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Preface

The difference between theory and practice is smaller in theory than it is in
practice. —folklore

We make discoveries about reality by examining the discrepancy between theory and practice.
There is a well-developed theory about the difference between theory and practice, and it is
called “geophysical inverse theory”. In this book we investigate the practice of the difference
between theory and practice. As the folklore tells us, there is a big difference. There are
already many books on the theory, and often as not, they end in only one or a few applications
in the author’s specialty. In this book on practice, we examine data and results from many
diverse applications. I have adopted the discipline of suppressing theoretical curiosities until I
find data that requires it (except for a few concepts at chapter ends).

Books on geophysical inverse theory tend to address theoretical topics that are little used
in practice. Foremost is probability theory. In practice, probabilities are neither observed nor
derived from observations. For more than a handful of variables, it would not be practical
to display joint probabilities, even if we had them. If you are data poor, you might turn to
probabilities. If you are data rich, you have far too many more rewarding things to do. When
you estimate a few values, you ask about their standard deviations. When you have an image
making machine, you turn the knobs and make new images (and invent new knobs). Another
theory not needed here is singular-value decomposition.

In writing a book on the “practice of the difference between theory and practice" there is
no worry to be bogged down in the details of diverse specializations because the geophysi-
cal world has many interesting data sets that are easily analyzed with elementary physics and
simple geometry. (My specialization, reflection seismic imaging, has a great many less easily
explained applications too.) We find here many applications that have a great deal in com-
mon with one another, and that commonality is not a part of common inverse theory. Many
applications draw our attention to the importance of two weighting functions (one required
for data space and the other for model space). Solutions depend strongly on these weighting
functions (eigenvalues do too!). Where do these functions come from, from what rationale or
estimation procedure? We’ll see many examples here, and find that these functions are not
merely weights but filters. Even deeper, they are generally a combination of weights and fil-
ters. We do some tricky bookkeeping and bootstrapping when we filter the multidimensional
neighborhood of missing and/or suspicious data.

Are you aged 23? If so, this book is designed for you. Life has its discontinuities: when
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you enter school at age 5, when you leave university, when you marry, when you retire. The
discontinuity at age 23, mid graduate school, is when the world loses interest in your potential
to learn. Instead the world wants to know what you are accomplishing right now! This book
is about how to make images. It is theory and programs that you can use right now.

This book is not devoid of theory and abstraction. Indeed it makes an important new
contribution to the theory (and practice) of data analysis: multidimensional autoregression via
the helical coordinate system.

The biggest chore in the study of “the practice of the difference between theory and prac-
tice" is that we must look at algorithms. Some of them are short and sweet, but other important
algorithms are complicated and ugly in any language. This book can be printed without the
computer programs and their surrounding paragraphs, or you can read it without them. I
suggest, however, you take a few moments to try to read each program. If you can write in
any computer language, you should be able to read these programs well enough to grasp the
concept of each, to understand what goes in and what should come out. I have chosen the
computer language (more on this later) that I believe is best suited for our journey through the
“elementary” examples in geophysical image estimation.

Besides the tutorial value of the programs, if you can read them, you will know exactly
how the many interesting illustrations in this book were computed so you will be well equipped
to move forward in your own direction.

THANKS

2006 is my fourteenth year of working on this book and much of it comes from earlier work
and the experience of four previous books. In this book, as in my previous books, I owe a
great deal to the many students at the Stanford Exploration Project. I would like to mention
some with particularly notable contributions (in approximate historical order).

The concept of this book began along with the PhD thesis of Jeff Thorson. Before that,
we imagers thought of our field as "an hoc collection of good ideas" instead of as "adjoints of
forward problems". Bill Harlan understood most of the preconditioning issues long before I
did. All of us have a longstanding debt to Rick Ottolini who built a cube movie program long
before anyone else in the industry had such a blessing.

My first book was built with a typewriter and ancient technologies. In early days each
illustration would be prepared without reusing packaged code. In assembling my second book
I found I needed to develop common threads and code them only once and make this code sys-
tematic and if not idiot proof, then “idiot resistant”. My early attempts to introduce “sepl i b”
were not widely welcomed until Stew Levin rebuilt everything making it much more robust.
My second book was typed in the troff text language. I am indebted to Kamal Al-Yahya who
not only converted that book to I&IEX, but who wrote a general-purpose conversion program
that became used internationally.

Early days were a total chaos of plot languages. I and all the others at SEP are deeply
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indebted to Joe Dellinger who starting from work of Dave Hale, produced our internal plot
language “vplot” which gave us reproducibiliy and continuity over decades. Now, for exam-
ple, our plots seamlessly may be directed to postscript (and PDF), Xwindow, or the web. My
second book required that illustrations be literally taped onto the sheet containing the words.
All of us benefitted immensely from the work of Steve Cole who converted Joe’s vplot lan-
guage to postscript which was automatically integrated with the text.

When I began my third book I was adapting liberally from earlier work. I began to realize
the importance of being able to reproduce any earlier calculation and began building rules and
file-naming conventions for “reproducible research”. This would have been impossible were
it not for Dave Nichols who introduced cake, a variant of the UNIX software building pro-
gram neke. Martin Karrenbach continued the construction of our invention of “reproducible
research” and extended it to producing reproducible research reports on CD-ROM, an idea
well ahead of its time. Some projects were fantastic for their time but had the misfortune of
not being widely adopted, ultimately becoming unsupportable. In this catagory was Dave and
Martin’s implementation xt ex, a magnificent way of embedding reproducible research in an
electronic textbook. When cake suffered the same fate as xt ex, Matthias Schwab saved us
from mainstream isolation by bringing our build procedures into the popular GNU world.

Coming to the present textbook I mention Bob Clapp. He made numerous contributions.
When Fortran77 was replaced by Fortran90, he rewrote Ratfor. For many years I (and many
of us) depended on Ratfor as our interface to Fortran and as a way of presenting uncluttered
code. Bob rewrote Ratfor from scratch merging it with other SEP-specific software tools (Sat)
making Ratfor90. Bob prepared the interval-velocity examples in this book. Bob also devel-
oped most of the “geostat” ideas and examples in this book. Morgan Brown introduced the
texture examples that we find so charming. Paul Sava totally revised the book’s presentation
of least-squares solvers making them more palatable to students and making more honest our
claim that in each case the results you see were produced by the code you see.

One name needs to be singled out. Sergey Fomel converted all the examples in this book
from my original Fortran 77 to a much needed modern style of Fortran 90. After I discovered
the helix idea and its wide-ranging utility, he adapted all the relevant examples in this book
to use it. If you read Fomel’s programs, you can learn effective application of that 1990’s
revolution in coding style known as “object orientation.”

This electronic book, “Geophysical Exploration by Example,” is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version. This book is distributed
in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details. You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Massachusetts Ave., Cambridge, MA
02139, USA.

©Jon Claerbout
February 28, 2006
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Overview

This book is about the estimation and construction of geophysical images. Geophysical images
are used to visualize petroleum and mineral resource prospects, subsurface water, contaminent
transport (environmental pollution), archeology, lost treasure, even graves.

Here we follow physical measurements from a wide variety of geophysical sounding de-
vices to a geophysical image, a 1-, 2-, or 3-dimensional Cartesian mesh that is easily trans-
formed to a graph, map image, or computer movie. A later more human, application-specific
stage (not addressed here) interprets and annotates the images; that stage places the “x” where
you will drill, dig, dive, or merely dream.

Image estimation is a subset of “geophysical inverse theory,” itself a kind of “theory of
how to find everything.” In contrast to “everything,” images have an organized structure (co-
variance) that makes their estimation more concrete and visual, and leads to the appealing
results we find here.

Geophysical sounding data used in this book comes from acoustics, radar, and seismology.
Sounders are operated along tracks on the earth surface (or tracks in the ocean, air, or space). A
basic goal of data processing is an image that shows the earth itself, not an image of our data-
acquisition tracks. We want to hide our data acquisition footprint. Increasingly, geophysicists
are being asked to measure changes in the earth by comparing old surveys to new ones. Then
we are involved with both the old survey tracks and new ones, as well as technological changes
between old sounders and new ones.

To enable this book to move rapidly along from one application to another, we avoid appli-
cations where the transform from model to data is mathematically complicated, but we include
the central techniques of constructing the adjoint of any such complicated transformation. By
setting aside application-specific complications, we soon uncover and deal with universal dif-
ficulties such as: (1) irregular geometry of recording, (2) locations where no recording took
place and, (3) locations where crossing tracks made inconsistant measurements because of
noise. Noise itself comes in three flavors: (1) drift (zero to low frequency), (2) white or steady
and stationary broad band, and (3) bursty, i.e., large and erratic.

Missing data and inconsistant data are two humble, though universal problems. Because
they are universal problems, science and engineering have produced a cornucopia of ideas
ranging from mathematics (Hilbert adjoint) to statistics (inverse covariance) to conceptual
(stationary, scale-invariant) to numerical analysis (conjugate direction, preconditioner) to com-
puter science (object oriented) to simple common sense. Our guide through this maze of op-
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portunities and digressions is the test of what works on real data, what will make a better
image. My logic for organizing the book is simply this: Easy results first. Harder results later.
Undemonstrated ideas last or not at all, and latter parts of chapters can be skimmed.

Examples here are mostly nonseismological although my closest colleagues and I mostly
make images from seismological data. The construction of 3-D subsurface landform images
from seismological data is an aggressive industry, a complex and competitive place where it is
not easy to build yourself a niche. I wrote this book because I found that beginning researchers
were often caught between high expectations and concrete realities. They invent a new process
to build a novel image but they have many frustrations: (1) lack of computer power, (2) data-
acquisition limitations (gaps, tracks, noises), or (3) they see chaotic noise and have difficulty
discerning whether the noise represents chaos in the earth, chaos in the data acquisition, chaos
in the numerical analysis, or unrealistic expectations.

People need more practice with easier problems like the ones found in this book, which
are mostly simple 2-D landforms derived from 2-D data. Such concrete estimation problems
are solved quickly, and their visual results provide experience in recognizing weaknesses,
reformulating, and moving forward again. Many small steps reach a mountain top.

Scaling up to big problems

Although most the examples in this book are presented as toys, where results are obtained
in a few minutes on a home computer, we have serious industrial-scale jobs always in the
backs of our minds. This forces us to avoid representing operators as matrices. Instead we
represent operators as a pair of subroutines, one to apply the operator and one to apply the
adjoint (transpose matrix). (This will be more clear when you reach the middle of chapter 2.)

By taking a function-pair approach to operators instead of a matrix approach, this book
becomes a guide to practical work on realistic-sized data sets. By realistic, | mean as large
and larger than those here; i.e., data ranging over two or more dimensions, and the data space
and model space sizes being larger than about 10° elements, about a 300 x 300 image. Even
for these, the world’s biggest computer would be required to hold in random access memory
the 10° x 10° matrix linking data and image. Mathematica, Matlab, kriging, etc, are nice tools
but! it was no surprise when a curious student tried to apply one to an example from this
book and discovered that he needed to abandon 99.6% of the data to make it work. Matrix
methods are limited not only by the size of the matrices but also by the fact that the cost to
multiply or invert is proportional to the third power of the size. For simple experimental work,
this limits the matrix approach to data and images of about 4000 elements, a low-resolution
64 x 64 image.

IT do not mean to imply that these tools cannot be used in the function-pair style of this book, only that
beginners tend to use a matrix approach.



CONTENTS vii

0.0.1 Computer Languages

One feature of this book is that it teaches how to use "object programming". Older languages
like Fortran 77, Matlab, C, and Visual Basic, are not object-oriented languages. The introduc-
tion of object-oriented languages like C++, Java, and Fortran 90 a couple decades back greatly
simplified many application programs. An earlier version of this book used Fortran 77. I had
the regrettable experience that issues of Geophysics were constantly being mixed in the same
program as issues of Mathematics. This is easily avoided in object-based languages. For ease
of debugging and for ease of understanding, we want to keep the mathematical technicalities
away from the geophysical technicalities. This is called "information hiding".

In the older languages it is easy for a geophysical application program to call a mathe-
matical subroutine. That is new code calling old code. The applications we encounter in this
book require the opposite, old optimization code written by someone with a mathematical hat
calling linear operator code written by someone with a geophysical hat. The older code must
handle objects of considerable complexity only now being built by the newer code. It must
handle them as objects without knowing what is inside them. Linear operators are concep-
tually just matrix multiply (and its transpose), but concretely they are not simply matrices.
While a matrix is simply a two-dimensional array, a sparse matrix may be specified by many
components.

The newer languages allow information hiding but a price paid, from my view as a text-
book author, is that the codes are longer, hence make the book uglier. Many more initial lines
of code are taken up by definitions and declarations making my simple textbook codes about
twice as lengthy as in the older languages. This is not a disadvantage for the reader who can
rapidly skim over what soon become familiar definitions.

Of the three object-based languages available, I chose Fortran because, as its name implies,
it looks most like mathematics. Fortran has excellent primary support for multidimensional
cartesian arrays and complex numbers, unlike Java and C++. Fortran, while looked down upon
by the computer science community, is the language of choice among physicists, mechanical
engineers, and numerical analysts. While our work is certainly complex, in computer science
their complexity is more diverse.

The Loptran computer dialect

Along with theory, illustrations, and discussion, I display the programs that created the illus-
trations. To reduce verbosity in these programs, my colleagues and I have invented a little
language called Loptran that is readily translated to Fortran 90. I believe readers without For-
tran experience will comfortably be able to read Loptran, but they should consult a Fortran
book if they plan to write it. Loptran is not a new language compiler but a simple text pro-
cessor that expands concise scientific language into the more verbose expressions required by
Fortran 90.

The name Loptran denotes Linear OPerator TRANslator. The limitation of Fortran 77
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overcome by Fortran 90 and Loptran is that we can now isolate natural science application
code from computer science least-squares fitting code, thus enabling practitioners in both dis-
ciplines to have more ready access to one anothers intellectual product.

Fortran is the original language shared by scientific computer applications. The people
who invented C and UNIX also made Fortran more readable by their invention of Ratfor?.
Sergey Fomel, Bob Clapp, and I have taken the good ideas from original Ratfor and merged
them with concepts of linear operators to make Loptran, a language with much the syntax of
modern languages like C++ and Java. Loptran is a small and simple adaptation of well-tested
languages, and translates to one. Loptran is, however, new in 1998 and is not yet widely used.

To help make everyone comfortable with Loptran as a generic algorithmic language, this
book avoids special features of Fortran. This should make it easier for some of you to translate
to your favorite language, such as Matlab, Java, C, or C++.

We provide the Loptran translator free. It is written in another free language, PERL, and
therefore should be available free to nearly everyone. If you prefer not to use Ratfor90 and
Loptran, you can find on the WWW? the Fortran 90 version of the programs in this book.

Reproducibility

Earlier versions of this series of electronic books were distributed on CD-ROM. The idea is
that each computed figure in the book has in its caption a menu allowing the reader to burn
and rebuild the figures (and movies). This idea persists in the Web book versions (as do the
movies) except that now the more difficult task of installing the basic Stanford libraries is the
obligation of the reader. Hopefully, as computers mature, this obstacle will be less formidable.
Anyway, these libraries are also offered free on our web site.

Preview for inverse theorists

People who are already familiar with “geophysical inverse theory” may wonder what new
they can gain from a book focused on “estimation of images.” Given a matrix relation d = Fm
between model m and data d, common sense suggests that practitioners should find m in
order to minimize the length ||r|| of the residual r = Fm —d. A theory of Gauss suggests that
a better (minimum variance, unbiased) estimate results from minimizing the quadratic form
I'o;;'r, where o, is the noise covariance matrix. I have never seen an application in which
the noise covariance matrix was given, but practitioners often find ways to estimate it: they
regard various sums as ensemble averages.

Additional features of inverse theory are exhibited by the partitioned matrix
d; 0 0 Mg
d — mcons } — [ } [ t ] — Fm 1
|: dconsis B 0O Mpun M

Zhttp://sepwww.stanford.edu/sep/bob/src/ratfor90.html
3http://sepwww.stanford.edu/sep/prof/gee/Lib/




CONTENTS ix

which shows that a portion diycons Of the data should vanish for any model m, so an observed
nonvanishing dincons i inconsistent with any theoretical model m. Likewise the My, part of
the model space makes no contribution to the data space, so it seems not knowable from the
data.

Simple inverse theory suggests we should minimize ||m|| which amounts to setting the null
space to zero. Baysian inverse theory says we should use the model covariance matrix omm
and minimize Mo, 1 m for a better answer although it would include some nonzero portion of
the null space. Never have I seen an application in which the model-covariance matrix was a
given prior. Specifying or estimating it is a puzzle for experimentalists. For example, when a
model space m is a signal (having components that are a function of time) or, a stratified earth
model (with components that are function of depth z) we might supplement the fitting goal
0~ r =Fm—d with a “minimum wiggliness” goal like dm(z)/dz ~ 0. Neither the model
covariance matrix nor the null space my,;; seems learnable from the data and equation (0.1).

In fact, both the null space and the model covariance matrix can be estimated from the
data and that is one of the novelties of this book. To convince you it is possible (without
launching into the main body of the book), I offer a simple example of an operator and data
set from which your human intuition will immediately tell you what you want for the whole
model space, including the null space. Consider the data to be a sinusoidal function of time
(or depth) and take B = | so that the operator F is a delay operator with truncation of the
signal shifted off the end of the space. Solving for mg,, the findable part of the model, you
get a back-shifted sinusoid. Your human intuition, not any mathematics here, tells you that the
truncated part of the model, m,,y, should be a logical continuation of the sinusoid Mg, at the
same frequency. It should not have a different frequency nor become a square wave nor be a
sinusoid abruptly truncated to zero My, = 0.

