW beam is tuned outside the stop band and does not

exhibit optical bistability.

1.5 Modulation Instability

The stability issue is of paramount importance and must be addressed for the
CW solutions obtained in the previous section. Similar to the analysis of Sec-
tion A.5.1, modulation instability can destabilize the steady-state solution and
produce periodic output even when a CW beam is incident on one end of the
fiber grating [90]-{95]. Moreover, the repetition rate of pulse trains generated
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through modulation instability can be tuned over alarge range because of large
GVD changes occurring with the detuning 6.

151 Linear Stability Analysis

For simplicity, we discuss modulation instability using the CW solution given
by Egs. (1.4.3) and (1.4.4) and obtained without imposing the boundary condi-
tions at the grating ends. Following the analysis of Section A.5.1, we perturb
the steady state dlightly as

A= (u;+a)exp(igz), (j=f.b), (1.5.1)

and linearize Egs. (1.4.1) and (1.4.2) assuming that the perturbation g issmall.
The resulting equations are [95]

da; i da; .
ﬁ‘i‘v—gwﬁ-l(’ab—l( a4
+ I'[(a; +at) + 2f(a, +ap)] =0, (15.2)
day i da,
oz Tt TR TR

+ T[2f (a; +a}) + f2(a, +&})] =0, (1.5.3)

whereT" = yPy/(1+ f2) is an effective nonlinear parameter.

This set of two linear coupled equations can be solved assuming a plane-
wave solution of the form

a; = ¢; exp[i(Kz— Qt)] + d; exp[—i(Kz+ Qt)], (1.5.4)

where the subscript j = f or b. Similar to the case discussed in Section A.6.4,
we obtain a set of four homogeneous equations satisfied by G and dj. This
set has a nontrivial solution only when the 4 x 4 determinant formed by the
coefficients matrix vanishes. This condition leads to the the following fourth-
order polynomial:

(8 — K?)? — 2k?( — K?) — k?f%(s+K)?
— k?f72(s—K)?— 4kTf (- 3K?) =0, (1.5.5)

where we have introduced a spatial frequency ass= Q/\.
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Figure 1.14 Gain spectra of modulation instability in the (a) anomalous- and (b)
normal-GVD regions of afiber grating (f = £0.5) at two power levels corresponding
tol'/x =0.5and 2.

The four roots of the polynomial in Eq. (1.5.5) determine the stability of
the CW solution. However, a tricky issue must be first resolved. Equation
(1.5.5) is afourth-order polynomial in both s and K. The question is, which
one determines the gain associated with modulation instability? In the case of
the uniform-index fibers discussed in Section A.5.1, the gain g was related to
the imaginary part of K since light was propagating in the forward direction.
In afiber grating, light travels both forward and backward simultaneously, and
it is the time that moves forward for both of them. As a result, Eq. (1.5.5)
should be viewed as a fourth-order polynomial in s whose roots depend on K.
The gain of modulation instability is obtained using g = 2Im(sy), where sy, is
the root with the largest imaginary part.

Theroot analysis of the above polynomial leads to severa interesting con-
clusions [95]. Figure 1.14 shows the gain spectra of modulation instability in
the anomalous- and normal-GV D regions, corresponding to upper and lower
branches of the dispersion curves, for two values of T'/k. In the anomalous-
GVD case and at relatively low powers (I" < x), the gain spectrum issimilar to
that found for uniform-index fibers. As shown later in this section, the nonlin-
ear coupled-mode equations reduce to anonlinear Schrodinger (NLS) equation
whenT" < k. At high valuesof Ry such that I" > «, the gain existseven at s=0,
as seen in Fig. 1.14(a) for I'/x = 2. Thus, the CW solution becomes unstable
even to zero-frequency (dc) fluctuations at high power levels.

Modulation instability can occur even on the lower branch of the dispersion
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curve (f > 0) where grating-induced GVD is normal. The instability occurs
only when P, exceeds a certain value such that

Py > Sx(1+ f2)2fP, (1.5.6)

where p=1if f <1but p=—-3when f > 1. The occurrence of modulation
instability in the normal-GVD region is solely a grating-induced feature.

The preceding analysis completely ignores boundary conditions. For a
finite-length grating, one should examine the stability of the CW solution ob-
tained in terms of the elliptic functions. Such a study is complicated and
requires a numerical solution to the nonlinear coupled-mode equations [91].
The results show that portions of the upper branch of the bistability curves
in Fig. 1.12 can become unstable, resulting in the formation of a pulse train
through modulation instability. The resulting pulse train is not necessarily pe-
riodic and, under certain conditions, can exhibit period doubling and optical
chaos.

152 Effective NLS Equation

The similarity of the gain spectrum in Fig. 1.14 with that occurring in uniform-
index fibers (see Section A.5.1) indicates that, at not-too-high power levels, the
nonlinear coupled-mode eguations predict features that coincide with those
found for the NL S equation. Indeed, under certain conditions, Egs. (1.4.3) and
(1.4.4) can be reduced formally to an effective NLS equation [96]-{100]. A
multiple-scale method is commonly used to prove this equivalence; details can
be found in Ref. [79].

Theanalysis used to reduce the nonlinear coupled-mode equations to an ef-
fective NL S equation makes use of the Bloch formalism well known in solid-
state physics. Even in the absence of nonlinear effects, the eigenfunctions
associated with the photonic bands, corresponding to the dispersion relation
o? = 62— k2, arenot A; and A, but the Bloch waves formed by alinear combi-
nation of A; and A,. If thisbasisisused for the nonlinear problem, Egs. (1.4.3)
and (1.4.4) reduce to an effective NLS equation provided two conditions are
met. First, the peak intensity of the pulse is small enough that the nonlinear
index change n,l, in Eq. (1.3.1) is much smaller than the maximum value of
ong. This condition is equivalent to requiring that YR < x or xLy, > 1,
where Ly, = (yP,) ! isthe nonlinear length. This requirement is easy to sat-
isfy in practice even at pesk intensity levels as high as 100 GW/cm?. Second,
the third-order dispersion & induced by the grating should be negligible.
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When the above two conditions are satisfied, pulse propagation in a fiber
grating is governed by the following NL S equation [95]:

; _\2\3/2 52
1oV (1-vPP au+%(3—v2)y|U|ZU, (1.5.7)

where § = z—Vt. We have introduced a speed-reduction factor related to the
parameter f through Eq. (1.4.6) as

Ve _1-f%
Y 1+ f2

= +/1—«x2/62. (1.5.8)
The group velocity decreases by the factor v close to an edge of the stop band
and vanishes at the two edges (v = 0) corresponding to f = +1. The reason
the first term is a time derivative, rather than the z derivative, was discussed
earlier. It can aso be understood from aphysical standpoint if we note that the
variable U does not correspond to the amplitude of the forward- or backward-
propagating wave but represents the amplitude of the envelope associated with
the Bloch wave formed by a superposition of A; and A,

Equation (1.5.8) has been written for the case in which the contribution of
A; dominates (| f| < 1) so that the entire Bloch-wave envelope is propagating
forward at the reduced group velocity \;. With this in mind, we introduce
z =Vt asthe distance traveled by the envelope and account for changesin its
shape through alocal time variable defined as T =t —z/\j;. Equation (1.5.8)
can then be written in the standard form used in Chapter A.5 as

oU B3 o

RS — 2 =
5~ 2 50 t U =0, (15.9)

where the effective GVD parameter [329 and the nonlinear parameter y, are

defined as
(1—\?)%/2 (3_\/2)
9= Y-

sgn( f)v3xv3’ 2v

[32:

Using Eq. (1.5.8), the GVD parameter B29 can be shown to be the same asin
Eq. (1.3.26).

Several features of Eq. (1.5.9) are noteworthy when this equation is com-
pared with the standard NLS equations. First, the variable U represents the
amplitude of the envel ope associated with the Bloch wave formed by a super-
position of A; and Ay,. Second, the parameters 39 and y, are not constants but

(1.5.10)
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depend on the speed-reduction factor v. Both increase as v decreases and be-
come infinite at the edges of the stop band where v = 0. Clearly, Eq. (1.5.9) is
not valid at that point. However, it remains valid close to but outside the stop
band. Far from the stop band (v — 1), 37 becomes quite small (< 1 ps/km
for typical values of k). One should then include fiber GVD and replace Bg
by B,. Noting that 75 = y when v = 1, Eq. (1.5.9) reduces to the standard NLS
eguation, and U corresponds to the forward-wave amplitude since no backward
wave is generated under such conditions.

Before we can use Eq. (1.5.9) for predicting the modulation-instability gain
and the frequency at which the gain peaks, we need to know the total power B
inside the grating when a CW beam with power R, isincident at the input end
of the grating located at z= 0. Thisis a complicated issue for apodized fiber
gratings because x is not constant in the transition or buffer zone. However,
observing that the nonlinear coupled-mode equations require |A2| — |AZ| to
remain constant along the grating, one finds that the total power R inside the
grating is enhanced by afactor 1/v [101]. The predictions of Eq. (1.5.9) are
in agreement with the modulation-instability analysis based on the nonlinear
coupled-mode equations as long as YRy < k [95]. The NLS equation provides
ashortcut to understanding the temporal dynamicsin gratings within itsregime
of validity.

153 Experimental Results

Modulation instability implies that an intense CW beam should get converted
into a pulse train if it passes through a fiber grating. The experimental ob-
servation of this phenomenon is difficult when a CW beam is used since the
required input power is too large to be redlistic. For this reason, experiments
often use short optical pulses whose width is chosen to be much larger than
the modulation period. In a 1996 experiment, 100-ps pulses—obtained from
a Q-switched, mode-locked Nd:Y LF laser operating close to 1.053 um—were
used and it was found that each pulse was transformed into two shorter pulses
at the grating output [94]. The grating was only 3.5-cm long in this experiment
and did not allow substantial growth of modulation instability.

In a1998 experiment, a 6-cm-long fiber grating was used with a value of
x =12 cm~1 [101]. Figure 1.15 shows transmitted pulse shapes when 100-ps
pulses were propagated through this grating. The peak intensity of the in-
put Gaussian pulse is 25 GW/cn?. Its central frequency is tuned close to but
outside the stop band such that the grating provides anomalous GVD (upper
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Figure 1.15 Transmitted pulse shape when 100-ps pulses with a peak intensity of
25 GW/cm? are propagated through a 6-cm-long fiber grating. (After Ref. [101],
(©1998, reprinted with permission from Elsevier Science)

branch of the dispersion curve). At lower power levels, pulse is compressed
because of the combination of GVD and SPM that |eads to soliton-effect com-
pression (discussed in Chapter 6). At the 25 GW/cn? power level, the trans-
mitted pulse exhibits a multipeak structure that can be interpreted as a pulse
train generated through modulation instability. Thisinterpretation is supported
by the observation that the repetition rate (spacing between two neighboring
pulses) changes with the laser wavelength (equivalent to changing the detuning
parameter ), as expected from the theory of modulation instability.

1.6 Nonlinear Pulse Propagation

As discussed in Chapter A.5, modulation instability often indicates the possi-
bility of soliton formation. In the case of Bragg gratings, it is closely related
to a new kind of solitons referred to as Bragg solitons or grating solitons.
Such solitons were first discovered in 1987 in the context of periodic struc-
tures known as superlattices [70] and were called gap solitons since they ex-
isted only inside the stop band. Later, a much larger class of Bragg solitons
was identified by solving Egs. (1.4.1) and (1.4.2) analytically [102]-{104].
The advent of fiber gratings provided an incentive during the 1990s for
studying propagation of short optical pulsesin such gratings [105]-{115]. The
peak intensities required to observe the nonlinear effects are quite high (typi-
cally > 10 GW/cn) for Bragg gratings made in silicafibers because of a short
interaction length (typically <10 cm) and alow value of the nonlinear param-
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eter n,. The use of chalcogenide glass fibers for making gratings can reduce
required peak intensities by afactor of 100 or more because the high values of
n, in such glasses [116].

1.6.1 Bragg Solitons

It was realized in 1989 that the coupled-mode equations, Egs. (1.4.1) and
(1.4.2), become identical to the well-known massive Thirring model [117] if
the SPM term is set to zero. The massive Thirring model of quantum field
theory is known to be integrable by the inverse scattering method [118]-{120].
When the SPM term is included, the coupled-mode equations become non-
integrable, and solitons do not exist in a strict mathematical sense. However,
shape-preserving solitary waves can be obtained through a suitable transfor-
mation of the soliton supported by the massive Thirring model. These solitary
waves correspond to the following solution [103]:

A;(zt) = a, sech(§ —iy/2)e?, (1.6.1)
A (zt) = a_sech(¢ +iy/2)€?, (1.6.2)
where
12\ Y4 [k(1-?) . z—Vgt
ai::t<m) Wgnw, C:ﬁKgnw, (163)
-V,
6= % KCOSY — % tan1[|cot(y/2)|coth({)]. (1.6.4)

This solution represents a two-parameter family of Bragg solitons. The
parameter v is in the range —1 < v < 1 and the parameter y can be chosen
anywhere in the range O < y < . The specific case y = /2 corresponds to
the center of the stop band [102]. Physically, Bragg solitons represent specific
combinations of counterpropagating waves that pair in such a way that they
move at the same but reduced speed (V; = Wg). Since v can be negative, the
soliton can move forward or backward. The soliton width Ts is also related to
the parameters v and y and is given by

Ts=V1-\2/(kVgsiny). (1.6.5)

One can understand the reduced speed of a Bragg soliton by noting that the
counterpropagating waves form a single entity that moves at a common speed.
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The relative amplitudes of the two waves participating in soliton formation
determine the soliton speed. If A; dominates, the soliton moves in the forward
direction but at a reduced speed. The opposite happens when A islarger. In
the case of equal amplitudes, the soliton does not move at all since \|; becomes
zero. This case corresponds to the stationary gap solitons predicted in the
context of superlattices [70]. In the opposite limit in which |v| — 1, Bragg
solitons cease to exist since the grating becomes ineffective.

Another family of solitary waves is abtained by looking for the shape-
preserving solutions of the nonlinear coupled-mode equations [104]. Such
solitary waves exist both inside and outside the stop band. They reduce to the
Bragg solitons described by Egs. (1.6.2)—1.6.4) in some specific limits. On
the lower branch of the dispersion curve where the GVD is normal, solitary
waves represent dark solitons, similar to those discussed in Section A.5.3.

1.6.2 Relation to NLS Solitons

Asdiscussed earlier, the nonlinear coupled-maode equations reduce to the NLS
equation when YR, < x, where B, is the peak power of the pulse propagating
inside the grating. Since the NL S equation is integrable by the inverse scatter-
ing method, the fundamental and higher-order solitons found in Section A.5.2
should also exist for afiber grating. The question then becomes how they are
related to the Bragg soliton described by Egs. (1.6.1) and (1.6.2).

To answer this question, we write the NL S equation (1.5.9) using soliton
unitsinits standard form

Ju  19%u | ,
I£+EW+|U| u=_0, (1.6.6)
where & = z/Lp, T=T/Ty, u= /¥lp, and Ly = T5'/|BZ| is the dispersion
length. The fundamental soliton of this equation, in its most genera form, is
given by (see Section A.5.2)

U(E,T) = nsechin (v — o+ £€)] expli(n — )& /2~ ieT +igd, (167)

where 1, €, 75, and ¢s are four arbitrary parameters representing amplitude,
frequency, position, and phase of the soliton, respectively. The soliton width
isrelated inversely to the amplitude as Ts = T,/n. The physical origin of such
solitons is the same as that for conventional solitons except that the GVD is
provided by the grating rather than by material dispersion.
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At first sight, Eq. (1.6.7) looks quite different than the Bragg soliton de-
scribed by Egs. (1.6.2)—«1.6.4). However, one should remember that u repre-
sents the amplitude of the Bloch wave formed by superimposing A and A,. If
the total optical field is considered and the low-power limit (YR < k) istaken,
the Bragg soliton indeed reduces to the fundamental NL S soliton [79]. The
massive Thirring model also alowsfor higher-order solitons[121]. Onewould
expect them to be related to higher-order NL S solitons in the appropriate limit.
It has been shown that any solution of the NL S equation (1.5.9) can be used to
construct an approximate solution of the coupled-mode equations [100].

The observation that Bragg solitons are governed by an effective NLS
equation in the limit kL, > 1, where L, is the nonlinear length, allows
us to use the concept of soliton order N and the soliton period 7, developed in
Chapter A.5. These parameters are defined as

L P.T2 T2
= 100 Zp=Cly=2Z-_0 (1.6.8)

NZ= D p==-—0
Lo (B3] 2 2 1Bl

We need to interpret the meaning of the soliton peak power R carefully since
the NL S soliton represents the amplitude of the Bloch wave formed by a com-
bination of A; and A,. This aspect is discussed later in this section.

An interesting issue is related to the collision of Bragg solitons. Since
Bragg solitons described by Egs. (1.6.1) and (1.6.2) are only solitary waves
(because of the nonintegrablity of the underlying nonlinear coupled-mode equa-
tions), they may not survive collisions. On the other hand, the NL S solitons are
guaranteed to remain unaffected by their mutual collisions. Numerical simula-
tions based on Egs. (1.4.1) and (1.4.2) show that Bragg solitons indeed exhibit
features reminiscent of a NLS soliton in the low-power limit YR < x [113].
More specifically, two Bragg solitons attract or repel each other depending on
their relative phase. The new feature is that the relative phase depends on the
initial separation between the two solitons.

1.6.3 Formation of Bragg Solitons

Formation of Bragg solitons in fiber gratings was first observed in a 1996 ex-
periment [105]. Since then, more careful experiments have been performed,
and many features of Bragg solitons have been extracted. While comparing
the experimenta results with the coupled-mode theory, one needs to imple-
ment the boundary conditions properly. For example, the peak power R of the
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Bragg soliton formed inside the grating when a pulse is launched is not the
same as the input peak power B.. The reason can be understood by noting that
the group velocity of the pulse changes as the input pulse crosses the front end
of the grating located at z= 0. As aresult, pulse length given by \y T, just out-
side the grating changes to \j; T, on crossing the interface located at z= 0[58],
and the pulse peak power is enhanced by the ratio /Vg. Mathematically,
one can use the coupled-mode equations to show that B = |A2| + |AZ| = P, /v,
where v =V /vy is the speed-reduction factor introduced earlier. The argu-
ment becomes more complicated for apodized fiber gratings, used often in
practice, because «k isnot constant in the transition region [110]. However, the
same power enhancement occurs at the end of the transition region.

From a practical standpoint, one needs to know the amount of peak power
P, required to excite the fundamental Bragg soliton. The soliton period z,
is another important parameter relevant for soliton formation since it sets the
length scale over which optical solitons evolve. We can use Eqg. (1.6.8) with
N = 1 to estimate both of them. Using the expressions for Bg and yy from Eq.
(1.5.10), the input peak power and the soliton period are given by

2(1—\2)3/2 TVVETE K
o= ot 5 2) s L= (16.9)
V(3—V2)V3TZKy 2(1—v2)3/

where T, is related to the FWHM as Tyym =~ 1.76T,. Both P, and z, depend
through v on detuning of the laser wavelength from the edge of the stop band
located at 6 = k. Asv — 0 near the edge, P,, becomes infinitely large while z
tends toward zero.

Bragg solitons have been formed in a 7.5-cm-long apodized fiber grating
by using 80-ps pulses obtained from a Q-switched, mode-locked Nd:Y LF laser
operating at 1053 nm [66]. Figure 1.16 shows pulse shapes at the output end
of the grating when input pulses having a peak intensity of 11 GW/cn? are
used. The coupling coefficient k was estimated to be 7 cm~* for this grating
while the detuning parameter § was varied over the range from 7 to 36 cn?
on the blue side of the stop band (anomalous GVD). The arrival time of the
pulse depends on § because of the reduction in group velocity as 6 is reduced
and tuned closer to the stop-band edge. This delay occurs even when nonlinear
effects are negligible as shown in Fig. 1.10, which was obtained under identical
operating conditions but at a much lower value of the peak intensity.

At the high peak intensities used for Fig. 1.16, SPM in combination with
the grating-induced anomalous GVD leads to formation of Bragg solitons.
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Figure 1.16 Output pulse shapesfor different § when 80-ps pul ses with a peak inten-
sity of 11 GW/cm? are propagated through a 7.5-cm-long fiber grating. Values of &
from left to right are 3612, 1406, 1053, 935, 847, 788, and 729 m 1. (After Ref. [66])

However, since both B29 and 7y depend on the detuning parameter 6 through
v, a Bragg soliton can form only in a limited range of 6. With thisin mind,
we can understand the pulse shapes seen in Fig. 1.16. Detuning is so large
and B9 isso small for the leftmost trace that the pulse acquires some chirping
through SPM but its shape remains nearly unchanged. This feature can also
be understood from Eg. (1.6.9), where the soliton period becomes so long as
v — 1 that nothing much happens to the pulse over afew-cm-long grating. As
0 isreduced, the pulse narrows down considerably. A reduction in pulse width
by afactor of 3 occurs for § = 1053 ni1 in Fig. 1.16. This pulse narrowing is
an indication that a Bragg soliton is beginning to form. However, the soliton
period is still much longer than the grating length. In other words, the grating
is not long enough to observe the fina steady-state shape of the Bragg soliton.
Finaly, as the edge of the stop band is approached and 6 becomes comparable
to x (rightmost solid trace), the GVD becomes so large that the pulse cannot
form a soliton and becomes broader than the input pulse. This behavior isalso
deduced from Eq. (1.6.8), which shows that both N and z, tend toward zero as
B3 tends toward infinity. A Bragg soliton can form only if N > % Since the
dispersion length becomes smaller than the grating length close to the stop-
band edge, pulse can experience considerable broadening. This is precisely
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Figure1.17 Measured pulsewidths (circles) asafunction of detuning for 80-pspulses
with apeak intensity of (a) 3 GW/cm? and (b) 6 GW/cm?. Predictions of the coupled-
mode theory (solid ling) and the effective NL S equation (dashed line) are shown for
comparison. (After Ref. [66])

what is observed for the smallest value of 6 in Fig. 1.16 (solid curve).

A similar behavior was observed over alarge range of pulse energies, with
some evidence of the second-order soliton for input peak intensities in excess
of 20 GW/cn? [66]. A careful comparison of the experimental data with the
theory based on the nonlinear coupled-mode equations and the effective NLS
eguation showed that the NL S equation provides an accurate description within
its regime of validity. Figure 1.17 compares the measured values of the pulse
width with the two theoretical models for pesk intensities of 3 and 6 GW/cn?.
The NLS equation is valid as long as kL, > 1. Using k =7 cm 1, we
estimate that the peak intensity can be as high as 50 GW/cm? for the NLS
equation to remain valid. Thisis aso what was found in Ref. [66].

Gap solitons that form within the stop band of afiber grating have not been
observed because of apractical difficulty: A Bragg grating reflects light whose
wavelength falls inside the stop band. Stimulated Raman scattering may pro-
vide a solution to this problem since a pump pulse, launched at a wavelength
far from the stop band, can excite a“Raman gap soliton” that is trapped within
the grating and propagates much more slowly than the pump pulse itself [115].
The energy of such a gap soliton leaks slowly from the grating ends, but it
can survive for durations greater than 10 ns even though it is excited by pump
pulses of duration 100 ps or so.
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1.6.4 Nonlinear Switching

As discussed in Section 1.4.2, a fiber grating can exhibit bistable switching
even when a CW beam is incident on it. However, optical pulses should be
used in practice because of the high intensities required for observing SPM-
induced nonlinear switching. Even then, one needs peak-intensity values in
excess of 10 GW/cm?. For this reason, bistable switching was first observed
during the 1980s using DFB semiconductor amplifiers for which large carrier-
induced nonlinearities reduce the switching threshold to power levels below
1 mW [122]{124]. Nonlinear switching in apassive grating was observed in a
1992 experiment using a semiconductor waveguide grating [ 76]. The nonlinear
response of such gratings is not governed by the Kerr-type nonlinearity seenin
Eq. (1.3.1) because of the presence of free carriers (electrons and holes) whose
finite lifetime limits the nonlinear response time.

Nonlinear switching in afiber Bragg grating was observed in 1998 in the
1.55-um wavelength region useful for fiber-optic communications [109]. An
8-cm-long grating, with its Bragg wavelength centered near 1536 nm, was used
in the experiment. It had a peak reflectivity of 98% and its stop band was only
4-GHz wide. The 3-nsinput pulses were obtained by amplifying the output of
a pulsed DFB semiconductor laser to power levels as high as 100 kW. Their
shape was highly asymmetric because of gain saturation occurring inside the
amplifier chain. The laser wavelength was inside the stop band on the short-
wavelength side but was set very close to the edge (offset of about 7 pm or
0.9 GH2).

Figure 1.18(a) shows asharp risein the transmittivity from afew percent to
40% when the peak power of input pulses increases beyond 2 kW. Physicaly,
the nonlinear increase in the refractive index at high powers shifts the Bragg
wavelength far enough that the pulse finds itself outside the stop band and
switches to the upper branch of the bistability curves seen in Fig. 1.12. The
pulse shapes seen in Fig. 1.18(b) show what happens to the transmitted pulse.
The initial spike near t = 0 in these traces is due to a sharp leading edge of
the asymmetric input pulse and should be ignored. Multiple pulses form at the
grating output whose number depends on the input power level. At a power
level of 3kW, asingle pulseis seen but the number increases to five at a power
level of 8 KW. The pulse width is smallest (about 100 ps) near the leading edge
of the pulse train but increases substantialy for pulses near the trailing edge.

Several conclusions can be drawn from these results. First, the upper bista-
bility branch in Fig. 1.12 is not stable and converts the quasi-CW signal into a
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Figure 1.18 (@) Transmittivity as a function of input peak power showing nonlinear
switching; (b) output pulse shapes at several peak power levels. (After Ref. [111])

pulse train [68]. Second, each pulse evolves toward a constant width. Pulses
near the leading edge have had enough propagation time within the grating to
stabilize their widths. These pulses can be thought of asagap soliton since they
are formed even though the input signal is inside the photonic bandgap and
would be completely reflected in the absence of the nonlinear effects. Third,
pulses near the trailing edge are wider simply because the fiber grating is not
long enough for them to evolve completely toward a gap soliton. This inter-
pretation was supported by alater experiment in which the grating length was
increased to 20 cm [114]. Six gap solitons were found to form in this grating
at a peak power level of 1.8 W. The observed data were in agreement with
theory based on the nonlinear coupled-mode equations.

The nonlinear switching seenin Fig. 1.18 issometimes called SPM-induced
or self-induced switching since the pul se changes the refractive index to switch
itself to the high-transmission state. Clearly, another signal at adifferent wave-
length can also induce switching of the pulse by changing the refractive index
through XPM, resulting in XPM-induced switching. This phenomenon was
first observed in 1991 as an increase in the transmittivity of a 514-nm signal
caused by a 1064-nm pump beam [74]. The increase in transmission was less
than 10% in this experiment.

It was suggested | ater that XPM could be used to form a* push broom” such
that a weak CW beam (or a broad pulse) would be swept by a strong pump
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pulse and its energy piled up at the front end of the pump pulse [125]. The
basic idea behind the optical push broom is quite simple. If the wavelength of
the pump pulse is far from the stop band while that of the probe is close to but
outside the stop band (on the lower branch of the dispersion curve), the pump
travels faster than the probe. In the region where pump and probe overlap, the
XPM-induced chirp changes the probe frequency such that it moves with the
leading edge of the pump pulse. Asthe pump pulse travels further, it sweeps
more and more of the probe energy and pilesit up at its leading edge. In effect,
the pump acts like a push broom. At the grating output, a significant portion
of the probe energy appears at the same time as the pump pulse in the form of
a sharp spike because of the XPM-induced increase in the probe speed. Such
a push-broom effect has been seen in a 1997 experiment [126].

1.6.5 Effectsof Birefringence

As discussed in Chapter A.6, fiber birefringence plays an important role and
affects the nonlinear phenomena considerably. Its effects should be included
if Bragg gratings are made inside the core of polarization-maintaining fibers.
The coupled-mode theory can be easily extended to account for fiber birefrin-
gence [127]-{130]. However, the problem becomes quite complicated since
one needs to solve a set of four coupled equations describing the evolution
of two orthogonally polarized components, each containing both the forward-
and backward-propagating waves. This complexity, however, leads to arich
class of nonlinear phenomena with practical applications such as optical logic
gates.

From a physical standpoint, the two orthogonally polarized components
have dightly different mode indices. Since the Bragg wavelength depends on
the mode index, the stop bands of the two modes have the same widths but are
shifted by a small amount with respect to each other. As aresult, even though
both polarization components have the same wavelength (or frequency), one
of them may fall inside the stop band while the other remains outside it. More-
over, as the two stop bands shift due to nonlinear index changes, the shift
can be different for the two orthogonally polarized components because of the
combination of the XPM and birefringence effects. It is this feature that leads
to avariety of interesting nonlinear effects.

In the case of CW beams, the set of four coupled equations was solved
numerically in 1994 and several birefringence-related nonlinear effects were
identified [128]. One such effect is related to the onset of polarization insta-
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bility discussed in Chapter A.6. The critical power at which this instability
occurs is reduced considerably in the presence of a Bragg grating [131]. Non-
linear birefringence also affects Bragg solitons. In the NLS limit (YR < ),
the four equations reduce a pair of coupled NLS equations, similar to those
appearing in Chapter A.6. In the case of low-birefringence fibers, the two po-
larization components have nearly the same group velocity, and the coupled
NL S equations take the following form [127]:

ou, B0y, . 2

i%
t3

ouU, iB8ou, . 2

g g = (U o) v

+ %U;szexp(ZiA[}z), (16.11)

UsUZ exp(—2iAB2), (1.6.10)

where AB = Bx— fByy isrelated to the beat length Ly as AR = 2r/Lg. These
equations support a vector soliton with equal amplitudes such that the peak
power required for each component is only \/% of that required when only
one component is present. Such a vector soliton is referred to as the coupled-
gap soliton [127].

The coupled-gap soliton can be used for making an all-optical AND gate.
The x and y polarized components of the input light represent bits for the gate,
each bit taking avalue of 0 or 1 depending on whether the corresponding signal
is absent or present. The AND gate requires that a pulse appears at the output
only when both components are present simultaneously. This can be achieved
by tuning both polarization components inside the stop band but close to the
upper branch of the dispersion curve. Their combined intensity can increase
the refractive index (through a combination of SPM and XPM) enough that
both components are transmitted. However, if one of the components is absent
at the input (0 hit), the XPM contribution vanishes and both components are
reflected by the grating. This occurs simply because the coupled gap soliton
forms at alower peak power level than the Bragg soliton associated with each
individual component [127].

An al-optical AND gate was realized in a 1998 experiment in which a
switching contrast of 17 dB was obtained at apeak power level of 2.5 kW [108].
Figure 1.19 shows the fraction of total pulse energy transmitted (a) as a func-
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Figure 1.19 (a) Grating transmissivity as a function of input peak power showing the
operation of the AND gate and (b) output pulse shapes at a peak power level of 3 kW
when only one polarization component (dashed line) or both polarization components
(solid line) areincident at the input end. (After Ref. [111])

tion of input peak power and the transmitted pulse shapes (b) at a peak power
of 3 kW. When only one polarization component is incident at the input end,
little energy is transmitted by the grating. However, when both polarization
components are launched, each having the same peak power, an intense pulse
is seen at the output end of the grating, in agreement with the prediction of the
coupled NL S equations.

The XPM-induced coupling can be advantageous even when the two polar-
ization components have different wavelengths. For example, it can be used to
switch the transmission of a CW probe from low to high by using an orthogo-
nally polarized short pump pulse at awavelength far from the stop band associ-
ated with the probe [132]. In contrast with the self-induced bistable switching
discussed earlier, XPM-induced bistable switching can occur for a CW probe
too weak to switch itself. Furthermore, the short pump pulse switches the
probe beam permanently to the high-transmission state.

1.7 Related Periodic Structures

This chapter has focused on uniform Bragg gratings (except for apodization)
that are designed to couple the forward- and backward-propagating waves in-
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side an optical fiber. Many variations of this simple structure exist. In this
section we consider several other kinds of gratings and discuss nonlinear ef-
fects when intense light propagates through them.

1.7.1 Long-Period Gratings

Long-period gratings are designed to couple the fundamental fiber mode to a
higher-order copropagating mode [133]-{136]. In the case of a single-mode
fiber, the higher-order mode propagates inside the cladding and is called a
cladding mode. The grating period required for coupling the two copropagat-
ing modes can be calculated from Eq. (1.1.2) and isgiven by A = 1 /An, where
An is the difference in the refractive indices of the two modes coupled by the
grating. Since An ~ 0.01 typicaly, A is much larger than the optical wave-
length. It isfor this reason that such gratings are called long-period gratings.

The coupled-mode theory of Section 1.3 can be used for long-period grat-
ings. In fact, the resulting equations are similar to Egs. (1.3.11) and (1.3.12)
and can be written as [135]

AL LA B0
Jz vy It 2 ot?
= i8A +irA +in (AP +clAP)A,  (17.0)
Py, L oA B0,
dz vy Jt 2 ot?
= i8A, +iKA Tin (AL +ClA DA, (17.2)

where A; and A, represent the slowly varying amplitudes of the two coprop-
agating modes coupled by the grating. A comparison of these equations with
Egs. (1.3.11) and (1.3.12) reveals several important differences. First, the two
Z derivatives have the same sign since both waves travel in the forward direc-
tion. Second, the group velocities and the GVD parameters can be different
for the two modes because of their different mode indices. Third, the SPM
parameters ; and the XPM parameters c are also generally different for j =1
and 2. The reason is related to different spatial profiles for the two modes,
resulting in different overlap factors.

In the case of low-power CW beams, both the nonlinear effects and fiber-
GVD effects can be neglected in Egs. (1.7.1) and (1.7.2) by setting ¥=0 and
B, =0 (j =1,2). These equations then reduce to Egs. (1.3.13) and (1.3.14)
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Figure 1.20 Transmitted power as a function of input peak power for (a) 6 = 0 and
(b) —1.5cm~1. Experimental data (solid circles) are compared with coupled-mode
theory (open circles). Dashed lines shows the behavior expected in the absence of
nonlinear effects. (After Ref. [135] (©1997 |EEE)

with the only difference that both z derivatives have the same sign. They can be
solved readily and exhibit features similar to those discussed in Section 1.3.2.
When a single beam excites the A; mode at the fiber input, its transmission
depends on its detuning 6 from the Bragg wavelength and becomes quite small
within the stop band centered at 6 = 0. The reason is easily understood by
noting that the grating transfers power to the A, mode as light propagates
inside the grating.

The nonlinear effects such as SPM and XPM can affect the amount of
power transferred by changing the refractive index and shifting the Bragg
wavelength toward longer wavelengths. As a result, a long-period grating
should exhibit nonlinear switching. Moreover, the switching intensity is ex-
pected to be lower by a factor of n/An ~ 100 compared with that required
for short-period Bragg gratings. Figure 1.20 shows nonlinear changes in the
transmitted power as a function of input peak intensity when 70-ps Gaussian
pulses are transmitted through a 5-cm-long grating and compares the experi-
mental data with the prediction of coupled-maode theory. Dashed lines shows
the linear increase in transmission expected in the absence of nonlinear effects.
For 6 = 0 [Fig. 1.20(8)], the input wavelength coincides with the Bragg wave-
length, and little transmission occurs in the linear case. However, at intensity
levels beyond 5 GW/cn?, the nonlinear effects shift the Bragg wavelength
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enough that a significant part of the incident power is transmitted through the
grating. When the input wavelength is detuned by about 5.2 nm from the
Bragg wavelength (6 = —1.5 cm™1), the transmitted power decreases at high
peak intensities, as seen in Fig. 1.20(b).

Considerable pulse shaping was observed in the preceding experiment be-
cause of the use of short optical pulses. This feature can be used to advantage
to compress and reshape an optical pulse. Nonlinear effects in long-period
fiber gratings are likely to remain important and find practical applications.

1.7.2 Nonuniform Bragg Gratings

The properties of a Bragg grating can be considerably modified by introduc-
ing nonuniformities along their length such that the two grating parameters, k
and 6, become z dependent. Examples of such nonuniform gratings include
chirped gratings, phase-shifted gratings, and superstructure gratings. It was
seen in Section 1.4.2 that the use of a /2 phase shift in the middle of an oth-
erwise uniform grating can reduce the switching power by a factor of 100 or
more. Here we focus on chirped and superstructure gratings.

In a chirped grating, the optical period nA of the grating changes aong
the fiber length, as shown in Fig. 1.21. Since the Bragg wavelength (Ag =
2nA) sets the frequency at which the stop band is centered, its axial variations
trandate into a shift of the stop band along the grating length. Mathematically,
the parameter § appearing in the nonlinear coupled-mode eguations becomes
z dependent. Typically, A is designed to vary linearly aong the grating, and
0(2) = 6+ 6cz, where & isachirp parameter. Such gratings are called linearly
chirped gratings.

Chirped fiber gratings have been fabricated using several different meth-
ods [49]. It isimportant to note that it is the optical period nA that needs to
be varied along the grating (z axis). Thus, chirping can be induced either by
varying the physical grating period A or by changing the effective mode index
naong z Inthe commonly used dual-beam holographic technique, the fringe
spacing of the interference pattern is made nonuniform by using dissimilar
curvatures for the interfering wavefronts, resulting in A variations. In practice,
cylindrical lenses are used in one or both arms of the interferometer. Chirped
fiber gratings can also be fabricated by tilting or stretching the fiber, by us-
ing strain or temperature gradients, or by stitching together multiple uniform
sections.
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Figure 1.21 (@) Variations of refractive index in a chirped fiber grating. (b) Low and
high frequency components of a pulse are reflected at different locations within the
grating because of variationsin the Bragg wavelength.

Chirped Bragg gratings have several important practical applications. As
shown in Fig. 1.21, when a pulse—with its spectrum inside the stop band—is
incident on a chirped grating, different spectral components of the pulse are
reflected by different parts of the grating. As aresult, even though the entire
pulseis eventually reflected, it experiences alarge amount of GV D whose na-
ture (normal versus anomalous) and magnitude can be controlled by the chirp.
For this reason, chirped gratings are commonly used for dispersion compen-
sation [65]and pulse compression [137]-{139]. This aspect of chirped fiber
gratings is discussed in Chapter 6. Chirped gratings also exhibit interesting
nonlinear effects when the incident pulse is sufficiently intense. In one experi-
ment, 80-ps pulses were propagated through a 6-cm-long grating whose linear
chirp could be varied over a considerable range through a temperature gradient
established along its length [140]. The reflected pulses were split into a pair
of pulses by the combination of SPM and XPM for peak intensities close to
10 GW/cm?,

In avariation of the chirping idea, it is the coupling coefficient k that be-
comes nonuniform along the grating length. This occurs when the parameter
on, in Eq. (1.3.8) is made a function of z. In practice, variations in the inten-
sity of the ultraviolet laser beam used to make the grating translate into axial
variations of k. From a physical standpoint, since the width of the photonic
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Figure 1.22 Temporal signal [(a) and (b)] and its spectrum [(c) and (d)] at the input
[(@) and (c)] and output [(b) and (d)] end of a fiber grating designed with a linearly
decreasing k. (After Ref. [141])

bandgap is about 2k, changes in k trandate into changes in the width of the
stop band along the grating length. At afixed wavelength of input light, such
local variations in x lead to axial variations of the group velocity \§; and the
GVD parameter 3, as seen from Egs. (1.3.25) and (1.3.26). In effect, the
dispersion provided by the grating becomes nonuniform and varies along its
length. Such gratings can have a number of applications. For example, they
can be used to generate a pulse train at high repetition rates by launching the
output of two CW lasers with closely spaced wavelengths.

Figure 1.22 shows the numerical results obtained by solving Egs. (1.4.1)
and (1.4.2) with k(z) = K,(1 — K, 2) for the case in which laser frequencies are
40 GHz apart [141]. The grating is assumed to be 70 cm long with parameters
Ky =70 cmand § = 160 cm 1. The parameter «; is chosen such that the
sinusoidal oscillation seen at the grating input are compressed by afactor of 5
at the end of the grating. The pulse compression can be understood by noting
that the nonlinear effects (SPM and XPM) chirp the pulse and broaden its
spectrum, and the GVD compresses the chirped pulse. It can also be thought
of in terms of afour-wave mixing process, phase-matched by the nonlinearity,
that generates multiple sidebands at the grating output, as seen in Fig. 1.22.

In another class of gratings, the grating parameters are designed to vary
periodicaly along the length of a grating. Such devices have double period-
icity and are called sampled or superstructure gratings. They were first used
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Figure 1.23 (a) Dispersion curves and (b) reflectivity spectrum for a 2.5-mm super-
structure grating with d = 1 mm. (After Ref. [146])

in the context of DFB semiconductor lasers [142]. Fiber-based superstructure
gratings were made in 1994 [143]. Since then, their properties have attracted
considerabl e attention [144]-{149]. A simple example of asuperstructure grat-
ing is provided by along grating with constant phase-shift regions occurring
at periodic intervals. In practice, such a structure can be realized by placing
multiple gratings next to each other with asmall constant spacing among them
or by blocking small regions during fabrication of a grating such that k = 0in
the blocked regions. It can also be made by etching away parts of an existing
grating. In al cases, x(z) varies periodically aong z. It is this periodicity that
modifies the stop band of a uniform grating. The period d of k() istypicaly
about 1 mm. If the average index n also changes with the same period d, both
0 and x become periodic in the nonlinear coupled-mode equations.

The most striking feature of a superstructure grating is the appearance of
additional photonic bandgaps on both branches of the dispersion curve seen
in Fig. 1.5 for a uniform grating. These bandgaps are referred to as Rowland
ghost gaps [150]. Figure 1.23 shows the band structure of a 2.5-mm-long
superstructure grating with d = 1 mm together with the measured reflectivity
spectrum. The Rowland ghost gapslabeled | and 111 occur on the opposite sides
of the stop band and lead to two additional reflectivity peaks. Dispersive prop-
erties near these gaps are similar to those expected near the edges of the stop
band Il. As aresult, nonlinear effects are quite similar. In particular, Bragg
solitons can form on the branch where GV D is anomalous [144]. Indirect evi-
dence of such solitons was seen in an experiment in which a 100-ps pulse was



Related Periodic Structures 51

compressed to 38 ps within the 2.5-mm-long superstructure grating when it
was tuned on the high-frequency side of the Rowland ghost gap | [146]. The
pulse appeared to be evolving toward a Bragg soliton, which should form if the
grating were long enough. Other nonlinear effects such as optical bistability,
modulation instability, and optical switching should also occur near Rowland
ghost gaps associated with a superstructure grating. In an interesting applica
tion, asuperstructure grating was used to increase the repetition rate of a 3.4-ps
pulse train from 10 to 40 GHz [149]. The grating was designed to have a band
structure such that it reflected every fourth spectral peak of the input spectrum.

1.7.3 Photonic-Crystal Fibers

Fiber gratings constitute an example of a much larger class of periodic struc-
tures known as photonic crystals [151]{154]. Whereas the refractive index is
periodic only along one spatial dimension in afiber grating, it is made periodic
in al three spatia dimensions in the case of a photonic crystal. Starting in
1996, anew class of fibers, called photonic-crystal fibers, began to attract con-
siderable attention, both experimentally and theoretically [155]{167]. In such
fibers, the refractive index is periodic in two spatial dimensions, perpendicu-
lar to the fiber axis. Since the periodicity does not occur along the direction
of propagation, no backward-propagating wave is generated inside photonic-
crystal fibers. As aresult, such fibers do not perform the same function as a
fiber grating. However, they can have new types of modes with quite different
dispersive and nonlinear properties.

An interesting technique for fabricating photonic-crystal fibers consists of
stacking multiple capillary tubes of pure silica (diameter about 1 mm) in a
hexagonal pattern around a solid silicarod and drawing such a*“preform” into
a fiber form using the fiber-drawing apparatus [155]. A polymer coating is
added on the outside to protect the resulting photonic-crystal fiber. When
viewed under a scanning electron microscope, such a fiber shows a regular
two-dimensional pattern of air holes around the central region acting asa core,
as seen in Fig. 1.24(a). For this reason, such a photonic-crystal fiber is some-
times called a holey fiber [161]. The term air—silica microstructure is aso
used [165]. The absence of an air hole in the center creates a “defect” that
can help to confine and guide an electromagnetic wave of right frequency. The
contours seenin Fig. 1.24(a) correspond to such aguided mode at awavelength
of 1.55 um[162].
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Figure 1.24 Scanning electron micrograph of (a) a holey fiber and (b) a vacuum-
guided fiber. The mode profileis shownin (a) as 1-dB contours of intensity. [(a) After
Ref. [162] and (b) courtesy P. S. J. Russell]

Guiding and dispersive properties of holey fibers have been analyzed using
several different methods [157]-{160]. Such fibers, when designed properly,
can exhibit multiple photonic bandgaps resulting from the two-dimensional
periodicity of air holes. When frequency of light iswithin a photonic bandgap,
fiber does not transmit light since no guided mode exists. Outside each pho-
tonic bandgap, light travels aong the central core region. Even though no
built-in index difference exists between the core and cladding regions, air holes
reduce the effective index of the region surrounded by the core, resulting in
guided modes similar to those found in standard fibers. The GVD for holey
fibers varies over a wide range and can become anomalous at visible wave-
lengths even though material dispersion remains normal up to a wavelength
close to 1.3 um. The zero-dispersion wavelength depends on the size of and
spacing among air holes. Itiscloseto 1 um for the fiber of Fig. 1.24 (left part)
because of a relatively large hole spacing, resulting in an air-fill fraction of
only 20%. However, it can be reduced to below 0.8 um by increasing the air-
fill fraction close to 50%. Such fibers have anomalous GV D in the wavelength
region near 0.8 um, where Ti:sapphire lasers emit ultrashort optical pulses.

