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ANNOTATION

More than 2100 integral equations with solutions are given in the first part of the book. A lot
of new exact solutions to linear and nonlinear equations are included. Special attention is paid to
equations of general form, which depend on arbitrary functions. The other equations contain one
or more free parameters (it is the reader’s option to fix these parameters). Totally, the number of
equations described is an order of magnitude greater than in any other book available.

A number of integral equations are considered which are encountered in various fields of
mechanics and theoretical physics (elasticity, plasticity, hydrodynamics, heat and mass transfer,
electrodynamics, etc.).

The second part of the book presents exact, approximate analytical and numerical methods
for solving linear and nonlinear integral equations. Apart from the classical methods, some new
methods are also described. Each section provides examples of applications to specific equations.

The handbook has no analogs in the world literature and is intended for a wide audience
of researchers, college and university teachers, engineers, and students in the various fields of
mathematics, mechanics, physics, chemistry, and queuing theory.
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FOREWORD

Integral equations are encountered in various fields of science and numerous applications (in
elasticity, plasticity, heat and mass transfer, oscillation theory, fluid dynamics, filtration theory,
electrostatics, electrodynamics, biomechanics, game theory, control, queuing theory, electrical en-
gineering, economics, medicine, etc.).

Exact (closed-form) solutions of integral equations play an important role in the proper un-
derstanding of qualitative features of many phenomena and processes in various areas of natural
science. Lots of equations of physics, chemistry and biology contain functions or parameters which
are obtained from experiments and hence are not strictly fixed. Therefore, it is expedient to choose
the structure of these functions so that it would be easier to analyze and solve the equation. As a
possible selection criterion, one may adopt the requirement that the model integral equation admit a
solution in a closed form. Exact solutions can be used to verify the consistency and estimate errors
of various numerical, asymptotic, and approximate methods.

More than 2100 integral equations and their solutions are given in the first part of the book
(Chapters 1-6). A lot of new exact solutions to linear and nonlinear equations are included. Special
attention is paid to equations of general form, which depend on arbitrary functions. The other
equations contain one or more free parameters (the book actually deals with families of integral
equations); it is the reader’s option to fix these parameters. Totally, the number of equations
described in this handbook is an order of magnitude greater than in any other book currently
available.

The second part of the book (Chapters 7—14) presents exact, approximate analytical, and numer-
ical methods for solving linear and nonlinear integral equations. Apart from the classical methods,
some new methods are also described. When selecting the material, the authors have given a
pronounced preference to practical aspects of the matter; that is, to methods that allow effectively
“constructing” the solution. For the reader’s better understanding of the methods, each section is
supplied with examples of specific equations. Some sections may be used by lecturers of colleges
and universities as a basis for courses on integral equations and mathematical physics equations for
graduate and postgraduate students.

For the convenience of a wide audience with different mathematical backgrounds, the authors
tried to do their best, wherever possible, to avoid special terminology. Therefore, some of the methods
are outlined in a schematic and somewhat simplified manner, with necessary references made to
books where these methods are considered in more detail. For some nonlinear equations, only
solutions of the simplest form are given. The book does not cover two-, three- and multidimensional
integral equations.

The handbook consists of chapters, sections and subsections. Equations and formulas are
numbered separately in each section. The equations within a section are arranged in increasing
order of complexity. The extensive table of contents provides rapid access to the desired equations.

For the reader’s convenience, the main material is followed by a number of supplements, where
some properties of elementary and special functions are described, tables of indefinite and definite
integrals are given, as well as tables of Laplace, Mellin, and other transforms, which are used in the
book.

The first and second parts of the book, just as many sections, were written so that they could be
read independently from each other. This allows the reader to quickly get to the heart of the matter.
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We would like to express our deep gratitude to Rolf Sulanke and Alexei Zhurov for fruitful
discussions and valuable remarks. We also appreciate the help of Vladimir Nazaikinskii and
Alexander Shtern in translating the second part of this book, and are thankful to Inna Shingareva for
her assistance in preparing the camera-ready copy of the book.

The authors hope that the handbook will prove helpful for a wide audience of researchers,
college and university teachers, engineers, and students in various fields of mathematics, mechanics,
physics, chemistry, biology, economics, and engineering sciences.

A. D. Polyanin
A. V. Manzhirov
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SOME REMARKS AND NOTATION

1. In Chapters 1-11 and 14, in the original integral equations, the independent variable is
denoted by z, the integration variable by ¢, and the unknown function by y = y(z).

2. For a function of one variable f = f(x), we use the following notation for the derivatives:

,_df d f _ &y df

" " 1"
fz_ dl” f:mv: dCBz’ f:mvz_ dx:;’ fza:a::r: dl’4’

and fi" = j—f for n>5.
:L»n

Occasionally, we use the similar notation for partial derivatives of a function of two variables,

for example, K/ (z,t) = aiK(:L', b).
x

dn
3. In some cases, we use the operator notation [ f (x)d—} g(x), which is defined recursively by
x

d n d d n—1
{f(r)@} g(m)=f(x)E{{f(x)%} g(ﬂ:)}-

4. It is indicated in the beginning of Chapters 1-6 that f = f(x), g = g(z), K = K(x), etc. are
arbitrary functions, and A, B, etc. are free parameters. This means that:

@) f=f(x),g=g9g), K=K(x),etc. are assumed to be continuous real-valued functions of real
arguments;*

(b) if the solution contains derivatives of these functions, then the functions are assumed to be
sufficiently differentiable;**

(c) if the solution contains integrals with these functions (in combination with other functions), then
the integrals are supposed to converge;

(d) the free parameters A, B, etc. may assume any real values for which the expressions occurring

. . . . . . A
in the equation and the solution make sense (for example, if a solution contains a factor i
then it is implied that A # 1; as a rule, this is not specified in the text).

5. The notations Re z and Im z stand, respectively, for the real and the imaginary part of a
complex quantity z.

6. In the first part of the book (Chapters 1-6) when referencing a particular equation, we use a
notation like 2.3.15, which implies equation 15 from Section 2.3.

7. To highlight portions of the text, the following symbols are used in the book:
» indicates important information pertaining to a group of equations (Chapters 1-6);

indicates the literature used in the preparation of the text in specific equations (Chapters 1-6) or
sections (Chapters 7—14).

* Less severe restrictions on these functions are presented in the second part of the book.
*#* Restrictions (b) and (c) imposed on f = f(x), g = g(x), K = K(x), etc. are not mentioned in the text.
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Chapter 1

Linear Equations of the First Kind
With Variable Limit of Integration

» Notation: f = f(x), g=g(x), h=h(x), K = K(x), and M = M (x) are arbitrary functions (these
may be composite functions of the argument depending on two variables x and t); A, B, C, D, E,
a, b, ¢, a, B, 7, A and i are free parameters; and m and n are nonnegative integers.

» Preliminary remarks. For equations of the form

xr
/ Kz, tyyt)dt = f(x), alz<h,
a
where the functions K (x,t) and f(x) are continuous, the right-hand side must satisfy the following
conditions:

1°. If K(a,a)#0, then we must have f(a) = 0 (for example, the right-hand sides of equations 1.1.1
and 1.2.1 must satisfy this condition).

2°. If K(a,a)=Kl.(a,a)="--= K;"‘l)(a, a)=0, 0< ‘K;")(a, a)| < 00, then the right-hand side
of the equation must satisfy the conditions

f@=fy@=--=f"@=0.
For example, with n = 1, these are constraints for the right-hand side of equation 1.1.2.
3°. If K(a,a)=K.(a,a)=---= K" Y(a,a)=0, K™(a,a)= oo, then the right-hand side of the
equation must satisfy the conditions

f@=fi@=-=f"" =0

For example, with n = 1, this is a constraint for the right-hand side of equation 1.1.30.

For unbounded K (z,t) with integrable power-law or logarithmic singularity at = ¢ and con-
tinuous f(z), no additional conditions are imposed on the right-hand side of the integral equation
(e.g., see Abel’s equation 1.1.36).

In Chapter 1, conditions 1°-3° are as a rule not specified.

1.1. Equations Whose Kernels Contain Power-Law
Functions

‘ 1.1-1. Kernels Linear in the Arguments x and ¢ ‘

1. / y(t) dt = f(x).

Solution: y(z) = f.(z).
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2. / (x -tyt)dt = f(x).

Solution: y(z) = f2 (x).

3. / I(Asc + Bt + C)y(t) dt = f(z).

This is a special case of equation 1.9.5 with g(x) = x.

1°. Solution with B # —A:
d __A_ @ __B_
y(x) = d—{ [(A+B)z+C| A+B / [(A+B)t+C] 4B f{(t) dt}.
x

a

2°. Solution with B = —-A:

y(z) = %% {exp (—%x) /: exp(%t) @ dt} )

‘ 1.1-2. Kernels Quadratic in the Arguments = and ¢ ‘

4. / (x - t)*y(t) dt = f(x), fla) = fo(a) = £ (a) = 0.

Solution: y(x) = %f:;lzlvw(x)'

5. / @ - Pyt dt = f@),  fa) = Fl(a)=0.

This is a special case of equation 1.9.2 with g(z) = 2.

1
Solution: y(x) = o) [x ;’x(z)—f;(x)].

6. / i (Az? + Bt?)y(t) dt = f(z).

For B = —A, see equation 1.1.5. This is a special case of equation 1.9.4 with g(z) = 2°.
24

d [ _24 (% _2B
_[J; A+B / t A+B ft’(t)dt],

1
Solution: y(x) = 1+Bd
T

7. / ) (Az? + Bt? + C)y(t) dt = f(z).

This is a special case of equation 1.9.5 with g(z) = 22
Solution:

d A [* __B
y(x) = sign p(z) a{lw(x)l A+B / lp(DI™ A+B f{(t) dt}, p(z) = (A+ B)x* + C.

8. / i [Az? + (B - A)zt - Bt*|y(t) dt = f(z), f(a) = fi(a)=0.

Differentiating with respect to = yields an equation of the form 1.1.3:

/ x[zAx +(B - Atly(t)dt = fi(z).

Solution:
24

| d[ _24 f[® Ap
?J(I)=m% T A+B/ tA+B fu(t)dt|.
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10.

11.

/ (Az? + Bt? + Cz + Dt + E)y(t) dt = f().
This is a special case of equation 1.9.6 with g(x) = A2z? + Cx and h(t) = Bt> + Dt + E.

/ "(At + B + Ca + Dt + B)y(t) dt = f(a).

This is a special case of equation 1.9.15 with g;(z) = z, hi(t) = At + C, g2(x) = 1, and
hy(t)= Bt* + Dt + E.

/ "(Aa? + Bat + Cx + Dt + E)y(H dt = f().

This is a special case of equation 1.9.15 with g(x) = Bx+ D, h(t) =t, g2(z) = Az?2+Cz+E,
and hy(t) = 1.

‘ 1.1-3. Kernels Cubic in the Arguments = and ¢ ‘

12.

13.

14.

15.

16.

17.

/ @-tPytdt = f@), f@) =f()=f"(=F"_(a)=0.

Solution: y(x) = % v ().

/ @ -yt = f@), @)= fia)=0.

T;is is a special case of equation 1.9.2 with g(z) = 2.
Solution: y(z) = 31? (@ fir (@) = 2f1(2)].

/ ) (Az’ + Bt)y(t) dt = f().

For B = —A, see equation 1.1.13. This is a special case of equation 1.9.4 with g(z) = 2°.

d | _34 [(* _3B
—{x A+B / t A+B ft’(t)dt}

1
1 1 < < N =
Solution with0 < a < z: y(x) A1+ 5 do
/ (Az’ + Bt + C)y(t) dt = f(z).

This is a special case of equation 1.9.5 with g(z) = 2°.

[ @t-atywadt=f@.  f@=fi@=o.
This is a special case of equation 1.9.11 with g(z) = 22 and h(z) = .

1 a1
Solution: y(ﬂ?) = ;@ |:;f($):| .

/ w(A:czt + Bxt}y(t) dt = f(x).

For B =—A, see equation 1.1.16. This is a special case of equation 1.9.12 with g(z) = 2% and
h(x) = x.
Solution:

1 d [ __A (* B d]1
y($)=m@{$ A+B/a t A+B%{?f(t)] dt}.
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18.

19.

20.

21.

22,

/ I(Asc3 + Bxt )y(t) dt = f(x).

This is a special case of equation 1.9.15 with g; () = Az, hi(t) =1, go(x) = Bz, and ho(t) =12

/ m(A:c3 + Bx*t)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Az3, hi(t) = 1, g(x) = Bx?, and
ho(t) = .

/ w(Amzt + BtY)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Ax?, hi(t) =t, go(x) = B, and hy(t) = 2.

/ I(A:ctz + Bt)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g (z) = Az, hy(t) = t?, go(x) = B, and ho(t) = 3.

/ (A32® + B3t® + Ayz® + Byt* + Az + Bit + C)y(t) dt = f(z).

This is a special case of equation 1.9.6 with g(z) = A3z + Ay2® + Ajz + C and h(t)
B3t3 + thz + Blt.

‘ 1.1-4. Kernels Containing Higher-Order Polynomials in = and ¢

23.

24,

25.

/m(w -t)"y(t) dt = f(x), n=12,...

It is assumed that the right-hand of the equation satisfies the conditions f(a) = f.(a)=---
f(@) =0.
1
Solution: y(z) = — (),
n!

Example. For f(x) = Az™, where m is a positive integer, m > n, the solution has the form

@ Am! men—1
)= ————7 .
Y n!(m-n-1)!

/ @ -ty dt = f@), f@=Ff@=0, n=12,...

Solution: y(z) = i i {f;(:c)} .

n dx | xn!

/ (tra™! — 2™ty dt = f(x), n=2,3,...

This is a special case of equation 1.9.11 with g(z) = ™! and h(z) = z".
L& {f(x)}

" dz? | xn

Solution: y(z) =
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‘ 1.1-5. Kernels Containing Rational Functions

26. /w y(t) dt = f(x).
0

T+t

N
1°. For a polynomial right-hand side, f(z) = > A,z", the solution has the form

n=0
N n
Ap —1)k
y(ﬂﬁ):ZB—nx", Bn=(—1)"[ln2+z( k) ]
n=0 k=1
N
2°. For f(x) = 2 Y A,x", where ) is an arbitrary number (\ > —1), the solution has the
n=0
form N
A B
A n . n
= —z", B, = .
yw) =2 ;an /0 T+t

N
3°. For f(x) = lnx< > Ana:">, the solution has the form
n=0

N N
A, AL,
y(x)=Inz E — "+ 5 "
n=0 Bn n=0 B"

n k 2 n k
Bn:(—l)”[1n2+z(_;€) } [n:(_1)"r_+ ) }
k=1

N
4°. For f(x)= > A, (ln x)™, the solution of the equation has the form
=0

N
y@) = A Yo(@),

n=0

where the functions Y,, = Y,,(z) are given by

da® z oA dz
Y“@):{W[m]}m’ “”=/0 e

N N
5°. For f(z) = > A, cos(A\, Inz) + > B, sin(\, Inz), the solution of the equation has the

n=1 n=1
form

N N
y(z) = Z C,, cos(\, Inz) + Z D,, sin(\,, Inx),

n=1 n=1

where the constants C, and D,, are found by the method of undetermined coefficients.

6°. For arbitrary f(z), the transformation

e, t=4, yt)=eTwr), [fl@)=e7g2)

0=

€T =

leads to an integral equation with difference kernel of the form 1.9.26:

/ *ow(ndr
o cosh(z—7) 9(2).
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27.

28.

z y(t)dt
/ — = f(d), a>0, a+b>0.
o ax+bt

N
1°. For a polynomial right-hand side, f(z) = Y. A,z", the solution has the form
n=0

N

A, Lgndt
= e —— 1’7/’ Bn = .
yi) 2. B," /0 a+bt

N

2°. For f(z) = 2* . A,z", where ) is an arbitrary number (A > —1), the solution has the
n=0

form

N I y+n
A, A dt
yay =ty g B":/0 a+bt’
n=0 n

N
3°. For f(x) = lnx< > Anx”> , the solution has the form
n=0

N N 1
A, n A,C, n t"™ dt t"Int
wo=iey a3 Al g = [0 [ U
n=0 " n=0 n

4°. For some other special forms of the right-hand side (see items 4 and 5, equation 1.1.26),
the solution may be found by the method of undetermined coefficients.

/2M=f(w), a>0, a+b>0.
0

ax? + bt?

N
1°. For a polynomial right-hand side, f(z) = > A, 2", the solution has the form

n=0
N 1 1
vt dt
" n+1
T E B, = _— .
y( ) 'm0 n " /0 a+bt2

Example. Fora = b= 1and f(z) = Az? + Bz + C, the solution of the integral equation is:

; 4B 22 2C
r+ —x + —2x.
1-In2 4—7r In2

y(x) =

N
2°. For f(z) = 2 > A,x™, where A is an arbitrary number (A > —1), the solution has the
n=0

N I A +n+1
A t dt
A n +1 _
yo) =z Zann ’ B"‘/O a+bi?
n=0

form

N
3°. For f(x) = lnm< > Anx”> , the solution has the form
n=0

N 1 yn+l 1 yn+l
Ap o AnCr i t* dt " Int
s =tned gt - > Al L (e R e
n=0 n

n=0
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z  y)dt
29. /7=f(90), a>0, a+b>0, m=12,...
0 axr™ +bt™

N
1°. For a polynomial right-hand side, f(z) = > A, z", the solution has the form
n=0

N
An S tm+n ldt
=) = B, .
y(@) ; B, / Ta+btm

N
2°. For f(x) = 2 > A,x™, where X is an arbitrary number (A > —1), the solution has the

n=0
form
I A+m+n-1
t dt
A n m+n—l
B, = _
v =z Z B, | e
N
3°. For f(x) = 1nx< > Ana:"), the solution has the form
n=0

N
An m+n— A Cn M
y(x):lanB—nx * I—Z B -l
n=0 n=0

1 ~1 m+n~—1
gl g gl in ¢
Bn=/ ra Cn=/ L. L
0 a+btm 0 a+ btm

‘ 1.1-6. Kernels Containing Square Roots ‘

/ Vx-tyt)dt = f(x).

Differentiating with respect to x, we arrive at Abel’s equation 1.1.36:

r d

Solution:
2 & [T f)dt
Y@ ==——

T dx?

a T—1

31. /w(\/E- Vit)y) dt = f(z).

This is a special case of equation 1.1.44 with p = %

Solution: y(z) = 2% [V fl(2)].

32. / i (A + BVt)y(t) dt = f(z).

This is a special case of equation 1.1.45 with p = %
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33.

34.

35.

36.

37.

38.

39.

/I(l +bVa -t)yt)dt = f(x).

Differentiating with respect to =, we arrive at Abel’s equation of the second kind 2.1.46:

t)dt
y(a:)+—/ yj;_ 1@).

/w (tvx -zVt)yt) dt = f(2).

This is a special case of equation 1.9.11 with g(x) = \/x and h(x) = .

/w (Atv/x + Bac\/i)y(t) dt = f(x).

This is a special case of equation 1.9.12 with g(x) = \/z and h(t) = t.

t) dt
/y() - ).

V-
Abel’s equation.
Solution:
TRt f) 1 [T findt
wo= L [ I00_ S0 1 s

(® Reference: E. T. Whittacker and G. N. Watson (1958).

@ 1
/a <b+ m)y(t) dt = f(x).

Let us rewrite the equation in the form

d €T
/ jf;—fu b/ Y0 dt.

Assuming the right-hand side to be known, we solve this equation as Abel’s equation 1.1.36.
After some manipulations, we arrive at Abel’s equation of the second kind 2.1.46:

T oyt)dt _1d [T fHadt
y(x) + — o = F(x), where F(x) = ;%/a Jo i

/w<\/1_ })y(t)dt-f(w)

This is a special case of equation 1.1.44 with p = —%.
Solution: y(x)=-2[2*2fL@)]’,  a>o0.

[ e

This is a special case of equation 1.1.45 with p = —%.
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40.

41.

T oy)dt
o Voo T

2.d [T tf@t)dt
Solution: y = —@ f(z) o
:L' —

@ Reference: P. P. Zabreyko, A. I. Koshelev, et al. (1975).

T ooy@de ) 0 b0
— = f(d), a>0, a+b>0.
0 Vax?+bt?
N
1°. For a polynomial right-hand side, f(z) = ). A, 2", the solution has the form
n=0
N 1
A, t" dt
y(x) = _xn’ B, = — .
“~ Bn 0 Va+bt?
N
2°. For f(z) = 2 Y. A,a", where ) is an arbitrary number (A > —1), the solution has the
n=0
form
N 1 A+n
A, t dt
ywy=a*y Zra",  By= | ———.
nz:; By, 0o Va+bt?

N
3°. For f(x) = 1nx< > Ana:"), the solution has the form
n=0

N 1
A, C thdt t"Int
(x)=Inzx E - g nm", B, / n=/ —dt
Y s B Va+bt2 0 Va+bt?

N
4°. For f(x)=>_ A, (ln x)™, the solution of the equation has the form

N
y@) =Y AYu(@),

n=0

where the functions Y,, = Y,,(z) are given by

dar 2 Ly
Y, = —|— , I\ = _ .
@) {cw [I(A)”A:O M=) Vavor

N N

5°. For f(z) = > Apcos(A, Inx) + > B, sin(A, Inx), the solution of the equation has the
n=1 n=1

form

N N
y(x) = Z C,, cos(A, Inx) + Z D,, sin(A, Inx),

n=1 n=1

where the constants C,, and D,, are found by the method of undetermined coefficients.
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‘ 1.1-7. Kernels Containing Arbitrary Powers ‘

42. / w(:c — Dyt dt = f(z), fl@)=0, 0<A<L

Differentiating with respect to x, we arrive at the generalized Abel equation 1.1.46:

oyt dt 1
AT
Solution: )
BT fwde _sin(r\)
y(x)_kdxz o (=t k= A

@ Reference: F. D. Gakhov (1977).

43. /w(a: -t)Pyt) dt = f(x).

For n=0,1,2,..., see equations 1.1.1, 1.1.2, 1.1.4, 1.1.12, and 1.1.23. For -1 < 14 < 0, see
equation 1.1.42.
Setpu=n—-\ wheren=1,2,... and0< A< 1,and f(a) = fi(a)=--- = f"D(a)=0.
On differentiating the equation n times, we arrive at an equation of the form 1.1.46:

Tyydr  T(u-n+1)
o @=0* " T(u+1)

(@),

where I'(u) is the gamma function.

Example. Set f(x) = AzP, where (52=0,and let u>-1and u— G #0,1,2,... In this case, the solution has
AT(B+1) e

the form y(z) = m

@ Reference: M. L. Krasnov, A. L. Kisilev, and G. I. Makarenko (1971).

44. /m(x“ - tM)y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = z*.
1

Solution: y(z) = — [z f1(2)]
I

!/

45. / ) (Az* + Bt*)y(t) dt = f(x).

For B = —A, see equation 1.1.44. This is a special case of equation 1.9.4 with g(x) = z*.

Solution: y(z) = d _A_ﬁ%/xt_%f’(t)dt
olution: y(z) = ——m—— |2 ) ! .
z y(t)dt
46. —_— = , 0<A<l.
@ f(@)
The generalized Abel equation.
Solution:
) — sinm\) d_ [*_fdt_sin@N) [ f@) [ fiwydt
yre = dr J, @G-t~ 1 |@-a)> ), @]

@ Reference: E. T. Whittacker and G. N. Watson (1958).
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47.

48.

49.

50.

51.

52,

53.

/m[b+ﬁ]y(t)dt=f(w), 0<A<l.

Rewrite the equation in the form

x d x
| E05 = fw-b [y

Assuming the right-hand side to be known, we solve this equation as the generalized Abel
equation 1.1.46. After some manipulations, we arrive at Abel’s equation of the second
kind 2.1.60:

bsm(wA) y(t) dt sin(rA) d [* f@)dt
/ @O = F(x), where F(x) = a/a @)

/m(\/.%-\/i)*y(t)dt =f(x), O<A<lLl

Solution:
f(t) dt _sin())
v = ( dw) / Vi (v ) F==

/wﬂﬂf@) 0<i<1
o (VE-vI) T

Solution:

() = sin(w\) d / f@)dt
2w \/‘ )

/ ) (Az> + Bt*)y(t) dt = f(z).

This is a special case of equation 1.9.6 with g(z) = Az* and h(t) = Bt*.

/ "1+ A4 - 2]yt dt = fa),

This is a special case of equation 1.9.13 with g(x) = Az* and h(z) = .
Solution:

d I)‘ ® _ / AM +
y(x) = %{ B@) /a [t Af(t)]t(b(t) dt}, d(x) = exp(—’u+)\x“ A).

/ ) (APt + Ba®t )y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = AzP () =17, @) = Bz, and
ha(t) = t2.

/I [Am*(t"” -zM) + B2P@t - sr:'y)]y(t) dt = f(x).

This is a special case of equation 1.9.45 with g;(x) = Az*, hi(z) = 2*, ¢g2(z) = Bx®, and
ho(x) = x7.
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54.

55.

56.

57.

58.

/ [Az?tH + B PtHP — (A + B)zMt* 7 |yt) dt = f(x).

This is a special case of equation 1.9.47 with g(x) = x.

x
/ t7(z* - tM) y(t) dt = f(x), o>-1, pu>0, A>-1.
a
The transformation 7 = t#, z = z, w(r) = t°#*1y(t) leads to an equation of the form 1.1.42:
/ (z=T w(T)dr = F(z),
A

where A = a* and F(2) = puf(z"/#).
Solution with -1 < A < 0:

() = N sin(mw\) i

T dx
b t)dt
/0 y@adt f(x).

(x + t)»
This is a special case of equation 1.1.57 with A=1anda =b=1.
The transformation

[ / ’ Nt =ty () dt |

1 2z t=

w=3e, =1, yt) =", f@) =" g(2)

leads to an equation with difference kernel of the form 1.9.26:
/ 2 w(r)dr )
— =g(»).
oo COSh”(z—1T) g

 y@)dt
/ m=f(ﬁc), a>0, a+b>0.
0

1°. The substitution ¢t = zz leads to a special case of equation 3.8.45:

! y(xz)dz

o (a+bzM)k

=M f(2). (1

2°. For a polynomial right-hand side, f(z) = . A,,2™, the solution has the form

m=0
1 LMl g

A
D Y7 | m m _
y(x) = ZL,,I ’ Im = o (a+bzMH’
m=0 .

The integrals I,,, are supposed to be convergent.

3°. The solution structure for some other right-hand sides of the integral equation may be
obtained using (1) and the results presented for the more general equation 3.8.45 (see also
equations 3.8.26-3.8.32).

4°. For a = b, the equation can be reduced, just as equation 1.1.56, to an integral equation
with difference kernel of the form 1.9.26.

/w (Va+Va—1)" + (Vz-Va-1)”
a 2tV -t

The equation can be rewritten in terms of the Gaussian hypergeometric functions in the form

/ (a:—t)”’lF(/\, Ay 1 - %)y(t) dt=f(),  where y=1i.

See 1.8.86 for the solution of this equation.

y(t)dt = f(@).
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1.2. Equations Whose Kernels Contain Exponential
Functions

‘ 1.2-1. Kernels Containing Exponential Functions ‘

1. / e @ Vyt) dt = f(x).
Solution: y(z) = fi(x) - Af(x).
Example. In the special case a = 0 and f(x) = Az, the solution has the form y(z) = A(1 — Ax).
2. / e*™*Pty(t) dt = f(x).

Solution: y(x) = e ™7 f (x) - A f(x)].

Example. In the special case @ = 0 and f(z) = Asin(vyz), the solution has the form y(z) = Ae-M+B% x
[y cos(yx) — A sin(yx)].

3. / [Pt oty dt = f@), @ = fi@) =0

Solution: y(x) = % (@)= fi(x).

4. / ) [eX®D + by(t) dt = f(z).

For b = -1, see equation 1.2.3. Differentiating with respect to x yields an equation of the
form 2.2.1:
f (z)

+1°

_ J2(@) A v Ab ,
y(z) = el (b+1)2/a exp[m—l(x—t)}ft(t)dt.

y(x)+— / MeBy(t) dt =

Solution:

5. / ) (e**Pt + b)y(t) dt = f(z).

For 3 = -, see equation 1.2.4. This is a special case of equation 1.9.15 with g;(x) = 7,
hi(t) = €%, ga(x) = 1, and ho(t) = b.

6. / (- )y dt = f@),  fla)=fi(a)=0

This is a special case of equation 1.9.2 with g(z) = e**

Solution: y(z)=e™ [ Jo (@)= fo (@]

7. /w (e>‘z —eMt b) y(t) dt = f(x).

For b = 0, see equation 1.2.6. This is a special case of equation 1.9.3 with g(z) = e*
Solution:

T e)\t_e)\a:
(z)——fx(x)——e / exp<T>ft’(t)dt.
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8. / i (Ae*® + BeM)y(t) dt = f(x).

For B = —A, see equation 1.2.6. This is a special case of equation 1.9.4 with g(z) = e*?.

. 1 d A r B ,
Solution: y(x) = 125 ds [exp(—mx)/a exp(—A+Bt) fi @) dt]

x
9. / (Ae*® + BeM + C)y(t) dt = f(x).
a
This is a special case of equation 1.9.5 with g(z) = e*.

10. / i (Ae*® + Be*t)y(t) dt = f(x).

For \ =y, see equation 1.2.8. This is a special case of equation 1.9.6 with g(z) = Ae*® and
h(t) = Belt.

11. / (XD — et @Dy t) dt = f(z), f@a) = fl(a)=0.
Solution: |
y(x)=m[f;’m—(k+u)f;+>\uf], = f().
xT
12. / [Ae*™D 1 Ber@D]y(t) dt = f(z).
a
For B =-A, see equation 1.2.11. This is a special case of equation 1.9.15 with g (z) = Aer®,

hi(t) = e, go(x) = Bel™, and ho(t) = e,
Solution:

N d o T r] dt ~ B\ -p)
y(l‘)— A+B%{€# <I>(a:)/a {W]t%}, @(x)—exp[mx}

13. / [Ae*™ D 4 Ber®™ D 4 Cly(t) dt = f().

This is a special case of equation 1.2.14 with 5 = 0.

14. / [Ae*® 8 + Bet® D 4+ CeP*V]y(t) dt = f(x).

Differentiating the equation with respect to x yields
(A+B+Cy(x)+ / [ANAD 4 Bpet@™® + CBPE D yt) dt = fl(x).

Eliminating the term with ¢”®~% with the aid of the original equation, we arrive at an equation
of the form 2.2.10:

(A+ B+ O)y() + / ' [A\ - B)e*™ + B(u— Be" D] yt) dt = fi(z) - Bf ().

In the special case A + B + C = 0, this is an equation of the form 1.2.12.
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15.

16.

17.

18.

19.

20.

21.

22,

/ ) [Aer® D 4 Bet® V) 1 CeP®V _A-B-Clyt)dt = f(x),  f(a)= fi(a)=0.