Prior knowledge exploited in this book is that unknowns are functions of time and space
(so the covariance matrix has known structure). This structure gives them predictability.
Predictable functions in 1-D are tides, in 2-D are lines on images (linements), in 3-D are sedi-
mentary layers, and in 4-D are wavefronts. The tool we need to best handle this predictability
is the multidimensional “prediction-error filter” (PEF), a central theme of this book.
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Chapter 1

Basic operators and adjoints

A great many of the calculations we do in science and engineering are really matrix mul-
tiplication in disguise. The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how the adjoint operator (matrix transpose) back projects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or make
images) from the data. Logically, the adjoint is the first step and a part of all subsequent steps
in this inversion process. Surprisingly, in practice the adjoint sometimes does a better job than
the inverse! This is because the adjoint operator tolerates imperfections in the data and does
not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship be-
tween operators in general and their adjoints, you can obtain the adjoint just as soon as you
have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate

truncate zero pad

replicate, scatter, spray sum or stack

spray into neighborhoods sum within bins

derivative (slope) negative derivative

causal integration anticausal integration

add functions do integrals

assignment statements added terms

plane-wave superposition slant stack / beam form

superpose curves sum along a curve

stretch squeeze

scalar field gradient negative of vector field divergence



2 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

upward continue downward continue
diffraction modeling imaging by migration
hyperbola modeling CDP stacking

ray tracing tomography

The left column above is often called “modeling,” and the adjoint operators on the right
are often used in “data processing.”

When the adjoint operator is not an adequate approximation to the inverse, then you apply
the techniques of fitting and optimization explained in Chapter 2. These techniques require
iterative use of the modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection” operator because infor-
mation propagated in one direction (earth to data) is projected backward (data to earth model).
Using complex-valued operators, the transpose and complex conjugate go together; and in
Fourier analysis, taking the complex conjugate of exp(iwt) reverses the sense of time. With
more poetic license, I say that adjoint operators undo the time and phase shifts of modeling
operators. The inverse operator does this too, but it also divides out the color. For example,
when linear interpolation is done, then high frequencies are smoothed out, so inverse inter-
polation must restore them. You can imagine the possibilities for noise amplification. That
is why adjoints are safer than inverses. But nature determines in each application what is the
best operator to use, and whether to stop after the adjoint, to go the whole way to the inverse,
or to stop partway.

The operators and adjoints above transform vectors to other vectors. They also transform
data planes to model planes, volumes, etc. A mathematical operator transforms an “abstract
vector” which might be packed full of volumes of information like television signals (time
series) can pack together a movie, a sequence of frames. We can always think of the operator
as being a matrix but the matrix can be truly huge (and nearly empty). When the vectors
transformed by the matrices are large like geophysical data set sizes then the matrix sizes
are “large squared,” far too big for computers. Thus although we can always think of an
operator as a matrix, in practice, we handle an operator differently. Each practical application
requires the practitioner to prepare two computer programs. One performs the matrix multiply
y = AX and another multiplys by the transpose X = A’y (without ever having the matrix itself
in memory). It is always easy to transpose a matrix. It is less easy to take a computer program
that does y = Ax and convert it to another to do X = A'y. In this chapter are many examples of
increasing complexity. At the end of the chapter we will see a test for any program pair to see
whether the operators A and A’ are mutually adjoint as they should be. Doing the job correctly
(coding adjoints without making approximations) will reward us later when we tackle model
and image estimation problems.



1.0.1 Programming linear operators

The operation y; = Zj bijXj is the multiplication of a matrix B by a vector X. The adjoint
operation is Xj = ) ; bjj yi. The operation adjoint to multiplication by a matrix is multiplication
by the transposed matrix (unless the matrix has complex elements, in which case we need the
complex-conjugated transpose). The following pseudocode does matrix multiplication y = BX
and multiplication by the transpose X = B'y:

if adjoint
then erase x
if operator itself
then erase y

doiy =1, ny {
doix=1,nx {
if adjoint

x(ix) = x(ix) + b(iy,ix) x y(iy)
if operator itself

y(iy) = y(iy) + b(iy,ix) x x(ix)
Iy

Notice that the “bottom line” in the program is that X and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the adjoint and the operator itself.

Next we restate the matrix-multiply pseudo code in real code, in a language called Lop-
tran!, a language designed for exposition and research in model fitting and optimization in
physical sciences. The module mat nul t for matrix multiply and its adjoint exhibits the style
that we will use repeatedly. At last count there were 53 such routines (operator with adjoint)
in this book alone.

modul e matmul t { # matrix nultiply and its adjoint

real, dinmension (:,:), pointer :: bb

#% _init( bb)

#% _lop( X, vy)

integer ix, iy

do ix= 1, size(x) {

do iy=1, size(y) {
if( adj)

x(i x)

x(ix) + bb(iy,ix) * y(iy)
el se

y(iy) =y(iy) + bb(iy,ix) * x(ix)
1}

IThe programming language, Loptran, is based on a dialect of Fortran called Ratfor. For more details, see
Appendix A.
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Notice that the module mat mul t does not explicitly erase its output before it begins, as does
the psuedo code. That is because Loptran will always erase for you the space required for the
operator’s output. Loptran also defines a logical variable adj for you to distinguish your com-
putation of the adjoint x=x+B' *y from the forward operation y=y+B* x. In computerese, the two
lines beginning #% are macro expansions that take compact bits of information which expand
into the verbose boilerplate that Fortran requires. Loptran is Fortran with these macro expan-
sions. You can always see how they expand by looking atht t p: / / sep. st anf or d. edu/ sep/ prof / gee/ Li b/ .

What is new in Fortran 90, and will be a big help to us, is that instead of a subroutine
with a single entry, we now have a module with two entries, one named _i ni t for the physical
scientist who defines the physical problem by defining the matrix, and another named _| op for
the least-squares problem solver, the computer scientist who will not be interested in how we
specify B, but who will be iteratively computing Bx and B’y to optimize the model fitting. The
lines beginning with #%are expanded by Loptran into more verbose and distracting Fortran 90
code. The second line in the module mat nul t, however, is pure Fortran syntax saying that bb
is a pointer to a real-valued matrix.

To use mat nul t, two calls must be made, the first one

call matnult_init( bb)

is done by the physical scientist after he or she has prepared the matrix. Most later calls will
be done by numerical analysts in solving code like in Chapter 2. These calls look like

stat = matmult_lop( adj, add, x, y)

where adj is the logical variable saying whether we desire the adjoint or the operator itself,
and where add is a logical variable saying whether we want to accumulate like y <— y + BX
or whether we want to erase first and thus do y <— BX. The return value st at is an integer
parameter, mostly useless (unless you want to use it for error codes).

Operator initialization often allocates memory. To release this memory, you can cal |
mat nul t _cl ose() although in this case nothing really happens.

We split operators into two independent processes, the first is used for geophysical set up
while the second is invoked by mathematical library code (introduced in the next chapter) to
find the model that best fits the data. Here is why we do so. It is important that the math code
contain nothing about the geophysical particulars. This enables us to use the same math code
on many different geophysical problems. This concept of “information hiding” arrived late
in human understanding of what is desireable in a computer language. This feature alone is
valuable enough to warrant upgrading from Fortran 77 to Fortran 90, and likewise from C to
C++. Subroutines and functions are the way that new programs use old ones. Object modules
are the way that old programs (math solvers) are able to use new ones (geophysical operators).
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1.1 FAMILIAR OPERATORS

The simplest and most fundamental linear operators arise when a matrix operator reduces to a
simple row or a column.

A Trow isasummation operation.

A column is an impulse response.

If the inner loop of a matrix multiply ranges within a
row, the operator is called sum or pull.
column, the operator is called spray or push.

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column matrix
operator. For example, the row operator [a,b]

y = [ab][xl] = ax;+bx; (1.1)
X2

has an adjoint that is two assignments:

el = ) a2

The adjoint of a sum of N terms is a collection of N assignments.

1.1.1 Adjoint derivative

In numerical analysis we represent the derivative a time function by a finite difference. We do
this by subtracting each two neighboring time points and then dividing by the sample interval
At. This amounts to convolution with the filter (1, —1)/At. Omitting the At we express this
concept as:

yi -1 1 ... X1
Y2 . -1 1 . . . X2
Y3 _ . . —1 1 . . X3
Vs - A X4 (1.3)
Vs . . . . =11 X5

| Y6 | . . . . . 0] L X |

The filter impulse response is seen in any column in the middle of the matrix, namely
(1,—1). In the transposed matrix, the filter-impulse response is time-reversed to (—1,1). So,
mathematically, we can say that the adjoint of the time derivative operation is the negative
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time derivative. This corresponds also to the fact that the complex conjugate of —iw is iw. We
can also speak of the adjoint of the boundary conditions: we might say that the adjoint of “no
boundary condition” is a “specified value” boundary condition. The last row in equation (1.3)
is optional. It may seem unnatural to append a null row, but it can be a small convenience
(when plotting) to have the input and output be the same size.

Equation (1.3) is implemented by the code in module i gr ad1 which does the operator itself
(the forward operator) and its adjoint.

nmodul e igradl { # gradient in one dinension
#% _lop( xx, yy)
integer i
do i=1, size(xx)-1 {
if( adj) {
xx(i+1)
xx(i )

}

xx(i+1) + yy(i) # resenbl es equation (1.2)
xx(i ) - yy(i)

el se
yy(i) = yy(i) + xx(i+1) - xx(i) # resenbl es equation (1.1)

The adjoint code may seem strange. It might seem more natural to code the adjoint to be the
negative of the operator itself and then make the special adjustments for the boundaries. The
code given, however, is correct and requires no adjustments at the ends. To see why, notice
for each value of i , the operator itself handles one row of equation (1.3) while for each i the
adjoint handles one column. That’s why coding the adjoint in this way does not require any
special work on the ends. The present method of coding reminds us that the adjoint of a sum
of N terms is a collection of N assignments.

The Ratfor90 dialect of Fortran allows us to write the inner code of the i gr adl module
more simply and symmetrically using the syntax of C, C++, and Java where expressions like
a=a+b can be written more tersely as a+=b. With this, the heart of module i gr ad1 becomes

if( adj) { xx(i+1) +=yy(i)

xx(i)  -=yy(i)
}
el se { yy(i) += xx(i+1)
yy(i)  -= xx(i)
}

where we see that each component of the matrix is handled both by the operator and the
adjoint. Think about the forward operator “pulling” a sum into yy(i), and think about the
adjoint operator “pushing” or “spraying” the impulse yy(i) back into xx().

Figure 1.1 illustrates the use of module i gr adl for each north-south line of a topographic
map. We observe that the gradient gives an impression of illumination from a low sun angle.
To apply i gradl along the 1-axis for each point on the 2-axis of a two-dimensional map, we
use the loop
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do iy=1, ny
stat = igradl_lop( adj, add, map(:,iy), ruf(:,iy))

On the other hand, to see the east-west gradient, we use the loop

do ix=1, nx
stat = igradl_lop( adj, add, map(ix,:), ruf(ix,:))

1.1.2 Transient convolution

The next operator we examine is convolution. It arises in many applications; and it could
be derived in many ways. A basic derivation is from the multiplication of two polynomials,
say X(Z) =X +X2Z + X322+ X4Z3 +X5Z* + X6 Z> times B(Z) =by +02Z + 0322 +byZ3 2
Identifying the k-th power of Z in the product Y (Z) = B(Z)X(Z) gives the k-th row of the
convolution transformation (1.4).

Yy ] by 0O 0 O O O 7
Y2 b, by 0 0 0 O X1 ]
Y3 b b, by 0 0 O X2
Y4 0 b3 bz b1 0 O X3

y = Ys - 0 O b3 b2 b1 0 X4 = Bx (1.4)

Yo 0O 0 O b3 b2 b1 Xs
Y7 0 0 0 O bs by | X6 _|

L Ys | . 0 0 0 0 O b3 _

Notice that columns of equation (1.4) all contain the same signal, but with different shifts.
This signal is called the filter’s impulse response.

Equation (1.4) could be rewritten as

Y1 ] X1 0 0 7
Y2 X2 X1 0
Y3 X3 X2 Xp b
Y4 X4 X3 X2

o= Ys N Xs X4 X3 Ei = Xb (15

Y6 Xe X5 Xq
y7 0 X6 Xs

L Ys [ 0 0 X

In applications we can choose between y = Xb and y = BX. In one case the output y is dual to
the filter b, and in the other case the output Y is dual to the input X. Sometimes we must solve

2This book is more involved with matrices than with Fourier analysis. If it were more Fourier analysis we
would choose notation to begin subscripts from zero like this: B(Z) =bg+bZ + b, Z2 4+ 073,
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for b and sometimes for X; so sometimes we use equation (1.5) and sometimes (1.4). Such

solutions begin from the adjoints. The adjoint of (1.4) is

Y1

[ R 7] B b1 b2 b; 0 0 0 O 0 7 Y2
R 0 b1 b2 b3 0O 0 0 O Y3
R3 . 0 O b1 b2 b3 0O 0 O Y4
R4 - 0O 0 O b1 b2 b3 0 O Ys
X5 0O 0 0 O b1 b2 b3 0 Yo

| X6 i L 0O 0 0 o0 0 b1 b2 b3 a Y7

L Ys

(1.6)

The adjoint crosscorrelates with the filter instead of convolving with it (because the filter is
backwards). Notice that each row in equation (1.6) contains all the filter coefficients and there
are no rows where the filter somehow uses zero values off the ends of the data as we saw
earlier. In some applications it is important not to assume zero values beyond the interval

where inputs are given.

The adjoint of (1.5) crosscorrelates a fixed portion of filter input across a variable portion

of filter output.

Y1
Y2
Y3
Y4
Ys
Yo
y7
L Y8

X1 X2 X3 X4 X5 X¢ 0 O
= 0 X; X2 X3 X4 X5 X¢ O
0 0 X3 X2 X3 X4 X5 Xg

o O O
W=
I

Module t cai 1 is used for y = Bx and module t caf 1 is used for y = Xb.

modul e tcai 1l { # Transi ent Convol ution Adjoint Input 1-D. yy(nil+nl)
real, dinmension (:), pointer :: bb

#% _init( bb)

#% _lop ( xXx, yy)

integer b, x, y

if( size(yy) < size (xx) + size(bb) - 1) call erexit('tcai’)

do b= 1, size(bb) {

do x= 1, size(xx) { y=x+b-1
if( adj) xx(x) += yy(y) * bb(b)
el se yy(y) += xx(x) * bb(b)
1}
}
modul e tcafl { # Transient Convolution, Adjoint is the Filter, 1-D
real, dinmension (:), pointer :: xx

#% _init( xx)
#% _lop ( bb, yy)

1.7)
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i nt eger X, b, y
if( size(yy) < size(xx) + size(bb) - 1) call erexit('tcaf’)
do b= 1, size(bb) {

do x= 1, size(xx) { y =x+b-1
if( adj) bb(b) += yy(y) * xx(x)
el se yy(y) += bb(b) * xx(x)

P}

The polynomials X(Z), B(Z),and Y (Z) are called Z transforms. An important fact in real
life (but not important here) is that the Z transforms are Fourier transforms in disguise. Each
polynomial is a sum of terms and the sum amounts to a Fourier sum when we take Z = e' @At
The very expression Y (Z) = B(Z)X(Z) says that a product in the frequency domain (Z has
a numerical value) is a convolution in the time domain (that’s how we multipy polynomials,
convolve their coefficients).

1.1.3 Internal convolution

Convolution is the computational equivalent of ordinary linear differential operators (with
constant coefficients). Applications are vast, and end effects are important. Another choice
of data handling at ends is that zero data not be assumed beyond the interval where the data
is given. This is important in data where the crosscorrelation changes with time. Then it is
sometimes handled as constant in short time windows. Care must be taken that zero signal
values not be presumed off the ends of those short time windows; otherwise, the many ends of
the many short segments can overwhelm the results.

In the sets (1.4) and (1.5), the top two equations explicitly assume that the input data
vanishes before the interval on which it is given, and likewise at the bottom. Abandoning the
top two and bottom two equations in (1.5) we get:

Y3 X3 X2 Xp by
Yo | | X XX b, (1.8)
Ys X5 X4 X3 bs
Yo X6 X5 X4 )
The adjoint is
@1 X3 X4 X5 Xe 53
bz = X2 X3 X4 Xs y4 (1.9)
b3 X1 X2 Xz X4 \_ yz J

The difference between (1.9) and (1.7) is that here the adjoint crosscorrelates a fixed portion
of output across a variable portion of input, whereas with (1.7) the adjoint crosscorrelates a
fixed portion of input across a variable portion of output.

In practice we typically allocate equal space for input and output. Because the output is
shorter than the input, it could slide around in its allocated space, so its location is specified
by an additional parameter called its | ag.
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modul e icafl { # Internal Convolution, Adjoint is Filter. 1-D
integer :: lag
real, dinmension (:), pointer :: xx

#% _init ( xx, lag)
#% _lop ( bb, yy)
i nt eger X, b, y
do b= 1, size(bb) {
do y= 1+size(bb)-lag, size(yy)-lag+l { Xx=y - b + lag
if( adj) bb(b) += yy(y) * xx(x)
el se yy(y) += bb(b) * xx(x)
}

The value of | ag always used in this book is | ag=1. For | ag=1 the module i caf 1 implements
not equation (1.8) but (1.10):

B 0 0 0]
Ya 0 0 0
X3 Xp X by
Y3 _ 3 X2 Xp by (1.10)
Y4 Xa X3 X2 b
3
Ys X5 X4 X3
L Yo | | X6 X5 X4 |

It may seem a little odd to put the required zeros at the beginning of the output, but filters are
generally designed so that their strongest coefficient is the first, namely bb( 1) so the alignment
of input and output in equation (1.10) is the most common one.

The end effects of the convolution modules are summarized in Figure 1.2.

o [T TTTTITTTTTT

ﬁlterT

Figure 1.2: Example of convolution
end-effects. From top to bottom: in-
put; filter; output of tcai 1(); out-

_ _ ]
el R tcaﬂhrrmmmmi
lcall $7979792798019

1.1.4 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended data
(truncation). Let us see why this is so. Set a signal in a vector X, and then to make a longer
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vector Y, add some zeros at the end of X. This zero padding can be regarded as the matrix
multiplication

|
y = |:0:|X (1.11)

The matrix is simply an identity matrix | above a zero matrix 0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

x = [1 0]y (1.12)

So the transpose operation to zero padding data is simply truncating the data back to its orig-
inal length. Module zpadl below pads zeros on both ends of its input. Modules for two- and
three-dimensional padding are in the library named zpad2() and zpad3() .

modul e zpadl { # Zero pad. Surround data by zeros. 1-D
#% _lop( data, padd)

i nt eger p, d

do d= 1, size(data) { p =d + (size(padd)-size(data))/2

if( adj)

data(d) = data(d) + padd(p)
el se
padd(p) = padd(p) + data(d)

}

1.1.5 Adjoints of products are reverse-ordered products of adjoints

Here we examine an example of the general idea that adjoints of products are reverse-ordered
products of adjoints. For this example we use the Fourier transformation. No details of
Fourier transformation are given here and we merely use it as an example of a square matrix
F. We denote the complex-conjugate transpose (or adjoint) matrix with a prime, i.e., F’. The
adjoint arises naturally whenever we consider energy. The statement that Fourier transforms
conserve energy is Y'y = X'X where y = FX. Substituting gives F'F = |, which shows that the
inverse matrix to Fourier transform happens to be the complex conjugate of the transpose of
F.