Nonlinearity of holey fibers has also been characterized by measuring the
SPM-induced phase shift [162]. These measurements show that, even though
n, has the same value as in standard silica fibers, the value of parameter y
can be larger by a factor of more than 3 because of a relatively low value of
effective core area Ay. As aresult, amost all nonlinear effects are enhanced
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considerably in the holey fiber shown in Fig. 1.24. Indeed, measurements of
stimulated Brillouin scattering showed that the threshold was reduced by the
same factor as A compared with a dispersion-shifted regular fiber while the
Brillouin shift was nearly the same.

Severa experiments have used holey fibers for investigating the nonlinear
effects in the 0.8-um wavelength region where such fibers can provide anoma-
lous GVD. In one experiment, the spectrum of a110-fsinput pulse (centered at
790 nm) broadened so much when the pulse was transmitted through a 10-cm
section of aholey fiber that it extended from 390 to 1600 nm, forming a super-
continuum [165]. In another experiment, 200-fs input pulses at 850 nm were
propagated through a 3.1-m section of a holey fiber [166]. The pulse width
increased to 800 fs at low powers but formed a 140-fs-wide soliton when the
peak power was close to 90 W. The soliton period was about 1 min this exper-
iment. Formation of a second-order soliton was also inferred indirectly from
the pulse-width data.

Both short- and long-period gratings have been made inside the core of
a photonic-crystal fiber with periodic air holes [163]. Such a device is not a
three-dimensional photonic crystal in spite of periodic variation of the refrac-
tiveindex in al three spatial dimensions since the grating exists only inside the
narrow core (radius ~ 1 um). Nevertheless, it exhibits many interesting prop-
erties. In the case of a short-period Bragg grating, the transmission spectrum
showed severa dips in the wavelength region near 1.55 um but the reflected
signal had only one peak corresponding to the mode guided inside the core.
The other transmission dips correspond to higher-order modes that travel out-
side the core and thus do not interact with the Bragg grating. Nonlinear effects
in such gratings are yet to be studied.

A new kind of photonic-crystal fiber, called vacuum-guided fiber, was de-
veloped in 1999 [164]. Its cross section is shown in Fig 1.24(b). It was made
using the same technique as a holey fiber except that the central core consisted
of air and had arefractive index n = 1. The central hole was created by remov-
ing seven capillary tubes (one at the center and six surrounding it) before the
preform was drawn into a fiber. The effective index of the cladding for such
afiber is considerably larger than the central air hole. As aresult, no modes
guided by total internal reflection can exist. Nonetheless, the fiber was found
to transmit light along the central core in several frequency bands in the vis-
ible and infrared regions. This transmission is attributed to an optical mode
that is created by the two-dimensional periodicity and confined to the central
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air hole. Since light propagates in air, and not in silica, the Raman and Bril-
louin thresholds for such a fiber should be much larger than those of standard
silicafibers.

The field of photonic-crystal fibersisin itsinfancy and is likely to evolve
in the near future. Recent work has shown that even the periodicity of air
holes within the cladding is not a necessary requirement for utilizing such
fibers; that is, light can be guided in aholey fiber with randomly distributed air
holes [167].

Problems

11
12

13

14

15

16

1.7

18

1.9

Derive Eq. (1.1.1) from the phase-matching condition in Eq. (1.1.2).

Use Eq. (1.1.1) to find the grating period A for a fiber Bragg grating
reflecting light near 1.55 um. Assumem= 1 and n= 1.45.

Describe the mechanism through which absorption of ultraviolet light
produces changes in the refractive index of silicafibers.

Discuss the holographic and phase mask techniques used to make fiber
gratings. Sketch the experimental setup in each case.

Derive the nonlinear coupled-mode equations (1.3.11) and (1.3.12) for
fiber gratings starting from the Helmholtz equation (1.3.2).

What is meant by the stop band of a grating? Starting from the linear
coupled-mode equations (1.3.13) and (1.3.14), find the dispersion rela
tion and the width of the stop band.

An optical pulseis transmitted through afiber grating with its spectrum
located close to but outside the stop band. Its energy is small enough
that nonlinear effects are negligible. Derive an expression for the group
velocity of the pulse.

For the previous problem, derive expressions for the second- and third-
order dispersion induced by the grating. You can neglect the material
and waveguide dispersion of silicafibers.

Derive an expression for the reflectivity of afiber grating by solving the
coupled-mode equations (1.3.13) and (1.3.14). Plot it as a function of
0/Kx using kL = 3.
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1.10 The coupling coefficient of an apodized grating of length L varies as
K (2) = Ky exp[—(4—8z/L)?m|. Solvethelinear coupled-mode equations
(1.3.13) and (1.3.14) numerically and plot the reflectivity spectrum for
m=1,2,3 asafunction of §/x using kL = 3.

1.11 Solve the nonlinear coupled-mode equations (1.4.1) and (1.4.2) assum-
ing that the powers of the forward- and backward-propagating waves are
constant in time and along the grating length. Find the relative power
levelswhen 6 /x = 1.05 and YR,/ x = 2, where P, is the total power.

1.12 Use the CW solution obtained in the previous problem to discuss how
the stop band of a fiber grating is affected at high power levels because
of the nonlinear effects.

1.13 Perturb the CW solution of Egs. (1.4.1) and (1.4.2) and discuss the con-
ditions under which it may become unstable.

1.14 Develop acomputer program for solving Egs. (1.4.1) and (1.4.2) numer-
icaly and use it to reproduce the results shown in Fig. 1.17.
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Chapter 2

Fiber Couplers

Fiber couplers, also known asdirectional couplers, constitute an essential com-
ponent of lightwave technology. They are used routinely for a multitude of
fiber-optic devices that require splitting of an optical field into two coherent
but physically separated parts (and vice versa). Although most applications
of fiber couplers only use their linear characteristics, nonlinear effects have
been studied since 1982 and can lead to all-optical switching among other ap-
plications. This chapter is devoted to describing nonlinear optical phenomena
in fiber couplers. As an introduction, linear characteristics are described first
in Section 2.1 using coupled-maode theory. In Section 2.2, the nonlinear ef-
fects are considered under continuous-wave (CW) conditions, along with the
phenomenon of modulation instability. Section 2.3 focuses on propagation of
short optical pulses through fiber couplers, with emphasis on optical solitons
and nonlinear switching. Section 2.4 extends the discussion to asymmetric,
active, birefringent, and multicore fiber couplers.

2.1 Coupler Characteristics

Fiber couplers are four-port devices (two input and two output ports) that are
used routinely for avariety of applications related to fiber optics [1]{4]. Their
function isto split coherently an optical field, incident on one of theinput ports,
and direct the two parts to the output ports. Since the output is directed in two
different directions, such devices are also referred to as directional couplers.
They can be made using planar waveguides as well and have been studied
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Figure 2.1 Schematic illustration of nonlinear switching in a fiber coupler. Input
pulses appear at different output ports depending on their peak powers.

extensively in the context of LiNbQ, and semiconductor waveguides. This
chapter focuses exclusively on fiber-based directional couplers.

Several different techniques can be used to make fiber couplers[4]. Figure
2.1 shows schematically afused fiber coupler in which the cores of two single-
mode fibers are brought close together in a central region such that the spacing
between the coresis comparable to their diameters. A dual-core fiber, designed
to have two cores close to each other throughout its length, can also act as a
directional coupler. In both cases, the cores are close enough that the funda-
mental modes propagating in each core overlap partialy in the cladding region
between the two cores. It will be seen in this section that such evanescent wave
coupling between the two modes can lead to the transfer of optical power from
one core to another under suitable conditions. An important application of the
nonlinear effectsin fiber couplers consists of using them for optical switching.
Asshown in Fig. 2.1, an optical pulse can be directed toward different output
ports depending on its peak power.

Fiber couplers are called symmetric when their cores are identica in all
respects. In general, the two cores need not be identical; such couplers are
called asymmetric. In this section, we consider an asymmetric fiber coupler
and discuss its operation using coupled-mode theory.

2.1.1 Coupled-Mode Equations

Coupled-mode theory is used commonly for directional couplers [5]-{9]. To
derive the coupled-mode equations, we follow a procedure similar to that used
in Section 1.3 for describing the grating-induced coupling between the coun-
terpropagating waves inside the same core. Considering a specific frequency
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component at the frequency m, we solve the Helmholtz equation
V2E + /(x, y)K3E = 0, (2.1.1)

where ky = w/c = 2r /A, A, is the vacuum wavelength of light, and E(r,o)
denotes the Fourier transform of the electric field E(r,t) with respect to time.
The refractive index fi(x,y) = n, everywhere in the x-y plane except in the
region occupied by the two fiber cores, whereit islarger by a constant amount.

The coupled-maode theory is based on the assumption that an approximate
solution of Eq. (2.1.1) can be written as

E(r,o) = gA, (2 0)F,(x,Y) + A, (2 0)F,(x,y)]€P?, (2.1.2)

where the propagation constant 3 is yet to be determined. The polarization
direction é of the optical field is assumed to remain unchanged during propa-
gation. The spatia distribution Fn(x,y) with m= 1,2 corresponds to the fun-
damental mode supported by the mth core in the absence of the other core. It
isobtained by solving Eq. (2.1.1) and satisfies the following equation:
2 2 _
ot S+ M)~ B =0, 213)

where By, is the mode-propagation constant and nm(X,y) = n, everywhere in
the x—y plane except in the region occupied by the mth core, where it is larger
by a constant amount. Equation (2.1.3) has been solved in Section A.2.2 in
terms of the Bessel functions. The same solution applies here.

The amplitudes A; and A, vary along the coupler length because of the
overlap between the two modes. To find how they evolve with z, we substitute
Eq. (2.1.2) in Eq. (2.1.1), multiply the resulting equation by F} or F;, use Eq.
(2.1.3), and integrate over the entire x—y plane. This procedure leads to the
following set of two coupled-mode equations in the frequency domain:

dA =i( [31 + A[i [3) +i K12A2, (2.1.9)

d o
A (B + ABM — B)A, + i A, (2.15)

where the coupling coefficient knp and the nonlinear contribution ABR- are
defined as(m,p=1or 2)

o = 35 / / 2)FFp dxdy, (2.1.6)
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2 oo
ABNE = % / [ () FaFmdxay, 2.17)

and n,_isthelinear part of . We have assumed that the modal distributions are
normalized such that [~ |Fm(x,y)|? dxdy = 1.

The frequency-domain coupled-mode equations can be converted to the
time domain following the method used in Section A.2.3. In general, both B,
and kmp depend on frequency. We ignore the frequency dependence of iy
here but consider itsimpact on the coupler performance later (in Section 2.1.3).
By expanding m(®) in a Taylor series around the carrier frequency , as

Bin(®) = Bom + (@ — ) By + 2(@ — @) Bom+++ - (2.19)

retaining terms up to second order, and replacing o — w, by a time deriva-
tive while taking the inverse Fourier transform, the time-domain coupled-mode
eguations can be written as

8 8A1 |B218 A,
+Pugp ot T2 o

= ik A +18A + (1A 2 +CplA DA, (2.1.9)
8 8A2 iBy 9°A
+ Py ot T2 o

= i1 Ay — 18285+ (1) A2+ Coy |A DA, (2.1.10)

where vgm = 1/,,,, isthe group velocity and f3,,,, is the group-velocity disper-
sion (GVD) in the mth core. We have introduced

8= 2By —Bo2)s B =2(Bor+Boy)- (2.1.11)

The parameter 8, is a measure of asymmetry between the two cores. The
nonlinear parameters ¥, and Crnp (M, p = 1 or 2) are defined as

Yoo = ok / / " Rl dxdy, (2.1.12)
Conp = 2Ny, / / " |Fmf2IF[2 dxdy. (2.1.13)

The parameter i, is responsible for self-phase modulation (SPM) while the
effects of cross-phase modulation (XPM) are governed by Cpp.
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Equations (2.1.9) and (2.1.10) are valid under quite general conditions and
include both the linear and nonlinear coupling mechanisms between the optical
fields propagating inside the two cores of an asymmetric fiber coupler. They
simplify considerably for a symmetric coupler with two identical cores. Using
0a =0, K, = K, = k, and C;, = C,; = y0o, the coupled-mode equations for
symmetric couplers become:

My 1Ay By 0%,

2 Tt T2 o = iKA +iY(|A] 4+ 0|A))A,, (21.15)

where the subscript identifying a specific core has been dropped from the pa-
rameters vy, fB,, and y since they have the same values for both cores. The
nonlinear parameter y can be written as y = n,k, /A4 and is identical to that
introduced in Section A.2.3 for a fiber with the effective core area Ay;. The
XPM parameter o is quite small in practice and can often be neglected alto-
gether. Thereason isrelated to the fact that theintegral in Eq. (2.1.13) involves
overlap between the mode intensities and isrelatively small even when the two
cores are close enough that x (involving overlap between the mode amplitudes)
cannot be neglected. The coupling between A and A, is essentially linear in
that case.

2.1.2 Low-Power Optical Beams

Consider first the simplest case of alow-power CW beam incident on one of
the input ports of afiber coupler. The time-dependent terms can then be set to
zeroin Egs. (2.1.9) and (2.1.10). Since the nonlinear terms are also negligible,
the coupled-mode equations simplify considerably and become

dA

d—zl = KA, +16aA,, (2.1.16)
d : :

By differentiating Eq. (2.1.16) and eliminating dA,/dz using Eq. (2.1.17), we
obtain the following equation for A;:

G2t K2A; =0, (2.1.18)
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Figure 2.2 Fraction of power transferred to the second core plotted as a function of
kz for three values of 85/ x when a CW beamislaunched in one coreat z=0.

where the effective coupling coefficient k. is defined as

Ke =\ K2 + 6327 K= A/ K12K21. (2.1.19)

The same harmonic-oscillator-type equation is also satisfied by A,.

By using the boundary condition that asingle CW beam is incident on one
of the input ports such that A, (0) = A, and A,(0) = 0, the solution of Egs.
(2.1.16) and (2.1.17) is given by

A, (2) = Ay[cos(Kez) +i(0a/ Ke) SIN(KeZ)], (2.1.20)
A, (2) = Ay(iKky [ Ke) SIN(KeZ). (21.21)

Thus, even though A, = O initially at z= 0, some power is transferred to the
second core as light propagates inside the fiber coupler. Figure 2.2 shows the
ratio |A,/A,|? as afunction of zfor several valuesof §,/k. Inall cases, power
transfer to the second core occurs in a periodic fashion. The maximum power
is transferred at distances such that k.z = mn/2, where mis an integer. The
shortest distance at which maximum power is transferred to the second core
for thefirst timeis called the coupling length and is given by L = 7/(2xe).
The power coming out of the two output ports of a fiber coupler depends
on the coupler length L and on the powers injected at the two input ends. For
a symmetric coupler, the general solution of Eq. (2.1.18) can be written in a
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matrix form as
A(L)\ [ cos(kL) isin(xL)\ (A (0)
<A2(L)) = (isin(KL) cos(xL) ) \A,(0) ) (2.1.22)
The determinant of the 2 x 2 transfer matrix on the right side is unity, as it
should be for a lossless coupler. Typically, only one beam is injected at the

input end. The output powers, P, = |A;|2 and P, = |A,|?, are then obtained
from Eq. (2.1.22) by setting A,(0) = 0 and are given by

P,(L) = Pycos’(kL),  Py(L)=P,sin’(xL), (2.1.23)

where By = A% is the incident power at the first input port. The coupler thus
acts as a beam splitter, and the splitting ratio depends on the parameter kL.

If coupler length L is chosen such that kL = /4 or L = L/2, the power
is equally divided between the two output ports. Such couplers are referred
to as 50:50 or 3-dB couplers. Fiber couplers with L = L transfer al of their
input power to the second core (referred to as the cross state) whereas all of
the launched power returns to the same core when L = 2L (the bar state). It is
important to realize that a directiona coupler introduces arelative phase shift
of /2 between the two output ports, as indicated by the factor i in the off-
diagonal term of the transfer matrix in EqQ. (2.1.22). This phase shift plays an
important role in the design of fiber interferometers (see Chapter 3).

The coupling length depends on the coupling coefficient x, which in turn
depends on the spacing d between the two cores. For a symmetric coupler,
the integrals in Eqg. (2.1.6) can be evaluated analytically [5]. The resulting
expression is somewhat complicated as it involves the Bessel functions. The
following empirical expression is useful in practice [10]:

= ﬁ exp[—(Cy + ¢,d + ¢,d9)], (2.1.29)
whereV isthefiber parameter (see Section A.1.2), aisthecoreradius, andd =
d/aisthe normalized center-to-center spacing between the two cores d > 2).
The constants ¢, ¢,, and ¢, depend onV as¢, = 5.2789— 3.663V + 0.3841V?,
¢, = —0.7769+ 1.2252V — 0.0152V2, and ¢, = —0.0175— 0.0064V — 0.0009V2.
Equation (2.1.24) is accurate to within 1% for values of V andd in the range
15<V §25and2§d§45 Asanexample, k ~ 1cm~ 1for d = 3, result-
ing in a coupling length of 1 cm or so. However, coupling length increases to
1 m or more when d exceeds 5.
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One may ask whether the proximity of two cores always leads to periodic
power transfer between the cores. In fact, the nature of power transfer depends
on the launch conditions at the input end. The physics can be better understood
by noting that, with a suitable choice of the propagation constant 3 in Eq.
(2.1.2), the mode amplitudes A, and A, can be forced to become zindependent.
From Egs. (2.1.4) and Eq. (2.1.5), this can occur when the amplitude ratio
f = A,/A, isinitialy such that

f— B—B_ Kkn
K12 B-B,
where the nonlinear contribution has been neglected. Equation (2.1.25) can be

used to find the propagation constant . Since 8 satisfies a quadratic equation,
we find two values of 8 such that

(2.1.25)

B =1(By+By) = /B2 +K2. (2.1.26)
The spatial distribution corresponding to the two eigenvalues is given by
FL(6y) = (1+ £2) 72 (xy) + fL R y)], (2.1.27)

where f isobtained from Eq. (2.1.25) using 8 = .. Thesetwo specific linear
combinations of F; and F, constitute the eigenmodes of a fiber coupler (also
called supermodes), and the eigenvalues f3, correspond to their propagation
constants. In the case of a symmetric coupler, f, = £1 and the eigenmodes
reduce to the even and odd combinations of F;, and F,. When the input condi-
tions are such that an eigenmode of the coupler is excited, no power transfer
occurs between the two cores.

The periodic power transfer between the two cores, occurring when light
is incident on only one core, can be understood using the above modal de-
scription as follows. Under such launch conditions, both supermodes of the
fiber coupler are excited simultaneously. Each supermode propagates with its
own propagation constant. Since 3, and B_ are not the same, the two super-
modes develop a relative phase difference on propagation. This phase differ-
ence, y(z) = (B, — B_)z= 2xez isresponsible for the periodic power transfer
between two cores. The situation is analogous to that occurring in birefringent
fibers when linearly polarized light is launched at an angle from a principal
axis. In that case, the relative phase difference between the two orthogonally
polarized eigenmodes leads to periodic evolution of the state of polarization,



70 Fiber Couplers

and the role of coupling length is played by the beat length (see Chapter A.6).
The analogy between fiber couplers and birefringent fibers turns out to be quite
useful even when the nonlinear effects are included.

2.1.3 Linear Pulse Switching

In the case of low-energy optical pulses, nonlinear effects can be neglected but
the effects of fiber dispersion should be included. For symmetric couplers, the
coupled-mode equations, Egs. (2.1.14) and (2.1.15), become:

oA, B, d%A, .
oA, iB,d%A, .
i % 2= inA, (2.1.29)

where T =t — z/vy is the reduced time and the parameter 3, accounts for the
effects of GVD in each core of the fiber coupler.

We can introduce the dispersion length in the usual way as Ly = T¢/|B,|,
where T, is related to the pulse width. The GVD effects are negligible if the
coupler length L < L. Since L is comparable in practice to the coupling
length (Lc = 7/2x), GVD has no effect on couplers for which kL > 1. Since
Lp exceeds 1 km for pulses with T, > 1 ps whereas L. < 1 m typically, the
GVD effects become important only for ultrashort pulses (T, < 0.1 ps). If we
neglect the GVD term in Egs. (2.1.28) and (2.1.29), the resulting equations
become identical to those applicable for CW beams. Thus, picosecond optical
pulses should behave in the same way as CW beams. More specifically, their
energy istransferred to the neighboring core periodically when such pulses are
incident on one of the input ports of afiber coupler.

The above conclusion is modified if the frequency dependence of the cou-
pling coefficient x cannot be ignored [11]. It can be included by expanding
k(w) in a Taylor series around the carrier frequency w, in away similar to
Eqg. (2.1.8) so that

K(0) & Ko+ (0 — @p) k; + 5(0 — @) ?Ks, (2.1.30)

where iy = d"k/do™ is evaluated at o = a@,. When the frequency-domain
coupled-mode equations are converted to time domain, two additiona terms
appear. With these termsincluded, Egs. (2.1.28) and (2.1.29) become

9AL IR 1By 9P ik 2131
oz "o T o T o2 T (2.131)
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dz o1 2 T2 2 9T?

In practice, the k, termis negligible for pulses as short as0.1 ps. The GVD
term is also negligible if kL > 1. Setting B, =0 and x, = 0, Egs. (2.1.31)
and (2.1.32) can be solved analytically to yield [11]:

A(ZT) = 3 [AT — k2857 + Ay(T + k277, (2.1.33)
Az T) = 3 [Ay(T — k2857 — Ay(T + k2077, (2.1.34)

= ik A, (2.1.32)

where A,(T) represents the shape of the input pulse a z= 0. When k; =0,
the solution reduces to

A(zT) = Ay(T)cos(x,2), A (Z,T) =Ay(T)sin(xy2). (2.1.35)

Equation (2.1.35) shows that the pulse switches back and forth between
the two cores, while maintaining its shape, when the frequency dependence
of the coupling coefficient can be neglected. However, when k; is not neg-
ligible, Eq. (2.1.34) shows that the pulse will split into two subpulses after
a few coupling lengths, and separation between the two would increase with
propagation. This effect is referred to as intermodal dispersion and is similar
in nature to polarization-mode dispersion occurring in birefringent fibers (see
Chapter A.6). Intermodal dispersion was observed in a 1997 experiment by
launching short optical pulses (width about 1 ps) in one core of a dual-core
fiber with the center-to-center spacing d = 4a [12]. The autocorrelation traces
showed the evidence of pulse splitting after 1.25 m, and the subpulses sepa-
rated from each other at arate of 1.13 ps/m. The coupling length was estimated
to be about 4 mm. Intermodal dispersion in fiber couplers becomes of concern
only when the coupler length L >> L. and pulse widths are ~ 1 ps or shorter.
This effect is neglected in the following discussion of nonlinear effectsin fiber
couplers.

2.2 Nonlinear Effects

Nonlinear effects in directional couplers were studied starting in 1982 [13]—
[33]. An important application of fiber couplers consists of using them for
al-optical switching. Figure 2.1 showed schematically how an optical pulse
can be directed toward different output ports, depending on its peak power. In
this section, we focus on the quasi-CW case and consider a symmetric coupler
with identical coresto ssimplify the discussion.
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2.2.1 Quasi-CW Switching

The nonlinear coupled-mode equations for CW beams propagating inside a
symmetric coupler are obtained from Egs. (2.1.14) and (2.1.15) by neglecting
the time-derivative terms. The resulting equations are

d— = ikA, +iY(|A |2+ 0|A[P)A, (2.2.1)
a,
d—A22 = ikA + V(A2 + 0|A2)A,. (2.2.2)

These equations are aso applicable for optical pulses wide enough that the
dispersion length L is much larger than the coupler length L (as the effects of
GVD arethen negligible). Thisisreferred to asthe quasi-CW case.

Equations (2.2.1) and (2.2.2) are similar to those studied in Section A.6.3
in the context of birefringent fibers and can be solved analytically using the
same technique. Introducing the powers and phases through

A = [Pewis), (1=12). (223

and defining the phase difference ¢ = ¢, — ¢,, we obtain the following set of
three equations:

dpl = 2x,/P,P,sing, (2.2.4)
@ = —2x/P,P,sing, (2.2.5)
d(b _h-P

Fite m cos<1>+ ) (P1 P,), (2.2.6)

where the critical power R, is defined as

P = 4x/[y(1- 0)]. (22.7)

The critical power level plays an important role since the solution of Egs.
(2.2.4)—2.2.6) exhibits qualitatively different behavior depending on whether
the input power exceeds R..

Equations (2.2.4)—2.2.6) can be solved analytically in terms of the elliptic
functions after noting that they have the following two invariants [13]:

Py=P,+ P, I'=,/P,P,cos¢ — 2P,P,/F, (2.2.8)
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Figure2.3 Nonlinear switching of CW beamsin afiber coupler with kL = /2. Solid
lines show relative powers at the two output ports as afunction of input power. Dashed
lines show the coupler response in the quasi-CW case. (After Ref. [22], (©1989 IEEE)

where P, is the total power in both cores. In the specific case in which all the
input power is initially launched into one core of a fiber coupler, the power
remaining in that core after adistance zis given by

P,(2) = |AL(2)|* = 3P,[1+ cn(2KZm)), (2.2.9)

where cn(x|m) is a Jacobi elliptic function with modulus m= (R/P;)?. The
power transferred to the second core is obtained using B(z) = Py — P,(2).

In the low-power limit (m < 1), Eq. (2.2.9) reduces to the result B(z) =
P,cos?(kz), asit should. Periodic transfer of the power between the two cores
persists as long as Ry < P so that m < 1. However, as R, approaches R, the
period beginsto increase, becoming infinite when R = P.. The solution (2.2.9)
reduces to P;(2) = 1P,[1+ sech(2kz)] when m= 1, and a most half of the
power is transferred to the second core no matter how long the coupler is. For
P, > P, the solution once again becomes periodic but the amount of power
transferred to the second coreis reduced to bel ow 50% and becomes negligible
for Py > P..

The solid lines in Fig. 2.3 show the relative powers as a function of the
input power at the two output ports of acoupler of length L = L. For Py < R,
the launched power is transferred completely to the second core (cross state).
For P, > R, little power is transferred to the other core (bar state). Thus, an
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optical beam can be switched from one output port to the other, depending on
its input power.

The physics behind all-optical switching can be understood by noting that
when an optical beam is launched in one core of the fiber coupler, the SPM-
induced phase shift is not the same in both cores because of different mode
powers. As aresult, even a symmetric fiber coupler behaves asymmetrically
because of the nonlinear effects. The situation is, in fact, similar to that occur-
ring in asymmetric fiber couplers where the difference in the mode-propagation
constants introduces a relative phase shift between the two cores and hinders
complete power transfer between them. Here, even though the linear propa-
gation constants are the same, a relative phase shift between the two cores is
introduced by SPM. At sufficiently high input powers, the phase difference—
or SPM-induced detuning—becomes large enough that the input beam remains
confined to the same core in which it was initially launched.

2.2.2 Experimental Results

The experimental observation of optical switching in fiber couplers using CW
beams is difficult because of relatively high values of the critical power in
silica fibers. We can estimate R, from Eq. (2.2.7) using appropriate values of
x and y and setting the XPM parameter 6 ~ 0. If we use k¥ = 1 cntt and
y = 10 W~1/km as typical values, we find that P. = 40 kW. It is difficult to
launch such high CW power levels without damaging silica fibers. A common
practical solution isto use short optical pulses with high peak powers but wide
enough that the GV D effects are not important (the quasi-CW case).

There isan obvious problem with the use of optical pulsesin the quasi-CW
regime. Only the central intense part of an input pulse is switched since pulse
wings exhibit the low-power behavior. Thus, a nonuniform intensity profile of
optical pulses leads to distortion even when the effects of GVD are negligi-
ble. Asone may expect, pulse distortion is accompanied by degradation in the
switching behavior. Asan example, the dashed curvesin Fig. 2.3 show the re-
sponse of afiber coupler to input pulses whose intensity varies as secr?(t/ To)-
These curves represent relative energy levelsin the two cores and are obtained
by integrating over the pulse shape. When compared with the case of CW
beams, pulse switching is not only more gradual but also incomplete. Less
than 75% of the incident peak power remains in the core in which the input
pulse is launched even at peak power levels in excess of 2R. This behavior
restricts severely the usefulness of fiber couplers as an all-optical switch.
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The results shown in Fig. 2.3 do not include the effects of GVD. As one
may anticipate, the situation becomes worse in the case of normal GVD be-
cause of pulse spreading. However, the performance of fiber couplers should
improve significantly for optical pulses experiencing anomaous GVD and
propagating as a soliton. The reason is related to the particle-like nature of
optical solitons. Thistopic is covered in Section 2.3.

Nonlinear effects in dual-core fiber couplers were observed starting in
1985, and a clear evidence of high-contrast optical switching had been seen
by 1988 [18]{22]. All of the experiments used short optical pulses propagat-
ing in the normal-GV D region of the fiber and, therefore, did not make use of
solitons. In the 1985 experiment [18], 80-ns pulses from a frequency-doubled
Nd:YAG laser (A = 0.53 um) were focused onto one core of a dual-core fiber.
The 2.6-um-diameter cores were separated by more than 8 um (center-to-
center spacing), resulting in arelatively small value of the coupling coefficient.
Nonetheless, the transmitted power from a 18-cm-long coupler was found to
increase as the launched peak power increased beyond the 100-W level. In a
later experiment, the use of 50-ps pulses from a mode-locked laser provided
better evidence of nonlinear switching [19].

In a 1987 experiment, 30-ps pulses from a 1.06-um Nd:YAG laser were
injected into one core of a 2-m-long dual-core fiber in which 5-um-diameter
cores were separated by 8 um [20]. The critical power R was estimated to be
850 W for this coupler, and its length was about 3.8 L. At low input power
levels, 90% of the pulse energy transferred to the neighboring core. However,
the transferred energy was only 40% when the input peak power increased to
about 700 W. The switching contrast improved considerably in a 1988 exper-
iment [21] that used 100-fs pulses from a dye laser operating at 0.62 um. The
fiber coupler was only 5-mm long, consisted of two 2.8-um-diameter cores
separated by 8.4 um, and required 32 kW of peak power for switching to
occur. The measured switching characteristics were in good agreement with
the theoretical prediction shown by the dashed lines in Fig. 2.3. Fiber dis-
persion played a relatively minor role even for 100-fs pulses because of the
short length of the coupler used in the experiment (L < Ly). The autocorre-
lation measurements showed that only the central part of the pulse underwent
switching. Use of sguare-shaped femtosecond pulses in 1989 resulted in con-
siderable improvement since their use avoids the pulse breakup [22]. Figure
2.4 shows the switching characteristics measured using bell-shaped (Gaussian-
like) and square-shaped pulses. Not only is the switching contrast better, the
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Figure2.4 Switching datafor afiber coupler of length L = L . Relative output powers
at ports 1 and 2 are shown as a function of input peak power for 90-fs bell-shaped
(normal) pulses and 540-fs square-shaped pulses. (After Ref. [22] (©1989 |EEE)

switching peak power is also lower for square pulses.

The high power levels needed for nonlinear switching in fiber couplers
have hindered the use of such devices for this purpose. The switching thresh-
old can be reduced by using fibers made with a material whose nonlinear pa-
rameter n, is much larger compared with that of silica. Several such materials
have been used to make fiber couplers. In one case, adye-doped polymer fiber
was used [31]. Both cores of this fiber were doped with a sguarylium dye
and were embedded in a PMMA polymer cladding. The 6-um-radius cores
were separated by 18 um. The coupling length was estimated to be about
1 cm. Nonlinear transmission was observed using a Q-switched, mode-locked
Nd:YAG laser. In another approach, GeS,-based chalcohalide glass was used
to make the fiber [32]. The nonlinear parameter for this glass was measured to
ben, ~ 7.5 x 10~ cm?/W, avalue that is larger by more than afactor of 200
compared with that of silica. As aresult, the switching threshold should also
be reduced by the same factor. A third approach used a polyconjugated poly-
mer (DPOP-PPV) to make a nonlinear directional coupler [33]. Two-photon
absorption plays an important role when dye-doped or semiconductor-doped
fibersare used and can affect the switching characteristics adversely.
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2.2.3 Nonlinear Supermodes

An alternative approach for understanding the nonlinear effects in fiber cou-
plers makes use of the concept of nonlinear supermodes, which represent opti-
cal fields that propagate without any change in spite of the SPM and XPM ef-
fects. Mathematically, they represent z-independent solutions (the fixed points)
of Egs. (2.2.4)—2.2.6) and can be obtained by setting the z derivatives to zero.
Here we use an approach based on the rotation of a vector on the Poincaré
sphere [16]. Let us introduce the following three rea variables (in analogy
with the Stokes parameters of Section A.6.3):

S=IAR- AR S,=2Re(AA),  S=2Im(AAY, (2210)

and rewrite Egs. (2.2.1) and (2.2.2) in terms of them as

ds, _
O('j_szz — y(1-0)SS, (2.2.12)
O('j_? — Y(1-0)S,S,— 2kS,. (2.2.13)

It can be easily verified from Egs. (2.2.10)2.2.13) that S + $+ S =
|A,|2+ |A,|? = P, where P, is the total power in both cores. Since R, isin-
dependent of z, the Stokes vector S with components §, S,, and S; moves
on the surface of a sphere of radius R as the CW light propagates inside the
fiber coupler. This sphere is known as the Poincaré sphere and provides a vi-
sual description of the coupler dynamics. In fact, Egs. (2.2.11)—«2.2.13) can
be written in the form of a single vector equation as

ds
ik W x S, (2.2.19)
where W = W, +W, suchthat W, =2kxyand Wy, =7y(1-0)S X Thus,
the linear coupling rotates the Stokes vector S around the y axis while the SPM
and XPM rotate it around the x axis. The combination of the two rotations
determines the location of the Stokes vector on the Poincaré sphere at a given
distance along the coupler length.
Figure 2.5 shows trajectories of the Stokes vector on the Poincaré sphere
under three different conditions. In the low-power case, nonlinear effects can
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be neglected by setting y = 0. Since Wy, = 0in that case, the Stokes vector
rotates around the S, or y axis with an angular velocity 2k [Fig. 2.5(a)]. This
is equivalent to the periodic solution obtained earlier. If the Stokes vector is
initially oriented along the S, axis, it remains fixed. This can also be seen
from the steady-state (z-invariant) solution of Egs. (2.2.11)—2.2.13) by noting
that the Stokes vectors with components (0, R, 0) and (0, —F,, 0) represent two
fixed points in the linear case. These fixed points correspond to the even and
odd supermodes of afiber coupler discussed earlier.

In the nonlinear case, the behavior depends on the power level of the inci-
dent light. Aslong as R, < P;/2, nonlinear effects play a minor role, and the
situation is similar to the linear case, as shown in Fig. 2.5(b). At higher power
levels, the motion of the Stokes vector on the Poincaré sphere becomes quite
complicated since W, isoriented along the y axiswhile Wy, isoriented along
the x axis. Moreover, the nonlinear rotation of the Stokes vector along the x
axis depends on the magnitude of § itself. Figure 2.5(c) shows the motion of
the Stokes vector when R, > P..

To understand the dynamical behavior, we find the fixed points of Egs.
(2.2.11)«2.2.13) by setting the z derivatives to zero. The location and the
number of fixed points depend on the optical power R launched inside the
fiber. More specifically, the number of fixed points changes from two to four at
acritical power level Ry = P;/2, where P isgivenin Eq. (2.2.7). For Ry < P./2,
only two fixed points, (0, R,,0) and (0, —F,,0), occur; these are identical to the
low-power case. In contrast, when R, > P./2, two new fixed points emerge.
The components of the Stokes vector, at the location of the new fixed points
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on the Poincaré sphere, are given by [16]

S =+\/P¢-P2/4, S,=R/2, $;=0. (2.2.15)

The new fixed points represent the nonlinear supermodes of a fiber cou-
pler in the sense that when input light excites one of these eigenmodes, the
core powers do not change along the coupler length in spite of the close prox-
imity of the two cores. Trgjectories near the new fixed points are separated
from those occurring near the fixed point (0, R),0) by a separatrix. The non-
linear switching corresponds to the transition from the low-power fixed point
(0,P,,0) to one of the new fixed points.

2.24 Modulation Instability

The CW solution of the coupled-mode equations (the fixed points) can become
unstable in the presence of GVD in the same way as a CW beam propagating
inside an optical fiber can break up into a pulse train under certain conditions.
The modulation instability of couplersissimilar in nature to the vector modu-
lation instability discussed in Section A.6.4 since the underlying coupled non-
linear Schrodinger (NLS) equations have the same form. This analogy is not
obvious from Egs. (2.1.14) and (2.1.15) since the XPM term is often negligible
in practice. By setting o = 0, the coupled NLS equations for a fiber coupler
reduce to

oA, iB,d°A; . :
2 %WS='KA2+IY|A1|2A1, (22.16)
oA, iB,d°A, :
9z %aTzz=”<A1+w|A2|2Az, (22.17)

where we have introduced, as usual, the reduced time T =t — z/\ to eliminate
the group-velocity term.

The analogy between afiber coupler and abirefringent fiber becomes quite
clear if Egs. (2.2.16) and (2.2.17) are rewritten using the even and odd super-
modes of afiber coupler. For this purpose, we introduce two new variables

Bi=(A+A)/V2,  B,=(A—A)/V2 (2.2.18)

so that B; and B, correspond to the amplitudes associated with the even and
odd supermodes introduced earlier [see Eq. (2.1.27)]. In terms of the new
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variables, Egs. (2.2.16) and (2.2.17) can be written as [35]

dB, iB,0°B; . iy 2 2 2y
WJFTW—'KBl: E[(|Bl| +2|B,|)B; + B5By], (2.2.19)
9B, i, d°B,

9z 2 9T?
The even and odd supermodes are uncoupled linearly but their phase velocities
are not the same, as evident from different signs of the x term in the above
two equations. Since light in the even supermode travels more slowly than
that in the odd supermode, the even and odd supermodes are analogous to the
light polarized along the slow and fast axes in a birefringent fiber. As seen
from Egs. (2.2.19) and (2.2.20), the coupled NL S equations written in terms of
the supermodes have three nonlinear terms that correspond to SPM, XPM, and
four-wave-mixing-type coupling (identical to the case of birefringent fibers).
The steady-state or CW solution of Egs. (2.2.19) and (2.2.20) is easily
obtained when the input conditions are such that either the even or the odd
supermode is excited exclusively. In the case of even supermode, the CW
solution is given by

. [ »
+iKB, = - [(|B,[2 + 2B, 1B, + BBy (2220)

B, = /Pexp(i0), B,=0, (2.2.22)

where 6 = (yR,/2+ x)z Thesolution inthe case of odd supermode is obtained
from Eq. (2.2.21) by changing the sign of x and the subscripts 1 and 2. In
both cases, the input power remains equally divided between the two cores,
with no power exchange taking place between them. In the Poincaré sphere
representation, these two CW solutions correspond to the fixed points (0, B, 0)
and (0, —P,,0), as discussed earlier.

We can follow the procedure of Section 5.1 to examine the stability of the
CW solution in Eq. (2.2.21). Assuming atime-dependent solution of the form

B, = (y/Py+b,) exp(i6), B, = b,exp(if), (2222

where b, and b, are small perturbations, we linearize Egs. (2.2.19) and (2.2.20)
in terms of b; and b, and obtain a set of two coupled linear equations. These
eguations can be solved by assuming a solution of the form

bm = umexpli(Kpz— QT)] + ivmexp[—i(Kpz— QT), (2.2.23)

wherem=1or 2, Q isthe frequency of perturbation, and K; isthe correspond-
ing wave number.
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The four agebraic equations obtained using this technique are found to
have an interesting property. The two equations for u and v, are coupled,
and so are those for u, and v,. However, these two sets of two equations are
not coupled. This feature simplifies the analysis considerably. The dispersion
relation for the even-mode perturbation by, turns out to be

K2 = 1B,Q%(3B,Q% + vP,) (2.2.24)

and is the same dispersion relation obtained in Section A.5.1 (except for afac-
tor of 2 in the last term). The features associated with modulation instability
are thus identica to those found in Section A.5.1. More specifically, no in-
stability occurs in the case of normal GVD. When GVD is anomalous, gain
curves are similar to thosein Fig. A.5.1.

The new feature for fiber couplersisthat, even when CW light is launched
initially into the even supermode, perturbations in the odd supermode can grow
because of the coupling between the two cores. The odd-mode perturbations
satisfy the dispersion relation [35]

K3 = (3B,Q% — 2K) (38,9 — 2K + YPy). (2.2.25)

The presence of « in this equation shows that the coupling between the two
cores can lead to anew kind of modulation instability in fiber couplers. Indeed,
it is easy to see that K, becomes complex under certain conditions even in the
normal-GVD regime. Introducing the instability gain as g, = 2Im(Kp), the
gain is given by

9o(f) = 2x[(2+ f2)(4p— 2+ £2))/2, (2.2.26)

where f = Q/Qc isthe normalized frequency and p = R)/P; is the normalized
input power. They are introduced using

2K 4k
Qc=,/—, P.=— (2.2.27)
‘ \/ 1Bl Ty

The critical power R; is the same as defined earlier in Eq. (2.2.7) sincec =0
has been assumed. The choice of sign in Eq. (2.2.26) depends on the sign of
the GVD parameter j3,; aminus sign is chosen for anomalous GVD.

Figure 2.6 shows the gain spectra of modulation instability for both normal
and anomalous GVD. In both cases, the gain exists at low frequencies, includ-
ing Q = 0. This feature is similar to the polarization instability occurring in
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Figure 2.6 Gain spectraof modulation instability at several power levelsin the cases
of (a) normal and (b) anomalous GVD.

birefringent fibers (see Chapter A.6). The gain at Q = 0 occurs only when
the input power exceeds R./2 (p > 0.5). Thisis related to the appearance of
the two new fixed points on the Poincaré sphere (see Fig. 2.5). When GVD
is normal, the gain peak occurs at Q = 0 only when p > 1. Thus, when the
input power R, exceeds P, modulation instability is static in nature and does
not lead to self-pulsing. In contrast, when GVD is anomalous, the gain peak
occurs at Q # 0for p> 1. Inthiscase, CW light can be converted into apulse
train whose repetition rate depends on the input power. The repetition rate is
closeto Q¢/2r and is estimated to be ~ 1 THz for typical values of x and f3,.

Direct experimental observation of modulation instability in fiber couplers
is hampered by the fact that it is difficult to excite the even or odd supermode
alone. Typically, initial conditions are such that both supermodes are excited
simultaneously. Another difficulty is related to the relatively short coupler
lengths used in practice (L ~ L¢). The growth of sidebands from noise (spon-
taneous modulation instability) requires the use of dual-core fibers for which
L > L. ispossible. The effects of induced modulation instability can be ob-
served using shorter lengths since sidebands are seeded by an input signal.
As an example, induced modulation instability can be used to control switch-
ing of a strong pump beam launched in one core of the coupler through a
much weaker signal launched into the other core with an appropriate relative
phase [17].
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2.3 Ultrashort Pulse Propagation

Because of the high power levels needed for all-optical switching in fiber cou-
plers, optical pulses are often used in practice. For short pulses, the GVD term
in the coupled-mode equations can affect the switching behavior considerably,
and its effects have been studied extensively [34]-{60]. This section consid-
ers propagation of ultrashort optical pulsesin fiber couplers, with emphasis on
soliton effects.

2.3.1 Nonlinear Switching of Optical Pulses

To discuss pulse switching, it is useful to normalize Egs. (2.2.16) and (2.2.17)
using soliton units (see Section A.5.3) and write them as

Jdu  sodiu

—_— 2 =

|a§ 5372 +|uj“u+Kv =0, (2.3.1)
OV sdV |,

|%—§ﬁ+|v| v+ Ku =0, (2.3.2)

where s = sgn(B,) = +1, K = kL, and we have introduced the following
normalized variables:

E=z/Ly, T=T/T,, u=(1p)¥2A, v=(1p)Y?A,. (233)

Here Lp = TZ/|B,| is the dispersion length and T is a measure of the pulse
width. For K = 0, these equations reduce to two uncoupled NL S equations.

The coupled NL S equations, Egs. (2.3.1) and (2.3.2), cannot be solved an-
alytically in general. They have been solved numerically using the split-step
Fourier method of Section A.2.4. The switching behavior depends on whether
GVD isnormal or anomalous. As early as 1988, numerical simulations indi-
cated that solitons, forming in the case of anomalous GV D, switch between the
cores as an entire pulse in a manner analogous to the CW case [34]. In con-
trast, switching ceases to occur in the normal-dispersion regime if pulses are
short enough that the dispersion length L, becomes comparable to the cou-
pling length L. [36]. Soliton switching is, in fact, superior to the quasi-CW
switching realized using relatively broad pulses.

Figure 2.7 compares the switching characteristics of fiber couplersin these
two cases. These results are obtained by solving Egs. (2.3.1) and (2.3.2) with
theinitial conditions

u(0,7) = Nsech(1), v(0,7) =0. (2.3.9)
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Figure2.7 Transmitted pulse energy as afunction of p = P,/P in the case of solitons
(solid line) and quasi-CW pulses (dashed line) for a coupler of length L = L. (After
Ref. [34])

The amplitude N is related to the peak power R, of the input pulse as N? =

YL4Py = 4Kp, where p = B,/P; is normalized to the CW switching power
P.. If we choose K = 1/4, N equals 1 when p = 1; that is, the input pulse
propagates as a fundamental soliton when R, = P.. The fraction of the pulse
energy appearing inthe corein which asolitonisinitially launched is plotted as
asolid linein Fig. 2.7 for values of pin the range from 0 to 3. The switching
behavior near p = 1 for solitons is aimost identical to that of a CW beam
(compare with Fig. 2.5). Since L = L ~ L isrequired for soliton switching
to occur, the input pulse width and peak power should be about 0.1 ps and
1 kW, respectively, for a 1-m-long fiber coupler. Because of relatively short
propagation distances involved, higher-order dispersive effects are not likely to
affect the switching behavior considerably, unless pul ses become much shorter
than 100 fs.

