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Preface

Since the publication of the first edition of Nonlinear Fiber Optics in 1989, this
field has virtually exploded. A major factor behind such tremendous growth
was the advent of fiber amplifiers, made by doping silica or fluoride fibers
with rare-earth ions such as erbium and neodymium. Such amplifiers revo-
lutionized the design of fiber-optic communication systems, including those
making use of optical solitons whose very existence stems from the presence
of nonlinear effects in optical fibers. Optical amplifiers permit propagation of
lightwave signals over thousands of kilometers as they can compensate for all
losses encountered by the signal in the optical domain. At the same time, fiber
amplifiers enable the use of massive wavelength-division multiplexing (WDM)
and have led to the development of lightwave systems with capacities exceed-
ing 1 Tb/s. Nonlinear fiber optics plays an increasingly important role in the
design of such high-capacity lightwave systems. In fact, an understanding of
various nonlinear effects occurring inside optical fibers is almost a prerequisite
for a lightwave-system designer.

While preparing the third edition of Nonlinear Fiber Optics, my intention
was to bring the book up to date so that it remains a unique source of com-
prehensive coverage on the subject of nonlinear fiber optics. An attempt was
made to include recent research results on all topics relevant to the field of
nonlinear fiber optics. Such an ambitious objective increased the size of the
book to the extent that it was necessary to split it into two separate books, thus
creating this new book Applications of Nonlinear Fiber Optics. The third edi-
tion of Nonlinear Fiber Optics deals with the fundamental aspects of the field.
This book is devoted to the applications of nonlinear fiber optics, and its use
requires knowledge of the fundamentals covered in Nonlinear Fiber Optics.
Please note that when an equation or section number is prefaced with the
letter A, that indicates that the topic is covered in more detail in the third
edition of of Nonlinear Fiber Optics.
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xiv Preface

Most of the material in this volume is new. The first three chapters deal
with three important fiber-optic components—fiber-based gratings, couplers,
and interferometers—that serve as the building blocks of lightwave technol-
ogy. In view of the enormous impact of rare-earth-doped fibers, amplifiers and
lasers made by using such fibers are covered in Chapters 4 and 5. The last
three chapters describe important applications of nonlinear fiber optics and are
devoted to pulse-compression techniques, fiber-optic communication systems,
and soliton-based transmission schemes. This volume should serve well the
need of the scientific community interested in such fields as ultrafast phenom-
ena, optical amplifiers and lasers, and optical communications. It will also
be useful to graduate students as well as scientists and engineers involved in
lightwave technology.

The potential readership is likely to consist of senior undergraduate stu-
dents, graduate students enrolled in the M.S. and Ph.D. programs, engineers
and technicians involved with the telecommunication industry, and scientists
working in the fields of fiber optics and optical communications. This volume
may be a useful text for graduate and senior-level courses dealing with nonlin-
ear optics, fiber optics, or optical communications that are designed to provide
mastery of the fundamental aspects. Some universities may even opt to offer a
high-level graduate course devoted solely to nonlinear fiber optics. The prob-
lems provided at the end of each chapter should be useful to instructors of such
a course.

Many individuals have contributed either directly or indirectly to the com-
pletion of this book. I am thankful to all of them, especially to my students,
whose curiosity led to several improvements. Some of my colleagues have
helped me in preparing this book. I thank Taras Lakoba, Zhi Liao, Natalia
Litchinitser, Bishnu Pal, and Stojan Radic for reading several chapters and
making helpful suggestions. I am grateful to many readers for their feedback.
Last, but not least, I thank my wife, Anne, and my daughters, Sipra, Caroline,
and Claire, for understanding why I needed to spend many weekends on the
book instead of spending time with them.

Govind P. Agrawal

Rochester, NY



Chapter 1

Fiber Gratings

Silica fibers can change their optical properties permanently when they are ex-
posed to intense radiation from a laser operating in the blue or ultraviolet spec-
tral region. This photosensitive effect can be used to induce periodic changes
in the refractive index along the fiber length, resulting in the formation of an
intracore Bragg grating. Fiber gratings can be designed to operate over a wide
range of wavelengths extending from the ultraviolet to the infrared region. The
wavelength region near 1.5 µm is of particular interest because of its relevance
to fiber-optic communication systems. In this chapter on fiber gratings, the em-
phasis is on the role of the nonlinear effects. Sections 1.1 and 1.2 discuss the
physical mechanism responsible for photosensitivity and various techniques
used to make fiber gratings. The coupled-mode theory is described in Section
1.3, where the concept of the photonic bandgap is also introduced. Section
1.4 is devoted to the nonlinear effects occurring under continuous-wave (CW)
conditions. Time-dependent features such as modulation instability, optical
solitons, and optical switching are covered in Sections 1.5 and 1.6. Section 1.7
considers nonuniform and long-period gratings together with photonic-crystal
fibers.

1.1 Basic Concepts

Diffraction gratings constitute a standard optical component and are used rou-
tinely in various optical instruments such as a spectrometer. The underlying
principle was discovered more than 200 years ago [1]. From a practical stand-
point, a diffraction grating is defined as any optical element capable of im-
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2 Fiber Gratings

Figure 1.1 Schematic illustration of a fiber grating. Dark and light shaded regions
within the fiber core show periodic variations of the refractive index.

posing a periodic variation in the amplitude or phase of light incident on it.
Clearly, an optical medium whose refractive index varies periodically acts as
a grating since it imposes a periodic variation of phase when light propagates
through it. Such gratings are called index gratings.

1.1.1 Bragg Diffraction

The diffraction theory of gratings shows that when light is incident at an an-
gle θi (measured with respect to the planes of constant refractive index), it is
diffracted at an angle θr such that [1]

sin θi� sinθr = mλ=(n̄Λ); (1.1.1)

where Λ is the grating period, λ=n̄ is the wavelength of light inside the medium
with an average refractive index n̄, and m is the order of Bragg diffraction.
This condition can be thought of as a phase-matching condition, similar to that
occurring in the case of Brillouin scattering or four-wave mixing, and can be
written as

ki�kd = mkg; (1.1.2)

where ki and kd are the wave vectors associated with the incident and diffracted
light. The grating wave vector kg has magnitude 2π=Λ and points in the di-
rection in which the refractive index of the medium is changing in a periodic
manner.

In the case of single-mode fibers, all three vectors lie along the fiber axis.
As a result, kd = �ki and the diffracted light propagates backward. Thus, as
shown schematically in Fig. 1.1, a fiber grating acts as a reflector for a specific
wavelength of light for which the phase-matching condition is satisfied. In
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terms of the angles appearing in Eq. (1.1.1), θi = π=2 and θr =�π=2. If m= 1,
the period of the grating is related to the vacuum wavelength as λ = 2n̄Λ.
This condition is known as the Bragg condition, and gratings satisfying it are
referred to as Bragg gratings. Physically, the Bragg condition ensures that
weak reflections occurring throughout the grating add up in phase to produce
a strong reflection. For a fiber grating reflecting light in the wavelength region
near 1.5 µm, the grating period Λ� 0:5 µm.

Bragg gratings inside optical fibers were first formed in 1978 by irradiating
a germanium-doped silica fiber for a few minutes with an intense argon-ion
laser beam [2]. The grating period was fixed by the argon-ion laser wave-
length, and the grating reflected light only within a narrow region around that
wavelength. It was realized that the 4% reflection occurring at the two fiber–air
interfaces created a standing-wave pattern and that the laser light was absorbed
only in the bright regions. As a result, the glass structure changed in such a way
that the refractive index increased permanently in the bright regions. Although
this phenomenon attracted some attention during the next 10 years [3]–[15], it
was not until 1989 that fiber gratings became a topic of intense investigation,
fueled partly by the observation of second-harmonic generation in photosensi-
tive fibers. The impetus for this resurgence of interest was provided by a 1989
paper in which a side-exposed holographic technique was used to make fiber
gratings with controllable period [16].

Because of its relevance to fiber-optic communication systems, the holo-
graphic technique was quickly adopted to produce fiber gratings in the wave-
length region near 1.55 µm [17]. Considerable work was done during the early
1990s to understand the physical mechanism behind photosensitivity of fibers
and to develop techniques that were capable of making large changes in the re-
fractive index [18]–[48]. By 1995, fiber gratings were available commercially,
and by 1997 they became a standard component of lightwave technology. In
1999, two books devoted entirely to fiber gratings focused on applications re-
lated to fiber sensors and fiber-optic communication systems [49], [50].

1.1.2 Photosensitivity

There is considerable evidence that photosensitivity of optical fibers is due
to defect formation inside the core of Ge-doped silica fibers [28]–[30]. As
mentioned in Section A.1.2, the fiber core is often doped with germania to
increase its refractive index and introduce an index step at the core-cladding
interface. The Ge concentration is typically 3–5%.
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The presence of Ge atoms in the fiber core leads to formation of oxygen-
deficient bonds (such as Si–Ge, Si–Si, and Ge–Ge bonds), which act as defects
in the silica matrix [49]. The most common defect is the GeO defect. It forms
a defect band with an energy gap of about 5 eV (energy required to break the
bond). Single-photon absorption of 244-nm radiation from an excimer laser
(or two-photon absorption of 488-nm light from an argon-ion laser) breaks
these defect bonds and creates GeE 0 centers. Extra electrons associated with
GeE0 centers are free to move within the glass matrix until they are trapped at
hole-defect sites to form color centers known as Ge(1) and Ge(2). Such modifi-
cations in the glass structure change the absorption spectrum α(ω). However,
changes in the absorption also affect the refractive index since ∆α and ∆n are
related through the Kramers–Kronig relation [51]

∆n(ω 0
) =

c
π

Z ∞

0

∆α(ω)dω
ω2�ω 02 : (1.1.3)

Even though absorption modifications occur mainly in the ultraviolet region,
the refractive index can change even in the visible or infrared region. More-
over, since index changes occur only in the regions of fiber core where the
ultraviolet light is absorbed, a periodic intensity pattern is transformed into
an index grating. Typically, index change ∆n is � 10�4 in the 1.3- to 1.6-
µm wavelength range, but can exceed 0.001 in fibers with high Ge concentra-
tion [34].

The presence of GeO defects is crucial for photosensitivity to occur in
optical fibers. However, standard telecommunication fibers rarely have more
than 3% of Ge atoms in their core, resulting in relatively small index changes.
The use of other dopants such as phosphorus, boron, and aluminum can en-
hance the photosensitivity (and the amount of index change) to some extent,
but these dopants also tend to increase fiber losses. It was discovered in the
early 1990s that the amount of index change induced by ultraviolet absorption
can be enhanced by two orders of magnitude (∆n > 0:01) by soaking the fiber
in hydrogen gas at high pressures (200 atm) and room temperature [39]. The
density of Ge–Si oxygen-deficient bonds increases in hydrogen-soaked fibers
because hydrogen can recombine with oxygen atoms. Once hydrogenated, the
fiber needs to be stored at low temperature to maintain its photosensitivity.
However, gratings made in such fibers remain intact over long periods of time,
indicating the nearly permanent nature of the resulting index changes [46].
Hydrogen soaking is commonly used for making fiber gratings.
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It should be stressed that understanding of the exact physical mechanism
behind photosensitivity is far from complete, and more than one mechanism
may be involved [52]. Localized heating can also affect grating formation. For
instance, in fibers with a strong grating (index change > 0:001), damage tracks
were seen when the grating was examined under an optical microscope [34];
these tracks were due to localized heating to several thousand degrees of the
core region where ultraviolet light was most strongly absorbed. At such high
temperatures the local structure of amorphous silica can change considerably
because of melting.

1.2 Fabrication Techniques

Fiber gratings can be made by using several different techniques, each having
its own merits. This section discusses briefly four major techniques commonly
used for making fiber gratings: the single-beam internal technique, the dual-
beam holographic technique, the phase mask technique, and the point-by-point
fabrication technique. The reader is referred to Chapter 3 of Ref. [49] for
further details.

1.2.1 Single-Beam Internal Technique

In this technique, used in the original 1978 experiment [2], a single laser beam,
often obtained from an argon-ion laser operating in a single mode near 488 nm,
is launched into a germanium-doped silica fiber. The light reflected from the
near end of the fiber is then monitored. The reflectivity is initially about 4%,
as expected for a fiber–air interface. However, it gradually begins to increase
with time and can exceed 90% after a few minutes when the Bragg grating
is completely formed [4]. Figure 1.2 shows the increase in reflectivity with
time, observed in the 1978 experiment for a 1-m-long fiber having a numerical
aperture of 0.1 and a core diameter of 2.5 µm. Measured reflectivity of 44%
after 8 minutes of exposure implies more than 80% reflectivity of the Bragg
grating when coupling losses are accounted for.

Grating formation is initiated by the light reflected from the far end of the
fiber and propagating in the backward direction. The two counterpropagat-
ing waves interfere and create a standing-wave pattern with periodicity λ=2n̄,
where λ is the laser wavelength and n̄ is the mode index at that wavelength.
The refractive index of silica is modified locally in the regions of high intensity,
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Figure 1.2 Increase in reflectivity with time during grating formation. Insets show
the reflection and transmission spectra of the grating. (After Ref. [2], cAmerican
Institute of Physics)

resulting in a periodic index variation along the fiber length. Even though the
index grating is quite weak initially (4% far-end reflectivity), it reinforces itself
through a kind of runaway process. Since the grating period is exactly the same
as the standing-wave period, the Bragg condition is satisfied for the laser wave-
length. As a result, some forward-traveling light is reflected backward through
distributed feedback, which strengthens the grating, which in turn increases
feedback. The process stops when the photoinduced index change saturates.
Optical fibers with an intracore Bragg grating act as a narrowband reflection
filter. The two insets in Fig. 1.2 show the measured reflection and transmission
spectra of such a fiber grating. The full width at half maximum (FWHM) of
these spectra is only about 200 MHz.

A disadvantage of the single-beam internal method is that the grating can
be used only near the wavelength of the laser used to make it. Since Ge-doped
silica fibers exhibit little photosensitivity at wavelengths longer than 0.5 µm,
such gratings cannot be used in the 1.3- to 1.6-µm wavelength region that is
important for optical communications. A dual-beam holographic technique,
discussed next, solves this problem.

1.2.2 Dual-Beam Holographic Technique

The dual-beam holographic technique, shown schematically in Fig. 1.3, makes
use of an external interferometric scheme similar to that used for holography.
Two optical beams, obtained from the same laser (operating in the ultraviolet
region) and making an angle 2θ are made to interfere at the exposed core of an
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Figure 1.3 Schematic illustration of the dual-beam holographic technique.

optical fiber [16]. A cylindrical lens is used to expand the beam along the fiber
length. Similar to the single-beam scheme, the interference pattern creates an
index grating. However, the grating period Λ is related to the ultraviolet laser
wavelength λuv and the angle 2θ made by the two interfering beams through
the simple relation

Λ = λuv=(2sin θ): (1.2.1)

The most important feature of the holographic technique is that the grat-
ing period Λ can be varied over a wide range by simply adjusting the angle
θ (see Fig. 1.3). The wavelength λ at which the grating will reflect light is
related to Λ as λ = 2n̄Λ. Since λ can be significantly larger than λuv, Bragg
gratings operating in the visible or infrared region can be fabricated by the
dual-beam holographic method even when λuv is in the ultraviolet region. In a
1989 experiment, Bragg gratings reflecting 580-nm light were made by expos-
ing the 4.4-mm-long core region of a photosensitive fiber for 5 minutes with
244-nm ultraviolet radiation [16]. Reflectivity measurements indicated that the
refractive index changes were �10�5 in the bright regions of the interference
pattern. Bragg gratings formed by the dual-beam holographic technique were
stable and remained unchanged even when the fiber was heated to 500ÆC.

Because of their practical importance, Bragg gratings operating in the 1.55-
µm region were made in 1990 [17]. Since then, several variations of the basic
technique have been used to make such gratings in a practical manner. An
inherent problem for the dual-beam holographic technique is that it requires
an ultraviolet laser with excellent temporal and spatial coherence. Excimer
lasers commonly used for this purpose have relatively poor beam quality and
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require special care to maintain the interference pattern over the fiber core over
a duration of several minutes.

It turns out that high-reflectivity fiber gratings can be written by using a
single excimer laser pulse (with typical duration of 20 ns) if the pulse energy
is large enough [31]–[34]. Extensive measurements on gratings made by this
technique indicate a threshold-like phenomenon near a pulse energy level of
about 35 mJ [34]. For lower pulse energies, the grating is relatively weak
since index changes are only about 10�5. By contrast, index changes of about
10�3 are possible for pulse energies above 40 mJ. Bragg gratings with nearly
100% reflectivity have been made by using a single 40-mJ pulse at the 248-nm
wavelength. The gratings remained stable at temperatures as high as 800ÆC. A
short exposure time has an added advantage. The typical rate at which a fiber
is drawn from a preform is about 1 m/s. Since the fiber moves only 20 nm in
20 ns, and since this displacement is a small fraction of the grating period Λ, a
grating can be written during the drawing stage while the fiber is being pulled
and before it is sleeved [35]. This feature makes the single-pulse holographic
technique quite useful from a practical standpoint.

1.2.3 Phase Mask Technique

This nonholographic technique uses a photolithographic process commonly
employed for fabrication of integrated electronic circuits. The basic idea is to
use a phase mask with a periodicity related to the grating period [36]. The
phase mask acts as a master grating that is transferred to the fiber using a
suitable method. In one realization of this technique [37], the phase mask
was made on a quartz substrate on which a patterned layer of chromium was
deposited using electron-beam lithography in combination with reactive-ion
etching. Phase variations induced in the 242-nm radiation passing through the
phase mask translate into a periodic intensity pattern similar to that produced
by the holographic technique. Photosensitivity of the fiber converts intensity
variations into an index grating of the same periodicity as that of the phase
mask.

The chief advantage of the phase mask method is that the demands on the
temporal and spatial coherence of the ultraviolet beam are much less strin-
gent because of the noninterferometric nature of the technique. In fact, even
a nonlaser source such as an ultraviolet lamp can be used. Furthermore, the
phase mask technique allows fabrication of fiber gratings with a variable pe-
riod (chirped gratings) and can also be used to tailor the periodic index profile
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Figure 1.4 Schematic illustration of a phase mask interferometer used for making
fiber gratings. (After Ref. [49], reprinted by permission of Academic Press)

along the grating length. It is also possible to vary the Bragg wavelength over
some range for a fixed mask periodicity by using a converging or diverging
wavefront during the photolithographic process [41]. On the other hand, the
quality of fiber grating (length, uniformity, etc.) depends completely on the
master phase mask, and all imperfections are reproduced precisely. Nonethe-
less, gratings with 5-mm length and 94% reflectivity were made in 1993, show-
ing the potential of this technique [37].

The phase mask can also be used to form an interferometer using the ge-
ometry shown in Fig. 1.4. The ultraviolet laser beam falls normally on the
phase mask and is diffracted into several beams in the Raman–Nath scattering
regime. The zeroth-order beam (direct transmission) is blocked or canceled
by an appropriate technique. The two first-order diffracted beams interfere on
the fiber surface and form a periodic intensity pattern. The grating period is
exactly one-half of the phase mask period. In effect, the phase mask produces
both the reference and object beams required for holographic recording.

There are several advantages of using a phase mask interferometer. It is
insensitive to the lateral translation of the incident laser beam and tolerant of
any beam-pointing instability. Relatively long fiber gratings can be made by
moving two side mirrors while maintaining their mutual separation. In fact,
the two mirrors can be replaced by a single silica block that reflects the two
beams internally through total internal reflection, resulting in a compact and
stable interferometer [49]. The length of the grating formed inside the fiber
core is limited by the size and optical quality of the silica block.

Long gratings can be formed by scanning the phase mask or by translating
the optical fiber itself such that different parts of the optical fiber are exposed
to the two interfering beams. In this way, multiple short gratings are formed
in succession in the same fiber. Any discontinuity or overlap between the
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two neighboring gratings, resulting from positional inaccuracies, leads to the
so-called stitching errors (also called phase errors) that can affect the qual-
ity of the whole grating substantially if left uncontrolled. Nevertheless, this
technique was used in 1993 to produce a 5-cm-long grating [42]. Since then,
gratings longer than 1 meter have been made with success [53] by employing
techniques that minimize phase errors [54].

1.2.4 Point-by-Point Fabrication Technique

This nonholographic scanning technique bypasses the need of a master phase
mask and fabricates the grating directly on the fiber, period by period, by ex-
posing short sections of width w to a single high-energy pulse [18]. The fiber
is translated by a distance Λ�w before the next pulse arrives, resulting in a
periodic index pattern such that only a fraction w=Λ in each period has a higher
refractive index. The method is referred to as point-by-point fabrication since
a grating is fabricated period by period even though the period Λ is typically
below 1 µm. The technique works by focusing the spot size of the ultravio-
let laser beam so tightly that only a short section of width w is exposed to it.
Typically, w is chosen to be Λ/2 although it could be a different fraction if so
desired.

There are a few practical limitations of this technique. First, only short
fiber gratings (< 1 cm) are typically produced because of the time-consuming
nature of the point-to-point fabrication method. Second, it is hard to control
the movement of a translation stage accurately enough to make this scheme
practical for long gratings. Third, it is not easy to focus the laser beam to a
small spot size that is only a fraction of the grating period. Recall that the
period of a first-order grating is about 0.5 µm at 1.55 µm and becomes even
smaller at shorter wavelengths. For this reason, the technique was first demon-
strated in 1993 by making a 360-µm-long, third-order grating with a 1.59-µm
period [38]. The third-order grating still reflected about 70% of the incident
1.55-µm light. From a fundamental standpoint, an optical beam can be focused
to a spot size as small as the wavelength. Thus, the 248-nm laser commonly
used in grating fabrication should be able to provide a first-order grating in the
wavelength range from 1.3 to 1.6 µm with proper focusing optics similar to
that used for fabrication of integrated circuits.

The point-by-point fabrication method is quite suitable for long-period
gratings in which the grating period exceeds 10 µm and even can be longer
than 100 µm, depending on the application [55]–[57]. Such gratings can
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be used for mode conversion (power transfer from one mode to another) or
polarization conversion (power transfer between two orthogonally polarized
modes). Their filtering characteristics have been used for flattening the gain
profile of erbium-doped fiber amplifiers and for mode conversion in all-fiber
multimode devices.

1.3 Grating Characteristics

Two different approaches have been used to study how a Bragg grating affects
wave propagation in optical fibers. In one approach, Bloch formalism—used
commonly for describing motion of electrons in semiconductors—is applied
to Bragg gratings [58]. In another, forward- and backward-propagating waves
are treated independently, and the Bragg grating provides a coupling between
them. This method is known as the coupled-mode theory and has been used
with considerable success in several different contexts. In this section we de-
rive the nonlinear coupled-mode equations and use them to discuss propaga-
tion of low-intensity CW light through a Bragg grating. We also introduce the
concept of photonic bandgap and use it to show how a Bragg grating introduces
a large amount of dispersion.

1.3.1 Coupled-Mode Equations

Wave propagation in a linear periodic medium has been studied extensively us-
ing coupled-mode theory [59]–[61]. This theory has been applied to distributed-
feedback (DFB) semiconductor lasers [62], among other things. In the case of
optical fibers, we need to include both the nonlinear changes and the periodic
variation of the refractive index by using

ñ(ω ;z) = n̄(ω)+n2jEj
2
+δng(z); (1.3.1)

where n2 is the nonlinear parameter and δng(z) accounts for periodic index
variations inside the grating. The coupled-mode theory can be generalized to
include the fiber nonlinearity since the nonlinear index change n2jEj

2 in Eq.
(1.3.1) is so small that it can be treated as a perturbation [63].

The starting point consists of solving Maxwell’s equations with the refrac-
tive index given in Eq. (1.3.1). However, as discussed in Section A.2.3, if the
nonlinear effects are relatively weak, we can work in the frequency domain
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and solve the Helmholtz equation

∇2Ẽ + ñ2
(ω ;z)ω2=c2Ẽ = 0; (1.3.2)

where Ẽ denotes the Fourier transform of the electric field with respect to time.
Noting that ñ is a periodic function of z, it is useful to expand δng(z) in a

Fourier series as

δng(z) =
∞

∑
m=�∞

δnm exp[2πim(z=Λ)]: (1.3.3)

Since both the forward- and backward-propagating waves should be included,
Ẽ in Eq. (1.3.2) is of the form

Ẽ(r;ω) = F(x;y)[Ã f (z;ω)exp(iβBz)+ Ãb(z;ω)exp(�iβBz)]; (1.3.4)

where βB = π=Λ is the Bragg wave number for a first-order grating. It is re-
lated to the Bragg wavelength through the Bragg condition λB = 2n̄Λ and can
be used to define the Bragg frequency as ωB = πc=(n̄Λ). Transverse varia-
tions for the two counterpropagating waves are governed by the same modal
distribution F(x;y) in a single-mode fiber.

Using Eqs. (1.3.1)–(1.3.4), assuming that Ã f and Ãb vary slowly with z and
keeping only the nearly phase-matched terms, the frequency-domain coupled-
mode equations become [59]–[61]

∂ Ã f

∂ z
= i[δ (ω)+∆β ]Ã f + iκÃb; (1.3.5)

�
∂ Ãb

∂ z
= i[δ (ω)+∆β ]Ãb + iκÃ f ; (1.3.6)

where δ is a measure of detuning from the Bragg frequency and is defined as

δ (ω) = (n̄=c)(ω �ωB)� β (ω)�βB: (1.3.7)

The nonlinear effects are included through ∆β defined as in Eq. (A.2.3.20).
The coupling coefficient κ governs the grating-induced coupling between the
forward and backward waves. For a first-order grating, κ is given by

κ =
k0

RR ∞
�∞ δn1jF(x;y)j2 dxdyRR ∞
�∞ jF(x;y)j2 dxdy

: (1.3.8)
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In this general form, κ can include transverse variations of δng occurring when
the photoinduced index change is not uniform over the core area. For a trans-
versely uniform grating κ = 2πδn1=λ , as can be inferred from Eq. (1.3.8) by
taking δn1 as constant and using k0 = 2π=λ . For a sinusoidal grating of the
form δng = na cos(2πz=Λ), δn1 = na=2 and the coupling coefficient is given
by κ = πna=λ .

Equations (1.3.5) and (1.3.6) can be converted to time domain by following
the procedure outlined in Section A.2.3. We assume that the total electric field
can be written as

E(r; t) = 1
2F(x;y)[A f (z; t)e

iβBz
+Ab(z; t)e

�iβBz
]e�iω0t

+ c:c:; (1.3.9)

where ω0 is the frequency at which the pulse spectrum is centered. We expand
β (ω) in Eq. (1.3.7) in a Taylor series as

β (ω) = β0 +(ω�ω0)β1 +
1
2(ω�ω0)

2β2 +
1
6(ω�ω0)

3β3 + � � � (1.3.10)

and retain terms up to second order in ω�ω0. The resulting equations can be
converted into time domain by replacing ω�ω0 with the differential operator
i(∂=∂ t). The resulting coupled-mode equations become

∂A f

∂ z
+β1

∂A f

∂ t
+

iβ2

2

∂ 2A f

∂ t2 +
α
2

A f

= iδA f + iκAb + iγ(jA f j
2
+2jAbj

2
)A f ; (1.3.11)

�
∂Ab

∂ z
+β1

∂Ab

∂ t
+

iβ2

2

∂ 2Ab

∂ t2 +
α
2

Ab

= iδAb + iκA f + iγ(jAbj
2
+2jA f j

2
)Ab; (1.3.12)

where δ in Eq. (1.3.7) is evaluated at ω = ω 0 and becomes δ = (ω0�ωB)=vg.
In fact, the δ term can be eliminated from the coupled-mode equations if ω0
is replaced by ωB in Eq. (1.3.9). The other parameters have the same meaning
as in Section A.2.3. Specifically, β1 � 1=vg is related inversely to the group
velocity, β2 governs the group-velocity dispersion (GVD), and the nonlinear
parameter γ is related to n2 as γ = n2ω0=(cAeff), where Aeff is the effective core
area as defined in Eq. (A.2.3.29).

The nonlinear terms in the time-domain coupled-mode equations contain
the contributions of both self-phase modulation (SPM) and cross-phase mod-
ulation (XPM). The origin of the factor of 2 in the XPM term is discussed in
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Section A.7.1. In fact, the coupled-mode equations are similar to and should
be compared with Eqs. (A.7.1.15) and (A.7.1.16), which govern propagation
of two copropagating waves inside optical fibers. The two major differences
are: (i) the negative sign appearing in front of the ∂Ab=∂ z term in Eq. (1.3.11)
because of backward propagation of Ab and (ii) the presence of linear coupling
between the counterpropagating waves governed by the parameter κ . Both of
these differences change the character of wave propagation profoundly. Before
discussing the general case, it is instructive to consider the case in which the
nonlinear effects are so weak that the fiber acts as a linear medium.

1.3.2 CW Solution in the Linear Case

In this section, we will focus on the linear case in which the nonlinear effects
are negligible. When the SPM and XPM terms are neglected in Eqs. (1.3.11)
and (1.3.12), the resulting linear equations can be solved easily in the Fourier
domain. In fact, we can use Eqs. (1.3.5) and (1.3.6). These frequency-domain
coupled-mode equations include GVD to all orders. After setting the nonlinear
contribution ∆β to zero, we obtain

∂ Ã f

∂ z
= iδ Ã f + iκÃb; (1.3.13)

�
∂ Ãb

∂ z
= iδ Ãb + iκÃ f ; (1.3.14)

where δ (ω) is given by Eq. (1.3.7).
A general solution of these linear equations takes the form

Ã f (z) = A1 exp(iqz)+A2 exp(�iqz); (1.3.15)

Ãb(z) = B1 exp(iqz)+B2 exp(�iqz); (1.3.16)

where q is to be determined. The constants A1; A2; B1, and B2 are interdepen-
dent and satisfy the following four relations:

(q�δ )A1 = κB1; (q+δ )B1 =�κA1; (1.3.17)

(q�δ )B2 = κA2; (q+δ )A2 =�κB2: (1.3.18)

These equations are satisfied for nonzero values of A1; A2; B1, and B2 if the
possible values of q obey the dispersion relation

q =�
p

δ 2�κ2: (1.3.19)
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Figure 1.5 Dispersion curves showing variation of δ with q and the existence of the
photonic bandgap for a fiber grating.

This equation is of paramount importance for gratings. Its implications will
become clear soon.

One can eliminate A2 and B1 by using Eqs. (1.3.15)–(1.3.18) and write the
general solution in terms of an effective reflection coefficient r(q) as

Ã f (z) = A1 exp(iqz)+ r(q)B2 exp(�iqz); (1.3.20)

Ãb(z) = B2 exp(�iqz)+ r(q)A1 exp(iqz); (1.3.21)

where

r(q) =
q�δ

κ
=�

κ
q+δ

: (1.3.22)

The q dependence of r and the dispersion relation (1.3.19) indicate that both
the magnitude and the phase of backward reflection depend on the frequency
ω . The sign ambiguity in Eq. (1.3.19) can be resolved by choosing the sign of
q such that jr(q)j < 1.

1.3.3 Photonic Bandgap, or Stop Band

The dispersion relation of Bragg gratings exhibits an important property seen
clearly in Fig. 1.5, where Eq. (1.3.19) is plotted. If the frequency detuning δ of
the incident light falls in the range �κ < δ < κ , q becomes purely imaginary.
Most of the incident field is reflected in that case since the grating does not
support a propagating wave. The range jδ j � κ is referred to as the photonic
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bandgap, in analogy with the electronic energy bands occurring in crystals. It
is also called the stop band since light stops transmitting through the grating
when its frequency falls within the photonic bandgap.

To understand what happens when optical pulses propagate inside a fiber
grating with their carrier frequency ω0 outside the stop band but close to
its edges, note that the effective propagation constant of the forward- and
backward-propagating waves from Eqs. (1.3.4) and (1.3.15) is βe = βB� q,
where q is given by Eq. (1.3.19) and is a function of optical frequency through
δ . This frequency dependence of β e indicates that a grating will exhibit dis-
persive effects even if it was fabricated in a nondispersive medium. In optical
fibers, grating-induced dispersion adds to the material and waveguide disper-
sion. In fact, the contribution of grating dominates among all sources respon-
sible for dispersion. To see this more clearly, we expand βe in a Taylor series
in a way similar to Eq. (1.3.10) around the carrier frequency ω0 of the pulse.
The result is given by

βe(ω) = β g
0 +(ω�ω0)β

g
1 +

1
2(ω�ω0)

2β g
2 +

1
6(ω�ω0)

3β g
3 + � � � ; (1.3.23)

where β g
m with m = 1;2; : : : is defined as

β g
m =

dmq
dωm �

�
1
vg

�m dmq
dδ m ; (1.3.24)

where derivatives are evaluated at ω = ω0. The superscript g denotes that
the dispersive effects have their origin in the grating. In Eq. (1.3.24), vg is
the group velocity of pulse in the absence of the grating (κ = 0). It occurs
naturally when the frequency dependence of n̄ is taken into account in Eq.
(1.3.7). Dispersion of vg is neglected in Eq. (1.3.24) but can be included easily.

Consider first the group velocity of the pulse inside the grating. Using
VG = 1=β g

1
and Eq. (1.3.24), it is given by

VG =�vg

p
1�κ2=δ 2; (1.3.25)

where the choice of � signs depends on whether the pulse is moving in the
forward or the backward direction. Far from the band edges (jδ j � κ), optical
pulse is unaffected by the grating and travels at the group velocity expected in
the absence of the grating. However, as jδ j approaches κ , the group velocity
decreases and becomes zero at the two edges of the stop band where jδ j= κ .
Thus, close to the photonic bandgap, an optical pulse experiences considerable



Grating Characteristics 17

slowing down inside a fiber grating. As an example, its speed is reduced by
50% when jδ j=κ � 1:18.

Second- and third-order dispersive properties of the grating are governed
by β g

2
and βg

3
, respectively. Using Eq. (1.3.24) together with the dispersion

relation, these parameters are given by

β g
2 =�

sgn(δ )κ2=v2
g

(δ 2�κ2)3=2
; β g

3 =

3jδ jκ2=v3
g

(δ 2�κ2)5=2
: (1.3.26)

The grating-induced GVD, governed by the parameter βg
2
, depends on the sign

of detuning δ . The GVD is anomalous on the upper branch of the dispersion
curve in Fig. 1.5, where δ is positive and the carrier frequency exceeds the
Bragg frequency. In contrast, GVD becomes normal (β g

2
> 0) on the lower

branch of the dispersion curve, where δ is negative and the carrier frequency
is smaller than the Bragg frequency. Notice that the third-order dispersion
remains positive on both branches of the dispersion curve. Also note that both
β g

2
and βg

3
become infinitely large at the two edges of the stop band.

The dispersive properties of a fiber grating are quite different than those
of a uniform fiber. First, βg

2
changes sign on the two sides of the stop band

centered at the Bragg wavelength, whose location is easily controlled and can
be in any region of the optical spectrum. This is in sharp contrast with β2
for uniform fibers, which changes sign at the zero-dispersion wavelength that
can be varied only in a range from 1.3 to 1.6 µm. Second, βg

2
is anomalous

on the shorter wavelength side of the stop band whereas β2 for fibers becomes
anomalous for wavelengths longer than the zero-dispersion wavelength. Third,
the magnitude of βg

2
exceeds that of β2 by a large factor. Figure 1.6 shows how

β g
2

varies with detuning δ for several values of κ . As seen there, jβg
2
j can

exceed 100 ps2/cm for a fiber grating. This feature can be used for disper-
sion compensation in the transmission geometry [64]. Typically, a 10-cm-long
grating can compensate the GVD acquired over fiber lengths of 50 km or more.
Chirped gratings, discussed later in this chapter, can provide even more disper-
sion when the incident light is inside the stop band, although they reflect the
dispersion-compensated signal [65].

1.3.4 Grating as an Optical Filter

What happens to optical pulses incident on a fiber grating depends very much
on the location of the pulse spectrum with respect to the stop band associated
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Figure 1.6 Grating-induced GVD plotted as a function of δ for several values of the
coupling coefficient κ .

with the grating. If the pulse spectrum falls entirely within the stop band, the
entire pulse is reflected by the grating. On the other hand, if a part of the
pulse spectrum is outside the stop band, that part will be transmitted through
the grating. The shape of the reflected and transmitted pulses will be quite
different than that of the incident pulse because of the splitting of the spectrum
and the dispersive properties of the fiber grating. If the peak power of pulses
is small enough that nonlinear effects are negligible, we can first calculate
the reflection and transmission coefficients for each spectral component. The
shape of the transmitted and reflected pulses is then obtained by integrating
over the spectrum of the incident pulse. Considerable distortion can occur
when the pulse spectrum is either wider than the stop band or when it lies in
the vicinity of a stop-band edge.

The reflection and transmission coefficients can be calculated by using Eqs.
(1.3.20) and (1.3.21) with the appropriate boundary conditions. Consider a
grating of length L and assume that light is incident only at the front end,
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Figure 1.7 (a) The reflectivity jrgj
2 and (b) the phase of rg plotted as a function of

detuning δ for two values of κL.

located at z = 0. The reflection coefficient is then given by

rg =
Ãb(0)

Ã f (0)
=

B2 + r(q)A1

A1 + r(q)B2
: (1.3.27)

If we use the boundary condition Ãb(L) = 0 in Eq. (1.3.21),

B2 =�r(q)A1 exp(2iqL): (1.3.28)

Using this value of B2 and r(q) from Eq. (1.3.22) in Eq. (1.3.27), we obtain

rg =
iκ sin(qL)

qcos(qL)� iδ sin(qL)
: (1.3.29)

The transmission coefficient tg can be obtained in a similar manner. The fre-
quency dependence of rg and tg shows the filter characteristics associated with
a fiber grating.

Figure 1.7 shows the reflectivity jrgj2 and the phase of rg as a function of
detuning δ for two values of κL. The grating reflectivity within the stop band
approaches 100% for κL = 3 or larger. Maximum reflectivity occurs at the
center of the stop band and, by setting δ = 0 in Eq. (1.3.29), is given by

Rmax = jrgj2 = tanh2
(κL): (1.3.30)
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Figure 1.8 Measured and calculated reflectivity spectra for a fiber grating operating
near 1.3 µm. (After Ref. [33])

For κL = 2, Rmax = 0.93. The condition κL > 2 with κ = 2πδn1=λ can be
used to estimate the grating length required for high reflectivity inside the stop
band. For δn1 � 10�4 and λ = 1:55 µm, L should exceed 5 mm to yield
κL > 2. These requirements are easily met in practice. Indeed, reflectivities in
excess of 99% were achieved for a grating length of 1.5 cm [34].

1.3.5 Experimental Verification

The coupled-mode theory has been quite successful in explaining the observed
features of fiber gratings. As an example, Figure 1.8 shows the measured re-
flectivity spectrum for a Bragg grating operating near 1.3 µm [33]. The fitted
curve was calculated using Eq. (1.3.29). The 94% peak reflectivity indicates
κL� 2 for this grating. The stop band is about 1.7-nm wide. These measured
values were used to deduce a grating length of 0.84 mm and an index change
of 1:2�10�3. The coupled-mode theory explains the observed reflection and
transmission spectra of fiber gratings quite well.

An undesirable feature seen in Figs. 1.7 and 1.8 from a practical standpoint
is the presence of multiple sidebands located on each side of the stop band.
These sidebands originate from weak reflections occurring at the two grating
ends where the refractive index changes suddenly compared to its value outside
the grating region. Even though the change in refractive index is typically less
than 1%, the reflections at the two grating ends form a Fabry–Perot cavity
with its own wavelength-dependent transmission. An apodization technique is
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(a) (b)

Figure 1.9 (a) Schematic variation of refractive index and (b) measured reflectivity
spectrum for an apodized fiber grating. (After Ref. [66])

commonly used to remove the sidebands seen in Figs. 1.7 and 1.8 [49]. In this
technique, the intensity of the ultraviolet laser beam used to form the grating is
made nonuniform in such a way that the intensity drops to zero gradually near
the two grating ends.

Figure 1.9(a) shows schematically the periodic index variation in an apodi-
zed fiber grating. In a transition region of width Lt near the grating ends, the
value of the coupling coefficient κ increases from zero to its maximum value.
These buffer zones can suppress the sidebands almost completely, resulting in
fiber gratings with practically useful filter characteristics. Figure 1.9(b) shows
the measured reflectivity spectrum for a 7.5-cm-long apodized fiber grating
made by the scanning phase mask technique. The reflectivity exceeds 90%
within the stop band, about 0.17-nm wide and centered at the Bragg wave-
length of 1.053 µm, chosen to coincide with the wavelength of an Nd:YLF
laser [66]. From the stop-band width, the coupling coefficient κ is estimated
to be about 7 cm�1. Note the sharp drop in reflectivity at both edges of the
stop band and a complete absence of sidebands.

The same apodized fiber grating was used to investigate dispersive prop-
erties in the vicinity of a stop-band edge by transmitting 80-ps pulses (nearly
Gaussian shape) through it [66]. Figure 1.10 shows the variation of the pulse
width (a) and changes in the propagation delay during pulse transmission (b) as
a function of the detuning δ from the Bragg wavelength on the upper branch of
the dispersion curve. The most interesting feature is the increase in the arrival
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(a) (p)

Figure 1.10 (a) Measured pulse width (FWHM) of 80-ps input pulses and (b) their
arrival time as a function of detuning δ for an apodized 7.5-cm-long fiber grating.
Solid lines show the prediction of the coupled-mode theory. (After Ref. [66])

time observed as the laser is tuned close to the stop-band edge because of the
reduced group velocity. Doubling of the arrival time for δ close to 900 m�1

shows that the pulse speed was only 50% of that expected in the absence of the
grating. This result is in complete agreement with the prediction of coupled-
mode theory.

Changes in the pulse width seen in Figure 1.10 can be attributed mostly
to the grating-induced GVD effects in Eq. (1.3.26). The large broadening ob-
served near the stop-band edge is due to an increase in jβg

2
j. Slight compres-

sion near δ = 1200 m�1 is due to a small amount of SPM that chirps the pulse.
Indeed, it was necessary to include the γ term in Eqs. (1.3.11) and (1.3.12)
to fit the experimental data. The nonlinear effects became quite significant at
higher power levels. We turn to this issue next.

1.4 CW Nonlinear Effects

Wave propagation in a nonlinear, one-dimensional, periodic medium has been
studied in several different contexts [67]–[87]. In the case of a fiber grating,
the presence of an intensity-dependent term in Eq. (1.3.1) leads to SPM and
XPM of counterpropagating waves. These nonlinear effects can be included
by solving the nonlinear coupled-mode equations, Eqs. (1.3.11) and (1.3.12).
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In this section, these equations are used to study the nonlinear effects for CW
beams. The time-dependent effects are discussed in later sections.

1.4.1 Nonlinear Dispersion Curves

In almost all cases of practical interest, the β 2 term can be neglected in Eqs.
(1.3.11) and (1.3.12). For typical grating lengths (< 1 m), the loss term can
also be neglected by setting α = 0. The nonlinear coupled-mode equations
then take the following form:

i
∂A f

∂ z
+

i
vg

∂A f

∂ t
+δA f +κAb + γ(jA f j

2
+2jAbj

2
)A f = 0; (1.4.1)

�i
∂Ab

∂ z
+

i
vg

∂Ab

∂ t
+δAb +κA f + γ(jAbj

2
+2jA f j

2
)Ab = 0; (1.4.2)

where vg is the group velocity far from the stop band associated with the grat-
ing. These equations exhibit many interesting nonlinear effects. We begin by
considering the CW solution of Eqs. (1.4.1) and (1.4.2) without imposing any
boundary conditions. Even though this is unrealistic from a practical stand-
point, the resulting dispersion curves provide considerable physical insight.
Note that all grating-induced dispersive effects are included in these equations
through the κ term.

To solve Eqs. (1.4.1) and (1.4.2) in the CW limit, we neglect the time-
derivative term and assume the following form for the solution:

A f = uf exp(iqz); Ab = ub exp(iqz); (1.4.3)

where uf and ub are constant along the grating length. By introducing a pa-

rameter f = ub=uf that describes how the total power P0 = u2
f + u2

b is divided
between the forward- and backward-propagating waves, uf and ub can be writ-
ten as

uf =

r
P0

1+ f 2 ; ub =

r
P0

1+ f 2 f : (1.4.4)

The parameter f can be positive or negative. For values of j f j > 1, the back-
ward wave dominates. By using Eqs. (1.4.1)–(1.4.4), both q and δ are found
to depend on f and are given by

q =�
κ(1� f 2

)

2 f
�

γP0

2
1� f 2

1+ f 2 ; δ =�
κ(1+ f 2

)

2 f
�

3γP0

2
: (1.4.5)
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Figure 1.11 Nonlinear dispersion curves showing variation of δ with q for γP0=κ = 2
(a) and 5 (b) when κ = 5 cm�1. Dashed curves show the linear case (γ = 0).

To understand the physical meaning of Eq. (1.4.5), let us first consider
the low-power case so that nonlinear effects are negligible. If we set γ = 0
in Eq. (1.4.5), it is easy to show that q2

= δ 2 � κ2. This is precisely the
dispersion relation (1.3.19) obtained previously. As f changes, q and δ trace
the dispersion curves shown in Fig. 1.5. In fact, f < 0 on the upper branch
while positive values of f belong to the lower branch. The two edges of the
stop band occur at f =�1. From a practical standpoint, the detuning δ of the
CW beam from the Bragg frequency determines the value of f , which in turn
fixes the values of q from Eq. (1.4.5). The group velocity inside the grating
also depends on f and is given by

VG = vg
dδ
dq

= vg

�
1� f 2

1+ f 2

�
: (1.4.6)

As expected, VG becomes zero at the edges of the stop band corresponding to
f = �1. Note that VG becomes negative for j f j > 1. This is not surprising if
we note that the backward-propagating wave is more intense in that case. The
speed of light is reduced considerably as the CW-beam frequency approaches
an edge of the stop band. As an example, it reduces by 50% when f 2 equals
1/3 or 3.

Equation (1.4.5) can be used to find how the dispersion curves are affected
by the fiber nonlinearity. Figure 1.11 shows such curves at two power levels.
The nonlinear effects change the upper branch of the dispersion curve qual-
itatively, leading to the formation a loop beyond a critical power level. This
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critical value of P0 can be found by looking for the value of f at which q be-
comes zero while j f j 6= 1. From Eq. (1.4.5), we find that this can occur when

f � fc =�(γP0=2κ)+
q

(γP0=2κ)2�1: (1.4.7)

Thus, a loop is formed only on the upper branch where f < 0. Moreover, it
can form only when the total power P0 > Pc, where Pc = 2κ=γ . Physically, an
increase in the mode index through the nonlinear term in Eq. (1.3.1) increases
the Bragg wavelength and shifts the stop band toward lower frequencies. Since
the amount of shift depends on the total power P0, light at a frequency close to
the edge of the upper branch can be shifted out of resonance with changes in
its power. If the nonlinear parameter γ were negative (self-defocusing medium
with n2 < 0), the loop will form on the lower branch in Fig. 1.11, as is also
evident from Eq. (1.4.7).

1.4.2 Optical Bistability

The simple CW solution given in Eq. (1.4.3) is modified considerably when
boundary conditions are introduced at the two grating ends. For a finite-size
grating, the simplest manifestation of the nonlinear effects occurs through op-
tical bistability, first predicted in 1979 [67].

Consider a CW beam incident at one end of the grating and ask how the
fiber nonlinearity would affect its transmission through the grating. It is clear
that both the beam intensity and its wavelength with respect to the stop band
will play an important role. Mathematically, we should solve Eqs. (1.4.1) and
(1.4.2) after imposing the appropriate boundary conditions at z = 0 and z = L.
These equations are quite similar to those occurring in Section A.6.3 and can
be solved in terms of the elliptic functions by using the same technique used
there [67]. The analytic solution is somewhat complicated and provides only
an implicit relation for the transmitted power at z = L. We refer to Ref. [79]
for details.

Figure 1.12 shows the transmitted versus incident power [both normalized
to a critical power Pcr = 4=(3γL)] for several detuning values within the stop
band by taking κL = 2. The S-shaped curves are well known in the context
of optical bistability occurring when a nonlinear medium is placed inside a
cavity [88]. In fact, the middle branch of these curves with negative slope
is unstable, and the transmitted power exhibits bistability with hysteresis, as
shown by the arrows on the solid curve. At low powers, transmittivity is small,
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Figure 1.12 Transmitted versus incident power for three values of detuning within
the stop band. (After Ref. [67], cAmerican Institute of Physics)

as expected from the linear theory since the nonlinear effects are relatively
weak. However, above a certain input power, most of the incident power is
transmitted. Switching from a low-to-high transmission state can be under-
stood qualitatively by noting that the effective detuning δ in Eqs. (1.4.1) and
(1.4.2) becomes power dependent because of the nonlinear contribution to the
refractive index in Eq. (1.3.1). Thus, light that is mostly reflected at low pow-
ers because its wavelength is inside the stop band may tune itself out of the
stop band and get transmitted when the nonlinear index change becomes large
enough. In a sense, the situation is similar to that discussed in Section A.10.3,
where SPM helped to satisfy the phase-matching condition associated with
four-wave mixing.

The observation of optical bistability in fiber gratings is hampered by the
large switching power required (P0 > Pcr > 1 kW). It turns out that the switch-
ing power can be reduced by a factor of 100 or more by introducing a π=2
phase shift in the middle of the fiber grating. Such gratings are called λ=4-
shifted or phase-shifted gratings since a distance of λ=4 (half grating pe-
riod) corresponds to a π=2 phase shift. They are used routinely for making
distributed-feedback (DFB) semiconductor lasers [62]. Their use for fiber grat-
ings was suggested in 1994 [89]. The π=2 phase shift opens a narrow transmis-
sion window within the stop band of the grating. Figure 1.13(a) compares the
transmission spectra for the uniform and phase-shifted gratings at low powers.
At high powers, the central peak bends toward left, as seen in the traces in
Fig. 1.13(b). It is this bending that leads to low-threshold optical switching
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(a) (b)

Figure 1.13 (a) Transmission spectrum of a fiber grating with (solid curve) and with-
out (dashed curve) π=2 phase shift. (b) Bending of the central transmission peak with
increasing power (normalized to the critical power). (After Ref. [82])

in phase-shifted fiber gratings [82]. The elliptic-function solution of uniform
gratings can be used to construct the multivalued solution for a λ=4-shifted
grating [83]. It turns out that the presence of a phase-shifted region lowers the
switching power considerably.

The bistable switching does not always lead to a constant output power
when a CW beam is transmitted through a grating. As early as 1982, numerical
solutions of Eqs. (1.4.1) and (1.4.2) showed that transmitted power can become
not only periodic but also chaotic under certain conditions [68]. In physical
terms, portions of the upper branch in Fig. 1.12 may become unstable. As a
result, the output becomes periodic or chaotic once the beam intensity exceeds
the switching threshold. This behavior has been observed experimentally and
is discussed in Section 1.6. In Section 1.5, we turn to another instability that
occurs even when the CW beam is tuned outside the stop band and does not
exhibit optical bistability.

1.5 Modulation Instability

The stability issue is of paramount importance and must be addressed for the
CW solutions obtained in the previous section. Similar to the analysis of Sec-
tion A.5.1, modulation instability can destabilize the steady-state solution and
produce periodic output even when a CW beam is incident on one end of the
fiber grating [90]–[95]. Moreover, the repetition rate of pulse trains generated
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through modulation instability can be tuned over a large range because of large
GVD changes occurring with the detuning δ .

1.5.1 Linear Stability Analysis

For simplicity, we discuss modulation instability using the CW solution given
by Eqs. (1.4.3) and (1.4.4) and obtained without imposing the boundary condi-
tions at the grating ends. Following the analysis of Section A.5.1, we perturb
the steady state slightly as

A j = (uj +aj)exp(iqz); ( j = f ;b); (1.5.1)

and linearize Eqs. (1.4.1) and (1.4.2) assuming that the perturbation aj is small.
The resulting equations are [95]

i
∂af

∂ z
+

i
vg

∂af

∂ t
+ κab�κ f a f

+ Γ[(af +a�f )+2 f (ab +a�b)] = 0; (1.5.2)

�i
∂ab

∂ z
+

i
vg

∂ab

∂ t
+ κaf �

κ
f

ab

+ Γ[2 f (af +a�f )+ f 2
(ab +a�b)] = 0; (1.5.3)

where Γ = γP0=(1+ f 2
) is an effective nonlinear parameter.

This set of two linear coupled equations can be solved assuming a plane-
wave solution of the form

aj = c j exp[i(Kz�Ωt)]+dj exp[�i(Kz+Ωt)]; (1.5.4)

where the subscript j = f or b. Similar to the case discussed in Section A.6.4,
we obtain a set of four homogeneous equations satisfied by cj and dj. This
set has a nontrivial solution only when the 4� 4 determinant formed by the
coefficients matrix vanishes. This condition leads to the the following fourth-
order polynomial:

(s2�K2
)

2 � 2κ2
(s2�K2

)�κ2 f 2
(s+K)

2

� κ2 f�2
(s�K)

2�4κΓ f (s2�3K2
) = 0; (1.5.5)

where we have introduced a spatial frequency as s = Ω=vg.
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Figure 1.14 Gain spectra of modulation instability in the (a) anomalous- and (b)
normal-GVD regions of a fiber grating ( f =�0:5) at two power levels corresponding
to Γ=κ = 0.5 and 2.

The four roots of the polynomial in Eq. (1.5.5) determine the stability of
the CW solution. However, a tricky issue must be first resolved. Equation
(1.5.5) is a fourth-order polynomial in both s and K. The question is, which
one determines the gain associated with modulation instability? In the case of
the uniform-index fibers discussed in Section A.5.1, the gain g was related to
the imaginary part of K since light was propagating in the forward direction.
In a fiber grating, light travels both forward and backward simultaneously, and
it is the time that moves forward for both of them. As a result, Eq. (1.5.5)
should be viewed as a fourth-order polynomial in s whose roots depend on K.
The gain of modulation instability is obtained using g = 2Im(sm), where sm is
the root with the largest imaginary part.

The root analysis of the above polynomial leads to several interesting con-
clusions [95]. Figure 1.14 shows the gain spectra of modulation instability in
the anomalous- and normal-GVD regions, corresponding to upper and lower
branches of the dispersion curves, for two values of Γ=κ . In the anomalous-
GVD case and at relatively low powers (Γ < κ), the gain spectrum is similar to
that found for uniform-index fibers. As shown later in this section, the nonlin-
ear coupled-mode equations reduce to a nonlinear Schrödinger (NLS) equation
when Γ� κ . At high values of P0 such that Γ> κ , the gain exists even at s = 0,
as seen in Fig. 1.14(a) for Γ=κ = 2. Thus, the CW solution becomes unstable
even to zero-frequency (dc) fluctuations at high power levels.

Modulation instability can occur even on the lower branch of the dispersion
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curve ( f > 0) where grating-induced GVD is normal. The instability occurs
only when P0 exceeds a certain value such that

P0 >
1
2κ(1+ f 2

)
2 f p; (1.5.6)

where p = 1 if f � 1 but p =�3 when f > 1. The occurrence of modulation
instability in the normal-GVD region is solely a grating-induced feature.

The preceding analysis completely ignores boundary conditions. For a
finite-length grating, one should examine the stability of the CW solution ob-
tained in terms of the elliptic functions. Such a study is complicated and
requires a numerical solution to the nonlinear coupled-mode equations [91].
The results show that portions of the upper branch of the bistability curves
in Fig. 1.12 can become unstable, resulting in the formation of a pulse train
through modulation instability. The resulting pulse train is not necessarily pe-
riodic and, under certain conditions, can exhibit period doubling and optical
chaos.

1.5.2 Effective NLS Equation

The similarity of the gain spectrum in Fig. 1.14 with that occurring in uniform-
index fibers (see Section A.5.1) indicates that, at not-too-high power levels, the
nonlinear coupled-mode equations predict features that coincide with those
found for the NLS equation. Indeed, under certain conditions, Eqs. (1.4.3) and
(1.4.4) can be reduced formally to an effective NLS equation [96]–[100]. A
multiple-scale method is commonly used to prove this equivalence; details can
be found in Ref. [79].

The analysis used to reduce the nonlinear coupled-mode equations to an ef-
fective NLS equation makes use of the Bloch formalism well known in solid-
state physics. Even in the absence of nonlinear effects, the eigenfunctions
associated with the photonic bands, corresponding to the dispersion relation
q2

= δ 2�κ2, are not Af and Ab but the Bloch waves formed by a linear combi-
nation of Af and Ab. If this basis is used for the nonlinear problem, Eqs. (1.4.3)
and (1.4.4) reduce to an effective NLS equation provided two conditions are
met. First, the peak intensity of the pulse is small enough that the nonlinear
index change n2I0 in Eq. (1.3.1) is much smaller than the maximum value of
δng. This condition is equivalent to requiring that γP0 � κ or κLNL � 1,
where LNL = (γP0)

�1 is the nonlinear length. This requirement is easy to sat-
isfy in practice even at peak intensity levels as high as 100 GW/cm2. Second,
the third-order dispersion βg

3
induced by the grating should be negligible.
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When the above two conditions are satisfied, pulse propagation in a fiber
grating is governed by the following NLS equation [95]:

i
vg

∂U
∂ t
�

(1� v2
)

3=2

2κ sgn( f )
∂ 2U
∂ζ 2 +

1
2
(3� v2

)γ jU j2U; (1.5.7)

where ζ = z�VGt. We have introduced a speed-reduction factor related to the
parameter f through Eq. (1.4.6) as

v =
VG

vg
=

1� f 2

1+ f 2 =�
p

1�κ2=δ 2: (1.5.8)

The group velocity decreases by the factor v close to an edge of the stop band
and vanishes at the two edges (v = 0) corresponding to f = �1. The reason
the first term is a time derivative, rather than the z derivative, was discussed
earlier. It can also be understood from a physical standpoint if we note that the
variable U does not correspond to the amplitude of the forward- or backward-
propagating wave but represents the amplitude of the envelope associated with
the Bloch wave formed by a superposition of Af and Ab.

Equation (1.5.8) has been written for the case in which the contribution of
A f dominates (j f j < 1) so that the entire Bloch-wave envelope is propagating
forward at the reduced group velocity VG. With this in mind, we introduce
z =VGt as the distance traveled by the envelope and account for changes in its
shape through a local time variable defined as T = t� z=VG. Equation (1.5.8)
can then be written in the standard form used in Chapter A.5 as

i
∂U
∂ z
�

β g
2

2
∂ 2U
∂T 2 + γgjU j2U = 0; (1.5.9)

where the effective GVD parameter βg
2

and the nonlinear parameter γg are
defined as

β g
2 =

(1� v2
)

3=2

sgn( f )v2
gκv3 ; γg =

�
3� v2

2v

�
γ : (1.5.10)

Using Eq. (1.5.8), the GVD parameter βg
2

can be shown to be the same as in
Eq. (1.3.26).

Several features of Eq. (1.5.9) are noteworthy when this equation is com-
pared with the standard NLS equations. First, the variable U represents the
amplitude of the envelope associated with the Bloch wave formed by a super-
position of Af and Ab. Second, the parameters βg

2
and γg are not constants but
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depend on the speed-reduction factor v. Both increase as v decreases and be-
come infinite at the edges of the stop band where v = 0. Clearly, Eq. (1.5.9) is
not valid at that point. However, it remains valid close to but outside the stop
band. Far from the stop band (v ! 1), βg

2
becomes quite small (< 1 ps2/km

for typical values of κ). One should then include fiber GVD and replace βg
2

by β2. Noting that γg = γ when v = 1, Eq. (1.5.9) reduces to the standard NLS
equation, and U corresponds to the forward-wave amplitude since no backward
wave is generated under such conditions.

Before we can use Eq. (1.5.9) for predicting the modulation-instability gain
and the frequency at which the gain peaks, we need to know the total power P0
inside the grating when a CW beam with power Pin is incident at the input end
of the grating located at z = 0. This is a complicated issue for apodized fiber
gratings because κ is not constant in the transition or buffer zone. However,
observing that the nonlinear coupled-mode equations require jA2

f j � jA
2
bj to

remain constant along the grating, one finds that the total power P0 inside the
grating is enhanced by a factor 1=v [101]. The predictions of Eq. (1.5.9) are
in agreement with the modulation-instability analysis based on the nonlinear
coupled-mode equations as long as γP0 � κ [95]. The NLS equation provides
a shortcut to understanding the temporal dynamics in gratings within its regime
of validity.

1.5.3 Experimental Results

Modulation instability implies that an intense CW beam should get converted
into a pulse train if it passes through a fiber grating. The experimental ob-
servation of this phenomenon is difficult when a CW beam is used since the
required input power is too large to be realistic. For this reason, experiments
often use short optical pulses whose width is chosen to be much larger than
the modulation period. In a 1996 experiment, 100-ps pulses—obtained from
a Q-switched, mode-locked Nd:YLF laser operating close to 1.053 µm—were
used and it was found that each pulse was transformed into two shorter pulses
at the grating output [94]. The grating was only 3.5-cm long in this experiment
and did not allow substantial growth of modulation instability.

In a 1998 experiment, a 6-cm-long fiber grating was used with a value of
κ = 12 cm�1 [101]. Figure 1.15 shows transmitted pulse shapes when 100-ps
pulses were propagated through this grating. The peak intensity of the in-
put Gaussian pulse is 25 GW/cm2. Its central frequency is tuned close to but
outside the stop band such that the grating provides anomalous GVD (upper
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Figure 1.15 Transmitted pulse shape when 100-ps pulses with a peak intensity of
25 GW/cm2 are propagated through a 6-cm-long fiber grating. (After Ref. [101],
c1998, reprinted with permission from Elsevier Science)

branch of the dispersion curve). At lower power levels, pulse is compressed
because of the combination of GVD and SPM that leads to soliton-effect com-
pression (discussed in Chapter 6). At the 25 GW/cm2 power level, the trans-
mitted pulse exhibits a multipeak structure that can be interpreted as a pulse
train generated through modulation instability. This interpretation is supported
by the observation that the repetition rate (spacing between two neighboring
pulses) changes with the laser wavelength (equivalent to changing the detuning
parameter δ ), as expected from the theory of modulation instability.

1.6 Nonlinear Pulse Propagation

As discussed in Chapter A.5, modulation instability often indicates the possi-
bility of soliton formation. In the case of Bragg gratings, it is closely related
to a new kind of solitons referred to as Bragg solitons or grating solitons.
Such solitons were first discovered in 1987 in the context of periodic struc-
tures known as superlattices [70] and were called gap solitons since they ex-
isted only inside the stop band. Later, a much larger class of Bragg solitons
was identified by solving Eqs. (1.4.1) and (1.4.2) analytically [102]–[104].

The advent of fiber gratings provided an incentive during the 1990s for
studying propagation of short optical pulses in such gratings [105]–[115]. The
peak intensities required to observe the nonlinear effects are quite high (typi-
cally > 10 GW/cm2) for Bragg gratings made in silica fibers because of a short
interaction length (typically <10 cm) and a low value of the nonlinear param-
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eter n2. The use of chalcogenide glass fibers for making gratings can reduce
required peak intensities by a factor of 100 or more because the high values of
n2 in such glasses [116].

1.6.1 Bragg Solitons

It was realized in 1989 that the coupled-mode equations, Eqs. (1.4.1) and
(1.4.2), become identical to the well-known massive Thirring model [117] if
the SPM term is set to zero. The massive Thirring model of quantum field
theory is known to be integrable by the inverse scattering method [118]–[120].
When the SPM term is included, the coupled-mode equations become non-
integrable, and solitons do not exist in a strict mathematical sense. However,
shape-preserving solitary waves can be obtained through a suitable transfor-
mation of the soliton supported by the massive Thirring model. These solitary
waves correspond to the following solution [103]:

A f (z; t) = a
+

sech(ζ � iψ=2)eiθ ; (1.6.1)

Ab(z; t) = a
�

sech(ζ + iψ=2)eiθ ; (1.6.2)

where

a
�
=�
�

1� v
1� v

�1=4
s

κ(1� v2)

γ(3� v2)
sinψ ; ζ =

z�VGt
p

1� v2
κ sinψ ; (1.6.3)

θ =
v(z�VGt)
p

1� v2
κ cos ψ�

4v
3� v2 tan�1

[jcot(ψ=2)jcoth(ζ )]: (1.6.4)

This solution represents a two-parameter family of Bragg solitons. The
parameter v is in the range �1 < v < 1 and the parameter ψ can be chosen
anywhere in the range 0 < ψ < π . The specific case ψ = π=2 corresponds to
the center of the stop band [102]. Physically, Bragg solitons represent specific
combinations of counterpropagating waves that pair in such a way that they
move at the same but reduced speed (VG = vvg). Since v can be negative, the
soliton can move forward or backward. The soliton width Ts is also related to
the parameters v and ψ and is given by

Ts =
p

1� v2=(κVG sinψ): (1.6.5)

One can understand the reduced speed of a Bragg soliton by noting that the
counterpropagating waves form a single entity that moves at a common speed.
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The relative amplitudes of the two waves participating in soliton formation
determine the soliton speed. If Af dominates, the soliton moves in the forward
direction but at a reduced speed. The opposite happens when Ab is larger. In
the case of equal amplitudes, the soliton does not move at all since VG becomes
zero. This case corresponds to the stationary gap solitons predicted in the
context of superlattices [70]. In the opposite limit in which jvj ! 1, Bragg
solitons cease to exist since the grating becomes ineffective.

Another family of solitary waves is obtained by looking for the shape-
preserving solutions of the nonlinear coupled-mode equations [104]. Such
solitary waves exist both inside and outside the stop band. They reduce to the
Bragg solitons described by Eqs. (1.6.2)–(1.6.4) in some specific limits. On
the lower branch of the dispersion curve where the GVD is normal, solitary
waves represent dark solitons, similar to those discussed in Section A.5.3.

1.6.2 Relation to NLS Solitons

As discussed earlier, the nonlinear coupled-mode equations reduce to the NLS
equation when γP0 � κ , where P0 is the peak power of the pulse propagating
inside the grating. Since the NLS equation is integrable by the inverse scatter-
ing method, the fundamental and higher-order solitons found in Section A.5.2
should also exist for a fiber grating. The question then becomes how they are
related to the Bragg soliton described by Eqs. (1.6.1) and (1.6.2).

To answer this question, we write the NLS equation (1.5.9) using soliton
units in its standard form

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = 0; (1.6.6)

where ξ = z=LD; τ = T=T0; u =
p

γgLD, and LD = T 2
0 =jβ g

2
j is the dispersion

length. The fundamental soliton of this equation, in its most general form, is
given by (see Section A.5.2)

u(ξ ;τ) = η sech[η(τ� τs + εξ )]exp[i(η2� ε2
)ξ=2� iετ + iφs]; (1.6.7)

where η , ε , τs, and φs are four arbitrary parameters representing amplitude,
frequency, position, and phase of the soliton, respectively. The soliton width
is related inversely to the amplitude as Ts = T0=η . The physical origin of such
solitons is the same as that for conventional solitons except that the GVD is
provided by the grating rather than by material dispersion.
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At first sight, Eq. (1.6.7) looks quite different than the Bragg soliton de-
scribed by Eqs. (1.6.2)–(1.6.4). However, one should remember that u repre-
sents the amplitude of the Bloch wave formed by superimposing Af and Ab. If
the total optical field is considered and the low-power limit (γP0 � κ) is taken,
the Bragg soliton indeed reduces to the fundamental NLS soliton [79]. The
massive Thirring model also allows for higher-order solitons [121]. One would
expect them to be related to higher-order NLS solitons in the appropriate limit.
It has been shown that any solution of the NLS equation (1.5.9) can be used to
construct an approximate solution of the coupled-mode equations [100].

The observation that Bragg solitons are governed by an effective NLS
equation in the limit κLNL � 1, where LNL is the nonlinear length, allows
us to use the concept of soliton order N and the soliton period z0 developed in
Chapter A.5. These parameters are defined as

N2
=

LD

LNL
�

γgP0T 2
0

jβ g
2
j
; z0 =

π
2

LD �
π
2

T 2
0

jβ g
2
j
: (1.6.8)

We need to interpret the meaning of the soliton peak power P0 carefully since
the NLS soliton represents the amplitude of the Bloch wave formed by a com-
bination of Af and Ab. This aspect is discussed later in this section.

An interesting issue is related to the collision of Bragg solitons. Since
Bragg solitons described by Eqs. (1.6.1) and (1.6.2) are only solitary waves
(because of the nonintegrablity of the underlying nonlinear coupled-mode equa-
tions), they may not survive collisions. On the other hand, the NLS solitons are
guaranteed to remain unaffected by their mutual collisions. Numerical simula-
tions based on Eqs. (1.4.1) and (1.4.2) show that Bragg solitons indeed exhibit
features reminiscent of a NLS soliton in the low-power limit γP0 � κ [113].
More specifically, two Bragg solitons attract or repel each other depending on
their relative phase. The new feature is that the relative phase depends on the
initial separation between the two solitons.

1.6.3 Formation of Bragg Solitons

Formation of Bragg solitons in fiber gratings was first observed in a 1996 ex-
periment [105]. Since then, more careful experiments have been performed,
and many features of Bragg solitons have been extracted. While comparing
the experimental results with the coupled-mode theory, one needs to imple-
ment the boundary conditions properly. For example, the peak power P0 of the
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Bragg soliton formed inside the grating when a pulse is launched is not the
same as the input peak power Pin. The reason can be understood by noting that
the group velocity of the pulse changes as the input pulse crosses the front end
of the grating located at z = 0. As a result, pulse length given by vgT0 just out-
side the grating changes to VGT0 on crossing the interface located at z = 0 [58],
and the pulse peak power is enhanced by the ratio vg=VG. Mathematically,
one can use the coupled-mode equations to show that P0 = jA

2
f j+ jA

2
bj= Pin=v,

where v = VG=vg is the speed-reduction factor introduced earlier. The argu-
ment becomes more complicated for apodized fiber gratings, used often in
practice, because κ is not constant in the transition region [110]. However, the
same power enhancement occurs at the end of the transition region.

From a practical standpoint, one needs to know the amount of peak power
Pin required to excite the fundamental Bragg soliton. The soliton period z0
is another important parameter relevant for soliton formation since it sets the
length scale over which optical solitons evolve. We can use Eq. (1.6.8) with
N = 1 to estimate both of them. Using the expressions for βg

2
and γg from Eq.

(1.5.10), the input peak power and the soliton period are given by

Pin =
2(1� v2

)
3=2

v(3� v2)v2
gT 2

0 κγ
; z0 =

πv3v2
gT 2

0 κ
2(1� v2)3=2

; (1.6.9)

where T0 is related to the FWHM as TFWHM � 1:76T0. Both Pin and z0 depend
through v on detuning of the laser wavelength from the edge of the stop band
located at δ = κ . As v! 0 near the edge, Pin becomes infinitely large while z0
tends toward zero.

Bragg solitons have been formed in a 7.5-cm-long apodized fiber grating
by using 80-ps pulses obtained from a Q-switched, mode-locked Nd:YLF laser
operating at 1053 nm [66]. Figure 1.16 shows pulse shapes at the output end
of the grating when input pulses having a peak intensity of 11 GW/cm2 are
used. The coupling coefficient κ was estimated to be 7 cm�1 for this grating
while the detuning parameter δ was varied over the range from 7 to 36 cm�1

on the blue side of the stop band (anomalous GVD). The arrival time of the
pulse depends on δ because of the reduction in group velocity as δ is reduced
and tuned closer to the stop-band edge. This delay occurs even when nonlinear
effects are negligible as shown in Fig. 1.10, which was obtained under identical
operating conditions but at a much lower value of the peak intensity.

At the high peak intensities used for Fig. 1.16, SPM in combination with
the grating-induced anomalous GVD leads to formation of Bragg solitons.
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Figure 1.16 Output pulse shapes for different δ when 80-ps pulses with a peak inten-
sity of 11 GW/cm2 are propagated through a 7.5-cm-long fiber grating. Values of δ
from left to right are 3612, 1406, 1053, 935, 847, 788, and 729 m�1. (After Ref. [66])

However, since both βg
2

and γg depend on the detuning parameter δ through
v, a Bragg soliton can form only in a limited range of δ . With this in mind,
we can understand the pulse shapes seen in Fig. 1.16. Detuning is so large
and β g

2
is so small for the leftmost trace that the pulse acquires some chirping

through SPM but its shape remains nearly unchanged. This feature can also
be understood from Eq. (1.6.9), where the soliton period becomes so long as
v! 1 that nothing much happens to the pulse over a few-cm-long grating. As
δ is reduced, the pulse narrows down considerably. A reduction in pulse width
by a factor of 3 occurs for δ = 1053 m�1 in Fig. 1.16. This pulse narrowing is
an indication that a Bragg soliton is beginning to form. However, the soliton
period is still much longer than the grating length. In other words, the grating
is not long enough to observe the final steady-state shape of the Bragg soliton.
Finally, as the edge of the stop band is approached and δ becomes comparable
to κ (rightmost solid trace), the GVD becomes so large that the pulse cannot
form a soliton and becomes broader than the input pulse. This behavior is also
deduced from Eq. (1.6.8), which shows that both N and z0 tend toward zero as
β g

2
tends toward infinity. A Bragg soliton can form only if N > 1

2 . Since the
dispersion length becomes smaller than the grating length close to the stop-
band edge, pulse can experience considerable broadening. This is precisely
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(a) (b)

Figure 1.17 Measured pulse widths (circles) as a function of detuning for 80-ps pulses
with a peak intensity of (a) 3 GW/cm2 and (b) 6 GW/cm2. Predictions of the coupled-
mode theory (solid line) and the effective NLS equation (dashed line) are shown for
comparison. (After Ref. [66])

what is observed for the smallest value of δ in Fig. 1.16 (solid curve).

A similar behavior was observed over a large range of pulse energies, with
some evidence of the second-order soliton for input peak intensities in excess
of 20 GW/cm2 [66]. A careful comparison of the experimental data with the
theory based on the nonlinear coupled-mode equations and the effective NLS
equation showed that the NLS equation provides an accurate description within
its regime of validity. Figure 1.17 compares the measured values of the pulse
width with the two theoretical models for peak intensities of 3 and 6 GW/cm2.
The NLS equation is valid as long as κLNL � 1. Using κ = 7 cm�1, we
estimate that the peak intensity can be as high as 50 GW/cm2 for the NLS
equation to remain valid. This is also what was found in Ref. [66].

Gap solitons that form within the stop band of a fiber grating have not been
observed because of a practical difficulty: A Bragg grating reflects light whose
wavelength falls inside the stop band. Stimulated Raman scattering may pro-
vide a solution to this problem since a pump pulse, launched at a wavelength
far from the stop band, can excite a “Raman gap soliton” that is trapped within
the grating and propagates much more slowly than the pump pulse itself [115].
The energy of such a gap soliton leaks slowly from the grating ends, but it
can survive for durations greater than 10 ns even though it is excited by pump
pulses of duration 100 ps or so.
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1.6.4 Nonlinear Switching

As discussed in Section 1.4.2, a fiber grating can exhibit bistable switching
even when a CW beam is incident on it. However, optical pulses should be
used in practice because of the high intensities required for observing SPM-
induced nonlinear switching. Even then, one needs peak-intensity values in
excess of 10 GW/cm2. For this reason, bistable switching was first observed
during the 1980s using DFB semiconductor amplifiers for which large carrier-
induced nonlinearities reduce the switching threshold to power levels below
1 mW [122]–[124]. Nonlinear switching in a passive grating was observed in a
1992 experiment using a semiconductor waveguide grating [76]. The nonlinear
response of such gratings is not governed by the Kerr-type nonlinearity seen in
Eq. (1.3.1) because of the presence of free carriers (electrons and holes) whose
finite lifetime limits the nonlinear response time.

Nonlinear switching in a fiber Bragg grating was observed in 1998 in the
1.55-µm wavelength region useful for fiber-optic communications [109]. An
8-cm-long grating, with its Bragg wavelength centered near 1536 nm, was used
in the experiment. It had a peak reflectivity of 98% and its stop band was only
4-GHz wide. The 3-ns input pulses were obtained by amplifying the output of
a pulsed DFB semiconductor laser to power levels as high as 100 kW. Their
shape was highly asymmetric because of gain saturation occurring inside the
amplifier chain. The laser wavelength was inside the stop band on the short-
wavelength side but was set very close to the edge (offset of about 7 pm or
0.9 GHz).

Figure 1.18(a) shows a sharp rise in the transmittivity from a few percent to
40% when the peak power of input pulses increases beyond 2 kW. Physically,
the nonlinear increase in the refractive index at high powers shifts the Bragg
wavelength far enough that the pulse finds itself outside the stop band and
switches to the upper branch of the bistability curves seen in Fig. 1.12. The
pulse shapes seen in Fig. 1.18(b) show what happens to the transmitted pulse.
The initial spike near t = 0 in these traces is due to a sharp leading edge of
the asymmetric input pulse and should be ignored. Multiple pulses form at the
grating output whose number depends on the input power level. At a power
level of 3 kW, a single pulse is seen but the number increases to five at a power
level of 8 kW. The pulse width is smallest (about 100 ps) near the leading edge
of the pulse train but increases substantially for pulses near the trailing edge.

Several conclusions can be drawn from these results. First, the upper bista-
bility branch in Fig. 1.12 is not stable and converts the quasi-CW signal into a
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Figure 1.18 (a) Transmittivity as a function of input peak power showing nonlinear
switching; (b) output pulse shapes at several peak power levels. (After Ref. [111])

pulse train [68]. Second, each pulse evolves toward a constant width. Pulses
near the leading edge have had enough propagation time within the grating to
stabilize their widths. These pulses can be thought of as a gap soliton since they
are formed even though the input signal is inside the photonic bandgap and
would be completely reflected in the absence of the nonlinear effects. Third,
pulses near the trailing edge are wider simply because the fiber grating is not
long enough for them to evolve completely toward a gap soliton. This inter-
pretation was supported by a later experiment in which the grating length was
increased to 20 cm [114]. Six gap solitons were found to form in this grating
at a peak power level of 1.8 W. The observed data were in agreement with
theory based on the nonlinear coupled-mode equations.

The nonlinear switching seen in Fig. 1.18 is sometimes called SPM-induced
or self-induced switching since the pulse changes the refractive index to switch
itself to the high-transmission state. Clearly, another signal at a different wave-
length can also induce switching of the pulse by changing the refractive index
through XPM, resulting in XPM-induced switching. This phenomenon was
first observed in 1991 as an increase in the transmittivity of a 514-nm signal
caused by a 1064-nm pump beam [74]. The increase in transmission was less
than 10% in this experiment.

It was suggested later that XPM could be used to form a “push broom” such
that a weak CW beam (or a broad pulse) would be swept by a strong pump
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pulse and its energy piled up at the front end of the pump pulse [125]. The
basic idea behind the optical push broom is quite simple. If the wavelength of
the pump pulse is far from the stop band while that of the probe is close to but
outside the stop band (on the lower branch of the dispersion curve), the pump
travels faster than the probe. In the region where pump and probe overlap, the
XPM-induced chirp changes the probe frequency such that it moves with the
leading edge of the pump pulse. As the pump pulse travels further, it sweeps
more and more of the probe energy and piles it up at its leading edge. In effect,
the pump acts like a push broom. At the grating output, a significant portion
of the probe energy appears at the same time as the pump pulse in the form of
a sharp spike because of the XPM-induced increase in the probe speed. Such
a push-broom effect has been seen in a 1997 experiment [126].

1.6.5 Effects of Birefringence

As discussed in Chapter A.6, fiber birefringence plays an important role and
affects the nonlinear phenomena considerably. Its effects should be included
if Bragg gratings are made inside the core of polarization-maintaining fibers.
The coupled-mode theory can be easily extended to account for fiber birefrin-
gence [127]–[130]. However, the problem becomes quite complicated since
one needs to solve a set of four coupled equations describing the evolution
of two orthogonally polarized components, each containing both the forward-
and backward-propagating waves. This complexity, however, leads to a rich
class of nonlinear phenomena with practical applications such as optical logic
gates.

From a physical standpoint, the two orthogonally polarized components
have slightly different mode indices. Since the Bragg wavelength depends on
the mode index, the stop bands of the two modes have the same widths but are
shifted by a small amount with respect to each other. As a result, even though
both polarization components have the same wavelength (or frequency), one
of them may fall inside the stop band while the other remains outside it. More-
over, as the two stop bands shift due to nonlinear index changes, the shift
can be different for the two orthogonally polarized components because of the
combination of the XPM and birefringence effects. It is this feature that leads
to a variety of interesting nonlinear effects.

In the case of CW beams, the set of four coupled equations was solved
numerically in 1994 and several birefringence-related nonlinear effects were
identified [128]. One such effect is related to the onset of polarization insta-
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bility discussed in Chapter A.6. The critical power at which this instability
occurs is reduced considerably in the presence of a Bragg grating [131]. Non-
linear birefringence also affects Bragg solitons. In the NLS limit (γP0 � κ),
the four equations reduce a pair of coupled NLS equations, similar to those
appearing in Chapter A.6. In the case of low-birefringence fibers, the two po-
larization components have nearly the same group velocity, and the coupled
NLS equations take the following form [127]:
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where ∆β � β0x�β0y is related to the beat length LB as ∆β = 2π=LB. These
equations support a vector soliton with equal amplitudes such that the peak
power required for each component is only

p
3=5 of that required when only

one component is present. Such a vector soliton is referred to as the coupled-
gap soliton [127].

The coupled-gap soliton can be used for making an all-optical AND gate.
The x and y polarized components of the input light represent bits for the gate,
each bit taking a value of 0 or 1 depending on whether the corresponding signal
is absent or present. The AND gate requires that a pulse appears at the output
only when both components are present simultaneously. This can be achieved
by tuning both polarization components inside the stop band but close to the
upper branch of the dispersion curve. Their combined intensity can increase
the refractive index (through a combination of SPM and XPM) enough that
both components are transmitted. However, if one of the components is absent
at the input (0 bit), the XPM contribution vanishes and both components are
reflected by the grating. This occurs simply because the coupled gap soliton
forms at a lower peak power level than the Bragg soliton associated with each
individual component [127].

An all-optical AND gate was realized in a 1998 experiment in which a
switching contrast of 17 dB was obtained at a peak power level of 2.5 kW [108].
Figure 1.19 shows the fraction of total pulse energy transmitted (a) as a func-
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(a) (b)

Figure 1.19 (a) Grating transmissivity as a function of input peak power showing the
operation of the AND gate and (b) output pulse shapes at a peak power level of 3 kW
when only one polarization component (dashed line) or both polarization components
(solid line) are incident at the input end. (After Ref. [111])

tion of input peak power and the transmitted pulse shapes (b) at a peak power
of 3 kW. When only one polarization component is incident at the input end,
little energy is transmitted by the grating. However, when both polarization
components are launched, each having the same peak power, an intense pulse
is seen at the output end of the grating, in agreement with the prediction of the
coupled NLS equations.

The XPM-induced coupling can be advantageous even when the two polar-
ization components have different wavelengths. For example, it can be used to
switch the transmission of a CW probe from low to high by using an orthogo-
nally polarized short pump pulse at a wavelength far from the stop band associ-
ated with the probe [132]. In contrast with the self-induced bistable switching
discussed earlier, XPM-induced bistable switching can occur for a CW probe
too weak to switch itself. Furthermore, the short pump pulse switches the
probe beam permanently to the high-transmission state.

1.7 Related Periodic Structures

This chapter has focused on uniform Bragg gratings (except for apodization)
that are designed to couple the forward- and backward-propagating waves in-
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side an optical fiber. Many variations of this simple structure exist. In this
section we consider several other kinds of gratings and discuss nonlinear ef-
fects when intense light propagates through them.

1.7.1 Long-Period Gratings

Long-period gratings are designed to couple the fundamental fiber mode to a
higher-order copropagating mode [133]–[136]. In the case of a single-mode
fiber, the higher-order mode propagates inside the cladding and is called a
cladding mode. The grating period required for coupling the two copropagat-
ing modes can be calculated from Eq. (1.1.2) and is given by Λ = λ=∆n, where
∆n is the difference in the refractive indices of the two modes coupled by the
grating. Since ∆n � 0:01 typically, Λ is much larger than the optical wave-
length. It is for this reason that such gratings are called long-period gratings.

The coupled-mode theory of Section 1.3 can be used for long-period grat-
ings. In fact, the resulting equations are similar to Eqs. (1.3.11) and (1.3.12)
and can be written as [135]
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∂ 2A2
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2
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where A1 and A2 represent the slowly varying amplitudes of the two coprop-
agating modes coupled by the grating. A comparison of these equations with
Eqs. (1.3.11) and (1.3.12) reveals several important differences. First, the two
z derivatives have the same sign since both waves travel in the forward direc-
tion. Second, the group velocities and the GVD parameters can be different
for the two modes because of their different mode indices. Third, the SPM
parameters γ j and the XPM parameters cj are also generally different for j = 1
and 2. The reason is related to different spatial profiles for the two modes,
resulting in different overlap factors.

In the case of low-power CW beams, both the nonlinear effects and fiber-
GVD effects can be neglected in Eqs. (1.7.1) and (1.7.2) by setting γj = 0 and
β2 = 0 ( j = 1;2). These equations then reduce to Eqs. (1.3.13) and (1.3.14)
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(a) (b)

Figure 1.20 Transmitted power as a function of input peak power for (a) δ = 0 and
(b) �1:5 cm�1. Experimental data (solid circles) are compared with coupled-mode
theory (open circles). Dashed lines shows the behavior expected in the absence of
nonlinear effects. (After Ref. [135] c1997 IEEE)

with the only difference that both z derivatives have the same sign. They can be
solved readily and exhibit features similar to those discussed in Section 1.3.2.
When a single beam excites the A1 mode at the fiber input, its transmission
depends on its detuning δ from the Bragg wavelength and becomes quite small
within the stop band centered at δ = 0. The reason is easily understood by
noting that the grating transfers power to the A2 mode as light propagates
inside the grating.

The nonlinear effects such as SPM and XPM can affect the amount of
power transferred by changing the refractive index and shifting the Bragg
wavelength toward longer wavelengths. As a result, a long-period grating
should exhibit nonlinear switching. Moreover, the switching intensity is ex-
pected to be lower by a factor of n̄=∆n � 100 compared with that required
for short-period Bragg gratings. Figure 1.20 shows nonlinear changes in the
transmitted power as a function of input peak intensity when 70-ps Gaussian
pulses are transmitted through a 5-cm-long grating and compares the experi-
mental data with the prediction of coupled-mode theory. Dashed lines shows
the linear increase in transmission expected in the absence of nonlinear effects.
For δ = 0 [Fig. 1.20(a)], the input wavelength coincides with the Bragg wave-
length, and little transmission occurs in the linear case. However, at intensity
levels beyond 5 GW/cm2, the nonlinear effects shift the Bragg wavelength
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enough that a significant part of the incident power is transmitted through the
grating. When the input wavelength is detuned by about 5.2 nm from the
Bragg wavelength (δ = �1:5 cm�1), the transmitted power decreases at high
peak intensities, as seen in Fig. 1.20(b).

Considerable pulse shaping was observed in the preceding experiment be-
cause of the use of short optical pulses. This feature can be used to advantage
to compress and reshape an optical pulse. Nonlinear effects in long-period
fiber gratings are likely to remain important and find practical applications.

1.7.2 Nonuniform Bragg Gratings

The properties of a Bragg grating can be considerably modified by introduc-
ing nonuniformities along their length such that the two grating parameters, κ
and δ , become z dependent. Examples of such nonuniform gratings include
chirped gratings, phase-shifted gratings, and superstructure gratings. It was
seen in Section 1.4.2 that the use of a π=2 phase shift in the middle of an oth-
erwise uniform grating can reduce the switching power by a factor of 100 or
more. Here we focus on chirped and superstructure gratings.

In a chirped grating, the optical period n̄Λ of the grating changes along
the fiber length, as shown in Fig. 1.21. Since the Bragg wavelength (λB =

2n̄Λ) sets the frequency at which the stop band is centered, its axial variations
translate into a shift of the stop band along the grating length. Mathematically,
the parameter δ appearing in the nonlinear coupled-mode equations becomes
z dependent. Typically, Λ is designed to vary linearly along the grating, and
δ (z) = δ0+δcz, where δc is a chirp parameter. Such gratings are called linearly
chirped gratings.

Chirped fiber gratings have been fabricated using several different meth-
ods [49]. It is important to note that it is the optical period n̄Λ that needs to
be varied along the grating (z axis). Thus, chirping can be induced either by
varying the physical grating period Λ or by changing the effective mode index
n̄ along z. In the commonly used dual-beam holographic technique, the fringe
spacing of the interference pattern is made nonuniform by using dissimilar
curvatures for the interfering wavefronts, resulting in Λ variations. In practice,
cylindrical lenses are used in one or both arms of the interferometer. Chirped
fiber gratings can also be fabricated by tilting or stretching the fiber, by us-
ing strain or temperature gradients, or by stitching together multiple uniform
sections.
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Figure 1.21 (a) Variations of refractive index in a chirped fiber grating. (b) Low and
high frequency components of a pulse are reflected at different locations within the
grating because of variations in the Bragg wavelength.

Chirped Bragg gratings have several important practical applications. As
shown in Fig. 1.21, when a pulse—with its spectrum inside the stop band—is
incident on a chirped grating, different spectral components of the pulse are
reflected by different parts of the grating. As a result, even though the entire
pulse is eventually reflected, it experiences a large amount of GVD whose na-
ture (normal versus anomalous) and magnitude can be controlled by the chirp.
For this reason, chirped gratings are commonly used for dispersion compen-
sation [65]and pulse compression [137]–[139]. This aspect of chirped fiber
gratings is discussed in Chapter 6. Chirped gratings also exhibit interesting
nonlinear effects when the incident pulse is sufficiently intense. In one experi-
ment, 80-ps pulses were propagated through a 6-cm-long grating whose linear
chirp could be varied over a considerable range through a temperature gradient
established along its length [140]. The reflected pulses were split into a pair
of pulses by the combination of SPM and XPM for peak intensities close to
10 GW/cm2.

In a variation of the chirping idea, it is the coupling coefficient κ that be-
comes nonuniform along the grating length. This occurs when the parameter
δn1 in Eq. (1.3.8) is made a function of z. In practice, variations in the inten-
sity of the ultraviolet laser beam used to make the grating translate into axial
variations of κ . From a physical standpoint, since the width of the photonic
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Figure 1.22 Temporal signal [(a) and (b)] and its spectrum [(c) and (d)] at the input
[(a) and (c)] and output [(b) and (d)] end of a fiber grating designed with a linearly
decreasing κ . (After Ref. [141])

bandgap is about 2κ , changes in κ translate into changes in the width of the
stop band along the grating length. At a fixed wavelength of input light, such
local variations in κ lead to axial variations of the group velocity VG and the
GVD parameter βg

2
, as seen from Eqs. (1.3.25) and (1.3.26). In effect, the

dispersion provided by the grating becomes nonuniform and varies along its
length. Such gratings can have a number of applications. For example, they
can be used to generate a pulse train at high repetition rates by launching the
output of two CW lasers with closely spaced wavelengths.

Figure 1.22 shows the numerical results obtained by solving Eqs. (1.4.1)
and (1.4.2) with κ(z) = κ0(1�κ1z) for the case in which laser frequencies are
40 GHz apart [141]. The grating is assumed to be 70 cm long with parameters
κ0 = 70 cm�1 and δ = 160 cm�1. The parameter κ1 is chosen such that the
sinusoidal oscillation seen at the grating input are compressed by a factor of 5
at the end of the grating. The pulse compression can be understood by noting
that the nonlinear effects (SPM and XPM) chirp the pulse and broaden its
spectrum, and the GVD compresses the chirped pulse. It can also be thought
of in terms of a four-wave mixing process, phase-matched by the nonlinearity,
that generates multiple sidebands at the grating output, as seen in Fig. 1.22.

In another class of gratings, the grating parameters are designed to vary
periodically along the length of a grating. Such devices have double period-
icity and are called sampled or superstructure gratings. They were first used
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(a) (b)

Figure 1.23 (a) Dispersion curves and (b) reflectivity spectrum for a 2.5-mm super-
structure grating with d = 1 mm. (After Ref. [146])

in the context of DFB semiconductor lasers [142]. Fiber-based superstructure
gratings were made in 1994 [143]. Since then, their properties have attracted
considerable attention [144]–[149]. A simple example of a superstructure grat-
ing is provided by a long grating with constant phase-shift regions occurring
at periodic intervals. In practice, such a structure can be realized by placing
multiple gratings next to each other with a small constant spacing among them
or by blocking small regions during fabrication of a grating such that κ = 0 in
the blocked regions. It can also be made by etching away parts of an existing
grating. In all cases, κ(z) varies periodically along z. It is this periodicity that
modifies the stop band of a uniform grating. The period d of κ(z) is typically
about 1 mm. If the average index n̄ also changes with the same period d, both
δ and κ become periodic in the nonlinear coupled-mode equations.

The most striking feature of a superstructure grating is the appearance of
additional photonic bandgaps on both branches of the dispersion curve seen
in Fig. 1.5 for a uniform grating. These bandgaps are referred to as Rowland
ghost gaps [150]. Figure 1.23 shows the band structure of a 2.5-mm-long
superstructure grating with d = 1 mm together with the measured reflectivity
spectrum. The Rowland ghost gaps labeled I and III occur on the opposite sides
of the stop band and lead to two additional reflectivity peaks. Dispersive prop-
erties near these gaps are similar to those expected near the edges of the stop
band II. As a result, nonlinear effects are quite similar. In particular, Bragg
solitons can form on the branch where GVD is anomalous [144]. Indirect evi-
dence of such solitons was seen in an experiment in which a 100-ps pulse was
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compressed to 38 ps within the 2.5-mm-long superstructure grating when it
was tuned on the high-frequency side of the Rowland ghost gap I [146]. The
pulse appeared to be evolving toward a Bragg soliton, which should form if the
grating were long enough. Other nonlinear effects such as optical bistability,
modulation instability, and optical switching should also occur near Rowland
ghost gaps associated with a superstructure grating. In an interesting applica-
tion, a superstructure grating was used to increase the repetition rate of a 3.4-ps
pulse train from 10 to 40 GHz [149]. The grating was designed to have a band
structure such that it reflected every fourth spectral peak of the input spectrum.

1.7.3 Photonic-Crystal Fibers

Fiber gratings constitute an example of a much larger class of periodic struc-
tures known as photonic crystals [151]–[154]. Whereas the refractive index is
periodic only along one spatial dimension in a fiber grating, it is made periodic
in all three spatial dimensions in the case of a photonic crystal. Starting in
1996, a new class of fibers, called photonic-crystal fibers, began to attract con-
siderable attention, both experimentally and theoretically [155]–[167]. In such
fibers, the refractive index is periodic in two spatial dimensions, perpendicu-
lar to the fiber axis. Since the periodicity does not occur along the direction
of propagation, no backward-propagating wave is generated inside photonic-
crystal fibers. As a result, such fibers do not perform the same function as a
fiber grating. However, they can have new types of modes with quite different
dispersive and nonlinear properties.