With Fourier transforms, zero padding and truncation are especially prevalent. Most
modules transform a dataset of length of 2", whereas dataset lengths are often of length m x
100. The practical approach is therefore to pad given data with zeros. Padding followed by
Fourier transformation F can be expressed in matrix algebra as

Program = F |: ! ] (1.13)

According to matrix algebra, the transpose of a product, say AB = C, is the product C' = B'A’
in reverse order. So the adjoint routine is given by

Program’ = [I 0 ] F (1.14)
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Thus the adjoint routine truncates the data after the inverse Fourier transform. This concrete
example illustrates that common sense often represents the mathematical abstraction that ad-
joints of products are reverse-ordered products of adjoints. It is also nice to see a formal
mathematical notation for a practical necessity. Making an approximation need not lead to
collapse of all precise analysis.

1.1.6 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uniform
mesh or we record data on a uniform mesh. Typically we have a function f of time t or
depth z and we represent it by f (i z) corresponding to f(z;j) fori =1,2,3,...,n; where z; =
Zo+ (i — 1)Az. We sometimes need to handle depth as an integer counting variable i and
we sometimes need to handle it as a floating-point variable z. Conversion from the counting
variable to the floating-point variable is exact and is often seen in a computer idiom such as
either of

do iz=1, nz { z
doi3=1, n3{ x3

z0 + (iz-1) * dz
03 + (i3-1) * d3

The reverse conversion from the floating-point variable to the counting variable is inexact. The
easiest thing is to place it at the nearest neighbor. This is done by solving for i z, then adding
one half, and then rounding down to the nearest integer. The familiar computer idioms are:

iz .5 +1+(z- z0) / dz
1.5 + (z-20) [/ dz

1.5 + (x3 - 03) / d3

iz
i3

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with the
Fortran function NI NT() .

1.1.7 Data-push binning

Binning is putting data values in bins. Nearest-neighbor binning is an operator. There is both
a forward operator and its adjoint. Normally the model consists of values given on a uniform
mesh, and the data consists of pairs of numbers (ordinates at coordinates) sprinkled around in
the continuum (although sometimes the data is uniformly spaced and the model is not).

In both the forward and the adjoint operation, each data coordinate is examined and the
nearest mesh point (the bin) is found. For the forward operator, the value of the bin is added
to that of the data. The adjoint is the reverse: we add the value of the data to that of the bin.
Both are shown in two dimensions in module bi n2.
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nmodul e bin2 {
# Dat a- push binning in 2-D
integer :: ml, n?

real 11 0l,d1, 02,d2

real, dinmension (:,:), pointer :: xy
#% _init( ml, n2, o1, dl, 02, d2, xy)
#% lop ( mMm(ml,n2), dd (:))

i nt eger i1,i2, id

do id=1, size(dd) {
il=15+ (xy(id,1)-01)/d1
i2 =15+ (xy(id,2)-02)/d2
if( 1<=il && i l<=nl &&
1<=i 2 && i 2<=nP )
if( adj)

m(il,i2) = m(il,i2) + dd( id)

el se
dd( id)

dd( id) + m(il,i2)

The most typical application requires an additional step, inversion. In the inversion appli-
cations each bin contains a different number of data values. After the adjoint operation is
performed, the inverse operator divides the bin value by the number of points in the bin. It is
this inversion operator that is generally called binning. To find the number of data points in a
bin, we can simply apply the adjoint of bi n2 to pseudo data of all ones. To capture this idea
in an equation, let B denote the linear operator in which the bin value is sprayed to the data
values. The inverse operation, in which the data values in the bin are summed and divided by
the number in the bin, is represented by

m = diag(B'1)~'B'd (1.15)

Empty bins, of course, leave us a problem. That we’ll address in chapter 3. In Figure 1.3, the
empty bins contain zero values.

1.1.8 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier. When
we perform the forward operation, we take each data coordinate and see which two model
bin centers bracket it. Then we pick up the two bracketing model values and weight each of
them in proportion to their nearness to the data coordinate, and add them to get the data value
(ordinate). The adjoint operation is adding a data value back into the model vector; using the
same two weights, the adjoint distributes the data ordinate value between the two nearest bins
in the model vector. For example, suppose we have a data point near each end of the model
and a third data point exactly in the middle. Then for a model space 6 points long, as shown
in Figure 1.4, we have the operator in (1.16).
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Mo
do 73 M
d | ~ 1. 22 (1.16)
d, 55 3
My
| M5 |

The two weights in each row sum to unity. If a binning operator were used for the same data
and model, the binning operator would contain a “1.” in each row. In one dimension (as here),
data coordinates are often sorted into sequence, so that the matrix is crudely a diagonal matrix
like equation (1.16). If the data coordinates covered the model space uniformly, the adjoint
would roughly be the inverse. Otherwise, when data values pile up in some places and gaps
remain elsewhere, the adjoint would be far from the inverse.

Module | i nt 1 does linear interpolation and its adjoint. In chapters 3 and 6 we build inverse
operators.

# Near est - nei ghbor interpolation would do this: data = model( 1.5 + (t-t0)/dt)

# This is likewise but with _linear_ interpolation.
module lintl {

real :: ol,dl

real, dinmension (:), pointer :: coordinate

#% _init ( ol,dl, coordinate)
#% _lop ( nmm dd)

integer i, im id
real f, fx,gx
do id= 1, size(dd) {
f = (coordinate(id)-o0l)/d1; i=f imeE 1+
if( 1<=im&& inx size(m)) { fx=f-i; gx= 1.-fx
if( adj) {
mr(im ) += gx * dd(id)
m(i mel) +=  fx * dd(id)
}
el se

dd(id) += gx * mn(im) + fx * m(iml)

1.1.9 Spray and sum : scatter and gather

Perhaps the most common operation is the summing of many values to get one value. Its
adjoint operation takes a single input value and throws it out to a space of many values. The
summation operator is a row vector of ones. Its adjoint is a column vector of ones. In
one dimension this operator is almost too easy for us to bother showing a routine. But it is
more interesting in three dimensions, where we could be summing or spraying on any of three
subscripts, or even summing on some and spraying on others. In module spr aysum both input
and output are taken to be three-dimensional arrays. Externally, however, either could be a
scalar, vector, plane, or cube. For example, the internal array xx(n1, 1, n3) could be externally
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the matrix map(nil, n3). When module spraysumis given the input dimensions and output
dimensions stated below, the operations stated alongside are implied.

(nl,n2,n3)
(1,1,1)
(n1,1,1)
(1,n2,1)
(nl,n2,1)
(nl,n2,1)
(nl,n2,1)
(nl, n2,n3)

(1,1,1)
(nl,n2,n3)
(nl,n2,1)
(nl,n2,1)
(nl, n2,n3)
(n1,1,1)
(1,n2,1)
(nl, n2,n3)

Sum a cube into a value.

Spray a value into a cube.

Spray a column into a matrix.

Spray a row into a matrix.

Spray a plane into a cube.

Sum rows of a matrix into a column.
Sum columns of a matrix into a row.
Copy and add the whole cube.

If an axis is not of unit length on either input or output, then both lengths must be the same;
otherwise, there is an error. Normally, after (possibly) erasing the output, we simply loop over
all points on each axis, adding the input to the output. This implements either a copy or an
add, depending on the add parameter. It is either a spray, a sum, or a copy, according to the
specified axis lengths.

nmodul e spraysum {
integer :: nl, n2
#% _init( ni, n2,
#% _lop( xx(nl,n2,
integer i1,i2,i3,

n3, nt, n2, 8
n3, L, n2, n8)
n3), yy(nt, n2, n8))

x1,x2,x3, yl,y2,y3

# Spray or sumover 1,

2, and/or 3-axis.

if(nl!=1 && m!=1 & & nl !=nl) call erexit('spraysum nl,ml’)
if(n2!'=1 && nmM!l=1 && n2 !=nR) call erexit(’'spraysum n2,n2’)
if(n3!=1 && mM3!=1 & & n3 !=nB) call erexit(’'spraysum n3,n8")
do i3= 1, max0(n3, nB) { x3= min0(i 3, n3); y3= m n0(i 3, nB)
do i2=1, max0(n2, m2) { x2= mnO(i 2, n2); y2= m nO(i 2, n2)
do il1l= 1, max0(nl, m) { x1= mnO(i 1, nl); yl= mnO(i 1, m)
if( adj) xx(x1,x2,x3) += yy(yl,y2,y3)
el se yy(yl,y2,y3) += xx(x1,x2,x3)
11}
}

1.1.10 Causal and leaky integration

Causal integration is defined as

y®)

Leaky integration is defined as

y()

t

/

o0
/ X(t—1)e “*dr
0

X(r)dt (1.17)

e}

(1.18)

As a — 0, leaky integration becomes causal integration. The word “leaky” comes from elec-
trical circuit theory where the voltage on a capacitor would be the integral of the current if the
capacitor did not leak electrons.
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Sampling the time axis gives a matrix equation that we should call causal summation, but
we often call it causal integration. Equation (1.19) represents causal integration for p = 1 and
leaky integration for 0 < p < 1.

Yo 1 0 0 0 0 00 X0
Vi 0 1 0 0 0O 0O X1
Yo > p 1 0 0 0 0 X>
y = ¥3 = > p2 p 1 0 0 O X3 = Cx (1.19)
Y4 pt p> p2 p 1 00 X4
Ys o> pt pP P p 10 Xs
B L 0% o ot 0Pt o 1] L%

(The discrete world is related to the continuous by p = e ~%A% and in some applications, the
diagonal is 1/2 instead of 1.) Causal integration is the simplest prototype of a recursive op-
erator. The coding is trickier than that for the operators we considered earlier. Notice when
you compute Ys that it is the sum of 6 terms, but that this sum is more quickly computed as
Y5 = pY4 + Xs. Thus equation (1.19) is more efficiently thought of as the recursion

Vi = pVYie1+Xt t increasing (1.20)

(which may also be regarded as a numerical representation of the differential equation dy /dt +
y(1—p)/At =x(t).)

When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (1.19) than of (1.20). Let the matrix of equation (1.19) be called C. Transposing to get C’
and applying it to y gives us something back in the space of X, namely X = C'y. From it we
see that the adjoint calculation, if done recursively, needs to be done backwards, as in

Ri-1 = pXe+VYi-1 t decreasing (1.21)
Thus the adjoint of causal integration is anticausal integration.

A module to do these jobs is | eaki nt. The code for anticausal integration is not obvious
from the code for integration and the adjoint coding tricks we learned earlier. To understand
the adjoint, you need to inspect the detailed form of the expression X = C'y and take care to
get the ends correct. Figure 1.5 illustrates the program for p = 1.

modul e | eakint { # | eaky integration
real :: rho
#% _init( rho)
#% _lop ( xx, Vyy)
integer i, n
real tt
n =size (xx); tt = 0.
if( adj)
doi=n, 1, -1{ tt = rho*tt + yy(i)
xx(i) += tt
}
el se
doi=1, n{ tt = rho*tt + xx(i)
yy(i) += tt
}
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inl I
Figure 1.5: in1 is an input pulse. C Cinl L trrrTITIITIIIILY

inl is its causal integral. C inl is

the anticausal integral of the pulse. C'inl 99999710

i n2 is a separated doublet. Its causal
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integration is a negative box. CC i n2 C in2 tee19

is the double causal integral of i n2.
How can an equilateral triangle be C*in2
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Later we will consider equations to march wavefields up towards the earth’s surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth’s surface
and march down, a layer at a time, into the earth.

EXERCISES:

1 Consider the matrix

(1.22)

SO O OO O
S oo oD =~ O
SO O O = OO
S oo~ O OO
SO = O O OO
SO = O OO OO
—_ o O O O O O

and others like it with p in other locations. Show what combination of these matrices will
represent the leaky integration matrix in equation (1.19). What is the adjoint?

2 Modify the calculation in Figure 1.5 so that there is a triangle waveform on the bottom
TOW.

3 Notice that the triangle waveform is not time aligned with the input i n2. Force time
alignment with the operator C'C or CC'.

4 Modify | eaki nt on the facing page by changing the diagonal to contain 1/2 instead of 1.
Notice how time alignment changes in Figure 1.5.

1.1.11 Backsolving, polynomial division and deconvolution

Ordinary differential equations often lead us to the backsolving operator. For example, the
damped harmonic oscillator leads to a special case of equation (1.23) where (az,a4,---) = 0.
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There is a huge literature on finite-difference solutions of ordinary differential equations that
lead to equations of this type. Rather than derive such an equation on the basis of many
possible physical arrangements, we can begin from the filter transformation B in (1.4) but put
the matrix on the other side of the equation so our transformation can be called one of inversion
or backsubstitution. Let us also force the matrix B to be a square matrix by truncating it with
T=[l 0],say A=[l 0]B=TB. To link up with applications in later chapters, I specialize
to 1’s on the main diagonal and insert some bands of zeros.

1 0O 0 0 0 O Yo Xo
a; 1 0O 0 0 O O V1 X1
a a 1 0O 0 0 O Y2 X2
Ay = 0O aa agz 1 0 0 O Y3 = X3 = X (1.23)
0 0 a a 1 0 O Y4 X4
as 0 0 a a 1 O Vs X5
| 00 as 0 0 a a 1] L ye | X6 _

29 e

Algebraically, this operator goes under the various names, “backsolving”, “polynomial divi-
sion”, and “deconvolution”. The leaky integration transformation (1.19) is a simple example
of backsolving when a; = —p and a; = as = 0. To confirm this, you need to verify that the
matrices in (1.23) and (1.19) are mutually inverse.

A typical row in equation (1.23) says

Xt = Yo+ Y arir (1.24)

>0

Change the signs of all terms in equation (1.24) and move some terms to the opposite side

Vi o= X — ) Vi« (1.25)

>0
Equation (1.25) is a recursion to find y; from the values of y at earlier times.

In the same way that equation (1.4) can be interpreted as Y (Z) = B(Z)X(Z), equation
(1.23) can be interpreted as A(Z)Y (Z) = X(Z) which amounts to Y (Z) = X(Z)/A(Z). Thus,
convolution is amounts to polynomial multiplication while the backsubstitution we are doing
here is called deconvolution, and it amounts to polynomial division.

A causal operator is one that uses its present and past inputs to make its current output.
Anticausal operators use the future but not the past. Causal operators are generally associated
with lower triangular matrices and positive powers of Z, whereas anticausal operators are
associated with upper triangular matrices and negative powers of Z. A transformation like
equation (1.23) but with the transposed matrix would require us to run the recursive solution
the opposite direction in time, as we did with leaky integration.

A module to backsolve (1.23) is pol ydi v1.

nmodul e pol ydi vl { # Pol ynom al division (recursive filtering)
real, dinmension (:), pointer :: aa
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#% _init ( aa)
#% _lop ( xx, yy)
integer ia, ix, iy
real tt
if( adj)
do ix= size(xx), 1, -1 {

tt = yy( ix)
doia =1, mn( size(aa), size (xx) - ix) {
iy =ix +ia
tt -= aa( ia) * xx( iy)
}
xx( ix) = xx( ix) + tt
}
el se
do iy= 1, size(xx) {
tt = xx( iy)
doia =1, mn( size(aa), iy-1) {
ix =iy - ia
tt -= aa( ia) * yy( ix)
}
yy( iy) = yy( iy) +tt
}
}

The more complicated an operator, the more complicated is its adjoint. Given a trans-
formation from X to y that is TBy = X, we may wonder if the adjoint transform really is
(TBYR =y. It amounts to asking if the adjoint of y = (TB)"!x is = ((TB)')~'y. Mathe-
matically we are asking if the inverse of a transpose is the transpose of the inverse. This is
so because in AA~! =1 =1 = (A~!YA’ the parenthesized object must be the inverse of its
neighbor A'.

The adjoint has a meaning which is nonphysical. It is like the forward operator except that
we must begin at the final time and revert towards the first. The adjoint pendulum damps as
we compute it backward in time, but that, of course, means that the adjoint pendulum diverges
as it is viewed moving forward in time.

1.1.12 The basic low-cut filter

Many geophysical measurements contain very low-frequency noise called “drift.” For exam-
ple, it might take some months to survey the depth of a lake. Meanwhile, rainfall or evapora-
tion could change the lake level so that new survey lines become inconsistent with old ones.
Likewise, gravimeters are sensitive to atmospheric pressure, which changes with the weather.
A magnetic survey of an archeological site would need to contend with the fact that the earth’s
main magnetic field is changing randomly through time while the survey is being done. Such
noises are sometimes called “secular noise.”

The simplest way to eliminate low frequency noise is to take a time derivative. A disadvan-
tage is that the derivative changes the waveform from a pulse to a doublet (finite difference).
Here we examine the most basic low-cut filter. It preserves the waveform at high frequencies;
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it has an adjustable parameter for choosing the bandwidth of the low cut; and it is causal (uses
the past but not the future).

We make our causal lowcut filter (highpass filter) by two stages which can be done in
either order.

1. Apply a time derivative, actually a finite difference, convolving the data with (1, —1).

2. Integrate, actually to do a leaky integration, to deconvolve with (1, —p) where numeri-
cally, p is slightly less than unity.