The exact value of N required for switching depends on the choice of the
single parameter K appearing in Egs. (2.3.1) and (2.3.2). Asan example, when
K =1, p=1lisreaized only when N = 2 since N2 = 4K p. The switching be-
havior in this case is shown in Fig. 2.8, where evolution of |u? and |v|?> dong
the coupler length is shown for N = 1 and 2. Since the first-order soliton is
below the switching threshold, most of its power is transferred to the neigh-
boring core at a distance & = 7/2. In contrast, the second-order soliton keeps
most of its power in the origina core since p = 1 for it. The switching thresh-
old appears to be below p = 1, in contrast with the results shown in Fig. 2.7.
The reason can be understood by noting that a second-order soliton undergoes
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Figure 2.8 Evolution of pulsesin two cores of a fiber coupler with coupling length
Lc = nly/2whenaninput pulseislaunchedin one corewith (8) N = 1and (b) N = 2.
(After Ref. [34])

compression initially, resulting in higher peak powers. In fact, the pulse is
compressed enough that the value of N at the output end iscloseto 1. Theim-
portant point to note is that the entire pulse switches from one core to another.
In the absence of the soliton effects, pulses are severely distorted since only
central part is intense enough to undergo switching. Physically, this behavior
is related to the fact that a fundamental soliton has the same phase over the
entire pulse width in spite of SPM. A weak pulse, launched at the other input
port, can aso force a soliton to switch between the two output ports [37]. All-
optical ultrafast logic gates have also been proposed using asymmetric fiber
couplers [38].

2.3.2 Variational Approach

Particle-like switching of solitons suggests the use of a classical mechanics
technigue based on the Hamiltonian or Lagrangian formulation. Such an ap-
proach offers considerable physical insight [40]{45]. The variational tech-
nique was first used in 1990 for solving Egs. (2.3.1) and (2.3.2) approxi-
mately [41]. However, the width of solitons was assumed to remain constant
in spite of changes in their amplitudes. Asdiscussed in Chapter A.5, the width
and the amplitude of a soliton are related inversely when solitons evolve adia-
batically. This section discusses the adiabatic case [43].

In the Lagrangian formalism, Egs. (2.3.1) and (2.3.2) are derived from the
Euler—L agrange equation

0 [ dLg d [dlLg g
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where g represents u, U*, v, or v*; the subscripts 7 and £ denote differentiation
with respect to that variable; and the Lagrangian density Ly is given by [41]

_ [ * * 1 4 2 I
Lg= é(u Uy —uuz) + §(|u| — |ug| )Jré(\f*v5 - Wg)
1
+ §(|v|4— IVe|?) + K(u'v+w*).  (2.3.6)

The crucia step in the variational analysis consists of choosing an appro-
priate functional form of the solution. In the case of adiabatic evolution, we
anticipate solitons to maintain their “sech” shape even though their amplitude,
width, and phase can change. We thus assume that

U(é,T) = nlseCh(n]_T)eid)la V(é ) T) = nzsaCh(nZT)é%a (237)

where 1 j is the amplitude and ® is the phase for the soliton propagating in
the jth core of the coupler. Both n; and ¢; are assumed to vary with E. The
soliton width also changes with its amplitude, as expected. Note that solitons
in both cores are assumed to remain unchirped. In general, one should also
include chirp variations [55].

_ The next step consists of integrating the Lagrangian density over t using
Lg= JZ.Lgdt. Theresult is given by

= 1 do d¢
Lg=§(n12+n2) 2n1d51 2nzd—§2

+ K1y 1,€08(6; — 9,) / sech(n,1)sech(n,0)de. (2.38)

Using Eg. (2.3.8) in the Euler—Lagrange equation, we obtain a set of four or-
dinary differential equations for n; and ¢J (j = 1,2). These equations can be
simplified by noting that n, + n, = 2n is a constant of motion. Furthermore,
the total phase ¢, + ¢, does not play a significant role since Lg depends only
on the relative phase difference ¢ = ¢, — ¢,. Introducing a new dynamical
variable

A=(ny—1n5)/(Ny+ 1), Al <1, (23.9)

the switching dynamics is governed by the equations

dA . do dG
Fid G(A)sing, Fid UA+ cosqbﬁ, (2.3.10)
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where Z = 2K& = 2xz, u = n?/K, and

e (1-A?%)dx
G(A)_/o cosh?x+ sinh?(xA)” (23.11)

The parameter 7 isrelated to the total energy Q of both solitons as
Q:[ (Jul2 + V) de = 2(n, +1,) = 4n. (2.3.12)

Equations (2.3.10) can be integrated easily by noting that they can be de-
rived from the Hamiltonian

H(A,¢) = —2uA? — G(A) cos¢. (2.3.13)

Asaresult, A and ¢ can be treated as the generalized coordinate and momen-
tum of afictitious particle. This analogy permits us to describe the switching
dynamics of solitonsin the A—¢ phase plane. The qualitative behavior depends
on the parameter u. To understand soliton switching, we first find the fixed
points of Egs. (2.3.10) by setting the Z derivatives to zero. Two fixed points
are given by A = 0 with ¢ = 0 or n. Since both solitons have equal energy
when A = 0, these fixed points correspond to the even and odd supermodes
found earlier in the CW case.

Two other fixed points of Egs. (2.3.10) correspond to the situation in which
the soliton is confined to only one core and are given by

A=41, cos¢ =2u/m. (2.3.14)

They exist only for u < m/2 and are aways unstable. For u > /2, two new
fixed points emerge for which sin¢g = 0 and A is obtained from the implicit
relation uA = —(dG/dA). In the limit of small A, the integral in Eq. (2.3.13)
can be performed analytically with the approximation

G(A) ~ (1—A?%)(1— aA?), (2.3.15)

with o = (m?/6— 1) /3 ~ 0.215. These fixed points disappear when p > e =
2(1+ o) = 2.43. In this region, the even-mode fixed point is also unstable.
Figure 2.9 shows trgjectories in the A—¢ phase plane in three regimes with
different sets of fixed points. The various trgectories correspond to different
launch conditions at the input end of the fiber coupler. Consider the case in
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Figure 2.9 Phase-space trgjectories in three different regimes corresponding to (a)
u<m/2,(b)r/2<p < ueand(c) u > e (After Ref. [43])

which asingle soliton islaunched in one core such that n,(0) = 0 or A(0) = 1.
The parameter 1 is then related to the peak power R, of the launched soliton
as i = Py/P., where P is the CW critical power introduced earlier. As long
as u < m/2, the soliton exhibits the same behavior as alow-power CW beam.
More specifically, its energy will oscillate between the two coresin a periodic
manner.

Nonlinear switching occurs in the region /2 < u < U since most of the
soliton energy remains in the core in which the pulse is launched initially.
This feature is equivalent to the CW switching discussed earlier except that
the required pesk power Ry is larger by a factor of /2. This increase is not
surprising since even the low-power wings of the soliton switch together with
its peak as one unit. Finally, when u > ., soliton energy oscillates around
the stable point located at A = 0 and ¢ = & (the odd supermode). Nonlinear
switching isincomplete in this case. The main point to noteis that whole-pulse
switching of solitonsis feasible with a proper control of soliton energy.

The CW-like switching behavior of solitons can be seen even more clearly
if the soliton width isassumed to remain constant in spite of amplitude changes;
that is, the ansatz (2.3.7) is replaced with [41]

u(é,7) = nysech(t)éf, (€, 1) = n,sech(t)€’. (2.3.16)

In this case, the integral in Eq. (2.3.11) can be evaluated analytically. Since
G(A) is then known, Egs. (2.3.10) can be integrated in a closed form in terms
of the elliptic functions. Introducing the peak powers B and P, using njz =
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YLoP; (j=1,2), P, isfound to vary along the coupler length as
P,(2) = 3R,[1+ cn(2xZm)], (2.3.17)

where the modulus of the Jacobi elliptic function is given by m= (2R/ 3P.)2,

where P is the CW critical power. This solution isidentical to the CW case
except that the critical power for switching is larger by a factor of 3/2. This
value compares reasonably well with the enhancement factor of /2 predicted
before using Egs. (2.3.10). The variational analysis aso predicts a symmetry-
breaking bifurcation at m= 1/2. At this value, the symmetric solution, with
equal peak powersin the two cores, becomes unstable and is replaced with an
asymmetric solution [41].

The variational analysis based on Eq. (2.3.7) assumes that solitons remain
unchirped. More accurate results are obtained when both pul se width and chirp
are alowed to evolve along the coupler length [55]. The variational approach
has also been used to study the influence of XPM on soliton switching [44] by
including the XPM term appearing in Egs. (2.1.14) and (2.1.15). For therela-
tively small values of the XPM parameter ¢ that are relevant for fiber couplers,
the effect of XPM isto increase the critical power asseen in Eq. (2.2.7). When
o becomes close to 1, the XPM maodifies the switching characteristics consid-
erably. Inthe limiting case of ¢ = 1, Egs. (2.1.14) and (2.1.15) are integrable
by the inverse scattering method [61].

2.4 Coupler-Paired Solitons

A different approach for studying the nonlinear effects in directional couplers
focuses on finding the soliton pairs that can propagate through the coupler
without changes in their amplitude and width in spite of the coupling induced
by the proximity of the two cores. Such soliton pairs are analogous to the
XPM-paired solitons discussed in Chapter A.7 except that the coupling be-
tween the two solitons is linear in nature. Severa analytic solutions of Egs.
(2.3.1) and (2.3.2) have been obtained under different conditions [46]-{49].
It should be stressed that, strictly speaking, such solutions represent not soli-
tons but solitary waves since Egs. (2.3.1) and (2.3.2) are not integrable by the
inverse scattering method.

The shape-preserving solutions of Egs. (2.3.1) and (2.3.2) can be found by
assuming a solution in the form [47]

u(é, 1) =U(1)d%, V(& 1) =V(1)d%, (2.4.1)
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Figure 2.10 Energy Q and wave number K of soliton pairs that can propagate along
the fiber coupler without changein their shape. (After Ref. [48], (©1993 by the Amer-
ican Physical Society)

where q is a constant representing change in the wave number (from its value
B). TheamplitudesU andV are & independent and govern the shape of the two
pulses representing the soliton pair. By substituting Eqg. (2.4.1) in Egs. (2.3.1)
and (2.3.2), U and V are found to satisfy the following set of two coupled
ordinary differential equations:

2

%‘;Tg+u3+Kv—qu =0, (2.4.2)
2

%3—\2 +V34KU -V =0, (2.4.3)

where the GVD is taken to be anomalous by choosing s= —1.

Equations (2.4.2) and (2.4.3) can be solved analyticaly when V = +U
since they reduce to a single equation of the same form obtained in Chapter
A.5. The resulting two solutions are given by

U(7) =V(r) = v/2(q—K) sech[\/2(q— K)1], (2.4.9)
U(7) =-V(1) = /2(q+K) sech[\/2(q+ K)1]. (2.4.5)

Thesolution (2.4.4) is called the symmetric state and existsonly for g > K. The
solution (2.4.5) represents an antisymmetric state and exists for all g > —K.
These two solutions correspond to the even and odd supermodes introduced
in Section 2.1.2. In both cases, identical pulses propagate in the two cores
with the only difference being that they are in phase (U = V) for the even
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Figure2.11 Example of B-type asymmetric soliton pair supported by afiber coupler.
(After Ref. [47], (©1993 by the American Physical Society)

supermode but out of phase (U = —V) for the odd supermode. Thetotal energy
of both solitons can be calculated using Eq. (2.3.12) and is given by Q(K) =
4,/2(q=+ K), where the minus sign corresponds to the symmetric state.

The symmetric and antisymmetric states represent soliton pairs with equal
pulse energies in two cores of afiber coupler. Depending on the total energy
Q associated with the soliton pair, Egs. (2.4.2) and (2.4.3) adso have asym-
metric solutions such that pulse energies are different in the two cores. The
pulse shapes for such solutions are found numerically. Figure 2.10 shows pos-
sible solutions in the —Q phase space [47]. The point M marks the location
(9/K = 5/3) where the symmetric state bifurcates and results in soliton pairs
with different amplitudes (A-type branch). The point N marks the location
(9/K = 1) where the antisymmetric state bifurcates toward the B-type branch.
The new feature of solitons on this branch is that their shape can be quite com-
plicated with multiple humps. Figure 2.11 shows an example of the shapes
associated with a soliton pair on the B-type branch.

Stability of soliton pairs can be examined using an extension of the modula-
tion-stability analysis of Section 2.2.4. In this approach, the soliton state is
perturbed as

U, 1) =[U(r) +ay(&0)e%,  V(§,7) = V(1) +ay(8,7)]e%, (24.6)

where perturbations a, and a, vary with both £ and 7. If the perturbations grow
exponentially with &, the corresponding soliton pair is unstable. The results
of such a stability analysis are shown by dashed linesin Fig. 2.10 and can be
summarized as follows [48]. Symmetric states are stable up to the bifurcation
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point M in Fig. 2.10 and become unstable after that. The antisymmetric states
are unstable for gq/K > —0.6. Asymmetric solutions are aways unstable on
the B branch and stable on the A branch only if the slope dQ/dg > 0. Since
the slope is negative in a small range—5/3 < q/K < 1.85—the asymmetric
solutions on the A branch are stable except for atiny region near the bifurcation
point M. The existence of thistiny unstable region on the A branch implies that
the symmetry-breaking bifurcation occurring at the point M is subcritical and
leads to hysteresis with respect to pulse energy Q (first-order phase transition
in the language of thermodynamics). It should be stressed that instability of a
solution in Fig. 2.10 only indicates that the corresponding soliton pair cannot
propagate without changes in its shape, width, or amplitude. In other words,
the solid lines in Fig. 2.10 are analogous to the stable fixed points of the CW
or the variational anaysis.

Numerical simulations have been used to explore the propagation dynam-
ics when the launch conditions at the input end of afiber coupler do not corre-
spond to a stable soliton pair [49]. The results show that if the input parame-
ters are not too far from a stable point in Fig. 2.10, solitons exhibit oscillations
around the stable state while losing a part of their energy through continuum
radiation. The variational analysis should be used with caution in this case
since it assumes a fixed “sech” shape a priori and does not include radiative
energy losses. Such losses are relatively small for short couplers but must be
accounted for when L > L.

In the case of normal dispersion, one should choose s= 1in Egs. (2.3.1)
and (2.3.2). Asdiscussed in Section A.5.3, the NLS equation supports dark
solitons in each core in the absence of coupling. One may thus ask whether the
coupled NLS equations have solutions in the form of dark-soliton pairs. This
turns out to be the case. Mathematically, one can follow the same procedure
adopted above and assume the solution of the form given in Eq. (2.4.1). The
resulting equations for U and V are identical to Egs. (2.4.2) and (2.4.3) except
for a change in the sign of the second derivative term. These eguations have
the following symmetric and antisymmetric dark-soliton pairs [54]:

U(r) =V(r) = vVq—Ktanh(v/q— K1), (2.4.7)
U(1) = V(1) = vg+Ktanh(v/g+Kr). (2.4.8)

Asymmetric dark-soliton pairs also exist after a bifurcation point on the sym-
metric branch, but their properties are quite different from those associated
with the bright-soliton pairs.
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2.5 Extensionsand Applications

The discussion of nonlinear effects has so far focused on symmetric fiber cou-
plers whose cores are identical in all respects. There are several different ways
in which two cores can become dissimilar. For example, the cores may have
different shapes or sizes. This case was discussed in Section 2.1 but the non-
linear effects were neglected. Nonlinear phenomena in asymmetric couplers
can lead to new effects. An interesting situation occurs when the cores have
different dispersive properties (normal versus anomalous). Cores can also be
made different by selective doping and pumping. An example is provided by
couplersinwhich one coreis doped with erbium ions and pumped externally to
provide gain. As another example, a Bragg grating can be integrated in one or
both cores; such devices are called grating-assisted directional couplers. This
section considers several extensions of the basic coupler design and discusses
their practical applications.

251 Asymmetric Couplers

Nonlinear effects in asymmetric couplers with dissimilar cores have attracted
increasing attention in recent years [62]{66]. Several new effects can occur in
directional couplers with cores of different sizes. Mathematically, we use Egs.
(2.1.9) and (2.1.10). In soliton units, these equations become

du 10%u |,

|%+§W+|U| u+Kv+dpu =0, (25.1)
oV . du  d, 9% 2 -
|E+|dg%+iﬁ+dn|w V+ Ku—de— O, (252)

where we used normalized variables as defined in EQ. (2.3.3), assumed that
GVD in one core is anomalous (f,; < 0), and introduced the following four
parameters related to the asymmetric nature of the coupler:

dp=Galp, dyg= (B~ Bulo/To: & =PBrn/Bn, Gh="1/n (253

Physically, d, and dy represent, respectively, phase- and group-velocity mis-
match while d,, and d, account for differences in the dispersive properties and
effective core areas, respectively. The parameter d, can be negative if the GVD
in the second core is normal.

The presence of four new parameters in the coupled NL S equations makes
the analysis of asymmetric couplers quite involved. Differences in the GVD
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parameters result from the waveguide contribution to GVD that depends on
the core size. If the operating wavelength is close to the zero-dispersion wave-
length of the fiber, small changes in the core shape and size can induce large
enough changes in dispersion that even the nature of GVD (normal versus
anomalous) can be different for the two cores. In contrast, if the operating
wavelength is far from the zero-dispersion wavelength, the GVD parameters
are nearly the same in both cores. We consider the latter case and assume that
the two cores are similar enough that wecanset dg =0,d, =1, andd, =1
in Egs. (2.5.1) and (2.5.2). The asymmetry in such couplers is due only to
different phase velocities in the two cores.

We can use the same method used earlier to find the stationary soliton
pairs that propagate without change in their shape. By substituting Eq. (2.4.1)
in Egs. (2.5.1) and (2.5.2), U and V are found to satisfy the following set of
two ordinary differential equations:

1d2U

Sde +U3 KV - (q—dp)U =0, (2.5.4)
1d?v
Sda +V34+KU - (q+dp)V =0. (2.5.5)

These equations should be solved numerically to find U(7) and V(7). A vari-
ational technique can be used with a Gaussian-shaped ansatz [65]. The phase
diagram in the g—Q plane [see Eq. (2.3.12) for the definition of Q] turns out
to be quite different compared with that of Fig. 2.10 when d, # 0. Thisisnot
surprising as al solutions for asymmetric couplers must be asymmetric such
that |U| # |V|. However, one still finds solutions such that U and V have the
same sign. Since the relative phase between the two components is zero, such
in-phase solitons are analogous to the symmetric state such that U >V when
dp > 0. Similarly, one finds out-of-phase soliton pairs that are analogous to the
asymmetric state in the sense that U and V have opposite signs. It turns out
that |V/| > |U| for such solitons when d > 0. In both cases, more and more
energy remains confined to one core as |dp| becomes larger. This feature can
be understood from Egs. (2.5.4) and (2.5.5) by solving them in the limit of
large |dp|. If both the dispersive and nonlinear terms are neglected, g can have

two values given by

and the solutions corresponding to these values of q satisfy
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Figure 2.12 Pulse amplitudes associated with the (a) in-phase and (b) out-of-phase
soliton pairs. Dashed curves show the Gaussian approximation based on the varia-
tional analysis. (After Ref. [65])

Clearly, ailmost all energy remains in one core of the coupler for large d,.

A third solution of Egs. (2.5.4) and (2.5.5) is found when |dp| exceeds
a critical value [65]. The components U and V have opposite signs for this
solution, and most of the energy is confined to one of them. The exact range
of |dp| over which the third solution occurs depends on both K and the total
energy Q. In fact, depending on the value of Q, only in-phase soliton pairs
may exist for some values of |dy|. Bistable behavior can also occur when Qis
large enough.

The shapes and energies of the two solitons are quite different for the
in-phase and out-of-phase solitons. Numerical solutions of Egs. (2.5.4) and
(2.5.5) show that soliton pairs for which U and V have the same signs are lo-
calized in the sense that their amplitude decreases exponentialy far away from
the center [65]. In contrast, soliton pairsfor whichU andV have opposite signs
(out-of-phase solitons) are delocalized such that their amplitude oscillates and
does not decrease to zero even far away from the center. Figure 2.12 shows an
example of these two types of soliton pairsfor Q = 2.

The effect of GVD mismatch between the two cores—governed by the
parameter d, in Egs. (2.5.1) and (2.5.2)—is even more interesting, especially
in the case in which the GVD is norma in the second core [66]. The most
striking new feature is related to the existence of gap solitons, similar to those
found for Bragg gratings (see Section 1.6), that occur inside a gap region in
which light cannot propagate when nonlinear effects are weak. Moreover, such
bright solitons carry most of their energy in the core with normal GVD. The
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shape of the soliton components U and V exhibits oscillatory tails that decay
exponentially far away from the pulse center.

2.5.2 Active Couplers

Fiber losses are typically neglected in the context of fiber couplers. Thisis
justified in view of short fiber lengths used in practice (typicaly L < 10 m)
and relatively low losses associated with silicafibers. The situation is different
when one or both cores of acoupler are doped with arare-earth element such as
erbium. The doped core will absorb considerable light when its wavelength is
close to an atomic resonance or will amplify the propagating signal if that core
is externally pumped to provide gain (see Chapter 4). The pumping level can
be different for the two cores, resulting in different gains, or one core may be
left unpumped. Because of differences in the amount of gain or loss in the two
cores, doped couplers behave asymmetrically even if both coresareidentical in
shape and size. Such couplers are sometimes called active directional couplers
and can be useful for avariety of applications [67]{73].

To understand operation of such devices, we use Egs. (2.3.1) and (2.3.2),
appropriate for a symmetric coupler, but add an extragain term [67]:

.0 d2u 02

|8_g ;8 5+ |u|2u+ Kv = 91|—D <u+ ba l;) (25.8)
2 2

ig—%’ ;g VAVt Ku= gZLD <v+ bg ‘2’> (25.9)

where g, and g, are the gain coefficients whose value depends on the pump-
ing level. The parameter b= (T, /T,)? accounts for the finite gain bandwidth. It
originates from the frequency dependence of the gain approximated as § (o) =

9;(1— ©*T3), where T, is the dipole relaxation time of dopants, related in-
versely to the gain bandwidth (see Chapter 4). For picosecond pulses (width
> 5 ps), the spectrum is narrow enough that all frequency components of the
pulse experience nearly the same gain. The parameter b can be set to zero for
such pulses. In the absence of pumping, g; becomes negative and accounts for
dopant-induced losses in the jth core.

In the quasi-CW case, the two terms involving time derivatives can be set
to zero. The resulting equations can be solved analytically in the low-power
case but require anumerical solution to study nonlinear switching [68]. When
both cores are pumped to provide equal gains, the power threshold isreduced at
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Figure 2.13 Switching characteristics (solid curve) of an active fiber coupler with
equal gain in both cores. Dashed curve shows the behavior expected in the absence of
gain. (After Ref. [67])

the expense of switch quality. The best performance occurs for active couplers
with gain in one core and comparable lossin the other core. With proper choice
of device parameters, the switching threshold can be reduced by a factor of
more than 10 while maintaining a sharp, step-function-like response of the
switch.

Soliton switching in active fiber couplers has been investigated numerically
by choosing s= —1 (anomalous GVD), setting g, = g, = gy and b= 0in Egs.
(2.5.8) and (2.5.9), and using the input conditions [67]

u(0,7) =Nsech(r),  v(0,7) =0. (2.5.10)

Figure 2.13 shows improvement in switching of picosecond pulses occurring
because of amplification for a coupler of length L = 2rL by choosing K =
0.25 and gyLp = 0.3. Severd features are noteworthy. First, the switching
threshold is reduced by about a factor of 2. Second, the switching is much
sharper. A relatively small change in peak power of the pulse can switch the
soliton from one core to another. Third, the switching contrast isimproved be-
cause of the amplification provided by the coupler. In fact, the switched pulse
is narrower than the input pulse by a factor in the range of 3 to 7, depending
on the input peak power. For femtosecond pulses, gain dispersion must be in-
cluded by choosing b £ 0. Numerical simulations show that the main effect of
gain dispersion is to reduce the overall switching efficiency without affecting
the pulse quality significantly. It should be stressed that input pulse does not
correspond to a fundamental soliton when N # 1. As aresult, switching is
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accompanied by dispersive radiation that appears in the other core because of
its low power.
Asymmetric active couplers in which two cores have different gains (g #

0,) can be used as saturable absorbers. Consider the case in which one coreis
pumped to provide gain while the other core is either undoped or unpumped.
Low-energy pulses will then be transferred to the second core while high-
energy pulses whose peak power exceeds the switching threshold will remain
in the core with gain. Such a device acts as a saturable absorber and can be
used for many applications. For example, it can be used for passive mode
locking of fiber lasers by using the doped core as a gain medium within a cav-
ity [70]. This scheme works even in the normal-GVD regime and can be used
to generate picosecond pulse trains in the spectral region below 1.3 um by us-
ing dopants such as neodymium [71]. Such a device can aso be used to filter
noise associated with solitons since noise can be transferred selectively to the
lossy core because of its low power level [72]. The device acts as an opti-
cal amplifier whose gain is power dependent such that low-power signals are
attenuated while high-power signals are amplified [73]. It should be stressed
that the dopants used to provide gain or loss in fiber couplers can also have
their own saturable nonlinearities that can affect the switching behavior sig-
nificantly [69]. This issue is discussed in Chapter 4 in the context of fiber
amplifiers.

2.5.3 Grating-Assisted Couplers

An important class of directional couplers makes use of a Bragg grating to
improve the performance of asymmetric couplers. Such couplers are caled
grating-assisted couplers [74]-{85]. They have been studied mostly in the con-
text of planar waveguides, in which grating-induced variations in the thickness
of one waveguide lead to periodic modulation of the coupling coefficient. The
grating period A is chosen such that the mismatch between the modal propa-
gation constants equals the grating wave vector, that is,

By~ Bo =By =2m/A. (2.5.11)

This condition is similar to that of a long-period grating used for coupling
the modes in a single-core fiber (see Section 1.7.1). In the case of a grating-
assisted coupler, such along-period grating couples the modes supported by
two spatially separated waveguides (or the even and odd modes of the coupled
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Figure2.14 Schematic of a grating-assisted fiber coupler. (After Ref. [91])

waveguides) and allows complete transfer of a low-power beam between the
two waveguides even though little power exchange occurs in the absence of
the grating.

In the case of fiber couplers, it is difficult to vary the core diameter in
a periodic fashion on a scale of about 10 um. For this reason, gratings are
formed by modulating the refractive index of the core. Since the spacing be-
tween cores does not vary in this case, the coupling coefficient remains nearly
unchanged. Nevertheless, such phase gratings can be quite useful. Indeed, sev-
eral kinds of grating-assisted fiber couplers have been proposed and analyzed
for wavelength-division multiplexing (WDM) applications [86]—{96]. An ex-
ample of such a coupler is shown in Fig. 2.14. Both long- and short-period
gratings have been used. In a 1992 experiment, an acoustic wave, excited by
asilica horn, coupled the forward-propagating normal modes of an asymmet-
ric dual-core fiber coupler [86]. Such a device can be useful for a variety of
applications related to WDM and signal processing. Periodic microbending
induced by an acoustic wave or by a fixed mechanical grating has also been
used to induce mode coupling [87].

Short-period Bragg gratings have been incorporated into one core of fiber
couplers for making add—-drop WDM filters [88], [89]. Such gratings produce
abackward-propagating wave if the wavelength of the input signal falls within
its stop band. When a multichannel WDM signal is injected into the core
without the grating and transferred to the second core, a specific channel is
selectively reflected back by the grating; it appears at the input end of the
second core while the remaining channels appear at the output end of that
core. A signal at the same specific wavelength can be added by injecting it
from the output port of the core without the grating. The grating period is
set by Eq. (2.5.11)—after changing the minus sign to a plus sign because of
the backward propagation of the dropped channel—and is a fraction of the
wavelength of that channel. Fabrication of a Bragg grating in the coupling
region between the two cores allows the same add—drop functionality [90].
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Fiber couplers in which both cores contain built-in Bragg gratings can also
be used for adding or dropping achannel. In this case, forward- and backward-
propagating waves are produced in both cores. Denoting the backward waves
by B, and B, and neglecting the GV D, the operation of such a device is gov-
erned by the following four coupled-mode equations [91]:

% = i51A1+iKngl+ iK,A, + i71(|A1|2+2|Bl|2)A1, (25.12)
_% — 16,8, + KAy + K38y + (B 2+ 2A DB, (2513)
C%z = i52A2+ingBz+iK21A1+iY2(|A2|2+2|BZ|2)A2’ (25.14)
_% = i52|32+i1<92A2+ i, B; + i72(|Bz|2+2|A2|2)BZ, (25.15)

where Kg1 and Kqo € the coupling coefficients of the two gratings that can
be designed to be different if necessary. The parameters 6, and o, represent
detuning between the Bragg and the modal propagation constants [96]. These
eguations can be easily generalized to include fiber dispersion by adding the
first and second time-derivative terms as was done in Egs. (2.1.9) and (2.1.10).

Equations (2.5.12)—2.5.15) can be solved analytically only in the case of
identical gratings and low-power CW beams by setting Ko = Kgo and y; =
7, = 0; the results confirm the add—drop function offered by such adevice[91].
Inthe general caseinwhich gratings are different, occupy only afraction of the
coupling region, and are allowed to be nonuniform (e.g., apodized gratings), a
numerical solution is required to optimize the performance of such add—drop
multiplexers [96]. When abroadband WDM signal islaunched inside one core
of a coupler of length L = L, the channel whose wavelength falls within the
stop band of the grating is reflected back and appears at the unused input port
of the second core while the remaining channels appear at the output end. Such
grating-assisted fiber couplers have been fabricated and exhibit large add—drop
efficiency (> 90%) with low losses [93].

Nonlinear effects can be studied by solving Egs. (2.5.12)—(2.5.15) numeri-
cally. Similar to the case of grating-assisted codirectional couplers [80], the
intensity-dependent shift of the Bragg frequency affects the channel to be
dropped. As aresult, the device can act as a nonlinear switch such that the
channel is dropped only if its power exceeds a certain value. Propagation of
short optical pulses should aso lead to interesting nonlinear phenomena since
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such a grating-assisted fiber coupler can support Bragg solitons in each core
but these solitons are coupled by the proximity of two cores.

2.5.4 Birefringent Couplers

Another situation in which one needs to solve a set of four coupled-mode
eguations occurs when a fiber coupler exhibits large birefringence. In prac-
tice, birefringence can be induced either by using elliptical cores or through
stress-induced anisotropy, the same techniques used for making polarization-
maintaining fibers. As discussed in Chapter A.6, polarization in such fibers
is maintained only when light is polarized along the fast or slow axis of the
fiber. When incident light is polarized at an angle to these axes, the state of
polarization changes along the core length in a periodic fashion.

The mathematical description of birefringent fiber couplers requires four
coupled-mode equations corresponding to the two orthogonally polarized com-
ponents of light in the two cores [97]-{100]. In the general case of asymmet-
ric couplers and arbitrary birefringence, these equations are quite complicated
since al four field components propagate with different group velocities. They
can be simplified considerably for symmetric couplers with either very high or
very low birefringence (as discussed in Section A.6.1).

Consider first the high-birefringence case. Using the notation that Ay, and
B denote the linearly polarized components in the mth core, the coupled-
mode equations in this case become

9, , 1OA 8,3
0z Vg dt 2 JT?
%, , 108, 8,58,
0z Vg ot 2 JT?
A 1 9A, iB,d%°A, . ,
o V_gxa_tu%—m; = ikA, +i7(AP + 0[B,D)A,, (25.18)
%, , 108, 8,3,
0z Vg ot 2 JT?

= ikA, +iY(|A|*+ o|By|?)A;, (25.16)

= iKB,+i¥(|By[*+ 0|A B, (25.17)

= iKB; +i¥(|B,]* + 0|A,|)B,, (25.19)

where Vg, and vgy are group velocities for the two polarization components.
The XPM parameter takes a value of ¢ = 2/3 for linearly polarized compo-
nents. In alow-birefringence coupler, all components propagate with the same
group velocity but one cannot neglect four-wave mixing between the linearly
polarized components. It is common to use circularly polarized components
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in this case. The resulting equations are identical to Egs. (2.5.16)—<2.5.19)
provided we set vgx = Vgy and use o = 2 for the XPM parameter.

The CW case in which all time-derivative terms in Egs. (2.5.16)—2.5.19)
are set to zero was analyzed in 1988 using both the Hamiltonian and Stokes-
parameter formalisms [97]. The new feature is that the state of polarization of
the optical fields in the two cores can be different. This feature can be used
to control the behavior of an intense beam launched in one core of the cou-
pler by injecting aweak, orthogonally polarized probe in the other core. It can
also be used to perform AND logic operation since the threshold for nonlin-
ear switching is reduced when two orthogonally polarized pulses are launched
simultaneously into the same core of the coupler. Another interesting result
is that the power-dependent switching exhibits chaotic behavior when light is
launched in both cores simultaneously to excite the even or odd supermode of
the coupler.

Solutions of Egs. (2.5.16)—«2.5.19) in the form of coupled soliton pairs
have been studied using variational analysiswith a Gaussian-shaped ansatz [99].
These solutions represent two vector solitons coupled by the proximity of two
cores. They can again be classified as being symmetric or antisymmetric with
equal energies in the two cores (|A| = |A,| and |B;| = |B,|) and being asym-
metric such that the two cores have pulses with different energies. Stability
properties of these soliton pairs are similar to those seen in Fig. 2.10, where
birefringence effects were ignored [100].

A birefringent coupler can be converted into a dual-core rocking filter if
the axis of hirefringence is rocked periodically by twisting the preform during
the fiber-drawing process [101]. Such periodic rotation of the birefringence
axis at the beat length can be included in Egs. (2.5.16)—<2.5.19) by adding an
additional grating-like term on the right side. More specifically, one should
add the term ixgB, exp(—4inz/Lg) to Eq. (2.5.16), and similar terms to other
equations, where Lg is the beat length of the birefringent fiber. Following
the approach outlined in Section 1.5.2, the resulting four equations can be
reduced to a pair of coupled NLS equations under suitable conditions [50].
These equations support pairs of coupled Bragg solitons that can propagate
aong the coupler length without changing their shapes.

2.5.5 Multicore Couplers

An interesting extension of fiber couplers consists of making fibers with mul-
tiple cores. Arrays of planar waveguides (active or passive) were studied ex-
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Figure2.15 (a) Schematic of acircular fiber array. (b) Optical steering of aCW beam
along the array. (After Ref. [123])

tensively during the 1980s and were used to make high-power semiconduc-
tor lasers [102]-{106]. Multicore fiber couplers were fabricated as early as
1989 [107]. Such couplers are needed for WDM technology and are used for
making N x 1 multiplexers and star couplers [108], although nonlinear effects
are rarely needed for operation of such devices.

Nonlinear effects in fiber arrays (three or more cores sharing the same
cladding) have been analyzed theoretically since the early 1990s using a set
of coupled NLS equations [109]-{129]. When all cores are identical, these
eguations take a simple form and can be written, using soliton units, in the
following compact form:

OUn  10%unm
"9 T2 902

where un, represents the field amplitude in the mth core and is coupled to the
fields in the two neighboring cores. For alinear array of M cores, the cores
at the two ends have only one neighbor. The resulting boundary conditions
require Uy = Uy, ; = 0. This asymmetry can be avoided for a circular fiber
array in which all cores are spaced equally and their centers lie along a circle,
resulting in periodic boundary conditions. Figure 2.15(a) shows such a fiber
array schematically.

The specific case of three-core couplers has attracted considerable atten-
tion since the resulting three coupled NLS equations permit analytical solution

+ |Um|?Um + K (U 4 + Uy 1) =0, (2.5.20)
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in both the CW and pulsed cases [109]-{114]. The periodic boundary condi-
tions can be used when the core centers form an equilateral triangle. In analogy
with the two-core couplers, one can find soliton triplets that propagate through
the three-core coupler without changing their shapes[56]. The bifurcation dia-
gram in the ¢—Q plane is much more complicated in thiscase [112]. Thereason
isrelated to avast variety of possible solutions that may exist even for couplers
with only three cores. At low values of the total energy Q, the symmetric solu-
tion for which all three solitons are identical in al respects (in-phase solution)
is stable. However, an antisymmetric solution also exists. In this case, two
solitons are out of phase and have the same energy while the energy in the
third coreis zero. At acertain value of the energy Q, both the symmetric and
antisymmetric solutions become unstable and give rise to partialy or totally
asymmetric solutions.

The analysis of multicore fiber couplers becomes increasingly more in-
volved as the number of cores increases. Numerical solutions of Eq. (2.5.20)
for alinear array, in which the input CW beam is launched initially at one end
of the array, shows that nonlinear switching not only occurs but has a sharper
threshold [109]. More specifically, the input beam is transferred to the outer-
most core at the other end at low powers (if the coupler length is chosen judi-
ciously) but remains in the same core when the input power exceeds a thresh-
old value. However, the threshold power increases and the power-transfer effi-
ciency decreases as the number of intermediate coresisincreased [116].

Power transfer from core to core aso occurs in the case of acircular fiber
array [123]. Figure 2.15(b) shows this behavior for a 101-core array by solv-
ing Eq. (2.5.20) numerically when a CW beam is launched initially with the
amplitude

um = Kasech[a/v/2(m— mc)] exp[—ik(m—m)], (2.5.21)

where mg = 51 and & = 1.1. The integer mis varied from 51 to 55, resulting
in the excitation of five cores at & = 0. The parameter k determines the initial
phase difference between the excited cores. The beam remains confined to the
same cores when k = 0. However, when k #£ 0, the power is transferred to
successive cores as the CW beam propagates down the array. Since the shape
of the envel ope governing power distribution among cores is maintained during
this process, this phenomenon is referred to as soliton-like optical switching.
It should be stressed that the word soliton in this context refers to a spatial
soliton.
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The set of equations (2.5.20) has attracted considerable attention from a
mathematical standpoint since it corresponds to a discrete version of the NLS
eguation in the quasi-CW limit in which the effects of GVD are negligible
and the second-derivative term can be ignored. This feature can be seen more
clearly by writing Eq. (2.5.20) as

. JUm
|¥+K( i1 — 2Um+ Up 1) + 2K + [Um[?Um = 0. (25.22)
The linear term 2Ku, can be removed by shifting the propagation constant
through the transformation uj,, = unexp(2iK&). The resulting equation is
known as the discrete NL S equation since it is a discrete version of the fol-
lowing equation:
8u 28 u
8 5 +Kd
where x = md represents the position of the mth core along the array and
the core spacing d is assumed to be small in the continuum limit. Equation
(2.5.23) has spatially localized solutions in the form of spatial solitons. It is
thus likely that Eq. (2.5.22) also possesses localized nonlinear modes such that
the power is confined to only few neighboring cores. This indeed turns out to
be the case [106]. The discrete NLS equation was studied extensively, both
analytically and numerically, during the 1990s and continues to be of interest
[117]-{129].

>+ [ulPu= (2.5.23)

Problems

2.1 Explain in physical termswhy proximity of two cores in afiber coupler
leads to power exchange between the two cores.

2.2 Starting from the wave equation, derive the coupled-mode equations for
afiber coupler in the frequency domain.

2.3 Convert Egs. (2.1.4) and (2.1.5) into time-domain equations, treating
both the propagation constants and the coupling coefficients as frequency
dependent. Assume a symmetric coupler to simplify the algebra.

2.4 Evaluate the integral in Eq. (2.1.6) to find the coupling coefficient for a
symmetric fiber coupler whose core centers are separated by a distance
d. Assume that the fundamental mode in each waveguide has a Gaussian
shape with width (FWHM) w,.
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2.5 Discuss how x obtained in previous problem depends on the ratio d /v

2.6

2.7

2.8

2.9

2.10

211

212

213

214

2.15

by plotting it. Find the coupling length when d /w, = 3.

A CW optical beam with power R, is launched into one core of a sym-
metric fiber coupler. Solve the coupled-mode equations and find the
power transferred to the second core. You can neglect the XPM-induced
coupling. Discuss what happens when the input power exceeds 4k/7y.

Show that Egs. (2.2.11)—2.2.13) follow from the CW coupled-mode
equations when the Stokes vector components are introduced as defined
in Eq. (2.2.10).

Find al solutions of Egs. (2.2.11)—2.2.13) that remain invariant with z.
Show the location of these fixed points on the Poincaré sphere. What
happens when input power exceeds 2k /v ?

Find the dispersion relation associated with modulation instability when
the CW solution of Egs. (2.2.19) and (2.2.20) corresponds to the odd
mode of a symmetric fiber coupler. Discuss the main differences from
the even-mode case.

Show that the coupled NLS eguations for a fiber coupler, Egs. (2.3.1)
and (2.3.2), indeed follow from the Lagrangian density in Eq. (2.3.6).

Evaluate the integral Ly = [~_Lqd7 using the soliton ansatz given in
Eq. (2.3.7) and derive the four equations describing the evolution of the
soliton parameters along the coupler length.

Solve Eg. (2.3.10) numerically for u = 1.5, 1.6, and 2.5 and plot A and
¢ along the coupler length. Interpret your results using phase diagrams
of Fig. 2.8.

Repeat the previous problem using the ansatz given in Eq. (2.3.16) and
solve the resulting four equations analytically.

Find the symmetric and antisymmetric shape-preserving soliton pairs by
solving Egs. (2.3.1) and (2.3.2).

Solve Egs. (2.5.4) and (2.5.5) numerically and reproduce the pul se shapes
shown in Fig. 2.11.
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Chapter 3

Fiber Interferometers

The two fiber components covered in Chapters 1 and 2 can be combined to
form avariety of fiber-based optical devices. Four common ones among them
are the fiber version of the well-known Fabry—Perot, Sagnac, Mach—-Zehnder,
and Michelson interferometers [1]. They exhibit interesting nonlinear effects
that are useful for optical-switching applications [2]-{4], when power levels
are large enough for the self- and cross-phase modulation (SPM and XPM) to
becomeimportant. This chapter is devoted to the nonlinear effects occurring in
these fiber interferometers. Section 3.1 considers the Fabry—Perot and ring res-
onators and discusses severa nonlinear effects such as optical bistability and
modulation instability. Nonlinear fiber-loop mirrors, whose operation is based
on Sagnac interferometers, are covered in Section 3.2. Nonlinear switching
in Mach—Zehnder interferometers is described in Section 3.3. Finally, Section
3.4 is devoted to Michelson interferometers.

3.1 Fabry—Perot and Ring Resonators

Fabry—Perot and ring resonators are well-known devices used commonly for
making lasers [5]. A fiber-based Fabry—Perot resonator can be constructed by
simply making two ends of an optical fiber partialy reflecting. This can be
realized in practice by using external mirrors or by depositing high-reflectivity
coatings at the two ends. An alternative approach, shown schematically in
Fig. 3.1, splices a fiber grating at each end of the fiber. The construction of
a fiber-ring resonator is even simpler. It can be made by connecting the two
ends of a piece of fiber to an input and an output port of a fiber coupler, as

112
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Figure 3.1 Fiber-based Fabry—Perot and ring resonators made by using Bragg gratings
and directional couplers.

shown schematically in Fig. 3.1. Thissection isdevoted to the nonlinear effects
occurring in such resonators. The continuous-wave (CW) case is considered
first with focus on optical bistability and chaos. It is followed by a discussion
of modulation instability and other temporal phenomena.

3.1.1 Transmission Resonances

Several types of fiber-based Fabry—Perot interferometers have been developed
for wavelength-division multiplexing (WDM) applications [6]-8]. Some of
them function in alinear fashion since they use air asthe intracavity medium[9].
Others use a piece of fiber between two Bragg gratings [10] and thus are ca-
pable of exhibiting the nonlinear effects. Fiber-ring resonators were made as
early as 1982 using a directional coupler [11], and a finesse of 1260 was real-
ized by 1988 [12].

Transmittivity of a Fabry—Perot resonator, formed by using two identical
mirrors (or Bragg gratings) of reflectivity Ry, can be calculated by adding
coherently the optical fields transmitted on successive round trips. Consider
a CW optical beam at the frequency . When it is incident at the left mirror,
the field inside the resonator consists of forward- and backward-propagating
waves and can be expressed as

E(r,t) = 3F (% Y){A2) expli (Bz— wt)] + B(2) exp[—i (Bz+ ot)] + c.c.},
(3.1.1)
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where F(x,y) isthe spatial distribution and B isthe propagation constant asso-
ciated with the fundamental mode supported by the fiber. The transmitted field
is obtained by adding contributions of an infinite number of round trips and is
given by [5]
1—-Rmexp(ifLg)

where Lg = 2L is the round-trip distance for afiber of length L.

Transmittivity of the resonator is obtained from Eq. (3.1.2) and is given by
the well-known Airy formula[1]

(3.1.2)

?_ (1—Rm)?
(1— Rn)2+ 4Rqsin®(9g/2)’

(3.1.3)

where P, = |A(0)|2 is the input power, R is the transmitted power, and ¢ =
BLg is the phase shift occurring over one round trip inside the resonator. The
nonlinear and dispersive effects enter through this phase shift, which can be
separated into two parts

Pr(@) = ¢(@) + o = [B(®) + ABy ILg- (3.1.4)

The nonlinear part ¢, represents the contribution of SPM and can be related
to the nonlinear parameter y as

L
ow =7 [ (A@I*+ B2 dz = PPl (315)

where P, is the average power level inside the resonator.

