
IMAGE ESTIMATION BY EXAMPLE:
Geophysical soundings image construction

Multidimensional autoregression

Jon F. Claerbout
Cecil and Ida Green Professor of Geophysics

Stanford University

with
Sergey Fomel

Stanford University

c© February 28, 2006

dedicated to the memory

of

Johannes “Jos” Claerbout

1974-1999

“What do we have to look forward to today?
There are a lot of things we have to look forward to today.”

http://sep.stanford.edu/sep/jon/family/jos/

Contents

1 Basic operators and adjoints 1

1.1 FAMILIAR OPERATORS . 5

1.2 ADJOINT DEFINED: DOT-PRODUCT TEST 27

2 Model fitting by least squares 33

2.1 HOW TO DIVIDE NOISY SIGNALS . 33

2.2 MULTIVARIATE LEAST SQUARES . 39

2.3 KRYLOV SUBSPACE ITERATIVE METHODS 45

2.4 INVERSE NMO STACK . 56

2.5 VESUVIUS PHASE UNWRAPPING . 57

2.6 THE WORLD OF CONJUGATE GRADIENTS 66

2.7 REFERENCES . 72

3 Empty bins and inverse interpolation 73

3.1 MISSING DATA IN ONE DIMENSION . 74

3.2 WELLS NOT MATCHING THE SEISMIC MAP 82

3.3 SEARCHING THE SEA OF GALILEE . 87

3.4 INVERSE LINEAR INTERPOLATION . 90

3.5 PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION 94

4 The helical coordinate 97

4.1 FILTERING ON A HELIX . 97

4.2 FINITE DIFFERENCES ON A HELIX . 107

CONTENTS

4.3 CAUSALITY AND SPECTAL FACTORIZATION 111

4.4 WILSON-BURG SPECTRAL FACTORIZATION 116

4.5 HELIX LOW-CUT FILTER . 120

4.6 THE MULTIDIMENSIONAL HELIX . 123

4.7 SUBSCRIPTING A MULTIDIMENSIONAL HELIX 124

5 Preconditioning 131

5.1 PRECONDITIONED DATA FITTING . 131

5.2 PRECONDITIONING THE REGULARIZATION 132

5.3 OPPORTUNITIES FOR SMART DIRECTIONS 137

5.4 NULL SPACE AND INTERVAL VELOCITY 138

5.5 INVERSE LINEAR INTERPOLATION . 143

5.6 EMPTY BINS AND PRECONDITIONING 146

5.7 THEORY OF UNDERDETERMINED LEAST-SQUARES 150

5.8 SCALING THE ADJOINT . 151

5.9 A FORMAL DEFINITION FOR ADJOINTS 153

6 Multidimensional autoregression 155

6.1 SOURCE WAVEFORM, MULTIPLE REFLECTIONS 156

6.2 TIME-SERIES AUTOREGRESSION . 157

6.3 PREDICTION-ERROR FILTER OUTPUT IS WHITE 159

6.4 PEF ESTIMATION WITH MISSING DATA 174

6.5 TWO-STAGE LINEAR LEAST SQUARES 178

6.6 BOTH MISSING DATA AND UNKNOWN FILTER 186

6.7 LEVELED INVERSE INTERPOLATION 190

6.8 MULTIVARIATE SPECTRUM . 194

7 Noisy data 199

7.1 MEANS, MEDIANS, PERCENTILES AND MODES 199

7.2 NOISE BURSTS . 208

7.3 MEDIAN BINNING . 209

CONTENTS

7.4 ROW NORMALIZED PEF . 210

7.5 DEBURST . 211

7.6 TWO 1-D PEFS VERSUS ONE 2-D PEF 213

7.7 ALTITUDE OF SEA SURFACE NEAR MADAGASCAR 215

7.8 ELIMINATING NOISE AND SHIP TRACKS IN GALILEE 220

8 Spatial aliasing and scale invariance 233

8.1 INTERPOLATION BEYOND ALIASING 233

8.2 MULTISCALE, SELF-SIMILAR FITTING 236

8.3 References . 242

9 Nonstationarity: patching 243

9.1 PATCHING TECHNOLOGY . 244

9.2 STEEP-DIP DECON . 251

9.3 INVERSION AND NOISE REMOVAL . 257

9.4 SIGNAL-NOISE DECOMPOSITION BY DIP 257

9.5 SPACE-VARIABLE DECONVOLUTION 264

10 Plane waves in three dimensions 271

10.1 THE LEVELER: A VOLUME OR TWO PLANES? 271

10.2 WAVE INTERFERENCE AND TRACE SCALING 275

10.3 LOCAL MONOPLANE ANNIHILATOR 276

10.4 GRADIENT ALONG THE BEDDING PLANE 280

10.5 3-D SPECTRAL FACTORIZATION . 283

11 Some research examples 285

11.1 GULF OF MEXICO CUBE . 285

12 SOFTWARE SUPPORT 287

12.1 SERGEY’S MAIN PROGRAM DOCS . 290

12.2 References . 300

CONTENTS

13 Entrance examination 301

Index 303

Preface

The difference between theory and practice is smaller in theory than it is in
practice. –folklore

We make discoveries about reality by examining the discrepancy between theory and practice.
There is a well-developed theory about the difference between theory and practice, and it is
called “geophysical inverse theory”. In this book we investigate the practice of the difference
between theory and practice. As the folklore tells us, there is a big difference. There are
already many books on the theory, and often as not, they end in only one or a few applications
in the author’s specialty. In this book on practice, we examine data and results from many
diverse applications. I have adopted the discipline of suppressing theoretical curiosities until I
find data that requires it (except for a few concepts at chapter ends).

Books on geophysical inverse theory tend to address theoretical topics that are little used
in practice. Foremost is probability theory. In practice, probabilities are neither observed nor
derived from observations. For more than a handful of variables, it would not be practical
to display joint probabilities, even if we had them. If you are data poor, you might turn to
probabilities. If you are data rich, you have far too many more rewarding things to do. When
you estimate a few values, you ask about their standard deviations. When you have an image
making machine, you turn the knobs and make new images (and invent new knobs). Another
theory not needed here is singular-value decomposition.

In writing a book on the “practice of the difference between theory and practice" there is
no worry to be bogged down in the details of diverse specializations because the geophysi-
cal world has many interesting data sets that are easily analyzed with elementary physics and
simple geometry. (My specialization, reflection seismic imaging, has a great many less easily
explained applications too.) We find here many applications that have a great deal in com-
mon with one another, and that commonality is not a part of common inverse theory. Many
applications draw our attention to the importance of two weighting functions (one required
for data space and the other for model space). Solutions depend strongly on these weighting
functions (eigenvalues do too!). Where do these functions come from, from what rationale or
estimation procedure? We’ll see many examples here, and find that these functions are not
merely weights but filters. Even deeper, they are generally a combination of weights and fil-
ters. We do some tricky bookkeeping and bootstrapping when we filter the multidimensional
neighborhood of missing and/or suspicious data.

Are you aged 23? If so, this book is designed for you. Life has its discontinuities: when

i

ii CONTENTS

you enter school at age 5, when you leave university, when you marry, when you retire. The
discontinuity at age 23, mid graduate school, is when the world loses interest in your potential
to learn. Instead the world wants to know what you are accomplishing right now! This book
is about how to make images. It is theory and programs that you can use right now.

This book is not devoid of theory and abstraction. Indeed it makes an important new
contribution to the theory (and practice) of data analysis: multidimensional autoregression via
the helical coordinate system.

The biggest chore in the study of “the practice of the difference between theory and prac-
tice" is that we must look at algorithms. Some of them are short and sweet, but other important
algorithms are complicated and ugly in any language. This book can be printed without the
computer programs and their surrounding paragraphs, or you can read it without them. I
suggest, however, you take a few moments to try to read each program. If you can write in
any computer language, you should be able to read these programs well enough to grasp the
concept of each, to understand what goes in and what should come out. I have chosen the
computer language (more on this later) that I believe is best suited for our journey through the
“elementary” examples in geophysical image estimation.

Besides the tutorial value of the programs, if you can read them, you will know exactly
how the many interesting illustrations in this book were computed so you will be well equipped
to move forward in your own direction.

THANKS

2006 is my fourteenth year of working on this book and much of it comes from earlier work
and the experience of four previous books. In this book, as in my previous books, I owe a
great deal to the many students at the Stanford Exploration Project. I would like to mention
some with particularly notable contributions (in approximate historical order).

The concept of this book began along with the PhD thesis of Jeff Thorson. Before that,
we imagers thought of our field as "an hoc collection of good ideas" instead of as "adjoints of
forward problems". Bill Harlan understood most of the preconditioning issues long before I
did. All of us have a longstanding debt to Rick Ottolini who built a cube movie program long
before anyone else in the industry had such a blessing.

My first book was built with a typewriter and ancient technologies. In early days each
illustration would be prepared without reusing packaged code. In assembling my second book
I found I needed to develop common threads and code them only once and make this code sys-
tematic and if not idiot proof, then “idiot resistant”. My early attempts to introduce “seplib”
were not widely welcomed until Stew Levin rebuilt everything making it much more robust.
My second book was typed in the troff text language. I am indebted to Kamal Al-Yahya who
not only converted that book to LATEX, but who wrote a general-purpose conversion program
that became used internationally.

Early days were a total chaos of plot languages. I and all the others at SEP are deeply

CONTENTS iii

indebted to Joe Dellinger who starting from work of Dave Hale, produced our internal plot
language “vplot” which gave us reproducibiliy and continuity over decades. Now, for exam-
ple, our plots seamlessly may be directed to postscript (and PDF), Xwindow, or the web. My
second book required that illustrations be literally taped onto the sheet containing the words.
All of us benefitted immensely from the work of Steve Cole who converted Joe’s vplot lan-
guage to postscript which was automatically integrated with the text.

When I began my third book I was adapting liberally from earlier work. I began to realize
the importance of being able to reproduce any earlier calculation and began building rules and
file-naming conventions for “reproducible research”. This would have been impossible were
it not for Dave Nichols who introduced cake, a variant of the UNIX software building pro-
gram make. Martin Karrenbach continued the construction of our invention of “reproducible
research” and extended it to producing reproducible research reports on CD-ROM, an idea
well ahead of its time. Some projects were fantastic for their time but had the misfortune of
not being widely adopted, ultimately becoming unsupportable. In this catagory was Dave and
Martin’s implementation xtex, a magnificent way of embedding reproducible research in an
electronic textbook. When cake suffered the same fate as xtex, Matthias Schwab saved us
from mainstream isolation by bringing our build procedures into the popular GNU world.

Coming to the present textbook I mention Bob Clapp. He made numerous contributions.
When Fortran77 was replaced by Fortran90, he rewrote Ratfor. For many years I (and many
of us) depended on Ratfor as our interface to Fortran and as a way of presenting uncluttered
code. Bob rewrote Ratfor from scratch merging it with other SEP-specific software tools (Sat)
making Ratfor90. Bob prepared the interval-velocity examples in this book. Bob also devel-
oped most of the “geostat” ideas and examples in this book. Morgan Brown introduced the
texture examples that we find so charming. Paul Sava totally revised the book’s presentation
of least-squares solvers making them more palatable to students and making more honest our
claim that in each case the results you see were produced by the code you see.

One name needs to be singled out. Sergey Fomel converted all the examples in this book
from my original Fortran 77 to a much needed modern style of Fortran 90. After I discovered
the helix idea and its wide-ranging utility, he adapted all the relevant examples in this book
to use it. If you read Fomel’s programs, you can learn effective application of that 1990’s
revolution in coding style known as “object orientation.”

This electronic book, “Geophysical Exploration by Example,” is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version. This book is distributed
in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details. You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Massachusetts Ave., Cambridge, MA
02139, USA.

c©Jon Claerbout
February 28, 2006

iv CONTENTS

Overview

This book is about the estimation and construction of geophysical images. Geophysical images
are used to visualize petroleum and mineral resource prospects, subsurface water, contaminent
transport (environmental pollution), archeology, lost treasure, even graves.

Here we follow physical measurements from a wide variety of geophysical sounding de-
vices to a geophysical image, a 1-, 2-, or 3-dimensional Cartesian mesh that is easily trans-
formed to a graph, map image, or computer movie. A later more human, application-specific
stage (not addressed here) interprets and annotates the images; that stage places the “×” where
you will drill, dig, dive, or merely dream.

Image estimation is a subset of “geophysical inverse theory,” itself a kind of “theory of
how to find everything.” In contrast to “everything,” images have an organized structure (co-
variance) that makes their estimation more concrete and visual, and leads to the appealing
results we find here.

Geophysical sounding data used in this book comes from acoustics, radar, and seismology.
Sounders are operated along tracks on the earth surface (or tracks in the ocean, air, or space). A
basic goal of data processing is an image that shows the earth itself, not an image of our data-
acquisition tracks. We want to hide our data acquisition footprint. Increasingly, geophysicists
are being asked to measure changes in the earth by comparing old surveys to new ones. Then
we are involved with both the old survey tracks and new ones, as well as technological changes
between old sounders and new ones.

To enable this book to move rapidly along from one application to another, we avoid appli-
cations where the transform from model to data is mathematically complicated, but we include
the central techniques of constructing the adjoint of any such complicated transformation. By
setting aside application-specific complications, we soon uncover and deal with universal dif-
ficulties such as: (1) irregular geometry of recording, (2) locations where no recording took
place and, (3) locations where crossing tracks made inconsistant measurements because of
noise. Noise itself comes in three flavors: (1) drift (zero to low frequency), (2) white or steady
and stationary broad band, and (3) bursty, i.e., large and erratic.

Missing data and inconsistant data are two humble, though universal problems. Because
they are universal problems, science and engineering have produced a cornucopia of ideas
ranging from mathematics (Hilbert adjoint) to statistics (inverse covariance) to conceptual
(stationary, scale-invariant) to numerical analysis (conjugate direction, preconditioner) to com-
puter science (object oriented) to simple common sense. Our guide through this maze of op-

v

vi CONTENTS

portunities and digressions is the test of what works on real data, what will make a better
image. My logic for organizing the book is simply this: Easy results first. Harder results later.
Undemonstrated ideas last or not at all, and latter parts of chapters can be skimmed.

Examples here are mostly nonseismological although my closest colleagues and I mostly
make images from seismological data. The construction of 3-D subsurface landform images
from seismological data is an aggressive industry, a complex and competitive place where it is
not easy to build yourself a niche. I wrote this book because I found that beginning researchers
were often caught between high expectations and concrete realities. They invent a new process
to build a novel image but they have many frustrations: (1) lack of computer power, (2) data-
acquisition limitations (gaps, tracks, noises), or (3) they see chaotic noise and have difficulty
discerning whether the noise represents chaos in the earth, chaos in the data acquisition, chaos
in the numerical analysis, or unrealistic expectations.

People need more practice with easier problems like the ones found in this book, which
are mostly simple 2-D landforms derived from 2-D data. Such concrete estimation problems
are solved quickly, and their visual results provide experience in recognizing weaknesses,
reformulating, and moving forward again. Many small steps reach a mountain top.

Scaling up to big problems

Although most the examples in this book are presented as toys, where results are obtained
in a few minutes on a home computer, we have serious industrial-scale jobs always in the
backs of our minds. This forces us to avoid representing operators as matrices. Instead we
represent operators as a pair of subroutines, one to apply the operator and one to apply the
adjoint (transpose matrix). (This will be more clear when you reach the middle of chapter 2.)

By taking a function-pair approach to operators instead of a matrix approach, this book
becomes a guide to practical work on realistic-sized data sets. By realistic, I mean as large
and larger than those here; i.e., data ranging over two or more dimensions, and the data space
and model space sizes being larger than about 105 elements, about a 300× 300 image. Even
for these, the world’s biggest computer would be required to hold in random access memory
the 105×105 matrix linking data and image. Mathematica, Matlab, kriging, etc, are nice tools
but1 it was no surprise when a curious student tried to apply one to an example from this
book and discovered that he needed to abandon 99.6% of the data to make it work. Matrix
methods are limited not only by the size of the matrices but also by the fact that the cost to
multiply or invert is proportional to the third power of the size. For simple experimental work,
this limits the matrix approach to data and images of about 4000 elements, a low-resolution
64×64 image.

1I do not mean to imply that these tools cannot be used in the function-pair style of this book, only that
beginners tend to use a matrix approach.

CONTENTS vii

0.0.1 Computer Languages

One feature of this book is that it teaches how to use "object programming". Older languages
like Fortran 77, Matlab, C, and Visual Basic, are not object-oriented languages. The introduc-
tion of object-oriented languages like C++, Java, and Fortran 90 a couple decades back greatly
simplified many application programs. An earlier version of this book used Fortran 77. I had
the regrettable experience that issues of Geophysics were constantly being mixed in the same
program as issues of Mathematics. This is easily avoided in object-based languages. For ease
of debugging and for ease of understanding, we want to keep the mathematical technicalities
away from the geophysical technicalities. This is called "information hiding".

In the older languages it is easy for a geophysical application program to call a mathe-
matical subroutine. That is new code calling old code. The applications we encounter in this
book require the opposite, old optimization code written by someone with a mathematical hat
calling linear operator code written by someone with a geophysical hat. The older code must
handle objects of considerable complexity only now being built by the newer code. It must
handle them as objects without knowing what is inside them. Linear operators are concep-
tually just matrix multiply (and its transpose), but concretely they are not simply matrices.
While a matrix is simply a two-dimensional array, a sparse matrix may be specified by many
components.

The newer languages allow information hiding but a price paid, from my view as a text-
book author, is that the codes are longer, hence make the book uglier. Many more initial lines
of code are taken up by definitions and declarations making my simple textbook codes about
twice as lengthy as in the older languages. This is not a disadvantage for the reader who can
rapidly skim over what soon become familiar definitions.

Of the three object-based languages available, I chose Fortran because, as its name implies,
it looks most like mathematics. Fortran has excellent primary support for multidimensional
cartesian arrays and complex numbers, unlike Java and C++. Fortran, while looked down upon
by the computer science community, is the language of choice among physicists, mechanical
engineers, and numerical analysts. While our work is certainly complex, in computer science
their complexity is more diverse.

The Loptran computer dialect

Along with theory, illustrations, and discussion, I display the programs that created the illus-
trations. To reduce verbosity in these programs, my colleagues and I have invented a little
language called Loptran that is readily translated to Fortran 90. I believe readers without For-
tran experience will comfortably be able to read Loptran, but they should consult a Fortran
book if they plan to write it. Loptran is not a new language compiler but a simple text pro-
cessor that expands concise scientific language into the more verbose expressions required by
Fortran 90.

The name Loptran denotes Linear OPerator TRANslator. The limitation of Fortran 77

viii CONTENTS

overcome by Fortran 90 and Loptran is that we can now isolate natural science application
code from computer science least-squares fitting code, thus enabling practitioners in both dis-
ciplines to have more ready access to one anothers intellectual product.

Fortran is the original language shared by scientific computer applications. The people
who invented C and UNIX also made Fortran more readable by their invention of Ratfor2.
Sergey Fomel, Bob Clapp, and I have taken the good ideas from original Ratfor and merged
them with concepts of linear operators to make Loptran, a language with much the syntax of
modern languages like C++ and Java. Loptran is a small and simple adaptation of well-tested
languages, and translates to one. Loptran is, however, new in 1998 and is not yet widely used.

To help make everyone comfortable with Loptran as a generic algorithmic language, this
book avoids special features of Fortran. This should make it easier for some of you to translate
to your favorite language, such as Matlab, Java, C, or C++.

We provide the Loptran translator free. It is written in another free language, PERL, and
therefore should be available free to nearly everyone. If you prefer not to use Ratfor90 and
Loptran, you can find on the WWW3 the Fortran 90 version of the programs in this book.

Reproducibility

Earlier versions of this series of electronic books were distributed on CD-ROM. The idea is
that each computed figure in the book has in its caption a menu allowing the reader to burn
and rebuild the figures (and movies). This idea persists in the Web book versions (as do the
movies) except that now the more difficult task of installing the basic Stanford libraries is the
obligation of the reader. Hopefully, as computers mature, this obstacle will be less formidable.
Anyway, these libraries are also offered free on our web site.

Preview for inverse theorists

People who are already familiar with “geophysical inverse theory” may wonder what new
they can gain from a book focused on “estimation of images.” Given a matrix relation d= Fm
between model m and data d, common sense suggests that practitioners should find m in
order to minimize the length ||r|| of the residual r= Fm−d. A theory of Gauss suggests that
a better (minimum variance, unbiased) estimate results from minimizing the quadratic form
r′σ−1

rr r, where σrr is the noise covariance matrix. I have never seen an application in which
the noise covariance matrix was given, but practitioners often find ways to estimate it: they
regard various sums as ensemble averages.

Additional features of inverse theory are exhibited by the partitioned matrix

d =
[

dincons
dconsis

]

=
[

0 0
B 0

] [

mfit
mnull

]

= Fm (1)

2http://sepwww.stanford.edu/sep/bob/src/ratfor90.html
3http://sepwww.stanford.edu/sep/prof/gee/Lib/

CONTENTS ix

which shows that a portion dincons of the data should vanish for any model m, so an observed
nonvanishing dincons is inconsistent with any theoretical model m. Likewise the mnull part of
the model space makes no contribution to the data space, so it seems not knowable from the
data.

Simple inverse theory suggests we should minimize ||m||which amounts to setting the null
space to zero. Baysian inverse theory says we should use the model covariance matrix σmm

and minimize m′σ−1
mmm for a better answer although it would include some nonzero portion of

the null space. Never have I seen an application in which the model-covariance matrix was a
given prior. Specifying or estimating it is a puzzle for experimentalists. For example, when a
model space m is a signal (having components that are a function of time) or, a stratified earth
model (with components that are function of depth z) we might supplement the fitting goal
0 ≈ r = Fm−d with a “minimum wiggliness” goal like dm(z)/dz ≈ 0. Neither the model
covariance matrix nor the null space mnull seems learnable from the data and equation (0.1).

In fact, both the null space and the model covariance matrix can be estimated from the
data and that is one of the novelties of this book. To convince you it is possible (without
launching into the main body of the book), I offer a simple example of an operator and data
set from which your human intuition will immediately tell you what you want for the whole
model space, including the null space. Consider the data to be a sinusoidal function of time
(or depth) and take B = I so that the operator F is a delay operator with truncation of the
signal shifted off the end of the space. Solving for mfit, the findable part of the model, you
get a back-shifted sinusoid. Your human intuition, not any mathematics here, tells you that the
truncated part of the model, mnull, should be a logical continuation of the sinusoid mfit at the
same frequency. It should not have a different frequency nor become a square wave nor be a
sinusoid abruptly truncated to zero mnull = 0.

Prior knowledge exploited in this book is that unknowns are functions of time and space
(so the covariance matrix has known structure). This structure gives them predictability.
Predictable functions in 1-D are tides, in 2-D are lines on images (linements), in 3-D are sedi-
mentary layers, and in 4-D are wavefronts. The tool we need to best handle this predictability
is the multidimensional “prediction-error filter” (PEF), a central theme of this book.

x CONTENTS

Chapter 1

Basic operators and adjoints

A great many of the calculations we do in science and engineering are really matrix mul-
tiplication in disguise. The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how the adjoint operator (matrix transpose) back projects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or make
images) from the data. Logically, the adjoint is the first step and a part of all subsequent steps
in this inversion process. Surprisingly, in practice the adjoint sometimes does a better job than
the inverse! This is because the adjoint operator tolerates imperfections in the data and does
not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship be-
tween operators in general and their adjoints, you can obtain the adjoint just as soon as you
have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate
truncate zero pad
replicate, scatter, spray sum or stack
spray into neighborhoods sum within bins
derivative (slope) negative derivative
causal integration anticausal integration
add functions do integrals
assignment statements added terms
plane-wave superposition slant stack / beam form
superpose curves sum along a curve
stretch squeeze
scalar field gradient negative of vector field divergence

1

2 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

upward continue downward continue
diffraction modeling imaging by migration
hyperbola modeling CDP stacking
ray tracing tomography

The left column above is often called “modeling,” and the adjoint operators on the right
are often used in “data processing.”

When the adjoint operator is not an adequate approximation to the inverse, then you apply
the techniques of fitting and optimization explained in Chapter 2. These techniques require
iterative use of the modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection” operator because infor-
mation propagated in one direction (earth to data) is projected backward (data to earth model).
Using complex-valued operators, the transpose and complex conjugate go together; and in
Fourier analysis, taking the complex conjugate of exp(iωt) reverses the sense of time. With
more poetic license, I say that adjoint operators undo the time and phase shifts of modeling
operators. The inverse operator does this too, but it also divides out the color. For example,
when linear interpolation is done, then high frequencies are smoothed out, so inverse inter-
polation must restore them. You can imagine the possibilities for noise amplification. That
is why adjoints are safer than inverses. But nature determines in each application what is the
best operator to use, and whether to stop after the adjoint, to go the whole way to the inverse,
or to stop partway.

The operators and adjoints above transform vectors to other vectors. They also transform
data planes to model planes, volumes, etc. A mathematical operator transforms an “abstract
vector” which might be packed full of volumes of information like television signals (time
series) can pack together a movie, a sequence of frames. We can always think of the operator
as being a matrix but the matrix can be truly huge (and nearly empty). When the vectors
transformed by the matrices are large like geophysical data set sizes then the matrix sizes
are “large squared,” far too big for computers. Thus although we can always think of an
operator as a matrix, in practice, we handle an operator differently. Each practical application
requires the practitioner to prepare two computer programs. One performs the matrix multiply
y= Ax and another multiplys by the transpose x̃= A′y (without ever having the matrix itself
in memory). It is always easy to transpose a matrix. It is less easy to take a computer program
that does y=Ax and convert it to another to do x̃=A′y. In this chapter are many examples of
increasing complexity. At the end of the chapter we will see a test for any program pair to see
whether the operators A and A′ are mutually adjoint as they should be. Doing the job correctly
(coding adjoints without making approximations) will reward us later when we tackle model
and image estimation problems.

3

1.0.1 Programming linear operators

The operation yi =
∑

j bi j xj is the multiplication of a matrix B by a vector x. The adjoint
operation is x̃j =

∑

i bi j yi . The operation adjoint to multiplication by a matrix is multiplication
by the transposed matrix (unless the matrix has complex elements, in which case we need the
complex-conjugated transpose). The following pseudocode does matrix multiplication y=Bx
and multiplication by the transpose x̃= B′y:

if adjoint
then erase x

if operator itself
then erase y

do iy = 1, ny {
do ix = 1, nx {

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

}}

Notice that the “bottom line” in the program is that x and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the adjoint and the operator itself.

Next we restate the matrix-multiply pseudo code in real code, in a language called Lop-
tran1, a language designed for exposition and research in model fitting and optimization in
physical sciences. The module matmult for matrix multiply and its adjoint exhibits the style
that we will use repeatedly. At last count there were 53 such routines (operator with adjoint)
in this book alone.

module matmult { # matrix multiply and its adjoint

real, dimension (:,:), pointer :: bb

#% _init(bb)

#% _lop(x, y)

integer ix, iy

do ix= 1, size(x) {

do iy= 1, size(y) {

if(adj)

x(ix) = x(ix) + bb(iy,ix) * y(iy)

else

y(iy) = y(iy) + bb(iy,ix) * x(ix)

}}

}

1The programming language, Loptran, is based on a dialect of Fortran called Ratfor. For more details, see
Appendix A.

4 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Notice that the module matmult does not explicitly erase its output before it begins, as does
the psuedo code. That is because Loptran will always erase for you the space required for the
operator’s output. Loptran also defines a logical variable adj for you to distinguish your com-
putation of the adjoint x=x+B’*y from the forward operation y=y+B*x. In computerese, the two
lines beginning #% are macro expansions that take compact bits of information which expand
into the verbose boilerplate that Fortran requires. Loptran is Fortran with these macro expan-
sions. You can always see how they expand by looking at http://sep.stanford.edu/sep/prof/gee/Lib/.

What is new in Fortran 90, and will be a big help to us, is that instead of a subroutine
with a single entry, we now have a module with two entries, one named _init for the physical
scientist who defines the physical problem by defining the matrix, and another named _lop for
the least-squares problem solver, the computer scientist who will not be interested in how we
specify B, but who will be iteratively computing Bx and B′y to optimize the model fitting. The
lines beginning with #% are expanded by Loptran into more verbose and distracting Fortran 90
code. The second line in the module matmult, however, is pure Fortran syntax saying that bb
is a pointer to a real-valued matrix.

To use matmult, two calls must be made, the first one

call matmult_init(bb)

is done by the physical scientist after he or she has prepared the matrix. Most later calls will
be done by numerical analysts in solving code like in Chapter 2. These calls look like

stat = matmult_lop(adj, add, x, y)

where adj is the logical variable saying whether we desire the adjoint or the operator itself,
and where add is a logical variable saying whether we want to accumulate like y← y+Bx
or whether we want to erase first and thus do y← Bx. The return value stat is an integer
parameter, mostly useless (unless you want to use it for error codes).

Operator initialization often allocates memory. To release this memory, you can call

matmult_close() although in this case nothing really happens.

We split operators into two independent processes, the first is used for geophysical set up
while the second is invoked by mathematical library code (introduced in the next chapter) to
find the model that best fits the data. Here is why we do so. It is important that the math code
contain nothing about the geophysical particulars. This enables us to use the same math code
on many different geophysical problems. This concept of “information hiding” arrived late
in human understanding of what is desireable in a computer language. This feature alone is
valuable enough to warrant upgrading from Fortran 77 to Fortran 90, and likewise from C to
C++. Subroutines and functions are the way that new programs use old ones. Object modules
are the way that old programs (math solvers) are able to use new ones (geophysical operators).

1.1. FAMILIAR OPERATORS 5

1.1 FAMILIAR OPERATORS

The simplest and most fundamental linear operators arise when a matrix operator reduces to a
simple row or a column.

A row is a summation operation.

A column is an impulse response.

If the inner loop of a matrix multiply ranges within a

row, the operator is called sum or pull.

column, the operator is called spray or push.

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column matrix
operator. For example, the row operator [a,b]

y = [a b]
[

x1
x2

]

= ax1+bx2 (1.1)

has an adjoint that is two assignments:
[

x̂1
x̂2

]

=
[

a
b

]

y (1.2)

The adjoint of a sum of N terms is a collection of N assignments.

1.1.1 Adjoint derivative

In numerical analysis we represent the derivative a time function by a finite difference. We do
this by subtracting each two neighboring time points and then dividing by the sample interval
1t . This amounts to convolution with the filter (1,−1)/1t . Omitting the 1t we express this
concept as:

















y1
y2
y3
y4
y5
y6

















=

















−1 1
. −1 1 . . .
. . −1 1 . .
. . . −1 1 .
. . . . −1 1
. 0

































x1
x2
x3
x4
x5
x6

















(1.3)

The filter impulse response is seen in any column in the middle of the matrix, namely
(1,−1). In the transposed matrix, the filter-impulse response is time-reversed to (−1,1). So,
mathematically, we can say that the adjoint of the time derivative operation is the negative

6 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

time derivative. This corresponds also to the fact that the complex conjugate of−iω is iω. We
can also speak of the adjoint of the boundary conditions: we might say that the adjoint of “no
boundary condition” is a “specified value” boundary condition. The last row in equation (1.3)
is optional. It may seem unnatural to append a null row, but it can be a small convenience
(when plotting) to have the input and output be the same size.

Equation (1.3) is implemented by the code in module igrad1 which does the operator itself
(the forward operator) and its adjoint.

module igrad1 { # gradient in one dimension

#% _lop(xx, yy)

integer i

do i= 1, size(xx)-1 {

if(adj) {

xx(i+1) = xx(i+1) + yy(i) # resembles equation (1.2)

xx(i) = xx(i) - yy(i)

}

else

yy(i) = yy(i) + xx(i+1) - xx(i) # resembles equation (1.1)

}

}

The adjoint code may seem strange. It might seem more natural to code the adjoint to be the
negative of the operator itself and then make the special adjustments for the boundaries. The
code given, however, is correct and requires no adjustments at the ends. To see why, notice
for each value of i, the operator itself handles one row of equation (1.3) while for each i the
adjoint handles one column. That’s why coding the adjoint in this way does not require any
special work on the ends. The present method of coding reminds us that the adjoint of a sum
of N terms is a collection of N assignments.

The Ratfor90 dialect of Fortran allows us to write the inner code of the igrad1 module
more simply and symmetrically using the syntax of C, C++, and Java where expressions like
a=a+b can be written more tersely as a+=b. With this, the heart of module igrad1 becomes

if(adj) { xx(i+1) += yy(i)

xx(i) -= yy(i)

}

else { yy(i) += xx(i+1)

yy(i) -= xx(i)

}

where we see that each component of the matrix is handled both by the operator and the
adjoint. Think about the forward operator “pulling” a sum into yy(i), and think about the
adjoint operator “pushing” or “spraying” the impulse yy(i) back into xx().

Figure 1.1 illustrates the use of module igrad1 for each north-south line of a topographic
map. We observe that the gradient gives an impression of illumination from a low sun angle.
To apply igrad1 along the 1-axis for each point on the 2-axis of a two-dimensional map, we
use the loop

1.1. FAMILIAR OPERATORS 7

Figure 1.1: Topography near Stanford (top) southward slope (bottom). ajt-stangrad90
[ER,M]

8 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

do iy=1,ny

stat = igrad1_lop(adj, add, map(:,iy), ruf(:,iy))

On the other hand, to see the east-west gradient, we use the loop

do ix=1,nx

stat = igrad1_lop(adj, add, map(ix,:), ruf(ix,:))

1.1.2 Transient convolution

The next operator we examine is convolution. It arises in many applications; and it could
be derived in many ways. A basic derivation is from the multiplication of two polynomials,
say X (Z)= x1+ x2 Z+ x3 Z2+ x4 Z3+ x5 Z4+ x6 Z5 times B(Z)= b1+b2 Z+b3 Z2+b4 Z3.2
Identifying the k-th power of Z in the product Y (Z) = B(Z)X (Z) gives the k-th row of the
convolution transformation (1.4).

y =

























y1
y2
y3
y4
y5
y6
y7
y8

























=

























b1 0 0 0 0 0
b2 b1 0 0 0 0
b3 b2 b1 0 0 0
0 b3 b2 b1 0 0
0 0 b3 b2 b1 0
0 0 0 b3 b2 b1
0 0 0 0 b3 b2
0 0 0 0 0 b3









































x1
x2
x3
x4
x5
x6

















= Bx (1.4)

Notice that columns of equation (1.4) all contain the same signal, but with different shifts.
This signal is called the filter’s impulse response.

Equation (1.4) could be rewritten as

y =

























y1
y2
y3
y4
y5
y6
y7
y8

























=

























x1 0 0
x2 x1 0
x3 x2 x1
x4 x3 x2
x5 x4 x3
x6 x5 x4
0 x6 x5
0 0 x6





























b1
b2
b3



 = Xb (1.5)

In applications we can choose between y= Xb and y= Bx. In one case the output y is dual to
the filter b, and in the other case the output y is dual to the input x. Sometimes we must solve

2This book is more involved with matrices than with Fourier analysis. If it were more Fourier analysis we
would choose notation to begin subscripts from zero like this: B(Z)= b0+b1Z +b2Z2+b3Z3.

1.1. FAMILIAR OPERATORS 9

for b and sometimes for x; so sometimes we use equation (1.5) and sometimes (1.4). Such
solutions begin from the adjoints. The adjoint of (1.4) is

















x̂1
x̂2
x̂3
x̂4
x̂5
x̂6

















=

















b1 b2 b3 0 0 0 0 0
0 b1 b2 b3 0 0 0 0
0 0 b1 b2 b3 0 0 0
0 0 0 b1 b2 b3 0 0
0 0 0 0 b1 b2 b3 0
0 0 0 0 0 b1 b2 b3









































y1
y2
y3
y4
y5
y6
y7
y8

























(1.6)

The adjoint crosscorrelates with the filter instead of convolving with it (because the filter is
backwards). Notice that each row in equation (1.6) contains all the filter coefficients and there
are no rows where the filter somehow uses zero values off the ends of the data as we saw
earlier. In some applications it is important not to assume zero values beyond the interval
where inputs are given.

The adjoint of (1.5) crosscorrelates a fixed portion of filter input across a variable portion
of filter output.





b̂1
b̂2
b̂3



 =





x1 x2 x3 x4 x5 x6 0 0
0 x1 x2 x3 x4 x5 x6 0
0 0 x1 x2 x3 x4 x5 x6





























y1
y2
y3
y4
y5
y6
y7
y8

























(1.7)

Module tcai1 is used for y= Bx and module tcaf1 is used for y= Xb.

module tcai1 { # Transient Convolution Adjoint Input 1-D. yy(m1+n1)

real, dimension (:), pointer :: bb

#% _init(bb)

#% _lop (xx, yy)

integer b, x, y

if(size(yy) < size (xx) + size(bb) - 1) call erexit(’tcai’)

do b= 1, size(bb) {

do x= 1, size(xx) { y = x + b - 1

if(adj) xx(x) += yy(y) * bb(b)

else yy(y) += xx(x) * bb(b)

}}

}

module tcaf1 { # Transient Convolution, Adjoint is the Filter, 1-D

real, dimension (:), pointer :: xx

#% _init(xx)

#% _lop (bb, yy)

10 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

integer x, b, y

if(size(yy) < size(xx) + size(bb) - 1) call erexit(’tcaf’)

do b= 1, size(bb) {

do x= 1, size(xx) { y = x + b - 1

if(adj) bb(b) += yy(y) * xx(x)

else yy(y) += bb(b) * xx(x)

} }

}

The polynomials X (Z), B(Z), and Y (Z) are called Z transforms. An important fact in real
life (but not important here) is that the Z transforms are Fourier transforms in disguise. Each
polynomial is a sum of terms and the sum amounts to a Fourier sum when we take Z = eiω1t .
The very expression Y (Z) = B(Z)X (Z) says that a product in the frequency domain (Z has
a numerical value) is a convolution in the time domain (that’s how we multipy polynomials,
convolve their coefficients).

1.1.3 Internal convolution

Convolution is the computational equivalent of ordinary linear differential operators (with
constant coefficients). Applications are vast, and end effects are important. Another choice
of data handling at ends is that zero data not be assumed beyond the interval where the data
is given. This is important in data where the crosscorrelation changes with time. Then it is
sometimes handled as constant in short time windows. Care must be taken that zero signal
values not be presumed off the ends of those short time windows; otherwise, the many ends of
the many short segments can overwhelm the results.

In the sets (1.4) and (1.5), the top two equations explicitly assume that the input data
vanishes before the interval on which it is given, and likewise at the bottom. Abandoning the
top two and bottom two equations in (1.5) we get:









y3
y4
y5
y6









=









x3 x2 x1
x4 x3 x2
x5 x4 x3
x6 x5 x4













b1
b2
b3



 (1.8)

The adjoint is




b̂1
b̂2
b̂3



 =





x3 x4 x5 x6
x2 x3 x4 x5
x1 x2 x3 x4













y3
y4
y5
y6









(1.9)

The difference between (1.9) and (1.7) is that here the adjoint crosscorrelates a fixed portion
of output across a variable portion of input, whereas with (1.7) the adjoint crosscorrelates a
fixed portion of input across a variable portion of output.

In practice we typically allocate equal space for input and output. Because the output is
shorter than the input, it could slide around in its allocated space, so its location is specified
by an additional parameter called its lag.

1.1. FAMILIAR OPERATORS 11

module icaf1 { # Internal Convolution, Adjoint is Filter. 1-D

integer :: lag

real, dimension (:), pointer :: xx

#% _init (xx, lag)

#% _lop (bb, yy)

integer x, b, y

do b= 1, size(bb) {

do y= 1+size(bb)-lag, size(yy)-lag+1 { x= y - b + lag

if(adj) bb(b) += yy(y) * xx(x)

else yy(y) += bb(b) * xx(x)

}

}

}

The value of lag always used in this book is lag=1. For lag=1 the module icaf1 implements
not equation (1.8) but (1.10):

















y1
y2
y3
y4
y5
y6

















=

















0 0 0
0 0 0
x3 x2 x1
x4 x3 x2
x5 x4 x3
x6 x5 x4





















b1
b2
b3



 (1.10)

It may seem a little odd to put the required zeros at the beginning of the output, but filters are
generally designed so that their strongest coefficient is the first, namely bb(1) so the alignment
of input and output in equation (1.10) is the most common one.

The end effects of the convolution modules are summarized in Figure 1.2.

Figure 1.2: Example of convolution
end-effects. From top to bottom: in-
put; filter; output of tcai1(); out-
put of icaf1() also with (lag=1).
ajt-conv90 [ER]

1.1.4 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended data
(truncation). Let us see why this is so. Set a signal in a vector x, and then to make a longer

12 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

vector y, add some zeros at the end of x. This zero padding can be regarded as the matrix
multiplication

y =
[

I
0

]

x (1.11)

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (1.12)

So the transpose operation to zero padding data is simply truncating the data back to its orig-
inal length. Module zpad1 below pads zeros on both ends of its input. Modules for two- and
three-dimensional padding are in the library named zpad2() and zpad3().

module zpad1 { # Zero pad. Surround data by zeros. 1-D

#% _lop(data, padd)

integer p, d

do d= 1, size(data) { p = d + (size(padd)-size(data))/2

if(adj)

data(d) = data(d) + padd(p)

else

padd(p) = padd(p) + data(d)

}

}

1.1.5 Adjoints of products are reverse-ordered products of adjoints

Here we examine an example of the general idea that adjoints of products are reverse-ordered
products of adjoints. For this example we use the Fourier transformation. No details of
Fourier transformation are given here and we merely use it as an example of a square matrix
F. We denote the complex-conjugate transpose (or adjoint) matrix with a prime, i.e., F′. The
adjoint arises naturally whenever we consider energy. The statement that Fourier transforms
conserve energy is y′y= x′x where y= Fx. Substituting gives F′F= I, which shows that the
inverse matrix to Fourier transform happens to be the complex conjugate of the transpose of
F.

With Fourier transforms, zero padding and truncation are especially prevalent. Most
modules transform a dataset of length of 2n , whereas dataset lengths are often of length m×
100. The practical approach is therefore to pad given data with zeros. Padding followed by
Fourier transformation F can be expressed in matrix algebra as

Program = F
[

I
0

]

(1.13)

According to matrix algebra, the transpose of a product, say AB=C, is the product C′ =B′A′

in reverse order. So the adjoint routine is given by

Program′ =
[

I 0
]

F′ (1.14)

1.1. FAMILIAR OPERATORS 13

Thus the adjoint routine truncates the data after the inverse Fourier transform. This concrete
example illustrates that common sense often represents the mathematical abstraction that ad-
joints of products are reverse-ordered products of adjoints. It is also nice to see a formal
mathematical notation for a practical necessity. Making an approximation need not lead to
collapse of all precise analysis.

1.1.6 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uniform
mesh or we record data on a uniform mesh. Typically we have a function f of time t or
depth z and we represent it by f(iz) corresponding to f (zi) for i = 1,2,3, . . . ,nz where zi =
z0+ (i − 1)1z. We sometimes need to handle depth as an integer counting variable i and
we sometimes need to handle it as a floating-point variable z. Conversion from the counting
variable to the floating-point variable is exact and is often seen in a computer idiom such as
either of

do iz= 1, nz { z = z0 + (iz-1) * dz

do i3= 1, n3 { x3 = o3 + (i3-1) * d3

The reverse conversion from the floating-point variable to the counting variable is inexact. The
easiest thing is to place it at the nearest neighbor. This is done by solving for iz, then adding
one half, and then rounding down to the nearest integer. The familiar computer idioms are:

iz = .5 + 1 + (z - z0) / dz

iz = 1.5 + (z - z0) / dz

i3 = 1.5 + (x3 - o3) / d3

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with the
Fortran function NINT().

1.1.7 Data-push binning

Binning is putting data values in bins. Nearest-neighbor binning is an operator. There is both
a forward operator and its adjoint. Normally the model consists of values given on a uniform
mesh, and the data consists of pairs of numbers (ordinates at coordinates) sprinkled around in
the continuum (although sometimes the data is uniformly spaced and the model is not).

In both the forward and the adjoint operation, each data coordinate is examined and the
nearest mesh point (the bin) is found. For the forward operator, the value of the bin is added
to that of the data. The adjoint is the reverse: we add the value of the data to that of the bin.
Both are shown in two dimensions in module bin2.

14 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

module bin2 {

Data-push binning in 2-D.

integer :: m1, m2

real :: o1,d1,o2,d2

real, dimension (:,:), pointer :: xy

#% _init(m1,m2, o1,d1,o2,d2,xy)

#% _lop (mm (m1,m2), dd (:))

integer i1,i2, id

do id=1,size(dd) {

i1 = 1.5 + (xy(id,1)-o1)/d1

i2 = 1.5 + (xy(id,2)-o2)/d2

if(1<=i1 && i1<=m1 &&

1<=i2 && i2<=m2)

if(adj)

mm(i1,i2) = mm(i1,i2) + dd(id)

else

dd(id) = dd(id) + mm(i1,i2)

}

}

The most typical application requires an additional step, inversion. In the inversion appli-
cations each bin contains a different number of data values. After the adjoint operation is
performed, the inverse operator divides the bin value by the number of points in the bin. It is
this inversion operator that is generally called binning. To find the number of data points in a
bin, we can simply apply the adjoint of bin2 to pseudo data of all ones. To capture this idea
in an equation, let B denote the linear operator in which the bin value is sprayed to the data
values. The inverse operation, in which the data values in the bin are summed and divided by
the number in the bin, is represented by

m = diag(B′1)−1B′d (1.15)

Empty bins, of course, leave us a problem. That we’ll address in chapter 3. In Figure 1.3, the
empty bins contain zero values.

1.1.8 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier. When
we perform the forward operation, we take each data coordinate and see which two model
bin centers bracket it. Then we pick up the two bracketing model values and weight each of
them in proportion to their nearness to the data coordinate, and add them to get the data value
(ordinate). The adjoint operation is adding a data value back into the model vector; using the
same two weights, the adjoint distributes the data ordinate value between the two nearest bins
in the model vector. For example, suppose we have a data point near each end of the model
and a third data point exactly in the middle. Then for a model space 6 points long, as shown
in Figure 1.4, we have the operator in (1.16).

1.1. FAMILIAR OPERATORS 15

Figure 1.3: Binned depths of the Sea of Galilee. ajt-galbin90 [ER]

Figure 1.4: Uniformly sampled
model space and irregularly sampled
data space corresponding to (1.16).
ajt-helgerud [NR]

d
 1

d
 2

m
 5

m
 4

m
 3

m
 2

m
 1

m
 0

d
 0

16 CHAPTER 1. BASIC OPERATORS AND ADJOINTS





d0
d1
d2



 ≈





.7 .3
. . 1 . . .
.5 .5





















m0
m1
m2
m3
m4
m5

















(1.16)

The two weights in each row sum to unity. If a binning operator were used for the same data
and model, the binning operator would contain a “1.” in each row. In one dimension (as here),
data coordinates are often sorted into sequence, so that the matrix is crudely a diagonal matrix
like equation (1.16). If the data coordinates covered the model space uniformly, the adjoint
would roughly be the inverse. Otherwise, when data values pile up in some places and gaps
remain elsewhere, the adjoint would be far from the inverse.

Module lint1 does linear interpolation and its adjoint. In chapters 3 and 6 we build inverse
operators.

Nearest-neighbor interpolation would do this: data = model(1.5 + (t-t0)/dt)

This is likewise but with _linear_ interpolation.

module lint1 {

real :: o1,d1

real, dimension (:), pointer :: coordinate

#% _init (o1,d1, coordinate)

#% _lop (mm, dd)

integer i, im, id

real f, fx,gx

do id= 1, size(dd) {

f = (coordinate(id)-o1)/d1; i=f ; im= 1+i

if(1<=im && im< size(mm)) { fx=f-i; gx= 1.-fx

if(adj) {

mm(im) += gx * dd(id)

mm(im+1) += fx * dd(id)

}

else

dd(id) += gx * mm(im) + fx * mm(im+1)

}

}

}

1.1.9 Spray and sum : scatter and gather

Perhaps the most common operation is the summing of many values to get one value. Its
adjoint operation takes a single input value and throws it out to a space of many values. The
summation operator is a row vector of ones. Its adjoint is a column vector of ones. In
one dimension this operator is almost too easy for us to bother showing a routine. But it is
more interesting in three dimensions, where we could be summing or spraying on any of three
subscripts, or even summing on some and spraying on others. In module spraysum, both input
and output are taken to be three-dimensional arrays. Externally, however, either could be a
scalar, vector, plane, or cube. For example, the internal array xx(n1,1,n3) could be externally

1.1. FAMILIAR OPERATORS 17

the matrix map(n1,n3). When module spraysum is given the input dimensions and output
dimensions stated below, the operations stated alongside are implied.

(n1,n2,n3) (1,1,1) Sum a cube into a value.
(1,1,1) (n1,n2,n3) Spray a value into a cube.
(n1,1,1) (n1,n2,1) Spray a column into a matrix.
(1,n2,1) (n1,n2,1) Spray a row into a matrix.
(n1,n2,1) (n1,n2,n3) Spray a plane into a cube.
(n1,n2,1) (n1,1,1) Sum rows of a matrix into a column.
(n1,n2,1) (1,n2,1) Sum columns of a matrix into a row.
(n1,n2,n3) (n1,n2,n3) Copy and add the whole cube.

If an axis is not of unit length on either input or output, then both lengths must be the same;
otherwise, there is an error. Normally, after (possibly) erasing the output, we simply loop over
all points on each axis, adding the input to the output. This implements either a copy or an
add, depending on the add parameter. It is either a spray, a sum, or a copy, according to the
specified axis lengths.

module spraysum { # Spray or sum over 1, 2, and/or 3-axis.

integer :: n1,n2,n3, m1,m2,m3

#% _init(n1,n2,n3, m1,m2,m3)

#% _lop(xx(n1,n2,n3), yy(m1,m2,m3))

integer i1,i2,i3, x1,x2,x3, y1,y2,y3

if(n1 != 1 && m1 != 1 && n1 != m1) call erexit(’spraysum: n1,m1’)

if(n2 != 1 && m2 != 1 && n2 != m2) call erexit(’spraysum: n2,m2’)

if(n3 != 1 && m3 != 1 && n3 != m3) call erexit(’spraysum: n3,m3’)

do i3= 1, max0(n3,m3) { x3= min0(i3,n3); y3= min0(i3,m3)

do i2= 1, max0(n2,m2) { x2= min0(i2,n2); y2= min0(i2,m2)

do i1= 1, max0(n1,m1) { x1= min0(i1,n1); y1= min0(i1,m1)

if(adj) xx(x1,x2,x3) += yy(y1,y2,y3)

else yy(y1,y2,y3) += xx(x1,x2,x3)

}}}

}

1.1.10 Causal and leaky integration

Causal integration is defined as

y(t) =
∫ t

−∞
x(τ) dτ (1.17)

Leaky integration is defined as

y(t) =
∫ ∞

0
x(t− τ) e−ατ dτ (1.18)

As α→ 0, leaky integration becomes causal integration. The word “leaky” comes from elec-
trical circuit theory where the voltage on a capacitor would be the integral of the current if the
capacitor did not leak electrons.

18 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Sampling the time axis gives a matrix equation that we should call causal summation, but
we often call it causal integration. Equation (1.19) represents causal integration for ρ = 1 and
leaky integration for 0 < ρ < 1.

y =





















y0
y1
y2
y3
y4
y5
y6





















=





















1 0 0 0 0 0 0
ρ 1 0 0 0 0 0
ρ2 ρ 1 0 0 0 0
ρ3 ρ2 ρ 1 0 0 0
ρ4 ρ3 ρ2 ρ 1 0 0
ρ5 ρ4 ρ3 ρ2 ρ 1 0
ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1









































x0
x1
x2
x3
x4
x5
x6





















= Cx (1.19)

(The discrete world is related to the continuous by ρ = e−α1τ and in some applications, the
diagonal is 1/2 instead of 1.) Causal integration is the simplest prototype of a recursive op-
erator. The coding is trickier than that for the operators we considered earlier. Notice when
you compute y5 that it is the sum of 6 terms, but that this sum is more quickly computed as
y5 = ρy4+ x5. Thus equation (1.19) is more efficiently thought of as the recursion

yt = ρ yt−1+ xt t increasing (1.20)

(which may also be regarded as a numerical representation of the differential equation dy/dt+
y(1−ρ)/1t = x(t).)

When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (1.19) than of (1.20). Let the matrix of equation (1.19) be called C. Transposing to get C′

and applying it to y gives us something back in the space of x, namely x̃ = C′y. From it we
see that the adjoint calculation, if done recursively, needs to be done backwards, as in

x̃t−1 = ρ x̃t + yt−1 t decreasing (1.21)

Thus the adjoint of causal integration is anticausal integration.

A module to do these jobs is leakint. The code for anticausal integration is not obvious
from the code for integration and the adjoint coding tricks we learned earlier. To understand
the adjoint, you need to inspect the detailed form of the expression x̃ = C′y and take care to
get the ends correct. Figure 1.5 illustrates the program for ρ = 1.
module leakint { # leaky integration

real :: rho

#% _init(rho)

#% _lop (xx, yy)

integer i, n

real tt

n = size (xx); tt = 0.

if(adj)

do i= n, 1, -1 { tt = rho*tt + yy(i)

xx(i) += tt

}

else

do i= 1, n { tt = rho*tt + xx(i)

yy(i) += tt

}

}

1.1. FAMILIAR OPERATORS 19

Figure 1.5: in1 is an input pulse. C

in1 is its causal integral. C’ in1 is
the anticausal integral of the pulse.
in2 is a separated doublet. Its causal
integration is a box and its anticausal
integration is a negative box. CC in2

is the double causal integral of in2.
How can an equilateral triangle be
built? ajt-causint90 [ER]

Later we will consider equations to march wavefields up towards the earth’s surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth’s surface
and march down, a layer at a time, into the earth.

EXERCISES:

1 Consider the matrix




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 ρ 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















(1.22)

and others like it with ρ in other locations. Show what combination of these matrices will
represent the leaky integration matrix in equation (1.19). What is the adjoint?

2 Modify the calculation in Figure 1.5 so that there is a triangle waveform on the bottom
row.

3 Notice that the triangle waveform is not time aligned with the input in2. Force time
alignment with the operator C′C or CC′.

4 Modify leakint on the facing page by changing the diagonal to contain 1/2 instead of 1.
Notice how time alignment changes in Figure 1.5.

1.1.11 Backsolving, polynomial division and deconvolution

Ordinary differential equations often lead us to the backsolving operator. For example, the
damped harmonic oscillator leads to a special case of equation (1.23) where (a3,a4, · · ·) = 0.

20 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

There is a huge literature on finite-difference solutions of ordinary differential equations that
lead to equations of this type. Rather than derive such an equation on the basis of many
possible physical arrangements, we can begin from the filter transformation B in (1.4) but put
the matrix on the other side of the equation so our transformation can be called one of inversion
or backsubstitution. Let us also force the matrix B to be a square matrix by truncating it with
T= [I 0], say A= [I 0]B= TB. To link up with applications in later chapters, I specialize
to 1’s on the main diagonal and insert some bands of zeros.

Ay =





















1 0 0 0 0 0 0
a1 1 0 0 0 0 0
a2 a1 1 0 0 0 0
0 a2 a1 1 0 0 0
0 0 a2 a1 1 0 0
a5 0 0 a2 a1 1 0
0 a5 0 0 a2 a1 1









































y0
y1
y2
y3
y4
y5
y6





















=





















x0
x1
x2
x3
x4
x5
x6





















= x (1.23)

Algebraically, this operator goes under the various names, “backsolving”, “polynomial divi-
sion”, and “deconvolution”. The leaky integration transformation (1.19) is a simple example
of backsolving when a1 = −ρ and a2 = a5 = 0. To confirm this, you need to verify that the
matrices in (1.23) and (1.19) are mutually inverse.

A typical row in equation (1.23) says

xt = yt +
∑

τ>0
aτ yt−τ (1.24)

Change the signs of all terms in equation (1.24) and move some terms to the opposite side

yt = xt −
∑

τ>0
aτ yt−τ (1.25)

Equation (1.25) is a recursion to find yt from the values of y at earlier times.

In the same way that equation (1.4) can be interpreted as Y (Z) = B(Z)X (Z), equation
(1.23) can be interpreted as A(Z)Y (Z)= X (Z) which amounts to Y (Z)= X (Z)/A(Z). Thus,
convolution is amounts to polynomial multiplication while the backsubstitution we are doing
here is called deconvolution, and it amounts to polynomial division.

A causal operator is one that uses its present and past inputs to make its current output.
Anticausal operators use the future but not the past. Causal operators are generally associated
with lower triangular matrices and positive powers of Z , whereas anticausal operators are
associated with upper triangular matrices and negative powers of Z . A transformation like
equation (1.23) but with the transposed matrix would require us to run the recursive solution
the opposite direction in time, as we did with leaky integration.

A module to backsolve (1.23) is polydiv1.

module polydiv1 { # Polynomial division (recursive filtering)

real, dimension (:), pointer :: aa

1.1. FAMILIAR OPERATORS 21

#% _init (aa)

#% _lop (xx, yy)

integer ia, ix, iy

real tt

if(adj)

do ix= size(xx), 1, -1 {

tt = yy(ix)

do ia = 1, min(size(aa), size (xx) - ix) {

iy = ix + ia

tt -= aa(ia) * xx(iy)

}

xx(ix) = xx(ix) + tt

}

else

do iy= 1, size(xx) {

tt = xx(iy)

do ia = 1, min(size(aa), iy-1) {

ix = iy - ia

tt -= aa(ia) * yy(ix)

}

yy(iy) = yy(iy) + tt

}

}

The more complicated an operator, the more complicated is its adjoint. Given a trans-
formation from x to y that is TBy = x, we may wonder if the adjoint transform really is
(TB)′x̂ = y. It amounts to asking if the adjoint of y = (TB)−1x is x̂ = ((TB)′)−1y. Mathe-
matically we are asking if the inverse of a transpose is the transpose of the inverse. This is
so because in AA−1 = I = I′ = (A−1)′A′ the parenthesized object must be the inverse of its
neighbor A′.

The adjoint has a meaning which is nonphysical. It is like the forward operator except that
we must begin at the final time and revert towards the first. The adjoint pendulum damps as
we compute it backward in time, but that, of course, means that the adjoint pendulum diverges
as it is viewed moving forward in time.

1.1.12 The basic low-cut filter

Many geophysical measurements contain very low-frequency noise called “drift.” For exam-
ple, it might take some months to survey the depth of a lake. Meanwhile, rainfall or evapora-
tion could change the lake level so that new survey lines become inconsistent with old ones.
Likewise, gravimeters are sensitive to atmospheric pressure, which changes with the weather.
A magnetic survey of an archeological site would need to contend with the fact that the earth’s
main magnetic field is changing randomly through time while the survey is being done. Such
noises are sometimes called “secular noise.”

The simplest way to eliminate low frequency noise is to take a time derivative. A disadvan-
tage is that the derivative changes the waveform from a pulse to a doublet (finite difference).
Here we examine the most basic low-cut filter. It preserves the waveform at high frequencies;

22 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

it has an adjustable parameter for choosing the bandwidth of the low cut; and it is causal (uses
the past but not the future).

We make our causal lowcut filter (highpass filter) by two stages which can be done in
either order.

1. Apply a time derivative, actually a finite difference, convolving the data with (1,−1).

2. Integrate, actually to do a leaky integration, to deconvolve with (1,−ρ) where numeri-
cally, ρ is slightly less than unity.

The convolution ensures that the zero frequency is removed. The leaky integration almost
undoes the differentiation (but does not restore the zero frequency). Adjusting the numerical
value of ρ adjusts the cutoff frequency of the filter. To learn the impulse response of the com-
bined processes, we need to convolve the finite difference (1,−1) with the leaky integration
(1,ρ,ρ2,ρ3,ρ4, · · ·). The result is (1,ρ,ρ2,ρ3,ρ4, · · ·) minus (0,1,ρ,ρ2,ρ3, · · ·). We can think
of this as (1,0,0,0,0, · · ·) minus (1−ρ)(1,ρ,ρ2,ρ3, · · ·). In other words the impulse response
is an impulse followed by the negative of a weak (1−ρ) decaying exponential ρ t . Roughly
speaking, the cutoff frequency of the filter corresponds to matching one wavelength to the
exponential decay time.

Some exercise with Fourier transforms or Z -transforms3, shows the Fourier transform of
this highpass filter filter to be

H (Z) =
1− Z

1−ρZ
= 1− (1−ρ)[Z 1+ρZ2+ρ2 Z3+ρ3 Z4 · · ·] (1.26)

where the unit-delay operator is Z = eiω1t and where ω is the frequency. A symmetical
(noncausal) lowcut filter would filter once forward with H (Z) and once backwards (adjoint)
with H (1/Z). This is not the place for a detailed Fourier analysis of this filter but it is the place
to mention that a cutoff filter is typically specified by its cutoff frequency, a frequency that
separates the pass and reject region. For this filter, the cutoff frequency ω0 would correspond
to matching a quarter wavelength of a sinusoid to the exponential decay length of ρk , namely,
say the value of k for which ρk ≈ 1/2

Seismological data is more complex. A single “measurement” consists of an explosion
and echo signals recorded at many locations. As before, a complete survey is a track (or
tracks) of explosion locations. Thus, in seismology, data space is higher dimensional. Its
most troublesome noise is not simply low frequency; it is low velocity. We will do more with
multidimensional data in later chapters.

EXERCISES:

1 Give an analytic expression for the waveform of equation (1.26).
3An introduction to Z -transforms is found in my earlier books, FGDP and ESA-PVI.

1.1. FAMILIAR OPERATORS 23

2 Define a low-pass filter as 1−H (Z). What is the low-pass impulse response?

3 Put Galilee data on a coarse mesh. Consider north-south lines as one-dimensional signals.
Find the value of ρ for which H is the most pleasing filter.

4 Find the value of ρ for which H̄ H is the most pleasing filter.

5 Find the value of ρ for which H applied to Galilee has minimum energy. (Experiment
with a range of about ten values around your favorite value.)

6 Find the value of ρ for which H̄ H applied to Galilee has minimum energy.

7 Repeat above for east-west lines.

Figure 1.6: The depth of the Sea of Galilee after roughening. ajt-galocut90 [ER,M]

1.1.13 Nearest-neighbor normal moveout (NMO)

Normal-moveout correction (NMO) is a geometrical correction of reflection seismic data that
stretches the time axis so that data recorded at nonzero separation x0 of shot and receiver, after
stretching, appears to be at x0 = 0. NMO correction is roughly like time-to-depth conversion
with the equation v2t2 = z2+ x2

0 . After the data at x0 is stretched from t to z, it should look
like stretched data from any other x (assuming these are plane horizontal reflectors, etc.). In

24 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

practice, z is not used; rather, traveltime depth τ is used, where τ = z/v; so t 2 = τ 2+ x2
0/v2.

(Because of the limited alphabet of programming languages, I often use the keystroke z to
denote τ .)

Typically, many receivers record each shot. Each seismogram can be transformed by NMO
and the results all added. This is called “stacking” or “NMO stacking.” The adjoint to this
operation is to begin from a model which ideally is the zero-offset trace and spray this model to
all offsets. From a matrix viewpoint, stacking is like a row vector of normal moveout operators
and modeling is like a column. An example is shown in Figure 1.7.

Figure 1.7: Hypothetical model,
synthetic data, and model image.
ajt-cunha [ER]

A module that does reverse moveout is hypotenusei. Given a zero-offset trace, it makes
another at non-zero offset. The adjoint does the usual normal moveout correction.
module hypotenusei { # Inverse normal moveout

integer :: nt

integer, dimension (nt), allocatable :: iz

#% _init(nt, t0, dt, xs)

integer it

real t0, dt, xs, t, zsquared

do it= 1, nt { t = t0 + dt*(it-1)

zsquared = t * t - xs * xs

if (zsquared >= 0.)

iz (it) = 1.5 + (sqrt(zsquared) - t0) /dt

else

iz (it) = 0

}

#% _lop(zz, tt)

integer it

do it= 1, nt {

if (iz (it) > 0) {

if(adj) zz(iz(it)) += tt(it)

else tt(it) += zz(iz(it))

}

}

}

(My 1992 textbook (PVI) illustrates many additional features of normal moveout.) A compan-
ion routine imospray loops over offsets and makes a trace for each. The adjoint of imospray

1.1. FAMILIAR OPERATORS 25

is the industrial process of moveout and stack.

module imospray { # inverse moveout and spray into a gather.

use hypotenusei

real :: x0,dx, t0,dt

integer :: nx,nt

#% _init (slow, x0,dx, t0,dt, nt,nx)

real slow

x0 = x0*slow

dx = dx*slow

#% _lop(stack(nt), gather(nt,nx))

integer ix, stat

do ix= 1, nx {

call hypotenusei_init (nt, t0, dt, x0 + dx*(ix-1))

stat = hypotenusei_lop (adj, .true., stack, gather(:,ix))

}

call hypotenusei_close ()

}

This is the first time we have built an operator (moveout and stack) from a collection of
other operators (moveout at various offsets) and there are new possibilities for confusion and
program bugs. As earlier with the matrix multiplication operator, to use the imospray operator,
there are two steps, one that we use to set things up

call imospray_init(slow, x0,dx, t0,dt, nt,nx)

and another step that we use a lot in the next chapter for analysis and data fitting.

stat = imospray_lop(adj, add, stack, gather)

Later we’ll see programs that are not operators. Every program that is an operator (contains #%
_init and #% _lop) is expanded by Loptran to a longer Fortran code where the _lop function
begins by (potentially) erasing the output (when add=.false.). This potential erasing is done
in both hypotenusei and imospray. Consider the the adjoint of spraying which is stacking.
Here the occurance of the add=.true. in imospray assures we do not erase the stack each
time we add in another trace. Because of Loptran we don’t explicitly see that imospray_lop
has its own potential erase of its output which we’d turn off if we wanted to add one stack
upon another.

1.1.14 Coding chains and arrays

With a collection of operators, we can build more elaborate operators. One method is chain-
ing. For example, the operator product A = BC is represented in the subroutine chain2(

op1, op2, ...). Likewise the operator product A= BCD is represented in the in the subrou-
tine chain3(op1, op2, op3,...). Another way to make more elaborate operators is to put
operators in a matrix such as subroutine array also in module smallchain2.

26 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

module chain1_mod {

logical, parameter, private :: T = .true., F = .false.

interface chain0

module procedure chain20

module procedure chain30

end interface

contains

subroutine row0(op1,op2, adj,add, m1, m2, d, eps) { # ROW d = Am1+epsBm2

interface {

integer function op1(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function op2(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

}

logical, intent (in) :: adj, add

real, dimension (:) :: m1,m2,d

real :: eps

integer :: st

if (adj) { st = op1 (T, add, m1, d) # m1 = A’d

st = op2 (T, add, m2, d) # m2 = B’d

m2 = eps*m2 # m2 = eps(B’d)

}

else { st = op2 (F, add, eps*m2, d) # d = epsBm2

st = op1 (F, T, m1, d) # d = Am1+epsBm2

}

}

subroutine chain20(op1,op2, adj,add, m,d,t1) { # CHAIN 2

interface {

integer function op1(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function op2(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

}

logical, intent(in) :: adj, add

real, dimension(:) :: m,d, t1

integer :: st

if(adj) { st = op1(T, F, t1,d) # t = A’ d

st = op2(T, add, m, t1) # m = B’ t = B’ A’ d

}

else { st = op2(F, F, m, t1) # t = B m

st = op1(F, add, t1,d) # d = A t = A B m

}

}

subroutine chain30(op1,op2,op3, adj,add, m,d,t1,t2) { # CHAIN 3

interface {

integer function op1(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function op2(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function op3(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

}

logical, intent(in) :: adj, add

real, dimension(:) :: m,d, t1,t2

integer :: st

if(adj) { st = op1(T, F, t2, d) # t1 = A’ d

st = op2(T, F, t1, t2) # t2 = B’ t1 = B’ A’ d

st = op3(T, add, m , t1) # m = C’ t2 = C’ B’ A’ d

}

else { st = op3(F, F, m , t1) # t1 = C m

st = op2(F, F, t1, t2) # t2 = B t1 = B C m

st = op1(F, add, t2, d) # d = A t2 = A B C m

}

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 27

}

}

1.2 ADJOINT DEFINED: DOT-PRODUCT TEST

Having seen many examples of spaces, operators, and adjoints, we should now see more
formal definitions because abstraction helps us push these concepts to their limits.

1.2.1 Definition of a vector space

An operator transforms a space to another space. Examples of spaces are model space m
and data space d. We think of these spaces as vectors whose components are packed with
numbers, either real or complex numbers. The important practical concept is that not only
does this packing include one-dimensional spaces like signals, two-dimensional spaces like
images, 3-D movie cubes, and zero-dimensional spaces like a data mean, etc, but spaces can
be sets of all the above. One space that is a set of three cubes is the earth’s magnetic field,
which has three components; and each component is a function of a three-dimensional space.
(The 3-D physical space we live in is not the abstract vector space of models and data so
abundant in this book. Here the word “space” without an adjective means the vector space.)

A more heterogeneous example of a vector space is data tracks. A depth-sounding survey
of a lake can make a vector space that is a collection of tracks, a vector of vectors (each vector
having a different number of components, because lakes are not square). This vector space of
depths along tracks in a lake contains the depth values only. The (x , y)-coordinate information
locating each measured depth value is (normally) something outside the vector space. A data
space could also be a collection of echo soundings, waveforms recorded along tracks.

We briefly recall information about vector spaces found in elementary books: Let α be
any scalar. Then if d1 is a vector and d2 is conformable with it, then other vectors are αd1
and d1+ d2. The size measure of a vector is a positive value called a norm. The norm is
usually defined to be the dot product (also called the L2 norm), say d ·d. For complex data
it is d̄ ·d where d̄ is the complex conjugate of d. In theoretical work the “length of a vector”
means the vector’s norm. In computational work the “length of a vector” means the number
of components in the vector.

Norms generally include a weighting function. In physics, the norm generally measures
a conserved quantity like energy or momentum, so, for example, a weighting function for
magnetic flux is permittivity. In data analysis, the proper choice of the weighting function is
a practical statistical issue, discussed repeatedly throughout this book. The algebraic view of
a weighting function is that it is a diagonal matrix with positive values w(i)≥ 0 spread along
the diagonal, and it is denoted W = diag[w(i)]. With this weighting function the L2 norm
of a data space is denoted d′Wd. Standard notation for norms uses a double absolute value,
where ||d|| = d′Wd. A central concept with norms is the triangle inequality, ||d1+ d2|| ≤
||d1||+ ||d2|| whose proof you might recall (or reproduce with the use of dot products).