An interesting technique for fabricating photonic-crystal fibers consists of
stacking multiple capillary tubes of pure silica (diameter about 1 mm) in a
hexagonal pattern around a solid silica rod and drawing such a “preform” into
a fiber form using the fiber-drawing apparatus [155]. A polymer coating is
added on the outside to protect the resulting photonic-crystal fiber. When
viewed under a scanning electron microscope, such a fiber shows a regular
two-dimensional pattern of air holes around the central region acting as a core,
as seen in Fig. 1.24(a). For this reason, such a photonic-crystal fiber is some-
times called a holey fiber [161]. The term air–silica microstructure is also
used [165]. The absence of an air hole in the center creates a “defect” that
can help to confine and guide an electromagnetic wave of right frequency. The
contours seen in Fig. 1.24(a) correspond to such a guided mode at a wavelength
of 1.55 µm [162].
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(a) (b)

Figure 1.24 Scanning electron micrograph of (a) a holey fiber and (b) a vacuum-
guided fiber. The mode profile is shown in (a) as 1-dB contours of intensity. [(a) After
Ref. [162] and (b) courtesy P. S. J. Russell]

Guiding and dispersive properties of holey fibers have been analyzed using
several different methods [157]–[160]. Such fibers, when designed properly,
can exhibit multiple photonic bandgaps resulting from the two-dimensional
periodicity of air holes. When frequency of light is within a photonic bandgap,
fiber does not transmit light since no guided mode exists. Outside each pho-
tonic bandgap, light travels along the central core region. Even though no
built-in index difference exists between the core and cladding regions, air holes
reduce the effective index of the region surrounded by the core, resulting in
guided modes similar to those found in standard fibers. The GVD for holey
fibers varies over a wide range and can become anomalous at visible wave-
lengths even though material dispersion remains normal up to a wavelength
close to 1.3 µm. The zero-dispersion wavelength depends on the size of and
spacing among air holes. It is close to 1 µm for the fiber of Fig. 1.24 (left part)
because of a relatively large hole spacing, resulting in an air-fill fraction of
only 20%. However, it can be reduced to below 0.8 µm by increasing the air-
fill fraction close to 50%. Such fibers have anomalous GVD in the wavelength
region near 0.8 µm, where Ti:sapphire lasers emit ultrashort optical pulses.

Nonlinearity of holey fibers has also been characterized by measuring the
SPM-induced phase shift [162]. These measurements show that, even though
n2 has the same value as in standard silica fibers, the value of parameter γ
can be larger by a factor of more than 3 because of a relatively low value of
effective core area Aeff. As a result, almost all nonlinear effects are enhanced
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considerably in the holey fiber shown in Fig. 1.24. Indeed, measurements of
stimulated Brillouin scattering showed that the threshold was reduced by the
same factor as Aeff compared with a dispersion-shifted regular fiber while the
Brillouin shift was nearly the same.

Several experiments have used holey fibers for investigating the nonlinear
effects in the 0.8-µm wavelength region where such fibers can provide anoma-
lous GVD. In one experiment, the spectrum of a 110-fs input pulse (centered at
790 nm) broadened so much when the pulse was transmitted through a 10-cm
section of a holey fiber that it extended from 390 to 1600 nm, forming a super-
continuum [165]. In another experiment, 200-fs input pulses at 850 nm were
propagated through a 3.1-m section of a holey fiber [166]. The pulse width
increased to 800 fs at low powers but formed a 140-fs-wide soliton when the
peak power was close to 90 W. The soliton period was about 1 m in this exper-
iment. Formation of a second-order soliton was also inferred indirectly from
the pulse-width data.

Both short- and long-period gratings have been made inside the core of
a photonic-crystal fiber with periodic air holes [163]. Such a device is not a
three-dimensional photonic crystal in spite of periodic variation of the refrac-
tive index in all three spatial dimensions since the grating exists only inside the
narrow core (radius � 1 µm). Nevertheless, it exhibits many interesting prop-
erties. In the case of a short-period Bragg grating, the transmission spectrum
showed several dips in the wavelength region near 1.55 µm but the reflected
signal had only one peak corresponding to the mode guided inside the core.
The other transmission dips correspond to higher-order modes that travel out-
side the core and thus do not interact with the Bragg grating. Nonlinear effects
in such gratings are yet to be studied.

A new kind of photonic-crystal fiber, called vacuum-guided fiber, was de-
veloped in 1999 [164]. Its cross section is shown in Fig 1.24(b). It was made
using the same technique as a holey fiber except that the central core consisted
of air and had a refractive index n� 1. The central hole was created by remov-
ing seven capillary tubes (one at the center and six surrounding it) before the
preform was drawn into a fiber. The effective index of the cladding for such
a fiber is considerably larger than the central air hole. As a result, no modes
guided by total internal reflection can exist. Nonetheless, the fiber was found
to transmit light along the central core in several frequency bands in the vis-
ible and infrared regions. This transmission is attributed to an optical mode
that is created by the two-dimensional periodicity and confined to the central



54 Fiber Gratings

air hole. Since light propagates in air, and not in silica, the Raman and Bril-
louin thresholds for such a fiber should be much larger than those of standard
silica fibers.

The field of photonic-crystal fibers is in its infancy and is likely to evolve
in the near future. Recent work has shown that even the periodicity of air
holes within the cladding is not a necessary requirement for utilizing such
fibers; that is, light can be guided in a holey fiber with randomly distributed air
holes [167].

Problems

1.1 Derive Eq. (1.1.1) from the phase-matching condition in Eq. (1.1.2).

1.2 Use Eq. (1.1.1) to find the grating period Λ for a fiber Bragg grating
reflecting light near 1.55 µm. Assume m = 1 and n̄ = 1:45.

1.3 Describe the mechanism through which absorption of ultraviolet light
produces changes in the refractive index of silica fibers.

1.4 Discuss the holographic and phase mask techniques used to make fiber
gratings. Sketch the experimental setup in each case.

1.5 Derive the nonlinear coupled-mode equations (1.3.11) and (1.3.12) for
fiber gratings starting from the Helmholtz equation (1.3.2).

1.6 What is meant by the stop band of a grating? Starting from the linear
coupled-mode equations (1.3.13) and (1.3.14), find the dispersion rela-
tion and the width of the stop band.

1.7 An optical pulse is transmitted through a fiber grating with its spectrum
located close to but outside the stop band. Its energy is small enough
that nonlinear effects are negligible. Derive an expression for the group
velocity of the pulse.

1.8 For the previous problem, derive expressions for the second- and third-
order dispersion induced by the grating. You can neglect the material
and waveguide dispersion of silica fibers.

1.9 Derive an expression for the reflectivity of a fiber grating by solving the
coupled-mode equations (1.3.13) and (1.3.14). Plot it as a function of
δ=κ using κL = 3.
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1.10 The coupling coefficient of an apodized grating of length L varies as
κ(z) = κ0 exp[�(4�8z=L)2m]. Solve the linear coupled-mode equations
(1.3.13) and (1.3.14) numerically and plot the reflectivity spectrum for
m = 1;2;3 as a function of δ=κ using κL = 3.

1.11 Solve the nonlinear coupled-mode equations (1.4.1) and (1.4.2) assum-
ing that the powers of the forward- and backward-propagating waves are
constant in time and along the grating length. Find the relative power
levels when δ=κ = 1:05 and γP0=κ = 2, where P0 is the total power.

1.12 Use the CW solution obtained in the previous problem to discuss how
the stop band of a fiber grating is affected at high power levels because
of the nonlinear effects.

1.13 Perturb the CW solution of Eqs. (1.4.1) and (1.4.2) and discuss the con-
ditions under which it may become unstable.

1.14 Develop a computer program for solving Eqs. (1.4.1) and (1.4.2) numer-
ically and use it to reproduce the results shown in Fig. 1.17.
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Chapter 2

Fiber Couplers

Fiber couplers, also known as directional couplers, constitute an essential com-
ponent of lightwave technology. They are used routinely for a multitude of
fiber-optic devices that require splitting of an optical field into two coherent
but physically separated parts (and vice versa). Although most applications
of fiber couplers only use their linear characteristics, nonlinear effects have
been studied since 1982 and can lead to all-optical switching among other ap-
plications. This chapter is devoted to describing nonlinear optical phenomena
in fiber couplers. As an introduction, linear characteristics are described first
in Section 2.1 using coupled-mode theory. In Section 2.2, the nonlinear ef-
fects are considered under continuous-wave (CW) conditions, along with the
phenomenon of modulation instability. Section 2.3 focuses on propagation of
short optical pulses through fiber couplers, with emphasis on optical solitons
and nonlinear switching. Section 2.4 extends the discussion to asymmetric,
active, birefringent, and multicore fiber couplers.

2.1 Coupler Characteristics

Fiber couplers are four-port devices (two input and two output ports) that are
used routinely for a variety of applications related to fiber optics [1]–[4]. Their
function is to split coherently an optical field, incident on one of the input ports,
and direct the two parts to the output ports. Since the output is directed in two
different directions, such devices are also referred to as directional couplers.
They can be made using planar waveguides as well and have been studied
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Figure 2.1 Schematic illustration of nonlinear switching in a fiber coupler. Input
pulses appear at different output ports depending on their peak powers.

extensively in the context of LiNbO3 and semiconductor waveguides. This
chapter focuses exclusively on fiber-based directional couplers.

Several different techniques can be used to make fiber couplers [4]. Figure
2.1 shows schematically a fused fiber coupler in which the cores of two single-
mode fibers are brought close together in a central region such that the spacing
between the cores is comparable to their diameters. A dual-core fiber, designed
to have two cores close to each other throughout its length, can also act as a
directional coupler. In both cases, the cores are close enough that the funda-
mental modes propagating in each core overlap partially in the cladding region
between the two cores. It will be seen in this section that such evanescent wave
coupling between the two modes can lead to the transfer of optical power from
one core to another under suitable conditions. An important application of the
nonlinear effects in fiber couplers consists of using them for optical switching.
As shown in Fig. 2.1, an optical pulse can be directed toward different output
ports depending on its peak power.

Fiber couplers are called symmetric when their cores are identical in all
respects. In general, the two cores need not be identical; such couplers are
called asymmetric. In this section, we consider an asymmetric fiber coupler
and discuss its operation using coupled-mode theory.

2.1.1 Coupled-Mode Equations

Coupled-mode theory is used commonly for directional couplers [5]–[9]. To
derive the coupled-mode equations, we follow a procedure similar to that used
in Section 1.3 for describing the grating-induced coupling between the coun-
terpropagating waves inside the same core. Considering a specific frequency
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component at the frequency ω , we solve the Helmholtz equation

∇2Ẽ+ ñ2(x;y)k2
0Ẽ = 0; (2.1.1)

where k0 = ω=c = 2π=λ0, λ0 is the vacuum wavelength of light, and Ẽ(r;ω)

denotes the Fourier transform of the electric field E(r; t) with respect to time.
The refractive index ñ(x;y) = n0 everywhere in the x–y plane except in the
region occupied by the two fiber cores, where it is larger by a constant amount.

The coupled-mode theory is based on the assumption that an approximate
solution of Eq. (2.1.1) can be written as

Ẽ(r;ω)� ê[Ã1(z;ω)F1(x;y)+ Ã2(z;ω)F2(x;y)]e
iβz

; (2.1.2)

where the propagation constant β is yet to be determined. The polarization
direction ê of the optical field is assumed to remain unchanged during propa-
gation. The spatial distribution Fm(x;y) with m = 1;2 corresponds to the fun-
damental mode supported by the mth core in the absence of the other core. It
is obtained by solving Eq. (2.1.1) and satisfies the following equation:

∂ 2Fm

∂x2 +
∂ 2Fm

∂y2 +[n2
m(x;y)k

2
0� β̄ 2

m]Fm = 0; (2.1.3)

where β̄m is the mode-propagation constant and nm(x;y) = n0 everywhere in
the x–y plane except in the region occupied by the mth core, where it is larger
by a constant amount. Equation (2.1.3) has been solved in Section A.2.2 in
terms of the Bessel functions. The same solution applies here.

The amplitudes A1 and A2 vary along the coupler length because of the
overlap between the two modes. To find how they evolve with z, we substitute
Eq. (2.1.2) in Eq. (2.1.1), multiply the resulting equation by F�

1 or F�

2 , use Eq.
(2.1.3), and integrate over the entire x–y plane. This procedure leads to the
following set of two coupled-mode equations in the frequency domain:

dÃ1

dz
= i(β̄1 +∆β NL

1 �β )Ã1 + iκ12Ã2; (2.1.4)

dÃ2

dz
= i(β̄2 +∆β NL

2 �β )Ã2 + iκ21Ã1; (2.1.5)

where the coupling coefficient κmp and the nonlinear contribution ∆βNL
m are

defined as (m; p = 1 or 2)

κmp =
k2

0

2β

Z Z ∞

�∞
(ñ2�n2

p)F
�

mFp dx dy; (2.1.6)
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∆β NL
m =

k2
0

2β

Z Z ∞

�∞
(ñ2�n2

L)F
�

mFm dx dy; (2.1.7)

and nL is the linear part of ñ. We have assumed that the modal distributions are
normalized such that

RR ∞
�∞ jFm(x;y)j2 dx dy = 1.

The frequency-domain coupled-mode equations can be converted to the
time domain following the method used in Section A.2.3. In general, both β̄m

and κmp depend on frequency. We ignore the frequency dependence of κmp

here but consider its impact on the coupler performance later (in Section 2.1.3).
By expanding β̄m(ω) in a Taylor series around the carrier frequency ω0 as

β̄m(ω) = β0m +(ω�ω0)β1m + 1
2(ω�ω0)

2β2m + � � � ; (2.1.8)

retaining terms up to second order, and replacing ω �ω0 by a time deriva-
tive while taking the inverse Fourier transform, the time-domain coupled-mode
equations can be written as

∂A1

∂ z
+ β11

∂A1

∂ t
+

iβ21

2
∂ 2A1

∂ t2

= iκ12A2 + iδaA1 +(γ1jA1j2 +C12jA2j2)A1; (2.1.9)

∂A2

∂ z
+ β12

∂A2

∂ t
+

iβ22

2
∂ 2A2

∂ t2

= iκ21A1� iδaA2 +(γ2jA2j2 +C21jA1j2)A2; (2.1.10)

where vgm � 1=β1m is the group velocity and β2m is the group-velocity disper-
sion (GVD) in the mth core. We have introduced

δa =
1
2(β01�β02); β = 1

2(β01 +β02): (2.1.11)

The parameter δa is a measure of asymmetry between the two cores. The
nonlinear parameters γm and Cmp (m; p = 1 or 2) are defined as

γm = n2k0

Z Z ∞

�∞
jFmj4 dx dy; (2.1.12)

Cmp = 2n2k0

Z Z ∞

�∞
jFmj2jFpj2 dx dy: (2.1.13)

The parameter γm is responsible for self-phase modulation (SPM) while the
effects of cross-phase modulation (XPM) are governed by Cmp.
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Equations (2.1.9) and (2.1.10) are valid under quite general conditions and
include both the linear and nonlinear coupling mechanisms between the optical
fields propagating inside the two cores of an asymmetric fiber coupler. They
simplify considerably for a symmetric coupler with two identical cores. Using
δa = 0, κ12 = κ21 � κ , and C12 = C21 � γσ , the coupled-mode equations for
symmetric couplers become:

∂A1

∂ z
+

1
vg

∂A1

∂ t
+

iβ2

2
∂ 2A1

∂ t2 = iκA2 + iγ(jA1j2 +σ jA2j2)A1; (2.1.14)

∂A2

∂ z
+

1
vg

∂A2

∂ t
+

iβ2

2
∂ 2A2

∂ t2 = iκA1 + iγ(jA2j2 +σ jA1j2)A2; (2.1.15)

where the subscript identifying a specific core has been dropped from the pa-
rameters vg; β2, and γ since they have the same values for both cores. The
nonlinear parameter γ can be written as γ = n2k0=Aeff and is identical to that
introduced in Section A.2.3 for a fiber with the effective core area Aeff. The
XPM parameter σ is quite small in practice and can often be neglected alto-
gether. The reason is related to the fact that the integral in Eq. (2.1.13) involves
overlap between the mode intensities and is relatively small even when the two
cores are close enough that κ (involving overlap between the mode amplitudes)
cannot be neglected. The coupling between A1 and A2 is essentially linear in
that case.

2.1.2 Low-Power Optical Beams

Consider first the simplest case of a low-power CW beam incident on one of
the input ports of a fiber coupler. The time-dependent terms can then be set to
zero in Eqs. (2.1.9) and (2.1.10). Since the nonlinear terms are also negligible,
the coupled-mode equations simplify considerably and become

dA1

dz
= iκ12A2 + iδaA1; (2.1.16)

dA2

dz
= iκ21A1� iδaA2: (2.1.17)

By differentiating Eq. (2.1.16) and eliminating dA2=dz using Eq. (2.1.17), we
obtain the following equation for A1:

d2A1

dz2 +κ2
e A1 = 0; (2.1.18)
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Figure 2.2 Fraction of power transferred to the second core plotted as a function of
κz for three values of δa=κ when a CW beam is launched in one core at z= 0.

where the effective coupling coefficient κe is defined as

κe =
p

κ2 +δ 2
a ; κ =

pκ12κ21: (2.1.19)

The same harmonic-oscillator-type equation is also satisfied by A2.
By using the boundary condition that a single CW beam is incident on one

of the input ports such that A1(0) = A0 and A2(0) = 0, the solution of Eqs.
(2.1.16) and (2.1.17) is given by

A1(z) = A0[cos(κez)+ i(δa=κe)sin(κez)]; (2.1.20)

A2(z) = A0(iκ21=κe)sin(κez): (2.1.21)

Thus, even though A2 = 0 initially at z = 0, some power is transferred to the
second core as light propagates inside the fiber coupler. Figure 2.2 shows the
ratio jA2=A0j2 as a function of z for several values of δa=κ . In all cases, power
transfer to the second core occurs in a periodic fashion. The maximum power
is transferred at distances such that κez = mπ=2, where m is an integer. The
shortest distance at which maximum power is transferred to the second core
for the first time is called the coupling length and is given by Lc = π=(2κe).

The power coming out of the two output ports of a fiber coupler depends
on the coupler length L and on the powers injected at the two input ends. For
a symmetric coupler, the general solution of Eq. (2.1.18) can be written in a
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matrix form as�
A1(L)
A2(L)

�
=

�
cos(κL) isin(κL)
isin(κL) cos(κL)

��
A1(0)
A2(0)

�
: (2.1.22)

The determinant of the 2� 2 transfer matrix on the right side is unity, as it
should be for a lossless coupler. Typically, only one beam is injected at the
input end. The output powers, P1 = jA1j2 and P2 = jA2j2, are then obtained
from Eq. (2.1.22) by setting A2(0) = 0 and are given by

P1(L) = P0 cos2(κL); P2(L) = P0 sin2(κL); (2.1.23)

where P0 � A2
0 is the incident power at the first input port. The coupler thus

acts as a beam splitter, and the splitting ratio depends on the parameter κL.
If coupler length L is chosen such that κL = π=4 or L = Lc=2, the power

is equally divided between the two output ports. Such couplers are referred
to as 50:50 or 3-dB couplers. Fiber couplers with L = Lc transfer all of their
input power to the second core (referred to as the cross state) whereas all of
the launched power returns to the same core when L = 2Lc (the bar state). It is
important to realize that a directional coupler introduces a relative phase shift
of π=2 between the two output ports, as indicated by the factor i in the off-
diagonal term of the transfer matrix in Eq. (2.1.22). This phase shift plays an
important role in the design of fiber interferometers (see Chapter 3).

The coupling length depends on the coupling coefficient κ , which in turn
depends on the spacing d between the two cores. For a symmetric coupler,
the integrals in Eq. (2.1.6) can be evaluated analytically [5]. The resulting
expression is somewhat complicated as it involves the Bessel functions. The
following empirical expression is useful in practice [10]:

κ =
πV

2k0n0a2 exp[�(c0 + c1d̄ + c2d̄2)]; (2.1.24)

where V is the fiber parameter (see Section A.1.2), a is the core radius, and d̄�
d=a is the normalized center-to-center spacing between the two cores (d̄ > 2).
The constants c0; c1, and c2 depend on V as c0 = 5:2789�3:663V +0:3841V2,
c1 =�0:7769+1:2252V �0:0152V2, and c2 =�0:0175�0:0064V �0:0009V2.
Equation (2.1.24) is accurate to within 1% for values of V and d̄ in the range
1:5�V � 2:5 and 2� d̄ � 4:5. As an example, κ � 1 cm�1 for d̄ = 3, result-
ing in a coupling length of 1 cm or so. However, coupling length increases to
1 m or more when d̄ exceeds 5.
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One may ask whether the proximity of two cores always leads to periodic
power transfer between the cores. In fact, the nature of power transfer depends
on the launch conditions at the input end. The physics can be better understood
by noting that, with a suitable choice of the propagation constant β in Eq.
(2.1.2), the mode amplitudes Ã1 and Ã2 can be forced to become z independent.
From Eqs. (2.1.4) and Eq. (2.1.5), this can occur when the amplitude ratio
f = Ã2=Ã1 is initially such that

f =
β � β̄1

κ12
=

κ21

β � β̄2

; (2.1.25)

where the nonlinear contribution has been neglected. Equation (2.1.25) can be
used to find the propagation constant β . Since β satisfies a quadratic equation,
we find two values of β such that

β
�
= 1

2(β̄1 + β̄2)�
p

δ 2
a +κ2

: (2.1.26)

The spatial distribution corresponding to the two eigenvalues is given by

F
�
(x;y) = (1+ f 2

�
)�1=2

[F1(x;y)+ f
�

F2(x;y)]; (2.1.27)

where f
�

is obtained from Eq. (2.1.25) using β = β
�

. These two specific linear
combinations of F1 and F2 constitute the eigenmodes of a fiber coupler (also
called supermodes), and the eigenvalues β

�
correspond to their propagation

constants. In the case of a symmetric coupler, f
�
= �1 and the eigenmodes

reduce to the even and odd combinations of F1 and F2. When the input condi-
tions are such that an eigenmode of the coupler is excited, no power transfer
occurs between the two cores.

The periodic power transfer between the two cores, occurring when light
is incident on only one core, can be understood using the above modal de-
scription as follows. Under such launch conditions, both supermodes of the
fiber coupler are excited simultaneously. Each supermode propagates with its
own propagation constant. Since β+ and β

�
are not the same, the two super-

modes develop a relative phase difference on propagation. This phase differ-
ence, ψ(z) = (β+�β

�
)z� 2κez, is responsible for the periodic power transfer

between two cores. The situation is analogous to that occurring in birefringent
fibers when linearly polarized light is launched at an angle from a principal
axis. In that case, the relative phase difference between the two orthogonally
polarized eigenmodes leads to periodic evolution of the state of polarization,
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and the role of coupling length is played by the beat length (see Chapter A.6).
The analogy between fiber couplers and birefringent fibers turns out to be quite
useful even when the nonlinear effects are included.

2.1.3 Linear Pulse Switching

In the case of low-energy optical pulses, nonlinear effects can be neglected but
the effects of fiber dispersion should be included. For symmetric couplers, the
coupled-mode equations, Eqs. (2.1.14) and (2.1.15), become:

∂A1

∂ z
+

iβ2

2
∂ 2A1

∂T 2 = iκA2; (2.1.28)

∂A2

∂ z
+

iβ2

2
∂ 2A2

∂T 2 = iκA1; (2.1.29)

where T = t� z=vg is the reduced time and the parameter β 2 accounts for the
effects of GVD in each core of the fiber coupler.

We can introduce the dispersion length in the usual way as LD = T 2
0 =jβ2j,

where T0 is related to the pulse width. The GVD effects are negligible if the
coupler length L � LD. Since L is comparable in practice to the coupling
length (Lc = π=2κ), GVD has no effect on couplers for which κLD � 1. Since
LD exceeds 1 km for pulses with T0 > 1 ps whereas Lc < 1 m typically, the
GVD effects become important only for ultrashort pulses (T0 < 0:1 ps). If we
neglect the GVD term in Eqs. (2.1.28) and (2.1.29), the resulting equations
become identical to those applicable for CW beams. Thus, picosecond optical
pulses should behave in the same way as CW beams. More specifically, their
energy is transferred to the neighboring core periodically when such pulses are
incident on one of the input ports of a fiber coupler.

The above conclusion is modified if the frequency dependence of the cou-
pling coefficient κ cannot be ignored [11]. It can be included by expanding
κ(ω) in a Taylor series around the carrier frequency ω0 in a way similar to
Eq. (2.1.8) so that

κ(ω)� κ0 +(ω�ω0)κ1 +
1
2 (ω�ω0)

2κ2; (2.1.30)

where κm = dmκ=dωm is evaluated at ω = ω0. When the frequency-domain
coupled-mode equations are converted to time domain, two additional terms
appear. With these terms included, Eqs. (2.1.28) and (2.1.29) become

∂A1

∂ z
+κ1

∂A2

∂T
+

iβ2

2
∂ 2A1

∂T 2 +
iκ2

2
∂ 2A2

∂T 2 = iκ0A2; (2.1.31)
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∂A2

∂ z
+κ1

∂A1

∂T
+

iβ2

2
∂ 2A2

∂T 2 +
iκ2

2
∂ 2A1

∂T 2 = iκ0A1: (2.1.32)

In practice, the κ2 term is negligible for pulses as short as 0.1 ps. The GVD
term is also negligible if κLD � 1. Setting β2 = 0 and κ2 = 0, Eqs. (2.1.31)
and (2.1.32) can be solved analytically to yield [11]:

A1(z;T ) = 1
2

�
A0(T �κ1z)eiκ0z +A0(T +κ1z)e�iκ0z�

; (2.1.33)

A2(z;T ) = 1
2

�
A0(T �κ1z)eiκ0z�A0(T +κ1z)e�iκ0z�

; (2.1.34)

where A0(T ) represents the shape of the input pulse at z = 0. When κ1 = 0,
the solution reduces to

A1(z;T ) = A0(T )cos(κ0z); A2(z;T ) = A0(T )sin(κ0z): (2.1.35)

Equation (2.1.35) shows that the pulse switches back and forth between
the two cores, while maintaining its shape, when the frequency dependence
of the coupling coefficient can be neglected. However, when κ1 is not neg-
ligible, Eq. (2.1.34) shows that the pulse will split into two subpulses after
a few coupling lengths, and separation between the two would increase with
propagation. This effect is referred to as intermodal dispersion and is similar
in nature to polarization-mode dispersion occurring in birefringent fibers (see
Chapter A.6). Intermodal dispersion was observed in a 1997 experiment by
launching short optical pulses (width about 1 ps) in one core of a dual-core
fiber with the center-to-center spacing d � 4a [12]. The autocorrelation traces
showed the evidence of pulse splitting after 1.25 m, and the subpulses sepa-
rated from each other at a rate of 1.13 ps/m. The coupling length was estimated
to be about 4 mm. Intermodal dispersion in fiber couplers becomes of concern
only when the coupler length L� Lc and pulse widths are � 1 ps or shorter.
This effect is neglected in the following discussion of nonlinear effects in fiber
couplers.

2.2 Nonlinear Effects

Nonlinear effects in directional couplers were studied starting in 1982 [13]–
[33]. An important application of fiber couplers consists of using them for
all-optical switching. Figure 2.1 showed schematically how an optical pulse
can be directed toward different output ports, depending on its peak power. In
this section, we focus on the quasi-CW case and consider a symmetric coupler
with identical cores to simplify the discussion.
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2.2.1 Quasi-CW Switching

The nonlinear coupled-mode equations for CW beams propagating inside a
symmetric coupler are obtained from Eqs. (2.1.14) and (2.1.15) by neglecting
the time-derivative terms. The resulting equations are

dA1

dz
= iκA2 + iγ(jA1j2 +σ jA2j2)A1; (2.2.1)

dA2

dz
= iκA1 + iγ(jA2j2 +σ jA1j2)A2: (2.2.2)

These equations are also applicable for optical pulses wide enough that the
dispersion length LD is much larger than the coupler length L (as the effects of
GVD are then negligible). This is referred to as the quasi-CW case.

Equations (2.2.1) and (2.2.2) are similar to those studied in Section A.6.3
in the context of birefringent fibers and can be solved analytically using the
same technique. Introducing the powers and phases through

A j =
q

Pj exp(iφ j); ( j = 1;2); (2.2.3)

and defining the phase difference φ = φ1�φ2, we obtain the following set of
three equations:

dP1

dz
= 2κ

p
P1P2 sinφ ; (2.2.4)

dP2

dz
= �2κ

p
P1P2 sin φ ; (2.2.5)

dφ
dz

=
P2�P1p

P1P2

κ cosφ +
4κ
Pc

(P1�P2); (2.2.6)

where the critical power Pc is defined as

Pc = 4κ=[γ(1�σ)]: (2.2.7)

The critical power level plays an important role since the solution of Eqs.
(2.2.4)–(2.2.6) exhibits qualitatively different behavior depending on whether
the input power exceeds Pc.

Equations (2.2.4)–(2.2.6) can be solved analytically in terms of the elliptic
functions after noting that they have the following two invariants [13]:

P0 = P1 +P2; Γ =
p

P1P2 cosφ �2P1P2=Pc; (2.2.8)
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Figure 2.3 Nonlinear switching of CW beams in a fiber coupler with κL= π=2. Solid
lines show relative powers at the two output ports as a function of input power. Dashed
lines show the coupler response in the quasi-CW case. (After Ref. [22], c1989 IEEE)

where P0 is the total power in both cores. In the specific case in which all the
input power is initially launched into one core of a fiber coupler, the power
remaining in that core after a distance z is given by

P1(z) = jA1(z)j2 = 1
2P0[1+ cn(2κzjm)]; (2.2.9)

where cn(xjm) is a Jacobi elliptic function with modulus m = (P0=Pc)
2. The

power transferred to the second core is obtained using P2(z) = P0�P1(z).
In the low-power limit (m � 1), Eq. (2.2.9) reduces to the result P1(z) =

P0 cos2(κz), as it should. Periodic transfer of the power between the two cores
persists as long as P0 < Pc so that m < 1. However, as P0 approaches Pc, the
period begins to increase, becoming infinite when P0 =Pc. The solution (2.2.9)
reduces to P1(z) =

1
2P0[1 + sech(2κz)] when m = 1, and at most half of the

power is transferred to the second core no matter how long the coupler is. For
P0 > Pc, the solution once again becomes periodic but the amount of power
transferred to the second core is reduced to below 50% and becomes negligible
for P0 � Pc.

The solid lines in Fig. 2.3 show the relative powers as a function of the
input power at the two output ports of a coupler of length L = Lc. For P0 � Pc,
the launched power is transferred completely to the second core (cross state).
For P0 > Pc, little power is transferred to the other core (bar state). Thus, an
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optical beam can be switched from one output port to the other, depending on
its input power.

The physics behind all-optical switching can be understood by noting that
when an optical beam is launched in one core of the fiber coupler, the SPM-
induced phase shift is not the same in both cores because of different mode
powers. As a result, even a symmetric fiber coupler behaves asymmetrically
because of the nonlinear effects. The situation is, in fact, similar to that occur-
ring in asymmetric fiber couplers where the difference in the mode-propagation
constants introduces a relative phase shift between the two cores and hinders
complete power transfer between them. Here, even though the linear propa-
gation constants are the same, a relative phase shift between the two cores is
introduced by SPM. At sufficiently high input powers, the phase difference—
or SPM-induced detuning—becomes large enough that the input beam remains
confined to the same core in which it was initially launched.

2.2.2 Experimental Results

The experimental observation of optical switching in fiber couplers using CW
beams is difficult because of relatively high values of the critical power in
silica fibers. We can estimate Pc from Eq. (2.2.7) using appropriate values of
κ and γ and setting the XPM parameter σ � 0. If we use κ = 1 cm�1 and
γ = 10 W�1/km as typical values, we find that Pc = 40 kW. It is difficult to
launch such high CW power levels without damaging silica fibers. A common
practical solution is to use short optical pulses with high peak powers but wide
enough that the GVD effects are not important (the quasi-CW case).

There is an obvious problem with the use of optical pulses in the quasi-CW
regime. Only the central intense part of an input pulse is switched since pulse
wings exhibit the low-power behavior. Thus, a nonuniform intensity profile of
optical pulses leads to distortion even when the effects of GVD are negligi-
ble. As one may expect, pulse distortion is accompanied by degradation in the
switching behavior. As an example, the dashed curves in Fig. 2.3 show the re-
sponse of a fiber coupler to input pulses whose intensity varies as sech2(t=T0).
These curves represent relative energy levels in the two cores and are obtained
by integrating over the pulse shape. When compared with the case of CW
beams, pulse switching is not only more gradual but also incomplete. Less
than 75% of the incident peak power remains in the core in which the input
pulse is launched even at peak power levels in excess of 2Pc. This behavior
restricts severely the usefulness of fiber couplers as an all-optical switch.
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The results shown in Fig. 2.3 do not include the effects of GVD. As one
may anticipate, the situation becomes worse in the case of normal GVD be-
cause of pulse spreading. However, the performance of fiber couplers should
improve significantly for optical pulses experiencing anomalous GVD and
propagating as a soliton. The reason is related to the particle-like nature of
optical solitons. This topic is covered in Section 2.3.

Nonlinear effects in dual-core fiber couplers were observed starting in
1985, and a clear evidence of high-contrast optical switching had been seen
by 1988 [18]–[22]. All of the experiments used short optical pulses propagat-
ing in the normal-GVD region of the fiber and, therefore, did not make use of
solitons. In the 1985 experiment [18], 80-ns pulses from a frequency-doubled
Nd:YAG laser (λ = 0:53 µm) were focused onto one core of a dual-core fiber.
The 2.6-µm-diameter cores were separated by more than 8 µm (center-to-
center spacing), resulting in a relatively small value of the coupling coefficient.
Nonetheless, the transmitted power from a 18-cm-long coupler was found to
increase as the launched peak power increased beyond the 100-W level. In a
later experiment, the use of 50-ps pulses from a mode-locked laser provided
better evidence of nonlinear switching [19].

In a 1987 experiment, 30-ps pulses from a 1.06-µm Nd:YAG laser were
injected into one core of a 2-m-long dual-core fiber in which 5-µm-diameter
cores were separated by 8 µm [20]. The critical power Pc was estimated to be
850 W for this coupler, and its length was about 3:8 Lc. At low input power
levels, 90% of the pulse energy transferred to the neighboring core. However,
the transferred energy was only 40% when the input peak power increased to
about 700 W. The switching contrast improved considerably in a 1988 exper-
iment [21] that used 100-fs pulses from a dye laser operating at 0.62 µm. The
fiber coupler was only 5-mm long, consisted of two 2.8-µm-diameter cores
separated by 8.4 µm, and required 32 kW of peak power for switching to
occur. The measured switching characteristics were in good agreement with
the theoretical prediction shown by the dashed lines in Fig. 2.3. Fiber dis-
persion played a relatively minor role even for 100-fs pulses because of the
short length of the coupler used in the experiment (L � LD). The autocorre-
lation measurements showed that only the central part of the pulse underwent
switching. Use of square-shaped femtosecond pulses in 1989 resulted in con-
siderable improvement since their use avoids the pulse breakup [22]. Figure
2.4 shows the switching characteristics measured using bell-shaped (Gaussian-
like) and square-shaped pulses. Not only is the switching contrast better, the
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Figure 2.4 Switching data for a fiber coupler of length L= L c. Relative output powers
at ports 1 and 2 are shown as a function of input peak power for 90-fs bell-shaped
(normal) pulses and 540-fs square-shaped pulses. (After Ref. [22] c1989 IEEE)

switching peak power is also lower for square pulses.

The high power levels needed for nonlinear switching in fiber couplers
have hindered the use of such devices for this purpose. The switching thresh-
old can be reduced by using fibers made with a material whose nonlinear pa-
rameter n2 is much larger compared with that of silica. Several such materials
have been used to make fiber couplers. In one case, a dye-doped polymer fiber
was used [31]. Both cores of this fiber were doped with a squarylium dye
and were embedded in a PMMA polymer cladding. The 6-µm-radius cores
were separated by 18 µm. The coupling length was estimated to be about
1 cm. Nonlinear transmission was observed using a Q-switched, mode-locked
Nd:YAG laser. In another approach, GeS2-based chalcohalide glass was used
to make the fiber [32]. The nonlinear parameter for this glass was measured to
be n2 � 7:5�10�14 cm2/W, a value that is larger by more than a factor of 200
compared with that of silica. As a result, the switching threshold should also
be reduced by the same factor. A third approach used a polyconjugated poly-
mer (DPOP-PPV) to make a nonlinear directional coupler [33]. Two-photon
absorption plays an important role when dye-doped or semiconductor-doped
fibersare used and can affect the switching characteristics adversely.
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2.2.3 Nonlinear Supermodes

An alternative approach for understanding the nonlinear effects in fiber cou-
plers makes use of the concept of nonlinear supermodes, which represent opti-
cal fields that propagate without any change in spite of the SPM and XPM ef-
fects. Mathematically, they represent z-independent solutions (the fixed points)
of Eqs. (2.2.4)–(2.2.6) and can be obtained by setting the z derivatives to zero.
Here we use an approach based on the rotation of a vector on the Poincaré
sphere [16]. Let us introduce the following three real variables (in analogy
with the Stokes parameters of Section A.6.3):

S1 = jA1j2�jA2j2; S2 = 2Re(A1A�

2); S3 = 2Im(A1A�

2); (2.2.10)

and rewrite Eqs. (2.2.1) and (2.2.2) in terms of them as

dS1

dz
= 2κS3; (2.2.11)

dS2

dz
= �γ(1�σ)S1S3; (2.2.12)

dS3

dz
= γ(1�σ)S1S2�2κS1: (2.2.13)

It can be easily verified from Eqs. (2.2.10)–(2.2.13) that S2
1 + S2

2 + S2
3 =

jA1j2 + jA2j2 � P0, where P0 is the total power in both cores. Since P0 is in-
dependent of z, the Stokes vector S with components S1; S2, and S3 moves
on the surface of a sphere of radius P0 as the CW light propagates inside the
fiber coupler. This sphere is known as the Poincaré sphere and provides a vi-
sual description of the coupler dynamics. In fact, Eqs. (2.2.11)–(2.2.13) can
be written in the form of a single vector equation as

dS
dz

= W�S; (2.2.14)

where W = WL +WNL such that WL = 2κ ŷ and WNL = γ(1�σ)S1 x̂. Thus,
the linear coupling rotates the Stokes vector S around the y axis while the SPM
and XPM rotate it around the x axis. The combination of the two rotations
determines the location of the Stokes vector on the Poincaré sphere at a given
distance along the coupler length.

Figure 2.5 shows trajectories of the Stokes vector on the Poincaré sphere
under three different conditions. In the low-power case, nonlinear effects can
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(a) (b) (c)

Figure 2.5 Trajectories showing motion of the Stokes vector on the Poincaré sphere.
(a) Linear case; (b) P0 < Pc; (c) P0 > Pc. (After Ref. [16])

be neglected by setting γ = 0. Since WNL = 0 in that case, the Stokes vector
rotates around the S2 or y axis with an angular velocity 2κ [Fig. 2.5(a)]. This
is equivalent to the periodic solution obtained earlier. If the Stokes vector is
initially oriented along the S2 axis, it remains fixed. This can also be seen
from the steady-state (z-invariant) solution of Eqs. (2.2.11)–(2.2.13) by noting
that the Stokes vectors with components (0;P0;0) and (0;�P0;0) represent two
fixed points in the linear case. These fixed points correspond to the even and
odd supermodes of a fiber coupler discussed earlier.

In the nonlinear case, the behavior depends on the power level of the inci-
dent light. As long as P0 < Pc=2, nonlinear effects play a minor role, and the
situation is similar to the linear case, as shown in Fig. 2.5(b). At higher power
levels, the motion of the Stokes vector on the Poincaré sphere becomes quite
complicated since WL is oriented along the y axis while WNL is oriented along
the x axis. Moreover, the nonlinear rotation of the Stokes vector along the x
axis depends on the magnitude of S1 itself. Figure 2.5(c) shows the motion of
the Stokes vector when P0 > Pc.

To understand the dynamical behavior, we find the fixed points of Eqs.
(2.2.11)–(2.2.13) by setting the z derivatives to zero. The location and the
number of fixed points depend on the optical power P0 launched inside the
fiber. More specifically, the number of fixed points changes from two to four at
a critical power level P0 =Pc=2, where Pc is given in Eq. (2.2.7). For P0 <Pc=2,
only two fixed points, (0;P0;0) and (0;�P0;0), occur; these are identical to the
low-power case. In contrast, when P0 > Pc=2, two new fixed points emerge.
The components of the Stokes vector, at the location of the new fixed points
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on the Poincaré sphere, are given by [16]

S1 =�
q

P2
0 �P2

c =4; S2 = Pc=2; S3 = 0: (2.2.15)

The new fixed points represent the nonlinear supermodes of a fiber cou-
pler in the sense that when input light excites one of these eigenmodes, the
core powers do not change along the coupler length in spite of the close prox-
imity of the two cores. Trajectories near the new fixed points are separated
from those occurring near the fixed point (0;P0;0) by a separatrix. The non-
linear switching corresponds to the transition from the low-power fixed point
(0;P0;0) to one of the new fixed points.

2.2.4 Modulation Instability

The CW solution of the coupled-mode equations (the fixed points) can become
unstable in the presence of GVD in the same way as a CW beam propagating
inside an optical fiber can break up into a pulse train under certain conditions.
The modulation instability of couplers is similar in nature to the vector modu-
lation instability discussed in Section A.6.4 since the underlying coupled non-
linear Schrödinger (NLS) equations have the same form. This analogy is not
obvious from Eqs. (2.1.14) and (2.1.15) since the XPM term is often negligible
in practice. By setting σ = 0, the coupled NLS equations for a fiber coupler
reduce to

∂A1

∂ z
+

iβ2

2
∂ 2A1

∂T 2 = iκA2 + iγ jA1j2A1; (2.2.16)

∂A2

∂ z
+

iβ2

2
∂ 2A2

∂ t2 = iκA1 + iγ jA2j2A2; (2.2.17)

where we have introduced, as usual, the reduced time T = t�z=vg to eliminate
the group-velocity term.

The analogy between a fiber coupler and a birefringent fiber becomes quite
clear if Eqs. (2.2.16) and (2.2.17) are rewritten using the even and odd super-
modes of a fiber coupler. For this purpose, we introduce two new variables

B1 = (A1 +A2)=
p

2; B2 = (A1�A2)=
p

2 (2.2.18)

so that B1 and B2 correspond to the amplitudes associated with the even and
odd supermodes introduced earlier [see Eq. (2.1.27)]. In terms of the new
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variables, Eqs. (2.2.16) and (2.2.17) can be written as [35]

∂B1

∂ z
+

iβ2

2
∂ 2B1

∂T 2 � iκB1 =
iγ
2
[(jB1j2 +2jB2j2)B1 +B2

2B�

1]; (2.2.19)

∂B2

∂ z
+

iβ2

2
∂ 2B2

∂T 2 + iκB2 =
iγ
2
[(jB2j2 +2jB1j2)B2 +B2

1B�

2]: (2.2.20)

The even and odd supermodes are uncoupled linearly but their phase velocities
are not the same, as evident from different signs of the κ term in the above
two equations. Since light in the even supermode travels more slowly than
that in the odd supermode, the even and odd supermodes are analogous to the
light polarized along the slow and fast axes in a birefringent fiber. As seen
from Eqs. (2.2.19) and (2.2.20), the coupled NLS equations written in terms of
the supermodes have three nonlinear terms that correspond to SPM, XPM, and
four-wave-mixing-type coupling (identical to the case of birefringent fibers).

The steady-state or CW solution of Eqs. (2.2.19) and (2.2.20) is easily
obtained when the input conditions are such that either the even or the odd
supermode is excited exclusively. In the case of even supermode, the CW
solution is given by

B̄1 =
p

P0 exp(iθ); B̄2 = 0; (2.2.21)

where θ = (γP0=2+κ)z. The solution in the case of odd supermode is obtained
from Eq. (2.2.21) by changing the sign of κ and the subscripts 1 and 2. In
both cases, the input power remains equally divided between the two cores,
with no power exchange taking place between them. In the Poincaré sphere
representation, these two CW solutions correspond to the fixed points (0;P0;0)
and (0;�P0;0), as discussed earlier.

We can follow the procedure of Section 5.1 to examine the stability of the
CW solution in Eq. (2.2.21). Assuming a time-dependent solution of the form

B1 = (
p

P0 +b1)exp(iθ); B2 = b2 exp(iθ); (2.2.22)

where b1 and b2 are small perturbations, we linearize Eqs. (2.2.19) and (2.2.20)
in terms of b1 and b2 and obtain a set of two coupled linear equations. These
equations can be solved by assuming a solution of the form

bm = um exp[i(Kpz�ΩT)]+ ivm exp[�i(Kpz�ΩT); (2.2.23)

where m = 1 or 2, Ω is the frequency of perturbation, and Kp is the correspond-
ing wave number.
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The four algebraic equations obtained using this technique are found to
have an interesting property. The two equations for u1 and v1 are coupled,
and so are those for u2 and v2. However, these two sets of two equations are
not coupled. This feature simplifies the analysis considerably. The dispersion
relation for the even-mode perturbation b1 turns out to be

K2
p = 1

2β2Ω2
( 1

2β2Ω2
+ γP0) (2.2.24)

and is the same dispersion relation obtained in Section A.5.1 (except for a fac-
tor of 2 in the last term). The features associated with modulation instability
are thus identical to those found in Section A.5.1. More specifically, no in-
stability occurs in the case of normal GVD. When GVD is anomalous, gain
curves are similar to those in Fig. A.5.1.

The new feature for fiber couplers is that, even when CW light is launched
initially into the even supermode, perturbations in the odd supermode can grow
because of the coupling between the two cores. The odd-mode perturbations
satisfy the dispersion relation [35]

K2
p = ( 1

2β2Ω2�2κ)(1
2β2Ω2�2κ + γP0): (2.2.25)

The presence of κ in this equation shows that the coupling between the two
cores can lead to a new kind of modulation instability in fiber couplers. Indeed,
it is easy to see that Kp becomes complex under certain conditions even in the
normal-GVD regime. Introducing the instability gain as g0 = 2Im(Kp), the
gain is given by

g0( f ) = 2κ [(2� f 2)(4p�2� f 2)]1=2
; (2.2.26)

where f = Ω=Ωc is the normalized frequency and p = P0=Pc is the normalized
input power. They are introduced using

Ωc =

s
2κ
jβ2j

; Pc =
4κ
γ

(2.2.27)

The critical power Pc is the same as defined earlier in Eq. (2.2.7) since σ = 0
has been assumed. The choice of sign in Eq. (2.2.26) depends on the sign of
the GVD parameter β2; a minus sign is chosen for anomalous GVD.

Figure 2.6 shows the gain spectra of modulation instability for both normal
and anomalous GVD. In both cases, the gain exists at low frequencies, includ-
ing Ω = 0. This feature is similar to the polarization instability occurring in



82 Fiber Couplers

(a) (b)

Figure 2.6 Gain spectra of modulation instability at several power levels in the cases
of (a) normal and (b) anomalous GVD.

birefringent fibers (see Chapter A.6). The gain at Ω = 0 occurs only when
the input power exceeds Pc=2 (p > 0:5). This is related to the appearance of
the two new fixed points on the Poincaré sphere (see Fig. 2.5). When GVD
is normal, the gain peak occurs at Ω = 0 only when p > 1. Thus, when the
input power P0 exceeds Pc, modulation instability is static in nature and does
not lead to self-pulsing. In contrast, when GVD is anomalous, the gain peak
occurs at Ω 6= 0 for p > 1. In this case, CW light can be converted into a pulse
train whose repetition rate depends on the input power. The repetition rate is
close to Ωc=2π and is estimated to be � 1 THz for typical values of κ and β2.

Direct experimental observation of modulation instability in fiber couplers
is hampered by the fact that it is difficult to excite the even or odd supermode
alone. Typically, initial conditions are such that both supermodes are excited
simultaneously. Another difficulty is related to the relatively short coupler
lengths used in practice (L � Lc). The growth of sidebands from noise (spon-
taneous modulation instability) requires the use of dual-core fibers for which
L � L c is possible. The effects of induced modulation instability can be ob-
served using shorter lengths since sidebands are seeded by an input signal.
As an example, induced modulation instability can be used to control switch-
ing of a strong pump beam launched in one core of the coupler through a
much weaker signal launched into the other core with an appropriate relative
phase [17].
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2.3 Ultrashort Pulse Propagation

Because of the high power levels needed for all-optical switching in fiber cou-
plers, optical pulses are often used in practice. For short pulses, the GVD term
in the coupled-mode equations can affect the switching behavior considerably,
and its effects have been studied extensively [34]–[60]. This section consid-
ers propagation of ultrashort optical pulses in fiber couplers, with emphasis on
soliton effects.

2.3.1 Nonlinear Switching of Optical Pulses

To discuss pulse switching, it is useful to normalize Eqs. (2.2.16) and (2.2.17)
using soliton units (see Section A.5.3) and write them as

i
∂u
∂ξ

� s
2

∂ 2u
∂τ2 + juj2u+Kv = 0; (2.3.1)

i
∂v
∂ξ

� s
2

∂ 2v
∂τ2 + jvj2v+Ku = 0; (2.3.2)

where s = sgn(β2) = �1, K = κLD, and we have introduced the following
normalized variables:

ξ = z=LD; τ = T=T0; u = (γLD)
1=2A1; v = (γLD)

1=2A2: (2.3.3)

Here LD = T 2
0 =jβ2j is the dispersion length and T0 is a measure of the pulse

width. For K = 0, these equations reduce to two uncoupled NLS equations.
The coupled NLS equations, Eqs. (2.3.1) and (2.3.2), cannot be solved an-

alytically in general. They have been solved numerically using the split-step
Fourier method of Section A.2.4. The switching behavior depends on whether
GVD is normal or anomalous. As early as 1988, numerical simulations indi-
cated that solitons, forming in the case of anomalous GVD, switch between the
cores as an entire pulse in a manner analogous to the CW case [34]. In con-
trast, switching ceases to occur in the normal-dispersion regime if pulses are
short enough that the dispersion length LD becomes comparable to the cou-
pling length Lc [36]. Soliton switching is, in fact, superior to the quasi-CW
switching realized using relatively broad pulses.

Figure 2.7 compares the switching characteristics of fiber couplers in these
two cases. These results are obtained by solving Eqs. (2.3.1) and (2.3.2) with
the initial conditions

u(0;τ) = N sech(τ); v(0;τ) = 0: (2.3.4)
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Figure 2.7 Transmitted pulse energy as a function of p= P0=Pc in the case of solitons
(solid line) and quasi-CW pulses (dashed line) for a coupler of length L = L c. (After
Ref. [34])

The amplitude N is related to the peak power P0 of the input pulse as N2 =

γLdP0 = 4K p, where p = P0=Pc is normalized to the CW switching power
Pc. If we choose K = 1=4, N equals 1 when p = 1; that is, the input pulse
propagates as a fundamental soliton when P0 = Pc. The fraction of the pulse
energy appearing in the core in which a soliton is initially launched is plotted as
a solid line in Fig. 2.7 for values of p in the range from 0 to 3. The switching
behavior near p = 1 for solitons is almost identical to that of a CW beam
(compare with Fig. 2.5). Since L = Lc � LD is required for soliton switching
to occur, the input pulse width and peak power should be about 0.1 ps and
1 kW, respectively, for a 1-m-long fiber coupler. Because of relatively short
propagation distances involved, higher-order dispersive effects are not likely to
affect the switching behavior considerably, unless pulses become much shorter
than 100 fs.

The exact value of N required for switching depends on the choice of the
single parameter K appearing in Eqs. (2.3.1) and (2.3.2). As an example, when
K = 1, p = 1 is realized only when N = 2 since N2 = 4K p. The switching be-
havior in this case is shown in Fig. 2.8, where evolution of juj2 and jvj2 along
the coupler length is shown for N = 1 and 2. Since the first-order soliton is
below the switching threshold, most of its power is transferred to the neigh-
boring core at a distance ξ = π=2. In contrast, the second-order soliton keeps
most of its power in the original core since p = 1 for it. The switching thresh-
old appears to be below p = 1, in contrast with the results shown in Fig. 2.7.
The reason can be understood by noting that a second-order soliton undergoes
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Figure 2.8 Evolution of pulses in two cores of a fiber coupler with coupling length
Lc = πLD=2 when an input pulse is launched in one core with (a) N = 1 and (b) N = 2.
(After Ref. [34])

compression initially, resulting in higher peak powers. In fact, the pulse is
compressed enough that the value of N at the output end is close to 1. The im-
portant point to note is that the entire pulse switches from one core to another.
In the absence of the soliton effects, pulses are severely distorted since only
central part is intense enough to undergo switching. Physically, this behavior
is related to the fact that a fundamental soliton has the same phase over the
entire pulse width in spite of SPM. A weak pulse, launched at the other input
port, can also force a soliton to switch between the two output ports [37]. All-
optical ultrafast logic gates have also been proposed using asymmetric fiber
couplers [38].

2.3.2 Variational Approach

Particle-like switching of solitons suggests the use of a classical mechanics
technique based on the Hamiltonian or Lagrangian formulation. Such an ap-
proach offers considerable physical insight [40]–[45]. The variational tech-
nique was first used in 1990 for solving Eqs. (2.3.1) and (2.3.2) approxi-
mately [41]. However, the width of solitons was assumed to remain constant
in spite of changes in their amplitudes. As discussed in Chapter A.5, the width
and the amplitude of a soliton are related inversely when solitons evolve adia-
batically. This section discusses the adiabatic case [43].

In the Lagrangian formalism, Eqs. (2.3.1) and (2.3.2) are derived from the
Euler–Lagrange equation

∂
∂ξ

 
∂Lg

∂qξ

!
+

∂
∂τ

�
∂Lg

∂qτ

�
� ∂Lg

∂q
= 0; (2.3.5)
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where q represents u; u�; v, or v�; the subscripts τ and ξ denote differentiation
with respect to that variable; and the Lagrangian density Lg is given by [41]

Lg =
i
2
(u�uξ �uu�ξ ) +

1
2
(juj4�juτ j2)+

i
2
(v�vξ � vv�ξ )

+
1
2
(jvj4�jvτ j2)+K(u�v+uv�): (2.3.6)

The crucial step in the variational analysis consists of choosing an appro-
priate functional form of the solution. In the case of adiabatic evolution, we
anticipate solitons to maintain their “sech” shape even though their amplitude,
width, and phase can change. We thus assume that

u(ξ ;τ) = η1sech(η1τ)eiφ1 ; v(ξ ;τ) = η2sech(η2τ)eiφ2 ; (2.3.7)

where η j is the amplitude and φj is the phase for the soliton propagating in
the jth core of the coupler. Both ηj and φ j are assumed to vary with ξ . The
soliton width also changes with its amplitude, as expected. Note that solitons
in both cores are assumed to remain unchirped. In general, one should also
include chirp variations [55].

The next step consists of integrating the Lagrangian density over τ using
L̄g =

R ∞
�∞ Lg dτ . The result is given by

L̄g =
1
3
(η2

1 +η2
2 )�2η1

dφ1

dξ
�2η2

dφ2

dξ

+ Kη1η2 cos(φ1�φ2)

Z ∞

�∞
sech(η1τ)sech(η2τ)dτ : (2.3.8)

Using Eq. (2.3.8) in the Euler–Lagrange equation, we obtain a set of four or-
dinary differential equations for ηj and φ j ( j = 1;2). These equations can be
simplified by noting that η1 +η2 � 2η is a constant of motion. Furthermore,
the total phase φ1 +φ2 does not play a significant role since L̄g depends only
on the relative phase difference φ = φ1� φ2. Introducing a new dynamical
variable

∆ = (η1�η2)=(η1 +η2); j∆j � 1; (2.3.9)

the switching dynamics is governed by the equations

d∆
dZ

= G(∆)sinφ ;
dφ
dZ

= µ∆+ cosφ
dG
d∆

; (2.3.10)
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where Z = 2Kξ � 2κz, µ = η2
=K, and

G(∆) =
Z ∞

0

(1�∆2)dx

cosh2 x+ sinh2(x∆)
: (2.3.11)

The parameter η is related to the total energy Q of both solitons as

Q =

Z ∞

�∞
(juj2 + jvj2)dτ = 2(η1 +η2)� 4η : (2.3.12)

Equations (2.3.10) can be integrated easily by noting that they can be de-
rived from the Hamiltonian

H(∆;φ) =� 1
2 µ∆2�G(∆)cosφ : (2.3.13)

As a result, ∆ and φ can be treated as the generalized coordinate and momen-
tum of a fictitious particle. This analogy permits us to describe the switching
dynamics of solitons in the ∆–φ phase plane. The qualitative behavior depends
on the parameter µ . To understand soliton switching, we first find the fixed
points of Eqs. (2.3.10) by setting the Z derivatives to zero. Two fixed points
are given by ∆ = 0 with φ = 0 or π . Since both solitons have equal energy
when ∆ = 0, these fixed points correspond to the even and odd supermodes
found earlier in the CW case.

Two other fixed points of Eqs. (2.3.10) correspond to the situation in which
the soliton is confined to only one core and are given by

∆ =�1; cosφ = 2µ=π: (2.3.14)

They exist only for µ < π=2 and are always unstable. For µ > π=2, two new
fixed points emerge for which sinφ = 0 and ∆ is obtained from the implicit
relation µ∆ = �(dG=d∆). In the limit of small ∆, the integral in Eq. (2.3.13)
can be performed analytically with the approximation

G(∆)� (1�∆2)(1�α∆2); (2.3.15)

with α = (π2
=6�1)=3� 0:215. These fixed points disappear when µ > µc =

2(1+α)� 2:43. In this region, the even-mode fixed point is also unstable.
Figure 2.9 shows trajectories in the ∆–φ phase plane in three regimes with

different sets of fixed points. The various trajectories correspond to different
launch conditions at the input end of the fiber coupler. Consider the case in
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Figure 2.9 Phase-space trajectories in three different regimes corresponding to (a)
µ < π=2, (b) π=2< µ < µc, and (c) µ > µc. (After Ref. [43])

which a single soliton is launched in one core such that η2(0) = 0 or ∆(0) = 1.
The parameter µ is then related to the peak power P0 of the launched soliton
as µ = P0=Pc, where Pc is the CW critical power introduced earlier. As long
as µ < π=2, the soliton exhibits the same behavior as a low-power CW beam.
More specifically, its energy will oscillate between the two cores in a periodic
manner.

Nonlinear switching occurs in the region π=2 < µ < µc since most of the
soliton energy remains in the core in which the pulse is launched initially.
This feature is equivalent to the CW switching discussed earlier except that
the required peak power P0 is larger by a factor of π=2. This increase is not
surprising since even the low-power wings of the soliton switch together with
its peak as one unit. Finally, when µ > µc, soliton energy oscillates around
the stable point located at ∆ = 0 and φ = π (the odd supermode). Nonlinear
switching is incomplete in this case. The main point to note is that whole-pulse
switching of solitons is feasible with a proper control of soliton energy.

The CW-like switching behavior of solitons can be seen even more clearly
if the soliton width is assumed to remain constant in spite of amplitude changes;
that is, the ansatz (2.3.7) is replaced with [41]

u(ξ ;τ) = η1 sech(τ)eiφ1 ; v(ξ ;τ) = η2 sech(τ)eiφ2 : (2.3.16)

In this case, the integral in Eq. (2.3.11) can be evaluated analytically. Since
G(∆) is then known, Eqs. (2.3.10) can be integrated in a closed form in terms
of the elliptic functions. Introducing the peak powers P1 and P2 using η2

j =
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γLDPj ( j = 1;2), P1 is found to vary along the coupler length as

P1(z) =
1
2P0[1+ cn(2κzjm)]; (2.3.17)

where the modulus of the Jacobi elliptic function is given by m = (2P0=3Pc)
2,

where Pc is the CW critical power. This solution is identical to the CW case
except that the critical power for switching is larger by a factor of 3/2. This
value compares reasonably well with the enhancement factor of π=2 predicted
before using Eqs. (2.3.10). The variational analysis also predicts a symmetry-
breaking bifurcation at m = 1=2. At this value, the symmetric solution, with
equal peak powers in the two cores, becomes unstable and is replaced with an
asymmetric solution [41].

The variational analysis based on Eq. (2.3.7) assumes that solitons remain
unchirped. More accurate results are obtained when both pulse width and chirp
are allowed to evolve along the coupler length [55]. The variational approach
has also been used to study the influence of XPM on soliton switching [44] by
including the XPM term appearing in Eqs. (2.1.14) and (2.1.15). For the rela-
tively small values of the XPM parameter σ that are relevant for fiber couplers,
the effect of XPM is to increase the critical power as seen in Eq. (2.2.7). When
σ becomes close to 1, the XPM modifies the switching characteristics consid-
erably. In the limiting case of σ = 1, Eqs. (2.1.14) and (2.1.15) are integrable
by the inverse scattering method [61].

2.4 Coupler-Paired Solitons

A different approach for studying the nonlinear effects in directional couplers
focuses on finding the soliton pairs that can propagate through the coupler
without changes in their amplitude and width in spite of the coupling induced
by the proximity of the two cores. Such soliton pairs are analogous to the
XPM-paired solitons discussed in Chapter A.7 except that the coupling be-
tween the two solitons is linear in nature. Several analytic solutions of Eqs.
(2.3.1) and (2.3.2) have been obtained under different conditions [46]–[49].
It should be stressed that, strictly speaking, such solutions represent not soli-
tons but solitary waves since Eqs. (2.3.1) and (2.3.2) are not integrable by the
inverse scattering method.

The shape-preserving solutions of Eqs. (2.3.1) and (2.3.2) can be found by
assuming a solution in the form [47]

u(ξ ;τ) =U(τ)eiqξ
; v(ξ ;τ) =V (τ)eiqξ

; (2.4.1)
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Figure 2.10 Energy Q and wave number K of soliton pairs that can propagate along
the fiber coupler without change in their shape. (After Ref. [48], c1993 by the Amer-
ican Physical Society)

where q is a constant representing change in the wave number (from its value
β ). The amplitudes U and V are ξ independent and govern the shape of the two
pulses representing the soliton pair. By substituting Eq. (2.4.1) in Eqs. (2.3.1)
and (2.3.2), U and V are found to satisfy the following set of two coupled
ordinary differential equations:

1
2

d2U
dτ2 +U3 +KV �qU = 0; (2.4.2)

1
2

d2V
dτ2 +V 3 +KU�qV = 0; (2.4.3)

where the GVD is taken to be anomalous by choosing s =�1.
Equations (2.4.2) and (2.4.3) can be solved analytically when V = �U

since they reduce to a single equation of the same form obtained in Chapter
A.5. The resulting two solutions are given by

U(τ) =V (τ) =
p

2(q�K) sech[
p

2(q�K)τ ]; (2.4.4)

U(τ) =�V (τ) =
p

2(q+K) sech[
p

2(q+K)τ ]: (2.4.5)

The solution (2.4.4) is called the symmetric state and exists only for q>K. The
solution (2.4.5) represents an antisymmetric state and exists for all q > �K.
These two solutions correspond to the even and odd supermodes introduced
in Section 2.1.2. In both cases, identical pulses propagate in the two cores
with the only difference being that they are in phase (U = V ) for the even
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Figure 2.11 Example of B-type asymmetric soliton pair supported by a fiber coupler.
(After Ref. [47], c1993 by the American Physical Society)

supermode but out of phase (U =�V ) for the odd supermode. The total energy
of both solitons can be calculated using Eq. (2.3.12) and is given by Q(K) =

4
p

2(q�K), where the minus sign corresponds to the symmetric state.
The symmetric and antisymmetric states represent soliton pairs with equal

pulse energies in two cores of a fiber coupler. Depending on the total energy
Q associated with the soliton pair, Eqs. (2.4.2) and (2.4.3) also have asym-
metric solutions such that pulse energies are different in the two cores. The
pulse shapes for such solutions are found numerically. Figure 2.10 shows pos-
sible solutions in the q–Q phase space [47]. The point M marks the location
(q=K = 5=3) where the symmetric state bifurcates and results in soliton pairs
with different amplitudes (A-type branch). The point N marks the location
(q=K = 1) where the antisymmetric state bifurcates toward the B-type branch.
The new feature of solitons on this branch is that their shape can be quite com-
plicated with multiple humps. Figure 2.11 shows an example of the shapes
associated with a soliton pair on the B-type branch.

Stability of soliton pairs can be examined using an extension of the modula-
tion-stability analysis of Section 2.2.4. In this approach, the soliton state is
perturbed as

u(ξ ;τ) = [U(τ)+a1(ξ ;τ)]e
iqξ

; v(ξ ;τ) = [V (τ)+a2(ξ ;τ)]e
iqξ

; (2.4.6)

where perturbations a1 and a2 vary with both ξ and τ . If the perturbations grow
exponentially with ξ , the corresponding soliton pair is unstable. The results
of such a stability analysis are shown by dashed lines in Fig. 2.10 and can be
summarized as follows [48]. Symmetric states are stable up to the bifurcation
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point M in Fig. 2.10 and become unstable after that. The antisymmetric states
are unstable for q=K > �0:6. Asymmetric solutions are always unstable on
the B branch and stable on the A branch only if the slope dQ=dq > 0. Since
the slope is negative in a small range—5=3 < q=K < 1:85—the asymmetric
solutions on the A branch are stable except for a tiny region near the bifurcation
point M. The existence of this tiny unstable region on the A branch implies that
the symmetry-breaking bifurcation occurring at the point M is subcritical and
leads to hysteresis with respect to pulse energy Q (first-order phase transition
in the language of thermodynamics). It should be stressed that instability of a
solution in Fig. 2.10 only indicates that the corresponding soliton pair cannot
propagate without changes in its shape, width, or amplitude. In other words,
the solid lines in Fig. 2.10 are analogous to the stable fixed points of the CW
or the variational analysis.

Numerical simulations have been used to explore the propagation dynam-
ics when the launch conditions at the input end of a fiber coupler do not corre-
spond to a stable soliton pair [49]. The results show that if the input parame-
ters are not too far from a stable point in Fig. 2.10, solitons exhibit oscillations
around the stable state while losing a part of their energy through continuum
radiation. The variational analysis should be used with caution in this case
since it assumes a fixed “sech” shape a priori and does not include radiative
energy losses. Such losses are relatively small for short couplers but must be
accounted for when L� Lc.

In the case of normal dispersion, one should choose s = 1 in Eqs. (2.3.1)
and (2.3.2). As discussed in Section A.5.3, the NLS equation supports dark
solitons in each core in the absence of coupling. One may thus ask whether the
coupled NLS equations have solutions in the form of dark-soliton pairs. This
turns out to be the case. Mathematically, one can follow the same procedure
adopted above and assume the solution of the form given in Eq. (2.4.1). The
resulting equations for U and V are identical to Eqs. (2.4.2) and (2.4.3) except
for a change in the sign of the second derivative term. These equations have
the following symmetric and antisymmetric dark-soliton pairs [54]:

U(τ) =V (τ) =
p

q�K tanh(
p

q�Kτ); (2.4.7)

U(τ) =�V (τ) =
p

q+K tanh(
p

q+Kτ): (2.4.8)

Asymmetric dark-soliton pairs also exist after a bifurcation point on the sym-
metric branch, but their properties are quite different from those associated
with the bright-soliton pairs.
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2.5 Extensions and Applications

The discussion of nonlinear effects has so far focused on symmetric fiber cou-
plers whose cores are identical in all respects. There are several different ways
in which two cores can become dissimilar. For example, the cores may have
different shapes or sizes. This case was discussed in Section 2.1 but the non-
linear effects were neglected. Nonlinear phenomena in asymmetric couplers
can lead to new effects. An interesting situation occurs when the cores have
different dispersive properties (normal versus anomalous). Cores can also be
made different by selective doping and pumping. An example is provided by
couplers in which one core is doped with erbium ions and pumped externally to
provide gain. As another example, a Bragg grating can be integrated in one or
both cores; such devices are called grating-assisted directional couplers. This
section considers several extensions of the basic coupler design and discusses
their practical applications.

2.5.1 Asymmetric Couplers

Nonlinear effects in asymmetric couplers with dissimilar cores have attracted
increasing attention in recent years [62]–[66]. Several new effects can occur in
directional couplers with cores of different sizes. Mathematically, we use Eqs.
(2.1.9) and (2.1.10). In soliton units, these equations become

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u+Kv+dpu = 0; (2.5.1)

i
∂v
∂ξ

+ idg
∂u
∂τ

+
d2

2
∂ 2v
∂τ2 +dnjvj2v+Ku�dpu = 0; (2.5.2)

where we used normalized variables as defined in Eq. (2.3.3), assumed that
GVD in one core is anomalous (β21 < 0), and introduced the following four
parameters related to the asymmetric nature of the coupler:

dp = δaLD; dg = (β12�β11)LD=T0; d2 = β22=β21; dn = γ2=γ1: (2.5.3)

Physically, dp and dg represent, respectively, phase- and group-velocity mis-
match while d 2 and dn account for differences in the dispersive properties and
effective core areas, respectively. The parameter d2 can be negative if the GVD
in the second core is normal.

The presence of four new parameters in the coupled NLS equations makes
the analysis of asymmetric couplers quite involved. Differences in the GVD
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parameters result from the waveguide contribution to GVD that depends on
the core size. If the operating wavelength is close to the zero-dispersion wave-
length of the fiber, small changes in the core shape and size can induce large
enough changes in dispersion that even the nature of GVD (normal versus
anomalous) can be different for the two cores. In contrast, if the operating
wavelength is far from the zero-dispersion wavelength, the GVD parameters
are nearly the same in both cores. We consider the latter case and assume that
the two cores are similar enough that we can set dg = 0, d2 = 1, and dn = 1
in Eqs. (2.5.1) and (2.5.2). The asymmetry in such couplers is due only to
different phase velocities in the two cores.

We can use the same method used earlier to find the stationary soliton
pairs that propagate without change in their shape. By substituting Eq. (2.4.1)
in Eqs. (2.5.1) and (2.5.2), U and V are found to satisfy the following set of
two ordinary differential equations:

1
2

d2U
dτ2 +U3 +KV � (q�dp)U = 0; (2.5.4)

1
2

d2V
dτ2 +V 3 +KU� (q+dp)V = 0: (2.5.5)

These equations should be solved numerically to find U(τ) and V (τ). A vari-
ational technique can be used with a Gaussian-shaped ansatz [65]. The phase
diagram in the q–Q plane [see Eq. (2.3.12) for the definition of Q] turns out
to be quite different compared with that of Fig. 2.10 when dp 6= 0. This is not
surprising as all solutions for asymmetric couplers must be asymmetric such
that jU j 6= jV j. However, one still finds solutions such that U and V have the
same sign. Since the relative phase between the two components is zero, such
in-phase solitons are analogous to the symmetric state such that U >V when
dp > 0. Similarly, one finds out-of-phase soliton pairs that are analogous to the
asymmetric state in the sense that U and V have opposite signs. It turns out
that jV j > jU j for such solitons when d p > 0. In both cases, more and more
energy remains confined to one core as jdpj becomes larger. This feature can
be understood from Eqs. (2.5.4) and (2.5.5) by solving them in the limit of
large jdpj. If both the dispersive and nonlinear terms are neglected, q can have
two values given by

q =�
q

d2
p +K2 ��dp; (2.5.6)

and the solutions corresponding to these values of q satisfy

U � 2dpV; U ��V=(2dp): (2.5.7)
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Figure 2.12 Pulse amplitudes associated with the (a) in-phase and (b) out-of-phase
soliton pairs. Dashed curves show the Gaussian approximation based on the varia-
tional analysis. (After Ref. [65])

Clearly, almost all energy remains in one core of the coupler for large dp.
A third solution of Eqs. (2.5.4) and (2.5.5) is found when jdpj exceeds

a critical value [65]. The components U and V have opposite signs for this
solution, and most of the energy is confined to one of them. The exact range
of jdpj over which the third solution occurs depends on both K and the total
energy Q. In fact, depending on the value of Q, only in-phase soliton pairs
may exist for some values of jdpj. Bistable behavior can also occur when Q is
large enough.

The shapes and energies of the two solitons are quite different for the
in-phase and out-of-phase solitons. Numerical solutions of Eqs. (2.5.4) and
(2.5.5) show that soliton pairs for which U and V have the same signs are lo-
calized in the sense that their amplitude decreases exponentially far away from
the center [65]. In contrast, soliton pairs for which U and V have opposite signs
(out-of-phase solitons) are delocalized such that their amplitude oscillates and
does not decrease to zero even far away from the center. Figure 2.12 shows an
example of these two types of soliton pairs for Q = 2.

The effect of GVD mismatch between the two cores—governed by the
parameter d2 in Eqs. (2.5.1) and (2.5.2)—is even more interesting, especially
in the case in which the GVD is normal in the second core [66]. The most
striking new feature is related to the existence of gap solitons, similar to those
found for Bragg gratings (see Section 1.6), that occur inside a gap region in
which light cannot propagate when nonlinear effects are weak. Moreover, such
bright solitons carry most of their energy in the core with normal GVD. The
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shape of the soliton components U and V exhibits oscillatory tails that decay
exponentially far away from the pulse center.

2.5.2 Active Couplers

Fiber losses are typically neglected in the context of fiber couplers. This is
justified in view of short fiber lengths used in practice (typically L < 10 m)
and relatively low losses associated with silica fibers. The situation is different
when one or both cores of a coupler are doped with a rare-earth element such as
erbium. The doped core will absorb considerable light when its wavelength is
close to an atomic resonance or will amplify the propagating signal if that core
is externally pumped to provide gain (see Chapter 4). The pumping level can
be different for the two cores, resulting in different gains, or one core may be
left unpumped. Because of differences in the amount of gain or loss in the two
cores, doped couplers behave asymmetrically even if both cores are identical in
shape and size. Such couplers are sometimes called active directional couplers
and can be useful for a variety of applications [67]–[73].

To understand operation of such devices, we use Eqs. (2.3.1) and (2.3.2),
appropriate for a symmetric coupler, but add an extra gain term [67]:

i
∂u
∂ξ

� s
2

∂ 2u
∂τ2 + juj2u+Kv =

i
2

g1LD

�
u+b

∂ 2u
∂τ2

�
; (2.5.8)

i
∂v
∂ξ

� s
2

∂ 2v
∂τ2 + jvj2v+Ku =

i
2

g2LD

�
v+b

∂ 2v
∂τ2

�
; (2.5.9)

where g1 and g2 are the gain coefficients whose value depends on the pump-
ing level. The parameter b= (T2=T0)

2 accounts for the finite gain bandwidth. It
originates from the frequency dependence of the gain approximated as g̃j(ω)=

gj(1�ω2T 2
2 ), where T2 is the dipole relaxation time of dopants, related in-

versely to the gain bandwidth (see Chapter 4). For picosecond pulses (width
> 5 ps), the spectrum is narrow enough that all frequency components of the
pulse experience nearly the same gain. The parameter b can be set to zero for
such pulses. In the absence of pumping, gj becomes negative and accounts for
dopant-induced losses in the jth core.

In the quasi-CW case, the two terms involving time derivatives can be set
to zero. The resulting equations can be solved analytically in the low-power
case but require a numerical solution to study nonlinear switching [68]. When
both cores are pumped to provide equal gains, the power threshold is reduced at
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Figure 2.13 Switching characteristics (solid curve) of an active fiber coupler with
equal gain in both cores. Dashed curve shows the behavior expected in the absence of
gain. (After Ref. [67])

the expense of switch quality. The best performance occurs for active couplers
with gain in one core and comparable loss in the other core. With proper choice
of device parameters, the switching threshold can be reduced by a factor of
more than 10 while maintaining a sharp, step-function-like response of the
switch.

Soliton switching in active fiber couplers has been investigated numerically
by choosing s =�1 (anomalous GVD), setting g1 = g2 = g0 and b = 0 in Eqs.
(2.5.8) and (2.5.9), and using the input conditions [67]

u(0;τ) = N sech(τ); v(0;τ) = 0: (2.5.10)

Figure 2.13 shows improvement in switching of picosecond pulses occurring
because of amplification for a coupler of length L = 2πLD by choosing K =

0:25 and g0LD = 0:3. Several features are noteworthy. First, the switching
threshold is reduced by about a factor of 2. Second, the switching is much
sharper. A relatively small change in peak power of the pulse can switch the
soliton from one core to another. Third, the switching contrast is improved be-
cause of the amplification provided by the coupler. In fact, the switched pulse
is narrower than the input pulse by a factor in the range of 3 to 7, depending
on the input peak power. For femtosecond pulses, gain dispersion must be in-
cluded by choosing b 6= 0. Numerical simulations show that the main effect of
gain dispersion is to reduce the overall switching efficiency without affecting
the pulse quality significantly. It should be stressed that input pulse does not
correspond to a fundamental soliton when N 6= 1. As a result, switching is
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accompanied by dispersive radiation that appears in the other core because of
its low power.

Asymmetric active couplers in which two cores have different gains (g1 6=
g2) can be used as saturable absorbers. Consider the case in which one core is
pumped to provide gain while the other core is either undoped or unpumped.
Low-energy pulses will then be transferred to the second core while high-
energy pulses whose peak power exceeds the switching threshold will remain
in the core with gain. Such a device acts as a saturable absorber and can be
used for many applications. For example, it can be used for passive mode
locking of fiber lasers by using the doped core as a gain medium within a cav-
ity [70]. This scheme works even in the normal-GVD regime and can be used
to generate picosecond pulse trains in the spectral region below 1.3 µm by us-
ing dopants such as neodymium [71]. Such a device can also be used to filter
noise associated with solitons since noise can be transferred selectively to the
lossy core because of its low power level [72]. The device acts as an opti-
cal amplifier whose gain is power dependent such that low-power signals are
attenuated while high-power signals are amplified [73]. It should be stressed
that the dopants used to provide gain or loss in fiber couplers can also have
their own saturable nonlinearities that can affect the switching behavior sig-
nificantly [69]. This issue is discussed in Chapter 4 in the context of fiber
amplifiers.

2.5.3 Grating-Assisted Couplers

An important class of directional couplers makes use of a Bragg grating to
improve the performance of asymmetric couplers. Such couplers are called
grating-assisted couplers [74]–[85]. They have been studied mostly in the con-
text of planar waveguides, in which grating-induced variations in the thickness
of one waveguide lead to periodic modulation of the coupling coefficient. The
grating period Λ is chosen such that the mismatch between the modal propa-
gation constants equals the grating wave vector, that is,

β̄1� β̄2 = βg � 2π=Λ: (2.5.11)

This condition is similar to that of a long-period grating used for coupling
the modes in a single-core fiber (see Section 1.7.1). In the case of a grating-
assisted coupler, such a long-period grating couples the modes supported by
two spatially separated waveguides (or the even and odd modes of the coupled
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Figure 2.14 Schematic of a grating-assisted fiber coupler. (After Ref. [91])

waveguides) and allows complete transfer of a low-power beam between the
two waveguides even though little power exchange occurs in the absence of
the grating.

In the case of fiber couplers, it is difficult to vary the core diameter in
a periodic fashion on a scale of about 10 µm. For this reason, gratings are
formed by modulating the refractive index of the core. Since the spacing be-
tween cores does not vary in this case, the coupling coefficient remains nearly
unchanged. Nevertheless, such phase gratings can be quite useful. Indeed, sev-
eral kinds of grating-assisted fiber couplers have been proposed and analyzed
for wavelength-division multiplexing (WDM) applications [86]–[96]. An ex-
ample of such a coupler is shown in Fig. 2.14. Both long- and short-period
gratings have been used. In a 1992 experiment, an acoustic wave, excited by
a silica horn, coupled the forward-propagating normal modes of an asymmet-
ric dual-core fiber coupler [86]. Such a device can be useful for a variety of
applications related to WDM and signal processing. Periodic microbending
induced by an acoustic wave or by a fixed mechanical grating has also been
used to induce mode coupling [87].

Short-period Bragg gratings have been incorporated into one core of fiber
couplers for making add–drop WDM filters [88], [89]. Such gratings produce
a backward-propagating wave if the wavelength of the input signal falls within
its stop band. When a multichannel WDM signal is injected into the core
without the grating and transferred to the second core, a specific channel is
selectively reflected back by the grating; it appears at the input end of the
second core while the remaining channels appear at the output end of that
core. A signal at the same specific wavelength can be added by injecting it
from the output port of the core without the grating. The grating period is
set by Eq. (2.5.11)—after changing the minus sign to a plus sign because of
the backward propagation of the dropped channel—and is a fraction of the
wavelength of that channel. Fabrication of a Bragg grating in the coupling
region between the two cores allows the same add–drop functionality [90].
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Fiber couplers in which both cores contain built-in Bragg gratings can also
be used for adding or dropping a channel. In this case, forward- and backward-
propagating waves are produced in both cores. Denoting the backward waves
by B1 and B2 and neglecting the GVD, the operation of such a device is gov-
erned by the following four coupled-mode equations [91]:

dA1

dz
= iδ1A1 + iκg1B1 + iκ12A2 + iγ1(jA1j2 +2jB1j2)A1; (2.5.12)

�dB1

dz
= iδ1B1 + iκg1A1 + iκ12B2 + iγ1(jB1j2 +2jA1j2)B1; (2.5.13)

dA2

dz
= iδ2A2 + iκg2B2 + iκ21A1 + iγ2(jA2j2 +2jB2j2)A2; (2.5.14)

�dB2

dz
= iδ2B2 + iκg2A2 + iκ21B1 + iγ2(jB2j2 +2jA2j2)B2; (2.5.15)

where κg1 and κg2 are the coupling coefficients of the two gratings that can
be designed to be different if necessary. The parameters δ1 and δ 2 represent
detuning between the Bragg and the modal propagation constants [96]. These
equations can be easily generalized to include fiber dispersion by adding the
first and second time-derivative terms as was done in Eqs. (2.1.9) and (2.1.10).

Equations (2.5.12)–(2.5.15) can be solved analytically only in the case of
identical gratings and low-power CW beams by setting κg1 = κ g2 and γ1 =

γ2 = 0; the results confirm the add–drop function offered by such a device [91].
In the general case in which gratings are different, occupy only a fraction of the
coupling region, and are allowed to be nonuniform (e.g., apodized gratings), a
numerical solution is required to optimize the performance of such add–drop
multiplexers [96]. When a broadband WDM signal is launched inside one core
of a coupler of length L = Lc, the channel whose wavelength falls within the
stop band of the grating is reflected back and appears at the unused input port
of the second core while the remaining channels appear at the output end. Such
grating-assisted fiber couplers have been fabricated and exhibit large add–drop
efficiency (> 90%) with low losses [93].

Nonlinear effects can be studied by solving Eqs. (2.5.12)–(2.5.15) numeri-
cally. Similar to the case of grating-assisted codirectional couplers [80], the
intensity-dependent shift of the Bragg frequency affects the channel to be
dropped. As a result, the device can act as a nonlinear switch such that the
channel is dropped only if its power exceeds a certain value. Propagation of
short optical pulses should also lead to interesting nonlinear phenomena since
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such a grating-assisted fiber coupler can support Bragg solitons in each core
but these solitons are coupled by the proximity of two cores.

2.5.4 Birefringent Couplers

Another situation in which one needs to solve a set of four coupled-mode
equations occurs when a fiber coupler exhibits large birefringence. In prac-
tice, birefringence can be induced either by using elliptical cores or through
stress-induced anisotropy, the same techniques used for making polarization-
maintaining fibers. As discussed in Chapter A.6, polarization in such fibers
is maintained only when light is polarized along the fast or slow axis of the
fiber. When incident light is polarized at an angle to these axes, the state of
polarization changes along the core length in a periodic fashion.

The mathematical description of birefringent fiber couplers requires four
coupled-mode equations corresponding to the two orthogonally polarized com-
ponents of light in the two cores [97]–[100]. In the general case of asymmet-
ric couplers and arbitrary birefringence, these equations are quite complicated
since all four field components propagate with different group velocities. They
can be simplified considerably for symmetric couplers with either very high or
very low birefringence (as discussed in Section A.6.1).

Consider first the high-birefringence case. Using the notation that Am and
Bm denote the linearly polarized components in the mth core, the coupled-
mode equations in this case become

∂A1

∂ z
+

1
vgx

∂A1

∂ t
+

iβ2

2
∂ 2A1

∂T 2 = iκA2 + iγ(jA1j2 +σ jB1j2)A1; (2.5.16)
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+

1
vgy

∂B1

∂ t
+

iβ2

2
∂ 2B1

∂T 2 = iκB2 + iγ(jB1j2 +σ jA1j2)B1; (2.5.17)
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+

iβ2
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∂T 2 = iκA1 + iγ(jA2j2 +σ jB2j2)A2; (2.5.18)
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+

1
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∂B2

∂ t
+

iβ2

2
∂ 2B2

∂T 2 = iκB1 + iγ(jB2j2 +σ jA2j2)B2; (2.5.19)

where vgx and vgy are group velocities for the two polarization components.
The XPM parameter takes a value of σ = 2=3 for linearly polarized compo-
nents. In a low-birefringence coupler, all components propagate with the same
group velocity but one cannot neglect four-wave mixing between the linearly
polarized components. It is common to use circularly polarized components
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in this case. The resulting equations are identical to Eqs. (2.5.16)–(2.5.19)
provided we set vgx = vgy and use σ = 2 for the XPM parameter.

The CW case in which all time-derivative terms in Eqs. (2.5.16)–(2.5.19)
are set to zero was analyzed in 1988 using both the Hamiltonian and Stokes-
parameter formalisms [97]. The new feature is that the state of polarization of
the optical fields in the two cores can be different. This feature can be used
to control the behavior of an intense beam launched in one core of the cou-
pler by injecting a weak, orthogonally polarized probe in the other core. It can
also be used to perform AND logic operation since the threshold for nonlin-
ear switching is reduced when two orthogonally polarized pulses are launched
simultaneously into the same core of the coupler. Another interesting result
is that the power-dependent switching exhibits chaotic behavior when light is
launched in both cores simultaneously to excite the even or odd supermode of
the coupler.

Solutions of Eqs. (2.5.16)–(2.5.19) in the form of coupled soliton pairs
have been studied using variational analysis with a Gaussian-shaped ansatz [99].
These solutions represent two vector solitons coupled by the proximity of two
cores. They can again be classified as being symmetric or antisymmetric with
equal energies in the two cores (jA1j = jA2j and jB1j = jB2j) and being asym-
metric such that the two cores have pulses with different energies. Stability
properties of these soliton pairs are similar to those seen in Fig. 2.10, where
birefringence effects were ignored [100].

A birefringent coupler can be converted into a dual-core rocking filter if
the axis of birefringence is rocked periodically by twisting the preform during
the fiber-drawing process [101]. Such periodic rotation of the birefringence
axis at the beat length can be included in Eqs. (2.5.16)–(2.5.19) by adding an
additional grating-like term on the right side. More specifically, one should
add the term iκgB1 exp(�4iπz=LB) to Eq. (2.5.16), and similar terms to other
equations, where LB is the beat length of the birefringent fiber. Following
the approach outlined in Section 1.5.2, the resulting four equations can be
reduced to a pair of coupled NLS equations under suitable conditions [50].
These equations support pairs of coupled Bragg solitons that can propagate
along the coupler length without changing their shapes.

2.5.5 Multicore Couplers

An interesting extension of fiber couplers consists of making fibers with mul-
tiple cores. Arrays of planar waveguides (active or passive) were studied ex-
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(a) (b)

Figure 2.15 (a) Schematic of a circular fiber array. (b) Optical steering of a CW beam
along the array. (After Ref. [123])

tensively during the 1980s and were used to make high-power semiconduc-
tor lasers [102]–[106]. Multicore fiber couplers were fabricated as early as
1989 [107]. Such couplers are needed for WDM technology and are used for
making N�1 multiplexers and star couplers [108], although nonlinear effects
are rarely needed for operation of such devices.

Nonlinear effects in fiber arrays (three or more cores sharing the same
cladding) have been analyzed theoretically since the early 1990s using a set
of coupled NLS equations [109]–[129]. When all cores are identical, these
equations take a simple form and can be written, using soliton units, in the
following compact form:

i
∂um

∂ξ
+

1
2

∂ 2um

∂τ2 + jumj2um +K(um+1 +um�1) = 0; (2.5.20)

where um represents the field amplitude in the mth core and is coupled to the
fields in the two neighboring cores. For a linear array of M cores, the cores
at the two ends have only one neighbor. The resulting boundary conditions
require u0 = uM+1 = 0. This asymmetry can be avoided for a circular fiber
array in which all cores are spaced equally and their centers lie along a circle,
resulting in periodic boundary conditions. Figure 2.15(a) shows such a fiber
array schematically.

The specific case of three-core couplers has attracted considerable atten-
tion since the resulting three coupled NLS equations permit analytical solution
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in both the CW and pulsed cases [109]–[114]. The periodic boundary condi-
tions can be used when the core centers form an equilateral triangle. In analogy
with the two-core couplers, one can find soliton triplets that propagate through
the three-core coupler without changing their shapes [56]. The bifurcation dia-
gram in the q–Q plane is much more complicated in this case [112]. The reason
is related to a vast variety of possible solutions that may exist even for couplers
with only three cores. At low values of the total energy Q, the symmetric solu-
tion for which all three solitons are identical in all respects (in-phase solution)
is stable. However, an antisymmetric solution also exists. In this case, two
solitons are out of phase and have the same energy while the energy in the
third core is zero. At a certain value of the energy Q, both the symmetric and
antisymmetric solutions become unstable and give rise to partially or totally
asymmetric solutions.

The analysis of multicore fiber couplers becomes increasingly more in-
volved as the number of cores increases. Numerical solutions of Eq. (2.5.20)
for a linear array, in which the input CW beam is launched initially at one end
of the array, shows that nonlinear switching not only occurs but has a sharper
threshold [109]. More specifically, the input beam is transferred to the outer-
most core at the other end at low powers (if the coupler length is chosen judi-
ciously) but remains in the same core when the input power exceeds a thresh-
old value. However, the threshold power increases and the power-transfer effi-
ciency decreases as the number of intermediate cores is increased [116].

Power transfer from core to core also occurs in the case of a circular fiber
array [123]. Figure 2.15(b) shows this behavior for a 101-core array by solv-
ing Eq. (2.5.20) numerically when a CW beam is launched initially with the
amplitude

um = Kasech[a=
p

2(m�mc)]exp[�ik(m�mc)]; (2.5.21)

where mc = 51 and a2 = 1:1. The integer m is varied from 51 to 55, resulting
in the excitation of five cores at ξ = 0. The parameter k determines the initial
phase difference between the excited cores. The beam remains confined to the
same cores when k = 0. However, when k 6= 0, the power is transferred to
successive cores as the CW beam propagates down the array. Since the shape
of the envelope governing power distribution among cores is maintained during
this process, this phenomenon is referred to as soliton-like optical switching.
It should be stressed that the word soliton in this context refers to a spatial
soliton.



Problems 105

The set of equations (2.5.20) has attracted considerable attention from a
mathematical standpoint since it corresponds to a discrete version of the NLS
equation in the quasi-CW limit in which the effects of GVD are negligible
and the second-derivative term can be ignored. This feature can be seen more
clearly by writing Eq. (2.5.20) as

i
∂um

∂ξ
+K(um+1�2um +um�1)+2Kum + jumj2um = 0: (2.5.22)

The linear term 2Kum can be removed by shifting the propagation constant
through the transformation u0m = um exp(2iKξ ). The resulting equation is
known as the discrete NLS equation since it is a discrete version of the fol-
lowing equation:

i
∂u
∂ξ

+Kd2 ∂ 2u
∂x2 + juj2u = 0; (2.5.23)

where x = md represents the position of the mth core along the array and
the core spacing d is assumed to be small in the continuum limit. Equation
(2.5.23) has spatially localized solutions in the form of spatial solitons. It is
thus likely that Eq. (2.5.22) also possesses localized nonlinear modes such that
the power is confined to only few neighboring cores. This indeed turns out to
be the case [106]. The discrete NLS equation was studied extensively, both
analytically and numerically, during the 1990s and continues to be of interest
[117]–[129].

Problems

2.1 Explain in physical terms why proximity of two cores in a fiber coupler
leads to power exchange between the two cores.

2.2 Starting from the wave equation, derive the coupled-mode equations for
a fiber coupler in the frequency domain.

2.3 Convert Eqs. (2.1.4) and (2.1.5) into time-domain equations, treating
both the propagation constants and the coupling coefficients as frequency
dependent. Assume a symmetric coupler to simplify the algebra.

2.4 Evaluate the integral in Eq. (2.1.6) to find the coupling coefficient for a
symmetric fiber coupler whose core centers are separated by a distance
d. Assume that the fundamental mode in each waveguide has a Gaussian
shape with width (FWHM) w0.
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2.5 Discuss how κ obtained in previous problem depends on the ratio d=w0
by plotting it. Find the coupling length when d=w0 = 3.

2.6 A CW optical beam with power P0 is launched into one core of a sym-
metric fiber coupler. Solve the coupled-mode equations and find the
power transferred to the second core. You can neglect the XPM-induced
coupling. Discuss what happens when the input power exceeds 4κ=γ .

2.7 Show that Eqs. (2.2.11)–(2.2.13) follow from the CW coupled-mode
equations when the Stokes vector components are introduced as defined
in Eq. (2.2.10).

2.8 Find all solutions of Eqs. (2.2.11)–(2.2.13) that remain invariant with z.
Show the location of these fixed points on the Poincaré sphere. What
happens when input power exceeds 2κ=γ ?

2.9 Find the dispersion relation associated with modulation instability when
the CW solution of Eqs. (2.2.19) and (2.2.20) corresponds to the odd
mode of a symmetric fiber coupler. Discuss the main differences from
the even-mode case.

2.10 Show that the coupled NLS equations for a fiber coupler, Eqs. (2.3.1)
and (2.3.2), indeed follow from the Lagrangian density in Eq. (2.3.6).

2.11 Evaluate the integral L̄g =
R ∞
�∞ Lg dτ using the soliton ansatz given in

Eq. (2.3.7) and derive the four equations describing the evolution of the
soliton parameters along the coupler length.

2.12 Solve Eq. (2.3.10) numerically for µ = 1.5, 1.6, and 2.5 and plot ∆ and
φ along the coupler length. Interpret your results using phase diagrams
of Fig. 2.8.

2.13 Repeat the previous problem using the ansatz given in Eq. (2.3.16) and
solve the resulting four equations analytically.

2.14 Find the symmetric and antisymmetric shape-preserving soliton pairs by
solving Eqs. (2.3.1) and (2.3.2).

2.15 Solve Eqs. (2.5.4) and (2.5.5) numerically and reproduce the pulse shapes
shown in Fig. 2.11.
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[123] W. Królikowski, U. Trutschel, M. Cronin-Golomb, and C. Schmidt-

Hattenberger, Opt. Lett. 19, 320 (1994).
[124] R. Muschall, C. Schmidt-Hattenberger, and F. Lederer, Opt. Lett. 19, 323

(1994).
[125] A. B. Aceves, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, Opt. Lett.

19, 329 (1994).
[126] A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, Opt. Lett. 19, 332

(1994).
[127] A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik, and S. K. Turit-

syn, Phys. Rev. Lett. 75, 73 (1995); Opt. Fiber Technol. 1, 244 (1995).
[128] E. W. Laedke, K. H. Spatschek, S. K. Turitsyn, and V. K. Mezentsev, Phys.

Rev. E 52, 5549 (1995).
[129] M. I. Weinstein and B. Yeary, Phys. Lett. A 222, 157 (1996).



Chapter 3

Fiber Interferometers

The two fiber components covered in Chapters 1 and 2 can be combined to
form a variety of fiber-based optical devices. Four common ones among them
are the fiber version of the well-known Fabry–Perot, Sagnac, Mach–Zehnder,
and Michelson interferometers [1]. They exhibit interesting nonlinear effects
that are useful for optical-switching applications [2]–[4], when power levels
are large enough for the self- and cross-phase modulation (SPM and XPM) to
become important. This chapter is devoted to the nonlinear effects occurring in
these fiber interferometers. Section 3.1 considers the Fabry–Perot and ring res-
onators and discusses several nonlinear effects such as optical bistability and
modulation instability. Nonlinear fiber-loop mirrors, whose operation is based
on Sagnac interferometers, are covered in Section 3.2. Nonlinear switching
in Mach–Zehnder interferometers is described in Section 3.3. Finally, Section
3.4 is devoted to Michelson interferometers.