At low power levels such that ¢, < 1, the nonlinear effects can be ne-
glected. Inthat case, 100% of the incident light is transmitted (T = 1) when-
ever ¢, = 2mr, where mis an integer. Frequencies that satisfy this condition
correspond to the longitudinal modes of the resonator. Transmission drops as
the frequency of incident light is detuned from the resonance. The solid curve
in Fig. 3.2 shows the transmittivity of afiber resonator as a function of ¢, for
Rm = 0.8. The frequency spacing Av; between the successive transmission
peaks is known as the free-spectral range (also called the longitudinal-mode
spacing in laser literature). It is obtained using the phase-matching condition

[B(w+2nAv,) — B(0)]Lg = 21 (3.1.6)
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Figure 3.2 Transmittivity of a Fabry—Perot resonator asafunction of ¢,/2x for Ry =
0.8. Dashed lines show changesin ¢ because of SPM at two power levels.

and is approximately given by Ay, = vg/Lg = 1/Tg, where vg = 1/, isthe
group velocity and Ty is the round-trip time within the resonator. Because of
group-velocity dispersion (GVD), the free spectral range of a fiber resonator
becomes frequency dependent. It can vary considerably in a Fabry—Perot res-
onator made by using Bragg gratings because of the large GVD associated
with them [13]. The sharpness of the resonance peaksin Fig. 3.2 is quantified
through the resonator finesse F; defined as

_ A _ YR
R7TAvg  1-Ry’

(3.1.7)

where Avy, is the width of each resonance peak (at half maximum).

Equation (3.1.3) changes somewhat for a fiber-ring resonator [11]. The
changes are related to the constant phase shift of /2 occurring when light
crosses over from one core to another inside a fiber coupler (see Section 2.1).
Note aso that B(z) = 0 in Eq. (3.1.1) for aring resonator since a backward-
propagating wave is not generated in this case. This feature simplifies the
mathematical description and has considerable implications for nonlinear phe-
nomenasince the XPM-induced coupling between the forward- and backward-
propagating waves cannot occur in unidirectional ring resonators.
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3.1.2 Optical Bistability

The nonlinear phenomenon of optical bistability has been studied in nonfiber
resonators since 1976 by placing the nonlinear medium inside a cavity formed
by using multiple mirrors [14]-{19]. The single-mode fiber was used in 1983
as the nonlinear medium inside a ring cavity [20]. Since then, the study of
nonlinear phenomena in fiber resonators has remained a topic of considerable
interest [21]-{38].

The origin of the nonlinear effects in fiber resonators is evident from Eq.
(3.1.3): Note that the round-trip phase shift ¢ depends on input power be-
cause of the SPM-induced phase shift ¢, . For high-finesse resonators, R ~
(1— Rmn)Pay. Using thisrelation in Eq. (3.1.5), the transmitted power from Eq.
(3.1.3) isfound to satisfy the transcendental equation

Ro o[ PLg 11
e b e | L CEL

It is clear from this equation that multiple values of R are possible at a fixed
value of the incident power P because of SPM. Dashed linesin Fig. 3.2 show
¢ as afunction of ¢, for two values of P using Eq. (3.1.4). The intersection
points of the dashed lines with the solid curve correspond to the multiple so-
lutions of Eq. (3.1.8). At low powers, the dashed lines become nearly vertical,
and only one solution is possible. With increasing input power, the dashed
lines tilt, and the number of solutions increases from one to three, then to five
and beyond. We focus on the case of three solutions since it requires the least
input power.

Multiple solutions of Eg. (3.1.8) lead to dispersive optica bistability, a
nonlinear phenomenon that has been observed using several different nonlin-
ear media [19]. It occurs in fiber resonators when the linear phase shift ¢,
does not correspond to a resonance of the resonator so that little light is trans-
mitted at low power levels. For agiven detuning 6 = 2nM — ¢, of the input
signal from the nearest Mth resonance, the SPM-induced phase shift reduces
the net detuning toward zero, resulting in higher transmission. However, the
transmitted power R does not increase linearly with R), asis evident from the
nonlinear nature of Eq. (3.1.8). Figure 3.3 shows the expected behavior for
three values of 6. Over acertain range of 6, three solutions of Eq. (3.1.8) pro-
duce the well-known S-shaped curve associated with optical bistability. The
middle branch with a negative slope is always unstable [19]. As a result, the
transmitted power jumps up and down at specific values of P in such a way
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Figure 3.3 Bistable response of a fiber resonator with R, = 0.5 for three values of
detuning 8. Powers are normalized using P, = (yLg) ™t

that it exhibits hysteresis. The switching powers are of the order of (yLg) 1,
with numerical values ~ 10 W for L; ~ 100 m.

Experimental observation of optical bistability using CW beams is ham-
pered by arelatively low threshold of stimulated Brillouin scattering (SBS) in
fiber resonators [39]. The evidence of bistability in aring cavity wasfirst seen
in a1983 experiment in which SBSwas avoided using picosecond pulses[20].
In alater experiment, SBSwas suppressed by placing an optical isolator inside
the ring cavity that was formed using 13 m of low-birefringence fiber [22].
Bistable behavior was observed in this experiment at CW power levels below
10 mW. The nonlinear phase shift ¢, at this power level is relatively small
in magnitude (below 0.01 rad) but still large enough to induce bistahility.

In all experiments on optical bistability, it is important to stabilize the
cavity length to subwavelength accuracy. An improved stabilization scheme
was used in a 1998 experiment [37]. Figure 3.4 shows the observed behavior
at four values of the detuning 6. The experiment used mode-locked pulses
(width ~ 1 ps) emitted from a Ti:sapphire laser. The length of ring resonator
(about 7.4 m) was adjusted precisely so that an entering laser pulse overlapped
in time with another pulse aready circulating inside the cavity (synchronous
pumping). The observed bistable behavior was in qualitative agreement with
the CW theory in spite of the use of short optical pulses since the GVD played
arelatively minor role [24].
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tuning 6. (After Ref. [37])

3.1.3 Nonlinear Dynamics and Chaos

It was discovered in 1979 that the nonlinear response of aring resonator can
initiate a period-doubling route to optical chaos[15]. The basic idea consists of
recognizing that the dynamicsin aring cavity correspond to that of a nonlinear
map in the sense that the intracavity field is mapped to a different function on
each round trip inside the cavity [40]-{42]. Mathematically, the map can be

written as
AD(0.1) = PA" (L. t) explidg) +iv/(T-p)P, (319

where the superscript denotes the number of round trips inside the resonator
and p represents the fraction of the power remaining in the resonator after the
coupler (see Fig. 3.1). Evolution of the intracavity field A(zt) during each
round trip is governed by the usual nonlinear Schrodinger (NLS) equation:

2
i— — 22 1 yA2PA=0, (3.1.10)

where T =t — z/vy is the reduced time and 3, is the GVD parameter. If the
effect of GVD can be neglected in a CW or quasi-CW situation, this equation
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Figure 3.5 Period-2 patterns observed for 6 = 0.35x at an average input power of (a)
200 mW and (b) 250 mW. Patterns change to period 4 for § = 0.65x [(c) and (d)] at
the same two power levels. (After Ref. [37])

can be solved analytically to obtain the simple result
A(Lg,t) = A(0,t) exp[i|A(0, 1)L (3.1.12)

Using Eg. (3.1.11) in Eq. (3.1.9), the nonlinear map can be iterated for a
given value of the input power B. The results show that the output of the ring
resonator can become time dependent even for a CW input. Moreover, the
output becomes chaotic following aperiod-doubling route in a certain range of
input parameters [15]. This behavior was observed experimentally in a 1983
experiment by launching 140-ps pulses (obtained from a Q-switched, mode-
locked Nd:YAG laser) into a fiber-ring cavity [20]. The cavity length was
selected to precisely match the round-trip time to the 7.6-ns interval between
the neighboring pulses (synchronous pumping).

In a 1998 experiment, a mode-locked Ti:sapphire laser was used to launch
short pulses (width ~ 1 ps) into awell-stabilized fiber-ring resonator [37]. Fig-
ure 3.5 shows the period-2 and period-4 patterns observed using two different
values of detuning at two different power levels. At higher power levels, the
output became chaotic over awide range of detuning &, with period-3 windows
embedded within the chaos. These features are consistent with the general the-
ory of nonlinear dynamical systems [40]-{42].
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3.1.4 Modulation Instability

Even in the absence of feedback, the combination of GVD and SPM can lead
to modulation instability when a CW beam propagates inside optical fibers
(see Section A.5.1). An interesting question is how the presence of feedback
modifies this nonlinear phenomenon. Modulation instability in fiber resonators
isof considerable interest as it can be used to convert a CW beam into atrain
of ultrashort pulses [43]-{49].

The theory of modulation instability has been extended to include the ef-
fects of feedback occurring inside a fiber resonator. The analysis is quite in-
volved in the case of a Fabry—Perot cavity since one must use the coupled NLS
equations describing the evolution of the forward- and backward-propagating
waves [49]. It simplifies considerably for aring resonator [46]. Infact, one can
use Egs. (3.1.9) and (3.1.10). The approach is similar to that used in Section
A.5.1. Itisuseful to normalize Eq. (3.1.10) in the usual way and write it as

Jdu sdu | .,
where s= sgn(f,) = £1 and we have introduced
E=z/Lg, T=T/{|B,JLr, u=(yLg)¥?A (3.1.13)

Note that the resonator length L is used to define the time scale.
The CW solution of Eq. (3.1.12) isgiven by u = uyexp(iu3). To examine
its stability, we perturb it at afrequency Q such that

u(&,7) = [Uy+ a, exp(—iQ1) + a,exp(iQ7)] exp(iugz), (3.1.14)

where a; and a, represent weak perturbations whose growth results in the two
sidebands associated with modulation instability. When the NLS equation is
linearized in terms of &, and a,, we obtain the coupled linear differential equa-
tions:

da, /dE =i(3sQ% + u§)a, +iuga,, (3.1.15)
day/dE =i(3sQ%+ u)a, +iugay (3.1.16)

These equations should be solved subject to the boundary conditions imposed
by the ring cavity:

™Y (0) = pal (1) expli(9o+ W), (i =1,2), (3.1.17)
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Q2

Figure 3.6 Gain spectrum of modulation instability in the normal-GVD region of
a fiber-ring resonator. Thin and thick lines correspond to the resonance and anti-
resonance conditions, respectively. (After Ref. [48], (©1997 by the American Physical
Society)

where the superscript denotes the round-trip number.

Equations (3.1.15)«3.1.17) relate the perturbation amplitudes a and a,
on two successive round trips. Modulation instability occurs if they grow after
each round trip for agiven set of parameters. The growth rate depends not only
on the frequency Q and the input power R but also on the fiber-ring parameters
B,, v. p, and ¢,. The interesting new feature is that modulation instability
can occur even in the normal-GVD region of the fiber [48]. Moreover, the
instability occurs either close to a cavity resonance, ¢, ~ 2mr, or close to
the anti-resonance condition ¢, ~ (2m+ 1)z. Modulation instability in the
latter case is called period-2 type since the phase of perturbation is restored
after two round trips inside the cavity. Figure 3.6 shows the gain spectra in
the normal-GVD region of aring cavity using p = 0.95 and u, = 1. Different
peaks correspond to detuning of the CW beam such that ¢, deviates from the
resonance (thin line) or the antiresonance (thick line) condition by 0.1z. In
real units, Q = 1 corresponds to a frequency of about 0.3 THz when B, =
30 ps’’km and Lg = 10 m.

Evidence of modulation instability in a fiber-ring resonator has been seen
experimentally [48] with the same setup used for Fig. 3.5. The 7.38-m ring
cavity was driven synchronously using 1.25 ps from a 980-nm, mode-locked
Ti:sapphire laser. When the peak power of input pulses exceeded a threshold
value (about 500 W), the pulse spectrum developed peaks at the location cor-
responding to antiresonances of the fiber resonator. The spectrum exhibited
peaks at cavity resonances also. However, such peaks appear even below the
modulation-instability threshold. In contrast, the antiresonance spectral peaks
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appear only above the instability threshold, and their presence constitutes a
clear evidence of the cavity-induced modulation instability.

3.1.5 Ultrafast Nonlinear Effects

When short optical pulses are fed into a fiber resonator whose length is much
larger than the dispersion and nonlinear length scales associated with the pulse,
considerable pulse shaping is likely to occur over a single round trip. The
combined effects of GVD and SPM on pulses circulating in a fiber resonator
can lead to quite interesting nonlinear dynamics [50]-{56]. Depending on the
input and fiber parameters, a steady-state pattern (along the fiber length) may
or may not evolve (in the sense that it remains unchanged from one round
trip to next). Moreover, evolution of pulses within the fiber ring depends on
whether pulses experience normal or anomalous GVD.

Consider the situation in which ultrashort optical pulses are injected into a
fiber-ring cavity synchronously using amode-locked laser. Evolution of pulses
over multiple round trips is governed by the generalized NL S equation of Sec-
tion A.2.3.2. Including the terms related to third-order dispersion and intra-
pulse Raman scattering, Eg. (3.1.10) becomes

A B J°A iy 93 AL AP

52 2912 6 ara T TATATYTRAT
where Ty is the Raman parameter (with a value of about 3 fs). For a fiber
ring of length Ly, this equation should be solved with the following boundary
condition at the coupler after each round trip:

A™MY(0,T) = /PA" (Lg. T) expligy) +iv/(1-p)A(T),  (3119)

where the superscript denotes the round-trip number. The amplitude A for
“sech” input pulses can be written as

T) = /Pysech(T/T,) (3.1.20)

for pulses of width T, and peak power R,. The full width at half maximum
(FWHM) of pulsesisrelated to Ty as Tp = 2In(1+v/2) T, =~ 1.763T,,.
Numerical simulations for 10-ps pulses propagating inside a 100-m fiber
ring show that each input pulse develops an internal substructure consisting of
many subpulses of width ~ 1 ps. Moreover, a steady state is reached only if
the input peak power is below a certain value. In the steady state, subpulses

IAI2

=0, (3.1.18)
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Figure 3.7 Evolution of substructure in a 100-m ring resonator when 10-ps pulses
(dotted curve) are injected into it synchronously. (After Ref. [54], (©1997 by the
American Physical Society)

have a uniform spacing that does not change from one round trip to next. Each
subpulse corresponds to a fundamental soliton whose width and peak power
are related such that the soliton order N =~ 1. When the input peak power
exceeds the critical value, a phase-transition-like behavior occurs such that the
position and width of subpulses change continuously in an apparently random
manner. Since most subpulses retain their soliton character (in the sense that
N = 1), such an ensemble of subpulses is referred to as a soliton gas. Figure
3.7 shows the evolution of substructure along the ring over one round trip.

Direct experimental observation of such apattern is difficult because of the
ultrashort time scale involved. However, the autocorrelation and spectral mea-
surements agree with the theoretical predictions based on the NL S equation.
In the experiment, 2-ps mode-locked pulses, obtained from a color-center laser
operating at 1.57 um, were injected into a ring resonator made by using 6 m
of polarization-maintaining fiber. Both the autocorrelation trace and the spec-
trum changed qualitatively asthe peak power increased beyond a certain value,
resulting in the transition from aregular to irregular pattern of subpulses.

In the case of normal GV D, nonlinear dynamics becomes even more com-
plex [52]. Numerical simulations show that each pulse still develops an inter-
nal substructure but the resulting pattern is not governed by soliton shaping.
Depending on the linear detuning ¢, of the ring resonator, the substructure
varies from pulse to pulse and exhibits period-doubling bifurcations and chaos.
Experiments performed using 12-ps pul ses (obtained from aNd: YAG laser op-
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Figure 3.8 Schematic illustration of an all-fiber Sagnac interferometer acting as a
nonlinear fiber-loop mirror.

erating near 1.32 um) show that the pulse energy also varies from pulse to
pulse and exhibits a period-doubling route toward chaos as ¢ is varied in the
vicinity of acavity resonance.

3.2 Sagnac Interferometers

Sagnac interferometers can also exploit the nonlinear phase shift of optical
fibers for optical switching [57]-[59]. Figure 3.8 shows schematically how
a fiber coupler can be used to make a Sagnac interferometer. It is made by
connecting a piece of long fiber to the two output ports of a fiber coupler to
form aloop. It appears similar to afiber-ring resonator but behaves quite dif-
ferently because of two crucial differences. First, there is no feedback mecha-
nism since all light entering from the input port exits from the resonator after
asingle round trip. Second, the entering optical field is split into two counter-
propagating parts that share the same optical path and interfere at the coupler
coherently.

The relative phase difference between the counterpropagating beams de-
termines whether an input beam is reflected or transmitted by the Sagnac inter-
ferometer. Infact, if a3-dB fiber coupler is used, any input istotally reflected,
and the Sagnac loop acts as a perfect mirror. Such a device can be designed
to transmit a high-power signal while reflecting it at low power levels, thus
acting as an all-optical switch. For thisreason, it isreferred to asthe nonlinear
fiber-loop mirror and has attracted considerable attention not only for optical
switching but also for mode locking and wavelength demultiplexing.
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3.2.1 Nonlinear Transmission

The physical mechanism behind nonlinear switching can be easily understood
by considering a CW or a quasi-CW input beam. When such an optical signal
isincident at one port of the fiber coupler, the transmittivity of a Sagnac inter-
ferometer depends on the power-splitting ratio of the coupler. If afraction p
of the input power R, travels in the clockwise direction, the transmittivity for
aloop of length L is obtained by calculating the phase shifts acquired during
around trip by the counterpropagating optical waves, and then recombining
them interferometrically at the coupler. It isimportant to include any relative
phase shift introduced by the coupler. If we use the transfer matrix of a fiber
coupler given in Eq. (2.1.22) together with A,(0) = O, the amplitudes of the
forward- (clockwise) and backward- (counterclockwise) propagating fields are

given by
A =/PAy A, =1iy/1-pA,, (321

where p = cos’(xl) for a coupler of length |.. Notice the /2 phase shift for
A, introduced by the coupler. After one round trip, both fields acquire alinear
phase shift as well as the SPM- and XPM-induced nonlinear phase shifts. As
aresult, the two fields reaching at the coupler take the following form:

Ap = Agexplidy +iy(|A¢* + 2|AyP)LI, (322)
Ab = Agexpl(idy +iv(|Ag)* + 2|/A¢A)L], (3.2.3)

where ¢, = BL is the linear phase shift for a loop of length L and 8 is the
propagation constant within the loop.

Thereflected and transmitted fields can now be obtained by using the trans-
fer matrix of the fiber coupler and are given by

(2)- (% V) () e
Ar ivVi-p P Ay h
Using Egs. (3.2.1)-3.2.4), the transmittivity Tg = |A|?/|A,|? of the Sagnac
loop is given by [59]

To=1-2p(1— p){1+cosl(1—2p)yRLI}, (3.25)

where Py = |A0|2 is the input power. The linear phase shift does not appear in
this equation because of its exact cancellation. For p = 0.5, Tg equals zero,
and the loop reflectivity is 100% at all power levels (hence the name fiber-loop



126 Fiber Interferometers

045

y=1w"

80

60

40

TRANSMITTED POWER (W)

20

0 20 40 60 80 100
INCIDENT POWER (W)

Figure 3.9 Transmitted power as a function of incident power for two values of p,
showing the nonlinear response of an al-fiber Sagnac interferometer.

mirror). Physically, if the power is equally divided between the counterpropa-
gating waves, the nonlinear phase shift isequal for both waves, resulting in no
relative phase difference between the counterpropagating waves. However, if
the power-splitting factor p is different than 0.5, the fiber-loop mirror exhibits
different behavior at low and high powers and can act as an optical switch.

Figure 3.9 shows the transmitted power as a function of R for two values
of p. At low powers, little light is transmitted if p iscloseto 0.5 since T, ~
1—4p(1—p). At high powers, the SPM-induced phase shift leads to 100%
transmission of the input signal whenever

|1—2p|yPL = (2m— 1), (3.2.6)

where mis an integer. As seen in Fig. 3.9, the device switches from low to
high transmission periodically as input power increases. In practice, only the
first transmission peak (m= 1) is likely to be used for switching because it
requires the least power. The switching power for m= 1 can be estimated
from Eq. (3.2.6) and is 31 W for a 100-m-long fiber loop when p = 0.45 and
y = 10 W~/km. It can be reduced by increasing the loop length, but one
should then consider the effects of fiber loss and GVD that were neglected in
deriving Eq. (3.2.5).

3.2.2 Nonlinear Switching

Nonlinear switching in al-fiber Sagnac interferometers was observed begin-
ning in 1989 in several experiments [60]-{66]. Most experiments used short
optical pulses with high peak powers. In this case, the power dependence
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of loop transmittivity in Eq. (3.2.5) can lead to considerable pulse distortion
since only the central part of apulse isintense enough to undergo switching. In
a 1989 experiment, 180-ps pulses obtained from a Q-switched, mode-locked
Nd:YAG laser were injected into a 25-m Sagnac loop [60]. Transmission in-
creased from afew percent to 60% at when peak power was increased beyond
30 W. Transmitted pulses were narrower than input pulses, as expected, be-
cause only the central part of the pulse was switched. As discussed in Section
2.3, the shape-induced deformation of optical pulses can be avoided in practice
by using soliton effects since solitons have a uniform nonlinear phase across
the entire pulse. Their use requires ultrashort pulses (width < 10 ps) propa-
gating in the anomalous-GV D regime of the fiber. The XPM-induced coupling
between the counterpropagating solitons can beignored for optical pulses short
enough that they overlap for arelatively short time compared with the round-
trip time. As aresult, one can use two uncoupled NL S eguations in the form
of Eqg. (3.1.12) for counterpropagating solitons inside the fiber loop.

SPM-Induced Switching

Soliton switching in Sagnac interferometers was observed in 1989 by launch-
ing ultrashort pulses at awavelength in the anomalous-GV D regime of the fiber
loop. In one experiment, mode-locked pulses (width about 0.4 ps), obtained
from a color-center laser operating near 1.5 um, were launched into a 100-m
Sagnac loop formed using a 58:42 fiber coupler [61]. In another experiment,
a 25-m-long loop was formed using a polarization-maintaining fiber (having
its zero-dispersion wavelength near 1.58 um), and 0.3-ps input pulses were
obtained from a color-center laser operating near 1.69 um [62]. Figure 3.10
shows the switching characteristics observed in this experiment. Energies of
the transmitted and reflected pulses (E,r and Exgp , respectively) vary with
the input pulse energy E,, showing clear evidence of nonlinear switching.
The energy of transmitted pulses increases from a few percent to 90% as the
input pulse energy is ramped up close to 55 pJ (peak power ~ 100 W).

The experimental results obtained with 0.3-ps pulses cannot be explained
using the simple CW theory given earlier since soliton effects play an im-
portant role. Good agreement was obtained by solving the generalized NLS
equation given in Eqg. (3.1.18) numerically with the appropriate boundary con-
ditions [62]. The inclusion of intrapulse Raman scattering—a higher-order
nonlinear effect that shifts the spectrum of solitons (see Section A.5.5)—was
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Figure 3.10 Measured (left) and simulated (right) switching characteristics of a non-
linear fiber-loop mirror. The energy level for forming a fundamental soliton was
E, = 33.2pJfor 0.3-psinput pulses used in the experiment. (After Ref. [62])

found to be important for such short pulses and limited the peak transmission
from reaching 100%. It also led to pulse breakup at high powers.

The switching threshold of a Sagnac interferometer can be reduced by in-
corporating a fiber amplifier within the loop [65]. If the amplifier is located
close to the fiber coupler, its presence introduces an asymmetry as the coun-
terpropagating pulses are not amplified simultaneously. Since the Sagnac in-
terferometer is unbalanced by the amplifier, even a 50:50 coupler (p = 0.5)
can be used. The switching behavior in this case can be understood by noting
that one wave is amplified at the entrance to the loop while the counterpropa-
gating wave experiences amplification just before exiting the loop. Since the
intensities of the two waves differ by alarge amount throughout the loop, the
differential phase shift can be quite large. In fact, assuming that the clockwise
wave is amplified first by a factor G, we can use Eq. (3.2.4) to calculate the
transmittivity provided that A; in Eq. (3.2.2) is multiplied by v/G. The result
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isgiven by
Ts=1-2p(1—p){1+cos(1—p—Gp)yRL]}. (3.2.7)

The condition for complete transmission is obtained from Eq. (3.2.6) by
replacing (1—2p) with (1—p — Gp). For p = 0.5, the switching power is
given by (usngm=1)

Py=2r/[(G—1)yL]. (3.2.8)

Since the amplification factor G can be as large as 30 dB, the switching power
isreduced by afactor of up to 1000. Such adevice, referred to asthe nonlinear
amplifying-loop mirror, can switch at peak power levels below 1 mW. Its
implementation is relatively simple with the advent of fiber amplifiers (see
Chapter 4). In a demonstration of the basic concept, 4.5 m of Nd-doped fiber
was spliced within the 306-m fiber loop formed using a 3-dB coupler [65].
Quasi-CW-like switching was observed using 10-ns pulses. The switching
power was about 0.9 W even when the amplifier provided only a6-dB gain (a
factor of 4). In alater experiment, the use of a semiconductor optical amplifier,
providing different gains for counterpropagating waves, inside a 17-m fiber
loop resulted in switching powers of less than 250 uW when 10-ns pulses
obtained from a semiconductor laser were injected into the loop [66].

A Sagnac interferometer can also be unbalanced by using a fiber loop in
which GVD is not constant but varies aong the loop [67]-{74]. The GVD
can vary continuously asin a dispersion-decreasing fiber, or in a steplike fash-
ion (using fibers with different dispersive properties connected in series). The
simplest situation corresponds to the case in which the Sagnac loop is made
with two types of fibers and is similar to a dispersion-management scheme
used in lightwave systems for GVD compensation. Dispersion-varying fiber
loops unbalance a Sagnac interferometer since the counterpropagating waves
experience different GVD as they complete a round trip. The most notewor-
thy feature of such Sagnac loops is that they remain balanced for CW beams
of any power levels since GVD does not affect them. However, evolution
of optical pulses is affected both by GVD and SPM, resulting in a net rela-
tive phase shift between the counterpropagating waves. As a result, optical
pulses can be switched to the output port while any CW background noise is
reflected by dispersion-imbalanced Sagnac loops. An extinction ratio of 22 dB
for the CW background was observed in an experiment [69] in which the 20-
m loop was made using equal lengths of standard telecommunication fiber
(B,=—-23 ps/km) and dispersion-shifted fiber (B,=—-23 ps/km).
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XPM-Induced Switching

Animportant class of applicationsisbased on the XPM effects occurring when
acontrol or pump signal isinjected into the Sagnac loop such that it propagates
in only one direction and induces a nonlinear phase shift on one of the coun-
terpropagating waves through XPM while the other is not affected by it. In
essence, the control signal is used to unbalance the Sagnac interferometer in a
way similar to how an optical amplifier can be used to produce different SPM-
induced phase shifts. Asaresult, the loop can be made using a 50:50 coupler
so that a low-power CW beam is reflected in the absence of the control but
transmitted when a control pulse is applied. Many experiments have shown
the potential of XPM-induced switching [75]-[84]. As early as 1989, trans-
mittivity of a632-nm CW signal (obtained from a He—Ne laser) was switched
from zero to close to 100% by using intense 532-nm picosecond pump pulses
with peak powers of about 25 W [75].

When the signal and control wavelengths are far apart, one should consider
the walk-off effects induced by the group-velocity mismatch. As discussed in
Section A.7.2, in the absence of GV D effects, the XPM-induced relative phase
shift at the coupler is given by

L
Ouent = 2V /0 Ao(T — dw2)2dz, (32.9)

where A, is the pump-pulse amplitude, T =t — z/vgs is the reduced time in
the frame moving with the signal pulse, and dy = Vg — Vg represents the
group-velocity mismatch between the pump and signal pulses. The integral
can be evaluated anaytically for certain shapes of the pump pulse. For exam-
ple, for a“sech” pump pulse with Ay(T) = /Pysech(T/T,), the phase shift
becomes [76]

Oxpm (7) = (YPp/ dw)[tanh(7) — tanh(z — )], (32.10)

where T =T /T, and 8y = duwlL/T,. The relative phase is not only time depen-
dent but its shape is a so affected considerably by the group-vel ocity mismatch.
Since loop transmittivity remains high as long as the phase shift is close to an
odd multiple of r, the transmitted signal shape changes considerably with the
shape and peak power of pump pul ses.

The problem of pulse walk-off can be solved by using afiber whose zero-
dispersion wavelength lies between the pump and signal wavelengths such that
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the two waves have the same group velocity (dy, = 0). Indeed, such a 200-m-
long Sagnac loop was built in 1990 using polarization-maintaining fiber [77].
It was employed to switch the 1.54-um signal using 120-ps pump pulses with
1.8-W peak power at 1.32 um. In alater experiment, 14-ps pump pulses, ob-
tained from a gain-switched 1.55-um DFB laser and amplified using a fiber
amplifier, were able to switch a CW signal in the wavelength region near
1.32 um.

The pulse walk-off occurring because of wavelength difference between
the pump and signal can also be avoided by using an orthogonally polarized
pump at the same wavelength as that of the signal [78]. Thereis still a group-
velocity mismatch because of polarization-mode dispersion, but it isrelatively
small. Moreover, it can be used to advantage by constructing a Sagnac loop
in which the slow and fast axes of polarization-maintaining fibers are inter-
changed in aperiodic fashion. In one implementation of thisidea[79], a10.2-
m loop consisted of 11 such sections. Two orthogonally polarized pump and
signal pulses (width about 230 fs) were injected into the loop and propagated
as solitons. The pump pulse was polarized along the fast axis and delayed ini-
tially such that it overtook the signal pulse in the first section. In the second
section, the signal pulse traveled faster because of the reversing of slow and
fast axes and overtook the pump pulse. This process repeated in each section.
As a result, two solitons collided multiple times inside the Sagnac loop, and
the XPM-induced phase shift was enhanced considerably.

3.23 Applications

By exploiting different nonlinear effects—such as XPM, SPM, and four-wave
mixing (FWM)—occurring inside the fiber used to make the Sagnac loop, one
can use the nonlinear fiber-loop mirror in many applications. This section
describes applications relevant to lightwave systems.

Pulse Shaping and Gener ation

A nonlinear Sagnac interferometer acts as a high-pass intensity filter in the
sense that it reflects low-intensity signals but transmits high-intensity radiation
without affecting it. Thisfeatureissimilar to that of saturable absorbers, which
absorb weak signals but become transparent at high intensities, with one cru-
cial difference. The speed of saturable absorbers is limited in practice to time
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scales longer than 10 ps while the nonlinear response of silica fibersis amost
instantaneous (< 10 fs).

A simple application of Sagnac interferometers consists of using them for
pulse shaping and pulse cleanup. For example, if a short optical pulse con-
tains abroad low-intensity pedestal, the pedestal can be removed by passing it
through such a device [85]. Similarly, a soliton pulse train, corrupted by dis-
persive radiation or amplified spontaneous emission, can be cleaned by passing
it through an all-fiber Sagnac loop. Since solitons can be switched as one unit,
they are transmitted by the loop while the low-energy dispersive radiation or
noise is reflected back. The Sagnac loop can aso be used for pulse compres-
sion (see Chapter 6) and for generating atrain of short optical pulses at ahigh
repetition rate by injecting a dual-wavelength signal [86].

Saturable absorbers are routinely used for passive mode locking of lasers
to generate picosecond pulses. However, their use is limited by their sluggish
nonlinear response. Since a nonlinear fiber-loop mirror responds on femtosec-
ond timescales, its passive use for mode-locked lasers was suggested as early
as 1990 [87]. Indeed, this approach led to a new class of fiber lasers known
as figure-8 lasers [88]. Such lasers can generate femtosecond pulses and are
covered in Chapter 5.

Another approach makes use of XPM-induced switching in a Sagnac loop
for wavelength conversion and for generating high-quality optical pulses. The
basic ideais to launch a CW beam together with control pulses at a different
wavelength. In the absence of control signal, the CW light is reflected from
a balanced Sagnac interferometer since it acts as a perfect mirror. However,
each control pulse shifts the optical phase through XPM and directs a time
dice of the CW beam to the output end, producing a pulse train at the CW-
laser wavelength. In effect, the Sagnac loop acts as an all-optical gate that is
open for the duration of each control pulse. Clearly, such a device acts as a
wavelength converter, and this mode of operation should be useful for WDM
networks. An added benefit is that the wavelength-converted pulse train can
be of higher quality than the control pulses themselves. In one experiment,
control pulses from a gain-switched DFB laser operating near 1533 nm were
used to convert the 1554-nm CW radiation into a pulse train [89]. Even though
60-ps control pulses were highly chirped, the pulses produced by the Sagnac
loop were nearly transform limited. The pulse quality was high enough that
pulses could be propagated over 2400 km using arecirculating fiber loop [90].
The reflected light from such a Sagnac loop is in the form of atrain of dark
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pulses that could be useful for dark-soliton experiments.

Sagnac interferometers are also useful for all-optical signal regeneration in
lightwave systems since they can reshape switched pulses while reducing the
noise level [91]. The pulse-shaping capability of such interferometers can be
improved significantly by concatenating several Sagnac loops in series [92].
The loop length can be reduced by using fibers with a relatively high value
of the nonlinear parameter y. Such fibers were used in a recent experiment to
form two concatenated Sagnac loops [93]. The XPM-induced switching was
used in the first loop to convert the wavelength of the 10-Gb/s data channel
by using it as a control signal. The output of the first loop became the con-
trol signal for the second loop where the wavelength was switched back to
the original wavelength. The net result was regeneration (noise reduction and
pulse shaping) of the data without change in its wavelength.

All-Optical Signal Processing

An important category of applications is related to signal regeneration, for-
mat conversion, and logic operation on digital bit streams used in lightwave
systems. Nonlinear Sagnac loops can be used as analog-to-digital and digital-
to-analog converters [94]. They can also be used for converting frequency
modulation into amplitude modulation [95]. The possibility of using anonlin-
ear Sagnac interferometer for all-optical logic operations was pointed out as
early as 1983 [57]. A polarization-maintaining Sagnac loop was used in 1991
to demonstrate the elementary logic operations in the form of AND, XOR, and
XOR gates [96]. Two control signals in counterpropagating directions were
used to redlize this functionality.

To understand how a Sagnac loop performs digital logic, consider the sit-
uation in which a regular pulse train (an optical clock) is launched into the
loop through a 3-dB coupler. In the absence of control signals, al 1 bits are
reflected. If two data streams (random sequences of 1 and 0 hits) are launched
inside the loop as control signals, the clock pulse will be reflected if both con-
trols have the same bit in that time slot but get transmitted otherwise. The rea
son is that a net XPM-induced phase shift is produced when the two controls
have different types of bitsin agiven time slot. The transmitted and reflected
signals thus correspond to the X OR and XOR gates, respectively. The AND gate
reguires only one control signal since a pulse is transmitted only when both
the control and signal bits are present simultaneously. Inversion operation can
also be carried out using only one control.
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Figure 3.11 Demultiplexing of an OTDM signal using XPM-induced phase shiftin a
Sagnac interferometer. Delay T correspondsto the round-trip time within the loop.

All of the above logic operations were demonstrated by injecting pulses
from a 1.54-um DFB laser into a polarization-maintaining Sagnac loop and
using 100-ps control pulses from a1.32-um Nd:YAG laser [96]. The loop was
200-m long and required power levels of about 1 W to redlize the & phase
shift. The system-level applications of Sagnac logic gates have also been stud-
ied [97]. The use of Sagnac loops for signal regularization or regeneration in
fiber-optic communication systems requires consideration of factors such as
signal-clock walk-off, GV D-induced pulse broadening, and timing jitter [98].

Channel Demultiplexing

Although lightwave systems commonly employ the WDM technique, optical
time-division multiplexing (OTDM) of multiple channels over a single wave-
length carrier is a viable option [8]. Sagnac interferometers were used for
demultiplexing of OTDM signals starting in 1991 [99]-{105]. A nonlinear
fiber-loop mirror was used in 1992 to demultiplex a 64-Gb/s signal to individ-
ual 4-Gb/s channels [100]. The pulse energy required for switching was only
1.1 pJ. In another experiment, 10-Gb/s channels were demultiplexed from a
40-Gb/s OTDM signal by using a 11-km-long Sagnac loop [102]. Demul-
tiplexing of a 6.3-Gb/s channel from a 100-Gb/s OTDM signal was demon-
strated in 1993 [103].

The demultiplexing function of a nonlinear Sagnac interferometer is based
on the XPM-induced switching discussed earlier. The control signal (an opti-
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cal clock) consists of atrain of optical pulses at the single-channel bit rate. It
isinjected into the loop such that it propagates only in the clockwise (or anti-
clockwise) direction, as shown schematically in Fig. 3.11. The OTDM signd
enters from the input end and is split into counterpropagating directions by the
3-dB coupler. The clock signal istimed such that it overlaps with pulses be-
longing to a specific channel within the OTDM signal. Asaresult, it introduces
anonlinear phase shift through XPM only for those pulses. The power of the
clock signal and the loop length are made large enough to introduce a relative
phase shift of &. Asaresult, pulses belonging to the channel selected by the
clock are transmitted by the loop while remaining channels are reflected back
toward the input port. Different channels can be selected by delaying the clock
signal by asuitable amount. All channels can be demultiplexed simultaneously
by using several Sagnac loopsin parallel [105].

The main limitation of a Sagnac interferometer making use of XPM stems
from the wesak fiber nonlinearity. The loop length should be 10 km or more in
order to introduce a phase shift of = with practical power levels of the clock
signal. In a variant of the basic idea, a semiconductor optical amplifier is
inserted within the fiber loop and its nonlinearity is used for demultiplexing
OTDM channels. The semiconductor optical amplifier induces a phase shift
resulting from gain saturation. This phase shift depends on the power of the
saturating signal and on a parameter known as the line-width enhancement
factor [106]. A phase shift of  can be realized within an semiconductor optical
amplifier of length < 1 mm at moderate clock-power levels. Asaresult of the
XPM-induced phase shift within the semiconductor optical amplifier, data bits
belonging to a specific channel are transmitted by the Sagnac loop, resulting
in demultiplexing of that channel.

The use of a semiconductor optical amplifier as a nonlinear element in
place of the fiber reduces the loop length to less than 1 m. However, the non-
linear response of such amplifiersisrelatively slow because it requires recom-
bination of electron-hole pairs within the active region of the amplifier and is
governed by the carrier lifetime with values ~ 1 ns[106]. By injecting a CW
signal with the clock signal (at different wavelengths), the carrier lifetime can
be reduced to below 100 ps. In another approach, the semiconductor optical
amplifier is placed asymmetrically within theloop in such away that it is offset
from the center by a small but controlled amount [107]-{110]. Such a device
can operate at relatively high speedsin spite of the slow semiconductor optical
amplifier nonlinearity since the switching time is determined by the offset of
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Figure 3.12 Schematic of FWM inside a Sagnac interferometer acting as a
parametric-loop mirror. (After Ref. [112])

the semiconductor optical amplifier from the midpoint. This device is often
referred to as the terahertz optical asymmetric demultiplexer (TOAD) because
it can respond at timescales close to 1 ps [108]. Its operation at bit rates as
high as 250 Gb/s has been demonstrated [109]. A combination of several such
devices can be used for all-optical regenerative memory [111].

Parametric Amplification

An important class of applications is based on four-wave mixing (FWM) oc-
curring inside anonlinear Sagnac interferometer [112]-{121]. Asdiscussed in
Chapter A.10, smultaneous propagation of pump and signal waves at different
wavelengths inside an optical fiber generates an idler wave through the non-
linear FWM process. Both the signal and idler waves experience gain through
parametric amplification. Moreover, the phase of the idler wave is related to
that of the signal wave through the phase-matching condition. For this reason,
such aFWM process is also known as phase conjugation.

The FWM inside a Sagnac loop is considerably modified by the counter-
propagating nature of the pump and signal fields and the nonlinear phase shifts
induced by SPM and XPM. Such a device is referred to as the optical para-
metric loop mirror to emphasize the importance of the parametric gain [112].
Figure 3.12 shows the device configuration schematically. The pump and sig-
nal fields (E, and Es) are launched into the loop from the same port of the
coupler. If the Sagnac interferometer is balanced by using a 3-dB coupler so
that both pump and signal fields are split equally, they will be reflected by the
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loop mirror. On the other hand, the FWM component E; (idler wave) gen-
erated inside the loop behaves asymmetricaly if a piece of dispersive fiber is
placed near the coupler to unbalance the interferometer.

To understand the operation of a parametric loop mirror, we need to con-
sider the relative phase difference between the counterpropagating components
of theidler wave (E;5 and E;,). Since the propagation constant 3 inside a dis-
persive fiber is different for the pump, signal, and conjugate fields because
of their frequencies (ay, ws, and wc, respectively), a net relative phase shift,
0g = [2B(wp) — B(ws) — B(c)|L;, isintroduced by adispersive fiber of length
L. Asaresult, the FWM power coming out from the output port 2 of the
Sagnac loop depends on this phase shift and is given by [112]

Pout = PeSin?(¢4/2), (3.2.11)

where P; isthe total power generated through FWM. The remaining power ex-
itsfrom the input port. Thus, when ¢, is an odd multiple of 7, the FWM signal
exits from the output port. In contrast, when ¢, is an even multiple of x, the
loop acts as a phase-conjugate mirror since all FWM power appears to be re-
flected. From a practical standpoint, the FWM power at the frequency . can
be separated from both the pump and signal fields by choosing ¢, = & without
requiring an optical filter. At the same time, low-power noise associated with
the signal (e.g., amplified spontaneous emission) is filtered by the Sagnac loop
since it gets reflected.

FWM in a Sagnac loop has been used for many applications. The phase-
sensitive nature of parametric amplification can be used for all-optical storage
of data packets consisting of arandom string of 1 and 0O bits in the form of pi-
cosecond pulses[113]. It can aso be used to produce amplitude-squeezed soli-
tons using an asymmetric Sagnac loop [115]. FWM in a nonlinear Sagnac in-
terferometer has been used to make parametric oscillators. Pulses shorter than
1 ps can be generated through synchronous pumping of a Sagnac loop [116].
Moreover, such parametric oscillators are tunable over a range as wide as
40 nm [117]. Parametric amplification is also useful for reducing the noise
figure of amplifiers below the 3-dB quantum limit (see Chapter 4). In are-
cent experiment, 16-dB amplification was realized with a noise figure of only
2dB [118].

Another important application consists of using the nonlinear Sagnac in-
terferometer for phase conjugation. In one experiment, two orthogonally po-
larized pump waves were fed into different ports of the Sagnac interferometer
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Figure3.13 Schematic illustration of a Mach—Zehnder interferometer. Fiber gratings
are useful for adding or droppingaWDM channel.

]
Port 2 H

to realize a phase conjugator that was not only polarization insensitive but also
wavelength-shift free [119]. In another experiment, a semiconductor optical
amplifier was used for phase conjugation within a Sagnac loop [120]. Such a
device was capable of compensating dispersion over 106 km of standard fiber
at a bit rate of 80 Gb/s when the phase conjugator was placed nearly in the
middle of the fiber span. This technique of dispersion compensation is also
known as midway spectral inversion since the spectrum of the FWM signdl is
amirror image of the signal spectrum because of phase conjugation [8].

3.3 Mach-Zehnder Interferometers

An al-fiber Mach—Zehnder interferometer (MZI) is constructed by connecting
two fiber couplers in series, as shown schematicaly in Fig. 3.13. The first
coupler splits the input signal into two parts, which acquire different phase
shifts if arm lengths are different, before they interfere at the second coupler.
Such a device has the same functionality as a Sagnac loop but has an added
advantage that nothing is reflected back toward the input port. Moreover, a
MZI can be unbalanced by simply using different lengths for its two arms
since the two optical fields inside it take physically separated paths. However,
the same feature also makes the interferometer susceptible to environmental
fluctuations. Nonlinear effects in MZls were considered starting in 1987 and
have continued to be of interest [122]-{132].
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3.3.1 Nonlinear Characteristics

The theory of nonlinear switching in aMZI is similar to that of Sagnac inter-
ferometers. The main difference isthat the two fields produced at the output of
thefirst fiber coupler take different physical paths, and thus acquire only SPM-
induced phase shifts. In general, two couplers need not be identical and can
have different power-splitting fractions, p; and p,. Two arms of the interfer-
ometer can also have different lengths and propagation constants. We consider
such an asymmetric MZI and find the powers transmitted from the two output
ports when a single CW beam with power R, isincident at one input port. Us-
ing Eq. (3.2.1) at the first coupler and taking into account both the linear and
nonlinear phase shifts, the optical fields at the second coupler are given by

A = /P1AEXP(iBi L, + iP17|A0|2L1)7 (331
A, =iy/T—pAgexpliB,L, +i(1—py)¥IAIPL), (33.2)

where L, and L, are the lengths and 3, and 3, are the propagation constants
for the two arms of the MZI.

The optical fields exiting from the output ports of a MZI are obtained by
using the transfer matrix of the second fiber coupler:

<ﬁj> - <i\/\{l%2 Vj?) (2;) (33.3)

The fraction of power transmitted from the bar port of the MZI is obtained
using T, = |A5|?/|Ag|? and is given by

Ty =p1P2+ (1=p1)(1—p;) = 2[p1pp(1—py)(1— p)]"/Z cos(@ + ByL),
(3.3.9)

where the linear and nonlinear parts of the relative phase shift are given by
o = Piby—Boly, O = YRolPLy — (1= py)Ly). (3.3.9)

This eguation simplifies considerably for a symmetric MZI made using two
3-dB couplers so that p; = p, = 3. The nonlinear phase shift vanishes for
such a coupler when L, = L,, and the transmittivity of the bar port is given as
T, = sinz(d)L/Z). Since the linear phase shift ¢y is frequency dependent, the
output depends on the wavelength of light. Thus, an MZI acts as an optical
filter. The spectral response can be improved by using a cascaded chain of
such interferometers with relative path lengths adjusted suitably.
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Figure 3.14 Nonlinear switching in a Mach—Zehnder interferometer for two values
of ¢, . Datafrom the bar and cross ports are shown by circles and crosses. Theoretical
predictions are shown as solid and dotted curves. (After Ref. [128])

The nonlinear response of an MZI is similar to that of a Sagnac loop in
the sense that the output from one of the ports can be switched from low to
high (or vice versa) by changing the input peak power of the incident signal.
Figure 3.14 shows the experimentally observed transmittance from the bar port
(circles) and the cross port (crosses) asinput peak power isvaried over arange
of 0 to 25 W for two values of ¢ [128]. Predictions of Eq. (3.3.4) are aso
shown for comparison using p; = 0.34 and p, = 0.23 for the power-splitting
ratios of the two couplers. The arm lengths were identical in this experiment
(L, =L,) as the MZI was made using a dual-core fiber whose two identical
cores were connected on each side to afiber coupler. This configuration avoids
temporal fluctuations occurring on a millisecond timescale. Such fluctuations
occur invariably when two separate fiber pieces are used in each arm of the
MZI and require an active stabilization scheme for controlling them [123].