The convolution ensures that the zero frequency is removed. The leaky integration almost
undoes the differentiation (but does not restore the zero frequency). Adjusting the numerical
value of p adjusts the cutoff frequency of the filter. To learn the impulse response of the com-
bined processes, we need to convolve the finite difference (1, —1) with the leaky integration
(1,p,p% p3, p% ). The result is (1, p, p2, p>, p*,---) minus (0, 1, p, p2, p>,- - -). We can think
of this as (1,0,0,0,0,---) minus (1 — p)(1, p, p2, p>, - --). In other words the impulse response
is an impulse followed by the negative of a weak (1 — p) decaying exponential p!. Roughly
speaking, the cutoff frequency of the filter corresponds to matching one wavelength to the
exponential decay time.

Some exercise with Fourier transforms or Z-transforms?, shows the Fourier transform of
this highpass filter filter to be

1-7
HD) = {7 = 1= =p)2' +pZ>+p°Z° +p 2% -] (1.26)

where the unit-delay operator is Z = €'“! and where w is the frequency. A symmetical
(noncausal) lowcut filter would filter once forward with H(Z) and once backwards (adjoint)
with H(1/Z). This is not the place for a detailed Fourier analysis of this filter but it is the place
to mention that a cutoff filter is typically specified by its cutoff frequency, a frequency that
separates the pass and reject region. For this filter, the cutoff frequency wp would correspond
to matching a quarter wavelength of a sinusoid to the exponential decay length of pX, namely,
say the value of k for which p* &~ 1/2

Seismological data is more complex. A single “measurement” consists of an explosion
and echo signals recorded at many locations. As before, a complete survey is a track (or
tracks) of explosion locations. Thus, in seismology, data space is higher dimensional. Its
most troublesome noise is not simply low frequency; it is low velocity. We will do more with
multidimensional data in later chapters.

EXERCISES:

1 Give an analytic expression for the waveform of equation (1.26).

3 An introduction to Z-transforms is found in my earlier books, FGDP and ESA-PVI.
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2 Define a low-pass filter as 1 — H(Z). What is the low-pass impulse response?

3 Put Galilee data on a coarse mesh. Consider north-south lines as one-dimensional signals.
Find the value of p for which H is the most pleasing filter.

4 Find the value of p for which H H is the most pleasing filter.

5 Find the value of p for which H applied to Galilee has minimum energy. (Experiment
with a range of about ten values around your favorite value.)

6 Find the value of p for which HH applied to Galilee has minimum energy.

7 Repeat above for east-west lines.

west—east,km west—east,km

198 200 202 204 206 208 210 212 198 200 202 204 206 208 210 212
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Figure 1.6: The depth of the Sea of Galilee after roughening. |ajt-galocut90 |[ER,M]

1.1.13 Nearest-neighbor normal moveout (NMO)

Normal-moveout correction (NMO) is a geometrical correction of reflection seismic data that
stretches the time axis so that data recorded at nonzero separation X, of shot and receiver, after
stretching, appears to be at Xg = 0. NMO correction is roughly like time-to-depth conversion
with the equation vit2 =224 X%. After the data at X is stretched from t to z, it should look
like stretched data from any other X (assuming these are plane horizontal reflectors, etc.). In
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practice, z is not used; rather, traveltime depth 7 is used, where t = z/v; so t2=1724 Xg/vz.
(Because of the limited alphabet of programming languages, I often use the keystroke z to
denote t.)

Typically, many receivers record each shot. Each seismogram can be transformed by NMO
and the results all added. This is called “stacking” or “NMO stacking.” The adjoint to this
operation is to begin from a model which ideally is the zero-offset trace and spray this model to
all offsets. From a matrix viewpoint, stacking is like a row vector of normal moveout operators
and modeling is like a column. An example is shown in Figure 1.7.

Model W m
[T, [T,
[T, I
[ [T
[ [T
. . ] [mm
Figure 1.7: Hypothetical model, Synthe- I [
synthetic data, and model image. tie data I . [
[ER) —
1
1
Image Amd MM

0 0.5 1 1.5 2 2.5 3 35 4
time,sec

A module that does reverse moveout is hypot enusei . Given a zero-offset trace, it makes
another at non-zero offset. The adjoint does the usual normal moveout correction.

nmodul e hypot enusei { # I nverse normal noveout
integer :: nt

integer, dinension (nt), allocatable :: iz

#% _init( nt, tO, dt, xs)

integer it

real t0, dt, xs, t, zsquared
doit=1, nt { t =10 + dt*(it-1)
zsquared = t * t - XS * Xxs
if ( zsquared >= 0.)
iz (it) = 1.5 + (sqrt( zsquared) - t0) /dt

el se
iz (it) =0
}
#% _l op( zz, tt)
i nt eger it

doit=1, nt {
if (iz (it) >0) {
if( adj) zz(iz(it)) += tt( it )
el se tt(it) += zz( iz(it))

My 1992 textbook (PVI) illustrates many additional features of normal moveout.) A compan-
ion routine i mospr ay loops over offsets and makes a trace for each. The adjoint of i nospr ay
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is the industrial process of moveout and stack.

nmodul e i mospray { # inverse noveout and spray into a gather
use hypot enuse
real :: x0,dx, tO,dt
integer :: nx,nt
#% _init (slow, xO0,dx, tO0,dt, nt,nx)
real slow

x0 = x0*sl ow
dx = dx*sl ow
#% _lop( stack(nt), gat her (nt, nx))
integer ix, stat
do ix=1, nx {
call hypotenusei _init ( nt, t0, dt, x0 + dx*(ix-1))
stat = hypotenusei lop ( adj, .true., stack, gather(:,ix))

}

call hypotenusei _close ()

}

This is the first time we have built an operator (moveout and stack) from a collection of
other operators (moveout at various offsets) and there are new possibilities for confusion and
program bugs. As earlier with the matrix multiplication operator, to use the i mospr ay operator,
there are two steps, one that we use to set things up

cal i mospray_init( slow, x0,dx, tO,dt, nt,nx)
and another step that we use a lot in the next chapter for analysis and data fitting.
stat = inospray_lop( adj, add, stack, gather)

Later we’ll see programs that are not operators. Every program that is an operator (contains #%
_init and #% _| op) is expanded by Loptran to a longer Fortran code where the _| op function
begins by (potentially) erasing the output (when add=. f al se. ). This potential erasing is done
in both hypot enusei and i mospray. Consider the the adjoint of spraying which is stacking.
Here the occurance of the add=.true. in i nmospray assures we do not erase the stack each
time we add in another trace. Because of Loptran we don’t explicitly see that i nospray_| op
has its own potential erase of its output which we’d turn off if we wanted to add one stack
upon another.

1.1.14 Coding chains and arrays

With a collection of operators, we can build more elaborate operators. One method is chain-
ing. For example, the operator product A = BC is represented in the subroutine chai n2(
opl, op2, ...).Likewise the operator product A = BCD is represented in the in the subrou-
tine chai n3( opl, op2, op3,...). Another way to make more elaborate operators is to put
operators in a matrix such as subroutine ar r ay also in module snal | chai n2.
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nmodul e chai nl_nod {
| ogi cal, paraneter, private :: T = .true., F = .fal se
interface chain0O
nmodul e procedure chai n20
nmodul e procedure chai n30
end interface
cont ai ns
subrouti ne rowd(opl, op2, adj,add, nl, n2, d, eps) { # RONV d = Aml+epsBn?2
interface {
i nteger function opl(adj,add, md){real::n(:),d(:);logical,intent(in)::adj, add}
i nteger function op2(adj,add, md){real::n(:),d(:);logical,intent(in)::adj, add}

}
logical, intent (in) :: adj, add
real, dinmension (:) :: ml, n2,d
real 1oeps
i nt eger i1ost
if (adj) { st = opl (T, add, nti, d) #m = Ad
st = op2 (T, add, n2, d) #nm =Bd
2 = eps*nR # nm2 = eps(B' d)
}
el se { st = op2 (F, add, eps*n2, d) # d = epsBn?
st = opl (F, T, mL, d) # d = Anl+epsBnR2
}
}
subrouti ne chai n20(opl, op2, adj,add, md,t1) { # CHAIN 2
interface {
i nteger function opl(adj,add, md){real::n(:),d(:);logical,intent(in)::adj, add}
i nteger function op2(adj,add, md){real::n{:),d(:);logical,intent(in)::adj, add}
}
logical, intent(in) :: adj, add
real, dimension(:) :: md, t1l
i nt eger ioost
if(adj) { st = opl( T, F, t1,d) # t = A d
st = op2( T, add, m t1) #m=B t =B A d
}
el se { st =op2( F, F, m tl) # t = B m
st = opl( F, add, t1,d) #d=At =A B m
}
}
subrouti ne chai n30(op1, op2, 0p3, adj,add, md,t1,t2) { # CHAIN 3
interface {
i nteger function opl(adj,add, md){real::n(:),d(:);logical,intent(in)::adj, add}
i nteger function op2(adj,add, md){real::n{:),d(:);logical,intent(in)::adj, add}
i nteger function op3(adj,add, md){real::n{:),d(:);logical,intent(in)::adj, add}
}
logical, intent(in) :: adj, add
real, dimension(:) :: md, t1,t2
i nt eger c1ost
if(adj) { st = opl( T, F, t2, d) # tl = A d
st = op2( T, F, t1, t2) # t2 =B tl = B A d
st = op3( T, add, m, t1) #m =C t2 = cC B A d
}
el se { st =op3( F, F, m, tl) # tl = C m
st = op2( F, F, t1, t2) # t2 =B tl = B C m
st = opl( F, add, t2, d) #d = A t2 = A B C m
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1.2 ADJOINT DEFINED: DOT-PRODUCT TEST

Having seen many examples of spaces, operators, and adjoints, we should now see more
formal definitions because abstraction helps us push these concepts to their limits.

1.2.1 Definition of a vector space

An operator transforms a space to another space. Examples of spaces are model space m
and data space d. We think of these spaces as vectors whose components are packed with
numbers, either real or complex numbers. The important practical concept is that not only
does this packing include one-dimensional spaces like signals, two-dimensional spaces like
images, 3-D movie cubes, and zero-dimensional spaces like a data mean, etc, but spaces can
be sets of all the above. One space that is a set of three cubes is the earth’s magnetic field,
which has three components; and each component is a function of a three-dimensional space.
(The 3-D physical space we live in is not the abstract vector space of models and data so
abundant in this book. Here the word “space” without an adjective means the vector space.)

A more heterogeneous example of a vector space is data tracks. A depth-sounding survey
of a lake can make a vector space that is a collection of tracks, a vector of vectors (each vector
having a different number of components, because lakes are not square). This vector space of
depths along tracks in a lake contains the depth values only. The (X, y)-coordinate information
locating each measured depth value is (normally) something outside the vector space. A data
space could also be a collection of echo soundings, waveforms recorded along tracks.

We briefly recall information about vector spaces found in elementary books: Let o be
any scalar. Then if d; is a vector and d, is conformable with it, then other vectors are ad;
and d; +d,. The size measure of a vector is a positive value called a norm. The norm is
usually defined to be the dot product (also called the L, norm), say d - d. For complex data
it is d-d where d is the complex conjugate of d. In theoretical work the “length of a vector”
means the vector’s norm. In computational work the “length of a vector” means the number
of components in the vector.

Norms generally include a weighting function. In physics, the norm generally measures
a conserved quantity like energy or momentum, so, for example, a weighting function for
magnetic flux is permittivity. In data analysis, the proper choice of the weighting function is
a practical statistical issue, discussed repeatedly throughout this book. The algebraic view of
a weighting function is that it is a diagonal matrix with positive values w(i) > 0 spread along
the diagonal, and it is denoted W = diag[w(i)]. With this weighting function the L, norm
of a data space is denoted d’'Wd. Standard notation for norms uses a double absolute value,
where ||d|| = d’'Wd. A central concept with norms is the triangle inequality, ||d; + da|| <
||d1]| 4 ]|d2|| whose proof you might recall (or reproduce with the use of dot products).
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1.2.2 Dot-product test for validity of an adjoint

There is a huge gap between the conception of an idea and putting it into practice. During
development, things fail far more often than not. Often, when something fails, many tests
are needed to track down the cause of failure. Maybe the cause cannot even be found. More
insidiously, failure may be below the threshold of detection and poor performance suffered for
years. The dot-product test enables us to ascertain whether the program for the adjoint of an
operator is precisely consistent with the operator itself. It can be, and it should be.

Conceptually, the idea of matrix transposition is simply a; j = &ji. In practice, however, we
often encounter matrices far too large to fit in the memory of any computer. Sometimes it is
also not obvious how to formulate the process at hand as a matrix multiplication. (Examples
are differential equations and fast Fourier transforms.) What we find in practice is that an
application and its adjoint amounts to two routines. The first routine amounts to the matrix
multiplication FX. The adjoint routine computes F'y, where F’ is the conjugate-transpose
matrix. In later chapters we will be solving huge sets of simultaneous equations, in which
both routines are required. If the pair of routines are inconsistent, we are doomed from the
start. The dot-product test is a simple test for verifying that the two routines are adjoint to each
other.

The associative property of linear algebra says that we do not need parentheses in a vector-
matrix-vector product like Y'FX because we get the same result no matter where we put the
parentheses. They serve only to determine the sequence of computation. Thus,

Y(Fx) = (YPF)X (1.27)
Y(Fx) = (Fy)x (1.28)

(In general, the matrix is not square.) To perform the dot-product test, load the vectors X and y
with random numbers. Using your program for F, compute the vector §¥ = FX, and using your
program for F/, compute X = F'y. Inserting these into equation (1.28) gives you two scalars
that should be equal.

YFX) = yy = &x = (Fy'x (1.29)

The left and right sides of this equation will be computationally equal only if the program
doing F' is indeed adjoint to the program doing F (unless the random numbers do something
miraculous). A final word: If an operator uses complex arithmetic then both its input and
output are “in the field of complex numbers.” The conversion between real and complex
numbers is not a linear operator despite its seeming similarity to truncation and zero padding.

The program for applying the dot product test is dot _t est on the current page. The For-
tran way of passing a linear operator as an argument is to specify the function interface. Fortu-
nately, we have already defined the interface for a generic linear operator. To use the dot _t est
program, you need to initialize an operator with specific arguments (the _i ni t subroutine) and
then pass the operator itself (the _I op function) to the test program. You also need to specify
the sizes of the model and data vectors so that temporary arrays can be constructed. The pro-
gram runs the dot product test twice, second time with add = .true. to test if the operator
can be used properly for accumulating the result like y <y + BX.
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nmodul e dottest {

| ogi cal, paraneter, private :: T = .true., F = .false.
cont ai ns
subroutine dot_test( oper, n_nod, n_dat, dotl, dot2) {
i nt eger, intent (in) :: n_nod, n_dat
real, dinmension (2), intent (out) :: dotl, dot2
interface {
function oper( adj, add, nod, dat) result(stat) {
i nt eger 11 stat
logical, intent (in) :: adj, add
real, dinmension (:) :: nod, dat
}
}
real, dinmension( n_nod) ;. nmodl, nod2
real, dinmension( n_dat) :: datl, dat2
i nt eger ;1 stat

call random nunber( nodl); call random nunber( dat2)

stat = oper( F, F, nodl, datl); dotl( 1) dot _product ( datl, dat?2)
stat = oper( T, F, nod2, dat2); dotl( 2) dot _product ( nodl, nod2)
wite (0,*) dotl

stat = oper( F, T, nodl, datl); dot2( 1)
stat = oper( T, T, nod2, dat2); dot2( 2)
wite (0,*) dot2

dot _product ( datl, dat?2)
dot _product ( npdl, npd2)

I tested (1.29) on many operators and was surprised and delighted to find that it is often
satisfied to an accuracy near the computing precision. I do not doubt that larger rounding errors
could occur, but so far, every time I encountered a relative discrepancy of 1073 or more, I was
later able to uncover a conceptual or programming error. Naturally, when I do dot-product
tests, I scale the implied matrix to a small dimension in order to speed things along, and to be
sure that boundaries are not overwhelmed by the much larger interior.

Do not be alarmed if the operator you have defined has truncation errors. Such errors
in the definition of the original operator should be identically matched by truncation errors
in the adjoint operator. If your code passes the dot-product test, then you really have coded
the adjoint operator. In that case, to obtain inverse operators, you can take advantage of the
standard methods of mathematics.

We can speak of a continuous function f(t) or a discrete function f;. For continuous
functions we use integration, and for discrete ones we use summation. In formal mathematics,
the dot-product test defines the adjoint operator, except that the summation in the dot product
may need to be changed to an integral. The input or the output or both can be given either on a
continuum or in a discrete domain. So the dot-product test y'¥ = X'X could have an integration
on one side of the equal sign and a summation on the other. Linear-operator theory is rich with
concepts not developed here.
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1.2.3 The word “adjoint”

In mathematics the word “adjoint” has three meanings. One of them, the so-called Hilbert
adjoint, is the one generally found in physics and engineering and it is the one used in this
book. In linear algebra is a different matrix, called the adjugate matrix. It is a matrix whose
elements are signed cofactors (minor determinants). For invertible matrices, this matrix is the
determinant times the inverse matrix. It can be computed without ever using division, so
potentially the adjugate can be useful in applications where an inverse matrix does not exist.
Unfortunately, the adjugate matrix is sometimes called the adjoint matrix, particularly in the
older literature. Because of the confusion of multiple meanings of the word adjoint, in the
first printing of PVI, I avoided the use of the word and substituted the definition, “conjugate
transpose”. Unfortunately this was often abbreviated to “conjugate,” which caused even more
confusion. Thus I decided to use the word adjoint and have it always mean the Hilbert adjoint
found in physics and engineering.

1.2.4 Matrix versus operator

Here is a short summary of where we have been and where we are going: Start from the class
of linear operators, add subscripts and you get matrices. Examples of operators without sub-
scripts are routines that solve differential equations and routines that do fast Fourier transform.
What people call “sparse matrices” are often not really matrices but operators, because they
are not defined by data structures but by routines that apply them to a vector. With sparse
matrices you easily can do A(B(Cx)) but not (ABC)X.

Although a linear operator does not have defined subscripts, you can determine what would
be the operator value at any subscript: by applying the operator to an impulse function, you
would get a matrix column. The adjoint operator is one from which we can extract the trans-
pose matrix. For large spaces this extraction is unwieldy, so to test the validity of adjoints, we
probe them with random vectors, say X and Y, to see whether y'(AX) = (A'y)’X. Mathemati-
cians define adjoints by this test, except that instead of using random vectors, they say “for all
functions,” which includes the continuum.