Differentiating with respect to x, we arrive at an equation of the form 1.2.14:

/ [A)\eA(‘”_t) + Buet™ 4 C’ﬂeﬂ“_”]y(t) dt = fl(x).

/ (X=Ht —et= X y@) dt = f(x),  fla) = fi(a)=0.
This is a special case of equation 1.9.11 with g(x) = e and h(t) = ett.

Solution:
v — N+ ) fr(@) + Apf ()
(A= p)exp[(A + )]

y(x) =

/ (Ae*™Ht + Ber™ M) y(t) dt = f(x).
For B = —A, see equation 1.2.16. This is a special case of equation 1.9.12 with g(z) = e**

and h(t) = e*t.
Solution:

LU A [T as d [fO e
Y@ = AT Byons dm{q) (x)/a ® (t)dt{e“t]dt}’ q)(m)"eXp(A+Bx)'

/ ) (Ae*=Ht 1 BeP™ ) y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = Ae*, hi(t) = e, go(x) = BeP*, and
ho(t) = e7t.

x
/ (Ae*™ + Be?Pt + Ce*® + DeP! + E)y(t) dt = f(z).
This is a special case of equation 1.9.6 with g(z) = Ae*** +C'e** and h(t) = Be*’t + D' + E.

/ (Ae*™*Pt 4+ Be®Pt + Ce® + DePt + E)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = e**, h(t) = AePt + D, and g2(x) = 1,
ha(t) = Be*Pt + DePt + E.

/ (Ae*™ + Be*™*Pt + Ce™™ + DePt + E)y(t) dt = f(z).

This is a special case of equation 1.9.15 with g;(x) = Be + D, hy(t) = €7, and g2(z) =
AN+ CeN + B, ha(t) = 1.

/m [1 + Ae*®(eMt — eF®)y(t) dt = f(x).

This is a special case of equation 1.9.13 with g(z) = e** and h(z) = Ae*®.
Solution:

4 e /o ,ﬂ = Ap e
y(z)-dx{e o) [ [e”}té(t)}’ cp@)-exp[Mue . }
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23.

24.

25.

26.

27.

28.

29.

/ "[AAT(eh® ety 1 B (T )] y(t) di = f(a).

This is a special case of equation 1.9.45 with g;(z) = Ae*?, hi(t) = —e*t, gy(x) = BeP®, and
hi(t) = —et.

/ {Aexp(Az + ut) + B exp[(A + B)z + (1 - B)t]

- (A + B)expl(A + vz + (1 - V)t }y(t) dt = f(x).
This is a special case of equation 1.9.47 with g;(x) = e*®
/ (e - e”)ny(t) dt = f(x), n=12,...

Solution:

v = 1= ()" ),

Ann! et dx

/fﬂ Verr — eAt y(t)dt = f(x), A>0.

Solution: N
_ 2 e d)z/w e f(t)dt
u@) = T (6 dz/) [, ere _ext’
x
y(t) dt
o Vewoon T A0
Solution:

(a:)—ii/x e f(t) dt
Y T rdx a AT _ At

/ (e = e*Py(t) dt = f(x), A>0, 0<p<l.

Solution:

xT At .
y(x) — kekm (e—Awi)z / € f(t) dt k= Sll’l(ﬂ'p,) .

dx (et — Aty Th

t)dt
/ (e)\:l:{:( )eM)# = f(@), A>0, O<p<l

Solution:
Asin(mp) d - [7 eMF(t) dt
dx u (ekm _ ekt)l—u :

y(x) =

‘ 1.2-2. Kernels Containing Power-Law and Exponential Functions ‘

30.

/ “[A@-1) + Byt dt = f(z).

Differentiating with respect to x, we arrive at an equation of the form 2.2.4:

By(z) + / ’ [A+BAe?™ D]yt dt = fl(x).
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31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

/ “@-0 ey dt = f@),  fla) = fia) = 0.
Solution: y(z) = f2.(x) = 2AfL(x) + N f(x).

/ m(A:c + Bt + C)er® Yy (t) dt = f(x).

-z

The substitution u(x) = e**y(x) leads to an equation of the form 1.1.3:

/ I(Ax + Bt + C)u(t)dt = e f().

/w(AaceAt + Bte!®)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g(z) = Az, hi(t) = e, and gy(x) = Bet®,
ha(t) = t.

/ [Aze @ + Btet™V]y(t) dt = f(z).

This is a special case of equation 1.9.15 with g;(z) = Aze*®, hi(t) = e, go(x) = Be'®, and
ha(t) = te #t,

/ (x -ty dt = f(x),  fla)= fi(a)=f (a)=0.

Solution: y(x) = % [f;’;x(x) —3NfY(2) + 3N fL () - )\3f(z)] .

/ m(x — e @ Vyt) dt = f(x), n=12,...

It is assumed that f(a) = fi(a)=---= f{(a) = 0.
: 1 Az dn+1 -z
Solution: y(x) = He pry [e f(:r)].

/ (AxP + Be*)y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = Az” and h(t) = Be*'.
x

/ (Ae*® + BtPyy(t) dt = f(x).

a

This is a special case of equation 1.9.6 with g(z) = Ae*” and h(t) = Bt”.

/ (AxPe*t + Bt e ®)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Az?, hi(t) = e, g2(x) = Be!®, and
ho(t) =t7.

/I e =z —tyt)dt = f(x).

Solution:
2y, & [TeMf)dt

y(x):;e a2 . —T—t .
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41.

42,

43.

44.

45.

46.

47.

48.

x eA(:t—t)
/ my(t) dt = f(x).

Solution:
d [* e Mf)dt

dx a V-t

1
y(z) = —e*
T

/ m(m —t) et Oyt) dt = f(x), 0<\<l.

Solution: ) ,
d et f(t) dt sin(mw\)
= wr _—_ _— = —
y(@) = ke dx? /a (z-t) F T
x ek(w—t)
/ — yt) dt = f(x), O<p<l.
Solution: . N
Yy = ST e 47 O G,

dz |, (z—-t)l-»

/ w(\/i Vi) et @y dt = f@), O0<A<L

The substitution u(x) = e **y(x) leads to an equation of the form 1.1.48:

/ C(VE VA utt) di = e o),

/“’ et @y (t) dt
o (vVE-vi)!

The substitution u(x) = e **y(x) leads to an equation of the form 1.1.49:

= f(x), 0<A<l.

Tou(t)dt .
. Wa-vip © @
z  A@-t)
ﬁy(t) dt = f(x).

te—At

Soluti 2 e @ /m
olaton: = —€ —_—
Y ™ dl‘ a \/.fl?z—tz

f(t) dt.

/ ) exp[\(@? - t)]y(t) dt = f(z).

Solution: y(z) = f1(x) - 2\x f(x).

/ [exp(Az?) — exp(AtD)]y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = exp(Az?).
1 d { fa(@) }

Solution: y(z) = 2\ dz | zexp(Az2)
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49. / i [A exp(Az?) + B exp(A\t?) + C|y(t) dt = f(x).

This is a special case of equation 1.9.5 with g(z) = exp(Az?).

50. /w [A exp(Az?) + B exp(ut?)|y(t) dt = f().

This is a special case of equation 1.9.6 with g(x) = Aexp(Az?) and h(t) = B exp(ut?).

51. / i Vi -t exp[A(x? - t)]y(t) dt = f(x).

Solution: ) R
_2 2 & [T exp(=At)
= exp[A(x? - t?)]
52. ———y)dt = .
Solution: )
_1 ) i T exp(—=\t?)
Y(w) = — expOa) - / T an
53. / (@ - t)* exp[p(a?® — t)]y(t) dt = f(x), 0<A<l.
Solution:
d> [T exp(—ut?) sin(7\)
_ 2y & _
y(x) - kexp(/’tx )dez /C; (x —t))\ f(t) dt» k ’/T)\ .

54, / " expIA@? — ) ly(t) dt = f(a).

a

Solution: y(z) = fi(z)— \Bz ! f(=).

1.3. Equations Whose Kernels Contain Hyperbolic
Functions

‘ 1.3-1. Kernels Containing Hyperbolic Cosine ‘

1. / i cosh[A(z - H)]y(t) dt = f(z).

Solution: y(z) = fl(x) - \? / ’ f(x)dz.

2 [ {eostid@-0l-1ydt = @), f@)= fil@) = FL,@) =0

Solution: y(z) = %fé&x(:v) — o).
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/I{cosh[)\(a: -]+ blyd) dt = f(x).

For b = 0, see equation 1.3.1. For b = —1, see equation 1.3.2. For A\ = 0, see equation 1.1.1.
Differentiating the equation with respect to z, we arrive at an equation of the form 2.3.16:

fr(2)
b+1

(@) + % /  sinh[A(z — () di =
1°. Solution with b(b + 1) < 0:

_ fa(®@) A
T b+l k(b1

2°. Solution with b(b + 1) > 0:

_ fal@) A
T b+l k(b+1)2

/ sin[k(z — )] f1(t) dt, where k= A/ .

y(@) b+1

/ sinh[k(z — )] f{(t) dt, where k=X L

y@) b+1

/ : coshO\z + Bt)y(t) dt = f(x).

For (3 = -, see equation 1.3.1.
Differentiating the equation with respect to = twice, we obtain

T

cosh[(A+B)z]y(z)+ A / sinh(\z+ Bt)y(t) dt = f.(z), )

a

{cosh[()\+6)x]y(ac)}; +Asinh[(A+ B)z]y(z)+\? /w coshO\z+Bt)yyt) dt = I (x). (2)

a

Eliminating the integral term from (2) with the aid of the original equation, we arrive at
the first-order linear ordinary differential equation

wl, + Manh[(\ + B)z]w = f (x) - N\ f(z), w = cosh[(\ + B)x]y(z). 3)

Setting x = a in (1) yields the initial condition w(a) = f.(a). On solving equation (3) with this
condition, after some manipulations we obtain the solution of the original integral equation

in the form
o cosh[(A + f)x] fo(@) cosh’ [\ + B)x] i@
A8 /L k-2 )
¥ cosh™ [\ + B)z] Ja J(@) cosh™ [(A + B)it] dt, k= pwet

/ m[cosh()\m) — cosh(\t)]y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = cosh(\x).
Solution: y(z) = L& | fe@
Dyl = —— | .

Y X dz | sinh(\z)

/ m[A cosh(\x) + B cosh(A\t)]y(t) dt = f(x).

For B =-A, see equation 1.3.5. This is a special case of equation 1.9.4 with g(x) = cosh(\z).

1 d —ﬁ ¥ _ABB !/
5 %{ [cosh(Az)] A+ / [cosh(At)] A+B fi(t) dt}-

Solution: y(z) =
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10.

11.

12.

13.

/ ) [A cosh(Az) + B cosh(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A cosh(\x) and h(t) = B cosh(ut) + C.

/ ) {A; cosh[ A (@ — )] + A; cosh[Ay(2 - )] }y(t) dt = f().

The equation is equivalent to the equation

/ ’ { By sinh[\(z - t)] + By sinh[ Ay (z — )] }y(t) dt = F(x),

B1=%, Bz=%, F($)=/ @) dt,
1 2 a

of the form 1.3.41. (Differentiating this equation yields the original equation.)

/ i cosh’[\(z - t)]y(t) dt = f(x).

Differentiation yields an equation of the form 2.3.16:

y(x) + A / ’ sinh[2\(z — O)]y(t) dt = fL(x).

Solution:

2 xT
y(z) = f;(m)—% / sinh[k(z —t)1f/(t)dt,  where k=\V2.

/ i [cosh®(Az) — cosh®(AB)] y(t) dt = f(z), f@a) = fl(a) = 0.

. 1 d !
Solution: y(z) = S [%]

/ ) [A cosh*(Ax) + B cosh*(At)|y(t) dt = f(x).

For B=-A, see equation 1.3.10. This s a special case of equation 1.9.4 with g(x) = coshz(/\x).

Solution:
2A

T 2B
115 %{ [cosh(Az)| A+B / [cosh(At)]~ A+B fi(t) dt}-

y(x) =

/ ) [A cosh*(Ax) + B cosh’(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A cosh?(\z), and h(t) = B cosh2(ut) +C.

/ ) cosh[A(x - t)] cosh[A(x + t)]y(t) dt = f(x).

Using the formula
cosh(a — B) cosh(a + 3) = 1[cosa) + cos(2B)], a =z, B=M,

we transform the original equation to an equation of the form 1.4.6 with A = B =1:
/ [cosh(2Az) + cosh(QAt)]y(t) dt = 2 f(z).

Solution:

()_i{ 1 T fl)dt ]
PO =02 | Jeoshere) J, Jeoshend |
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14.

15.

16.

17.

18.

19.

20.

/ I[cosh()\sc) cosh(ut) + cosh(Bx) cosh(vt)]y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = cosh(A\z), h;(t) = cosh(ut), g.(x) =
cosh(f8x), and hy(t) = cosh(vt).

/ i cosh’ [ \(z - t)]y(t) dt = f(x).

Using the formula cosh® 3 = % cosh30+ % cosh 3, we arrive at an equation of the form 1.3.8:

/ : {4 cosh[3A(z — )] + 2 cosh[A(z — )] }y(t) dt = f(x).

/ i [cosh*(Az) - cosh®(A\t) | y(t) dt = f(z), f@a) = fl(a)=0.

1 d [ fr()
3\ dz | sinh(\x) cosh®’(\xz) |

Solution: y(z) =

x
/ [A cosh®(Az) + B cosh’(\t)|y(t) dt = f(x).
For B=-A, see equation 1.3.16. This is a special case of equation 1.9.4 with g(x) = cosh®*(\x).
Solution:

3A

T 3B
[cosh()\x)]_A’fB/ [cosh(At)] A+B ft’(t)dt}.

d
y(@) = A+BE{

/ : [A cosh*(Az) cosh(u1t) + B cosh(Bz) cosh’(vt)| y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = Acosh®>(\x), hy(t) = cosh(ut), go(x) =
B cosh(fx), and h,(t) = coshz(yt).

/ cosh®[A(x - t)]y(t) dt = f(x).
Let us transform the kernel of the integral equation using the formula
cosh® 3= 4 cosh4B+ L cosh28+ 2, where B=Aaz-1),

and differentiate the resulting equation with respect to . Then we obtain an equation of the
form 2.3.18:

y(x) + A / {5 sinh[4\(z — )] + sinh[2\(z - )] }y(t) dt = fL(2).

/w[cosh()\cc) — cosh(A\t)|"y(t) dt = f(x), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fl(a)=--- =
™ (a) = 0.

Solution: y(z) =

sinh(Ax) [ 1 d

n+l
Nl | sinh(hr) %] (@)
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21.

22,

23.

24.

25.

26.

27.

/I Vcosh x — cosh t y(t) dt = f(x).

Solution:
@) 2 sinh ( 1 d )2/9C sinht f(t) dt
)= — x(— — ——
4 T sinhz dr o« Vcoshx —cosht
* y(t) dt
= f(x).
a Vcoshx —cosht
Solution:

(x)_li T sinht f(t)dt
Y= i « Vcoshz—cosht

/ (cosh  — cosh t)*y(t) dt = f(x), 0<Ai<l1

Solution:

(@) = k sinh ( 1 d )2 T sinht f(t)dt i sin(mw\)
xXr) = X —_— —_— = .
Y sinhz dx (cosh z — cosh t)* T

a

/ (cosh” x — cosh” t)y(t) dt = f(x).
This is a special case of equation 1.9.2 with g(zx) = cosh” x.
1 d '
Solution: y(r) = —— [L)l}
@ dz | sinh x cosh*™
/ (A cosh* x + B cosh* t)y(t) dt = f(x).

For B =—A, see equation 1.3.24. This is a special case of equation 1.9.4 with g(z) = cosh” x.

Solution:
d _Ap 7 _Bu
y(x) = 1B %{ [cosh(Az)] A+B /a [cosh(At)] A+B f(t) dt}.
i y(d) i = f@), O<A<l.
o (cosh z — cosht)*
Solution:

sin(m)) d z sinht f(t) dt
dx J, (coshx —cosht)l-*"

y(x) =

/ (x - 1) cosh[A(z - D)]y(?) dt = f(x), fla) = f (a)=0.
Differentiating the equation twice yields
y(z) + 2\ / sinh[ Az — t)]y(t) dt + X2 /'/(:1: —t)cosh[\(x - t)]y(t) dt = fI ().

Eliminating the third term on the right-hand side with the aid of the original equation, we
arrive at an equation of the form 2.3.16:

y(z) + 2\ /I sinh[A(x — H)]y(t) dt = 7 (x) = N f(x).
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= cosh(AVz -t)
a ve-t

Solution:

28. y(@) dt = f(x).

y(x)=li_/ Mf(t)dt
mdx J,

vr—t

29 /w cosh(AVx? - 2)
0

2 -2

y@t) dt = f(x).

Solution:
@) = 2.d Itcos(/\\/a:2 t2)
y(x)= = —

t)dt.
e —

30.

e h(\\Vt2 -
/ cosh( 2) ity dt = f@).

12 — 2
Solution:

2 d °°t cos(AV12 —a?)

. g —— f(t) dt.
31. / : [AzP + B cosh”(At) + Cly(t) dt = f(z).

T;is is a special case of equation 1.9.6 with g(z) = Az® and h(t) = B cosh”(\t) + C.
32. /a: [A cosh” (\x) + BtP + Cly(t) dt = f(x).

T‘lllis is a special case of equation 1.9.6 with g(x) = A cosh”(\z) and h(t) = Bt® + C.

33. / (Az> cosh* t + BtP cosh™ z)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g, (z) = Az, hi(t) = cosh” t, g»(x) = B cosh” z,
and hy(t) = t°.

‘ 1.3-2. Kernels Containing Hyperbolic Sine ‘

34. / i sinh[A(z - Hly(t) dt = f(x),  f(a)= f.(a)=0.

Solution: y(z:)—— (@) = M ().

/w{sinh[)\(m -]+ bly) dt = f(x).
D'ilfferentiating the equation with respect to x, we arrive at an equation of the form 2.3.3:
v+ / " coshlA@ - Dly(®) dt = - f1(x).
Solution: '

1 xT
Yo) = 5 i) + / Rx—0fl(t)dt,

A AT A M1+ 4b2
R(x) = 7 exp (—%) [ﬂ sinh(kx) — cosh(kx)] k= —
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36.

37.

38.

39.

40.

/I sinh(Ax + Bt)y(t) dt = f(x).

For 8 = -\, see equation 1.3.34. Assume that 5 # —\.
Differentiating the equation with respect to = twice yields

sinh[(\ + B)z]y(x) + A /z cosh(\z + Btyy(t) dt = fL(z), €))]

{sinh[(A + ﬁ)x]y(:v)}; + Acosh[(\ + B)zly(x) + A? /r sinh(\z + Bt)y(t) dt = f2 (). (2)

a

Eliminating the integral term from (2) with the aid of the original equation, we arrive at the
first-order linear ordinary differential equation

wl, + X coth[(\ + B)z]w = £ (x) - N f(x), w = sinh[(\ + B)x]y(x). 3)

Setting « = a in (1) yields the initial condition w(a) = f(a). On solving equation (3) with this
condition, after some manipulations we obtain the solution of the original integral equation
in the form

Acosh[(A + B)x]
sinh*[(A + 8)z]

/ f@®)sinh* [\ + B)tldt, k=

y(x) = fo(@) — f@)

sinh[(\ + ()z]
M
sinh** ! [(\ + B)z]

A
A+3°

/I[sinh()\a;) —sinh(At)]y(t) dt = f(x), f(a) = fl(a) = 0.

This is a special case of equation 1.9.2 with g(x) = sinh(\x).
1 d { fo(@) }

Solution: y(x) = +—— cosh(\z) |’

/w[A sinh(Ax) + B sinh(At)]y(¢) dt = f(x).

For B =-A, see equation 1.3.37. This is a special case of equation 1.9.4 with g(x) = sinh(\x).
d . S B
—{ [sinh(Az)] A+B / [sinh(A)] " 4+B f/(t) dt}.

1
Solution: y(z) = 1+ 54
T

/m[A sinh(Az) + B sinh(ut)]y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A sinh(A\z), and h(t) = B sinh(ut).

/ {u sinh[A(x - t)] = A sinh[p(x — t)]}y(t) dt = f(x).

It is assumed that f(a) = f.(a) = f2.(a) = f! (a) =
Solution:
1= O+ ) + N f
pAS = Ap? ’

y(z) = f=f@).
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41.

/ { Ay sinh[A (@ - )] + A sinh[o(@ - O]}y dt = f@), fa) = fi(a)=0

1°. Introduce the notation

I = /I sinh[A{(x - O)]y@®)dt, I,= /w sinh[ X\ (z —t)]y(t) dt,

x

Ji = /x cosh[A(x - D)]y@®)dt, J,= / cosh[ Ay (x —t)]y(t) dt.

Let us successively differentiate the integral equation four times. As a result, we have (the
first line is the original equation):

Al + Aol = f, = f), (1)
A+ Ayads = fL, 2
(A + ANy + AT + AN = f7, 3
(A1 + Ayl + AT+ Ao\, = £ )
(A1 + Ayl + (A + ANy + AN + AN = [ &)

Eliminating [; and I, from (1), (3), and (5), we arrive at the following second-order linear
ordinary differential equation with constant coefficients:

(A + A do)yl, = Mda(Aida + Ao dy = £, = OF + X)fL + XIS (6)
The initial conditions can be obtained by substituting x = a into (3) and (4):
(At + A )y(a) = frl(a), (A + Ay, (a) = fr,,(a). (N

Solving the differential equation (6) under conditions (7) allows us to find the solution of the
integral equation.

2°. Denote
Al)\Z + AZ)\I

A=\ )\, 2 T2
AN + Ay

2.1. Solution for A > 0:

(A + A )y(x) = fI(x) + Bf(x) +C/$ sinh[k(x — )] f(¢) dt,
1
k=VA, B=A-)\-), C= ﬁ[ (AT +2DA + AN,

2.2. Solution for A < 0:
(A1 + A )y(x) = fI.(x) + Bf(z) + C/ sin[k(x — )] f(¢) dt,
k=vV-A, B=A-X\-), C=—[A"-(O]+ADA+AN]].

VAN
2.3. Solution for A = 0:

(A + Ado)y(@) = f1(2) — 2 4 A f(@) + 22 / (@ - f ) dt.

2.4. Solution for A = co:

ez = AT+ A frs + NIASf
A1 )\? + Az)\% ’

In the last case, the relation Aj\; + Ax )\, = 0 is valid, and the right hand side of the

integral equation is assumed to satisfy the conditions f(a) = f.(a) = f/.(a) = f2! (a) = 0.

= f().

y(x) =
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42,

43.

44.

45.

46.

47.

/ {A sinh[A(z — )] + B sinh[p(x — t)] + C sinh[3(x - t)]}y(t) dt = f(x).
It assumed that f(a) = f.(a) = 0. Differentiating the integral equation twice yields

(AN + Bu+CBy(x) + / . { AN? sinh[ Mz - t)] + By sinh[p(z — )] }y(t) dt

+Cp / sinh[B(z ~D]y(t) dt = f,,(2).

Eliminating the last integral with the aid of the original equation, we arrive at an equation of
the form 2.3.18:

(AN + Bu+ CpBy(z)
+ / LA - B sin{ A - )] + B2 - B)sinhlpa - 01}y dt = £1,(@) - 6 @)
In the spcel:cial case AX+ Bu+ Cf =0, this is an equation of the form 1.3.41.
/ CSinh’A\@ - Oly@) dt = f@),  fla) = fla) = fa) = 0,
Dcibfferentiating yields an equation of the form 1.3.34:
/a$ sinh[2\(z — O)]y(t) dt = %f;(:p).

Solution: y(x) = A2 f (x) -2 fL(2).

rrx

/m [sinhz()\:l:) - sinhl()\t)] y(t) dt = f(x), fla) = f:'c(a) =0.

- _ld] fi@
Solution: y(@) = 372 [sinh(Z)\x)]'
/ i [Asinh*(Az) + B sinh*(\t)] y(t) dt = f().

For B =—A, see equation 1.3.44. This is a special case of equation 1.9.4 with g(z) = sinh®>(\z).
Solution:

d inh(O\ _Az+AB i )\_XFB/ d
y@) = - B%{[smh( )] /a [sinh(A)] fi@®) t}.

/ ) [Asinh*(Az) + B sinh®(ut)|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A sinhz()\x) and h(t) = B sinhz(ut).

/ sinh[A(x — t)] sinh[\(x + t)]y(t) dt = f(x).
Using the formula
sinh(cv — ) sinh(a + 3) = %[COSh(20¢) —cosh(2@)], a=Xx, (=M,

we reduce the original equation to an equation of the form 1.3.5:
/ [cosh(2Ax) — cosh(RAD)]y(t) dt = 2 f(x).

ld{ fu(@) }

Solution: y(x) = X dz | sinh(2)\z)
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48.

49.

50.

51.

52,

53.

54.

/ ) [A sinh(Ax) sinh(ut) + B sinh(8x) sinh('yt)} y(t)dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Asinh(A\x), h;(t) = sinh(ut), g.(z) =
B sinh(8x), and hy(t) = sinh(vt).

/ sinh’[A(x - t)]y(t) dt = f(x), fl@ = f.(a)=f(a) = f, (a)=0.

Using the formula sinh® 3 = 4 sinh 33~ 2 sinh 3, we arrive at an equation of the form 1.3.41:

/ : {4 sinh[3\(z - )] - 2 sinh[A(z - )] }y(t) dt = f().

/ : [sinh®(Az) - sinh®(At)] y(t) dt = f(z), f@a) = fl(a) = 0.

This is a special case of equation 1.9.2 with g(x) = sinh®*(\z).

/ ) [Asinh’*(Az) + Bsinh® (\t)]y(t) dt = f ().

This is a special case of equation 1.9.4 with g(z) = sinh3()\;r;).
Solution:

3A 3B

1 d [ a5 [ g ~AvB !
y(x):m%{[smh(/\x)] A B/a [sinh(At)] 4 Bft(t)dt}.

/ : [A sinh®(Az) sinh(ut) + B sinh(Bz) sinh*(vt)| y(t) dt = f(z).

This is a special case of equation 1.9.15 with g;(z) = A sinh®(\z), hi(t) = sinh(ut), g2(z) =
Bsinh(Bz), and hy(t) = sinh?(vt).
x
/ sinh*[\(z - t)]y(t) dt = f(x).
a

It is assumed that f(a) = fl(a)=---= f" (a)=0.

Let us transform the kernel of the integral equation using the formula
sinh* 3 = % cosh4( — % cosh2( + %, where [ = Az -1),

and differentiate the resulting equation with respect to . Then we arrive at an equation of
the form 1.3.41:

A / w{ 1 sinh[4\(z — )] - sinh[2\(z - )] }y(D) dt = fL(z).

/ : sinh™[ Az - Hly(t) dt = f(x), n=23,...

It is assumed that f(a) = fi(a) =+ = f"(a) = 0.

Let us differentiate the equation with respect to = twice and transform the kernel of the
resulting integral equation using the formula cosh? 3 = 1+ sinh® 3, where 3 = A(z —t). Then
we have

\n? / sinh[A(z — )]y (t) dt + Xn(n— 1) / sinh™ 2[\(z — H]y(t) dt = f ().
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5S.

56.

57.

58.

59.

60.

Eliminating the first term on the left-hand side with the aid of the original equation, we obtain

fi@) = Nn? f(@)].

” : n-2 -
/a sinh (A = DlyD) bt = e |

This equation has the same form as the original equation, but the exponent of the kernel has

been reduced by two.

By applying this technique sufficiently many times, we finally arrive at simple integral

equations of the form 1.1.1 (for even n) or 1.3.34 (for odd n).

/ : sinh(AvV@ =t )y(t) dt = f(x).

Solution:
2 &P /I cos(A\Wxz 1)

y(x) = N N f@) dt.

dx?

/ " Vsinhz —sinhty(t) dt = f().

Solution:
@) 2cosh ( 1 d)z/x cosht f(t)dt
x)=— T — ——.
4 T coshz dx o V/sinhx —sinht
* y(t)dt
——= f(@).
a V/sinhx —sinht
Solution:
1 d [* coshtf(t)dt
y(x)

T rdo « Vsinhz —sinht

/ (sinh x — sinh t)*y(t) dt = f(x), 0<A<l
Solution:

1 dN\2 [T cosht f(t)dt sin(m\)
—keosha( LAY [T _coshtfydt
y(x) = kcoshz ( coshz dz ) . (sinhz —sinht)* TA

/ w(sinh” x — sinh* t)y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = sinh* z.
: 1d fo(®)
Solution: y(x) = —— [m—]
vz v dz Lcosh x sinh™" &
/ [A sinh”(\x) + B sinh“()\t)] y(t) dt = f(x).

This is a special case of equation 1.9.4 with g(x) = sinh*(A\z).
Solution with B # —A:

Ap Bu

1 d [ a5 [ ~B ¢/
y(x) = m%{ [sinh(\z)| A+B /a [sinh(AD)] A+B fi(t) dt}.
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61 /I y() dt f@, 0<x<l
. = f(x), .
o (sinh z —sinh #)>

Solution:
sin(r)) d *  cosht f(t)dt

dz J, (sinhz—sinht)l-*"

y(x) =

62. / (x - t) sinh[A(z - )]y (t) dt = f(x), fla) = fo(a)= f (a)=0

Double differentiation yields
2)\/ cosh[ (@ — t)]y(t) dt + X2 (x t)sinh[M(x — t)]y(t) dt = fI ().

Eliminating the second term on the left-hand side with the aid of the original equation, we
arrive at an equation of the form 1.3.1:

/ " coshIA G - DIyt dh = o [2() X @],
Solution:
Y(@) = o3 flha @) = Afo@) + 7N / f.
63. /w [Aarz'8 + Bsinh”(At) + Cly(t) dt = f(x).
This is a special case of equation 1.9.6 with g(z) = Az” and h(t) = B sinh” (\t) + C.
64. /w [Asinh” (Az) + BtP + Cly(t) dt = f(x).
This is a special case of equation 1.9.6 with g(z) = A sinh”(\z) and h(t) = Bt® + C.
65. / ) (Az> sinh* t + Bt® sinh™ z)y(t) dt = f().

This is a special case of equation 1.9.15 with g(z) = Az, h(t) = sinh* t, go(z) = B sinh” x,
and hy(t) = t°.

‘ 1.3-3. Kernels Containing Hyperbolic Tangent ‘

66. / ) tanh(Az) — tanh(At)|y(t) dt = f ().

This is a special case of equation 1.9.2 with g(x) = tanh(A\x).
1
Solution: y(z) = [coshz()\m) fr@)]’.

67. / ) [Atanh(Az) + B tanh(At)| y(¢) dt = f(x).

For B =-A, see equation 1.3.66. Thisis a spemal case of equation 1.9. 4 with g(x) = tanh(\z).

A Jlr e %{ [tanh(\z)]~ gy / [tanh(\t)]” A5 fi(@®) dt}

Solution: y(z) =

© 1998 by CRC Press LLC



68.