Similar to the case of Sagnac interferometers, switching can also be ac-
complished using pump-induced phase shift in an arm of the MZI. In one
experiment, one arm of the MZI incorporated 1.6 m of Y b-doped fiber while
the fiber in the other arm was undoped [131]. Doping did not affect the sig-
nal launched in one of the input ports of the MZI using 1.31-um and 1.55-
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wm semiconductor lasers, and most of the power appeared at the cross port.
However, when a 980-nm pump was injected in the arm with doped fiber, the
signal switched to the bar port a pump power levels of lessthan 5 mW. The
physical mechanism behind switching is the phase shift induced at the signal
wavelength resulting from saturation of absorption near 980 nm. Remarkably,
phase shifts of 7 or more can be induced with only a few milliwatts of the
pump power. This mechanism should be distinguished from the XPM-induced
phase shift, discussed earlier in the context of Sagnac interferometers, since
the phase shift isinduced by the dopants rather than fiber nonlinearity.

3.3.2 Applications

MZIs are used for a variety of applications. Most of them are based on the
ability of an MZI to produce large changes in its output with small changes
in the refractive index in one of its arms. MZIs made by using LiNbGQ; or
semiconductor waveguides are used routinely as high-speed modulators since
such electro-optic materials permit voltage-induced changes in the refractive
index. Silica fibers do not have this property, but their refractive index can be
changed either optically (through SPM and XPM) or through changes in the
environment (such as temperature or pressure). The latter property is useful
for making fiber sensors [133]-{135]. Such applications are not discussed here
since they do not make use of fiber nonlinearity.

Another class of applications uses MZIs as optica filters. Several kinds
of add—drop filters have been developed using MZIs [136]-{140]. The sim-
plest scheme uses a series of interconnected fiber couplers, forming a chain of
MZIls. Such adevice is sometimes referred to asaresonant couplersince it res-
onantly couples out a specific-wavelength channel from a WDM signal to one
output port while the remaining channels appear at the other output port. Its
performance can be optimized by controlling the power-splitting ratios of var-
ious directional couplers [136]. The wavelength selectivity of Bragg gratings
can aso be used to make add—drop filters [10]. In one scheme, two identical
Bragg gratings are formed in the center of each arm of an MZ| [137]. Oper-
ation of such a device can be understood from Fig. 3.13. A single channel,
whose wavelength A falls within the stop band of the Bragg grating, is totally
reflected and appears at port 2. The remaining channels are not affected by
the gratings and appear at port 4. The same device can add a channel at the
wavelength 144 if the signal at that wavelength is injected from port 3. Sta-
bility of the MZI is of primary concern in these devices and requires active
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phase control in practice [138]. Such MZlIs are quite important for WDM net-
works[140]. They are not discussed further here since their operation does not
reguire fiber nonlinearity.

Nonlinear applications of MZIs make use of the SPM- or XPM-induced
phase shifts. In fact, nearly all applications discussed in Section 3.2.3 in the
context of Sagnac interferometers can use an MZI in place of the Sagnac loop.
As an example, demultiplexers based on the XPM-induced phase shift have
attracted considerable attention [105]. The main advantage is that multiple
MZIls can be cascaded as remaining channels appear at the output end of the
MZI (rather than being reflected). The drawback is that active stabilization is
often necessary to avoid fluctuations induced by environmental changes.

The pump power required for XPM-induced switching can be reduced to
manageable levels by using severa different techniques. The nonlinear param-
eter y can be increased by reducing the effective core area A4;. In a 1988 ex-
periment, an XPM-induced phase shift of 10° was measured at a pump power
of about 15 mW by reducing A to only 2 un? inan MZI with 38 m of fiber
in each arm [124]. The use of aring resonator in one arm of the resonator can
increase the XPM-induced phase shift by several orders of magnitude [132].
The pump power required for the & phase shift is reduced to under 10 m\W for
a 10-m-long fiber ring, although the switching speed is a so reduced to below
1 GHz for such devices.

3.4 Michelson Interferometers

A Michelson interferometer is made by connecting two separate pieces of
fibers to the output ports of afiber coupler and attaching 100% reflecting mir-
rors or Bragg gratings at the other end of the fibers [10]. Bragg gratings reflect
completely the light whose wavelength falls within the stop band of the grat-
ing (see Fig. 3.12). A Michelson interferometer functions much like an MZI
with the crucial difference that the light propagating in its two arms is forced
to interfere at the same coupler where it was split. Because of this feature, a
Michelson interferometer acts as a nonlinear mirror, similar to a Sagnac inter-
ferometer, with the important difference that the interfering optical fields do
not share the same physical path. Nonlinear Michelson interferometers can
aso be made using bulk optics (beam splitters and mirrors) with along piece
of fiber in one arm acting as a nonlinear medium. Nonlinear effects in Michel-
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son interferometers were first studied in the context of passive mode locking
and have continued to remain of interest [141]-{145].

We can apply the analysis of Section 3.3.1 developed for an MZI to the
case of a Michelson interferometer because of the similarity between the two.
In both cases, an optical field is split into two parts at afiber coupler, each part
acquires a phase shift, and the two parts recombine interferometrically at the
coupler. Since the same coupler is used for splitting and combining the optical
fieldsin the case of a Michelson interferometer, we should set p, = p, = p in
Eq. (3.3.4). For the same reason, transmission from the bar port of the coupler
turns into reflection from the input port, and the reflectivity is given by

Ry = P2+ (1—p)2—2p(1—p)cos(d, + by, )- (34.1)

Thelengths L, and L, appearing in Eq. (3.3.5) should be interpreted as round-
trip lengths in each arm of the Michelson interferometer. The transmittivity
is, of course, given by T, = 1—R,,. The reflection and transmission charac-
teristics of a Michelson interferometer are similar to those of a Sagnac loop
with two magjor differences. First, the round-trip path lengths L; and L, can
be different for a Michelson interferometer. Second, the reflectivity and trans-
mittivity are reversed for the Sagnac loop. Indeed, Eq. (3.4.1) reduces to Eq.
(325 if ¢ =0.

Because of the SPM-induced nonlinear phase shift, the reflectivity of a
Michelson interferometer is power dependent. Asaresult, such an interferom-
eter tends to shorten an optical pulse and acts effectively as a fast-responding
saturable absorber [141]. The pulse-shortening mechanism can be understood
asfollows. When the relative linear phases are set appropriately, the nonlinear
phase shift may lead to constructive interference near the peak of the pulse,
while the wings of the pulse experience destructive interference. The pulse-
shortening capability of Michelson interferometers can be exploited for passive
mode locking of lasers. This technique is commonly referred to as additive-
pulse mode locking since it is the interferometric addition of an optical pulse
at the coupler that is responsible for mode locking [146]. The discovery of
additive-pulse mode locking led to a revolution in the field of lasers and has
resulted in mode-locked lasers capable of generating pulses shorter than 10 fs.
SPM in optical fibers played an important role in this revolution. Thistopic is
discussed further in Chapter 5 in the context of mode-locked fiber lasers.
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Problems

31

3.2

3.3

34

35

3.6

3.7

38

3.9

3.10

Derive Eq. (3.1.3) by considering multiple round trips inside a Fabry—
Perot resonator.

Derive an expression for the transmittivity of a fiber-ring resonator of
length L formed using afiber coupler with bar-state transmission of p.

Prove that the free spectral range of aring resonator of length L is given
by vg/L, where vy is the group velocity. How much does it change for a
10-m ring when the input wavelength is changed by 10 nm in the wave-
length region near 1.55 um? Assume that GVD of the fiber near this
wavelength is —20 ps’/km and ng = 1.46.

Reproduce the bistability curves shown in Fig. 3.3 using Eqg. (3.1.8).
Explore the impact of resonator finesse on bistability by varying Ry in
the range from 0.4 to 0.8. Explain your results qualitatively.

Iterate the nonlinear map given in Eq. (3.1.9) numerically assuming that
the phase changes during each round trip inside the ring resonator as
indicated in Eqg. (3.1.11). Plot the transmittivity as afunction of round-
trip number for values of yRLg =1, 5, and 10. Assume p = 0.95.

Derive Eq. (3.2.5) by considering the phase shifts experienced by the
counterpropagating waves inside a Sagnac loop. Use it to estimate the
minimum switching power required when p = 0.4 and yL = 0.1 W1,

Use Eq. (3.2.5) for aGaussian pulse for which R(t) = P,exp[—(t/T,)?].
Plot the shape of the transmitted pulse using T, = 1 ps, p = 0.45, and
YP,L =1, 2, and 4. Estimate the compression factor in each case.

Derive an expression for the transmittivity of a Sagnac loop containing
an optical amplifier next to the fiber coupler. Assume G is the amplifier
gain, p isthe bar-state transmission of the coupler, and a CW beam with
power R, isinjected into the loop.

Use the expression derived in the previous problem to find the switching
power when a 3-dB coupler isused (p = 0.5) to make the Sagnac loop.
Estimate its numerical value for a 100-m loop when G = 30 dB. Use
y=2W-Ykm.

Show that the X PM-induced phase shift for a“sech” pump pulseisgiven
by Eqg. (3.2.10).
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311

3.12

Explain how a Sagnac |oop can be used for demultiplexing asingle chan-
nel from an OTDM bit stream.

Derive an expression for the bar-state transmittivity of a Mach—Zehnder
interferometer. Allow for different path lengths of the two arms and
different power-splitting ratios of the two couplers.
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Chapter 4

Fiber Amplifiers

Optical fibers attenuate light like any other material. In the case of silicafibers,
losses are relatively small, especially in the wavelength region near 1.55 um
(o = 0.2 dB/km). For this reason, losses can simply be ignored if fiber length
is1 km or less. In the case of long-haul fiber-optic communication systems,
transmission distances may exceed thousands of kilometers. Fiber amplifiers
are commonly used to overcome transmission losses and restore the optical
signal in such systems. This chapter is devoted to fiber amplifiers. Section 4.1
discusses genera concepts such as gain spectrum and amplifier bandwidth.
Section 4.2 describes the operating characteristics of erbium-doped fiber am-
plifiers (EDFAS). The nonlinear and dispersive effects are included in Sec-
tion 4.3 using the Maxwell-Bloch formalism. The resulting Ginzburg—Landau
eguation is used in Sections 4.4-4.6 to discuss a variety of nonlinear effectsin
fiber amplifiers.

4.1 Basic Concepts

Although fiber amplifiers were made as early as 1964 [1], their use became
practical only after 1986 when the techniques for fabrication and characteri-
zation of low-loss, rare-earth-doped fibers were perfected [2]. The rare earths
(or lanthanides) form a group of 14 similar elements with atomic numbers in
the range from 58 to 71. When these elements are doped in silica or other
glass fibers, they become triply ionized. Many different rare-earth ions, such
as erbium, holmium, neodymium, samarium, thulium, and ytterbium, can be
used to make fiber amplifiers that operate at wavelengths covering awide range
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Figure 4.1 Schematic illustration of (a) three-level and (b) four-level pumping
schemes. Wavy arrows indicate fast relaxation of the level population through nonra-
diative processes.

from visible to infrared. Amplifier characteristics, such as the operating wave-
length and the gain bandwidth, are determined by dopants rather than by the
fiber, which plays the role of a host medium. EDFASs have attracted the most
attention as they operate near 1.55 um and are useful for modern fiber-optic
communication systems [3]-{9].

4.1.1 Pumping and Gain Coefficient

Fiber amplifiers amplify incident light through stimulated emission, the same
mechanism used by lasers. Indeed, an optical amplifier is just alaser without
feedback. Its main ingredient isthe optical gain, occurring when the amplifier
is pumped optically to realize population inversion. Depending on the energy
levels of the dopant, pumping schemes can be classified as a three- or four-
level scheme [10]-{12]. Figure 4.1 shows the two kinds of pumping schemes.
In both cases, dopants absorb pump photons to reach a higher energy state and
then relax rapidly to alower-energy excited state (level 2). The stored energy
is used to amplify the incident signal through stimulated emission. The main
difference between the three- and four-level pumping schemes isrelated to the
energy state occupied by the dopant after each stimulated-emission event. In
the case of athree-level scheme, the ion ends up in the ground state, whereas
it remains in an excited state in the case of a four-level pumping scheme. It
will be seen later that this difference affects the amplifier characteristics sig-
nificantly. EDFAs make use of athree-level pumping scheme.
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For understanding the physics behind signal amplification, details of pump-
ing are not important. Optical pumping creates the necessary population inver-
sion between the two energy states, which in turn provides the optical gain
g=o(N; —N,), where o is the transition cross section and N, and N, are
atomic densities in the two energy states. The gain coefficient g can be calcu-
lated for both the three- and four-level pumping schemes by using the appro-
priate rate equations [10]-{12].

The gain coefficient of a homogeneously broadened gain medium can be
written as[11]

_ %
14 (0 — 0a)?TF+P/Ps’

o(w) (4.1.1)
where g, is the peak value, o is the frequency of the incident signal, wa is
the atomic transition frequency, and P is the optical power of the continuous-
wave (CW) signal being amplified. The saturation power R depends on dopant
parameters such as the fluorescence time T, and the transition cross section o.
The parameter T, in Eq. (4.1.1) is known as the dipole relaxation time and is
typically quite small (~ 0.1 ps) for fiber amplifiers. The fluorescence time T,
varies in the range from 0.1 usto 10 ms, depending on the dopant. Equation
(4.1.1) can be used to discuss the important characteristics of optical amplifiers
such as gain bandwidth, amplification factor, and output saturation power. We
begin by considering the case in which P/R <« 1 throughout the amplifier.
Thisisreferred to asthe unsaturated regime since the gain remains unsaturated
during amplification.

4.1.2 Amplifier Gain and Bandwidth

By neglecting theterm P/R; in Eq. (4.1.1), the gain coefficient becomes

1+ (0 — wa)?T2

g(w) (4.1.2)

This equation shows that the gain is maximum when the signal frequency o
coincides with the atomic transition frequency w,. The gain reduction for
W # w, isgoverned by a Lorentzian profile (see Fig. 4.2) that is characteristic
of homogeneously broadened systems[10]-{12]. Asdiscussed later, the actual
gain spectrum of fiber amplifiers can deviate considerably from the Lorentzian
profile. The gain bandwidth is defined as the full width at half maximum
(FWHM) of the gain spectrum g(). For the Lorentzian spectrum, the gain
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bandwidth is given by
_Aog 1

A .
Vo 2n nT,

(4.1.3)
As an example, Avg ~ 3 THz when T, = 0.1 ps. Amplifiers with arelatively
large bandwidth are preferred for optical communication systems.

A related concept of amplifier bandwidth is commonly used in place of
the gain bandwidth. The difference becomes clear when one considers the
amplification factor defined as G = R,;/P,,, where P, and P, are the input
and output powers of the CW signal being amplified. The amplification factor
is obtained by solving

dP/dz= g(w)P(2), (4.1.9)

where P(z) is the optical power at a distance z from the input end of the
amplifier. A straightforward integration with the conditions P(0) = R, and
P(L) = P, shows that the amplification factor for an amplifier of length L is
given by

6(0) e [ glw)dz) ~eslglo)) (415)

where g is assumed to be constant along the amplifier length.
Both G(w) and g(w) are maximum at @ = 5 and decrease when @ # m .
However, G(w) decreases much faster than g(w) because of the exponential
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Figure 4.3 Saturated amplifier gain as afunction of output power (normalized to the
saturation power) for several values of the unsaturated amplifier gain G,.

dependence seen in Eq. (4.1.5). The amplifier bandwidth Av, is defined asthe
FWHM of G(w) and isrelated to the gain bandwidth Avy as

In2 12
Av,=A — 4.1.6
VA=AV <InGo—In2> ’ (4.1.6)

where G, isthe peak value of the amplifier gain. Figure 4.2 showsthe gain pro-
fileg(w) and the amplification factor G(w) by plotting both g/g, and G/G, as
afunction of (w — wa) T,. As expected, the amplifier bandwidth is smaller than
the gain bandwidth, and the difference depends on the amplifier gain itself.
The origin of gain saturation lies in the power dependence of the gain co-
efficient in Eq. (4.1.1). Since g is reduced when P becomes comparable to R,
the amplification factor G is aso expected to decrease. To simplify the discus-
sion, let us consider the case in which the signal frequency is exactly tuned to

the atomic transition frequency w,. By substituting g from Eq. (4.1.1) in Eq.
(4.1.4), we obtain

dP_ _ GP

dz  1+P/P
This equation can be easily integrated over the amplifier length. By using the
initial condition P(0) = B, together with P(L) = P, = GP,,, the amplifier

(4.1.7)
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gainisgiven by theimplicit relation

G=Gyexp (—GTlP%;“) (4.1.8)

Figure 4.3 shows the saturation characteristics by plotting G as a function
of P,/ Ps for several values of G,. A quantity of practical interest isthe output
saturation power Py, defined as the output power at which the amplifier gain
Gisreduced by afactor of 2 fromits unsaturated value G,. By using G = G,/2
in Eq. (4.1.8), P5,; isgiven by

GyIn2
Gy—2

S __
Pout -

P.. (4.1.9)

By noting that G, > 2in practice, P5; = (In 2)Ps~ 0.69Ps. Asseenin Fig. 4.3,
Pout becomes nearly independent of G, for G, > 20 dB.

4.1.3 Amplifier Noise

All amplifiers degrade the signal-to-noise ratio (SNR) of the amplified signal
because of spontaneous emission that is added to the signal during its amplifi-
cation. The SNR degradation is quantified through the noise figure F, defined
as

Fn = (SNR);,/(SNR) o5 (4.1.10)

where both SNRs refer to the electrical power generated when an optica sig-
nal is converted to electric current by using a photodetector. In general, Fy
depends on severa parameters governing the shot and thermal noises associ-
ated with the detector. We can obtain asimple expression for F, by considering
an ideal detector whose performance is limited by shot noise only [13].

In the shot-noise limit, the SNR of the input signal is given by [8]
12 (RP,)? P

S = in 4111
o2 2q(RP,)Af  2hvAf’ ( )

(SNR),, =
where | = RP,, isthe average photocurrent, R = ¢/hv isthe responsivity of an
ideal photodetector with 100% quantum efficiency, and

02 =2q(RP, )Af (4.1.12)

represents the contribution of shot noise. Here Af is the detector bandwidth,
v isthe optical frequency, and q is the magnitude of the electron’s charge. To
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evaluate the SNR of the amplified signal, we should add the contribution of
spontaneous emission to the detector noise.

The spectral density of spontaneous-emission noise is nearly constant for
broadband amplifiers (white noise) and is given by [14]

Sp(v) = (G—1)ngphv, (4.1.13)

where ngp, is called the spontaneous-emission (or population-inversion) factor
and is defined as

Nsp = Ny/ (N, — Ny ). (4.1.14)

The effect of spontaneous emission is to add fluctuations to the amplified sig-
nal, which are converted to current fluctuations during the detection process.

The dominant contribution to the noise current comes from the beating of
spontaneous emission with the signal. This beating phenomenon is similar to
heterodyne detection: Spontaneously emitted radiation mixes coherently with
theamplified signal at the photodetector and produces a heterodyne component
of the photocurrent. The variance of the photocurrent can be written as [8]

02 = 2q(RGP, )Af + 4(RGP, ) (RSyp)Af, (4.1.15)

where the first term is due to shot noise and the second term results from
signal—spontaneous emission beating. Since | = RGR,, is the average current,
the SNR of the amplified signal is given by

(RGP,)*  GR,

(4.1.16)

where the | ast relation was obtained by neglecting thefirst termin Eq. (4.1.15)
andisvalid for G> 1.

The amplifier noise figure is obtained by substituting Egs. (4.1.11) and
(4.1.16) in Eq. (4.1.10) and is given by

This equation shows that the SNR of the amplified signal is degraded by a
factor of 2 (or 3 dB) even for anideal amplifier for which ng, = 1. In practice,
F, exceeds 3 dB. For its application in optical communication systems, an
optical amplifier should have F, aslow as possible.
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Figure 4.4 (a) Energy levels of erbium ionsin silica fibers. (b) Absorption and gain
spectraof an erbium-doped fiber. (After Ref. [34], (©1991 IEEE)

4.2 Erbium-Doped Fiber Amplifiers

In this section we focus on EDFAS because of their importance for lightwave
systems. Figure 4.4(a) shows the relevant energy levels of Erdt in silica
glasses. The amorphous nature of silicabroadens each energy level into bands.
Many transitions can be used for pumping. Initial experiments used visible
pump wavel engths even though their use is relatively inefficient [15], [16]. Ef-
ficient pumping is possible using semiconductor lasers operating near 0.98-um
and 1.48-um wavelengths [17]-{20]. High gains in the range of 30 to 40 dB
can be obtained with pump powers ~ 10 mW. The transition 12— Yg /2
allows the use of GaAs pump lasers operating near 0.8 um, but the pumping
efficiency isrelatively poor [21]. It can beimproved by codoping the fiber with
auminum and phosphorus [22]. EDFAs can aso be pumped in the wavelength
region near 650 nm. In one experiment, 33-dB gain was realized with 27 mwW
of pump power at 670 nm [23].

The pump and signal beams inside an EDFA may propagate in the same
or opposite directions. The performance is nearly the same in the two pump-
ing configurations when the signal power is small enough for the amplifier
to remain unsaturated. In the saturation regime, power-conversion efficiency
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is better in the backward-pumping configuration because of lower amplified
spontaneous emission [24]. In the bidirectional pumping configuration, the
amplifier is pumped in both directions simultaneously using two semiconduc-
tor lasers located at the two fiber ends. This configuration requires two pump
lasers but has the advantage that the small-signal gain remains relatively con-
stant along the entire amplifier length.

4.2.1 Gain Spectrum

The gain spectrum of an EDFA is affected considerably by the amorphous na-
ture of silica and by the presence of other codopants such as germania and
alumina within the fiber core [25]. The gain spectrum of isolated erbium ions
is homogeneously broadened, and its bandwidth is determined by the dipole
relaxation time T,. However, it is considerably broadened by the silica host.
Structural disorders lead to inhomogeneous broadening of the gain profile,
whereas Stark splitting of various energy levels is responsible for additional
homogeneous broadening [9]. Mathematically, the gain is obtained by averag-
ing over the distribution of transition frequencies w, so that

g(w) = /:o O (@, 0a) fa(wa) dog, (4.2.1)

where g, (®, wa) is the homogeneously broadened gain profile and f(wa) is
the distribution function whose form depends on the glass composition within
the fiber core.

Figure 4.4(b) shows the gain and absorption spectra of an EDFA whose
core was doped with germania. The gain spectrum is quite broad with a
double-peak structure. The shape and the width of the gain spectrum is sensi-
tive to core composition. Figure 4.5 shows the emission spectra for four dif-
ferent core compositions. The gain spectrum is narrowest in the case of pure
silica but can be broadened considerably by codoping the core with alumina.
Attempts have been made to isolate the relative contributions of homogeneous
and inhomogeneous broadening. For silica-based EDFAS, the contribution of
homogeneous broadening, as deduced from spectral hole-burning measure-
ments, isin the range of 4 to 10 nm, depending on the signal wavelength [9].
With a proper choice of dopants and host fiber, the spectral bandwidth over
which EDFAs are able to amplify signals can exceed 30 nm. However, the
gain is not uniform over the entire bandwidth.
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Figure 4.5 Gain spectra of four EDFAs with different core compositions. Codoping
of silica core with aluminum or phosphorus broadens the emission spectrum consid-
erably. (After Ref. [25], (©1991 |IEEE)

With the advent of wavelength-division multiplexing (WDM), one EDFA
is used to amplify alarge number of channels simultaneously. Moreover, the
WDM signal is propagated through a chain of such cascaded EDFAS cover-
ing distances longer than 1000 km. If the gain spectrum of EDFAS s not flat
over the entire bandwidth of the WDM signal and the gain varies aslittle asa
few percent from channel to channel, large variations (> 10 dB) among chan-
nel powers occur when the signal arrives at the receiver; such variations can
degrade the system performance considerably. For this reason, many tech-
niques have been developed for flattening the gain spectrum of EDFAs and
extending the usable bandwidth to arange as large as 80 nm [9]. One solution
consists of using an optical filter whose spectral response is tailored such that
the filter transmits more light at wavelengths where gain is lower (and vice
versa). Optical filters based on Mach—Zehnder interferometers were used as
early as 1991 [26]. More recently, long-period fiber gratings have been used
for this purpose with considerable success [27]. Another approach makes use
of acousto-optic tunable filters [28].

With a proper design, the use of optical filters can provide flat gain over
a bandwidth as large as 30 nm. However, dense WDM systems, designed to
transmit more than 50 channels, require uniform EDFA gain over a bandwidth
exceeding 50 nm. It is difficult to achieve such large gain bandwidths with a
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singleamplifier. A hybrid two-stage approach iscommonly used in practice. In
one design, two amplifiers are cascaded to produce flat gain (to within 0.5 dB)
over the wavelength range of 1544 to 1561 nm [29]. The second EDFA is
codoped with ytterbium and phosphorus and is optimized such that it acts as
a power amplifier. In avariation of this idea, the second EDFA uses fluoride
fiber as a host and is pumped at 1480 nm [30]. Another approach combines
Raman amplification with one or two EDFAS to realize uniform gain over a
65-nm bandwidth extending from 1549 to 1614 nm [31].

A two-arm design has aso been developed to solve the gain-flattening
problem for dense WDM systems [32]. In this approach, the WDM signal is
divided into two bands, known as the conventional or C band (1530-1560 nm)
and the long-wavelength or L band (1570-1600 nm). Theincoming WDM sig-
nal is split into two branches containing optimized EDFAs for C and L bands.
The L-band EDFA requires long fiber lengths (> 100 m) since the inversion
level is kept relatively low. The two-arm design has produced a relatively
uniform gain of 24 dB over a bandwidth as large as 80 nm when pumped us-
ing 980-nm semiconductor lasers while maintaining a noise figure of about
6 dB [9].

4.2.2 Amplifier Gain

The gain of EDFAs depends on alarge number of parameters such as erbium-
ion concentration, amplifier length, core radius, and pump power [33]-{37].
A three-level rate-equation model, used commonly for lasers, can be adapted
for EDFAs [9]. It is sometimes necessary to add a fourth level to include
the effects of excited-state absorption. Another complication stems from the
nonuniform nature of inversion along the amplifier length. Since afiber ampli-
fier is pumped from one end, the pump power decreases along the fiber length.
As aresult, it is necessary to include axia variations of the pump, the sig-
nal, and the atomic-level populations. In general, the resulting set of coupled
equations must be solved numerically.

Much insight can be gained by using a simple model that neglects ampli-
fied spontaneous emission and excited-state absorption. The model assumes
that the pump level of the three-level system remains nearly unpopulated be-
cause of arapid transfer of the pumped population to the excited state 2 (see
Fig. 4.1). It dso neglects differences between the emission and absorption
cross sections. With these simplifications, the excited-state density N,(zt) is
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obtained by solving the following rate equation [12]
N, _N
ot T’
whereN; = N; —N,, N; isthetotal ion density, and W, and Ws are the transition
rates for the pump and signal, respectively. These rates are given by

= W,N, —Ws(N, — N;) (4.2.2)

'popPp _ I'soshs
aphvp ’ 7 aghvg’

where Ty, is the overlap factor representing the fraction of pump power R,
within the doped region of the fiber, oy, is the transition cross section at the
pump frequency vy, and a, is the mode area of the pump inside the fiber.
The quantities T's, os, P, as, and vs are defined similarly for the signal. The
steady-state solution of EqQ. (4.2.2) is given by

(P +PIN
27 1+ 2P 4Py

W, = (4.2.3)

(4.2.4)

where P, = P, /P, P{ = Ps/P$®, and the saturation powers are defined as

pst _ aphvp psit _ ashvg

= = . 4.2.5
P TpopT,’ s TsosT, ( )

The pump and signal powers vary aong the amplifier length because of
absorption, stimulated emission, and spontaneous emission. Their variation
also depends on whether the signal and pump waves propagate in the same or
opposite directions. If the contribution of spontaneous emission is neglected
and forward pumping is assumed, R, and Ps satisfy

dR, o]
d—zp = —TpopN; — a'Py, d—zs =Ts0s(N, — N;) — P, (4.2.6)
where or and o/ take into account fiber losses at the signal and pump wave-
lengths, respectively. By substituting N, from Eq. (4.2.4) together with N, =
N; — N,, we obtain a set of two coupled equations,
dP! (Pi+ 1) oyP
_p_ _VsTTTPR_ p
iz~ Lyopgp, TP (42.7)
dP; (P"J —1)oP’ ,

s _ T IS gp 4.2.8
dz ~ T42pp O (42.8)
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Figure 4.6 Small-signal gain at 1.55 um as a function of (a) pump power and (b)
amplifier length for an EDFA pumped at 1.48 um. (After Ref. [34], ©1991 |EEE)

where o = I'popN; and as = I'sosN; are the absorption coefficients at the
pump and signal wavelengths, respectively. These equations govern the evo-
lution of signal and pump powers inside an EDFA. Their predictions are in
good agreement with experiments as long as the amplified spontaneous emis-
sion (ASE) remains negligible [36]. The inclusion of fiber losses is essential
for distributed-gain amplifiers, which amplify signals over long fiber lengths.
For lumped amplifiers with fiber lengths under 1 km, o« and o’ can be set to
zero.

A drawback of the above model is that the absorption and emission cross
sections are taken to be the same for both the pump and signal beams. Aswas
seen in Fig. 4.4(b), these cross sections are generaly different. It is easy to
extend the model to include such differences [34]. An anaytic solution can
still be obtained [33]. Figure 4.6 shows the small-signal gain at 1.55 um as a
function of the pump power and the amplifier length by using typical parameter
values. For a given amplifier length L, the gain increases exponentially with
pump power initially, but at a much reduced rate when pump power exceeds a
certain value [corresponding to the “knee” in Fig. 4.6(a)]. For a given pump
power, amplifier gain becomes maximum at an optimum value of L and drops
sharply when L exceeds this optimum value. The reason isthat the end portion
of the amplifier remains unpumped and absorbs the amplified signal.

Since the optimum value of L depends on the pump power B, it is nec-
essary to choose both L and B, appropriately. Figure 4.6(b) shows that for
1.48-um pumping, 35-dB gain can be realized at a pump power of 5 mW for
L =30 m. It is possible to design high-gain amplifiers using fiber lengths as
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short as afew meters. The qualitative features shown in Fig. 4.6 are observed
in all EDFAS; the agreement between theory and experiment is generally quite
good [36].

The preceding analysis assumes that both pump and signal waves are in
the form of CW beams. In practice, EDFASs are pumped by using CW semi-
conductor lasers, but the signal is generally not a CW beam. For example, in
lightwave system applications the signal is in the form of a pulse train (con-
taining a random sequence of 1 and 0 bits). It is often required that al pulses
experience the same gain. Fortunately, this occurs naturally in EDFAS for
pulses shorter than a few microseconds. The reason is related to the relatively
large value of the fluorescence time associated with erbiumions (T, =~ 10 ms).
When the timescale of signal power variations is much shorter than T, erbium
ions are unable to follow such fast variations. Since single-pulse energies are
typically much below the saturation energy (~ 10 uJ), EDFAs respond to the
average power. Asaresult, gain saturation is governed by the average signa
power, and amplifier gain does not vary from pulse to pulse.

In some applications related to packet-switched and reconfigurable WDM
networks, the transient nature of gain dynamics becomes of concern [37]. It
is possible to implement a built-in gain-control mechanism that keeps the am-
plifier gain pinned at a constant value [38]{44]. The basic idea consists of
forcing the EDFA to oscillate at a controlled wavelength outside the range
of interest (typically below 1.5 um). Since the gain remains clamped at the
threshold value for alaser, the signal is amplified by the same factor in spite of
variations in the signal power. A simple scheme uses an al-optical feedback
loop at a specific wavelength to initiate lasing [38]. In another implementation,
an EDFA isforced to oscillate at 1.48 um by fabricating fiber Bragg gratings
at the two ends of the amplifier [40]. One of the gratings can aso be replaced
by a fiber-loop mirror [43]. With this change, the signal wavelength can be
close to the lasing wavel ength without affecting the amplifier performance.

4.2.3 Amplifier Noise

Since amplifier noise is the ultimate limiting factor for system applications, it
has been studied extensively [45]-58]. Asdiscussed earlier, amplifier noiseis
quantified through the noise figure F, = 2nsp, where the spontaneous-emission
factor nsp depends on the relative populations N, and N, of the two energy
states, as indicated in Eq. (4.1.14). Since EDFAs operate on the basis of a
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three-level pumping scheme, N, is not negligible and ng, exceeds 1. Thus, the
noise figure of EDFAsis expected to be larger than the ideal value of 3 dB.

The spontaneous-emission factor for EDFAs can be calculated by using the
three-level rate-equation model discussed earlier. However, one should take
into account the fact that both N; and N, vary along the fiber length because
of their dependence on the pump and signal powers [see Eq. (4.2.4)], and nsp
should be averaged along the amplifier length. As a result, the noise figure
depends both on the amplifier length L and the pump power B, just as the
amplifier gain does. Figure 4.7(a) shows the variation of k, with the amplifier
length for several values of P,[,/PlgBt when a 1.53-um signal is amplified with
an input power of 1 mW [50]. The amplifier gain under the same conditionsis
shown in Fig. 4.7(b). The results show that a noise figure close to 3 dB can be
obtained for high-gain amplifiers.

The experimental results confirm that F, close to 3 dB can be realized
in EDFAs. A noise figure of 3.2 dB was measured in a 30-m long EDFA,
pumped at 0.98 um with 11 mW of power [47]. A similar value was measured
in another experiment with only 5.8 mW of pump power [49]. In generd, it
is difficult to achieve high gain, low noise, and high pumping efficiency si-
multaneously. The main limitation isimposed by the ASE traveling backward
toward the pump and depleting the pump power. An internal isolator allevi-
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ates this problem to a large extent. In one implementation, a 51-dB gain was
realized with a 3.1-dB noise figure at a pump power of only 48 mwW [54].
Therelatively low noise levels of EDFAs make them an ideal choice for WDM
lightwave systems. In spite of low noise, the performance of long-haul systems
employing multiple EDFAsis often limited by the ASE.

The effects of amplifier noise are most severe when a low-power signal is
amplified by alarge factor. In practice, the noisein achain of cascaded EDFAs
can be reduced by decreasing the amplifier spacing. For this reason, consid-
erable attention has focused on distributed fiber amplifiers in which the gain
is distributed over long lengths (~ 50 km) of lightly doped silica fibers such
that fiber losses are nearly compensated all along the fiber length [59]-{66].
Such fibers are referred to as being transparent, although they become nearly
transparent only when pumped at a suitable wavelength. The optimal pumping
wavelength is 1.48 um since fiber losses for the pump at this wavelength are
minimal compared to other pumping wavelengths (such as 0.98 um). In gen-
eral, one should consider the effect of stimulated Raman scattering (SRS) in
distributed EDFASs pumped at 1.48 um since the signal wavelength lies within
the Raman gain bandwidth [62]. As aresult, the signal experiences not only
the gain provided by the dopants but also the gain provided by SRS. In prac-
tice, SRSincreases the net gain and reduces the noise figure for a given amount
of pump power. Nonlinear and dispersive effects associated with the silica host
play an important role in distributed fiber amplifiers. We turn to them in the
following section.

4.3 Dispersive and Nonlinear Effects

Because of their large bandwidths, fiber amplifiers can be used to amplify,
without distortion, short optical pulses. Indeed, EDFAs were used to amplify
ultrashort pulses soon after their development. We discuss in this section how
the nonlinear Schrodinger (NLS) equation, useful for describing pulse prop-
agation in undoped fibers, can be extended to include the gain provided by
dopants.

4.3.1 Maxwell-Bloch Equations

Rare-earth ions in doped fibers can be modeled as a two-level system by con-
sidering only the two energy levels that participate in light-induced transitions.
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The dynamic response of a two-level system is governed by the well-known
Maxwell-Bloch equations [11]. We can extend these equations to the case of
fiber amplifiers. The starting point is the wave equation (A.2.1.7), but the in-
duced polarization P(r,t) in Eq. (A.2.1.8) should include a third term P,(r,t)
representing the contribution of dopants. This contribution is calculated by
using a semiclassical approach in which dopants interact with the optical field
E(r,t) through the induced dipole moment. In the slowly varying envelope
approximation, P(r,t) iswritten as

Pq(r,t) = 2X[P(r,t) exp(—iwgt) + c.C.], (4.3.1)

where X is the polarization unit vector associated with the optical field E(r,t).
The slowly varying part P(r,t) is obtained by solving the Bloch equations,
which can be written as[11]

oP P ip?
W W-W 1

where p is the dipole moment, @, is the atomic transition frequency, W =
N, — N; is the population-inversion density with the initial value W, and T,
and T, are the population and dipole relaxation times introduced earlier. Here
E(r,t) isthe dowly varying amplitude associated with the optical field defined
asin Eq. (A.2.3.2). Following the analysis of Section A.2.3, the net effect of
dopants isto modify the NLS equation as

A 2A
a 'ﬁ28—+°‘A iYARA+ Do

Bl ot 7 ot2 (Pexp(—lﬁoz)> (434)

2¢,C
where angle brackets denote spatial averaging over the mode profile |F (x,y) .
An average over the atomic transition frequencies should also be performed if
one wants to include the effects of inhomogeneous broadening.

The set of Maxwell-Bloch equations (4.3.2)—4.3.4) must be solved for
pulses whose width is shorter or comparable to the dipole relaxation time
(T, < 0.1 ps). However, the analysis is simplified considerably for broader
optical pulses since one can make the rate-equation approximation in which
the dopants respond so fast that the induced polarization follows the optical
field adiabatically [11].
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Dispersive effects associated with dopants can be included by working in
the Fourier domain and defining the dopant susceptibility through the standard
relation

P(r,m) = goxy(r, ®)E(r, »), (4.35)

where g, is the vacuum permittivity and the tilde represents the Fourier trans-
form. The susceptibility isfound to be given by

oW (r)n,c/ wy

o a)ii (4.3.6)

Xd (r ) (I)) =
where the transition cross section o is related to the dipole moment u as os =
12w, T,/ (g,ndic) and ny is the background linear refractive index of the host
medium at the frequency w,.

4.3.2 Ginzburg-Landau Equation

The propagation equation for optical pulses is obtained from Egs. (4.3.2) and
(4.3.6) by following the analysis of Section A.2.3. In the frequency domain,
Egs. (A.2.3.10) and (A.2.3.16) remain valid provided y, is added to the di-
electric constant €. The index change An from Eq. (A.2.3.18) then becomes

An:n2|E|2+%+% (4.3.7)
The major change isthat A in Eq. (A.2.3.22) becomes frequency dependent
because of the frequency dependence of x,. When the optical field is trans-
formed back to the time domain, we must expand both 8 and AB in a Taylor
series to include the dispersive effects associated with the dopants. Writing
0 — Wy = (0 — o) + (wy — wa) and using the Taylor-series expansion, the
resulting equation is given by [67]

dA eﬁ8A i eﬁ8A 1 2\ or Qo l+i6

+Bl at BZ atz (a+a2|A| ) IY|A| A+ 2 1 62A
(4.3.8)

where
— 82428
=B, + [ 1522 ] (4.3.9)
8(62—3) +i(1— 382

:/32+90T22[ ( (1)+ 55)3 )], (4.3.10)
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and the detuning parameter 6 = (w,— wa)T,. Thegain g, is defined as

6 [ W(r 1)|F (x.y)|2 dxdly
%2l = == Fydxdy

(4.3.11)

where integration is over the entire range of x and y. Spatial averaging results
from the use of Eq. (4.3.7) in Eqg. (A.2.3.20). Equation (4.3.8) includes the
effects of two-photon absorption through the parameter c.,. Even though two-
photon absorption is negligible for silica fibers, it may become important for
fibers made using materials with high nonlinearities [68].

Equation (4.3.8) shows how the dispersion parameters of the host fiber
change because of the dopant contribution. Since \y = ﬁl—l, changesin f3; in-
dicate that the group velocity of the pulse is affected by the dopants. However,
the dopant-induced change in the group velocity is negligible in practice since
the second term in Eq. (4.3.9) is smaller by more than a factor of 10* under
typical operating conditions. In contrast, changes in 3, cannot be neglected
since the two termsin Eq. (4.3.10) can become comparable, especially near the
zero-dispersion wavelength of the amplifier. Even in the specia case § = 0,
B5™ does not reduce to B,. In fact, Eq. (4.3.10) shows that for § = 0,

S — B, +igy T2 (4.3.12)

is a complex parameter whose imaginary part results from the gain provided
by dopants. The physical origin of this contribution is related to the finite
gain bandwidth of fiber amplifiers and is referred to as gain dispersion since it
originates from the frequency dependence of the gain. Equation (4.3.12) isa
consequence of the parabolic-gain approximation in which the gain spectrum
of fiber amplifiersis approximated by a parabola over the spectral bandwidth
of the pulse.

It is difficult to perform integration in EqQ. (4.3.11) exactly since the inver-
sion W depends not only on the spatial coordinates x,y, and z but also on the
mode profile |F(x,y)|? because of gain saturation. In practice, only a small
portion of the fiber core is doped with rare-earth ions. If the mode intensity
and the dopant density are nearly uniform over the doped portion, W can be as-
sumed to be a constant in the doped region and zero outside it. The integration
isthen readily performed to yield the smple relation

Oo(zt) =TsoW(z 1), (4.3.13)
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where I's represents the fraction of mode power within the doped portion of
the fiber. Using Egs. (4.3.3) and (4.3.13), the gain dynamics is governed by

Jd9y  Os— o go|A|2

e T, - T, (4.3.14)
where gss = T'soaW, isthe small-signal gain and the saturation power P& isde-
fined in Eq. (4.2.5). Note that g, is not constant along the fiber length because
of pump power variations. The z dependence of g, depends on the pumping
configuration and requires the use of Eq. (4.2.6).

In general, one must solve Egs. (4.3.8) and (4.3.14) together in a self-
consistent manner. However, for most fiber amplifiers the fluorescence time T,
isso long (0.1-10 ms) compared with typical pulse widths that we can assume
that spontaneous emission and pumping do not occur over the pulse duration.
Equation (4.3.14) isthen readily integrated to obtain the result

Es

where the saturation energy is defined as Es =hay(as/0s).

Typical vaues of Eg for fiber amplifiers are close to 1 uJ. However, pulse
energies used in practice are much smaller than the saturation energy Es. As
aresult, gain saturation is negligible over the duration of a single pulse. How-
ever, it cannot be neglected for along pulse train since the amplifier gain will
saturate over timescales longer than T,. The average power within the amplifier
then determines the saturated gain as g, = gss(1+ Pay/PS) 1.

Pulse propagation in fiber amplifiersisthus governed by ageneralized NLS
equation, with coefficients B and B5™ that are not only complex but also vary
with z along the fiber length. In the specific case in which § = 0, Eq. (4.3.8)
simplifies considerably and can be written as

Uo(2,t) ~ gssEXp (—i/t |A(z,t)|2dt) , (4.3.15)

oA i, A [ oy 1
5, T3P TigT2) 55 =i <?’+ é%) [AA+ (g —a)A,  (43.16)

where T =t — Bz is the reduced time. This equation governs amplification
of optical signalsin fiber amplifiers. The T, term accounts for decrease in gain
for spectral components of an optical pulse located far from the gain peak.
Equation (4.3.16) is a generalized NLS equation with complex coefficients.
It can be reduced to a Ginzburg—Landau equation, which has been studied
extensively in the context of fluid dynamics. We discuss in the next section the
stability of its steady-state solutions.
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4.4 Modulation Instability

Modulation instability, discussed in Section A.5.1, should play an important
role if a CW beam propagates in a distributed fiber amplifier in which am-
plification occurs aong long fiber lengths. Also, a new type of modulation
instability can occur if signals are periodically amplified in a chain of short-
length amplifiers, a situation that occurs in soliton communication systems
(see Chapter 8). In this section we discuss the two cases separately.

4.4.1 Distributed Amplification

Consider the propagation of CW or quasi-CW signalsinside a distributed fiber
amplifier. The steady-state solution can be obtained by neglecting the time-
derivative term in Eq. (4.3.16). Assuming for simplicity that g, is z indepen-
dent, the solution is given by

A2 = \/Roexplb(2). (4.4.1)
where P, isthe incident power and
b(2) = 3(go — )2+ 7Py 5 expl(gy — )7 dz (4.42)

Equation (4.4.1) shows that the CW signal is amplified exponentialy and ac-
quires anonlinear phase shift induced by self-phase modulation (SPM).

Following the procedure of Section A.5.1, we perturb the steady state
dightly such that

AzT)=[\/Py+a(zT)]expb(z)] (4.4.3)

and examine the evolution of the weak perturbation a(z T) using alinear sta-
bility analysis. By substituting Eq. (4.4.3) in EqQ. (4.3.16) and linearizing in a,
we obtain alinear equation that can be solved approximately and has a solution
in the form

a(zT) =a, expli( [§K(2)dz— QT)] + a,exp[—i([gK(2) dz— QT)], (4.4.4)

where Q is the frequency of perturbation. The wave number K is z depen-
dent because of the gain provided by the amplifier and is found to satisfy the
following dispersion relation [69]:

K(Q,2) = ig, T2Q? + 1| B,Q|[Q% + (4yPy/ B,) €%~ ®)71/2, (4.4.5)
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Figure 4.8 Gain spectra of modulation instability at three power levels for a dis-
tributed fiber amplifier with 30-dB gain over 10 km. Values of other parameters are
B, = —20ps?/kmand y = 10 W~ 1/km.

