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I xiii 

During the last few decades, molecular physics has gained increasing importance in 
physics, chemistry and biology. There are several reasons for this progress. The devel- 
opment of new experimental techniques with vastly improved sensitivity and spectral 
resolution has allowed detailed measurements of structure and dynamics even for large 
molecules in minute concentrations. This opens the way for studying chemical reac- 
tions and biological processes on a molecular level. Using ultrashort laser pulses, very 
fast dynamical processes in excited molecular states can be measured with a time res- 
olution of a few femtoseconds. Examples are the dissociation of excited molecules, or 
the redistribution of the energy pumped into a selectively excited molecular state by 
photon absorption. This energy redistribution onto many vibronic states can be caused 
by collisions or by couplings between different molecular states, and it often results 
in a permanent change of molecular structure (isomerization). For the first time in 
the development of molecular physics, such ultrashort phenomena can be measured in 
realtime. 

Another important reason for the progress in molecular physics is the development 
of fast computers and sophisticated software, which allow the calculation of molec- 
ular structures and potential energy surfaces in molecular ground states and even in 
excited states with an astonishing accuracy. Also, the dynamics of excited molecular 
states can be today visualized on a computer screen in slow motion to give a vivid 
and detailed picture of the way molecular processes occur on a femtosecond scale. 
This allows a much better understanding of chemical and biological reaction paths. 
Quantum chemistry, working in this field, has therefore received more attention in 
chemistry and biology. The success of molecular biology is partly based both on the 
new experimental techniques and on such computer simulations. 

In order to gain a more profound understanding of these developments, one has 
to acquire sufficient knowledge about the basic physics of molecules. This volume 
tries to make the fundamentals of molecular physics accessible, starting with diatomic 
molecules as the simplest molecular species. The different approximation methods 
used for the calculation of molecular structure, their physical meaning and their lim- 
itations are presented. The principles that are valid for diatomics are then transferred 
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to and extended to polyatomic molecules, where additional phenomena occur, such as 
vibronic couplings or Coriolis effects in rotating molecules. The last chapter discusses 
classical and modem experimental techniques used in molecular physics, giving the 
reader a better understanding of the possibilities, advantages, and drawbacks of the 
different experimental approaches to the investigation of molecules. It is in particu- 
lar laser spectroscopy that has contributed in an outstanding way to the progress in 
molecular spectroscopy. 

This book is a thoroughly revised edition of a German edition published two years 
ago. The author would like to thank Michael Bk who translated the German book and 
took care of the typesetting for his careful work and for many valuable suggestions. 
The author hopes that this textbook will foster the interest in molecular physics in the 
communities of physicists, chemists and biologists. 

Since no book is perfect, the author appreciates any comments, hints to possible 
errors, or suggestions for improvements. 

Wolfgang Demtriider 
Kaiserslautern, August 2005 
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1 
Introduction 

Molecular physics is at the heart of chemistry and physics. A thorough understand- 
ing of chemical and biological processes has been rendered possible only by detailed 
investigations of the structure and dynamics of the molecules involved. A striking 
example is the question of chemical bond strength, which is of crucial importance for 
the course of chemical reactions. Molecular physics traces bond strengths back to the 
geometrical structure of the moleple’s nuclear framework and the spatial distribution 
of the molecular electron density. The reason for the chemical inertness of the rare 
gases or the high chemical activiy of the alkali metals could only be explained after 
the structure of the electron shell was understood. 

The electron distribution in a molecule can be calculated quantitatively with the 
aid of quantum theory. Hence, only the application of quantum theory to molecular 
physics has been able to create a consistent model of molecules and has made theoret- 
ical chemistry (quantum chemistry) so successful. 

Today’s knowledge on the structure of molecules with electrons and nuclei as their 
building blocks, on the geometric arrangement of nuclei in molecules and on the spa- 
tial and energetic properties of the electron shell is based on more than 200 years of 
research in the field. The origin of this research was characterized by the applica- 
tion of a rational scientific method aiming at quantitative reproducible experimental 
results. This constitutes the fundamental difference between “modern chemistry” and 
“alchemy”, which contained many mystic elements. The results obtained in these two 
centuries have not only revolutionized our image of molecules but have also shaped 
our way of thinking. A similar process can be observed at present, related to the ap- 
plication of physical and chemical methods to biology, where the molecular structures 
under investigation are particularly complex and the experimental methods employed 
must therefore be particularly subtle. 

It is interesting to take a brief look at the historical development of molecular 
physics. For more detailed historical accounts we refer to the ‘corresponding liter- 
ature [1.1-1.4]. It is in many cases highly instructive to read the original research 
papers which proposed new ideas, models, and concepts for the first time - often in an 
unprecise form, sometimes still erroneous. This can fill us with more esteem for the 
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2 1 Introduction I 
achievements of previous generations, who had to work with much less perfect equip- 
ment than we are used to today, yet obtained results which are often re-discovered 
even today and are sometimes considered new. For this reason we will often cite the 
original literature in this book, even though the corresponding results may already be 
found in textbooks of molecular physics, perhaps even presented with more didactic 
skill. 

1.1 
Short Historical Overview 

The concept of a molecule as a combination of atoms emerged relatively late in sci- 
entific literature, at some time during the first half of the 19th century. One reason 
for this is that a large number of experimental investigations was necessary to replace 
the historical ideas of the “four elements”, water, air, earth, and fire, and the later 
alchemistic concepts of elements such as sulfur, mercury, and salt (Paracelsus, 1493- 
1541) with an atomistic model of matter. A major breakthrough for this model were 
the first critically evaluated quantitative experiments investigating the mass changes 
involved in combustion processes, published in 1772 by Lavoisier ( 1743-1 794), who 
might be called the first modem chemist. 

After Scheele (1724-1786) recognized that air is a mixture of oxygen and nitrogen, 
Lavoisier created the hypothesis that during combustion, substances form a compound 
with oxygen. From the results of British physicists from the Cavendish circle, who 
succeeded in producing water from hydrogen and oxygen, Lavoisier was able to de- 
duce that water could not be an element as had long been thought, but that it had to 
be a compound. He defined a chemical element to be “the factual limit which can 
be reached by chemical analysis”. The publication of Lavoisier’s textbook Trait6 el- 
ementuire de Chimie in 1772, which marked a breakthrough for the ideas of modem 
chemistry, finally surpassed the ideas of alchemy. 

Lavoisier’s quantitative concept of chemical reactions furnished a number of em- 
pirical laws such as Proust’s law of constant proportions of 1797, which states that the 
mass proportions of elements in a chemical compound are constant and independent 
of the way in which the compound was prepared. The British chemist Dalton (1766- 
1844) was able to explain this law in 1808 on the basis of his atomic hypothesis, which 
postulated that all substances consist of atoms, and that upon formation of a compound 
from two elements one or a few atoms of one element combine with one or a few 
atoms of the second element (as, e.g., in NaCl, H20, C02, CH4, A1203). Sometimes, 
different numbers of like atoms can combine to form different molecules. Examples 
are the nitrogen-oxygen compounds N 2 0  (dinitrogen oxide, laughing gas), NO (ni- 
trogen monoxide), N203 (nitrogen trioxide), and NO2 (nitrogen dioxide), where the 
atomic ratio N:O is 2: 1,  1 : 1, 2:3, and 1 :2, respectively. This established the concept 
of molecules. 



1.1  Short Historical Overview 3 I 
Dalton also recognized that the relative atomic weights constitute a characteristic 

property of chemical elements. This idea was supported by Avogadro, who proposed, 
in 181 I ,  the hypothesis that equal volumes of different gases at equal temperature 
and pressure contain an equal number of elementary particles. From the experimental 
finding that reaction of one unit volume of hydrogen with one unit volume of chlo- 
rine produces two unit volumes of hydrogen chloride, Avogadro deduced correctly 
that the elementary particles in chlorine and hydrogen gas are not atoms but diatomic 
molecules, that is, H2 and C12, and that the reaction is therefore H2 +C12 + 2HCI. 
More detailed accounts on this early stage of molecular science can be found in [ 1.1- 
1.41 

Although the atomic hypothesis scored undisputable successes and was accepted 
as a working hypothesis by most chemists, the existence of atoms as real entities was 
a matter of discussion among many serious scientists until the end of the 19th century. 
One reason for that was the fact that there were only indirect clues for the existence 
of atoms derived from the macroscopic behavior of matter in chemical reactions (for 
example equilibrium properties) while they were not directly observable. 

Until the mid-19th century the size of atoms had not been the subject of scientific 
investigation. This was changed by the development of the kinetic theory of gases by 
Clausius ( 1822-1 888), who found that the total volume of all molecules in a gas must 
be much smaller than the volume of the gas at standard temperature and pressure. He 
arrived at this conclusion by comparing the densities of gases to that of condensed 
matter (which is about three orders of magnitude smaller in the former) and from 
the fact that the molecules in a gas can move essentially free, that is, the duration of 
collisions is small compared to the time between collisions; otherwise the gas could 
not be treated as an ideal gas with negligible interaction between collision partners 
(billiard ball model) [ 1.51. 

The investigation of the specific heats of gases puzzled scientists for a long time, 
because it showed that molecular gases possessed larger specific heats than atomic 
gases. After Boltzmann, Maxwell, and Rayleigh could show that the energy of a gas 
in thermal equilibrium is distributed evenly between all degrees of freedom of the 
particles, and that the energy is kT/2 per degree of freedom and particle, it became 
clear that molecules had to have more degrees of freedom than atoms, that is, the 
molecules could not be rigid but had to possess internal degrees of freedom. This was 
the first hint on the internal dynamics of molecules, an idea which established itself 
only towards the end of the 19th century. 

Spectroscopy contributed significantly to the solution of this puzzle [ 1.61, in spite 
of the erroneous interpretation that spectra originated from the vibrations of the atoms 
or molecules against the “ether”, and that the wavelengths indicated the frequencies 
of these vibrations. 

Molecular spectroscopy originated during the first half of the 19th century. For 
example, in 1834 D. Brewster (1781-1 868) observed, after spectral dispersion with 
the aid of a prism, hundreds of absorption lines, extending over the complete visible 
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spectrum like Fraunhofer lines, when he transmitted sunlight through dense NO2 gas 
over a vessel with nitric acid [ 1.71. This was astonishing to Brewster, because he did 
not understand why the yellowish-brown NO2 gas should feature absorption lines in 
the blue. He predicted that a complete explanation of this phenomenon would provide 
work for many generations of researchers, and - as we know today - his prediction 
turned out to be correct. 

The importance of a quantitative interpretation of spectra for the identification of 
chemical compounds was only recognized after the development of spectral analysis 
in 1859 by Kirchhoff (1824-1887) and Bunsen (1811-1899) [1.8]. After Rowland 
had succeeded, in 1887, in producing optical diffraction gratings with sufficient pre- 
cision [ 1.91, large grating spectrographs could be built, which allowed higher spec- 
tral resolutions and which could resolve individual lines at least for small molecules. 
They allowed the identification of a number of simple molecules by their characteris- 
tic spectra. After 1960, the introduction of narrow-band tunable lasers to molecular 
spectroscopy opened the way for new techniques with a spectral resolution below the 
Doppler width of absorption lines (see Ch. 12). 

1.2 
Molecular Spectra 

When an atom or a molecule absorbs or emits a photon of energy hv it makes a transi- 
tion from a state with energy El to another state with energy E2. Energy conservation 
requires that 

The states involved can be discrete, bound states with sharply defined energies; in this 
case the transition takes place at an equally sharply defined frequency v. In a spectrum 
such a transition shows up as a sharp line at the wavelength X = c / v .  Frequently, 
wavenumbers D = l/X are used instead of wavelengths X or frequencies v = c/X. 
On the other hand, unstable, repulsive states, which can lead to a dissociation of the 
molecule, or states above the molecule’s ionization threshold are usually characterized 
by a more or less broad-ranged frequency continuum, and transitions into or from such 
states produce a correspondingly broad absorptiodemission spectrum. 

For atoms, the possible energy states are essentially determined by different ar- 
rangements of the electron cloud (electronic states), and each line in the spectrum thus 
corresponds to an electronic transition. Molecules, however, have additional internal 
degrees of freedom, and their states are not only determined by the electron cloud but 
also by the geometrical arrangement of the nuclei and their movements. This make 
the spectra more complicated. 

First, molecules possess more electronic states than atoms. Second, the nuclei in 
the molecule can vibrate around their equilibrium positions. Finally, the molecule as 
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Fig. 1.1 Schematic visualization of the energy levels of a di- 
atomic molecule. 

a whole may rotate around axes through its center of mass. Therefore, for each elec- 
tronic molecular state there exist a large number of vibrational and rotational energy 
levels (Fig. 1.1). 

Molecular spectra can be categorized as follows (Fig. 1.2). 

- Transitions between different rotational levels for the same vibrational (and 
electronic) state lead to pure rotational spectra with wavelengths in the mi- 
crowave region (A  x l mm to l m). 

- Transitions between rotational levels in different vibrational levels of the same 
electronic state lead to vibration-rotation spectra in the mid-infrared with wave- 
lengths of A x 2 - 2 0 ~  (Fig. 1.3). 

- Transitions between two different electronic states have wavelengths from the 
UV to the near infrared (A = 0 . 1 - 2 ~ ) .  Each electronic transition comprises 
many vibrational bands corresponding to transitions between the different vi- 
brational levels of the two electronic states involved. Each of these bands con- 
tains many rotational lines with wavelengths A or frequencies v = c/A given 

by 

( E ; ' + E y b  + EY' )  , 

as required by energy conservation (Fig. I .2) .  As an example, Fig. 1.4 shows 
a section from the band system of the Na:! molecule with two bands from an 
electronic transition in the visible spectral range. 
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Fig. 1.3 Rotational lines of an overtone vibrational transition of 
the CS;! molecule with AVI = 2. (Courtesy H. Wenz, Kaiser- 
slautern) 
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Fig. 1.4 Two vibrational bands from an electronic transition in 
the Na2 molecule. 

The analysis of a molecular spectrum is usually difficult. It provides a wealth 
of information, however. The rotational spectra yield the geometrical structure of 
the molecule, the vibrational spectra give information on the forces between the vi- 
brating atoms in the molecule, and the electronic spectra tell us about the electronic 
states, their stabilities, and their electron distributions. Linewidths can, under suit- 
able experimental conditions, give information on the lifetimes of excited states or 
on dissociation energies. The complete analysis of a spectrum of sufficient spec- 
tral resolution provides a great deal of information on a molecule. It is therefore 
worthwhile to put some effort into the complete interpretation of a molecular spec- 
trum. 

A deeper understanding of molecular spectra and their connections with molec- 
ular structure was achieved only in the 1920s and 1930s with the advent of quan- 
tum theory. Soon after the mathematical formulation of the theory by Schrodinger 
and Heisenberg [ 1.10, 1.1 I ] ,  a large number of theoreticians applied quantum me- 
chanical calculations to the quantitative explanation of molecular spectra, and even 
before 1930 numerous publications on problems in molecular physics appeared. In 
these early publications in molecular physics, it is astonishing to observe how in- 
tuition and physical insight enabled great physicists to solve a number of impor- 
tant problems in molecular physics without computers and with very limited exper- 
imental equipment (see, for example, [1.12, 1.131). It is very rewarding to read 
these early publications, which are therefore frequently cited in the respective sec- 
tions of this book. Modern textbooks on Molecular Quantum Mechanics are, for ex- 
ample, [1.14, 1.151. 
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1.3 
Recent Developments 

It soon became clear that the experimental methods available at the time, that is, 
“classical” absorption or emission spectroscopy with spectrographs and incoherent 
light sources, were not able to resolve the individual lines in the spectra of many 
molecules. At the same time, theoretical efforts to determine the structures of small 
molecules reliably through ab inirio calculations, showed some success only for the 
smallest systems H$ and Hz. Approximations had to be developed and lengthy nu- 
merical calculations had to be performed, which were beyond the capacities of the 
early computers. The focus of theoreticians thus shifted to atomic physics, where 
many experimental data were available and waiting to be compared to the results of 
theoretical met hods. 

During the last 50 years, however, molecular physics has experienced a very active 
revival. On the side of experimental techniques, the reason is the emergence of many 
new methods such as microwave spectroscopy, Fourier spectroscopy, photoelectron 
spectroscopy, the application of synchrotron radiation, and laser spectroscopy. On 
the theoretical side, high-speed computers with huge memories have enabled quan- 
titative calculations that compete with experimental accuracy in many cases. The 
mutual stimulation of theoretical prediction and experimental verification (or refuta- 
tion), or the theoretical explanation of yet unexplained experimental phenomena has 
produced a great progress in molecular physics. Today it is fair to say that bond en- 
ergies, molecular structures, and electron distributions of ground-state molecules are 
essentially understood, at least for small molecules. 

The situation is much more difficult for electronically excited molecular states. 
They are less well investigated than ground states, because only in recent years have 
experimental techniques been developed that allow the investigation of excited states 
with the same accuracy and sensitivity as for ground states. Also, they are much more 
difficult to treat theoretically, which is the reason why there is far less theoretical 
work on the structures of excited states than of ground states. However, excited states 
are especially interesting because many chemical reactions occur only after a certain 
amount of activation energy has been provided, that is, after excited states have been 
created. For example, this is the case for all photochemical processes, which are 
initiated by the absorption of light. Also, a detailed understanding of photobiological 
processes such as the primary visual process or photosynthesis, requires the detailed 
study of electronically excited states and their dynamics. 

Such studies of molecular dynamics are based on the fact that molecules are no 
geometrically rigid entities but can change their shape. Energy that is “pumped” into 
a molecule selectively by the absorption of light can alter the electron distribution 
and can thus bring about a change in the geometrical shape of the molecule (isomer- 
ization). The energy can also be distributed evenly between the different degrees of 
freedom of the molecule, provided they are coupled. This process corresponds to a 
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heating of the whole molecule and leads to different results from the selective excita- 
tion of specific energy levels. 

Interactions between different molecular states, leading to perfurbarions of molec- 
ular spectra, are much more common in excited states than in ground states. They 
can greatly enhance our understanding of the structures of excited states, which can 
in general not be described by a geometrically well-defined static molecular model, 
because the arrangement of the nuclear framework is constantly changing to adapt to 
changes in the electron cloud, which can take place at constant total energy (so-called 
radiationless rrunsitions). Especially in large biomolecules, this variable geometric 
shape is of crucial importance for their biological function [ 1.16, 1.171. 

Recently, the question has been discussed intensively as to whether it is possible to 
make predictions of the properties of chemical compounds based on the topology of 
the corresponding molecules. There are indications that for such a topologic analysis 
the real accurate three-dimensional shape as defined by bond lengths and angles of the 
molecules is less important than had been thought. It seems more important how many 
atoms a molecule contains, with how many other atoms each atom is connected, and 
if the connections form linear chains, rings, crosslinks or combinations of them. If the 
number of atoms and the number and types of their connections are characterized by 
index numbers, the topological structure of the molecule can also be characterized by a 
suitably chosen index number. It is in many cases possible to make correct and useful 
predictions of the properties of new molecules based on such a topological analysis 
before an attempt is made to synthesize them [ 1.18, 1.191. 

The development of sensitive detection techniques has enabled the study of un- 
stable molecular radicals, which occur as intermediates in many chemical reactions. 
They exist usually at very low concentration in the presence of large concentrations of 
other species, which makes the recording of their spectra a demanding task, especially 
if nothing is known about the frequencies at which they should occur. Support from 
theoretical predictions is very important in these cases, and many spectra of such radi- 
cals, often also of astrophysical interest, have been recorded successfully primarily on 
account of a close collaboration between spectroscopists and quantum chemists. 

Recently, the study of molecular ions [ 1.201, of weakly bonded molecules M, (van 
der Waals molecules) [1.21] and of larger systems consisting of n equal atoms or 
molecules (so-called clusters) [ 1.221 has attracted increased attention. Such clusters 
constitute interesting intermediates between free molecules and liquid drops, and their 
investigation promises detailed information about the condensation and evaporation 
processes and the dynamics of larger, loosely bound molecular complexes, which 
could, under certain conditions, make a transition to an ordered solid (crystal) for 
large n .  

Our detailed knowledge of molecular structure has fostered the overwhelming and 
exciting progress in biophysics and genetic engineering. These new areas of research 
will revolutionize our daily life, and may have much more profound consequences 
than even the development of integrated circuits as a consequence of solid-state re- 
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search. This alone makes molecular physics a highly topical and important field. In 
addition, there are many open questions in such boundary areas of molecular physics, 
which renders the work in molecular physics truly exciting. Before progressing to the 
forefront of research, however, one must get acquainted with the basic foundations of 
molecular physics. This book will help in that process by discussing the conceptual 
and theoretical foundations of molecular physics and by presenting modern experi- 
mental methods used in the investigation of molecular structure. 

1.4 
The Concept of This Book 

As the title indicates, this book aims at presenting both the theoretical foundations 
of molecular physics, the knowledge of which is necessary for a quantitative descrip- 
tion of molecules, and modern experimental techniques, which enable the detailed 
investigation of many molecules. Theoretical and experimental parts are intentionally 
separated, because this arrangement allows a more consistent presentation especially 
in the theoretical part, and the common features of experimental methods, such as 
microwave and laser spectroscopy, can be worked out more clearly. 

The theoretical part assumes a basic knowledge in atomic physics and quantum 
mechanics. The theoretical presentation starts with the introduction of the Born- 
Oppenheimer approximation, a fundamental concept allowing the separation of nu- 
clear and electronic motion, which is at the heart of each molecular model based on a 
nuclear framework surrounded by an electron cloud. Within the Born-Oppenheimer 
approximation, the total energy of a molecule can be separated into electronic, vi- 
brational and rotational energies. This is confirmed by spectroscopic results and will 
be further elucidated in a concise tabulation of the wavelength regions of the differ- 
ent molecular spectra and their classification as rotational, vibrational, and electronic 
transitions. 

The major part of Ch. 2 deals with electronic states of rigid molecules, which 
neither rotate nor vibrate. The basic concepts such as angular momenta and their 
couplings, symmetries, and molecular orbitals are introduced phenomenologically for 
electronic states of diatomic molecules. Next, approximation techniques for the calcu- 
lation of electronic wavefunctions, energies and potentials are presented. The chapter 
starts with one-electron systems and continues to discuss the problems and techniques 
for systems with more than one electron. Section 2.8 shows the power of modem 
quantum-chemical ab initio methods for some illustrative examples. 

Chapter 3 discusses vibrations and rotations of diatomic molecules. There are in 
the meanwhile several methods for calculating molecular potentials from experimen- 
rally measured term values of vibration-rotation levels and for the determination of 
dissociation energies, which are discussed in detail in the second part of this chap- 
ter. The chapter closes with an overview of classical and quantum-mechanical tech- 
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niques for the treatment of the long-range part of the interaction potential of diatomic 
molecules for large internuclear separations, which is important especially in scatter- 
ing experiments. 

Chapter 4 deals with the central topic of molecular physics: molecular spectra. 
All the principal aspects can be discussed and understood for the case of diatomic 
molecules, where the spectra are easier to analyze. Therefore the chapter is restricted 
to those, while the spectra of polyatomic molecules are discussed in Ch. 8. Three 
questions are central: 

- Between which states can transitions take place, producing absorption or emis- 
sion of electromagnetic radiation? 

- What is the probability of these transitions? 

- What can be learned about molecular structure from the intensities, line profiles, 
and polarizations of the molecular spectral lines? 

In polyatomic molecules, symmetry properties play a crucial role for the simplifica- 
tion and generalization of their representation. Therefore, we discuss molecular sym- 
metry and its representation using group theory in Ch. 5, before we turn to a discussion 
of vibrations and rotations of polyatomic molecules in Ch. 6, where rotation is pre- 
sented for the symmetric and asymmetric top. Next, the concept of normal modes of 
molecular vibration is discussed in detail and is compared with the localized-vibration 
model, which gives often a better description especially for higher vibrational excita- 
tions. The influence of nonlinear coupling on vibrational spectra and the question of 
chaotic motions is briefly outlined. 

The electronic states of polyatomic molecules are discussed with the aim of con- 
veying the most important concepts without going into too much detail. Chapter 7 
presents applications of many of the ideas of molecular wavefunctions presented in 
Ch. 2. The construction of electronic states from molecular orbitals is discussed for 
some illustrative examples, and the resulting regularities for structure and symmetry 
of molecules in electronically excited states are emphasized. Chapter 8, dealing with 
spectra of polyatomic molecules, also uses many of the basics from Ch. 4. 

Molecules that can not be described within the Born-Oppenheimer approximation 
are gaining increasing importance in molecular physics. Especially in electronically 
excited states, molecules often do not possess a fixed geometrical shape but fluctuate 
spontaneously from one nuclear configuration to another. Such deviations from the 
Born-Oppenheimer approximation show up in the molecule’s spectrum as perrurba- 
tions, where the positions of lines are shifted from their expected values, intensities 
and linewidths are modified, lines are missing from the spectrum, or completely new 
and unexpected lines appear. These perturbations make the analysis of spectra more 
difficult, but they also yield important clues regarding the couplings between different 
Born-Oppenheimer states. For electronically excited states, they are quite common, 
and their treatment, described in Ch. 9, is of great importance for a complete and con- 
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sistent model of excited molecules. As the function of many biologically important 
molecules depends on such fluctuations of shape, an extension of our static molecular 
model is essential for applications in biology. 

In Ch. 10, we touch briefly on the topic of molecules in external fields. As mo- 
lecules may possess permanent or induced electric or magnetic moments (dipole, 
quadrupole, etc.), external electric or magnetic fields can effect shifts or mixing of 
molecular energy levels. Modem experimental techniques can investigate these ef- 
fects in detail and have created fascinating applications such as magnetic resonance 
spectroscopy or magnetic resonance tomography. 

A discussion of the interesting topic of van der Waals molecules and molecular 
clusters, which has been the subject of intensive work in recent years, closes the theo- 
retical part of the book. 

Modem experimental techniques, most notably the different methods of spectro- 
scopy, have exerted a strong influence on modem molecular physics. Chapter 12 is 
therefore devoted to modern methods in molecular spectroscopy. 

After an overview of the techniques of microwave spectroscopy for the measure- 
ment of rotational spectra, electric and magnetic moments, and hyperfine structures, 
we present recent methods in infrared spectroscopy such as Fourier spectroscopy, 
which has largely replaced classical absorption spectroscopy. Infrared laser spec- 
troscopy is also finding new applications continuously as it is in many cases superior 
to Fourier spectroscopy in terms of spectral resolution and signal-to-noise ratio. 

The investigation of radicals and unstable molecules has been made possible by 
matrix isolation spectroscopy, which uses a rare-gas matrix to confine the molecules 
at temperatures of a few kelvin. This method can thus produce rotation-free spectra of 
molecules in their lowest vibrational states. 

Section 12.3 presents classical techniques of Doppler-limited laser spectroscopy in 
the visible and ultraviolet and Sect. 12.4 a number of Doppler-free laser-spectroscopic 
techniques, which allow a selective excitation of specific vibration-rotation levels 
even in large molecules and thus give new and detailed insight into the structures 
of excited molecules. 

The combination of different spectroscopic techniques has led to the development 
of double-resonance methods, which offer huge advantages when it comes to the iden- 
tification of unknown molecular spectra and which allow the application of spectro- 
scopic methods to excited states, which could until now only be applied to ground 
states. For example, using infrared-microwave double resonance, one can perform 
microwave spectroscopy in vibrationally excited states, and optical-optical double 
resonance allows the investigation of high Rydberg states of molecules. 

The dynamics of excited states is currently of great interest; it can be monitored 
using time-resolved spectroscopy. It aims at answering the question, among others, of 
how and how quickly the excitation energy in a molecule is distributed among the dif- 
ferent degrees of freedom, either spontaneously or collision-induced. Such processes 
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can be studied with a time resolution in the femtosecond range ( 1  fs = s). All 
questions relating to these studies are discussed in Sect. 12.4.12. 

Besides laser spectroscopy, there are a large number of spectroscopic techniques, 
often complementing each other nicely. Of special importance for the study of elec- 
tronic molecular states is photoelectron spectroscopy, which is therefore discussed in 
some detail in Sect. 12.5. 

The combination of laser spectroscopy and mass spectrometry has proved espe- 
cially valuable in isotope-specific spectroscopy. The most frequently used types of 
mass spectrometers are presented in Sect. 12.6. 

A notably precise method to measure molecular moments andor hyperfine struc- 
tures is radiofrequency spectroscopy, developed by I. Rabi many years ago, which 
reaches today, employed in combination with laser-spectroscopic techniques, remark- 
able sensitivity and spectral resolution (Sect. 12.7). Electron spin resonance (ESR) 
and nuclear magnetic resonance have established themselves as standard tools, and 
they have reached an enormous importance not only in chemistry and physics but 
also, in the form of nuclear-resonance tomography, in medicine. They are described 
in Sections 12.8 and 12.9. 

The spectroscopy of radicals using laser-magnetic resonance has helped, among 
the contributions of microwave spectroscopy, to extend significantly our knowledge 
of molecules in interstellar space (Sect. 12.4.5). 

Although a quantitative description of molecular physics requires a certain mathe- 
matical formalism, and although molecular structure cannot be really understood with- 
out a firm grounding in quantum mechanics, the author has tried to present all topics 
as accessible as possible in order to convey physical insight and assist the reader in 
classifying the multitude of individual phenomena. 

There are a large number of good books on molecular physics, some of which are 
listed in the bibliography. Several aspects and fields are treated in more detail in some 
of them, while other questions that are important today are missing. In many places 
throughout this book we cite not only the relevant original literature but also those text- 
books which treat the corresponding topic, in the author’s opinion, especially clearly. 
It is my hope that, by its homogeneous coverage of both theoretical and experimental 
aspects and by its many references to the literature, this book might prove valuable for 
many chemists and physicists and might thus contribute to a further flourishing of the 
exciting and important field of molecular physics. 

I 
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Molecular Electronic States 

2.1 
Adiabatic Approximation and the Concept of Molecular Potentials 

In simple mechanistic models of molecular structure, molecules are usually repre- 
sented by a rigid framework of atoms in space with well-defined geometric shape and 
symmetry properties. The precise arrangement of the atomic nuclei in space (the nu- 
clear framework) is determined by the averaged spatial distributions of all electrons, 
which act as a kind of “glue”, bonding the nuclei together against the repulsive forces 
of the positively charged nuclei. This static equilibrium structure of the nuclei cor- 
responds to a minimum of the total energy of the molecule. Each motion of  such a 
rigid molecule can be described as a superposition of a translational motion of the 
molecule’s center of mass and a rotation around this same point. More refined models 
allow for additional vibrational motions of the nuclei around their minimum-energy 
equilibrium positions. 

In this chapter we will focus on the conditions under which this model can be 
considered ‘‘correct”, on its limits and its possible improvements. For a quantitative 
discussion, we will have to use quantum mechanics, because the building blocks of 
molecules are electrons and atomic nuclei. We assume that the foundations of quan- 
tum mechanics are already known (see, e.g., [ 1.14,2.1-2.41). 

2.1 . I  
Quantum-Mechanical Description of Free Molecules 

A molecule consisting of K nuclei (with masses hfk and charges Zke) and N electrons 
(mass m, charge -e) in a state with total energy E is described by the Schrodinger 
equation 

f i ! P = E P ,  

Molecular Physics. Theoretical Principles and Experimental Merhods. Wolfgang Demtroder. 
Copyright 0 2 0 0 5  WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 
ISBN: 3-527-40566-6 

Molecular Physics: Theoretical Principles and Experimental Methods 
Wolfgang Demtroder 

Copyright @ 2005 WILEY-VCH Verlag GmbH & Co. KGaA 



16 2 Molecular Electronic States I 
where the Hamiltonian 

can be written as the sum of the operator T^ of the kinetic energy of all electrons and 
nuclei and the potential energy V(T,R) .  In this equation (and in general), lower- 
case letters denote electronic coordinates, ~ i ,  and upper-case letters denote nuclear 
coordinates, Rk . 

The potential energy is a sum of three terms, 

(2.3) 

The first term describes the Coulomb repulsion between nuclei, the second the at- 
traction between electrons and nuclei, and the third the mutual repulsion between the 
electrons, and we have used the abbreviations 

which are further explained in Fig. 2.1. 
Here we have ignored all interactions relating to electronic or nuclear spins. Their 

exact description would require a relativistic treatment based on Dirac’s equation [2.5]. 
The shifts of molecular energy levels caused by spin interactions are small, however, 
compared with total kinetic and potential energies. They can therefore be treated as 
perturbations of the Schrodinger equation (2. l), resulting in small additive corrections 
to the energies obtained from Eq. (2.2). 

\ \ 
+ \  
r3 

. 
M1 

Fig. 2.1 Space-vector representation of a molecule in its center- 
of-mass frame. 



117 
2.1 Adiabatic Approximation and the Concept of Molecular Potentials 

The potential energy of a molecule depends only on the relative distances of the 
particles and not on the choice of a specific frame of reference. In contrast, the kinetic 
energy does depend on the chosen reference frame. Any investigation of a molecule 
(e.g., observation of its absorption or emission spectrum) takes place in the laboratory 
,frame LF. The theoretical description is usually simplified in a frame M which is 
attached to the molecule. For moving or rotating molecules, these frames are different. 

To avoid all complications arising in discussions that employ moving reference 
frames, we will start with a molecule at rest, whose center of mass is stationary in the 
laboratory frame and which we will describe in the laboratory frame. Thus, we start 
from the Schrodinger equation (2.1) 

(2.4) 

of a free molecule at rest consisting of N electrons and K nuclei. The corresponding 
Hamiltonian is fi = ?el + ?,,, + V, where the interaction potential V(T,R) is given 
by Eq. (2.3). For a nonrotating molecule at rest, this equation is exact as long a we 
neglect all interactions due to electronic and nuclear spins. 

Even for the simplest molecule, the H: molecular ion consisting of two protons 
and one electron, the Schrodinger equation (2.4) cannot be solved exactly. There are 
two general approaches that may lead to solutions of Eq. (2.4) for real molecules: 

1. We can solve Eq. (2.4) numerically for a specific case. The accuracy that can 
be obtained by this procedure depends on the software used and the size and 
speed of the available computers. The disadvantage of this method is that the 
numerical errors involved are difficult to estimate, and that results obtained for 
one molecule are not easily transferable to other molecules. 

2. We can introduce physically motivated approximations that are based on a sim- 
plified molecular model, leading to a simplified Schrodinger equation. This 
simplified model can then be extended step by step, and can thus be made to 
resemble reality as closely as desired. This procedure has the advantage that 
we can gain a much deeper understanding of the single steps and their physical 
implications. 

In the following, we will use the second approach, and we will start in the next section 
by introducing the fundamental approximation of molecular physics, the so-called 
adiabatic approximation. 

Remark: To avoid dealing with constant factors in the lengthy calcula- 
tions and to make equations and integrals more clearly legible, it is com- 
mon in theoretical atomic and molecular physics and quantum chemistry 
to use so-called atomic units. They are obtained by dejining 

m e = ] ,  h = l ,  e = l ,  c = l .  
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Note that in equating me = A = e = 1 the dimensions of these quantities 
are ignored. Hence, equations written in atomic units are not dimension- 
ally correct in the usual sense. 

The atomic unit of length, 1 bohr, equals the radius a. of the lowest Bohr 
orbit in the hydrogen atom. In SI units, 

45c€oA2 a,,=-- - 0.05 nm 
me2 

The atomic unit of energy, I hartree, is dejned to be twice the ionization 
energy of the hydrogen atom (= -Epot for the electron in the lowest Bohr 
orbit with n = 1). In SI units, 

me4 
( 4 5 c ~ , ) ~ ~ n 2  

Epot = - e27eV f o r n =  1 .  

In this book, we will use SI units throughout. 

2.1.2 
Separation of Electronic and Nuclear Wavefunctions 

Because of their smaller masses, the electrons in a molecule move much faster than the 
vibrating nuclei. The electron cloud can therefore adjust more or less instantaneously 
to the changing nuclear frame described by a set of nuclear coordinates R. In other 
words, for each R there exists a well-defined electron distribution as specified by the 
wavefunction $;'(T, R)  for the electronic state (nl, which depends on the positions of 
all nuclei but not (to first approximation) on their velocities. The electron cloud fol- 
lows the periodically changing nuclear framework adiabatically during the vibrations. 
The corresponding molecular model is therefore called the adiabatic approximation. 

To express this idea in mathematical language we use perturbation theory. As long 
as the kinetic energy of the nuclei [second term in Eq. (2.4)] is small compared to 
the electronic energy, we can consider it as a perturbation of the molecule with rigid 
nuclear framework ( R  = const.) and zero nuclear kinetic energy. This means that we 
use the Hamiltonian 

A h  fi = fio + fi' with 60 = ?,I + V and H' = T,,, . (2.5) 

The unperturbed Schrodinger equation, 

fio@'(r,R) = E(o)(R)q5e'(r,R) , (2.6) 

describes a molecule in which the nuclear framework is fixed at a configuration R. 
The square of a solution wavefunction & ( T ,  R)  of Eq. (2.6) for an arbitrary fixed nu- 
clear framework R yields the charge distribution of the electrons in an electronic state 
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In) with the energy En (0) ( R ) ,  where the subscript n designates the different electronic 

states of the rigid molecule (see Ch. 3). 
Note that the functions 4;' depend only on the electronic coordinates r .  Nuclear 

coordinates R do not enter as variables but only as parameters, because Eq. (2.6) 
contains neither differentiation nor integration with respect to R. 

We can choose the solutions &(r, R )  of Eq. (2.6) such that they form a complete 
orthonormal set of functions. In this case, every solution !P(r,R) of the complete 
Schrodinger equation (2.4) can be expanded in a (generally infinite) series of these 
functions. To solve Eq. (2.4), we choose the ansatz 

(2.7) 

where the expansion coefficients xm(R) depend on nuclear coordinates R but not on 
electronic coordinates T .  

After substituting into Eq. (2.4), multiplication with 4:'* and integration over elec- 
tronic coordinates r we obtain 

If we substitute i? = i?~ + g' in Eq. (2.8) and use Eq. (2.6) and J4;'*& d r  = b,,, 
we obtain for the functions xm ( R )  

The last term in Eq. (2.9) can be calculated as follows, where the parentheses (. . . ) 
designate the function on which H' operates: 

(2.10) 

In the first term on the right-hand side we can exchange differentiation and integration, 
because i?' depends only on R, but integration is over electronic coordinates r.  If we 
use J4L4, d r  = dnlf l ,  this term reduces to i? '~ , , .  The second and third terms on the 
right-hand side of Eq. (2.10) can be combined to En, cnmxm, where we have introduced 
the abbreviation 

(2.1 1) 
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This yields for Eq. (2.9) 

(2.13a) 

(2.13b) 

form a coupled set of equations for the electronic wavefunctions 4 and the nuclear 
wavefunctions xn where the coupling is mediated by the coefficients cnm(4) that de- 
pend on the functions 4 through Eq. (2.1 1). 

The combined equations (2.13) are completely equivalent to the Schrodinger equa- 
tion (2.4). Without the sum term, Eq. (2.13b) describes the motion of the nuclei with 

and is determined by the averaged electron distribution, because each stationary elec- 
tron distribution q5n (r) corresponds, for fixed R, to a well-defined energy E,"( R) .  The 
coefficients c,, are coupling matrix elements; they describe how different electronic 
states 4, and 4, are coupled through the nuclear motion. These coefficients, which in 
general are small compared to E," + H', will be discussed below. 

kinetic energy G' in the potential E,, (0) (R). The potential is a solution of Eq. (2.13a) 

2.1.3 
Born-Oppenheimer Approximation 

In the so-called Born-Oppenheimer (BO) approximation I2.61 all the c,, are taken to 
be zero, i.e., the coupling between nuclear motion and electron distribution is com- 
pletely neglected. Equation (2.13b) then reduces to 

[fi'+ELo'(R)]xn(R) = Exn(R) . (2.14) 

Within the BO approximation, the Schrodinger equation for the nuclear wavefunction 
x n ( R )  in the electronic state In), which determines the probability amplitudes for the 
nuclei at their positions R, is 

h 

H n u c ~ n  = E X n  . (2.14a) 

Here the Hamiltonian, 

h 

Hnuc = 2' + ELo) ( R )  = fnuc + U , ( R )  , (2.14b) 

is the sum of the kinetic energy of the nuclei and a potential energy U , ( R ) ,  which 
equals the total energy E,"(R) of the rigid molecule [see Eq. (2.6)]. In other words, 

ELo) (R) contains the total potential energy, Eq. (2.3), plus the kinetic electron energy 
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averaged over the motion of the electrons. Equation (2.14) shows that @ ( R )  can be 
considered as a potential U n ( R )  in which the nuclei move. U ( R )  does not depend on 
the electronic coordinates r ,  because we integrated over all electronic coordinates in 
the calculation of Ef(R). For each electronic state 4;' with an energy E : ( R )  there 
exists a set of solution functions xnv,  which can be viewed as the nuclear wavefunc- 
tions in the electronic state and which describe the different vibrational states as 
indicated by the subscript v. 

Hence, the BO approximation separates the Schrodinger equation (2.4) into two 
decoupled equations 

I 

(2.15a) 

(2.15b) 

The solutions 4;' refer parametrically to the nuclear framework R and the nuclear 
wavefunctions xn,i(R) for the state i of the nuclear kinetic energy in the electronic 
state n. 

(0) ( f n u c  + ~n ) x ~ ( R )  = E n , i X n , i ( R )  * 

Note: Strictly speaking, only the BO approximation enables us to speak 
of electronic states In) and nuclear states li). As the Hamiltonian fi = 

60 + I? is the sum of an electronic contribution and the nuclear kinetic 
energy, the total wavefunction In, i )  of a molecular state can be written, 
in the BO approximation, as a product 

*n,i(r,R) = $i'(~) x X n . i ( R )  (2.16) 

of an electronic wavefunction 4;' and a nuclear wavefunction xn,i. The 
sum in the expansion Eq. (2.7) then reduces to a single term! This product 
wavefunction is possible because we neglected all interactions between 
nuclear and electronic motions. From Eqns. (2.16) and (2.15), it follows 
that the total energy is the sum of the kinetic energy of the nuclei and 
the electronic energy averaged over the nuclear motion, including the 
potential energy of the repulsion between nuclei, 

E ~ . ~  = T,,,(R) + E , O ( R )  = const. , (2.17) 

independent of r and R 

The total function 9 can be normalized by normalizing each of the two factors 
independently, that is, 

J el* el 
J4,l 4 n  dTel= 1 and X i , i X n , i  dTnuc = 1 

with = r2 dr sin0 dB dp  and dTnuc = R2 dRsine d0 dp. 
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Equation (2.15a) is the foundation of quantum chemistry, which deals with the 

calculation of molecular electronic states as potential energy hypersurfaces E,” (R) 
(see Sect. 2.8). Equation (2.15b) describes vibrations and rotations of the nuclear 
framework, which will be discussed in Ch. 3 for diatomic molecules and in Ch. 6 for 
polyatomic molecules. 

2.1.4 
Adiabatic Approximation 

The matrix elements of Eq. (2.1 l), which have been completely neglected in the BO 
approximation, can be grouped into diagonal terms c,, and off-diagonal terms cnm 
(n # m).  Let us first consider the diagonal terms 

(2.18) 

If we exchange differentiation with respect to nuclear coordinates and integration over 
electronic coordinates in the second term, we see that it vanishes becauseJ 4E1*4;dr = 

1 = const. and a/aRN(const.) = 0. This is because we can normalize the real func- 
tions 4:’ so that J @I*, 4;’ d r  = 1 for all nuclear frameworks R. 

Using 

the first term can be written as 

(2.19) 

Thus the diagonal terms depend quadratically on changes in the electronic wavefunc- 
tion 4;’ upon variations of nuclear coordinates. These terms are small, however, be- 
cause the nuclear masses M N  in the denominator are large. 

If we substitute c,, for the diagonal terms from EQ. (2.19) into EQ. (2.13b) while 
still neglecting the off-diagonal terms c,,, we arrive at the so-called adiabatic approx- 
imation instead of Eq. (2.15b), 

[ f i ’+Ui(R)]xn=Exn,  (2.20) 

where the “potential” 

(2.21) 

differs from the BO potential E,“(R) in that it contains a corrective term depending 
on the masses of the nuclei, which means that it is different for different isotopes. 
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The effective potential U L ( R ) ,  in which the nuclei move, is therefore different for 
different isotopes, leading to small shifts in the electronic energies for the different 
molecular isotopomers. These shifts are small, however, compared to isotopic effects 
on vibrational and rotational energy levels (see Sect. 3.2) [2.7]. 

We can visualize the adiabatic correction as follows: if we look close enough, 
it turns out that the electron cloud does not follow nuclear motion instantaneously, 
but that there exists a small delay depending on the kinetic energy of the nuclei. At 
time t the nuclei in their configuration R ( t )  experience a potential due to an electronic 
configuration which would belong to a slightly earlier nuclear configuration R(r - A?). 

However, nuclear motion does not modify the electronic state 4;' in this approx- 
imation, that is, it does not mix wavefunctions 4: of different electronic states. 
The electronic wavefunctions follow the nuclear motion adiabatically and reversibly; 
the molecule remains on the same potential su$ace all the time. 

Thus the adiabatic approximation goes one step further than the BO approxima- 
tion. Because of the large nuclear masses in the denominator, the correction is small, 
however, as can easily be shown. The Hamiltonian fio of the electronic wavefunc- 
tions depends on the nuclear coordinates R n , c  only through the term Vnuc,el in 
Eq. (2.3).  The differentials d4e1/dR,,uc are therefore usually smaller than d4e'/dr as 
these depend also on Tel and Vel.el. The expression (A2/2m)  (d@'/dr)* represents the 
electronic kinetic energy. The perturbation term in Eq. (2.21) is therefore smaller than 
C N ( m / M N )  x Eifn and constitutes only a small correction even in the case of the light 
hydrogen molecule (m, /2mp < 3 x lop4). 

I 

2.2 
Deviations From the Adiabatic Approximation 

If the off-diagonal elements c,, are not negligible, the adiabatic approximation ceases 
to be valid, and we cannot separate electronic and nuclear motions. Stated differently, 
the nuclear motion mixes different electronic BO states. To elucidate under which 
circumstances this breakdown of the adiabatic approximation occurs, we use again a 
perturbation expansion. We write Eq. (2.5) as 

where Ho is the Hamiltonian of the unperturbed rigid molecule and the perturbation 
operator TnUc XW describes the kinetic energy of the nuclei. The parameter X < 1 
determines the size of the perturbation, which depends on the ratio m / M  of elec- 
tron mass m and nuclear mass M .  Born and Oppenheimer showed [2.6] that a useful 
choice of the perturbation parameter is X = ( m / M ) ' / 4 ,  because in this case the nu- 
clear vibrational energy and the nuclear rotational energy appear as perturbation terms 
of order X2 and X4, respectively. In the expansion of the eigenfunction 9 with respect 
to the complete orthonormal set of eigenfunctions 4;' of the unperturbed system from 

A 
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Eq. (2.7), we use also an expansion in orders of X for the nuclear wavefunctions x,: 

For the respective energy eigenvalues this yields 

(2.23) 

(2.24) 

Now we substitute Eqns. (2.22)-(2.24) and (2.7) into the Schrodinger equation (2.4), 
multiply by $:I*, integrate, and compare terms of equal powers of A, using perturbation 
expansions up to first order for the wavefunctions and up to second order for the 
energies. This procedure gives 

(2.25) 

Here 0 ( X 3 )  represents terms in X3 and higher powers that are neglected in second- 
order perturbation calculations. 

(2.26) 

h 

is the matrix element of the perturbation operator T,,, calculated with the unperturbed 
solutions of Eq. (2.13a) and W,, = cnn is the adiabatic correction of the BO energy 
Eio). The third term in Eq. (2.25), which is a second-order correction and which de- 
scribes the coupling between electronic states (4;' I and (4: I, is small provided the en- 
ergy difference E," (R) - E t  (R) of the unperturbed states ($: I and ($: I at a given nu- 
clear configuration I?. is large compared to the matrix element Wnk = s $:I*?nuc$:' dr. 

Wnk indicates the strength of the nuclear-motion-induced coupling between differ- 
ent electronic states, that is, it is a measure of the probability that nuclear motion 
induces an electronic transition from state 4;' to 4:'. 

If E," - E; is small [e.g., when potential energy surfaces cross (Fig. 2.2)], the ex- 
pansion Eq. (2.25) diverges, which means that the adiabatic approximation breaks 
down. This situation is frequently encountered for excited molecular states, but only 
rarely for ground states [2.8,2.9]. In these cases the molecule can nor be described as 
a nuclear framework oscillating in a potential given by the nuclear repulsion and the 
time-averaged spatial distribution of the electrons. 

We see from the perturbation expansion that the BO approximation corresponds to 
the unperturbed term in the expansion with fnuC as perturbation operator, and that the 
adiabatic approximation includes the first-order perturbation term. The nonadiabatic 
terms can be included by second-order perturbation calculations [2. lo], described by 
the third term in Eq. (2.25), while the fourth term contributes to higher-order pertur- 
bation terms, including, for example, rotational coupling of the different electronic 
states of the molecule (see Ch. 9). 
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En t 

R 

Fig. 2.2 An example for the breakdown of the Born- 
Oppen heirner approximation. 

2.3 
Potentials, Curves and Surfaces, Molecular Term Diagrams and Spectra 

We have seen in the preceding section that the electronic energy Ei' (R) can be de- 
scribed, in the adiabatic approximation, as a potential energy surface in the space of 
nuclear coordinates R = { R I  , R2,. . . , RN},  and that this energy can be viewed as a 
potential in which the nuclei move. 

For diatomic molecules, this potential energy Ei1(R1,R2) can be reduced, in a 
molecule-fixed reference frame, to a function Ei' (R)  of just one variable R, where 
R = IRI - R21 is the internuclear distance. This potential energy curve E i ' ( R )  = 
V ( R )  is displayed schematically in Fig. 2.3 for a bound molecule, i.e., for the case 

Fig. 2.3 Potential energy curve of a diatomic molecule and 
vibrational-rotational state with constant total energy, indepen- 
dent of internuclear distance R .  
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that the curve possesses a minimum. The internuclear distance Re at this minimum is 
called equilibrium disrance and the depth of the minimum represents the bond energy 

(2.27) 

of the electronic state In). The dissociation energy Ed is usually defined as the energy 
necessary to dissociate the molecule in in its lowest vibrational level v = 0. The 
difference Eb - E d  = E,, = Aw equals the zero-point energy, which is by an amount 
AE = ~ A w  above the minimum of the potential curve. In spectroscopic discussions, 
the minimum E;l(R,) of the electronic ground state Eo is usually defined to correspond 
to zero energy. 

E b  = E:l(R = w) - EEl(Re) 

The total energy of the molecule in the state In) is given by the sum 

En = E:'(R) + Evib(R) +ErOt(R) = const. ; (2.28) 

it is constant, that is, it does not depend on the internuclear distance R. In spec- 
troscopy, term values Tn = E,,/hc are frequently employed instead of energies En. 
Because of E / h c  = hv/hc = 1 / X  they are also called wavenumbers and are given in 
units of cm-'. 

For each electronic state EZ' there exists a set of vibrational states characterized by 
the vibrational quantum number v, and for each vibrational state there exist a (usually 
large) number of rotational states characterized by the rotational quantum number J 
(see Fig. 2.4 and Ch. 3). 

Fig. 2.4 Schematic illustration of two electronic states with their 
equilibrium nuclear distances Re,  vibrational-rotational levels, 
bond energies and electronic energies. 
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Transitions (n,w;,J;)+-+(m,wk,J,) between two states En = En,v,,J, = (E:'?E$,,I!?Lt) 
and E,n = E,n,v,~ = (f$,Etib,ELo[) can take place through absorption or emission of 
electromagnetic radiation of frequency vnm = (Em - E n )  / h  or wavenumber 1 / A n r n  = 
T,,, - T,, respectively. Whether such a transition actually occurs depends on several 
factors, for example on details of the wavefunctions and the population numbers of 
both states. These questions will be discussed in more detail in Ch. 4. 

Figure I .2 schematically showed such transitions between different molecular stat- 
es. If a transition takes place between two adjacent rotational levels of the same vibra- 
tional state it is called a pure rotational spectrum. The wavelength of these transitions 
is usually located in the microwave region of the electromagnetic spectrum. Transi- 
tions (n ,  v; ,J ; )  +-+ (n ,  v k , J ~ )  between different vibrational levels of the same electronic 
state constitute an infrared spectrum, in which all the rotational lines within a vibra- 
tional transition w; t) W k  are called a vibrational band. So-called electronic transi- 
tions between vibration-rotation levels of different electronic states can yield spectra 
which extend from the near infrared to the vacuum UV regions of the electromagnetic 
spectrum. They are usually accompanied by many vibrational bands ( n ,  w; ++ m, vk), 
constituting a band system for each electronic transition n ++ m. 

For nonlinear triatomic molecules, the adiabatic approximation enables us to write 
the potential energy E:l(R) as a function of three variables, that is, of two bond 
lengths R I  and R2 and the bending angle a. As we cannot display this surface graph- 
ically, we need to draw cuts through this surface where two of the three variables are 
kept constant. This results in a potential energy curve depending on only one variable 
as in the case of the diatomic molecule (Fig. 2.5). Alternatively, we could display the 
surface as contour lines of equal potential, where only one variable is kept constant, 
that is, the bending angle, while isopotential contour lines are plotted for E;l(Rl , R 2 ) .  

I 

E E 

R 
Fig. 2.5 Two cuts through the potential energy surface of a 
triatomic molecule; here for the NO2 ground state. a) ,?(a); 
b) E ( R ) .  
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R3 = 6.63 Bohr 

a = 77.3 O 

Eskb = 787.16 cm-' 

El,, = 155.55 cm-' 

ao= 1 bohr - 0.5 A 

da0 
Flg. 2.6 Contour-line representation of the potential energy sur- 
face of a triatomic molecule; here for Li3. (Courtesy W. Meyer, 
Kaiserslautern) 

Figure 2.6 shows the potential surface for the equilateral triangle of L i 3 ,  where the 
axes display the x and y coordinates of the nuclear displacements from the equilib- 
rium structure. 

A polyatomic molecule possesses more internal degrees of freedom, and conse- 
quently there exist more vibrations and rotations than in the diatomic case. This results 
in a large number of vibrational-rotational levels, and the observed spectra obtained 
are therefore much more complicated (see Chapters 6- 8). 

In the next section we will start with the discussion of the classification of elec- 
tronic states before turning to their calculation. In most cases we will focus on di- 
atomic molecules, because this allows a clearer presentation of the methods used. 
However, towards the end of the chapter, and also in Ch. 7, we will also give some 
examples for polyatomic molecules. 

2.4 
Electronic States of Diatomic Molecules 

Many phenomena related to electronic molecular states can be introduced most easily 
with simple models in discussing diatomic molecules. Among them are, for exam- 
ple, the vector model of angular momentum coupling or the symmetry properties of 
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molecular states. Most helpful is also the molecular orbital concept, which reduces 
the treatment of many-electron molecules to a suitable combination of one-electron 
states. 

In this chapter, we will start with the simplest molecule, the H; molecular ion, 
which consists of two protons and one electron. It is the only system which can be 
solved exactly within the BO approximation, that is, as a rigid nuclear framework. 
For this simple example we will introduce and define the characteristic properties 
and quantum numbers of all one-electron systems (Sect. 2.4.2). One-electron systems 
are molecules with only one unpaired electron in the highest (otherwise unoccupied) 
energy level. This optical electron is responsible for many important molecular prop- 
erties. Examples of such systems are the ions H;, Li;, and NQ or the radicals CH 
and OH. 

Starting from quantum numbers, angular momenta, and symmetries of these one- 
electron systems, we will generalize these quantities and their definitions to molecules 
with many electrons. This is the subject of Sect. 2.4.3, where we will also introduce 
the classification of electronic states of diatomic molecules. 

Finally, the last section will discuss the two limiting cases of electronic molecular 
states for R + 00 (separated atoms) and R -+ 0 (united atom). With their help, we will 
learn about the correlations between molecular and atomic states. 

Throughout Ch. 2, we will assume that the nuclear framework is rigid and nonro- 
tating so that the BO approximation is strictly valid. This means that to each electronic 
state there corresponds a potential energy curve E,,(R),  which is defined by the aver- 
age (over electronic coordinates) of the total electronic and nuclear potential energy 
plus the averaged electronic kinetic energy (see Sect. 2.1). 

2.4.1 
Exact Treatment of the Rigid H i  Molecule 

The simplest conceivable molecules consist of two nuclei A and B with nuclear char- 
ges Zle and Z2e and one electron, i.e., H;, HeH2+, LiH3+ etc. It turns out, however, 
that the resulting one-electron molecular ion is stable only for 21 = 2 2  = 1, that is, the 
hydrogen molecular ion H; and its isotopomers HD+ and D;. For fixed nuclei, that 
is, ignoring vibrations and rotations, this corresponds to an electron in a two-center 
potential, the Schrodinger equation of which is separable and thus exactly solvable in 
elliptic coordinates. 

We identify the z coordinate with the internuclear axis and introduce elliptic coor- 
dinates (Fig. 2.7): 

cp = arctan(y/x) , (2.29) 

The condition cp = const. describes all planes which contain the internuclear axis; 
p = const. are confocal rotational ellipsoids with the nuclei as focal points: u = const. 
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Fig. 2.7 Elliptic coordinates of the H: molecular ion. 

are two-shell rotational hyperboloids, p = 1 describes the z axis between the nuclei, 
and u = 0 is the horizontal plane halfway between the nuclei (Fig. 2.8). 

We insert the separation ansatz 

into the electronic Schrodinger equation (2.15a) for the H t  molecular ion, 

(2.31) 

where the solution q j  corresponds to the functions @ ' ( r , R )  from Eq. (2.13a). This 
yields, in complete analogy to the solution of the Schrodinger equation for the H 
atom [2.1-2.41, 

, CW a mR2 
-Eu2 = - p ,  I d  - - (1+) 

N du du 1 -v2  2h2 

(2.3 2a) 

(2.32b) 

(2.32~) 

where a and /3 are separation constants. 
The solutions of these three equations are the functions M(p) ,  N ( u ) ,  and ( # ( ~ p ) ,  

which depend not only on the separation constants a and /3 but also on the boundary 

Planes Rotational ellipsoids Rotational hyperboloids 
cp = const. p = const. v = const. 

Fig. 2.8 The surfaces cp = const., p = const., and v = const.. 
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conditions ($ must be normalizable, continuous and single-valued for all values of 
p 2 0, m < Y < +m, and0 5 'p < 2 ~ ) .  

The solutions of Eq. (2.32a) are 

= c,e"P+ + c2e-"PJil . (2.33a) 

The single-valuedness of 4 requires that 4('p + 2xn) = $(cp); n = 1,2,3,. . ., therefore 
e+2ai+ = I + fi = X must be integer, that is, X must be integer, and we obtain the 
solutions of Eq. (2.32a), 

To elucidate the physical meaning of A, we concentrate on the angular momentum 
e of the electron. As the electric field of the nuclei, in which the electron moves, is no 
central force field, e is not constant. However, for fixed internuclear distance R both 
the magnitude and the projection e, onto the internuclear axis are constant and have 
well-defined quantized values. 

The component of the electron angular momentum along the internuclear axis is 

r x PI: = X P y  - ypx (2.34a) ez = ( 

and its expectation value is 

because M and N do not depend on 'p and are each normalized. For 4 we substitute 
the solutions of Eq. (2.33b) to obtain 

(lZ) = 3%. (2.35) 

The absolute value of the quantum number X indicates the projection of the electronic 
orbital angular momentum onto the molecular axis in units of h (Fig. 2.9). 

Fig. 2.9 Precessing orbital angular momentum e of an elec- 
tron in the cylindrically symmetric electric field of a diatomic 
molecule. 
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I I 

1 I I b 

P a1 a2 P3 

Flg. 2.10 Energy curves &A(@) and E,x(p) 

If we substitute (Y = A2 in Eqns. (2.32b) and (2.32c), each of the resulting equations 
contains two parameters X2 and p. They can be solved by series expansions of the 
functions M and N [2.11]. It turns out that for each value of X2, and obeying the 
boundary conditions for the wavefunctions, there exists a discrete infinite sequence of 
curves corresponding to energy eigenvalues E,x (0) leading to meaningful solutions of 
Eq. (2.32b). Also, there are solutions to Eq. (2.32~) with, in general, different energy 
eigenvalues Epx (p ) ,  (C = 1,2,3,. . .). This is displayed schematically in Fig. 2.10. 

The solutions E must solve both equations simultaneously. Therefore only values 
of p are allowed for which En (A, p)  = Ee ( A ,  p). These correspond to the intersections 
of the sets of curves E,(X,p) and Ee(X,p) in Fig. 2.10. The admissible energies 
E,,J therefore depend on three quantum numbers n, C and A, and they form a discrete 
sequence for E < 0. 

Note: 

- Equations (2.32bH2.32~) do not depend on X but only on X2. This 
means that the energy does not depend on the sign of A. In non- 
rotating molecules, the two functions exp( *iACp) are energetically 
degenerate. 

- The eigenfunctions 11, are characterized by a set of three quantum 
numbers (n,e,X). They can be visualized as follows. The condition 
$(x,y,z) = 0 defnes a sugace with zero probability offinding the 
electron. This so-called nodal surface separates regions with 11, > 0 
from regions with 11, < 0. Because of 11, = M ( p ) N ( u ) $ ( c p ) ,  11, can 
only vanish ifat least one of the factors M ,  N or 4 vanishes. Each 
of these functions depends only on one coordinate; therefore they 
vanish for speciJic values of p, u and 'p. The nodal sugaces pk = 0 



2.4 Electronic States of Diatomic Molecules 33 I 
Planes cp = const. Surfaces p = const. 

n = 3, I = 2, h = 2 
two cp nodes 

360 

n = 2 ,  I = 0, h =  0 n = 3, I = 1, h = 1 
one p & one cp node one p node 

260 3PX 

Fig. 2.11 Nodal planes cp = 0 and nodal surfaces /I = 0 for some 
electronic states. 

are rotational ellipsoids, the sugaces v = ui = 0 hyperboloids and 
the planes cp = 0 planes through the z axis (Fig. 2.8). 

- As can be seen from Eq. (2.33b), the absolute value of the quantum 
number X indicates the number of nodal planes of 4. It can be shown 
that the quantum number e is the total number of nodal planes of cp 
and v. We can dejne the principal quantum number n to be the total 
number of p, v and cp nodal planes plus one; then we arrive at a 
relation very similar to that for atoms, 

X i t i n - 1 .  (2.36) 

- Each set ofquantum numbers (n ,  e, A) corresponds to a spatial pmb- 
ability distribution for the electron given by the square modulus of 
the wavefunction, 

Wn,t.x = +i,e.x+n,v,x = I+n.e.x12 . (2.37) 

The electron state with e = 0 is called an s state, the e = 1 state a p state, etc., 
in analogy to the designations of electron states in the hydrogen atom. States with 
the same e can differ in their projection quantum numbers A. They are labeled with 
lower-case Greek letters, that is, X = 0 is called a CJ state, X = 1 a K state, X = 2 a 6 
state. An electron state with the quantum numbers (n  = 3, C = 2, X = 2) is therefore 
called a 3 d6 state (see Fig. 2.1 1 and Table 2.1). 

Figure 2.12 illustrates the electronic wavefunctions of some states of H t  ; regions 
with positive values of the wavefunction are displayed in dark gray, regions with neg- 
ative values in light gray. 

The solutions of the separated Schrodinger equations (2.32b), (2.32~) yield the 
potential curves En(/?)  displayed in Fig. 2.13 for the H2f molecular ion. Note that 
only the lowest electronic state, 1 og, corresponds to a stable molecule; all higher 
electronic states possess repulsive potential curves (except for a shallow minimum of 
the 3 bg state at large internuclear distances). 
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Tab. 2.1 Quantum numbers and term designations of an electron in a linear molecule 
with orbital angular momentum quantum number e and projection quantum number 
X = Imp[. 

I 

Quantum numbers 
n e x 

Term 
designation 

1 0 
2 0 
2 1 
2 1 
3 2 
3 2 

Fig. 2.12 Electronic wavefunctions for some states of H l  (dark 
gray= positive; light gray= negative values). If the plane of the 
paper is a nodal plane, the sign of the wavefunction above the 
plane is indicated [2.11]. 

2.4.2 
Classification of Electronic Molecular States 

Electronic states of molecules with more than one electron cannot be calculated ex- 
actly. Even without explicit calculation it is possible, however, to give criteria that 
enable us to group all possible states into certain classes and to gain an overview and 
some physical insight into their electron distributions. 

The different electronic states of diatomic molecules can be classified according to 

1. their energy Ei ( R )  , 

2. the symmetry properties of their electronic wavefunctions, and 

3. the angular momenta and spins of all their electrons and their respective cou- 
plings. 
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Fig. 2.13 Potential curves of H: [2.12]. 

2.4.2.1 Energetic Ordering of Electronic States 
The subscript i in & ( R )  is merely a shorthand notation for the set (n , / ,A)  of principal 
quantum number n, angular momentum quantum numbers t, and projection quan- 
tum number A. In atoms, the principal quantum number n defines the order of all 
states according to energy. In molecules, this simple relation holds only for Rydberg 
states, in which one electron is highly excited and is located predominantly outside 
the molecular core, so that its coupling with the other electrons is small. For R 4 00, 

the potential curves E, , (R)  of a Rydberg molecule AB* merge asymptotically into the 
atomic ground state of atom A plus the nth Rydberg state of atom B' (Fig. 2.14). At 
the equilibrium distance R = Re a simple relation holds for molecular Rydberg states: 

(2.38) 

For low-lying molecular electronic states the energy differences between states with 
different angular momentum can be so large that is is not possible to define a principal 
quantum number n with the property that it approaches the atomic states A(n) + B 
or A + B(n)  for R + 03. This is especially true because there are in general sev- 

-&+I ( R 3  > En(R3  * 
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energy 
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era1 molecular states which can dissociate to the same states of separated atoms (see 
Fig. 2.13 and Sect. 2.4.5). In molecular spectroscopy, a special letter notation for 
molecular states is commonly employed, which designates the ground state of a sys- 
tem with the letter X. The next state which is accessible through an optically allowed 
transition from the ground state is designated A, the next B and so on. States which 
are inaccessible via optical transitions (e.g., triplet states, for singlet ground states), 
are designated with lower-case letters u, b, c, etc., ordered by energy. Unfortunately, 
this notation is not followed consistently throughout, because there are many cases 
where new states have been discovered below others which had already been labeled. 
Therefore many authors use a different, nonsystematic, notation. 

2.4.2.2 Symmetries of Electronic Wavefunctions 
The symmetry of a wavefunction is of great importance for the classification of elec- 
tronic states. Symmetry operations are actions such as a rotation of the whole molecule 
or the reflection of nuclear coordinates at a plane or a point (inversion), which leave 
the nuclear framework unchanged (see Ch. 5). The electron distribution does not 
change during a symmetry operation, that is, l + , 1 l 2  is invariant with respect to these 
operations. 

For diatomic molecules, each plane containing the internuclear axis is a valid mir- 
ror plane, which is described by an operator 0 (Fig. 2.15a). Executing this symmetry 
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Fig. 2.15 Symmetry operations. a) Reflection; b) inversion. 

operation twice returns the molecule to its original state, therefore 

u(o.111) = a2$ = +$ =+ u$ = *$ . (2.39) 

Each molecular state of a diatomic molecule must therefore be described either by a 
wavefunction qt (even parity), for which .,* t- - - +$+ I (2.39a) 

or by a wavefunction I+!- (odd parity), for which 

uq!- = -?/- . (2.39b) 

For diatomic molecules with ZA = ZB, that is, for homonuclear molecules, the inver- 
sion I of all nuclear coordinates at the center of the molecule is another symmetry 
operation (Fig. 2.15b). Again, the electron distribution must not change during the 
symmetry operation, that is, 

If we look at ourselves in a mirror, we recognize that the mirror image interchanges 
left and right; the image possesses opposite parity with respect to left-right symmetry 
as compared to the original. (Question: Why don’t you appear upside-down in a 
mirror?) 

In analogy to our previous considerations we can define two symmetry types of 
wavefunctions ,$g and &,, 

I * $ J = I ) J  + I& = +& and I & =  - 4 ~ ~ .  (2.40a) 

Molecular states with “even” wavefunctions qg have even parity, wavefunctions with 
“odd” wavefunctions t+bu have odd parity. The parity of a molecular state can be de- 
rived from the parities of the atomic states of the separate atoms which combine to 
form the molecular state (see Sect. 2.4.5). 
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.. 
Fig. 2.16 Independent precession of electronic angular momen- 
tum t and spin s. 

2.4.2.3 Electronic Angular Momenta 
Besides its orbital angular momentum C, an electron possesses also a spin s. The 
orbital angular momentum e precesses around the internuclear axis (z axis), thereby 
creating an electric current around the z axis, which in turn creates a cylindrically 
symmetric magnetic field B directed along the z axis. The electron experiences this 
magnetic field and aligns its spin magnetic moment either parallel or antiparallel to 
it. For nuclei with small nuclear charges the coupling between l and s (spin-orbit 
coupling) is usually weaker than the coupling of l to the molecular axis. In these 
cases and s precess independently around the internuclear axis, and their projections 
are Ah and ah, respectively (Fig. 2.16). 

As the magnetic field B is proportional to the expectation value Ah of the or- 
bital angular momentum projection e, and the expectation value of the magnetic spin 
moment p, is proportional to the electron spin projection ah, the interaction energy 
between l and s is 

W = A h ,  (2.41) 

where the constant A, the molecularfine-structure constant, depends on the molecular 
state. This interaction energy, depending on the angular momentum projections, cre- 
ates ajne-structure splitting of molecular terms. For molecules with a single electron, 
(T = & t i .  This means that each energy level in electronic states with X > 0 splits into 
a doublet, the components of which are separated by 

W = A X .  (2.41a) 

In molecules with more than one electron, the angular momenta of the individual 
electrons add. The sequence in which the momenta are added depends on the relative 
coupling strengths. We elucidate this fact for the analogous atomic case. 

We imagine the two nuclei with charges ZAe and ZBe to be united into a single 
nucleus with charge (ZA + ZB)e. The electrons then move in the spherical symmetric 
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Flg. 2.17 Angular momentum coupling. a) L-S coupling; b) In- 
dependent coupling of L and S to the molecular axis. 

potential of this nucleus, and their total angular momentum J must be constant. For 
light atoms we can assume L S  coupling, that is, the total orbital angular momentum 
L = Ci l i  of all electrons and the total spin S = 1; s; are vectorially combined from 
the orbital angular momenta l i  and the spins si of the individual electrons. The total 
angular momentum of the electrons is then Jel = L + S and its absolute value is 

If we now increase the internuclear distance until it reaches the molecule’s equi- 
librium distance Re, the electrons move in the cylindrically symmetric field of the two 
nuclei. The total angular momentum Jel is now not constant because the field creates 
a torque D = dJeI/dr, which leads to a precession of Jel around the internuclear axis 
(Fig. 2.17a). We can therefore observe only the time-average of Jel, i.e., the projec- 
tion M J ~ , ~  of Jel onto the internuclear axis. We can express this fact also by saying 
that Jel is no ‘good’ quantum number. The quantum number R of this projection is 

[Jell = & V Z T h .  

R = I M J ~ ,  I , R = ~ ~ l , ~ ~ l  - I , .  . ., I or 0 .  (2.42) 

If the spin-orbit coupling energy W = AL . S in the united atom is smaller than 
the coupling of L to the internuclear axis (which is in general true for light atoms), 
then L and S will be decoupled by the axial electric field and precess independently 
around the internuclear axis (Fig. 2.17b). In these cases the orbital angular momentum 
projection M,J and the spin angular momentum projection Msh are well defined, and 
they are best expressed in terms of the quantum numbers A and C defined by 

A = l M ~ l .  A=O,1,2 ,..., L 

c = M,y=s ,s -2  ,..., --s .  
(2.43) 

For the projection quantum number R of the total angular momentum we obtain 

R =  I A + E l  . (2.44) 

States with A = 0 are called E states, and states with A = 1,2,3 are II, A, and 
states. The notation is analogous to the atomic case, with the Latin letters of the 
atomic notation replaced by the corresponding Greek symbols. 
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Note: 

1. We denote the quantum numbers of a single electron by lowercase 
Greek letters, those of a many-electron system by uppercase Greek 
letters. 

2. The symbol C is used with two different meanings: 

a) To designate a state with A = 0 (upright C). 

b) A s  quantum number C = M s  of the total spin projection Msri 

3. Each state with A > 0 is twofold degenerate in nonrotating molecu- 
les because the two projections f M ~ h  of the orbital angular mo- 
menta L lead to the same energy in the axial electricjeld of the 
nuclei. In other words, the energy of nonrotating molecules does 
not depend on the sense of rotation of the electrons around the in- 
ternuclear axis! This degeneracy is removed in rotating molecules 
(see Sect. 3.2.3). 

onto the internuclear axis (italic C). 

The energy of a molecular state depends not only on the principal quantum number 
n, the quantum number A and the spin S, but also on the quantum number R = 

lA + El. As C can assume 2s + 1 values from C = -S to C = +S, an electron 
configuration with given values of S and A results in 2S + 1 different molecular states, 
which are calledjne-structure terms, in analogy to the atomic case (Fig. 2.18). 

As in one-electron molecules, the fine-structure splitting of light many-electron 
molecules is given by 

Wfs = A A C  . (2.45a) 

The term values of an electronic state with quantum numbers A and C are then 

Tt’.c = To + AAC , (2.45b) 

A3 

A2 

A = 2  3 
z=+1 

3 
--- 

\ 
\ 
\ 
\ -: I/’/* !2 = 3,2, 1 3A, 

Fig. 2.18 Fine-structure splitting of a 3A state with A = 2, C = 
O , f l ,  i.e., R =  1,2,3. 
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Tab. 2.2 Ground states of some diatomic molecules. 

Molecule H: H2 He: B2 c2 0 2  NO 
Groundstate X2Ed XlZ: X 2 Z :  x3z; X3rI" x3z, X2rII, ,  

where Ti is the term value for C = 0. The magnitude of the spin-orbit coupling 
constant A and its sign are determined by 

1. the sum Ci a;[; x s; of the interactions between spin and orbital angular mo- 

2. a suitable average of the sums Ci bij, l i  x s j  for j = 1,. . . , N over interactions 
of the spin of the jth electron with the orbital angular momenta of all other 
electrons [ 2.1 3 1. 

mentum of the same electron, and 

Which of these two effects dominates depends on the angular momentum coupling 
scheme employed for the angular momenta L and S of both atoms. 

The complete characterization of an electronic state of a diatomic molecule with 
total spin quantum number S, projection quantum number A = and projection 
quantum number 0 = I A + CI is written, similar to the atomic case, as 

2s+ I A ,  (2.46) 

with the appropriate letter ( X ,  A, B, C, etc.), indicating energetic ordering, in front 
of this symbol. For example, the ground state of the NO molecule is X*ll , , , .  For 
homonuclear molecules, the parity ("odd" or "even") of the wavefunction is also in- 
dicated. For example, the second excited state of the Na2 molecule is B'I'I", and the 
corresponding triplet state is b311,, with three fine-structure components R = 0,1,2. 
Table 2.2 lists the ground states of some common diatomic molecules. 

If the coupling between L = ze; and S = 1s; in both atoms is so strong that 
the nuclear electric field along the z axis cannot break it, A and C cease to be good 
quantum numbers. Their sum R = IA+ CI is still well defined, however (Fig. 2.17a). 
In place of the E, ll, A notation we call these states simply 0, 1/2, I ,  etc., states 
according to their quantum number R. 

Note: 

1. In contrast to the atomic case the fine-structure terms of diatomic 
molecules are, in the context of this simple model, equidistant within 
their multiplets, and according to Eq. (2.45) their distance is AE = 
AA. 

2. For A # 0, the number cdfine-structure components equals 2 s  + 1, 
even for A < C. 

3. The fine-structure splitting does not remove the A degeneracy for  
A # 0 in nonrotating molecules, that is, each fine-structure compo- 
nent is still twofold degenerate because of A = IMLI. 



42 2 Molecular Electronic States I 
2.4.3 
Electron Configurations and Electronic States 

To gain an overview of all possible electronic states of diatomic molecules and their 
symmetries and energetic ordering, we consider the two limiting cases for R 4 0 and 
R +. 00. If the internuclear distance R between the nuclei with charges ZA and ZB 
approaches zero, we arrive at the limiting case of the united atom with charge ZA + ZB 
containing the same number of electrons as the original molecule. For R +. 00 we 
arrive at the limiting case of two completely separated, noninteracting atoms. 

For R 4 00, each molecular state yields a combination of known states of the 
two separated atoms, for R -+ 0 a well-defined state of the united atom. The po- 
tential curves E ; ( R )  are defined by their respective asymptotic limits E ; ( R  = 0) and 
E;(R = 00); they can be combined into a correlation diagram, which displays the cor- 
responding molecular states for R = Re. 

2.4.3.1 The Approximation of Separated Atoms 
As a start, we discuss which states of a molecule AB can be realized by coupling the 
given atomic angular momenta in all possible ways. 

The atomic states have the orbital angular momentum quantum numbers LA and 
LB. When the two atoms approach each other, LA and LB precess around the z axis 
and their projections are (ML)AA and (ML)BA, respectively. The resulting quantum 
number A is then 

(2.47) 

As the values of ML can assume all values from -L  to L, a given combination of LA 
and LB can result in a large number of values for A,  which increases with increasing 
LA and LB. The number of possible molecular electronic states is therefore much 
larger than the corresponding number for the participating atoms! Table 2.3 lists, as 
an example, all possible molecular states that can emerge from the combination of an 
atomic D state with LA = 2 and a P state with LB = 1. 

Tab. 2.3 Quantum numbers of all molecular states which can be formed from D + P 
atomic states. 

(M / . )A  ( M J B  A State(s) 

0 0 0 2 
ikl TI 0 2 + ,  E 

0 ik1 1 n 
f l  0 1 n 
f 2  + I  1 n 
f l  * I  2 A 
ik2 0 2 A 
ik2 f l  3 a) 
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Tab. 2.4 Combination of atomic states with odd or even parity to molecular states. 

Atomic states Molecular states 

S, +S,  or S, + S,, 

S, + P, or S, + Pu 
S, + P, or S, + Pg 
S,+ D, or S, + D, 
P, + P, or P, + Pu 

P, + D, or P. + D, 

s, + s u  

P, + pu 

For (ML)A = ( M L ) B  there are three C states with A = 0. These are the com- 
binations [ - (ML)A + (ML)B[ = 0, / (ML)A - ( M L ) B [  = 0 and (ML)A = (ML)B = 0, 
respectively. It can be shown that there exists always an odd number of C states [2.14]. 
There are six combinations which lead to I(ML)A + (ML)BI = 1 and thus to Il states, 
four combination leading to A states, and two combinations leading to 

The symmetry properties of molecular states are derived from those of the atomic 
states of the atoms A and B. An atomic state has even parity if the sum Ce; over 
orbital angular momentum numbers e; of all electrons is even; is has odd parity if E l ;  
is odd [2.14]. This follows from the fact that the total wavefunction of the atomic 
state ( L , M L )  is a linear combination of products of Legendre polynomials, Cc; ni Y F .  
These products have even parity if C!i = even. To derive the angular momenta and 
parities of atomic and molecular states, we need to consider only partially filled shells 
because for completely filled shells the orbital angular momentum L = E l ;  is always 
zero. Table 2.4 lists the parities of molecular states derived from a number of atomic 
states; numbers in parentheses indicate the number of possible molecular states. 

states. 

Example 
Three atomic p electrons can produce the atomic configurations 'P, 'D and 4S. 
For all these states, El?; = 3 = odd and therefore they all have odd parity. Four 
p electrons lead to ' S ,  ' D  and 3P states. In each case, C!; = 4 = even, that is, 
all these states have even parity, although the total angular momentum quantum 
number can assume even as well as odd values. This shows that we can nor derive 
the parity from total angular momentum L. 

Now we include also the spins SA and SB of the atomic states in our discussion. 
The resulting molecular spin is S = SA + SB, and its magnitude is 

IS( = \/S(S+ l ) h ,  

where S is the spin quantum number. For SB < SA. the spin quantum number S can 
assume the (2Se + 1)  values 

S = S A + S B ;  SA+SB-I ;  ... , ' SA-SB, (2.48) 
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Tab. 2.5 Possible multiplicities of molecular states for given multiplicities of the atomic 
states. 

I 

Atom A Atom B Molecule AB 

singlet singlet singlet 
singlet doublet doublet 
doublet doublet singlet + triplet 
doublet triplet doublet + quadruplet 
triplet triplet singlet, triplet, quintuplet 
triplet quadruplet doublet + quadruplet + sextuplet 

which correspond to all possible orientations of SB relative to SA. For SB 2 SA we 
obtain correspondingly (2sA + 1) values for S (Table 2.5). 

Two atomic states with spins SA and SB can therefore lead to (2sB + 1) or (2s.4 + 
1) different molecular spin states characterized by the spin quantum number S. Spin- 
orbit coupling splits each of these states into fine-structure components with quantum 
number 52 (see Sect. 2.4.2.3). Table 2.6 lists some examples. 

For homonuclear diatomic molecules, the number of possible molecular states is 
further increased by the additional property of parity, that is, each state can be clas- 
sified as even or odd according to the parity of its wavefunction. If both atoms have 
different parity, we obtain two states for each of the molecular states shown in Ta- 
ble 2.4, one with even and one with odd parity. Table 2.7 lists all molecular states 
which can be formed from two identical atoms in identical atomic states. 

Tab. 2.6 States of diatomic molecules with their quantum numbers A = IMLI; S (spin 
quantum number), C (spin projection) and R = A + C. 

A S ,E R State 
~~ ~ ~~ 

0 0 0 0 'z 
1 1 0 1 'n, 
1 1 1 2 'n, 
1 1 -1 0 3n0 

3 2 1 4 3@4 

2A5/2 
I f z 

1 
2 2 

Tab. 2.7 Electronic states of homonuclear diatomic molecules which can be formed 
from two atoms in identical states. 

Atomic states Molecular states 
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2.4.3.2 The “United Atom” Approximation 
If we imagine both nuclei with charges ZAe and ZBe combined in a single nucleus 
with charge (ZA + ZB)e, we obtain an atom with a well-known configuration of the 
( Z A  + Z B )  electrons. For example, from ;Li fH we create the “united” atom beryllium 
atom :Be in its ground-state configuration ( 1 ~ ) ~ ( 2 s ) ~ ,  and from the TH radical 
containing a deuterium nucleus TH, the “united” carbon atom with an electron con- 
figuration ( I S ) ~ ( ~ S ) ~ ( ~ P ) ~  emerges, where we indicate the occupation of an atomic 
state by the exponent. The states Is, 2s, 2p, etc., with their respective wavefunctions 
are called atomic orbitals. 

If we now separate the two nuclei from each other, the electrons with l? > 0 start to 
precess in the axial electric field. A p electron with ! = 1 can then assume the projec- 
tions meh = 0 or meA = f l h  of the electronic orbital angular momentum. Table 2.8 
lists the possible molecular states and their maximum electron occupation, which can 
be created from the different electron configurations of the united atom. For example, 
from the ( 1 ~ ) ~ ( 2 ~ ) ~ ( 2 p ) ~  electron configuration of the united C atom, the following 
three electron configurations of the BH molecule can emerge upon separation in sep- 
arate nuclei B + H through the different projections X = 0, f 1 of the two p electrons 

Next we must decide which molecular states can be derived from these electron con- 
figurations, how they correlate with the states of the separated atoms, and what their 
energetic ordering will be. 

2.4.4 
Molecular Orbitals and the Aufbau Principle 

The so-called one-electron approximation considers a single electron ei, which moves 
in the electrostatic potential of the two nuclei and of the averaged charge distribu- 
tion of all other electrons. The electronic wavefunction 4i(ri) that describes the state 
of this electron and that depends only on the coordinates of this electron is called 
a molecular orbital. Its square modulus Iq$(~i) l 2  determines the spatial probability 
distribution for this electron. The Pauli principle allows this molecular orbital to be 

Tab. 2.8 Molecular one-electron states created from the orbitals of a united atom. 

United atom Molecule Maximum 
State P x occupation 

ns 0 0 nsa 2 
nP2 1 0 nPo 2 
np,, npy 1 1 
$ 2  2 0 
nd,, nd,.; 2 1 

2 

nPx 
ndo 
ndn 
nd6 
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occupied by a maximum of two electrons with antiparallel spins. The spatial distri- 
bution $i(ri) of these two electrons is then identical. (Table 2.8 lists the maximum 
allowed occupation number for orbitals with X 2 1 as being four since these orbitals 
are twofold degenerate because of X = I fine I .) 

Within the one-electron approximation, we can now build the molecular electron 
configuration as follows. First, we decide which molecular orbitals can be created 
from the available atomic orbitals. The molecular orbitals can either be constructed as 
linear combinations of atomic orbitals of the separated atoms or taken from those of 
the united atom (see preceding section). 

Next, the molecular orbitals are arranged in order of increasing energy, which in 
general is the following: 

lso; 2so; 2po; 2pn; 3so; 3po; 3pn; 3do; 3dn; 3d6; . . . 

These orbitals are now filled with the maximum number of electrons which is allowed 
by the Pauli principle (see Table 2.8). The electronic ground state wavefunction of 
the molecule in the one-electron approximation is then the product of all occupied 
molecular orbitals. This product of occupied molecular orbitals is also called the elec- 
tron Configuration. Table 2.9 lists the ground-state configurations of some common 
molecules. 

The singly excited molecular states are obtained by moving one electron from an 
occupied into an energetically higher unoccupied orbital. Table 2.10 lists the low- 

Tab. 2.9 Ground-state electron configurations of some common light molecules. 

Molecule Electron configuration Ground state 

2 +  
H: og Is =, 
Hz (% 
He: (og I S ) ~ ( O , ,  Is) =U 

He2 (og I S ) ~ ( O ,  1s)' 1z; 
Liz (og ls)2(ou ls)2(og2s)2 1z; 
B2 (og I s)2(ou1 s)2(og 2s)2(ou 2s)2(x, 2p)Z 3zg 

c2 (og ls)2(ou ls)~(og2s)2(au2s)2(xu2p)4 3n; 

or (xu2P)3(%2P) 3% 

2 +  

Bond energy (eV) 

2.648 

4.476 

2.6 

0.00 I 

I .02 

3.6 

3.6 

3.6 

Tab. 2.10 Electron configurations in the ground and first excited states of the Li2 
molecule. KK designates the 1s orbitals in the two atomic K shells which are located 
around the respective nuclei. 

KK( og 2s)' 'z;, 3z; 

KK(% 2s), ( c g  2P) q, 3zg 

KK(o, 2s. rr2p) 3% Ing, In", 3ng 

KK(o, 2s), (og 3s) I", "; 
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Fig. 2.19 Potential curves of the Li2 molecule derived from two 
different combinations of atomic states [2.15]. 

est three excited electron configurations and their corresponding states for the Li2 
molecule with six electrons. Figure 2.19 displays the potential curves of the Li2 
molecule that result from the states (22S1/2 +22S1/2) and (22S1/2 +22P1/2,3/2) of 
the separated atoms. 

Figure 2.20 illustrates once more how the atomic states 3P, ID and 'S of the united 
carbon atom are constructed from the electron configuration ( 1 ~ ) ~ ( 2 ~ ) ~ ( 2 p ) ~ ,  follow- 
ing the energetic ordering discussed above. The energetic ordering of the orbitals with 
different electron spin is determined by Hund's rule, which states that, for a given 

- ,  's ,,,a' ,,' 

Electron 
configuration of 
the BH molecule 

Fig. 2.20 Correlation between the electron configuration of the 
united carbon atom and the resulting molecular states of the BH 
molecule. 
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value of the quantum numbers I and X = Imel, the state with maximum multiplicity 
is lowest in energy. This rule follows from Pauli's principle, because electrons with 
parallel spin have the smallest overlap between their spatial wavefunctions. Thus, they 
are on average farther apart from each other and their mutual Coulomb repulsion is 
minimized. 

The atomic configuration ( 1 ~ ) ~ ( 2 ~ ) ~ ( 2 p ) ~  of the united carbon atom corresponds 
to the following molecular configurations and states of the BH molecule: 

(lso)2(2so)2(2po)2 +-+ 'C+ , 

(lso)2(2so)2(2po)(2px) ++ 'n, 3n , 
( I s ~ ) ~ ( ~ s o ) ~ ( ~ ~ K ) ~  +-+ 3C-, 'I?, 'A . 

From Tables 2.3-2.8 we can see which of the molecular states 'C, 311, 'n, 'E and 
]A correspond to which atomic states 3P, 'D, 'S of the united atom; the resulting state 
diagram is shown in Fig. 2.20. 

Although we can gain a lot of information on the numbers, types and energetics of 
molecular states from the above considerations, we still need - usually quite lengthy - 
calculations to determine the energies (i.e., term values) quantitatively (see Sect. 2.5). 
However, from a correlation diagram we can already get a qualitative picture of the 
different molecular states during the transition from the united atom (R = 0) to the 
separated atoms (R = -). This will be discussed next. 

2.4.5 
Correlation Diagrams 

In this section we will discuss how the electron configuration of the "united" atom 
makes the transition to the electron configurations of the separated atoms when the 
distance R is increased from 0 to -. Molecular orbital theory answers this question by 
providing molecular orbitals 4 ; ( R )  for each electron i as a function of the internuclear 
distance R. The energy En (R) can then be calculated as the expectation value of the 
Hamiltonian, 

This will be done in Sections 2.5 and 2.6 for the HZ molecular ion and the H2 

molecule. However, from conservation laws and symmetry considerations we can get 
a qualitative impression of such a correlation 4; (R) between 4i (0) and 4; (-). This is 
achieved as follows. 