This defining test makes adjoints look mysterious. Careful inspection of operator adjoints,
however, generally reveals that they are built up from simple matrices. Given adjoints A’,
B’, and C', the adjoint of ABC is C'B’A’. Fourier transforms and linear-differential-equation
solvers are chains of matrices, so their adjoints can be assembled by the application of adjoint
components in reverse order. The other way we often see complicated operators being built
from simple ones is when operators are put into components of matrices, typically a 1 x 2 or
2 x 1 matrix containing two operators. An example of the adjoint of a two-component column
operator is

[’H — (A B (1.30)

Although in practice an operator might be built from matrices, fundamentally, a matrix is
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a data structure whereas an operator is a procedure. A matrix is an operator if its subscripts
are hidden but it can be applied to a space, producing another space.

As matrices have inverses, so do linear operators. You don’t need subscripts to find an
inverse. The conjugate-gradient method and conjugate-direction method explained in the next
chapter are attractive methods of finding them. They merely apply A and A" and use inner
products to find coefficients of a polynomial in AA’ that represents the inverse operator.

Whenever we encounter a positive-definite matrix we should recognize its likely origin in
a nonsymmetric matrix F times its adjoint. Those in natural sciences often work on solving
simultaneous equations but fail to realize that they should return to the origin of the equa-
tions which is often a fitting goal; i.e., applying an operator to a model should yield data,
i.e., d ~ dyp+ F(m —mgp) where the operator F is a partial derivative matrix (and there are po-
tential underlying nonlinearities). This begins another story with new ingredients, weighting
functions and statistics.

1.2.5 Inverse operator

A common practical task is to fit a vector of observed data dops to some theoretical data dipeor
by the adjustment of components in a vector of model parameters m.

dobs ~ dtheor = Fm (1.31)

A huge volume of literature establishes theory for two estimates of the model, ; and rh,,
where

m, = (FF~'Fd (1.32)
m, = F/(FF) 'd (1.33)

Some reasons for the literature being huge are the many questions about the existence, quality,
and cost of the inverse operators. Before summarizing that, let us quickly see why these two
solutions are reasonable. Inserting equation (1.31) into equation (1.32), and inserting equation
(1.33) into equation (1.31), we get the reasonable statements:

m = FPH'FFM = m (1.34)
Omeor = (FFHYFF)'d = d (1.35)

Equation (1.34) says that the estimate I gives the correct model m if you start from the
theoretical data. Equation (1.35) says that the model estimate 1, gives the theoretical data if
we derive M, from the theoretical data. Both of these statements are delightful. Now let us
return to the problem of the inverse matrices.

Strictly speaking, a rectangular matrix does not have an inverse. Surprising things often
happen, but commonly, when F is a tall matrix (more data values than model values) then the
matrix for finding M, is invertible while that for finding i, is not, and when the matrix is
wide instead of tall (the number of data values is less than the number of model values) it is
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the other way around. In many applications neither F'F nor FF’ is invertible. This difficulty
is solved by “damping” as we will see in later chapters. The point to notice in this chapter on
adjoints is that in any application where FF’ or F'F equals | (unitary operator), that the adjoint
operator F' is the inverse F-! by either equation (1.32) or (1.33).

Theoreticians like to study inverse problems where m is drawn from the field of continuous
functions. This is like the vector m having infinitely many components. Such problems are
hopelessly intractable unless we find, or assume, that the operator F'F is an identity or diagonal
matrix.

In practice, theoretical considerations may have little bearing on how we proceed. Current
computational power limits matrix inversion jobs to about 10* variables. This book specializes
in big problems, those with more than about 10* variables, but the methods we learn are also
excellent for smaller problems.

1.2.6 Automatic adjoints

Computers are not only able to perform computations; they can do mathematics. Well known
software is Mathematica and Maple. Adjoints can also be done by symbol manipulation. For
example Ralf Giering* offers a program for converting linear operator programs into their
adjoints.

EXERCISES:

1 Suppose a linear operator F has its input in the discrete domain and its output in the
continuum. How does the operator resemble a matrix? Describe the operator F’ that has
its input in the discrete domain and its output in the continuum. To which do you apply
the words “scales and adds some functions,” and to which do you apply the words “does
a bunch of integrals”? What are the integrands?

“http://klima47.dkrz.de/giering/tamc/tamc html



Chapter 2

Modél fi tting by least squares

The first level of computer use in science and engineering is modeling. Beginning from phys-
ical principles and design ideas, the computer mimics nature. After this, the worker looks
at the result and thinks a while, then alters the modeling program and tries again. The next,
deeper level of computer use is that the computer itself examines the results of modeling and
reruns the modeling job. This deeper level is variously called “fitting" or “estimation” or
“inversion." We inspect the conjugate-direction method of fitting and write a subroutine for
it that will be used in most of the examples in this monograph.

2.1 HOW TO DIVIDE NOISY SIGNALS

If "inversion" is dividing by a matrix, then the place to begin is dividing one number by
another, say one function of frequency by another function of frequency. A single parameter
fitting problem arises in Fourier analysis, where we seek a “best answer” at each frequency,
then combine all the frequencies to get a best signal. Thus emerges a wide family of interesting
and useful applications. However, Fourier analysis first requires us to introduce complex
numbers into statistical estimation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-domain
division is time-domain deconvolution. This division is challenging when the divisor has
observational error. Failure erupts if zero division occurs. More insidious are the poor results
we obtain when zero division is avoided by a near miss.

2.1.1 Dividing by zero smoothly

Think of any real numbers X, y, and f where y = Xxf. Given y and f we see a computer
program containing X = y/f. How can we change the program so that it never divides by
zero? A popular answer is to change X = y/f to x = yf/(f?+¢?), where € is any tiny value.
When | f| >> |e|, then X is approximately y/f as expected. But when the divisor f vanishes,

33
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the result is safely zero instead of infinity. The transition is smooth, but some criterion is
needed to choose the value of €. This method may not be the only way or the best way to cope
with zero division, but it is a good way, and it permeates the subject of signal analysis.

To apply this method in the Fourier domain, suppose that X, Y, and F are complex num-
bers. What do we do then with X =Y /F? We multiply the top and bottom by the complex
conjugate F, and again add € to the denominator. Thus,

F(w) Y(w)

X(w) -
F(w)F(w) + €2

(2.1)

Now the denominator must always be a positive number greater than zero, so division is always
safe. Equation (2.1) ranges continuously from inverse filtering, with X =Y /F, to filtering
with X = FY, which is called “matched filtering.” Notice that for any complex number F,
the phase of 1/F equals the phase of F, so the filters 1/F and F have inverse amplitudes but
identical phase.

2.1.2 Damped solution

Equation (2.1) is the solution to an optimization problem that arises in many applications.
Now that we know the solution, let us formally define the problem. First, we will solve a
simpler problem with real values: we will choose to minimize the quadratic function of x:

QX) = (fx—y)+eXx? (2.2)

The second term is called a “damping factor" because it prevents X from going to 00 when
f — 0. Set dQ/dx = 0, which gives

0 = f(fx—y)+ex (2.3)
This yields the earlier answer x = fy/(f%+¢€2).

With Fourier transforms, the signal X is a complex number at each frequency w. So we
generalize equation (2.2) to

QX,X) = (FX=Y)FX-=Y)+e’XX = (XE=Y)XFX-=Y)+e*XX (24

To minimize Q we could use a real-values approach, where we express X = U+ iv in terms
of two real values U and v and then set Q/du = 0 and 0Q/dv = 0. The approach we will
take, however, is to use complex values, where we set 3Q/dX =0 and 9Q/3X = 0. Let us
examine 3 Q/9X:

% = FFX-Y)+e2X = 0 (2.5)

The derivative 3Q /X is the complex conjugate of 3Q/dX. So if either is zero, the other is
too. Thus we do not need to specify both dQ/9X =0 and 9Q/3d X = 0. I usually set 9Q/a X
equal to zero. Solving equation (2.5) for X gives equation (2.1).
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Equation (2.1) solves Y = XF for X, giving the solution for what is called “the deconvo-
lution problem with a known wavelet F." Analogously we can use Y = XF when the filter
F is unknown, but the input X and output Y are given. Simply interchange X and F in the
derivation and result.

2.1.3 Smoothing the denominator spectrum

Equation (2.1) gives us one way to divide by zero. Another way is stated by the equation

X@ = -~ 2.6)
(F(@)F())
where the strange notation in the denominator means that the spectrum there should be smoothed
a little. Such smoothing fills in the holes in the spectrum where zero-division is a danger, fill-
ing not with an arbitrary numerical value € but with an average of nearby spectral values.
Additionally, if the denominator spectrum F(w)F () is rough, the smoothing creates a shorter
autocorrelation function.

Both divisions, equation (2.1) and equation (2.6), irritate us by requiring us to specify a
parameter, but for the latter, the parameter has a clear meaning. In the latter case we smooth
a spectrum with a smoothing window of width, say Aw which this corresponds inversely to a
time interval over which we smooth. Choosing a numerical value for € has not such a simple
interpretation.

We jump from simple mathematical theorizing towards a genuine practical application
when I grab some real data, a function of time and space from another textbook. Let us call
this data f(t,X) and its 2-D Fourier transform F(w,Ky). The data and its autocorrelation are in
Figure 2.1.

The autocorrelation a(t, x) of f (t,X)is the inverse 2-D Fourier Transform of F(w,Kx)F(w,K).
Autocorrelations a(X, y) satisfy the symmetry relation a(X, y) = a(—x, —Y). Figure 2.2 shows
only the interesting quadrant of the two independent quadrants. We see the autocorrelation of
a 2-D function has some resemblance to the function itself but differs in important ways.

Instead of messing with two different functions X and Y to divide, let us divide F by itself.
This sounds like 1 = F/F but we will watch what happens when we do the division carefully
avoiding zero division in the ways we usually do.

Figure 2.2 shows what happens with

FF
/ FF+e2 @D
and with
FF
1 = F/F ~ — (2.8)

(FF)
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fF [nput ../../Data/data

Figure 2.1: 2-D data (right) and a quadrant of its autocorrelation (left). Notice the longest
nonzero time lag on the data is about 5.5 sec which is the latest nonzero signal on the autocor-

relation. |Isq-antoinelO |[ER]
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From Figure 2.2 we notice that both methods of avoiding zero division give similar results.
By playing with the € and the smoothing width the pictures could be made even more similar.
My preference, however, is the smoothing. It is difficult to make physical sense of choosing
a numerical value for €. It is much easier to make physical sense of choosing a smoothing
window. The smoothing window is in (w,Kyx) space, but Fourier transformation tells us its
effect in (t, X) space.

2.1.4 Imaging

The example of dividing a function by itself (I = F/F) might not seem to make much sense,
but it is very closely related to estimation often encounted in imaging applications. It’s not my
purpose here to give a lecture on imaging theory, but here is an overbrief explanation.

Imagine a downgoing wavefield D(w,X,Z) and scatterer that from the downgoing wave-
field creates an upgoing wavefield U(w,X,z). Given U and D, if there is a stong temporal
correlation between them at any (X, ) it likely means there is a reflector nearby that is man-
ufacturing U from D. This reflectivity could be quantified by U/D. At the earth’s surface
the surface boundary condition says something like U = D or U = —D. Thus at the surface
we have something like F/F. As we go down in the earth, the main difference is that U and
D get time shifted in opposite directions, so U and D are similar but for that time difference.
Thus, a study of how we handle F/F is worthwhile.

2.1.5 Formal path to the low-cut filter

This book defines many geophysical estimation problems. Many of them amount to statement
of two goals. The first goal is a data fitting goal, the goal that the model should imply some
observed data. The second goal is that the model be not too big or too wiggly. We will state
these goals as two residuals, each of which is ideally zero. A very simple data fitting goal
would be that the model m equals the data d, thus the difference should vanish, say 0 ~m —d.
A more interesting goal is that the model should match the data especially at high frequencies
but not necessarily at low frequencies.

0 ~ —iwm—d) (2.9)

A danger of this goal is that the model could have a zero-frequency component of infinite
magnitude as well as large amplitudes for low frequencies. To suppress this, we need the
second goal, a model residual which is to be minimized. We need a small number €. The
model goal is

0 ~ em (2.10)
To see the consequence of these two goals, we add the squares of the residuals

QM) = o’ (m—d)>+e’m? (2.11)
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FF/(FF+eps FF/<<FE>>

Figure 2.2: Equation (2.7) (left) and equation (2.8) (right). Both ways of dividing by zero give

similar results. |lsq-antoinell |[ER]
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and then we minimize Q(m) by setting its derivative to zero

d
0 = d—g = 20*Mm—d)+2¢2m 2.12)
or
2
w
= ——d 2.13
m w? 4 €2 .13

which is a low-cut filter with a cutoff frequency of wy = €.

Of some curiosity and significance is the numerical choice of €. The general theory says
we need an epsilon, but does not say how much. For now let us simply rename € = wo and
think of it as a “cut off frequency”.

2.2 MULTIVARIATE LEAST SQUARES

2.2.1 Inside an abstract vector

In engineering uses, a vector has three scalar components that correspond to the three di-
mensions of the space in which we live. In least-squares data analysis, a vector is a one-
dimensional array that can contain many different things. Such an array is an “abstract vec-
tor.”” For example, in earthquake studies, the vector might contain the time an earthquake
began, as well as its latitude, longitude, and depth. Alternatively, the abstract vector might
contain as many components as there are seismometers, and each component might be the
arrival time of an earthquake wave. Used in signal analysis, the vector might contain the val-
ues of a signal at successive instants in time or, alternatively, a collection of signals. These
signals might be “multiplexed” (interlaced) or “demultiplexed” (all of each signal preceding
the next). When used in image analysis, the one-dimensional array might contain an image,
which could itself be thought of as an array of signals. Vectors, including abstract vectors, are
usually denoted by boldface letters such as p and s. Like physical vectors, abstract vectors
are orthogonal when their dot product vanishes: p-s = 0. Orthogonal vectors are well known
in physical space; we will also encounter them in abstract vector space.

We consider first a hypothetical application with one data vector d and two fitting vectors
f; and f,. Each fitting vector is also known as a “regressor." Our first task is to approximate
the data vector d by a scaled combination of the two regressor vectors. The scale factors X;
and X, should be chosen so that the model matches the data; i.e.,

d =~ fixi+fhXx (2.14)

Notice that we could take the partial derivative of the data in (2.14) with respect to an
unknown, say X;, and the result is the regressor f;.

The partial derivative of all theoretical data with respect to any model parameter gives a
regressor. A regressor is a column in the matrix of partial-derivatives, adj /om;.
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The fitting goal (2.14) is often expressed in the more compact mathematical matrix nota-
tion d &~ FX, but in our derivation here we will keep track of each component explicitly and use
mathematical matrix notation to summarize the final result. Fitting the observed data d = d°"
to its two theoretical parts fiX; and f,X, can be expressed as minimizing the length of the
residual vector r, where

0 ~ r = dtheor_dobs (215)
0 ~ r = fixy+fx, —d (2.16)

We use a dot product to construct a sum of squares (also called a “quadratic form") of the
components of the residual vector:

QX1,X2) = r-r (2.17)
= (fixi+hxo—d)-(fix; +foxo —d) (2.18)

To find the gradient of the quadratic form Q(X;,X2), you might be tempted to expand out the

dot product into all nine terms and then differentiate. It is less cluttered, however, to remember
the product rule, that

—r-r = —~r+r-—x (2.19)

Thus, the gradient of Q(X1,X») is defined by its two components:

9

87‘? = i (hix o — ) (i +Faxo —d)-Fy (2.20)
1

9

BTQ = fh-(fixi+hx, —d)+ (1 x;+fxp —d)-f, (2.21)
2

Setting these derivatives to zero and using (f; - ;) = (f - f}) etc., we get

(fi-d)y = F-foxi+E-f)xe (2.22)
(f-d) = (f-foxi+{F-f)x; (2.23)

We can use these two equations to solve for the two unknowns X; and X,. Writing this expres-
sion in matrix notation, we have

(fi-d) i| [ (fi-f) (fi-f) ] [ Xy ]
= 2.24
[ (f,-d) (f-f) (f2-f) X2 (2.24)
It is customary to use matrix notation without dot products. To do this, we need some ad-

ditional definitions. To clarify these definitions, we inspect vectors f;, f,, and d of three
components. Thus

fii fi2
F = [fi K] = far f2 (2.25)
f3r
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Likewise, the transposed matrix F’ is defined by

;o fir far f3
ko= |:f12 fr f (2-26)

The matrix in equation (2.24) contains dot products. Matrix multiplication is an abstract way
of representing the dot products:

fii fi2
(fi-f) (Ffi-f) :| |: fii fa fa ]
= f f 2.27
[(fZ'fl) (f2-f) fio fn f3 o 227)
f3r
Thus, equation (2.24) without dot products is
d fii fi2
f f f f f f X
[ o fa f3 ] d _ [ n fa fa ] b fy [ 1 ] (2.28)
flo fn fn flo fn fn X2
ds f3r
which has the matrix abbreviation
Fd = (FF)x (2.29)

Equation (2.29) is the classic result of least-squares fitting of data to a collection of regressors.
Obviously, the same matrix form applies when there are more than two regressors and each
vector has more than three components. Equation (2.29) leads to an analytic solution for x
using an inverse matrix. To solve formally for the unknown X, we premultiply by the inverse
matrix (F' F)~!:

x = (FP'Fd (2.30)

Equation (2.30) is the central result of least-squares theory. We see it everywhere.

In our first manipulation of matrix algebra, we move around some parentheses in (2.29):
Fd = F (% (2.31)

Moving the parentheses implies a regrouping of terms or a reordering of a computation. You
can verify the validity of moving the parentheses if you write (2.31) in full as the set of two
equations it represents. Equation (2.29) led to the “analytic” solution (2.30). In a later sec-
tion on conjugate directions, we will see that equation (2.31) expresses better than (2.30) the
philosophy of iterative methods.