69.

70.

71.

72.

73.

74.

75.

/I [A tanh(Ax) + B tanh(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A tanh(A\z) and h(t) = B tanh(ut) + C.

/ ) [tanh*(Ax) - tanh*(At)|y(t) dt = f().

This is a special case of equation 1.9.2 with g(z) = tanhz()\x).

d nOx)f
Solution: y(x) = —— {%]

/ ) [A tanh®(Az) + B tanh*(\t)|y(t) dt = f(x).

For B=-A, see equation 1.3.69. This is a special case of equation 1.9.4 with g(x) = tanh>(\z).

d _2A  w _2B_
—{[tanh()\x)] A+B / [tanh(\t)| A+B f(t) dt}.

1
Solution: y(z) = 1+ B d
T

/ ) [A tanh®(Az) + B tanh*(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A tanh®>(\x) and h(t) = B tanhz(ut) +C.

/ i [tanh(Az) - tanh(\)] "y(H) dt = f(z), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fl.(a)=--- =
f(a) = 0.

n+l
Solution: y(x) = [coshz()\x) %] f(x).

A"n! cosh?(\x)

/ " Vianh @ —tanh £ y(t) dt = £(x).

Solution:
d\2 [* f@dt
r)= ——— coshzz—) / .
y(@) 7 cosh? ( dz o cosh?t+/tanhz —tanht
x
y(t) dt
= f(x).
a +Vtanhx —tanht
Solution:

(z) = Ld /9” SO
Y= e o« cosh’¢+/tanhz —tanht

/ (tanh x — tanh t)*y(t) dt = f(x), 0<A<l1.

Solution:

y(x) = M(coshzm%)z/a” f@)dt

"~ mAcosh’z cosh’ t (tanh z — tanh t)*
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76.

77.

78.

79.

80.

81.

/ I(tanh" x —tanh* t)y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = tanh” z.
1 d {cosh’“' acf,;(a:)]

Solution: y(z) = —
wdx

sinh*!

/ ) (Atanh* z + B tanh* t)y(t) dt = f(x).

For B =—A, see equation 1.3.76. This is a special case of equation 1.9.4 with g(z) = tanh” x.
Solution:

1 d tanh(\ _% zth/\t_ﬂ?’tdt
y(m)—m@{[an(a:)] /a[an< | AE fU(t) }

’” y(t) dt
o« [tanh(Azx) — tanh(\t)]~

This is a special case of equation 1.9.42 with g(z) = tanh(\x) and h(z) = 1.
Solution:

= f(x), O<pu<l.

_ )\Sin(ﬂﬂ)i/m f@)dt
- dz J, cosh®(\t)[tanh(A\z) — tanh(\E)] 1=+

y(x)

/ [AzP + B tanh”(\t) + Cly(t) dt = f(x).
This is a special case of equation 1.9.6 with g(z) = A2” and h(t) = Btanh”(\t) + C.

xT
/ [A tanh”(Az) + Bt® + Cly(t) dt = f(z).

a
This is a special case of equation 1.9.6 with g(x) = Atanh”(\z) and h(t) = Bt® + C.
/ (A:):)‘ tanh* ¢ + Bt® tanh” :L')y(t) dt = f(x).

This is a special case of equation 1.9.15 with g, (z) = Az*, h;(t) = tanh* t, g,(x) = B tanh” z,
and ha(t) = t°.

‘ 1.3-4. Kernels Containing Hyperbolic Cotangent ‘

82.

83.

/ i [coth(Ax) — coth(AD)| y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = coth(Az).

Solution: y(z) = —% % [sinh®*(\z) f1. ()]

/ i [A coth(Az) + B coth(At)|y(t) dt = f(x).

For B =-A, see equation 1.3.82. This is a special case of equation 1.9.4 with g(x) = coth(\z).
B

A T
- Jlr = %{ [tanh(\z)] A+B / [tanh(AD)] 4%5 fi(1) dt}-

Solution: y(z) =
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84.

85.

86.

87.

88.

89.

90.

91.

92,

/I [A coth(Az) + B coth(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A coth(Ax) and h(t) = B coth(ut) + C.

/ ) [coth*(Az) - coth®(At)| y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = coth®’(\z).
, d [sinh*(\z)f.(z)
lution: = |
Solution: () ==~ { 2) cosh(\z) }
x
/ [A coth’(Az) + B coth*(At)|y(t) dt = f(x).
a

For B=-A, see equation 1.3.85. This is a special case of equation 1.9.4 with g(x) = coth’(\z).

1 d 24 7 esst
e %{ [tanh(\x)] A+B / [tanh(XD)| A+B fl(t) dt}-

Solution: y(z) =

/ i [A coth’(Az) + B coth®(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A coth®>(\z) and h(t) = B cothz(ut) +C.

/ i [coth(Az) - coth(At)|"y(@) dt = f(x), n=1,2,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fi(a)=--- =

" (a) = 0.
e o d ™
Solution: y(x) = —)\"n! sinh2()\1:) [smh (Ax) dx} f(x).

/ 9g(coth“ x — coth” t)y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = coth” x.

1 d inh#*! 2
Solution: y(z) = ——— [Slniﬂi]fw(l‘)] ’
p dx cosh*™ x

/I (A coth* = + B coth* t)y(t) dt = f(x).

For B =-A, see equation 1.3.89. This is a special case of equation 1.9.4 with g(z) = coth” x.
Solution:

1 d Au e B
y(@) = - B4 { |tanh 2| A+ /a |tanh ¢| A+B f](t) dt}.
xT
/ [AzP + B coth”(At) + Cly(t) dt = f(z).
a
This is a special case of equation 1.9.6 with g(z) = Az” and h(t) = B coth”(\t) + C.

/:c [A coth” (A\x) + Bt? + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A coth”(\z) and h(t) = Bt® + C.
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93, / (Az™ coth* t + BtP coth™ z)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g, (z) = Az, hy(t) = coth” t, g»(x) = B coth” z,
and hy(t) = t°.

‘ 1.3-5. Kernels Containing Combinations of Hyperbolic Functions ‘

94. /ﬂc {cosh[)\(ac - t)] + Asinh[p(x - t)]}y(t) dt = f(x).

Let us differentiate the equation with respect to = and then eliminate the integral with the
hyperbolic cosine. As a result, we arrive at an equation of the form 2.3.16:

y(@) + (A - A%p) / sinh[p(z - H]y(t) dt = fo(x) - Apf(@).

95. / [A cosh(Ax) + B sinh(ut) + C] y(t) dt = f(x).
This is a special case of equation 1.9.6 with g(x) = A cosh(A\x) and h(t) = B sinh(ut) + C.
96. / [A cosh*(Az) + B sinh*(ut) + C|y(t) dt = f(z).
This is a special case of equation 1.9.6 with g(x) = cosh?*(\z) and h(t) = B sinhz(yt) +C.
97. / sinh[A(x - t)] cosh[A(x + t)]y(t) dt = f(x).
Using the formula
sinh(a — ) cosh(a + 3) = % [sinh(Za) - sinh(2ﬂ)} , a=)\x, [B=MA,

we reduce the original equation to an equation of the form 1.3.37:

/ﬂ” [sinh(2/\x) — sinh(ZAt)} y()dt = 2f(x).

. 1d .
Solution: y(x) = N de {%}

98. /w cosh[\(x — t)] sinh[A(x + t)]y(t) dt = f(x).
Using the formula
cosh(a — B) sinh(a + 3) = % [sinh(Za) + sinh(2ﬂ)] , a=xx, [B=MAt,

we reduce the original equation to an equation of the form 1.3.38 with A= B = 1:

/ ’ [sinh(2A) + sinh(2AY) | y(t) dt = 2 f ().
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99. / i [A cosh(Az) sinh(uut) + B cosh(Bwx) sinh(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = A cosh(Ax), hi(t) = sinh(ut), g2(z) =
B cosh(fx), and h,(t) = sinh(+t).

100. / : [sinh(Ax) cosh(ut) + sinh(Bz) cosh(vt)|y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = sinh(\x), hi(t) = cosh(ut), g.(x) =
sinh(Bx), and h;(t) = cosh(~t).

101. / ” [cosh(Ax) cosh(uit) + sinh(Bx) sinh(vt)] y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = cosh(A\z), hi(t) = cosh(ut), g.(x) =
sinh(8z), and h;(t) = sinh(v1).

102. / i [A cosh®(\z) + B sinh"(ut)]y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A cosh’(\z) and h(t) = B sinh” (ut).
103. / ) [Asinh®(Az) + B cosh? (ut)|y(t) dt = f().

This is a special case of equation 1.9.6 with g(x) = A sinhﬁ()\x) and h(t) = B cosh” (ut).

@
104. / (Az> cosh* t + Bt® sinh™ z)y(t) dt = f().
a

This is a special case of equation 1.9.15 with g;(z) = Az, h(t) = cosh* t, g(x) = B sinh” x,
and hy(t) = t°.

105. / i {(x - t) sinh[A(@ - )] - A(@ - £)? cosh[A(x - )]} y(t) dt = f().

Solution: .
y(x) = / g(t) dt,
where — P : , i
9=\ 3y es (@ - )\2> /a (t-7)2 I% (At —7)] f(T)d.
106. /w { W — A cosh[A(x - t)]} y(t) dt = f(x).
SZlution:

| [ & o
y(z) = oY (W - )\2> / sinh[\(x — )] f(t) dt.

107. /w [sinh()\\/a: —t) -A\Vx —tcosh()\ x —t)]y(t) dt = f(x), f(a)= f;(a) =0.

Solution:

4D  cos(AWWz 1)
y(I)——W% g Wf(t)dt.
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108. / (Az* sinh* t + Bt® cosh™ z)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Az, hi(t) = sinh* t, g,(x) = B cosh” z,
and ha(t) = t°.

x
109. / [A tanh(Azx) + B coth(ut) + C’] y(t) dt = f(x).
a
This is a special case of equation 1.9.6 with g(x) = A tanh(A\z) and h(t) = B coth(ut) + C.
x
110. / [A tanh*(A\z) + B coth®(ut)| y(¢) dt = f(z).
a
This is a special case of equation 1.9.6 with g(x) = tanh*(\z) and h(t) = B Coth2(ut).

111. / ) [tanh(Az) coth(pst) + tanh(3z) coth(vt)| y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = tanh(A\x), h(t) = coth(ut), g(x) =
tanh(5x), and h;(t) = coth(~t).

112. / ) [coth(Az) tanh(pst) + coth(Bx) tanh(vi)| y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = coth(Ax), h(t) = tanh(ut), g(x) =
coth(Bx), and h,(t) = tanh(~t).

113. / ) [tanh()\a:) tanh(ut) + coth(GBx) coth(*yt)] y(t)dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = tanh(A\x), h(t) = tanh(ut), g(x) =
coth(Bx), and h,(t) = coth(~t).

114. /I [A tanh®(\z) + B coth"(ut)] y() dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A tanh”’(\z) and h(t) = B coth” (ut).
115. /I [A coth®(\z) + B tanh"(ut)] y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A coth’(\z) and h(t) = B tanh” (ut).

116. / (Az> tanh* t + Bt® coth” z)y(t) dt = f().

This is a special case of equation 1.9.15 with g, (z) = Az, h;(t) = tanh* t, g,(x) = B coth” z,
and ha(t) = t°.

@
117. / (Az> coth” t + BtP tanh™ z)y(t) dt = f().
a

This is a special case of equation 1.9.15 with g;(x) = Az*, hi(t) = coth” ¢, g;(z) = B tanh” x,
and hy(t) = t°.
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1.4. Equations Whose Kernels Contain Logarithmic
Functions

‘ 1.4-1. Kernels Containing Logarithmic Functions ‘

1. / w(lnw ~Int)y(t) dt = f(z).

This is a special case of equation 1.9.2 with g(x) = Inx.
Solution: y(z) = zf2 (x) + fL(x).

2. / i In(z - t)y(t) dt = f(z).
0

(fﬂ t)z -Cz —Cz
o == [ st [ S a0 [y e

Solution:

1 1
h = i (1 L
where C im +2+ +k+1

k—o0

the gamma function.

@ References: M. L. Krasnov, A. L. Kisilev, and G. I. Makarenko (1971), A. G. Butkovskii (1979).

3. / m[ln(a: -1+ Aly(t) dt = f(z).

Solution:

. . d fe'e) T e(A -C)z
y@) = / va(z—f(t)dt, VA@’):%/O Te+n

where C = 0.5772. .. is the Euler constant and I'(z) is the gamma function.
For a = 0, the solution can be written in the form

_ T y (.f t)ze(A C)z T €(A C)7
y(m)——/o ftt(t)dt/o e f(O)/ o

@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

4. / (Alnz + BInt)y(t) dt = f(z).

—1In k) =0.5772 ... is the Euler constant and I'(z) is

This is a special case of equation 1.9.4 with g(x) = Inz. For B = —A, see equation 1.4.1.

Solution:

i _A_ T __B_
y(x):%%{‘lnxrf“B/ lnt| A+Bft'(t)dt}.

5. / ac(A Inz + Blnt + C)y(t) dt = f(z).

This is a special case of equation 1.9.5 with g(z) = x.
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10.

11.

12.

13.

/ [In’(Az) -In*(At)|y(}) dt = f(x),  f(a) = fi(a)=0.

d /
Solution: y(z) = - {;lﬁaé\g;))]

/w [A In*(\z) + B lnz()\t)] y(t) dt = f(x).

For B = —A, see equation 1.4.7. This is a special case of equation 1.9.4 with g(z) = lnz()\x).
Solution:

1 d _2A @ _2B_ ,
y(iﬂ):ma{“no\l’)‘ A+B/a ‘ln()\t)| A+B ft(t)dt}.

/ ) [AIn*(Az) + BIn(ut) + Cly(t) dt = f(z).

This is a special case of equation 1.9.6 with g(x) = In®’(\z) and h(t) = lnz(,ut) +C.

/ ) In(z/t)]"y@®)dt = f(x), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = f.(a) = ---
I (a) = 0.

n+l
Solution: y(z) = # (mi) f(@).

dzr

/m (In* z - In’ t)"y(¢) dt = f(z), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = f.(a) = ---
fi(@) =0.

Inz z d\"!
Solution: y(z) = Srnle (m %> f(@).

WAL WA
/an(t+b>y() = f(x).

This is a special case of equation 1.9.2 with g(x) = In(x + D).
Solution: y(z) = (x + b)fI.(x) + fL(x).

/ vVIn(x/t) y(t) dt = f(x).

Solution: )
y(m)=i<mi> /IM
mx \"dr /) J, t/In(z/t)
z y(t)dt _
o /In(z/t) = f(@.
Solution:

1d /£ ft)dt

y(x) = . —t ln(m/t)'

© 1998 by CRC Press LLC



14. / : [ln“(/\:c) - ln"(}\t)]y(t) dt = f(x).
This is a special case of equation 1.9.2 with g(z) = In*(\x).
Solution: y(z) = Ld [zIn"*(\2) fL(2)].
w dx
15. /w [A In°(Az) + BIn” (ut) + C] y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A In°(\z) and h(t) = B In”(ut) + C.

16. / w[ln(a: /O y(t) dt = f(x), 0<A<l1.

) - E( d\* /r f(t)dt . _ Sin(m)
PO=3\"az ) ), tn@or™ ST
T yt)dt

17. . m=f(m), 0<A<l1.

This is a special case of equation 1.9.42 with g(z) = Inx and h(x) = 1.

Solution:
sin(m\) i / r f@dt
dz J, tln(z/H)]"

Solution:

y(x) =

‘ 1.4-2. Kernels Containing Power-Law and Logarithmic Functions ‘

18. / E(:c - t)[In(z - t) + A]y(®) dt = f(x).

Solution:

d? z d oo IZG(A4)Z
= - f)dt = — —d
v == [ vaG-nfwdn e = o /0 T

where C = 0.5772. .. is the Euler constant and I'(z) is the gamma function.

@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

19. /z” Inx-t)+ A

— y@®)dt = fx), O<A<L

Solution:

sin(wt\) d [ F(t)dt
y(@) =- - /

iz ), G- F(:v)=/ vi(@ 1) f () dt,

d o] xzehz
vp(x) = %/0 TG+ D) dz, h=A+v(1-MN),

/
z

where I'(2) is the gamma function and ¥(z) = [I‘(z)] is the logarithmic derivative of the

gamma function.

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).
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20. / (t? In* z - 2° In* Hy(t) dt = f().
This is a special case of equation 1.9.11 with g(x) = In* z and h(t) = t5.
21. / (AtP In* x + Bz* In” t)y(t) dt = f(z).

This is a special case of equation 1.9.15 with g,(x) = Aln* z, hy(t) = t°, g2(z) = Bx*, and
hy(t) =1n" t.

z * +b
22. / In (7> y(t) dt = f(x).
o ct* + 5

This is a special case of equation 1.9.6 with g(x) = In(z* + b) and h(t) = —In(ct + s).

1.5. Equations Whose Kernels Contain Trigonometric
Functions

‘ 1.5-1. Kernels Containing Cosine ‘

1. /w cos[A(xz - t)]y(t) dt = f(x).

Solution: y(z) = f1(x) + \* / fx)dz.

2. / {cos[A(z - t)] - 1}y(t) dt = f(x), fl@) = f (a) = £ (x) = 0.

Solution: y(z) = —% fon (@) = fo(@).

3. / w{cos[)\(:n — )]+ bly®) dt = f(x).

For b = 0, see equation 1.5.1. For b = -1, see equation 1.5.2. For )\ = 0, see equation 1.1.1.
Differentiating the equation with respect to =, we arrive at an equation of the form 2.5.16:

AT AC))
y@) - / sinA\@ — )ly(t) dt = $E .

1°. Solution with b(b + 1) > 0:

fo(®@) A2 c , [ b
y(z) = el + Ko+ 1) /a sin[k(z — )] f;(t) dt, where k= M\ il

2°. Solution with b(b + 1) < 0:

/ sinh[k(z — )] f{(t) dt, where k=X _—b

/ 2
[ N A

Y@ = T T o+ 12

b+1
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/ ) cos(Ax + Bt)yy(t) dt = f(x).

Differentiating the equation with respect to x twice yields

x

cos[(A + B)z]y(z) — )\/ sin(\z + St)y(t) dt = fi.(z), )

a

{cos[(A + 5)x]y(m)}; —Asin[(\ + B)z]y(z) - A? / cos(\z + BOyyt)dt = f (2). (2)

a

Eliminating the integral term from (2) with the aid of the original equation, we arrive at
the first-order linear ordinary differential equation

w!, — Mtan[(\ + B)x]w = I (x) + N f(x), w = cos[(\ + B)x]y(z). 3)

Setting z =a in (1) yields the initial condition w(a) = f.(a). On solving equation (3) under this
condition, after some transformations we obtain the solution of the original integral equation
in the form

Asin[(A + B)x]
cos2[(A + B)x]

k2 _
m/ f@)cos" [N+ PB)t]d k= 3

/ ) [cos(Ax) — cos(At)|y(t) dt = f(x).

y(x) = fo(@) + f(@)

cos[(\ + B)z]

+
)

This is a special case of equation 1.9.2 with g(x) = cos(Ax).
fz(2) }

Solution: y(x) = )\ dr Lm(kx)

/w [A cos(Ax) + B cos(At)|y(t) dt = f(x).

This is a special case of equation 1.9.4 with g(z) = cos(\z). For B = —A, see equation 1.5.5.
Solution with B # —A:

signcos(Ax) d

y(@) = A+ B

{|cos()\x)’ A+B/ ‘cos(/\t)‘ A+B ft(t)dt}

/w [A cos(Az) + B cos(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A cos(Ax) and h(t) = B cos(ut) + C.

/ { A cos[Ai(z - t)] + A; cos[ Az (x - D)}y () dt = f(x).

The equation is equivalent to the equation

/ I{Bl sin[A(z — )] + By sin[Aa(z — )] }y(t) dt = F(x),

A A v
Bi=—, B=7 F@ =/ @t
A1 )‘2 a
which has the form 1.5.41. (Differentiation of this equation yields the original integral
equation.)
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9. / i cos’ [A(z - )]y(t) dt = f(x).

Differentiating yields an equation of the form 2.5.16:

y(@) - A / Sl - Oyt dt = f1(z).

Solution:

2 x
y(x) = fi(x) + % / sin[k(z — )] f1(t) dt, where k= V2.
10. / : [cos*(Az) - cos*(At)] y(t) dt = f(z), f(a) = f(a) = 0.

1d [ fi@) ]
A dz | sinAx) |

Solution: y(z) =—

11. / [A cos’(Az) + B cos’(At)|y(t) dt = f(z).
For B =—A, see equation 1.5.10. This is a special case of equation 1.9.4 with g(z) = cos?(A\z).
Solution:

2A 2B

i{ [cos(Ax)] A+B /I [cos(A)] A+B fl(t) dt}.

YO = AT B dn

12. / [A cos’(Az) + B cos*(ut) + Cly(t) dt = f(z).

This is a special case of equation 1.9.6 with g(x) = A cos>(Az) and h(t) = B cos*(ut) + C.

x
13. / cos[A(x — t)] cos[A(x + t)]y(t) dt = f(x).
a
Using the trigonometric formula
cos(a— ) cos(a+ ) = % [cos(2a) + cos(Zﬁ)] , a=xx, [B=MAt,
we reduce the original equation to an equation of the form 1.5.6 with A = B =1:

/ ’ [cos(2Az) + cos2At)|y(t) dt = 2 f(x).

Solution with cos(2Ax) > 0:

()_i{ 1 A HOY }
Y= 0 VeosAx) J, /cos@A) |

14. / : [A cos(Ax) cos(ut) + B cos(Bx) cos(vt)|y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Acos(A\z), hi(t) = cos(ut), g2(x) =
B cos(Bx), and hy(t) = cos(yt).
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15.

16.

17.

18.

19.

20.

21.

/ i cos’[A\(z - )]y(t) dt = f(x).

Using the formula cos® 3 = % cos 30 + % cos /3, we arrive at an equation of the form 1.5.8:

/ {4 cos[BA(@ — )] + 3 cos[A(z - )] }y(t) dt = f(x).

/ i [cos’(Az) - cos’ (D) y(t) dt = f(x),  f(a) = fi(a)=0.
fi(@) }

Solution: y(x) = I d
F Y =T U sin(Az) cos2(\z)

/ ” (A cos’(A\z) + B cos3()\t)]y(t) dt = f(x).

For B =—A, see equation 1.3.16. This is a special case of equation 1.9.4 with g(z) = cos*(\x).
Solution:

_ 34 qa _3B
y(x) = cos(Az)] A+B/ [cos(At)] A+B ft’(t)dt}.

1 d
A+B @{ [
/ i [cos*(Az) cos(uut) + cos(Bx) cos*(vt)|y(t) dt = f(z).

This is a special case of equation 1.9.15 with g (z) =cos>(\z), ki (t) =cos(ut), ga(x) = cos(3z),
and hy(t) = cos?(yt).

/ : cos*[A(z - O)y(t) dt = f(x).

Let us transform the kernel of the integral equation using the trigonometric formula cos* 3 =
% cos4f + % cos2/3 + %, where 3 = A(x —t), and differentiate the resulting equation with
respect to . Then we arrive at an equation of the form 2.5.18:

y(x) =\ / ’ {1 sin[4\(z - )] + sin[2A\(z — )] }y(b) dt = fL(x).

/ i [cos(Az) - cos(AD)] "y dt = f(x), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fl(a)=--- =
" (a) = 0.

1y 1 d n+l
Solution: y(z) = ()\n:“ sin(\x) [m %} f(x).

/w Veost —cos x y(t) dt = f(x).

This is a special case of equation 1.9.38 with g(z) = 1 -cosz.

Solution:
2 . d N2 [* sint f(t)dt
y(x):—smx(.——) —_—
7T sinz dx/ J, +/cost—cosz
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n [ YO,
. — = f(@).
Vvcost —cosx

Solution:
d % sint f(t)dt
y(x )— —— |

m dx cost—cosx

23. / (cos t — cos ) y(t) dt = f(x), 0<Ai<l1.

Solution:

_sin(m))
. (cost—cosxz)*’ k= A

. 1 d\2 [" sintf(t)dt
y(x)zksmm(sinxg) !

24. / w(cos“ x - cost t)y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = cos” x.

1d fu(@)
Soluti = —— 1.
olution: - y(z) w dz [sinxcos“‘1 x

25. /I (A cos* x + B cos* t)y(t) dt = f(x).

For B = —A, see equation 1.5.24. This is a special case of equation 1.9.4 with g(x) = cos” x
Solution:

y(x) = A-}-Bd {’cosx’ A+B/ |cost‘ A+Bf(t)dt}

Tyt dt
26. — = f(x), 0<A<l.
o (cost—cosx)

Solution:
sin(mA) d T sint f(t)dt

dz J, (cost—cosxz)l-*"

y(x) =

2. / (@-t) cosIA@ - Dy dt = @),  F(@) = f'(@) =0

Differentiating the equation twice yields

y(x) —2A / sin[A(z — )]y(t) dt — \? (x —t)cos[ Az — O]yt dt = fl ().

Eliminating the third term on the left-hand side with the aid of the original equation, we arrive
at an equation of the form 2.5.16:

y(x) — 2 /Z sin[A(z — )y(t) dt = £ (x) + N2 f(x).

28.

/ac COS()‘— .ac—t) y(t) dt = f(x).

va-t

Solution:

1 d [7cosh(Az- )

y(x )———x j NCET f@®dt.
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29.

30.

31.

32.

33.

x 2 _ 42
/ cos()\\/zw i2) S dt = f(@).
0 x? -
Solution: ( )
2.d [* cosh M2 -2
y(x )__E ; Nears — () dt.
* cos(A\VE— 22
/ CosOVE-22) by at = fea.
x tl - :L’z
Solution: ( )
2 d [ cosh(AVt?—z2
y(x) = - “rdr ). th(t)dt.

xT
/ [AzP + B cos”(At) + Cly(t) dt = f(z).
a
This is a special case of equation 1.9.6 with g(z) = Az” and h(t) = B cos”(\t) + C.
xT
/ [A cos”(Az) + Bt + Cly(t) dt = f(z).
a
This is a special case of equation 1.9.6 with g(z) = A cos”(\z) and h(t) = Bt® + C.
x
/ (Az> cos” t + BtP cos” z)y(t) dt = f(z).
a

This is a special case of equation 1.9.15 with g;(x) = Ax?, hi(t) = cos* t, go(z) = Bcos? z,
and hy(t) = t°.

‘ 1.5-2. Kernels Containing Sine ‘

34.

35.

36.

/ sinA\(@ - Oly(®) dt = fx),  fla) = f(a) = 0.
Solution: y(z) = — f2 (x) + A f(2).

/ " [sinlA@ - D] + b} y(t) dt = f().

Differentiating the equation with respect to x yields an equation of the form 2.5.3:

A [T 1
y(x) + 5 / cos[A(x —)]y(t) dt = Ef;(:c).

/I sin(Ax + Bt)y(t) dt = f(x).

For 3 = -, see equation 1.5.34. Assume that 3 # —\.
Differentiating the equation with respect to x twice yields

sin[(A + B)z]y(z) + A /z cos(Ax + Btyy(t) dt = f;.(x), (D)

{sin[(A + B)m]y(m)}; + Acos[(\ + Bxly(z) — A2 / sin(\x + Btyy(t)dt = f2 (z). (2)

a
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Eliminating the integral term from (2) with the aid of the original equation, we arrive at
the first-order linear ordinary differential equation

w; + Acot[(A + B)z]w = ;’x(x) + /\zf(oz), w = sin[(\ + B)z]y(x). 3)

Setting z =a in (1) yields the initial condition w(a) = f.(a). On solving equation (3) under this
condition, after some transformation we obtain the solution of the original integral equation
in the form

Acos[(A + B)x]
sin?[(\ + B)x]
A

k2 _
m/ F@)sin"“[(A + Bl dt, k;_)\+ﬂ,

37. / i [sin(Az) - sin(At)|y(t) dt = f(x).

y(x) = f (@) — f(@)

sin[(\ + B)x]

This is a special case of equation 1.9.2 with g(z) = sin(Ax).
Ja ()
)\ da: cos(\z) |

Solution: y(z) =

38. / i [Asin(Az) + Bsin(At)|y(t) dt = f(x).

This is a special case of equation 1.9.4 with g(x) = sin(Azx). For B = —A, see equation 1.5.37.
Solution with B # —A:

signsin(Az) d

y(@) = A+ B

{‘sm(/\x)‘ A+B/ ]sm()\t)‘ A+Bf(t)dt}

39. / i [Asin(Az) + Bsin(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A sin(Ax) and h(t) = B sin(ut) + C.

40. \/w{ﬂ sin[)\(m - t)] - Sin[ﬂ(w - t)]}y(t) dt = f($).

It is assumed that f(a) = f.(a) = fV.(a) = fI! (a) =
Solution: " 2 2\ £11 2,2
A =N

y(r) = , f=f).

a1, / {Assin[Ay(@ - )] + Az sinlhy(@ - O]} y(®) dt = f@), f(a) = fola) =0

This equation can be solved in the same manner as equation 1.3.41, i.e., by reducing it to a
second-order linear ordinary differential equation with constant coefficients.

Let
AI)\Q + Az)\l

A=\ ———.
172 A])\l +A2>\2

1°. Solution for A > 0:

(AiA1 + A \)y() = fr(x) + Bf(x) +C /I sinh[k(z — )] f(?) dt,

1
k=vVA, B=A+X+)}, C:T[ 2+ (A + DA + AN
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2°. Solution for A < 0:

(Aih + Ad)y(@) = () + Bf@) + C / sin[k(z — O] () dt,
1

k=vV-A, B=A+)X+), C=
! V-A

[A% + (AT + MDA + ATA3].
3°. Solution for A = 0:
(Ah + Ada)y() = 170 + (3 + N f (@) + XA / (@~ O f () dt.

4°. Solution for A = oo:

oz T+ XD f1 + XSS
AN+ AN ’

y(x) = = f().

In the last case, the relation A;A; + A \» = 0 holds and the right-hand side of the integral

equation is assumed to satisfy the conditions f(a) = f.(a) = f2.(a) = 2 (a) =0.

Remark. The solution can be obtained from the solution of equation 1.3.41 in which the
change of variables A\, — i\, Ay — —iAy, i> =—1 (k= 1,2), should be made.

42, /I {A sin[A(xz - t)] + B sin[u(x - t)] + C sin[B(x - t)]}y(t) dt = f(x).

It is assumed that f(a) = f.(a) = 0. Differentiating the integral equation twice yields
(AX + Bu+ CB)y(x) - / {AN? sin[Az - )] + By sin[pu(z - )] py(t) dt

_op? / sin[ Az - Oly(t) dt = f11, ().

Eliminating the last integral with the aid of the original equation, we arrive at an equation of
the form 2.5.18:

(AX + Bp + CByy(x) + / : {A(B* - N sin[Mz - 1)]
+ B(3* - p?)sin[p(x - )]}y dt = f1.(x) + B f(@).