First, we determine all possible molecular electron configurations at small internu- 
clear separations R from the configuration of the united atom. This procedure yields 
the corresponding molecular orbitals (see Fig. 2.20) as defined through the quantum 
numbers (n, e, me). If the internuclear separation increases, the molecular orbitals be- 
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come linear combinations of the atomic orbitals of the separated atoms. The following 
conservation laws apply: 

1. The quantum number X = Imp1 is independent of R, because the component mefi 
of the angular momentum l is conserved for all internuclear distances R. The 
principal quantum number n and the angular momentum quantum number l can 
change, however; that is, for the separated atoms n = nA + n g  or l = l~ + l g  

do not hold. 

2. Wavefunction parity does not depend on the internuclear separation R; therefore 
even or odd states of the united atoms yield even and odd molecular states, 
respectively. 

3. If two different states in the united atom have the same symmetry, quantum 
number A, and multiplicity 2 s  + 1, they can not become degenerate for any 
internuclear separation R. Stated differently: The potential curves E ( R )  of such 
states can never cross! 

This noncrossing rule was proven for exact wavefunctions with the aid of group 
theory by Neumann and Wigner [2.16,2.17]; it is, however, still applicable for approx- 
imated wavefunctions. Figure 2.21 shows a correlation diagram for the lowest states 

Fig. 2.21 Correlation diagram showing the energies of elec- 
tronic states during the transition from the united atom (R  = 0) to 
separated atoms ( R  = -). 
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Fig. 2.22 Potential curves of the NaCl molecule, which shows a 
transition from neutral NaCl for small internuclear distances to 
ionic states Na+CI- for large internuclear separations. 

of a homonuclear molecule. It can be constructed as follows. We start with the lowest 
state of the united atom, construct from it the appropriate molecular orbitals for R = 0, 
and connect these to the lowest pair of atomic states of the same symmetry for R 4 00. 

Usually, these are the ground states of the two atoms. The second-lowest molecular 
state must then dissociate into the lowest yet unused atomic states of proper symmetry, 
etc. Applying the noncrossing rule, we can in most cases arrive at the correct ordering 
of molecular states, provided we know the atomic terms for R = 0 and R = 00. It might 
appear that this procedure yields always unambiguous results. Unfortunately this is 
not the case, because some complications arise especially for heteronuclear molecules. 

1. A molecule AB can dissociate not only into neutral atoms A + B but also into 
the ions A+ + B-.  This situation occurs, for example, in the alkali halides 
(Fig. 2.22). These ionic potential curves often cross the corresponding neutral 
curves, leading to significant shifts in the potentials En(R). 

2. Spin-orbit coupling varies markedly with internuclear distance so that the cou- 
pling of the angular momenta L and S can be completely different in the united 
atom from that in the separated atoms. It is thus in many cases not possible to 
decide on the basis of a correlation diagram alone into which fine-structure com- 
ponents of the separated atoms a given molecular state ( A ,  C, 0) will dissociate 
(Fig. 2.23). 

3. For repulsive potential curves, the energy En(R) depends strongly on R. This 
makes an unambiguous assignment difficult. 
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Fig. 2.23 Dependence of spin-orbit coupling on the internuclear 
distance for the Cs:! molecule. 

A correlation diagram is an important tool in assigning molecular states, yet it cannot 
replace numerical calculations of absolute energies E n ( R )  when it comes to quan- 
titative discussions. Such calculations are based on approximation methods for the 
solution of the electronic Schrodinger equation (2.15a) which we will now discuss. 

2.5 
Approximation Methods for the Calculation of Electronic Wavefunctions 

The electronic part, Eq. (2.13a), of the Schrodinger equation (2.4) for fixed nuclei, 

H ~ ~ ~ ( T - , R )  = E , O ~ , , ( T - , R )  , R = const., 

cannot be solved exactly for any chemically relevant system. We must therefore em- 
ploy approximative methods which yield wavefunctions that describe the potential 
surfaces En ( R )  “as good as possible”. 

All such methods rely on a proper choice of approximate wavefunctions (basis 
functions) containing adjustable parameters. These parameters are then varied so that 
the calculated energies E n ( R )  of molecular states match the unknown true energies 
as exactly as possible on the whole range of nuclear configurations R. An important 
criterion for this match is provided by the Ritzprinciple, which states that the energies 
calculated with approximate wavefunctions are always above those calculated with 
the exact (true) wavefunctions [2.18]. This will be shown in the following section. 
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2.5.1 

The Variational Method 

Almost all approximation methods for the calculation of wavefunctions rely on the 
variational method to determine the values of the free parameters in the chosen basis 
functions. The quality of an approximated wavefunction can be judged on the basis of 
a simple argument. 

The exact eigenfunctions q ! ~ ~ l  are solutions of the Schrodinger equation H4el = 
Eeldel with exact energies Eel (R) .  An approximate solution function 4 yields the 
expectation value 

(2.50) 

for the energy, where we have used Dirac's notation (4 [HI 4) = J @*H$ dTel. The 
difference between this approximate energy E and the exact energy Eel is therefore 

(2.5 1) 

Now we substitute 4 = 4el + 64 for the approximate function in Eq. (2.51), and with 
H&I = E$el and due to the hermiticity of the Hamiltonian we obtain 

(2.52) 

Thus, the difference E - Eel depends quadratically on the difference 64 and must 
assume a minimum for 64 = 0. Therefore, 

The energies calculated with approximate wavefunctions 4 are always larger than the 
true energy Eel. 

This means that the expectation value of the energy assumes a minimumfiir the 
correct wavejimctions, that is, for the exact solutions of the Schrodinger equation! 

This fact is the basis for a general method to optimize approximate solutions. We 
write our trialfunction as a linear combination 

m 

(2.53) 
i 

of known functions cp; (which need not be solutions of the Schrodinger equation) and 
unknown coefficients ci. Next, we optimize 4 using the conditions 

( I d ' H d d r )  = O ;  i =  1,2, ..., m aci (2.54) 
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in order to obtain the minimum energy. Substitution of Eq. (2.53) leads to a linear 
system of m equations for the m unknown coefficients ci 

C I  (HI I -ESI I )  +c2(H12 -ES12) + . * .  + c p , ( H l m  -ES,m) = 0 ,  

C I  ( H ~ I  - ESm1) + c2 (Urn2 - E S m 2 )  + ' ' + cm ( H m m  - E S m m )  = 0 9 

where we have introduced the abbreviations 

Hik= pfHpkdr  and Sik= p t p k d r .  (2.56) 

This system of equations has nonzero solutions ci if and only if its determinant fulfills 

lHik -ESikI = 0 .  (2.57) 

From this secular equation we obtain the m energies El (R), E 2 ( R ) ,  . . . , Em(R) and 
from Eq. (2.55) the unknown coefficients ci for all nuclear configurations R. This 
means that we have to calculate all the integrals Hik and Sik, which is possible because 
the pi are known (see Sect. 2.6). 

I J 

2.5.2 
The LCAO Approximation 

As the electronic state of a diatomic molecule is determined by the states of the sepa- 
rate atoms resulting for R + 00, an obvious choice for the trial function 4 in Eq. (2.53) 
is a linear combination of the eigenfunctions $A and 4~ of these atomic states. 

That means that we approximate the molecular wavefunction 4 by a linear com- 
bination of the corresponding atomic orbitals; the method is therefore called linear 
combination ($atomic orbitals (LCAO). By atomic orbital we mean the atomic wave- 
functions #A and &,, whose square moduli determine the electronic densities in atoms 
A and B, respectively, in the appropriate states. The molecular function 4 is also called 
a molecular orbital. 

Remark: For polyatomic molecules with n atoms 4 is taken as a linear 
cornbination q!~ = xy ci4i. Howevec we will see later (in Sect. 2.8) that 
the number ofbasis,functions 4i does not necessarily equal the number of 
atoms in the molecule. 

If we choose, for a diatomic molecule AB, the LCAO function 4 = cl 4~ + C 2 4 B  

with normalized atomic orbitals 4~ and 4~ so that ( 4 ~  I ~ A )  = ( 4 ~  1 4 ~ )  = 1 ,  the 
molecular wavefunction 4 can be normalized as 

(2.58) 
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The “best” functions $ in the sense of energy minimization are obtained, according to 
the variational principle, by differentiating the energy expectation value 

( E )  = J ( ~ I H I ~ )  (2.59) 

with respect to the coefficients ci and equating the result to zero. As shown before, 
this yields the system of equations 

(2.60) 

from which the secular equation 

( H u  - E )  (HBB - E )  - (HAB - E S A B ) ~  = 0 (2.61) 

results as a quadratic equation for E ,  where we have again used the abbreviations 
Hjk = s $tH$k d7 and s i k  = S $ r $ k  d7 and the relations Hik = Hkj and Sik = s k i .  

Note: The atomic wavefunctions & ( r A )  and # ) g ( r g )  are in general 
one-electron functions, and the electronic coordinates r A  and r g  do not 
normally refer to the center of mass of the molecule (or another common 
origin) but use different reference frames with, for example, the centers 
of the individual atoms as origins. The integrals Hik and Sjk are then 
two-center integrals and are explicitly written as 

(2.62) 

where the coordinates r A  refer to nucleus A and r g  refer to nucleus B 
(Fig. 2.7). We can compute these integrals as a function of the internu- 
clear distance R by introducing elliptic coordinates rA = R( ,u + v )  /2  and 
rg = R( p - v) /2 12.191. 

From Eq. (2.61) we obtain two solutions E I ( R )  and E2(R) for the energy, which 
for the special case of two identical atoms in identical states ($A = $B, HAA = HBB) 
yield the simple expression 

(2.63) 

In this case, the coefficients cl and c2 are obtained by substitution of Q. (2.63) into 
Eq. (2.60), 

(2.64) 
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Fig. 2.24 a) Splitting of the atomic energies EA = EB into two 
molecular states = E+ and E~ = E -  for identical atomic 
states. b) Two coupled pendulums as a mechanical analogy. 
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Fig. 2.25 Overlap integral of two functions of the same and dif- 
ferent symmetry. 

We see that the linear combination of two identical atomic orbitals splits the energy 
into two levels El and E2 (Fig. 2.24a). The magnitude of the splitting for 4~ = 4~ is 

(2.65) 

it depends on the overlap integral SAB, the Coulomb integral HAA, and the resonance 
integral HAB (also called exchange integral). 

A mechanical analog to this energy splitting consists of two coupled pendulums 
with resonance frequency wo. Depending on the relative phase of the two oscillations 
x i ( t ) ,  the coupling creates two normal modes of vibration, x+ ( t )  =x i  ( t )  +x2(t)  with 
frequency w+ andx-(t) = X I  ( t )  -x2(t)  with frequency w- > w+ (Fig. 2.24b). 

Note: Both the overlap integral SAB and the resonance integral HAB are 
zero ifthe functions belong to different symmetry types, that is, if they be- 
have differently under any ofthe symmetry operations of the molecule. rf; 
for example, 4~ is symmetric with respect to such a symmetry operation 
and 4~ is antisymmetric, the integrand $B is an odd function of the 
relevant coordinates, and the integral J ~ A ~ B  d r  from --oo to +-oo van- 
ishes. Figure 2.25 exemplijies this for the overlap o f a  1 s  with a pz and a 
px function. In the first case, the two functions have the same symmetry 
with respect to rejection at a plane through the z axis and perpendicular 
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to the paper plane: in the second case their symmetries diffeer: Therefore, 
the$rst overlap integral is nonzero, the second vanishes. As the Hamilto- 
nian H of a molecule must be symmetric with respect to all its symmetry 
operations, the above argument holds also for HAB. 

2.6 
Application of Approximation Methods to One-electron Systems 

Although we have already seen in Sect. 2.4.1 how the HZ molecule can be described 
for fixed nuclei, it is still highly instructive to apply the LCAO method and the varia- 
tional principle to this system, because by comparing the results to those of the exact 
treatment we can gain insight into the merits and limitations of simple approximations. 

Specifically, we will see that we need to be careful with the physical interpreta- 
tion of theoretical results based on approximate wavefunctions, but that we can also 
arrive at very reliable results if we improve, with the aid of physical insight, the basis 
functions employed. 

2.6.1 
A Simple LCAO Approximation for the H; Molecule 

If we apply the LCAO approximation as outlined in Sect. 2.5.2 to the Ht molecule, 
we obtain for the energetically lowest molecular orbital 

where 4~ and 4~ are the normalized wavefunctions of the atomic hydrogen 1 s ground 
state, 

(2.67) 

where a. = 47c~~oh~ / (me2)  is the Bohr radius in the hydrogen atom [2.18]. The ansatz 
Eq. (2.66) can be visualized as follows. 1 4 ~ 1 ~  and 1 4 ~ 1 ~  describe the probability den- 
sity of finding the electron in the vicinity of nucleus A and B, respectively, if the other 
nucleus is infinitely far away. For finite internuclear distances R, C I  4,t, describes the 
probability amplitude that the electron is near nucleus A, and C ~ $ B  gives the proba- 
bility amplitude for the electron in the vicinity of nucleus B. As both possibilities are 
indistinguishable, both must be included, and we must use the total probability am- 
plitude q5 for “electron at A as well as at B”, which equals the sum of the individual 
amplitudes. 
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Fig. 2.26 Wavefunctions and their square moduli for the two I 

lowest states of H:. 

With the normalization condition Eq. (2.58) and with c1 = k:c2 [see Eq. (2.64)] we 
obtain from Eq. (2.66) the two normalized functions 

(2.68) 

From these, we can calculate the probability densities for the electron in the states q5+ 
and 4- by squaring, 

(2.69) 

Using the known functions $A, $B [Eq. (2.67)] and the overlap integral S [Eq. (2.62)] 
we can now compute 14+ l 2  and 14- l 2  for any given internuclear distance R (Fig. 2.26). 

From Eq. (2.63) we obtain the corresponding energies 

HAA - HAB 
1 -SAB 

, E - ( R ) =  HAA + HAB 
E+(R)  = l + s A B  (2.70) 

The integrals SAB, HAA,  and HAB over electronic coordinates depend on the internu- 
clear distance; they can be solved exactly. For more detailed calculations, see [2.18- 
2.2 I ] .  

Figure 2.27 displays the functions S A B ( R ) ,  HAB(R), H A A ( R ) ,  E + ( R )  and E - ( R )  
graphically so that we can gain an impression of the meaning of the different terms. 
We see that the overlap integral tends to 1 for R -+ 0, and is negligible only for R > 74,. 
For R -+ 00 both E + ( R )  and E-(R)  converge towards H A A ( ~ )  = Eat = -13.6eV, the 
binding energy of the electron in the hydrogen atom. 

The potential curve E+ ( R )  describes a bonding state with a minimum of E ( R , )  = 

-0.13Eat % 1.76eV below the binding energy -Eb of the electron in the hydrogen 
atom. The corresponding wavefunction qb+ from Eq. (2.68) is symmetric with re- 
spect to inversion (reflection at the center of mass) of electronic coordinates. Thus, it 
describes a og state, while the repulsive curve E- ( R )  describes a 0" state. 
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Fig. 2.27 Overlap integral SAB, Coulomb integral Hm, exchange 
integral HAB and energies E- and E+ (broken curves) as func- 
tions of the internuclear distance R for Ht [2.19]. 

From Fig. 2.27, we see that the LCAO approximation is correct in that it yields a 
bonding ground state for Ht and a repulsive rsu excited state, but that the calculated 
bonding energies are much too small. The reasons for this deviation will be discussed 
in the next section. 

2.6.2 
Deficiencies of the Simple LCAO Method 

If we use the normalized wavefunction 4+ from EQ. (2.68) to calculate the expectation 
values 

(2.7 1)  
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Fig. 2.28 Kinetic energy T ( R ) ,  potential energy V ( R )  and total 
energy E ( R )  from a simple LCAO calculation compared with the 
exact treatment (solid curves). 

of the kinetic energy T ( R ) ,  the potential energy V ( R )  and the total energy E ( R )  of 
the electron in the H: molecular ion, we obtain the curves shown in Fig. 2.28. This 
demonstrates that in the LCAO approximation the bonding is due to a decrease in 
kinetic energy T while the potential energy is steadily increasing with decreasing in- 
ternuclear distance R. 

This is not true for the real H; molecule, however, as the exact calculation shows 
that the kinetic energy T ( R , )  in the equilibrium configuration is in fact larger than for 
R -+ 00. This fact can easily be rationalized: for a diatomic molecule at its equilibrium 
bond distance the virial theorem holds, that is, the expectation values of the kinetic and 
potential energy of the electron in the Coulomb potential of each nucleus are related 
by (T) + (V)  = E and 

1 
( T )  = -- 2 ( V )  = - E .  (2.72) 

As the total energy E of a stable molecule must be smaller than that of the unbound 
atoms (otherwise no bonding would occur), ( T ( R ) )  must be larger than in the free 
atom. 

It is highly instructive to look at the dependence of the electronic kinetic energy 
T ( R )  and potential energy V ( R )  on the internuclear distance R in some detail. 
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If we calculate the expectation values 

(2.73a) 

(2.73 b) 

for the components T, and Ty perpendicular to the molecular axis and T, along the 
molecular axis, we obtain for R = 00 an isotropic electronic velocity distribution with 
(7'') = ( T y )  = (7'J. At the equilibrium bond length Re, the expectation value (T,) 
decreases, while (T,) = (Ty) increase. 

There is a simple physical explanation for this behavior. When the two nuclei 
approach each other along the z direction, the electron can move more freely along 
z than in an isolated hydrogen atom. Hence, its accessible space Az increases, and 
according to Heisenberg's uncertainty principle its momentum uncertainty 

(2.74) 

and thus also its kinetic energy in the z direction decrease. 
In the directions perpendicular to the molecular axis the charge distribution shrinks, 

because the combined attraction of both nuclei increases, that is, the electron's acces- 
sible space in these directions decreases. Consequently, (TI) and ( I ; )  increase. 

The LCAO approximation fails to reflect the increase of (T') and (Ty) because the 
shrinkage of the wavefunction cannot be modeled by the simple ansatz of Eq. (2.68). 

A further deficiency of the simple LCAO approximation is that the electronic total 
energy E ( R )  approaches E ( 0 )  = - ~ E A  for R + 0, that is, for the He+ ion, as can be 
seen from Eqns. (2.69) and (2.70) with S A B ( R  -+ 0) = 1, while the correct value is 
E(He+) = -4E.4. 

2.6.3 
Improved LCAO Approximations 

The simple LCAO approximation of Eq. (2.68) for the H$ ground state, 

obviously approaches the hydrogen 1s orbital 4~ from Eq. (2.67) for R -+ 0, because 
1ima-o S( R )  = 1 and 4~ = 4 ~ .  

On the other hand, the limit R + 0 yields a ground-state He+ ion (the two missing 
neutrons have almost no influence on the electronic energy), and the corresponding 
wavefunction should thus read 

(2.75a) 
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Fig. 2.29 Optimization of the contraction parameter v ( R ) .  

because Z = 2 for the united atom and the electron is on average closer to the nucleus 
than in the case of hydrogen (this is described by the factor 2 in the exponent). 

To describe this contrucrion of the electron distribution properly, we replace the 
functions and &j by modified 1s functions 

(2.75b) 

in which the parameter 71 = q(R) depends on Rand must obey the boundary conditions 
~ ( 0 )  = 2 and Y/(DJ) = I .  The normalization constant N now depends on q and therefore 
also on R. We determine q ( R )  for all internuclear distances R so that the corresponding 
expectation value ( E )  of the energy is a minimum, that is, the condition 

(2.76) 

must hold for arbitrary but fixed R. This yields for q(R) the curve shown in Fig. 2.29. 
If we use these optimized functions 4+ to calculate the expectation values (T(R)), 

( V ( R ) ) ,  and {E(R)), we obtain a much closer agreement with the exact curves in 
Fig. 2.28. From a comparison of the E ( R )  curves in Fig. 2.30, we see that introduction 
of the parameter 71 has significantly improved our results. The calculated equilibrium 
distance R, is correct; the bond dissociation energy, however, is still too small by about 
20%. 

Whereas this first improvement of the simple LCAO approximation by the parame- 
ter r/ to describe the effect of the contracting electron distribution still uses spherically 
symmetric basis functions 4~ and 4 ~ ,  in reality the charge distribution around nucleus 
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Fig. 2.30 Potential curve of the H+ ground state as computed 
with a) simple LCAO, b) optimized parameter 77, c) polarization 
term, and d) exact treatment. 

A will be polarized in z direction by the existence of nucleus B. We can describe this 
polarization by introducing a polarization term into the basis functions 4~ and 4 ~ ,  
that is, 

@A = e-'lrA/aO ( 1  +k), (2.77) 

and similarly for 4 ~ .  Now we can optimize the parameters v ( R )  and X(R) for each 
internuclear distance R, according to 

The potential curve E ( R )  resulting from these improved basis functions resembles the 
exact curve very closely. 

Figure 2.30 compares the potential curves E ( R )  and Table 2.1 1 the values obtained 
for the equilibrium distances Re and depth De of the potential minimum E ( R , )  that 
are computed using the different approximation levels. 

When using a basis consisting of 50 functions, the experimental curve can be re- 
produced within experimental errors [2.22]. 

Tab. 2.11 Comparison of equilibrium distances and bond dissociation energies of H l  
as computed at different approximation levels with exact values. 

Wavefunction &la0 &lev 
simple LCAO 2.5 
LCAO with optimum 17 2.0 
LCAO with additional polarization 2.0 
exact calculation 2.0 

1.76 
2.25 
2.65 
2.79 
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We have discussed the LCAO approximation for the H$ molecule in such detail 

because this simple example shows the merits and limitations of the approximation 
very clearly, and this discussion should always remind us to be careful with the in- 
terpretation of results (for example with respect to the roles of kinetic and potential 
energy in chemical bonding) [2.23]. Also, the often-quoted argument that exchange 
energy is the most prominent factor in chemical bonding is not true in the case of H t  ! 

2.7 
Many-electron Molecules 

In molecules with N 2 2 electrons the interaction between the electrons appears as a 
new term in the Hamiltonian Eq. (2.3), rendering the separation of the many-electron 
wavefunction $ ( T I  . . . T N )  in Eq. (2.7) into products of one-electron functions impos- 
sible (at least not directly). Also, the Pauli principle (which states that a state described 
by a spatial and a spin wavefunction may be occupied by only one electron) acts as an 
additional boundary condition for the distribution of electrons into orbitals. There are 
several approximation levels to solve this problem. 

2.7.1 
Molecular Orbitals and the Single-particle Approximation 

In a first, rather crude, approximation, we neglect this “electron correlation” com- 
pletely, i.e., we set the third term in Eq. (2.3) equal to zero. Now the electronic part 
of H can be written, within the BO approximation, as a sum of one-electron operators 
Hi, 

. (2.78) I e2 zk N 

H ( T ~ .  . . T N )  = H~(T;)  with Hj = --Vj - - 
i= 1 2m 4 m 0 ~ 7 ~  

If we write the total electronic wavefunction as a product of one-electron wave- 
functions for the electrons 1,2,3,. . . , N ,  

@(1 ... N ) = $ 1 ( 1 ) ~ 1 $ 2 ( 2 ) ~  ... x $ , ( N ) ,  (2.79) 

the Schrodinger equation can be separated into N one-electron equations 

Hi(i)$;(i) = ~ i $ ;  , 

and the total energy E is 

i = 1 . . . N , (2.80a) 

N 

E = C E ; .  (2.80b) 

The one-electron wavefunctions $i(i) are the molecular orbitals of Eq. (2.53). As 
in Eq. (2.53), they can be written as linear combinations of atomic orbitals. It is 

i= I 
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q 1 , 2  ,..., N )  = ~ m :  

nor possible, however, to distinguish the individual electrons, that is, we cannot tell 
+ j (  1) from 4i(2), etc. In other words,the state that is described by the wavefunction 
of Eq. (2.79) could as well be described by any wavefunction @ which is created 
by permuting the electrons in Eq. (2.79). The total wavefunction should therefore 
be a linear combination of all possible wavefunctions according to Eq. (2.79) with 
permuted electrons. The most general function of this kind is a linear combination of 
all N !  possible permutations. 

If we consider also the spin of the electrons, then each of the functions 4 can be 
written as a product of a spatial function $ ( r )  and a spin function ~ ( s ) .  As the elec- 
trons are fermions with half-integer spin, the Pauli principle requires that the total 
wavefunction Q, (including the spin part x )  be antisymmetric with respect to a permu- 
tation of any two electrons, that is, it must change sign if we exchange electrons i and 
j .  We can easily check for the case of three particles that the most general antisym- 
metric linear combination of all N !  permutations of the product functions Eq. (2.79) 
can be written in the form of a determinant 

41(1) ... $1") 

4"l) . . .  4 N " )  

* .  (2.83) 1 .  

(2.84) 
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the number of individual integrals (4, I&) is reduced from (N!)2 to N ! .  Nevertheless, 
for the H 2 0  molecule with N = 10 electrons, there are already N !  = 3 628 800 of them! 

At first sight, the single-particle approximation seems to be very crude, because we 
neglect the interaction between the electrons completely in the wavefunction. How- 
ever, we can re-introduce this interaction indirectly by choosing a proper potential 
in which the particles move, that is, we do not simply use the potential of the nu- 
clei but consider the shielding of this potential caused by the other electrons. Hence, 
each electron experiences a potential which is determined by the nuclei and the time- 
averaged motion of all other electrons (see Sect. 2.8). This is the so-called Hartree 
approximation; it includes the electron-electron interaction at least partially, but still 
neglects the fact that the charge distribution of the other electrons is instantaneously 
modified by the existence of the electron under consideration (electron correlation). 

Summarizing, we can describe the important concept of molecular orbitals as fol- 
lows: 

1 .  The concept of molecular orbitals is based, similarly to the Hartree-Fock met- 
hod for atoms [2.24], on the assumption that each electron moves independently 
of the others in an effective potential which is given by the averaged charge 
distribution of all other electrons and that of the nuclei. 

2. Each electron i in a molecule is described by a one-electron wavefunction 
@‘(r;,R),  which is called a molecular orbital and which depends, for fixed 
nuclear configuration R, only on the coordinates  pi of this individual electron. 
The probability of finding the electron at point T is given by lq$(r)l2. 

3. If we consider the spin of the electron and describe the spin state by a func- 
tion ~ ( s ) ,  the total wavefunction of the electron is the product of spatial and 
spin parts, @(r,s) = 4(r)  x ~ ( s ) .  Each of the functions !P is characterized 
by a set of quantum numbers (e.g., for a diatomic molecule, n, A,  C, 0, s) 
that determine energy, angular momenta, angular momentum projections on the 
molecular axis and charge distribution of the orbital uniquely. 

4. Due to the Pauli principle, each orbital can accommodate a maximum of two 
electrons with opposite spins . 

5. For each molecular orbital, the expectation value of the energy is 

where the right-hand side exemplifies the so-called bracket notation for the in- 
tegral. Molecular orbitals can be written as linear combinations of atomic or- 
bitals. While the atomic orbitals are centered at one atom, molecular orbitals 
are typically multi-centered, because each of the contributing atomic orbitals 
is centered at its own atom. The atomic orbitals can be classified according to 
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their transformation properties under the symmetry operations of the molecular 
symmetry group (see Sect. 5.5). The symmetry of the molecular wavefunctions 
constructed as linear combination of the atomic orbitals then depends on the 
symmetry behavior of the atomic orbitals. 

To construct the electron configuration of a molecule, we start by determining the 
lowest-energy orbitals and their symmetries (see Sect. 2.4) from the correlation dia- 
gram. Using the Aufbau principle, we add the electrons painvise into the orbitals in 
order of increasing energy. 

2.7.2 
The H2 Molecule 

The two-electron system H2 (Fig. 2.31) offers, for fixed nuclei, the simplest example 
for an application of the single-particle approximation. Historically, another approxi- 
mation was first applied to this system, the so-called valence bond merhod of Heitler 
and London, which starts from the separated hydrogen atoms and treats the bonding 
in H:! within a perturbational approach. We will discuss both the molecular orbital 
and the Heitler-London method and show that the results of both are equivalent for 
suitably chosen wavefunctions. 

2.7.2.1 The Molecular Orbital Approximation for H2 
As the ground state of the H2 molecule dissociates into two hydrogen atoms in their 
1 s ground states, we choose as basis function the normalized linear combination 

1 
+ I = -  dm(+~ + + E )  (2.85) 

of hydrogen 1s functions, Eq. (2.67), just as in the case of H2f, Eq. (2.68). We can 
fill this orbital with two electrons of opposite spin so that the Slater determinant of 

Fig. 2.31 Coordinate designations in the H2 molecule. 
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(2.86) 

where a( i )  represents the spin function with sz = + i h  for the electron i and P the 
corresponding function with s, = - i h .  If we substitute Eq. (2.85), we obtain for the 
spatial part of 4( 1,2) 

1 
4 = 41 ( 1 MI (2) = [ d ~  ( 1 MA (2) + $B ( ~ M B  (2) + 4~ ( 1 MB (2) 

+ 4A(2)4B ( 1 )] . (2.87) 

The Hamiltonian of the H2 molecule (Fig. 2.31), 

2 2 
can be separated in a sum of three terms using Hi = &V: - & ($ + $ - A ) ,  

H = H l  +H2+ - (2.89) 

where H I  and H2 are the Hamiltonians of the first and second electron, respectively, 
in the field of both nuclei. These terms thus correspond to the H: problem discussed 
in Sect. 2.6. The third term describes the mutual repulsion of the electrons. The 
internuclear repulsion must be subtracted, because it was taken into account both in 
HI and H2, that is, it has been counted twice. 

The expectation value of the total energy is then 

We substitute Eq. (2.87) for 4 and obtain, in addition to the integrals which we already 
know from our discussion of H: , a term 

(2.91) 

describing the average repulsion between the electrons. 

internuclear distance R (see, e.g., [2.19]). This yields 
All two-center integrals in Eq. (2.90) can be solved and written as a function of the 

e2 [ 5 a, a. ( 11 R 3 R2 1 R3)2R’uo] 
E ( R ) H ~  =2E(R),: += 16 - 2~ - 1 + -- + -- + -- 

8 4 U: 6 u,’ 

(2.92) 
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Fig. 2.32 Comparison of different approx- 
imation levels for the computed potential 
curves of the H2 molecule. a) LCAO, 
b) LCAO with variable parameter A, 

c) Heitler-London, d) experimental po- 
tential. Here, the energy of the sepa- 
rated atoms is taken as the zero point; 
the bond energies are therefore negative. 

As we can see from Fig. 2.32, this simple LCAO approximation for H2 yields about 
twice the bond energy of H t .  This result is a consequence of the fact that in the 
vicinity of the minimum of E ( R )  at R = Re % 1.5ao, the whole bracketed term in 
Eq. (2.92) is very small. 

As in the case of the H: ion, the calculated values for the bond energy D, = 

E ( R , )  - 2E(H,,) and equilibrium distance Re of H2 obtained with the simple LCAO 
approximation do not agree very well with the real values. There are several reasons 
for this, as will be discussed in the following. 

The wavefunction Eq. (2.87) contains the ionic contributions 4.~, (  1)4,4(2) and 
dB( 1)4B(2), which describe a situation in which both electrons are at the same nu- 
cleus A or B, with the same weight as the covalent contribution @A( 1)4B(2). The 
probability of finding both electrons at the same nucleus is obviously much smaller in 
the real H2 molecule. This deficiency of the approximation is connected with the ne- 
glect of electron correlation in the choice of the one-electron wavefunction Eq. (2.87). 
In fact, we have included the interaction between the electrons only in the Hamilto- 
nian, but not in the wavefunction. This overestimation of the ionic character (H-H+) 
leads to a wrong asymptotic behavior of the potential curve E ( R )  for R + 00 (see 
Fig. 2.32). Another factor stems from the fact that the bond energy Eb is the small 
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difference of several large energy contributions. From Eq. (2.90), we have 

E b  = E ( R , ) - E ( R = W )  =E(R,)-2E,(Is) 

= 2E(H$) - E(nuc1ear repulsion) + E(e1ectronic repulsion) 

- 2E (atomic hydrogen) 

= 2 x  16.2eV- 19.3eV+ 17.8eV-2x 13.6eV 

= 3.6eV (2.93) 

The problem is that relatively minor discrepancies between the calculated values of 
the terms in Eq. (2.93) and their real values can lead to large relative errors in Eb.  

Before discussing improvements to our wavefunction Eq. (2.85), as we did in the case 
of Hf,  we will now look at a different approach to the H2 problem, the valence bond 
approximation of Heitler and London [2.25]. 

2.7.3 
The Heitler-London Approximation 

The Heitler-London approximation for the H2 molecule starts from two infinitely 
separated hydrogen atoms described by their atomic wavefunctions, Eq. (2.67). The 
Hamiltonian Eq. (2.88) is now separated differently from before in Eq. (2.89), 

h2 e2 H =  --V2 ( 2m I-%) 

= HA + HB - HAB = 2H.4 -HAB.  (2.94) 

The first two brackets represent the energies of the separated hydrogen atoms and the 
last one the bonding energy of the molecule. A bonding state exists only if the last 
bracket yields a contribution AE < 0; for AE > 0 a repulsive potential curve E ( R )  
results. If the interaction between the hydrogen atoms is small compared with the 
binding energies of the electrons to their respective nuclei (i.e., HAB << HA + HB), the 
wavefunction 4 can be approximated as a product 

41 = # ~ ( 1 ) 4 ~ ( 2 ) .  (2.95a) 

This is exact only for R + 00, because in this case the interaction vanishes. 

distinguished from the state 
As the two electrons 1 and 2 are indistinguishable, the state Eq. (2.95a) cannot be 

42 =4~(2)4s(l), (2.95 b) 

in which both electrons have been exchanged. Taking this into account, it seems 
straightforward to describe the state by a linear combination 

4 = C l 4 l  +c242 . (2.9%) 
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As shown in Sect. 2.6.1, optimization of the coefficients c1 and c2 with respect to the 
energy yields the condition Ictl = Ic2I2 and the optimized normalized wavefunctions 

(2.96a) 

(2.96b) 

If we substitute these functions together with the Hamiltonian Eq. (2.94) into the 
Schrodinger equation (2.15a), we obtain the two potential curves 

H11 -H12 ; E - ( R )  = 
HI 1 + H12 

1 +s2 1 - 4  ' 
E + ( R )  = (2.97) 

where we have used the following abbreviations for the two-center integrals: 

HI I  = /a( l )b(Z)Ha(l)h(2)  d q  d72 with a(1) = 4 ~ ( 1 )  etc., (2.98a) 

H12 = / a (  l)b(2) Ha(2)b( 1 )  d q  dr2 , 

S2 = a( l )b(  1 )~ (2 )b (2 )  dT1 d72 I 
(2.98 b) 

= / a (  l ) b (  1) d q  x a(2)b(2) d72 . (2.98~) s 
Computation of the integrals yields a bond energy Eb(H2) = -3.14eV for the H2 
molecule, much closer to the experimental value of 4.7 eV than by using simple MO 
theory, but still not satisfying. 

The reason is that Heitler-London theory with the wavefunctions Eq. (2.96) ne- 
glects the ionic contribution to bonding completely, while the MO wavefunction, Eq. 
(2.87), overestimates it. 

2.7.4 
Improvements of Both Methods 

We can correct for the overestimation of the ionic contribution a( l)b( 1) + a(2)h(2) 
in the wavefunction Eq. (2.87), if we introduce a new parameter & ( R )  and write the 
wavefunction as 

1 
{ A I  [a(l)a(2) +b(l)b(2)] +a( l )b(2)  +a(2)b( l )}  . (2.99) 

We can now optimize A1 (R) using a variational calculation to obtain the curve dis- 
played in Fig. 2.32(c). The calculated bond energy is then Eb = -4.02eV, in much 
better agreement with experiment than before. 

A further improvement can be achieved, as in the case of the H: molecular ion, by 
allowing for shrinkage and polarization of the atomic orbitals with decreasing distance 

Jrn 4 =  
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between the two hydrogen atoms. Thus we choose an improved ansatz for the atomic 
orbital of Eq. (2.67), 

4,t, = N A (  1 + ~2z)e- ’3~~’~0 , (2.100) 

which yields, for optimized parameters A2 and X3, almost the experimental values for 
the potential curve in Fig. 2.32. 

2.7.5 
Equivalence of Heitler-London and MO Approximation 

The ansatz Eq. (2.99) renders the Heitler-London approximation and the MO method 
equivalent, as can easily be shown. 

The extended Heitler-London approximation 

4HL = [a(l)b(2) +b(l)a(2)] + X i  [a(l)a(2) +b(l)b(2)] , (2.10 1 a) 

which improves the weight of the ionic contributions to the wavefunction by using an 
optimized weight factor XI, equals the improved MO approximation 

4 M o = [ ~ ( l ) + b ( l ) ] ~  [ ~ ( 2 ) + 6 ( 2 ) ] + k [ a ( l ) - b ( l ) ]  x [~ (2 ) -b (2 ) ]  , (2.101b) 

which employs a linear combination of the symmetric product ansatz Eq. (2.85) and 
the antisymmetric function ( 4 ~  - 48), provided that 

l + k  
A , = - .  

I - k  
Taking normalization into account, Eqns. (2.101a) and (2.101b) give 

(a  + b )  (a + b)  (a - b )  (a - 6) 
- -K 

$ =  2(1+S) 2(1-S) 

1 -s 
l + S  

with I(: = - k .  (2.101c) 

From the improved equivalent expressions Eqns. (2.101a) and (2.101b) for the 
wavefunction 4, we see that the simple MO approximation underestimates electron 
correlation (because it neglects electron exchange) while the Heitler-London approx- 
imation overestimates correlation (because it neglects the ionic contribution com- 
pletely). 

2.7.6 
Generalized MO Ansatz 

The generalized expression for a molecular orbital 4( 1,2) from Eq. (2.86) for the H2 
molecule employs a linear combination 

k 

4(1,2) = Cci4i( l )di(2)  . (2.102) 
i= I 
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Tab. 2.12 Results of different approximate calculations for the H2 molecule. 
I 

Approxima tion used Eh/ev R , / A  

simple molecular orbitals -2.70 0.85 
Heitler-London -3.14 0.87 
H-L + ionic contribution, Eq. (2.101a) -4.02 0.75 
H-L + ionic contribution + polarization, Eq. (2.99) -4.12 0.75 
MO + correlation, Eq. (2.101b) -4.11 0.7 I 
Coolidge-James -4.72 0.74 
Kolos-Roothan -4.746 0.741 

experimental -4.141 0.74 1 

The sum runs over all functions q5i that have the appropriate symmetry and describe the 
deformed (contracted and polarized) orbital upon the approach of the two hydrogen 
atoms as well as possible. The number k of sum terms can be very large (e.g., k = 30- 
50). The coefficients ci are again determined using the variational principle, 

(2.103) 

This yields a system of equations such as Eq. (2.55), the solution of which gives the 
energies E i ( R )  and thus the potential curves of the desired molecular states. 

Calculations of James and Coolidge using 13 functions [2.26] gave Eb(H2) = 
-4.69eV, already quite close to the experimental value (Fig. 2.32). The best calcu- 
lation yet, of Kolos und Roothaan [2.27, 2.281, used 50 functions q!I, in the expansion 
Eq. (2.102) and yielded Eb = -4.7467 eV. Table 2.12 summarizes the results of dif- 
ferent approximate calculations for H2. 

2.8 
Modern Ab lnitio Methods 

To be able to perform ab initio calculations for large molecules in acceptable time, 
we must accept further approximations [2.29, 2.301 either in the wavefunctions or 
in the Hamiltonian. The wavefunctions are expanded as linear combinations of suit- 
ably chosen basis functions as shown in Sect. 2.7.6. Basis functions can be selected 
on the basis of physical considerations (e.g., the eigenfunctions of the atomic states 
involved in bonding could be used, allowing for polarization effects), or of computa- 
tional efficiency (which favors the use of Gaussian functions because they allow an 
easy computation of overlap and exchange integrals). 

In the Hamiltonian, the electron-electron interaction terms provide the most dif- 
ficult part, because they act between all pairs of electrons in the molecule so that a 
change in one electron coordinate affects all other electrons. In all single-particle 
approximations, these interactions (correlations) are either neglected completely or 
included in an averaged manner (e.g., in the Hartree-Fock method). 
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2.8.1 
The Hartree-Fock Approximation 

In the preceding section we saw that neglecting the electron-electron interaction in 
the choice of one-electron wavefunctions (orbitals) leads to relatively large errors in 
the energies E(R) .  On the other hand, using 3N-dimensional n-electron functions for 
a molecule with N electrons would lead to enormous computational problems. Hence, 
we need to find a compromise that allows us to continue using one-electron functions 
but includes electron interactions at least in an averaged manner. 

This can be achieved by optimizing one-electron functions 4i(i) as solutions of the 
Schrodinger equation 

H * ; =  E 4 ;  with (2.104) 

where the effective potential for an electron i (1 5 i 5 N) contains the Coulomb po- 
tential of the nuclei plus the potential from the time-averaged charge distribution of 
the (N - 1) other electrons. 

The difficulty is that we need the wavefunctions of these (N - 1) electrons to corn- 
pute their charge distributions and the potential derived from it. Fortunately, the prob- 
lem can be solved iteratively: we start from a first guess of one-electron functions 
# ( i )  ( i  = 1 . . . N) built, for example, from linear combinations of atomic orbitals. Us- 
ing these q$)(i), we compute the charge distribution of the N - 1 electrons and the 
effective potential in which the Nth electron moves. We obtain a further improved 

one-electron function #N (N) for this Nth electron, and the process is repeated for all 
N electrons. 

( 1 )  The 4; (i) thus obtained are then again used to calculate the charge distribution of 
N - 1 electrons and to obtain an improved 4N ( N )  for the Nth electron. This proce- 

dure is repeated until, after k iterations, the qht)(N) do not differ from the &"(N) 
of the previous iteration by more than certain predefined limits. The optimized one- 
electron functions are then called self-consistent jield (SCF) functions, because the 
functions are consistent with the electric field they produce. Figure 2.33 visualizes the 
SCF procedure in a flow diagram. 

If the total wavefunction is written as a nonsymmetrized (with respect to electron 
exchange) product 

( 1 )  

( 2 )  

N 

*( l . . . N )  =n*;(i) 
i= I 

(2.105) 

of these optimized one-electron functions (molecular orbitals), the resulting procedure 
is called the Hartree method [2.3 11. 

Until now we have ignored electron spin. Fock suggested the use of products of 
spatial and spin functions as optimized one-electron functions, the so-called spin or- 
bitals, and to write the total wavefunction @( 1 . .  .N) as a Slater determinant, Eq. (2.81), 
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obeying the Pauli principle 

of the i th electron for all electrons 

Fig. 2.33 Flow diagram for the computational procedure in the 
Hartree approximation. 

built from these spin orbitals. As discussed in Sect. 2.7.1, such a wavefunction satis- 
fies the Pauli principle automatically. These antisymmetric (with respect to electron 
exchange) total wavefunctions @( 1. .  .N) are called SCF-HF functions (short for self- 
consistent field Hartree-Fock) [2.32]. 

These improvements increase the computational effort - which is already large for 
the Hartree method - significantly, but the improved results make the additional effort 
worthwhile. Nowadays, for the computation of electronic molecular states and their 
properties, HF functions are used almost exclusively. 

Even in this most sophisticated of all one-electron models the instantaneous inter- 
action e2/r i ,  of the electrons is not properly included. The error in the total energy 
induced by this effect (deviation of the calculated HF energy from the “true” total 
energy) is called correlation energy [2.33-2.351. 

qpically, the correlation energy amounts to about 1% of the calculated HF total 
energy. As the total energy is the total binding energy of all electrons (the sum of all 
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ionization energies), 1 % of this large energy can be larger than the dissociation energy 
of the molecule. Thus, in unfavorable cases HF calculations can yield a completely 
wrong picture of the bonding in a molecule (e.g., bond dissociation energies are no- 
toriously overestimated by HF calculations due to the completely different electronic 
situation in open-shell fragments as compared to the - closed-shell- intact molecule). 

2.8.2 
Configuration Interaction 

The most important and most frequently used method to account for electron corre- 
lation is the conj-igurution interaction (CI) method. In combination with the Hartree- 
Fock method it is the most accurate approximation for the calculation of molecular 
wavefunctions and states. In the CI method, the wavefunction of a state is represented 
by a linear combination 

(2.106) 

of Slater determinants. The different Slater determinants are called conjgurutions, 
because they describe the electron occupation of the molecular orbitals. The sum 
Eq. (2.106) contains only determinants with the same symmetry and the same spin, 
because only for such functions 

The Slater determinants & in the sum Eq. (2.106) are usually obtained by the Hartree- 
Fock method, but include orbitals which are unoccupied in the HF ground-state wave- 
function (so-called virtual orbitals). A suitable choice of the basis, guided by physical 
intuition, results in a better convergence of the computed energies towards the “true” 
energies. 

Finally, we summarize the structure of the complete procedure used to obtain SCF- 
CI wavefunctions: 

1. One-electron atomic orbitals or other, computationally more efficient functions 
such as Gaussian or Slater functions, which approximate the atomic electron 
distributions, are chosen as basis functions (see next section). 

2. Molecular one-electron functions, the molecular orbitals, are built from linear 
combinations of these basis functions. 

3. Each molecular orbital is written as a product of spatial and spin function. It 
can therefore accommodate a maximum of two electrons with opposite spins. 

4. The molecular orbitals of all electrons are then combined into Slater determi- 
nants, which are antisymmetrized linear combinations of products of molecular 
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orbitals with permuted electrons. Each Slater determinant describes a molec- 
ular configuration. The free parameters in a Slater determinant are the LCAO 
coefficients. They are optimized iteratively in the Hartree-Fock procedure. 

5.  The total many-electron wavefunction is written as a linear combination of 
Slater determinants, and the selection of contributing configurations is based 
on symmetry arguments and physical considerations. The coefficients Ck are 
determined according to the variational principle by minimizing the energy. 

2.8.3 
Ab lnitio Calculations and Quantum Chemistry 

The HF-CI method is the basis for the most accurate calculations which can be per- 
formed today on fast computers for small- to medium-sized molecules. 

Such calculations are performed with the exact nonrelativistic Hamiltonian, Eq. 
(2.2), without further approximations, that is, 'from the beginning'. All such calcu- 
lations, which are not based on assumed models but use numerical solutions of the 
Schrodinger equation, are generally called ab initio calculations (ab initio is Latin for 
"from the beginning"). There is also an increasing number of software packages which 
solve the Dirac equation numerically using Hartree-Fock Slater determinants, that is, 
which use the relativistic Hamiltonian and which are therefore called relativistic ab 
initio calculations. 

We have seen in the preceding sections that a suitable choice of the basis functions 
is crucial for the quality of the results obtained. For larger molecules, where the 
atomic ground states involve higher principal quantum numbers n, the atomic orbitals 
get quite complicated and the numerical computation of the overlap and exchange 
integrals is tedious. As a compromise between quality and computational effort, a 
number of types of basis functions have established themselves as a kind of standard: 

1. Slater functions 

(2.107) 

where the Y;" are the Legendre polynomials. 

2. Pure Gaussian functions 

3. Cartesian Gaussian functions 

(2.109) 

The linear combinations of these basis functions form the molecular orbitals. 



2.8 Modern Ab lnitio Methods 77 I 
Gaussian functions offer a huge computational advantage, because the necessary 

integrals are much easier to calculate than for Slater functions. 
Instead of keeping the origin of these functions fixed at the respective nuclei as 

described for the LCAO method in Sect. 2.5.2, i t  is often advantageous to use the 
origin as an additional variable parameter. Suchfloating atomic orbitals can in many 
cases provide a quicker convergence of the calculations. 

Further details can be found in the quantum-chemical literature [2.24, 2.29, 2.30, 
2.361. 
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3 
Rotation, Vibration, and Potential Curves of 
Diatomic Molecules 

After having discussed, in the previous chapter, general approximation methods for 
the calculation of electronic wavefunctions, we will now turn to a more detailed treat- 
ment of nonrigid diatomic molecules. We start with rotation and vibration, and will 
later present semiempirical methods for the numerical high-precision determination 
of potential energy curves from measured rotation-vibration term values. The results 
of these procedures will then be compared to theoretical treatments and their results. 
The interatomic potential for large internuclear separations and the determination of 
the dissociation energy, which is of great importance in chemistry, will be discussed. 

3.1 
Quantum-mechanical Treatment 

Within the BO approximation we had obtained, in Ch. 2 ,  Eq. (2.15b), 

for the movement of the nuclei in the potential E:(R) of the electronic state (.I. For 
diatomic molecules, Eq. (3 .1 )  reduces to 

( 3 . 2 )  

where R = (R,,,Rb) represents the nuclear coordinates and R = IR, - Rbl the in- 
ternuclear distance. The wavefunction xnm of nuclear motion characterizes the mth 
vibration-rotation level of the electronic state In). 

If we make a coordinate transformation to the molecule’s center-of-mass frame 
(separation of translation) and introduce the reduced nuclear mass, 
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Eq. (3.2) reduces to 

(3.3) 

(0)  The potential energy En ( R )  in the nth electronic state depends now only on the inter- 
nuclear distance R = (RI  - R21, and therefore is spherical symmetric! Equation (3.3) 
formally corresponds to the Schrodinger equation for the hydrogen atom and can, in 
spherical coordinates, be separated into a radial and an angular part [3.1]. In analogy 
to the treatment of the hydrogen atom we make the separation ansatz 

x(R,e,4) = S(R) x Y(e,4) (3.4) 

with the spherical harmonics Y(0,4). The radial function S(R) will of course be 

different from the Laguerre function of the hydrogen atom, because En (R) is not a 
Coulomb potential. The Laplacian A = V2 is in spherical coordinates 

(0) 

If we substitute the ansatz Eq. (3.4) into Eq. (3.3) and use Eq. (3.3, we obtain, after 
multiplication with R2 l x  and rearranging terms, 

[. - EF)(R)] = 
1 a ,as 2 p ~ 2  
SaR aR A2 
--R -+- 

(3.6) 

As the left-hand side of this equation does not depend on 0 and 4, and the right-hand 
side does not depend on R, both sides must equal a constant C, and we obtain the two 
equations separated in R and 0, 4, 

(3.7) 

These two equations are the basis for the exact treatment of rotation and vibration 
(0) of diatomic molecules! As soon as the potential curve En (R) for the nth electronic 

state is known, the functions S are completely determined. The spherical harmonics Y 
are of course known, and they describe the angular distribution of the functions xnm. 

The first equation describes the radial motion of the nuclei, i.e., the vibration of the 
molecule, while the second describes the azimuthal motion, i.e., its rotation. We will 
start discussing molecular rotation in the next section. The separation constant C turns 
out to be, in complete analogy to the separation treatment of the hydrogen atom [3.1], 
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C = J ( J  + I ) ,  where J is the quantum number of total angular momentum. The term 
J ( J  + l )h2/(2,uR2) in Eq. (3.7) gives then the centrifugal energy. 

3.2 
Rotation of Diatomic Molecules 

The simplest model of a rotating molecule is obtained if we assume that the internu- 
clear distance R does not change during rotation. In this rigid rotor model, in which 
the nuclei are connected by a massless rod and rotate around their center of mass, the 
constant moment of inertia is I = pR2.  The angular momentum 

J = \/J(J+I)A&l 
is perpendicular to the internuclear axis (which we choose to be the z axis) as indicated 
by the unit vector 21. 

In real molecules, the nuclei vibrate around their equilibrium distance Re so that R 
varies periodically during molecular rotation. Furthermore, the equilibrium distance 
increases with increasing rotational excitation due to centrifugal forces. The elec- 
tronic moment of inertia, depending on the density distribution in the electron cloud, 
also contributes to the rotational energy. If the electrons possess an orbital angular 
momentum L with the projection A # 0, the total angular momentum does not remain 
perpendicular to the intermolecular axis. 

We first discuss the rigid rotor and then centrifugal distortion, before we elucidate 
the influence of the electrons in Sect. 3.2.3. Finally, in Sect. 3.4 after discussing 
vibrations, we will turn to the interaction between vibrations and rotations. 

3.2.1 
The Rigid Rotor 

For the rigid rotor, the internuclear distance is R = Re = const. It follows that the 
function S ( R )  in Eq. (3.7) is constant and its derivative is zero. Also, the value of the 
potential Epot (Re)  at the equilibrium distance Re is constant and assumes a minimum. 
We choose the energy scale so that Epot(Re)  = 0. With C = J ( J  + l ) ,  we obtain from 
Eq. (3.7) the energies of the rigid rotor, 

J ( J +  I ) A 2  
E ( J )  = 

2pR,? ' 
(3.9) 

We see that the rotational energy increases quadratically with the rotational quantum 
number J (Fig. 3. I ) .  The difference between neighboring rotational levels, 

( J +  l)h2 
A E ( J )  = E ( J +  1 )  - E ( J )  = 

PR,2 ' 
(3.10a) 

increases linearly with J .  
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Fig. 3.1 Rigid rotor. a) Schematic representation; b) term dia- 
gram; c) rotational spectrum. 

In spectroscopy, term values F = E / ( h c )  are generally used rather than energies, 
and they are given in wavenumbers, cm-', because then also the term differences 
AF = h E / ( h c )  measured during absorption or emission of radiation of energy hv 
appear in reciprocal wavelengths, hv / (hc )  = 1 /A.  

The rotational term values F ( J )  then become 

F ( J )  = BeJ(J  + 1 )  7 (3.1 1) 

where the rotational constant 

(3.12) 
f i  

4mpR,2 
Be = ~ 

(in units of cm-') is a measure for the inverse moment of inertia and thus also for the 
equilibrium distance Re. The wavenumbers D ( J )  = A E ( J )  /hc  of transitions between 
neighboring rotational levels are then 

Frat = F ( J +  1 )  - F ( J )  = 2 B e ( J +  1)  . (3.10b) 

A pure rotational spectrum of a diatomic molecule appears in the rigid-rotor approxi- 
mation as a number of equidistant lines (Fig. 3.2). 

3.2.2 
Centrifugal Distortion 

In a nonrotating molecule, the equilibrium distance Re in the electronic state In) as- 
(0) sumes a value such that the potential En ( R e )  is a minimum and therefore the re- 
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Fig. 3.2 Section from the far-infrared rotational spectrum of CO 
between 15cm-’ and 40cm-’ for l2CO and I3CO (weak lines), 
measured as an absorption spectrum [3.2]. 

sulting force on the nuclei vanishes. In a rotating molecule with angular momentum 
J = d m A  an additional centrifugal force 

2 1 J 2 1  
pR3 

F, = pwrotR = - because I JI = pR2w (3.13a) 

appears which leads, in the nonrigid rotor, to an increase in the internuclear distance 
from Re to R. This creates an electrostatic restoring force 

(3.13b) 

which for sufficiently small displacements ( R  - R e )  is proportional to the displace- 

ment, because the potential En ( R )  can be described, in the vicinity of the minimum, 
to good approximation by a parabolic potential (see Sect. 3.3). We can therefore write 

F r = k ( R - R e ) .  (3.13~) 

At equilibrium, both forces must be equal and opposite. For IR - Re[  << Re,  this 

(0) 

results in 

(3.14) 

In addition to the kinetic energy of rotation I JI2 / ( 2 p R 2 )  of the rigid rotor, the cen- 
trifugal distortion now creates an additional potential energy E:(R) i k ( R  - R e ) 2 ,  
so that the total energy becomes 

(3.15) 
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The second term in Eq. (3.15) can be rearranged with the aid of Eq. (3.14) to yield 

If we express R in terms of Re using Eq. (3.14), we obtain 

R = R e  1+- =Re( l+n)  with ~ < l ,  ( 
and from this the Taylor expansion 

-=i 1 [ 1 - - + ( - ) 2 -  2151* 31512 ... +] 
R2 R: p k g  p k e  

The rotational energy Eq. (3.15) is then 

Erot = ~ i5i2 - ~ i5i4 3151~  +... 
2pR; 2kp2@ + 2p3k2Rt0 

The term values Frat = Ero,/hc are then, using 15i2 = J(J + l ) A 2 ,  

F,~, = B,J(J  + 1) - D , J ~ ( J  + 1)2 + H , J ~  (J + q3 + . . . , 
where the centrifugal constants are defined as 

A3 
D, = 

4nkcp2R,6 ' 

3 h5 H -  
e - 4nk2cp3Rd0 * 

(3.16) 

(3.17) 

(3.18a) 

(3.18b) 

(3.19a) 

(3.19b) 

Today we can achieve such a high precision in our measurements that we need to 
include the third term in Eq. (3.18b) for larger values of J. Figure 3.3 displays the 
shifts, Eq. (3.1 8), of the energy levels from those of the rigid rotor, and Table 3.1 lists 
some values for the constants Be, De and He for a selection of molecules. 

3.2.3 
The Influence of Electron Rotation 

In the axially symmetric electrostatic field of the nuclei, the angular momentum L 
of the electron shell is not constant as in the spherically symmetric Coulomb field of 
a nucleus, but it precesses around the internuclear axis ( z  axis). The projection of L 
onto the axis (Fig. 2.9) is designated with lower-case X for one-electron systems, and 
with upper-case A for many-electron systems, and is a characteristic constant for each 
electronic state (see Sect. 2.4). 
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b 
Fig. 3.3 Deviations AE of rotational term values of a nonrigid 
molecule (b) from those of a rigid rotor (a). 

The total angular momentum J is a combination of A and the angular momentum 
N of the rotating nuclear frame, and for A # 0 it is not perpendicular to the internu- 
clear axis (Fig. 3.4). As the total angular momentum for the free molecule must be 
constant, the molecule rotates around the direction of J, i.e., for A # 0 not around 
an axis perpendicular to the z axis! If the electron cloud is viewed as a rigid entity 
rotating around the z axis, the rotating molecule can be described as a symmetric top 
rotor with two different moments of inertia: the moment of inertia ZA of the electron 
cloud around the z axis, and the moment of inertia ZB of the nuclei around an axis 
perpendicular to the z axis. Because of the small electron mass, ZA << ZB. 

Tab. 3.1 Molecular constants for the ground states of some diatomic molecules, 
in cm-’ . 

H2 
D2 
H3%J 

DJ5CI 

H3’CI 

Li2 

cs2 

co 

60.85 

30.44 

10.59 

5.45 

10.57 

0.67 

0.013 

1.931 

3.06 

1.08 

0.31 

0.11 

0.309 

0.007 

2.bX 10-5 

0.017 

4401 

3116 

2990 

2145 

2988 

351.4 

42.0 

2170 

121.3 

61.8 

52.8 

27.2 

52.7 

2.6 

0.08 

13.29 

1 . 6 ~  

1.1x10-* 

5 . 3 ~  I O - ~  

1 . 4 ~ 1 0 - ~  

5 . 3 ~  

9.9x 10-6 

4 . 6 ~  lo-’ 

6 . 1 ~  
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\ I  
\ I  " 

Fig. 3.4 Addition of rotational angular momentum N and the 
projection of the electronic angular momentum L to yield the 
total angular momentum J .  

The rotational energy of this symmetric top is 

J; Jy' J," &=-+-+-. 
21, 21, 21, 

From Fig. 3.4 we see that J," = A2h2 and J,' + J; = N2h2 = ( J ( J  + 1) - A2)h2.  
Thus, with the rotational constant A = h/(4mdA), we obtain for the term values, 

F ( J ,  A )  = BJ(J  + 1 ) + ( A  - Be)A2 - DJ2(J  + 1 )2 + . . . , (3.20) 

where A >> E because IA << 1 ~ .  The term An2 is usually added to the electronic energy 
T'l because it is constant for a given electronic state, i.e., independent of J .  Thus we 
obtain for the rotational term value 

F ( J , A ) = & [ J ( J + l ) - A ' ]  - D J 2 ( J + l ) 2 + H J 3 ( J + l ) 3 .  (3.21) 

3.3 
Molecular Vibrations 

To solve Eq. (3.7) for the vibration of a diatomic molecule, we consider first the case 
of a nonrotating molecule for which C = J ( J  + 1) = 0. Substituting 

U ( R )  = R x S ( R )  , 

Eq. (3.7) becomes 

d2U 2p 
-$ + ti' [ E - E P ( R ) ]  u = 0 .  (3 .22)  

The subsequent procedure depends on the choice of the potential Eio) (R) in the elec- 
tronic state In). 
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3.3.1 
The Harmonic Oscillator 

Close to the equilibrium distance Re, i.e., for small displacements r = R - Re, the 
potential can to good approximation be described by a parabolic potential 

1 1 
2 2 

Epot(R) = -kr(R - Re)2 = -krr2 , (3 .23)  

where the constant kr describes the magnitude of the restoring force F = -krr.  We 
choose the origin of our reference frame so that Re = 0 and R = r. For a harmonic 
oscillator with frequency wo and reduced mass p, we have k, = pwi. With the abbre- 
viations 

Q 2E a j - - - ,  - 2 p E  a = -  and P=-  
h2 ti P hwo 

and with the variable transformation < = r f l ,  Eq. (3 .22)  becomes 

(3 .24)  

In the limiting case t2 >> a//?, i.e., r + m, we can neglect a /@.  In this case we can 
write the asymptotic solutions immediately as 

I/ = c ,*c2/2 , 

as can easily be verified. 

tion with positive exponent is physically not plausible. 
As the wavefunction U ( < )  must remain finite for < 4 0, i.e., for r -+ =, the solu- 

For the general solution of Eq. (3 .24)  we apply now the ansatz 

&ib = c X H(<)e-<'12 . (3 .25)  

If we substitute Eq. (3 .25)  into Eq. (3 .24) ,  we obtain for the function H(6) the differ- 
ential equation 

If we use for the solution a power series in <, 

(3 .26)  

(3 .27)  

we obtain, by substitution of Eq. (3 .27)  into Eq. (3 .26) ,  a recursion formula for the 
coefficients uk, 

( k + 2 ) ( k +  l)ak+2 = ( 2 k +  1 - C Y / / ~ ) U ~ .  (3 .28)  
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The function $vib can only be finite if the series Eq. (3.27) consists of a finite number 
of terms; otherwise it would diverge for > 1. This means that the series has to 
terminate after the term tV ,  all terms in Eq. (3.27) with k > .u need to be zero. This 
requires that in Eq. (3.28), (2w + 1) - a/@ = 0, because then av+2 = 0. With the 
definitions for a and @ we obtain for the possible energies 

I 

(3.29) 

The energy eigenvalues Ev of the harmonic oscillator are equidistant. The lowest 
vibrational state with vibrational quantum number w = 0 possesses a zero-point energy 

In spectroscopy, term values G( w )  = Ev / (he) are employed rather than the energy 
EO = bQ/2.  

eigenvalues of Eq. (3.29). They are written as 

G ( w )  = we ( W  + 3) I (3.29a) 

with the vibrational constant we = wg/ (21cc), measured in cm-'. 
Note that the quantization of the energy is a result of the requirement that the 

function Id((') be$nite in the whole range t, i.e., that it must be possible to represent 
it by a power series with a finite number of terms. 

The choice ( a / @  - 1) = 2w makes Eq. (3.26) a Hermite differential equation, the 
solutions of which are the Hermite polynomials If(<). A number of these functions 
are listed in Table 3.2. The normalization factor C in Eq. (3.25) is chosen so that 
J U*U dr = 1. The vibrational wavefunctions $vib = U([) = H ( t )  x exp[-c2/2] are 
displayed in Fig. 3.5 for a number of vibrational quantum numbers w. 

For large w, I$vibI2 assumes large values in the vicinity of the classical turning 
points, where the classical oscillator also has the largest probability of being found. 
This situation is nicely described by the correspondence principle, which states that 
for large quantum numbers w, the quantum-mechanical description converges towards 
the classical description. Figure 3.6 compares the quantum-mechanical probability 
distribution IU(c)12 dr (solid curves) with the classical value for two vibrational lev- 
els, w = 0 and w = 20. For large w, the classical curve resembles the spatial average 
of the quantum-mechanical distribution, while for w = 0 both descriptions yield com- 
pletely different results. 

Tab. 3.2 Hermite polynomials for the six lowest vibrational levels of the harmonic os- 
cillator. 

1 

26 
45' - 2 
853 - 125 
1664-48[2+12 
32E5 - 160E3 + 1206 
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Fig. 3.5 a) Vibrational wavefunctions GVib and b) their square 
moduli for some vibrational levels of the harmonic oscillator. 
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R 
Fig. 3.6 Comparison between classical probability density (dot- 
ted lines) and the square moduli of the vibrational wavefunctions 
for u = 0 and u = 20. 

Table 3.3 lists measured values of the vibrational constants we and the rotational 
constants Be for some molecules. It is useful to memorize the magnitude of the 
vibrational period T = (wec)-l, which is T = 8 x s for the lightweight H2 

molecule and 8 x s for the heavy Cs:! molecule, i.e., it generally falls in the 
range 10-12-10-'4 s. In contrast, the rotational periods for the lowest rotational level, 
Tot = (2B,c) - ' ,  are TOt(H2) % 2.5 x s, i.e., they 
are larger by two to three orders of magnitude. 

The square moduli of the time-independent vibrational wavefunctions give the 
time-average of the probability density of the vibrating nuclei. If we want to trans- 
fer the classical picture of oscillating nuclei into a quantum-mechanical description, 
we need to take into account that by specifying the position of a nucleus we introduce 
an uncertainty in its momentum and hence its vibrational energy E = p 2 / 2 m .  For 
example, for a spatial resolution of 0.01 nm and a velocity of lo4 m/s of the vibrating 
nucleus, the maximum possible energy resolution is only about J = 1 eV. This 
means that individual vibrational levels cannot be resolved if we want to determine 

s and Trot(Cs:!) = 1.5 x 

Tab. 3.3 Vibrational constants we and rotational constants Be for some diatomic 
molecules. 

Molecule w,/cm-' B, / cm- ' 
H2 4395 60.80 
N2 2360 2.01 
0 2  1580 1.45 
Liz 351 0.67 
Na2 159 0.15 
cs2 42 0.01 
HCI 2990 10.59 
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the position of a nucleus at the same time. A superposition of the time-dependent vi- 
brational wavefunctions of neighboring vibrational levels yields a wavepacket which 
oscillates between the classical turning points of the vibration, and which resembles 
the classical picture of vibrating nuclei much better than the time-averaged model of 
stationary wavefunctions. 

3.3.2 
The Anharmonic Oscillator 

For larger vibrational amplitudes, i.e., larger vibrational quantum numbers v, the ob- 
served vibrational frequencies differ significantly from the constant wo of the 
harmonic oscillator. Usually, they decrease for increasing quantum number v. The 

reason for this behavior is that the real molecular potential En ( R )  does not approach 
00 for large internuclear distance R + 00 but converges towards the dissociation energy 
Ed of the molecule (see Fig. 3.7). The dissociation energy Ed is the bond energy Eb in 

the electronic state under consideration minus the zero-point energy E$i = ihwo. 
corresponds to the difference E ( A )  + E(B)  - E(AB) between the electronic energies 
E ( A )  + E(B) of the separated atoms A and B and the electronic energy E(AB) of the 
molecule at the minimum of the potential curve. 

(0) 

Fig. 3.7 Comparison between the harmonic oscillator potential, 
the Morse potential, and a real molecular potential. 
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3.3.2.1 Morse Potential 
Morse [3.3] suggested a potential 

which provides a good approximation for the attractive part of the potential because 
it converges towards the energy E p ( R )  = 0 for R + 00. The repulsive part of the 
potential, ( R  < R e ) ,  which converges towards limEp(R) = - & [ I  -exp(+aRe)12, 

shows in many cases larger deviations from measured values (see Fig. 3.7). 
The Morse potential has the big advantage that it allows an exact solution of the 

Schrodinger equation (3.22) [3.4]. 
By inserting Eq. (3.30) into Eq. (3.22), we obtain for the energies E ( w )  of the 

vibrational levels w 

R+O 

E,=two(ZJ+;)--((v+;)  h2W; 2 , 
4Eb 

(3.31a) 

and for the term values Tv = Ev /hc,  

(3.31b) 1 2  Tv = W e  (V + ;) -WeXe ( v +  2 )  

with We = wo/27tC and Wexe = hW$/(87GC&) = hCW,2/4&). 
The frequency 

WO = a @ J i  

corresponds to the frequency of a classical oscillator with force constant k, = 2a2Eb. 
The constant a in the Morse potential Eq. (3.30) can be determined from a measure- 
ment of wo and Eb. 

The term diferences between neighboring vibrational levels, 

ATv = T,+l - Tv = w e  -w,x,(w +2)  (3.32) 

decrease linearly with the vibrational quantum number ZJ (Fig. 3.8) - in contrast to the 
harmonic oscillator, where they are constant. 

3.3.2.2 Taylor Expansion of Potentials 
Better approximations to the real molecular potential E p ( R )  are obtained if we expand 
the molecular potential in a Taylor series around the equilibrium distance Re. With 
r = R - Re this yields 

r2 r3 Ep(r) = ~ ~ ( 0 )  +EL(O) + TE:(O) + g E r ( 0 )  + . . . . (3.33) 

Usually the origin of the energy scale is chosen to be the minimum of the potential, 
i.e., Ep(0) = 0. As Ep(r) assumes a minimum for r = 0, its first derivative is also 
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Fig. 3.8 Term difference AGv = G( u + 1 )  - G(w) as a function 
of the vibrational quantum number u for the harmonic poten- 
tial, the Morse potential, and the measured potential of the Naz 
molecule [3.5]. 
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zero, Eb(0) = 0. The first nonvanishing term in the Taylor expansion is therefore the 
harmonic potential 

r2 
E p ( r )  = - E : ( o ) .  2 

A comparison with Eq. (3 .23)  shows that E:(O) equals the force constant k,. Using 
the general ansatz Eq. (3 .33)  for the potential, the Schrodinger equation (3 .22)  can be 
solved only numerically. 

3.3.2.3 Quartic Potential 
We will demonstrate the approximate computation of energy eigenvalues for the ex- 
ample of a quartic potential, 

1 
E p ( r )  = T k , r ' + a r 3 + b r 4 ,  (3 .34)  

which plays a role in the description of double-minimum potentials (Fig. 3.9). We 
write the Hamiltonian H as 

1 
2 

H = Ho+Hl + H 2  with HO = - ( h 2 / 2 p ) A + - k , r 2  (3.3 5a) 

H I  =a? and H2 = b r 4 .  

Next, we write the energy eigenvalues as 

(3.3%) 
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R 
Fig. 3.9 Comparison of parabolic, cubic, and quartic potentials 
with a real molecular potential. 

where the Eo( v )  are the eigenvalues of the harmonic oscillator. In first-order pertur- 
bation theory, this yields 

El = /!P,3r3!P0 dr and E2 = /!P$br4!Podr, 

where !PO are the eigenfunctions H ( < )  x exp( -c2 /2) of the harmonic oscillator. Being 
Hermite polynomials, the functions !Po are real, and !Po x !Po is a quadratic function of 
r; therefore the first integral vanishes because the integrand is an odd function of r, 
that is, the cubic term in the potential does not, to first approximation, contribute to 
the energy. 

To compute the second integral as a function of the vibrational quantum number u, 

the following relation for Hermite polynomials H ( c ) ,  

is useful. By stepwise partial integration we obtain [3.6] 

E 2 = - [ ( ~ + 1 )  3b 2 +:I .  
2P2 

(3.36) 

The energies are shifted upwards from the harmonic-oscillator levels. In second-order 
perturbation theory, the cubic term also contributes to the energy; a detailed calcula- 
tion can be found in [3.6]. Modern procedures do not start from the harmonic oscilla- 
tor as the unperturbed system but from a Morse potential or even from approximated 
functions for the quartic oscillator. Perturbational calculations then converge more 
rapidly. A detailed account can be found in [3.7]. 
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3.3.2.4 Generalized Potential 
The most frequently employed form for a molecular potential is semiempirical. Here, 
the term values G(  v) = E , / ( h c )  are described by a power sieres in (w + i), 

(3.37) 

and the coefficients we. wexe, weye, . . . are determined from a least-squares fit of this 
expression to the experimentally determined term values. Section 3.6 will describe 
how the potential is calculated from these coefficients. 

3.4 
Vibration-Rotation lnteraction 

To describe vibration and rotation of a diatomic molecule, we must include the cen- 
trifugal term J ( J  + l )h2/  (2pR’) in Eq. (3.7), which can be combined with the poten- 
tial E p ( R )  to form an effective potential 

(3.38) 

The energies E ( v , J )  and the averaged internuclear distance depend now not only 
on E p ( R )  but also on the vibrational quantum number w and the rotational quantum 
number J .  Before developing the mathematical treatment of the vibrating rotor, we 
will first concentrate on the physical foundations. 

During one full rotation, a molecule completes usually many vibrational periods 
(typically 10-1 00). This means that the internuclear distance is periodically changing 
during rotation (Fig. 3.10). As the angular momentum J = Iw of a free molecule 
is constant in time but the moment of inertia 1 2  pR2 is periodically changing, the 

Fig. 3.10 Vibrating rotor. 
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Fig. 3.1 1 Exchange of vibrational, rotational, and potential en- 
ergy in the vibrating rotor. 

frequency w of rotation must also change periodically, in phase with the molecular 
vibration. Thus, the rotational energy Era, = J ( J +  1)A2/(2pR2) varies also with R. 
As the total energy E = Erot 4- Evib + Ep must of course remain constant, the energy 
in the vibrating rotor flows constantly between vibrational, rotational, and potential 
energy (Fig. 3.1 1). When talking of the rotational energy of a vibrating molecule, we 
mean the time-average, averaged over many vibrational periods. 

As I$vib(R) l 2  dR is the probability of finding the nuclei at an internuclear distance 
between R and R + dR, the mean value (quantum-mechanical expectation value) of the 
internuclear distance is 

( R )  = /$:ib(R,V)R$vib(R,V) dR * 

Analogously we can define a mean rotational energy 

(3.39) 

(3.40) 

which is proportional to the expectation value (1 /R2). 
To be able to express the rotational term values F = Ero,/Ac in terms of a rotational 

constant as in Eq. (3.1 I), we define a vibration-dependent mean rotational constant in 
analogy to Q. (3.12), 

(3.41) 

The vibrational functions $vib and thus also B, depend on the choice of the potential 

Ep = EpodR). 
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3.5 Term Values of the Vibrating Rotor; Dunham Expansion 

Re R Re R 

Fig. 3.12 Mean values ( R )  and ( 1  / R 2 )  as functions of the vibra- 
tional quantum number v, a) in a harmonic, and b) in an anhar- 
rnonic potential. 

Nore: While for a harmonic potential, ( R )  is independent of the vibrational quan- 
tum number w, this is not true for asymmetric potentials such as the Morse potential. 
The mean (1 / R 2 )  depends on v even in the harmonic case, where it increases with 
increasing v, while it decreases in real potentials (Fig. 3.12). 

3.5 
Term Values of the Vibrating Rotor; Dunham Expansion 

The most precise determination of the effective potential Eq. (3.38) of a vibrating and 
rotating molecule is based on a measurement of energies or term values of vibration- 
rotation levels. The potential can then be calculated numerically from the term values, 
independent of model potentials. As this is today's standard procedure for the deter- 
mination of potentials in diatomic molecules, we will discuss it in more detail in the 
following, and we will also give some examples. 

3.5.1 
Term Values for the Morse Potential 

For a nonrotating molecule with an assumed Morse potential, the term values Eq. 
(3.31) can be obtained analytically by solving the Schrodinger equation (3.22). For 
the rotating molecule, we must employ the effective Morse potential 

(3.42) 
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which includes the additional centrifugal term J(J + 1)h2/ (2pR2). For this potential, 
approximate solutions to the Schrodinger equation have been found by Pekeris [3.8]. 
The corresponding term values are 

I 

2 T ( W , J )  = G ( W )  + F ( w , J )  =we (W + 1) -wexe (v + $) 
+B,J(J+l )  -D,J2(J+ 1 )2 .  (3.43) 

The rotational and vibrational constants can be written as 

with 

and 

) (3.44b) 
8wexe 5ae ,:we 

& = D e + P e ( v + i )  with P e = D e  
we we 24Bz ' 

For the vibrational constants, we obtain 

hcwz - ha2 
; wex, = - 

4Ed 8n2pc ' 

where &, is given in joule, and p in kilogram. 
The centrifugal constant can be calculated from the Kratzer relation 

(3.45) 

(3.46) 

which follows, for a Morse potential, from Eqns. (3.12), (3.19a) and (3.45). While 
Eq. (3.46) is exact only for a Morse potential, it is still a good approximation for real 
molecular potentials. 

3.5.2 
Term Values for a Generalized Potential 

As the vibrational functions in Eq. (3.41) for an arbitrurypotential are in general not 
known, B, is frequently expanded in a power series in ( w + i), 

(3.47) 
2 

Bt, = Be - Cre ( w + i ) + ye ( v + 1) + . . . , 
and analogously for the centrifugal constant, 

~ , = ~ , + ~ ~ ( W + ~ ) + ~ e ( ~ + ~ ) 2 + . . .  , (3.48) 
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and the coefficients Be, ae ,  Te, De, &, and Se are determined by fitting the calculated 
term values, Eq. (3.43). 

T ( ~ , J )  = we (v + i) -wexe (v + 1)’ 
4 + WeYe (v + + WeZe (v + 1) . . . 

+ B,J(J  + 1 ) - D , J ~ ( J  + 1)’ + H , J ~ ( J  + 1 1 3  . . . (3.49) 

to the experimentally determined term values. The coefficients characterize the inter- 
nuclear distance Re and the potential in which the nuclei oscillate. They are thus called 
molecular constants. Table 3.1 lists some values of the most important constants for a 
number of molecules. 

3.5.3 
Dunham Expansion 

As a realization of a generalized potential of a rotating molecule, 

Dunham [3.9] suggested a power-series expansion 

Epot(R’J)  = a”[’ ( 1  S a l t  +a’<’ +. . .) +BeJ(J+  1) [1 -2J + 3J’ -4t3 +. . .] 
hc 

(3.50) 

with [ = ( R  - R e ) / R e ,  and expressed the term values of the vibration-rotation levels 
by a power series analogous to Eq. (3.49), 

T ( v , J )  = ~ ~ K ~ ( U + ~ ) ~ [ J ( J +  1) Ik  . (Dunhamexpansion) (3.51) 

This gives a relation between the Dunham Coefficients K k  and the coefficients a; of the 
potential expansion which was determined by Dunham [3.9]. 

The Dunham coefficients K k  essentially correspond to the coefficients we, w,xe, 
etc., in  the expansion Eq. (3.49) if the latter are simply considered as expansion coef- 
ficients that are fitted to measured values. If the physical meaning of the coefficients 
in Eq. (3.49) and the definitions from Eqns. (3.12), (3.19a), and (3.43)- (3.46), which 
are strictly valid only for a Morse potential, need to be retained, then small deviations 
of order (Be/we)’ occur [3.9] (see Sect. 3.6.2). If (B,/W,)’ is sufficiently small, they 
can be neglected, and we obtain 

i k  

(3.52) 
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An exact comparison for the coefficient Yo0 yields not zero but 

(3.53) 

For a Morse potential, the only nonvanishing coefficients are Y ~ o ,  Y ~ o ,  Yol,  YO^, YI  1 ,  

and Y12, so that the Dunham expansion reduces to only a few terms. 
The Dunham expansion is the most frequently used method to determine molecular 

constants from a least-squares fit of the measured term values to Eq. (3.51). 
Equation (3.52) creates a relation between the Dunham coefficients &, which may 

be considered pure fit parameters, and the molecular constants we, Pe, etc., which have 
a real physical meaning. 

3.5.4 
isotopic Shifts 

Both vibrational and rotational energies depend on the masses of the atoms involved. 
Therefore, different isotopomers of a molecule have different term values T (  w,J). 
Recording spectra of different isotopomers is often helpful to identify specific lines, 
i.e., to determine the quantum numbers w and J of a transition, because the isotopic 
shifts, which depend on v and J ,  can be calculated precisely. 

From Eq. (3.12) we see that the rotational constant Be is inversely proportional to 
the reduced mass p = M I & /  ( M I  + M 2 )  of the molecule. The centrifugal constant De 
is, according to Eq. (3.19a), De = 1 / p 2 ,  and the vibrational constants are, according 

In the approximation Eq. (3.52), the mass dependence of the Dunham coefficients 

K k  in Eq. (3.51) can be expressed through l ' f ' ) / ~ ~ )  = ( , u ~ / , u , ) ( ' + ~ ~ ) / ~ .  For the 
more exact relation Eq. (3.5 1) including higher terms, the corresponding expression 
is [3.10]: 

to Eq. (3.44), we = & and UeXe /A. 

(3.54) 

and the Pjk  are tabulated as functions of the coefficients Yik in [3.9] and [3.10]. For 
comparison with more accurate measurements, the correction term in Eq. (3.54) must 
be taken into account. 

3.6 
Determination of Potential Curves from Measured Term Values 

The accurate determination of potential curves Ej2t(R) for the different electronic 
states i of a molecule is among the major objectives of the spectroscopy of diatomic 
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molecules. For a known potential E,,(R) we know the bond energy Eb and the equi- 
librium bond distance Re and we can, at least numerically, calculate all relevant vibra- 
tional and rotational levels from the Schrodinger equation. Knowledge of the potential 
curves Ep(R) is also crucial for the calculation of reaction rates for collisions of two 
atoms 

A + B + A B *  

and their dependence on the internal energy of the collision partners A or B. The 
form of the potential curve (Epot(RAB)) decides whether a reaction is endothermal or 
exothermal. 

For small diatomic molecules (e.g., H2, Li2, LiH, etc.) the ground-state potentials 
can be computed, without any information on experimental data, with an accuracy of 
a few cm-' by modem ab inirio methods (see Sect. 2.8). Although there are computed 
high-quality potential curves for heavier diatomic molecules [3.11, 3.121, the results 
can not in general compete with the accuracy achievable by spectroscopic methods. 
They still provide useful information as to which electronic states of a molecule occur 
(see Sections 2.4 and 2.8), whether they are binding or repulsive, and on their approx- 
imate energies. Such calculations can therefore greatly facilitate the interpretation of 
measured spectra. 

All presently known precise potential curves have been derived from experimen- 
tal data with the aid of different computational schemes. They are thus relying on 
semiempirical methods that do not require a knowledge of the electronic wavefunc- 
tions 4 in Eq. (2.7). Some of these methods are based on the WKB procedure, an 
approximation method for the solution of the one-dimensional Schrodinger equation 
(3.7), named after the initials of the inventors Wentzel, Kramers, and Brillouin [3.13]. 
We will therefore start by discussing the WKB approximation [3.14], before we con- 
tinue by presenting today's most frequently used methods for the determination of 
molecular potential curves. 

3.6.1 
The WKB Approximation 

We start from the radial Schrodinger equation (3.7), from which we obtain, by sub- 
stituting 9 = R x S ( R ) ,  the equation 

d2@ 2p 
dR2 h2 
- + - ( E  - Veff) 9 = 0 

with 

J ( J +  1)h2 
2pR2 veff = Epot ( R )  - 

(3.55) 

(3.55a) 

for the vibrating and rotating molecule. 
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The kinetic energy of the radial motion, 

P2 
2P 

Ekjn = E - vefi = - , 

can be expressed through the radial momentum p ( R )  = d w .  
With k = p / h ,  we obtain from Eq. (3.55) 

d2!P 
- + k 2 9  = 0 . 
d R 2  

(3.56) 

(3.57) 

For constant potential, Vefi = const., independent of R ,  k = ko = const., and Eq. (3.57) 
describes a free particle. The solution of Eq. (3.57) is in this case 

9 = Ae*ikOR . 

If V ( R )  varies only slowly with R,  an obvious idea is to try a solution of the form 

9 = A eiu(R) . (3.58) 

If we substitute Eq. (3.58) into Eq. (3.57), we obtain an equation for the unknown 
function u ( R )  

2 
I - - ( $ )  . d2u + k 2 ( R ) = 0 .  

d R 2  
(3.59) 

If the potential does not vary quickly with R,  the second derivative d2u/dR2 will be 
negligible in a crude approximation, and we obtain the “zeroth-approximation uo ( R ) ”  
from Eq. (3.59) with ub = duo/dR 

u’i = [k(R)]’  3 uo = k ( R )  dR + C . 

If we substitute this result into Eq. (3.59), we obtain the first approximation: 

(3.60) I 
d2Uo 

( ~ ) ~ = p ( R ) + i -  d R 2  * = */ [ k 2 ( R )  +iug(R)] . (3.61) 

This can used as a basis for an iterative approximation method, where we insert the 
( n  - 1)th approximation on the right-hand side of Eq. (3.61) and obtain the nth ap- 
proximation for u ( R )  on the left-hand side. The solutions are then 

u n ( R )  = f / J m d R + C , ,  , 

where C,, is an integration constant determined by boundary conditions. 
For the first approximation, we obtain 

w ( R )  = k / d m d R + C ~  

(3.62) 

(3.63) 
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The procedure converges if Ik'(R)I << lk2(R) I. Expansion of the integrand yields 

= k k(R) dR+ i lnk(R) +CI . 

For the wavefunction P(R) we obtain thus the approximate solution 

J 2 

(3.64) 

which is known as the WKB approximation. Introduction of the de Broglie wavelength 

allows the convergence criterion k' << k2 to be written as 

xdp << p(R) , 
27c dR 

(3.65) 

that is, the approximation is valid if the variation ofthe momentum within one de 
Broglie wavelength is small with respect to the momentum itself. 

This condition is not met at the classical turning points of an oscillator, because 
there p ( R )  = 0. The resulting difficulty for the application of the WKB approximation 
can be circumvented, however, by using special solutions of the Schrodinger equation 
(3.55) in the vicinity of the turning points, which can be obtained by linearizing the 
potential Epot (R) in a small interval around the turning points R I ,  R2, i.e., if we write 
Epot(R) = a ( R  - Ri). For a detailed justification we refer the reader to [3.6]. 

For a periodic motion of the vibrating nuclei between the positions Rl and R2, we 
obtain by integrating over a full vibrational period, i.e., over the path from RI through 
R2 and back to R1 , the so-called action integral 

I =  p(R)dR.  (3.66) 

The condition that the solution function be single-valued, Eq. (3.64), requires that the 
function must return to its original value after one revolution. Therefore, it follows for 
the exponent in Eq. (3.64) after o vibrational periods, 

f 

A f p ( K )  dR = iv(2x-t I ) ,  
h 

where we have accounted for the fact that upon reflection a phase shift of 7c is intro- 
duced in the wavefunction. This yields the condition 

I =  ( u + $ ) h ,  (3.67) 
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for the action integral that determines that phase factor of the wavefunctions Eq. 
(3.64), where w = 0, 1,2,. . . is the integer vibrational quantum number. 

With p = d m ,  this gives a quantization condition for the allowed ener- 
gies E, 

which contains the dependence of the energy levels E ( v , J )  of the vibrating rotor on 
the effective potential Veff = Epot(R) + J ( J +  1)h2/(2pR2). 

If we treat E as a continuous variable, differentiation yields 

(3.69) 

This is equal to the classical vibrational period Tvib, as can be seen from the following 
relation: 

Integration gives 

(3.70) 

(3.71) 

3.6.2 
WKB Approximation and Dunham Expansion 

As mentioned in Sect. 3.5.3, Dunham [3.9] used a power-series expansion for the 
effective potential Veff with the normalized expansion parameter < = ( R  - R e )  / R e ,  

(3.72) 

The parameter a0 = ~ ,2 /4Be  is determined by the classical oscillation frequency we 
for small displacements (i.e., the frequency of the harmonic oscillator) and by the 
rotational constant Be = fi/(41~pcR,2) at the equilibrium distance Re. 

If we substitute this potential ansatz into the Schrodinger equation, we can solve it 
within the WKB approximation. The relation between Veff and the action integral can 
be written, using Eqns. (3.66) and (3.67), as 

(3.72a) 
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Inserting Eq. (3.72) into Eq. (3.72a) and expanding the square root. The result is the 
term values T (  v,J) = E(  v , J ) / h c  in the form of the Dunham expansion 

T ( v , J )  = C C K k ( v + ; ) i [ J ( J + l ) ] k  1 

i k  
(3.73) 

where the Dunham coefficients Yik are connected with the coefficients ai in the expan- 
sion of the potential. 

A list of the relations for the first 15 Dunham coefficients can be found in [3.9, 
3.151. 

Note: As the expansion of the potential Eq. (3.72) converges only for 
< < 1. its validity is limited to internuclear distances 0 5 R 5 2Re. Nev- 
ertheless, Eq. (3.73) can be used to jit measured term values also for 
R 2 2Re. Howevel; the Dunham coeficients K k  derived from that$t bear 
no direct physical meaning, but can still be viewed as numerical data for 
the determination of term values and they are useful for the calculation 
of line positions in the spectra of transitions (v', J ' )  + (v", J''). 

3.6.3 
Other Potential Expansions 

Finlan and Simons [3.16] suggested a potential expansion with arbitrary convergence 
limit, using not < = ( R  -Re) /Re as expansion parameter but z = ( R  - R,)/R. This 
means that z < 1 for all values of R. The potential V ( R )  is similar to Eq. (3.72), 

V ( R ) = A " z 2 ( 1 + b i z + b ~ Z +  . . .) .  (3.74) 

The authors showed that the coefficients bi are related to the coefficients ai of the 
Dunham potential by 

(3.75) 

Because for R -+ 00, that is for z + 1, the potential Epot(R) converges towards the 
dissociation energy Ed, we arrive at an additional boundary condition, 

(3.76) 

A generalized potential that contains many approximations as special cases has been 
developed by Thakkar [3.17]. 

3.6.4 
The RKR Method 

Today's most frequently used method for the exact calculation of molecular potential 
curves is based on work by Rydberg [3.18], Klein [3.19] and Rees r3.201. It uses the 
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R R 

(a) ( 4  
Fig. 3.13 Explanation of the RKR procedure. a) Integral A as 
area between E = 0 and E = U inside the potential curve; b) and 
c) variation of A with U and n. 