Notice how equation (2.31) invites us to cancel the matrix F’ from each side. We cannot
do that of course, because F’ is not a number, nor is it a square matrix with an inverse. If you
really want to cancel the matrix F’, you may, but the equation is then only an approximation
that restates our original goal (2.14):

d ~ FXx (2.32)
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A speedy problem solver might ignore the mathematics covering the previous page, study
his or her application until he or she is able to write the statement of goals (2.32) = (2.14),
premultiply by F/, replace ~ by =, getting (2.29), and take (2.29) to a simultaneous equation-
solving program to get X.

What I call “fitting goals” are called “regressions” by statisticians. In common language
the word regression means to “trend toward a more primitive perfect state” which vaguely
resembles reducing the size of (energy in) the residual r = FXx —d. Formally this is often
written as:

min ||Fx—d]| (2.33)

The notation above with two pairs of vertical lines looks like double absolute value, but we
can understand it as a reminder to square and sum all the components. This formal notation is
more explicit about what is constant and what is variable during the fitting.

2.2.2 Normal equations

An important concept is that when energy is minimum, the residual is orthogonal to the fitting
functions. The fitting functions are the column vectors f;, f, and f3. Let us verify only that
the dot product r - f, vanishes; to do this, we’ll show that those two vectors are orthogonal.
Energy minimum is found by

ad ar
0 = —rr = 2r-— = 2r-f, (2.34)
X2 X2
(To compute the derivative refer to equation (2.16).) Equation (2.34) shows that the residual
is orthogonal to a fitting function. The fitting functions are the column vectors in the fitting
matrix.

The basic least-squares equations are often called the “normal" equations. The word “nor-
mal" means perpendicular. We can rewrite equation (2.31) to emphasize the perpendicularity.
Bring both terms to the left, and recall the definition of the residual r from equation (2.16):

F(Fx—d) = 0 (2.35)
Fr = 0 (2.36)

Equation (2.36) says that the residual vector r is perpendicular to each row in the F’ matrix.
These rows are the fitting functions. Therefore, the residual, after it has been minimized, is
perpendicular to all the fitting functions.

2.2.3 Differentiation by a complex vector

Complex numbers frequently arise in physical problems, particularly those with Fourier series.
Let us extend the multivariable least-squares theory to the use of complex-valued unknowns
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X. First recall how complex numbers were handled with single-variable least squares; i.e., as
in the discussion leading up to equation (2.5). Use a prime, such as X/, to denote the complex
conjugate of the transposed vector X. Now write the positive quadratic form as

QX,x) = Fx—d)(Fx—d) = &F —-d)(Fx-d) (2.37)

After equation (2.4), we minimized a quadratic form Q(X, X) by setting to zero both 9Q/d X
and 9Q/3X. We noted that only one of 3Q/dX and dQ/dX is necessarily zero because
they are conjugates of each other. Now take the derivative of Q with respect to the (possibly
complex, row) vector X'. Notice that 3Q/dX’ is the complex conjugate transpose of 9 Q/dX.
Thus, setting one to zero sets the other also to zero. Setting dQ/dx’ = 0 gives the normal
equations:

0Q ,

= o = F(Fx—d) (2.38)
The result is merely the complex form of our earlier result (2.35). Therefore, differentiating by
a complex vector is an abstract concept, but it gives the same set of equations as differentiating
by each scalar component, and it saves much clutter.

2.2.4 From the frequency domain to the time domain

Equation (2.4) is a frequency-domain quadratic form that we minimized by varying a single
parameter, a Fourier coefficient. Now we will look at the same problem in the time domain.
We will see that the time domain offers flexibility with boundary conditions, constraints, and
weighting functions. The notation will be that a filter f; has input X; and output y;. In Fourier
space thisis Y = X F. There are two problems to look at, unknown filter F and unknown input
X.

Unknown filter

When inputs and outputs are given, the problem of finding an unknown filter appears to be
overdetermined, so we write y &~ Xf where the matrix X is a matrix of downshifted columns
like (1.5). Thus the quadratic form to be minimized is a restatement of equation (2.37) with
filter definitions:

QF.H = Xf—y/Xf-y) (2.39)

The solution f is found just as we found (2.38), and it is the set of simultaneous equations
0=X'Xf-y).

Unknown input: deconvolution with a known filter

For solving the unknown-input problem, we put the known filter f; in a matrix of downshifted
columns F. Our statement of wishes is now to find X; so that y &~ FX. We can expect to have
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trouble finding unknown inputs X; when we are dealing with certain kinds of filters, such as
bandpass filters. If the output is zero in a frequency band, we will never be able to find the
input in that band and will need to prevent Xt from diverging there. We do this by the statement
that we wish 0 & € X, where € is a parameter that is small and whose exact size will be chosen
by experimentation. Putting both wishes into a single, partitioned matrix equation gives

[8] [2] [GFI}X - [H (2.40)

To minimize the residuals r; and r,, we can minimize the scalar r'r = r';ry +r'2r>. This is

QX,x) = (Fx—y)(FXx—y)+e’x'x
= XF —y)(Fx—y)+e>x'x (2.41)

We solved this minimization in the frequency domain (beginning from equation (2.4)).

Formally the solution is found just as with equation (2.38), but this solution looks un-
appealing in practice because there are so many unknowns and because the problem can be
solved much more quickly in the Fourier domain. To motivate ourselves to solve this problem
in the time domain, we need either to find an approximate solution method that is much faster,
or to discover that constraints or time-variable weighting functions are required in some ap-
plications. This is an issue we must be continuously alert to, whether the cost of a method is
justified by its need.

EXERCISES:

1 In 1695, 150 years before Lord Kelvin’s absolute temperature scale, 120 years before
Sadi Camnot’s PhD thesis, 40 years before Anders Celsius, and 20 years before Gabriel
Farenheit, the French physicist Guillaume Amontons, deaf since birth, took a mercury
manometer (pressure gauge) and sealed it inside a glass pipe (a constant volume of air).
He heated it to the boiling point of water at 100°C. As he lowered the temperature to
freezing at 0° C, he observed the pressure dropped by 25% . He could not drop the
temperature any further but he supposed that if he could drop it further by a factor of
three, the pressure would drop to zero (the lowest possible pressure) and the temperature
would have been the lowest possible temperature. Had he lived after Anders Celsius he
might have calculated this temperature to be —300° C (Celsius). Absolute zero is now
known to be —273° C.

It is your job to be Amontons’ lab assistant. Your ith measurement of temperature T;
you make with Issac Newton’s thermometer and you measure pressure P; and volume
Vi in the metric system. Amontons needs you to fit his data with the regression 0 ~
a(Ti — Tp) — P;V; and calculate the temperature shift Ty that Newton should have made
when he defined his temperature scale. Do not solve this problem! Instead, cast it in the
form of equation (2.14), identifying the data d and the two column vectors f; and f, that
are the fitting functions. Relate the model parameters X; and X, to the physical parameters
« and Ty. Suppose you make ALL your measurements at room temperature, can you find
To? Why or why not?
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2.3 KRYLOV SUBSPACE ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the number of un-
knowns. There are three regimes for solution; which one is applicable depends on the number
of unknowns m. For m three or less, we use analytical methods. We also sometimes use ana-
lytical methods on matrices of size 4 x 4 when the matrix contains enough zeros. Today in year
2001, a deskside workstation, working an hour solves about a 4000 x 4000 set of simultaneous
equations. A square image packed into a 4096 point vector is a 64 x 64 array. The computer
power for linear algebra to give us solutions that fit in a k x k image is thus proportional to
k6, which means that even though computer power grows rapidly, imaging resolution using
“exact numerical methods” hardly grows at all from our 64 x 64 current practical limit.

The retina in our eyes captures an image of size about 1000 x 1000 which is a lot bigger
than 64 x 64. Life offers us many occasions where final images exceed the 4000 points of
a 64 x 64 array. To make linear algebra (and inverse theory) relevant to such problems, we
investigate special techniques. A numerical technique known as the “conjugate-direction
method” works well for all values of m and is our subject here. As with most simultaneous
equation solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. And if n and m are too large to allow enough iterations, the iterative methods can
be interrupted at any stage, the partial result often proving useful. Whether or not a partial
result actually is useful is the subject of much research; naturally, the results vary from one
application to the next.

2.3.1 Sign convention

On the last day of the survey, a storm blew up, the sea got rough, and the receivers drifted
further downwind. The data recorded that day had a larger than usual difference from that
predicted by the final model. We could call (d — Fm) the experimental error. (Here d is data,
m is model parameters, and F is their linear relation).

The alternate view is that our theory was too simple. It lacked model parameters for the
waves and the drifting cables. Because of this model oversimplification we had a modeling
error of the opposite polarity (Fm —d).

A strong experimentalist prefers to think of the error as experimental error, something for
him or her to work out. Likewise a strong analyst likes to think of the error as a theoretical
problem. (Weaker investigators might be inclined to take the opposite view.)

Regardless of the above, and opposite to common practice, I define the sign convention
for the error (or residual) as (Fm —d). When we choose this sign convention, our hazard for
analysis errors will be reduced because F is often complicated and formed by combining many
parts.

Beginners often feel disappointment when the data does not fit the model very well. They
see it as a defect in the data instead of an opportunity to design a stronger theory.
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2.3.2 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector given by

residual = transform model space  —  data space (2.42)

r = F X - d (2.43)

A contour plot is based on an altitude function of space. The altitude is the dot product
r-r. By finding the lowest altitude, we are driving the residual vector I as close as we can
to zero. If the residual vector r reaches zero, then we have solved the simultaneous equations
d = Fx. In a two-dimensional world the vector X has two components, (X1,X3). A contour is
a curve of constant I'- I in (X1, X2)-space. These contours have a statistical interpretation as
contours of uncertainty in (X, X,), with measurement errors in d.

Let us see how a random search-direction can be used to reduce the residual 0 ~ r =Fx—d.
Let AX be an abstract vector with the same number of components as the solution X, and let
AX contain arbitrary or random numbers. We add an unknown quantity o of vector AX to the
vector X, and thereby create Xyey:

Xnew = X+ oAX (2.44)
This gives a new residual:
Mew = F Xpew— d (245)
Mew = FX+aAX)—d (2.46)
rew = F+aAr = (FXx—d)+aFAX (2.47)

which defines Ar = FAX.
Next we adjust « to minimize the dot product: Fpey - Mew
(r+aAr)-(r+aAr) = r-r+2a(r-Ar) + a?Ar-Ar (2.48)
Set to zero its derivative with respect to « using the chain rule
0 = (r+aAr-Ar + Ar-(r+aAr) = 2(r+aAr)-Ar (2.49)

which says that the new residual I'ey = I+ Ar is perpendicular to the “fitting function” Ar.
Solving gives the required value of «.
(r-Ar)

o

A “computation template” for the method of random directions is
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r <«— Fx-d
iterate {
AX <«— random numbers
Ar <«— FAX
«~— —(r-An/(Ar-Ar)
<~ X+ oaAX
«~— I +aAr

-— = X Q

A nice thing about the method of random directions is that you do not need to know the adjoint
operator F'.

In practice, random directions are rarely used. It is more common to use the gradient
direction than a random direction. Notice that a vector of the size of AX is

g = Fr (2.51)

Notice also that this vector can be found by taking the gradient of the size of the residuals:

d
_ = — XF —d)Fx-=d = F'r 2.52
o~ ol )( ) (2.52)
Choosing AX to be the gradient vector AX = g = F'r is called “the method of steepest de-
scent.”

Starting from a model X = m (which may be zero), below is a template of pseudocode for
minimizing the residual 0 ~ r = Fx — d by the steepest-descent method:

r <«— Fx-d
iterate {
AX <«— F'r
Ar <«— F AX
«~— —(r-An/(Ar-Ar)
<«— X+ aAX
<— I +aAr

-— = X Q

2.3.3 Null space and iterative methods

In applications where we fit d & FX, there might exist a vector (or a family of vectors) defined
by the condition 0 = FXp,y. This family is called a null space. For example, if the operator
F is a time derivative, then the null space is the constant function; if the operator is a second
derivative, then the null space has two components, a constant function and a linear function,
or combinations of them. The null space is a family of model components that have no effect
on the data.
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When we use the steepest-descent method, we iteratively find solutions by this updating:

Xi+1 = Xj+aAX (2.53)
Xiy1 = X +aF'r (2.54)
Xit1 = X +aF' (Fx—d) (2.55)

After we have iterated to convergence, the gradient AX vanishes as does F'(FX — d). Thus, an
iterative solver gets the same solution as the long-winded theory leading to equation (2.30).

Suppose that by adding a huge amount of X,,;;, we now change X and continue iterating.
Notice that AX remains zero because FXp,y vanishes. Thus we conclude that any null space in
the initial guess Xo will remain there unaffected by the gradient-descent process.

Linear algebra theory enables us to dig up the entire null space should we so desire. On
the other hand, the computer demands might be vast. Even the memory for holding the many
X vectors could be prohibitive. A much simpler and more practical goal is to find out if the
null space has any members, and if so, to view some of them. To try to see a member of the
null space, we take two starting guesses and we run our iterative solver for each of them. If
the two solutions, X; and X, are the same, there is no null space. If the solutions differ, the
difference is a member of the null space. Let us see why: Suppose after iterating to minimum
residual we find

o= Fxi—d (2.56)
n = Fxo—d (2.57)

We know that the residual squared is a convex quadratic function of the unknown X. Math-
ematically that means the minimum value is unique, so r| = rp. Subtracting we find 0 =
ry —rp = F(X; — Xp) proving that X; — X, is a model in the null space. Adding X; —X» to any to
any model X will not change the theoretical data. Are you having trouble visualizing r being
unique, but X not being unique? Imagine that r happens to be independent of one of the com-
ponents of X. That component is nonunique. More generally, it is some linear combination of
components of X that r is independent of.

A practical way to learn about the existence of null spaces and their general appearance is
simply to try gradient-descent methods beginning from various different starting guesses.

“Did I fail to run my iterative solver long enough?” is a question you might have. If two
residuals from two starting solutions are not equal, r| # I’;, then you should be running your
solver through more iterations.

If two different starting solutions produce two different residuals, then you didn’t run your
solver through enough iterations.
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2.3.4 Why steepest descent is so slow

Before we can understand why the conjugate-direction method is so fast, we need to see
why the steepest-descent method is so slow. Imagine yourself sitting on the edge of a circular
bowl. If you jump off the rim, you’ll slide straight to the bottom at the center. Now imagine
an ellipsoidal bowl of very large ellipticity. As you jump off the rim, you’ll first move in the
direction of the gradient. This is not towards the bottom at the center of the ellipse (unless you
were sitting on the major or minor axis).

We can formalize the situation. A parametric equation for a line is X = Xog + o AX where
« is the parameter for moving on the line. The process of selecting « is called “line search."
Think of a two-dimensional example where the vector of unknowns X has just two components,
X1 and Xo. Then the size of the residual vector r-r can be displayed with a contour plot in
the plane of (X1,X2). Our ellipsoidal bowl has ellipsoidal contours of constant altitude. As
we move in a line across this space by adjusting «, equation(2.48) gives our altitude. This
equation has a unique minimum because it is a parabola in «. As we approach the minimum,
our trajectory becomes tangential to a contour line in (X1,X2)-space. This is where we stop.
Now we compute our new residual r and we compute the new gradient AX =g = F'r. OK, we
are ready for the next slide down. When we turn ourselves from "parallel to a contour line" to
the direction of AX which is "perpendicular to that contour", we are turning 90°. Our path to
the bottom of the bowl will be made of many segments, each turning 90° from the previous.
We will need an infinite number of such steps to reach the bottom. It happens that the amazing
conjugate-direction method would reach the bottom in just two jumps (because (X1,X2) is a
two dimensional space.)

2.3.5 Conjugate direction

In the conjugate-direction method, not a line, but rather a plane, is searched. A plane is
made from an arbitrary linear combination of two vectors. One vector will be chosen to be
the gradient vector, say g. The other vector will be chosen to be the previous descent step
vector, say S = Xj — Xj_1. Instead of «g we need a linear combination, say ag+ Bs. For
minimizing quadratic functions the plane search requires only the solution of a two-by-two set
of linear equations for @ and 8. The equations will be specified here along with the program.
(For nonquadratic functions a plane search is considered intractable, whereas a line search
proceeds by bisection.)

For use in linear problems, the conjugate-direction method described in this book follows
an identical path with the more well-known conjugate-gradient method. We use the conjugate-
direction method for convenience in exposition and programming.

The simple form of the conjugate-direction algorithm covered here is a sequence of steps.
In each step the minimum is found in the plane given by two vectors: the gradient vector
and the vector of the previous step. Given the linear operator F and a generator of solution
steps (random in the case of random directions or gradient in the case of steepest descent),
we can construct an optimally convergent iteration process, which finds the solution in no
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more than n steps, where n is the size of the problem. This result should not be surprising.
If F is represented by a full matrix, then the cost of direct inversion is proportional to n?,
and the cost of matrix multiplication is n>. Each step of an iterative method boils down to a
matrix multiplication. Therefore, we need at least n steps to arrive at the exact solution. Two
circumstances make large-scale optimization practical. First, for sparse convolution matrices
the cost of matrix multiplication is n instead of n%. Second, we can often find a reasonably
good solution after a limited number of iterations. If both these conditions are met, the cost
of optimization grows linearly with n, which is a practical rate even for very large problems.
Fourier-transformed variables are often capitalized. This convention will be helpful here, so
in this subsection only, we capitalize vectors transformed by the F matrix. As everywhere, a
matrix such as F is printed in boldface type but in this subsection, vectors are not printed in
boldface print. Thus we define the solution, the solution step (from one iteration to the next),
and the gradient by

X = Fx solution (2.58)
S = Fyj solution step (2.59)
G = Fyj solution gradient (2.60)

A linear combination in solution space, say S + @, corresponds to S+ G in the conjugate
space, because S+ G = Fs+ Fg = F(s 4+ ¢). According to equation (2.43), the residual is the
theoretical data minus the observed data.

R = Fx-D = X-D (2.61)
The solution X is obtained by a succession of steps Sj, say
X = S +S 4834 - (2.62)
The last stage of each iteration is to update the solution and the residual:
solution update : X <X +58 (2.63)

residual update : R« R +8S (2.64)

The gradient vector g is a vector with the same number of components as the solution
vector X. A vector with this number of components is

g = FR = gradient (2.65)
G = Fg = conjugate gradient (2.66)

The gradient g in the transformed space is G, also known as the conjugate gradient.