28 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

1.2.2 Dot-product test for validity of an adjoint

There is a huge gap between the conception of an idea and putting it into practice. During
development, things fail far more often than not. Often, when something fails, many tests
are needed to track down the cause of failure. Maybe the cause cannot even be found. More
insidiously, failure may be below the threshold of detection and poor performance suffered for
years. The dot-product test enables us to ascertain whether the program for the adjoint of an
operator is precisely consistent with the operator itself. It can be, and it should be.

Conceptually, the idea of matrix transposition is simply a ′i j = aj i . In practice, however, we
often encounter matrices far too large to fit in the memory of any computer. Sometimes it is
also not obvious how to formulate the process at hand as a matrix multiplication. (Examples
are differential equations and fast Fourier transforms.) What we find in practice is that an
application and its adjoint amounts to two routines. The first routine amounts to the matrix
multiplication Fx. The adjoint routine computes F′y, where F′ is the conjugate-transpose
matrix. In later chapters we will be solving huge sets of simultaneous equations, in which
both routines are required. If the pair of routines are inconsistent, we are doomed from the
start. The dot-product test is a simple test for verifying that the two routines are adjoint to each
other.

The associative property of linear algebra says that we do not need parentheses in a vector-
matrix-vector product like y′Fx because we get the same result no matter where we put the
parentheses. They serve only to determine the sequence of computation. Thus,

y′(Fx) = (y′F)x (1.27)
y′(Fx) = (F′y)′x (1.28)

(In general, the matrix is not square.) To perform the dot-product test, load the vectors x and y
with random numbers. Using your program for F, compute the vector ỹ= Fx, and using your
program for F′, compute x̃ = F′y. Inserting these into equation (1.28) gives you two scalars
that should be equal.

y′(Fx) = y′ỹ = x̃′x = (F′y)′x (1.29)

The left and right sides of this equation will be computationally equal only if the program
doing F′ is indeed adjoint to the program doing F (unless the random numbers do something
miraculous). A final word: If an operator uses complex arithmetic then both its input and
output are “in the field of complex numbers.” The conversion between real and complex
numbers is not a linear operator despite its seeming similarity to truncation and zero padding.

The program for applying the dot product test is dot_test on the current page. The For-
tran way of passing a linear operator as an argument is to specify the function interface. Fortu-
nately, we have already defined the interface for a generic linear operator. To use the dot_test
program, you need to initialize an operator with specific arguments (the _init subroutine) and
then pass the operator itself (the _lop function) to the test program. You also need to specify
the sizes of the model and data vectors so that temporary arrays can be constructed. The pro-
gram runs the dot product test twice, second time with add = .true. to test if the operator
can be used properly for accumulating the result like y← y+Bx.

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 29

module dottest {

logical, parameter, private :: T = .true., F = .false.

contains

subroutine dot_test(oper, n_mod, n_dat, dot1, dot2) {

integer, intent (in) :: n_mod, n_dat

real, dimension (2), intent (out) :: dot1, dot2

interface {

function oper(adj, add, mod, dat) result(stat) {

integer :: stat

logical, intent (in) :: adj, add

real, dimension (:) :: mod, dat

}

}

real, dimension(n_mod) :: mod1, mod2

real, dimension(n_dat) :: dat1, dat2

integer :: stat

call random_number(mod1); call random_number(dat2)

stat = oper(F, F, mod1, dat1); dot1(1) = dot_product(dat1, dat2)

stat = oper(T, F, mod2, dat2); dot1(2) = dot_product(mod1, mod2)

write (0,*) dot1

stat = oper(F, T, mod1, dat1); dot2(1) = dot_product(dat1, dat2)

stat = oper(T, T, mod2, dat2); dot2(2) = dot_product(mod1, mod2)

write (0,*) dot2

}

}

I tested (1.29) on many operators and was surprised and delighted to find that it is often
satisfied to an accuracy near the computing precision. I do not doubt that larger rounding errors
could occur, but so far, every time I encountered a relative discrepancy of 10−5 or more, I was
later able to uncover a conceptual or programming error. Naturally, when I do dot-product
tests, I scale the implied matrix to a small dimension in order to speed things along, and to be
sure that boundaries are not overwhelmed by the much larger interior.

Do not be alarmed if the operator you have defined has truncation errors. Such errors
in the definition of the original operator should be identically matched by truncation errors
in the adjoint operator. If your code passes the dot-product test, then you really have coded
the adjoint operator. In that case, to obtain inverse operators, you can take advantage of the
standard methods of mathematics.

We can speak of a continuous function f (t) or a discrete function ft . For continuous
functions we use integration, and for discrete ones we use summation. In formal mathematics,
the dot-product test defines the adjoint operator, except that the summation in the dot product
may need to be changed to an integral. The input or the output or both can be given either on a
continuum or in a discrete domain. So the dot-product test y′ỹ= x̃′x could have an integration
on one side of the equal sign and a summation on the other. Linear-operator theory is rich with
concepts not developed here.

30 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

1.2.3 The word “adjoint”

In mathematics the word “adjoint” has three meanings. One of them, the so-called Hilbert
adjoint, is the one generally found in physics and engineering and it is the one used in this
book. In linear algebra is a different matrix, called the adjugate matrix. It is a matrix whose
elements are signed cofactors (minor determinants). For invertible matrices, this matrix is the
determinant times the inverse matrix. It can be computed without ever using division, so
potentially the adjugate can be useful in applications where an inverse matrix does not exist.
Unfortunately, the adjugate matrix is sometimes called the adjoint matrix, particularly in the
older literature. Because of the confusion of multiple meanings of the word adjoint, in the
first printing of PVI, I avoided the use of the word and substituted the definition, “conjugate
transpose”. Unfortunately this was often abbreviated to “conjugate,” which caused even more
confusion. Thus I decided to use the word adjoint and have it always mean the Hilbert adjoint
found in physics and engineering.

1.2.4 Matrix versus operator

Here is a short summary of where we have been and where we are going: Start from the class
of linear operators, add subscripts and you get matrices. Examples of operators without sub-
scripts are routines that solve differential equations and routines that do fast Fourier transform.
What people call “sparse matrices” are often not really matrices but operators, because they
are not defined by data structures but by routines that apply them to a vector. With sparse
matrices you easily can do A(B(Cx)) but not (ABC)x.

Although a linear operator does not have defined subscripts, you can determine what would
be the operator value at any subscript: by applying the operator to an impulse function, you
would get a matrix column. The adjoint operator is one from which we can extract the trans-
pose matrix. For large spaces this extraction is unwieldy, so to test the validity of adjoints, we
probe them with random vectors, say x and y, to see whether y′(Ax) = (A′y)′x. Mathemati-
cians define adjoints by this test, except that instead of using random vectors, they say “for all
functions,” which includes the continuum.

This defining test makes adjoints look mysterious. Careful inspection of operator adjoints,
however, generally reveals that they are built up from simple matrices. Given adjoints A′,
B′, and C′, the adjoint of ABC is C′B′A′. Fourier transforms and linear-differential-equation
solvers are chains of matrices, so their adjoints can be assembled by the application of adjoint
components in reverse order. The other way we often see complicated operators being built
from simple ones is when operators are put into components of matrices, typically a 1×2 or
2×1 matrix containing two operators. An example of the adjoint of a two-component column
operator is

[

A
B

]′
=

[

A′ B′
]

(1.30)

Although in practice an operator might be built from matrices, fundamentally, a matrix is

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 31

a data structure whereas an operator is a procedure. A matrix is an operator if its subscripts
are hidden but it can be applied to a space, producing another space.

As matrices have inverses, so do linear operators. You don’t need subscripts to find an
inverse. The conjugate-gradient method and conjugate-direction method explained in the next
chapter are attractive methods of finding them. They merely apply A and A′ and use inner
products to find coefficients of a polynomial in AA′ that represents the inverse operator.

Whenever we encounter a positive-definite matrix we should recognize its likely origin in
a nonsymmetric matrix F times its adjoint. Those in natural sciences often work on solving
simultaneous equations but fail to realize that they should return to the origin of the equa-
tions which is often a fitting goal; i.e., applying an operator to a model should yield data,
i.e., d≈ d0+F(m−m0) where the operator F is a partial derivative matrix (and there are po-
tential underlying nonlinearities). This begins another story with new ingredients, weighting
functions and statistics.

1.2.5 Inverse operator

A common practical task is to fit a vector of observed data dobs to some theoretical data dtheor
by the adjustment of components in a vector of model parameters m.

dobs ≈ dtheor = Fm (1.31)

A huge volume of literature establishes theory for two estimates of the model, m̂1 and m̂2,
where

m̂1 = (F′F)−1F′d (1.32)
m̂2 = F′(FF′)−1d (1.33)

Some reasons for the literature being huge are the many questions about the existence, quality,
and cost of the inverse operators. Before summarizing that, let us quickly see why these two
solutions are reasonable. Inserting equation (1.31) into equation (1.32), and inserting equation
(1.33) into equation (1.31), we get the reasonable statements:

m̂1 = (F′F)−1(F′F)m = m (1.34)
d̂theor = (FF′)(FF′)−1d = d (1.35)

Equation (1.34) says that the estimate m̂1 gives the correct model m if you start from the
theoretical data. Equation (1.35) says that the model estimate m̂2 gives the theoretical data if
we derive m̂2 from the theoretical data. Both of these statements are delightful. Now let us
return to the problem of the inverse matrices.

Strictly speaking, a rectangular matrix does not have an inverse. Surprising things often
happen, but commonly, when F is a tall matrix (more data values than model values) then the
matrix for finding m̂1 is invertible while that for finding m̂2 is not, and when the matrix is
wide instead of tall (the number of data values is less than the number of model values) it is

32 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

the other way around. In many applications neither F′F nor FF′ is invertible. This difficulty
is solved by “damping” as we will see in later chapters. The point to notice in this chapter on
adjoints is that in any application where FF′ or F′F equals I (unitary operator), that the adjoint
operator F′ is the inverse F−1 by either equation (1.32) or (1.33).

Theoreticians like to study inverse problems where m is drawn from the field of continuous
functions. This is like the vector m having infinitely many components. Such problems are
hopelessly intractable unless we find, or assume, that the operator F′F is an identity or diagonal
matrix.

In practice, theoretical considerations may have little bearing on how we proceed. Current
computational power limits matrix inversion jobs to about 104 variables. This book specializes
in big problems, those with more than about 104 variables, but the methods we learn are also
excellent for smaller problems.

1.2.6 Automatic adjoints

Computers are not only able to perform computations; they can do mathematics. Well known
software is Mathematica and Maple. Adjoints can also be done by symbol manipulation. For
example Ralf Giering4 offers a program for converting linear operator programs into their
adjoints.

EXERCISES:

1 Suppose a linear operator F has its input in the discrete domain and its output in the
continuum. How does the operator resemble a matrix? Describe the operator F′ that has
its input in the discrete domain and its output in the continuum. To which do you apply
the words “scales and adds some functions,” and to which do you apply the words “does
a bunch of integrals”? What are the integrands?

4http://klima47.dkrz.de/giering/tamc/tamc.html

Chapter 2

Model fitting by least squares

The first level of computer use in science and engineering is modeling. Beginning from phys-
ical principles and design ideas, the computer mimics nature. After this, the worker looks
at the result and thinks a while, then alters the modeling program and tries again. The next,
deeper level of computer use is that the computer itself examines the results of modeling and
reruns the modeling job. This deeper level is variously called “fitting" or “estimation" or
“inversion." We inspect the conjugate-direction method of fitting and write a subroutine for
it that will be used in most of the examples in this monograph.

2.1 HOW TO DIVIDE NOISY SIGNALS

If "inversion" is dividing by a matrix, then the place to begin is dividing one number by
another, say one function of frequency by another function of frequency. A single parameter
fitting problem arises in Fourier analysis, where we seek a “best answer” at each frequency,
then combine all the frequencies to get a best signal. Thus emerges a wide family of interesting
and useful applications. However, Fourier analysis first requires us to introduce complex
numbers into statistical estimation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-domain
division is time-domain deconvolution. This division is challenging when the divisor has
observational error. Failure erupts if zero division occurs. More insidious are the poor results
we obtain when zero division is avoided by a near miss.

2.1.1 Dividing by zero smoothly

Think of any real numbers x , y, and f where y = x f . Given y and f we see a computer
program containing x = y/ f . How can we change the program so that it never divides by
zero? A popular answer is to change x = y/ f to x = y f/(f 2+ ε2), where ε is any tiny value.
When | f |>> |ε|, then x is approximately y/ f as expected. But when the divisor f vanishes,

33

34 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

the result is safely zero instead of infinity. The transition is smooth, but some criterion is
needed to choose the value of ε. This method may not be the only way or the best way to cope
with zero division, but it is a good way, and it permeates the subject of signal analysis.

To apply this method in the Fourier domain, suppose that X , Y , and F are complex num-
bers. What do we do then with X = Y/F? We multiply the top and bottom by the complex
conjugate F , and again add ε2 to the denominator. Thus,

X (ω) =
F(ω) Y (ω)

F(ω)F(ω) + ε2
(2.1)

Now the denominator must always be a positive number greater than zero, so division is always
safe. Equation (2.1) ranges continuously from inverse filtering, with X = Y/F , to filtering
with X = FY , which is called “matched filtering.” Notice that for any complex number F ,
the phase of 1/F equals the phase of F , so the filters 1/F and F have inverse amplitudes but
identical phase.

2.1.2 Damped solution

Equation (2.1) is the solution to an optimization problem that arises in many applications.
Now that we know the solution, let us formally define the problem. First, we will solve a
simpler problem with real values: we will choose to minimize the quadratic function of x:

Q(x) = (f x− y)2+ ε2x2 (2.2)

The second term is called a “damping factor" because it prevents x from going to ±∞ when
f → 0. Set d Q/dx = 0, which gives

0 = f (f x− y)+ ε2x (2.3)

This yields the earlier answer x = f y/(f 2+ ε2).

With Fourier transforms, the signal X is a complex number at each frequency ω. So we
generalize equation (2.2) to

Q(X̄ , X) = (F X −Y)(F X −Y)+ ε2 X̄ X = (X̄ F̄− Ȳ)(F X −Y)+ ε2 X̄ X (2.4)

To minimize Q we could use a real-values approach, where we express X = u+ iv in terms
of two real values u and v and then set ∂ Q/∂u = 0 and ∂ Q/∂v = 0. The approach we will
take, however, is to use complex values, where we set ∂ Q/∂ X = 0 and ∂ Q/∂ X̄ = 0. Let us
examine ∂ Q/∂ X̄ :

∂ Q(X̄ , X)
∂ X̄

= F̄(F X −Y)+ ε2 X = 0 (2.5)

The derivative ∂ Q/∂ X is the complex conjugate of ∂ Q/∂ X̄ . So if either is zero, the other is
too. Thus we do not need to specify both ∂ Q/∂ X = 0 and ∂ Q/∂ X̄ = 0. I usually set ∂ Q/∂ X̄
equal to zero. Solving equation (2.5) for X gives equation (2.1).

2.1. HOW TO DIVIDE NOISY SIGNALS 35

Equation (2.1) solves Y = X F for X , giving the solution for what is called “the deconvo-
lution problem with a known wavelet F ." Analogously we can use Y = X F when the filter
F is unknown, but the input X and output Y are given. Simply interchange X and F in the
derivation and result.

2.1.3 Smoothing the denominator spectrum

Equation (2.1) gives us one way to divide by zero. Another way is stated by the equation

X (ω) =
F(ω) Y (ω)
〈F(ω)F(ω)〉

(2.6)

where the strange notation in the denominator means that the spectrum there should be smoothed
a little. Such smoothing fills in the holes in the spectrum where zero-division is a danger, fill-
ing not with an arbitrary numerical value ε but with an average of nearby spectral values.
Additionally, if the denominator spectrum F(ω)F(ω) is rough, the smoothing creates a shorter
autocorrelation function.

Both divisions, equation (2.1) and equation (2.6), irritate us by requiring us to specify a
parameter, but for the latter, the parameter has a clear meaning. In the latter case we smooth
a spectrum with a smoothing window of width, say 1ω which this corresponds inversely to a
time interval over which we smooth. Choosing a numerical value for ε has not such a simple
interpretation.

We jump from simple mathematical theorizing towards a genuine practical application
when I grab some real data, a function of time and space from another textbook. Let us call
this data f (t , x) and its 2-D Fourier transform F(ω,kx). The data and its autocorrelation are in
Figure 2.1.

The autocorrelation a(t , x) of f (t , x) is the inverse 2-D Fourier Transform of F(ω,kx)F(ω,kx).
Autocorrelations a(x , y) satisfy the symmetry relation a(x , y)= a(−x ,−y). Figure 2.2 shows
only the interesting quadrant of the two independent quadrants. We see the autocorrelation of
a 2-D function has some resemblance to the function itself but differs in important ways.

Instead of messing with two different functions X and Y to divide, let us divide F by itself.
This sounds like 1= F/F but we will watch what happens when we do the division carefully
avoiding zero division in the ways we usually do.

Figure 2.2 shows what happens with

1 = F/F ≈
F F

F F+ ε2
(2.7)

and with

1 = F/F ≈
F F

〈F F〉
(2.8)

36 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Figure 2.1: 2-D data (right) and a quadrant of its autocorrelation (left). Notice the longest
nonzero time lag on the data is about 5.5 sec which is the latest nonzero signal on the autocor-
relation. lsq-antoine10 [ER]

2.1. HOW TO DIVIDE NOISY SIGNALS 37

From Figure 2.2 we notice that both methods of avoiding zero division give similar results.
By playing with the ε and the smoothing width the pictures could be made even more similar.
My preference, however, is the smoothing. It is difficult to make physical sense of choosing
a numerical value for ε. It is much easier to make physical sense of choosing a smoothing
window. The smoothing window is in (ω,kx) space, but Fourier transformation tells us its
effect in (t , x) space.

2.1.4 Imaging

The example of dividing a function by itself (1= F/F) might not seem to make much sense,
but it is very closely related to estimation often encounted in imaging applications. It’s not my
purpose here to give a lecture on imaging theory, but here is an overbrief explanation.

Imagine a downgoing wavefield D(ω, x , z) and scatterer that from the downgoing wave-
field creates an upgoing wavefield U (ω, x , z). Given U and D, if there is a stong temporal
correlation between them at any (x , z) it likely means there is a reflector nearby that is man-
ufacturing U from D. This reflectivity could be quantified by U/D. At the earth’s surface
the surface boundary condition says something like U = D or U = −D. Thus at the surface
we have something like F/F . As we go down in the earth, the main difference is that U and
D get time shifted in opposite directions, so U and D are similar but for that time difference.
Thus, a study of how we handle F/F is worthwhile.

2.1.5 Formal path to the low-cut filter

This book defines many geophysical estimation problems. Many of them amount to statement
of two goals. The first goal is a data fitting goal, the goal that the model should imply some
observed data. The second goal is that the model be not too big or too wiggly. We will state
these goals as two residuals, each of which is ideally zero. A very simple data fitting goal
would be that the model m equals the data d, thus the difference should vanish, say 0≈m−d.
A more interesting goal is that the model should match the data especially at high frequencies
but not necessarily at low frequencies.

0 ≈ −iω(m−d) (2.9)

A danger of this goal is that the model could have a zero-frequency component of infinite
magnitude as well as large amplitudes for low frequencies. To suppress this, we need the
second goal, a model residual which is to be minimized. We need a small number ε. The
model goal is

0 ≈ ε m (2.10)

To see the consequence of these two goals, we add the squares of the residuals

Q(m) = ω2(m−d)2+ ε2m2 (2.11)

38 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Figure 2.2: Equation (2.7) (left) and equation (2.8) (right). Both ways of dividing by zero give
similar results. lsq-antoine11 [ER]

2.2. MULTIVARIATE LEAST SQUARES 39

and then we minimize Q(m) by setting its derivative to zero

0 =
d Q

dm
= 2ω2(m−d)+2ε2m (2.12)

or

m =
ω2

ω2+ ε2 d (2.13)

which is a low-cut filter with a cutoff frequency of ω0 = ε.

Of some curiosity and significance is the numerical choice of ε. The general theory says
we need an epsilon, but does not say how much. For now let us simply rename ε = ω0 and
think of it as a “cut off frequency”.

2.2 MULTIVARIATE LEAST SQUARES

2.2.1 Inside an abstract vector

In engineering uses, a vector has three scalar components that correspond to the three di-
mensions of the space in which we live. In least-squares data analysis, a vector is a one-
dimensional array that can contain many different things. Such an array is an “abstract vec-
tor.” For example, in earthquake studies, the vector might contain the time an earthquake
began, as well as its latitude, longitude, and depth. Alternatively, the abstract vector might
contain as many components as there are seismometers, and each component might be the
arrival time of an earthquake wave. Used in signal analysis, the vector might contain the val-
ues of a signal at successive instants in time or, alternatively, a collection of signals. These
signals might be “multiplexed” (interlaced) or “demultiplexed” (all of each signal preceding
the next). When used in image analysis, the one-dimensional array might contain an image,
which could itself be thought of as an array of signals. Vectors, including abstract vectors, are
usually denoted by boldface letters such as p and s. Like physical vectors, abstract vectors
are orthogonal when their dot product vanishes: p · s= 0. Orthogonal vectors are well known
in physical space; we will also encounter them in abstract vector space.

We consider first a hypothetical application with one data vector d and two fitting vectors
f1 and f2. Each fitting vector is also known as a “regressor." Our first task is to approximate
the data vector d by a scaled combination of the two regressor vectors. The scale factors x1
and x2 should be chosen so that the model matches the data; i.e.,

d ≈ f1x1+ f2x2 (2.14)

Notice that we could take the partial derivative of the data in (2.14) with respect to an
unknown, say x1, and the result is the regressor f1.

The partial derivative of all theoretical data with respect to any model parameter gives a
regressor. A regressor is a column in the matrix of partial-derivatives, ∂di/∂m j .

40 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

The fitting goal (2.14) is often expressed in the more compact mathematical matrix nota-
tion d≈ Fx, but in our derivation here we will keep track of each component explicitly and use
mathematical matrix notation to summarize the final result. Fitting the observed data d= dobs

to its two theoretical parts f1x1 and f2x2 can be expressed as minimizing the length of the
residual vector r, where

0 ≈ r = dtheor−dobs (2.15)
0 ≈ r = f1x1+ f2x2 − d (2.16)

We use a dot product to construct a sum of squares (also called a “quadratic form") of the
components of the residual vector:

Q(x1, x2) = r · r (2.17)
= (f1x1+ f2x2−d) · (f1x1+ f2x2−d) (2.18)

To find the gradient of the quadratic form Q(x1, x2), you might be tempted to expand out the
dot product into all nine terms and then differentiate. It is less cluttered, however, to remember
the product rule, that

d

dx
r · r =

dr
dx
· r+ r ·

dr
dx

(2.19)

Thus, the gradient of Q(x1, x2) is defined by its two components:

∂ Q

∂x1
= f1 · (f1x1+ f2x2−d)+ (f1x1+ f2x2−d) · f1 (2.20)

∂ Q

∂x2
= f2 · (f1x1+ f2x2−d)+ (f1x1+ f2x2−d) · f2 (2.21)

Setting these derivatives to zero and using (f1 · f2)= (f2 · f1) etc., we get

(f1 ·d) = (f1 · f1)x1+ (f1 · f2)x2 (2.22)
(f2 ·d) = (f2 · f1)x1+ (f2 · f2)x2 (2.23)

We can use these two equations to solve for the two unknowns x1 and x2. Writing this expres-
sion in matrix notation, we have

[

(f1 ·d)
(f2 ·d)

]

=
[

(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

] [

x1
x2

]

(2.24)

It is customary to use matrix notation without dot products. To do this, we need some ad-
ditional definitions. To clarify these definitions, we inspect vectors f1, f2, and d of three
components. Thus

F = [f1 f2] =





f11 f12
f21 f22
f31 f32



 (2.25)

2.2. MULTIVARIATE LEAST SQUARES 41

Likewise, the transposed matrix F′ is defined by

F′ =
[

f11 f21 f31
f12 f22 f32

]

(2.26)

The matrix in equation (2.24) contains dot products. Matrix multiplication is an abstract way
of representing the dot products:

[

(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

]

=
[

f11 f21 f31
f12 f22 f32

]





f11 f12
f21 f22
f31 f32



 (2.27)

Thus, equation (2.24) without dot products is

[

f11 f21 f31
f12 f22 f32

]





d1
d2
d3



 =
[

f11 f21 f31
f12 f22 f32

]





f11 f12
f21 f22
f31 f32





[

x1
x2

]

(2.28)

which has the matrix abbreviation

F′d = (F′ F)x (2.29)

Equation (2.29) is the classic result of least-squares fitting of data to a collection of regressors.
Obviously, the same matrix form applies when there are more than two regressors and each
vector has more than three components. Equation (2.29) leads to an analytic solution for x
using an inverse matrix. To solve formally for the unknown x, we premultiply by the inverse
matrix (F′ F)−1:

x = (F′ F)−1 F′d (2.30)

Equation (2.30) is the central result of least-squares theory. We see it everywhere.

In our first manipulation of matrix algebra, we move around some parentheses in (2.29):

F′d = F′ (Fx) (2.31)

Moving the parentheses implies a regrouping of terms or a reordering of a computation. You
can verify the validity of moving the parentheses if you write (2.31) in full as the set of two
equations it represents. Equation (2.29) led to the “analytic” solution (2.30). In a later sec-
tion on conjugate directions, we will see that equation (2.31) expresses better than (2.30) the
philosophy of iterative methods.

Notice how equation (2.31) invites us to cancel the matrix F′ from each side. We cannot
do that of course, because F′ is not a number, nor is it a square matrix with an inverse. If you
really want to cancel the matrix F′, you may, but the equation is then only an approximation
that restates our original goal (2.14):

d ≈ Fx (2.32)

42 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

A speedy problem solver might ignore the mathematics covering the previous page, study
his or her application until he or she is able to write the statement of goals (2.32) = (2.14),
premultiply by F′, replace ≈ by =, getting (2.29), and take (2.29) to a simultaneous equation-
solving program to get x.

What I call “fitting goals” are called “regressions” by statisticians. In common language
the word regression means to “trend toward a more primitive perfect state” which vaguely
resembles reducing the size of (energy in) the residual r = Fx− d. Formally this is often
written as:

min
x
||Fx−d|| (2.33)

The notation above with two pairs of vertical lines looks like double absolute value, but we
can understand it as a reminder to square and sum all the components. This formal notation is
more explicit about what is constant and what is variable during the fitting.

2.2.2 Normal equations

An important concept is that when energy is minimum, the residual is orthogonal to the fitting
functions. The fitting functions are the column vectors f1, f2, and f3. Let us verify only that
the dot product r · f2 vanishes; to do this, we’ll show that those two vectors are orthogonal.
Energy minimum is found by

0 =
∂

∂x2
r · r = 2 r ·

∂r
∂x2

= 2 r · f2 (2.34)

(To compute the derivative refer to equation (2.16).) Equation (2.34) shows that the residual
is orthogonal to a fitting function. The fitting functions are the column vectors in the fitting
matrix.

The basic least-squares equations are often called the “normal" equations. The word “nor-
mal" means perpendicular. We can rewrite equation (2.31) to emphasize the perpendicularity.
Bring both terms to the left, and recall the definition of the residual r from equation (2.16):

F′(Fx−d) = 0 (2.35)
F′r = 0 (2.36)

Equation (2.36) says that the residual vector r is perpendicular to each row in the F′ matrix.
These rows are the fitting functions. Therefore, the residual, after it has been minimized, is
perpendicular to all the fitting functions.

2.2.3 Differentiation by a complex vector

Complex numbers frequently arise in physical problems, particularly those with Fourier series.
Let us extend the multivariable least-squares theory to the use of complex-valued unknowns

2.2. MULTIVARIATE LEAST SQUARES 43

x. First recall how complex numbers were handled with single-variable least squares; i.e., as
in the discussion leading up to equation (2.5). Use a prime, such as x′, to denote the complex
conjugate of the transposed vector x. Now write the positive quadratic form as

Q(x′,x) = (Fx−d)′(Fx−d) = (x′F′−d′)(Fx−d) (2.37)

After equation (2.4), we minimized a quadratic form Q(X̄ , X) by setting to zero both ∂ Q/∂ X̄
and ∂ Q/∂ X . We noted that only one of ∂ Q/∂ X̄ and ∂ Q/∂ X is necessarily zero because
they are conjugates of each other. Now take the derivative of Q with respect to the (possibly
complex, row) vector x′. Notice that ∂ Q/∂x′ is the complex conjugate transpose of ∂ Q/∂x.
Thus, setting one to zero sets the other also to zero. Setting ∂ Q/∂x′ = 0 gives the normal
equations:

0 =
∂ Q

∂x′
= F′(Fx−d) (2.38)

The result is merely the complex form of our earlier result (2.35). Therefore, differentiating by
a complex vector is an abstract concept, but it gives the same set of equations as differentiating
by each scalar component, and it saves much clutter.

2.2.4 From the frequency domain to the time domain

Equation (2.4) is a frequency-domain quadratic form that we minimized by varying a single
parameter, a Fourier coefficient. Now we will look at the same problem in the time domain.
We will see that the time domain offers flexibility with boundary conditions, constraints, and
weighting functions. The notation will be that a filter f t has input xt and output yt . In Fourier
space this is Y = X F . There are two problems to look at, unknown filter F and unknown input
X .

Unknown filter

When inputs and outputs are given, the problem of finding an unknown filter appears to be
overdetermined, so we write y ≈ Xf where the matrix X is a matrix of downshifted columns
like (1.5). Thus the quadratic form to be minimized is a restatement of equation (2.37) with
filter definitions:

Q(f′, f) = (Xf−y)′(Xf−y) (2.39)

The solution f is found just as we found (2.38), and it is the set of simultaneous equations
0= X′(Xf−y).

Unknown input: deconvolution with a known filter

For solving the unknown-input problem, we put the known filter f t in a matrix of downshifted
columns F. Our statement of wishes is now to find xt so that y ≈ Fx. We can expect to have

44 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

trouble finding unknown inputs xt when we are dealing with certain kinds of filters, such as
bandpass filters. If the output is zero in a frequency band, we will never be able to find the
input in that band and will need to prevent xt from diverging there. We do this by the statement
that we wish 0≈ ε x, where ε is a parameter that is small and whose exact size will be chosen
by experimentation. Putting both wishes into a single, partitioned matrix equation gives

[

0
0

]

≈
[

r1
r2

]

=
[

F
ε I

]

x −
[

y
0

]

(2.40)

To minimize the residuals r1 and r2, we can minimize the scalar r′r= r′1r1+ r′2r2. This is

Q(x′,x) = (Fx−y)′(Fx−y)+ ε2x′x

= (x′F′−y′)(Fx−y)+ ε2x′x (2.41)

We solved this minimization in the frequency domain (beginning from equation (2.4)).

Formally the solution is found just as with equation (2.38), but this solution looks un-
appealing in practice because there are so many unknowns and because the problem can be
solved much more quickly in the Fourier domain. To motivate ourselves to solve this problem
in the time domain, we need either to find an approximate solution method that is much faster,
or to discover that constraints or time-variable weighting functions are required in some ap-
plications. This is an issue we must be continuously alert to, whether the cost of a method is
justified by its need.

EXERCISES:

1 In 1695, 150 years before Lord Kelvin’s absolute temperature scale, 120 years before
Sadi Carnot’s PhD thesis, 40 years before Anders Celsius, and 20 years before Gabriel
Farenheit, the French physicist Guillaume Amontons, deaf since birth, took a mercury
manometer (pressure gauge) and sealed it inside a glass pipe (a constant volume of air).
He heated it to the boiling point of water at 100◦C. As he lowered the temperature to
freezing at 0◦ C, he observed the pressure dropped by 25% . He could not drop the
temperature any further but he supposed that if he could drop it further by a factor of
three, the pressure would drop to zero (the lowest possible pressure) and the temperature
would have been the lowest possible temperature. Had he lived after Anders Celsius he
might have calculated this temperature to be −300◦ C (Celsius). Absolute zero is now
known to be −273◦ C.
It is your job to be Amontons’ lab assistant. Your i th measurement of temperature Ti

you make with Issac Newton’s thermometer and you measure pressure Pi and volume
Vi in the metric system. Amontons needs you to fit his data with the regression 0 ≈
α(Ti − T0)− Pi Vi and calculate the temperature shift T0 that Newton should have made
when he defined his temperature scale. Do not solve this problem! Instead, cast it in the
form of equation (2.14), identifying the data d and the two column vectors f1 and f2 that
are the fitting functions. Relate the model parameters x1 and x2 to the physical parameters
α and T0. Suppose you make ALL your measurements at room temperature, can you find
T0? Why or why not?

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 45

2.3 KRYLOV SUBSPACE ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the number of un-
knowns. There are three regimes for solution; which one is applicable depends on the number
of unknowns m. For m three or less, we use analytical methods. We also sometimes use ana-
lytical methods on matrices of size 4×4 when the matrix contains enough zeros. Today in year
2001, a deskside workstation, working an hour solves about a 4000×4000 set of simultaneous
equations. A square image packed into a 4096 point vector is a 64×64 array. The computer
power for linear algebra to give us solutions that fit in a k× k image is thus proportional to
k6, which means that even though computer power grows rapidly, imaging resolution using
“exact numerical methods” hardly grows at all from our 64×64 current practical limit.

The retina in our eyes captures an image of size about 1000× 1000 which is a lot bigger
than 64× 64. Life offers us many occasions where final images exceed the 4000 points of
a 64× 64 array. To make linear algebra (and inverse theory) relevant to such problems, we
investigate special techniques. A numerical technique known as the “conjugate-direction
method” works well for all values of m and is our subject here. As with most simultaneous
equation solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. And if n and m are too large to allow enough iterations, the iterative methods can
be interrupted at any stage, the partial result often proving useful. Whether or not a partial
result actually is useful is the subject of much research; naturally, the results vary from one
application to the next.

2.3.1 Sign convention

On the last day of the survey, a storm blew up, the sea got rough, and the receivers drifted
further downwind. The data recorded that day had a larger than usual difference from that
predicted by the final model. We could call (d−Fm) the experimental error. (Here d is data,
m is model parameters, and F is their linear relation).

The alternate view is that our theory was too simple. It lacked model parameters for the
waves and the drifting cables. Because of this model oversimplification we had a modeling
error of the opposite polarity (Fm−d).

A strong experimentalist prefers to think of the error as experimental error, something for
him or her to work out. Likewise a strong analyst likes to think of the error as a theoretical
problem. (Weaker investigators might be inclined to take the opposite view.)

Regardless of the above, and opposite to common practice, I define the sign convention
for the error (or residual) as (Fm−d). When we choose this sign convention, our hazard for
analysis errors will be reduced because F is often complicated and formed by combining many
parts.

Beginners often feel disappointment when the data does not fit the model very well. They
see it as a defect in the data instead of an opportunity to design a stronger theory.

46 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

2.3.2 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector given by

residual = transform model space − data space (2.42)




















r





















=





















F

































x













−





















d





















(2.43)

A contour plot is based on an altitude function of space. The altitude is the dot product
r · r. By finding the lowest altitude, we are driving the residual vector r as close as we can
to zero. If the residual vector r reaches zero, then we have solved the simultaneous equations
d = Fx. In a two-dimensional world the vector x has two components, (x1, x2). A contour is
a curve of constant r · r in (x1, x2)-space. These contours have a statistical interpretation as
contours of uncertainty in (x1, x2), with measurement errors in d.

Let us see how a random search-direction can be used to reduce the residual 0≈ r=Fx−d.
Let 1x be an abstract vector with the same number of components as the solution x, and let
1x contain arbitrary or random numbers. We add an unknown quantity α of vector 1x to the
vector x, and thereby create xnew:

xnew = x+α1x (2.44)

This gives a new residual:

rnew = F xnew−d (2.45)
rnew = F(x+α1x)−d (2.46)

rnew = r+α1r = (Fx−d)+αF1x (2.47)

which defines 1r= F1x.

Next we adjust α to minimize the dot product: rnew · rnew

(r+α1r) · (r+α1r) = r · r+2α(r ·1r) + α21r ·1r (2.48)

Set to zero its derivative with respect to α using the chain rule

0 = (r+α1r) ·1r + 1r · (r+α1r) = 2(r+α1r) ·1r (2.49)

which says that the new residual rnew = r+α1r is perpendicular to the “fitting function” 1r.
Solving gives the required value of α.

α = −
(r ·1r)

(1r ·1r)
(2.50)

A “computation template” for the method of random directions is

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 47

r ←− Fx−d
iterate {

1x ←− random numbers
1r ←− F 1x
α ←− −(r ·1r)/(1r ·1r)
x ←− x+α1x
r ←− r +α1r
}

A nice thing about the method of random directions is that you do not need to know the adjoint
operator F′.

In practice, random directions are rarely used. It is more common to use the gradient
direction than a random direction. Notice that a vector of the size of 1x is

g = F′r (2.51)

Notice also that this vector can be found by taking the gradient of the size of the residuals:

∂

∂x′
r · r =

∂

∂x′
(x′F′ − d′) (Fx − d) = F′ r (2.52)

Choosing 1x to be the gradient vector 1x = g = F′r is called “the method of steepest de-
scent.”

Starting from a model x=m (which may be zero), below is a template of pseudocode for
minimizing the residual 0≈ r= Fx−d by the steepest-descent method:

r ←− Fx−d
iterate {

1x ←− F′ r
1r ←− F 1x
α ←− −(r ·1r)/(1r ·1r)
x ←− x+α1x
r ←− r +α1r
}

2.3.3 Null space and iterative methods

In applications where we fit d≈ Fx, there might exist a vector (or a family of vectors) defined
by the condition 0 = Fxnull. This family is called a null space. For example, if the operator
F is a time derivative, then the null space is the constant function; if the operator is a second
derivative, then the null space has two components, a constant function and a linear function,
or combinations of them. The null space is a family of model components that have no effect
on the data.

48 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

When we use the steepest-descent method, we iteratively find solutions by this updating:

xi+1 = xi +α1x (2.53)
xi+1 = xi +αF′r (2.54)
xi+1 = xi +αF′(Fx−d) (2.55)

After we have iterated to convergence, the gradient 1x vanishes as does F′(Fx−d). Thus, an
iterative solver gets the same solution as the long-winded theory leading to equation (2.30).

Suppose that by adding a huge amount of xnull, we now change x and continue iterating.
Notice that 1x remains zero because Fxnull vanishes. Thus we conclude that any null space in
the initial guess x0 will remain there unaffected by the gradient-descent process.

Linear algebra theory enables us to dig up the entire null space should we so desire. On
the other hand, the computer demands might be vast. Even the memory for holding the many
x vectors could be prohibitive. A much simpler and more practical goal is to find out if the
null space has any members, and if so, to view some of them. To try to see a member of the
null space, we take two starting guesses and we run our iterative solver for each of them. If
the two solutions, x1 and x2, are the same, there is no null space. If the solutions differ, the
difference is a member of the null space. Let us see why: Suppose after iterating to minimum
residual we find

r1 = Fx1−d (2.56)
r2 = Fx2−d (2.57)

We know that the residual squared is a convex quadratic function of the unknown x. Math-
ematically that means the minimum value is unique, so r1 = r2. Subtracting we find 0 =
r1−r2 = F(x1−x2) proving that x1−x2 is a model in the null space. Adding x1−x2 to any to
any model x will not change the theoretical data. Are you having trouble visualizing r being
unique, but x not being unique? Imagine that r happens to be independent of one of the com-
ponents of x. That component is nonunique. More generally, it is some linear combination of
components of x that r is independent of.

A practical way to learn about the existence of null spaces and their general appearance is
simply to try gradient-descent methods beginning from various different starting guesses.

“Did I fail to run my iterative solver long enough?” is a question you might have. If two
residuals from two starting solutions are not equal, r1 6= r2, then you should be running your
solver through more iterations.

If two different starting solutions produce two different residuals, then you didn’t run your
solver through enough iterations.

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 49

2.3.4 Why steepest descent is so slow

Before we can understand why the conjugate-direction method is so fast, we need to see
why the steepest-descent method is so slow. Imagine yourself sitting on the edge of a circular
bowl. If you jump off the rim, you’ll slide straight to the bottom at the center. Now imagine
an ellipsoidal bowl of very large ellipticity. As you jump off the rim, you’ll first move in the
direction of the gradient. This is not towards the bottom at the center of the ellipse (unless you
were sitting on the major or minor axis).

We can formalize the situation. A parametric equation for a line is x = xold+α1x where
α is the parameter for moving on the line. The process of selecting α is called “line search."
Think of a two-dimensional example where the vector of unknowns x has just two components,
x1 and x2. Then the size of the residual vector r · r can be displayed with a contour plot in
the plane of (x1, x2). Our ellipsoidal bowl has ellipsoidal contours of constant altitude. As
we move in a line across this space by adjusting α, equation(2.48) gives our altitude. This
equation has a unique minimum because it is a parabola in α. As we approach the minimum,
our trajectory becomes tangential to a contour line in (x1, x2)-space. This is where we stop.
Now we compute our new residual r and we compute the new gradient 1x= g= F′r. OK, we
are ready for the next slide down. When we turn ourselves from "parallel to a contour line" to
the direction of 1x which is "perpendicular to that contour", we are turning 90◦. Our path to
the bottom of the bowl will be made of many segments, each turning 90◦ from the previous.
We will need an infinite number of such steps to reach the bottom. It happens that the amazing
conjugate-direction method would reach the bottom in just two jumps (because (x1, x2) is a
two dimensional space.)

2.3.5 Conjugate direction

In the conjugate-direction method, not a line, but rather a plane, is searched. A plane is
made from an arbitrary linear combination of two vectors. One vector will be chosen to be
the gradient vector, say g. The other vector will be chosen to be the previous descent step
vector, say s = xj − xj−1. Instead of α g we need a linear combination, say αg+ βs. For
minimizing quadratic functions the plane search requires only the solution of a two-by-two set
of linear equations for α and β. The equations will be specified here along with the program.
(For nonquadratic functions a plane search is considered intractable, whereas a line search
proceeds by bisection.)

For use in linear problems, the conjugate-direction method described in this book follows
an identical path with the more well-known conjugate-gradient method. We use the conjugate-
direction method for convenience in exposition and programming.

The simple form of the conjugate-direction algorithm covered here is a sequence of steps.
In each step the minimum is found in the plane given by two vectors: the gradient vector
and the vector of the previous step. Given the linear operator F and a generator of solution
steps (random in the case of random directions or gradient in the case of steepest descent),
we can construct an optimally convergent iteration process, which finds the solution in no

50 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

more than n steps, where n is the size of the problem. This result should not be surprising.
If F is represented by a full matrix, then the cost of direct inversion is proportional to n3,
and the cost of matrix multiplication is n2. Each step of an iterative method boils down to a
matrix multiplication. Therefore, we need at least n steps to arrive at the exact solution. Two
circumstances make large-scale optimization practical. First, for sparse convolution matrices
the cost of matrix multiplication is n instead of n2. Second, we can often find a reasonably
good solution after a limited number of iterations. If both these conditions are met, the cost
of optimization grows linearly with n, which is a practical rate even for very large problems.
Fourier-transformed variables are often capitalized. This convention will be helpful here, so
in this subsection only, we capitalize vectors transformed by the F matrix. As everywhere, a
matrix such as F is printed in boldface type but in this subsection, vectors are not printed in
boldface print. Thus we define the solution, the solution step (from one iteration to the next),
and the gradient by

X = F x solution (2.58)
Sj = F sj solution step (2.59)

G j = F gj solution gradient (2.60)

A linear combination in solution space, say s + g, corresponds to S +G in the conjugate
space, because S+G = Fs+Fg = F(s+ g). According to equation (2.43), the residual is the
theoretical data minus the observed data.

R = Fx − D = X − D (2.61)

The solution x is obtained by a succession of steps sj , say

x = s1 + s2 + s3 + ·· · (2.62)

The last stage of each iteration is to update the solution and the residual:

solution update : x ← x + s (2.63)
residual update : R ← R + S (2.64)

The gradient vector g is a vector with the same number of components as the solution
vector x . A vector with this number of components is

g = F′ R = gradient (2.65)
G = F g = conjugate gradient (2.66)

The gradient g in the transformed space is G, also known as the conjugate gradient.

The minimization (2.48) is now generalized to scan not only the line with α, but simulta-
neously another line with β. The combination of the two lines is a plane:

Q(α,β) = (R+αG+βS) · (R+αG+βS) (2.67)

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 51

The minimum is found at ∂ Q/∂α = 0 and ∂ Q/∂β = 0, namely,

0 = G · (R+αG+βS) (2.68)

0 = S · (R+αG+βS) (2.69)

The solution is
[

α

β

]

=
−1

(G ·G)(S · S)− (G · S)2

[

(S · S) −(S ·G)
−(G · S) (G ·G)

] [

(G · R)
(S · R)

]

(2.70)

This may look complicated. The steepest descent method requires us to compute only the two
dot products r ·1r and 1r ·1r while equation (2.67) contains five dot products, but the extra
trouble is well worth while because the “conjugate direction” is such a much better direction
than the gradient direction.

The many applications in this book all need to find α and β with (2.70) and then update the
solution with (2.63) and update the residual with (2.64). Thus we package these activities in a
subroutine named cgstep(). To use that subroutine we will have a computation template like
we had for steepest descents, except that we will have the repetitive work done by subroutine
cgstep(). This template (or pseudocode) for minimizing the residual 0 ≈ r = Fx−d by the
conjugate-direction method is

r ←− Fx−d
iterate {

1x ←− F′ r
1r ←− F 1x
(x,r) ←− cgstep(x,1x,r,1r)
}

where the subroutine cgstep() remembers the previous iteration and works out the step size
and adds in the proper proportion of the 1x of the previous step.

2.3.6 Routine for one step of conjugate-direction descent

Because Fortran does not recognize the difference between upper- and lower-case letters, the
conjugate vectors G and S in the program are denoted by gg and ss. The inner part of the
conjugate-direction task is in function cgstep().

module cgstep_mod {

real, dimension (:), allocatable, private :: s, ss

contains

integer function cgstep(forget, x, g, rr, gg) {

real, dimension (:) :: x, g, rr, gg

logical :: forget

double precision :: sds, gdg, gds, determ, gdr, sdr, alfa, beta

52 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

if(.not. allocated (s)) { forget = .true.

allocate (s (size (x)))

allocate (ss (size (rr)))

}

if(forget){ s = 0.; ss = 0.; beta = 0.d0 # steepest descent

if(dot_product(gg, gg) == 0)

call erexit(’cgstep: grad vanishes identically’)

alfa = - sum(dprod(gg, rr)) / sum(dprod(gg, gg))

}

else{ gdg = sum(dprod(gg, gg)) # search plane by solving 2-by-2

sds = sum(dprod(ss, ss)) # G . (R - G*alfa - S*beta) = 0

gds = sum(dprod(gg, ss)) # S . (R - G*alfa - S*beta) = 0

if(gdg==0. .or. sds==0.) { cgstep = 1; return }

determ = gdg * sds * max (1.d0 - (gds/gdg)*(gds/sds), 1.d-12)

gdr = - sum(dprod(gg, rr))

sdr = - sum(dprod(ss, rr))

alfa = (sds * gdr - gds * sdr) / determ

beta = (-gds * gdr + gdg * sdr) / determ

}

s = alfa * g + beta * s # update solution step

ss = alfa * gg + beta * ss # update residual step

x = x + s # update solution

rr = rr + ss # update residual

forget = .false.; cgstep = 0

}

subroutine cgstep_close () {

if(allocated(s)) deallocate(s, ss)

}

}

Observe the cgstep() function has a logical parameter called forget. This parameter does
not need to be input. In the normal course of things, forget will be true on the first iteration
and false on subsequent iterations. This refers to the fact that on the first iteration, there is no
previous step, so the conjugate direction method is reduced to the steepest descent method. At
any iteration, however, you have the option to set forget=.true. which amounts to restarting
the calculation from the current location, something we rarely find reason to do.

2.3.7 A basic solver program

There are many different methods for iterative least-square estimation some of which will
be discussed later in this book. The conjugate-gradient (CG) family (including the first order
conjugate-direction method described above) share the property that theoretically they achieve
the solution in n iterations, where n is the number of unknowns. The various CG methods
differ in their numerical errors, memory required, adaptability to non-linear optimization, and
their requirements on accuracy of the adjoint. What we do in this section is to show you the
generic interface.

None of us is an expert in both geophysics and in optimization theory (OT), yet we need
to handle both. We would like to have each group write its own code with a relatively easy in-

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 53

terface. The problem is that the OT codes must invoke the physical operators yet the OT codes
should not need to deal with all the data and parameters needed by the physical operators.

In other words, if a practitioner decides to swap one solver for another, the only thing
needed is the name of the new solver.

The operator entrance is for the geophysicist, who formulates the estimation problem.
The solver entrance is for the specialist in numerical algebra, who designs a new optimization
method. The Fortran-90 programming language allows us to achieve this design goal by means
of generic function interfaces.

A basic solver is solver_tiny().

module solver_tiny_mod { # 0 = F m - d

contains

subroutine solver_tiny(m,d, Fop, stepper, niter, m0,resd) {

optional :: m0,resd

interface { #--------------------begin definitions -------

integer function Fop(adj,add,m,d){

real,dimension(:) :: m,d

logical,intent(in):: adj,add }

integer function stepper(forget,m,g,rr,gg) {

real,dimension(:) :: m,g,rr,gg

logical :: forget }

}

real, dimension(:), intent(in) :: d # data

real, dimension(:), intent(out) :: m # model

real, dimension(:), intent(in) :: m0 # initial model

integer, intent(in) :: niter # number of iterations

integer :: iter # iteration number

real, dimension(size(m)) :: g # gradient (dm)

real, dimension(size(d)),target :: rr # data residual (vector)

real, dimension(:), pointer :: rd # data residual (pointer)

real, dimension(size(d)),target :: gg # conj grad (vector)

real, dimension(:), pointer :: gd # conj grad (pointer)

integer :: stat # status flag

real, dimension(:), intent(out) :: resd # residual

rd => rr(1:size(d))

gd => gg(1:size(d))

#--------------------------begin initialization -----------

rd = -d # Rd = - d

m = 0; if(present(m0)){ m = m0 # m = m0

stat = Fop(.false.,.true.,m,rd) # Rd = Rd + F m0

}

do iter = 1,niter { #--------- begin iterations -----------

stat = Fop(.true.,.false.,g,rd) # g = F’ Rd

stat = Fop(.false.,.false.,g,gd) # Gd = F g

stat = stepper(.false., m,g, rr,gg)# m = m+dm; R = R + dR

}

if(present(resd)) resd = rd

}

}

The two most important arguments in solver_tiny() are the operator function Fop, which

54 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

is defined by the interface from Chapter 1, and the stepper function stepper, which imple-
ments one step of an iterative estimation. For example, a practitioner who choses to use our
new cgstep() on page 51 for iterative solving the operator matmult on page 3 would write the
call

call solver_tiny (matmult_lop, cgstep, ...

so while you are reading the solver_tiny module, you should visualize the Fop() function as
being matmult_lop, and you should visualize the stepper() function as being cgstep.

The other required parameters to solver_tiny() are d (the data we want to fit), m (the
model we want to estimate), and niter (the maximum number of iterations). There are also
a couple of optional arguments. For example, m0 is the starting guess for the model. If this
parameter is omitted, the model is initialized to zero. To output the final residual vector, we
include a parameter called resd, which is optional as well. We will watch how the list of
optional parameters to the generic solver routine grows as we attack more and more complex
problems in later chapters.

2.3.8 Why Fortran 90 is much better than Fortran 77

I’d like to digress from our geophysics-mathematics themes to explain why Fortran 90 has
been a great step forward over Fortran 77. All the illustrations in this book were originally
computed in F77. Then module solver_tiny on the preceding page was simply a subroutine.
It was not one module for the whole book, as it is now, but it was many conceptually identical
subroutines, dozens of them, one subroutine for each application. The reason for the prolifer-
ation was that F77 lacks the ability of F90 to represent operators as having two ways to enter,
one for science and another for math. On the other hand, F77 did not require the half a page
of definitions that we see here in F90. But the definitions are not difficult to understand, and
they are a clutter that we must see once and never again. Another benefit is that the book in
F77 had no easy way to switch from the cgstep solver to other solvers.

2.3.9 Test case: solving some simultaneous equations

Now we assemble a module cgmeth for solving simultaneous equations. Starting with the
conjugate-direction module cgstep_mod on page 51 we insert the module matmult on page 3
as the linear operator.

module cgmeth {

use matmult

use cgstep_mod

use solver_tiny_mod

contains

setup of conjugate gradient descent, minimize SUM rr(i)**2

nx

rr(i) = sum fff(i,j) * x(j) - yy(i)

j=1

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 55

subroutine cgtest(x, yy, rr, fff, niter) {

real, dimension (:), intent (out) :: x, rr

real, dimension (:), intent (in) :: yy

real, dimension (:,:), pointer :: fff

integer, intent (in) :: niter

call matmult_init(fff)

call solver_tiny(m=x, d=yy, &

Fop=matmult_lop, stepper=cgstep, &

niter=niter, resd=rr)

call cgstep_close ()

}

}

Below shows the solution to 5×4 set of simultaneous equations. Observe that the “exact”
solution is obtained in the last step. Because the data and answers are integers, it is quick to
check the result manually.

d transpose

3.00 3.00 5.00 7.00 9.00

F transpose

1.00 1.00 1.00 1.00 1.00

1.00 2.00 3.00 4.00 5.00

1.00 0.00 1.00 0.00 1.00

0.00 0.00 0.00 1.00 1.00

for iter = 0, 4

x 0.43457383 1.56124675 0.27362058 0.25752524

res -0.73055887 0.55706739 0.39193487 -0.06291389 -0.22804642

x 0.51313990 1.38677299 0.87905121 0.56870615

res -0.22103602 0.28668585 0.55251014 -0.37106210 -0.10523783

x 0.39144871 1.24044561 1.08974111 1.46199656

res -0.27836466 -0.12766013 0.20252672 -0.18477242 0.14541438

x 1.00001287 1.00004792 1.00000811 2.00000739

res 0.00006878 0.00010860 0.00016473 0.00021179 0.00026788

x 1.00000024 0.99999994 0.99999994 2.00000024

res -0.00000001 -0.00000001 0.00000001 0.00000002 -0.00000001

EXERCISES:

1 One way to remove a mean value m from signal s(t)= s is with the fitting goal 0≈ s−m.
What operator matrix is involved?

2 What linear operator subroutine from Chapter 1 can be used for finding the mean?

3 How many CD iterations should be required to get the exact mean value?

4 Write a mathematical expression for finding the mean by the CG method.

56 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

2.4 INVERSE NMO STACK

To illustrate an example of solving a huge set of simultaneous equations without ever writing
down the matrix of coefficients we consider how back projection can be upgraded towards
inversion in the application called moveout and stack.

Figure 2.3: Top is a model trace m.
Next are the synthetic data traces,
d = Mm. Then, labeled niter=0

is the stack, a result of process-
ing by adjoint modeling. Increasing
values of niter show x as a func-
tion of iteration count in the fitting
goal d ≈Mm. (Carlos Cunha-Filho)
lsq-invstack90 [ER]

The seismograms at the bottom of Figure 2.3 show the first four iterations of conjugate-
direction inversion. You see the original rectangle-shaped waveform returning as the iterations
proceed. Notice also on the stack that the early and late events have unequal amplitudes, but
after enough iterations they are equal, as they began. Mathematically, we can denote the top
trace as the model m, the synthetic data signals as d = Mm, and the stack as M′d. The
conjugate-gradient algorithm optimizes the fitting goal d ≈ Mx by variation of x, and the
figure shows x converging to m. Because there are 256 unknowns in m, it is gratifying to
see good convergence occurring after the first four iterations. The fitting is done by module
invstack, which is just like cgmeth on page 54 except that the matrix-multiplication operator
matmult on page 3 has been replaced by imospray on page 25. Studying the program, you can
deduce that, except for a scale factor, the output at niter=0 is identical to the stack M′d. All
the signals in Figure 2.3 are intrinsically the same scale.
module invstack {

use imospray

use cgstep_mod

use solver_tiny_mod

contains

NMO stack by inverse of forward modeling

subroutine stack(nt, model, nx, gather, t0,x0,dt,dx,slow, niter) {

integer nt, nx, niter

real model (:), gather (:), t0,x0,dt,dx,slow

call imospray_init(slow, x0,dx, t0,dt, nt, nx)

call solver_tiny(m=model, d=gather, Fop=imospray_lop, stepper=cgstep, niter=niter)

call cgstep_close (); call imospray_close () # garbage collection

}

}

This simple inversion is inexpensive. Has anything been gained over conventional stack?
First, though we used nearest-neighbor interpolation, we managed to preserve the spectrum

2.5. VESUVIUS PHASE UNWRAPPING 57

of the input, apparently all the way to the Nyquist frequency. Second, we preserved the true
amplitude scale without ever bothering to think about (1) dividing by the number of contribut-
ing traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for in-
version.

2.5 VESUVIUS PHASE UNWRAPPING

Figure 2.4 shows radar1 images of Mt. Vesuvius2 in Italy. These images are made from
backscatter signals s1(t) and s2(t), recorded along two satellite orbits 800 km high and 54
m apart. The signals are very high frequency (the radar wavelength being 2.7 cm). They
were Fourier transformed and one multiplied by the complex conjugate of the other, getting
the product Z = S1(ω)S̄2(ω). The product’s amplitude and phase are shown in Figure 2.4.
Examining the data, you can notice that where the signals are strongest (darkest on the left),
the phase (on the right) is the most spatially consistent. Pixel by pixel evaluation with the
two frames in a movie program shows that there are a few somewhat large local amplitudes
(clipped in Figure 2.4) but because these generally have spatially consistent phase, I would not
describe the data as containing noise bursts.

Figure 2.4: Radar image of Mt. Vesuvius. Left is the amplitude. Non-reflecting ocean in upper
left corner. Right is the phase. (Umberto Spagnolini) lsq-vesuvio90 [ER,M]

1Here we do not require knowledge of radar fundamentals. Common theory and practice is briefly sur-
veyed in Reviews of Geophysics, Vol 36, No 4, November 1998, Radar Interferometry and its application to
changes in the earth’s surface, Didier Massonnet and Kurt Feigl.

2A web search engine quickly finds you other views.

58 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

To reduce the time needed for analysis and printing, I reduced the data size two different
ways, by decimation and by local averaging, as shown in Figure 2.5. The decimation was to
about 1 part in 9 on each axis, and the local averaging was done in 9×9 windows giving the
same spatial resolution in each case. The local averaging was done independently in the plane
of the real part and the plane of the imaginary part. Putting them back together again showed
that the phase angle of the averaged data behaves much more consistently. This adds evidence
that the data is not troubled by noise bursts.

Figure 2.5: Phase based on decimated data (left) and smoothed data (right). lsq-squeeze90
[ER,M]

From Figures 2.4 and 2.5 we see that contours of constant phase appear to be contours of
constant altitude; this conclusion leads us to suppose that a study of radar theory would lead us
to a relation like Z = eih where h is altitude (in units unknown to us nonspecialists). Because
the flat land away from the mountain is all at the same phase (as is the altitude), the distance as
revealed by the phase does not represent the distance from the ground to the satellite viewer.
We are accustomed to measuring altitude along a vertical line to a datum, but here the distance
seems to be measured from the ground along a 23◦ angle from the vertical to a datum at the
satellite height.

Phase is a troublesome measurement because we generally see it modulo 2π . Marching up
the mountain we see the phase getting lighter and lighter until it suddenly jumps to black which
then continues to lighten as we continue up the mountain to the next jump. Let us undertake
to compute the phase including all of its jumps of 2π . Begin with a complex number Z
representing the complex-valued image at any location in the (x , y)-plane.

reiφ = Z (2.71)
ln |r |+ i (φ+ 2π N) = ln Z (2.72)

φ = = ln Z − 2π N (2.73)

2.5. VESUVIUS PHASE UNWRAPPING 59

A computer will find the imaginary part of the logarithm with the arctan function of two argu-
ments, atan2(y,x), which will put the phase in the range −π < φ ≤ π although any multiple
of 2π could be added. We seem to escape the 2π N phase ambiguity by differentiating:

∂φ

∂x
= =

1
Z

∂ Z

∂x
(2.74)

∂φ

∂x
=
= Z̄ ∂ Z

∂x

Z̄ Z
(2.75)

For every point on the y-axis, equation (2.75) is a differential equation on the x-axis, and
we could integrate them all to find φ(x , y). That sounds easy. On the other hand, the same
equations are valid when x and y are interchanged, so we get twice as many equations as
unknowns. For ideal data, either of these sets of equations should be equivalent to the other,
but for real data we expect to be fitting the fitting goal

∇φ ≈
= Z̄∇Z

Z̄ Z
(2.76)

where ∇ = (∂
∂x , ∂

∂y).

We will be handling the differential equation as a difference equation using an exact repre-
sentation on the data mesh. By working with the phase difference of neighboring data values,
we do not have to worry about phases greater than 2π (except where phase jumps that much
between mesh points). Thus we solve (2.76) with finite differences instead of differentials.
Module igrad2 is a linear operator for the difference representation of the operator represent-
ing the gradient of a potential field. Its adjoint is known as the divergence of a vector field.

module igrad2 { # 2-D gradient with adjoint, r= grad(p)

integer :: n1, n2

#%_init (n1, n2)

#%_lop (p(n1, n2), r(n1,n2,2))

integer i,j

do i= 1, n1-1 {

do j= 1, n2-1 {

if(adj) {

p(i+1,j) += r(i,j,1)

p(i ,j) -= r(i,j,1)

p(i ,j+1) += r(i,j,2)

p(i ,j) -= r(i,j,2)

}

else { r(i,j,1) += (p(i+1,j) - p(i,j))

r(i,j,2) += (p(i,j+1) - p(i,j))

}

}}

}

To do the least-squares fitting (2.76) we pass the igrad2 module to the Krylov subspace solver.
(Other people might prepare a matrix and give it to Matlab.)

60 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

The difference equation representation of the fitting goal (2.76) is:

φi+1, j −φi , j ≈ 1φac

φi , j+1−φi , j ≈ 1φab
(2.77)

where we still need to define the right-hand side. Define the parameters a, b, c, and d as
follows:

[

a b
c d

]

=
[

Z i , j Z i , j+1
Z i+1, j Z i+1, j+1

]

(2.78)

Arbitrary complex numbers a and b may be expressed in polar form, say a = raeiφa and
b = rbeiφb . The complex number āb = rarbei(φb−φa) has the desired phase 1φab. To obtain it
we take the imaginary part of the complex logarithm ln |rarb|+ i1φab.

φb−φa = 1φab = = ln āb
φd−φc = 1φcd = = ln c̄d
φc−φa = 1φac = = ln āc
φd−φb = 1φbd = = ln b̄d

(2.79)

which gives the information needed to fill in the right-hand side of (2.77), as done by subrou-
tine igrad2init() from module unwrap on the facing page.

2.5.1 Digression: curl grad as a measure of bad data

The relation (2.79) between the phases and the phase differences is








−1 1 0 0
0 0 −1 1
−1 0 1 0

0 −1 0 1

















φa

φb

φc

φd









=









1φab

1φcd

1φac

1φbd









(2.80)

Starting from the phase differences, equation (2.80) cannot find all the phases themselves
because an additive constant cannot be found. In other words, the column vector [1,1,1,1]′
is in the null space. Likewise, if we add phase increments while we move around a loop, the
sum should be zero. Let the loop be a→ c→ d→ b→ a. The phase increments that sum to
zero are:

1φac+1φcd −1φbd −1φab = 0 (2.81)

Rearranging to agree with the order in equation (2.80) yields

−1φab+1φcd +1φac−1φbd = 0 (2.82)

which says that the row vector [−1,+1,+1,−1] premultiplies (2.80), yielding zero. Rearrange
again

−1φbd +1φac = 1φab−1φcd (2.83)

2.5. VESUVIUS PHASE UNWRAPPING 61

and finally interchange signs and directions (i.e., 1φdb =−1φbd)

(1φdb−1φca) − (1φdc−1φba) = 0 (2.84)

This is the finite-difference equivalent of

∂2φ

∂x∂y
−

∂2φ

∂y∂x
= 0 (2.85)

and is also the z-component of the theorem that the curl of a gradient ∇×∇φ vanishes for any
φ.

The four 1φ summed around the 2×2 mesh should add to zero. I wondered what would
happen if random complex numbers were used for a, b, c, and d, so I computed the four 1φ’s
with equation (2.79), and then computed the sum with (2.81). They did sum to zero for 2/3
of my random numbers. Otherwise, with probability 1/6 each, they summed to ±2π . The
nonvanishing curl represents a phase that is changing too rapidly between the mesh points.
Figure 2.6 shows the locations at Vesuvius where bad data occurs. This is shown at two
different resolutions. The figure shows a tendency for bad points with curl 2π to have a
neighbor with−2π . If Vesuvius were random noise instead of good data, the planes in Figure
2.6 would be one-third covered with dots but as expected, we see considerably fewer.

Figure 2.6: Values of curl at Vesuvius. The bad data locations at both coarse and fine resolution
tend to occur in pairs of opposite polarity. lsq-screw90 [ER,M]

2.5.2 Estimating the inverse gradient

To optimize the fitting goal (2.77), module unwrap() uses the conjugate-direction method like
the modules cgmeth() on page 54 and invstack() on page 56.

62 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

module unwrap {

use cgstep_mod

use igrad2

use solver_smp_mod

contains

subroutine grad2init(z, n1,n2, rt) {

integer i, j, n1,n2

real rt(n1,n2,2)

complex z(n1,n2), a,b,c

rt = 0.

do i= 1, n1-1 {

do j= 1, n2-1 {

a = z(i ,j)

c = z(i+1,j); rt(i,j,1) = aimag(clog(c * conjg(a)))

b = z(i, j+1); rt(i,j,2) = aimag(clog(b * conjg(a)))

}}

}

Phase unwraper. Starting from phase hh, improve it.

subroutine unwraper(zz, hh, niter) {

integer n1,n2, niter

complex zz(:,:)

real hh(:)

real, allocatable :: rt(:)

n1 = size(zz, 1)

n2 = size(zz, 2)

allocate(rt(n1*n2*2))

call grad2init(zz,n1,n2, rt)

call igrad2_init(n1,n2)

call solver_smp(m=hh, d=rt, Fop=igrad2_lop, stepper=cgstep, niter=niter, m0=hh)

call cgstep_close ()

deallocate(rt)

}

}

An open question is whether the required number of iterations is reasonable or whether we
would need to uncover a preconditioner or more rapid solution method. I adjusted the frame
size (by the amount of smoothing in Figure 2.5) so that I would get the solution in about ten
seconds with 400 iterations. Results are shown in Figure 2.7. To summarize, the input is the
phase map Figure 2.4 and the output is the altitude map in Figure 2.7. Oddly, the input looks
maybe nicer than the output because it already looks something like a contour plot. So if we
have a beauty contest, then the input beats the output, but if you need to have the (normalized)
altitude h(x , y), not the phase of eih(x ,y), then you need to solve the least squares problem.

2.5.3 Discontinuity in the solution

The viewing angle (23 degrees off vertical) in Figure 2.4 might be such that the mountain
blocks some of the landscape behind it. This leads to the interesting possibility that the phase
function must have a discontinuity where our viewing angle jumps over the hidden terrain. It
will be interesting to discover whether we can estimate functions with such discontinuities. I

2.5. VESUVIUS PHASE UNWRAPPING 63

Figure 2.7: Estimated altitude. lsq-veshigh90 [ER,M]

am not certain that the Vesuvius data really has such a shadow zone, so I prepared the synthetic
data in Figure 2.8, which is noise free and definitely has one.

We notice the polarity of the synthetic data in 2.8 is opposite that of the Vesuvius data.
This means that the radar altitude of Vesuvius is not measured from sea level but from the
satellite level.

EXERCISES:

1 In differential equations, boundary conditions are often (1) a specified function value or
(2) a specified derivative. These are associated with (1) transient convolution or (2) in-
ternal convolution. Gradient operator igrad2 on page 59 is based on internal convolution
with the filter (1,−1). Revise igrad2 to make a module called tgrad2 which has transient
boundaries.

2.5.4 Fourier solution

With the Vesuvius example we have used a numerical method to solve a problem that has
an “analytic solution”. Actually, it has an algebraic solution in Fourier space. For practical
purposes this is wonderful because it means we can have a solution on a very large mesh. The
cost is only about linear (actually N log N) in the number of grid points while iterative solvers
are much more costly. Let us now look at the “analytic” solution. Our least squares regression
(2.76) takes the form

0 ≈ ∇φ − d (2.86)

64 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Figure 2.8: Synthetic mountain with hidden backside. For your estimation enjoyment.
lsq-synmod90 [ER,M]

The shortcut to the least squares solution is to apply the adjoint operator. The adjoint to the
gradient [∇] is the vector divergence [∇·]. The divergence of the gradient is the negative of
the Laplacian. So, we get

0 = ∇2φ + ∇ ·d (2.87)

Let us visualize this equation in physical space and in Fourier space. In physical space ∇2

is a convolutional operator. In Fourier space it is −(k2
x + k2

y). We can solve simply by divid-
ing by −(k2

x + k2
y) whereas inverting the matrix ∇2 (which happens implicitly with conjugate

gradients) would be a very big production. Thus, the analytic solution is

φ(x , y) = − FT−1 FT ∇ ·d
k2

x + k2
y

(2.88)

where FT denotes 2-dimensional Fourier transform over x and y.

Instead of representing k2
x + k2

y in the most obvious way, let us represent it in a man-
ner consistant with the finite-difference way we expressed the data d. Recall that −iω1t ≈
−i ω̂1t = 1− Z = 1− exp(−iω1t) which is a Fourier domain way of saying that difference
equations tend to differential equations at low frequencies. Likewise a symmetric second time
derivative has a finite-difference representation proportional to (−2+ Z +1/Z) and in a two-
dimensional space, a finite-difference representation of the Laplacian operator is proportional
to (−4+ X +1/X +Y +1/Y) where X = exp(ikx1x) and Y = exp(iky1y).