WKB approximation to derive the classical turning points Rl and R2 of the vibrating 
molecule from the measured energy levels E (  v , J ) .  At these points the total energy 
E (  w , J )  equals the potential energy. With the aid of these turning points Ri, the whole 
potential curve Epot ( R )  is then constructed point by point. This means that the poten- 
tial EpOt ( R )  is not provided in analytical form, but is only tabulated at discrete points 
Epot(Ri) ,  where the number of turning points employed corresponds to the number 
of measured energy levels. The RKR procedure yields more exact potential curves 
than all other methods discussed up to now, and it is therefore the standard proce- 
dure in molecular spectroscopy. Its precision is only surpassed by that of the yet less 
well-known IPA procedure (see next section). 

The RKR procedure will be investigated more closely with the aid of Fig. 3.13. 
The energy E is taken to be that of a measured vibration-rotation level E ( w , J ) .  The 
shaded area A in Fig. 3.13 between the total energy 

and the potential curve 

is given by the integral 

(3.77) 

(3.78) 

(3.79) 
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We treat U as a continuous variable and differentiate A with respect to U for constant 
Pi .  

The partial derivative 

(3.80) 

gives the change in area A upon changing the total energy U for constant rotational 
energy (Fig. 3.13b). Differentiation with respect to K at constant U gives 

(3.81) 

This describes the change of the area A at constant total energy U ,  but changing rota- 
tional energy, which implies a change of E;:(R) (Fig. 3 .13~) .  With the abbreviations 

(3.82a) 

(3.82b) 

we obtain from Eq. (3.82) for the classical turning points in the potential E$ at the 
term energy U = E (v,J) 

I / 2  1 / 2  

R 1 = ( % + f 2 )  - f ;  R 2 = ( % + f 2 )  + f .  (3.83) 

If we can determine the quantities f and g from measured energy levels E ( v , J ) ,  the 
turning points at these energies can be obtained from Eq. (3.83). The connection be- 
tween f ,  g and E ( v , J )  is given within the WKB approximation by the action integral 
Eq. (3.68), 

because with the aid of the Euler relation [3.21], 

(3.84) 

we can express the area A in terms of the action integral I .  

the double integral 
If we substitute the integral Eq. (3.84) into Eq. (3.79) for (U  - Veff), we arrive at 

(3.85) 
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for the area A. By exchanging the order of integration, this yields 

(3.86) 

where Uo is the energy at the minimum of E$. The integral over R is, according to 

Eq. (3.69), equal to fi dlldE. Hence, we obtain for the area 

(3.87) 

where I* is the value of the action integral for which E ( I ,  6) = U .  The energy E ( I , 6 )  
of the vibration-rotation levels can be obtained from the Dunham expansion Eq. (3.25) 
by inserting I / h  for (v + i) according to Eq. (3.67). This yields for the term values 

(3.88) 

Usually, the potential curve EPot(R) is given for the nonrotating molecule. The term 
values T (  v , J )  = G( v) +F( v , J )  then reduce to the pure vibrational term values G(  v). 
With K = 0, we obtain for f and g in Eq. (3.82), 

(3.89a) 

(3.89b) 

One problem in the computation of these integrals is caused by the singularity of 
the integrand at the upper integration limit G(v) = U * .  Below the singularity, the 
numerical integration is usually carried out using the standard Simpson method, while 
the last part up to the zero point of the denominator, which yields large contributions 
to the integral, is calculated using a Gaussian quadrature [3.22, 3.231. 
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The quantities 

(3.90) 

(3.91) 

are determined from the Dunham expansion for the nonrotating molecule ( J  = 0), 
where the Dunham coefficients Yio and y i l  are calculated from a least-squares fit of the 
measured term values T (  v , J )  in Eq. (3.66). 

Although the RKR method is based on a first-order WKB approximation, it turns 
out that it is the most accurate of all methods for the determination of molecular po- 
tential curves discussed until now. This can be rationalized as follows: In the vicinity 
of the potential minimum, the WKB term values are exact. Close to the dissociation 
limit, for large V ,  the motion of the vibrating nuclei resembles the classical vibrational 
motion (see Fig. 3.6), and the WKB approximation, being semiclassical, should also 
be reliable in this region. As the RKR procedure involves an integration from the po- 
tential minimum to the highest measured energy levels, the WKB approximation suits 
this method well [3. I 11. From the RKR potentials, the molecular centrifugal constants 
can be obtained [3.24]. 

3.6.5 
The Inverted Perturbation Approach 

All methods for the determination of potential curves discussed up to now use a set 
of molecular constants (for example, the Dunham coefficients yik) that are determined 
by a least-squares fit to measured term values T (  v , J ) .  With the aid of this set of con- 
stants, the potential Epot(R)  is determined, either through a power series expansion, 
the coefficients of which are related to the molecular constants (Dunham expansion), 
or through calculation of the classical turning points Ri of the vibration and point-to- 
point construction of the potential curve (RKR procedure). 

The individual molecular constants yik are not uniquely determined in general, 
because there exist correlations between them, the degree of which depends on the 
number of measured term values. For example, the value of the rotational constant 
Be M y01 that is obtained from a fit to a set of measured term values depends on the 
number of centrifugal constants  YO^ ( k  = 2,3 , .  . .) included in the fit. The same is true 
for the vibrational constants. As discussed in Sect. 3.5.2, the Dunham coefficients 
are primarily fit parameters. Their physical interpretation as vibrational or rotational 
constants depends on the form of the potential employed. 

To ensure the uniqueness of the molecular constants and to provide them with a 
well-defined physical meaning, we need to find constants which do not only allow one 
to reproduce measured term values and predict unknown ones, but which also adhere 
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to the boundary conditions that are imposed by the Hamiltonian of the molecular sys- 
tem under consideration. The inverted perturbation approach (IPA) discussed in this 
section, first suggested by Kosman and Hinze [3.25], is based on the variational prin- 
ciple and obeys the above-mentioned requirements much better than all other methods 
discussed up to now. It was further developed by Vidal [3.26] into a numerical pro- 
cedure for the accurate determination of molecular constants and potential curves. 
Its superiority over the RKR procedure has been demonstrated in several investiga- 
tions [3.27,3.28]. The following outline is based on the presentation in [3.26]. 

The IPA procedure uses an optimization method for the rotation-free potential 
Epot(R), which is determined by the Schrodinger equation (3.22) of the nonrotating 
molecule, 

HOP = E 9  
-h2 d2 
2m dR2 

with HO = -- + E p t ( R )  , (3.92a) 

The rotating molecule is described by the Schrodinger equation of the vibrating rotor, 

h2J(J+ 1) 1 with Hrot = - 
2p R 2 ’  

(3.92b) 

Using a variational procedure, Epot (R) is now optimized until the measured energies 
E (  v , J )  agree with the values calculated from Eq. (3.92b), in a least-squares sense, 
within predefined limits. 

We start from the ansatz 

E p t  ( R )  = Epola ( R )  + mpot  ( R )  9 (3.93) 

where Epb (R) is the starting-point potential (e.g., the RKR potential determined 
from the Dunham coefficients) and AEpol(R) is a correction term. The correction 
AE,J of the energies is obtained from a first-order perturbation calculation through 

(3.94) 

where the unperturbed wavefunctions !do) are solutions of the starting-point equation 
(3.92b) 

In contrast to the usual perturbational method, where energy corrections AE are calcu- 
lated for a given perturbation MPot (R),  we use here the inverse procedure to calculate 
AEpot (R) from the energy differences 
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between the experimentally measured values E:: and the energies E t j  calculated 
from the starting-point equation (3.92). If the starting-point potential E p t ( R )  is 
already sufficiently good, a first-order perturbation calculation suffices to determine 
AEpot(R),  because in this case the higher orders contribute so little that they can 
be neglected within experimental accuracy. This can be developed into an itera- 
tion method by using the new potential Epot(R) obtained in the first approximation 
step as starting-point potential for the second step, etc. The functional form cho- 
sen for AEpot(R) is crucial to achieve a rapid convergence of the iterations. A lin- 
ear superposition of products of Legendre polynomials P;. ( x )  and Gaussian functions 
exp [ - a ( ~ - . x ; ) ~ ' ] ,  

I 

(3.96) 

turns out to be optimal for the numerical integration of the Schrodinger equation in 
the individual iterations. The exponent n is typically in the range 1 5 n 5 5. The 
argument x of the functions P and the Gaussian functions is determined by the inter- 
nuclear distance R and the inner and outer turning points R I  = Rmin and R2 = R,x in 
the potential Epot(R)  and it is defined as 

(3.97) 

so that x = 1 for R = Rmax, x = - 1 for R = Rmin and x = 0 for R = Re. For a harmonic 
potential, Re = (Rrnax + Rmin) / 2 ,  SO that, in this case, x = 2 ( R  - Re) / (Rmax + Rmin) 
is a linear interpolation for Re. From the iteratively determined potential Epot(R) ,  
the term values C( w )  can be calculated as eigenvalues of the Schrodinger equation 
(3.92a) of the nonrotating molecule, 

Ev.J=O G(w) = - 
he 

The rotational constant B ,  is given, according to Eq. (3.41), by the expectation 
value 

(3.98) 

where the vibrational functions are determined by numerical integration of the Schro- 
dinger equation (3.92a). 
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Fig. 3.14 Comparison between measured term values and 
those calculated with the IPA and RKR methods for the Mg;! 
molecule [3.29]. 

Figure 3.14 displays the differences AE between measured and calculated term 
values for transitions in the A 'C, t X 'El  system of Mg2 for different vibrational 
quantum numbers v [3.26]. This figure clearly demonstrates the superiority of the IPA 
procedure over the RKR method. 

3.7 
Potential Curves at Large lnternuclear Distances 

For sufficiently large internuclear distances R, where the overlap of the electron clouds 
of the two nuclei ceases to be significant, a classical view on the interaction between 
two atoms does not only provide a deeper insight into the physical causes of their in- 
teraction, but can also provide a quantitative description of the potential Epot(R). The 
question Under which circumstances can two neutral atoms attract each other? will be 
answered in the course of this discussion by the calculation of the multipole moments 
of the atomic charge distributions. When combined with quantum-theoretical compu- 
tations of these charge distributions, such a semiclassical method allows an accurate 
determination of the potential Epot(R) for large R. 

This procedure is especially important if the energy levels E ( v , J )  cannot be mea- 
sured up to the dissociation limit. In these cases, the RKR or IPA procedures to de- 
termine the potential work only up to the highest measured energy and hence up to a 
maximum internuclear distance R,, in the potential V ( R ) .  For R > Rmax, the mea- 
sured part of the potential can be extrapolated accurately using such semiclassical 
methods. 
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Fig. 3.15 Regions of internuclear distances with chemical bond- 
ing for R < R, and long-range multipole interactions for R > R,. 

The method of multipole expansion, based on classical electrodynamics, is not 
applicable in the region R < R, below a critical internuclear distance R,, when the 
overlap of the atomic electron clouds leads to exchange effects and makes a quantum- 
mechanical treatment unavoidable (Fig. 3.15). 

3.7.1 
Multipole Expansion 

We consider the potential Epot (P)  at point P ,  created by a distribution of point charges 
qi(r;) (Fig. 3.16). If the distance R between P and the center of charge S is large 
compared with all occurring ri, we can expand Epot (R , r ; )  in a convergent Taylor 

S 

Fig. 3.16 Multipole expansion. 
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series with successively decreasing terms, 

+... +- +-- 
4moR 4moR2 2 4moR3 
4 PX& 1 Q - - (3.99) 

= monopole + dipole + quadrupole + higher terms , 

where 

q = c q i  

p = Lq;r; 

is the total charge , 
i 

is the total dipole moment, 
I 

rf] is the quadrupole moment 

of the complete charge distribution. 
For neutral atoms, x q ;  = 0, and the first term in Eq. (3.99) is zero. In the absence 

of external fields, atoms possess, averaged over time, no permanent electric dipole 
moment, and therefore the second term also vanishes. For a spherical symmetric 
charge distribution, the quadrupole moment is also zero. Thus, the potential 

created by a neutral atom can only contain terms with n > 3. 

shown in the next section. 
The interaction between two neutral atoms is due to induced moments, as will be 

3.7.2 
induction Contributions to the interaction Potential 

An atom in an S state possesses, averaged over time, no dipole moment, because the 
time-averaged charge distribution is spherically symmetric and thus the expectation 
value of the electric dipole moment is zero, 

(p) = q / I ' r I  d7 = 0 .  

There exists, however, at each time an instantaneous nonvanishing dipole moment 
p ( t )  that changes its direction continuously so that its time-average vanishes. For 
example, for the hydrogen atom in the 1s state, p ( t )  = - e r ( t ) ,  where r ( f )  is the 
vector from the nucleus to the electron (Fig. 3.17). 
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Fig. 3.18 Induced dipole moment in the 
electric field of a point charge. 

Fig. 3.17 Instantaneous and time- 
averaged electric dipole moment of an 
atom in a S state. 

In an external electric field E,  the energy W = p ( t )  . E will change almost ran- 
domly, because the direction of p ( t )  changes, but orientations of p with lower energies 
are favored over those with higher energies. Therefore the time-average of p ( r )  does 
not vanish, and an induced dipole moment 

p i n d  = d! 7 (3.100) 

occurs, with a magnitude proportional to the strength of the external field. We will 
elucidate this for a few examples. 

3.7.2.1 Point-charge-induced Dipole (Ion-Atom Interaction) 
The Coulomb field 

of a point charge q at point A induces a polarization in a neutral atom B at a distance 
R from A. The center of the distribution of negative charges is shifted with respect 
to the positive charge in the nucleus (Fig. 3.18). This shift, which is proportional to 
the strength of the electric field at the location of atom B, leads to an induced dipole 
moment 

(3.101) 

The interaction potential between an ion A with charge q and the induced dipole mo- 
ment of the atom B, 

(3.102) 

leads to a negative energy and thus to an attraction that decreases as RP4. 
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3.7.2.2 Interaction Between Two Neutral Atoms 
Isolated neutral atoms have a total charge q = 0 and the time-average of a possibly 
occurring instantaneous electric dipole moment is also zero. However, if two atoms A 
and B approach each other, the instantaneous dipole moment P A ( ? )  of atom A creates 
a field 

(3.103) 

at the location of atom B (Fig. 3.19), which induces a dipole moment Pind(B) = crg EA 
in atom B. This dipole moment in turn creates an electric field E B ( A )  at the location 
of atom A, which induces a time-averaged dipole moment PA = ~ A E B ( A )  in atom 
A (Fig. 3.20). The interaction energy between the two induced dipoles ptd and pkdis 
then 

Inserting p~ = ~ A E B  and pg = ~ B E A  yields 

(3.104) 

(3.105) 

Hence, the interaction between two neutral atoms without permanent dipole moments 
(van der Waals interaction) decreases with 1 / R 6 !  

If we write the interaction potential between the atoms as a power series 

the term in R-6 is the first nonvanishing term, describing the interaction between two 
induced dipoles. 

Fig. 3.19 Electric field of a dipole. 
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A B 
Fig. 3.20 Mutual induction of two atoms without permanent 
dipole moments. 

If we take into account induced quadrupole moments, terms with RP8 and R-" 
appear. Because of the mirror symmetry of the system, only even powers of R occur 
for identical atoms. 

The interaction potential between neutral atoms at large distances, where the over- 
lap of the electron clouds can be neglected, can then be written as 

(3.106) 

The interaction is attractive, as can be seen from the negative sign in Eq. (3.106). It 
is a short-range interaction because it decreases at least as 1 / R 6 .  The atomic polariz- 
abilities are usually determined experimentally, but high-precision ab initio values are 
also available. 

Figure 3.21 compares the different contributions to the interaction between two 
atoms in their S states at large internuclear distances for the ground state potential of 
the Cs:! molecule. Curve (a) displays the potential if only the quantum-mechanical 
exchange term Vex is included. We see that this term plays virtually no role for dis- 
tances larger than about 1 nm. For curve (b), the induced dipole-dipole interaction 
-v6 = -C6 /R6  is additionally included, for curve (c) also the quadrupole interaction 
-Vg = - C g / R 8 ,  for curve (d) also the term Clo /R" .  If one goes even further and 
includes also the C1:!/R12 contribution in Eq. (3.106), the calculated potential curve 
and the vibrational term values G(w",JN = 0) derived from it agree perfectly with the 
experimental results within experimental accuracy. 

Remark: Even for the long-range interactions, the quantum-mechani- 
cal description is more accurate than the power-series-based multipole 
model, because the wavefunctions .f the two atoms provide of course 
more accurate electronic charge distributions. The quantum-mechanical 
calculation is much more laborious, howevel: For example, the van der 
Waals interaction is computed by a second-order perturbation calcula- 
tion with the unperturbed atomic wavefunctions [3.30, 3,311. 
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Fig. 3.21 Potential curves of the Cs2 molecule at large internu- 
clear distances. 

3.7.3 
Lennard-Jones Potential 

The complete range of the interaction potential between two neutral atoms can be 
described by the empirical Lennard-Jones potential (Fig. 3.2 1) 

(3.107) 
a b  

R i 2  R6 ' 
Epot(R) = - - - 

where the constants a and b are adjustable parameters depending on the interacting 
atoms. 

Fig. 3.22 Lennard-Jones potential. 
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From Eq. (3.107) we see that Epol(R) = 0 for R = Ro = ( a / b ) ' I 6  (Fig. 3.22). The 
potential possesses a minimum for dEpol/dR = 0, which yields for the distance Re at 
the mimimum 

I 

The bond energy of the molecule is then (neglecting zero-point energy) 

b2 
2a 

EB = -Epo l (Re)  = - . 

(3.108) 

(3.109) 

The coefficients a and b are adjusted for the specific molecule so that the potential 
resembles the experimentally determined curve as closely as possible. 

More detailed accounts on the long-range part of the potential for diatomic mole- 
cules can be found in [3.30-3.321. 
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4 
Spectra of Diatomic Molecules 

Up to now we have discussed only the possible energy levels of molecules and the 
symmetries of the corresponding wavefunctions. In this chapter we will now turn 
to the central topic in molecular spectroscopy: the explanation and interpretation of 
molecular spectra and their importance for the investigation of molecular structure. 

The relation hVik = Ei - Ek associates a defined frequency Vik to each possible 
combination of energy levels Ei and Ek of a molecule. Whether this frequency is 
indeed observable in the spectrum depends on a number of selection rules, which 
decide, based on symmetry considerations, between which combinations of energy 
levels E,,  Ek radiating transitions may occur, the so-called allowed transitions. The 
intensity of an allowed spectral line depends on the occupation numbers N; of the 
absorbing and Nk of the emitting molecular level, on the probability for a transition 
Ik) --f li) and, in the case of stimulated transitions, on the intensity and polarization of 
the incident light. 

In this chapter, we will provide answers to the following questions: 

1. Between which pairs of molecular states can transitions take place by absorption 

2. What is the transition probability and what are the factors by which it is deter- 

3. What are the spectral profiles of emission or absorption lines for such a transi- 

or emission of electromagnetic radiation? 

mined? 

tion? 

Although we will answer these questions for diatomic molecules in this chapter, the 
results can be transferred with only minor modifications to polyatomic molecules (see 
Ch. 8). 

First, we will discuss the concept of transition probability and elucidate its con- 
nection with the wavefunctions of the molecular states involved in the transition. This 
will lead us to dipole matrix elements and symmetry selection rules. Section 4.3 dis- 
cusses the spectral profiles of molecular transitions and explains the different reasons 
for linewidths. Finally, we will discuss two-photon transitions, Raman spectra and 
two-photon absorption as illustrative examples. 
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4.1 
Transition Probabilities 

We will start with a basic definition of transition probabilities, first introduced by 
Einstein, and then elucidate the connection between transition probabilities and the 
molecular wavefunctions. For more detailed derivations of this approach in the semi- 
classical approximation, we refer the reader to [2.2,2.3,4.1,4.2]. 

4.1.1 
Einstein Coefficients 

We consider a molecule with the energy levels Ei and Ek in an electromagnetic radi- 
ation field with spectral energy density p ( v )  (energy per unit volume and frequency 
interval). The probability (dWk/dt),b, that this molecule absorbs a photon hv = 

(EL - Ei) and undergoes a transition from its state l i) to the energetically higher state 
Ik) (Fig. 4.1) is proportional to the number of photons with frequency v incident on the 
molecule per unit time, which in turn is proportional to the spectral radiation density 

P ( 4  

The constant Bik is the so-called Einstein coeficient of absorption; it depends on 

Analogously, the probability for a molecule in the excited state Ik) undergoing a 
the specific transition l i) + Ik) of the corresponding molecule. 

transition into the lower state l i) by stimulated emission is 

In this process, the incident photon 
molecule, The constant Bki is the 

(4.2) 

stimulates emission of another photon from the 
Einstein coefficient of stimulated emission. A 

molecule in the excited state Ik) can also relax to a lower state spontaneously, that 

Fig. 4.1 Stimulated and spontaneous transitions. a) Absorption, 
b) stimulated emission, c) spontaneous emission. 
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is, without interacting with an external radiation field, by emitting a fluorescence pho- 
ton h v  = (Ek  - E ; ) .  The probability for such a spontaneous emission is independent 
of the radiation field, 

(F) = A k ; ,  
spont 

(4.3) 

where Ak; is the Einstein coeficient of spontaneous emission. 
If molecule and radiation field are in thermal equilibrium, the rate of absorption 

processes must be equal to the rate of emission processes per unit time, because oth- 
erwise no stationary population densities N; and Nk would exist. It therefore follows 
that 

The ratio of the population densities is given by the Boltzmann distribution, 

Nk - gk -(Ek-E;)/$T 
- - e  
N; K; 

- (4.5) 

where g = (25 + 1 )  is the statistical weight of a molecular state with the total angular 
momentum 5 and 

If we substitute Eq. (4.5) with (Ek - E ; )  = h v  into Eq. (4.4) and solve for p(v) ,  we 
obtain 

= 1.38 x J K- '  is the Boltzmann constant. 

(4.6a) 

Also, a thermal radiation field obeys the Planck law, 

(4.6b) 

Equations (4.6a) and (4.6b) must hold for arbitrary temperatures T and for all fre- 
quencies u. We can therefore compare coefficients and obtain the important relations 
between the Einstein coefficients, 

1 .  The quantities (dWik/dt) indicate probabilities per unit time; they 
can be larger than one! f i )r  example, A;k z lo's-' for the sodium 
3p + 3s transition. 
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2. If the spectral energy density p( u )  is given in angular frequencies 

w = 27w, p(w) decreases by a factor of 2n, because the interval 
dw = 1 corresponds to the interval du = 2~ and p( w)  dw = p( u )  du 

must hold. As the probability of stimulated emission B k ) p ( w )  = 

Biy)p(u) does not depend on the choice of a specijic unit for the 
frequency, the relation B k )  = 27cBiy) must hold and Eq. (4.7) be- 
comes 

(4.7a) 

The fluorescence radiant power emitted by NK molecules per unit volume into the 
solid angle 47t by a transition Ik) + Ii) is 

Although the fluorescence intensity of a single molecular dipole has an angular 
distribution Ifl(8) a sin2 8, where 8 is the angle between the dipole axis and the direc- 
tion of observation, the total emission from N molecules with random orientations in 
space is isotropic. 

The absorption of an electromagnetic wave with intensity I = cp, where p(u)  is 
the spectral energy density, can be obtained as follows. If an electromagnetic wave of 
beam cross-section Q and spectral density p( u )  is incident on a sample of molecules 
in the z direction, the net absorbed power (absorption minus stimulated emission) per 
unit volume dV = Q dz is 

ebb“ = (N;Bjk - NkBk;) p( v)hv  . (4.9) 

This can be written, using relation Eq. (4.7), Bik = (gk/gj)Bki, as 

(4.9a) 

For energies EK >> $ T ,  the populations satisfy Nk << N; and the second term in paren- 
theses can be neglected. 

Usually, the absorption of a plane wave of intensity I = cp (spectral power density 
per frequency interval dv and per unit area) traversing an absorbing medium in the z 
direction is described by the decrease 

dl = -a(u)I dz + I = lo  eCaZ (4.10) 

of the intensity I ( z )  with increasing absorption path length z, where a ( v )  is the 
frequency-dependent absorption coefficient. The power absorbed on the transition 
Ii) + Ik) per unit volume dV = Qdz for a cross-section Q of the plane wave is 

Pibs = e l ($)  du = Q / u ( u ) I d u ,  (4.1 1) 



4.1 Transition Probabilities 125 I 
where the integration is over the spectral profile of the absorption line (see Sect. 4.3). 
If the intensity I of the incident radiation is constant over the frequency range of the 
spectral line of an absorbing transition, I can be moved outside the integral, and by 
comparing Eq. (4.9a) and Eq. (4.1 1) we obtain the relation 

(4.12) 

between absorption coefficient and Einstein coefficient. For monochromatic radiation 
I ( v ) ,  the absorbed power depends on the frequency detuning (v - vik) if Vjk is the 
central frequency of the absorption line (see Sect. 4.3). 

4.1.2 
Transition Probabilities and Matrix Elements 

Electrodynamics shows [4.3] that a classical oscillating dipole with an electric dipole 
moment 

d = qr = dosinwt (4.13) 

radiates an average power of 

- 
with d2 = i d ; ,  - 2 z w 4  p =  -- 

3 47EOc3 
(4.14) 

integrated over all angles 19 (Fig. 4.2a). 
In the quantum-mechanical treatment, the mean value 2 of the electric dipole mo- 

ment of an atom with an optical electron in a stationary state (rz,l,mI,ms) = i is de- 
scribed by the expectation value 

(d )  = e ( I )  = e $fr?,hi dT (4.15) J 

Fig. 4.2 a) Radiation characteristic of a classical dipole. b) Ex- 
pectation value of d for an atomic p state. c) Electric dipole rno- 
ment of a diatomic molecule. 
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(Fig. 4.2b), where the vector r is the position vector of the electron. The integration 
is over the spatial coordinates of the electron, that is, d r  = dx dy dz or, in spherical 
coordinates, ? dr sin 29 d19 dp. 

For a transition Ei 4 Ek, the wavefunctions of both states must contribute to the 
expectation value ( r ) .  We therefore define the expectation value Dik = (dik) of the 
so-called transition dipole moment d ik  to be 

D i k  = eJ’li,frli,k d r  , (4.16) 

where the subscripts i and k are merely shorthand notations for all quantum numbers 
of the states involved in the transition. Of course, we might as well have used the 
quantity Dki, because IDikI = 

by the quantum-mechanical 
expression 

If we replace in Eq. (4.14) the classical average 

7 1 (IDikl -k IDki1)2 = 21DikI2 9 (4.17) 

we obtain for the average power emitted in the transition Ei -+ Ek by an atom in state 
Ei 

(4.18) 

which is completely analogous to the classical emitting power of an oscillating dipole 
if (d2) is replaced by 2lDjkI2. 

Ni atoms in the state Ei radiate an average power P = Ni (&) at frequency Wik. 

With the probability per unit time Aik that an atom in state Ei undergoes a spon- 
taneous transition to state Ek and emits a photon hv, the mean power emitted by Ni 
atoms in the state Ei is 

(f‘) = NjAikhVik . (4.19) 

The factorAik is the Einstein coeficient of spontaneous emission introduced in the pre- 
ceding section. Comparison of Eqns. (4.19) and (4.18) yields, together with Eq. (4.16), 
the relation 

(4.20) 

The probability of spontaneous transitions is thus directly proportional to the squared 
matrix element. If we know the wavefunctions t,bi and li,k of the states involved in the 
transition, we can calculate the transition probability Aik from Eq. (4.20), and, using 
Eq. (4.19). the power emitted by Ni atoms in the state Ei at a frequency Vik. 

The expectation values Dik for all transitions li) -+ Ik) of an atom can be arranged 
in a matrix so that its nonzero elements indicate all allowed transitions and their in- 
tensities. The Dik are therefore called matrix elements. 
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Remark: As its classical analog Eq. (4.14), Eq. (4.20) is valid if the 
wavelength X is large compared to the diameter of the dipole (dipole ap- 
proximation). For visible light, this condition is always fulfilled, but not 
necessarilyfor X rays, when X < 1 nm. 

Example 
17-1 x = 500nm, I T I  = 0.5nm + - = . 
X 

As Eqns. (4.7) relate the Einstein coefficients of spontaneous emission A to those 
of stimulated absorption or emission B, the probabilities of the latter must also be pro- 
portional to the square of the matrix element. They must, however, also depend on the 
intensity of the incident light wave, because the corresponding transition probabilities 
w , k  depend on the spectral energy density p( v) of the radiation field. 

The quantum-mechanical treatment (a time-dependent perturbation calculation, in 
which the electromagnetic field is treated as a perturbation of the molecule's Hamil- 
tonian) yields, in the dipole approximation, a result for the transition probability of 
absorption that is completely analogous to the corresponding result of the classical 
treatment, 

(4.21) 

where EO is the electric field vector of the wave and Drnk is the dipole matrix element 
for the transition from state 1.2) to state Ik). While for atoms, the matrix element 
Eq. (4.16) depends only on the position vector T of the optical electron, in molecules 
the nuclei with charges Ze can also contribute to the dipole moment. We will now take 
a closer look at the dipole matrix elements for diatomic molecules. 

If we choose a reference frame with the origin at the charge center S of the molecule 
(Fig. 4.2c), the dipole operator for a diatomic molecule, 

(4.22) 

is determined by the contributions del of the electrons and d,,, of the nuclei to the 
dipole moment. The dipole matrix element for a transition from state m to a state k is 
then 

Dmk = /d':ld$'k dTel dTnuc 7 (4.23) 

where the integration dTnuc is over the configuration space of the two nuclei and dTe1 
over the configuration space of the electrons. 



128 4 Spectra of Diatomic Molecules I 
Note: The vector Eo is de$ned in the laboratory frame ( X ,  Y , Z ) ,  where- 
as Dmk is defined in the molecule-fixed frame (x ,y ,z ) .  For the explicit 
calculation of Eq. (4.21) we must therefore introduce a relation between 
the two reference frames with the aid of the Euler angles (see Sect. 4.2.1). 

4.1.3 
Matrix Elements in the Born-Oppenheimer Approximation 

Within the BO approximation (Sect. 2.1.3), we can separate the total wavefunction 
into a product 

of an electronic wavefunction $el = $J(r,R) and a nuclear wavefunction $nut = 
x(R) .  Now Eq. (4.23) can be written as 

D m k  = /dx: (del + d n u c )  4kXk dTe1 dTnuc 

= / X; [ / $idel$k dTei 

(4.25) 

Now we must distinguish two cases: 

(a) The levels m and k belong to the same electronic state, that is, the dipole tran- 
sition occurs between two vibration-rotation levels within one electronic state. 
Then $m = $k, and the first term in Eq. (4.25) vanishes, because the integrand 
in the integral over d~,] ,  i.e., $hdel$m = e@,qhm = er  1q5,I2, is an odd function 
of the integration variables so that the integral over the whole electronic config- 
uration space vanishes. As the electronic wavefunctions $i are orthonormal the 
integral in the second term is J $hq5m d ~ ~ l  = 1. Hence, the matrix element is, in 
this case 

The matrix element for vibrational-rotational transitions within the same elec- 
tronic state is determined by the dipole moment AUc and the wavefunctions x 
of the nuclear framework. 

(b) For transitions between different electronic states (& f $k), the integral in 
the second term in Eq. (4.25) vanishes because of the orthonormality of the 
electronic wavefunctions, 

f $:,,$k dTel = 6mk = 0 for m # k . 
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The matrix element is then 

where 

(4.28) 

is the electronic part of the matrix element, which in general depends also on 
the nuclear coordinates R because 4 = d ( ~ ,  R). 

Matrix elements of electronic transitions depend on the dipole moment of the 
excited electron and both the electronic and the nuclear wavefunctions. 

4.2 
Structure of the Spectra of Diatomic Molecules 

As mentioned at the beginning of this chapter, the frequencies v (or the wavenumbers 
3 = 1 /A)  of the lines in a molecule’s absorption or emission spectrum depend on the 
term values of the molecular energy levels involved in the transitions. Their intensities 
are determined by matrix elements. Measurements of line positions and intensities 
allow therefore the determination of energy levels and transition probabilities. We will 
now discuss the structure of the spectra of diatomic molecules based on the arguments 
from the preceding section. 

4.2.1 
Vibration-Rotation Spectra 

We start with case (a) as discussed above, that is, with transitions within the same 
electronic state. Such transitions form the vibration-rotation spectrum located in the 
infrared region of the electromagnetic spectrum, or the pure rotational spectrum lo- 
cated in the microwave region. 

If we substitute Eq. (4.22) for the dipole operator d,,, into the expression for the 
matrix element Eq. (4.26), we obtain 

(4.29) 

For homonuclear molecules with nuclear charges 21 e = Z2e and atomic masses M I  = 

M2.  Rl = -R2. Hence, from Eq. (4.29) it follows that D m k  = 0. In other words, 
homonuclear molecules possess, in the dipole approximation, no allowed vibration- 
rotation transitions! Hence, they show neither pure rotational nor vibration-rotation 
spectra. 
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Fig. 4.3 Orientation of the molecular axis (Z axis) in the labora- 
tory frame X , Y , Z .  

We will now turn to the discussion of the general case of heteronuclear diatomic 
molecules, when Dmk # 0. The dipole moment Eq. (4.29) is directed along the molec- 
ular axis. The z axis of a rotating diatomic molecule encloses the polar angle 6 with 
the Z axis and the azimuthal angle cp with the X axis of a laboratory frame with its 
origin at the center of mass S. The dipole moment vector d,,,, of the nuclear frame- 
work, 

(4.30) 

is directed along the molecular axis. To express it in the coordinates of the laboratory 
frame (in which we observe emission or absorption) we separate d,,, into a product 
of its magnitude ldnucl = (Z~RI  - ZzR2)e and the unit vector 

& = {sin ecos cp. sin 8 sin cp, cos 8 )  , (4.31) 

which defines the orientation of the molecular axis relative to the laboratory frame 
(X,Y,Z), in which the vector EO of the electromagnetic wave E = Eoeiw'-k'R is 
defined (Fig. 4.3). 

Generally, infrared spectra are observed in absorption rather than emission. This 
can be traced to a number experimental subtleties. For example, the spontaneous 
lifetime of excited vibrational levels is rather long, and hence the excited molecule 
could diffuse away from the observation region before emitting a photon. 

The transition probability during the absorption of an electromagnetic wave with 
electric field strength Eo is, according to Eq. (4.21), 

(4.32) 
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If we neglect the interaction between vibration and rotation of the molecule, the 
normalized nuclear wavefunction xnuc can be separated according to Eq. (3.4) into a 
product 

of the vibrational function ?,bVib(R) = RS(R) (see Eq. (3.25)), which depends only 
on the magnitude R = (RI  I + IR21 of the internuclear distance, and the wavefunc- 
tion $Jrot(O,p) = Y(0,p) of a rigid rotor, which depends only on the angles 0 and p. 
Correspondingly, the volume element dTnuc can be written as 

= R2 dR sin0 d9 d p  . 

With R I / R2 = M2 / M I and R = R1 + R2 we obtain furthermore 

Now we can write the matrix element Dmk in Eq. (4.29) in the laboratory frame as a 
product of two integrals 

(4.34) 

where &ib = R x S(R) and Qrot = Y(0,p). The first integral, which is independent 
of the molecule's orientation in the laboratory frame, describes transitions between 
different vibrational levels Im) and Ik) in the same electronic state, while the second, 
describing the direction of Dmk, describes transitions between two rotational levels. 
Quantitative calculations and their results for term energies and line intensities can be 
found in [4.4]. 

4.2.2 
Pure Vibrational Transitions Within an Electronic State 

The contribution dnu,(R) of the nuclear dipole moment can be expanded in a Taylor 
series 

(4.35) 

in the displacements (R - Re) from the equilibrium position. If we substitute this into 
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the vibrational part of the matrix element Eq. (4.34), we obtain with C = ( Z I M ~  - 

Z2MI ) / (MI + M 2 )  

0:; = ($c ib )mdnuc(R)  ($vib)k 

($:ib)m($vib)k dR 

As the wavefunctions $vib are normalized so that 

(4.36b) 

the first term in Eq. (4.36a) yields the static dipole moment dnuc(Re) in the state Im) 
for m = k. Form # k, this term vanishes! 

The second term consists of two contributions. The first contribution with the 
integrand ($:ib)mR($vib)k vanishes form = k because the integrand is an odd function 
of R .  The second contribution vanishes form # k because of Eq. (4.36b), and yields Re 

for m = k. We therefore retain only one term in Eq. (4.36a) for transitions Im) t Ik), 

(4.36~) 
d 

D:: = cz(dnuc)  /($:ib)mR($vib)k dR * 

The matrix element for pure vibrational transitions differs from zero only if the dipole 
moment dnuc depends on the internuclear distance R, that is, if d(dnuc) /dR # 0. 

If we substitute for $,it, the wavefunctions Eq. (3.25) of the harmonic oscilla- 
tor [2.11] for m # k into the integral Eq. (4.36c), we obtain 

($:ib)mR ($vib)k dR = 0,  except form - k = Av = fl . (4.36d) 

Vibrational quantum numbers are generally designated by the letter v, indicating the 
lower state by v” and the upper state by v’. 

We therefore obtain the result that within the harmonic approximation, transitions 
are allowed only between adjacent vibrational levels and only if the dipole nionicnt 
changes during the transition. 

For anharmonic oscillators, there are also nonvanishing contributions for Av = 
v” - w’ = f 2 ,  f3,. . ., but these are much smaller than those for Av = f 1. Transitions 
with Av = f 1 in the infrared spectrum are calledfundamental modes orjrst  harmon- 
ics, while those with Aw > 1 are called overtone bands or higher (second, third, etc.) 
harmonics. Overtone bands appear in the spectrum on account of the anharmonicity 
of the molecule’s vibrational potential and also upon inclusion of more terms in the 
series expansion Eq. (4.35) or of higher moments (e.g., quadrupole moments). 

s 
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4.2.3 
Pure Rotational Transitions 

For transitions between two rotational levels of the same vibrational state, the first 
integral in Eq. (4.34) with the Taylor expansion Eq. (4.35) yields the constant &(Re) .  
The second integral can be evaluated by substituting for the wavefunctions of the 
rigid rotor the spherical harmonics 

~y(~,cp) = ~ j ~ ) ( c o s ~ )  eiMp (4.36e) 

as products of Legendre polynomials Pi”’ and the factor exp(Mcp) (see Ch. 3). The 
wavefunctions depend on the two quantum numbers J and M .  Here, J is the angular 
momentum quantum number, 

J = d J ( J +  I ) h ,  

and M is the quantum number of its projection 

Jz = Mti 

onto the Z axis in the laboratory frame. 

the dipole matrix element for pure rotational transitions, 
Substituting Eq. (4.36e) into Eq. (4.34) yields, with rn = (J” ,M”)  and k = ( J ’ , M ’ ) ,  

DEL(J”,M”,J’,M’)z =dnuc(Re) J’P);’l)Pj?&sinB dB I ei(Mrr-M’)p d p  . (4.37) 

The transition probability depends on the polarization of the electromagnetic wave in- 
ducing the transitions rn +, k .  For linearly polarized light with E in the 2 direction, the 
transition probability for rotational transitions J” + J’ = J” + 1 within a vibrational 
level 11’ = 11’’ is, according to Eqns. (4.31) and (4.37) with E .  & = EocosO, where 0 
denotes the angle between molecular axis and E ,  

0 

with dnuc(Re) = e(ZI R I  -Z2R2)Re the dipole moment of the nuclear framework at the 
equilibrium distance Re.  The second integral is nonvanishing only for M” = M’ = M 
and then yields 2x. 

For absorption or emission of linearly polarized radiation, the selection rule for 
the projection quantum number M is AM = 0. 

For the evaluation of the first integral we use the recursion relation for the Legendre 
polynomials, 

(4.39) 
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and the rotational contribution Eq. (4.37) to the dipole operator becomes 

- (4.40) 
L 

Jl l+I  J l  sin0 d0 . J J”+IMI-l p p 
+ 2J“+ 1 J 

The first term is nonvanishing only for J’ = J” - 1 (i.e., it describes the emission 
process), the second for J’ = J” + 1 (absorption process). Inserting the explicit form 
of the Legendre polynomials Eq. (4.40) and performing the integration yields, for 
J“ = J ,  

(4.41) 

This gives for the transition probability Eq. (4.38) for the absorption of linearly polar- 
ized radiation on a pure rotational transition (J’, M + J”,  M), 

(4.42) 
[d[W(J,Mi+ l , M ) ]  ( J +  1 ) 2  -M2 

linear 

In the absence of an external field, the (25’’ + 1 )  different M” levels of a rotational 
state are energetically degenerate. Hence, we obtain for the transition probability of 
the whole transition J” + J’ for linearly polarized radiation 

(4.43) 

This is larger than the result in Eq. (4.42) by a factor of f (2J + 1 )  because we summed 
over (23 + 1 )  levels with different values of M”. The factor f stems from the spatial 
averaging over the statistically oriented molecules, because for unpolarized, isotropic 
radiation, 

(4.44) 

For circularly polarized light propagating in the z direction, the scalar product E . I& 
is 

2 2 2 1  
( D m k I s  = (Drnk)y = ( D m k ) z  = 5 IDrnk12 . 

(4.45) 
1 

E . R o  = -(E,sinecoscpfiE,sinOsincp) . 
fi 
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With cos p + i sin p = exp( ip) we obtain for the integrand in the second factor in the 
matrix element Eq. (4.37) exp [i(M” - M’ f l)p] and hence the selection rule 

In the first term, a factor sin 0 now arises instead of cos 0 as in Eq. (4.38). Evaluation of 
the integrals over Legendre polynomials again yields the selection rule AJ = J” -J’ = 

f l ,  and for a transition (J,M -+ +J + l,M f I ) ,  we obtain the probability 

[ d W ( J , M , J +  1 , M f  1)  (J*M+ l ) ( J f M + 2 )  
. (4.47) 

dr (U+ 1)(2J+3) 

We can understand these results for the selection rules AM = 0, f I ,  obtained from the 
matrix elements through mathematical analysis, in a very vivid model. If we choose 
the Z axis of the laboratory frame as the quantization axis for J ,  so that JZ = Mh, the 
following pure polarized states of the electromagnetic wave occur: 

- linearly polarized radiation propagating in the X direction, called n light, for 
which 

E = { O , O , E Z } .  

The expectation value of the photon’s angular momentum in the 2 direction 
vanishes, which means that it cannot transfer any angular momentum in the Z 
direction to the absorbing molecule, so 

- (T+ light, for which 

This is a left-hand circularly polarized wave propagating in the Z direction. Its 
angular momentum in the Z direction is +h, and upon absorption a transition 
M” + M’ = M” + 1 with AM = + 1 is induced. 

- (T- light, for which 

1 
E=-{Ex- iEy} .  Jz (4.50) 

This is a right-hand circularly polarized wave propagating in the Z direction. Its 
angular momentum in the Z direction is -h, and therefore it induces transitions 
M ” + M ’ = M ’ ’ - l  w i t h m =  - 1 .  
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If we consider an electromagnetic wave that propagates in the Z direction and is 

linearly polarized in the X direction, this does not correspond to a pure polarized state 
in our chosen system. It can be described, however, as a superposition of G+ and 6- 
light, because 

The first contribution induces transitions with AM = +1, the second part induces 
transitions with AM = - 1, so that the transition probabilities for this case are 

(4.52) 

and transitions with both AM = +1  and AM = -1 occur. The same is true, analo- 
gously, for E = { 0, Ey , 0). 

As unpolarized light incident in the Z direction can be considered a statistical 
superposition of linearly X- and Y-polarized light, transitions with AM = +1 and 
AM = - 1 have equal probabilities, averaged over time. 

If the molecules are immersed in an isotropic, unpolarized radiation field, the total 
transition probability for a transition (J”,M”) + (J’  = J” + 1 ,MI) becomes 

(4.53) 

independent of M !  

4.2.4 
Vibration-Rotation Transitions 

For transitions between rotational levels IJ,M) of two different vibrational states of 
the same electronic state (Fig. 4.4), the transition probability depends on both factors 
in Eq. (4.34). The spectrum consists of all transitions from levels IJ”,M”) in the lower 
vibrational state to the corresponding rotational states IJ’,M’) in the upper vibrational 
state, where M’ = M” or M’ = M” k 1 depending on the polarization of the absorbed or 
emitted radiation. The selection rule for the rotational quantum number J is the same 
as for pure rotational spectra, AJ = & 1. The complete system of all rotational lines for 
a vibrational transition is called a vibrational band. All lines with AJ = J’ - J” = + 1 
form the R branch of the band: those with AJ = - 1 the P branch. 
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J’ 

v= 1 x4 

V 

Fig. 4.4 Term diagram and allowed vibration-rotation transi- 
tions. 

During a transition between different vibrational states, the internuclear distance R 
changes, and thus also the rotational constant B ,  = Be - a e ( V  + i) changes slightly 
(see Sect. 3.4). The spacings between adjacent rotational levels in the two vibrational 
states are therefore slightly different. The wavenumbers of the rotational lines are 

= = = O + B : , J ’ ( J ’ + l ) - B ’ , J ” ( J ” + l ) ,  (4.54) 

where 170 is the difference between the vibrational levels without rotation. For the R 
branch with J’ = J” + 1 = J + 1 this yields 

i& = fro + 2BL + (3BL - B:)J + (BL - B’,)J2 , (4.55) 

and for the P branch with J’ = J” - I = J - I ,  

z7p = fi() - (BL + B’,)J + (BL - B;)J2  . (4.56) 

Figure 4.5 displays the wavenumbers of the P and R branches as functions of 
the rotational quantum number J” = J (Fortrat diagram). As an example of such a 
vibration-rotation band, Fig. 4.6 shows the infrared absorption spectrum of the HCI 
molecule in the range between 2600 and 3100cm-’. The weaker lines, shifted to- 
wards smaller wavenumbers, belong to the H37C1 isotopomer. The ratio 35CV37CI is 
75.5/24.5. The main contribution to the isotopic shift stems from the different vi- 
brational energies; smaller contributions are due to the change in rotational energy 
because of the different moments of inertia of the two isotopomers. 
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Fig. 4.5 Fortrat diagram of P and R branches in vibration- 
rotation transitions. 

s 
v 

I I I I I I I I I I I 

2900 2800 2700 2600 3100 3000 
- 
v I cm-I 

Fig. 4.6 Vibration-rotation spectrum of the (v’ = 0 + TJ” = 0) 
vibrational band of the HCI molecule for the two isotopomers 
H35CI and H37C1 [4.5]. 

4.2.5 
Electronic Transitions 

We will now turn our attention to dipole transitions between vibration-rotation levels 
m = ( d ’ , J ” )  + k = (v’,J’) in dz3erenr electronic states m and k. Such transitions 
cause the visible and ultraviolet spectrum of molecules. We start from the first term in 
the matrix element Eq. (4.25) 

Dmk = / x ~ D $ x ~  drnuc . (4.57) 

The electronic part of the matrix element, 

D$ = / 4 m  ( r ,  R )  C e r i h  ( r ,  R )  drei , (4.58) 

depends on the vector T = x r j  of the electronic dipole moment, where the summation 
is over all electrons contributing to the dipole moment. As in Eq. (4.33), we write the 

i 



4.2 Structure of the Spectra of Diatomic Molecules I 139 

nuclear wavefunctions x as a product 

x = Svih(R)YY(6,p) 

of vibrational functions Svib(R) depending only on the internuclear distance R and 
rotational functions depending only on the angles 6 and p. With the normalized vi- 
brational functions &,b = RSv,h and dTnuc = R2 dR sin6 de, Eq. (4.57) becomes 

D,,lk = lClv ih(v”)D~klClv ib(v’ )  dR Yj”Y’’sin8 d 6 d p .  (4.59) J /. 
The square modulus of the first integral in Eq. (4.59) is called band strength S 2 1 ~ ~ , v ~ ,  
because it indicates the transition probability for the complete vibrational band v” H 

v’. Often D$ depends only slightly on R. We can then replace D$(R) by the average 
value DZk(R,), which can be moved outside the integral over R, yielding 

D m k  = Dz:k (Re) 1 $vih (f)’’)‘$vih (V’ )  dR // Y$”YT1 sin 6 dB d p  . (4.59a) 

The square modulus of the first integral, 

(4.59b) I *  qdl,d = d’vih(”‘)$vih(v’) dR I. 
is called the Franck-Condon factor. 

The second integral in Eq. (4.59) depends on the quantum numbers J”M” and J’M’ 
of both states (see preceding section). Summation over all M’ and M” and squaring 
gives the so-called Hiinl-London factor S J ~ ~ . J ~ ,  also called the line strength, because it 
indicates the intensity of a rotational line in a band. 

The transition probability for the spontaneous transition k( v’J’) -+ m( v”,J’’) is 
then 

(4.60a) 

In the field of a linearly polarized electromagnetic wave with the amplitude vector Eo, 
the absorption probability per molecule and unit time is 

(4.60b) 

where TO is the unit vector in the direction of Dmk. 

4.2.6 
R Centroid Approximation; the Franck-Condon Principle 

In general, D$ depends on the internuclear distance R. We can then expand the R- 
dependent electronic part of the matrix element D,k in Eq. (4.59) in a power series 

D$. = CallRn with a0 = D$(Re) , (4.61) 
I1 
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to obtain for the band strength 

The mean of R", weighted by the vibrational functions, 

(4.62) 

(4.63) 

is called the nth-order R centroid. Using Eq. (4.59b), we obtain now for the band 
strength 

SVllYl = ICa, (R"),ll,,l~2q,llvl . (4.64) 

In the approximation 

( w" IR"I w') = I ( w" IRI w") 1 "  = R ~ l l v I q v ~ ~ V ~  ( R  centroid approximation) , (4.65) 

which is usually well obeyed [4.6, a)], we obtain from Eq. (4.62), using Eq. (4.65), 

2 
sVllvl = ~ D ~ ~ ( R ~ ~ ~ ~ ~ ) ~  qvllvl , (4.66) 

which can be visualized as follows. The band strength is given by the overlap integral 
qvrvn of Eq. (4.59b) of the vibrational wavefunctions multiplied by the electronic tran- 
sition probability, which equals the square modulus of the average ( D i k )  weighted by 
the vibrational functions. 

The transition probability of a spontaneous electronic transition is then given by a 
combination of three factors: 

1 .  the square modulus of the electronic transition dipole moment IDtk(Rl,~ll,r) 
weighted by the vibrational wavefunctions $ ( R ) ,  

2. the Franck-Condon factor 

and 

3. the Honl-London factor 

I 

(4.67) 

12 



4.2 Structure of the Spectra of Diatomic Molecules 141 I 
An optical transition between two electronic states occurs so quickly that neither 

the positions nor the velocities of the nuclei change significantly during the transition. 
Hence, the nuclear kinetic energy must also remain unchanged during the transition. 
In other words, the electronic transition occurs vertically in the potential energy di- 
agram of Fig. 4.7 (Franck-Condon principle). If a photon hv is emitted between 
two states m and k with the term energies Em( Y”) and Ek( w’), the potential energies 
E;,,(R) and EL,,(R) and the kinetic energies T ” ( R )  = T‘(R)  then follow the relation 

h v = E ( d - E ( v ” )  = E ; , , ( R ) + T ’ ( R ) -  (E:o,+T”(R))  

= EL,,@*) -Ei0t(R*) , (4.68) 

where R* is the internuclear distance at which the transition occurs. Using Mulliken’s 
difference potential 

U ( R )  = E i o , ( R )  +E(v’)  -Eio t (R)  , (4.69) 

the condition T ” ( R * )  = T’(R*)  in Eq. (4.68) can be written as 

U ( R * )  = E(Y”)  , (4.70) 

that is, the transition occurs at the internuclear distance R* for which the difference 
potential intersects the energy E(v”)  (Fig. 4.7). 

Within this purely classical argumentation, it follows from the Franck-Condon 
principle and energy conservation that the transition occurs at a precisely dejned in- 
ternuclear distance R = R*, the classical transition point in the Epot ( R )  diagram [4.6, 
b)l. 

Transition 
v” + v1 

b 

R’ R 

Fig. 4.7 Representation of electronic transitions as vertical lines 
R = R* = const. in the potential diagram Epot(R)  and difference 
potential U ( R )  = E;,,,(R) -ELo,(R) + E ( d ) .  
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For a quantum-mechanical formulation of the Franck-Condon principle, we con- 

sider the matrix element 

(Y! IH’ - H” I dl )  = [ E (  w’) - E (  d/)] ( w 1  I , / I )  (4.71) 

of the difference Hamiltonian H’ - H” for the upper and the lower state, where H = 

T + Epol ( R ) .  We can therefore write Eq. (4.7 1) as 

( Y’ IH’ - H”I d’) = (d IT’ + ELol(R) - T” - E:(R) I d’) 
= (d I ELo, ( R )  - E;ot ( R )  I u ” )  , (4.72) 

because the kinetic-energy operators T’ and T” are identical for both states. 
If we now use the approximation 

(4.73) 

which for f ( R )  = R“ is the basis of the R centroid approximation, we obtain from 
Eq. (4.73) for f ( R )  = Epot(R) 

( . ’ I E L , ( R ) - E ~ o t ( R ) I w ” )  = [ E ~ o t ( i ? ) - E ~ o , ( ~ ) ]  (did') , 

E(w’) -E (v” )  = E L , ( R )  -E;ot(i?) . 

(4.74) 

and with Eqns. (4.7 1) and (4.72) we arrive at the relation 

(4.75) 

Comparison with Eq. (4.68) shows that R* = i?, which means that the R centroid 
( R )  equals the classical transition point R* as long as the R centroid approximation 
Eq. (4.73) is valid. The R centroid approximation therefore connects classical and 
quantum-mechanical formulations of the Franck-Condon principle. 

The validity of the R centroid approximation can be revealed as follows. The 
weight function 

determines the probability that the optical transition d + w” occurs in the interval R 
to R + dR of the internuclear distance. The uncertainty width AR of the R centroid 
( R n ) v / / v ,  can be characterized by the variance 

m 

( ~ ) 2  = s - i?2 = 1 ~2 w ( R )  d~ - (4.77) 
0 

If the R centroid approximation is exact, $ = R2 and ( @ ) 2  = 0, that is, the optical 
transition occurs exactly at the internuclear distance i? = R*. The more “classical” 
the transition becomes, the more decreases, and the quality of the R centroid 
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Fig. 4.8 Electronic transition dipole moment matrix element 
D,k(R) for the transitions A ‘Eu t X ‘Eg in the Na2 molecule 
and 3n t X ’Z+ in the IF molecule; comparison of the R centroid 
approximation with exact values. Note the different scales for 
the two curves. 

approximation improves (Fig. 4.8). Hence, the R centroid approximation is especially 
suitable 

(a) for molecules with heavy nuclei, and 

(b) for transitions between highly excited levels, that is, d, II” >> 1 .  

The internuclear distance R’ = R at which the optical transition takes place depends 
on the relative shift of the potential minima and the slopes of both potential curves 
Ek,,(R) and E:ot(R). As Fig. 4.7 shows, this distance does not necessarily coincide 
with the classical transition point. 

If the two potential curves have their minima at the same internuclear distance 
(R: = R:) and if their slopes d E p o t ( R ) / d R  are similar for corresponding values of R 
(Fig. 4.9a), transitions with Aw = 0 possess by far the largest Franck-Condon factors. 
If the potential curves are displaced, however, as in Fig. 4.9b, the spectrum comprises 
mainly vibrational bands with larger values of Aw. This is exemplified by the fluores- 
cence spectrum of the selectively excited level ( w’ = 23, J’ = 82) in the D ‘C, state of 
the Cs:! molecule, which features transitions with Aw > 60 (Fig. 4.10). 

For some molecular transitions, the difference potential intersects the energy E ( d’) 
twice. In these cases, there are two classical transition points RT and R; (Fig. 4.11). 
This means that for a transition E(w’) --+ E(v”)  there are two contributions with am- 
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Fig. 4.9 Electronic transitions with maximum Franck-Condon 
factors a) for potential curves with RL x Rg and b) for displaced 
potential curves (R: # R!). 

I X F  

Fig. 4.10 Franck-Condon factors for the fluorescence spectrum 
of a selectively excited level (w‘ = 23,J’ = 82) in the DIEu state 
of the CSZ molecule for the vibrational transitions IZ,,(w’ = 23) -+ 

’Xg(w”) [4.7]. 

plitudes A 1 and A2 which add up to the total amplitude 

The transition probability W = IAl +A2 1’ then contains interference contributions 
A I A ~  that can influence the intensity of this transition. For such cases, a generalized 
R centroid approximation can be developed (see [4.8]). 
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R 
- 

RI’ R Rz* 

Fig. 4.11 Transition with two intersections of the difference po- 
tential with E(v”) .  

4.2.7 
The Rotational Structure of Electronic Transitions 

The wavenumber of an electronic transition between the vibration-rotation levels 
(u’’,J’’) in the lower and (w’,J’) in the upper electronic state is given by the difference 
of their respective term values [see Eqns. (3.18), (3.37), and (3.42)], 

f i =  [~,-T,””)-G(v”)]+[F(J’)-F(J”)]} 

= 270 + [BbJ’(J’ + 1) - D’,J’2(J‘ + 1)2 ]  

- py(J”+ 1) - D ; J ” 2 ( J ” +  1)2]  . (4.79) 

Here, T,‘,, 7‘‘; are the electronic term values at the minima of the potential curves, 
G(v)  are the vibrational term values, F ( J )  are the rotational term values, and fi0 is the 
wavenumber of the pure vibrational transition between I v’) and Id’), where J’ = J” = 

0 (also called the band origin). B, and D, are the rotational and centrifugal constants, 
which depend on the vibrational level 11 according to Eqns. (3.43) and (3.44)). The 
ensemble of all possible rotational transitions between two vibrational levels D’ and 
v” is called a vibrational band. 

The selection rules for the rotational quantum number J are, exactly as for vibrati- 
on-rotation transitions within the same electronic state, 

A J = O , & l ;  of, 0 ,  

only that now transitions with AJ = 0 are also allowed if the electronic angular mo- 
mentum changes by lh, because the total angular momentum must be conserved upon 
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absorption or emission of a photon with angular momentum lh.  This excludes tran- 
sitions J‘ = 0 H J” = 0, because here the electronic angular momentum quantum 
number A would need to be zero in both states. 

Hence, for C-C transitions there are only P (hl = - 1) or R (hl = + I )  lines, but 
for C-II or II-II transitions, Q lines with hl = 0 occur also. 

For the R lines, we obtain from Eq. (4.79) with J’ = J” + 1 and J” = J, neglecting 
the centrifugal term, 

4 ( J )  = i7() + (B;  - BG)J(J + 1) + 2B:, ( J  + 1) , (4.80a) 

and for the P lines with J’ = J” - 1 = J - I 

h(J) = i70 + (B;  - B;)J (J  + I ) - 2BLJ , (4.80b) 

while the wavenumbers of the Q lines are given by 

The R branch starts at J = 0; Q and R branches start at J = 1. 
The appearance of such a rotation-resolved spectrum depends on whether B:, < B t  

(which means that the internuclear distance is larger in the upper level), or BL > B t  
(which means that the molecule is more strongly bound in the upper state). Figure 4.12 
shows the Fortrat diagram for both cases. We see that for BL < B t ,  the lines in the 
R branch are first shifted to larger wavenumbers for increasing J ,  but their spacing 
decreases continuously, until, at a rotational quantum number 

3BL - B t  
J’ = 

2(B$ - Bh)  ’ 
(4.8 1) 

the trend reverses and their wavenumbers decrease. The R branch shows a reversal 
(di7ld.I = 0) at J*, which is called a band edge. Towards smaller wavenumbers, all 
three branches progress monotonically. The Q branch shows the largest density of 
lines for small J .  The density is largest if BL and B t  do not differ by much. For 

‘*.. R 
5 

(a) B,’c B,” 

15 

Fig. 4.12 Fortrat diagram of the rotational structure of electronic 
transitions with P, Q, and R branches. a) B i  < BZ;  b) BL > BZ.  
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Fig. 4.13 Example of a band head with band edge: Doppler-free 
absorption spectrum of the 0-0 band of the electronic transition 
C Ill,-X IC, of the Cs2 molecule. 

EL = BG, all Q lines coincide. In this case, the Q branch is a vertical straight line in 
the Fortrat diagram. 

Such a band (that is, the ensemble of all P, Q, and R lines) features a sharp bound- 
ary towards the blue region but appears diffuse towards the red spectral region on pho- 
tographic recordings. This diffuse appearance is most notable for inadequate spectral 
resolution. The band is therefore called “red-shaded’. 

For BL > BG, the P branch of a band edge faces the red region, while the R and the 
Q branches progress monotonically to the right towards larger wavenumbers. Such 
a band is called “blue-shaded’. As an example, Fig. 4.13 displays the P branch of 
the CLO band of the electronic transition C ‘n,-X ‘C, of the Cs2 molecule as recorded 
using Doppler-free laser spectroscopy. 

The ensemble of all vibrational bands of an electronic transition is called a band 
system. 

We see that we can learn simply from the appearance of a band whether the inter- 
nuclear distance in the upper state is larger or smaller than in the lower state. 

Also, we can easily deduce from the rotational structure of a band and its intensity 
distribution if the corresponding transition is C-C, n-Z, or n-n, because the inten- 
sity ratios of Q to P or R branch are different for the three cases. To derive this relation, 
the Honl-London factor [the squared double integral over 13 and cp in Eq. (4.59)] for 
transitions between the different electronic states must be evaluated. 

For electronic states with A # 0, we must take into account that the total angular 
momentum consists of rotational and electronic angular momentum, so that Eq. (3.21) 
must be used for the term values F ( J ) .  The term with A, which is independent of v and 
J ,  can be included in the electronic energy, however, and has already been included in 
the band origin fio in Eq. (4.79). 
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The results of the calculations for the line intensities S R ( J ) , S ~ ( J ) , S Q ( J )  of the 

rotational lines with hl = f 1 , O  are the Honl-London factors: 

(a) for transitions with AA = 0, 

(J’ + A’) (J’ - A’) 
J’ S R ( J )  = 

(b) for transitions with AA = + 1, 

(c) for transitions with AA = - 1, 

(J” - 1 + A”)  (J” + A”) 
4J“ S P ( J )  = 

(4.82a) 

(4.82b) 

(4.82~) 

( J ’ - A / ) ( J I +  1 + A / ) ( 2 P +  1) 
s Q ( J )  = 4J’ (J ‘+  1) 

4.2.8 
Continuous Spectra 

Up to now we have considered only transitions between two discrete levels (v”, J ” )  c) 
(d, J’)  within one or between two bound electronic states, leading to molecular line 
spectra. Now we turn to the case that at least one of the two states possesses a repul- 
sive potential curve, which means that the molecule is not stable in this state. Such 
transitions lead to continuous spectra. 

Examples for continuous absorption spectra are transitions from the bound ground 
state of a molecule to unstable excited states with repulsive potential curves (see 
Fig. 4.14a), or to states above the dissociation limit of a bound state. Continuous 
fluorescence spectra can occur through transitions from a discrete level (d, J ’ )  of a 
bound electronic state to lower, unstable states with repulsive potential curves. Such 
spectra can be observed, for example, for excimers (= excited dimers). These are 



4.2 Structure of the Spectra of Diatomic Molecules I 149 

E 

V” R 

A’ + B 

Y 
U 

Continuous X 
E fluorescence .; 
P 
- : 4- 

Dissociation 

Flg. 4.14 The occurrence of continuous spectra in diatomic 
molecules. a) Absorption spectra; b) emission spectra of ex- 
cirners. 

molecules that are stable only in excited states and dissociate in their ground states, 
because their ground-state potential curves are largely repulsive, possessing at most a 
shallow van der Waals minimum (Fig. 4.14b). The rare-gas dimers He2, A r 2 ,  Kr2, and 
Xe2 or some rare-gas halides such as KrF or XeCl are examples of excimers. 

Emission transitions into energy states above the dissociation limit of a bound 
lower state can also lead to continuous fluorescence spectra. Figure 4.15 shows a 
section from the fluorescence spectrum of the NaK molecule corresponding to the 
electronic transition D ‘I7 + a ’C from a bound level (w’,J’) = ( 12,14) of the D ‘n 
state into the weakly bound a 3C state. If the lower states of the fluorescence transition 
are bound states (w”,J”) below the dissociation threshold of the a3C state, a line spec- 
trum results. If these states are above the dissociation limit, a continuous fluorescence 
spectrum results. 

To understand the pronounced intensity modulation in the continuous part of the 
spectrum, we must extend the Franck-Condon principle to continuous spectra. To 
achieve this, we consider the transition from a level (w’,J’) with energy E’( w’,J’) into 
states E” above the dissociation limit D (Fig. 4.16). As the kinetic energy of the nuclei 
is conserved during the transition E‘ -+ E” = E’ - hv, all transitions end on the curve 
of the difference potential 

U ( R )  =E&(R)  +E(w’)  - E b o t ( R ) .  (4.83a) 

If U ( R )  is a monotonous function of R, each internuclear distance R corresponds to 
exactly one wavelength X or frequency v = c/X in the fluorescence spectrum, which 
is given by 

hv(R) = E(w’)  - U ( R )  = Ebot(R) - E k t ( R )  . (4.83b) 
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6950 6750 6550 6350 6250 

Fig. 4.15 Modulated emission continuum 
emitted from the vibrational level v’ = 14 
in the 311 state of the NaK molecule dur- 
ing the transition 311 + 3E into a) bound 

states of the 31: state and b) continuum 
states above the 3r. dissociation limit. 
The spectrum in a) is an enlarged section 
from the right-hand part of b) [4.9]. 

Fig. 4.16 Term diagram and vibrational wavefunctions for the 
NaK emission continuum of Fig. 4.1 5b. 
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The fluorescence intensity in the interval dD at wavenumber D is given by the Franck- 
Condon factor 

I f l ( D )  dD= Ix(d,R)x(E”,R) dRI2 , (4.84a) 

where R is the internuclear distance at which the line E = E” intersects the difference 
potential. The continuum wavefunction x(E” > D,R)  can in many cases be approxi- 
mated by a normalized Airy function. 

If the monochromator used for measuring the spectral intensity distribution Ifl (D) 
of the fluorescence spectrum has the resolution AD, it will record the intensity 

(4.84b) 

for each D, where AR = RZ - R1 is the range of internuclear distances in which the 
difference potential U ( R )  changes by AE = hAv = (hc /X2)AX.  

If the oscillation period of the function Ij,vib(E”,R) is small compared to AR, but 
that of the function $,,t,(u’,R) is larger than AR (Fig. 4.16), the measured fluores- 
cence intensity I f l (3 )  will reflect the (w’ + I )  maxima of the vibrational wavefunction 
$,it,( d , R ) .  From the number of maxima, one can therefore directly deduce the vibra- 
tional quantum number w’ of the emitting state [4.9]. 

4.3 
Line Profiles of Spectral Lines 

Spectral lines recorded during the absorption or emission of electromagnetic radiation 
are never strictly monochromatic. Instead, the intensity I(v - vo) of the lines around 
the mean frequency vo obeys a distribution determined by several factors (Fig. 4.17a). 
The frequency interval Av = v1 - v2 between the two frequencies vl and y, for which 
the intensity I has decreased to !(YO) / 2 ,  is called thefull width at halfmaximum 6v of 

Fig. 4.17 a) Spectral line profile. b) Spectral resolution limit. 
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the spectral line. The finite linewidth limits spectral resolution, because two spectral 
lines separated by less than 6v cannot be resolved as separate lines (Fig. 4.17b). 

Generally, the spectral resolution of the spectrograph employed provides a practical 
limit for the measured linewidths. Only by using interferometers can we achieve such 
high resolutions that we can recognize the intrinsic limits on linewidths: the natural 
linewidth, Doppler broadening, and collisional broadening. We will now consider 
these mechanisms in detail. 

4.3.1 
Natural Linewidth 

An excited molecule at rest in a state Ik) can dispose of its excitation energy by emit- 
ting radiation after an average time T .  To determine the spectral profile of this ra- 
diation, we start by employing a classical model, in which the excited molecule is 
described by a classical damped oscillator with center frequency w0 and damping con- 
stant y. The time-dependency of its vibrational amplitude is given by the differential 
equation 

x+yi+w;x = 0 ,  (4.85) 

where the frequency w0 = is determined by the force constant D and the mass 
m of the oscillator. With the initial conditions x ( 0 )  = x0 and x(0) = 0, the solution of 
Eq. (4.85) is 

2 
x ( t  ) = x0 e-(y’2)f [ cos wt + (&) sinwt] with w = - ( z )  . (4.86) 

The damping of a molecular oscillator is extremely small (for w0 = 2n x 6 x 1014 s - I  

and a relaxation time T = lO-’s, the ratio y/w0 is 2.8 x lop8). The second term in 
Eq. (4.86) can therefore be neglected, and we obtain for the time-dependent amplitude 
of the damped oscillation (Fig. 4.18a) 

Because of the decreasing vibrational amplitude, the frequency of the emitted radia- 
tion is now not monochromatic as it would have been for an undamped oscillation with 
temporally constant amplitude, but it displays a frequency spectrum A (w), which can 
be determined by a Fourier transformation of x ( t ) .  If we write x ( r )  as a superposition 
of the different frequency contributions with amplitudes A (w), 

1 
x ( t )  = J ’A(w)  eiwr dw , 

0 

(4.88) 
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(AE, + AEk)/ h 

Fig. 4.18 a) Damped oscillation and b) Fourier transform of the 
corresponding line profile. c) Natural linewidths as a conse- 
quence of energy uncertainties due to limited lifetimes. d) Re- 
sultant linewidth AY.  

we can obtain A (w) from the Fourier transform 

(4.89) 

where we have used x ( t )  = 0 fort < 0. 

bution 
Evaluation of the integrals is elementary and yields the complex amplitude distri- 

(4.90) 
) 9  

1 1 
A ( u )  = ~ + fi xo ( i ( w - w o ) + ( $ )  i (w+wo)+($)  

from which the intensity distribution l ( w )  a IA(w)I2, 

(4.91) 

follows (Fig. 4.18b). The constant C can be chosen so that the total intensity, integrated 
over the whole line profile, is 

C 
I ( w )  = 

(w-wo)*+  (8)’ 

l ( w )  dw = l o .  (4.92) J 
Hence, C = loy/27c. 
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The line profile Eq. (4.91) is called a Lorentzian profile. Its full width at half 

maximum is 

(4.93) Y 
2 K  

sw, = y ; sun = - ; 

it is called the natural linewidrh of the transition. 
A quantum-mechanical treatment gives a similar result. Here, the linewidth of 

a transition between two levels Ik) and Ii) with lifetimes Tk and r; results from the 
sum of the level uncertainties = h/Tk and AEi = h / q ,  as a consequence of the 
uncertainty relation AE x At > h (Fig. 4.18c,d). The resulting linewidth is then 

(4.93a) 

If the transition occurs from an excited state Ik) into the ground state (r; = m), the 
linewidth is determined solely by the lifetime Tk and 

(4.93b) 

where Ak is the Einstein coefficient of spontaneous emission introduced in Sect. 4.1.1. 

Examples 

(a) Consider a vibration-rotation transition (w' ,J ' )  +- ( d ' , J " )  in the elec- 
tronic ground state. The lifetime of the upper level is Tk = 1 ms, that of 
the lower level is r; = w. The natural linewidth of the transition is then 
Au,, = 150Hz! 

(b) A typical lifetime of an electronically excited level is r = 1OP8s, from 
which it follows that Au,, = 15 MHz. 

4.3.2 
Doppler Broadening 

If an excited molecule moves with the velocity w = { w,, wy, w,} with 1 ~ 1  << c with 
respect to an observer at rest (Fig. 4.19), the mean frequency uo of the emission with 
the wavevector k = ( 2 n / X ) & ,  where & is the unit vector in the direction of emission, 
is shifted for the observer to a frequency 

( Y )  1 
u = uo+ -k*v = uo 1 + - 

27c 
(4.94a) 

due to the nonrelativistic Doppler effect. To avoid the factor 27c in the equations, the 
angular frequency w = 27w is frequently used, for which 

w = wg + k .  2) . (4.94b) 
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The absorption frequency wo of a molecule moving with the velocity v with respect 
to a plane light wave of frequency WL and wavevector k is also shifted, because the 
frequency of the wave appears, in the moving molecule's reference frame, as w' = 

WL - k. w (Fig. 4.19b). The molecule absorbs if w' = WO. that is, if the frequency of 
light WL as measured in the laboratory frame obeys the condition 

If the light wave propagates in the z direction (k = { O , O , k , } ) ,  Eq. (4.95) can be written 
as 

This shows that only the velocity component along k contributes to the Doppler shift. 
But how does the Doppler broadening arise? In thermal equilibrium, the molecules 

in a gas assume a Maxwellian velocity distribution. At a temperature T ,  the density 
ni( v;) of light-emitting or absorbing molecules in the state Ii) with a velocity compo- 
nent in the interval V ;  to v, + dv, is 

(4.97) 

where v* = ( 2 $ T / ~ z ) ' / ~  is the most probable velocity, Ni is the total number of 
molecules in the state Ei per unit volume, m is the molecular mass and is the Boltz- 
mann constant. 

If we express v, and dv, in Eq. (4.97) by w and dw using Eq. (4.96), we obtain the 
number of molecules that absorb (or emit) in the frequency interval between w and 
w + dw, that is 

(4.98) 
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Fig. 4.20 Gaussian profile of a Doppler-broadened spectral line. 

As the emitted or absorbed intensity I ( w )  is proportional to ni(w),  the intensity 
profile of the Doppler-broadened spectral line is 

I(w) = I(w0)exp [ - ( c- (;i;))2] * (4.99) 

This is aGaussian function (Fig. 4.20); its full width at half maximum 6 w ~  = Iw1 - w2( 

can be obtained from the condition I (w1)  = I(w2) = I(w0)/2, 

7J* 
6wD = 2J l f ;Zwo- ,  

C 

or, with v* = d m  

(4.100a) 

(4.100b) 

We see that the Doppler width increases linearly with the frequency wo, and for a given 
temperature T is largest for molecules with small masses. 

If we expand the radicand in Eq. (4.100b) by Avogadro's constant NA (= number of 
molecules per mole), the Doppler width can be expressed by the molar mass M = mNA 
and the gas constant R = $N, to obtain for the Doppler width in frequency units 

(4.100~) 

With (41112)-'/~ M 0.6, we obtain for the Doppler-broadened line profile Eq. (4.99), 

(4.101) 
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q = 0 0  (1 + viz / c) 

Fig. 4.21 Voigt profile as a superposition of the Doppler-shifted 
Lorentz profiles of molecules with different velocity compo- 
nents wz. 

I 
Examples 

(a) In the infrared: vibration-rotation transition of C02 with X = I O m m ;  
vo = 3 x 1013s-', T = 300K, M = 44g/mol, + 6- = 5.6 x IO7s-' S 

56MHz. 

(b) In the visible: electronic transition in the Na2 molecule with X = 500nm; 
YO = 6 x IOI4s-', T = 500K, M = 46g/mol, + 6- = 1.4 x 109s-' = 
1.4GHz. 

From these examples, we see that in the visible, Doppler broadening exceeds natural 
linewidths by about two orders of magnitude. 

The Doppler broadening can be reduced or even eliminated experimentally by sev- 
eral, so-called Doppler-free, spectroscopic techniques (see Sect. 12.4). Still, there 
remains a finite linewidth, which is partly caused by the natural linewidth. 

4.3.3 
Voigt Profiles 

Until now we have assumed that the molecular oscillator is at rest. If the molecule 
moves with a velocity v, its absorption or emission frequency is Doppler-shifted, and 
we obtain, according to Eq. (4.94b), for the line profile of the molecule instead of 
Eq. (4.9 I )  the Lorentz profile 

r 
L 

I ( w )  = with w ' = w O + k . v .  
(w - W ' ) 2  + (3)' (4.102) 
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The total absorption profile of all molecules with the thermal velocity distribution 
Eq. (4.97) is obtained by the convolution 

(4.103) 

of the differently Doppler-shifted Lorentz profiles of the individual molecules with 
the Gaussian velocity distribution of all molecules (Fig. 4.21). This convolution of 
Lorentzian and Gaussian profiles is called Voigt pmjle.  

4.3.4 
Colllsional Broadening of Spectral Llnes 

If a molecule A with energy levels Ei and Ef approaches another atom or molecule B, 
its energy levels are shifted due to the interaction between A and B. The extent of the 
shifts depends on the structure of the electron clouds of A and B, the states Ei and Ef, 
which may belong to the same (rotational and vibrational transitions) or two different 
(electronic transitions) electronic configurations, and on the mutual distance R(A, B) ,  
which we define to be the distance between the molecular centers of mass of A and 
B.  The shifts are in general different for different levels Ej, and they can be towards 
higher energies (for repulsive potential between A(Ei) and B) or towards lower ener- 
gies (for an attractive interaction). If we plot the energy Ei (R) of the levels of A as a 
function of the distance R, we obtain the potential curves displayed schematically in 
Fig. 4.22. The system AB(R) is called collision pair, and the approach of two particles 
up to a distance R in which their mutual interaction is non-negligible is also called a 
collision. If A and B approach each other along a potential curve that possesses a min- 
imum, a stable molecule may result if excess energy can be removed from the system 
during the collision by emission of radiation or by a collision with a third particle. In 
this case, the collision pair is said to be “stabilized”. 

7 

R 
Fig. 4.22 a) Schematic potential curves of a collisional pair, and 
b) explanation of collisional broadening and shifts. 
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If an absorption or emission transition occurs between the levels Ei and Ef during 

the collision, the frequency uif = wif/2n of the absorbed or emitted light depends, 
according to hvif = 1Ef(R) - Ei(R) I, on the distance R between A and B at the time of 
the transition. 

In a gas containing molecules A and B, the distances R between pairs of parti- 
cles are distributed statistically around a mean value a that depends on the pressure 
and the temperature of the gas. Consequently, the frequencies qf are also statistically 
distributed around a mean value L, which in general is shifted with respect to the fre- 
quency vo of the unperturbed atom. The shift Au = uo - L is a measure for the difler- 
ence of the energy shifts of both levels Ei and Ef at a distance R,,,, for which the max- 
imum light emission occurs. The profile of the collision-broadened spectral line con- 
veys information on the R dependence of the difference potential curve Ef( R) - Ei (R) 
and hence on the difference of the interaction potentials V[A(&)B] - V[A(Ei)B]. 

In the process described above, light emission (or absorption) occurred from the 
initially occupied level E of atom A, which was (slightly) shifted only during the 
interaction, but quickly relaxed to its original energy after the interaction. We call this 
situation a line broadening 6u and line shift Au by elastic collisions. The small energy 
difference hAu = Ef - Ei - hu is provided, for positive Au, by the kinetic energy of 
the collision partners and not by some kind of internal energy of one of the partners. 
For negative Au, the excess energy is converted to kinetic energy. 

Apart from such elastic collisions, inelastic collisions can also occur, in which 
the excitation energy Ei is partly or completely converted to internal energy of the 
collision partner B or to kinetic energy of both partners. Such collisions are also 
called quenching collisions, because they reduce the population of level Ei and hence 
decrease the corresponding fluorescence intensity. 

The probability that the excitation energy Ei can be transferred to the collision 
partner B is particularly large if B is a molecule with many vibration-rotation levels 
in the different electronic states, which therefore possesses many allowed resonant 
transitions E/ -+ Em with (E, - Em 1 E IE, - Efl. If Sik is the probability that an excited 
state Ei undergoes a radiationless transition to a state Ek by the collision with B, the 
total transition probability from level E, to other states Ek of particle A is 

Ai = L A i k  (spontaneous) + ZSik . 
k P 

(4.104) 

The probability Sik for such a collision-induced transition depends on the density NB 
of particles B, on the mean relative velocity i7 of the collision partners, and on the 
collision cross-section Q . ,  that is 

In thermal equilibrium, the mean relative velocity at a temperature T is given by 

(4.106) 
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with ‘, 

t 
Fig. 4.23 a) Elastic collisions as phase-disturbing collisions; 
b) inelastic collisions as lifetirne-reducing deactivation pro- 
cesses for an excited level. 

so that the collision-induced transition probability per unit time for the transition Ei + 

Ek iS 

(4.107) 

where p = MAMB / (MA + M B )  is the reduced mass of the collision pair. 
The effective lifetime ~ ~ f f  = 1/Ai of the level Ei is decreased by the collisions. 

As a consequence, the linewidth of the radiation from Ei increases (Sect. 4.3.1). As 
the linewidth is = Ai/2x, Eq. (4.93b), we see from Eqns. (4.104) and (4.105) 
that it increases linearly with the density N ,  that is with the pressure of component 
B. Collision-induced broadening is therefore also called pressure broadening. If the 
collision partners A and B are identical molecules (A = B), the term self-pressure 
broadening is used (Fig. 4.23a). 

We have seen that both elastic and inelastic collisions lead to a broadening of 
spectral lines, and that elastic collisions additionally lead to line shifts. 

Both processes can be treated classically in the framework of the damped harmonic 
oscillator model as demonstrated by Weiflkopf [4.10]. In this model, inelastic colli- 
sions change the amplitude of the oscillation. This can be described by introducing 
a damping constant ycoll (in addition to the radiation-induced damping m), and the 
arguments discussed in Sect. 3.1 then lead to a Lorentzian profile with a linewidth 
6w = Yn + Ycoll. 
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Elastic collisions do not influence the amplitude of the oscillation in this model, 
but change its phase (by frequency detuning during the interaction). They are thus also 
called phase-disturbing collisions (Fig. 4.23a). If the phase shift A 4  during a collision 
is large enough, the oscillations before and after the collision are uncorrelated and 
two independent wavepackets result, the mean lengths of which are determined by 
the mean time between two collisions. A Fourier analysis of these wavepackets then 
yields the frequency spectrum and hence the line profile. 

After lengthy calculations, one obtains for the line profile as determined by elastic 
and inelastic collisions the expression 

(4.108) 

where N is the density of the colliding molecules B, V is the mean relative velocity, 
and lo  = I(w,!,) is the intensity at the line maximum at the shifted frequency w; = 

wo + NWo,. The cross-sections q, and nS determine the line broadening and shifts by 
the elastic phase-disturbing collisions. The condition CTb > 0 always holds, whereas 
gs can be positive or negative. 

4.4 
Multi-photon Transitions 

In this section, we will consider the simultaneous absorption of two or more photons 
by a molecule, leading to a transition Ei -+ Ef with ( E f  - Ei) = Chw,. 

The probability of multi-photon transitions depends on the corresponding matrix 
element and on the probability that m photons can interact with the molecule simul- 
taneously. For classical light sources, this probability is extremely small. Hence, 
multi-photon transitions could be investigated with a sufficiently large signal-to-noise 
ratio only after lasers were introduced into experimental molecular physics. The ab- 
sorbed photons can be from a single laser beam or, if the sample is irradiated with 
several lasers, from different beams. 

4.4.1 
Two-Photon Absorption 

The first detailed theoretical treatment of two-photon absorption processes was given 
by Goppert-Mayer in 193 1 [4.12], but the experimental realization of the effect suc- 
ceeded only in 1961 using a pulsed laser [4.13]. 

The probability Wif that a molecule with velocity 21 in a state Ei absorbs two pho- 
tons hwl and hw2 simultaneously from two light waves with wavevectors kl and k’, 
polarization vectors & I  and &, and intensities 11 and 12, and is excited into a state Ef, 
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(a) 
Fig. 4.24 Two-photon transitions. a) Nonresonant two-photon 
absorption with virtual level W ;  b) resonant two-photon absorp- 
tion; c) two-photon emission. 

(4.109) 

As two photons must be absorbed simultaneously by the molecule, the transition 
probability per molecule is proportional to the product 1112 of the two intensities, pro- 
vided one photon from each wave contributes to the transition. If both photons are 
from the same beam, I I  = 12, W I  = ~4,  and kl = k2. 

The first factor in Eq. (4.109) describes the spectral line profile of the transition 
Ei + Ef and corresponds exactly to the line profile of a one-photon transition with 
the Doppler-shifted mean frequency Wif = wl + w2 + v . (kl + k2) and the homoge- 
neous linewidth yif. Integration over the molecular velocity distributions N,  (ti,) yields 
a Voigt profile with a width depending on the relative orientation of the two wavevec- 
tors kl and k2. For collinear laser beams kl 1 1  k2, and the Doppler width assumes 
a maximum, whereas for anti-collinear beams with kl = -k2, the Doppler broad- 
ening of the two-photon transition vanishes, and a pure homogeneously broadened 
signal of width yif is obtained. This so-called Doppler-free two-photon spectroscopy 
is described in Sect. 12.4.9. 

The second factor in Eq. (4.109), which is obtained quantum mechanically through 
a second-order perturbation calculation, describes the probability of a two-photon ab- 
sorption as the square of a sum over the products of one-photon matrix elements. It 
can be visualized as follows (Fig. 4.24). The two-photon transition can be considered 
as a (not necessarily resonant) two-stage process Ii) + Ik) -+ If), where the sum runs 
over all intermediate states Ik) accessible from the initial state li) of the molecule. The 
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first photon can excite the off-resonance state Ik) somewhere in the outer regions of 
the one-photon absorption line profile. However, the denominators of the sum terms 
become sufficiently small only if W I  - kl . v is close to a one-photon resonance wik of 
the molecule and w2 - k2. v FZ wfk, so that in general only a few intermediate states 
Ik) contribute significantly to the total transition probability, that is, only a few terms 
of Eq. (4.109) survive. 

This two-stage process if often described by symbolically introducing a resonant 
virrual state 1.) of the molecule, which is not a real eigenstate. The two sums in 
Eq. (4.109) then correspond to the two two-stage processes 

(4.1 I Oa) 

(4.1 lob) 

As the two alternatives cannot be distinguished and lead to the same result - the ex- 
citation of the real final state Ef - the total probability of the two-photon transition 
equals the square of the sum of both amplitudes. 

The second factor in Eq. (4.109) describes the general probability for two-photon 
transitions such as nonresonant two-photon absorption (Fig. 4.24a), resonant two- 
stage excitation (Fig. 4.24b). two-photon emission (Fig. 4.24~) or Raman scattering 
(see next section). For all these processes, the same selection rules hold. 

For the two-photon process to be allowed, the matrix elements Rik for the transition 
li) -+ Ik) and Rkf for the transition Ik) -+ If) must both be nonzero. One consequence of 
this fact is that two-photon transitions always occur between states of like parity. For 
example, in homonuclear diatomic molecules, g -+ g transitions between two even 
(g) states or u -+ u transitions between two odd (u) states can be induced, which 
are forbidden for one-photon absorption. In vibration-rotation transitions (o’, J’)  +- 

( ,d’,J”),  transitions with J’ = J or J’ = J f 2 become possible, and for electronic 
transitions AA = 0,1,2 is allowed. 

This shows that through two-photon absorption from the thermally occupied 
ground state, molecular states can be reached which cannot be populated using one- 
photon absorption, and indeed a number of hitherto unknown states have been discov- 
ered using this technique. Frequently, states accessible through one-photon absorption 
are perturbed by other states of opposite parity due to a coupling with hL = f 1 (i.e., 
through spin-orbit or Coriolis coupling) between perturbing and perturbed state (see 
Ch. 9). This perturbing state can be investigated only indirectly using one-photon ab- 
sorption, but it is directly accessible for two-photon spectroscopic methods. Hence, 
both methods yield complementary information on excited states. 

The characteristics and advantages of two-photon spectroscopy can be summarized 
as follows: 

1 .  Through two-photon absorption, excited molecular states can be reached that 
are not accessible from the absorbing initial state through one-photon dipole 
processes for symmetry reasons. 
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2. Using laser beams in the visible, multi-photon absorption can populate highly 

excited molecular levels with energies 

which would need ultraviolet photons in the one-photon case. 

3. Auto-ionizing states (such as Rydberg states above the molecule’s ionization 
energy) can often be excited using multi-photon absorption. Such excitations 
have, in general, cross-sections that are several orders of magnitude larger than 
those of direct photoionization. Measurement of the ions then provides a very 
sensitive detection of small concentrations of molecules. Hence, multi-photon 
ionization is useful as a highly sensitive method of analysis, and is already used 
as such in many cases. 

4. Multi-photon absorption of infrared radiation (e.g., from a CO;? laser) can be 
used, under suitable experimental conditions, to dissociate molecules in specific 
fragments. This method opens ways to selectively start laser-induced chemical 
reactions. 

5 .  With a suitably chosen geometrical arrangement of laser beams, the vectorial 
sum of the photon momenta absorbed by a molecule can be made to vanish. 
In such a case, the absorption frequencies of a molecule are independent of its 
velocity, and Doppler-free absorption profiles are obtained. 

Ionization continuum 

i = 1, 2, 3 

(4 (b) (c) 

Fig. 4.25 a) and c) Doubly-resonant and 
b) singly-resonant three-photon ioniza- 
tion. In a) and b) the ionization is effected 
by the third photon, in c) a highly excited 

Rydberg state is populated by nonres- 
onant two-photon absorption from the 
excited state k ,  which can then be ionized 
by collisions. 
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By absorption of three photons, states of opposite parity can be reached from the 
ground state just as in the case of one-photon absorption. However, highly excited 
states with energies 3hw above the ground state can be reached using laser light in the 
visible. The absorption probability is largely enhanced if at least one of the photons is 
at resonance with an allowed transition in the molecule. In the case of a two-photon 
resonance, it is even larger (Fig. 4.25). 

If a state less than hw below the molecule’s ionization threshold can be reached 
with two photons, the third can be used to ionize the molecule from that intermediate 
excited state. More detailed information can be found in the proceedings of a biannual 
conference series on multi-photon spectroscopy [4.15]. 