In the special case A\ + Bu + C(3 = 0, this is an equation of the form 1.5.41.

8. [ swte-blybdt=f@,  f@ = fi@ = fa@ =0
Differentiation yields an equation of the form 1.5.34:
r 1
/ sin[2\(z — H)]y(t) dt = Xf;(a:).

Solution: y(x) = SA2f1 (x)+2f1(x).

44, / i [sin*(Az) - sin®(At)] y(t) dt = f(z), f(a) = f(a) = 0.

1 d /
Solution: y(x) = N [gﬁéi)x)] .
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45.

46.

47.

48.

49.

50.

51.

/ ) [Asin*(Az) + B sin’(At)|y(t) dt = f(x).

For B =—-A, see equation 1.5.44. This is a special case of equation 1.9.4 with g(z) = sin?(A\z).
Solution:

1 d . _2A o _2B_
(CC) A+Bd {’Sln(Ax)‘ A+B/a |51n()\t)| A+B ft(t)dt}

/ ) [Asin*(Az) + B sin®(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A sin*(\x) and h(t) = B sin*(ut) + C.

/ sin[A(z — t)] sin[A(z + )]y(t) dt = f(x), fa) = fi(a) =
Using the trigonometric formula
sin(a— B) sin(av + B) = 3 [cos(2B) —cosQa)|, a=Az, B=At,

we reduce the original equation to an equation of the form 1.5.5 with A= B =1:

/r [cos(2Ax) — cos(2AD) | y(t) dt = -2 f ().

Solution: y(z) =

{ fo(x) }
)\ dz sin(2\x)
/ ) [sin(Az) sin(ut) + sin(Bx) sin(vt)| y(t) dt = f(x).

This is a special case of equation 1.9.15 with g, (z) = sin(\z), k() = sin(ut), g>(x) = sin(Bz),
and h;(t) = sin(~t).

/ i sin’[A(x - t)]y(t) dt = f(x).

It is assumed that f(a) = f (a) v (a)= f;’;z(a) =
Using the formula sin® 3= —7 sin34 +3 7 sin 3, we arrive at an equation of the form 1.5.41:

/ {~4 sin[3A(@ - )] + 3 sin[Mz - O] }y() dt = f().

/ ) [sin’(Az) -sin’ A y@®) dt = f(),  fla) = fi(a) =

This is a special case of equation 1.9.2 with g(x) = sin*(\x).

/ ) [Asin’(Az) + B si’(A)]y(t) dt = f(x).

This is a special case of equation 1.9.4 with g(x) = sin’(\z).
Solution:

signsin(A\z) d

y(@) = A+B

{{sm()\x)| A+B/ |sm()\t)| A+B ft(t)dt}
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52,

53.

54.

55.

56.

57.

/ i [sin*(Az) sin(ut) + sin(Bz) sin*(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with g; () = sin?(\x), h,(t) = sin(ut), g2(z) = sin(3z),
and hy(t) = sin’(vt).

/ i sin*[A\(z - £)]y(t) dt = f(x).

It is assumed that f(a) = fl(a)=---= fIV (a)=0.
Let us transform the kernel of the integral equation using the trigonometric formula
sin* 8= % cos 45— cos 23 + , where 3 = A(z —t), and differentiate the resulting equation

with respect to x. Then we obtaln an equation of the form 1.5.41:

/ { = sin[4X(x —t)] + sin[2\(z — 1)] }y(t) dt = fl(x).

/ : sin"[Az -ty dt = f(x), n=23,...

It is assumed that f(a) = fi(a)=--- = f{Y(a) = 0.
Let us differentiate the equation with respect to = twice and transform the kernel of the
resulting integral equation using the formula cos? 3 = 1 —sin? 3, where 3 = A\(x —t). We have

“\n? / sin [\ — H)]y(t) dt + N>n(n—1) / sin" 2 [(\x — t)]y(t) dt = fI (x).

Eliminating the first term on the left-hand side with the aid of the original equation, we obtain

/ ’ sin" [ Az — t)]y(t) dt = # (£ (@) + Nn? f(2)].

This equation has the same form as the original equation, but the degree characterizing the
kernel has been reduced by two.

By applying this technique sufficiently many times, we finally arrive at simple integral
equations of the form 1.1.1 (for even n) or 1.5.34 (for odd n).

/fﬂ sin()\\/ x -t )y(t) dt = f(x).

Solution:
2 d*> [* cosh ()\\/ t)

y(x) = N di —— " f() dt.

a

/a: Vvsinx —sint y(t) dt = f(x).

Solution:
()= 2 cosx( i)z/‘"” cost f(t)dt
B8 = s cosx dx o Vsinz—sint
x
y(t) dt
= f(2).
a VSinx-sint
Solution:

e )__i T cost f(t)dt

T dr sinx —sint
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58.

59.

60.

61.

62.

63.

/ I(sin:z; —sint) y(t) dt = f(x), 0<A<l

Solution:

d )2 T cost f(t)dt . sin(m\)

=k ) =
y(@) cose ( . (sinz—sint)? TA

cosx dx

/I(sin“ x —sin® t)y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = sin* x.
1 d !
Solution: y(r) = —— & .
u dx | cosx sint!

/ w{A| sin(Az)|* + BlsinAD)|* }y(t) dt = f(x).

This is a special case of equation 1.9.4 with g(x) = | sin(Ax)|*.
Solution:

1 d _Ap 7 __Bp
y@) = o { |sin(Az)| A+B / |sin(\t)| A*B f](t) dt}.
* y(t) dt
o [sin(Ax) —sin(A\t)]~
This is a special case of equation 1.9.42 with g(z) = sin(Ax) and h(zx) = 1.
Solution:

= f(x), O<p<l.

_ Asin(mp) i r cos(At) f(t) dt

y(z) dz J, [sin(Az)—sin(At)]'-+"

/ (x - t) sin[A(z - D]y (t) dt = f(x), f@) = fr(a) = f(a) = 0.

Double differentiation yields

2\ /w cos[\(x — t)]y(t) dt — X? /w(x —t)sin[Az -]yt dt = fI ().

Eliminating the second integral on the left-hand side of this equation with the aid of the

original equation, we arrive at an equation of the form 1.5.1:

e 1
/ cos[ Az —t)]y(t) dt = X (@) + N f()].

Solution:
_ 1 " / l 3 ¢
y(x) = DN (L) A [ () + 5 A ’ f@)dt.

/ ) [Az? + Bsin?(At) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = Az” and h(t) = Bsin"(\t) + C.
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64.

65.

/ [Asin”(Az) + Bt® + Cly(t) dt = f(z).
This is a special case of equation 1.9.6 with g(z) = Asin”(\z) and h(t) = Bt® + C.
/ (Aa:>‘ sin* t + BtP sin” w)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g(z) = Az, h(t) = sin* t, go(x) = Bsin" ,
and ha(t) = t°.

‘ 1.5-3. Kernels Containing Tangent ‘

66.

67.

68.

69.

70.

71.

72.

/ ’ [tan(Az) — tan(At) | y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = tan(\z).
1 d
Solution: y(x) = N [cosz()\x)f (:v)]
x

/ i [A tan(Az) + B tan(At)|y(t) dt = f(x).

For B =-A, see equation 1.5.66. This is a spemal case of equatlon 1.9.4 with g(x) = tan(\x).

T E %{ [tan(\z)]~ B / [tan(At)]~ B H® dt}

Solution: y(z) =

/w [A tan(Az) + B tan(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A tan(Azx) and h(t) = B tan(ut) + C.

T
/ [tan’(A\z) - tan*(\t) | y(¢) dt = f().
a
This is a special case of equation 1.9.2 with g(x) = tan>(\z).

cos’(\x) f! (x)] '

Solution: y(zr) = dm{ 2 sin(Az)

/ ) [Atan*(Az) + B tan*(At)|y(t) dt = f ().

For B =-A, see equation 1.5. 69 Thisisa special case of equation 1 9.4 with g(x) = tan>(\x).

Solution: y(x) = {|tan()\x)| A+B/ ‘tan()\t)| A+B fl@® dt}

1
A+ B dz
/ [A tan’(Az) + B tan*(ut) + Cly(t) dt = f(z).

This is a special case of equation 1.9.6 with g(x) = A tan?(Az) and h(t) = B tan?(ut) + C.

/ i [tan(Az) - tan(AD)] "y(¢) dt = f(x), n=1,2,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = f.(a) = ---
fP(@)=0

n+l
Solution: y(x) = |:COSZ()\£U)%:| f(x).

Al cos(A\x)
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73.

74.

75.

76.

77.

78.

79.

80.

81.

/I Vtanz - tant y(t) dt = f(x).

Solution:
0= 2 (oot ) [ SO
Y= ot dx o costy/tanz —tant
* y(t)dt
—F = f(®).
a Vtanx -tant
Solution:

oL [f jwd
Y mdr J, cos2ty/tanx —tant

/ I(tanac —tant) y(t) dt = f(x), 0<A<l.

Solution:

y(x) =

sin(m\) (cos2 d )2/“ f@dt

r— )
T Cos? x dx cos? t(tan x — tan t)*

/w(tan“ z — tan* t)y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = tan” x.
1 d p+l /
Solution: y(z) = —— {cosixljg(x)}
wdx sint1 ¢

/a: (Atan* = + B tan* t)y(t) dt = f(x).

For B = —A, see equation 1.5.76. This is a special case of equation 1.9.4 with g(z) = tan* z.
Solution:
Ap

d a5 [ ~A g
A+B%{[tan(/\x)] + / [tan(AD)] A+ ft(t)dt}'

y(x) =

z y(t) dt
o [tan(Ax) — tan(A\t)]»

This is a special case of equation 1.9.42 with g(x) = tan(Ax) and h(z) = 1.
Solution:

= f(x), O<pu<l.

y(x)

_ Asin(rp) d /” f@)dt
- dx J, cost(At)[tan(\x) —tan(\t)]1#

/ : [AzP + B tan”(\t) + Cly(t) dt = f().
T;is is a special case of equation 1.9.6 with g(z) = Az® and h(t) = B tan"(\t) + C.
/ : [Atan”(Az) + BtP + Cly(t) dt = f().
T:lis is a special case of equation 1.9.6 with g(x) = A tan”(\z) and h(t) = Bt® + C.
/ ) (Az> tan* t + BtP tan” z)y(t) dt = f(z).

a

This is a special case of equation 1.9.15 with g,(z) = Az, h(t) = tan* t, go(z) = Btan” x,
and hy(t) = t°.
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‘ 1.5-4. Kernels Containing Cotangent ‘

82.

83.

84.

85.

86.

87.

88.

89.

/ i [cot(Ax) — cot(At)|y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = cot(\z).

Solution: y(z) = —% % [sin®(A\z) fL(2)].

/ ” [A cot(Az) + B cot(At)|y(t) dt = f(x).

For B =—A, see equation 1.5.82. This is a special case of equation 1.9.4 with g(x) = cot(A\x).

1 d ﬁ * % /
A+B%{[tan()\l‘)} + / [tan(AD)] A+ ft(t)dt}

Solution: y(z) =

/I [A cot(Ax) + B cot(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A cot(Azx) and h(t) = B cot(ut) + C.

/ ) [cot?(Az) — cot’(At) | y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = cot>(\z).
d [sin*(\x)fl(x)
dr| 2Xcos(\x) |

Solution: y(z) =

/ ) [A cot’(Ax) + B cot’(At)|y(t) dt = f(x).

For B =-A, see equation 1.5.85. This is a special case of equation 1.9.4 with g(z) = cot’(\x).

2A g 2B
|tan(Az)| A+B / |tan(At)| 4B f](t) dt}.

1
Solution: y(z) = 1B %{

/ ) [A cot’(Ax) + B cot’(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A cot>(Az) and h(t) = B cot?(ut) + C.

/ i [cot(Ax) - cotAL)| "y(D) dt = f(x), mn=1,2,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fl(a)=--- =

fiM(a) = 0.
Solution: y(z) = D"

Al sin?(Ax)

d n+l
{Sinz()\z)—} f(x).
dx

/ I(cot“ x — cot” Hyy(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = cot” x.
1 d [sin’“rl xf;(x)}

Solution: y(z) =——
u dx cost 1 g
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90.

91.

92.

93.

/ “(Acot @ + B eot* t)y(t) dt = f(x).

For B = —A, see equation 1.5.89. This is a special case of equation 1.9.4 with g(z) = cot* z.
Solution:

1 d Ap _Bup_
y(x) = A+B%{|tanm|"‘+3/ |tant’A+Bft'(t)dt}.

x
/ [AzP + B cot”(At) + Cly(t) dt = f(x).
a
This is a special case of equation 1.9.6 with g(z) = Az” and h(t) = B cot” (\t) + C.
/ [Acot”(Az) + BtP + Cly(t) dt = f().
This is a special case of equation 1.9.6 with g(z) = A cot”(\x) and h(t) = Bt® + C.

/ (Az> cot* t + BtP cot” z)y(t) dt = f(z).

This is a special case of equation 1.9.15 with g,(z) = Az, hi(t) = cott t, g(x) = Beot” z,
and hy(t) = t°.

‘ 1.5-5. Kernels Containing Combinations of Trigonometric Functions ‘

9.

95.

96.

97.

/w {cos[A(x - t)] + A sin[p(z - ©)]}y(t) dt = f(x).

Differentiating the equation with respect to = followed by eliminating the integral with the
cosine yields an equation of the form 2.3.16:

y(@) - A+ A2 / sin[p(e — O y(t) dt = f(x)— Auf(@).

/w [A cos(Ax) + Bsin(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A cos(Ax) and h(t) = B sin(ut) + C.

/w [Asin(Az) + B cos(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A sin(Ax) and h(t) = B cos(ut) + C.

/ ’ (A cos’(A\z) + B sinz(ut)]y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A cos>(Az) and h(t) = B sin?(ut).
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98. / i sin[A(z - t)] cos[A(z + t)]y(t) dt = f(x),  f(a)= fl(a)=0.

Using the trigonometric formula
sin(a — 3) cos(a + 3) = % [sin(Za) - sin(ZB)], a=\x, (=M,

we reduce the original equation to an equation of the form 1.5.37:

/ ’ [sin(2Az) — sin(2A8) | y(t) dt = 2 f ().

1 d /
Solution: y(zx) = " [%}

99. /w cos[A(x - t)] sin[A(x + t)]y(t) dt = f(x).

Using the trigonometric formula
cos(a — B sin(a + B) = & [sin2a) +sin(2B)], a=Az, B=At,
we reduce the original equation to an equation of the form 1.5.38 with A= B = 1:

/I [sin(2/\a:) + sin(Z)\t)] y() dt = 2 f(x).

Solution with sin(2Ax) > 0:

()_i{ 1 @ ft’(t)dt}
PO =00 | smrn) J, VemaD |

100. /w [A cos(Ax) sin(ut) + B cos(Bx) sin(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Acos(Ax), hi(t) = sin(ut), g(x) =
B cos(Bx), and hy(t) = sin(~t).

101. / 3 [A sin(Az) cos(pt) + B sin(3x) cos(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Asin(Ax), hi(t) = cos(ut), g(x) =
Bsin(Bx), and hy(t) = cos(~t).

102. /w [A cos(Ax) cos(ut) + B sin(Bz) sin(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = Acos(A\z), hi(t) = cos(ut), go(x) =
Bsin(8z), and h;(t) = sin(~t).

103. / i [A cosP(Ax) + Bsin? (ut)|y(t) dt = f().

This is a special case of equation 1.9.6 with g(z) = A cos?(\x) and h(t) = B sin”(ut).
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104.

105.

106.

107.

108.

109.

110.

111.

112.

/ [Asin®(Az) + B cos” (ut)|y(t) dt = f(x).
This is a special case of equation 1.9.6 with g(z) = A sin®(\x) and h(t) = B cos” (ut).
/ (Az> cos” t + Bt? sin” x)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Az*, hi(t) = cos” t, gy(x) = Bsin” x,
and hy(t) = t°.

/I (Ax)‘ sin” t + Bt® cos” z)y(t) dt = f().

This is a special case of equation 1.9.15 with g,(z) = Az, hy(t) = sin* ¢, g(x) = Bcos? z,
and ha(t) = t°.

/ i {(z - t)sin[A(z - )] - Mz - t)* cos[A(z - )]} y(t) dt = f(z).

Solution:

y(x) = / g(t)dt,

1 d2 6 t
g(t) = /% P (W + A2) / (t =725 2\t = )] f(7) dT.

Z (sin[A(x - 1)]
/ {7 - Acos[\(z - t)]} y(t) dt = f(x).

x—-1

where

Solution:

1 (& S
y(x) = 7 (@ + AZ) / sin[\(z — )] f(t) dt.

/w [sin()\\/a: —t) -\Vzx —tcos()\ x —t)]y(t) dt = f(x), f(a)= f;(a) =0.

Solution:

4 & [ cosh(AWz-t)

y(x) = 0 dad i —m f@)dt.

/ [A tan(Az) + B cot(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A tan(Azx) and h(t) = B cot(ut) + C.
/ [A tan*(Az) + B cot?(ut)| y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = Atan*(Ax) and h(t) = B cot*(ut).

/ i [tan(Ax) cot(ut) + tan(Bx) cot(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with gy (x) = tan(Ax), hi(t) = cot(ut), g»(x) = tan(Sx),
and h;(t) = cot(~t).
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113.

114.

115.

116.

117.

118.

/ ) [cot(Ax) tan(ut) + cot(Bx) tan(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with g (x) = cot(Ax), hi(t) =tan(ut), g»(x) = cot(Bz),
and hy(t) = tan(vt).

/ ’ [tan(Ax) tan(ut) + cot(Bx) cot(vt) | y(t) dt = f(x).

This is a special case of equation 1.9.15 with gy (x) = tan(Az), hi(t) = tan(ut), g»(x) = cot(Sx),
and hy(t) = cot(~t).

/m (A tan®(\z) + B cot” (ut)|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = Atan®(\z) and h(t) = B cot” (ut).

xT
/ [A cotP(A\z) + B tan” (ut)| y(t) dt = f().
a
This is a special case of equation 1.9.6 with g(z) = A cot’(\z) and h(t) = B tan” (ut).
x
/ (Az™ tan* t + BtP cot” z)y(t) dt = f(z).
a

This is a special case of equation 1.9.15 with g,(z) = Az, h(t) = tan* t, go(z) = Bcot? x,
and hy(t) = t°.

/ (Az> cot” t + BtP tan” z)y(t) dt = f(x).

This is a special case of equation 1.9.15 with g,(z) = Az, h(t) = cot* t, go(x) = Btan? x,
and ha(t) = t°.

1.6. Equations Whose Kernels Contain Inverse

Trigonometric Functions

‘ 1.6-1. Kernels Containing Arccosine ‘

/ ) [arccos(Ax) — arccos(Ab)| y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = arccos(\x).
1
Solution: y(z) = — L [\/1 PP f;(:c)} .
A dx
/ [A arccos(Ax) + B arccos(At)|y(t) dt = f(x).

For B=-A, see equation 1.6.1. This is a special case of equation 1.9.4 with g(z) = arccos(\x).
Solution:

| P
y(x) = 1+5 %{ [arccos(Az)] /a [arccos(At)] i@ dt}.
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10.

/ ) [A arccos(Ax) + B arccos(ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = arccos(Ax) and h(t) = B arccos(ut) + C.

/w [arccos(Ax) — arccos(At)] "yt)dt = f(x), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fl(a)=--- =

fi(a) = 0.
Solution:

(_1)n d n+l
Y@) = ———— (V 11— A2 %) f@@).

/ ’ \/ arccos(A\t) — arccos(\x) y(t) dt = f(x).

This is a special case of equation 1.9.38 with g(z) = 1 — arccos(Ax).

Solution:
2 d\* [* o () dt
y(@) = ;99(30) (M%) . Varccos(\) —arccos(\z)’ @) = 1—N2g2
® y(t) dt
o varccos(\f) — arccos(Axr) f@).
Solution:
Nd [* PO F(t) dt

1
© wdx J, +/arccos(\t) —arccos(\x)’ ) = V1 N2

/ ” [arceos(At) — arccos(Az)| “y(t) dt = f(z), 0<p<l.

Solution:
o (AN [ p()f (1) dt
y(@) = ko(x) o(x) dz . larccos(\t) — arccos(Ax)]#’
@)= 1 _sin(mp)
TV T T

/ ” [arccos*(Ax) — arccos”(At)|y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = arccos*(\x).

li{fé(m) 1—)\21‘2]

Solution: y(z) =

Mt dx | arccostl(\x)
* y(t) dt
= ’ 0 1.
/a [arccos()\t) - al'CCOS()\Q;)] © f(@) < p<
Solution:
Asinmp) d - f* P f(t) dt |
y(r) = —————

dz J, [arccos(A\t) —arccos(Az)]!-+’ Pl2) = V122
/ [A arccos®(Az) + B arccos” (ut) + Cly(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A arccos”(\x) and h(t) = B arccos” (ut)+C.
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‘ 1.6-2. Kernels Containing Arcsine ‘

11.

12.

13.

14.

15.

16.

17.

/ ) [aresin(Ax) — arcsin(At)| y(t) dt = f(x).

This is a special case of equatlon 1.9.2 with g(z) = arcsin(Ax).

Solution: y(z) = —— {\/1 ~ N2z f! (x)]

/ ’ [A aresin(Az) + B arcsin(At)|y(t) dt = f(x).

For B=-A, see equation 1.6.11. This s a special case of equation 1.9.4 with g(x) = arcsin(\x).
Solution:

sign x
A+ B dx

A x B
y(x) = {|arcsin()\9c)f_m / |arcsin()\t)|_m i@ dt}.

/ i [A arcsin(Az) + B arcsin(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A arcsin(Ax) and h(t) = B arcsin(ut) + C.

/ i [aresin(Az) — arcsin(At)] "y)dt = f(x), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fi(a)=--- =
fi(@)=0
Solution:

~ 1 - zi n+l
W= e (T ) @)

/ ” \/aresin(Ax) — arcsin(A\t) y(t) dt = f(x).

Solution:

=2 ()( 1 d>2 @ o) f(t) dt ) = 1

POZ TP\ o) do JaresinO) —aresin(\) o VIR

® y(t) dt ~
o +Varesin(Ax) — arcsin(\t) = f@):
Solution:
_Ad [ P f() dt _
Y= T « Varcsin(Q\r) — arcsin(A\f)’ @) = VA

/ ’ [aresin(Ax) - arcsin(/\t)]”y(t) dt = f(x), O<p<l.

Solution:

y(a:)—kso@)( I d >2 / ’ Q) f(t) dt

(z) dz [arcsin(A\z) — arcsin(At)]#’
(@) = 1 _sin(mp)
LV T
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18.

19.

20.

/ ) [aresin®(Ax) — arcsin®(At)|y(¢) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = arcsin”(A\x).

1 d {f;(aj) 1—)\2362]

Solution: y(z) = —

Apt dx arcsin®~ ! (\x)
* y(t) dt
= ’ 0 1.
\/a, [arcsin()\q:) - al‘csin()\t)] © f(a:) <p<
Solution:
V(@) = Asin(rp) d o [* PO f(t) dt . |

V1-222

dz J, [arcsin(Ax)— arcsin(At)]'-#’

/w (A arcsin®(Azx) + B arcsin” (ut) + Cly(t)dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A arcsin® (\x) and h(t) = B arcsin” (ut)+C.

‘ 1.6-3. Kernels Containing Arctangent ‘

21.

22,

23.

24,

/ ” [arctan(Ax) — arctan(At)| y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = arctan(A\x).

Solution: y(z) = %% [(1+ X2 fl(2)].

/ i [A arctan(Az) + B arctan(At)| y(t) dt = f(x).

For B=-A, see equation 1.6.21. This is a special case of equation 1.9.4 with g(x) =arctan(\x).
Solution:

_ signz d
Y= A B @

A rz B
{ ’arctan(Ax)Fm / |arctan()\t)|_mft'(t) dt}.

/ ) [A arctan(Ax) + B arctan(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A arctan(Ax) and h(t) = B arctan(ut) + C.

/ ’ [arctan(Ax) — arctan(\¢)] "y@t)dt = f(x), n=12,..

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fl(a)=--- =
f(a) = 0.
Solution:
1

5 d n+l
Nl (1 + \2a2) <(1 *Aw )%) J@).

y(x) =
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25.

26.

27.

28.

29.

30.

31.

/ i \/arctan(Azx) — arctan(At) y(t) dt = f(x).

Solution:
) __()< 1 d)2 g p()f (1) dt PRSI
o o o(x) dx ) J, +/arctan(Az)—arctan(At)’ L I
® y(t) dt _
« Varctan(\z) — arctan(\f) f@.
Solution:
! p@) f(t)dt 3
y(@) = dx . Varctan(\z) — arctan(\f) plr) = 1+ X222

/ VvVt arctan(y/ n ~t )y(t) dt = f(x).

The equation can be rewritten in terms of the Gaussian hypergeometric function in the form

I
[NS][98)

/ (x—t)”’lF(oz, B,y 1— %)y(t) dt=f(z), where a=1 fB=1, ~
See 1.8.86 for the solution of this equation.

/ i [arctan(Az) — arctan(\t)| “y(t) dt = f(z), 0<p<l.

Solution:
() = k@) ) [ (D)) di
Y v (x) dz . larctan(Az) —arctan(A\t)]»’
_ 1 _ sin(mp)
QP(I)_1+)\2:E2’ k= T

/ ’ [arctan*(Ax) — arctan®(At)|y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = arctan”(A\x).

2.2\ f/
Solution: y(x) = ! [M}

A dx | arctan® T (\x)
’ y(t) dt
= ) 0 1.
/a, [al‘ctan(,\g:) — arctan( )\t)] z = f@ <u<
Solution:
Asin(mp) d - [7 e) f(t)dt
R () =

dx J, [arctan(A\z)—arctan(A\t)]-+’ 1+ M222°

/ i [A arctan®(Az) + B arctan” (ut) + C|y(t) dt = f().

This is a special case of equation 1.9.6 with g(z) = A arctan®(\z) and h(t) = B arctan” (uut)+C.
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‘ 1.6-4. Kernels Containing Arccotangent ‘

32. / ) [arccot(Ax) — arccot(At)| y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(z) = arccot(Az).

d [(1+X%2?) fi(z)].

Solution: y(z) = N s
XL

33. / ) [A arccot(Ax) + B arccot(At)|y(t) dt = f(x).

For B=-A, see equation 1.6.32. This is a special case of equation 1.9.4 with g(x) =arccot(\x).
Solution:

A qa B
[arccot(\x)]  A+B / [arccot(At)] A+B f{(t) dt}.

1 d
Y @{
34. / ® [A arccot(Ax) + B arccot(ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A arccot(Ax) and h(t) = B arccot(ut) + C.

35. / i [arccot(Ax) — arccot(At)| “y(t) dt = f(z), n=12,...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fl(a)=--- =
fiM(a) = 0.
Solution: ol
ya) = ((1 +\a?) —) f@)
Al (1 + A222) dx '

36. / ’ \/ arccot(\t) — arccot(Ax) y(t) dt = f(x).

Solution:
@)= ()(Li)z j—-1 0T @)= s
V) =ve o(x) dx o varccot(\t) — arccot(Ax) = e
@ y(t) dt _
37. o Varccot(\l) —arccot(\x) f@).
Solution:
()_ii ‘ (&) f(t)dt @=—L
=i . varccot(\t) — arccot(Az) = e

38. / i [arccot()\t) - arccot()\a:)]”y(t) dt = f(x), 0<p<l.

Solution:
) 1odN? e P f(t) dt
y<x>_w<z>(m %) / [arccot(\t) — arccot(Aa) ]’
I S D)
p(r) = 1+ \222° k= T

© 1998 by CRC Press LLC



39.

40.

41.

/ i} [arccot* (Ax) — arccot*(At)|y(t) dt = f(x).

This is a special case of equation 1.9.2 with g(x) = arccot(\z).

1 d {(1 + A%Z)f;(x)}

Solution: y(z) =

M dzx | arccot"T(Ax)
b t) dt
/ y®) L =f@), O<p<l
a |arccot(At) — arccot(Ax)]
Solution:
_ Asin(rp) d r e f(t)dt NE 1
y(@) = dx J, [arccot(\t) —arccot(\x)]i-+’ (2) 1+ \222

/ ’ (A arccot®(\xz) + B arccot” (ut) + Cly@)dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A arccot’ (\x) and h(t) = B arccot” (ut)+C.

1.7. Equations Whose Kernels Contain Combinations of

Elementary Functions

‘ 1.7-1. Kernels Containing Exponential and Hyperbolic Functions ‘

1.

/ i e ® D! Ay cosh[Ai(z - t)] + A; cosh[ Xy (z - )] }y(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.8:

/r { Ay cosh[Ai(z — )] + A cosh[ o (@ — D] Jw(t) dt = € f(x).

/ e* ™ cosh’[A(z - t)]y(t) dt = f(x).
Solution:

2 x
Y@ = pla)- 2 / OO sinh[k(r - Dlp@) dt, k=MW @) = fi0) - uf @),

/ et cosh?[(A\(z - H)]y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.15:

/ cosh®[\(z — O)]w(t) dt = e f(x).

a

/ ) e* ™ cosh*[A(x - )]y (t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.19:

/ ’ cosh*[A\(z — ) w(t) dt = e f(x).
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10.

11.

12.

/ e* @ [cosh(Az) — cosh(At)| “y(#) dt = f(z), n=12,...
Solution:

_ 1 4
sinh(\x) dz

n+l
y(x) = e** sinh(\x) { } F.(x), Ey(x)=e"" f(x).

Ann!

/ e®Y\/cosh x — cosh t y(t) dt = f(x), f(a) =0.

a

Solution: ‘

1 d )2 T e Htsinht f(t)dt
« Vcoshz —cosht

2
= Z el ginh (__
y(@) 71'6 ST sinhx dx
z  er@ty(t) dt

a Vcoshx —cosht

Solution:

= f(@).

1 T —pt o3 h
(@) = _ewi e M sinht f(t)dt
s

dz J, +/coshz—cosht

/ e ™ (coshx - cosh ) y(t) dt = f(x), O0<A<L

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.23:

/' (cosh z — cosh ) w(t) dt = e f(x).

/a: [Ae#(m_t) + B cosh™® :1:] y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Ae#*, hi(t) = e, g2(x) = B cosh™ z,

and hy(t) = 1.

/ i [Ae* ™Y + B cosh™ t]y(t) dt = f(z).

This is a special case of equation 1.9.15 with g;(z) = Aet*, hi(t) = e, go(z) = B, and

ha(t) = cosh™ ¢.

x
/ e*® Y (cosh> z — cosh™ t)y(t) dt = f(x).
a

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.24:

/z(cosh’\ x —cosh™ tyw(t) dt = e f(x).

/ e*™ (A cosh* x + B cosh™ t)y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.25:

/ (A cosh® = + B cosh® tw(t)dt = e f(a).
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13.