Fourier solutions have their own peculiarities (periodic boundary conditions) which are not
always appropriate in practice, but having these solutions available is often a nice place to start
from when solving a problem that cannot be solved in Fourier space. For example, suppose
we feel some data values are bad and we would like to throw out the regression equations
involving the bad data points. We could define a weighting matrix starting from an identity
matrix and replacing some of the ones by zeros. This defines W. Now our regression (2.86)
becomes

0 ≈ W (∇φ − d) = (W ∇)φ − Wd (2.89)

This is a problem we know how to solve, a regression with an operator W∇ and data Wd. The
weighted problem is not solveable in the Fourier domain because the operator (W∇)′W∇ has

2.5. VESUVIUS PHASE UNWRAPPING 65

no simple expression in the Fourier domain. Thus we would use the analytic solution to the
unweighted problem as a starting guess for the iterative solution to the real problem.

With the Vesuvius data how might we construct the weight W? We have available the
signal strength (which we have not used). We could let the weight be proportional to sig-
nal strength. We also have available the curl, which should vanish. Its non-vanishing is an
indicator of questionable data which could be weighted down relative to other data.

The laboratory exercise is new this year so it may contain some unexpected difficulties.
We’re not sure it leads to clear solutions either. Anyway, you are given the Vesuvius data and
all the programs in the book. Additionally, you are given a Fourier solver that produces the
analytic solution. Please inspect both the Fourier solver and the solution it gets. Go to the
web to see what pictures you can find of Vesuvius. Notice the radial drainage patterns on the
amplitude of the original complex numbers. It is a little disturbing that we don’t see these
drainage patterns on the phase data (or maybe you can see them a little?). Any thoughts you
have on that issue are certainly welcome. Any other thoughts you have on this lab are certainly
welcome. This data is fun so we’d like to get this lab better focused for next year.

2.5.5 Integrating time differences

A reason I particularly like the Vesuvius exercise is that slight variations on the theme occur in
many other fields. For example, in 2-D and 3-D seismology we can take the cross-correlation
of neighboring seismograms and determine the time lag τ of the maximum correlation. Thus,
analogous with Vesuvius, we pack a vector d with measurements of dτ/dx and dτ/dy. Now
we hypothesize that there exists a lag τ (x , y) whose gradient matches d. Instead of solving
for phase φ, our regression says ∇τ (x , y) ≈ d, and we can approach it as we did Vesuvius.
Actually, I’d like to rewrite the book with just such an example because for many people
time lag τ (x , y) is more concrete than phase φ(x , y). Unfortunately, the real problem requires
visualizing the raw data (voltage as a function of (t , x , y) which requires learning to use 3-
D volume data visualization tools. Likewise the raw data back shifted by τ (x , y) is 3-D.
Additionally, the codes would be more cluttered because the raw data would be a cube of
numbers instead of a plane, and we’d need to fumble around doing the crosscorrelations. That
crosscorrelation business is a little tricky because we need to measure time shifts less than one
mesh point.

Old-time reflection seismic interpreters would track a strong event along a seismic line
going off into the 3-D world when they would jump from one line to a crossline. Eventually
they would work their way back to the starting line where they would hope they were on the
same event. They would say, “The lines should tie.” The mathematician (or physicist) is
saying something similar with the statement that "The curl should vanish everywhere." If the
sum around all possible little loops vanishes, logically it means that the sum around all big
loops also vanishes.

Here is a real-world problem you could think about: You have earthquake seismograms
recorded at i = 1,2, ..., N locations. You would like to shift them into alignment. Assume a

66 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

cartesian geometry. You have measured all possible time lags τi , j between station i and station
j . What operator would you be giving to the solver?

2.6 THE WORLD OF CONJUGATE GRADIENTS

Nonlinearity arises in two ways: First, theoretical data might be a nonlinear function of the
model parameters. Second, observed data could contain imperfections that force us to use
nonlinear methods of statistical estimation.

2.6.1 Physical nonlinearity

When standard methods of physics relate theoretical data dtheor to model parameters m, they
often use a nonlinear relation, say dtheor = f(m). The power-series approach then leads to
representing theoretical data as

dtheor = f(m0+1m) ≈ f(m0)+F1m (2.90)

where F is the matrix of partial derivatives of data values by model parameters, say ∂di/∂m j ,
evaluated at m0. The theoretical data dtheor minus the observed data dobs is the residual we
minimize.

0 ≈ dtheor−dobs = F1m+ [f(m0)−dobs] (2.91)
rnew = F1m+ rold (2.92)

It is worth noticing that the residual updating (2.92) in a nonlinear problem is the same as that
in a linear problem (2.47). If you make a large step 1m, however, the new residual will be
different from that expected by (2.92). Thus you should always re-evaluate the residual vector
at the new location, and if you are reasonably cautious, you should be sure the residual norm
has actually decreased before you accept a large step.

The pathway of inversion with physical nonlinearity is well developed in the academic
literature and Bill Symes at Rice University has a particularly active group.

2.6.2 Statistical nonlinearity

The data itself often has noise bursts or gaps, and we will see later in Chapter 7 that this
leads us to readjusting the weighting function. In principle, we should fix the weighting
function and solve the problem. Then we should revise the weighting function and solve the
problem again. In practice we find it convenient to change the weighting function during the
optimization descent. Failure is possible when the weighting function is changed too rapidly
or drastically. (The proper way to solve this problem is with robust estimators. Unfortunately,
I do not yet have an all-purpose robust solver. Thus we are (temporarily, I hope) reduced
to using crude reweighted least-squares methods. Sometimes they work and sometimes they
don’t.)

2.6. THE WORLD OF CONJUGATE GRADIENTS 67

2.6.3 Coding nonlinear fitting problems

We can solve nonlinear least-squares problems in about the same way as we do iteratively
reweighted ones. A simple adaptation of a linear method gives us a nonlinear solver if the
residual is recomputed at each iteration. Omitting the weighting function (for simplicity) the
template is:

iterate {
r ←− f(m)−d
Define F= ∂d/∂m.
1m ←− F′ r
1r ←− F 1m
(m,r) ←− step(m,r,1m,1r)
}

A formal theory for the optimization exists, but we are not using it here. The assumption
we make is that the step size will be small, so that familiar line-search and plane-search ap-
proximations should succeed in reducing the residual. Unfortunately this assumption is not
reliable. What we should do is test that the residual really does decrease, and if it does not we
should revert to steepest descent with a smaller step size. Perhaps we should test an incremen-
tal variation on the status quo: where inside solver on page 53, we check to see if the residual
diminished in the previous step, and if it did not, restart the iteration (choose the current step
to be steepest descent instead of CD). I am planning to work with some mathematicians to
gain experience with other solvers.

Experience shows that nonlinear problems have many pitfalls. Start with a linear problem,
add a minor physical improvement or unnormal noise, and the problem becomes nonlinear and
probably has another solution far from anything reasonable. When solving such a nonlinear
problem, we cannot arbitrarily begin from zero as we do with linear problems. We must choose
a reasonable starting guess, and then move in a stable and controlled manner. A simple solution
is to begin with several steps of steepest descent and then switch over to do some more steps
of CD. Avoiding CD in earlier iterations can avoid instability. Strong linear “regularization”
discussed later can also reduce the effect of nonlinearity.

2.6.4 Standard methods

The conjugate-direction method is really a family of methods. Mathematically, where there
are n unknowns, these algorithms all converge to the answer in n (or fewer) steps. The var-
ious methods differ in numerical accuracy, treatment of underdetermined systems, accuracy
in treating ill-conditioned systems, space requirements, and numbers of dot products. Techni-
cally, the method of CD used in the cgstep module on page 51 is not the conjugate-gradient
method itself, but is equivalent to it. This method is more properly called the conjugate-
direction method with a memory of one step. I chose this method for its clarity and flexibility.

68 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

If you would like a free introduction and summary of conjugate-gradient methods, I particu-
larly recommend An Introduction to Conjugate Gradient Method Without Agonizing Pain by
Jonathon Shewchuk, which you can download3.

I suggest you skip over the remainder of this section and return after you have seen many
examples and have developed some expertise, and have some technical problems.

The conjugate-gradient method was introduced by Hestenes and Stiefel in 1952. To
read the standard literature and relate it to this book, you should first realize that when I write
fitting goals like

0 ≈ W(Fm−d) (2.93)
0 ≈ Am, (2.94)

they are equivalent to minimizing the quadratic form:

m : min
m

Q(m) = (m′F′−d′)W′W(Fm−d) + m′A′Am (2.95)

The optimization theory (OT) literature starts from a minimization of

x : min
x

Q(x) = x′Hx−b′x (2.96)

To relate equation (2.95) to (2.96) we expand the parentheses in (2.95) and abandon the con-
stant term d′d. Then gather the quadratic term in m and the linear term in m. There are two
terms linear in m that are transposes of each other. They are scalars so they are equal. Thus, to
invoke “standard methods,” you take your problem-formulation operators F, W, A and create
two modules that apply the operators

H = F′W′WF+A′A (2.97)
b′ = 2(F′W′Wd)′ (2.98)

The operators H and b′ operate on model space. Standard procedures do not require their
adjoints because H is its own adjoint and b′ reduces model space to a scalar. You can see
that computing H and b′ requires one temporary space the size of data space (whereas cgstep
requires two).

When people have trouble with conjugate gradients or conjugate directions, I always refer
them to the Paige and Saunders algorithm LSQR. Methods that form H explicitly or implicitly
(including both the standard literature and the book3 method) square the condition number,
that is, they are twice as susceptible to rounding error as is LSQR.

2.6.5 Understanding CG magic and advanced methods

This section includes Sergey Fomel’s explanation on the “magic” convergence properties of
the conjugate-direction methods. It also presents a classic version of conjugate gradients,

3http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-gradient.ps

2.6. THE WORLD OF CONJUGATE GRADIENTS 69

which can be found in numerous books on least-square optimization. The key idea for con-
structing an optimal iteration is to update the solution at each step in the direction, composed
by a linear combination of the current direction and all previous solution steps. To see why this
is a helpful idea, let us consider first the method of random directions. Substituting expression
(2.50) into formula (2.48), we see that the residual power decreases at each step by

r · r− rnew · rnew =
(r ·1r)2

(1r ·1r)
. (2.99)

To achieve a better convergence, we need to maximize the right hand side of (2.99). Let us
define a new solution step snew as a combination of the current direction 1x and the previous
step s, as follows:

snew = 1x+βs . (2.100)

The solution update is then defined as

xnew = x+αsnew . (2.101)

The formula for α (2.50) still holds, because we have preserved in (2.101) the form of equation
(2.44) and just replaced 1x with snew. In fact, formula (2.50) can be simplified a little bit. From
(2.49), we know that rnew is orthogonal to 1r = Fsnew. Likewise, r should be orthogonal to
Fs (recall that r was rnew and s was snew at the previous iteration). We can conclude that

(r ·1r) = (r ·Fsnew) = (r ·F1x)+β(r ·Fs) = (r ·F1x) . (2.102)

Comparing (2.102) with (2.99), we can see that adding a portion of the previous step to the
current direction does not change the value of the numerator in expression (2.99). However,
the value of the denominator can be changed. Minimizing the denominator maximizes the
residual increase at each step and leads to a faster convergence. This is the denominator
minimization that constrains the value of the adjustable coefficient β in (2.100).

The procedure for finding β is completely analogous to the derivation of formula (2.50).
We start with expanding the dot product (1r ·1r):

(Fsnew ·Fsnew) = F1x ·F1x+2β(F1x ·Fs)+β2 Fs ·Fs . (2.103)

Differentiating with respect to β and setting the derivative to zero, we find that

0 = 2(F1x+βFs) ·Fs . (2.104)

Equation (2.104) states that the conjugate direction Fsnew is orthogonal (perpendicular) to the
previous conjugate direction Fs. It also defines the value of β as

β = −
(F1x ·Fs)
(Fs ·Fs)

. (2.105)

Can we do even better? The positive quantity that we minimized in (2.103) decreased by

F1x ·F1x−Fsnew ·Fsnew =
(F1x ·Fs)2

(Fs ·Fs)
(2.106)

70 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Can we decrease it further by adding another previous step? In general, the answer is positive,
and it defines the method of conjugate directions. I will state this result without a formal proof
(which uses the method of mathematical induction).

• If the new step is composed of the current direction and a combination of all the previous
steps:

sn = 1xn+
∑

i<n

βi si , (2.107)

then the optimal convergence is achieved when

βi = −
(F1xn ·Fsi)

(Fsi ·Fsi)
. (2.108)

• The new conjugate direction is orthogonal to the previous ones:

(Fsn ·Fsi) = 0 for all i < n (2.109)

To see why this is an optimally convergent method, it is sufficient to notice that vectors
Fsi form an orthogonal basis in the data space. The vector from the current residual to the
smallest residual also belongs to that space. If the data size is n, then n basis components (at
most) are required to represent this vector, hence no more then n conjugate-direction steps are
required to find the solution.

The computation template for the method of conjugate directions is

r ←− Fx−d
iterate {

1x ←− random numbers
s ←− 1x+

∑

i<n βi si where βi =− (F1x·Fsi)
(Fsi ·Fsi)

1r ←− Fs
α ←− −(r ·1r)/(1r ·1r)
x ←− x+αs
r ←− r +α1r
}

What happens if we “feed” the method with gradient directions instead of just random
directions? It turns out that in this case we need to remember from all the previous steps si

only the one that immediately precedes the current iteration. Let us derive a formal proof of
that fact as well as some other useful formulas related to the method of conjugate gradients.

According to formula (2.49), the new residual rnew is orthogonal to the conjugate direction
1r = Fsnew. According to the orthogonality condition (2.109), it is also orthogonal to all
the previous conjugate directions. Defining 1x equal to the gradient F′r and applying the

2.6. THE WORLD OF CONJUGATE GRADIENTS 71

definition of the adjoint operator, it is convenient to rewrite the orthogonality condition in the
form

0 = (rn ·Fsi) = (F′rn · si) = (1xn+1 · si) for all i ≤ n (2.110)

According to formula (2.107), each solution step si is just a linear combination of the gradient
1xi and the previous solution steps. We deduce from formula (2.110) that

0 = (1xn · si) = (1xn ·1xi) for all i < n (2.111)

In other words, in the method of conjugate gradients, the current gradient direction is always
orthogonal to all the previous directions. The iteration process constructs not only an orthog-
onal basis in the data space but also an orthogonal basis in the model space, composed of the
gradient directions.

Now let us take a closer look at formula (2.108). Note that Fsi is simply related to the
residual step at i -th iteration:

Fsi =
ri − ri−1

αi
. (2.112)

Substituting relationship (2.112) into formula (2.108) and applying again the definition of the
adjoint operator, we obtain

βi =−
F1xn · (ri − ri−1)

αi (Fsi ·Fsi)
=−

1xn ·F′(ri − ri−1)
αi (Fsi ·Fsi)

=−
1xn · (1xi+1−1xi)

αi (Fsi ·Fsi)
(2.113)

Since the gradients 1xi are orthogonal to each other, the dot product in the numerator is equal
to zero unless i = n−1. It means that only the immediately preceding step sn−1 contributes to
the definition of the new solution direction sn in (2.107). This is precisely the property of the
conjugate gradient method we wanted to prove.

To simplify formula (2.113), rewrite formula (2.50) as

αi = −
(ri−1 ·F1xi)

(Fsi ·Fsi)
= −

(F′ri−1 ·1xi)
(Fsi ·Fsi)

= −
(1xi ·1xi)
(Fsi ·Fsi)

(2.114)

Substituting (2.114) into (2.113), we obtain

β =−
(1xn ·1xn)

αn−1(Fsn−1 ·Fsn−1)
=

(1xn ·1xn)
(1xn−1 ·1xn−1)

. (2.115)

The computation template for the method of conjugate gradients is then

r ←− Fx−d
β ←− 0
iterate {

1x ←− F′r
if not the first iteration β ←− (1x·1x)

γ

72 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

γ ←− (1x ·1x)
s ←− 1x+βs
1r ←− Fs
α ←− −γ /(1r ·1r)
x ←− x+αs
r ←− r +α1r
}

2.7 REFERENCES

Hestenes, M.R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear sys-
tems: J. Res. Natl. Bur. Stand., 49, 409-436.

Paige, C.C., and Saunders, M.A., 1982a, LSQR: an algorithm for sparse linear equations and
sparse least squares: Assn. Comp. Mach. Trans. Mathematical Software, 8, 43-71.

Paige, C.C., and Saunders, M.A., 1982b, Algorithm 583, LSQR: sparse linear equations and
least squares problems: Assn. Comp. Mach. Trans. Mathematical Software, 8, 195-209.

Chapter 3

Empty bins and inverse interpolation

Let us review the big picture. In Chapter 1 we developed adjoints and in Chapter 2 we devel-
oped inverse operators. Logically, correct solutions come only through inversion. Real life,
however, seems nearly the opposite. This is puzzling but intriguing.

Every time you fill your car with gasoline, it derives much more from the adjoint than
from inversion. I refer to the fact that “practical seismic data processing” relates much more
to the use of adjoints than of inverses. It has been widely known for about the last 15 years
that medical imaging and all basic image creation methods are like this. It might seem that an
easy path to fame and profit would be to introduce the notion of inversion, but it is not that
easy. Both cost and result quality enter the picture.

First consider cost. For simplicity, consider a data space with N values and a model (or
image) space of the same size. The computational cost of applying a dense adjoint opera-
tor increases in direct proportion to the number of elements in the matrix, in this case N 2.
To achieve the minimum discrepancy between theoretical data and observed data (inversion)
theoretically requires N iterations raising the cost to N 3.

Consider an image of size m ×m = N . Continuing, for simplicity, to assume a dense
matrix of relations between model and data, the cost for the adjoint is m4 whereas the cost
for inversion is m6. We’ll consider computational costs for the year 2000, but noticing that
costs go as the sixth power of the mesh size, the overall situation will not change much in the
foreseeable future. Suppose you give a stiff workout to a powerful machine; you take an hour
to invert a 4096×4096 matrix. The solution, a vector of 4096 components could be laid into
an image of size 64×64= 26×26 = 4096. Here is what we are looking at for costs:

adjoint cost (m×m)2 (512×512)2 (2929)2 236

inverse cost (m×m)3 (64×64)3 (2626)3 236

These numbers tell us that for applications with dense operators, the biggest images that we are
likely to see coming from inversion methods are 64×64 whereas those from adjoint methods
are 512×512. For comparison, the retina of your eye is comparable to your computer screen at

73

74 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

1000×1000. We might summarize by saying that while adjoint methods are less than perfect,
inverse methods are “legally blind” :-)

http://sepwww.stanford.edu/sep/jon/family/jos/gifmovie.html holds a movie blinking between
Figures 3.1 and 3.2.

Figure 3.1: Jos greets Andrew, “Wel-
come back Andrew” from the Peace
Corps. At a resolution of 512× 512,
this picture is about the same as the
resolution as the paper it is printed on,
or the same as your viewing screen, if
you have scaled it to 50% of screen
size. iin-512x512 [NR]

This cost analysis is oversimplified in that most applications do not require dense opera-
tors. With sparse operators, the cost advantage of adjoints is even more pronounced since for
adjoints, the cost savings of operator sparseness translate directly to real cost savings. The
situation is less favorable and much more muddy for inversion. The reason that Chapter 2
covers iterative methods and neglects exact methods is that in practice iterative methods are
not run to their theoretical completion but they run until we run out of patience.

Cost is a big part of the story, but the story has many other parts. Inversion, while being
the only logical path to the best answer, is a path littered with pitfalls. The first pitfall is that
the data is rarely able to determine a complete solution reliably. Generally there are aspects of
the image that are not learnable from the data.

In this chapter we study the simplest, most transparant example of data insufficiency. Data
exists at irregularly spaced positions in a plane. We set up a cartesian mesh and we discover
that some of the bins contain no data points. What then?

3.1 MISSING DATA IN ONE DIMENSION

A method for restoring missing data is to ensure that the restored data, after specified filtering,
has minimum energy. Specifying the filter chooses the interpolation philosophy. Generally

3.1. MISSING DATA IN ONE DIMENSION 75

Figure 3.2: Jos greets Andrew, “Wel-
come back Andrew” again. At a reso-
lution of 64×64 the pixels are clearly
visible. From far the pictures are
the same. From near, examine their
glasses. iin-64x64 [NR]

the filter is a roughening filter. When a roughening filter goes off the end of smooth data, it
typically produces a big end transient. Minimizing energy implies a choice for unknown data
values at the end, to minimize the transient. We will examine five cases and then make some
generalizations.

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy.

Let u denote an unknown (missing) value. The dataset on which the examples are based
is (· · · ,u,u, 1,u, 2,1,2,u,u, · · ·). Theoretically we could adjust the missing u values (each
different) to minimize the energy in the unfiltered data. Those adjusted values would obviously
turn out to be all zeros. The unfiltered data is data that has been filtered by an impulse function.
To find the missing values that minimize energy out of other filters, we can use subroutine
mis1() on page 81. Figure 3.3 shows interpolation of the dataset with (1,−1) as a roughening
filter. The interpolated data matches the given data where they overlap.

Figure 3.3: Top is given data. Middle
is given data with interpolated val-
ues. Missing values seem to be in-
terpolated by straight lines. Bottom
shows the filter (1,−1), whose output
has minimum energy. iin-mlines90
[ER]

76 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Figure 3.4: Top is the same input
data as in Figure 3.3. Middle is in-
terpolated. Bottom shows the fil-
ter (−1,2,−1). The missing data
seems to be interpolated by parabo-
las. iin-mparab90 [ER]

Figure 3.5: Top is the same input.
Middle is interpolated. Bottom shows
the filter (1,−3,3,−1). The missing
data is very smooth. It shoots upward
high off the right end of the obser-
vations, apparently to match the data
slope there. iin-mseis90 [ER]

Figure 3.6: Bottom shows the fil-
ter (1,1). The interpolation is rough.
Like the given data itself, the interpo-
lation has much energy at the Nyquist
frequency. But unlike the given data,
it has little zero-frequency energy.
iin-moscil90 [ER]

3.1. MISSING DATA IN ONE DIMENSION 77

Figures 3.3–3.6 illustrate that the rougher the filter, the smoother the interpolated data, and
vice versa. Let us switch our attention from the residual spectrum to the residual itself. The
residual for Figure 3.3 is the slope of the signal (because the filter (1,−1) is a first derivative),
and the slope is constant (uniformly distributed) along the straight lines where the least-squares
procedure is choosing signal values. So these examples confirm the idea that the least-squares
method abhors large values (because they are squared). Thus, least squares tends to distribute
residuals uniformly in both time and frequency to the extent allowed by the constraints.

This idea helps us answer the question, what is the best filter to use? It suggests choosing
the filter to have an amplitude spectrum that is inverse to the spectrum we want for the interpo-
lated data. A systematic approach is given in chapter 6, but I offer a simple subjective analysis
here: Looking at the data, we see that all points are positive. It seems, therefore, that the data
is rich in low frequencies; thus the filter should contain something like (1,−1), which vanishes
at zero frequency. Likewise, the data seems to contain Nyquist frequency, so the filter should
contain (1,1). The result of using the filter (1,−1)∗ (1,1) = (1,0,−1) is shown in Figure 3.7.
This is my best subjective interpolation based on the idea that the missing data should look
like the given data. The interpolation and extrapolations are so good that you can hardly
guess which data values are given and which are interpolated.

Figure 3.7: Top is the same as in
Figures 3.3 to 3.6. Middle is in-
terpolated. Bottom shows the fil-
ter (1,0,−1), which comes from
the coefficients of (1,−1) ∗ (1,1).
Both the given data and the interpo-
lated data have significant energy at
both zero and Nyquist frequencies.
iin-mbest90 [ER]

3.1.1 Missing-data program

Now let us see how Figures 3.3-3.7 could have been calculated and how they were calculated.
They could have been calculated with matrices, in which matrices were pulled apart according
to subscripts of known or missing data; instead I computed them with operators, and applied
only operators and their adjoints. First we inspect the matrix approach because it is more
conventional.

Matrix approach to missing data

Customarily, we have referred to data by the symbol d. Now that we are dividing the data
space into two parts, known and unknown (or missing), we will refer to this complete space
as the model (or map) space m.

78 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

There are 15 data points in Figures 3.3-3.7. Of the 15, 4 are known and 11 are missing.
Denote the known by k and the missing by u. Then the sequence of missing and known is
(u,u,u,u,k,u,k,k,k,u,u,u,u,u,u). Because I cannot print 15×15 matrices, please allow me
to describe instead a data space of 6 values (m1,m2,m3,m4,m5,m6) with known values only
m2 and m3, that is arranged like (u,k,k,u,u,u).

Our approach is to minimize the energy in the residual, which is the filtered map (model)
space. We state the fitting goals 0≈ Fm as

























0
0
0
0
0
0
0
0

























≈ r =

























a1 0 0 0 0 0
a2 a1 0 0 0 0
a3 a2 a1 0 0 0
0 a3 a2 a1 0 0
0 0 a3 a2 a1 0
0 0 0 a3 a2 a1
0 0 0 0 a3 a2
0 0 0 0 0 a3









































m1
m2
m3
m4
m5
m6

















(3.1)

We rearrange the above fitting goals, bringing the columns multiplying known data values (m2
and m3) to the left, getting y=−Fkmk ≈ Fumu .

























y1
y2
y3
y4
y5
y6
y7
y8

























= −

























0 0
a1 0
a2 a1
a3 a2
0 a3
0 0
0 0
0 0

























[

m2
m3

]

≈

























a1 0 0 0
a2 0 0 0
a3 0 0 0
0 a1 0 0
0 a2 a1 0
0 a3 a2 a1
0 0 a3 a2
0 0 0 a3

































m1
m4
m5
m6









(3.2)

This is the familiar form of an overdetermined system of equations y≈ Fumu which we could
solve for mu as illustrated earlier by conjugate directions, or by a wide variety of well-known
methods.

The trouble with this matrix approach is that it is awkward to program the partitioning of
the operator into the known and missing parts, particularly if the application of the operator
uses arcane techniques, such as those used by the fast–Fourier-transform operator or various
numerical approximations to differential or partial differential operators that depend on reg-
ular data sampling. Even for the modest convolution operator, we already have a library of
convolution programs that handle a variety of end effects, and it would be much nicer to use
the library as it is rather than recode it for all possible geometrical arrangements of missing
data values.

Note: Here I take the main goal to be the clarity of the code, not the efficiency or accuracy
of the solution. So, if your problem consumes too many resources, and if you have many more
known points than missing ones, maybe you should fit y ≈ Fumu and ignore the suggestions
below.

3.1. MISSING DATA IN ONE DIMENSION 79

Operator approach to missing data

For the operator approach to the fitting goal −Fkmk ≈ Fumu we rewrite it as −Fkmk ≈ FJm
where

−Fkmk ≈

























a1 0 0 0 0 0
a2 a1 0 0 0 0
a3 a2 a1 0 0 0
0 a3 a2 a1 0 0
0 0 a3 a2 a1 0
0 0 0 a3 a2 a1
0 0 0 0 a3 a2
0 0 0 0 0 a3









































1
. 0
. . 0 . . .
. . . 1 . .
. . . . 1 .
. 1

































m1
m2
m3
m4
m5
m6

















= FJm

(3.3)

Notice the introduction of the new diagonal matrix J, called a masking matrix or a constraint-
mask matrix because it multiplies constrained variables by zero leaving freely adjustable vari-
ables untouched. Experience shows that a better name than “mask matrix” is “selector ma-
trix” because what comes out of it, that which is selected, is a less-confusing name for it than
which is rejected. With a selector matrix the whole data space seems freely adjustable, both
the missing data values and known values. We see that the CD method does not change the
known (constrained) values. In general, we derive the fitting goal (3.3) by

0 ≈ Fm (3.4)
0 ≈ F(J+ (I−J))m (3.5)
0 ≈ FJm+F(I−J)m (3.6)
0 ≈ FJm+Fmknown (3.7)

0 ≈ r = FJm+ r0 (3.8)

As usual, we find a direction to go 1m by the gradient of the residual energy.

1m =
∂

∂m′
r′r =

(

∂

∂m′
r′
)

r =
(

∂

∂m′
(m′J′F′+ r′0)

)

r = J′F′r (3.9)

We begin the calculation with the known data values where missing data values are re-
placed by zeros, namely (I− J)m. Filter this data, getting F(I− J)m, and load it into the
residual r0. With this initialization completed, we begin an iteration loop. First we compute
1m from equation (3.9).

1m ←− J′F′r (3.10)

F′ applies a crosscorrelation of the filter to the residual and then J′ sets to zero any changes
proposed to known data values. Next, compute the change in residual 1r from the proposed
change in the data 1m.

1r ←− FJ1m (3.11)

80 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

This applies the filtering again. Then use the method of steepest descent (or conjugate di-
rection) to choose the appropriate scaling (or inclusion of previous step) of 1m and 1r, and
update m and r accordingly and iterate.

I could have passed a new operator FJ into the old solver, but found it worthwhile to write
a new, more powerful solver having built-in constraints. To introduce the masking operator
J into the solver_smp subroutine on page 53, I introduce an optional operator Jop, which is
initialized with a logical array of the model size. Two lines in the solver_tiny module on
page 53

stat = Fop(T, F, g, rd) # g = F’ Rd

stat = Fop(F, F, g, gd) # G = F g

become three lines in the standard library module solver_smp. (We use a temporary array tm

of the size of model space.) 1m is g and 1r is gg.

stat = Fop(T, F, g, rd) # g = F’ Rd

if (present(Jop)) { tm=g; stat= Jop(F, F, tm, g) # g = J g

stat = Fop(F, F, g, gg) # G = F g

The full code includes all the definitions we had earlier in solver_tiny module on page 53.
Merging it with the above bits of code we have the simple solver solver_smp.

module solver_smp_mod { # 0 = W (F J m - d)

use chain0_mod + solver_report_mod

logical, parameter, private :: T = .true., F = .false.

contains

subroutine solver_smp(m,d, Fop, stepper, niter &

, Wop,Jop,m0,err,resd,mmov,rmov,verb) {

optional :: Wop,Jop,m0,err,resd,mmov,rmov,verb

interface { #-------------------------- begin definitions -----------

integer function Fop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Wop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Jop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function stepper(forget,m,g,rr,gg) {

real, dimension(:) :: m,g,rr,gg

logical :: forget }

}

real, dimension(:), intent(in) :: d, m0

integer, intent(in) :: niter

logical, intent(in) :: verb

real, dimension(:), intent(out) :: m,err, resd

real, dimension(:,:), intent(out) :: rmov, mmov

real, dimension(size(m)) :: g

real, dimension(size(d)), target :: rr, gg

real, dimension(size(d)+size(m)), target :: tt

real, dimension(:), pointer :: rd, gd, td

real, dimension(:), pointer :: rm, gm, tm

integer :: iter, stat

logical :: forget

3.1. MISSING DATA IN ONE DIMENSION 81

rd => rr(1:size(d));

gd => gg(1:size(d));

td => tt(1:size(d)); tm => tt(1+size(d):)

if(present(Wop)) stat=Wop(F,F,-d,rd) # begin initialization --------

else rd = -d #Rd = -W d

if(present(m0)){ m=m0 #m = m0

if(present(Wop)) call chain0(Wop,Fop,F,T,m,rd,td)

else stat = Fop(F,T,m,rd) #Rd+= WF m0

} else m=0

forget = T; #-------------------------- begin iterations ------------

do iter = 1,niter {

if(present(Wop)) call chain0(Wop,Fop,T,F,g,rd,td)

else stat = Fop(T,F,g,rd) #g = (WF)’Rd

if(present(Jop)){ tm=g; stat = Jop(F,F,tm, g)} #g = J g

if(present(Wop)) call chain0(Wop,Fop,F,F,g,gd,td)

else stat = Fop(F,F,g,gd) #Gd = (WF) g

stat = stepper(forget, m,g, rr,gg) #m+=dm; R+=dR

if(stat ==1) exit # got stuck descending

if(present(mmov)) mmov(:,iter) = m(:size(mmov,1)) # report -----

if(present(rmov)) rmov(:,iter) = rd(:size(rmov,1))

if(present(err)) err(iter) = dot_product(rd,rd)

if(present(verb)){ if(verb) call solver_report(iter,m,g,rd)}

forget=F

}

if(present(resd)) resd = rd

}

}

There are two methods of invoking the solver. Comment cards in the code indicate the
slightly more verbose method of solution which matches the theory presented in the book.

The subroutine to find missing data is mis1(). It assumes that zero values in the input data
correspond to missing data locations. It uses our convolution operator tcai1() on page 9. You
can also check the Index for other operators and modules.

module mis_mod {

use tcai1+mask1+cgstep_mod+solver_smp_mod

use mtcai1

contains

fill in missing data on 1-axis by minimizing power out of a given filter.

subroutine mis1 (niter, mm, aa) {

integer, intent (in) :: niter # number of iterations

real, dimension (:), pointer :: aa # roughening filter

real, dimension (:), intent (in out) :: mm # in - data with zeroes

out - interpolated

real, dimension (:),allocatable :: zero # filter output

logical, dimension(:), pointer :: msk

integer :: stat

real, dimension (:),allocatable :: dd

allocate(zero(size(mm)+size(aa))); zero = 0.

allocate(msk(size(mm)))

allocate(dd(size(mm)+size(aa)))

solve F m = 0 w/ J

msk=(mm==0.); call mask1_init(msk)

82 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

call tcai1_init(aa)

call solver_smp(m=mm,d=zero,Fop=tcai1_lop,stepper=cgstep,niter=niter,m0=mm,Jop=mask1_lop)

solve (F J) m = d

call mtcai1_init(aa,msk) # F(I-J)

stat = mtcai1_lop(.false.,.false.,mm,dd) # F(I-J) m

dd = - dd # d = - F(I-J) m

msk=(mm==0.); call mask1_init(msk) # J

call solver_smp(m=mm,d=dd,Fop=mtcai1_lop,stepper=cgstep,niter=niter,m0=mm)

call cgstep_close ()

deallocate(zero)

}

}

I sought reference material on conjugate gradients with constraints and didn’t find any-
thing, leaving me to fear that this chapter was in error and that I had lost the magic property
of convergence in a finite number of iterations. I tested the code and it did converge in a finite
number of iterations. The explanation is that these constraints are almost trivial. We pretended
we had extra variables, and computed a 1m= g for each of them. Then we set the 1m= g to
zero, hence making no changes to anything, like as if we had never calculated the extra 1m’s.

EXERCISES:

1 Figures 3.3–3.6 seem to extrapolate to vanishing signals at the side boundaries. Why is
that so, and what could be done to leave the sides unconstrained in that way?

2 Show that the interpolation curve in Figure 3.4 is not parabolic as it appears, but cubic.
(HINT: First show that (∇2)′∇2u = 0.)

3 Verify by a program example that the number of iterations required with simple constraints
is the number of free parameters.

4 A signal on a uniform mesh has missing values. How should we estimate the mean?

3.2 WELLS NOT MATCHING THE SEISMIC MAP

Accurate knowledge comes from a well, but wells are expensive and far apart. Less accu-
rate knowledge comes from surface seismology, but this knowledge is available densely in
space and can indicate significant trends between the wells. For example, a prospective area
may contain 15 wells but 600 or more seismic stations. To choose future well locations, it
is helpful to match the known well data with the seismic data. Although the seismic data is
delightfully dense in space, it often mismatches the wells because there are systematic dif-
ferences in the nature of the measurements. These discrepancies are sometimes attributed to
velocity anisotropy. To work with such measurements, we do not need to track down the
physical model, we need only to merge the information somehow so we can appropriately
map the trends between wells and make a proposal for the next drill site. Here we consider

3.2. WELLS NOT MATCHING THE SEISMIC MAP 83

only a scalar value at each location. Take w to be a vector of 15 components, each component
being the seismic travel time to some fixed depth in a well. Likewise let s be a 600-component
vector each with the seismic travel time to that fixed depth as estimated wholly from surface
seismology. Such empirical corrections are often called “fudge factors”. An example is the
Chevron oil field in Figure 3.8. The binning of the seismic data in Figure 3.8 is not really

Figure 3.8: Binning by data push. Left is seismic data. Right is well locations. Values in bins
are divided by numbers in bins. (Toldi) iin-wellseis90 [ER]

satisfactory when we have available the techniques of missing data estimation to fill the empty
bins. Using the ideas of subroutine mis1() on page 81, we can extend the seismic data into the
empty part of the plane. We use the same principle that we minimize the energy in the filtered
map where the map must match the data where it is known. I chose the filter A=∇ ′∇ =−∇2

to be the Laplacian operator (actually, its negative) to obtain the result in Figure 3.9.

Figure 3.9 also involves a boundary condition calculation. Many differential equations
have a solution that becomes infinite at infinite distance, and in practice this means that the
largest solutions may often be found on the boundaries of the plot, exactly where there is the
least information. To obtain a more pleasing result, I placed artificial “average” data along
the outer boundary. Each boundary point was given the value of an average of the interior
data values. The average was weighted, each weight being an inverse power of the separation
distance of the boundary point from the interior point.

Parenthetically, we notice that all the unknown interior points could be guessed by the
same method we used on the outer boundary. After some experience guessing what inverse
power would be best for the weighting functions, I do not recommend this method. Like
gravity, the forces of interpolation from the weighted sums are not blocked by intervening
objects. But the temperature in a house is not a function of temperature in its neighbor’s
house. To further isolate the more remote points, I chose weights to be the inverse fourth
power of distance.

84 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Figure 3.9: Seismic binned (left) and extended (right) by minimizing energy in ∇2s.
iin-misseis90 [ER]

The first job is to fill the gaps in the seismic data. We just finished doing a job like this in
one dimension. I’ll give you more computational details later. Let us call the extended seismic
data s.

Think of a map of a model space m of infinitely many hypothetical wells that must match
the real wells, where we have real wells. We must find a map that matches the wells exactly
and somehow matches the seismic information elsewhere. Let us define the vector w as shown
in Figure 3.8 so w is observed values at wells and zeros elsewhere.

Where the seismic data contains sharp bumps or streaks, we want our final earth model
to have those features. The wells cannot provide the rough features because the wells are too
far apart to provide high spatial frequencies. The well information generally conflicts with the
seismic data at low spatial frequencies because of systematic discrepancies between the two
types of measurements. Thus we must accept that m and s may differ at low spatial frequencies
(where gradient and Laplacian are small).

Our final map m would be very unconvincing if it simply jumped from a well value at one
point to a seismic value at a neighboring point. The map would contain discontinuities around
each well. Our philosophy of finding an earth model m is that our earth map should contain
no obvious “footprint” of the data acquisition (well locations). We adopt the philosopy that
the difference between the final map (extended wells) and the seismic information x =m− s
should be smooth. Thus, we seek the minimum residual r which is the roughened difference
between the seismic data s and the map m of hypothetical omnipresent wells. With roughening
operator A we fit

0 ≈ r = A(m− s) = Ax (3.12)

3.2. WELLS NOT MATCHING THE SEISMIC MAP 85

along with the constraint that the map should match the wells at the wells. We could write this
as 0 = (I− J)(m−w). We honor this constraint by initializing the map m = w to the wells
(where we have wells, and zero elsewhere). After we find the gradient direction to suggest
some changes to m, we simply will not allow those changes at well locations. We do this with
a mask. We apply a "missing data selector" to the gradient. It zeros out possible changes at
well locations. Like with the goal (3.7), we have

0 ≈ r = AJx+Axknown (3.13)

After minimizing r by adjusting x, we have our solution m= x+ s.

Now we prepare some roughening operators A. We have already coded a 2-D gradient
operator igrad2 on page 59. Let us combine it with its adjoint to get the 2-D laplacian operator.
(You might notice that the laplacian operator is “self-adjoint” meaning that the operator does
the same calculation that its adjoint does. Any operator of the form A′A is self-adjoint because
(A′A)′ = A′A′′ = A′A.)

module laplac2 { # Laplacian operator in 2-D

use igrad2

logical, parameter, private :: T = .true., F = .false.

real, dimension (m1*m2*2), allocatable :: tmp

#%_init (m1, m2)

integer m1, m2

call igrad2_init (m1, m2)

#%_lop (x, y)

integer stat1, stat2

if(adj) {

stat1 = igrad2_lop (F, F, y, tmp) # tmp = grad y

stat2 = igrad2_lop (T, add, x, tmp) # x = x + grad’ tmp

} else {

stat1 = igrad2_lop (F, F, x, tmp) # tmp = grad x

stat2 = igrad2_lop (T, add, y, tmp) # y = y + grad’ tmp

}

}

Subroutine lapfill2() on the current page is the same idea as mis1() on page 81 except
that the filter A has been specialized to the laplacian implemented by module laplac2 on the
current page.

module lapfill { # fill empty 2-D bins by minimum output of Laplacian operator

use laplac2

use cgstep_mod

use mask1

use solver_smp_mod

contains

subroutine lapfill2(niter, m1, m2, yy, mfixed) {

integer, intent (in) :: niter, m1, m2

logical, dimension (m1*m2), intent (in) :: mfixed # mask for known

real, dimension (m1*m2), intent (in out) :: yy # model

real, dimension (m1*m2) :: zero # laplacian output

logical, dimension (:), pointer :: msk

allocate(msk(size(mfixed)))

86 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

msk=.not.mfixed

call mask1_init(msk)

call laplac2_init (m1,m2); zero = 0. # initialize

call solver_smp(m=yy, d=zero, Fop=laplac2_lop, stepper=cgstep, niter=niter, m0=yy, Jop=mask1_lop)

call laplac2_close () # garbage collection

call cgstep_close () # garbage collection

}

}

Subroutine lapfill2() can be used for each of our two problems, (1) extending the seis-
mic data to fill space, and (2) fitting the map exactly to the wells and approximately to the seis-
mic data. When extending the seismic data, the initially non-zero components s 6= 0 are fixed
and cannot be changed. That is done by calling lapfill2() with mfixed=(s/=0.). When
extending wells, the initially non-zero components w 6= 0 are fixed and cannot be changed.
That is done by calling lapfill2() with mfixed=(w/=0.).

The final map is shown in Figure 3.10.

Figure 3.10: Final map based on Laplacian roughening. iin-finalmap90 [ER,M]

Results can be computed with various filters. I tried both ∇2 and ∇. There are disadvan-
tages of each, ∇ being too cautious and ∇2 perhaps being too aggressive. Figure 3.11 shows
the difference x between the extended seismic data and the extended wells. Notice that for ∇
the difference shows a localized “tent pole” disturbance about each well. For ∇2 there could
be large overshoot between wells, especially if two nearby wells have significantly different
values. I don’t see that problem here.

My overall opinion is that the Laplacian does the better job in this case. I have that opinion
because in viewing the extended gradient I can clearly see where the wells are. The wells are
where we have acquired data. We’d like our map of the world to not show where we acquired

3.3. SEARCHING THE SEA OF GALILEE 87

data. Perhaps our estimated map of the world cannot help but show where we have and have
not acquired data, but we’d like to minimize that aspect.

A good image of the earth hides our data acquisition footprint.

Figure 3.11: Difference between wells (the final map) and the extended seismic data. Left
is plotted at the wells (with gray background for zero). Center is based on gradient rough-
ening and shows tent-pole-like residuals at wells. Right is based on Laplacian roughening.
iin-diffdiff90 [ER]

To understand the behavior theoretically, recall that in one dimension the filter ∇ inter-
polates with straight lines and ∇2 interpolates with cubics. This is because the fitting goal
0 ≈ ∇m, leads to ∂

∂m′m
′∇ ′∇m = 0 or ∇ ′∇m = 0, whereas the fitting goal 0 ≈ ∇2m leads to

∇4m= 0 which is satisfied by cubics. In two dimensions, minimizing the output of ∇ gives us
solutions of Laplace’s equation with sources at the known data. It is as if ∇ stretches a rubber
sheet over poles at each well, whereas ∇2 bends a stiff plate.

Just because ∇2 gives smoother maps than ∇ does not mean those maps are closer to
reality. This is a deeper topic, addressed in Chapter 6. It is the same issue we noticed when
comparing figures 3.3-3.7.

3.3 SEARCHING THE SEA OF GALILEE

Figure 3.12 shows a bottom-sounding survey of the Sea of Galilee1 at various stages of pro-
cessing. The ultimate goal is not only a good map of the depth to bottom, but images useful
for the purpose of identifying archaeological, geological, or geophysical details of the sea
bottom. The Sea of Galilee is unique because it is a fresh-water lake below sea-level. It seems
to be connected to the great rift (pull-apart) valley crossing east Africa. We might delineate the

1Data collected by Zvi ben Avraham, TelAviv University. Please communicate with him
zvi@jupiter1.tau.ac.il for more details or if you make something publishable with his data.

88 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Jordan River delta. We might find springs on the water bottom. We might find archaeological
objects.

The raw data is 132,044 triples, (xi , yi , zi), where xi ranges over about 12 km and where yi

ranges over about 20 km. The lines you see in Figure 3.12 are sequences of data points, i.e.,
the track of the survey vessel. The depths zi are recorded to an accuracy of about 10 cm.

The first frame in Figure 3.12 shows simple binning. A coarser mesh would avoid the
empty bins but lose resolution. As we refine the mesh for more detail, the number of empty
bins grows as does the care needed in devising a technique for filling them. This first frame
uses the simple idea from Chapter 1 of spraying all the data values to the nearest bin with
bin2() on page 13 and dividing by the number in the bin. Bins with no data obviously need
to be filled in some other way. I used a missing data program like that in the recent section
on “wells not matching the seismic map.” Instead of roughening with a Laplacian, however, I
used the gradient operator igrad2 on page 59 The solver is grad2fill().

module grad2fill { # min r(m) = L J m + L known where L is a lowcut filter.

use igrad2

use cgstep_mod

use mask1

use solver_smp_mod

contains

subroutine grad2fill2(niter, m1, m2, mm, mfixed) {

integer, intent (in) :: niter, m1,m2

logical, dimension (m1*m2), intent (in) :: mfixed # mask for known

real, dimension (m1*m2), intent (in out) :: mm # model

real, dimension (m1*m2*2) :: yy # lowcut output

logical, dimension (:), pointer :: msk

allocate(msk(size(mfixed)))

msk=.not.mfixed

call mask1_init(msk)

call igrad2_init(m1,m2); yy = 0. # initialize

call solver_smp(m=mm, d=yy, Fop=igrad2_lop, stepper=cgstep, niter=niter, m0=mm, Jop=mask1_lop)

call cgstep_close ()

}

}

The output of the roughening operator is an image, a filtered version of the depth, a filtered
version of something real. Such filtering can enhance the appearance of interesting features.
For example, scanning the shoreline of the roughened image (after missing data was filled),
we see several ancient shorelines, now submerged.

The adjoint is the easiest image to build. The roughened map is often more informative
than the map itself.

The views expose several defects of the data acquisition and of our data processing. The
impulsive glitches (St. Peter’s fish?) need to be removed but we must be careful not to throw
out the sunken ships along with the bad data points. Even our best image shows clear evidence
of the recording vessel’s tracks. Strangely, some tracks are deeper than others. Perhaps the
survey is assembled from work done in different seasons and the water level varied by season.

3.3. SEARCHING THE SEA OF GALILEE 89

Figure 3.12: Views of the bottom of the Sea of Galilee. iin-locfil90 [ER,M]

90 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Perhaps some days the vessel was more heavily loaded and the depth sounder was on a deeper
keel. As for the navigation equipment, we can see that some data values are reported outside
the lake!

We want the sharpest possible view of this classical site. A treasure hunt is never easy
and no one guarantees we will find anything of great value but at least the exercise is a good
warm-up for submarine petroleum exploration.

3.4 INVERSE LINEAR INTERPOLATION

In Chapter 1 we defined linear interpolation as the extraction of values from between mesh
points. In a typical setup (occasionally the role of data and model are swapped), a model
is given on a uniform mesh and we solve the easy problem of extracting values between the
mesh points with subroutine lint1() on page 16. The genuine problem is the inverse problem,
which we attack here. Data values are sprinkled all around, and we wish to find a function
on a uniform mesh from which we can extract that data by linear interpolation. The adjoint
operator for subroutine lint1() simply piles data back into its proper location in model space
without regard to how many data values land in each region. Thus some model values may
have many data points added to them while other model values get none. We could interpolate
by minimizing the energy in the model gradient, or that in the second derivative of the model,
or that in the output of any other roughening filter applied to the model.

Formalizing now our wish that data d be extractable by linear interpolation F, from
a model m, and our wish that application of a roughening filter with an operator A have
minimum energy, we write the fitting goals:

0 ≈ Fm−d
0 ≈ Am

(3.14)

Suppose we take the roughening filter to be the second difference operator (1,−2,1) scaled by
a constant ε, and suppose we have a data point near each end of the model and a third data
point exactly in the middle. Then, for a model space 6 points long, the fitting goal could look
like






































.8 .2
. . 1 . . .
.5 .5
ε

−2ε ε
ε −2ε ε . . .
. ε −2ε ε . .
. . ε −2ε ε .
. . . ε −2ε ε

. . . . ε −2ε

. ε























































m0
m1
m2
m3
m4
m5

















−







































d0
d1
d2
0
0
0
0
0
0
0
0







































=
[

rd

rm

]

≈ 0

(3.15)

3.4. INVERSE LINEAR INTERPOLATION 91

The residual vector has two parts, a data part rd on top and a model part rm on the bottom.
The data residual should vanish except where contradictory data values happen to lie in the
same place. The model residual is the roughened model.

Two fitting goals (3.14) are so common in practice that it is convenient to adopt our least-
square fitting subroutine solver_smp on page 80 accordingly. The modification is shown
in module solver_reg on this page. In addition to specifying the “data fitting” operator F
(parameter Fop), we need to pass the “model regularization” operator A (parameter Aop) and
the size of its output (parameter nAop) for proper memory allocation.

(When I first looked at module solver_reg I was appalled by the many lines of code,
especially all the declarations. Then I realized how much much worse was Fortran 77 where
I needed to write a new solver for every pair of operators. This one solver module works for
all operator pairs and for many optimization descent strategies because these “objects” are
arguments. These more powerful objects require declarations that are more complicated than
the simple objects of Fortran 77. As an author I have a dilemma: To make algorithms compact
(and seem simple) requires many careful definitions. When these definitions put in the code,
they are careful, but the code becomes annoyingly verbose. Otherwise, the definitions must
go in the surrounding natural language where they are not easily made precise.)
module solver_reg_mod{ # 0 = W (F J m - d)

use chain0_mod + solver_report_mod # 0 = A m

logical, parameter, private :: T = .true., F = .false.

contains

subroutine solver_reg(m,d, Fop, Aop, stepper, nAop, niter,eps &

, Wop,Jop,m0,rm0,err,resd,resm,mmov,rmov,verb) {

optional :: Wop,Jop,m0,rm0,err,resd,resm,mmov,rmov,verb

interface { #-------------------------- begin definitions -----------

integer function Fop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Aop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Wop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Jop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function stepper(forget,m,g,rr,gg) {

real, dimension(:) :: m,g,rr,gg

logical :: forget }

}

real, dimension(:), intent(in) :: d, m0,rm0

integer, intent(in) :: niter, nAop

logical, intent(in) :: verb

real, intent(in) :: eps

real, dimension(:), intent(out) :: m,err, resd,resm

real, dimension(:,:), intent(out) :: rmov,mmov

real, dimension(size(m)) :: g

real, dimension(size(d) + nAop), target :: rr, gg, tt

real, dimension(:), pointer :: rd, gd, td

real, dimension(:), pointer :: rm, gm, tm

integer :: iter, stat

logical :: forget

rd => rr(1:size(d)); rm => rr(1+size(d):)

gd => gg(1:size(d)); gm => gg(1+size(d):)

td => tt(1:size(d)); tm => tt(1+size(d):)

if(present(Wop)) stat=Wop(F,F,-d,rd) # begin initialization ---------

else rd = -d #Rd = -W d

92 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

rm = 0.; if(present(rm0)) rm=rm0 #Rm = Rm0

if(present(m0)){ m=m0 #m = m0

if(present(Wop)) call chain0(Wop,Fop,F,T,m,rd,td)

else stat= Fop(F,T,m,rd) #Rd += WF m0

stat = Aop(F,T,eps*m0,rm) #Rm += e A m0

} else m=0

forget = T; #--------------------------- begin iterations -----------

do iter = 1,niter {

if(present(Wop)) call chain0(Wop,Fop,T,F,g,rd,td)

else stat = Fop(T,F,g,rd) #g = (WF)’Rd

stat = Aop(T,T,g,eps*rm) #g += e A’Rm

if(present(Jop)){ tm=g; stat=Jop(F,F,tm,g)} #g = J g

if(present(Wop)) call chain0(Wop,Fop,F,F,g,gd,td)

else stat = Fop(F,F,g,gd) #Gd = (WF) g

stat = Aop(F,F,eps*g,gm) #Gm = e A g

stat = stepper(forget, m,g, rr,gg) #m+=dm; R+=dR

if(stat ==1) exit # got stuck descending

if(present(mmov)) mmov(:,iter) = m(:size(mmov,1)) # report -----

if(present(rmov)) rmov(:,iter) = rr(:size(rmov,1))

if(present(err)) err(iter) = dot_product(rd,rd)

if(present(verb)){ if(verb) call solver_report(iter,m,g,rd,rm)}

forget=F

}

if(present(resd)) resd = rd

if(present(resm)) resm = rm(:size(resm))

}

}

After all the definitions, we load the negative of the data into the residual. If a starting
model m0 is present, then we update the data part of the residual rd = Fm0−d and we load
the model part of the residual rm = Am0. Otherwise we begin from a zero model m0 = 0
and thus the model part of the residual rm is also zero. After this initialization, subroutine
solver_reg() begins an iteration loop by first computing the proposed model perturbation
1m (called g in the program) with the adjoint operator:

1m ←−
[

F′ A′
]

[

rd

rm

]

(3.16)

Using this value of 1m, we can find the implied change in residual 1r as

1

[

rd

rm

]

←−
[

F
A

]

1m (3.17)

and the last thing in the loop is to use the optimization step function stepper() to choose the
length of the step size and to choose how much of the previous step to include.

An example of using the new solver is subroutine invint1. I chose to implement the
model roughening operator A with the convolution subroutine tcai1() on page 9, which has
transient end effects (and an output length equal to the input length plus the filter length). The
adjoint of subroutine tcai1() suggests perturbations in the convolution input (not the filter).

module invint { # invint -- INVerse INTerpolation in 1-D.

3.4. INVERSE LINEAR INTERPOLATION 93

use lint1

use tcai1

use cgstep_mod

use solver_reg_mod

contains

subroutine invint1(niter, coord, dd, o1, d1, aa, mm, eps, mmov) {

integer, intent (in) :: niter # iterations

real, intent (in) :: o1, d1, eps # axis, scale

real, dimension (:), pointer :: coord, aa # aa is filter

real, dimension (:), intent (in) :: dd # data

real, dimension (:), intent (out) :: mm # model

real, dimension (:,:), intent (out) :: mmov # movie

integer :: nreg # size of A m

nreg = size(aa) + size(mm) # transient

call lint1_init(o1, d1, coord) # interpolation

call tcai1_init(aa) # filtering

call solver_reg(m=mm, d=dd, Fop=lint1_lop, stepper=cgstep, niter=niter, &

Aop=tcai1_lop, nAop = nreg, eps = eps,mmov = mmov,verb=.true.)

call cgstep_close()

}

}

Figure 3.13 shows an example for a (1,−2,1) filter with ε = 1. The continuous curve
representing the model m passes through the data points. Because the models are computed
with transient convolution end-effects, the models tend to damp linearly to zero outside the
region where signal samples are given.

Figure 3.13: Sample points and es-
timation of a continuous function
through them. iin-im1-2+190
[ER,M]

To show an example where the result is clearly a theoretical answer, I prepared another
figure with the simpler filter (1,−1). When we minimize energy in the first derivative of the
waveform, the residual distributes itself uniformly between data points so the solution there is
a straight line. Theoretically it should be a straight line because a straight line has a vanishing
second derivative, and that condition arises by differentiating by x′, the minimized quadratic
form x′A′Ax, and getting A′Ax = 0. (By this logic, the curves between data points in Figure
3.13 must be cubics.) The (1,−1) result is shown in Figure 3.14.

The example of Figure 3.14 has been a useful test case for me. You’ll see it again in
later chapters. What I would like to show you here is a movie showing the convergence to
Figure 3.14. Convergence occurs rapidly where data points are close together. The large gaps,
however, fill at a rate of one point per iteration.

94 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Figure 3.14: The same data samples
and a function through them that min-
imizes the energy in the first deriva-
tive. iin-im1-1a90 [ER,M]

3.4.1 Abandoned theory for matching wells and seismograms

Let us consider theory to construct a map m that fits dense seismic data s and the well data w.
The first goal 0≈ Lm−w says that when we linearly interpolate from the map, we should get
the well data. The second goal 0≈ A(m− s) (where A is a roughening operator like ∇ or ∇2)
says that the map m should match the seismic data s at high frequencies but need not do so at
low frequencies.

0 ≈ Lm−w
0 ≈ A(m− s) (3.18)

Although (3.18) is the way I originally formulated the well-fitting problem, I abandoned
it for several reasons: First, the map had ample pixel resolution compared to other sources
of error, so I switched from linear interpolation to binning. Once I was using binning, I
had available the simpler empty-bin approaches. These have the further advantage that it is
not necessary to experiment with the relative weighting between the two goals in (3.18). A
formulation like (3.18) is more likely to be helpful where we need to handle rapidly changing
functions where binning is inferior to linear interpolation, perhaps in reflection seismology
where high resolution is meaningful.

EXERCISES:

1 It is desired to find a compromise between the Laplacian roughener and the gradient
roughener. What is the size of the residual space?

2 Like the seismic prospecting industry, you have solved a huge problem using binning.
You have computer power left over to do a few iterations with linear interpolation. How
much does the cost per iteration increase? Should you refine your model mesh, or can you
use the same model mesh that you used when binning?

3.5 PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION

First we first look at data d. Then we think about a model m, and an operator L to link the
model and the data. Sometimes the operator is merely the first term in a series expansion

3.5. PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION 95

about (m0,d0). Then we fit d−d0 ≈ L(m−m0). To fit the model, we must reduce the fitting
residuals. Realizing that the importance of a data residual is not always simply the size of the
residual but is generally a function of it, we conjure up (topic for later chapters) a weighting
function (which could be a filter) operator W. This defines our data residual:

rd = W[L(m−m0) − (d−d0)] (3.19)

Next we realize that the data might not be adequate to determine the model, perhaps be-
cause our comfortable dense sampling of the model ill fits our economical sparse sampling
of data. Thus we adopt a fitting goal that mathematicians call “regularization” and we might
call a “model style” goal or more simply, a quantification of our prejudice about models. We
express this by choosing an operator A, often simply a roughener like a gradient (the choice
again a topic in this and later chapters). It defines our model residual by Am or A(m−m0),
say we choose

rm = Am (3.20)

In an ideal world, our model prejudice would not conflict with measured data, however,
life is not so simple. Since conflicts between data and preconceived notions invariably arise
(and they are why we go to the expense of acquiring data) we need an adjustable parameter
that measures our “bullheadedness”, how much we intend to stick to our preconceived no-
tions in spite of contradicting data. This parameter is generally called epsilon ε because we
like to imagine that our bullheadedness is small. (In mathematics, ε is often taken to be an
infinitesimally small quantity.) Although any bullheadedness seems like a bad thing, it must
be admitted that measurements are imperfect too. Thus as a practical matter we often find
ourselves minimizing

min := rd · rd + ε2 rm · rm (3.21)

and wondering what to choose for ε. I have two suggestions: My simplest suggestion is to
choose ε so that the residual of data fitting matches that of model styling. Thus

ε =
√

rd · rd

rm · rm
(3.22)

My second suggestion is to think of the force on our final solution. In physics, force is as-
sociated with a gradient. We have a gradient for the data fitting and another for the model
styling:

gd = L′W′rd (3.23)
gm = A′rm (3.24)

We could balance these forces by the choice

ε =
√

gd ·gd

gm ·gm
(3.25)

96 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Although we often ignore ε in discussing the formulation of a problem, when time comes
to solve the problem, reality intercedes. Generally, rd has different physical units than rm

(likewise gd and gm) and we cannot allow our solution to depend on the accidental choice of
units in which we express the problem. I have had much experience choosing ε, but it is only
recently that I boiled it down to the above two suggestions. Normally I also try other values,
like double or half those of the above choices, and I examine the solutions for subjective
appearance. If you find any insightful examples, please tell me about them.

Computationally, we could choose a new ε with each iteration, but it is more expeditious
to freeze ε, solve the problem, recompute ε, and solve the problem again. I have never seen a
case where more than one iteration was necessary.

People who work with small problems (less than about 103 vector components) have ac-
cess to an attractive theoretical approach called cross-validation. Simply speaking, we could
solve the problem many times, each time omitting a different data value. Each solution would
provide a model that could be used to predict the omitted data value. The quality of these
predictions is a function of ε and this provides a guide to finding it. My objections to cross
validation are two-fold: First, I don’t know how to apply it in the large problems like we solve
in this book (I should think more about it); and second, people who worry much about ε, per-
haps first should think more carefully about their choice of the filters W and A, which is the
focus of this book. Notice that both W and A can be defined with a scaling factor which is
like scaling ε. Often more important in practice, with W and A we have a scaling factor that
need not be constant but can be a function of space or spatial frequency within the data space
and/or model space.

Chapter 4

The helical coordinate

For many years it has been true that our most powerful signal-analysis techniques are in one-
dimensional space, while our most important applications are in multi-dimensional space. The
helical coordinate system makes a giant step towards overcoming this difficulty.

Many geophysical map estimation problems appear to be multidimensional, but actually
they are not. To see the tip of the iceberg, consider this example: On a two-dimensional

cartesian mesh, the function

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

has the autocorrelation
1 2 1
2 4 2
1 2 1

.

Likewise, on a one-dimensional cartesian mesh,

the function b = 1 1 0 0 · · · 0 1 1

has the autocorrelation r = 1 2 1 0 · · · 0 2 4 2 0 · · · 1 2 1 .

Observe the numbers in the one-dimensional world are identical with the numbers in the two-
dimensional world. This correspondence is no accident.

4.1 FILTERING ON A HELIX

Figure 4.1 shows some two-dimensional shapes that are convolved together. The left panel
shows an impulse response function, the center shows some impulses, and the right shows the
superposition of responses.

A surprising, indeed amazing, fact is that Figure 4.1 was not computed with a two-dimensional
convolution program. It was computed with a one-dimensional computer program. It could

97

98 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.1: Two-dimensional convolution as performed in one dimension by module helicon

hlx-diamond90 [ER]

have been done with anybody’s one-dimensional convolution program, either in the time do-
main or in the fourier domain. This magical trick is done with the helical coordinate system.

A basic idea of filtering, be it in one dimension, two dimensions, or more, is that you
have some filter coefficients and some sampled data; you pass the filter over the data; at each
location you find an output by crossmultiplying the filter coefficients times the underlying data
and summing the terms.

The helical coordinate system is much simpler than you might imagine. Ordinarily, a plane
of data is thought of as a collection of columns, side by side. Instead, imagine the columns
stored end-to-end, and then coiled around a cylinder. This is the helix. Fortran programmers
will recognize that fortran’s way of storing 2-D arrays in one-dimensional memory is exactly
what we need for this helical mapping. Seismologists sometimes use the word “supertrace”
to describe a collection of seismograms stored “end-to-end”. Figure 4.2 shows a helical mesh
for 2-D data on a cylinder. Darkened squares depict a 2-D filter shaped like the Laplacian
operator ∂xx + ∂yy . The input data, the filter, and the output data are all on helical meshes all
of which could be unrolled into linear strips. A compact 2-D filter like a Laplacian, on a helix
is a sparse 1-D filter with long empty gaps.

Since the values output from filtering can be computed in any order, we can slide the filter
coil over the data coil in any direction. The order that you produce the outputs is irrelevant.
You could compute the results in parallel. We could, however, slide the filter over the data in
the screwing order that a nut passes over a bolt. The screw order is the same order that would be
used if we were to unwind the coils into one-dimensional strips and convolve them across one
another. The same filter coefficients overlay the same data values if the 2-D coils are unwound
into 1-D strips. The helix idea allows us to obtain the same convolution output in either of two
ways, a one-dimensional way, or a two-dimensional way. I used the one-dimensional way to
compute the obviously two-dimensional result in Figure 4.1.

4.1. FILTERING ON A HELIX 99

d

a b c

Figure 4.2: Filtering on a helix. The same filter coefficients overlay the same data val-
ues if the 2-D coils are unwound into 1-D strips. (Mathematica drawing by Sergey Fomel)
hlx-sergey-helix [CR]

4.1.1 Review of 1-D recursive filters

Convolution is the operation we do on polynomial coefficients when we multiply polyno-
mials. Deconvolution is likewise for polynomial division. Often these ideas are described
as polynomials in the variable Z . Take X (Z) to denote the polynomial whose coefficients
are samples of input data, and let A(Z) likewise denote the filter. The convention I adopt
here is that the first coefficient of the filter has the value +1, so the filter’s polynomial is
A(Z) = 1+ a1 Z + a2 Z2+ ·· · . To see how to convolve, we now identify the coefficient of
Z k in the product Y (Z) = A(Z)X (Z). The usual case (k larger than the number Na of filter
coefficients) is

yk = xk+
Na
∑

i=1
ai xk−i (4.1)

Convolution computes yk from xk whereas deconvolution (also called back substitution) does
the reverse. Rearranging (4.1) we get

xk = yk−
Na
∑

i=1
ai xk−i (4.2)

where now we are finding the output xk from its past outputs xk−i and from the present input
yk. We see that the deconvolution process is essentially the same as the convolution process,

100 CHAPTER 4. THE HELICAL COORDINATE

except that the filter coefficients are used with opposite polarity; and they are applied to the
past outputs instead of the past inputs. That is why deconvolution must be done sequentially
while convolution can be done in parallel.

4.1.2 Multidimensional deconvolution breakthrough

Deconvolution (polynomial division) can undo convolution (polynomial multiplication). A
magical property of the helix is that we can consider 1-D convolution to be the same as 2-D
convolution. Hence is a second magical property: We can use 1-D deconvolution to undo
convolution, whether that convolution was 1-D or 2-D. Thus, we have discovered how to undo
2-D convolution. We have discovered that 2-D deconvolution on a helix is equivalent to 1-D
deconvolution. The helix enables us to do multidimensional deconvolution.

Deconvolution is recursive filtering. Recursive filter outputs cannot be computed in paral-
lel, but must be computed sequentially as in one dimension, namely, in the order that the nut
screws on the bolt.

Recursive filtering sometimes solves big problems with astonishing speed. It can propa-
gate energy rapidly for long distances. Unfortunately, recursive filtering can also be unstable.
The most interesting case, near resonance, is also near instability. There is a large literature
and extensive technology about recursive filtering in one dimension. The helix allows us to
apply that technology to two (and more) dimensions. It is a huge technological breakthrough.

In 3-D we simply append one plane after another (like a 3-D fortran array). It is easier to
code than to explain or visualize a spool or torus wrapped with string, etc.

4.1.3 Examples of simple 2-D recursive filters

Let us associate x- and y-derivatives with a finite-difference stencil or template. (For simplic-
ity take 1x =1y = 1.)

∂

∂x
= 1 −1 (4.3)

∂

∂y
= 1

−1 (4.4)

Convolving a data plane with the stencil (4.3) forms the x-derivative of the plane. Convolving
a data plane with the stencil (4.4) forms the y-derivative of the plane. On the other hand,
deconvolving with (4.3) integrates data along the x-axis for each y. Likewise, deconvolving
with (4.4) integrates data along the y-axis for each x . Next we look at a fully two-dimensional
operator (like the cross derivative ∂xy).

A nontrivial two-dimensional convolution stencil is

4.1. FILTERING ON A HELIX 101

0 −1/4
1 −1/4

−1/4 −1/4
(4.5)

We will convolve and deconvolve a data plane with this operator. Although everything is
shown on a plane, the actual computations are done in one dimension with equations (4.1) and
(4.2). Let us manufacture the simple data plane shown on the left in Figure 4.3. Beginning
with a zero-valued plane, we add in a copy of the filter (4.5) near the top of the frame. Nearby
add another copy with opposite polarity. Finally add some impulses near the bottom boundary.
The second frame in Figure 4.3 is the result of deconvolution by the filter (4.5) using the one-
dimensional equation (4.2). Notice that deconvolution turns the filter itself into an impulse,
while it turns the impulses into comet-like images. The use of a helix is evident by the comet
images wrapping around the vertical axis. The filtering in Figure 4.3 ran along a helix from left

Figure 4.3: Illustration of 2-D deconvolution. Left is the input. Right is after deconvolution
with the filter (4.5) as preformed by by module polydiv hlx-wrap90 [ER]

to right. Figure 4.4 shows a second filtering running from right to left. Filtering in the reverse
direction is the adjoint. After deconvolving both ways, we have accomplished a symmetical
smoothing. The final frame undoes the smoothing to bring us exactly back to where we started.
The smoothing was done with two passes of deconvolution and it is undone by two passes of
convolution. No errors, no evidence remains of any of the boundaries where we have wrapped
and truncated.

Chapter 5 explains the important practical role to be played by a multidimensional operator
for which we know the exact inverse. Other than multidimensional Fourier transformation,
transforms based on polynomial multiplication and division on a helix are the only known
easily invertible linear operators.

In seismology we often have occasion to steer summation along beams. Such an impulse
response is shown in Figure 4.6. Of special interest are filters that destroy plane waves. The
inverse of such a filter creates plane waves. Such filters are like wave equations. A filter that
creates two plane waves is illustrated in figure 4.5.

102 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.4: Recursive filtering backwards (leftward on the space axis) is done by the adjoint
of 2-D deconvolution. Here we see that 2-D deconvolution compounded with its adjoint is
exactly inverted by 2-D convolution and its adjoint. hlx-hback90 [ER]

Figure 4.5: A simple low-order
2-D filter whose inverse contains
plane waves of two different dips.
One of them is spatially aliased.
hlx-waves90 [ER]

Figure 4.6: A simple low-order 2-D filter whose inverse times its inverse adjoint, is approxi-
mately a dipping seismic arrival. hlx-dip90 [ER]

4.1. FILTERING ON A HELIX 103

4.1.4 Coding multidimensional de/convolution

Let us unroll the filter helix seen in Figure 4.2 and see what we have. Start from the idea that
a 2-D filter is generally made from a cluster of values near one another in two dimensions
similar to the Laplacian operator in the figure. We see that in the helical approach, a 2-D filter
is a 1-D filter containing some long intervals of zeros. The intervals are about the length of a
1-D seismogram.