4.4.2 
Raman Transitions 

Raman transitions can be considered inelastic scattering processes of a photon hw, at 
a molecule in the initial state li) with the energy Ei, during which the molecule makes 
a transition to the higher state Ef, and the scattered photon with frequency wSc has lost 
the energy AE = Ef - Ei = h(wi - wsc) (Fig. 4.26a), 

h‘J-‘i+M(Ei)+M*(Ef)+tuJ,, . (4.11 I)  

The energy difference AE can be converted to rotational, vibrational, or electronic 
energy of the molecule. The intermediate state I w )  with energy 

of the system (molecule + photon) during the scattering process is formally called a 
virtual state (Fig. 4.26b); only in the special case of resonant Raman scattering does 
it coincide with a real state of the molecule. 

:l/=eLf radiation ‘11 Stokes 

radiation 

Ei 
Ef 

(4 (b) (a 
Fig. 4.26 a) Raman scattering as inelastic scattering of photons; 
b) nonresonant Raman-Stokes process; c) formation of anti- 
Stokes radiation. 
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The classical description of the Raman effect assumes that an incident light wave 

E = Eocoswr induces an oscillating dipole moment 

p i n d  = oE 

in the molecule, where a is the molecule’s polarizability. This induced moment is 
superimposed upon an existing permanent dipole moment po, so that the total dipole 
moment is 

p = p0 +aE . (4.112) 

Both dipole moment and polarizability depend on the intemuclear distance and the 
electronic configuration. For small displacements of the nuclei from their equilibrium 
positions we can approximate both quantities by the first term of a Taylor expansion 

(4.1 13) 

where p(0)  and a(0)  are the dipole moment and the polarizability at the equilibrium 
intemuclear distance. For small vibrational amplitudes, the molecular vibrations can 
be considered harmonic, thus we obtain for AR = R - Re 

AR(t)  = A ,  coswvt , (4.114) 

where A, and wv are the amplitude and the frequency of the molecular vibration, 
respectively. If we substitute Eqns. (4.1 13) and (4.1 14) into Eq. (4.1 12), we obtain the 
time-dependent dipole moment 

p(t )  = po + ( g)ReAVcoswV1 + o(0)Eocoswt 

E~ a. 
f -  - A ~ [ c o s ( u - ~ , ) ~ + c o s ( ~ + u , ) ~ ]  . 

( a R ) R e  
(4.115) 

The first term describes the molecular permanent dipole moment, the second term rep- 
resents contributions oscillating with the molecular vibration that are responsible for 
the infrared spectrum of the molecule (see Sect. 4.2.2). The further terms describe 
contributions to the molecular dipole moment induced by the incident electromag- 
netic wave. As an oscillating dipole moment creates new electromagnetic waves, we 
see from Eq. (4.1 15) that each molecule contributes microscopically to the elastic 
scattering at the incident frequency w (Rayleigh scattering) and to the inelastic scat- 
tering (Raman scattering) at the frequencies (w - w,) (Stokes waves). If the molecule 
exists in an excited state before the scattering, superelastic scattering can also occur, 
where the scattered wave displays frequencies (w + w,), which are called anti-Stokes 
components (Fig. 4.26~).  
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(a) (b) 

Fig. 4.27 Variations of electric dipole moment and polarizability 
a) for homonuclear and b) for heteronuclear diatomic molecules. 

These microscopic contributions of the individual molecules to ... e scattered radi- 
ation combine to form macroscopic waves with intensities depending on the incident 
intensity I L ,  the population density N; of the scattering molecules, the phase differ- 
ences of the individual scattered waves, and on the coefficients (da /aR) .  

We see from Eq. (4.1 15) that the infrared absorption depends on the variation of 
the molecular dipole moment with nuclear coordinates, ( a p / a R ) ,  whereas the inten- 
sity of Raman scattering is determined by the variation of the molecular polnrizabil- 
ity, (do/&). Hence, homonuclear diatomic molecules possess no infrared spectrum 
(because a p / a R  = 0 for symmetry reasons) but they do show a Raman spectrum, pro- 
vided a(-Y/aR # 0 (Fig. 4.27). Heteronuclear molecules can show both an infrared and 
a Raman spectrum. 

Although the classical description of Raman scattering outlined above yields the 
correct frequencies for the Raman lines, their intensities can only be calculated with 
the aid of quantum theory. For this purpose, we need to compute the expectation value 

(4.1 16) 

of the polarizability a. Formally, it corresponds to the matrix element Eq. (4.23) for a 
dipole transition [4.16]. 

4.4.3 
Raman Spectra 

While for one-photon dipole transitions, the selection rules AJ = f l  or AJ = 0 (for 
AA = k 1) hold for the rotational quantum number J ,  these are modified for two pho- 
tons to become 

AJ = 0 , f 2 .  
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, virtual level , 
I 

2 1 0 v 0 0 1 2 v  w 
Fig. 4.28 Rotational Raman transitions. J is always the quantum 
number of the lower level. 

For rotational Raman spectra, where Ei and Ef correspond to rotational levels in the 
electronic ground state and the same vibrational level, we obtain for the Stokes lines 
Jf + Ji + 2 with AJ = + 2  and for the anti-Stokes lines Jf = Ji - 2 with AJ = - 2  
(Fig. 4.28). Neglecting centrifugal distortion, the wavenumbers of the Stokes lines are 
shifted by an amount 

AU = B [J (J  + 1) - ( J  + 2 )  ( J  + 3)] = -2B( 25 + 3 )  (4.1 17) 

with respect to the incident line, which starts from a level with quantum number J ,  
whereas the anti-Stokes lines are shifted by 

AU = B [ ( J  + 2 ) ( J  + 3 )  - J ( J  + l)] = + 2 B ( 2 J +  3 )  (4.1 18) 

for an excitation from a level ( J  + 2 ) .  
Hence, the distances between rotational Raman lines are different from those of 

the one-photon rotational lines in Fig. 3.1. 
In vibration-rotation Raman spectra, the vibrational quantum number IJ also chan- 

ges, and the Raman transitions (Vi,Ji + vf,Jf) consist of an S branch (Ji + Jf = Ji + 2 )  
with AJ = +2, a Q branch (Ji = Jf) with AJ = 0, and an 0 branch (Ji + Jf = Ji - 2) 
with AJ = - 2  both in the Stokes spectrum (wi + w f  = I J ~  + 1) and in the anti-Stokes 
spectrum (wi + 'uf = I J ~  - 1) (Fig. 4.29). Transitions with AIJ = f 2 , 3 , .  . . occur also, 
but with lower intensity. 

The term values of the involved levels I J ~  = 0 and of = 1 are (neglecting anhar- 
monicities and centrifugal effects) 
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virtual level 

0 2tL 1 v = o  

S Q O  

S Q 0 2 1 0  v o 0 1 2  0 Q S b 
Stokes Rotational Anti-Stokes 
band Rarnan lines band 

Fig. 4.29 Stokes Raman spectrum of vibration-rotation transi- 
tions. The anti Stokes transitions are obtained by reversing all 
arrow directions. 

The Stokes transitions for the S branch (0 , J  -+ l , J  + 2) occur at the wavenumbers 

Fit = P n - ~ ~ - 6 B 1  -(5B1 - B o ) J - ( B l  - B o ) J 2 ,  (4.120a) 

for the Q branch ( 0 , J )  + (1,J) at 

F$ = I70 - W e  - (B1 - Bo)J - ( B ]  - Bop2 , (4.120b) 

and for the 0 branch (0 , J  + 1,J - 2) at 

(4.120c) -St 
VO = - We - 2B1 + (&I + 3BI)J  - (Bl - & ) J 2  , 

where vo is the wavenumber of the exciting transition. For anti-Stokes lines corre- 
sponding expressions are obtained. 

As vibrational frequencies are about two orders of magnitude larger than rotational 
frequencies, lines appear in vibration-rotation Raman spectra that are shifted from the 
exciting line by vibrational frequencies and that contain the respective rotational lines 
as fine structure (Fig. 4.29). 

This may be compared to the corresponding infrared vibration-rotation transitions 
in Fig. 4.4. 
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4.5 
Thermal Population of Molecular Levels 

The intensity of spectral lines depends not only on the corresponding transition prob- 
abilities but also on the population density Ni (number of molecules in the state Ii) per 
unit volume) of the molecular levels involved in the transition. 

For emission spectra, this is the population of the upper emitting level, for absorp- 
tion spectra it is the population difference between lower and upper level, for Raman 
spectra it is the population of the lower level from which the excitation occurs. 

The population density depends on the temperature T and the statistical weight 
of the state. The statistical weight g indicates the number of energetically identical 
(degenerate) sublevels of a molecular state. For example, the statistical weight of a 
rotational level is g = U + 1, because the angular momentum J can assume 25 + 1 
possible orientations in space with the orientational quantum number M (-J < M < 
+ J ) ,  which are energetically identical in the absence of an external field. 

Additionally, the nuclear spins on the nuclei in a molecule contribute also to the 
statistical weight of a molecular level, as will be explained below. 

4.5.1 
Thermal Population of Rotational Levels 

As explained in textbooks of physics, the population density Ni of a level with energy 
E; is given by the Boltzmann factor 

(4.121) 

where N = CiN; is the total density of the molecules and Z = Ce&/kT  is the par- 
tition function, which acts as a normalization factor ensuring the condition C N i  = N 
when Z is substituted into Eq. (4.121). The statistical weight 

of a vibration-rotation level contains contributions from rotation, vibration, and the 
nuclear spins. 

If we ignore nuclear spin effects for the moment, the population of the rotational 
levels of a diatomic molecule is given, according to Eq. (4.121), by 

(4.123) 

(Fig. 4.30b), where Nu is the total population of the vibrational level 1.). 
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Fig. 4.30 Thermal population of a) the vibrational levels and 
b) rotational levels of some diatomic molecules at T = 300K. 

4.5.2 
Population of Vibration-Rotation Levels 

The rotationless vibrational levels of a diatomic molecule possess only one degree of 
freedom, that is, they are nondegenerate and hence their statistical weight is g, = 1. 
The population distribution over the vibrational levels with energies E; = (zl; + i ) h w ,  
is then 

(4.124) 

where Z vib . - - Cie-"i'kBT is the vibrational partition function and N is the total number 
of molecules per unit volume (Fig. 4.30a). 

If we combine Eqns. (4.123) and (4. I24), we obtain the population density N; in a 
vibration-rotation level ( v , J ) ,  

(4.125) 

4.5.3 
Nuclear Spin Statistics 

Finally, we will turn our attention to the influence of the nuclear spins on the popula- 
tion distributions. 

If  we exchange the nuclei in a homonuclear diatomic molecule, the wavefunction 
of a state can be symmetric (i.e., it remains unchanged if the nuclei are exchanged) 
or antisymmetric (it changes sign). Within the Born-Oppenheimer approximation the 
total wavefunction can be written as a product 
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of electronic, vibrational, rotational, and nuclear spin contributions. Nuclei with half- 
integer nuclear spin I = (n + i ) h  are fermions. The total wavefunction must therefore 
be antisymmetric with respect to the exchange of identical nuclei. Nuclei with integer 
nuclear spin I = nh are bosons, and the total wavefunction must be symmetric with 
respect to the exchange of identical nuclei. As both +el and +v,b are symmetric with 
respect to exchange of nuclei, the product $+ot+ns must be antisymmetric for nuclei 
with half-integer spin and symmetric for nuclei with integer spin. 

As an example, we consider the rotational levels in a Z l  state. Here, $rot is sym- 
metric for levels with even rotational quantum number J and antisymmetric for odd 
J .  To make the product antisymmetric, symmetric nuclear spin functions +ns 

must be combined with odd values of J ,  and antisymmetric nuclear spin functions 
$+,, must be combined with even values of J .  For example, if the identical nuclei 
possess nuclear spin 4, their nuclear spin quantum number is [i.e., the spins can 
be oriented up ( a )  or down (p)]. We can then construct three symmetric nuclear 
spin functions aa, pp, and (ap + pa) / &, but only one antisymmetric combination 

This means that for a nuclear spin of 4, the statistical weight of the symmetric 
nuclear spin functions is three times that of the antisymmetric functions. Hence, the 
population of the rotational levels in the Ei  ground state of the H2 molecule (nuclear 
spin of the nuclei is f) for odd rotational quantum numbers J is (apart from the Boltz- 
mann factor) three times that of the states with even J .  

Generally, for homonuclear diatomic molecules with nuclear spins I ,  there are 
(21+ 1)(1+ 1 )  symmetric and (21 + 1)l antisymmetric nuclear spin wavefunctions. 
The ratio of the two statistical weights is therefore 

(ap - /?a) / Jz. 

(4.127a) 

For half-integer I (nuclei are fermions) the population ratio of rotational levels in 
symmetric electronic states is 

N(J=odd)  - 1 + 1  
N(J=even) I 

- - 

In antisymmetric electronic states (e.g., Zi), 

(4.127b) 

(4.127~) 

Therefore the line intensities in rotation-resolved absorption spectra of H2 alternate 
by a factor of three. Before arriving at the correct explanation of this phenomenon 
it was believed that there are two different types of hydrogen, called para hydrogen 
(with antiparallel nuclear spins and therefore total spin 11 + 12 = 0) and ortho hydrogen 
(with parallel nuclear spins and total nuclear spin 11 + 12 = 1). In para hydrogen, the 
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Electronic 

State J 

Tab. 4.1 Nuclear spin statistics: symmetries of AOt, Gnuc, and 9, and statistical 
weights for fermionic and bosonic nuclei. 

~ 

Bosons 
gnu, 

$rot A s  !P I = O  I = ]  *,r $ns P I = 

even =; 
=; 

odd 

odd 
even 

s a a  1 6 S s s  1 6 
a s a 3  10 a a s 0  3 
s s a 3  10 S a s 0  3 
a a a  1 6 a s s l  6 

nuclear spin wavefunction is antisymmetric, and therefore only rotational levels with 
even J are occupied; in ortho hydrogen only those with odd J are occupied. 

For bosonic nuclei with even nuclear spin quantum number I the total wavefunc- 
tion must be symmetric, and therefore the rotational levels with even rotational quan- 
tum number J in an electronic Xg state possess the statistical weight (21 + 1) (I + l ) ,  
whereas levels with odd J possess the weight (21 + 1)I. 

For the nitrogen molecule N2, the nuclear spins are I = 1, that is, the nuclei are 
bosons. The product &Ot$ns must therefore be symmetric. The ratio of the population 
numbers of rotational levels is then N(J  = even)/N(J = odd) = (I + 1)/I  = 2. The 
populations of the rotational levels alternate by a factor of two. 

For the oxygen molecule 02, the nuclear spins are I = 0, that is, the nuclei are 
bosons, and there is only a symmetric nuclear spin wavefunction. Therefore the sta- 
tistical weight of rotational levels with odd J vanishes, that is, these levels are not 
populated and no transitions from rotational levels with odd J appear in the spectrum. 
Hence, in the spectrum every other rotational line is missing! 

Table 4.1 lists the statistical nuclear spin weights gnu,, which indicate the number 
of possible relative orientations of the nuclear spins, for some states in homonuclear 
molecules. 
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Molecular Symmetry and Group Theory 

The huge variety of molecules can be grouped into certain well-defined classes ac- 
cording to the symmetry properties of their nuclear frameworks. This fortunate fact 
greatly facilitates the determination of molecular states and especially the discussion 
of allowed andfiwbidden transitions between levels during absorption or emission of 
electromagnetic radiation. It is particularly the application of mathematical group the- 
ory to the description of molecular symmetry that has provided a very concise, clear, 
and elegant representation of the symmetry types of molecular states and of the spectra 
of polyatomic molecules. 

Before turning to polyatomic molecules and their spectra, we will therefore discuss 
these topics in some detail, the knowledge of which is of crucial importance for each 
chemist or physicist who wants to do serious work in molecular physics. More detailed 
accounts can be found in monographs such as [5.1-5.61. 

5.1 
Symmetry Operations and Symmetry Elements 

We start from the geometrical arrangement of the rigid nuclear framework of a mole- 
cule, in which all nuclei are fixed to their equilibrium positions. For each molecule, 
there are certain transformations, or mappings, of the nuclei (e.g., rotations of the nu- 
clear framework around an axis, or reflection of all nuclei at a plane or at the molec- 
ular center of mass), for which the framework as a whole transforms into an identical 
configuration. Identical nuclei (with identical numbers of neutrons and protons) are 
considered undistinguishable, that is, identical, for this purpose. 

Definition: Transformations which map the rigid nuclear framework of 
a molecule onto itself are called symmetry operations of this molecule. 

As an example, Fig. 5.1 shows all symmetry operations of the H20 molecule. Note 
that a symmetry operation does not necessarily map each individual nucleus onto it- 
self. In general, it must only be mapped onto an identical nucleus, that is, a nucleus 
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Fig. 5.1 Symmetry operations of the H 2 0  molecule. 

N 

=V 

Fig. 5.2 The NH3 molecule, exemplifying the C3" symmetry group. 

which cannot be distinguished from the original. To clarify this point, the nuclei in 
Fig. 5.1 are numbered, and the nuclei 1 and 3 are identical. 

Symmetry planes, axes or points are collectively called symmetry elements. The 
symmetry of a molecule can be classified according to the number and types of sym- 
metry elements. For this purpose, certain notations have been introduced (Schonflies 
notation) to designate the different symmetry elements. 

1. Symmetry axes C, 
A molecule possesses an n-fold symmetry axis (axis of rotation) C,,, if its nu- 
clear framework is mapped onto itself upon a rotation by an angle of a = 2n/n 
around this axis. If a molecule possesses more than one symmetry axis C,, that 
with the largest n is taken to be the z direction. 

Examples 
The H20  molecule from Fig. 5.1 possesses a C2 axis, the NH3 molecule 
(Fig. 5.2) a C3 symmetry axis. Benzene (Fig. 5.3) possesses a c6 axis in the 
z direction and six C2 axes in the xy plane. Linear molecules possess a C, 
axis, because their nuclear framework can be rotated by arbitrary angles 
around the molecular axis. 
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H 

Fig. 5.3 Some symmetry elements of the benzene 
molecule C6H6. 

2 .  Symrnetryplanes (6) 

A molecule possesses a symmetry plane if its nuclear framework remains un- 
changed upon reflection at this plane. It is called a vertical plane and designated 
ov if the molecule's symmetry axis C,, with largest n lies in this plane (because 
the C, with largest n is always chosen to be in the z direction, i.e., vertical). 
Symmetry planes perpendicular to this vertical axis, that is, in the x y  plane, are 
designated oh (horizontal). 

Examples 
The H 2 0  molecule in Fig. 5.1 possesses two oV planes, oxxz and oyz (also 
designated ov and oi), the NH3 molecule in Fig. 5.2 possesses three ov 
planes, the benzene molecule (Fig. 5.3) possesses one o h  plane in the xy 
plane and six ov planes containing the sixfold symmetry axis c6 in the z 
direction. The six C2 symmetry axes are the intersections of the ov planes 
and the q, plane. 
All planar molecules possess at least one symmetry plane that contains all 
nuclei. 

3. Rotary-rejection axes (S,,) 
A molecule possesses an n-fold rotary-reflection axis S,, if its nuclear frame- 
work is mapped onto itself upon rotation by an angle a = 2x/n around the axis, 
followed by a reflection of all nuclei at a plane perpendicular to this axis. 

I 
Examples 
The allene molecule C3H4, in which the two CH2 groups are twisted by 
90" with respect to each other (Fig. 5.4a), possesses one S4 and three C2 
symmetry axes; the twisted isomer of the ethane molecule C2H6 (Fig. 5.4b) 
possesses one C3 and one s6 symmetry axes. 
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Fig. 5.4 a) The twisted allene molecule C3H4 belongs to the 
point group D2. b) The twisted isomer of the ethane molecule 
C2H6 possesses one c3 symmetry axis and an s6 rotary- 
reflection axis. 

4. Center of inversion (i) 
A molecule possesses a center of inversion i ,  if its nuclear framework is mapped 
onto itself upon reflection of all nuclei at this center (inversion). A center of 
inversion lies necessarily in the molecule's center of mass, which is chosen as 
the origin of the molecule-fixed reference frame. In this reference frame, all 
nuclear coordinates (x,y,z) change their sign upon inversion, that is, (x,y,z) is 
transformed into ( -x ,  -y, -z). 

The inversion can also be described by consecutive execution of two other sym- 
metry operations: if the nuclear framework is rotated by 180" (K) around a C 
axis and afterwards reflected at a b h  plane perpendicular to this axis, the same 
result as for an inversion is obtained. 

Examples 
All homonuclear diatomic molecules, but also C02, benzene C6H6 and 
ethyne C2H2 (acetylene) possess a center of inversion. Whereas i lies at 
the carbon nucleus in COz, it is not located at a nucleus in C2H2 or C6H6 
(Fig. 5.5). 

Symmetry operations and symmetry elements can readily be visualized using sim- 
ple geometrical bodies. For example, a cube (Fig. 5.6) possesses three C4 axes point- 
ing in the x ,  y and z direction and intersecting in the center of the cube. The three 
diagonals are C3 axes, and the connecting lines from the center of one edge to the 
diagonally opposed edge are eight Cg axes. In addition, there is a center of inversion, 
and for each C4 axis, there are four 0" planes and one o h  plane. 
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Fig. 5.5 Molecules with a center of inversion i. For C02, i coin- 
cides with an atom, but not for the other examples. 

Fig. 5.6 Some symmetry elements of a cube. 

We will show in the following that the set of symmetry operations of a molecule 
can be considered a group in the mathematical sense, and that this group is unique 
for a specific symmetry class and describes the symmetry properties of a molecule 
completely and unambiguously 

But first, we must get acquainted with the basic foundations of mathematical group 
theory. 

5.2 
Foundations of Group Theory 

We start from a set of N elements a, ( n  = 1,. . . , N )  between which an operation such 
as addition or multiplications is defined. These elements form a multiplicative group 
G if the following conditions hold: 

1. a ; , ~  E G -+ (a; x ak) = a, E G, where the symbol “x”  indicates multiplication. 
In other words, the product of two elements of the group is again an element of 
the group. 

2.  a; x (ak x a j )  = (a; x a k )  x a,  (associative law), that is, the product of several 
factors does not depend on how the factors are combined. 
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3. There exists a neutral element e E G for which e x a,, = a,, x e = a,, for all 

a,, E G. 

a;' =a;' x a,, = e. 
4. For each element a,, E G there is an inverse element a;' E G for which a,, x 

For some groups, the so-called commutative or Abelian groups, the commutative 
law also holds: ai x ak = ak x ai for all ai,ak E G. Note, however, that there are many 
groups that are not Abelian (for examples, see Sect. 5.3). 

The number N of group elements is called the order of the group. If the group 
axioms (1)-(4) hold for a subset of n elements ai E G with n < N, this subset is called 
a subgroup of G. 

Example 
The number 1 represents the neutral element of the group of all rational numbers I under multiplication, and it forms a trivial subgroup of this group. 

The following rules apply (for proofs, see [5.7]): 

(a) The order n of a subgroup is a divisor of the order N of the complete group (i.e., 
N / n  is integer). From this follows that there are no nontrivial (i.e., 1 < n < N )  
subgroups if N is prime. 

(b) If in addition to an element ai E G, the element ai x ai = a' also belongs to 
the finite group G, then all powers ai,a;, . . .a' must belong to the group. There 
must be a finite number p < N, so that a' = e. The elements ai,a;, . . .,a' = e 
are a subgroup of G, which is called a cyclic group. 

The elements of a group G can be grouped into classes by the following definition: 
two elements a and b belong to the same class if there is an element x E G for which 

1 a=xbx- . (5.1) 

The elements within a class are called mutually conjugated. The classes of a group 
are disjunct, that is, no element can belong to more than one class. 

Proof: We consider two elements f and g from different classes, and 
we assume that the element h belongs to the class o f f  and to that of 
g simultaneously, Hence, h = xfx-' = ygy-' from which follows that 
f = x-'ygy-'x = (x- 'y)g(x-Iy)-l ,  thar is, f and g belong to the same 
class, contrary to our assumption that f and g are from different classes. 
Therefore, h cannot belong to two different classes. We see immediately 
that for Abelian groups, each class consists of one element only, because 
.from 

a = xbx-' = m - ' b  = eb = b 

we obtain that a = b. Each element of an Abelian group forms its own 
class. In Abelian groups, there are therefore N classes. 
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5.3 
Molecular Point Groups 

We will now demonstrate for some illustrative examples that the symmetry operations 
of a molecule are the elements of a multiplicative group. The operation ("multipli- 
cation") is the sequential application of two symmetry operations, and the neutral 
element is the identity operation where no action takes place, that is, all nuclei remain 
at their respective positions. 

As a first example, we consider the symmetry operations of the H20 molecule 
(Fig. 5.1): 

I : identity operation 

C2 : rotation by 180" ( 5 c )  around the z axis 

ov : reflection at the xz plane 

4 : reflection at the yz plane 

The product (C2 x ov) means that first the reflection at the xz plane takes place (ov) 
and then the rotation around the z axis (C.2). We can see from Fig. 5.7 that the result 
is the same as if we had simply reflected the nuclei at the yz plane (4 plane). This is 
expressed by the notation 

c2 x ov = 4 .  

Fig. 5.7 Subsequent applications of the symmetry operations oV 
and C2 in the group C2v leads to the same result as the reflec- 
tion 0:. 
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Tab. 5.1 Multiplication table of the group GV. 
I 

All other possible products can be constructed correspondingly by using Fig. 5.7. For 
the C2v group we obtain the result that each symmetry operation, when applied twice, 
yields the original nuclear configuration, 

C2xC2=I;  ovxO,=I;  d , x d v = l  

In other words, each element is its own inverse. 
The products of all symmetry operations can be clearly laid out in the form of a 

multiplication table (Table 5.1). 
We see that the symmetry operations obey conditions (1)-(4) from Sect. 5.2 for 

the elements of a group, that is, the symmetry operations of the H20 molecule form a 
group of order N = 4, which is called CzV because it consists of one C2 axis and two ov 
planes. The group is Abelian, because for all elements ai, a ,  from G, aj x a ,  = a ,  x ai, 
as can easily be verified from the multiplication table. 

Together with the neutral element, each of the elements C2, bv and 0: forms a 
subgroup of order two. Thus, there are three real subgroups in C2" (in addition to the 
trivial subgroup of order one containing only the neutral element). As the group is 
commutative, each element is in its own class, that is, there are four disjunct classes. 

Remark: For the nuclear framework of the H 2  molecule, the operation 
0: equals the identity I .  This is not true, however; ifwe take the molecule's 
electron cloud into account. As we will later apply group theory to the 
symmetry properties of electronic states, it i s  necessary to include 0: as 
a separate symmetry operation. 

We will now continue by discussing the non-Abelian group C3v, to which the 
molecule NH3 (Fig. 5.2)  belongs. Figure 5.8 shows the symmetry operations of this 
group, I ,  C3, C,', oV, 0: and o:, where C3 is a clockwise rotation by 120", and C,' is 
a clockwise rotation by 240". The multiplication table (Table 5.2)  shows clearly that 
the group is noncommutative. The six elements fall into three classes, of which the 
first contains only the neutral element I ,  the second contains the two rotations C3 and 
C,', and the third contains the reflections oV, dv and 0:. This is illustrated in Fig. 5.9a 
for the elements C3 and C:, for which 

c3 =o,' xc , ' xov .  (5 .2)  

Figure 5.9b and c demonstrate that the three reflections are mutually conjugate ele- 
ments. 



Tab. 5.2 Multiplication table of the group C3v. 
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3 1 

2 - 1  2 

Fig. 5.8 The noncommutative group C3v and its symmetry oper- 
ations. 

t 
0, 

Fig. 5.9 Pairs of mutually conjugate group elements: a) C3 and 
C ~ C ~ ~ O ; ~ ,  b) 01' and C30:C;', c) oV and C:dvCsy2. 
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Similarly, it can be shown that all symmetry groups listed in the next section satisfy 

the group axioms. These groups of molecular symmetry operations are also called 
molecular point groups, because the molecule’s center of mass - which is common to 
all symmetry elements (axes and planes) - is mapped onto itself during all symmetry 
transformations, that is, it is invariant. 

Note: The elements of the point groups are the symmetry operations, 
which must be distinguished from the symmetry elements (rotation axes, 
rotary-rejection axes and mirror planes) of the molecules. 

In the next section, we will give an overview of the different molecular point 
groups. 

5.4 
Classification of Molecular Point Groups 

The point group of a molecule comprises all symmetry operations possible for this 
molecule. This means, it depends on the number and types of symmetry elements in 
the molecule (see Sect. 5.1). To specify a molecule’s point group unambiguously, the 
Schonflies notation is commonly employed, which uses the symbols listed in Table 5.3 
in order of increasing symmetry. We will now take a closer look at some examples of 
molecular point groups. 

Tab. 5.3 Schonflies notation for molecular point groups. 

Group symbol Symmetry elements 

Dnh 
s, 
Td 
Oh 
I h  

special labels 

1 C,, axis 
1 C, axis + n mirror planes containing this axis 
1 C,, axis + 1 mirror plane perpendicular to C,; for even n also a 
center of inversion i. 
1 C, axis + n Cz axes perpendicular to C, 
as D,, but additionally n mirror planes containing the C, axis and one 
line bisecting the C2 axes 
as D,, + I mirror plane perpendicular to C, 
1 S, axis 
all symmetry elements of a regular tetrahedron 
all symmetry elements of a regular octahedron or cube 
all symmetry elements of an icosahedron 

ci = s2 
cs CIv Clh 3 s1; 
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,._..___..., 

! )  Br 

(a) (b) 

Fig. 5.10 a) The substituted methane molecule CHClFBr exem- 
plifying the point group CI ; b) the molecule H202 exemplifying 
the point group C2. 

5.4.1 
The Point Groups Cny Cnvy and Cnh 

The molecules with lowest symmetry are those belonging to group CI . They possess 
no “real” symmetry element, and their point group thus consists solely of the identity I .  

Example 
The substituted methane molecule CHClFBr (Fig. 5.10a). 

The point group C2 (only one twofold symmetry axis) comprises, for example, the 
hydrogen peroxide molecule H202 (Fig. 5.10b). There are only very few examples of 
molecules belonging to point groups C, with n 2 3. 

Molecules from group Cs = CI,, Clh have a mirror plane as their only symmetry 
element. All plane molecules without further symmetry elements belong to this group. 

Examples 
The water isotopomer HDO or phenol (Fig. 5.1 1). 

0-H 

H 

(b) 

Fig. 5.11 The molecules a) HDO and b) phenol, exemplifying 
the point group Cs. 
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Fig. 5.12 Dichlorobenzene C6H4C12, representing the C2" point 
group. 

The group CzV (one C2 axis and two vertical mirror planes) comprises a large num- 
ber of triatomic and polyatomic molecules. 

Examples 
H20 (Fig. 5.1), NO2, S 0 2 ,  difluoromethane CH2F2, and dichlorobenzene I CbH4C12 (Fig. 5.12). 

The group C-3" (one C3 axis and three vertical mirror planes) is exemplified by the 
NH3 molecule (Figs. 5.2 and 5.8). 

Another important point group is C,", which comprises all linear unsymmetrical 
molecules such as HCN or OCS, and specifically all heteronuclear diatomic molecules 
(CO, NO, LiH, but also 6Li7Li). Each plane containing the molecular axis is a mir- 
ror plane, and each rotation by an arbitrary angle (Y around this axis is a symmetry 
operation. 

The group Cnh (one C,, axis and a mirror plane perpendicular to it) contains the 
symmetry elements C,,, that is, a rotation around the symmetry axis by an angle a,, = 
27c/n, and the reflection o h .  As always, all products of these elements must also be 
group elements. For example, the inversion i can be written as the product i = C 2  x o h ,  

and it is therefore also an element of the group C2h. Analogously, the rotary-reflection 
S3 = q, x C3 is an element of the group C3h. 
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(a) (b) 
Fig. 5.13 The planar molecules a) glyoxal, OHCCHO, and b) or- 
tho boric acid, H3BO3, exemplifying the point groups C2h and 
C3h, respectively. 

Tab. 5.4 Multiplication table of the group C2h. 

I 
Examples 
Examples representing the group C2h are the plane molecules glyoxal OHCCHO 
(Fig. 5.13a) and butadiene, C4H6. Table 5.4 shows the multiplication table of this 
group. An example for the group C3h is ortho boric acid, H3B03 (Fig. 5.13b). 

5.4.2 
The Point Groups D,, D,,d, and Dnh 

Molecules belonging to the points groups D, (one C, axis and n C2 axes perpendic- 
ular to it, intersecting at angles x / n )  can be constructed by combining two identical 
fragments of C,,, symmetry along the C, axis so that both fragments are rotated by an 
angle Q = m x / n  (m, n integer) with respect to each other. For example, the molecule 
C2H4, which is planar in the ground state, possesses an excited state in which the two 
CH2 fragments with C2, symmetry are twisted by 90" so that the nuclear framework 
of the excited ethene has D2 symmetry (Fig. 5.14b). The two C2 axes perpendicular to 
the S4 axis lie within the planes bisecting the two ov planes. There are only very few 
examples of molecules belonging to the point groups D, with n 2 3. 

Molecules belonging to the point groups D,d contain additional mirror planes o d  

containing the C,, axis and one of the lines bisecting two C2 axes. They can be con- 
structed from two identical fragments of C,,, symmetry that are twisted along the C,, 
axis by an angle Q = n / n .  For odd values of n, the molecules possess also a center of 
inversion. 
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Examples 
Allene, C3H4 (Fig. 5.4a), belongs to group D2d. The existence of three C2 axes 
and two mirror planes requires also an S4 axis as a symmetry element. Anal- 
ogously, ethane C2H6 (D3d) possesses, in addition to the C3 axis and the three 
mirror planes, an S6 rotary-reflection axis and a center of inversion i (Fig. 5.4b). 

I 

The groups Dnh contain, in addition to the symmetry elements of the groups D,, 
a horizontal mirror plane 6 h  and n 6 d  planes containing the C, axis. For even n, the 
molecules possess also a center of inversion i. 

Examples 
Ground-state ethene belongs to group D2h (Fig. 5.14a). Its symmetry elements 
are three mutually perpendicular C2 axes, three mirror planes 6, and a center of 
inversion. 
Boron trifluoride, BF3, sulfur trioxide, SO3, and trifluorobenzene, C&F3, are 
examples for the group D3h (Fig. 5.15a,b). They possess a C3 axis, three C2 axes, 
three 6, planes and one 6 h  plane. The corresponding group elements are, in 
addition to the operations C3, C2, 6,. and 6 h  also Ci, S3 and S:. 
All homonuclear diatomic molecules and all symmetric linear molecules such 
as C02 or ethyne C2H2 (acetylene) belong to the important point group D,h 
(Fig. 5.15~). It differs from the groups C,, by the additional 6 h  mirror plane, and 
hence also by a center of inversion i. 

Fig. 5.14 a) The electronic ground state (C2") and b) an excited 
state ( 0 2 )  of the ethene molecule possess different geometries 
and therefore belong to different point groups. 
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6, j c2 C6H3F3 

. =v 

OV’ 

Fig. 5.15 a) Trifluorobenzene C6H3F3 and b) boron trifluoride 
BF3 as examples for the group D3hr and c) the linear symmetric 
molecules CO;? and C2H2 as examples for the group Dmh. 

5.4.3 
The groups S,, 

Molecules belonging to the S,, point groups possess an S, rotary-reflection axis as 
their only symmetry element. The point groups contains therefore the elements E, S,,, 
S,”, S;?, . . . , S:-’. For example, the group S4 consists of E, S4, Si = C2, and S:. 

For n = 2, the symmetry axis S2 is equivalent to a center of inversion i, and the 
group S2 is therefore also called Ci (S2 = Ci). 

I Examples 
The dichlorodifluoroethane isomer (CHClF)2 in which the two (CHClF) groups 
are twisted by 180” (Fig. 5.16) belongs to group Ci. 

CI si - H - HH - - - 

Fig. 5.16 Dichlorodifluoroethane isomer exemplifying the group Ci. 
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$3 73 

I 
\ I 1 .c3 

c3- 

F3 

FE 

Fig. 5.17 a) Methane, representing the group Td; b) SF6 as an 
example of the group oh. 

5.4.4 
The Point Groups Td and Q, 

All molecules belonging to the point group Td possess the symmetry of a tetrahedron 
(i.e., they possess four C3 axes, three c2 axes and six o d  mirror planes). 

Examples 
Methane CH4 (Fig. 5.17a) and carbon tetrachloride CCl4 belong to group Td. 

We can visualize the different symmetry elements most easily if we imagine the 
tetrahedron to be surrounded by a cube. For CH4, the four hydrogen atoms lie at four 
comers of the cube so that each pair of them is connected through a diagonal across 
one face of the cube. The four C3 axes are then the diagonals through the cube, the 
three C2 axes connect the midpoints of opposite faces, and the six b d  planes are the 
planes through diagonally opposed pairs of edges of the cube. 

The symmetry group of a regular octahedron is called o h ;  it comprises three C4 
axes, four C3 axes, six C2 axes, three (Th planes, and six o d  planes. An example for 
a molecule belonging to this point group is sF6 (Fig. 5.17b). If the octahedron is 
included in a cube so that the comers of the octahedron coincide with the centers of 
the faces of the cube, we recognize that a cube possesses the same symmetry elements 
as the octahedron (Fig. 5.6). The molecular point groups Td and Oh possess the largest 
number of symmetry elements and have thus the highest symmetry. 
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5.4.5 
How to Find the Point Group of a Molecule 

We address now the crucial question as to how we can find out to which point group 
a specific molecule belongs. To facilitate a systematic approach, we provide some 
“recipes” that allow a quick classification [5.1]. 

(a) If the molecule is linear, it must belong to one of the groups C,, or Dmh. If it 
possesses a center of inversion, it belongs to Dmh, or else to C-,. 

(b) If the molecule is tetrahedral, such as CCl4, it belongs to Td 

(c) If the molecule is octahedral (such as SFs), it has oh symmetry. 

(d) If the molecules does not fall in any of the classes a)+), we must check if there 
is a symmetry axis C,, with n > 1. If there is none, the molecule belongs to 
group Cs if there is a mirror plane 6, to group Ci = S2 if there is a center of 
inversion i ,  and to group CI if there is no symmetry element at all. 

(e) If there is a C,, axis with n > 1 and if this axis is at the same time a rotary- 
reflection axis &,, and there are no further symmetry elements (except the center 
of inversion i for even n), the molecule belongs to group S,,. 

(f) If there are further symmetry elements besides those listed in e), the molecule 
belongs to one of the groups D,, Dnh, Dnd, C,,, C,,, or Cnh. To find the correct 
group, we need to check of there are n C2 axes perpendicular to the principal C, 
axis. 

(f I ) If yes, the molecule belongs to one of the D groups. If there is a (3h plane, 
the point group is Dnh; if there are n 6 d  planes, the correct group is D,d; if 
there are no 6 h  or 6 d  planes, the group is D,,. 

(f2) If there are no n C2 axes, the molecule belongs to one of the C groups. If 
there is a (3h plane, the group is Cnh; if there are n 6, planes, it is C n v ;  if 
there are neither (3h nor 6” planes it is c,. 

We will demonstrate the usage of this “recipe” for two examples. 

I .  The planar molecule BF3 (Fig. 5.15b) possesses one C3 axis, three C2 axes, one 
6 h  plane containing all nuclei, and three 6 d  planes. Consequently, it belongs to 
group D3h. 

2 .  The butadiene molecule C4H6 possesses one planar isomer (Fig. 5.18). There 
is a C2 axis perpendicular to the molecular plane,which is therefore a 6 h  mirror 
plane. There is a center of inversion, but no Od planes. Hence, the molecule 
must belong to the point group C2h. It contains the symmetry operations E ,  C2, 
b h ,  and i ;  its multiplication table is displayed in Table 5.4. 
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Fig. 5.18 Planar isomer of the butadiene 
group C2h- 

molecule belonging to 

5.5 
Symmetry Types and Representations of Groups 

As the nuclear framework of a molecule does not change during a symmetry trans- 
formation, the Coulomb potential of the nuclei, in which the electrons move, remains 
also constant, that is, the potential energy in the Hamiltonian Eq. (2.2) is invariant 
with respect to all symmetry operations. It is easy to understand that the mean ki- 
netic energy of the electrons in a given electronic state is also constant, because it is 
determined by the equilibrium nuclear configuration. 

The normal modes of a molecule (see Sect. 6.3.1) can also be classified with re- 
spect to molecular symmetry. They are designated by lower-case letters to distinguish 
them from the symmetry classifications of electronic states, where upper-case letters 
are used. Figure 5.19 visualizes the vibrational state of a molecule during its three nor- 
mal modes by indicating the nuclear velocities through arrows. This shows that the 
nuclear kinetic energy is also invariant with respect to symmetry operations, because 
the lengths of the arrows, that is, the absolute values Iwil of the nuclear velocities, do 
not change during such an operation and hence (rn/2)w? remains constant although 

"1 v2 v3 

a1 a1 b2 
totally symmetric totally symmetric antisymmetric 

Fig. 5.19 Changes in the nuclear velocity arrows of the three 
vibrational normal modes of a triatomic CzV molecule during 
symmetry operations. 
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the direction of the arrows, that is, the phase of the vibration, changes for v3 during 
the operations d! and C2. 

Hence, the total energy of a state and also the electron density distribution remain 
constant during the symmetry operations of the molecule. The wavefunctions of the 
states can change, however. From the requirement that 1912 remain constant during a 
symmetry operation, we obtain for nondegenerate states due to the single-valuedness 
of @(x,y,z) 

1912q912 j 9S”.f9. (5.3) 

For example, upon double reflection at the same plane (02 = I), the function 9 must 
return to its original value, 

This is not necessarily true for degenerate states, as an n-fold degenerate state is de- 
scribed by a linear combination of n independent functions 9,,. Each of these functions 
Pn can be mapped by a symmetry operation onto any of the other functions !Pi ( i  # n) 
or any linear combination of them (see examples below). 

Within the BO approximation, the total wavefunction can be written as a product 

of electronic, vibrational, and rotational contributions. The symmetry of 9 is therefore 
determined by the symmetries of the three factors. 

It is now important to decide how the molecular wavefunctions transform under the 
different symmetry operations in the various point groups, and how the symmetries of 
the three factors determine the symmetry of the product wavefunction. This will be 
possible by using the representations of groups. This will be demonstrated in the 
following for the example of the CzV group, before the concept of a representation and 
its characters is defined in general. 

5.5.1 
The Representation of the Group C2” 

We will first examine how the three components of a translation vector T = { T,, Ty, T,} 
or a position vector T = {x, y , z }  transform under the symmetry operations of the group 
C2”. From Fig. 5.20 we see that for a rotation around the C2 axis, 

while for the reflection ov at the xz plane, 

T, 2 +T, ; % -7; and T, % T z ,  (5.5b) 
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C2” 

rl 
r2 
r3 

r4 

C2Tx = - T, 

CzTy = - Ty 

CzT, = +T, 

avT, = - T, 
avTY=-Ty  

a,, T, = +T, 

I c2 a v  0: transl., rot., vib. symmetry type 

1 1 1 1 Tz, Q I  , QZ A I  
1 1 - 1  - 1  RZ A2 
1 - 1  1 - I  7; 3 5 BI 
1 -1 -1 1 Tv, R x .  Q3 B2 

a; T, = +T, 

a,,’ T, = +T, 

a,,’ Ty = - Ty 

Fig. 5.20 Transformation of the components of a translation 
vector under the symmetry operations of the group C2,. 

and for the reflection o!, at the yz plane 

0’ 4 d Tx -A - T x ;  Ty + Tv and -T ,  (5%) 

Hence, the behavior of the component Tx under the symmetry operations I ,  C2, ov, 
and o!, can be represented by a suitable combination of the numbers + 1, - 1, + 1, - 1 
(Table 5.5). 

The behavior of the translation vector T =  {Tx, T y ,  Tz}, the rotation R= { R x , R v , R i } ,  
and the vibrational normal coordinates Qi is summarized in Table 5.5, where + I  
means that the corresponding quantity remains unchanged under the respective sym- 
metry operation, and - 1 means that it changes sign. 

The combinations of the numbers +1 and -1 listed in the ith row of Table 5.5 
are called a representation r). of the symmetry group C2,, because they represent the 
symmetry properties of a quantity (i.e., a normal coordinate or a component of the 
translation vector) under the symmetry operations of the group C2,. 

The numbers themselves are called the characters of the representation. The in- 
dividual representations are often designated by upper-case letters such as A ,  if the 
character for the rotation C2 is +1, or B, if it is -1 .  A further distinction is made 
regarding the behavior upon reflection 0”: representations labeled A1 or B I  have the 
character + 1 for G,, representations A2 or B2 correspondingly have character - 1. 

Analogously, we can examine with the aid of Fig. 5.19 how the displacements 
of the nuclei during the three normal vibrations oi of the molecule with frequencies 
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v; (see Ch. 6 )  transform under the symmetry operations. We obtain for the normal 
coordinates Qi that Ql and Q2 remain unchanged during all symmetry operations, 
while for Q3 

(5.6) 
0: 

Q 3  3 - Q 3 ;  Q3 z - Q 3  and Q 3  - Q 3 .  

The representation of Q3 is therefore r4 = (+ I ,  - 1, - I ,  + 1). 

Definition: A representation of a group G is a transformation of the 
group elements g; unto other elements M; with the condition that with 
each element gi E G is uniquely associated a mathematical quantity M; 
(number; square matrix, etc.) so that the product gi x gk is uniquely asso- 
ciated with the product M; x Mk. 

In cases like the group C2v, where each symmetry operation is uniquely associated 
with a number (i.e., + 1 or - l ) ,  the representation is called one-dimensional. By com- 
paring Tables 5.1 and 5.2, it can easily be verified that the definition of a representation 
is satisfied. 

Such one-dimensional representations can always be found if each element of the 
point group forms its own class, that is, if the group is commutative. The states of the 
molecule are then nondegenerate (except for an accidental degeneracy, which bears 
no relationship to symmetry). 

One-dimensional representations are not possible for groups where several group 
elements belong to the same class. Here, n-dimensional representations with n 2 2 
are employed, for example square matrices of dimension n. 

We will elucidate this for the example of the group C3v. 

5.5.2 
The Representation of the Group Cgy 

The symmetry properties of the z component 
symmetry operations in C3v are (see Fig. 5.21) 

of the translation vector under the 

The transformation properties of T can therefore be described by the one-dimensional 
representation rl of type A 1 ,  for which all characters are + I .  

This is not true, however, for 7; and T,,. Upon rotation by an angle y around the z 
axis (Fig. 5.21). the coordinates x,y  are transformed to 

X* =xcosy-ysinp 
y* =xsiny+ycosy 

cosy - s h y  ) ( ; ) , (5 .8 )  
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I 
I 

c3v 

X 
I Ex'+ x = r c o s a  

- v  
I 

cp= T; n = 1 , 2  277 

x' = r . cos (cp + a) = r .  cos a cos cp + r . sin a sin cp 

y" = r . sin (cp + a) = r . sin a cos cp + r . cos a sin cp 

Fig. 5.21 Transformation properties of the components T, and Ty 
of the translation vector upon rotation by an angle cp around the 
z axis. 

I c3 c: 0 V  0: 0:: 

where we have used x = rcosa, y = rsina,  and x*, y* are the components of the 
vector T* which is generated from P = { x , y }  after the rotation (Fig. 5.21). 

The symmetry operation C3 effects a rotation by p = - 120", while C: results in a 
rotation by -240" or + 120". The rotation matrix for C3 is therefore 

The transformation properties under C:, cv, ob, and 0'' can be deduced analogously. 
Overall, we obtain the two-dimensional representation I'3 from Table 5.6, which is 
usually denoted by E ,  whereas three-dimensional representations are denoted by the 
letter T .  

In many cases, higher-dimensional representations can be reduced to representa- 
tions of a lower dimension by a suitable transformation. Such representations are 
therefore called reducible . If this reduction is not possible, the representation is 
called irreducible. Table 5.6 shows, as an example, the irreducible representation 
of the group C3". 
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5.5.3 
Characters and Character Tables 

The traces of the matrices, that is, the sum of their diagonal elements, are called the 
characters x i k  of the representation f j .  For one-dimensional representations, the char- 
acter equals the number * 1 as explained above. The subscript i labels representations 
f j ,  that is, it runs from I to the number m of irreducible representations, whereas 
k = 1,. . . , N  labels symmetry operations, N being the order of the group. 

Characters are an important tool in determining the smallest possible dimension 
of a representation. If, for example, an n-dimensional representation of a group is 
available, its characters show if it can be reduced to lower-dimensional representations 
or if it is irreducible. This is made possible by the 

Theorem: The sum of the squared characters of an irreducible repre- 
sentation equals the order N of the group. 

It is easily verified that for the representations TI,. . . , F4 of the group C2,,, this sum 
of squares is always 1 + 1 + 1 + 1 = 4, the number of group elements. 

Because of their great importance for finding the representations of the different 
symmetry types, the characters x i k  of all irreducible representations are tabulated in 
so-called character tables for all molecular point groups (see, e.g., [5.1]). An example 
of such a character table, here for the group C3,,, is given in Table 5.7. For the one- 
dimensional representations of the group C2,,, Table 5.5 is identical to the character 
table. 

It can be seen from these tables that for a given irreducible representation, the 
character of all symmetry operations belonging to the same class is identical. For 
example, for the representation r3, the three reflections oV, 0: and 0': of the group 
C3,, are in the same class and have the character x = 0, whereas the two rotations C3 
and C;" are in another class with the character x = - 1, and the identity I with character 
x = 2 is in its own class. 

For each molecular point group, there exists a one-dimensional totally symmet- 
ric representation TI of symmetry type A l ,  the character of which is x i k  = + I  ( k  = 
1,.  . . , N) for all N symmetry operations. 

We can express all representations of a symmetry group in the form of a block 
matrix. The identity operation I is always represented by a unit matrix with a dimen- 
sion N which equals the order of the corresponding symmetry group. Its character 

Tab. 5.7 Character table of the group C3". 
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Tab. 5.8 Representation of the direct sum r2 @ r3 of the group C3v. 
I 

I c3 C; 0 V  a: 0:‘ 

la 2a 3a 
4a 5a 6a 
7a 8a 9a 

xi1 = N ,  that is, the trace of this unit matrix, gives immediately the dimension N of 
the representation. 

It is easily verified for the example of the group C3v that for each of the three 
representations A],  A2, and E ,  the sum of the squared characters, $, x ; ~ ,  summed 
over all elements in a row in Table 5.7, equals the group order N = 6. 

lb  2b 3b 
4b 5b 6b 
7b 8b 9b 

5.5.4 
Sums, Products, and Reduction of Representations 

If a representation r, comprises N matrices A, of dimension n and a representation 
r b  comprises N matrices B, of dimension m, the direct sum r d  = r, El? r b  is defined 
to be the representation 

D,=(“, 0 Bn ”) (5.10) 

of dimension m + n. For example, the direct sum r2 @ r3 of the group C3v is given by 
the matrices listed in Table 5.8. 

We see that the characters of the direct sum equal the sum of the characters of the 
individual summands, because the diagonal elements of the individual representations 
add up to the total trace. 

The directproduct r,b = r, @ r b  of two representations r, and r b  with dimensions 
n and m are the matrices of dimension n . m  formed according to the following scheme: 

I 

(5.1 1) 

...... 

... 
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Tab. 5.9 Direct product of the representations r2 and r3 of the group CzV. 

Tab. 5.10 Multiplication table of the symmetry species of the group C2v. 

It can be shown that the character of the direct product of two representations equals 
the product ofthe characters of these representations (see, e.g., [5.6]). This can be 
used to determine the symmetry type of a product of two wavefunctions. This will 
be elucidated again for the example of the group C2v. We choose one factor to be of 
symmetry type A2, the other of type B I  . Multiplication of the characters from Table 5.9 
shows that the product must be of symmetry type A2 x B I  = B2. This multiplication 
can be carried out for all combinations of A 1 ,  A2. B I ,  and B2 (see Table 5.1); this yields 
the last row in Table 5.9. As an example, Table 5.10 shows the multiplication table for 
the group C2", which may be compared with Table 5.1. 

If a multidimensional representation of a symmetry group has been found, the next 
question is if it is reducible, that is, if it can be decomposed into a direct sum of 
representations of lower dimension. This is the case if a similarity transformation 
can be found that diagonalizes, or at least block-diagonalizes, all matrices of the rep- 
resentation simultaneously. To solve this problem, the following theorems can be 
helpful [5.2,5.7]. 

(a) Each reducible representation can be decomposed into a direct sum of m irre- 
ducible representations. 

(b) The number m of these reducible representations equals the number of classes 
in the corresponding point group. 

(c) The sum of the squared dimensions ni of these m irreducible representations 
equals the order N of the point group, that is 



200 5 Molecular Symmetry and Group Theory I 

r~ '41, 
r2 '42g 

r3 E~ 
r4 A ~ , ,  
r5 A2u 

r6 E, 

(d) The sum of the squared characters of an arbitrary irreducible representation of 
a symmetry group equals the group order N ,  

1 1 1 1 1 1 
1 1 -1 1 1 - I  Ri 
2 - I  0 2 - 1  0 R, 3 Rv 
1 1 1 - I  - 1  -1 
1 1 - 1  - I  - I  1 T? 
2 -1 0 -2 1 0 TI, q, 

N 

(e) The scalar producr of the characters of two irreducible representations ra and 
r b  is 

k= 1 

We will illustrate these theorems for the group D3d (see Fig. 5.4b). The character 
table of group D3d is displayed in Table 5.1 1. Its irreducible representations are 

- the four one-dimensional representations with x ( I )  = 1 ,  

Ti = A i g ,  r2 = A z ~ ,  r4=A1ut  r5 =A2u,  

- and the two two-dimensional representations with x ( I )  = 2, 

According to theorem c), 

c n ;  = l2  + l 2  +22  + l 2  + 12+22 = 12 = N . 

The symmetry operations fall into six classes, I (one element), C3 (two elements), C2 
(three elements), i (one element), & (two elements) and (Td (three elements). 

through r6. The 
sum is, for r6, 

Consequently, there must be six irreducible representations 

22 + 2( -1 )2  + 3 x 02 + (-2)2 + 2 x 12  + 3 x 0 2  = 12 

Note that the summation runs over all group elements, that is over 2 x C3, 3 x C2, 
2 X s6, and 3 X (Td. 

Tab. 5.11 Abbreviated character table of group D3d.  
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The scalar product is, for r, r5, 

N 

C ~ 3 k x 5 k = 2 ~  1 +2(-1) x I + 3  xO(-l)  + 2  x ( - 1 )  
k= I 

+ 2 x  ( - l ) x ( - 1 ) + 3 x O x  1 = o .  

For the reduction of a reducible representation r, we use the following 

Theorem: 
direct sum of irreducible representations ri, 

In the decomposition of a reducible representation into a 

the jth irreducible representation rj occurs exactly a, times, 

(5.13) 

where xy)  is the character .f the reducible representation for the kth 

group element ( i .  e., the kth symmetry operation), and x j k  is the character 
ofthe j t h  irreducible representation of the kth symmetry operation. 

(i) 

As an example, we discuss the symmetry of a rotation-vibration level in the electronic 
ground state of the NH3 molecule with C3" symmetry (Fig. 5.2). 

The wavefunction 

is written as a product of electronic, vibrational, and rotational contributions. 
The electronic ground state is totally symmetric with symmetry Al . For the vibra- 

tional state, we assume a superposition of the ZQ and 214 normal modes (see Sect. 6.3), 
which both have E symmetry. If the rotational angular momentum J is not oriented 
along the C3 symmetry axis (i.e., the projection K h  of J onto the symmetry axis is 
# 0), the symmetry axis precesses around the laboratory-fixed angular momentum 
axis (see Sect. 6.2). The symmetry of such a rotational state is E. 

The total wavefunction Eq. (5.14) has then the symmetry type r = A1 @ E 8 E 8 E ,  
and its representation has the dimension 

n = n n i =  I x 2 ~ 2 x 2 = 8 .  

How can this product representation be reduced? 
From the character table, Table 5.7, which is shown again in Table 5.12 in ab- 

breviated form, we see that the characters of the product representations E @ E and 
E I8 E I8 E ,  which must equal the products of the characters of the individual E repre- 
sentations. have the values listed in Table 5.13. 
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Tab. 5.12 Abbreviated character table of the group C3,. 
I 

1 1 
1 1 
2 - 1  

1 
- 1  
0 

Tab. 5.13 Characters of the direct products of two-dimensional representations of the 
group GV. 

4 + I  0 
8 -1 0 
8 - 1  0 

To decompose this product representation into a direct sum of irreducible repre- 
sentations, we use Eq. (5.13) to find out how often the three possible irreducible rep- 
resentations A I ,A2, and E are contained, for example, in the product representation 

(5.15) 

that is, we need to find the values of the ai. With the group order N = 6, we obtain 
from Eq. (5.13), 

1 
6 

al = - ( 8 ~ 1 + 2 ~ ( - 1 ) ~ 1 + 3 ~ 0 ~ 1 ) = 1 ,  

1 
6 

a 2 = - ( 8 ~  1 + 2 ~ ( - 1 ) ~  1 + 3 ~ 0 ~ ( - 1 ) )  = 1 ,  

The direct sum is therefore 

It is easily verified that the sum of the characters of the reduced representation equals 
the characters of the product representation given before. 



6 
Rotations and Vibrations of Polyatomic Molecules 

As in the discussion of diatomic molecules in Ch. 3, we will now try to understand 
the vibrational-rotational levels of polyatomic molecules by employing successively 
refined models. We start with the rigid rotor model and harmonic vibrations of a 
nonrotating molecule, and we will finally include the interactions between vibrations 
and rotations, which are more complicated in this case than for diatomic molecules. 

The larger number of vibrational modes in polyatomic molecules, which in general 
lead to three-dimensional motions of the nuclear framework, constitutes a significant 
complication with respect to the diatomic case, where only one-dimensional vibrations 
along the internuclear axis were possible. Such vibrations can be described more 
easily in a reference frame with the origin in the molecule’s center of mass and with 
axes that are are fixed to the equilibrium nuclear framework so that it rotates with the 
molecule. In this so-called molecule-@ed reference frame, all nuclei assume constant, 
time-independent coordinates in their equilibrium positions, that is, the nuclei of the 
rigid (nonvibrating) molecule are at rest in the molecule-fixed reference frame. 

The Schrodinger equation (2.4) was formulated in the laboratory-fixed reference 
frame, which is connected to the molecule-fixed system through a suitable coordinate 
transformation. There are two approaches to arrive at the Schrodinger equation in the 
molecule-fixed reference frame: 

(a) Starting from the classical Hamiltonian function H = T + V in the laboratory 
system, the quantum-mechanical Hamiltonian is obtained by introducing canon- 
ical momenta and substituting p -+ - 3 $. Then, the coordinate transformation 
to the molecule-fixed system is performed in the Hamiltonian. 

(b) First, the coordinate transformation is camed out for the classical Hamilto- 
nian function and the transformed function is then converted into the quantum- 
mechanical Hamiltonian. This approach poses serious problems, however, be- 
cause the canonical momenta are, in general, complicated expressions. For 
small vibrational amplitudes, however, the molecule can be treated approxi- 
mately as a rigid system at the equilibrium configuration, and it is then possible, 
to construct the correct Hamiltonian [6.1]. 

Moleculrir Pliysicx Tlirorrtical Principles and Experimental Methods. Wolfgang Demtroder. 
Copyright 02005 WILEY-VCH Verlag GmhH & Co. KGaA, Weinheim 
ISBN: 3-527-40566-6 

Molecular Physics: Theoretical Principles and Experimental Methods 
Wolfgang Demtroder 

Copyright @ 2005 WILEY-VCH Verlag GmbH & Co. KGaA 
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We will use the second approach and start with the coordinate transformation for 

the classical kinetic energy expression to the molecule-fixed reference frame. As the 
potential energy depends only on relative coordinates, its form is unchanged by the 
coordinate transformation. 

6.1 
Transformation From the Laboratory System to the Molecule-fixed System 

We denote the coordinates of the ith nucleus in the molecule-fixed system by lower- 
case letters, 

Ti = {xi ,y i ,z i }  , 

and choose the molecule’s center of mass as the origin so that rc.,,. = { O,O, 0). 

case letters, 
The coordinates of the same nucleus in the laboratory system are denoted by upper- 

R; = { X i , y i , Z ; } .  

The molecule’s center of mass T ~ . ~ .  = {O,O, 0 )  is denoted in the laboratory system by 
the vector &.m. = { X c . m . ~ Y c . m . ~ Z c . m . } ~  

For the transformation from one system to the other (Fig. 6.1), we obtain 

R; = + r; . (6.1) 

If we want to compare the time variation of the position of the ith nucleus measured in 
the laboratory system, dRi/dr, and measured in the molecule-fixed system, dT;/&, 
we must take into account that both systems are accelerated with respect to each other: 
The molecule-fixed system rotates with an angular velocity w around its center of 
mass, which in turn moves with a velocity d&,m,/dr with respect to the laboratory 
system. 

A Molecule-fixed 
system (x.  Y, z) 

X 

Fig. 6.1 Transformation from the laboratory reference frame to a 
molecule-fixed reference frame. 
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Using the unit vectors &,, eY, &,, the position vector r in the molecule-fixed system 

can be written as 

Differentiation with respect to time yields the time variation of T ,  

d r  dx dy dz d&, d&, d&, 
dt dt dt dt d t d t d t  
- -6, + - ey + -Ez + x- + y- + z- - - (6.3) 

as seen by an observer in the laboratory system, expressed by the coordinates in the 
molecule-fixed system. As the unit vectors &,, E y ,  &, of the molecule-fixed system 
rotate with respect to the laboratory system at an angular velocity w around the center 
of mass, the derivatives 

(6.4) 

indicate the velocities with which the points of the unit vectors move due to the rota- 
tion of the system around the axis w (the magnitude of their velocities must be 1 0 1  and 
the direction must be I w  and 16,). 

By differentiating Eq. (6.1) with respect to time, we obtain for the velocity of the 
ith nucleus in the laboratory system, 

= &; = + 7;; + (w x T i )  . (6.5) 

The total kinetic energy T of all N nuclei with masses M; measured in the laboratory 
system, but expressed in the molecule-fixed system, is then 

Evaluation of the terms in parentheses yields, with 7;; = TY;, 

The following relations hold: 

(a) EM; = M =. total mass of the nuclear framework. 

(b) rc.,,. = ( E M ; r ; )  / M  = 0, because for the center of mass in the molecule-fixed 
system T ~ . , , .  = {O,O,O}. 

(c) EM;v; = 0, because the total momentum of all nuclei in the center-of-mass 
system is always zero. 
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(d) If the nuclei are in their equilibrium positions ri = rp, the angular momentum 

of the nuclear framework in the molecule-fixed system must be zero, 

(e) a . ( b x c ) = b . ( c x a ) +  
x M i ~ i  . (W x ~ i )  = w * E M j  (ri x ~ i )  = w . CMi  AT^ x ~ j ) .  

Note: Strictly speaking, the molecule-Jixed system is only defined for 
the rigid, nonvibrating molecule, in which all nuclei are at their equilib- 
rium positions r?. For example, a molecule executing bending vibrations 
possesses an angular momentum, even in the molecule-jtxed system. This 
is taken into account by the last term in Eq. ( 6 . 6 ~ ) .  For sufJiciently small 
vibrational amplitudes, the nuclear geometry changes only slightly, and 
the molecule-jtxed system (also called the Eckart system) remains defined 
(for a detailed justijcation, see [6.2]). 

Taking (a) - (e) into account, it follows from Eq. (6.6a) with  AT^ = q - ro for the 
kinetic energy, 

The first term describes the translational energy of the molecule, whose center of 
mass moves with a velocity V&, = &.,,.. It is responsible for the Doppler shift of 
spectral lines (see Sect. 4.3.3) and can be eliminated using Doppler-free spectroscopic 
techniques (see Sect. 12.4). 

The second term describes the rotational energy of the molecule, the third term the 
vibrational energy. The fourth term is only then different from zero if the nuclei are 
displaced from their equilibrium position in the rotating molecule so that Ari  = rj -rp 
and wi are not parallel. It describes the Coriolis interaction between vibration and 
rotation. 

If the kinetic energy of the molecule were to be described in the laboratory sys- 
tem, there would be no inertial forces, that is, the Coriolis interaction would be zero. 
However, the expressions for the rotational and vibrational energies would become 
significantly more complicated. 

Note: The last three terms in Eq. (6.7) describe the respective con- 
tributions to the nuclear kinetic energy as measured in the laboratory 
system, but expressed in the coordinates of the molecule-fixed system. 
Equation (6.7) is the classical expression for the kinetic energy. For a 
correct description of the diferent contributions, it has to be converted 
into a quantum-mechanical form. 

We will now discuss the individual terms successively, starting with the second, 
that is, with the rotational energy of the rigid rotor. 



6.2 Molecular Rotation 207 I 
6.2 
Molecular Rotation 

The classical treatment of the rigid rotor is usually described in detail in texts on 
theoretical mechanics (6.31, and we will therefore summarize the results only briefly. 
The quantum-mechanical treatment of the symmetric and asymmetric top can be found 
at length in [6.4-6.6].We start with the classical model. 

6.2.1 
The Rigid Rotor 

For the rotational energy of a rigid rotor we obtain from Eq. (6.7) 

I 
2 

Tot = - E M ;  (w x 

Introducing the inertia tensor 

this can be written as 

or, in abbreviated form, as 

1 
T , ~ ~  = -wiw . 

2 

The components of the inertia tensor are 

I,, = c M; (y ;  + z’) 

IV), = E M ;  (x’ + z;)  

1:; = E M ;  (x’ + y’) 

Ixy = l,, = - C M;x;y; 

hZ = l,, = - CM;x;z; 

I y z  = lu = - EM;y;z; 

(6.9) 

(6.10a) 

(6. lob) 

(6.11) 
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Thus, Eq. (6.10) becomes, in component notation, 

(6.12) 

If the molecule-fixed reference frame is chosen so that its axes point along the direc- 
tions of the three principal moments of inertia, the tensor 1 is diagonal, that is, in this 
system I ,  = lxz = lyz = 0. The three principal moments of inertia are obtained as the 
three solutions of the equation 

1 
2 

Tot = - ( L w j  + lyywy2 + ruw; + rxywxwy + lyzwyw, + lxzwxwz) . 

(6.13) 

for the determinant obtained for the principal axes transformation. The three solutions 
yield the three principal moments of inertia, which are denoted IA, l g ,  and lc, and 
ordered so that IA 5 IB 5 lc. 

The rotational energy of a rigid rotor is, expressed by components in the principal 
axes system, 

c o t  = (6.14) 

where the principal moments of inertia lx,Iy,lz each assume one of the values I A , I B ,  
or 1,. 

In Eq. (6.14), the angular velocity w can be replaced by the angular momentum 

1 
(1,Wj +lywy2 + l Z W Z )  , 

J = C(.j x pi )  = CA4j (.i x (W x p i ) )  (6.15) 

of the nuclear framework. Using the inertia tensor r, Eq. (6.15) can be written as 

J = i w ,  (6.15a) 

as can be verified by inserting Eq. (6.1 1). In the principal axes system, Eq. (6.15a) 
becomes 

J = (lxwx;lywy;lzwz) . (6.16) 

Note: J and w are only parallel if all principal moments of inertia 
lr = ly = 1, are equal (spherical top) or if only one component of w is 
different from zero (rotation around one of the principal axes of inertia). 
In general, J and w have different directions (Fig. 6.2). 

If we express the components of the angular velocity w in Eq. (6.14) by the corre- 
sponding angular momentum components from Eq. (6.16), we obtain for the rotational 
energy 

(6.17) 
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Fig. 6.2 Rotational angular momentum J and angular velocity w 
for differing moments of inertia I, and tv. 

As the angular momentum J and the rotational energy of a rigid rotor are both constant 
in the absence of external torques, two conservations laws must be satisfied: 

J; J? 
1, 4 
J.’ + - + 2 = const. (energy conservation) (6.18a) 

J: + J; + 5: = const. (angular momentum conservation) . 

Note: While the components Jx, J y ,  Jz in the laboratory system are 
constant, this is not in general true for  the components Jx,J,,J2 in the 
molecule-fied system. However; j b r  both s.ystems J2 = J: + Jy’ + J,‘ = 

5; + J? + 5; = const. 

(6.18b) 

In angular momentum space with the coordinates J,,J,,J,, Eq. (6.18b) describes a 
sphere, Eq. (6.18a) an ellipsoid. As the components of the vector J must satisfy both 
equations simultaneously, the point of the vector J must be located on the intersecting 
curves between the sphere and the ellipsoid (Fig. 6.3). As the ellipsoid is determined 
by the principal axes of the molecule and is therefore constant in the molecule-fuced 
system, whereas the angular momentum J is constant in the laboratory system and 
thus varying in the molecule-fixed system, the molecule’s rotation must be such that 
the point of the laboratory-fixed vector J always remains on the intersecting curve 
between sphere and ellipsoid, Eq. (6.18a). This condition leads to a nutation of both 
the momentary rotation axis w and a possible symmetry axis (for the case of a sym- 
metric top) around the laboratory-fixed angular momentum axis (Fig. 6.4), except if 
w happens to point along the figure axis so that w and J coincide. If a is the angle 
between the figure axis z and J and 0 the angle between z and w, the nutation cones 
for the figure axis and for w have apex angles of 0: and /3 - a, respectively. 
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Fig. 6.3 The inertia ellipsoid with the fig- 
ure axis along the molecule-fixed z direc- 
tion performs a nutational motion so that 
the laboratory-fixed angular momentum 

vector J stays on the intersection of the 
inertia ellipsoid Eq. (6.18a) and angular 
momentum sphere Eq. (6.18b). 

Figure axis 

Fig. 6.4 Nutation of figure axis z and current rotation axis w 
around the laboratory-fixed angular momentum axis J .  
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6.2.2 
The Symmetric Top 

If two of the principal moments of inertia are equal, the molecule possesses a symme- 
try axis coinciding with the principal inertia axis. The moment of inertia for a rotation 
around this axis is then in general different from the other two equal moments of iner- 
tia. The inertia ellipsoid is then rotationally symmetric with respect to the symmetry 
axis of the rotor. All molecules with a symmetry axis C,, (n  > 2) are symmetric tops. 
If all three moments of inertia are equal, the inertia ellipsoid becomes a sphere, and 
the rotor is called a spherical top. For the general symmetric top, two cases can be 
distinguished: 

(a) The prolate symmetric top: I A  < IB = Ic 
Here, the two larger moments of inertia are equal. This corresponds to a rota- 
tional ellipsoid which is elongated along the symmetry axis (Fig. 6.5a). 

I Examples 
A cylinder with a diameter D smaller than its height; all linear molecules; 
the molecule CCIH3 (Fig. 6.5a). 

Prolate 
(a) symmetric top 

I H  
Methyl chloride 

'b 

Oblate 
(b) symmetric top 

*a H 

Benzene 

Fig. 6.5 Inertia ellipsoid and example molecules for a) a prolate 
top and b) an oblate top. 
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(b) The oblate symmetric top: I A  = 10 < Ic 

Here, the two smaller moments of inertia are equal; this corresponds to a flat- 
tened inertia ellipsoid. 

Examples 
A disc rotating around its symmetry axis (Fig. 6.5b); the benzene molecule; I all planar molecules. 

If, for example, 1, = I,, the rotational energy Eq. (6.17) can be written, using J 2  = 

J: +.I; +J:,  as 

(6.19) 

6.2.3 
Quantum-mechanlcal Treatment of Rotation 

To obtain the Hamiltonian Hrot for the symmetric top from Eq. (6.18), we replace as 
usual [6.4] the classical quantities by their operators, 

Hence, the angular momentum 

becomes the operator 

(6.20) 

(6.2 1 a) 

(6.2 1 b) 

For the symmetric top, both the projection JZ onto the laboratory-fixed 2 axis and 
the projection Jz  onto the symmetry axis of the top (which we choose to be the z axis) 
are constant (the symmetry axis precesses around the laboratory-fixed J direction, see 
Fig. 6.4); therefore J 2 ,  Jz and Jz are constantszf the motion. This means that in the 
quantum-mechanical description, the operator J 2  commutes with J^, and J z ,  

h 

p,&] = O  and [3,J^,] = O .  (6.22) 

Hence, the three operators possess common eigenfunctions, which we denote by 
$J,J,K,M and which we can determine as follows. 
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The operator components of the laboratory-fixed angular momentum J can be ex- 

pressed in spherical coordinates 0 (angle against the Z axis) and $ (azimuth angle), 

For the square of the operator Twe obtain with J 2  = Jg + J; + J$ 

The eigenvalue equations for the three commuting operators are 

.23c) 
(6 

(6.24) 

(6.25a) 

with the spherical harmonics YJM as solutions [6.4]. 

h 

JZ$JKM = M ~ $ J K M  , (6.25b) 

where Eq. (6.25b) follows from Eqns. (6.23) and (6.24). M h  is the projection 
of J onto the laboratory-fixed Z axis. If we express J by the coordinates of 
the molecule-fixed system and use the commutation rules, we obtain for the 
projection J, of the angular momentum onto the symmetry axis of the symmetric 
top, 

Obviously, K is the quantum number of the angular momentum projection onto 
the molecule's symmetry axis. 

If we insert the corresponding eigenvalues into Eq. (6.19), we obtain for the prolate 
symmetric top with Iz = I ,  < I, = I,, = Ib = I, ,  

(6.26) 
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Fig. 6.6 Rotational term diagram for the a) prolate and b) the 
oblate symmetric top. 

With the rotational constants 

(6.27) 

we obtain the rotational term values FJ,K = E/hc ,  expressed in cm-’, 

FJ,K = B J ( J +  1) + (A - B ) K 2  (prolate top) . (6.28) 

For the oblate symmetric top, we have 

1, = 1, > 1, = [A = 1, = 1b 

(6.29) 

FJ-K = E J ( J  + 1 )  + (C - B)K2 (oblate top) . (6.30) 

Figure 6.6 compares the rotational levels IJ,K) of the prolate and the oblate top for 
different values of K .  We see that for the prolate top the energy EJJ increases with 
K for fixed J ,  because (A - B )  > 0, whereas for the oblate top EJJ decreases with 
increasing K for fixed J because (C - B )  < 0. 

Table 6.1 lists the rotational constants for some linear and nonlinear molecules, 
illustrating the orders of magnitude of term energies. 

6.2.4 
Centrifugal Distortion of the Symmetric Top 

The centrifugal distortion of a symmetric top is more complicated than in the diatomic 
case (see Sect. 4.2.2), because it depends both on the magnitude of the angular mo- 



Linear molecules 

Isotopomer B 

I H l2Cl4N 44.316 

I H13C14N 43.170 

2D12c i4N 36.207 

13C7YBr14N 4.073 

I 2C7YBrl 4N 4.120 

12C8 I Br14N 4.096 

mentum and on its direction in the molecule-fixed reference frame, that is, it depends 
both on the angular momentum quantum number J and on the projection quantum 
number K .  As the centrifugal distortion must be independent of the sense of the 
molecular rotation (i.e., clockwise or counterclockwise), the expansion of the rota- 
tional energy in terms of powers of J and K contains only even powers. A detailed 
classical calculation [6.5,6.6] shows that we can write the term values of the nonrigid 
symmetric top with A = B # C, in analogy to Eq. (3.18b) for the diatomic case, 

F ( J ,  K )  = B J ( J  + I ) + (C - B )  K~ - D ~ J ~  ( J + 1 ) 2  

- DJKJ(J f 1)2K2 - D K K ~  + . . . , (6.31) 

where three centrifugal constants DJ,  DJK and DK have been introduced, which are 
much smaller than the rotational constants B and C .  Whereas the constants DJ are 
always positive (the distortion increases the moment of inertia and hence decreases the 
rotational energy), DJK can be positive or negative, depending on the molecule r6.7, 
6.91. 

As for diatomic molecules, the centrifugal distortion depends on the force constants 
of the molecule. Therefore, the experimental determination of D provides information 
on the molecular potential in the vicinity of the nuclear equilibrium positions. 

Nonlinear molecules 

Molecule A B C 

12CH23sCCI 32.002 3.320 3.065 

CH2O 282. I06 33.834 34.004 

CIS 13.653 4.612 3.443 

HD3% 290.257 145.218 94.134 

H232S 316.304 276.5 12 147.536 

6.2.5 
The Asymmetric Top 

In the asymmetric top, all three principal moments of inertia are different, (Ix # !,, # 
1- # Ix) .  To determine the energy levels EJ.K,  that is, the eigenvalues of the rotational 
Hamiltonian Eq. (6.17), 

(6.32) 

we can no longer express 2 and 3 by .? and e, as we did in the case of the symmetric 
top. Hence, we need to determine the eigenfunctions and eigenvalues of .I," and J y  . 
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To achieve this, we write the unknown eigenfunctions $ of grot as linear combina- 

tions of the known eigenfunctions ?/I,, = qfl ( J ,  K , M )  of the symmetric top, 

(6.33) 
f l  

and insert this ansatz into the Schrodinger equation 

&ot$= E?/I . 

After multiplication with $2 ( J , K , M )  and integration over all coordinates, we obtain, 
using the orthogonality of the &, the equation 

(6.34) 

which has nontrivial solutions only if the determinant of coefficients vanishes, 

I (mIHrotIn)-E6mnI = o *  (6.35) 

To determine the energy eigenvalues from this relation, we must evaluate the matrix 
elements 

( m  lfirotln) = / $ ; ( J , K , M ) g ~ o ~ $ n ( J . K , M )  d7 

of the operator Eq. (6.32) with the eigenfunctions of the symmetric top, that is, the 
spherical harmonics YJM. For .? and 4, only the diagonal elements Eq. (6.25) survive, 
because the functions YJM are eigenfunctions of .? and 52. However, as J^, and 4 do 
not commute with .? and 4, the functions YJM can not be eigenfunctions of J^, and 4, 
that is, the matrix representation of the Hamiltonian Eq. (6.32) is not diagonal in this 
basis! 

From the commutation relations for the angular momentum components in the 
laboratory-fixed system, 

JxJy - JyJx = iWz etc., (6.36) 

we obtain the corresponding commutation relations for the components in the mole- 
cule-fixed system, 

JxJy - JyJx = -iW, , 
JyJz - JzJy = -iWx , 

JzJx - JxJz = -iWy , 

(6.37) 

which differ from the aforementioned relations by the reversed sign [6.4,6.5]. Using 
the step operators, 

J+ = Jx+iJy and J- = J x - i J y ,  
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we arrive at the matrix elements [6.4], 

ih 
( J , K , M I J , I J , K f  1,M) = - [ J ( J +  1) - K ( K f 1 ) ] ’ / 2  

2 
h 
2 

(6.38a) 

(6.38 b) ( J ,K,MlJ”! , l J ,Kf  1,M) = - [ J ( J +  1 )  - K ( K f  1) ] ’ /2  

Using the product rule for matrix multiplication, 

we can compute the matrix elements for J,‘ and Jy’ from Eq. (6.38). For the diagonal 
elements. we obtain 

fi2 
( J , K , M I J , 2 I J , K , M )  = - [ J ( J + l ) - K 2 ] ,  

2 

and for the nonvanishing off-diagonal elements 

(6.40) 

h4 
( J ,  K , M  l J j ( J ,  K f 2 , M )  = - - [ J ( J +  1)  - K ( K f  l ) ]  ‘I2 

4 
x [ J ( J + 1 ) - ( K & 1 ) ( K f 2 ) ] 1 / 2 ,  (6.41) 

and correspondingly for J; 

(6.42) 
h2 

(J ,K,MIJy21J,K,M> = - [ J ( J +  2 1 )  4 2 1  

(J,K,M1J,21J,K&2,M) = z [ J ( J + 1 ) - K ( K f 1 ) ] ’ / 2  h2 

x [ J ( J +  1) - ( K f  l ) ( K ~ k 2 ) ] ~ / ’ .  (6.43) 

If we substitute these results into Eq. (6.32), we obtain the nonvanishing matrix ele- 
ments of the Hamiltonian, 

x [ J ( J +  1)  - ( K f  I ) ( K I ~ ~ ) ] ‘ / ~  (t - t) . (6.45) 

This matrix is no longer diagonal! The eigenvalues of Hrot and hence the term values 
of the rotational levels can be found by diagonalizing this matrix. 
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K\K’ 

1 

0 

1 I ( ~ ~ ~ ~ ~ r o t ~ l ~ ~ ’ ) =  

The coefficients c,, in the expansion Eq. (6.33) can then be determined from Eq. 
(6.34). The eigenvalues E and eigenfunctions thus obtained are of course only ap- 
proximate because we can include only a finite number of terms in the expansion 
Eq. (6.33). 

1 0 -1 

A*-B* 

2 , (6.47a) 
0 

0 A 2 - C  
-- 2 1 Ai+B‘+c 0 2 

0 A* + B* 
A*-B* 

2 
-- 

Example 
To illustrate the procedure, we will calculate the energy levels of an asymmetric 
top forJ = 1. We use A* = hcA = h2(2Ix) ;  B* = hcB = h 2 /  (2/y); C* = h 2 /  ( 2 / J .  
We obtain the diagonal matrix elements (rnlHotIn) from Eq. (6.44) with 
Eqns. (6.40) and (6.42) and with the rotational constants of Eq. (6.27), 

A*-B* 
2 

-- 0 

A * + B * - E  0 

A*+B*+C*-E 
2 

0 
AI+B*-C*-E 

2 0 A*-B* 
2 

-- 

L. 

(6.46) 

= O .  (6.47b) 

The expansion Eq. (6.33) in the wavefunctions of the symmetric top converges the 
more rapidly, the closer the asymmetric top resembles a symmetric top, that is, the 
less two of the rotational constants differ. 

A measure for the asymmetry is the asymmetry parameter, 

2 B - A - C  
A - C  

K =  (6.49) 

which for a prolate symmetric top ( B  = C )  is K = - 1 and for an oblate symmetric top 
( A  = B )  is 6 = + 1. The largest asymmetry 6 = 0 results for a top with B = ( A  + C ) .  
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From Eq. (6.32), we obtain the rotational term value, 

F(J, ,J , ,J , )  = A ( J x ) + B ( J ; ) + C ( J : )  . (6.50) 

If we substitute the asymmetry parameter K for B,  Eq. (6.50) becomes 

(6.51) 
1 1 
2 

F = - ( A + C ) J ( J +  1 )  + , (A-C)  [(.I;) - ( I : )  +.(!;)I , 

which is frequently summarized in the form 

(6.52) 
1 1 
2 2 

F ( J , T )  = - ( A + C ) J ( J + I ) + - ( A - C ) F T ( ~ ) .  

The parameter r is introduced to enumerate the W + 1 energy levels IJ, K )  belonging 
to the same total angular momentum J according to their energy; it assumes values 
from -J to + J .  

If we denote the projection quantum number for the limiting case of the prolate top 
( K  = - 1 )  by K, and that of the oblate limiting case ( K  = +1) by K,, the parameter r 
becomes 

= Ka - Kc . (6.53) 

The function F T ( ~ )  = [ ( J , ; )  - (5;) + K ( J ; ) ]  can be determined by calculating the 
expectation values (J . : ) ,  ( J ; )  and (5:) using the expansion Eq. (6.33) of the asym- 
metric top wavefunction in the wavefunctions of the symmetric top (see, e.g., [6.1] 
or [6.4]). Figure 6.7 displays schematically the term values of an asymmetric top as a 
function of the asymmetry parameter K .  

J KaI IKc J 

2 0  ’ 1 1  ’ 
1 0  

Fig. 6.7 Correlation diagram for the 
rotational term values of the asymmet- 
ric top for the limiting cases of the pro- 

-1.0 -0.5 0 0.5 1.0 late ( K  = - 1) and the oblate ( K  = + 1) 
K symmetric top. 



220 6 Rotations and Vibrations of Polyafomic Molecules 

Tab. 6.2 Term values of asymmetric top molecules for rotational quantum num- 
bers J 5 2. 

I 

220 

221 

21 I 

212 

22 

21 

20 

2-1 

0 

B + C  

A + B  

A + C  

2 { A  + B + C -  [ ( B  -C)2 + (A  - C ) ( A  - B ) ]  I ” }  

2 (A + B + C + [ ( B  - C)’ + (A - C )  (A  - B ) ]  

4A+B+C 

A + 4 B + C  

A f B f 4 C  

If we vary K continuously from - 1 to + 1 (e.g., by continuously deforming the 
structure of the nuclear framework from a prolate to an oblate symmetric top), the 
projection quantum number K is undefined except for the two limiting cases IE = f 1, 
because the asymmetric top possesses no symmetry axis. In fact, the parameter T takes 
on the role of K for distinguishing between the (U + 1) energy levels for a given J, 
although T itself is nor a quantum number! 

The limiting values Ka and Kc are frequently used instead of T to characterize a 
rotational level. For example, we write either 

J K , , K ~  = 31.3 or J ,  = 3-2 . (6.54) 

From the correlation diagram in Fig. 6.7, we see that the asymmetry leads to a splitting 
of all twofold degenerate states ( J , K )  of the symmetric top for K # 0 into two com- 
ponents. This asymmetry splitting is largest for states with K = 1 in the symmetric 
limiting case, where 

1 
LV;(K=I) = T ( B - C ) J ( J +  1 ) .  (6.55) 

For larger values of K, it converges rapidly towards zero (for more details, see [6.1, 
6.81). 

Table 6.2 lists the term values for rotational quantum numbers J 5 2. Similar tables 
for larger values of J can be found in the literature [6.4]. 
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6.3 
Vibrations of Polyatomic Molecules 

We will start the discussion with a classical description of molecular vibrations. To 
simplify the notation, we introduce mass-weighted generalized coordinates 

(6.56) 

weighting the displacements Ax; = x; - x;~ ,  Ay;, Az; of the nuclei from their equilib- 
rium positions according to the masses of the vibrating nuclei. The third, kinetic- 
energy, term in Eq. (6.7) can then be written as a quadratic form 

The Taylor expansion of the potential 

(6.57) 

(6.58) 

starts with the third term if we place the zero point of the energy scale at the mini- 
mum potential energy (Vo = 0), because all first derivatives vanish at this point. For 
sufficiently small displacements qi, higher terms in JZq. (6.58) can be neglected, and 
we obtain 

With the Lagrange function L = T - V ,  we obtain the Lagrange equation 

(6.59) 

(6.60) 

which corresponds to the Newtonian equation of motion for oscillating masses mi. 
With Eqns. (6.57) and (6.59), we obtain from Eq. (6.60) 

(6.61a) 

Equation (6.6 la) constitutes a coupled system of differential equations describing the 
motions of 3N coupled oscillators with displacements 

q; =A;cos(w;r+cp;). (6.62a) 
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In the general case, the restoring force for the displacement qi is influenced by the 
other displacements q k ,  because the off-diagonal terms bik in the potential Eq. (6.59) 
effect a coupling between the different oscillations. Only for certain initial conditions 
will all nuclei oscillate with identical frequency wn and identical phase p,,. Such 
vibrational states are called normal modes; they will be discussed in the following 
section in some detail. 

6.3.1 
Normal Modes 

In vector notation, q = (41,. . . , q 3 ~ } ,  Eq. (6.61a) simplifies to 

q + Bq = 0 ,  (6.61b) 

where B = (bik)  is the matrix with components (bik). If B were a special diagonal ma- 
trix B = XE (,!? = unit matrix), Eq. (6.61 b) would reduce to a system of 3N decoupled 
vibrational equations for the qi, with solutions 

qi = ai cos (h) i =  1, ..., 3N,  (6.62 b) 

which describe a molecular state in which all nuclei oscillate with the same frequency 
w = fi and pass their equilibrium positions simultaneously. Hence, we need to find 
a system of vibrational coordinates that makes B diagonal. 

The condition 

Bq=XEq * ( B - X E ) q = O  (6.63) 

is equivalent to a principal axis transformation. It has nontrivial solutions exactly if 
the coefficient determinant satisfies 

det(B-Al?) = O .  (6.64) 

For each solution A,, of Eq. (6.64), we obtain from Eq. (6.63) a set of 3N vibrational 
components qkn (k  = 1,. . . ,3N), which represent the time-dependent displacements of 
all N nuclei. The q k n  can be collected in a vector 

Q,, = A, sin (wnr + cp,,) with wn = (6.65) 

specifying the simultaneous motion of all nuclei during the nth normal vibration. 
The magnitude of the vector Q,, is called the normal coordinate Q,, of the normal 
mode with frequency w,, = 6. Hence, the normal coordinate Q,, (t) gives the mass- 
weighted displacements of all nuclei at time t during the nth normal vibration. 
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Using normal coordinates, Eq. (6.61b) can be written as a set of 3N decoupled 

equations 

.. 2 Qn+w,Qn=O n =  1, . . , ,3N,  (6.66) 

because now both kinetic and potential energy are quadratic forms, 

1 3N 1 3N 

n = l  2 n d  
T = 2 c Qi ; V = - c A n . Q ; ,  (6.67) 

if terms higher than quadratic are neglected in the potential energy. The solutions of 
Eq. (6.66) are the normal vibrations Eq. (6.65). 

In other words, for sufficiently small oscillation amplitudes, where the potential 
is still harmonic, a molecule executes harmonic oscillations in normal coordinates 
for which all nuclei possess the same frequency wi = 6 and the same or the op- 
posite phase cpi for a given normal vibration i. The total vibrational energy of the 
molecule equals the sum of the vibrational energies of the individual excited normal 
vibrations. 