14.

15.

16.

17.

18.

19.

20.

z er@Dyt) dt
o (coshx —cosh t)*

Solution:

=f($), 0<A<l.

sin(m)) . d [ e* sinht f(t)dt
(& —_ .
dz (cosh z —cosh t)!-*

y(x) =

x
/ et@d {Al sinh[\;(x - t)] + A, sinh[\;(x - t)]}y(t) dt = f(x).
a
The substitution w(x) = e **y(x) leads to an equation of the form 1.3.41:

/ ’ { Ay sinh[Ay(@ — )] + Az sinh[Ay(z — )] Jw(t) dt = e f(x).

/ " ere ) Ginb? Az - Dly(®) dt = (@)

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.43:

/ : sinh?[A(z — t)]w(t) dt = e* f(x).

a

/ “ e* @ ginh’ [ A(z - Hy(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.49:

/I sinh® [ \(z — t)]w(t) dt = e f(x).

/ * gt sinh”[A(z - t)]y(t) dt = f(x), n=23,...

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.54:

/ : sinh™[A(z — ) w(t) dt = e f(x).

/ " 4D sinh (kv/z = )y(t) dt = f(z).

Solution:
y(x) = —euwd_z * et eos(kvir-t)
rk dz? J, V-t

ft) dt.

/ e*@V/sinh  — sinh t y(t) dt = f(x).

Solution:

2 d\2 [T e cosht f(t)dt
y(@:—e‘”coshm( ) / ¢ cosht f(t)dt
™ a

coshz dr V/sinhz —sinht
z er@ty(t) dt

o Vsinhz—sinht

Solution:

= f(z).

1 ,,d [%ettcosht f(t)dt
y@y= —e o | .
T dz J, sinh x — sinh ¢
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21.

22,

23.

24,

25.

26.

27.

28.

/ e**P(sinhz —sinh ) y(t) dt = f(x), O<A<Ll

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.58:

/ I(sinh x —sinh ) w(t) dt = e f(z).

/ e*®V(sinh> - sinh™ t)y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.59:

/z(sinh’\ x —sinh® tyw(t) dt = e f(x).

/ et@t (A sinh® = + B sinh™ t) y(t) dt = f(x).
a

The substitution w(x) = e **y(x) leads to an equation of the form 1.3.60:

/ (A sinh” z + B sinh® t) w(t)dt = e f(x).

[ [Ack « Bsint® ]yt dt = Fo

This is a special case of equation 1.9.15 with g;(x) = Ae*, hi(t) = e, go(x) = B sinh™ z,
and hy(t) = 1.

/m [Ae#(m-t) + B sinh* t]y@®) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = Aet®, hi(t) = e, go(z) = B, and
ha(t) = sinh™ t.

T et@ty(t)dt
/ YAl . 0<Aa<l.

(sinh = - sinh t)*

Solution:
sin(m\) d [* e*tcosht f(t)dt

= HE___ .
y(@) T ¢ dx (sinh & — sinh £)1-*

/ e*®? (A tanh* = + B tanh™ t)y(t) dt = f(x).
The substitution w(x) = e **y(x) leads to an equation of the form 1.3.77:

/ (A tanh® z + B tanh® Hw(t)dt = e f(x).

/ e*™?(Atanh* z + B tanh® t + C)y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.9.6 with g(z) = A tanh® z,
git)=B tanh” t + C:

/ (A tanh® x + B tanh” ¢ + C) w(t)dt = e f(x).
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29.

30.

31.

32.

33.

34.

/ i [Ae* ™ + B tanh™ ] y(t) dt = f(x).

This is a special case of equation 1.9.15 with g|(z) = Aet®, hi(t) = e, g2(x) = B tanh™ z,
and hy(t) = 1.

/ ’ [Aer=? + B tanh™ t]yt) dt = f(x).

This is a special case of equation 1.9.15 with g|(z) = Ae*®, hi(t) = e, go(x) = B, and
ho(t) = tanh* ¢.

/ et ™t (A coth™ z + B coth? t)y(t) dt = f(x).
The substitution w(x) = e **y(x) leads to an equation of the form 1.3.90:

/ (A coth® z + B coth® Hw(t)dt = e f().

/ et @D (A coth® z + B coth® t + C)y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.9.6 with g(x)= A coth z,
h(t) = Beoth’ t + C:

/ (A coth® z + Bcoth® ¢ + C) w(t)dt = e™* f(z).

/ ) [Ae*™? + B coth™ z]y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = Ae*®, hi(t) = e, go(z) = B coth” z,
and hy(t) = 1.

[ [Aer= 1 B o ey dt = (o)

This is a special case of equation 1.9.15 with g;(z) = Aet®, hi(t) = e, go(z) = B, and
ha(t) = coth™ ¢.

‘ 1.7-2. Kernels Containing Exponential and Logarithmic Functions ‘

35.

36.

/w e*@V(Inx - Int)yy(t) dt = f(x).

Solution:
y@) = M [zl (@) + oL (@), @)= f(a).

/ * @V In(z - t)y(t) dt = f(x).

0

-z

The substitution w(x) = e**y(x) leads to an equation of the form 1.4.2:

/ ’ In(z — Hw(t) dt = €% f(x).
0
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37.

38.

39.

40.

41.

42,

43.

44.

/m e*®Y(AInx + BInt)y(t) dt = f(x).

—A\x

The substitution w(x) = e **y(z) leads to an equation of the form 1.4.4:

/ Z(A Inz + Blnt)w(t) dt = e f(x).

/ : et ™D AIn*(Az) + BIn*(\t)|y(¢) dt = f(z).

—Ax

The substitution w(x) = e**y(x) leads to an equation of the form 1.4.7:

/ : [AIn*(\z) + BIn*(\D)]w(t) dt = e f ().

/:c e)\(m—t) I:ln(w/t):l ny(t) dt = f(w), n= 1, 2, “es
Solution:

n+1
Y(@) = ——e <xi> F@).,  Fa@=e™ @
nlz dx

/w ek(w—t) \/m y(t) dt = f(w).

Solution:
@)= 22 <xi)2 /[ ) dt
Y= dx o t ln(:v/t).
x eA(an—t)
my(ﬂ dt = f(x).
Solution:
e tond [0
YO=2C ), ty/In(z/t)

/ ) [Ae*®™? + BIn”(Az)]y(t) dt = f(x).

This is a special case of equation 1.9.15 with g,(z) = Ae’®, hi(t) = e, go(z) = BIn”(\x),
and hy(t) = 1.

/ i [Ae#™D + BInY(A)|y(t) dt = f().

This is a special case of equation 1.9.15 with g;(z) = Aet®, hi(t) = e, go(z) = B, and
hy(t) = In” ().

/ i e (/P y@) dt = f(@), 0<A<L

The substitution w(x) = e **y(x) leads to an equation of the form 1.4.16:

/ w[ln(x /O Mw(t) dt = e f(x).
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z  opl(E-t)
45. my(t) dt = f(a:), 0<A<l.

Solution:

y(x) =

sin(m\) uzi/z F@) dt
T C dz o tertIn(z/t)]A

‘ 1.7-3. Kernels Containing Exponential and Trigonometric Functions ‘

46. / i M@ cos[A(x - t)]y(t) dt = f(x).

Solution: y(z) = f1(x) — pf(x)+ N /x eH @ £(4) dt.

a

47. /ﬂc e ™ DL Ay cos[Ai(z - t)] + Az cos[Xa(z - )] }y(®) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.8:

/ : { A cos[Ai(z - )] + Ay cos[Aa(z — )] fw(t) dt = e f(a).

48. / " enet) os Az - Hly(t) dt = ().

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.9.
Solution:

2 x
y(x) = p(v) + % / eH @D sin[k(x — t)]p(t) dt, k=M2, o) = fo(x) — pf(x).

a

29. / " om0 oA - YD) dt = f(@).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.15:

/ : cos [Nz — t)]w(t) dt = e f(z).

a

50. / ) eH® D cost [ A(x - B)y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.19:

/ : cos*[ Mz — t)]w(t) dt = e f(x).

51. /9c e"@ ™ cos(Az) - cos(At)| “y(t) dt = f(z), n=12...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = f.(a) =---

foa) = 0.
Solution:

d
sin(Ax) dx

D" .
y(z) = Y et s1n()\x){

n+l
] F(), Fu(x) =™ f(a).
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52.

53.

54.

5S.

56.

57.

58.

59.

/ e*®V\/cos t - cos x y(t) dt = f(x).

Solution:

d )2 /’” eMtsint f(t)dt
sinx dx o cost—cosz

2 .
y(x) = —et® sm:c(
i

T er@ty(t) dt
a Vcost—-cosx

Solution:

= f(@).

1 .. d [%ersint f(t)dt
y(r) = —et*— —_—.
T dz J, cost—cosx

x
/ e* @t (cost - cos x) y(t) dt = f(x), 0<A<l
a

Solution:

= ket sina :
y(@) = ke sin (cost —cos z)* A

sinz dx

d )2 /t e*tsint f(t)dt ‘o sin(m\)

/ e ™ (cos™ x - cos* tyy(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.24:

/z(cos’\ x —cos™ tyw(t) dt = e f(x).

/ et @b (A cos* z + B eos™ t)y(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.25:
/ (A cos™ z + B cos™ t) w(t)dt = e f(x).

2 er@ty(t) dt

am=f(m)’ O0<A<l1.

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.26:

® w(t) dt
o (cost—cosz)?

= e M f(x).

/ "[AeH® 1 B cos’ )] y(t) dt = ().

This is a special case of equation 1.9.15 with g;(z) = Ae*®, hi(t) = ¢, g2(x) = B cos” (A\x),
and hy(t) = 1.

/ i [Ae*® ™ + B cos”(At)|y(t) dt = f(x).

This is a special case of equation 1.9.15 with gi(z) = Aet*, hi(t) = e, go(z) = B, and
ho(t) = cos”(At).
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60.

61.

62.

63.

64.

65.

66.

67.

/ ’ e* ™V sin[A(x - )]y(t) dt = f(x), f(a) = f,(a) = 0.

Solution: y(x) = 5 [f7,(2) = 2ufy(x) + (N + 7)) f(2)].

/ e @ DL Ay sin[A(@ - )] + Ay sin[Az(z - )]} y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.41:

/ w{Al sin[A;(z — )] + A sino(z — )] bw(t) dt = €% f(x).

/ " eHeD i [A(@ - O)ly(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.43:

/ ’ sin?[ Az — )w(t) dt = e f(x).

/”” e* ™ sin’[A(z - O]y(t) dt = f().

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.49:

/ ’ sin’ [Az — H)w(t) dt = e * f(x).

/ " et inn Az - Oyt di = f@),  m=2.3,...

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.54:

/ sin"[A(z — H)Jw(t) dt = e " f(x).

/I eH@d sin(km )y(t) dt = f(x).

Solution: ) .
TeH h(kvz -t
yay = L L [T coshkVa )
wk dx? J, var—t

/ e @V \/sinx - sin t y(t) dt = f(x).

Solution:

i)Z/T eHtcost f(t)dt
cosx dx o Vsinz—sint

2
y(x) = —et* cos x(
Vs

z er@tqy(t) dt

a VSsinx -sint

Solution:

= f(x).

d /I e Mt cost f(t)dt
dz J,

1
)= —elt*— .
y(@) ™ \/sinx —sint

© 1998 by CRC Press LLC



68.

69.

70.

71.

72.

73.

74.

75.

/ @ (sing —sint y(t) dt = f(x), O0<A<L

Solution:

2 T -ut .
y(x) = ket® Cosx( L ) / e cost f(t)dt . Sin(md)

cosz dx (sinz —sint)* ’ T

/ ‘ e @V (sin® x - sin® t)y(t) dt = f(x).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.59:

/H(sin’\ z —sin® Hw(t) dt = e f(x).

/ e ™ (Asin* z + Bsin* t)y(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.60:
/ (Asin* z + Bsin* t)w(t) dt = e f(x).

z er(@t)y(t) dt

| Gmaosmpr @ <A<t

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.61:

r w(t) dt
. (sinz—sint)?

= e M f(x).

/ i [Ae*® P + Bsin’(Az)|y(t) dt = f().

This is a special case of equation 1.9.15 with g;(z) = Ae#®, hi(t) = e, gr(z) = B sin” (A\z),
and hy(t) = 1.

/ i [Aet® Y + Bsin¥(At)]y(t) dt = f(z).

This is a special case of equation 1.9.15 with g;(z) = Aet®, hi(t) = e, go(z) = B, and
hy(t) = sin”(At).

/ et (Atan* z + B tan t)y(t) dt = f().

The substitution w(x) = e **y(x) leads to an equation of the form 1.5.77:

/r (A tan® z + B tan® t)w(t) dt = e " f(x).

/ et ™D (Atan* z + Btan® t + C)y(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.9.6:

/ (A tan® z + Btan” t + C)w(t)dt = e* f(x).
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76.

77.

78.

79.

80.

81.

/ ’ [Ae*™ + B tan” (Ax)|y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(x) = Ae®, hi(t) = e, go(x) = B tan” (\z),
and hy(t) = 1.

/ ) [Aet ™D + B tan”(Ab)|y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = Aet®, hi(t) = e, go(z) = B, and
hy(t) = tan” (At).

/ e ™D (Acot* z + B cot* t)y(t) dt = f().
The substitution w(x) = e **y(x) leads to an equation of the form 1.5.90:

/I (A cot* z + B cot? tw(t)dt = e f(x).

/ e ™ (Acot* z + Beot’ t + C)y(t) dt = f(z).

The substitution w(x) = e **y(x) leads to an equation of the form 1.9.6:

/ (A cot* z + Beot® t + C)w(t) dt = e™** f(x).

/ "[AeH® 1 B cot” ()] y(8) dt = f(a).

This is a special case of equation 1.9.15 with g (x) = Ae#®, hi(t) = e, g2(x) = B cot” (Ax),
and hy(t) = 1.

/ ) [Ae*®™ 1 B cot”(At)|y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = Ae**, hi(t) = e *t, go(x) = B, and
ho(t) = cot” (At).

‘ 1.7-4. Kernels Containing Hyperbolic and Logarithmic Functions ‘

82.

83.

84.

/w [A coshB()\a:) + BIn"(ut) + C] y(t) dt = f(x).
This is a special case of equation 1.9.6 with g(x) = A cosh®(\z) and h(t) = B In”(ut) + C.
/w [A cosh®’(\t) + B In” (px) + C] y(t) dt = f(x).
This is a special case of equation 1.9.6 with g(z) = BIn”(uz) + C and h(t) = A cosh’(\¢).
/w [A sinh®(Ax) + B In” (ut) + C} y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A sinh®(\z) and h(t) = B In”(ut) + C.
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85.

86.

87.

88.

89.

/ : [Asinh®(At) + BIn"(uz) + Cly(t) dt = f(z).
This is a special case of equation 1.9.6 with g(z) = B1n” (ux) and h(t) = A sinh®(\t) + C.
/w (A tanh®(Az) + BIn" (ut) + Cly(t)dt = f(x).
This is a special case of equation 1.9.6 with g(x) = A tanh®(\z) and h(t) = B In”(ut) + C.
/m (A tanh®(\t) + B In” (ux) + Clyt)dt = f(x).
This is a special case of equation 1.9.6 with g(x) = B1n” (ux) and h(t) = A tanh”?(\t) + C.
/ ’ [A coth®(Az) + BIn (ut) + C|y(t) dt = f().
This is a special case of equation 1.9.6 with g(z) = A coth®(\x) and h(t) = BIn"(ut) + C.
/w (A coth’(At) + BIn" (ux) + Cly@®)dt = f(x).

This is a special case of equation 1.9.6 with g(x) = BIn" (ux) and h(t) = A coth®(\t) + C.

‘ 1.7-5. Kernels Containing Hyperbolic and Trigonometric Functions ‘

90.

91.

92.

93.

9.

95.

x
/ [A cosh®(Az) + B cos™(ut) + Cly(t) dt = f(x).
This is a special case of equation 1.9.6 with g(x) = A cosh®(\z) and h(t) = B cos”(ut) + C.
T
/ [A cosh®(\t) + Bsin” (ux) + C’] y(t) dt = f(x).
a
This is a special case of equation 1.9.6 with g(x) = Bsin”(uz) + C and h(t) = A cosh’(\t).
/ [A cosh®(Az) + B tan” (ut) + C|y(t) dt = f(z).
This is a special case of equation 1.9.6 with g(z) = A cosh’(\z) and h(t) = B tan”(ut) + C.
x
/ [A sinh®(\z) + B cos” (ut) + C] y(t) dt = f(x).
a
This is a special case of equation 1.9.6 with g(x) = A sinh®(\z) and h(t) = B cos”(ut) + C.
x
/ [A sinh®(A\t) + Bsin” (ux) + C]y(t) dt = f(x).
a
This is a special case of equation 1.9.6 with g(x) = B sin”(uz) and h(t) = A sinh®(\t) + C.
/ [Asinh®(Az) + B tan (ut) + C|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = A sinh®(\z) and h(t) = B tan” (ut) + C.

© 1998 by CRC Press LLC



96. / [A tanh®(Az) + B cos” (ut) + Cly(t) dt = f(z).
This is a special case of equation 1.9.6 with g(x) = A tanh®(\z) and h(t) = B cos”(ut) + C.
97. / [A tanh®(Ax) + B sin” (ut) + C} y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A tanh®(\z) and h(t) = B sin”(ut) + C.

‘ 1.7-6. Kernels Containing Logarithmic and Trigonometric Functions ‘

98. /w [A cos'e()\a:) + BlIn"(ut) + C] y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(x) = A cos’(\z) and h(t) = BIn"(ut) + C.

99. /w [A cosP(At) + BIn” (ux) + Cly@®)dt = f(x).

This is a special case of equation 1.9.6 with g(z) = BIn”(uz) + C and h(t) = Acos’(\t).

100. / ) [Asin®(Az) + BIn"(ut) + Cly(t) dt = f().

This is a special case of equation 1.9.6 with g(z) = Asin®(Az) and h(t) = Bn" (ut) + C.
101. / [Asin®(At) + BIn (uz) + Cly(t) dt = f().

This is a special case of equation 1.9.6 with g(z) = B In”(ux) and h(t) = Asin®(\t) + C.

1.8. Equations Whose Kernels Contain Special
Functions

‘ 1.8-1. Kernels Containing Bessel Functions ‘

L / ToA@ - Oly(®) dt = f(@).

Solution:
2

1/ d 2 e
y(zx) = X(— +)\2> / (x—1t) Ji[Mx—-1)] f(t)dt.

dx?

Example. In the special case A = 1 and f(z) = A sin z, the solution has the form y(x) = AJy(x).

2. / [Jo(Az) - JyADIy(®) dt = F(@).

d /!
Solution: y(x) = - [)\(J;Tgl)} .
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/ [ATy(Aa) + BIHADIy() dt = f(@).

For B = —A, see equation 1.8.2. We consider the interval [a, x] in which Jy(Ax) does not
change its sign.
Solution with B # —A:

y(@) =+ {!Jo(Ax)! A+B / | Jo(AB)| A+Bft(t)dt}

Here the sign of Jy(Ax) should be taken.

/ (@ = ) Jo[A@ - Dly(t) dt = f(@).

Solution:

y(x) = / g(t)dt,

where

1/d
g(t):X(W+/\2> / (t—71) Ji\t =1)] f(r)dr.

/ (@ - DIA@ - Dly(t) dt = f(@).
Solution:

1 [ &
y(x) = 3»( AZ) / (&~ 1) LA - D] fd) .
/ (z-t)” I @ - H)]y(t) dt = f(x).

y(x) = / g(t)dt,
d2

1 ot
g(t) = o (dt2 + )\2) / (t - 7')2 DAt -1)] f(r)dr.

Solution:

where

/ : (z-t)" Ju[Mz - ly(t) dt = f(z), n=0,1,2,...

Solution:

dz 2n+2 T
y(x) = A (sz) /(m—t)"“ Jnst [Nz —1)] f(t) dt,
2\ pl(n+ D)

4= (3)

A Q) 2n+2)!

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fi(a) = --- = f?"*D(a) = 0 are satisfied, then the solution of the integral
equation can be written in the form

T 2 2n+2
y(x)= A / @ -t D [Nx-0OIF@#)dt, F(t)= (% + AZ) f(®dt.
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8.

10.

11.

12.

/ i (@ =t)" ToA@ - Dy dt = f(x), n=0,1,2,...

Solution:

y(z) = / g(t) dt,
where

2

d 2n+3 t
git)y=A ( Tt /\2) / t =) Tt [NE =] f(1) dr,

C 2\ pl(n+ D)
A‘(X) Qn+ DI2n+2)!

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = f.(a) = --- = f?"*2(a) = 0 are satisfied, then the function g(t) defining the
solution can be written in the form

t d2 2n+2
git)y=A / (t=7)"" 2 JppaNE=DIF(r)dr,  F(7)= (— +)\2> f(@).

dr?

/ (@ - )"/2 1 5[\ @ - Oly(t) dt = f(@).

Solution: X
d? Y
y(z) = & <W + A2> / (=12 J3 n M — )] f(2) dt.

/ (@ - 20, I\ @ - D)y () dt = f(@).

Solution:
xr

y(@) = / g,

where
2

d tort
0)= gy (G +¥) [ ¢ Bl e,

/ (@ - /23 [\ @ - Oly(t) dt = f(@).
Solution:

d2 3 T
y(z) = 23/27‘/;?5/2 <W + /\2> / sin[A(z — )] f(t) dt.

/ (@ - /203 I\ @ - D)y () dt = f ().

Solution:
xr

y(z) = / gty dt,
where

a2 6t
g(t) = — + A2> / (t—7Y"% Jsp At =) f(7)dr.

0
1284 \ dt?
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13.

14.

15.

16.

17.

/ (x-t 27;__1Jﬁ[)\(a:—t)]y(t)dt= f(x), n=273,...
a 2

Solution:

dz n x
y(x) = 7 2n+‘lﬁ (@ + /\2> / sin[A(z —t)] f(t) dt.
222 2n-2)! a

/ [T, (A2) - J,(ADIy(6) di = f(@).

This is a special case of equation 1.9.2 with g(x) = J,(A\z).
d [ z fo(2) }

Solution: y(x) = Ir DT D) Nt O

/ [AJ,(Ax) + BJ,(At)]y(t) dt = f(x).
For B = —A, see equation 1.8.14. We consider the interval [a, ] in which J,(Az) does not

change its sign.
Solution with B # —A:

1 d __A_ @ __B_
y(x)::l:m%{’e]y()\x)’ A+B/ | T, (D)) A+Bf;(t)dt}.

Here the sign of J,(Ax) should be taken.

/ [AJ,(\z) + BJ.(BDly(®) dt = f().

This is a special case of equation 1.9.6 with g(x) = AJ,(A\z) and h(t) = BJ,(5?).

/ (@ - ¥ T, M@ - Oly(D) dt = f(@).

Solution:

d? o
y(x)= A <@ + A2> / (@ —t)""" T[N - )] f(t)dt,

A (2)n—1 T(w+ )T (n-v)

A TQ@u+DHI@n-2v-1)

where -1 <v<Zlandn=1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fi(a) = -+ = f"V(a) = 0 are satisfied, then the solution of the integral
equation can be written in the form

xT d2 n
y(x) = A/ @ =t T[N —0IF(@) dt,  F(t)= <W + /\2> f@®.

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).
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18.

19.

20.

21.

22,

/ (@ = " T I\@ - Dy () dt = F(@).

Solution:

y(x) = / g(t)dt,

where

2

d "ot
gity=A (W + A2> / (t =" Ty Mt —1)] f(1)dr,

2\ Tw+D)In-v-1)
_()\) TQu+2)T(2n-2v-3)

where -1 <v < %—1andn= 1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fi(a)=--- = fa(c"’l)(a) = 0 are satisfied, then the function g(¢) defining the
solution can be written in the form

t 2 n
g(t) = A/ (t=7)""2 JnyaAE=DIF(T)dr,  F(r)= (d— + Az) f@).

dr?

@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

/ ) Jo(AVT =t )y(t) dt = f(x).

Solution:
2

d
y(x) = T2

/x LAz —t)ft)dt.

/ (A7, (W3) + B, W)y dt = f@).

We consider the interval [a, x] in which .J,, (A\/E ) does not change its sign.
Solution with B # —A:

1 d

=4 =
V@ = £ B d

A g B
{lnova) 78 [ a0v0 e fi ),
Here the sign J,,(A/2 ) should be taken.

/ ) [AJ, ( Az ) + BJ,(BVt)]y®) dt = f(z).

This is a special case of equation 1.9.6 with g(z) = AJ, (Ay/Z ) and h(t) = BJ,(BV).

/ VIt A (Wa—)y) di = f(@).

Solution:

2 &[T
y(x):xﬁ /a L(AWz—t) ft)dt.
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23.

24,

25.

26.

27.

28.

29.

/ (@ -"4J (AW ez -t)y@d) dt = f(z).

Solution:
h )\\/
y(x) = \/ dx2 - cos )f(t)dt.

/ (@ -t J3 (MW -t)yt) dt = f(z).

Solution:

232 @ (" cosh(AWz—t)

TR, ——— f®dt.

y(x) =

/m(w -2 I, (AW - t)y(t) dt = f(z), n=0,1,2,...

Solution:
dn+2

y(@) = ( ) W/:IO(A\/—) by dt.

T 2n-3
/ (x-t) 4 Jans (AWz-t)y®)dt = f(z), n=12,..
a 2

Solution:

1 (2 e d»  [* cosh(AvVz—t)
y“”‘ﬁ(‘) ) i

A
/ (@ -4 (AWe —t)yt) dt = f(z).

Solution:
yay= L [T A” )f(t)dt.

/ “(@ -3, (Wa 1)yt dt = f(a).

Solution:

f(tdt.

A dx™

where-1<v<n-1,n=1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fi(a) = -+ = f"D(a) = 0 are satisfied, then the solution of the integral
equation can be written in the form

2\ n-2 z n-v-2
v =(3) /<x—t> 2 La (W —t) [ @ dt.

2\n2 qr [% n-v=2
y(r) = (—) / (x=t) 2 ILn,o(AWa—t)f(t)dt,

/0 C(@? - )V Ly (W8 )y(t) dt = f(a).

x 2 2
(@) = / )\ cosh )\v:v t) o dt.

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).

Solution:
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30.

31.

32,

33.

34.

35.

36.

37.

/WW-EYWLMQVﬂﬂﬁMmﬁ=ﬂ@-

7.2
(@) = — / )\ cosh (AW -z )f(t)dt

N

Solution:

/w(mz )2, (AW -8 )y dt = fx), -l<v<0.
0

Solution:

d [* ~
y(@) = Ao / t (22— 2) L (WA= 2) f(t) dt.
T Jo
@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

/Oo(t2 —2?)" 2T, (WE -2 )y dt = fx), -l<v<O.

Solution:

d [ _
y(@) = A / t(82-2?) L (W —22) b dt.
X x
@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).

/ [Atk T, (\z) + Bz™ pw(AD)]y(@) dt = f(x).

This is a special case of equation 1.9.15 with g,(z) = AJ,(\z), hi(t) = t*, go(x) = B2™, and
ha(t) = JL(Ab).

/ I[AJﬁ()\:c) + BJZ(ADly(t) dt = f(x).

Solution with B # —A:

y(x) =

1
A+ B do {‘J ()\x)’ A+B/ |J (/\t)f A’“Bft(t)dt}

/ [ATEO@) + BI™(B8)]|y(t) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = AJ*(\z) and h(t) = BJ;”(ﬁt).

/[%@@—%@MMﬂa=ﬂm.

fa(@) ]
AYi(Az)

Solution: y(r) = —— [

/[nu@—nummwﬁ=ﬂm

zfi (@) }

d
Solution: y(z) = dz Lyy()\g;)_ AxY, () |
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38.

39.

40.

/ “AY,(Az) + BY, Ad)ly(t) dt = f(@).

For B = —A, see equation 1.8.37. We consider the interval [a, z] in which Y}, (Az) does not
change its sign.
Solution with B # —A:
d __A = __B_ ,
y(x) = ﬂ:m% { |Yl,()\.13)’ A+B /a ‘Yu(/\t)’ A+B ft(t) dt}

Here the sign of Y, (Ax) should be taken.

/ " LAY, (Az) + Be™Y, ATy dt = f(@).

This is a special case of equation 1.9.15 with g;(x) = AY, (\x), h(t) = t*, go(x) = Bx™, and
hao(t) = Y, (A).
/ [AJ,A2)Y,L(B) + BJ,(ADY(Bx)]y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = AY, (Ax), hi(t) = Y, (Bt), g2(x) =
BY,,(Bz), and hy(t) = J,(Ab).

‘ 1.8-2. Kernels Containing Modified Bessel Functions ‘

41.

42.

43.

44.

/ L@ - Hly(t) d = f(@).
Solution:

2
y(@) = (d v) / (@ - LA - D] (1) dt.
dx?

/ Ho(Ax) - Ly(AD)1y(t) dt = f(x), fla) = fo(a) =

fi(x) }
AL () |

Solution: y(z) = di {
T

x
/ [ALy(Az) + BIy(AD]y(t) dt = f(x).
a
For B = —A, see equation 1.8.42. Solution with B # —A:
1 z __B_ ,
y) = £ {‘Io()\x)] A+B / [ToAt)| 4+B f{(t) dt}.
Here the sign of I,,(Az) should be taken.

/ (@ - DI[A@ - Dly(t) dt = f(@).

Solution: .
y(x) = / gty dt,

where

1/ d
g(t>=X<W—A2) / (t —=7) LLIAE = )] f()dT.
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45.

46.

47.

48.

/ (@ - LI @ - Dly(®) dt = f(@).

d2
_(7_ ) /(x ) LIz -] f(t) dt.

Solution:

/ (@ - 1) LIA@ - Dly(t) dt = f(@).

Solution:

y(@) = / oty dt,

where
1 [ & 2 >t 2
g(t) = Y <_dt2 -A ) / (t—7)" LIXt-7)] f(r)dT.

/ C@o b LIA@ -y dt = f@),  n=0,1,2...

Solution:

2 2n+2
y(l‘)=A<%— ) /(1‘ O™ L [N - D] f() dt,

A= (2)27“r1 n!(n+1)!

A Q) 2n+2)!

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fi(a)=---= f@n+D(q) = 0 are satisfied, then the solution of the integral
equation can be written in the form

x d2 2n+2
Y = A / @D DNz -DIF® A, F(t) = ( = Az) £,

/w(w - t)nHIn[)\(w -D]y@®) dt = f(x), n=0,12,...

Solution:

y(x) = / g(t)dt,

where

dit?

~ 2n+l n!(n+1)!
A= (X) Qn+ DI2n+2)!

2n+3
g(t) = (— —Az) / t =) L [INE =11 f(1) dr,

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = f(a)=---= f®"*?(a) = 0 are satisfied, then the function g(t) defining the
solution can be written in the form

t d2 2n+2
git)y=A / =721 s\t -DIF(T)dr, F(7)= (ﬁ - A2> f().