The minimization (2.48) is now generalized to scan not only the line with «, but simulta-
neously another line with 8. The combination of the two lines is a plane:

Q@.,8) = (R+aG+p8S) - (R+aG+BS) 2.67)
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The minimum is found at 9Q /da = 0 and 0Q /3B = 0, namely,

0 = G-(R+aG+pS) (2.68)

0 = S:-(R+aG+pS) (2.69)
The solution is
a | -1 (S-S) —(S-G) (G-R) (2.70)
Bl (G-G)S-S)—(G-S)2| —(G-S) (G-G) (S-R) '
This may look complicated. The steepest descent method requires us to compute only the two
dot products r- Ar and Ar - Ar while equation (2.67) contains five dot products, but the extra

trouble is well worth while because the “conjugate direction” is such a much better direction
than the gradient direction.

The many applications in this book all need to find « and 8 with (2.70) and then update the
solution with (2.63) and update the residual with (2.64). Thus we package these activities in a
subroutine named cgst ep() . To use that subroutine we will have a computation template like
we had for steepest descents, except that we will have the repetitive work done by subroutine
cgstep(). This template (or pseudocode) for minimizing the residual 0 ~ r = FX — d by the
conjugate-direction method is

r «— Fx-d
iterate {
AX <«— F'r
Ar <«— F AX
(X,r) <«— cgstep(X, AX, I, Ar)

}

where the subroutine cgst ep() remembers the previous iteration and works out the step size
and adds in the proper proportion of the AX of the previous step.

2.3.6 Routine for one step of conjugate-direction descent

Because Fortran does not recognize the difference between upper- and lower-case letters, the
conjugate vectors G and S in the program are denoted by gg and ss. The inner part of the
conjugate-direction task is in function cgst ep() .

modul e cgstep_nmod {

real, dinmension (:), allocatable, private i1 s, SS
cont ai ns
integer function cgstep( forget, x, g, rr, gg) {
real, dimension (:) :: X, g, rr, gg
| ogi cal .. forget

doubl e precision ;. sds, gdg, gds, determ gdr, sdr, alfa, beta
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if( .not. allocated (s)) { forget = .true
allocate ( s (size ( x)))
al l ocate (ss (size (rr)))
}
if( forget){ s =0.; ss =0.; beta = 0.d0 # steepest descent
i f( dot_product(gg, gg) == 0)
call erexit(’cgstep: grad vanishes identically’)

alfa = - sun( dprod( gg, rr)) / sunm( dprod( gg, gg))
}
el se{ gdg = sum( dprod( g9g, gg)) # search plane by solving 2-by-2
sds = sum( dprod( ss, ss)) # G. (R- Galfa - S*beta) =0
gds = sum( dprod( gg, ss)) # S. (R- Galfa - S*beta) =0

if( gdg==0. .or. sds==0.) { cgstep = 1; return}

determ = gdg * sds * max (1.d0 - (gds/gdg)*(gds/sds), 1.d-12)
gdr = - sun{ dprod( gg, rr))

sdr = - sun{ dprod( ss, rr))

alfa = ( sds * gdr - gds * sdr ) / determ

beta = (-gds * gdr + gdg * sdr ) / determ

}
s =alfa* g+ beta* s # update sol ution step
ss = alfa * gg + beta * ss # update residual step
X = X+ s # update sol ution
re =rr + ss # update residua
forget = .false.; cgstep = 0

}
subroutine cgstep_close ( ) {
if( allocated( s)) deallocate( s, ss)

}

Observe the cgst ep() function has a logical parameter called f or get . This parameter does
not need to be input. In the normal course of things, f or get will be true on the first iteration
and false on subsequent iterations. This refers to the fact that on the first iteration, there is no
previous step, so the conjugate direction method is reduced to the steepest descent method. At
any iteration, however, you have the option to set f or get =. t rue. which amounts to restarting
the calculation from the current location, something we rarely find reason to do.

2.3.7 A basic solver program

There are many different methods for iterative least-square estimation some of which will
be discussed later in this book. The conjugate-gradient (CG) family (including the first order
conjugate-direction method described above) share the property that theoretically they achieve
the solution in n iterations, where n is the number of unknowns. The various CG methods
differ in their numerical errors, memory required, adaptability to non-linear optimization, and
their requirements on accuracy of the adjoint. What we do in this section is to show you the
generic interface.

None of us is an expert in both geophysics and in optimization theory (OT), yet we need
to handle both. We would like to have each group write its own code with a relatively easy in-
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terface. The problem is that the OT codes must invoke the physical operators yet the OT codes
should not need to deal with all the data and parameters needed by the physical operators.

In other words, if a practitioner decides to swap one solver for another, the only thing
needed is the name of the new solver.

The operator entrance is for the geophysicist, who formulates the estimation problem.
The solver entrance is for the specialist in numerical algebra, who designs a new optimization
method. The Fortran-90 programming language allows us to achieve this design goal by means
of generic function interfaces.

A basic solver is sol ver _tiny().

modul e sol ver _tiny_nod { #0=Fm- d
cont ai ns
subroutine solver_tiny( md, Fop, stepper, niter, nD,resd) {
optional :: n0, resd
interface { #-------------------- begin definitions -------
i nteger function Fop(adj,add, md){
real ,dinmension(:) :: md

logical,intent(in):: adj,add }
i nteger function stepper(forget,mg,rr,gg) {

real ,di mension(:) :: mag,rr,gg
| ogi cal - f or get }
}
real, dinmension(:), intent(in) :: d # data
real, dinmension(:), intent(out) :: m # node
real, dinmension(:), intent(in) :: nD # initial node
i nt eger, intent(in) :: niter # nunber of iterations
i nt eger cooiter # iteration nunber
real, dinmension(size( m) g # gradient (dm
real, dinmension(size( d)),target oorr # data residual ( vector)
real, dinmension(:), pointer :: rd # data residual (pointer)
real, dinmension(size( d)),target 1 g9 # conj grad ( vector)
real, dinmension(:), pointer :: gd # conj grad (pointer)
i nt eger ;1 stat # status flag
real, dinmension(:), intent(out) :: resd # residua
rd => rr(21:size( d))
gd => gg(1l:size( d))
Bom begin initialization -----------
rd = -d # Rd = - d
m =0; if(present( n0)){ m=nD # m= 0
stat = Fop(.false.,.true., mrd) # Rd = Rd + F nD

}
doiter = 1,niter { #--------- begin iterations -----------

stat = Fop( .true.,.false.,g,rd) # g= F Rd

stat = Fop(.false.,.false.,g,qgd) #G& = F g

stat = stepper(.false., mg, rr,gg)# m= mdm R =R + dR
}

if(present( resd)) resd = rd

The two most important arguments in sol ver _ti ny() are the operator function Fop, which
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is defined by the interface from Chapter 1, and the stepper function st epper, which imple-
ments one step of an iterative estimation. For example, a practitioner who choses to use our
new cgst ep() on page 51 for iterative solving the operator mat nul t on page 3 would write the
call

call solver_tiny ( matnult_| op, cgstep,

so while you are reading the sol ver _ti ny module, you should visualize the Fop() function as
being mat nul t _| op, and you should visualize the st epper () function as being cgst ep.

The other required parameters to sol ver _tiny() are d (the data we want to fit), m(the
model we want to estimate), and ni t er (the maximum number of iterations). There are also
a couple of optional arguments. For example, nD is the starting guess for the model. If this
parameter is omitted, the model is initialized to zero. To output the final residual vector, we
include a parameter called resd, which is optional as well. We will watch how the list of
optional parameters to the generic solver routine grows as we attack more and more complex
problems in later chapters.

2.3.8  Why Fortran 90 is much better than Fortran 77

I'd like to digress from our geophysics-mathematics themes to explain why Fortran 90 has
been a great step forward over Fortran 77. All the illustrations in this book were originally
computed in F77. Then module sol ver _ti ny on the preceding page was simply a subroutine.
It was not one module for the whole book, as it is now, but it was many conceptually identical
subroutines, dozens of them, one subroutine for each application. The reason for the prolifer-
ation was that F77 lacks the ability of F90 to represent operators as having two ways to enter,
one for science and another for math. On the other hand, F77 did not require the half a page
of definitions that we see here in F90. But the definitions are not difficult to understand, and
they are a clutter that we must see once and never again. Another benefit is that the book in
F77 had no easy way to switch from the cgst ep solver to other solvers.

2.3.9 Test case: solving some simultaneous equations

Now we assemble a module cgnet h for solving simultaneous equations. Starting with the
conjugate-direction module cgst ep_nod on page 51 we insert the module mat mul t on page 3
as the linear operator.

nmodul e cgneth {
use mat nul t
use cgstep_nod
use sol ver_tiny_nod

cont ai ns
# setup of conjugate gradient descent, mininmze SUMrr(i)**2
# nx

#orr(i) = sumfff(i,j) * x(j) - vyy(i)
# i=1
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subroutine cgtest( x, yy, rr, fff, niter) {

real, dinmension (:), intent (out) :: Xx, rr
real, dinmension (:), intent (in) :: yy
real, dinmension (:,:), pointer s fff
i nt eger, intent (in) :: niter

call matmult_init( fff)

call solver_tiny( nex, d=yy, &
Fop=mat nul t _| op, stepper=cgstep, &
niter=niter, resd=rr)

call cgstep_close ()

Below shows the solution to 5 x 4 set of simultaneous equations. Observe that the “exact”

solution is obtained in the last step. Because the data and answers are integers, it is quick to
check the result manually.

d transpose

3.00 3.00 5.00 7.00 9. 00
F transpose
1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5. 00
1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00
for iter =0, 4
X 0.43457383 1.56124675 0.27362058 0.25752524
res -0.73055887 0.55706739 0.39193487 -0.06291389 -0. 22804642
X 0.51313990 1.38677299 0.87905121 0.56870615
res -0.22103602 0.28668585 0.55251014 -0.37106210 - 0. 10523783
X 0.39144871 1.24044561 1.08974111 1.46199656
res -0.27836466 -0.12766013 0.20252672 -0.18477242 0. 14541438
X 1.00001287 1.00004792 1.00000811 2.00000739
res 0.00006878 0.00010860 0.00016473 0.00021179 0.00026788
X 1.00000024 0.99999994 0.99999994 2. 00000024
res -0.00000001 -0.00000001 0.00000001 0.00000002 -0.00000001
EXERCISES:
1 One way to remove a mean value m from signal s(t) = s is with the fitting goal 0 ~ s —m.
What operator matrix is involved?
2 What linear operator subroutine from Chapter 1 can be used for finding the mean?
3 How many CD iterations should be required to get the exact mean value?
4 Write a mathematical expression for finding the mean by the CG method.
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2.4 INVERSE NMO STACK

To illustrate an example of solving a huge set of simultaneous equations without ever writing
down the matrix of coefficients we consider how back projection can be upgraded towards
inversion in the application called moveout and stack.

Model I, T

_ mm il
Figure 2.3: Top is a model trace m. ﬂﬂﬂﬂﬂﬂmm %
Next are the synthetic data traces, i 0 %
d = Mm. Then, labeled niter=0 Synthe - il [T
. tic data 0 JUIe
is the stack, a result of process- oot
ing by adjoint modeling. Increasing L
values of niter show X as a func- .
. . . . . niter=0 AL
tion of iteration count in the fitting niter=1____lL ML

. niter=2

goal d & Mm. (Carlos Cunha-Filho) n@ter:iww m
Isq-invstack90| [ER] miter=2_ [l —

[ I I I I I I I I
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The seismograms at the bottom of Figure 2.3 show the first four iterations of conjugate-
direction inversion. You see the original rectangle-shaped waveform returning as the iterations
proceed. Notice also on the stack that the early and late events have unequal amplitudes, but
after enough iterations they are equal, as they began. Mathematically, we can denote the top
trace as the model m, the synthetic data signals as d = Mm, and the stack as M’d. The
conjugate-gradient algorithm optimizes the fitting goal d &~ MXx by variation of X, and the
figure shows X converging to m. Because there are 256 unknowns in m, it is gratifying to
see good convergence occurring after the first four iterations. The fitting is done by module
i nvst ack, which is just like cgmet h on page 54 except that the matrix-multiplication operator
mat mul t on page 3 has been replaced by i mospr ay on page 25. Studying the program, you can
deduce that, except for a scale factor, the output at ni t er =0 is identical to the stack M'd. All
the signals in Figure 2.3 are intrinsically the same scale.
nmodul e i nvstack {

use i nospray

use cgstep_nod
use sol ver_tiny_nod

cont ai ns
# NMO stack by inverse of forward npdeling
subroutine stack( nt, model, nx, gather, t0, x0, dt, dx, slow, niter) {
i nt eger nt, nx, niter
real nmodel (:), gather (:), tO,xO0,dt, dx, sl ow
call inmpbspray_init( slow, x0,dx, tO,dt, nt, nx)
call solver_tiny( menodel, d=gather, Fop=i nospray_| op, stepper=cgstep, niter=niter)
call cgstep_close (); call inpbspray_close () # garbage coll ection

}

This simple inversion is inexpensive. Has anything been gained over conventional stack?
First, though we used nearest-neighbor interpolation, we managed to preserve the spectrum
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of the input, apparently all the way to the Nyquist frequency. Second, we preserved the true
amplitude scale without ever bothering to think about (1) dividing by the number of contribut-
ing traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for in-
version.

2.5 VESUVIUS PHASE UNWRAPPING

Figure 2.4 shows radar' images of Mt. Vesuvius? in Italy. These images are made from
backscatter signals S;(t) and S(t), recorded along two satellite orbits 800 km high and 54
m apart. The signals are very high frequency (the radar wavelength being 2.7 cm). They
were Fourier transformed and one multiplied by the complex conjugate of the other, getting
the product Z = S;(w)S>(w). The product’s amplitude and phase are shown in Figure 2.4.
Examining the data, you can notice that where the signals are strongest (darkest on the left),
the phase (on the right) is the most spatially consistent. Pixel by pixel evaluation with the
two frames in a movie program shows that there are a few somewhat large local amplitudes
(clipped in Figure 2.4) but because these generally have spatially consistent phase, I would not
describe the data as containing noise bursts.

0071

002

00€

00¥
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Amplitude Phase

Figure 2.4: Radar image of Mt. Vesuvius. Left is the amplitude. Non-reflecting ocean in upper

left corner. Right is the phase. (Umberto Spagnolini) |Isq-vesuvio90 |[ER,M]

'Here we do not require knowledge of radar fundamentals. Common theory and practice is briefly sur-
veyed in Reviews of Geophysics, Vol 36, No 4, November 1998, Radar Interferometry and its application to
changes in the earth’s surface, Didier Massonnet and Kurt Feigl.

2A web search engine quickly finds you other views.
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To reduce the time needed for analysis and printing, I reduced the data size two different
ways, by decimation and by local averaging, as shown in Figure 2.5. The decimation was to
about 1 part in 9 on each axis, and the local averaging was done in 9 x 9 windows giving the
same spatial resolution in each case. The local averaging was done independently in the plane
of the real part and the plane of the imaginary part. Putting them back together again showed
that the phase angle of the averaged data behaves much more consistently. This adds evidence
that the data is not troubled by noise bursts.

100 200 300 400 500 800 700

decimated smoothed

Figure 2.5: Phase based on decimated data (left) and smoothed data (right). |Isq-squeeze90

[ERM]

From Figures 2.4 and 2.5 we see that contours of constant phase appear to be contours of
constant altitude; this conclusion leads us to suppose that a study of radar theory would lead us
to a relation like Z = /" where h is altitude (in units unknown to us nonspecialists). Because
the flat land away from the mountain is all at the same phase (as is the altitude), the distance as
revealed by the phase does not represent the distance from the ground to the satellite viewer.
We are accustomed to measuring altitude along a vertical line to a datum, but here the distance
seems to be measured from the ground along a 23° angle from the vertical to a datum at the
satellite height.

Phase is a troublesome measurement because we generally see it modulo 27r. Marching up
the mountain we see the phase getting lighter and lighter until it suddenly jumps to black which
then continues to lighten as we continue up the mountain to the next jump. Let us undertake
to compute the phase including all of its jumps of 27. Begin with a complex number Z
representing the complex-valued image at any location in the (X, y)-plane.

re¢ = z (2.71)
In|r|+i(¢+ 27N) = InZ (2.72)
¢ = SInZ — 27N (2.73)
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A computer will find the imaginary part of the logarithm with the arctan function of two argu-
ments, at an2(y, x) , which will put the phase in the range —7 < ¢ < & although any multiple
of 27 could be added. We seem to escape the 27r N phase ambiguity by differentiating:

192
2_‘)’: = szg—x (2.74)
3¢ 3z

= = z—zax (2.75)

For every point on the y-axis, equation (2.75) is a differential equation on the X-axis, and
we could integrate them all to find ¢(X,y). That sounds easy. On the other hand, the same
equations are valid when X and Yy are interchanged, so we get twice as many equations as
unknowns. For ideal data, either of these sets of equations should be equivalent to the other,
but for real data we expect to be fitting the fitting goal

R

NI

vz
z

Vo~ (2.76)

N

where V = (57, 50).

We will be handling the differential equation as a difference equation using an exact repre-
sentation on the data mesh. By working with the phase difference of neighboring data values,
we do not have to worry about phases greater than 27 (except where phase jumps that much
between mesh points). Thus we solve (2.76) with finite differences instead of differentials.
Module i gr ad2 is a linear operator for the difference representation of the operator represent-
ing the gradient of a potential field. Its adjoint is known as the divergence of a vector field.

nmodul e igrad2 { # 2-D gradient with adjoint, r= grad( p)
integer :: nl, n2
#% i nit (nl, n2)
#%lop ( p(nl, n2), r(nl,n2,2))
integer i,j
do i=1, nl-1 {
do j=1, n2-1 {
if( adj) {

p(i+l,j ) += r(i,j,1)
p(i .j ) -= r(i,j,1)
p(i ,j+1) += r(i,],?2)
p(i i ) -= r(i,j,2)

}

else { r(i,j,1) += ( p(i+l,j) - p(i.j))
r(ij,2) += ( p(i,j+1) - p(i,j))
}

1}

To do the least-squares fitting (2.76) we pass the i gr ad2 module to the Krylov subspace solver.
(Other people might prepare a matrix and give it to Matlab.)
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The difference equation representation of the fitting goal (2.76) is:

dir1j —Pij ~ Adac
’ ’ 2.77
dij+1—dij ~ Adap @77)
where we still need to define the right-hand side. Define the parameters a, b, ¢, and d as
follows:
a b Zij  Zij+ ]
= ’ ’ 2.78
[ c d :| |: Zit1j Zig1,j+1 ( )

Arbitrary complex numbers a and b may be expressed in polar form, say a = rae'e and
b =rpe'?. The complex number ab = rarpe' =% has the desired phase Ag¢ap. To obtain it
we take the imaginary part of the complex logarithm In |rarp| 4+ 1 A¢ap.