Note: 

I .  As the potential energy V depends only on internal coordinates (dis- 
tances between nuclei and electrons) but not on translation and ro- 
tation of the nuclear framework, some of the 3N coeficients bik in 
Eq. (6.61a) must vanish. After allowing for three degrees offreedom 
for each translation and rotation, there remain (3N - 6) degrees of 
freedom for the vibration of a nonlinear molecule, and (3N - 5)fiw 
linear molecules, because these do not rotate around the internu- 
clear axis.' Hence, there are (3N - 6) (nonlinear molecules) or 
(3N - 5 )  (linear molecules) nonvanishing solutions A, for the nor- 
mal vibrations. 
This,fact can also be understood with the aid of the following con- 
sideration. In the molecule-jixed reference frame (center-of mass 
system), the sum of all momenta and angular momenta must be zero 
,for each normal vibration. This yieldsjve (six) auxiliary conditions 
,for linear (nonlinear) molecules. Together with Eq. (6.64) and the 
requirement f o r j v e  (six) of the b,k to be Zero, this makes sure that 
six (jive) solutions An vanish [6.Y]. 

1 )  The reason for this is the quantization of angular momentum: rotation around the internuclear axis is 
possible if the associated angular momentum is ffi (or a multiple thereon. Due to the extremely small 
moment of inertia around this axis (which is only due to the electron cloud), this requires a very high 
angular velocity w = h / I ,  which in turn implies a large excitation energy E = Iw' = hw. Excitation of 
this rotation can therefore be neglected under normal circumstances. 
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- "3 
B A B  

Q3 

(a) (b) ( 4  
Flg. 6.8 Normal vibrations of some types of molecules: a) non- 
linear A62 molecule; b) linear AB2 molecule; c) nonplanar A63 
molecule. In b), the bending vibration v2 is twofold degenerate; 
in c), both v3 and v4 are twofold degenerate. 

2. The homogeneous differential equation (6.61b) determines the nu- 
clear vibrational amplitudes ai only up to a common constant factor; 
and therefore the amplitude A,, of the nth normal vibration (which 
summarizes the vibrational amplitudes of all nuclei during this nor- 
mal vibration) is also not dejned unambiguously by Eq. (6.66). The 
same i s  true for the phases (P,,. The only requirement is that all 
nuclei pass through their equilibrium positions simultaneously and 
hence the phases of all nuclei be equal for a given normal vibration. 
Amplitude and phase can be determined from the initial conditions 
(e.g., Q(t = 0)  = Qo and Q(t = 0 )  = Qo). Frequently, the ampli- 
tudes are normalized so that for the individual amplitudes ai,, of the 
solution vector A,, = {a,,,,, . . . ,a3~.,,} 

(6.68) 

Figure 6.8 shows the normal vibrations of some types of molecules: nonlinear AB;! 
(e.g., H20, NO2 or S02), linear AB2 (e.g., C02) and nonplanar AB3 (e.g., NH3). 
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6.3.2 
Example: Calculation of the Stretching Vibrations of a Linear Molecule AB2 

We will elucidate the calculation of the normal vibrations for the example of a lin- 
ear triatomic molecule AB2. For the sake of simplicity, we consider only the one- 
dimensional stretching vibrations along the molecular axis. For the kinetic and poten- 
tial energies, we obtain at displacements &i = qi/  Jm, (Fig. 6.9) 

2T = 9; +q;  + q ;  
2 V = k ( & 2 - & 1 ) ~ + K ( & 3 - & 2 ) ~  (6.69) 

where k is the force constant of the restoring force F, = -k&i, and we have used 
ml = m 3 .  

Thus, we obtain from Eq. (6.59) for the matrix elements bik 

The condition Eq. (6.64), 

det (bi, - Mi,) = 0 

yields a cubic equation for X with the solutions 

(6.70) 

(6.7 1) 

X3 = 0 corresponds to a translation of the whole molecule along the molecular axis. 
The mass-weighted vibrational amplitudes q can be obtained from the system of equa- 
tions Eq. (6.61a), which becomes in this case (because q i  = -Xqi) ,  

(6.72) 

where q k i  is the mass-weighted vibrational amplitude of the ith nucleus during the 
normal vibration with frequency Wk = A. 

z l o  Az, ‘20 AZ2 z30 A z 3  - -  - r  

ml rn3=rnl Z ml 
B A B 

Fig. 6.9 Calculation of the stretching vibrations of a linear AB2 
molecule. 
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Substituting the values for the bik yields, for example, for the first normal vibration 

with W I  = mr: 
q21=0; q 1 1 / q 3 1 = - ~ ~ = - l l ,  (6.73) 

where qil = Azi& is the mass-weighted displacement of the nucleus i during the first 
normal vibration. Hence, the central nucleus is at rest during this vibration, and the 
two nuclei 1 and 3 with masses ml = m3 oscillate in opposite directions with relative 
amplitudes A z l / A z 2  = - 1. 

The displacements for the vibrations with frequencies fi and ,& can be calcu- 
lated analogously. 

The absolute values of the q i k  can be fixed by defining suitable initial conditions. 

Note: Besides the two stretching vibrations with frequencies 6 and 
fi considered in this example, the molecule can also execute two bend- 
ing vibrations in the xz plane and the y z  plane. These normal vibrations 
are degenerate, that is, they possess the same energy. This case will be 
considered in the next section. The total number of normal vibrations is 
3N - 5 = 4. 

6.3.3 
Degenerate Vibrations 

If two or more solutions X k  are equal, the corresponding normal vibrations with iden- 
tical frequencies are called degenerate. For Xi  = Xk, not only the normal coordinates 
Q; and Qk are solutions of Eq. (6.66), but also each linear combination 

(6.74) Q = ciQi + ckQk , 

that is, there exist infinitely many solutions, all of which can be linearly combined 
from the two linearly independent solutions Qi and Q k .  This can be visualized using a 
simple model. 

The kth normal vibration of a molecule corresponds to the harmonic vibration of a 
molecule in the potential V = i X k Q i .  For a twofold degenerate vibration with Xi  = 
X k  = A, the motion of the particle can be described as being in a two-dimensional 
potential (in normal coordinate space) 

The generalized trajectory is an ellipse (Fig. 6.10). 

Q; = Q;o cos (At + q;) 
Q k = Q k o C O S ( J J ; t + p k )  . 

(6.75) 

(6.76) 
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Fig. 6.10 Trajectory of a normal coordinate Q = c ie i  + CkQk of a 
degenerate vibration with pi # pk. 

If the two phases pi and ' p k  of Q; and Qk are identical, the resulting trajectory Q(r) is 
a straight line in the plane of the two normal coordinates Qi and Qk. 

Figure 6.8 displays the two degenerate bending vibrations of the linear molecule 
CO:! in the xz and the y z  planes. Each combination of these two vibrations can there- 
fore occur as a possible vibration of the molecule. Figure 6.1 la  shows such a com- 
bined vibration, in which the two bending vibrations have a phase difference of 9 0  
so that the two nuclei B and the nucleus A exert circular motions around the z axis in 
real space. Note that such a vibration possesses angular momentum 1h around the z 
axis, whereas the rotation of a rigid linear molecule effects only angular momentum 
components perpendicular to this axis. This vibrational angular momentum leads to a 
coupling between rotation and vibration (see Sect. 6.3.6), in  addition to the coupling 
mechanisms already discussed for diatomic molecules in Sect. 3.4. 

Such degenerate vibrations occur also in nonlinear molecules. For example, the 
two pairs of normal vibrations v3 and v4 of the nonplanar AB3 molecule in Fig. 6.8 are 
degenerate. A superposition of such degenerate vibrations can lead to a synchronous 
motion of all nuclei on almost circular trajectories around their equilibrium positions 
(Fig. 6.1 1 b). The superposition of two normal vibrations of the Na3 molecule, which 

Fig. 6.1 1 a) Motion of the nuclei upon superposition of two de- 
generate bending vibrations of an AB2 molecule. b) Pseudorota- 
tion of a planar AB3 molecule. 
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Fig. 6.12 Pseudorotation of the Na3 synchronized, with a 120 phase shift; 
molecule as a superposition of two nor- they rotate along three circles around 
ma1 vibrations that are degenerate in D3h. centers that correspond to the edges of 
The motions of the sodium nuclei are the equilateral triangle. 

are degenerate in D3h, is illustrated in Fig. 6.12. For a phase shift of pi - pk = n/2, 
this superposition leads to a circular motion of the three nuclei around their equilib- 
rium positions, which is also called a pseudorotation of the molecule. 

6.3.4 
Quantum-mechanical Treatment 

From the vibrational energy of normal coordinates, 

we obtain the Hamiltonian 

(6.77) 

(6.78) 

Note that the nuclear masses are contained in the mass-weighted normal coordinates 

Due to the decoupling mediated by the normal coordinates, the Schrodinger equa- 
Qi . 

tion 

can be separated, using the product wavefunction 

(6.79) 
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into (3N - 6) decoupled equations [ (3N - 5) for linear molecules] 

The total vibrational energy is then 

(6.81) 

where the E; are the eigenvalues of Eq. (6.80), that is, the eigenvalues of the harmonic 
oscillator (see Sect. 3.3. I ) ,  

E; = plwi (w; + 1) . (6.82) 

The eigenfunctions $vj (Qi) are, in analogy to the vibrational functions of diatomic 
molecules. 

where N is a normalization factor, H,, are the Hermite polynomials, and 

<; = Q ; V m .  

Note: For degenerate vibrations with the degree of degeneracy di for 
the ith vibration, the zero-point energy is correspondingly tiw;di /2 .  The 
total energy E ,  of all vibrations is therefore 

(6.84a) 

where p is the number of normal vibrations with different frequencies. As 
for the diatomic molecules, we use term values G = Evib/hc rather than 
energies, and thus we obtain 

(6.84b) 

where we have used the vibrational constants 17; = v; / c in cm- ' instead 
ofthe vibrational frequencies u;. 

I t  must again be emphasized that the normal coordinate Q; is no geometrical coor- 
dinate of a nucleus but an abbreviation for the vector 4; = {qil,q;2,. . . , q i 3 ~ }  describ- 
ing the ensemble of mass-weighted displacements 4ik of all nuclei from their equi- 
librium positions during the normal vibration vi. In the space of normal coordinates, 
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- Z(ni + di/Z)W 
i 

0 '  

Fig. 6.13 Schematic vibrational term diagram for a triatomic 
molecule. For the combination modes, the zero-point energies 
of the combining normal vibrations is taken into account. 

each nondegenerate normal vibration of a molecule corresponds to a linear oscilla- 
tion of a point. In the case of twofold degenerate normal vibrations, this point moves 
along an ellipse in the subspace spanned by the two normal coordinates belonging to 
the degenerate vibrations. 

Figure 6.13 shows a schematic vibrational term diagram of a triatomic molecule; 
it illustrates the different possibilities for combining the normal vibrations from Eq. 
(6.84). 

6.3.5 
Anharmonic Vibrations 

The real potential in which the nuclei oscillate is given by an infinite Taylor expansion 

The termination of the series after the quadratic term is justified only for small dis- 
placements qi. For larger vibrational amplitudes, as encountered in real molecules for 
high vibrational excitations, the eigenvalues can be determined using a perturbation 
calculation, starting from the harmonic potential V (where the first two terms vanish) 
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and including the higher terms of the Taylor expansion as the perturbation potential 
V'.  Hence, the Hamiltonian becomes 

I 

The eigenfunctions 
which the solutions 

of the harmonic Hamiltonian in Eq. (6.83) serve as the basis in 

(6.86) 

of the Schrodinger equation H $  = E$ are expanded. 
Following the usual procedure in perturbational calculations, we substitute Eq. 

(6.86) into H . 4  = E$, multiply by ~ I G ,  and integrate. This yields the matrix elements 
Hik 9 

of the perturbation operator fi' computed with the wavefunctions of the harmonic 
oscillator. The energy eigenvalues E; of the harmonic oscillator with vibrational quan- 
tum numbers (21 1 ,  w2.  213) can then be expressed for nondegenerate vibrations as 

(6.88) 

where EP are the unperturbed energies in the harmonic approximation. If two vibra- 
tional levels are almost degenerate in the harmonic approximation (i.e., EP = E i ) ,  the 
perturbation becomes large and the shifts of the perturbed levels EYham and Erha"" 
are particularly large (the two levels repel each other). This phenomenon is called 
Femzi resonance; it  is discussed in more detail in the general treatment of perturba- 
tions in Ch. 9. 

As fi' in Eq. (6.87) is symmetric with respect to all symmetry operations of the 
molecule, HIx must vanish if &,, and t)vL are of different symmetry types. In other 
words, only vibrational levels of like symmetry can interact due to the anharmonicity 
of the potential. 

Hence, the anharmonic potential effects couplings between the different normal 
vibrations, which means that every normal vibration Ql influences all other vibrations 
Qk of of the 5ame symmetry for which Hfk # 0. 

The anharmonicity of the potential does not change the symmetry type of a vibra- 
tional state I I J )  = E n f  Iv,), because the additional term V' in the potential Eq. (6.85) is 
totally symmetric, and therefore only harmonic oscillator functions of like symmetry 
contribute to a normal vibration in the expansion Eq. (6.86). The symmetry of a vi- 
brational state I w )  is therefore the same as for the corresponding state for a harmonic 
potential. 



232 6 Rotations and Vibrations of Polyatomic Molecules I 
Classically, this phenomenon can be understood as follows. In an anharmonic po- 

tential, it is not possible for all nuclei to oscillate at the same frequency along straight 
lines through their equilibrium positions, because the higher terms in the potential 
create lateral forces which deflect the trajectories and modify the vibrational frequen- 
cies individually for each nucleus. In other words, pure normal vibrations cease to 
exist. 

In the case of anharmonic potentials, the total vibrational energy can not be cal- 
culated as a simple sum of energies of the individual normal vibrations, because the 
couplings change the vibrational energies. 

These couplings can be taken into account generically by introducing coupling 
coefficients x;j into the equation for the term energy, 

+higher terms . (6.89) 

6.3.6 
Vibralion-Rotation Coupling 

In the diatomic case, vibration-rotation interaction could be accounted for by intro- 
ducing an effective rotational constant B,  [see Eq. (3.33)J. Also, the rotational con- 
stants in polyatomic molecules depend on the respective vibrational level, because 
the nuclear displacements change the moments of inertia. This dependency can be 
written, in analogy to Eq. (3.44a), as 

A, = A e -  

In diatomic molecules, the Coriolis force is only for the electron shell of some (mi- 
nor) relevance, because the nuclear vibration occurs only one-dimensionally along the 
internuclear axis, and the corresponding Coriolis term in Eq. (6.7) vanishes because 

In polyatomic molecules with their two- and three-dimensional vibrations, the sit- 
uation is more complex. Besides the modification of the mean moments of inertia by 
vibrations (vibration-dependent rotational constants), Coriolis forces mediate a cou- 
pling between different normal vibrations in rotating molecules. Furthermore, as we 
have seen in Sect. 6.3.3, degenerate vibrations can possess an angular momentum lh 
that interacts with the angular momentum of molecular rotation. 

of  AT^ (1 ~ i .  
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qz 
Fig. 6.14 Coriolis coupling between the bending vibration v2 
and the antisymmetric stretching vibration of a linear triatomic 
molecule rotating around an axis perpendicular to the plane of 
the figure. 

Such coupling will be treated in this section in an illustrative manner. As we can 

(6.90) 

for a nucleus oscillating with velocity 27 points in a direction perpendicular to 27. It 
therefore results in a deflection of its otherwise straight trajectory, producing a curved 
path. Hence, under the influence of the total (restoring plus Coriolis) force, the nu- 
clei do not oscillate through their equilibrium positions in straight lines, as viewed 
in the rotating reference frame of the molecule, even for small-amplitude normal vi- 
brations, but they move along elliptic paths around their equilibrium positions q = 0. 
Figure 6.14 illustrates the displacements qx and qz of the nuclei from their equilibrium 
positions during one vibrational period for a linear molecule. For nuclei oscillating 
along z ,  the Coriolis force results in a displacement along x, and for nuclei with a ve- 
locity component wx. it creates a corresponding displacement along z. This establishes 
a coupling between different normal vibrations, as can easily be seen. 

For example, due to the Coriolis force, the bending vibration y is excited during 
the antisymmetric vibration v3 and vice versa. In other words, in a rotating molecule, 
v2 and y are mutually coupled by the Coriolis force, whereas the symmetric vibra- 
tion V I  shows no Coriolis coupling but produces only a (small) change of the rotational 
constant as in the diatomic case, where we have accounted for this effect by introduc- 
ing an effective rotational constant Eq. (3.33). Which normal vibrations are coupled 
by the Coriolis force depends on their symmetry. In contrast to the pure vibrational 
coupling in the nonrotating molecule, the Coriolis force results in a coupling between 
vibrational levels of different symmetry (see Ch. 8). 

As the rotational constants for the vibrational state (VI ,4, v3) are determined by 
the expectation value of the moment of inertia formed with the vibrational wavefunc- 
tions, the rotational constants depend - exactly as for diatomic molecules - on the 
vibrational state. Furthermore, they are influenced by Coriolis coupling. 

see from Fig. 6.14, the Coriolis force 

Fc = 2m(w x 27)  
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I no Coriolis force 

J 

j/J, e +  f -  2 

f +  1 e -  
e.-h 

z 
(4 

Fig. 6.15 a) Different influences of the 
Coriolis forces in a rotating molecule 
on two bending vibrations that are de- 
generate in the nonrotating molecule. 
b) Addition of the angular momenta N 
of molecular rotation and I f i  of vibra- 
tion to the total angular momentum J .  

c) Removal of the 1 degeneracy of a 
bending vibration in a linear triatomic 
molecule by a rotation of the molecule 
around an axis perpendicular to the z 
axis, shown for the vibrational angular 
momentum quantum number I = 1 [4.5]. 

Vibrational states that are degenerate in the nonrotating molecule need special at- 
tention. As illustrated in Fig. 6.15a for the bending vibrations of a linear molecule, 
such degenerate states split into two levels. The two vibrations, which are degenerate 
in the absence of rotation, can occur either in the yz plane (top) or in the xz plane 
(bottom), while the molecule is rotating around the x axis. Now we have to consider 
two effects: 

1. The mean moment of inertia with respect to the rotational axis is slightly smaller 
for the vibration shown at the top than for the rotation at the bottom. Hence, the 
rotational energy must also be different. 

2. In case (a), there exist Coriolis forces coupling to the antisymmetric stretch- 
ing vibration, whereas in (b) there are no Coriolis forces, because the nuclear 
displacements are along the rotational axis. 

Therefore, the two levels split. In general, however, the energy of the antisymmet- 
ric stretching vibration is much larger than that of the bending vibration, and the two 
interacting levels are far apart. Hence, the coupling is weak, and the splitting is small. 
There exists, however, a much larger effect: if the two bending vibrations are super- 
imposed with a phase shift, the nuclei exert elliptic motions around the internuclear 
axis of the linear molecule (Fig. 6.14), and a vibrational angular momentum 1 along z 
arises (Sect. 6.3.3), which adds to the rotational angular momentum N perpendicular 
to the z axis. The resulting total angular momentum J is then no longer perpendicular 
to the z axis (Fig. 6.15b). 
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For a linear molecule, the vibrational angular momentum is (except for the con- 

tribution from the electron shell) the only contribution to the component of the total 
angular momentum along the molecular axis. The total angular momentum J is then 
no longer perpendicular to the internuclear axis. For a given molecular total angular 
momentum of J ,  the contribution available for rotational energy of a rotation around 
an axis perpendicular to the molecular axis is therefore only B ,  [ J ( J  + 1)  - 1 2 ] .  

If we want to take this vibrational angular momentum into account for the rotation 
of a vibrating molecule, we must modify the rotational terms in Eq. (3.18b) to give, 
for a C state with A = 0, 

F ( J )  = B ,  [ J ( J +  1 ) - f 2 ]  -D, [ J ( J +  1) -I2]’ , (6.91) 

where J = (11, 111 + 1,111 + 2 , .  . . is the total angular momentum quantum number. A 
rotating linear molecule in a bending vibrational state with vibrational angular mo- 
mentum f h  can therefore possess no rotational levels with J < 111. 

According to Eq. (6.91), the term value of a rotation-vibration level depends on f 2  
and is therefore independent of the direction of 1. Here, Coriolis coupling is not yet 
included, however. If we introduce it, coupling terms appear in Eq. (6.91), and we 
obtain, after lengthy calculations, 

F : ( J , / * )  = B v  [ J ( J +  1 ) - 1 2 ]  -D, [ J ( J +  l ) - 1 2 ] 2 * q i ( ~ ; + 1 ) J ( J + l ) ,  (6.92) 

where the parameter y; depends on the strength of the Coriolis-induced coupling be- 
tween the vibrational states. It decreases with increasing values of 1, so that the 1 
splitting of levels with the same 111 caused by the interaction, 

4 

A F = F + - F - =  ( q ; / 2 ) ( v ; + I ) J ( J + I ) ,  

is significant only for 111 = I ,  and is usually negligible for I > 1 .  

bration with 1 = 1, 
For example, for a symmetric linear molecule AB2 we obtain for the bending vi- 

(6.93) 

where w2 is the frequency of the bending vibration and w3 that of the antisymmetric 
stretching vibration, which couples to the bending vibration (described by the param- 
eter 1 2 3 )  through a Coriolis interaction [6.10]. 

Hence, we obtain for the term values T of a vibration-rotation level, 

where the vibrational term value 
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is the same as for a nonrotating molecule, whereas in the rotational term value 

I 

F:(J,v) = B ,  ( J ( J +  1)  - 1 2 )  - D ,  [ J ( J +  1) - l 2 I 2 f  * ( u +  l ) J ( J +  1) , (6.96) 
4 

the effective rotational constant B ,  contains the dependency of the moment of iner- 
tia on the vibrational quantum number and thus describes one part of the vibration- 
rotation coupling. The second term accounts for centrifugal distortion, and the third 
term describes the influence of the Coriolis interaction on 1 splitting. The two 1 com- 
ponents of a rotational level possess opposite parity. In analogy to A doubling, they 
are denoted by e and f (Fig. 6.1%). A more detailed presentation of these topics can 
be found in [6.11]. 



7 
Electronic States of Polyatomic Molecules 

Whereas the electronic energies of diatomic molecules could be described, within 
the Born-Oppenheimer approximation, by potential curves Epot ( R )  depending only 
on the internuclear distance R, the corresponding functions for polyatomic molecules 
are potential surfaces in N-dimensional space. For example, the potential surfaces 
E(R1 , & , a )  of triatomic molecules depend on three parameters (two internuclear dis- 
tances R; and an angle a). 

7.1 
Molecular Orbitals 

As for diatomic molecules, the wavefunctions of the electronic states are needed to 
determine E,,, (R1, R2. .  . . , a1 ,a2,. . .) from the corresponding Schrodinger equation. 
As discussed in Sect. 2.8, approximate wavefunctions !P can be constructed as linear 
combinations of basis functions 4; (e.g., Gaussian functions or atomic orbitals), 

(7.1) 
i 

where the coefficients ci are optimized using the variational principle so that the ex- 
pectation value of the energy is minimized. The functions !P are called molecular 
orbitals. From n basis functions, n different mutually orthogonal molecular orbitals 
can be constructed. 

We saw in Sect. 2.8 that only basis functions belonging to the same symmetry 
species contribute to the linear combination. 

In the language of group theory (see Ch. 5 ) ,  this means that only those molecular 
orbitals !P are allowed that constitute a basis of an irreducible representation of the 
molecular point group. 

If atomic orbitals (or, for that matter, any type of atom-centered basis functions) 
are used as basis functions +;, we must take into account that each atomic orbital 
is centered at its own atomic nucleus. The molecular orbitals formed from such ba- 
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sis functions are therefore called multi-centered. To describe the linear combination 
Eq. (7.1) in a common reference frame, we must therefore apply a suitable coordinate 
transformation. 

If we compute the wavefunction !& of an electronic state Ik) for many possible 
arrangements of the N nuclei, the real (i.e., “correct”) molecular structure is that cor- 
responding to the lowest energy, that is, 

I 

aEpot 
= 0,  i = 1,2, ..., N .  

dRi (7.2) 

The computation of energy surfaces becomes more accurate if we include more sym- 
metry-adapted basis functions. However, this makes the computations more time- 
consuming [7. I]. 

There are simpler schemes, which employ only a few basis functions but which try 
to select them according to their importance for chemical bonding, thereby restricting 
them to the valence electrons of the atoms involved in bonding. 

Although this valence bond method yields more qualitative than exact quantitative 
results because of the small basis set employed, it provides a clear insight into the 
origin and the character of chemical bonding [7.2]. It is particularly valuable because 
it gives in many cases simple explanations for the actual molecular geometry. It also 
allows an estimation of the energetic ordering of the different molecular orbitals built 
from atomic valence orbitals. 

A simple rule of thumb is that the lower the number of radial nodal planes of 
a wavefunction !#, the lower the energy of the corresponding state. The physical 
explanation for this rule is based on two facts: 

1. The lower the number of nodes, the smaller is the second derivative a2@/ar2,  
which in turn is proportional to the kinetic energy. 

2. With decreasing number of nodes, and therefore the electron density be- 
tween the nuclei increases, giving a larger bond energy. 

The symmetry classification of the molecular orbitals depends on the molecular 
point group and the transformation properties of the orbitals under the symmetry op- 
erations of the group. In linear molecules of point group &h, the orbitals have even 
parity if the wavefunction is unchanged upon inversion at the center of charge, and 
they have odd parity if they change sign (see also the corresponding discussion in 
Sect. 2.4.2). 

The symmetry of the orbitals with respect to reflection at a plane containing the 
molecular axis is denoted positive (+) if the orbital remains unchanged and negative 
(-) if it changes sign. 

For nonlinear molecules, the symmetry operations of the respective point group 
must be considered. For example, the orbitals of molecules belonging to the group CzV 
can have the symmetries A1 , A2, E l ,  or E2, depending on their behavior under the dif- 
ferent symmetry operations of the group. For point groups containing a symmetry axis 
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No nodal plane 

H1 A 
One nodal plane 

A H2 

No nodal plane One nodal plane Two nodal planes 

Bi A B2 B1 A 82 B1 A 8 2  

1 "u ' "9 2 nu 
Fig. 7.1 Examples of molecular orbitals. Top: (r orbitals of linear 
AH2 molecules; bottom: n: orbitals of linear AB2 molecules. 

C,, with n > 2, degenerate orbitals of symmetry type E (or even higher-dimensional 
irreducible representations) occur, which are transformed into linear combinations of 
themselves under the symmetry operations of the group (see the character tables in the 
appendix). 

Figure 7.1 illustrates some molecular orbitals schematically. The top row displays 
the lowest-energy orbitals for linear triatomic molecules AH2 (where A is an arbitrary 
atom) resulting from the combinations 0: = ls(H1) + ls(H2) + ns(A) (no nodal 
plane) and 0,' = ls(H1) - ls(H2) +npZ(A) (one nodal plane). 

At the bottom of Fig. 7.1, some molecular x: orbitals for linear AB2 molecules 
are displayed. The combination lx:, = p,(B1) + p,(A) + px(B2) has no nodal plane 
between the nuclei and corresponds to the lowest of the three n: states. The molec- 
ular orbital lx, = p,(Bl) - p,(Bz) has one internuclear nodal plane at the position 
of atom A, whereas the combination 2x:, = px(B1) - px(A) + px(B2) possesses two 
internuclear nodal planes and thus corresponds to the highest energy of the three x: 
orbitals. 

Figure 7.2 shows some molecular orbitals of nonlinear molecules. The top row 
displays nondegenerate orbitals of molecules belonging to group C2, together with 
their symmetry designations; the bottom row shows orbitals of molecules belonging 
to group D3h. 

These general principles will now be elucidated for a number of specific examples. 
Before doing so, however, we will briefly discuss the concept of hybridization. 
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& y  + + & y  -+ (-&p& B Y 

A, symmetry B2 symmetry 
B, symmetry 

0 

Flg. 7.2 Top: Orbitals of molecules belonging to the group C2"; 
bottom: nondegenerate A', orbital and degenerate E' orbital of 
molecules belonging to the group D3h. 

7.2 
Hybridization 

The electron clouds of two atoms involved in bonding are deformed by their interac- 
tion. For example, Is orbitals do not remain spherically symmetric. This effect can 
approximately be taken into account if we construct the corresponding molecular or- 
bitals as linear combinations of s, p, d, . . . atomic orbitals. Such functions are also 
called hybrid functions. If only s and p orbitals are included, the result is called sp 
hybridization. 

This process will be illustrated for the case of the carbon atom (Fig. 7.3). The 
ground-state carbon atom has an electron configuration ( ls2)(2s2)(2px)(2py) with two 
unpaired electrons in the px and py orbitals, respectively. As only unpaired electrons 
can contribute to bonding, this configuration leads to two bonds directed along x and y. 
If, for example, two hydrogen atoms would bond to the carbon atom, their 1s orbitals 
would experience maximum overlap in the x and y directions, and the resulting bond 
angle would be 90". 

It may be energetically favorable, however, to include also one of the 2s electrons 
in bonding, in addition to the two 2p electrons. This will be true if the energy needed 
to promote the 2s electron to the 2p orbital is over-compensated by the gain in bonding 
energy, and this situation is indeed found in many compounds. 

As each of the two px and p,, orbitals is already occupied by one electron, only the 
pz function is available for hybridization. 
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1 I 42 = (cps - cpp*) 

Fig. 7.3 a) Atomic orbitals of the free carbon atom with the 
directions of the unpaired electrons in the px and py orbitals. 
b) The two sp, hybrid orbitals. 

The two possible, mutually orthogonal spz hybrid atomic orbitals are then 

From the normalization condition 

we obtain the coefficients by substituting Eq. (7.3) into Eq. (7.4), 

1 1 
c ,  = c-2 = c3 = - c4 = -- Jz; a'  

so that the two hybrid atomic orbitals are 

(7.3) 

(7.4) 

If we substitute atomic hydrogen wavefunctions [7.3] for $(s) and 4(pZ),  we see that 
the normalized angular part of the hybrid orbitals is 

1 
4 1 . 2 ( I 9 )  = - [ I  f &cos21] , 

2 G  
(7.6) 

where I9 is the angle towards the z axis. This shows that 141 l 2  assumes its maximum 
value for 19 = 0 ,  and 14212 for 6 = 180" (Fig. 7.3b). 
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Hence, by the sp hybridization, the carbon atom receives two additional bonds in 

the kz direction, which are described by the hybrid orbitals Eq. (7.5). Together with 
the px and py orbitals this yields a total of four available bonds. 

In some cases, it is energetically more favorable if the s electron and the two p 
electrons assume a charge distribution described by a linear combination of an s orbital 
and two p orbitals. During such an sp2 hybridization, three atomic hybrid orbitals are 
created from different linear combinations of 4 ( s ) ,  4(px) and 4(py). As in the case 
of sp hybridization, the three mutually orthogonal hybrid orbitals 

are obtained. Their angular parts are 

4 2 ( c p ) =  3- -coscp+ Jz g s i n c p )  , T (7.8) 

where cp is the angle towards the x axis (Fig. 7.4). By substituting into Eq. (7.8), we 
find that the three functions assume their maximum values at cp = 0" ($I), cp = 120" 
( 4 2 )  and cp = 240" or - 120" (43). 

Hence, sp2 hybrid atomic orbitals allow for three identical bonds, which are di- 
rected from the center towards the comers of a planar equilateral triangle. 

In some cases, such as the methane molecule CH4, which has the shape of a regular 
tetrahedron, the atomic orbitals of the carbon atom are best described by sp3 hybrid 

Fig. 7.4 sp2 hybridization. 



t' 
7.2 Hybridization 243 I 

Q1 \ 
Fig. 7.5 sp3 hybrid orbitals and their spatial orientation. 

functions, which means that the s orbital combines with all three p orbitals. The 
orthonormal hybrid functions are then 

(7.9) 

If we substitute the angular parts of these functions into Eq. (7.9), sp' hybridization 
yields the atomic orbitals displayed in Fig. 7.5, which are directed towards the comers 
of a regular tetrahedron with the carbon atom at its center. 

In addition to p orbitals, d orbitals can also contribute to hybridization in heavy 
atoms. This gives again directed bonds leading to specific molecular geometries. For 
example, sp2d hybridization leads to four hybrid orbitals which are located in a plane 
and enclose angles of 9 0 .  An atom with valence orbitals described by sp2d hybrid 
orbitals can therefore form a molecule with square planar geometry with four equal 
other atoms. Table 7.1 summarizes some examples of atomic hybrid orbitals. 

Tab. 7.1 Hybrid orbitals. 

Orbital Geometrical arrangement Coordination number 

SP, dp linear 2 
p', sd bent 2 
sp', s2d trigonal planar (120") 3 
P' trigonal pyramidal 3 
S p "  tetrahedral 4 
sp"d trigonal bipyramidal 5 
sp'd' octahedral 6 
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0 0.2 0.4 0.6 0.8 1.0 

Fig. 7.6 Overlap integral between two hybrid atomic orbitals 
as a function of the s orbital contribution for a C-C bond at an 
internuclear distance R = 4 4 3  [7.4]. 

The reason for the choice of hybrid orbitals is the minimization of the total energy 
through maximization of the (negative) bonding energy. The latter depends on the 
value of the overlap integral S between the atomic orbitals involved in bonding. 

To maximize S for sp hybridization we use, instead of Eq. (7.3, the more flexible 
trial function 

[#+) + M P ) l  9 (7.10) 
1 

($I=- m 
where X is an optimization parameter in the range between 0 and 1. 

a C-C bond as a function of the s contribution 
Figure 7.6 shows the overlap integral S between the two atomic hybrid orbitals of 

IS(O(S))l2 - 1 
lS(4)21 dl 1 + A 2  ' 

We see that the overlap is largest for sp hybrid orbitals with 50% s contribution. The 
value of S increases from S = 0.3 without hybridization to S = 0.85 for the optimum 
sp hybridization. Hence, the energy necessary for the promotion of the two s electrons 
to the hybrid orbitals is by far compensated for by the gain in bonding energy, which 
leads to a lower total energy. 

Upon formation of a molecule, the atomic electron clouds are deformed (i.e., re- 
arranged) so that the maximum overlap for all bonds and a minimum total energy is 
achieved. This requirement determines the ground-state molecular geometry. 

All ground-state molecules assume the geometry which minimizes their total en- 
ergy, that is, the ground-state geometry corresponds to the global minimum of the 
potential energy surface. 
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7.3 
Triatomic Molecules 

Many of the principal aspects involved in the formation of optimum molecular orbitals 
are already evident in triatomic molecules. The potential energy surface of a nonlinear 
molecule ABC depends on the three parameters R I  (AB), R2 (BC) and Q = LABC. In 
h e a r  triatomic molecules, which belong to the Same point groups c . h  or &,h as 
the diatomic molecules, E(R1 ,R2) depends on the two internuclear distances. Their 
potential surface shows a potential energy valley for a = 180". 

The construction of molecular orbitals will now be illustrated for some molecules. 

7.3.1 

The BeH2 Molecule 

The beryllium dihydride molecule BeH2 is linear; it belongs to group &h. The elec- 
tron configuration of Be is ls22s2, and there are in addition three unoccupied 2p or- 
bitals, which are only slightly higher in energy than the 2s orbitals. The 1s electrons 
are located close to the beryllium nucleus and do not significantly contribute to the 
bonding with the hydrogen atoms. 

We choose the z axis as the internuclear axis; the 2p, and 2py orbitals are then 
orthogonal to the two hydrogen 1s orbitals (Fig. 7.7) and do not contribute to bonding 
(the overlap integral is zero!). 

From the remaining four atomic orbitals (two 1s orbitals from the two hydrogen 
atoms and 2s and 2pz of the beryllium atom) we can construct four molecular orbitals 
as linear combinations, 

% ( G I )  = C I ~ I ( H I , )  +~242(Be2,) +c343(Hls)  . 

For symmetry reasons, CI = c3, which we normalize to be 1. The orbital $1 is then, 
in a self-explaining shorthand notation, 

@I =sI +XlS+S2, @ @ @ (7.1 1) 

where XIS is the relative contribution of the beryllium 2s orbital. This molecular 
orbital has (T symmetry. 

t x  

Fig. 7.7 Nonbonding molecular orbitals in the BeH2 molecule. 
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The next higher molecular orbital possesses a nodal plane at the beryllium atom, 

nodal plane 
and is written 

(7.12) 

!& is also a (T orbital. 
The third molecular orbital has two nodal planes and is written 

P~ = s ,  - x 3 s + s 2 .  @ i e i @ (7.13) 

Calculation of the corresponding energies shows that P3 is antibonding, that is, the 
energy ($3 l f i l $ 3 )  is higher than the energies of the atomic orbitals from which it is 
built. It is actually even higher than that of the II: atomic orbitals constructed from the 
px and pv of the beryllium atom and the 1s atomic orbitals of the hydrogen atoms. 

Finally, the molecular orbital with the highest energy has three nodal planes, 

@4=-Sl+X4p,+s2. i CB i e i @ (7.14) 

As each molecular orbital can be occupied by two electrons (with opposite spins), 
the four valence electrons from beryllium and hydrogen fill the orbitals 91 ( (TI)  and 
!P2(62), creating two bonds in the H-Be-H molecule. The two Be 1s core electrons 
are not included (note that we also did not include their orbitals!). 

Figure 7.8 shows the corresponding energy diagram, and Fig. 7.9 illustrates the 
spatial electron density distribution in the ground-state BeH2 molecule by the density 
of printed dots. 

Be BeH2 H, H 

Fig. 7.8 Orbital energies of the BeH2 molecule as compared 
with the atomic energies. 
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Fig. 7.9 Electron density distribution in the electronic 'Zg ground 
state of the BeH2 molecule. 

7.3.2 
The H 2 0  Molecule 

In the following, the H20  molecule will be discussed in some detail as an example 
for general bent AH2 molecules (A = arbitrary atom). It is also useful to demonstrate 
the symmetry properties of atomic and molecular orbitals. The bent molecules AH2 
belong to the point group C2", which contains the symmetry species A l ,  A2, B I ,  and 
B2 (see Sect. 5.5). 

For the construction of molecular orbitals, two 1 s orbitals from the hydrogen atoms 
and the four occupied 2s and 2p orbitals of the oxygen atom (with configuration 
1 s2 2s2 2p4) are available. We place the molecule in the xy plane; the 2p, atomic 
orbital has therefore zero overlap with the hydrogen 1s orbitals (Fig. 7.10). 

In a first approximation, we neglect the contribution from the oxygen 2s electrons. 
Thus, we consider only the oxygen 2p, and 2p, orbitals, which overlap with the hy- 
drogen 1s orbitals, leading to chemical bonding. 

In this approximation, we obtain for the two molecular orbitals 

(7.15) 

which assume their maximum values along x and y, respectively. Therefore, we are 
led to expect a bent structure with a bond angle of (Y = 90" for the H20  molecule. The 
experimental value is rr = 105". This small, yet significant difference has two reasons: 

Fig. 7.10 a) The three 2p orbitals of the oxygen atom. b) Bond- 
ing between the hydrogen 1 s orbitals and the oxygen 2p,, 2py 
orbitals. 



Fig. 7.11 a) Oxygen hybrid orbitals. b) Shift of the charge distri- 
bution of the hybrid orbital with respect to the 2s orbital. 

1. The interaction between the hydrogen and oxygen atoms leads to a charge trans- 
fer from the hydrogen atoms to the oxygen atom, creating a small negative 
charge on the oxygen atom and small positive charges on the hydrogen atoms, 
as reflected by the molecular dipole moment of the H20 molecule. In conse- 
quence, there arises a Coulomb repulsion between the hydrogen atoms. How- 
ever, this effect leads only to a small increase in the angle a. 

2. The major effect is hybridization of the oxygen atom. The charge transfer men- 
tioned above leads to a deformation of the electron cloud at the oxygen atoms, 
distorting the 2s orbital, which can now be written as a linear combination 

4 = c1 d2S) + C24(2P) - (7.16) 

This distortion of the electron cloud leads to a shift of the center of charge 
(Fig. 7.1 1) and thus to a larger overlap of the oxygen hybrid orbital with the 1 s 
orbitals of the hydrogen atoms. 

The bonds constructed from those hybrid orbitals do not form a 90" angle, but 
give indeed, upon exact calculation of all polarization and exchange effects 
(which have been included here only approximately), the experimentally de- 
termined bond angle (Fig. 7.12). 

It is common in molecular physics to denote the symmetry species of orbitals by 
lower-case letters and those of the molecular states constructed from them by upper- 
case letters. For example, the electron configuration of the ground-state H20 molecule 
is ( 2 ~ 1 ) ~  ( lb2)2 ( 3 ~ 1 ) ~  ( 1 b 1 ) ~ .  The molecular ground state derived from it is denoted 
X ' A I .  
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I s  

/ H  

Fig. 7.12 Bonding in the H20 molecule using hybrid atomic or- 
bitals. 

We will now determine the symmetry properties of the atomic orbitals, from which 
the molecular orbitals of H2O are constructed. To do this, we choose a coordinate 
system (xl,y’,z’ = z )  adapted to the CzV molecular symmetry by placing the molecular 
symmetry axis along x’ and the plane of the molecule into the i y ’  plane (Fig. 7.13). 
The p orbitals are therefore transformed according to 

1 I 
(Px + Py) ; Py’ = Jz (Px - Pv) . 

p.r’ = Jz 
From Fig. 7.14 we see that 2s and 2py transform into themselves and thus belong to 
symmetry species a1 , whereas 2pf changes sign upon rotation around the x’ axis and 
thus has b2 symmetry, whereas 2pz changes sign upon reflection at the plane of the 
molecule and therefore has bl symmetry. 

I 
0 

Fig. 7.13 Geometrical arrangement for the discussion of sym- 
metry properties of atomic and molecular orbitals. 

0 C 0 

Fig. 7.14 The twelve atomic orbitals in the C02 molecule. 
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b2' 

(4 (b) 
Fig. 7.15 Energy level diagram of the molecular orbitals in AH2 
molecules for a) linear and b) nonlinear structures. 

To construct molecular orbitals with at symmetry, we can therefore combine the 
oxygen hybrid orbital ctcp(2s) +czcp(2pd) with the sum cp+( 1s) = cpt (1s) + (p2( Is) 
of the two hydrogen 1s orbitals to form the linear combination clcp(2s) + czcp(2py) + 
c3cp+ (Is) ,  because these orbitals all have a1 symmetry and therefore their sum must 
also have a1 symmetry. 

sp3 hybridization makes 2py and 2p, also bonding molecular orbitals with bl and 
b2 symmetry, respectively (Fig. 7.15b). As there are a total of eight valence electrons 
involved in bonding (the 1s core electrons of the oxygen atom contribute virtually 
nothing and are neglected), the four lowest molecular orbitals are occupied by two 
electrons each (with antiparallel spins). This yields three bonding molecular orbitals 
with symmetries at, b2, and al, and one weakly antibonding orbital with symmetry bt 
that are occupied in the ground state of H 2 0 .  

7.3.3 
The COz Molecule 

In this example, we can build molecular orbitals from twelve valence orbitals of the 
participating atoms, namely the 2s, 2p,, 2p, and 2p, atomic orbitals of each of the three 
atoms (Fig. 7.14). From these twelve atomic orbitals, twelve orthogonal molecular 
orbitals can be constructed as linear combinations of atomic orbitals of like symmetry. 
These molecular orbitals are ordered according to their energies, and are then filled 
successively, according to the Pauli principle, with two electrons each. As there are 
only 16 valence electrons in C02, (four from the carbon atom and six from each 
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Fig. 7.16 Schematic representation of the molecular orbitals of C02 .  

oxygen atom), only the eight lowest molecular orbitals are occupied in the ground 
state of the CO2 molecule. Excited states arise if one electron is excited from an 
occupied (in the ground state) orbital into a higher, unoccupied molecular orbital. The 
highest occupied molecular orbital is often abbreviated HOMO, the lowest unoccupied 
molecular LUMO. 

The symmetry group of C02 is Dmh. The only atomic orbitals of 0; symmetry are 
the three 2s orbitals of the carbon atom and the two oxygen atoms and the two 2pz 
orbitals of the oxygen atoms. 

As discussed in Sect. 7.2, the overlap between the atomic orbitals of the different 
atoms involved in bonding can be optimized (i.e., maximized) by the formation of 
hybrid atomic orbitals. As can be seen from Figs. 7. I la and 7.14, sp hybridization 
provides the largest overlap and therefore the largest contribution to bonding, and 
thus we expect a linear structure. For such a linear molecule we place, following the 
usual conventions, the internuclear axis along z. The symmetry species are ordered 
according to the projections A of the electronic angular momentum onto the molecular 
axis ( z  axis) and according to their parity (see Sect. 2.4). Then hybrid atomic orbitals 
are constructed from 2s and 2p,, which both have E symmetry with A = 0, and from 
pr and p,,, which lead to z orbitals with A = I .  

Figure 7. I6 shows a schematic representation of the occupied and some unoccu- 
pied molecular orbitals with their symmetries. The electron configuration of CO? is 
therefore 

( 1 0 g  ( 10" ) 2  (20g l 2  (20, l2 ( 1% l4 ( 17Q4 . 
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Apart from the bonding orbitals lo,, lo, and In,, there are nonbonding molecu- 
lar orbitals that are not involved in chemical bonding and which are therefore called 
lone pairs, and furthermore antibonding orbitals that lead to a destabilization of the 
molecule if they are occupied. The total bonding energy is the sum of all positive, 
negative and vanishing contributions of all these molecular orbitals. 

I 

7.4 
AB2 Molecules and Walsh Diagrams 

The bond angle in triatomic molecules AB;! (where A and B denote arbitrary atoms) 
can be determined approximately by calculating the dependence of the orbital ener- 
gies on the bond angle for all occupied molecular orbitals. This is shown in Fig. 7.17a 
for the triatomic hydrides AH;! and in Fig. 7.17b for the more general case of AB2 
molecules (which differ from the former by the availability of p orbitals at the B 
atoms). At the right, the orbital symmetries for a linear structure (point group Dmh) 

are indicated, at the left those for a bent structure (point group C2"), where in both 
cases the molecule is arranged following the convention introduced by Mulliken. This 
means that in the linear case the z axis coincides with the internuclear axis, but in the 
bent case it coincides with the molecular symmetry axis. Hence, in going from left 
to right in the correlation diagram, the y and z axis are exchanged! (This is of course 
only relevant for the symmetry labels of the orbitals, not for their energies!) 

From Walsh diagrams [7.5], the bond angles of triatomic molecules can be esti- 
mated by determining the point along the horizontal (bond angle) coordinate for which 
the sum of the energies of all occupied molecular orbitals assumes a minimum. We 
will elucidate this point for a number of examples. 

(a) The H20 molecule has the electron configuration 

where orbitals of like symmetry are enumerated in order of increasing energy. 
(The ( la l )  orbital has been omitted from the list because it does not contribute 
to bonding.) The two orbitals (2al) and (lb2) assume, according to Fig. 7.17a, 
their minimum energies at (Y = 180", the (3al) orbital at a = 90", and the en- 
ergy of the ( lb l )  orbital does not depend on a. The total energy assumes its 
minimum value at CY M 105". 

If an electron is excited from the ( lbl)  orbital into higher orbitals, we see from 
the diagram that the energies of those orbitals depends only weakly on a, and 
we expect therefore the structure of the molecule to change only slightly upon 
such an excitation. Indeed, the bond angle in the excited C(B1) state, in which 
an electron is excited into the 3p state, is found to be a = 106.9", only slightly 
enlarged compared to the ground state. 



7.4 A& Molecules and Walsh Diagrams 253 I 

I I 
goo I 80° 

4 BAB- 

8a' 

1 2a" 

E 

6a' 

1 a" 
5a' 
4a' 

3a' 
goo 1 

4 HAB- 

60 
2n 

1K 

50 

40 
30 

loo 

(b) (c) 

Fig. 7.17 Walsh diagrams for a) AH2 molecules, b) AB2 
molecules, and c) HAB molecules. 

(b) The boron dihydride molecule BH2 has a ground-state electron configuration 
. . . ( 2 a 1 ) ~ (  lb2)2(3al)' and a bond angle a = 131", because the influence of the 
3al electron is stronger than that of the four electrons in (2al) and (Ib2). 

(c) The C02 molecule has 16 valence electrons leading to an electron configuration 
. . . (20" )~ (  l 7 ~ ~ ) ~ (  1 7 ~ ~ ) ~  for its X 'C; ground state. From Fig. 7.17b we see that 
the total energy assumes a minimum for a = 180", because the strong depen- 
dence of the ng orbitals on the bond angle exerts the largest influence. 
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Tab. 7.2 Occupancy of molecular orbitals in the ground and first excited states of 
some triatomic molecules. 

Molecule Z, Orbital occupancy State L BAB 

180" 

180" 

180" 

180" 

180" 

134" 

130" 

180" 

0 3  18 ( 3 0 , )  ' (20,) ' (40,) ' (30,)' (4b2) ' ( la') ' (60 I )' RIA1 116.8" 

(6al)'(2bl)' A 'BI  

Figure 7 .17~  shows the Walsh diagram for asymmetric molecules HAB such as 
HCO, HCN or HNO. Table 7.2 lists the electron configurations (i.e., the occupancy of 
the molecular orbitals forming the electron cloud) and the resulting ground states and 
first excited states for a number of AB2 and A3 molecules, allowing an estimation of 
the bond angles of these molecules from Fig. 7.17. 

7.5 
Molecules With More Than Three Atoms 

The procedure to construct molecular orbitals from basis functions (atomic orbitals) of 
like symmetry can be applied analogously to molecules with more than three atoms. 
However, for molecules with double bonds, in which n: electrons play an important 
role, new phenomena occur, which will be treated in Sect. 7.6. 

Again, the procedure will be illustrated for a few examples. 

7.5.1 
The NH3 Molecule 

The electron configuration of the nitrogen atom is ( 1 s ) ~  ( 2 ~ ) ~  ( 2px) ( 2py) (2p,). Ne- 
glecting hybridization, the three unpaired electrons in the p orbitals allow three bonds 
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H 

Fig. 7.18 Hybrid valence orbitals of the NH3 molecule. 

to the hydrogen 1s orbitals enclosing angles of 90 .  The molecule possesses a three- 
fold symmetry axis Cn; its symmetry group is C3”. For a planar structure, bond angles 
of 120” were to be expected, indicating sp2 hybridization. As the real NH3 molecule 
is pyramidal rather than planar, the actual bond angles must be smaller. It turns out 
that spn hybridization of the nitrogen atom provides optimum overlap with the hydro- 
gen Is orbitals, resulting in bond angles of 107.3” (Fig. 7.18). The structure of the 
ammonia molecule resembles a trigonal pyramid with the nitrogen atom at the apex. 
The asymmetric charge distribution in the molecular orbitals creates an electric dipole 
moment P,, of magnitude 5 x lO-””Cm (AISD) ,  pointing from the nitrogen atom 
along the symmetry axis to the center of the triangle consisting of the three hydrogen 
atoms. 

The molecular potential energy as a function of the height h of the nitrogen atom 
above the plane of the three hydrogen atoms assumes a maximum for h = 0 and two 
minima for h = +ho (Fig. 7.19). In the ground state, the nitrogen atom can therefore 
be above or below the plane h = 0. The two equivalent mirror-image conformations 
are indistinguishable, therefore both must be included in the calculation of vibrational 
wavefunctions and energies. Hence, the vibrational wavefunctions are written as sym- 

Fig. 7.19 Double-minimum potential E p t ( h )  for the NH3 ground 
state with symmetric and antisymmetric vibrational states. 



256 7 Electronic States of Polyatomic Molecules I 

"\ t' 
6a' 

1 a" 
5a' 

4a' 'E 
3a' I 

I I 

180' a 90' 
(b) 

H 

Fig. 7.20 The formaldehyde 
molecule a) in the ground 
state and b) in an excited 
state. 

Fig. 7.21 Walsh diagram 
and molecular orbitals for the 
ground state of H2CO. 

metric and antisymmetric linear combinations 

Gsym = NI (@I + @ 2 )  ; q a y m  = N(@I - @ 2 )  9 (7.17) 

where the @; are the vibrational wavefunctions for the left-hand and right-hand region 
of the potential below the barrier, respectively, and the N; are normalization constants. 
In the vicinity of the minima, the potential can be described by a parabola so that the 
@; are harmonic-oscillator functions. The energy eigenvalues of !Psym and !Pasym are 
slightly different (inversion splitting). 

In a semiclassical model (Fig. 7.19b), the nitrogen atom with vibrational period 
TI oscillates for some time above the plane h = 0 around its equilibrium position 
h = +ho, before tunneling, after an average time T2, through the potential barrier and 
oscillating around h = -ho. Its vibrational energy is then &ib = hVv/vib = h / T l ,  and 
the inversion splitting is given by AE = h/T2, where TI << T2 holds. 

7.5.2 
Formaldehyde 

As an example for a molecule with a planar structure (point group CzV) in the ground 
state (all atoms lie in the xz plane) and a pyramidal structure in the first excited state ' A ,  
we will consider the formaldehyde molecule H2CO (Fig. 7.20). In the excited state, 
the two hydrogen atoms lie above and below the yz plane and define together with 
the carbon atom a plane intersecting the yz plane at an angle p = 38". The molecular 
symmetry in this state is C,. The lowest molecular orbitals are 3A 1 ,  4A I ,  5A 1 ,  and 
1B2, which all describe 0 bonds (Fig. 7.21). The remaining four of the twelve valence 
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Fig. 7.22 The butadiene molecule. a) Structure formula, and 
b) schematic representation of the two lowest n orbitals. 

electrons occupy the next-higher orbitals 1Bl and 2B2. The 1Bl molecular orbital is a 
n orbital contributing mainly to the bonding between carbon and oxygen, whereas the 
2Bl orbital, which is built from two pv atomic orbitals, is antibonding. Upon optical 
excitation to the A state, one electron is promoted from the nonbonding 2B2 molecular 
orbital into the antibonding 2B1 molecular orbital (n* t n  transition). 

The potential energy of the A state as a function of the displacement during the 
v4 vibration possesses two minima, similar to what we learned for the ammonia 
molecule. Again, the two hydrogen atoms can tunnel through the barrier, similarly 
to the nitrogen atom in NH3. However, in this case the tunneling frequency is much 
larger because the mass of the hydrogen atoms is much smaller and the height of the 
barrier is smaller than for ammonia. 

7.6 
sc-Electron Systems 

In the preceding examples, we have discussed localized bonds in molecules, that is, 
the electron density of the valence electrons was concentrated in a closely confined 
region between the bonded atoms. 

There is a significant class of molecules, however, in which delocalized electrons 
play an important role. An example is the butadiene molecule (Fig. 7.22) ,  where single 
and double bonds between the carbon atoms alternate. 

The electrical polarizability along the chain of carbon atoms in such molecules is 
much larger than in molecules with localized bonds, which is a first indication that 
delocalized electrons with a high mobility are present. It turns out that these electrons 
are from overlapping p orbitals, forming n bonds [7.6]. 

7.6.1 
Butadiene 

The trans isomer of the butadiene molecule CHz=CH-CH=CH2 is planar. The 
length of the central C-C bond is 148pm, which is significantly longer than the C = C  
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double bonds. Apart from the o orbitals, there are four R orbitals, which are linear 
combinations of the four carbon 2p orbitals and which are perpendicular to the plane 
of the carbon atoms (Fig. 7.22b). The relative contributions of the four p orbitals in 
the four molecular orbitals 

can be determined using the variational principle (see Sect. 2.5.1), which requires 
solution of the determinant equation 

To facilitate the calculations, we make the following assumptions: 

(a) All integrals Hmm are equal to a parameter a. 

(b) Integrals H,, with n # rn are nonvanishing only for adjacent atoms, and they 
are equal to a second parameter P < 0. 

(c) All overlap integrals S,,,, with m # n are zero, and S,,, = 1. 

These assumptions are the basis of the so-called Hiickel method. This yields the ener- 
gies 

for the molecular orbitals 

(7.20) 

(7.21) 

This shows that the largest contributions for the lowest molecular orbital 7c1 stems 
from carbon atoms two and three. 

Figure 7.23 shows a graphical representation of these four orbitals. It emphasizes 
that the orbital AI is completely delocalized, which means that the electrons in this 
orbital are distributed uniformly over the complete chain of carbon atoms. 
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Fig. 7.23 Schematic representation of the four 7~ molecular or- 
bitals in the butadiene molecule. 

7.6.2 
Benzene 

The explanation of the benzene structure was an important milestone in the history of 
molecular orbital theory, which had been postulated by KekulC as early as 1865. 

It became clear from many experiments, particularly from spectroscopic investi- 
gations, that C6H6 has to be a planar molecule in which the carbon atoms form a 
six-membered ring. The carbon bonds enclose therefore angles of 120,  which indi- 
cates sp2 hybridization, as was discussed in Sect. 7.2. Hence, there are localized C-C 
and C-H (T bonds, each of which contains one valance electron from the carbon atom 
(Fig. 7.24a). This makes a total of three valance electrons from each carbon atom, 
which are used to form the 0 bonds originating from it. One pz electron per carbon 
atom, or six in total, are not involved in hybridization and are available for additional 
bonds (Fig. 7.24b). 

There are, however, two indistinguishable ways, displayed schematically in Fig. 
7 . 2 4 ~  and d, to form three 7c bonds in a six-membered ring from the six available p: 
orbitals. As in the butadiene case, we must therefore construct linear combinations 

(7.22) 

where the 4; are the p: orbitals of the six carbon atoms. 
The crucial point is now that the wavefunctions 9 are not confined to a single 

carbon atom or a pair of bonded carbon atoms, but extend over the complete ring of 
carbon atoms. These delocalized electrons contribute significantly to the stability of 
this planar arrangement because their density is distributed symmetrically with respect 
to the molecular plane. 
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Fig. 7.24 Bonding in the benzene molecule. a) (T bonds, 
b) pz orbitals, c), d) different alternatives for R bonding around 
the ring system. 

A very simple model, the so-called Huckel model suggested by Huckel, treats the 
delocalized x: electrons, which are distributed over the whole ring system, as electrons 
in a square-well potential of width L, where L corresponds to the circumference of 
the benzene hexagon. The de Broglie wavelength X of these electrons must satisfy the 
condition nX = L. Their kinetic energy is, using X = h/p, 

(7.23) 

If the potential energy at the bottom of the potential well is chosen to be Epot = 0, we 
obtain for the energies of the levels In) 

with El denoting the ground state. 
The interaction of one of the x: electrons with the other electrons is indirectly taken 

into account by choosing an effective potential, similar to the Hartree method in atoms, 
where the depth of the potential can be adjusted in order to match the experimental 
observations. The Huckel method is therefore a one-electron approximation for many- 
electron molecules. 

Upon excitation of x: electrons (e.g., by photon absorption), higher-energy states 
with n > 1 can be occupied. 

For benzene with a C-C distance of 140pm, L = 6 x 140pm = 840pm, and we 
obtain for the energy difference for the transition n = 1 -+ n + 1 = 2, 

h2(2n + 1) 
2m,L2 

A E =  
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Inserting the numerical values yields AE = 1 x 
This corresponds to a wavelength of X M 200nm, in fair agreement with the exper- 

imental value of X = 220nm, considering the crude model employed. The difference 
is due to the fact that we neglected the interactions between the electrons. 

Additional information on the electronic states of larger molecules can be found 
in [7.8-7.101. 

J = 6.5 eV. 



8 
Spectra of Polyatomic Molecules 

Owing to the larger number of degrees of freedom, the energy level diagrams of poly- 
atomic molecules are far more complicated than those of diatomic molecules, where 
only one vibrational mode and and a simple rotational structure exist. 

Consequently, the number of possible transitions between different energy levels 
is also much larger, and the spectra are complex. In many cases, several lines or 
even whole bands overlap, and only the application of high-resolution, Doppler-free 
techniques has enabled spectroscopists to resolve the rotational structure of electronic 
transitions for larger molecules such as benzene or naphthalene (see Sect. 12.4). 

The spectral region and the structure of the spectra depend, as in the case of di- 
atomic molecules (see Ch. 4), on the upper and lower levels of the transition. If only 
the rotational quantum numbers change during the transition, pure rotational spectra 
in the microwave region are obtained; if the vibrational quantum numbers also change, 
this results in vibration-rotation spectra in the infrared; if the transition is between dif- 
ferent electronic states, electronic spectra in the visible and UV region are observed. 

In any case, only such electric dipole transitions between states Im) and Jk)  are 
possible for which at least one component of the transition dipole matrix element 

(Dslk) ,~=/@~;@4dr9 P = X , Y , Z  

is nonvanishing. This condition is only satisfied if the integrand is totally symmetric 
under the symmetry operations of the molecular point group (see Sect. 8.2.2). 

Apart from these electric dipole transitions, much weaker magnetic dipole transi- 
tions or (even weaker) electric quadrupole transitions can also occur. 

8.1 
Pure Rotational Spectra 

The structure of rotational spectra depends on the structure of the molecule under 
consideration and on possible centrifugal distortions during its rotation. Pure rota- 
tional transitions are only possible for molecules with a permanent electric dipole 
moment (see Sect. 4.2.1). This will be elucidated in the following for different types 
of molecules. 
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Copyright @ZOOS WILEY-VCH Verlag GmhH & Co. KGaA, Weinheim 
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8.1.1 
Linear Molecules 

The spectra of linear polyatomic molecules are similar to those of diatomic molecules. 
The molecule rotates only around an axis perpendicular to the internuclear axis, and 
hence there is only one rotational constant B ,  as in the diatomic case. The wavenum- 
bers of the rotational lines due to transitions from a level with rotational quantum 
numberJ to the level (J+ 1) in the same vibrational state are, in analogy to Eq. (3.18), 

P = F ( J + l ) - F ( J )  =2B,(J+1)-4DV(J+1)' .  (8.1) 

As an example, Fig. 8.1 shows the pure rotational spectrum of the linear N 2 0  mole- 
cule. From the distances of the lines, the moment of inertia can be determined, which 
shows that NzO is asymmetric, N-N-0, and that it must therefore possess a perma- 
nent electric dipole moment, in contrast to the symmetric linear C02 (O=C=O). 

As linear molecules consisting of N atoms possess (3N - 5 )  vibrational degrees of 
freedom, the rotational constant 

and the centrifugal constant 

I 

65 

Frequency v (THz) 
0.30 0.45 0.60 0.75 0.90 1.05 1.20 

6 0 1 " ' ' '  10 15 " " 20 I " " 25 ' " ' ' I  30 " " " " "  35 
40 

v I cm" 
Fig. 8.1 Rotational spectrum (microwave spectrum) of the linear 
molecule N20 [8.1]. 
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electric dipole 
transitions 

1 e -  

Fig. 8.2 l-splitting of the rotational levels of a linear molecule for 
degenerate bending vibrations with vibrational angular momen- 
tum Ill = 1 R, and allowed transitions between the components. 

[cf. Eq. (3.44)] will in general depend on all (3N - 5) vibrational quantum numbers 
IJ; (the degree of degeneracy is di = 2 for bending vibrations and d; = 1 for all other 
modes). 

As the superposition of two degenerate bending vibrations (Fig. 6.1 la) leads to a 
rotation of the nuclei around the internuclear axis, the linear molecule assumes in this 
case a vibrational angular momentum E l i  along z ,  and the Coriolis interaction between 
rotation and vibration leads to an 1-splitting of the otherwise degenerate levels into 
two 1 components of opposite parity. They are denoted e and f components (Fig. 8.2), 
respectively (see Sect. 6.3.6). According to Eq. (6.92) and Fig. 8.2, the wavenumber 
of the allowed dipole transitions between the adjacent rotational levels is then 

and between the split I components of the same rotational level, 

fi/ = F,t(J,I+) -F ; (J , I - )  = 4 ' ( I J ; +  l ) J ( J +  1 ) .  
2 

The selection rules for electric dipole transitions are 

e - e ;  f - f ;  e w f  f o r A J = f l ,  

e - f ;  e w e ;  f - f  fo rAJ=O.  

(8 .5)  

Whereas the frequencies vrOt of the rotational transitions Eq. (8.4) lie in the microwave 
(i.e., gigahertz) region, the y transitions between the 1 components of the same rota- 
tional level are usually found in the radiofrequency range. 
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8.1.2 
Symmetric Top Molecules 

The dipole moment p~ ( L  = X ,  Y , Z )  in the laboratory-fixed system ( X ,  Y , Z )  

can be expressed by the components pi in the molecule-fixed system using the direc- 
tion cosine elements + L ~  ( i  = x,y ,z ) .  

In symmetric top molecules, p must be directed along the symmetry axis z (i.e., 
p., = pv = 0). The square of the transition dipole matrix element 

yields then [8.2] the only nonvanishing elements 

(8.7b) 

(8 .7~)  

(8.7d) 

where IL = lpl = pz. The selection rules for pure rotational transitions are 

A J = z t 1 ,  A K = Q .  (8.7e) 

If we substitute the expressions Eqns. (6.28) and (6.30) for the energy levels of the 
prolate and oblate symmetric top, respectively, we obtain for the wavenumbers of the 
rotational transitions 

f i = F u ( J +  l , K ) - F u ( J , K )  

= 2(Bv - D J K K ~ ) ( J +  I )  - 4 D j ( J +  . 

Note: Equation (8.8) contains none of the rotational constants A,,  Cv 
or Dk. As a consequence, these constants cannot be determined from a 
measurement of the pure rotational spectrum of symmetric top molecules! 

According to the selection rules Eq. (8.7), there is for a given level ( J , K )  one 
absorption transition to a higher level ( J  + I , K )  and, for J > 0, one emission transition 
to the lower level (J - 1, K ) .  The wavenumbers of transitions with different K but 
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Fig. 8.3 Schematic representation of the rotational spectrum of 
a symmetric top molecule [8.4]. 

equal J in Eq. (8.8) differ only marginally because DJK << B , .  As the projection 
quantum number K is in the range 0 < K < J ,  each rotational transition contains a 
substructure of J + 1 different K components (Fig. 8.3). 

The intensities of the corresponding absorption lines are proportional to the popu- 
lation N(J,K) of the absorbing level (see Sect. 8.1.4) and to lDikJ2. 

8.1.3 
Asymmetric Top Molecules 

We saw in Sect. 6.2.5 that the energy levels of an asymmetric top molecule cannot 
be given in closed form but must be expanded in a power series. For each value of 
the rotational quantum number J ,  there are (U+ 1 )  different energy levels, which 
are enumerated either by a subscript T running from -J to +J or by the projection 
quantum numbers K,,, K,., which are defined in the limiting cases of the prolate or 
oblate symmetrical top. Hence, a rotational level is denoted by either J ,  or by JK,,K,.. 
The relation between both labeling schemes is given by T = K, - K,.. The values of 
K,, and K,. are in the range from 0 to J with the additional conditions K, + K,. = J or 
( J  + I ) ,  depending on the parity of the specific state. 

The wavenumber of a transition between two rotational levels is given by 

Whether such a transition actually occurs is determined by the selection rules, which 
are more complicated for asymmetric tops than for symmetric tops, where the rule was 
simply AK = 0. They depend on the orientation of the permanent dipole moment and 
on the parity of the states involved (specifically, the question is if K, and K,. are even 
or odd). If the dipole moment is oriented along the a axis (smallest moment of inertia 
I , , ) ,  the transitions are called A-type transitions, and analogously for the b (medium 
moment of inertia) and c (largest moment of inertia) axes. If the dipole moment is 
oriented arbitrarily within the molecule, the same arguments hold for its components 
along a, b or c .  

The selection rules for pure rotational transitions in asymmetric top molecules are 
summarized in Table 8.1 in terms of parity (e or o), the rotational quantum number 
J and the projection quantum numbers K, and K,. We see that for a transition to be 
allowed, the parity of either K, or K,  must change. In contrast to the selection rules for 
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Tab. 8.1 Selection rules for pure rotational transitions of an asymmetric top molecule. 
I 

Selection rules 

Orientation of Symmetries upon 
dipole moment rotation around a, c KL , K:. u Kl, K: AJ9 AKll, f=c 

a axis ++ c) -+ 
-- t) +- 

h axis ++ - -- 
+- t--t -+ 

c axis ++ - +- 
-+ u -- 

ee c.t eo 
oe ++ 00 

ee c) 00 

oe c.t eo 

ee - oe 
eo - 00 

and: 
h l = O , f l  

=0,*1,*2, ... 
AK,. =0,f l ,*2,  ... 
depending on parity. 

the symmetric top discussed before, not only transitions with AK, or AKc = 0, f 1 are 
allowed in asymmetric tops, but depending on the parity of the K, and K, levels, also 
transitions with AK,,AK, = f l ,  f3,. . . or f 2 ,  f 4 , .  . ., respectively, are now allowed. 
The intensities of the corresponding lines in the spectrum are weak, however, and 
decrease even further the more the molecular geometry approaches that of a symmetric 
top. 

If the molecule is an almost symmetric prolate top, the selections rule is AK', = 
0, f 1 ; for an almost symmetric oblate top, it is AKc = 0, f 1. 

The selection rules can also be expressed by the symmetry behavior of the rota- 
tional wavefunction upon rotation by 180" around a C2 axis along a, b or c. If the 
wavefunction is unchanged under this operation, its symmetry is denoted (+), if it 
changes sign, it is denoted (-). Usually, only the behavior upon rotation around C; 
and C; is indicated; the behavior upon rotation around the b axis is then fixed. The 
symmetry of a rotational level JK,,K, or J ,  can then be denoted by (++), (+-), etc. 
(Fig. 8.4). 
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Fig. 8.4 Dipole-allowed rotational transitions of an asymmet- 
ric top molecule if the dipole moment is oriented along a) the 
a axis, b) the b axis and c) the c axis [8.4]. 
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8.1.4 
Intensities of Rotational Transitions 

If an electromagnetic wave with incident intensity lo  passes through an absorbing 
medium with absorption coefficient a( v), the transmitted intensity Itrans after a path 
of length L is 

Itrans(v) = lo(.) e- 4 v ) L .  (8.10) 

For a L  << l ,  the net absorption is 

Using the Einstein coefficients B;k, the net absorption is obtained as the difference 
between absorption and stimulated emission, 

Al(v) = [NiBik-NkBk;] Q ( v ) h v L ,  (8.12) 

where ~ ( v )  = I ( v ) / c  is the spectral energy density. 
Integrating over the line profile a(.) with full width at half maximum Av, we 

obtain the total absorption from this transition. To perform the integration, we must 
replace the quantity e(v) in Eq. (8.12) by 

~ = J p ( v ) d u ;  I =  I (v)dv=I(vo)Av.  J 
In thermal equilibrium at a temperature T ,  the ratio of the population densities follows 
the Boltzmann relation, 

(8.13) 

Using the relations g;B;k = gkBki, we obtain for Eq. (8.12), 

(8.14) 10 Al = -hvLB;kNi 
C 

For transitions in the microwave region, h v  = AE << $T so that Eq. (8.14) becomes 

(8.15) 

This shows that the net absorption is proportional to the density Ni of absorbing 
molecules and to the ratio ( A E ) 2 / $ T  = ( ~ Y ) ~ / $ T .  

The population density N; in the absorbing level l i) and the total density of mole- 
cules N are related by the Boltzmann relation, 

(8.16) 
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where 

(8.17) 
n 

is the partition function, which runs over all molecular states En and which serves as 
a normalization factor ensuring CNn = N .  

If we use also the relation 

(8.18) 

between the Einstein coefficient B;k and the transition matrix element D;k, we finally 
arrive at the relation valid for (Ek - E ; )  << b T ,  

(8.19) 

The transition dipole matrix element Dik depends on the molecular structure. For 
linear molecules, the dipole moment points along the molecular axis, whereas it is 
oriented along the symmetry axis for nonlinear symmetric top molecules. 

If we calculate the sum over all possible values of M, that is, over the (2J + 1) 
possible orientations of J ,  we obtain for a transition with AJ = +1 and AK = 0 in 
symmetric tops 

2 ( J + I ) * - K 2  
JDikJ2 = p  ( J +  1)(2J+ 1) . (8.20) 

The intensities of the rotational absorption lines for transitions ( J  + 1 , K )  +- ( J ,  K )  are 
there fore 

N 2x2u2 ( J +  1)*-K2 
Al(J, K) = /i 1Ogi-L- z 3&, (J+l)(U+I)  ' 

(8.21) 

where the statistical weight of the absorbing level is the product g; = gJK x g,, of the 
weights gJK = 2 ( U  + 1)  of the rotational level IJ,K) and g,, of the nuclear spins. 

This will be examined more closely in the following. 

8.1.5 
Symmetry Properties of Rotational Levels 

The symmetry properties of rotational levels and their statistical weights depend on the 
molecular point group, the quantum numbers J and K ,  the vibrational and electronic 
states, and the nuclear spins. Within the Born-Oppenheimer approximation, the total 
wavefunction can be written as a product of electronic, vibrational, rotational, and 
nuclear spin wavefunctions, 

Ik- = $el$vib$rot$ns . (8.22) 

Hence, its symmetry depends on the individual symmetries of these four factors. 
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Fig. 8.5 Symmetry types of rotational levels for molecules b e  
longing to point group &h. 

For rotational transitions within the same electronic and vibrational state we only 
need to take into account the symmetries of and q ! ~ " ~ ,  because the square moduli 
IGe1I2 and (Qvib12 in the matrix element Dik are always totally symmetric. 

The symmetry species of Qrot correspond to those of the molecule's rotational 
group. The rotational group is, for example, C3 for molecules belonging to group 
C3" (such as ammonia, NH3) or D3 for molecules belonging to D3h (such as ethane, 
C2H6). The point group C3 comprises the symmetry species A and E ,  whereas in D3, 
there are A 1 ,  A2 and E (see the character tables in the appendix). 

The rotational wavefunctions expressed in the laboratory-fixed system can be writ- 
ten as the product 

of the Legendre polynomial @(8) and two exponentials. They depend on the Euler 
angles 8, K and p between the axes of the molecule-fixed and those of the laboratory- 
fixed system, where cp is the rotational angle around the symmetry axis. A rotation 
by an angle p = 2 x / 3  leaves QrOt unchanged if K = 3m (m = 0,1,2,3,. . .). Hence, 
the rotational levels with K = 3m belong to symmetry species A for C3v molecules, 
whereas for all other levels, QrO1 neither changes sign nor is it left unchanged upon this 
operation, but is transformed into a linear combination of two functions and belongs 
thus to symmetry species E (see Sect. 5.5.2). 

For molecules belonging to point group D3h, the rotational levels with K = 0 have 
symmetry A1 for even rotational quantum numbers J and A2 for odd J .  For K = 
3m f 0 there is one K component with symmetry At and one with A2 symmetry. For 
K = 3m f I ,  the symmetry type of the rotational wavefunction is E (Fig. 8.5). 

In a similar manner, the symmetries of rotational levels can be determined for other 
point groups using the corresponding character tables (see, e.g., [8.3]). The symmetry 
type of rotational levels is important for the determination of statistical weights, as 
will be discussed in the following section. 
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8.1.6 
Statistical Welghts and Nuclear Spin Statistics 

The rotational angular momentum of a molecule can assume (U + 1 )  orientations 
in space, which are all degenerate in the absence of an external field. Hence, the 
statistical weight g(5 ,  K )  of a rotational level ( 5 , K )  is g(5, K = 0) = 25 + 1 for K = 0. 
For K # 0 there are two K components with a very small splitting that cannot be 
resolved in most cases. The statistical weight of these levels is therefore 2(2J + 1). 

Again, as for diatomic molecules, the symmetry of the nuclear spin wavefunction 
is an important factor in determining the populations of rotational levels and hence 
the intensities of the rotational lines. The total wavefunction !P must be symmetric 
with respect to the exchange of two identical bosonic nuclei (integer nuclear spin) and 
antisymmetric with respect to the exchange of two identical fernionic nuclei (half- 
integer nuclear spin). 

The symmetry operations of a molecule may interchange more than two identical 
nuclei. The number of possible permutations depends on the molecular point group 
and on the symmetry properties of the wavefunction +. As this number determines the 
statistical weight of the nuclear spin functions, the intensities of rotational lines and 
the intensity alternation for transitions between symmetric or antisymmetric rotational 
levels depend also on the number of identical nuclei in the molecule, on the vibrational 
level, and on the symmetry group of the molecule. For example, a molecule with a 
C,, symmetry axis must possess at least n identical nuclei that are interchanged upon 
rotation by an angle 27cmln. This will now be detailed for a number of examples. 

In the case of a C3 symmetry axis, a rotation by an angle cp = 120" is equivalent to 
an exchange of two pairs of nuclei. As Fig. 8.6 shows, such a rotation passes nucleus 1 
into 2,2 into 3, and 3 into 1. This situation is equivalent to two pair interchanges 2 H 1 
and 3 H 1. Hence, such a rotation is always connected with a symmetric nuclear spin 
function, irrespective of the fermionic or bosonic nature of the nuclei. 

Next, we consider a nonplanar molecule AB3 of point group C3", in which the 
B nuclei have nuclear spin I = 0, that is, they are bosons. In this case, there exists 
only a symmetric nuclear spin function. As the total wavefunction must be symmet- 
ric, only rotational levels with K = 3m are possible for symmetric functions and 
&ib. Therefore, no lines starting from levels with K = 3m f 1 occur in the rotational 
spectrum. 

3 1 3 1 

Fig. 8.6 Equivalence of a rotation by 120" around a C3 axis and 
a double pair interchange of identical nuclei. 
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I 
Fig. 8.7 The eight possible orientation of nuclear spins 1 /2  in 
molecules with a C3 symmetry axis. 

For a planar molecule, rotations around the C2 axes are also possible that inter- 
change only one pair of identical nuclei. If the nuclei are bosons, the nuclear spin 
wavefunction is left unchanged by this operation, and therefore only A1 levels are 
possible in Fig. 8.5, whereas for fermionic nuclei, only A2 rotational levels are al- 
lowed. 

For nuclei with nuclear spin I # 0, the number of possible nuclear spin functions 
depends on the value of I. 

In the nonplanar molecule NH3, there are three hydrogen atoms with nuclear spin 
I = 1 /2. A rotation of the molecule around its C3 axis by an angle 7 ~ / 3  or 2x/3 in- 
terchanges two pairs of hydrogen nuclei. There are eight nuclear spin wavefunctions, 
which are listed in Fig. 8.7. The combinations I and VIII are obviously symmetric. 
However, linear combinations $ns (11) + $ns (111) + $ns (IV) and gns (V)  + $)ns (Vl) + 
+ns(VII) are also symmetric (symmetry type A l )  under a rotation by 120". The four 
remaining nuclear spin functions (which are also linear combinations of II-VII) are 
linearly independent of the functions discussed until now. They can be combined into 
two pairs of linear combinations, which upon rotation by 120" are transformed into 
linear combinations of each other; that is, they have symmetry type E .  

As the product $rot+ns must have symmetry A2, no rotational levels with symmetry 
Al occur for K = 0. For K > 0, the rotational levels with symmetry A2 (A2 x A1 = A2) 
have statistical weight four (because there are four nuclear spin functions with sym- 
metry A l ) ,  whereas the rotational levels with symmetry E ,  belonging to the nuclear 
spin functions with E symmetry ( E  x E = A1 +A2 + E ) ,  have statistical weight two, 
because there are two nuclear spin functions with E symmetry. The statistical weights 
alternate like 1:1:2:1:1:2 for K = 1,2,3,4,5,6 ,.... 

For nuclear spins I > 1 /2, there are more nuclear spin functions, among them also 
some with symmetry A2. which is the reason why now all rotational levels can occur 
irrespective of their J values. The statistical weights for molecules with a C3 axis are, 
for three identical spin-l nuclei, 

gnS = (21+ 1 ) ( 4 1 2 + 4 1 + 3 ) / 3  for K = 3m, 

gns = (21+ 1)(412 +41)/3 for K = 3 m 6  1 

(8.24a) 

(8.24b) 
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For molecules belonging to other point groups, the statistical weights can be deter- 
mined analogously. Often, this requires a tedious analysis of the possible nuclear spin 
functions and their symmetry. A more detailed account with many examples can be 
found in [8.3]. 

8.1.7 
Line Profiles of Absorption Lines 

The spontaneous lifetimes of rotational levels in the electronic ground state are long 
enough so that the natural linewidths of the absorption lines are too small to be re- 
solved experimentally. Doppler widths are also small in the microwave region, be- 
cause the frequencies are small compared to those of optical transitions, and they are 
in general negligible compared with pressure broadening. The line profile of the ab- 
sorption coefficient a(.) is therefore a Lorentz profile, 

(8.25) 

where a(u0) is the maximum absorption at the mean frequency u(0) and Au is the 
full width at half maximum. The area below the absorption profile a(.) is a measure 
for the total absorption due to this rotational transition. It is also called line strength 
S. Integration of Eq. (8.25) yields 

(8.26) 

For the absorption at the line maximum of a rotational transition ti) + Ik), we obtain 
from Eq. (8.19) 

(8.27) 

Hence, the absorption coefficient at the line maximum is proportional to the square 
vi of the transition frequency and inversely proportional to the line width and the 
temperature. 

8.2 
Vibration-Rotation Transitions 

In the harmonic approximation, the term value of an arbitrary vibrational state can be 
written as the sum of the term values of the excited normal vibrations with degrees of 
degeneracy d;, 

(8.28) 
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Tab. 8.2 Wavenumbers (cm-') of normal modes for some triatomic molecules. 

Molecule VI u2 u3 

co2 1383.3 667.3 2284.5 
cs2 658.0 396 1535.4 
HCN 2q96.7 713.5 331 1.5 
HzO 3657.1 , 1594.8 3755.8 
D20 2668.1 1178.4 2787.7 
H2S 26 14.4 I 182.6 2628.5 
NO2 1319.8 749.7 1616.9 
so? 1151.7 5 17.8 1362.0 

Hence, in the harmonic approximation, the molecule can be considered a superpo- 
sition of harmonic oscillators, each of which experiences vibrational transitions by 
absorption or emission of radiation that can be treated exactly as those of a diatomic 
molecule (see Sect. 4.2.4). 

Table 8.2 lists the wavenumbers of normal modes for a number of molecules. 
Due to the anharmonicity of the molecular potential, the vibrational term values in 

real molecules are not equidistant but move closer if the vibrational energy increases. 
Furthermore, the anharmonic potential mediates a coupling between different normal 
vibrations, thereby shifting their term values, which are no longer a simple sum of the 
term values of normal modes but include additional coupling terms (see Sect. 6.3.5). 
The wavefunctions of higher vibrational levels are then linear combinations of vibra- 
tional functions of the individual coupling states. This renders possible transitions 
to levels which would be forbidden in the absence of this coupling. This is one of 
the reasons why the density of levels increases rapidly with increasing energy, and 
correspondingly the spectrum becomes more complex. 

8.2.1 
Selection Rules and Intensities of Vibrational Transitions 

The symmetries of the vibrational wavefunctions decide between which vibrational 
levels transitions can occur. If we expand the nuclear dipole moment 

(8.29) 

in a Taylor series in powers of the displacements 4 from the equilibrium positions 
4 = 0 of a normal mode and substitute it into the matrix element 

J 
(8.30) 



Fig. 8.8 Dipole moment pnuc and polarizabiliy Q as a function of 
the normal coordinate q in C02. 

the first term vanishes, in complete analogy to the situation in diatomic molecules, 
because the vibrational wavefunctions are orthogonal. Hence, the second term in 
Eq. (8.30) is the matrix element for transitions between the vibrational levels Im) and 
Ik). It is nonzero only if both factors [d(pnuc)/dq]o and the integral are nonzero. 

This means that only normal vibrations during which the molecular dipole moment 
changes contribute to the infrared absorption; they are thus called infrared active. In 
asymmetric molecules such as HCN, all normal modes change either the magnitude 
or the direction of the dipole moment and are thus infrared active. Only in symmetric 
molecules such as C02 can normal modes exist for which the dipole moment does 
not change; they are called infrared inactive. For example, the symmetric stretching 
vibration vl in CO;! is infrared inactive, because the dipole moment remains zero 
throughout this vibration, whereas the bending vibration y and the antisymmetric 
stretching vibration are infrared active (Fig. 8.8). However, there are also symmetric 
molecules (such as H20) in which all normal vibrations are infrared active because 
the dipole moment pnuc changes during all of them. 

For nondegenerate vibrational levels, the second integral in Eq. (8.30) is nonzero 
only if the integrand is totally symmetric. In the language of group theory (see 
Sect. 5.5.4), this means that for transitions between nondegenerate vibrational levels 
grn and ?/Ik the following relation for the respective symmetry species r must hold: 

(8.31) 

where A is the totally symmetric representation for an arbitrary point group. 
If at least one of the vibrational levels is degenerate, the product Eq. (8.31) can be 

written as a sum of irreducible representations, and the condition Drnk # 0 reduces to 
the requirement that upon reduction of the product Eq. (8.31) to a sum (see Sect. 5.5.4) 
at least one of the summands is the totally symmetric representation A. 
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4 0 0 

V1 v2 v3 

Flg. 8.9 Changing magnitude of the dipole moment during the 
symmetric vibrations V I  and v2 and changing direction of pnuc 

during the antisymmetric stretching vibration v3. 

If we consider absorption transitions starting from the vibrational ground state, 
their vibrational wavefunctions will always be totally symmetric, that is, their symme- 
try type is A. For the integrand to be totaly symmetric, the product r ( q ) r ( K k )  must 
then also be of symmetry A. Hence, all vibrational levels satisfying this symmetry 
condition can be reached through electric dipole transitions. 

The product d(pnuc)/dqlqO x q has the same symmetry properties as q because 
the first factor is simply a number, that is, a scalar. The vibrational amplitude q = 

(q,r,q,,qz) is a vector transforming like a translation vector under the symmetry oper- 
ations of the group, and we can therefore gather the symmetry species of the compo- 
nents of pnuc directly from the character table of the respective symmetry group. 

As an example, we will consider molecules of point group C2". A quick glance 
at the character table shows that for the z component of q, having A1 symmetry, all 
vibrational levels with A1 symmetry can be reached from the ground state, whereas 
for the x component with BI  symmetry, only levels with symmetry B1 can be reached, 
because the group multiplication table (Table 5.1) shows that B1 x BI = A1 . 

Analogously, the y component of q enables transitions into states with symmetry 
B2. The totally symmetric stretching vibration v1 and the bending vibration vz (both 
of symmetry A 1 ) can therefore only be excited from the ground state if q possesses a 
component along z ,  whereas the antisymmetric stretching vibration v3 can be excited 
if q possesses a component along y. 

Another example is the bent H 2 0  molecule, in which the dipole moment is oriented 
along the C2 axis (Fig. 8.9), which we choose to coincide with the z axis, and Pnuc 

changes during all normal vibrations so that all are infrared active. For the normal 
vibrations v1 and v2 (both with symmetry A l )  only the magnitude of Pnuc changes, 
but for the antisymmetric stretching vibration v3, the direction of pnuc changes, too 
(Fig. 8.9). 

The linear molecule C02  belongs to the point group Dmh. The symmetric stretching 
vibration V I  , in which the two oxygen atoms oscillate symmetrically with respect to 
the center of inversion, has symmetry Cg' as evident from the character table, because 
the vibration remains unchanged under all symmetry operations. 

The antisymmetric stretching vibration v3 (Fig. 6.8b) has Xi symmetry. For transi- 
tions of V I  , d(pnuc) /dt = 0 and there is thus no absorption in the infrared. The upper 
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level in 24 transitions has Ei symmetry. As the displacement q has also Z i  symmetry 
for u3, the integrand of the second term in Eq. (8.30) is totally symmetric, and the 
transition is infrared active. 

The doubly degenerate bending vibration 24 has E symmetry. The vector q points 
along x or y. Hence, the integrand has symmetry 

I 

and contains the totally symmetric representation. The y vibration is therefore in- 
frared active. 

If for a transition Ik) t 10) starting from the vibrational ground state 10) the upper 
vibrational level is degenerate, the condition r(pnuc)T($o)r($k) 3 A1 still must be 
satisfied for the transition to be infrared active. 

As an example, we consider the NH3 molecule, belonging to point group C3,,. The 
two normal vibrations ~3~ and U3b in Fig. 6 . 8 ~  are degenerate, and their wavefunctions 
are linear combinations of symmetry type E. From the C3,, character table we see that 
the x and y components of pnuc have also E symmetry. The product E x E = A I +A2 + 
E contains the totally symmetric representation A 1,  and therefore the matrix elements 
for the transitions from the vibrational ground state to the ug levels are allowed for the 
x and y components of pnuc. 

We see from these examples that group theory is a powerful tool for deciding 
whether a transition is allowed or forbidden. However, symmetry arguments provide 
no information on the intensity of an allowed transition, which is given by the product 
[see Eqns. (8.19) and (8.27)] 

(8.32) 

of population density Nm = g , N / Z  in the absorbing vibrational state u, (where v,,, 
represents the ensemble of all vibrational quantum numbers of the absorbing level), 
the statistical weight g,, the dipole moment change dpn,c/dq, and the square of the 
transition matrix element Dmk. In other words, it depends on the electron configuration 
of the specific molecule and not only on its symmetry group. 

8.2.2 
Fundamental Transitions 

In Sect. 6.3 we saw that except for very large vibrational excitations, the energy of the 
upper vibrational level can be written as a linear combination of the energies of the 
contributing normal vibrations Eq. (6.8 1). The nuclei oscillate synchronously around 
their equilibrium positions, but for degenerate vibrational modes not necessarily in 
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phase. As the vibrational frequencies depend on the masses of the vibrating nuclei 
and on the force constants of the restoring forces F = - gradEPOt, which in turn are 
determined by the change in potential energy upon displacement from the equilib- 
rium position, these vibrational frequencies are characteristic for each specific type 
of molecule. For transitions from the vibrational ground state into excited vibrational 
states, they appear as absorption frequencies in the spectrum. The line positions pro- 
vide spectroscopists with unique information on the molecules contained in a sam- 
ple. The corresponding spectral region is therefore often called thejngerprint region 
of the spectrum (Table 8.2). Vibrational transitions from the ground into an excited 
state are enumerated according to their symmetry, and the transitions are arranged in 
order of decreasing frequencies within a symmetry class. The ordering of the differ- 
ent symmetry species follows the scheme introduced by Mullikan and completed by 
Herzberg [8.4]. 