© 1998 by CRC Press LLC



49.

50.

51.

52,

53.

54.

5S.

/ (@ - )21, oA - Oly(6) di = f(@).
Solution:

T d? 3o
y(x) = e (@ - /\2> / (x = 1)>? I ;o[ M — )] f(1) dt.

/ (@ - 21 oA - Oly(6) di = f(@).
Solution: .

y(@) = / oty dt,
where

d2 4 t
g(t) = & <W - A2> / (t =7V L [ AE -] () dr.

/ (@ - I oA - Oly(6) di = f(@).
Solution: R
d2 xT
y(z) = 23/2—\/;/2 (W _ )\2) / sinh[\(z — )] f(t) dt.
/ (@ - )2 I5 oA - Oly(t) di = f(@).

Solution:

y(x) = / g(t) dt,
where
d2

6t
g(t) = # (@ - )\2> / (t =12 Is o[\t = )] f(7) dr.

x 2n-1
/ (x-t) 2 Izpa[Mzx-0ly@)dt = f(z), n=273,...
a 2

Solution:

y(x) = el )

Vi (d_Z
V222 2n-2)!

—/\2> / sinh[ Az — )] f(t) dt.

/ L) - LB dt = f(@).

This is a special case of equation 1.9.2 with g(x) = I,,(A\x).

/m[AI,,()\:c) + BI,(AD)]y(t) dt = f(x).

Solution with B # —A:

S (R
y(x>=m%{[fum>] /a[fy(m] ft(t)dt}.
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56.

57.

58.

59.

/ [AL(\e) + BL(80)]y(t) dt = f().

This is a special case of equation 1.9.6 with g(x) = Al (Ax) and h(t) = BI,(5?).

/ (@ -t LI\ - Oly(®) dt = f(@).

Solution:

da?
_ 2\ Dw+D)D(n-v)
A= (X) Qv+ 1HI2n-2v-1)

2 n T
Y@= A (d— - A2> / (@ =" o s [Nz — ] f() d,

where -1 <v <l andn=1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fi(a) = --- = f"V(a) = 0 are satisfied, then the solution of the integral
equation can be written in the form

T d2
y(r) = A/ (@—t)""" Ly [N - DIF () dt,  F(t) = (W - /\2) f@.

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).

/ (@ - O I, @ - Oly(®) dt = F(@).

Solution:

y(x) = / g(t) dt,

where
dt?

Ao n2 T+ DIT(n-v-1)
‘(X) TQv+2)L2n-2v-3)’

git)y=A (——A2> / (t =) 2 Iy yal Nt =7)] f(7)dr,

where -1 < v < %—1andn= 1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fl(a)=---= f"D(a) = 0 are satisfied, then the function g(¢) defining the
solution can be written in the form

t 2
gt) = A/ (t=7)""2 Ly yaNE=DIF(r)dr,  F(r)= <% —>\2> f).

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).

/ Iy(AVz -t)yt)dt = f(x).

Solution:

(:v)—al—2 / o(AWz—t)f@)dt.
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60.

61.

62.

63.

64.

65.

66.

67.

/ i [AL, (AVz ) + BL, (AVt)]y(®) dt = f(z).

Solution with B # —A:

y(a;):#i{[ (\WE)] AE /z[fy(m)]‘%fgmdt |

A+ B dx

a

/ ) [AL (A ) + BI,(BV1)]y(t) dt = f(a).

This is a special case of equation 1.9.6 with g(z) = AI, (Ay/Z ) and h(t) = BI, (V).

/ Ve -tIi(AWz-t)yl)dt = f(o).

Solution: X

y(x) =

2 & [
Xﬁ/a Jo(AWz—t) f(t)dt.

/ @ -1 (AW z —t)yt) dt = f(z).

[2 /\\/
y(r) = p ) / cos( ) f@ dt.

/ “@ -t L (WT = )yl di = f(@).

Solution:

Solution:

y(x) =

93/2 d3/ cos(AVz — )f(t)dt

VAN da3 N

/E(:c - )" L, (AWz - t)yt) dt = f(z), n=0,1,2,...

Solution:
dn+2

y(x) = ( ) W/jJO(A\/—) F(t)dt.

x 2n-3
/ (=t) 4 Ipns3(AVa-t)y@)dt= f(x), n=12,...

2
Solution: -
1 (2 T dm cos()\\/ t)
y(x) = ﬁ (X) ey /a \/_ f@) dt.

/ C@ =t Ly (WE T )y(t) dt = f(@).

D) )\\/
y(x) = 5 d / cos( )f(t)dt.

Solution:
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68.

69.

70.

71.

72.

73.

/ I(;c -0)2I, AWz - t)yt) dt = f(z).

Solution:
2\n2 qn T n-v-2

yw=(5) 5 [ -1 2 Jea(We—t) o,
A dz™ J,
where-1<v<n-1,n=1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(a) = fi(a) = --- = fD(a) = 0 are satisfied, then the solution of the integral
equation can be written in the form

2\ n-2 z n-v-2 )
y(:c)=(X) /(x—t) 2 T (Wa—t) 7 @) dt.

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).

/ (- )L (WS 8 )yt dt = F (@,
0

72
(@) = /2 d / cos( )\\/:c = —t )f(t)dt

/ T (- 2?) M Ly (WE =2 )yt dt = F@).

12
y(@) = — / 2\ / cos )\\/t x )f(t)dt

/m(m2 )L, (AW -8 )y dt = f(x), -1<v<0,
0

Solution:

Solution:

Solution:

d [* _
y() = A / t(a? =) P (WA= 2) f(t) dt.
L Jo
@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

/ oo(tz -2, (AW -2yt dt = fx), -1<v<O.

Solution:

d o0
y(z) = —/\d— / tE g2y w2y ()\\/ 12 —x2 )f(t) dt.
xz x
@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

/ I[At’“I,,(Am) + Bz’ I,(AD)]y(t) dt = f(x).

This is a special case of equation 1.9.15 with g;(z) = A, (\x), h(t) = t*, g(x) = Bz*, and
ho(t) = I,,(AY).
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74.

75.

76.

77.

78.

79.

80.

/ I[AIi(A:c) + BI2(At)ly(t) dt = f(x).

Solution with B # —A:

1 d _24 @ _2B_
y(x)=m%{|fy(,\x)| A+B/a || A+Bft(t)dt}.

/ [AIl’f()\:n) + BI (BD)]y(®) dt = f(x).

This is a special case of equation 1.9.6 with g(z) = AI*(\z) and h(t) = BI(BY).

/ [Ko(Aa) - KoADTy(®) dt = f(@).

d .
Solution: y(g;)=_% [%]

/ LK, (Aa) - K, ADIy(®) dt = f(@).

This is a special case of equation 1.9.2 with g(z) = K, (\x).

/w[AK,,()\a:) + BK,(AD)]y(t) dt = f(x).

Solution with B # —A:

d __A_ rz __B_
—{[Ku(m] 5 [ [r,00] f;<t>dt}.

1
YO = B

/ LA K, (\2) + Bo' K, ADly() dt = F(@).

This is a special case of equation 1.9.15 with g,(z) = AK, (\x), hi(t) = t*, g2(x) = Bz®, and
ho(t) = K,,(AY).
/ [AL (Az)K,(Bt) + BT, (A) K, (Bx)]y(t) dt = f(x).

This is a special case of equation 1.9.15 with gi(z) = AL, (Az), hi(t) = K.(BY), g(x) =
BK ,,(Bx), and ha(t) = I, (At).

‘ 1.8-3. Kernels Containing Associated Legendre Functions ‘

81.

/ " @t - tz)'“/sz‘(%)y(t) dt = f(@), 0<a<oo.

Here P*(x) is the associated Legendre function (see Supplement 10).
Solution:

n+u-2

p an oty RSN n p2— t
y(x) = 2" T [:v _“/ (-t 2 t_”Pl,_”_“(—>f(t) dt},
x " x
where p < LLv2-L andn=1,2,...

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).
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82.

83.

84.

/ (z tz)‘“/zP“( ) () dt = f(x), 0<a<oo.

Here P/'(x) is the associated Legendre function (see Supplement 10).

Solution:
2 2-n—p T
/ @ —1?) P (t)f(t)dt,

whereu<I,VZ—i,andnzl,Z,...

y(x) =

@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

/ - 2y u/2pu< )y(t) dt = f(x), 0<b<oo.

Here P*(x) is the associated Legendre function (see Supplement 10).
Solution:

y(x) _( 1)77, n+p— l n |: 1- ,u,/ (tz n+2_ t—an—n—u( >f(t) dt:|

where pu < 1,v>-1 andn=1,2,...

@ Reference: S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993).

/ (t? - 22y “/ZP“( )y(t) dt = f(x), 0<b<oo.

Here P*(x) is the associated Legendre function (see Supplement 10).
Solution:

Y= / )" P (D) j i,

Whereu<l,z/Z—i,andn=1,2,...

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).

‘ 1.8-4. Kernels Containing Hypergeometric Functions ‘

85.

/w(m _ t)b—lq)(a’ b; Az - t))y(t) dt = f(x).

Here ®(a, b; z) is the degenerate hypergeometric function (see Supplement 10).
Solution:

dn T (l‘ _ t)n b-1 .
y(l‘) o /g m‘b (—a, n— b, )\(.’L‘ — t)) f(t) dt,

whereO<b<nandn=1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(s) = fi(s) = -+ = f"D(s) = 0 are satisfied, then the solution of the integral
equation can be written in the form

B b Mz — 1) ft) dt
y(ﬂﬁ)—l m (—a,n— s A - ))ft (?) dt.

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).
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86.

/m(m -t)c‘lF(a, b,c; 1- %)y(t) dt = f(x).

Here ®(a, b, c; z) is the Gaussian hypergeometric function (see Supplement 10).
Solution:

- dn " x (x_t)n—c—l ' t
y(x)==z pr {a: /q mF(—a, n-bn-c 1- ;)f(t)dt},

where0<c<nandn=1,2,...

If the right-hand side of the equation is differentiable sufficiently many times and the
conditions f(s) = fi(s) = -+ = f"D(s) = 0 are satisfied, then the solution of the integral
equation can be written in the form

i x (1’ _ t)n—c—l . i )
y(l')—[ mF(—a, —b, n—c; 1- x)ft (t)dt

@ Reference: S. G. Samko, A. A. Kilbas, and O. 1. Marichev (1993).

1.9. Equations Whose Kernels Contain Arbitrary

Functions

‘ 1.9-1. Equations With Degenerate Kernel: K (x,t) = gi(x)h1(t) + g2(x)h,(t) ‘

/ g@h)yt) dt = f(x).

1 d {f(:r)} 1 (@)

h(z) dz | @) | - L@ = A on@

= S@h@) f@.

Solution: y =

/ l9(@) - g(®)ly(t) di = ().

It is assumed that f(a) = f.(a) =0 and f] /g # const.
d [ fi@)
dz | gi(@) |

Solution: y(z) =

/ [g(@) - g(t) + bly(t) dt = f(x).

Differentiation with respect to = yields an equation of the form 2.9.2:

1 z 1
Y@+ 3 6.@) / Y0yt = 5 (2.

Solution: : : . 0@
o) = 3 120) - o) [ e[ ZOTED] proyae.

/ [Ag(x) + Bg@®)ly(®) dt = f(@).

For B = —A, see equation 1.9.2.
Solution with B # —-A:

_ signg(@) d %25 [ | [AE
y(m)—ﬁg{lg(azn AB/a lg(@®)| ABftoe)dt}.
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10.

11.

/ [Ag(@) + Bg(t) + Cly(®) dt = f(2).

For B = —A, see equation 1.9.3. Assume that B # —A and (A + B)g(z) + C > 0.
Solution:

A x B
y(m):%{’(A+B)g(x)+C|_m/ [(A+ B)g(t)+ C| 4+B ft’(t)dt}.

/ l9(@) + h@®)y(®) dt = f(@).

Solution:

_d|_ %@ W HOLE _ TRty dt
Y= G {g(m)+h(m) . O ] @(x)"exp{/a g(t)+h(t>}

/ [9(x) + (x - Hh(@)|y(t) dt = f(@).

This is a special case of equation 1.9.15 with g,(z) = g(x) + zh(x), hi(t) = 1, g2(x) = h(z),

and hz(t) =—t.
Solution:
_d ) [T[f®] dt _ " h(t)
y(m) = E{(P(CE)% ., |:%:| tm}, (I)(t) = exXp |:—/a g(t) dt:| .

/ [9®) + ( - (D) y(®) dt = f().

This is a special case of equation 1.9.15 with g;(x) = z, hi(t) = h(t), g2(x) = 1, and hy(t) =
g(t) —th(t).

/ i [g(z) + (Az> + Bt*)h(z)|y(t) dt = f(z).

This is a special case of equation 1.9.15 with g;(z) = g(x) + Az h(x), hi () = 1, g2(x) = h(x),
and h,(t) = Bt*.

/ i [g9(t) + (Az> + Bt*)h(t)|y(t) dt = f(z).

This is a special case of equation 1.9.15 with g;(z) = Ax*, hi(t) = h(t), go(x) = 1, and
hy(t) = g(t) + Bt*h(t).

/ [g(@)h(t) - h(x)g()]y(t) dt = f(x), fla) = fr(a) = 0.

For g = const or h = const, see equation 1.9.2.
Solution:

1 d h)
ywy= 1L [g j h; ] where f=f@), g=g@), h=h@).

Here Af + Bg+ Ch # 0, with A, B, and C being some constants.
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12.

13.

14.

15.

/ [Ag(x)h(t) + Bg®)h(x)]yt) dt = f(x).

For B = —A, see equation 1.9.11.
Solution with B # —A:

B

) 1 d (Th@ 158 [ [h) 1555 d [ 1) »
YO = A+ Byh(a) de {gm)] /[%] %[%} |

/ {1+ [g(t) - g(@)Th(@) }y(t) dt = f(@).

This is a special case of equation 1.9.15 with g;(x) = 1 — g(x)h(z), h1(t) = 1, g2(x) = h(z),
and hy(t) = g(t).
Solution:

_ 4L "[f®] dt _ i,
y(x)—%{ho:)@(x) / {h(t)]t q)(t)}, @(x)—exp{ / gt(t)h(t)dt}

/ "0 4 [ g(t) - Mg(@)] h(@) () dt = F@).

This is a special case of equation 1.9.15 with g;(z) = e’ h(x), hi(t) = g(t), g2(x) = e —
g(x)h(z), and hy(t) = e,

/ [91(@)h1(t) + g2(2)h2(D)]y(t) dt = f ().

For ¢, /g1 = const or hy/h; = const, see equation 1.9.1.

1°. Solution with g|(x)h|(x) + g2(x)hy(x) £ 0 and f(x) # const go(x):

Y(z) = — i{ g2(2)h1 (2)2(2) m[f(t)}’ dt} o
h(@) do | gi@h (@) + gp@ha@) Jo |0 ], 20 [
where
“That)]” ga®hi(t)dt
) = . 2
@) ‘”‘p{/a {hmt)]tgl(t>h](t>+gz(t>hz(t>} )

If f(x) = const g;(x), the solution is given by formulas (1) and (2) in which the subscript 1
must be changed by 2 and vice versa.

2°. Solution with gi(x)h;(x) + g2(x)h(x) = 0:

y(x) =

Li{(f/gz);] _1d {(f/gz);. ]
" hy dx -

(91/92), hy dx | (ha/h), |

where f = f(x), g» = g2(x), h1 = hi(x), and hy = ho(z).
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\ 1.9-2. Equations With Difference Kernel: K (z,t) = K(z —t) \

16.

17.

/ K(z - ty(t) dt = f(a).

1°. Let K(0)=1and f(a) = 0. Differentiating the equation with respect to z yields a Volterra
equation of the second kind:

y(z) + / Kl (z-tyt)dt = fi(z).

The solution of this equation can be represented in the form

y(x) = folx) + / R(z —t)f/(t)dt. (1

Here the resolvent R(x) is related to the kernel K (x) of the original equation by

1 .
R(z)= £ {— - 1}, K@p) = &[K ()],
pE(p) [ )
where € and £ are the operators of the direct and inverse Laplace transforms, respectively.
- e’} - 1 Cc+100 B
K(p) = S[K(J;)] = / e P"K(x)dz, R(z) =& [R(p)] =5 / e’ R(p) dp.
0 ™ c—100

2°. Let K(x) have an integrable power-law singularity at x = 0. Denote by w = w(x) the
solution of the simpler auxiliary equation (compared with the original equation) with a = 0
and constant right-hand side f =1,

/ : Kz —tyw(t)dt = 1. 2)
0

Then the solution of the original integral equation with arbitrary right-hand side is expressed
in terms of w as follows:

d xT €T
v =5 [ we-nfOdi= fawe-o+ [ we-nfiod.

xT
/ K(x-t)yt)dt = Azx™, n=012,...
—oo

This is a special case of equation 1.9.19 with A = 0.

1°. Solution with n = 0:
A oo
y(r) = —, B=/ K(2)dz.
B 0

2°. Solution with n = 1:

A AC o0 o0
y(x)_§x+?, B—/O K(z)dz, C—/O 2K (2)dz.

3°. Solution with n = 2:

A, _AC _AC?* AD
@)= O 2y e+ 2~

B= /oo K(z)dz, C= /C>o 2K(2)dz, D= /OO 2 K(z)dz.
0 0 0

4°. Solution with n = 3,4, ... is given by:

B on e)x;v ~ oo s
Yn(x) = A{ G {BO\)} })\:O, B(\) _/0 K(z)e* dz.
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18.

19.

20.

21.

22.

/ K(x - tyy(t) dt = Ae™®.
Solution:

y(x) = %e”, B = / K(z)e ™ dz = 8{K(2), \}.
0

/ K(x - tyy(t) dt = Ax"e®, n=12,...
1°. Solution with n = 1:

A A
yi(z) = Eme” + B—gem,

B= / K(z)e?dz, C= / 2K (2)e ™ dz.
0 0

It is convenient to calculate the coefficients B and C using tables of Laplace transforms
according to the formulas B = £{K(z), A\} and C' = £{2K(2), \}.

2°. Solution with n = 2:

A AC AC?  AD
p(x) = sze’\x + 2pﬂce>"1c + (2 B ?)em’

B =/ K(e*dz, C =/ 2K(z)e™dz, D =/ 22K (2)e ™ dz.
0 0 0

3°. Solution with n = 3,4, ... is given by:

@=Ly a [ B(A)—/wmr“d
Pnl0) = G\ In O =250 | BOY |7 =), e s

/ ) K(x - t)y(t) dt = A cosh(Ax).

Solution:

A A 5, 1A A 1/ A AN .
y(x) = Ee + 2B+€ =5 (E + E> cosh(\z) + E(E - B_+) sinh(\x),

B_ =/ K()e™dz, B =/ K(2)e* dz.
0 0

/I K(x - t)y(t) dt = A sinh(A\x).

Solution:

y(x) = ie” A e L (i i) cosh(Az) + 1

A
_ _ inh
2B 2B, ° 2\B. " B, )Sm Az),

2 (E "B,
B = / K()e™dz, B,= / K(2)e* dz.
0 0

/ K(x -t)y(t)dt = A cos(Ax).
Solution:

A .
y(x) = m [BC cos(Ax) — By sm()\z)] ,

Bcz/ K(z)cos(A\2)dz, Bsz/ K(2)sin(Az) dz.
0 0
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23.

24.

25.

26.

/I K(x -t)y(t)dt = Asin(Ax).

Solution:

A .
y(x) = BB [Be sin(Az) + B, cos(Ax)],

BC:/ K(z)cos(Az)dz, Bs:/ K(2)sin(Az)dz.
0 0

/I K(x -t)y(t) dt = Ae!® cos(Ax).

Solution:

A (LT .
y(z) = me‘ [ B: cos(Ax) — By sin(Az)],

Bcz/ K(z)e™™* cos(A\z) dz, Bsz/ K(z)e ™™ sin(A\z) dz.
0 0

/fﬂ K(x -t)y(t) dt = Ae!® sin(Ax).

Solution:

A :
y(x) = me’” [ B sin(Az) + B, cos(Az)],

B, = / K(z)e** cos(A\z)dz, Bs= / K(z)e™#* sin(\z) dz.
0 0

/ K(@ - tyy(t) dt = f(@).

1°. For a polynomial right-hand side of the equation, f(z) = Y. Ajx*, the solution has the
k=0
form

y@) =Y Bt
k=0

where the constants By, are found by the method of undetermined coefficients. The solution
can also be obtained by the formula given in 1.9.17 (item 4°).

2°. For f(x) = e’ Y Axz*, the solution has the form
k=0

n
y@)=e* Y Bk,
k=0

where the constants By, are found by the method of undetermined coefficients. The solution
can also be obtained by the formula given in 1.9.19 (item 3°).
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27.

3°. For f(x) = > Ay exp(Axx), the solution has the form
k=0

n A o0
yay=> B—: exp(\pz),  Bp= / K(2) exp(-A\y2) dz.
k=0 0

n
4°. For f(z) = cos(Ar) 3. Axz", the solution has the form
k=0

y(z) = cos(Ax) Z Biz® + sin(\z) Z Cha”,
k=0 k=0
where the constants By and C}, are found by the method of undetermined coefficients.

5°. For f(x) = sin(A\x) Z Apx¥, the solution has the form
k=0

y(z) = cos(Ax) Z Biz® + sin(\z) Z Cha”,
k=0 k=0

where the constants By and C}, are found by the method of undetermined coefficients.

6°. For f(z) = Z Ay, cos(A\,x), the solution has the form
k=0

n Ak .
=N k1B, cos(Oa) — By, sin(Ap)],
y(x) g B Bfk[ ek c08(\,z) — By, sin(\z))]

Bck=/ K(2)cos(A\r2)dz, Bsk=/ K(2)sin(A\r2)dz.
0 0

n
7°. For f(z) = > A sin(\xx), the solution has the form
k=0

y(x) = ﬁ [ Ber sin(A,) + Byi cos(Ag2)],
k=0 —ck + Dy,

Bckz/ K(2)cos(\r2)dz, Bskz/ K(2)sin(A\r2)dz.
0 0

oo
/ K(x -t)y(t)dt = Azx™, n=0,12,...
x

This is a special case of equation 1.9.29 with A = 0.

1°. Solution with n = 0:
A o0
y@)=%.  B= / K(2)d=.
B 0

2°. Solution with n = 1:

A AC o el
y(fﬂ)—El’—?, B—/O K(-2)dz, C—/O 2K (-2)dz.
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3°. Solution with n = 2:

A AC AC?*  AD
ya(x) = —CL' —2— 2?_ﬁ’

= / K(-2)dz, C = / 2K(-2)dz, D= / 22 K(-2)dz.
0 0 0

4°. Solution with n = 3,4, ... is given by

()—A{an e By = [ Ko d
yn(T) = W[B()\)HA:O’ ()—/0 (=2)e™” dz.

28. / K(x - tyy(t) dt = Ae ™.

Solution:

y(x) = ée/\gﬁ, B = / K(-2)e* dz.
B 0

The expression for B is the Laplace transform of the function K (—z) with parameter p=-X\ and
can be calculated with the aid of tables of Laplace transforms given (e.g., see Supplement 4).

oo
29. / K(z - tyy(t) dt = Az™e®, n=12...
x

1°. Solution with n = 1:

Az AC )\m

yi(@) = pre™ — e,

B= / K(-2)e*dz, C= / 2K (-2)e™* dz.
0 0

It is convenient to calculate the coefficients B and C using tables of Laplace transforms with
parameter p = —\.

2°. Solution with n = 2:

A 5, AC ., AC?* AD e
yz(:c)=§xe —2ﬁxe + 2B3 “ e,

=/ K(-2)eM dz, C’=/ 2K (-2)e™* dz, D=/ 2K (-2)e*? dz.
0 0 0

3°. Solution with n = 3,4, ... is given by:

0 an e)\x ~ oo N
Yn(T) = )\yn 1(x) = 8)\" [B(/\)}’ B()\)—/O K(-z)e™* dz.

30. /00 K(z - t)y(t) dt = A cosh(Ax).

Solution:
A Ar 1, A

ZB+ T 35 — (E + é) cosh(\z) + — <B£+ ;) sinh(A\z),

B, = / K(-2)e*dz, B._= / K(=2)e ™ dz.
0 0

y(x) =
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31.

32,

33.

34.

35.

36.

/ K(x - t)y(t) dt = A sinh(Ax).
Solution:

A A 1, A A 1/ A AN .
= T _ - T (- _ - h B h
Y@ = g e 2 (B+ B,) cosh(Az) + 35 <B+ * B,) sinh(Az),

B, = K(-2)e*dz, B._= / K(=2)e ™ dz.
0 0

/ K(x -t)y(t)dt = A cos(Ax).
Solution:

A .
y(x) = W) [B: cos(Az) + By sin(Az)],

B. = /OO K(-z)cos(A\2)dz, Bs= /OO K(=2)sin(Az) dz.
0 0

/ K(x -t)y(t) dt = Asin(Ax).
Solution:

A .
y(x) = m [BC sin(A\x) — By cos()\:v)] ,

Bc=/ K(—2)cos(A\z) dz, BS=/ K(-2)sin(\z) dz.
0 0

/°° K(x -t)y(t) dt = Ae!® cos(Ax).

Solution:

y(x) = e"* [ Be cos(Az) + B sin(Az)],

B? + B?
B, = / K(-2)e"* cos(A\z)dz, Bs= / K(—2)e"*sin(A\z) dz.
0 0

/00 K(x -t)y(t) dt = Ae”” sin(Ax).

Solution:

y(z) = et [BC sin(Ax) — B; cos(/\x)] ,

A
B? + B?

BC=/ K(—2)e"? cos(A\z) dz, Bs=/ K(—2)e"?sin(\z) dz.
0 0

/ K(z - tyy(t) dt = f(x).

n
1°. For a polynomial right-hand side of the equation, f(z) = Y A.xz¥, the solution has the
k=0

form .
y@) =Y Bat,
k=0

where the constants By, are found by the method of undetermined coefficients. The solution
can also be obtained by the formula given in 1.9.27 (item 4°).
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2°. For f(x) = e’ Y Axz*, the solution has the form
k=0

y@)=er > Bra¥,
k=0

where the constants B}, are found by the method of undetermined coefficients. The solution
can also be obtained by the formula given in 1.9.29 (item 3°).

3°. For f(x) = Y Ay exp(Arx), the solution has the form
k=0

n

A o0
v =3 FrewOva). B = / K(-2)exp(z) dz.
k=0 0

4°. For f(z) = cos(Ar) Y Az, the solution has the form
k=0

y(x) = cos(Ax) Z Brz® + sin(\z) Z Cha®,

k=0 k=0
where the constants By and C}, are found by the method of undetermined coefficients.

5°. For f(x) = sin(Az) 3 Ax*, the solution has the form
k=0

y(x) = cos(Ax) Z Biz" + sin(\x) Z Crzt,

k=0 k=0

where the constants By, and C}, are found by the method of undetermined coefficients.

6°. For f(z) = > Ay cos(Agx), the solution has the form
k=0

=3k [Bacos(ha) + By, sin(\a)]
y(zx) 2 Bczk"'Bszk[ ek COS(A) + By sin(A\2)|

B, = / K(=2)cos(\p2)dz, By = / K(=2)sin(\,2) dz.
0 0

7°. For f(z) =Y Ay sin(Agx), the solution has the form
k=0

n Ak
Y(@) =y  —5——[Ber sin(Axx) — By, cos(Arz)],
; B + B,

Bek =/ K(—z)cos(Agz2)dz, B =/ K(—2)sin(\x2) dz.
0 0
8°. For arbitrary right-hand side f = f(x), the solution of the integral equation can be
calculated by the formula
1 ct+ioo  F
vor= g [ I eman
2mi c—100 k(_p)
fp) = / f(x)e™P* dux, k(-p) = / K(-z)eP? dz.
0 0

To calculate f(p) and k(—p), it is convenient to use tables of Laplace transforms, and to
determine y(z), tables of inverse Laplace transforms.
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‘ 1.9-3. Other Equations ‘

37.

38.

39.

40.

41.

42,

43.

/ [9(@) - g®)]"y(@®) dt = f(x), n=12...

The right-hand side of the equation is assumed to satisfy the conditions f(a) = fi(a)=--- =

fi(a)=0
Solution: y(z) = igé(ac)(
n!

d n+l
g%(x) @> J@.

/ V(@) -gt)yt)dt = f(x), fla)=0.

Solution:
@)=2 '(:c)< ! i)Z/IM
V=295 gy dz ) |, Ve -9
r y@)dt ,
LA b , 0.
a Vg@)-g®) f(@) 9= >
Solution:

1d/ f®gi ) dt

YO =TT ), Ve -9

x e)\(w—t)y(t) dt
a V9@ -g(®)

Solution:

= f(x), g;,,; > 0.

VU e (01710}

yi) = v Jo Va@ g

/ [g@) - 9Py dt = f@),  F@=0, 0<A<L

Solution:

y(x) = kgzm( di> T gftdt _ sin(ry)

) [g(z) — gD’ oA

= h(t)y(t)dt
o lg(x)-g@®*

Solution:

= f(x), g,>0, 0<A<l

_sin()) d / gt dt
T wh(x) dx ), [g(x)-g®IN

x t
/ K(—)y(t) dt = Az> + BxH.
0 xr

Solution:

A B 1 1
y(x) = —a 4 —gh ! I, = / K(z)z*" dz, I, = / K(z)z""dz.
I I, 0 0
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44.

45.

46.

47.

48.

49.

* i _ — A " m
/0 K(;)y(t)dt_Pn(m), P,(x)==x ZAma: .

m=0

Solution:

n Am 1
R S A
=0 ™M 0

The integral I is supposed to converge.

/ {91@) [h1(®) - hi(@)] + g2(2) [ha(t) - ha(@)] }y(t) dt = f(@).

This is a special case of equation 1.9.50 with g3(x) = —g1(z)h(x) — g2(x)ha(z) and hs(t) = 1.
The substitution Y'(z) = / y(t) dt followed by integration by parts leads to an integral
equation of the form 1.9.15: ‘

/ {91 @ [ ®)], + g2(@) [ha®)], }Y(t) dt = —f(x).

/ {g1(@) [h1(t) - 2@ P hy(2)] + g2(z) [Ra2(t) - 2@ P hy(z)]| }y(t) dt = f().

This is a special case of equation 1.9.50 with g3(z) = - [gl(x)hl(x) + gz(x)hz(:z:)] , and
ha(t) = e,

The substitution Y (z) = / e My(t) dt followed by integration by parts leads to an integral
equation of the form 1.9.15:

/ {gl @) [Mh®)], + g2(@) [N ha(D)]] }Y(t) dt = —f(x).

/ [Ag*(2)g"(t) + Bg*P(2)g" P (t) - (A + B)g* (z)g" 7 (t)] y(t) dt = f(z).