The dispersion relation (4.4.5) reduces to that obtained for undoped fibers
in Section A.5.1 when gain and loss are neglected. Modulation instability
occurs when K(£,2) has a negative imaginary part over a large length of the
fiber amplifier. 1t is useful to define the total integrated gain at a frequency Q
as

L
h(Q) = —2 /O Im[K(Q,2)] dz, (4.4.6)

where L isthe amplifier length. Stability of the steady state depends critically
on whether light experiences normal or anomalous GV D inside the amplifier.
In the case of normal GV D, h(2) is negative for all values of €2, and the steady
state is stable against small perturbations.

The situation is quite different in the case of anomalous GVD (f3, < 0).
Similar to the case of undoped fibers, h(€2) becomes positive in a certain range
of Q. Figure 4.8 shows the gain spectrum of modulation instability by plot-
ting h(Q) at three input power levels for a fiber amplifier with 30-dB gain
distributed over a length of 10 km. Modulation instability occurs for input
power levels of about 1 mW. It can transform a CW beam into a pulse train at
arepetition rate around 100 GHz.
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4.4.2 Periodic Lumped Amplification

Most long-haul fiber-optic communication systems use optical amplifiers in
which the doped fiber is only a few meters long. The length of such ampli-
fiersis much shorter than both the dispersion and nonlinear length scales. In
essence, the role of a fiber amplifier is to amplify the signal without intro-
ducing any temporal or spectral changes. Such amplifiers are called lumped
amplifiers since they amplify the signal by afactor of 20 dB or so over alength
of about 10 m and compensate for fiber losses acquired over adistance aslarge
as 100 km. With this scheme, optical signals can be transmitted over distances
~ 1000 km by simply placing multiple amplifiers periodically along the fiber
link.

Modulation instahility affects the performance of such periodically ampli-
fied fiber-optic communication systems in several different ways. As early as
1990, computer simulations showed that modulation instability can be a limit-
ing factor for lightwave systems employing the nonreturn-to-zero (NRZ) for-
mat for datatransmission [70]. Since then, the impact of modulation instability
has been studied, both analytically and experimentally, for single-channel as
well as WDM systems [71]-{85].

The use of optical amplifiers can induce modulation instability in both the
normal and anomalous GV D regimes of optical fibers because of the periodic
nature of amplification [74]. The new instability mechanism has its origin in
the periodic sawtooth variation of the optical power aong the link length. To
understand the physics more clearly, note that a periodic variation of power
in z is equivalent to formation of an index grating since the nonlinear part
of the refractive index depends on the local power level. The period of this
grating is equa to the amplifier spacing and is typically in the range of 40
to 80 km. Such a long-period grating provides a new coupling mechanism
between the modulation-instability sidebands and allows them to grow when
the perturbation frequency Q satisfies the Bragg condition.

Mathematically, the evolution of the optical field outside fiber amplifiersis
governed by the standard NL S equation

2
i— — 22— 4+ 7|APA= — <A, (4.4.7)
where o accounts for fiber losses. Within each amplifier, —a is replaced by

the net gain g,, and the dispersive and nonlinear effects are negligible. By
introducing a new variable B through A = Bexp(—az/2), Eq. (4.4.7) can be
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written as
BB,
dz 2 0T?
where f(z) isaperiodic function such that it decreases exponentialy as f(z) =
exp(—az) in each fiber section between amplifiers and jumpsto 1 at the loca-
tion of each amplifier.
The analysis of Section A.5.1 can be extended to include periodic varia-
tionsof f(z). If weexpand f(z) inaFourier series as

+vf(2)|B|?B=0, (4.4.8)

f(z) = i Chexp(2minz/L,), (4.4.9)

N=—oo

the frequency at which the gain of modulation instability peaksis found to be

given by [74]
2rm 2yP0c0> 1/2
Qn==+(—-+—— , 4.4.10
where the integer mrepresents the order of Bragg diffraction, L, isthe spacing
between amplifiers (grating period), and the Fourier coefficient ¢, isrelated to
the fiber loss o, or the amplifier gain G = exp(al,), as

_l-exp(—al,) G-1
B ol, ~ GInG’

o (4.4.11)
In the absence of periodic gain-oss variations, or when m= 0, £, exists only
when the CW signal experiences anomalous GVD. However, when m # 0,
modulation sidebands can occur even for normal GVD (B, > 0). For this
reason, this instability is referred to as sideband instability. Physicaly, the
creation of sidebands can be understood by noting that the nonlinear index
grating helps to satisfy the phase-matching condition necessary for four-wave
mixing when m= 0. This phenomenon can be avoided in practice by ensuring
that the amplifier spacing is not uniform along the fiber link.

4.4.3 Noise Amplification

Modulation instability can degrade the system performance considerably in
the presence of noise produced by optical amplifiers. Physically, spontaneous
emission within fiber amplifiers adds broadband noise to the amplified signal.
This noise can seed the growth of modulation-instability sidebands and is thus
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amplified through induced modulation instability [77]-{85]. Such noise am-
plification affects system performance in two ways. First, it degrades the SNR
at the receiver. Second, it broadens the signal spectrum. Since GV D-induced
broadening of optical signals depends on their spectral bandwidth, system per-
formance is compromised.

We can study the noise amplification process in each section of the fiber
between two optical amplifiers by adding noise to the CW solution of Eq.
(4.4.8) so that

B(zT) =[/P,+a(2)€°T) exp(igy, ). (4.4.12)

where ¢, = 1P, g f(2) dzis the SPM-induced nonlinear phase shift and a(2)
is the noise amplitude at the frequency Q. Substituting Eq. (4.4.12) in Eq.
(4.4.8), we obtain

da i 2 . *

— = - B,Q+iyPf(z)(a+a"). (4.4.13)

dz 2
This equation can be solved easily in the lossless case in which o = 0, and
f(z) = 1 is z independent [77]. It can aso be solved when o # O but the
solution is quite complicated as it involves the Hankel functions [80]. An
approximate solution is obtained when f(z) isreplaced by its average value g,
and is given by [85]

<al(z)) _ ( cos(Kz) —ralsin(Kz)) <ai(0))7 (4.4.14)

a,(2) rosin(Kz)  cos(Kz) a,(0)

where a; and a, are the real and imaginary parts of the noise amplitude (a =
a, +1ia,) and K and r, are defined as

K=3B,Q%,  ro=[1+4yPco/(B,Q%)]"2. (4.4.15)

Fiber amplifiers generate noise over their entire gain bandwidth (typically
> 30 nm). Frequency components of the noise that fall within the gain spec-
trum of modulation instability are amplified exponentially sincer,, and hence
the propagation constant K, becomes purely imaginary for them. In practice,
optical filtersare placed just after each amplifier to reduce the noise bandwidth.
Figure 4.9 shows an example of a numerically simulated optical spectrum at
the end of a 2500-km fiber link with 50 amplifiers placed 50 km apart [85]. A
1-mW signal at the 1.55-um wavelength is transmitted through the amplifier
chain. Optical filters with a 8-nm passband (Lorentzian shape) are placed af-
ter every amplifier. The broad pedestal represents the contribution of ASE to
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Figure 4.9 Optical spectrum for a 2500-km fiber link with 50 amplifiers showing
effects of modulation instability. Values of fiber parameters are f, = —1 ps?/km,
y=2W~Ykm, and o = 0.22 dB/km. (After Ref. [85], (©1999 |EEE)

the signal spectrum located at 1.55 um. The double-peak structure near this
wavelength is due to the standard modulation instability occurring even in the
absence of amplifiers. The weak satellite peaks result from the nonlinear index
grating formed by periodic power variations. Their location is in agreement
with the prediction of Eq. (4.4.10).

The enhancement of amplifier noise degrades the SNR of the signal at the
receiver. Experimenta results for a lightwave system operating at 10 Gh/s
showed considerable degradation after atransmission distance of only 455 km
[81]. The system performance improved considerably when the GVD was
partially compensated using a dispersion-compensating fiber. In the case of
WDM systems, a signal in one channel can act as a seed for induced modu-
lation instability—resulting in interchannel crosstalk—if the channel spacing
falls within the gain bandwidth of the instability. This phenomenon is called
resonant four-wave mixing and can occur because of SPM-mediated phase
matching, in spite of large GVD [84]. In genera, the impact of modulation
instability on lightwave systems can be reduced by reducing amplifier spacing
and by using the normal-GVD regime of the fiber link for signal transmission.



Optical Solitons 177

4.5 Optical Solitons

In this section we consider propagation of optical pulses in fiber amplifiers.
Considerable attention has also been paid to understanding the amplification
process through theoretical modeling [86]-{119]. Before considering ampli-
fication of ultrashort pulses, it is instructive to inquire whether doped fibers
can support solitons similar to those found for undoped fibers in Chapter A.5.
Since the Ginzburg—Landau equation [Eq. (4.3.16)] is not integrable by the
inverse scattering method, it does not support solitons in a strict mathemati-
cal sense. However, it may have solitary-wave solutions that represent optical
pulses whose shape does not change on propagation. Such a solution of Eq.
(4.3.16) was found as early as 1977 in the context of fluid dynamics [120]; it
was rediscovered in 1989 in the context of nonlinear fiber optics [86]. Since
then, solutions of the Ginzburg—Landau equation have been studied both ana-
lytically and numerically [121]-{129].

451 Autosolitons

Similar to the case of conventional solitons in undoped fibers, it is useful to
introduce the dimensionless variables (soliton units)

E=z/ly, t=T/T,, Uu=v7pA (45.1)

where Ly = TZ/|B,| is the dispersion length. Equation (4.3.16) then takes the
normalized form [95]

Jdu 1. J% : o
|———(s+|d)ﬁ+(l+|uz)|u| u=sHuu, (45.2)

where s= sgn(,) = £1 and the other parameters are defined as

d=0olp(Ty/To)? U =(G—®)Lp, Hy= 0/2y. (4.53)

Equation (4.5.2) reduces to the standard NL S equation when the three param-
eters d, u, and u, are set to zero. Physicaly, d is related to the amplifier
bandwidth (through the parameter T,), u is related to the amplifier gain, and
U, governs the effect of two-photon absorption. Numerical values of these pa-
rameters for most EDFAs are such that it ~ 1, d ~ 1073, and u, ~ 10~ when
Tg~1ps.
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An extended version of Eq. (4.5.2), known as the quintic Ginzburg—L andau
equation, has also attracted considerable attention [123]-{129]. It adds afifth-
order term £|uj*u to Eq. (4.5.2), where ¢ is a constant parameter that may be
complex in general. Physicaly, the quintic term results from saturation of the
fiber nonlinearity and is negligible for silica fibers at practical power levels.
For this reason, its effects are not considered in this chapter.

Since the inverse scattering method is not applicable, the solitary-wave
solutions of Eq. (4.5.2) are found by atrial-and-error method. In this method,
an analytic form of the solution is guessed, and the constants are adjusted
to satisfy Eq. (4.5.2). An appropriate functional form of the solitary-wave
solution of this equation is[120]

u(&, ) = Ne[sech(pt)]*exp(iKs§). (45.4)

The constants Ns, p, g, and K are determined by substituting this solution in
Eq. (4.5.2) and are

NZ = 3 p?[s(o” — 2) + 3qd], (45.5)
p? = —u[d(1—q?) +2sq) 1, (4.5.6)
Ks = —3p[s(1—?) — 20d], (4.5.7)

where g is asolution of the quadratic equation
(d — 1,9 9% — 3(s+ w,d)q — 2(d — w,8) = 0. (4.5.8)

Itis easy to verify that when s= —1 (anomalous GVD) and d, 1, and u,,
are set to zero, the solution (4.5.4) reduces to the standard soliton of the NLS
equation. The parameter p remains undetermined in that limit since the NLS
eguation supports a whole family of fundamental solitons such that Ns = p.
By contrast, both p and N; are fixed for the Ginzburg—L andau equation by the
amplifier parameters y and d. Thisis afundamental difference introduced by
the dopants. Fiber amplifiers select a single soliton from the entire family of
solitons supported by the undoped fiber. The width and the peak power of
this soliton are uniquely determined by the amplifier parameters (such as the
gain and its bandwidth). Such a soliton is often called the autosoliton since al
input pulses, irrespective of their width and peak power, automatically evolve
toward this unique soliton [90].

An important property of autosolitons is that, unlike conventional NLS
solitons, they represent chirped pulses. This feature is seen clearly from Eq.
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Figure 4.10 (@) Intensity and (b) chirp profiles for a soliton supported by fiber am-
plifierswhen d = 0.5. Solid and dashed curves correspond to the cases of normal and
anomalous GV D, respectively.

(4.5.4) by noting that the phase of the soliton becomes time dependent when
g # 0. Infact, Eq. (4.5.4) can be written as

u(&, t) = Nssech(pt) exp[iKsE —igin(cosh pr)]. (4.5.9)
By defining the frequency chirp as dw = —d¢/dt, the chirp is given by
o0w(t) = gptanh(pr). (4.5.10)

The parameter g governs the magnitude of chirp. As seen from Eq. (4.5.8),
g # 0 only when d or u, are nonzero. For silica fiber amplifiers, u, is small
enough that it can be set to zero. The parameter q is then given by

q=[3s+ (9+8d?)Y/?)/2d, (4.5.11)

where the sign is chosen such that both p and N; are real.

The existence of solitons in a fiber amplifier is somewhat surprising. For
the soliton to preserve its shape and energy in spite of the gain provided by
the amplifier, a loss mechanism must exist. Both gain dispersion and two-
photon absorption provide such aloss mechanism. Although the role of two-
photon absorption as a loss mechanism is easily understood, it is not obvious
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how gain dispersion leads to loss. Because of a finite gain bandwidth, the
frequency dependence of the gain is such that spectral wings of an optical pulse
experience less gain—and may even experience loss—if the pulse spectrum
becomes wider than the gain bandwidth. Thus, gain dispersion can act as a
loss mechanism for pulses with awide spectrum. Thefrequency chirp imposed
on the soliton of Eq. (4.5.9) helps to maintain balance between gain and loss
since it can tailor the pulse spectrum through the chirp parameter q. Thisis
why autosolitons are chirped. This mechanism also explains why amplifier
solitons can exist even in the normal GVD region of a doped fiber.

Figure 4.10 compares the intensity and chirp profiles of an amplifier soliton
in the cases of normal (dashed curve) and anomalous (solid curve) GVD using
d=05, u=05,and u, = 0. In both cases, the chirp is nearly linear over
most of the intensity profile, but the soliton is considerably broader in the case
of normal GVD. Dependence of soliton parameters on the gain-dispersion
parameter d isshown in Fig. 4.11, where the width parameter p~—* and the chirp
parameter g are plotted as a function of d using u = d and u, = 0. Solid and
dashed curves correspond to the cases of normal (s= 1) and anomalous (s =
—1) GVD, respectively. For large values of d, the difference between normal
and anomalous GV D disappears since the soliton behavior is determined by
gain dispersion (rather than index dispersion of the silica host). In contrast,
both the width and chirp parameters are much larger in the case of normal
GVD when d < 1. Indeed, both of these parameters tend to infinity asd — 0
since undoped fibers do not support bright solitons in the case of normal GVD.
In the presence of two-photon absorption, the soliton amplitude decreases and
itswidth increases. For most fiber amplifiers v, is so small that its effects can
be ignored.

Since gain dispersion and two-photon absorption permit the existence of
bright solitons in the normal-GVD region, one is justified in asking whether
the Ginzburg—L andau equation has solutions in the form of dark solitary waves
that exist in both normal- and anomalous-GVD regions. This turns out to be
the case. Since sech(7) is replaced by tanh(z) for dark solitons in undoped
fibers, asimple guessisto replace Eq. (4.5.9) with

u(&, 1) = Ns tanh(pt) exp[iKsé —iqIn(cosh pr)]. (4.5.12)

Equation (4.5.12) is indeed a solution of the Ginzburg—Landau equation [86].
The parameters Ng, p, g, and K are determined by a set of equations similar to
Egs. (4.5.5)+4.5.8). The qualitative behavior of dark solitons is also similar
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Figure4.11 Variation of (a) solitonwidth p~1 and (b) chirp parameter g as afunction
of d. Solid and dashed curves correspond to the cases of nhormal and anomalous GV D,
respectively.

to that of bright solitons governed by Eq. (4.5.9). In particular, gain dispersion
determines the frequency chirp imposed on the dark soliton.

Just as modulation instability can destabilize the CW solution, a solitary-
wave solution of the Ginzburg—Landau equation can also become unstable un-
der some conditions. For this reason, the stability of such solutions has been
studied extensively [123]-{125]. It is evident from Egs. (4.5.4)—(4.5.8) that
the parameters Ns and p can have real positive values only in a certain range of
the three parameters 1, d, and u, for s= +1. A stable autosoliton exists only
when u > 0 and amplifier parameters are such that both N; and p are positive
numbers. However, when u > 0, the background is not stable since any small
fluctuation can be amplified by the fiber gain. Instability of background noise
has important implications for fiber amplifiers and lasers, as will become clear
later.

452 Maxwell-Bloch Solitons

The soliton solution (4.5.9) shows that the width of autosolitons can become
comparable to the dipole relaxation time T, (see Fig. 4.11). The validity of the
Ginzburg—-L andau equation then becomes questionable since the rate-equation



182 Fiber Amplifiers

approximation used in its derivation [see EQ. (4.3.5)] becomes invalid under
such conditions. In its place, we should look for the solitary-wave solutions of
the Maxwell-Bloch equations themselves by solving Egs. (4.3.2)4.3.4).

Such solutions werefirst obtained in 1967 for nonfiber mediain which both
B, and y are negligible [130]. The underlying nonlinear phenomenon isknown
as self-induced transparency (SIT). Since 1967, SIT solitons have been studied
extensively [131]-{135]. Soliton solutions of the Maxwell-Bloch equations
exist even for a nonlinear host (without dispersion), but the resulting solitons
are chirped [132]. Chirped solitons for an amplifying two-level mediumin a
dispersive nonlinear host have also been obtained [134].

Equations (4.3.2)—(4.3.4) can be simplified considerably in the case of SIT.
Theterms containing T, and T, can be neglected because SIT requires coherent
interaction between atoms and the optical field that occurs only for optical
pulses much shorter than T, and T,. The amplitude A(z,t) can be assumed real
if the laser frequency , coincides with the atomic transition frequency .
For atwo-level absorber (no pumping), the SIT soliton is given by [130]

A(zt) = Nysech (t _TZ/ V) , (45.13)
p

where the pulse velocity V and the pulse width 7, are related as
1 1 pulw, [~ Toh(A)dA

= . 45.14
voe 2e5hC J o 14 (ATp)? ( )

In this equation, p is the atomic density, A = @ — @,, and h(A) is distribu-
tion function over which the integration is performed for an inhomogeneously
broadened two-level system.

Equation (4.5.13) shows that a“sech” pulse can propagate without change
in its shape, width, or amplitude—even in an absorbing medium—provided
that its input amplitude N, is related to its width to form a 2z pulse [135].
The effect of absorption is to slow down the optical pulse. Indeed, the soli-
ton velocity V may be reduced by several orders of magnitude (V /c ~ 10°%).
Physically, the pulse slows down because of continuous absorption and emis-
sion of radiation occurring inside the medium. Qualitatively speaking, energy
is absorbed from the leading edge of the pulse and is emitted back near the
trailing edge. For the pulse amplitude given in (4.5.13), the two processes can
occur coherently in such a manner that the pul se shape remains unchanged on
propagation. In essence, the role of dispersion is played by absorption for SIT
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solitons. Similar to the case of fiber solitons, SIT solitons describe an entire
family of solitons whose width and group velocities arerelated by Eq. (4.5.14).

The situation becomes much more interesting in the case of fiber amplifiers
since the two kinds of solitons can exist simultaneously. The silica host sup-
ports NL S solitons whereas the dopants can support SIT solitons. The question
thus arises. What happens in a fiber amplifier where dopants are inside a dis-
persive nonlinear host? To answer this question, we should look for soliton
solutions of Egs. (4.3.2)—(4.3.4) in the coherent limit in which the terms con-
taining T, and T, can be neglected [96]-{106]. Detuning effects can be ignored
by setting w, = ;. It turns out that the SIT solution given by Eq. (4.5.13) re-
mains valid but the group velacity of the soliton is determined by [97]

1 1 2n,n,wih? Y2
2o %o
+ 4.5.15
Vv <v§ u2c? ) ’ ( )

where vy is the group velocity in the undoped fiber.

A remarkable feature of Eq. (4.5.15) is that the soliton velocity depends
on the nonlinear parameter n, but isindependent of the dopant density and the
soliton width. Another noteworthy feature is that both the width and the peak
power of the soliton are uniquely determined by the amplifier. More specif-
ically, the peak power and the width of the soliton must satisfy not only the
fundamental-soliton condition N = 1 but also the SIT condition that the pulse
area equals 2 [98]. Such a SIT soliton exists for both normal and anoma-
lous GVD. The situation is similar to that occurring for autosolitons [see Eq.
(4.5.4)] in the sense that a single soliton is selected from the entire family of
SIT solitons. The surprising feature isthat an SIT soliton can be chirp free, in
contrast to the solitary-wave solution of the Ginzburg—Landau equation.

Experimental realization of SIT solitons is difficult in practice because of
the relatively small value of the dipole relaxation time (T, ~ 100 fs). In the
coherent regime, the soliton width should be smaller than T,. The required
peak power for such a 2z pulse is prohibitively large (R > 1 GW). Never-
theless, coherent effects associated with the SIT solitons were observed in an
experiment in which an EDFA was cooled to 4.2 K [136]. Cooling of a doped
fiber to such low temperatures increases T, by orders of magnitude (T, ~ 1 ns)
because of reduced phonon-related effects. Asaresult, SIT solitons can be ob-
served by using pulses widths of about 100 ps and peak powers of about 10 W.
Indeed, 400-ps pulses with peak power levels of about 50 W were used in the
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Figure 4.12 Evolution of a fundamental soliton (N = 1) in a fiber amplifier with
parametersd = 0.092, u = 2.3, and i, = 0.

experiment [136]. When such pulses were propagated in a 1.5-m-long cooled
fiber, they formed the SIT soliton when the peak power was large enough to
form the 2 pulse. Another coherent effect, known as photon echo, has also
been observed in EDFAS cooled to liquid-helium temperatures [100].

4.6 Pulse Amplification

Amplification of short optical pulses can be studied by solving the Ginzburg—
Landau eguation numerically. Since that equation is valid only for pulses of
duration T, > T,, picosecond pulses are considered first; femtosecond pulses
reguire the use of full Maxwell-Bloch equations. The split-step Fourier method
(see Section A.2.4) can be easily extended for solving these equations.

4.6.1 Picosecond Pulses

Consider the case in which the input pulse amplitude is given by A(0,t) =
/Posech(t/T,), and its width Ty is related to the peak power R, such that the
pulse will propagate as a fundamenta soliton in the absence of dopants and
fiber losses. The evolution of such a pulse in distributed fiber amplifiers is



Pulse Amplification 185

6.0

hy
o
T

NORMALIZED INTENSITY
N
o

NORMALIZED FREQUENCY

Figure 4.13 Pulse spectraat & = 1.5 and 2 corresponding to the pulse shapes shown
in Fig. 4.12. Spectral narrowing at £ = 2 is dueto gain dispersion.

studied by solving Eq. (4.5.2) numerically with the input u(0, 7) = sech(t).
The amplification process depends strongly on the value of the gain parameter
w. One can distinguish two regions depending on whether u < 1 or becomes
comparable to or larger than 1. In the former case, the soliton is amplified adi-
abaticaly. In fact, one can treat EqQ. (4.5.2) asaperturbed NL S equation (since
al three parameters d, u, and u, are much less than 1) and apply soliton
perturbation theory [104]. In essence, the soliton adjusts its parameters adia-
batically and evolves toward the chirped amplifier soliton given in Eqg. (4.5.9).

Practical fiber amplifiers can provide gains of 30 dB or more over alength
of only a few meters. For such high-gain amplifiers, the parameter u can
easily exceed 1 and the amplification process is not adiabatic. Figure 4.12
shows the evolution of afundamental soliton over adistance L = 2.5 for an
EDFA pumped to provide 10-dB gain over each dispersion length [exp(u) =
10 or u ~ 2.3]. The width T, is chosen such that T,/T, = 0.2 (d = 0.092).
Two-photon absorption is neglected by setting u, = 0. The input soliton is
compressed by more than a factor of 10 at & = 1.5, afeature that can be used
to amplify and compress ultrashort optical pulses simultaneously by passing
them through an EDFA. The soliton develops additional structure in the form
of subpulses asit propagates beyond & = 2 [67].

The compression stage seen in Fig. 4.12 is similar to that occurring for
higher-order solitons and can be understood by noting that the initial stage of



186 Fiber Amplifiers

NORMALIZED CHIRP

NORMALIZED TIME

Figure 4.14 Frequency chirp profilesat & = 1, 2, and 3. The chirp is absent at the
amplifier input (£ = 0). Parameter values are the same as for Fig. 4.12.

amplification raises the peak power such that N exceeds 1. As discussed in
Section A.5.2, the pulse tries to maintain N = 1 by reducing its width. Aslong
as the amplification process remains adiabatic, this process continues and the
pulse width keeps decreasing, as seen in Fig. 4.12 for distancesup to & = 1.5.
However, by that time the pulse has become so short, and its spectrum has be-
come so broad (comparable to the gain bandwidth), that the effects of gain dis-
persion take over. Gain dispersion reduces the spectral bandwidth and broad-
ens the pulse in the propagation region beyond & > 1.5. Spectral narrowing is
clearly seen in Fig. 4.13 where pulse spectra are compared for & = 1.5 and 2.
The soliton is also considerably chirped because of SPM and gain dispersion.
Figure 4.14 shows chirp profiles for £ = 1, 2, and 3. For £ = 1 and 2, the
features of frequency chirp are similar to those expected from SPM aone (see
Section A.4.1). However, the chirp behavior becomes qualitatively different
for £ > 2, asisevident by the rapid oscillations seen in Fig. 4.14.

The qualitative changes seenin Fig. 4.14 beyond & = 2 can be attributed to
the generation of subpulses seen in Fig. 4.12. The number of such subpulses
grows with further propagation. Figure 4.15 shows pulse shapes and spectra
at & =3 and 5. Each subpulse, once it has stabilized, has the same width and
about the same amplitude. Spacing between subpulses is nearly uniform (ex-
cept for subpulsesthat are still in the process of formation) and does not change
with propagation. These features can be understood qualitatively in terms of
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Figure 4.15 (a) Pulse shapes and (b) pulse spectraat & = 3 and 5 for the case shown
in Fig. 4.12. New subpulses are generated continuously as the pul se propagates along
the amplifier.

chirped autosolitons. The width and the peak power (parameters p and Ng) of
such solitons are fixed by the amplifier parameters [u and d in Eq. (4.5.2)].
Thus, the input pulse evolves toward such a soliton by reducing its width and
increasing its peak power (see Fig. 4.12). However, during this processit sheds
a part of its energy as dispersive waves. Because of the gain provided by the
amplifier and instability of the background, parts of the dispersive wave can
grow and evolve toward another chirped soliton. This mechanism explains
continuous generation of subpulses during the amplification process.

In the absence of soliton interactions, each subpulse will correspond to the
solitary-wave solution given by Eqg. (4.5.9). However, soliton interactions can-
not be ignored, especially for chirped solitons since chirp profiles overlap con-
siderably. It isthisinteraction of chirped solitons that leads to the oscillatory
structure in Fig. 4.13 and to the amplitude differences seen in Fig. 4.14. The
structure within the pulse spectrain Fig. 4.15(b) is also due to soliton interac-
tion. This effect has been studied for the Ginzburg—Landau equation by using
perturbation theory [137]. The results show that the origin of multiple-pulse



188 Fiber Amplifiers

300 ; T ; . ; ; . 6
250
XN
N
/
200 | / AN 14
/ \\__,/’”—
> /
) ) T
& 150 t / 1 6
& / s
100 )/ {2
/
/
Ve
50 |-
ool o
o 1 2 3 4 5 6 7 8

NORMALIZED DISTANCE, £

Figure 4.16 Energy (solid line) and RMS width (dashed line) of the amplified pulse
in the case of normal dispersion. Parameter values are the same asin Fig. 4.12.

solitons similar to those seen in Fig. 4.15 liesin the frequency chirp associated
with such solitons.

One may wonder what happens when optical pulses propagate in the normal-
dispersion region of fiber amplifiers. Solitary-wave solutions of the Ginzburg—
Landau equation exist in the form of a chirped soliton even in the case of
normal GVD (B, > 0). Thus, one can expect an input pulse to evolve toward
this soliton, similar to the case of anomalous GVD. Numerical simulations
confirm this expectation. The surprising feature, however, turns out to be the
absence of pulse splitting. Theinput pulse evolvestoward asingle chirped soli-
ton of theform givenin Eq. (4.5.9). Thisfeatureisseen in Fig. 4.16, where the
energy and the root-mean-sgquare (RMS) width of pulses are plotted as a func-
tion of distance over the range & = 0-8 for the same parameter values used in
Fig. 4.12 except that s= 1 instead of —1. Both the energy and the RM S width
become constant after initial transients have died out. In contrast with the fea-
tures seen in Fig. 4.12, the pulse width actually increases by about a factor of
4. Thisis easily understood from the results shown in Fig. 4.11 by noting that
the chirped soliton supported by fiber amplifiers is much wider in the case of
normal GVD. The absence of pulse splitting indicates that interaction between
chirped solitons is repulsive for normal GVD.
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4.6.2 Ultrashort Pulses

When input pulses are relatively short (~ 1 psor shorter), it becomes necessary
to include the higher-order nonlinear and dispersive effects. The parabolic-
gain approximation made in deriving the Ginzburg—Landau equation should
also be relaxed for such short pulses. This can be done by keeping the denom-
inator in Eqg. (4.3.6) intact while using Egs. (4.3.4) and (4.3.5). Following the
analysis of Section A.2.3 and including the higher-order effects, the general-
ized Ginzburg—Landau eguation can be written as

Ju  19%u 2 *u . 9Jujtu d|uf?
Ixiiﬁ—i_“ﬂ |6 a—— SO ot —TRUW

a(&, f)exp(—ifr)df i
OLd/ L ) 2%k (46D

where (i(&, f) isthe Fourier transform of u(, 7), f,= oy Ty; and &5, s, and 15
are the same three parameters introduced in Section A.5.5. The self-steepening
parameter s, isnegligible except for extremely short pulses ( ~ 10 fs) for which
Eq. (4.6.1) itself islikely to break down. Third-order dispersive effects are aso
negligible unless the fiber amplifier operates very close to the zero-dispersion
wavelength. In contrast, the parameter 7 governs the frequency shift induced
by intrapulse Raman scattering, and its effects should be included for pulse
widths below 5 ps.

As early as 1988, it was shown that the Raman-induced spectral shift of
solitons may be suppressed in fiber amplifiers because of gain-dispersion ef-
fects [138]. Indeed, in an early experiment [139], in which gain was provided
by SRS (rather than dopants), little frequency shift was observed even for 100-
fs pulses. Physicaly, this behavior can be understood by noting that a shift
of the pulse spectrum from the gain peak reduces the gain experienced by the
center frequency of the pulse. At the same time, spectral components located
near the gain peak are amplified more. Thus, the amplifier has a built-in mech-
anism that tries to pull the pulse spectrum toward the gain peak, resulting in a
decrease in the Raman-induced frequency shift of solitons.

One may ask how intrapulse Raman scattering affects chirped solitons in
fiber amplifiers. Equation (4.6.1) does not appear to have pulselike solitary-
wave solutions when 15 is nonzero although shocklike solutions, similar to
those discussed in Section A.5.5 for undoped fibers, may exist under certain
conditions [140]. One can use numerical simulations to study the effect of SRS
on pulse amplification. For gyL4 < 1, soliton evolution is similar to the case
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Figure4.17 Soliton amplification for T, = 100 fs and gL = 0.2 showing the effects
of Raman-induced frequency shift on (@) pulse shape and (b) pulse spectrum. (After
Ref. [104])

of undoped fibers. As the soliton amplifies adiabatically, it compresses and,
a the same time, its group velocity decreases because of the Raman-induced
frequency shift. Figure 4.17 shows the results of numerical simulations when
a100-fs soliton is amplified [104]. For values of g,L, ~ 1, the pulse splitting
seen in Fig. 4.15 dtill occurs, but both the soliton amplitude and the width
vary from subpulse to subpulse [88]. Pulse spectra show that the magnitude of
Raman-induced frequency shift is quite sensitive to the input parameters. The
shift also depends on the shape of the gain spectrum [104].

Several experiments have focused on amplification of ultrashort pulsesin
fiber amplifiers [141]-{149]. Pulse shortening for femtosecond input pulses
was observed in several of these experiments. In one experiment, the depen-
dence of the pulse width and the spectrum on amplifier gain was studied by
using 240-fs input pulses [146]. Pulses as short as 60-fs were observed at the
output end of a 3-m-long fiber amplifier. This experiment also showed that the
Raman-induced frequency shift was nearly absent at low pump powers—an
effect referred to as soliton trapping—but became dominant when the ampli-
fier gain was large enough. Figure 4.18 shows the experiment pulse spectrafor
three values of pump powers and compares them to the input spectrum (dashed
curve). The pulse spectrum did not shift significantly for pump powers of 7 and
13 mW but exhibited a shift of more than 20 nm for 25 mW of pump power.
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Figure 4.18 Experimental pulse spectra at three pump powers showing effects of
Raman-induced frequency shift; (a)—(c) correspond to pump powers of 7, 13, and
25 mW, respectively; (d) shows the 25-mW spectrum on a logarithmic scale. (After
Ref. [146], © American Institute of Physics)

For optical pulses shorter than T,, one should use, in principle, the com-
plete set of Maxwell-Bloch equations in place of the Ginzburg-Landau equa-
tion. These equations have been solved numerically by using the split-step
Fourier method [103]. The results show significant deviations between the ex-
act and approximate solutions. For example, whereas the soliton amplitude
increases exponentially and its width decreases exponentialy in the case of
Ty > T, (see Fig. 4.12), in the coherent regime in which T, < T, the changes
are linear in & rather than being exponential [96]. Even when T, > T, ini-
tially, the coherent effects should be included whenever the pulse width be-
comes comparable to T, during propagation. Both qualitative and quantitative
differences were found to occur in a numerica study in which T, = 3T, ini-
tially but the amplifier gain of 10 dB per dispersion length was large enough to
lead to considerable pulse narrowing during the amplification process [103].

One may ask how the solitary-wave solution of the Ginzburg-L andau equa-
tion—obtained in the parabolic-gain approximation and given by Eq. (4.5.4)—
changes when the Lorentzian shape of the gain spectrum is taken into account
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Figure4.19 (a) Intensity and (b) frequency chirp across the autosoliton for two val-
ues a/gyusing T, =T, = 0.2 ps, §; =5y = 1y = 0, and exp(gyLp) = 2. The solid
line shows the chirp in the parabolic-gain approximation. (After Ref. [115], (©1996,
reprinted with permission from Elsevier Science)

through Eqg. (4.6.1). Numerical solutions show that autosolitons still exist in
the sense that any input pulse evolves toward a unique solitary pulse whose
shape, amplitude, width, and chirp are determined by the amplifier parame-
ters[115]. However, the pulse characteristics are quite different than those of
the solitary-wave solution (4.5.4). A new feature is that the parameter oc/q,

plays an important role in determining the properties of the autosoliton. As an
example, Fig. 4.19 shows the intensity and chirp profiles obtained numerically
for /g, = 0.6 and 0.8 using T, = 0.2 ps. The corresponding profiles for the
parabolic-gain soliton obtained from Eq. (4.5.4) are also shown for compari-
son. In general, the autosoliton becomes narrower and more intense as o /g,

decreases. The reason can be understood by noting that the pulse spectrum
can expand as long as the gain in the spectral wings exceeds the loss level,
resulting in shorter pulses for smaller values of o:/g,. However, chirp varia-

tions along the pulse also then become large and nonuniform with a periodic
structure. It should be stressed that such autosolitons are not absolutely stable
since background noise is amplified by the amplifier.

From a practical standpoint, fiber amplifiers can be used to amplify and
compress picosecond optical pulses simultaneoudly, but the amplification pro-
cess becomes less useful for femtosecond pul ses because of temporal and spec-
tral distortions occurring as aresult of the higher-order nonlinear effects such
as the Raman-induced frequency shift. One can use the technique of chirped-
pulse amplification to advantage in that case (see Section 6.5). In this tech-
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nique, input femtosecond pulses are first chirped. The pulse width increases
substantially during the chirping process. The chirped pulse is then ampli-
fied in afiber amplifier, and the amplified pulse is recompressed by passing it
through a dispersive delay line such as a grating pair. Numerical results show
that highly efficient and practically distortionless amplification of femtosecond
pulses can be realized by this method [150]. The reason is that initial chirping
of the pulse stretches its width by as much as two orders of magnitude and
decreases the peak power accordingly. As aresult, the peak power becomes
so small that nonlinear effects are almost negligible during the amplification
process. The amplified pulse is then recompressed close to its origina width.
In a 1994 experiment, the technique of chirped-pulse amplification was used
to generate subpicosecond pulses with 100-nJ energy levels from an all-fiber
source [151].

Problems

4.1 Assuming that the gain spectrum of a fiber amplifier can be approxi-
mated by a Lorentzian profile of 30-nm bandwidth (FWHM), calculate
the amplifier bandwidths when it is operated to provide 20- and 30-dB
gain. Neglect gain saturation.

4.2 A fiber amplifier can amplify a1l-uW signal to the 1-mW level. What is
the output power when a 1-mW signal isincident on the same amplifier?
Assume a saturation power of 10 mW.

4.3 Explain the concept of noise figure for a fiber amplifier. Why does the
SNR of the amplified signal degrade by 3 dB even for an ideal amplifier?

4.4 Derive an expression for the small-signal gain of an EDFA by using rate
equations for the three-level pumping scheme. Assume arapid transfer
of the pumped population to the excited state.

4.5 Solve Egs. (4.2.7) and (4.2.8) analytically, or numerically if an analytic
solution is not possible. Plot the saturated amplifier gain as a function
of the pump power for ol = 5 and asl = 2, where L is the amplifier
length. Neglect fiber losses by setting oo = o’ = 0.

4.6 Derivethe Ginzburg—Landau equation (4.3.8) by adding the contribution
of dopants to the nonlinear polarization and following the method of
Section A.2.3.
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4.7

4.8

4.9

4.10

Fiber Amplifiers

Show by direct substitution that the chirped soliton given by Eq. (4.5.4)
is indeed a solution of the Ginzburg—Landau equation (4.5.2) when the
soliton parameters are given by Egs. (4.5.5)—(4.5.8).

Use the chirped soliton solution given by Eq. (4.5.4) to obtain an expres-
sion for the frequency chirp. How would you operate afiber amplifier to
minimize the chirp?

Solve the Ginzburg-Landau equation of the form in Eq. (4.5.2) numer-
ically by using the split-step Fourier method. Use it to reproduce the
results shown in Fig. 4.15 when a fundamental soliton is amplified in a
fiber amplifier.

Modify the numerical scheme used in the previous problem and solve
Eq. (4.6.1) numerically. Use your computer code to find the autosoliton
in the anomalous-GV D regime, setting d 5, s,, and 7 to zero and choos-
ing T, =T, = 0.2 ps, exp(gyLp) = 2, and o/g, = 0.5 and 0.7. Plot the
intensity and chirp profiles of the autosolitons obtained in the two cases.
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Chapter 5

Fiber Lasers

A fiber amplifier can be converted into a laser by placing it inside a cavity
designed to provide optical feedback. Such lasers are called fiber lasers, and
this chapter is devoted to them. Section 5.1 covers general concepts such as
pumping, cavity design, and laser threshold. The characteristics of continuous-
wave (CW) fiber lasers are covered in Section 5.2. Sections 5.3 and 5.4 dis-
cuss active and passive mode-locking techniques used to generate short optical
pulses from fiber lasers. The effects of fiber dispersion and nonlinearities on
the mode-locking process are considered in Section 5.5, using the Ginzburg—
Landau equation that represents generalization of the nonlinear Schrodinger
(NLS) equation for doped fibers with gain.

5.1 Basic Concepts

Many different rare-earth ions, such as erbium, neodymium, and ytterbium,
can be used to make fiber lasers capable of operating over a wide wavelength
range extending from 0.4 to 4 um. The first fiber laser, demonstrated in 1961,
used a Nd-doped fiber with the 300-um core diameter [1]. Low-loss silica
fibers were used to make diode-laser-pumped fiber lasers in 1973 soon after
such fibers became available [2]. Although there was some research activity
in between [3], it was not until the late 1980s that fiber lasers were fully de-
veloped. The initial emphasis was on Nd- and Er-doped fiber lasers [4]{17],
but other dopants such as holmium, samarium, thulium, and ytterbium were
also used [18]21]. Starting in 1989, the focus turned to the development of
mode-locked, erbium-doped fiber lasers (EDFL s) since such lasers are capable
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Pump 0.48 um

Pump

Pump

Figure5.1 Pumping scheme for an up-conversion laser. Energy levels of Tm3* ions
are shown. Wavy arrows indicate rapid relaxation between the states. Three 1.06-um
pump photons are absorbed for each photon emitted at 0.48 um.

of producing short optical pulses in the 1.55-um spectral region and are use-
ful for optical communications, ultrafast phenomena, and fiber-based sensors
[301{33].

5.1.1 Pumpingand Optical Gain

Pumping schemes for lasers can be classified as three- or four-level schemes
[34]-36]; both are shown in Fig. 4.1. A third kind of pumping scheme is also
possible in lasers known as up-conversion lasers [37]{43]. As an example,
Fig. 5.1 shows pumping of an up-conversion Tm-doped laser. In this pump-
ing scheme, two or more photons from the same pump laser (or from different
lasers) are absorbed by the dopant such that it is raised to an excited state
whose transition energy exceeds the energy of individual pump photons. Asa
result, the laser operates at a frequency higher than that of the pump laser, a
phenomenon known as up-conversion in nonlinear optics. Thiskind of pump-
ing has attracted attention since it can be used to make “blue’ fiber lasers that
are pumped with semiconductor |asers operating in the infrared region. In the
example shown in Fig. 5.1, three 1.06-um pump photons raise the Tn#* ion to
the excited state 1G,. Blue light near 475 nm is emitted though thelG, — 3H,
transition. Each level in Fig. 5.1 is actually an energy band because of host-
induced broadening of the atomic transition.

Three- and four-level pumping schemes were discussed in Section 4.2 in
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Figure 5.2 Pumping scheme for a four-level laser. Energy levels of Nd3t ions are
shown. An Nd-doped fiber laser can emit in three wavel ength regions near 0.92, 1.06,
and 1.35 um with 0.8-pm pumping.

the context of fiber amplifiers. EDFLs use athree-level pumping scheme and
can be pumped efficiently using semiconductor lasers operating at 0.98 or
1.48 um. Toillustrate the case of afour-level fiber laser, Fig. 5.2 showsthe en-
ergy levelsinvolved in the operation of Nd-doped fiber lasers. Such lasers can
be pumped efficiently through the*l /2 = Ry 12 transition by using 0.8-um
GaAs semiconductor lasers. They can be designed to operate in the spectral
regions near 0.92, 1.06, and 1.35 um. Pumping is most efficient for the 1.06-
um transition. Although the 1.35-um transition can also be pumped using a
four-level scheme, it suffers from the problem of excited-state absorption since
the laser light can be absorbed by the transition*F, , — *G, /- Thefirst fiber
laser in 1961 used the 1.06-um transition [1]. Fiber lasers pumped using semi-
conductor lasers were built in 1973 [2]. Modern Nd-doped fiber lasers can
generate CW power levels in excess of 10 W using arrays of semiconductor
lasers for pumping.

5.1.2 Cavity Design

Fiber lasers can be designed with avariety of choices for the laser cavity [30].
The most common type of laser cavity is known as the Fabry—Perot cavity,
which is made by placing the gain medium between two high-reflecting mir-
rors. In the case of fiber lasers, mirrors are often butt-coupled to the fiber ends
to avoid diffraction losses. This approach was adopted in 1985 for a Nd-doped
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Figure 5.3 Schematic of aunidirectional ring cavity used for fiber lasers.

fiber [4]. The dielectric mirrors were highly reflective at the 1.088-yum laser
wavelength but, at the same time, highly transmissive at the pump wavelength
of 0.82 um. Cavity losses were small enough that the laser reached threshold
at a remarkably low pump power of 100 uW. Alignment of such a cavity is
not easy since cavity losses increase rapidly with atilt of the fiber end or the
mirror, wheretolerable tiltsarelessthan 1°. This problem can be solved by de-
positing dielectric mirrors directly onto the polished ends of a doped fiber [8].
However, end-coated mirrors are quite sensitive to imperfections at the fiber
tip. Furthermore, since pump light passes through the same mirrors, dielectric
coatings can be easily damaged when high-power pump light is coupled into
the fiber.

Several alternatives exist to avoid passing the pump light through dielectric
mirrors. For example, one can take advantage of fiber couplers. Itispossibleto
design afiber coupler such that most of the pump power comes out of the port
that is a part of the laser cavity. Such couplers are called wavel ength-division
multiplexing (WDM) couplers. Another solution is to use fiber gratings as
mirrors [44]. Asdiscussed in Chapter 1, afiber Bragg grating can act as ahigh-
reflectivity mirror for the laser wavelength while being transparent to pump
radiation. The use of two such gratings results in an all-fiber Fabry—Perot
cavity [45]. An added advantage of Bragg gratings is that the laser can be
forced to operate in a single longitudinal mode. A third approach makes use
of fiber-loop mirrors [46]. As discussed in Section 3.2, fiber-loop mirrors can
be designed to reflect the laser light but transmit pump radiation.