3.1 Fabry–Perot and Ring Resonators

Fabry–Perot and ring resonators are well-known devices used commonly for
making lasers [5]. A fiber-based Fabry–Perot resonator can be constructed by
simply making two ends of an optical fiber partially reflecting. This can be
realized in practice by using external mirrors or by depositing high-reflectivity
coatings at the two ends. An alternative approach, shown schematically in
Fig. 3.1, splices a fiber grating at each end of the fiber. The construction of
a fiber-ring resonator is even simpler. It can be made by connecting the two
ends of a piece of fiber to an input and an output port of a fiber coupler, as
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Figure 3.1 Fiber-based Fabry–Perot and ring resonators made by using Bragg gratings
and directional couplers.

shown schematically in Fig. 3.1. This section is devoted to the nonlinear effects
occurring in such resonators. The continuous-wave (CW) case is considered
first with focus on optical bistability and chaos. It is followed by a discussion
of modulation instability and other temporal phenomena.

3.1.1 Transmission Resonances

Several types of fiber-based Fabry–Perot interferometers have been developed
for wavelength-division multiplexing (WDM) applications [6]–[8]. Some of
them function in a linear fashion since they use air as the intracavity medium [9].
Others use a piece of fiber between two Bragg gratings [10] and thus are ca-
pable of exhibiting the nonlinear effects. Fiber-ring resonators were made as
early as 1982 using a directional coupler [11], and a finesse of 1260 was real-
ized by 1988 [12].

Transmittivity of a Fabry–Perot resonator, formed by using two identical
mirrors (or Bragg gratings) of reflectivity Rm, can be calculated by adding
coherently the optical fields transmitted on successive round trips. Consider
a CW optical beam at the frequency ω . When it is incident at the left mirror,
the field inside the resonator consists of forward- and backward-propagating
waves and can be expressed as

E(r; t) = 1
2F(x;y)fA(z)exp[i(β̃ z�ωt)]+B(z)exp[�i(β̃ z+ωt)]+ c:c:g;

(3.1.1)
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where F(x;y) is the spatial distribution and β̃ is the propagation constant asso-
ciated with the fundamental mode supported by the fiber. The transmitted field
is obtained by adding contributions of an infinite number of round trips and is
given by [5]

A(L) =
(1�Rm)A(0)

1�Rm exp(iβ̃LR)
(3.1.2)

where LR � 2L is the round-trip distance for a fiber of length L.
Transmittivity of the resonator is obtained from Eq. (3.1.2) and is given by

the well-known Airy formula [1]

TR =
Pt

Pi
=

����A(L)A(0)

����
2

=
(1�Rm)

2

(1�Rm)2 +4Rm sin2(φR=2)
; (3.1.3)

where Pi = jA(0)j2 is the input power, Pt is the transmitted power, and φR =
β̃LR is the phase shift occurring over one round trip inside the resonator. The
nonlinear and dispersive effects enter through this phase shift, which can be
separated into two parts

φR(ω)� φ0(ω)+φNL = [β (ω)+∆βNL]LR: (3.1.4)

The nonlinear part φNL represents the contribution of SPM and can be related
to the nonlinear parameter γ as

φNL = γ
Z L

0
(jA(z)j2 + jB(z)j2)dz = γPavLR; (3.1.5)

where Pav is the average power level inside the resonator.
At low power levels such that φNL � 1, the nonlinear effects can be ne-

glected. In that case, 100% of the incident light is transmitted (TR = 1) when-
ever φ0 = 2mπ , where m is an integer. Frequencies that satisfy this condition
correspond to the longitudinal modes of the resonator. Transmission drops as
the frequency of incident light is detuned from the resonance. The solid curve
in Fig. 3.2 shows the transmittivity of a fiber resonator as a function of φ0 for
Rm = 0:8. The frequency spacing ∆νL between the successive transmission
peaks is known as the free-spectral range (also called the longitudinal-mode
spacing in laser literature). It is obtained using the phase-matching condition

[β (ω +2π∆νL)�β (ω)]LR = 2π (3.1.6)
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Figure 3.2 Transmittivity of a Fabry–Perot resonator as a function of φ 0=2π for Rm =

0:8. Dashed lines show changes in φR because of SPM at two power levels.

and is approximately given by ∆νL = vg=LR � 1=TR, where vg � 1=β1 is the
group velocity and TR is the round-trip time within the resonator. Because of
group-velocity dispersion (GVD), the free spectral range of a fiber resonator
becomes frequency dependent. It can vary considerably in a Fabry–Perot res-
onator made by using Bragg gratings because of the large GVD associated
with them [13]. The sharpness of the resonance peaks in Fig. 3.2 is quantified
through the resonator finesse FR defined as

FR =
∆νL

∆νR
=

π
p

Rm

1�Rm
; (3.1.7)

where ∆νR is the width of each resonance peak (at half maximum).

Equation (3.1.3) changes somewhat for a fiber-ring resonator [11]. The
changes are related to the constant phase shift of π=2 occurring when light
crosses over from one core to another inside a fiber coupler (see Section 2.1).
Note also that B(z) = 0 in Eq. (3.1.1) for a ring resonator since a backward-
propagating wave is not generated in this case. This feature simplifies the
mathematical description and has considerable implications for nonlinear phe-
nomena since the XPM-induced coupling between the forward- and backward-
propagating waves cannot occur in unidirectional ring resonators.
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3.1.2 Optical Bistability

The nonlinear phenomenon of optical bistability has been studied in nonfiber
resonators since 1976 by placing the nonlinear medium inside a cavity formed
by using multiple mirrors [14]–[19]. The single-mode fiber was used in 1983
as the nonlinear medium inside a ring cavity [20]. Since then, the study of
nonlinear phenomena in fiber resonators has remained a topic of considerable
interest [21]–[38].

The origin of the nonlinear effects in fiber resonators is evident from Eq.
(3.1.3): Note that the round-trip phase shift φR depends on input power be-
cause of the SPM-induced phase shift φ NL. For high-finesse resonators, Pt �
(1�Rm)Pav. Using this relation in Eq. (3.1.5), the transmitted power from Eq.
(3.1.3) is found to satisfy the transcendental equation

Pt

�
1+

4Rm

(1�Rm)2 sin2
�

φ0

2
+

γPtLR

2(1�Rm)

��
= Pi: (3.1.8)

It is clear from this equation that multiple values of Pt are possible at a fixed
value of the incident power Pi because of SPM. Dashed lines in Fig. 3.2 show
φR as a function of φ0 for two values of Pi using Eq. (3.1.4). The intersection
points of the dashed lines with the solid curve correspond to the multiple so-
lutions of Eq. (3.1.8). At low powers, the dashed lines become nearly vertical,
and only one solution is possible. With increasing input power, the dashed
lines tilt, and the number of solutions increases from one to three, then to five
and beyond. We focus on the case of three solutions since it requires the least
input power.

Multiple solutions of Eq. (3.1.8) lead to dispersive optical bistability, a
nonlinear phenomenon that has been observed using several different nonlin-
ear media [19]. It occurs in fiber resonators when the linear phase shift φ0
does not correspond to a resonance of the resonator so that little light is trans-
mitted at low power levels. For a given detuning δ � 2πM�φ0 of the input
signal from the nearest Mth resonance, the SPM-induced phase shift reduces
the net detuning toward zero, resulting in higher transmission. However, the
transmitted power Pt does not increase linearly with P0, as is evident from the
nonlinear nature of Eq. (3.1.8). Figure 3.3 shows the expected behavior for
three values of δ . Over a certain range of δ , three solutions of Eq. (3.1.8) pro-
duce the well-known S-shaped curve associated with optical bistability. The
middle branch with a negative slope is always unstable [19]. As a result, the
transmitted power jumps up and down at specific values of Pi in such a way
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Figure 3.3 Bistable response of a fiber resonator with Rm = 0:5 for three values of
detuning δ . Powers are normalized using Pn = (γLR)

�1.

that it exhibits hysteresis. The switching powers are of the order of (γLR)
�1,

with numerical values � 10 W for LR � 100 m.

Experimental observation of optical bistability using CW beams is ham-
pered by a relatively low threshold of stimulated Brillouin scattering (SBS) in
fiber resonators [39]. The evidence of bistability in a ring cavity was first seen
in a 1983 experiment in which SBS was avoided using picosecond pulses [20].
In a later experiment, SBS was suppressed by placing an optical isolator inside
the ring cavity that was formed using 13 m of low-birefringence fiber [22].
Bistable behavior was observed in this experiment at CW power levels below
10 mW. The nonlinear phase shift φ NL at this power level is relatively small
in magnitude (below 0.01 rad) but still large enough to induce bistability.

In all experiments on optical bistability, it is important to stabilize the
cavity length to subwavelength accuracy. An improved stabilization scheme
was used in a 1998 experiment [37]. Figure 3.4 shows the observed behavior
at four values of the detuning δ . The experiment used mode-locked pulses
(width � 1 ps) emitted from a Ti:sapphire laser. The length of ring resonator
(about 7.4 m) was adjusted precisely so that an entering laser pulse overlapped
in time with another pulse already circulating inside the cavity (synchronous
pumping). The observed bistable behavior was in qualitative agreement with
the CW theory in spite of the use of short optical pulses since the GVD played
a relatively minor role [24].
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Figure 3.4 Hysteresis cycles observed in a fiber-ring resonator at four values of de-
tuning δ . (After Ref. [37])

3.1.3 Nonlinear Dynamics and Chaos

It was discovered in 1979 that the nonlinear response of a ring resonator can
initiate a period-doubling route to optical chaos [15]. The basic idea consists of
recognizing that the dynamics in a ring cavity correspond to that of a nonlinear
map in the sense that the intracavity field is mapped to a different function on
each round trip inside the cavity [40]–[42]. Mathematically, the map can be
written as

A(n+1)(0; t) =
pρA(n)(LR; t) exp(iφ0)+ i

p
(1�ρ)Pi; (3.1.9)

where the superscript denotes the number of round trips inside the resonator
and ρ represents the fraction of the power remaining in the resonator after the
coupler (see Fig. 3.1). Evolution of the intracavity field A(z; t) during each
round trip is governed by the usual nonlinear Schrödinger (NLS) equation:

i
∂A
∂ z
� β2

2
∂ 2A
∂T 2 + γ jAj2A = 0; (3.1.10)

where T = t� z=vg is the reduced time and β 2 is the GVD parameter. If the
effect of GVD can be neglected in a CW or quasi-CW situation, this equation
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Figure 3.5 Period-2 patterns observed for δ = 0:35π at an average input power of (a)
200 mW and (b) 250 mW. Patterns change to period 4 for δ = 0:65π [(c) and (d)] at
the same two power levels. (After Ref. [37])

can be solved analytically to obtain the simple result

A(LR; t) = A(0; t)exp[iγ jA(0; t)j2LR]: (3.1.11)

Using Eq. (3.1.11) in Eq. (3.1.9), the nonlinear map can be iterated for a
given value of the input power Pi. The results show that the output of the ring
resonator can become time dependent even for a CW input. Moreover, the
output becomes chaotic following a period-doubling route in a certain range of
input parameters [15]. This behavior was observed experimentally in a 1983
experiment by launching 140-ps pulses (obtained from a Q-switched, mode-
locked Nd:YAG laser) into a fiber-ring cavity [20]. The cavity length was
selected to precisely match the round-trip time to the 7.6-ns interval between
the neighboring pulses (synchronous pumping).

In a 1998 experiment, a mode-locked Ti:sapphire laser was used to launch
short pulses (width� 1 ps) into a well-stabilized fiber-ring resonator [37]. Fig-
ure 3.5 shows the period-2 and period-4 patterns observed using two different
values of detuning at two different power levels. At higher power levels, the
output became chaotic over a wide range of detuning δ , with period-3 windows
embedded within the chaos. These features are consistent with the general the-
ory of nonlinear dynamical systems [40]–[42].
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3.1.4 Modulation Instability

Even in the absence of feedback, the combination of GVD and SPM can lead
to modulation instability when a CW beam propagates inside optical fibers
(see Section A.5.1). An interesting question is how the presence of feedback
modifies this nonlinear phenomenon. Modulation instability in fiber resonators
is of considerable interest as it can be used to convert a CW beam into a train
of ultrashort pulses [43]–[49].

The theory of modulation instability has been extended to include the ef-
fects of feedback occurring inside a fiber resonator. The analysis is quite in-
volved in the case of a Fabry–Perot cavity since one must use the coupled NLS
equations describing the evolution of the forward- and backward-propagating
waves [49]. It simplifies considerably for a ring resonator [46]. In fact, one can
use Eqs. (3.1.9) and (3.1.10). The approach is similar to that used in Section
A.5.1. It is useful to normalize Eq. (3.1.10) in the usual way and write it as

i
∂u
∂ξ

� s
2

∂ 2u
∂τ2 + juj2u = 0; (3.1.12)

where s = sgn(β2) =�1 and we have introduced

ξ = z=LR; τ = T=

pjβ2jLR; u = (γLR)
1=2A: (3.1.13)

Note that the resonator length LR is used to define the time scale.
The CW solution of Eq. (3.1.12) is given by u = u0 exp(iu2

0ξ ). To examine
its stability, we perturb it at a frequency Ω such that

u(ξ ;τ) = [u0 +a1 exp(�iΩτ)+a2 exp(iΩτ)]exp(iu2
0z); (3.1.14)

where a1 and a2 represent weak perturbations whose growth results in the two
sidebands associated with modulation instability. When the NLS equation is
linearized in terms of a1 and a2, we obtain the coupled linear differential equa-
tions:

da1=dξ = i(1
2 sΩ2 +u2

0)a1 + iu2
0a2; (3.1.15)

da2=dξ = i(1
2 sΩ2 +u2

0)a1 + iu2
0a1 (3.1.16)

These equations should be solved subject to the boundary conditions imposed
by the ring cavity:

a(n+1)
j

(0) =
pρa(n)

j
(1) exp[i(φ0 +u2

0)]; ( j = 1;2); (3.1.17)
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Figure 3.6 Gain spectrum of modulation instability in the normal-GVD region of
a fiber-ring resonator. Thin and thick lines correspond to the resonance and anti-
resonance conditions, respectively. (After Ref. [48], c1997 by the American Physical
Society)

where the superscript denotes the round-trip number.

Equations (3.1.15)–(3.1.17) relate the perturbation amplitudes a1 and a2
on two successive round trips. Modulation instability occurs if they grow after
each round trip for a given set of parameters. The growth rate depends not only
on the frequency Ω and the input power Pi but also on the fiber-ring parameters
β2; γ ; ρ , and φ0. The interesting new feature is that modulation instability
can occur even in the normal-GVD region of the fiber [48]. Moreover, the
instability occurs either close to a cavity resonance, φ0 � 2mπ , or close to
the anti-resonance condition φ 0 � (2m + 1)π . Modulation instability in the
latter case is called period-2 type since the phase of perturbation is restored
after two round trips inside the cavity. Figure 3.6 shows the gain spectra in
the normal-GVD region of a ring cavity using ρ = 0:95 and u0 = 1. Different
peaks correspond to detuning of the CW beam such that φ0 deviates from the
resonance (thin line) or the antiresonance (thick line) condition by 0:1π . In
real units, Ω = 1 corresponds to a frequency of about 0.3 THz when β2 =
30 ps2/km and LR = 10 m.

Evidence of modulation instability in a fiber-ring resonator has been seen
experimentally [48] with the same setup used for Fig. 3.5. The 7.38-m ring
cavity was driven synchronously using 1.25 ps from a 980-nm, mode-locked
Ti:sapphire laser. When the peak power of input pulses exceeded a threshold
value (about 500 W), the pulse spectrum developed peaks at the location cor-
responding to antiresonances of the fiber resonator. The spectrum exhibited
peaks at cavity resonances also. However, such peaks appear even below the
modulation-instability threshold. In contrast, the antiresonance spectral peaks
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appear only above the instability threshold, and their presence constitutes a
clear evidence of the cavity-induced modulation instability.

3.1.5 Ultrafast Nonlinear Effects

When short optical pulses are fed into a fiber resonator whose length is much
larger than the dispersion and nonlinear length scales associated with the pulse,
considerable pulse shaping is likely to occur over a single round trip. The
combined effects of GVD and SPM on pulses circulating in a fiber resonator
can lead to quite interesting nonlinear dynamics [50]–[56]. Depending on the
input and fiber parameters, a steady-state pattern (along the fiber length) may
or may not evolve (in the sense that it remains unchanged from one round
trip to next). Moreover, evolution of pulses within the fiber ring depends on
whether pulses experience normal or anomalous GVD.

Consider the situation in which ultrashort optical pulses are injected into a
fiber-ring cavity synchronously using a mode-locked laser. Evolution of pulses
over multiple round trips is governed by the generalized NLS equation of Sec-
tion A.2.3.2. Including the terms related to third-order dispersion and intra-
pulse Raman scattering, Eq. (3.1.10) becomes

i
∂A
∂ z
� β2

2
∂ 2A
∂T 2 �

iβ3

6
∂ 3A
∂T 3 + γ jAj2A� γTRA

∂ jAj2
∂T

= 0; (3.1.18)

where TR is the Raman parameter (with a value of about 3 fs). For a fiber
ring of length LR, this equation should be solved with the following boundary
condition at the coupler after each round trip:

A(n+1)(0;T ) =
pρA(n)(LR;T ) exp(iφ0)+ i

p
(1�ρ)Ai(T ); (3.1.19)

where the superscript denotes the round-trip number. The amplitude Ai for
“sech” input pulses can be written as

Ai(T ) =
p

P0 sech(T=T0) (3.1.20)

for pulses of width T0 and peak power P0. The full width at half maximum
(FWHM) of pulses is related to T0 as Tp = 2ln(1+

p
2)T0 � 1:763T0.

Numerical simulations for 10-ps pulses propagating inside a 100-m fiber
ring show that each input pulse develops an internal substructure consisting of
many subpulses of width � 1 ps. Moreover, a steady state is reached only if
the input peak power is below a certain value. In the steady state, subpulses
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Figure 3.7 Evolution of substructure in a 100-m ring resonator when 10-ps pulses
(dotted curve) are injected into it synchronously. (After Ref. [54], c1997 by the
American Physical Society)

have a uniform spacing that does not change from one round trip to next. Each
subpulse corresponds to a fundamental soliton whose width and peak power
are related such that the soliton order N � 1. When the input peak power
exceeds the critical value, a phase-transition-like behavior occurs such that the
position and width of subpulses change continuously in an apparently random
manner. Since most subpulses retain their soliton character (in the sense that
N � 1), such an ensemble of subpulses is referred to as a soliton gas. Figure
3.7 shows the evolution of substructure along the ring over one round trip.

Direct experimental observation of such a pattern is difficult because of the
ultrashort time scale involved. However, the autocorrelation and spectral mea-
surements agree with the theoretical predictions based on the NLS equation.
In the experiment, 2-ps mode-locked pulses, obtained from a color-center laser
operating at 1.57 µm, were injected into a ring resonator made by using 6 m
of polarization-maintaining fiber. Both the autocorrelation trace and the spec-
trum changed qualitatively as the peak power increased beyond a certain value,
resulting in the transition from a regular to irregular pattern of subpulses.

In the case of normal GVD, nonlinear dynamics becomes even more com-
plex [52]. Numerical simulations show that each pulse still develops an inter-
nal substructure but the resulting pattern is not governed by soliton shaping.
Depending on the linear detuning φ 0 of the ring resonator, the substructure
varies from pulse to pulse and exhibits period-doubling bifurcations and chaos.
Experiments performed using 12-ps pulses (obtained from a Nd:YAG laser op-
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Figure 3.8 Schematic illustration of an all-fiber Sagnac interferometer acting as a
nonlinear fiber-loop mirror.

erating near 1.32 µm) show that the pulse energy also varies from pulse to
pulse and exhibits a period-doubling route toward chaos as φ0 is varied in the
vicinity of a cavity resonance.

3.2 Sagnac Interferometers

Sagnac interferometers can also exploit the nonlinear phase shift of optical
fibers for optical switching [57]–[59]. Figure 3.8 shows schematically how
a fiber coupler can be used to make a Sagnac interferometer. It is made by
connecting a piece of long fiber to the two output ports of a fiber coupler to
form a loop. It appears similar to a fiber-ring resonator but behaves quite dif-
ferently because of two crucial differences. First, there is no feedback mecha-
nism since all light entering from the input port exits from the resonator after
a single round trip. Second, the entering optical field is split into two counter-
propagating parts that share the same optical path and interfere at the coupler
coherently.

The relative phase difference between the counterpropagating beams de-
termines whether an input beam is reflected or transmitted by the Sagnac inter-
ferometer. In fact, if a 3-dB fiber coupler is used, any input is totally reflected,
and the Sagnac loop acts as a perfect mirror. Such a device can be designed
to transmit a high-power signal while reflecting it at low power levels, thus
acting as an all-optical switch. For this reason, it is referred to as the nonlinear
fiber-loop mirror and has attracted considerable attention not only for optical
switching but also for mode locking and wavelength demultiplexing.
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3.2.1 Nonlinear Transmission

The physical mechanism behind nonlinear switching can be easily understood
by considering a CW or a quasi-CW input beam. When such an optical signal
is incident at one port of the fiber coupler, the transmittivity of a Sagnac inter-
ferometer depends on the power-splitting ratio of the coupler. If a fraction ρ
of the input power P0 travels in the clockwise direction, the transmittivity for
a loop of length L is obtained by calculating the phase shifts acquired during
a round trip by the counterpropagating optical waves, and then recombining
them interferometrically at the coupler. It is important to include any relative
phase shift introduced by the coupler. If we use the transfer matrix of a fiber
coupler given in Eq. (2.1.22) together with A2(0) = 0, the amplitudes of the
forward- (clockwise) and backward- (counterclockwise) propagating fields are
given by

A f =
pρA0; Ab = i

p
1�ρA0; (3.2.1)

where ρ = cos2(κ lc) for a coupler of length lc. Notice the π=2 phase shift for
Ab introduced by the coupler. After one round trip, both fields acquire a linear
phase shift as well as the SPM- and XPM-induced nonlinear phase shifts. As
a result, the two fields reaching at the coupler take the following form:

A0

f = A f exp[iφ0 + iγ(jA f j2 +2jAbj2)L]; (3.2.2)

A0

b = Ab exp(iφ0 + iγ(jAbj2 +2jA f j2)L]; (3.2.3)

where φ0 � βL is the linear phase shift for a loop of length L and β is the
propagation constant within the loop.

The reflected and transmitted fields can now be obtained by using the trans-
fer matrix of the fiber coupler and are given by

�
At

Ar

�
=

� pρ i
p

1�ρ
i
p

1�ρ pρ

��
A0

f

A0

b

�
: (3.2.4)

Using Eqs. (3.2.1)–3.2.4), the transmittivity TS � jAt j2=jA0j2 of the Sagnac
loop is given by [59]

TS = 1�2ρ(1�ρ)f1+ cos[(1�2ρ)γP0L]g; (3.2.5)

where P0 = jA0j2 is the input power. The linear phase shift does not appear in
this equation because of its exact cancellation. For ρ = 0:5, TS equals zero,
and the loop reflectivity is 100% at all power levels (hence the name fiber-loop
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Figure 3.9 Transmitted power as a function of incident power for two values of ρ ,
showing the nonlinear response of an all-fiber Sagnac interferometer.

mirror). Physically, if the power is equally divided between the counterpropa-
gating waves, the nonlinear phase shift is equal for both waves, resulting in no
relative phase difference between the counterpropagating waves. However, if
the power-splitting factor ρ is different than 0.5, the fiber-loop mirror exhibits
different behavior at low and high powers and can act as an optical switch.

Figure 3.9 shows the transmitted power as a function of P0 for two values
of ρ . At low powers, little light is transmitted if ρ is close to 0.5 since TS �
1� 4ρ(1� ρ). At high powers, the SPM-induced phase shift leads to 100%
transmission of the input signal whenever

j1�2ρ jγP0L = (2m�1)π; (3.2.6)

where m is an integer. As seen in Fig. 3.9, the device switches from low to
high transmission periodically as input power increases. In practice, only the
first transmission peak (m = 1) is likely to be used for switching because it
requires the least power. The switching power for m = 1 can be estimated
from Eq. (3.2.6) and is 31 W for a 100-m-long fiber loop when ρ = 0:45 and
γ = 10 W�1/km. It can be reduced by increasing the loop length, but one
should then consider the effects of fiber loss and GVD that were neglected in
deriving Eq. (3.2.5).

3.2.2 Nonlinear Switching

Nonlinear switching in all-fiber Sagnac interferometers was observed begin-
ning in 1989 in several experiments [60]–[66]. Most experiments used short
optical pulses with high peak powers. In this case, the power dependence
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of loop transmittivity in Eq. (3.2.5) can lead to considerable pulse distortion
since only the central part of a pulse is intense enough to undergo switching. In
a 1989 experiment, 180-ps pulses obtained from a Q-switched, mode-locked
Nd:YAG laser were injected into a 25-m Sagnac loop [60]. Transmission in-
creased from a few percent to 60% at when peak power was increased beyond
30 W. Transmitted pulses were narrower than input pulses, as expected, be-
cause only the central part of the pulse was switched. As discussed in Section
2.3, the shape-induced deformation of optical pulses can be avoided in practice
by using soliton effects since solitons have a uniform nonlinear phase across
the entire pulse. Their use requires ultrashort pulses (width < 10 ps) propa-
gating in the anomalous-GVD regime of the fiber. The XPM-induced coupling
between the counterpropagating solitons can be ignored for optical pulses short
enough that they overlap for a relatively short time compared with the round-
trip time. As a result, one can use two uncoupled NLS equations in the form
of Eq. (3.1.12) for counterpropagating solitons inside the fiber loop.

SPM-Induced Switching

Soliton switching in Sagnac interferometers was observed in 1989 by launch-
ing ultrashort pulses at a wavelength in the anomalous-GVD regime of the fiber
loop. In one experiment, mode-locked pulses (width about 0.4 ps), obtained
from a color-center laser operating near 1.5 µm, were launched into a 100-m
Sagnac loop formed using a 58:42 fiber coupler [61]. In another experiment,
a 25-m-long loop was formed using a polarization-maintaining fiber (having
its zero-dispersion wavelength near 1.58 µm), and 0.3-ps input pulses were
obtained from a color-center laser operating near 1.69 µm [62]. Figure 3.10
shows the switching characteristics observed in this experiment. Energies of
the transmitted and reflected pulses (EOUT and EREFL, respectively) vary with
the input pulse energy E IN, showing clear evidence of nonlinear switching.
The energy of transmitted pulses increases from a few percent to 90% as the
input pulse energy is ramped up close to 55 pJ (peak power � 100 W).

The experimental results obtained with 0.3-ps pulses cannot be explained
using the simple CW theory given earlier since soliton effects play an im-
portant role. Good agreement was obtained by solving the generalized NLS
equation given in Eq. (3.1.18) numerically with the appropriate boundary con-
ditions [62]. The inclusion of intrapulse Raman scattering—a higher-order
nonlinear effect that shifts the spectrum of solitons (see Section A.5.5)—was
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Figure 3.10 Measured (left) and simulated (right) switching characteristics of a non-
linear fiber-loop mirror. The energy level for forming a fundamental soliton was
E1 = 33:2 pJ for 0.3-ps input pulses used in the experiment. (After Ref. [62])

found to be important for such short pulses and limited the peak transmission
from reaching 100%. It also led to pulse breakup at high powers.

The switching threshold of a Sagnac interferometer can be reduced by in-
corporating a fiber amplifier within the loop [65]. If the amplifier is located
close to the fiber coupler, its presence introduces an asymmetry as the coun-
terpropagating pulses are not amplified simultaneously. Since the Sagnac in-
terferometer is unbalanced by the amplifier, even a 50:50 coupler (ρ = 0:5)
can be used. The switching behavior in this case can be understood by noting
that one wave is amplified at the entrance to the loop while the counterpropa-
gating wave experiences amplification just before exiting the loop. Since the
intensities of the two waves differ by a large amount throughout the loop, the
differential phase shift can be quite large. In fact, assuming that the clockwise
wave is amplified first by a factor G, we can use Eq. (3.2.4) to calculate the
transmittivity provided that Af in Eq. (3.2.2) is multiplied by

p
G. The result
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is given by

TS = 1�2ρ(1�ρ)f1+ cos[(1�ρ�Gρ)γP0L]g: (3.2.7)

The condition for complete transmission is obtained from Eq. (3.2.6) by
replacing (1� 2ρ) with (1� ρ �Gρ). For ρ = 0:5, the switching power is
given by (using m = 1)

P0 = 2π=[(G�1)γL]: (3.2.8)

Since the amplification factor G can be as large as 30 dB, the switching power
is reduced by a factor of up to 1000. Such a device, referred to as the nonlinear
amplifying-loop mirror, can switch at peak power levels below 1 mW. Its
implementation is relatively simple with the advent of fiber amplifiers (see
Chapter 4). In a demonstration of the basic concept, 4.5 m of Nd-doped fiber
was spliced within the 306-m fiber loop formed using a 3-dB coupler [65].
Quasi-CW-like switching was observed using 10-ns pulses. The switching
power was about 0.9 W even when the amplifier provided only a 6-dB gain (a
factor of 4). In a later experiment, the use of a semiconductor optical amplifier,
providing different gains for counterpropagating waves, inside a 17-m fiber
loop resulted in switching powers of less than 250 µW when 10-ns pulses
obtained from a semiconductor laser were injected into the loop [66].

A Sagnac interferometer can also be unbalanced by using a fiber loop in
which GVD is not constant but varies along the loop [67]–[74]. The GVD
can vary continuously as in a dispersion-decreasing fiber, or in a steplike fash-
ion (using fibers with different dispersive properties connected in series). The
simplest situation corresponds to the case in which the Sagnac loop is made
with two types of fibers and is similar to a dispersion-management scheme
used in lightwave systems for GVD compensation. Dispersion-varying fiber
loops unbalance a Sagnac interferometer since the counterpropagating waves
experience different GVD as they complete a round trip. The most notewor-
thy feature of such Sagnac loops is that they remain balanced for CW beams
of any power levels since GVD does not affect them. However, evolution
of optical pulses is affected both by GVD and SPM, resulting in a net rela-
tive phase shift between the counterpropagating waves. As a result, optical
pulses can be switched to the output port while any CW background noise is
reflected by dispersion-imbalanced Sagnac loops. An extinction ratio of 22 dB
for the CW background was observed in an experiment [69] in which the 20-
m loop was made using equal lengths of standard telecommunication fiber
(β2 =�23 ps2/km) and dispersion-shifted fiber (β 2 =�2:3 ps2/km).
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XPM-Induced Switching

An important class of applications is based on the XPM effects occurring when
a control or pump signal is injected into the Sagnac loop such that it propagates
in only one direction and induces a nonlinear phase shift on one of the coun-
terpropagating waves through XPM while the other is not affected by it. In
essence, the control signal is used to unbalance the Sagnac interferometer in a
way similar to how an optical amplifier can be used to produce different SPM-
induced phase shifts. As a result, the loop can be made using a 50:50 coupler
so that a low-power CW beam is reflected in the absence of the control but
transmitted when a control pulse is applied. Many experiments have shown
the potential of XPM-induced switching [75]–[84]. As early as 1989, trans-
mittivity of a 632-nm CW signal (obtained from a He–Ne laser) was switched
from zero to close to 100% by using intense 532-nm picosecond pump pulses
with peak powers of about 25 W [75].

When the signal and control wavelengths are far apart, one should consider
the walk-off effects induced by the group-velocity mismatch. As discussed in
Section A.7.2, in the absence of GVD effects, the XPM-induced relative phase
shift at the coupler is given by

φXPM = 2γ
Z L

0
jAp(T �dwz)j2 dz; (3.2.9)

where Ap is the pump-pulse amplitude, T = t� z=vgs is the reduced time in
the frame moving with the signal pulse, and dw = v�1

gp � v�1
gs represents the

group-velocity mismatch between the pump and signal pulses. The integral
can be evaluated analytically for certain shapes of the pump pulse. For exam-
ple, for a “sech” pump pulse with Ap(T ) =

p
Pp sech(T=T0), the phase shift

becomes [76]

φXPM(τ) = (γPp=δw)[tanh(τ)� tanh(τ�δw)]; (3.2.10)

where τ = T=T0 and δw = dwL=T0. The relative phase is not only time depen-
dent but its shape is also affected considerably by the group-velocity mismatch.
Since loop transmittivity remains high as long as the phase shift is close to an
odd multiple of π , the transmitted signal shape changes considerably with the
shape and peak power of pump pulses.

The problem of pulse walk-off can be solved by using a fiber whose zero-
dispersion wavelength lies between the pump and signal wavelengths such that
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the two waves have the same group velocity (dw = 0). Indeed, such a 200-m-
long Sagnac loop was built in 1990 using polarization-maintaining fiber [77].
It was employed to switch the 1.54-µm signal using 120-ps pump pulses with
1.8-W peak power at 1.32 µm. In a later experiment, 14-ps pump pulses, ob-
tained from a gain-switched 1.55-µm DFB laser and amplified using a fiber
amplifier, were able to switch a CW signal in the wavelength region near
1.32 µm.

The pulse walk-off occurring because of wavelength difference between
the pump and signal can also be avoided by using an orthogonally polarized
pump at the same wavelength as that of the signal [78]. There is still a group-
velocity mismatch because of polarization-mode dispersion, but it is relatively
small. Moreover, it can be used to advantage by constructing a Sagnac loop
in which the slow and fast axes of polarization-maintaining fibers are inter-
changed in a periodic fashion. In one implementation of this idea [79], a 10.2-
m loop consisted of 11 such sections. Two orthogonally polarized pump and
signal pulses (width about 230 fs) were injected into the loop and propagated
as solitons. The pump pulse was polarized along the fast axis and delayed ini-
tially such that it overtook the signal pulse in the first section. In the second
section, the signal pulse traveled faster because of the reversing of slow and
fast axes and overtook the pump pulse. This process repeated in each section.
As a result, two solitons collided multiple times inside the Sagnac loop, and
the XPM-induced phase shift was enhanced considerably.

3.2.3 Applications

By exploiting different nonlinear effects—such as XPM, SPM, and four-wave
mixing (FWM)—occurring inside the fiber used to make the Sagnac loop, one
can use the nonlinear fiber-loop mirror in many applications. This section
describes applications relevant to lightwave systems.

Pulse Shaping and Generation

A nonlinear Sagnac interferometer acts as a high-pass intensity filter in the
sense that it reflects low-intensity signals but transmits high-intensity radiation
without affecting it. This feature is similar to that of saturable absorbers, which
absorb weak signals but become transparent at high intensities, with one cru-
cial difference. The speed of saturable absorbers is limited in practice to time
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scales longer than 10 ps while the nonlinear response of silica fibers is almost
instantaneous (< 10 fs).

A simple application of Sagnac interferometers consists of using them for
pulse shaping and pulse cleanup. For example, if a short optical pulse con-
tains a broad low-intensity pedestal, the pedestal can be removed by passing it
through such a device [85]. Similarly, a soliton pulse train, corrupted by dis-
persive radiation or amplified spontaneous emission, can be cleaned by passing
it through an all-fiber Sagnac loop. Since solitons can be switched as one unit,
they are transmitted by the loop while the low-energy dispersive radiation or
noise is reflected back. The Sagnac loop can also be used for pulse compres-
sion (see Chapter 6) and for generating a train of short optical pulses at a high
repetition rate by injecting a dual-wavelength signal [86].

Saturable absorbers are routinely used for passive mode locking of lasers
to generate picosecond pulses. However, their use is limited by their sluggish
nonlinear response. Since a nonlinear fiber-loop mirror responds on femtosec-
ond timescales, its passive use for mode-locked lasers was suggested as early
as 1990 [87]. Indeed, this approach led to a new class of fiber lasers known
as figure-8 lasers [88]. Such lasers can generate femtosecond pulses and are
covered in Chapter 5.

Another approach makes use of XPM-induced switching in a Sagnac loop
for wavelength conversion and for generating high-quality optical pulses. The
basic idea is to launch a CW beam together with control pulses at a different
wavelength. In the absence of control signal, the CW light is reflected from
a balanced Sagnac interferometer since it acts as a perfect mirror. However,
each control pulse shifts the optical phase through XPM and directs a time
slice of the CW beam to the output end, producing a pulse train at the CW-
laser wavelength. In effect, the Sagnac loop acts as an all-optical gate that is
open for the duration of each control pulse. Clearly, such a device acts as a
wavelength converter, and this mode of operation should be useful for WDM
networks. An added benefit is that the wavelength-converted pulse train can
be of higher quality than the control pulses themselves. In one experiment,
control pulses from a gain-switched DFB laser operating near 1533 nm were
used to convert the 1554-nm CW radiation into a pulse train [89]. Even though
60-ps control pulses were highly chirped, the pulses produced by the Sagnac
loop were nearly transform limited. The pulse quality was high enough that
pulses could be propagated over 2400 km using a recirculating fiber loop [90].
The reflected light from such a Sagnac loop is in the form of a train of dark
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pulses that could be useful for dark-soliton experiments.
Sagnac interferometers are also useful for all-optical signal regeneration in

lightwave systems since they can reshape switched pulses while reducing the
noise level [91]. The pulse-shaping capability of such interferometers can be
improved significantly by concatenating several Sagnac loops in series [92].
The loop length can be reduced by using fibers with a relatively high value
of the nonlinear parameter γ . Such fibers were used in a recent experiment to
form two concatenated Sagnac loops [93]. The XPM-induced switching was
used in the first loop to convert the wavelength of the 10-Gb/s data channel
by using it as a control signal. The output of the first loop became the con-
trol signal for the second loop where the wavelength was switched back to
the original wavelength. The net result was regeneration (noise reduction and
pulse shaping) of the data without change in its wavelength.

All-Optical Signal Processing

An important category of applications is related to signal regeneration, for-
mat conversion, and logic operation on digital bit streams used in lightwave
systems. Nonlinear Sagnac loops can be used as analog-to-digital and digital-
to-analog converters [94]. They can also be used for converting frequency
modulation into amplitude modulation [95]. The possibility of using a nonlin-
ear Sagnac interferometer for all-optical logic operations was pointed out as
early as 1983 [57]. A polarization-maintaining Sagnac loop was used in 1991
to demonstrate the elementary logic operations in the form of AND, XOR, and
XOR gates [96]. Two control signals in counterpropagating directions were
used to realize this functionality.

To understand how a Sagnac loop performs digital logic, consider the sit-
uation in which a regular pulse train (an optical clock) is launched into the
loop through a 3-dB coupler. In the absence of control signals, all 1 bits are
reflected. If two data streams (random sequences of 1 and 0 bits) are launched
inside the loop as control signals, the clock pulse will be reflected if both con-
trols have the same bit in that time slot but get transmitted otherwise. The rea-
son is that a net XPM-induced phase shift is produced when the two controls
have different types of bits in a given time slot. The transmitted and reflected
signals thus correspond to the XOR and XOR gates, respectively. The AND gate
requires only one control signal since a pulse is transmitted only when both
the control and signal bits are present simultaneously. Inversion operation can
also be carried out using only one control.
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Figure 3.11 Demultiplexing of an OTDM signal using XPM-induced phase shift in a
Sagnac interferometer. Delay τ corresponds to the round-trip time within the loop.

All of the above logic operations were demonstrated by injecting pulses
from a 1.54-µm DFB laser into a polarization-maintaining Sagnac loop and
using 100-ps control pulses from a 1.32-µm Nd:YAG laser [96]. The loop was
200-m long and required power levels of about 1 W to realize the π phase
shift. The system-level applications of Sagnac logic gates have also been stud-
ied [97]. The use of Sagnac loops for signal regularization or regeneration in
fiber-optic communication systems requires consideration of factors such as
signal-clock walk-off, GVD-induced pulse broadening, and timing jitter [98].

Channel Demultiplexing

Although lightwave systems commonly employ the WDM technique, optical
time-division multiplexing (OTDM) of multiple channels over a single wave-
length carrier is a viable option [8]. Sagnac interferometers were used for
demultiplexing of OTDM signals starting in 1991 [99]–[105]. A nonlinear
fiber-loop mirror was used in 1992 to demultiplex a 64-Gb/s signal to individ-
ual 4-Gb/s channels [100]. The pulse energy required for switching was only
1.1 pJ. In another experiment, 10-Gb/s channels were demultiplexed from a
40-Gb/s OTDM signal by using a 11-km-long Sagnac loop [102]. Demul-
tiplexing of a 6.3-Gb/s channel from a 100-Gb/s OTDM signal was demon-
strated in 1993 [103].

The demultiplexing function of a nonlinear Sagnac interferometer is based
on the XPM-induced switching discussed earlier. The control signal (an opti-
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cal clock) consists of a train of optical pulses at the single-channel bit rate. It
is injected into the loop such that it propagates only in the clockwise (or anti-
clockwise) direction, as shown schematically in Fig. 3.11. The OTDM signal
enters from the input end and is split into counterpropagating directions by the
3-dB coupler. The clock signal is timed such that it overlaps with pulses be-
longing to a specific channel within the OTDM signal. As a result, it introduces
a nonlinear phase shift through XPM only for those pulses. The power of the
clock signal and the loop length are made large enough to introduce a relative
phase shift of π . As a result, pulses belonging to the channel selected by the
clock are transmitted by the loop while remaining channels are reflected back
toward the input port. Different channels can be selected by delaying the clock
signal by a suitable amount. All channels can be demultiplexed simultaneously
by using several Sagnac loops in parallel [105].

The main limitation of a Sagnac interferometer making use of XPM stems
from the weak fiber nonlinearity. The loop length should be 10 km or more in
order to introduce a phase shift of π with practical power levels of the clock
signal. In a variant of the basic idea, a semiconductor optical amplifier is
inserted within the fiber loop and its nonlinearity is used for demultiplexing
OTDM channels. The semiconductor optical amplifier induces a phase shift
resulting from gain saturation. This phase shift depends on the power of the
saturating signal and on a parameter known as the line-width enhancement
factor [106]. A phase shift of π can be realized within an semiconductor optical
amplifier of length < 1 mm at moderate clock-power levels. As a result of the
XPM-induced phase shift within the semiconductor optical amplifier, data bits
belonging to a specific channel are transmitted by the Sagnac loop, resulting
in demultiplexing of that channel.

The use of a semiconductor optical amplifier as a nonlinear element in
place of the fiber reduces the loop length to less than 1 m. However, the non-
linear response of such amplifiers is relatively slow because it requires recom-
bination of electron–hole pairs within the active region of the amplifier and is
governed by the carrier lifetime with values � 1 ns [106]. By injecting a CW
signal with the clock signal (at different wavelengths), the carrier lifetime can
be reduced to below 100 ps. In another approach, the semiconductor optical
amplifier is placed asymmetrically within the loop in such a way that it is offset
from the center by a small but controlled amount [107]–[110]. Such a device
can operate at relatively high speeds in spite of the slow semiconductor optical
amplifier nonlinearity since the switching time is determined by the offset of
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Figure 3.12 Schematic of FWM inside a Sagnac interferometer acting as a
parametric-loop mirror. (After Ref. [112])

the semiconductor optical amplifier from the midpoint. This device is often
referred to as the terahertz optical asymmetric demultiplexer (TOAD) because
it can respond at timescales close to 1 ps [108]. Its operation at bit rates as
high as 250 Gb/s has been demonstrated [109]. A combination of several such
devices can be used for all-optical regenerative memory [111].

Parametric Amplification

An important class of applications is based on four-wave mixing (FWM) oc-
curring inside a nonlinear Sagnac interferometer [112]–[121]. As discussed in
Chapter A.10, simultaneous propagation of pump and signal waves at different
wavelengths inside an optical fiber generates an idler wave through the non-
linear FWM process. Both the signal and idler waves experience gain through
parametric amplification. Moreover, the phase of the idler wave is related to
that of the signal wave through the phase-matching condition. For this reason,
such a FWM process is also known as phase conjugation.

The FWM inside a Sagnac loop is considerably modified by the counter-
propagating nature of the pump and signal fields and the nonlinear phase shifts
induced by SPM and XPM. Such a device is referred to as the optical para-
metric loop mirror to emphasize the importance of the parametric gain [112].
Figure 3.12 shows the device configuration schematically. The pump and sig-
nal fields (Ep and Es) are launched into the loop from the same port of the
coupler. If the Sagnac interferometer is balanced by using a 3-dB coupler so
that both pump and signal fields are split equally, they will be reflected by the
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loop mirror. On the other hand, the FWM component Ef (idler wave) gen-
erated inside the loop behaves asymmetrically if a piece of dispersive fiber is
placed near the coupler to unbalance the interferometer.

To understand the operation of a parametric loop mirror, we need to con-
sider the relative phase difference between the counterpropagating components
of the idler wave (Ef 3 and Ef 4). Since the propagation constant β inside a dis-
persive fiber is different for the pump, signal, and conjugate fields because
of their frequencies (ωp; ωs, and ωc, respectively), a net relative phase shift,
φd = [2β (ωp)�β (ωs)�β (ωc)]L f , is introduced by a dispersive fiber of length
L f . As a result, the FWM power coming out from the output port 2 of the
Sagnac loop depends on this phase shift and is given by [112]

Pout = Pc sin2(φd=2); (3.2.11)

where Pc is the total power generated through FWM. The remaining power ex-
its from the input port. Thus, when φd is an odd multiple of π , the FWM signal
exits from the output port. In contrast, when φd is an even multiple of π , the
loop acts as a phase-conjugate mirror since all FWM power appears to be re-
flected. From a practical standpoint, the FWM power at the frequency ωc can
be separated from both the pump and signal fields by choosing φd = π without
requiring an optical filter. At the same time, low-power noise associated with
the signal (e.g., amplified spontaneous emission) is filtered by the Sagnac loop
since it gets reflected.

FWM in a Sagnac loop has been used for many applications. The phase-
sensitive nature of parametric amplification can be used for all-optical storage
of data packets consisting of a random string of 1 and 0 bits in the form of pi-
cosecond pulses [113]. It can also be used to produce amplitude-squeezed soli-
tons using an asymmetric Sagnac loop [115]. FWM in a nonlinear Sagnac in-
terferometer has been used to make parametric oscillators. Pulses shorter than
1 ps can be generated through synchronous pumping of a Sagnac loop [116].
Moreover, such parametric oscillators are tunable over a range as wide as
40 nm [117]. Parametric amplification is also useful for reducing the noise
figure of amplifiers below the 3-dB quantum limit (see Chapter 4). In a re-
cent experiment, 16-dB amplification was realized with a noise figure of only
2 dB [118].

Another important application consists of using the nonlinear Sagnac in-
terferometer for phase conjugation. In one experiment, two orthogonally po-
larized pump waves were fed into different ports of the Sagnac interferometer
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Figure 3.13 Schematic illustration of a Mach–Zehnder interferometer. Fiber gratings
are useful for adding or dropping a WDM channel.

to realize a phase conjugator that was not only polarization insensitive but also
wavelength-shift free [119]. In another experiment, a semiconductor optical
amplifier was used for phase conjugation within a Sagnac loop [120]. Such a
device was capable of compensating dispersion over 106 km of standard fiber
at a bit rate of 80 Gb/s when the phase conjugator was placed nearly in the
middle of the fiber span. This technique of dispersion compensation is also
known as midway spectral inversion since the spectrum of the FWM signal is
a mirror image of the signal spectrum because of phase conjugation [8].

3.3 Mach–Zehnder Interferometers

An all-fiber Mach–Zehnder interferometer (MZI) is constructed by connecting
two fiber couplers in series, as shown schematically in Fig. 3.13. The first
coupler splits the input signal into two parts, which acquire different phase
shifts if arm lengths are different, before they interfere at the second coupler.
Such a device has the same functionality as a Sagnac loop but has an added
advantage that nothing is reflected back toward the input port. Moreover, a
MZI can be unbalanced by simply using different lengths for its two arms
since the two optical fields inside it take physically separated paths. However,
the same feature also makes the interferometer susceptible to environmental
fluctuations. Nonlinear effects in MZIs were considered starting in 1987 and
have continued to be of interest [122]–[132].
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3.3.1 Nonlinear Characteristics

The theory of nonlinear switching in a MZI is similar to that of Sagnac inter-
ferometers. The main difference is that the two fields produced at the output of
the first fiber coupler take different physical paths, and thus acquire only SPM-
induced phase shifts. In general, two couplers need not be identical and can
have different power-splitting fractions, ρ1 and ρ2. Two arms of the interfer-
ometer can also have different lengths and propagation constants. We consider
such an asymmetric MZI and find the powers transmitted from the two output
ports when a single CW beam with power P0 is incident at one input port. Us-
ing Eq. (3.2.1) at the first coupler and taking into account both the linear and
nonlinear phase shifts, the optical fields at the second coupler are given by

A1 =
pρ1A0 exp(iβ1L1 + iρ1γ jA0j2L1); (3.3.1)

A2 = i
p

1�ρ1A0 exp[iβ2L2 + i(1�ρ1)γ jA0j2L2]; (3.3.2)

where L1 and L2 are the lengths and β1 and β2 are the propagation constants
for the two arms of the MZI.

The optical fields exiting from the output ports of a MZI are obtained by
using the transfer matrix of the second fiber coupler:

�
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A4

�
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� pρ2 i
p

1�ρ2
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1�ρ2
pρ2

��
A1
A2

�
: (3.3.3)

The fraction of power transmitted from the bar port of the MZI is obtained
using Tb = jA3j2=jA0j2 and is given by

Tb = ρ1ρ2 +(1�ρ1)(1�ρ2)�2[ρ1ρ2(1�ρ1)(1�ρ2)]
1=2 cos(φL +φNL);

(3.3.4)
where the linear and nonlinear parts of the relative phase shift are given by

φL = β1L1�β2L2; φNL = γP0[ρ1L1� (1�ρ1)L2]: (3.3.5)

This equation simplifies considerably for a symmetric MZI made using two
3-dB couplers so that ρ1 = ρ2 = 1

2 . The nonlinear phase shift vanishes for
such a coupler when L1 = L2, and the transmittivity of the bar port is given as
Tb = sin2(φL=2). Since the linear phase shift φL is frequency dependent, the
output depends on the wavelength of light. Thus, an MZI acts as an optical
filter. The spectral response can be improved by using a cascaded chain of
such interferometers with relative path lengths adjusted suitably.
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Figure 3.14 Nonlinear switching in a Mach–Zehnder interferometer for two values
of φL. Data from the bar and cross ports are shown by circles and crosses. Theoretical
predictions are shown as solid and dotted curves. (After Ref. [128])

The nonlinear response of an MZI is similar to that of a Sagnac loop in
the sense that the output from one of the ports can be switched from low to
high (or vice versa) by changing the input peak power of the incident signal.
Figure 3.14 shows the experimentally observed transmittance from the bar port
(circles) and the cross port (crosses) as input peak power is varied over a range
of 0 to 25 W for two values of φL [128]. Predictions of Eq. (3.3.4) are also
shown for comparison using ρ1 = 0:34 and ρ2 = 0:23 for the power-splitting
ratios of the two couplers. The arm lengths were identical in this experiment
(L 1 = L2) as the MZI was made using a dual-core fiber whose two identical
cores were connected on each side to a fiber coupler. This configuration avoids
temporal fluctuations occurring on a millisecond timescale. Such fluctuations
occur invariably when two separate fiber pieces are used in each arm of the
MZI and require an active stabilization scheme for controlling them [123].

Similar to the case of Sagnac interferometers, switching can also be ac-
complished using pump-induced phase shift in an arm of the MZI. In one
experiment, one arm of the MZI incorporated 1.6 m of Yb-doped fiber while
the fiber in the other arm was undoped [131]. Doping did not affect the sig-
nal launched in one of the input ports of the MZI using 1.31-µm and 1.55-
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µm semiconductor lasers, and most of the power appeared at the cross port.
However, when a 980-nm pump was injected in the arm with doped fiber, the
signal switched to the bar port at pump power levels of less than 5 mW. The
physical mechanism behind switching is the phase shift induced at the signal
wavelength resulting from saturation of absorption near 980 nm. Remarkably,
phase shifts of π or more can be induced with only a few milliwatts of the
pump power. This mechanism should be distinguished from the XPM-induced
phase shift, discussed earlier in the context of Sagnac interferometers, since
the phase shift is induced by the dopants rather than fiber nonlinearity.

3.3.2 Applications

MZIs are used for a variety of applications. Most of them are based on the
ability of an MZI to produce large changes in its output with small changes
in the refractive index in one of its arms. MZIs made by using LiNbO3 or
semiconductor waveguides are used routinely as high-speed modulators since
such electro-optic materials permit voltage-induced changes in the refractive
index. Silica fibers do not have this property, but their refractive index can be
changed either optically (through SPM and XPM) or through changes in the
environment (such as temperature or pressure). The latter property is useful
for making fiber sensors [133]–[135]. Such applications are not discussed here
since they do not make use of fiber nonlinearity.

Another class of applications uses MZIs as optical filters. Several kinds
of add–drop filters have been developed using MZIs [136]–[140]. The sim-
plest scheme uses a series of interconnected fiber couplers, forming a chain of
MZIs. Such a device is sometimes referred to as a resonant couplersince it res-
onantly couples out a specific-wavelength channel from a WDM signal to one
output port while the remaining channels appear at the other output port. Its
performance can be optimized by controlling the power-splitting ratios of var-
ious directional couplers [136]. The wavelength selectivity of Bragg gratings
can also be used to make add–drop filters [10]. In one scheme, two identical
Bragg gratings are formed in the center of each arm of an MZI [137]. Oper-
ation of such a device can be understood from Fig. 3.13. A single channel,
whose wavelength λg falls within the stop band of the Bragg grating, is totally
reflected and appears at port 2. The remaining channels are not affected by
the gratings and appear at port 4. The same device can add a channel at the
wavelength λ g if the signal at that wavelength is injected from port 3. Sta-
bility of the MZI is of primary concern in these devices and requires active
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phase control in practice [138]. Such MZIs are quite important for WDM net-
works [140]. They are not discussed further here since their operation does not
require fiber nonlinearity.

Nonlinear applications of MZIs make use of the SPM- or XPM-induced
phase shifts. In fact, nearly all applications discussed in Section 3.2.3 in the
context of Sagnac interferometers can use an MZI in place of the Sagnac loop.
As an example, demultiplexers based on the XPM-induced phase shift have
attracted considerable attention [105]. The main advantage is that multiple
MZIs can be cascaded as remaining channels appear at the output end of the
MZI (rather than being reflected). The drawback is that active stabilization is
often necessary to avoid fluctuations induced by environmental changes.

The pump power required for XPM-induced switching can be reduced to
manageable levels by using several different techniques. The nonlinear param-
eter γ can be increased by reducing the effective core area Aeff. In a 1988 ex-
periment, an XPM-induced phase shift of 10Æ was measured at a pump power
of about 15 mW by reducing Aeff to only 2 µm2 in an MZI with 38 m of fiber
in each arm [124]. The use of a ring resonator in one arm of the resonator can
increase the XPM-induced phase shift by several orders of magnitude [132].
The pump power required for the π phase shift is reduced to under 10 mW for
a 10-m-long fiber ring, although the switching speed is also reduced to below
1 GHz for such devices.

3.4 Michelson Interferometers

A Michelson interferometer is made by connecting two separate pieces of
fibers to the output ports of a fiber coupler and attaching 100% reflecting mir-
rors or Bragg gratings at the other end of the fibers [10]. Bragg gratings reflect
completely the light whose wavelength falls within the stop band of the grat-
ing (see Fig. 3.12). A Michelson interferometer functions much like an MZI
with the crucial difference that the light propagating in its two arms is forced
to interfere at the same coupler where it was split. Because of this feature, a
Michelson interferometer acts as a nonlinear mirror, similar to a Sagnac inter-
ferometer, with the important difference that the interfering optical fields do
not share the same physical path. Nonlinear Michelson interferometers can
also be made using bulk optics (beam splitters and mirrors) with a long piece
of fiber in one arm acting as a nonlinear medium. Nonlinear effects in Michel-
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son interferometers were first studied in the context of passive mode locking
and have continued to remain of interest [141]–[145].

We can apply the analysis of Section 3.3.1 developed for an MZI to the
case of a Michelson interferometer because of the similarity between the two.
In both cases, an optical field is split into two parts at a fiber coupler, each part
acquires a phase shift, and the two parts recombine interferometrically at the
coupler. Since the same coupler is used for splitting and combining the optical
fields in the case of a Michelson interferometer, we should set ρ1 = ρ2 � ρ in
Eq. (3.3.4). For the same reason, transmission from the bar port of the coupler
turns into reflection from the input port, and the reflectivity is given by

RM = ρ2 +(1�ρ)2�2ρ(1�ρ)cos(φL +φNL): (3.4.1)

The lengths L1 and L2 appearing in Eq. (3.3.5) should be interpreted as round-
trip lengths in each arm of the Michelson interferometer. The transmittivity
is, of course, given by TM = 1�RM. The reflection and transmission charac-
teristics of a Michelson interferometer are similar to those of a Sagnac loop
with two major differences. First, the round-trip path lengths L1 and L2 can
be different for a Michelson interferometer. Second, the reflectivity and trans-
mittivity are reversed for the Sagnac loop. Indeed, Eq. (3.4.1) reduces to Eq.
(3.2.5) if φL = 0.

Because of the SPM-induced nonlinear phase shift, the reflectivity of a
Michelson interferometer is power dependent. As a result, such an interferom-
eter tends to shorten an optical pulse and acts effectively as a fast-responding
saturable absorber [141]. The pulse-shortening mechanism can be understood
as follows. When the relative linear phases are set appropriately, the nonlinear
phase shift may lead to constructive interference near the peak of the pulse,
while the wings of the pulse experience destructive interference. The pulse-
shortening capability of Michelson interferometers can be exploited for passive
mode locking of lasers. This technique is commonly referred to as additive-
pulse mode locking since it is the interferometric addition of an optical pulse
at the coupler that is responsible for mode locking [146]. The discovery of
additive-pulse mode locking led to a revolution in the field of lasers and has
resulted in mode-locked lasers capable of generating pulses shorter than 10 fs.
SPM in optical fibers played an important role in this revolution. This topic is
discussed further in Chapter 5 in the context of mode-locked fiber lasers.
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Problems

3.1 Derive Eq. (3.1.3) by considering multiple round trips inside a Fabry–
Perot resonator.

3.2 Derive an expression for the transmittivity of a fiber-ring resonator of
length L formed using a fiber coupler with bar-state transmission of ρ .

3.3 Prove that the free spectral range of a ring resonator of length L is given
by vg=L, where vg is the group velocity. How much does it change for a
10-m ring when the input wavelength is changed by 10 nm in the wave-
length region near 1.55 µm? Assume that GVD of the fiber near this
wavelength is �20 ps2/km and ng = 1:46.

3.4 Reproduce the bistability curves shown in Fig. 3.3 using Eq. (3.1.8).
Explore the impact of resonator finesse on bistability by varying Rm in
the range from 0.4 to 0.8. Explain your results qualitatively.

3.5 Iterate the nonlinear map given in Eq. (3.1.9) numerically assuming that
the phase changes during each round trip inside the ring resonator as
indicated in Eq. (3.1.11). Plot the transmittivity as a function of round-
trip number for values of γPiLR = 1, 5, and 10. Assume ρ = 0:95.

3.6 Derive Eq. (3.2.5) by considering the phase shifts experienced by the
counterpropagating waves inside a Sagnac loop. Use it to estimate the
minimum switching power required when ρ = 0.4 and γL = 0:1 W�1.

3.7 Use Eq. (3.2.5) for a Gaussian pulse for which Pi(t) = P0 exp[�(t=T0)
2].

Plot the shape of the transmitted pulse using T0 = 1 ps, ρ = 0:45, and
γP0L = 1, 2, and 4. Estimate the compression factor in each case.

3.8 Derive an expression for the transmittivity of a Sagnac loop containing
an optical amplifier next to the fiber coupler. Assume G is the amplifier
gain, ρ is the bar-state transmission of the coupler, and a CW beam with
power P0 is injected into the loop.

3.9 Use the expression derived in the previous problem to find the switching
power when a 3-dB coupler is used (ρ = 0:5) to make the Sagnac loop.
Estimate its numerical value for a 100-m loop when G = 30 dB. Use
γ = 2 W�1/km.

3.10 Show that the XPM-induced phase shift for a “sech” pump pulse is given
by Eq. (3.2.10).
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3.11 Explain how a Sagnac loop can be used for demultiplexing a single chan-
nel from an OTDM bit stream.

3.12 Derive an expression for the bar-state transmittivity of a Mach–Zehnder
interferometer. Allow for different path lengths of the two arms and
different power-splitting ratios of the two couplers.
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[84] H. Bülow and G. Veith, Electron. Lett. 29, 588 (1993).

[85] K. Smith, N. J. Doran, and P. G. J. Wigley, Opt. Lett. 15, 1294 (1990).

[86] S. V. Chernikov and J. R. Taylor, Electron. Lett. 29, 658 (1993).

[87] A. G. Bulushev, E. M. Dianov, and O. G. Okhotnikov, IEEE Photon. Technol.
Lett. 2, 699 (1990); Opt. Lett. 26, 968 (1990).

[88] I. N. Duling III, Electron. Lett. 27, 544 (1991); Opt. Lett. 16, 5394 (1991).

[89] R. A. Betts, J. W. Lear, S. J. Frisken, and P. S. Atherton, Electron. Lett. 28,
1035 (1992).

[90] R. A. Betts, J. W. Lear, N. T. Dang, R. D. Shaw, and P. S. Atherton, IEEE
Photon. Technol. Lett. 4, 1290 (1992).

[91] J. K. Lucek and K. Smith, Opt. Lett. 15, 1226 (1993).

[92] B. K. Nayar, N. Finlayson, and N. J. Doran, J. Mod. Opt. 40, 2327 (1993).

[93] S. Watanabe and S. Takeda, Electron. Lett. 36, 52 (2000).

[94] J. M. Jeong and M. E. Marhic, Opt. Commun. 91, 115 (1992).

[95] F. Mogensen, B. Pedersen, and B. Nielsen, Electron. Lett. 29, 1469 (1993).

[96] M. Jinno and T. Matsumoto, Opt. Lett. 16, 220 (1991).

[97] A. Huang, N. Whitaker, H. Avramopoulos, P. French, H. Houh, and I. Chuang,
Appl. Opt. 33, 6254 (1994).

[98] M. Jinno, J. Lightwave Technol. 12, 1648 (1994).



References 149

[99] B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W.
Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).

[100] P. A. Andrekson, N. A. Olsson, J. R. Simpson, D. J. Digiovanni, P. A. Morton,
T. Tanbun-Ek, R. A. Logan, and K. W. Wecht, IEEE Photon. Technol. Lett. 4,
644 (1992).

[101] K. Uchiyama, H. Takara, S. Kawanishi, T. Marioka, and M. Saruwatari, Elec-
tron. Lett. 28, 1864 (1992); Electron. Lett. 29, 1313 (1993).

[102] D. M. Patrick, A. D. Ellis, and D. M. Spirit, Electron. Lett. 29, 702 (1993).

[103] K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, M. Saruwatari, and T. Ki-
toh, Electron. Lett. 29, 1870 (1993).

[104] M. Jinno, IEEE J. Quantum Electron. 30, 2842 (1994).
[105] E. Bødtker and J. E. Bowers, J. Lightwave Technol. 13, 1809 (1995).
[106] G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand

Reinhold, New York, 1993).
[107] M. Eiselt, Electron. Lett. 28, 1505 (1992).
[108] J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, IEEE Photon. Technol.

Lett. 5, 787 (1993); IEEE Photon. Technol. Lett. 6, 98 (1994).
[109] I. Glesk, J. P. Sokoloff, and P. R. Prucnal, Electron. Lett. 30, 339 (1994).
[110] M. Eiselt, W. Peiper, and H. G. Weber, J. Lightwave Technol. 13, 2099 (1995).

[111] A. J. Poustie, A. E. Kelly, R. J. Manning, and K. J. Blow, Opt. Commun. 154,
277 (1998).

[112] K. Mori, T. Morioka, and M. Saruwatari, Opt. Lett. 20, 1424 (1995).

[113] G. D. Bartiolini, D. K. Serkland, P. Kumar, and W. L. Kath, IEEE Photon.
Technol. Lett. 9, 1020 (1997).

[114] S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, Phys.
Rev. Lett. 81, 2446 (1998).

[115] D. Krylov and K. Bergman, Opt. Lett. 23, 1390 (1998).

[116] D. K. Serkland, G. D. Bartiolini, A. Agarwal, P. Kumar, and W. L. Kath, Opt.
Lett. 23, 795 (1998).

[117] D. K. Serkland and P. Kumar, Opt. Lett. 24, 92 (1999).

[118] W. Imajuku, A. Takada, and Y. Yamabayashi, Electron. Lett. 36, 63 (2000).
[119] H. C. Lim, F. Futami, and K. Kikuchi, IEEE Photon. Technol. Lett. 11, 578

(1999).
[120] U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. J. Ehrke, E. H.

Patzak, G. Weber, and T. Merker, IEEE Photon. Technol. Lett. 11, 1063 (1999).

[121] H. C. Lim, F. Futami, K. Taira, and K. Kikuchi, IEEE Photon. Technol. Lett.
11, 1405 (1999).

[122] N. J. Doran and D. Wood, J. Opt. Soc. Am. B 4, 1843 (1987).
[123] N. Imoto, S. Watkins, and Y. Sasaki, Opt. Commun. 61, 159 (1987).



150 Fiber Interferometers

[124] I. H. White, R. V. Penty, and R. E. Epworth, Electron. Lett. 24, 340 (1988).
[125] M. N. Islam, S. P. Dijaili, and J. P. Gordon, Opt. Lett. 13, 518 (1988).
[126] D. V. Khaidatov, Sov. J. Quantum Electron. 20, 379 (1990).
[127] T. V. Babkina, F. G. Bass, S. A. Bulgakov, V. V. Grogoryants, and V. V. Kono-

top, Opt. Commun. 78, 398 (1990).
[128] B. K. Nayar, N. Finlayson, N. J. Doran, S. T. Davey, W. L. Williams, and J. W.

Arkwright, Opt. Lett. 16, 408 (1991).
[129] D. Yao, Phys. Rev. A 52, 4871 (1995).
[130] K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, Appl. Opt. 35, 1485

(1996).
[131] P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, IEEE Photon. Technol.

Lett. 8, 1032 (1996).
[132] J. E. Heebner and R. W. Boyd, Opt. Lett. 24, 847 (1999).
[133] M. A. Marcus and B. Culshaw, Eds., Fiber Optic Sensor Technology and Ap-

plications (SPIE Press, Bellingham, 1999).
[134] K. T. Gratten and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman

and Hall, New York, 1999).
[135] J. Sirkis, Design of Fiber Optic Sensor Systems (Marcel Dekker, New York,

2000).
[136] M. Kuznetsov, J. Lightwave Technol. 12, 226 (1994).
[137] T. J. Cullen, H. N. Rourke, C. P. Chew, S. R. Baker, T. Bircheno, K. Byron,

and A. Fielding, Electron. Lett. 30, 2160 (1994).
[138] G. Nykolak, M. R. X. de Barros, T. N. Nielsen, and L. Eskildsen, IEEE Photon.

Technol. Lett. 9, 605 (1997).
[139] K. N. Park, T. T. Lee, M. H. Kim, K. S. Lee, and Y. H. Won, IEEE Photon.

Technol. Lett. 10, 555 (1998).
[140] T. Mizuochi, T. Kitayama, K. Shimizu, and K. Ito, J. Lightwave Technol. 16,

265 (1998).
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Chapter 4

Fiber Amplifiers

Optical fibers attenuate light like any other material. In the case of silica fibers,
losses are relatively small, especially in the wavelength region near 1.55 µm
(α � 0:2 dB/km). For this reason, losses can simply be ignored if fiber length
is 1 km or less. In the case of long-haul fiber-optic communication systems,
transmission distances may exceed thousands of kilometers. Fiber amplifiers
are commonly used to overcome transmission losses and restore the optical
signal in such systems. This chapter is devoted to fiber amplifiers. Section 4.1
discusses general concepts such as gain spectrum and amplifier bandwidth.
Section 4.2 describes the operating characteristics of erbium-doped fiber am-
plifiers (EDFAs). The nonlinear and dispersive effects are included in Sec-
tion 4.3 using the Maxwell–Bloch formalism. The resulting Ginzburg–Landau
equation is used in Sections 4.4–4.6 to discuss a variety of nonlinear effects in
fiber amplifiers.

4.1 Basic Concepts

Although fiber amplifiers were made as early as 1964 [1], their use became
practical only after 1986 when the techniques for fabrication and characteri-
zation of low-loss, rare-earth-doped fibers were perfected [2]. The rare earths
(or lanthanides) form a group of 14 similar elements with atomic numbers in
the range from 58 to 71. When these elements are doped in silica or other
glass fibers, they become triply ionized. Many different rare-earth ions, such
as erbium, holmium, neodymium, samarium, thulium, and ytterbium, can be
used to make fiber amplifiers that operate at wavelengths covering a wide range
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(a)
(b)
(b)

Figure 4.1 Schematic illustration of (a) three-level and (b) four-level pumping
schemes. Wavy arrows indicate fast relaxation of the level population through nonra-
diative processes.

from visible to infrared. Amplifier characteristics, such as the operating wave-
length and the gain bandwidth, are determined by dopants rather than by the
fiber, which plays the role of a host medium. EDFAs have attracted the most
attention as they operate near 1.55 µm and are useful for modern fiber-optic
communication systems [3]–[9].

4.1.1 Pumping and Gain Coefficient

Fiber amplifiers amplify incident light through stimulated emission, the same
mechanism used by lasers. Indeed, an optical amplifier is just a laser without
feedback. Its main ingredient is the optical gain, occurring when the amplifier
is pumped optically to realize population inversion. Depending on the energy
levels of the dopant, pumping schemes can be classified as a three- or four-
level scheme [10]–[12]. Figure 4.1 shows the two kinds of pumping schemes.
In both cases, dopants absorb pump photons to reach a higher energy state and
then relax rapidly to a lower-energy excited state (level 2). The stored energy
is used to amplify the incident signal through stimulated emission. The main
difference between the three- and four-level pumping schemes is related to the
energy state occupied by the dopant after each stimulated-emission event. In
the case of a three-level scheme, the ion ends up in the ground state, whereas
it remains in an excited state in the case of a four-level pumping scheme. It
will be seen later that this difference affects the amplifier characteristics sig-
nificantly. EDFAs make use of a three-level pumping scheme.
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For understanding the physics behind signal amplification, details of pump-
ing are not important. Optical pumping creates the necessary population inver-
sion between the two energy states, which in turn provides the optical gain
g = σ(N1�N2), where σ is the transition cross section and N1 and N2 are
atomic densities in the two energy states. The gain coefficient g can be calcu-
lated for both the three- and four-level pumping schemes by using the appro-
priate rate equations [10]–[12].

The gain coefficient of a homogeneously broadened gain medium can be
written as [11]

g(ω) =
g0

1+(ω�ωa)
2T 2

2 +P=Ps
; (4.1.1)

where g0 is the peak value, ω is the frequency of the incident signal, ωa is
the atomic transition frequency, and P is the optical power of the continuous-
wave (CW) signal being amplified. The saturation power Ps depends on dopant
parameters such as the fluorescence time T1 and the transition cross section σ .
The parameter T2 in Eq. (4.1.1) is known as the dipole relaxation time and is
typically quite small (� 0:1 ps) for fiber amplifiers. The fluorescence time T1
varies in the range from 0.1 µs to 10 ms, depending on the dopant. Equation
(4.1.1) can be used to discuss the important characteristics of optical amplifiers
such as gain bandwidth, amplification factor, and output saturation power. We
begin by considering the case in which P=Ps � 1 throughout the amplifier.
This is referred to as the unsaturated regime since the gain remains unsaturated
during amplification.

4.1.2 Amplifier Gain and Bandwidth

By neglecting the term P=Ps in Eq. (4.1.1), the gain coefficient becomes

g(ω) =
g0

1+(ω�ωa)
2T 2

2

: (4.1.2)

This equation shows that the gain is maximum when the signal frequency ω
coincides with the atomic transition frequency ωa. The gain reduction for
ω 6= ωa is governed by a Lorentzian profile (see Fig. 4.2) that is characteristic
of homogeneously broadened systems [10]–[12]. As discussed later, the actual
gain spectrum of fiber amplifiers can deviate considerably from the Lorentzian
profile. The gain bandwidth is defined as the full width at half maximum
(FWHM) of the gain spectrum g(ω). For the Lorentzian spectrum, the gain
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Figure 4.2 Lorentzian spectrum g(ω) and the corresponding amplifier-gain spectrum
G(ω) for a fiber amplifier.

bandwidth is given by

∆νg =
∆ωg

2π
=

1
πT2

: (4.1.3)

As an example, ∆νg � 3 THz when T2 = 0:1 ps. Amplifiers with a relatively
large bandwidth are preferred for optical communication systems.

A related concept of amplifier bandwidth is commonly used in place of
the gain bandwidth. The difference becomes clear when one considers the
amplification factor defined as G = Pout=Pin, where Pin and Pout are the input
and output powers of the CW signal being amplified. The amplification factor
is obtained by solving

dP=dz = g(ω)P(z); (4.1.4)

where P(z) is the optical power at a distance z from the input end of the
amplifier. A straightforward integration with the conditions P(0) = Pin and
P(L) = Pout shows that the amplification factor for an amplifier of length L is
given by

G(ω) = exp

�Z L

0
g(ω)dz

�
= exp[g(ω)L]; (4.1.5)

where g is assumed to be constant along the amplifier length.
Both G(ω) and g(ω) are maximum at ω =ω a and decrease when ω 6=ω a.

However, G(ω) decreases much faster than g(ω) because of the exponential
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Figure 4.3 Saturated amplifier gain as a function of output power (normalized to the
saturation power) for several values of the unsaturated amplifier gain G0.

dependence seen in Eq. (4.1.5). The amplifier bandwidth ∆νA is defined as the
FWHM of G(ω) and is related to the gain bandwidth ∆νg as

∆νA = ∆νg

�
ln2

lnG0� ln2

�1=2

; (4.1.6)

where G0 is the peak value of the amplifier gain. Figure 4.2 shows the gain pro-
file g(ω) and the amplification factor G(ω) by plotting both g=g0 and G=G0 as
a function of (ω�ωa)T2. As expected, the amplifier bandwidth is smaller than
the gain bandwidth, and the difference depends on the amplifier gain itself.

The origin of gain saturation lies in the power dependence of the gain co-
efficient in Eq. (4.1.1). Since g is reduced when P becomes comparable to Ps,
the amplification factor G is also expected to decrease. To simplify the discus-
sion, let us consider the case in which the signal frequency is exactly tuned to
the atomic transition frequency ωa. By substituting g from Eq. (4.1.1) in Eq.
(4.1.4), we obtain

dP
dz

=
g0P

1+P=Ps
: (4.1.7)

This equation can be easily integrated over the amplifier length. By using the
initial condition P(0) = Pin together with P(L) = Pout = GPin, the amplifier
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gain is given by the implicit relation

G = G0 exp

�
�

G�1
G

Pout

Ps

�
: (4.1.8)

Figure 4.3 shows the saturation characteristics by plotting G as a function
of Pout=Ps for several values of G0. A quantity of practical interest is the output
saturation power Ps

out, defined as the output power at which the amplifier gain
G is reduced by a factor of 2 from its unsaturated value G0. By using G=G0=2
in Eq. (4.1.8), Ps

out is given by

Ps
out =

G0 ln2
G0�2

Ps: (4.1.9)

By noting that G0� 2 in practice, Ps
out� (ln 2)Ps� 0:69Ps. As seen in Fig. 4.3,

Ps
out becomes nearly independent of G0 for G0 > 20 dB.

4.1.3 Amplifier Noise

All amplifiers degrade the signal-to-noise ratio (SNR) of the amplified signal
because of spontaneous emission that is added to the signal during its amplifi-
cation. The SNR degradation is quantified through the noise figure Fn defined
as

Fn = (SNR)in=(SNR)out; (4.1.10)

where both SNRs refer to the electrical power generated when an optical sig-
nal is converted to electric current by using a photodetector. In general, Fn

depends on several parameters governing the shot and thermal noises associ-
ated with the detector. We can obtain a simple expression for Fn by considering
an ideal detector whose performance is limited by shot noise only [13].

In the shot-noise limit, the SNR of the input signal is given by [8]

(SNR)in =
I2

σ 2
s
=

(RPin)
2

2q(RPin)∆ f
=

Pin

2hν∆ f
; (4.1.11)

where I = RPin is the average photocurrent, R = q=hν is the responsivity of an
ideal photodetector with 100% quantum efficiency, and

σ 2
s = 2q(RPin)∆ f (4.1.12)

represents the contribution of shot noise. Here ∆ f is the detector bandwidth,
ν is the optical frequency, and q is the magnitude of the electron’s charge. To
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evaluate the SNR of the amplified signal, we should add the contribution of
spontaneous emission to the detector noise.

The spectral density of spontaneous-emission noise is nearly constant for
broadband amplifiers (white noise) and is given by [14]

Ssp(ν) = (G�1)nsphν ; (4.1.13)

where nsp is called the spontaneous-emission (or population-inversion) factor
and is defined as

nsp = N2=(N2�N1): (4.1.14)

The effect of spontaneous emission is to add fluctuations to the amplified sig-
nal, which are converted to current fluctuations during the detection process.

The dominant contribution to the noise current comes from the beating of
spontaneous emission with the signal. This beating phenomenon is similar to
heterodyne detection: Spontaneously emitted radiation mixes coherently with
the amplified signal at the photodetector and produces a heterodyne component
of the photocurrent. The variance of the photocurrent can be written as [8]

σ 2
= 2q(RGPin)∆ f +4(RGPin)(RSsp)∆ f ; (4.1.15)

where the first term is due to shot noise and the second term results from
signal–spontaneous emission beating. Since I = RGPin is the average current,
the SNR of the amplified signal is given by

(SNR)out =
(RGPin)

2

σ 2 �
GPin

4Ssp∆ f
; (4.1.16)

where the last relation was obtained by neglecting the first term in Eq. (4.1.15)
and is valid for G� 1.

The amplifier noise figure is obtained by substituting Eqs. (4.1.11) and
(4.1.16) in Eq. (4.1.10) and is given by

Fn = 2nsp(G�1)=G� 2nsp: (4.1.17)

This equation shows that the SNR of the amplified signal is degraded by a
factor of 2 (or 3 dB) even for an ideal amplifier for which nsp = 1. In practice,
Fn exceeds 3 dB. For its application in optical communication systems, an
optical amplifier should have Fn as low as possible.
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(a) (b)

Figure 4.4 (a) Energy levels of erbium ions in silica fibers. (b) Absorption and gain
spectra of an erbium-doped fiber. (After Ref. [34], c1991 IEEE)

4.2 Erbium-Doped Fiber Amplifiers

In this section we focus on EDFAs because of their importance for lightwave
systems. Figure 4.4(a) shows the relevant energy levels of Er3+ in silica
glasses. The amorphous nature of silica broadens each energy level into bands.
Many transitions can be used for pumping. Initial experiments used visible
pump wavelengths even though their use is relatively inefficient [15], [16]. Ef-
ficient pumping is possible using semiconductor lasers operating near 0.98-µm
and 1.48-µm wavelengths [17]–[20]. High gains in the range of 30 to 40 dB
can be obtained with pump powers � 10 mW. The transition 4I15=2 !

4I9=2
allows the use of GaAs pump lasers operating near 0.8 µm, but the pumping
efficiency is relatively poor [21]. It can be improved by codoping the fiber with
aluminum and phosphorus [22]. EDFAs can also be pumped in the wavelength
region near 650 nm. In one experiment, 33-dB gain was realized with 27 mW
of pump power at 670 nm [23].

The pump and signal beams inside an EDFA may propagate in the same
or opposite directions. The performance is nearly the same in the two pump-
ing configurations when the signal power is small enough for the amplifier
to remain unsaturated. In the saturation regime, power-conversion efficiency
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is better in the backward-pumping configuration because of lower amplified
spontaneous emission [24]. In the bidirectional pumping configuration, the
amplifier is pumped in both directions simultaneously using two semiconduc-
tor lasers located at the two fiber ends. This configuration requires two pump
lasers but has the advantage that the small-signal gain remains relatively con-
stant along the entire amplifier length.

4.2.1 Gain Spectrum

The gain spectrum of an EDFA is affected considerably by the amorphous na-
ture of silica and by the presence of other codopants such as germania and
alumina within the fiber core [25]. The gain spectrum of isolated erbium ions
is homogeneously broadened, and its bandwidth is determined by the dipole
relaxation time T2. However, it is considerably broadened by the silica host.
Structural disorders lead to inhomogeneous broadening of the gain profile,
whereas Stark splitting of various energy levels is responsible for additional
homogeneous broadening [9]. Mathematically, the gain is obtained by averag-
ing over the distribution of transition frequencies ωa so that

g(ω) =

Z ∞

�∞
gh(ω ;ωa) fa(ωa)dωa; (4.2.1)

where gh(ω ;ωa) is the homogeneously broadened gain profile and fa(ωa) is
the distribution function whose form depends on the glass composition within
the fiber core.

Figure 4.4(b) shows the gain and absorption spectra of an EDFA whose
core was doped with germania. The gain spectrum is quite broad with a
double-peak structure. The shape and the width of the gain spectrum is sensi-
tive to core composition. Figure 4.5 shows the emission spectra for four dif-
ferent core compositions. The gain spectrum is narrowest in the case of pure
silica but can be broadened considerably by codoping the core with alumina.
Attempts have been made to isolate the relative contributions of homogeneous
and inhomogeneous broadening. For silica-based EDFAs, the contribution of
homogeneous broadening, as deduced from spectral hole-burning measure-
ments, is in the range of 4 to 10 nm, depending on the signal wavelength [9].
With a proper choice of dopants and host fiber, the spectral bandwidth over
which EDFAs are able to amplify signals can exceed 30 nm. However, the
gain is not uniform over the entire bandwidth.
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Figure 4.5 Gain spectra of four EDFAs with different core compositions. Codoping
of silica core with aluminum or phosphorus broadens the emission spectrum consid-
erably. (After Ref. [25], c1991 IEEE)

With the advent of wavelength-division multiplexing (WDM), one EDFA
is used to amplify a large number of channels simultaneously. Moreover, the
WDM signal is propagated through a chain of such cascaded EDFAs cover-
ing distances longer than 1000 km. If the gain spectrum of EDFAs is not flat
over the entire bandwidth of the WDM signal and the gain varies as little as a
few percent from channel to channel, large variations (> 10 dB) among chan-
nel powers occur when the signal arrives at the receiver; such variations can
degrade the system performance considerably. For this reason, many tech-
niques have been developed for flattening the gain spectrum of EDFAs and
extending the usable bandwidth to a range as large as 80 nm [9]. One solution
consists of using an optical filter whose spectral response is tailored such that
the filter transmits more light at wavelengths where gain is lower (and vice
versa). Optical filters based on Mach–Zehnder interferometers were used as
early as 1991 [26]. More recently, long-period fiber gratings have been used
for this purpose with considerable success [27]. Another approach makes use
of acousto-optic tunable filters [28].

With a proper design, the use of optical filters can provide flat gain over
a bandwidth as large as 30 nm. However, dense WDM systems, designed to
transmit more than 50 channels, require uniform EDFA gain over a bandwidth
exceeding 50 nm. It is difficult to achieve such large gain bandwidths with a
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single amplifier. A hybrid two-stage approach is commonly used in practice. In
one design, two amplifiers are cascaded to produce flat gain (to within 0.5 dB)
over the wavelength range of 1544 to 1561 nm [29]. The second EDFA is
codoped with ytterbium and phosphorus and is optimized such that it acts as
a power amplifier. In a variation of this idea, the second EDFA uses fluoride
fiber as a host and is pumped at 1480 nm [30]. Another approach combines
Raman amplification with one or two EDFAs to realize uniform gain over a
65-nm bandwidth extending from 1549 to 1614 nm [31].

A two-arm design has also been developed to solve the gain-flattening
problem for dense WDM systems [32]. In this approach, the WDM signal is
divided into two bands, known as the conventional or C band (1530–1560 nm)
and the long-wavelength or L band (1570–1600 nm). The incoming WDM sig-
nal is split into two branches containing optimized EDFAs for C and L bands.
The L-band EDFA requires long fiber lengths (> 100 m) since the inversion
level is kept relatively low. The two-arm design has produced a relatively
uniform gain of 24 dB over a bandwidth as large as 80 nm when pumped us-
ing 980-nm semiconductor lasers while maintaining a noise figure of about
6 dB [9].

4.2.2 Amplifier Gain

The gain of EDFAs depends on a large number of parameters such as erbium-
ion concentration, amplifier length, core radius, and pump power [33]–[37].
A three-level rate-equation model, used commonly for lasers, can be adapted
for EDFAs [9]. It is sometimes necessary to add a fourth level to include
the effects of excited-state absorption. Another complication stems from the
nonuniform nature of inversion along the amplifier length. Since a fiber ampli-
fier is pumped from one end, the pump power decreases along the fiber length.
As a result, it is necessary to include axial variations of the pump, the sig-
nal, and the atomic-level populations. In general, the resulting set of coupled
equations must be solved numerically.

Much insight can be gained by using a simple model that neglects ampli-
fied spontaneous emission and excited-state absorption. The model assumes
that the pump level of the three-level system remains nearly unpopulated be-
cause of a rapid transfer of the pumped population to the excited state 2 (see
Fig. 4.1). It also neglects differences between the emission and absorption
cross sections. With these simplifications, the excited-state density N2(z; t) is
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obtained by solving the following rate equation [12]

∂N2

∂ t
=WpN1�Ws(N2�N1)�

N2

T1
; (4.2.2)

where N1 = Nt�N2, Nt is the total ion density, and Wp and Ws are the transition
rates for the pump and signal, respectively. These rates are given by

Wp =
ΓpσpPp

aphνp
; Ws =

ΓsσsPs

ashνs
; (4.2.3)

where Γp is the overlap factor representing the fraction of pump power Pp

within the doped region of the fiber, σp is the transition cross section at the
pump frequency νp, and ap is the mode area of the pump inside the fiber.
The quantities Γs; σs; Ps; as, and νs are defined similarly for the signal. The
steady-state solution of Eq. (4.2.2) is given by

N2 =
(P0

p +P0

s)Nt

1+2P0

s +P0

p
; (4.2.4)

where P0

p = Pp=Psat
p , P0

s = Ps=Psat
s , and the saturation powers are defined as

Psat
p =

aphνp

ΓpσpT1
; Psat

s =
ashνs

ΓsσsT1
: (4.2.5)

The pump and signal powers vary along the amplifier length because of
absorption, stimulated emission, and spontaneous emission. Their variation
also depends on whether the signal and pump waves propagate in the same or
opposite directions. If the contribution of spontaneous emission is neglected
and forward pumping is assumed, Pp and Ps satisfy

dPp

dz
=�ΓpσpN1�α 0Pp;

dPs

dz
= Γsσs(N2�N1)�αPs; (4.2.6)

where α and α0 take into account fiber losses at the signal and pump wave-
lengths, respectively. By substituting N2 from Eq. (4.2.4) together with N1 =

Nt�N2, we obtain a set of two coupled equations,

dP0

p

dz
= �

(P0

s +1)αpP0

p

1+2P0

s +P0

p
�α 0P0

p; (4.2.7)

dP0

s

dz
=

(P0

p�1)αsP0

s

1+2P0

s +P0

p
�αP0

s; (4.2.8)
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Figure 4.6 Small-signal gain at 1.55 µm as a function of (a) pump power and (b)
amplifier length for an EDFA pumped at 1.48 µm. (After Ref. [34], c1991 IEEE)

where αp � ΓpσpNt and αs � ΓsσsNt are the absorption coefficients at the
pump and signal wavelengths, respectively. These equations govern the evo-
lution of signal and pump powers inside an EDFA. Their predictions are in
good agreement with experiments as long as the amplified spontaneous emis-
sion (ASE) remains negligible [36]. The inclusion of fiber losses is essential
for distributed-gain amplifiers, which amplify signals over long fiber lengths.
For lumped amplifiers with fiber lengths under 1 km, α and α 0 can be set to
zero.

A drawback of the above model is that the absorption and emission cross
sections are taken to be the same for both the pump and signal beams. As was
seen in Fig. 4.4(b), these cross sections are generally different. It is easy to
extend the model to include such differences [34]. An analytic solution can
still be obtained [33]. Figure 4.6 shows the small-signal gain at 1.55 µm as a
function of the pump power and the amplifier length by using typical parameter
values. For a given amplifier length L, the gain increases exponentially with
pump power initially, but at a much reduced rate when pump power exceeds a
certain value [corresponding to the “knee” in Fig. 4.6(a)]. For a given pump
power, amplifier gain becomes maximum at an optimum value of L and drops
sharply when L exceeds this optimum value. The reason is that the end portion
of the amplifier remains unpumped and absorbs the amplified signal.

Since the optimum value of L depends on the pump power Pp, it is nec-
essary to choose both L and Pp appropriately. Figure 4.6(b) shows that for
1.48-µm pumping, 35-dB gain can be realized at a pump power of 5 mW for
L = 30 m. It is possible to design high-gain amplifiers using fiber lengths as
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short as a few meters. The qualitative features shown in Fig. 4.6 are observed
in all EDFAs; the agreement between theory and experiment is generally quite
good [36].

The preceding analysis assumes that both pump and signal waves are in
the form of CW beams. In practice, EDFAs are pumped by using CW semi-
conductor lasers, but the signal is generally not a CW beam. For example, in
lightwave system applications the signal is in the form of a pulse train (con-
taining a random sequence of 1 and 0 bits). It is often required that all pulses
experience the same gain. Fortunately, this occurs naturally in EDFAs for
pulses shorter than a few microseconds. The reason is related to the relatively
large value of the fluorescence time associated with erbium ions (T1 � 10 ms).
When the timescale of signal power variations is much shorter than T1, erbium
ions are unable to follow such fast variations. Since single-pulse energies are
typically much below the saturation energy (� 10 µJ), EDFAs respond to the
average power. As a result, gain saturation is governed by the average signal
power, and amplifier gain does not vary from pulse to pulse.

In some applications related to packet-switched and reconfigurable WDM
networks, the transient nature of gain dynamics becomes of concern [37]. It
is possible to implement a built-in gain-control mechanism that keeps the am-
plifier gain pinned at a constant value [38]–[44]. The basic idea consists of
forcing the EDFA to oscillate at a controlled wavelength outside the range
of interest (typically below 1.5 µm). Since the gain remains clamped at the
threshold value for a laser, the signal is amplified by the same factor in spite of
variations in the signal power. A simple scheme uses an all-optical feedback
loop at a specific wavelength to initiate lasing [38]. In another implementation,
an EDFA is forced to oscillate at 1.48 µm by fabricating fiber Bragg gratings
at the two ends of the amplifier [40]. One of the gratings can also be replaced
by a fiber-loop mirror [43]. With this change, the signal wavelength can be
close to the lasing wavelength without affecting the amplifier performance.

4.2.3 Amplifier Noise

Since amplifier noise is the ultimate limiting factor for system applications, it
has been studied extensively [45]–[58]. As discussed earlier, amplifier noise is
quantified through the noise figure Fn = 2nsp, where the spontaneous-emission
factor nsp depends on the relative populations N1 and N2 of the two energy
states, as indicated in Eq. (4.1.14). Since EDFAs operate on the basis of a
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(a) (b)

Figure 4.7 (a) Noise figure and (b) amplifier gain at several pumping levels as a
function of fiber length. (After Ref. [50], c1990 IEE)

three-level pumping scheme, N1 is not negligible and nsp exceeds 1. Thus, the
noise figure of EDFAs is expected to be larger than the ideal value of 3 dB.

The spontaneous-emission factor for EDFAs can be calculated by using the
three-level rate-equation model discussed earlier. However, one should take
into account the fact that both N1 and N2 vary along the fiber length because
of their dependence on the pump and signal powers [see Eq. (4.2.4)], and nsp

should be averaged along the amplifier length. As a result, the noise figure
depends both on the amplifier length L and the pump power Pp, just as the
amplifier gain does. Figure 4.7(a) shows the variation of Fn with the amplifier
length for several values of Pp=Psat

p when a 1.53-µm signal is amplified with
an input power of 1 mW [50]. The amplifier gain under the same conditions is
shown in Fig. 4.7(b). The results show that a noise figure close to 3 dB can be
obtained for high-gain amplifiers.

The experimental results confirm that Fn close to 3 dB can be realized
in EDFAs. A noise figure of 3.2 dB was measured in a 30-m long EDFA,
pumped at 0.98 µm with 11 mW of power [47]. A similar value was measured
in another experiment with only 5.8 mW of pump power [49]. In general, it
is difficult to achieve high gain, low noise, and high pumping efficiency si-
multaneously. The main limitation is imposed by the ASE traveling backward
toward the pump and depleting the pump power. An internal isolator allevi-
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ates this problem to a large extent. In one implementation, a 51-dB gain was
realized with a 3.1-dB noise figure at a pump power of only 48 mW [54].
The relatively low noise levels of EDFAs make them an ideal choice for WDM
lightwave systems. In spite of low noise, the performance of long-haul systems
employing multiple EDFAs is often limited by the ASE.

The effects of amplifier noise are most severe when a low-power signal is
amplified by a large factor. In practice, the noise in a chain of cascaded EDFAs
can be reduced by decreasing the amplifier spacing. For this reason, consid-
erable attention has focused on distributed fiber amplifiers in which the gain
is distributed over long lengths (� 50 km) of lightly doped silica fibers such
that fiber losses are nearly compensated all along the fiber length [59]–[66].
Such fibers are referred to as being transparent, although they become nearly
transparent only when pumped at a suitable wavelength. The optimal pumping
wavelength is 1.48 µm since fiber losses for the pump at this wavelength are
minimal compared to other pumping wavelengths (such as 0.98 µm). In gen-
eral, one should consider the effect of stimulated Raman scattering (SRS) in
distributed EDFAs pumped at 1.48 µm since the signal wavelength lies within
the Raman gain bandwidth [62]. As a result, the signal experiences not only
the gain provided by the dopants but also the gain provided by SRS. In prac-
tice, SRS increases the net gain and reduces the noise figure for a given amount
of pump power. Nonlinear and dispersive effects associated with the silica host
play an important role in distributed fiber amplifiers. We turn to them in the
following section.

4.3 Dispersive and Nonlinear Effects

Because of their large bandwidths, fiber amplifiers can be used to amplify,
without distortion, short optical pulses. Indeed, EDFAs were used to amplify
ultrashort pulses soon after their development. We discuss in this section how
the nonlinear Schrödinger (NLS) equation, useful for describing pulse prop-
agation in undoped fibers, can be extended to include the gain provided by
dopants.

4.3.1 Maxwell–Bloch Equations

Rare-earth ions in doped fibers can be modeled as a two-level system by con-
sidering only the two energy levels that participate in light-induced transitions.
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The dynamic response of a two-level system is governed by the well-known
Maxwell–Bloch equations [11]. We can extend these equations to the case of
fiber amplifiers. The starting point is the wave equation (A.2.1.7), but the in-
duced polarization P(r; t) in Eq. (A.2.1.8) should include a third term Pd(r; t)
representing the contribution of dopants. This contribution is calculated by
using a semiclassical approach in which dopants interact with the optical field
E(r; t) through the induced dipole moment. In the slowly varying envelope
approximation, Pd(r; t) is written as

Pd(r; t) =
1
2 x̂[P(r; t)exp(�iω0t)+ c:c:]; (4.3.1)

where x̂ is the polarization unit vector associated with the optical field E(r; t).
The slowly varying part P(r; t) is obtained by solving the Bloch equations,
which can be written as [11]

∂P
∂ t

= �
P
T2
� i(ωa�ω0)P�

iµ2

h̄
EW; (4.3.2)

∂W
∂ t

=
W0�W

T1
+

1
h̄

Im(E�P); (4.3.3)

where µ is the dipole moment, ωa is the atomic transition frequency, W =

N2�N1 is the population-inversion density with the initial value W0, and T1
and T2 are the population and dipole relaxation times introduced earlier. Here
E(r; t) is the slowly varying amplitude associated with the optical field defined
as in Eq. (A.2.3.2). Following the analysis of Section A.2.3, the net effect of
dopants is to modify the NLS equation as

∂A
∂ z

+β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 +

α
2

A = iγ jAj2A+
iω0

2ε0c
hPexp(�iβ0z)i; (4.3.4)

where angle brackets denote spatial averaging over the mode profile jF(x;y)j2.
An average over the atomic transition frequencies should also be performed if
one wants to include the effects of inhomogeneous broadening.