Our program for 2-D convolution with a 1-D convolution program, could convolve with
the somewhat long 1-D strip, but it is much more cost effective to ignore the many zeros,
which is what we do. We do not multiply by the backside zeros, nor do we even store them
in memory. Whereas an ordinary convolution program would do time shifting by a code line
like iy=ix+lag, Module helicon on the following page ignores the many zero filter values
on backside of the tube by using the code iy=ix+lag(ia) where a counter ia ranges over the
nonzero filter coefficients. Before operator helicon is invoked, we need to prepare two lists,
one list containing nonzero filter coefficients flt(ia), and the other list containing the corre-
sponding lags lag(ia) measured to include multiple wraps around the helix. For example, the
2-D Laplace operator can be thought of as the 1-D filter

1 0 · · · 0 1 −4 1 0 · · · 0 1 helical boundaries−−−−−−−−−→
1

1 −4 1
1

(4.6)

The first filter coefficient in equation (4.6) is +1 as implicit to module helicon. To apply the
Laplacian on a 1000×1000 mesh requires the filter inputs:

i lag(i) flt(i)

--- ------ -----

1 999 1

2 1000 -4

3 1001 1

4 2000 1

Here we choose to use “declaration of a type”, a modern computer language feature that
is absent from Fortran 77. Fortran 77 has the built in complex arithmetic type. In module
helix we define a type filter, actually, a helix filter. After making this definition, it will
be used by many programs. The helix filter consists of three vectors, a real valued vector of
filter coefficients, an integer valued vector of filter lags, and an optional vector that has logical
values “.TRUE.” for output locations that will not be computed (either because of boundary
conditions or because of missing inputs). The filter vectors are the size of the nonzero filter
coefficents (excluding the leading 1.) while the logical vector is long and relates to the data
size. The helix module allocates and frees memory for a helix filter. By default, the logical
vector is not allocated but is set to null with the nullify operator and ignored.

module helix { # DEFINE helix filter type

type filter {

real, dimension(:), pointer :: flt # (nh) filter coefficients

104 CHAPTER 4. THE HELICAL COORDINATE

integer, dimension(:), pointer :: lag # (nh) filter lags

logical, dimension(:), pointer :: mis # (nd) boundary conditions

}

contains

subroutine allocatehelix(aa, nh) { # allocate a filter

type(filter) :: aa

integer :: nh # count of filter coefs (excl 1)

allocate(aa%flt(nh), aa%lag(nh)) # allocate filter and lags.

nullify(aa%mis) # set null pointer for "mis".

aa%flt = 0. # zero filter coef values

}

subroutine deallocatehelix(aa) { # destroy a filter

type(filter) :: aa

deallocate(aa%flt, aa%lag) # free memory

if(associated(aa%mis)) # if logicals were allocated

deallocate(aa%mis) # free them

}

}

For those of you with no Fortran 90 experience, the “%” appearing in the helix module
denotes a pointer. Fortran 77 has no pointers (or everything is a pointer). The C, C++, and
Java languages use “.” to denote pointers. C and C++ also have a second type of pointer
denoted by “->”. The behavior of pointers is somewhat different in each language. Never-
the-less, the idea is simple. In module helicon on the current page you see the expression
aa%flt(ia). It refers to the filter named aa. Any filter defined by the helix module contains
three vectors, one of which is named flt. The second component of the flt vector in the
aa filter is referred to as aa%flt(2) which in the example above refers to the value 4.0 in the
center of the laplacian operator. For data sets like above with 1000 points on the 1-axis, this
value 4.0 occurs after 1000 lags, thus aa%lag(2)=1000.

Our first convolution operator tcai1 on page 9 was limited to one dimension and a partic-
ular choice of end conditions. With the helix and Fortran 90 pointers, the operator helicon on
the current page is a multidimensional filter with considerable flexibility (because of the mis

vector) to work around boundaries and missing data.

module helicon { # Convolution, inverse to deconvolution.

Requires the filter be causal with an implicit "1." at the onset.

use helix

type(filter) :: aa

#% _init(aa)

#% _lop (xx, yy)

integer iy, ix, ia

if(adj) # zero lag

xx += yy

else

yy += xx

do ia = 1, size(aa%lag) {

do iy = 1 + aa%lag(ia), size(yy) {

if(associated(aa%mis)) { if(aa%mis(iy)) cycle}

ix = iy - aa%lag(ia)

if(adj)

xx(ix) += yy(iy) * aa%flt(ia)

4.1. FILTERING ON A HELIX 105

else

yy(iy) += xx(ix) * aa%flt(ia)

}

}

}

The code fragment aa%lag(ia) corresponds to b-1 in tcai1 on page 9.

Operator helicon did the convolution job for Figure 4.1. As with tcai1 on page 9 the
adjoint of filtering is filtering backwards which means unscrewing the helix.

The companion to convolution is deconvolution. The module polydiv on this page is
essentially the same as polydiv1 on page 20, but here it was coded using our new filter

type in module helix on page 20 which will simplify our many future uses of convolution
and deconvolution. Although convolution allows us to work around missing input values,
deconvolution does not (any input affects all subsequent outputs), so polydiv never references
aa%mis(ia).

module polydiv { # Helix polynomial division

use helix

integer :: nd

type(filter) :: aa

real, dimension (nd), allocatable :: tt

#% _init (nd, aa)

#% _lop (xx, yy)

integer ia, ix, iy

tt = 0.

if(adj) {

do ix= nd, 1, -1 {

tt(ix) = yy(ix)

do ia = 1, size(aa%lag) {

iy = ix + aa%lag(ia); if(iy > nd) next

tt(ix) -= aa%flt(ia) * tt(iy)

}

}

xx += tt

} else {

do iy= 1, nd {

tt(iy) = xx(iy)

do ia = 1, size(aa%lag) {

ix = iy - aa%lag(ia); if(ix < 1) next

tt(iy) -= aa%flt(ia) * tt(ix)

}

}

yy += tt

}

}

EXERCISES:

1 Observe the matrix matrix (1.4) which corresponds to subroutine tcai1 on page 9. What
is the matrix corresponding to helicon on the facing page?

106 CHAPTER 4. THE HELICAL COORDINATE

4.1.5 Causality in two-dimensions

In one dimension, most filters of interest have a short memory. Significant filter coefficients
are concentrated shortly after t = 0. The favorite example in Physics is the damped harmonic
oscillator, all of which is packed into a two-lag filter (second order differential equation). The
complete story is rich in mathematics and in concepts, but to sum up, filters fall into two
categories according to the numerical values of their coefficients. There are filters for which
equations (4.1) and (4.2) work as desired and expected. These filters are called “minimum
phase”. There are also filters for which (4.2) is a disaster numerically, the feedback process
diverging to infinity.

Divergent cases correspond to physical processes that require boundary conditions. Equa-
tion (4.2) only allows for initial conditions. I oversimplify by trying to collapse an entire book
(FGDP) into a few sentences by saying here that for any fixed spectrum there exist many fil-
ters. Of these, only one has stable polynomial division. That filter has its energy compacted
as soon as possible after the “1.0” at zero lag.

Now let us turn to two dimensions. Filters of interest will correspond to energy concen-
trated near the end of a helix. Let us examine the end of a helix. At the very end, as in the 1-D
case, is a coefficient with the numerical value 1.0. Keeping only coefficients within two mesh
points in any direction from the 1.0, we copy the coefficients from near the end of the helix to
a cartesian mesh like this:

h c 0
p d 0
q e 1
s f a
u g b

=

h c ·
p d ·
q e ·
s f a
u g b

+

· · 0
· · 0
· · 1
· · ·
· · ·

2−D filter = variable + constrained

(4.7)

where a,b,c, ...,u are adjustable coefficients.

Which side of the little rectangular patch of coefficients we choose to place the 1.0 is
rather arbitrary. The important matter is that as a matter of principle, the 1.0 is expected to
lie along one side of the little patch. It is rarely (if ever) found at a corner of the patch. It is
important that beyond the 1.0 (in whatever direction that may be) the filter coefficients must
be zero because in one dimension, these coefficients lie before zero lag. Our foundations,
the basic convolution-deconvolution pair (4.1) and (4.2) are applicable only to filters with all
coefficients after zero lag.

Time-series analysis is rich with concepts that the helix now allows us to apply to many
dimensions. First is the notion of an impulse function. Observe that an impulse function on
the 2-D surface of the helical cylinder maps to an impulse function on the 1-D line of the
unwound coil. An autocorrelation function that is an impulse corresponds both to a white
(constant) spectrum in 1-D and to a white (constant) spectrum in 2-D. Next we look at a
particularly important autocorrelation function and see how 2-D is the same as 1-D.

4.2. FINITE DIFFERENCES ON A HELIX 107

4.2 FINITE DIFFERENCES ON A HELIX

The function

r = −1 0 · · · 0 −1 4 −1 0 · · · 0 −1 (4.8)

is an autocorrelation function. It is symmetrical about the “4” and its Fourier transform is
positive for all frequencies. Digging out our old textbooks1 we discover how to compute
a causal wavelet with this autocorrelation. I used the “Kolmogoroff spectral-factorization
method” to find this wavelet h:

h = 1.791 −.651 −.044 −.024 · · · · · · −.044 −.087 −.200 −.558
(4.9)

According to the Kolmogoroff theory, if we form the autocorrelation of h, we will get r. This
is not obvious from the numbers themselves because the computation requires a little work.

Let the time reversed version of h be denoted h′. This notation is consistant with an idea
from Chapter 1 that the adjoint of a filter matrix is another filter matrix with a reversed filter.
In engineering it is conventional to use the asterisk symbol “∗” to denote convolution. Thus,
the idea that the autocorrelation of a signal h is a convolution of the signal h with its time
reverse (adjoint) can be written as h′ ∗h= h∗h′ = r.

Wind the signal r around a vertical-axis helix to see its two-dimensional shape R:

r
helical boundaries−−−−−−−−−→

−1
−1 4 −1
−1

= R (4.10)

This 2-D filter is the negative of the finite-difference representation of the Laplacian operator,
generally denoted ∇2 = ∂2

∂x2 + ∂2

∂y2 . Now for the magic: Wind the signal h around the same
helix to see its two-dimensional shape H

H = 1.791 −.651 −.044 −.024 · · ·
· · · −.044 −.087 −.200 −.558 (4.11)

In the representation (4.11) we see the coefficients diminishing rapidly away from maximum
value 1.791. My claim is that the two-dimensional autocorrelation of (4.11) is (4.10). You
verified this idea earlier when the numbers were all ones. You can check it again in a few
moments if you drop the small values, say 0.2 and smaller.

Since the autocorrelation of H is H ′ ∗H =R =−∇2 is a second derivative, the operator
H must be something like a first derivative. As a geophysicist, I found it natural to compare
the operator ∂

∂y with H by applying them to a local topographic map. The result shown in
Figure 4.7 is that H enhances drainage patterns whereas ∂

∂y enhances mountain ridges.
1PVI or FGDP, for example, explain spectral factorization. More concisely in PVI, more richly in FGDP.

108 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.7: Topography, helical derivative, slope south. hlx-helocut90 [ER,M]

4.2. FINITE DIFFERENCES ON A HELIX 109

The operator H has curious similarities and differences with the familiar gradient and di-
vergence operators. In two-dimensional physical space, the gradient maps one field to two
fields (north slope and east slope). The factorization of −∇2 with the helix gives us the opera-
tor H that maps one field to one field. Being a one-to-one transformation (unlike gradient and
divergence) the operator H is potentially invertible by deconvolution (recursive filtering).

I have chosen the name2 “helix derivative” or “helical derivative” for the operator H . A
telephone pole has a narrow shadow behind it. The helix integral (middle frame of Figure 4.8)
and the helix derivative (left frame) show shadows with an angular bandwidth approaching
180◦.

Our construction makes H have the energy spectrum k2
x + k2

y, so the magnitude of the
Fourier transform is

√

k2
x + k2

y . It is a cone centered and with value zero at the origin. By
contrast, the components of the ordinary gradient have amplitude responses |kx | and |ky| that
are lines of zero across the (kx ,ky)-plane.

The rotationally invariant cone in the Fourier domain contrasts sharply with the nonro-
tationally invariant function shape in (x , y)-space. The difference must arise from the phase
spectrum. The factorization (4.11) is nonunique in that causality associated with the helix
mapping can be defined along either x- or y-axes; thus the operator (4.11) can be rotated or
reflected.

This is where the story all comes together. One-dimensional theory, either the old Kol-
mogoroff spectral factorization, or the new Wilson-Burg spectral-factorization method pro-
duces not merely a causal wavelet with the required autocorrelation. It produces one that is
stable in deconvolution. Using H in one-dimensional polynomial division, we can solve many
formerly difficult problems very rapidly. Consider the Laplace equation with sources (Pois-
son’s equation). Polynomial division and its reverse (adjoint) gives us p= (q/H)/H ′ which
means that we have solved ∇2p = −q by using polynomial division on a helix. Using the
seven coefficients shown, the cost is fourteen multiplications (because we need to run both
ways) per mesh point. An example is shown in Figure 4.8.

Figure 4.8 contains both the helix derivative and its inverse. Contrast them to the x- or y-
derivatives (doublets) and their inverses (axis-parallel lines in the (x , y)-plane). Simple deriva-
tives are highly directional whereas the helix derivative is only slightly directional achieving
its meagre directionality entirely from its phase spectrum.

In practice we often require an isotropic filter. Such a filter is a function of kr =
√

k2
x + k2

y .
It could be represented as a sum of helix derivatives to integer powers.

2Any fact this basic should be named in some earlier field of mathematics or theoretical physics. Ad-
mittedly, the concept exists on an infinite cartesian plane without a helix, but all my codes in a finite space
involve the helix, and the helix concept led me to it.

110 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.8: Deconvolution by a filter whose autocorrelation is the two-dimensional Laplacian
operator. Amounts to solving the Poisson equation. Left is q; Middle is q/H ; Right is
(q/H)/H ′. hlx-lapfac90 [ER]

4.2.1 Matrix view of the helix

Physics on a helix can be viewed thru the eyes of matrices and numerical analysis. This is not
easy because the matrices are so huge. Discretize the (x , y)-plane to an N ×M array and pack
the array into a vector of N ×M components. Likewise pack the Laplacian operator ∂xx +∂yy

into a matrix. For a 4×3 plane, that matrix is shown in equation (4.12).

− ∇2 =











































4 −1 · · −1 · · · · · · ·
−1 4 −1 · · −1 · · · · · ·
· −1 4 −1 · · −1 · · · · ·
· · −1 4 h · · −1 · · · ·
−1 · · h 4 −1 · · −1 · · ·
· −1 · · −1 4 −1 · · −1 · ·
· · −1 · · −1 4 −1 · · −1 ·
· · · −1 · · −1 4 h · · −1
· · · · −1 · · h 4 −1 · ·
· · · · · −1 · · −1 4 −1 ·
· · · · · · −1 · · −1 4 −1
· · · · · · · −1 · · −1 4











































(4.12)

The two-dimensional matrix of coefficients for the Laplacian operator is shown in (4.12),
where, on a cartesian space, h = 0, and in the helix geometry, h =−1. (A similar partitioned
matrix arises from packing a cylindrical surface into a 4× 3 array.) Notice that the parti-
tioning becomes transparent for the helix, h = −1. With the partitioning thus invisible, the
matrix simply represents one-dimensional convolution and we have an alternative analytical
approach, one-dimensional Fourier Transform. We often need to solve sets of simultaneous
equations with a matrix similar to (4.12). The method we use is triangular factorization.

Although the autocorrelation r has mostly zero values, the factored autocorrelation a has
a great number of nonzero terms, but fortunately they seem to be converging rapidly (in the

4.3. CAUSALITY AND SPECTAL FACTORIZATION 111

middle) so truncation (of the middle coefficients) seems reasonable. I wish I could show you a
larger matrix, but all I can do is to pack the signal a into shifted columns of a lower triangular
matrix A like this:

A =











































1.8 · · · · · · · · · · ·
−.6 1.8 · · · · · · · · · ·
0.0 −.6 1.8 · · · · · · · · ·
−.2 0.0 −.6 1.8 · · · · · · · ·
−.6 −.2 0.0 −.6 1.8 · · · · · · ·
· −.6 −.2 0.0 −.6 1.8 · · · · · ·
· · −.6 −.2 0.0 −.6 1.8 · · · · ·
· · · −.6 −.2 0.0 −.6 1.8 · · · ·
· · · · −.6 −.2 0.0 −.6 1.8 · · ·
· · · · · −.6 −.2 0.0 −.6 1.8 · ·
· · · · · · −.6 −.2 0.0 −.6 1.8 ·
· · · · · · · −.6 −.2 0.0 −.6 1.8











































(4.13)

If you will allow me some truncation approximations, I now claim that the laplacian repre-
sented by the matrix in equation (4.12) is factored into two parts −∇2 = A′A which are upper
and lower triangular matrices whose product forms the autocorrelation seen in (4.12). Recall
that triangular matrices allow quick solutions of simultaneous equations by backsubstitution.
That is what we do with our deconvolution program.

4.3 CAUSALITY AND SPECTAL FACTORIZATION

Mathematics sometimes seems a mundane subject, like when it does the “accounting” for
an engineer. Other times it brings unexpected amazing new concepts into our lives. This is
the case with the study of causality and spectral factorization. There are many little-known,
amazing, fundamental ideas here I would like to tell you about. We won’t get to the bottom of
any of them but it’s fun and useful to see what they are and how to use them.

Start with an example. Consider a mechanical object. We can strain it and watch it stress
or we can stress it and watch it strain. We feel knowledge of the present and past stress history
is all we need to determine the present value of strain. Likewise, the converse, history of
strain should tell us the stress. We could say there is a filter that takes us from stress to strain;
likewise another filter takes us from strain to stress. What we have here is a pair of filters that
are mutually inverse under convolution. In the Fourier domain, one is literally the inverse of
the other. What is remarkable is that in the time domain, both are causal. They both vanish
before zero lag τ = 0.

Not all causal filters have a causal inverse. The best known name for one that does is
“minimum-phase filter.” Unfortunately, this name is not suggestive of the fundamental prop-
erty of interest, “causal with a causal (convolutional) inverse.” I could call it CwCI. An exam-
ple of a causal filter without a causal inverse is the unit delay operator — with Z -transforms,
the operator Z itself. If you delay something, you can’t get it back without seeing into the

112 CHAPTER 4. THE HELICAL COORDINATE

future, which you are not allowed to do. Mathematically, 1/Z cannot be expressed as a poly-
nomial (actually, a convergent infinite series) in positive powers of Z .

Physics books don’t tell us where to expect to find transfer functions that are CwCI. I
think I know why they don’t. Any causal filter has a “sharp edge” at zero time lag where it
switches from nonresponsiveness to responsiveness. The sharp edge might cause the spectrum
to be large at infinite frequency. If so, the inverse filter is small at infinite frequency. Either
way, one of the two filters is unmanageable with Fourier transform theory which (you might
have noticed in the mathematical fine print) requires signals (and spectra) to have finite energy
which means the function must get real small in that immense space on the t-axis and the ω

axis. It is impossible for a function to be small and its inverse be small. These imponderables
get more managable in the world of Time Series Analysis (discretized time axis).

4.3.1 The spectral factorization concept

Interesting questions arise when we are given a spectrum and find ourselves asking how to
find a filter that has that spectrum. Is the answer unique? We’ll see not. Is there always an
answer that is causal? Almost always, yes. Is there always an answer that is causal with a
causal inverse (CwCI)? Almost always, yes.

Let us have an example. Consider a filter like the familiar time derivative (1,−1) except
let us downweight the−1 a tiny bit, say (1,−ρ) where 0 << ρ < 1. Now the filter (1,−ρ) has
a spectrum (1−ρZ)(1−ρ/Z) with autocorrelation coefficients (−ρ, 1+ρ2,−ρ) that look a
lot like a second derivative, but it is a tiny bit bigger in the middle. Two different waveforms,
(1,−ρ) and its time reverse both have the same autocorrelation. Spectral factorization could
give us both (1,−ρ) and (ρ,−1) but we always want the one that is CwCI. The bad one is
weaker on its first pulse. Its inverse is not causal. Below are two expressions for the filter
inverse to (ρ,−1), the first divergent (filter coefficients at infinite lag are infinitely strong), the
second convergent but noncausal.

1
ρ− Z

=
1
ρ

(1+ Z/ρ+ Z 2/ρ2+·· ·) (4.14)

1
ρ− Z

=
−1
Z

(1+ρ/Z +ρ2/Z2+·· ·) (4.15)

(Please multiply each equation by ρ− Z and see it reduce to 1= 1).

So we start with a power spectrum and we should find a CwCI filter with that energy
spectrum. If you input to the filter an infinite sequence of random numbers (white noise) you
should output something with the original power spectrum.

We easily inverse Fourier transform the square root of the power spectrum getting a sym-
metrical time function, but we need a function that vanishes before τ = 0. On the other hand,
if we already had a causal filter with the correct spectrum we could manufacture many others.
To do so all we need is a family of delay operators to convolve with. A pure delay filter does
not change the spectrum of anything. Same for frequency-dependent delay operators. Here

4.3. CAUSALITY AND SPECTAL FACTORIZATION 113

is an example of a frequency-dependent delay operator: First convolve with (1,2) and then
deconvolve with (2,1). Both these have the same amplitude spectrum so their ratio has a unit
amplitude (and nontrivial phase). If you multiply (1+ 2Z)/(2+ Z) by its Fourier conjugate
(replace Z by 1/Z) the resulting spectrum is 1 for all ω.

Anything whose nature is delay is death to CwCI. The CwCI has its energy as close as
possible to τ = 0. More formally, my first book, FGDP, proves that the CwCI filter has for all
time τ more energy between t = 0 and t = τ than any other filter with the same spectrum.

Spectra can be factorized by an amazingly wide variety of techniques, each of which gives
you a different insight into this strange beast. They can be factorized by factoring polynomials,
by inserting power series into other power series, by solving least squares problems, by taking
logarithms and exponentials in the Fourier domain. I’ve coded most of them and still find them
all somewhat mysterious.

Theorems in Fourier analysis can be interpreted physically in two different ways, one as
given, the other with time and frequency reversed. For example, convolution in one domain
amounts to multiplication in the other. If we were to express the CwCI concept with reversed
domains, instead of saying the “energy comes as quick as possible after τ = 0” we would say
“the frequency function is as close to ω= 0 as possible.” In other words, it is minimally wiggly
with time. Most applications of spectral factorization begin with a spectrum, a real, positive
function of frequency. I once achieved minor fame by starting with a real, positive function
of space, a total magnetic field

√

H 2
x +H 2

z measured along the x-axis and I reconstructed the
magnetic field components Hx and Hz that were minimally wiggly in space.

4.3.2 Cholesky decomposition

Conceptually the simplest computational method of spectral factorization might be “Cholesky
decomposition.” For example, the matrix of (4.13) could have been found by Cholesky factor-
ization of (4.12). The Cholesky algorithm takes a positive-definite matrix Q and factors it into
a triangular matrix times its transpose, say Q= T′T.

It is easy to reinvent the Cholesky factorization algorithm. To do so, simply write all the
components of a 3× 3 triangular matrix T and then explicitly multiply these elements times
the transpose matrix T′. You will find that you have everything you need to recursively build
the elements of T from the elements of Q. Likewise for a 4×4 matrix, etc.

The 1×1 case shows that the Cholesky algorithm requires square roots. Matrix elements
are not always numbers. Sometimes they are polynomials such as Z -transforms. To avoid
square roots there is a variation of the Cholesky method. In this variation, we factor Q into
Q= T′DT where D is a diagonal matrix.

Once a matrix has been factored into upper and lower triangles, solving simultaneous
equations is simply a matter of two backsubstitutions: (We looked at a special case of back-
substitution with equation (1.23).) For example, we often encounter simultaneous equations
of the form B′Bm = B′d. Suppose the positive-definite matrix B′B has been factored into

114 CHAPTER 4. THE HELICAL COORDINATE

triangle form T′Tm = B′d. To find m we first backsolve T′x = B′d for the vector x. Then
we backsolve Tm= x. When T happens to be a band matrix, then the first backsubstitution is
filtering down a helix and the second is filtering back up it. Polynomial division is a special
case of back substitution.

Poisson’s equation ∇2p=−q requires boundary conditions which we can honor when we
filter starting from both ends. We cannot simply solve Poisson’s equation as an initial-value
problem. We could insert the laplace operator into the polynomial division program, but the
solution would diverge.

Being a matrix method, the Cholesky method of factorization has a cost proportional to
the cube of the size of the matrix. Because our problems are very large and because the
Cholesky method does not produce a useful result if we stop part way to completion, we look
further. The Cholesky method is a powerful method but it does more than we require. The
Cholesky method does not require band matrices, yet these matrices are what we very often
find in applications, so we seek methods that take advantage of the special properties of band
matrices.

4.3.3 Toeplitz methods

Band matrices are often called Toeplitz matrices. In the subject of Time Series Analysis are
found spectral factorization methods that require computations proportional to the dimension
of the matrix squared. They can often be terminated early with a reasonable partial result.
Two Toeplitz methods, the Levinson method and the Burg method are described in my first
textbook, FGDP. Our interest is multidimensional data sets so the matrices of interest are truely
huge and the cost of Toeplitz methods is proportional to the square of the matrix size. Thus,
before we find Toeplitz methods especially useful, we may need to find ways to take advantage
of the sparsity of our filters.

4.3.4 Kolmogoroff spectral factorization

With Fourier analysis we find a method of spectral factorization that is as fast as Fourier
transformation, namely N log N for a matrix of size N . This is very appealing. An earlier
version of this book included such an algorithm. Pedagogically, I didn’t like it in this book
because it requires lengthy off-topic discussions of Fourier analysis which are already found
in both my first book FGDP and my third book PVI.

The Kolmogoroff calculation is based on the logarithm of the spectrum. The logarithm
of zero is minus infinity — an indicator that perhaps we cannot factorize a spectrum which
becomes zero at any frequency. Actually, the logarithmic infinity is the gentlest kind. The
logarithm of the smallest nonzero value in single precision arithmetic is about −36 which
might not ruin your average calculation. Mathematicians have shown that the integral of the
logarithm of the spectrum must be bounded so that some isolated zero values of the spectrum
are not a disaster. In other words, we can factor the (negative) second derivative to get the first

4.3. CAUSALITY AND SPECTAL FACTORIZATION 115

derivative. This suggests we will never find a causal bandpass filter. It is a contradiction to
desire both causality and a spectral band of zero gain.

The weakness of the Kolmogoroff method is related to its strength. Fourier methods
strictly require the matrix to be a band matrix. A problem many people would like to solve
is how to handle a matrix that is “almost” a band matrix — a matrix where any band changes
slowly with location.

4.3.5 Blind deconvolution

A area of applications that leads directly to spectral factorization is “blind deconvolution.”
Here we begin with a signal. We form its spectrum and factor it. We could simply inspect the
filter and interpret it, or we might deconvolve it out from the original data. This topic deserves
a fuller exposition, say for example as defined in some of my earlier books. Here we inspect a
novel example that incorporates the helix.

Figure 4.9: Raw seismic data on the sun (left). Impulse response of the sun (right) derived by
Helix-Kolmogoroff spectral factorization. hlx-solar [NR,M]

Solar physicists have learned how to measure the seismic field of the sun surface. If you
created an impulsive explosion on the surface of the sun, what would the response be? James
Rickett and I applied the helix idea along with Kolmogoroff spectral factorization to find
the impulse response of the sun. Figure 4.9 shows a raw data cube and the derived impulse
response. The sun is huge so the distance scale is in megameters (Mm). The United States
is 5 Mm wide. Vertical motion of the sun is measured with a video-camera like device that
measures vertical motion by doppler shift. From an acoustic/seismic point of view, the surface

116 CHAPTER 4. THE HELICAL COORDINATE

of the sun is a very noisy place. The figure shows time in kiloseconds (Ks). We see about 15
cycles in 5 Ks which is 1 cycle in about 333 sec. Thus the sun seems to oscillate vertically
with about a 5 minute period. The top plane of the raw data in Figure 4.9 (left panel) happens
to have a sun spot in the center. The data analysis here is not affected by the sun spot so please
ignore it.

The first step of the data processing is to transform the raw data to its spectrum. With the
helix assumption, computing the spectrum is virtually the same thing in 1-D space as in 3-D
space. The resulting spectrum was passed to Kolmogoroff spectral factorization code. The
resulting impulse response is on the right side of Figure 4.9. The plane we see on the right top
is not lag time τ = 0; it is lag time τ = 2 Ks. It shows circular rings, as ripples on a pond.
Later lag times (not shown) would be the larger circles of expanding waves. The front and side
planes show tent-like shapes. The slope of the tent gives the (inverse) velocity of the wave (as
seen on the surface of the sun). The horizontal velocity we see on the sun surface turns out
(by Snell’s law) to be the same as that at the bottom of the ray. On the front face at early times
we see the low velocity (steep) wavefronts and at later times we see the faster waves. This is
because the later arrivals reach more deeply into the sun. Look carefully, and you can see two
(or even three!) tents inside one another. These “inside tents” are the waves that have bounced
once (or more!) from the surface of the sun. When a ray goes down and back up to the sun
surface, it reflects and takes off again with the same ray shape. The result is that a given slope
on the traveltime curve can be found again at twice the distance at twice the time.

4.4 WILSON-BURG SPECTRAL FACTORIZATION

(If you are new to this material, you should pass over this section.) Spectral factorization is
the job of taking a power spectrum and from it finding a causal (zero before zero time) filter
with that spectrum. Methods for this task (there are many) not only produce a causal wavelet,
but they typically produce one whose convolutional inverse is also causal. (This is called the
“minimum phase” property.) In other words, with such a filter we can do stable deconvolution.
Here I introduce a new method of spectral factorization that looks particularly suitable for the
task at hand. I learned this new method from John Parker Burg who attributes it to an old
paper by Wilson (I find Burg’s explanation, below, much clearer than Wilson’s.)

Below find subroutine lapfac() which was used in the previous section to factor the
Laplacian operator. To invoke the factorization subroutine, you need to supply one side of
an autocorrelation function. For example, let us specify the negative of the 2-D Laplacian (an
autocorrelation) in a vector n = 256×256 points long.

rr(1) = 4.

rr(2) = -1.

rr(1+256) = -1.

Subroutine lapfac() finds the helical derivative (factored negative Laplacian) and then
prepares the required filter coefficient tables for the helix convolution and deconvolution sub-
routines.

4.4. WILSON-BURG SPECTRAL FACTORIZATION 117

module lapfac { # Factor 2-D Laplacian.

use wilson

contains

function lapfac2(eps, n1, na) result (aa) {

type(filter) :: aa, lap

real, intent(in) :: eps

integer, intent(in) :: n1, na

integer :: i

real :: a0, lap0

call allocatehelix(lap, 2) # laplacian filter

lap0 = 4. + eps # zero lag coeff.

lap%lag = (/ 1, n1 /) # lag(1)= 1; lag(2)=n1 # one side only

lap%flt = -1. # flt(1)=-1; flt(2)=-1

call allocatehelix(aa, 2*na) # laplacian derivative

aa%flt = 0.; # probably done already in allocation.

do i = 1, na {

aa%lag(i) = i # early lags (first row)

aa%lag(na+i) = n1 + i - na # late lags (second row)

}

call wilson_init(10 * n1)

call wilson_factor(20, lap0, lap, a0, aa)

call wilson_close()

call deallocatehelix(lap)

}

}

Subroutine lapfacn() has its main job done by subroutine wilson_factor() on the next page
shown after the Wilson-Burg theory.

4.4.1 Wilson-Burg theory

Newton’s iteration for square roots

at+1 =
1
2

(

at +
s

at

)

(4.16)

converges quadratically starting from any real initial guess a0 except zero. When a0 is nega-
tive, Newton’s iteration converges to the negative square root.

Quadratic convergence means that the square of the error at −
√

s at one iteration is pro-
portional to the error at the next iteration

at+1−
√

s ∼ (at −
√

s)2 = a2
t −2at

√
s+ s > 0 (4.17)

so, for example if the error is one significant digit at one iteration, at the next iteration it is
two digits, then four, etc. We cannot use equation (4.17) in place of the Newton iteration
itself, because it uses the answer

√
s to get the answer at+1, and also we need the factor of

proportionality. Notice, however, if we take the factor to be 1/(2at), then
√

s cancels and
equation (4.17) becomes itself the Newton iteration (4.16).

118 CHAPTER 4. THE HELICAL COORDINATE

Another interesting feature of the Newton iteration is that all iterations (except possibly
the initial guess) are above the ultimate square root. This is obvious from equation (4.17).

We can insert spectral functions in the Newton square-root iteration, for example s(ω) and
a(ω). Where the first guess a0 happens to match

√
s, it will match

√
s at all iterations. The

Newton iteration is

2
at+1

at
= 1 +

s

a2
t

(4.18)

Something inspires Wilson to express the spectrum S = ĀA as a Z -transform and then write
the iteration

Āt+1(1/Z)
Āt (1/Z)

+
At+1(Z)
At (Z)

= 1 +
S(Z)

Āt (1/Z) At (Z)
(4.19)

Now we are ready for the algorithm: Compute the right side of (4.19) by polynomial
division forwards and backwards and then add 1. Then abandon negative lags and take half of
the zero lag. Now you have At+1(Z)/At (Z). Multiply out (convolve) the denominator At (Z),
and you have the desired result At+1(Z). Iterate as long as you wish.

(Parenthetically, for those people familiar with the idea of minimum phase (if not, see
FGDP or PVI), we show that At+1(Z) is minimum phase: Both sides of (4.19) are positive,
as noted earlier. Both terms on the right are positive. Since the Newton iteration always
overestimates, the 1 dominates the rightmost term. After masking off the negative powers of
Z (and half the zero power), the right side of (4.19) adds two wavelets. The 1/2 is wholly
real, and hence its real part always dominates the real part of the rightmost term. Thus (after
masking negative powers) the wavelet on the right side of (4.19) has a positive real part, so
the phase cannot loop about the origin. This wavelet multiplies At (Z) to give the final wavelet
At+1(Z) and the product of two minimum-phase wavelets is minimum phase.)

The input of the program is the spectrum S(Z) and the output is the factor A(Z), a function
with the spectrum S(Z). I mention here that in later chapters of this book, the factor A(Z) is
known as the inverse Prediction-Error Filter (PEF). In the Wilson-Burg code below, S(Z) and
A(Z) are Z -transform polynomials but their lead coefficients are extracted off, so for example,
A(z) = (a0)+ (a1 Z +a2 Z2+·· ·) is broken into the two parts a0 and aa.

module wilson {

Wilson’s factorization

use helicon

use polydiv

integer, private :: n

real, dimension(:), allocatable, private :: auto, bb, cc, b, c

contains

subroutine wilson_init(nmax) {

integer, intent (in) :: nmax; n = nmax

allocate (auto(2*n-1), bb(2*n-1), cc(2*n-1), b(n), c(n))

}

subroutine wilson_factor(niter, s0, ss, a0, aa, verb) {

integer, intent(in) :: niter # Newton iterations

4.4. WILSON-BURG SPECTRAL FACTORIZATION 119

real, intent(in) :: s0 # autocorrelation zero lag

type(filter), intent(in) :: ss # autocorrelation, other lags

real, intent(out) :: a0 # factor, zero lag

type(filter) :: aa # factor, other lags

logical, intent(in) :: verb

optional :: verb

real :: eps

integer :: i, stat

auto = 0.; auto(n) = s0; b(1) =1. # initialize

auto(n+ss%lag) = ss%flt # autocorrelation

auto(n-ss%lag) = ss%flt # symmetrize input auto.

call helicon_init(aa) # multiply polynoms

call polydiv_init(2*n-1, aa) # divide polynoms

do i = 1, niter {

stat= polydiv_lop(.false.,.false., auto, bb) # bb = S/A

stat= polydiv_lop(.true.,.false., cc, bb) # cc = S/(AA’)

b(2:n) = 0.5*(cc(n+1:2*n-1) +

cc(n-1:1 :-1)) / cc(n) # b = plusside(1+cc)

eps = maxval(abs(b(2:n))); # "L1 norm"

if (present (verb)) { if (verb) write (0,*) i, eps}

stat= helicon_lop(.false., .false., b, c) # c = A b

aa%flt = c(1+aa%lag) # put on helix

if(eps < epsilon(a0)) break # convergence

}

a0 = sqrt(cc(n))

}

subroutine wilson_close () {

deallocate(auto, bb, cc, b, c)

call polydiv_close()

}

}

EXERCISES:

1 You hear from three different people that a more isotropic representation of the Laplacian
is minus one sixth of

−1 −4 −1
−4 20 −4
−1 −4 −1

What changes need to be made to subroutine lapfac()?

2 Fomel’s factorization: A simple trick to avoid division in square root computation is to run
Newton’s method on the inverse square root instead. The iteration is then R ′ = 1

2 R(3−
R2 X2) where R converges (quadratically) to 1/

√
X2. To get the square root, just multiply

R by X2. This leads to a reciprocal version of the Wilson-Burg algorithm. A′/A+ Ā′/ Ā=
3− AĀS Here is how it can work: Construct an inverse autocorrelation — for example, an
ideal isotropic smoother; make a guess for A (min-phase roughener); iterate: (1) compute
3− AA∗ S, (2) take its causal part, (3) convolve with A to get A′. Each iteration involves
just three convolutions (could be even done without helix).

120 CHAPTER 4. THE HELICAL COORDINATE

4.5 HELIX LOW-CUT FILTER

If you want to see some tracks on the side of a hill, you want to subtract the hill and see only the
tracks. Usually, however, you don’t have a very good model for the hill. As an expedient you
could apply a low-cut filter to remove all slowly variable functions of altitude. In chapter 1 we
found the Sea of Galilee in Figure 1.3 to be too smooth for viewing pleasure so we made the
roughened versions in Figure 1.6 using a filter based on equation (1.26), a one-dimensional
filter that we could apply over the x-axis or the y-axis. In Fourier space such a filter has a
response function of kx or a function of ky . The isotropy of physical space tells us it would be
more logical to design a filter that is a function of k2

x + k2
y . In Figure 4.7 we saw that the helix

derivative H does a nice job. The Fourier magnitude of its impulse response is kr =
√

k2
x + k2

y .
There is a little anisotropy connected with phase (which way should we wind the helix, on
x or y?) but it is not nearly so severe as that of either component of the gradient, the two
components having wholly different spectra, amplitude |kx | or |ky|.

It is nice having the 2-D helix derivative, but we can imagine even nicer 2-D low-cut
filters. In one dimension, equation (1.26) and (2.13) we designed a filters with an adjustable
parameter, a cutoff frequency. We don’t have such an object in 2-D so I set out to define one.
It came out somewhat abstract and complicated, and didn’t work very well, but along the way
I found a simpler parameter that is very effective in practice. We’ll look at it first.

Figure 4.10: Mammogram (medical
X-ray). The cancer is the “spoked
wheel.” (I apologize for the inability
of paper publishing technology to ex-
hibit a clear grey image.) The white
circles are metal foil used for naviga-
tion. The little halo around a circle
exhibits the impulse response of the
helix derivative. hlx-mam [ER,M]

First I had a problem preparing Figure 4.10. It shows shows the application of the helix
derivative to a medical X-ray. The problem was that the original X-ray was all positive values
of brightness so there was a massive amount of spatial low frequency present. Obviously an

4.5. HELIX LOW-CUT FILTER 121

x-derivative or a y-derivative would eliminate the low frequency, but the helix derivative did
not. This unpleasant surprise arises because the filter in equation (4.11) was truncated after
a finite number of terms. Adding up the terms actually displayed in equation (4.11), they
sum to .183 whereas theoretically the sum of all the terms should be zero. From the ratio of
.183/1.791 we can say that the filter pushes zero frequency amplitude 90% of the way to zero
value. When the image contains very much zero frequency amplitude, this is not good enough.
Better results could be obtained with more coefficients, and I did use more coefficients, but
simply removing the mean saved me from needing a costly number of filter coefficients.

We can visualize a plot of the magnitude of the 2-D Fourier transform of the filter (4.11).
It is a 2-D function of kx and ky and it should resemble kr =

√

k2
x + k2

y . It does look like this

even when the filter (4.11) has been truncated. The point of the cone kr =
√

k2
x + k2

y becomes
rounded and the truncated approximation of kr does not reach zero at the origin of the (kx ,ky)-
plane. We can force it to vanish at zero frequency by subtracting .183 from the lead coefficient
1.791. I did not do that subtraction in Figure 4.11 which explains the whiteness in the middle
of the lake.

Figure 4.11: Galilee roughened by gradient and by helical derivative. hlx-helgal [ER,M]

Now let us return to my more logical but less effective approach. I prepared a half dozen
medical X-rays like Figure 4.10. The doctor brought her young son to my office one evening
to evaluate the results. In a dark room I would show the original X-ray on a big screen and
then suddenly switch to the helix derivative. Every time I did this, her son would exclaim
“Wow!” The doctor was not so easily impressed, however. She was not accustomed to the
unfamiliar image. Fundamentally, the helix derivative applied to her data does compress the

122 CHAPTER 4. THE HELICAL COORDINATE

dynamic range making weaker features more readily discernable. We were sure of this from
theory and from various geophysical examples. The subjective problem was her unfamiliarity
with our display. I found that I could always spot anomalies more quickly on the filtered
display, but then I would feel more comfortable when I would discover those same anomalies
also present (though less evident) in the original data. Thinking this through, I decided the
doctor would likely have been more impressed had I used a spatial lowcut filter instead of the
helix derivative. That would have left the details of her image (above the cutoff frequency)
unchanged altering only the low frequencies, thereby allowing me to increase the gain.

In 1-D we easily make a low-cut filter by compounding a first derivative (which destroys
low frequencies) with a leaky integration (which undoes the derivative at all other frequen-
cies). We can do likewise with a second derivative. In Z -transform notation, we would use
something like (−Z−1+2.00− Z)/(−Z−1+2.01− Z). (The numerical choice of the .01 con-
trols the cutoff frequency.) We could use spectral factorization to break this spectrum into
causal and anticausal factors. The analogous filter in 2-D is −∇2/(−∇2+ k2

0) which could
also be factored as we did the helix derivative. I tried it. I ran into the problem that my helix
derivative operator had a practical built-in parameter, the number of coefficients, which also
behaves like a cutoff frequency. If I were to continue this project, I would use expressions for
−∇2/(−∇2+k2

0) directly in the Fourier domain where there is only one adjustable parameter,
the cutoff frequency k0, and there is no filter length to confuse the issue and puff-up the costs.

A final word about the doctor. As she was about to leave my office she suddenly asked
whether I had scratched one of her X-rays. We were looking at the helix derivative and it did
seem to show a big scratch. What should have been a line was broken into a string of dots.
I apologized in advance and handed her the original film negatives which she proceeded to
inspect. “Oh,” she said, “Bad news. There are calcification nodules along the ducts.” So the
scratch was not a scratch, but an important detail that had not been noticed on the original
X-ray.

In preparing an illustration for here, I learned one more lesson. The scratch was small,
so I enlarged a small portion of the mammogram for display. The very process of selecting
a small portion followed by scaling the amplitude between maximum and minimum darkness
of printer ink had the effect enhancing the visibility of the scratch on the mammogram itself.
Now Figure 4.12 shows it to be perhaps even clearer than on the helix derivative.

An operator for applying the helix filter is helderiv on this page.

module helderiv {

use lapfac

use helicon

type(filter), private :: aa

#% _init(n1, na, eps)

integer, intent (in) :: n1, na

real, intent (in) :: eps

aa = lapfac2(eps, n1, na)

call helicon_init(aa)

#% _lop (pp, qq)

integer stat1

stat1 = helicon_lop(adj, .false., pp, qq)

4.6. THE MULTIDIMENSIONAL HELIX 123

Figure 4.12: Not a scratch hlx-scratch [ER,M]

#% _close

call deallocatehelix(aa)

}

4.6 THE MULTIDIMENSIONAL HELIX

Till now the helix idea was discussed as if it were merely a two-dimensional concept. Here
we explore its multidimensional nature. Our main goal is to do multidimensional convolution
with a one-dimensional convolution program. This allows us to do multidimensional decon-
volution with a one-dimensional deconvolutional program which is “magic”, i.e. many novel
applications will follow.

We do multidimensional deconvolution with causal (one-sided) one-dimensional filters.
Equation (4.7) shows such a one-sided filter as it appears at the end of a 2-D helix. Figure 4.13
shows it in three dimensions. The top plane in Figure 4.13 is the 2-D filter seen in equation
(4.7). The top plane can be visualized as the area around the end of a helix. Above the top
plane are zero-valued anticausal filter coefficients.

It is natural to ask, “why not put the ‘1’ on a corner of the cube?” We could do that, but
that is not the most general possible form. A special case of Figure 4.13, stuffing much of
the volume with lots of zeros would amount to a ‘1’ on a corner. On the other hand, if we
assert the basic form has a ‘1’ on a corner we cannot get Figure 4.13 as a special case. In a
later chapter we’ll see that we often need as many coefficients as we can have near the ‘1’. In
Figure 4.13 we lose only those neighboring coefficients that 1-D causality requires.

Geometrically, the three-dimensional generalization of a helix is like string on a spool, but

124 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.13: A 3-D causal filter
at the starting end of a 3-D helix.
hlx-3dpef [NR]

1

that analogy does not illuminate our underlying conspiracy, which is to represent multidimen-
sional convolution and deconvolution as one-dimensional.

4.7 SUBSCRIPTING A MULTIDIMENSIONAL HELIX

Basic utilities transform back and forth between multidimensional matrix coordinates and
helix coordinates. The essential module used repeatedly in applications later in this book is
createhelixmod on page 126. We begin here from its intricate underpinnings.

Fortran77 has a concept of a multidimensional array being equivalent to a one-dimensional
array. Given that the hypercube specification nd=(n1,n2,n3,...) defines the storage dimen-

sion of a data array, we can refer to a data element as either dd(i1,i2,i3,...) or dd(i1

+n1*(i2-1) +n1*n2*(i3-1) +...). The helix says to refer to the multidimensional data by
its equivalent one-dimensional index (sometimes called its vector subscript or linear subscript).

The filter, however, is a much more complicated story than the data: First, we require
all filters to be causal. In other words, the Laplacian doesn’t fit very well, since it is intrin-
sically noncausal. If you really want noncausal filters, you will need to provide your own
time shifts outside the tools supplied here. Second, a filter is usually a small hypercube, say
aa(a1,a2,a3,...) and would often be stored as such. For the helix we must store it in a
special one-dimensional form. Either way, the numbers na= (a1,a2,a3,...) specify the di-
mension of the hypercube. In cube form, the entire cube could be indexed multidimensionally
as aa(i1,i2,...) or it could be indexed one-dimensionally as aa(ia,1,1,...) or some-
times3 aa(ia) by letting ia cover a large range. When a filter cube is stored in its normal
“tightly packed” form the formula for computing its one-dimensional index ia is

3Some programming minutia: Fortran77 does not allow you to refer to an array by both its cartesian
coordinates and by its linear subscript in the same subroutine. To access it both ways, you need a subroutine
call, or you dimension it as data(n1,n2,...) and then you refer to it as data(id,1,1,...). Fortran90
follows the same rule outside modules. Where modules use other modules, the compiler does not allow you
to refer to data both ways, unless the array is declared as allocatable.

4.7. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 125

ia = i1 +a1*(i2-1) +a1*a2*(i3-1) + ...

When the filter cube is stored in an array with the same dimensions as the data, data(n1,n2,n3,...),
the formula for ia is

ia = i1 +n1*(i2-1) +n1*n2*(i3-1) + ...

The fortran compiler knows how to convert from the multidimensional cartesian indices
to the linear index. We will need to do that, as well as the converse. Module cartesian

below contains two subroutines that explicitly provide us the transformations between the
linear index i and the multidimensional indices ii= (i1,i2,...). The two subroutines have
the logical names cart2line and line2cart.

module cartesian { # index transform (vector to matrix) and its inverse

contains

subroutine line2cart(nn, i, ii) {

integer, dimension(:), intent(in) :: nn # cartesian axes (n1,n2,n3,...)

integer, dimension(:), intent(out) :: ii # cartesn coords (i1,i2,i3,...)

integer , intent(in) :: i # equivalent 1-D linear index

integer :: axis, n123

n123 = 1

do axis = 1, size(nn) {

ii(axis) = mod((i-1)/n123, nn(axis)) + 1

n123 = n123 * nn(axis)

}

}

subroutine cart2line(nn, ii, i) {

integer, dimension(:), intent(in) :: nn, ii

integer :: i, axis, n123

n123 = 1; i = 1

do axis = 1, size(nn) {

i = i + (ii(axis)-1)*n123

n123 = n123 * nn(axis)

}

}

}

The fortran linear index is closely related to the helix. There is one major difference,
however, and that is the origin of the coordinates. To convert from the linear index to the helix
lag coordinate, we need to subtract the fortran linear index of the “1.0” which is usually taken
at center= (1+a1/2, 1+a2/2, ..., 1). (On the last dimension, there is no shift because
nobody stores the volume of zero values that would occur before the 1.0.) The cartesian

module fails for negative subscripts. Thus we need to be careful to avoid thinking of the
filter’s 1.0 (shown in Figure 4.13) as the origin of the multidimensional coordinate system
although the 1.0 is the origin in the one-dimensional coordinate system.

Even in one dimension (see the matrix in equation (1.4)), to define a filter operator we
need to know not only filter coefficients and a filter length, but we also need to know the data
length. To define a multidimensional filter using the helix idea, besides the properties intrinsic

126 CHAPTER 4. THE HELICAL COORDINATE

to the filter, we also need to know the circumference of the helix, i.e., the length on the 1-
axis of the data’s hypercube as well as the other dimensions nd=(n1,n2,...) of the data’s
hypecube.

Thinking about convolution on the helix, it is natural to think about the filter and data
being stored in the same way, that is, by reference to the data size. This would waste so
much space, however, that our helix filter module helix on page 103 instead stores the filter
coefficients in one vector and their lags in another. The i-th coefficient value of the filter goes
in aa%flt(i) and the i-th lag ia(i) goes in aa%lag(i). The lags are the same as the fortran
linear index except for the overall shift of the 1.0 of a cube of data dimension nd. Our module
for convolution on a helix, helicon on page 104, has already an implicit “1.0” at the filter’s
zero lag so we do not store it. (It is an error to do so.)

Module createhelixmod on this page allocates memory for a helix filter and builds filter
lags along the helix from the hypercube description. The hypercube description is not the lit-
eral cube seen in Figure 4.13 but some integers specifying that cube: the data cube dimensions
nd, likewise the filter cube dimensions na, the parameter center identifying the location of
the filter’s “1.0”, and a gap parameter used in a later chapter. To find the lag table, module
createhelixmod first finds the fortran linear index of the center point on the filter hypercube.
Everything before that has negative lag on the helix and can be ignored. (Likewise, in a later
chapter we see a gap parameter that effectively sets even more filter coefficients to zero so
their lags can be ignored too.) Then it sweeps from the center point over the rest of the filter
hypercube calculating for a data-sized cube nd, the fortran linear index of each filter element.

module createhelixmod { # Create helix filter lags and mis

use helix

use cartesian

contains

function createhelix(nd, center, gap, na) result(aa) {

type(filter) :: aa # needed by helicon.

integer, dimension(:), intent(in) :: nd, na # data and filter axes

integer, dimension(:), intent(in) :: center # normally (na1/2,na2/2,...,1)

integer, dimension(:), intent(in) :: gap # normally (0, 0, 0,...,0)

integer, dimension(size(nd)) :: ii # cartesian indexes

integer :: na123, ia, ndim, nh, lag0a,lag0d

integer, dimension(:), allocatable:: lag

nh= 0; na123 = product(na); ndim = size(nd)

allocate(lag(na123)) # filter cube size

call cart2line (na, center, lag0a) # lag0a = index pointing to the "1.0"

do ia = 1+lag0a, na123 { # ia is fortran linear index.

call line2cart(na, ia, ii) # ii(ia) is fortran array indices.

if(any(ii <= gap)) next # ignore some locations

nh = nh + 1 # got another live one.

call cart2line(nd, ii, lag(nh)) # get its fortran linear index

}

call cart2line(nd, center, lag0d) # lag0d is center shift for nd_cube

call allocatehelix(aa, nh) # nh becomes size of filter on helix.

aa%lag = lag(1:nh) - lag0d; # lag = fortran_linear_index - center

aa%flt = 0.0; deallocate(lag)

}

4.7. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 127

}

Near the end of the code you see the calculation of a parameter lag0d. This is the count of the
number of zeros that a data-sized fortran array would store in a filter cube before the filter’s
1.0. We need to subtract this shift from the filter’s fortran linear index to get the lag on the
helix.

A filter can be represented literally as a multidimensional cube like equation (4.7) shows us
in two dimensions or like Figure 4.13 shows us in three dimensions. Unlike the helical form, in
literal cube form, the zeros preceding the “1.0” are explicitly present so lag0 needs to be added
back in to get the fortran subscript. To convert a helix filter aa to fortran’s multidimensional
hypercube cube(n1,n2,...) is module box:

module box { # Convert helix filter to hypercube: cube(na(1),na(2),...)

use helix

use cartesian

contains

subroutine boxn(nd, center, na, aa, cube) {

integer, dimension (:), intent(in) :: nd, center, na # (ndim)

type(filter), intent(in) :: aa

real, dimension(:), intent(out) :: cube

integer, dimension(size(nd)) :: ii

integer :: j, lag0a, lag0d, id, ia

cube = 0.; # cube=0

call cart2line(na, center, lag0a) # locate the 1.0 in the na_cube.

cube(lag0a) = 1. # place it.

call cart2line(nd, center, lag0d) # locate the 1.0 in the nd_cube.

do j = 1, size(aa%lag) { # inspect the entire helix

id = aa%lag(j) + lag0d # index = helix_lag + center_d

call line2cart(nd, id, ii) # ii(id) = cartesian indices

call cart2line(na, ii, ia) # ia(ii) = linear index in aa

cube(ia) = aa%flt(j) # copy the filter coefficient

}

}

}

The box module is normally used to display or manipulate a filter that was estimated in helical
form (usually estimated by the least-squares method).

The inverse process to box is to convert a fortran hypercube to a helix filter. For this we
have module unbox. It abandons all zero-valued coefficients such as those that should be zero
before the box’s 1.0. It abandons the “1.0” as well, because it is implicitly present in the helix
convolution module helicon on page 104.

module unbox { # helixfilter aa = cube(a1,a2,...)

use helix

use cartesian

contains

function unboxn(nd, center, na, cube) result(aa) {

type(filter) :: aa

integer, dimension(:), intent(in) :: nd, center, na # (ndim)

128 CHAPTER 4. THE HELICAL COORDINATE

real, dimension(:), intent(in) :: cube # cube(a1,a2,...)

logical, dimension(size(cube)) :: keep # keep(a1*a2*...)

integer, dimension(size(nd)) :: ii # (ndim)

integer :: ic, lag0a, lag0d, i, h

call cart2line(na, center, lag0a)

call cart2line(nd, center, lag0d)

keep = (abs(cube) > epsilon(cube)) # epsilon is a Fortran intrinsic

keep(lag0a) = .false. # throw away the 1.0.

call allocatehelix(aa, count(keep)); h = 0

do ic = 1, size(cube) { # sweep cube

if(keep(ic)) { h = h + 1 # only the keepers

call line2cart(na, ic, ii) # ii(ic)= indices on na

call cart2line(nd, ii, i) # i = index on nd

aa%lag(h) = i - lag0d # lag = index - center

aa%flt(h) = cube(ic) # copy coefs.

}

}

}

}

An example of using unbox would be copying some numbers such as the factored laplacian in
equation (4.11) into a cube and then converting it to a helix.

A reasonable arrangement for a small 3-D filter is na=(5,3,2) and center=(3,2,1). Us-
ing these arguments, I used createhelixmod on page 126 to create a filter. I set all the helix
filter coefficients to 2. Then I used module box on the page before to put it in a convenient
form for display. After this conversion, the coefficient aa(3,2,1) is 1, not 2. Finally, I printed
it:

0.000 0.000 0.000 0.000 0.000

0.000 0.000 1.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

Different data sets have different sizes. To convert a helix filter from one data size to
another, we could drop the filter into a cube with module cube. Then we could extract it with
module unbox specifying any data set size we wish. Instead we use module regrid prepared by
Sergey Fomel which does the job without reference to an underlying filter cube. He explains
his regrid module thus:

Imagine a filter being cut out of a piece of paper and glued on another paper,
which is then rolled to form a helix.

We start by picking a random point (let’s call it rand) in the cartesian grid and
placing the filter so that its center (the leading 1.0) is on top of that point. rand

should be larger than (or equal to) center and smaller than min (nold, nnew),
otherwise the filter might stick outside the grid (our piece of paper.) rand=nold/2

4.7. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 129

will do (assuming the filter is small), although nothing should change if you re-
place nold/2 with a random integer array between center and nold - na.

The linear coordinate of rand is h0 on the old helix and h1 on the new helix.
Recall that the helix lags aa%lag are relative to the center. Therefore, we need to
add h0 to get the absolute helix coordinate (h). Likewise, we need to subtract h1
to return to a relative coordinate system.

module regrid { # convert a helix filter from one size data to another

use helix

use cartesian

contains

subroutine regridn(nold, nnew, aa) {

integer, dimension (:), intent (in) :: nold, nnew # old and new helix grid

type(filter) :: aa

integer, dimension(size(nold)) :: ii

integer :: i, h0, h1, h

call cart2line(nold, nold/2, h0) # lag of any near middle point on nold

call cart2line(nnew, nold/2, h1) # lag on nnew

do i = 1, size(aa%lag) { # forall given filter coefficients

h = aa%lag(i) + h0 # what is this?

call line2cart(nold, h, ii) #

call cart2line(nnew, ii, h) #

aa%lag(i) = h - h1 # what is this

}

}

}

130 CHAPTER 4. THE HELICAL COORDINATE

Chapter 5

Preconditioning

When I first realized that practical imaging methods in widespread industrial use amounted
merely to the adjoint of forward modeling, I (and others) thought an easy way to achieve
fame and fortune would be to introduce the first steps towards inversion along the lines of
Chapter 2. Although inversion generally requires a prohibitive number of steps, I felt that
moving in the gradient direction, the direction of steepest descent, would move us rapidly in
the direction of practical improvements. This turned out to be optimistic. It was too slow. But
then I learned about the conjugate gradient method that spectacularly overcomes a well-known
speed problem with the method of steepest descents. I came to realize that it was still too slow.
I learned this by watching the convergence in Figure 5.6. This led me to the helix method in
Chapter 4. Here we’ll see how it speeds many applications.

We’ll also come to understand why the gradient is such a poor direction both for steepest
descent and for conjugate gradients. An indication of our path is found in the contrast between
and exact solution m= (A′A)−1A′d and the gradient 1m=A′d (which is the first step starting
from m= 0). Notice that 1m differs from m by the factor (A′A)−1. This factor is sometimes
called a spectrum and in some situations it literally is a frequency spectrum. In these cases,
1m simply gets a different spectrum from m and many iterations are required to fix it. Here
we’ll find that for many problems, “preconditioning” with the helix is a better way.

5.1 PRECONDITIONED DATA FITTING

Iterative methods (like conjugate-directions) can sometimes be accelerated by a change of
variables. The simplest change of variable is called a “trial solution”. Formally, we write the
solution as

m = Sp (5.1)

where m is the map we seek, columns of the matrix S are “shapes” that we like, and coefficients
in p are unknown coefficients to select amounts of the favored shapes. The variables p are
often called the “preconditioned variables”. It is not necessary that S be an invertible matrix,

131

132 CHAPTER 5. PRECONDITIONING

but we’ll see later that invertibility is helpful. Take this trial solution and insert it into a typical
fitting goal

0 ≈ Fm − d (5.2)

and get

0 ≈ FSp − d (5.3)

We pass the operator FS to our iterative solver. After finding the best fitting p, we merely
evaluate m= Sp to get the solution to the original problem.

We hope this change of variables has saved effort. For each iteration, there is a little more
work: Instead of the iterative application of F and F′ we have iterative application of FS and
S′F′. Our hope is that the number of iterations decreases because we are clever, or because we
have been lucky in our choice of S. Hopefully, the extra work of the preconditioner operator
S is not large compared to F. If we should be so lucky that S= F−1, then we get the solution
immediately. Obviously we would try any guess with S ≈ F−1. Where I have known such S
matrices, I have often found that convergence is accelerated, but not by much. Sometimes it
is worth using FS for a while in the beginning, but later it is cheaper and faster to use only
F. A practitioner might regard the guess of S as prior information, like the guess of the initial
model m0.

For a square matrix S, the use of a preconditioner should not change the ultimate solution.
Taking S to be a tall rectangular matrix, reduces the number of adjustable parameters, changes
the solution, gets it quicker, but lower resolution.

5.1.1 Preconditioner with a starting guess

In many applications, for many reasons, we have a starting guess m0 of the solution. You might
worry that you could not find the starting preconditioned variable p0= S−1m0 because you did
not know the inverse of S. The way to avoid this problem is to reformulate the problem in terms
of a new variable m̃ where m = m̃+m0. Then 0≈ Fm−d becomes 0≈ Fm̃− (d−Fm0) or
0≈ Fm̃− d̃. Thus we have accomplished the goal of taking a problem with a nonzero starting
model and converting it a problem of the same type with a zero starting model. Thus we do
not need the inverse of S because the iteration starts from m̃= 0 so p0 = 0.

5.2 PRECONDITIONING THE REGULARIZATION

The basic formulation of a geophysical estimation problem consists of setting up two goals,
one for data fitting, and the other for model shaping. With two goals, preconditioning is
somewhat different. The two goals may be written as:

0 ≈ Fm−d (5.4)
0 ≈ Am (5.5)

5.2. PRECONDITIONING THE REGULARIZATION 133

which defines two residuals, a so-called “data residual” and a “model residual” that are usually
minimized by conjugate-gradient, least-squares methods.

To fix ideas, let us examine a toy example. The data and the first three rows of the matrix
below are random numbers truncated to integers. The model roughening operator A is a first
differencing operator times 100.

d(m) F(m,n) iter Norm

--- -- ---- -----------

41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 20.00396538

33. 8. -86. 72. 87. -41. -3. -29. 29. -66. 50. 2 12.14780140

-58. 84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 8.94393635

0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 6.04517126

0. -100. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 2.64737511

0. 0.-100. 100. 0. 0. 0. 0. 0. 0. 0. 6 0.79238468

0. 0. 0.-100. 100. 0. 0. 0. 0. 0. 0. 7 0.46083349

0. 0. 0. 0.-100. 100. 0. 0. 0. 0. 0. 8 0.08301232

0. 0. 0. 0. 0.-100. 100. 0. 0. 0. 0. 9 0.00542009

0. 0. 0. 0. 0. 0.-100. 100. 0. 0. 0. 10 0.00000565

0. 0. 0. 0. 0. 0. 0.-100. 100. 0. 0. 11 0.00000026

0. 0. 0. 0. 0. 0. 0. 0.-100. 100. 0. 12 0.00000012

0. 0. 0. 0. 0. 0. 0. 0. 0.-100. 100. 13 0.00000000

Notice at the tenth iteration, the residual suddenly plunges 4 significant digits. Since there
are ten unknowns and the matrix is obviously full-rank, conjugate-gradient theory tells us to
expect the exact solution at the tenth iteration. This is the first miracle of conjugate gradients.
(The residual actually does not drop to zero. What is printed in the Norm column is the square
root of the sum of the squares of the residual components at the iter-th iteration minus that at
the last interation.)

5.2.1 The second miracle of conjugate gradients

The second miracle of conjugate gradients is exhibited below. The data and data fitting matrix
are the same, but the model damping is simplified.

d(m) F(m,n) iter Norm

--- -- ---- ----------

41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 3.64410686

33. 8. -86. 72. 87. -41. -3. -29. 29. -66. 50. 2 0.31269890

-58. 84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 -0.00000021

0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 -0.00000066

0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 -0.00000080

0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 6 -0.00000065

0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 7 -0.00000088

0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 8 -0.00000074

0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 9 -0.00000035

0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 10 -0.00000037

0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 11 -0.00000018

0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 12 0.00000000

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.00000000

134 CHAPTER 5. PRECONDITIONING

Even though the matrix is full-rank, we see the residual drop about 6 decimal places after
the third iteration! This convergence behavior is well known in the computational mathemat-
ics literature. Despite its practical importance, it doesn’t seem to have a name or identified
discoverer. So I call it the “second miracle.”

Practitioners usually don’t like the identity operator for model-shaping. Generally they
prefer to penalize wiggliness. For practitioners, the lesson of the second miracle of conjugate
gradients is that we have a choice of many iterations, or learning to transform independent
variables so that the regularization operator becomes an identity matrix. Basically, such a
transformation reduces the iteration count from something about the size of the model space
to something about the size of the data space. Such a transformation is called preconditioning.
In practice, data is often accumulated in bins. Then the iteration count is reduced (in principle)
to the count of full bins and should be independent of the count of the empty bins. This allows
refining the bins, enhancing the resolution.

More generally, the model goal 0≈ Am introduces a roughening operator like a gradient,
Laplacian (and in chapter 6 a Prediction-Error Filter (PEF)). Thus the model goal is usually a
filter, unlike the data-fitting goal which involves all manner of geometry and physics. When
the model goal is a filter its inverse is also a filter. Of course this includes multidimensional
filters with a helix.

The preconditioning transformation m= Sp gives us

0 ≈ FSp−d
0 ≈ ASp

(5.6)

The operator A is a roughener while S is a smoother. The choices of both A and S are some-
what subjective. This suggests that we eliminate A altogether by defining it to be proportional
to the inverse of S, thus AS= I. The fitting goals become

0 ≈ FSp−d
0 ≈ ε p

(5.7)

which enables us to benefit from the “second miracle”. After finding p, we obtain the final
model with m= Sp.

5.2.2 Importance of scaling

Another simple toy example shows us the importance of scaling. We use the same example as
above except that the i -th column is multiplied by i/10 which means the i -th model variable
has been divided by i/10.

d(m) F(m,n) iter Norm

--- -- ---- -----------

41. -6. -18. -7. -5. -36. 37. -19. -15. 21. -55. 1 11.59544849

33. 1. -17. 22. 35. -20. -2. -20. 23. -59. 50. 2 6.97337770

-58. 8. -10. 24. 18. -26. -31. 6. 69. 69. 50. 3 5.64414406

5.2. PRECONDITIONING THE REGULARIZATION 135

0. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 4.32118177

0. 0. 20. 0. 0. 0. 0. 0. 0. 0. 0. 5 2.64755201

0. 0. 0. 30. 0. 0. 0. 0. 0. 0. 0. 6 2.01631355

0. 0. 0. 0. 40. 0. 0. 0. 0. 0. 0. 7 1.23219979

0. 0. 0. 0. 0. 50. 0. 0. 0. 0. 0. 8 0.36649203

0. 0. 0. 0. 0. 0. 60. 0. 0. 0. 0. 9 0.28528941

0. 0. 0. 0. 0. 0. 0. 70. 0. 0. 0. 10 0.06712411

0. 0. 0. 0. 0. 0. 0. 0. 80. 0. 0. 11 0.00374284

0. 0. 0. 0. 0. 0. 0. 0. 0. 90. 0. 12 -0.00000040

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.00000000

We observe that solving the same problem for the scaled variables has required a severe in-
crease in the number of iterations required to get the solution. We lost the benefit of the second
CG miracle. Even the rapid convergence predicted for the 10-th iteration is delayed until the
12-th.

5.2.3 Statistical interpretation

This book is not a statistics book. Never-the-less, many of you have some statistical knowledge
that allows you a statistical interpretation of these views of preconditioning.

A statistical concept is that we can combine many streams of random numbers into a
composite model. Each stream of random numbers is generally taken to be uncorrelated with
the others, to have zero mean, and to have the same variance as all the others. This is often
abbreviated as IID, denoting Independent, Identically Distributed. Linear combinations like
filtering and weighting operations of these IID random streams can build correlated random
functions much like those observed in geophysics. A geophysical practitioner seeks to do
the inverse, to operate on the correlated unequal random variables and create the statistical
ideal random streams. The identity matrix required for the “second miracle”, and our search
for a good preconditioning transformation are related ideas. The relationship will become
more clear in chapter 6 when we learn how to estimate the best roughening operator A as a
prediction-error filter.

Two philosophies to find a preconditioner:

1. Dream up a smoothing operator S.

2. Estimate a prediction-error filter A, and then use its inverse S= A−1.

Deconvolution on a helix is an all-purpose preconditioning strategy for multidimensional
model regularization.

The outstanding acceleration of convergence by preconditioning suggests that the philos-
ophy of image creation by optimization has a dual orthonormality: First, Gauss (and common
sense) tells us that the data residuals should be roughly equal in size. Likewise in Fourier

136 CHAPTER 5. PRECONDITIONING

space they should be roughly equal in size, which means they should be roughly white, i.e.
orthonormal. (I use the word “orthonormal” because white means the autocorrelation is an im-
pulse, which means the signal is statistically orthogonal to shifted versions of itself.) Second,
to speed convergence of iterative methods, we need a whiteness, another orthonormality, in the
solution. The map image, the physical function that we seek, might not be itself white, so we
should solve first for another variable, the whitened map image, and as a final step, transform
it to the “natural colored” map.