Ring cavities are often used to realize unidirectional operation of a laser.
In the case of fiber lasers, an additional advantage isthat a ring cavity can be
made without using mirrors, resulting in an all-fiber cavity. In the smplest
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Figure5.4 Schematic of afigure-8 cavity useful for mode-locked fiber lasers.

design, two ports of a WDM coupler are connected together to form aring
cavity containing the doped fiber, as shown in Fig. 5.3. Anisolator isinserted
within the loop for unidirectional operation. A polarization controller is also
needed for conventional doped fiber that does not preserve polarization.

A ring cavity was used as early as 1985 for making an Nd-doped fiber
laser [4]. Since then, severa new designs have emerged. Figure 5.4 shows
a specific design used for mode-locked fiber lasers. This configuration is re-
ferred to as the figure-8 cavity because of its appearance. The ring cavity on
the right acts as a nonlinear amplifying-loop mirror, whose switching charac-
teristics were discussed in Section 3.2. Indeed, the nonlinear effects play an
important role in the operation of figure-8 lasers. At low powers, loop trans-
mittivity is relatively small, resulting in relatively large cavity losses for CW
operation. The Sagnac loop becomes fully transmissive for pulses whose peak
power attains a critical value [see Eq. (3.2.8)]. For this reason, afigure-8 cav-
ity favors mode locking. An isolator in the left cavity ensures unidirectional
operation. The laser output is taken through afiber coupler with low transmis-
sion (< 10%) to minimize cavity losses. An interesting property of the figure-8
cavity isthat it permits passive mode locking without a saturable absorber.

Many other cavity designs are possible. For example, one can use two
coupled Fabry—Perot cavities. In the simplest scheme, one mirror is separated
from the fiber end by a controlled amount. The 4% reflectivity of the fiber—air
interface acts as alow-reflectivity mirror that couples the fiber cavity with the
empty air-filled cavity. Such a compound resonator has been used to reduce
the line width of an Er-doped fiber laser [23]. Three fiber gratings in series
a so produce two coupled Fabry—Perot cavities. Still another design makes use
of a Fox—Smith resonator [47].
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5.1.3 Laser Threshold and Output Power

The two most important parameters characterizing a laser are the threshold
pump power and the efficiency with which the laser converts the pump power
into laser power once it has reached threshold. Laser threshold is determined
by requiring that the gain compensate total cavity losses during each round trip
[34]-36]. If we consider a Fabry—Perot cavity, formed by placing two mirrors
of reflectivities R; and R, at the two ends of afiber of length L, the threshold
condition becomes

G?RyR, exp(—20;

L) =1, (5.1.1)
where G is the single-pass amplification factor and «
|osses within the cavity.

The single-pass amplification factor should include the nonuniform nature

of the gain coefficient and is obtained using

L
G-eo|[4ad]. gd-ciN@-NE@L 612

where os is the transition cross section and N, and N, are the dopant densities
in the two energy states participating in the stimulated-emission process. By
substituting Eqg. (5.1.2) in Eq. (5.1.1), the threshold condition becomes

int @ccounts for internal

1 rL
E/O g(Z) dz= amir + aint = Ocav, (513)

where o,;, = —In(R;R,) /2L is the effective mirror loss and oy is the total
cavity loss.

The population inversion N, — N, depends on the pumping strength. In
generdl, it is obtained by using a set of three or four rate equations for the
energy levels involved in the pumping process. It was calculated in Section
4.2.3 for athree-level laser, and asimilar procedure can be followed for afour-
level laser. In fact, the calculation is even simpler since N, ~ 0 and N, < N
for a four-level laser, where N is the total ion density. For this reason, Eq.
(4.2.2) can be replaced with

JdN N

(9—»[2 = WpN; —WeN, — T_lz’
where the transition rates W, and Ws are given in Eq. (4.2.3). The steady-state
solution of Eq. (5.1.4) is given by

_ (Po/PEON;
27 14+ P/Pt’

(5.1.4)

(5.1.5)



Basic Concepts 207

where the saturation powers P* and P are defined asin Eq. (4.2.5).

The z dependence of N, stems from variations in the pump and signal pow-
ers aong the cavity length. Below or near laser threshold, gain saturation can
be neglected since R/PS$t < 1. Using the exponential decrease in the pump
power through Py(z) = Py(0) exp(—o,pz), where oy, accounts for pump losses,
the integral in Eq. (5.1.3) is easily performed. The pump power needed to
reach threshold is thus given by

. OcavL Op \ psat
Po0) = oo op(— o) <as) Py, (5.1.6)
where o = o\, and as = osN; are the absorption coefficients at the pump
and signal wavelengths, respectively. This expression shows how the laser
threshold depends on the cavity length. It is common to write the threshold
power in terms of the absorbed pump power using

Paos = Pp(0)[1 — exp(—apl)]. (5.1.7)
From Egs. (5.1.6) and (5.1.7), the threshold power R, is given by

Py = OcarL(0tp/ ats) PR = ateayL (@phvyp /T's0sT) ), (5.1.8)

where Plc’falt was obtained from Eq. (4.2.5). This equation shows how laser
threshold depends on parameters associated with the gain medium (dopants)
and the laser cavity.

The output power can a so be obtained from the threshold condition (5.1.3)
since the saturated gain remains clamped to its threshold value once the pump
power exceeds the threshold. By using Egs. (5.1.2) and (5.1.5) in Eq. (5.1.3),
we obtain

os [t PD/ Psat

LJo 1+P/P&
Theintegral isdifficult to evaluate analytically since theintracavity laser power
Ps varies with z along the fiber. However, in most cases of practical interest,
mirror reflectivities are large enough that R can be treated approximately as
constant. Theintegral then reduces to that evaluated earlier, and R is given by
the remarkably simple expression

dz = oca- (5.1.9)

Ps=P?(P,/Pn— 1), (5.1.10)

where P, is the absorbed pump power.
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A fraction of the intracavity power R, is transmitted from each mirror as
the output power. The output from the mirror of reflectivity R (or from a port
of the output fiber coupler in the case of aring cavity) can be written as

Pout = (1= Ry)Ps = Ns(Pyys — Pyp)- (5.1.11)

This equation shows that the laser power increases linearly with the absorbed
pump power. The slope efficiency, defined as the ratio dR;/dP,,, is given by

1-R, ashvs
= . 5.1.12
s ( Ocarl ) (aph"p) ( )

The dlope efficiency is a measure of the efficiency with which the laser con-
verts pump power into output power once it has reached threshold. It can be
maximized by reducing cavity losses as much as possible. Typica values of
ns are around 10% although values as high as 50% are possible in some fiber
lasers.

52 CW Fiber Lasers

Fiber lasers can be used to generate CW radiation as well as ultrashort opti-
cal pulses. This section focuses on the CW operation. The nonlinear effects
associated with the host fiber play a relatively small role in the case of CW
operation until power levels exceed several watts.

5.2.1 Nd-Doped Fiber Lasers

Nd-doped fiber lasers are of considerable practical interest as they can be
pumped using GaAs semiconductor lasers operating near 0.8 um [30]. Such
a laser was first demonstrated in 1973 using a silica fiber whose core was
codoped with alumina [2]. The graded-index fiber had a core diameter of
35 um. A Fabry—Perot cavity was made by coating polished ends of an 1-
cm-long fiber with dielectric mirrors having high reflectivity (> 99.5% at the
laser wavelength of 1.06 um). The laser reached threshold at 0.6 mW of pump
power; the absorbed pump power was estimated to be only 0.2 mW.
Single-mode silica fibers were first used in 1985 for making Nd-doped
fiber lasers [4]. The 2-m-long fiber had Nd®+ concentration of about 300 ppm
(parts per million). The laser cavity was made by butt-coupling the cleaved



CW Fiber Lasers 209

20

Threshold
1.3 mwW

5.—

Conversion
Efficiency 59%

Output Power (mW)
°

1 1 |
0 10 20 30 40
Absorbed Pump Power (mW)

Figure 5.5 Output power as a function of absorbed pump power for an Nd-doped
fiber laser. (After Ref. [12], (©1988 |EE)

fiber ends against dielectric mirrors having > 99.5% reflectivity at the 1.088-
um laser wavelength and > 80% transmission at the 0.82-um pump wave-
length. Laser threshold was reached at an absorbed pump power of only
0.1 mW. The output power was relatively low. In alater experiment, an Nd-
doped fiber laser pumped with a0.82-um dye laser [12]. Figure 5.5 shows the
output power as a function of the absorbed pump power for this laser. Ring
cavities have aso been used for Nd-doped fiber lasers. As early as 1985, a
2.2-m ring-cavity laser produced 2 mW of output power in each direction at an
absorbed pump power of 20 mW when pumped using a 595-nm dye laser [4].

Much higher power level s have been realized using double-clad fibers [48]—
[52]. In such fibers, the doped core is surrounded by an inner cladding that is
used to guide the pump light. The large size and a large numerical aperture
of the inner cladding permit efficient coupling of the pump power using GaAs
laser-diode bars capable of emitting high powers (> 10 W) near 800 nm. Since
pump light is guided by the inner cladding, the laser is pumped all along the
length of the doped fiber (side pumping in place of the commonly used end
pumping). In a 1995 experiment, a double-clad Nd-doped fiber laser emitted
9.2 W of CW power in the form of a high-quality beam when 35 W of pump
power was launched into the inner cladding of 400-um diameter [52]. The
12-um-diameter core of the double-clad fiber was doped with 1300 ppm of
Nd ions. Power levels in excess of 10 W are possible using the double-clad
geometry, although the nonlinear effects become increasingly more important
and limit the beam quality.
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Figure 5.6 (a) Output power versus absorbed pump power and (b) measured spectral
line shape for an Nd-doped fiber laser forced to oscillate in a single longitudinal mode
through an internal Bragg grating. (After Ref. [11], (©1988 |EE)

Fiber lasers normally operate in multiple longitudinal modes because of a
large gain bandwidth (> 30 nm) and arelatively small longitudinal-mode spac-
ing (< 100 MHz). The spectral bandwidth of laser output can exceed 10 nm
under CW operation [12]. The large gain bandwidth is a boon for generating
ultrashort pulses. However, many applications of CW lasers require operation
in a narrow-linewidth single mode whose wavelength can be tuned over the
gain bandwidth. Several methods have been used to realize narrow-linewidth
fiber lasers [53]. An intracavity éalon, commonly used for solid-state lasers,
can be used for fiber lasers as well. However, fiber Bragg gratings are pre-
ferred for this purpose since they can be fabricated with areflectivity spectrum
of lessthan 0.1 nm. A 1986 experiment used such a grating to realize narrow-
band operation (about 16 GHz bandwidth) of a Nd-doped fiber laser [6]. The
laser provided output powers in excess of 1.5 mW at 10 mW of input pump
power. This laser did not operate in a single longitudinal mode because arel-
atively small mode spacing. In alater experiment, single-longitudinal-mode
operation was achieved by using a fiber length of only 5 cm [11]. The Nd®*
concentration was relatively high to ensure pump absorption over such a short
length. Figure 5.6 shows the output power as a function of absorbed pump
power together with the observed spectral line shape measured through a self-
heterodyne technique. The spectral line width wasonly 1.3 MHz for this laser.

The large gain bandwidth of fiber lasers is useful for tuning them over
a wavelength range exceeding 50 nm [53]. The simplest scheme for tuning
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replaces one mirror of the Fabry—Perot cavity by adispersive grating. An Nd-
doped fiber laser was tuned in 1986 over the range of 1.07 to 1.14 um by this
technique [5]. Anintracavity birefringent filter can aso be used for tuning [7].
However, both of these techniques make use of bulky optical components. A
remarkably simple technique uses a ring cavity with a fiber coupler whose
coupling efficiency can be varied mechanically (see Fig. 5.3). Such lasers are
tuned by varying the wavelength at which reflectivity of the fiber coupler is
maximum since the cavity loss becomes minimum for that wavelength. In a
1989 experiment, an Nd-doped fiber laser could be tuned over 60 nm by this
technique [54].

Nd-doped fiber lasers can also operate in the wavelength regions near 0.92
and 1.35 um. Operation at 0.92 um requires higher pump powers because
of the three-level nature of the laser transition involved. It is necessary to
use cavity mirrors with a high reflectivity near 0.92 um but a low reflectivity
near 1.06 um so that cavity losses are high for the latter transition. In a 1986
experiment, such an Nd-doped fiber laser was tuned over 45 nm by using a
birefringent filter as a tuning device [7]. It is difficult to operate Nd-doped
silicafiber lasers at the 1.35-um transition because of excited-state absorption
(see Fig. 5.2). With a proper design, such lasers can be made to operate at
wavelengths > 1.36 um since excited-state absorption is less important for
such wavelengths [55]. Shorter wavelengths (< 1.35 um) can be obtained
by Nd-doping of fluorozirconate fibers. In one experiment, the laser operated
near 1.33 um when the cavity mirrors were selected to defavor the 1.06-um
transition [11].

5.2.2 Erbium-Doped Fiber Lasers

EDFLs can operate in several wavelength regions, ranging from visible to far
infrared. The 1.55-um region has attracted the most attention because it coin-
cides with the low-loss region of silicafibers used for optical communications.
At first sight 1.55-um EDFL s do not appear very promising because the tran-
sition 41,5, — 4 115/, terminates in the ground state of the Er3* ion. Since a
three-lev Iaser reqw resthat at least half of theion population be raised to the
excited state, it has a high threshold. Indeed, early attempts to make EDFLs
used high-power argon-ion lasers as a pump source [5]. The threshold pump
powers were ~ 100 mW with slope efficiencies ~ 1%. In one experiment, the
slope efficiency was improved to 10%, but the laser reached threshold at 44
mw [23].



212 Fiber Lasers

EDFL s pumped near 0.8-pm using GaAs semiconductor lasers suffer from
the problem of excited-state absorption. The situation improvesin silica fibers
sensitized with ytterbium [14]-{16]. The core of such fibers is codoped with
Yb,O; such that the ratio of Yb** to Er¥* concentrations is more than 20.
Such EDFLs can be pumped using 0.8-um semiconductor lasers or miniature
1.06-um Nd:YAG lasers. Theimproved performance of Y b-sensitized EDFLs
is due to the near coincidence of the?F /o State of Yb** ions with the 4l 12
state of Er®* ions. The excited state of YB** is broad enough that it can be
pumped in the range from 0.85 to 1.06 um. In one Er:Yb fiber laser, pumped
using a 0.82-um semiconductor laser, the threshold pump power was 5 mW
with a slope efficiency of 8.5% [14].

The performance of EDFL simproves considerably when they are pumped
at the 0.98 or 1.48 um wavelength because of the absence of excited-state
absorption. Indeed, semiconductor lasers operating at these wavelengths have
been developed solely for the purpose of pumping Er-doped fibers. Their use
has resulted in commercial 1.55-um fiber lasers. Asearly as 1989, a0.98-um-
pumped EDFL exhibited a slope efficiency of 58% against absorbed pump
power [26], a figure that is close to the quantum limit of 63% obtained by
taking the ratio of signal to pump photon energies. EDFLspumped at 1.48 um
also exhibit good performance. In fact, the choice between 0.98 and 1.48 um
is not always clear since each pumping wavelength has its own merits. Both
have been used for developing practical EDFLs with excellent performance
characteristics [56]{68].

An important property of continuously operating EDFLs from a practi-
cal standpoint is their ability to provide output that is tunable over a wide
range. Similar to the case of Nd-doped fiber lasers, many techniques can be
used to reduce the spectral bandwidth of tunable EDFLs[53]. In a 1989 ex-
periment [23], an intracavity étalon formed between a bare fiber end and the
output mirror led to a 620-MHz line width even though the fiber was 13 m
long. The laser wavelength can aso be tuned by using an externa grating in
combination with an étalon. Figure 5.7 shows the experimental setup together
with the tuning curves obtained for two different fiber lengths. This laser was
tunable over a 70-nm range [29]. The output power was more than 250 mW in
the wavelength range from 1.52 to 1.57 um.

Ring cavities can also be used to make tunable EDFLs[57]-{67]. A com-
mon technique uses afiber intracavity étalon that can betuned electrically [60].
Such EDFLs have shown low threshold (absorbed pump power of 2.9 mW)
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Figure5.7 (a) Experimental setup for abroadly tunable EDFL. (b) Tuning curvesfor
two different fiber lengths at 540 mW of launched power. (After Ref. [29], ©IEE)

with 15% dlope efficiency [61]. They can be tuned over 60 nm. They can
also be designed to provide a line width as small as 1.4 kHz [58]. In an op-
timized EDFL, 15.6-mW of output power was obtained with 48% slope effi-
ciency (68% with respect to absorbed pump power) while the tuning range (at
the 3-dB point) was 42 nm [67].

Many other tuning techniques have been used for fiber lasers. In one ex-
periment, a fiber laser was tuned over 33 nm through strain-induced birefrin-
gence [66]. In another, a fiber laser could be tuned over 39 nm by using are-
flection Mach—Zehnder interferometer that acts as a wavelength-selective loss
element within the ring-laser cavity [68]. The wavelength for which cavity
losses are minimum is changed by controlling the optical path length in one of
the interferometer arms either electro-optically or by applying stress.

Fiber gratings can also be used to improve the performance of EDFLS[33].
As early as 1990, a Bragg grating was used to realize a line width of about
1 GHz [44]. Since then, fiber gratings have been used in EDFAs for a variety
of reasons [69]-{82]. The simplest configuration splices a Bragg grating at
each end of an erbium-doped fiber, forming a Fabry—Perot cavity. Such devices
are called distributed Bragg reflector (DBR) lasers, following the terminology
used for semiconductor lasers[83]. DBR fiber lasers can be tuned continuously
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while exhibiting anarrow line width [70]. They can also be madeto oscillatein
asingle longitudina mode by decreasing the fiber length. In anovel scheme,
an EDFL was made to oscillate at two distinct wavelengths, with anarrow line
width at each wavelength, by fabricating two different gratings or by using a
single grating with dual-peak reflectivity [72].

Multiple fiber gratings can be used to make coupled-cavity fiber lasers.
Such lasers have operated at two different wavel engths (0.5 nm apart) simulta-
neously such that each spectral line was stable to within 3 MHz and had aline
width of only 16 kHz [73]. Fiber gratings have been used to make efficient,
low-noise EDFLSs. In one such laser, up to 7.6 mW of output power was ob-
tained without self-pulsation while the relative intensity-noise level was below
—145 dB/Hz at frequencies above 10 MHz [74]. Even higher powers can be
obtained by using the master oscillator/power amplifier (MOPA) configuration
in which afiber laser acting as a master oscillator is coupled to a fiber ampli-
fier through an intracore Bragg grating. Output powers of up to 62 mW have
been obtained by using such a configuration through active feedback while
maintaining intensity-noise levels below —110 dB/Hz at all frequencies [75].

Another approach consists of making a distributed-feedback (DFB) fiber
laser. In analogy with DFB semiconductor lasers [83], a Bragg grating is
formed directly into the erbium-doped fiber that provides gain [77]. Phase-
shifted DFB lasers have al so been made by leaving asmall region of the doped
fiber in the middle without a grating [78]. Multiple gratings with dlightly dif-
ferent Bragg wavelengths can aso be formed into the same doped fiber, result-
ing in several DFB lasers cascaded together.

Multiwavel ength optical sources, capable of emitting light at several well-
defined wavelengths simultaneoudly, are useful for WDM lightwave systems.
Fiber lasers can be used for this purpose, and several schemes have been de-
veloped [84]{91]. A dual-frequency fiber laser was demonstrated in 1993 by
using a coupled-cavity configuration [72]. Since then, simultaneous opera-
tion of afiber laser at up to 29 wavelengths has been realized by cooling the
doped fiber to 77 K using liquid nitrogen [89]. The cavity length is made quite
small (~ 1 mm or so) since spacing between the lasing wavelengths is gov-
erned by the longitudinal-mode spacing. A 1-mm cavity length corresponds
to a 100-GHz wavelength spacing. Such fiber lasers operate as standard mul-
timode lasers. Cooling of the doped fiber helps to reduce the homogeneous
broadening of the gain spectrum to below 0.5 nm. The gain spectrum is then
predominantly inhomogeneously broadened, resulting in multimode operation
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through spectral hole burning [34]. Long cavities with several meters of doped
fibers can also be used. Wavelength selection is then made using an intra
cavity comb filter such as a Fabry—Perot interferometer [84]. In a dual-filter
approach, atunable comb filter in combination with a set of fiber gratings pro-
vides a multiwavelength source that is switchable on a microsecond timescale
to precise preselected wavelengths [90].

5.2.3 Other Fiber Lasers

Many other rare-earth ions can be used to make fiber lasers. Holmium, samar-
ium, thulium, and ytterbium were used in 1988 nearly simultaneous exper-
iments [18]-{21] to make fiber lasers emitting at wavelengths ranging from
visible to infrared. Attention later shifted to Pr3+ ions in an attempt to realize
fiber lasers and amplifiers operating at 1.3 um [92]{95]. Pr-doped fiber lasers
can also operate at 1.05-um. A tuning range of 86 nm was realized in an ex-
periment in which the laser was pumped at 592 nm by using a dye laser [96].
Pr-doped fiber lasers can also be operated in the visible region using an up-
conversion pumping scheme [97].

Thulium-doped fiber lasers have attracted considerable attention because
of their potential applications [98]-{100]. They can be operated either in the
blue region of the optical spectrum through an up-conversion pumping scheme
(see Fig. 5.1) or at the 3F, — 3H, transition that allows tuning over a range
extending from 1.71 to 2.1 um. A diode-pumped blue fiber laser is useful for
several applications. By 1997, 230 mW of blue light at 481 nm was obtained
by pumping a Tm-doped fiber laser with a diode-pumped Nd:YAG laser [99].

Operation at several other important wavelengths can be realized by using
fluoride fibers as a host in place of silica fibers. The3Hg — 3H, transition
provides emission in the 2.25- to 2.4-um wavelength range, which is useful
for sensing hydrocarbon gases [100]. The3F, — 3H, transition can provide
tunable lasers in the 1.45- to 1.51-um wavelength range, which is useful for
pumping EDFAs and Raman amplifiers. Output powers of 1 W have been
obtained at this transition by pumping at 1.06 um from a compact Nd:YAG
laser [101]. Laser threshold and slope efficiency were respectively 175 mwW
and 29%, and the laser could be tuned from 1.445 to 1.51 um.

Holmium-doped fiber lasers have attracted attention because they oper-
ate near 2 um, a wavelength useful for medical and other eye-safe applica
tions. Such lasers were first made in 1988 using fluoride fibers [18]. Thulium-
codoping permits these lasers to be pumped with GaAs lasers operating near
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0.8 um[102]. By 1994, Ho-doped fiber lasers, made by using silicafibers and
pumped near 0.8 um, provided output powers of about 10 mW while being
tunable over the wavelength range from 2.037 to 2.096 um [103].

Y tterbium-doped fiber lasers, operating near 1.01 um and tunable over
60 nm, were first made in 1988 [21]. In 1992, the use of fluoride fibers as
the host medium provided output powers of up to 100 mW [104]. In a later
experiment, more than 200-mW power with a quantum efficiency of 80% was
obtained from a silica-based Y b-doped fiber laser pumped at 869 nm [105].
Two intracavity Bragg gratings, fabricated directly onto the doped fiber with
reflectivities of 65% and 99%, formed the 7-m-long Fabry—Perot cavity of the
fiber laser. Power levels as high as 110 W have been realized from Y b-doped
fiber lasers by using double-clad fibers. In the 1999 demonstration of this
technigue, the inner cladding of the Y b-doped fiber had a rectangular cross
section [106]. Four diode-laser bars, each emitting 45 W of power near the
915-nm wavelength, were used for pumping the fiber laser. The laser emitted
up to 110 W of CW radiation at a wavelength near 1.12 um, with an optical
conversion efficiency of 58.3%. In another approach to high-power levels, the
output of a low-power Yb-doped fiber laser (master oscillator) is amplified
using a power amplifier (the MOPA configuration). Power levels of several
watts have been obtained using a single amplifier [107], [108]. This scheme
has the potential for realizing ultrahigh power levels by using an array of fiber
amplifiers seeded by a single master oscillator.

524 Sef-Pulsing and Chaos

Some fiber lasers emit a train of optical pulses even when pumped continu-
ously. This phenomenon isreferred to as self-pulsing and is a specific example
of laser instabilities that occur in many kinds of lasers [109]. Its occurrence
requires anonlinear mechanism within the laser cavity. Self-pulsing in EDFLs
has been observed, and its origin is attributed to two different nonlinear mech-
anisms [110]-{113]. In one study, ion—on interactions in erbium clusters were
found to produce self-pulsing [111]. Another model shows that self-pulsing
can result from destabilization of relaxation oscillations [112], the same mech-
anism that leads to self-pulsing in semiconductor lasers [109]. This origin of
self-pulsing was confirmed in an experiment in which the Er-doped fiber was
codoped with alumina to minimize production of erbium-ion clusters within
the silica core [113]. In fact, the repetition rate of pulses agreed quite well
with relaxation-oscillation frequency. A rate-equation model, generalized to
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Figure5.8 Chaotic power fluctuations for the two polarization components observed
experimentally at the output of an EDFL. (After Ref. [118], (©1997 by the American
Physical Society)

include the excited-state absorption of pump radiation, reproduced most of the
features of self-pulsing observed experimentally.

It is well known that self-pulsing often leads to optical chaos in the laser
output, following a period-doubling or a quasi-periodic route [109]. Chaotic
behavior in fiber lasers has been observed and attributed to several different
nonlinear mechanisms [114]-{120]. Since fiber lasers constitute an example
of class-B lasers, the single-mode rate equations do not predict chaos [109].
However, chaos can be induced through pump modulation, optical feedback,
or external injection [116]. In the case of fiber lasers, chaos can also occur be-
cause of nonlinear coupling between the orthogonally polarized components
of the optica field. In an interesting set of experiments, chaos in an EDFL
originated from the nonlinear polarization dynamics occurring on a timescale
shorter than the round-trip time inside the laser cavity [118]. The two polar-
ization components inside the laser cavity were coupled nonlinearly through
cross saturation and gain sharing. A polarization controller inside the cav-
ity acted as a half-wave plate and introduced additional coupling. Figure 5.8
shows an example of chaotic power fluctuations occurring for the two polar-
ization components. Depending on the pumping and loss levels, a variety of
chaotic patterns were observed experimentally. The experimental data can be
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modeled quite well using a stochastic delay difference model.

In general, the outputs of two chaotic fiber lasers are not synchronized.
This feature can be used for transmitting data in a secure manner if the signal
is generated by modulating the output of a chaotic laser. Several experiments
have used chaotic fiber lasers to demonstrate the possibility of secure optical
communications [121]-{124]. In one set of experiments, the signal is enclosed
on the chaotic waveform by injecting it into the EDFA [121]. The laser output
isthen transmitted through afiber link (aslong as 35 km). At the receiver end,
apart of the chaotic signa isinjected into another EDFL, designed to be nearly
identical to the one at the transmitter, for chaos synchronization. The data can
be recovered from the remaining received signal because of this synchroniza-
tion. Signal recovery at a bit rate of up to 250 Mb/s was demonstrated in the
1999 experiment [123]. The hit rate can be extended to beyond 1 Gb/s [124].

5.3 Short-Pulse Fiber Lasers

Two techniques used for generating short optical pulses from lasers are known
as Q-switching and mode locking [34]-{36]. Anintracavity acousto-optic mod-
ulator was used as early as 1986 to obtain Q-switched optical pulses from fiber
lasers [5]. Q-switching remains a useful technique for fiber lasers since it
can generate high peak-power (> 1 kW) pulses whose wavelengths are tun-
able over a wide range covering the entire gain spectrum [125]-{133]. In a
1999 experiment, Q-switched pulses from a double-clad Y b-fiber laser could
be tuned from 1060 to 1100 nm while maintaining peak powers as large as
2 kW [131]. In another experiment, a Fabry—Perot étalon, with a free spectral
range of 0.535 nm and afinesse of 76, allowed emission of Q-switched pulses
from an EDFL at more than 90 distinct wavelengths simultaneously [132].
Pulse energies as high as 2.3 mJ have been generated at a repetition rate of
500 Hz from a cladding-pumped Y b-doped fiber laser [133].

Q-switching produces relatively broad optical pulses (~ 100 ns). In con-
trast, mode locking can generate pulses shorter than 100 fs. Early experiments
on Nd-doped fiber lasers produced pulses of > 1-ns duration [7]. Pulse widths
of 120 ps were obtained by 1988 using a laser-diode array for pumping [17].
Starting in 1989, attention focused on the development of mode-locked ED-
FL s because of their potential applications in lightwave systems [134]{138].
In this section we focus on actively mode-locked fiber lasers; passive mode
locking is discussed in the next section.
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5.3.1 Physicsof Mode Locking

Fiber lasers operate simultaneously in a large number of longitudina modes
faling within the gain bandwidth. The frequency spacing among the modes
is given by Av = ¢/Ly, Where Ly is the optical length during one round
trip inside the cavity. Multimode operation is due to a wide gain bandwidth
compared with arelatively small mode spacing of fiber lasers (Av ~ 10 MHZz).
Thetotal optical field can be written as

M
Et)= ) Emexp(i¢m—iont), (5.3.1)
m=—M

where En, ¢m, and wny, are the amplitude, phase, and frequency of a specific
mode among 2M + 1 modes. If all modes operate independently of each other
with no definite phase relationship among them, the interference terms in the
total intensity |E(t)[? averages out to zero. Thisis the situation in multimode
CW lasers.

Mode locking occurs when phases of various longitudinal modes are syn-
chronized such that the phase difference between any two neighboring modes
is locked to a constant value ¢ such that ¢m— ¢,, ; = ¢. Such a phase rela-
tionship implies that ¢m = m¢ + ¢,. The mode frequency wn, can be written as
Om = 0+ 2mrAv. If we usetheserelationsin Eq. (5.3.1) and assume for sim-
plicity that all modes have the same amplitude E,, the sum can be performed
analytically. Theresult is given by [36]

[(.2|\2/I + 1) mAvt+¢/2] E2 (532)
sn‘(mAvt+¢/2)

Thetotal intensity |E(t)[? is shown in Fig. 5.9 for nine coupled modes (M = 4).
Itisaperiodic function of timewith period 7, = 1/Av, whichisjust the round-
trip time inside the laser cavity. The laser output is in the form of a pulse train
whose individual pulses are spaced by 1,. A ssimple way to interpret this result
is that a single pulse circulates inside the laser cavity and a fraction of its
energy is emitted by the laser each time the pulse arrives at the output coupler.
The pulse width is estimated from Eg. (5.3.2) to be 7, = [(2M + 1)Av]~L.
Since (2M + 1)Av represents the total bandwidth of all phase-locked modes,
the pulsewidthisinversely related to the spectral bandwidth over which phases
of various longitudina modes can be synchronized. The exact relationship
between the pulse width and the gain bandwidth Avy depends on the nature of
gain broadening (homogeneous versus inhomogeneous).

-2
Em)2=2"
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Figure5.9 Pulsetrain formedwhen nine modes of equal amplitudes are modelocked.

5.3.2 Active Mode L ocking

Active mode locking requires modulation of either the amplitude or the phase
of the intracavity optical field at a frequency f,, equa to (or a multiple of) the
mode spacing Av. It isreferred to as AM (amplitude modulation) or FM (fre-
guency modulation) mode locking depending on whether amplitude or phaseis
modulated. One can understand the locking process as follows. Both the AM
and FM techniques generate modulation sidebands, spaced apart by the mod-
ulation frequency fn. These sidebands overlap with the neighboring modes
when f, = Av. Such an overlap leads to phase synchronization. The mode-
locking process can be modeled by using a set of multimode rate equations in
which the amplitude of each mode is coupled to its nearest neighbors [34].

One can aso understand the process of pulse formation in the time domain.
Figure 5.10 shows the case of AM mode locking in which cavity losses are
modulated at the frequency Av. Since the laser generates more light at the loss
minima, the intracavity field is modulated at the same frequency. This slight
intensity difference builds up on successive round trips, and the laser emits a
train of mode-locked pulses in the steady state. Stated another way, the laser
threshold is lower for pulsed operation. As aresult, the laser emits a train of
pulses in place of the CW output.

The time-domain theory of mode locking considers the evolution of a
mode-locked pulse over one round trip inside the laser cavity [139]-{141]. As
usual, even though the pulse amplitude A(z,t) is modified by the gain medium
and the modulator, it should recover its original value after one round trip



Short-Pulse Fiber Lasers 221

|
| ] | Modulated
cavity loss

| | |
| | |

Amplitude

Mode-locked
pulses

1
Time

v

Figure 5.10 Schematic illustration of active AM mode locking through modulation
of cavity losses.

under steady-state conditions. We can adapt the Ginzburg-Landau equation,
derived in Section 4.3 for fiber amplifiers, to the case of fiber lasers by adding
the losses introduced by the amplitude modulator and cavity mirrors. This
requires replacing the loss parameter o in Eq. (4.3.17) with

o = 0+ oy [1— cos(awyt)], (5.3.3

where o accounts for all cavity losses and o), isthe additional loss, periodic
at the frequency ), introduced by the modulator. In the context of fiber lasers,
Eq. (4.3.17) becomes

, 2 ,

%\ + Ié(ﬁ2+ igcTzz)%T'zA =i <y+ Iéoc2> |APA+ %(gc —a)A, (534
where g isthe saturated gain averaged over the cavity length L. The parameter
T, is related inversely to the gain bandwidth as T, = 1/Qg. This equation is
sometimes called the master equation of mode locking [141].

Consider first the case in which the effects of group-velocity dispersion
(GVD) and self-phase modulation (SPM) can beignored by setting 3, = 0 and
y=0in Eq. (5.3.4). Two-photon absorption can also be neglected (o, = 0). If
we use cos(myt) ~ 1— %(w,\,lt)2 in EQ. (5.3.3), assuming that the pulse width
is much shorter than a modulation cycle, Eq. (5.3.4) takes the form

oA 22A\ 1 1
== % <A+ ngﬁ) -5 <ac+ éa,v,w,\zﬂtz) A (5.3.5)
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In the steady state, we look for solutions of the form A(z t) = B(t) exp(iKz),
where B(t) governs the pulse shape that does not change from one round trip
to next. The resulting ordinary differential equation for B(t) is identica to
that of a harmonic oscillator and has the following solution in terms of the
Hermite-Gauss functions [141]:

Bn(t) = CaHn(t/T,) exp[—1(t/T,)?), (5.3.6)
wheren=0,1,2,..., H, isthe Hermite polynomial of order n,
To = [29c/ (o Q501 (53.7)

is ameasure of the width of mode-locked pulses, and C, is a normalization
constant related to the pulse energy. The propagation constant K depends on
various laser parameters as

iK =0gc— oc— oy g TE(N+3). (5.3.8)

In the steady state, K should be real. Equation (5.3.8) provides the sat-
urated gain needed for various Hermite—-Gauss temporal modes supported by
the laser. Since the lowest gain occurs for n = 0, an actively mode-locked
laser emits a Gaussian pulse with a full width at haf maximum (FWHM)
Tp ~ 1.665T,,. The pulse width depends on both the gain bandwidth Qg and the
modulator frequency m,, = 2rAv, where Av isthe longitudinal-mode spacing.

The situation changes considerably when the effects GVD and SPM are
included in Eq. (5.3.4). In the absence of gain and losses, this equation reduces
to the NL S equation and has the soliton solutions discussed in Chapter A.5.
The solution corresponding to afundamental soliton is given by

Az t) = /Py sech(t/Ts) exp(iz/2Lp), (5.3.9)

where the peak power Ry and the width T, are related by the usual soliton
condition
N = yRoT5 /1B, =1, (5.3.10)

where N isthe soliton order.

The important question is how the soliton solution is affected by the gain
and losses inside the laser cavity. If the pulse formation is dominated by the
GVD and SPM effects, one should expect the mode-locked pulse to behave
as a fundamental soliton and have the “sech” shape in place of the Gaussian
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shape predicted above in the absence of GVD and SPM. Soliton perturbation
theory has been used to find the width of the steady-state soliton pulse. The
results show that the mode-locked pulse is shorter than that predicted by Eq.
(5.3.6) when soliton effects are significant. The maximum possible reduction
factor islimited by [142]

(To/To? < 3 (3dg + \fodz —72),  dy=Re(,/1+i[B,03/ac) . (5:3.11)

In general, pulses become shorter as the amount of anomalous GV D increases,
reduction by afactor of 2 occurs when |B,| = SQC/QS. Note also that a mini-
mum amount of GVD is required for solitons to form since dg should exceed
r/3.

5.3.3 Harmonic Mode L ocking

The most common technique for active mode locking of fiber lasers makes
use of an amplitude or phase modulator. Both acousto-optic and electro-optic
modulators have been used for this purpose. However, most bulk modulators
are not suitable for fiber lasers because of their size. They aso introduce large
coupling losses when light is coupled into and out of the modulator. An excep-
tion occurs in the case of LiNbO; modulators, which are relatively compact
and can be integrated within the fiber cavity with relatively small coupling
losses. They can also be modulated at speeds as high as 40 GHz [143]. For
these reasons, LiNbO; modulators are commonly used for mode-locking fiber
lasers.

Active modelocking of EDFLsinitially produced pulses of widths > 10 ps.
In a 1989 experiment, 4-ps pulses were generated using a ring cavity that in-
cluded 2-km of standard fiber with large anomalous GVD [144]. Generation
of short pulses was attributed to the soliton effects. In fact, the peak power
of pulses was in good agreement with the expected peak power for the fun-
damental soliton from Eq. (5.3.10). The soliton-like nature of emitted pulses
was also confirmed by the inferred “sech” shape and by the measured time-
bandwidth product of 0.35. The pulse width was reduced to below 2 psin
an FM mode-locking experiment that used a Fabry—Perot cavity [145]. The
fiber was only 10 m long, resulting in a longitudinal-mode spacing of about
10 MHz. This laser was referred to as the fiber-soliton laser since the “ sech”
pulses were nearly chirp free, with atime-bandwidth product of only 0.3. The
laser wavelength could be tuned over the range of 1.52 to 1.58 um, indicating
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that such lasers can serve as a source of tunable picosecond pulsesin the 1.55-
um wavelength region of interest for optical communication systems. In this
experiment, the LiNbO,; modulator was operated at 420 MHz. This kind of
mode locking, where modulation frequency is an integer multiple of the mode
spacing, is called harmonic mode locking [34].

The performance of harmonically mode-locked EDFLSs has continued to
improve [146]-{174]. Asearly as 1990, the pul se-repetition rate was extended
to 30 GHz by using a high-speed LiNbO; modulator [146]. A ring cavity
of 30-m length was used with an intracavity isolator for unidirectional oper-
ation. In a 1992 experiment, a fiber laser provided transform-limited 3.5- to
10-ps pulses with atime-bandwidth product of 0.32 at repetition rates of up to
20 GHz [147]. Thelaser was used in a system experiment to demonstrate that
such pulses can be used for soliton communication systems at bit rates of up
to 8 Gh/s.

A common problem with harmonically mode-locked fiber lasers is that
they are unable to produce stable, equal-amplitude pulse trains over extended
periods unless a stabilization technique is used. A phase-locking technique
in which the optical phase is locked to the electrical drive of the modulator
has been used with success [148]. In another approach, the use of a high-
finesse Fabry—Perot étalon with afree spectral range equal to the repetition rate
has resulted in a stable harmonically mode-locked EDFL suitable for soliton
communication systems [149]. Polarization-maintaining fibers have also been
used to make actively mode-locked EDFLs. In 1993, such a laser produced
6-ps pulses at repetition rates of up to 40 GHz and at wavelengths tunable over
awide range from 40 to 50 nm [151].

In adifferent approach, acavity design known as the sigma configurationis
used for making environmentally stable fiber lasers [156]. Figure 5.11 shows
the o-shaped cavity schematically consisting of two parts. A loop made of
polarization-maintaining fiber contains a LiNbG; amplitude modulator and an
output coupler. The loop is coupled to a linear section through a polarizing
beam splitter. This section is made of traditional fibers and does not preserve
the polarization state. However, it terminates with a Faraday rotator placed in
front of amirror. Such a Faraday mirror produces orthogonally polarized light
on reflection. As a result, al birefringence effects are totally compensated
during each round trip in the linear section.

A dispersion-compensating fiber can be used in the linear branch for reduc-
ing the average GV D. Such a dispersion-management technique has many ad-
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Figure 5.11 Schematic of a harmonically mode-locked fiber laser employing the
sigma configuration. The 10-m-long fiber amplifier (FA) is connected to a 90-m prop-
agation loop in the linear section. (After Ref. [156])

vantages, which will be discussed in Chapter 7. It isimportant to note that the
sigma cavity is functionally equivalent to aring cavity because of the Faraday
mirror. In 1996 experiment, such alaser produced 1.3-ps pulses at the 10-GHz
repetition rate through soliton-shaping effects while maintaining a negligible
pulse-dropout rate and low noise [156]. The pulse shape was close to Gaus-
sian in the center but fitted the “sech” shape better in the wings. Thisis a
well-known feature of dispersion-managed solitons (see Chapter 8). The pulse
width also decreased at higher power levels because of the increased nonlinear
phase shift produced by SPM. This feature isin agreement with Eq. (5.3.10).

Active mode locking requires the modulation frequency of the LiNbG,
modulator to remain matched to the longitudinal-mode spacing Av (or a mul-
tiple of it) quite precisely. This is difficult to realize in practice because of
fluctuations in Av induced by environmental changes. The matching prob-
lem can be solved automatically by using the technique of regenerative mode
locking [153]. In this technique, the electrical signal for the modulator at the
correct modulation frequency is generated from the laser output using a clock-
extraction circuit, a phase controller, and a microwave amplifier. Even though
the laser is not initially mode locked, its power spectrum contains the beat sig-
nal at frequencies corresponding to multiples of the longitudinal-mode spac-
ing. This signal can be used to produce pulse trains at high repetition rates
through harmonic mode locking. As early as 1995, 1.8-ps pulses were pro-
duced at the 20-GHz repetition rate using regenerative mode locking of aring
cavity made by using polarization-maintaining fiber components [155]. The
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Figure 5.12 Temporal (circles) and spectral (triangles) widths for a sigmalaser as a
function of intracavity optical power Pcay. (After Ref. [171])

output pulses could be compressed to below 0.2 psin a fiber amplifier made
with dispersion-decreasing fiber. The wavelength of the regeneratively mode-
locked laser was tunable over a considerable range within the gain spectrum of
erbium ions. Moreover, the mode-locked pulse train exhibited low timing jitter
(about 120 fs) and small energy fluctuations (about 0.2%) at a repetition rate
of 10 GHz [168]. In a 1999 experiment, the technique of regenerative mode
locking produced a 40-GHz pulse train tunable over 1530 to 1560 nm while
maintaining pulse widths closeto 1 ps[169].

A harmonically mode-locked fiber laser can al so be stabilized with an elec-
tronic feedback loop that is used to adjust the cavity length. Such a scheme has
been used for a sigma-configuration laser whose cavity included a piezoel ec-
tric transducer for fine adjustment of the cavity length [171]. The cavity aso
included an optical filter (bandwidth 16 nm). A careful analysis of this sigma
laser showed that it has three distinct regions of operation. Figure 5.12 shows
how temporal and spectral widths of the mode-locked pulses change with in-
creasing intracavity power. At low power levels, the nonlinear effects (SPM)
in silica fibers are negligible, and the laser produces Gaussian-shaped pulses
of width close to 5 ps. Asthe intracavity power increases, the soliton effects
become important, and the pul ses become narrower, more intense, and attain a
certain fixed energy level (asrequired for autosolitons). If the average power is
not large enough to sustain such pulsesin al time slots (because of ahigh rep-
etition rate enforced by the modulator), pulse dropouts occur in arandom fash-
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ion. Finally, when theintracavity power exceeds acertain value (about 5 mW),
the laser emits atrain of short optical pulses (width 1-3 ps) with a negligible
dropout rate, low noise, and low timing jitter. This behavior is in agreement
with numerical simulations based on the Maxwell-Bloch equations [172]. The
theory predicts a fourth regime in which more than one pulse may occupy the
sametime dot at high power levels when GVD is uniform inside the cavity.

In general, the use of dispersion management improves the laser perfor-
mance considerably. It helpsto reduce the timing jitter in the position of mode-
locked pulses within the pulse train. The jitter reduction is similar in nature
to that occurring for periodically amplified lightwave systems (see Chapter 8).
Fiber lasers employing dispersion management and polarization-maintaining
fibers can be designed to emit 10-GHz pulse trains simultaneously at two dif-
ferent wavelengths [170]. At a single wavelength, the repetition rate of the
mode-locked pulse train can be made as high as 40 GHz using AM mode lock-
ing. The repetition rate of 64 GHz has been realized in an FM mode-locked
fiber laser in which the optical phase was modulated at 16 GHz, and a Fabry—
Perot filter with a 64-GHz free spectral range was used to initiate harmonic
mode locking [166]. Such fiber lasers should prove useful for lightwave sys-
tems employing the return-to-zero (RZ) format for data transmission.

5.34 Other Techniques

An undesirable aspect of actively mode-locked fiber lasers is that the use of
a LiNbO; modulator introduces a nonfiber element inside the laser cavity.
Severa technigues have been used to produce mode locking without requir-
ing an electro-optic modulator. In one scheme, the nonlinear phenomenon
of cross-phase modulation (XPM) is used to produce an all-fiber mode-locked
EDFL [175]-179]. Figure 5.13 showsthe design of such alaser schematically.
A relatively long length (several kilometers) of fiber is inserted into the ring
cavity through two WDM couplers. Pump pulses from an external laser prop-
agate into this fiber and modulate the phase of laser light through XPM. If the
repetition rate of pump pulsesisan integer multiple of the mode spacing, XPM
forces the fiber laser to produce mode-locked pulses. Pulses shorter than 10 ps
have been obtained by this technique at repetition rates up to 40 GHz. Such
alaser has been used to transfer an arbitrary bit pattern from the pump-pulse
wavelength to the laser wavelength [176], resulting in wavelength conversion.
This technique can also be used to make an opticaly programmable mode-
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Figure 5.13 Experimental setup for observation of XPM-induced mode locking in
fiber lasers. (After Ref. [175], (©1992 |EE)

locked laser such that emitted pulses represent the result of logic operations
between elements of the driving pulse train [177].