The set of Maxwell–Bloch equations (4.3.2)–(4.3.4) must be solved for
pulses whose width is shorter or comparable to the dipole relaxation time
(T2 < 0:1 ps). However, the analysis is simplified considerably for broader
optical pulses since one can make the rate-equation approximation in which
the dopants respond so fast that the induced polarization follows the optical
field adiabatically [11].
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Dispersive effects associated with dopants can be included by working in
the Fourier domain and defining the dopant susceptibility through the standard
relation

P̃(r;ω) = ε0χd(r;ω)Ẽ(r;ω); (4.3.5)

where ε0 is the vacuum permittivity and the tilde represents the Fourier trans-
form. The susceptibility is found to be given by

χd(r;ω) =
σsW (r)n0c=ω0

(ω�ωa)T2 + i
; (4.3.6)

where the transition cross section σs is related to the dipole moment µ as σs =

µ2ω0T2=(ε0n0h̄c) and n0 is the background linear refractive index of the host
medium at the frequency ω 0.

4.3.2 Ginzburg–Landau Equation

The propagation equation for optical pulses is obtained from Eqs. (4.3.2) and
(4.3.6) by following the analysis of Section A.2.3. In the frequency domain,
Eqs. (A.2.3.10) and (A.2.3.16) remain valid provided χd is added to the di-
electric constant ε . The index change ∆n from Eq. (A.2.3.18) then becomes

∆n = n2jEj
2
+

iα
2k0

+
χd

2n
: (4.3.7)

The major change is that ∆β in Eq. (A.2.3.22) becomes frequency dependent
because of the frequency dependence of χd. When the optical field is trans-
formed back to the time domain, we must expand both β and ∆β in a Taylor
series to include the dispersive effects associated with the dopants. Writing
ω �ωa = (ω �ω0) + (ω0 �ωa) and using the Taylor-series expansion, the
resulting equation is given by [67]

∂A
∂ z

+β eff
1

∂A
∂ t

+
i
2

β eff
2

∂ 2A
∂ t2 +

1
2
(α +α2jAj

2
)A = iγ jAj2A+

g0

2
1+ iδ
1+δ 2 A;

(4.3.8)
where

β eff
1 = β1 +

g0T2

2

�
1�δ 2

+2iδ
(1+δ 2)2

�
; (4.3.9)

β eff
2 = β2 +g0T 2

2

�
δ (δ 2�3)+ i(1�3δ2

)

(1+δ 2)3

�
; (4.3.10)
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and the detuning parameter δ = (ω0�ωa)T2. The gain g0 is defined as

g0(z; t) =
σs

RR ∞
�∞W (r; t)jF(x;y)j2 dx dyRR ∞

�∞ jF(x;y)j2 dx dy
; (4.3.11)

where integration is over the entire range of x and y. Spatial averaging results
from the use of Eq. (4.3.7) in Eq. (A.2.3.20). Equation (4.3.8) includes the
effects of two-photon absorption through the parameter α2. Even though two-
photon absorption is negligible for silica fibers, it may become important for
fibers made using materials with high nonlinearities [68].

Equation (4.3.8) shows how the dispersion parameters of the host fiber
change because of the dopant contribution. Since vg = β�1

1 , changes in β1 in-
dicate that the group velocity of the pulse is affected by the dopants. However,
the dopant-induced change in the group velocity is negligible in practice since
the second term in Eq. (4.3.9) is smaller by more than a factor of 104 under
typical operating conditions. In contrast, changes in β2 cannot be neglected
since the two terms in Eq. (4.3.10) can become comparable, especially near the
zero-dispersion wavelength of the amplifier. Even in the special case δ = 0,
β eff

2 does not reduce to β 2. In fact, Eq. (4.3.10) shows that for δ = 0,

β eff
2 = β2 + ig0T 2

2 (4.3.12)

is a complex parameter whose imaginary part results from the gain provided
by dopants. The physical origin of this contribution is related to the finite
gain bandwidth of fiber amplifiers and is referred to as gain dispersion since it
originates from the frequency dependence of the gain. Equation (4.3.12) is a
consequence of the parabolic-gain approximation in which the gain spectrum
of fiber amplifiers is approximated by a parabola over the spectral bandwidth
of the pulse.

It is difficult to perform integration in Eq. (4.3.11) exactly since the inver-
sion W depends not only on the spatial coordinates x;y, and z but also on the
mode profile jF(x;y)j2 because of gain saturation. In practice, only a small
portion of the fiber core is doped with rare-earth ions. If the mode intensity
and the dopant density are nearly uniform over the doped portion, W can be as-
sumed to be a constant in the doped region and zero outside it. The integration
is then readily performed to yield the simple relation

g0(z; t) = ΓsσsW (z; t); (4.3.13)



170 Fiber Amplifiers

where Γs represents the fraction of mode power within the doped portion of
the fiber. Using Eqs. (4.3.3) and (4.3.13), the gain dynamics is governed by

∂g0

∂ t
=

gss�g0

T1
�

g0jAj
2

T1Psat
s

; (4.3.14)

where gss =ΓsσsW0 is the small-signal gain and the saturation power Psat
s is de-

fined in Eq. (4.2.5). Note that g0 is not constant along the fiber length because
of pump power variations. The z dependence of g0 depends on the pumping
configuration and requires the use of Eq. (4.2.6).

In general, one must solve Eqs. (4.3.8) and (4.3.14) together in a self-
consistent manner. However, for most fiber amplifiers the fluorescence time T1
is so long (0.1–10 ms) compared with typical pulse widths that we can assume
that spontaneous emission and pumping do not occur over the pulse duration.
Equation (4.3.14) is then readily integrated to obtain the result

g0(z; t)� gss exp

�
�

1
Es

Z t

�∞
jA(z; t)j2dt

�
; (4.3.15)

where the saturation energy is defined as Es =h̄ω0(as=σs).
Typical values of Es for fiber amplifiers are close to 1 µJ. However, pulse

energies used in practice are much smaller than the saturation energy Es. As
a result, gain saturation is negligible over the duration of a single pulse. How-
ever, it cannot be neglected for a long pulse train since the amplifier gain will
saturate over timescales longer than T1. The average power within the amplifier
then determines the saturated gain as g0 = gss(1+Pav=Psat

s )
�1.

Pulse propagation in fiber amplifiers is thus governed by a generalized NLS
equation, with coefficients βeff

1 and β eff
2 that are not only complex but also vary

with z along the fiber length. In the specific case in which δ = 0, Eq. (4.3.8)
simplifies considerably and can be written as

∂A
∂ z

+
i
2
(β2 + ig0T 2

2 )
∂ 2A
∂T 2 = i

�
γ +

i
2

α2

�
jAj2A+

1
2
(g0�α)A; (4.3.16)

where T = t�β eff
1 z is the reduced time. This equation governs amplification

of optical signals in fiber amplifiers. The T2 term accounts for decrease in gain
for spectral components of an optical pulse located far from the gain peak.
Equation (4.3.16) is a generalized NLS equation with complex coefficients.
It can be reduced to a Ginzburg–Landau equation, which has been studied
extensively in the context of fluid dynamics. We discuss in the next section the
stability of its steady-state solutions.
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4.4 Modulation Instability

Modulation instability, discussed in Section A.5.1, should play an important
role if a CW beam propagates in a distributed fiber amplifier in which am-
plification occurs along long fiber lengths. Also, a new type of modulation
instability can occur if signals are periodically amplified in a chain of short-
length amplifiers, a situation that occurs in soliton communication systems
(see Chapter 8). In this section we discuss the two cases separately.

4.4.1 Distributed Amplification

Consider the propagation of CW or quasi-CW signals inside a distributed fiber
amplifier. The steady-state solution can be obtained by neglecting the time-
derivative term in Eq. (4.3.16). Assuming for simplicity that g0 is z indepen-
dent, the solution is given by

Ā(z) =
p

P0 exp[b(z)]; (4.4.1)

where P0 is the incident power and

b(z) = 1
2(g0�α)z+ iγP0

R z
0 exp[(g0�α)z]dz: (4.4.2)

Equation (4.4.1) shows that the CW signal is amplified exponentially and ac-
quires a nonlinear phase shift induced by self-phase modulation (SPM).

Following the procedure of Section A.5.1, we perturb the steady state
slightly such that

A(z;T ) = [

p
P0 +a(z;T )]exp[b(z)] (4.4.3)

and examine the evolution of the weak perturbation a(z;T ) using a linear sta-
bility analysis. By substituting Eq. (4.4.3) in Eq. (4.3.16) and linearizing in a,
we obtain a linear equation that can be solved approximately and has a solution
in the form

a(z;T ) = a1 exp[i(
R z

0 K(z)dz�ΩT )]+a2 exp[�i(
R z

0 K(z)dz�ΩT )]; (4.4.4)

where Ω is the frequency of perturbation. The wave number K is z depen-
dent because of the gain provided by the amplifier and is found to satisfy the
following dispersion relation [69]:

K(Ω;z) = 1
2 ig0T 2

2 Ω2
�

1
2 jβ2Ωj[Ω2

+(4γP0=β2)e
(g0�α)z

]
1=2

: (4.4.5)
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Figure 4.8 Gain spectra of modulation instability at three power levels for a dis-
tributed fiber amplifier with 30-dB gain over 10 km. Values of other parameters are
β2 =�20 ps2/km and γ = 10 W�1/km.

The dispersion relation (4.4.5) reduces to that obtained for undoped fibers
in Section A.5.1 when gain and loss are neglected. Modulation instability
occurs when K(Ω;z) has a negative imaginary part over a large length of the
fiber amplifier. It is useful to define the total integrated gain at a frequency Ω
as

h(Ω) =�2
Z L

0
Im[K(Ω;z)]dz; (4.4.6)

where L is the amplifier length. Stability of the steady state depends critically
on whether light experiences normal or anomalous GVD inside the amplifier.
In the case of normal GVD, h(Ω) is negative for all values of Ω, and the steady
state is stable against small perturbations.

The situation is quite different in the case of anomalous GVD (β2 < 0).
Similar to the case of undoped fibers, h(Ω) becomes positive in a certain range
of Ω. Figure 4.8 shows the gain spectrum of modulation instability by plot-
ting h(Ω) at three input power levels for a fiber amplifier with 30-dB gain
distributed over a length of 10 km. Modulation instability occurs for input
power levels of about 1 mW. It can transform a CW beam into a pulse train at
a repetition rate around 100 GHz.
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4.4.2 Periodic Lumped Amplification

Most long-haul fiber-optic communication systems use optical amplifiers in
which the doped fiber is only a few meters long. The length of such ampli-
fiers is much shorter than both the dispersion and nonlinear length scales. In
essence, the role of a fiber amplifier is to amplify the signal without intro-
ducing any temporal or spectral changes. Such amplifiers are called lumped
amplifiers since they amplify the signal by a factor of 20 dB or so over a length
of about 10 m and compensate for fiber losses acquired over a distance as large
as 100 km. With this scheme, optical signals can be transmitted over distances
� 1000 km by simply placing multiple amplifiers periodically along the fiber
link.

Modulation instability affects the performance of such periodically ampli-
fied fiber-optic communication systems in several different ways. As early as
1990, computer simulations showed that modulation instability can be a limit-
ing factor for lightwave systems employing the nonreturn-to-zero (NRZ) for-
mat for data transmission [70]. Since then, the impact of modulation instability
has been studied, both analytically and experimentally, for single-channel as
well as WDM systems [71]–[85].

The use of optical amplifiers can induce modulation instability in both the
normal and anomalous GVD regimes of optical fibers because of the periodic
nature of amplification [74]. The new instability mechanism has its origin in
the periodic sawtooth variation of the optical power along the link length. To
understand the physics more clearly, note that a periodic variation of power
in z is equivalent to formation of an index grating since the nonlinear part
of the refractive index depends on the local power level. The period of this
grating is equal to the amplifier spacing and is typically in the range of 40
to 80 km. Such a long-period grating provides a new coupling mechanism
between the modulation-instability sidebands and allows them to grow when
the perturbation frequency Ω satisfies the Bragg condition.

Mathematically, the evolution of the optical field outside fiber amplifiers is
governed by the standard NLS equation

i
∂A
∂ z
�

β2

2
∂ 2A
∂T 2 + γ jAj2A =�

iα
2

A; (4.4.7)

where α accounts for fiber losses. Within each amplifier, �α is replaced by
the net gain g0, and the dispersive and nonlinear effects are negligible. By
introducing a new variable B through A = Bexp(�αz=2), Eq. (4.4.7) can be
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written as

i
∂B
∂ z
�

β2

2
∂ 2B
∂T 2 + γ f (z)jBj2B = 0; (4.4.8)

where f (z) is a periodic function such that it decreases exponentially as f (z) =
exp(�αz) in each fiber section between amplifiers and jumps to 1 at the loca-
tion of each amplifier.

The analysis of Section A.5.1 can be extended to include periodic varia-
tions of f (z). If we expand f (z) in a Fourier series as

f (z) =
∞

∑
n=�∞

cn exp(2πinz=LA); (4.4.9)

the frequency at which the gain of modulation instability peaks is found to be
given by [74]

Ωm =�

�
2πm
β2LA

�
2γP0c0

β2

�1=2

; (4.4.10)

where the integer m represents the order of Bragg diffraction, LA is the spacing
between amplifiers (grating period), and the Fourier coefficient c0 is related to
the fiber loss α , or the amplifier gain G� exp(αLA), as

c0 =
1� exp(�αLA)

αLA
=

G�1
G lnG

: (4.4.11)

In the absence of periodic gain–loss variations, or when m = 0, Ω0 exists only
when the CW signal experiences anomalous GVD. However, when m 6= 0,
modulation sidebands can occur even for normal GVD (β2 > 0). For this
reason, this instability is referred to as sideband instability. Physically, the
creation of sidebands can be understood by noting that the nonlinear index
grating helps to satisfy the phase-matching condition necessary for four-wave
mixing when m 6= 0. This phenomenon can be avoided in practice by ensuring
that the amplifier spacing is not uniform along the fiber link.

4.4.3 Noise Amplification

Modulation instability can degrade the system performance considerably in
the presence of noise produced by optical amplifiers. Physically, spontaneous
emission within fiber amplifiers adds broadband noise to the amplified signal.
This noise can seed the growth of modulation-instability sidebands and is thus
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amplified through induced modulation instability [77]–[85]. Such noise am-
plification affects system performance in two ways. First, it degrades the SNR
at the receiver. Second, it broadens the signal spectrum. Since GVD-induced
broadening of optical signals depends on their spectral bandwidth, system per-
formance is compromised.

We can study the noise amplification process in each section of the fiber
between two optical amplifiers by adding noise to the CW solution of Eq.
(4.4.8) so that

B(z;T ) = [

p
P0 +a(z)eiΩT

)]exp(iφNL); (4.4.12)

where φNL = γP0

R z
0 f (z)dz is the SPM-induced nonlinear phase shift and a(z)

is the noise amplitude at the frequency Ω. Substituting Eq. (4.4.12) in Eq.
(4.4.8), we obtain

da
dz

=
i
2

β2Ω2
+ iγP0 f (z)(a+a�): (4.4.13)

This equation can be solved easily in the lossless case in which α = 0, and
f (z) � 1 is z independent [77]. It can also be solved when α 6= 0 but the
solution is quite complicated as it involves the Hankel functions [80]. An
approximate solution is obtained when f (z) is replaced by its average value c0
and is given by [85]�

a1(z)
a2(z)

�
=

�
cos(Kz) �r�1

0 sin(Kz)
r0 sin(Kz) cos(Kz)

��
a1(0)
a2(0)

�
; (4.4.14)

where a1 and a2 are the real and imaginary parts of the noise amplitude (a =

a1 + ia2) and K and r0 are defined as

K =
1
2β2Ω2r0; r0 = [1+4γP0c0=(β2Ω2

)]
1=2

: (4.4.15)

Fiber amplifiers generate noise over their entire gain bandwidth (typically
> 30 nm). Frequency components of the noise that fall within the gain spec-
trum of modulation instability are amplified exponentially since r0, and hence
the propagation constant K, becomes purely imaginary for them. In practice,
optical filters are placed just after each amplifier to reduce the noise bandwidth.
Figure 4.9 shows an example of a numerically simulated optical spectrum at
the end of a 2500-km fiber link with 50 amplifiers placed 50 km apart [85]. A
1-mW signal at the 1.55-µm wavelength is transmitted through the amplifier
chain. Optical filters with a 8-nm passband (Lorentzian shape) are placed af-
ter every amplifier. The broad pedestal represents the contribution of ASE to
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Figure 4.9 Optical spectrum for a 2500-km fiber link with 50 amplifiers showing
effects of modulation instability. Values of fiber parameters are β 2 = �1 ps2/km,
γ = 2 W�1/km, and α = 0:22 dB/km. (After Ref. [85], c1999 IEEE)

the signal spectrum located at 1.55 µm. The double-peak structure near this
wavelength is due to the standard modulation instability occurring even in the
absence of amplifiers. The weak satellite peaks result from the nonlinear index
grating formed by periodic power variations. Their location is in agreement
with the prediction of Eq. (4.4.10).

The enhancement of amplifier noise degrades the SNR of the signal at the
receiver. Experimental results for a lightwave system operating at 10 Gb/s
showed considerable degradation after a transmission distance of only 455 km
[81]. The system performance improved considerably when the GVD was
partially compensated using a dispersion-compensating fiber. In the case of
WDM systems, a signal in one channel can act as a seed for induced modu-
lation instability—resulting in interchannel crosstalk—if the channel spacing
falls within the gain bandwidth of the instability. This phenomenon is called
resonant four-wave mixing and can occur because of SPM-mediated phase
matching, in spite of large GVD [84]. In general, the impact of modulation
instability on lightwave systems can be reduced by reducing amplifier spacing
and by using the normal-GVD regime of the fiber link for signal transmission.
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4.5 Optical Solitons

In this section we consider propagation of optical pulses in fiber amplifiers.
Considerable attention has also been paid to understanding the amplification
process through theoretical modeling [86]–[119]. Before considering ampli-
fication of ultrashort pulses, it is instructive to inquire whether doped fibers
can support solitons similar to those found for undoped fibers in Chapter A.5.
Since the Ginzburg–Landau equation [Eq. (4.3.16)] is not integrable by the
inverse scattering method, it does not support solitons in a strict mathemati-
cal sense. However, it may have solitary-wave solutions that represent optical
pulses whose shape does not change on propagation. Such a solution of Eq.
(4.3.16) was found as early as 1977 in the context of fluid dynamics [120]; it
was rediscovered in 1989 in the context of nonlinear fiber optics [86]. Since
then, solutions of the Ginzburg–Landau equation have been studied both ana-
lytically and numerically [121]–[129].

4.5.1 Autosolitons

Similar to the case of conventional solitons in undoped fibers, it is useful to
introduce the dimensionless variables (soliton units)

ξ = z=LD; τ = T=T0; u = γLDA; (4.5.1)

where LD = T 2
0 =jβ2j is the dispersion length. Equation (4.3.16) then takes the

normalized form [95]

i
∂u
∂ξ

�
1
2
(s+ id)

∂ 2u
∂τ2 +(1+ iµ2)juj

2u =
i
2

µu; (4.5.2)

where s = sgn(β2) =�1 and the other parameters are defined as

d = g0LD(T2=T0)
2
; µ = (g0�α)LD; µ2 = α2=2γ : (4.5.3)

Equation (4.5.2) reduces to the standard NLS equation when the three param-
eters d; µ , and µ2 are set to zero. Physically, d is related to the amplifier
bandwidth (through the parameter T2), µ is related to the amplifier gain, and
µ2 governs the effect of two-photon absorption. Numerical values of these pa-
rameters for most EDFAs are such that µ � 1, d � 10�3, and µ2 � 10�4 when
T0 � 1 ps.
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An extended version of Eq. (4.5.2), known as the quintic Ginzburg–Landau
equation, has also attracted considerable attention [123]–[129]. It adds a fifth-
order term ε juj4u to Eq. (4.5.2), where ε is a constant parameter that may be
complex in general. Physically, the quintic term results from saturation of the
fiber nonlinearity and is negligible for silica fibers at practical power levels.
For this reason, its effects are not considered in this chapter.

Since the inverse scattering method is not applicable, the solitary-wave
solutions of Eq. (4.5.2) are found by a trial-and-error method. In this method,
an analytic form of the solution is guessed, and the constants are adjusted
to satisfy Eq. (4.5.2). An appropriate functional form of the solitary-wave
solution of this equation is [120]

u(ξ ;τ) = Ns[sech(pτ)]1+iq exp(iKsξ ): (4.5.4)

The constants Ns; p; q, and Ks are determined by substituting this solution in
Eq. (4.5.2) and are

N2
s =

1
2 p2

[s(q2
�2)+3qd]; (4.5.5)

p2
= �µ [d(1�q2

)+2sq]�1
; (4.5.6)

Ks = �
1
2 p2

[s(1�q2
)�2qd]; (4.5.7)

where q is a solution of the quadratic equation

(d�µ2s)q2
�3(s+µ2d)q�2(d�µ2s) = 0: (4.5.8)

It is easy to verify that when s = �1 (anomalous GVD) and d;µ , and µ2
are set to zero, the solution (4.5.4) reduces to the standard soliton of the NLS
equation. The parameter p remains undetermined in that limit since the NLS
equation supports a whole family of fundamental solitons such that Ns = p.
By contrast, both p and Ns are fixed for the Ginzburg–Landau equation by the
amplifier parameters µ and d. This is a fundamental difference introduced by
the dopants: Fiber amplifiers select a single soliton from the entire family of
solitons supported by the undoped fiber. The width and the peak power of
this soliton are uniquely determined by the amplifier parameters (such as the
gain and its bandwidth). Such a soliton is often called the autosoliton since all
input pulses, irrespective of their width and peak power, automatically evolve
toward this unique soliton [90].

An important property of autosolitons is that, unlike conventional NLS
solitons, they represent chirped pulses. This feature is seen clearly from Eq.
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(a) (b)

Figure 4.10 (a) Intensity and (b) chirp profiles for a soliton supported by fiber am-
plifiers when d = 0.5. Solid and dashed curves correspond to the cases of normal and
anomalous GVD, respectively.

(4.5.4) by noting that the phase of the soliton becomes time dependent when
q 6= 0. In fact, Eq. (4.5.4) can be written as

u(ξ ;τ) = Ns sech(pτ)exp[iKsξ � iq ln(cosh pτ)]: (4.5.9)

By defining the frequency chirp as δω =�∂φ=∂τ , the chirp is given by

δω(τ) = qp tanh(pτ): (4.5.10)

The parameter q governs the magnitude of chirp. As seen from Eq. (4.5.8),
q 6= 0 only when d or µ 2 are nonzero. For silica fiber amplifiers, µ 2 is small
enough that it can be set to zero. The parameter q is then given by

q = [3s� (9+8d2
)

1=2
]=2d; (4.5.11)

where the sign is chosen such that both p and Ns are real.
The existence of solitons in a fiber amplifier is somewhat surprising. For

the soliton to preserve its shape and energy in spite of the gain provided by
the amplifier, a loss mechanism must exist. Both gain dispersion and two-
photon absorption provide such a loss mechanism. Although the role of two-
photon absorption as a loss mechanism is easily understood, it is not obvious
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how gain dispersion leads to loss. Because of a finite gain bandwidth, the
frequency dependence of the gain is such that spectral wings of an optical pulse
experience less gain—and may even experience loss—if the pulse spectrum
becomes wider than the gain bandwidth. Thus, gain dispersion can act as a
loss mechanism for pulses with a wide spectrum. The frequency chirp imposed
on the soliton of Eq. (4.5.9) helps to maintain balance between gain and loss
since it can tailor the pulse spectrum through the chirp parameter q. This is
why autosolitons are chirped. This mechanism also explains why amplifier
solitons can exist even in the normal GVD region of a doped fiber.

Figure 4.10 compares the intensity and chirp profiles of an amplifier soliton
in the cases of normal (dashed curve) and anomalous (solid curve) GVD using
d = 0:5, µ = 0:5, and µ 2 = 0. In both cases, the chirp is nearly linear over
most of the intensity profile, but the soliton is considerably broader in the case
of normal GVD. Dependence of soliton parameters on the gain-dispersion
parameter d is shown in Fig. 4.11, where the width parameter p�1 and the chirp
parameter q are plotted as a function of d using µ = d and µ2 = 0. Solid and
dashed curves correspond to the cases of normal (s = 1) and anomalous (s =
�1) GVD, respectively. For large values of d, the difference between normal
and anomalous GVD disappears since the soliton behavior is determined by
gain dispersion (rather than index dispersion of the silica host). In contrast,
both the width and chirp parameters are much larger in the case of normal
GVD when d < 1. Indeed, both of these parameters tend to infinity as d ! 0
since undoped fibers do not support bright solitons in the case of normal GVD.
In the presence of two-photon absorption, the soliton amplitude decreases and
its width increases. For most fiber amplifiers µ 2 is so small that its effects can
be ignored.

Since gain dispersion and two-photon absorption permit the existence of
bright solitons in the normal-GVD region, one is justified in asking whether
the Ginzburg–Landau equation has solutions in the form of dark solitary waves
that exist in both normal- and anomalous-GVD regions. This turns out to be
the case. Since sech(τ) is replaced by tanh(τ) for dark solitons in undoped
fibers, a simple guess is to replace Eq. (4.5.9) with

u(ξ ;τ) = Ns tanh(pτ)exp[iKsξ � iq ln(cosh pτ)]: (4.5.12)

Equation (4.5.12) is indeed a solution of the Ginzburg–Landau equation [86].
The parameters Ns; p;q, and Ks are determined by a set of equations similar to
Eqs. (4.5.5)–(4.5.8). The qualitative behavior of dark solitons is also similar
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(a) (b)

Figure 4.11 Variation of (a) soliton width p�1 and (b) chirp parameter q as a function
of d. Solid and dashed curves correspond to the cases of normal and anomalous GVD,
respectively.

to that of bright solitons governed by Eq. (4.5.9). In particular, gain dispersion
determines the frequency chirp imposed on the dark soliton.

Just as modulation instability can destabilize the CW solution, a solitary-
wave solution of the Ginzburg–Landau equation can also become unstable un-
der some conditions. For this reason, the stability of such solutions has been
studied extensively [123]–[125]. It is evident from Eqs. (4.5.4)–(4.5.8) that
the parameters Ns and p can have real positive values only in a certain range of
the three parameters µ ; d, and µ2 for s =�1. A stable autosoliton exists only
when µ > 0 and amplifier parameters are such that both Ns and p are positive
numbers. However, when µ > 0, the background is not stable since any small
fluctuation can be amplified by the fiber gain. Instability of background noise
has important implications for fiber amplifiers and lasers, as will become clear
later.

4.5.2 Maxwell–Bloch Solitons

The soliton solution (4.5.9) shows that the width of autosolitons can become
comparable to the dipole relaxation time T2 (see Fig. 4.11). The validity of the
Ginzburg–Landau equation then becomes questionable since the rate-equation
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approximation used in its derivation [see Eq. (4.3.5)] becomes invalid under
such conditions. In its place, we should look for the solitary-wave solutions of
the Maxwell–Bloch equations themselves by solving Eqs. (4.3.2)–(4.3.4).

Such solutions were first obtained in 1967 for nonfiber media in which both
β2 and γ are negligible [130]. The underlying nonlinear phenomenon is known
as self-induced transparency (SIT). Since 1967, SIT solitons have been studied
extensively [131]–[135]. Soliton solutions of the Maxwell–Bloch equations
exist even for a nonlinear host (without dispersion), but the resulting solitons
are chirped [132]. Chirped solitons for an amplifying two-level medium in a
dispersive nonlinear host have also been obtained [134].

Equations (4.3.2)–(4.3.4) can be simplified considerably in the case of SIT.
The terms containing T1 and T2 can be neglected because SIT requires coherent
interaction between atoms and the optical field that occurs only for optical
pulses much shorter than T1 and T2. The amplitude A(z; t) can be assumed real
if the laser frequency ω0 coincides with the atomic transition frequency ωa.
For a two-level absorber (no pumping), the SIT soliton is given by [130]

A(z; t) = N0 sech

�
t� z=V

τp

�
; (4.5.13)

where the pulse velocity V and the pulse width τ p are related as

1
V

=
1
c
+

ρµ2ω0

2ε0hc

Z ∞

�∞

τ2
ph(∆)d∆

1+(∆τp)
2 : (4.5.14)

In this equation, ρ is the atomic density, ∆ = ω �ω0, and h(∆) is distribu-
tion function over which the integration is performed for an inhomogeneously
broadened two-level system.

Equation (4.5.13) shows that a “sech” pulse can propagate without change
in its shape, width, or amplitude—even in an absorbing medium—provided
that its input amplitude N0 is related to its width to form a 2π pulse [135].
The effect of absorption is to slow down the optical pulse. Indeed, the soli-
ton velocity V may be reduced by several orders of magnitude (V=c � 10�3).
Physically, the pulse slows down because of continuous absorption and emis-
sion of radiation occurring inside the medium. Qualitatively speaking, energy
is absorbed from the leading edge of the pulse and is emitted back near the
trailing edge. For the pulse amplitude given in (4.5.13), the two processes can
occur coherently in such a manner that the pulse shape remains unchanged on
propagation. In essence, the role of dispersion is played by absorption for SIT
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solitons. Similar to the case of fiber solitons, SIT solitons describe an entire
family of solitons whose width and group velocities are related by Eq. (4.5.14).

The situation becomes much more interesting in the case of fiber amplifiers
since the two kinds of solitons can exist simultaneously. The silica host sup-
ports NLS solitons whereas the dopants can support SIT solitons. The question
thus arises: What happens in a fiber amplifier where dopants are inside a dis-
persive nonlinear host? To answer this question, we should look for soliton
solutions of Eqs. (4.3.2)–(4.3.4) in the coherent limit in which the terms con-
taining T1 and T2 can be neglected [96]–[106]. Detuning effects can be ignored
by setting ωa = ω0. It turns out that the SIT solution given by Eq. (4.5.13) re-
mains valid but the group velocity of the soliton is determined by [97]

1
V

=

 
1
v2

g
+

2n2n0ω2
0 h2

µ2c2

!1=2

; (4.5.15)

where vg is the group velocity in the undoped fiber.
A remarkable feature of Eq. (4.5.15) is that the soliton velocity depends

on the nonlinear parameter n2 but is independent of the dopant density and the
soliton width. Another noteworthy feature is that both the width and the peak
power of the soliton are uniquely determined by the amplifier. More specif-
ically, the peak power and the width of the soliton must satisfy not only the
fundamental-soliton condition N = 1 but also the SIT condition that the pulse
area equals 2π [98]. Such a SIT soliton exists for both normal and anoma-
lous GVD. The situation is similar to that occurring for autosolitons [see Eq.
(4.5.4)] in the sense that a single soliton is selected from the entire family of
SIT solitons. The surprising feature is that an SIT soliton can be chirp free, in
contrast to the solitary-wave solution of the Ginzburg–Landau equation.

Experimental realization of SIT solitons is difficult in practice because of
the relatively small value of the dipole relaxation time (T2 � 100 fs). In the
coherent regime, the soliton width should be smaller than T2. The required
peak power for such a 2π pulse is prohibitively large (P0 > 1 GW). Never-
theless, coherent effects associated with the SIT solitons were observed in an
experiment in which an EDFA was cooled to 4.2 K [136]. Cooling of a doped
fiber to such low temperatures increases T2 by orders of magnitude (T2 � 1 ns)
because of reduced phonon-related effects. As a result, SIT solitons can be ob-
served by using pulses widths of about 100 ps and peak powers of about 10 W.
Indeed, 400-ps pulses with peak power levels of about 50 W were used in the
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Figure 4.12 Evolution of a fundamental soliton (N = 1) in a fiber amplifier with
parameters d = 0.092, µ = 2.3, and µ2 = 0.

experiment [136]. When such pulses were propagated in a 1.5-m-long cooled
fiber, they formed the SIT soliton when the peak power was large enough to
form the 2π pulse. Another coherent effect, known as photon echo, has also
been observed in EDFAs cooled to liquid-helium temperatures [100].

4.6 Pulse Amplification

Amplification of short optical pulses can be studied by solving the Ginzburg–
Landau equation numerically. Since that equation is valid only for pulses of
duration T0 � T2, picosecond pulses are considered first; femtosecond pulses
require the use of full Maxwell–Bloch equations. The split-step Fourier method
(see Section A.2.4) can be easily extended for solving these equations.

4.6.1 Picosecond Pulses

Consider the case in which the input pulse amplitude is given by A(0; t) =p
P0 sech(t=T0), and its width T0 is related to the peak power P0 such that the

pulse will propagate as a fundamental soliton in the absence of dopants and
fiber losses. The evolution of such a pulse in distributed fiber amplifiers is
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Figure 4.13 Pulse spectra at ξ = 1.5 and 2 corresponding to the pulse shapes shown
in Fig. 4.12. Spectral narrowing at ξ = 2 is due to gain dispersion.

studied by solving Eq. (4.5.2) numerically with the input u(0;τ) = sech(τ).
The amplification process depends strongly on the value of the gain parameter
µ . One can distinguish two regions depending on whether µ � 1 or becomes
comparable to or larger than 1. In the former case, the soliton is amplified adi-
abatically. In fact, one can treat Eq. (4.5.2) as a perturbed NLS equation (since
all three parameters d; µ , and µ 2 are much less than 1) and apply soliton
perturbation theory [104]. In essence, the soliton adjusts its parameters adia-
batically and evolves toward the chirped amplifier soliton given in Eq. (4.5.9).

Practical fiber amplifiers can provide gains of 30 dB or more over a length
of only a few meters. For such high-gain amplifiers, the parameter µ can
easily exceed 1 and the amplification process is not adiabatic. Figure 4.12
shows the evolution of a fundamental soliton over a distance L = 2:5LD for an
EDFA pumped to provide 10-dB gain over each dispersion length [exp(µ) =
10 or µ � 2:3]. The width T0 is chosen such that T2=T0 = 0:2 (d = 0:092).
Two-photon absorption is neglected by setting µ2 = 0. The input soliton is
compressed by more than a factor of 10 at ξ = 1:5, a feature that can be used
to amplify and compress ultrashort optical pulses simultaneously by passing
them through an EDFA. The soliton develops additional structure in the form
of subpulses as it propagates beyond ξ = 2 [67].

The compression stage seen in Fig. 4.12 is similar to that occurring for
higher-order solitons and can be understood by noting that the initial stage of
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Figure 4.14 Frequency chirp profiles at ξ = 1, 2, and 3. The chirp is absent at the
amplifier input (ξ = 0). Parameter values are the same as for Fig. 4.12.

amplification raises the peak power such that N exceeds 1. As discussed in
Section A.5.2, the pulse tries to maintain N = 1 by reducing its width. As long
as the amplification process remains adiabatic, this process continues and the
pulse width keeps decreasing, as seen in Fig. 4.12 for distances up to ξ = 1:5.
However, by that time the pulse has become so short, and its spectrum has be-
come so broad (comparable to the gain bandwidth), that the effects of gain dis-
persion take over. Gain dispersion reduces the spectral bandwidth and broad-
ens the pulse in the propagation region beyond ξ > 1:5. Spectral narrowing is
clearly seen in Fig. 4.13 where pulse spectra are compared for ξ = 1.5 and 2.
The soliton is also considerably chirped because of SPM and gain dispersion.
Figure 4.14 shows chirp profiles for ξ = 1, 2, and 3. For ξ = 1 and 2, the
features of frequency chirp are similar to those expected from SPM alone (see
Section A.4.1). However, the chirp behavior becomes qualitatively different
for ξ > 2, as is evident by the rapid oscillations seen in Fig. 4.14.

The qualitative changes seen in Fig. 4.14 beyond ξ = 2 can be attributed to
the generation of subpulses seen in Fig. 4.12. The number of such subpulses
grows with further propagation. Figure 4.15 shows pulse shapes and spectra
at ξ = 3 and 5. Each subpulse, once it has stabilized, has the same width and
about the same amplitude. Spacing between subpulses is nearly uniform (ex-
cept for subpulses that are still in the process of formation) and does not change
with propagation. These features can be understood qualitatively in terms of



Pulse Amplification 187

(a) (b)

Figure 4.15 (a) Pulse shapes and (b) pulse spectra at ξ = 3 and 5 for the case shown
in Fig. 4.12. New subpulses are generated continuously as the pulse propagates along
the amplifier.

chirped autosolitons. The width and the peak power (parameters p and Ns) of
such solitons are fixed by the amplifier parameters [µ and d in Eq. (4.5.2)].
Thus, the input pulse evolves toward such a soliton by reducing its width and
increasing its peak power (see Fig. 4.12). However, during this process it sheds
a part of its energy as dispersive waves. Because of the gain provided by the
amplifier and instability of the background, parts of the dispersive wave can
grow and evolve toward another chirped soliton. This mechanism explains
continuous generation of subpulses during the amplification process.

In the absence of soliton interactions, each subpulse will correspond to the
solitary-wave solution given by Eq. (4.5.9). However, soliton interactions can-
not be ignored, especially for chirped solitons since chirp profiles overlap con-
siderably. It is this interaction of chirped solitons that leads to the oscillatory
structure in Fig. 4.13 and to the amplitude differences seen in Fig. 4.14. The
structure within the pulse spectra in Fig. 4.15(b) is also due to soliton interac-
tion. This effect has been studied for the Ginzburg–Landau equation by using
perturbation theory [137]. The results show that the origin of multiple-pulse
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Figure 4.16 Energy (solid line) and RMS width (dashed line) of the amplified pulse
in the case of normal dispersion. Parameter values are the same as in Fig. 4.12.

solitons similar to those seen in Fig. 4.15 lies in the frequency chirp associated
with such solitons.

One may wonder what happens when optical pulses propagate in the normal-
dispersion region of fiber amplifiers. Solitary-wave solutions of the Ginzburg–
Landau equation exist in the form of a chirped soliton even in the case of
normal GVD (β2 > 0). Thus, one can expect an input pulse to evolve toward
this soliton, similar to the case of anomalous GVD. Numerical simulations
confirm this expectation. The surprising feature, however, turns out to be the
absence of pulse splitting. The input pulse evolves toward a single chirped soli-
ton of the form given in Eq. (4.5.9). This feature is seen in Fig. 4.16, where the
energy and the root-mean-square (RMS) width of pulses are plotted as a func-
tion of distance over the range ξ = 0–8 for the same parameter values used in
Fig. 4.12 except that s = 1 instead of �1. Both the energy and the RMS width
become constant after initial transients have died out. In contrast with the fea-
tures seen in Fig. 4.12, the pulse width actually increases by about a factor of
4. This is easily understood from the results shown in Fig. 4.11 by noting that
the chirped soliton supported by fiber amplifiers is much wider in the case of
normal GVD. The absence of pulse splitting indicates that interaction between
chirped solitons is repulsive for normal GVD.
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4.6.2 Ultrashort Pulses

When input pulses are relatively short (� 1 ps or shorter), it becomes necessary
to include the higher-order nonlinear and dispersive effects. The parabolic-
gain approximation made in deriving the Ginzburg–Landau equation should
also be relaxed for such short pulses. This can be done by keeping the denom-
inator in Eq. (4.3.6) intact while using Eqs. (4.3.4) and (4.3.5). Following the
analysis of Section A.2.3 and including the higher-order effects, the general-
ized Ginzburg–Landau equation can be written as

i
∂u
∂ξ

�
1
2

∂ 2u
∂τ2 + juj2u� iδ3

∂ 3u
∂τ3 � is0

∂ juj2u
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1� i( f � f0)(T2=T0)

�
i
2

αLdu; (4.6.1)

where ũ(ξ ; f ) is the Fourier transform of u(ξ ;τ), f0 = ω0T0; and δ3; s0, and τR
are the same three parameters introduced in Section A.5.5. The self-steepening
parameter s0 is negligible except for extremely short pulses (� 10 fs) for which
Eq. (4.6.1) itself is likely to break down. Third-order dispersive effects are also
negligible unless the fiber amplifier operates very close to the zero-dispersion
wavelength. In contrast, the parameter τR governs the frequency shift induced
by intrapulse Raman scattering, and its effects should be included for pulse
widths below 5 ps.

As early as 1988, it was shown that the Raman-induced spectral shift of
solitons may be suppressed in fiber amplifiers because of gain-dispersion ef-
fects [138]. Indeed, in an early experiment [139], in which gain was provided
by SRS (rather than dopants), little frequency shift was observed even for 100-
fs pulses. Physically, this behavior can be understood by noting that a shift
of the pulse spectrum from the gain peak reduces the gain experienced by the
center frequency of the pulse. At the same time, spectral components located
near the gain peak are amplified more. Thus, the amplifier has a built-in mech-
anism that tries to pull the pulse spectrum toward the gain peak, resulting in a
decrease in the Raman-induced frequency shift of solitons.

One may ask how intrapulse Raman scattering affects chirped solitons in
fiber amplifiers. Equation (4.6.1) does not appear to have pulselike solitary-
wave solutions when τR is nonzero although shocklike solutions, similar to
those discussed in Section A.5.5 for undoped fibers, may exist under certain
conditions [140]. One can use numerical simulations to study the effect of SRS
on pulse amplification. For g0Ld � 1, soliton evolution is similar to the case
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(a) (b)

Figure 4.17 Soliton amplification for T0 = 100 fs and g0Ld = 0.2 showing the effects
of Raman-induced frequency shift on (a) pulse shape and (b) pulse spectrum. (After
Ref. [104])

of undoped fibers. As the soliton amplifies adiabatically, it compresses and,
at the same time, its group velocity decreases because of the Raman-induced
frequency shift. Figure 4.17 shows the results of numerical simulations when
a 100-fs soliton is amplified [104]. For values of g0Ld � 1, the pulse splitting
seen in Fig. 4.15 still occurs, but both the soliton amplitude and the width
vary from subpulse to subpulse [88]. Pulse spectra show that the magnitude of
Raman-induced frequency shift is quite sensitive to the input parameters. The
shift also depends on the shape of the gain spectrum [104].

Several experiments have focused on amplification of ultrashort pulses in
fiber amplifiers [141]–[149]. Pulse shortening for femtosecond input pulses
was observed in several of these experiments. In one experiment, the depen-
dence of the pulse width and the spectrum on amplifier gain was studied by
using 240-fs input pulses [146]. Pulses as short as 60-fs were observed at the
output end of a 3-m-long fiber amplifier. This experiment also showed that the
Raman-induced frequency shift was nearly absent at low pump powers—an
effect referred to as soliton trapping—but became dominant when the ampli-
fier gain was large enough. Figure 4.18 shows the experiment pulse spectra for
three values of pump powers and compares them to the input spectrum (dashed
curve). The pulse spectrum did not shift significantly for pump powers of 7 and
13 mW but exhibited a shift of more than 20 nm for 25 mW of pump power.



Pulse Amplification 191

Figure 4.18 Experimental pulse spectra at three pump powers showing effects of
Raman-induced frequency shift; (a)–(c) correspond to pump powers of 7, 13, and
25 mW, respectively; (d) shows the 25-mW spectrum on a logarithmic scale. (After
Ref. [146], cAmerican Institute of Physics)

For optical pulses shorter than T2, one should use, in principle, the com-
plete set of Maxwell–Bloch equations in place of the Ginzburg–Landau equa-
tion. These equations have been solved numerically by using the split-step
Fourier method [103]. The results show significant deviations between the ex-
act and approximate solutions. For example, whereas the soliton amplitude
increases exponentially and its width decreases exponentially in the case of
T0 � T2 (see Fig. 4.12), in the coherent regime in which T0 � T2 the changes
are linear in ξ rather than being exponential [96]. Even when T0 > T2 ini-
tially, the coherent effects should be included whenever the pulse width be-
comes comparable to T2 during propagation. Both qualitative and quantitative
differences were found to occur in a numerical study in which T0 = 3T2 ini-
tially but the amplifier gain of 10 dB per dispersion length was large enough to
lead to considerable pulse narrowing during the amplification process [103].

One may ask how the solitary-wave solution of the Ginzburg–Landau equa-
tion—obtained in the parabolic-gain approximation and given by Eq. (4.5.4)—
changes when the Lorentzian shape of the gain spectrum is taken into account
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(a) (b)

Figure 4.19 (a) Intensity and (b) frequency chirp across the autosoliton for two val-
ues α=g0 using T2 = T0 = 0:2 ps, δ3 = s0 = τR = 0, and exp(g0LD) = 2. The solid
line shows the chirp in the parabolic-gain approximation. (After Ref. [115], c1996,
reprinted with permission from Elsevier Science)

through Eq. (4.6.1). Numerical solutions show that autosolitons still exist in
the sense that any input pulse evolves toward a unique solitary pulse whose
shape, amplitude, width, and chirp are determined by the amplifier parame-
ters [115]. However, the pulse characteristics are quite different than those of
the solitary-wave solution (4.5.4). A new feature is that the parameter α=g0
plays an important role in determining the properties of the autosoliton. As an
example, Fig. 4.19 shows the intensity and chirp profiles obtained numerically
for α=g0 = 0.6 and 0.8 using T2 = 0:2 ps. The corresponding profiles for the
parabolic-gain soliton obtained from Eq. (4.5.4) are also shown for compari-
son. In general, the autosoliton becomes narrower and more intense as α=g0
decreases. The reason can be understood by noting that the pulse spectrum
can expand as long as the gain in the spectral wings exceeds the loss level,
resulting in shorter pulses for smaller values of α=g0. However, chirp varia-
tions along the pulse also then become large and nonuniform with a periodic
structure. It should be stressed that such autosolitons are not absolutely stable
since background noise is amplified by the amplifier.

From a practical standpoint, fiber amplifiers can be used to amplify and
compress picosecond optical pulses simultaneously, but the amplification pro-
cess becomes less useful for femtosecond pulses because of temporal and spec-
tral distortions occurring as a result of the higher-order nonlinear effects such
as the Raman-induced frequency shift. One can use the technique of chirped-
pulse amplification to advantage in that case (see Section 6.5). In this tech-
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nique, input femtosecond pulses are first chirped. The pulse width increases
substantially during the chirping process. The chirped pulse is then ampli-
fied in a fiber amplifier, and the amplified pulse is recompressed by passing it
through a dispersive delay line such as a grating pair. Numerical results show
that highly efficient and practically distortionless amplification of femtosecond
pulses can be realized by this method [150]. The reason is that initial chirping
of the pulse stretches its width by as much as two orders of magnitude and
decreases the peak power accordingly. As a result, the peak power becomes
so small that nonlinear effects are almost negligible during the amplification
process. The amplified pulse is then recompressed close to its original width.
In a 1994 experiment, the technique of chirped-pulse amplification was used
to generate subpicosecond pulses with 100-nJ energy levels from an all-fiber
source [151].

Problems

4.1 Assuming that the gain spectrum of a fiber amplifier can be approxi-
mated by a Lorentzian profile of 30-nm bandwidth (FWHM), calculate
the amplifier bandwidths when it is operated to provide 20- and 30-dB
gain. Neglect gain saturation.

4.2 A fiber amplifier can amplify a 1-µW signal to the 1-mW level. What is
the output power when a 1-mW signal is incident on the same amplifier?
Assume a saturation power of 10 mW.

4.3 Explain the concept of noise figure for a fiber amplifier. Why does the
SNR of the amplified signal degrade by 3 dB even for an ideal amplifier?

4.4 Derive an expression for the small-signal gain of an EDFA by using rate
equations for the three-level pumping scheme. Assume a rapid transfer
of the pumped population to the excited state.

4.5 Solve Eqs. (4.2.7) and (4.2.8) analytically, or numerically if an analytic
solution is not possible. Plot the saturated amplifier gain as a function
of the pump power for αpL = 5 and αsL = 2, where L is the amplifier
length. Neglect fiber losses by setting α = α 0

= 0.

4.6 Derive the Ginzburg–Landau equation (4.3.8) by adding the contribution
of dopants to the nonlinear polarization and following the method of
Section A.2.3.
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4.7 Show by direct substitution that the chirped soliton given by Eq. (4.5.4)
is indeed a solution of the Ginzburg–Landau equation (4.5.2) when the
soliton parameters are given by Eqs. (4.5.5)–(4.5.8).

4.8 Use the chirped soliton solution given by Eq. (4.5.4) to obtain an expres-
sion for the frequency chirp. How would you operate a fiber amplifier to
minimize the chirp?

4.9 Solve the Ginzburg–Landau equation of the form in Eq. (4.5.2) numer-
ically by using the split-step Fourier method. Use it to reproduce the
results shown in Fig. 4.15 when a fundamental soliton is amplified in a
fiber amplifier.

4.10 Modify the numerical scheme used in the previous problem and solve
Eq. (4.6.1) numerically. Use your computer code to find the autosoliton
in the anomalous-GVD regime, setting δ 3; s0, and τR to zero and choos-
ing T2 = T0 = 0:2 ps, exp(g0LD) = 2, and α=g0 = 0.5 and 0.7. Plot the
intensity and chirp profiles of the autosolitons obtained in the two cases.
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Chapter 5

Fiber Lasers

A fiber amplifier can be converted into a laser by placing it inside a cavity
designed to provide optical feedback. Such lasers are called fiber lasers, and
this chapter is devoted to them. Section 5.1 covers general concepts such as
pumping, cavity design, and laser threshold. The characteristics of continuous-
wave (CW) fiber lasers are covered in Section 5.2. Sections 5.3 and 5.4 dis-
cuss active and passive mode-locking techniques used to generate short optical
pulses from fiber lasers. The effects of fiber dispersion and nonlinearities on
the mode-locking process are considered in Section 5.5, using the Ginzburg–
Landau equation that represents generalization of the nonlinear Schrödinger
(NLS) equation for doped fibers with gain.

5.1 Basic Concepts

Many different rare-earth ions, such as erbium, neodymium, and ytterbium,
can be used to make fiber lasers capable of operating over a wide wavelength
range extending from 0.4 to 4 µm. The first fiber laser, demonstrated in 1961,
used a Nd-doped fiber with the 300-µm core diameter [1]. Low-loss silica
fibers were used to make diode-laser-pumped fiber lasers in 1973 soon after
such fibers became available [2]. Although there was some research activity
in between [3], it was not until the late 1980s that fiber lasers were fully de-
veloped. The initial emphasis was on Nd- and Er-doped fiber lasers [4]–[17],
but other dopants such as holmium, samarium, thulium, and ytterbium were
also used [18]–[21]. Starting in 1989, the focus turned to the development of
mode-locked, erbium-doped fiber lasers (EDFLs) since such lasers are capable
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Figure 5.1 Pumping scheme for an up-conversion laser. Energy levels of Tm 3+ ions
are shown. Wavy arrows indicate rapid relaxation between the states. Three 1.06-µm
pump photons are absorbed for each photon emitted at 0.48 µm.

of producing short optical pulses in the 1.55-µm spectral region and are use-
ful for optical communications, ultrafast phenomena, and fiber-based sensors
[30]–[33].

5.1.1 Pumping and Optical Gain

Pumping schemes for lasers can be classified as three- or four-level schemes
[34]–[36]; both are shown in Fig. 4.1. A third kind of pumping scheme is also
possible in lasers known as up-conversion lasers [37]–[43]. As an example,
Fig. 5.1 shows pumping of an up-conversion Tm-doped laser. In this pump-
ing scheme, two or more photons from the same pump laser (or from different
lasers) are absorbed by the dopant such that it is raised to an excited state
whose transition energy exceeds the energy of individual pump photons. As a
result, the laser operates at a frequency higher than that of the pump laser, a
phenomenon known as up-conversion in nonlinear optics. This kind of pump-
ing has attracted attention since it can be used to make “blue” fiber lasers that
are pumped with semiconductor lasers operating in the infrared region. In the
example shown in Fig. 5.1, three 1.06-µm pump photons raise the Tm3+ ion to
the excited state 1G4. Blue light near 475 nm is emitted though the1G4!

3H5
transition. Each level in Fig. 5.1 is actually an energy band because of host-
induced broadening of the atomic transition.

Three- and four-level pumping schemes were discussed in Section 4.2 in
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Figure 5.2 Pumping scheme for a four-level laser. Energy levels of Nd 3+ ions are
shown. An Nd-doped fiber laser can emit in three wavelength regions near 0.92, 1.06,
and 1.35 µm with 0.8-µm pumping.

the context of fiber amplifiers. EDFLs use a three-level pumping scheme and
can be pumped efficiently using semiconductor lasers operating at 0.98 or
1.48 µm. To illustrate the case of a four-level fiber laser, Fig. 5.2 shows the en-
ergy levels involved in the operation of Nd-doped fiber lasers. Such lasers can
be pumped efficiently through the 4I9=2 !

4F5=2 transition by using 0.8-µm
GaAs semiconductor lasers. They can be designed to operate in the spectral
regions near 0.92, 1.06, and 1.35 µm. Pumping is most efficient for the 1.06-
µm transition. Although the 1.35-µm transition can also be pumped using a
four-level scheme, it suffers from the problem of excited-state absorption since
the laser light can be absorbed by the transition 4F3=2 !

4G7=2. The first fiber
laser in 1961 used the 1.06-µm transition [1]. Fiber lasers pumped using semi-
conductor lasers were built in 1973 [2]. Modern Nd-doped fiber lasers can
generate CW power levels in excess of 10 W using arrays of semiconductor
lasers for pumping.

5.1.2 Cavity Design

Fiber lasers can be designed with a variety of choices for the laser cavity [30].
The most common type of laser cavity is known as the Fabry–Perot cavity,
which is made by placing the gain medium between two high-reflecting mir-
rors. In the case of fiber lasers, mirrors are often butt-coupled to the fiber ends
to avoid diffraction losses. This approach was adopted in 1985 for a Nd-doped
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Figure 5.3 Schematic of a unidirectional ring cavity used for fiber lasers.

fiber [4]. The dielectric mirrors were highly reflective at the 1.088-µm laser
wavelength but, at the same time, highly transmissive at the pump wavelength
of 0.82 µm. Cavity losses were small enough that the laser reached threshold
at a remarkably low pump power of 100 µW. Alignment of such a cavity is
not easy since cavity losses increase rapidly with a tilt of the fiber end or the
mirror, where tolerable tilts are less than 1Æ. This problem can be solved by de-
positing dielectric mirrors directly onto the polished ends of a doped fiber [8].
However, end-coated mirrors are quite sensitive to imperfections at the fiber
tip. Furthermore, since pump light passes through the same mirrors, dielectric
coatings can be easily damaged when high-power pump light is coupled into
the fiber.

Several alternatives exist to avoid passing the pump light through dielectric
mirrors. For example, one can take advantage of fiber couplers. It is possible to
design a fiber coupler such that most of the pump power comes out of the port
that is a part of the laser cavity. Such couplers are called wavelength-division
multiplexing (WDM) couplers. Another solution is to use fiber gratings as
mirrors [44]. As discussed in Chapter 1, a fiber Bragg grating can act as a high-
reflectivity mirror for the laser wavelength while being transparent to pump
radiation. The use of two such gratings results in an all-fiber Fabry–Perot
cavity [45]. An added advantage of Bragg gratings is that the laser can be
forced to operate in a single longitudinal mode. A third approach makes use
of fiber-loop mirrors [46]. As discussed in Section 3.2, fiber-loop mirrors can
be designed to reflect the laser light but transmit pump radiation.

Ring cavities are often used to realize unidirectional operation of a laser.
In the case of fiber lasers, an additional advantage is that a ring cavity can be
made without using mirrors, resulting in an all-fiber cavity. In the simplest
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Figure 5.4 Schematic of a figure-8 cavity useful for mode-locked fiber lasers.

design, two ports of a WDM coupler are connected together to form a ring
cavity containing the doped fiber, as shown in Fig. 5.3. An isolator is inserted
within the loop for unidirectional operation. A polarization controller is also
needed for conventional doped fiber that does not preserve polarization.

A ring cavity was used as early as 1985 for making an Nd-doped fiber
laser [4]. Since then, several new designs have emerged. Figure 5.4 shows
a specific design used for mode-locked fiber lasers. This configuration is re-
ferred to as the figure-8 cavity because of its appearance. The ring cavity on
the right acts as a nonlinear amplifying-loop mirror, whose switching charac-
teristics were discussed in Section 3.2. Indeed, the nonlinear effects play an
important role in the operation of figure-8 lasers. At low powers, loop trans-
mittivity is relatively small, resulting in relatively large cavity losses for CW
operation. The Sagnac loop becomes fully transmissive for pulses whose peak
power attains a critical value [see Eq. (3.2.8)]. For this reason, a figure-8 cav-
ity favors mode locking. An isolator in the left cavity ensures unidirectional
operation. The laser output is taken through a fiber coupler with low transmis-
sion (< 10%) to minimize cavity losses. An interesting property of the figure-8
cavity is that it permits passive mode locking without a saturable absorber.

Many other cavity designs are possible. For example, one can use two
coupled Fabry–Perot cavities. In the simplest scheme, one mirror is separated
from the fiber end by a controlled amount. The 4% reflectivity of the fiber–air
interface acts as a low-reflectivity mirror that couples the fiber cavity with the
empty air-filled cavity. Such a compound resonator has been used to reduce
the line width of an Er-doped fiber laser [23]. Three fiber gratings in series
also produce two coupled Fabry–Perot cavities. Still another design makes use
of a Fox–Smith resonator [47].
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5.1.3 Laser Threshold and Output Power

The two most important parameters characterizing a laser are the threshold
pump power and the efficiency with which the laser converts the pump power
into laser power once it has reached threshold. Laser threshold is determined
by requiring that the gain compensate total cavity losses during each round trip
[34]–[36]. If we consider a Fabry–Perot cavity, formed by placing two mirrors
of reflectivities R1 and R2 at the two ends of a fiber of length L, the threshold
condition becomes

G2R1R2 exp(�2αintL) = 1; (5.1.1)

where G is the single-pass amplification factor and αint accounts for internal
losses within the cavity.

The single-pass amplification factor should include the nonuniform nature
of the gain coefficient and is obtained using

G = exp

�Z L

0
g(z)dz

�
; g(z) = σs[N2(z)�N1(z)]; (5.1.2)

where σs is the transition cross section and N1 and N2 are the dopant densities
in the two energy states participating in the stimulated-emission process. By
substituting Eq. (5.1.2) in Eq. (5.1.1), the threshold condition becomes

1
L

Z L

0
g(z)dz = αmir +αint � αcav; (5.1.3)

where αmir = � ln(R1R2)=2L is the effective mirror loss and α cav is the total
cavity loss.

The population inversion N2�N1 depends on the pumping strength. In
general, it is obtained by using a set of three or four rate equations for the
energy levels involved in the pumping process. It was calculated in Section
4.2.3 for a three-level laser, and a similar procedure can be followed for a four-
level laser. In fact, the calculation is even simpler since N1 � 0 and N2 � Nt

for a four-level laser, where Nt is the total ion density. For this reason, Eq.
(4.2.2) can be replaced with

∂N2

∂ t
=WpNt�WsN2�

N2

T1
; (5.1.4)

where the transition rates Wp and Ws are given in Eq. (4.2.3). The steady-state
solution of Eq. (5.1.4) is given by

N2 =
(Pp=Psat

p )Nt

1+Ps=Psat
s

; (5.1.5)
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where the saturation powers Psat
p and P sat

s are defined as in Eq. (4.2.5).
The z dependence of N2 stems from variations in the pump and signal pow-

ers along the cavity length. Below or near laser threshold, gain saturation can
be neglected since Ps=Psat

s � 1. Using the exponential decrease in the pump
power through Pp(z) = Pp(0) exp(�αpz), where αp accounts for pump losses,
the integral in Eq. (5.1.3) is easily performed. The pump power needed to
reach threshold is thus given by

Pp(0) =
αcavL

1� exp(�αpL)

�
αp

αs

�
Psat

p ; (5.1.6)

where αp = σpNt and αs = σsNt are the absorption coefficients at the pump
and signal wavelengths, respectively. This expression shows how the laser
threshold depends on the cavity length. It is common to write the threshold
power in terms of the absorbed pump power using

Pabs = Pp(0)[1� exp(�αpL)]: (5.1.7)

From Eqs. (5.1.6) and (5.1.7), the threshold power Pth is given by

Pth = αcavL(αp=αs)P
sat
p � αcavL(aphνp=ΓsσsT1); (5.1.8)

where Psat
p was obtained from Eq. (4.2.5). This equation shows how laser

threshold depends on parameters associated with the gain medium (dopants)
and the laser cavity.

The output power can also be obtained from the threshold condition (5.1.3)
since the saturated gain remains clamped to its threshold value once the pump
power exceeds the threshold. By using Eqs. (5.1.2) and (5.1.5) in Eq. (5.1.3),
we obtain

αs

L

Z L

0

Pp=Psat
p

1+Ps=Psat
s

dz = αcav: (5.1.9)

The integral is difficult to evaluate analytically since the intracavity laser power
Ps varies with z along the fiber. However, in most cases of practical interest,
mirror reflectivities are large enough that Ps can be treated approximately as
constant. The integral then reduces to that evaluated earlier, and Ps is given by
the remarkably simple expression

Ps = Psat
s (Pabs=Pth�1); (5.1.10)

where Pabs is the absorbed pump power.
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A fraction of the intracavity power Ps is transmitted from each mirror as
the output power. The output from the mirror of reflectivity R1 (or from a port
of the output fiber coupler in the case of a ring cavity) can be written as

Pout = (1�R1)Ps = ηs(Pabs�Pth): (5.1.11)

This equation shows that the laser power increases linearly with the absorbed
pump power. The slope efficiency, defined as the ratio dPout=dPabs, is given by

ηs =

�
1�R1

αcavL

��
ashνs

aphνp

�
: (5.1.12)

The slope efficiency is a measure of the efficiency with which the laser con-
verts pump power into output power once it has reached threshold. It can be
maximized by reducing cavity losses as much as possible. Typical values of
ηs are around 10% although values as high as 50% are possible in some fiber
lasers.

5.2 CW Fiber Lasers

Fiber lasers can be used to generate CW radiation as well as ultrashort opti-
cal pulses. This section focuses on the CW operation. The nonlinear effects
associated with the host fiber play a relatively small role in the case of CW
operation until power levels exceed several watts.

5.2.1 Nd-Doped Fiber Lasers

Nd-doped fiber lasers are of considerable practical interest as they can be
pumped using GaAs semiconductor lasers operating near 0.8 µm [30]. Such
a laser was first demonstrated in 1973 using a silica fiber whose core was
codoped with alumina [2]. The graded-index fiber had a core diameter of
35 µm. A Fabry–Perot cavity was made by coating polished ends of an 1-
cm-long fiber with dielectric mirrors having high reflectivity (> 99:5% at the
laser wavelength of 1.06 µm). The laser reached threshold at 0.6 mW of pump
power; the absorbed pump power was estimated to be only 0.2 mW.

Single-mode silica fibers were first used in 1985 for making Nd-doped
fiber lasers [4]. The 2-m-long fiber had Nd3+ concentration of about 300 ppm
(parts per million). The laser cavity was made by butt-coupling the cleaved
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Figure 5.5 Output power as a function of absorbed pump power for an Nd-doped
fiber laser. (After Ref. [12], c1988 IEE)

fiber ends against dielectric mirrors having > 99:5% reflectivity at the 1.088-
µm laser wavelength and > 80% transmission at the 0.82-µm pump wave-
length. Laser threshold was reached at an absorbed pump power of only
0.1 mW. The output power was relatively low. In a later experiment, an Nd-
doped fiber laser pumped with a 0.82-µm dye laser [12]. Figure 5.5 shows the
output power as a function of the absorbed pump power for this laser. Ring
cavities have also been used for Nd-doped fiber lasers. As early as 1985, a
2.2-m ring-cavity laser produced 2 mW of output power in each direction at an
absorbed pump power of 20 mW when pumped using a 595-nm dye laser [4].

Much higher power levels have been realized using double-clad fibers [48]–
[52]. In such fibers, the doped core is surrounded by an inner cladding that is
used to guide the pump light. The large size and a large numerical aperture
of the inner cladding permit efficient coupling of the pump power using GaAs
laser-diode bars capable of emitting high powers (> 10 W) near 800 nm. Since
pump light is guided by the inner cladding, the laser is pumped all along the
length of the doped fiber (side pumping in place of the commonly used end
pumping). In a 1995 experiment, a double-clad Nd-doped fiber laser emitted
9.2 W of CW power in the form of a high-quality beam when 35 W of pump
power was launched into the inner cladding of 400-µm diameter [52]. The
12-µm-diameter core of the double-clad fiber was doped with 1300 ppm of
Nd ions. Power levels in excess of 10 W are possible using the double-clad
geometry, although the nonlinear effects become increasingly more important
and limit the beam quality.



210 Fiber Lasers

(a) (b)

Figure 5.6 (a) Output power versus absorbed pump power and (b) measured spectral
line shape for an Nd-doped fiber laser forced to oscillate in a single longitudinal mode
through an internal Bragg grating. (After Ref. [11], c1988 IEE)

Fiber lasers normally operate in multiple longitudinal modes because of a
large gain bandwidth (> 30 nm) and a relatively small longitudinal-mode spac-
ing (< 100 MHz). The spectral bandwidth of laser output can exceed 10 nm
under CW operation [12]. The large gain bandwidth is a boon for generating
ultrashort pulses. However, many applications of CW lasers require operation
in a narrow-linewidth single mode whose wavelength can be tuned over the
gain bandwidth. Several methods have been used to realize narrow-linewidth
fiber lasers [53]. An intracavity étalon, commonly used for solid-state lasers,
can be used for fiber lasers as well. However, fiber Bragg gratings are pre-
ferred for this purpose since they can be fabricated with a reflectivity spectrum
of less than 0.1 nm. A 1986 experiment used such a grating to realize narrow-
band operation (about 16 GHz bandwidth) of a Nd-doped fiber laser [6]. The
laser provided output powers in excess of 1.5 mW at 10 mW of input pump
power. This laser did not operate in a single longitudinal mode because a rel-
atively small mode spacing. In a later experiment, single-longitudinal-mode
operation was achieved by using a fiber length of only 5 cm [11]. The Nd3+

concentration was relatively high to ensure pump absorption over such a short
length. Figure 5.6 shows the output power as a function of absorbed pump
power together with the observed spectral line shape measured through a self-
heterodyne technique. The spectral line width was only 1.3 MHz for this laser.

The large gain bandwidth of fiber lasers is useful for tuning them over
a wavelength range exceeding 50 nm [53]. The simplest scheme for tuning
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replaces one mirror of the Fabry–Perot cavity by a dispersive grating. An Nd-
doped fiber laser was tuned in 1986 over the range of 1.07 to 1.14 µm by this
technique [5]. An intracavity birefringent filter can also be used for tuning [7].
However, both of these techniques make use of bulky optical components. A
remarkably simple technique uses a ring cavity with a fiber coupler whose
coupling efficiency can be varied mechanically (see Fig. 5.3). Such lasers are
tuned by varying the wavelength at which reflectivity of the fiber coupler is
maximum since the cavity loss becomes minimum for that wavelength. In a
1989 experiment, an Nd-doped fiber laser could be tuned over 60 nm by this
technique [54].

Nd-doped fiber lasers can also operate in the wavelength regions near 0.92
and 1.35 µm. Operation at 0.92 µm requires higher pump powers because
of the three-level nature of the laser transition involved. It is necessary to
use cavity mirrors with a high reflectivity near 0.92 µm but a low reflectivity
near 1.06 µm so that cavity losses are high for the latter transition. In a 1986
experiment, such an Nd-doped fiber laser was tuned over 45 nm by using a
birefringent filter as a tuning device [7]. It is difficult to operate Nd-doped
silica fiber lasers at the 1.35-µm transition because of excited-state absorption
(see Fig. 5.2). With a proper design, such lasers can be made to operate at
wavelengths > 1:36 µm since excited-state absorption is less important for
such wavelengths [55]. Shorter wavelengths (< 1:35 µm) can be obtained
by Nd-doping of fluorozirconate fibers. In one experiment, the laser operated
near 1.33 µm when the cavity mirrors were selected to defavor the 1.06-µm
transition [11].

5.2.2 Erbium-Doped Fiber Lasers

EDFLs can operate in several wavelength regions, ranging from visible to far
infrared. The 1.55-µm region has attracted the most attention because it coin-
cides with the low-loss region of silica fibers used for optical communications.
At first sight, 1.55-µm EDFLs do not appear very promising because the tran-
sition 4I13=2 !

4I15=2 terminates in the ground state of the Er3+ ion. Since a
three-level laser requires that at least half of the ion population be raised to the
excited state, it has a high threshold. Indeed, early attempts to make EDFLs
used high-power argon-ion lasers as a pump source [5]. The threshold pump
powers were � 100 mW with slope efficiencies � 1%. In one experiment, the
slope efficiency was improved to 10%, but the laser reached threshold at 44
mW [23].
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EDFLs pumped near 0.8-µm using GaAs semiconductor lasers suffer from
the problem of excited-state absorption. The situation improves in silica fibers
sensitized with ytterbium [14]–[16]. The core of such fibers is codoped with
Yb2O3 such that the ratio of Yb3+ to Er3+ concentrations is more than 20.
Such EDFLs can be pumped using 0.8-µm semiconductor lasers or miniature
1.06-µm Nd:YAG lasers. The improved performance of Yb-sensitized EDFLs
is due to the near coincidence of the 2F5=2 state of Yb3+ ions with the 4I11=2

state of Er3+ ions. The excited state of Yb3+ is broad enough that it can be
pumped in the range from 0.85 to 1.06 µm. In one Er:Yb fiber laser, pumped
using a 0.82-µm semiconductor laser, the threshold pump power was 5 mW
with a slope efficiency of 8.5% [14].

The performance of EDFLs improves considerably when they are pumped
at the 0.98 or 1.48 µm wavelength because of the absence of excited-state
absorption. Indeed, semiconductor lasers operating at these wavelengths have
been developed solely for the purpose of pumping Er-doped fibers. Their use
has resulted in commercial 1.55-µm fiber lasers. As early as 1989, a 0.98-µm-
pumped EDFL exhibited a slope efficiency of 58% against absorbed pump
power [26], a figure that is close to the quantum limit of 63% obtained by
taking the ratio of signal to pump photon energies. EDFLs pumped at 1.48 µm
also exhibit good performance. In fact, the choice between 0.98 and 1.48 µm
is not always clear since each pumping wavelength has its own merits. Both
have been used for developing practical EDFLs with excellent performance
characteristics [56]–[68].

An important property of continuously operating EDFLs from a practi-
cal standpoint is their ability to provide output that is tunable over a wide
range. Similar to the case of Nd-doped fiber lasers, many techniques can be
used to reduce the spectral bandwidth of tunable EDFLs [53]. In a 1989 ex-
periment [23], an intracavity étalon formed between a bare fiber end and the
output mirror led to a 620-MHz line width even though the fiber was 13 m
long. The laser wavelength can also be tuned by using an external grating in
combination with an étalon. Figure 5.7 shows the experimental setup together
with the tuning curves obtained for two different fiber lengths. This laser was
tunable over a 70-nm range [29]. The output power was more than 250 mW in
the wavelength range from 1.52 to 1.57 µm.

Ring cavities can also be used to make tunable EDFLs [57]–[67]. A com-
mon technique uses a fiber intracavity étalon that can be tuned electrically [60].
Such EDFLs have shown low threshold (absorbed pump power of 2.9 mW)
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Figure 5.7 (a) Experimental setup for a broadly tunable EDFL. (b) Tuning curves for
two different fiber lengths at 540 mW of launched power. (After Ref. [29], cIEE)

with 15% slope efficiency [61]. They can be tuned over 60 nm. They can
also be designed to provide a line width as small as 1.4 kHz [58]. In an op-
timized EDFL, 15.6-mW of output power was obtained with 48% slope effi-
ciency (68% with respect to absorbed pump power) while the tuning range (at
the 3-dB point) was 42 nm [67].

Many other tuning techniques have been used for fiber lasers. In one ex-
periment, a fiber laser was tuned over 33 nm through strain-induced birefrin-
gence [66]. In another, a fiber laser could be tuned over 39 nm by using a re-
flection Mach–Zehnder interferometer that acts as a wavelength-selective loss
element within the ring-laser cavity [68]. The wavelength for which cavity
losses are minimum is changed by controlling the optical path length in one of
the interferometer arms either electro-optically or by applying stress.

Fiber gratings can also be used to improve the performance of EDFLs [33].
As early as 1990, a Bragg grating was used to realize a line width of about
1 GHz [44]. Since then, fiber gratings have been used in EDFAs for a variety
of reasons [69]–[82]. The simplest configuration splices a Bragg grating at
each end of an erbium-doped fiber, forming a Fabry–Perot cavity. Such devices
are called distributed Bragg reflector (DBR) lasers, following the terminology
used for semiconductor lasers [83]. DBR fiber lasers can be tuned continuously
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while exhibiting a narrow line width [70]. They can also be made to oscillate in
a single longitudinal mode by decreasing the fiber length. In a novel scheme,
an EDFL was made to oscillate at two distinct wavelengths, with a narrow line
width at each wavelength, by fabricating two different gratings or by using a
single grating with dual-peak reflectivity [72].

Multiple fiber gratings can be used to make coupled-cavity fiber lasers.
Such lasers have operated at two different wavelengths (0.5 nm apart) simulta-
neously such that each spectral line was stable to within 3 MHz and had a line
width of only 16 kHz [73]. Fiber gratings have been used to make efficient,
low-noise EDFLs. In one such laser, up to 7.6 mW of output power was ob-
tained without self-pulsation while the relative intensity-noise level was below
�145 dB/Hz at frequencies above 10 MHz [74]. Even higher powers can be
obtained by using the master oscillator/power amplifier (MOPA) configuration
in which a fiber laser acting as a master oscillator is coupled to a fiber ampli-
fier through an intracore Bragg grating. Output powers of up to 62 mW have
been obtained by using such a configuration through active feedback while
maintaining intensity-noise levels below �110 dB/Hz at all frequencies [75].

Another approach consists of making a distributed-feedback (DFB) fiber
laser. In analogy with DFB semiconductor lasers [83], a Bragg grating is
formed directly into the erbium-doped fiber that provides gain [77]. Phase-
shifted DFB lasers have also been made by leaving a small region of the doped
fiber in the middle without a grating [78]. Multiple gratings with slightly dif-
ferent Bragg wavelengths can also be formed into the same doped fiber, result-
ing in several DFB lasers cascaded together.

Multiwavelength optical sources, capable of emitting light at several well-
defined wavelengths simultaneously, are useful for WDM lightwave systems.
Fiber lasers can be used for this purpose, and several schemes have been de-
veloped [84]–[91]. A dual-frequency fiber laser was demonstrated in 1993 by
using a coupled-cavity configuration [72]. Since then, simultaneous opera-
tion of a fiber laser at up to 29 wavelengths has been realized by cooling the
doped fiber to 77 K using liquid nitrogen [89]. The cavity length is made quite
small (� 1 mm or so) since spacing between the lasing wavelengths is gov-
erned by the longitudinal-mode spacing. A 1-mm cavity length corresponds
to a 100-GHz wavelength spacing. Such fiber lasers operate as standard mul-
timode lasers. Cooling of the doped fiber helps to reduce the homogeneous
broadening of the gain spectrum to below 0.5 nm. The gain spectrum is then
predominantly inhomogeneously broadened, resulting in multimode operation
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through spectral hole burning [34]. Long cavities with several meters of doped
fibers can also be used. Wavelength selection is then made using an intra-
cavity comb filter such as a Fabry–Perot interferometer [84]. In a dual-filter
approach, a tunable comb filter in combination with a set of fiber gratings pro-
vides a multiwavelength source that is switchable on a microsecond timescale
to precise preselected wavelengths [90].

5.2.3 Other Fiber Lasers

Many other rare-earth ions can be used to make fiber lasers. Holmium, samar-
ium, thulium, and ytterbium were used in 1988 nearly simultaneous exper-
iments [18]–[21] to make fiber lasers emitting at wavelengths ranging from
visible to infrared. Attention later shifted to Pr3+ ions in an attempt to realize
fiber lasers and amplifiers operating at 1.3 µm [92]–[95]. Pr-doped fiber lasers
can also operate at 1.05-µm. A tuning range of 86 nm was realized in an ex-
periment in which the laser was pumped at 592 nm by using a dye laser [96].
Pr-doped fiber lasers can also be operated in the visible region using an up-
conversion pumping scheme [97].

Thulium-doped fiber lasers have attracted considerable attention because
of their potential applications [98]–[100]. They can be operated either in the
blue region of the optical spectrum through an up-conversion pumping scheme
(see Fig. 5.1) or at the 3F4 !

3H6 transition that allows tuning over a range
extending from 1.71 to 2.1 µm. A diode-pumped blue fiber laser is useful for
several applications. By 1997, 230 mW of blue light at 481 nm was obtained
by pumping a Tm-doped fiber laser with a diode-pumped Nd:YAG laser [99].

Operation at several other important wavelengths can be realized by using
fluoride fibers as a host in place of silica fibers. The 3H5 !

3H4 transition
provides emission in the 2.25- to 2.4-µm wavelength range, which is useful
for sensing hydrocarbon gases [100]. The 3F4 !

3H4 transition can provide
tunable lasers in the 1.45- to 1.51-µm wavelength range, which is useful for
pumping EDFAs and Raman amplifiers. Output powers of 1 W have been
obtained at this transition by pumping at 1.06 µm from a compact Nd:YAG
laser [101]. Laser threshold and slope efficiency were respectively 175 mW
and 29%, and the laser could be tuned from 1.445 to 1.51 µm.

Holmium-doped fiber lasers have attracted attention because they oper-
ate near 2 µm, a wavelength useful for medical and other eye-safe applica-
tions. Such lasers were first made in 1988 using fluoride fibers [18]. Thulium-
codoping permits these lasers to be pumped with GaAs lasers operating near
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0.8 µm [102]. By 1994, Ho-doped fiber lasers, made by using silica fibers and
pumped near 0.8 µm, provided output powers of about 10 mW while being
tunable over the wavelength range from 2.037 to 2.096 µm [103].

Ytterbium-doped fiber lasers, operating near 1.01 µm and tunable over
60 nm, were first made in 1988 [21]. In 1992, the use of fluoride fibers as
the host medium provided output powers of up to 100 mW [104]. In a later
experiment, more than 200-mW power with a quantum efficiency of 80% was
obtained from a silica-based Yb-doped fiber laser pumped at 869 nm [105].
Two intracavity Bragg gratings, fabricated directly onto the doped fiber with
reflectivities of 65% and 99%, formed the 7-m-long Fabry–Perot cavity of the
fiber laser. Power levels as high as 110 W have been realized from Yb-doped
fiber lasers by using double-clad fibers. In the 1999 demonstration of this
technique, the inner cladding of the Yb-doped fiber had a rectangular cross
section [106]. Four diode-laser bars, each emitting 45 W of power near the
915-nm wavelength, were used for pumping the fiber laser. The laser emitted
up to 110 W of CW radiation at a wavelength near 1.12 µm, with an optical
conversion efficiency of 58.3%. In another approach to high-power levels, the
output of a low-power Yb-doped fiber laser (master oscillator) is amplified
using a power amplifier (the MOPA configuration). Power levels of several
watts have been obtained using a single amplifier [107], [108]. This scheme
has the potential for realizing ultrahigh power levels by using an array of fiber
amplifiers seeded by a single master oscillator.

5.2.4 Self-Pulsing and Chaos

Some fiber lasers emit a train of optical pulses even when pumped continu-
ously. This phenomenon is referred to as self-pulsing and is a specific example
of laser instabilities that occur in many kinds of lasers [109]. Its occurrence
requires a nonlinear mechanism within the laser cavity. Self-pulsing in EDFLs
has been observed, and its origin is attributed to two different nonlinear mech-
anisms [110]–[113]. In one study, ion–ion interactions in erbium clusters were
found to produce self-pulsing [111]. Another model shows that self-pulsing
can result from destabilization of relaxation oscillations [112], the same mech-
anism that leads to self-pulsing in semiconductor lasers [109]. This origin of
self-pulsing was confirmed in an experiment in which the Er-doped fiber was
codoped with alumina to minimize production of erbium-ion clusters within
the silica core [113]. In fact, the repetition rate of pulses agreed quite well
with relaxation-oscillation frequency. A rate-equation model, generalized to
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Figure 5.8 Chaotic power fluctuations for the two polarization components observed
experimentally at the output of an EDFL. (After Ref. [118], c1997 by the American
Physical Society)

include the excited-state absorption of pump radiation, reproduced most of the
features of self-pulsing observed experimentally.

It is well known that self-pulsing often leads to optical chaos in the laser
output, following a period-doubling or a quasi-periodic route [109]. Chaotic
behavior in fiber lasers has been observed and attributed to several different
nonlinear mechanisms [114]–[120]. Since fiber lasers constitute an example
of class-B lasers, the single-mode rate equations do not predict chaos [109].
However, chaos can be induced through pump modulation, optical feedback,
or external injection [116]. In the case of fiber lasers, chaos can also occur be-
cause of nonlinear coupling between the orthogonally polarized components
of the optical field. In an interesting set of experiments, chaos in an EDFL
originated from the nonlinear polarization dynamics occurring on a timescale
shorter than the round-trip time inside the laser cavity [118]. The two polar-
ization components inside the laser cavity were coupled nonlinearly through
cross saturation and gain sharing. A polarization controller inside the cav-
ity acted as a half-wave plate and introduced additional coupling. Figure 5.8
shows an example of chaotic power fluctuations occurring for the two polar-
ization components. Depending on the pumping and loss levels, a variety of
chaotic patterns were observed experimentally. The experimental data can be
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modeled quite well using a stochastic delay difference model.
In general, the outputs of two chaotic fiber lasers are not synchronized.

This feature can be used for transmitting data in a secure manner if the signal
is generated by modulating the output of a chaotic laser. Several experiments
have used chaotic fiber lasers to demonstrate the possibility of secure optical
communications [121]–[124]. In one set of experiments, the signal is enclosed
on the chaotic waveform by injecting it into the EDFA [121]. The laser output
is then transmitted through a fiber link (as long as 35 km). At the receiver end,
a part of the chaotic signal is injected into another EDFL, designed to be nearly
identical to the one at the transmitter, for chaos synchronization. The data can
be recovered from the remaining received signal because of this synchroniza-
tion. Signal recovery at a bit rate of up to 250 Mb/s was demonstrated in the
1999 experiment [123]. The bit rate can be extended to beyond 1 Gb/s [124].

5.3 Short-Pulse Fiber Lasers

Two techniques used for generating short optical pulses from lasers are known
as Q-switching and mode locking [34]–[36]. An intracavity acousto-optic mod-
ulator was used as early as 1986 to obtain Q-switched optical pulses from fiber
lasers [5]. Q-switching remains a useful technique for fiber lasers since it
can generate high peak-power (> 1 kW) pulses whose wavelengths are tun-
able over a wide range covering the entire gain spectrum [125]–[133]. In a
1999 experiment, Q-switched pulses from a double-clad Yb-fiber laser could
be tuned from 1060 to 1100 nm while maintaining peak powers as large as
2 kW [131]. In another experiment, a Fabry–Perot étalon, with a free spectral
range of 0.535 nm and a finesse of 76, allowed emission of Q-switched pulses
from an EDFL at more than 90 distinct wavelengths simultaneously [132].
Pulse energies as high as 2.3 mJ have been generated at a repetition rate of
500 Hz from a cladding-pumped Yb-doped fiber laser [133].

Q-switching produces relatively broad optical pulses (� 100 ns). In con-
trast, mode locking can generate pulses shorter than 100 fs. Early experiments
on Nd-doped fiber lasers produced pulses of > 1-ns duration [7]. Pulse widths
of 120 ps were obtained by 1988 using a laser-diode array for pumping [17].
Starting in 1989, attention focused on the development of mode-locked ED-
FLs because of their potential applications in lightwave systems [134]–[138].
In this section we focus on actively mode-locked fiber lasers; passive mode
locking is discussed in the next section.
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5.3.1 Physics of Mode Locking

Fiber lasers operate simultaneously in a large number of longitudinal modes
falling within the gain bandwidth. The frequency spacing among the modes
is given by ∆ν = c=Lopt, where Lopt is the optical length during one round
trip inside the cavity. Multimode operation is due to a wide gain bandwidth
compared with a relatively small mode spacing of fiber lasers (∆ν � 10 MHz).
The total optical field can be written as

E(t) =
M

∑
m=�M

Em exp(iφm� iωmt); (5.3.1)

where Em;φm, and ωm are the amplitude, phase, and frequency of a specific
mode among 2M +1 modes. If all modes operate independently of each other
with no definite phase relationship among them, the interference terms in the
total intensity jE(t)j2 averages out to zero. This is the situation in multimode
CW lasers.

Mode locking occurs when phases of various longitudinal modes are syn-
chronized such that the phase difference between any two neighboring modes
is locked to a constant value φ such that φm�φm�1 = φ . Such a phase rela-
tionship implies that φm = mφ +φ0. The mode frequency ω m can be written as
ωm =ω0+2mπ∆ν . If we use these relations in Eq. (5.3.1) and assume for sim-
plicity that all modes have the same amplitude E0, the sum can be performed
analytically. The result is given by [36]

jE(t)j2 =
sin2[(2M +1)π∆νt +φ=2]

sin2(π∆νt +φ=2)
E2

0 : (5.3.2)

The total intensity jE(t)j2 is shown in Fig. 5.9 for nine coupled modes (M = 4).
It is a periodic function of time with period τr = 1=∆ν , which is just the round-
trip time inside the laser cavity. The laser output is in the form of a pulse train
whose individual pulses are spaced by τr. A simple way to interpret this result
is that a single pulse circulates inside the laser cavity and a fraction of its
energy is emitted by the laser each time the pulse arrives at the output coupler.

The pulse width is estimated from Eq. (5.3.2) to be τp = [(2M +1)∆ν ]�1.
Since (2M + 1)∆ν represents the total bandwidth of all phase-locked modes,
the pulse width is inversely related to the spectral bandwidth over which phases
of various longitudinal modes can be synchronized. The exact relationship
between the pulse width and the gain bandwidth ∆νg depends on the nature of
gain broadening (homogeneous versus inhomogeneous).



220 Fiber Lasers

Figure 5.9 Pulse train formed when nine modes of equal amplitudes are mode locked.

5.3.2 Active Mode Locking

Active mode locking requires modulation of either the amplitude or the phase
of the intracavity optical field at a frequency fm equal to (or a multiple of) the
mode spacing ∆ν . It is referred to as AM (amplitude modulation) or FM (fre-
quency modulation) mode locking depending on whether amplitude or phase is
modulated. One can understand the locking process as follows. Both the AM
and FM techniques generate modulation sidebands, spaced apart by the mod-
ulation frequency fm. These sidebands overlap with the neighboring modes
when fm � ∆ν . Such an overlap leads to phase synchronization. The mode-
locking process can be modeled by using a set of multimode rate equations in
which the amplitude of each mode is coupled to its nearest neighbors [34].

One can also understand the process of pulse formation in the time domain.
Figure 5.10 shows the case of AM mode locking in which cavity losses are
modulated at the frequency ∆ν . Since the laser generates more light at the loss
minima, the intracavity field is modulated at the same frequency. This slight
intensity difference builds up on successive round trips, and the laser emits a
train of mode-locked pulses in the steady state. Stated another way, the laser
threshold is lower for pulsed operation. As a result, the laser emits a train of
pulses in place of the CW output.

The time-domain theory of mode locking considers the evolution of a
mode-locked pulse over one round trip inside the laser cavity [139]–[141]. As
usual, even though the pulse amplitude A(z; t) is modified by the gain medium
and the modulator, it should recover its original value after one round trip
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Figure 5.10 Schematic illustration of active AM mode locking through modulation
of cavity losses.

under steady-state conditions. We can adapt the Ginzburg–Landau equation,
derived in Section 4.3 for fiber amplifiers, to the case of fiber lasers by adding
the losses introduced by the amplitude modulator and cavity mirrors. This
requires replacing the loss parameter α in Eq. (4.3.17) with

α = αc +αM[1� cos(ωMt)]; (5.3.3)

where αc accounts for all cavity losses and αM is the additional loss, periodic
at the frequency ωM , introduced by the modulator. In the context of fiber lasers,
Eq. (4.3.17) becomes

∂A
∂ z

+
i
2
(β2 + igcT 2

2 )
∂ 2A
∂ t2 = i

�
γ +

i
2

α2

�
jAj2A+

1
2
(gc�α)A; (5.3.4)

where gc is the saturated gain averaged over the cavity length L. The parameter
T2 is related inversely to the gain bandwidth as T2 = 1=Ωg. This equation is
sometimes called the master equation of mode locking [141].

Consider first the case in which the effects of group-velocity dispersion
(GVD) and self-phase modulation (SPM) can be ignored by setting β2 = 0 and
γ = 0 in Eq. (5.3.4). Two-photon absorption can also be neglected (α2 = 0). If
we use cos(ωMt)� 1� 1

2(ωMt)2 in Eq. (5.3.3), assuming that the pulse width
is much shorter than a modulation cycle, Eq. (5.3.4) takes the form
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In the steady state, we look for solutions of the form A(z; t) = B(t) exp(iKz),
where B(t) governs the pulse shape that does not change from one round trip
to next. The resulting ordinary differential equation for B(t) is identical to
that of a harmonic oscillator and has the following solution in terms of the
Hermite–Gauss functions [141]:

Bn(t) =CnHn(t=T0)exp[�1
2(t=T0)

2]; (5.3.6)

where n = 0;1;2; : : :, Hn is the Hermite polynomial of order n,

T0 = [2gc=(αMΩ2
gω2

M)]1=4 (5.3.7)

is a measure of the width of mode-locked pulses, and Cn is a normalization
constant related to the pulse energy. The propagation constant K depends on
various laser parameters as

iK = gc�αc�αMω2
MT 2

0 (n+
1
2 ): (5.3.8)

In the steady state, K should be real. Equation (5.3.8) provides the sat-
urated gain needed for various Hermite–Gauss temporal modes supported by
the laser. Since the lowest gain occurs for n = 0, an actively mode-locked
laser emits a Gaussian pulse with a full width at half maximum (FWHM)
Tp� 1:665T0. The pulse width depends on both the gain bandwidth Ωg and the
modulator frequency ωM = 2π∆ν , where ∆ν is the longitudinal-mode spacing.

The situation changes considerably when the effects GVD and SPM are
included in Eq. (5.3.4). In the absence of gain and losses, this equation reduces
to the NLS equation and has the soliton solutions discussed in Chapter A.5.
The solution corresponding to a fundamental soliton is given by

A(z; t) =
p

P0 sech(t=Ts)exp(iz=2LD); (5.3.9)

where the peak power P0 and the width T0 are related by the usual soliton
condition

N = γP0T 2
0 =jβ2j= 1; (5.3.10)

where N is the soliton order.
The important question is how the soliton solution is affected by the gain

and losses inside the laser cavity. If the pulse formation is dominated by the
GVD and SPM effects, one should expect the mode-locked pulse to behave
as a fundamental soliton and have the “sech” shape in place of the Gaussian
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shape predicted above in the absence of GVD and SPM. Soliton perturbation
theory has been used to find the width of the steady-state soliton pulse. The
results show that the mode-locked pulse is shorter than that predicted by Eq.
(5.3.6) when soliton effects are significant. The maximum possible reduction
factor is limited by [142]

(T0=Ts)
2
< 1

2

�
3dg +

q
9d2

g �π2
�
; dg = Re

�q
1+ ijβ2jΩ2

g=gc

�
: (5.3.11)

In general, pulses become shorter as the amount of anomalous GVD increases;
reduction by a factor of 2 occurs when jβ 2j = 5gc=Ω2

g. Note also that a mini-
mum amount of GVD is required for solitons to form since dg should exceed
π=3.

5.3.3 Harmonic Mode Locking

The most common technique for active mode locking of fiber lasers makes
use of an amplitude or phase modulator. Both acousto-optic and electro-optic
modulators have been used for this purpose. However, most bulk modulators
are not suitable for fiber lasers because of their size. They also introduce large
coupling losses when light is coupled into and out of the modulator. An excep-
tion occurs in the case of LiNbO3 modulators, which are relatively compact
and can be integrated within the fiber cavity with relatively small coupling
losses. They can also be modulated at speeds as high as 40 GHz [143]. For
these reasons, LiNbO3 modulators are commonly used for mode-locking fiber
lasers.

Active mode locking of EDFLs initially produced pulses of widths > 10 ps.
In a 1989 experiment, 4-ps pulses were generated using a ring cavity that in-
cluded 2-km of standard fiber with large anomalous GVD [144]. Generation
of short pulses was attributed to the soliton effects. In fact, the peak power
of pulses was in good agreement with the expected peak power for the fun-
damental soliton from Eq. (5.3.10). The soliton-like nature of emitted pulses
was also confirmed by the inferred “sech” shape and by the measured time-
bandwidth product of 0.35. The pulse width was reduced to below 2 ps in
an FM mode-locking experiment that used a Fabry–Perot cavity [145]. The
fiber was only 10 m long, resulting in a longitudinal-mode spacing of about
10 MHz. This laser was referred to as the fiber-soliton laser since the “sech”
pulses were nearly chirp free, with a time-bandwidth product of only 0.3. The
laser wavelength could be tuned over the range of 1.52 to 1.58 µm, indicating
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that such lasers can serve as a source of tunable picosecond pulses in the 1.55-
µm wavelength region of interest for optical communication systems. In this
experiment, the LiNbO3 modulator was operated at 420 MHz. This kind of
mode locking, where modulation frequency is an integer multiple of the mode
spacing, is called harmonic mode locking [34].

The performance of harmonically mode-locked EDFLs has continued to
improve [146]–[174]. As early as 1990, the pulse-repetition rate was extended
to 30 GHz by using a high-speed LiNbO3 modulator [146]. A ring cavity
of 30-m length was used with an intracavity isolator for unidirectional oper-
ation. In a 1992 experiment, a fiber laser provided transform-limited 3.5- to
10-ps pulses with a time-bandwidth product of 0.32 at repetition rates of up to
20 GHz [147]. The laser was used in a system experiment to demonstrate that
such pulses can be used for soliton communication systems at bit rates of up
to 8 Gb/s.

A common problem with harmonically mode-locked fiber lasers is that
they are unable to produce stable, equal-amplitude pulse trains over extended
periods unless a stabilization technique is used. A phase-locking technique
in which the optical phase is locked to the electrical drive of the modulator
has been used with success [148]. In another approach, the use of a high-
finesse Fabry–Perot étalon with a free spectral range equal to the repetition rate
has resulted in a stable harmonically mode-locked EDFL suitable for soliton
communication systems [149]. Polarization-maintaining fibers have also been
used to make actively mode-locked EDFLs. In 1993, such a laser produced
6-ps pulses at repetition rates of up to 40 GHz and at wavelengths tunable over
a wide range from 40 to 50 nm [151].

In a different approach, a cavity design known as the sigma configurationis
used for making environmentally stable fiber lasers [156]. Figure 5.11 shows
the σ -shaped cavity schematically consisting of two parts. A loop made of
polarization-maintaining fiber contains a LiNbO3 amplitude modulator and an
output coupler. The loop is coupled to a linear section through a polarizing
beam splitter. This section is made of traditional fibers and does not preserve
the polarization state. However, it terminates with a Faraday rotator placed in
front of a mirror. Such a Faraday mirror produces orthogonally polarized light
on reflection. As a result, all birefringence effects are totally compensated
during each round trip in the linear section.

A dispersion-compensating fiber can be used in the linear branch for reduc-
ing the average GVD. Such a dispersion-management technique has many ad-
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Figure 5.11 Schematic of a harmonically mode-locked fiber laser employing the
sigma configuration. The 10-m-long fiber amplifier (FA) is connected to a 90-m prop-
agation loop in the linear section. (After Ref. [156])

vantages, which will be discussed in Chapter 7. It is important to note that the
sigma cavity is functionally equivalent to a ring cavity because of the Faraday
mirror. In 1996 experiment, such a laser produced 1.3-ps pulses at the 10-GHz
repetition rate through soliton-shaping effects while maintaining a negligible
pulse-dropout rate and low noise [156]. The pulse shape was close to Gaus-
sian in the center but fitted the “sech” shape better in the wings. This is a
well-known feature of dispersion-managed solitons (see Chapter 8). The pulse
width also decreased at higher power levels because of the increased nonlinear
phase shift produced by SPM. This feature is in agreement with Eq. (5.3.10).