5.2.4 The preconditioned solver

Summing up the ideas above, we start from fitting goals

0 ≈ Fm − d
0 ≈ Am

(5.8)

and we change variables from m to p using m= A−1p

0 ≈ Fm − d = FA−1 p − d
0 ≈ Am = I p

(5.9)

Preconditioning means iteratively fitting by adjusting the p variables and then finding the
model by using m = A−1p. A new reusable preconditioned solver is the module solver_prc

on this page. Likewise the modeling operator F is called Fop and the smoothing operator
A−1 is called Sop. Details of the code are only slightly different from the regularized solver
solver_reg on page 91.

module solver_prc_mod{ # 0 = W (F S J p - d)

use chain0_mod + solver_report_mod # 0 = I p

logical, parameter, private :: T = .true., F = .false.

contains

subroutine solver_prc(m,d, Fop, Sop, stepper, nSop, niter,eps &

, Wop,Jop,p0,rm0,err,resd,resm,mmov,rmov,verb) {

optional :: Wop,Jop,p0,rm0,err,resd,resm,mmov,rmov,verb

interface { #-------------------------- begin definitions -----------

integer function Fop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Sop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Wop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Jop(adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function stepper(forget,m,g,rr,gg) {

real, dimension(:) :: m,g,rr,gg

logical :: forget }

}

real, dimension(:), intent(in) :: d, p0,rm0

integer, intent(in) :: niter, nSop

logical, intent(in) :: verb

real, intent(in) :: eps

real, dimension(:), intent(out) :: m,err, resd,resm

real, dimension(:,:), intent(out) :: rmov,mmov

real, dimension(size(m)) :: p , g

real, dimension(size(d) + nSop), target :: rr, gg, tt

5.3. OPPORTUNITIES FOR SMART DIRECTIONS 137

real, dimension(:), pointer :: rd, gd, td

real, dimension(:), pointer :: rm, gm, tm

integer :: iter, stat

logical :: forget

rd => rr(1:size(d)); rm => rr(1+size(d):)

gd => gg(1:size(d)); gm => gg(1+size(d):)

td => tt(1:size(d)); tm => tt(1+size(d):)

if(present(Wop)) stat=Wop(F,F,-d,rd) # begin initialization --------

else rd = -d #Rd = -W d

rm = 0.; if(present(rm0)) rm=rm0 #Rm = Rm0

if(present(p0)){ p=p0 # p = p0

if(present(Wop)) call chain0(Wop,Fop,Sop,F,T,p,rd,tm,td)

else call chain0(Fop,Sop,F,T,p,rd,tm)#Rd += WFS p0

rm = rm + eps*p #Rm += e I p0

} else p=0

forget = T; #-------------------------- begin iterations ------------

do iter = 1,niter {

if(present(Wop)) call chain0(Wop,Fop,Sop,T,F,g,rd,tm,td)

else call chain0(Fop,Sop,T,F,g,rd,tm) #g = (WFS)’Rd

g = g + eps*rm #g += e I’Rm

if(present(Jop)){ tm=g; stat=Jop(F,F,tm,g)}#g = J g

if(present(Wop)) call chain0(Wop,Fop,Sop,F,F,g,gd,tm,td)

else call chain0(Fop,Sop,F,F,g,gd,tm) #Gd = (WFS) g

gm = eps*g #Gm = e I g

stat = stepper(forget, p,g, rr,gg) #m+=dm; R+=dR

if(stat ==1) exit # got stuck descending

stat = Sop(F,F,p,m) #m = S p

if(present(mmov)) mmov(:,iter) = m(:size(mmov,1)) # report -----

if(present(rmov)) rmov(:,iter) = rr(:size(rmov,1))

if(present(err)) err(iter) = dot_product(rd,rd)

if(present(verb)){ if(verb) call solver_report(iter,m,g,rd,rm)}

forget=F

}

if(present(resd)) resd = rd

if(present(resm)) resm = rm(:size(resm))

}

}

5.3 OPPORTUNITIES FOR SMART DIRECTIONS

Recall the fitting goals (5.10)
0 ≈ rd = Fm − d = FA−1 p − d
0 ≈ rm = Am = I p

(5.10)

Without preconditioning we have the search direction

1mbad =
[

F′ A′
]

[

rd

rm

]

(5.11)

and with preconditioning we have the search direction

1pgood =
[

(FA−1)′ I
]

[

rd

rm

]

(5.12)

138 CHAPTER 5. PRECONDITIONING

The essential feature of preconditioning is not that we perform the iterative optimization in
terms of the variable p. The essential feature is that we use a search direction that is a gradient
with respect to p′ not m′. Using Am = p we have A1m = 1p. This enables us to define a
good search direction in model space.

1mgood = A−11pgood = A−1(A−1)′F′rd+A−1rm (5.13)

Define the gradient by g= F′rd and notice that rm = p.

1mgood = A−1(A−1)′ g+m (5.14)

The search direction (5.14) shows a positive-definite operator scaling the gradient. Each
component of any gradient vector is independent of each other. All independently point a
direction for descent. Obviously, each can be scaled by any positive number. Now we have
found that we can also scale a gradient vector by a positive definite matrix and we can still
expect the conjugate-direction algorithm to descend, as always, to the “exact” answer in a finite
number of steps. This is because modifying the search direction with A−1(A−1)′ is equivalent
to solving a conjugate-gradient problem in p.

5.4 NULL SPACE AND INTERVAL VELOCITY

A bread-and-butter problem in seismology is building the velocity as a function of depth (or
vertical travel time) starting from certain measurements. The measurements are described
elsewhere (BEI for example). They amount to measuring the integral of the velocity squared
from the surface down to the reflector. It is known as the RMS (root-mean-square) velocity.
Although good quality echos may arrive often, they rarely arrive continuously for all depths.
Good information is interspersed unpredictably with poor information. Luckily we can also
estimate the data quality by the “coherency” or the “stack energy”. In summary, what we get
from observations and preprocessing are two functions of travel-time depth, (1) the integrated
(from the surface) squared velocity, and (2) a measure of the quality of the integrated velocity
measurement. Some definitions:

d is a data vector whose components range over the vertical traveltime depth τ , and whose
component values contain the scaled RMS velocity squared τv2

RMS/1τ where τ/1τ is
the index on the time axis.

W is a diagonal matrix along which we lay the given measure of data quality. We will use it
as a weighting function.

C is the matrix of causal integration, a lower triangular matrix of ones.

D is the matrix of causal differentiation, namely, D= C−1.

u is a vector whose components range over the vertical traveltime depth τ , and whose com-
ponent values contain the interval velocity squared v2

interval.

5.4. NULL SPACE AND INTERVAL VELOCITY 139

From these definitions, under the assumption of a stratified earth with horizontal reflectors
(and no multiple reflections) the theoretical (squared) interval velocities enable us to define
the theoretical (squared) RMS velocities by

Cu = d (5.15)

With imperfect data, our data fitting goal is to minimize the residual

0 ≈ W [Cu−d] (5.16)

To find the interval velocity where there is no data (where the stack power theoretically
vanishes) we have the “model damping” goal to minimize the wiggliness p of the squared
interval velocity u.

0 ≈ Du = p (5.17)

We precondition these two goals by changing the optimization variable from interval ve-
locity squared u to its wiggliness p. Substituting u = Cp gives the two goals expressed as a
function of wiggliness p.

0 ≈ W
[

C2p−d
]

(5.18)
0 ≈ ε p (5.19)

5.4.1 Balancing good data with bad

Choosing the size of ε chooses the stiffness of the curve that connects regions of good data.
Our first test cases gave solutions that we interpreted to be too stiff at early times and too flexi-
ble at later times. This leads to two possible ways to deal with the problem. One way modifies
the model shaping and the other modifies the data fitting. The program below weakens the
data fitting weight with time. This has the same effect as stiffening the model shaping with
time.

module vrms2int_mod { # Transform from RMS to interval velocity

use causint

use weight

use mask1

use cgstep_mod

use solver_prc_mod

contains

subroutine vrms2int(niter, eps, weight, vrms, vint) {

integer, intent(in) :: niter # iterations

real, intent(in) :: eps # scaling parameter

real, dimension(:), intent(in out) :: vrms # RMS velocity

real, dimension(:), intent(out) :: vint # interval velocity

real, dimension(:), pointer :: weight # data weighting

integer :: st,it,nt

logical, dimension(size(vint)) :: mask

140 CHAPTER 5. PRECONDITIONING

Figure 5.1: Raw CMP gather (left), Semblance scan (middle), and semblance value used for
weighting function (right). (Clapp) prc-clapp [ER,M]

Figure 5.2: Observed RMS velocity and that predicted by a stiff model with ε = 4. (Clapp)
prc-stiff [ER]

5.4. NULL SPACE AND INTERVAL VELOCITY 141

Figure 5.3: Observed RMS velocity and that predicted by a flexible model with ε= .25 (Clapp)
prc-flex [ER]

logical, dimension(:), pointer :: msk

real, dimension(size(vrms)) :: dat ,wt

real, dimension(:), pointer :: wght

nt = size(vrms)

do it= 1, nt {

dat(it) = vrms(it) * vrms(it) * it

wt(it) = weight(it)*(1./it) # decrease weight with time

}

mask = .false.; mask(1) = .true. # constrain first point

vint = 0. ; vint(1) = dat(1)

allocate(wght(size(wt)))

wght=wt

call weight_init(wght)

allocate(msk(size(mask)))

msk=.not.mask

call mask1_init(msk)

call solver_prc(m=vint, d=dat,Fop=causint_lop, stepper=cgstep, niter=niter, &

Sop= causint_lop, nSop=nt, eps = eps,verb=.true.,Jop=mask1_lop, &

p0=vint, Wop=weight_lop)

call cgstep_close()

st = causint_lop(.false., .false., vint, dat)

do it= 1, nt

vrms(it) = sqrt(dat(it)/it)

vint = sqrt(vint)

}

}

142 CHAPTER 5. PRECONDITIONING

5.4.2 Lateral variations

The analysis above appears one dimensional in depth. Conventional interval velocity esti-
mation builds a velocity-depth model independently at each lateral location. Here we have a
logical path for combining measurements from various lateral locations. We can change the
regularization to something like 0 ≈ ∇u. Instead of merely minimizing the vertical gradient
of velocity we minimize its spatial gradient. Luckily we have preconditioning and the helix to
speed the solution.

5.4.3 Blocky models

Sometimes we seek a velocity model that increases smoothly with depth through our scattered
measurements of good-quality RMS velocities. Other times, we seek a blocky model. (Where
seismic data is poor, a well log could tell us whether to choose smooth or blocky.) Here we see
an estimation method that can choose the blocky alternative, or some combination of smooth
and blocky.

Consider the five layer model in Figure 5.4. Each layer has unit traveltime thickness (so
integration is simply summation). Let the squared interval velocities be (a,b,c,d,e) with
strong reliable reflections at the base of layer c and layer e, and weak, incoherent, “bad”
reflections at bases of (a,b,d). Thus we measure V 2

c the RMS velocity squared of the top
three layers and V 2

e that for all five layers. Since we have no reflection from at the base of
the fourth layer, the velocity in the fourth layer is not measured but a matter for choice. In a
smooth linear fit we would want d = (c+ e)/2. In a blocky fit we would want d = e.

Figure 5.4: A layered earth model.
The layer interfaces cause reflections.
Each layer has a constant velocity in
its interior. prc-rosales [NR]

Our screen for good reflections looks like (0,0,1,0,1) and our screen for bad ones looks
like the complement (1,1,0,1,0). We put these screens on the diagonals of diagonal matrices

5.5. INVERSE LINEAR INTERPOLATION 143

G and B. Our fitting goals are:

3V 2
c ≈ a+b+ c (5.20)

5V 2
e ≈ a+b+ c+d+ e (5.21)

u0 ≈ a (5.22)
0 ≈ −a+b (5.23)
0 ≈ −b+ c (5.24)
0 ≈ −c+d (5.25)
0 ≈ −d+ e (5.26)

For the blocky solution, we do not want the fitting goal (5.25). Further explanations await
completion of examples.

5.5 INVERSE LINEAR INTERPOLATION

Figure 5.5: The input data are irregu-
larly sampled. prc-data [ER]

The first example is a simple synthetic test for 1-D inverse interpolation. The input data
were randomly subsampled (with decreasing density) from a sinusoid (Figure 5.5). The for-
ward operator L in this case is linear interpolation. We seek a regularly sampled model that
could predict the data with a forward linear interpolation. Sparse irregular distribution of the
input data makes the regularization enforcement a necessity. I applied convolution with the
simple (1,−1) difference filter as the operator D that forces model continuity (the first-order
spline). An appropriate preconditioner S in this case is recursive causal integration. As ex-
pected, preconditioning provides a much faster rate of convergence. Since iteration to the
exact solution is never achieved in large-scale problems, the results of iterative optimization
may turn out quite differently. Bill Harlan points out that the two goals in (5.8) conflict with
each other: the first one enforces “details” in the model, while the second one tries to smooth
them out. Typically, regularized optimization creates a complicated model at early iterations.
At first, the data fitting goal (5.8) plays a more important role. Later, the regularization goal
(5.8) comes into play and simplifies (smooths) the model as much as needed. Preconditioning
acts differently. The very first iterations create a simplified (smooth) model. Later, the data
fitting goal adds more details into the model. If we stop the iterative process early, we end
up with an insufficiently complex model, not in an insufficiently simplified one. Figure 5.6
provides a clear illustration of Harlan’s observation.

144 CHAPTER 5. PRECONDITIONING

Figure 5.6: Convergence history of inverse linear interpolation. Left: regularization, right:
preconditioning. The regularization operator A is the derivative operator (convolution with
(1,−1). The preconditioning operator S is causal integration. prc-conv1 [ER,M]

5.5. INVERSE LINEAR INTERPOLATION 145

Figure 5.7 measures the rate of convergence by the model residual, which is a distance
from the current model to the final solution. It shows that preconditioning saves many iter-
ations. Since the cost of each iteration for each method is roughly equal, the efficiency of
preconditioning is evident.

Figure 5.7: Convergence of the itera-
tive optimization, measured in terms
of the model residual. The “p” points
stand for preconditioning; the “r”
points, regularization. prc-schwab1
[ER]

The module invint2 on this page invokes the solvers to make Figures 5.6 and 5.7. We use
convolution with helicon on page 104 for the regularization and we use deconvolution with
polydiv on page 105 for the preconditioning. The code looks fairly straightforward except for
the oxymoron known=aa%mis.
module invint2 { # Inverse linear interpolation

use lint1

use helicon # regularized by helix filtering

use polydiv # preconditioned by inverse filtering

use cgstep_mod

use solver_reg_mod

use solver_prc_mod

contains

subroutine invint(niter, coord,ord, o1,d1, mm,mmov, eps, aa, method) {

logical, intent(in) :: method

integer, intent(in) :: niter

real, intent(in) :: o1, d1, eps

real, dimension(:), intent(in) :: ord

type(filter), intent(in) :: aa

real, dimension(:), intent(out) :: mm

real, dimension(:,:), intent(out) :: mmov # model movie

real, dimension(:), pointer :: coord # coordinate

call lint1_init(o1, d1, coord)

if(method) { # preconditioning

call polydiv_init(size(mm), aa)

call solver_prc(Fop=lint1_lop, stepper=cgstep, niter=niter, m=mm, d=ord,

Sop=polydiv_lop, nSop=size(mm), eps=eps, mmov=mmov, verb=.true.)

call polydiv_close()

} else { # regularization

call helicon_init(aa)

call solver_reg(Fop=lint1_lop, stepper=cgstep, niter=niter, m=mm, d=ord,

Aop=helicon_lop, nAop=size(mm), eps=eps, mmov=mmov, verb=.true.)

}

call cgstep_close()

}

}

146 CHAPTER 5. PRECONDITIONING

5.6 EMPTY BINS AND PRECONDITIONING

There are at least three ways to fill empty bins. Two require a roughening operator A while
the third requires a smoothing operator which (for comparison purposes) we denote A−1. The
three methods are generally equivalent though they differ in important details.

The original way in Chapter 3 is to restore missing data by ensuring that the restored
data, after specified filtering, has minimum energy, say Am≈ 0. Introduce the selection mask
operator K, a diagonal matrix with ones on the known data and zeros elsewhere (on the missing
data). Thus 0≈ A(I−K+K)m or

0 ≈ A(I−K)m + Amk , (5.27)

where we define mk to be the data with missing values set to zero by mk =Km.

A second way to find missing data is with the set of goals

0 ≈ Km − mk

0 ≈ εAm
(5.28)

and take the limit as the scalar ε→ 0. At that limit, we should have the same result as equation
(5.27).

There is an important philosophical difference between the first method and the second.
The first method strictly honors the known data. The second method acknowledges that when
data misfits the regularization theory, it might be the fault of the data so the data need not be
strictly honored. Just what balance is proper falls to the numerical choice of ε, a nontrivial
topic.

A third way to find missing data is to precondition equation (5.28), namely, try the substi-
tution m= A−1p.

0 ≈ KA−1p − mk

0 ≈ εp
(5.29)

There is no simple way of knowing beforehand what is the best value of ε. Practitioners like
to see solutions for various values of ε. Of course that can cost a lot of computational effort.
Practical exploratory data analysis is more pragmatic. Without a simple clear theoretical basis,
analysts generally begin from p= 0 and abandon the fitting goal εIp≈ 0. Implicitly, they take
ε = 0. Then they examine the solution as a function of iteration, imagining that the solution
at larger iterations corresponds to smaller ε. There is an eigenvector analysis indicating some
kind of basis for this approach, but I believe there is no firm guidance.

Before we look at coding details for the three methods of filling the empty bins, we’ll
compare results of trying all three methods. For the roughening operator A, we’ll take the
helix derivative H. This is logically equivalent to roughening with the gradient ∇ because the
(negative) laplacian operator is ∇ ′∇ =H′H.

5.6. EMPTY BINS AND PRECONDITIONING 147

5.6.1 SEABEAM: Filling the empty bins with a laplacian

Figure 5.8 shows a day’s worth of data1 collected at sea by SeaBeam, an apparatus for mea-
suring water depth both directly under a ship, and somewhat off to the sides of the ship’s track.
The data is measurements of depth h(x , y) at miscellaneous locations in the (x , y)-plane. The

Figure 5.8: Depth of the ocean un-
der ship tracks. Empty bins are
displayed with an average depth h̄.
prc-seabin90 [ER]

locations are scattered about, according to various aspects of the ship’s navigation and the
geometry of the SeaBeam sonic antenna. Figure 5.8 was made by binning with bin2() on
page 13 and equation (1.15). The spatial spectra of the noise in the data could be estimated
where tracks cross over themselves. This might be worth while, but we do not pursue it now.

Here we focus on the empty mesh locations where no data is recorded (displayed with the
value of the mean depth h̄). These empty bins were filled with module mis2 on page 149.
Results are in Figure 5.9. In Figure 5.9 the left column results from 20 iterations while the
right column results from 100 iterations.

The top row in Figure 5.9 shows that more iterations spreads information further into the
region of missing data.

It turned out that the original method strictly honoring known data gave results so similar
to the second method (regularizing) that the plots could not be visually distinguished. The
middle row in Figure 5.9 therefore shows the difference in the result of the two methods. We
see an outline of the transition between known and unknown regions. Obviously, the missing
data is pulling known data towards zero.

The bottom row in Figure 5.9 shows that preconditioning spreads information to great
distances much quicker but early iterations make little effort to honor the data. (Even though
these results are for ε = 0.) Later iterations make little change at long distance but begin to
restore sharp details on the small features of the known topography.

1I’d like to thank Alistair Harding for this interesting data set named April 18.

148 CHAPTER 5. PRECONDITIONING

Figure 5.9: The ocean bottom restoring missing data with a helix derivative. prc-prcfill
[ER,M]

5.6. EMPTY BINS AND PRECONDITIONING 149

What if we can only afford 100 iterations? Perhaps we should first do 50 iterations with
preconditioning to develop the remote part of the solution and then do 50 iterations by one
of the other two methods to be sure we attended to the details near the known data. A more
unified approach (not yet tried, as far as I know) would be to unify the techniques. The
conjugate direction method searches two directions, the gradient and the previous step. We
could add a third direction, the smart direction of equation (5.14). Instead of having a 2× 2
matrix solution like equation (2.70) for two distances, we would need to solve a 3×3 matrix
for three.

Figure 5.9 has a few artifacts connected with the use of the helix derivative. Examine
equation (4.11) to notice the shape of the helix derivative. In principle, it is infinitely long in
the horizontal axis in both equation (4.11) and Figure 5.9. In practice, it is truncated. The
truncation is visible as bands along the sides of Figure 5.9.

As a practical matter, no one would use the first two bin filling methods with helix deriva-
tive for the roughener because it is theoretically equivalent to the gradient operator ∇ which
has many fewer coefficients. Later, in Chapter 6 we’ll find a much smarter roughening operator
A called the Prediction Error Filter (PEF) which gives better results.

5.6.2 Three codes for inverse masking

The selection (or masking) operator K is implemented in mask1() on the current page.

module mask1 { # masking operator

logical, dimension(:), pointer :: m

#% _init(m)

#% _lop(x, y)

if(adj)

where(m) x += y

else #

where(m) y += x

}

All the results shown in Figure 5.9 were created with the module mis2 on this page. Code
locations with style=0,1,2 correspond to the fitting goals (5.27), (5.28), (5.29).

module mis2_mod {

use mask1 + helicon + polydiv + cgstep_mod

use solver_smp_mod + solver_reg_mod + solver_prc_mod

contains

subroutine mis2(niter, xx, aa, known, style) {

integer, intent(in) :: style

integer, intent(in) :: niter

type(filter), intent(in) :: aa

logical, dimension(:), intent(in) :: known

real, dimension(:), intent(in out) :: xx # fitting variables

real, dimension(:), allocatable :: dd

logical, dimension(:), pointer :: msk

integer :: nx

150 CHAPTER 5. PRECONDITIONING

nx = size(xx)

allocate(dd(nx))

allocate(msk(nx))

if(style==0) {

dd = 0.

msk = .not.known

call mask1_init(msk)

call helicon_init(aa)

call solver_smp(m=xx, d=dd, Fop=helicon_lop, stepper=cgstep,

niter=niter, Jop=mask1_lop, m0=xx)

call helicon_close()

} else if(style==1) {

dd=xx

msk = known

call mask1_init(msk)

call helicon_init(aa)

call solver_reg(m=xx, d=dd, Fop=mask1_lop, stepper=cgstep,

niter=niter, Aop=helicon_lop, nAop=nx, eps=0.1)

call helicon_close()

} else {

dd=xx

msk = known

call mask1_init(msk)

call polydiv_init(nx, aa)

call solver_prc(m=xx, d=dd, Fop=mask1_lop, stepper=cgstep,

niter=niter, Sop=polydiv_lop, nSop=nx, eps=0.0)

call polydiv_close()

}

call cgstep_close()

deallocate(msk,dd)

}

}

5.7 THEORY OF UNDERDETERMINED LEAST-SQUARES

Construct theoretical data with

d = Fm (5.30)

Assume there are fewer data points than model points and that the matrix FF′ is invertible.
From the theoretical data we estimate a model m0 with

m0 = F′(FF′)−1d (5.31)

To verify the validity of the estimate, insert the estimate (5.31) into the data modeling equation
(5.30) and notice that the estimate m0 predicts the correct data. Notice that equation (5.31) is
not the same as equation (2.30) which we derived much earlier. What’s the difference? The
central issue is which matrix of FF′ and F′F actually has an inverse. If F is a rectangular
matrix, then it is certain that one of the two is not invertible. (There are plenty of real cases
where neither matrix is invertible. That’s one reason we use iterative solvers.) Here we are
dealing with the case with more model points than data points.

5.8. SCALING THE ADJOINT 151

Now we will show that of all possible models m that predict the correct data, m0 has the
least energy. (I’d like to thank Sergey Fomel for this clear and simple proof that does not use
Lagrange multipliers.) First split (5.31) into an intermediate result d0 and final result:

d0 = (FF′)−1d (5.32)
m0 = F′d0 (5.33)

Consider another model (x not equal to zero)

m = m0+x (5.34)

which fits the theoretical data d = F(m0+ x). Since d = Fm0, we see that x is a null space
vector.

Fx = 0 (5.35)

First we see that m0 is orthogonal to x because

m′0x = (F′d0)′x = d′0Fx = d′00 = 0 (5.36)

Therefore,

m′m = m′0m0+x′x+2x′m0 = m′0m0+x′x ≥ m′0m0 (5.37)

so adding null space to m0 can only increase its energy. In summary, the solution m0 =
F′(FF′)−1d has less energy than any other model that satisfies the data.

Not only does the theoretical solution m0 = F′(FF′)−1d have minimum energy, but the
result of iterative descent will too, provided that we begin iterations from m0 = 0 or any m0
with no null-space component. In (5.36) we see that the orthogonality m′0x= 0 does not arise
because d0 has any particular value. It arises because m0 is of the form F′d0. Gradient methods
contribute 1m= F′r which is of the required form.

5.8 SCALING THE ADJOINT

First I remind you of a rarely used little bit of mathematical notation. Given a vector m with
components (m1,m2,m3), the notation diag m means

diag m =





m1 0 0
0 m2 0
0 0 m3



 (5.38)

Given the usual linearized fitting goal between data space and model space, d ≈ Fm, the
simplest image of the model space results from application of the adjoint operator m̂ = F′d.
Unless F has no physical units, however, the physical units of m̂ do not match those of m,
so we need a scaling factor. The theoretical solution mtheor = (F′F)−1F′d suggests that the

152 CHAPTER 5. PRECONDITIONING

scaling units should be those of (F′F)−1. We could probe the operator F or its adjoint with
white noise or a zero-frequency input. Bill Symes suggests we probe with the data d because
it has the spectrum of interest. He proposes we make our image with m̂ =W2F′d where we
choose the weighting function to be

W2 =
diag F′d

diag F′FF′d
(5.39)

which obviously has the correct physical units. (The mathematical function diag takes a vector
and lies it along the diagonal of a square matrix.) The weight W2 can be thought of as a
diagonal matrix containing the ratio of two images. A problem with the choice (5.39) is that
the denominator might vanish or might even be negative. The way to stabilize any ratio is
suggested at the beginning of Chapter 2; that is, we revise the ratio a/b to

W2 =
diag < ab >

diag < b2+ ε2 >
(5.40)

where ε is a parameter to be chosen, and the angle braces indicate the possible need for local
smoothing.

To go beyond the scaled adjoint we can use W as a preconditioner. To use W as a pre-
conditioner we define implicitly a new set of variables p by the substitution m =Wp. Then
d≈ Fm= FWp. To find p instead of m, we do CD iteration with the operator FW instead of
with F. As usual, the first step of the iteration is to use the adjoint of d ≈ FWp to form the
image p̂= (FW)′d. At the end of the iterations, we convert from p back to m with m =Wp.
The result after the first iteration m̂ =Wp̂ =W(FW)′d=W2F′d turns out to be the same as
Symes scaling.

By (5.39), W has physical units inverse to F. Thus the transformation FW has no units
so the p variables have physical units of data space. Experimentalists might enjoy seeing the
solution p with its data units more than viewing the solution m with its more theoretical model
units.

The theoretical solution for underdetermined systems m = F′(FF′)−1d suggests an alter-
nate approach using instead m̂= F′W2

dd. A possibility for W2
d is

W2
d =

diag d
diag FF′d

(5.41)

Experience tells me that a broader methodology is needed. Appropriate scaling is required
in both data space and model space. We need something that includes a weight for each space,
Wm and Wd where m̂=WmF′Wdd.

I have a useful practical example (stacking in v(z) media) in another of my electronic
books (BEI), where I found both Wm and Wd by iterative guessing. But I don’t know how to
give you a simple strategy that is not iterative. Either this is a major unsolved opportunity for
a theorist, or I’ll need to write down my iterative guess.

The PhD thesis of James Rickett experiments extensively with data space and model space
weighting functions in the context of seismic velocity estimation.

5.9. A FORMAL DEFINITION FOR ADJOINTS 153

5.9 A FORMAL DEFINITION FOR ADJOINTS

In mathematics, adjoints are defined a little differently than we have defined them here (as
matrix transposes).2 The mathematician begins by telling us that we cannot simply form any
dot product we want. We are not allowed to take the dot product of any two vectors in model
space m1 ·m2 or data space d1 · d2. Instead, we must first transform them to a preferred
coordinate system. Say m̃1 =Mm1 and d̃1 = Dd1, etc for other vectors. We complain we do
not know M and D. They reply that we do not really need to know them but we do need to
have the inverses (aack!) of M′M and D′D. A pre-existing common notation is σ−2

m =M′M
and σ−2

d = D′D. Now the mathematician buries the mysterious new positive-definite matrix
inverses in the definition of dot product < m1,m2 >=m′1M′Mm2 =m′1σ

−2
m m2 and likewise

with < d1,d2 >. This suggests a total reorganization of our programs. Instead of computing
(m′1M′)(Mm2) we could compute m′1(σ−2

m m2). Indeed, this is the “conventional” approach.
This definition of dot product would be buried in the solver code. The other thing that would
change would be the search direction 1m. Instead of being the gradient as we have defined
it 1m = L′r, it would be 1m = σ−2

m L′σ−2
d r. A mathematician would define the adjoint of

L to be σ−2
m L′σ−2

d . (Here L′ remains matrix transpose.) You might notice this approach
nicely incorporates both residual weighting and preconditioning while yet evading the issue of
where we get the matrices σ 2

m and σ 2
d or how we invert them. Fortunately, upcoming chapter

6 suggests how, in image estimation problems, to obtain sensible estimates of the elusive
operators M and D. Paranthetically, modeling calculations in physics and engineering often
use similar mathematics in which the role of M′M is not so mysterious. Kinetic energy is mass
times velocity squared. Mass can play the role of M′M.

So, should we continue to use (m′1M′)(Mm2) or should we take the conventional route
and go with m′1(σ−2

m m2)? One day while benchmarking a wide variety of computers I was
shocked to see some widely differing numerical results. Now I know why. Consider adding
107 identical positive floating point numbers, say 1.0’s, in an arithmetic with precision of 10−6.
After you have added in the first 106 numbers, the rest will all truncate in the roundoff and
your sum will be wrong by a factor of ten. If the numbers were added in pairs, and then the
pairs added, etc, there would be no difficulty. Precision is scary stuff!

It is my understanding and belief that there is nothing wrong with the approach of this
book, in fact, it seems to have some definite advantages. While the conventional approach
requires one to compute the adjoint correctly, we do not. The method of this book (which
I believe is properly called conjugate directions) has a robustness that, I’m told, has been
superior in some important geophysical applications. The conventional approach seems to get
in trouble when transpose operators are computed with insufficient precision.

2I would like to thank Albert Tarantola for suggesting this topic.

154 CHAPTER 5. PRECONDITIONING

Chapter 6

Multidimensional autoregression

The many applications of least squares to the one-dimensional convolution operator consti-
tute the subject known as “time-series analysis.” The autoregression filter, also known as the
prediction-error filter (PEF), gathers statistics for us, not the autocorrelation or the spectrum
directly but it gathers them indirectly as the inverse of the amplitude spectrum of its input. The
PEF plays the role of the so-called “inverse-covariance matrix” in statistical estimation theory.
Given the PEF, we use it to find missing portions of signals.

6.0.1 Time domain versus frequency domain

In the simplest applications, solutions can be most easily found in the frequency domain.
When complications arise, it is better to use the time domain, to directly apply the convolution
operator and the method of least squares.

A first complicating factor in the frequency domain is a required boundary in the time
domain, such as that between past and future, or requirements that a filter be nonzero in a
stated time interval. Another factor that attracts us to the time domain rather than the frequency
domain is weighting functions.

Weighting functions are appropriate whenever a signal or image amplitude varies from
place to place. Much of the literature on time-series analysis applies to the limited case of
uniform weighting functions. Such time series are said to be “stationary.” This means that
their statistical properties do not change in time. In real life, particularly in the analysis of
echos, signals are never stationary in time and space. A stationarity assumption is a reasonable
starting assumption, but we should know how to go beyond it so we can take advantage of the
many opportunities that do arise. In order of increasing difficulty in the frequency domain are
the following complications:

1. A time boundary such as between past and future.

2. More time boundaries such as delimiting a filter.

155

156 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

3. More time boundaries such as erratic locations of missing data.

4. Nonstationary signal, i.e., time-variable weighting.

5. Time-axis stretching such as normal moveout.

We will not have difficulty with any of these complications here, because we will stay in
the time domain and set up and solve optimization problems by use of the conjugate-direction
method. Thus we will be able to cope with great complexity in goal formulation and get the
right answer without approximations. By contrast, analytic or partly analytic methods can be
more economical, but they generally solve somewhat different problems than those given to
us by nature.

6.1 SOURCE WAVEFORM, MULTIPLE REFLECTIONS

Here we devise a simple mathematical model for deep water bottom multiple reflections.1
There are two unknown waveforms, the source waveform S(ω) and the ocean-floor reflection
F(ω). The water-bottom primary reflection P(ω) is the convolution of the source waveform
with the water-bottom response; so P(ω)= S(ω)F(ω). The first multiple reflection M(ω) sees
the same source waveform, the ocean floor, a minus one for the free surface, and the ocean
floor again. Thus the observations P(ω) and M(ω) as functions of the physical parameters are

P(ω) = S(ω) F(ω) (6.1)
M(ω) = −S(ω) F(ω)2 (6.2)

Algebraically the solutions of equations (6.1) and (6.2) are

F(ω) = −M(ω)/P(ω) (6.3)
S(ω) = −P(ω)2/M(ω) (6.4)

These solutions can be computed in the Fourier domain by simple division. The difficulty
is that the divisors in equations (6.3) and (6.4) can be zero, or small. This difficulty can be
attacked by use of a positive number ε to stabilize it. For example, multiply equation (6.3) on
top and bottom by P ′(ω) and add ε > 0 to the denominator. This gives

F(ω) = −
M(ω)P ′(ω)

P(ω)P ′(ω)+ ε
(6.5)

where P ′(ω) is the complex conjugate of P(ω). Although the ε stabilization seems nice, it
apparently produces a nonphysical model. For ε large or small, the time-domain response
could turn out to be of much greater duration than is physically reasonable. This should not
happen with perfect data, but in real life, data always has a limited spectral band of good
quality.

1For this short course I am omitting here many interesting examples of multiple reflections shown in my
1992 book, PVI.

6.2. TIME-SERIES AUTOREGRESSION 157

Functions that are rough in the frequency domain will be long in the time domain. This
suggests making a short function in the time domain by local smoothing in the frequency
domain. Let the notation < · · ·> denote smoothing by local averaging. Thus, to specify filters
whose time duration is not unreasonably long, we can revise equation (6.5) to

F(ω) = −
< M(ω)P ′(ω) >

< P(ω)P ′(ω) >
(6.6)

where instead of deciding a size for ε we need to decide how much smoothing. I find that
smoothing has a simpler physical interpretation than choosing ε. The goal of finding the
filters F(ω) and S(ω) is to best model the multiple reflections so that they can be subtracted
from the data, and thus enable us to see what primary reflections have been hidden by the
multiples.

These frequency-duration difficulties do not arise in a time-domain formulation. Unlike
in the frequency domain, in the time domain it is easy and natural to limit the duration and
location of the nonzero time range of F(ω) and S(ω). First express (6.3) as

0 = P(ω)F(ω)+M(ω) (6.7)

To imagine equation (6.7) as a fitting goal in the time domain, instead of scalar functions
of ω, think of vectors with components as a function of time. Thus f is a column vector
containing the unknown sea-floor filter, m contains the “multiple” portion of a seismogram,
and P is a matrix of down-shifted columns, each column being the “primary”.

0 ≈ r =

























r1
r2
r3
r4
r5
r6
r7
r8

























=

























p1 0 0
p2 p1 0
p3 p2 p1
p4 p3 p2
p5 p4 p3
p6 p5 p4
0 p6 p5
0 0 p6





























f1
f2
f3



 +

























m1
m2
m3
m4
m5
m6
m7
m8

























(6.8)

6.2 TIME-SERIES AUTOREGRESSION

Given yt and yt−1, you might like to predict yt+1. The prediction could be a scaled sum or
difference of yt and yt−1. This is called “autoregression” because a signal is regressed on
itself. To find the scale factors you would optimize the fitting goal below, for the prediction
filter (f1, f2):

0 ≈ r =













y1 y0
y2 y1
y3 y2
y4 y3
y5 y4













[

f1
f2

]

−













y2
y3
y4
y5
y6













(6.9)

158 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

(In practice, of course the system of equations would be much taller, and perhaps somewhat
wider.) A typical row in the matrix (6.9) says that yt+1 ≈ yt f1+ yt−1 f2 hence the description
of f as a “prediction” filter. The error in the prediction is simply the residual. Define the
residual to have opposite polarity and merge the column vector into the matrix, so you get













0
0
0
0
0













≈ r =













y2 y1 y0
y3 y2 y1
y4 y3 y2
y5 y4 y3
y6 y5 y4

















1
− f1
− f2



 (6.10)

which is a standard form for autoregressions and prediction error.

Multiple reflections are predictable. It is the unpredictable part of a signal, the predic-
tion residual, that contains the primary information. The output of the filter (1,− f1,− f2) =
(a0,a1,a2) is the unpredictable part of the input. This filter is a simple example of a “prediction-
error” (PE) filter. It is one member of a family of filters called “error filters.”

The error-filter family are filters with one coefficient constrained to be unity and various
other coefficients constrained to be zero. Otherwise, the filter coefficients are chosen to have
minimum power output. Names for various error filters follow:

(1,a1,a2,a3, · · · ,an) prediction-error (PE) filter
(1,0,0,a3,a4, · · · ,an) gapped PE filter with a gap
(a−m , · · · ,a−2,a−1, 1,a1,a2,a3, · · · ,an) interpolation-error (IE) filter

We introduce a free-mask matrix K which “passes” the freely variable coefficients in the
filter and “rejects” the constrained coefficients (which in this first example is merely the first
coefficient a0 = 1).

K =





0 . .
. 1 .
. . 1



 (6.11)

To compute a simple prediction error filter a = (1,a1,a2) with the CD method, we write
(6.9) or (6.10) as

0 ≈ r =













y2 y1 y0
y3 y2 y1
y4 y3 y2
y5 y4 y3
y6 y5 y4

















0 · ·
· 1 ·
· · 1









1
a1
a2



 +













y2
y3
y4
y5
y6













(6.12)

Let us move from this specific fitting goal to the general case. (Notice the similarity of the
free-mask matrix K in this filter estimation problem with the free-mask matrix J in missing

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 159

data goal (3.3).) The fitting goal is,

0 ≈ Ya (6.13)
0 ≈ Y(I−K+K)a (6.14)
0 ≈ YKa+Y(I−K)a (6.15)
0 ≈ YKa+Ya0 (6.16)
0 ≈ YKa+y (6.17)

0 ≈ r = YKa+ r0 (6.18)

which means we initialize the residual with r0 = y. and then iterate with

1a ←− K′Y′ r (6.19)
1r ←− YK 1a (6.20)

6.3 PREDICTION-ERROR FILTER OUTPUT IS WHITE

The relationship between spectrum and PEF

Knowledge of an autocorrelation function is equivalent to knowledge of a spectrum. The two
are simply related by Fourier transform. A spectrum or an autocorrelation function encap-
sulates an important characteristic of a signal or an image. Generally the spectrum changes
slowly from place to place although it could change rapidly. Of all the assumptions we could
make to fill empty bins, one that people usually find easiest to agree with is that the spectrum
should be the same in the empty-bin regions as where bins are filled. In practice we deal with
neither the spectrum nor its autocorrelation but with a third object. This third object is the
Prediction Error Filter (PEF), the filter in equation (6.10).

Take equation (6.10) for r and multiply it by the adjoint r′ getting a quadratic form in the
PEF coefficients. Minimizing this quadratic form determines the PEF. This quadratic form
depends only on the autocorrelation of the original data yt , not on the data yt itself. Clearly
the PEF is unchanged if the data has its polarity reversed or its time axis reversed. Indeed,
we’ll see here that knowledge of the PEF is equivalent to knowledge of the autocorrelation or
the spectrum.

Undoing convolution in nature

Prediction-error filtering is also called “deconvolution”. This word goes back to very basic
models and concepts. In this model one envisions a random white-spectrum excitation func-
tion x existing in nature, and this excitation function is somehow filtered by unknown natural
processes, with a filter operator B producing an output y in nature that becomes the input y
to our computer programs. This is sketched in Figure 6.1. Then we design a prediction-error
filter A on y, which yields a white-spectrumed output residual r. Because r and x theoretically
have the same spectrum, the tantalizing prospect is that maybe r equals x, meaning that the
PEF A has deconvolved the unknown convolution B.

160 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.1: Flow of information from
nature, to observation, into computer.
mda-systems [NR]

x y r = x

Nature Computer

B

?

A

Causal with causal inverse

Theoretically, a PEF is a causal filter with a causal inverse. This adds confidence to the likeli-
hood that deconvolution of natural processes with a PEF might get the correct phase spectrum
as well as the correct amplitude spectrum. Naturally, the PEF does not give the correct phase
to an “all-pass” filter. That is a filter with a phase shift but a constant amplitude spectrum. (I
think most migration operators are in this category.)

Theoretically we should be able to use a PEF in either convolution or polynomial division.
There are some dangers though, mainly connected with dealing with data in small windows.
Truncation phenomena might give us PEF estimates that are causal, but whose inverse is not,
so they cannot be used in polynomial division. This is a lengthy topic in the classic literature.
This old, fascinating subject is examined in my books, FGDP and PVI. A classic solution is
one by John Parker Burg. We should revisit the Burg method in light of the helix.

PEF output tends to whiteness

The most important property of a prediction-error filter or PEF is that its output tends to a
white spectrum (to be proven here). No matter what the input to this filter, its output tends to
whiteness as the number of the coefficients n→∞ tends to infinity. Thus, the PE filter adapts
itself to the input by absorbing all its color. This has important statistical implications and
important geophysical implications.

Spectral estimation

The PEF’s output being white leads to an important consequence: To specify a spectrum, we
can give the spectrum (of an input) itself, give its autocorrelation, or give its PEF coefficients.
Each is transformable to the other two. Indeed, an effective mechanism of spectral estimation,
developed by John P. Burg and described in FGDP, is to compute a PE filter and look at the
inverse of its spectrum.

Short windows

The power of a PE filter is that a short filter can often extinguish, and thereby represent, the
information in a long resonant filter. If the input to the PE filter is a sinusoid, it is exactly

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 161

predictable by a three-term recurrence relation, and all the color is absorbed by a three-term
PE filter (see exercises). Burg’s spectral estimation is especially effective in short windows.

Weathered layer resonance

That the output spectrum of a PE filter is white is also useful geophysically. Imagine the
reverberation of the soil layer, highly variable from place to place, as the resonance between
the surface and shallow more-consolidated soil layers varies rapidly with surface location
because of geologically recent fluvial activity. The spectral color of this erratic variation on
surface-recorded seismograms is compensated for by a PE filter. Usually we do not want
PE-filtered seismograms to be white, but once they all have the same spectrum, it is easy to
postfilter them to any desired spectrum.

6.3.1 PEF whiteness proof in 1-D

The basic idea of least-squares fitting is that the residual is orthogonal to the fitting functions.
Applied to the PE filter, this idea means that the output of a PE filter is orthogonal to lagged
inputs. The orthogonality applies only for lags in the past, because prediction knows only
the past while it aims to the future. What we want to show here is different, namely, that the
output is uncorrelated with itself (as opposed to the input) for lags in both directions; hence
the output spectrum is white.

In (6.21) are two separate and independent autoregressions, 0 ≈ Yaa for finding the filter
a, and 0 ≈ Ybb for finding the filter b. By noticing that the two matrices are really the same
(except a row of zeros on the bottom of Ya is a row in the top of Yb) we realize that the two
regressions must result in the same filters a = b, and the residual rb is a shifted version of
ra. In practice, I visualize the matrix being a thousand components tall (or a million) and a
hundred components wide.

0 ≈ ra =































y1 0 0
y2 y1 0
y3 y2 y1
y4 y3 y2
y5 y4 y3
y6 y5 y4
0 y6 y5
0 0 y6
0 0 0



































1
a1
a2



 ; 0 ≈ rb =































0 0 0
y1 0 0
y2 y1 0
y3 y2 y1
y4 y3 y2
y5 y4 y3
y6 y5 y4
0 y6 y5
0 0 y6



































1
b1
b2



 (6.21)

When the energy r′r of a residual has been minimized, the residual r is orthogonal to the fitting
functions. For example, choosing a2 to minimize r′r gives 0 = ∂r′r/∂a2 = 2r′∂r/∂a2. This
shows that r′ is perpendicular to ∂r/∂a2 which is the rightmost column of the Ya matrix. Thus
the vector ra is orthogonal to all the columns in the Ya matrix except the first (because we do
not minimize with respect to a0).

162 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Our goal is a different theorem that is imprecise when applied to the three coefficient filters
displayed in (6.21), but becomes valid as the filter length tends to infinity a= (1,a1,a2,a3, · · ·)
and the matrices become infinitely wide. Actually, all we require is the last component in b,
namely bn tend to zero. This generally happens because as n increases, yt−n becomes a weaker
and weaker predictor of yt .

The matrix Ya contains all of the columns that are found in Yb except the last (and the
last one is not important). This means that ra is not only orthogonal to all of Ya’s columns
(except the first) but ra is also orthogonal to all of Yb’s columns except the last. Although ra

isn’t really perpendicular to the last column of Yb, it doesn’t matter because that column has
hardly any contribution to rb since |bn|<< 1. Because ra is (effectively) orthogonal to all the
components of rb, ra is also orthogonal to rb itself. (For any u and v, if r ·u= 0 and r ·v= 0
then r · (u+v)= 0 and also r · (a1u+a2v)= 0).

Here is a detail: In choosing the example of equation (6.21), I have shifted the two fitting
problems by only one lag. We would like to shift by more lags and get the same result. For
this we need more filter coefficients. By adding many more filter coefficients we are adding
many more columns to the right side of Yb. That’s good because we’ll be needing to neglect
more columns as we shift rb further from ra. Neglecting these columns is commonly justified
by the experience that “after short range regressors have had their effect, long range regressors
generally find little remaining to predict.” (Recall that the damped harmonic oscillator from
physics, the finite difference equation that predicts the future from the past, uses only two
lags.)

Here is the main point: Since rb and ra both contain the same signal r but time-shifted, the
orthogonality at all shifts means that the autocorrelation of r vanishes at all lags. An exception,
of course, is at zero lag. The autocorrelation does not vanish there because ra is not orthogonal
to its first column (because we did not minimize with respect to a0).

As we redraw 0 ≈ rb = Ybb for various lags, we may shift the columns only downward
because shifting them upward would bring in the first column of Ya and the residual ra is
not orthogonal to that. Thus we have only proven that one side of the autocorrelation of r
vanishes. That is enough however, because autocorrelation functions are symmetric, so if one
side vanishes, the other must also.

If a and b were two-sided filters like (· · · ,b−2,b−1, 1,b1,b2, · · ·) the proof would break. If
b were two-sided, Yb would catch the nonorthogonal column of Ya. Not only is ra not proven
to be perpendicular to the first column of Ya, but it cannot be orthogonal to it because a signal
cannot be orthogonal to itself.

The implications of this theorem are far reaching. The residual r, a convolution of y with
a has an autocorrelation that is an impulse function. The Fourier transform of an impulse is
a constant. Thus the spectrum of the residual is “white”. Thus y and a have mutually inverse
spectra.

Since the output of a PEF is white, the PEF itself has a spectrum inverse to its input.

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 163

An important application of the PEF is in missing data interpolation. We’ll see examples
later in this chapter. My third book, PVI2 has many examples3 in one dimension with both
synthetic data and field data including the gap parameter. Here we next extend these ideas to
two (or more) dimensions.

6.3.2 Simple dip filters

Convolution in two dimensions is just like convolution in one dimension except that convolu-
tion is done on two axes. The input and output data are planes of numbers and the filter is also
a plane. A two-dimensional filter is a small plane of numbers that is convolved over a big data
plane of numbers.

Suppose the data set is a collection of seismograms uniformly sampled in space. In other
words, the data is numbers in a (t , x)-plane. For example, the following filter destroys any
wavefront aligned along the direction of a line containing both the “+1” and the “−1”.

−1 ·
· ·
· 1

(6.22)

The next filter destroys a wave with a slope in the opposite direction:

· 1
−1 · (6.23)

To convolve the above two filters, we can reverse either on (on both axes) and correlate them,
so that you can get

· −1 ·
1 · ·
· · 1
· −1 ·

(6.24)

which destroys waves of both slopes.

A two-dimensional filter that can be a dip-rejection filter like (6.22) or (6.23) is

a ·
b ·
c 1
d ·
e ·

(6.25)

where the coefficients (a,b,c,d,e) are to be estimated by least squares in order to minimize
the power out of the filter. (In the filter table, the time axis runs vertically.)

2http://sepwww.stanford.edu/sep/prof/pvi/toc_html/index.html
3http://sepwww.stanford.edu/sep/prof/pvi/tsa/paper_html/node1.html

164 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Fitting the filter to two neighboring traces that are identical but for a time shift, we see
that the filter coefficients (a,b,c,d,e) should turn out to be something like (−1,0,0,0,0) or
(0,0,−.5,−.5,0), depending on the dip (stepout) of the data. But if the two channels are not
fully coherent, we expect to see something like (−.9,0,0,0,0) or (0,0,−.4,−.4,0). To find
filters such as (6.24), we adjust coefficients to minimize the power out of filter shapes, as in

v a ·
w b ·
x c 1
y d ·
z e ·

(6.26)

With 1-dimensional filters, we think mainly of power spectra, and with 2-dimensional
filters we can think of temporal spectra and spatial spectra. What is new, however, is that in
two dimensions we can think of dip spectra (which is when a 2-dimensional spectrum has a
particularly common form, namely when energy organizes on radial lines in the (ω,kx)-plane).
As a short (three-term) 1-dimensional filter can devour a sinusoid, we have seen that simple
2-dimensional filters can devour a small number of dips.

6.3.3 PEF whiteness proof in 2-D

A well-known property (see FGDP or PVI) of a 1-D PEF is that its energy clusters immediately
after the impulse at zero delay time. Applying this idea to the helix in Figure 4.2 on page 99
shows us that we can consider a 2-D PEF to be a small halfplane like (4.7) on page 106 with
an impulse along a side. These shapes are what we see here in Figure 6.2.

Figure 6.2: A 2-D whitening filter
template, and itself lagged. At out-
put locations “A” and “B,” the filter
coefficient is constrained to be “1”.
When the semicircles are viewed as
having infinite radius, the B filter is
contained in the A filter. Because the
output at A is orthogonal to all its in-
puts, which include all inputs of B,
the output at A is orthogonal to the
output of B. mda-whitepruf [ER]

Figure 6.2 shows the input plane with a 2-D filter on top of it at two possible locations.
The filter shape is a semidisk, which you should imagine being of infinitely large radius.
Notice that semidisk A includes all the points in B. The output of disk A will be shown to be
orthogonal to the output of disk B. Conventional least squares theory says that the coefficients
of the filter are designed so that the output of the filter is orthogonal to each of the inputs to

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 165

that filter (except for the input under the “1,” because any nonzero signal cannot be orthogonal
to itself). Recall that if a given signal is orthogonal to each in a given group of signals, then
the given signal is orthogonal to all linear combinations within that group. The output at B is
a linear combination of members of its input group, which is included in the input group of A,
which are already orthogonal to A. Therefore the output at B is orthogonal to the output at A.
In summary,

residual ⊥ fitting function
output at A ⊥ each input to A
output at A ⊥ each input to B
output at A ⊥ linear combination of each input to B
output at A ⊥ output at B

The essential meaning is that a particular lag of the output autocorrelation function vanishes.

Study Figure 6.2 to see for what lags all the elements of the B filter are wholly contained
in the A filter. These are the lags where we have shown the output autocorrelation to be
vanishing. Notice another set of lags where we have proven nothing (where B is moved to the
right of A). Autocorrelations are centrosymmetric, which means that the value at any lag is
the same as the value at the negative of that lag, even in 2-D and 3-D where the lag is a vector
quantity. Above we have shown that a halfplane of autocorrelation values vanishes. By the
centrosymmetry, the other half must vanish too. Thus the autocorrelation of the PEF output is
an impulse function, so its 2-D spectrum is white.

The helix tells us why the proper filter form is not a square with the “1” on the corner.
Before I discovered the helix, I understood it another way (that I learned from John P. Burg):
For a spectrum to be white, all nonzero autocorrelation lags must be zero-valued. If the filter
were a quarter-plane, then the symmetry of autocorrelations would only give us vanishing in
another quarter, so there would be two remaining quarter-planes where the autocorrelation was
not zero.

Fundamentally, the white-output theorem requires a one-dimensional ordering to the val-
ues in a plane or volume. The filter must contain a halfplane of values so that symmetry gives
the other half.

You will notice some nonuniqueness. We could embed the helix with a 90◦ rotation in the
original physical application. Besides the difference in side boundaries, the 2-D PEF would
have a different orientation. Both PEFs should have an output that tends to whiteness as
the filter is enlarged. It seems that we could design whitening autoregression filters for 45◦
rotations also, and we could also design them for hexagonal coordinate systems. In some
physical problems, you might find the nonuniqueness unsettling. Does it mean the “final
solution” is nonunique? Usually not, or not seriously so. Recall even in one dimension,
the time reverse of a PEF has the same spectrum as the original PEF. When a PEF is used
for regularizing a fitting problem, it is worth noticing that the quadratic form minimized is the
PEF times its adjoint so the phase drops out. Likewise, a missing data restoration also amounts
to minimizing a quadratic form so the phase again drops out.

166 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

6.3.4 Examples of modeling and deconvolving with a 2-D PEF

Here we examine elementary signal-processing applications of 2-D prediction-error filters
(PEFs) on both everyday 2-D textures and on seismic data. Some of these textures are easily
modeled with prediction-error filters (PEFs) while others are not. All figures used the same
10×10 filter shape. No attempt was made to optimize filter size or shape or any other param-
eters.

Results in Figures 6.3-6.9 are shown with various familiar textures4 on the left as training
data sets. From these training data sets, a prediction-error filter (PEF) is estimated using mod-
ule pef on page 178. The center frame is simulated data made by deconvolving (polynomial
division) random numbers by the estimated PEF. The right frame is the more familiar process,
convolving the estimated PEF on the training data set.

Figure 6.3: Synthetic granite matches the training image quite well. The prediction error (PE)
is large at grain boundaries so it almost seems to outline the grains. mda-granite [ER]

Theoretically, the right frame tends towards a white spectrum. Earlier you could notice the
filter size by knowing that the output was taken to be zero where the filter is only partially on
the data. This was annoying on real data where we didn’t want to throw away any data around
the sides. Now the filtering is done without a call to the boundary module so we have typical
helix wraparound.

Since a PEF tends to the inverse of the spectrum of its input, results similar to these could
probably be found using Fourier transforms, smoothing spectra, etc. We used PEFs because of
their flexibility. The filters can be any shape. They can dodge around missing data, or we can
use them to estimate missing data. We avoid periodic boundary assumptions inherent to FT.
The PEF’s are designed only internal to known data, not off edges so they are readily adaptible
to nonstationarity. Thinking of these textures as seismic time slices, the textures could easily
be required to pass thru specific values at well locations.

4I thank Morgan Brown for finding these textures.

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 167

Figure 6.4: Synthetic wood grain has too little white. This is because of the nonsymmetric
brightness histogram of natural wood. Again, the PEF output looks random as expected.
mda-wood [ER]

Figure 6.5: A banker’s suit (left). A student’s suit (center). My suit (right). The prediction
error is large where the weave changes direction. mda-herr [ER]

Figure 6.6: Basket weave. The simulated data fails to segregate the two dips into a checker-
board pattern. The PEF output looks structured perhaps because the filter is too small.
mda-basket [ER]

168 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.7: Brick. Synthetic brick edges are everywhere and do not enclose blocks containing
a fixed color. PEF output highlights the mortar. mda-brick [ER]

Figure 6.8: Ridges. A spectacular failure of the stationarity assumption. All dips are present
but in different locations. Never-the-less, the ridges have been sharpened by the deconvolution.
mda-ridges [ER]

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 169

Figure 6.9: Gulf of Mexico seismic section, modeled, and deconvolved. Do you see any
drilling prospects in the simulated data? In the deconvolution, the strong horizontal layering
is suppressed giving a better view of the hyperbolas. The decon filter is the same 10×10 used
on the everyday textures. mda-WGstack [ER]

6.3.5 Seismic field data examples

Figures 6.10-6.13 are based on exploration seismic data from the Gulf of Mexico deep water.
A ship carries an air gun and tows a streamer with some hundreds of geophones. First we look
at a single pop of the gun. We use all the geophone signals to create a single 1-D PEF for the
time axis. This changes the average temporal frequency spectrum as shown in Figure 6.10.
Signals from 60 Hz to 120 Hz are boosted substantially. The raw data has evidently been
prepared with strong filtering against signals below about 8 Hz. The PEF attempts to recover
these signals, mostly unsuccessfully, but it does boost some energy near the 8 Hz cutoff.
Choosing a longer filter would flatten the spectrum further. The big question is, “Has the PEF
improved the appearance of the data?”

The data itself from the single pop, both before and after PE-filtering is shown in Fig-
ure 6.11. For reasons of esthetics of human perception I have chosen to display a mirror image
of the PEF’ed data. To see a blink movie of superposition of before-and-after images you
need the electronic book. We notice that signals of high temporal frequencies indeed have the
expected hyperbolic behavior in space. Thus, these high-frequency signals are wavefields, not
mere random noise.

Given that all visual (or audio) displays have a bounded range of amplitudes, increasing
the frequency content (bandwidth) means that we will need to turn down the amplification so

170 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.10: ω spectrum of a shot gather of Figure 6.11 before and after 1-D decon with a 30
point filter. mda-antoinedecon1 [ER]

we do not wish to increase the bandwidth unless we are adding signal.

Increasing the spectral bandwidth always requires us to diminish the gain.

The same ideas but with a two-dimensional PEF are in Figure 6.12 (the same data but with
more of it squeezed onto the page.) As usual, the raw data is dominated by events arriving
later at greater distances. After the PEF, we tend to see equal energy in dips in all directions.
We have strongly enhanced the “backscattered” energy, those events that arrive later at shorter
distances.

Figure 6.13 shows echos from the all shots, the nearest receiver on each shot. This picture
of the earth is called a “near-trace section.” This earth picture shows us why there is so much
backscattered energy in Figure 6.12 (which is located at the left side of Figure 6.13). The
backscatter comes from any of the many of near-vertical faults.

We have been thinking of the PEF as a tool for shaping the spectrum of a display. But does
it have a physical meaning? What might it be? Referring back to the beginning of the chapter
we are inclined to regard the PEF as the convolution of the source waveform with some kind
of water-bottom response. In Figure 6.12 we used many different shot-receiver separations.
Since each different separation has a different response (due to differing moveouts) the water
bottom reverberation might average out to be roughly an impulse. Figure 6.12 is a different
story. Here for each shot location, the distance to the receiver is constant. Designing a single
channel PEF we can expect the PEF to contain both the shot waveform and the water bottom
layers because both are nearly identical in all the shots. We would rather have a PEF that
represents only the shot waveform (and perhaps a radiation pattern).

Let us consider how we might work to push the water-bottom reverberation out of the
PEF. This data is recorded in water 600 meters deep. A consequence is that the sea bottom
is made of fine-grained sediments that settled very slowly and rather similarly from place to
place. In shallow water the situation is different. The sands near estuaries are always shifting.
Sedimentary layers thicken and thin. They are said to “on-lap and off-lap.” Here I do notice

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 171

Figure 6.11: Raw data with its mirror. Mirror had 1-D PEF applied, 30 point filter.
mda-antoinedecon [ER,M]

172 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.12: A 2-D filter (here 20 × 5) brings out the backscattered energy.
mda-antoinedecon2 [ER,M]

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 173

Figure 6.13: Raw data, near-trace section (top). Filtered with a two-channel PEF (bottom).
The movie has other shaped filters. mda-antoinedecon3 [ER,M]

174 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

where the water bottom is sloped the layers do thin a little. To push the water bottom layers out
of the PEF our idea is to base its calculation not on the raw data, but on the spatial prediction
error of the raw data. On a perfectly layered earth a perfect spatial prediction error filter would
zero all traces but the first one. Since a 2-D PEF includes spatial prediction as well as temporal
prediction, we can expect it to contain much less of the sea-floor layers than the 1-D PEF. If
you have access to the electronic book, you can blink the figure back and forth with various
filter shapes.

6.4 PEF ESTIMATION WITH MISSING DATA

If we are not careful, our calculation of the PEF could have the pitfall that it would try to use
the missing data to find the PEF, and hence it would get the wrong PEF. To avoid this pitfall,
imagine a PEF finder that uses weighted least squares where the weighting function vanishes
on those fitting equations that involve missing data. The weighting would be unity elsewhere.
Instead of weighting bad results by zero, we simply will not compute them. The residual there
will be initialized to zero and never changed. Likewise for the adjoint, these components of
the residual will never contribute to a gradient. So now we need a convolution program that
produces no outputs where missing inputs would spoil it.

Recall there are two ways of writing convolution, equation (1.4) when we are interested in
finding the filter inputs, and equation (1.5) when we are interested in finding the filter itself.
We have already coded equation (1.4), operator helicon on page 104. That operator was
useful in missing data problems. Now we want to find a prediction-error filter so we need the
other case, equation (1.5), and we need to ignore the outputs that will be broken because of
missing inputs. The operator module hconest does the job.

module hconest { # masked helix convolution, adjoint is the filter.

use helix

real, dimension (:), pointer :: x

type(filter) :: aa

#% _init(x, aa)

#% _lop(a, y)

integer ia, ix, iy

do ia = 1, size(a) {

do iy = 1 + aa%lag(ia), size(y) { if(aa%mis(iy)) cycle

ix = iy - aa%lag(ia)

if(adj) a(ia) += y(iy) * x(ix)

else y(iy) += a(ia) * x(ix)

}

}

}

Now identify the broken regression equations, those that use missing data. Suppose that
y2 and y3 were missing or bad data values in the fitting goal (6.27). That would spoil the 2nd,
3rd, 4th, and 5th fitting equations. Thus we would want to be sure that w2, w3, w4 and w5

6.4. PEF ESTIMATION WITH MISSING DATA 175

were zero. (We’d still be left enough equations to find (a2,a3).)

0 ≈ Wr =

























w1
. w2
. . w3
. . . w4
. . . . w5 . . .
. w6 . .
. w7 .
. w8

















































y1 0 0
y2 y1 0
y3 y2 y1
y4 y3 y2
y5 y4 y3
y6 y5 y4
0 y6 y5
0 0 y6





























1
a1
a2



 (6.27)

What algorithm will enable us to identify the regression equations that have become defective,
now that y2 and y3 are missing? Examine this calculation:

























m1
m2
m3
m4
m5
m6
m7
m8

























=

























0
1
2
2
1
0
0
0

























=

























0 0 0
1 0 0
1 1 0
0 1 1
0 0 1
0 0 0
0 0 0
0 0 0





























1
1
1



 (6.28)

The value of mi tells us how many inputs are missing from the calculation of the residual ri .
Where none are missing, we want unit weights wi = 1. Where any are missing, we want zero
weights wi = 0.

From this example we recognize a general method for identifying defective regression
equations and weighting them by zero: Prepare a vector like y with ones where data is missing
and zeros where the data is known. Prepare a vector like a where all values are ones. These
are the vectors we put in equation (6.28) to find the m i and hence the needed weights wi . It is
all done in module misinput.

module misinput { # find a mask of missing filter inputs

use helicon

contains

subroutine find_mask(known, aa) {

logical, intent(in) :: known(:)

type(filter) :: aa

real, dimension(size (known)) :: rr, dfre

integer :: stat

where(known) dfre = 0.

elsewhere dfre = 1.

call helicon_init(aa)

aa%flt = 1.

stat = helicon_lop(.false., .false., dfre, rr)

aa%flt = 0.

where (rr > 0.) aa%mis = .true.

}

}

176 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

6.4.1 Internal boundaries to multidimensional convolution

Sometimes we deal with small patches of data. In order that boundary phenomena not domi-
nate the calculation intended in the central region, we need to take care that input data is not
assumed to be zero beyond the interval that the data is given.

The two little triangular patches of zeros in the convolution matrix in equation (6.27)
describe end conditions where it is assumed that the data yt vanishes before t = 1 and after
t = 6. Alternately we might not wish to make that assumption. Thus the triangles filled with
zeros could be regarded as missing data. In this one-dimensional example, it is easy to see
that the filter, say yy%mis() should be set to .TRUE. at the ends so no output would ever be
computed there. We would like to find a general multidimensional algorithm to correctly
specify yy%mis() around the multidimensional boundaries. This proceeds like the missing
data algorithm, i.e. we apply a filter of all ones to a data space template that is taken all zeros
except ones at the locations of missing data, in this case y0, y−1 and y7, y8. This amounts to
surrounding the original data set with some missing data. We need padding the size of the
filter on all sides. The padded region would be filled with ones (designating missing inputs).
Where the convolution output is nonzero, there yy%mis() is set to .TRUE. denoting an output
with missing inputs.

The two-dimensional case is a little more cluttered than the 1-D case but the principle is
about the same. Figure 6.14 shows a larger input domain, a 5× 3 filter, and a smaller output
domain. There are two things to notice. First, sliding the filter everywhere inside the outer

Figure 6.14: Domain of inputs and
outputs of a two-dimensional filter
like a PEF. mda-rabdomain [NR]

Input

Output

box, we get outputs (under the 1 location) only in the inner box. Second, (the adjoint idea)
crosscorrelating the inner and outer boxes gives us the 3× 5 patch of information we use to
build the filter coefficients. We need to be careful not to assume that signals vanish outside the
region where they are defined. In a later chapter we will break data spaces into overlapping
patches, separately analyze the patches, and put everything back together. We do this because
crosscorrelations change with time and they are handled as constant in short time windows.
There we must be particularly careful that zero signal values not be presumed outside of the
small volumes; otherwise the many edges and faces of the many small volumes can overwhelm
the interior that we want to study.

In practice, the input and output are allocated equal memory, but the output residual is
initialized to zero everywhere and then not computed except where shown in figure 6.14.
Below is module bound to build a selector for filter outputs that should never be examined
or even computed (because they need input data from outside the given data space). Inputs

6.4. PEF ESTIMATION WITH MISSING DATA 177

are a filter aa and the size of its cube na = (na(1),na(2),...). Also input are two cube
dimensions, that of the data last used by the filter nold and that of the filter’s next intended use
nd. (nold and nd are often the same). Module bound begins by defining a bigger data space
with room for a filter surrounding the original data space nd on all sides. It does this by the
line nb=nd+2*na. Then we allocate two data spaces xx and yy of the bigger size nb and pack
many ones in a frame of width na around the outside of xx. The filter aa is also filled with
ones. The filter aa must be regridded for the bigger nb data space (regridding merely changes
the lag values of the ones). Now we filter the input xx with aa getting yy. Wherever the output
is nonzero, we have an output that has been affected by the boundary. Such an output should
not be computed. Thus we allocate the logical mask aa%mis (a part of the helix filter definition
in module helix on page 103) and wherever we see a nonzero value of yy in the output, we
designate the output as depending on missing inputs by setting aa%mis to .true..

module bound { # mark helix filter outputs where input is off data.

use cartesian

use helicon

use regrid

contains

subroutine boundn (nold, nd, na, aa) {

integer, dimension(:), intent(in) :: nold, nd, na # (ndim)

type(filter) :: aa

integer, dimension(size(nd)) :: nb, ii

real, dimension(:), allocatable :: xx, yy

integer :: iy, my, ib, mb, stat

nb = nd + 2*na; mb = product(nb) # nb is a bigger space to pad into.

allocate(xx(mb), yy(mb)) # two large spaces, equal size

xx = 0. # zeros

do ib = 1, mb { # surround the zeros with many ones

call line2cart(nb, ib, ii) # ii(ib)

if(any(ii <= na .or. ii > nb-na)) xx(ib) = 1.

}

call helicon_init(aa) # give aa pointer to helicon.lop

call regridn(nold, nb, aa); aa%flt = 1. # put all 1’s in filter

stat = helicon_lop(.false., .false., xx, yy) # apply filter

call regridn(nb, nd, aa); aa%flt = 0. # remake filter for orig data.

my = product(nd)

allocate(aa%mis(my)) # attach missing designation to y_filter

do iy = 1, my { # map from unpadded to padded space

call line2cart(nd, iy, ii)

call cart2line(nb, ii+na, ib) # ib(iy)

aa%mis(iy) = (yy(ib) > 0.) # true where inputs missing

}

deallocate(xx, yy)

}

}

In reality one would set up the boundary conditions with module bound before identifying
locations of missing data with module misinput. Both modules are based on the same concept,
but the boundaries are more cluttered and confusing which is why we examined them later.

178 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

6.4.2 Finding the prediction-error filter

The first stage of the least-squares estimation is computing the prediction-error filter. The
second stage will be using it to find the missing data. The input data space contains a mixture
of known data values and missing unknown ones. For the first stage of finding the filter, we
generally have many more fitting equations than we need so we can proceed by ignoring the
fitting equations that involve missing data values. We ignore them everywhere that the missing
inputs hit the filter.

The codes here do not address the difficulty that maybe too much data is missing so that all
weights are zero. To add stabilization we could supplement the data volume with a “training
dataset” or by a “prior filter”. With things as they are, if there is not enough data to specify a
prediction-error filter, you should encounter the error exit from cgstep() on page 51.

module pef { # Find prediction-error filter (helix magic)

use hconest

use cgstep_mod

use solver_smp_mod

contains

subroutine find_pef(dd, aa, niter) {

integer, intent(in) :: niter # number of iterations

type(filter) :: aa # filter

real, dimension(:), pointer :: dd # input data

call hconest_init(dd, aa)

call solver_smp(m=aa%flt, d=-dd, Fop=hconest_lop, stepper=cgstep, niter=niter, m0=aa%flt)

call cgstep_close()

}

}

6.5 TWO-STAGE LINEAR LEAST SQUARES

In Chapter 3 and Chapter 5 we filled empty bins by minimizing the energy output from the
filtered mesh. In each case there was arbitrariness in the choice of the filter. Here we find and
use the optimum filter, the PEF.

The first stage is that of the previous section, finding the optimal PEF while carefully
avoiding using any regression equations that involve boundaries or missing data. For the
second stage, we take the PEF as known and find values for the empty bins so that the power
out of the prediction-error filter is minimized. To do this we find missing data with module
mis2() on page 149.

This two-stage method avoids the nonlinear problem we would otherwise face if we in-
cluded the fitting equations containing both free data values and free filter values. Presumably,
after two stages of linear least squares we are close enough to the final solution that we could
switch over to the full nonlinear setup described near the end of this chapter.

The synthetic data in Figure 6.15 is a superposition of two plane waves of different direc-
tions, each with a random (but low-passed) waveform. After punching a hole in the data, we

6.5. TWO-STAGE LINEAR LEAST SQUARES 179

find that the lost data is pleasingly restored, though a bit weak near the side boundary. This im-
perfection could result from the side-boundary behavior of the operator or from an insufficient
number of missing-data iterations.

Figure 6.15: Original data (left), with a zeroed hole, restored, residual selector (right).
mda-hole90 [ER,M]

The residual selector in Figure 6.15 shows where the filter output has valid inputs. From
it you can deduce the size and shape of the filter, namely that it matches up with Figure 6.14.
The ellipsoidal hole in the residual selector is larger than that in the data because we lose
regression equations not only at the hole, but where any part of the filter overlaps the hole.

The results in Figure 6.15 are essentially perfect representing the fact that that synthetic
example fits the conceptual model perfectly. Before we look at the many examples in Figures
6.16-6.19 we will examine another gap-filling strategy.

6.5.1 Adding noise (Geostat)

In chapter 3 we restored missing data by adopting the philosopy of minimizing the energy in
filtered output. In this chapter we learned about an optimum filter for this task, the prediction-
error filter (PEF). Let us name this method the “minimum noise” method of finding missing
data.