This is a special case of equation 1.9.50 with g, (x) = Ag*(x), hi(t) = g"(t), go(x) = Bg*P(x),
ha(t) = g* P (1), g3(x) = (A + B)g**(2), and hs(t) = g7 (¢).

/ ) [Agk(w)h(ac)g"(t) + Bg™MP(z)h(z)g" P (t)
-(A+ B)gA-PY(m)gp_’y(t)h(t)} y(t)dt = f(x).

This is a special case of equation 1.9.50 with g;(x) = Ag*(x)h(x), hi(t) = g'(t), g2(x) =
BgMP(@)h(x), ha(t) = g"F (1), g3(x) = «(A + B)g™ (x), and ha(t) = g7 ()h(1).

/ ) [Ag*(@)h(z)g"(t) + Bg*P (2)h(t)g" P (t)
- (A + B)g™(z)g" " ()h®)]y(t) dt = f(z).

This is a special case of equation 1.9.50 with g;(x) = Ag*(x)h(x), hi(t) = g'(t), ga(x) =
Bg P (@), ha(t) = g P (D), g3(x) = ~(A+ B)g*(x), and hs(t) = g* (H)h(D).
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50. / [91@)h1 (D) + g2(2)ha(t) + gs(@h3 (D) y(®) dt = f(z),
where gi(x)hi(x) + g2(x)h2() + g3(x)hs(x) = 0.

The substitution Y (x) = / hs(t)y(t) dt followed by integration by parts leads to an integral
equation of the form 1.9.15:

v h®]’ hat) ]’ _
/a {91(1‘) [m} t + gz(x)[hs(t)]t}Y(t) dt = —f(w).

51. / : Q(x - t)e®ty(&) dt = AeP®, € = ePlg(x - t).

Solution:

A pa > ra
y(§)=gf h q=/ Q)g(2)] P e dz.
0

1.10. Some Formulas and Transformations

1. Let the solution of the integral equation

/ K(x, tyyt) dt = f(x) (D
have the form

y(x) = F[f(@)], )

where F is some linear integro-differential operator. Then the solution of the more complicated
integral equation

/ K(z. 0g(@)h(ty(t) dt = f(2) 3)
has the form | @)
N

v = s F ) )

Below are formulas for the solutions of integral equations of the form (3) for some specific
functions g(z) and h(t). In all cases, it is assumed that the solution of equation (1) is known and is
determined by formula (2).

(a) The solution of the equation

/ K@, (/0 y(t)dt = f(x)
has the form
y(x) = 2 F 27 f(2)].

(b) The solution of the equation

/ ’ K(z, e’ Dy) dt = f(x)

has the form
y(@) = M Fe f(x)].
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2. Let the solution of the integral equation (1) have the form

v =L (o ) for+ La(e 1) [ R 0f0 )

where L and L, are some linear differential operators.
The solution of the more complicated integral equation

/‘K@@memwﬂ=ﬂm, (©6)

where ¢(z) is an arbitrary monotone function (differentiable sufficiently many times, ¢/, > 0), is
determined by the formula

1
y(x) = @, (x)L (cp(x) @) d;p)f( ) o
/ 1 d ‘ ’
+ @i (2) Lo (‘P(CE), m %) /a R(p(x), (1))}t f(t) dt.

Below are formulas for the solutions of integral equations of the form (6) for some specific
functions ¢(x). In all cases, it is assumed that the solution of equation (1) is known and is
determined by formula (5).

(a) For p(z) = 2,

y(z) =A™ L (;&, % i) f(x)+ N2 L, (ﬁ, L i) / ' R(z*, M) f(¢) dt.

Azl dx Azl dx
(b) For p(x) = e*

1 1 r
y(x) = N L, (e”, o %) @)+ X2 L, (e)‘z, W%) / R(e“, eM)e)‘tf(t) dt.

(c) For p(x) = In(\x),

y(x) = lL1 (ln()\x), :ci) f(x)+ le (ln()\m), :ci) / ’ lR(ln()\m), In(At)) f(t) dt.
x dz x de ) J, t

(d) For (z) = cos(\x),

-1
y(x) = =Asin(Ax)L; (cos()\x) /\T()\x) I ) f(@)

-1 d

A\ sin(Az) L, (cos()\x) )\T()\x) dr

> /z (cos()\x), cos()\t)) sin(At) f(t) dt.

(e) For p(x) = sin(\x),

1
y(l’) = ACOS()\JZ)L] (Sln(Al’) m d;r)f( )
N2 cos(\z) Ly (sin(/\x), m%) /r R(sin(Az), sin(At)) cos(At) f(t) dt.
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Chapter 2

Linear Equations of the Second Kind
With Variable Limit of Integration

» Notation: f = f(x), g=g(x), h=h(x), K = K(x), and M = M (x) are arbitrary functions (these
may be composite functions of the argument depending on two variables x and t); A, B, C, D, a,
b, ¢, a, B, 7, A\ and  are free parameters; and m and n are nonnegative integers.

2.1. Equations Whose Kernels Contain Power-Law
Functions

‘ 2.1-1. Kernels Linear in the Arguments x and ¢ ‘

L y@-x / y(t) dt = f(@).

Solution:

y(z) = f(z)+ A / ’ @D (1) dt.

x

2. y(x) + )\w/ yt)dt = f(x).

Solution:

y(x) = f(x)— A / ’ zexp[ SN —2?)] f(¢) dt.

3. y(x) + )\/w ty(t) dt = f(x).

Solution:

y(z) = f(x) =\ / xtexp[%k(tz -z b dt.

4, y(x) + )\/ (x - t)yy(t) dt = f(x).

This is a special case of equation 2.1.34 with n = 1.

1°. Solution with A > 0O:

y(@) = f(x)—k / ’ sin[k(z - O1f ) dt,  k=V\
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2°. Solution with A < 0:

y(x) = f(x)+ k / : sinh[k(z —O1f @) dt,  k=V-\

y(x) + / [A + B(x - t)} y(t) dt = f(x).

1°. Solution with A% > 4B:

y(@) = f(x) - / Rz —)f(t)dt,

2
R(z) = exp(-3 Ax) [A cosh(fz) + ZBZ/_BA sinh(ﬁx)], B=4/1A2-B.

2°. Solution with A% < 4B:

y(a:):f(:c)—/ Rz -t)f(t)dt,

2

2

R(z) = exp(-1 Ax) [A cos(Bzx) + 2 sin(ﬂx)], B=1/B-1A%.
3°. Solution with A% = 4B:

y(x) = f(x) - /w R(x -t)f(t)dt, R(x) = exp(—%Am) (A - %Azx).

y(x) - /w (A:c + Bt + C)y(t) dt = f(x).

For B = —A see equation 2.1.5. This is a special case of equation 2.9.6 with g(x) = —Ax and
h(t)y=-Bt-C.

By differentiation followed by the substitution Y (z) = y(t) dt, the original equation

x

a
can be reduced to the second-order linear ordinary differential equation

Y, - [(A+B):c+O]Yé—AY = fi(z) (1)

under the initial conditions
Y(a)=0, Y(a)= f(a). @)
A fundamental system of solutions of the homogeneous equation (1) with f = 0 has the

form

Yi(x) = q)(oz, %; kzz), Y (x) = \I/(a, %; kzz),
A A+ B
= z=x+

“T2Aa+B); T2 A+B’

where ®(a, 8; ) and ¥ (a, 3; ) are degenerate hypergeometric functions.

Solving the homogeneous equation (1) under conditions (2) for an arbitrary function
f = f(z) and taking into account the relation y(z) = Y,/(x), we thus obtain the solution of the
integral equation in the form

y(@) = f(x)- / R(z, 1) f(t) dt,

9* [Yi(@)Ya(t) - Ya(2)Y1 (D) _ 2Vrk C \2
Dot W) } W =Ty e [’“ (” A+B) ]

R(z,t) =
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‘ 2.1-2. Kernels Quadratic in the Arguments = and ¢

10.

11.

y(x) + A/m :Ezy(t) dt = f(x).

This is a special case of equation 2.1.50 with A = 2 and p = 0.
Solution:

y(x) = f(x)—A/x z?exp [ A - 2)] f(¥) dt.

y(x) + A/m xty(t) dt = f(x).

This is a special case of equation 2.1.50 with A =1 and p = 1.
Solution:

y(x) = f(r)- A /x ztexp[TAWX - 27)] f(t) dt.

y(x) + A / i tyt) dt = f(x).

This is a special case of equation 2.1.50 with A = 0 and p = 2.
Solution:

y(x) = f(x)- A / ’ texp [+ A —2)] f(®) dt.

(@) + A / (@ - tPy() dt = f(@).

This is a special case of equation 2.1.34 with n = 2.
Solution:

y(@) = f(x) - / Rz —)f(t)dt,

R(@) = 3he 2 - 2he [cos (V3 ka) - Vasin(V3ka) |, k= (30)"7",

1]
—~
ISP

y(x) + A/m(w2 - )y@) dt = f(x).

This is a special case of equation 2.9.5 with g(z) = Az>.
Solution:

1 xT
Yo = F@r+ o / [ ()b (t) — (e, ()] F(0)

where the primes denote differentiation with respect to the argument specified in the parenthe-
ses; u)(x), up(x) is a fundamental system of solutions of the second-order linear homogeneous
ordinary differential equation v/, + 2Azu = 0; and the functions u(z) and uy(x) are ex-
pressed in terms of Bessel functions or modified Bessel functions, depending on the sign of
the parameter A:

For A >0,

W =3/7, wu(x)= \/5J1/3(\/%7A$3/2>, up(w) = \/51/1/3(@1‘3/2)-

For A <0,

W=-3, u()s= \/511/3(\/%563/2), up(x) = \/EKl/3(\/M1’3/2)-
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12.

13.

14.

15.

16.

y(x)+ A / E(:ct - tHy(t) dt = f(x).

This is a special case of equation 2.9.4 with g(t) = At. Solution:

A €T
y@) = f(@) + W / t[y1@)ya(t) = ya(@)yi (D) f(1) dt,

where y;(x), y2(z) is a fundamental system of solutions of the second-order linear homo-
geneous ordinary differential equation y//, + Axy = 0; the functions y;(x) and y,(z) are
expressed in terms of Bessel functions or modified Bessel functions, depending on the sign
of the parameter A:

For A > 0,

W =3/7, yi(x)= \/EJ1/3<%\/Z:133/2), yo(x) = \/E}/]/3(%\/Za?3/2).
For A <0,

W==3. y@=valis3VIAL?), p@ = VoK ;(3Vidz"?).

y(x)+ A / w(mz - zt)y(t) dt = f(x).

This is a special case of equation 2.9.3 with g(x) = Az. Solution:

A x
y(@) = f(2) + W / z[y1(@)ya(t) - ya(@)p (O] f (1) dt,

where y;(x), y2(z) is a fundamental system of solutions of the second-order linear homo-
geneous ordinary differential equation 3/, + Axy = 0; the functions y;(x) and y,(z) are
expressed in terms of Bessel functions or modified Bessel functions, depending on the sign
of the parameter A:

For A >0,

W=3/m, n@) = vadis3VAR?), p@) = VaYs(2VASR).
For A <0,

W=-3, y@) = \/511/3(%\/@953/2), yo(r) = \/5K1/3(%\/m$3/2)'
yx)+ A / w(tz -32Y)y(t)dt = f(x).

This is a special case of equation 2.1.55 with A = 1 and p = 2.

y(x)+ A / Qat - 3x2)y(t) dt = f(x).
This is a special case of equation 2.1.55 with A =2 and p = 1.
y(x) - / (ABxzt - ABx* + Ax + B)y(t) dt = f(x).

This is a special case of equation 2.9.16 with g(z) = Az and h(z) = B.
Solution:

y(@) = f(x) + / R(z.t)f(t) dt,

R(z,t) = (Az + B) exp[%A(m2 - tz)} +B? /l exp [%A(s2 -t)+ B(z - s)} ds.
t
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17.

18.

19.

y(x) + / i (Az? - At? + Bz - Ct + D)y(t) dt = f(z).

This is a special case of equation 2.9.6 with g(x) = A2? + Bx + D and h(t) = —At> - Ct.
Solution:

_ T [Yi@Ya(t) - Ya(@)Yi(D)
y(a:)—f(a:)+/a awt[ q0) f@)dt.

Here Y/(z), Y>2(z) is a fundamental system of solutions of the second-order homogeneous
ordinary differential equation Y, + [(B -C)x+ D] Y+ 2Ax+B)Y =0 (see A. D. Polyanin
and V. F. Zaitsev (1996) for details about this equation):

Yi(x) = exp(—ka:)@(a, %; %(C— B)zz), Yo(x) = exp(—kx)\Il(a, %; %(C— B)zz),

_ /2m(C-B) . 5 _ 24
W(:E)——T exp[3(C - B)z* - 2kz], k=25
_ 4A242AD(C-B)+B(C-B _  4A+(C-B)D
o 2C-By S (- )

where ® (o, 3;x) and ¥ (a, 3; ) are degenerate hypergeometric functions and I'() is the
gamma function.

y(x) - /w [Aw + B+ (Cx + D)(x - t)]y(t) dt = f(x).

This is a special case of equation 2.9.11 with g(z) = Az + B and h(z) = Cx + D.
Solution with A # 0:

y(@) = f(z) + / [V (@)Y1(t) - Y (2)Ya(D)] J@ dt.
a W (1)
Here Y)(z), Y2(x) is a fundamental system of solutions of the second-order homogeneous
ordinary differential equation Y, — (Az + B)Y,] — (Cx + D)Y =0 (see A. D. Polyanin and

V. F. Zaitsev (1996) for details about this equation):

Yi(2) = exp(-kz)® (o, 13 $A42%),  Ya(2) = exp(-ka)¥ (e, §; $A427),

W(z) =—V27A [[(@)] " exp(3422 —2kz), k=C/A,
a=1(AD-ABC-CHA®, z=z+(AB+20)A7,

where & (a, 0 x) and & (a, 0 x) are degenerate hypergeometric functions, I'(«) is the gamma
function.

y(z) + / : [At + B +(Ct + D)(t - )] y(t) dt = f(x).

This is a special case of equation 2.9.12 with g(¢) = —At — B and h(t) = -Ct - D.

Solution with A # 0:
‘ f(®)
v = @)~ [ @V - ¥ 0Vw) s d
Here Y)(z), Y2(x) is a fundamental system of solutions of the second-order homogeneous
ordinary differential equation Y, — (Az + B)Y, — (Cx + D)Y = 0 (see A. D. Polyanin and

V. F. Zaitsev (1996) for details about this equation):
Yi(2) = exp(-kz)® (o, 13 2A42%), Ya(z) = exp(-ka)¥ (e, ; $A2%),
W(z) =—V27A [[(@)] " exp(3 422 —2kz), k=C/A,
a=1AD-ABC-CHA?, z=z+(AB+20)A7,
where @(a, 0 :r) and \I/(a, 0 x) are degenerate hypergeometric functions and I'(«) is the
gamma function.
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‘ 2.1-3. Kernels Cubic in the Arguments x and ¢

20, y(x)+ A / : 2y(t) dt = f(x).

Solution:

y(z) = f(z)- A / ’ 2’ exp [T A - 2h)] f(¢) dt.

2. yx)+ A / x’ty(t) dt = f(x).
Solution:

y(x) = f(x)- A / ' *texp [T A - ah)] f(t) dt.

a

22. yx)+A / xt*y(t) dt = f(x).
Solution:

y(@) = f(z)- A / : zt® exp [T A - 2h)] f(#) dt.

a

23. yx)+A / i Byt) dt = f(x).

Solution:

y(x) = f(z)- A / ’ £ exp[ LA — 2] f(¢) dt.

a

24, y(x)+ )\/m(w -t’y(t) dt = f(x).

This is a special case of equation 2.1.34 with n = 3.
Solution:

y($)=f(96)—/ Rz —1)f(t)dt,
where

Re) = k[cosh(kz) sin(kz) - sinh(kz) cos(kz)|, k= (3\) V4 for A0,
1s[sin(sz) - sinh(sz)], s =(-6X)"/* for A <O0.

25. yx)+A / m(w3 —t}y(t) dt = f(x).

This is a special case of equation 2.1.52 with A = 3.

26. y(x)- A/ac (4w3 - t3)y(t) dt = f(x).

This is a special case of equation 2.1.55 with A = 1 and p = 3.

27. yx)+ A / w(:ctz - ty(t) dt = f(x).

This is a special case of equation 2.1.49 with A = 2.
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28.

29.

30.

31.

32.

33.

yx)+ A / i (z*t - ) yt) dt = f(z).

2

The transformation z = 22, 7 = t2, y(x) = w(z) leads to an equation of the form 2.1.4:

w(z) + 1A / Z(z —Tw(r)dr = F(z), F(2) = f(x).

y(x) + / : (Az*t + Bt®)yt) dt = f(x).

2

The transformation z = x2, 7 = ¢, y(z) = w(z) leads to an equation of the form 2.1.6:

w(2) + / ) ($Az+ 1BT)w(n)dr = F(2),  F(2)= f(2).

2

y(x) + B / ) (2z* - zt?)y(t) dt = f().

This is a special case of equation 2.1.55 with A =2, u =2, and B = -2A.

x
yx)- A / (42 - 32%t)y(t) dt = f(z).
a
This is a special case of equation 2.1.55 with A =3 and p = 1.
y(x) + / (ABz? - ABz’t - Az? - B)y(t) dt = f(z).

This is a special case of equation 2.9.7 with g(x) = Az? and \ = B.
Solution:

y(x)=f(x)+/ Rz -t)f(t)dt,

a

R(z,t) = (Az” + B)exp[$ A(z® - t))] + B* / exp[+A(s’ - 7) + Bz - 9)] ds.
t

y(x) + / : (ABzt? - ABt® + At* + B)y(t) dt = f().

This is a special case of equation 2.9.8 with g(t) = At*> and \ = B.
Solution:

y(@) = fx) + / Ria—)f(t) dt,

R(x,t) = —(At2 + B)exp [%A(t3 - x3)] + B? /f exp[%A(s3 - x3) + B(t - s)] ds.
t

‘ 2.1-4. Kernels Containing Higher-Order Polynomials in = and ¢ ‘

34.

y(x) + A/w(:c -t)"y(t) dt = f(x), n=12,...

1°. Differentiating the equation n + 1 times with respect to z yields an (n + 1)st-order linear
ordinary differential equation with constant coefficients for y = y(x):
g+ Anty = £V (@).

This equation under the initial conditions y(a) = f(a), y.(a)= fi(a), ..., y™(a) = f™(a)
determines the solution of the original integral equation.
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35.

2°. Solution:
y(x) = f(z)+ / Rz —1)f(t)dt,

R@)=—— I; exp(o12) [0 cos(Bez) - By sin(Bea)].

where the coefficients oy, and (3 are given by

1 2k 1 27k
o = |An!|n+ cos( T ), B = |[An!| n+l sin( T ) for A<O,
n+1 n+1
1 27k 1 27k
o = |An!|n+ cos( il +7T), B = |[An!| n+l sin( il +7T> for A>0.
+1 n+1

y(x) + A/oo(t -x)"y(t)dt = f(x), n=12,...

The Picard—Goursat equation. This is a special case of equation 2.9.62 with K(z) = A(—2)".

1°. A solution of the homogeneous equation (f = 0) is

1
y(z) = Ce™, A= (—An!) ol

where C'is an arbitrary constant and A < 0. This is a unique solution for n =0, 1, 2, 3.
The general solution of the homogeneous equation for any sign of A has the form

y@) = Crexp(-Mg). (1)

k=1

Here C}, are arbitrary constants and )y, are the roots of the algebraic equation \™*! + An! =0
that satisfy the condition Re \;, > 0. The number of terms in (1) is determined by the inequality
§<2 [%] + 1, where [a] stands for the integral part of a number a. For more details about the
solution of the homogeneous Picard—Goursat equation, see Subsection 9.11-1 (Example 1).

2°. For f(z) = Y aj exp(-frx), where (Bj > 0, a solution of the equation has the form

y() = Z ﬁm’iﬁ’“ exp(-h), @)

where /6’"“ + An! #0. For A > 0, this formula can also be used for arbitrary f(x) expandable
into a convergent exponential series (which corresponds to m = o).

3°. For f(x) = ¢P® Y aja®, where 3 > 0, a solution of the equation has the form
k=1

y@) =P " Brak, 3)
k=0

where the constants By, are found by the method of undetermined coefficients. The solution
can also be constructed using the formulas given in item 3°, equation 2.9.55.
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36.

37.

38.

39.

4°. For f(x) = cos(Bx) > ax exp(—uxx), a solution of the equation has the form

y(@) = cos(Bz) Y By, exp(—pux) +sin(Bx) O expl(—ux), “)

k=1 k=1

where the constants By, and C}, are found by the method of undetermined coefficients. The
solution can also be constructed using the formulas given in 2.9.60.

5°. For f(z) = sin(Bz) > ay exp(—u,x), a solution of the equation has the form

y(x) = cos(Bz) Y By, exp(—p1x) + sin(3z) »  C, exp(—p1), )

k=1 k=1

where the constants By, and C}, are found by the method of undetermined coefficients. The
solution can also be constructed using the formulas given in 2.9.61.

6°. To obtain the general solution in item 2°-5°, the solution (1) of the homogeneous equation
must be added to each right-hand side of (2)—(5).

y(x) + A/w(w -Ht"y(t) dt = f(x), n=12,...

This is a special case of equation 2.1.49 with A = n.

y(x) + A/ ™ -t")y() dt = f(x), n=12,...
This is a special case of equation 2.1.52 with \ = n.

y(x) + / (ABz™' - ABz™t - Az™ - B)y(t) dt = f(z), n=12,...

This is a special case of equation 2.9.7 with g(z) = Az™ and A = B.
Solution:

y(x)=f($)+/ Rz -1)f(®) dt,

R(z,t)=(Ax +B)exp[m(3@ ¢ ”)} +Bz/t exp {m(s ¢ +')+B(J:—s) ds.

y(x) + / (ABa:t” - ABt™! + At™ + B)y(t) dt = f(x), n=12,...

This is a special case of equation 2.9.8 with g(t) = At™ and A = B.
Solution:

y(@) = f(@) + / " Rz—-t)f(0)dt,

_ n A n+l n+l 2 * A n+l n+l ,
R(x,t)=—(At +B)exp[m(t -x ) +B/t exp m(s -x )+B(t—.s) ds.
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‘ 2.1-5. Kernels Containing Rational Functions ‘

40. yx)+a7 / t[2Az + 1 - A)t]y#) dt = f(z).
This equation can be obtained by differentiating the equation
T x
/ [Az’t + (1 - Azt*]y(t) dt = F(x), F(x) = / () dt,
a a

which has the form 1.1.17:
Solution:

1 d z 1 ©
y(x) = E@[QCA / t“%(t)dt], o(r) = — / £ f(t) dt.

x a
4. yl@)-A / Ty®dt ),
0 x+t

Dixon’s equation. This is a special case of equation 2.1.62 witha =b=1and = 0.

1°. The solution of the homogeneous equation (f = 0) is
yx)y=Cz’  (B>-1, A>0). (1)

Here C is an arbitrary constant, and 3 = 3()) is determined by the transcendental equation

LBy
M@B) =1,  where I(8)= / S )
0o 1+=z2
2°. For a polynomial right-hand side,
N
f@)=3 Ana"
n=0
the solution bounded at zero is given by
N
An
—a" for A< A\
;1_(/\//\n)x or A< A,
y@)y =9 )
;T%\mwn‘chﬁ for )\>A0 and)\;t/\n,
U I(n) = (-1)" 1n2+zn:(_1)m
n — I(n)’ n)= — m b}

where C'is an arbitrary constant, and §=3()\) is determined by the transcendental equation (2).
For special A = A\, (n =1,2,...), the solution differs in one term and has the form

L4 al A )
_ m m m m_ n _n n
y(x) = E 71_()%/)%)30 + E 71_0\"/)%)3: An—)\nx Inz + Cx",
m=0 m=n+1
2 k-1
I ntl | T no(-1)
where A\, = (-1)"" [E + kz=:1 2 ] .
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42,

43.

Remark. For arbitrary f(z), expandable into power series, the formulas of item 2° can
be used, in which one should set N = co. In this case, the radius of convergence of the
solution y(x) is equal to the radius of convergence of f(x).

3°. For logarithmic-polynomial right-hand side,

N
flx)= lnx<2Anz"),

n=0

the solution with logarithmic singularity at zero is given by

N N
A ey AD
. ln;v; 1_(/\//\n)w +n§=% [1_(/\//\n)]2m for A\ < Ao,
y(x) = .
Ap N A,Dp\
2 T o T A domd A
- e D* e Dt
An= oy W=D [ln2+z } = (=) {12*2 = }

k=1
4°. For arbitrary f(x), the transformation

e, t=1%, y@) =etwz), f@)=e7g2)

B —

xr=

leads to an integral equation with difference kernel of the form 2.9.51:

w(z) — )\/ w(T)dT = g(2).

cosh(z T)

T b
y(@) - / 22 gty dt = ).

This is a special case of equation 2.9.1 with g(x) = x + b.
Solution:

0 w0 iy at.

vy = fen [ 2

a

2 Tt
y(x) = A= ")a? /A 131 y(t) dt.

This equation is encountered in nuclear physics and describes deceleration of neutrons in
matter.

1°. Solution with A = O:

y(x) = m,

where C'is an arbitrary constant.

2°. For X # 0, the solution can be found in the series form

y(z) = Z A, z".

n=0

@ Reference: 1. Sneddon (1951).
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‘ 2.1-6. Kernels Containing Square Roots and Fractional Powers

4. y(x)+ A/I(:c - t)\/i y(t) dt = f(x).

This is a special case of equation 2.1.49 with \ = %

45. y@)+A / (Vz - Vt)yt)dt = f(z).

This is a special case of equation 2.1.52 with A = %

46 ()+A/ vt _ ).
s YA Vet

Abel’s equation of the second kind. This equation is encountered in problems of heat

and mass transfer.
Solution:

y(x) = F(z) + 12 / ’ exp[m\2(x — )1 F(t) dt,

a

F@) = f(@)- A / J@dt (t)dt

@ References: H. Brakhage, K. Nickel, and P. Rieder (1965), Yu. I. Babenko (1986).

where

47, y(@) A/m vt _ s >0, b>0
. ) - —— = f(x), a>0, 3
Y 0 Vax?+ bt?

1°. The solution of the homogeneous equation (f = 0) is

y(z) = Cz’ B>-1, A>0). (1)

Here C is an arbitrary constant, and § = 3()\) is determined by the transcendental equation

1 B d
zP dz
M(B)=1, where I(3) = —_— 2)
0 Va+bz?
2°. For a polynomial right-hand side,
N
f@)=> A"
n=0
the solution bounded at zero is given by
N
A
Z . — for A < M\,
—~ L-=(A/An)
y@)y =9 N
—— 2 —a"+C2” for A>Xgand A # \,,
% 1=(/A) ’
Vb

_ N ](n)_/li
_Arsinh(\/b/a)’ "Iy’ “Jo Va+b?

Here C'is an arbitrary constant, and 3 = 3()) is determined by the transcendental equation (2).
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3°. For special A = A\, (n = 1,2,...), the solution differs in one term and has the form

N -

< A A by
- m m m m_An_" ] n’
y(x) mzzol_()\n/)\m)x +mzzn+1 1_()\n//\m):£ )\nx nr+Czx

! z”lnzdz}_1
0 Va+bz?

4°. For arbitrary f(x), expandable into power series, the formulas of item 2° can be used, in
which one should set N = co. In this case, the radius of convergence of the solution y(z) is
equal to the radius of convergence of f(x).

t) di
48.  y(x)+ A / (y( )t)3 ¢ = @

This equation admits solution by quadratures (see equation 2.1.60 and Section 9.4-2).

where )\, = [

‘ 2.1-7. Kernels Containing Arbitrary Powers ‘

49. yx)+A / w(w -t y(t) dt = f(x).

This is a special case of equation 2.9.4 with g(t) = At*.
Solution:

y(@) = f(z) + — / [y1@)y2(t) = (@) (O] f(2) dt,
where y;(x), y2(x) is a fundamental system of solutions of the second-order linear homo-

geneous ordinary differential equation y//, + Az*y = 0; the functions y;(z) and y,(x) are
expressed in terms of Bessel functions or modified Bessel functions, depending on the sign

of A:
For A > 0,
2 VA VA A+2
W= yi(@)=vaJ <—$q> p(r)=VrY (—$q>, q= ,
m 2q q 2q q 2
For A <0,
A A A+2
W =-q, yl(:c>=\/:?u<v' 'xq>, y2<x>=\/EKL(V' ':zﬂ>, g=222
2q q 2q q 2

50. yx)+A / :  tHy(t) dt = f(x).

This is a special case of equation 2.9.2 with g(z) = —A2> and h(t) = t* () and p are arbitrary

numbers).
Solution:
v = @)~ [ Ra.ofo.
Az " exp [L (et — x“‘”l)] for A\+p+120
R(x,t) = A+pu+1 ’
Ag-Agnra for A+ pu+1=0.
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51. yx)+A / (x -ty tFy(t) dt = f(x).
The substitution u(x) = x’Ay(x) leads to an equation of the form 2.1.49:

wx) + A / I(m — O Pu(t) dt = flz)a .

52. yx)+A / w(wA - tMy(t) dt = f(x).

This is a special case of equation 2.9.5 with g(x) = Az>.
Solution:

1 x
y@) = f@) + 5> / [l (@)us(t) — up () (D) f(B) dt,

where the primes denote differentiation with respect to the argument specified in the paren-
theses, and u(z), up(x) is a fundamental system of solutions of the second-order linear ho-
mogeneous ordinary differential equation v/ + Alz* 1y = 0; the functions u;(z) and u,(z)
are expressed in terms of Bessel functions or modified Bessel functions, depending on the

sign of A:
For A\ >0,
2 VA VA 1
w=1, un(x)=\/5J1< /\xq), uz(a:)=\/3_:Y1< /\xq), q=)\+ ,
T 2q 29 2
For A\ <0,
W:—q, ul(:C)z\/E[]< |A>\|l’q), UZ(SC)z\/E/\K1< |A)\|SCq>, q:%.
2q q 2q q

53, y(x)- / i (Az*t*! + B y(@) dt = f(z).

The transformation
z=2, T=t", y@)=Y(2)

leads to an equation of the form 2.1.6:

Y(z)- / <§z + gT) Y(r)dr = F(z), F(2) = f(z), b=a’.
b

54. y(x)- / (Ag -+l 4 BaH# ) yt) dt = f().
The substitution y(z) = x*w(x) leads to an equation of the form 2.1.53:

w(x) — /l (Aac’\t’\_1 + Bt2’\_1)w(t) dt = 7" f(x).

55. yx)+A / : Az Mt - (A + M y(t) dt = f().

This equation can be obtained by differentiating equation 1.1.51:

/ ’ [1+A@ th — ™M) y(t) dt = F(x), F(z) = / ’ f(z)da.