Active mode locking requires the modulation frequency of the LiNbO3
modulator to remain matched to the longitudinal-mode spacing ∆ν (or a mul-
tiple of it) quite precisely. This is difficult to realize in practice because of
fluctuations in ∆ν induced by environmental changes. The matching prob-
lem can be solved automatically by using the technique of regenerative mode
locking [153]. In this technique, the electrical signal for the modulator at the
correct modulation frequency is generated from the laser output using a clock-
extraction circuit, a phase controller, and a microwave amplifier. Even though
the laser is not initially mode locked, its power spectrum contains the beat sig-
nal at frequencies corresponding to multiples of the longitudinal-mode spac-
ing. This signal can be used to produce pulse trains at high repetition rates
through harmonic mode locking. As early as 1995, 1.8-ps pulses were pro-
duced at the 20-GHz repetition rate using regenerative mode locking of a ring
cavity made by using polarization-maintaining fiber components [155]. The



226 Fiber Lasers

Figure 5.12 Temporal (circles) and spectral (triangles) widths for a sigma laser as a
function of intracavity optical power Pcav. (After Ref. [171])

output pulses could be compressed to below 0.2 ps in a fiber amplifier made
with dispersion-decreasing fiber. The wavelength of the regeneratively mode-
locked laser was tunable over a considerable range within the gain spectrum of
erbium ions. Moreover, the mode-locked pulse train exhibited low timing jitter
(about 120 fs) and small energy fluctuations (about 0.2%) at a repetition rate
of 10 GHz [168]. In a 1999 experiment, the technique of regenerative mode
locking produced a 40-GHz pulse train tunable over 1530 to 1560 nm while
maintaining pulse widths close to 1 ps [169].

A harmonically mode-locked fiber laser can also be stabilized with an elec-
tronic feedback loop that is used to adjust the cavity length. Such a scheme has
been used for a sigma-configuration laser whose cavity included a piezoelec-
tric transducer for fine adjustment of the cavity length [171]. The cavity also
included an optical filter (bandwidth 16 nm). A careful analysis of this sigma
laser showed that it has three distinct regions of operation. Figure 5.12 shows
how temporal and spectral widths of the mode-locked pulses change with in-
creasing intracavity power. At low power levels, the nonlinear effects (SPM)
in silica fibers are negligible, and the laser produces Gaussian-shaped pulses
of width close to 5 ps. As the intracavity power increases, the soliton effects
become important, and the pulses become narrower, more intense, and attain a
certain fixed energy level (as required for autosolitons). If the average power is
not large enough to sustain such pulses in all time slots (because of a high rep-
etition rate enforced by the modulator), pulse dropouts occur in a random fash-
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ion. Finally, when the intracavity power exceeds a certain value (about 5 mW),
the laser emits a train of short optical pulses (width 1–3 ps) with a negligible
dropout rate, low noise, and low timing jitter. This behavior is in agreement
with numerical simulations based on the Maxwell–Bloch equations [172]. The
theory predicts a fourth regime in which more than one pulse may occupy the
same time slot at high power levels when GVD is uniform inside the cavity.

In general, the use of dispersion management improves the laser perfor-
mance considerably. It helps to reduce the timing jitter in the position of mode-
locked pulses within the pulse train. The jitter reduction is similar in nature
to that occurring for periodically amplified lightwave systems (see Chapter 8).
Fiber lasers employing dispersion management and polarization-maintaining
fibers can be designed to emit 10-GHz pulse trains simultaneously at two dif-
ferent wavelengths [170]. At a single wavelength, the repetition rate of the
mode-locked pulse train can be made as high as 40 GHz using AM mode lock-
ing. The repetition rate of 64 GHz has been realized in an FM mode-locked
fiber laser in which the optical phase was modulated at 16 GHz, and a Fabry–
Perot filter with a 64-GHz free spectral range was used to initiate harmonic
mode locking [166]. Such fiber lasers should prove useful for lightwave sys-
tems employing the return-to-zero (RZ) format for data transmission.

5.3.4 Other Techniques

An undesirable aspect of actively mode-locked fiber lasers is that the use of
a LiNbO3 modulator introduces a nonfiber element inside the laser cavity.
Several techniques have been used to produce mode locking without requir-
ing an electro-optic modulator. In one scheme, the nonlinear phenomenon
of cross-phase modulation (XPM) is used to produce an all-fiber mode-locked
EDFL [175]–[179]. Figure 5.13 shows the design of such a laser schematically.
A relatively long length (several kilometers) of fiber is inserted into the ring
cavity through two WDM couplers. Pump pulses from an external laser prop-
agate into this fiber and modulate the phase of laser light through XPM. If the
repetition rate of pump pulses is an integer multiple of the mode spacing, XPM
forces the fiber laser to produce mode-locked pulses. Pulses shorter than 10 ps
have been obtained by this technique at repetition rates up to 40 GHz. Such
a laser has been used to transfer an arbitrary bit pattern from the pump-pulse
wavelength to the laser wavelength [176], resulting in wavelength conversion.
This technique can also be used to make an optically programmable mode-
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Figure 5.13 Experimental setup for observation of XPM-induced mode locking in
fiber lasers. (After Ref. [175], c1992 IEE)

locked laser such that emitted pulses represent the result of logic operations
between elements of the driving pulse train [177].

Synchronous pumping can also be used for FM mode locking of fiber
lasers. Implementation of this technique is extremely simple for EDFLs pump-
ed with semiconductor lasers since one can simply modulate the pump-laser
current at the appropriate frequency. Because of a relatively long fluorescence
time (� 10 ms) of erbium ions, it is not possible to modulate the gain at fre-
quencies in excess of 1 MHz. However, pump pulses can modulate the laser
field through XPM although XPM-induced phase shift is expected to be quite
small. In a 1992 experiment in which an EDFL was pumped at 980 nm, mode-
locked pulses were relatively broad with widths > 100 ps [180]. Since the
XPM-induced phase shift depends on the group-velocity mismatch, it can be
increased by decreasing the mismatch. Indeed, pulses shorter than 50 ps were
generated when a 1.48-µm pump laser was used [181]. Another way to in-
crease the XPM-induced phase shift is to increase the peak power of pump
pulses. Mode-locked pulses as short as 2 ps were generated in an EDFL
pumped with a Nd:YAG laser producing 100-ps pulses at the 100-MHz rep-
etition rate [182]. Soliton shaping plays an important role in these experiments
since phase-modulated CW laser radiation is converted into nearly chirp-free
soliton pulses through the combined action of GVD and SPM.

Several other variations have been used for actively mode-locked fiber
lasers. In one scheme, a semiconductor optical amplifier is used as the mode-
locking element [183]. In essence, the long piece of silica fiber in Fig. 5.13 is
replaced with a pigtailed amplifier. When pump pulses and laser light prop-
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agate inside the amplifier, the nonlinear phenomenon of cross-gain saturation
modulates both the amplitude and the phase of laser light. GVD and SPM
occurring inside the fiber cavity convert the modulated signal into a train of
mode-locked soliton pulses. Pulses shorter than 10 ps at repetition rates of up
to 20 GHz have been generated by this technique [184].

In another scheme, an acousto-optic modulator and an optical filter are
placed inside the laser cavity [185]–[188]. The modulator’s role is to shift the
laser frequency by a small amount (� 100 MHz). Such a frequency-shifted
feedback in combination with the fiber nonlinearity leads to formation of pi-
cosecond optical pulses inside the laser cavity. Pulses shorter than 10 ps have
been generated by using a narrowband optical filter [186]. The theory of such
lasers is similar to that used for soliton communication systems making use
of sliding-frequency guiding filters (see Chapter 8). In both cases, the soliton
maintains itself by changing its frequency adiabatically so that its spectrum
remains close to the gain peak. The CW light, in contrast, moves away from
the gain peak after a few round trips because of the frequency shift, and thus
experiences higher losses than the soliton. As a result, the fiber laser emits
mode-locked soliton pulses. Such a laser can also be classified as passively
mode locked since nothing modulates the amplitude or phase of laser light at
the round-trip frequency or its multiple. We focus on passive mode locking in
the following two sections.

5.4 Passive Mode Locking

Passive mode locking is an all-optical nonlinear technique capable of produc-
ing ultrashort optical pulses, without requiring any active component (such as
a modulator) inside the laser cavity. It makes use of a nonlinear device whose
response to an entering optical pulse is intensity dependent such that the ex-
iting pulse is narrower than the input pulse. Several implementations of this
basic idea have been used to make passively mode-locked fiber lasers. This
section discusses mostly experimental results.

5.4.1 Saturable Absorbers

Saturable absorbers have been used for passive mode locking since the early
1970s. In fact, their use was the sole method available for this purpose until
the advent of additive-pulse mode locking. The basic mechanism behind mode
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locking is easily understood by considering a fast saturable absorber whose
absorption can change on a timescale of the pulse width. When an optical pulse
propagates through such an absorber, its wings experience more loss than the
central part, which is intense enough to saturate the absorber. The net result
is that the pulse is shortened during its passage through the absorber. Pulse
shortening provides a mechanism through which a laser can minimize cavity
losses by generating intense pulses if the CW radiation is unable to saturate
the absorber.

To quantify the extent of pulse shortening in a saturable absorber, we
should replace g0 by α0 in Eq. (4.1.9), where α 0 is the small-signal absorption
coefficient. The resulting equation can be integrated analytically to obtain

ln(Pout=Pin)+(Pout�Pin)=Psa +α0la = 0; (5.4.1)

where Pin and Pout are the input and output powers, Psa is the saturation power,
and la is the length of the saturable absorber. For a fast-responding saturable
absorber, Eq. (5.4.1) applies along the entire pulse and can be used to obtain
the output shape Pout(t) for a given input shape Pin(t). The output pulse is
always slightly narrower than the input pulse because of the absorption of low-
intensity wings.

The pulse-formation process is quite complex in passively mode-locked
lasers [34]. Fluctuations induced by spontaneous emission are enhanced by the
saturable absorber during multiple round trips inside the laser cavity until an
intense pulse capable of saturating the absorber is formed. The pulse continues
to shorten until it becomes so short that its spectral width is comparable to
the gain bandwidth. The reduced gain in spectral wings then provides the
broadening mechanism that stabilizes the pulse width to a specific value. In
the case of fiber lasers, GVD and SPM also play an important role in evolution
of mode-locked pulses and should be included.

It is not easy to find a fast saturable absorber responding at timescales of
1 ps or faster. The most suitable material for fiber lasers is a semiconductor
absorbing medium [189]–[200]. Its use is more practical with a Fabry–Perot
cavity since the absorber can be attached to one of the cavity mirrors. The
saturable absorber can be made using either a single or a large stack (> 100
layers) of quantum-well layers. In the latter case, it forms a periodic structure
called the superlattice. Each period of the superlattice consists of alternating
absorbing and transparent layers. In the case of EDFLs, all layers are made
using the InGaAsP material but the layer composition is altered appropriately.
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In some cases, the mirror attached to the saturable absorber is also made using
a periodic arrangement of quarter-wavelength-thick layers that form a grating
and reflect light through Bragg diffraction. Such a device is referred to as a
saturable Bragg reflector to emphasize the use of a Bragg grating.

A superlattice was first used in 1991 for passive mode locking of a ring-
cavity EDFL [189]. It produced mode-locked pulses of 1.2-ps duration with
a “sech” shape, as expected from theory. In a 1993 experiment [190], the
superlattice saturable absorber consisted of 82 periods, and each period used
a 7.8-nm-thick absorbing InGaAs layer and a 6.5-nm-thick transparent InP
layer. The absorber was integrated with a Bragg reflector (made of alternating
InGaAsP and InP layers) that acted as one of the mirrors of the Fabry–Perot
laser cavity. Mode-locked pulses obtained from this laser were relatively broad
(� 22 ps) for a 6.2-m cavity, but their width could be reduced to 7.6 ps by
shortening the doped fiber to 2 m. With further refinements, mode-locked
pulses as short as 0.84 ps with pulse energies of 0.85 nJ were obtained at a
repetition rate of 22 MHz [191]. The same technique was also used for mode
locking a Nd-doped fiber laser, and 4-ps pulses were obtained using a heavily
doped fiber of 6-cm length [192].

A superlattice saturable absorber integrated with a Bragg reflector requires
the growth of hundreds of thin layers using molecular-beam epitaxy. In a dif-
ferent approach, a single 2-µm-thick epitaxial layer of InGaAsP, grown on an
InP substrate, acted as a saturable absorber [193]. It was directly mounted on
a mirror serving as the output coupler. The 1.2-m-long erbium-doped fiber
was the polarization-preserving type. The mode-locked laser produced 320-fs
pulses with 40 pJ energy. The laser was self-starting and its output was linearly
polarized along a principal axis of the fiber. By codoping the gain-producing
fiber with ytterbium, such a laser can be pumped with diode-pumped Nd:YAG
or Nd:YLF lasers or directly with a semiconductor laser.

A semiconductor laser amplifier can also be used as a saturable absorber
when it is biased below threshold. Its use allows the construction of a self-
starting, passively mode-locked EDFL that can be switched between mode-
locked and CW states by simply changing the amplifier bias current. In a
1993 experiment, such a laser produced mode-locked pulses of 1.25-ps width
at a repetition rate in the range from 10 to 50 MHz in a ring-cavity configura-
tion [194].

Fiber lasers that are mode-locked using a saturable Bragg reflector inside a
short Fabry–Perot cavity have quite interesting properties. Figure 5.14 shows
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Figure 5.14 Schematic of a fiber laser that was mode locked using a saturable Bragg
reflector. (After Ref. [197])

the cavity design schematically. A short piece (length 15 cm) of doped fiber is
butt-coupled to the saturable Bragg reflector. Its other end is sliced to a sec-
tion of standard telecommunication fiber (length about 30 cm) and terminated
with a connector on which a high-reflectivity dielectric mirror has been coated.
A piece of dispersion-compensating fiber can also be included for dispersion
management.

In a series of experiments, total cavity length was changed from 0.5 to
2.5 m, and the average GVD was varied over wide range (normal to anoma-
lous) by using the dispersion-compensating fiber [196]. A mode-locked pulse
train could be formed even in the case of normal GVD, but the pulse width was
close to 16 ps at a repetition rate of about 40 MHz. This is expected from the
results of Section 4.6. Much shorter pulses were observed when the average
GVD was anomalous. Pulse widths below 0.5 ps formed over a wide range
of average GVD (β2 =�2 to �14 ps2/km) although they were not transform
limited. This is expected because of the chirp associated with the autosoli-
tons (see Section 4.5). For short laser cavities (under 50 cm), harmonic mode
locking was found to occur. A 45-cm-long laser produced transform-limited,
300-fs pulses at a repetition rate of 2.6 GHz through harmonic passive mode
locking [197]. The laser was able to self-organize into a steady state such than
11 pulses with nearly uniform spacing were present simultaneously inside the
cavity. Cross-correlation measurements indicated that spacing between pulses
was uniform to within 4% of the expected value.

5.4.2 Nonlinear Fiber-Loop Mirrors

An undesirable aspect of semiconductor-based saturable absorbers is that fiber
lasers using them loose their all-fiber nature. A solution is provided by the
nonlinear fiber-loop mirrors (Sagnac interferometers) whose power-dependent
transmission can shorten an optical pulse just as saturable absorbers do (see
Section 3.2). Fiber lasers making use of a Sagnac loop for passive mode lock-
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ing are referred to as figure-8 lasers because of the appearance of their cavity
(see Fig. 5.4). The physical mechanism responsible for mode locking is known
as the interferometric or additive-pulse mode locking.

The operation of a figure-8 laser can be understood as follows. The central
3-dB coupler in Fig. 5.4 splits the entering radiation into two equal counter-
propagating parts. The doped fiber providing amplification is placed close to
the central coupler such that one wave is amplified at the entrance to the loop
while the other experiences amplification just before exiting the loop, resulting
in a nonlinear amplifying-loop mirror (NALM). As discussed in Section 3.2,
the counterpropagating waves acquire different nonlinear phase shifts while
completing a round trip inside the NALM. Moreover, the phase difference is
not constant but varies along the pulse profile. If the NALM is adjusted such
that the phase shift is close to π for the central intense part, this part of the
pulse is transmitted, while pulse wings get reflected because of their lower
power levels and smaller phase shifts. The net result is that the pulse exiting
from the NALM is narrower compared with that entering it. Because of this
property, a NALM behaves similarly to a fast saturable absorber except for
one major difference—it is capable of responding at femtosecond timescales
because of the electronic origin of fiber nonlinearity.

NALMs were first used in 1991 for mode locking a fiber laser [201]–[205].
Pulses shorter than 0.4 ps were generated in the form of fundamental soli-
tons even in early experiments in which the fiber laser was pumped using a
Ti:sapphire laser [202]. In a later experiment, 290-fs pulses were produced
from an EDFL pumped by 1.48-µm InGaAsP semiconductor lasers [205]. The
threshold for mode-locked operation was only 50 mW. Once mode locking
initiated, pump power could be decreased to as low as 10 mW.

It is generally difficult to produce pulses shorter than 100 fs from figure-8
lasers. However, mode-locked pulses as short as 30 fs were obtained by ampli-
fying the laser output and then compressing the amplified pulse in a dispersion-
shifted fiber [206]. Pulse shortening inside a fiber amplifier occurs because of
adiabatic amplification of fundamental solitons (see Section 4.3). Since the
amplified pulse is chirped, it can be further compressed by using a fiber with
the appropriate dispersion. Pulses as short as 98 fs were generated directly
from a figure-8 laser by using a polarization-sensitive isolator and a short piece
of normal-GVD fiber for chirp compensation [207].

Passively mode-locked fiber lasers suffer from a major drawback that has
limited their usefulness. It was observed in several experiments that the repeti-
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tion rate of mode-locked pulses was essentially uncontrollable and could vary
over a wide range. Typically, several pulses circulate simultaneously inside the
laser cavity, and the spacing among them is not necessarily uniform. In con-
trast with the case of active mode locking, nothing in the cavity determines the
relative location of pulses. As a result, the position of each pulse is determined
by various other effects such as fiber birefringence and soliton interactions.

When a single pulse circulates inside the laser cavity, the repetition rate is
equal to the round-trip frequency ∆ν . However, since pulses in a fiber laser
propagate as fundamental solitons, their energy is fixed such that

Es = P0

Z ∞

�∞
jA(z; t)j2 dt = 2P0Ts: (5.4.2)

Since both the soliton width Ts and the peak power P0 are limited by the laser
design, the pulse energy Es is fixed or quantized [208]. On the other hand,
the average intracavity power Pav is determined by the pumping level and gain
saturation. If Pav > (∆ν)Es, multiple pulses—each of quantized energy Es—
must coexist inside the laser cavity. If these pulses were uniformly spaced, the
fiber laser would behave similarly to a harmonically mode-locked laser. How-
ever, multiple pulses need not necessarily be uniformly spaced. Most fiber
lasers emit pulse trains at the fundamental repetition rate ∆ν such that spacing
among pulses in each period is virtually random. Under some operating con-
ditions, the laser emits a train of bunched pulses such that each bunch contains
10 or more closely spaced solitons, each with the quantized energy Es. The
number of pulses within each fundamental period depends on the pumping
level, among other things.

The key to stabilizing a figure-8 laser consists of implementing a scheme
that can adjust the repetition rate fr in such a way that frEs nearly equals the
average circulating power inside the laser cavity. In one scheme, a subring was
added to the left ring in Fig. 5.5 containing the isolator [209]. The subring was
only 1.6-m long while the total loop length was 60.8 m. In this arrangement,
the repetition rate of the subring cavity is 38 times that of the main laser cavity.
Pulses circulating inside the subring provide a seed and lead to the formation of
38 uniformly spaced pulses in the main laser cavity under mode-locked opera-
tion. Such a laser emitted 315-fs pulses at a fixed repetition rate of 125 MHz.
A similar control of the repetition rate can be realized by placing a mirror close
to one port of the output coupler [210]. In this case, the optical feedback from
the external mirror provides the seed and fixes the relative location of pulses
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(a) (b)

Figure 5.15 (a) Autocorrelation trace and (b) spectrum of mode-locked pulses ob-
tained from a figure-8 laser employing a 94:6 central coupler. (After Ref. [214])

in a periodic manner. The mirror distance controls the repetition rate of such
fiber lasers.

The performance of figure-8 lasers has continued to improve [211]–[219].
Transform-limited pulses of 1.35-ps duration, at wavelengths continuously
tunable over a 20-nm range, were generated in 1993 by using an intracavity
Fabry–Perot filter for spectral stabilization and a feedback loop for temporal
stabilization [213]. In another experiment, the central coupler (see Fig. 5.4)
was unbalanced such that 94% of the intracavity power was propagating in the
direction in which laser emission occurred [214]. Such a laser had lower cav-
ity losses and was found to be more easily mode locked than figure-8 lasers
with balanced (50:50) central couplers. The laser was able to generate pulses
shorter than 1 ps. Figure 5.15 shows the autocorrelation trace of 970-fs pulses
together with the corresponding spectrum. The origin of spectral sidebands
seen in this figure is discussed later.

Shorter and more energetic pulses were obtained in a 1997 experiment
in which the erbium-doped fiber had normal dispersion (β2 > 0) at the op-
erating wavelength [219]. Pulses inside the cavity were stretched consider-
ably during amplification inside the doped fiber. This permitted energy levels
as high as 0.5 nJ. Pulses were compressed down to 125 fs by using a long
length of dispersion-shifted fiber inside the cavity. Both the central wave-
length and the spectral width of mode-locked pulses were tunable by adjusting
the polarization-controllers within the laser cavity.
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Figure 5.16 Schematic design of a fiber laser passively mode locked via nonlinear
polarization-rotation.

5.4.3 Nonlinear Polarization Rotation

Fiber lasers can also be mode locked by using intensity-dependent changes in
the state of polarization (occurring because of SPM and XPM) when the or-
thogonally polarized components of a single pulse propagate inside an optical
fiber (see Chapter A.6). The physical mechanism behind mode locking makes
use of the nonlinear birefringence and is similar to that of a Kerr shutter (see
Section A.7.2). From a conceptual point of view, the mode-locking mecha-
nism is identical to that used for figure-8 lasers (additive-pulse mode locking)
except that the orthogonally polarized components of the same pulse are used
in place of counterpropagating waves. From a practical standpoint, passive
mode locking can be accomplished by using a cavity with a single fiber ring.

The mode-locking process can be understood using the ring cavity shown
in Fig. 5.16. A polarizing isolator placed between two polarization controllers
acts as the mode-locking element. It plays the double role of an isolator and
a polarizer such that light leaving the isolator is linearly polarized. Consider
a linearly polarized pulse just after the isolator. The polarization controller
placed after the isolator changes the polarization state to elliptical. The po-
larization state evolves nonlinearly during propagation of the pulse because of
SPM- and XPM-induced phase shifts imposed on the orthogonally polarized
components. The state of polarization is nonuniform across the pulse because
of the intensity dependence of the nonlinear phase shift. The second polar-
ization controller (one before the isolator) is adjusted such that it forces the
polarization to be linear in the central part of the pulse. The polarizing isolator
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lets the central intense part of the pulse pass but blocks (absorbs) the low-
intensity pulse wings. The net result is that the pulse is slightly shortened after
one round trip inside the ring cavity, an effect identical to that produced by a
fast saturable absorber.

The technique of nonlinear polarization rotation was first used in 1992 for
passive mode locking of fiber lasers and has resulted in considerable improve-
ment of of such lasers [220]–[224]. By the end of 1992, stable, self-starting
pulse trains of subpicosecond pulses (452-fs pulse width) at a 42-MHz repeti-
tion rate were generated by using this technique [223]. Further improvements
occurred when it was realized that the presence of anomalous GVD within the
laser cavity is not necessarily beneficial since it limits both the width and the
energy of mode-locked pulses. In a 1993 experiment, 76-fs pulses—with 90-
pJ energy and 1 kW of peak power—were generated by using a ring cavity in
which the average GVD was normal [224].

Considerable research has been done to understand and to improve fiber
lasers making use of nonlinear polarization rotation for passive mode lock-
ing [225]–[242]. The shortest pulses (42 fs) with high energies (up to 1 nJ)
were obtained from an Nd-doped fiber laser in a Fabry–Perot configuration in
which a moving mirror was used to start mode locking [229]. In the case of
EDFLs, high-energy (> 0:5 nJ), ultrashort (< 100 fs) pulses at a repetition rate
of 48 MHz were obtained in a ring-cavity configuration in which the net disper-
sion was positive [235]. The ring cavity of this fiber laser consisted of a piece
of erbium-doped fiber (length about 1 m) with normal GVD (β 2 � 5 ps2/km)
and several types of optical fibers (total length 2–6 m) with anomalous GVD in
the wavelength region near 1.56 µm. The average dispersion could be changed
from anomalous to normal by adjusting the cavity length. Such cavities are
called dispersion managed since the net dispersion can be tailored to any de-
sired value. The laser is referred to as a stretched-pulse fiber laser since pulses
circulating inside the cavity stretch considerably in the section with normal
GVD. It was found that high-energy pulses could be generated only when the
average or net dispersion in the cavity was normal. The emitted pulses were
relatively broad (> 1 ps) but could be compressed down to below 100 fs by us-
ing an appropriate length of fiber because of their highly chirped nature. The
location of the output coupler plays an important role in such lasers since pulse
width varies by a large amount along the cavity length. Mode-locked pulses as
short as 63 fs have been generated with proper optimization [241].

For practical applications, environmental stability is often an important is-
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sue. The main source of environmental instability is the relatively long length
of the fiber inside the laser cavity required to produce a large enough nonlinear
phase shift. Temperature and stress variations can lead to birefringence fluc-
tuations that affect the mode-locking process. The problem can be solved to a
large extent by reducing the fiber length to under 10 m and using a fiber with
high built-in birefringence (polarization-maintaining fiber) so that linear bire-
fringence is not affected by environmental changes. In one scheme, a Fabry–
Perot cavity in which one of the mirrors acts as a Faraday rotator has been used
to realize environmentally stable operation [237]. The Faraday mirror rotates
the polarization such that the reflected light is orthogonally polarized. As a
result, the phase shift induced by linear birefringence is exactly canceled after
one round trip, while the nonlinear phase shift remains unaffected. The Fara-
day mirror also eliminates the walk-off effects induced by the group-velocity
mismatch in high-birefringence fibers. Such a laser was capable of producing
360-fs pulses of 60-pJ energy at a stable repetition rate of 27 MHz. In a 1999
experiment, pulse energy was increased to 4 nJ using the double-clad fiber for
an Nd-doped fiber laser [242].

5.4.4 Hybrid Mode Locking

Hybrid mode locking combines more than one mode-locking technique within
the same laser cavity to improve the laser performance. The most obvious
combination incorporates an amplitude or phase modulator inside a passively
mode-locked fiber laser. The modulator provides periodic timing slots to pro-
duce a regular pulse train, while a passive mode-locking technique shortens the
pulse compared to that expected from active mode locking alone. An added
benefit is that the modulator can be operated at a frequency that is a high mul-
tiple of the round-trip frequency, resulting in a well-defined repetition rate that
can exceed 10 GHz or more while the mode spacing remains close to 10 MHz.

As early as 1991, the active and passive mode-locking techniques were
combined by using a phase modulator [243]. Since then, this combination
has led to considerable improvement in the performance of fiber lasers. In
a 1994 experiment, it was used to generate subpicosecond pulses at the 0.5-
GHz repetition rate from a single-polarization EDFL [244]. The laser used the
sigma configuration discussed earlier in the context of active mode locking. A
polarization-maintaining loop containing the LiNbO3 modulator was coupled
to a linear section through a polarizing beam splitter. This section contained
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the fiber amplifier and the passive mode-locking element composed of quarter-
wave plates and a Faraday rotator.

The sigma configuration has been used to make a diode-pumped stretched-
pulse EDFL with excellent environmental stability [245]. The polarization-
maintaining loop containing the LiNbO3 modulator was made using 7.5 m
of standard fiber with a GVD of �20 ps2/km. The linear section contained
1 m of erbium-doped fiber with normal GVD (β 2 � 100 ps2/km), together
with a quarter-wave plate, a half-wave plate, and two Faraday rotators (whose
presence makes the sigma-laser cavity equivalent to a ring cavity). The net
dispersion in the cavity was normal with a value of about 0.02 ps2. The
doped fiber was pumped using 980-nm diode lasers. The laser produced mode-
locked pulses with 1.2-nJ energy (average power 20 mW) at a pump power of
200 mW. The pulse width from the laser was about 1.5 ps but could be com-
pressed down to below 100 fs using a dispersive delay line (see Chapter 6).

It is also possible to combine two passive mode-locking techniques within
the same fiber laser. In one approach, a superlattice saturable absorber is added
to a laser that is passively mode locked via nonlinear polarization rotation. This
combination was used in 1996 for a cladding-pumped fiber laser [246]. The
laser produced 200-fs pulses with pulse energies of up to 100 pJ at a wave-
length near 1560 nm. Pulse energies of up to 1 nJ were obtained by increasing
the GVD inside the fiber cavity while maintaining a pulse width close to 3 ps.
The intracavity saturable absorber is helpful for initiating mode locking (self-
starting capability), whereas the steady-state pulse shape is governed by the
nonlinear polarization evolution. The laser is also environmentally stable be-
cause of the use of a compensation scheme for linear polarization drifts.

In another implementation of hybrid mode locking, an Nd-doped fiber laser
was tuned continuously over a 75-nm bandwidth [247]. Such a wide tuning
range (more than twice the FWHM of the gain spectrum) was realized by op-
timizing the reflection characteristics of the semiconductor saturable absorber.
The duration of mode-locked pulses was 0.3 to 0.4 ps over the entire tuning
range. A chirped fiber grating has also been used for dispersion compensation
in the cavity of an Nd-doped fiber laser [248]. Such a laser is self-starting
and can be passively mode locked by using just the saturable absorber as the
mode-locking element. No intracavity polarization controllers were required
for its optimization. The laser generated mode-locked pulses of 6-ps duration
with output energies as high as 1.25 nJ.

In still another application of hybrid mode locking, an Nd-doped fiber laser
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was mode locked at two wavelengths simultaneously [249]. A prism pair, used
for dispersion compensation, also separated the paths taken by the two intra-
cavity beams. The 1.06-µm beam was mode locked using a saturable absorber,
whereas the technique of nonlinear polarization rotation was used for mode
locking the 1.1-µm beam. Such a device operates as if the two lasers share
the same gain medium, and cross-gain saturation plays an important role in
its operation. Indeed, it was necessary to mismatch the cavity lengths slightly
to introduce an offset of at least 0.5 kHz between the repetition rates of the
two mode-locked pulse trains. The difference between the repetition rates was
tunable from 0.5 kHz to >1 MHz.

5.4.5 Other Mode-Locking Techniques

Several other techniques have been suggested for passively mode locking fiber
lasers. In one scheme, a dual-core fiber with one core doped with erbium ions
provides not only gain but also the saturable absorption necessary for mode
locking [250]. The operation of such a laser makes use of optical switching in
nonlinear directional couplers (see Section 2.3). At low powers, a part of the
mode energy is transferred to the undoped core and constitutes a loss mech-
anism for the laser cavity. At high powers, such an energy transfer ceases to
occur, and most of the energy remains confined to the doped core. As a result,
a dual-core fiber acts as a fast saturable absorber and shortens an optical pulse
propagating through it. Mode locking can also be achieved by using a dual-
core fiber as a fiber-loop mirror or simply by placing it inside the Fabry–Perot
cavity of a fiber laser [251].

In another scheme, fiber gratings are used to make a coupled-cavity fiber
laser that can be mode locked through additive-pulse mode locking. In a sim-
ple implementation of this idea, three Bragg gratings were used to form two
coupled Fabry–Perot cavities [252]. In one cavity, the fiber was doped with er-
bium and pumped at 980 nm while the other cavity had the standard undoped
fiber. Both cavities had the same nominal length with total length ranging
from 1 to 6 m. The laser produced relatively wide mode-locked pulses (width
> 50 ps) without requiring stabilization of individual cavity lengths. The latter
feature is somewhat surprising since additive-pulse mode locking in coupled-
cavity lasers normally requires precise matching of the cavity lengths. It can
be understood by noting that the effective penetration distance in a fiber grat-
ing before light is reflected depends on the wavelength of light. As a result, the
laser can adjust its wavelength to match the cavity lengths automatically. The
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self-matching capability of coupled-cavity fiber lasers can be extended by us-
ing chirped gratings [253]. Such a laser produced 5.5-ps mode-locked pulses,
which could be compressed down to below 1 ps (because of their chirped na-
ture) using a piece of fiber with the appropriate GVD (see Chapter 6).

5.5 Role of Fiber Nonlinearity and Dispersion

Nonlinear effects such as SPM and XPM play a dominant role in the operation
of most passively mode-locked fiber lasers. Fiber dispersion also plays an
important role, especially when the soliton effects are relevant. Both numerical
and analytical methods have been used to understand and to quantify the role
of fiber nonlinearity and dispersion [254]–[274].

5.5.1 Saturable-Absorber Mode Locking

The theory of passive mode locking is based on the same Ginzburg–Landau
equation used earlier for active mode locking. The main difference is in the
functional form of the cavity-loss parameter α appearing in Eq. (5.3.4), which
should include the intensity dependence of losses produced by the saturable
absorber [140]. More specifically, α is given by

α = αc +α0(1+ jAj
2
=Psa)

�1
� αc +α0�α0jAj

2
=Psa; (5.5.1)

where Psa is the saturation power of the absorber, assumed to be much larger
than the peak power levels associated with optical pulses circulating inside the
laser cavity. This assumption is made only to simplify the following analysis.

If we substitute Eq. (5.5.1) in Eq. (5.3.4), we find that the presence of
saturated absorption modifies the parameter α2 such that α2 � �α0=Psa if
two-photon absorption is negligible. The new value of α2 is negative. This
is understandable from a physical viewpoint since the intensity dependence of
a saturable absorber is just the opposite that of a two-photon absorber (absorp-
tion decreases with increasing intensity). In the following discussion we use
Eq. (5.3.4) with negative values of α2.

A change in the sign of α2 does not affect the form of the solution given
in Eq. (4.4.4). We can thus conclude that a passively mode-locked fiber laser
emits pulses in the form of a chirped soliton whose amplitude is given by [141]

u(ξ ;τ) = Ns[sech(pτ)]1+iq exp(iKsξ ): (5.5.2)
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The three parameters Ns; p, and q are determined in terms of the laser param-
eters as indicated in Eqs. (4.4.5)–(4.4.8). They are in turn related to the soliton
width Ts, peak power Ps, and the frequency chirp δω as (see Section 4.4)

Ts = T2=p; Ps = jβ2jN
2
s =(γT 2

2 ); δω = q tanh(pτ)=Ts: (5.5.3)

Using p from Eq. (4.4.6), the pulse width can be written in terms of the laser
parameters (assuming anomalous GVD) as

Ts =

�
jβ2j[2q+d(q2�1)]

gc�αc�α0

�1=2

; (5.5.4)

where d = gc=(β2Ω2
g) is related to the gain bandwidth. It is evident that GVD

and SPM play a major role in establishing the width of the mode-locked pulse
train.

This simple theory needs modification for modeling fiber lasers that are
mode-locked using semiconductor saturable absorbers. The reason is that a
semiconductor does not response instantaneously. In fact, the response time of
a quantum well is typically longer than the width of mode-locked pulses. The
carrier dynamics can be included by replacing Eq. (5.5.1) with α = αc +α s.
The absorption coefficient α s of the saturable absorber satisfies the following
rate equation:

∂αs

∂ t
=

α0�αs

τs
�
jAj2

Esa
αs; (5.5.5)

where τs is the recovery time and Esa � τsPsa is the saturation energy of the ab-
sorber. For a fast-responding absorber, αs is given by the steady-state solution
of this equation, and the chirped-soliton solution of Eq. (5.5.2) is recovered.

Equation (5.5.5) can be solved approximately in the opposite limit of a
relatively slow absorber and leads to the following expression for α :

α = αc +α0 exp

�
�

1
Esa

Z t

0
jA(z; t)j2 dt

�
: (5.5.6)

The use of this equation in Eq. (5.4.1) leads to a modified Ginzburg–Landau
equation that can be solved analytically in several important cases [272]. Ac-
tual quantum-well absorbers are found to have both fast and slow recovery
mechanisms. A realistic model for such saturable absorbers has been devel-
oped [271]. The resulting Ginzburg–Landau equation is solved numerically;
its predictions agree well with the experimental data.



Role of Fiber Nonlinearity and Dispersion 243

5.5.2 Additive-Pulse Mode Locking

The Ginzburg–Landau equation can be extended for fiber lasers making use of
additive-pulse mode locking [265]. The pulse-shortening effect of the mode-
locking element (nonlinear fiber-loop mirror or nonlinear polarization rotation)
is included through amplitude and phase changes induced on the pulse circu-
lating inside the cavity.

Consider first the figure-8 laser in which a Sagnac loop imposes amplitude
and phase changes on each pulse as it circulates inside it. Transmittivity of a
Sagnac loop in which an amplifier is located at the entrance of the loop is given
in Section 3.2 for CW beams. For an optical pulse with amplitude A(t), it can
be written as

TS(t) = 1�2ρ(1�ρ)f1+ cos[(1�ρ�Gρ)γ jA(t)j2Ls]g; (5.5.7)

where ρ is the bar-port transmission of the coupler and Ls is the loop length.
For a 50:50 or 3-dB coupler, ρ = 0:5 and Eq. (5.5.7) reduces to

TS(t) = sin2[(G�1)γ jA(t)j2Ls=4]: (5.5.8)

If loop length Ls is chosen such that (G�1)γP0Ls = 2π , where P0 is the peak
power, the central part of a pulse is transmitted without loss, but the pulse
wings experience loss. This intensity-dependent loss is referred to as self-
amplitude modulation and is similar to that induced by a fast saturable ab-
sorber.

We can distribute the intensity-dependent loss introduced by the Sagnac
loop over the cavity length and include its effects through the parameter α2
in the Ginzburg–Landau equation. The effect of loop-induced nonlinear phase
shift can also be included by modifying the parameter γ . The steady-state
solution of the Ginzburg–Landau equation remains in the form of the chirped
soliton of Eq. (5.5.2), but its width and peak power are affected by the loop
parameters. This analytic solution can be used to study the effect of fiber
dispersion and nonlinearity on the performance of figure-8 fiber lasers [31]. A
similar technique can be used for fiber lasers that are mode locked via nonlinear
polarization rotation [265].

Modeling of realistic mode-locked fiber lasers requires consideration of
several other factors. For example, spontaneous emission seeds the growth
of mode-locked pulses and should be included. Another effect that becomes
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important for ultrashort pulses is the self-frequency shift of solitons result-
ing from intrapulse Raman scattering. It is common to solve the Ginzburg–
Landau equation numerically since such an approach automatically includes
the effects of SPM, XPM, GVD, and intrapulse Raman scattering [259]–[263].
This equation reduces to a generalized NLS equation in the parts of the laser
cavity where the fiber is undoped. In the case of figure-8 lasers, the evolu-
tion of counterpropagating pulses should be considered separately inside the
Sagnac loop, and the two optical fields should be combined coherently at the
central coupler to determine the transmitted field. For fiber lasers making use
of nonlinear polarization rotation, one must consider the evolution of orthog-
onally polarized components of the optical pulse by solving a set of two cou-
pled Ginzburg–Landau equations generalized to include the XPM effects. The
effects of spontaneous emission can be included approximately by starting nu-
merical simulations with a broadband noise pulse acting as a seed [263]. The
noise pulse is propagated around the laser cavity repeatedly until a steady state
is reached. Gain saturation is included by considering average power circulat-
ing inside the laser cavity. Such numerical simulations are capable of predict-
ing most features observed experimentally.

5.5.3 Spectral Sidebands

The Ginzburg–Landau equation provides only an approximate description of
passively mode-locked fiber lasers. Real lasers show features not explained by
this model. For example, pulse spectra of most fiber lasers exhibit sidebands,
similar to those seen in Fig. 5.15. In fact, several pairs of such sidebands
appear under some operating conditions. Figure 5.17 shows an example of
such a pulse spectrum obtained from a fiber laser that was passively mode-
locked via nonlinear polarization rotation [222]. The ring cavity of this laser
incorporated 122 m of standard fiber (undoped) with a total loop length of
148 m.

The origin of spectral sidebands seen in the output of fiber lasers is well
understood [275]–[278]. The chirped soliton, found by solving the Ginzburg–
Landau equation, represents the average situation since this equation ignores
discrete nature of perturbations experienced by such solitons during each round
trip. In reality, a part of the soliton energy leaves the cavity at the output cou-
pler and constitutes a loss to the soliton circulating inside the cavity. The
energy builds up to its original value as the pulse is amplified during each
round trip. The net result is that the soliton energy and the peak power vary
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Figure 5.17 Pulse spectrum of an EDFL mode locked via nonlinear polarization ro-
tation technique. Inset shows the autocorrelation trace of mode-locked pulses. (After
Ref. [222])

periodically, with a period equal to the cavity length. This amounts to creat-
ing a nonlinear-index grating that can affect soliton properties through Bragg
diffraction, among other things. The situation is similar to that occurring in op-
tical communication systems when pulses are amplified periodically to over-
come fiber losses (see Section 4.3.2). In both cases, solitons adjust to pertur-
bations by shading a part of their energy in the form of dispersive waves, also
known as the continuum radiation.

Normally, dispersive waves produced by perturbations form a low-level,
broadband background that accompanies the soliton. However, in the case
of periodic perturbations, dispersive waves of certain frequencies can be res-
onantly enhanced, resulting in the spectral sidebands seen in Fig. 5.17. The
frequency and the amplitude of sidebands can be calculated using the pertur-
bation theory of solitons [277]. The frequency can also be calculated by using
a phase-matching condition if spectral sidebands are interpreted to result from
a four-wave mixing process that is phase matched by the index grating created
by periodic perturbations.

A simple physical approach to understanding the growth of spectral side-
bands makes use of a constructive interference condition. If the dispersive
wave at a frequency ω0 + δω , where ω0 is the soliton carrier frequency, is to
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grow on successive round trips, the phase difference between the soliton and
that dispersive wave must be a multiple of 2π during a single round trip, i.e.,

jβ (ω0)+β1δω +Ks�β (ω0 +δω)jL = 2πm; (5.5.9)

where m is an integer, β (ω0+δω) is the propagation constant of the dispersive
wave, and Ks is the soliton wave number appearing in Eq. (4.4.7).

In general, one must use Eq. (4.4.8) to determine Ks. However, if the soli-
ton is nearly unchirped, Ks = (2LD)

�1, where LD = T 2
s =jβ2j is the dispersion

length for a soliton of width Ts. By expanding β (ω0 + δω) in a Taylor series
and retaining terms up to quadratic in δω , Eq. (5.5.9) leads to the following
expression for the sideband frequencies [275]:

δω =�T�1
s (8mz0=L�1)1=2

; (5.5.10)

where z0 =(π=2)LD is the soliton period. The predictions of Eq. (5.5.10) agree
quite well with the position of sidebands seen in Fig. 5.17 when mode-locked
pulses are nearly transform limited. In the case of chirped solitons, the use of
Eq. (4.4.5)–(4.4.7) with s =�1 (β2 < 0) and p = T2=Ts leads to the result

δω =�T�1
s (8mz0=L�1+q2

�2qd)1=2
; (5.5.11)

where the chirp parameter q is obtained from Eq. (4.4.8). The effect of third-
order dispersion on the location of spectral sidebands can also be taken into
account [278] by including the cubic term in the Taylor-series expansion of
β (ω 0 +δω) in Eq. (5.5.9).

Periodic perturbations occurring in a fiber laser also limit the duration of
mode-locked pulses. This limit is similar to that restricting amplifier spacing
in soliton communication systems and has the same origin [32]. If the solitons
were to recover from periodic perturbations, they should be perturbed as little
as possible during each round trip. In particular, the phase shift KsL acquired
by the soliton over the cavity length L must be a small fraction of 2π . By using
Ks = (2LD)

�1 with LD = T 2
s =jβ̄2j, the soliton width Ts is limited by

Ts � (jβ̄2jL=4π)1=2
: (5.5.12)

Here β̄2 represents the average value of GVD inside the laser cavity if different
types of fibers are used in a dispersion-managed cavity. If we use L = 20 m and
β̄2 =�4 ps2/km as typical values for a figure-8 laser, Ts � 80 fs. Indeed, it is
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difficult to generate pulses much shorter than 100 fs from mode-locked fiber
lasers. Equation (5.5.12) also shows that shorter mode-locked pulses can be
generated by reducing the cavity length and net GVD inside the laser cavity.
If we use L = 2 m and β 2 = �1 ps2/km as optimized values for a mode-
locked fiber laser, the condition (5.5.12) becomes Ts � 25 fs. Such lasers can
generate pulses shorter than 100 fs. This is indeed what has been observed
experimentally [224]. Measurements of pulse widths over a wide range of
residual dispersion show that the pulse width is approximately given by Ts �
(jβ̄2jL)

1=2 [278]. These observations are consistent with the preceding simple
argument.

As mentioned earlier, the average GVD inside the cavity does not have to
be anomalous for mode-locked fiber lasers. The general solution given in Eq.
(5.5.2) exists for both normal and anomalous GVD. Moreover, Eqs. (4.4.5)–
(4.5.8) show that the chirp is relatively large in the case of normal GVD. In-
deed, mode-locked pulses emitted from dispersion-managed fiber lasers with
normal average GVD are heavily chirped. For this reason, they can be com-
pressed considerably outside the laser cavity (see Chapter 6). In a 1994 ex-
periment, the shortest pulse width (76 fs) was obtained from a mode-locked
EDFL when the output pulse was compressed by using a piece of fiber with
appropriate dispersion [235].

5.5.4 Polarization Effects

So far in this chapter, we have not addressed the issue of the state of polariza-
tion of light emitted from mode-locked fiber lasers. As discussed in Chapter
A.6, optical fibers do not preserve polarization unless they are specifically de-
signed to do so. As a result, the state of polarization of output light may not be
constant in time. It may change from pulse to pulse or even over the duration
of a single pulse. The situation is quite interesting for short-cavity fiber lasers
for which the cavity length is a small fraction of the beat length. In general,
polarization evolution is important in all mode-locked fiber lasers and should
be included for a proper understanding of such lasers [279]–[284].

The polarization effects were investigated thoroughly in a 1997 experiment
where a fiber laser of cavity length � 1 m or less was mode locked passively
using a saturable Bragg reflector [279]. The cavity design was similar to that
shown in Figure 5.10 except for the addition of a polarization controller. It
was made by wrapping standard single-mode fiber on two 5.5-cm-diameter
paddles and allowed continuous adjustment of the linear birefringence within
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Figure 5.18 Measured variation of polarization-evolution frequency (PEF) ∆ with θ 1.
Polarization locking (PLVS) occurs when ∆ equals 0 and exhibits hysteresis. (After
Ref. [282])

the cavity by changing the azimuthal angles θ1 and θ2 of the paddles. A linear
polarizer was placed at the output of the laser to analyze the polarization state.
It converted polarization changes into periodic amplitude changes and intro-
duced AM sidebands in the optical spectrum around each longitudinal mode.
The presence of these sidebands is a sign that the state of polarization is not
constant from pulse to pulse. Moreover, their frequency spacing ∆ provides a
quantitative measure of the temporal period over which polarization evolves.
For this reason, this frequency is called the polarization-evolution frequency.

It was discovered experimentally that the AM sidebands disappear (∆ = 0)
for a certain combination of the angles θ1 and θ2. Figure 5.18 shows varia-
tions in ∆ with θ1 at a fixed value of θ2. The polarization-evolution frequency
decreases as θ1 approaches π=2 and drops to zero in the vicinity of this value.
The range of angles over which ∆ = 0 depends on the direction from which θ1
approaches π=2, indicating that this phenomenon exhibits hysteresis. When
∆ = 0, the polarization of mode-locked pulses is locked in such a way that
all pulses have the same state of polarization in spite of the presence of lin-
ear birefringence within the laser cavity [280]. Such pulses are referred to as
polarization-locked vector solitons (PLVSs).
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Properties of the PLVS have been investigated in a 2000 experiment [282].
It turns out that the polarization state of a PLVS can be linear or elliptical.
In the case of elliptical polarization, the two linearly polarized components
have different amplitudes and phases. The relative phase difference is fixed
at �π=2 in all cases but the amplitude difference depends on the linear bire-
fringence within the cavity. In the case of a linearly polarized PLVS, the total
energy of the soliton is carried by the component polarized along the slow axis.
The existence of such solitons is related to the polarization instability of light
polarized along the fast axis (see Chapter A.6). A theoretical model based on
a set of two coupled Ginzburg–Landau equations is able explain most of the
experimental data [283].

Vector solitons can also form in a fiber laser using a birefringent Sagnac
loop for mode locking [281]. In the case of fiber lasers mode locked via non-
linear polarization rotation, birefringence effects can lead to pulse-to-pulse pe-
riodic variations in both the peak power and the state of polarization [284]. An
amplitude- and polarization-locked pulse train is generated only when the axis
of polarization of the polarizing isolator is aligned with the slow axis of the
fiber.

Problems

5.1 Why does the gain in fiber lasers vary along the fiber length? Derive the
threshold condition by including such axial variations and considering a
round trip inside the laser cavity.

5.2 Use the threshold condition [Eq. (5.1.3)] to derive an expression for the
pump power required to reach threshold in fiber lasers.

5.3 Why is the gain in a laser clamped at its threshold value? Use this feature
to derive expressions for the output power and the slope efficiency of
fiber lasers.

5.4 How would you design the Fabry–Perot cavity of a fiber laser without
using actual mirrors? Show two such designs and explain their opera-
tion.

5.5 Derive an expression for the output intensity by considering N longitu-
dinal modes of the cavity such that the phase difference between two
neighboring modes is constant. Estimate the pulse width when 10,000
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modes in a fiber laser are mode locked in this way. Assume a ring cavity
of 5-m perimeter.

5.6 Explain how XPM can be used to induce mode locking in fiber lasers.
Use diagrams as necessary.

5.7 The absorption of a fast saturable absorber saturates with power P as α =
α0(1+P=Psa)

�1, where Psa is the saturation power. Estimate the extent
of pulse shortening occurring when a 1-ps hyperbolic-secant pulse of
peak power P0 = 100Psa passes through the saturable absorber. Assume
that only 0.1% of low-power light is transmitted.

5.8 Explain the mode-locking process in a figure-8 fiber laser. What limits
the pulse width in such lasers?

5.9 How can nonlinear birefringence be used to advantage for passive mode
locking of fiber lasers? Draw the laser cavity schematically and explain
the purpose of each component.

5.10 What is the origin of sidebands often seen in the spectrum of pulses
emitted from passively mode-locked fiber lasers? Derive an expression
for their frequencies.
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and G. Mazé, IEEE J. Sel. Topics Quantum Electron. 3, 1103 (1997).

[101] Y. Miyajima, T. Komukai, and T. Sugawa, Electron. Lett. 29, 663 (1993).

[102] R. M. Percival, D. Szebesta, and S. T. Davey, Electron. Lett. 28, 2231 (1992).

[103] K. Oh, T. F. Morse, A. Kilian, L. Reinhart, and P. M. Weber, Opt. Lett. 19, 278
(1994).

[104] J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 28, 988 (1992).

[105] J. Y. Allain, J.-F. Bayon, M. Monerie, P. Bernage, and P. Niay, Electron. Lett.
29, 309 (1993).

[106] V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle,
E. Wolak, P. S. Yeh, and E. Zucker, Electron. Lett. 35, 1158 (1999).

[107] J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin,
and J. D. Minelly, IEEE Photon. Technol. Lett. 11, 39 (1999).



References 255

[108] I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tunner-
mann, Opt. Lett. 24, 469 (1999).

[109] G. H. M. van Tartwijk and G. P. Agrawal, Prog. Quant. Electron. 22, 43 (1998).

[110] P. LeBoudec, M. Le Flohic, P. I. François, F. Sanchez, and G. Stefan, Opt.
Quantum Electron. 25, 359 (1993).

[111] F. Sanchez, P. LeBoudec, P. I. François, and G. Stefan, Phys. Rev. A 48, 2220
(1993).
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Chapter 6

Pulse Compression

An important application of nonlinear fiber optics consists of compressing op-
tical pulses. Pulses shorter than 5 fs have been produced by using the nonlin-
ear and dispersive effects occurring simultaneously inside silica fibers. This
chapter is devoted to the study of pulse-compression techniques, the theory
behind them, and the experimental issues related to them. Section 6.1 presents
the basic idea and introduces the two kinds of compressors commonly used
for pulse compression. The grating-fiber compressors discussed in Section
6.2 use a fiber with normal group-velocity dispersion (GVD) followed by a
grating pair. The soliton-effect compressors described in Section 6.3 make
use of higher-order solitons forming when self-phase modulation (SPM) and
anomalous GVD occur simultaneously. The use of fiber gratings for pulse
compression is discussed in Section 6.4. Section 6.5 focuses on the tech-
nique of chirped-pulse amplification while Section 6.6 is devoted to dispersion-
decreasing fibers. Several other techniques that use optical fibers for pulse
compression are discussed in Section 6.7.

6.1 Physical Mechanism

The basic idea behind optical pulse compression is borrowed from chirp radar,
where chirped pulses at microwave frequencies are compressed by passing
them through a dispersive delay line [1]. The physical mechanism can be
understood by referring to Section A.3.2, where propagation of chirped optical
pulses in a linear dispersive medium is discussed. Such a medium imposes
a dispersion-induced chirp on the pulse during its propagation. If the initial
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chirp is in the opposite direction of that imposed by GVD, the two tend to
cancel each other, resulting in an output pulse that is narrower than the input
pulse.

To see how such cancellation can produce shorter pulses, consider the
propagation of a chirped Gaussian pulse inside an optical fiber. The optical
field after a distance z is given by Eq. (A.3.2.17). This equation can be written
as

U(z;T ) = [1� iξ (1+ iC)]�1=2 exp

�
�

(1+ iC)T 2

2T 2
0 [1� iξ (1+ iC)]

�
; (6.1.1)

where T = t�z=vg is the reduced time, T0 is the input pulse width, and C is the
initial chirp. The propagation distance ξ = z=LD is normalized to the disper-
sion length LD = T 2

0 =jβ2j. For an unchirped pulse (C = 0), the GVD-induced
chirp varies linearly across the pulse. This can be verified from Eq. (6.1.1)
by calculating the chirp using δω =�∂φ=∂T . It is easy to conclude that the
input pulse should also be linearly chirped for maximum chirp cancellation.

Equation (6.1.1) can be used to find the compression factor Fc = T0=Tp as
a function of propagation distance, where Tp is the width of the compressed
Gaussian pulse. It is given by the simple expression

Fc(ξ ) = [(1+ sCξ )2 +ξ 2]�1=2
; (6.1.2)

where s = sgn(β2) = �1, depending on the nature of GVD. This equation
shows that pulse is compressed only if sC < 0. This condition just states that
chirp cancellation occurs only if the initial chirp and GVD-induced chirp are
of opposite kinds. Positively chirped pulses (C > 0) require anomalous GVD
for compression (and vice versa).

Equation (6.1.2) also shows that the shortest pulse is obtained only at a
specific distance given by ξ = jCj=(1+C2). The maximum compression fac-
tor at that distance is also fixed by the input chirp and is Fc = (1+C2). This
limit is easily understood by noting that spectrum of a chirped input pulse is
broader by a factor of 1+C2 compared with that of an unchirped pulse. In the
time domain, the compression process can be visualized as follows. Different
frequency components of the pulse travel at different speeds in the presence of
GVD. If the leading edge of the pulse is delayed by just the right amount to
arrive nearly with the trailing edge, the output pulse is compressed. Positively
chirped pulses (frequency increasing toward the trailing side) require anoma-
lous or negative GVD in order to slow down the red-shifted leading edge. By
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contrast, negatively chirped pulses require normal or positive GVD to slow
down the blue-shifted leading edge.

Early pulse-compression studies made use of both normal and anomalous
GVD, depending on the technique through which frequency chirp was initially
imposed on the pulse [2]–[9]. In the case of negatively chirped pulses, pulses
were transmitted through liquids or gases such that they experienced normal
GVD [3]. In the case of positively chirped pulses, a grating pair was found to
be most suitable for providing anomalous GVD [7]. In these early experiments,
pulse compression did not make use of any nonlinear optical effects. Although
the use of the nonlinear process of SPM for pulse compression was suggested
as early as 1969 [10], the experimental work on SPM-based pulse compression
took off only during the 1980s when the use of single-mode silica fibers as a
nonlinear medium became widespread [11]–[29]. It led in 1987 to the creation
of optical pulses as short as 6 fs in the 620-nm wavelength region [16]. By
1988, compression factors as large as 5000 had been attained. Such advances
were possible only after the evolution of optical pulses in silica fibers was
properly understood.

Pulse compressors based on nonlinear fiber optics can be classified into
two broad categories: grating-fiber and soliton-effect compressors. In a grating-
fiber compressor, the input pulse is propagated in the normal-dispersion regime
of the fiber and then compressed externally using a grating pair. The role of
fiber is to impose a nearly linear, positive chirp on the pulse through a com-
bination of SPM and GVD. The grating pair provides the anomalous GVD
required for compression of positively chirped pulses [7].

A soliton-effect compressor, in contrast, consists of only a piece of fiber
whose length is suitably chosen. The input pulse propagates in the anomalous-
GVD regime of the fiber and is compressed through an interplay between SPM
and GVD. Compression occurs because of an initial pulse-narrowing phase
through which all higher-order solitons go before the input shape is restored
after one soliton period. The compression factor depends on the peak power
of the pulse, which determines the soliton order N. The two types of com-
pressors are complementary and generally operate in different regions of the
optical spectrum. Grating-fiber compressors are useful for compressing pulses
in the visible and near-infrared regions while soliton-effect compressors work
typically in the range from 1.3 to 1.6 µm. The wavelength region near 1.3 µm
offers special opportunities since both kinds of compressors can be combined
to yield large compression factors by using dispersion-shifted fibers.
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Figure 6.1 Schematic drawing of a grating-fiber compressor in the double-pass con-
figuration. Mirror M2 (shown dashed) is located above the plane of the figure. Mirror
M1 is slightly tilted to separate the outgoing beam from the incoming beam.

6.2 Grating-Fiber Compressors

In the visible and near-infrared regions (λ < 1:3 µm), a grating-fiber compres-
sor is commonly used for pulse compression [12]–[29]. Figure 6.1 shows such
a compressor schematically in the double-pass configuration [17]. The input
pulse is coupled into a single-mode fiber where it broadens spectrally and de-
velops a positive chirp across its entire width. The output pulse is then sent
through a grating pair where it experiences anomalous GVD and gets com-
pressed. The optical beam is sent back through the grating pair to reconvert
it to the original cross section. The mirror M1 is slightly tilted to separate the
outgoing beam from the incoming one. The mirror M2 deflects the compressed
pulse out of the compressor without introducing any additional losses.

6.2.1 Grating Pair

A pair of two parallel gratings acts as a dispersive delay line. Optical pulses
propagating through such a grating pair behave as if they were transmitted
through an optical fiber with anomalous GVD [7]. In this subsection we focus
on the theory behind a grating pair [30]–[33].

When an optical pulse is incident at one grating of a pair of two par-
allel gratings, different frequency components associated with the pulse are
diffracted at slightly different angles. As a result, they experience different
time delays during their passage through the grating pair. It turns out that
the blue-shifted components arrive earlier than the red-shifted components.
In a positively chirped pulse, blue-shifted components occur near the trailing
edge of the pulse whereas the leading edge consists of red-shifted components.
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Figure 6.2 Geometry of a grating pair used as a dispersive delay line.

Thus, the trailing edge catches up with the leading edge during passage of the
pulse through the grating pair, and the pulse is compressed.

Mathematically, the phase shift acquired by a specific spectral component
of the pulse at the frequency ω passing through the grating pair is given by
φg(ω) = ω lp(ω)=c, where the optical path length lp(ω) is obtained from Fig.
6.2 using simple geometrical arguments and is given by [32]

lp(ω) = l1 + l2 = d0 secθr[1+ cos(θr�θi)]; (6.2.1)

where d0 is the grating separation (see Fig. 6.2). The diffraction theory of grat-
ings shows that when light is incident at an angle θ i, the diffraction angle θ r

is given by Eq. (1.1.1). We use this relation and assume first-order diffraction
(m = 1). The frequency dependence of θ r is responsible for the dispersion
induced by a grating pair.

If the spectral width of the optical pulse is a small fraction of its center
frequency ω0, it is useful to expand φg(ω) in a Taylor series around ω 0 as

φg(ω) = φ0 +φ1(ω�ω0)+
1
2φ2(ω�ω0)

2 + 1
6 φ3(ω�ω0)

3 + � � � ; (6.2.2)

where φ0 is a constant and φ1 is related to the transit time through the grating
pair. The parameters φ2 and φ3 take into account the dispersive effects associ-
ated with the grating pair and can be obtained by expanding lp(ω) in a Taylor
series and using Eq. (1.1.1) for θ r. The result is given by

φ2 =
�8π2cb0

ω3
0 Λ2 cos2 θr0

; φ3 =
24π2cb0(1+ sinθi sinθr0)

ω4
0 Λ2 cos4 θr0

; (6.2.3)

where θr0 is the diffraction angle for ω0 and dg is the center-to-center spacing
between the gratings (dg = d0 secθr0).
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In most cases of practical interest, the spectral width of the pulse satisfies
the condition ∆ω � ω0, and the cubic and higher-order terms in the expansion
(6.2.2) can be neglected. If we ignore the unimportant constant and linear
terms, the frequency-dependent part of the phase shift is governed by φ2. Since
φ2 is negative from Eq. (6.2.3), a grating pair introduces anomalous GVD. This
can be seen more clearly by considering the optical field at the output end of
the grating pair. If Uin(T ) is the input field, the output field is given by

Uout(T ) =
1

2π

Z ∞

�∞
Ũin(ω�ω0)exp

�
i
2

φ2(ω�ω0)
2� iωT

�
dω ; (6.2.4)

where Ũin is the Fourier transform of Uin. Comparing Eq. (6.2.4) with Eq.
(A.3.2.5), the effective GVD parameter for a grating pair is given by βeff

2 =
φ2=dg. It is also possible to introduce an effective dispersion length as Leff

D =
T 2

0 =jβ eff
2 j, where T0 is the input pulse width. An order of magnitude estimate

of β eff
2 is obtained from Eqs. (6.2.3). In the visible region (λ0 � 0:5 µm),

β eff
2 � 1000 ps2/km if we use Λ � 1 µm. This corresponds to Leff

D � 1 m for
T0 = 1 ps.

The grating separation required for pulse compression depends on the am-
ount of positive chirp; typically dg is a fraction of Leff

D . For subpicosecond
pulses dg � 10 cm or less. However, it becomes impractically large (� 10 m)
for T0 > 10 ps. It is possible to increase β eff

2 by letting the pulse be incident
at the grazing angle so that θr0 in Eq. (6.2.3) approaches π=2. However, as is
evident from this equation, such a scheme increases the contribution of third-
order dispersion (TOD) and the cubic term in Eq. (6.2.2) must be included.
Inclusion of the TOD term becomes necessary for ultrashort pulses (T0� 10 fs)
whose bandwidth ∆ω is comparable to ω0 [47]. The effects of TOD can be
minimized by using special gratings that are engraved directly on a prism [33].

A drawback of the grating pair is that spectral components of a pulse are
dispersed not only temporally but also spatially. As a result, the optical beam
diverges between the two gratings, acquiring a cross section that resembles an
elongated ellipse rather than a circle. Such a beam deformation is undesirable
and becomes intolerable in the case of large grating separations. A simple
solution is to reflect the beam back through the grating pair [34]. This double-
pass configuration not only recollimates the beam back into its original cross
section but also doubles the amount of GVD, thereby reducing the grating sep-
aration by a factor of 2 [17]. A slight tilt of the reflecting mirror can separate
the path of the compressed pulse from that of the input pulse. The double-pass
configuration is used almost exclusively in practice.
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Another disadvantage of the grating pair is related to the diffraction losses
associated with it. Typically, 60 to 80% of the pulse energy remains in the
pulse during first-order diffraction at a grating. This results in an energy loss
of about a factor of 2 during a single pass through the grating pair or a factor
of 4 in the double-pass configuration. Two alternative schemes can produce
anomalous GVD with significantly smaller losses. One scheme makes use of a
Gires–Tournois interferometer for the purpose of pulse compression [2]. Such
an interferometer can reflect almost all of the pulse energy while imposing a
dispersive phase shift of the quadratic form on various spectral components.
In another scheme, a pair of two prisms provides anomalous GVD through
refraction [35]. However, the required prism spacing is typically quite large
(>10 m) because of the relatively small dispersion of fused quartz.

The prism spacing can be reduced by using other materials such as dense
flint glass or TeO2 crystal. In the case of TeO2 crystal prisms, the spacing
becomes comparable to that of a grating pair. In a 1988 experiment, 800-fs
pulses were compressed to 120 fs by using a prism-pair spacing of 25 cm [37].
The energy loss of a prism pair can be reduced to 2% or less. A phase grating
induced in a crystal by a chirped ultrasonic wave provides an alternative to
the grating pair [38]. The use of fiber gratings is also quite attractive for this
purpose [39]. As discussed in Chapter 1, a fiber grating can provide anomalous
GVD even when it is fabricated within the core of a normal-GVD fiber.

6.2.2 Optimum Compressor Design

Several important questions need to be answered for optimum performance
of grating-fiber compressors. The most important among them are: (i) What
is the optimum fiber length for given values of input pulse parameters? (ii)
How far apart should the two gratings be to obtain high-quality pulses with
maximum compression? To answer these questions, we should consider how
an input pulse of certain width and peak power evolves inside optical fibers in
the presence of both SPM and GVD [40]–[50].

It is useful to employ a normalized form of the nonlinear Schrödinger
(NLS) equation for this purpose. In the case of positive GVD (β2 > 0), the
NLS equation can be written as

i
∂U
∂ξ

�
1
2

∂ 2U
∂τ2 +N2 exp(�αLDξ )jU j2U = 0; (6.2.5)
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where τ = T=T0, ξ = z=LD, α accounts for fiber losses, and the parameter N2

is given by

N2 =
LD

LNL
=

γP0T 2
0

jβ2j
: (6.2.6)

In Eqs. (6.2.5) and (6.2.6), U = Ae�αz
=P1=2

0
is the normalized amplitude, P0

is the peak power of input pulses of width T0, and γ is the nonlinear param-
eter. The length scales LD and LNL are defined in the usual manner. The
soliton period z0 = (π=2)ξ can also be used in place of ξ . It serves as a useful
length scale even in the normal-dispersion regime with the interpretation that
the pulse width nearly doubles at z = z0 in the absence of SPM [42].

The performance of a grating-fiber compressor can be simulated by solving
Eq. (6.2.5) numerically to obtain U(z;τ) at the fiber output and then using it as
the input field in Eq. (6.2.4) to find the compressed pulse shape. The parameter
φ2 in Eq. (6.2.3) can be adjusted to optimize the compressor performance. The
optimum compressor is one for which the grating separation corresponds to
an optimum value of φ2 such that the peak power of the compressed pulse
is largest. This is precisely how a grating-fiber compressor is optimized in
practice. In the following discussion, fiber losses are neglected since the fiber
lengths used in practice are relatively short (αL� 1).

Consider first the case of pure SPM by neglecting GVD. As discussed in
Section A.4.1, in the absence of GVD, the shape of the input pulse remains
unchanged while its spectrum broadens with propagation. More important,
however, from the standpoint of pulse compression, is the SPM-induced fre-
quency chirp. For a Gaussian pulse, the chirp is linear only over the central part
of the pulse (see Fig. A.4.1). When such a pulse is passed through a grating
pair, only the central part is compressed. Since a significant amount of pulse
energy remains in the wings, the compressed pulse is not of high quality.

It turns out that GVD of fibers can improve the pulse quality consider-
ably [40]. As discussed in Section A.4.2, normal GVD broadens the pulse and
reshapes it to become nearly rectangular (see Fig. A.4.9). At the same time, the
pulse develops a nearly linear chirp across its entire width. As a result of this
linear chirp, the grating pair can compress most of the pulse energy into a nar-
row pulse. Figure 6.3 shows the pulse shape at the fiber output, the frequency
chirp across the pulse, and the compressed pulse for N = 5 and z=z0 = 0:5 [42].
For comparison, the upper row shows the corresponding plots in the absence
of GVD for a fiber length chosen such that the pulse is compressed by about
the same factor in both cases (N2z=z0 = 4:5). Even though neither N2 nor z0 is
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Figure 6.3 Pulse shape and chirp profile at fiber output and compressed pulse after
grating pair. Effects of GVD are ignored in the upper row and N 2z=z0 = 4:5. In the
lower row, N = 5, z=z0 = 0:5, and GVD is included. (After Ref. [42])

finite in the limit β2 = 0, their ratio remains finite and can be used to compare
the two cases. A comparison of the two rows in Fig. 6.3 reveals the beneficial
effect of GVD on the pulse quality when β2 > 0 for the fiber used for chirp-
ing the pulse. However, this benefit is realized only at the expense of reduced
compression at a given value of the input peak power [42].

To quantify the performance of grating-fiber compressors, it is useful to
introduce two parameters:

Fc = TFWHM=Tcomp; Qc = jUout(0)j
2
=Fc; (6.2.7)

where Tcomp is the FWHM of the compressed pulse. Clearly, Fc is the compres-
sion factor. The parameter Qc is a measure of the quality of the compressed
pulse. Its value at the fiber input is 1, and Qc � 1 is desirable for the com-
pressed pulse if nearly all of the pulse energy has to reappear in it.

Numerical simulations based on the NLS equation show that an optimum
value of the fiber length exists for which both Fc and Qc are maximum [42].
Figure 6.4 shows variations in Fc and Qc with z=z0 for values of N in the range
from 1 to 20, assuming a “sech” shape for input pulses. For values of N >

5, the maxima of Fc and Qc are evident, indicating the need to optimize the
fiber length. The existence of an optimum fiber length zopt can be understood
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Figure 6.4 Compression factor Fc and quality factor Qc as a function of fiber length
for values of N in the range from 1 to 20. Grating separation is optimized in each case
to maximize the peak power of the compressed pulse. (After Ref. [42])

qualitatively as follows. For z < zopt the SPM-induced chirp has not yet been
linearized, whereas for z> zopt the GVD effects broaden the pulse so much that
SPM loses its effectiveness. Indeed, zopt is well approximated by (6LDLNL)

1=2,
showing the relative importance of both the GVD and SPM effects for pulse
compression.

From the standpoint of compressor design, it is useful to provide simple
design rules that govern the optimum fiber length and the optimum grating
separation for realizing maximum compression for given values of the pulse
and fiber parameters. The numerical results of Fig. 6.4 can be used to obtain
the following relations valid for N � 1:

zopt=z0 � 1:6=N; (6.2.8)
1
2 jφ2j=T 2

FWHM � 1:6=N; (6.2.9)

1=Fc � 1:6=N; (6.2.10)

where the grating parameter φ 2 is related to the optimum grating separation
through Eq. (6.2.3). The numerical factor depends on the input pulse shape
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and would be slightly different than 1.6 for shapes other than a hyperbolic
secant. Equations (6.2.8)–(6.2.10) are fairly accurate for all pulse shapes as
long as N > 10. Similar relations have been obtained using the inverse scat-
tering method and making certain approximations about the pulse shape and
the chirp [41]. In applying Eqs. (6.2.8)–(6.2.10) in practice, the parameter N
is first estimated from Eq. (6.2.6) for given values of the peak power P0 and
the width T0 associated with a pulse. Then, the fiber length zopt is obtained
from Eq. (6.2.8) while Eqs. (6.2.3) and (6.2.9) provide the grating separation.
Finally, the compression factor is estimated from Eq. (6.2.10).

6.2.3 Practical Limitations

Although the preceding theory of pulse compression is applicable in most prac-
tical situations, it is important to keep in mind its limitations [51]–[58]. First,
input pulses were assumed to be unchirped. It is easy to include the effect of a
linear initial chirp by solving Eq. (6.2.5) numerically [51]. For down-chirped
pulses (C < 0), the optimum fiber length increases since the positive chirp pro-
vided by the fiber has to compensate for the initial negative chirp. At the same
time, the compression factor is slightly reduced because such a compensation
is not perfect all along the pulse width. The opposite occurs in the case of up-
chirped pulses (C > 0). However, for large values of N (N > 10) the changes
in zopt and Fc are relatively small (< 10%) for pulses whose spectral width is up
to twice of that expected in the absence of chirp. A related issue is the effect of
a random chirp on pulse compression because of phase fluctuations associated
with some input pulses. Numerical simulations show that the average com-
pression factor is reduced by an amount that depends on the noise variance but
the optimum value of the fiber length remains relatively unaffected [52].

Another limitation of the results shown in Fig. 6.4 is that they are based on
Eq. (6.2.5), which neglects the higher-order nonlinear and dispersive effects.
This is justified as long as the spectral width ∆ω � ω0, and the results are
fairly accurate for pulse widths T0 > 1 ps. For shorter pulses, one must use the
generalized NLS equation derived in Section A.2.3. In general, both the pulse
shape and spectrum become asymmetric. The enhanced spectral broadening
on the high-frequency side in Fig. A.4.18 is a manifestation of a larger chirp
near the trailing edge compared with that occurring near the leading edge.
Since the chirp is not as linear as it would be in the absence of higher-order
nonlinear effects, the compression factor is generally reduced for femtosecond
pulses from the predictions of Fig. 6.4.
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A more severe limitation on the performance of grating-fiber compressors
for ultrashort pulses (T0 < 50 fs) is imposed by the grating pair that no longer
acts as a quadratic compressor. For such short pulses, the spectral width is
large enough that the cubic term in the expansion (6.2.2) becomes comparable
to the quadratic term and must be included in Eq. (6.2.4). Numerical results
show that the compressed pulse then carries a significant part of its energy
in the form of an oscillatory trailing edge [53]. As a result, the compression
factor is smaller than that shown in Fig. 6.4. This limitation is fundamental
and can be overcome only if a way is found to counteract the effect of the
cubic term in Eq. (6.2.2). On the positive side, the cubic term can be exploited
to compensate partially for the TOD of the fiber [47] or the nonlinear chirp
induced by self-steepening [54].

An ultimate limitation on the performance of grating-fiber compressors is
imposed by stimulated Raman scattering [55]–[58]. Even though the compres-
sion factor Fc ∝ N, according to Eq. (6.2.10), and can in theory be increased
by increasing the peak power of the incident pulse, it is limited in practice
since the peak power must be kept below the Raman threshold to avoid the
transfer of pulse energy to the Raman pulse. Furthermore, even if some energy
loss is acceptable, the Raman pulse can interact with the pump pulse through
cross-phase modulation and deform the linear nature of the frequency chirp.
It is possible to achieve large compression factors even in the Raman regime
with an optimization of the design parameters [58]. Numerical simulations
show that a significant part of the pulse energy remains uncompressed because
of mutual interaction between the pump and Raman pulses. For highly ener-
getic pulses, parametric processes such as four-wave mixing can suppress the
Raman process to some extent, but they eventually limit the extent of pulse
compression [59].

The performance of a grating-fiber compressor can be improved by using
the spectral-window method [20], in which a suitable aperture is placed near
the mirror M1 in Fig. 6.1 to filter the pulse spectrum selectively. The technique
of spectral filtering is a powerful technique that can be used not only to improve
the performance of a grating-fiber compressor but also to control the pulse
shape through spectral modifications inside the compressor [60]–[62]. This
is possible since the grating pair separates the spectral components spatially
and allows one to modify them (both in amplitude and phase) by using masks
placed near the mirror M1 in Fig. 6.2.
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Figure 6.5 Measured autocorrelation trace of a 40-fs input pulse compressed by a
grating-fiber compressor. The 12-fs width of the trace corresponds to 8-fs pulse width.
(After Ref. [15], cAmerican Institute of Physics)

6.2.4 Experimental Results

In the 1981 experiment in which an optical fiber was first used for pulse com-
pression, 5.5-ps (FWHM) input pulses at 587 nm, with peak powers of 10 W,
were propagated through a 70-m-long fiber [11]. The 20-ps output pulses were
nearly rectangular in shape and had an SPM-broadened spectrum with a nearly
linear chirp across the entire pulse. This experiment used sodium vapor, in-
stead of a grating pair, as a dispersive-delay line. The compressed pulse was
1.5-ps wide. Compression factor of 3.7 is in agreement with the results of Fig.
6.4 if we note that the experimental values of the parameters correspond to
N � 7 and z=z0 � 0:25. Even the pulse shape at the fiber output was in close
agreement with the numerical simulations based on the NLS equation.

The compression technique was extended in 1982 to the femtosecond do-
main by using a grating pair as a dispersive delay line [12]. In this experiment,
90-fs pulses at 619 nm were passed through a 15-cm-long fiber and were com-
pressed to about 30 fs after passing through the grating pair. The fiber and pulse
parameters were such that N � 3 and z=z0 � 1:5. The compression factor of
about 3 is expected from Fig. 6.4. This experiment led to a series of experi-
ments [14]–[16] in which the pulse width was reduced in succession to about
6 fs. In one experiment, 40-fs pulses at 620 nm, with a peak intensity of about
1012 W/cm2, were passed through a 7-mm-long fiber and then compressed to
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Figure 6.6 Measured autocorrelation traces of the input and compressed pulses show-
ing a single-stage compression by a factor of 80. (After Ref. [17], cAmerican Insti-
tute of Physics)

8 fs by using a grating pair [15]. Figure 6.5 shows the autocorrelation trace of
the compressed pulse. The corresponding spectrum can be seen in Fig. A.4.18
(the topmost trace). The spectral width of about 70 nm indicates that a pulse
width of 6 fs is possible if the compressed pulse were transform limited. The
most important factor that limited compression was the TOD of the grating
pair resulting from the φ3 term in Eq. (6.2.2). In a later experiment, the effects
of TOD were compensated for by using a combination of gratings and prisms,
and the pulse indeed compressed to 6 fs [16]. Such a pulse at 620 nm consists
of only three optical cycles.

In a different set of experiments, the objective was to maximize the com-
pression factor. Compression by a factor of 12 was achieved in a 1983 ex-
periment in which 5.4-ps input pulses from a dye laser were compressed to
0.45 ps using a 30-m-long fiber [13]. A higher compression factor of 65 was
obtained using a two-stage compression scheme in which the pulse was passed
through two grating pairs in succession. In a 1984 experiment, single-stage
compression by a factor of 80 was realized using 33-ps pulses at 532 nm from a
frequency-doubled Nd:YAG laser [17]. Passage of these pulses through a 105-
m-long fiber, followed by a grating pair (separation dg = 7:24 m), resulted
in compressed pulses of 0.41-ps duration. The experiment utilized a double-
pass configuration. Figure 6.6 shows the compressed pulse and compares it
to the input pulse. The corresponding spectra are similar to those shown in
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Figure 6.7 Autocorrelation traces of compressed pulses with (dashed curve) and with-
out (solid line) spectral windowing. (After Ref. [61])

Fig. A.4.12. The input peak power of 240 W corresponds to N � 145. Equa-
tion (6.2.10) predicts a compression factor of about 90 for this value of N, in
reasonable agreement with the experimental value of 80. Although larger val-
ues of the compression factor are possible in principle, peak powers cannot
be increased much more in practice because of the onset of stimulated Raman
scattering.

The experiments described above were performed in the visible region
of the optical spectrum. The grating-fiber compression technique has been
extended to the near-infrared region to obtain ultrashort pulses at 1.06 and
1.32 µm. Input pulses at these wavelengths are generally obtained from mode-
locked Nd:YAG lasers and are typically 100-ps wide. As a result, the disper-
sion length and the parameter z0 are relatively large (� 100 km). Equation
(6.2.8) indicates that the optimum fiber length exceeds 1 km even for values of
N � 100. The optimum value of the grating separation is also relatively large
(dg > 1 m), as seen from Eqs. (6.2.3) and (6.2.9).

In a 1984 experiment, 60-ps pulses at 1.06 µm were compressed by a factor
of 15 after passing through a 10-m-long fiber and a grating pair with spacing
of about 2.5 m [18]. In a different experiment, a compression factor of 45 was
achieved by using a 300-m-long fiber and a compact grating pair [19]. The
compressed pulses at 1.06 µm generally carry a significant amount of energy
in the uncompressed wings because a smaller fiber length than that dictated by
Eq. (6.2.8) is often used in practice to reduce optical losses. In the absence
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of fully developed GVD effects only the central part of the pulse is linearly
chirped, and the energy in the wings remains uncompressed. The energy in
uncompressed pulse wings can also be reduced by using the nonlinear bire-
fringence (see Chapter A.6) in such a way that the fiber acts as an intensity
discriminator [63].

The technique of spectral windowing has been used to remove energy from
pulse wings [20]. It makes use of the observation that the wings contain spec-
tral components at the extreme end of the pulse spectrum, which can be filtered
by placing an aperture (or window) near the mirror M1 in Fig. 6.2. Figure 6.7
compares the autocorrelation traces of compressed pulses obtained with and
without spectral windowing [61]. The 75-ps input pulses were compressed to
about 0.8 ps in a conventional grating-fiber compressor, resulting in a com-
pression factor of more than 90. The use of spectral windowing nearly elimi-
nated the pulse wings while the pulse width increased slightly to 0.9 ps. This
technique can also be used to modify the pulse shape by using suitable masks
in place of a simple aperture [60]–[62]. Temporal modulation of the chirped
pulses at the fiber output (before entering the grating pair) has also been used
for this purpose [64]. Such techniques convert the grating-fiber compressor
into a versatile tool that can be used for pulse synthesis.

It is generally difficult to achieve compression factors larger than 100 for
1.06-µm pulses because of the onset of stimulated Raman scattering. Com-
pression by a factor of 110 was realized in an experiment in which 60-ps pulses
were propagated through a 880-m-long fiber [29]. Even higher compression
factors can be obtained by using two grating-fiber compressors in series [22].
In one experiment, 90-ps pulses were compressed to 0.2 ps, resulting in an
overall compression factor of 450 [27]. At the same time, the peak power
increased from 480 W to 8 kW. Two compressors provided the same compres-
sion factor of about 21. It was noticed that, even though pulses after the first
compressor had significant amounts of energy in their wings, pulses emerging
from the second compressor were of high quality. The reason is related to the
different input pulse widths. The 4.2-ps pulses fed to the second compressor
were short enough that GVD was able to linearize the chirp across the whole
pulse. The experimental results were in close agreement with theory.

The grating-fiber compression technique has been extended to 1.32 µm, a
wavelength at which mode-locked Nd:YAG lasers can provide powerful pulses
of about 100-ps duration [23]. However, since standard fibers provide normal
dispersion only for λ < 1:3 µm, it is necessary to use a dispersion-shifted
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fiber with its zero-dispersion wavelength around 1.55 µm. The optimum fiber
length typically exceeds 2 km. This is not, however, a limiting factor because
of smaller fiber losses (� 0:4 dB/km) near 1.32 µm. Compression by a fac-
tor of 50 was realized when 100-ps pulses were chirped using a 2-km-long
dispersion-shifted fiber [26] (zero dispersion at 1.59 µm). The fiber length
was less than optimum (zopt � 3:3 km) to reduce the grating separation to
manageable dimensions. Equation (6.2.10) predicts a compression factor of 80
if the optimum fiber length with optimum grating separation were employed
(N � 130).

An advantage of operating at the 1.32-µm wavelength is that the grating
pair can be replaced by a piece of fiber, making it possible to realize a com-
pact all-fiber compressor. Two fibers with positive and negative values of the
GVD parameter β2 are fused together to make the compressor. The fiber with
positive β2 produces linear chirp across the pulse while the fiber with negative
β2 compresses it. The lengths of the two fibers need to be optimized using
Eqs. (6.2.8) and (6.2.9). The grating parameter φ 2 is replaced by β2L2, where
L2 is the optimum length of the second fiber with negative β2. In a feasi-
bility demonstration of this concept, 130-ps pulses were compressed to about
50 ps using a 2-km-long fiber (β 2 � 18:4 ps2/km) followed by a 8-km-long
fiber with β2 ��4:6 ps2/km [23]. In later experiments [78]–[80], a two-stage
compression technique in which a grating-fiber compressor is followed by an
anomalous-GVD fiber was used to obtain compression factors of up to 5000.
The second-stage compression in these experiments results from the effects of
higher-order solitons, a topic covered in the next section.

With the advent of mode-locked Ti:sapphire lasers, considerable attention
focused during the 1990s on reducing the pulse width below 5 fs [65]. By 1996,
optical pulses shorter than 8 fs were generated directly from a Ti:sapphire
laser [66]. If a 10-fs pulse could be compressed even by a factor of 3 using
a grating-fiber compressor, one would be able to attain pulses shorter than 4 fs
in the 800-nm wavelength region. Such a pulse would contain less than two
optical cycles! It is not easy to realize such short pulses in practice because of
several higher-order nonlinear effects that limit the extent of pulse compres-
sion. Nonetheless, pulse widths in the range of 4 to 5 fs have been obtained
in several experiments [67]–[72]. The spectral width of a 5-fs pulse exceeds
100 THz. It is hard to find a grating or prism pair whose GVD is constant
over such a large spectral range. As a result, the TOD limits the compressor
performance considerably.
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A number of techniques are employed to circumvent the limitations im-
posed by the higher-order dispersive and nonlinear effects. In a 1997 experi-
ment, a polarization-maintaining fiber with a 2.75-µm-diameter core was used
to chirp 13-fs input pulses [67]. Although the optimum fiber length was es-
timated to be only 1 mm [see Eq. (6.2.8)], practical considerations forced the
use of 3-mm-long fiber. The spectrum of the chirped pulse was more than
250-nm wide. A grating pair, followed by a four-prism combination, was used
for pulse compression. The width of the compressed pulse was 4.9 fs and was
found to be limited by the TOD effects. The use of a Gires–Tournois interfer-
ometer formed using a chirped mirror reduced the pulse width to 4.6 fs [69].
A chirped mirror is made by depositing multiple layers of two different di-
electrics on a substrate, similar to the saturable Bragg mirror used for mode
locking of fiber lasers (see Section 5.4). Just as a chirped fiber grating (see
Section 6.4) provides large GVD, a chirped mirror can introduce large GVD
on reflection. Such mirrors can be designed, by varying layer thicknesses, in
such a way that their GVD is uniform over a large bandwidth (>150 THz) with
little residual TOD [73].

A shortcoming of using optical fibers for chirping the input pulse is that
peak powers of compressed pulses are limited by the damage threshold of sil-
ica. This problem can be solved by using a hollow fiber with a relatively large
diameter that is filled with a noble gas. In one set of experiments, a 60-cm-
long hollow fiber (diameter 80 µm) was filled with argon or krypton [70]. The
nonlinear and dispersive effects of the gas were used to chirp 20-fs pulses with
40-µJ energy. Pulses as short as 4.5 fs were produced by compressing the
chirped pulses using a chirped mirror in combination with two pairs of fused
silica prisms. Pulse energies as large as 0.5 mJ were realized by this technique
in the form of 5-fs compressed pulses.

6.3 Soliton-Effect Compressors

Optical pulses at wavelengths exceeding 1.3 µm generally experience both
SPM and anomalous GVD during their propagation in silica fibers. Such a
fiber can act as a compressor by itself without the need of an external grating
pair and has been used since 1983 for this purpose [74]–[93]. The compression
mechanism is related to a fundamental property of higher-order solitons. As
discussed in Section A.5.2, these solitons follow a periodic evolution pattern
such that they undergo an initial narrowing phase at the beginning of each
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period (see Fig. A.5.4). Because of this property, with an appropriate choice
of the fiber length, input pulses can be compressed by a factor that depends
on the soliton order N. Such a compressor is referred to as the soliton-effect
compressor to emphasize the role of solitons.

6.3.1 Compressor Optimization

The evolution of a soliton of order N inside optical fibers is governed by the
NLS equation. One can neglect fiber losses (α = 0) since fiber lengths em-
ployed in practice are relatively small (αL � 1). In the case of anomalous
GVD (β2 < 0), Eq. (6.2.5) becomes

i
∂U
∂ξ

+
1
2

∂ 2U
∂τ2 +N2jU j2U = 0; (6.3.1)

where the parameter N is given by Eq. (6.2.6). Even though higher-order soli-
tons follow an exact periodic pattern only for integer values of N, Eq. (6.3.1)
can be used to describe pulse evolution for arbitrary values of N. In general,
the input pulse goes through an initial narrowing phase for all values of N > 1.
The optimum fiber length zopt corresponds to the location at which the width
of the central spike is minimum. The compression factor is the ratio of the
FWHM of the compressed pulse to that of the input pulse.

Numerical techniques have been used to obtain the compression factor Fc

and the optimum fiber length zopt as a function of N [74]. The inverse scattering
method can also be used to obtain these quantities for integer values of N.
Figure 6.8 shows the variation of F�1

c and zopt=z0 with N for values of N from
1 to 15. Also shown is the quality factor Qc, defined as the fraction of input
pulse energy appearing in the compressed pulse. In contrast to the case of
a grating-fiber compressor, Qc is significantly smaller than its ideal value of
unity and decreases monotonically as N increases. This drawback is inherent
in all soliton-effect compressors. The remaining pulse energy appears in the
form of a broad pedestal around the compressed pulse. The physical origin of
the pedestal can be understood as follows. During the initial narrowing stage,
the evolution of higher-order solitons is dominated by SPM. Since the SPM-
induced chirp is linear only over the central part of the pulse, only the central
part is compressed by anomalous GVD. Energy in the pulse wings remains
uncompressed and appears as a broad pedestal.

Numerical simulations performed for values of N up to 50 show that the
compression factor Fc and the optimum fiber length of a soliton-effect com-
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Figure 6.8 Variation of compression factor Fc, optimum fiber length zopt, and quality
factor Qc with the parameter N. Data points correspond to experiments performed
with 320-m (crosses) and 100-m (solid dots) fibers. (After Ref. [74]).

pressor are well approximated by the empirical relations [43]

Fc � 4:1N; (6.3.2)
zopt

z0
�

0:32
N

+
1:1
N2 : (6.3.3)

These relations are accurate to within a few percent for N > 10 and can serve as
simple design rules, similar to those given by Eqs. (6.2.8)–(6.2.10) for grating-
fiber compressors. A direct comparison shows that for the same values of N
and z0, a soliton-effect compressor provides pulse compression that is larger
by a factor of 6.5 with a fiber that is shorter by a factor of 5. However, the
pulse quality is poorer since the compressed pulse carries only a fraction of
the input energy, with the remaining energy appearing in the form of a broad
pedestal. The results of Fig. 6.8 assume an unchirped input pulse with “sech”
shape. Much higher compression factors are possible for chirped input pulses
having specific pulse shapes [84].



Soliton-Effect Compressors 283

Figure 6.9 Autocorrelation trace of a 7-ps input pulse compressed to 0.26 ps by using
a soliton-effect compressor. Dashed and solid curves compare the pedestal with and
without the nonlinear birefringence effect. (After Ref. [74])

6.3.2 Experimental Results

In a 1983 experiment [74], 7-ps pulses from a color-center laser operating near
1.5 µm were propagated through a 320-m-long fiber (z=z0 � 0:25). As the
input peak power was increased beyond 1.2 W (the power level corresponding
to a fundamental soliton), the output pulse became narrower than the input
pulse by a factor that increased with increasing N. The observed values of
the compression factor are shown in Fig. 6.8 (crosses) for three values of N.
The compression factor was close to the theoretical value of 8 for N = 3 but
became significantly smaller for larger values of N. This can be understood
by noting that the fiber length of 320 m was close to optimum for N = 3 but
became far too large for N > 3. Indeed, a reduction in the fiber length to
100 m (z=z0 � 0:077) increased the compression factor to 27 for N = 13. The
autocorrelation trace of the 0.26-ps compressed pulse is shown in Fig. 6.9.

It was observed experimentally that the broad pedestal associated with the
compressed pulse could be partially suppressed under certain experimental
conditions. As discussed in Chapter A.6, the origin of pedestal suppression
is related to the nonlinear birefringence of optical fibers that can make the
fiber act as an intensity discriminator [63]. This mechanism can, in principle,
eliminate the pedestal almost completely. Another possibility for removing
the pedestal is to filter out the low-frequency components of the compressed
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Figure 6.10 Autocorrelation trace and spectrum of an 18-fs pulse obtained by com-
pressing 90-ps input pulses using a two-stage compression scheme. (After Ref. [80],
reprinted with permission from Taylor & Francis, http://www.tandf.co.uk/journals)

pulse that are associated with the pedestal. The numerical results show that the
bandwidth ∆ν f of such a filter is related to the parameter N and the input pulse
width TFWHM by the relation [76]

∆ν f � 0:2(N=TFWHM); (6.3.4)

where the numerical factor depends slightly on the input pulse shape.
Soliton-effect compressors can provide quite high compression factors. A

compression factor of 110 was realized when 30-ps pulses were compressed
to 275 fs by passing them through a 250-m-long fiber [75]. The fiber length
is nearly optimum in this experiment if we take N � 28 (corresponding to
a peak power of 0.6 kW) and note that z0 � 20 km for 30-ps input pulses.
The observed compression is also in agreement with Eq. (6.3.2). Compression
factors of about 1000 have been realized using a two-stage scheme in which
a grating-fiber compressor is followed by a soliton-effect compressor [78]–
[80]. These experiments used 100-ps input pulses, emitted by a mode-locked
Nd:YAG laser operating at 1.32 µm. In the first stage, a grating-fiber compres-
sor was used to obtain compressed pulses of widths in the range of 1 to 2 ps.
These pulses were fed into a soliton-effect compressor whose fiber length was
carefully optimized to achieve compression factors of about 50. In one exper-
iment [80], the initial 90-ps pulse was compressed to only 18 fs (consisting of
only four optical cycles) by such a two-stage scheme, resulting in a net com-
pression factor of 5000. Figure 6.10 shows the autocorrelation trace and the
spectrum of the 18-fs pulse. The narrow central feature in the spectrum corre-
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sponds to the pedestal seen in the autocorrelation trace that carries 69% of the
total energy.

6.3.3 Higher-Order Nonlinear Effects

In pulse-compression experiments producing femtosecond pulses [79], the op-
timum fiber length was found to be larger by more than a factor of 2.5 than that
predicted by Eq. (6.3.3). This is not unexpected since Eq. (6.3.3) is based on
the numerical solution of Eq. (6.3.1), which neglects the higher-order disper-
sive and nonlinear effects that become increasingly more important as pulses
get shorter than 100 fs. For an accurate prediction of the optimum fiber length,
one must include the effects of TOD, self-steepening, and intrapulse Raman
scattering by solving the generalized NLS equation,

i
∂U
∂ξ

+
1
2

∂ 2U
∂τ2 � iδ3

∂ 3U
∂τ3 +N2

�
jU j2U� is0

∂ jU j2U
∂τ

� τRU
∂ jU j2

∂τ

�
= 0;

(6.3.5)
where the three parameters δ 3, s0, and τR govern respectively the effects of
TOD, self-steepening, and intrapulse Raman scattering (see Section A.5.5).
For not-too-short pulses (width > 50 fs) propagating not too close to the zero-
dispersion wavelength of the fiber, the dominant contribution comes from in-
trapulse Raman scattering. It manifests as a shift of the pulse spectrum toward
the red side (see Fig. A.5.25). Associated with the red shift is a delay of the
optical pulse resulting from a change in the group velocity. Such a delay af-
fects substantially the interplay between GVD and SPM that is responsible
for pulse compression. Numerical simulations indeed show that the optimum
fiber length is longer than that predicted by Eq. (6.3.1) when the higher-order
nonlinear effects are included in the analysis.