A practical problem with the minimum-noise method is evident in a large empty hole such
as in Figures 6.16- 6.17. In such a void the interpolated data diminishes greatly. Thus we have
not totally succeeded in the goal of “hiding our data acquisition footprint” which we would
like to do if we are trying to make pictures of the earth and not pictures of our data acquisition
footprint.

What we will do next is useful in some applications but not in others. Misunderstood or
misused it is rightly controversial. We are going to fill the empty holes with something that

180 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

looks like the original data but really isn’t. I will distinguish the words “synthetic data” (that
derived from a physical model) from “simulated data” (that manufactured from a statistical
model). We will fill the empty holes with simulated data like what you see in the center panels
of Figures 6.3-6.9. We will add just enough of that “wall paper noise” to keep the variance
constant as we move into the void.

Given some data d, we use it in a filter operator D, and as described with equation (6.27)
we build a weighting function W that throws out the broken regression equations (ones that
involve missing inputs). Then we find a PEF a by using this regression.

0 ≈ r = WDa (6.29)

Because of the way we defined W, the “broken” components of r vanish. We need to know
the variance σ of the nonzero terms. It can be expressed mathematically in a couple different
ways. Let 1 be a vector filled with ones and let r2 be a vector containing the squares of the
components of r.

σ =

√

√

√

√

1
N

N
∑

i

r2
i =

√

1′Wr2

1′W1
(6.30)

Let us go to a random number generator and get a noise vector n filled with random numbers
of variance σ . We’ll call this the “added random noise”. Now we solve this new regression
for the data space d (both known and missing)

0 ≈ r = Ad − n (6.31)

keeping in mind that known data is constrained (as detailed in chapter 3).

To understand why this works, consider first the training image, a region of known data.
Although we might think that the data defines the white noise residual by r = Ad, we can
also imagine that the white noise determines the data by d= A−1r. Then consider a region of
wholly missing data. This data is determined by d=A−1n. Since we want the data variance to
be the same in known and unknown locations, naturally we require the variance of n to match
that of r.

A very minor issue remains. Regression equations may have all of their required input
data, some of it, or none of it. Should the n vector add noise to every regression equation?
First, if a regression equation has all its input data that means there are no free variables
so it doesn’t matter if we add noise to that regression equation because the constraints will
overcome that noise. I don’t know if I should worry about how many inputs are missing for
each regression equation.

It is fun making all this interesting “wall paper” noticing where it is successful and where
it isn’t. We cannot help but notice that it seems to work better with the genuine geophysical
data than it does with many of the highly structured patterns. Geophysical data is expensive to
acquire. Regrettably, we have uncovered a technology that makes counterfeiting much easier.

6.5. TWO-STAGE LINEAR LEAST SQUARES 181

Figure 6.16: The herringbone texture is a patchwork of two textures. We notice that data
missing from the hole tends to fill with the texture at the edge of the hole. The spine of the
herring fish, however, is not modeled at all. mda-herr-hole-fillr [ER,M]

Figure 6.17: The brick texture has a mortar part (both vertical and horizontal joins) and a
brick surface part. These three parts enter the empty area but do not end where they should.
mda-brick-hole-fillr [ER,M]

Figure 6.18: The theoretical model is a poor fit to the ridge data since the prediction must
try to match ridges of all possible orientations. This data requires a broader theory which
incorporates the possibility of nonstationarity (space variable slope). mda-ridges-hole-fillr
[ER,M]

182 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.19: Filling the missing seismic data. The imaging process known as “migration”
would suffer diffraction artifacts in the gapped data that it would not suffer on the restored
data. mda-WGstack-hole-fillr [ER,M]

Examples are in Figures 6.16-6.19. In the electronic book, the right-side panel of each figure
is a movie, each panel being derived from different random numbers.

The seismic data in Figure 6.19 illustrates a fundamental principle: In the restored hole we
do not see the same spectrum as we do on the other panels. This is because the hole is filled,
not with all frequencies (or all slopes) but with those that are most predictable. The filled hole
is devoid of the unpredictable noise that is a part of all real data.

6.5.2 Inversions with geostat

In geophysical estimation (inversion) we use model styling (regularization) to handle the por-
tion of the model that is not determined by the data. This results in the addition of minimal
noise. Alternately, like in Geostatistics, we could make an assumption of statistical station-
arity and add much more noise so the signal variance in poorly determined regions matches
that in well determined regions. Here is how to do this. Given the usual data fitting and model
styling goals

0 ≈ Lm−d (6.32)
0 ≈ Am (6.33)

6.5. TWO-STAGE LINEAR LEAST SQUARES 183

We introduce a sample of random noise n and fit instead these regressions

0 ≈ Lm−d (6.34)
0 ≈ Am−n (6.35)

Of course you get a different solution for each different realization of the random noise. You
also need to be a little careful to use noise n of the appropriate variance. Figure 6.20 shows
a result on the SeaBeam data. Bob Clapp developed this idea at SEP and also applied it to

Figure 6.20: Top left is binned data. Top right extends the data with a PEF. The bottom two
panels add appropriately colored random noise in the regions of missing data. mda-bobsea
[ER,M]

interval velocity estimation, the example of Figures 5.1-5.3.

184 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

6.5.3 Infill of 3-D seismic data from a quarry blast

Finding missing data (filling empty bins) requires use of a filter. Because of the helix, the
codes work in spaces of all dimensions.

An open question is how many conjugate-direction iterations are needed in missing-data
programs. When estimating filters, I set the iteration count niter at the number of free filter
parameters. Theoretically, this gives me the exact solution but sometimes I run double the
number of iterations to be sure. The missing-data estimation, however is a completely different
story. The number of free parameters in the missing-data estimation, could be very large. This
often implies impractically long compute times for the exact solution. In practice I experiment
carefully with niter and hope for the best. I find that where gaps are small, they fill in quickly.
Where the gaps are large, they don’t, and more iterations are required. Where the gaps are large
is where we must experiment with preconditioning.

Figure 6.21 shows an example of replacing missing data by values predicted from a 3-
D PEF. The data was recorded at Stanford University with a 13× 13 array of independent
recorders. The figure shows 12 of the 13 lines each of length 13. Our main goal was to
measure the ambient night-time noise. By morning about half the recorders had dead batteries
but the other half recorded a wave from a quarry blast. The raw data was distracting to look at
because of the many missing traces so I interpolated it with a small 3-D filter. That filter was
a PEF.

Figure 6.21: The left 12 panels are the inputs. The right 12 panels are outputs.
mda-passfill90 [ER,M]

6.5. TWO-STAGE LINEAR LEAST SQUARES 185

6.5.4 Imposing prior knowledge of symmetry

Reversing a signal in time does not change its autocorrelation. In the analysis of stationary
time series, it is well known (FGDP) that the filter for predicting forward in time should be
the same as that for “predicting” backward in time (except for time reversal). When the data
samples are short, however, a different filter may be found for predicting forward than for
backward. Rather than average the two filters directly, the better procedure is to find the filter
that minimizes the sum of power in two residuals. One is a filtering of the original signal,
and the other is a filtering of a time-reversed signal, as in equation (6.36), where the top half
of the equations represent prediction-error predicting forward in time and the second half is
prediction backward.



























r1
r2
r3
r4
r5
r6
r7
r8



























=



























y3 y2 y1
y4 y3 y2
y5 y4 y3
y6 y5 y4
y1 y2 y3
y2 y3 y4
y3 y4 y5
y4 y5 y6































1
a1
a2



 (6.36)

To get the bottom rows from the top rows, we simply reverse the order of all the components
within each row. That reverses the input time function. (Reversing the order within a column
would reverse the output time function.) Instead of the matrix being diagonals tipping 45◦ to
the right, they tip to the left. We could make this matrix from our old familiar convolution
matrix and a time-reversal matrix









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









It is interesting to notice how time-reversal symmetry applies to Figure 6.15. First of all,
with time going both forward and backward the residual space gets twice as big. The time-
reversal part gives a selector for Figure 6.15 with a gap along the right edge instead of the left
edge. Thus, we have acquired a few new regression equations.

Some of my research codes include these symmetries, but I excluded them here. Nowhere
did I see that the reversal symmetry made noticable difference in results, but in coding, it
makes a noticeable clutter by expanding the residual to a two-component residual array.

Where a data sample grows exponentially towards the boundary, I expect that extrapolated
data would diverge too. You can force it to go to zero (or any specified value) at some distance
from the body of the known data. To do so, surround the body of data by missing data and
surround that by specification of “enough” zeros. “Enough” is defined by the filter length.

186 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

6.5.5 Hexagonal coordinates

In a two-dimensional plane it seems that the one-sidedness of the PEF could point in any
direction. Since we usually have a rectangular mesh, however, we can only do the calculations
along the axes so we have only two possibilities, the helix can wrap around the 1-axis, or it
can wrap around the 2-axis.

Suppose you acquire data on a hexagonal mesh as below

.

.

.

.

.

.

.

.

.

.

.

.

and some of the data values are missing. How can we apply the methods of this chapter? The
solution is to append the given data by more missing data shown by the commas below.

. , , , , , ,

. , , , , , ,

, , , , , ,

,_._._._._._. . . . , , , , ,

, , . ._._._._/_/ / , , , ,

, , . / / , , , ,

, , , / / , , ,

, , , /_._._._._._._._._._/ , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

Now we have a familiar two-dimensional coordinate system in which we can find missing
values, as well as perform signal and noise separations as described in a later chapter.

6.6 BOTH MISSING DATA AND UNKNOWN FILTER

Recall the missing-data figures beginning with Figure 3.3. There the filters were taken as
known, and the only unknowns were the missing data. Now, instead of having a predetermined
filter, we will solve for the filter along with the missing data. The principle we will use is that
the output power is minimized while the filter is constrained to have one nonzero coefficient
(else all the coefficients would go to zero). We will look first at some results and then see how
they were found.

In Figure 6.22 the filter is constrained to be of the form (1,a1,a2). The result is pleasing
in that the interpolated traces have the same general character as the given values. The filter

6.6. BOTH MISSING DATA AND UNKNOWN FILTER 187

Figure 6.22: Top is known data. Mid-
dle includes the interpolated values.
Bottom is the filter with the left-
most point constrained to be unity
and other points chosen to minimize
output power. mda-misif90 [ER]

came out slightly different from the (1,0,−1) that I guessed and tried in Figure 3.7. Curiously,
constraining the filter to be of the form (a−2,a−1, 1) in Figure 6.23 yields the same interpo-
lated missing data as in Figure 6.22. I understand that the sum squared of the coefficients of
A(Z)P(Z) is the same as that of A(1/Z)P(Z), but I do not see why that would imply the same
interpolated data; never the less, it seems to.

Figure 6.23: The filter here had
its rightmost point constrained to
be unity—i.e., this filtering amounts
to backward prediction. The in-
terpolated data seems to be iden-
tical to that of forward prediction.
mda-backwards90 [ER]

6.6.1 Objections to interpolation error

In any data interpolation or extrapolation, we want the extended data to behave like the original
data. And, in regions where there is no observed data, the extrapolated data should drop away
in a fashion consistent with its spectrum determined from the known region.

My basic idea is that the spectrum of the missing data should match that of the known
data. This is is the idea that the spectrum should be unchanging from a known region to an
unknown region. A technical word to express the idea of spectra not changing is “stationary.”
This happens with the PEF (one-sided filter) because its spectrum tends to the inverse of that
of the known data while that of the unknown data tends to the inverse of that of the PEF. Thus
the spectrum of the missing data is the “inverse of the inverse” of the spectrum of the known.
The PEF enables us to fill in the missing area with the spectral shape of the known area. (In
regions far away or unpredictable, the spectral shape may be the same, but the energy drops to
zero.)

On the other hand, the interpolation-error filter, a filter like (a−2,a−1, 1,a1,a2), should fail
to do the job because it has the wrong spectrum. (I am stating this fact without proof).

188 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

To confirm and show these concepts, I prepared synthetic data consisting of a fragment
of a damped exponential, and off to one side of it an impulse function. Most of the energy
is in the damped exponential. Figure 6.24 shows that the spectrum and the extended data are
about what we would expect. From the extrapolated data, it is impossible to see where the
given data ends. For comparison, I prepared Figure 6.25. It is the same as Figure 6.24, except

Figure 6.24: Top is synthetic data
with missing portions. Middle in-
cludes the interpolated values. Bot-
tom is the filter, a prediction-error fil-
ter which may look symmetric but is
not quite. mda-exp90 [ER]

that the filter is constrained in the middle. Notice that the extended data does not have the
spectrum of the given data—the wavelength is much shorter. The boundary between real data
and extended data is not nearly as well hidden as in Figure 6.24.

Figure 6.25: Top is the same syn-
thetic data. Middle includes the in-
terpolated values. Bottom is the
filter, an interpolation-error filter.
mda-center90 [ER]

6.6.2 Packing both missing data and filter into a vector

Now let us examine the theory and coding behind the above examples. Define a roughening
filter A(ω) and a data signal Y (ω) at some stage of interpolation. The fitting goal is 0 ≈
A(ω)Y (ω) where the filter A(ω) has at least one time-domain coefficient constrained to be
nonzero and the data contains both known and missing values. Think of perturbations 1A and
1Y . We neglect the nonlinear term 1A1Y as follows:

0 ≈ (A + 1A)(Y + 1Y) (6.37)
0 ≈ A1Y + Y 1A + AY + 1A1Y (6.38)
0 ≈ A1Y + Y 1A + AY (6.39)

Let us use matrix algebraic notation to rewrite the fitting goals (6.39). For this we need
mask matrices (diagonal matrices with ones on the diagonal where variables are free and

6.6. BOTH MISSING DATA AND UNKNOWN FILTER 189

zeros where they are constrained i.e., where 1ai = 0 and 1yi = 0). The free-mask matrix for
missing data is denoted J and that for the PE filter is K. The fitting goal (6.39) becomes

0 ≈ AJ1y+YK1a+ (Ay or Ya) (6.40)

Defining the original residual as r̄= Ay this becomes

0 ≈
[

AJ YK
]

[

1y
1a

]

+ r̄ (6.41)

For a 3-term filter and a 7-point data signal, the fitting goal (6.40) becomes































a0 y0 . .
a1 a0 y1 y0 .
a2 a1 a0 y2 y1 y0
. a2 a1 a0 . . . y3 y2 y1
. . a2 a1 a0 . . y4 y3 y2
. . . a2 a1 a0 . y5 y4 y3
. . . . a2 a1 a0 y6 y5 y4
. a2 a1 . y6 y5
. a2 . . y6































[

J 0
0 K

]



































1y0
1y1
1y2
1y3
1y4
1y5
1y6
1a0
1a1
1a2



































+































r̄0
r̄1
r̄2
r̄3
r̄4
r̄5
r̄6
r̄7
r̄8































≈ 0

(6.42)

Recall that r̄t is the convolution of at with yt , namely, r̄0 = y0a0 and r̄1 = y0a1+ y1a0, etc. To
optimize this fitting goal we first initialize a = (1,0,0, · · ·) and then put zeros in for missing
data in y. Then we iterate over equations (6.43) to (6.47).

r ←− Ay (6.43)

[

1y
1a

]

←−
[

J′A′

K′Y′

]

r (6.44)

1r ←−
[

AJ YK
]

[

1y
1a

]

(6.45)

y ←− cgstep(y,1y) (6.46)
a ←− cgstep(a,1a) (6.47)

This is the same idea as all the linear fitting goals we have been solving, except that now we
recompute the residual r inside the iteration loop so that as convergence is achieved (if it is
achieved), the neglected nonlinear term 1A1Y tends to zero.

My initial research proceeded by linearization like (6.39). Although I ultimately suc-
ceeded, I had enough difficulties that I came to realize that linearization is dangerous. When

190 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

you start “far enough” from the correct solution the term 1A1Y might not actually be small
enough. You don’t know how small is small, because these are not scalars but operators. Then
the solution may not converge to the minimum you want. Your solution will depend on where
you start from. I no longer exhibit the nonlinear solver missif until I find a real data example
where it produces noticibly better results than multistage linear-least squares.

The alternative to linearization is two-stage linear least squares. In the first stage you
estimate the PEF; in the second you estimate the missing data. If need be, you can re-estimate
the PEF using all the data both known and missing (downweighted if you prefer).

If you don’t have enough regression equations because your data is irregularly distributed,
then you can use binning. Still not enough? Try coarser bins. The point is that nonlinear
solvers will not work unless you begin close enough to the solution, and the way to get close
is by arranging first to solve a sensible (though approximate) linearized problem. Only as a
last resort, after you have gotten as near as you can, should you use the nonlinear least-squares
techniques.

6.7 LEVELED INVERSE INTERPOLATION

Eighteenth- and nineteenth- century mathematics literature gives us many methods of inter-
polating functions. These classical methods are generally based on polynomials. The user
specifies some order of polynomial and the theory works out the coefficients. Today our in-
terest is in both interpolating and extrapolating wavefields (which are solutions to low order
differential equations) and we use methods that are much better behaved than polynomials
when extrapolating data, methods which behave acceptably when faced with contradictory
data values, and methods which also apply in two and three dimensions.

In Chapter 3, subroutine invint1() on page 145 solved the problem of inverse linear
interpolation, which is, given scattered data points, to find a function on a uniform mesh from
which linear interpolation gives the scattered data points. To cope with regions having no
data points, the subroutine requires an input roughening filter. This is a bit like specifying a
differential equation to be satisfied between the data points. The question is, how should we
choose a roughening filter? The importance of the roughening filter grows as the data gets
sparser or as the mesh is refined.

Figures 6.22-6.25 suggest that the choice of the roughening filter need not be subjective,
nor a priori, but that the prediction-error filter (PEF) is the ideal roughening filter. Spectrally,
the PEF tends to the inverse of its input hence its output tends to be “level”. Missing data that
is interpolated with this “leveler” tends to have the spectrum of given data.

6.7.1 Test results for leveled inverse interpolation

Figures 6.26 and 6.27 show the same example as in Figures 3.13 and 3.14. What is new here
is that the proper PEF is not given but is determined from the data. Figure 6.26 was made

6.7. LEVELED INVERSE INTERPOLATION 191

with a three-coefficient filter (1,a1,a2) and Figure 6.27 was made with a five-coefficient filter
(1,a1,a2,a3,a4). The main difference in the figures is where the data is sparse. The data points
in Figures 3.13, 6.26 and 6.27 are samples from a sinusoid.

Figure 6.26: Interpolating with a
three-term filter. The interpo-
lated signal is fairly monofrequency.
mda-subsine390 [ER,M]

Figure 6.27: Interpolating with a
five term filter. mda-subsine590
[ER,M]

Comparing Figures 3.13 and 3.14 to Figures 6.26 and 6.27 we conclude that by finding and
imposing the prediction-error filter while finding the model space, we have interpolated
beyond aliasing in data space.

6.7.2 Analysis for leveled inverse interpolation

Here we see how the interpolation beyond aliasing was done. The first “statement of wishes”
is that the observational data d should result from a linear interpolation L of the uniformly
sampled model space m; that is, 0≈Lm−d. Expressing this as a change 1m gives the fitting
goal in terms of the model change, 0 ≈ L1m+ (Lm−d) = L1m+ r. The second wish is
really an assertion that a good way to find missing parts of a function (the model space) is to
solve for the function and its PEF at the same time. We are merging the fitting goal (3.15) for
irregularly sampled data with the fitting goal (6.42) for finding the prediction-error filter.

0 ≈ rd = L1m+ (Lm−d) (6.48)
0 ≈ rm = A1m+MK1a+ (Am or Ma) (6.49)

192 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Writing this out in full for 3 data points and 6 model values on a uniform mesh and a PEF of
3 terms, we have






































.8 .2
. . 1 . . .
.5 .5

a0 m0 . .
a1 a0 m1 m0 .
a2 a1 a0 . . . m2 m1 m0
. a2 a1 a0 . . m3 m2 m1
. . a2 a1 a0 . m4 m3 m2
. . . a2 a1 a0 m5 m4 m3
. . . . a2 a1 . m5 m4
. a2 . . m5







































[

I 0
0 K

]



































1m0
1m1
1m2
1m3
1m4
1m5
1m6
1a0
1a1
1a2



































+







































rd0
rd1
rd2
rm0
rm1
rm2
rm3
rm4
rm5
rm6
rm7







































≈ 0

(6.50)

where rm is the convolution of the filter at and the model mt , where rd is the data misfit
r= Lm−d, and where K was defined in equation (6.11).

Before you begin to use this nonlinear fitting goal, you need some starting guesses for m
and a. The guess m = 0 is satisfactory (as explained later). For the first guess of the filter, I
suggest you load it up with a= (1,−2,1) as I did for the examples here.

6.7.3 Seabeam: theory to practice

I provide here a more fundamental theory for dealing with the Seabeam data. I originally
approached the data in this more fundamental way, but with time, I realized that I paid a
high price in code complexity, computational speed, and reliability. The basic problem is that
the elegant theory requires a good starting model which can only come from the linearized
theory. I briefly recount the experience here, because the fundamental theory is interesting
and because in other applications, you will face the challenge of sorting out the fundamental
features from the essential features.

The linear-interpolation operator carries us from a uniform mesh to irregularly distributed
data. Fundamentally we seek to solve the inverse problem to go the other direction. A non-
linear approach to filling in the missing data is suggested by the one-dimensional examples
in Figures 6.26–6.27, where the PEF and the missing data are estimated simultaneously. The
nonlinear approach has the advantage that it allows for completely arbitrary data positioning,
whereas the two-stage linear approach forces the data to be on a uniform mesh and requires
there not be too many empty mesh locations.

For the 2-D nonlinear problem, we follow the same approach we used in one dimension,
equations (6.48) and (6.49), except that the filtering and the linear interpolations are two di-
mensional.

I have had considerable experience with this problem on this data set and I can report that
bin filling is easier and works much more quickly and reliably. Eventually I realized that the

6.7. LEVELED INVERSE INTERPOLATION 193

best way to start the nonlinear iteration (6.48-6.49) is with the final result of bin filling. Then
I learned that the extra complexity of the nonlinear iteration (6.48-6.49) offers little apparent
improvement to the quality of the SeaBeam result. (This is not to say that we should not try
more variations on the idea).

Not only did I find the binning method faster, but I found it to be much faster (compare a
minute to an hour). The reasons for being faster (most important first) are,

1. Binning reduces the amount of data handled in each iteration by a factor of the average
number of points per bin.

2. The 2-D linear interpolation operator adds many operations per data point.

3. Using two fitting goals seems to require more iterations.

(Parenthetically, I later found that helix preconditioning speeds the Seabeam interpolation
from minutes to seconds.)

The most serious criticism of the nonlinear approach is that it does not free us from the
linearized approaches. We need them to get a “close enough” starting solution to the nonlin-
ear problem. I learned that the iteration (6.48-6.49), like most nonlinear sequences, behaves
unexpectedly and badly when you start too far from the desired solution. For example, I of-
ten began from the assumed PEF being a Laplacian and the original map being fit from that.
Oddly, from this starting location I sometimes found myself stuck. The iteration (6.48-6.49)
would not move towards the map we humans consider a better one.

Having said all those bad things about iteration (6.48-6.49), I must hasten to add that with
a different type of data set, you might find the results of (6.48-6.49) to be significantly better.

6.7.4 Risky ways to do nonlinear optimization

I have noticed that some geophysicists have adopted a risky method of nonlinear optimization,
which is not advocated in the professional optimization literature. This risky method is to
linearize a goal (with a multiparameter model space), then optimize the linearized goal, then
relinearize, etc. The safer method is to relinearize after each step of CD.

An instructive example I learned about many years ago was earthquake epicenter location.
Model space is latitude, longitude, and origin time. When people added a new variable, the
depth, the solutions went wild until they learned to restrict the depth to zero until the other
three parameters were stabilized. Apparently the instability stems from the fact that depth and
origin time affect distant receivers in a similar way.

6.7.5 The bane of PEF estimation

This is the place where I would like to pat myself on the back for having “solved” the problem
of missing data. Actually, an important practical problem remains. I’ve been trying to coax

194 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

younger, more energetic people to think about it. The problem arises when there is too much
missing data.

The bane of PEF estimation is too much missing data

Then all the regression equations disappear. The nonlinear methods are particularly bad be-
cause if they don’t have a good enough starting location, they can and do go crazy. My only
suggestion is to begin with a linear PEF estimator. Shrink the PEF and coarsen the mesh in
model space until you do have enough equations. Starting from there, hopefully you can refine
this crude solution without dropping into a local minimum.

Another important practical problem remains, that of nonstationarity. We’ll see the begin-
nings of the solution to that problem in chapter 9.

6.8 MULTIVARIATE SPECTRUM

A common spectrum is the Fourier spectrum. More fundamentally, a spectrum is a decom-
position of a model space or data space into components. The components are in some sense
independent; more specifically, the components are orthogonal to one another. Another well-
known spectrum is provided by eigenvectors and eigenvalues. In statistical signal processing
we handle a third type of spectrum, the multivariate spectrum.

Working in an optimization problem, we begin from residuals between theory and practice.
These residuals can be scaled to make new optimization residuals before we start minimizing
their energy. What scaling should we use? The scaling can be a simple weighting function or
a filter. A filter is simply a weighting function in Fourier space.

The basic idea of common sense, which also comes to us as results proven by Gauss or
from the theory of statistical signal processing, is this: The optimization residuals should be
roughly of equal scale. This makes sense because squaring magnifies scale, and anything
small will be ignored while anything large will dominate. Scaling optimization residuals to
be in a common range makes them all equally influential on the final solution. Not only
should optimization residuals be of like scale in physical space, they should be of like scale
in Fourier space or eigenvector space, or any other space that we might use to represent the
optimization residuals. This implies that the optimization residuals should be uncorrelated.
If the optimization residuals were correlated, they would have a spectrum that was not white.
Not white means of differing sizes in Fourier space. Residuals should be the same size as
one another in physical space, likewise in Fourier space. Thus the optimization residuals
should be orthogonal and of unit scale, much like Fourier components or as eigenvectors are
orthonormal.

Let us approach the problem backwards. Suppose we have two random variables that we
take to be the ideal optimization residuals x1 and x2. In reality the two may be few or trillions.
In the language of statistics, the optimization residuals are expected to have zero mean, an
idea that is formalized by writing E(x1)= 0 and E(x2)= 0. Likewise these ideal optimization

6.8. MULTIVARIATE SPECTRUM 195

residuals have equal energy, E(x2
1)= 1 and E(x2

2)= 1. Finally, these two optimization residu-
als are uncorrelated, a condition which is written as E(x1x2)= 0. The expectation symbol E()
is like a summation over many instances of the random variable.

Now suppose there exists a transformation B from these ideal optimization residuals to
two experimental residuals y1 and y2, say y= Bx where

[

y1
y2

]

=
[

b11 b12
b21 b22

][

x1
x2

]

(6.51)

The experimental residuals y1 and y2 are likely to be neither orthogonal nor equal in energy.
From the column vector y, the experimenter can form a square matrix. Let us also allow the
experimenter to write the symbol E() to denote summation over many trials or over many
sections of data, ranges over time or space, over soundings or over receiver locations. The
experimenter writes

R = E(yy′) (6.52)
R = E(Bxx′B′) (6.53)

Given a random variable r , the expectation of 2r is simply E(2r)= 2E(r). The E() symbol is
a summation on random variables, but constants like the coefficients of B pass right through
it. Thus,

R = B E(xx′) B′ (6.54)

R = B E

([

x1
x2

]

[

x1 x2
]

)

B′ (6.55)

R = B
[

E(x1x1) E(x1x2)
E(x2x1) E(x2x2)

]

B′ (6.56)

R = BB′ (6.57)

Given a matrix R, there is a simple well-known method called the Cholesky factorization
method that will factor R into two parts like B and B′. The method creates for us either an
upper or a lower triangular matrix (our choice) for B. You can easily reinvent the Cholesky
method if you multiply the symbols for two triangular matrices like B and B′ and notice the
procedure that works backwards from R to B. The experimenter seeks not B, however, but
its inverse, the matrix that takes us from the experimental residuals to the ideal optimization
residuals that are uncorrelated and of equal energies. The Cholesky factorization costs N 3

computations, which is about the same as the cost of the matrix inversion of R or B. For
geophysical maps and other functions on Cartesian spaces, the Prediction Error Filter (PEF)
accomplishes the same general goal and has the advantage that we have already learned how
to perform the operation using operators instead of matrices.

The multivariate spectrum of experimental residuals y is the matrix R= E(yy′). For op-
timum model finding, the experimental residuals (squared) should be weighted inversely
(matrix inverse) by their multivariate spectrum.

196 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

If I were a little stronger at analysis (or rhetoric) I would tell you that the optimizers
preconditioned variable p is the statisticians IID (Independent Identically Distributed) random
variable. For stationary (statistically constant) signals and images, Am is the model-space PEF.
Echo soundings and interval velocity have statistical properties that change with depth. There
Am is a diagonal weighting matrix (perhaps before or after a PEF).

6.8.1 What should we optimize?

Least-squares problems often present themselves as fitting goals such as

0 ≈ Fm−d (6.58)
0 ≈ m (6.59)

To balance our possibly contradictory goals we need weighting functions. The quadratic form
that we should minimize is

min
m

(Fm−d)′A′nAn(Fm−d)+m′A′mAmm (6.60)

where A′nAn is the inverse multivariate spectrum of the noise (data-space residuals) and A′mAm

is the inverse multivariate spectrum of the model. In other words, An is a leveler on the data
fitting error and Am is a leveler on the model. There is a curious unresolved issue: What is the
most suitable constant scaling ratio of An to Am?

6.8.2 Confusing terminology for data covariance

Confusion often stems from the mean of the data E(d).

An experimentalist would naturally believe that the expectation of the data is solely a
function of the data, that it can be estimated by averaging data.

On the other hand, a theoretician’s idea of the expectation of the observational data E(d)
is that it is the theoretical data Fm, that the expectation of the data E(d)= Fm is a function of
the model. The theoretician thinks this way because of the idea of noise n= Fm−d as having
zero mean.

Seismological data is highly complex but also highly reproducible. In studies like seis-
mology, the world is deterministic but more complicated than our ability to model. Thus, as
a practical matter, the discrepancy between observational data and theoretical data is more
realistically attributed to the theoretical data. It is not adequately modeled and computed.

This superficial difference in viewpoint becomes submerged to a more subtle level by
statistical textbooks that usually define weighting functions in terms of variances instead of
spectra. This is particularly confusing with the noise spectrum (A′nAn)−1. It is often referred
to as the “data covariance” defined as E[(d− E(d))(d− E(d))′]. Clearly, the noise spectrum is
the same as the data covariance only if we accept the theoretician’s definition that E(d)= Fm.

6.8. MULTIVARIATE SPECTRUM 197

There is no ambiguity and no argument if we drop the word “variance” and use the word
“spectrum”. Thus, (1) the “inverse noise spectrum” is the appropriate weighting for data-space
residuals; and (2) the “inverse model spectrum” is the appropriate model-space weighting.
Theoretical expositions generally require these spectra to be given as “prior information.” In
this book we see how, when the model space is a map, we can solve for the “prior information”
along with everything else.

The statistical words “covariance matrix” are suggestive and appealing, but I propose not
to use them because of the ambiguity of E(d). For example, we understand that people who
say “data covariance” intend the “multivariate noise spectrum” but we cannot understand their
meaning of “model covariance”. They should intend the “multivariate model spectrum” but
that implies that E(m) = 0, which seems wrong. Avoiding the word “covariance” avoids the
problem.

6.8.3 Hermeneutics

Hermeneutics is the study of the methodological principles of interpretation. Historically, it
refers to bible study. Never-the-less, it seems entirely appropriate for Geophysical Estimation.
If Albert’s book is “Inverse Problem Theory” and mine is “Inverse Problem Practice”, and if
the difference between theory and practice is smaller in theory than it is in practice, then there
are two fundamental questions:

1. In theory, what is the difference between theory and practice? In theory, the difference
is data error.

2. In practice, what is the difference between theory and practice? One suggestion is that
the discrepancy is entirely due to inadequate modeling. It is well known that geophysical
data is highly repeatable. The problem is that the modeling neglects far too much.

Here is a perspective drawn from analysis of the human genome: "The problem is that it is
possible to use empirical data to calibrate a model that generates simulated data that is similar
to the empirical data. The point of using such a calibrated model is to be able to show how
strange certain regions are if they don’t fit the simulated distribution, which is based on the
empirical distribution." In other words, "inversion" is just the process of calibrating a model.
To learn something new we study the failures of such models.

198 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Chapter 7

Noisy data

Noise comes in two distinct flavors. First is erratic bursty noise which is difficult to fit into a
statistical model. It bursts out of our simple models. To handle this noise we need “robust”
estimation procedures which we consider first.

Next is noise that has a characteristic spectrum, temporal spectrum, spatial spectrum, or
dip spectrum. Such noise is called “stationary” noise. A special case of stationary noise is low
frequency drift of the mean value of a signal.

In real life, we need to handle both bursty noise and stationary noise at the same time.
We’ll try that now.

7.1 MEANS, MEDIANS, PERCENTILES AND MODES

Means, medians, and modes are different averages. Given some data values di for i =
1,2, ..., N , the arithmetic mean value m2 is

m2 =
1
N

N
∑

i=1
di (7.1)

It is useful to notice that this m2 is the solution of the simple fitting problem di ≈m2 or d≈m2,
in other words, minm2

∑

i (m2−di)2 or

0 =
d

dm2

N
∑

i=1
(m2−di)2 (7.2)

The median of the di values is found when the values are sorted from smallest to largest
and then the value in the middle is selected. The median is delightfully well behaved even if
some of your data values happen to be near infinity. Analytically, the median arises from the

199

200 CHAPTER 7. NOISY DATA

optimization

min
m1

N
∑

i=1
|m1−di | (7.3)

To see why, notice that the derivative of the absolute value function is the signum function,

sgn(x) = lim
ε−→0

x

|x|+ ε
(7.4)

The gradient vanishes at the minimum.

0 =
d

dm1

N
∑

i=1
|m1−di | (7.5)

The derivative is easy and the result is a sum of sgn() functions,

0 =
N
∑

i=1
sgn(m1−di) (7.6)

In other words it is a sum of plus and minus ones. If the sum is to vanish, the number of plus
ones must equal the number of minus ones. Thus m1 is greater than half the data values and
less than the other half, which is the definition of a median. The mean is said to minimize the
`2 norm of the residual and the median is said to minimize its `1 norm.

Before this chapter, our model building was all based on the `2 norm. The median is
clearly a good idea for data containing large bursts of noise, but the median is a single value
while geophysical models are made from many unknown elements. The `1 norm offers us
the new opportunity to build multiparameter models where the data includes huge bursts of
noise.

Yet another average is the “mode,” which is the most commonly occurring value. For
example, in the number sequence (1,1,2,3,5) the mode is 1 because it occurs the most times.
Mathematically, the mode minimizes the zero norm of the residual, namely `0 = |m0− di |0.
To see why, notice that when we raise a residual to the zero power, the result is 0 if di = m0,
and it is 1 if di 6= m0. Thus, the `0 sum of the residuals is the total number of residuals less
those for which di matches m0. The minimum of `0(m) is the mode m = m0. The zero power
function is nondifferentiable at the place of interest so we do not look at the gradient.

`2(m) and `1(m) are convex functions of m (positive second derivative for all m), and this
fact leads to the triangle inequalities `p(a)+ `p(b) ≥ `p(a+ b) for p ≥ 1 and assures slopes
lead to a unique (if p > 1) bottom. Because there is no triangle inequality for `0, it should not
be called a “norm” but a “measure.”

Because most values are at the mode, the mode is where a probability function is max-
imum. The mode occurs with the maximum likelihood. It is awkward to contemplate the
mode for floating-point values where the probability is minuscule (and irrelevant) that any two
values are identical. A more natural concept is to think of the mode as the bin containing the
most values.

7.1. MEANS, MEDIANS, PERCENTILES AND MODES 201

1 2 3 4 5 6

10

20

30

40

50

60

1 2 3 4 5 6

2

4

6

8

10

12

14

1 2 3 4 5 6

1

2

3

4

5

6

7

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 7.1: Mean, median, and mode. The coordinate is m. Top is the `2, `1, and `1/10 ≈ `0

measures of m− 1. Bottom is the same measures of the data set (1,1,2,3,5). (Made with
Mathematica.) noiz-norms [CR]

7.1.1 Percentiles and Hoare’s algorithm

The median is the 50-th percentile. After residuals are ordered from smallest to largest, the
90-th percentile is the value with 10% of the values above and 90% below. At SEP the default
value for clipping plots of field data is at the 98th percentile. In other words, magnitudes above
the 98-th percentile are plotted at the 98-th percentile. Any percentile is most easily defined if
the population of values ai , for i = 1,2, ...,n has been sorted into order so that ai ≤ ai+1 for all
i . Then the 90-th percentile is ak where k = (90n)/100.

We can save much work by using Hoare’s algorithm which does not fully order the whole
list, only enough of it to find the desired quantile. Hoare’s algorithm is an outstanding example
of the power of a recursive function, a function that calls itself. The main idea is this: We start
by selecting a random value taken from the list of numbers. Then we split the list into two
piles, one pile all values greater than the selected, the other pile all less. The quantile is in one
of these piles, and by looking at their sizes, we know which one. So we repeat the process on
that pile and ignore the other other one. Eventually the pile size reduces to one, and we have
the answer.

In Fortran 77 or C it would be natural to split the list into two piles as follows:

We divide the list of numbers into two groups, a group below ak and another
group above ak . This reordering can be done “in place.” Start one pointer at the
top of the list and another at the bottom. Grab an arbitrary value from the list (such
as the current value of ak). March the two pointers towards each other until you

202 CHAPTER 7. NOISY DATA

have an upper value out of order with ak and a lower value out of order with ak .
Swap the upper and lower value. Continue until the pointers merge somewhere
midlist. Now you have divided the list into two sublists, one above your (random)
value ak and the other below.

Fortran 90 has some higher level intrinsic vector functions that simplify matters. When a is a
vector and ak is a value, a>ak is a vector of logical values that are true for each component that
is larger than ak. The integer count of how many components of a are larger than ak is given
by the Fortran intrinsic function count(a>ak). A vector containing only values less than ak is
given by the Fortran intrinsic function pack(a,a<ak).

Theoretically about 2n comparisons are expected to find the median of a list of n values.
The code below (from Sergey Fomel) for this task is quantile.

module quantile_mod { # quantile finder. median = quantile(size(a)/2, a)

contains

recursive function quantile(k, a) result(value) {

integer, intent (in) :: k # position in array

real, dimension (:), intent (in) :: a

real :: value # output value of quantile

integer :: j

real :: ak

ak = a(k)

j = count(a < ak) # how many a(:) < ak

if(j >= k)

value = quantile(k, pack(a, a < ak))

else {

j = count(a > ak) + k - size(a)

if(j > 0)

value = quantile(j, pack(a, a > ak))

else

value = ak

}

}

}

7.1.2 The weighted mean

The weighted mean m is

m =
∑N

i=1 w2
i di

∑N
i=1 w2

i

(7.7)

where w2
i > 0 is the squared weighting function. This is the solution to the `2 fitting problem

0≈wi (m−di); in other words,

0 =
d

dm

N
∑

i=1
[wi (m−di)]2 (7.8)

7.1. MEANS, MEDIANS, PERCENTILES AND MODES 203

7.1.3 Weighted L.S. conjugate-direction template

The pseudocode for minimizing the weighted residual 0 ≈ r = W(Fm− d) by conjugate-
direction method, is effectively like that for the unweighted method except that the initial
residual is weighted and the operator F has the premultiplier W. Naturally, the adjoint oper-
ator F′ has the postmultiplier W′. In some applications the weighting operator W is simply a
weighting function or diagonal matrix (so then W=W′) and in other applications, the weight-
ing operator W may be an operator, like the derivative along a data recording trajectory (so
then W 6=W′).

r ←− W(Fm−d)
iterate {

1m ←− F′W′ r
1r ←− WF 1m
(m,r) ←− cgstep(m,r,1m,1r)
}

7.1.4 Multivariate `1 estimation by iterated reweighting

The easiest method of model fitting is linear least squares. This means minimizing the sums
of squares of residuals (`2). On the other hand, we often encounter huge noises and it is much
safer to minimize the sums of absolute values of residuals (`1). (The problem with `0 is that
there are multiple minima, so the gradient is not a sensible way to seek the deepest).

There exist specialized techniques for handling `1 multivariate fitting problems. They
should work better than the simple iterative reweighting outlined here.

A penalty function that ranges from `2 to `1, depending on the constant r̄ is

E(r) =
∑

i

(

√

1+r2
i /r̄2−1

)

(7.9)

Where ri/r̄ is small, the terms in the sum amount to r 2
i /2r̄2 and where r 2

i /r̄2 is large, the terms
in the sum amount to |ri/r̄ |. We define the residual as

ri =
∑

j

Fi j m j −di (7.10)

We will need

∂ri

∂mk
=

∑

j

Fi jδj k = Fik (7.11)

where we briefly used the notation that δj k is 1 when j = k and zero otherwise. Now, to let us
find the descent direction 1m, we will compute the k-th component gk of the gradient g. We

204 CHAPTER 7. NOISY DATA

have

gk =
∂ E

∂mk
=

∑

i

1
√

1+r2
i /r̄2

ri

r̄2
∂ri

∂mk
(7.12)

g = 1m = F′ diag





1
√

1+r2
i /r̄2



r (7.13)

where we have use the notation diag() to designate a diagonal matrix with its argument dis-
tributed along the diagonal.

Continuing, we notice that the new weighting of residuals has nothing to do with the linear
relation between model perturbation and residual perturbation; that is, we retain the familiar
relations, r= Fm−d and 1r= F1m.

In practice we have the question of how to choose r̄ . I suggest that r̄ be proportional to
median(|ri |) or some other percentile.

7.1.5 Nonlinear L.S. conjugate-direction template

Nonlinear optimization arises from two causes:

1. Nonlinear physics. The operator depends upon the solution being attained.

2. Nonlinear statistics. We need robust estimators like the `1 norm.

The computing template below is useful in both cases. It is almost the same as the template for
weighted linear least-squares except that the residual is recomputed at each iteration. Starting
from the usual weighted least-squares template we simply move the iteration statement a bit
earlier.

iterate {
r ←− Fm−d
W ←− diag[w(r)]
r ←− Wr
1m ←− F′W′ r
1r ←− WF 1m
(m,r) ←− cgstep(m,r,1m,1r)
}

where diag[w(r)] is whatever weighting function we choose along the diagonal of a diagonal
matrix.

7.1. MEANS, MEDIANS, PERCENTILES AND MODES 205

Now let us see how the weighting functions relate to robust estimation: Notice in the code
template that W is applied twice in the definition of 1m. Thus W is the square root of the
diagonal operator in equation (7.13).

W = diag









1
√

√

1+r2
i /r̄2









(7.14)

Module solver_irls on the current page implements the computational template above.
In addition to the usual set of arguments from the solver() subroutine on page ??, it accepts a
user-defined function (parameter wght) for computing residual weights. Parameters nmem and
nfreq control the restarting schedule of the iterative scheme.

module solver_irls_mod { # 0 = Wdiag Wop (Fop Jop m - d) and periodic restart

use chain0_mod + solver_report_mod

logical, parameter, private :: T = .true., F = .false.

contains

subroutine solver_irls(m,d, Fop, stepper, niter &

, Wop,Jop,Wdiag,m0,nmem,nfreq,err,resd,mmov,rmov,verb) {

optional :: Wop,Jop,Wdiag,m0,nmem,nfreq,err,resd,mmov,rmov,verb

interface { #-------------------------- begin definitions -----------

integer function Fop (adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Wop (adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Jop (adj,add,m,d){real::m(:),d(:);logical,intent(in)::adj,add}

integer function Wdiag(res, w) {real::res(:),w(:)}

integer function stepper(forget,m,g,rr,gg) {

real, dimension(:) :: m,g,rr,gg

logical :: forget }

}

real, dimension(:), intent(in) :: d, m0

integer, intent(in) :: niter, nmem, nfreq

logical, intent(in) :: verb

real, dimension(:), intent(out) :: m,err, resd

real, dimension(:,:), intent(out) :: rmov, mmov

real, dimension(size(m)) :: g

real, dimension(size(d)), target :: rr, gg

real, dimension(size(d)+size(m)), target :: tt

real, dimension(:), pointer :: rd, gd, td

real, dimension(:), pointer :: rm, gm, tm, wht

integer :: iter, stat

logical :: forget

rd => rr(1:size(d));

gd => gg(1:size(d));

td => tt(1:size(d)); tm => tt(1+size(d):)

if(present(Wop)) stat=Wop(F,F,-d,rd) # begin initialization --------

else rd = -d #Rd = -W d

if(present(Wdiag))allocate(wht(size(d)))

if(present(m0)){ m=m0 #m = m0

if(present(Wop)) call chain0(Wop,Fop,F,T,m,rd,td)

else stat = Fop(F,T,m,rd) #Rd+= WF m0

} else m=0

forget = F; #-------------------------- begin iterations ------------

206 CHAPTER 7. NOISY DATA

do iter = 1,niter {

if(present(nmem)) forget = (iter>nmem) # initialize forget

if(present(Wdiag).and.forget) stat = Wdiag(rd,wht) # estimate weights

if(present(Wdiag)) {

rd = wht*rd

if(present(Wop)) call chain0(Wop,Fop,T,F,g,wht*rd,td)

else stat = Fop(T,F,g,wht*rd) # g = (WF)’Rd

} else {

if(present(Wop)) call chain0(Wop,Fop,T,F,g, rd,td)

else stat = Fop(T,F,g, rd) # g = (WF)’Rd

}

if(forget.and.present(nfreq)) forget=(mod(iter,nfreq)==0) # periodic restart

if(present(Jop)){ tm=g; stat = Jop(F,F,tm, g)} # g = J g

if(present(Wop)) call chain0(Wop,Fop,F,F,g,gd,td)

else stat = Fop(F,F,g,gd) #Gd = (WF) g

if(present(Wdiag)) gd=wht*gd

stat = stepper(forget, m,g, rr,gg) #m+=dm; R+=dR

if(stat ==1) exit # got stuck descending

if(present(Wdiag)) {

rd = -d

stat = Fop(F,T,m,rd)

if(present(Wop)){

td = rd

stat = Wop(F,F,td,rd)}

}

if(present(mmov)) mmov(:,iter) = m(:size(mmov,1)) # report -----

if(present(rmov)) rmov(:,iter) = rd(:size(rmov,1))

if(present(err)) err(iter) = dot_product(rd,rd)

if(present(verb)){ if(verb) call solver_report(iter,m,g,rd)}

}

if(present(resd)) resd = rd

}

}

We can ask whether cgstep(), which was not designed with nonlinear least-squares in
mind, is doing the right thing with the weighting function. First, we know we are doing
weighted linear least-squares correctly. Then we recall that on the first iteration, the conjugate-
directions technique reduces to steepest descent, which amounts to a calculation of the scale
factor α with

α = −
1r · r

1r ·1r
(7.15)

Of course, cgstep() knows nothing about the weighting function, but notice that the iteration
loop above nicely inserts the weighting function both in r and in 1r, as required by (7.15).

Experience shows that difficulties arise when the weighting function varies rapidly from
one iteration to the next. Naturally, the conjugate-direction method, which remembers the
previous iteration, will have an inappropriate memory if the weighting function changes too
rapidly. A practical approach is to be sure the changes in the weighting function are slowly
variable.

7.1. MEANS, MEDIANS, PERCENTILES AND MODES 207

7.1.6 Minimizing the Cauchy function

A good trick (I discovered accidentally) is to use the weight

W = diag





1
√

1+r2
i /r̄2



 (7.16)

Sergey Fomel points out that this weight arises from minimizing the Cauchy function:

E(r) =
∑

i

log(1+r2
i /r̄2) (7.17)

A plot of this function is found in Figure 7.2.

1 2 3 4 5 6

1

2

3

4

5

6

7

0.5 1 1.5 2

0.05

0.1

0.15

0.2

1 2 3 4 5 6

2

4

6

8

10

12

0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

5

10

15

20

25

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

Figure 7.2: The coordinate is m. Top is Cauchy measures of m − 1. Bottom is the same
measures of the data set (1,1,2,3,5). Left, center, and right are for r̄ = (2,1, .2). noiz-cauchy
[CR]

Because the second derivative is not positive everywhere, the Cauchy function introduces
the possibility of multiple solutions, but because of the good results we see in Figure 7.3, you
might like to try it anyway. Perhaps the reason it seems to work so well is that it uses mostly
residuals of “average size,” not the big ones or the small ones. This happens because 1m is
made from F′ and the components of W2r which are a function ri/(1+r2

i /r̄2) that is maximum
for those residuals near r̄ .

Module irls on the current page supplies two useful weighting functions that can be
interchanged as arguments to the reweighted scheme on page 205.

208 CHAPTER 7. NOISY DATA

module irls {

use quantile_mod

contains

integer function l1 (res, weight) {

real, dimension (:) :: res, weight

real :: rbar

rbar = quantile(int(0.5*size(res)), abs (res)) # median

weight = 1. / sqrt(sqrt (1. + (res/rbar)**2)); l1 = 0

}

integer function cauchy (res, weight) {

real, dimension (:) :: res, weight

real :: rbar

rbar = quantile(int(0.5*size(res)), abs (res)) # median

weight = 1. / sqrt (1. + (res/rbar)**2); cauchy = 0

}

}

7.2 NOISE BURSTS

Sometimes noise comes in isolated spikes. Sometimes it comes in bursts or bunches (like
grapes). Figure 7.3 is a simple one-dimensional example of a periodic signal plus spikes and
bursts. Three processes are applied to this data, despike and two flavors of deburst. Here we
will examine the processes used. (For even better results, see Figure 7.5.)

Figure 7.3: Top is synthetic data with noise spikes and bursts. (Most bursts are a hundred
times larger than shown.) Next is after running medians. Bottom is after the two processes
described here. noiz-burst90 [ER]

7.2.1 De-spiking with median smoothing

The easiest method to remove spikes is to pass a moving window across the data and output
the median value in the window. This method of despiking was done in Figure 7.3, which

7.3. MEDIAN BINNING 209

shows a problem of the method: The window is not long enough to clean the long bursts, but
it is already so long that it distorts the signal by flattening its peaks. The window size really
should not be chosen in advance but should depend upon by what is encountered on the data.
This I have not done because the long-burst problem is solved by another method described
next.

7.2.2 De-bursting

Most signals are smooth, but running medians assume they have no curvature. An alternate
expression of this assumption is that the signal has minimal curvature 0 ≈ h i+1−2h i +h i−1;
in other words, 0≈ ∇2h. Thus we propose to create the cleaned-up data h from the observed
data d with the fitting problem

0 ≈ W(h−d)
0 ≈ ε ∇2h

(7.18)

where W is a diagonal matrix with weights sprinkled along the diagonal, and where ∇2 is a
matrix with a roughener like (1,−2,1) distributed along the diagonal. This is shown in Figure
7.3 with ε = 1. Experience showed similar performances for 0 ≈ ∇h and 0 ≈ ∇2h. Better
results, however, will be found later in Figure 7.5, where the ∇2 operator is replaced by an
operator designed to predict this very predictable signal.

7.3 MEDIAN BINNING

We usually add data into bins. When the data has erratic noise, we might prefer to take the
median of the values in each bin. Subroutine medianbin2() (in the library, but not listed here)
performs the chore. It is a little tricky because we first need to find out how many data values
go into each bin, then we must allocate that space and copy each data value from its track
location to its bin location. Finally we take the median in the bin. A small annoyance with
medians is that when bins have an even number of points, like two, there no middle. To handle
this problem, subroutine medianbin2() uses the average of the middle two points.

A useful byproduct of the calculation is the residual: For each data point its bin median is
subtracted. The residual can be used to remove suspicious points before any traditional least-
squares analysis is made. An overall strategy could be this: First a coarse binning with many
points per bin, to identify suspicious data values, which are set aside. Then a sophisticated
least squares analysis leading to a high-resolution depth model. If our search target is small,
recalculate the residual with the high-resolution model and reexamine the suspicious data
values.

Figure 7.4 compares the water depth in the Sea of Galilee with and without median bin-
ning. The difference does not seem great here but it is more significant than it looks. Later
processing will distinguish between empty bins (containing an exact zero) and bins with small
values in them. Because of the way the depth sounder works, it often records an erroneously

210 CHAPTER 7. NOISY DATA

Figure 7.4: Galilee water depth binned and roughened. Left is binning with the mean, right
with the median. noiz-medbin90 [ER,M]

near-zero depth. This will make a mess of our later processing (missing data fill) unless we
cast out those data values. This was done by median binning in Figure 7.4 but the change is
disguised by the many empty bins.

Median binning is a useful tool, but where bins are so small that they hold only one or two
points, there the median for the bin is the same as the usual arithmetic average.

7.4 ROW NORMALIZED PEF

We often run into bursty noise. This can overwhelm the estimate of a prediction-error filter.
To overcome this problem we can use a weighting function. The weight for each row in fitting
matrix (6.27) is adjusted so that each row has about the same contribution as each other row.
A first idea is that the weight for the n-th row would be the inverse of the sum of the absolute
values of the row. This is easy to compute: First make a vector the size of the PEF a but with
each element unity. Second, take a copy of the signal vector y but with the absolute value
of each component. Third, convolve the two. The convolution of the ones with the absolute
values could be the inverse of the weighting function we seek. However, any time we are
forming an inverse we need to think about the possibility of dividing by zero, how it could
arise, and how divisions by “near zero” could be even worse (because a poor result is not
immediately recognized). Perhaps we should use something between `1 and `2 or Cauchy. In

7.5. DEBURST 211

any case, we must choose a scaling parameter that separates “average” rows from unusually
large ones. For this choice in subroutine rnpef1(), I chose the median.

7.5 DEBURST

We can use the same technique to throw out fitting equations from defective data that we
use for missing data. Recall the theory and discussion leading up to Figure 7.3. There we
identified defective data by its lack of continuity. We used the fitting equations 0≈ wi (yi+1−
2yi + yi−1) where the weights wi were chosen to be approximately the inverse to the residual
(yi+1−2yi + yi−1) itself.

Here we will first use the second derivative (Laplacian in 1-D) to throw out bad points,
while we determine the PEF. Having the PEF, we use it to fill in the missing data.

module pefest { # Estimate a PEF avoiding zeros and bursty noise on input.

use quantile_mod

use helicon

use misinput

use pef

contains

subroutine pefest1(niter, yy, aa) {

integer, intent(in) :: niter

real, dimension(:), pointer :: yy

type(filter) :: aa

real, dimension(:),allocatable :: rr

real :: rbar

integer :: stat

allocate(rr(size(yy)))

call helicon_init(aa) # starting guess

stat = helicon_lop(.false., .false., yy, rr)

rbar = quantile(size(yy)/3, abs(rr)) # rbar=(r safe below rbar)

where(aa%mis) yy = 0.

call find_mask((yy /= 0. .and. abs(rr) < 5 * rbar), aa)

call find_pef(yy, aa, niter)

deallocate(rr)

}

}

The result of this “PEF-deburst” processing is shown in Figure 7.5.

Given the PEF that comes out of pefest1()1, subroutine fixbad1() below convolves it
with the data and looks for anomalous large outputs. For each that is found, the input data is
declared defective and set to zero. Then subroutine mis1() on page 149 is invoked to replace
the zeroed values by reasonable ones.

module fixbad { # Given a PEF, find bad data and restore it.

use mis2_mod

1If you are losing track of subroutines defined earlier, look at the top of the module to see what other
modules it uses. Then look in the index to find page numbers of those modules.

212 CHAPTER 7. NOISY DATA

Figure 7.5: Top is synthetic data with noise spikes and bursts. (Some bursts are fifty times
larger than shown.) Next is after running medians. Next is Laplacian filter Cauchy deburst
processing. Last is PEF-deburst processing. noiz-pefdeburst90 [ER]

use helicon

use quantile_mod

contains

subroutine fixbad1 (niter, aa, yy) {

integer, intent (in) :: niter

type(filter), intent (in) :: aa

real, dimension (:) :: yy

real, dimension (size (yy)) :: rr

logical, dimension (size (yy)) :: known

integer :: stat

call helicon_init(aa)

stat = helicon_lop (.false., .false., yy, rr); rr = abs (rr)

known = (yy > 0.) .and. (rr < 4. * quantile(size(rr)/2, rr))

call mis2 (niter, yy, aa, known, 2)

}

}

7.5.1 Potential seismic applications of two-stage infill

Two-stage data infill has many applications that I have hardly begun to investigate.

Shot continuation is an obvious task for a data-cube extrapolation program. There are
two applications of shot-continuation. First is the obvious one of repairing holes in data in
an unobtrusive way. Second is to cooperate with reflection tomographic studies such as that
proposed by Matthias Schwab.

7.6. TWO 1-D PEFS VERSUS ONE 2-D PEF 213

Offset continuation is a well-developed topic because of its close link with dip moveout
(DMO). DMO is heavily used in the industry. I do not know how the data-cube extrapolation
code I am designing here would fit into DMO and stacking, but because these are such impor-
tant processes, the appearance of a fundamentally new tool like this should be of interest. It is
curious that the DMO operator is traditionally derived from theory, and the theory requires the
unknown velocity function of depth, whereas here I propose estimating the offset continuation
operator directly from the data itself, without the need of a velocity model.

Obviously, one application is to extrapolate off the sides of a constant-offset section. This
would reduce migration semicircles at the survey’s ends.

Another application is to extrapolate off the cable ends of a common-midpoint gather or a
common shot point gather. This could enhance the prediction of multiple reflections or reduce
artifacts in velocity analysis.

Obviously, the methodology and code in this chapter is easily extendable to four dimen-
sions (prestack 3-D data).

7.6 TWO 1-D PEFS VERSUS ONE 2-D PEF

Here we look at the difference between using two 1-D PEFs, and one 2-D PEF. Figure 7.6
shows an example of sparse tracks; it is not realistic in the upper-left corner (where it will be
used for testing), in a quarter-circular disk where the data covers the model densely. Such a
dense region is ideal for determining the 2-D PEF. Indeed, we cannot determine a 2-D PEF
from the sparse data lines, because at any place you put the filter (unless there are enough
adjacent data lines), unknown filter coefficients will multiply missing data. So every fitting
goal is nonlinear and hence abandoned by the algorithm.

The set of test data shown in Figure 7.6 is a superposition of three functions like plane
waves. One plane wave looks like low-frequency horizontal layers. Notice that the various
layers vary in strength with depth. The second wave is dipping about 30◦ down to the right
and its waveform is perfectly sinusoidal. The third wave dips down 45◦ to the left and its
waveform is bandpassed random noise like the horizontal beds. These waves will be handled
differently by different processing schemes, so I hope you can identify all three. If you have
difficulty, view the figure at a grazing angle from various directions.

Later we will make use of the dense data region, but first let U be the east-west PE operator
and V be the north-south operator and let the signal or image be h = h(x , y). The fitting
residuals are

0 ≈ (I−J)(h−d)
0 ≈ U h
0 ≈ V h

(7.19)

where d is data (or binned data) and (I−J) masks the map onto the data.

Figure 7.7 shows the result of using a single one-dimensional PEF along either the vertical
or the horizontal axis.

214 CHAPTER 7. NOISY DATA

Figure 7.6: Synthetic wavefield (left) and as observed over survey lines (right). The wavefield
is a superposition of waves from three directions. noiz-duelin90 [ER]

Figure 7.7: Interpolation by 1-D PEF along the vertical axis (left) and along the horizontal
axis (right). noiz-dueleither90 [ER]

7.7. ALTITUDE OF SEA SURFACE NEAR MADAGASCAR 215

Figure 7.8 compares the use of a pair of 1-D PEFs versus a single 2-D PEF (which needs
the “cheat” corner in Figure 7.6. Studying Figure 7.8 we conclude (what theory predicts) that

Figure 7.8: Data infilled by a pair of 1-D PEFs (left) and by a single 2-D PEF (right).
noiz-duelversus90 [ER,M]

• These waves are predictable with a pair of 1-D filters:

– Horizontal (or vertical) plane-wave with random waveform
– Dipping plane-wave with a sinusoidal waveform

• These waves are predictable with a single 2-D filter:

– both of the above
– Dipping plane-wave with a random waveform

7.7 ALTITUDE OF SEA SURFACE NEAR MADAGASCAR

A satellite points a radar at the ground and receives echos we investigate here. These echos are
recorded only over the ocean. The echo tells the distance from the orbit to the ocean surface.
After various corrections are made for earth and orbit ellipticities the residual shows tides,
wind stress on the surface, and surprisingly a signal proportional to the depth of the water.
Gravity of mountains on the water bottom pulls water towards them raising sea level there.

The raw data investigated here2 had a strong north-south tilt which I3 removed at the outset.
2I wish to thank David T. Sandwell http://topex.ucsd.edu/ for providing me with this subset of satellite

altimetry data, commonly known as Topex-Posidon data.
3The calculations here were all done for us by Jesse Lomask.

216 CHAPTER 7. NOISY DATA

Figure 7.9 gives our first view of altimetry data (ocean height) from southeast of the island of
Madagascar. About all we can see is satellite tracks. The satellite is in a circular polar orbit. To

Figure 7.9: Sea height under satellite tracks. The island of Madagascar is in the empty area
at (46◦,−22◦). Left is the adjoint L′d. Right is the adjoint normalized by the bin count,
diag(L′1)−1L′d. You might notice a few huge, bad data values. Overall, the topographic
function is too smooth, suggesting we need a roughener. noiz-jesse1 [ER,M]

us the sun seems to rotate east to west as does the circular satellite orbit. Consequently, when
the satellite moves northward across the site we get altitude measurements along a SE-NW
line. When it moves southward we get measurements along a NE-SW line. This data is from
the cold war era. At that time dense data above the −30◦ parallel was secret although sparse
data was available. (The restriction had to do with precision guidance of missiles. Would the
missile hit the silo? or miss it by enough to save the retaliation missile?)

Here are some definitions: Let components of d be the data, altitude measured along
a satellite track. The model space is h, altitude in the (x , y)-plane. Let L denote the 2-D
linear interpolation operator from the track to the plane. Let H be the helix derivative, a
filter with response

√

k2
x + k2

y . Except where otherwise noted, the roughened image p is the
preconditioned variable p=Hh. The derivative along a track in data space is d

dt . A weighting
function that vanishes when any filter hits a track end or a bad data point is W.

Figure 7.10 shows the entire data space, over a half million data points (actually 537974).
Altitude is measured along many tracks across the image. In Figure 7.10 the tracks are placed
end-to-end, so it is one long vector (displayed in about 50 signal rows). A vector of equal
length is the missing data marker vector. This vector is filled with zeros everywhere except
where data is missing or known bad or known to be at the ends of the tracks. The long tracks
are the ones that are sparse in the north.

Figure 7.11 brings this information into model space. Applying the adjoint of the linear
interpolation operator L′ to the data d gave our first image L′d in model space in Figure 7.9.
The track noise was so large that roughening it made it worse. A more inviting image arose
when I normalized the image before roughening it. Put a vector of all ones 1 into the adjoint of

7.7. ALTITUDE OF SEA SURFACE NEAR MADAGASCAR 217

Figure 7.10: All the data d and the missing data markers. noiz-jesse5 [ER,M]

Figure 7.11: The roughened, nor-
malized adjoint, H diag(L′1)−1L′d.
Some topography is percepti-
ble through a maze of tracks.
noiz-jesse2 [ER]

218 CHAPTER 7. NOISY DATA

the linear interpolation operator L′. What comes out L′1 is roughly the number of data points
landing in each pixel in model space. More precisely, it is the sum of the linear interpolation
weights. This then, if it is not zero, is used as a divisor. The division accounts for several tracks
contributing to one pixel. In matrix formalism this image is diag(L′1)−1L′d. In Figure 7.11
this image is roughened with the helix derivative H.

Figure 7.12: With a simple roughening derivative in data space, model space shows two nice
topographic images. Let n denote ascending tracks. Let s denote descending tracks. Left is
L′ d

dt n. Right is L′ d
dt s. noiz-jesse3 [ER,M]

There is a simple way here to make a nice image—roughen along data tracks. This is done
in Figure 7.12. The result is two attractive images, one for each track direction. Unfortunately,
there is no simple relationship between the two images. We cannot simply add them because
the shadows go in different directions. Notice also that each image has noticeable tracks that
we would like to suppress further.

A geological side note: The strongest line, the line that marches along the image from
southwest to northeast is a sea-floor spreading axis. Magma emerges along this line as a source
growing plates that are spreading apart. Here the spreading is in the north-south direction. The
many vertical lines in the image are called “transform faults”.

Fortunately, we know how to merge the data. The basic trick is to form the track derivative
not on the data (which would falsify it) but on the residual which (in Fourier space) can be
understood as choosing a different weighting function for the statistics. A track derivative
on the residual is actually two track derivatives, one on the observed data, the other on the
modeled data. Both data sets are changed in the same way. Figure 7.13 shows the result. The
altitude function remains too smooth for nice viewing by variable brightness, but roughening
it with H makes an attractive image showing, in the south, no visible tracks.

The north is another story. We would like the sparse northern tracks to contribute to our
viewing pleasure. We would like them to contribute to a northern image of the earth, not to
an image of the data acquisition footprint. This begins to happen in Figure 7.14. The process
of fitting data by choosing an altitude function h would normally include some regularization

7.7. ALTITUDE OF SEA SURFACE NEAR MADAGASCAR 219

Figure 7.13: All data merged into a track-free image (hooray!) by applying the track deriva-
tive, not to the data, but to the residual. Left is h estimated by 0≈W d

dt (Lh−d). Right is the
roughened altitude, p=Hh. noiz-jesse10 [ER,M]

Figure 7.14: Using the track derivative in residual space and helix preconditioning in model
space we start building topography in the north. Left is h = H−1p where p is estimated by
0≈W d

dt (LH−1p−d) for only 10 iterations. Right is p=Hh. noiz-jesse8 [ER,M]

220 CHAPTER 7. NOISY DATA

(model styling), such as 0≈∇h. Instead we adopt the usual trick of changing to precondition-
ing variables, in this case h=H−1p. As we iterate with the variable p we watch the images of
h and p and quit either when we are tired, or more hopefully, when we are best satisified with
the image. This subjective choice is rather like choosing the ε that is the balance between data
fitting goals and model styling goals. The result in Figure 7.14 is pleasing. We have begun
building topography in the north that continues in a consistant way with what is in the south.
Unfortunately, this topography does fade out rather quickly as we get off the data acquisition
tracks.

If we have reason to suspect that the geological style north of the 30th parallel matches
that south of it (the stationarity assumption) we can compute a PEF on the south side and use
it for interpolation on the north side. This is done in Figure 7.15. This is about as good as we

Figure 7.15: Given a PEF A estimated on the densely defined southern part of the model, p
was estimated by 0≈W d

dt (LA−1p−d) for 50 iterations. Left is h= A−1p. Right is p=Hh.
noiz-jesse9 [ER,M]

are going to get. Our fractured ridge continues nicely into the north. Unfortunately, we have
imprinted the fractured ridge texture all over the northern space, but that’s the price we must
pay for relying on the stationarity assumption.

The fitting residuals are shown in Figure 7.16. The physical altitude residuals tend to be
rectangles, each the duration of a track. While the satellite is overflying other earth locations
the ocean surface is changing its altitude. The fitting residuals (right side) are very fuzzy.
They appear to be “white”, though with ten thousand points crammed onto a line a couple
inches long, we cannot be certain. We could inspect this further. If the residuals turn out to be
significantly non-white, we might do better to change d

dt to a PEF along the track.

7.8 ELIMINATING NOISE AND SHIP TRACKS IN GALILEE

The Sea of Galilee data set has enchanted my colleagues and me because the data has compre-
hensible defects that have frustrated many of our image estimation designs. The best results

7.8. ELIMINATING NOISE AND SHIP TRACKS IN GALILEE 221

Figure 7.16: The residual at fifty thousand of the half million (537,974) data points in Fig-
ure 7.15. Left is physical residual LA−1p− d. Right is fitting residual W d

dt (LA−1p− d).
noiz-jesse9_res [ER,M]

found so far were prepared for us here by Antoine Guitton based on our 2004 Geophysics
paper.

We are given depth-sounding data from the Sea of Galilee. The Sea of Galilee is unique
because it is a fresh-water lake below sea-level. It seems to be connected to the Great Rift (pull-
apart) valley crossing East Africa. The ultimate goal is to produce a good map of the depth to
bottom, and images useful for identifying archaeological, geological, and geophysical details
of the water bottom. In particular, we hope to identify some ancient shorelines around the
lake and meaningful geological features inside the lake. The ancient shorelines might reveal
early settlements of archeological interest or old fishing ports. The pertinence of this data set
to our daily geophysical problems is threefold: (1) We often need to interpolate irregular data.
(2) The data has noise bursts of various types. (3) The data has systematic error (drift) which
tends to leave data-acquisition tracks in the resulting image.

The Galilee data set was introduced in chapter 3 and recently plotted in Figure 7.4. Actu-
ally, that figure is a view of 2-D model space. One of the first things I learned (the hard way)
is the importance of viewing both the model space and the residuals in data space.

Be sure to plot both model space and data space. You should try to understand the results
in both spaces and might like to watch movies of each as the iteration progresses.

The raw data (Figure 7.17), is distributed irregularly across the lake surface. It is 132,044
triples (xi , yi , zi), where xi ranges over about 12 km, where yi ranges over about 20 km, and
zi is depth in multiples of 10 cm. (It would have been helpful if a fourth value had been in-
cluded, the clock-date time ti , of the measurement.) The ship surveyed a different amount of
distance every day of the survey. Figure 7.17 displays the whole survey as one long track.
On one traverse across the lake, the depth record is U shaped. A few V shaped tracks result
from deep-water vessel turn arounds. All depth values (data points) used for building the final

222 CHAPTER 7. NOISY DATA

map are shown here. Each point corresponds to one depth measurement inside the lake. For
display convenience, the long signal is broken into 23 strips of 5718 depth measurements. We
have no way to know that sometimes the ship stops a little while with the data recorder run-
ning; sometimes it shuts down overnight or longer; but mostly it progresses at some unknown
convenient speed. So the horizontal axis in data space is a measurement number that scales in
some undocumented way to distance along the track.