For example, in a molecule with C2" symmetry, the two totally symmetric a1 vibra- 
tions are designated V I  and 24, the antisymmetric stretching vibration of b2 symmetry 
is 4 .  Hence, the three vibrations of the H20 molecule are V I  (a1 stretching vibration, 
3657 cm-' ), 4 (a1 bending vibration, 1595 cm-') and v3 (b2 antisymmetric stretching 
vibration, 3756cm-I). 

Apart from the normal vibrational modes, in which more or less all atoms in the 
molecule participate, so-called local vibrational modes occur frequently, arising from 
the vibration of a specific group of atoms within the molecule rather than the complete 
molecule. For example, if a lightweight atom A is connected to a heavy atom B 
which in turn is bonded weakly to the rest of molecule, then the frequency qoc of 
the local vibration between A and B is almost independent of the remainder of the 
molecule. The heavy atom B acts in this case like a wall against which A vibrates. 
An example for such local modes is the 0 - H  vibrational frequency, which does not 
differ significantly in the two molecules CH30H (methanol) and CH3CH20H (ethyl 
alcohol). 

The absorption frequencies of such local vibrational modes are therefore character- 
istic for specific groups of atoms within the molecule. Table 8.3 lists some examples 
for the wavenumbers of local vibrations of typical groups of atoms in molecules. 

8.2.3 
Overtone and Combination Bands 

For harmonic potentials, the selection rule for transitions between vibrational levels 
is simply Av = 1 for each normal vibration, as in the case of diatomic molecules. 
The anharmonicity of the potential, which is more pronounced in polyatomic than in 
diatomic molecules, enables transitions with Av = 2,3,4,. . . to occur in the infrared 
spectrum. The intensities of these so-called overtone transitions decreases rapidly 
with increasing Av, however. 
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Tab. 8.3 Characteristic vibrational wavenumbers for stretching and bending vibrations 
for some groups of atoms in molecules [8.5]. 

I 

Stretching vibrations 
Group C/  cm-' 

Bending vibrations 
Group ij/ cm-I 

.H 
H 

c=c, 

,H 
H 

o=c, 

2C-H 

3020 

2800 

2960 

-c=c- 2050 

:c= c: 1650 

:c= 0 1700 

O H  

O H  

H 

-C_H 
H 

=C: 

n 
CGC-C 

1100 

1000 

300 

1450 

In addition, so-called combination transitions can appear in the spectrum, in which 
the quantum numbers of two of more normal modes change simultaneously (Fig. 
8.10). 

There are essentially two reasons for the appearance of overtone transitions. 

1. The anharmonicity of the potential, which effects the appearance of overtones 
in the frequency spectrum of the anharmonic oscillator (Fourier analysis of the 
anharmonic vibration). 

2. In such anharmonic potentials, the dependence of the dipole moment on the 
nuclear coordinates is no longer linear, but Eq. (8.29) contains higher-order 
terms d"pnuc/dq" with n > 1, and these can lead to overtone frequencies. 

The symmetry selection rules for overtone transitions starting from the vibrational 
ground state are the same as for fundamental transitions. 

Thus, an overtone transition is infrared active if at least one component of the tran- 
sition dipole moment belongs to the same symmetry species as the vibrational function 
of the upper level. Table 8.4 shows the symmetry types of some excited vibrational 
states for a linear and a bent triatomic molecule. From this list it is immediately evi- 
dent which of the overtone transitions are infrared active and which are Raman active 
(see Sect. 8.4). 
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2. 3f Overtone 

Vi vk  l . v i  + l . v k  

Fig. 8.10 Term diagram for fundamental, overtone and combina- 
tion transitions. 

To describe an overtone or combination transition in a shorthand notation, the tran- 
sition v,, (w") -+ v, (w') from w'' to w' vibrational quanta in the nth normal vibration v,, 
is abbreviated by 

nvN V 1  = (o,o,. . . , v;",~) -+ (o,o,. . . , v l ' , ~ )  . 

Analogously, a combination transition v,, (wi) + v,,, (wi) to v, ( u k )  + vm( w6) is written 

Hence, the transition (O,O,O) -+(0,2,0) is abbreviated 2:, and the transition (O,O, 1)- 
( 1,0,2) becomes 1; 3:. 

Measurement of overtone transitions provides important information on the anhar- 
monicity of the potential and the coupling between different vibrations, which lead 
to a shift in the vibrational energies. In Sect. 6.3.5, the influence of the anharmonic 
potential on the coupling between different vibrational levels has been discussed. The 
coupling becomes particularly large if the levels are closely spaced. Again, a strict 
symmetry selection rule governs the coupling: only levels of like symmetry can inter- 
act! 

Tab. 8.4 Symmetry types of excited vibrational states in linear and bent triatomic XY2 
molecules. 

Ul V? u3 bent XYZ (CzY) linear YXY (&,) 

0 0 0 AI  

0 1 0 A I  

1 0 0 A I  

0 0 1 B2 

1 0 2 AI  

1 3 0 A I  
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Fig. 8.1 1 Fermi resonance between the vibrational levels 
(0,2O,O) and (1,0,0) of like symmetry in the C02 molecule. The 
dotted lines show the positions of the unperturbed levels, which 
repel each other due to the Fermi resonance. 

Often, a fundamental transition of one normal vibration and an overtone transition 
of another normal vibration lead to excited levels of equal symmetries and almost 
equal energies. In such cases, the interaction between the levels is particularly strong 
and leads to large frequency shifts for both interacting levels (Fermi resonance). For 
example, the two vibrational levels (0.2,O) at 1285.5cm-' and (l,O,O) at 1388cm-' 
of the COZ molecule have the same symmetry and are, neglecting the perturbation, 
energetically very close (Fig. 8.1 1). The interaction shifts the lower level to lower 
wavenumbers and the higher level to higher wavenumbers (see also Sect. 9.1.3). 

For high vibrational excitation, the density of levels becomes larger, and an excited 
level can interact with several other levels of like symmetry. Such mutually coupled 
levels are called a Fermi polyad. 

In some molecules, two fundamental transitions of normal vibrations with differ- 
ent symmetries have almost identical energies. Although they cannot interact directly, 
overtone vibrations of both modes can possess the same symmetry and can interact 
with each other. This was first recognized by Darling and Dennison, and this interac- 
tion is therefore called Darling-Dennison resonance. For example, the two overtone 
vibrations 2vl and 2v3 in the H 2 0  molecule both have a1 symmetry (although v3 
has h2 symmetry), because for 2 ~ 3 ,  b2 x b2 = a] ,  and they lie closely adjacent at 
7201 cm-' and 7445 cm-' , respectively. 

At sufficiently high vibrational excitation, a molecule may dissociate. In normal 
vibrations, all atoms of the molecule participate in the vibration. To dissociate a 
molecule, however, sufficient energy must be concentrated in the bond between the 
prospective fragments. If we compare the experimentally determined bond dissocia- 
tion energies with the total vibrational energy in a molecule, we see that for very high 
vibrational excitation, the energy cannot be distributed evenly among all atoms in a 
normal-mode model but must be concentrated in those bonds that finally break. To ex- 
plain this phenomenon, the model of localized vibrational modes has been introduced 
(see Sect. 8.2.2). 
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Fig. 8.12 Contour line representation of the HzO potential 
ergy surface illustrating the dissociation upon excitation of 
vibrational modes. 

en- 
local 

In this model the H20  molecule is treated, for example, as consisting of two anhar- 
monic diatomic oscillators, each consisting of a hydrogen atom vibrating against the 
much heavier oxygen atom. The restoring force is the 0 - H  bond. The two oscillators 
are weakly coupled by the heavy oxygen atom. The coupling mediates a periodic shift 
of the vibrational energy from one oscillator to the other. If the energy concentrated 
in one oscillator is large enough to break the 0 - H  bond, the molecule dissociates into 
OH + H. 

In the potential energy diagram of Fig. 8.12, this means that the dissociation pro- 
ceeds over the lowest possible energy barrier. 

8.2.4 
Rotational Structure of Vibrational Bands 

Exactly as in diatomic molecules, vibrational transitions in polyatomic molecules con- 
sist of many rotational lines originating from all occupied rotational levels ( J , K )  for 
symmetric top rotors or (.I,&&) for asymmetric top molecules in the lower vibra- 
tional level and obeying the selection rules AJ = 0, f 1, AK = 0, f 1, f2,. . . and the 
symmetry selection rules discussed in Sect. 8.2.2. 

In linear molecules, vibrational transitions C --f C contain only rotational lines 
with AJ = f l  (Fig. 8.13), whereas in transitions C H n rotational lines with AJ = 

0 can also occur, because here the vibrational angular momentum ensures angular 
momentum conservation (of the complete system of photon plus molecule) during 
absorption. 
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Fig. 8.13 Rotational structure of a vibrational band in a Eg tt C, 
vibrational transition of a linear molecule. 

For symmetric top molecules, both parallel (AK = 0) and perpendicular (AK = k 1) 
vibrational bands contain P, Q and R branches, except for transitions from K = 0 + 

K = 0, where the Q branch with AJ = 0 is missing. Hence, each vibrational band 
consists of two or three K subbands. The wavenumbers of the rotational lines are 
given by the differences of the rotational term values Eq. (6.28) and the vibrational 
term values Fiq. (6.84b). For example, for perpendicular bands with AK = f 1, 

V( AK = f 1 ) = vU + F;, (J’ ,  K f 1 ) - F;, ( J”, K )  

= vo + B’,J’(J’ + 1) - BtJ”(J” + 1)  + (A’ - B’) (8.33) 

*2(A’-B’)K+ [ (A ‘ -A” )  - ( B ’ - B ” ) ]  K 2 ,  

where vo denotes the band origin. 
In transitions to vibrational levels with E symmetry (twofold degenerate), all rota- 

tional levels with K > 0 are split into two components because of the Coriolis interac- 
tion in the rotating molecule (see Sect. 6.3.6) and hence all rotational transitions are 
also split into two components (I doubling). We therefore obtain from Eq. (6.96) for 
the wavenumbers in place of Eq. (8.33), 

v ( A K = f l ) = v o + B : ,  [ J ’ ( J ’ + l ) - P ]  

-BZJ”(J’’+ 1) &((4:,/4)(v‘+ l ) J ’ ( J ’ +  1) 

+ (A’ -B’ )  f2(A’  - B’)K + [(A’ -A”) - (B’ - B”) ]  K2 , 

(8.34) 
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Tab. 8.5 Selection rules in vibration-rotation transitions of asymmetric top molecules. 

Selection rules for asymmetric tops Band type in symmetric tops 

Transition KL,K:. - K:,K! A K > N  prolate oblate 

TY Pe A ee-eo AKa = 0, f 2 ,  f4 II I 
eo-oo AK,= l,&3, ... 

A / =  0 , f l  AKa = 0 AK,. = f l  

40 mbar CS2 -1WW 

Type €3 ee-oo M a = f l , f 3 ,  . . .  I I 
oe-eo AK,. = f l , f 3 , . . .  

A/ = 0 , f l  AKa = f l  AKc = f l  

TY Pe c ee-oe Ma = *1,*3,... I II 
eo-oo AK,. = 0, *2,. . . 

A./ = O , & l  Ma = * I  AK,. = 0 

For asymmetric top molecules, the symmetry selection rules for the quantum num- 
bers J ,  KO and K, in vibration-rotation transitions are the same as for pure rotational 
transitions, see Table 8.1. They depend on the orientation of the dipole moment in the 
molecule. Table 8.5 shows the relations between the A ,  B and C transitions and the par- 
allel and perpendicular transitions in the limiting cases of the prolate and oblate sym- 
metric top, respectively. Figure 8.14 shows, as an example for an overtone vibration- 
rotation spectrum, a section from the high-resolution overtone spectrum of the band 
(22'3) t (000) of the CS2 molecule. 
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Fig. 8.14 Section from the high-resolution spectrum of the over- 
tone band (22'3) t (000) of the CS2 molecule [8.6]. 
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8.3 
Electronic Transitions 

An electronic transition consists of a band system, that is, of a manifold of vibra- 
tional bands, each consisting of many rotational lines, originating from the occupied 
vibration-rotation levels (v”,J”,K”) in the lower electronic state and ending in the 
levels ( d , J ’ , K ’ )  in the upper electronic state. The intensities of the individual lines 
depend on the corresponding matrix element, which is determined, in complete anal- 
ogy to the case of diatomic molecules, solely by the first term in Eq. (4.25) represent- 
ing the electronic contribution to the dipole moment, because the second term van- 
ishes, within the Born-Oppenheimer approximation, on account of the orthogonality 
of the electronic wavefunction. 

In polyatomic molecules with N atoms, the integration over dTnuc comprises all 3N 
nuclear coordinates. 

The electronic dipole matrix element 

(8 .35)  

in general depends on the nuclear configuration, and it changes during a molecular 
vibration from its value Del(qe) at the equilibrium configuration qe to the value 

(8 .36)  

at a displacement Qk = q k  - qk,e of the kth normal vibration, where q is a short- 
hand notation for all nuclear coordinates. If we substitute the Taylor series expansion 
Eq. (8 .36)  into the matrix element 

De1,vib = / ‘$‘E;Xlf: (.I) Pel ‘$:X[( u ” )  dTe1 dTnuc 9 (8 .37)  

= &ii-,&ot are the nuclear wavefunctions, we obtain in analogy to the vibra- where 
tional transitions in Sect. 8.2, 

(8 .38)  

This is the same result as in Sect. 8.2, only with the nuclear dipole moment pnuc 
replaced by the electronic dipole moment pel. For allowed electronic transitions, 
DeI ( q e )  # 0, and the first term in Eq. (8 .38)  usually provides the largest contribution 
to Del,vib. For forbidden electronic transitions (Lee, transitions for which the product 

does not contain the totally symmetric representation), Del(qe) = 0, and the 
second term (the sum) in Eq. (8 .38)  provides the only contribution to the transition 
probability. 

As the different vibrational levels can possess different symmetries and the transi- 
tion probability depends on these symmetries, it is helpful to split the sum in Eq. (8 .38)  
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into one partial sum over totally symmetric vibrations and a second partial sum over 
the other vibrations, 

For forbidden electronic transitions, not only D e l ( q e )  = 0, but also the first term in 
Eq. (8.39) is zero, because here the integrand does not contain the totally symmetric 
representation. In this case, the second sum in Eq. (8.39) is solely responsible for 
the transition probability. This means that the transition is only made possible by the 
dependence of the electronic transition dipole moment on the nuclear coordinates. 

In the quantum-mechanical description, this fact enters as a coupling between elec- 
tronic and vibrational states of like symmetry. Such a coupling constitutes a violation 
of the Born-Oppenheimer approximation, because the wavefunction @el,vit, can now 
no longer be written as a product &I+vib. Such coupled states are a mixture of elec- 
tronic and vibrational contributions, and they are thus called vibronic m t e s  I@eI,vib). 

Their symmetry types can always be written as products, however, even if the BO 
approximation ceases to be valid. 

An electronic transition I@Ll,vib) + l@;~,~it,) is allowed only if the product of the 
symmetry species obeys the relation 

that is, if it corresponds to a translation T', q, or T,, because the dipole moment is 
a vector p = (px,pv,pu7) ,  and the product of the representations r(T,) x r ( p i )  (i = 

x,y,z) has symmetry A. 
To elucidate these considerations, we give two examples illustrated by Fig. 8.15. 
In the SO2 molecule (point group C2v), the transition 0 from the electronic ground 

state A1 into the excited state A2 is forbidden (Fig. 8.15a), because none of the com- 
ponents of the dipole moment has A2 symmetry. The transition 0 from the vibrational 

Coupling 

BzTbl 
(a) (b) ( 4  

Fig. 8.15 Electronic transitions enabled by coupling of electronic 
and vibrational wavefunctions. 
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ground state with a1 symmetry in the A1 state into a vibrational level u' with bl sym- 
metry in the electronic A2 state is allowed, however, if the coupling between electronic 
and vibrational wavefunction is sufficiently strong. In this case the wavefunction 
@el,vjb has symmetry B2, and the matrix element has A1 symmetry for cly. The tran- 
sition probability is then determined by the second sum in Eq. (8.39). Similarly, the 
transition 0 from an excited bl vibrational level in the electronic ground state into an 
al vibrational level in the A2 state is also allowed. Such a transition is also called a hot 
band, because the population of the absorbing excited vibrational level bl increases 
with the temperature T, and therefore the intensity of this band increases with T. 

Another example (Fig. 8.15b) is an electronic transitionA1 + B2, which is allowed 
for the y component of the dipole moment (with symmetry b2) if the upper vibrational 
level has symmetry al .  Transitions into vibrational levels with b2 symmetry are also 
allowed, however, for the z component of the dipole moment. 

A coupling between two electronic states can also lead to a mixing of wavefunc- 
tions and can allow additional transitions. For example, in Fig. 8.1% an electronic 
state with B2 symmetry couples with a vibronic state A? x byib = BelTvib andthusen- 
ables the otherwise forbidden transition from the A1 state into the A;' state for the y 
component of the dipole moment. 

For the rotational structure of a band, the same selection rules as for vibration- 
rotation transitions apply. However, the rotational constants in the two electronic states 
differ in general more strongly than in two vibrational levels of the same electronic 
state so that the relative positions of the lines within a band can differ markedly for 
these two cases. 

I 

0.4 
Fluorescence and Raman Spectra 

An absorption spectrum consists of all allowed transitions originating from thermally 
occupied lower levels into all possible upper levels. The multitude of lines thus 
obtained depends on the number of occupied lower levels, that is, on the tempera- 
ture. Lowering the temperature can simplify an absorption spectrum significantly (see 
Sect. 12.4.7). 

In contrast, an emission spectrum can only be observed if energetically excited 
levels are occupied, for example, through electron impact in gas discharges, optical 
excitation, or at very high temperatures (e.g., in stellar atmospheres). In many cases 
it is possible experimentally to excite only a few or, ideally, even only a single upper 
level selectively. In such a case, the emission spectrum (also calledjuorescence spec- 
trum) becomes relatively simple. It consists of all allowed emission transitions from 
this single level into lower levels (Fig. 8.16a). 

To illustrate the difference, Fig. 8.17 shows the Doppler-limited absorption spec- 
trum of NO2 at a temperature of 300K compared with the fluorescence spectrum of 
a single, selectively excited vibration-rotation level in the electronically excited 2B2 
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Fig. 8.16 Term diagram a) for fluores- 
cence transitions from a selectively ex- 
cited level in the upper electronic state 
and b) for Raman transitions which are 

shifted to lower wavenumbers (Stokes 
lines) or to higher wavenumbers (anti- 
Stokes lines) against the nonresonant 
excitation line. 
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[A1 
Fig. 8.17 Comparison of a high-resolution absorption spectrum 
of NO2 and a laser-excited fluorescence spectrum. 
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Fig. 8.18 Example of a rotational Raman spectrum for the 
linear molecule C2N2 upon excitation with an argon laser at 
X = 488 nm, showing Raman lines shifted by the energy differ- 
ences F ( J +  2) - F ( J )  with respect to the exciting line [8.7]. 

state. Whereas the line density in the absorption spectrum is so large that even at high 
resolution lines still overlap, all lines can easily be resolved in the fluorescence spec- 
trum, which consists of all allowed vibrational bands. The reason for this difference is 
that because of the selection rule for the rotational quantum number J only transitions 
with AJ = 0, f 1 occur in the latter, so that each band consists of three lines only, a P, 
a Q, and an R branch (in the fluorescence spectrum, the Q lines are not visible because 
they are much weaker than P and R lines). 

Whereas for optically excited fluorescence spectra, the exciting radiation must be 
in resonance with a molecular transition, this is not necessary for Raman spectra 
(Fig. 8.16b). Here, the diflerence between the wavenumbers of the exciting radiation 
and the Raman lines corresponds to the term values of the vibration-rotation levels 
in the electronic ground state. Apart from this principal difference, Raman spectra 
resemble fluorescence spectra very closely. The Raman lines are much weaker than 
fluorescence lines, however. Only in the resonant Raman effect can line intensities 
comparable to those of fluorescence spectra be achieved. Yet, there is one significant 
difference: spontaneous fluorescence transitions appear after a delay which corre- 
sponds to the lifetime of the excited level, whereas Raman radiation is due to inelastic 
scattering of the incident photons and appears essentially without delay. 

The treatment of the Raman effect for polyatomic molecules is completely analo- 
gous to the case of diatomic molecules (see Sect. 4.4.2). However, because of the large 
number of vibration-rotation levels, the Raman spectrum of polyatomic molecules is 
in general more complex and contains more lines than in diatomic molecules. Fig- 
ure 8.18 shows the rotational Raman spectrum of the C2N2 molecule, excited by the 
488nm line of an argon laser. The intensity alternation between even and odd rota- 
tional quantum numbers due to nuclear spin statistics (see Sect. 8.1.6) can be seen 
very clearly. 
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The positions of Raman lines can be calculated using a classical model. The inci- 

I 
dent light wave E = Eocoswt induces a dipole moment 

pitid = fiE (8.41a) 

in the molecule, where d is the polarizability of the molecule, which in polyatomic 
molecules must be represented by a tensor of rank two, because the displacement 
of charges within the molecule depends on the direction of E in the molecule-fixed 
reference frame. In component notation, Eq. (8.41 a) becomes 

(8.4 1 b) 

The polarizability depends in general on the displacements q - qe of the nuclei in the 
molecule. If we expand the polarizability 6 ( q )  at an arbitrary nuclear configuration in 
a Taylor series around the equilibrium position q = qe, we obtain, in complete analogy 
to the expansion of the dipole moment, 

(8.42) 

where QN = 3N - 6 (or 3N - 5 for linear molecules) is the number of normal vibra- 
tions Q, = Qnocos(w,t) of a molecule with N atoms. If we substitute Eq. (8.42) into 
Eq. (8.41a), we obtain 

(8.43) 

The first term describes elastic Rayleigh scattering, the second inelastic Stokes Ra- 
man scattering, and the third anti-Stokes scattering. According to this argumentation, 
there should be a Stokes band for each normal vibration during which the molecular 
polarizability changes, and if the excitation starts from an excited vibrational level, 
an anti-Stokes band should also occur. Taking the anharmonicity of the potential into 
account, the vibrations q,, comprise overtone and combination bands in addition to the 
fundamental frequencies w,,. which appear in the spectrum as additional lines. 

As Fig. 8.8 shows, infrared and Raman spectra provide complementary informa- 
tion. For example, for the C02 molecule, the frequency of the VI vibration can only 
be obtained from the Raman spectrum, because here ap/aql = 0 but aa/aq1 # 0, 
whereas the opposite is true for 14 and v3. In many molecules there are vibrations, 
however, which are both Raman and infrared active. 

The intensities of Raman lines, which depend on the components of the polarizabil- 
ity tensor, can only be calculated using quantum theory. As the tensor is symmetric, 
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Fig. 8.19 Stokes Raman spectrum of the overtone vibrations in 
allene (C3H4) [8.8]. 

there are six unique components a i k .  A Raman transition is allowed if at least one of 
the six matrix elements 

DEman = 1 $;q$,, d r  i, k = x, y, z 

is nonzero. The wavefunctions $m and qn are the vibrational wavefunctions of the 
initial and final levels of the Raman transition. Matrix elements with m = n describe 
elastic Rayleigh scattering. As for electrical dipole transitions, the matrix elements for 
Raman transitions must contain the totally symmetric representation of the molecular 
point group. 

For the rotational quantum number, similar selection rules apply. As Raman scat- 
tering is a two-photon process, the rotational quantum number can change by two. 
The condition AJ = 0,&1,*2 must be satisfied, with the additional constraint that 
(J’ + J ” )  2 2. The angular momenta of the incident and scattered photons can be 
oriented parallel or antiparallel. If bending vibrations are excited, vibrational angular 
momentum also contributes to the balance of angular momentum. 

Using lasers, even overtone vibrations can be detected in Raman spectra (Fig. 
8.19), although their transition probabilities are smaller than for fundamental tran- 
sitions by several orders of magnitude. 

Raman spectroscopy, with its recent modification CARS (coherent anti-Stokes Ra- 
man spectroscopy, see Sect. 12.4.1 l), has provided pivotal contributions to the expla- 
nation of vibrational-rotational structures in the electronic ground states of polyatomic 
molecules [8.9, 8.101. 



9 
Breakdown of the Born-Oppenheimer Approximation, 
Perturbations in Molecular Spectra 

Measured molecular spectra often show deviations from what would be expected on 
the basis of our previous considerations. Certain lines in these spectra are said to be 
“perturbed’ if their positions and intensities differ from the expected values. Also, 
the measured lifetimes of excited states are often shorter or longer than expected from 
transition probabilities determined from experimentally observed integrated absorp- 
tion cross-sections. If the lifetimes are shorter, there must be deactivation channels 
other than spontaneous decay, called radiationless transitions. If the lifetimes are 
longer, there must be mechanisms that reduce the probability of radiative transitions. 

All these perturbations are caused by couplings between the occupied excited level 
and two or more other levels. This chapter will deal with the most important types of 
perturbations. 

9.1 
What is a Perturbation? 

We saw in Sect. 3.6.2 that the states of diatomic molecules can be expressed in the 
form of a rapidly converging polynomial in the vibrational and rotational quantum 
numbers and J ,  where the coefficients are the molecular constants. This Dunham 
expansion describes the molecular structure in a given electronic state by a set of con- 
stants without making reference to a specific molecular model. With the aid of these 
molecular constants the majority of the different molecular term energies can be cal- 
culated, but they fail to provide physical insight in the reasons for specific deviations. 

One of the assumptions in the Dunham expansion is that for each electronic state, a 
unique potential energy Epot (R)  can be specified as a function of the nuclear arrange- 
ment, which determines the vibrational and rotational levels of this state. In other 
words, the validity of the Born-Oppenheimer approximation is assumed, in which the 
total wavefunction can be written as a product of electronic, vibrational, and rotational 
contributions (see Sect. 2.1). This means also that the total energy of a state is the sum 
of electronic, vibrational, and rotational energies. 

Molecular PIty.sics. Theoretical Principles and Experimental Methods. Wolfgang Demtroder 
Copyright 02005 WILEY-VCH Verlag GmbH & Co. KGaA, Wcinheim 
ISBN: 3-527-40566-6 

Molecular Physics: Theoretical Principles and Experimental Methods 
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294 9 Breakdown of the Born-Oppenheimer Approximation I 

0 

exp. values 

---. unperturbed 
.I 

. I  . I  

.I valuesv, 

.* .- r? .....$....... 
: 8." ; g8 
1 

I I I I  I I )  

10 20 30 40 50 J 

Fig. 9.1 Perturbation of rotational levels in the 4 'Ag state of the 
Li2 molecule. 

If the experimentally determined energies of states and thus the line positions or 
transition intensities deviate more or less pronouncedly from the values calculated as 
described above (Fig. 9. l), perturbations are manifest. They are the result of couplings 
between the electronic wavefunction and the nuclear wavefunction, or between differ- 
ent electronic states, and they are particularly strong if two potential curves approach 
each other closely or even intersect. Such couplings entail a breakdown of the Born- 
Oppenheimer approximation, because as a consequence, the total wavefunction can no 
longer be written as a product '&l?,hvib?,hrot. This is especially important in electroni- 
cally excited states, because here the spacings between different states are particularly 
small and the number of possible couplings is particularly large. 

Another reason of deviations from the BO approximation are couplings between 
the electronic orbital angular momentum and the electron spins (spin-orbit coupling), 
mixing singlet and triplet states, or the nuclear spins, creating a hyperfine structure in 
the spectra. These spin-induced couplings can only be exactly described by relativistic 
calculations because they are not included in the nonrelativistic Schrodinger equation. 
However, they can be taken into account qualitatively by a vector model. 

Two states do not necessarily interact with each other, because there are certain 
selection rules which must be satisfied, quite similar to the situation for absorption or 
emission transitions. 

1. The total angular momentum of the molecule must be the same in both coupled 

2. In molecules with a center of inversion, only states with like parity can interact, 

3. In homonuclear diatomic and symmetric linear polyatomic molecules, both sta- 

states. 

that is, g h ~ )  u, g H g, u H u. 

tes must have the same symmetry, that is, + tft -, + t-t +, - - -. 
These three selection rules are strictly obeyed. 
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If the projection quantum number A of the electronic orbital angular momentum in 

linear molecules is well defined (see below), the two interacting states must not differ 
by more than AA = 0 or * 1. 

Perturbations with AA = 0 are called homogeneous, those with AA = f 1 heteroge- 
neous. Heterogeneous perturbations can occur only in rotating molecules or in linear 
molecules with vibrational angular momentum, because the total angular momentum 
can be conserved only if the change in A is compensated by a corresponding change in 
the rotational or vibrational angular momentum. In these heterogeneous perturbations, 
the coupling is mediated by Coriolis forces. 

The extent of the perturbations depends on the coupling matrix element and on the 
overlap of the vibrational wavefunctions of the two coupling states. Hence, they are 
particularly large for nuclear arrangements where the potential curves of the interact- 
ing states intersect, because there the overlap of the vibrational functions of the two 
electronic states assumes a maximum. 

In polyatomic molecules there are many more possible couplings than in diatomic 
molecules because of the much larger number of electronic, vibrational, and rotational 
states. For example, different energetically close vibrational levels in the same or 
in different electronic states can interact. Therefore, perturbations are much more 
prevalent in polyatomic molecules than in diatomic molecules. The application of 
group theory to their description proves highly advantageous, because the symmetry 
selection rules can be expressed in terms of the symmetry species of the participating 
states (see Ch. 5). If the symmetry of a state is expressed as a product rel,vib = re1 x 
r v i b  of the symmetry species of vibrational and electronic states, this product must be 
equal in both interacting states, even if the two factors may be different. 

For example, in a C2v molecule, only vibrations of symmetry r v i b  = a1 or b2 occur. 
For possible perturbations by electronic states of symmetry re], the selection rule 
A1 H B 2  or A2 H B I  for the electronic transition must be satisfied, because only then 
is there at least one normal vibration for which the total symmetry rel,vib = A I x 62 = 
B2 x a1 is the same for both interacting states [2.10, 9.11. 

9.1.1 
Quantitative Treatment of Perturbations 

In the following, we will discuss perturbations in the spectra of di- and polyatomic 
molecules for a number of examples, and we will learn about some ways to elimi- 
nate them. The usual procedure to treat perturbations is to split the total Hamilto- 
nian 

2 = f i ( ,  + f i '  

in an unperturbed part f i ~  and a perturbation part f i '  (cf. Sect. 2.1.2). The exact choice 
of the splitting depends on the model chosen for the unperturbed system. In general, 
the BO approximation is used for the unperturbed system, that is, the eigenfunctions 
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of fio are the product functions Eq. (2.16) 

I 

(9.1) (0) - 
@ni - G: l (T )Xn i (R)  with x = ‘hb‘$rot 

of the BO approximation, where the Gel are the electronic wavefunctions of the rigid 

molecule, and the matrix ( !Pio) lfio I @J0)) is diagonal. 
The Hamiltonian is the sum 

of electronic, vibrational and rotational contributions. Which of these contributions 
are included in & and which in 2 depends on the specific problem (see below). 

If we substitute into the Schrodinger equation 

the linear combination 

for the wavefunction of a perturbed level li), where the @jo) are the unperturbed 

eigenfunctions of the interacting states, that is, the solutions of the equation fi$y) = 

E j  qj , we obtain (0) (0) 

c i j  (fio + ii’ - E i )  @jo) = 0 . 
j =  I 

(9.5) 

Multiplication by @Lo) from the left and integration yields, because of the orthogonal- 
ity of the functions !Pj (0) , 

C C i j  [ ( E Y - E i ) S j k + H L j ]  = O ,  (9.6) 

where EY is the energy of the unperturbed state I@?’), and 

(9.7) 

is the perturbation matrix element describing the interaction energy between the states 
Ik) and l j ) .  The homogeneous Eq. (9.5) has a nontrivial solution for the coefficients 
c i j  only if the determinant 

(9.8) ) ( E j  0 - E i ) h j k + H k j )  = O  for i , j =  1,2 ,..., t~ 
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vanishes. The solutions of this equation yield the energies Ej of the perturbed states, 
which depend on the energies of the unperturbed states, on the spacing EY - E f ,  and 
on the magnitude of the interaction elements Hkj. 

The integrals 

can be arranged in the form of a matrix and are therefore called matrix elements. While 
the diagonal elements 

(9.10) 

give the energies of the unperturbed states, the off-diagonal elements describe the 
interaction energy between the states l j )  and Ik), which depends on the exact nature 
of the mutual coupling. The coupling is zero for Ho,  and is therefore described by the 
perturbation operator H‘, because 

Diagonalization of the matrix Hkj yields the condition Eq. (9.8) for the energies of the 
perturbed levels. 

The partitioning into f i ~  and fi’ is to some degree arbitrary; it depends on the 
choice for the basis functions Po. In general, it is useful to choose the unperturbed 
Hamiltonian so that it already contains the major part of the interaction. Of course, 
the final result of a perturbational calculation does not depend on the chosen basis, but 
the effort involved in arriving at this result can be significantly reduced by a suitable 
choice of basis functions. 

9.1.2 
Adiabatic and Diabatic Basis 

The Schrodinger equation (2.6) for a molecule with a rigid nuclear framework, 

f i , l @ j  = E Y @ j ,  

yields electronic wavefunctions, which lead, for the electronic part i ) ~  = i),, of the 
Hamiltonian, to diagonal elements of the matrix Eq. (9.9), while the off-diagonal ele- 
ments are zero. The adiabatic potential curves are then given by 

q ( R )  = ( c p j  lfi,, I @ j )  . (9.12) 

The deviations from the adiabatic approximation are mediated by the contributions 
H’ = Tkin = T v i b  -I- Trot in the complete Hamiltonian. This means that the perturbation 
is caused by the kinetic energy of the vibrating or rotating molecule. 

A h  h h 
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Fig. 9.2 Diabatic, crossing potential curves and adiabatic poten- 
tial curve with avoided crossing. 

The off-diagonal elements of the perturbation operator fi‘ = ?kin ( R )  describe non- 
adiabatic perturbations, which means that different electronic states are coupled, and 
the motions of the nuclei are no longer restricted to one potential curve (or potential 
surface in polyatomic molecules), see Sect. 2.2. The off-diagonal elements of frat 
describe perturbations originating from the rotation of the molecule, which are zero in 
the nonrotating molecule. 

If we want to describe quantitatively the perturbations arising from terms neglected 
in the BO approximation, we can start from two different BO representations. If we 
begin with noncrossing adiabatic molecular potentials (adiabatic representation), the 
matrix 

(9.13) 

becomes diagonal, and the operator ?kin + Frat is responsible for the perturbations. 
However, the corresponding potential curves are often complicated and may possess, 
for example a double minimum. If this is to be avoided, we can use diabatic poten- 
tial curves, which can intersect (Fig. 9.2). They are obtained by using approximate 
electronic wavefunctions @,“pp in place of the exact wavefunctions. Then 

for (9.14) 

and off-diagonal elements of pel arise, which describe electrostatic perturbations. 
Which of the two models is preferable depends on the relative influence of the dif- 
ferent couplings. 
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9.1.3 
Perturbations Between Two Levels 

The quantitative description of perturbation and the procedure to remove it will be 
illustrated for the case of two interacting levels. The energy matrix for the coupling 
states in the basis of the unperturbed wavefunctions !PI(') and !Pi') is 

(9.15) 

where the diagonal elements describe the energies of the unperturbed levels and the 
off-diagonal elements the interaction energy. To obtain the energies of the perturbed 
levels, this matrix must be diagonalized. This yields, according to Eq. (9.8), 

(9.1 6a) 

for the energies El and E2 of the perturbed levels (that is, for the measured lines in 
the spectrum). We see that the energies of the perturbed levels are shifted symmet- 
rically, and their spacing increases with increasing coupling strength (Fig. 9.3). To 
determine the shifts quantitatively, the expression for the perturbation operator H and 
the unperturbed wavefunctions must be known, from which the off-diagonal elements 
H12 = H21 can then be calculated. 

Solving the two equations for the energies EP and E! of the unperturbed levels 
yields the equations 

(9.16b) 

in analogy to Eq. (9.16a). If  HI^ is known, the energies EP and E! of the unperturbed 
levels (i.e., the energies that would be observed if no perturbation existed) can be 
calculated from the measured energies E1,2 of the perturbed levels. 

perturbed 

b0 

El0 unperturbed ' '.. L,, 
2 + (H1*f11'2 

&E = [( El0  - Ezo )2 

Fig. 9.3 Mutual repulsion of two interacting levels. 
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9.2 
Hund’s Coupling Cases 

The extent of the perturbations depends on the type of the perturbation. In many cases, 
perturbations can be classified according to the strength of the different couplings 
between the angular momenta involved. The resulting different coupling schemes are 
also important for the selection rules for perturbations, in addition to the symmetries 
of the states involved. 

To order the different possible couplings according to their strength and to facili- 
tate the choice of suitable basis functions, Hund discussed several coupling schemes 
for linear molecules with the aid of a vector model [9.2]. In a quantum-mechanical 
discussion, the different coupling cases are characterized by a corresponding choice 
of basis functions and the distinction between “good” (i.e., well-defined) and “bad” 
(i. e., not properly defined) quantum numbers. 

In Hund’s coupling case a) (Fig. 9.4a), the interaction between the electron spin S 
and the magnetic field arising from the precession of the electronic angular momentum 
L around the internuclear axis of the linear molecule is larger than the direct coupling 
between L and S. In the vector model, the vectors L and S precess independently 
around the internuclear axis, which is chosen to coincide with the z axis. 

Well-defined quantum numbers are the projection quantum numbers A and C and 
their sum R = A + C (see Sect. 2.4.2). The total angular momentum J is combined 
from the rotational angular momentum R perpendicular to the molecular axis and the 
projections A and C, 

J = R+ ( A +  C ) f  

= R+ Of with R = A + C and f = unit vector . 
(9.17) 

The set of all good quantum numbers is (n,J,S, A,  C,  O ) ,  where n describes the collec- 
tion of all other quantum numbers of the electronic and vibrational state and indicates, 
for example, also the energetic enumeration of the electronic state. 

s 
(4 (b) (4 (d) 

Fig. 9.4 Vector model for Hund’s coupling cases. 
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The basis functions are, in abbreviated notation, InJSRAC); the undisturbed Ha- 

miltonian is chosen to be fio = fie1 + EJ2.  
In Hund's case b), the coupling of the electronic orbital angular momentum L with 

the molecular axis is stronger than the coupling with S (Fig. 9.4b). This condition is 
satisfied for molecules with small spin-orbit coupling. Therefore the projection A,? of 
L and the vector R combine to an angular momentum K ,  which finally couples with 
S to yield the total angular momentum J .  Therefore, the vector sums 

K = A i + R  and J = K + S  (9.18) 

are well-defined. As the unperturbed Hamiltonian we choose now 

fio = Eel + EK2 . (9.19) 

In Hund's case c),  the spin-orbit coupling is stronger than the coupling of L with 
the molecular axis (Fig. 9 .4~) .  This situation is found in molecules with heavy atoms, 
that is, large nuclear charges Ze.  Here, L and S couple to the total electronic angular 
momentum J,, = L + S with the projection Rh onto the molecular axis. When this 
is combined with the molecule's rotational angular momentum R, the total angular 
momentum becomes 

J = RAi + R ; L .  S >> L .  A ,  (9.20) 

where A is a vector along the molecular axis i. The unperturbed part of the Hamilto- 
nian is chosen to be 

HO = H , ~  + H,, + B J ~  , (9.21) 

and the basis functions are (nJR). 
The projection quantum numbers A and C are not defined in Hund's case c), that 

is, they cease to be good quantum numbers. 
Finally, there is an additional, but rarer, case d) (Fig. 9.4d), which is encountered, 

for example, in molecular Rydberg states. Here, the coupling of the electronic angular 
momentum 1 of the Rydberg electron with the molecular axis is weaker than with the 
rotational axis R. Therefore, the angular momenta 1 of the Rydberg electron and L+ 
of the ionic electron shell couple to L = 2 + L+,  and L couples with the rotational 
angular momentum R to K = L + R. The projection of K onto the rotational axis 
is denoted N ,  that of K - 1 = L+ + R is denoted N + .  The electron spin S couples 
to K to produce the total angular momentum J = K + S .  Here, L . A >> L . S and 
S . K  >> S . A .  

The unperturbed Hamiltonian is chosen to be 

f i o = f i e l + E N + 2 - E ( J + 1 r  +n+) , (9.22) 

where J* = J, f iJy and l* = 1, f il,. The basis functions are InJSNN+). 
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9.3 
Discussion of Different Types of Perturbations 

The different possible couplings between molecular states are described by the cor- 
responding perturbation operators 2’. The choice of a suitable basis depends on the 
type of perturbation. 

In the following, we will discuss the following perturbations: 

1. electrostatic interactions; 

2. spin-orbit coupling; 

3. rotational perturbations; 

4. vibronic coupling; 

5. Renner-Teller effect; 

6. Jahn-Teller effect; 

7. predissociation; 

8. autoionization; 

9. radiationless transitions. 

While the mechanisms 1-3 and 7-9 occur both in diatomic and polyatomic mole- 
cules, processes 4-6 are only possible in polyatomic molecules. 

We will now discuss the different types of perturbations in some detail. We start 
with perturbations in diatomic molecules before turning to the more complicated case 
of polyatomic molecules. Obviously, only levels with the same total angular momen- 
tum J can interact, because the total angular momentum must be conserved in the 
absence of external forces. 

The Hamiltonian 

H = Hel,vib + Hrot 

is partitioned into a part Hel,vib acting on the electronic and vibrational functions, and a 
rotational part Hrot depending on the total angular momentum, which contains also co- 
ordinates appearing in He1,vib. The operator Hel,vib describes the nonrotating molecule, 
whereas H = &l,vib + Hrot describes the rotating molecule. H can be partitioned into 
an operator Ho of the unperturbed system and a perturbational part H’ (see next sec- 
tion). 

9.3.1 
Electrostatic Interaction 

Electrostatic interactions can only occur between electronic states of the same sym- 
metry and multiplicity, that is, with the same set of quantum numbers A, C and S 
(Fig. 9.5). The description of this perturbation depends on the choice of basis func- 
tions. 
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Fig. 9.5 Electrostatic interaction between the electronic states 
3'n, and 4'n, of Li2, leading to a deformation of the potential 
curve due to an avoided crossing and thus also to shifts of vi- 
brational levels in both states. 

If we choose the adiabatic electronic basis functions from the BO approximation, 
which are the solutions of the Schrodinger equation (2.6), 

Hel@Y = Eo@el , 
1 1  

for a rigid (i.e., nonvibrating) molecule, we can partition the Hamiltonian fi according 
to 

A -  A h 

f i  = & + fi '  with 60 = i ) , ~  and H' = T k i n  = Hvib + HrOt . 

The diagonal elements of the matrix 

describe the adiabatic potential curves E j ( R )  for the state l j )  (see Sect. 2.2). The 
coupling between different electronic states is given by the perturbation operator &in, 

that is, the off-diagonal elements 

describe the interaction energy between different electronic states caused by the mo- 
tions of the nuclei. Inclusion of these perturbational terms has the pictorial conse- 
quence that the potential curves of the states are deformed. For example, it may then 
not be possible to approximate it by a Morse potential, and it may even possess a 
double minimum. The deformation is particularly pronounced for all values R, of the 
internuclear distances where potential curves approach each other closely. Here, both 
potential curves are deformed so that curves of states with the same symmetry do not 
cross; this situation is called avoided crossing (Fig. 9.2). 
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To avoid these complicated potential curves, we can choose diabatic basis func- 

tions. They do not obey Eq. (9.15) exactly, but minimize the perturbation term caused 
by ?kin. In a diabatic basis @', the coupling between two states is described by f i e ] ,  

whereas in an adiabatic basis Qa, it is described by ?kn. Thus, in a diabatic basis Qd, 

the interaction term for j # k, 

( n ~ ,  A, C , S  ( f i ln23  A C,S) = ( @ j  (fie1 I @ k )  + ( @ j  1 pkin 1 @/c) 9 (9.25) 

contains only the first term in Eq. (9.25) because the second term is small, whereas in 
an adiabatic basis @a, it contains only the second term because the first term is zero. 

The experimental values for the energies of the perturbed levels can then be ob- 
tained in both models by diagonalizing the matrix 

(9.26) 

In the case of a diabatic basis, the potential curves E,,,(R) may cross; in an adiabatic 
basis an avoided crossing results. In the vicinity of the avoided crossing, the charac- 
ter of the electronic wavefunction changes strongly with the internuclear distance R. 
The reason is that it is constructed as a linear combination of the electronic wavefunc- 
tions of the two interacting states. In the vicinity of the avoided crossing, the relative 
contributions of the two functions in the linear combination vary particularly quickly, 
because here the two potential curves approach each other very closely. 

The interaction between two vibrational states v 1 and 8 2  in two different electronic 
states is described, in a diabatic basis, by 

~ i l , v ,  ,2,v2 = ( @:x: [ f i e 1  1 @$x$) =  el (v: I v;) 
with H e j = ( @ : l f i e l l @ $ )  and ( v ; ' ~ v $ )  = / x ; ~ ( R ) x ~ ~ ( R ) ~ R .  

The electronic part He' of the matrix element is often assumed to be independent of R .  
If we want to include the weak dependence, we can use the R centroid approximation 
(see Sect. 4.2.6), employing 

(9.27) 

as the optimum mean value. In an adiabatic basis, this interaction is described by 

H:,v1,2,V2 = (@?XI I?kin1@;$) because (@! IHellQ;) = 0 .  (9.29) 

The perturbed adiabatic potential curves are obtained by diagonalizing the matrix 

(9.30) 

for fixed values of R distributed as evenly as possible over the range of relevant values. 
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If diabatic basis functions are used, the off-diagonal elements Eq. (9.21) are the 

diabatic coupling elements. Diagonalization of the matrix Eq. (9.30) yields the condi- 
tional equation 

(9.31) 

for the perturbed diabatic potential curves Ed(R), where the matrix elements are inte- 
grals over electronic coordinates for fixed nuclear distances Ri. 

9.3.2 
Spin-Orbit Coupling 

The Hamiltonian for the coupling between the spin si of the ith electron and its orbital 
angular momentum li with respect to the nucleus k with the effective nuclear charge 
Zeff for diatomic molecules is given, completely analogous to the situation in atoms, 

by 

(9.32) 

where Q = 1 / 137 is the fine-structure constant and rik is the distance between electron 
i and nucleus k.  Here, it is appropriate to recollect that we can express the electronic 
coordinates, which usually refer to different nuclei, in a unified reference frame so 
that they all refer to a common origin by applying an appropriate coordinate transfor- 
mation [9.3]. 

Spin-orbit coupling not only mediates an interaction between states with different 
values of A and C,  but also leads to a splitting of the term energies of a state nAS in 
fine-structure components with equal values of A,  but differing in the spin projection 
quantum number C and hence also in 0. 

If the couplings between the different angular momenta li of the electrons and be- 
tween their spins si are stronger than the interaction between li and si [GS coupling; 
Hund’s case a)], the spin-orbit interaction within a state with equal quantum num- 
bers A ,  which leads to a fine-structure splitting in components with different values 
f2 = A + C, can be written in simplified form, 

GSqL = ALS with L = Eli and S = C S i  . (9.33) 

Usually, basis functions for Hund’s coupling case a) are chosen, because in this case 
A and C are good quantum numbers. 

The diagonal elements 
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Fig. 9.6 Spin-orbit coupling between a I l l  and a 311, state with 
the selection rule AA = 0; AS = 1 ; AE = A 0  = 0. 

give the energies of these components. From Eq. (9.34), we see that the fine-structure 
components of a multiplet have constant spacing AA as long as spin-orbit coupling, 
Eq. (9.33), is the only interaction (Fig. 2.18). Frequently, additional higher-order 
couplings (sjlj or s p j )  occur so that the spacings of the multiplet components become 
different. 

The selection rules for the nonvanishing matrix elements 

(ni,Ai,Si,L?i,vj I r s * I  H '  n,,Aj,S,,0,,vj) (9.35) 

of the spin-orbit coupling are 

A J = O ;  AS=O,&l; AR=O;  

+ A A = A E = O  or AA=-A\c=&l .  
(9.36) 

Generally, only rotational levels with the same total angular momentum quantum num- 
ber J can interact through spin-orbit interaction (Fig. 9.6). If the two interacting states 
belong to the same electron configuration (see Sect. 2.7.1), AA = A E  = 0 holds; if the 
two states differ by one spin orbital, the rule is AA = -AC = f l .  For homonuclear 
molecules, the selection rules g ++ u is also obeyed. 

Apart from the interaction Eq. (9.35), a (usually much weaker) coupling between 
the spin sj of the ith electron and the orbital angular momentum Z, of another elec- 
tron can occur. This mechanism can enable couplings between states, which would 
normally be forbidden according to the selections rules for the one-electron operator. 

The spin-orbit coupling between two different states also leads to a shift of spe- 
cific fine-structure components. As this coupling is determined by the selection rule 
A 0  = 0, only components with the same 0 can interact. This is illustrated in Fig. 9.6 
for the example of spin-orbit coupling between a 'II and a 311 state. Here, only 
the component with f l  = 1 is influenced, the two remaining components remain un- 
changed. 
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In linear polyatomic molecules, the situation is completely analogous to that in 
diatomic molecules. For strong spin-orbit coupling in linear molecules, Hund’s cou- 
pling case c) applies, that is, the quantum numbers A and C are not defined any more 
but only their sum R. In nonlinear molecules, no precession of the orbital angular mo- 
mentum is possible because the potential is not cylindrically symmetric. Therefore, 
spin-orbit coupling is in general small. In this case, the diagonal terms Eq. (9.34) 
give, for weak spin-orbit coupling, the fine-structure splitting of the rotational levels 
in the respective vibrational state, which is small compared with the spacing of the 
rotational levels. 

I 

The total wavefunction can be written, for this case, as a product 

9 = @ ( R , r ) X ( s )  (9.37) 

of spatial wavefunction and spin function (see Sect. 2.8.1). 

9.3.3 
Rotational Perturbations 

All perturbations connected with the coupling of angular momenta, such as the spin- 
orbit coupling discussed in the preceding section, can be derived from the Hamiltonian 
for angular momenta. The rotational Hamitonian for a diatomic molecule aligned 
along the z axis with the rotational angular momentum R perpendicular to 2 is 

(9.38) 

because the total angular momentum is J = L + S + R. 
Equation (9.38) can be recast to yield 

Hrot =B(J2-5,2)+B(L2-LZ)+B(S2 4;) 
(9.39) + B(L+S-  + L - S + )  - B(J+L- + J _ L + )  - B(J+S-  + J - S + )  , 

where J+ = Jx f iJy, Lk = Lx f iLyr and Sh = S, f isy [9.4]. 

levels. The first term can be rewritten as 
The first three terms in Eq. (9.39) give the energies of the unperturbed rotational 

(9.40) 

which is equivalent to the rotational term values from Eq. (3.21), if the centrifugal 
distortion and the electron spin are neglected. 

The next two terms. 

B (L2 - L;) + B (S2 - S:) = B (L2 + S 2 )  - B ( A 2  + C2)  (9.41) 

are usually included in the energy of the electronic state [n ,A,  C, 0) because they do 
not depend on the specific vibration-rotation levels. 
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The second line in Eq. (9.39) characterizes the perturbations between the levels. 

The first term describes spin-orbit coupling, which leads to a homogeneous perturba- 
tion between two electronic states with A R  = 0 (see preceding section). 

The second term describes the interaction between the rotational levels of two elec- 
tronic states differing in A, which leads to A doubling of the rotational levels. This is a 
heterogeneous perturbation with A R  = f 1 ,  which occurs only in rotating molecules. 

Due to the rotation of the molecule, A ceases to be a good quantum number, be- 
cause the rotation couples states with AA = f l .  Therefore, the rotational levels of 
both interacting states are slightly shifted. This effect can be expressed by an effective 
rotational constant 

B:~ = B ,  + 6 , .  (9.42) 

In electronic states with A > 0, the rotational levels, which would be twofold degen- 
erate in the absence of this interaction, are now split into two components. The two 
A components (denoted c and d in the literature) have different symmetries. Thus, 
the interaction with the coupling state affects only one of the two components be- 
cause of the symmetry selection rule. This component is shifted, the other remains 
unperturbed. The splitting ( A  doubling) can be described by 

AV = qvJ(J+ 1 )  (9.43) 

with the A doubling constant 

qv = BC v - Bd 2 ) '  (9.44) 

If the interacting states have the same angular momentum quantum number 1 for the 
valence electron for R + m (e.g., the two states A 'CU and B'IIu of the alkali metal 
dimers, which both dissociate to the same atomic p state), qv can be expressed by the 
rotational constant B, of the ll state and the energy difference Ai7 between C and II 
state, 

2B2,1(1+ 1) 
qv = AC(H -C) ' (9.45) 

The constant qv is in general small compared with B, so that A doubling is a small yet 
appreciable effect, particularly for large rotational quantum numbers. 

In multiplet states, A splitting is different for the distinct fine-structure components. 
For example, it is almost independent of J for the H, component, similar to that in a 
'II state for the 311, component, and small but proportional to J 2 ( J  + 1)' for the 31T2 
component (Fig. 9.7). 

The third term in the second line of Eq. (9.39) describes spin-rotation coupling, 
in which the electron spin can assume different orientations in the magnetic field 
originating from the rotation of the nuclear framework, leading to slightly different 
energies. Again, this is a heterogeneous perturbation with AA = 0; A E  = A R  = f 1 .  
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J.(J+ 1 ) 

Fig. 9.7 J-dependence of A doubling for the states In, 3n0, ”, , 
and 3n2. 

The term values of the components of a rotational level with quantum number 
J = N + S split by a spin-rotation interaction are, for example, for a spin S = 1 /2, 

F , ( N )  = B , N ( N C l ) + p N ,  1 

1 
F 2 ( N )  = B , N ( N  + 1)  - S Y ( N  + 1) 

(9.46) 

The constant y is called spin-rotation coupling constant. The splitting of the term 
is usually very small and can only be observed with high spectral resolution. In 3C 
states, an additional magnetic interaction arises between the spin moments of the two 
unpaired electrons, so that the term values 

Fi ( N )  =BJV(N + 1)  + ( 2 N  + 3 ) B v  + Y(N + 1 )  
- A -  [(2N+3)2B2,+A2-2ABv] I / 2  , 

F 3 ( N )  = B , N ( N +  1)  - ( 2 N +  1)B, -yN-A+ [ ( 2 N -  q2B2, + A 2  -2XB4 112 

F2(N)  =B, ,N(N + 1)  1 

(9.47) 

contain additional terms with the spin-spin coupling constant A. If the (usually very 
small) splittings are measured for several rotational levels (i.e., for different values of 
N )  in the same vibrational state, the constants Bu, A and y can be determined [9.4]. 

9.3.4 
Vibronic Coupling 

At sufficiently low vibrational energies, the vibrations of polyatomic molecules can be 
described as a superposition of normal vibrations (see Ch. 6). In normal vibrations, all 
nuclei in the molecule move synchronously, that is, they all pass through their equi- 
librium positions at the same time. The different normal vibrations are independent; 
they maintain their identity, and the atoms store their vibrational energy in a mode 



31 0 9 Breakdown of the Born-Oppenheimer Approximation I 
consisting of a linear combination of all excited normal vibrations until it is released 
by means of radiation or through collisions with other molecules. The total vibra- 
tional energy is the sum of the normal vibrational energies. The potential in which the 
vibration occurs is approximately harmonic. 

Upon higher vibrational excitation, anharmonicities in the potential become no- 
ticeable, leading to couplings between the normal vibrations [see Eq. (6.89)]. If these 
couplings are sufficiently strong, the normal vibrations lose their identity. The vi- 
brational energy is quickly transferred from the originally excited mode onto other 
vibrational modes. It is finally distributed randomly about all energetically accessi- 
ble modes, a process called internal vibrational redistribution (IVR). Its description 
depends on the density of vibrational states around the excitation energy and on the 
overlap of the vibrational wavefunctions of the interacting levels [9.5]. 

IVR processes usually occur on a picosecond timescale. For example, if an ener- 
getically high-lying vibrational level of a dissociation coordinate is selectively excited, 
the energy can be redistributed so quickly that the dissociation is avoided although the 
energy pumped into the excited mode would have been sufficient to cause dissocia- 
tion. The wavefunction of the perturbed primary excited state Ik) can be written as a 
linear combination 

with 

of all N coupling eigenstates of the N vibrational modes. If the perturbing states li) 
are not accessible by absorption transitions from the ground state (dark states), the 
intensity 

of the absorption line is determined solely by the “light” state although the population 
probability is distributed among all coupled states. The intensity is therefore lower 
than for an unperturbed state because ak < 1. The oscillator strength of the absorption 
transition is said to be “diluted” by the coupling to the dark states. The lifetime of the 
excited state is increased because it mixes with states of very long lifetime. 

In larger molecules, the following simplified model is used to discuss IVR. The pri- 
mary excited level in an excited electronic state couples with several high vibrational 
levels of a lower electronic state with a higher level density than that in the excited 
electronic state (Fig. 9.8). Three cases can be distinguished [9.6]: 

1. The region of small level density, where the mean spacing between the vibra- 
tional levels is large compared with the widths of the levels. In this case, the 
levels can influence each other through their interaction, but for a narrow-band 
excitation with continuous lasers, the absorption lines are resolved, and station- 
ary excited levels are observed for each selectively excited transition into the 
coupling levels. 
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Fig. 9.8 Vibronic coupling and IVR processes. 

2. In the transition region of medium level densities, the mean spacing between 
the perturbing vibrational levels is comparable to the linewidths of the absorp- 
tion transitions. Now, not all lines can be resolved even for excitation by a 
narrow-band laser, and some levels are excited simultaneously. In the case of 
an excitation by a pulsed laser, all levels accessible within the bandwidth of the 
laser are excited coherently, and the superimposed fluorescence of these levels 
displays quantum beats due to the interference between the emissions from the 
different levels. 

3. If the level density is large compared with the excitation linewidth, a multitude 
of levels are excited simultaneously. The absorption spectrum appears quasi- 
continuous even when viewed in high resolution. 

The IVR process can also occur for highly excited vibrational states in the elec- 
tronic ground state, provided the level density is large enough. It can be observed by 
Doppler-free overtone spectroscopy (see Ch. 12). 

Vibronic coupling is controlled by the selection rules listed in Sect. 9.1. For ex- 
ample, within the same electronic state, only vibrational states of like symmetry can 
interact. Hence, in a triatomic molecule with symmetry C2" in which only vibrations 
with symmetry a1 or b2 occur, the vibrational levels 2vl and 4v2 can interact if their 
energies do not differ too much, but also the vibrational levels 2v1 and 2v3 can interact 
because both have al symmetry. Vibrational levels from different electronic states can 
interact if the vibronic symmetry rel,vib = rel x r v i b  of both states is equal. 

9.3.5 
Renner-Teller Coupling 

In linear molecules, a special type of vibronic coupling occurs. If the electronic state is 
degenerate in the linear configuration, it can be split into two potential curves E+(cp) 
and E - ( p )  during a bending vibration, where cp is the bond angle (Fig. 9.9). Such 
degenerate electronic states with cylindrical symmetry possess an electronic angular 
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(4 
Fig. 9.9 Possible splittings of the potential curves in the 
Renner-Teller effect a) for a < 2a and b) for a > 2a. 

momentum along the molecular axis due to the precession of the electrons around this 
axis. If the unperturbed potential is described by the quartic function 

Eo(p) = ap2 + bp4 , (9.48) 

and the difference of the two Renner-Teller components by 

E+(p) - E - ( p )  = ap2 + Pp4 , 

the lower potential curve possesses a maximum at 4 = 0 and two minima at 

(9.49) 

& i n = &  -- J' 2 b - / 3 '  2 - a  

provided a > a and /3 < b or a < a and P > b (Fig. 9.9). Hence, the electronic energy 
is modified by the bending vibration. 

The coupling between the electronic orbital motion and the nuclear motion influ- 
ences the vibronic levels in both potential curves. The rotational constant changes also 
due to the coupling. The resulting shifts of the levels depend on the size of the poten- 
tial splitting as quantified by the Renner parameter E = a / 2 a  and on the vibrational 
angular momentum of the bending vibration. 

The Renner-Teller effect constitutes a special case of vibronic coupling in which 
vibrational levels are influenced by the electronic motion [9.7]. Thus, the Born- 
Oppenheimer approximation collapses, and the levels resulting from the coupling of 
electronic and nuclear motion are called vibronic levels. 

For a linear molecule in a C ,  n, or A state, the electronic orbital angular momentum 
is characterized by the quantum numbers A = 0 , 1 or 2. If a bending vibration is 
excited, an additional vibrational angular momentum with the projection quantum 
number 1 = 0,1,2,. . . arises. 

The resulting vibronic angular momentum around the molecular axis is then Kh 
with the quantum number 

K =  I&A*lI . 
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The quantum number K corresponds to the rotational quantum number KO in a bent 
triatomic, almost prolate, symmetric top molecule. The levels with K = 0, 1,2,. . . are 
labeled C, n, A, etc. states. 

For K = 0, the vibrational term values for the case of Fig. 9.9a are 

G ( v 2 )  = ~ 2 ( 1  f ~ ) ' ' ~ ( 1 1 2 +  1 ) .  (9.50) 

For K # 0 and v2 = K - I ,  they can be described by 

(9.51) 

where w2 is the vibrational constant of the bending vibration. The Renner-Teller 
coupling can also be considered a Coriolis interaction between the electronic angular 
momentum and the vibrational angular momentum, which is proportional to the prod- 
uct K A  of the projections of electronic and vibrational angular momentum onto the 
molecular axis of the linear molecule. 

The Renner-Teller coupling splits each vibrational level into several sublevels. 
For example, in an electronic rl state with A = 4Z1, a bending vibrational level with 
v2 = I ,  1 = & I  is split into four levels with the quantum numbers K = I + 1 + 11 = 2,  
K = 1 - 1 - 11 = 2 ,  K = 11 - 1 I = 0 and K = 1 - 1 + 1 I = 0, where the first two levels 
are degenerate. The symmetry type of the vibronic levels can be obtained by multipli- 
cations of the electronic and vibrational symmetry types. For the above example, the 
symmetry of the electronic rl state is rel = nu and that of the vibrational state is also 
&b = nu, so that the vibronic symmetry 

(9.52) 

The two C states correspond to the levels with K = 0, whereas the degenerate A state 
corresponds to the levels with K = 2 (Fig. 9.10). 

9.3.6 
Jahn-Teller Effect 

If a nonlinear molecule possesses degenerate electronic states of symmetry type E 
or T ,  each vibration leading to a lower molecular symmetry effects a splitting of the 
potential surface into two branches. In other words, the degenerate state is not sta- 
ble, and the lowest-energy equilibrium structure corresponds to the lower symmetry. 
This spontaneous symmetry breaking is called the Jahn-Teller effect [9.8] after the 
discoverers. It is the analog of the Renner-Teller effect occurring in linear molecules. 
As discussed there, the Jahn-Teller effect is also mediated by the coupling between 
vibrations and electronic motions, and is thus another example for the breakdown of 
the Born-Oppenheimer approximation. We will discuss the Jahn-Teller effect for the 
example of the Li3 molecule. 
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Fig. 9.10 a) Splitting of the vibronic states in an electronic Il 
state compared with the 1 splitting in a 'E state. b) Qualitative 
splitting of an electronic transition A In, t x 1 ~ ; .  

For symmetry reasons, we would expect the structure of Li3 to be an equilateral 
triangle, belonging to the point group D3h. In this structure, the electronic ground 
state and also some of the excited states are twofold degenerate with symmetry type 
E. Due to the Jahn-Teller effect, a linear combination of v2 and v3 vibrations (bending 
vibration and antisymmetric stretching vibration, the frequencies of which are degen- 
erate in the D3h configuration) brings the molecule into an isosceles C2" structure. 
Figure 9.1 1 illustrates the two branches of the potential E* (Q2, Q3) as a function of 
the two normal coordinates Q2 = Qx + iQ,, Q3 = Qx - iQ, of the vibrations y and v3 
in a three-dimensional representation for the approximation of the linear Jahn-Teller 
effect. The two surfaces are axially symmetric around the axis Q2 = Q3 = 0. 

Fig. 9.11 a) Three-dimensional repre- 
sentation of the two Jahn-Teller potential 
surfaces for the quadratic Jahn-Teller ef- 
fect. b) Slice through the lower potential 

surface of the Li3 molecule as a function 
of the apex angle showing the minimum, 
saddle point, and conical intersection. 
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Fig. 9.12 Contour line diagram of the lower potential surface for 
the quadratic Jahn-Teller effect in Li3 [9.9]. 

If higher terms are included in the expansion of the potential in normal coordinates 
(quadratic Jahn-Teller effect), three minima and three saddle points appear in the 
trough of the lower potential in Fig. 9.1 1, belonging to structures with (Y < 60" and 
a > 6 0 .  Figure 9.12 shows a contour line diagram of the lower Jahn-Teller potential 
surface, and Fig. 9.1 1 b displays a slice through this surface. 

For sufficiently low vibrational energy, the molecule will remain in the lowest- 
energy structure. If its vibrational excitation increases, however, it can start tunneling 
through the potential barriers and alter its structures periodically from a < 60" to 
a > 6 0 .  In the representation of Fig. 9.12, the molecule moves along the dotted tra- 
jectory. This tunneling leads, as in the analogous case for the ammonia molecule (see 
Sect. 7.5.1), to a splitting of the energy levels that increases sharply with increasing 
vibrational excitation (Fig. 9.13b). 

m 
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.... 
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(a) (b) $ ["I 
Fig. 9.13 a) Pseudorotation and b) tunnel splitting as a function 
of the vibrational energy in the Jahn-Teller-active vibrational 
modes v2 + v3. 
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This periodical motion is also called pseudorotation because it can be represented 

by a synchronous rotation of all three nuclei around the corners of the equilateral tri- 
angle of the degenerate nonstable configuration (Fig. 9.13a). If the vibrational energy 
exceeds the barrier height, free pseudorotation occurs. The time-averaged equilibrium 
structure of the molecule is then indeed the equilateral triangle. In measurements that 
take longer than one pseudorotation period, the molecule displays a D3h geometry. 

Pseudorotation is an example for molecular dynamics that changes the molecular 
geometry to a large extent, in contrast to low-amplitude vibrations, during which the 
geometry does not differ significantly from the equilibrium structure. 

9.3.7 
Predissociation 

A level below the dissociation limit of an electronic state, which is excited by photon 
absorption, can dissociate by coupling to continuous energy states above the dissocia- 
tion threshold of another electronic state. The rate of dissociation depends then on the 
strength of the coupling, Tbo cases can be distinguished: 

(a) predissociation by rotation (Fig. 9.14a), and 

(b) predissociation of a bound state by coupling to a repulsive electronic state (Fig. 
9.14b). 

In case a), the potential curve of a rotating diatomic molecule displays a potential 
barrier (see Ch. 3). States below the barrier but above the dissociation limit penetrate 
the barrier by tunneling processes and can thus dissociate. The decay rate depends 
exponentially on the width of the barrier and the difference between barrier height 
and molecular energy, and it varies by many orders of magnitude in the energy range 
between the dissociation threshold and the barrier height. The phenomenon shows up 
as a broadening of the corresponding spectral lines. 

E E 
Rotational 

(v'. J') barrier 

limit 

E 

Atomic 
fluorescence 

R 

(4 

Fig. 9.14 Predissociation. a) Tunneling 
through a rotational barrier, b) crossing 
of the outer branch of the potential sur- 
face with a repulsive potential curve of 

another electronic state, and c) interac- 
tion of two electronic states in the inner 
branches of their potential curves. 
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The rate of predissociation for case b) depends on the overlap of the vibrational 

wavefunctions of the two coupling states, where the wavefunction of the dissociat- 
ing nuclei in the repulsive state can be expressed by an Airy function. The overlap 
assumes a maximum at those positions where the potential curves intersect. In the 
vicinity of these intersections, sharp maxima of the predissociation rate are observed. 
However, the overlap can also occur in the inner regions of the potential curves where 
both repulsive potential curves approach each other. Usually, there is no intersection 
in this region, but the energetic spacing between both curves does not vary much over 
a wide range of energies (Fig. 9.14~).  In this case, no sharp maximum of the line 
broadening by predissociation is found, but the linewidths increase slowly with in- 
creasing energy until the dissociation limit of the excited state is reached and direct 
dissociation commences. 

Predissociation can be detected either by the broadening of absorption lines or by 
the decrease in lifetime of the excited state [9.10]. If one is interested in the atomic 
states formed by the dissociation, the atomic fluorescence after the decay can be mea- 
sured, provided that excited atomic states are produced (Fig. 9 .14~)  [9.1 l]. 

The interaction between two states is often mediated by spin-orbit coupling. This 
means, for example, that an excited IC state can predissociate through spin-orbit cou- 
pling with a 3rI state if the energy of the excited level is above the dissociation limit 
of the lower triplet state. As the projection Oh of the electronic total angular momen- 
tum must be conserved ( A 0  = 0), however, only the component 3111 with f2 = 1 can 
contribute to predissociation. 

9.3.8 
Autoionization 

If a bound molecular state of a neutral molecule lies above states of the molecular 
ion, it can couple with the latter, thus producing an ionic state. This process is called 
autoionization. 

Whereas an atomic state can only autoionize if at least two electrons are excited 
and the sum of their excitation energies is larger than the ionization threshold, the 
excitation of a single electron can be sufficient to enable autoionization in molecules, 
provided the sum of electronic excitation energy and vibrational or rotational kinetic 
energy exceeds the ionization energy. This situation occurs, for example, if an electron 
is excited into a Rydberg state of the neutral molecule (Fig. 9.15). As the Rydberg 
electron has its largest probability density far apart from the cloud of the remaining 
electrons, it contributes virtually nothing to bonding, that is, the potential curves of 
all Rydberg states proceed parallel, only shifted with respect to each other by the 
differences of the excitation energies of the Rydberg electron in the respective Rydberg 
states with principal quantum number n. If the vibrational energy in the ion is smaller 
than in the neutral molecule, a portion of the vibrational energy of the Rydberg state 
can be transferred to the electron during autoionization. The transferred amount of 
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Autoionization of molecular Rydberg states [9.12]. 

vibrational energy A&ib must be equal to or larger than the energy difference 

(9.53) 

between the Rydberg state and the ionization energy, where 6 is the quantum defect 
taking into account the deviation of the Rydberg electron's real potential from the 
Coulomb potential. 

For large principal quantum numbers n, a change in the vibrational quantum num- 
ber of Aw = w' - wf = 1 is sufficient, whereas for lower Rydberg states, larger dif- 
ferences in the vibrational energies are necessary. For very large principal quantum 
numbers n, autoionization can take place by transfer of only rotational energy, that is, 
the rotational quantum number J is smaller in the ion than in the neutral molecule. As 
the total angular momentum is conserved, the Rydberg electron must receive angular 
momentum during the ionization. 

The coupling between the neutral state Iw*) and the ionic state Iv+) with almost 
identical potential curves depends, as for all perturbations discussed in the preced- 
ing sections, on the overlap of the vibrational wavefunctions. As the coupling con- 
stitutes a breakdown of the Born-Oppenheimer approximation and is much weaker 
than the electrostatic coupling between the electrons, the autoionization rate is in gen- 
eral much smaller in molecules than in atoms, which can only autoionize through 
an energy transfer between the two excited electrons. Whereas typical lifetimes of 
autoionizing atomic states are in the range 10-13-10-'0s, they are 10-10-10-6s for 
molecules [9.13]. 

The line profile of absorption transitions into autoionizing states is asymmetric and 
is called a Funo projile. It emerges from the interference between two undistinguish- 
able transitions: excitation of the Rydberg state followed by autoionization on the one 
hand, and direct photoionization into a continuum state at the same energy on the other 
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Fig. 9.16 a) Two indistinguishable possibilities to arrive at a 
state E above the ionization threshold through absorption of a 
photon. b) Fano profile. 

hand (Fig. 9.16). The total probability Wik for an excitation of the coupled system Ry- 
dberg state-continuous state from the discrete bound level I i )  equals the square of the 
sum of both excitation amplitudes. It can be described by the absorption cross-section 

If the excitation energy is varied continuously, its phase hardly changes upon ex- 
citation into continuum states, but changes drastically upon excitation of the Rydberg 
state, because then the excitation is resonant. 

This phase shift changes the excitation probability and leads to the typical Fano 
profile shown in Fig. 9.16b for the absorption cross-section, 

(9.55) 

where [Td is the absorption cross-section for transitions into continuum states that do 
not interact with the Rydberg state Ry, and ui is that for transitions into the continuum 
coupling to Ry, and 

(9.56) 

is the distance to the resonance energy in units of the full width at half maximum 
r of the line profile of the transition to the Rydberg state. The dimensionless Fano 
parameter 

(9.57) 

is the ratio of the transition probability D: into the Rydberg state and the product of the 
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Fig. 9.17 Measured Fano profiles of absorption lines in Doppler-free 
spectroscopical investigations of Rydberg states of Li2 [9.14]. 

transition amplitude D2 into the continuum and the coupling coefficient 0 1 2  between 
Rydberg state and continuum. 

For E = -q, the Fano profile approaches the background, ( T ( E  = -4) = dd. The 
maximum of the absorption profile u E  = Od + q(q2 + 1) is at E = - 1 /4. At E = q, 
a minimum is observed. 

From a measurement of the linewidth r of the Fano profile, the lifetime of the 
autoionizing state can be determined, and from the parameter q the strength of the 
coupling to the continuum. 

Figure 9.17 shows measured Fano profiles observed upon excitation of autoioniz- 
ing Rydberg states of the Liz molecule [9.14]. It can be seen that the autoionization- 
limited lifetimes of about lop9 s are significantly shorter than the radiative lifetimes, 
which are in the microsecond range. Hence, the decay of these Rydberg states occurs 
almost exclusively by autoionization. 

9.4 
Radiationless Transitions 

An excited level cannot only decay by emission of radiation but also by a number of 
nonradiative processes such as predissociation, autoionization, or energy transfer to 
higher vibrational levels in lower electronic states with the same total energy as the 
originally excited level. In this process, the electronic energy is partially converted to 
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Fig. 9.18 Schematic representation of radiationless transitions. 

vibrational energy. Particularly this last process is called radiationless transition in 
the literature. It occurs most frequently in polyatomic molecules, and its probability 
increases sharply with increasing density of vibrational states. Another cause of radi- 
ationless transitions is collisional energy transfer, where part of the excitation energy 
is converted into translational energy of the collision partner or into thermal energy of 
the other colliding molecule. 

The coupling between initial and final state determining the probability of the pro- 
cess can be mediated by spin-orbit interaction, vibronic coupling, the Renner-Teller 
effect in linear molecules, or electrostatic interaction. 

Such radiationless transitions will be illustrated in the following for a number of 
examples. 

In larger aromatic molecules such as dyes, fluorescence is observed to originate 
exclusively from the S I  state after several singlet states S1, S2, Sj, etc., have been 
excited. Thus, a very fast radiationless process must exist that transfers the excitation 
energy so quickly into highly excited vibrational levels of S1 that the much slower 
radiative decay paths are quenched. (Fig. 9.18). 

The effective lifetime of these excited states, 

1 
‘Teff = 

h a d  + knonrad ’ 
(9.58) 

is given by the reciprocal sum of radiative and nonradiative decay rates krad and knonrad, 

respectively. The quantum yield of the excited state, 

(9.59) 

describes the relative proportion of the radiative decay to the total deactivation rate. 

h a d  ds, = 
krad + knonrad ’ 
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The quantities Qq and ~ , f f  can be determined experimentally, so that the radiative 
lifetime and the radiationless decay rate can be calculated according to 

(9.60) 

Such radiationless transitions between different singlet states are also called internal 
conversion (IC) [9.15]. 

The Sl state itself is energetically far apart from the ground state so that its radi- 
ationless deactivation is far less probable. However, it can interact with, and finally 
be transferred to, the first excited triplet state, a process called intersystem crossing 
(ISC). The triplet state can then return to the So ground state by emission of photons, 
albeit with much longer lifetime. This weak fluorescence from the normally forbidden 
T l S o  transition is called phosphorescence. 

It turns out that the probability of radiationless transitions S l S o  increases with in- 
creasing vibrational energy in the S1 state, despite the large difference E ( S 1 )  - E ( S o ) .  
The reason behind this fact is that both the density of states and the overlap between 
the vibrational wavefunctions of the interacting states increase sharply with increas- 
ing vibrational energy. The rate knonrad of radiationless transitions can be written as a 
product 

(9.61) 

where (@;I IH’I @;I) is the electronic part of the matrix element for the coupling be- 
tween the two electronic states, H‘ is the perturbation operator describing the coupling, 
(xi Ixk) is the overlap integral of the vibrational wavefunctions, the square of which 
is the Franck-Condon factor, and p ( E )  is the density of states in the final state at the 
energy E [9.16]. 

Higher vibrational states in the S I state have a shorter effective lifetime because of 
their higher probability of radiationless transitions. Therefore, the absorption lines of 
transitions into these states are broadened. 

The time response of such radiationless transitions can be studied in some simple 
systems. A good example is the van der Waals molecule 12A consisting of a iodine 
molecule 12 and a rare-gas atom A (see Ch. 10). The weak van der Waals bond gives 
rise to low vibrational frequencies for the vibration of the rare-gas atom against the 
molecule 12. If an internal vibration of the 12 molecule of much higher energy than the 
van der Waals vibration is excited, the van der Waals bond can be excited, through the 
coupling with the I2 vibration, into such a high vibrational level that it breaks and the 
molecule dissociates (Fig. 9.19). 

This process can be best observed if a vibrational level (v’J’) of I2 in the excited 
electronic state of the I2A complex is excited that can return to the electronic ground 
state by fluorescence. The energies of the levels in the I2A molecule are slightly 
shifted with respect to those in the 12 molecule so that is is easy to distinguish if 
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Fig. 9.19 Vibronic coupling with predissociation in the van der 
Waals molecule I2Ar. 

the I2A complex or an 12 molecule is excited. The radiationless transition through 
coupling with the van der Waals bond is much faster than the decay by spontaneous 
emission from the excited level, that is, the fluorescence is primarily emitted by the 12 

molecule after dissociation of the I2A complex [9.17]. 
From the linewidth of the excitation line of the I2A complex, the lifetime of the 

excited level can be determined, which is mainly determined by the fast dissociation. 
Measuring the 12 fluorescence wavelengths from the excited final state (v' - Av',J' - 
N') of the dissociated I2A complex gives unambiguous information on the upper 
emitting level, so that the energy transfer inside the van der Waals molecule can be 
calculated. 
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10 
Molecules in External Fields 

In an external magnetic field, molecules with magnetic moments experience splittings 
and shifts of their energy levels due to the Zeeman effect, the measurement of which 
can give information on the origins of the magnetic moments and the angular mo- 
menta associated with them. Magnetic moments can arise from the spin of unpaired 
electrons, from electronic orbital angular momenta, or from nuclear spins. Molecu- 
lar rotation can also create a magnetic moment, which is small, however, compared 
with the permanent moments of the molecule at rest. The magnitude of the resulting 
moment depends on the coupling of the different angular momenta in the molecule, 
which in turn is influenced by the coupling between different states (see Ch. 9). Thus, 
measuring the magnetic moments opens additional ways for the investigation of the 
perturbations treated in Ch. 9. 

Analogously, molecules with permanent or induced electric moments experience 
splittings and shifts of their energy levels in electric fields due to the Stark effect, 
providing information on their electron distribution and the electric polarizability of 
their electron cloud. 

These magnetic and electric properties of molecules are exploited in numerous 
diagnostic techniques. Important examples are electron spin resonance (ESR) spec- 
troscopy, nuclear magnetic resonance tomography, which is of profound importance 
in medicine, and laser magnetic resonance or Stark spectroscopy (see Ch. 12). 

In this chapter, we will consider the electric and magnetic properties of molecules 
and learn what information the Zeeman or Stark effects can provide. 

The magnetic moments pm are specified in Am2, and their magnitudes are often 
compared with that of the Bohr magneton 

The electric moments pel are specified in Asm. Frequently, the unit Debye with 
1 D = 3.34 x 10p'OAsm is used. 

= 9.27 x Am2. 

Examples 
The NO molecule has, in its 2113,2 ground state, a permanent magnetic moment 
p,,, = 1.7 x lo-'' Am' = 1 .83pB and an electric dipole moment pel = 0.153 D. 
The electric dipole moment of the HCI molecule is pLcl = 3.70 x 10-'"Asm = 
1.108 D, whereas its magnetic dipole moment in the 'C ground state is very small: 
/I,,, = g j J ~  zz 0 .46Jb ,  where pN = 5.05 x Am2 is the nuclear magneton. 
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10.1 
Diamagnetic and Paramagnetic Molecules 

Molecules with permanent magnetic moments are called paramagnetic. 
Most ground-state homonuclear diatomic molecules, however, possess neither a 

magnetic spin moment, because the electron spins compensate pairwise for an even 
number of electrons, nor a magnetic orbital moment, because the ground states are 
usually C states with L = 0 (see Sect. 2.4.2). Exceptions are molecules with an elec- 
tron spin S # 0 (such as 0 2  or all radicals with an unpaired electron) or heteronuclear 
molecules with L # 0 or S # 0 (such as NO). 

In nonlinear polyatomic molecules, the electron shell cannot possess orbital an- 
gular momentum, and the total electron spin in the ground state is usually also zero. 
Such molecules without a permanent magnetic moment are called diamagnetic. 

In an external magnetic field, however, diamagnetic molecules acquire an induced 
magnetic moment 

(10.1) 

which depends on the external magnetic field B and the magneticpolarizability P and 
which is oriented opposite to the external field. 

Table 10.1 lists the magnetic polarizabilities p for some molecules. This shows, for 
example, that the magnetic moment induced in the H2 molecule in an external field 
B = 1 T is smaller than the Bohr magneton Am2 by six orders of 
magnitude. Thus, the induced magnetic moments are very small compared with the 
permanent moments of paramagnetic molecules. 

The magnetic polarizability @ is anisotropic in all molecules that are not spherically 
symmetric. Hence, the induced moment depends on the direction of the external field 
with respect to a specific axis within the molecule [10.1]. For example, in diatomic 
molecules parallel to the molecular axis differs from @I perpendicular to the axis. 
The largest induced moments are obtained if the external magnetic field is perpen- 
dicular to the axis of maximum electron mobility within the molecule, because the 
induced magnetic moment arises from a current perpendicular to the magnetic field. 
For example, in a molecule such as benzene, in which the electrons can move freely 

= 9.3 x 

Tab. 10.1 Magnetic susceptibility x and magnetic polarizability p for some dia- 
magnetic molecules and permanent magnetic moments for some paramagnetic 
molecules. 

Diamagnetic molecules Paramagnetic molecules 
x x  106 P / (  Am4/Vs) pm/ ( Am2 1 x x  106 

H2 -0.002 - 2 . 4 ~  NO 1.7 x ~ o - 2 3  0.78 
Hz0 -9.0 - 4 . 5 ~ 1 0 - ~ ~  0 2  2 . 5 8 ~  wz3 I .8 
NaCl -13.9 - 6 . 9 ~  



70.2 Zeeman Effect in Linear Molecules 327 

along the ring of carbon atoms due to the x: bonding, the maximum induced magnetic 
moment is obtained with the external field perpendicular to the molecular plane. 

All molecules with unpaired electrons or with a nonvanishing electronic orbital 
moment possess a permanent magnetic moment and are therefore paramagnetic. 

In a sample of freely moving paramagnetic molecules, the molecules are randomly 
oriented. In the absence of external fields, the directions of the magnetic moments 
are therefore distributed statistically due to thermal motion. If an external field ex- 
ists, the molecules are partially oriented, and the degree of orientation increases with 
increasing field strength, but decreases with increasing temperature. If the magnetic 
energy 

I 

Wm = -pm.B  (10.2) 

is large compared with the thermal energy kT,  an almost complete orientation in the 
external field is achieved. The macroscopic magnetization M of N molecules per unit 
volume in an external field B = B, along z is given by the vector sum of all magnetic 
moments, 

M = C p m = N & = N q p m *  (10.3) 

where p,?,, is the effective fraction of the magnetic moments contributing to the mag- 
netization, and 

(1 0.4) 

is the degree of orientation, which is given by the ratio of the potential energy of the 
dipoles in the field B to the thermal energy kT.  (As the directions of the dipoles are 
randomly oriented in space in the absence of an external field, on average only 1 / 3  of 
the N molecules contribute to the maximum potential energy IPmBI.) 

If we substitute Eq. (10.4) into Eq. (10.3), we obtain 

(10.5) 

with the magnetic constant po = 471 x lo-’ Vs/ (Am) and the dimensionless magnetic 
susceptibility 

10.2 
Zeeman Effect in Linear Molecules 

(10.6) 

The magnetic moment of a linear paramagnetic molecule in a state with electronic or- 
bital angular momentum L and electron spin S depends on the coupling of the angular 
momenta, that is, on the corresponding Hund’s case (see Sect. 9.2). 
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(b) 

Fig. 10.1 a) Coupling of angular momenta and b) coupling of 
magnetic moments with an external magnetic field in Hund's 
coupling case a). 

In coupling case a), L and S precess around the molecular axis with projections 
(in the molecule-fixed reference frame) A and C (cf. page 300). The corresponding 
magnetic moment along the molecular axis is then 

where we have taken into account that the gyromagnetic ratio is twice as large for the 
spin than for the orbital angular momentum. 

Examples 
In a 'II state, ,urn = 1 b. In a 'Z state, pm = 2 b ,  in a 2113/2 state pm = 2 b ,  but 
in a 2 ~ ,  /2  state, in which ML and MS have opposite signs, pm = 0. 

If the molecule rotates, the molecular axis precesses around the angular-momentum 
axis J ,  which is stationary in the laboratory-fixed system in the absence of an external 
field, so that only the time-averaged magnetic moment 

(10.8) 

along J survives. In an external magnetic field, p~ is no longer stationary but pre- 
cesses around the direction of the field B (Fig. 10.1). Now, the time-averaged com- 
ponent 

(10.9) 
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Fig. 10.2 Zeeman splitting of rotational levels. a) For a 'n state 
[Hund's case (a)], b) for a *n state [Hund's case (b)], c) for a 'X 
state [10.2]. 

remains as the effective magnetic moment of a rotating molecule in an external mag- 
netic field, where MA is the projection of J onto the direction of the field B. Note the 
strong dependency of the effective magnetic moment on J !  

The energy of a Zeeman level is then 

where Eo is the energy for B = 0. With increasing rotational quantum number J ,  the 
Zeeman splitting of the rotational levels decreases rapidly. The total splitting 

AE = E ( B , M  = J )  - E ( B , M  = 4) 
( A  + 2Z)(A + Z) 

= 2  
J +  1 

(10.11) 

decreases as ( J  + I ) - '  (Fig. 10.2a). 
In Hund's coupling case (b), the electronic orbital angular momentum L couples 

to the molecular axis, but the electron spin S couples to the rotation axis (Fig. 10.3). 
The time-averaged projection of the magnetic moment onto the direction of the total 
angular momentum is then composed of the contributions 

(10.12) I / 2  
P L  = APB and ,US = 2[S(S+ I ) ]  cr, . 
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(4 (b) 

Fig. 10.3 Coupling of a) angular momenta and b) magnetic mo- 
ments in Hund's coupling case (b). 

The projection onto the direction of .I is then 

( P J )  = npBcos(z,K)cos(K,J) + 2 J S i L C O S ( S , J )  . (10.13) 

In the external magnetic field, J precesses around the direction of B, and thus we 
obtain for the time-averaged effective magnetic moment 

M + 2 J s O c o s ( S , J )  (10.14) pefi = [ d- Pcos(K,J )  

K ( K  + 1) 

wherewehaveusedcos(z,K) =fl/[K(K+1)]1/2andcos(J,E) = M / [ J ( J + ! ) ] 1 / 2 .  
The 2S+ 1 possible orientations of the spin with respect to K entail 2S+ 1 different 

values of cos(S ,J) .  Hence, we obtain 2S+ 1 groups of Zeeman components, each of 
which contains (U+ 1) equidistant Zeeman levels with energies 

E = Eo + p e d  9 

the spacing of which decreases rapidly with increasing J (Fig. 10.2b). 

second term so that the total splitting 
For large values of K, the first term in Eq. (10.14) is small compared with the 

=4[S(S+ l)]'/*p~E 

is essentially determined by S and is independent of J (Fig. 10.2b). 
If the magnetic field is strong enough so that the coupling of p with the mag- 

netic field is stronger than the mutual coupling of the magnetic moments (i.e., that the 
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Fig. 10.4 Independent precession of K and S in the Paschen- 
Back effect. 

Zeeman splitting becomes larger than the multiplet splitting), S and K couple inde- 
pendently with B (Paschen-Back effect) and 

A2PB cos(K,B)  + 2dIs(S+I)Lbcos(S,B) . (10.15) 
Peff = JqEi) 

Withcos(K,B) = M ~ / d m a n d c o s ( S , B )  = M s / d m , E q .  (10.15) be- 
comes 

(10.16) 

The first term corresponds to Eq. (10.9) for C = 0 and J = K. The contribution 
from the first term decreases rapidly with increasing quantum number K, until the 
splitting into spin components dominates. For C states with A = 0, the first term 
vanishes. As the coupling of S with J is weaker than the coupling of S with B even 
for small field strengths, the Paschen-Back effect occurs for relatively weak external 
fields (Fig. 10.4). This is the case, for example, for the 3C state (Fig. 10.2c), where the 
molecular rotation creates only a small splitting of the three spin components with a 
spacing independent of J. 