Interestingly, intrapulse Raman scattering improves the quality of the com-
pressed pulse by producing pedestal-free pulses [82]. Figure 6.11 shows the
evolution of the N = 10 soliton for τR = 0:01, a value appropriate for 1-ps
input pulses. The pulse begins to compress, and a narrow spike riding on a
broad pedestal is formed near ξ = 0.06. This behavior is similar to that occur-
ring when τR = 0. However, the evolution becomes qualitatively different for
ξ > 0:06 because of intrapulse Raman scattering. More specifically, the nar-
row spike travels more slowly than the pedestal and separates from it because
of the change in its group velocity induced by the soliton self-frequency shift.
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Figure 6.11 Evolution of a 10th-order soliton in the presence of intrapulse Raman
scattering. The compressed pulse separates from the pedestal because of Raman-
induced frequency shift. (After Ref. [82])

Moreover, the pedestal can be removed by spectral filtering. The net result is
to produce a red-shifted, pedestal-free compressed pulse. At the same time, the
optimum fiber length is longer and the compression factor is larger compared
to the values obtained from Fig. 6.8.

Intrapulse Raman scattering, in combination with the induced modula-
tion instability, can be used to obtain a train of pedestal-free ultrashort optical
pulses at high repetition rates [83]. The basic idea consists of injecting a si-
nusoidally modulated CW beam into an optical fiber. Weak AM sidebands are
amplified through the gain provided by modulation instability if the modula-
tion frequency falls within the bandwidth of the instability gain. At the same
time, the pulse compresses through the soliton-effect compression if the peak
power is large enough to excite a higher-order soliton. In the absence of intra-
pulse Raman scattering, compressed pulses ride on a broad pedestal forming
from the CW background. However, because of the Raman-induced frequency
shift, the spectrum of the pulse train separates from the pedestal spectrum. A
bandpass filter can be used to remove the pedestal and obtain a train of ultra-
short optical pulses at a repetition rate determined by the initial modulation
frequency. Numerical simulations reveal that a pulse train of width � 100 fs at
repetition rates � 100 GHz can be generated by this technique [86].

The TOD, in general, degrades the quality of compressed pulses when fem-
tosecond pulses propagate close to the zero-dispersion wavelength of the fiber
used for soliton-effect compression [88]. However, if the TOD parameter δ3
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is negative, the combination of TOD and intrapulse Raman scattering can im-
prove the performance of a soliton-effect compressor. Numerical simulations
based on Eq. (6.3.5) show that negative values of β3 result in larger compres-
sion factors and higher peak powers [90]. Although β3 is positive for most
fibers, dispersion-compensating fibers with negative values of β3 were devel-
oped during the late 1990s. The use of dispersion management, a technique in
which two or more fibers with different dispersion characteristics are spliced
together, can provide soliton-effect compressors for which the average GVD
is small but anomalous while the average value of β3 is negative. Such com-
pressors should prove useful for compressing femtosecond pulses.

6.4 Fiber Bragg Gratings

As discussed in Chapter 1, fiber Bragg gratings exhibit large GVD in the vicin-
ity of the stop-band edges. The grating-induced GVD can be varied from nor-
mal to anomalous, and its magnitude can be tailored over a wide range by
chirping the grating period. Since a fiber grating acts as a dispersive delay
line, it can be used for compressing chirped pulses in place of the bulk-grating
pair [94]. Moreover, the onset of various nonlinear effects within the fiber
grating points to the possibility realizing pulse compression using a compact,
all-fiber device [95]. For these reasons, the use of fiber gratings for pulse com-
pression attracted attention soon after such gratings became available [96]–
[111]. In this section we discuss the important role played by fiber gratings in
pulse compressors.

6.4.1 Gratings as a Compact Dispersive Element

A uniform grating reflects light whose wavelength falls within the stop band
centered at the Bragg wavelength λB. Outside but close to the stop-band edges,
the grating provides large dispersion. The effective values of the grating-
induced GVD and TOD depend on the detuning δ and are given by [see Eq.
(1.3.26)]

β g
2 =�

sgn(δ )κ2
=v2

g

(δ 2�κ2)3=2
; β g

3 =
3jδ jκ2

=v3
g

(δ 2�κ2)5=2
: (6.4.1)

where κ is the coupling coefficient as defined in Section 1.3. The GVD pa-
rameter βg

2
depends on the sign of the detuning δ . The GVD is anomalous on

the high-frequency side of the stop band where δ is positive. In contrast, GVD
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(a) (b)

Figure 6.12 (a) Changes in width (FWHM) of pulses compressed by a fiber grating as
a function of wavelength detuning ∆λ . Dotted curve shows changes in transmittivity.
(b) Shape of compressed pulse for ∆λ = �0:45 nm. Dashed curve shows the input
pulse. (After Ref. [110])

becomes normal (βg
2
> 0) on the low-frequency side of the stop band (δ < 0).

The TOD remains positive in all cases. Both β g
2

and βg
3

become infinitely
large if the optical frequency falls close to the edges of the stop band such that
δ = κ . Figure 1.6 showed how GVD varies in the vicinity of the stop-band
edges of a grating. Typical values of jβ g

2
j can easily exceed 107 ps2/km. As a

result, a 1-cm-long fiber grating may provide as much dispersion as 10-km of
silica fiber or a bulk-grating pair with more than one meter spacing.

A simple application thus consists of replacing the bulk-grating pair in a
grating-fiber compressor with a fiber grating. The resulting all-fiber device
can be quite compact. Unfortunately, the TOD affects the quality of com-
pressed pulses significantly since β g

3
increases rapidly as δ approaches the

stop-band edges located at δ = �κ . Figure 6.12 shows how the pulse width
changes with wavelength detuning when 80-ps (FWHM) pulses—obtained
from a Q-switched, mode-locked Nd:YLF laser and chirped through SPM
within the laser—are transmitted through a 6.5-cm-long apodized grating. The
shortest pulse width of about 15 ps is obtained for ∆λ = �0:45 nm, where
∆λ = �(λ 2

B=2π n̄)δ and n̄ is the average value of the refractive index. The
shape of the compressed pulse for this case is also shown in Fig. 6.12. Both
the pulse shape and the compression factor of 5.3 are in agreement with the
theory based on Eq. (6.4.1).

The compression factor as well as pulse quality can be improved consider-
ably by using chirped fiber gratings. As discussed in Section 1.7.2, the optical
period in a chirped grating changes along its length. As a result, the Bragg
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wavelength at which the stop band is centered also shifts along the grating
length. Physically speaking, different frequency components of the pulse are
reflected from different regions of the grating. Such a device can introduce a
large amount of GVD in the reflected pulse. We can estimate it by considering
the time delay introduced by the total shift ∆λ t in the Bragg wavelength. With
Tr = DgLg∆λ t = 2n̄Lg=c, where Tr is the round-trip time for a grating of length
Lg, the dispersion parameter is given by

Dg =�(2πc=λ 2)β g
2 = 2n̄=(c∆λt): (6.4.2)

Values of jβg
2
j can exceed 5�107 ps2/km for ∆λ t = 0:2 nm. Such shifts in the

Bragg wavelength can be realized by chirping the grating period linearly such
that it changes by only 0.1% at the two ends of the grating.

Several experiments in 1994 used chirped gratings for pulse compression
[97]–[99]. A major motivation was to compensate for dispersion-induced
broadening of pulses in fiber-optic communication systems [112]. In a 1995
experiment, dispersion compensation at 10 Gb/s over 270 km of standard fiber
(β2 � �20 ps2/km) was realized using a 12-cm-long chirped grating [100].
Compression factors in excess of 100 can be realized by this technique. The
only disadvantage of a chirped fiber grating from a practical standpoint is that
the compressed pulse is reflected rather than transmitted. An optical circula-
tor is commonly used to separate the reflected pulse from the incident pulse
because of its relatively low insertion losses.

6.4.2 Grating-Induced Nonlinear Chirp

In a grating-fiber compressor, a long piece of normal-GVD fiber is used to
chirp the input before it can be compressed. Since a fiber grating can also
provide both SPM and normal GVD, it can be used to generate the frequency
chirp. Such a device results in a compact compressor, but it requires high
input pulse energies. Moreover, the fiber grating should be designed carefully
to minimize the effects of TOD and to avoid the onset of stimulated Raman
scattering [108].

The effect of TOD on the chirping process within the grating can be stud-
ied numerically by solving the nonlinear coupled-mode equations of Section
1.3. However, as pointed out there, these equations reduce to a modified NLS
equation of the form

i
∂U
∂ξ

�
1
2

∂ 2U
∂τ2 �δ3

∂ 3U
∂τ3 +N2jU j2U = 0; (6.4.3)



290 Pulse Compression

Figure 6.13 Effect of TOD on a 70-ps Gaussian pulse chirped using a fiber grating.
Parameter M = 3:6δ3 is a measure of the relative strength of TOD. (After Ref. [108])

where δ3 = β g
3
=(6β g

2
T0) is the effective TOD parameter for a grating. Fiber

losses within the grating can be neglected because of its short length. Fig-
ure 6.13 shows how the shape of a 70-ps Gaussian pulse is affected by TOD
when it is chirped using a 10-cm-long fiber grating with normal GVD (β2 =
50 ps2/cm). The peak intensity of the pulse is taken to be 170 GW/cm2. The
effects of TOD are included by changing δ 3. In the absence of TOD (δ 3 = 0),
the chirped pulse is nearly rectangular, as found to Section 6.2. However, the
pulse becomes asymmetric and develops considerable internal structure as δ3
increases. This structure affects the quality of the compressed pulse and should
be minimized while designing the fiber grating [108].

The TOD parameter δ3 depends on the detuning parameter δ and can be
reduced by moving the stop-band edge of the grating away from the optical
wavelength so that the pulse is not too close to the edge. However, the GVD
parameter βg

2
becomes smaller as jδ j increases, resulting in a longer dispersion

length. Since the optimum length of the grating is about zopt = (6LDLNL)
1=2,

a longer grating is needed. The compression factor is limited by the onset of
stimulated Raman scattering since the parameter N cannot be made very large
by increasing input peak powers. A careful consideration of various dispersive
and nonlinear effects shows that the maximum compression factor is limited
to a value of about 6 [108]. It should also be stressed that pulses chirped
nonlinearly by a grating cannot be compressed by another fiber grating acting
as a dispersive element, because of their high peak power levels. The nonlinear
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effects in the second grating can be avoided by reducing the pulse energy.
Alternatively, a grating or prism pair can be used for pulse compression.

6.4.3 Bragg-Soliton Compression

As discussed in Section 1.6, fiber gratings support Bragg solitons. These soli-
tons can be used for pulse compression in the same way that higher-order
solitons produce soliton-effect compression in fibers without a grating. The
advantage of a fiber grating is that the compressor length can be reduced from
hundreds of meters to a few centimeters.

Since the nonlinear coupled-mode equations describing pulse propagation
in fiber gratings reduce to an effective NLS equation under appropriate condi-
tions (see Section 1.5.2), the analysis of Section 6.3 applies to fiber gratings
as well, as long as the GVD parameter β 2 and the nonlinear parameter γ are
replaced by their equivalent values given in Eq. (1.5.10). An estimate of the
compression factor for values of N in the range from 2 to 15 is provided by
Fc � 4:6(N� 1) [87]. The pulse shapes shown in Fig. 1.16 were obtained at
the output end of a 7.5-cm-long apodized fiber grating for 80-ps input pulses
having a peak intensity of 11 GW/cm2. The soliton order N is different for dif-
ferent curves, seen in Fig. 1.16, since the GVD parameter βg

2
changes with de-

tuning δ . Choosing the values of β g
2

and the pulse peak power P0 such that the
input pulse corresponds to a N = 2 soliton while the grating length L = z0=2,
the compression factor is expected to be 4.6. Indeed, pulse compression by a
factor of 4 was observed experimentally under such conditions [110].

Another grating-based nonlinear scheme for compressing optical pulses
makes use of the push-broom effect in which a weak broad pulse is swept by a
strong pump pulse such that most of the energy of the broad pulse piles up at
the front end of the pump pulse [101]. The physical mechanism behind optical
push broom was discussed in Section 1.6.4. The nonlinear chirp in this case is
generated not by SPM but by cross-phase modulation (XPM). Pulse compres-
sion induced by the push-broom effect was seen in a 1997 experiment [107].
XPM-induced pulse compression is discussed in more detail later in this chap-
ter.

Although soliton-based compression has been observed in fiber gratings,
its use is likely to be limited in practice. The reason is related to the combina-
tion of a relatively low value of n2 in silica glasses and relatively short lengths
of fiber gratings. A nonlinear phase shift (φNL = γP0L) of π requires values of
P0 in excess of 1 kW even for a relatively long grating (L = 50 cm). The power
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levels can be reduced by more than a factor of 100 if chalcogenide glasses are
used for making the fiber grating.

6.5 Chirped-Pulse Amplification

Many applications require optical pulses with high energies (1 J or more) that
are not readily available from the laser producing the pulse train. It is then
necessary to amplify the pulse externally by using one or more amplifiers. The
technique of chirped-pulse amplification has been found extremely useful for
this purpose [113]–[132]. This technique was used as early as 1974 [113] but
drew widespread attention only after 1985 when it was used to obtain ultrashort
pulses with terawatt peak powers [114]–[118].

The basic idea behind chirped-pulse amplification consists of chirping and
stretching the pulse before it is amplified. Nonlinear effects in optical fibers
(SPM) are often used for this purpose. During its passage through the fiber, the
pulse is not only chirped but it also broadens, as discussed in Section 6.2. Pulse
broadening reduces the peak power substantially, making it possible to amplify
the pulse by a large amount before gain saturation limits the energy-extraction
efficiency. The amplified pulse is then compressed by using a grating pair. In
essence, the scheme is similar to that shown in Fig. 6.1 except that an amplifier
is inserted between the fiber and the grating pair.

The use of chirped-pulse amplification has resulted in the advent of table-
top terawatt laser systems in which mode-locked pulses emitted from solid-
state lasers are amplified to obtain picosecond, or even femtosecond, pulses
with terawatt peak powers. In a 1991 experiment, this technique was used to
produce 1.052-µm pulses of 3.5-ps duration and 28-J energy [118]. The 100-
ps input pulse generated from a Q-switched, mode-locked Nd:glass laser was
injected into a polarization-maintaining single-mode fiber of 1-m length. The
input pulse energy of 1.8 µJ was chosen such that the optical fiber chirped
the pulse through SPM without inducing stimulated Raman scattering. The
spectrum of the output pulse broadened to about 0.7 nm, while the pulse width
remained nearly the same because of negligible GVD in such a short fiber.
A chain of amplifiers boosted the pulse energy to about 100 J. The amplified
pulse was then compressed by using a grating pair. The quality of the com-
pressed pulse was improved by selecting only a central portion of the pulse
where the frequency chirp is linear; a saturable absorber was used for this pur-
pose. The 3.5-ps compressed pulse had 28-J energy with 8-TW peak power.
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Preamplifier

Figure 6.14 Chirped-pulse amplification using two chirped fiber gratings. (PBS:
polarization beam splitter; PC: polarization controller) (After Ref. [126])

Although the use of optical fibers is not essential for chirped-pulse amplifica-
tion, their nonlinearity provides a simple way to impose the frequency chirp
on the pulse.

Starting in 1993, the technique of chirped-pulse amplification was applied
to fiber amplifiers to obtain ultrashort optical pulses with high energies in the
1.55-µm spectral region [120]–[128]. As discussed in Chapter 5, mode-locked
fiber lasers can produce pulses shorter than 1 ps but their energy is typically
below 0.1 nJ. The energy level can be increased considerably by amplifying
such pulses in an erbium-doped fiber amplifier, but the nonlinear effects oc-
curring during amplification limit the pulse quality. Thus, it is useful to stretch
the pulse by a factor of 100 or so (while chirping it) before amplification.
The amplified pulse is then compressed back using a suitable compressor. By
1994, this technique produced 800-fs pulses with pulse energies of 100 nJ at
a repetition rate of 200 kHz by using bulk gratings [122]. Bulk gratings were
later replaced by chirped fiber gratings to realize a compact, all-fiber device.
Figure 6.14 shows the experimental setup schematically for this technique. In
one experiment, a chirped fiber grating stretched 330-fs pulses to 30 ps while
the second grating recompressed the amplified pulse back to 408 fs [125]. In
another experiment, the pulse energy was boosted to 20 nJ by using a cladding-
pumped fiber amplifier [126]. In both experiments, the quality of compressed
amplified pulses deteriorated at energy levels beyond 5 nJ because of the onset
of nonlinear effects inside the compressor grating.

Higher pulse energies can be obtained if the pulse width is in the picosec-
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ond regime. In a 1996 experiment, 1.9-ps pulses with 300-nJ energy levels
were obtained using the technique of chirped-pulse amplification [128]. Lin-
early chirped pulses were obtained using a semiconductor laser and were rela-
tively wide (> 1 ns) with low energy levels (< 10 pJ). They were amplified to
energy levels as high as 3 µJ using two fiber amplifiers. A 12-cm-long chirped
fiber grating compressed the pulse to under 2 ps. Nonlinear effects inside the
grating were relatively small since the pulse was compressed fully near the
output end of the grating. In fact, the onset of nonlinear effects in the 5-cm-
long pigtail (attached to the grating) was believed to limit pulse energies in this
experiment.

In a 1999 experiment, the pulse energy was increased to beyond 1 µJ (peak
powers up to 500 kW) by forming a chirped grating inside the core of a large-
mode-area fiber [131]. Figure 6.14 shows the experimental setup schemat-
ically. Optical pulses (width 1.5 ps) from a 1.53-µm fiber laser were first
stretched to 600 ps using a chirped fiber grating before being amplified to an
energy of 15 µJ using three fiber amplifiers and then compressed back to below
4 ps using a second chirped grating made using a fiber with large mode area
(450 µm 2). Since the nonlinear parameter γ scales inversely with the effective
mode area, nonlinear effects are reduced considerably in the second grating
at the same pulse-energy level. Nonlinear effects were found to be negligible
at energies of up to 0.9 µJ in this experiment. In another approach to high-
energy pulses, a multimode fiber amplifier was used to overcome the peak-
power limitations of single-mode fibers [132]. Femtosecond pulses with peak
power levels in excess of 50 kW (average power 1.2 W) were generated in the
1.55-µm spectral region with this technique. Moreover, average powers of up
to 420 mW were produced at the 775-nm wavelength using second-harmonic
generation in a LiNbO3 device periodically poled to realize quasi-phase match-
ing. Chirping of the poling period compressed the pulse simultaneously while
generating the second harmonic.

6.6 Dispersion-Decreasing Fibers

An interesting pulse-compression technique makes use of optical fibers in
which the magnitude of the GVD parameter jβ 2j decreases along the direc-
tion of propagation of optical pulses [133]–[138]. Such fibers are referred to
as dispersion-decreasing fibers (DDFs) and can be made by tapering the core
diameter of the fiber at the preform-drawing stage [137]. As the waveguide
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contribution to jβ2j depends on the core size, its value decreases along the
fiber length. The basic idea was proposed in 1988 but it was not until 1992
that compression factors as large as 16 were realized experimentally [135].

6.6.1 Compression Mechanism

The physical mechanism behind DDF-induced compression can be understood
from Eq. (6.2.6), which shows how the soliton order N depends on the GVD
parameter β2. Consider a fundamental soliton launched at the fiber input so
that N = 1 initially. If the numerical value of jβ 2j decreases along the fiber
length, N would increase if the pulse width were to remain constant. However,
the soliton order can be preserved at its input value N = 1 if the pulse width
decreases as jβ 2j

1=2. In essence, the situation is similar to that occurring in
fiber amplifiers where an increase in the pulse peak power results in pulse
compression in order to maintain N = 1. The analogy between a fiber amplifier
and a DDF can be established mathematically by using the NLS equation [see
Eq. (6.3.1)]. For a DDF this equation can be written as

i
∂U
∂ξ

+
1
2

p(ξ )
∂ 2U
∂τ2 +N2jU j2U = 0; (6.6.1)

where the parameter p(ξ )= jβ 2(ξ )=β2(0)j governs dispersion variations along
the fiber length. If we make the transformation [139]
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p
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Eq. (6.6.1) is reduced to
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Γ(η) =�
1

2p
d p
dη

: (6.6.4)

Equation (6.6.3) shows that the effect of decreasing dispersion is mathe-
matically equivalent to adding a gain term to the NLS equation. The effective
gain coefficient Γ is related to the rate at which GVD decreases along the fiber.
Equation (6.6.3) can be used to study pulse compression in DDFs [86]. It
is important to include the contribution of Raman-induced frequency shift of
solitons in the femtosecond regime since changes in GVD affect the frequency
shift considerably [135].
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6.6.2 Experimental Results

Starting in 1991, DDFs were used for pulse compression in several experi-
ments. In an early experiment, 130-fs pulses were compressed to 50 fs by
using a 10-m section of a DDF [134]. Much larger compression factors were
realized in 1992 by using 3.5-ps pulses from a mode-locked fiber laser operat-
ing near 1.55 µm [135]. Such pulses were transmitted through a fiber whose
dispersion decreased from 10 to 0.5 ps/(km-nm) over a length of 1.6 km. The
input pulse was compressed by a factor of 16 (to 230 fs) while its spectrum
shifted by 10 nm due to the frequency shift induced by intrapulse Raman scat-
tering. In another experiment, 630-fs pulses were compressed down to 115 fs
by using a fiber whose dispersion decreased from 10 to 1.45 ps/(km-nm) over
a length of 100 m [136].

Pulse compression has also been realized in a fiber whose dispersion was
constant over the fiber length but decreased with wavelength in the 1.55- to
1.65-µm wavelength region [138]. A 95-fs input pulse at 1.57 µm compressed
to 55 fs over 65 m of such fiber. The Raman-induced frequency shift plays a
crucial role in this experiment. In effect, the GVD decreased along the fiber
length in the reference frame of the pulse because of the frequency shift in-
duced by intrapulse Raman scattering. The pulse spectrum was indeed ob-
served to shift from 1.57 to 1.62 µm as the pulse compressed.

The DDF pulse-compression mechanism has been used to generate a train
of ultrashort pulses [139]–[145]. The basic idea consists of injecting a CW
beam, with weak sinusoidal modulation imposed on it, into an optical fiber
exhibiting gain [139]. Since decreasing dispersion is equivalent to an effective
gain, such fibers can be used in place of a fiber amplifier [140]. As the sinu-
soidal signal propagates, individual pulses within each modulation cycle are
also compressed. The combined effect of GVD, SPM, and decreasing GVD
is to convert a nearly CW signal into a high-quality train of ultrashort soli-
tons [86]. The repetition rate of pulses is governed by the frequency of initial
sinusoidal modulation.

Several experiments have used DDFs to generate ultrashort pulses at high
repetition rates [140]–[144]. Sinusoidal modulation in these experiments is im-
posed by beating two optical signals. In a 1992 experiment [141], the outputs
of two distributed-feedback (DFB) semiconductor lasers, operating continu-
ously at slightly different wavelengths near 1.55 µm, were combined in a fiber
coupler to produce a sinusoidally modulated signal at a beat frequency that
could be varied in the 70 to 90 GHz range by controlling the laser temperature.
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Figure 6.15 (a) Spectrum and (b) autocorrelation trace of a 114-GHz pulse train gen-
erated by using a dispersion-decreasing fiber. (After Ref. [144], cAmerican Institute
of Physics)

The beat signal was amplified to power levels of about 0.3 W by using a fiber
amplifier. It was then propagated through a 1-km dispersion-shifted fiber, fol-
lowed by a DDF whose dispersion decreased from 10 to 0.5 ps/(km-nm) over a
length of 1.6 km. The output consisted of a high-quality pulse train at 70 GHz
with individual pulses of 1.3-ps width. By 1993, this technique had led to the
generation of a 250-fs soliton train at 80- to 120-GHz repetition rates when the
peak power of the beat signal was enhanced to about 0.8 W by synchronous
modulation of the laser current [144]. Figure 6.15 shows the spectrum and
the autocorrelation trace of such a soliton train at the 114-GHz repetition rate.
Even though the laser wavelengths are near 1.5 µm, the spectrum of the soliton
train is centered at 1.565 µm because of the Raman-induced frequency shift.

The use of a DDF is not essential for producing pulse trains of ultrashort
solitons. In a 1993 experiment, a comblike dispersion profile was produced
by splicing pieces of low- and high-dispersion fibers [145]. A dual-frequency
fiber laser, integrated with a fiber amplifier, was used to generate the high-
power beat signal. The output consisted of a 2.2-ps pulse train at the 59-
GHz repetition rate. Such a device can be used as an integrated, all-fiber
source useful for soliton communication systems. It operates by separating
the effects of SPM and GVD in low- and high-dispersion fibers. Specifically,
SPM dominates in low-dispersion sections and induces a frequency chirp on
the beat signal. By contrast, GVD dominates in high-dispersion sections and
compresses the chirped pulse. Since this alternating process is similar to that
occurring for higher-order solitons, the pulse train can also be produced in
conventional fibers. Indeed, in a 1994 experiment, a 123-GHz soliton train
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of 1.3-ps pulses was generated by launching the high-power beat signal into
a 5-km-long dispersion-shifted fiber [146]. The experimental results were in
good agreement with numerical simulations based on the NLS equation. This
technique was later extended to generate a 100-GHz pulse train using a single
DFB laser [147]. The phase of laser output was modulated at 16.9 GHz using a
LiNbO3 modulator to create FM sidebands. The beat signal was generated by
mixing the third-order FM sidebands, located on each side of the optical car-
rier and filtered using a fiber Fabry–Perot filter with a 100-GHz free spectral
range. A 8.9-km-long DDF was used to produce 1.37-ps pulses at the 100-GHz
repetition rate.

Pulse compression is DDFs remains a topic of active interest [149]–[158].
In one set of experiments, the objective was to produce a train of ultrashort
pulses at high repetition rates. A 40-GHz train of 3.4-ps pulses was gener-
ated by compressing the sinusoidal signal (obtained beating two DFB lasers)
using a combination of standard, dispersion-shifted, and dispersion-decreasing
fibers [149]. In another experiment, 0.8-ps pulses at a repetition rate of 160 GHz
were produced starting with a 10-GHz train of relatively wide (>10 ps) pulses
obtained from a gain-switched semiconductor laser [150]. Chirped pulses were
first compressed down to 6.3 ps in a normal-GVD fiber. They were then ampli-
fied and compressed to 0.8 ps using two sections (2 and 5 km long) of DDFs.
Finally, time-division multiplexing was used to increase the repetition rate to
160 GHz. Pulses as short as 170 fs have been produced by combining decreas-
ing GVD with amplification [151]. Such sources of ultrashort optical pulses
are useful for fiber-optic communication systems [112].

In another set of experiments, the DDF is used for transmission of ultra-
short pulses over relatively long lengths. The objective in this case is to main-
tain the width of a fundamental soliton in spite of fiber losses. In a constant-
dispersion fiber, solitons broaden as they loose energy because of weaken-
ing of the nonlinear effects. However, soliton width can be maintained if
GVD decreases exponentially. This behavior was indeed observed in a 40-
km DDF [152]. The Raman-induced spectral shift can disturb the balance be-
tween the GVD and SPM since GVD changes with frequency. Soliton width
can still be maintained if the dispersion profile is designed such that it remains
exponential in the reference frame of the soliton. Indeed, lightwave systems
operating at a bit rate of 100 Gb/s are feasible by using parametric amplifiers
in combination with DDFs [153].

The optimum GVD profile is not exponential in the presence of the Raman-
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induced spectral shift. Numerical simulations indicate that linear and Gaussian
dispersion profiles result in better-quality compressed pulses and larger com-
pression factors for subpicosecond pulses [154]. An analytic approach can also
be used to find the optimum GVD profile [153]. It shows that in a long DDF,
the GVD should be normal far from the input end to counteract the effect of the
Raman-induced spectral shift. A variational approach has also been developed
to determine the optimum GVD profile and its dependence on the width and
peak power of input pulses [157]. Compression factors larger than 50 are pos-
sible by launching input pulses (with peak powers such that the soliton order
N �1) into a DDF whose length is about one soliton period [155]. This tech-
nique takes advantage of soliton-effect compression but requires lower peak
powers and produces compressed pulses of better quality.

The TOD becomes the ultimate limiting factor for compression of ultra-
short pulses in DDFs. Dispersion-flattened fibers, in which the TOD param-
eter β3 is reduced considerably from its standard value (about 0.08 ps3/km),
became available in the late 1990s. The use of such a DDF has resulted in
improved compression characteristics. In one set of experiments, 3-ps pulses
at the 10-GHz repetition rate, obtained from a mode-locked fiber laser, were
compressed down to 100 fs by using a 1.1-km-long DDF for which β3 varied
from 0.023 to 0.003 ps3/km in the 1530- to 1565-nm wavelength range [158].
Both the compression factor and pulse quality were better than those obtained
using a standard DDF with larger TOD (β 3 = 0:073 ps3/km). Numerical sim-
ulations showed that the minimum pulse width was limited by the fourth-order
dispersion in this experiment.

6.7 Other Compression Techniques

The pulse compression techniques described so far show how the interplay
between SPM and GVD can be used to compress optical pulses by using fibers.
Several other techniques based on this basic idea have been developed. This
section discusses how these methods use nonlinear effects in optical fibers to
produce ultrashort optical pulses.

6.7.1 Cross-Phase Modulation

The use of SPM-induced chirp for pulse compression requires input pulses to
be intense enough that their spectrum broadens considerably during propaga-
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tion inside an optical fiber. Clearly, such a technique cannot be used for com-
pressing low-energy pulses. Since cross-phase modulation (XPM) also im-
poses a frequency chirp on optical pulses, it can be used for compressing weak
optical pulses [159]–[172]. Of course, the use of XPM requires an intense
pump pulse that must be copropagated with the weak input pulse (referred to
as the probe pulse in pump-probe experiments). However, the pump pulse is
allowed to have a different wavelength. As discussed in Section A.7.5, the
XPM-induced chirp is affected by pulse walk-off and depends critically on the
initial pump-probe delay. As a result, the practical use of XPM-induced pulse
compression requires a careful control of the pump-pulse parameters such as
its width, peak power, wavelength, and synchronization with the signal pulse.

Two cases must be distinguished depending on the relative magnitudes of
the walk-off length LW and the dispersion length LD. If LD � LW throughout
the fiber, the GVD effects are negligible. In that case, the fiber imposes the
chirp through XPM, and an external grating pair is needed to compress the
chirped pulse. A nearly linear chirp can be imposed across the probe pulse
when the pump pulse is much wider compared with it [161]. The compression
factor depends on the pump-pulse energy and can easily exceed 10.

Another pulse-compression mechanism can be used when LD and LW are
comparable. In this case, the same piece of fiber that is used to impose the
XPM-induced chirp also compresses the pulse through the GVD. In some
sense, this scheme is analogous to the soliton-effect compressor for the XPM
case. However, in contrast with the SPM case where compression can occur
only in the anomalous-GVD regime, the XPM offers the possibility of pulse
compression even in the visible region (normal GVD) without the need of a
grating pair. The performance of such a compressor is studied by solving the
following set of two coupled NLS equations numerically (see Section A.7.4):

∂U1

∂ξ
+

i
2

sgn(β21)
∂ 2U1

∂τ2 = iN2(jU1j
2 +2jU2j
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(jU2j
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where Uj = A j=P1=2
j

is the normalized amplitude, ωj is the frequency, Pj is the

peak power, and β2 j is the GVD parameter for the pump ( j = 1) and probe
( j = 1) pulses. The soliton order N and the walk-off length LW are introduced
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using

N2 =
γ1P1T 2

0

jβ21j
; LW =

vg1vg2T0

jvg1� vg2j
; (6.7.3)

where vg1 and vg2 are the group velocities of the pump and probe pulses. These
equations govern how pump and probe pulses evolve in the presence of SPM,
XPM, and group-velocity mismatch [161]. One can introduce a relative time
delay Td between the input pump and probe pulses such that the faster-moving
pulse overtakes the slower pulse and passes through it. In general, a trade-off
exists between the magnitude and the quality of compression. This issue is
discussed in Section A.7.5.

XPM-induced pulse compression in the normal-GVD region of a fiber can
also occur when the XPM coupling is due to interaction between the orthogo-
nally polarized components of a single beam [163]. Indeed, an experiment in
1990 demonstrated pulse compression by using just such a technique [164]. A
polarizing Michelson interferometer was used to launch 2-ps pulses in a 1.4-m
birefringent fiber (with a 2.1-mm beat length) such that the peak power and the
relative delay of the two polarization components were adjustable. For a rela-
tive delay of 1.2 ps, the weak component was compressed by a factor of about
6.7 when the peak power of the other polarization component was 1.5 kW.

When both the pump and signal pulses propagate in the normal-GVD re-
gion of the fiber, the compressed pulse is necessarily asymmetric because of
the group-velocity mismatch and the associated walk-off effects. The group
velocities can be made nearly equal when wavelengths of the two pulses lie
on opposite sides of the zero-dispersion wavelength (about 1.3 µm in standard
silica fibers). One possibility consists of compressing 1.55-µm pulses by us-
ing 1.06-µm pump pulses. The probe pulse by itself is too weak to form an
optical soliton. However, the XPM-induced chirp imposed on it by a coprop-
agating pump pulse may be strong enough that the probe pulse goes through
an initial compression phase associated with the higher-order solitons. As an
example, weak picosecond pulses can be compressed by a factor of 10 using
pump pulses with N = 30 by optimizing the fiber length. This method of pulse
compression is similar to that provided by higher-order solitons even though
the compressed pulse never forms a soliton. Using dispersion-shifted fibers,
the technique can be used even when both pump and probe wavelengths are
in the 1.55-µm region as long as the zero-dispersion wavelength of the fiber
lies in the middle. In a 1993 experiment [165], 10.6-ps signal pulses were
compressed to 4.6 ps by using 12-ps pump pulses. Pump and signal pulses
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Figure 6.16 Compression factor as a function of fiber length during Raman amplifi-
cation of a probe pulse by a pump pulse propagating as an Nth-order soliton. (After
Ref. [166])

were obtained from mode-locked semiconductor lasers operating at 1.56 and
1.54 µm, respectively, with a 5-GHz repetition rate. Pump pulses were ampli-
fied to an average power of 17 mW by using a fiber amplifier. This experiment
demonstrates that XPM-induced pulse compression can occur at power levels
achievable with semiconductor lasers.

An extension of this idea makes use of Raman amplification for simulta-
neous amplification and compression of picosecond optical pulses [166]. The
probe pulse extracts energy from the pump pulse through stimulated Raman
scattering (see Chapter A.8) and is amplified. At the same time, it interacts
with the pump pulse through XPM, which imposes a nearly linear frequency
chirp on it and compresses it in the presence of anomalous GVD. Equations
(6.3.1) and (6.3.2) can be used to study this case provided a Raman-gain term
is added to these equations (see Section A.8.3). Numerical simulations show
that compression factors as large as 15 can be realized while the pulse energy
is amplified a millionfold [166]. The quality of the compressed pulses is also
quite good, with no pedestal and little ringing. Figure 6.16 shows the com-
pression factor as the probe pulse is amplified by a pump pulse intense enough
to form a soliton of order N. Pulse compression is maximum for an optimum
fiber length, a feature similar to that of soliton-effect compressors. This behav-
ior is easily understood by noting that GVD reduces the XPM-induced chirp
to nearly zero at the point of maximum compression. Simultaneous Raman-
induced amplification and XPM-induced compression of picosecond optical
pulses was observed in a 1996 experiment [167].

Several other XPM-based techniques can be used for pulse compression.
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In one scheme, a probe pulse is compressed as it travels with a pump pulse that
is launched as a higher-order soliton and is thus compressed through soliton-
effect compression [169]. Compression factors as large as 25 are predicted
by the coupled NLS equations. In this technique, a pump pulse transfers its
compression to the copropagating probe pulse through XPM-induced coupling
between the two pulses. Both pulses must propagate in the anomalous-GVD
regime of the optical fiber and their wavelengths should not be too far apart.
This is often the situation for WDM lightwave systems with channel spacing
of 1 nm or so.

Another technique is based on propagation of two ultrashort pulses (widths
below 100 fs) inside an optical fiber [170]. The second pulse is produced using
second-harmonic generation. As a result, carrier frequencies of the two pulses
are far apart but their relative phase is locked. Both pulses are launched into an
optical fiber where they interact through XPM. The pulse spectra are relatively
broad to begin with for ultrashort pulses. They broaden further through SPM
and XPM to the extent that the two spectra merge at the fiber output, producing
an extremely broad continuum. A grating pair, in combination with a spatial
phase modulator, can then be used to compensate the chirp and realize a single
supershort pulse whose spectrum corresponds to the merge spectra of the two
input pulses. Pulses shorter than 3 fs are predicted theoretically.

In a 1999 experiment, a three-wave mixing technique was used to generate
8-fs pulses in the deep ultraviolet region near 270 nm [171]. Ultrashort 35-fs
pulses, from a Ti:sapphire laser operating near 800 nm, and second-harmonic
pulses were coupled together into a hollow silica fiber containing argon gas.
The sum-frequency pulse generated was chirped because of XPM and could
be compressed to 8 fs using a grating pair.

6.7.2 Gain-Switched Semiconductor Lasers

The technique of gain switching can produce pulses of about 20-ps dura-
tion from semiconductor lasers directly. As a rule, pulses emitted from gain-
switched semiconductor lasers are chirped because of refractive-index varia-
tions occurring during pulse generation. In contrast with the positive chirp
induced through SPM in optical fibers, the frequency chirp of gain-switched
pulses is negative, i.e., frequency decreases toward the trailing edge. As seen
in Fig. 3.2, such pulses with negative values of the chirp parameter C can
be compressed if an optical fiber having positive GVD is used and its length
is suitably optimized. This technique has been used in many experiments to



304 Pulse Compression

generate trains of ultrashort optical pulses suitable for optical communications
[173]–[185]. Nonlinear properties of optical fibers are not used in this tech-
nique since laser pulses entering the fiber are already chirped. The role of the
fiber is to provide positive dispersion. The output pulse is not only compressed
but also becomes nearly transform limited. The use of dispersion-shifted fibers
is necessary in the 1.5-µm wavelength region.

As early as 1986, the gain-switching technique was used to obtain 5- to
6-ps optical pulses at a repetition rate of 12 GHz [173]. The repetition rate was
increased to 100 GHz by 1988 through time-division multiplexing of com-
pressed pulses. Since the frequency chirp imposed by the gain-switched laser
is not perfectly linear, the compressed pulse is not generally transform limited.
The quality of the compressed pulse can be significantly improved by using
a bandpass filter that passes the central part of the pulse spectrum where the
chirp is nearly linear [174]. Transform-limited optical pulses of duration less
than 6 ps were generated in this way [176]. In another experiment, the pulse
width was reduced below 3 ps [175].

Even shorter pulses can be obtained if the compressed pulse is further com-
pressed in a fiber with anomalous GVD by using the soliton-effect compression
technique of Section 6.4. In one experiment [177], 1.26-ps optical pulses were
generated by compressing a 17.5-ps gain-switched pulse through such a two-
stage compression scheme. It was necessary to boost the pulse energy by using
semiconductor laser amplifiers before launching the pulse into the second fiber
so that the pulse energy would be large enough to excite a higher-order soli-
ton. By 1993, the pulse width was reduced to below 1 ps [178]. Pulses as
short as 230 fs were obtained by using a tunable distributed Bragg reflector
(DBR) laser [179]. The ultimate performance of the gain-switching technique
is limited by SPM occurring in the normal-GVD fiber used for pulse com-
pression since the resulting positive chirp tends to cancel the negative chirp of
gain-switched pulses. Numerical simulations are often used to optimize the
performance [180].

Much shorter pulses were obtained in 1995 by using fiber birefringence
during pulse compression in such a way that pulses were reshaped as they were
being compressed [181]. A train of 185-fs high-quality pedestal-free pulses
were successfully generated by this technique. In a later experiment, 16-ps
pulses from a gain-switched laser were compressed down to 110 fs [182]. Lin-
ear compression of chirped pulses in a normal-GVD fiber resulted in transform-
limited 4.2-ps pulses. Such pulses were then amplified and compressed to be-
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low 0.2 ps by launching them into a dispersion-shifted fiber as a higher-order
soliton (N = 10 to 12) to use soliton-effect compression. The effects of TOD
as well as intrapulse Raman scattering become quite important for such short
pulses. Experimental results were in agreement with the predictions of Eq.
(6.3.5). The shortest optical pulses (as short as 21 fs) have been obtained by
pumping synchronously a surface-emitting laser in the external-cavity config-
uration [85]. Pulses emitted from such a laser were heavily chirped (time-
bandwidth product of more than 100) and could be compressed down to 21 fs
by using a grating pair followed by a soliton-effect compressor.

6.7.3 Optical Amplifiers

Under certain conditions, amplification of optical pulses can chirp the pulse
such that it can be compressed if it is subsequently propagated through an op-
tical fiber having appropriate GVD. An example is provided by semiconductor
optical amplifiers. When picosecond optical pulses are amplified in such am-
plifiers, gain saturation leads to nonlinear changes in the refractive index of the
semiconductor gain medium [186]–[190]. In essence, the amplifier imposes
a frequency chirp on the amplified pulse through the process of SPM [187].
However, in contrast with the gain-switched semiconductor lasers, the chirp
imposed on the pulse is such that the frequency increases with time over a
large portion of the pulse (similar to the SPM-induced chirp in optical fibers).
As a result, the amplified pulse can be compressed if it is passed through a fiber
having anomalous GVD (β2 < 0). The compression mechanism is similar to
the soliton-effect compression scheme of Section 6.4 with the difference that
the SPM-induced chirp is imposed by the amplifier instead of the fiber. The
main advantage of this technique stems from the fact that low-energy pulses,
which cannot be compressed in fibers directly because their peak power is be-
low the N = 1 level, can be simultaneously amplified and compressed by using
an amplifier followed by the right kind of optical fiber.

Amplifier-induced pulse compression was observed in a 1989 experiment
in which 40-ps pulses, emitted from a 1.52-µm mode-locked semiconductor
laser, were first amplified in a semiconductor laser amplifier and then propa-
gated through 18 km of optical fiber having β2 =�18 ps2/km [187]. The com-
pression factor was about 2 because of relatively low pulse energies (� 0:1 pJ).
Pulse-shape measurements through a streak camera were in good agreement
with the theoretical prediction [188]. The technique can be used for simulta-
neous compensation of fiber loss and dispersion in fiber-optic communication
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systems. In a demonstration of the basic concept [189], a 16-Gb/s signal could
be transmitted over 70 km of conventional fiber having large dispersion when a
semiconductor laser amplifier was used as an in-line amplifier. In the absence
of amplifier-induced chirp, the signal could not be transmitted over more than
15 km since optical pulses experienced excessive broadening.

As discussed in Section 4.6, fiber amplifiers can also compress optical
pulses [191]–[200]. The compression mechanism is similar to that associated
with higher-order solitons and occurs only in the case of anomalous GVD.
Specifically, the amplifying pulse forms a fundamental soliton (N = 1) when
its peak power becomes large enough. With further increase in the peak power,
N begins to exceed 1. As seen from Eq. (6.2.6), the soliton order can be main-
tained (N = 1) if pulse width decreases with amplification. Thus, the ampli-
fied pulse keeps on compressing as long as the amplification process remains
adiabatic. This compression mechanism is evident in Fig. 4.12, which was
obtained by solving the Ginzburg–Landau equation that governs the amplifi-
cation process in fiber amplifiers. The compression process eventually stops
because of the finite gain bandwidth associated with fiber amplifiers. Com-
pression of femtosecond pulses was achieved in erbium-doped fiber amplifiers
soon after they became available [194]. In a 1990 experiment, 240-fs input
pulses were compressed by about a factor of 4 [195]. In a later experiment,
124-fs pulses emitted from a mode-locked fiber laser were shortened to 50 fs
by using a 6-m-long fiber amplifier [198].

Amplification can also improve the performance of standard grating-fiber
compressors [200]. It turns out that if the normal-GVD fiber—used for im-
posing SPM-induced chirp—is doped and pumped to provide gain, the pulse
acquires a nearly parabolic shape. As seen in Fig. 4.3, the pulse shape is close
to being rectangular in the absence of gain. Sharp edges of such pulses leads to
optical wave breaking, a phenomenon that does not occur easily for parabolic-
shaped pulses. The SPM-induced chirp remains linear even when pulses are
amplified in a normal-GVD fiber amplifier. As a result, the amplified pulse
can be compressed by using a grating or prism pair. In the experiment, 350-fs
pulses were compressed to 77 fs using a 4-m fiber amplifier with 18-dB gain
followed by a prism pair. An added benefit of this technique is that it can be
used for relatively weak input pulses as long as the amplified pulse becomes
intense enough to undergo SPM-induced phase shift.

A Raman fiber amplifier can also compress optical pulses. The compres-
sion mechanism is identical to that of a doped fiber amplifier and is governed
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by the same Ginzburg–Landau equation. In one experiment, 10-ps pulses were
compressed down to 1 ps in a backward-pumped Raman amplifier made by
using 20 km of standard telecommunication fiber [201]. The compression fac-
tor depended on the CW pump power, and power levels in excess of 1.5 W
were needed to compress the pulse by a factor of 10. The Raman gain was
nonuniform along the fiber because of the absorption of the pump power. In
the backward-pumping configuration, the gain increases as the pulse is com-
pressed. The reduction in the soliton period compensates for the increase in
Raman gain. This feature helps to maintain the regime of adiabatic compres-
sion.

Frequency chirping can also be produced using four-wave mixing (FWM),
a nonlinear process that produces gain. An example is provided by paramet-
ric amplification in which pump and probe (called signal in this context) pulses
generate a new pulse at the idler wavelength. The new pulse can acquire signif-
icant chirp during four-wave mixing and can be compressed either externally or
during the FWM process. In one approach, degenerate FWM of counterprop-
agating pulses in a birefringent fiber was proposed to compress a pulse train at
a high repetition rate [202]. In another, 93-ps signal pulses were compressed
down to 20 ps when 50-ps pump pulses (wavelength separation 4.9 nm) were
copropagated with them inside a 5-km-long fiber [203]. Signal pulses were
amplified simultaneously by 29 dB through FWM. An idler pulse was also
generated during parametric amplification. Its width and peak powers were
close to those of the signal pulse.

6.7.4 Fiber Couplers and Interferometers

The operation of nonlinear fiber couplers and interferometers and their use for
optical switching was discussed in Chapters 2 and 3. The intensity-dependent
transmission of these devices can be used for pulse shaping and compression
[204]–[213]. For example, compressed pulses are often accompanied by a
broad pedestal (see Section 6.3). If such a low-quality pulse is passed through
a nonlinear fiber-loop mirror, the central intense part of the pulse can be sep-
arated from the low-power pedestal [204]. In general, any nonsoliton pulse is
compressed by a Sagnac interferometer designed to transmit the central part
while blocking the low-intensity pulse wings. A fiber amplifier is sometimes
incorporated within the fiber loop if the input pulse energy is below the switch-
ing threshold. Compression factors are relatively small (two or less) since the
technique works by clipping pulse wings [205]. The use of multiple sections
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with different dispersion characteristics inside the Sagnac loop (dispersion
management) can improve the performance of such pulse compressors [207].
A Sagnac loop with a semiconductor optical amplifier can also provide com-
pression factors as large as 3 for a high-repetition-rate pulse train but its use
requires a source of control pulses [213].

A dual-core fiber also exhibits nonlinear switching between the two cores
(see Section 2.3), which can be exploited for pulse shaping and compression.
The use of such a fiber in a Sagnac-loop configuration offers several advan-
tages since it combines two nonlinear mechanisms in a single device. Numer-
ical simulations show that it can be used for pulse shaping, pedestal suppres-
sion, and pulse compression [208]. An interesting feature of such a device is
that one can introduce additional coupling between the two cores by twisting
the dual-core fiber within the loop. The operation of the device is quite com-
plex and requires the solution of coupled NLS equations since the energy can
be transferred between the two cores in a way similar to that of a nonlinear
directional coupler (see Chapter 2). With a proper design, a dual-core fiber
loop can provide compression factors of 5 or more. Even larger compression
factors (up to 20) are possible in symmetric dual-core fibers using higher-order
solitons [211]. Moreover, the compressed pulse is nearly pedestal free.

A multicore fiber in which multiple cores are arranged in either a linear or
a circular fashion (fiber array) can also lead to pulse compression [210]. If a
pulse is launched into such a device such that its energy is spread over all cores,
nonlinear effects such as SPM and XPM can collapse the energy distribution
in such a way that almost all the energy appears in a single core in the form of
a compressed pulse. Compression in fiber arrays has been studied numerically
but not yet observed experimentally.

Problems

6.1 Explain the operation of a grating-fiber compressor. Use diagrams as
necessary.

6.2 Derive an expression for the effective GVD coefficient of a grating pair.

6.3 Develop a computer simulation program capable of modeling the perfor-
mance of a grating-fiber compressor. Use the split-step Fourier method
for solving Eq. (6.2.5) and implement the action of a grating pair through
Eq. (6.2.4).
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6.4 A 100-ps pulse with 1-µJ energy (emitted from a 1.06-µm Nd:YAG
laser) is compressed by using a grating-fiber compressor. Estimate the
maximum compression factor, optimum fiber length, and optimum grat-
ing separation for typical parameter values.

6.5 Solve numerically the NLS equation that models the performance of a
soliton-effect compressor. Find the maximum compression factor and
the optimum fiber length when a 10th-order soliton is launched and the
soliton period is 10 km.

6.6 What is the origin of pedestal formation in soliton-effect compressors?
How can the pedestal be removed from the compressed pulse?

6.7 Solve numerically the generalized NLS equation and reproduce the re-
sults shown in Fig. 6.11 for the 10th-order soliton.

6.8 How a chirped fiber grating can be used for pulse compression? Estimate
the dispersion provided by such a grating if its period changes by 0.1%
over a 10-cm length. Assume λ = 1:55 µm and n̄ = 1:45.

6.9 What is meant by chirped-pulse amplification? How can this technique
produce high-energy compressed pulses?

6.10 Dispersion of a fiber decreases exponentially from 20 to 1 ps/(km-nm)
over a length of 1 km. Estimate the compression factor for a 1-ps pulse
launched as a fundamental soliton at the high-GVD end.

6.11 Explain how a pulse can be compressed using the technique of Raman
amplification. Reproduce the results shown in Fig. 6.16 by solving the
appropriate equations from Chapter A.8.
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Chapter 7

Fiber-Optic Communications

Soon after the nonlinear effects in optical fibers were observed experimentally,
it was realized that they would limit the performance of fiber-optic commu-
nication systems [1]. However, nonlinear effects were found to be mostly
irrelevant for system design in the 1980s because both the bit rate and link
lengths were limited by fiber losses and group-velocity dispersion (GVD). The
situation changed dramatically during the 1990s with the advent of optical
amplification, dispersion management, and wavelength-division multiplexing
(WDM). These advances increased fiber-link lengths to beyond 1000 km and
single-channel bit rates to beyond 10 Gb/s. As a result, the nonlinear effects in
optical fibers became of paramount concern in the system design [2]–[6]. This
chapter focuses on how the nonlinear effects influence the design of WDM
lightwave systems. The loss- and dispersion-management techniques are dis-
cussed first in Section 7.1 as an introduction to system-related issues. Sections
7.2 and 7.3 consider the impact of stimulated Brillouin and Raman scattering
(SBS and SRS). The role of self- and cross-phase modulation (SPM and XPM)
is discussed in Sections 7.4 and 7.5, respectively, while Section 7.6 is devoted
to the detrimental effects of four-wave mixing (FWM). Finally, Section 7.7
focuses on the design and performance of WDM systems.

7.1 System Basics

All digital lightwave systems transmit information as a continuous stream of
1 and 0 bits. The bit rate B determines the duration of each bit, or the bit
slot, as TB = 1=B. An optical pulse is present in the bit slot of each 1 bit. It
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occupies a fraction of the bit slot when the return-to-zero (RZ) format is used.
In the case of the nonreturn-to-zero (NRZ) format, the optical pulse occupies
the entire bit slot. The most important issue for lightwave systems is how an
optical bit stream is affected by losses, GVD, and various nonlinear effects as
it propagates down the fiber link [7]–[10]. In this section the focus is on the
effects of fiber losses and dispersion; the nonlinear effects are considered in
later sections.

7.1.1 Loss Management

As discussed in Section A.1.2, optical fibers have minimum losses in the wave-
length region near 1.55 µm (about 0.2 dB/km). In fact, most modern lightwave
systems operate near this wavelength to minimize the impact of fiber losses.
Even then, the optical signal is attenuated by a factor of 100 or more over
a link length of only 100 km. Since long-haul lightwave systems typically
extend over thousands of kilometers, it is evident that fiber losses must be
compensated periodically to boost the signal power back to its original value.

A common technique, used exclusively during the 1980s, regenerates the
optical signal using a “repeater” in which the bit stream is first converted to the
electric domain (using an optical receiver) and then regenerated with the help
of an optical transmitter [7]. This technique becomes quite cumbersome (and
expensive) for WDM systems as it requires demultiplexing of all channels at
each repeater. As discussed in Chapter 4, fiber amplifiers can amplify multiple
WDM channels simultaneously. For this reason, almost all WDM lightwave
systems use optical amplifiers for compensating fiber losses. Figure 7.1 shows
how amplifiers can be cascaded in a periodic manner to form a chain, and
thus extend fiber-optic transmission to distances as large as 10,000 km, while
retaining the signal in its original optical form. Most systems employ lumped
amplifiers in which losses accumulated over 50 to 100 km of fiber lengths
are compensated using short lengths (� 10 m) of erbium-doped fibers. The
distributed-amplification scheme in which the transmission fiber itself is used
for amplification (with the gain provided by SRS or erbium ions) compensates
losses all along the fiber length. It requires periodic injection of pump power
through the fiber couplers, as shown in Fig. 7.1.

The loss-management technique based on optical amplification degrades
the signal-to-noise ratio (SNR) of the optical bit stream since all amplifiers add
noise to the signal through spontaneous emission. Mathematically, this noise
can be included by adding a Langevin-noise term to the Ginzburg–Landau
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Figure 7.1 Schematic illustration of fiber-optic links making use of (a) lumped and
(b) distributed amplification for compensation of fiber losses.

equation of Section 4.3. If the two-photon absorption term in Eq. (4.3.16) is
neglected because of its smallness, the amplification process is governed by

∂A
∂ z

+
i
2
(β2 + ig0T 2

2 )
∂ 2A
∂T 2 = iγ jAj2A+

1
2
(g0�α)A+ fn(z;T ); (7.1.1)

where g0 is the gain coefficient and the T2 term accounts for the decrease in
the gain for spectral components of an optical pulse located far from the gain
peak. The noise induced by spontaneous emission vanishes on average such
that h fn(z;T )i= 0. If noise is modeled as a Markovian stochastic process with
Gaussian statistics, its second moment can be written as

h fn(z;T ) fn(z
0;T 0

)i= nsphν0g0δ (z� z0)δ (T �T 0
); (7.1.2)

where nsp is the spontaneous-emission factor introduced in Section 4.1 and
hν0 is the average photon energy. The two delta functions ensure that all
spontaneous-emission events are independent of each other. The noise vari-
ance is higher by factor of 2 when both polarization components are consid-
ered [11].

In the case of distributed amplification, Eq. (7.1.1) should be solved along
the entire fiber link. However, when lumped amplifiers are used periodically,
the amplifier length is typically much shorter than the dispersive and nonlinear
lengths. For this reason, one can set α , β 2, and γ to zero in Eq. (7.1.1). If gain
dispersion is also ignored by setting T2 = 0, this equation can be integrated
over the amplifier length la with the result

Aout(T ) =

p
GAin(T )+an(T ); (7.1.3)
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where G = exp(g0la) is the amplification factor of the lumped amplifier. The
spontaneous-emission noise added by the amplifier is given by

an(T ) =

Z la

0
fn(z;T )exp

�
1
2

g0(la� z)

�
dz: (7.1.4)

If we use Eq. (7.1.2), the second moment of an(T ) satisfies

han(T )an(T
0
)i= Sspδ (T �T 0

); (7.1.5)

where Ssp = (G� 1)nsphν0 is the spectral density of amplified spontaneous
emission (ASE), introduced earlier in Section 4.1.3. The delta function indi-
cates that the ASE spectral density is frequency independent (white noise). In
real amplifiers, the gain spectrum sets the bandwidth over which ASE occurs.
An optical filter is often placed just after the amplifier to reduce the amplifier-
induced noise. If that is the case, noise is added only over the filter bandwidth,
and the ASE power becomes

Psp =

Z ∞

�∞
SspHf (ν�ν0)dν � Ssp∆ν f ; (7.1.6)

where Hf is the transfer function, ν0 is the center frequency, and ∆νf is the
3-dB bandwidth (FWHM) of the filter.

In a chain of cascaded lumped amplifiers (see Fig. 7.1), ASE accumulates
from amplifier to amplifier and can build up to high levels [11]. If we assume
that all amplifiers are spaced apart by a constant distance LA and the amplifier
gain G� exp(αLA) is just large enough to compensate for fiber losses in each
fiber section, the total ASE power for a chain of NA amplifiers is given by

Psp = NASsp∆ν f = nsphν0NA(G�1)∆ν f : (7.1.7)

Clearly, ASE power can become quite large for large values of G and NA. A
side effect of high ASE levels is that at some point ASE begins to saturate
amplifiers. Then, signal power begins to decrease while, at the same time,
noise power keeps on increasing, resulting in severe degradation of the SNR.
The ASE power can be controlled by reducing the amplifier spacing LA. At
first sight, this approach may appear counterintuitive since it increases NA.
However, noting that NA = L=LA = αL= lnG, we find that Psp scales with G
as (G� 1)= ln G and can be reduced by lowering the gain of each amplifier.
The limit LA ! 0 corresponds to the technique of distributed amplification. In
practice, the amplifier spacing LA cannot be made too small. Typically, LA is
below 50 km for undersea applications but can be increased to 80 km or so for
terrestrial systems with link lengths under 3000 km.
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7.1.2 Dispersion Management

In Section A.3.5 we discussed the limitations imposed on system performance
by dispersion-induced pulse broadening. As shown in Fig. A.3.9, the GVD
effects can be minimized by using a narrow-linewidth laser and operating the
system close to the zero-dispersion wavelength λZD of the fiber. However, it
is not always practical to match the operating wavelength λ with λZD. An
example is provided by terrestrial lightwave systems operating near 1.55 µm
and using optical transmitters containing a DFB laser. Such systems often use
the existing fiber network made of “standard” telecommunication fibers for
which λ ZD � 1:31 µm. Since the GVD parameter β 2 � �20 ps2/km in the
1.55-µm region of such fibers, dispersion-induced pulse broadening limits the
system performance severely. In the case of directly modulated DFB lasers,
we can use Eq. (A.3.5.2) for estimating the limiting transmission distance L
and find that L is limited as

L < (4BjDjσλ )
�1; (7.1.8)

where σλ is the root-mean-square (RMS) spectral width, with a typical value
around 0.15 nm for directly modulated DFB lasers. Using D = 16 ps/(km-
nm) in Eq. (7.1.8), lightwave systems operating at 2.5 Gb/s are limited to L�
42 km. Indeed, such systems use electronic regenerators, spaced apart by about
40 km, and cannot make use of optical amplifiers. Furthermore, their bit rate
cannot be increased beyond 2.5 Gb/s because the repeater spacing becomes too
small to be practical.

System performance can be improved considerably using external modu-
lators. The transmission distance is now limited by Eq. (A.3.5.4) as

L < (16jβ2jB
2
)
�1: (7.1.9)

Using β2 = �20 ps2/km at 1.55 µm, the system length is limited to below
500 km at 2.5 Gb/s. Although improved considerably compared with the case
of directly modulated DFB lasers, this dispersion limit becomes of concern
when optical amplifiers are used for loss compensation. Moreover, if the bit
rate is increased to 10 Gb/s, the GVD-limited transmission distance drops to
30 km, a value so low that optical amplifiers cannot be used in designing such
lightwave systems. It is evident from Eq. (7.1.9) that the relatively large GVD
of standard telecommunication fibers severely limits the performance of 1.55-
µm systems designed to use the existing telecommunication network at a bit
rate of 10 Gb/s or more.
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The dispersion-management scheme is aimed at solving this practical prob-
lem. The basic idea behind dispersion management is quite simple and can be
understood using the pulse-propagation equation of Section A.2.3. If nonlinear
effects and fiber losses are ignored, this equation can be written as

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 �

β3

6
∂ 3A
∂ t3 = 0; (7.1.10)

where the effect of third-order dispersion (TOD) is included by the β3 term.
In practice, this term can be neglected as long as jβ2j is not close to zero.
Equation (7.1.10) can be solved using the Fourier-transform method. In the
specific case of β3 = 0, the solution is given by

A(L; t) =
1

2π

Z ∞

�∞
Ã(0;ω)exp

�
i
2

β2Lω2� iωt

�
dω ; (7.1.11)

where Ã(0;ω) is the Fourier transform of A(0;T ) and L is the length of a fiber
with uniform GVD β2.

Dispersion-induced degradation of optical signals is caused by different
phase shifts (φs = β2Lω2=2) acquired by different spectral components as a
pulse propagates down the fiber. All dispersion-management schemes attempt
to cancel this phase shift so that the input signal can be restored. In the sim-
plest approach, the optical signal is propagated over multiple fiber segments
with different dispersion characteristics. The basic idea can be understood by
considering just two segments whose GVD parameters are chosen such that

β21L1 +β22L2 = 0; (7.1.12)

where L = L1 +L2 and β2 j is the GVD of the fiber segment of length Lj ( j =
1, 2). If we apply Eq. (7.1.11) to each fiber section and use the condition
(7.1.12), it is easy to verify that A(L; t) = A(0;T ). As a result, the pulse shape
is restored to its input form after traversing the two segments. The second
segment is made of dispersion-compensating fiber (DCF) designed to have
normal GVD near 1.55 µm (β22 > 0). Its length should be chosen such that
L2 =�(β21=β22)L1. For practical reasons, L2 should be as small as possible.
Commercial DCFs have values of β22 in excess of 100 ps2/km and are designed
with a relatively small value of the V parameter (see Section A.2.2).

Modern long-haul systems employ the loss- and dispersion-management
schemes simultaneously, using a periodic dispersion map such that each sec-
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Figure 7.2 Dispersion map for center, shortest-, and longest-wavelength channels of
a WDM system. (After Ref. [5], cLucent Technologies)

tion between two amplifiers (see Fig. 7.1) consists of two (or more) fiber seg-
ments chosen such that the average value of the GVD parameter,

β̄2 =
β21L1 +β22L2

L1 +L2
; (7.1.13)

is relatively small. If the numerical value of β̄2 is close to zero, the effects
of TOD become important and should be included, especially for RZ-format
systems for which pulse width is a small fraction of the bit slot. The nonlinear
parameter γ is larger by a factor of 3 to 4 for a DCF because of its small
effective core area (about 20 µm2). As a result, nonlinear effects in DCFs
are enhanced considerably. Losses in such fibers are also large. Chirped fiber
gratings provide an alternative to DCF for dispersion compensation. The main
disadvantage of chirped gratings is their limited spectral range—large GVD
occurs only within the stop band. As a result, multiple gratings are needed for
WDM systems.

WDM systems benefit from dispersion management enormously [12] since
its use avoids interchannel crosstalk induced by FWM (discussed in Section
7.6). However, the GVD cannot be compensated fully for all channels because
of the wavelength dependence of β 2 and because β3 is generally positive for
all fibers. The plot of the accumulated value of dispersion,

R z
0 D(z)dz, along the

fiber link for the shortest- and longest-wavelength channels in Figure 7.2 shows
the typical situation for WDM systems. The average GVD can be reduced to
zero for the central channel but has finite values for all other channels. The
total dispersion may exceed 1000 ps/nm for the boundary channels in long-
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haul WDM systems. Pre- or postcompensation techniques are sometimes used
by adding different DCF lengths for different channels at the transmitter or
receiver end. New types of fibers with negative values of β3 have also been
developed for this purpose. Their use permits in-line GVD compensation for
all channels simultaneously.

7.2 Stimulated Brillouin Scattering

Rayleigh scattering, a major source of fiber losses, is an example of elastic
scattering in which the frequency of scattered light remains unchanged. In
contrast, the frequency is shifted downward during inelastic scattering. Two
examples of inelastic scattering are Raman and Brillouin processes. Both of
them can be understood as the conversion of a photon to a lower-energy photon
such that the energy difference appears in the form of a phonon. The main dif-
ference between the two is that optical phonons (related to vibrations of silica
molecules) participate in Raman scattering, whereas acoustic phonons partic-
ipate in Brillouin scattering. The two processes are harmless at low powers
because their scattering cross sections are relatively small. However, they be-
come stimulated at high power levels, resulting in the nonlinear phenomena of
SBS and SRS that can affect the performance of lightwave systems consider-
ably. This section focuses on SBS from a system point of view.

7.2.1 Brillouin Threshold

SBS in optical fibers was first observed in 1972 and has been studied exten-
sively since then because of its implications for lightwave systems [13]–[19].
As discussed in Chapter A.9, SBS generates a Stokes wave propagating in
the backward direction. The frequency of the Stokes wave is down-shifted
by an amount that depends on the wavelength of incident signal. This shift is
known as the Brillouin shift and is about 11 GHz in the wavelength region near
1.55 µm. The intensity of the Stokes wave grows exponentially once the in-
put power exceeds a threshold value. For narrowband, continuous-wave (CW)
signals, the threshold power Pth can be estimated using [14]

gBPthLeff=Aeff � 21; (7.2.1)

where gB is the Brillouin gain coefficient and Aeff is the effective core area.
The effective interaction length is smaller than the actual fiber length because
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Figure 7.3 Output signal power (solid circles) and reflected SBS power (empty cir-
cles) as a function of power injected into a 13-km-long fiber. (After Ref. [17], c1992
IEEE)

of fiber losses and is given by

Leff =

Z L

0
e�αz dz =

1� exp(�αL)
α

; (7.2.2)

for a fiber with loss coefficient α and length L. For long fibers such that αL�
1, one can use Leff � 1=α � 21:74 km when α = 0:2 dB/km. Using gB �
5� 10�11 m/W and Aeff = 50 µm2 as typical values, Pth can be as low as
1 mW for CW signals in the wavelength region near 1.55 µm [15]. Figure 7.3
shows variations in the transmitted reflected power (through SBS) for a 13-
km-long dispersion-shifted fiber as the injected CW power is increased from
0.5 to 50 mW. No more than 3 mW could be transmitted through the fiber in
this experiment after the onset of SBS.

The SBS threshold increases for CW beams whose spectral width ∆νp is
larger than the Brillouin-gain line width (∆νB � 20 MHz). It also increases
when short optical pulses propagate through the fiber because of their rela-
tively wide bandwidth. In lightwave systems, the optical signal is in the form
of a time-dependent signal composed of an arbitrary sequence of 1 and 0 bits.
One would expect the Brillouin threshold of such a signal to be higher than
that of a CW pump. Considerable attention has been paid to estimating the
Brillouin threshold and quantifying the SBS limitations for practical lightwave
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systems [20]–[28]. The amount by which the threshold power increases de-
pends on the modulation format used for data transmission. In the case of a
coherent transmission scheme, the SBS threshold also depends on whether the
amplitude, phase, or frequency of the optical carrier is modulated for informa-
tion coding. Most lightwave systems modulate amplitude of the optical carrier
and use the so-called on–off keying scheme.

Calculation of the Brillouin threshold is quite involved as it requires a time-
dependent analysis [20]. Considerable simplification occurs if the bit rate B is
assumed to be much larger than the Brillouin-gain line width ∆νB. Even with
this assumption, the analysis is complicated by the fact that the 1 and 0 bits
do not follow a fixed pattern in realistic communication systems. A simple
approach assumes that the situation is equivalent to that of a CW pump whose
spectrum corresponds to that caused by a random bit pattern. This is justified
by noting that the backward nature of SBS would tend to average out time-
dependent fluctuations. An interesting result of such an approximate analysis
is that the Brillouin threshold increases by about a factor of 2 irrespective of
the actual bit rate. As a result, input powers of about 6 mW can be injected
into a fiber without performance degradation resulting from SBS.

In modern WDM systems, fiber losses are compensated periodically using
optical amplifiers. An important question is how amplifiers affect the SBS
process. If the Stokes wave were amplified by amplifiers, it would accumulate
over the entire link and grow enormously. Fortunately, periodically amplified
lightwave systems typically employ an optical isolator within each amplifier
that blocks the passage of the Stokes wave. However, the SBS growth between
two amplifiers is still undesirable for two reasons. First, it removes power from
the signal once the signal power exceeds the threshold level. Second, it induces
large fluctuations in the remaining signal, resulting in degradation of both the
SNR and the bit-error rate [18]. For these reasons, single-channel powers are
invariably kept below the SBS threshold and are limited in practice to below
10 mW.

7.2.2 Control of SBS

The issue of interchannel crosstalk is of primary concern for WDM lightwave
systems. SBS leads to interchannel crosstalk only if a fiber link transmits data
in counterpropagating directions simultaneously and if the channel spacing be-
tween two counterpropagating channels happens to match the Brillouin shift
of about 11 GHz precisely. Crosstalk results in amplification of the lower-
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frequency channel at the expense of the power carried by the counterpropagat-
ing channel. In a 1985 experiment [21], a 10% increase in the signal power
of one channel was observed at a power level of only 0.3 mW in the counter-
propagating channel. In a 1994 experiment [26], SBS-induced power penalties
were measured in a bidirectional coherent system at power levels far below
the SBS threshold (< 0:1 mW). However, the Brillouin-induced crosstalk can
be easily avoided by selecting the channel spacing appropriately. Most long-
haul systems use different fibers for counterpropagating channels and are thus
immune to Brillouin-induced crosstalk. The situation is somewhat different
in the case of analog transmission of video channels using subcarrier multi-
plexing [7]. In that case, SBS degrades the system performance because the
SBS-induced losses in the optical-carrier power can distort the analog signal
and reduce the carrier-to-noise ratio [29].

Some applications require launch powers in excess of 10 mW. An example
is provided by the shore-to-island fiber links designed to transmit information
over several hundred kilometers without using in-line amplifiers or repeaters
[30]–[32]. Input power levels in excess of 50 mW are needed for distances
> 300 km. One way to increase the input power is to raise the Brillouin
threshold; several schemes have been proposed for this purpose [33]–[40].
These schemes rely on increasing either the Brillouin-gain line width ∆νB or
the effective spectral width of optical carrier. The former has a value of about
20 MHz for silica fibers, while the latter is typically < 10 MHz for DFB lasers
used commonly for systems operating at bit rates above 2 Gb/s. The band-
width of an optical carrier can be increased without affecting the system per-
formance by modulating its phase at a frequency much lower than the bit rate.
Typically, the modulation frequency ∆νm is in the range of 200 to 400 MHz.
Since the effective Brillouin gain is reduced by a factor of (1+∆νm=∆νB) in
Eq. (7.2.1), the SBS threshold increases by the same factor. As ∆νB� 20 MHz,
the launched power can be increased by more than a factor of 10 by this tech-
nique.

If the Brillouin-gain bandwidth ∆νB of the fiber itself can be increased
from its nominal value of 20 MHz to more than 200 MHz, the SBS thresh-
old can be increased without requiring a phase modulator. One technique uses
sinusoidal strain along the fiber length for this purpose. The applied strain
changes the Brillouin shift νB by a few percent in a periodic manner. The re-
sulting Brillouin-gain spectrum is much broader than that occurring for a fixed
value of νB. The strain can be applied during cabling of the fiber. In one fiber
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cable, ∆νB was found to increase from 50 MHz to 400 MHz [36]. The Bril-
louin shift νB can also be changed by making the core radius nonuniform along
the fiber length since the longitudinal acoustic frequency depends on the core
radius [37]. The same effect can be realized by changing the dopant concentra-
tion along the fiber length. This technique increased the SBS threshold of one
fiber by 7 dB [38]. A side effect of varying the core radius or the dopant con-
centration is that the GVD parameter β 2 also changes along the fiber length. It
is possible to vary both of them simultaneously in such a way that β2 remains
relatively uniform [40].

7.3 Stimulated Raman Scattering

As discussed in Chapter A.8, SRS differs from SBS in several ways. First, it
generates a forward-propagating Stokes wave. Second, the Raman shift νR by
which the frequency of the Stokes wave is down-shifted is close to 13 THz.
Third, the Raman-gain spectrum is extremely broad (see Fig. A.8.1) and ex-
tends over a frequency range wider than 20 THz. Fourth, the peak value of the
Raman gain gR is lower by more than a factor of 100 compared with that of
the Brillouin gain. SRS was first observed in optical fibers in 1972 [41]. Since
then, the impact of SRS on the performance of lightwave systems has been
studied extensively [42]–[61].

7.3.1 Raman Crosstalk

The Raman threshold, the power level at which the Raman process becomes
stimulated and transfers most of the signal power to the Stokes wave, is esti-
mated using a relation similar to Eq. (7.2.1). It can be written as [14]

Pth � 16Aeff=(gRLeff): (7.3.1)

As before, we can replace Leff with 1=α for long fiber lengths used in lightwave
systems. Using gR� 1�10�13 m/W, Pth is about 500 mW in the spectral region
near 1.55 µm. Since input powers are limited to below 10 mW because of SBS,
SRS is typically not of concern for single-channel systems.

The situation is quite different for WDM systems, which simultaneously
transmit multiple channels spaced 100 GHz or so apart. The same fiber in
which channels propagate acts as a Raman amplifier such that the long-wave-
length channels are amplified by the short-wavelength channels as long as
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the wavelength difference is within the Raman-gain bandwidth. The shortest-
wavelength channel is depleted most as it can pump all other channels simul-
taneously. Such an energy transfer among channels can be detrimental for
system performance since it depends on the bit pattern—it occurs only when 1
bits are present in both channels simultaneously. The signal-dependent ampli-
fication leads to power fluctuations, which add to receiver noise and degrade
the receiver performance.

The Raman crosstalk can be avoided if channel powers are made so small
that Raman amplification is negligible over the fiber length. It is thus impor-
tant to estimate the limiting value of the channel power. A simple model con-
siders depletion of the highest-frequency channel in the worst case, in which
all channels transmit 1 bits simultaneously [43]. The amplification factor for
the mth channel is Gm = exp(gmLeff), where Leff is given by Eq. (7.2.2) and
gm = gR(Ωm)Pch=Aeff is the Raman gain at Ωm = ω1 �ωm provided by the
shortest-wavelength channel at the frequency ω1. For gmLeff� 1, the shortest-
wavelength channel is depleted by a fraction gmLeff due to SRS-induced am-
plification of mth channel. The total depletion for a M-channel WDM system
is given by

DR =

M

∑
m=2

gR(Ωm)PchLeff=Aeff: (7.3.2)

The summation in Eq. (7.3.2) can be carried out analytically if the Raman
gain spectrum (see Fig. A.8.1) is approximated by a triangular profile such that
gR increases linearly for frequencies up to 15 THz with a slope SR = dgR=dν
and then drops to zero. The fractional power loss for the shortest-wavelength
channel becomes [43]

DR =
1
2 M(M�1)CRPchLeff; (7.3.3)

where CR = SR∆νch=(2Aeff). In deriving this equation, channels were assumed
to have a constant spacing ∆νch and the Raman gain for each channel was
reduced by a factor of 2 to account for polarization scrambling.

A more accurate analysis should consider not only depletion of each chan-
nel because of power transfer to longer-wavelength channels but also its own
amplification by shorter-wavelength channels. If all other nonlinear effects are
neglected along with GVD, evolution of the power Pn associated with the nth
channel is governed by the following equation (see Chapter A.8):

dPn

dz
+αPn =CRPn

M

∑
m=1

(n�m)Pm; (7.3.4)
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where α is assumed to be the same for all channels. This set of M coupled
nonlinear equations can be solved analytically. For a fiber of length L, the
result is given by [56]

Pn(L) = Pn(0)e
�αL Pt exp[(n�1)CRPtLeff]

∑M
m=1 Pm(0)exp[(m�1)CRPtLeff]

; (7.3.5)

where Pt = ∑M
m=1 Pm(0) is the total input power in all channels. This equa-

tion shows that channel powers follow an exponential distribution because of
Raman-induced coupling among all channels.

The depletion factor DR for the shorter-wavelength channel (n = 1) is ob-
tained using DR = (P10�P1)=P10, where P10 = P1(0)exp(�αL) is the channel
power expected in the absence of SRS. In the case of equal input powers in all
channels, Pt = MPch in Eq. (7.3.5) and DR is given by

DR = 1� exp

�
�

1
2

M(M�1)CRPchLeff

�
M sinh(1

2 MCRPchLeff)

sinh(1
2M2CRPchLeff)

: (7.3.6)

In the limit M2CRPchLeff � 1, this complicated expression reduces to the sim-
ple result in Eq. (7.3.3). In general, Eq. (7.3.3) overestimates the Raman
crosstalk since it does not take into account pump depletion.

7.3.2 Power Penalty

The Raman-induced power penalty is obtained using δR = �10 log(1�DR)

since the input channel power must be increased by a factor of (1�DR)
�1

to maintain the same system performance. Figure 7.4 shows how the power
penalty increases with an increase in the channel power and the number of
channels. The channel spacing is assumed to be 100 GHz. The slope of the
Raman gain is estimated from the gain spectrum to be SR = 4:9�10�18 m/(W-
GHz) while Aeff = 50 µm2 and Leff � 1=α = 21.74 km. As seen from Fig. 7.4,
the power penalty becomes quite large for WDM systems with a large number
of channels. In practice, the Raman-induced power penalty should be kept
small. If a value of at most 1 dB is considered acceptable, the limiting channel
power Pch exceeds 10 mW for 20 channels, but its value is reduced to below
1 mW when the number of WDM channels is larger than 70.

Equation (7.3.6) overestimates the Raman crosstalk since it ignores the fact
that signals in each channel consist of a random sequence of 0 and 1 bits. A
statistical analysis shows that Raman crosstalk is lower by about a factor of
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Figure 7.4 Raman-induced power penalty as a function of channel number for several
values of Pch. Channels are 100-GHz apart and launched with equal powers.

2 when signal modulation is taken into account [52]. The inclusion of GVD
effects that were neglected in the above analysis also reduces Raman crosstalk
since pulses in different channels travel at different speeds because of the
group-velocity mismatch [57]. Figure 7.5 shows the the Raman-induced power
penalty for a 100-km-long WDM system with 1-nm channel spacing after in-
cluding the effects of both GVD and modulation statistics. Each channel op-
erates at 10 Gb/s and is launched with same input peak power of 10 mW. The
shortest-wavelength channel is assumed to be located at 1530 nm. The power
penalty is smaller by a factor of 2 for standard fibers with D = 16 ps/(km-nm)
compared with the D = 0 case. It exceeds 1 dB when the number of channels
becomes more than 25 for D = 2 ps/(km-nm).

The effects of Raman crosstalk in a WDM system were quantified in a
1999 experiment by transmitting 32 channels, with 100-GHz spacing, over
100 km [60]. At low input powers (Pch = 0:1 mW), SRS effects were rela-
tively small and channel powers differed by only a few percent after 100 km.
However, when the input power for each channel was increased to 3.6 mW, the
longest-wavelength channel had 70% more power than the shortest-wavelength
channel. Moreover, the channel powers were distributed in an exponential
fashion as predicted by Eq. (7.3.5).

In long-haul lightwave systems, the crosstalk is also affected by the use
of loss- and dispersion-management schemes. Dispersion management per-
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Figure 7.5 Raman-induced power penalty for a 100-km-long WDM system with 1-
nm channel spacing. Dispersion parameter is 0, 2, and 16 ps/(km-nm) for curves
(a)–(c), respectively. (After Ref. [57], c1998 IEEE)

mits high values of GVD locally while reducing it globally. Since the group-
velocity mismatch among different channels is quite large in such systems, the
Raman crosstalk should be reduced in a dispersion-managed system. In con-
trast, the use of optical amplifiers for loss management magnifies the impact of
SRS-induced degradation. The reason is that in-line amplifiers add broadband
noise, which can seed the SRS process. As a result, noise is amplified along
the link and results in degradation of the SNR. The SNR can be maintained
if the channel power is increased as the number of amplifiers increases. The
Raman-limited capacity of long-haul WDM systems depends on a large num-
ber of design parameters such as amplifier spacing, optical-filter bandwidth,
bit rate, channel spacing, and total transmission distance [51].

Can Raman crosstalk be avoided by a proper system design? Clearly, re-
ducing the channel power is the simplest solution but it may not always be
practical. An alternative scheme lets SRS occur over the whole link but cancels
the Raman crosstalk by using the technique of spectral inversion [51]. As the
name suggests, if the spectrum of the WDM signal were inverted at some ap-
propriate distance, short-wavelength channels would become long-wavelength
channels and vice versa. As a result, the direction of Raman-induced power
transfer will be reversed such that channel powers become nearly equal at the
end of the fiber link. Complete cancellation of Raman crosstalk for a two-
channel system requires spectral inversion at mid-span if GVD effects are
negligible or compensated [59]. Equation (7.3.4) can be used to show that
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the spectral-inversion technique should work for an arbitrary number of chan-
nels [61]. The location of spectral inversion is not necessarily in the middle
of the fiber span but changes depending on gain–loss variations. Spectral in-
version can be accomplished through FWM inside a fiber to realize phase con-
jugation; the same technique is also useful for dispersion compensation [7].

7.4 Self-Phase Modulation

As discussed in Chapter A.4, the intensity dependence of the refractive index
leads to SPM-induced nonlinear phase shift, resulting in chirping and spec-
tral broadening of optical pulses. Clearly, SPM can affect the performance of
lightwave system considerably. When SPM is included, the propagation of an
optical bit stream inside optical fibers is governed by the following nonlinear
Schrödinger (NLS) equation [given earlier as Eq. (3.1.10)]:

i
∂A
∂ z
�

β2

2
∂ 2A
∂T 2 + γ jAj2A =

iα
2

A; (7.4.1)

where fiber losses are included through the parameter α . The parameters β2
and γ govern the effects of GVD and SPM, respectively. All three parameters
become functions of z when loss- and dispersion-management schemes are
employed for long-haul lightwave systems.

7.4.1 SPM-Induced Frequency Chirp

It is useful to eliminate the last term in Eq. (7.4.1) with the transformation

A(z;T ) =

p
P0 e�αz=2U(z;T ); (7.4.2)

where P0 is the peak power of input pulses. Equation (7.4.1) then takes the
form

i
∂U
∂ z
�

β2(z)

2
∂ 2U
∂T 2 + γP0p(z)jU j2U = 0; (7.4.3)

where power variations along a loss-managed fiber link are included through
the periodic function p(z) defined such that p(z) = e�αz between two ampli-
fiers but becomes 1 at the location of each lumped amplifier.

It is not easy to solve Eq. (7.4.3) analytically except in some simple cases.
In the specific case of p= 1 and β 2 constant but negative, this equation reduces
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to the standard NLS equation and has solutions in the form of solitons. This
case is discussed in Chapter 8. Another special case is that of a square-shaped
pulse propagating in a fiber with constant β2. Using the transformation

U(z;T ) =

p
ρ(z;T ) exp

�
i
Z T

0
v(z;T )dT

�
(7.4.4)

in Eq. (7.4.3), the pulse-propagation problem reduces to a fluid-dynamics prob-
lem in which the variables ρ and v play respectively the role of local density
and velocity of a fluid [62]. In the optical case, these variables represent the
local intensity and chirp of the pulse. For a square-shaped pulse, the pulse-
propagation problem becomes identical to that of “breaking a dam” and can
be solved analytically in the limit of small dispersion (the WKB approxima-
tion). This solution is useful for lightwave systems using the NRZ format and
provides considerable physical insight [63]–[65].

From a practical standpoint, the effect of SPM is to chirp the pulse and
broaden its spectrum. In the absence of dispersion (β2 = 0), Eq. (7.4.3) can
be solved analytically to study the extent of frequency chirping and spec-
tral broadening (see Section A.4.1). The solution is of the form U(z;T ) =

U(0;T )exp(iφNL), where the SPM-induced phase shift is given by

φNL = γP0LeffjU(0;T )j2: (7.4.5)

The maximum phase shift, φmax = γP0Leff, determines the amount of frequency
chirp. As a rough design guideline, the SPM effects are negligible when
φmax < 1 or P0 < α=γ , where we used Leff � 1=α . For typical values of α
and γ , SPM becomes important at peak power levels above 25 mW. Since
SBS limits power levels to below 10 mW, SPM is of little concern for loss-
limited lightwave systems. The situation changes when fiber losses are com-
pensated using optical amplifiers. The SPM effects can then accumulate over
the entire link. If NA amplifiers are used, the maximum phase shift becomes
φmax = γP0NALeff. As a result, the peak power is limited to P0 < α=γNA or to
below 3 mW for links with only 10 amplifiers. Clearly, SPM can be a major
limiting factor for long-haul lightwave systems.

The important question is how the SPM-induced chirp affects broadening
of optical pulses in the presence of dispersion. The broadening factor can be
estimated, without requiring a complete solution of Eq. (7.4.3), using vari-
ous approximations [66]–[72]. A variational approach was used as early as
1983 [66]. A split-step approach, in which the effects of SPM and GVD are
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considered separately, also provides a reasonable estimate of pulse broaden-
ing [67]. In an extension of this technique, the SPM-induced chirp is treated
as an effective chirp parameter at the input end [70]. A perturbation approach,
in which the nonlinear term in Eq. (7.4.3) is treated as being relatively small,
is also quite useful [72]. We focus on this approach since it can be used for
systems with loss and dispersion management.

As discussed in Section A.3.3, the root-mean-square (RMS) value of the
pulse width can be calculated using σ = [hT2i�hT i2]1=2, where

hT mi=
R ∞
�∞ T mjU(z;T )j2 dTR ∞
�∞ jU(z;T )j2 dT

: (7.4.6)

For a symmetric pulse, hT i= 0 and σ2 is approximately given by

σ 2
(z) = σ2

L(z)+ γP0 fs

Z z

0
β2(z1)

�Z z1

0
p(z2)dz2

�
dz1; (7.4.7)

where σ2
L is the RMS width expected in the linear case (γ = 0). The shape of

the input pulse enters through the parameter fs, defined as

fs =

R ∞
�∞ jU(0;T )j4 dTR ∞
�∞ jU(0;T )j2 dT

: (7.4.8)

For a Gaussian pulse with U(0;T ) = exp[�1
2(T=T0)

2
], fs = 1=

p
2 � 0:7. For

a square pulse, fs = 1.
As an example, consider the case of a uniform-GVD fiber with distributed

amplification such that the pulse energy remains nearly constant. Using p(z) =
1 with constant β2 in Eq. (7.4.8), we obtain the simple expression

σ 2
(z) = σ2

L(z)+
1
2 fsγP0β2z2: (7.4.9)

This equation shows that the SPM enhances pulse broadening in the normal-
GVD regime but leads to pulse compression in the anomalous-GVD regime.
This behavior can be understood by noting that the SPM-induced chirp is pos-
itive in nature (C > 0). As a result, the pulse goes through a contraction phase
when β2 < 0. This is the origin of the existence of solitons in the anomalous-
GVD regime. Equation (7.4.7) shows that the soliton effects are beneficial for
all pulse shapes and can improve the performance of even NRZ-format sys-
tems using nearly square-shaped pulses. This improvement was predicted in
the 1980s [73] and has been seen in several experiments.
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7.4.2 Loss and Dispersion Management

Consider long-haul lightwave systems in which lumped amplifiers are used
periodically for compensation of fiber losses. If dispersion management is
also used, σL returns to its input value σ0 at the end of each fiber section in
between two amplifiers. It is evident from Eq. (7.4.7) that such a dispersion-
compensation scheme will not work perfectly when SPM effects are signif-
icant. Even though the second term in this equation changes sign when β2
changes sign, power variations in the two sections are different. As a result,
the contribution of SPM does not cancel perfectly. Indeed, it has been noticed
experimentally that system performance is better when GVD is undercompen-
sated [74]–[76]. Equation (7.4.7) provides a simple explanation of this behav-
ior. By optimizing the amount of GVD in the DCF, one can adjust the two
terms in this equation and minimize the pulse width.

Equation (7.4.7) remains accurate as long as the second term is small com-
pared with the first since the SPM-induced reduction in pulse width for β2 < 0
cannot be expected to be larger than σL. As a rough estimate of the validity
of this equation, we can use Eq. (7.4.9) to conclude that the simple analysis is
valid as long as z < (LDLNL)

1=2, where LD = T 2
0 =jβ2j is the dispersion length

and LNL = (γP0)
�1 is the nonlinear length. Numerical simulations show that, at

a fixed power level, the pulse width reaches a minimum value at some distance
and then begins to increase. We show this behavior in Fig. 7.6 by solving Eq.
(7.4.3) for a super-Gaussian input U(0;T ) = exp[�1

2(T=T0)
2m
] with m = 2 and

p = 1. The fiber was assumed to have uniform GVD (no dispersion manage-
ment). A similar behavior is observed as a function of input peak power when
the distance z is kept fixed. As the peak power increases, the pulse initially con-
tracts because of the SPM effects, attains a minimum value at a certain value
of the peak power, and then begins to increase rapidly. In practical terms, the
input power should be optimized properly if we want to take advantage of the
soliton-like effects for NRZ systems [73].

Another SPM-induced limitation results from the phenomenon of mod-
ulation instability occurring when the signal travels in the anomalous-GVD
regime of the transmission fiber. At first sight, it may appear that modulation
instability is not likely to occur for a signal in the form of a pulse train. In fact,
it affects the performance of periodically amplified lightwave systems consid-
erably. This can be understood by noting that optical pulses in an NRZ-format
system occupy the entire time slot and can be several bits long depending on
the bit pattern. As a result, the situation is quasi-CW-like. As early as 1990,
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Figure 7.6 Width ratio σ=σ0 as a function of propagation distance for a super-
Gaussian pulse (m= 2) at three input peak powers labeled using p 0 = γP0LD.

numerical simulations indicated that system performance of a 6000-km fiber
link, operating at bit rates > 1 Gb/s with 100-km amplifier spacing, would
be severely affected by modulation instability if the signal propagates in the
anomalous-GVD regime and is launched with peak power levels in excess of
a few milliwatts [77].

SPM can lead to the degradation of SNR when optical amplifiers are used
for loss compensation [78]–[89]. Such amplifiers add to a signal broadband
noise that extends over the entire bandwidth of amplifiers (or optical filters
when they are used to reduce noise). Even close to the zero-dispersion wave-
length, amplifier noise is enhanced considerably by SPM [78], [83]. In the
case of anomalous GVD, spectral components of noise falling within the gain
spectrum of modulation instability will be enhanced by this nonlinear process,
resulting in further degradation of the SNR [86]. Moreover, periodic power
variations occurring in long-haul systems create a nonlinear index grating that
can lead to modulation instability even in the normal-GVD regime [82]. Both
of these effects were discussed in Section 4.3. They have also been observed
experimentally. In a 10-Gb/s system, considerable degradation in system per-
formance was noticed after a transmission distance of only 455 km [87]. In
general, long-haul systems perform better when the average GVD of the fiber
link is kept positive (β̄2 > 0).
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7.5 Cross-Phase Modulation

As discussed in Chapter A.7, when two pulses of different wavelengths prop-
agate simultaneously inside optical fibers, their optical phases are affected not
only by SPM but also by XPM. The XPM effects are quite important for
WDM lightwave systems since the phase of each optical channel is affected by
both the average power and the bit pattern of all other channels [2]–[5]. Fiber
dispersion converts phase variations into amplitude fluctuations, affecting the
SNR considerably. A proper understanding of the interplay between XPM and
GVD is of considerable importance for WDM systems [90]–[109].

7.5.1 XPM-Induced Phase Shift

Consider the case of an M-channel WDM system. The total optical field can
be written as

A(z;T ) =

M

∑
m=1

Am(z;T )exp[i(ωm�ω0)T ]; (7.5.1)

where ωm is the carrier frequency of the mth channel and ω0 is a reference
frequency chosen, in practice, to coincide with one of the channel frequencies.
Following the method of Section A.7.1, we obtain a set of M coupled NLS
equations:

i
∂A j

∂ z
+

i
vg j

∂A j

∂ z
�

β2 j

2

∂ 2A j

∂T 2 + γ

 
jA jj

2
+2

M

∑
m6= j

jAmj2
!

A j =
iα
2

A j; (7.5.2)

where j = 1 to M, vg j is the group velocity, and β 2 j is the GVD parameter. The
loss parameter α and the nonlinear parameter γ are assumed to be the same
for all channels. The contribution of FWM is neglected in these equations,
assuming that GVD is too large for FWM to become phase matched. The
effects of FWM are considered in the next section.

In general, the set of M equations should be solved numerically. It can
be solved analytically in the CW case with the result Aj(L) =

p
Pj exp(iφ j),

where Pj is the input power and the nonlinear phase shift resulting from a
combination of SPM and XPM is given by

φ j = γLeff(Pj +2 ∑
m6= j

Pm): (7.5.3)

The CW solution can be applied approximately for NRZ-format systems oper-
ating at relatively low bit rates. The phase φj of a specific channel would vary
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Figure 7.7 XPM-induced power fluctuations on a CW probe for a 130-km link (mid-
dle) and a 320-km link (top) with dispersion management. An NRZ bit stream in the
pump channel is shown at the bottom. (After Ref. [102], c1999 IEEE)

from bit to bit depending on the bit patterns of neighboring channels. In the
worst case in which all channels have 1 bits in their time slots simultaneously,
the XPM-induced phase shift is largest. If the input power is assumed to be the
same for each channel, this maximum value is given by

φmax = (γ=α)(2M�1)Pch; (7.5.4)

where Leff was replaced by 1=α assuming αL� 1. The XPM-induced phase
shift increases linearly with M and can become quite large. It was measured
in 1984 for the two-channel case [90]. Light from two semiconductor lasers
operating near 1.3 and 1.5 µm was injected into a 15-km-long fiber. The phase
shift at 1.5 µm, induced by the copropagating 1.3-µm wave, was measured
using an interferometer. A value of φ max = 0:024 was found for Pch = 1 mW.
This value is in good agreement with the predicted value of 0.022 from Eq.
(7.5.4).

Strictly speaking, the XPM-induced phase shift should not affect system
performance if the GVD effects were negligible. However, any dispersion in
fiber converts pattern-dependent phase shifts to power fluctuations, reducing
the SNR at the receiver. This conversion can be understood by noting that time-
dependent phase changes lead to frequency chirping that affects dispersion-
induced broadening of the signal. Figure 7.7 shows XPM-induced fluctuations



342 Fiber-Optic Communications

for a CW probe launched with a 10-Gb/s pump channel modulated using the
NRZ format. The probe power fluctuates by as much as 6% after 320 km of
dispersive fiber. The RMS value of fluctuations depends on the channel power
and can be reduced by lowering it. As a rough estimate, if we use the condition
φmax < 1 in Eq. (7.5.4), the channel power is restricted to

Pch < α=[γ(2M�1)]: (7.5.5)

For typical values of α and γ , Pch should be below 10 mW even for five chan-
nels and reduces to below 1 mW for more than 50 channels.

7.5.2 Power Penalty

The above analysis ignores the effects of group-velocity mismatch. In real-
ity, pulses belonging to different channels travel at different speeds and walk
through each other at a rate that depends on their wavelength difference. Since
XPM can occur only when pulses overlap in the time domain, its impact is
reduced considerably by the walk-off effects. We can use the results of Sec-
tion A.7.4 to gain a qualitative understanding of the walk-off process. As a
faster-moving pulse belonging to one channel collides with and passes through
a specific pulse in another channel, the XPM-induced chirp shifts the pulse
spectrum first toward red and then toward blue. In a lossless fiber, collisions
of two pulses are perfectly symmetric, resulting in no net spectral shift at the
end of the collision. In a loss-managed system, with lumped amplifiers placed
periodically along the link, power variations make collisions between pulses of
different channels asymmetric, resulting in a net frequency shift that depends
on the channel spacing. Such frequency shifts lead to timing jitter (the speed
of a channel depends on its frequency because of GVD) since their magnitude
depends on the bit pattern as well as on channel wavelengths. The combina-
tion of amplitude and timing jitter degrades the SNR at the receiver consider-
ably, especially for closely spaced channels, and leads to XPM-induced power
penalty [92].