Figure 7.17: The complete Galilee data space. noiz-antoine1 [ER]

7.8.1 Attenuation of noise bursts and glitches

Let h be an abstract vector containing as components the water depth over a 2-D spatial mesh.
Let d be an abstract vector whose successive components are depths along the vessel tracks.
One way to grid irregular data is to minimize the length of the residual vector rd(h):

0 ≈ rd = Bh − d (7.20)

where B is a 2-D linear interpolation (or binning) operator and rd is the data residual. Where
tracks cross or where multiple data values end up in the same bin, the fitting goal (7.20) takes
an average. Figure 7.4 is a display of simple binning of the raw data. (Some data points are
outside the lake. These must represent navigation errors.)

7.8. ELIMINATING NOISE AND SHIP TRACKS IN GALILEE 223

Some model-space bins will be empty. For them we need an additional “model styling”
goal, i.e. regularization. For simplicity we might minimize the gradient.

0 ≈ rd = Bh − d
0 ≈ rh = ε∇h

(7.21)

where ∇ =
(

∂
∂x , ∂

∂y

)

and rh is the model space residual. Choosing a large scaling factor ε will
tend to smooth our entire image, not just the areas of empty bins. We would like ε to be any
number small enough that its main effect is to smooth areas of empty bins. When we get into
this further, though, we’ll see that because of noise some smoothing across the nonempty bins
is desireable too.

7.8.2 Preconditioning for accelerated convergence

As usual we precondition by changing variables so that the regularization operator becomes
an identity matrix. The gradient ∇ in equation (7.21) has no inverse, but its spectrum −∇ ′∇,
can be factored (−∇ ′∇ =H′H) into triangular parts H and H′ where H is the helix derivative.
This H is invertible by deconvolution. The quadratic form h′∇ ′∇h = h′H′Hh suggests the
new preconditioning variable p=Hh. The fitting goals in equation (7.21) thus become

0 ≈ rd = BH−1p − d
0 ≈ rp = εp

(7.22)

with rp the residual for the new variable p. Experience shows that an iterative solution for p
converges much more rapidly than an iterative solution for h, thus showing that H is a good
choice for preconditioning. We could view the estimated final map h = H−1p, however in
practice, because the depth function is so smooth, we usually prefer to view the roughened
depth p.

There is no simple way of knowing beforehand the best value of ε. Practitioners like to
see solutions for various values of ε. Practical exploratory data analysis is pragmatic. Without
a simple, clear theoretical basis, analysts generally begin from p= 0 and then abandon the
fitting goal 0 ≈ rp = εp. Effectively, they take ε = 0. Then they examine the solution as a
function of iteration, imagining that the solution at larger iterations corresponds to smaller ε

and that the solution at smaller iterations corresponds to larger ε. In all our explorations, we
follow this approach and omit the regularization in the estimation of the depth maps. Having
achieved the general results we want, we should include the parameter ε and adjust it until we
see a pleasing result at an “infinite” number of iterations. We should but usually we do not.

7.8.3 `1 norm

Spikes and erratic noise glitches can be suppressed with an approximate `1 norm. One main
problem with the Galilee data is the presence of outliers in the middle of the lake and at the
track ends. We could attenuate these spikes by editing or applying running median filters.

224 CHAPTER 7. NOISY DATA

However, the former involves human labor while the latter might compromise small details by
smoothing and flattening the signal. Here we formulate the estimation to eliminate the drastic
effect of the noise spikes. We introduce a weighting operator that deemphasizes high residuals
as follows:

0 ≈ rd = W(BH−1p−d)
0 ≈ rp = εp

(7.23)

with a diagonal matrix W:

W= diag

(

1
(1+r2

i /r̄2)1/4

)

(7.24)

where ri is the residual for one component of rd and r̄ is a prechosen constant. This weighting
operator ranges from `2 to `1, depending on the constant r̄ . We take r̄ = 10 cm because the
data was given to us as integer multiples of 10 cm. (A somewhat larger value might be more
appropriate).

Figure 7.18: Estimated p in a least-squares sense (left) and in an `1 sense (right). Pleasingly,
isolated spikes are attenuated. Some interesting features are shown by the arrows: AS points
to few ancient shores, O points to some outliers, T points to few tracks, and R points to a
curious feature. noiz-antoine2 [ER,M]

Figure 7.18 displays p estimated in a least-squares sense on the left and in a `1 sense on the
right (equation (7.23) with a small r̄). Most of the glitches are no longer visible. One obvious

7.8. ELIMINATING NOISE AND SHIP TRACKS IN GALILEE 225

glitch remains near (x , y)= (205,238). Evidently a north-south track has a long sequence of
biased measurements that our `1 cannot overcome. Some ancient shorelines in the western
and southern parts of the Sea of Galilee are now easier to identify (shown as AS). We also
start to see a valley in the middle of the lake (shown as R). Data outside the lake (navigation
errors) have been mostly removed. Data acquisition tracks (mostly north-south lines and east-
west lines, one of which is marked with a T) are even more visible after the suppression of the
outliers.

Figure 7.19: East-west cross sections of the lake bottom (h=H−1p). Top with the `2 solution.
Bottom with the `1 approximating procedure. noiz-antoine3 [ER,M]

Figure 7.19 shows the bottom of the Sea of Galilee (h=H−1p) with `2 (top) fitting and
`1 (bottom) fitting. Each line represents one east-west transect, transects at half-kilometer
intervals on the north-south axis. The `1 result is a nice improvement over the `2 maps. The
glitches inside and outside the lake have mostly disappeared. Also, the `1 norm gives positive
depths everywhere. Although not visible everywhere in all the figures, topography is produced
outside the lake. Indeed, the effect of regularization is to produce synthetic topography, a
natural continuation of the lake floor surface.

We are now halfway to a noise-free image. Figure 7.18 shows that vessel tracks overwhelm
possible fine scale details. Next we investigate a strategy based on the idea that the inconsis-
tency between tracks comes mainly from different human and seasonal conditions during the
data acquisition. Since we have no records of the weather and the time of the year the data
were acquired we presume that the depth differences between different acquisition tracks must
be small and relatively smooth along the super track.

226 CHAPTER 7. NOISY DATA

7.8.4 Abandoned strategy for attenuating tracks

An earlier strategy to remove the ship tracks is to filter the residual as follows:

0 ≈ rd = W d
ds (BH−1p−d),

0 ≈ rp = εp, (7.25)

where d
ds is the derivative along the track. The derivative removes the drift from the field data

(and the modeled data). An unfortunate consequence of the track derivative is that it creates
more glitches and spiky noise at the track ends and at the bad data points. Several students
struggled with this idea without good results.

One explanation (of unknown validity) given for the poor results is that perhaps the nu-
merical conditioning of the algebraic problem is worsened by the operators W, d

ds , B, and
H−1, drastically slowing the convergence. Another explanation is that the operator d

ds is too
simple. Perhaps we should have a five or ten point low-cut filter—or maybe a PEF. A PEF
could be estimated from the residual itself. Unfortunately, such a longer filter would smear the
bad effect of noise glitches onto more residuals, effectively spoiling more measurements.

We concluded that the data is bad only in a very low frequency sense. Perhaps the lake
is evaporating, or it is raining, or the load in the boat has been changed or shifted. It’s a fact
that any very low-frequency reject filter is necessarily a long filter, and that means that it must
catch many noise spikes. Thus we should not attempt to filter out the drift from the residual.
Instead we should model the drift.

In the presence of both noise bursts and noise with a sensible spectrum (systematic noise),
the systematic noise should be modeled while the noise bursts should be handled with `1.

7.8.5 Modeling data acquisition drift

To model data drift we imagine a vector q of random numbers that will be passed thru a low-
pass filter (like a leaky integrator) L. The modeled data drift is Lq. We will solve for q.
A price we pay is an increase of the number of unknowns. Augmenting earlier fitting goals
(7.23) we have:

0 ≈ rd = W(BH−1p+λLq−d),
0 ≈ rp = ε1p,
0 ≈ rq = ε2q,

(7.26)

where h = H−1p estimates the interpolated map of the lake, and where L is a drift modeling
operator (leaky integration), q is an additional variable to be estimated, and λ is a balancing
constant to be discussed. We then minimize the misfit function,

g2(p,q)= ‖rd‖2+ ε2
1‖rp‖2+ ε2

2‖rq‖2, (7.27)

Now the data d is being modeled in two ways by two parts which add, a geological map part
BH−1p and a recording system drift part λLq. Clearly, by adjusting the balance of ε1 to ε2

7.8. ELIMINATING NOISE AND SHIP TRACKS IN GALILEE 227

we are forcing the data to go one way or the other. There is nothing in the data itself that says
which part of the theory should claim it.

It is a customary matter of practice to forget the two εs and play with the λ. If we kept the
two εs, the choice of λ would be irrelevant to the final result. Since we are going to truncate
the iteration, choice of λ matters. It chooses how much data energy goes into the equipment
drift function and how much into topography. Antoine ended out with with λ= 0.08.

There is another parameter to adjust. The parameter ρ controlling the decay of the leaky
integration. Antoine found that value ρ = 0.99 was a suitable compromise. Taking ρ smaller
allows the track drift to vary too rapidly thus falsifying data in a way that falsifies topography.
Taking ρ closer to unity does not allow adequately rapid variation of the data acquistion system
thereby pushing acquisition tracks into the topography.

Figure 7.20 (bottom-left corner) shows the estimated roughened image p with λL data-
drift modeling and (top-left corner) p without it. Data-drift modeling (bottom-left) yields an
image that is essentially track-free without loss of detail. Top right shows the poor result of
applying the derivative d

ds along the tracks. Tracks are removed but the topography is unclear.

The bottom-right part of Figure 7.20 provides important diagnostic information. The esti-
mated instrumentation drift Lq has been transformed to model space B′Lq. We do not like to
see hints of geology in this space but we do. Adjusting λ or ρ we can get rid of the geology
here, but then survey tracks will appear in the lake image. The issue of decomposing data into
signal and noise parts is dealt with further in chapter 9.

Figures 7.21 and 7.22 show selected segments of data space. Examining here the dis-
crepancy between observed data and modeled data offers us an opportunity to get new ideas.
The top plot is the input data d. Next is the estimated noise-free data BH−1p. Then the esti-
mated secular variations λLq. Finally residual BH−1p+λLq−d after a suitable number of
iterations. The modeled data in both Figures 7.21b and 7.22b show no remaining spikes.

The estimated instrument drift is reasonable, mostly under a meter for measurments with
a nominal precision of 10 cm. There are some obvious problems though. It is not a serious
problem that the drift signal is always positive. Applying the track derivative means that zero
frequency is in the null space. An arbitrary constant may be moved from water depth to
track calibration. More seriously, the track calibration fluctuates more rapidly than we might
imagine. Worse still, Figure 7.22c shows the instrument drift correlates with water depth(!).
This suggests we should have a slower drift function (bigger ρ or weaker λ), but Antoine
assures me that this would push data acquisition tracks into the lake image. If the data set had
included the date-time of each measurement we would have been better able to model drift.
Instead of allowing a certain small change of drift with each measurement, we could have
allowed a small change in proportion to the time since the previous measurement.

An interesting feature of the data residual in Figure 7.22d is that it has more variance in
deep water than in shallow. Perhaps the depth sounder has insufficient power for deeper water
or for the softer sediments found in deeper water. On the other hand, this enhanced deep water
variance is not seen in Figure 7.21d which is puzzling. Perhaps the sea was rough for one day
of recording but not another.

228 CHAPTER 7. NOISY DATA

Figure 7.20: Top left: Estimated p without attenuation of the tracks, i.e., regression (7.23).
Top right: Estimated p with the derivative along the tracks, i.e., regression (7.25). Bottom left:
Estimated p without tracks, i.e., regression (7.26). Bottom right: recorder drift in model space
B′Lq. noiz-antoine4 [ER,M]

7.8. ELIMINATING NOISE AND SHIP TRACKS IN GALILEE 229

Figure 7.21: (a) Track 17 (input data) in Figure 7.17. (b) The estimated noise-free data BH−1p.
(c) Estimated drift Lq. (d) Data residual. noiz-antoine5 [ER,M]

Figure 7.22: (a) Track 14 (input data) in Figure 7.17. (b) Modeled data, BH−1p. (c) Estimated
drift. (d) Data-space residual. noiz-antoine6 [ER]

230 CHAPTER 7. NOISY DATA

7.8.6 Regridding

We often have an image h0 on a coarse mesh that we would like to use on a refined mesh. This
regridding chore reoccurs on many occasions so I present reusable code. When a continuum
is being mapped to a mesh, it is best to allocate to each mesh point an equal area on the
continuum. Thus we take an equal interval between each point, and a half an interval beyond
the end points. Given n points, there are n-1 intervals between them, so we have

min = o - d/2

max = o + d/2 + (n-1)*d

which may be back solved to

d = (max-min)/n

o = (min*(n-.5) + max/2)/n

which is a memorable result for d and a less memorable one for o. With these not-quite-trivial
results, we can invoke the linear interpolation operator lint2. It is designed for data points
at irregular locations, but we can use it for regular locations too. Operator refine2 defines
pseudoirregular coordinates for the bin centers on the fine mesh and then invokes lint2 to
carry data values from the coarse regular mesh to the pseudoirregular finer mesh. Upon exiting
from refine2, the data space (normally irregular) is a model space (always regular) on the finer
mesh.

module refine2 { # Refine mesh.

Input mm(m1,m2) is coarse. Output dd(n1,n2) linear interpolated.

#

use lint2

real, dimension(:, :), pointer, private :: xy

#% _init(co1,cd1,co2,cd2, m1,m2, fo1,fd1,fo2,fd2, n1,n2)

integer, intent(in) :: m1,m2, n1,n2

real, intent(in) :: co1,cd1,co2,cd2 # coarse grid

real, intent(out) :: fo1,fd1,fo2,fd2 # fine grid

integer :: i1,i2, id

real :: xmin,xmax, ymin,ymax, x,y

allocate (xy(n1*n2, 2))

xmin = co1-cd1/2; xmax = co1 +cd1*(m1-1) +cd1/2 # Great formula!

ymin = co2-cd2/2; ymax = co2 +cd2*(m2-1) +cd2/2

fd1= (xmax-xmin)/n1; fo1= (xmin*(n1-.5) + xmax/2)/n1 # Great formula!

fd2= (ymax-ymin)/n2; fo2= (ymin*(n2-.5) + ymax/2)/n2

do i2=1,n2 { y = fo2 + fd2*(i2-1)

do i1=1,n1 { x = fo1 + fd1*(i1-1)

id = i1+n1*(i2-1)

xy(id, :) = (/ x, y /)

}}

call lint2_init(m1,m2, co1,cd1, co2,cd2, xy)

#% _lop (mm, dd)

integer stat1

stat1 = lint2_lop(adj, .true., mm, dd)

7.8. ELIMINATING NOISE AND SHIP TRACKS IN GALILEE 231

#% _close

deallocate (xy)

}

Finally, here is the 2-D linear interpolation operator lint2, which is a trivial extension of the
1-D version lint1 on page 16.

module lint2 { # (Bi)Linear interpolation in 2-D

integer :: m1,m2

real :: o1,d1, o2,d2

real, dimension (:,:), pointer :: xy

#% _init (m1,m2, o1,d1, o2,d2, xy)

#% _lop (mm (m1,m2), dd (:))

integer i, ix,iy, id

real f, fx,gx, fy,gy

do id= 1, size(dd) {

f = (xy(id,1)-o1)/d1; i=f; ix= 1+i; if(1>ix .or. ix>=m1) cycle; fx=f-i; gx= 1.-fx

f = (xy(id,2)-o2)/d2; i=f; iy= 1+i; if(1>iy .or. iy>=m2) cycle; fy=f-i; gy= 1.-fy

if(adj) {

mm(ix ,iy) += gx * gy * dd(id)

mm(ix+1,iy) += fx * gy * dd(id)

mm(ix ,iy+1) += gx * fy * dd(id)

mm(ix+1,iy+1) += fx * fy * dd(id)

}

else

dd(id) = dd(id) + gx * gy * mm(ix ,iy) +

fx * gy * mm(ix+1,iy) +

gx * fy * mm(ix ,iy+1) +

fx * fy * mm(ix+1,iy+1)

}

}

232 CHAPTER 7. NOISY DATA

Chapter 8

Spatial aliasing and scale invariance

Landforms are not especially predictable. Therefore, crude PEF approximations are often
satisfactory. Wavefields are another matter. Consider the “shape” of the acoustic wavefronts
at this moment in the room you are in. The acoustic wavefield has statistical order in many
senses. If the 3-D volume is filled with waves emitted from a few point sources, then (with
some simplifications) what could be a volume of information is actually a few 1-D signals.
When we work with wavefronts we can hope for more dramatic, even astounding, results from
estimating properly.

The plane-wave model links an axis that is not aliased (time) with axes (space) that often
are.

We often characterize data from any region of (t , x)-space as “good” or “noisy” when we
really mean it contains “few” or “many” plane-wave events in that region. Where regions are
noisy, there is no escaping the simple form of the Nyquist limitation. Where regions are good
we may escape it. Real data typically contains both kinds of regions. Undersampled data
with a broad distribution of plane waves is nearly hopeless. Undersampled data with a sparse
distribution of plane waves offer us the opportunity to resample without aliasing. Consider
data containing a spherical wave. The angular bandwidth in a plane-wave decomposition
appears huge until we restrict attention to a small region of the data. (Actually a spherical
wave contains very little information compared to an arbitrary wave field.) It can be very
helpful in reducing the local angular bandwidth if we can deal effectively with tiny pieces of
data. If we can deal with tiny pieces of data, then we can adapt to rapid spatial and temporal
variations. This chapter shows such tiny windows of data.

8.1 INTERPOLATION BEYOND ALIASING

A traditional method of data interpolation on a regular mesh is a four-step procedure: (1)
Set zero values at the points to be interpolated; (2) Fourier transform; (3) Set to zero the
high frequencies; and (4) Inverse transform. This is a fine method and is suitable for many

233

234 CHAPTER 8. SPATIAL ALIASING AND SCALE INVARIANCE

applications in both one dimension and higher dimensions. However, this method fails to take
advantage of our prior knowledge that seismic data has abundant fragments of plane waves
that link an axis that is not aliased (time) to axes that often are (space).

8.1.1 Interlacing a filter

The filter below can be designed despite alternate missing traces. This filter destroys plane
waves. If the plane wave should happen to pass halfway between the “d” and the “e”, those
two points could interpolate the halfway point, at least for well-sampled temporal frequencies,
and the time axis should always be well sampled. For example, d = e = −.5 would almost
destroy the plane wave and it is an aliased planewave for its higher frequencies.

a · b · c · d · e
· · · · · · · · ·
· · · · 1 · · · ·

(8.1)

We could use module pef on page 178 to find the filter (8.1), if we set up the lag table lag

appropriately. Then we could throw away alternate zeroed rows and columns (rescale the lag)
to get the filter

a b c d e
· · 1 · · (8.2)

which could be used with subroutine mis1() on page 81, to find the interleaved data because
both the filters (8.1) and (8.2) have the same dip characteristics.

Figure 8.1 shows three plane waves recorded on five channels and the interpolated data.
Both the original data and the interpolated data can be described as “beyond aliasing,” because

Figure 8.1: Left is five signals, each showing three arrivals. With the data shown on the left
(and no more), the signals have been interpolated. Three new traces appear between each
given trace, as shown on the right. lal-lace390 [ER]

on the input data the signal shifts exceed the signal duration. The calculation requires only

8.1. INTERPOLATION BEYOND ALIASING 235

a few seconds of a two-stage least-squares method, in which the first stage estimates a PEF
(inverse spectrum) of the known data, and the second uses the PEF to estimate the missing
traces. Figure 8.1 comes from PVI which introduces the clever method described above. We
will review how that was done and examine the F90 codes that generalize it to N -dimensions.
Then we’ll go on to more general methods that allow missing data in any location. Before
the methods of this section are applied to field data for migration, data must be broken into
many overlapping tiles of size about like those shown here and the results from each tile pieced
together. That is described later in chapter 9.

A PEF is like a differential equation. The more plane-wave solutions you expect, the more
lags you need on the data. Returning to Figure 8.1, the filter must cover four traces (or more)
to enable it to predict three plane waves. In this case, na=(9,4). As usual, the spike on the 2-D
PEF is at center=(5,1). We see the filter is expanded by a factor of jump=4. The data size
is nd=(75,5) and gap=0. Before looking at the code lace on the current page for estimating
the PEF, it might be helpful to recall the basic utilities line2cart and cart2line on page 125
for conversion between a multidimensional space and the helix filter lag. We need to sweep
across the whole filter and “stretch” its lags on the 1-axis. We do not need to stretch its lags
on the 2-axis because the data has not yet been interlaced by zero traces.

module lace { # find PEF on interlaced data

use createhelixmod

use bound

use pef

use cartesian

contains

function lace_pef(dd, jump, nd, center, gap, na) result(aa) {

type(filter) :: aa

integer, intent(in) :: jump

integer, dimension(:), intent(in) :: nd, center, gap, na

real, dimension(:), pointer :: dd # input data

integer, dimension(:), pointer :: savelags # holding place

integer, dimension(size(nd)) :: ii

integer :: ih, nh, lag0, lag

aa = createhelix(nd, center, gap, na); nh = size(aa%lag)

savelags => aa%lag; allocate(aa%lag(nh)) # prepare interlaced helix

call cart2line(na, center, lag0)

do ih = 1, nh { # Sweep thru the filter.

call line2cart(na, ih+lag0, ii)

ii = ii - center; ii(1) = ii(1)*jump # Interlace on 1-axis.

call cart2line(nd, ii+1, lag)

aa%lag(ih) = lag - 1

}

call boundn(nd, nd, (/ na(1)*jump, na(2:) /), aa) # Define aa.mis

call find_pef(dd, aa, nh*2) # Estimate aa coefs

deallocate(aa%lag); aa%lag => savelags # Restore filter lags

}

}

The line ii(1)=ii(1)*jump means we interlace the 1-axis but not the 2-axis because the data
has not yet been interlaced with zero traces. For a 3-D filter aa(na1,na2,na3), the some-

236 CHAPTER 8. SPATIAL ALIASING AND SCALE INVARIANCE

what obtuse expression (/na(1)*jump, na(2:)/) is a three component vector containing
(na1*jump, na2, na3).

After the PEF has been found, we can get missing data in the usual way with with module
mis2 on page 149.

8.2 MULTISCALE, SELF-SIMILAR FITTING

Large objects often resemble small objects. To express this idea we use axis scaling and we
apply it to the basic theory of prediction-error filter (PEF) fitting and missing-data estimation.

Equations (8.3) and (8.4) compute the same thing by two different methods, r = Ya and
r = Ay. When it is viewed as fitting goals minimizing ||r|| and used along with suitable
constraints, (8.3) leads to finding filters and spectra, while (8.4) leads to finding missing data.































r1
r2
r3
r4
r5
r6
r7
r8
r9































=































y2 y1
y3 y2
y4 y3
y5 y4
y6 y5
y3 y1
y4 y2
y5 y3
y6 y4































[

a1
a2

]

or
[

r1
r2

]

=
[

Y1
Y2

]

a (8.3)































r1
r2
r3
r4
r5
r6
r7
r8
r9































=































a2 a1 · · · ·
· a2 a1 · · ·
· · a2 a1 · ·
· · · a2 a1 ·
· · · · a2 a1

a2 · a1 · · ·
· a2 · a1 · ·
· · a2 · a1 ·
· · · a2 · a1















































y1
y2
y3
y4
y5
y6

















or
[

r1
r2

]

=
[

A1
A2

]

y

(8.4)

A new concept embedded in (8.3) and (8.4) is that one filter can be applicable for different
stretchings of the filter’s time axis. One wonders, “Of all classes of filters, what subset remains
appropriate for stretchings of the axes?”

8.2.1 Examples of scale-invariant filtering

When we consider all functions with vanishing gradient, we notice that the gradient vanishes
whether it is represented as (1,−1)/1x or as (1,0,−1)/21x . Likewise for the Laplacian, in

8.2. MULTISCALE, SELF-SIMILAR FITTING 237

one dimension or more. Likewise for the wave equation, as long as there is no viscosity and
as long as the time axis and space axes are stretched by the same amount. The notion of “dip
filter” seems to have no formal definition, but the idea that the spectrum should depend mainly
on slope in Fourier space implies a filter that is scale-invariant. I expect the most fruitful
applications to be with dip filters.

Resonance or viscosity or damping easily spoils scale-invariance. The resonant frequency
of a filter shifts if we stretch the time axis. The difference equations

yt −αyt−1 = 0 (8.5)
yt −α2 yt−2 = 0 (8.6)

both have the same solution yt = y0α
−t . One difference equation has the filter (1,−α), while

the other has the filter (1,0,−α2), and α is not equal to α2. Although these operators differ,
when α ≈ 1 they might provide the same general utility, say as a roughening operator in a
fitting goal.

Another aspect to scale-invariance work is the presence of “parasitic” solutions, which ex-
ist but are not desired. For example, another solution to yt− yt−2 = 0 is the one that oscillates
at the Nyquist frequency.

(Viscosity does not necessarily introduce an inherent length and thereby spoil scale-invariance.
The approximate frequency independence of sound absorption per wavelength typical in real
rocks is a consequence of physical inhomogeneity at all scales. See for example Kjartansson’s
constant Q viscosity, described in IEI. Kjartansson teaches that the decaying solutions t−γ

are scale-invariant. There is no “decay time” for the function t−γ . Differential equations of
finite order and difference equations of finite order cannot produce t−γ damping, yet we know
that such damping is important in observations. It is easy to manufacture t−γ damping in
Fourier space; exp[(−iω)γ+1] is used. Presumably, difference equations can make reasonable
approximations over a reasonable frequency range.)

8.2.2 Scale-invariance introduces more fitting equations

The fitting goals (8.3) and (8.4) have about double the usual number of fitting equations. Scale-
invariance introduces extra equations. If the range of scale-invariance is wide, there will be
more equations. Now we begin to see the big picture.

1. Refining a model mesh improves accuracy.

2. Refining a model mesh makes empty bins.

3. Empty bins spoil analysis.

4. If there are not too many empty bins we can find a PEF.

5. With a PEF we can fill the empty bins.

238 CHAPTER 8. SPATIAL ALIASING AND SCALE INVARIANCE

6. To get the PEF and to fill bins we need enough equations.

7. Scale-invariance introduces more equations.

An example of these concepts is shown in Figure 8.2. Additionally, when we have a PEF, often

Figure 8.2: Overcoming aliasing with multiscale fitting. lal-mshole90 [ER]

we still cannot find missing data because conjugate-direction iterations do not converge fast
enough (to fill large holes). Multiscale convolutions should converge quicker because they are
like mesh-refinement, which is quick. An example of these concepts is shown in Figure 8.3.

8.2.3 Coding the multiscale filter operator

Equation (8.3) shows an example where the first output signal is the ordinary one and the
second output signal used a filter interlaced with zeros. We prepare subroutines that allow for
more output signals, each with its own filter interlace parameter given in the table jump(ns).
Each entry in the jump table corresponds to a particular scaling of a filter axis. The number of
output signals is ns and the number of zeros interlaced between filter points for the j-th signal
is jump(j)-1.

The multiscale helix filter is defined in module mshelix on this page, analogous to the
single-scale module helix on page 103. A new function onescale extracts our usual helix
filter of one particular scale from the multiscale filter.

module mshelix { # multiscale helix filter type

use helix

type msfilter {

real, dimension(:), pointer :: flt # (nh) filter coefficients

integer, dimension(:, :), pointer :: lag # (nh,ns) filter (lags,scales)

8.2. MULTISCALE, SELF-SIMILAR FITTING 239

Figure 8.3: Large holes are filled
faster with multiscale operators.
lal-msiter90 [ER]

logical, dimension(:, :), pointer :: mis # (nd,ns) boundary conditions

}

contains

subroutine msallocate(msaa, nh, ns) {

type(msfilter) :: msaa

integer :: nh, ns

allocate(msaa%flt(nh), msaa%lag(nh, ns))

msaa%flt = 0.; nullify(msaa%mis)

}

subroutine msdeallocate(msaa) {

type(msfilter) :: msaa

deallocate(msaa%flt, msaa%lag)

if(associated(msaa%mis)) deallocate(msaa%mis)

}

subroutine onescale(i, msaa, aa) { # Extract single-scale filter.

integer, intent (in) :: i

type(filter) :: aa

type(msfilter) :: msaa

aa%flt => msaa%flt

aa%lag => msaa%lag(:, i)

if(associated(msaa%mis))

aa%mis => msaa%mis(:, i)

else

nullify(aa%mis)

}

}

We create a multscale helix with module createmshelixmod on the following page. An ex-

240 CHAPTER 8. SPATIAL ALIASING AND SCALE INVARIANCE

panded scale helix filter is like an ordinary helix filter except that the lags are scaled according
to a jump.
module createmshelixmod { # Create multiscale helix filter lags and mis

use mshelix

use createhelixmod

use bound

contains

function createmshelix(nd, center, gap, jump, na) result(msaa) {

type(msfilter) :: msaa # needed by mshelicon.

integer, dimension(:), intent(in) :: nd, na # data and filter axes

integer, dimension(:), intent(in) :: center # normally (na1/2,na2/2,...,1)

integer, dimension(:), intent(in) :: gap # normally (0, 0, 0,...,0)

integer, dimension(:), intent(in) :: jump # jump(ns) stretch scales

type(filter) :: aa

integer :: is, ns, nh, n123

aa = createhelix(nd, center, gap, na)

ns = size(jump); nh = size(aa%lag); n123 = product(nd)

call msallocate(msaa, nh, ns)

do is = 1, ns

msaa%lag(:,is) = aa%lag(:)*jump(is) # set lags for expanded scale

call deallocatehelix(aa)

allocate(msaa%mis(n123, ns))

do is = 1, ns { # for all scales

call onescale(is, msaa, aa); nullify(aa%mis) # extract a filter

call boundn(nd, nd, na*jump(is), aa) # set up its boundaries

msaa%mis(:, is) = aa%mis; deallocate(aa%mis) # save them

}

}

}

First we examine code for estimating a prediction-error filter that is applicable at many
scales. We simply invoke the usual filter operator hconest on page 174 for each scale.
module mshconest { # multi-scale helix convolution, adjoint is the filter.

use mshelix

use hconest

use helix

integer, private :: nx, ns

real, dimension(:), pointer :: x

type(msfilter) :: msaa

#% _init(x, msaa)

nx = size(x); ns = size(msaa%lag, 2)

#% _lop(a(:), y(nx,ns))

integer :: is, stat1

type (filter) :: aa

do is = 1, ns {

call onescale (is, msaa, aa)

call hconest_init(x, aa)

stat1 = hconest_lop(adj, .true., a, y(:,is))

}

}

The multiscale prediction-error filter finding subroutine is nearly identical to the usual sub-
routine find_pef() on page 178. (That routine cleverly ignores missing data while estimating

8.2. MULTISCALE, SELF-SIMILAR FITTING 241

a PEF.) To easily extend pef to multiscale filters we replace its call to the ordinary helix filter
module hconest on page 174 by a call to mshconest.

module mspef { # Find multi-scale prediction-error filter (helix magic)

use mshconest

use cgstep_mod

use solver_smp_mod

contains

subroutine find_pef(yy, aa, niter) {

integer, intent(in) :: niter

real, dimension(:), pointer :: yy

type(msfilter) :: aa

integer :: is

real, allocatable :: dd(:,:),ee(:)

allocate(dd(size(yy), size(aa%lag, 2)))

allocate(ee(size(dd)))

do is = 1, size(dd, 2)

dd(:,is) = -yy

ee=reshape(dd,(/size(dd)/))

call mshconest_init(yy, aa)

call solver_smp(m=aa%flt, d=ee, Fop=mshconest_lop, stepper=cgstep, niter=niter, m0=aa%flt)

call cgstep_close()

deallocate(dd,ee)

}

}

The purpose of pack(dd,.true.) is to produce the one-dimensional array expected by our
solver routines.

Similar code applies to the operator in (8.4) which is needed for missing data problems.
This is like mshconest on the facing page except the adjoint is not the filter but the input.

module mshelicon { # Multi-scale convolution

use mshelix

use helicon

integer :: nx, ns

type(msfilter) :: msaa

#% _init (nx, ns, msaa)

#% _lop (xx(nx), yy(nx, ns))

integer :: is, stat1

type (filter) :: aa

do is = 1, ns {

call onescale(is, msaa, aa)

call helicon_init(aa)

stat1 = helicon_lop(adj, .true., xx, yy(:,is))

}

}

The multiscale missing-data module msmis2 is just like the usual missing-data module mis2

on page 149 except that the filtering is done with the multiscale filter mshelicon on this page.

242 CHAPTER 8. SPATIAL ALIASING AND SCALE INVARIANCE

module msmis2 { # multi-scale missing data interpolation

use mshelicon

use cgstep_mod

use mask1

use solver_smp_mod

contains

subroutine mis1(niter, nx, ns, xx, aa, known) {

integer, intent(in) :: niter, nx, ns

logical, dimension(:), intent(in) :: known

type(msfilter), intent(in) :: aa

real, dimension(:), intent(in out) :: xx

real, dimension(nx*ns) :: dd

logical, dimension(:), pointer :: kk

dd = 0.

allocate(kk(size(known))); kk=.not. known

call mask1_init(kk)

call mshelicon_init(nx,ns, aa)

call solver_smp(m=xx, d=dd, Fop=mshelicon_lop, stepper=cgstep, niter=niter, Jop=mask1_lop, m0=xx)

call cgstep_close()

}

}

8.3 References

Canales, L.L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc. Explor. Geo-
phys., Expanded Abstracts, 525-527.

Rothman, D., 1985, Nonlinear inversion, statistical mechanics, and residual statics estimation:
Geophysics, 50, 2784-2798

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56, 785-794.

Chapter 9

Nonstationarity: patching

There are many reasons for cutting data planes or image planes into overlapping pieces (patches),
operating on the pieces, and then putting them back together again, as depicted in Figure 9.1.
The earth’s dip varies with lateral location and depth. The dip spectrum and spatial spectrum
thus also varies. The dip itself is the essence of almost all earth mapping, and its spectrum
plays an important role in the estimation any earth properties. In statistical estimation theory,
the word to describe changing statistical properties is “nonstationary”.

21 3 4 5

6 7 Patch 1

Patch 6 Patch 7

Patch 2

overlap 5 samples

o
v
er

la
p
 5

 s
am

p
le

s

n
w

in
(1

)=
4
0

npatch(2)=5

n
p
at

ch
(1

)=
5

nwall(2)=120

n
w

al
l(

1
)=

1
5
0

nwin(2)=34

n
w

in
(1

)=
4
0

nwin(2)=34

Figure 9.1: Decomposing a wall of information into windows (also called patches). Left is an
example of a 2-D space input to module patch. Right shows a close-up of the output (top left
corner). pch-antoine [NR]

We begin this chapter with basic patching concepts along with supporting utility code.

243

244 CHAPTER 9. NONSTATIONARITY: PATCHING

The language of this chapter, patch, overlap, window, wall, is two-dimensional, but it may as
well be three-dimensional, cube, subcube, brick, or one-dimensional, line, interval. We some-
times use the language of windows on a wall. But since we usually want to have overlapping
windows, better imagery would be to say we assemble a quilt from patches.

The codes are designed to work in any number of dimensions. After developing the infras-
tructure, we examine some two-dimensional, time- and space-variable applications: adaptive
steep-dip rejection, noise reduction by prediction, and segregation of signals and noises.

9.1 PATCHING TECHNOLOGY

A plane of information, either data or an image, say wall(nwall1, nwall2), will be divided
up into an array of overlapping windows each window of size (nwind1,nwind2). To choose
the number of windows, you specify (npatch1,npatch2). Overlap on the 2-axis is measured
by the fraction (nwind2*npatch2)/nwall2. We turn to the language of F90 which allows us to
discuss N -dimensional hypercubes almost as easily as two-dimensional spaces. We define an
N -dimensional volume (like the wall) with the vector nwall= (nwall1, nwall2, ...). We
define subvolume size (like a 2-D window) with the vector nwind=(nwind1, nwind2, ...).
The number of subvolumes on each axis is npatch=(npatch1, npatch2, ...). The operator
patch on the current page simply grabs one patch from the wall, or when used in adjoint form,
it puts the patch back on the wall. The number of patches on the wall is product(npatch).
Getting and putting all the patches is shown later in module patching on page 247.

The i -th patch is denoted by the scalar counter ipatch. Typical patch extraction begins
by taking ipatch, a fortran linear index, and converting it to a multidimensional subscript jj
each component of which is less than npatch. The patches cover all edges and corners of
the given data plane (actually the hypervolume) even where nwall/npatch is not an integer,
even for axes whose length is not an integer number of the patch length. Where there are
noninteger ratios, the spacing of patches is slightly uneven, but we’ll see later that it is easy
to reassemble seamlessly the full plane from the patches, so the unevenness does not matter.
You might wish to review the utilities line2cart and cart2line on page 125 which convert
between multidimensional array subscripts and the linear memory subscript before looking at
the patch extraction-putback code:

module patch { # N-dimensional patch extract and putback

use cartesian

integer, private :: ipatch # count till product(npatch)

integer, dimension (:), pointer :: npatch, nwind, nwall

overlap where npatch * nwind > nwall

#% _init(npatch, nwall, nwind)

ipatch = 1

#% _lop (wall, wind)

integer, dimension(:),allocatable :: ii, jj # Ndim=size(npatch)

integer :: i, j, shift

allocate(ii(size(npatch)),jj(size(npatch)))

call line2cart(npatch, ipatch, jj) # (j1,j2) = (1,1) to (npatch1,npatch2)

round jj to shift end of last patch flush against the far wall.

9.1. PATCHING TECHNOLOGY 245

where(npatch==1) { jj = 1 }

elsewhere { jj = 1.5 +(nwall - nwind)*(jj - 1.)/(npatch - 1.)}

call cart2line(nwall, jj, shift) # jj is where the patch begins.

shift -= 1 #

do i = 1, size(wind) { # sweep through a window

call line2cart(nwind, i, ii) # ii(i) is (i1,i2) in window

call cart2line(nwall, ii, j) # j(ii) linear subscript in window

if(adj)

wall(j + shift) += wind(i)

else

wind(i) += wall(j + shift)

}

deallocate(ii,jj)

#% _close

ipatch = ipatch + 1

}

The cartesian vector jj points to the beginning of a patch, where on the wall the (1,1,..)
coordinate of the patch lies. Obviously this begins at the beginning edge of the wall. Then
we pick jj so that the last patch on any axis has its last point exactly abutting the end of
the axis. The formula for doing this would divide by zero for a wall with only one patch
on it. This case arises legitimately where an axis has length one. Thus we handle the case
npatch=1 by abutting the patch to the beginning of the wall and forgetting about its end. As
in any code mixing integers with floats, to guard against having a floating-point number, say
99.9999, rounding down to 99 instead of up to 100, the rule is to always add .5 to a floating
point number the moment before converting it to an integer. Now we are ready to sweep a
window to or from the wall. The number of points in a window is size(wind) or equivalently
product(nwind). Figure 9.2 shows an example with five nonoverlapping patches on the 1-axis
and many overlapping patches on the 2-axis.

Figure 9.2: A plane of identical val-
ues after patches have been cut and
then added back. Results are shown
for nwall=(100,30), nwind=(17,6),
npatch=(5,11). For these parame-
ters, there is gapping on the horizon-
tal axis and overlap on the depth axis.
pch-parcel90 [ER]

9.1.1 Weighting and reconstructing

The adjoint of extracting all the patches is adding them back. Because of the overlaps, the
adjoint is not the inverse. In many applications, inverse patching is required; i.e. patching
things back together seamlessly. This can be done with weighting functions. You can have

246 CHAPTER 9. NONSTATIONARITY: PATCHING

any weighting function you wish and I will provide you the patching reconstruction operator
Ĩp in

d̃ = [WwallP′WwindP]d = Ĩp d (9.1)

where d is your initial data, d̃ is the reconstructed data, P is the patching operator, P′ is adjoint
patching (adding the patches). Wwind is your chosen weighting function in the window, and
Wwall is the weighting function for the whole wall. You specify any Wwind you like, and
module mkwallwt below builds the weighting function Wwall that you need to apply to your
wall of reconstructed data, so it will undo the nasty effects of the overlap of windows and the
shape of your window-weighting function. You do not need to change your window weighting
function when you increase or decrease the amount of overlap between windows because
Wwall takes care of it. The method is to use adjoint patch on page 244 to add the weights of
each window onto the wall and finally to invert the sum wherever it is non-zero. (You lose
data wherever the sum is zero).

module mkwallwt { # N-dimensional wall weights

use patch

contains

subroutine wallwtn(n, nwall, nwind, windwt, wallwt) {

integer, dimension(:), pointer :: n, nwall, nwind

real, dimension(:), intent(in) :: windwt

real, dimension(:), intent(out) :: wallwt

integer :: ipatch, stat

wallwt = 0.

call patch_init(n, nwall, nwind)

do ipatch = 1, product(n) {

stat = patch_lop(.true., .true., wallwt, windwt)

call patch_close ()

}

where(wallwt /= 0.) wallwt = 1. / wallwt

}

}

No matrices are needed to show that this method succeeds, because data values are never
mixed with one another. An equation for any reconstructed data value d̃ as a function of the
original value d and the weights wi that hit d is d̃ = (

∑

i wid)/
∑

i wi = d. Thus, our process
is simply a “partition of unity.”

To demonstrate the program, I made a random weighting function to use in each window
with positive random numbers. The general strategy allows us to use different weights in
different windows. That flexibility adds clutter, however, so here we simply use the same
weighting function in each window.

The operator Ĩp is called “idempotent.” The word “idempotent” means “self-power,” be-
cause for any N , 0N = 0 and 1N = 1, thus the numbers 0 and 1 share the property that raised to
any power they remain themselves. Likewise, the patching reconstruction operator multiplies
every data value by either one or zero. Figure 9.3 shows the result obtained when a plane of
identical constant values d is passed into the patching reconstruction operator Ĩp. The result

9.1. PATCHING TECHNOLOGY 247

is constant on the 2-axis, which confirms that there is adequate sampling on the 2-axis, and
although the weighting function is made of random numbers, all trace of random numbers has
disappeared from the output. On the 1-axis the output is constant, except for being zero in
gaps, because the windows do not overlap on the 1-axis.

Figure 9.3: A plane of identi-
cal values passed through the idem-
potent patching reconstruction op-
erator. Results are shown for
the same parameters as Figure 9.2.
pch-idempatch90 [ER]

Module patching assists in reusing the patching technique. It takes a linear operator F.
as its argument and applies it in patches. Mathematically, this is [WwallP′WwindFP]d. It is
assumed that the input and output sizes for the operator oper are equal.

module patching { # Apply existing operator in all patches

use patch

use mkwallwt

contains

subroutine patchingn(oper, modl, data, npatch, nwall, nwind, windwt) {

interface {

integer function oper(adj, add, modl, data) {

logical, intent (in) :: adj, add

real, dimension(:) :: modl, data

}

}

real, dimension(:), intent(in) :: windwt, modl

real, dimension(:), intent(out) :: data

integer, dimension(:), pointer :: npatch, nwall, nwind

real, dimension(size(modl)) :: wallwt

real, dimension(size(windwt)) :: winmodl, windata

integer :: i, stat1, stat2

data = 0.

call patch_init(npatch, nwall, nwind)

do i = 1, product(npatch) {

stat1 = patch_lop(.false., .false., modl, winmodl)

stat2 = oper(.false., .false., winmodl, windata)

stat1 = patch_lop(.true. , .true. , data, windwt * windata)

call patch_close ()

}

call wallwtn(npatch, nwall, nwind, windwt, wallwt); data = data * wallwt

}

}

9.1.2 2-D filtering in patches

A way to do time- and space-variable filtering is to do invariant filtering within each patch.
Typically, we apply a filter, say Fp, in each patch. The composite operator, filtering in patches,

248 CHAPTER 9. NONSTATIONARITY: PATCHING

F̃, is given by

d̃ = [WwallP′WwindFpP] d = F̃ d (9.2)

I built a triangular weighting routine tentn() that tapers from the center of the patch of the
filter’s outputs towards the edges. Accomplishing this weighting is complicated by (1) the
constraint that the filter must not move off the edge of the input patch and (2) the alignment
of the input and the output. The layout for prediction-error filters is shown in Figure 9.4.

Figure 9.4: Domain of inputs and out-
puts of a two-dimensional prediction-
error filter. pch-rabdomain [NR]

Output

Input

Figure 9.5: Placement of tent-like
weighting function in the space of fil-
ter inputs and outputs. pch-rabtent
[NR]

Tent

We need a weighting function that vanishes where the filter has no outputs. The amplitude of
the weighting function is not very important because we have learned how to put signals back
together properly for arbitrary weighting functions. We can use any pyramidal or tent-like
shape that drops to zero outside the domain of the filter output. The job is done by subroutine
tentn(). A new parameter needed by tentn is a, the coordinate of the beginning of the tent.

module tent { # triangle tent weights in N dimensions

use cartesian

contains

subroutine tentn (nwind, center, a, windwt) {

integer, dimension (:), intent (in) :: nwind, center, a

real, dimension (:), intent (out) :: windwt

integer, dimension(size(nwind)) :: start, end, x

real, dimension(size(nwind)) :: mid, wid

integer :: i

start= 1+a-center; end= nwind-center+1 # a is beginning of tent

mid= (end+start)/2.; wid= (end-start+1.)/2.

do i = 1, size(windwt) {

call line2cart(nwind, i, x)

if(all(x >= start) .and. all(x <= end))

windwt(i) = product(max(0., 1. - abs((x-mid)/wid)))

9.1. PATCHING TECHNOLOGY 249

else

windwt(i) = 0.

}

}

}

In applications where triangle weights are needed on the inputs (or where we can work
on a patch without having interference with edges), we can get “triangle tent” weights from
tentn() if we set filter dimensions and lags to unity, as shown in Figure 9.6.

Figure 9.6: Window weights from
tentn() with nwind=(61,19),

center=(31,1), a=(1,1) .
pch-windwt90 [ER]

Triangle weighting functions can sum to a constant if the spacing is such that the midpoint
of one triangle is at the beginning of the next. I imagined in two dimensions that something
similar would happen with shapes like Egyptian pyramids of Cheops, 2− |x − y|+ |x + y|.
Instead, the equation (1−|x|)(1−|y|) which has the tent-like shape shown in Figure 9.6 adds
up to the constant flat top shown in Figure 9.7. (To add interest to Figure 9.7, I separated the
windows by a little more than the precise matching distance.) In practice we may chose win-
dow shapes and overlaps for reasons other than the constancy of the sum of weights, because
mkwallwt on page 246 accounts for that.

Figure 9.7: (Inverse) wall weights
with n1=100, w1=61, k1=2, n2=30,

w2=19, k2=2 pch-wallwt90 [ER]

Finally is an example of filtering a plane of uniform constants with an impulse function.
The impulse function is surrounded by zeros, so the filter output patches are smaller than the
input patches back in Figure 9.3. Here in Figure 9.8, both axes need more window density.

Figure 9.8: Filtering in patches with
the same parameters as in Figures 9.2
and 9.3. Additionally, the filter
parameters are a1=11 a2=5 lag1=6

lag2=1 . Thus, windows are centered
on the 1-axis and pushed back out the
2-axis. pch-cinloip90 [ER]

250 CHAPTER 9. NONSTATIONARITY: PATCHING

9.1.3 Designing a separate filter for each patch

Recall the prediction-error filter subroutine find_pef() on page 178. Given a data plane, this
subroutine finds a filter that tends to whiten the spectrum of that data plane. The output is
white residual. Now suppose we have a data plane where the dip spectrum is changing from
place to place. Here it is natural to apply subroutine find_pef() in local patches. This is done
by subroutine find_lopef(). The output of this subroutine is an array of helix-type filters,
which can be used, for example, in a local convolution operator loconvol on the current page.

module lopef { # Local PEF estimation in patches.

use patch # Estimate a vector of filters, one for each patch.

use misinput

use pef

contains

subroutine find_lopef(wall, aa, npatch, nwall, nwind, mask) {

optional :: mask

integer, dimension(:), pointer :: npatch, nwall, nwind

real, dimension(:), intent(in) :: wall, mask

type(filter), dimension(:) :: aa

real, dimension(:), pointer :: windata, winmask

integer :: i, stat

allocate(windata(product(nwind))) # a patch

if(present(mask)) allocate(winmask(product(nwind))) # missing inputs

call patch_init(npatch, nwall, nwind)

do i = 1, product(npatch) { # do all patches

stat = patch_lop(.false., .false., wall, windata) # get a patch

if(present(mask)) {

stat = patch_lop(.false., .false., mask, winmask)

call find_mask((winmask /= 0.), aa (i)) # missing data

}

if(count(.not.aa(i)%mis) > size(aa(i)%lag)) # enuf eqns?

call find_pef(windata, aa(i), niter=size(aa(i)%lag)) # find PEF

else if(i > 1)

aa(i)%flt = aa(i-1)%flt # use last PEF

call patch_close()

}

deallocate(windata)

if(present(mask)) deallocate(winmask)

}

}

if(size(aa(i)%mis) - count(aa(i)%mis) > size(aa(i)%lag)) # enuf eqns?

We notice that when a patch has fewer regression equations than the filter has coefficients,
then the filter is taken to be that of the previous patch.

successive invocations apply successive filters from a vector.

(will fail a dot product test? Oft used with patching.)

module loconvol {

use helicon

integer, private :: i

type(filter), dimension(:), pointer :: aa

9.2. STEEP-DIP DECON 251

#% _init(aa)

i = 0

#% _lop(xx, yy)

integer stat1; i = i + 1

call helicon_init(aa(i))

stat1 = helicon_lop(adj, .false., xx, yy)

}

9.1.4 Triangular patches

I have been running patching code for several years and my first general comment is that
realistic applications often call for patches of different sizes and different shapes. (Tutorial,
non-interactive Fortran code is poorly suited to this need.) Raw seismic data in particular
seems more suited to triangular shapes. It is worth noting that the basic concepts in this chapter
have ready extension to other shapes. For example, a rectangular shape could be duplicated
into two identical patches; then data in one could be zeroed above the diagonal and in the
other below; you would have to allow, of course, for overlap the size of the filter. Module pef

on page 178 automatically ignores the zeroed portion of the triangle, and it is irrelevant what
mis2() on page 149 does with a zeroed portion of data, if a triangular footprint of weights is
designed to ignore its output.

EXERCISES:

1 Code the linear operator WwallP′WwindP including its adjoint.

2 Smoothing program. Some familiar operations can be seen in a new light when done in
patches. Patch the data. In each patch, find the mean value. Replace each value by the
mean value. Reconstruct the wall.

3 Smoothing while filling missing data. This is like smoothing, but you set window
weights to zero where there is no data. Because there will be a different set of weights in
each window, you will need to make a simple generalization to mkwallwt on page 246.

4 Gain control. Divide the data into patches. Compute the square root of the sum of the
squares of all the data in each patch. Divide all values in that patch by this amount.
Reassemble patches.

9.2 STEEP-DIP DECON

Normally, when an autoregression filter (PEF) predicts a value at a point it uses values at earlier
points. In practice, a gap may also be set between the predicted value and the earlier values.
What is not normally done is to supplement the fitting signals on nearby traces. That is what
we do here. We allow the prediction of a signal to include nearby signals at earlier times. The
times accepted in the goal are inside a triangle of velocity less than about the water velocity.

252 CHAPTER 9. NONSTATIONARITY: PATCHING

The new information allowed in the prediction is extremely valuable for water-velocity events.
Wavefronts are especially predictable when we can view them along the wavefront (compared
to perpendicular or at some other angle from the wavefront). It is even better on land, where
noises move more slowly at irregular velocities, and are more likely to be aliased.

Using lopef on page 250, the overall process proceeds independently in each of many
overlapping windows. The most important practical aspect is the filter masks, described next.

9.2.1 Dip rejecting known-velocity waves

Consider the two-dimensional filter

+1
−1 0 −1
+1

(9.3)

When this this filter is applied to a field profile with 4 ms time sampling and 6 m trace spacing,
it should perfectly extinguish 1.5 km/s water-velocity noises. Likewise, the filter

+1
0
0

−1 0 −1
0
0
+1

(9.4)

should perfectly extinguish water noise when the trace spacing is 18 m. Such noise is, of
course, spatially aliased for all temporal frequencies above 1/3 of Nyquist, but that does
not matter. The filter extinguishes them perfectly anyway. Inevitably, the filter cannot both
extinguish the noise and leave the signal untouched where the alias of one is equal to the
other. So we expect the signal to be altered where it matches aliased noise. This simple filter
does worse than that. On horizontal layers, for example, signal wavelets become filtered by
(1,0,0,−2,0,0,1). If the noise is overwhelming, this signal distortion is a small price to pay
for eliminating it. If the noise is tiny, however, the distortion is unforgivable. In the real world,
data-adaptive deconvolution is usually a good compromise.

9.2. STEEP-DIP DECON 253

The two-dimensional deconvolutions filters we explore here look like this:

x x x x x x x x x
x x x x x x x x x
. x x x x x x x .
. x x x x x x x .
. x x x x x x x .
. . x x x x x . .
. . x x x x x . .
. . x x x x x . .
. . . x x x . . .
. . . x x x . . .
. . . x x x . . .
.
.
.
. . . . 1

(9.5)

where each . denotes a zero and each x denotes a (different) adjustable filter coefficient that is
chosen to minimize the power out.

You can easily imagine variations on this shape, such as a diamond instead of a triangle. I
invite you to experiment with the various shapes that suggest themselves.

9.2.2 Tests of steep-dip decon on field data

Low-velocity noises on shot records are often not fully suppressed by stacking because the
noises are spatially aliased. Routine field arrays are not perfect and the noise is often extremely
strong. An interesting, recently-arrived data set worth testing is shown in Figure 9.9.

I scanned the forty Yilmaz and Cumro shot profiles for strong low-velocity noises and I
selected six examples. To each I applied an AGC that is a slow function of time and space
(triangle smoothing windows with triangle half-widths of 200 time points and 4 channels).
Because my process simultaneously does both low-velocity rejection and deconvolution, I
prepared more traditional 1-D deconvolutions for comparison. This is done in windows of
250 time points and 25 channels, the same filter being used for each of the 25 channels in the
window. In practice, of course, considerably more thought would be given to optimal window
sizes as a function of the regional nature of the data. The windows were overlapped by about
50%. The same windows are used on the steep-dip deconvolution.

It turned out to be much easier than expected and on the first try I got good results on all all
six field profiles tested. I have not yet tweaked the many adjustable parameters. As you inspect
these deconvolved profiles from different areas of the world with different recording methods,
land and marine, think about how the stacks should be improved by the deconvolution. Stan-
ford Exploration Project report 77 (SEP-77) shows the full suite of results. Figure 9.10 is a
sample of them.

254 CHAPTER 9. NONSTATIONARITY: PATCHING

Figure 9.9: Gravel plain ground roll (Middle East) Worth testing. pch-gravel2D [ER]

Unexpectedly, results showed that 1-D deconvolution also suppresses low-velocity noises.
An explanation can be that these noises are often either low-frequency or quasimonochromatic.

As a minor matter, fundamentally, my code cannot work ideally along the side boundaries
because there is no output (so I replaced it by the variance scaled input). With a little extra
coding, better outputs could be produced along the sides if we used spatially one-sided filters
like

x x x x x
. x x x x
. x x x x
. . x x x
. . x x x
. . . x x
. . . x x
.
.
. . . . 1

(9.6)

These would be applied on one side of the shot and the opposite orientation would be applied
on the other side. With many kinds of data sets, such as off-end marine recording in which a
ship tows a hydrophone streamer, the above filter might be better in the interior too.

9.2. STEEP-DIP DECON 255

Figure 9.10: Top is a North African vibrator shot profile (Y&C #10) after AGC. Middle is
gapped 1-D decon. Bottom is steep-dip decon. pch-wz.1090 [ER,M]

256 CHAPTER 9. NONSTATIONARITY: PATCHING

9.2.3 Are field arrays really needed?

Field arrays cancel random noise but their main function, I believe, is to cancel low-velocity
coherent noises, something we now see is handled effectively by steep-dip deconvolution.
While I do not advocate abandoning field arrays, it is pleasing to notice that with the arrival of
steep-dip deconvolution, we are no longer so dependent on field arrays and perhaps coherent
noises can be controlled where field arrays are impractical, as in certain 3-D geometries. A
recently arrived 3-D shot profile from the sand dunes in the Middle East is Figure 9.11. The
strong hyperbolas are ground roll seen in a line that does not include the shot. The open
question here is, how should we formulate the problem of ground-roll removal in 3-D?

Figure 9.11: Sand dunes. One shot, six parallel receiver lines. pch-dune3D [ER,M]

9.2.4 Which coefficients are really needed?

Steep-dip decon is a heavy consumer of computer time. Many small optimizations could be
done, but more importantly, I feel there are some deeper issues that warrant further investi-
gation. The first question is, how many filter coefficients should there be and where should
they be? We would like to keep the number of nonzero filter coefficients to a minimum be-
cause it would speed the computation, but more importantly I fear the filter output might be
defective in some insidious way (perhaps missing primaries) when too many filter coefficients
are used. Perhaps if 1-D decon were done sequentially with steep-dip decon the number of

9.3. INVERSION AND NOISE REMOVAL 257

free parameters (and hence the amount of computer time) could be dropped even further. I
looked at some of the filters and they scatter wildly with the Nyquist frequency (particularly
those coefficients on the trace with the “1” constraint). This suggests using a damping term on
the filter coefficients, after which perhaps the magnitude of a filter coefficient will be a better
measure of whether this practice is really helpful. Also, it would, of course, be fun to get some
complete data sets (rather than a single shot profile) to see the difference in the final stack.

9.3 INVERSION AND NOISE REMOVAL

Here we relate the basic theoretical statement of geophysical inverse theory to the basic theo-
retical statement of separation of signals from noises.

A common form of linearized geophysical inverse theory is

0 ≈ W(Lm−d) (9.7)
0 ≈ εAm (9.8)

We choose the operator L = I to be an identity and we rename the model m to be signal s.
Define noise by the decomposition of data into signal plus noise, so n= d− s. Finally, let us
rename the weighting (and filtering) operations W= N on the noise and A= S on the signal.
Thus the usual model fitting becomes a fitting for signal-noise separation:

0 ≈ N(−n)= N(s−d) (9.9)
0 ≈ εSs (9.10)

9.4 SIGNAL-NOISE DECOMPOSITION BY DIP

Choose noise n to be energy that has no spatial correlation and signal s to be energy with
spatial correlation consistent with one, two, or possibly a few plane-wave segments. (Another
view of noise is that a huge number of plane waves is required to define the wavefield; in
other words, with Fourier analysis you can make anything, signal or noise.) We know that a
first-order differential equation can absorb (kill) a single plane wave, a second-order equation
can absorb one or two plane waves, etc. In practice, we will choose the order of the wavefield
and minimize power to absorb all we can, and call that the signal. S is the operator that
absorbs (by prediction error) the plane waves and N absorbs noises and ε > 0 is a small scalar
to be chosen. The difference between S and N is the spatial order of the filters. Because we
regard the noise as spatially uncorrelated, N has coefficients only on the time axis. Coefficients
for S are distributed over time and space. They have one space level, plus another level for
each plane-wave segment slope that we deem to be locally present. In the examples here the
number of slopes is taken to be two. Where a data field seems to require more than two slopes,
it usually means the “patch” could be made smaller.

It would be nice if we could forget about the goal (9.10) but without it the goal (9.9), would
simply set the signal s equal to the data d. Choosing the value of ε will determine in some

258 CHAPTER 9. NONSTATIONARITY: PATCHING

way the amount of data energy partitioned into each. The last thing we will do is choose the
value of ε, and if we do not find a theory for it, we will experiment.

The operators S and N can be thought of as “leveling” operators. The method of least-
squares sees mainly big things, and spectral zeros in S and N tend to cancel spectral lines and
plane waves in s and n. (Here we assume that power levels remain fairly level in time. Were
power levels to fluctuate in time, the operators S and N should be designed to level them out
too.)

None of this is new or exciting in one dimension, but I find it exciting in more dimensions.
In seismology, quasisinusoidal signals and noises are quite rare, whereas local plane waves
are abundant. Just as a short one-dimensional filter can absorb a sinusoid of any frequency, a
compact two-dimensional filter can absorb a wavefront of any dip.

To review basic concepts, suppose we are in the one-dimensional frequency domain. Then
the solution to the fitting goals (9.10) and (9.9) amounts to minimizing a quadratic form by
setting to zero its derivative, say

0 =
∂

∂s′
(

(s′−d′)N′N(s−d)+ ε2s′S′Ss
)

(9.11)

which gives the answer

s =
(

N′N
N′N + ε2S′S

)

d (9.12)

n = d− s =
(

ε2S′S
N′N + ε2S′S

)

d (9.13)

To make this really concrete, consider its meaning in one dimension, where signal is white
S′S= 1 and noise has the frequency ω0, which is killable with the multiplier N′N= (ω−ω0)2.
Now we recognize that equation (9.12) is a notch filter and equation (9.13) is a narrow-band
filter.

The analytic solutions in equations (9.12) and (9.13) are valid in 2-D Fourier space or dip
space too. I prefer to compute them in the time and space domain to give me tighter control
on window boundaries, but the Fourier solutions give insight and offer a computational speed
advantage.

Let us express the fitting goal in the form needed in computation.
[

0
0

]

≈
[

N
εS

]

s +
[

−Nd
0

]

(9.14)

module signoi {

use helicon

use polydiv

use solver_prc_mod

use cgstep_mod

integer, private :: i

9.4. SIGNAL-NOISE DECOMPOSITION BY DIP 259

integer :: niter, nd

real :: eps

type(filter), dimension(:), pointer :: nn, ss

real, dimension (nd), allocatable :: dd

#% _init (nn, ss, niter, nd, eps)

i = 0

#% _lop (data, sign)

integer stat1; i = i + 1

call helicon_init (nn (i))

call polydiv_init (nd, ss (i))

stat1 = helicon_lop (.false., .false., data, dd)

call solver_prc(m=sign, d=dd, Fop=helicon_lop, stepper=cgstep,

niter=niter, Sop=polydiv_lop, nSop=nd, eps=eps)

call cgstep_close()

#% _close

call polydiv_close()

}

As with the missing-data subroutines, the potential number of iterations is large, because the
dimensionality of the space of unknowns is much larger than the number of iterations we
would find acceptable. Thus, sometimes changing the number of iterations niter can create a
larger change than changing epsilon. Experience shows that helix preconditioning saves the
day.

9.4.1 Signal/noise decomposition examples

Figure 9.12 demonstrates the signal/noise decomposition concept on synthetic data. The signal
and noise have similar frequency spectra but different dip spectra.

Figure 9.12: The input signal is on the left. Next is that signal with noise added. Next, for my
favorite value of epsilon=1., is the estimated signal and the estimated noise. pch-signoi90
[ER]

Before I discovered helix preconditioning, Ray Abma found that different results were
obtained when the fitting goal was cast in terms of n instead of s. Theoretically it should not

260 CHAPTER 9. NONSTATIONARITY: PATCHING

make any difference. Now I believe that with preconditioning, or even without it, if there are
enough iterations, the solution should be independent of whether the fitting goal is cast with
either n or s.

Figure 9.13 shows the result of experimenting with the choice of ε. As expected, increasing
ε weakens s and increases n. When ε is too small, the noise is small and the signal is almost
the original data. When ε is too large, the signal is small and coherent events are pushed into
the noise. (Figure 9.13 rescales both signal and noise images for the clearest display.)

Figure 9.13: Left is an estimated signal-noise pair where epsilon=4 has improved the appear-
ance of the estimated signal but some coherent events have been pushed into the noise. Right
is a signal-noise pair where epsilon=.25, has improved the appearance of the estimated noise
but the estimated signal looks no better than original data. pch-signeps90 [ER]

Notice that the leveling operators S and N were both estimated from the original signal
and noise mixture d= s+n shown in Figure 9.12. Presumably we could do even better if we
were to reestimate S and N from the estimates s and n in Figure 9.13.

9.4.2 Spitz for variable covariances

Since signal and noise are uncorrelated, the spectrum of data is the spectrum of the signal plus
that of the noise. An equation for this idea is

σ 2
d = σ 2

s + σ 2
n (9.15)

This says resonances in the signal and resonances in the noise will both be found in the data.
When we are given σ 2

d and σ 2
n it seems a simple matter to subtract to get σ 2

s . Actually it can
be very tricky. We are never given σ 2

d and σ 2
n ; we must estimate them. Further, they can be a

function of frequency, wave number, or dip, and these can be changing during measurements.
We could easily find ourselves with a negative estimate for σ 2

s which would ruin any attempt
to segregate signal from noise. An idea of Simon Spitz can help here.

9.4. SIGNAL-NOISE DECOMPOSITION BY DIP 261

Let us reexpress equation (9.15) with prediction-error filters.

1
Ād Ad

=
1

Ās As
+

1
Ān An

=
Ās As + Ān An

(Ās As)(Ān An)
(9.16)

Inverting

Ād Ad =
(Ās As) (Ān An)
Ās As + Ān An

(9.17)

The essential feature of a PEF is its zeros. Where a PEF approaches zero, its inverse is large
and resonating. When we are concerned with the zeros of a mathematical function we tend to
focus on numerators and ignore denominators. The zeros in Ās As compound with the zeros
in Ān An to make the zeros in Ād Ad . This motivates the “Spitz Approximation.”

Ād Ad = (Ās As) (Ān An) (9.18)

It usually happens that we can find a patch of data where no signal is present. That’s a good
place to estimate the noise PEF An . It is usually much harder to find a patch of data where no
noise is present. This motivates the Spitz approximation which by saying Ad = As An tells us
that the hard-to-estimate As is the ratio As = Ad/An of two easy-to-estimate PEFs.

It would be computationally convenient if we had As expressed not as a ratio. For this,
form the signal u= And by applying the noise PEF An to the data d. The spectral relation is

σ 2
u = σ 2

d /σ 2
n (9.19)

Inverting this expression and using the Spitz approximation we see that a PEF estimate on u
is the required As in numerator form because

Au = Ad/An = As (9.20)

9.4.3 Noise removal on Shearer’s data

Professor Peter Shearer1 gathered the earthquakes from the IDA network, an array of about
25 widely distributed gravimeters, donated by Cecil Green, and Shearer selected most of the
shallow-depth earthquakes of magnitude greater than about 6 over the 1981-91 time interval,
and sorted them by epicentral distance into bins 1◦ wide and stacked them. He generously
shared his edited data with me and I have been restacking it, compensating for amplitude in
various ways, and planning time and filtering compensations.

Figure 9.14 shows a test of noise subtraction by multidip narrow-pass filtering on the
Shearer-IDA stack. As with prediction there is a general reduction of the noise. Unlike with
prediction, weak events are preserved and noise is subtracted from them too.

1I received the data for this stack from Peter Shearer at the Cecil and Ida Green Institute of Geophysics
and Planetary Physics of the Scripps Oceanographic Institute. I also received his permission to redistribute
it to friends and colleagues. Should you have occasion to copy it please reference (Shearer, 1991a) (Shearer,
1991b) it properly. Examples of earlier versions of these stacks are found in the references. Professor Shearer
may be willing to supply newer and better stacks. His electronic mail address is shearer@mahi.ucsd.edu.

262 CHAPTER 9. NONSTATIONARITY: PATCHING

Figure 9.14: Stack of Shearer’s IDA data (left). Multidip filtered (right). It is pleasing that the
noise is reduced while weak events are preserved. pch-sneps+290 [CR,M]

9.4. SIGNAL-NOISE DECOMPOSITION BY DIP 263

Besides the difference in theory, the separation filters are much smaller because their size is
determined by the concept that “two dips will fit anything locally” (a2=3), versus the prediction
filters “needing a sizeable window to do statistical averaging.” The same aspect ratio a1/a2 is
kept and the page is now divided into 11 vertical patches and 24 horizontal patches (whereas
previously the page was divided in 3× 4 patches). In both cases the patches overlap about
50%. In both cases I chose to have about ten times as many equations as unknowns on each
axis in the estimation. The ten degrees of freedom could be distributed differently along the
two axes, but I saw no reason to do so.

9.4.4 The human eye as a dip filter

Although the filter seems to be performing as anticipated, no new events are apparent. I believe
the reason that we see no new events is that the competition is too tough. We are competing
with the human eye, which through aeons of survival has become is a highly skilled filter.
Does this mean that there is no need for filter theory and filter subroutines because the eye can
do it equally well? It would seem so. Why then pursue the subject matter of this book?

The answer is 3-D. The human eye is not a perfect filter. It has a limited (though impres-
sive) dynamic range. A nonlinear display (such as wiggle traces) can prevent it from averaging.
The eye is particularly good at dip filtering, because the paper can be looked at from a range
of grazing angles and averaging window sizes miraculously adjust to the circumstances. The
eye can be overwhelmed by too much data. The real problem with the human eye is that the
retina is only two-dimensional. The world contains many three-dimensional data volumes. I
don’t mean the simple kind of 3-D where the contents of the room are nicely mapped onto
your 2-D retina. I mean the kind of 3-D found inside a bowl of soup or inside a rock. A rock
can be sliced and sliced and sliced again and each slice is a picture. The totality of these slices
is a movie. The eye has a limited ability to deal with movies by optical persistence, an averag-
ing of all pictures shown in about 1/10 second interval. Further, the eye can follow a moving
object and perform the same averaging. I have learned, however, that the eye really cannot
follow two objects at two different speeds and average them both over time. Now think of the
third dimension in Figure 9.14. It is the dimension that I summed over to make the figure. It
is the 1◦ range bin. If we were viewing the many earthquakes in each bin, we would no longer
be able to see the out-of-plane information which is the in-plane information in Figure 9.14.

To view genuinely 3-D information we must see a movie, or we must compress the 3-D to
2-D. There are only a small number of ways to compress 3-D to 2-D. One is to select planes
from the volume. One is to sum the volume over one of its axes, and the other is a compromise,
a filtering over the axis we wish to abandon before subsampling on it. That filtering is a local
smoothing. If the local smoothing has motion (out of plane dip) of various velocities (various
dips), then the desired process of smoothing the out of plane direction is what we did in the
in-plane direction in Figure 9.14. But Figure 9.14 amounts to more than that. It amounts to a
kind of simultaneous smoothing in the two most coherent directions whereas in 3-D your eye
can smooth in only one direction when you turn your head along with the motion.

264 CHAPTER 9. NONSTATIONARITY: PATCHING

If the purpose of data processing is to collapse 3-D data volumes to 2-D where they are
comprehensible to the human eye, then perhaps data-slope adaptive, low-pass filtering in
the out-of-plane direction is the best process we can invent.