In an electronic transition from a lower level with Zeeman splitting to an excited 
level without magnetic moment (e.g., 'C +- In), the splitting of the lines essentially 
corresponds to that of the lower level. The selection rules are AM = 0 , f l .  The 
polarization of the lines can contain components parallel or perpendicular to the mag- 
netic field. As the transition moment is perpendicular to the molecular axis for Q 
transitions, but along the molecular axis for P and R transitions, the polarization for 
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R(1) R(2) R(3) R(4) 

Fi . 10.5 Zeeman splittings of the lowest rotational lines from 

larization. The portion above the horizontal line corresponds to 
parallel, the portion below the line corresponds to perpendicular 
polarization with respect to the magnetic field [10.2]. 

a B Z t transition with indication of the corresponding po- 

transitions with different AJ is also different (Fig. 10.5). If both states display different 
Zeeman splittings, the frequency difference of the transitions with AM = 0 , f l  can be 
used to determine the individual splittings (Fig. 10.6). 

Diamagnetic nonrotating molecules possess no permanent magnetic moment. 
However, molecular rotation can create a minute magnetic moment 

C1J"hJ (10.17a) 

even in 'C states, where h = ( e / 2 m p ) h  is the nuclear magneton. The nuclear mag- 
neton is smaller than the Bohr magneton of the electron shell by a factor (rne/mp) = 
I / 1836 [ 10.31. 

The origin of this moment can be visualized as follows. 
If, in a homonuclear diatomic molecule with rotational angular momentum J ,  only 

the nuclei with charges Ze, mass numbers A, zero nuclear spins, and internuclear 
distance R were to rotate at a frequency u, a magnetic moment p,,, = p~ would follow 
from classical electrodynamics, 

( : ) 2  
p . ~  = IF = 2Zeun ( 10.17b) 

where I = 2Zeu is the electric current due to the circular motion of the charged nuclei 
moving periodically with frequency u on a circle with area F = z ( R / ~ ) ~ .  As the 
classical angular momentum of the two nuclei with reduced mass m1m2 / (mi -I- m2) = 
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II 
1 

~2 - VI = A€, ;  ~4 - ~2 = A€p 

Fig. 10.6 Absorption transitions between two levels with differ- 
ent Zeeman splittings, here the Q (1) line of a In t 'E transi- 
tion. 

I 1 1 pnUc is I J I  = TmnucRv = TmnUcR2w = nmnucR2u, giving u = IJI / (nmnucR2),  we 
obtain by inserting u into Eq. (10.17b) 

(10.17~) 

With the nuclear magneton A = k h  (mp = proton mass), we finally obtain for the 
nuclear contribution to the magnetic moment of the rotating molecule 

with the mass number A x mnuc/mp. 
As the negatively charged electron shell is rotating together with the nuclear frame- 

work, an opposite electric current arises. However, the electronic charge is distributed 
over a range of distances so that this opposing electric current can only partially com- 
pensate for the current due to the rotating nuclei, and a contribution to the magnetic 
moment proportional to J survives. 

The energy of the Zeeman components is then 

where EO denotes the energy for B = 0, MJ is the quantum number of the projection of 
J onto the field direction ranging from M = -J  to M = + J ,  and gJ is a measure of the 
compensation. Hence, each level splits into 25 + 1 equidistant Zeeman components. 
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A M = O  +1 -1 

B = O  B F O  

u 
fJ+ x u- v 

Fig. 10.7 Zeeman splitting for a diamagnetic molecule in a 'E 
state without hyperfine structure. 

The spacing AE = g J h B  between two adjacent Zeeman components does not de- 
pend on J (Fig. 10.7). 

Microwave transitions between the Zeeman components of two adjacent rotational 
levels must satisfy the selection rules AJ = 1 ; AM = 0 (linear polarized wave with the 
E vector parallel to the magnetic field B )  or AJ = 1; AM = f l  (circularly polarized 
transitions). 

In nonrotating diamagnetic molecules (e.g., in solids) only the induced magnetic 
moments pind = ,8B are left. It is important to note that the magnetic polarizability ,l? 
is, in general, anisotropic, that is, ,l? is a tensor. The induced magnetic moment there- 
fore depends on the molecule's orientation in the magnetic field. As the magnetic 
moments induced by practicable magnetic fields are very small compared to the per- 
manent moments of paramagnetic molecules, they are only relevant in solids, where 
the density of molecules is large. 

If the atomic nuclei also possess spins and hence magnetic moments, a hypelfine 
structure arises due to the interaction between the nuclear and the electronic magnetic 
moments. For molecules with a nonzero resulting electron spin, the Fermi conrac't 
interaction between electron and nuclear spin gives the major contribution, provided 
the electron density at the nuclei is nonzero. The interaction energy for a nuclear spin 
Ik of the kth nucleus and an electron spin si of the ith electron is 

The constant 

(10.19) 



10.2 Zeeman Effect in Linear Molecules 335 I 

J = +  9 
F = l  

MF 

N = l  

In (J = I, I =I) 

(4 (b) 

Fig. 10.8 Zeeman splitting of hyperfine components if the Zee- 
man splitting is a) small compared to the hyperfine splitting, and 
b) larger than the hyperfine splitting. 

is called the Fermi contact constant. If we introduce the total spins 

S = C S j  and I = c I k  and G = S + I ,  

the hyperfine interaction for an isotropic electron spin density can be written, using 
I .  s = ( 1/2)(c2 - l2  -s2), as 

(10.2 1) E h f = - [ G ( G + l ) - I ( I + l ) - S ( S + l ) ] .  A, 
2 

In an external magnetic field, the hyperfine components are split. The exact structure 
of the splitting depends on whether the hyperfine splitting is larger or smaller than the 
Zeeman splitting. For sufficiently weak magnetic fields, it is large compared with the 
Zeeman splitting, and the coupling of the internal angular momenta remains intact. If 
we introduce the total angular momentum 

F = G + R = S + I + R  

as vectorial sum of electron spin S, nuclear spin I ,  and rotational angular momen- 
tum R, each hyperfine level splits into (2F + 1)  equidistant Zeeman components 
(Fig. 10.8a). 

For stronger magnetic fields, the coupling between nuclear and electron spins be- 
comes weaker than the coupling of both with the magnetic field. In this case, electron 
spin and nuclear spin couple independently with the magnetic field. As the magnetic 
moment of the electron spin is larger than that of the nuclear spins by three orders 
of magnitude, the Zeeman splitting is first into 2s + 1 components MF of the elec- 
tron spin, and each of these components displays a substructure of 21 + 1 components 
(Fig. 10.8b). 

In the transient regime between these two limiting cases, the structure of the Zee- 
man levels is more complicated. 



336 10 Molecules in External Fields I 
10.3 
Spin-Orbit Coupling and External Magnetic Fields 

While a singlet state of a nonlinear molecule is not influenced by an external magnetic 
field B (except for potential minute nuclear spin effects), the terms of a triplet state 
are split and experience a Zeeman shift proportional to B due to the interaction of the 
electron spin moment with the magnetic field. If two rotational levels with the same J 
in a singlet and a triplet state with an energy separation AE interact due to spin-orbit 
coupling, the magnetic field influences the energetic spacing AE (B) between these 
two levels (Fig. 10.9) and hence the strength of the perturbation, that is, the degree of 
mixing of the states. 

This will be illustrated for the CS2 molecule. Here, an optical excitation occurs 
from the 'Z ground state of the linear molecule into a rotational level of the bent 
'B2 excited state (Fig. 10.10). This state interacts through spin-orbit coupling with 
a 3B2 state. In the absence of an external magnetic field (B = 0), only the singlet 
state is excited because the transition from the 'E ground state into the triplet state 
is forbidden. With increasing magnetic field strength, the coupling between the two 
states also increases, that is, the triplet state acquires an increasing contribution from 
the singlet state, which increases the transition probability. Figure 10.11 shows that the 
intensity of the split Zeeman components in the triplet state increases with increasing 
B and that these components are shifted towards the singlet transition. Simultaneously, 
the singlet state acquires an admixture of triplet eigenfunctions and thus also a Zeeman 
splitting [ 10.61. 

/ 
Triplet 

J = l  

without 
J = N = I  

M = + l  
~ 

- P  

0 0.1 0.2 Tesla 

Fig. 10.9 Zeeman splitting of two rotational levels in a singlet 
and a triplet state interacting through spin-orbit coupling. 
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Fig. 10.10 Section from the potential curve diagram of the CS2 molecule. 

B = O . l T  
Triplet h J '=3+J"=2  X l  

x 2  B = 0.24 T 

1 1 1 1 1 1 1 1 1 1 1 1 1 1  
31344.20 31 344.25 31344.30 

cm-' 

Fig. 10.11 Zeeman splitting of absorption lines of CS2 lead- 
ing from the ground state to rotational levels of the 'B2 and 
3B2 states interacting through spin-orbit coupling for different 
strengths of the external magnetic field [I 0.41. 
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Fig. 10.12 Lifetimes of singlet and triplet levels as a functions of 
the magnetic field strength [10.5]. 

From the field-dependent splittings and shifts of the two Zeeman structures, the 
magnetic moment of the triplet state and the strength of the spin-orbit coupling can 
be deduced. 

Above an excitation energy E,, the maximum of the potential curve E p o t ( a )  of 
the 'B2 ('Au) state in Fig. 10.10, located at a linear structure with a = 180" (in this 
linear arrangement, the state is 'Au with A = 2), is exceeded. During bending vibra- 
tions across the potential barrier, an electronic orbital moment can then arise, which is 
quenched in the bent conformation. This effect leads to an increase of the total mag- 
netic moment and hence to a larger Zeeman splitting as confirmed by experiments. 

As the spontaneous lifetime of the triplet state is much larger than that of the singlet 
state, any mixing between the states extends the lifetime of the singlet state and short- 
ens the lifetime of the triplet state. The magnetic field increases the coupling between 
both states and thus an increase of the magnetic field strength will lead to a shorter 
lifetime T of the triplet state and a larger lifetime of the singlet state (Fig. 10.12). 
Measurement of the dependency T(B) allows a highly accurate determination of the 
mixing coefficients of the wavefunctions of the coupled states. 

This shows that the measurements of the Zeeman splitting can provide detailed 
information on the excited molecule, its potential surface, and the coupling between 
different states. 
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10.4 
Molecules in Electric Fields: The Stark Effect 

Molecules possess an electric dipole moment if the centers of charge for the positive 
charges of the nuclear framework and the negative charges of the electron shell do 
not coincide. Table 10.2 lists the dipole moments of some polar molecules. Anal- 
ogously to molecules with magnetic moments in magnetic fields, molecules with 
electric dipole moments experience splitting and shifts of their levels in electric 
fields. [ 10.71. 

Molecules with a center of inversion or with more than one C,, axis with n > 2 (see 
Sect. 5.1) cannot possess an electric dipole moment for symmetry reasons; they are 
called nonpolar. This is the case for all homonuclear diatomic molecules such as H2. 

N 2 . 0 2 ,  but also for CH4 or CCl4. 
In an external electric field E, both in polar and nonpolar molecules induced mo- 

ments 

(10.22) 

emerge. The electric polarizability a is a measure for the ease with which the neg- 
atively charged electron cloud can be shifted with respect to the positively charged 
nuclear framework. In polar molecules, the total dipole moment is the vector sum of 
the permanent and the induced moment. Like the magnetic polarizability 0, the elec- 
tric (Y is also a tensor, because the induced moment depends on the orientation of the 
electric field E with respect to the molecular axis. For example, the polarizability of 
CO along the molecular axis is three times as large as that perpendicular to it. 

The energy of an electric dipole in an electric field is 

E = -pe ’E,  (10.23) 

which means that for induced dipole moments, the energy 

in the electric field increases as E2.  

Tab. 10.2 Permanent electric dipole moments of some moleculesu. 

(10.24) 

Diatomic molecules Polyatomic molecules 
Molecule pel / Asm Molecule pel / 1 0-30 As m 

co 0.37 C6H6 0.0 
BF 1.67 N 2 0  0.54 
HF 6.00 NO2 1.05 
AgCl 19.0 H2S 3.24 
NaCl 30.0 H20 6.18 
Bas 35.4 C2H202 16.01 

“ 1  Debye (D) = 3.336 x tO-”Asm. 
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Fig. 10.13 Derivation of the effective electric dipole moment in 
an external electric field. 

In polar molecules with axial symmetry, the permanent dipole moment must be 
oriented along the molecular axis. During a rotation of the molecule, all components 
perpendicular to the rotation axis are averaged to zero, and averaged over time only 
the component 

along the rotational axis J survives, where K is the component of J along the molec- 
ular axis (Fig. 10.13). 

In an electric field, J precesses around the direction of the field, so that only the 
component 

KM 
p$ = ( & I )  cos( J, E) = ~ 

J(J + 1 )  
(10.25) 

survives. According to Eq. (10.23), the$rst-order Stark shift, that is, the shift of the 
energy of a level due to the electric field, is then given by 

(10.26) 

For a linear molecule in a 'C state (i.e., A = 0 and S = 0), the total angular momen- 
tum is perpendicular to the molecular symmetry axis, that is, the projection quantum 
number is K = 0 and therefore E ( ' )  = 0. Hence, these states show no first-order Stark 
effect! 

However, there is also a second-order effect, as can easily be understood. The 
energy of a dipole in an electric field depends on its orientation. If it is aligned with 
the electric field, its energy is, according to Eq. (10.23), lower by an amount 2pE 
than if it is opposed to it. Thus, the molecule will not rotate uniformly around an axis 
perpendicular to the dipole moment, but will rather spend a larger fraction of its time 
in the energetically favorable orientation where it rotates slower. This fraction is given 
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Fig. 10.14 Second-order Stark splitting of rotational levels in 
states with K = 0. 

by the ratio 

( 10.27) 

of electrostatic energy and rotational energy Erot = hcBJ(J + 1). For molecules with 
a permanent dipole moment, the shifts of the molecular energy levels in the field can 
be calculated as 

(10.28) 

The shift is proportional to the square of the electric field strength and to the square of 
the dipole moment (second-order Stark effect) and is always positive. Thus, the Stark 
shift depends only on the magnitude of the projection quantum number M, not on its 
sign (Fig. 10.14). 

A quantum-mechanical treatment using a second-order perturbational calculation 
[ 10.1 ] yields, instead of Eq. ( 10.28), 

p2E2 J ( J  + 1)  - 3M2 (2)  - E + - 
EJM - 2hcBUJ(J+1)(2J-1)(2J+3)  

(10.29) 

Each rotational level with rotational quantum number J is split into ( J  + 1) Stark 
components because M runs from -J to +J and M 2  can assume J + 1 different values. 

For molecular states with K # 0 (e.g., linear molecules with electronic angular 
momentum L, where K = A, or bent symmetric top molecules), the first-order Stark 
effect occurs. Of course, the rotation is in these cases also influenced by the electric 
field, so that there is in addition also a second-order Stark effect. 
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Hence, all molecular states with K # 0 show both first- and second-order Stark 

effects, and the second-order effect is in general smaller than the first-order effect. 
The quantum-mechanical calculation, which will not be given here, yields for the 
energy of a Stark component ( J , K , M )  of a symmetric top molecule [ 10.11 

pKMjE p2E2 [ (5' - K2) (J2  - M:) 
J ( J +  1)  2hB J 3 ( 2 J -  l ) (2J+  1) 

E ( E )  = EO - ~ +- 
(10.30) 

- [ (J+1)2-K2] [ ( J + 1 ) 2 - M : ]  
( J +  1 ) 3 ( U +  1 ) ( 2 J f 3 )  

where EO is the energy for E = 0, the second term describes the first-order Start effect 
and the third term describes the second-order Stark effect. 

In asymmetric top molecules, the K-degeneracy is removed (see Sect. 6.2.3). Hen- 
ce, they show only a second-order Stark effect. However, the calculation of the en- 
ergies of their Stark components is not possible in closed form, but must be done 
numerically. 
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11 
Van der Waals Molecules and Clusters 

In recent years, the investigation of weakly bound systems, in which van der Waals in- 
teractions rather than covalent chemical bonds cause cohesion, has progressed rapidly. 
Such van der Waals bonds are dominant, for example, in compounds between atoms 
with completely filled electron shells, because here no valence electrons are available 
for an ordinary chemical bond. Examples of such van der Waals molecules (Fig. 1 1.1) 
are rare-gas dimers such as He2, Ne2, Ar2, KQ or Xe2, halide-rare-gas compounds 
such as XeCl or ArF, metal atom-rare-gas atom compounds such as NaAr, or com- 
pounds of dipolar molecules with rare-gas atoms such as Ar-CO or Ar-HF. There 
are also larger van der Waals molecules such as ammonia dimers, (NH3)2. benzene 
dimers, (C6H6)2, or compounds of organic molecules with rare-gas atoms such as 

As discussed in Sect. 3.7.2, the van der Waals bond arises from the interaction be- 
tween two induced dipole moments in neutral atoms or groups (Fig. 3.21). In other 
words, it is a dispersion interaction, which is much weaker than chemical bonds and 
also weaker than hydrogen bonds. A van der Waals bond is characterized by a po- 
tential curve with a shallow minimum which can accommodate only a few vibrational 
levels (Fig. 11.2). The restoring forces are weak, and the vibrational energy is small. 

(c6 H6 )Ar. 

Ar Ar H F  Ar 

Waals bond 

Van der 
Waals bond 

NH3 

Fig. 11.1 Examples of van der Waals molecules. a) Ar2, 
b) HF-Ar, c) (NH3)2.  
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Fig. 11.2 a) Typical potential of a van der Waals bond with only 
a few vibrational levels; b) potential curve of the He2 molecule. 

The bond can easily be broken by sufficient vibrational excitation, and many van der 
Waals molecules are therefore only stable at sufficiently low temperatures. For exam- 
ple, the depth of the potential minimum for the He2 molecule is only about 1 meV. The 
lowest vibrational level w = 0 lies at Evib ('u = 0) = 0.9999 meV, so that an additional 
energy of only 

In larger van der Waals molecules, the vibrational excitation of a strongly bound 
part of the molecule can be transferred to the van der Waals bond by vibrational 
coupling, leading to dissociation of the molecule. An example is the van der Waals 
molecule I2He (Fig. 1 1.3), where an excitation of the w = 1 vibrational level of the 12 

vibration leads to dissociation by coupling with the van der Waals bond [11.3]. The 
investigation of van der Waals molecules and their dissociation channels thus provides 
insight into the strengths of the couplings between the different vibrational modes in 
polyatomic molecules. 

eV can already lead to dissociation [11.1]. 

R 

+ He 

v'an der Waals potential 

R 

ig. 11.3 Predissociation of a van der Waals molecules M-A by t ibrational excitation of M for the example of the lzHe complex. 
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Fig. 11.4 a) Rare-gas cluster Arlos; b) fullerene Cm. 

Certain types of clusters are in some ways related to van der Waals molecules. They 
are more or less strongly bound systems, depending on the type of cluster, consisting 
of N atoms or molecules, where the number N can be as low as three or as high as 
several thousand. The weakly bound van der Waals clusters consist of rare-gas atoms 
or, in general, of atoms with closed electron shells (Fig. 11.4a), whereas metal clusters 
consisting of metal atoms are more strongly bound. Silicon or carbon clusters such as 
c60 (Fig. 1 1.4b) are particularly stable due to the strong covalent bonding between the 
atoms. 

Clusters are intermediate between individual isolated molecules or van der Waals 
complexes and liquid droplets or solid microparticles. It is therefore highly interesting 
to investigate how their properties such as bond energies, melting temperature, ioniza- 
tion potential, or the geometrical arrangement of the atoms approach with increasing 
N the corresponding bulk properties of liquid or solid bodies. 

The number of publications on clusters has increased enormously in recent years 
[ 1 1.3-1 1.71 because a number of experimental techniques for the generation and in- 
vestigation of clusters have been developed, and the accuracy of theoretical methods 
for numerical calculation of cluster properties has been improved significantly. Nowa- 
days, cluster physics is a firmly established branch of molecular physics. 

11.1 
Van der Waals Molecules 

To give us an idea of bond energies in van der Waals molecules, Table 1 1.1 lists some 
examples and compares them to the CO molecule with its strong covalent chemical 
bond. We see from the table that the bond energies in van der Waals molecules are 
lower than in ordinary molecules by about two orders of magnitude. Correspond- 
ingly, the distances R between atoms or groups bonded by van der Waals forces are 
significantly larger. 
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Tab. 11.1 Comparison of bond energies for van der Waals bonding, hydrogen bond- 
ing, and covalent bonding. 

I 

Molecule Bond type De / cm- ' D,/  eV R e /  8, 

He2 van der Waals 1.6 9 x 3.0 

Nez van der Waals 30 3.6 x 10-3 3. I 

ArCO van der Waals 110 1.4 x lo-* 3.3 

(NH3 12 van der Waals & loo0 0.12 3.4 

hydrogen bond 

(H2012 hydrogen bond 1900 0.24 3.0 

co covalent 90500 11.2 1.1 

The weakest bond is found for the He;! molecule with a depth of the potential 
minimum of only -D, = - 1 meV, just enough to accommodate the ground-state vi- 
brational level with a zero-point energy of 0.9999 meV. Thus, its bond energy is only 
Do = 1.1 x lo-' eV, and the mean distance between the two helium atoms [ 1 1. I ]  is 
( R )  = 50A! 

In the molecular orbital diagram (Fig. 1 1 S) ,  the four electrons of He;! can be dis- 
tributed over the two bg and bu orbitals, which means that the bonding effect of the 
two bg electrons is almost compensated by the two bu electrons. If, however, a oU 
electron is removed by excitation or ionization, the bonding contribution of the bg 
electrons prevails. Therefore, the bond energy of He: of 2.5 eV is larger than that of 
neutral He;! by more than three orders of magnitude. 

Hence, van der Waals molecules can have larger bond energies in excited electronic 
states than in the ground state. For example, Fig. 11.6 shows the potential curve of 
the NaKr molecule, which has a bond energy of 70cm-' = 8.8meV in the 2C ground 
state, but of 790cm-' = 99meV in the excited ;!II,,;! state [11.8]. 

If a rare-gas atom is bound to a diatomic molecule by van der Waals interactions 
(Fig. 11.7), the van der Waals potential depends on the distances R and r and the angle 
0 against the molecular axis. 

The van der Waals molecule CO-Ar has been studied particularly thoroughly 
[ 1 1.91. Here, the coupling between Ar and CO is several orders of magnitude weaker 
than that between C and 0. Hence, the lines in the infrared absorption spectrum are 
shifted only slightly with respect to those of the free CO molecule. From the lines 

OU 3 He+He 3 . - - - - - - He++He 

Fig. 11.5 Molecular orbital diagram of He;! and He:. 
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Fig. 11.6 Adiabatic potential curves for the 2Z ground and the 
A2n excited state of the NaKr van der Waals molecule [l 1.81. 

Fig. 11.7 a) Schematic representation of a van der Waals corn- 
plex consisting of an atom and a diatomic molecule. b) CO-Ar 
in the vibrational ground state. 

of many rotational transitions, the rotational and vibrational constants of the CO-Ar 
molecule can be determined, and hence its potential surface (Fig. 1 1.8) and its struc- 
ture (Fig. 1 I .7) can be obtained. In the vibrational ground state, the minimum of 
the potential curve is at R(C0-Ar) = 3.3w and an angle 19 = 90". The depth of 
the potential minimum is D, = 130cm-'. The CO-Ar bond energy is therefore 
DO = D, - Evib(w = 0), that is, it equals the depth of the potential minimum minus 
the zero-point vibrational energy. There is a second minimum for a linear structure 
that can only be reached in vibrationally excited states, because it is separated from 
the global minimum at 90" by a potential barrier. 
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Fig. 11.8 Contour line diagram of the potential surface of 
CO-Ar in the vibrational ground state in cm-' [11.9]. 

If the vibrational level v = 1 of CO is excited, its energy is far beyond the dis- 
sociation energy of the van der Waals bond. Hence, this state predissociates by cou- 
pling with the van der Waals vibrational mode, in which CO oscillates against Ar 
(Fig. 1 1.7). From the measured narrow linewidth it can be deduced that this coupling 
is very weak for CO-Ar so that sharp lines are obtained despite the predissociation. 
If the spectral resolution is sufficiently high, the radiationless lifetime of the excited 
level can be determined, and the coupling strength between the C = O  and the van 
der Waals vibration can be deduced. In Fig. 11.9, measured linewidths are plotted 
against the depth of the potential minimum for some van der Waals complexes. We 
see that the coupling between the intramolecular vibration and the intermolecular 
van der Waals vibration becomes stronger as the depth of the potential minimum in- 
creases [11.10]. 

Because of the weak bond, van der Waals molecules often exhibit nonrigid struc- 
tures, that is, they can alter their nuclear framework periodically by passing over 
shallow potential barriers or by tunneling through them. There exist several isomers 
with slightly different ground-state energies corresponding to the diverse minima on 
the potential surface. For example, in the NH3 dimer vibrational excitation can in- 
duce a mutual rotation of the two NH3 units around the axis of the van der Waals 
bond. 

As the potential of the van der Waals bond is very shallow, the restoring forces 
acting against a change in the bond length are very small. Hence, vibrational am- 
plitudes are large and vibrational frequencies are small. Because of the large mean 
internuclear distance, the moments of inertia are large, and rotational constants are 
correspondingly small. Hence, a high spectral resolution and low temperatures are 
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Fig. 11.9 Measured linewidths of absorption transitions into pre- 
dissociating levels of some van der Waals complexes as a func- 
tion of the depth of the potential minimum of the van der Waals 
bond [I 1 .lo]. 

needed to resolve the closely spaced rotational lines and to populate only a few lev- 
els. 

The question as to whether the ( 0 2 ) ~  (oxygen dimer) molecule possesses a lin- 
ear, bent, or rectangular structure remained a matter of debate for a long time. Only 
recently, rotationally resolved spectra showed that the rectangular structure in Fig. 
1 1.1 Oa) has the largest binding energy [ I  1. I 11. Upon vibrational excitation, the dimer 
can be transformed into another structure. In contrast, the (0CS)z molecule possesses 
a trapezoidal structure with D2h symmetry, in which the two linear OCS molecules are 
oriented antiparallel and are shifted with respect to each other (Fig. 1 1. lob). 

0 7  S C 0 

0 C S 
(4 (b) 

Fig. 11.10 a) Structure of the ( 0 2 ) 2  molecule in the ground state 
and b) structure of the (0CS)z molecule. 
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11.2 
Clusters 

If we want to know how and why the properties of clusters approach the characteristic 
properties of liquid droplets or microcrystals with increasing number N of constituents 
(atoms or molecules), and for which size of N this transition occurs, we must start by 
elucidating the differences between clusters and (solid or liquid) bulk matter. 

As some cluster properties are caused by surface effects, we will first determine the 
important parameter N s / N ,  the fraction of surface atoms in a cluster. For sufficiently 
large N ,  the cluster can be considered a sphere of radius R consisting of N spherical 
atoms with radius r. With these assumptions, we obtain for a close packing R M 0 . 9 D  
with the volume filling factor fv = N ( 4 n / 3 ) r 3 / ( 4 n / 3 ) R 3  = N ? / R 3  = 0.93 = 0.74, 

3 

Nr3  =Q.74R3 + N = O . 7 4 ( ! )  . (11.1) 

For the surface S of the cluster, which is assumed to be spherical, containing Ns atoms 
with cross-sections Xr2, we obtain with the coverage factor fs = N s ( n ? ) / ( n R 2 )  M 
0.78,  

2 

N S d  = 0.78 x 4nR2 + Ns = 4 x 0.78 (!) . (11.2) 

Division of Eq. (1 1.2) by Eq. (1 1.1) yields 

(11.3) 

because N 0: R3. Whereas for small clusters, the number Ns of surface atoms con- 
stitutes a large fraction of all N atoms, the ratio N s / N  decreases for larger clusters 
proportional to N-'13  (Table 11.2). 

Above a critical cluster size N,, a fixed structure for the cluster is established, and 
at sufficiently low temperatures the cluster cannot change its general structure if new 
atoms are added. 

Tab. 11.2 Ratio N , / N  and radius R of a spherical cluster of identical atoms with 
radius r = 2.2A. 

10 
1 02 
103 
1 o4 
1 05 
10'0 
1 020 

1 - 

10.3 0.8 
22 0.4 
48 0.23 

I 0 0  0.08 
4800 2.3 x 1 0 - ~  

107 10-6 
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If the temperature rises, clusters can also exhibit phase transitions from the solid 
to the liquid state. However, the melting temperature depends on cluster size, and 
approaches its bulk value only for very large clusters (Fig. 1 1.1 1). This effect is also 
connected with the ratio N , / N ,  because the surface tension and hence the intrinsic 
pressure of the cluster decrease with decreasing N s / N  (i.e., increasing cluster radius 
R).  

Clusters can be categorized in several ways. First, they can be classified as atomic 
or molecular clusters according to the type of their constituents. A second attribute is 
their size, that is, the number N of atoms or molecules in the cluster. The following 
scheme may serve as an approximate categorization: 

(a) microclusters with N = 2 to = 10-13. Here, all atoms are surface atoms, and the 
properties of these clusters can frequently be described by molecular models, 
particularly for nonmetallic clusters; 

(b) small clusters with N = 10-13 up to about N = 100. Here, many isomers exist 
and molecular models are not adequate; 

(c) large clusters with N = 100 up to N = 1000. Here, a beginning transition to 
bulk properties can already be observed for some cluster properties; 

(d) small droplets or microcrystals with N > lo3. Many, but not all properties of 
liquids or solids are already distinct. 
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Using the type of bonding within the cluster as a characteristic, clusters can be 

categorized as 

(a) metal clusters with metallic bonding, such as alkali metal clusters, mercury clus- 
ters or gold clusters; 

(b) van der Waals clusters such as rare-gas clusters; 

(c) clusters with hydrogen bonding such as water or ammonia clusters, which form 
a special subgroup of molecular clusters; 

(d) molecular clusters such as (Si0)N or ( c 0 ) ~ ;  

(e) clusters with covalent bonds such as (Si)N or CN. 

However, such a categorization is not always unambiguous. Frequently, a transition 
from one bonding type to another is encountered for a specific type of cluster. For 
example, HgN clusters display van der Waals bonding for small values of N ,  but show 
a gradual transition to metallic bonding for larger N .  

The dependence of the melting temperature (Fig. 11.1 1 )  and the progression of the 
liquid-solid phase transition on cluster size is an interesting and much investigated 
question. For some clusters, a transition from the solid to the liquid phase can be 
observed at a fixed temperature for increasing N .  

In the following, we will discuss some types of clusters in more detail. 

11.2.1 
Alkali Metal Clusters 

Alkali metal clusters can be considered prototypes of metallic clusters with one va- 
lence electron per cluster atom. With increasing cluster size, the bonding changes from 
covalent to metallic, where the valence electrons cannot be allocated to specific atoms 
but resemble an electron gas confined to the cluster volume. In the so-called Jellium 
model [ 11.71, this volume is filled uniformly with the positive charges of the nuclei and 
the negative charges of the electrons. This leads to the problem, well-known in quan- 
tum mechanics, of optimizing the arrangement of fermions in a three-dimensional, 
spherically symmetric potential well. There are discrete energy levels, which accord- 
ing to the Pauli principle can be occupied by a certain maximum number of electrons. 
This number depends, as in the case of the hydrogen atom, on the principal quantum 
number n and the allowed angular momentum states of the electrons. If we order the 
electrons according to their energies, a shell structure analogous to that in atoms is ob- 
tained. States with the same n but different values of the angular momentum quantum 
number 1 have very similar energies. All electrons in such states with identical n form 
a shell. 
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Fig. 11.12 Frequency distribution of (Na)N clusters, measured 
as (Na); distribution in a mass spectrometer after electron im- 
pact ionization. 

The observed abundance distribution of NaN clusters as a function of N (Fig. 1 1.12) 
displays maxima at N = 2,8,20,40,58, . . . . These numbers correspond to the electron 
occupation numbers of the levels in a three-dimensional, slightly anharmonic potential 
(Fig. 1 1.13). According to this model, the stability of metallic clusters is determined 
less by the geometrical arrangement of the atoms and more by the arrangement of the 
electrons, clusters with completely filled shells being the most stable. 

The measured dissociation and ionization energies of alkali metal clusters (Fig. 
11.14) show the same shell structure. For large N ,  the ionization energies approach 
the electronic work function for solid sodium. 

The small alkali metal clusters Li3 and Na3 have been investigated very thor- 
oughly [11.13], and the rotational structure and even the hypefine structure could 
be resolved using Doppler-free spectroscopy (see Sect. 12.4.7). From symmetry argu- 
ments, an equilateral triangle with D3h symmetry would be expected for the structures 
of these trimers. It turns out, however, that the electronic state for this configuration 
would be degenerate. Therefore, the Jahn-Teller effect (see Sect. 9.3.6) has the con- 
sequence that each vibration of lower symmetry (such as the antisymmetric stretching 
vibration or the bending vibration) leads to a splitting of the electronic potential sur- 
face into two potential sheets, where the lower surface possesses a minimum at a bond 
angle of about 70" with a lower energy than the D3h configuration [ 1 1.141. Figure 9.12 
shows a contour line diagram for the ground state of Li3 as a function of the displace- 
ments Qx and Qy from the D3h configuration (Qx = Qr = O),  and Fig. 9.11 displays 
a cut through such a diagram. To first approximation, the potential surfaces can be 
obtained from these curves by rotating them around the z axis. The intersection of the 
curves corresponds to the conical intersection of the potential surfaces (D3h symmetry 
at Qx = Q,, = 0) at which the degeneracy occurs. 
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Flg. 11.13 Energy levels and their electronic occupation num- 
bers in a harmonic and a slightly anharmonic three-dimensional 
potential well as determined by self-consistent iteration based 
on the Jellium model. 

The combinations Qx f iQy of the vibrations y and v3 lead to a periodic motion of 
the nuclei along the dotted curve in Fig. 9.1 1, called pseudorotation because it can be 
represented by a synchronous rotation of all three nuclei around the three corners of 
the equilateral triangle of the D3h configuration (see Fig. 6.12). During this motion, 
the structure of the Na3 molecule changes periodically from an obtuse-angled to an 
acute-angled triangle [ 1 1.161. The potential surface exhibits minima at these two con- 
figurations, which are separated by a potential barrier. Even if the kinetic energy of the 
vibrational motion is lower than the barrier height, the system can still tunnel through 
the barrier. The frequency of the pseudorotation in the vibrational ground state of Na3 
is very small (about 1 MHz), but it increases rapidly with increasing vibrational energy 
and it exceeds the spacing of the molecule's rotational lines when the barrier height 
is reached. In Li3, the barrier height is smaller, but the vibrational energy is larger 
because of the smaller masses, so that the pseudorotation frequency is much larger 
than the molecule's rotational frequency even in the vibrational ground state [ 1 1.171. 
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Fig. 11.14 a) Dissociation energies D,(N) of (Na)N and KN clus- 
ters. b) Ionization energies of (Na)N clusters [I 1 .I 51. 

This example shows that even the small alkali metal clusters do not necessarily ex- 
hibit fixed structures, but that the large-amplitude vibrations can alter their geometries 
- despite the relatively large bond strength of the metallic bonds as compared to van 
der Waals bonds. This is in sharp contrast to the situation in stable molecules, where 
the vibrations occur around equilibrium positions, and the vibrational amplitudes are 
small compared with internuclear distances. 

11.2.2 
Rare-gas Clusters 

Rare-gas clusters are typical representatives of van der Waals clusters (Fig. 11.4a). 
Due to their small bond energies, they are only stable at low temperatures. The struc- 
tures of solid rare-gas crystals are determined by the close packing of the face-centered 
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Fig. 11.15 Structure of rare-gas clusters as a function of N. The 
bond energy for the icosahedral structure possesses maxima for 
the magic numbers Nm = 13, 55, 147, 309, . . . [11.18]. 

cubic structure. Electron diffraction studies have revealed, however, that small clus- 
ters with N < 1000 prefer a regular icosahedral structure, which is energetically more 
favorable. This structure possesses a fivefold symmetry axis, which cannot occur in 
solids, and it leads to a spherical organization of the clusters with a shell structure. 
The clusters are most stable for certain magic numbers Nm, for which a complete shell 
is filled. For xenon clusters (Fig. 11.15>, the numbers Nm = 13, 55, 147, 309, . . . 
are magic. The mass distribution of xenon cluster ions shown in Fig. 1 1.16 displays 
pronounced maxima at these magic numbers. 

In contrast to metal clusters, it is not the occupation of the electronic levels but 
the geometric arrangements of the atoms in shells that determines the stability of the 
clusters. This result is comprehensible because the ionization energy of the rare-gas 
atoms is very high, and thus the electrons remain at their respective nuclei and do not 
form an electron gas as in metal clusters. At sufficiently low temperatures, larger 4He 
clusters exhibit superfluidity [ 1 1.201. 
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Fig. 11.16 Intensity distribution in the mass spectrum of (Xe),+ 
cluster ions [ 1 1 .19]. 

11.2.3 
Water Clusters 

The investigation of water clusters ( H 2 0 ) ~  is particularly interesting because it con- 
tributes to our understanding of the formation and evaporation of water droplets in the 
atmosphere and because it can help to elucidate the anomalous absorption and scat- 
tering of sunlight by water droplets. Highly accurate ab initio calculations for small 
water clusters amved at the structures shown in Fig. 11.17, which agree well with 
experimental results. For N in the range of three to five, the clusters form a planar 
framework with only the hydrogen atoms protruding from the plane (Fig. 11.17b). It 
turns out that the stability of the clusters is secured mainly by hydrogen bonds between 
the individual water molecules. The potential surface exhibits many minima at differ- 
ent structures, which are separated by small potential barriers though which the system 
can easily tunnel. For example, the hydrogen atoms can tunnel through the molecular 
plane during their vibrations and can thus form different isomers. Therefore, the water 
clusters have no fixed structures but show dynamical behavior even at low tempera- 
tures, corresponding to frequent structural transformations (or isomerizations). If the 
tunneling time is shorter than the average measurement time, a time-averaged planar 
structure is observed. 

Detailed investigations of such cluster structures as a function of N can help to 
verify model potentials and open up new paths to an improved understanding of the 
structure of liquid water. 
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Fig. 11.17 Structure of small ( H 2 0 ) ~  clusters with hydrogen 
bonds for N = 3,4 and 5. The hydrogen atoms can tunnel 
through the molecular plane and form different isomers [11.21]. 

For example, we can see from Raman spectra recorded with high spectral and 
spatial resolution that the relative fraction of water momomers, dimers, and multimers 
varies strongly between the surface and the bulk of liquid water. This is the reason, 
for example, for the large surface tension of water. 

11.2.4 
Covalently Bonded Clusters 

The building blocks of covalently bonded clusters are the tetravalent group-IV ele- 
ments carbon, silicon and germanium. Whereas in macroscopic crystals, the covalent 
bonding determines the crystal structure, where each of the four bonds is directed to- 
wards the adjacent atom and is occupied by two electrons with opposite spins, the 
surface atoms in a cluster have a pronounced effect on the arrangement of the atoms, 
because they have free valences protruding out of the cluster surface that are not con- 
nected to neighboring atoms (dangling bonds). These free valences can attract new 
atoms while the cluster grows. The location of these new atoms at the cluster sur- 
face determines its structure, which can change each time new atoms are added to the 
growing cluster. If we start building a cluster from a tetrahedron with N = 4, we arrive 
at a trigonal bipyramid for N = 7, and at an icosahedron for N = 13 (Fig. 1 1.18). If 
we start from an octahedral cluster with N = 6, the next complete shell occurs for 
N = 14. 

Carbon clusters CN form linear structures for N < 6, whereas for N > 6 ring struc- 
tures are energetically favored. The discovery of very stable carbon clusters for N = 60 
and N = 70 with soccerball-like cage structures (Fig. 11.4b) has found worldwide in- 
terest. Here, the carbon atoms form five- and six-membered rings that are all located 
at the surface of the cage, the inside remaining void. For the discovery and character- 
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Fig. 11.18 Top row: The pentagonal 
structures of Ge clusters, a) pentago- 
nal bipyramid for N = 7; b) for N = 12, 
additional atoms are attached symmet- 
rically around the fivefold symmetry axis 
of a); c) icosahedron for N = 13; d) dou- 

ble icosahedron for N = 19; e) cluster with 
D5h symmetry and partially filled second 
shell for N = 24. Bottom row: Structures 
and symmetries of small silicon clus- 
ters [l 1.221. 

ization of c60, R. Curl, H. W. Kroto and W. Smalley were awarded the 1996 Nobel 
prize for chemistry [ 1 1.231. These carbon clusters are also calledfullerenes after the 
American architect and engineer Richard Buckminster Fuller (1 895-1983) because 
they resemble his famous geodesic domes. 

Related carbon clusters CN with structures resembling tiny tubes have also been 
discovered [ 1 1.241. These large carbon clusters may serve as microtraps for smaller 
atoms or molecules, which is one of the reasons why they have produced such an 
overwhelming interest [ 11.41. 

11.3 
Generation of Clusters 

There are several procedures to produce clusters. A frequently employed method 
uses cold molecular beams (see Ch. 12). If rare-gas atoms effuse from a container 
with a large rare-gas partial pressure into vacuum through a nozzle, a rapid adiabatic 
cooling occurs so that the random kinetic energy of the atoms in the beam is almost 
completely converted to directed kinetic energy ;mu2 of atoms with mass rn and beam 
velocity u. During this process, the relative velocities of the atoms become very small, 
that is, all atoms in the beam proceed with almost identical velocities following the 
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Fig. 11.19 Formation of a molecule upon collision between two 
atoms with relative energy Ebn, which must be discarded with 
the aid of a third collision partner. 

expansion. This allows the formation of dimers, provided the small kinetic energy of 
the relative motion is carried away by a third collision partner (Fig. 1 1.19). The dimer 
thus formed can then combine with another atom, forming a trimer, etc. This process 
can be continued as long as the collision frequency is sufficiently large, that is, as long 
as the pressure in the beam is large enough. Therefore, the cluster formation rate can 
be optimized by a suitable choice of pressure and nozzle diameter. 

To generate metal clusters, an amount of the metal is introduced into the container 
in addition to the rare gas and the contained is heated, so that the effusing beam con- 
sists of rare-gas atoms with a certain percentage of metal atoms. The rare-gas atoms 
act as collision partners, carrying away the relative kinetic energy upon a collision of 
two metal atoms. With this method metal clusters with atom numbers from N = 2 up 
to several thousand can be generated. The clusters are characterized by mass spec- 
trometry after laser or electron-impact ionization [ 1 1.251. 

Another method is based on the use of a supersaturated metal vapor in a rare-gas 
atmosphere. If the temperature of such a mixture is lowered, condensation occurs, 
and clusters with a size distribution depending on the particular experimental condi- 
tions are generated [ 11.261. For the generation of clusters consisting of elements with 
high evaporation temperatures, a solid sample of the element is irradiated by an in- 
tense laser beam, evaporating atoms from the sample, which are then mixed with a 
rare gas at low pressure. The mixture of rare gas and evaporated atoms is then ex- 
panded through a nozzle into vacuum, which causes it to cool adiabatically. Again, 
condensation occurs, leading to clusters AN with a size distribution depending on the 
experimental conditions (pressure, temperature, and nozzle characteristics) [ 1 1.271. 
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In recent years, a number of experimental techniques for the investigation of molecules 
have been newly developed, and existing techniques have been improved and ex- 
tended by new methods or instruments. This includes Fourier spectroscopy, laser spec- 
troscopy with high spectral and temporal resolution, spectroscopy with synchrotron 
radiation, electron spin resonance spectroscopy, electron and ion spectroscopy, and 
the combination of different techniques such as the combination of mass spectrometry 
and molecular beam techniques with laser-spectroscopic methods. The application of 
these methods to the study of molecules has significantly enhanced our understanding 
of their structure and dynamics. 

These techniques can be grouped into three principal categories: 

1. Spectroscopic techniques 

a) Radiation spectroscopy 
In these methods, the absorption or emission of electromagnetic radiation 
by molecules in the different spectral regions is studied. Measurement of 
the frequencies of absorption or emission lines gives information on the 
energies of molecular states (see Chapters 4 and 8). The line intensities 
are a measure of the transition probabilities, and their measurement can 
be used to test calculated wavefunctions of the states between which the 
transitions occur. From the linewidths, the lifetimes of the involved states 
can be determined. The splitting of the lines in external fields gives infor- 
mation on electric or magnetic moments of the molecule and hence on the 
coupling of the different angular momenta (see Ch. 10). 

b) Particle spectroscopy 
Energy and momentum of the electrons produced by the ionization of 
molecules can be measured using electron spectrometers. They give in- 
formation on the energy states of inner-shell electrons of the atoms in the 
molecule, on correlation effects between the electrons in these shells, on 
molecular Rydberg states, and on the ionic energy levels. 
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2. Measurement of integral and differential scattering cross-sections in collisions 

between atoms or molecules 
Such measurements enable the determination of interaction potentials between 
the collision partners. In combination with laser-spectroscopic techniques, in- 
dividual states of the collision partners can be selected, so that the dependence 
of the interaction energy on the internal states of the collision partners can be 
determined. Measurement of inelastic and reactive collision processes allows 
the study of energy transfer processes and can give detailed information on the 
primary processes in chemical reactions. 

3. Measurements of macroscopic phenomena depending on molecular properties 
Examples for this class are transport phenomena such as diffusion (mass trans- 
port), thermal conduction (energy transport) and viscosity (momentum trans- 
port) in molecular gases, which depend on the interactions between the mole- 
cules. 

Another example are the relations between thermodynamic quantities (pres- 
sure p ,  volume V, and temperature T )  in an isolated macroscopic amount of 
an atomic or molecular gas, which depend on the type of particles in the gas 
and their intermolecular potentials. 

While categories 1) and 2) measure interactions between individual atoms or molecu- 
les, that is, they are microscopic probes, the experiments of category 3) give average 
values over large numbers of molecules. 

Different methods often complement each other, providing different information 
on the molecules studied. For example, scattering measurements at thermal energies 
give information on the long-range part of the interaction potential between the colli- 
sion partners (see Sect. 3.7), whereas the energies of the bound molecular levels ob- 
tained from spectroscopic methods allow the determination of the potential for small 
intemuclear distances (see Sect. 3.6). 

In this last chapter of the book, we will briefly present the most important of these 
experimental techniques, and we will elucidate how the knowledge outlined in the pre- 
vious chapters has been gained in an active interplay between theory and experiment. 

12.1 
Microwave Spectroscopy 

Using microwave spectroscopy, molecular transitions with wavelengths X between 
0.03cm and 1 m (corresponding to the wavenumber range 30cmp’ > 6 > 0.01 cm-’ 
or the frequency range 10l2 Hz > Y > 5 x lo8 Hz) can be investigated. In this spectral 
region, molecular rotational transitions IJ’) + If’) with wavenumbers 

6=2B, ( J”+1)+  ... with J’=J’’fl (12.1) 

or transitions between hyperfine levels or closely spaced vibration-rotation levels of 
different interacting electronic states can be observed. 
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Fig. 12.1 Schematic representation of the experimental setup in 
microwave absorption spectroscopy. 

Examples 
The rotational transition J' = 1 t J" = J = 0 in the ground state of CO with 
Be = 1.93cm-I occurs at P = 3.8cm-' or v = 1 I4GHz; the lowest transition 
J' = 3/2 t J = 1/2 in the 2C ground state of BeH with Be = 10.308cmp' 
occurs at P = 30.924cm-' or v = 927GHz, and the next-higher transition J' = 

5/2 t J = 3/2 at I/ = 1.5THz; in the PbS molecule, the frequency of the J' = 
I c J = 0 transition is only v = 6.36GHz due to the small rotational constant 
Be = 0.106cm-'. 

Figure 12.1 shows the experimental setup for the measurement of microwave ab- 
sorption in a molecular gas. Microwaves with a continuously (within a given range) 
tunable frequency are generated in a klystron or carcinotron and are transmitted thro- 
ugh the molecular sample with the aid of metallic waveguides of suitable dimensions. 
The transmitted intensity Itrans is measured by a detector (bolometer or semiconductor 
detector) and compared to the incident intensity lo. 

As discussed in Sect. 8.1, the thermal populations of the lower and upper levels of a 
microwave transition are almost equal at room temperature, and the rate of absorption 
is therefore only slightly larger than that of stimulated emission (Fig. 12.2), so that the 
net absorption coefficient 

(12.2) 

is in general very small due to the small population difference and the small absorption 
cross-section. It is therefore crucial to achieve long absorption paths and to develop 



364 12 Experimental Techniques in Molecular Physics I 

gi = 2Ji + 1 

AN = (Ni - 3 Ni) a = A N . o  92 

(a) (b) 

Fig. 12.2 Absorption of an electromagnetic wave. a) Transmitted 
intensity; b) level diagram. 

methods to measure the difference 

(12.3) 

which is generally small for AE << kT even for long absorption paths L, and it is often 
smaller than the fluctuations in 10. 

A frequently used method for improving the sensitivity is based on frequency mod- 
ulation 

v = v , ( ~  + u c o s ( ~ x ~ ~ ) )  (1 2.4) 

of the microwave frequency v, which means that the incident intensity 

~ ( t )  = ACOS* [~xv,  (1 +acos(2zft)) t ]  (12.5) 

is modulated with a frequency f around the mean microwave frequency v,. The 
maximum frequency deviation av is in general chosen to be small compared with 
the linewidths of the absorption lines. The microwave frequency is measured us- 
ing fast frequency counters or, for high frequencies, by superposition with a wave of 
known frequency so that the frequency difference of both is in a range suitable for 
frequency counters. To achieve the highest possible frequency stability, oscillators 
and electronic control circuits are used to keep the frequency at a target value and 
to compare it with a frequency standard, so that absolute frequencies may be deter- 
mined. 

If the modulated microwave frequency is tuned continuously over the range of an 
absorption line, the absorption coefficient a(.) and hence the measured transmitted 
intensity is also modulated correspondingly (Fig. 12.3). 

If we expand 1,,,", in a Taylor series around the mean frequency v,, we obtain 

(12.6) 
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Fig. 12.3 Absorption of a frequency-modulated wave. 

A phase-sensitive detector (lock-in) which detects only the signal at the frequency f ,  
measures the difference 

~ t r a n s  ( u )  = L a n s  (u )  - [trans (vm) = avm (d;;)vmcos(27cft), - (12.7) 

which is proportional to the first derivative (dZuans/dv) at the frequency vm. With 
Eq. (12.3), this is also proportional to the first derivative of the absorption coefficient 
cw(v), which is zero for the center frequency v,,, of a line. 

This detection technique offers the advantage that only intensity variations at the 
frequency f are recorded as disturbing background noise, whereas all other frequency 
contributions to the noise are suppressed. The modulation frequency f is chosen so 
that the disturbing noise in this frequency range is minimized. 

Instead of modulating the microwave frequency, the molecule's absorption fre- 
quency vm can also be modulated. This can be achieved, for example, by placing 
the molecules in a modulated electric field created by a metallic plate at a potential 
U = U0cos(27cfr) at the center of the absorption cell and two grounded walls of the 
cell (Fig. 12.1). The absorption frequencies are then shifted due to Stark shifts of 
the molecular energy levels. Due to the Stark shift (see Sect. 10.4), the absorption 
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Fig. 12.4 Explanation of the observed signals during Stark mod- 
ulation. 

lines are periodically shifted and split. The splitting into Stark components allows 
an identification of the rotational quantum number J ,  thus facilitating the identifica- 
tion of the absorption spectrum (Fig. 12.4). To achieve sufficiently large Stark shifts, 
voltages of up to 20kV are used. More detailed accounts of experimental methods 
in microwave spectroscopy and their importance in molecular physics can be found 
in [6.5,12.1-12.31. 

12.2 
Infrared and Fourier Spectroscopy 

Infrared spectroscopy comprises the spectral range 0 . 7 5 ~  < A < lOOprn, in which 
the vibration-rotation transitions in molecules occur (see Sect. 8.2). Absorption spec- 
tra in this frequency range can be measured in two principal ways: 

(a) A monochromatic radiation source with tunable wavelength can be used (e.g., a 
semiconductor or difference-frequency laser or optical parametric oscillators), 
and the transmitted intensity is measured as a function of the wavelength A. In 
this case, the situation is analogous to microwave spectroscopy. 

(b) A broadband radiation source (such as a Nernst glower or a high-pressure mer- 
cury lamp) can be used that emits a continuous thermal radiation with an in- 
tensity maximum depending on the temperature of the source; for example, for 
T = 2000 K the maximum is at X = 1.5 mm. In this case, a monochromator is 
needed to disperse the radiation. 

In case a), the spectral resolution depends on the linewidth of the radiation source. If 
this is smaller than the width of the absorption lines, the latter determines the spectral 
resolution. 
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Fig. 12.5 Comparison of absorption spectroscopy with a) a tun- 
able laser and b) a thermal radiation source. 

In case b), the spectral resolution is usually limited by the resolution of the mo- 
nochromator. Only if interferometers are used (e.g., in Fourier spectroscopy) can the 
linewidths of the absorption lines be resolved. 

Figure 12.5 compares the experimental setups for cases a) and b). In case a) with 
a tunable monochromatic radiation source, no monochromator is needed. The highly 
collimated laser beam allows the use of multiple-reflection absorption cells, thus en- 
larging the absorption path. If a rotating beam splitter is used in front of the absorption 
cell that splits the laser beam into a probe beam passing through the absorption cell and 
a reference beam, the difference of the two signals measured with a lock-in detector 
at the chopping frequency f is 

(12.8) 

which allows the determination of the absorption coefficient a( v), largely eliminating 
variations in the radiation source. If the linewidth of the laser is smaller than the 
spectral width of the absorption lines, their line profiles can be measured. 

Figure 12.5b shows a schematic representation of a typical infrared spectrometer 
for case b). Again, a beam splitter is employed, which consists of a segmented mirror 
that reflects alternately the reference beam and the probe beam onto the detectors D1 
or D2 so that the difference 10 - ltrans can be measured by a lock-in detector tuned to 
the beam splitter frequency f .  



368 12 Experimental Techniques in Molecular Physics I 

10 - 

Fig. 12.6 Principle of a Michelson interferometer. 

The signals are analyzed with the aid of a computer, and the spectra are then either 
printed or stored electronically for further processing. 

A new technique which is increasingly displacing conventional infrared spectro- 
scopy is Fourier-transform spectroscopy r12.4, 12.51. In addition to a higher spec- 
tral resolution, it offers a number of other advantages over classical absorption spec- 
troscopy that will be discussed below. The measured signals are the Fourier transform 
of the spectrum, and therefore a computer is needed for the reconstruction (backtrans- 
formation of the Fourier transform) of the spectra, and this factor determined the cost 
of a Fourier spectrum in the early days. Since fast and cheap PCs with built-in Fourier- 
transform capabilities are readily available nowadays, this price has dropped drasti- 
cally, and today virtually all infrared spectroscopy laboratories use Fourier-transform 
spectrometers. 

A Fourier spectrometer is based on a two-bean interference in a modified Michel- 
son interferometer (Fig. 12.6). The radiation incident from a spectrally continuous 
radiation source is split into two partial beams by a beam splitter BS, which pass onto 
the mirrors MI and M2. There, they are reflected and are superimposed at the beam 
splitter. At plane B, the observed intensity depends on the path difference As of the 
two partial beams. If the mirror M2 is moved continuously in one direction with a 
velocity v, the path difference As = As0 + 2vt changes constantly, and hence the ob- 
served intensity changes also. If the time t = 0 is chosen so that Aso(0) = 0, the path 
difference As = 2vr is a linear function of time. 

The principle will be elucidated for the measurement of a monochromatic incident 
wave with intensity I = Iocos(wt - kz) (Fig. 12.7a). If the two interfering partial 
waves have amplitudes A1 and A2 = A1 (where A: +A; = lo), the intensity at the 
detector, averaged over one wave period, is 



12.2 Infrared and Fourier Spectroscopy 369 I 

Fig. 12.7 lnterferogram of a) a monochromatic wave and 
b) a wave with two frequencies. 

Since the detector cannot follow the rapid oscillations at the frequency w ,  its output 
signal is the time average of the intensity, 

As the path difference As = 2vt increases proportionally with time and 

As 
x 2n- = 2 (3) W t  9 

the signal 

(12.9b) 

(12 .9~)  

at the detector is a periodic function of time with frequency 0 = 2(v/c)w. Hence, 
the frequency w of the incident wave is transformed into the much smaller frequency 
0 = 2( v / c ) w  which can be measured electronically. 

Example 
v = Scm/s; w = 1014 s-'  + 0 = 33.2 x lo3 , 
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If two partial waves with the frequencies w1 and w2 are passed through the Michelson 
interferometer, the detector receives the superimposed intensity 

( 1 2.1 0) 

The detector averages over the fast oscillations with frequencies W I  and w2, so that the 
average intensity as a function of time during the motion of the mirror M2 becomes 

With I10 = 120 = 10 and R = wv/c, we obtain 

(12.11) 

This is a beat signal with the mean frequency R,,, = i ( v / c ) ( w ~  +q) and the beat 
frequency fib = i(v/c)(w1 -w2) (Fig. 12.7b). From this beat signal, the two fre- 
quencies of the incident wave 

C C 
WI = - V (om + Rb) and w2 = - V (om - .nb) (12.12) 

can be determined, provided that the mirror shift is large enough so that at least one 
complete beat period can be measured. 

In either case, the measured signal S(f) is the Fourier transform of the incident 
intensity I ( w ) ,  because with As = 6 = 2vf, 

(12.13) 

If the incident wave comprises only one frequency wg, I ( w )  = lo coswot and we obtain 
Eq. (12.9a) for I ( t ) .  If the incident wave contains many different frequencies, the 
superposition intensity I ( t )  at the detector is more complicated. However, Eq. (12.13) 
still holds. Solving for I ( w )  yields 

+- 
I ( w )  = 1 S(6) cos [.. (E) t ]  da . 

--m 

(12.14) 
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Thus, the Fourier transjhrm ofthe measured time function S(6) = I ( t )  yields the spec- 
trum ofthe incident intensity l ( w ) .  

If spectrally continuous radiation is passed through the absorption cell, the trans- 
mitted intensity lacks contributions at the absorptions frequencies. The transmitted 
intensity can then be written as 

I 

where we assume that the spectrum 10 of the radiation source is constant over the 
spectral range of the absorption lines. As the Fourier transform of a constant is again 
a constant, the same arguments apply to & ( W )  as for an emission spectrum lem(w). 

The integration limits for the mathematical Fourier transformation are t = --oo and 
Sw, respectively. In experiments, however, a measurement is only performed over a 
limited time span T .  To take this into account, we can introduce a time slot function 
g ( t )  into the Fourier transformation, so that the integral Eq. (12.14) becomes 

f m  

I ( w )  = J’g(t)S(b)cos [2u(0)1] c d6,  (12.15) 
-m 

where g ( t )  = 1 for 0 > t > T and zero otherwise. However, such a rectangular time 
slot function leads to side maxima during Fourier transformation of the measured 
spectrum that can overlap adjacent lines, in analogy to the diffraction of light at a rect- 
angular slit. To avoid these annoying artifacts, an apodization function is introduced. 
The time slot function g( r )  is then not a rectangular function, but follows a Gaussian 
profile 

(12.16) 

For the cosine Fourier transform the zero point of time, for which the path differ- 
ence As = 0, must be known precisely. This can be achieved by simultaneously 
recording the interferogram of a broadband radiation source (Fig. 12.8). Because 
of its large spectral bandwidth, the coherence length of such a source is very small, 
and a narrow interference structure is obtained for As = 0 only. To obtain a con- 
Linuous path-time function A s ( t )  with equidistant time markers, the interferogram 
of a constant-frequency He-Ne laser is recorded simultaneously, which has the form 
shown in Fig. 12.7a. The path difference between two maxima is exactly As = X/2, 
so that precise time markers for the Fourier transformation are available. 

The advantages of Fourier spectroscopy can be summarized as follows: 

(a) The complete spectral range transmitted through the spectrometer and recorded 
by the detector is measured simultaneously, whereas in classical and laser in- 
frared spectroscopy only a narrow frequency interval Av is measured at a time, 
where Au corresponds to the laser linewidth or the monochromator resolution. 
The total spectral range V I  - y is scanned in Z = (VI - y ) / A v  steps. Hence 
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Fig. 12.8 Schematic setup of a Fourier spectrometer. 

for a given total measurement time, the measuring time available for each spec- 
tral interval in Fourier spectroscopy is Z times that of classical spectroscopy. 
This leads to an enhancement in the signal-to-noise ratio by a factor of Z”*. 

(b) The spectral resolution Au can be adjusted by choosing the maximum path dif- 
ference As, that is, the distance through which the moving mirror moves. Both 
quantities are related by Au = c /  (2xAs). 

Example 
For a maximum path difference As = 0.3m, a resolution of Au = 150MHz is 
obtained. At a frequency of u = l O I 4  Hz, this corresponds to a relative resolution 
of u/Au = 6.3 x lo5. For As = 2m, u/Au  = 4.2 x lo6. For a frequency u = 
1014s-’, + Au = 240MHz. This already reaches the Doppler width at u = I 1 0 1 4 ~ - 1 3  = 3 ~ .  

As an example, Fig. 12.9 shows the Fourier spectrum of an overtone vibrational 
transition in the chloroform molecule. 

12.3 
Classical Spectroscopy in the Visible and Ultraviolet 

Most electronic transitions in molecules occur in the visible or ultraviolet region of the 
electromagnetic spectrum. Spectroscopy in these wavelength regions thus provides in- 
formation on excited electronic states. In combination with techniques that allow high 
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Fig. 12.9 Section from the Fourier spectrum of the overtone 
transition 214 of CHC13 [I 2.61. 

temporal resolution, spectroscopic methods can be used to study the dynamics of ex- 
cited states, that is, relaxation processes in excited states or energy transfer processes 
after optical excitation. Further applications of such experiments are in photochem- 
istry, which studies the initiation of chemical processes by absorption of photons. 

This section gives an overview of equipment and methods of classical molecular 
spectroscopy in this spectral region. Detailed accounts of special topics can be found 
in the referenced literature. 

For a long time, high-pressure gas-discharge lamps or tungsten lamps were used 
as continuous radiation sources, that is, thermal emitters at T = 1200-2000K. For 
time-resolved measurements, pulsed flashlights or sparc discharges were employed as 
sources of short pulses of radiation. New synchrotron radiation sources provide in- 
tense radiation pulses with high repetition rates, covering a spectrum from the near 
infrared to the vacuum ultraviolet or x-ray region. However, the overwhelming major- 
ity of spectroscopic experiments is nowadays conducted using different types of lasers 
(see next section). 

The radiation emitted by broadband radiation sources must be spectrally dispersed. 
Usually, this is achieved by prism or grating spectrographs (Fig. 12.10). Two spectral 
lines are considered resolved if their wavelength separation is equal to or larger than 
their full width at half maximum (Fig. 12.1 1). The minimum linewidth that can be 
achieved is determined either by the resolution of the equipment used or by the in- 
herent linewidth of the absorption lines as given by the Doppler width or pressure 
broadening (see Sect. 4.3). 
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Fig. 12.10 Prism spectrograph. 

I1 

Fig. 12.1 1 Resolution of two spectral lines. 

The spectral resolution 

l& l=  1;1 (12.17) 

of a spectrometer can be derived as follows. 
We consider a radiation comprising two spectral lines with wavelengths X and X + 

AX passing through the spectrometer. It is diffracted in the monochromator by angles 
of 0 and 0 + Ad, respectively (Fig. 12.12). If the parallel beam of rays is focused onto 
the plane of observation by the lens L2 or a concave mirror with focal length f2, the 
lateral distance of the images S(X) of the two spectral lines becomes 

d0 dx 
= f2-AX = -AX.  

dX dX 
( 1  2.1 8) 

For a width 6x1 of the entrance slit and focal lengths f 1  and f2 of the collimation 
lens and the image lens L2, respectively, the width if the slit image in the plane of 
observation is 

6x2 = (2) 6x1 

In this case, the spectral resolution becomes, with Ax2 L 6x2,  

x - X d x  f l X d x  <--- 
AX A X ~  dX - f2 6x1 dX . 

( 1 2.1 9) 

(12.20) 
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Fig. 12.12 Angular dispersion of a spectrometer. 

Hence, the spectral resolution can in principle be increased by increasing the disper- 
sion &/dX and by reducing the width 6x1 of the entrance slit. However, the latter is 
only feasible up to a limit imposed by diffraction. Even for an infinitely narrow slit, 
the slit image will be a diffraction pattern with a full width of the central diffraction 
maximum of 

(12.21) 

(Fig. 12.13) caused by diffraction at the boundaries of the optical path in the spec- 
trometer, where u is the size of the limiting aperture (e.g., the width of the prism or 
grating). Two spectral lines are considered resolved if the central diffraction maxi- 
mum of the first line is located at the first diffraction minimum of the second. Their 
distance in the plane of observation is then 

2f2X 6x2 = - 
U 

f2  
A x 2 = - .  

CI 
(12.22) 

4-3 -----=-IF 

/ I \ \  f 

(a) (b) 

Fig. 12.13 Diffraction structure of the image of a narrow en- 
trance slit caused by diffraction at the limiting aperture of width a 
in the spectrometer. 
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Fig. 12.14 Symmetric optical path upon refraction at the faces of 
the prism. 

The entrance slit must have a finite width, because otherwise no radiation could enter. 
The optimum slit width 6x1 with respect to spectral resolution and transmitted power 
is obtained if the width 8x2 of the slit image equals the distance AQ. The minimum 
distance of the slit images is then (2f2)Xlu. This gives for the optimum slit width 
tjxyp' = ( j 1  /f2)&2 = fiX/a. 

The upper limit for the spectral resolution is then 

X a dx a d d  - < -_ = -- 
AX - 2f2 dX 2dX ' 

(12.23) 

In a prism spectrograph with a 6W-prism of edge width L, the angular dispersion is, 
for a symmetric optical path (Fig. 12.14), 

1 dn - dd 
d x - J w d x '  

and the spectral resolution is therefore, according to Eiq. (12.20) with n = 1 S, 

(12.24) 

(12.25) 

The spectral dispersion dn/dX depends on the material of the prism and the wave- 
length A. 

For a su#ciently narrow entrance slit, the spectral resolution of a prism spectro- 
graph is determined by the dimensions of the prism and the dispersion of the prism 
material. 

I they have a minimum distance of AX = 0.05 nm at X = 300 nm. 

Example 
For a 6W-prism made of synthetic quartz with L = lOcm, a = L / &  For X = 

300nm, the refractive index is n = 1.52 and dn/dX = 1400cm-'. Hence, the 
spectral resolution is X/AX = 6200. Here, two spectral lines can be resolved if 

For a grating spectrograph, the angular dispersion can be derived from the grating 
equation 

d(sincr+sinp) = m X ;  m =  1,2,3, ... (1 2.26) 
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Fig. 12.15 Interference at a diffraction grating. a) Derivation of 
the grating equation; b) grating spectrograph. 

(Fig. 12.13, where d is the distance between two grooves in the grating, a is the 
incident angle, and ,/3 is the diffraction angle. The angular dispersion is then 

rn - 1 sina:+sinp - 1 d@ - 
dX dX/dp dcosP X cosp 

(12.27) 

The angular full half width SP between the two minima at both sides of the central 
diffraction maximum of the image of the entrance slit is determined by the number 
N of interfering partial beams, that is, by the number of illuminated grooves in the 
grating. More precisely, 

(12.28) 

Hence, the width of the central diffraction maximum is the same as for diffraction at 
a slit of width D = Nd. 

For the spectral resolution, this gives 

(12.29) 

The spectral resolution equals the product of diffraction order rn and number N of 
illuminated grating groves. 

Examples 
N = lo5, m = 1, + X/AA = lo5. At a wavelength of 500nm, two spectral lines 
can be resolved if their spacing is at least AX = 0.005nm. In reality, however, 
the finite width of the slit must be taken into account. With a: = p = 30", we 
obtain from Eq. (12.27) the angular dispersion dp/dX = 2.3 x lop3 rad/nm. For 
a focal length of 1 m, this gives a linear dispersion of 2.3 mm/nm. For a slit of 
width 0.02 mm, the width of the slit image corresponds to a spectral interval of 
AA = 0.01 nm, so that the realistic resolution is about 0.015nm. 

This example shows that the resolution of grating spectrographs is much larger than 
that of prism spectrographs [ 12.71. 
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Fig. 12.16 Rowland spectrograph with curved grating for the 
spectral analysis of VUV radiation. 

The experimental setup for classical absorption spectroscopy of molecular gases 
in the visible or ultraviolet region does not differ significantly from the one shown in 
Fig. 12.5. To achieve the highest possible spectral resolution, large grating spectro- 
graphs have been constructed with focal lengths of up to 10m in some laboratories. 
Here, the spectrometer is located in its own, separate room, in which grating and mir- 
rors are mounted on concrete blocks, and the spectra are recorded on a long curved 
photoplate. The curvature is chosen so that the photoplate remains in the focal plane 
of the imaging mirror over a large spectral region. The recorded spectra are then 
analyzed using a microdensitometer. 

The reflectivity of metallic surfaces decreases in the vacuum UV (VUV) region, 
and it is therefore convenient to replace the planar grating and the two spherical mir- 
rors by a curved imaging grating (Rowland grating) that images Sl onto the detector, 
thus combining dispersion and imaging. Figure 12.16 displays a typical setup for the 
absorption spectroscopy of molecular gases in the VUV using a Rowland grating. If 
the curvature is properly chosen, the grating and the entrance and exit slits are located 
on a circle (Rowland circle). The complete spectrometer must be evacuated, because 
otherwise the VUV radiation would be absorbed by the air [ 12.81. 

A particularly intense source of radiation is synchrotron radiation. The high-energy 
electrons orbiting in a circular path in the synchrotron emit bremsstrahlung, which is 
located essentially in the electrons' orbital plane and which is emitted along the tan- 
gent to the electron orbit (Fig. 12.17). The radiation is linearly polarized for radiation 
in the orbital plane, and circularly polarized for radiation outside the orbital plane 
(Fig. 12.17b). Its spectral distribution depends on the electron energy and the cur- 
vature of their path (Fig. 12.18); it ranges from the x-ray to the visible region of the 
spectrum. Electron storage rings have been built (e.g., BESSY in Berlin, Germany) for 
the sole purpose of providing synchrotron radiation. These dedicated sources employ 
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Fig. 12.17 Synchrotron radiation. a) Di- 
rection of radiation in the plane of the 
orbiting electrons; b) intensity distribution 

of the different polarizations as a function 
of the out-of-plane angle $; c) definition 
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Fig. 12.18 Spectral distribution of synchrotron radiation for dif- 
ferent electron energies at a radius of curvature of 3 1.7 m [12.8]. 
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Fig. 12.19 Experimental setup for vacuum UV spectroscopy with 
spectrally dispersed synchrotron radiation. 

magnetic devices located around the electron orbit, which deflect and thus accelerate 
the electrons periodically (undulutors and wigglers). This increases the intensity of 
synchrotron radiation by about two orders of magnitude [ 12.91. The radiation emerg- 
ing through tangential exit tubes is collimated by a toroidal mirror and is focused 
onto the entrance slit of the Rowland spectrograph (Fig. 12.19). The absorption cell 
is located behind the spectrograph, and the transmitted intensity is measured by UV- 
sensitive detectors (e.g., by an open photomultiplier, in which the radiation ejects 
photoelectrons from a first metallic dynode, which are then accelerated onto further 
dynodes by an electric field, in each step creating about four to eight secondary elec- 
trons per incident electron). 

Either the attenuation of the transmitted radiation by the absorbing molecules (ab- 
sorption spectrum) or the fluorescence emitted by the absorbing molecules (excitation 
spectrum) can then be monitored. 
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Recently, other intense VUV radiation sources have been realized that utilize the 

radiation from extremely hot microplasmas, which can be generated with the aid of 
focused radiation from pulsed lasers. This method has the advantages that the space 
requirements for the equipment is vastly reduced (the whole equipment fits into an 
average laser laboratory) and the much lower price. Its disadvantage is the lower 
repetition rate. 

12.4 
Laser Spectroscopy 

The introduction of lasers to spectroscopy has spawned a revolution in molecular 
physics. The much higher spectral intensity as compared to classical radiation sources, 
the narrow linewidths of single-mode lasers, the good beam collimation, and particu- 
larly the availability of ultrashort pulses of light have enabled a vast number of new 
techniques that surpass experimental limitations of classical spectroscopy with respect 
to detection sensitivity and spectral and temporal resolution. In this section, the most 
important of these techniques will be discussed [12.10]. 

12.4.1 
Laser Absorption Spectroscopy 

Figure 12.5 shows a comparison of absorption spectroscopy with lasers and with con- 
tinuous radiation sources. 

Apart from the good collimation of laser beams, which enables long absorption 
paths in multiple-reflection cells, the narrow linewidth of tunable single-mode lasers 
is particularly relevant for the possible increase in sensitivity. This can be rationalized 
as follows. 

If &dabs is the width of an absorption line and ALJ the spectral resolution of the 
equipment, which in the case of laser spectroscopy is determined by the linewidth 
Awlaser of the laser, the measured relative absorption is 

where E is the absorption coefficient averaged over the interval Aw. This shows that 
for identical absorption paths, the relative absorption for Aw > Awabs is smaller than 
for Aw < h a b S  by a factor of AWabS/ALJ. 
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ciple of modulation spectroscopy; c) ro- 

tational line of the overtone transition 
( 1,2,1) + (O,O,O) in the H20 molecule 
measured with and without modulation. 

Example 
If the smallest measurable absorption is aL = and the absorption path is 
1 m, an absorption coefficient a = 10p7cm-' is detectable for Au << Auabs, 
whereas for Aw = 50Au,b,, the limit is Q = 5 x 10-6cm-'. 

As in microwave spectroscopy, the sensitivity can be increased by modulation tech- 
niques. As examples, we will consider two such methods. In the first, a laser beam 
is passed through a Pockels cell that is connected with a high-frequency electrical 
voltage, which modulates the refractive index of the crystal periodically (Fig. 12.20a). 
Hence, the transmitted laser wave experiences a phase modulation that in turn leads to 
a frequency modulation, because frequency is the time derivative of the phase. 

This phase modulation leads to side bands in the frequency spectrum of the trans- 
mitted laser wave (Fig. 12.20b). The first two sidebands at wlaser f 2nf have equal 
amplitudes but opposite signs, whereas for amplitude modulation, they have the same 
sign. If the transmitted intensity is measured using a phase-sensitive detector tuned 
to the modulation frequency f ,  no signal is detected at the lock-in output unless at 
least one of the sidebands is absorbed by the molecules in the absorption cell, be- 
cause the phases of both sidebands shifted by 180" with respect to each other, and 
the detector receives two equal signals of opposite phase. All variations in the laser 
intensity are eliminated from the detected signal by this difference detection. How- 
ever, if one of the sidebands coincides with an absorption line while tuning the laser 
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frequency w, this sideband is weakened, and the balance is disturbed. Hence, the 
detector notices a signal. A detailed calculation shows that this signal S(w) has 
approximately the form of the second derivative d2a/dw2 of the absorption coeffi- 
cient [12.1 I] .  

The best signal is obtained if the modulation frequency equals the linewidth of 
the absorption lines. For sufficiently low pressure, this is determined by the Doppler 
width, and which assumes values of about 1 GHz in the visible and near infrared spec- 
tral region. Such high frequencies cannot be processed by the lock-in detector without 
special precautions. Therefore, the amplitude of the high-frequency voltage control- 
ling the Pockels cell is modulated with a lower frequency (two-tone modulation), and 
the signal is detected at this lower frequency. Another method employs a frequency 
mixer at the outlet of the fast detector, in which the signal frequency is superimposed 
with a reference frequency, and the difference frequency is detected at the output of 
the mixer. 

Figure 12.20~ illustrates how the signal-to-noise ratio can be improved by about 
two orders of magnitude. It shows a rotational line in the overtone vibrational tran- 
sition (1,2,1) t (O,O,O) of the H 2 0  molecule, recorded with and without modula- 
tion. Using this method, relative absorptions as low as aL = can be detected 
[ 12. I 21. 

In the second method, the wavelength of the laser is modulated by mounting one of 
the mirrors of the laser cavity on a piezoelectric crystal, so that it can be moved period- 
ically by applying an alternating voltage to the piezoelectric crystal, thus modulating 
the length of the laser cavity. Figure 12.21 illustrates the effect of this modulation 
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Fig. 12.21 Principle of wavelength modulation. 
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Fig. 12.22 Complete experimental setup for modulation spec- 
troscopy [12.13]. 

on the signal form for the case where the laser frequency coincides with the peak of 
the absorption line. The form of the signal depends on the modulation range. The 
largest signal amplitude is obtained if the modulation is approximately equal to the 
linewidth. This method offers the advantage that no Pockels cell and no high modula- 
tion frequencies are needed. However, the drawback is that the modulation frequency 
is restricted to maximum values of about 100 Hz due to the mass of the moving mir- 
ror. 

The sensitivity of the absorption measurement can be further enhanced by using 
a multiple-reflection cell and by recording the difference I, - I, of the intensities of a 
reference beam and the probe beam that has passed through the absorption cell. The 
ratio ( I ,  - I r ) / I o  can be detected by a ratio recorder, which further reduces the influ- 
ence of fluctuations of the laser intensity. The complete experimental setup shown 
in Fig. 12.22 reveals that additional partial beams of the laser are usually employed 
for calibration purposes. They are first passed through an absorption cell containing 
a reference gas for wavelength calibration and then through thermally stable Fabry- 
PCrot interferometers, which create evenly-spaced frequency marks that can be used 
to correct for nonuniform frequency tuning of the laser. As an example for an actual 
measurement performed using this setup, Fig. 12.23 shows a section from the over- 
tone spectrum of gaseous ozone in the spectral region around 6500cm-' where the 
absorption coefficient is very small. 
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Fig. 12.23 Section from the overtone spectrum of the 0 3  
molecule, recorded using wavelength modulation [12.14]. 

12.4.2 
lntracavity Laser Spectroscopy 

If the absorbing sample is placed inside the laser cavity, the resulting laser intensity 
is reduced due to the losses introduced by the sample. In a tunable single-mode laser 
with a two-mirror cavity with reflectivities R I  = 1 and R2 < 1, each laser photon 
passes, on average, 1 / (  1 - R2) times through the cavity so that the total path L e ~  = 
t/( I - R 2 )  through the absorption cell of length L is increased by a factor of ( 1  - 
R$l.  For R2 = 0.99, this factor is already 100. The change in laser intensity brought 
about by the absorption losses is particularly large if the laser is operated closely 
above the laser threshold. While tuning the laser, large changes in the output power 
are then observed whenever the laser wavelength coincides with an absorption line. 
Either the change of the laser power or the fluorescence emitted by the molecules in 
the absorption cell can be recorded (Fig. 12.24). 

Absorption cell Etalon Detector 

Fluorescence 

Fig. 12.24 lntracavity laser spectroscopy. 
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The sensitivity can be increased even further if a multi-mode laser is used, and 

the broadband output radiation is passed through a monochromator and is then de- 
tected spectrally resolved. The enhanced sensitivity is caused by couplings between 
the laser modes brought about by the active, homogeneously broadened laser medium 
due to a saturation of the amplification by stimulated emission. Each laser mode re- 
duces the amplification not only for its own frequency but also for adjacent modes. 
If a specific mode is weakened by the absorbing medium, this results in a decreased 
reduction of the amplification factor in the active medium. Hence, adjacent modes 
benefit and are amplified, thus reducing the amplification for the weakened mode. 
In effect, the absorbed mode is weakened even further and can be suppressed com- 
pletely. The recorded laser spectrum thus shows a marked decrease in laser intensity 
at the wavelength of the absorption, even for very weak absorptions. Hence, a very 
high sensitivity for the detection of weak absorptions is achieved. This is often ex- 
pressed by an effective absorption path L e ~ ,  which can amount to several hundred 
kilometers [ 12.151. 

12.4.3 
Absorption Measurements Using the Resonator Decay Time 

In recent years, a very sensitive method has been developed in which the absorbing 
sample is placed in an external high-quality resonator, similar to laser-cavity spec- 
troscopy. Now, however, a pulsed laser is used, and the absorption is measured using 
the decay time of the radiation energy stored in the resonator (Fig. 12.25). 

At the end of a laser pulse introduced into the resonator, the power circulating in 
the empty resonator and partly transmitted through the output mirror decays exponen- 
tially, 

with the decay time 

-2L 

Mode adjustment 

resonator 

Fig. 12.25 Absorption measurement using the decay time of a 
resonator. 

(12.32) 
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where 
R z 1 is the reflectivity of the two resonator mirrors. 

T = 1 - R - A ,  the detector registers the time-resolved signal S ( t )  = T P ( r ) .  

losses cause the decay time to decrease to 

= 2L/c is the time of circulation in the resonator of mirror distance L and 

If the extraction mirror with absorption A and reflectivity R has the transmittivity 

If a sample of absorbing molecules is introduced into the resonator, the additional 

T, 
2(1 -R+cuL) ' 

r 2  = 

From Eqns. (12.32) and (12.33), we obtain 

trL = ( I  - 

(12.33) 

( 1  2.34) 

Hence, we can infer the absorption coefficient a =  ON^ from the difference r1 - 7 2  of 
the measured decay times, and, knowing the density Ni of molecules in the absorbing 
state Ii), also the absorption cross-section [12.16]. 

Example 
R = 0.99, L = Im =+ T, = 2 L / c  = 6.7 x 10P9s + r1 = 3.3 x 1OP6s = 3 . 3 ~ ~ .  
With crL = 5 x loP4, it  follows that 7-2 = 2.23 x lo6- s + ( T I  - r 2 ) / ~ 2  = 0.48. 
Hence, the relative change of decay times is 48%. 

12.4.4 
Photoacoustic Spectroscopy 

If, in addition to the absorbing molecules, a rare gas is introduced into the cavity as a 
collision partner, the molecules excited by absorption of laser photons can release their 
excitation energy by collisions with the rare-gas atoms and transform it into transla- 
tion energy of the collision partners. This process increases the temperature of the gas 
and, for constant density, its pressure. If the exciting laser radiation is interrupted pe- 
riodically (Fig. 12.26), periodic pressure changes are observed in the absorption cell. 

Collision-induced 
deactivation Z 

Laser 

Fig. 12.26 Photoacoustic spectroscopy. 
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Fig. 12.27 Acoustic resonator without end windows inside an 
optical multiple-reflection cell. 

By a suitable choice of the interrupt frequency (it should match one of the acoustic 
resonance frequencies of the cell), resonant standing acoustic waves can be excited 
in the absorption cell, which can then be detected using a sensitive microphone. The 
standing acoustic waves are selected so that the microphone is located at a point of 
maximum pressure oscillation. If the laser wavelength is varied continuously through 
the absorption spectrum of the sample, each absorption line yields an acoustic signal. 
The method is called photoacoustic spectroscopy because the absorbed photons are 
detected as an acoustic signal. 

The sensitivity of the method can be further enhanced by placing the acoustic res- 
onator inside an optical resonator or a multiple-reflection cell (Fig. 12.27). Using this 
technique, absorption coefficients a! < cm-' can be measured [12.17]. 

12.4.5 
Laser-magnetlc Resonance Spectroscopy 

We discussed in the case of microwave spectroscopy that instead of tuning the fre- 
quency of the radiation source to the molecular absorption lines, the absorption lines of 
the molecules can also be shifted by an applied magnetic or electric field (Fig. 12.28a) 
and can thus be tuned over the frequency of a fixed-frequency source. The same proce- 
dure is of course possible in laser spectroscopy. This offers the advantage, particularly 
in the infrared region, that well-established powerful molecular lasers such as the CO 
or C02 laser can be used, which emit several hundred lines, of which one desired line 
can be selected using a diffraction grating inside the laser cavity. 

As the Zeeman shifts of molecules in 'C states are very small (see Sect. 10.2), 
this method is primarily applied to the spectroscopy of radicals, where the spin of the 
unpaired electron creates a large magnetic moment [ 12.1 81. 

Again, different techniques discussed before can be combined. For example, the 
molecular sample can be placed inside the laser cavity, or the magnetic field strength 
can be modulated. Two examples are illustrated in Fig. 12.28. In Fig. 12.28b, the 
sample is placed inside the laser cavity, and the laser medium is separated from the 
absorbing sample by a transparent thin foil. The magnet is then tuned, and the laser 
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Fig. 12.28 Laser-magnetic resonance spectroscopy. a) Term 
diagram; b) sample in the laser cavity; c) Faraday effect in a 
longitudinal magnetic field. 

radiation reflected at the separating foil is measured. Another technique utilizes the 
rotation of the plane of polarization of light in a longitudinal magnetic field (Fara- 
day effect). The detector is placed behind a polarization analyzer and records only 
transitions with polarizations influenced by the magnetic field (Fig. 12.28~).  

12.4.6 
Laser-induced Fluorescence 

Until now, we have presented techniques in which either the laser frequency was tuned 
across the absorption lines or the absorption lines were tuned over the laser wave- 
length. In laser-induced fluorescence, the laser is adjusted to the center of an absorp- 
tion transition ( v k , J k )  + (vi,Ji) and then kept constant. The fluorescence emitted 
by the molecules in the defined state (vk,Jk) is measured either in total or spectrally 
resolved (Fig. 12.29). If only a single level has been excited selectively, the resulting 
fluorescence spectrum is relatively simple and easy to analyze. The fluorescing tran- 
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Fig. 12.29 Laser-induced fluorescence. 
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Fig. 12.30 Laser-induced fluorescence spectrum of the Cs2 
molecule after excitation with a dye laser at X = 591.7 nm. Each 
of the vibrational bands consists of two rotational lines, which 
are not resolved in this example [12.19]. 

sitions occur to all vibrational-rotational levels in a lower electronic state for which 
the transition is allowed. In diatomic molecules, there are at most three rotational 
lines with AJ  = 0 , f l  per vibrational transition. In Z-Z transitions, only P and R 
lines with A J  = f l  are allowed. Measurement of the wavelengths of these transitions 
yields the term values of the vibration-rotation levels in the lower electronic state rel- 
ative to the absorbing initial state. The relative intensities of the fluorescence bands 
give the Franck-Condon factors. As an illustration, Fig. 12.30 shows the fluorescence 
spectrum of the Cs2 molecule excited into the D 'E( v' = 23,5' = 82) state by a single- 
mode dye laser. 

Laser-induced fluorescence is a highly sensitive method, as the following numeri- 
cal example illustrates. 

For N; absorbing molecules per unit volume in the absorbing state Ii) and a flux of 
nlaser laser photons at the absorption frequency per unit time and unit area, 

(12.35) 

photons are absorbed per unit time on a path Ax, where g i k  is the absorption cross- 
section for the transition Ik) +- l i ) .  The number of fluorescence photons emitted per 
unit time is then 
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where Ak is the Einstein coefficient of spontaneous emission and q k  = A k /  (Ak + R k )  is 
the quantum yield of the upper level, which can possibly also be deactivated by other 
radiationless processes Rk.  

Of these fluorescence photons, only a fraction 6 can be gathered by lenses or mir- 
rors and imaged onto the cathode of a photomultiplier. If that has a quantum efficiency 
qph, we obtain 

npe = n f l h p h  = N i n l a s e r o i k k  qkkrlphb (12.37) 

photoelectrons per unit time. Modern cooled photomultipliers have a quantum yield 
qph = 0.2 and a dark current of less than ten electrons per second. Hence, for a flux 
of just one hundred photoelectrons per second, the signal-to-noise ratio is already 
S/R > 10. To achieve this, according to Eq. (12.36) at least lo3 laser photons must be 
absorbed per second for a fluorescence collection probability 6 = 0.1 and a quantum 
yield q k  z 1 of the excited molecular state. A laser power of 300mW corresponds 
to a photon flux of nlaser = 10l8 photons per second at a wavelength of X = 500nm. 
An absorption of lo3 photons per second thus corresponds to a relative absorption 
(I" - Itrans)/10 = This means an increase in sensitivity by a factor of 1O8-10'" 
as compared to the classical absorption method! 

12.4.7 
Laser Spectroscopy in Molecular Beams 

The combination of molecular beam techniques and laser spectroscopy has brought 
about a wealth of interesting methods for high-resolution molecular spectroscopy. 
One important aspect is the decrease of the Doppler width in collimated molecular 
beams. Here, the molecules effuse from a reservoir through a narrow hole A into 
vacuum (Fig. 12.31). Molecules can only pass through the aperture B at a distance d 
downstream of A if their velocity component v, satisfies 

v, 5 vztan8 = v7b/(2d) ,  (12.38) 

M 

"2 
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z 

Fig. 12.31 Laser spectroscopy in a collimated molecular beam. 
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where we chose the z axis to be the beam direction. If a laser beam passes through 
the molecular beam in the x direction, the molecules have only small velocity com- 
ponents along the direction of the laser beam, and thus the Doppler width of the ab- 
sorption lines is reduced by a factor of tan8 << 1 as compared to absorption in a gas 
cell. 

I 

Example 
With the values b = 1 mm and d = lOOmm, we obtain tan8 = 5 x lop3, that is, 
the Doppler width at X = 500nm is reduced from its typical value of 1 GHz to I 5 MHz. Consequently, the spectral resolution is improved by the same factor. 