Figure 7.8 shows how the power penalty depends on channel spacing and
fiber dispersion at a bit-error rate of 10�10. These results were obtained by
launching two 10-Gb/s channels into a 200-km fiber link with one amplifier
located midway [103]. Four different types of fibers were used to change
the GVD. The pump-channel power was 8 dBm (6.3 mW) while the signal-
channel power was kept at 2 dBm. The penalty depends on the relative pump–
signal delay and the state of polarizations; thin and thick lines in Fig. 7.8 show
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Figure 7.8 XPM-induced power penalty as a function of channel spacing for four
fiber links with different dispersion. Thin and thick lines correspond to best and worst
cases, respectively. (After Ref. [103], c1999 IEEE)

the best and worst cases. The XPM-induced penalty becomes quite large for
large-GVD links and small channel spacing, as expected. It can be reduced to
negligible levels for fiber links with small average GVD and relatively large
channel spacing (> 50 GHz). Negligible penalty occurs for the dispersion-
managed link in which GVD is compensated using a DCF.

In periodically amplified lightwave systems, power variations along the
fiber link affect the XPM interaction among channels. If two channels are
spaced such that the relative propagation delay ∆T between them over each
amplifier span is equal to a multiple of the bit slot TB, the pulse trains in the
two channels will become synchronized after each amplifier, resulting in the
enhancement of the XPM-induced phase shift. Mathematically, this condition
can be written as

∆T = ∆λ
Z LA

0
D(z)dz = mTB (7.5.6)

where ∆λ is the channel spacing, LA is the amplifier spacing, D(z) is related
to the dispersion map used between two amplifiers, and m is an integer. In
the case of constant-dispersion fibers, this condition becomes BDLA∆λ = m,
where B = 1=TB. System performance is expected to degrade whenever chan-
nel spacing ∆λ satisfies Eq. (7.5.6). This was indeed observed in the experi-
ment in which the bit-error rate of a weak probe channel exhibited resonances
(it increased significantly) whenever wavelength spacing of the pump channel
responsible for XPM satisfied the resonance condition [106].

The XPM effects occurring within a fiber amplifier are normally negligible
because of a small length of doped fiber used. The situation changes for the
L-band amplifiers, which operate in the 1570- to 1610-nm wavelength region
and require fiber lengths in excess of 100 m. The effective core area of doped
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fibers used in such amplifiers is relatively small, resulting in larger values of
the nonlinear parameter γ and enhanced XPM-induced phase shifts. As a re-
sult, the XPM can lead to considerable power fluctuations within an L-band
amplifier [107]–[109]. A new feature is that such XPM effects are indepen-
dent of the channel spacing and can occur over the entire bandwidth of the
amplifier [108]. The reason for this behavior is that all XPM effects occur
before pulses walk off because of group-velocity mismatch.

The XPM effects become much worse for coherent WDM systems because
of the phase-sensitive nature of signal detection. In the case of amplitude-shift
keying (ASK), large phase fluctuations induced by rapid power variations de-
grade system performance at channel powers as low as 1 mW. The impact
of XPM becomes less severe when frequency- or phase-shift keying (FSK
and PSK) is used since channel powers are then constant in time. In fact,
XPM would be harmless if the channel powers were really constant, as a con-
stant phase shift does not affect the system performance. In practice, channel
powers fluctuate because of intensity noise associated with the transmitter or
amplified spontaneous emission added by lumped amplifiers. XPM converts
intensity fluctuations into phase fluctuations, which degrade the performance
of a coherent receiver. In a two-channel homodyne experiment in which each
channel transmitted a 10-Gb/s signal over 100 km, the XPM-induced power
penalty was 7 dB when the channel power was 15 mW [110]. XPM led to
degradation of the system performance for channel powers as low as 4 mW.

7.6 Four-Wave Mixing

Four-wave mixing (FWM) is a major source of nonlinear crosstalk for WDM
lightwave systems [111]–[123]. The physical origin of FWM-induced crosstalk,
and the resulting system degradation, can be understood by noting that FWM
can generate a new wave at the frequency ωF = ωi +ω j�ωk, whenever three
waves of frequencies ωi, ω j, and ωk copropagate inside the fiber. For an M-
channel system, i, j, and k vary from 1 to M, resulting in a large combination
of new frequencies generated by FWM. In the case of equally spaced channels,
most new frequencies coincide with the existing channel frequencies and inter-
fere coherently with the signals in those channels. This interference depends
on the bit pattern and leads to considerable fluctuations in the detected signal at
the receiver. When channels are not equally spaced, most FWM components
fall in between the channels and add to overall noise. In both cases, system
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performance is affected by the loss in channel powers, but the degradation is
much more severe for equally spaced channels because of the coherent nature
of crosstalk.

7.6.1 FWM Efficiency

As discussed in Chapter A.10, the FWM process in optical fibers is governed
by a set of four coupled equations whose general solution requires a numerical
approach. If we neglect the phase shifts induced by SPM and XPM, assume
that the three channels participating in the FWM process remain nearly unde-
pleted, and include fiber losses, the amplitude AF of the FWM component at
the frequency ωF is governed by

dAF

dz
=�

α
2

AF +dFγAiA jA
�
k exp(�i∆kz); (7.6.1)

where Am(z) = Am(0)exp(�αz=2) for m = i; j;k and dF = 2�δi j is the degen-
eracy factor defined such that its value is 1 when i = j but doubles when i 6= j.
This equation can be easily integrated to obtain Af (z). The power transferred
to the FWM component in a fiber of length L is given by [111]

PF = jAF(L)j
2
= ηF(dF γL)2PiPjPke�αL; (7.6.2)

where Pm = jAm(0)j2 is the launched power in mth channel and ηF is a measure
of the FWM efficiency defined as

ηF =

����1� exp[�(α + i∆k)L]
(α + i∆k)L

����
2

: (7.6.3)

The FWM efficiency ηF depends on the channel spacing through the phase
mismatch governed by

∆k = βF +βk�βi�β j � β2(ωi�ωk)(ω j�ωk); (7.6.4)

where the propagation constants were expanded in a Taylor series around ωc =

(ωi +ω j)=2 and β2 is the GVD parameter at that frequency. If the GVD of the
transmission fiber is relatively large, (jβ 2j > 5 ps2/km), ηF nearly vanishes
for typical channel spacings of 50 GHz or more. In contrast, ηF � 1 close
to the zero-dispersion wavelength of the fiber, resulting in considerable power
in the FWM component, especially at high channel powers. In the case of



346 Fiber-Optic Communications

Figure 7.9 Optical spectrum measured at the output of a 25-km-long fiber when three
3-mW channels are launched into it. (After Ref. [5], cLucent Technologies)

equal channel powers, PF increases as P3
ch. This cubic dependence of the FWM

component limits the channel powers to below 1 mW if FWM is nearly phase
matched. Since the number of FWM components for an M-channel WDM
system increases as M2

(M�1)=2, the total power in all FWM components can
be quite large. Figure 7.9 shows, as an example, the optical spectrum measured
at the output of a 25-km-long dispersion-shifted fiber [D =�0:2 ps/(km-nm)
for the central channel] when three 3-mW channels are launched into it. The
nine FWM components can be seen clearly. None of them coincides with
the channel wavelengths because of the unequal channel spacing used in this
experiment.

7.6.2 FWM-Induced Crosstalk

In the case of equal channel spacing, most FWM components fall within the
channel spectra and cannot be seen as clearly as in Fig. 7.9 in the spectral
domain. However, their presence is easily noticed in the time domain as they
interfere with the signal coherently. Since the FWM power depends on the
bit patterns of three channels, the signal power fluctuates considerably. Figure
7.10 shows the bit patterns observed for the central channel using three fibers
with different GVD values. The central channel in this case is located exactly
in the middle (see Fig. 7.9) such that the channel spacing is constant and equal
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Figure 7.10 Effect of fiber dispersion on the central channel when three 3-mW chan-
nels are launched with equal channel spacing. (After Ref. [5], cLucent Technologies)

to 1 nm. The FWM-induced noise is quite large for low GVD values because
of the quasi-phase-matched nature of the FWM process.

Modulation instability can enhance the effects of FWM for certain specific
values of channel spacing [120]. The reason can be understood by noting that
SPM and XPM, ignored in deriving Eq. (7.6.2), can produce phase matching
even when β2 6= 0. We can follow the analysis of Section A.10.2 to include the
SPM and XPM phase shifts. It turns out that Eq. (7.6.2) can still be used but
the phase-mismatch factor ∆k in Eq. (7.6.4) is replaced with [122]

∆k � β2(ωi�ωk)(ω j�ωk)+ γ(Pi +Pj�Pk)[1� exp(�αLeff)]=(αLeff):
(7.6.5)

Clearly, ∆k may become close to zero for some FWM terms, depending on the
channel powers and spacings, when β 2 is in the anomalous-GVD regime of
the fiber. The corresponding FWM process will then become phase-matched,
resulting in significant power-conversion efficiency. Physically speaking, if the
frequency at which the gain peak of modulation instability nearly coincides
with the channel spacing in a WDM system, modulation-instability sidebands
will overlap with the channel wavelengths. As a result, the FWM process will
become enhanced resonantly in spite of the GVD. We can estimate the channel
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spacing δνch for which such resonant FWM is expected to occur using Eq.
(A.10.3.10) to find that

Ωs = 2πδνch = (2γPch=jβ2j)
1=2: (7.6.6)

As a rough estimate, δνch� 50 GHz when Pch = 5 mW, β2 =�0:2 ps2/km, and
γ = 2 W�1/km. Since channel spacing in modern WDM systems is typically
100 GHz or less, resonance enhancement of FWM can easily occur.

A simple scheme for reducing the FWM-induced degradation consists of
designing WDM systems with unequal channel spacings [116]. The main im-
pact of FWM in this case is to reduce the channel power. This power depletion
results in a power penalty at the receiver whose magnitude can be controlled by
varying the launched power and fiber dispersion. Experimental measurements
on a WDM system, in which eight 10-Gb/s channels were transmitted over
137 km of dispersion-shifted fiber, confirm the advantage of unequal channel
spacings. In a 1999 experiment, this technique was used to transmit 22 chan-
nels, each operating at 10 Gb/s, over 320 km of dispersion-shifted fiber with
80-km amplifier spacing [123]. Channel spacings ranged from 125 to 275 GHz
in the 1532- to 1562-nm wavelength region and were determined using a pe-
riodic allocation scheme [124]. The zero-dispersion wavelength of the fiber
was close to 1548 nm, resulting in near phase matching of many FWM com-
ponents. Nonetheless, the system performed quite well (because of unequal
channel spacings) with less than 1.5-dB power penalty for all channels.

The use of a nonuniform channel spacing is not always practical since
many WDM components, such as Fabry–Perot filters and waveguide-grating
routers, require equal channel spacings [7]. Also, this scheme is spectrally
inefficient since the bandwidth of the resulting WDM signal is considerably
larger compared with the case of equally spaced channels [116]. An alternative
is offered by the dispersion-management technique discussed earlier. In this
case, fibers with normal and anomalous GVD are combined to form a periodic
dispersion map such that GVD is locally high all along the fiber even though its
average value is quite low. As a result, the FWM efficiency ηF is negligible
throughout the fiber, resulting in little FWM-induced crosstalk. As early as
1993, eight channels at 10 Gb/s could be transmitted over 280 km by using
dispersion management [125]. By 1996, the use of dispersion management
had become quite common for FWM suppression in WDM systems because
of its practical simplicity. FWM can also be suppressed by using fibers whose
GVD varies along the fiber length [126].
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7.7 System Design

In modern long-haul lightwave systems, the dispersive and nonlinear effects
accumulate over long lengths exceeding several thousand kilometers. The de-
sign of such WDM systems requires consideration of not only the dispersive
and nonlinear effects but also the spontaneous-emission noise added by fiber
amplifiers. Interplay among various nonlinear effects, and its dependence on
a large number of design parameters, make adoption of a numerical approach
almost essential for optimization of system performance before the system is
actually built. For this reason, computer modeling of lightwave systems at-
tracted considerable attention during the 1990s [127]–[139]. In fact, several
simulation packages were available commercially by 2000.

7.7.1 Numerical Modeling

What is the most appropriate numerical model for simulating the performance
of WDM systems? In one approach, the total optical field is split into indi-
vidual channel fields, as shown in Eq. (7.5.1), to obtain a set of M coupled
NLS equations, similar to that given in Eq. (7.5.2), where M is the number of
WDM channels. This equation includes GVD, SPM, and XPM effects only.
It should be generalized by adding the terms representing channel coupling
through FWM and SRS. The resulting set of equations may be useful for a
small number of channels but becomes too complicated to be practical when
M becomes large.

A simpler approach solves a single NLS equation given as in Eq. (7.4.1)
by using an input field of the form

A(0;T ) =

M

∑
m=1

Am(0;T )exp[i(ωm�ω0)T ]; (7.7.1)

where Am(0;T ) is the input signal belonging to the mth channel. This tech-
nique includes the SPM, XPM, and FWM effects for all channels automati-
cally but ignores the Raman crosstalk. The Raman-induced channel coupling
can be included by using the generalized NLS equation of Section A.2.3. If
we ignore the shock term because of its negligible contribution, the resulting
equation becomes

∂A
∂ z

+
α
2

A+
iβ2

2
∂ 2A
∂T 2 �

β3

6
∂ 3A
∂T 3 = iγ

�
jAj2A�TRA

∂A2

∂T

�
; (7.7.2)
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where TR is the Raman parameter and β3 includes the effects of third-order dis-
persion (TOD). This equation is quite useful for modeling loss- and dispersion-
managed WDM systems.

For realistic modeling of lightwave systems, one must consider a random
sequence of 0 and 1 bits in each channel to include the pattern effects. For this
reason, Eq. (7.7.2) is solved with the following input:

A(0;T ) =

M

∑
m=1

p
Pm

"
K

∑
k=1

bkUm(T � kTB)

#
exp[i(ωm�ω0)T ]; (7.7.3)

where Pm is the power and Um is the pulse shape for the mth channel, TB = 1=B
is the bit slot at the bit rate B, K represents the number of bits included in
the numerical model, and bk = 0 or 1 depending on whether the kth time slot
contains a 0 or 1 bit. A random sequence of at least 32 bits is used in numerical
simulations [127]. It should be chosen to ensure that it contains isolated as
well as long sequences of 0 or 1 bits. An example of such a 32-bit sequence is
01011000101111011010100000101110. The pulse shape Um depends on the
modulation format. A Gaussian or “sech” pulse shape is used in the case of an
RZ format. The full width at half maximum (FWHM) of the pulse depends on
the duty cycle, a typical value being 50% of the bit slot TB. In the case of an
NRZ format, the pulse occupies the entire bit slot. A super-Gaussian shape is
often used with a rise and fall time of about 0:1TB.

Equation (7.7.2) can be solved using the split-step Fourier method of Sec-
tion A.2.4. In the case of dispersion management, the three fiber parameters—
α ; β2, and γ—become z dependent since they are different for different fibers.
It is easy to include their variations numerically. Signal amplification and noise
added at the location of lumped amplifiers can be included through Eq. (7.1.3).
It is more practical to use this equation in the frequency domain such that each
spectral component of the field is modified as

Ãout(ν) =
p

GÃin(ν)+ ãn(ν); (7.7.4)

where G = exp(αLA) is the amplifier gain needed to compensate fiber losses,
LA is the amplifier spacing, and ãn is a complex Gaussian random variable
whose real and imaginary parts have the same variance

σ 2
=

1
2nsphν0(G�1)δν ; (7.7.5)

where δν is the bandwidth occupied by each spectral component (related in-
versely to the width of the temporal window used for numerical simulations).
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The noise figure of an amplifier is related to nsp as Fn = 2nsp. An optical filter
is often placed after each amplifier to reduce the broadband noise added by the
amplifiers. Its effect can be included by making ãn(ν) = 0 outside the filter
bandwidth.

At the receiver end, the system performance is characterized through the
bit-error rate (BER). If the total noise is assumed to follow Gaussian statistics,
the BER is given by the simple expression (see Appendix A)

BER =
1
2

erfc

�
Qp

2

�
�

exp(�Q2=2)

Q
p

2π
; (7.7.6)

where the parameter Q is defined as

Q =
I1� I0

σ1 +σ0
; (7.7.7)

and I1 and σ1 represent the average and RMS values of the signal for 1 bits; I0
and σ0 are the corresponding quantities for 0 bits. A value of Q > 6 ensures
BER < 10�9, a typical requirement for lightwave systems. If BER < 10�12 is
required, Q > 7 is needed.

The Q parameter is often used to characterize the performance of lightwave
systems. In numerical simulations, it is calculated by filtering A(L; t) optically
to select a fixed channel, converting the bit stream to the electrical domain
using I(T ) = Rd jA(L; t)j

2, where Rd is the responsivity of the photodetector,
and then filtering the electric signal with a filter whose bandwidth Be is smaller
than the bit rate B and is typically in the range of 0:6 to 0:8B. Reference [127]
contains further details.

An alternative approach for characterizing system performance makes use
of the eye-closure penalty [129]–[134]. Eye diagramsare commonly used for
lightwave systems [7]. If each set of two successive bits are displayed repeti-
tively in the same two-bit-wide time window, the resulting pattern looks like an
open eye (in the case of the NRZ format) and is referred to as an eye diagram.
The eye begins to close as fiber length increases because of degradation in the
SNR ratio and the increase in timing jitter introduced by amplifier noise, GVD,
and nonlinear effects. The eye-closure penalty is a measure of the change in the
opening of the eye, quantified through the minimum value of I1 and maximum
value of I0 at the bit center of a noisy bit stream [8].
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7.7.2 Design Issues

The design of a lightwave system requires consideration of a large number of
factors. Often one needs to take into account cost issues as well. An example is
provided by the spacing LA between amplifiers. Typically, system performance
can be improved by reducing LA but cost considerations dictate that LA cannot
be reduced indiscriminately. Typically, amplifier spacing should exceed 75 km
to keep the overall cost low. Often, the objective of computer simulations is to
design the system such that it meets the specifications with minimum cost.

The issue of modulation format (RZ versus NRZ) has attracted consid-
erable attention [129]–[134]. Most lightwave systems up to 1999 have used
NRZ, the format of choice for historical reasons. Optical pulses in an NRZ
system occupy the entire bit slot and their width is nonuniform depending on
the bit pattern. In contrast, all pulses are identical when the RZ format is used
and their width is smaller than the bit slot. It is not obvious a priori which
format is best when dispersive and nonlinear effects work together. Shorter
pulses in the RZ case have room for broadening, but at the same time shorter
pulses broaden more than longer ones because of a smaller dispersion length.
Shorter pulses also have higher peak powers for a given average power and
may be effected more by nonlinearity, but at the same time they can bene-
fit from soliton-like effects. Clearly, numerical simulations should be used to
compare the two formats.

An important design objective during the late 1990s was to increase the
system capacity using the standard single-mode fiber (SMF) already installed
in the ground. This fiber has high dispersion near 1.55 µm with D� 16 ps/(km-
nm). A suitable dispersion map for such a link consists of 10 km of DCF with
D��80 ps/(km-nm) for every 50 km of SMF, resulting in a 60-km amplifier
spacing. Numerical simulations for a single-channel 40-Gb/s system showed
that such a system can operate over a distance of 1200 km when an RZ for-
mat is used but is limited to below 500 km in the case of NRZ format [130].
The situation is different for WDM systems because of the crosstalk induced
by XPM, SRS, and FWM. Numerical simulations for a 16-channel system
showed that the RZ format is more suitable at bit rates of 10 and 20 Gb/s but
the NRZ format works better at 40 Gb/s [134]. Figure 7.11 shows calculated
eye-closure penalties for the worst channel as a function of the launched chan-
nel power Pch for a 16-channel WDM system. At low input powers, system
performance is limited by amplified spontaneous emission (ASE). However,
the nonlinear effects begin to degrade the WDM system for Pch > 0:5 mW.
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Figure 7.11 Eye-closure penalties for the worst channel as a function of channel
power for a 16-channel WDM system operating at 10, 20, and 40 Gb/s. System per-
formance is compared for RZ and NRZ formats. (After Ref. [134], c1999 IEEE)

The transmission distance can be more than 3000 km for RZ systems oper-
ating at 10 and 20 Gb/s but is limited to below 400 km even when the NRZ
format is used. It was important to use a DCF with negative GVD slope for the
system to work properly. On the experimental side, 320-Gb/s transmission (32
channels at 10 Gb/s) was realized successfully over 500 km with an amplifier
spacing of 125 km [132].

Design issues for undersea lightwave systems are somewhat different since
the transmission distance for most such systems exceeds 6000 km. Numeri-
cal simulations have been used to design 10,000-km-long WDM systems that
maximize the total capacity by optimizing the dispersion map [137]. The bit
rate per channel is limited to around 10 Gb/s for such long-haul systems. Thus,
high capacity should be realized by maximizing the number of WDM channels.
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Figure 7.12 Q factor as a function of λ � λZD after 10,000 km at 5 and 10 Gb/s.
(After Ref. [137], c1999 IEEE)

Since the amplifier-gain bandwidth limits the total spectral range of a WDM
signal, channel spacing becomes an important design criterion. Another im-
portant factor is the dispersion-slope compensation [140]. As mentioned be-
fore, the dispersion parameter D is different for different channels because of
its wavelength dependence. The dispersion slope dD=dλ is related to the TOD
parameter β3. If the dispersion slope is positive for both fibers used in a dis-
persion map, GVD cannot be compensated for all channels simultaneously.
Figure 7.12 shows how the Q factor of a channel degrades after 10,000 km as
its operating wavelength is shifted in the vicinity of the zero-dispersion wave-
length λZD of the fiber. The usable wavelength range with Q > 6 exceeds
10 nm at 5 Gb/s but is reduced to below 1 nm at 10 Gb/s. The results show that
dispersion-slope compensation is essential for 10-Gb/s systems.

The spectral efficiency of WDM systems is determined by the ratio ηs =

B=∆νch, where ∆νch is the channel spacing and B is the single-channel bit
rate. The ideal value ηs = 1 is known as the Nyquist limit. In practice, the
channel spacing is often 100 GHz for 10-Gb/s channels, resulting in a spectral
efficiency of only 10%. It can be increased by optimizing the system design
through numerical simulations. Figure 7.13 shows channel spacing as a func-
tion of Nch for a WDM system designed to operate over 10,000 km at 5-Gb/s
per channel with 50-km amplifier spacing. The spectral efficiency can be im-
proved considerably by using low-noise amplifiers, large core-area fibers, and
optimizing the duty cycle of RZ pulses. A combination of all of these can
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Figure 7.13 Channel spacing as a function of Nch for a WDM system designed to
operate over 10,000 km at 5-Gb/s per channel. (a) Conventional design; (b) 4-dB
noise-figure amplifiers; (c) large core-area fibers; (d) optimum RZ format; and (e)
combination of all. (After Ref. [137], c1999 IEEE)

provide > 50% spectral efficiency. Moreover, the Q parameter can exceed 6
over a wavelength range as large as 40 nm using the pre- and postcompensa-
tion techniques for individual channels, resulting in Nch > 100 at 5-Gb/s per
channel [137].

7.7.3 System Performance

Transmission experiments fall in two different categories, depending on whether
they are intended for terrestrial or undersea applications. In the case of under-
sea lightwave systems, transmission distances are about 10,000 km, whereas
they can be shorter by a factor of 10 or more for terrestrial applications. An-
other important difference is that undersea systems can take advantage of new
fiber designs whereas terrestrial systems often need to be upgraded using the
existing high-GVD fiber in the ground. The dispersion-management technique
provides an ideal solution for this “upgrade” problem.

Before the advent of loss- and dispersion-management schemes, lightwave
systems operated at a maximum bit rate of 10 Gb/s and required electronic
regeneration at a distance of under 80 km. The situation changed after 1990
when fiber amplifiers began to be used for transmitting optical signals over dis-
tances of more than 1000 km [141]. As early as 1993, dispersion management
permitted transmission of eight 10-Gb/s channels over 280 km [125]. This ex-
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(a)

(b)

Figure 7.14 (a) Optical spectrum and (b) selected eye diagrams at 1500 km for the
160-channel WDM experiment with 3.2 Tb/s capacity. (After Ref. [148])

periment led to a march toward the demonstration of WDM systems capable of
operating at 1 Tb/s. This symbolic milestone was achieved in 1996 when three
different research groups reported experimental results for 1-Tb/s lightwave
systems [142]–[144]. Within a year, the capacity increased to 2.6 Tb/s [145].
By 2000, the total capacity of WDM systems exceeded 3 Tb/s in several labo-
ratory experiments [146]–[149]; the maximum capacity realized at the end of
2000 was 6.4 Tb/s.

Such a rapid advance in the system capacity required a number of key ad-
vances. In the 3.28-Tb/s experiment, 82 channels, each operating at 40 Gb/s,
were transmitted over 3000 km [147]. In the 3.20-Tb/s experiment, 160 chan-
nels, each operating at 20 Gb/s, were transmitted over 1500 km [148]. Both ex-
periments used the C and L bands simultaneously and required special hybrid
amplifiers capable of amplifying signals over a 64-nm wavelength range with
nearly flat gain over the entire signal bandwidth. The optical spectrum of the
160-channel WDM signal, shown in Fig. 7.14 after 1500 km of transmission
(40 amplification stages), exhibits power deviations under 3 dB over the en-
tire wavelength range. Received eye diagrams for three specific channels show
that SNR degradation was different for different channels. It was, however,
small enough that all channels had a BER below 10�9. Such high-capacity
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experiments require control of the dispersion slope to ensure dispersion com-
pensation for all channels. They also often interleave channels such that two
neighboring channels are always orthogonally polarized.

Another approach to high-capacity lightwave systems uses optical time-
division multiplexing (OTDM) in combination with WDM [146]. In OTDM,
several channels are first multiplexed in the time domain to obtain a bit stream
at a bit rate of 100 Gb/s or more using only one laser wavelength. Then sev-
eral such bit streams at different carrier wavelengths are multiplexed using the
WDM technique. The OTDM technology requires quite different multiplex-
ing and demultiplexing techniques than those used for WDM [150]. In a 1999
experiment, 3.04-Tb/s capacity was realized in a 19-channel WDM system in
which each OTDM channel had a 160-Gb/s bit rate. The highest single-channel
bit rate was realized in an OTDM experiment in which a 640-Gb/s signal was
transmitted over 92 km [151]. The bit slot at 640 Gb/s is only 1.6-ps wide.
As a result, pulses used in the experiment had an FWHM of only 1.1 ps. The
higher-order dispersive and nonlinear effects become important for such short
pulses and limit the transmission distance. In fact, both GVD and TOD need
to be compensated along the link such that dispersion nearly vanishes over the
entire spectral width of the pulse. A reverse-dispersion fiber with negative β3
was used to accomplish this feature in the experiment.

The single-channel bit rate of undersea WDM systems is typically 10 Gb/s
or less because of the degradation caused by accumulation of nonlinear effects
over transoceanic distances. In fact, two transatlantic and transpacific systems
(TAT-12 and TPC-5) installed in 1995 were single-channel systems operating
at 5 Gb/s. Since then, both WDM and dispersion-management techniques have
been used in designing such systems [152]–[163]. Most of the laboratory ex-
periments use a fiber loop through which a WDM signal is recirculated many
times to realize large transmission distances effectively. Figure 7.15 shows the
design of a recirculating fiber loop schematically. Typically, the loop length is
close to 500 km, and the signal is circulated 20 times or so. The loop contains
multiple fiber amplifiers. It also employs DCFs periodically for dispersion
compensation and gain equalizers for flattening the gain of the amplifiers.

Transmission of 32 channels, each operating at 5.3 Gb/s, was realized in
1997 using the RZ format for signal modulation [153]. Within a year, 20 WDM
channels at 10.6 Gb/s were transmitted over 9000 km [154]. It was necessary
to compensate the dispersion slope in this experiment. This technique also
permitted transmission of a single 40-Gb/s channel over 8600 km [157]. In a
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Figure 7.15 Schematic of circulating fiber loop used for long-haul transmission exper-
iments. The transmission and loop switches control how long a bit stream circulates
in the loop. (After Ref. [152], cLucent Technologies)

1999 experiment, management of higher-order dispersion led to an undersea
WDM system capable of transmitting 25 RZ-format channels at 10 Gb/s over
9000 km [158]. Within a year, the total capacity was increased to 1 Tb/s using
100 channels, although the transmission distance was under 7750 km [161].
In a record-breaking 180-channel experiment, 1.8-Tb/s WDM data was trans-
mitted over 7000 km [163]. The 43-nm bandwidth occupied the entire C band
ranging from 1526 to 1569 nm. Channel spacing was only 0.21 nm (about
25 GHz) for most of the channels, resulting in a high spectral efficiency. The
BER for most channels was quite large (about 10�3), but the use of forward
error-correcting codes (23% overhead) resulted in error-free operation.

How has the WDM technique benefited the commercial scene? Figure
7.16 shows the increase in the capacity of commercial lightwave systems since
1988, the year in which the first fiber-optic cable operating at 0.28 Gb/s was
laid in the Atlantic Ocean. The WDM technique was used starting in 1996. As
a result, the capacity of commercial terrestrial systems increased from 10 Gb/s
in 1995 to 1.6 Tb/s by 2000 (fueled mainly by the growth in the Internet). A
lightwave system with the total capacity of 6.4 Tb/s has also been announced.
Undersea systems are designed less aggressively in general as they must oper-
ate reliably over their entire lifetime (because of the cost associated with their
repair). Optical amplifiers were used in 1995 for a single-channel system op-
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Figure 7.16 Increase in capacity of commercial lightwave systems since 1988.
Dashed and dotted lines show the trend for terrestrial and undersea systems, respec-
tively.

erating at 5 Gb/s. With the advent of WDM in 1996, 40-Gb/s systems were
in oceans by 1998, and systems operating at bit rates of up to 320 Gb/s have
been planned. Such systems can transmit millions of telephone calls simulta-
neously. One can expect transoceanic systems with a total capacity exceeding
1 Tb/s if the surge in demand continues in the 21st century.

Problems

7.1 How does spontaneous emission occurring inside optical amplifiers im-
pact the performance of a long-haul lightwave system?

7.2 What is the total noise figure of a chain of N amplifiers spaced apart
equally when all amplifiers have the same noise figure FA?

7.3 Explain the basic idea behind dispersion management. Prove that the
input pulse shape is recovered at the end of a fiber link whose average
GVD is zero when the nonlinear and third-order dispersive effects are
negligible.

7.4 Describe two techniques that can increase the Brillouin threshold above
10-mW level.

7.5 How does SRS lead to crosstalk in a WDM system? How can it be
reduced in practice?
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7.6 Show that the solution of Eq. (7.3.4) is indeed given by Eq. (7.3.5). Use
this solution to calculate the Raman-induced depletion of the highest-
frequency channel.

7.7 Calculate the SPM-induced phase shift at the end of a fiber of length L,
neglecting GVD but including fiber losses. Estimate the power level for
a π phase shift when α = 0:2 dB/km, γ = 2 W�1/km, and L = 20 km.

7.8 Explain why XPM-induced crosstalk is enhanced for certain values of
channel spacings.

7.9 Solve Eq. (7.6.1) and find the power generated through FWM. Show
that the solution is given by Eq. (7.6.2).

7.10 Develop a computer program for solving Eq. (7.7.2). Use it with input of
the form in Eq. (7.7.3) for a three-channel WDM system using a 32-bit
pattern in the NRZ format. Assume a 10-Gb/s bit rate for each channel,
50-GHz channel spacing, and 50-km amplifier spacing. Make the eye
diagram and estimate the Q parameter after 2;4;6, and 8 Mm. Use α =

0:2 dB/km, β2 =�1 ps2/km, β3 = 0; TR = 0, γ = 2 W�1/km, 5-dB noise
figure for amplifiers, and 5-mW average channel power. What nonlinear
effect is the most critical for this system?

References

[1] R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[2] A. R. Chraplyvy, J. Lightwave Technol. 8, 1548 (1990).
[3] R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R. P. Braun, Proc.

IEEE 78, 1344 (1990).
[4] K. H. Kim, H. K. Lee, S. Y. Park, and E. H. Lee, J. Lightwave Technol. 13,

1597 (1995).
[5] F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, in Optical Fiber Telecommu-

nications, Vol. IIIA (Academic Press, San Diego, CA, 1997), Chap. 8.
[6] M. R. Phillips and D. M. Ott, J. Lightwave Technol. 17, 1782 (1999).
[7] G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New

York, 1997).
[8] E. Iannone, F. Matera, A. Mecozzi, and M. Settembre Nonlinear Optical Com-

munication Networks, (Wiley, New York, 1998).
[9] R. Ramaswami and K. Sivarajan, Optical Networks (Morgan Kaufmann,

Burlington, MA, 1998).



References 361

[10] G. Keiser, Optical Fiber Communications, 3rd ed. (McGraw-Hill, New York,
2000).

[11] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Ampli-
fiers: Fundamentals and Technology (Academic Press, San Diego, CA, 1999).

[12] C. Kurtzke, IEEE Photon. Technol. Lett. 6, 1250 (1993).
[13] E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[14] R. G. Smith, Appl. Opt. 11, 2489 (1972).
[15] D. Cotter, Electron. Lett. 18, 495 (1982); J. Opt. Commun. 4, 10 (1983).
[16] T. Sugie, J. Lightwave Technol. 9, 1145 (1991); IEEE Photon. Technol. Lett. 5,

102 (1992).
[17] X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier,

IEEE Photon. Technol. Lett. 4, 66 (1992).
[18] D. A. Fishman and J. A. Nagel, J. Lightwave Technol. 11, 1721 (1993).
[19] T. Sugie, Opt. Quantum Electron. 27, 643 (1995).
[20] D. Cotter, Electron. Lett. 18, 504 (1982).
[21] R. G. Waarts and R. P. Braun, Electron. Lett. 21, 1114 (1985).
[22] Y. Aoki, K. Tajima, and I. Mito, J. Lightwave Technol. 6, 710 (1988).
[23] E. Lichtman, Electron. Lett. 27, 759 (1991).
[24] A. Hirose, Y. Takushima, and T. Okoshi, J. Opt. Commun. 12, 82 (1991).
[25] T. Sugie, J. Lightwave Technol. 9, 1145 (1991); IEEE Photon. Technol. Lett. 5,

102 (1993).
[26] M. O. van Deventer, J. J. G. M. van der Tol, and A. J. Boot, IEEE Photon.

Technol. Lett. 6, 291 (1994).
[27] S. Rae, I. Bennion, and M. J. Carswell, Opt. Commun. 123, 611 (1996).
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Chapter 8

Soliton Lightwave Systems

As discussed in Chapter A.5, under certain conditions optical pulses can prop-
agate inside fibers in the form of solitons—pulses that remain undistorted in
spite of the nonlinear and dispersive effects. Clearly, solitons are useful for
representing bits in a lightwave system since such pulses would remain con-
fined to their assigned bit slot. This chapter focuses on soliton communication
systems with emphasis on the physics and design of such systems. The basic
concepts related to solitons are introduced in Section 8.1, which also discusses
how solitons can be used for designing lightwave systems. Section 8.2 is de-
voted to loss-managed solitons, which result when fiber losses are compen-
sated using optical amplifiers. Noise and timing-jitter issues for such solitons
are discussed in Section 8.3. In Section 8.4 the focus is on dispersion-managed
solitons and the advantages offered by them. The use of solitons for WDM
lightwave systems is discussed in Section 8.5 with emphasis on timing jitter
induced by interchannel collisions.

8.1 Basic Concepts

The use of solitons for optical communications was first suggested in 1973 [1],
and by 1980s solitons had been observed experimentally [2]. The potential of
solitons for signal transmission over long distances was first demonstrated in a
1988 experiment in which fiber losses were compensated using Raman ampli-
fication [3]. Remarkable progress made during the 1990s has converted optical
solitons into a practical candidate for lightwave communication systems [4]–
[8].
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Solitons result from a balance between group-velocity dispersion (GVD)
and self-phase modulation (SPM), both of which (as discussed in Chapter 7)
can limit the performance of fiber-optic communication systems. To under-
stand how such a balance is possible, note that GVD broadens optical pulses
during their propagation inside a fiber except when the pulse is initially chirped
in the right way. More specifically, a chirped pulse is compressed in optical
fibers, even without SPM, whenever the GVD parameter β 2 and the chirp
parameter C happen to have opposite signs (see Chapter 6). SPM, by itself,
chirps an optical pulse such that C > 0. Since β 2 < 0 in the 1.55-µm wave-
length region, the condition β 2C < 0 is readily satisfied. Moreover, since the
SPM-induced chirp is power dependent, it is not difficult to imagine that under
certain conditions, SPM and GVD may cooperate in such a way that the SPM-
induced chirp is just right to cancel the GVD-induced broadening of the pulse.
The optical pulse would then propagate undistorted in the form of a soliton.

8.1.1 Properties of Solitons

The mathematical description of fiber solitons is based on the nonlinear Schrö-
dinger (NLS) equation given earlier as Eq. (7.3.1). In this section, we neglect
fiber losses by setting α = 0 and assume that both β2 and γ are constants along
the whole length of fiber. These assumptions will be relaxed in later sections.
In its normalized form, the NLS equation takes the form:

i
∂u
∂ξ

�
s
2

∂ 2u
∂τ2 + juj2u = 0; (8.1.1)

where s = sgn(β2) =�1 and

ξ = z=LD; τ = T=T0; u = (γLD)
1=2A: (8.1.2)

The dispersion length LD is related to the pulse width T0 as LD = T 2
0 =jβ2j.

The NLS equation can be solved exactly by using a mathematical technique
known as the inverse scattering method [9]. Although Eq. (8.1.1) has soliton-
like solutions for both normal and anomalous GVD (known as dark and bright
solitons, respectively), pulse-like solitons occur only in the case of anomalous
dispersion. For this reason, we assume β 2 < 0 and choose s = �1 in Eq.
(8.1.1).

The soliton solution of the NLS equation, obtained by the inverse scattering
method, can be summarized as follows. When an input pulse having a “sech”
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N =1 N = 3

(a) (b)

Figure 8.1 Evolution of (a) first-order and (b) third-order solitons over one soliton
period.

shape such that
u(0;τ) = N sech(τ) (8.1.3)

is launched into a fiber, its shape remains unchanged during propagation when
N = 1 but follows a periodic pattern for integer values of N > 1 such that the
input shape is recovered at ξ = mπ=2, where m is an integer. The optical pulse
corresponding to N = 1 is called the fundamental soliton. Pulses corresponding
to other integer values of N are known as higher-order solitons. The parameter
N represents the order of a soliton. Noting that ξ = z=LD, the soliton period z0,
defined as the distance over which higher-order solitons recover their original
shape, is given by z0 = (π=2)LD. The soliton period z0 and soliton order N
play an important role in the theory of optical solitons.

The plot of the pulse shape ju(ξ ;τ)j2 along the fiber length in Fig. 8.1
shows how the first-order (N = 1) and third-order (N = 3) solitons evolve over
one soliton period. Only the fundamental soliton maintains its shape. In its
most general form, the analytic solution of Eq. (8.1.1) in the N = 1 case can be
written as [5]

u(ξ ;τ) = η sech[η(τ +δξ �q)]exp[�iδτ + i(η2�δ 2
)ξ=2+ iφ ]; (8.1.4)

where the parameters η , q, δ , and φ represent the amplitude, position, fre-
quency, and phase of the input pulse at ξ = 0, respectively. This solution
shows clearly that the amplitude and width of a soliton are inversely related. It
also shows that a frequency shift δ changes the soliton speed since the group
velocity depends on the carrier frequency for an optical pulse.
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Figure 8.2 Evolution of a Gaussian pulse with N = 1 over the range ξ = 0 to 10. The
pulse evolves toward a fundamental soliton by changing its shape and width.

Choosing η = 1, q = 0, δ = 0, and φ = 0 in Eq. (8.1.4), we obtain the
canonical form of a fundamental soliton:

u(ξ ;τ) = sech(τ)exp(iξ=2): (8.1.5)

This equation shows that the optical pulse acquires a phase shift ξ=2 that is
time independent (unchirped pulse) as it propagates inside the fiber, but its
amplitude remains unchanged. It is this property of a fundamental soliton that
makes it an ideal candidate for optical communications. In essence, the effects
of fiber dispersion are exactly compensated by the fiber nonlinearity when the
input pulse has a “sech” shape and its width and peak power are related such
that

N = γP0LD = γP0T 2
0 =jβ2j= 1: (8.1.6)

An important property of optical solitons is that they are remarkably sta-
ble against perturbations. Thus, even though the fundamental soliton requires
a specific shape and a certain peak power such that N = 1, it can be gener-
ated even when the pulse shape and the peak power deviate from the ideal
conditions. Figure 8.2 shows the numerically simulated evolution of a Gaus-
sian input pulse for which N = 1 but u(0;τ) = exp(�τ2=2). As seen there,
the pulse adjusts its shape and width in an attempt to become a fundamental
soliton and attains a “sech” profile for ξ � 1. A similar behavior is observed
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Figure 8.3 Evolution of a “sech” pulse with N = 1:2 over the range ξ = 0 to 10. The
pulse evolves toward a fundamental soliton by adjusting its width and peak power.

when N deviates from 1. It turns out that the Nth-order soliton can be formed
when the input value of N is in the range N� 1=2 to N + 1=2 [10]. In partic-
ular, a fundamental soliton can be excited for values of N in the range from
0.5 to 1.5. Figure 8.3 shows the evolution for N = 1:2 over the range ξ = 0
to 10 when the NLS equation is solved numerically with the initial condition
u(0;τ) = 1:2 sech(τ). Both pulse width and peak power oscillate initially but
eventually become constant after the pulse has adjusted itself to satisfy the
condition N = 1 of Eq. (8.1.5).

In general, small deviations from the ideal conditions are not detrimental
for soliton propagation since the input pulse is able to adjust its parameters
to form a fundamental soliton. Some pulse energy is lost during the dynamic
adaptation phase in the form of dispersive waves known as continuum radia-
tion. It will be seen later that such dispersive waves affect system performance
and should be minimized by matching the input conditions as close to the ideal
requirements as possible.

8.1.2 Soliton Bit Stream

The NRZ format cannot be used for lightwave systems when solitons are used
as information bits. The reason is easily understood by noting that the soliton
solution (8.1.4) extends to jτ j ! ∞. It remains approximately valid for a train
of solitons only when individual solitons are well isolated. For this reason, the
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Figure 8.4 Soliton bit stream in an RZ format. Each soliton occupies a small fraction
of the bit slot so that neighboring solitons are spaced far apart.

soliton width must be a small fraction of the bit slot. Figure 8.4 shows a soliton
bit stream in the RZ format. The soliton width T0 is related to the bit rate B as

B =
1
TB

=
1

2q0T0
; (8.1.7)

where TB is the duration of the bit slot and 2q0 = TB=T0 is the normalized
spacing between neighboring solitons.

The input pulse characteristics needed to launch a fundamental soliton can
be obtained by setting ξ = 0 in Eq. (8.1.5). In physical units, the amplitude of
the pulse is given by

A(0; t) =
p

P0 sech(t=T0): (8.1.8)

The peak power P0 is obtained from Eq. (8.1.6) and is related to the pulse width
T0 and the fiber parameters as

P0 = jβ2j=γT 2
0 : (8.1.9)

The width parameter T0 used for normalization is related to the full width at
half maximum (FWHM) of the soliton as

Ts = 2T0 ln(1+
p

2)' 1:763T0: (8.1.10)

The pulse energy for a fundamental soliton is given by

Es =

Z ∞

�∞
jA(0; t)j2 dt = 2P0T0: (8.1.11)

Assuming that 1 and 0 bits are equally likely to occur, the average power of the
RZ signal becomes P̄s = Es(B=2) = P0=2q0. As a simple example, T0 = 10 ps
for a 10-Gb/s soliton system if we choose q0 = 5. The FWHM of the pulse is
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Figure 8.5 Evolution of a soliton pair over 90 dispersion lengths showing the effects
of soliton interaction for four different choices of amplitude ratio r and relative phase
θ . Initial spacing q0 = 3:5 in all four cases.

about 17.6 ps for such solitons. The peak power of the input pulse is 5 mW
using β2 = �1 ps2/km and γ = 2 W�1/km as typical values for dispersion-
shifted fibers. This value of the peak power corresponds to a pulse energy of
0.1 pJ and an average power level of only 0.5 mW.

8.1.3 Soliton Interaction

For practical reasons, one would like to pack solitons as tightly as possible.
However, the presence of pulses in the neighboring bits perturbs each soli-
ton simply because the combined optical field is not a solution of the NLS
equation. This phenomenon is referred to as soliton interaction and has been
studied extensively [11]–[15]. Section A.5.4 contains a complete discussion of
soliton interaction. Here we focus on details relevant to system design.

One can understand the implications of soliton interaction by solving the
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NLS equation numerically with the input corresponding to a soliton pair such
that

u(0;τ) = sech(τ�q0)+ r sech[r(τ +q0)]exp(iθ); (8.1.12)

where r is the relative amplitude, θ is the relative phase, and 2q0 is the initial
separation between the two solitons. Figure 8.5 shows the evolution of such a
soliton pair for several values of r and θ using q0 = 3:5. Clearly, interaction
between two solitons depends strongly both on the relative phase θ and on the
amplitude ratio r.

Consider first the case of equal-amplitude solitons (r = 1). The two soli-
tons attract each other in the in-phase case (θ = 0) such that they collide pe-
riodically along the fiber length. However, for θ = π=4, the solitons separate
from each other after an initial attraction stage. For θ = π=2, the solitons re-
pel each other even more strongly, and their spacing increases with distance.
From the standpoint of system design, this behavior is not acceptable. It leads
to jitter in the arrival time of solitons since the relative phase of neighboring
solitons is not likely to remain constant. One way to avoid soliton interaction
is to increase q0. For sufficiently large q0, deviations in the soliton position are
expected to be small enough that each soliton remains within its assigned bit
slot throughout the fiber length.

The dependence of soliton separation on q0 can be studied analytically
by using the inverse scattering method. A perturbative approach was used in
Section A.5.4 assuming q0 � 1. In the specific case of r = 1 and θ = 0, the
soliton separation changes with distance as [12]

q(ξ ) = q0 + ln jcos(2ξ e�q0)j: (8.1.13)

This relation shows that spacing between two in-phase solitons oscillates with
the period

ξp = (π=2)exp(q0): (8.1.14)

The distance Lcoll = ξpLD is called the collision length.
Equation (8.1.14) is quite accurate for q0 > 3. Its predictions are in agree-

ment with Fig. 8.5 where q0 = 3:5. It can be used for system design as follows.
If Lcoll is much larger than the total transmission distance LT , soliton interac-
tion can be neglected since soliton spacing would deviate little from its initial
value. As an estimate, when q0 = 6, ξp � 634. If the dispersion length exceeds
100 km, LT � Lcoll can be realized even for transoceanic distances. Using
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LD = T 2
0 =jβ2j and T0 = (2Bq0)

�1 from Eq. (8.1.7), the condition LT � Lcoll
can be written in the form of the following design criterion:

B2LT �
π exp(q0)

8q2
0jβ2j

: (8.1.15)

As an example, B2LT � 4:4 (Tb/s)2-km if we use q0 = 6 and β2 =�1 ps2/km.
A relatively large soliton spacing, necessary to avoid soliton interaction,

limits the bit rate of soliton communication systems. The spacing can be re-
duced by up to a factor of 2 using unequal amplitudes for the neighboring
solitons. As seen in Fig. 8.5, the separation for two in-phase solitons does
not change by more than 10% for q0 as small as 3:5 if their amplitudes dif-
fer by 10% initially (r = 1:1). Another scheme for reducing soliton interac-
tion alternates the state of polarization such that two neighboring solitons are
orthogonally polarized [16], [17]. Chapter A.6 contains a discussion of the
polarization effects.

8.1.4 Effect of Fiber Loss

As discussed earlier, solitons use fiber nonlinearity to maintain their width
even in the presence of fiber dispersion. However, this property holds only
when fiber losses are negligible. It is not difficult to see that a decrease in the
soliton energy because of fiber losses would lead to soliton broadening simply
because the reduced peak power weakens the nonlinear effect necessary to
counteract the GVD.

Fiber losses are included by the last term in Eq. (7.3.1), resulting in the
following modified NLS equation:

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u =�

i
2

Γu; (8.1.16)

where we chose s =�1 in Eq. (8.1.1) and

Γ = αLD = αT 2
0 =jβ2j (8.1.17)

represents fiber losses over one dispersion length. When Γ� 1, the last term
in Eq. (8.1.16) can be treated as a small perturbation. As shown in Section
A.5.4.2, Eq. (8.1.16) then has the following solution [18]:

u(ξ ;τ)� e�Γξ sech(τe�Γξ
)exp[i(1� e�2Γξ

)=4Γ]: (8.1.18)
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The solution (8.1.18) shows that the soliton width increases exponentially
because of fiber losses as

T1(ξ ) = T0 exp(Γξ ) = T0 exp(αz): (8.1.19)

Such an exponential increase cannot be expected to continue for arbitrarily
long distances. Numerical solutions of Eq. (8.1.16) indeed show a slower
width increase for ξ � 1 [19]. The important point is that soliton broaden-
ing is much smaller compared with the linear case. Thus, the nonlinear effects
can be beneficial for optical communication systems even when solitons can-
not be maintained perfectly because of fiber losses. In a 1986 study [20], an
increase in the repeater spacing by more than a factor of 2 was predicted when
higher-order solitons were used as information bits.

In modern long-haul lightwave systems, pulses are transmitted over long
fiber lengths without using electronic repeaters. To overcome the effect of fiber
losses, solitons should be amplified periodically using either lumped or dis-
tributed amplification [21]–[24]. The simplest scheme makes use of erbium-
doped fiber amplifiers in a configuration identical to that used for nonsoliton
systems (see Fig. 7.1). An optical amplifier is placed periodically along the
fiber link, and its gain is adjusted such that fiber losses between two amplifiers
are exactly compensated by the amplifier gain. The next section considers the
design issues related to such loss-managed solitons.

8.2 Loss-Managed Solitons

Consider a long-haul soliton link in which fiber losses are compensated peri-
odically using a suitable amplification scheme. In general, losses cannot be
compensated fully at every point along the fiber, and soliton energy will vary
along the fiber link. The way a soliton reacts to energy losses depends strongly
on the relative magnitudes of dispersion length LD and amplifier spacing LA.
If energy variations are relatively small over each dispersion length (a few
percent or less), soliton parameters can evolve adiabatically. This regime is
referred to as the quasi-adiabatic regime. On the other hand, if soliton energy
varies rapidly, a soliton can maintain its identity only if amplifier spacing LA
is kept much smaller than LD. The reason for this restriction is that LD (or
the soliton period) sets the length scale over which a soliton reacts to energy
losses. Hence, when LA � LD, a soliton is not distorted despite energy losses.
In such lightwave systems, solitons can be amplified hundreds of times while
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preserving their shape and width. We refer to such solitons as loss-managed
solitons. They are also called path-averaged or guiding-center solitons. In this
section, we discuss the issues that need attention when loss-managed solitons
are used for designing lightwave systems.

8.2.1 Lumped Amplification

Periodic amplification of solitons can be accounted for by adding a gain term
to Eq. (8.1.16) and writing it as

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u =�

i
2

Γu+
i
2

g(ξ )LDu; (8.2.1)

where the form of g(ξ ) depends on whether lumped or distributed amplifica-
tion is used. In the case of lumped amplifiers, it can be written as

g(ξ ) =
NA

∑
m=1

gmδ (ξ �ξm); (8.2.2)

where NA is the total number of amplifiers and gm is the gain of the amplifier
located at ξm, chosen such that lumped amplifiers compensate for all losses
along the link. In the following analysis, we assume that amplifiers are spaced
uniformly such that ξ m = mξA, where ξA = LA=LD is the normalized amplifier
spacing.

Because of rapid variations in the soliton energy introduced by periodic
gain–loss changes, it is useful to make the transformation

u(ξ ;τ) =
p

p(ξ )v(ξ ;τ); (8.2.3)

where p(ξ ) is a rapidly varying and v(ξ ;τ) is a slowly varying function of ξ .
By substituting Eq. (8.2.3) in Eq. (8.2.1), v(ξ ;τ) is found to satisfy

i
∂v
∂ξ

+
1
2

∂ 2v
∂τ2 + p(ξ )jvj2v = 0; (8.2.4)

where p(ξ ) is obtained by solving the ordinary differential equation

d p
dξ

= [g(ξ )LD�Γ]p: (8.2.5)

The functional form of p(ξ ) depends on the amplification scheme used for
solitons. In the case of lumped amplifiers, p(ξ ) decreases exponentially in
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each period as p(ξ ) = exp(�Γξ ), with a jump to its initial value p(0) = 1 at
the end of each period. Physically, p(ξ ) governs variations in the peak power
(or the energy) of a soliton between two amplifiers. For a fiber with losses of
0.2 dB/km, p(ξ ) varies by a factor of 100 when LA = 100 km.

In general, changes in the soliton amplitude are accompanied by changes
in the soliton width. As a result, large rapid variations in p(ξ ) can destroy a
soliton if its width changes rapidly since they are accompanied by emission
of dispersive waves (continuum radiation). The concept of the path-averaged
or guiding-center soliton makes use of the fact that solitons evolve little over
a distance that is short compared with the dispersion length (or soliton pe-
riod). Thus, when ξA � 1, the soliton width remains virtually unchanged even
though its peak power p(ξ ) varies considerably in each section between two
neighboring amplifiers. In effect, one can replace p(ξ ) by its average value
when ξ A � 1. This approximation can be justified by assuming a solution of
Eq. (8.2.4) in the form v = v̄+ δv, where δv is a perturbation and v̄ satisfies
the path-averaged NLS equation

i
∂ v̄
∂ξ

+
1
2

∂ 2v̄
∂τ2 + p̄jv̄j2v̄ = 0; (8.2.6)

with p̄ =
1

ξA

R ξA
0

p(ξ )dξ . The perturbation δv turns out to be relatively small

when ξA � 1 [25]. In practice, the path-averaged description is valid even for
ξA = 1=4.

From a practical viewpoint, a fundamental soliton can be excited if the
input peak power Ps or energy of the path-averaged soliton is chosen to be
larger by a factor 1= p̄. Introducing the amplifier gain as G = exp(ΓξA), the
energy enhancement factor for loss-managed solitons is given by

fLM =
Ps

P0
=

1
p̄
=

ΓξA

1� exp(�ΓξA)
=

G lnG
G�1

; (8.2.7)

where P0 is the peak power in lossless fibers. Thus, soliton evolution in lossy
fibers with periodic lumped amplification is identical to that in lossless fibers
provided (i) amplifiers are spaced such that LA � LD and (ii) the launched peak
power is larger by a factor fLM. As an example, G = 10 and fLM � 2:56 for
50-km amplifier spacing and fiber losses of 0.2 dB/km.

Figure 8.6 shows the evolution of a loss-managed soliton over a distance
of 10,000 km for the case in which solitons are amplified every 50 km. When
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(a) (b)

Figure 8.6 Evolution of loss-managed solitons over 10,000 km for (a) L D = 200 km
and (b) 25 km with LA = 50 km, α = 0:22 dB/km, and β2 =�0:5 ps2/km.

the input pulse width corresponds to a dispersion length of 200 km, the soli-
ton is preserved quite well even after 10,000 km since the condition ξA � 1
is reasonably well satisfied. However, if the dispersion length is reduced to
25 km, the soliton is unable to sustain itself because of excessive emission of
dispersive waves for ξA = 2. The condition ξA � 1 or LA � LD, required to
operate in the loss-managed regime, can be related to the width T0 by using
LD = T 2

0 =jβ2j. The resulting condition is

T0 �
p
jβ2jLA: (8.2.8)

Since the bit rate B is related to T0 through Eq. (8.1.7), this condition can be
written in the form of the following design criterion:

B2LA � (4q2
0jβ2j)

�1
: (8.2.9)

Choosing typical values, β 2 = �0:5 ps2/km, LA = 50 km, and q0 = 5, we
obtain T0 � 5 ps and B� 20 Gb/s. Clearly, the use of path-averaged solitons
imposes a severe limitation on both the bit rate and the amplifier spacing for
soliton communication systems.

8.2.2 Distributed Amplification

The condition LA � LD, imposed on loss-managed solitons when lumped am-
plifiers are used, becomes increasingly difficult to satisfy in practice as bit rates
exceed 10 Gb/s. This condition can be relaxed considerably when distributed
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amplification is used. The distributed-amplification scheme is inherently su-
perior to lumped amplification since its use provides a nearly lossless fiber by
compensating losses locally at every point along the fiber link. In fact, this
scheme was used as early as 1985 using the distributed gain provided by Ra-
man amplification when the fiber carrying the signal was pumped at a wave-
length of about 1.46 µm using a color-center laser [23]. Alternatively, the
transmission fiber can be doped lightly with erbium ions and pumped periodi-
cally to provide distributed gain. Several experiments have demonstrated that
solitons can be propagated in such active fibers over relatively long distances
[26]–[30].

Mathematically, the advantage of distributed amplification can be seen
from Eq. (8.2.5), which can be written in physical units as

d p
dz

= [g(z)�α ]p: (8.2.10)

If g(z) is constant and equal to α for all z, the peak power or energy of a soli-
ton remains constant along the fiber link. This is the ideal situation in which
the fiber is effectively lossless. In practice, distributed gain is realized by in-
jecting pump power periodically into the fiber link. Since pump power does
not remain constant because of fiber losses and pump depletion (e.g., absorp-
tion by dopants), g(z) cannot be made constant along the fiber. However, even
though fiber losses cannot be compensated locally everywhere, they can be
compensated fully over a distance LA provided that

Z LA

0
g(z)dz = αLA: (8.2.11)

A distributed-amplification scheme is designed to satisfy Eq. (8.2.11). The
distance LA is referred to as the pump-station spacing.

The important question is how much soliton energy varies during each
gain–loss cycle. The extent of peak-power variations depends on LA and on
the pumping scheme adopted. Backward pumping is commonly used for dis-
tributed Raman amplification since such a configuration provides high gain
where the signal is relatively weak. The gain coefficient g(z) can be obtained
following the analysis of Section A.8.1. If we ignore pump depletion, the gain
coefficient in Eq. (8.2.10) is given by g(z) = g0 exp[�αp(LA� z)], where αp

accounts for fiber losses at the pump wavelength. The resulting equation can



Loss-Managed Solitons 381

0 10 20 30 40 50
Distance (km)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

Figure 8.7 Variations in soliton energy for backward (solid line) and bidirectional
(dashed line) pumping schemes with LA= 50 km. The lumped-amplifier case is shown
by the dotted line.

be integrated analytically to obtain

p(z) = exp

�
αLA

�
exp(αpz)�1

exp(αpLA)�1

�
�αz

�
; (8.2.12)

where g0 was chosen to ensure that p(LA) = 1. Figure 8.7 shows how p(z)
varies along the fiber for LA = 50 km using α = 0:2 dB/km and αp = 0:25
dB/km. The case of lumped amplification is also shown for comparison. Where-
as soliton energy varies by a factor of 10 in the lumped case, it varies by less
than a factor of 2 in the case of distributed amplification.

The range of energy variations can be reduced further using a bidirectional
pumping scheme. The gain coefficient g(z) in this case can be approximated
(neglecting pump depletion) as

g(z) = g1 exp(�αpz)+g2 exp[�αp(LA� z)]: (8.2.13)

The constants g1 and g2 are related to the pump powers injected at both ends.
Assuming equal pump powers and integrating Eq. (8.2.10), the soliton energy
is found to vary as

p(z) = exp

�
αLA

�
sinh[αp(z�LA=2)]+ sinh(αpLA=2)

2sinh(αpLA=2)

�
�αz

�
: (8.2.14)
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This case is shown in Fig. 8.7 by a dashed line. Clearly, a bidirectional pump-
ing scheme is the best since it reduces energy variations to below 20%. The
range over which p(z) varies increases with LA. Nevertheless, it remains much
smaller than that occurring in the lumped-amplification case. As an example,
soliton energy varies by a factor of 100 or more when LA = 100 km if lumped
amplification is used but by less than a factor of 2 when a bidirectional pump-
ing scheme is used for distributed amplification.

The effect of energy excursion on solitons depends on the ratio ξA =

LA=LD. When ξA < 1, little soliton reshaping occurs. For ξA � 1, soli-
tons evolve adiabatically with some emission of dispersive waves (the quasi-
adiabatic regime). For intermediate values of ξ A, a more complicated behavior
occurs. In particular, dispersive waves and solitons are resonantly amplified
when ξA ' 4π; Such a resonance can lead to unstable and chaotic behav-
ior [24]. For this reason, distributed amplification is used with ξA < 4π in
practice [26]–[30].

Modeling of soliton communication systems making use of distributed am-
plification requires the addition of a gain term to the NLS equation, as in
Eq. (8.2.1). In the case of soliton systems operating at bit rates B > 20 Gb/s
such that T0 < 5 ps, it is also necessary to include the effects of finite gain
bandwidth, third-order dispersion (TOD), and the intrapulse Raman scatter-
ing. As discussed in Section 4.6.2, Eq. (8.2.1) should then be replaced with
the following equation:

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u

=
i
2

g(ξ )LD

�
u+ τ2

2
∂ 2u
∂τ2

�
�

i
2

Γu+ iδ3
∂ 3u
∂τ3 + τRu

∂ juj2

∂τ
; (8.2.15)

where τ2 is related inversely to the gain bandwidth. The TOD parameter δ3
and the Raman parameter τR are defined as in Section 4.6.2. Numerical sim-
ulations based on Eq. (8.2.15) show that the distributed-amplification scheme
considerably benefits high-capacity soliton communication systems [31]. As
an example, Fig. 8.8 shows the evolution of a fundamental soliton for lumped
and distributed amplification (bidirectional pumping with erbium doping) for
a fundamental soliton (T0 = 5 ps) using LA = 100 km, LD = 50 km, τR =

6�10�4, and τ2 = δ3 = 0. Since the condition ξA � 1 is not satisfied, lumped
amplification fails to maintain the soliton even over a distance of 500 km. In
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(a)

(b)

Figure 8.8 Comparison of (a) lumped and (b) distributed amplification schemes for a
20-Gb/s system designed with LA = 100 km. Dispersion length is 50 km for T0 = 5 ps.
(After Ref. [31], c1999 IEEE)

contrast, the soliton can propagate over a distance of more than 5000 km when
distributed amplification is used.

For soliton widths below 5 ps, the Raman-induced spectral shift leads to
considerable changes in soliton evolution since it modifies the gain and dis-
persion experienced by solitons. Fortunately, the finite gain bandwidth of am-
plifiers reduces the amount of spectral shift and stabilizes the soliton carrier
frequency close to the gain peak [27]. Under certain conditions, the spec-
tral shift can become so large that it cannot be compensated, and the soliton
moves out of the gain window, loosing all its energy. It should be stressed that
Eq. (8.2.15) approximates the gain spectrum by a parabola. Its use is justified
for solitons whose spectrum is much narrower than the gain bandwidth but
becomes questionable for femtosecond solitons. Equation (4.6.1) should be
used for such short solitons. As seen in Fig. 4.17, the Raman-induced spectral
shift drastically affects the evolution of femtosecond solitons, as also observed
experimentally [28].
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8.2.3 Chirped Solitons

Distributed amplification is not commonly used for practical reasons. One
may ask whether it is possible to design loss-managed soliton systems using
lumped amplifiers whose spacing is much larger than the dispersion length.
The answer to this question is affirmative if one is willing to let the soliton
parameters evolve in an adiabatic fashion. In general, any perturbation that
forces changes in soliton parameters also generates continuum radiation in the
form of dispersive waves. Adiabatic evolution of soliton parameters is capable
of maintaining a soliton, but dispersive waves accumulated over long distances
eventually affect the system performance. Several techniques have been pro-
posed for minimizing and removing the energy lost to dispersive waves [32]–
[36]. In this section, we consider the prechirping technique in which a soliton
is chirped appropriately at the beginning such that both its width and chirp
return to their original values in each section between two lumped amplifiers.
It turns out that such prechirping can push the amplifier spacing beyond the
dispersion length.

The variational method is quite useful for solving an equation such as Eq.
(8.2.4) approximately. In this approach, we first note that Eq. (8.2.4) can be
derived from the Euler–Lagrange equation [see Eq. (2.3.5)] using the following
Lagrangian density

Lg =
i
2

�
v�

∂v
∂ξ

� v
∂v�

∂ξ

�
+

1
2

"
p(ξ )jvj4�

����∂v
∂τ

����
2
#
: (8.2.16)

We then assume that the soliton evolves along the fiber as

v(ξ ;τ) = asech(τ=b)exp[iφ � iC(τ2
=2b2

)]; (8.2.17)

where a is the amplitude, b is the width, C is the chirp, and φ is the phase of the
soliton. All four parameters can vary with ξ because of perturbations produced
by fiber losses. Using the variational method outlined in Section 2.3.2 (see also
Chapter A.5), we obtain the following set of four equations [36]:

da
dξ

=
Ca
2b2 ; (8.2.18)

db
dξ

= �
C
b
; (8.2.19)

dC
dξ

=
4

π2 a2 p(ξ )� (4=π2
+C2

)
1
b2 ; (8.2.20)
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Figure 8.9 Enhancement factor fLM and input chirp as a function of LA=LD when
lumped amplifiers with 20-dB gain are placed 100 km apart. (After Ref. [36])

dφ
dξ

=
5
6

a2 p(ξ )�
1

3b2 ; (8.2.21)

where p(ξ ) = exp(�Γξ ) in each fiber section between two optical amplifiers.
Equations (8.2.18) and (8.2.19) can be combined to show that the combina-

tion a2b does not vary with ξ . Since the phase equation (8.2.21) is uncoupled
from other equations, we only need to solve Eqs. (8.2.19) and (8.2.20) with the
periodic boundary conditions

b(0) = b(ξA)� 1; C(0) =C(ξA)�C0; (8.2.22)

to ensure that the soliton recovers its initial state at ξ = ξA. The two boundary
conditions fix the values of the soliton amplitude a0 and the chirp C0 at ξ = 0
for which the soliton can propagate from amplifier to amplifier in a periodic
fashion. We can relate a0 to the enhancement factor as fLM = a2

0 since the
soliton peak power should be increased by this factor.

Figure 8.9 shows how the energy-enhancement factor and input chirp vary
with the normalized amplifier spacing, ξA = LA=LD, assuming that amplifiers
with 20-dB gain [G = exp(ΓξA) = 100] are placed 100 km apart. When ξA �
1, the solution reduces to that obtained for path-averaged solitons (dotted lines)
such that C0 � 0 and fLM is given by Eq. (8.2.7). As the dispersion length is
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reduced and ξA exceeds 1, both the peak power and input chirp increase. The
important point is that a properly chirped soliton can propagate through the
amplifier chain in a periodic fashion. It is the prechirping of the soliton that
permits the amplifier spacing to exceed the dispersion length. It should be
stressed that a chirped soliton is quite different from the standard soliton [see
Eq. (8.1.4)] as its width and amplitude are not inversely related.

8.3 Amplifier Noise

The use of optical amplifiers affects the evolution of solitons considerably. The
reason is that amplifiers, although needed to restore the soliton energy, also add
noise originating from amplified spontaneous emission (ASE). As discussed in
Section 7.1, the spectral density of ASE depends on the amplifier gain G itself.
This section is devoted to the effects of ASE on loss-managed solitons.

8.3.1 ASE-Induced Fluctuations

To study the impact of ASE on soliton evolution, we consider how the four
soliton parameters in the NLS solution (8.1.4) are affected by amplifier noise.
The effect of ASE is to change randomly the values of η ;q;δ , and φ at the
output of each amplifier. Variances of such fluctuations for the four soliton
parameters can be calculated by treating ASE as a perturbation and using the
approach described in Section A.5.4. As found there, in the presence of a
perturbation ε(u), the four soliton parameters appearing in Eq. (8.1.4) evolve
as [8]

dη
dξ

= Re
Z ∞

�∞
ε(u)Fη(τ) dτ ; (8.3.1)

dδ
dξ

= Re
Z ∞

�∞
ε(u)Fδ (τ) dτ ; (8.3.2)

dq
dξ

= �δ +Re
Z ∞

�∞
ε(u)Fq(τ) dτ ; (8.3.3)

dφ
dξ

=
1
2
(η2�δ 2

)+q
dδ
dξ

+Re
Z ∞

�∞
ε(u)Fφ (τ) dτ ; (8.3.4)

where Re stands for the real part and

Fη = u�; Fδ = i tanh[η(τ�q)]u�; Fq = (τ�q)u�=η2
; (8.3.5)

Fφ = if(τ�q) tanh[η(τ�q)]�1=ηgu�: (8.3.6)
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In the case of lumped amplification, solitons are perturbed by ASE in a
discrete fashion at the location of the amplifiers. However, since the amplifier
spacing satisfies ξA � 1, we assume that noise is distributed all along the fiber
length. Such an approach is useful since it can be applied to the case of dis-
tributed amplification as well with only minor changes. Assuming fiber losses
are fully compensated by amplifiers, adding noise, and introducing u =

p
p̄ v̄,

the NLS equation (8.2.6) can be written as

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = in(ξ ;τ); (8.3.7)

where the noise term vanishes on average as hn(ξ ;τ)i = 0. When n(ξ ;τ) is a
Markovian stochastic process with Gaussian statistics, its correlation function
takes the form

hn(ξ ;τ)n�(ξ 0

;τ 0)i= Snδ (τ� τ 0)δ (ξ �ξ 0

); (8.3.8)

where Sn is the ASE spectral density. Following the analysis of Section 7.1, Sn

is related to Ssp = nsphν0(G�1) but it should be properly scaled and distributed
over amplifier spacing. In soliton units,

Sn = nsphν0(G�1)
γL2

D

LAT0
=

FnFG

NphξA
; (8.3.9)

where Fn = 2nsp is the amplifier noise figure and FG = (G� 1)2=(G lnG) is
related to the amplifier gain. This specific form of FG results when we use the
condition N = γLDPs = 1 with Eq. (8.2.7). In Eq. (8.3.9), Nph = 2P0T0=hν0
is the average number of photons in the pulse propagating as a fundamental
soliton.

Using ε(u) = n(ξ ;τ) in Eqs. (8.3.1)–(8.3.4), we can find how the four
soliton parameters fluctuate because of amplifier noise. It is useful to define
four new noise variables using [8]

ni(ξ ) = Re
Z ∞

�∞
n(ξ ;τ)Fi(τ) dτ ; (8.3.10)

where i = η ;δ ;q, and φ . Their correlation functions are calculated using Eqs.
(8.3.5)–(8.3.8), and the result is

hni(ξ )nj(ξ
0

)i= Siδi jδ (ξ �ξ 0

): (8.3.11)
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Assuming hηi= 1, the spectral densities for i = η ;δ ;q, and φ are given as [8]

Sη = Sn; Sδ =
Sn

3
; Sq =

π2

12
Sn; Sφ = (1+π2

=12)
Sn

3
: (8.3.12)

As a simple example, we calculate the amplitude and frequency fluctua-
tions induced by ASE. Integrating Eqs. (8.3.1) and (8.3.2), we find

η(ξ ) = 1+
Z ξ

0
nη(ξ ) dξ ; δ (ξ ) =

Z ξ

0
nδ (ξ ) dξ ; (8.3.13)

where η(0)= 1 and δ (0)= 0 are assumed for the fundamental soliton launched
at ξ = 0. The variance of fluctuations is found to be

σ 2
η = Snξ ; σ 2

δ = Snξ=3: (8.3.14)

This result shows that variances of both amplitude and frequency fluctuations
increase linearly along the fiber link because of the cumulative effects of ASE.
Amplitude fluctuations degrade the SNR of the soliton bit stream. The SNR
degradation, although undesirable, is not the most limiting factor. In fact, fre-
quency fluctuations affect system performance much more drastically by in-
ducing the timing jitter. We turn to this issue next.

8.3.2 Timing Jitter

A soliton communication system can operate reliably only if all solitons ar-
rive at the receiver within their assigned bit slot. Several physical mechanisms
induce deviations in the soliton position from its original location at the bit
center. Among them, ASE-induced timing jitter is often dominant in practice.
The origin of such jitter can be understood by noting from Eq. (8.1.4) that
a change in the soliton frequency by δ affects the speed at which a soliton
propagates through the fiber. If δ fluctuates because of amplifier noise, soliton
transit time through the fiber link also becomes random. ASE-induced fluctua-
tions in the arrival time of a soliton are referred to as the Gordon–Haus timing
jitter [37]–[40].

Fluctuations in the soliton position are obtained by integrating Eq. (8.3.3)
and calculating the variance of q(ξ ). Following the procedure outlined previ-
ously, the variance is found to be

σ 2
q =

1
9

Snξ 3
+

π2

12
Snξ ; (8.3.15)
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where both δ and q were assumed to be zero at ξ = 0. The second term shows
the direct impact of ASE on the soliton position. The first term is due to jitter
induced by frequency fluctuations and dominates in practice because of its
cubic dependence on the propagation distance. Keeping only the first term, the
timing jitter is approximately given by

σ 2
q �

Sn

9
ξ 3

=
FnFG

9NphξA
ξ 3
; (8.3.16)

where we used Eqs. (8.3.9) and (8.3.14). Using σq = σt=T0, ξ = LT=LD, Nph =

2P0T0=hν0, P0 = (γLD)
�1, Fn = 2nsp, and FG = (G�1)= fLM, the timing-jitter

variance in physical units can be written as [38]

σ 2
t =

nsphν0γ jβ2j(G�1)L3
T

9T0LA fLM
: (8.3.17)

Since a soliton should arrive within its allocated bit slot for its correct iden-
tification at the receiver, timing jitter should be a small fraction of the bit slot
TB. This requirement can be written as σ t=TB < fb, where fb is the fraction
of the bit slot by which a soliton can move without affecting system perfor-
mance adversely. Using this condition and introducing the bit rate through
B = 1=TB = (2q0T0)

�1, Eq. (8.3.17) can be written as a design rule:

BLT <

�
9 f 2

b LA fLM

hν0Fn(G�1)q0γ jβ2j

�1=3

: (8.3.18)

The tolerable value of fb depends on the acceptable bit-error rate and on details
of receiver design; typically, fb < 0:1. To see how amplifier noise limits the
total transmission distance, consider a specific soliton communication system
operating at 1.55 µm. Using typical parameter values, q0 = 5, γ = 3 W�1/km,
β2 = �1 ps2/km, Fn = 3, LA = 50 km, G = 10, and fb = 0:1, BLT must be
below 80 (Tb/s)-km. For a 10-Gb/s system, the transmission distance is limited
to 8000 km.

In deriving Eq. (8.3.17), solitons were assumed to be sufficiently far apart
to avoid their mutual interaction. However, solitons are often packed closely
together to maximize the bit rate. Since interaction between two solitons de-
pends strongly on their separation and relative phase, both of which fluctuate
due to amplifier noise, it modifies the timing jitter considerably. Considering
noise-induced fluctuations of the relative phase of neighboring solitons, tim-
ing jitter of interacting solitons is generally enhanced by amplifier noise [40].



390 Soliton Lightwave Systems

However, for a large input phase difference close to π between neighboring
solitons, phase randomization leads to reduction in the timing jitter.

An important consequence of soliton interaction is that the statistics of the
timing jitter deviate considerably from the Gaussian statistics expected in the
absence of soliton interaction [41]–[43]. Such non-Gaussian corrections can
occur even when soliton interaction is relatively weak (q0 > 5). They manifest
through an enhancement of the bit-error rate and must be accounted for an ac-
curate estimate of the system performance [42]. When solitons are packed so
tightly that soliton interaction becomes quite significant, the probability den-
sity function of the timing jitter develops a five-peak structure [43]. Equation
(8.3.16) cannot be used for evaluating timing jitter in that case. The use of
numerical simulations is essential to study the impact of ASE-induced timing
jitter on a bit stream composed of interacting solitons.

Propagation of acoustic waves transverse to the fiber core can also induce
timing jitter [44]–[48]. Physically speaking, confinement of the optical field
within the fiber core creates a field gradient in the radial direction. This gra-
dient of electric field generates acoustic waves through electrostriction, a phe-
nomenon that creates density variations in response to variations in the electric
field. Since the refractive index of fused silica is related to the material den-
sity, such acoustic waves change the refractive index (and hence the soliton
velocity). Index changes last for about 2 ns, roughly the time required by the
acoustic wave to traverse the fiber core. Since solitons follow one another on a
much shorter timescale (0.1 ns for B = 10 Gb/s), the acoustic wave generated
by one soliton affects tens, or even hundreds, of the following solitons. Such
acoustic-wave-assisted interaction among solitons has been observed experi-
mentally [45].

If a bit stream were composed of only 1 bits such that a soliton occupied
each bit slot, all solitons would be shifted in time by the same amount by
acoustic waves, creating a uniform shift of the soliton train with no impact on
the timing jitter. However, since a realistic bit stream consists of a random
string of 1 and 0 bits, changes in the speed of a specific soliton depend on the
presence or absence of solitons in the preceding tens of bit slots. As a result,
different solitons acquire slightly different speeds, resulting in timing jitter.
Such acoustic jitter has a deterministic origin, in contrast with the Gordon–
Haus jitter, which is stochastic in nature. The deterministic nature of acoustic
jitter makes it possible to reduce its impact in practice by moving the detection
window at the receiver through an automatic tracking circuit [46] or using a
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suitable coding scheme [47].
Polarization-mode dispersion (PMD) can also induce timing jitter [49]–

[51]. As solitons are periodically amplified, their state of polarization becomes
random because of ASE added at every amplifier. Such polarization fluctua-
tions lead to timing jitter through fiber birefringence since the two orthogonally
polarized components travel with slightly different speeds. The effects of PMD
are quantified through the PMD parameter Dp (see Chapter A.6). The timing
jitter introduced by the combination of ASE and PMD can be written as [49]

σ 2
pol =

πnspFG

16Nph

D2
pL2

T

LA
: (8.3.19)

Note that σpol increases linearly with transmission distance LT . As an estimate,

σpol = 0:38 ps when α = 0:2 dB/km, LA = 50 km, nsp = 2, Nph = 5� 105,

Dp = 0:1 ps/
p

km, and LT = 10 Mm. Such a low value of σpol is unlikely
to affect 10-Gb/s soliton systems with a 100-ps bit slot. However, the PMD-
induced timing jitter becomes important at high bit rates, especially for fibers
with large values of the PMD parameter (Dp > 1 ps/

p
km).

8.3.3 Control of Timing Jitter

It should be clear from the preceding discussion that the timing jitter ultimately
limits the performance of soliton communication systems. It is essential to find
a solution to the timing-jitter problem before the use of solitons can become
practical. Several techniques were developed during the 1990s for controlling
the timing jitter [52]–[80]. This section focuses on them with emphasis on
optical filtering and modulation.

Optical Filters and Modulators

Optical filters have been used since 1991 to realize soliton transmission beyond
the Gordon–Haus limit [52]–[60]. This approach makes use of the fact that the
ASE spectrum is much broader than the soliton spectrum. The bandwidth of
optical filters is chosen such that they let the soliton pass but block most of the
ASE. Some soliton energy is lost during the filtering process. The gain of each
amplifier is increased slightly to offset filter-induced losses. Unfortunately,
noise within the soliton bandwidth increases rapidly because of the excess gain
of amplifiers.
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The filtering technique can be improved considerably by allowing the cen-
ter frequency of successive filters to slide (increase or decrease) along the fiber
link at a constant rate [55]. Such sliding-frequency filters avoid accumulation
of ASE since soliton spectrum can shift with filters while the ASE spectrum
does not. As a result, filters near the end of the fiber link block the ASE accu-
mulated over earlier stages. Sliding-frequency filters also reduce the growth of
dispersive waves that are generated by strongly perturbed solitons [57].

Solitons can also be controlled in the time domain by using amplitude mod-
ulators. The technique works by introducing additional losses for solitons that
have shifted from their original position (center of the bit slot). The modu-
lator forces solitons to move toward its transmission peak where the loss is
minimum.

Soliton perturbation theory can be used to study how optical filters and
modulators benefit a soliton communication system. The effect of a bandpass
filter is to modify the soliton spectrum such that

ũ(ξ f ;ω)! Hf (ω�ω f )ũ(ξ f ;ω); (8.3.20)

where ũ(ξ f ;ω) is the soliton spectral amplitude obtained by taking the Fourier
transform of Eq. (8.1.4) and Hf (ω�ω f ) is the transfer function of the optical
filter located at ξ f = L f =LD. In contrast, an amplitude modulator changes the
soliton amplitude in the time domain as

u(ξm;τ)! Tm(τ� τm)us(ξm;τ); (8.3.21)

where Tm(τ) is the transmission coefficient of the modulator located at ξ = ξm.
Both Hf (ω�ω f ) and Tm(τ�τm) can be approximated by a parabolic shape in
the vicinity of a soliton.

If losses introduced by filters and modulators are assumed to be distributed
over the entire link, their effects can be included by adding two loss terms to
Eq. (8.3.7). A third term representing excess amplifier gain should also be
added to offset the additional losses. The resulting perturbed NLS equation
can be written as [8]

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = iε(u); (8.3.22)

where the perturbation term is of the form

ε(u) = n(ξ ;τ)+
µ
2

u�
bf

2

�
i

∂
∂τ
� fsξ

�2

u�
bm

2
τ2u: (8.3.23)
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Here, µ is the excess gain required for compensating losses introduced by
filters and modulators. The parameter bf is related to the curvature of the filter
spectrum Hf (ω). For Fabry–Perot filters spaced apart by Lf , b f is given by

bf =
F2

R

πjβ2jL f ∆ν2
f

; (8.3.24)

where ∆ν f is the free spectral range and FR is the finesse of the filter. The
normalized sliding rate is related to the actual rate νs as fs = 2πνsT0LD. For
modulators spaced apart by a distance Lm, the parameter bm can be written as

bm = am(ΩmT0)
2
(LD=2Lm); (8.3.25)

where am is the modulation index and Ωm is the modulation frequency.
The use of ε(u) from Eq. (8.3.23) in Eqs. (8.3.1)–(8.3.4) shows how the

four soliton parameters evolve in the presence of optical filters and modulators.
Ignoring the phase, we see that the amplitude η , the frequency δ , and the
position q of each soliton evolve as [8]

dη
dξ

= µη�bf [(δ � fsξ )2
+η2

=3]η

�bm[q
2
+π2

=(12η2
)]η +nη(ξ ); (8.3.26)

dδ
dξ

= �
2
3

bf (δ � fsξ )η2
+nδ (ξ ); (8.3.27)

dq
dξ

= �δ � (π2bm=6η2
)q+nq(ξ ): (8.3.28)

Consider first the case of fixed-frequency filters by setting fs = 0. If we
ignore ASE, assume η = 1; δ = 0, and q = 0 initially at ξ = 0, the above
equations show that all three soliton parameters can be maintained at their
original values provided the excess gain is chosen according to

µ = bf =3+π2bm=12: (8.3.29)

The effects of ASE can be included by considering fluctuations around this
steady-state solution. Linearizing Eqs. (8.3.26)–(8.3.28) around η = 1; δ = 0,
and q = 0, we obtain

dη 0

dξ
= �(c f � cm)η 0

+nη(ξ ); (8.3.30)
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Figure 8.10 σ 2
q =Sn as a function of ξ without any control (solid line), with filters alone

(dashed line, b f = 0:4), and with filters and modulators (dot-dashed line, b m = 0:1).
(After Ref. [8], c1998, reprinted by permission of John Wiley & Sons)

dδ
dξ

= �c f δ +nδ (ξ ); (8.3.31)

dq
dξ

= �δ � cmq+nq(ξ ); (8.3.32)

where η 0

= η�1 and two new parameters were introduced as

c f = 2bf =3; cm = π2bm=6: (8.3.33)

Equation (8.3.30) points to an important issue related to the use of modulators.
If filers are not employed (cf = 0), amplitude fluctuations grow exponentially,
indicating that the steady state is unstable. In contrast, filters by themselves
have a stabilizing effect. When both filters and modulators are used, the filter-
ing action should be strong enough to ensure cf > cm to avoid the instability.

Timing jitter is obtained by integrating Eq. (8.3.32) and then calculating
the variance of q(ξ ). After some algebra, the result is found to be [8]

σ 2
q (ξ ) =

Sn

3

(
1

4c f cm(c f + cm)
�

exp(�2cf ξ )
4c f (c f � cm)

2 �
exp(�2cmξ )

4cm(c f � cm)
2

+

exp[�(cf + cm)ξ ]
(c f � cm)

2(c f + cm)

)
+

π2Sn

12

�
1� exp(�2cmξ )

2cm

�
; (8.3.34)
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where Sn is given by Eq. (8.3.9). This result reduces to Eq. (8.3.15) in the
limit cf = cm = 0. Figure 8.10 shows how much jitter is reduced using filters

and modulators. When only filters or modulators are used, σ2
q grows linearly

with distance, resulting in considerable improvement compared with the cubic
growth occurring in their absence. When both of them are used simultaneously,
the situation is even better since timing jitter becomes constant for ξ � 1. The
limiting value is found from Eq. (8.3.34) to be

σ 2
q =

Sn

12cm

"
1

c f (c f + cm)
+

π2

2

#
: (8.3.35)

As seen in Fig. 8.10, the combination of filters or modulators can reduce timing
jitter by several orders of magnitude for long-haul lightwave systems.

A phase modulator can also be used to control the timing jitter [70]–[72].
One can understand the effect of periodic phase modulation by recalling that a
frequency shift [δω =�∂φ(t)=∂ t] is associated with any phase variation φ(t).
Since a shift in soliton frequency changes the group velocity, phase modulation
induces a temporal displacement. The frequency is shifted in such a way that
the soliton always moves toward the center of the bit slot, thereby confining it
to its original position despite timing jitter induced by ASE and other sources.
Amplitude and phase modulations can be combined to further improve the sys-
tem performance [72]. Optical filters and modulators help a soliton system in
several other ways. Among other things, they reduce soliton interaction, clamp
the level of amplifier noise, and inhibit the growth of dispersive waves [73].

Sliding-Frequency Filters

Both fixed-frequency filters and amplitude modulators reduce the SNR at the
receiver. The SNR degradation arises from the µ term in Eq. (8.3.23). In
time slots containing 0 bits, the field u is small enough that we can neglect
the nonlinear term. The resulting linear equation can be solved to find that
the noise in 0 bits grows exponentially because of the excess gain required
to offset losses. Sliding-frequency filters solve this problem. To show their
impact clearly, we solve Eqs. (8.3.26)–(8.3.28) with fs 6= 0 but set bm = 0
(no modulators) to simplify the discussion. A steady-state (ξ -independent)
solution no longer exists since both the frequency and position of a soliton
evolve with ξ as

δs(ξ ) = fsξ �3 fs=2bf ; qs(ξ ) =� 1
2 fsξ 2

+(3 fs=2bf )ξ : (8.3.36)
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However, the soliton amplitude can be maintained at η = 1 if the excess gain
is chosen according to

µ = bf =3+9 f 2
s =(4bf ): (8.3.37)

Equation (8.3.36) shows that soliton frequency slides with filters. The soli-
ton position also changes since the speed of a soliton changes with its fre-
quency. This position shift is deterministic in nature, affects all solitons in
the same way, and is not harmful to a soliton system since it keeps the pulse
train intact. At the same time, the sliding-frequency filters reduce the ASE for
the following reason. Initially, the noise accumulates over multiple amplifiers
since the signal and noise spectra overlap. However, as the soliton spectrum
shifts gradually, the accumulated ASE is filtered out later when the soliton
spectrum has shifted by more than its own width.

ASE-induced fluctuations in the soliton parameters can be calculated by
linearizing Eqs. (8.3.26)–(8.3.28) around the solution (8.3.36). Introducing
small fluctuations as

η 0

= η�1; δ 0

= δ �δs; q0 = q�qs; (8.3.38)

we obtain the following set of equations:

dη 0

dξ
= �

2
3

bf η 0

+3 fsδ 0

+nη(ξ ); (8.3.39)

dδ 0

dξ
= �

2
3

bf δ 0

+2 fsη 0

+nδ (ξ ); (8.3.40)

dq0

dξ
= �δ 0

+nq(ξ ): (8.3.41)

The stability of solitons can be analyzed by ignoring ASE and investigating
whether fluctuations η0 and δ 0 grow or damp with propagation. The solution
of Eqs. (8.3.39) and (8.3.40) shows that fluctuations damp as e�λξ with λ =

2bf =3�
p

6 fs. Solitons remain stable as long as the sliding rate fs is below a
critical value given by

fcr =
p

2=27 bf � 0:272bf : (8.3.42)

For fs < fcr, timing jitter only grows linearly with ξ for ξ � 1 and is approxi-
mately given by [8]

σ 2
q =

(1+2 f 2
cr)

(1� f 2
cr)

2

3Sn

4b2
f

ξ : (8.3.43)
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Figure 8.11 Timing jitter with (dotted lines) and without (solid lines) sliding-
frequency filters as a function of distance at several bit rates. Inset shows a Gaussian
fit to the jitter at 10 Mm for a 10-Gb/s system. (After Ref. [55])

For fixed-frequency filters, fcr = 0 in the above equation. Thus, the timing jitter
is enhanced because of frequency sliding but is still much lower compared with
the no-filter case.

Figure 8.11 shows the reduction observed in timing jitter by using sliding-
frequency filters for soliton systems at several bit rates. The bit-rate depen-
dence is solely due to the acoustic jitter; the B= 0 curves show the contribution
of the Gordon–Haus jitter alone. Optical filters help in reducing both types
of timing jitter and permit transmission of 10-Gb/s solitons over more than
20,000 km. In the absence of filters, the timing jitter becomes so large that a
10-Gb/s soliton system cannot be operated for distances beyond 8000 km. The
inset in Fig. 8.11 shows a Gaussian fit to the timing jitter of 10-Gb/s solitons
at a distance of 10,000 km, obtained by solving the NLS equation numerically
after including the effects of both the ASE and sliding-frequency filters [55].
The timing-jitter distribution is approximately Gaussian with a standard devi-
ation of about 1.76 ps. In the absence of filters, the jitter exceeds 10 ps under
the same conditions.

Sliding-frequency filters benefit a soliton communication system in several
ways. Their use reduces not only timing jitter but also soliton interaction [64],
making it possible to pack solitons more closely. The physical mechanism be-
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hind reduced interaction is related to changes in the soliton phase at each filter.
Rapid variations in the relative phase between neighboring solitons, occurring
as a result of filtering, average out the jitter by alternating the nature of in-
teraction from attractive to repulsive. Soliton interaction is reduced even more
effectively if filter frequency is alternately shifted up and down in a zigzag pat-
tern [65]. Equations (8.3.39)–(8.3.41) predict the same behavior irrespective
of whether the center frequency of filters increases (up-sliding) or decreases
(down-sliding) along the fiber link. However, this is a consequence of approx-
imating the transfer function of filters with a parabola over the soliton spec-
trum. When the cubic term in the Taylor expansion of the transfer function is
included, up-sliding is found to provide better performance [58].

Sliding-frequency filters may be difficult to implement in practice because
of the need to maintain a precise frequency control. Several schemes have been
proposed to solve this practical problem [61]–[69]. For example, an optical
filter can be designed such that it automatically offsets its peak-transmission
frequency from the carrier frequency of the incident soliton [61]. In another
approach, significant reduction of the timing jitter was realized by periodically
sliding the signal frequency while using fixed-frequency filters [62]. The spec-
tral response of optical filters can also be tailored to improve system perfor-
mance. In particular, optical filters having a relatively flat transmission pass-
band (top-hat-like) are of interest since they minimize energy loss. Butterworth
filters have attracted attention since they can reduce the accumulation of ASE
without requiring sliding of their central frequency along the fiber link [68].
They can also be more effective in reducing the soliton interaction [69]. But-
terworth filters were used in a 1994 experiment and allowed transmission of
20-Gb/s signals (single channel) over 11 Mm [66].

Other Techniques

Numerous ways through which solitons interact with each other and with other
optical fields lead to many diverse techniques for controlling solitons. In one
approach that is helpful in reducing soliton interaction, the amplitude of neigh-
boring solitons is alternated between two values differing typically by 10%.
Such a difference in amplitudes results in different rates of phase accumula-
tion for two types of solitons. As a result, the phase difference θ between
neighboring solitons changes with propagation, resulting in an averaging of
soliton interaction. Recall from Section 8.1.3 that the interaction between two



Amplifier Noise 399

neighboring solitons depends on their relative phase difference and changes
from attractive to repulsive with changes in θ . Such a technique has been used
successfully for transmitting solitons at a bit rate of 20 Gb/s over 11,500 km, a
distance larger than the distance over which two solitons would collide in the
absence of amplitude alternation [74]. In a variation of this technique, soliton
frequency is altered to reduce interaction among two neighboring solitons [67].
Relatively small frequency shifts (� 100 MHz), imposed on specific solitons in
a bit stream, can double the transmission distance because of reduced soliton
interaction.

Another approach to soliton control consists of inserting fast-responding
saturable absorbers periodically along the fiber link. Such a device absorbs
low-intensity light, such as dispersive waves, but leaves solitons intact because
of their high intensities. To be effective, it should respond on a timescale
shorter than the soliton width. It is difficult to find an absorber that can re-
spond at such short timescales. However, one can use nonlinear interferometric
devices that act like fast saturable absorbers (see Section 5.4). For example, a
nonlinear fiber-loop mirror can reduce the timing jitter at 10,000 km [75]–[77].
The same device can also stabilize the soliton amplitude.

A soliton train can also be retimed by using the phenomenon of cross-
phase modulation (XPM) in optical fibers [78]. The technique overlaps the
soliton data stream with another pulse train composed of only 1 bits (gener-
ated through clock recovery, for example) in a few-kilometer fiber where XPM
induces a phase shift on the soliton data stream whose magnitude can be con-
trolled. Such a phase modulation of the soliton translates into a net frequency
shift only when a soliton does not lie in the middle of its bit slot. Similar to
the case of synchronous phase modulation, the direction of the frequency shift
is such that the soliton is confined to the center of the bit slot.

Other nonlinear effects occurring in optical fibers can also be exploited for
controlling the soliton parameters. In one study, stimulated Raman scattering
was proposed for this purpose [79]. If a pump beam, modulated at the sig-
nal bit rate and up-shifted in frequency by the Raman shift (about 13 THz),
is copropagated with the soliton bit stream, it simultaneously provides gain
(through Raman amplification) and phase modulation (through XPM) to each
soliton. Such a technique results in both phase and intensity modulations of
the soliton stream and can reduce the timing jitter. Another approach makes
use of four-wave mixing (FWM) for soliton reshaping and for controlling the
soliton parameters [80].
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8.3.4 Experimental Results

The 1988 experiment that first demonstrated the possibility of soliton trans-
mission over long distances used a recirculating fiber loop whose loss was
compensated through distributed Raman amplification [3]. The main draw-
back from a practical standpoint was that the experiment used two color-center
lasers for generation and amplification of solitons. Diode-pumped, erbium-
doped fiber amplifiers (EDFAs) became available in 1989 and were used for
loss-managed solitons as lumped amplifiers almost immediately. Several 1990
experiments demonstrated soliton transmission over fiber lengths of about 100
km at bit rates of up to 5 Gb/s [81]–[83]. Input pulses in these experiments
were generated using gain-switched or mode-locked semiconductor lasers. A
LiNbO3 modulator was used to block pulses in time slots of 0 bits. The re-
sulting coded soliton bit stream was transmitted through several fiber sections.
The amplifier spacing was chosen to satisfy the criterion LA � LD and was
typically in the 25- to 40-km range. In a 1991 experiment, solitons were trans-
mitted over 1000 km at 10 Gb/s [84]. The use of 45-ps-wide solitons permitted
an amplifier spacing of 50 km in this experiment.