Solution:

d IA ® _ ’ A,U .
y(x) = E{ @) /a [t /\F(t)]té(t) dt}, d(z) = exp <_u+)\zu /\)'
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56.

57.

58.

59.

60.

y(x) + / : (ABz*' - ABa*t - Az> - B)y(t) dt = f(z).

This is a special case of equation 2.9.7.
Solution:

x

y(x)=f(x)+/ Rz -0)f(t)dt,

a

A
A+1

R(z,t) = (Az* + B) exp [

z
t

A
(x“l—t“l)] +B2/ exp[m(s“l—tk“ﬁB(x—s) ds.

y(x) + / : (ABzt* - ABt™' + At* + B)y(t) dt = f(z).

This is a special case of equation 2.9.8.
Solution:

y(w)=f(x)+/ Rz -t)f(®)dt,

A z A
R(z,t)=—(At*+ B) exp {m (t’\“—x“l)] +Bz/ exp{m(s’\”—x’\“)+B(t—s) ds.
t

T,ox+b\r
y(@) - / (F22) v dt = s

This is a special case of equation 2.9.1 with g(x) = (z + b)*.

Solution:
T+b

y(@) = F()+ A / (222) 0 sty ar

Tl
v -x[ Ty dt = f@)

This is a special case of equation 2.9.1 with g(x) = z* + b.
Solution:
Tt +b A

—t)
ik f@)dt.

y(@) = f()+ A /

y(w)—A/m%#(w), 0<a<l
N

Generalized Abel equation of the second kind.

1°. Assume that the number « can be represented in the form

a=1-"0"" where m=1,2,..., n=23,... (m<n).
n

In this case, the solution of the generalized Abel equation of the second kind can be written
in closed form (in quadratures):

y(@) = f(@) + /0 Ra—t)f(t)dt,
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where

_NC AP/ 0) e, 0 i
R(z) = ; Twm/n) %5# exp(subx)
)\Vru(m n) S ¢ vm/n)—
_Z F(l/m/7/1) {;guexp(eubz)/o tvm/n)y leXp(—z—:,,,bt) dt|.

.
7”“), P2=—1, u=0,1,...,m—1.
m

b= )\"/mF"/m(m/n), €y = exp(

2°. Solution with any o from 0 < o < 1:

) - _ [eS) [)\F(l_a)xl—a]n
v = fr+ [ Ra-nf i where R = 2 -]

@ References: H. Brakhage, K. Nickel, and P. Rieder (1965), V. I. Smirnov (1974).

6. y(x)- / (y(ti)‘fta f@), O<ac<l

1°. The solution of the homogeneous equation (f = 0) is
y@)=Cz”®  (B>-1, A>0). 4))
Here C' is an arbitrary constant, and § = 3()\) is determined by the transcendental equation
AB(o, 5+1) =1, 2)

where B(p, q) = Jy 27'(1 — 2)¢"! dz is the beta function.

2°. For a polynomial right-hand side,

N
f@)=> A"
n=0

the solution bounded at zero is given by

N

A
n n f
%;71_0\/)\”)91: or A\<a,
y@) =9 )
Zomxn'chﬁ for )\>aand)\¢)\n,
(a)n+l

Ap = , (@)pe1 =a(a+1)...(a+n).

n!

Here C'is an arbitrary constant, and 5 = 3()) is determined by the transcendental equation (2).
For special A = A\, (n =1,2,...), the solution differs in one term and has the form

(x) = nzlAiw '+ Z Ai " - A X—nx"lna:+0x”
Y 1=/ Am) T /A "Xn ’

-1

1
where )\, = {/ (1-2)*"2"1nz dz]
0
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62.

3°. For arbitrary f(x), expandable into power series, the formulas of item 2° can be used, in
which one should set N = oo. In this case, the radius of convergence of the solution y(x) is
equal to the radius of convergence of f(x).

4°. For N
f@) =In(kz) > Ana™,

n=0

a solution has the form

N N
y(z) = In(kx) Z B,z" + Z D,z",
n=0 n=0
where the constants B,, and D,, are found by the method of undetermined coefficients. To
obtain the general solution we must add the solution (1) of the homogeneous equation.
In Mikhailov (1966), solvability conditions for the integral equation in question were
investigated for various classes of f(z).

A b t) dt
y(@) - / _y®dt__ o
0

(ax + bt)l-+
Here a > 0, b > 0, and p is an arbitrary number.
1°. The solution of the homogeneous equation (f = 0) is
yx)y=Cz’  (B>-1, A>0). (1)
Here C is an arbitrary constant, and § = 3()\) is determined by the transcendental equation

1
M(B) =1, where () = / 2Pla+ b2 dz. )
0

2°. For a polynomial right-hand side,

N
f@)=> A"
n=0

the solution bounded at zero is given by
N

Ay
T e f
;1_()\/)\“)33 or A< Ao,
y@) =9 N
> ————a"+Ca” for A>Xgand A# A,
1=\ M)
1 1
An = m, I(n) = /0 2"(a+b2)" ! dz.

Here C'is an arbitrary constant, and 5 = 3()) is determined by the transcendental equation (2).

3°. For special A = \,, (n=1,2,...), the solution differs in one term and has the form
N

(x)—il:Amm+ Z Lxm—fl &x"lnx+C’x”
P BTO WY RN O WO W :

1 -1
where )\, = [/ 2™(a+bz)* ' In zdz} )
0

4°. For arbitrary f(x) expandable into power series, the formulas of item 2° can be used, in
which one should set N = co. In this case, the radius of convergence of the solution y(z) is
equal to the radius of convergence of f(x).
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2.2. Equations Whose Kernels Contain Exponential
Functions

‘ 2.2-1. Kernels Containing Exponential Functions ‘

1. y@+A / i e @ Vyt) dt = f(x).

Solution:

y(x) = fx)- A / | XA £ (1) dt.

a

2. yx+A / i e Pty (t) dt = f(x).

For 3 = —), see equation 2.2.1. This is a special case of equation 2.9.2 with g(x) = —Ae’®

and h(t) = e”.
Solution:

A
A+

y(@) = f(z) - /w R(z,t)f(t)dt, R(z,t)= Ae*Bt exp{ [eoﬁmt - e(“m‘”] }

3. yx+A / i [eX®D _1]y@) dt = f().
1°. Solution with D = A(A —4A4) > 0:
y(@) = f(x) - % /a " Ra-1b) fdt,  R(z)=exp(iAz)sinh(1vDuz).

2°. Solution with D = A\(\ —4A4) < 0:

2AN (7 ,
y(x) = f(x) - NI /a R(x—t)f(t)dt, R(z) = exp(3Az) sin(3/|D| z).
3°. Solution with A = 4A:

y(x) = f(z)-4A? / $(m —t)exp[24(z - t)] f(t) dt.

4.  y@)+ / ) [Aer™D 1+ Bly(t) dt = f(x).

This is a special case of equation 2.2.10 with A} = A, A, = B, A\; = A, and \, = 0.

1°. The structure of the solution depends on the sign of the discriminant
D=(A-B-)\?+4AB (D)

of the square equation
w2 +(A+B-\u—-B\=0. )

2°. If D > 0, then equation (2) has the real different roots

p=iN-A-B)+iVvD, w=r0n-A-B)-1VD.
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In this case, the original integral equation has the solution

y(x) = f(z)+ / [EreM @D 4 Epet2® 0] f(1) dt,

where

DY -
EB=A-M s pH = gy H2  pH2TA
M2 — [ M2 — 4 M1 — 2 M1 — H2

3°. If D <0, then equation (2) has the complex conjugate roots

W =0+i8, up=0-1if, UZ%(/\—A—B), ﬁ:%\/—D.

In this case, the original integral equation has the solution

v = @)+ [ {Breme ) cost o)+ Exe™ ) sinl o 01}

where

E,=-A-B, E,= %(—AU—BU+B)\).

y(x) + A/m(e)‘:c - eMyy(t) dt = f(x).

This is a special case of equation 2.9.5 with g(z) = Ae*.
Solution:

1 T
y@) = @)+ 57 / [} (@)us(t) — uh(@)ui ()] @) dt,

where the primes denote differentiation with respect to the argument specified in the paren-
theses, and u;(x),uy(x) is a fundamental system of solutions of the second-order linear
homogeneous ordinary differential equation u//, + Ale*y = 0; the functions u;(x) and uy(z)
are expressed in terms of Bessel functions or modified Bessel functions, depending on the

sign of A:
For A\ >0,
A 2V AN 2V AN
W=2Z, w@s=J| =M ), w@ =Y ——e/?),
T A A
For A\ <0,

W = _%’ ui(z) = I (2—'|)\A)\|6>\$/Z) , () = Ko (2—”|)\A)\|e>\m/2) )

y(x) + / ) (Ae*™ + Be*)y(t) dt = f(z).

For B = —A, see equation 2.2.5. This is a special case of equation 2.9.6 with g(z) = Ae** and
h(t) = Be*t.

Differentiating the original integral equation followed by substituting Y (x) = / y(t) dt

yields the second-order linear ordinary differential equation

Y +(A+ B)eMY! + ANeY = fl(x) 1)
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under the initial conditions

Y(a)=0, Y;(a)=f(a). (2)
A fundamental system of solutions of the homogeneous equation (1) with f = 0 has the
form
A A
Viw=o(2, 1 -2e), i@ =v(2, 5 -1e), m=A+B,
m A m A

where ®(«, 3; ) and ¥ (a, 3; z) are degenerate hypergeometric functions.

Solving the homogeneous equation (1) under conditions (2) for an arbitrary function
f = f(z) and taking into account the relation y(z) = Y,/(x), we thus obtain the solution of the
integral equation in the form

y(x) = f(x)- / R(z, ) f (1) dt,

I'(A/m) 0?
A o0xOt

Rz, t) = {exp () [@ad - Ya@)vie) }

y(x)+ A / : [} _ ety (t) dt = f(z).

The transformation z = e**

1°. Solution with A\ > 0:

, 7 = e leads to an equation of the form 2.1.4.

y(@) = f(x)- Mk / eMsin[k(eM —eM)] ft)dt,  k=+/A/\.
2°. Solution with A\ < 0:

x

y(x) = f(x)+ \k / e sinh [k(e™ - eM)] f(t) dt, k=+/|A/\.

a

y(x) + A/w [e>‘“’+”t - eo"'"‘)t} y(t) dt = f(x).

The transformation z = e#*, 7 = e/, Y (z) = y(x) leads to an equation of the form 2.1.52:
A 4
Y(z)+ — / G -TY () dr=F(z).  F(2) = f(),
K Jp
where k= \/p, b= etle.

y(x)+ A / i (A ™ (X + e y(t) dt = f(x).

This equation can be obtained by differentiating an equation of the form 1.2.22:

/ : [1+AA% (e — i) y(t)dt = F(z),  F(x) = / : f(t) dt.

Solution:

d ® | FO ' dt Ap )T
T
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10.

y(x) + / i [AjeM@ D + AN D] y(t) dt = f(z).

1°. Introduce the notation
xT €T
I =/ MEDy(t) dt, I =/ M Dyt d.
a a

Differentiating the integral equation twice yields (the first line is the original equation)

y+ AL+ Al = f, I =f(), (1
Yo + (A1 + Ay + AT + Aol = 2
yfc/;c + (Al + Ag)y; + (A[)\l + AzAz)y + A]/\%I] + Az)\%[2 = ;/J’ (3)

Eliminating I; and I,, we arrive at the second-order linear ordinary differential equation with
constant coefficients

Yo + (AL + Ay = X1 = M)yl + Mo — A — oAy = fil, - A+ M) fr + Mdaf. ()
Substituting z = a into (1) and (2) yields the initial conditions
y(a) = f(a), yo(a) = fr(a)— (Ar + Ay) f(a). Q)]

Solving the differential equation (4) under conditions (5), we can find the solution of the
integral equation.

2°. Consider the characteristic equation
P+ A+ Ay =M =)+ Ada = Arda = A2 A =0 ©)

which corresponds to the homogeneous differential equation (4) (with f(x)=0). The structure
of the solution of the integral equation depends on the sign of the discriminant

D= (A] —A2—>\1 + /\2)2 +4A1A2

of the quadratic equation (6).
If D > 0, the quadratic equation (6) has the real different roots

=5+ A — Ay - Ay) + %\/5, =5+ A — A= Ap) - %\/5
In this case, the solution of the original integral equation has the form

y(x) = f(z)+ /m [B]em(r—t) + Bzem(m’t)] f(t)dt,

where

Y Y —
Blelul 2+A2M1 1, 2 +A2M2 .
M2 — 1 M2 — 1 M1 — 2 M1 — p2
If D < 0, the quadratic equation (6) has the complex conjugate roots
,u1=c7+iﬁ, ,u2=a—iﬁ, O’=%()\1+/\2—A1—A2), ﬂ=%\/—D.

In this case, the solution of the original integral equation has the form

y(x) = f(z)+ / : {B1e7@™ cos[ Bz — )] + Boe” ™ sin[B(z — 1)1 } f(£) dt.

where |
By =-A,-4,, 32=E[A1(>\2—U)+A2(>\1—U)]-
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11.  y(x)+ / [Aer™) _ A + BeM]y(t) dt = f(x).

The transformation z = e**

, 7 =eM, Y(2) = y(z) leads to an equation of the form 2.1.5:
Y(z)+ / [Bi(z—7)+ A{]Y(n)dr = F(2),  F(2) = f(x),
b
where Ay = B/\, By = A/)\, b= e

12. y(x)+ / [Aer™) + Be* + Cey(t) dt = f(z).

The transformation z = e**, 7 = e, Y(2) = y(x) leads to an equation of the form 2.1.6:
z
Y@~ [ izt Birs COYdr=FG). FG) = f@)
b
where A; =-A/\, By =-B/\, C; =-C/\, b= era

13. y(x)+ / i A ™) 4 A(per= - Xe ™) | y(t) dt = f(z).

This is a special case of equation 2.9.23 with h(t) = A

Solution:
F(t) ! 2t
v {q’( ) / [ } 30 dt}

®(z) = exp {Aﬂe(A+“)z], F(z) = / F(t) dt.
A+ p a

14. y(x)- / Ae @D 1 A(pe ™t - Xet™ )| y(t) dt = f(z).

This is a special case of equation 2.9.24 with h(x) =
Assume that f(a) = 0. Solution:

x 2z
y(z) = / wtydt,  w(z) =6M%{ c [f (t)] ®(t) dt}

P(x)

_ A- B Oz
@(w)—exp[A)\+ue .

15. y(x)+ / A ™) + AePt(per™ Mt — Xe ™) |y(t) dt = f(x).

This is a special case of equation 2.9.23 with h(t) = AePt.

Solution:
~ F(t) ! 6(2)\+ﬂ)t
— (/\+[3)w

_ A—p +p+B) _/x
@(z)—exp{A7A+M+ﬁe s , F(x)= ’ f@dt.
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16. y(x)- / [Ae @ + AP (uer™*Ht — Xet ™) [y (t) dt = f(x).

This is a special case of equation 2.9.24 with h(z) = Aef?.
Assume that f(a) = 0. Solution:

z S d 6(2/\+B)m x f(t) /
y(‘r) = /a w(t) dt9 U)(fII) =e A E{ (I)(JC) " |:e()\+ﬂ)t :| tq)(t) dt}9

A—p
P(z) = exp | A———— 1T
(@) = exp { A+ u+p c

17. y(x)+ / : [ABeX*V=+t _ ABe ™ _ Aer™*t _ Bet|y(t) dt = f(x).
The trans?ormation z=¢e% 7 =¢e!, Y(2) = y(x) leads to an equation of the form 2.1.56:
Y(2)+ /b ) (ABz*!' — AB2*r — A2* - B)Y (1) dr = F(2),
where F'(z) = f(x) and b = e“.

18. y(x)+ / [ABe™** - ABe™Vt + AeM + Bet|y(t) dt = f(x).

The transformation z = %, 7 = ¢!, Y (2) = y(z) leads to an equation of the form 2.1.57 (in
which ) is substituted by A — 1):

V(2)+ / (ABzr*' — ABT* + AT* + B)Y (1) dr = F(2),
b

where F'(z) = f(x) and b = e“.

19. y(z)+ / w[ZAke’\’“(”"t)] y(t) dt = f(z).

k=1

1°. This integral equation can be reduced to an nth-order linear nonhomogeneous ordinary
differential equation with constant coefficients. Set

L) = / Dy (1) dt, (1)

Differentiating (1) with respect to x yields
x
I, = y(@) + Ak / Ay (t) dt, 2)
a

where the prime stands for differentiation with respect to x. From the comparison of (1)
with (2) we see that
Io=y@) + Xy, I = Iy(a). 3)

The integral equation can be written in terms of I;(x) as follows:

y@)+ Y Apli = f(@). )

k=1
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Differentiating (4) with respect to x and taking account of (3), we obtain

V@) +ony(@) + > Aphele = fo@),  on=)_ Ag. )
k=1

k=1
Eliminating the integral I,, from (4) and (5), we find that

n-1

Yo (@) + (00 = A)y(@) + Y Ak = ATy = fr(@) = A f(2). (6)

k=1

Differentiating (6) with respect to x and eliminating 7,,_; from the resulting equation with
the aid of (6), we obtain a similar equation whose left-hand side is a second-order linear

n-2

differential operator (acting on y) with constant coefficients plus the sum Y A} I, If we
k=1

proceed with successively eliminating I,, 5, I), 3, ..., I} with the aid of differentiation and

formula (3), then we will finally arrive at an nth-order linear nonhomogeneous ordinary
differential equation with constant coefficients.

The initial conditions for y(x) can be obtained by setting = a in the integral equation
and all its derivative equations.

2°. The solution of the equation can be represented in the form

y(x) = f(:z:)+/

a

’ {Z Bke“’“(z_t)] f(t)dt. (7
k=1

The unknown constants i are the roots of the algebraic equation

Xn: A 1=, 8)

Z—=A
k=1 k

which is reduced (by separating the numerator) to the problem of finding the roots of an
nth-order characteristic polynomial.

After the uy have been calculated, the coefficients By can be found from the following
linear system of algebraic equations:

n

B
S B s menom ©)
=1 )\m_uk

Another way of determining the By, is presented in item 3° below.

If all the roots p, of equation (8) are real and different, then the solution of the original
integral equation can be calculated by formula (7).

To a pair of complex conjugate roots fiy x+1 = & = 93 of the characteristic polynomial (8)
there corresponds a pair of complex conjugate coefficients By, i) in equation (9). In this case,
the corresponding terms Bye!+@ 4+ By, et#+@ in solution (7) can be written in the form
Bet [cos O(x — t)] + By @t [sin O(x - t)} , where B}, and By, are real coefficients.

3°. For a = 0, the solution of the original integral equation is given by

y(@) = f(x) —/0 R@-t)f(t)dt,  R(z)=2£"'[Rp), (10)

© 1998 by CRC Press LLC



where £ m(p)] is the inverse Laplace transform of the function

- K(p) — Ay
R =0, K = .
®=T13 K(p) ® ; P=A

(1)

The transform R(p) of the resolvent R(x) can be represented as a regular fractional

function:

_ QW

)= 0.

P)=@-pm)®@-p12) - (0~ in),

where QQ(p) is a polynomial in p of degree <n. The roots yy, of the polynomial P(p) coincide
with the roots of equation (8). If all uy are real and different, then the resolvent can be

determined by the formula

_ Qux)

R(z) = ZBke“k‘”, By = )’

k=1

where the prime stands for differentiation.

‘ 2.2-2. Kernels Containing Power-Law and Exponential Functions

20.

21.

22,

y(z)+ A / " 2Nyt dt = F(@).

Solution:
xT

y(z) = f(x)- A / zexp[ AW —2?) + Mz - )] f(b) dt.

a

yx)+ A / i} te @ Vy(t) dt = f(x).

Solution: .
y(x) = f(z)- A / texp[T AW - 2%) + Ma - )] f(t) dt.

yx)+ A / m(w —t)e My(t) dt = f(x).

This is a special case of equation 2.9.4 with g(t) = Ae*.
Solution:

x

A
Y@ = f@)+ / [ (@)ua(t) - ua(@yun (O] N F(t) dt.

where u;(z), up(x) is a fundamental system of solutions of the second-order linear homo-

"

geneous ordinary differential equation wu;,

. + Ae*u = 0; the functions u;(z) and u, () are

expressed in terms of Bessel functions or modified Bessel functions, depending on sign A:

2V A 2V A
W = i, ur(x) = Jy (TeMﬂ) , w@ =Y, <Te>‘x/2> for A >0,
T

W = _i’ up(x) = [0< Z_V)lAleAz/z>

2V o
2 A

s () = Ko<
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23.

24,

25.

26.

27.

28.

29.

y(x)+ A / E(w - )™ Vyt) dt = f(z).

1°. Solution with A > 0:
y(z) = f(x) -k / Rty sin[k(x — )] (@) dt, k=VA.
2°. Solution with A < 0:

y(@) = f(x)+k / ’ e @D sinh[k(z — t)] f(t) dt, k= v-A.

a

yx)+ A / w(m - e ™ty t) dt = f(z).

-z

The substitution u(x) = e**y(x) leads to an equation of the form 2.2.22:

w(z) + A/ (z = )eMPlu(t) dt = f(x)e ™",

y(x) - / E(Asc + Bt + C)er® Yy (t) dt = f(x).

The substitution u(z) = e **y(z) leads to an equation of the form 2.1.6:

wz)— A / x(Ax + Bt + C)u(t) dt = f(z)e ™",

y(x) + A / " 22Oyt dt = Fla).

Solution: "
y(x) = f(z) - A/ z? exp[%A(t3 — )+ Mz — t)] f)dt.

y(x)+ A / i xte @ Vyt) dt = f(x).

Solution:

y@) = f(x)- A / ’ wtexp[T AW - 27) + A - )] f(t) dt.

y(x) + A / " LAty dt = F@).

Solution: .
y(x) = f(x)- A / texp[TAE —2) + Ma - t)| f(B) dt.

y(x) + A/w(:c - t)zex(m't)y(t) dt = f(x).

Solution:

y($)=f(96)—/ Rz -1)f(t)dt,

R(z) = 2ke 27 — Zjpe+hi [cos (V3 kz) —V3sin(V3kx)], k=(14)
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30, yx)+A / I(:cz —tHe @ Vyt) dt = f(x).
0

The substitution u(x) = e”\ry(a:) leads to an equation of the form 2.1.11:

wz) + A / I(xz—tz)u(t) dt = f(x)e™®.
0

3. y@x)+A / m(:z: —t)ne @ Vyt) dt = f(x), n=12,...

Solution:
y(@) = f(@) + / Ra—t)f(t)dt,
R@)= — e ; exp(o12) [0 cos(Bez) - By sin(Bea)].
where

_1 2k 1 2
op = |An| 7T cos( T ) By = | An!|7eT sin( T
n+1 n+

2k + 7
+1

kl) for A<DO,

for A>0.

27rk:+7r>

1 S
o) = |An!|n+1 cos( ), Br = |An!|n+1 sm(
n+1

Z exp[A(x - 1)]

32. y(@)+b g Wy(t) dt = f(x).
Solution: N
y(x) = e {F(x) + b’ / exp[mb*(z — t)]F(t) dt},
where ' o
F(z) = e f(x)—b /a ¢ \/g) dt.

33. yx)+A / I(:c —ttke @Yy ) dt = f(x).

-z

The substitution u(x) = e**y(x) leads to an equation of the form 2.1.49:

uw@x) + A / x(x —HtFut) dt = f(x)e ™.

4. yx)+A / I(wk —tF)e @Dy t) dt = f(x).

-A\x

The substitution u(x) = e**y(x) leads to an equation of the form 2.1.52:

wz)+ A / gc(x’“ —tFyu@) dt = f(x)e ™.

T oh(z-t)
35. y(x)- )\/ y(t)dt = f(x), 0<a<l.
0o (x-1t)=

Solution:

(

2L AP - a)z'] "

y(z) = f(x) + /0 R(x-t)f(t)dt, where R(x) = e!” Z " [n(l — a)]

n=1
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36. yx)+A / i exp[A(@’ - ))|y(®) dt = f().

Solution:

y@) = f(z)- A / ’ exp[ MA@ —t%) - Az - )| f(t) dt.

x
37. y@+A / exp(Az? + Bt})y(t) dt = f(z).
a
In the case 0 = -\, see equation 2.2.36. This is a special case of equation 2.9.2 with

g(x) = —Aexp(Az?) and h(t) = exp(53¢?).

38. y(x)+ A/oo exp(—)\vt -x )y(t) dt = f(x).

This is a special case of equation 2.9.62 with K (z) = Aexp(-Ay/~z ).

39. y(x)+ A/w exp [A(a:” - t“)] y(t) dt = f(x), wn>0.

This is a special case of equation 2.9.2 with g(z) = -A exp(/\x“) and h(t) = exp (—/\t“).
Solution:

yx)= f(x)-A /ff exp [/\(1:” —tM) - A(x - t)] f@) dt.

= 1 t
40. y(x)+k / ~ exp <—)\—>y(t) dt = g(x).
0 X X

This is a special case of equation 2.9.71 with f(z) = ke 7.

N
For a polynomial right-hand side, g(z) = > A,z™, a solution is given by

n=0

NOooa, . n! = n! 1
y(x) = Z 1+ kB x, B, = N+l —-€ Z F Akl
n k=0

2.3. Equations Whose Kernels Contain Hyperbolic
Functions

‘ 2.3-1. Kernels Containing Hyperbolic Cosine ‘

1. y(x) - A/m cosh(Ax)y(t) dt = f(x).

This is a special case of equation 2.9.2 with g(x) = A cosh(Ax) and h(t) = 1.
Solution:

yx)=f(x)+ A /l cosh(A\x) exp{é [sinh()\x) - sinh()\t)] }f(t) dt.
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y(x) - A/aJ cosh(At)y(t) dt = f(x).

This is a special case of equation 2.9.2 with g(x) = A and h(t) = cosh(\t).
Solution:

mm=ﬂm+A/memmm{§@mgm—mm@m}ﬂwﬁ

m@+A/wmmD@—MMUﬁ=f@L

This is a special case of equation 2.9.28 with g(t) = A. Therefore, solving the original integral
equation is reduced to solving the second-order linear nonhomogeneous ordinary differential
equation with constant coefficients

Yoo + Ay =Ny = [, - Nf,  [=f),
under the initial conditions
y(a) = f(a), y,(a) = fi(a)- Af(a).

Solution:

y(x)=f(fﬂ)+/ Rz -1)f(®) dt,

2

R(x) =exp (—%Az) {I;—k sinh(kx) — Acosh(k:r)} , k= /A+ %Az.

x n
y(x) + / { > Ak cosh[p(a - t)]}y(t) dt = f(@).

a k=1
This equation can be reduced to an equation of the form 2.2.19 by using the identity
coshz = 1 (e + e ) Therefore, the integral equation in question can be reduced to a
linear nonhomogeneous ordinary differential equation of order 2n with constant coefficients.

(m)—A/w oshAL) 4y dt = fia)
Y a cosh(\t) Y - ’

Solution:
A cosh(Ax)

cosh(At) coshowy | D -

Y@ = f@)+ A /

(m)—A/w CoshXL) 4y dt = f)
Y a cosh(Aa:)y - ’

Solution:
A cosh(\t)

cosh(\z )f( ) d.

y(x)=f($)+A/

y(x) - A/w cosh*(\x) cosh™ (ut)y(t) dt = f(x).

This is a special case of equation 2.9.2 with g(z) = A cosh®(\z) and h(t) = cosh™(ut).
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10.

11.

12.

13.

y(x) + A/I t cosh[A(x - t)]y(t) dt = f(x).

This is a special case of equation 2.9.28 with g(t) = At.

y(x)+ A / : t* cosh™(\x)y(t) dt = f(x).

This is a special case of equation 2.9.2 with g(x) = —A cosh™(\z) and h(t) = t*.

y(x)+ A / i x® cosh™(\t)y(t) dt = f(x).

This is a special case of equation 2.9.2 with g(x) = —Az* and h(t) = cosh™(\t).

y(z) - / i [A cosh(kx) + B - AB(x - t) cosh(kx)| y(t) dt = f(x).

This is a special case of equation 2.9.7 with A = B and g(x) = A cosh(kx).
Solution:

x

y(x)=f(17)+/ Rz, t) f(t) dt,

a

G(x)
G(t)

R(z,t) = [Acosh(kx) + B]

) T
. % /t eP@HG(s)ds, G(x)=exp {% Sinh(kx)}

y(z) + / : [A cosh(kt) + B + AB(x — t) cosh(kt) | y(t) dt = f(x).

This is a special case of equation 2.9.8 with A = B and g(t) = A cosh(kt).

Solution:
y(@) = f) + / R, 0y f(t) d,
- GO . B> [" puy _ [é : }
R(z,t) = —-[Acosh(kt) + B] ) + G(:c)/t e G(s)ds, G(x)=exp 2 sinh(kz)|.

y(x) + A/oo cosh( AVt -z )y(t) dt = f(x).

This is a special case of equation 2.9.62 with K(z) = A cosh()\\/—x).

‘ 2.3-2. Kernels Containing Hyperbolic Sine ‘

14.

y(x) - A/w sinh(Ax)y(t) dt = f(x).

This is a special case of equation 2.9.2 with g(x) = A sinh(A\z) and h(t) = 1.
Solution:

yx) = f(x)+ A /x sinh(\z) exp{% [cosh(/\x) - cosh(/\t)} }f(t) dt.

© 1998 by CRC Press LLC



15.

16.

17.

18.

y(x) - A/aJ sinh(At)y(t) dt = f(x).

This is a special case of equation 2.9.2 with g(x) = A and h(t) = sinh(\?).
Solution:

y(x)=f(x)+ A / : sinh(\t) exp{ é [cosh(Az) — cosh(At)] } f@dt.

y(@) + A / i sinh[A(z - H)]y(t) dt = f(z).

This is a special case of equation 2.9.30 with g(x) = A.
1°. Solution with A\(A - X) > 0:

x

y(z) = f(x) - % / sin[k(z —t)]f(t) dt, where k =/ AA-N).

a

2°. Solution with A\(A - \) < 0:

x

y(x) = f(z) - % / sinh[k(z — )] f(t) dt, where k= A\-A).

a

3°. Solution with A = A:

y(z) = f(z) - \? / (x—t)f(t)dt.

y(@) + A / i sinh*[A\(z - H]y(t) dt = f(z).

Using the formula sinh® 3 = % sinh 35 — % sinh 3, we arrive at an equation of the form 2.3.18:

y(x) + / I{iA sinh [3\(z —t)] - 3 Asinh[A(z - )] }y(t) dt = f().

y(x) + / cB{Al sinh[A;(z - )] + Az sinh[As(z - )] }y(t) dt = f(a).

1°. Introduce the notation

x

I =/ sinh[Aj(x —t)]y(t)dt, I, =/ sinh[ A, (x — )]y (t) dt,
Jy = / *coshD\(z = Olyt)y dt, T = / coshDha(z — 