A second aspect important for spectroscopy in molecular beams is the cooling 
of molecules in supersonic beams. If a gas at pressure po in the reservoir expands 
through the nozzle A into vacuum, it is cooled adiabatically, because the expansion 
is so fast that virtually no heat exchange with the surrounding can occur. The energy 
E = Ehn + Ept of the gas in the reservoir at temperature To is transformed into directed 
flow energy 1/2mu2 of the gas molecules moving with the mean velocity u in the z 
direction. Whereas the internal energy of the gas decreases, its enthalpy is conserved. 
Hence, 

(12.39) 

where f denotes the number of degrees of freedom of the molecules. The first term 
on the right-hand side of Eq. (12.39) is the kinetic energy of the molecules flowing 
with mean velocity u in the z direction. The first term in parentheses on the right- 
hand side describes the relative kinetic energy of the molecules in a system moving 
with velocity u. This term is small compared with 1/2rnu2. In other words: the 
trunslurionul temperurure of the molecules, measured in a coordinate system mov- 
ing with the drift velocity u, is very small [12.20]. This means that the internal 
temperature T at the expanded flowing gas is small (T << TO). The gas has cooled 
down. 

The cooling can be visualized using a simple molecular picture (Fig. 12.32). The 
fast molecules collide with the slower molecules ahead of them. Thus, central elastic 
collisions will lead to an exchange of kinetic energies and a narrowing of the veloc- 
ity distribution until the relative velocities are small enough so that no further colli- 
sions occur. In contrast, noncentral collisions will deflect both collision partners from 
the beam direction so that they will not be able to pass through the aperture B. As 
there are also inelastic collisions, during which the molecular vibrational-rotational 
energy is transformed into translational energy, the internal degrees of freedom will 
also cool down. The larger the pressure po in the reservoir, the more pronounced is 
the cooling. Therefore, the molecular gas in the reservoir is mixed with a rare gas, 
which serves as an inert collision partner, helping to dissipate the internal energy of 
the molecules. 
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Fig. 12.32 Decrease of relative velocities during the adiabatic 
expansion of an ultrasonic beam [12.20]. 

As the collision cross-sections for the rotation-translation energy transfer are smal- 
ler than the elastic collision cross-sections, and those of the vibration-translation 
transfer are even smaller, there exists no thermodynamic equilibrium between the dif- 
ferent degrees of freedom during the adiabatic expansion. The system is therefore 
described by a set of temperatures T,, < Tor < Tvjb. Typical values, as observed, for ex- 
ample, during the expansion of sodium vapor in argon at a total pressure po of 3 bar in 
the reservoir through a 5 0 p  nozzle, are T,, = 1-5 K, Tot = 10K, and Tvib = 50K. By 
optimizing pressure and nozzle diameter, much lower temperatures can be achieved, 
however. For example, in a helium supersonic beam with po = loobar, translational 
temperatures as low as 30 mK were observed. 

The reason why cooling is so important in molecular spectroscopy is the fact that 
the molecular level population is now concentrated in the lowest vibration-rotation 
levels. As only transitions from thermally populated levels occur in absorption spec- 
tra, the spectrum is thus greatly simplified, and the number of lines is significantly 
reduced. Overlap between hot bands is virtually eliminated, because higher vibra- 
tional or rotational levels are not occupied. The additional decrease of the Doppler 
width makes it often possible to resolve the rotational structure of a transition even for 
large molecules, whereas the lines overlap completely at room temperature. As an ex- 
ample, Fig. 12.33 compares a section from the spectrum of the NO2 molecule recorded 
in a cell at room temperature, where the rotational structure cannot be resolved, with 
the indicated section from the upper spectrum recorded in a cooled molecular beam, 
where in addition to the rotational structure also the hyperfine structure of the rota- 
tional lines caused by the nuclear spin f = 1 of nitrogen can be resolved. 



3941 12 

a) 

Experimental Techniques in Molecular Physics 

Absorptioon cell 

8 

5: 
e! s 
G 

C 
Q) 

16876 16878 16880 I 

8 

0 
3 
ii i_ Al 16880.4 

120.12-130.~. 
s = + l  s = + l  2 

0.01 A 

140.12-1 50.~. 

2 

80.5 80.6 80.7 80.8 

Fig. 12.33 Section from the spectrum of NO:! a) in a cell at 
T = 300 K and b) partial section (as indicated) recorded in a 
collimated molecular beam at Tot = 50K [12.21]. 

As a further example, we will discuss optothemal spectroscopy in cold molecu- 
lar beams, which is a good example for a highly sensitive detection technique for the 
excitation of long-lived molecular states in molecular beams [ 12.221. Its principle is 
illustrated in Fig. 12.34. The collimated molecular beam is crossed perpendicularly by 
a laser beam. Mirrors or reversing prisms enable multiple passes through the molec- 
ular beam, thus enlarging the total absorption path. Even better, the intersection can 
be placed in the center of a high-quality resonator, where the laser intensity can be 
enhanced by a factor of 100 to 500. 

The excited molecules impinge onto a cooled bolometer containing a doped semi- 
conductor element. Here they stick to the cold surface and release their excitation 
energy, provided their lifetime is larger than the time of flight to the bolometer. The 
energy transferred to the bolometer kept at T = 1.5 K leads to a small increase in tem- 
perature AT and thus to a decrease AR = (dR/dT)AT of the electrical resistance R. 
If a small current I (of about 1 mA) is passed through the bolometer, the excitation 
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Fig. 12.34 Optothermal spectroscopy in a molecular beam. 

of the molecules by a periodically interrupted laser shows up as a periodic voltage 
change AU = J A R  across the resistance R of the bolometer with the interrupt fre- 
quency, which is measured by a lock-in detector behind a cooled pre-amplifier. If the 
laser wavelength is tuned over the spectral range of interest, an optothermal spectrum 
is obtained, because the optical energy is converted to a temperature increase. 

The sensitivity of the method depends on the heat capacity H ,  the heat conductivity 
G, and the quantity dRldT. For an absorbed power Po and a chopping frequency 0, 
the temperature amplitude is 

For T = 1.5 K and a suitably chosen bolometer material, detection limits as low as 
1 

A major advantage of this technique, in addition to its high sensitivity, is the de- 
crease in Doppler width caused by the collimation of the molecular beam. For com- 
parison, Fig. 12.35 shows the same section from the overtone spectrum of C2H4 at 
1.6 pm [ 12.231 recorded using Fourier spectroscopy, optoacoustic spectroscopy (both 
in a cell), and optothermal spectroscopy in a molecular beam. Clearly, not only the 
resolution is enhanced, but the signal-to-noise ratio is also much better. 

W incident power can be realized. 

12.4.8 
Doppler-free Nonlinear Laser Spectroscopy 

Even for molecular gases in a cell, the Doppler width of the absorption lines can be 
reduced using special techniques of nonlinear spectroscopy. Here, the selection of 
a narrow range of velocity components is achieved not by geometrical apertures but 
through a nonlinear interaction of the molecules with two laser beams. 
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Fig. 12.35 Comparison of the same section from the C2H4 
spectrum recorded by a) Fourier spectroscopy, b) optoacoustic 
spectroscopy in a cell at room temperature, and c) optothermal 
spectroscopy in a collimated molecular beam [12.6]. 

If the laser intensity I becomes so large that the depletion of the absorbing state 
Ii) is stronger than its re-population by relaxation processes, its population number Ni 
decreases from its unsaturated value Ni (0) to 

Ni(1 )  = N i ( 0 )  -a1 . (12.40) 

The rate of absorption for the transition Ik) c l i) is then, using the Einstein coefficient 
Bik and the relation I = @c (see Sect. 4.1), 

(12.41) 

Hence, it depends nonlinearly on the laser intensity I .  This fact can be demonstrated 
experimentally if the fluorescence from the upper state is measured as a function of 
the exciting intensity I I , , ,~  (Fig. 12.36). The fluorescence intensity is no longer a linear 
function of the laser intensity (dashed line) but deviates from a straight line for higher 
values of IIBser. 
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Now we consider a monochromatic laser beam passing along the z direction thro- 
ugh a cell containing absorbing molecules with a Doppler-broadened absorption pro- 
file. Molecules with velocity components v, experience a Doppler shift Aw = w - 

wo = kv, of the central absorption frequency wo, where k = 2n/X = w / c  is the 
wavenumber of the transition. They can therefore absorb the laser beam only if the 
laser frequency is within the homogeneous width J around the shifted frequency, that 
is Wlaser = wo + v,k f J .  Of all the molecules in state li), only those with a velocity 
component 

(12.42) 

that is, within the homogeneous linewidth y around the absorption frequency wo, can 
absorb the laser photons. For sufficiently small pressure inside the cell, the homo- 
geneous linewidth corresponds to the natural linewidth, which is about two orders of 
magnitude smaller than the Doppler width in the visible region. This means that only 
about 1% of all molecules in the state Ii) contribute to the absorption. The saturation 
of the transition li) -i Ik) by the monochromatic laser causes a hole in the population 
distribution Ni ( v,) at the laser frequency wlaser. or, correspondingly, at the velocity 
component v, of Eq. (12.42). The width of this hole is determined by the homoge- 
neous width and is given, in terms of velocity, by 

6v, = 2y/k (1 2.43) 

(Fig. 12.37). This hole can only be detected, however, by passing a second probe laser 
beam in the opposite direction through the cell. The absorption of this laser shows a 
local minimum at the frequency of the first pump laser. 
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Fig. 12.37 a) Saturation hole in the population distribution Ni(uz) 
of the absorbing molecules, and corresponding population peak 
at N ~ ( v , ) .  b) Saturation holes located symmetrically to vz = 0 
in the interaction with a standing light wave. c) Lamb dip in the 
Doppler-broadened absorption profile a(u) .  

This effect is exploited in saturation spectroscopy, where the laser beam is split 
into a strong pump beam and a weaker probe beam (Fig. 12.38). If Wlaser f wo. the 
two beams are absorbed by different groups of molecules due to the opposite Doppler 
shifts (Fig. 12.37b), that is, by molecules with the velocity components 

(12.44) 

If wlaser = wg, the two groups coincide, and both laser beams are absorbed by the same 
molecules in the velocity interval uz = 0 f y/k. 

As the intensity I = ZI + 12 is larger for these molecules, the saturation increases, 
and hence the population density Ni(v, = 0) decreases, which shows up as a dip in 
the middle of the Doppler-broadened absorption profile a ( w ) ,  called Lamb dip after 
Willis Lamb, who was the first to give a theoretical explanation for its occurrence 
(Fig. 12.37~). 

The Lamb dip can either be detected by the reduced absorption of the probe beam 
or by the reduced fluorescence induced by it. 

If there are two transitions with overlapping Doppler profiles in the molecule (Fig. 
12.38b), the much narrower Lamp dips can still be resolved. If the pump beam is pe- 
riodically interrupted, a lock-in detector can measure the difference of the unsaturated 
and the saturated spectra so that the Doppler background is eliminated (Fig. 12.38b 
bottom). 
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Fig. 12.38 a) Experimental setup for saturation spectroscopy; 
b) schematic representation of the resolution of two closely ad- 
jacent transitions. 

If the absorption cell is placed inside the laser cavity and the wavelength is tuned, 
the laser intensity shows a pronounced peak at the location of the Lamb dip because 
there the absorption and thus the laser losses are smaller. As an example, Fig. 12.39a) 
shows the saturation spectrum of a rotational line in the electronic transition 3r10u c 
X ‘Es of the iodine molecule 12, where the 15 hyperfine components are visible, which 
cannot be resolved in Doppler-limited spectroscopy. 
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Fig. 12.39 Spectrally resolved hyperfine components of the ro- 
tational line (w’ = 58, J’ = 99 t d’ = 1, J” = 98) in the transition 
%Iou t X ’Xg in the iodine molecule l2 recorded by a) saturation 
spectroscopy and b) polarization spectroscopy. 
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Fig. 12.40 Principle of polarization spectroscopy. 

A still more sensitive technique of Doppler-free spectroscopy is polarization spec- 
troscopy, the principle of which is illustrated in Fig. 12.40. 

As in saturation spectroscopy, the laser beam is split into a pump and a probe beam. 
The probe beam is linearly polarized by the polarizer PI, passes through the absorption 
cell and then through a second polarizer P2 with an orientation perpendicular to that of 
PI. The intensity of the transmitted beam is thus reduced by the quenching power of 
the two crossed polarizers (about 10-5-10-7, depending on the quality of the polarizer 
crystals). The transmitted intensity is measured by the photomultiplier PM. 

The pump wave is circularly polarized by a X/4 plate and passes through the ab- 
sorption cell in the opposite direction to the probe wave. It can induce transitions with 
AM = *l, where M is the projection of the rotational angular momentum J onto the 
direction of the pump wave. As Fig. 12.40a shows, optical pumping modifies the oth- 
erwise even population distribution of the M levels; the molecules become oriented. 
Their angular momenta J are no longer distributed randomly, but prefer to align with 
the direction of the pump wave (for 6+ polarization) or opposed to it (for 6- polar- 
ization). If the laser frequency qaser is tuned to the mean frequency of a molecular 
absorption line, both pump and probe beams can be absorbed by the same molecules. 
As these are oriented, they cause a rotation of the plane of polarization of the linearly 
polarized probe wave so that the intensity transmitted through P2 increases. This is 
analogous to the Faraday effect, where the orientation of the molecules is achieved 
by an external magnetic field. Here, the orientation is selectively caused by the pump 
wave, that is, it applies only to molecules that can absorb the pump wave. 
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The detected signal S(ulaser) is Doppler free, exactly as in saturation spectroscopy. 

However, the sensitivity of polarization spectroscopy is much higher, because in this 
case the background in the absence of the pump wave is virtually zero on account of 
the crossed polarizers, so that the background noise (caused essentially by variations 
in laser intensity) is almost completely eliminated. In contrast, in saturation spec- 
troscopy, the change in transmitted intensity Itrans of the probe laser brought about by 
the pump wave is small compared with Itrans, and the detected signal is therefore only 
slightly larger than the background. For comparison, Fig. 12.39b shows the polar- 
ization spectrum of the 12 molecule for the same rotational line as in the saturation 
spectrum in Fig. 12.39a. 

12.4.9 
Multi-photon Spectroscopy 

The large intensity of lasers enabled for the first time the experimental verification 
[ 12.241 of multi-photon absorption in molecules (see Sect. 4.4), which had been pre- 
dicted and treated theoretically by Maria Goppert-Mayer [ 12.251. Until now, most 
experiments have been performed using pulsed lasers, because they provide a large 
peak power, and hence multi-photon transitions can be observed despite their small 
transition probabilities without the need to focus the laser beam. 

Much larger absorption cross-sections are observed if at least one of the photons is 
in resonance with a molecular transition. A two-photon absorption in which both pho- 
tons are resonant corresponds to a stepwise excitation of two one-photon transitions. 

The detection of multi-photon absorption can be achieved using the fluorescence 
from the excited states or, if states beyond the ionization threshold are populated, by 
detecting the ions or photoelectrons. Again, the ion yield assumes a maximum in 
the case of resonance. The method of resonanf multi-photon ionizarion (REMPI) has 
proven valuable for the excitation of high-lying Rydberg states (that can afterwards 
be ionized by an electric field) or for the investigation of the states of molecular ions 
(Fig. 12.41). When combined with photoelectron spectroscopy, REMPI can provide 
very detailed information on these states. 

With narrow-band continuous lasers, Doppler-free two-photon spectroscopy can 
be realized if the two absorbed photons pass through the absorption cell in opposite 
directions. If the molecule moves with a velocity component vz, the Doppler shift for 
both absorbed photons is opposed, and both shifts cancel. If the two-photon transition 
occurs from state li) to state If), 

Ef - Ei = f i  (ulaser + kvz) + f i  (ulaser - kvz)  = 2fiwlaser 9 ( 12.45) 

so that the velocity of the molecules cancels. This means that all molecules in state 
li) contribute to two-photon absorption, irrespective of their velocity - in sharp con- 
trast to saturation spectroscopy, where only molecules from a narrow velocity interval 
around vz = 0 contribute to the signal. This effect partially compensates for the much 
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Fig. 12.41 Multi-photon spectroscopy. a) Detection using laser- 
induced fluorescence, b) detection using ionization, and c) multi- 
photon excitation with ionization and ion fragmentation. 
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Fig. 12.42 Experimental setup for Doppler-free two-photon 
spectroscopy. 
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smaller transition probabilities of two-photon transitions as compared to those of one- 
photon absorption. Figure 12.42 shows an experimental setup for the measurement of 
Doppler-free two-photon absorption, and Fig. 12.43 displays a spectrum of naphtha- 
lene obtained using this method in which the rotational structure can be resolved. 

12.4.10 

Double Resonance Techniques 

Despite the high spectral resolution, not all lines can usually be completely resolved in 
spectra with closely spaced lines. Furthermore, the analysis of spectra, especially of 
disturbed spectra, is often difficult or even impossible. In these cases, a method can be 
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Fig. 12.43 Section from the Doppler-free rotationally resolved 
two-photon spectrum of naphthalene [12.26]. 

used in which the molecules interact with two electromagnetic waves simultaneously, 
and two transitions sharing a common level are in resonance (Fig. 12.44). In this 
double resonance, either the lower level (V-type double resonance) or the upper level 
(A-type) can be common to both transitions, or a stepwise excitation with a common 
intermediate level can occur. The two waves can be from completely different spectral 
regions. For example, there is optical-radiofrequency, optical-microwave, optical- 
optical, or infrared-ultraviolet double resonance. 

Such a double resonance can simplify a spectrum considerably, as will be illus- 
trated for the example of opticahptical double resonance. If the pump wave is kept 
on a transition 11) + 12), the population N I  will decrease due to saturation, whereas 
N2 will increase. If the intensity of the pump laser is periodically interrupted, the pop- 
ulation densities N I  and N2 are also modulated with opposed phases: if the laser is off, 
Nl increases and N2 decreases. If the probe wave is tuned through the spectrum, its 
absorption is modulated by the interrupt frequency exactly if its wavelength matches 
a transition from one of the levels 11) or 12). If this absorption (either as transmitted 
intensity or as induced fluorescence) is detected by a lock-in detector at the interrupt 
frequency, only lines appear in the spectrum belonging to transitions from one of the 
two modulated levels. The crucial point is that only a single level is marked, so that the 
absorption spectrum of the probe wave does not contain the multitude of transitions 
from all thermally populated levels but only the transitions starting from the marked 
level. 

I /Probe 
laser 
L2 

11) 

(a) (b) (c) 

Fig. 12.44 Different double-resonance schemes. a) V-type; 
b) A-type; c) stepwise excitation. 
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Fig. 12.45 Infrared-microwave double resonance. a) General 
scheme with common lower level; b) microwave spectroscopy in 
excited states after infrared excitation. 

As a second example, we will consider infrared-microwave double resonance. In 
Sect. 12.1 we saw that one of the reasons for the weak absorption of a microwave by a 
molecular gas at room temperature is the almost identical population of the upper and 
lower levels of the microwave transition 11) -+ 13). If we use an infrared laser to pump 
a transition 11) + 12) sharing the lower level 11) with the microwave transition and 
to excite molecules into the higher vibrational level 12) (Fig. 12.45a), the population 
density N1 is drastically reduced while 13) is unaffected so that in the microwave 
transition, stimulated emission now dominates absorption markedly. If the infrared 
laser is switched on, a larger microwave signal is therefore detected with a different 
sign as compared to the situation when the infrared laser is switched off. 

Optical pumping with a laser populates specific levels in excited states selectively, 
and double-resonance techniques can thus be used to realize microwave spectroscopy 
in excited states which are not populated thermally (Fig. 12.45b). 

A-type double resonance, in which the second laser stimulates emission from the 
upper level 12) populated by the pump laser to lower levels 13), allows the investigation 
of highly excited vibrational levels in the electronic ground state. If these levels are 
slightly lower than the dissociation limit, couplings between different electronic states 
dissociating into the same atomic states can be investigated. As an example, Fig. 12.46 
shows a section from the A-type double-resonance spectrum of the Cs2 molecule, 
in which the pump laser excites a vibrational level v’ = 50 in the D‘E state, and 
transitions into vibrational levels with v” > 130 in the X ’ C ,  state are reached by 
emission induced by the second tunable laser [12.27]. At large internuclear distances, 
this state interacts with the 3C, state through nuclear spin-electron spin coupling, 
because the difference between these states is smaller than the hyperfine splitting in 
the atomic states into which the molecule dissociates. For these coupled states, there 
are three slightly different dissociation energies, depending on the atomic hyperfine 
components into which the molecular states dissociate. The mixing of singlet and 
triplet states yields four components in stimulated emission (Fig. 12.46b) instead of 
one single rotational line that would appear without this coupling. 
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Fig. 12.46 Components of the rotational transition in the Cs2 
molecule obtained by stimulated emission. a) Term diagram; 
b) measured spectrum [12.27]. 

Another interesting effect in A-type double resonance is that the linewidth is re- 
duced below the natural linewidth of one of the transitions if the two laser beams 
proceed collinearly. It can be shown [12.28] that in this case the linewidth of the 
double-resonance signal is given by the sum of the widths of the two lower levels and 
is independent of the upper level. If the lower levels are vibration-rotation levels in 
the electronic ground state, their lifetime is long compared to that of the upper level, 
so that extremely sharp lines appear in the double-resonance spectrum. 

The stepwise excitation allows the investigation of high-lying molecular states with 
lasers in the visible range. For example, molecular Rydberg states R(n ,  v , J )  can be 
investigated in detail, where the energy depends on the vibrational state w and the rota- 
tional state J as well as on the principal quantum number n (Fig. 12.47). Measurement 

R 

,v*, J*, Rydberg level 

Autoionization 
v', J+ 

Ion level ::T- (v', J') 

Fig. 12.47 Measurement of molecular Agz molecule, in which the series con- 
Rydberg states. a) Level diagram; b) sec- verging to the different vibrational levels 
tion from the Rydberg spectrum of the are indicated. 
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of Rydberg series with w = 0 for many principal quantum numbers n permits a very 
precise extrapolation to the ionization limit at n = w. Using this procedure, precise 
ionization energies have been determined for a number of molecules. As the Rydberg 
series converge, for w > 0, towards excited vibrational levels of the molecular ion, 
measuring several Rydberg series with different values of w gives information on the 
vibrational levels of the ion. 

I 

12.4.1 1 
Coherent Anti-Stokes Raman Spectroscopy 

Coherent anti-Stokes Raman spectroscopy (CARS) utilizes two lasers with frequen- 
cies w] = WL and w2 = ws that differ by the frequency w2, of a Raman-active vibra- 
tional mode. The induced Raman effect populates the vibrational level I w), so that the 
laser wave W I  can stimulate another Raman process starting from level w, which leads 
to an emission of the anti-Stokes wave (Fig. 12.48), bringing the molecule back to its 
ground state. The anti-Stokes wave is emitted in a well-defined direction determined 
by conservation of momentum, 2kl = k2 + k, (Fig. 12.48b). This nonlinear CARS 
process is also calledfour-wave mixing because four different waves are involved. 

The advantage of the CARS technique as compared to spontaneous Raman scatter- 
ing lies in the much larger intensity of the coherent anti-Stokes radiation and its good 
spatial collimation, which allows large distances between the sample and the detector 
so that any disturbing spontaneous background radiation can be eliminated. 

Both continuous and pulsed lasers can be used as pump lasers. Pulsed lasers offer 
the advantage of higher peak power and thus a better signal-to-noise ratio. There- 
fore, CARS using pulsed lasers is employed, for example, for the detection of minute 
molecular concentrations in combustion processes, where the large distance to the de- 
tector makes it possible to suppress the continuous thermal radiation of the hot flame 
by geometrical apertures. 

The advantage of narrow-band continuous lasers is their higher spectral resolution. 
For example, they allow one to record rotationally resolved CARS spectra even for 
larger molecules. 

Fig. 12.48 The CARS process. Conservation of momentum for 
a) collinear and b) noncollinear incident beams; c) term diagram. 
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There are many experimental versions of this interesting spectroscopic method 

such as resonant CARS or box CARS. More detailed accounts can be found in the 
specialized literature [ 12.29, 12.301. 

12.4.12 
Time-resolved Laser Spectroscopy 

While stationary spectroscopy can determine the structure of molecules, time-resolved 
spectroscopy can provide information on dynamic processes in molecules such as 
the lifetimes of excited states, intramolecular energy transfer processes, or the en- 
ergy transfer during molecular collisions. Many of these processes occur on short 
timescales ranging from microseconds to femtoseconds. Here, laser spectroscopy has 
opened a wealth of new possibilities by supplying ultrashort laser pulses. This will be 
elucidated in the following for a number of examples. More detailed accounts can be 
found in the specialized literature 112.31-12.331. 

Lifetime Measurements 
If a molecular level Ik )  is excited by absorption of a photon or by electron impact at 
time t = 0, its population density decays exponentially according to 

Nk(r)  = N~(o) ed"T) . (1 2.46) 

After a mean lifetime 7, N ( T )  = N ( 0 )  /e. This can be verified either by time-resolved 
measurement of the fluorescence intensity 

[ ( t )  =AkNk(t) , (12.47) 

where Ak is the Einstein coefficient of spontaneous emission (see Sect. 4.1), or by 
monitoring the decay of the absorption for transitions from the state Ik)  into higher 
states. 

Nowadays, pulsed or mode-coupled lasers are predominantly used as exciting ra- 
diation sources. The decaying fluorescence can either be measured by a fast detec- 
tor, and the decay curve can directly be visualized on an oscillograph, or the signal 
from the detector can be sent to a multichannel analyzer, which measures the signal 
for predefined time slots t,, to t,, + A? and integrates over the time interval At (Fig. 
12.49a). 

For small fluorescence intensities, a time-resolved single-photon coincidence me- 
thod has proven successful that will be described in the following. 

The molecules are excited by short pulses from a mode-coupled laser with a con- 
stant repetition rate f and a pulse energy which is small enough so that the detec- 
tion probability for a fluorescence photon excited by a single pulse is much smaller 
than unity. Hence, a maximum of one fluorescence photon is emitted per excitation 
pulse. The exciting laser pulse starts a linearly increasing voltage ramp U ( t )  = at, 
which is later stopped by the fluorescence photon at a voltage at,, that is proportional 
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Flg. 12.49 Lifetime measurement a) using time slots, b) with 
single-photon measurement in delayed coincidence, and c) de- 
cay curve of the excited level (J' = 27, v' = 6) in the state 
of Na2. 

to the delay time t,, of the photon (Fig. 12.50b). The voltages U ( f , )  are measured 
for many excitation pulses and stored in a multichannel analyzer or in a computer, 
and the signals caused by single fluorescence photons measured in the time interval 
t,, + Ar are added up. The probability W,, that a photon has a delay time t,, is pro- 
portional to the fluorescence intensity I(0)e-'lT. Hence, the frequency distribution 
N(rn) of the measured fluorescence photons yields the time response, from which the 
mean lifetime 7 can be determined. Figure 12.49~ illustrates the experimental setup 
schematically, and Fig. 12.49d shows a typical decay curve measured with such a 
setup. 

The two methods discussed until now can be used for decay as short as about 
loops. For shorter times, the time resolution of the electronic devices used in detec- 
tion is inadequate. For a time resolution as low as one picosecond, the streak camera 
can be used (Fig. 12.50). In principle, this is a combination of photodetector and a 
fast oscillograph. The photon pulse considered hits the photocathode of the streak 
camera and ejects photoelectrons. These pass through a plate capacitor to which a fast 
voltage ramp is applied. The electrons are therefore deflected more or less strongly, 
depending on the time at which they pass the capacitor, and the abscissa on the os- 
cillograph becomes a time axis. If the photon pulse is passed through a spectrograph 
before entering the streak camera, so that the different wavelengths are dispersed in 
the y direction, the screen of the oscillograph displays the decay curves I ( A , t )  for the 
different wavelengths. 
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Fig. 12.50 Principle of a streak camera and connection between 
the time profile Z(t )  of the incident laser pulse and the signal 
s(y)  at the output. 

Correlation Methods 
In the femtosecond range, the streak camera also fails. There are correlation meth- 
ods, however, which can provide a sufficient time resolution. The shortest laser pulses 
yet realized are below 4fs. From these femtosecond pulses in the visible region, har- 
monics in the visible UV or even in the x-ray region can be created by frequency 
doubling, with pulse widths below one femtosecond, that is, in the attosecond range 
(1 as = s), so that a temporal resolution of less than one femtosecond is possi- 
ble [ 12.341. 

To measure such ultrashort laser pulses reliably, a setup as shown in Fig. 12.51 is 
used. A beam splitter splits the laser pulse into two parts, of which one runs through 
a fixed and the other one through a variable path length. If both partial beams are 
superimposed afterwards, their time delay 7 with respect to each other is variable. The 
total intensity is then I ( r )  = 11 ( t )  + 12 ( t  + 7). If the time constant T of the detector is 
large compared with the duration of a laser pulse, the detector will effectively integrate 
over I ( [ )  and measure the total incident energy, which is independent of 7 as long as 
T < T .  Therefore, it provides no information on the time profile of the laser pulse at 
the optical frequency w.  

However, if the recombined laser beam passes through an optically nonlinear crys- 
tal in which an optical harmonic at frequency 2w is generated, the intensity in the 
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Fig. 12.51 Measurement of the time profile of a femtosecond 
pulse using the correlation method. a) Schematic setup; b) ori- 
entation of the birefringent crystal (potassium dihydrogen phos- 
phate) for phase matching. 

harmonic is 

OC (1(4)2 = (11 ( t )  + I2 ( r  + T ) ) 2  

While the first two terms on the right-hand side are independent of the time delay T, 

the time profile of the last term depends on T, corresponding to the convolution of the 
identical pulse profiles 11 ( t )  and I 2 ( t  + T). If the detector signal is recorded as a func- 
tion of the time delay T, the original pulse profile can be obtained by deconvolution. 
Hence, the time measurement is reduced to a distance measurement As = CT. Usually, 
the back-reflection prism that controls the delay distance is moved by a high-precision 
micrometer screw powered by a stepping motor [ 12.321. 

Pump-Probe Technique 
Fast molecular processes can be investigated using the pump-probe technique. Here, 
one part of the laser beam is transmitted through the molecular sample, where photons 
are absorbed from the pulse and some molecules are lifted into excited states. The 
time evolution of these excited states is then monitored using a probe pulse passing 
through the sample after a variable time delay. For this purpose, either the fluorescence 
induced by the probe pulse is measured or the ions or electrons created upon ionization 
of the excited state by one- or multi-photon transitions. Either way, decay curves are 
obtained, as in the case if the lifetime measurements, from which the decay of the 
excited state can be reconstructed. 

In many cases, excitation leads to a dissociations of the molecule or (for multi- 
photon excitation) the molecular ion. The fragments can then be identified using a 
mass spectrometer. If the signal for a specific fragment mass is measured as a func- 
tion of the time delay of the probe pulse, the different decay channels of the excited 
molecular state and their relative probabilities can be determined. The fragmentation 
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of Fe(C0)S may be mentioned as an example [ 12.351. Starting from the initially ex- 
cited state, the system proceeds “downhill” on the potential surface until it reaches a 
conical intersection with the potential surface of another molecular state. This means 
that a fraction of the electronic energy is transformed into molecular vibrational en- 
ergy. During this process, the molecule is ionized by the delayed probe pulse. The 
observed fragmentation pattern depends on the position on the potential surface at 
which the ionization occurs, that is, on the time delay of the probe pulse. 

12.4.13 

Ferntochemistry 

For many years, photochemists have been dreaming of ways to influence chemical 
reactions by exciting molecules through the absorption of photons, or even to control 
them in this manner. With the advent of lasers as light sources, these aims seemed to 
be close. If a specific molecular bond (i.e., a local vibrational mode) leading to the 
dissociation of the molecules into the desired targets could be excited selectively, the 
reaction could be influenced by an appropriate choice of the wavelength of the exciting 
laser. At first, however, many attempts in this direction remained unsuccessful - for a 
simple reason. 

In order to influence chemical reactions significantly, high-lying vibrational levels 
in the electronic ground state or in excited electronic states must be populated by 
the exciting radiation source. Due to the anharmonicities at higher energies and the 
increasing density of states, however, these levels usually exhibit strong couplings 
with other levels. These cause the initially selective population of one or a few levels, 
in which the excitation energy is concentrated, to spread about many levels before 
the desired reaction starts. The selective excitation therefore simply results in thermal 
activation by an increase in temperature, accelerating all possible reactions with an 
activation barrier. 

Hence, the excitation must occur so fast that the reaction begins before the energy 
is dissipated between many degrees of freedom. As this redistribution takes place 
on a picosecond scale, femtosecond pulses must be employed. Photochemistry using 
femtosecond lasers has also been termed ferntochemistry [ 12.36, 12.371. 

With the aid of the pumpprobe technique, fast molecular reactions can be moni- 
tored in real-time. An example is the dissociation of a molecule after excitation with 
a femtosecond laser (Fig. 12.52). The probe pulse stimulates transitions between the 
potential curves of the molecule, which is dissociating with the velocity v(R) at the 
internuclear distance R = 21 dt. For each time delay T, there is a wavelength X of the 
probe pulse matching the energy difference E;?(R) -El ( R )  = hc/X.  The pump laser 
stimulates fluorescence in the states of BC(R = m) into which the molecule dissoci- 
ates, which can be measured as a function of the time delay T .  From this measurement, 
the velocity I I  ( R )  of the dissociating fragments and hence the difference of the slopes 
of the two potential curves can be determined. 
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Fig. 12.52 Direct observation of a molecular dissociation using 
the pump-probe technique [12.36]. 

An interesting standard example for the use of femtosecond lasers to control chem- 
ical reactions is the excitation of Na2 molecules (Fig. 12.53). 

A femtosecond laser pulse with a pulse width of Af excites molecules from their 
w" = 0 vibrational level in the electronic ground state X IC, into a coherent superposi- 
tion of several vibrational states in the excited 'C, state because of its broad frequency 
spectrum Av = h/Ar. This superposition forms a wavepacket oscillating with the 
mean vibrational period between the turning points. The second probe pulse delayed 
by a time T can excite the molecule even further. Depending on the position R ( t )  of 
the wavepacket on the potential curve of the ' 2  state, either states of the molecular ion 
N$ or the dissociation continuum of the fragmentation channel Na++Na(3s) can be 
reached by the probe laser. If the ratio N Q  /Na+ is measured as a function of the de- 
lay time, the oscillating curve shown in Fig. 12.53b is obtained, reflecting the periodic 
motion of the wavepacket in the 'C, state. By choosing a suitable time delay, the yield 
of atomic or molecular ions can be controlled. 

12.4.14 
Coherent Control 

Apart from the time delay between pump and probe pulse, the phase distribution in the 
excitation pulse can also be used to control the phase of the molecular wavefunction 
in the excited state. In polyatomic molecules, this phase determines the temporal dis- 
tribution of the wavefunction on the excited potential surface and therefore the decay 
channels admissible within a time interval between T and T + Ar after the excitation. 
This method of controlling the excited molecule by the phase distribution cp(X) in the 
excitation pulse is called coherent control; its principle is illustrated in Fig. 12.54. 
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Fig. 12.53 Application of the pump-probe technique to the ion- 
ization of the Na2 molecule. a) Term diagram; b) ion signals 
N(Na2f) and N(Na+) as a function of the time delay 7 [12.38]. 

The individual spectral components of the femtosecond pulse of spectral width AA 
are separated spatially by an optical grating and pass through a liquid-crystal mask 
consisting of many pixels which are electrically isolated from each other. If a volt- 
age is applied to this mask, its refractive index changes, and hence the phase of the 
corresponding spectral component of the transmitted wave also changes. 

A second grating recombines the spectral components spatially. The phase differ- 
ences between the individual components influence the time profile of the total pulse. 
It turns out that the dissociation channels through which the molecule can decay de- 
pend on this time profile. Although the connection is not yet understood in detail, a 
learning algorithm can be used to modify the pulse shape so that the desired prod- 
ucts of the decay are formed preferentially (Fig. 12.55). This can be demonstrated for 
a number of examples such as medium-sized [12.40] and even very large biological 
molecules [ 12.411. To arrive at a detailed understanding of these processes, very de- 
manding calculations have to be performed that can determine the potential surfaces 
and the time-dependent wavefunctions (the wavepacket) of the excited nonstationary 
states and their time evolution. 
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Fig. 12.54 Setup for the optimization of femtosecond 
pulses [12.39]. 

lase 

LCD 

lase 

Fig. 12.55 Learning algorithm for the optimization for coherent 
control of chemical reactions [12.39]. 
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12.5 
Photoelectron Spectroscopy 

Photoelectron spectroscopy and its recent variations have been developed into highly 
useful tools of molecular spectroscopy. Its principle is very simple: a light source with 
wavelength X ionizes molecules, and the kinetic energy Eel of the ejected photoelec- 
trons is measured using an energy analyzer. If the electron is emitted from a state with 
ionization energy El, conservation of energy requires that 

Eel = hu - El with u = c/X . (12.49) 

Hence, from the measured electron energy Eel, the energy of the molecular orbital 
from which it was ejected can be determined. As ionization energies of most mole- 
cules are in the lOeV range, the photon energy must exceed this value, that is, the 
wavelength must be shorter than about I20 nm. Frequently, helium discharge lamps 
are used, and the helium line at X = 58.4nm ( E  = 21.2eV) in the vacuum ultraviolet 
region is used to ionize the molecules. The method is thus also called ultraviolet 
photoelectron spectroscopy (UPS). Excitation of the helium resonance line can be 
effected by means of a gas discharge or by microwave discharges. Using large currents 
in the gas discharge, a sufficient number of helium ions can be excited into higher 
states to make even the He+ resonance line at X = 30.4nm ( E  = 40.8eV) intense 
enough to be useful as a radiation source with higher photon energy. 

In recent years, however, VUV lasers have been employed more frequently because 
of their higher intensity. Often, the ionization limit of a molecule is reached via multi- 
photon transitions, where the photons for the stepwise excitation of the molecule can 
be from the same or from different lasers. This method is used particularly for the 
generation of low-energy photoelectrons, which allow the determination of the energy 
levels in molecular ions (see below). 

Photoelectron spectroscopy of inner electron shells is of particular interest be- 
cause for these low-energy orbitals, the correlation energy due to the mutual electron- 
electron interaction has a crucial influence on the orbital’s total energy. Thus, the 
correlation energy may be determined by comparing the measured term energies with 
calculations in which the correlation was neglected. For inner-shell spectroscopy, pho- 
ton sources in the x-ray region are necessary; the technique is therefore called x-ray 
photoelectron spectroscopy (XPS). The characteristic lines of x-ray tubes can be used 
as radiation sources. Nowadays, however, synchrotron radiation is usually employed, 
which is spectrally dispersed by a primary monochromator (see Sect. 12.3). 

Many of the insights on molecular orbitals discussed in Ch. 7 are based on results 
of photoelectron spectroscopy. It offers an additional and complementary source of 
information as compared to absorption and emission spectroscopy, and it is therefore 
applied in many molecular physics laboratories [ 12.42, 12.431. 
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12.5.1 
Experimental Setups 

Figure 12.56 shows schematically an experimental setup for photoelectron spectro- 
scopy. The radiation source is imaged into the sample volume by an elliptical mirror. 
The ejected photoelectrons are extracted by a small electric field and their energies 
are analyzed before they reach the detector. As energy analyzers, different designs are 
used. One of them employs a planar capacitor with a distance d between the plates 
(Fig. 12.57a), where the electrons enter the capacitor through an entrance slit at an an- 
gle a with respect to the capacitor plates, follow a parabolic path in the homogeneous 
electric field, and, for an energy 

(12.50) 

reach the exit at a distance D from the entrance. A second design is based on a cylin- 
drical capacitor, which offers the advantage that it focuses the electrons (Fig. 12.57b), 
thus providing larger transmitted intensities. It consists of two cylinder segments with 
an aperture angle of 127" (~t/fi). For a voltage U between the capacitor plates, this 
arrangement focuses all electrons with an energy 

eU 
E -  

el - 2ln(Rz/R1) 
(12.51) 

emitted from a point-like source into a solid angle accepted by the capacitor onto the 
exit slit. The detector thus recognizes only electrons with this energy, which can be 
selected by varying the capacitor voltage. 

Instead of cylindric capacitors, spherical capacitors (spherical surfaces with radii 
R I  and R2) are frequently employed, because they accept a larger solid angle of the 
incident electron beam and therefore enable a larger signal at the detector. The trans- 
mitted electrons have an energy 

elliptical 

Energy 
Light 
source I,  I I) 

chamber 4 
pump 

selector 

Detector 

(12.52) 

Fig. 12.56 Schematic setup for photoelectron spectroscopy. 
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$Variable voltage 

Fig. 12.57 Possible realization of the energy selection of 
photoelectrons. a) Planar capacitor; b) cyclindric capacitor; 
c) opposed-field method. 

In place of electrostatic capacitors, an retarding-field method is also frequently used. 
Here, the photoelectrons pass through an retarding electric field and can only reach 
the detector if their energy exceeds a limiting energy Elirn (Fig. 12.57~). The retarding 
field is realized by means of a planar conducting wire mesh at a potential - U .  If the 
photoelectron source is at a potential U = 0, the threshold energy becomes Elirn = eU.  
If the voltage U = r/b( 1 + acos(27cff)) is modulated with a frequency f around a 
mean value Uo, a lock-in detector at the frequency f will detect only electrons from 
the energy interval 

The energy resolution of a photoelectron spectrometer depends on the spectral 
width of the radiation source, the energy resolution of the energy selector, and pos- 
sibly also on the kinetic energy of the molecules, because their velocity implies an 
energy shift of the photoelectrons on account of the Doppler effect. When the helium 
resonance line is used, the spectral width of the radiation is very narrow so that the 
remaining limitations on the energy resolution are effective. Today, electron spec- 
trometers with an energy resolution better than 5meV can be constructed. To make 
this possible, however, all external magnetic fields such as the Earth's magnetic field 
must be shielded very carefully, because these would cause a deflection particularly 
of slow electrons, thus leading to a selection of electrons with the wrong energy. 

= 2aeU" around the energy d o .  

12.5.2 
Photoionization Processes 

Upon ionization of a molecule M by absorption of photons, the following processes 
can occur: 

a) M ( E i ) + h v = M + ( E k ) + e ( E , I )  

b) M(Ei) +hv = M'+(E,,) +el ( E i : ) )  + e z ( E ~ ~ ' )  

c) M+(E; )+hv  = M+'(E, , )+e(E, , )  

(12.53) 

In case a), a molecule M in the ground state E; is ionized by the photon, and a molec- 
ular ion in the state Ek (which can be its ground state or an excited state) is generated. 
The photoelectron with kinetic energy Eel is detected. If it is a valence electron, is has 
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MC + e- 

EA 

M" + M*+ + eAuger 

(a) (b) (4 (d) 

Fig. 12.58 Occupation of molecular or- 
bitals for the different photoionization 
processes. a) Ionization of a valence 
electron; b) double ionization; c) sub- 

sequent ionization of a molecular ion; 
d) inner-shell ionization with subsequent 
Auger-electron emission. 

been ejected from the highest occupied molecular orbital (HOMO). If Ek is the ionic 
ground state, the difference 

AE=hv-E,[ 

corresponds to the ionization energy of the molecule. However, smaller electron 
energies are also observed in the spectrum, which occur if the ion is left in an excited 
state. 

For sufficiently large photon energies, double ionization may occur (process b). 
With high-intensity lasers, stepwise ionization by absorption of two or more photons 
is also possible. The ions generated by process a) are further ionized by the absorption 
of a second photon. The probability of this process increases with increasing pho- 
ton density. It is therefore particularly relevant for photoelectron spectroscopy with 
high-power lasers. Figure 12.58 shows schematically the occupation of the molecular 
orbitals in the different processes. 

12.5.3 
ZEKE Spectroscopy 

In recent years, a variation of photoelectron spectroscopy has been developed in which 
only photoelectrons with very small energies Eel % 0 are detected during laser ioniza- 
tion of molecules in a collimated molecular beam, and which is therefore called zero 
kinetic energy (ZEKE) spectroscopy [ 12.44, 12.451. 

If the wavelength of the ionizing laser is continuously tuned, these (ZEKE) elec- 
trons are generated when the ground-state level or excited vibrational levels in the 
electronic ground state of the molecular ion M+ are reached by the exciting photon. 
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The photoelectrons are extracted from the generation area (crossing volume of molec- 
ular beam and laser beam) by an electric field, which is switched on only after a time 
&, which ensures that all fast electrons have already left the area. Hence, the photoion- 
ization channel leading to a definite state of the molecular ion is selectively detected, 
and no energy selector for the electrons is needed. When narrow-band lasers are used, 
the energy resolution is much better than in conventional photoelectron spectroscopy, 
and it is limited only by the molecular velocity distribution in the beam. 

Example 
Electrons with an energy of 0.1 meV have a velocity of 'u = 5.8 x lo3 m/s. 
Hence, they leave the area of ionization with a typical size of 1 mm3 within about 
20011s. Choosing a time delay of 1 ps after ionization with a laser pulse with a 
width of lOns, all electrons with energies Eel > eV have left the ionization 
area and are therefore not detected. 

ZEKE spectroscopy offers not only the advantage of higher energy resolution, 
which allows the resolution of vibrational and sometimes even rotational levels of 
the molecular ions, but also a much higher detection probability. This is due to the 
fact that the photoelectrons, which have statistically distributed velocities, are all cap- 
tured by the electric field due to their small kinetic energy, and are thus all collected 
on the detector. 

As an example, Fig. 12.59 shows the ZEKE spectrum of NO, which demonstrates 
the achievable energy resolution. 

a 

I 
1 1 l , 1 ~ l l l l l l 1 1 l ~ l l l l l ' l l l , l l l , l  i I  1 1 ~ 1 1 1 1 1 1 1 1 1 ( 1 1  
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cm - 1  

Fig. 12.59 ZEKE spectrum of NO. The abscissa gives the 
wavenumber of the ionizing laser; the peaks correspond to ex- 
citations from different rotational levels ./ = 0.. .3 of the ground 
state ( I  meV^8.07cm-') [12.46]. 
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Unfortunately, the collecting electric field can also field-ionize electrons from very 

high long-lived Rydberg states of the neutral molecule, thus giving erroneously a 
smaller ionization energy. These field electrons must therefore be separated from the 
true photoelectrons. One possible way to achieve this is to apply a weak extraction 
field at a time tl after ionization, which is then increased at a time t2. The electron 
signal displays then a step at t2, which indicates the additional amount of electrons 
from field ionization of Rydberg states. 

12.5.4 
Angular Distribution of Photoelectrons 

Conservation of angular momentum requires that the total angular momentum on both 
sides of Eq. (12.53) be equal. The angular momentum of the ionizing photon is zero 
for linearly polarized light, and 2rlh for circularly polarized light. The photoelec- 
trons may also possess angular momentum, which determines their angular distribu- 
tion. At very small electron energies, such as those occurring in ZEKE spectroscopy, 
the angular momentum of the photoelectrons is zero, and their angular distribution is 
isotropic. In general, however, the photoelectrons may possess an angular momen- 
tum O,lh,2h,3h,. . . The electronic wavefunction is then a superposition of s, p, d, 
. . . contributions. As the angular momentum quantum number 1 is well defined for 
highly excited electrons (e.g., in Rydberg states) even in molecules, the selection rule 
A1 = f 1 for the angular momentum quantum number 1 is satisfied for electric dipole 
transitions from the Rydberg level to a vibration-rotation level of the ion by absorp- 
tion of a photon. If the transition starts from an s state, the final state must then be 
a p state, and the photoelectron must be a p electron due to conservation of angular 
momentum. Its angular distribution is given by the spherical harmonic Y ~ o ,  and the 
intensity distribution of the photoelectrons as a function of the angle 8 between the 
line of incidence of the photon and the line of observation of the photoelectron is given 

by 

3 
4z 

I ( @ )  = Y:o = -cos20 (12.54) 

In general, the angular distribution of photoelectrons with arbitrary angular momen- 
tum can be described, for unpolarized light, by the expression [ 12.471 

(12.55) 

The photoionization cross-section u and the anisotropy parameter ,B depend on the 
initial and final states of the photon-induced transition in the molecule and on the po- 
larization of the photon. It summarizes the influence of the different angular momenta 
of the photoelectrons on the angular distribution. From the measured anisotropy, in- 
formation on the molecular states involved in photoionization can be gained. Mea- 
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surement of the angular distribution of photoelectrons in addition to their energies 
gives important clues on the molecular states from which the electron was ejected. 

We see from Eq. (12.55) that for a “magic” angle of observation of 8 = 54.7”, the 
angular distribution becomes isotropic because sin’ 54.7” = 2/3. 

12.5.5 
X-ray Photoelectron Spectroscopy (XPS) 

Inner-shell electrons are usually localized at “their” atom in the molecule. However, 
the interaction with the remaining electrons in the molecule leads to shifts of the en- 
ergies of inner-shell molecular levels as compared to the corresponding levels in the 
free atoms. These shifts (also called “chemical shifts”) are in general very small, but 
they can nevertheless be determined accurately using XPS. As an example, Fig. 12.60 
shows the XPS spectrum of the transitions from the 1s levels of the four carbon atoms 
that are located in different environments in the ethyl trifluoroacetate (trifluoroacetic 
acid ethyl ester) molecule, and which therefore experience slightly different shifts. 
The aluminum Ka line was used as the excitation line. 

To calculate these shifts, the potential at the location of the electron in the initial 
state must be determined, which depends on the interaction of this electron with all 
the charges around it. If rik is the distance between the electron ei under consideration 
and the charge qk, its potential energy is 

1-C-C-H 

H H  
I /  

10 8 6 4 2 0 EB=291.2eV 
Chemical shift 

Fig. 12.60 XPS spectrum for transitions from the Is level of the 
carbon atom [12.48]. 
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The energy depends not only on the electron distribution in the “own” atom (first 
sum), but also on the charge distribution in the neighboring atoms (second sum). If 
an electron is removed from an inner shell of atom A by photoabsorption, the elec- 
tron distribution in atom A changes, and due to the interaction with the neighboring 
atoms N, their charge distribution changes also, so that the potential energy in the final 
state is 

I 

The chemical shift is then 

(12.56b) 

(12.56~) 

where rij denotes the distances to the adjacent charges modified by the photoabsorp- 
tion process. 

If the XPS photoionization process leaves a hole in an inner shell, an electron 
from a higher shell can make a transition into this hole, transferring its surplus en- 
ergy to another valence electron, which can then leave the molecule (Auger process, 
Fig. 12.58d). In this case, the photoelectron spectrum shows, in addition to the normal 
line at an energy 

Eel =hV-EB(ls),  (12.57) 

a second line from the Auger electron from the state In) with the energy 

E A ~ ~ = E B ( ~ s ) - E B ( ~ ) ,  (12.58) 

so that additional information on the energies of the states In) can be obtained. 

12.6 
Mass Spectroscopy 

Mass spectroscopy monitors the fragmentation of a molecule into charged fragments 
after excitation into a dissociative state by electron impact or photon absorption. In 
combination with laser spectroscopy, much fundamental knowledge on highly excited 
states of neutral molecules or molecular ions has been gained in recent years. 

Furthermore, mass spectrometers can be utilized in the spectroscopy of gaseous 
mixtures (e.g., in cluster beams) to record selectively the spectra of the individual 
components or to determine isotope shifts in mixtures of different isotopomers of a 
molecule. This can be useful in determining the vibrational and rotational quantum 
number of an excited level, because the isotope shift depends on both quantum num- 
bers (see Sect. 3.5.4). 
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A mass spectrometer comprises an ion source, an arrangement to separate the ions 

spatially or temporally, and a detector. In the following, we will briefly present the 
three most important types of spectrometers. 

12.6.1 
Magnetic Mass Spectrometers 

A magnetic field transverse to the direction of motion of ions with mass m, charge 
q and velocity v exerts the Lorentz force F = q( v x B )  and hence deflects the ions 
according to their momentum mv. If the homogeneous magnetic field is restricted to a 
circular sector with an apex angle 2p, ions emerging from a slit S1 are focused on the 
slit S2 (Fig. 12.61b). This can be rationalized as follows. We consider one half of the 
sector field with the apex angle p. Ions entering the magnetic field in a parallel beam 
of width b perpendicularly to the field boundary 0, axis) are deflected by the magnetic 
field onto circular paths with a radius 

mv R = -  
qB ’ 

(12.59) 

because the centripetal force m v 2 / R  is equal to the Lorentz force mvB. After leaving 
the field, they continue on a straight path. If the magnetic field strength is properly 
chosen, the center of the circular arc for the center beam S is the center Mo of the 
sector, and the ions are deflected by the sector angle p. The center MI  of the arc for 
ions on the path 1 is then shifted by b/2 with respect to Mo. These ions cover a larger 
distance in the magnetic field and are therefore deflected by the larger angle p + cy and 

. . . .  . .. . . .  . . .  

a) b) 

Fig. 12.61 Principle of a mass spectrometer with magnetic sec- 
tor field. 
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from point Ao. With MoAo = R, we obtain from the law of sines for the triangle 
MI AIM0 

I 

sin(cp + a) 
MoAl= R 

sincp * 

Thus, 

&& = R ( - 1) . 

For sufficiently small angles a, cos a M 1 and sin a M tan a, so that 
- 
AoA I 

sin a go = - = Rcotancp . 

(12.61) 

(12.62) 

We define the focal length of the cylindrical magnetic lens to equal the distance fo = 
HF, and we obtain from HD = R and HF = R /  sin cp, 
- 

R 
sin cp f0=- .  (12.63) 

Now we add the second half of the sector field, so that we arrive, for symmetry reasons, 
at the representation in Fig. 12.61b. 

In front of the slit S1, an acceleration voltage U is applied, which supplies the ions 
with a kinetic energy 

( 5 )  v2 = qu , 

that is, with a velocity v = (2qU/n1)'/~, so that the focal width becomes, using R = 

I../(@), 

(12.64) 

If the magnetic field strength B is changed, ions with a different mass are focused on 
the exit slit according to Eq. (12.64) [12.49]. Thus, ions with specific masses can be 
selectively transmitted by changing the magnetic field strength B. 

12.6.2 
Quadrupole Mass Spectrometers 

In a quadrupole mass spectrometer consisting of four parallel, electrically conducting 
round rods at a distance 2r0 (Fig. 12.62), the ions are selected using electrical fields. 
The ions traveling along the y direction experience a hyperbolic electric potential 

2 GO @(x,z) = - (2 - z 1 ' 
2 6  

(1 2.65) 
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Fig. 12.62 Quadrupole mass spectrometer. a) Hyperbolic po- 
tential @(x,z); b) optimum arrangement of electrodes; c) real 
arrangement with four rods; d) stability diagram. 

with @" = U + Vcoswt, which is a superposition of a static potential U and a high- 
frequency contribution V coswt. While they component of the ion velocity is constant, 
the x and z components oscillate with frequency w. The equations of motion for these 
directions are 

i++u+Vcoswt)x  4 = 0 ,  

mro (12.66) 
i'--(u+Vcoswr)z 4 = 0 

mrg 
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These differential equations have stable solutions only for specific ranges of the pd- 
rameters 

(12.67) 

Within these ranges, the vibrational amplitudes along x and z remain finite, whereas 
they tend to infinity for other values of the parameters. Depending on the choice of 
the potentials U and V ,  ions with specific masses can reach the detector behind the 
quadrupole rods, while ions with different masses oscillate so strongly that they hit 
the rods and are lost. As shown in Fig. 12.62d, the mass range of the transmitted 
ions can be adjusted to be narrow or broad by choosing suitable values for the pa- 
rameters a and b. That is the main reason why the quadrupole mass spectrometer, 
developed by W. Paul in 1953, is a highly versatile instrument with adjustable mass 
resolution, which is also much more compact and lightweight than magnetic spec- 
trometers [12.49, 12.501. 

12.6.3 
Time-of-flight Mass Spectrometers 

In a time-of-flight mass spectrometer, the mass-dependent time of flight of ions with 
the same energy (m/2)w2 is exploited to separate the ions in time. The principle is 
illustrated in Fig. 12.63. At time t = 0, ions with mass m and charge q are generated 
in a confined region of space (e.g., the crossing volume of laser and molecular beam) 
by pulsed ionization (e.g., using a pulsed laser). A voltage U accelerates them to a 
velocity w = (2qU/m)'/*, and they pass through a field-free distance L with constant 
velocity, before they are registered by an ion detector (channeltron or channel-plate 
amplifier). 

_ I  + U Area of ionization 

I ,  

I 0 :  0 :  0 .  
0 .  

~ O .  ioo ~ 0 0  

(c) ; t = o  : t l  tz t3 su t l  tZ t , I  

Fig. 12.63 Time-of-flight mass spectrometer. a) Principle; b) po- 
tential characteristics of the McLaren type; c) Time-focusing of 
ions that are generated simultaneously at different locations in 
the ionization area. 
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1 
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Ions generated at different locations in the ionization area, and hence at different 
potentials, possess different velocities, and the time of flight for ions of the same mass 
is distributed around a mean value. To improve the time resolution and thus also 
the mass resolution, McLaren and coworkers suggested a modified field distribution 
(Fig. 12.63b), in which the ions are accelerated in two stages [ 12.5 11. The two electric 
fields are adjusted (depending on the length of the field-free propagation distance) so 
that all ions of equal mass arrive at the detector simultaneously, irrespective of the 
location where they were generated. 

The mass resolution of a time-of-flight spectrometer can be improved further if the 
ions are reflected by an opposing electric field at the end of their propagation path. 
Fast ions penetrate farther into the opposing field and must therefore cover a larger 
distance. Such a reflectron can achieve a mass resolution of several thousand [12.52]. 

More information on the combination of lasers and mass spectrometry can be found 
in [ 12.531. 

Molecular beam 

r f  
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12.7 
Radiofrequency Spectroscopy 

In 1929, Rabi [ 12.541 developed an experimental technique which allows very precise 
measurements of fine and hyperfine splittings in molecules with magnetic or electric 
dipole moments, of the magnitudes of these moments and the corresponding Zeeman 
or Stark splittings. The technique is illustrated in Fig. 12.64a. The molecules effuse 
from their reservoir (for substances with a low vapor pressure, a heated furnace may 
be used) through a small hole or a nozzle into vacuum. They are then collimated by 
an aperture and deflected in an inhomogeneous magnetic field A according to their 

_ _ _ _ _ _ _ -  ------- I ---f Detector . 1- - - - Y L ,  - 
Furnace 

1 
1- 

Fig. 12.64 Principle of radiofrequency spectroscopy. a) Rabi 
method with deflecting magnets A and B; b) modern laser 
variant. 



428 12 Experimental Techniques in Molecular Physics I 
magnetic moment. The force acting on the molecules is F = -p * gradB. Finally, 
they are deflected in a second magnetic field B of the same magnitude, but opposed 
to A, and reach the detector behind an aperture. 

At C, between the two static magnetic fields, the molecules are irradiated with a 
variable radiofrequency field. If the frequency corresponds to an allowed transition 
between two levels l i k )  and l in) of the molecule, the populations of both levels are 
changed. If the molecular dipole moment is different in both states, the deflection in 
field B changes, and the molecule cannot reach the detector. 

The decrease in the detector signal is measured as a function of the radiofrequency. 
The maximum decrease occurs at the resonance frequency fo. Usually, both levels 
belong to the electronic ground state of the molecule, so that their lifetimes are long. 
Hence, the signals exhibit very narrow linewidths, which are often limited by the 
molecular passage time through the radiofrequency field. The time-of-flight linewidth 
can be reduced by using a larger passage time through the radiofrequency field or by 
a method developed by N. Ramsey, in which the radiofrequency is applied simultane- 
ously to two widely separated areas [12.55]. This method of separated fields results 
in very narrow linewidths, and the resonance frequencies can be measured very accu- 
rate 1 y . 

If the two magnetic fields A and B are replaced by electric fields, electric dipole 
moments and their dependence on the molecular state can be measured [ 12.561. 

The accuracy of the measurements is essentially limited by the signal-to-noise ratio 
achieved. As the energy difference between the two levels is very small (AE = hf << 
kT), both levels are almost equally populated at room temperature. The net absorp- 
tion of the radiofrequency and thus the change of the level populations is therefore 
very small, and consequently the same holds for the change of the magnetic moments. 
By using a cooled supersonic beam (see Sect. 12.4.7), the temperature can be reduced 
to a few kelvin, and the population difference can be correspondingly increased. 

Much more effective, however, is a laser variation of the Rabi method. Here, the 
two magnets A and B are replaced by two partial beams of a laser, crossing the molec- 
ular beam perpendicularly (Fig. 12.64b). If the laser wavelength is tuned to an optical 
transition li,,) -+ Ik)  of the molecule, the transition can be saturated even for small 
laser powers, that is, the population of l in) is then much smaller than the thermal pop- 
ulation, in favorable cases it can become virtually zero. This increases the transition 
rate on the radiofrequency transition l i k )  -+ tin) drastically. The states of the molecules 
arriving at the second intersection B can then be measured through the absorption of 
the second laser beam via laser-induced fluorescence at position B [ 12.571. 

This technique offers not only a much higher sensitivity but has the additional 
advantage that radiofrequency transitions in molecules without magnetic or electric 
moments can be measured. 

A large number of molecules have been investigated using this technique [ 12.581. 
Specifically, vibrational transitions of the weak van der Waals bond in van der Waals 
molecules or rotational transitions of large van der Waals complexes can be measured, 
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which have very small rotational constants due to the large mass of the complex and 
the large bond length, so that the transitions are in the radiofrequency or microwave 
regions [12.59]. 

If the laser excites states with a lifetime which is longer than the time of flight 
from the point of excitation to the second crossing point B, radiofrequency transitions 
in these excited states can be measured. The method can also be termed an optical- 
radiofrequency double resonance spectroscopy, because the resonant interaction of 
the molecule with the laser and the radiofrequency field is exploited. 

12.8 
Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool 
for the elucidation of the structures of large molecules containing nuclei with nuclear 
spins. Its principle is very simple. 

The sample of interest is placed in a magnetic field B, in which the nuclear spins I 
will be oriented relative to the direction of the magnetic field so that their projections 
onto this direction are Mlh, where the magnetic projection quantum number MI can 
take all 21 + 1 integer or half-integer values from -1 to +I. Hence, the hyperfine 
levels split into Zeeman components with energies 

where gl is the Land6 factor of the respective nucleus, h = 5.05 x A m2 is the 
nuclear magneton, and y = pnuc / I  = g l h  / h  is the gyromagnetic ratio. 

The nuclear spin quantum number of the proton is I = 1/2, and there are two 
Zeeman levels with MI = f l / 2  (Fig. 12.65). If the sample is irradiated with radiation 

1 
2 

_- 

+' 
2 

Fig. 12.65 Zeeman splitting of proton spins I = 1 / 2  in a mag- 
netic field B .  
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of the frequency 

the proton spin can be flipped, that is, a transition is stimulated to the second Zeeman 
level. 

Example 
For a hydrogen nucleus, I = 1/2, pnuc = 2.79b, and therefore y = 
1.55 x 10sm2V-'s- 2 .  For a magnetic field strength of 1 T = 1 Vsm-2 = lo4 G ,  
a frequency vfi = 24.7 MHz results. 

The crucial point, however, is that the magnetic field B at the location of a nuclear 
spin is not simply given by the external magnetic field Bo, but that the surrounding 
atoms and nuclei with their permanent or induced magnetic moments provide also 
a (albeit small) contribution. Therefore, the splitting of the Zeeman levels and thus 
the radiofrequency vfi depends on the location of a nucleus in the molecule. For a 
molecule containing several protons in different atomic environments, there is not just 
one transition but there are several components with frequency spacings that reflect 
the difference of the effective magnetic fields at the location of the nucleus under con- 
sideration due to the neighboring atoms. As these additional magnetic fields depend 
on the magnetic moments of the atoms (including nuclei) and their respective dis- 
tances from the nucleus under consideration, this magnitude of the resulting shifts can 
be used to determine the distances of the surrounding atoms, provided the magnetic 
moments are already known. This contributes significant information to the determi- 
nation of the molecular structure. 

The resonance frequency of a proton i that experiences a shielding or amplification 
a;Bo of the external magnetic field Bo due to the neighboring magnetic moments is 
given by 

vi= (g) ( 1  -o;), 

where the shielding constant oi can assume positive as well as negative values (pos- 
itive values denote shielding of the external field by the surrounding atoms, negative 
values amplification). If the surrounding atoms are diamagnetic, they possess only an 
induced dipole moment in the external field, which is opposed to the external field 
and thus reduces the field at the location of the nucleus under consideration. As the 
induced moment is proportional to the field strength, the frequency shift will also be 
proportional to the external field. The shielding constant o is then positive. If the sur- 
rounding atoms possess permanent magnetic moments, the dipoles are oriented along 
the direction of the external field and amplify the magnetic field. If the field is strong 
enough to achieve complete alignment, the positive shift becomes independent of the 
external field. 
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Fig. 12.66 NMR spectrum of the protons in the ethanol 
molecule, showing the multiplet structure due to the interaction 
between the nuclear spins [I 2.631. 

If the nuclei of the surrounding atoms possess nuclear spins and thus nuclear mag- 
netic moments, there arises an additional interaction between the nuclear moments, 
leading to a fine structure of the resonance lines. 

As an example, Fig. 12.66 shows the NMR spectrum of the protons in the ethanol 
molecule CH3CH20H. It consists of a triplet from the three protons of the CH3 
group, a quartet from the CH;? group, and a single line from the OH proton. The 
abscissa shows that the frequency shifts between the multiplets are in the ppm range 
(ppm = parts per million = lop6). The fine-structure splitting due to the interaction be- 
tween the nuclear spins is even smaller, and can only be resolved with high-resolution 
spectrometers. At a resonance frequency of 100MHz (for Bo = 4T), the chemical 
shifts amount to a few hundred hertz, and the spacings of the fine structure are only 
a few hertz. The magnetic field Bo must therefore be held constant to less than lop6. 
This can be achieved by using special stabilization techniques; for example, by simul- 
taneously measuring the resonance frequency of a reference substance and stabilizing 
the magnetic field at the middle of this resonance. As a reference substance, tetram- 
ethyl silane (CH3)4Si (TMS) is commonly employed, and the shifts of the resonance 
lines are then measured with respect to the TMS resonance (Fig. 12.66). 

Figure 12.67 illustrates the principle. The sample is placed in the stable static 
magnetic field Bo, which is commonly generated by cooled electromagnets with iron 
cores or by superconducting coils. The radiofrequency is then transmitted onto the 
sample by a coil, and a second coil receives the signal from the sample. 

To perform the measurement, either the radiofrequency can be tuned through all 
resonances, or the magnetic field can be varied at a fixed radiofrequency. For this 
purpose, auxiliary coils are employed which permit small yet precise changes of B.  
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Fig. 12.67 Schematic setup of an NMR apparatus. 

The chemical shifts of the proton resonance and also for the nuclear spin interaction 
possess typical values for specific atomic groups containing hydrogen atoms (e.g., 
CH3, CHC13, OH, C6H6), so that one can deduce from its measured chemical shift the 
chemical group in which a specific hydrogen atom resides. 

Apart from protons, other nuclei with magnetic moments, that is, with I # 0, can 
also be used as probes. Common examples include the isotopes 13C, I4N, 15N or 
31P. Measuring the chemical shifts of these special nuclei facilitates the structure 
determination of more complicated molecules, in particular large biomolecules such 
as proteins [12.60, 12.611. 

12.9 
Electron Spin Resonance 

Electron spin resonance (ESR) spectroscopy is a useful tool for the investigation of 
molecular states with an electron spin S # 0. Most molecules have S = 0 in their 
ground state, but radicals (molecules with one or more unpaired electrons) have also 
a resulting electron spin in the ground state. In ESR spectroscopy, the resonance fre- 
quencies for transitions between Zeeman levels is measured, in complete analogy to 
NMR spectroscopy. However, in this case the Zeeman splitting is not determined by 
the nuclear magneton but by the Bohr magneton, which is larger by a factor of 1836. 
Hence. comparable magnetic fields yield now transition frequencies in the microwave 
region at a few GHz [ 12.62, 12.631. Again, the hyperfine structure in molecules with 
nuclear spins, which is caused mainly by the interaction between electronic and nu- 
clear spins, leads to a multiplet splitting of the transitions between two Zeeman levels 
MS of the electron spin (Fig. 12.68). The energy of such a component is, for a radical 
with electron spin S and two nuclear spins 11 and 12, 
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Fig. 12.68 Transitions between the hyperfine components of the 
two Zeeman levels of the electron spin S = 1 /2. 

where Eo is the energy of the level without magnetic interaction. The second term can 
usually be neglected because pnuc << ps .  Figure 12.68 shows the transitions between 
the hyperfine components of the two Zeeman levels of the electron spin for the case 
of a radical with just one nuclear spin I = 1. 

In a radical with several nuclear spins, the ESR spectrum looks more complicated. 
For example, for two protons, the spectrum contains four lines (Fig. 12.69a): the 
electron-spin transition is split into two components by the interaction with the nu- 
clear spin of a proton. Each of these components is then split a second time by the 
interaction with the second proton. 

If there are two equivalent protons (i.e., two protons at equivalent positions in the 
radical which cause identical shifts), two components coincide, and the intensity of the 
corresponding line in the spectrum is doubled (Fig. 12.69b). The same argumentation 
holds for more than two equivalent nuclear spins (Fig. 12.69~). 

The intensities and shifts of the different components are used in ESR spectroscopy 
to derive the spatial distribution of the unpaired electron (i.e., its wavefunction) in 
the molecule. As an example, the investigation of the Na3 radical in a cold rare-gas 
matrix [ 12.641 is considered. From the measured ESR spectrum, it could be shown 
that the unpaired electron is not distributed evenly over all three sodium atoms but that 
the probability density is significantly reduced for one of them. 

Another area where ESR is commonly employed is the investigation of triplet states 
in excited hydrocarbons. Again, the spatial distribution of the electrons in these states 
can be determined and hence the shape of the delocalized orbitals. 

Until now we have considered only stationary NMR or ESR spectroscopy. How- 
ever, as discussed in the case of laser spectroscopy (Sect. 12.4), the transition between 
the Zeeman components can be excited by a short electromagnetic pulse, and the time 
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Fig. 12.69 ESR spectrum for the case of several equivalent nu-  
clear spins. a) Two proton spins; b) two equivalent proton spins; 
c) three equivalent proton spins. 

evolution of the population of one Zeeman level can be monitored by delayed probe 
pulses while it decays by spin relaxation. This results in very detailed information 
on the interaction of the nuclear or electron spin with its environment. In fact, NMR 
tomography, used in medical diagnostics, is based on the measurement of these relax- 
ation times rather than of frequency shifts [ 12.651. 

More detailed accounts can be found in the specialized literature [ 12.661. 

12.1 0 
Conclusion 

We have restricted our presentation of experimental methods used in molecular phy- 
sics mainly to spectroscopic techniques, because they constitute the primary source 
of information for the elucidation of molecular structure and dynamics. For space 
constraints, the whole field of molecular collision processes received less attention 
than it would have deserved. However, there are many worthwhile textbooks on this 
topic, to which the reader is referred [12.67]. 

Also, the investigation of chemical reactions has only briefly been touched upon, 
although the elucidation of the elementary processes in such reactions represents 
a direct application of molecular physics to a field of great importance for chem- 
istry [12.68]. 

The transfer of insight from molecular physics to biophysical questions [ 12.69, 
12.701 is of special importance; however, this is beyond the scope of this book. For 
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example, the puzzle as to which types of interactions effect the unfolding of DNA 
strands is yet unsolved. X-ray structure analysis of crystallized biomolecules, which 
led to the discovery of the DNA structure 50 years ago, could also not be treated here, 
because it would have required some knowledge about molecular solids. 

However, the foundations of molecular physics discussed in this book will hope- 
fully enable the reader to progress to these advanced topics. 
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a 
A-type transition 267 
ab initio calculations 76 
ab initio methods 72 
AB:! molecule 252 
absorption 122 

linearly polarized radiation 134 
nonlinear 397 

absorption coefficient 124,274, 367 
absorption path, effective 386 
absorption profile, Doppler-free 164 
absorption spectroscopy 363,367 
absorption spectrum 289 

continuous 148 
action integral 103 
adiabatic basis 297 
adiabatic basis function 303 
Airy function 15 1 
alchemy 2 
alkali metal clusters 352 
allene 188 
angle of observation, magic 42 1 
angular dispersion 375 
angular distribution 420 
angular momentum 2 12 

coupling scheme 41 
projection 2 13 

angular momentum component 208 
angular momentum coupling 42 
anharmonicity 132 
anti-Stokes component 166 

anti-Stokes scattering 29 1 
anti-Stokes spectrum 168 
apodization function 371 
associative law 179 
asymmetry parameter 2 18 
atomic configuration 43 
atomic hypothesis 2 
atomic orbital 53,249 
atomic state, combination 43 
atomic weight 3 
attosecond range 409 
aufbau principle 45 
Auger process 422 
autoionization 3 17 
avoided crossing 304 

b 
band 147 
bandedge 146 
band strength 139 
bandsystem 5 
basis function 51, 75 
beat signal 370 
BeH2 molecule 245 
benzene 259 
bolometer 394 
bond energy 346 
bonding 249 
Born-Oppenheimer approximation 10 
boron trifluoride 189 
boson 172 
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bracket notation 65 
butadiene 191. 257 

C 

carbon cluster 358 
CARS 292 
center of inversion 178 
center-of-mass frame 79 
centrifugal constant 84,264 
centrifugal distortion 82,214 
centrifugal energy 8 1 
channeltron 426 
character 194 

c60 359 

of direct products 202 
scalar product 200 
sum of squared 197 

character table 194,437439 
abbreviated 202 

class 180 
classification 184, 19 1 
cluster 9, 343, 350 

generation 359 
molecular 351 

CO-Ar 346,348 
C02 molecule 250 

coincidence, delayed 408 
collision 

molecular orbitals 25 1 

elastic 159 
inelastic 159 
phase-disturbing 161 

collision pair 158 
collision process, molecular 434 
collisional broadening 158 
combination band 279 
combination transition 280 
combination vibration 28 1 
commutative law 180 
configuration interaction 75 
conical intersection 3 14 
contour line diagram 283, 315 

control of chemical reactions 4 12 
control, coherent 41 2 
coordinate transformation 203 
coordinates, generalized mass-weighted 

22 1 
Coriolis coupling 233 
Coriolis force 232,233 
Coriolis interaction 206 
correlation 47 
correlation diagram 48,49, 2 19,252 
correlation energy 74 
correlation method 409,410 
Coulomb integral HAA 55, 58 
coupling 231 

magnetic moments 328 
coupling coefficient 232 
coupling of angular momenta 41 
coupling of electronic and vibrational 

CS2 molecule 6 
cube 190 
cylindric capacitor 4 17 

states 287 

d 
Dalton 2 
dark state 3 10 
Darling-Dennison resonance 282 
Debye 339 
decay time 386 
degree of orientation 327 
diabatic basis 297 
diabatic basis function 304 
diabatic coupling element 305 
dichlorobenzene 186 
dichlorodifluoroethane 189 
difference potential 143 

Mulliken 141 
diffraction structure 375 
diffusion 362 
dipole 

electric field 1 16 
oscillating 125 
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dipole approximation 127, 129 
dipole matrix element 263 
dipole moment 166, 276 

induced 115 
Dirac notation 52 
direct product 199 
direct sum 202 
dissociation energy 9 1, 355 
distribution, spectral 379 
Doppler broadening 154 
Doppler shift 155 
Doppler width 156 
double resonance 

infrared-microwave 404 
infrared-ultraviolet 403 
A-type 403,405 
optical-microwave 403 
optical-optical 403 
optical-radiofrequency 403 
techniques 402 
V-type 403 

double-minimum potential 255 
Dunham coefficient 99 
Dunham expansion 97,99, 104,293 
dynamics, molecular 8 

e 
eigenfunction 296 
eigenvalue equation 213 
Einstein coefficient 122 

absorption 122 
relations 123 
spontaneous emission 123 
stimulated emission 122 

effective 340 
permanent 339 

electric moment pel 325 
electron configuration 42,45,46,248, 

electron density distribution 247 
electron distribution, contraction 61 

electric dipole moment 339 

252,254 

electron rotation 84 
electron spin resonance 432 
electron, delocalized 257 
electronic dipole matrix element 286 
electronic transition 286 
electrostatic interaction 302 
emission 

spontaneous 122, 123 
stimulated 122,405 

emission spectrum 288 
energy 

expectation value 52 
magnetic 327 

energy analyzer 416 
energy eigenvalue 88 
energy level diagram 250 
energy transfer processes 407 
ethene 188 
ethyne 188 
exchange integral 55,58 
excimer 148 
excitation, stepwise 403 
expansion, adiabatic 393 

f 
Fano profile 3 18,320 
Faraday effect 389 
femtochemistry 41 I 
Fermi contact constant 335 
Fermi polyad 282 
Fermi resonance 23 I, 282 
fermion 172 
fine-structure component 50 
fine-structure constant 305 
fine-structure splitting 43 I 
fine-structure term 41 
fingerprint region 279 
fluorescence radiant power 124 
fluorescence spectrum 288,289 
fluorescence, laser-induced 389 
formaldehyde 256 
Fortrat diagram 137, 138, 146 
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four-wave mixing 406 
Fourier transform 370 
Franck-Condon factor 139,140,144 
Franck-Condon principle 139 

quantum-mechanical formulation 
142 

frequency distribution 353 
frequency modulation 364, 382 
full width at half maximum 151 
fullerene 345, 359 
fundamental transition 278 

9 
Gaussian function 75, 76 

Cartesian 76 
Gaussian profile 156 
glyoxal 187 
grating equation 377 
grating spectrograph 373, 377 
ground-state geometry 244 

group 
Abelian 180 
commutative 180 
cyclic 180 
multiplicative 179 
noncommutative 183 

group of atoms in molecules 280 
group theory 175, 179 

h 
H2 molecule 66 

H$ molecule 
approximation methods 72 

bond energy 62 
exact treatment 29 
LCAO treatment 56 
potential curve 62 

H20 molecule 247, 252 
Hamiltonian 228 
Hamiltonian matrix 2 I 8 
Hartree approximation 65 

flow diagram 74 
Hartree-Fock approximation 73 

Hartree-Fock method 65 
He2 molecule 346 
heat, specific 3 
Heisenberg’s uncertainty principle 60 
Heitler-London approximation 68,69 
Hermite polynomials 88 
HF-CI method 76 
HOMO 418 
Honl-London factor 139, 140, 148 
hotband 288 
Huckel method 258 
Huckel model 260 
Hund’s coupling cases 300 

case a) 300 
case b) 301 
casec) 301 
cased) 301 

Hund’s rule 47 
hybrid function 240 
hybrid orbital 243,248 
hybridization 240 
hydrogen bond 357 
hydrogen peroxide 185 
hyperfine component, Zeeman splitting 

335 
hyperfine structure 294,334 

i 
identity operation 197 
induction 117 
induction contribution 114 
inertia ellipsoid 21 1 
inertia tensor 207 
infrared active 276, 280 
infrared inactive 276 
infrared spectrometer 367 
infrared spectroscopy 366 
intensity of rotational transitions 269 
intensity profile 156 
interaction potential 116 
interferogram 369 
internal conversion 322 
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intersystem crossing 322 
inversion splitting 256 
inverted perturbation approach 109 
ionic character 68 
ionization energy 355 
isotopic shifts 100 
iteration method 1 1  1 
IVR processes 3 1 1 

i 
Jahn-Teller effect 3 13 

quadratic 3 I5 
Jahn-Teller potential surface 3 14 
Jellium model 352, 354 

k 
Kratzer relation 98 

I 
Lagrange equation 22 1 
Lambdip 398 
A doubling 308, 309 
laser absorption spectroscopy 382 
laser spectroscopy 381 

Doppler-free 395 
time-resolved 407 

law of constant proportions 2 
LCAO approximation 53 
LCAO function 53 
learning algorithm 413,414 
Lennard-Jones potential 1 18 
lifetime 338,407 
light, unpolarized 136 
line 

polarization 33 1 
profile 151, 161,274 

linear molecule 264 
linewidth 323, 349 

natural 152 
local vibrational mode 279 
lock-in 365 
lone pair 252 
I splitting 235 

m 
magic angle 421 
magnetic energy 327 
magnetic moment p,,, 325 
mass resolution 427 
mass spectrometer 

magnetic 423 
quadrupole 424 
time-of-flight 426 

mass spectroscopy 422 
matrix element 125, 126, 138, 2 17 

Born-Oppenheimer approximation 
128 

melting temperature 35 1, 352 
metal cluster 352 
methane 190 
Michelson interferometer 368 
microcluster 35 1 
modulation techniques 382 
molecular beams 39 1 
molecular configuration 76 
molecular constants 99, 293 
molecular orbital 45,53,65,75,237, 

247,259 
multi-centered 238 
nonbonding 245 

molecular orbital approximation 66 
molecular radical 9 
molecular rotation 207 
molecular spectra 4 
molecular symmetry 1 1, 175 
molecular vibration 86 
molecules 

diamagnetic 326 
many-electron 63 
paramagnetic 326, 327 
rigid 10 
triatomic 245 
Zeeman splitting in diamagnetic 

334 
Morse potential 92 
Mulliken difference potential 14 1 
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multi-photon absorption 164 
multi-photon spectroscopy 401,402 
multiple-reflection cell 384, 388 
multiplet component 306 
multiplication table 182 
multipole expansion 113 
multipole interaction 1 13 

n 
Na3 radical 433 
natural linewidth 154 
NH3 molecule 254 
nitrogen molecule N2 173 
NMR 429 
NMR spectrum 431 
nodal plane 238,246 
noncrossing rule 49 
normal coordinate 222 
normal mode 192,222 
normal vibration 275, 276 
nuclear magneton 332 
nuclear mass, reduced 79 
nuclear resonance 429 
nuclear spin quantum number 429 
nuclear spin statistics 171, 173, 272 
nuclei with magnetic moments 432 
nutation cone 209 

0 

( 0 2 ) ~  molecule 349 
0 3  molecule 385 
(OCS):! molecule 349 
octahedron 190 
one-electron approximation 46 
one-electron state 45 
operator 212 
orbital 

energy 246 
parity 238 

order 180 
orientational quantum number 170 
ortho boric acid 187 
ortho hydrogen 172 
oscillation, damped 152 

oscillator 
anharmonic 91 
classical damped 152 
harmonic 87, 88 

overlap integral 55,58,244 
overtone band 132,279 
overtone spectrum 385 
oxygen molecule 0 2  173 

P 
para hydrogen 172 
particle spectroscopy 361 
partition function 170, 270 
Paschen-Back effect 33 1 
Pauli principle 64 
perturbation 9,293, 299 

heterogeneous 295 
homogeneous 295 

perturbation operator 302, 303 
perturbation potential 23 1 
phosphorescence 322 
photoelectron spectrum 422 
photoionization 

cross-section 420 
process 417 

photon scattering,inelastic 165 
n-electron system 257 
x light 135 
x orbital, molecular 239 
Planck law 123 
point group 181, 184, 185 
polarizability 166, 276, 291 

electric 339 
magnetic 326 

polarizability tensor 291 
polarization of lines 33 1 
polarization of transitions 332 
polarization spectroscopy 400 
polarization state 

x light 135 
(r+ light 135 
(3- light 135 
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population density 170, 269 
population, thermal 170 
potential 

effective 73 
quartic 93 

potential barrier 3 16 
potential curve 47, 57, 112, 1 18 

crossing 298 
diabatic 298 

potential surface 348 
predissociation 3 16, 344 
pressure broadening 160 
principal axes transformation 208,222 
principal moment of inertia 208 
prism spectrograph 374 
process, photochemical 8 
projection quantum number R 41 
protons, equivalent 433 
pseudorotation 227, 3 16 

frequency 354 
pumpprobe technique 410 

9 
quantum chemistry 76 
quantum defect 3 1 8 
quantum yield 32 1 

r 
K centroid 142 

R centroid approximation 139, 142, 

radial function 80 
radiation characteristic 125 
radiation field, thermal 123 
radiation sources, continuous 373 
radiation spectroscopy 36 1 
radiationless transition 320, 32 1 
Raman effect 290 
Raman scattering 166 

resonant 165 
Raman spectra 167,288 
Raman transition 165 

nthorder 140 

304 

rare-gas cluster 345,355 
Rayleigh scattering 166, 291 
reference frame 

laboratory-fixed 203 
molecule-fixed 203, 206 

reflection 182 
reflectron 427 
relative velocity, mean 159 
Renner-Teller coupling 3 1 1 
Renner-Teller effect 3 12 
representation 192-194 

n-dimensional 195 
irreducible 196 
of group C3v 195 
one-dimensional 195 
product 198 
reducible 196, 199 
reduction 198, 201 
sum 198 

resolution 374 
spectral 376, 377 

resolution of spectral lines 374 
resonance integral HAB 55 
resonance spectroscopy, laser-magnetic 

388 
resonator, acoustic 388 
restoring force 225 
retarding-field method 417 
Ritz principle 5 1 
RKRmethod 105 
rotary-reflection axes 177 
rotation 81 

quantum-mechanical treatment 2 12 
rotational constant 82,90, 214, 264 

mean 96 
rotational energy 84,206, 207 

mean 96 
rotational group 271 
rotational level 

rotational level, Zeeman splitting 329 
rotational period 90 

Zeeman splitting 329 
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rotational perturbation 307 
rotational quantum number J 81 
rotational Raman spectrum 290 
rotational Raman transition 168 
rotational spectrum 5,83,263 
rotational structure 145,283 
rotational term diagram 2 14 
rotational term value 86, 214 
rotational transition 133 
rotational wavefunction 27 1 
rotor 

rigid 81, 207 
vibrating 96 

Rowland circle 378 
Rowland grating 378 
Rowland spectrograph 378 
Rydberg electron 3 18 
Rydberg state 3 17 

molecular 405 

S 

saturation hole 398 
saturation spectroscopy 399 
scattering cross-section 362 
Schonflies notation 184 
sector field, magnetic 423 
secular equation 53,218 
selection rule 135 

asymmetric top 268 
electric dipole transitions 265 
pure rotational transitions 266 
rotational quantum number J 145 
vibration-rotation transitions 285 
vibrational transitions 275 

selection rules 294 
self-pressure broadening 160 
separation ansatz 80 
setup, experimental 380 
shell structure 352 
shielding constant 430 
shift 158 

chemical 431 

CJ+ light 135 
0- light 135 
single-particle approximation 63 
Slater determinant 64 
Slater function 75,76 
sp, hybrid atomic orbital 241 
sp2 hybridization 242 
sp2d hybridization 243 
sp3 hybridization 243 
spatial function 75 
spectral analysis 4 
spectrometer, Fourier 372 
spectroscopy 372 

ESR 432 
Fourier 366 
intracavity laser 385 
microwave 362 
optothermal 394 
photoacoustic 387 
photoelectron 41 5 
vacuumUV 380 
ZEKE 418 

spherical harmonics Y (&4) 80 
spin function 75 
spin quantum number S 43 
spin relaxation 434 
spin state 44 
spin-orbit coupling 50,294,305,336 
spin-rotation coupling 308 
spin-rotation coupling constant 309 
stability diagram 425 
Stark effect 339 

second-order 341 
Stark modulation 366 
Stark shift, first-order 340 
Stark splitting 341 
state 

excited 251 
virtual 165 

statistical weight 270, 272 
step operator 2 16 
Stokes Raman scattering 29 1 
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Stokes Raman spectrum 169 
Stokes spectrum 168 
streak camera 408,409 
stretching vibration 225 
structure determination 430 
structure, bent 247 
subgroup 180 
surface atom 350 
susceptibility, magnetic 327 
symmetry axis 176 
symmetry element 175, 176 
symmetry operation 175, 18 1 
symmetry plane 176, 177 
symmetry property 43,270 

even 44 
odd 44 

symmetry selection rules 295 
symmetry type 192,295 
synchrotron radiation 379, 380 

t 
Taylor expansion 230 

of potential 22 1 
theory of gases, kinetic 3 
thermal conduction 362 
time function 37 1 
time slot function 371 

top 
asymmetric 2 15, 267 
oblate symmetric 212 
prolate symmetric 2 1 1 
symmetric 85,2 1 1,266 
term values of asymmetric 

topological structure 9 
total angular momentum J 86 
total wavefunction 65 
transition 

electronic 138, 144 
multiphoton 161 
polarization 332 
radiationless 9 

transition point, classical 141 

transition probability 122, 130, 134, 
287 

translation vector 194 
translational energy 206 
translational temperature 392 
transport phenomena 362 
trifluoro benzene 189 
tunneling process 3 16 
turning point, classical 107 
two-center integral 67,70 
two-photon absorption 161 

Doppler-free 402 
two-photon resonance 165 
two-photon spectroscopy 163,402 

collision-induced 160 

U 

uncertainty relation 154 
united atom 45 
UPS 415 

Y 

valence orbital, hybrid 255 
van der Waals bond 322,343 
van der Waals cluster 352 
van der Waals interaction 1 16 
van der Waals molecule 9,322,343 
variational method 52 
velocity distribution, Maxwellian 155 
velocity, most probable 155 
vibration 

anharmonic 230 
220 degenerate 226 

localized 11 
normal modes 11 
of polyatomic molecules 22 1 

vibration-rotation interaction 95 
vibration-rotation Raman spectrum 168 
vibration-rotation spectrum 5, 129 
vibration-rotation transition 128, 136 
vibrational amplitude 224 

mass-weighted 225 



470 Index I 
vibrational angular momentum 234, 

vibrational band 5, 136, 138, 145 
vibrational constant we 90 
vibrational energy 206 
vibrational period 90 
vibrational term diagram 230 
vibrational transition 13 1 
vibrational wavefunction 89 
vibronic coupling 309, 323 
vibronic state 287 
Voigt profile 157 

265 

W 

Walsh diagram 252,256 
water clusters 357 
water isotopomer I85 
wavelength modulation 383 
weight, statistical 170, 173 
WKB approximation 101 

X 

x-ray structure analysis 435 
XPS 415,421 

z 
Zeeman components 429 
Zeeman effect 327 
Zeeman splitting 

diamagnetic molecules 334 
of hyperfine components 335 
of rotational levels 329 

Zeeman splitting of rotational levels 329 
zero-point energy 88,229 