Synchronous pumping can also be used for FM mode locking of fiber
lasers. Implementation of thistechnique is extremely simple for EDFL s pump-
ed with semiconductor lasers since one can simply modulate the pump-laser
current at the appropriate frequency. Because of arelatively long fluorescence
time (~ 10 ms) of erbium ions, it is not possible to modulate the gain at fre-
quencies in excess of 1 MHz. However, pump pulses can modulate the laser
field through XPM athough XPM-induced phase shift is expected to be quite
small. In a1992 experiment in which an EDFL was pumped at 980 nm, mode-
locked pulses were relatively broad with widths > 100 ps [180]. Since the
XPM-induced phase shift depends on the group-velocity mismatch, it can be
increased by decreasing the mismatch. Indeed, pulses shorter than 50 ps were
generated when a 1.48-um pump laser was used [181]. Another way to in-
crease the XPM-induced phase shift is to increase the peak power of pump
pulses. Mode-locked pulses as short as 2 ps were generated in an EDFL
pumped with a Nd:YAG laser producing 100-ps pulses at the 100-MHz rep-
etition rate [182]. Soliton shaping plays an important rolein these experiments
since phase-modulated CW laser radiation is converted into nearly chirp-free
soliton pulses through the combined action of GVD and SPM.

Severa other variations have been used for actively mode-locked fiber
lasers. In one scheme, a semiconductor optical amplifier is used as the mode-
locking element [183]. In essence, the long piece of silicafiber in Fig. 5.13 is
replaced with a pigtailed amplifier. When pump pulses and laser light prop-
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agate inside the amplifier, the nonlinear phenomenon of cross-gain saturation
modulates both the amplitude and the phase of laser light. GVD and SPM
occurring inside the fiber cavity convert the modulated signal into a train of
mode-locked soliton pulses. Pulses shorter than 10 ps at repetition rates of up
to 20 GHz have been generated by this technique [184].

In another scheme, an acousto-optic modulator and an optical filter are
placed inside the laser cavity [185]{188]. The modulator’s role is to shift the
laser frequency by a small amount (~ 100 MHz). Such a frequency-shifted
feedback in combination with the fiber nonlinearity leads to formation of pi-
cosecond optical pulses inside the laser cavity. Pulses shorter than 10 ps have
been generated by using a narrowband optical filter [186]. The theory of such
lasers is similar to that used for soliton communication systems making use
of diding-frequency guiding filters (see Chapter 8). In both cases, the soliton
maintains itself by changing its frequency adiabatically so that its spectrum
remains close to the gain peak. The CW light, in contrast, moves away from
the gain peak after afew round trips because of the frequency shift, and thus
experiences higher losses than the soliton. As a result, the fiber laser emits
mode-locked soliton pulses. Such a laser can also be classified as passively
mode locked since nothing modulates the amplitude or phase of laser light at
the round-trip frequency or its multiple. We focus on passive mode locking in
the following two sections.

5.4 Passive Mode L ocking

Passive mode locking is an all-optical nonlinear technique capable of produc-
ing ultrashort optical pulses, without requiring any active component (such as
amodulator) inside the laser cavity. It makes use of anonlinear device whose
response to an entering optical pulse is intensity dependent such that the ex-
iting pulse is narrower than the input pulse. Several implementations of this
basic idea have been used to make passively mode-locked fiber lasers. This
section discusses mostly experimental results.

5.4.1 Saturable Absorbers

Saturable absorbers have been used for passive mode locking since the early
1970s. In fact, their use was the sole method available for this purpose until
the advent of additive-pulse mode locking. The basic mechanism behind mode
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locking is easily understood by considering a fast saturable absorber whose
absorption can change on atimescal e of the pulse width. When an optical pulse
propagates through such an absorber, its wings experience more loss than the
central part, which is intense enough to saturate the absorber. The net result
is that the pulse is shortened during its passage through the absorber. Pulse
shortening provides a mechanism through which a laser can minimize cavity
losses by generating intense pulses if the CW radiation is unable to saturate
the absorber.

To quantify the extent of pulse shortening in a saturable absorber, we
should replace g, by o, in Eq. (4.1.9), where ¢, is the small-signal absorption
coefficient. The resulting equation can be integrated analytically to obtain

In(Pout/Pin) + (Pout - Pin)/P%+ O‘o'a =0, (5.4.1)

where P, and P, are the input and output powers, R, isthe saturation power,
and |, is the length of the saturable absorber. For a fast-responding saturable
absorber, Eq. (5.4.1) applies along the entire pulse and can be used to obtain
the output shape Ry (t) for a given input shape P, (t). The output pulse is
aways dightly narrower than the input pul se because of the absorption of low-
intensity wings.

The pulse-formation process is quite complex in passively mode-locked
lasers[34]. Fluctuations induced by spontaneous emission are enhanced by the
saturable absorber during multiple round trips inside the laser cavity until an
intense pulse capable of saturating the absorber isformed. The pulse continues
to shorten until it becomes so short that its spectral width is comparable to
the gain bandwidth. The reduced gain in spectra wings then provides the
broadening mechanism that stabilizes the pulse width to a specific value. In
the case of fiber lasers, GVD and SPM also play an important role in evolution
of mode-locked pulses and should be included.

It is not easy to find a fast saturable absorber responding at timescales of
1 ps or faster. The most suitable material for fiber lasers is a semiconductor
absorbing medium [189]-{200]. Its use is more practical with a Fabry—Perot
cavity since the absorber can be attached to one of the cavity mirrors. The
saturable absorber can be made using either a single or a large stack (> 100
layers) of quantum-well layers. In the latter case, it forms a periodic structure
called the superlattice. Each period of the superlattice consists of aternating
absorbing and transparent layers. In the case of EDFLSs, al layers are made
using the InGaAsP material but the layer composition is altered appropriately.
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In some cases, the mirror attached to the saturable absorber is also made using
a periodic arrangement of quarter-wavelength-thick layers that form a grating
and reflect light through Bragg diffraction. Such a device is referred to as a
saturable Bragg reflector to emphasize the use of a Bragg grating.

A superlattice was first used in 1991 for passive mode locking of aring-
cavity EDFL [189]. It produced mode-locked pulses of 1.2-ps duration with
a “sech” shape, as expected from theory. In a 1993 experiment [190], the
superlattice saturable absorber consisted of 82 periods, and each period used
a 7.8-nm-thick absorbing InGaAs layer and a 6.5-nm-thick transparent InP
layer. The absorber was integrated with a Bragg reflector (made of alternating
InGaAsP and InP layers) that acted as one of the mirrors of the Fabry—Perot
laser cavity. Mode-locked pulses obtained from thislaser were relatively broad
(=~ 22 ps) for a 6.2-m cavity, but their width could be reduced to 7.6 ps by
shortening the doped fiber to 2 m. With further refinements, mode-locked
pulses as short as 0.84 ps with pulse energies of 0.85 nJ were obtained at a
repetition rate of 22 MHz [191]. The same technique was also used for mode
locking a Nd-doped fiber laser, and 4-ps pulses were obtained using a heavily
doped fiber of 6-cm length [192].

A superlattice saturable absorber integrated with a Bragg reflector requires
the growth of hundreds of thin layers using molecular-beam epitaxy. In a dif-
ferent approach, asingle 2-um-thick epitaxial layer of InGaAsP, grown on an
InP substrate, acted as a saturable absorber [193]. It was directly mounted on
a mirror serving as the output coupler. The 1.2-m-long erbium-doped fiber
was the polarization-preserving type. The mode-locked laser produced 320-fs
pulses with 40 pJenergy. The laser was self-starting and its output was linearly
polarized along a principa axis of the fiber. By codoping the gain-producing
fiber with ytterbium, such alaser can be pumped with diode-pumped Nd: YAG
or Nd:YLF lasers or directly with a semiconductor laser.

A semiconductor laser amplifier can al'so be used as a saturable absorber
when it is biased below threshold. Its use alows the construction of a self-
starting, passively mode-locked EDFL that can be switched between mode-
locked and CW states by simply changing the amplifier bias current. In a
1993 experiment, such alaser produced mode-locked pulses of 1.25-ps width
at arepetition rate in the range from 10 to 50 MHz in aring-cavity configura-
tion [194].

Fiber lasers that are mode-locked using a saturable Bragg reflector inside a
short Fabry—Perot cavity have quite interesting properties. Figure 5.14 shows
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Figure5.14 Schematic of afiber laser that was mode locked using a saturable Bragg
reflector. (After Ref. [197])

the cavity design schematically. A short piece (length 15 cm) of doped fiber is
butt-coupled to the saturable Bragg reflector. Its other end is sliced to a sec-
tion of standard telecommunication fiber (Iength about 30 cm) and terminated
with aconnector on which a high-reflectivity dielectric mirror has been coated.
A piece of dispersion-compensating fiber can also be included for dispersion
management.

In a series of experiments, total cavity length was changed from 0.5 to
2.5 m, and the average GVD was varied over wide range (normal to anoma-
lous) by using the dispersion-compensating fiber [196]. A mode-locked pulse
train could be formed even in the case of normal GV D, but the pulse width was
close to 16 ps at a repetition rate of about 40 MHz. Thisis expected from the
results of Section 4.6. Much shorter pulses were observed when the average
GVD was anomalous. Pulse widths below 0.5 ps formed over a wide range
of average GVD (B, = —2to —14 ps’/km) although they were not transform
limited. This is expected because of the chirp associated with the autosoli-
tons (see Section 4.5). For short laser cavities (under 50 cm), harmonic mode
locking was found to occur. A 45-cm-long laser produced transform-limited,
300-fs pulses at a repetition rate of 2.6 GHz through harmonic passive mode
locking [197]. The laser was able to self-organize into a steady state such than
11 pulses with nearly uniform spacing were present simultaneously inside the
cavity. Cross-correlation measurements indicated that spacing between pulses
was uniform to within 4% of the expected value.

5.4.2 Nonlinear Fiber-Loop Mirrors

An undesirable aspect of semiconductor-based saturable absorbers is that fiber
lasers using them loose their al-fiber nature. A solution is provided by the
nonlinear fiber-loop mirrors (Sagnac interferometers) whose power-dependent
transmission can shorten an optical pulse just as saturable absorbers do (see
Section 3.2). Fiber lasers making use of a Sagnac loop for passive mode lock-
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ing are referred to as figure-8 lasers because of the appearance of their cavity
(see Fig. 5.4). The physical mechanism responsible for mode locking isknown
as the interferometric or additive-pul se mode locking.

The operation of afigure-8 laser can be understood as follows. The central
3-dB coupler in Fig. 5.4 splits the entering radiation into two equal counter-
propagating parts. The doped fiber providing amplification is placed close to
the central coupler such that one wave is amplified at the entrance to the loop
while the other experiences amplification just before exiting the loop, resulting
in a nonlinear amplifying-loop mirror (NALM). As discussed in Section 3.2,
the counterpropagating waves acquire different nonlinear phase shifts while
completing around trip inside the NALM. Moreover, the phase difference is
not constant but varies along the pulse profile. 1f the NALM is adjusted such
that the phase shift is close to « for the centra intense part, this part of the
pulse is transmitted, while pulse wings get reflected because of their lower
power levels and smaller phase shifts. The net result is that the pulse exiting
from the NALM is narrower compared with that entering it. Because of this
property, a NALM behaves similarly to a fast saturable absorber except for
one major difference—it is capable of responding at femtosecond timescales
because of the electronic origin of fiber nonlinearity.

NALMswerefirst used in 1991 for mode locking afiber laser [201]{205].
Pulses shorter than 0.4 ps were generated in the form of fundamental soli-
tons even in early experiments in which the fiber laser was pumped using a
Ti:sapphire laser [202]. In a later experiment, 290-fs pulses were produced
from an EDFL pumped by 1.48-um InGaAsP semiconductor lasers [205]. The
threshold for mode-locked operation was only 50 mwW. Once mode locking
initiated, pump power could be decreased to aslow as 10 mW.

It is generdly difficult to produce pulses shorter than 100 fs from figure-8
lasers. However, mode-locked pulses as short as 30 fs were obtained by ampli-
fying the laser output and then compressing the amplified pulsein adispersion-
shifted fiber [206]. Pulse shortening inside a fiber amplifier occurs because of
adiabatic amplification of fundamental solitons (see Section 4.3). Since the
amplified pulse is chirped, it can be further compressed by using a fiber with
the appropriate dispersion. Pulses as short as 98 fs were generated directly
from afigure-8 laser by using a polarization-sensitive isolator and ashort piece
of normal-GVD fiber for chirp compensation [207].

Passively mode-locked fiber lasers suffer from a major drawback that has
limited their usefulness. It was observed in several experiments that the repeti-
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tion rate of mode-locked pulses was essentially uncontrollable and could vary
over awiderange. Typically, severa pulses circulate simultaneously inside the
laser cavity, and the spacing among them is not necessarily uniform. In con-
trast with the case of active mode locking, nothing in the cavity determines the
relative location of pulses. Asaresult, the position of each pulseis determined
by various other effects such as fiber birefringence and soliton interactions.

When a single pulse circulates inside the laser cavity, the repetition rate is
equal to the round-trip frequency Av. However, since pulses in a fiber laser
propagate as fundamental solitons, their energy is fixed such that

Es=P, / |A(z,t)|?dt = 2P, Ts. (5.4.2)
Since both the soliton width Ts and the peak power R, are limited by the laser
design, the pulse energy Es is fixed or quantized [208]. On the other hand,
the average intracavity power By is determined by the pumping level and gain
saturation. If Py > (Av)Es, multiple pulses—each of quantized energy E<—
must coexist inside the laser cavity. If these pulses were uniformly spaced, the
fiber laser would behave similarly to a harmonically mode-locked laser. How-
ever, multiple pulses need not necessarily be uniformly spaced. Most fiber
lasers emit pulse trains at the fundamental repetition rate Av such that spacing
among pulses in each period is virtually random. Under some operating con-
ditions, the laser emits atrain of bunched pulses such that each bunch contains
10 or more closely spaced solitons, each with the quantized energy Es. The
number of pulses within each fundamental period depends on the pumping
level, among other things.

The key to stabilizing a figure-8 laser consists of implementing a scheme
that can adjust the repetition rate f. in such away that f,Es nearly equals the
average circulating power inside the laser cavity. In one scheme, a subring was
added to the left ring in Fig. 5.5 containing the isolator [209]. The subring was
only 1.6-m long while the total loop length was 60.8 m. In this arrangement,
the repetition rate of the subring cavity is 38 timesthat of the main laser cavity.
Pulses circulating inside the subring provide a seed and lead to the formation of
38 uniformly spaced pulsesin the main laser cavity under mode-locked opera
tion. Such alaser emitted 315-fs pulses at a fixed repetition rate of 125 MHz.
A similar control of the repetition rate can be realized by placing amirror close
to one port of the output coupler [210]. In this case, the optical feedback from
the external mirror provides the seed and fixes the relative location of pulses
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Figure 5.15 (a) Autocorrelation trace and (b) spectrum of mode-locked pulses ob-
tained from afigure-8 laser employing a 94:6 central coupler. (After Ref. [214])

in a periodic manner. The mirror distance controls the repetition rate of such
fiber lasers.

The performance of figure-8 lasers has continued to improve [211]{219].
Transform-limited pulses of 1.35-ps duration, at wavelengths continuously
tunable over a 20-nm range, were generated in 1993 by using an intracavity
Fabry—Perot filter for spectral stabilization and a feedback loop for temporal
stabilization [213]. In another experiment, the central coupler (see Fig. 5.4)
was unbalanced such that 94% of the intracavity power was propagating in the
direction in which laser emission occurred [214]. Such alaser had lower cav-
ity losses and was found to be more easily mode locked than figure-8 lasers
with balanced (50:50) central couplers. The laser was able to generate pulses
shorter than 1 ps. Figure 5.15 shows the autocorrelation trace of 970-fs pulses
together with the corresponding spectrum. The origin of spectral sidebands
seen in thisfigureis discussed later.

Shorter and more energetic pulses were obtained in a 1997 experiment
in which the erbium-doped fiber had normal dispersion (8, > 0) at the op-
erating wavelength [219]. Pulses inside the cavity were stretched consider-
ably during amplification inside the doped fiber. This permitted energy levels
as high as 0.5 nJ. Pulses were compressed down to 125 fs by using a long
length of dispersion-shifted fiber inside the cavity. Both the central wave-
length and the spectral width of mode-locked pul ses were tunable by adjusting
the polarization-controllers within the laser cavity.



236 Fiber Lasers

Polarizing

Output Pump

—>

Isolator

WDM
Coupler Polarization Coupler
Controllers

Doped fiber

Figure 5.16 Schematic design of a fiber laser passively mode locked via nonlinear
polarization-rotation.

5.4.3 Nonlinear Polarization Rotation

Fiber lasers can also be mode locked by using intensity-dependent changes in
the state of polarization (occurring because of SPM and XPM) when the or-
thogonally polarized components of a single pulse propagate inside an optical
fiber (see Chapter A.6). The physical mechanism behind mode locking makes
use of the nonlinear birefringence and is similar to that of a Kerr shutter (see
Section A.7.2). From a conceptual point of view, the mode-locking mecha
nismisidentica to that used for figure-8 lasers (additive-pulse mode locking)
except that the orthogonally polarized components of the same pulse are used
in place of counterpropagating waves. From a practical standpoint, passive
mode locking can be accomplished by using a cavity with asingle fiber ring.
The mode-locking process can be understood using the ring cavity shown
in Fig. 5.16. A polarizing isolator placed between two polarization controllers
acts as the mode-locking element. It plays the double role of an isolator and
a polarizer such that light leaving the isolator is linearly polarized. Consider
a linearly polarized pulse just after the isolator. The polarization controller
placed after the isolator changes the polarization state to elliptical. The po-
larization state evolves nonlinearly during propagation of the pulse because of
SPM- and XPM-induced phase shifts imposed on the orthogonally polarized
components. The state of polarization is nonuniform across the pulse because
of the intensity dependence of the nonlinear phase shift. The second polar-
ization controller (one before the isolator) is adjusted such that it forces the
polarization to be linear in the central part of the pulse. The polarizing isolator
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lets the central intense part of the pulse pass but blocks (absorbs) the low-
intensity pulse wings. The net result is that the pulse is slightly shortened after
one round trip inside the ring cavity, an effect identical to that produced by a
fast saturable absorber.

The technique of nonlinear polarization rotation was first used in 1992 for
passive mode locking of fiber lasers and has resulted in considerable improve-
ment of of such lasers [220]-[224]. By the end of 1992, stable, self-starting
pulse trains of subpicosecond pulses (452-fs pulse width) at a 42-MHz repeti-
tion rate were generated by using this technique [223]. Further improvements
occurred when it was realized that the presence of anomalous GVD within the
laser cavity is not necessarily beneficial since it limits both the width and the
energy of mode-locked pulses. In a 1993 experiment, 76-fs pulses—with 90-
pJ energy and 1 kW of peak power—were generated by using aring cavity in
which the average GVD was normal [224].

Considerable research has been done to understand and to improve fiber
lasers making use of nonlinear polarization rotation for passive mode lock-
ing [225]-{242]. The shortest pulses (42 fs) with high energies (up to 1 nJ)
were obtained from an Nd-doped fiber laser in a Fabry—Perot configuration in
which a moving mirror was used to start mode locking [229]. In the case of
EDFLSs, high-energy (> 0.5 nJ), ultrashort (< 100 fs) pulses at arepetition rate
of 48 MHz were obtained in aring-cavity configuration in which the net disper-
sion was positive [235]. The ring cavity of this fiber laser consisted of a piece
of erbium-doped fiber (length about 1 m) with normal GVD (8, ~ 5 ps?/km)
and severa types of optical fibers (total length 2—6 m) with anomalous GVD in
the wavel ength region near 1.56 um. The average dispersion could be changed
from anomalous to normal by adjusting the cavity length. Such cavities are
called dispersion managed since the net dispersion can be tailored to any de-
sired value. The laser isreferred to as a stretched-pul se fiber laser since pulses
circulating inside the cavity stretch considerably in the section with normal
GVD. It was found that high-energy pulses could be generated only when the
average or net dispersion in the cavity was normal. The emitted pulses were
relatively broad (> 1 ps) but could be compressed down to below 100 fs by us-
ing an appropriate length of fiber because of their highly chirped nature. The
location of the output coupler plays an important role in such lasers since pulse
width varies by alarge amount along the cavity length. Mode-locked pulses as
short as 63 fs have been generated with proper optimization [241].

For practical applications, environmental stability is often an important is-
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sue. The main source of environmental instability is the relatively long length
of the fiber inside the laser cavity required to produce alarge enough nonlinear
phase shift. Temperature and stress variations can lead to birefringence fluc-
tuations that affect the mode-locking process. The problem can be solved to a
large extent by reducing the fiber length to under 10 m and using a fiber with
high built-in birefringence (polarization-maintaining fiber) so that linear bire-
fringence is not affected by environmental changes. In one scheme, a Fabry—
Perot cavity in which one of the mirrors acts as a Faraday rotator has been used
to realize environmentally stable operation [237]. The Faraday mirror rotates
the polarization such that the reflected light is orthogonally polarized. As a
result, the phase shift induced by linear birefringence is exactly canceled after
one round trip, while the nonlinear phase shift remains unaffected. The Fara
day mirror also eliminates the walk-off effects induced by the group-velocity
mismatch in high-birefringence fibers. Such alaser was capable of producing
360-fs pulses of 60-pJ energy at a stable repetition rate of 27 MHz. 1n a 1999
experiment, pulse energy was increased to 4 nJ using the double-clad fiber for
an Nd-doped fiber laser [242].

5.4.4 Hybrid Mode Locking

Hybrid mode locking combines more than one mode-locking technique within
the same laser cavity to improve the laser performance. The most obvious
combination incorporates an amplitude or phase modulator inside a passively
mode-locked fiber laser. The modulator provides periodic timing slots to pro-
duce aregular pulse train, while a passive mode-locking technique shortens the
pulse compared to that expected from active mode locking alone. An added
benefit is that the modulator can be operated at a frequency that is a high mul-
tiple of the round-trip frequency, resulting in awell-defined repetition rate that
can exceed 10 GHz or more while the mode spacing remains close to 10 MHz.

As early as 1991, the active and passive mode-locking techniques were
combined by using a phase modulator [243]. Since then, this combination
has led to considerable improvement in the performance of fiber lasers. In
a 1994 experiment, it was used to generate subpicosecond pulses at the 0.5-
GHz repetition rate from a single-polarization EDFL [244]. The laser used the
sigma configuration discussed earlier in the context of active mode locking. A
polarization-maintaining loop containing the LiNbO; modulator was coupled
to alinear section through a polarizing beam splitter. This section contained
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the fiber amplifier and the passive mode-locking element composed of quarter-
wave plates and a Faraday rotator.

The sigma configuration has been used to make a diode-pumped stretched-
pulse EDFL with excellent environmental stability [245]. The polarization-
maintaining loop containing the LiNbQ; modulator was made using 7.5 m
of standard fiber with a GVD of —20 ps’/km. The linear section contained
1 m of erbium-doped fiber with norma GVD (B, ~ 100 ps?/km), together
with a quarter-wave plate, a half-wave plate, and two Faraday rotators (whose
presence makes the sigma-laser cavity equivalent to a ring cavity). The net
dispersion in the cavity was normal with a value of about 0.02 ps®>. The
doped fiber was pumped using 980-nm diode lasers. Thelaser produced mode-
locked pulses with 1.2-nJ energy (average power 20 mW) at a pump power of
200 mW. The pulse width from the laser was about 1.5 ps but could be com-
pressed down to below 100 fs using a dispersive delay line (see Chapter 6).

Itisalso possible to combine two passive mode-locking techniques within
the same fiber laser. In one approach, a superlattice saturable absorber is added
toalaser that is passively mode locked vianonlinear polarization rotation. This
combination was used in 1996 for a cladding-pumped fiber laser [246]. The
laser produced 200-fs pulses with pulse energies of up to 100 pJ at a wave-
length near 1560 nm. Pulse energies of up to 1 nJwere obtained by increasing
the GVD inside the fiber cavity while maintaining a pulse width close to 3 ps.
The intracavity saturable absorber is helpful for initiating mode locking (self-
starting capability), whereas the steady-state pulse shape is governed by the
nonlinear polarization evolution. The laser is also environmentally stable be-
cause of the use of acompensation scheme for linear polarization drifts.

In another implementation of hybrid mode locking, an Nd-doped fiber |aser
was tuned continuously over a 75-nm bandwidth [247]. Such a wide tuning
range (more than twice the FWHM of the gain spectrum) was realized by op-
timizing the reflection characteristics of the semiconductor saturable absorber.
The duration of mode-locked pulses was 0.3 to 0.4 ps over the entire tuning
range. A chirped fiber grating has also been used for dispersion compensation
in the cavity of an Nd-doped fiber laser [248]. Such a laser is self-starting
and can be passively mode locked by using just the saturable absorber as the
mode-locking element. No intracavity polarization controllers were required
for its optimization. The laser generated mode-locked pulses of 6-ps duration
with output energies as high as 1.25 nJ.

In still another application of hybrid mode locking, an Nd-doped fiber laser
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was mode locked at two wavelengths simultaneously [249]. A prism pair, used
for dispersion compensation, also separated the paths taken by the two intra-
cavity beams. The 1.06-pm beam was mode |ocked using a saturable absorber,
whereas the technique of nonlinear polarization rotation was used for mode
locking the 1.1-um beam. Such a device operates as if the two lasers share
the same gain medium, and cross-gain saturation plays an important role in
its operation. Indeed, it was necessary to mismatch the cavity lengths slightly
to introduce an offset of at least 0.5 kHz between the repetition rates of the
two mode-locked pulse trains. The difference between the repetition rates was
tunable from 0.5 kHz to >1 MHz.

545 Other Mode-L ocking Techniques

Severa other techniques have been suggested for passively mode locking fiber
lasers. In one scheme, a dual-core fiber with one core doped with erbium ions
provides not only gain but also the saturable absorption necessary for mode
locking [250]. The operation of such alaser makes use of optical switching in
nonlinear directional couplers (see Section 2.3). At low powers, a part of the
mode energy is transferred to the undoped core and constitutes a loss mech-
anism for the laser cavity. At high powers, such an energy transfer ceases to
occur, and most of the energy remains confined to the doped core. Asaresult,
adual-core fiber acts as a fast saturable absorber and shortens an optical pulse
propagating through it. Mode locking can aso be achieved by using a dual-
core fiber as afiber-loop mirror or simply by placing it inside the Fabry—Perot
cavity of afiber laser [251].

In another scheme, fiber gratings are used to make a coupled-cavity fiber
laser that can be mode locked through additive-pulse mode locking. In asim-
ple implementation of this idea, three Bragg gratings were used to form two
coupled Fabry—Perot cavities [252]. In one cavity, the fiber was doped with er-
bium and pumped at 980 nm while the other cavity had the standard undoped
fiber. Both cavities had the same nominal length with total length ranging
from 1 to 6 m. The laser produced relatively wide mode-locked pulses (width
> 50 ps) without requiring stabilization of individual cavity lengths. The latter
feature is somewhat surprising since additive-pulse mode locking in coupled-
cavity lasers normally requires precise matching of the cavity lengths. It can
be understood by noting that the effective penetration distance in afiber grat-
ing before light is reflected depends on the wavelength of light. Asaresult, the
laser can adjust its wavelength to match the cavity lengths automatically. The
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self-matching capability of coupled-cavity fiber lasers can be extended by us-
ing chirped gratings [253]. Such alaser produced 5.5-ps mode-locked pulses,
which could be compressed down to below 1 ps (because of their chirped na-
ture) using a piece of fiber with the appropriate GV D (see Chapter 6).

5.5 Roleof Fiber Nonlinearity and Dispersion

Nonlinear effects such as SPM and XPM play a dominant role in the operation
of most passively mode-locked fiber lasers. Fiber dispersion also plays an
important role, especially when the soliton effects are relevant. Both numerical
and analytical methods have been used to understand and to quantify the role
of fiber nonlinearity and dispersion [254]-{274].

5.5.1 Saturable-Absorber Mode L ocking

The theory of passive mode locking is based on the same Ginzburg—L andau
equation used earlier for active mode locking. The main difference is in the
functional form of the cavity-loss parameter o appearing in Eq. (5.3.4), which
should include the intensity dependence of losses produced by the saturable
absorber [140]. More specifically, o is given by

0 = ot + 0 (1+ |A?/Pg) "~ 0 + 0y — 0 A2 /P (5.5.1)

where Py, is the saturation power of the absorber, assumed to be much larger
than the peak power levels associated with optical pulses circulating inside the
laser cavity. Thisassumption is made only to simplify the following analysis.

If we substitute Eg. (5.5.1) in Eqg. (5.3.4), we find that the presence of
saturated absorption modifies the parameter o, such that o, ~ —o0,/Ps if
two-photon absorption is negligible. The new vaue of «, is negative. This
is understandable from a physical viewpoint since the intensity dependence of
a saturable absorber isjust the opposite that of atwo-photon absorber (absorp-
tion decreases with increasing intensity). In the following discussion we use
Eq. (5.3.4) with negative values of o,.

A change in the sign of ¢, does not affect the form of the solution given
in Eq. (4.4.4). We can thus conclude that a passively mode-locked fiber laser
emits pulses in the form of achirped soliton whose amplitude is given by [141]

u(&,7) = Ns[sech(p7)]*H9exp(iKsE). (5.5.2)
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The three parameters Ns, p, and q are determined in terms of the laser param-
etersasindicated in Egs. (4.4.5)—4.4.8). They arein turn related to the soliton
width Ts, peak power P, and the frequency chirp d @ as (see Section 4.4)

Ts=T,/P. Po=|BINS/(vT7), 8o =qtanh(p7)/Ts. (553

Using p from Eg. (4.4.6), the pulse width can be written in terms of the laser
parameters (assuming anomalous GVD) as

Te= { B,l[20+d(0? — 1)] }1/27

Oc—0c— 0

(5.5.4)

whered = gc/(BZQS) isrelated to the gain bandwidth. It is evident that GVD
and SPM play amajor role in establishing the width of the mode-locked pulse
train.

This simple theory needs modification for modeling fiber lasers that are
mode-locked using semiconductor saturable absorbers. The reason is that a
semiconductor does not response instantaneously. In fact, the response time of
a quantum well is typically longer than the width of mode-locked pulses. The
carrier dynamics can be included by replacing Eq. (5.5.1) with @ = o+ as.
The absorption coefficient o s of the saturable absorber satisfies the following
rate equation:

dos  0p— s |A?
Ny s,
ot Ts Esx
where 15 isthe recovery time and Eg;, = 1sPs, iS the saturation energy of the ab-
sorber. For afast-responding absorber, o isgiven by the steady-state solution
of this equation, and the chirped-soliton solution of Eq. (5.5.2) is recovered.

Equation (5.5.5) can be solved approximately in the opposite limit of a

relatively slow absorber and leads to the following expression for o:

(5.5.5)

1 t
o = O+ 0 EXP [—E— /0 |A(z,t)|2dt] : (5.5.6)
Sa

The use of this equation in Eq. (5.4.1) leads to a modified Ginzburg—Landau
equation that can be solved analytically in several important cases [272]. Ac-
tual quantum-well absorbers are found to have both fast and slow recovery
mechanisms. A realistic model for such saturable absorbers has been devel-
oped [271]. The resulting Ginzburg-Landau equation is solved numerically;
its predictions agree well with the experimental data.
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5.5.2 Additive-Pulse Mode L ocking

The Ginzburg—Landau equation can be extended for fiber lasers making use of
additive-pulse mode locking [265]. The pulse-shortening effect of the mode-
locking element (nonlinear fiber-loop mirror or nonlinear polarization rotation)
isincluded through amplitude and phase changes induced on the pulse circu-
lating inside the cavity.

Consider first thefigure-8 laser in which a Sagnac loop imposes amplitude
and phase changes on each pulse as it circulates inside it. Transmittivity of a
Sagnac loop in which an amplifier islocated at the entrance of the loop isgiven
in Section 3.2 for CW beams. For an optical pulse with amplitude A(t), it can
be written as

Tg(t) = 1—2p(1—p){1+cog(1—p — Gp)¥|A®t) L]}, (55.7)

where p is the bar-port transmission of the coupler and Ls is the loop length.
For a50:50 or 3-dB coupler, p = 0.5 and Eq. (5.5.7) reduces to

To(t) = sin’[(G — 1)y|A(t) |°Ls/4). (5.5.8)

If loop length Ls is chosen such that (G — 1)yR)Ls = 2r, where P, is the peak
power, the central part of a pulse is transmitted without loss, but the pulse
wings experience loss. This intensity-dependent loss is referred to as self-
amplitude modulation and is similar to that induced by a fast saturable ab-
sorber.

We can distribute the intensity-dependent loss introduced by the Sagnac
loop over the cavity length and include its effects through the parameter o,
in the Ginzburg—L andau equation. The effect of loop-induced nonlinear phase
shift can also be included by modifying the parameter y. The steady-state
solution of the Ginzburg—L andau equation remains in the form of the chirped
soliton of Eg. (5.5.2), but its width and peak power are affected by the loop
parameters. This analytic solution can be used to study the effect of fiber
dispersion and nonlinearity on the performance of figure-8 fiber lasers [31]. A
similar technique can be used for fiber lasers that are mode locked vianonlinear
polarization rotation [265].

Modeling of realistic mode-locked fiber lasers requires consideration of
several other factors. For example, spontaneous emission seeds the growth
of mode-locked pulses and should be included. Another effect that becomes
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important for ultrashort pulses is the self-frequency shift of solitons result-
ing from intrapulse Raman scattering. It is common to solve the Ginzburg—
Landau equation numericaly since such an approach automatically includes
the effects of SPM, XPM, GV D, and intrapul se Raman scattering [259]{263].
This equation reduces to a generalized NL S equation in the parts of the laser
cavity where the fiber is undoped. In the case of figure-8 lasers, the evolu-
tion of counterpropagating pulses should be considered separately inside the
Sagnac loop, and the two optical fields should be combined coherently at the
central coupler to determine the transmitted field. For fiber lasers making use
of nonlinear polarization rotation, one must consider the evolution of orthog-
onally polarized components of the optical pulse by solving a set of two cou-
pled Ginzburg—L andau equations generalized to include the XPM effects. The
effects of spontaneous emission can be included approximately by starting nu-
merical simulations with a broadband noise pulse acting as a seed [263]. The
noise pulse is propagated around the laser cavity repeatedly until a steady state
isreached. Gain saturation isincluded by considering average power circulat-
ing inside the laser cavity. Such numerical simulations are capable of predict-
ing most features observed experimentaly.

5.5.3 Spectral Sidebands

The Ginzburg—Landau equation provides only an approximate description of
passively mode-locked fiber lasers. Real lasers show features not explained by
this model. For example, pulse spectra of most fiber lasers exhibit sidebands,
similar to those seen in Fig. 5.15. In fact, severa pairs of such sidebands
appear under some operating conditions. Figure 5.17 shows an example of
such a pulse spectrum obtained from a fiber laser that was passively mode-
locked via nonlinear polarization rotation [222]. The ring cavity of this laser
incorporated 122 m of standard fiber (undoped) with a total loop length of
148 m.

The origin of spectral sidebands seen in the output of fiber lasers is well
understood [275]-278]. The chirped soliton, found by solving the Ginzburg—
Landau equation, represents the average situation since this equation ignores
discrete nature of perturbations experienced by such solitons during each round
trip. In redlity, a part of the soliton energy leaves the cavity at the output cou-
pler and constitutes a loss to the soliton circulating inside the cavity. The
energy builds up to its origina value as the pulse is amplified during each
round trip. The net result is that the soliton energy and the peak power vary
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Figure5.17 Pulse spectrum of an EDFL mode locked via nonlinear polarization ro-
tation technique. Inset shows the autocorrelation trace of mode-locked pulses. (After
Ref. [222])

periodically, with a period equal to the cavity length. This amounts to creat-
ing a nonlinear-index grating that can affect soliton properties through Bragg
diffraction, among other things. The situation issimilar to that occurring in op-
tical communication systems when pulses are amplified periodically to over-
come fiber losses (see Section 4.3.2). In both cases, solitons adjust to pertur-
bations by shading a part of their energy in the form of dispersive waves, also
known as the continuum radiation.

Normally, dispersive waves produced by perturbations form a low-level,
broadband background that accompanies the soliton. However, in the case
of periodic perturbations, dispersive waves of certain frequencies can be res-
onantly enhanced, resulting in the spectral sidebands seen in Fig. 5.17. The
frequency and the amplitude of sidebands can be calculated using the pertur-
bation theory of solitons [277]. The frequency can also be calculated by using
aphase-matching condition if spectral sidebands are interpreted to result from
afour-wave mixing process that is phase matched by the index grating created
by periodic perturbations.

A simple physical approach to understanding the growth of spectral side-
bands makes use of a constructive interference condition. If the dispersive
wave at a frequency ay, + S, where o, is the soliton carrier frequency, is to
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grow on successive round trips, the phase difference between the soliton and
that dispersive wave must be a multiple of 2z during asingle round trip, i.e.,

|B(ep) + P00+ Ks— B(wy+ dw)|L = 2zm, (5.5.9

where misan integer, 3 (w,+ d w) isthe propagation constant of the dispersive
wave, and Ks is the soliton wave number appearing in Eq. (4.4.7).

In general, one must use Eq. (4.4.8) to determine Ks. However, if the soli-
ton is nearly unchirped, Ks = (2Lp) %, where Ly = T2/|B,| is the dispersion
length for a soliton of width Ts. By expanding B(w, + d ) in a Taylor series
and retaining terms up to quadratic in dw, Eq. (5.5.9) leads to the following
expression for the sideband frequencies [275]:

So = +T 1 (8mgy/L — 1)2, (5.5.10)

where 7, = (m/2)L isthe soliton period. The predictions of Eq. (5.5.10) agree
quite well with the position of sidebands seen in Fig. 5.17 when mode-locked
pulses are nearly transform limited. In the case of chirped solitons, the use of
Eq. (4.4.5)—(4.4.7) withs= -1 (B, < 0) and p=T,/Ts leads to the result

So = +T,1(8mg,/L — 1+ ¢? — 2qd)Y/2, (5.5.11)

where the chirp parameter q is obtained from Eq. (4.4.8). The effect of third-
order dispersion on the location of spectral sidebands can also be taken into
account [278] by including the cubic term in the Taylor-series expansion of
B(w,+déw)inEq. (5.5.9).

Periodic perturbations occurring in a fiber laser aso limit the duration of
mode-locked pulses. This limit is similar to that restricting amplifier spacing
in soliton communication systems and has the same origin [32]. If the solitons
were to recover from periodic perturbations, they should be perturbed as little
as possible during each round trip. In particular, the phase shift KsL acquired
by the soliton over the cavity length L must be asmall fraction of 2. By using
Ks= (2Lp)~t with Ly = T2/|B,|, the soliton width Ts is limited by

Ts>> (|B,|L/4m) 2. (5.5.12)

Here [3_2 represents the average value of GVD inside the laser cavity if different
types of fibers are used in a dispersion-managed cavity. If weuseL =20 mand
B, = —4 ps?/km astypical values for afigure-8 laser, T >> 80 fs. Indeed, it is
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difficult to generate pulses much shorter than 100 fs from mode-locked fiber
lasers. Equation (5.5.12) also shows that shorter mode-locked pulses can be
generated by reducing the cavity length and net GVD inside the laser cavity.
If weuse L=2mand 8, =—1 ps’/km as optimized values for a mode-
locked fiber laser, the condition (5.5.12) becomes T > 25 fs. Such lasers can
generate pulses shorter than 100 fs. This is indeed what has been observed
experimentally [224]. Measurements of pulse widths over a wide range of
residual dispersion show that the pulse width is approximately given by T ~
(1B, L)1/2 [278]. These observations are consistent with the preceding simple
argument.

As mentioned earlier, the average GVD inside the cavity does not have to
be anomalous for mode-locked fiber lasers. The general solution given in Eq.
(5.5.2) exists for both normal and anomalous GVD. Moreover, Egs. (4.4.5)—
(4.5.8) show that the chirp is relatively large in the case of norma GVD. In-
deed, mode-locked pulses emitted from dispersion-managed fiber lasers with
normal average GVD are heavily chirped. For this reason, they can be com-
pressed considerably outside the laser cavity (see Chapter 6). In a 1994 ex-
periment, the shortest pulse width (76 fs) was obtained from a mode-locked
EDFL when the output pulse was compressed by using a piece of fiber with
appropriate dispersion [235].

55.4 Polarization Effects

So far in this chapter, we have not addressed the issue of the state of polariza-
tion of light emitted from mode-locked fiber lasers. As discussed in Chapter
A.6, optical fibers do not preserve polarization unless they are specifically de-
signed to do so. Asaresult, the state of polarization of output light may not be
constant in time. It may change from pulse to pulse or even over the duration
of asingle pulse. The situation is quite interesting for short-cavity fiber lasers
for which the cavity length is a small fraction of the beat length. In general,
polarization evolution is important in al mode-locked fiber lasers and should
be included for a proper understanding of such lasers [279]{284].

The polarization effects were investigated thoroughly in a 1997 experiment
where a fiber laser of cavity length ~ 1 m or less was mode locked passively
using a saturable Bragg reflector [279]. The cavity design was similar to that
shown in Figure 5.10 except for the addition of a polarization controller. It
was made by wrapping standard single-mode fiber on two 5.5-cm-diameter
paddles and allowed continuous adjustment of the linear birefringence within
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Figure5.18 Measured variation of polarization-evolution frequency (PEF) A with 0 ;.
Polarization locking (PLVS) occurs when A equals 0 and exhibits hysteresis. (After
Ref. [282])

the cavity by changing the azimuthal angles 6, and 6, of the paddles. A linear
polarizer was placed at the output of the laser to analyze the polarization state.
It converted polarization changes into periodic amplitude changes and intro-
duced AM sidebands in the optical spectrum around each longitudinal mode.
The presence of these sidebands is a sign that the state of polarization is not
constant from pulse to pulse. Moreover, their frequency spacing A provides a
quantitative measure of the temporal period over which polarization evolves.
For this reason, this frequency is called the polarization-evolution frequency.

It was discovered experimentally that the AM sidebands disappear (A = 0)
for a certain combination of the angles 6, and 6,. Figure 5.18 shows varia-
tionsin A with 6, at afixed value of 6,. The polarization-evolution frequency
decreases as 0, approaches /2 and drops to zero in the vicinity of this value.
Therange of angles over which A = 0 depends on the direction from which 6,
approaches 7 /2, indicating that this phenomenon exhibits hysteresis. When
A = 0, the polarization of mode-locked pulses is locked in such a way that
all pulses have the same state of polarization in spite of the presence of lin-
ear birefringence within the laser cavity [280]. Such pulses are referred to as
polarization-locked vector solitons (PLV Ss).
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Properties of the PLV S have been investigated in a 2000 experiment [282].
It turns out that the polarization state of a PLVS can be linear or elliptical.
In the case of dliptical polarization, the two linearly polarized components
have different amplitudes and phases. The relative phase difference is fixed
at £m/2in al cases but the amplitude difference depends on the linear bire-
fringence within the cavity. In the case of alinearly polarized PLVS, the total
energy of the soliton is carried by the component polarized along the slow axis.
The existence of such solitons is related to the polarization instability of light
polarized along the fast axis (see Chapter A.6). A theoretical model based on
a set of two coupled Ginzburg-Landau equations is able explain most of the
experimental data [283].

Vector solitons can aso form in a fiber laser using a birefringent Sagnac
loop for mode locking [281]. In the case of fiber lasers mode locked via non-
linear polarization rotation, birefringence effects can lead to pulse-to-pulse pe-
riodic variations in both the peak power and the state of polarization [284]. An
amplitude- and polarization-locked pulse train is generated only when the axis
of polarization of the polarizing isolator is aigned with the slow axis of the
fiber.

Problems

5.1 Why doesthe gain in fiber lasers vary along the fiber length? Derive the
threshold condition by including such axial variations and considering a
round trip inside the laser cavity.

5.2 Use the threshold condition [Eqg. (5.1.3)] to derive an expression for the
pump power required to reach threshold in fiber lasers.

5.3 Why isthegaininalaser clamped at itsthreshold value? Use thisfeature
to derive expressions for the output power and the slope efficiency of
fiber lasers.

5.4 How would you design the Fabry—Perot cavity of a fiber laser without
using actual mirrors? Show two such designs and explain their opera-
tion.

5.5 Derive an expression for the output intensity by considering N longitu-
dinal modes of the cavity such that the phase difference between two
neighboring modes is constant. Estimate the pulse width when 10,000



250 Fiber Lasers

modes in afiber laser are mode locked in thisway. Assume aring cavity
of 5-m perimeter.

5.6 Explain how XPM can be used to induce mode locking in fiber lasers.
Use diagrams as necessary.

5.7 Theabsorption of afast saturable absorber saturates with power Paso =
oty(1+ P/Ps) 1, where Py, is the saturation power. Estimate the extent
of pulse shortening occurring when a 1-ps hyperbolic-secant pulse of
peak power Py = 100Ps, passes through the saturable absorber. Assume
that only 0.1% of low-power light is transmitted.

5.8 Explain the mode-locking process in afigure-8 fiber laser. What limits
the pulse width in such lasers?

5.9 How can nonlinear birefringence be used to advantage for passive mode
locking of fiber lasers? Draw the laser cavity schematically and explain
the purpose of each component.

5.10 What is the origin of sidebands often seen in the spectrum of pulses
emitted from passively mode-locked fiber lasers? Derive an expression
for their frequencies.
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