Since 1991, most soliton transmission experiments have used a recirculat-
ing fiber loop, similar to that shown in Fig. 7.15. In one experiment, 2.5-Gb/s
solitons were transmitted over 12 Mm using a 75-km fiber loop containing
three EDFAs, spaced apart by 25 km [85]. In this experiment, the bit rate–
distance product, BL = 30 (Tb/s)-km, was limited mainly by the timing jitter.
In a later experiment, the 2.5-Gb/s signal could be transmitted over 14 Mm
when fixed-frequency filters were placed inside the fiber loop [52]. Soon af-
terward, the use of sliding-frequency filters resulted in the transmission of a
5-Gb/s signal over 15 Mm [86]. Moreover, when the bit rate was doubled
using the WDM technique, the resulting 10-Gb/s signal could still be trans-
mitted over 11 Mm. In a 1993 experiment, timing-jitter reduction provided
by sliding-frequency filters permitted soliton transmission over 20 Mm at 10
Gb/s and over 13 Mm at 20 Gb/s in a two-channel experiment [87]. Further
improvements resulted in transmission of solitons over 35 Mm at 10 Gb/s and
over 24 Mm at 15 Gb/s [88].

Several experiments used modulators for controlling timing jitter. In a
1991 experiment, solitons at 10 Gb/s could be maintained over long distances
when a LiNbO3 modulator was used within the 510-km loop incorporating
EDFAs with 50-km spacing [89]. An experiment in 1993 indicated the possi-
bility of ultralong transmission distances (> 106 km) by combining filters and
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modulators [90]. Modulators also allow the use of a relatively large amplifier
spacing [91]. This property of modulators has been exploited to transmit a
20-Gb/s soliton train over 150 Mm with an amplifier spacing of 105 km [92].
In another experiment, a single synchronous modulator, inserted just after the
transmitter, allowed transmission of a 20-Gb/s signal over 3000 km [93], well
beyond the Gordon–Haus limit of 2300 km. In this experiment, the clock sig-
nal for modulator was the same as that used for the transmitter. In contrast,
when modulators are used along the transmission line, the clock signal must
be regenerated locally.

The use of soliton systems in the 1.3-µm wavelength region using semi-
conductor optical amplifiers is attractive for transmission distances � 1000 km
[94]–[96]. The motivation for such systems stems from the need to update
the existing terrestrial fiber links to bit rates 10 Gb/s and beyond. Standard
telecommunication fibers used in such preinstalled links have relatively high
dispersion in the 1.55-µm region (β 2 ��21 ps2/km), resulting in LD � 10 km
for 10-Gb/s soliton systems. Since the practical amplifier spacing exceeds
30 km, it is not possible to satisfy the condition LA � LD in the 1.55-µm wave-
length regime. However, if the operating wavelength is chosen near 1.3 µm,
LD exceeds 200 km and the condition LA � LD is easily satisfied. Alterna-
tively, one can use the technique of dispersion management, discussed next, to
lower the average GVD in the 1.55-µm region.

8.4 Dispersion-Managed Solitons

In the loss-managed soliton systems discussed so far, the GVD of the fiber is
assumed to remain constant along the entire fiber link. However, this need not
be the case. It turns out that soliton systems benefit considerably if the GVD
parameter β2 varies along the link length. This section is devoted to such
dispersion-managed solitons. We first consider dispersion-decreasing fibers
and then focus on dispersion maps that consist of multiple sections of constant-
dispersion fibers whose length and GVD are judiciously chosen.

8.4.1 Dispersion-Decreasing Fibers

An interesting scheme proposed in 1987 relaxes completely the restriction
LA � LD, normally imposed on loss-managed solitons, by decreasing the GVD
along the fiber length [97]. Such fibers are called dispersion-decreasing fibers
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(DDFs) because their GVD must decrease such that it accounts for the reduced
SPM experienced by solitons weakened from fiber losses.

Optimum Dispersion Profile

Since dispersion management is used in combination with loss management,
soliton evolution in a DDF is governed by Eq. (8.2.4) except that the second-
derivative term has a new parameter d that is a function of ξ because of GVD
variations along the fiber length. The modified NLS equation takes the form

i
∂v
∂ξ

+
1
2

d(ξ )
∂ 2v
∂τ2 + p(ξ )jvj2v = 0; (8.4.1)

where v = u=
p

p, d(ξ ) = β2(ξ )=β2(0), and p(ξ ) takes into account peak-
power variations introduced by loss management. The distance ξ is normal-
ized to the dispersion length, LD = T 2

0 =jβ2(0)j, defined using the GVD value
at the fiber input.

Because of the ξ dependence of the second and third terms, Eq. (8.4.1) is
not a standard NLS equation. However, it can be reduced to one if we introduce
a new propagation variable as

ξ 0

=

Z ξ

0
d(ξ )dξ : (8.4.2)

This transformation renormalizes the distance scale to the local value of GVD.
In terms of ξ 0, Eq. (8.4.1) becomes

i
∂v
∂ξ 0

+
1
2

∂ 2v
∂τ2 +

p(ξ )
d(ξ )

jvj2v = 0: (8.4.3)

If the GVD profile is chosen such that d(ξ ) = p(ξ )� exp(�Γξ ), this equation
becomes the standard NLS equation, and fiber losses have no effect on a soliton
in spite of its reduced energy. As a result, lumped amplifiers can be placed at
any distance and are not limited by the condition LA � LD.

The above analysis shows that fundamental solitons can be maintained in
a lossy fiber provided its GVD decreases exponentially as

jβ2(z)j = jβ2(0)jexp(�αz): (8.4.4)

This result can be understood qualitatively by noting that the soliton peak
power P0 decreases exponentially in a lossy fiber in exactly the same fash-
ion. Since the soliton order N is defined as N = γP0T 2

0 =jβ2j, the requirement
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N = 1 can be maintained, in spite of power losses, provided GVD decreases
exponentially as well. For such a dispersion profile, a fundamental soliton
keeps its shape and width constant even in a lossy fiber.

Fibers with a nearly exponential GVD profile have been fabricated [98].
A practical technique for making such DDFs consists of reducing the core
diameter along the fiber length in a controlled manner during the fiber-drawing
process. Variations in the fiber diameter change the waveguide contribution to
β2 and reduce its magnitude. Typically, GVD can be varied by a factor of 10
over a length of 20 to 40 km. The accuracy realized by the use of this technique
is estimated to be better than 0.1 ps2/km [99]. Propagation of solitons in DDFs
has been demonstrated in several experiments [99]–[101]. In a 40-km DDF,
solitons preserved their width and shape in spite of energy losses of more than
8 dB [100]. In a recirculating loop made using DDFs, a 6.5-ps soliton train at
10 Gb/s was transmitted over 300 km [101].

For long-haul links, DDFs can be cascaded periodically such that an am-
plifier placed at the end of each DDF restores the soliton energy to its value at
the beginning of the DDF. Such a link can be used at high bit rates since the
amplifier spacing LA is not restricted to be smaller than LD. However, the soli-
ton width at high bit rates (B > 10 Gb/s) decreases as T0 = (2q0B)�1, and T0
becomes smaller than 5 ps when B exceeds 20 Gb/s. Propagation of ultrashort
solitons through DDFs requires consideration of TOD and the Raman-induced
frequency shift. Using Eq. (8.2.15) with g = 0 and Eq. (8.4.2), we obtain

i
∂v
∂ξ 0

+
1
2

∂ 2v
∂τ2 + jvj2v = i

δ3

d
∂ 3v
∂τ3 +

τR

d
v

∂ jvj2

∂τ
; (8.4.5)

where δ3 = β3=(6jβ2(0)jT0) is the TOD parameter and τR = TR=T0 governs the
effects of intrapulse Raman scattering (TR � 5 fs).

Fibers with continuously varying GVD are not readily available. As an
alternative, the exponential GVD profile of a DDF can be approximated with
a staircase profile by splicing together several constant-dispersion fibers with
different β2 values. This approach was studied during the 1990s, and it was
found that most of the benefits of DDFs can be realized using as few as four
fiber segments [102]–[106]. How should one select the length and the GVD of
each fiber used for emulating a DDF? The answer is not obvious, and several
methods have been proposed. In one approach, power deviations are mini-
mized in each section [102]. In another approach, fibers of different GVD
values Dm and different lengths Lm are chosen such that the product DmLm
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is the same for each section. In a third approach, Dm and Lm are selected to
minimize shading of dispersive waves [103].

Timing Jitter

An important question is how the last two terms in Eq. (8.4.5) affect the timing
jitter of solitons [107]–[109]. Since the left side of this equation corresponds
to the standard NLS equation, we can apply soliton perturbation theory. Using
Eq. (8.3.1)–(8.3.4) with iε(u) given by the last two terms of Eq. (8.4.3), the
timing jitter is found to be approximately given by [108]

σ 2
DDF =

�
4
5

N5
Aτ2

Rd2
R +2N4

AτRδ3dRξA +
4
3

N3
Aδ 2

3 ξ 2
A

�
ξASη

+
1
3

N3
Ad2

GHξASδ +NAξASq; (8.4.6)

where Sη ;Sδ , and Sq are given in Eq. (8.3.12) and NA = LT=LA represents the
number of amplifiers. The parameters dGH and dR depend on the amplifier
spacing and are defined as

dGH = [1� exp(�ΓξA)]=Γ; (8.4.7)

dR =
8

15Γ2

�
1
2
� exp(�ΓξA)+ exp(�2ΓξA)

�
: (8.4.8)

In Eq. (8.4.6) the term with Sδ represents the Gordon–Haus jitter and is a
generalization of Eq. (8.3.16) for DDFs. The last term comes from the direct
effect of ASE on soliton position and is negligible in practice. The three terms
in parentheses have their origin in amplitude fluctuations. Both TOD and intra-
pulse Raman scattering convert amplitude fluctuations into timing jitter. The
origin of Raman-induced timing jitter can be understood as follows. Fluc-
tuations in the soliton amplitude produced by amplifier noise result in width
fluctuations since the two are inversely related for a soliton. Width fluctuations
are converted to frequency fluctuations by intrapulse Raman scattering, which
are in turn translated into position fluctuations by GVD. The Raman term
proportional to N 5

A in Eq. (8.4.6) generally dominates for solitons shorter than
5 ps. The TOD contribution to timing jitter becomes important if the minimum
dispersion of DDFs falls below 0.1 ps/(km-nm).

Figure 8.12 shows individual contributions of amplitude, frequency, and
position fluctuations, together with the total timing jitter, as a function of trans-
mission distance for soliton widths in the range of 1 to 40 ps by choosing



Dispersion-Managed Solitons 405

Figure 8.12 Relative contributions of frequency, amplitude, and position fluctuations
to the timing jitter in dispersion-decreasing fibers for several soliton widths. Total
timing jitter is shown by a solid line. (After Ref. [108])

β min
2 =�0:1 ps2/km and LA = 80 km. For Ts > 10 ps, timing jitter originates

mostly from frequency fluctuations (the Gordon–Haus jitter) since the contri-
butions of Raman and TOD effects are small for such relatively broad solitons.
When shorter solitons are used, the contribution of higher-order effects, espe-
cially the Raman effect, increases rapidly with transmission distance. For 3-ps
or shorter solitons, the contribution of amplitude fluctuations to the timing jitter
(mediated through the Raman effect) becomes so important that the total trans-
mission distance is limited to only a few hundred kilometers in the absence of
a soliton-control mechanism. For a transoceanic distance of 10,000 km, am-
plitude fluctuations dominate for soliton widths below 7 ps. For 1-ps solitons,
amplitude fluctuations totally dominate the timing jitter at all distances.

The increase in timing jitter brought by the Raman and TOD effects, and
a shorter bit slot at higher bit rates (10 ps at B = 100 Gb/s), make the con-
trol of timing jitter essential before such systems can become practical. Both
optical filters and modulators should help in reducing the timing jitter even
when DDFs are used. The phase-conjugation technique is also quite useful for
soliton systems [110]. Its use requires either parametric amplifiers in place of
EDFAs or the insertion of a nonlinear optical device before each amplifier that
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Figure 8.13 Effect of third-order dispersion on timing jitter in a DDF-based soliton
communication system making use of phase conjugation. Thick solid curve shows the
contribution of Gordon–Haus jitter. (After Ref. [7], c1997, reprinted by permission
of John Wiley & Sons)

changes the soliton amplitude from u to u� while preserving all other features
of the bit stream. Such a change is equivalent to inverting the soliton spectrum.
FWM inside an optical fiber, fabricated with suitable dispersion characteristics,
can be used for spectral inversion.

Timing jitter changes considerably when parametric amplifiers are used.
Following the procedure outlined above, it is found to be [109]

σ 2
OPC = (8NAτ2

Rd2
R +4N2

AτRdRδ3ξA +
4
3 N3

Aδ 2
3 ξ 2

A)ξASη

+
1
2NAd2

GHξASδ +NAξASq: (8.4.9)

This equation should be compared with Eq. (8.4.6). The Raman-induced jitter
increases only linearly with NA (compared with N5

A dependence) and is much
smaller when phase conjugation is used. Physically, the reason for jitter re-
duction is related to spectral inversion, which nearly cancels the effects of the
Raman-induced spectral shift over each pair of amplifiers.

Phase conjugation does not compensate for the timing jitter induced by
TOD. The effects of TOD are shown in Fig. 8.13 for 2-ps solitons. The dashed
horizontal line represents the tolerable value of timing jitter. For comparison,
the Gordon–Haus timing jitter alone is shown by the thick solid line. Other
curves correspond to different values of the TOD parameter. For β3 = 0:05
ps3/km—a typical value for dispersion-shifted fibers—transmission distance
is limited by TOD to below 1500 km. Considerable improvement occurs when
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β 3 is reduced. Transmission over 7500 km is possible for β3 = 0 (dotted
line). The distance can be increased further for slightly negative values of β3
(dot-dashed line). Such values of β3 are possible in fibers known as reverse-
dispersion (or negative-slope) fibers.

Collision-induced timing jitter can also be reduced considerably in DDF-
based soliton systems [111]. Even when the exponential GVD profile of a
DDF is approximated by several constant-GVD fibers, the system performance
improves as the number of fiber sections is increased. This feature is quite
useful for WDM soliton systems.

8.4.2 Periodic Dispersion Maps

A disadvantage of the DDF is that the average dispersion along the link is
often relatively large. Generally speaking, operation of a soliton system at
a wavelength where the average GVD is low should improve system perfor-
mance since it reduces the timing jitter as well as the Raman-induced spectral
shift. However, for constant-GVD fiber links, as the operating wavelength
approaches the zero-dispersion wavelength, several factors affect the system
performance considerably [112]. For example, the TOD can induce severe
pulse distortion through shading of dispersive waves when jβ2j< 0:1 ps2/km.
Moreover, as discussed in Section 7.6, FWM leads to considerable crosstalk
when GVD is low. Dispersion maps consisting of alternating-GVD fibers pro-
vide a solution to these problems since their use lowers the average GVD of
the entire link while keeping the GVD of each section large enough that the
FWM and TOD effects remain negligible.

The use of dispersion management forces each soliton to propagate in the
normal-dispersion regime of a fiber during each map period. At first sight,
such a scheme should not even work, since normal-GVD fibers do not support
bright solitons and lead to considerable broadening and chirping of the pulse.
So, why should solitons survive in a dispersion-managed fiber link? A consid-
erable theoretical effort devoted to this issue since 1996 has yielded an answer
with a few surprises [113]–[173]. Physically speaking, if the map period is a
fraction of the nonlinear length, the nonlinear effects are relatively small and
the pulse evolves in a linear fashion over one map period. On a longer length
scale, solitons can still form if the SPM effects are balanced by the average
dispersion. As a result, solitons can survive in an average sense, even though
not only the peak power but also the width and shape of such solitons oscil-
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late periodically. This section describes the properties of dispersion-managed
(DM) solitons and the advantages offered by them.

Soliton Characteristics

We focus on a simple dispersion map consisting of two fibers with positive
and negative values of the GVD parameter β 2. Soliton evolution is governed
by same equation (8.4.1) used earlier for DDFs. However, we need to scale
ξ and τ differently since the pulse width and GVD both vary with ξ . One
possibility is to use the minimum width Tmin of the soliton occurring in the
anomalous-GVD section for scaling so that

τ = T=Tmin; ξ = z=LD = zjβ2aj=T 2
min; (8.4.10)

where β2a is the value of β 2 in the anomalous-GVD section of length la. With
this normalization, d = 1 in that section but has a negative value (d = β2n=β 2a)
in the normal-GVD section of length ln. The section lengths la and ln are ar-
bitrary. The map period Lmap = la + ln can also be different than the amplifier
spacing LA. Clearly, the properties of DM solitons depend on three map pa-
rameters even when only two types of fibers are used in each map period.

Equation (8.4.1) can be solved numerically using the split-step Fourier
method. Numerical simulations show that a nearly periodic solution can often
be found by adjusting input pulse parameters (width, chirp, and peak power)
even though these parameters vary considerably in each map period. The shape
of such DM solitons is typically closer to a Gaussian profile than the “sech”
shape associated with standard solitons [114]–[116]. This surprising feature
can be understood from the theory of mode-locked lasers by noting that a peri-
odically amplified fiber link is similar to a laser cavity as far as pulse evolution
is concerned. More specifically, SPM-induced frequency chirping is equiva-
lent to periodic frequency modulation (FM), resulting in FM mode locking. It
is well known that such lasers produce Gaussian pulses [174].

Numerical solutions, although essential, do not lead to much physical in-
sight. Several techniques have been used to solve the NLS equation (8.4.1)
approximately. A common approach makes use of the variational method
[117]–[125]. Another approach expands v(ξ ;τ) in terms of a complete set
of the Hermite–Gauss functions that are solutions of the linear problem [126]–
[130]. A third approach solves an integral equation, derived in the spectral
domain using perturbation theory [131]–[133]. To simplify the following dis-
cussion, we focus on the variational method. The Lagrangian corresponding
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to the NLS equation (8.4.1) is obtained from Eq. (8.2.16) after multiplying the
time-derivative term with d(ξ ). Since the shape of the DM soliton is close to
Gaussian, the soliton is assumed to evolve as

v(ξ ;τ) = a exp[�(1+ iC)τ2
=2b2

+ iφ ]; (8.4.11)

where a is the amplitude, b is the width, C is the chirp, and φ is the phase of
the soliton. All four parameters vary with ξ because of perturbations produced
by d(ξ ) and p(ξ ).

Using the variational method, we can obtain four ordinary differential
equations for the four soliton parameters. The amplitude equation can be elim-
inated since a2b is independent of ξ with a constant value related to pulse en-
ergy. The phase equation can also be dropped since b and C do not depend on
φ . The DM soliton then corresponds to a periodic solution of the following
two equations:

db
dξ

= �d(ξ )
C
b
; (8.4.12)

dC
dξ

=
p(ξ )
p

2b
� (1+C2

)
d(ξ )

b2 : (8.4.13)

These equations should be solved with the periodic boundary conditions

b(0) = b(ξmap); C(0) =C(ξmap) (8.4.14)

to ensure that the soliton recovers its initial state after each map period ξmap =

Lmap=LD. The periodic boundary conditions fix the values of the initial width
b0 and the chirp C0 at ξ = 0 for which a soliton can propagate in a periodic
fashion in spite of dispersion management. The choice of origin where ξ = 0
is arbitrary. It is useful to choose it at the location where the pulse width is
minimum in the anomalous-GVD section since b0 = 1 and C0 = 0 at that point.
The amplitude a0 is found by solving Eqs. (8.4.12)–(8.4.14) and determines the
peak power of the input pulse required to excite the DM soliton.

Consider first the ideal case of lossless fibers so that p(ξ ) = 1 in Eq.
(8.4.13). This case occurs in practice when distributed amplification is used
so that fiber losses are nearly compensated by the local gain all along the fiber,
resulting in p(ξ ) � 1. Figure 8.14(a) shows an example of the periodic solu-
tion by plotting variations of b and C over one map period. The dispersion map
in this case has d =�1 in the normal-GVD section with ln < la so that the av-
erage GVD is in the anomalous region for the entire link. The results obtained
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Figure 8.14 (a) Variations of the pulse width b and chirp C over one map period. The
results of variational analysis (solid lines) are compared with numerics (triangles and
diamonds) for the same map. (b) Variations of the pulse shape. (After Ref. [125],
c1998, reprinted with permission from Elsevier Science)

by solving Eq. (8.4.1) numerically are also shown for comparison. An example
of variations in the pulse shape is shown in Fig. 8.14(b). Both pulse width and
peak power vary rapidly in each map period. The pulse width becomes min-
imum at the center of each fiber where frequency chirp vanishes. However,
the shortest pulse occurs in the middle of the anomalous-GVD section. Sur-
prisingly, the spectral width of the pulse is smaller in the normal-GVD region.
The DM soliton seen in Fig. 8.14 is quite different than a standard fundamental
soliton since it does not maintain its shape, width, or peak power. Neverthe-
less, its parameters repeat from period to period at any location within the map.
For this reason, DM solitons can be used for optical communications in spite
of oscillations in the pulse width. Moreover, such solitons perform better from
a system standpoint.

One can find periodic solutions of Eqs. (8.4.12)–(8.4.14) for a wide variety
of dispersion maps as long as the input peak power is properly chosen. To see
how the peak power depends on the map parameters, it is useful to present the
results using two dimensionless parameters defined as [121]

d̄ =
β2nln +β2ala
β2a(ln + la)

; S =
β2nln�β2ala

T 2
FWHM

; (8.4.15)

where TFWHM � 1:76T0 is the FWHM of the soliton at the location where pulse
width is minimum in the anomalous-GVD section. Physically, d̄ = β̄2=β2a is
related to the average GVD of the fiber link, while the map strength S is a
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Map strength,

Figure 8.15 Peak power of DM solitons as a function of map strength S for several
values of d̄. The thick solid line in the middle corresponds to d̄ = 0. Solid curves
on the left have average anomalous GVD ( d̄ = 0:01, 0.05, 0.1, 0.2, 0.3, and 0.5).
Dashed curves on the right have average normal GVD ( d̄ = �0:001;�0:005;�0:01,
and �0:02). The soliton energy is constant along the dotted line. (After Ref. [121])

measure of how much GVD varies between two fibers in each map period.
We can also define the normalized peak power of the soliton at the input as
ps = Ps=P0, where P0 = (γLD)

�1 is the peak power required when the entire
link consists of only anomalous-GVD fiber. Notice, however, that the peak
power required to launch the soliton in a fiber with average GVD is smaller by
a factor of jβ2a=β̄2j.

Figure 8.15 shows the peak power ps as a function of map strength S for
several values of d̄ obtained by solving Eqs. (8.4.12)–(8.4.14). In the region
marked “higher-order solitons,” la is longer than the soliton period. The thick
solid line in the middle corresponds to d̄ = 0. A surprising result is that DM
solitons can exist even when the average GVD is normal (dashed curves) pro-
vided the map strength exceeds a critical value Scr. Moreover, for values of
S> S cr and d̄ < 0, there are two possible values of ps for which a periodic solu-
tion exists. Numerical solutions of Eqs. (8.4.1) confirm these predictions [121]
but the critical value of the map strength is found to be only 3.9 instead of 4.8.

The existence of DM solitons in maps with normal average GVD is quite
intriguing [136]–[140] as one can envisage dispersion maps in which a soli-
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ton propagates in the normal-GVD regime most of the time. An example
is provided by a dispersion map in which a short section of standard fiber
(β2a � �20 ps2/km) is used with a long section of dispersion-shifted fiber
(β2n � 1 ps2/km) such that β̄2 is close to zero but positive. How can one un-
derstand the formation of DM solitons under such conditions? The answer is
provided by the observation that the effect of GVD on a pulse depends not only
on the GVD parameter β2 but also on the temporal and spectral widths of the
pulse. As seen in Fig. 8.14, the temporal width of the DM soliton does not vary
in the same fashion in the two sections and becomes shorter in the anomalous-
GVD section. Similarly, because of chirping, spectral width is considerably
larger in the anomalous-GVD section compared with the normal-GVD sec-
tion. Noting that the phase shift imposed on each spectral component varies as
β2ω2 locally, we can define an effective value of the average GVD as [140]

β̄ eff
2 = hβ2Ω2i=hΩ2i; (8.4.16)

where Ω is the local value of the spectral width and averaging is over the
dispersion map. If β̄ eff

2 is negative, the DM soliton can exist even if β̄2 is
positive.

The situation changes somewhat when lumped amplifiers are used so that
p(ξ ) 6= 1 in Eq. (8.4.13). The main difference is that the location where pulse
has minimum width and zero chirp is no longer in the middle of each fiber sec-
tion. Physically, this occurs because gain–loss variations over each map period
break the symmetry around the midpoint [141]. From a practical standpoint,
one needs to know either the exact location of the chirp-free points within the
map or the amount of chirp at the end of each fiber section so that the input
pulse can be prechirped appropriately. The periodic solution of Eqs. (8.4.12)–
(8.4.14) provides this information readily. If amplifier spacing is much smaller
than the map period so that LA � L map, the chirp-free point is nearly in the
middle of each section since gain–loss variations are averaged out. In that
case, the results shown in Fig. 8.15 hold approximately.

This simple variational analysis only provides an approximate solution
since it assumes a Gaussian pulse shape at every point within the dispersion
map. Numerical results show that both the pulse shape and spectrum develop
oscillatory tails in the wings. Figure 8.16 shows an example of such low-
intensity oscillations for a map with zero average dispersion, formed using
two sections of equal lengths (d = �1). It is not easy to find truly periodic
solutions of Eq. (8.4.1) since one does not know the pulse shape a priori. If a
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(a) (b)

Figure 8.16 (a) Shapes and (b) spectra of a DM soliton in the middle of fiber sections
with anomalous (solid line) and normal (dotted line) GVD. The dashed curve occurs
at the junction of two sections. (After Ref. [169], c2000 IEEE)

Gaussian pulse is launched with input parameters predicted by the variational
analysis, the numerical solution often exhibits secondary quasi-periodic oscil-
lations with a long period (� 100 Lmap). An averaging method was used for
Fig. 8.16 that forced convergence toward the DM soliton that repeated pre-
cisely after each map period.

For map strengths below the critical value (about 3.9 numerically), the
average GVD is anomalous for DM solitons. In that case, we are tempted to
compare them with standard solitons forming in a uniform-GVD fiber link with
the value β̄2. For relatively small values of S, variations in the pulse width and
chirp are small enough that we can ignore them. The main difference between
the average-GVD and DM solitons then stems from the higher peak power
required to sustain DM solitons. The power or energy enhancement factor for
a DM soliton can be defined as [113]

fDM = Ps=Pav = ps(β2a=β̄2); (8.4.17)

where Pav is the peak power for average-GVD solitons and ps = a2
0 is the nor-

malized peak power shown in Fig. 8.15. The larger energy of DM solitons ben-
efits a soliton-based lightwave system in several ways. Among other things, it
improves the SNR, reduces soliton interaction, and decreases the timing jitter.

Timing Jitter

The timing jitter issue has attracted considerable attention because of its practi-
cal importance [142]–[156]. One can extend the approach of Section 8.3 to the
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case of DM solitons for calculating the ASE-induced timing jitter although the
analysis in general is complicated [147]. The physical origin of timing-jitter
reduction can be understood from Eq. (8.3.16), applicable for weak dispersion
maps with anomalous β̄2. Noting that Nph is proportional to the soliton energy,
one can expect reduction roughly by the same factor fDM by which the en-
ergy of a DM soliton is enhanced. Of course, this argument is over simplified.
In real systems, timing jitter depends on the relative location of the amplifier
within the dispersion map and can be optimized by adjusting it [146].

A general theory of timing jitter for DM systems, applicable for both RZ
and NRZ formats, has been developed [153]. Figure 8.17 shows the timing
jitter (solid line) for a soliton system using two dispersion maps consisting of
two 100-km fiber sections with GVD of �3 and 2.8 ps2/km (a) and �3:75 and
3.55 ps2/km (b). For TFWHM = 20 ps, the map strength S is 1.45 and 1.825 in
the two cases. Lumped amplifiers are placed every 50 km to offset the 0.21-
dB/km fiber losses. The dot-dashed line is the prediction of Eq. (8.3.17) with
β2 replaced by the average value β̄2. The dotted line is obtained by reducing
this value by the energy enhancement factor fDM. Circles are obtained by
solving Eq. (8.4.1) with ASE noise included. Clearly, dispersion management
reduces timing jitter considerably compared with the value expected on the
basis of average dispersion. For a 10-Gb/s system with 100-ps bit slot, jitter
can be reduced to a 5-ps level without using optical filters or modulators. It
can be reduced to below 1 ps at 10,000 km by reducing the average dispersion
close to zero. The physical origin of jitter reduction is related to the chirped
nature of a DM soliton.

Interaction between neighboring solitons also affects the timing jitter. It is
easy to conclude that soliton interaction in DM systems is likely to be enhanced
since the pulse width oscillates periodically and can become quite large in the
normal-GVD section for strong maps. This is indeed found to be the case
[147]–[149]. However, a DM soliton represents a chirped pulse (in contrast
with conventional solitons), and chirping affects the interaction process con-
siderably. It turns out that the interaction is nearly independent of the relative
phase between two DM solitons. Soliton interaction also depends on the lo-
cation of amplifiers within the dispersion map and can be reduced by placing
them at appropriate locations [147]. For short DM solitons, one should also
consider the Raman-induced frequency shift, which is reduced considerably
for DM solitons [152].
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Figure 8.17 Growth of timing jitter with distance (solid line) for 10-Gb/s DM soliton
systems using two different dispersion maps. Inset shows the DM soliton shape on
a log scale. The dot-dashed and dotted lines represent two different approximations
to timing jitter while the circles show the results of numerical simulations. (After
Ref. [153], c1999 IEEE)

Experimental Results

Dispersion-management schemes were used for solitons as early as 1992 al-
though they were referred to by names such as partial soliton communica-
tion [175] and dispersion allocation [176]. In the simplest form of disper-
sion management, a relatively short segment of dispersion-compensating fiber
(DCF) is added periodically to the transmission fiber, resulting in dispersion
maps similar to those used for nonsoliton systems (see Section 7.1). It was
found in a 1995 experiment that the use of DCFs reduced the timing jitter con-
siderably [177]. In fact, in this 20-Gb/s experiment, the timing jitter became
low enough when the average dispersion over each fiber segment was reduced
to a value near �0:025 ps2/km that the 20-Gb/s signal could be transmitted
over transoceanic distances.

Since 1996, a large number of experiments have shown the benefits of DM
solitons for lightwave systems [178]–[191]. In one experiment, the use of a
periodic dispersion map enabled transmission of a 20-Gb/s soliton bit stream
over 5520 km of a fiber link containing amplifiers at 40-km intervals [178].
In another 20-Gb/s experiment [179], solitons were transmitted over 9000 km
without using any in-line optical filters since the periodic use of DCFs reduced
the timing jitter by more than a factor of 3. A 1997 experiment focused on
transmission of DM solitons using dispersion maps such that solitons propa-
gated most of the time in the normal-GVD regime [180]. This 10-Gb/s experi-
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ment transmitted signals over 28 Mm using a recirculating fiber loop consisting
of 100 km of normal-GVD fiber and 8-km of anomalous-GVD fiber such that
the average GVD was anomalous (about �0:1 ps2/km). Periodic variations in
the pulse width were also observed in such a fiber loop [181]. In a later experi-
ment, the loop was modified to yield the average-GVD value of zero or slightly
positive [182]. Stable transmission of 10-Gb/s solitons over 28 Mm was still
observed. In all cases, experimental results were in excellent agreement with
numerical simulations [183].

The use of dispersion management for fiber links consisting of mostly stan-
dard telecommunication fiber is of practical importance since it allows up-
grading of existing fiber-optic networks [184]–[187]. A 1997 experiment used
fiber gratings for dispersion compensation and realized 10-Gb/s soliton trans-
mission over 1000 km. By 1999, 10-Gb/s DM solitons were transmitted over
16 Mm of standard fiber, reducing soliton interaction by choosing the location
of amplifiers appropriately [185]. Nearly periodic propagation of DM soli-
tons has also been observed using a recirculating fiber loop [186] consisting
of 102 km of standard fiber with anomalous GVD (β 2 � �21 ps2/km) and
17.3 km of DCF with normal GVD (β2 � 160 ps2/km). The map strength S
was quite large in this experiment when 30-ps (FWHM) pulses were launched
into the loop. Pulses were prechirped using the results of variational analy-
sis as discussed above. A similar experiment was used to transmit 20-Gb/s
solitons over 1100 km [187]. Experimental results were found to be in good
agreement with DM-soliton theory.

Transmission of soliton systems at bit rates beyond 40 Gb/s or more is of
considerable practical interest. Numerical simulations show the possibility of
transmitting 40-Gb/s DM solitons over 2000 km of standard fiber with an ap-
propriate dispersion map [188]. Longer distances are feasible using dispersion-
shifted fibers and a weaker dispersion map. In a 1998 experiment, 40-Gb/s
solitons were transmitted over 8600 km using a 140-km-long fiber loop with an
average dispersion of only �0:03 ps2/km [189]. Except for a 5-nm-bandwidth
fixed-frequency filter, nothing was used inside the loop to control the timing
jitter of solitons. Interaction between solitons may become an important factor
at such high bit rates. It can be reduced by alternating the polarization of neigh-
boring bits [190]. Indeed, the use of this technique permitted transmission of
40-Gb/s solitons over more than 10 Mm [191].

Higher-order effects such as TOD and the intrapulse Raman scattering
become quite important at high bit rates and must be included [192]–[194].
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Numerical simulations show that 80-Gb/s solitons can propagate stably over
9000 km in the presence of higher-order effects if (i) TOD is compensated
within the map, (ii) optical filters are used to reduce soliton interaction, timing
jitter, and the Raman-induced frequency shift, and (iii) the map period Lmap is
reduced to a fraction of amplifier spacing [192]. The bit rate can even be in-
creased to 160 Gb/s by controlling the GVD slope and PMD, but the distance
is limited to about 2000 km [193]. In practice, high-capacity soliton systems
are designed using the WDM technique.

8.5 WDM Soliton Systems

As discussed in Chapter 7, the capacity of a lightwave system can be increased
considerably by using the WDM technique. A WDM soliton system transmits
over the same fiber several soliton bit streams, distinguishable through their
different carrier frequencies. In this section we focus on several issues involved
in the design of WDM soliton systems [195].

8.5.1 Interchannel Collisions

A new feature that becomes important for WDM systems is the possibility
of collisions among solitons belonging to different channels because of their
different group velocities. To understand the importance of such collisions,
we use Eq. (8.4.3) since it includes the effects of both loss and dispersion
variations. Dropping prime over ξ for notational convenience, we obtain

i
∂v
∂ξ

+
1
2

∂ 2v
∂τ2 +b(ξ )jvj2v = 0; (8.5.1)

where b(ξ ) = p(ξ )=d(ξ ). The functional form of b(ξ ) depends on the details
of the loss- and dispersion-management schemes.

The effects of interchannel collisions on the performance of WDM systems
can be best understood by considering the simplest case of two WDM channels
separated by fch. In normalized units, solitons are separated in frequency by
Ωch = 2π fchT0. Replacing v by u1 +u2 in Eq. (8.5.1) and neglecting the FWM
terms, solitons in each channel evolve according to the following two coupled
equations [196]:

i
∂u1

∂ξ
+

1
2

∂ 2u1

∂τ2 +b(ξ )(ju1j
2
+2ju2j

2
)u1 = 0; (8.5.2)
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i
∂u2

∂ξ
+

1
2

∂ 2u2

∂τ2 +b(ξ )(ju2j
2
+2ju1j

2
)u2 = 0: (8.5.3)

These equations appear identical with the coupled NLS equations obtained
in Chapter A.7 for two copropagating pulses interacting through cross-phase
modulation (XPM). Note, however, that the two solitons in the WDM case are
propagating at different speeds because of their different frequencies. As a
result, the XPM term is important only when solitons belonging to different
channels overlap temporally during a collision.

It is useful to define the collision length Lcoll as the distance over which
two solitons interact (overlap) before separating. It is difficult to precisely de-
termine the instant at which a collision begins or ends. A common convention
uses 2T s for the duration of the collision, assuming that a collision begins and
ends when the two solitons overlap at their half-power points [196]. Since the
relative speed of two solitons is ∆V = (jβ2jΩch=T0)

�1, the collision length is
given by Lcoll = (∆V )(2Ts) or

Lcoll =
2TsT0

jβ2jΩch
�

0:28
q0jβ2jB fch

; (8.5.4)

where the relations Ts = 1:763T0 and B=(2q0T0)
�1 were used. As an example,

for B = 10 Gb/s, q0 = 5, and β2 =�0:5 ps2/km, Lcoll � 100 km for a channel
spacing of 100 GHz but reduces to below 10 km when channels are separated
by more than 1 THz.

Since XPM induces a time-dependent phase shift on each soliton, it leads
to a shift in soliton frequency during a collision. The perturbation theory of
Section 8.3.1 is often used to calculate this frequency shift. At first sight, this
approach appears unsound since the XPM term is comparable in magnitude
to the SPM term in Eq. (8.5.2). However, the relative phase of two solitons
changes many times over the pulse width, resulting in a weak interaction on
average. As a result, the XPM term can be treated as a small perturbation.

We use Eq. (8.1.4) for both u1 and u2 and assume that two solitons are
identical before they collide. With η = 1 and q = 0, u1 and u2 are given by

um(ξ ;τ) = sech(τ +δmξ )exp[�iδmτ + i(1�δ 2
m)ξ=2+ iφm]; (8.5.5)

where δm =� 1
2Ωch for m = 1 and 2 because of different channel frequencies.

Using ε(u) = 2ibju2j
2u1 (the XPM term), Eq. (8.3.2) becomes

dδ1

dξ
= b(ξ )

Z ∞

�∞

∂ ju1j
2

∂τ
ju2j

2 dτ : (8.5.6)
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The equation for δ2 is obtained by interchanging the subscripts 1 and 2. Noting
from Eq. (8.5.5) that

∂ ju1j
2

∂τ
=

1
δ1

∂ ju1j
2

∂ξ
; (8.5.7)

and using δm =� 1
2Ωch in Eq. (8.5.6), the collision-induced frequency shift for

the slower moving soliton is governed by [196]

dδ1

dξ
=

b(ξ )
Ωch

d
dξ

�Z ∞

�∞
sech2

(τ�Ωchξ=2)sech2
(τ +Ωchξ=2)dτ

�
: (8.5.8)

The change in δ2 occurs by the same amount but in the opposite direction. The
integral over τ can performed analytically to obtain

dδ1

dZ
=

4b(Z)
Ωch

d
dZ

�
Z coshZ� sinhZ

sinh3 Z

�
; (8.5.9)

where Z = Ωchξ . This equation provides changes in soliton frequency during
interchannel collisions under quite general conditions.

Consider first the ideal case of constant-dispersion lossless fibers so that
b = 1 in Eq. (8.5.9). In that case, integration in Eq. (8.5.9) is trivial, and the
frequency shift is given by

∆δ1(Z) = 4(Z coshZ� sinhZ)=(Ωch sinh3 Z): (8.5.10)

Figure 8.18 shows how the soliton frequency changes for the slower-moving
soliton during the collision of two 50-ps solitons with a channel spacing of
75 GHz. The frequency shifts up over one collision length as two solitons
approach each other, reaches a peak value of about 0.6 GHz at the point of
maximum overlap, and then decreases back to zero as the two solitons separate.
The maximum frequency shift depends on the channel spacing. It occurs at Z =

0 in Eq. (8.5.10) and is found to be 4=(3Ωch). In physical units, the maximum
frequency shift becomes

∆ fmax = (3π2T 2
0 fch)

�1
: (8.5.11)

Since the velocity of a soliton changes with its frequency, collisions speed
up or slow down a soliton, depending on whether its frequency increases or
decreases. At the end of the collision, each soliton recovers the frequency and
speed it had before the collision, but its position within the bit slot changes.
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(a) (b)

Figure 8.18 (a) Frequency shift during collision of two 50-ps solitons with 75-GHz
channel spacing in a lossless fiber. (b) Residual frequency shift after a collision be-
cause of lumped amplifiers (LA = 20 and 40 km for lower and upper curves, respec-
tively). Numerical results are shown by solid dots. (After Ref. [196], c1991 IEEE)

The temporal shift can be calculated by integrating Eq. (8.3.3). In physical
units, it is given by

∆t =�T0

Z ∞

�∞
∆δ1(ξ ) dξ =

4T0

Ω2
ch

=
1

π2T0 f 2
ch

: (8.5.12)

If all bit slots were occupied, such collision-induced temporal shifts would be
of no consequence since all solitons of a channel would be shifted by the same
amount. However, 1 and 0 bits occur randomly in real bit streams. Since dif-
ferent solitons of a channel shift by different amounts, interchannel collisions
induce some timing jitter even in lossless fibers.

8.5.2 Effect of Lumped Amplification

The situation is worse in loss-managed soliton systems in which fiber loss is
compensated periodically through lumped amplifiers. The reason is that soli-
ton collisions are affected adversely by variations in soliton energy. Physically,
large energy variations occurring over a collision length destroy the symmet-
ric nature of the collision. Mathematically, the ξ dependence of b(ξ ) in Eq.
(8.5.8) changes the frequency shift. As a result, solitons do not recover their
original frequency and velocity after the collision is over. Equation (8.5.9) can
be used to calculate the residual frequency shift for a given form of b(ξ ). Fig-
ure 8.18(b) shows the residual shift as a function of the ratio Lcoll=Lpert, where
Lpert is equal to the amplifier spacing LA [196]. Numerical simulations (circles)
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agree with the prediction of Eq. (8.5.9). The residual frequency shift increases
rapidly as Lcoll approaches LA and can become � 0:1 GHz. Such shifts are
not acceptable in practice since they accumulate over multiple collisions and
produce velocity changes large enough to move the soliton out of the bit slot.

When Lcoll is large enough that a collision lasts over several amplifier
spacings, effects of gain–loss variations begin to average out and the resid-
ual frequency shift decreases. As seen in Fig. 8.18, it virtually vanishes for
Lcoll > 2LA (safe region). Since Lcoll is inversely related to the channel spac-
ing Ωch, this condition sets a limit on the maximum separation between the
two outermost channels of a WDM system. The shortest collision length is
obtained by replacing Ωch in Eq. (8.5.4) with NchΩch. Using Lcoll > 2LA, the
number of WDM channels is limited to

Nch <
TsLD

T0ΩchLA
: (8.5.13)

One may think that the number of channels can be increased by reducing
Ωch. However, its minimum value is limited to about Ωch = 5∆ωs, where ∆ωs is
the spectral width (FWHM) of solitons, because of interchannel crosstalk [197].
Using this condition in Eq. (8.5.13), the number of WDM channels is limited
such that Nch < LD=3LA. Using LD = T 2

0 =jβ2j and B = (2q0T0)
�1, this condi-

tion can be written as a simple design rule:

NchB2LA < (12q2
0jβ2j)

�1
: (8.5.14)

For the typical values q0 = 5, jβ2j= 0:8 ps2/km, and LA = 40 km, the condition
becomes B

p
Nch < 10 Gb/s. The number of channels can be as large as 16 at

a relatively low bit rate of 2.5 Gb/s but only a single channel is allowed at
10 Gb/s. Clearly, interchannel collisions limit the usefulness of the WDM
technique severely.

8.5.3 Timing Jitter

In addition to the sources of timing jitter discussed in Section 8.3.2 for a single
isolated channel, several other sources of jitter become important for WDM
systems [198]–[203]. First, each interchannel collision generates a temporal
shift [see Eq. (8.5.12)] of the same magnitude for both solitons but in opposite
directions. Even though the temporal shift scales as Ω�2

ch and decreases rapidly
with increasing Ωch, the number of collisions increases linearly with Ωch. As a
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result, the total time shift scales as Ω�1
ch . Second, the number of collisions that

two neighboring solitons in a given channel undergo is slightly different. This
difference arises because adjacent solitons in a given channel interact with two
different bit groups, shifted by one bit period. Since 1 and 0 bits occur in a
random fashion, different solitons of the same channel are shifted by different
amounts. This source of timing jitter is unique to WDM systems because of
its dependence on the bit patterns of neighboring channels [201]. Third, col-
lisions involving more than two solitons can occur and should be considered.
In the limit of a large channel spacing (negligible overlap of soliton spectra),
multisoliton interactions are well described by pairwise collisions [200].

Two other mechanisms of timing jitter should be considered for realistic
WDM systems. As discussed earlier, energy variations due to gain–loss cycles
make collisions asymmetric when Lcoll becomes shorter than or comparable
to the amplifier spacing LA. Asymmetric collisions leave residual frequency
shifts that affect a soliton all along the fiber link because of a change in its
group velocity. This mechanism can be made ineffective by ensuring that Lcoll
exceeds 2LA. The second mechanism produces a residual frequency shift when
solitons from different channels overlap at the input of the transmission link,
resulting in an incomplete collision [198]. This situation occurs in all WDM
solitons for some bits. For instance, two solitons overlapping completely at
the input end of a fiber link will acquire a net frequency shift of 4=(3Ωch)

since the first half of the collision is absent. Such residual frequency shifts are
generated only over the first few amplification stages but pertain over the whole
transmission length and become an important source of timing jitter [199].

Similar to the case of single-channel systems, sliding-frequency filters can
reduce timing jitter in WDM systems [204]–[208]. Typically, Fabry–Perot fil-
ters are used since their periodic transmission windows allow a filtering of all
channels simultaneously. For best operation, the mirror reflectivities are kept
low (below 25%) to reduce the finesse. Such low-contrast filters remove less
energy from solitons but are as effective as filters with higher contrast. Their
use allows channel spacing to be as little as five times the spectral width of
the solitons [208]. The physical mechanism remains the same as for single-
channel systems (see Section 8.3.3). More specifically, collision-induced fre-
quency shifts are reduced because the filter forces the soliton frequency to
move toward its transmission peak. The net result is that filters reduce the tim-
ing jitter considerably even for WDM systems [205]. Filtering can also relax
the condition in Eq. (8.5.13), allowing Lcoll to approach LA, and thus helps to
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increase the number of channels in a WDM system [207].
The technique of synchronous modulation can also be applied to WDM

systems for controlling timing jitter [209]. In a 1996 experiment involving four
channels, each operating at 10 Gb/s, transmission over transoceanic distances
was achieved by using modulators every 500 km [210]. When modulators
were inserted every 250 km, three channels, each operating at 20 Gb/s, could
be transmitted over transoceanic distances [114]. The main disadvantage of
modulators is that demultiplexing of individual channels is necessary.

8.5.4 Dispersion Management

As discussed in Section 7.5, FWM is the most limiting factor for WDM sys-
tems when GVD is kept constant along the fiber link. The FWM problem
virtually disappears when the dispersion-management technique is used. In
fact, dispersion management is essential if a WDM soliton system is designed
to transmit more than two or three channels. Starting in 1996, dispersion man-
agement was used for WDM soliton systems almost exclusively.

Dispersion-Decreasing Fibers

It is intuitively clear that DDFs with a continuously varying GVD profile
should help a WDM system. We can use Eq. (8.5.1) for finding the optimum
GVD profile. By tailoring the fiber dispersion as p(ξ ) = exp(�Γξ )—the same
exponential profile encountered in Section 8.4.1—the parameter b becomes 1
all along the fiber link, resulting in an unperturbed NLS equation. As a result,
soliton collisions become symmetric despite fiber losses, irrespective of the
ratio Lcoll=LA. Consequently, no residual frequency shifts occur after a soli-
ton collision for WDM systems making use of DDFs with an exponentially
decreasing GVD.

Lumped amplifiers introduce a new mechanism of FWM in WDM systems.
As discussed earlier, soliton energy varies in a periodic fashion because of
the loss–amplification cycle. Such periodic variations in the peak power of
solitons create a nonlinear-index grating that can nearly phase-match the FWM
process [212]. The phase-matching condition can be written as (see Section
4.4.2)

jβ2j(Ωch=T0)
2
= 2πm=LA; (8.5.15)

where m is an integer and the amplifier spacing LA is the period of the index
grating. As a result of such phase matching, a few percent of soliton energy can
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Figure 8.19 Fraction of soliton energy in an FWM sideband during a single collision
when the exponential GVD profile is approximated by a staircase with two, three, and
four steps. The case of constant-dispersion fibers is shown for comparison. (After
Ref. [212])

be transferred to the FWM sidebands even when GVD is relatively large [212].
Moreover, FWM occurring during simultaneous collision of three solitons
leads to permanent frequency shifts for the slowest- and fastest-moving soli-
tons together with an energy exchange among all three channels [213].

FWM phase-matched by the nonlinear-index grating can also be avoided
by using DDFs with an exponential GVD profile. The reason is related to the
symmetric nature of soliton collisions in such systems. When collisions are
symmetric, energy transferred to the FWM sidebands during the first half of a
collision is returned back to the soliton during the second half of the same col-
lision. Thus, the spectral sidebands generated through FWM do not grow with
propagation of solitons. In practice, the staircase approximation for the expo-
nential profile is used, employing multiple constant-dispersion fibers between
two amplifiers.

Figure 8.19 shows the residual energy remaining in a FWM sideband as
a function of amplifier length LA when the exponential GVD profile is ap-
proximated using m = 2, 3, and 4 fiber sections chosen such that the product
DmLm is the same for all m [212]. Here Dm is the dispersion parameter in the
mth section of length Lm. The case of constant-dispersion fibers is also shown
for comparison. The average dispersion is 0.5 ps/(km-nm) in all cases. The
double-peak nature of the curve in this case is due to the phase-matching con-
dition in Eq. (8.5.15), which can be satisfied for different values of the integer
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m since a peak occurs whenever LA = 2πmLD=Ω2
ch. Numerical simulations

consider 20-ps solitons in two channels, spaced 75 GHz apart. Clearly, FWM
can be nearly suppressed, with as few as three fiber sections, for an amplifier
spacing below 60 km. An experiment in 1996 achieved transmission of seven
10-Gb/s channels over 9400 km using only four fiber segments in a recircu-
lating fiber loop [214]. In a 1998 experiment, eight 20-Gb/s channels were
transmitted over 10,000 km by using the same four-segment approach in com-
bination with optical filters and modulators [215].

Periodic Dispersion Maps

Similar to the single-channel soliton systems discussed in Section 8.4.2, pe-
riodic dispersion maps consisting of two fiber segments with opposite GVD
benefit the WDM soliton systems enormously. Issues such as interchannel col-
lisions, timing jitter, and optimum dispersion maps were studied extensively
during the 1990s [216]–[238]. The use of design optimization techniques has
resulted in WDM soliton systems capable of operating at bit rates close to
1 Tb/s [239]–[247].

An important issue for WDM systems making use of DM solitons is how
a dispersion map consisting of opposite-GVD fibers affects interchannel colli-
sions and the timing jitter. It is easy to see that the nature of soliton collisions
is changed drastically in such systems. Consider solitons in two different chan-
nels. A shorter-wavelength soliton travels faster in the anomalous-GVD sec-
tion compared with the the normal-GVD section. Moreover, because of high
local GVD, their relative speed is large. Also, the pulse width changes in each
map period and can become quite large in some regions. The net result is that
two colliding solitons move in a zigzag fashion and pass through each other
many times before they separate from each other because of the much slower
relative motion governed by the average value of GVD. Since the effective col-
lision length is much larger than the map period (and the amplifier spacing),
the condition Lcoll > 2LA is satisfied even when soliton wavelengths differ by
20 nm or more. This feature makes it possible to design WDM soliton systems
with a large number of high-bit-rate channels.

The residual frequency shift introduced during such a process depends on
a large number of parameters including the map period, map strength, and
amplifier spacing [229]–[233]. Physically speaking, residual frequency shifts
occurring during complete collisions average out to zero. However, not all col-
lisions are complete. For example, if solitons overlap initially, the incomplete
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Figure 8.20 Collision-induced frequency and temporal shifts for a soliton surrounded
by four channels on each side (75 GHz spacing). Curves 1 and 2 represent copolarized
(1) and orthogonally polarized (2) solitons in neighboring channels. Curves 3 and 4
show the improvement with sliding-frequency filters. The dotted line is the prediction
of a simple analytical model. (After Ref. [231])

nature of the collision will produce some residual frequency shift. The zigzag
motion of solitons can also produce frequency shifts if the solitons approach
each other near the junction of opposite-GVD fibers since they will reverse
direction before crossing each other. Such partial collisions can result in large
frequency shifts, which can shift solitons by a large amount within their bit
slots. This behavior is unacceptable from a system standpoint.

A simple solution to this problem is provided by sliding-frequency fil-
ters [231]. Such filters reduce the frequency and temporal shifts to manageable
levels in the same way they mitigate the effects of ASE-induced frequency
shifts. Curve 1 in Figure 8.20 shows the frequency and temporal shifts (calcu-
lated numerically) for a central channel surrounded by four channels on each
side (channel spacing 75 GHz). The soliton shifts by 100 ps (one bit slot)
over 10,000 km because its frequency shifts by more than 10 GHz. The use
of orthogonally polarized solitons (curve 2) improves the situation somewhat
but does not solve the problem. However, if sliding-frequency filters are em-
ployed, the temporal shift is reduced to below 15 ps for copolarized solitons
(curve 3) and to below 10 ps for orthogonally polarized solitons (curve 4). In
these numerical simulations, the map period and amplifier spacing are equal
to 40 km. The dispersion map consists of 36 km of anomalous-GVD fiber
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and 4 km of DCF (β2n � 130 ps2/km) such that average value of dispersion is
0.1 ps/(km-nm).

On the experimental side, 16 channels at 20 Gb/s were transmitted in 1997
over 1300 km of standard fiber with a map period of 100 km using a DCF that
compensated partially both GVD and its slope [239]. In a 1998 experiment, 20
channels at 20 Gb/s were transmitted over 2000 km using dispersion-flattened
fiber with a channel spacing of 0.8 nm [240]. The highest capacity of 640 Gb/s
was realized in a 2000 experiment in which 16 channels at 40 Gb/s were trans-
mitted over 1000 km [245]. Many experiments focused on soliton systems for
transoceanic applications. The total bit rate is lower for such systems because
of long distances over which solitons must travel.

Transmission of eight channels at 10-Gb/s over transoceanic distances was
realized as early as 1996 [195]. Eight 20-Gb/s channels were transmitted in a
1998 experiment but the distance was limited to 4000 km [242]. By 2000, the
160-Gb/s capacity was attained by transmitting eight 20-Gb/s channels over
10,000 km using optical filters and synchronous modulators inside a 250-km
recirculating fiber loop [246]. It was necessary to use a polarization scram-
bler and a phase modulator at the input end. The 160-Gb/s capacity was also
realized using two 80-Gb/s channels. In another experiment, up to 27 WDM
channels were transmitted over 9000 km using a hybrid amplification scheme
in which distributed Raman amplification (with backward pumping) compen-
sated for nearly 70% of losses incurred over the 56-km map period [247].
These experiments show that the use of DM solitons has the potential of real-
izing transoceanic lightwave systems capable of operating with a capacity of
1 Tb/s or more.

Problems

8.1 A soliton communication system is operating at 1.55 µm by using fibers
with D = 2 ps/(km-nm). The effective core area of the fiber is 50 µm2.
Calculate the peak power and the pulse energy required for fundamental
solitons of 30-ps width (FWHM).

8.2 What is the soliton period for the communication system of Problem 8.1?

8.3 Verify by direct substitution that the soliton solution given in Eq. (8.1.4)
indeed satisfies Eq. (8.1.1).
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8.4 Solve the NLS equation numerically by using the split-step Fourier method.
Any programming language, including software packages such as Math-
ematica and Matlab, can be used.

8.5 By propagating a fundamental soliton over 10 dispersion lengths, verify
numerically that the shape of the soliton does not change on propagation.
Repeat the simulation for a Gaussian input pulse shape with the same
peak power and explain the results.

8.6 A 10-Gb/s soliton lightwave system is designed with q0 = 5 to ensure
well-separated solitons. Calculate the pulse width, peak power, en-
ergy of the pulse, and average power of the RZ signal assuming β2 =

�1 ps2/km and γ = 2 W�1/km.

8.7 A soliton communication system is designed to transmit data over 5000
km at B = 10 Gb/s. What should be the pulse width (FWHM) to ensure
that the neighboring solitons do not interact during transmission? The
dispersion parameter D is 1 ps/(km-nm) at the operating wavelength.
Assume that soliton interaction is negligible when B2LT in Eq. (8.1.15)
is 10% of its maximum allowed value.

8.8 Prove that the power-enhancement factor for loss-managed solitons is
given by G lnG=(G�1), where G is the gain of lumped amplifiers.

8.9 A 10-Gb/s soliton system is designed with 50-km amplifier spacing.
What should be the input peak power of a loss-managed soliton of the
input pulse to ensure that a fundamental soliton is for fibers with losses
of 0.2 dB/km? Assume that Ts = 20 ps, β2 = �0:5 ps2/km, and γ =

2 W�1/km. What is the average launched power for such a system?

8.10 Calculate the maximum bit rate for a soliton lightwave system designed
with q0 = 5, β2 = �1 ps2/km, and LA = 50 km. Assume that the con-
dition (8.2.9) is satisfied when B2LA is at the 20% level. What is the
soliton width at the maximum bit rate?

8.11 Derive Eq. (8.2.14) by integrating Eq. (8.2.10). Plot p(z) for LA = 20,
40, 60, and 80 km using α = 0:2 dB/km and αp = 0:25 dB/km.

8.12 Explain in physical terms the origin of the Gordon–Haus jitter. How do
optical filters and modulators reduce this source of timing jitter?

8.13 Derive Eqs. (8.3.26)–(8.3.28) using soliton perturbation theory. Find
their steady-state solution when fs = 0 and noise can be ignored. Under
what conditions is this solution stable?
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8.14 Prove that a soliton is not perturbed in a lossy fiber if dispersion de-
creases exponentially as exp(�αz) along the fiber length.

8.15 Find the peak value of the collision-induced frequency and temporal
shifts by integrating Eq. (8.5.9) with b = 1.

8.16 Explain how soliton collisions limit the number of channels in a WDM
soliton system. Find how the maximum number of channels depends on
the channel and amplifier spacings using the condition Lcoll > 2LA.
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Appendix A

Bit-Error Rate

The performance of a lightwave system is judged by the bit-error rate (BER),
defined as the probability of incorrect identification of a bit by the decision
circuit of the receiver. For example, a BER of 2� 10�9 corresponds to two
errors per billion bits on average. Most lightwave systems require BER to be
< 1�10�9. Some modern systems are designed to operate with a BER below
10�12. The BER depends on the signal-to-noise ratio (SNR) of the current
generated at the receiver when a optical bit stream is converted into the electric
domain. The SNR, in turn, depends on various noise mechanisms such as shot
noise, thermal noise, and ASE noise associated with the received signal.

The fluctuating electric signal at the receiver is passed to the decision cir-
cuit, which samples it periodically at the bit rate to determine individual bits.
The sampled value I fluctuates from bit to bit around an average value I1 or
I0, depending on whether the bit corresponds to 1 or 0 in the bit stream. The
decision circuit compares the sampled value with a threshold value ID and calls
it bit 1 if I > ID and bit 0 if I < ID. An error occurs if I < ID for 1 bits because
of receiver noise. An error also occurs if I > ID for 0 bits. Both sources of
errors can be included through the error probability, defined as

BER = p(1)P(0=1)+ p(0)P(1=0); (A.1)

where p(1) and p(0) are the probabilities of receiving bits 1 and 0, respectively,
P(0=1) is the conditional probability of deciding 0 when a 1 bit is received, and
P(1=0) is the conditional probability of deciding 1 when a 0 bit is received.
Since 1 and 0 bits are equally likely to occur in a realistic bit stream, p(1) =
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p(0) = 1=2, and the BER becomes

BER =
1
2 [P(0=1)+P(1=0)]: (A.2)

The quantities P(0=1) and P(1=0) depend on the probability density func-
tion p(I) of the sampled value I. The functional form of p(I) depends on the
statistics of various noise sources responsible for current fluctuations. It is not
easy to find an analytic form of p(I). For this reason, it is common to assume
that I(t) is a Gaussian random process. However, both the average and the
variance of the Gaussian distribution are taken to be different for 1 and 0 bits
such that

pm(I) =
1

σm
p

2π
exp

�
�(I� Im)

2

2σ2
m

�
; (A.3)

where m = 0 or 1, I1 and I0 represent average currents for 1 and 0 bits, and σ2
1

and σ2
0 are the corresponding variances.

If ID is the decision threshold, an error occurs for a 1 bit if I < ID. Similarly,
a 0 bit is incorrectly identified if I > ID for it. Using these conditions, the
conditional probabilities can be written as

P(0=1) =
1

σ1

p
2π

Z ID

�∞
exp

�
�(I� I1)

2

2σ2
1

�
dI =

1
2

erfc

 
I1� ID

σ1

p
2

!
; (A.4)

P(1=0) =
1

σ0

p
2π

Z ∞

ID

exp

�
�(I� I0)

2

2σ2
0

�
dI =

1
2

erfc

 
ID� I0

σ0

p
2

!
; (A.5)

where erfc stands for the complementary error function defined as

erfc(x) =
2p
π

Z ∞

x
exp(�y2

)dy: (A.6)

Substituting Eqs. (A.4) and (A.5) in Eq. (A.2), the BER is given by

BER =
1
4

"
erfc

 
I1� ID

σ1

p
2

!
+ erfc

 
ID� I0

σ0

p
2

!#
: (A.7)

Equation (A.7) shows that the BER depends on the decision threshold ID of
the receiver. In practice, ID is optimized to minimize the BER. The minimum
occurs when ID is chosen such that

(I1� ID)=σ1 = (ID� I0)=σ0 �Q: (A.8)
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The optimum value of ID depends on the noise level and is given as

ID =
σ0I1 +σ1I0

σ0 +σ1
: (A.9)

When the noise level is the same for all bits, we can set σ1 = σ0 in Eq. (A.9).
Since ID =

1
2(I1+I0) in that case, the decision threshold should be in the middle

of the average currents for 0 and 1 bits. This is the situation for most receivers
when noise is dominated by the thermal noise.

The BER with the optimum setting of the decision threshold is obtained
using Eqs. (A.7) and (A.8) and is given by the following simple expression:

BER =
1
2

erfc

�
Qp

2

�
� exp(�Q2=2)

Q
p

2π
; (A.10)

where the approximate form is reasonably accurate for Q> 3. The Q parameter
is found from Eqs. (A.8) and (A.9) to be

Q =
I1� I0

σ1 +σ0
: (A.11)

This parameter plays an important role in the system design. The BER im-
proves as Q increases and is about 10�9 when Q = 6. It becomes lower than
10�12 for Q > 7.



Appendix B

Acronyms

Each scientific field has its own jargon, and the field of nonlinear fiber optics
is no exception. Although an attempt was made to avoid extensive use of
acronyms, many still appear throughout the book. Each acronym is defined the
first time it appears in a chapter so that the reader does not have to search the
entire text to find its meaning. As a further help, all acronyms are listed here
in alphabetical order.

AM amplitude modulation
ASE amplified spontaneous emission
ASK amplitude-shift keying
BER bit-error rate
CW continuous wave
DBR distributed Bragg reflector
DCF dispersion-compensating fiber
DDF dispersion-decreasing fiber
DFB distributed feedback
DM dispersion-managed
DSF dispersion-shifted fiber
EDFA erbium-doped fiber amplifier
EDFL erbium-doped fiber laser
FDM frequency-division multiplexing
FFT fast Fourier transform
FM frequency modulation
FROG frequency-resolved optical gating
FSK frequency-shift keying
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FWHM full width at half maximum
FWM four-wave mixing
GVD group-velocity dispersion
LCM liquid-crystal modulator
LEAF large effective-area fiber
MCVD modified chemical vapor deposition
MI modulation instability
MQW multiquantum well
MZI Mach–Zehnder interferometer
NLS nonlinear Schrödinger
NALM nonlinear amplifying-loop mirror
NOLM nonlinear optical-loop mirror
NRZ nonreturn-to-zero
OOK on–off keying
OPC optical phase conjugation
OTDM optical time-division multiplexing
OVD outside-vapor deposition
PCM pulse-code modulation
PDM polarization-division multiplexing
PEF polarization-evolution frequency
PLVS polarization-locked vector soliton
PM phase modulation
PMD polarization-mode dispersion
PSK phase-shift keying
RDF reverse-dispersion fiber
RIN relative intensity noise
RMS root-mean-square
RZ return-to-zero
SBS stimulated Brillouin scattering
SCM subcarrier multiplexing
SDH synchronous digital hierarchy
SIT self-induced transparency
SLA semiconductor laser amplifier
SNR signal-to-noise ratio
SPM self-phase modulation
SRS stimulated Raman scattering
TDM time-division multiplexing
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TOAD terahertz optical asymmetric demultiplexer
TOD third-order dispersion
TROG time-resolved optical gating
VAD vapor-axial deposition
VCSEL vertical-cavity surface-emitting laser
VPE vapor-phase epitaxy
WDM wavelength-division multiplexing
XPM cross-phase modulation
YAG yttrium almunium garnet
ZDWL zero-dispersion wavelength



Index

absorption coefficient, 163, 230, 242
absorption spectrum, 4
acoustic frequency, 330
acoustic jitter, see timing jitter
acoustic waves, 390
add–drop multiplexer, 100
adiabatic compression, 307
air-fill fraction, 52
air–silica microstructure, 51
Airy formula, 114
all-optical storage, 137
amplification

distributed, 171
lumped, 173
periodic, 173
pulse, 184–193
Raman, 161
ultrashort pulse, 190

amplification factor, 154
amplified spontaneous emission, 159,

161, 163, 176, 322, 386
amplifier

cascaded, 322
chain of, 322
distributed-gain, 163, 320
fiber, see fiber amplifier
in-line, 334
lumped, 173, 320, 342
optical, 320, 339
parametric, 405
Raman, see Raman amplifier, 330
semiconductor, see semiconduc-

tor optical amplifier

amplifier spacing, 320, 352, 378, 400,
412

amplitude-shift keying, 344
anti-resonance condition, 121
apodization technique, 20
autocorrelation trace, 71, 123, 235, 276,

278, 285, 297

backward pumping, 159
bandwidth

amplifier, 154, 354
Brillouin-gain, 329
filter, 322, 351
Raman-gain, 330

bar port, 140
bar state, 68, 74
beam splitter, 68
beam-pointing instability, 9
beat length, 70, 102, 247
Bessel function, 64, 68
bidirectional pumping, 159
birefringence, 42, 101, 102, 234, 304

built-in, 238
linear, 238, 248
nonlinear, 236, 283

bistable switching, 27
XPM-induced, 44

bit rate–distance product, 400
bit slot, 320, 325, 352, 372, 388, 389
bit stream, 320
bit-error rate, 328, 342, 351, 439
Bloch equations, 167
Bloch wave, 30, 31, 36
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boundary condition
periodic, 409

Bragg condition, 3, 6, 12, 173
Bragg diffraction, 2, 174, 245
Bragg frequency, 12
Bragg grating, 5
Bragg mirror, 280
Bragg reflector, 231, 247
Bragg soliton, 34–39

collision of, 36
formation of, 36

Bragg wavelength, 9, 40, 46, 288
Brillouin crosstalk, see crosstalk
Brillouin gain, 326
Brillouin scattering, 2, 326–330

spontaneous, 326
stimulated, 53, 117, 326

Brillouin shift, 53, 326
Brillouin threshold, 54, 326
broadening factor, 336

carrier lifetime, 135
carrier-to-noise ratio, 329
cavity

all-fiber, 204
design of, 203
dispersion-managed, 237, 246
Fabry–Perot, 20, 203, 205, 208,

216, 223, 231, 237, 240
figure-8, 205
loss in, 204
ring, 204, 209, 212, 223, 231, 237
sigma-shape, 224, 238

chalcogenide glass, 292
chalcohalide glass, 76
chaos, 30, 118, 119, 123, 216

period-3 windows in, 119
chaotic waveform, 218
chirp

amplifier-induced, 305
dispersion-induced, 263
fiber-induced, 270

grating-induced, 289
GVD-induced, 264
linear, 270
negative, 304
nonlinear, 274, 289, 291
positive, 265, 266, 304
random, 273
SPM-induced, 272, 281, 305, 335,

368
XPM-induced, 42, 300, 302, 342

chirp parameter, 303, 337, 368
chirped-pulse amplification, 292–294
circulator, 289
cladding mode, 45
clock signal, 135, 401
coherent regime, 183
coherent transmission, 328
collision length, 374, 417–421
collision-induced frequency shift,

418–423
compression factor, 264, 271, 273, 274,

276, 278, 281, 283, 289–291,
296, 299, 305, 308

compressor
Bragg-grating, 287
compact, 289
design of, 269
grating-fiber, 266–280, 284, 306
optimization of, 281
pedestal in, 281
soliton-effect, 265, 280–287, 300,

305
two-stage, 276, 279, 284, 304

continuum radiation, 92, 245, 371
core radius, 330
correlation function, 387
coupled-mode equations, 100

frequency-domain, 12, 64
linear, 14
nonlinear, 13, 72, 289
time-domain, 13, 65

coupled-mode theory, 11, 22, 63
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coupler
3-dB, 68
active, 96
asymmetric, 63, 66, 85, 93
asymmetric dual-core, 99
birefringent, 101
coupled-mode equations for, 63
directional, 113, 141, 240
dual-core, 75
fiber, 204, 320
fused, 63
grating-assisted, 98, 100
intermodal dispersion in, 70
linear theory of, 66
multicore, 102
paired solitons in, 89
power transfer in, 67
pulse propagation in, 83
quasi-CW switching in, 72
resonant, 141
star, 103
supermodes of, 69, 77, 79
switching in, 74
symmetric, 63, 66, 68, 72
three-core, 103
transfer matrix for, 68
vector solitons in, 102
WDM, 204, 227

coupling coefficient, 12, 21, 64, 68
effective, 67
frequency dependence of, 70
nonuniform, 48
periodic modulation of, 98

coupling length, 67, 68, 70, 71
coupling loss, 223
cross port, 140
cross state, 68, 73
cross-correlation measurement, 232
cross-gain saturation, 229, 240
cross-phase modulation, 13, 65, 130,

134, 227, 274, 291, 299, 340–
344, 399, 418

crosstalk
Brillouin-induced, 326–330
FWM-induced, 344–348
interchannel, 176
Raman-induced, 330–335, 349
XPM-induced, 340–344

cubic phase distortion, 276
cylindrical lens, 7

damage threshold, 280
dark soliton, 133
decision circuit, 439
decision threshold, 439, 440
delay-difference model, 218
delta function, 321
demultiplexer

add–drop, 100
terahertz optical asymmetrical, 136

demultiplexing, 134, 320
detector bandwidth, 156
dielectric coating, 204, 280
dielectric mirror, 204, 208
diffraction angle, 267
diffraction loss, 203
digital logic, 133
dipole moment, 168
dipole relaxation time, 153, 159, 182,

183
directional coupler, see coupler
dispersion

comb-like, 297
fourth-order, 299
grating-induced, 16, 17
group-velocity, 70, 368
higher-order, 358
intermodal, 71
limitations of, 323
material, 16
normal, 407
polarization-mode, 71, 131, 391
second-order, see group-velocity

dispersion
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third-order, see third-order disper-
sion

waveguide, 16
dispersion allocation, 415
dispersion compensation, 17, 48, 138,

240, 289, 325, 335
dispersion curve

linear, 24
nonlinear, 23

dispersion length, 35, 70, 83, 177, 374,
379

effective, 268
dispersion management, 129, 224, 227,

232, 287, 308, 323, 325, 333,
338, 348, 350, 401–417,
423–427

dispersion map, 343, 352, 353
optimum, 425
periodic, 324, 407–417, 425
strength of, 410

dispersion parameter, 289, 323, 354
dispersion relation, 14, 81, 171
dispersion slope, 354, 358
dispersion-compensating fiber, see fiber
dispersion-decreasing fiber, see fiber
dispersive delay line, 192, 239, 263,

275, 287
dispersive radiation, 132
dispersive waves, 245, 371, 379, 382,

384, 392, 399
distributed amplification, 166, 171, 320,

322, 379–383, 409
distributed feedback, 6
double-pass configuration, 266, 268, 276
dual-core fiber, 63

EDFA
absorption spectrum of, 159
C-band, 161
cascaded, 160
energy-levels of, 158
gain flattening, 160
gain spectrum of, 159

L-band, 161
noise in, 164
pumping of, 158
rate-equation model for, 162

effective core area, 13, 52, 66, 294,
325, 326, 343

effective mode index, 47
electron–hole recombination, 135
electron-beam lithography, 8
electrostriction, 390
elliptic function, 72, 88
energy enhancement factor, 378, 413
energy quantization, 234
erbium-doped fiber amplifier, see EDFA
error-correcting code, 358
etalon, 210, 212, 218, 224
Euler–Lagrange equation, 85, 384
evanescent wave coupling, 63
excited-state absorption, 161, 203, 211,

217
eye diagram, 351
eye-closure penalty, 351, 352

Fabry–Perot cavity, see cavity
Fabry–Perot filter, see filter
Fabry–Perot interferometer, 215
Fabry–Perot resonator, 112–117

finesse of, 115
free spectral range of, 114
transmittivity of, 113

Faraday mirror, 224, 238
Faraday rotator, 224, 238, 239
fast axis, 80, 131, 249
feedback loop, 235
fiber

birefringence in, 42
birefringent, 69, 80, 101, 301
chalcogenide, 34
chalcohalide, 76
dispersion-compensating, 176, 224,

232, 287, 324, 338, 343, 352,
415
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dispersion-decreasing, 129, 226,
294–299, 401–407, 423–427

dispersion-flattened, 427
dispersion-shifted, 129, 233, 278,

297, 301, 327, 406
double-clad, 209, 216, 238
dual-core, 63, 71, 99, 140, 240,

308
dye-doped, 76
erbium-doped, 158
fluoride, 216
fluorozirconate, 211
graded-index, 208
holey, 51
hollow, 280, 303
large-core-area, 354
large-mode-area, 294
multi-core, 308
photonic-crystal, 51, 53
polarization-maintaining, 42, 101,

123, 127, 131, 224, 227, 238,
280, 292

rare-earth-doped, 151, 201
reverse-dispersion, 357, 407
semiconductor-doped, 76
standard, 298, 301, 306, 323, 352,

412, 416
standard telecommunication, 129
transparent, 166
vacuum-guided, 53

fiber amplifier, 128, 131
adiabatic amplification in, 185
bandwidth of, 154
distributed, 166, 171, 184
erbium-doped, 158–166, 400
gain of, 153
modulation instability in, 171–176
multimode, 294
noise in, 164
noise of, 156
pulse propagation in, 166
pulses in, 184–193

pumping of, 152
solitons in, 177

fiber array, 103, 308
fiber coupler, see coupler
fiber laser

blue, 215
cavity of, 203
chaotic, 216, 218
cladding-pumped, 239
coupled-cavity, 214, 240
distributed-feedback, 214
dual-frequency, 214, 297
Er-doped, 201, 211–215
figure-8, 233, 243
high-power, 216
Ho-doped, 215
linewidth of, 210, 212
mode-locked, 223–249
multiwavelength, 214
Nd-doped, 201, 203, 208–211, 239
output power of, 207
polarization effects in, 247
Pr-doped, 215
pumping of, 202
Q-switched, 218
self-pulsing in, 216
spectrum of, 244
stretched-pulse, 237
threshold of, 206
timing jitter in, 226
Tm-doped, 202, 215
tuning of, 210, 212
up-conversion, 202
Yb-doped, 216

fiber loop
recirculating, 400, 416

fiber resonator, 112–124
fiber-loop mirror, 164, 204, 399
filter

acousto-optic, 160
add–drop, 99, 141
bandpass, 286, 304, 391
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birefringent, 211
Butterworth, 398
comb, 215
Fabry–Perot, 227, 235, 298, 348,

393, 422
guiding, 229
narrowband, 229
optical, 160, 175, 226, 229, 322,

391
sliding-frequency, 392, 395–398,

400, 422, 426
tunable, 160
WDM, 99

finesse, 113, 115, 218, 393
fluorescence time, 153, 164, 170, 228
forward error-correction, 358
four-wave mixing, 2, 26, 136, 174, 245,

274, 307, 344–348, 399, 423
crosstalk due to, 346
efficiency of, 345
resonant, 176

Fox–Smith resonator, 205
free-spectral range, 114, 218, 224, 298,

393
frequency chirp, 179, 185, 191, 265,

303, 410
SPM-induced, 270, 336, 408

frequency-shift keying, 344

gain bandwidth, 154, 210, 219
gain clamping, 164
gain coefficient, 153
gain dispersion, 180, 186, 189
gain flattening, 160
gain saturation, 135, 153, 155, 207, 292,

305
gain spectrum, 159

broadening of, 159
flattening of, 160

gain switching, 131, 303
gap soliton, 41

coupled, 43
Raman, 39

gate, AND, 43
Gaussian statistics, 321, 351, 387, 390,

440
Ginzburg–Landau equation, 168, 170,

177, 181, 187, 221, 241, 243,
249, 306, 321

generalized, 189
quintic, 178

Gires–Tournois interferometer, 269, 280
Gordon–Haus jitter, see timing jitter
grating

apodized, 21, 288, 291
Bragg, 20, 95, 99, 113, 141, 164,

204, 210, 214, 216, 240, 287
bulk, 293
chalcogenide, 292
chirped, 8, 17, 47, 239, 280, 288,

293, 325
couplers with, 98
diffraction, 1
dispersion relation for, 14
dispersive, 210
external, 212
fabrication of, 5–11
fiber, 1, 210, 214, 269, 287
group velocity in, 24
index, 2, 173, 245
linear properties of, 14
long-period, 10, 45, 98, 160, 173
mechanical, 99
modulation instability in, 27
nonlinear switching in, 40
nonlinear-index, 176, 245, 423
nonuniform, 47
optical bistability in, 25
phase-shifted, 26, 47
polarization effects in, 42
reduced speed in, 17
sampled, 49
semiconductor, 40
solitons in, 34
stop band of, 16
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superstructure, 49
grating pair, 266–269, 287, 292, 303

optimum separation of, 272
grazing angle, 268
group velocity, 13, 16, 23, 31, 65, 115,

131, 285, 395
group-velocity dispersion, 13, 65, 115,

221
group-velocity mismatch, 130, 228, 238,

301, 334, 342, 344
GVD

anomalous, 17, 29, 75, 82, 94, 122,
173, 188, 223, 232, 237, 247,
265, 270, 279, 281, 287, 306,
337, 338, 347, 348, 368, 412

average, 237, 325, 409, 411
grating-induced, 17, 28, 287
mismatch of, 95
normal, 17, 30, 75, 82, 95, 121,

123, 173, 188, 232, 237, 247,
265, 287, 304, 306, 337, 348,
368, 411

GVD parameter, 118, 324
effective, 31, 268
grating, 31

Hamiltonian, 85, 87
Hankel function, 175
harmonic oscillator, 222
Helmholtz equation, 64
Hermite polynomial, 222
Hermite–Gauss function, 222, 408
heterodyne detection, 157
holey fiber, 51
holographic technique, 6, 47
homodyne detection, 344
homogeneous broadening, 153, 159
hydrogen soaking, 4
hysteresis, 25, 117

idler wave, 136
inhomogeneous broadening, 159, 167,

182, 215

intensity discriminator, 283
intensity noise, 344
interferometer

Fabry–Perot, 112–124
Gires–Tournois, 269
Mach–Zehnder, 138–142
Michelson, 142
Sagnac, 124–138

intrapulse Raman scattering, 122, 127,
189, 244

inverse scattering method, 34, 177, 273,
368, 374

ion-ion interaction, 216
isolator, 165, 205, 236, 328

polarization-sensitive, 233
polarizing, 236, 249

Jacobi elliptic function, 73, 89

Kerr shutter, 236
Kramers–Kronig relation, 4

Lagrangian, 85, 384
Langevin noise, 320
lanthanides, 151
laser

argon-ion, 3, 5, 211
color-center, 123, 127, 283, 380,

400
DBR, 304
DFB, 11, 26, 40, 131, 134, 214,

296, 323
dye, 215
excimer, 7
external-cavity, 305
fiber, see fiber laser
figure-8, 233
GaAs, 158, 209, 212, 215
He–Ne, 130
instabilities in, 216
mode-locked, 32, 75, 119, 408
narrow-linewidth, 323
Nd:glass, 292
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Nd:YAG, 75, 119, 127, 134, 212,
277

Nd:YLF, 32, 37, 288
Q-switched, 32, 119
semiconductor, 26, 40, 158, 203,

208, 212, 233, 296
gain-switched, 298, 303

surface-emitting, 305
threshold of, 206
Ti:sapphire, 52, 117, 119, 121, 233,

279
lightwave systems, 173

coherent, 328, 344
design of, 349–359
dispersion-managed, 323
long-haul, 320, 336, 349
loss-managed, 320
modeling of, 349
periodically amplified, 338
terrestrial, 323, 352
undersea, 322, 353

LiNbO3 modulator, 141
line-width enhancement factor, 135
linear stability analysis, 28, 80
logic gates, 42, 85, 133
logic operation, 228
longitudinal modes, 114
longitudinal-mode spacing, 210, 219,

222, 225
loop mirror

fiber, 126, 132
parametric, 136

Lorentzian spectrum, 154
loss

cavity, 204, 206, 208, 221, 241
compensation of, 320
diffraction, 269
fiber, 320, 326, 375
grating pair, 269
insertion, 289
intensity-dependent, 243
internal, 206

pump, 207
SBS-induced, 329
wavelength-selective, 213

loss management, 320, 338
lumped amplification, 377–379, 412,

420

Mach–Zehnder interferometer, 138–142,
160, 213

applications of, 141
asymmetric, 139
chain of, 141
nonlinear switching in, 139
symmetric, 139

map strength, 410
critical, 411

Markovian process, 321, 387
master oscillator, 214, 216
Maxwell–Bloch equations, 166, 182,

191, 227
Michelson interferometer, 142, 301

nonlinear effects in, 143
microbending, 99
midway spectral inversion, 138
mirror

amplifying-loop, 129, 205, 233
Bragg, 280
chirped, 280
dielectric, 204
fiber-loop, 124, 204, 232, 307
moving, 237

mode locking
active, 220–223
additive-pulse, 143, 229, 233, 240,

243
AM, 220
FM, 220
harmonic, 223–227
hybrid, 238–240
interferometric, 143, 233
master equation of, 221
passive, 98, 132, 143, 229–238
physics of, 219
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regenerative, 225
saturable-absorber, 229–232, 241
XPM-induced, 227

modulation format, 328
NRZ, 320, 352
RZ, 320, 352

modulation instability, 27, 79, 120,
171–176, 286, 338, 339, 347

cavity-induced, 121
evidence of, 121
experiments on, 32
gain spectrum of, 29, 81, 121, 172,

175
induced, 82, 175, 176, 286
noise amplification by, 174
sidebands of, 173
spontaneous, 82

modulator
acousto-optic, 218, 223, 229
amplitude, 221, 223, 238, 392
electro-optic, 223, 227
external, 323
LiNbO3, 223–225, 227, 238, 297,

400
phase, 223, 238, 329, 395, 427
spatial phase, 303
synchronous, 423

molecular-beam epitaxy, 231
MOPA configuration, 214, 216
multiple-scale method, 30
multiplexing

time-division, see time-division mul-
tiplexing

wavelength-division, see WDM sys-
tems

NLS equation, 35, 83, 93, 103, 118,
166, 173, 222, 269, 289, 295,
335, 368

coupled, 79, 120, 300, 340, 349,
418

discrete, 105
effective, 30

generalized, 122, 127, 273, 285
grating, 30
perturbed, 377
standard, 336

noise
amplification of, 174
amplifier, 164, 386–388
ASE, 165, 322
background, 181
broadband, 174, 244, 334, 339
shot, 156
signal–spontaneous, 157
spontaneous-emission, 157, 322,

349
white, 157, 322

noise figure, 137, 156, 164, 166, 387
nonlinear amplifying-loop mirror, 129,

233
nonlinear coupled-mode equations, 23,

30
nonlinear dynamics, 118
nonlinear fiber-loop mirror, 124, 134,

232
nonlinear length, 36, 173
nonlinear map, 118, 119
nonlinear parameter, 66
nonlinear phase shift, 117
nonlinear polarization rotation, 236, 240,

243
nonlinear pulse shaping, 131
nonlinear Schrödinger equation, see NLS

equation
nonlinear switching, see switching
normal-dispersion region, 188
NRZ format, 173, 320, 338, 342, 352,

371
numerical aperture, 209
Nyquist limit, 354

on–off keying, 328
optical amplifier, see amplifier
optical bistability, 25, 30, 40, 116–117
optical clock, 133
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optical cycle, 279
optical filter, 17, 137, 139, see filter
optical isolator, 117
optical pumping, 153
optical push broom, 42, 291
optical soliton, see soliton
optical switching, 26, see switching

low threshold, 27
SPM-induced, 40
XPM-induced, 41

overlap factor, 162
oxygen-deficient bonds, 4

parabolic-gain approximation, 191
parametric amplification, 136, 307
parametric amplifier, 298
parametric loop mirror, 136
parametric oscillator, 137
parametric process, 274
partial soliton communication, 415
period doubling, 30, 119, 123
period-doubling route, 119, 217
periodic boundary conditions, 103
permittivity, 168
phase conjugation, 136, 137, 335, 405
phase errors, 10
phase mask, 8
phase matching, 347

SPM-mediated, 176
phase modulation, 329
phase shift

SPM-induced, 336
XPM-induced, 340, 341, 343

phase-conjugate mirror, 137
phase-locking technique, 224
phase-mask interferometer, 9
phase-matching condition, 2, 26, 114,

136, 174, 245, 423
phase-shift keying, 344
phase-space trajectory, 87
phonon

acoustic, 326
optical, 326

photon echo, 184
photonic bandgap, 15, 50, 52
photonic crystal, 51
photosensitivity, 3–5
piezoelectric transducer, 226
PMD parameter, 391
PMMA cladding, 76
Poincaré sphere, 77, 79, 82
polarization controller, 205, 236
polarization instability, 43, 249
polarization scrambler, 427
polarization-maintaining loop, 238
polarization-mode dispersion, see dis-

persion
poling period, 294
population inversion, 152, 206
population-inversion factor, 157
power penalty

FWM-induced, 344
Raman-induced, 332
XPM-induced, 342, 344

power-conversion efficiency, 159
prechirping, 384, 412
preform, 102
prism pair, 269
pulse

bell-shaped, 76
Gaussian, 32, 370, 408
secant hyperbolic, 370
square-shaped, 76

pulse broadening
dispersion-induced, 289, 323

pulse compression, 185, 263–308
amplifier-induced, 305
Bragg solitons for, 291
dispersion-decreasing fiber for, 294
experiments on, 275, 283, 296
grating pair for, 266–269
grating-based, 287
interferometer-based, 307
limitations of, 273
physical mechanism behind, 263
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quality of, 271
soliton-based, 280
XPM-induced, 299

pulse spreading, 75
pump-probe delay, 300
pump-station spacing, 380
pumping efficiency, 158
pumping scheme, 202, 206

backward, 380
bidirectional, 382
four-level, 152
three-level, 152
up-conversion, 215

push-broom effect, 42, 291

Q parameter, 351, 355, 440
Q-switching, 218
quality factor, 271, 281
quantum efficiency, 156, 216
quantum limit, 212
quantum-well layer, 230, 242
quarter-wave plate, 239
quasi-adiabatic regime, 376
quasi-periodic route, 217
quasi-phase matching, 294

radar, 263
Raman amplification, 302, 380, 400

backward, 380
Raman amplifier, 306
Raman crosstalk, see crosstalk
Raman scattering, 330–335

intrapulse, 285, 286, 296, 305, 382,
403, 416

stimulated, 39, 166, 274, 277, 278,
289, 302, 330, 399

Raman shift, 399
Raman threshold, 54, 274, 330
Raman–Nath scattering, 9
Raman-induced frequency shift, 189,

192, 286, 295, 297, 298, 382,
403, 414

rare earths, 151, 201

rate-equation approximation, 182
rate-equation model, 161, 217
Rayleigh scattering, 326
reactive-ion etching, 8
receiver, 320, 326, 351, 439

coherent, 344
recirculating fiber loop, 132, 425
regenerator, 320, 323
relative intensity noise, 214
relaxation oscillations, 216
repeater spacing, 320, 323, 376
responsivity, 351
ring resonator, 112–124, 142

modulation instability in, 120
rocking filter

dual-core, 102
Rowland ghost gap, 50
RZ format, 320, 325, 350, 352, 372

Sagnac interferometer, 124–138, 232,
307

applications of, 131
balanced, 132
demultiplexing with, 134
FWM in, 136
nonlinear switching in, 126
polarization-maintaining, 133
switching characteristics of, 127
transmittivity of, 125
unbalanced, 128
wavelength conversion using, 132
XPM in, 130

Sagnac loop, 124, 127, 129, 130, 134,
137, 205, 243, 308

asymmetric, 128, 137
dispersion-imbalanced, 129

saturable absorber, 98, 132, 229, 240,
241, 292, 399

fast, 229, 233
pulse shortening in, 230
quantum-well, 242
semiconductor, 239
sluggish response of, 132
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superlattice, 231, 239
saturation energy, 164, 170, 242
saturation power, 153, 162, 207, 230

output, 156
SBS, 326

control of, 328
threshold of, 117, 326

scattering
Brillouin, 326
elastic, 326
inelastic, 326
Raman, 326
Rayleigh, 326

Schrödinger equation, nonlinear, see NLS
equation

second-harmonic generation, 294, 303
self-frequency shift, 244, 285
self-induced transparency, 182
self-phase modulation, 13, 65, 171, 221,

335–339, 368
self-pulsing, 214, 216
self-steepening, 189, 285
semiclassical approach, 167
semiconductor optical amplifier, 129,

135, 138, 228, 305
shot-noise limit, 156
sideband instability, 174
sigma configuration, 224, 238
signal processing

all-optical, 133
signal-to-noise ratio, 156, 320, 328, 339,

342, 439
degradation of, 388

slope efficiency, 208, 211, 213
slow axis, 80, 249
slowly-varying-envelopeapproximation,

167
soliton

adiabatic amplification of, 233
amplifier, 177–184
auto, 177, 178, 186, 232
Bragg, 34, 100, 291

bright, 181, 368
broadening of, 375
chirped, 179, 182, 186, 242,

384–386
collision of, 36, 417–423, 425
dark, 35, 180, 368
dispersion-decreasing fibers for,

401–407
dispersion-managed, 407–417
distributed amplification of,

379–383
effect of fiber loss, 375
fiber, 183
first-order, 84
fundamental, 35, 84, 183, 184, 222,

223, 233, 234, 295, 369
gap, 35, 95
Gaussian shape for, 408
grating, 34
guiding-center, 377, 378
higher-order, 36, 185, 281, 286,

291, 297, 301, 306, 308, 369,
376

in-phase, 94, 374
interaction of, 373–375, 390, 414
loss-managed, 376–401
Maxwell–Bloch, 181
NLS, 35
order of, 369
orthogonally polarized, 375, 426
out-of-phase, 94
paired, 89
path-averaged, 377, 378
periodic amplification of, 377–379
polarization-locked, 248
properties of, 368–371
pulse compression using, 280
radiation from, 92
second-order, 39, 84
self-frequency shift of, 285
SIT, 182, 183
spatial, 105
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squeezed, 137
stability of, 181
switching of, 84, 87
vector, 102, 248

soliton gas, 123
soliton interaction, 187, 234
soliton order, 295, 301
soliton pair, 92

asymmetric, 91
dark, 92
stability of, 91
symmetric, 91

soliton period, 298, 307, 369
soliton systems

amplifier noise in, 386–388
amplifier spacing for, 377–379
dispersion management for,

401–417, 423–427
dispersion-decreasing fibers for, 401,

407
experiments on, 400–401
jitter control in, 391–399
terrestrial, 401
timing jitter in, 388–399
WDM, 417–427

soliton trapping, 190
spatial coherence, 8
spectral broadening

SPM-induced, 336
spectral efficiency, 354
spectral hole-burning, 159, 215
spectral inversion, 334, 406
spectral sideband, 244
spectral-window method, 274, 278
speed-reduction factor, 31
split-step Fourier method, 83, 191, 336,

350, 408
SPM-induced phase shift, 74, 116, 125,

126, 142, 175, 236, 306
SPM-induced switching, 127
spontaneous emission, 157, 162, 170,

175, 230, 244, 320

amplified, 132, 137, 322, 344
noise induced by, 321

spontaneous-emission factor, 157, 164,
321

square pulse, 336
squarylium dye, 76
squeezing, 137
SRS threshold, 330
staircase approximation, 403, 424
standing-wave pattern, 6
Stark splitting, 159
stimulated Brillouin scattering, see Bril-

louin scattering
stimulated emission, 152, 162
stimulated Raman scattering, see Ra-

man scattering
stitching errors, 10
stochastic process, 321, 387
Stokes parameters, 77
Stokes vector, 77
Stokes wave, 326, 330
stop band, 40, 288

edge of, 17, 18, 22, 31, 287, 290
strain, sinusoidal, 329
streak camera, 305
subcarrier multiplexing, 329
super-Gaussian pulse, 338, 350
superlattice, 35, 230, 239
supermodes, 69, 77, 79
susceptibility, 168
switching

bistable, 40
contrast of, 97
high-contrast, 75
nonlinear, 40, 126, 140, 308
observation of, 74
power required for, 129
pulse, 83
quasi-CW, 72, 129
soliton, 84, 87, 97, 127
SPM-induced, 127
threshold of, 97, 128
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XPM-induced, 130, 142
switching contrast, 75
switching power, 26
switching threshold, 76
symmetry-breaking bifurcation, 89, 92
synchronous pumping, 119, 137

Taylor series, 16, 65, 70, 168, 246, 267
temperature gradient, 48
third-order dispersion, 122, 189, 246,

268, 280, 285, 286, 289, 299,
324, 326, 350, 382, 403, 406,
416

Thirring model, 34, 36
three-wave mixing, 303
threshold condition, 206, 207
time-bandwidth product, 223
time-division multiplexing, 134, 298,

304
timing jitter, 134, 226, 227, 342,

388–399, 425
acoustic, 390, 397
collision-induced, 421–423
control of, 391–399, 404–407
effect of dispersion-management,

413
Gordon–Haus, 388, 397
PMD-induced, 391
Raman-induced, 404
soliton-interaction-induced, 390
TOD-induced, 404, 406
WDM, 421–423

TOAD device, 136
total internal reflection, 53
transfer function, 322, 392, 398
transfer matrix, 68
transform-limited pulse, 235, 276, 304
transition cross section, 153, 162, 168
transmission resonance, 113
transmitter, 320, 326, 344
two-level absorber, 182
two-photon absorption, 76, 169, 179,

180, 185, 221, 241, 321

ultraviolet region, 303
unsaturated regime, 153

V parameter, 68, 324
variational method, 85, 94, 336, 384,

408

walk-off effect, 130, 131, 238, 300, 301,
342

walk-off length, 300
waveguide array, 102
waveguide, planar, 98, 102
waveguide-grating router, 348
wavelength conversion, 132, 227
wavelength-division multiplexing, see

WDM systems
WDM systems, 113, 142, 160, 173,

176, 320, 325, 330, 345, 349,
352

soliton, 417–427
spectral efficiency of, 354
terrestrial, 352
undersea, 353

WKB approximation, 336

XPM parameter, 66
XPM-induced chirp, 300
XPM-induced phase shift, 125, 131,

133, 142, 228, 236
XPM-induced switching, 130, 132, 134

zero-dispersion wavelength, 17, 52, 94,
127, 130, 169, 189, 278, 285,
286, 301, 323, 339, 345, 354,
407
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