My purpose in filtering the earthquake stacks is to form a guiding “pilot trace” to the
analysis of the traces within the bin. Within each bin, each trace needs small time shifts and
perhaps a small temporal filter to best compensate it to . . . to what? to the pilot trace, which
in these figures was simply a stack of traces in the bin. Now that we have filtered in the range
direction, however, the next stack can be made with a better quality pilot.

9.5 SPACE-VARIABLE DECONVOLUTION

Filters sometimes change with time and space. We sometimes observe signals whose spectrum
changes with position. A filter that changes with position is called nonstationary. We need an
extension of our usual convolution operator hconest on page 174. Conceptually, little needs
to be changed besides changing aa(ia) to aa(ia,iy). But there is a practical problem. Fomel
and I have made the decision to clutter up the code somewhat to save a great deal of memory.
This should be important to people interested in solving multidimensional problems with big
data sets.

Normally, the number of filter coefficients is many fewer than the number of data points,
but here we have very many more. Indeed, there are na times more. Variable filters require na

times more memory than the data itself. To make the nonstationary helix code more practical,
we now require the filters to be constant in patches. The data type for nonstationary filters
(which are constant in patches) is introduced in module nhelix, which is a simple modification
of module helix on page 103.

module nhelix { # Define nonstationary filter type

use helix

type nfilter { # nd is data length.

logical, dimension(:), pointer :: mis # (nd) boundary conditions

integer, dimension(:), pointer :: pch # (nd) patches

type(filter), dimension(:), pointer :: hlx # (np) filters

}

contains

subroutine nallocate(aa, nh, pch) { # allocate a filter

type(nfilter) :: aa

integer, dimension(:), intent(in) :: nh, pch

integer :: ip, np, nd

np = size(nh); allocate(aa%hlx(np))

do ip = 1, np

call allocatehelix(aa%hlx(ip), nh(ip))

nd = size(pch); allocate(aa%pch(nd))

aa%pch = pch

nullify(aa%mis) # set null pointer for mis.

}

subroutine ndeallocate(aa) { # destroy a filter

type(nfilter) :: aa

9.5. SPACE-VARIABLE DECONVOLUTION 265

integer :: ip

do ip = 1, size(aa%hlx)

call deallocatehelix(aa%hlx(ip))

deallocate(aa%hlx, aa%pch)

if(associated(aa%mis)) # if logicals were allocated

deallocate(aa%mis) # free them

}

}

What is new is the integer valued vector pch(nd) the size of the one-dimensional (helix) output
data space. Every filter output point is to be assigned to a patch. All filters of a given patch
number will be the same filter. Nonstationary helixes are created with createnhelixmod,
which is a simple modification of module createhelixmod on page 126.

module createnhelixmod { # Create non-stationary helix filter lags and mis

use createhelixmod

use nhelix

use nbound

contains

function createnhelix(nd, center, gap, na, pch) result (nsaa) {

type(nfilter) :: nsaa # needed by nhelicon

integer, dimension(:), intent(in) :: nd, na # data and filter axes

integer, dimension(:), intent(in) :: center # normally (na1/2,na2/2,...,1)

integer, dimension(:), intent(in) :: gap # normally (0, 0, 0,...,0)

integer, dimension(:), intent(in) :: pch # (prod(nd)) patching

type(filter) :: aa

integer :: n123, np, ip

integer, dimension(:), allocatable :: nh

aa = createhelix(nd, center, gap, na)

n123 = product(nd); np = maxval(pch)

allocate (nh (np)); nh = size (aa%lag)

call nallocate(nsaa, nh, pch)

do ip = 1, np

nsaa%hlx(ip)%lag = aa%lag

call deallocatehelix (aa)

call nboundn(1, nd, na, nsaa)

}

}

Notice that the user must define the pch(product(nd)) vector before creating a nonstation-
ary helix. For a simple 1-D time-variable filter, presumably pch would be something like
(1,1,2,2,3,3, · · ·). For multidimensional patching we need to think a little more.

Finally, we are ready for the convolution operator. The operator nhconest on the current
page allows for a different filter in each patch.

module nhconest { # Nonstationary convolution, adjoint is the filter.

use nhelix

real, dimension(:), pointer :: x

type(nfilter) :: aa

integer :: nhmax

integer, private :: np

266 CHAPTER 9. NONSTATIONARITY: PATCHING

#% _init(x, aa, nhmax)

np = size(aa%hlx)

#% _lop(a(nhmax, np), y(:))

integer :: ia, ix, iy, ip

integer, dimension(:), pointer :: lag

do iy = 1, size(y) { if(aa%mis(iy)) cycle

ip = aa%pch(iy); lag => aa%hlx(ip)%lag

do ia = 1, size(lag) {

ix = iy - lag(ia); if(ix < 1) cycle

if(adj) a(ia, ip) += y(iy) * x(ix)

else y(iy) += a(ia, ip) * x(ix)

}

}

}

A filter output y(iy) has its filter from the patch ip=aa%pch(iy). The line t=a(ip,:) extracts
the filter for the ipth patch. If you are confused (as I am) about the difference between aa and
a, maybe now is the time to have a look at beyond Loptran to the Fortran version.2

Because of the massive increase in the number of filter coefficients, allowing these many
filters takes us from overdetermined to very undetermined. We can estimate all these filter
coefficients by the usual deconvolution fitting goal (6.18)

0 ≈ r = YKa+ r0 (9.21)

but we need to supplement it with some damping goals, say

0 ≈ YKa+ r0
0 ≈ ε Ra

(9.22)

where R is a roughening operator to be chosen.

Experience with missing data in Chapter 3 shows that when the roughening operator R is
a differential operator, the number of iterations can be large. We can speed the calculation
immensely by “preconditioning”. Define a new variable m by a = R−1m and insert it into
(9.22) to get the equivalent preconditioned system of goals.

0 ≈ YKR−1m (9.23)
0 ≈ ε m (9.24)

The fitting (9.23) uses the operator YKR−1. For Y we can use subroutine nhconest()

on the preceding page; for the smoothing operator R−1 we can use nonstationary polynomial
division with operator npolydiv():

module npolydiv { # Helix polynomial division

use nhelix

integer :: nd

type(nfilter) :: aa

2http://sepwww.stanford.edu/sep/prof/gee/Lib/

9.5. SPACE-VARIABLE DECONVOLUTION 267

real, dimension (nd), allocatable :: tt

#% _init (nd, aa)

#% _lop (xx, yy)

integer :: ia, ix, iy, ip

integer, dimension(:), pointer :: lag

real, dimension(:), pointer :: flt

tt = 0.

if(adj) {

tt = yy

do iy= nd, 1, -1 { ip = aa%pch(iy)

lag => aa%hlx(ip)%lag; flt => aa%hlx(ip)%flt

do ia = 1, size(lag) {

ix = iy - lag(ia); if(ix < 1) cycle

tt(ix) -= flt(ia) * tt(iy)

}

}

xx += tt

} else {

tt = xx

do iy= 1, nd { ip = aa%pch(iy)

lag => aa%hlx(ip)%lag; flt => aa%hlx(ip)%flt

do ia = 1, size(lag) {

ix = iy - lag(ia); if(ix < 1) cycle

tt(iy) -= flt(ia) * tt(ix)

}

}

yy += tt

}

}

Now we have all the pieces we need. As we previously estimated stationary filters with the
module pef on page 178, now we can estimate nonstationary PEFs with the module npef on
this page. The steps are hardly any different.

module npef { # Estimate non-stationary PEF

use nhconest

use npolydiv2

use cgstep_mod

use solver_mod

contains

subroutine find_pef(dd, aa, rr, niter, eps, nh) {

integer, intent(in) :: niter, nh # number of iterations

real, intent(in) :: eps # epsilon

type(nfilter) :: aa # estimated PEF output.

type(nfilter), intent(in) :: rr # roughening filter.

real, dimension(:), pointer :: dd # input data

integer :: ip, ih, np, nr # filter lengths

real, dimension (:), allocatable :: flt # np*na filter coefs

np = size(aa%hlx) # data length

nr = np*nh

allocate(flt(nr))

call nhconest_init(dd, aa, nh)

call npolydiv2_init(nr, rr)

call solver_prec(nhconest_lop, cgstep, x= flt, dat= -dd, niter= niter,

268 CHAPTER 9. NONSTATIONARITY: PATCHING

prec= npolydiv2_lop, nprec= nr, eps= eps)

call cgstep_close()

call npolydiv2_close()

call nhconest_close()

do ip = 1, np

do ih = 1, size(aa%hlx(ip)%lag)

aa%hlx(ip)%flt(ih) = flt((ip-1)*nh + ih)

deallocate(flt)

}

}

Near the end of module npef is a filter reshape from a 1-D array to a 2-D array. If you find it
troublesome that nhconest on page 265 was using the filter during the optimization as already
multidimensional, perhaps again, it is time to examine the Fortran code. The answer is that
there has been a conversion back and forth partially hidden by Loptran.

Figure 9.15 shows a synthetic data example using these programs. As we hope for decon-
volution, events are compressed. The compression is fairly good, even though each event has
a different spectrum. What is especially pleasing is that satisfactory results are obtained in
truly small numbers of iterations (about three). The example is for two free filter coefficients
(1,a1,a2) per output point. The roughening operator R was taken to be (1,−2,1) which was
factored into causal and anticausal finite difference.

Figure 9.15: Time variable deconvolution with two free filter coefficients and a gap of 6.
pch-tvdecon90 [ER]

I hope also to find a test case with field data, but experience in seismology is that spectral
changes are slow, which implies unexciting results. Many interesting examples should exist
in two- and three-dimensional filtering, however, because reflector dip is always changing and
that changes the spatial spectrum.

9.5. SPACE-VARIABLE DECONVOLUTION 269

In multidimensional space, the smoothing filter R−1 can be chosen with interesting direc-
tional properties. Sergey, Bob, Sean and I have joked about this code being the “double helix”
program because there are two multidimensional helixes in it, one the smoothing filter, the
other the deconvolution filter. Unlike the biological helixes, however, these two helixes do not
seem to form a symmetrical pair.

EXERCISES:

1 Is nhconest on page 265 the inverse operator to npolydiv on page 266? Do they com-
mute?

2 Sketch the matrix corresponding to operator nhconest on page 265. HINTS: Do not try to
write all the matrix elements. Instead draw short lines to indicate rows or columns. As a
“warm up” consider a simpler case where one filter is used on the first half of the data and
another filter for the other half. Then upgrade that solution from two to about ten filters.

REFERENCES

Shearer, P. M., 1991a, Constraints on upper mantle discontinuities from observations of long
period reflected and converted phases: J. Geophys. Res., 96, no. B11, 18147–18182.

Shearer, P. M., 1991b, Imaging global body wave phases by stacking long-period seismo-
grams: J. Geophys. Res., 96, no. B12, 20535–20324.

270 CHAPTER 9. NONSTATIONARITY: PATCHING

Chapter 10

Plane waves in three dimensions

In this chapter we seek a deeper understanding of plane waves in three dimensions, where the
examples and theory typically refer to functions of time t and two space coordinates (x , y), or
to 3-D migration images where the t coordinate is depth or traveltime depth. As in Chapter 9,
we need to decompose data volumes into subcubes, shown in Figure 10.1.

Figure 10.1: Left is space of inputs
and outputs. Right is their separation
during analysis. lmn-rayab3D [NR]

In this chapter we will see that the wave model implies the 3-D whitener is not a cube filter
but two planar filters. The wave model allows us to determine the scale factor of a signal, even
where signals fluctuate in strength because of interference. Finally, we examine the local-
monoplane concept that uses the superposition principle to distinguish a sedimentary model
cube from a data cube.

10.1 THE LEVELER: A VOLUME OR TWO PLANES?

In two dimensions, levelers were taken to be PEFs, small rectangular planes of numbers in
which the time axis included enough points to include reasonable stepouts were included and
the space axis contained one level plus another space level, for each plane-wave slope sup-
posed to be present.

We saw that a whitening filter in three dimensions is a small volume with shape defined
by subroutine createhelix(). It might seem natural that the number of points on the x- and
y-axes be related to the number of plane waves present. Instead, I assert that if the volume

271

272 CHAPTER 10. PLANE WAVES IN THREE DIMENSIONS

contains plane waves, we don’t want a volume filter to whiten it; we can use a pair of planar
filters to do so and the order of those filters is the number of planes thought to be simultane-
ously present. I have no firm mathematical proofs, but I offer you some interesting discussions,
examples, and computer tools for you to experiment with. It seems that some applications call
for the volume filter while others call for the two planes. Because two planes of numbers
generally contain many fewer adjustable values than a volume, statistical-estimation reasons
also favor the planes.

What is the lowest-order filter that, when applied to a volume, will destroy one and only
one slope of plane wave?

First we seek the answer to the question, “What is the lowest order filter that will destroy
one and only one plane?” To begin with, we consider that plane to be horizontal so the volume
of numbers is f (t , x , y)= b(t) where b(t) is an arbitrary function of time. One filter that has
zero-valued output (destroys the plane) is ∂x ≡ ∂/∂x . Another is the operator ∂y ≡ ∂/∂y. Still
another is the Laplacian operator which is ∂xx +∂yy ≡ ∂2/∂x2+∂2/∂y2.

The problem with ∂/∂x is that although it destroys the required plane, it also destroys
f (t , x , y)= a(t , y) where a(t , y) is an arbitrary function of (t , y) such as a cylinder with axis
parallel to the x-axis. The operator ∂/∂y has the same problem but with the axes rotated. The
Laplacian operator not only destroys our desired plane, but it also destroys the well known
nonplanar function eax cos(ay), which is just one example of the many other interesting shapes
that constitute solutions to Laplace’s equation.

I remind you of a basic fact: When we set up the fitting goal 0 ≈ Af, the quadratic form
minimized is f′A′Af, which by differentiation with respect to f′ gives us (in a constraint-free
region) A′Af= 0. So, minimizing the volume integral (actually the sum) of the squares of the
components of the gradient implies that Laplace’s equation is satisfied.

In any volume, the lowest-order filter that will destroy level planes and no other wave slope
is a filter that has one input and two outputs. That filter is the gradient, (∂/∂x ,∂/∂y). Both
outputs vanish if and only if the plane has the proper horizontal orientation. Other objects and
functions are not extinguished (except for the non-wave-like function f (t , x , y)= const). It is
annoying that we must deal with two outputs and that will be the topic of further discussion.

A wavefield of tilted parallel planes is f (t , x , y) = g(τ − px x − py y), where g() is an
arbitrary one-dimensional function. The operator that destroys these tilted planes is the two-
component operator (∂x + px∂t , ∂y+ py∂t).

10.1. THE LEVELER: A VOLUME OR TWO PLANES? 273

The operator that destroys a family of dipping planes

f (t , x , y) = g(τ − px x− py y)

is




∂
∂x + px

∂
∂ t

∂
∂y + py

∂
∂ t





10.1.1 PEFs overcome spatial aliasing of difference operators

The problem I found with finite-difference representations of differential operators is that they
are susceptible to spatial aliasing. Even before they encounter spatial aliasing, they are sus-
ceptible to accuracy problems known in finite-difference wave propagation as “frequency dis-
persion.” The aliasing problem can be avoided by the use of spatial prediction operators such
as

· a
· b
1 c
· d
· e

(10.1)

where the vertical axis is time; the horizontal axis is space; and the “·”s are zeros. Another
possibility is the 2-D whitening filter

f a
g b
1 c
· d
· e

(10.2)

Imagine all the coefficients vanished but d =−1 and the given 1. Such filters would annihilate
the appropriately sloping plane wave. Slopes that are not exact integers are also approximately
extinguishable, because the adjustable filter coefficients can interpolate in time. Filters like
(10.2) do the operation ∂x + px∂t , which is a component of the gradient in the plane of the
wavefront, and they include a temporal deconvolution aspect and a spatial coherency aspect.
My experience shows that the operators (10.1) and (10.2) behave significantly differently in
practice, and I am not prepared to fully explain the difference, but it seems to be similar to the
gapping of one-dimensional filters.

You might find it alarming that your teacher is not fully prepared to explain the difference
between a volume and two planes, but please remember that we are talking about the factor-
ization of the volumetric spectrum. Spectral matrices are well known to have structure, but
books on theory typically handle them as simply λI. Anyway, wherever you see an A in a

274 CHAPTER 10. PLANE WAVES IN THREE DIMENSIONS

three-dimensional context, you may wonder whether it should be interpreted as a cubic filter
that takes one volume to another, or as two planar filters that take one volume to two volumes
as shown in Figure 10.2.

Figure 10.2: An inline 2-D PEF and
a crossline 2-D PEF both applied
throughout the volume. To find each
filter, minimize each output power in-
dependently. lmn-rayab3Doper
[NR]

10.1.2 My view of the world

I start from the idea that the four-dimensional world (t , x , y, z) is filled with expanding spher-
ical waves and with quasispherical waves that result from reflection from quasiplanar objects
and refraction through quasihomogeneous materials. We rarely, if ever see in an observa-
tional data cube, an entire expanding spherical wave, but we normally have a two- or three-
dimensional slice with some wavefront curvature. We analyze data subcubes that I call bricks.
In any brick we see only local patches of apparent plane waves. I call them platelets. From the
microview of this brick, the platelets come from the “great random-point-generator in the sky,”
which then somehow convolves the random points with a platelike impulse response. If we
could deconvolve these platelets back to their random source points, there would be nothing
left inside the brick because the energy would have gone outside. We would have destroyed
the energy inside the brick. If the platelets were coin shaped, then the gradient magnitude
would convert each coin to its circular rim. The plate sizes and shapes are all different and
they damp with distance from their centers, as do Gaussian beams. If we observed rays instead
of wavefront platelets then we might think of the world as being filled with noodles, and then.
. . .

How is it possible that in a small brick we can do something realistic about deconvolving
a spheroidal impulse response that is much bigger than the brick? The same way as in one
dimension, where in a small time interval we can estimate the correct deconvolution filter of a
long resonant signal. A three-point filter destroys a sinusoid.

The inverse filter to the expanding spherical wave might be a huge cube. Good approxima-
tions to this inverse at the brick level might be two small planes. Their time extent would be
chosen to encompass the slowest waves, and their spatial extent could be two or three points,
representing the idea that normally we can listen to only one person at a time, occasionally we
can listen to two, and we can never listen to three people talking at the same time.

10.2. WAVE INTERFERENCE AND TRACE SCALING 275

10.2 WAVE INTERFERENCE AND TRACE SCALING

Although neighboring seismometers tend to show equal powers, the energy on one seismome-
ter can differ greatly from that of a neighbor for both theoretical reasons and practical ones.
Should a trace ever be rescaled to give it the same energy as its neighbors? Here we review
the strong theoretical arguments against rescaling. In practice, however, especially on land
where coupling is irregular, scaling seems a necessity. The question is, what can go wrong if
we scale traces to have equal energy, and more basically, where the proper scale factor cannot
be recorded, what should we do to get the best scale factor? A related question is how to
make good measurements of amplitude versus offset. To understand these issues we review
the fundamentals of wave interference.

Theoretically, a scale-factor problem arises because locally, wavefields, not energies, add.
Nodes on standing waves are familiar from theory, but they could give you the wrong idea that
the concept of node is one that applies only with sinusoids. Actually, destructive interference
arises anytime a polarity-reversed waveform bounces back and crosses itself. Figure 10.3
shows two waves of opposite polarity crossing each other. Observe that one seismogram

Figure 10.3: Superposition of
plane waves of opposite polarity.
lmn-super90 [ER]

has a zero-valued signal, while its neighbors have anomalously higher amplitudes and higher
energies than are found far away from the interference. The situation shown in Figure 10.3
does not occur easily in nature. Reflection naturally comes to mind, but usually the reflected
wave crosses the incident wave at a later time and then they don’t extinguish. Approximate
extinguishing occurs rather easily when waves are quasi-monochromatic. We will soon see,
however, that methodologies for finding scales all begin with deconvolution and that eliminates
the monochromatic waves.

276 CHAPTER 10. PLANE WAVES IN THREE DIMENSIONS

10.2.1 Computing the proper scale factor for a seismogram

With data like Figure 10.3, rescaling traces to have equal energy would obviously be wrong.
The question is, “How can we determine the proper scale factor?” As we have seen, a superpo-
sition of N plane waves exactly satisfies an N-th order (in x) difference equation. Given a 2-D
wave field, we can find its PEF by minimizing output power. Then we ask the question, could
rescaling the traces give a lower output power? To answer this, we set up an optimization
goal: Given the leveler (be it a cubic PEF or two planar ones), find the best trace scales. (After
solving this, we could return to re-estimate the leveler, and iterate.) To solve for the scales, we
need a subroutine that scales traces and the only tricky part is that the adjoint should bring us
back to the space of scale factors. This is done by scaletrace

module scaletrace {

integer, private :: n1, n2

real, dimension(:, :), pointer :: data

#% _init(data)

n1 = size(data, 1)

n2 = size(data, 2)

#% _lop(scale(n2), sdata(n1, n2))

integer i1,i2

do i2= 1, n2

do i1= 1, n1

if(adj)

scale(i2) += sdata(i1,i2) * data(i1,i2)

else

sdata(i1,i2) += scale(i2) * data(i1,i2)

}

Notice that to estimate scales, the adjoint forms an inner product of the raw data on the pre-
viously scaled data. Let the operator implemented by scaletrace be denoted by D, which is
mnemonic for “data” and for “diagonal matrix,” and let the vector of scale factors be denoted
by s and the leveler by A. Now we consider the fitting goal 0 ≈ ADs. The trouble with this
fitting goal is that the solution is obviously s = 0. To avoid the trivial solution s = 0, we can
choose from a variety of supplemental fitting goals. One possibility is that for the i -th scale
factor we could add the fitting goal si ≈ 1. Another possibility, perhaps better if some of the
signals have the opposite of the correct polarity, is that the sum of the scales should be approx-
imately unity. I regret that time has not yet allowed me to identify some interesting examples
and work them through.

10.3 LOCAL MONOPLANE ANNIHILATOR

LOMOPLAN (LOcal MOno PLane ANnihilator) is a data-adaptive filter that extinguishes a
local monoplane, but cannot extinguish a superposition of several planes. We presume an ideal
sedimentary model as made of (possibly curved) parallel layers. Because of the superposition
principle, data can be a superposition of several plane waves, but the ideal model should
consist locally of only a single plane. Thus, LOMOPLAN extinguishes an ideal model, but

10.3. LOCAL MONOPLANE ANNIHILATOR 277

not typical data. I conceived of LOMOPLAN as the “ultimate” optimization criterion for
inversion problems in reflection seismology (1992b) but it has not yet demonstrated that it
can attain that lofty goal. Instead, however, working in two dimensions, it is useful in data
interpretation and in data quality inspection.

The main way we estimate parameters in reflection seismology is that we maximize the
coherence of theoretically redundant measurements. Thus, to estimate velocity and statics
shifts, we maximize something like the power in the stacked data. Here I propose another
optimization criterion for estimating model parameters and missing data. An interpreter look-
ing at a migrated section containing two dips in the same place suspects wave superposition
more likely than bedding texture superposition. To minimize the presence of multiple dip-
ping events in the same place, we should use the mono plane annihilator (MOPLAN) filter as
the weighting operator for any fitting goal. Because the filter is intended for use on images
or migrated data, not on data directly, I call it a plane annihilator, not a planewave annihila-
tor. (A time-migration or merely a stack, however, might qualify as an image.) We should
avoid using the word “wavefront” because waves readily satisfy the superposition principle,
whereas images do not, and it is this aspect of images that I advocate and formulate as “prior
information.”

An example of a MOPLAN in two dimensions, (∂x + px∂τ), is explored in Chapter 4 of
PVI (Claerbout, 1992a), where the main goal is to estimate the (τ , x)-variation of px . Another
family of MOPLANs arise from multidimensional prediction-error filtering described earlier
in this book and in PVI, Chapter 8.

Here I hypothesize that a MOPLAN may be a valuable weighting function for many esti-
mation problems in seismology. Perhaps we can estimate statics, interval velocity, and missing
data if we use the principle of minimizing the power out of a LOcal MOno PLane ANnihilator
(LOMOPLAN) on a migrated section. Thus, those embarrassing semicircles that we have seen
for years on our migrated sections may hold one of the keys for unlocking the secrets of statics
and lateral velocity variation. I do not claim that this concept is as powerful as our traditional
methods. I merely claim that we have not yet exploited this concept in a systematic way and
that it might prove useful where traditional methods break.

For an image model of nonoverlapping curved planes, a suitable choice of weighting
function for fitting problems is the local filter that destroys the best fitting local plane.

10.3.1 Mono-plane deconvolution

The coefficients of a 2-D monoplane annihilator filter are defined to be the same as those of
a 2-D PEF of spatial order unity; in other words, those defined by either (10.1) or (10.2).
The filter can be lengthened in time but not in space. The choice of exactly two columns is
a choice to have an analytic form that can exactly destroy a single plane, but cannot destroy
two. Applied to two signals that are statistically independent, the filter (10.2) reduces to the
well-known prediction-error filter in the left column and zeros in the right column. If the filter
coefficients were extended in both directions on t and to the right on x , the two-dimensional

278 CHAPTER 10. PLANE WAVES IN THREE DIMENSIONS

spectrum of the input would be flattened.

10.3.2 Monoplanes in local windows

The earth dip changes rapidly with location. In a small region there is a local dip and dip
bandwidth that determines the best LOMOPLAN (LOcal MOPLAN). To see how to cope
with the edge effects of filtering in a small region, and to see how to patch together these small
regions, recall subroutine patchn() on page 244 and the weighting subroutines that work with
it.

Figure 10.4 shows a synthetic model that illustrates local variation in bedding. Notice dip-
ping bedding, curved bedding, unconformity between them, and a fault in the curved bedding.
Also, notice that the image has its amplitude tapered to zero on the left and right sides. After
local monoplane annihilation (LOMOPLAN), the continuous bedding is essentially gone. The
fault and unconformity remain.

Figure 10.4: Left is a synthetic reflectivity model. Right is the result of local monoplane
annihilation. lmn-sigmoid090 [ER]

The local spatial prediction-error filters contain the essence of a factored form of the
inverse spectrum of the model.

Because the plane waves are local, the illustrations were made with module lopef on page 250.

10.3. LOCAL MONOPLANE ANNIHILATOR 279

10.3.3 Crossing dips

Figure 10.5: Conflicting dips before and after application of a local monoplane annihilator.
Press button for movie. The movie sequence is: 1: data, 2: data after LOMOPLAN, 3: like
previous but windows not overlapping, 4: predicted data lmn-conflict90 [ER]

Figure 10.5 deserves careful study. The input frame is dipping events with amplitudes
slowly changing as they cross the frame. The dip of the events is not commensurate with the
mesh, so we use linear interpolation that accounts for the irregularity along an event. The
output panel tends to be small where there is only a single dip present. Where two dips cross,
they tend to be equal in magnitude. Studying the output more carefully, we notice that of the
two dips, the one that is strongest on the input becomes irregular and noisy on the output,
whereas the other dip tends to remain phase-coherent.

I could rebuild Figure 10.5 to do a better job of suppressing monodip areas if I passed the
image through a lowpass filter, and then designed a gapped deconvolution operator. Instead, I
preferred to show you high-frequency noise in the place of an attenuated wavefront.

The residual of prediction-error deconvolution tends to have a white spectrum in time.
This aspect of deconvolution is somewhat irritating and in practice it requires us to postfilter
for display, to regain continuity of signals. As is well known (PVI, for example), an alternative
to postfiltering is to put a gap in the filter. A gapped filter should work with 2-D filters too, but
it is too early to describe how experimenters will ultimately choose to arrange gaps, if any, in
2-D filters. There are some interesting possibilities. (Inserting a gap also reduces the required
number of CD iterations.)

10.3.4 Tests of 2-D LOMOPLAN on field data

Although the LOMOPLAN concept was developed for geophysical models, not raw data,
initial experience showed that the LOMOPLAN program is effective for quality testing data
and data interpretation.

280 CHAPTER 10. PLANE WAVES IN THREE DIMENSIONS

Some field-data examples are in Figures 10.6 and 10.7. These results are not surprising.
A dominant local plane is removed, and noise or the second-from-strongest local plane is left.
These data sets fit the local plane model so well that subtracting the residual noise from the
data made little improvement. These figures are clearer on a video screen. To facilitate ex-
amination of the residual on Figure 10.6 on paper (which has a lesser dynamic range than
video), I recolored the white residual with a short triangle filter on the time axis. The resid-

Figure 10.6: Data section from the Gulf of Mexico (left) and after LOMOPLAN (right) Press
button for movie. lmn-dgulf90 [ER]

ual in Figure 10.7 is large at the dead trace and wherever the data contains crossing events.
Also, closer examination showed that the strong residual trace near 1.1 km offset is apparently
slightly time-shifted, almost certainly a cable problem, perhaps resulting from a combination
of the stepout and a few dead pickups. Overall, the local-plane residual shows a low-frequency
water-velocity wave seeming to originate from the ship.

10.4 GRADIENT ALONG THE BEDDING PLANE

The LOMOPLAN (LOcal MOnoPLane ANnihilator) filter in three dimensions is a deconvo-
lution filter that takes a volume in and produces two volumes out. The x-output volume results
from a first order prediction-error filter on the x-axis, and the y-output volume is likewise on
the y-axis.

Although I conceived of 2-D LOMOPLAN as the “ultimate” optimization criterion for
inversion problems in reflection seismology of sedimentary sections, it turned out that it was

10.4. GRADIENT ALONG THE BEDDING PLANE 281

Figure 10.7: Portion of Yilmaz and Cumro data set 27 (left) and after LOMOPLAN (right).
Press button for movie. lmn-yc2790 [ER]

more useful in data interpretation and in data-quality inspection. In this study, I sought to
evaluate usefulness with three-dimensional data such as 3-D stacks or migrated volumes, or
2-D prestack data.

In experimenting with 3-D LOMOPLAN, I came upon a conceptual oversimplification,
which although it is not precisely correct, gives a suitable feeling of the meaning of the op-
erator. Imagine that the earth was flat horizontal layers, except for occasional faults. Then,
to find the faults you might invoke the horizontal gradient of the 3-D continuum of data. The
horizontal components of gradient vanish except at a fault, where their relative magnitudes tell
you the orientation of the fault. Instead of using the gradient vector, you could use prediction-
error filters of first order (two components) along x and y directions. 3-D LOMOPLAN is like
this, but the flat horizontal bedding may be dipping or curved. No output is produced (ideally)
except at faults. The 3-D LOMOPLAN is like the gradient along the plane of the bedding. It
is nonzero where the bedding has an intrinsic change.

LOMOPLAN flags the bedding where there is an intrinsic change.

10.4.1 Definition of LOMOPLAN in 3-D

Three-dimensional LOMOPLAN is somewhat like multiple passes of two-dimensional LO-
MOPLAN; i.e., we first LOMOPLAN the (t , x)-plane for each y, and then we LOMOPLAN

282 CHAPTER 10. PLANE WAVES IN THREE DIMENSIONS

the (t , y)-plane for each x . Actually, 3-D LOMOPLAN is a little more complicated than this.
Each LOMOPLAN filter is designed on all the data in a small (t , x , y) volume.

To put the LOcal in LOMOPLAN we use subcubes (bricks). Recall that we can do 2-D
LOMOPLAN with the prediction-error subroutine find_lopef() on page 250. To do 3-D
LOMOPLAN we need to make two calls to subroutine find_lopef(), one for the x-axis in-
line planar filters and one for the y-axis crossline filters. That is what I will try next time I
install this book on a computer with a bigger memory.

10.4.2 The quarterdome 3-D synthetic (qdome)

Figure 10.4 used a model called “Sigmoid.” Using the same modeling concepts, I set out to
make a three-dimensional model. The model has horizontal layers near the top, a Gaussian
appearance in the middle, and dipping layers on the bottom, with horizontal unconformities
between the three regions. Figure 10.8 shows a vertical slice through the 3-D “qdome” model
and components of its LOMOPLAN. There is also a fault that will be described later. The

Figure 10.8: Left is a vertical slice through the 3-D “qdome” model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN.
lmn-qdomesico90 [CR]

most interesting part of the qdome model is the Gaussian center. I started from the equation
of a Gaussian

z(x , y, t) = e−(x2+y2)/t2 (10.3)

10.5. 3-D SPECTRAL FACTORIZATION 283

and backsolved for t

t(x , y, z) =

√

x2+ y2

− ln z
(10.4)

Then I used a random-number generator to make a blocky one-dimensional impedance func-
tion of t . At each (x , y, z) location in the model I used the impedance at time t(x , y, z), and
finally defined reflectivity as the logarithmic derivative of the impedance. Without careful in-
terpolation (particularly where the beds pinch out) a variety of curious artifacts appear. I hope
to find time to use the experience of making the qdome model to make a tutorial lesson on in-
terpolation. A refinement to the model is that within a certain subvolume the time t(x , y, z) is
given a small additive constant. This gives a fault along the edge of the subvolume. Ray Abma
defined the subvolume for me in the qdome model. The fault looks quite realistic, and it is easy
to make faults of any shape, though I wonder how they would relate to realistic fault dynamics.
Figure 10.9 shows a top view of the 3-D qdome model and components of its LOMOPLAN.
Notice that the cross-line spacing has been chosen to be double the in-line spacing. Evidently
a consequence of this, in both Figure 10.8 and Figure 10.9, is that the Gaussian dome is not so
well suppressed on the crossline cut as on the in-line cut. By comparison, notice that the hor-
izontal bedding above the dome is perfectly suppressed, whereas the dipping bedding below
the dome is imperfectly suppressed.

Figure 10.9: Left is a horizontal slice through the 3-D qdome model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN. Press
button for volume view. lmn-qdometoco90 [CR]

Finally, I became irritated at the need to look at two output volumes. Because I rarely if
ever interpreted the polarity of the LOMOPLAN components, I formed their sum of squares
and show the single square root volume in Figure 10.10.

10.5 3-D SPECTRAL FACTORIZATION

Hi Sergey, Matt, and Sean, Here are my latest speculations, plans: The 3-D Lomoplan resem-
bles a gradient, one field in, two or three out. Lomoplan times its adjoint is like a generalized

284 CHAPTER 10. PLANE WAVES IN THREE DIMENSIONS

Figure 10.10: Left is the model. Right is the magnitude of the LOMOPLAN components in
Figure 10.9. Press button for volume view. lmn-qdometora90 [CR]

laplacian. Factorizing it yields a lomoplan generalization of the helix derivative, i.e. a one-to-
one operator with the same spectral charactoristic as the original lomoplan. It will probably
not come out to be a juxtaposition of planes, will be more cube like. The advantage of be-
ing one-to-one is that it can be used as a preconditioner. The application, naturally enough,
is estimating things with a prescribed dip spectrum. Things like missing data and velocities.
Why use multiplanar lomoplan estimates if they will then be converted by this complicated
process into a cube? Why not estimate the cube directly? Maybe to impose the “pancake"
model instead of the noodle model of covariance. Maybe to reduce the number of coefficients
to estimate. I haven’t figured out yet how to convert this speculation into an example leading
to some figures. If you like the idea, feel free to beat me to it :)

REFERENCES

Claerbout, J. F., 1992a, Earth Soundings Analysis: Processing Versus Inversion: Blackwell
Scientific Publications.

Claerbout, J. F., 1992b, Information from smiles: Mono-plane-annihilator weighted regres-
sion: SEP–73, 409–420.

Chapter 11

Some research examples

SEP students and researchers have extended the work described in this book. A few of their
results are summarized here without the details and working codes.

11.1 GULF OF MEXICO CUBE

David Lumley from Chevron gave James Rickett some nice 3-D data from the Gulf of Mexico.
There movie shows time slices at intervals of about 6ms. These slices are about 18 feet apart.
That is about 7,000 years of deposition in the Gulf of Mexico. Altogether it is about a million
years (about the age of the human species). Figure 11.1 shows some nice time slices.

Figure 11.1: Some time slices show a salt dome, some river channels, a dendritic drainage
canyon, and a fault. Press button for interactive “Rickmovie”. rez-canyon [ER]

285

286 CHAPTER 11. SOME RESEARCH EXAMPLES

Chapter 12

SOFTWARE SUPPORT

“Ratfor" (RATional FORtran) is a dialect of Fortran that is more concise than raw Fortran.
Our present Ratfor “compiler,” ratfor90, is a simple word-processing program (written1 in
Perl and freely distributed) that inputs an attractive Fortran-like dialect and outputs Fortran90.
Mainly, the word-processor produces Fortran statements like end do, end if, end program

and end module, from the Ratfor “}”. Ratfor source is about 25-30% smaller than the equiva-
lent Fortran, so it is equivalently more readable.

Bare-bones Fortran is our most universal computer language for computational physics.
For general programming, however, it has been surpassed by C. Ratfor is Fortran with C-like
syntax. Ratfor was invented by the people2 who invented C. After inventing C, they realized
that they had made a mistake (too many semicolons) and they fixed it in Ratfor, although it
was too late for C. Otherwise, Ratfor uses C-like syntax, the syntax that is also found in the
popular languages C++ and Java.

At SEP we supplemented Ratfor77 by preprocessors to give Fortran77 the ability to allo-
cate memory on the fly. These abilities are built into Fortran90 and are seamlessly included
in Ratfor90. To take advantage of Fortran90’s new features while maintaining the concise
coding style provided by Ratfor, we had to write a new Ratfor preprocessor, Ratfor90, which
produces Fortran90 rather than Fortran77 code.

You should be able to read Ratfor if you already know Fortran or any similar computer
language. Writing Ratfor is easy if you already know Fortran because written Fortran is valid
Ratfor. You can mix Ratfor and Fortran. The Ratfor processor is not a compiler but a sim-
ple word-processing program which passes Fortran (which it does not understand) through
unchanged. The Ratfor processor converts the Ratfor dialect to Fortran. To maximize the
amount of Ratfor, you will need to know its rules. Here they are:

Statements on a line may be separated by “;”. Statements may be grouped together with
braces { }. Do loops do not require statement numbers because { } defines the range. Given
that if() is true, the statements in the following { } are done. else{ } does what you expect.

1The Ratfor90 preprocessor was written by my colleague, Bob Clapp.
2Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley.

287

288 CHAPTER 12. SOFTWARE SUPPORT

We may not contract else if to elseif. We may omit the braces { } where they contain
only one statement. break (equivalent to the Fortran90 exit) causes premature termination
of the enclosing { }. while() { } repeats the statements in { } while the condition () is
true. Ratfor recognizes repeat { ... } until() as a loop that tests at the bottom. next

causes skipping to the end of any loop and a retrial of the test condition. next (equivalent to
the Fortran90 cycle statement) is rarely used, and the Ratfor90 coder may write either next or
cycle. Here we encounter an inconsistency between Fortran and C-language. Where Ratfor
uses next, the C-language uses continue (which in Ratfor and Fortran is merely a place holder
for labels). The Fortran relational operators .gt., .ge., .ne., etc. may be written >, >=, !=,
etc. The logical operators .and. and .or. may be written && and ||. Anything from a #
to the end of the line is a comment. A line may be continued in Ratfor by ending it with the
underscore charactor “_” (like Fortran90’s &).

Indentation in Ratfor is used for readability. It is not part of the Ratfor language. Choose
your own style. I have overcondensed. There are two pitfalls associated with indentation.
The beginner’s pitfall is to assume that a do loop ends where the indentation ends. The loop
actually ends after the first statement. A larger scope for the do loop is made by enclosing
multiple statements in braces. The other pitfall arises in any construction like if() ... if()

... else. The else goes with the last if() regardless of indentation. If you want the else

with the earlier if(), you must use braces like if() { if() ... } else Ratfor also
recognizes the looping statement used in C, C++, and Java. It is for(initialize; condition;
reinitialize) { }.

12.0.1 Changes and backward compatibility

We were forced to make one change to Ratfor90 because of new things in Fortran90. Ratfor77
allows & and | for the logical operators && and ||. While attractive, it is not part of the C
family of languages and we had to drop it because Fortran90 adopts & for line continuation.

Because we are not compiler writers, we dropped a rarely used feature of Ratfor77 that
was not easy for us to implement and is ugly anyway: Ratfor77 recognizes break 2 which
escapes from {{ }}.

Changing all the code that generated illustrations for four textbooks (of various ages) also
turned up a few more issues: Fortran90 uses the words scale and matmul as intrinsics. Old
Fortran77 programs using those words as variable names must be changed. Ratfor77 unwisely
allowed variables of intrinsic (undeclared) types. We no longer allow this. Ratfor90 forces
implicit none.

New features in Ratfor90 are bracketed type, subroutine, function, and module procedures.
In some ways this a further step towards the C, C++, Java model. It makes complicated
modules, subroutines inside subroutines, and other advanced features of Fortran90 easier to
interpret. Ratfor90 has better error messages than Ratfor77. Besides the use of stderr, a new
file (ratfor_problem) marks the difficulty.

289

12.0.2 Examples

Below are simple Ratfor subroutines for erasing an array (zero()); (null()); for copying one
array to another (copy()); for the signum function sgn(x) = x/|x| (signum()); and (tcaf), a
program using fortran90 modules and overloading to transient convolution.

12.0.3 Memory allocation in subroutines

For backward compatibility we allow the “temporary” memory allocation introduced by our
Ratfor77 processor for example:

temporary real*4 data(n1,n2,n3), convolution(j+k-1)

These declarations must follow other declarations and precede the executable statements. Au-
tomatic arrays are supported in Fortran90. To allow full code compatibility, Ratfor90 simply
translates this statement to

real*4 data(n1,n2,n3), convolution(j+k-1).

12.0.4 The main program environment

Ratfor90 includes some traditional SEP local-memory-allocation and data-base-I/O state-
ments that are described below. It calls an essential seplib initialization routine initpar(),
organizes the self-doc, and simplifies data-cube input. The basic syntax for memory alloca-
tion is allocate: real x(n1,n2). Ratfor90 translates this syntax into a call to dynamically
allocate a allocatable array. See the on-line self-documentation or the manual pages for full
details. Following is a complete Ratfor program for a simple task:

<in.H Scale scaleval=1. > out.H

#

Copy input to output and scale by scaleval

keyword generic scale

#%

integer n1, n2, n3, esize

from history: integer n1, n2, n3, esize

if (esize !=4) call erexit(’esize != 4’)

allocate: real x(n1,n2)

subroutine scaleit(n1,n2, x)

integer i1,i2, n1,n2

real x(n1,n2), scaleval

from par: real scaleval=1.

call hclose() # no more parameter handling.

call sreed(’in’, x, 4*n1*n2)

do i1=1,n1

do i2=1,n2

x(i1,i2) = x(i1,i2) * scaleval

call srite(’out’, x, 4*n1*n2)

return; end

290 CHAPTER 12. SOFTWARE SUPPORT

12.1 SERGEY’S MAIN PROGRAM DOCS

Many of the illustrations in this book are made with main programs that can be reused (in the
SEP environment) for other applications. Here is a summary of their documentation.

12.1.1 Autocorr - compute autocorrelation for helix filters

Autocorr < filt.H > autocorr.H

Reads a helix filter. Outputs the positive lag of its autocorrelation (no space wasted).

from/to history integer n1 filter size
integer array lag comma-separated list of filter lags
real a0=1 zero-lag coefficient

Modules: helix.r90, autocorr.r90

12.1.2 Bin2 - nearest neighbor binning in 2-D

Bin2 < triplets.H > map.H

Bins (x,y,z) data triplets. Normalizes by bin fold.

from history integer n1, n2 n1 is number of triplets, n2 must be 3
from par integer n1, n2 – map size

real o1, o2, d1, d2 –
map dimensions

Modules: bin2.lop

12.1.3 Conv - convolve two helix filters

Conv < filt1.H other=filt2.H > conv.H

Outputs the convolution of filt1 and filt2.

from/to history integer n1 filter size
integer array lag comma-separated list of filter lags

Modules: helix.r90, conv.r90

12.1.4 Decon - Deconvolution (N-dimensional)

Decon < data.H filt= predictive=0 > decon.H

Deconvolution: predictive, Lomoplan, steep dip. Uses the helix and patching technology.

12.1. SERGEY’S MAIN PROGRAM DOCS 291

from history integer array n n1, n2, n3, etc
from par filename filt helix-type local PEF

logical predictive=0 predictive deconvolution
integer rect1 (optional) smoothing on the first axis

from aux (filt) integer dim number of dimensions
integer array w patch size
integer array k number of windows

Modules: tent.r90, patching.r90, loconvol.r90 , helix.r90 triangle.r90
See also: Lopef, Helicon

12.1.5 Devector - create one output filter from two input filters

Devector < filt1.H other=filt2.H > filt.H

Uses Wilson’s factorization. filt = sqrt (filt1**2 + filt2**2)

from history and
from aux (other)

integer n1 number of filter coefficients

integer arra n2,n3,... number of filters
integer array lag helix filter lags

from par integer niter=20 number of WIlson’s iterations
integer n1 number of output filter coefficients
integer array lag output lags

Modules: wilson.r90, autocorr.r90, compress.r90

12.1.6 Helderiv - Helix derivative filter in 2-D

Helderiv < in.H helix=1 na=16 > out.H

Factors the laplacian operator. Applies helix derivative. Loops over n3

from history integer n1, n2
from par logical helix=1 if 0, apply the gradient filter on the 1st axis

integer na=16 filter size (half the number of nonzero coeffi-
cients)

real eps=0.001 zero frequency shift on the laplacian

Modules: helicon.lop, helderiv.r90

12.1.7 Helicon - Helix convolution and deconvolution (N-dimensional!)

Helicon < in.H filt= adj=0 div=0 > out.H

Applies helix convolution (polynomial multiplication) or deconvolution (polynomial division). One is the
exact inverse of the other. Watch for helical boundary conditions.

292 CHAPTER 12. SOFTWARE SUPPORT

from history integer array n reads n1, n2, n3, ...
from par filename filt helix filter file

integer adj=0 apply adjoint (backward) filtering
integer div=0 apply inverse recursive filtering (polynomial

division)
from aux (filt) integer array h helix grid (can be h1, h2, ...)

integer array lag=1,...,n1 comma separated list of filter lags
real a0=1 zero-lag filter coefficient

Modules: helicon.lop, polydiv.lop, regrid.r90, helix.r90

12.1.8 Helocut - Helix Lowcut filter in 2-D

Helocut < in.H helix=1 na=16 eps=0.1 > out.H

Applies helix convolution with a low-cut factor, based on factoring the laplacian filter. Also loops over n3.

from history integer n1, n2
from par logical helix=1 if 0, apply the gradient filter on the 1st axis

real eps sets the lowcut frequency
integer na=16 filter size (half the number of nonzero coeffi-

cients)

Modules: helicon.lop, helocut.r90

12.1.9 Hole - Punch ellipsoidal hole in 2-D data

Hole < data.H > hole.H

Hole’s dimensions and orientation are currently fixed

from history integer n1, n2

See also: Make

12.1.10 Igrad - take gradient on the first axis

Igrad < map.H > grad.H

Works on 2-D data, gradient is (1,-1) filter

from history integer n1, n2

Modules: igrad1.lop

12.1.11 LPad - Pad and interleave traces

LPad < small.H jump=2 mask= > large.H

12.1. SERGEY’S MAIN PROGRAM DOCS 293

Each initial trace is followed by jump zero traces, the same for planes.

from history integer n1, n2, n3
from par integer jump=2 how much to expand the axes

filename mask selector for known traces (same size as out-
put)

to history integer n2=n2*jump
(if n2 > 1),
n3=n3*jump (if
n3 > 1)

See also: LPef

12.1.12 LPef - Find PEF on aliased traces

LPef < in.H jump=2 a= center=1 gap=0 > out.H

Finds a prediction-error filter, assuming missing traces

from history integer array n reads n1, n2, n3, etc.
from par integer jump=2 how much to expand the axes

integer array a= PEF size
integer array center=1 PEF centering
integer array gap=0 PEF gapping

Modules: lace.r90, helix.r90, print.r90, compress.r90
See also: Pef

12.1.13 Lapfill2 - fill missing data by minimizing the Laplacian

Lapfill2 < map.H > filled.H

Works on 2-D data only.

from history integer n1, n2
from par integer niter=200 number of CG iterations

Modules: lapfill.r90
See also: Miss, MSMiss

12.1.14 LoLPef - Find PEF on aliased traces (with patching)

LoLPef < in.H jump=2 a= center=1 gap=0 > out.H

Finds a prediction-error filter, assuming missing traces

from history integer array n reads n1, n2, n3, etc.
from par integer array w=20,20,6 patch size

integer array k (optional) number of windows
integer jump=2 how much to expand the axes
integer array a= PEF size
integer array center=1 PEF centering
integer array gap=0 PEF gapping

294 CHAPTER 12. SOFTWARE SUPPORT

Modules: lolace.r90
See also: Pef

12.1.15 Lomiss - Missing data interpolation with a prescribed helix filter

12.1.16 (in local patches)

Lomiss < in.H prec=1 niter=100 filt= [mask=] > interp.H

Fills missing data by mimimizing the data power after convolution. Works in any number of dimensions!

from history integer n1, n2, n3
from par integer prec=1 use preconditioning for missing data interpo-

lation
integer niter=100 number of iterations
filename filt helix filter
filename mask (optional) selector for known data

from aux (sfilt,
nfilt)

integer dim number of dimensions

integer array w patch size
integer array k number of windows

Modules: lomis2.r90, helix.r90, tent.r90

12.1.17 Lopef - Local Prediction-Error Filter (1-D, 2-D, and 3-D)

Lopef < data.H dim=3 steepdip=0 > pef.H

Local prediction-error filters are estimated with the helix and patching technology. Can also find filters for
steep-dip deconvolution. Currently works in 1, 2, and 3 dimensions.

from history integer n1, n2, n3
real d1, d2, d3 (for

steep-dip decon)
from par integer dim=3 number of dimensions

integer array w=20,20,6 patch size
integer array a=5,2,1 filter size
integer array k (optional) number of windows
integer array gap=0,0,0 filter gap
integer array ctr (optional) filter centering
logical steepdip=0 steep-dip decon PEF
real vel=1.7 velocity for steep-dip decon
real tgap=0.03 time gap for steep-dip decon
filename mask (optional) data selector

Modules: bound.r90, steepdip.r90, shape.r90, lopef.r90, print.r90, helix.r90
See also: Pef, Decon

12.1.18 Losignoi - Local signal and noise separation (N-dimensional)

Losignoi < data.H sfilt= nfilt= eps= > sign.H

12.1. SERGEY’S MAIN PROGRAM DOCS 295

Signal and noise separation by inversion (super-deconvolution). Uses the helix and patching technologies.

from history integer array n n1, n2, n3< etc
from par filename sfilt, nfilt helix-type signal and noise local PEF

real eps the magic scaling parameter
integer niter=20 number of iterations

from aux (sfilt,
nfilt)

integer dim number of dimensions

integer array w patch size
integer array k number of windows

Modules: tent.r90, patching.r90, signoi.r90 , helix.r90
See also: Decon, Lopef, Helicon

12.1.19 MSHelicon - Multi-scale Helix convolution (N-dimensional!)

Helicon < in.H filt= ns= jump= adj=0 > out.H

Applies multiscale helix convolution.

from history integer array n reads n1, n2, n3, ...
from par filename filt helix filter file

integer adj=0 apply adjoint (backward) filtering
integer ns number of scales
integer array jump=0 filter scales

from aux (filt) integer array h helix grid (can be h1, h2, ...)
integer array lag=1,...,n1 comma separated list of filter lags
real a0=1 zero-lag filter coefficient

Modules: mshelicon.lop, regrid.r90, mshelix.r90

12.1.20 MSMiss - Multiscale missing data interpolation (N-dimensional)

MSMiss < in.H prec=1 niter=100 filt= [mask=] > interp.H

Fills missing data by mimimizing the data power after convolution.

from history integer array n reads n1, n2, n3, ...
from aux (filt) integer ns number of scales

integer array jump comma separated list of scales, e.g. 1,2,4
from par integer prec=1 use preconditioning for missing data interpo-

lation
integer niter=100 number of iterations
filename filt helix filter
filename mask (optional) selector for known data

Modules: msmis2.r90, mshelix.r90, bound.r90

12.1.21 MSPef - Multi-scale PEF estimation

MSPef < in.H a= center= gap=0 ns= jump= [maskin=] [maskout=] > pef.H

296 CHAPTER 12. SOFTWARE SUPPORT

Estimates a multi-scale PEF. Works in N dimensions

from history integer array n reads n1, n2, n3
from par integer array a= PEF size

integer niter=2*prod(a)
(optional)

number of PEF iterations

integer array center PEF centering
integer array gap=0 PEF gapping
integer ns number of scales
integer array jump comma separated list of scales, e.g. 1,2,4
filename maskin, maskout

(optional)
data selectors

Modules: mspef.r90, misinput.r90, mshelix.r90 createmshelixmod.r90, print.r90
See also: MSMiss Pef

12.1.22 Make - generate simple 2-D synthetics with crossing plane waves

Make n1=100 n2=14 n3=1 n=3 p=3 t1=4 t2=4 > synth.H

Plane waves have fixed slopes, but random amplitudes

from par integer n1=100, n2=14,
n3=1

data size

integer n=3 slope
integer p=3 power for generating random distribution
integer t1=3, t2=3 width of trinalge smoother on the two waves

Modules: triangle.lop, random.f90 (for compatibility with Fortran-77)
See also: Hole

12.1.23 Minphase - create minimum-phase filters

Minphase < filt.H niter=20 > minphase.H

Uses Wilson’s factorization. The phase information is lost.

from history integer n1 number of filter coefficients
integer array n2,n3,... number of filters
integer array lag helix filter lags

from par integer niter=20 number of WIlson’s iterations

Modules: wilson.r90, autocorr.r90

12.1.24 Miss - Missing data interpolation with a prescribed helix filter

Miss < in.H prec=1 niter=100 padin=0 padout=0 filt= [mask=] > interp.H

Fills missing data by mimimizing the data power after convolution. Works in any number of dimensions!

12.1. SERGEY’S MAIN PROGRAM DOCS 297

from history integer n1, n2, n3
from par integer prec=1 use preconditioning for missing data interpo-

lation
integer niter=100 number of iterations
integer padin=0 pad data beginning
integer padout=0 pad data end
filename filt helix filter
filename mask (optional) selector for known data

Modules: mis2.r90, bound.r90, helix.r90

12.1.25 NHelicon - Non-stationary helix convolution and deconvolution

Helicon < in.H filt= adj=0 div=0 > out.H

Applies helix convolution (polynomial multiplication) or deconvolution (polynomial division). One is the
exact inverse of the other. Watch for helical boundary conditions.

from history integer array n reads n1, n2, n3, ...
from par filename filt helix filter file

integer adj=0 apply adjoint (backward) filtering
integer div=0 apply inverse recursive filtering (polynomial

division)
from aux (filt) integer array h helix grid (can be h1, h2, ...)

integer array lag=1,...,n1 comma separated list of filter lags
real a0=1 zero-lag filter coefficient

Modules: nhelicon.lop, npolydiv.lop, nhelix.r90, helix.r90, regrid.r90

12.1.26 NPef - Estimate Non-stationary PEF in N dimensions

Pef < data.H a= center=1 gap=0 [maskin=] [maskout=] > pef.H

Estimates PEF by least squares, using helix convolution. Can ignore missing data

from history integer array n reads n1, n2, n3, etc.
from par integer niter=100 number of iterations

real epsilon=0.01 regularization parameter
integer array a= filter size
integer array center=1 zero-lag position (filter centering)
integer array gap=0 filter gap
filename maskin, maskout

(optional)
data selectors

to history integer array lag comma separated list of filter lags

Modules: nhelix.r90, createnhelixmod.r90, nmisinput.r90, npef.r90,
See also: MSPef, Pef, NHelicon

12.1.27 Nozero - Read (x,y,z) data triples, throw out values of z > thresh,
transpose

Nozero < triplets.H thresh=-210 > transp.H

298 CHAPTER 12. SOFTWARE SUPPORT

The program is tuned for the Sea of Galilee data set

from history integer n1, n2 n2 is the number of triples, n1 must equal 3
real thresh=-210 -

threshold (de-
fault is tuned for
Galilee)

to history integer n1, n2 n1 is the number of triples such that z <

thresh
n2=3

See also: Bin2

12.1.28 Parcel - Patching illustration

Parcel < in.H w= k= > out.H

Transforms data to patches and back without the weighting compenssation.

integer array w window size
integer array k number of windows in different directions

Modules: parcel.lop, cartesian.r90

12.1.29 Pef - Estimate PEF in N dimensions

Pef < data.H a= [center=] [gap=] [maskin=] [maskout=] > pef.H

Estimates PEF by least squares, using helix convolution. Can ignore missing data

from history integer array n reads n1, n2, n3, etc.
from par integer array a= filter size

integer niter=2*prod(a)
(optional)

number of

PEF iterations
integer array center=a/2+1

(optional)
zero-lag position (filter centering)

integer array gap=0 (optional) filter gap
filename maskin, maskout

(optional)
data selectors

to history integer array lag comma separated list of filter lags

Modules: shape.r90, bound.r90, misinput.r90, pef.r90, compress.r90, print.r90, helix.r90
See also: MSPef, Fillmiss, Helicon, Decon

12.1.30 Sigmoid - generate sigmoid reflectivity model

Sigmoid n1=400 n2=100 o1=0 d1=.004 o2=0 d2=.032 > synth.H

Sigmoid reflectivity model in 2-D: complex geological structure.

12.1. SERGEY’S MAIN PROGRAM DOCS 299

from par integer n1=400, n2=100 data size
integer large=5*n1 layering size
real o1=0, d1=0.004,

o2=0., d2=0.032
grid spacing

Modules: random.f90 (for compatibility with Fortran-77)
See also: Make

12.1.31 Signoi - Local signal and noise separation (N-dimensional)

Signoi < data.H sfilt= nfilt= epsilon= > sig+noi.H

Signal and noise separation by optimization.

from history integer array n n1, n2, n3< etc
from par filename sfilt, nfilt helix-type signal and noise local PEF

real eps the magic scaling parameter
integer niter=20 number of iterations

Modules: signoi.r90 , regrid.r90
See also: Losignoi, Pef

12.1.32 Tentwt - Tent weight for patching

Tentwt dim=2 n= w= windwt= >wallwt.H

Computes the tent weight for patching.

from par integer dim=2 number of dimensions
integer array n data size (n1, n2, etc)
integer array w window size
integer array k (optional) number of windows in different directions
integer array a (optional) window offset
integer array center (optional) window centering

Modules: tent.r90, wallwt.r90

12.1.33 Vrms2int - convert RMS velocity to interval velocity

Vrms2int < vrms.H weight= vrms= niter= eps= > vint.H

Least-square inversion, preconditioned by integration.

from history integer n1, n2
from par integer niter number of iterations

real eps scaling for preconditioning
filename weight data weight for inversion
filename vrms predicted RMS velocity

Modules: vrms2int.r90

300 CHAPTER 12. SOFTWARE SUPPORT

12.1.34 Wilson - Wilson’s factorization for helix filters

Wilson < filt.H niter=20 [n1= lag=] > minphase.H

Reads a helix autocorrelation (positive side of it). Outputs its minimum-phase factor.

from/to history integer n1 filter size
integer array lag comma-separated list of filter lags
real a0=1 zero-lag coefficient

from par integer niter=20 number of Newton’s iterations
integer n1 (optional) number of coefficients
integer array lag (optional) comma-separated list of filter lags

Modules: wilson.lop, helix.r90, compress.r90

12.2 References

Claerbout, J., 1990, Introduction to seplib and SEP utility software: SEP–70, 413–436.

Claerbout, J., 1986, A canonical program library: SEP–50, 281–290.

Cole, S., and Dellinger, J., Vplot: SEP’s plot language: SEP-60, 349–389.

Dellinger, J., 1989, Why does SEP still use Vplot?: SEP–61, 327–335.

Chapter 13

Entrance examination

1. (10 minutes) Given is a residual r where

r = d0−m1b1−m2b2−m3b3

The data is d0. The fitting functions are the column vectors b1, b2, and b3, and the model parameters
are the scalars m1, m2, and m3. Suppose that m1 and m2 are already known. Derive a formula for
finding m3 that minimizes the residual length (squared) r · r.

2. (10 minutes) Below is a subroutine written in a mysterious dialect of Fortran. Describe ALL the inputs
required for this subroutine to multiply a vector times the transpose of a matrix.

matrix multiply and its adjoint

#

subroutine matmult(adj, bb, x,nx, y,ny)

integer ix, iy, adj, nx, ny

real bb(ny,nx), x(nx), y(ny)

if(adj == 0)

do iy= 1, ny

y(iy) = 0.

else

do ix= 1, nx

x(ix) = 0.

do ix= 1, nx {

do iy= 1, ny {

if(adj == 0)

y(iy) = y(iy) + bb(iy,ix) * x(ix)

else

x(ix) = x(ix) + bb(iy,ix) * y(iy)

}}

return; end

301

302 CHAPTER 13. ENTRANCE EXAMINATION

Index

abstract vector, 39
acquisition footprint, 87
adjoint, 1, 12, 30
adjoint

defined, 27
operator, 30
truncation errors, 29

adjugate, 30
Amontons, 44
analytic solution, 41
anisotropy, 82
anticausal integration, 18
archaeological, 87

back projection, 2, 56
bandpass filter, 44
ben Avraham, 87
bin2 operator module, 13
boldface letters, 39
bound module, 177
boundary condition calculation, 83
box module, 127

cartesian module, 125
causal integration, 17
cgmeth module, 54
cgstep module, 51
complex operator, 42
complex vector, 42
conjugate gradient, 50
conjugate transpose, 30
conjugate-direction method, 33, 45, 49, 67
conjugate-gradient method, 68
conjugate-transpose, 28
constraint, 77
constraint-mask, 79
continuous function, 29
contour, 58
contour plot, 46
convolution, 8, 33
convolution

internal, 10
transient, 8

covariance matrix, viii, ix
createhelixmod module, 126
createmshelixmod module, 240
createnhelixmod module, 265

crosscorrelate, 9
curl grad, 60

damping, 32, 34
data tracks, 27
data-push binning, 13
deconvolution, 33, 35, 43
determinant, 30
differential equation, 18
differentiate by complex vector, 42
discrete function, 29
divide by zero, 33
dot product, 27, 46
dot-product test, 28, 29
dottest module, 28

end effect, 11
estimation, 33
experimental error, 45
extrapolation, 77

filter
inverse, 34
matched, 34
roughening, 75

filter impulse response, 5
fitting, 33
fitting function, 42
fitting goals, 42
fixbad module, 211
Fortran, 51
Fourier analysis, 2
Fourier transformation, 12
fudge factor, 83

Galilee, Sea of, 87
gaps, 66
gather, 16
Gauss, viii
goals, statement of, 42
grad2fill module, 88
gradient, 47

hconest operator module, 174
helderiv operator module, 122
helicon operator module, 104
helix module, 103

303

304 INDEX

Hestenes, 68
Hilbert adjoint, 30
hypotenusei operator module, 24

icaf1 operator module, 10
igrad1 operator module, 6
igrad2 operator module, 59
imospray operator module, 25
index, 303
integration

causal, 17
leaky, 17

interpolation, 77, 90
interpolation-error filter, 158
inverse filter, 34
inverse matrix, 30
inversion, 1, 33, 56
invint1 module, 92
invint2 module, 145
invstack module, 56
irls module, 207

lace module, 235
lapfac module, 116
lapfill2 module, 85
laplac2 operator module, 85
leakint operator module, 18
leaky integration, 17
least squares, 33
least squares, central equation of, 41
least-squares method, 77
line search, 49
linear equations, 45
linear interpolation, 14, 90
lint1 operator module, 16
lint2 operator module, 231
loconvol operator module, 250
lopef module, 250
Loptran, 3

map, 82
mask, 79
mask1 operator module, 149
matched filter, 34
matmult operator module, 3
matrix multiply, 1, 3
mean, 199
minimum energy, 75
mis1 module, 81
mis2 module, 149
misinput module, 175
missing data, 74, 77, 79
mkwallwt module, 246
modeling, 2, 33
modeling error, 45
module

bound, out of bounds dependency, 177
box, Convert helix filter to (n1,n2,...), 127
cartesian, helical-cartesian coordinate con-

version, 125
cgmeth, demonstrate CD, 54
cgstep, one step of CD, 51
createhelixmod, constructing helix filter in

N-D, 126
createmshelixmod, create multiscale helix,

240
createnhelixmod, create non-stationary he-

lix, 265
dottest, dot-product test, 28
fixbad, restore damaged data, 211
grad2fill, low cut missing data, 88
helix, definition for helix-type filters, 103
invint1, invers linear interp., 92
invint2, Inverse linear interpolation, 145
invstack, inversion stacking, 56
irls, weighting functions for iterative reweight-

ing, 207
lace, fill missing traces by rescaling PEF, 235
lapfac, factor 2-D Laplacian, 116
lapfill2, Find 2-D missing data, 85
lopef, local PEF, 250
mis1, 1-D missing data, 81
mis2, Missing data interpolation with and with-

out preconditioning, 149
misinput, mark bad regression equations, 175
mkwallwt, make wall weight, 246
mshelix, multiscale helix filter definition, 238
msmis2, multiscale missing data, 241
mspef, multiscale PEF, 241
nhelix, non-stationary convolution, 264
npef, non-stationary PEF, 267
patching, generic patching, 247
pefest, estimate PEF in 1-D avoiding bad

data, 211
pef, estimate PEF on a helix, 178
quantile, percentile, 202
regrid, Convert filter to different data size,

129
smallchain2, operator chain and array, 25
solver_irls, iteratively reweighted optimiza-

tion, 205
solver_prc, Preconditioned solver, 136
solver_reg, generic solver with regulariza-

tion, 91
solver_smp, simple solver, 80
solver_tiny, tiny solver, 53
tent, tent weights, 248
unbox, Convert hypercube filter to helix, 127
unwrap, Inverse 2-D gradient, 61
vrms2int, Converting RMS to interval veloc-

ity, 139

INDEX 305

wilson, Wilson-Burg spectral factorization,
118

modules, 81
moveout and stack, 56
mshconest operator module, 240
mshelicon operator module, 241
mshelix module, 238
msmis2 module, 241
mspef module, 241
multiple reflection, 158
multiplex, 39

nearest neighbor binning, 13
nearest neighbor coordinates, 13
nearest-neighbor, 56
nhconest operator module, 265
nhelix module, 264
NMO, 23
NMO stack, 24, 56
noise bursts, 66
nonlinear methods, 66
nonlinear solver, 67
norm, 27
normal, 42
normal moveout, 23
npef module, 267
npolydiv operator module, 266
null space, ix, 47

operator, 1, 30
bin2, push data into bin, 13
hconest, helix convolution, adjoint is the fil-

ter, 174
helderiv, helix-derivative filter, 122
helicon, helical convolution, 104
hypotenusei, inverse moveout, 24
icaf1, convolve internal, 10
igrad1, first difference, 6
igrad2, gradient in 2-D, 59
imospray, inverse NMO spray, 25
laplac2, Laplacian in 2-D, 85
leakint, leaky integral, 18
lint1, linear interp, 16
lint2, 2-D linear interpolation, 231
loconvol, local convolution, 250
mask1, copy under mask, 149
matmult, matrix multiply, 3
mshconest, multiscale convolution, adjoint is

the filter, 240
mshelicon, multiscale convolution, adjoint is

the input, 241
nhconest, non-stationary convolution, 265
npolydiv, non-stationary polynomial division,

266
patch, extract patches, 244
polydiv1, deconvolve, 20

polydiv, helical deconvolution, 105
refine2, refine 2-D mesh, 230
scaletrace, trace scaling, 276
signoi, signal and noise separation, 258
spraysum, sum and spray, 17
tcaf1, transient convolution, 9
tcai1, transient convolution, 9
zpad1, zero pad 1-D, 12

operator
adjoint, 30

operators, 81
orthogonal, 39

Paige and Saunders algorithm, 68
partial derivative, 39
patch operator module, 244
patching module, 247
pef module, 178
pefest module, 211
phase, 57
phase unwrapping, 57
polydiv operator module, 105
polydiv1 operator module, 20
positive-definite, 31
prediction-error filter, 158
processing, 2
pseudocode, 3

quadratic form, 40, 43
quadratic function, 34
quantile module, 202

random directions, 46
recursion

integration, 18
refine2 operator module, 230
regressions, 42
regressor, 39
regrid module, 129
residual, 42, 46
roughener

gradient, 94
Laplacian, 94

roughening, 75

satellite orbit, 57
scaletrace operator module, 276
scatter, 16
Sea of Galilee, 87
selector, 79
sign convention, 45
signoi operator module, 258
smallchain2 module, 25
solution time, 45
solver_irls module, 205
solver_prc module, 136

306 INDEX

solver_reg module, 91
solver_smp module, 80
solver_tiny module, 53
space, 27
spray, 16
spraysum operator module, 17
stack, 24, 56
statement of goals, 42
steepest descent, 46, 47, 49
Stiefel, 68
summation operator, 16
Symes, 66

tcaf1 operator module, 9
tcai1 operator module, 9
template, 46, 47, 51, 67
tent module, 248
tomography, 2
traveltime depth, 24
trend, 82
truncation, 11, 12, 29

unbox module, 127
unwrap module, 61

vector space, 27
Vesuvius, 57
vrms2int module, 139

weighting function, 27, 66
well, 82
wilson module, 118

zero absolute temperature, 44
zero divide, 33, 34
zero pad, 11, 12
zpad1 operator module, 12

Jon F. Claerbout (M.I.T., B.S. physics, 1960; M.S. 1963; Ph.D.
geophysics, 1967), professor at Stanford University, 1967. Best
Presentation Award from the Society of Exploration Geophysicists
(SEG) for his paper, Extrapolation of Wave Fields. Honorary mem-
ber and SEG Fessenden Award “in recognition of his outstanding
and original pioneering work in seismic wave analysis.” Founded
the Stanford Exploration Project (SEP) in 1973. Elected Fellow
of the American Geophysical Union. Authored three published
books and five internet books. Elected to the National Academy of
Engineering. Maurice Ewing Medal, SEG’s highest award. Hon-
orary Member of the European Assn. of Geoscientists & Engineers
(EAGE). EAGE’s highest recognition, the Erasmus Award.

Sergey Fomel is a Research Scientist at the Bureau of Economic
Geology, University of Texas at Austin. Before joining the Stan-
ford Exploration Project, he worked at the Institute of Geophysics
in Novosibirsk, Russia. Received a Ph.D. in Geophysics from Stan-
ford in 2001. Honored with J. Clarence Karcher award by SEG
in 2001 for "numerous contributions to seismology." Postdoctoral
fellow at the Lawrence Berkeley National Laboratory and visiting
assistant professor at the University of California at Berkeley in
2001-2002.

307

308 INDEX