$pp—¢a = A¢ap = SInab
¢pd—¢Pc = APy = SIncd
$pc—@Pa = Apac = Sln ?—C
$pd—Pp = A¢ps = Slnbd

(2.79)

which gives the information needed to fill in the right-hand side of (2.77), as done by subrou-
tine i grad2i ni t () from module unwr ap on the facing page.

2.5.1 Digression: curl grad as a measure of bad data

The relation (2.79) between the phases and the phase differences is

—1 1 0 0 (ba A¢ab
0 0 —1 1 o | | Adu
1 0 10 || ¢ | ~ | Adac (2.50)
0 -1 01 dd Adpg

Starting from the phase differences, equation (2.80) cannot find all the phases themselves
because an additive constant cannot be found. In other words, the column vector [1,1,1,1]
is in the null space. Likewise, if we add phase increments while we move around a loop, the
sum should be zero. Let the loop be a — ¢ — d — b — a. The phase increments that sum to
Zero are:

Apac + Apped — APpd — Apap = 0 (2.81)
Rearranging to agree with the order in equation (2.80) yields
—Apap+ Aped + Appac — Adppga = 0 (2.82)

which says that the row vector [—1,+1, 41, —1] premultiplies (2.80), yielding zero. Rearrange
again

—Appd +Apac = Apap — Aded (2.83)
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and finally interchange signs and directions (i.e., A¢dp = —Appd)

(Addo — Adca) — (Apdc—A¢pa) = 0 (2.84)
This is the finite-difference equivalent of

3% 3%
aXay ayoX

(2.85)

and is also the z-component of the theorem that the curl of a gradient V x V¢ vanishes for any

®.

The four A¢ summed around the 2 x 2 mesh should add to zero. I wondered what would
happen if random complex numbers were used for a, b, ¢, and d, so I computed the four A¢’s
with equation (2.79), and then computed the sum with (2.81). They did sum to zero for 2/3
of my random numbers. Otherwise, with probability 1/6 each, they summed to 27. The
nonvanishing curl represents a phase that is changing too rapidly between the mesh points.
Figure 2.6 shows the locations at Vesuvius where bad data occurs. This is shown at two
different resolutions. The figure shows a tendency for bad points with curl 27 to have a
neighbor with —27. If Vesuvius were random noise instead of good data, the planes in Figure
2.6 would be one-third covered with dots but as expected, we see considerably fewer.

(o] 10 20 30 40 50 60 70 (o] 20 40 60 80 100 120

Coarse badness Fine badness

Figure 2.6: Values of curl at Vesuvius. The bad data locations at both coarse and fine resolution

tend to occur in pairs of opposite polarity. |lsq-screw90 |[ER,M]

2.5.2 Estimating the inverse gradient

To optimize the fitting goal (2.77), module unwr ap() uses the conjugate-direction method like
the modules cgnet h() on page 54 and i nvst ack() on page 56.
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modul e unwr ap {
use cgstep_nod
use igrad2
use sol ver_snp_nod

cont ai ns
subroutine grad2init( z, nl,n2, rt ) {
integer i, j, nl, n2
real rt( nl,n2,2)
conpl ex z( nl,n2 ), a, b, c
rt = 0.

doi=1, nl1-1 {
doj=1, n2-1 {

a= z(i ,j )
c = z(i+l,j ); rt(i,j,1) = ainmag( clog( ¢ * conjg( a) ) )
= z(i, j+1); rt(i,j,2) = aimg( clog( b * conjg( a) ) )

1}

}

# Phase unwr aper. Starting from phase hh, inprove it

subroutine unw aper( zz, hh, niter) {

integer nil,n2, niter

conpl ex zz(:,:)

real hh(:)

real, allocatable :: rt(:)

nl = size( zz, 1)

n2 = size( zz, 2)

al locate( rt( nl*n2*2))

call grad2init( zz,nl,n2, rt)

call igrad2_init( nl,n2)

call solver_smp( mehh, d=rt, Fop=igrad2_| op, stepper=cgstep, niter=niter, n0D=hh)
call cgstep_close ()

deal | ocate( rt)

}

An open question is whether the required number of iterations is reasonable or whether we
would need to uncover a preconditioner or more rapid solution method. I adjusted the frame
size (by the amount of smoothing in Figure 2.5) so that I would get the solution in about ten
seconds with 400 iterations. Results are shown in Figure 2.7. To summarize, the input is the
phase map Figure 2.4 and the output is the altitude map in Figure 2.7. Oddly, the input looks
maybe nicer than the output because it already looks something like a contour plot. So if we
have a beauty contest, then the input beats the output, but if you need to have the (normalized)
altitude h(X, y), not the phase of €'"®Y)_ then you need to solve the least squares problem.

2.5.3 Discontinuity in the solution

The viewing angle (23 degrees off vertical) in Figure 2.4 might be such that the mountain
blocks some of the landscape behind it. This leads to the interesting possibility that the phase
function must have a discontinuity where our viewing angle jumps over the hidden terrain. It
will be interesting to discover whether we can estimate functions with such discontinuities. I
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Figure 2.7: Estimated altitude. |Isq-veshigh90 |[ER,M]

am not certain that the Vesuvius data really has such a shadow zone, so I prepared the synthetic
data in Figure 2.8, which is noise free and definitely has one.

We notice the polarity of the synthetic data in 2.8 is opposite that of the Vesuvius data.
This means that the radar altitude of Vesuvius is not measured from sea level but from the
satellite level.

EXERCISES:

1 In differential equations, boundary conditions are often (1) a specified function value or
(2) a specified derivative. These are associated with (1) transient convolution or (2) in-
ternal convolution. Gradient operator i gr ad2 on page 59 is based on internal convolution
with the filter (1, —1). Revise i gr ad2 to make a module called t gr ad2 which has transient
boundaries.

2.5.4 Fourier solution

With the Vesuvius example we have used a numerical method to solve a problem that has
an “analytic solution”. Actually, it has an algebraic solution in Fourier space. For practical
purposes this is wonderful because it means we can have a solution on a very large mesh. The
cost is only about linear (actually N log N) in the number of grid points while iterative solvers
are much more costly. Let us now look at the “analytic” solution. Our least squares regression
(2.76) takes the form

0 ~ V¢ —d (2.86)
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Figure 2.8: Synthetic mountain with hidden backside. For your estimation enjoyment.

1sq-synmod90 | [ER,M]

The shortcut to the least squares solution is to apply the adjoint operator. The adjoint to the
gradient [V] is the vector divergence [V-]. The divergence of the gradient is the negative of
the Laplacian. So, we get

0 = V¥+vVvd (2.87)

Let us visualize this equation in physical space and in Fourier space. In physical space V2
is a convolutional operator. In Fourier space it is —(k>2( + kf,). We can solve simply by divid-
ing by —(k)z( + kf,) whereas inverting the matrix V2 (which happens implicitly with conjugate
gradients) would be a very big production. Thus, the analytic solution is

dp(x,y) = —FT Tk (2.88)

where FT denotes 2-dimensional Fourier transform over X and Y.

Instead of representing k>2( + k}z, in the most obvious way, let us represent it in a man-
ner consistant with the finite-difference way we expressed the data d. Recall that —iwAt ~
—i®At =1—Z =1 —exp(—iwAt) which is a Fourier domain way of saying that difference
equations tend to differential equations at low frequencies. Likewise a symmetric second time
derivative has a finite-difference representation proportional to (—2+Z 4+ 1/Z) and in a two-
dimensional space, a finite-difference representation of the Laplacian operator is proportional
to (=4+X+1/X+Y +1/Y) where X = exp(ikxyAX) and Y = exp(ikyAy).

Fourier solutions have their own peculiarities (periodic boundary conditions) which are not
always appropriate in practice, but having these solutions available is often a nice place to start
from when solving a problem that cannot be solved in Fourier space. For example, suppose
we feel some data values are bad and we would like to throw out the regression equations
involving the bad data points. We could define a weighting matrix starting from an identity
matrix and replacing some of the ones by zeros. This defines W. Now our regression (2.86)
becomes

0 ~ W({¢-—d = (WV) — Wd (2.89)

This is a problem we know how to solve, a regression with an operator WV and data Wd. The
weighted problem is not solveable in the Fourier domain because the operator (WV)'WV has
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no simple expression in the Fourier domain. Thus we would use the analytic solution to the
unweighted problem as a starting guess for the iterative solution to the real problem.

With the Vesuvius data how might we construct the weight W? We have available the
signal strength (which we have not used). We could let the weight be proportional to sig-
nal strength. We also have available the curl, which should vanish. Its non-vanishing is an
indicator of questionable data which could be weighted down relative to other data.

The laboratory exercise is new this year so it may contain some unexpected difficulties.
We’re not sure it leads to clear solutions either. Anyway, you are given the Vesuvius data and
all the programs in the book. Additionally, you are given a Fourier solver that produces the
analytic solution. Please inspect both the Fourier solver and the solution it gets. Go to the
web to see what pictures you can find of Vesuvius. Notice the radial drainage patterns on the
amplitude of the original complex numbers. It is a little disturbing that we don’t see these
drainage patterns on the phase data (or maybe you can see them a little?). Any thoughts you
have on that issue are certainly welcome. Any other thoughts you have on this lab are certainly
welcome. This data is fun so we’d like to get this lab better focused for next year.

2.5.5 Integrating time differences

A reason I particularly like the Vesuvius exercise is that slight variations on the theme occur in
many other fields. For example, in 2-D and 3-D seismology we can take the cross-correlation
of neighboring seismograms and determine the time lag 7 of the maximum correlation. Thus,
analogous with Vesuvius, we pack a vector d with measurements of dz/dx and dz/dy. Now
we hypothesize that there exists a lag t(X,y) whose gradient matches d. Instead of solving
for phase ¢, our regression says Vt(X,Yy)~ d, and we can approach it as we did Vesuvius.
Actually, I’d like to rewrite the book with just such an example because for many people
time lag t(X,Y) is more concrete than phase ¢(X, y). Unfortunately, the real problem requires
visualizing the raw data (voltage as a function of (t,X,Yy) which requires learning to use 3-
D volume data visualization tools. Likewise the raw data back shifted by t(X,y) is 3-D.
Additionally, the codes would be more cluttered because the raw data would be a cube of
numbers instead of a plane, and we’d need to fumble around doing the crosscorrelations. That
crosscorrelation business is a little tricky because we need to measure time shifts less than one
mesh point.

Old-time reflection seismic interpreters would track a strong event along a seismic line
going off into the 3-D world when they would jump from one line to a crossline. Eventually
they would work their way back to the starting line where they would hope they were on the
same event. They would say, “The lines should tie.” The mathematician (or physicist) is
saying something similar with the statement that "The curl should vanish everywhere." If the
sum around all possible little loops vanishes, logically it means that the sum around all big
loops also vanishes.

Here is a real-world problem you could think about: You have earthquake seismograms
recorded at i = 1,2,..., N locations. You would like to shift them into alignment. Assume a
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cartesian geometry. You have measured all possible time lags 7j j between station i and station
Jj. What operator would you be giving to the solver?

26 THE WORLD OF CONJUGATE GRADIENTS

Nonlinearity arises in two ways: First, theoretical data might be a nonlinear function of the
model parameters. Second, observed data could contain imperfections that force us to use
nonlinear methods of statistical estimation.

2.6.1 Physical nonlinearity

When standard methods of physics relate theoretical data dieor to model parameters m, they
often use a nonlinear relation, say Oieor = f(M). The power-series approach then leads to
representing theoretical data as

dtheor = f(mO + Am) ~ f(mO) +FAmM (290)

where F is the matrix of partial derivatives of data values by model parameters, say dd; /omj,

evaluated at my. The theoretical data di,eo, minus the observed data dop is the residual we
minimize.

0 ~ dtheor - dobs = FAmM+ [f(mO) - dobs] (291)

rnew = FAm + rold (2.92)

It is worth noticing that the residual updating (2.92) in a nonlinear problem is the same as that
in a linear problem (2.47). If you make a large step Am, however, the new residual will be
different from that expected by (2.92). Thus you should always re-evaluate the residual vector
at the new location, and if you are reasonably cautious, you should be sure the residual norm
has actually decreased before you accept a large step.

The pathway of inversion with physical nonlinearity is well developed in the academic
literature and Bill Symes at Rice University has a particularly active group.

2.6.2 Statistical nonlinearity

The data itself often has noise bursts or gaps, and we will see later in Chapter 7 that this
leads us to readjusting the weighting function. In principle, we should fix the weighting
function and solve the problem. Then we should revise the weighting function and solve the
problem again. In practice we find it convenient to change the weighting function during the
optimization descent. Failure is possible when the weighting function is changed too rapidly
or drastically. (The proper way to solve this problem is with robust estimators. Unfortunately,
I do not yet have an all-purpose robust solver. Thus we are (temporarily, I hope) reduced
to using crude reweighted least-squares methods. Sometimes they work and sometimes they
don’t.)
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2.6.3 Coding nonlinear fitting problems

We can solve nonlinear least-squares problems in about the same way as we do iteratively
reweighted ones. A simple adaptation of a linear method gives us a nonlinear solver if the
residual is recomputed at each iteration. Omitting the weighting function (for simplicity) the
template is:

iterate {
r <«— fm)—-d
Define F = dd/om.
Am <«— F'r
Ar <«— FAm
(m,r) <«— step(m,r,Am,Ar)

}

A formal theory for the optimization exists, but we are not using it here. The assumption
we make is that the step size will be small, so that familiar line-search and plane-search ap-
proximations should succeed in reducing the residual. Unfortunately this assumption is not
reliable. What we should do is test that the residual really does decrease, and if it does not we
should revert to steepest descent with a smaller step size. Perhaps we should test an incremen-
tal variation on the status quo: where inside sol ver on page 53, we check to see if the residual
diminished in the previous step, and if it did not, restart the iteration (choose the current step
to be steepest descent instead of CD). I am planning to work with some mathematicians to
gain experience with other solvers.

Experience shows that nonlinear problems have many pitfalls. Start with a linear problem,
add a minor physical improvement or unnormal noise, and the problem becomes nonlinear and
probably has another solution far from anything reasonable. When solving such a nonlinear
problem, we cannot arbitrarily begin from zero as we do with linear problems. We must choose
areasonable starting guess, and then move in a stable and controlled manner. A simple solution
is to begin with several steps of steepest descent and then switch over to do some more steps
of CD. Avoiding CD in earlier iterations can avoid instability. Strong linear “regularization”
discussed later can also reduce the effect of nonlinearity.

2.6.4 Standard methods

The conjugate-direction method is really a family of methods. Mathematically, where there
are N unknowns, these algorithms all converge to the answer in n (or fewer) steps. The var-
ious methods differ in numerical accuracy, treatment of underdetermined systems, accuracy
in treating ill-conditioned systems, space requirements, and numbers of dot products. Techni-
cally, the method of CD used in the cgst ep module on page 51 is not the conjugate-gradient
method itself, but is equivalent to it. This method is more properly called the conjugate-
direction method with a memory of one step. I chose this method for its clarity and flexibility.
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If you would like a free introduction and summary of conjugate-gradient methods, I particu-
larly recommend An Introduction to Conjugate Gradient Method Without Agonizing Pain by
Jonathon Shewchuk, which you can download?.

I suggest you skip over the remainder of this section and return after you have seen many
examples and have developed some expertise, and have some technical problems.

The conjugate-gradient method was introduced by Hestenes and Stiefel in 1952. To
read the standard literature and relate it to this book, you should first realize that when I write
fitting goals like

0 ~ W(FmMm-d) (2.93)
0 ~ Am, (2.94)

they are equivalent to minimizing the quadratic form:
m: n}%n Qm) = MF-d)WWFmM-d) + m'A’/Am (2.95)
The optimization theory (OT) literature starts from a minimization of
X: mxin Qx) = xHx-b'x (2.96)

To relate equation (2.95) to (2.96) we expand the parentheses in (2.95) and abandon the con-
stant term d’'d. Then gather the quadratic term in m and the linear term in m. There are two
terms linear in m that are transposes of each other. They are scalars so they are equal. Thus, to
invoke “standard methods,” you take your problem-formulation operators F, W, A and create
two modules that apply the operators

H = FWWF+AA (2.97)
b = 2(FWWd) (2.98)

The operators H and b’ operate on model space. Standard procedures do not require their
adjoints because H is its own adjoint and b’ reduces model space to a scalar. You can see
that computing H and b’ requires one temporary space the size of data space (whereas cgst ep
requires two).

When people have trouble with conjugate gradients or conjugate directions, I always refer
them to the Paige and Saunders algorithm LSQr. Methods that form H explicitly or implicitly
(including both the standard literature and the book3 method) square the condition number,
that is, they are twice as susceptible to rounding error as is LSQR.

2.6.5 Understanding CG magic and advanced methods

This section includes Sergey Fomel’s explanation on the “magic” convergence properties of
the conjugate-direction methods. It also presents a classic version of conjugate gradients,

3http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-gradient.ps
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which can be found in numerous books on least-square optimization. The key idea for con-
structing an optimal iteration is to update the solution at each step in the direction, composed
by a linear combination of the current direction and all previous solution steps. To see why this
is a helpful idea, let us consider first the method of random directions. Substituting expression
(2.50) into formula (2.48), we see that the residual power decreases at each step by
(r-Ary?
rr—rpew-r = —. 2.99
new new (Ar- Ar) ( )
To achieve a better convergence, we need to maximize the right hand side of (2.99). Let us
define a new solution step Syew as a combination of the current direction AX and the previous
step S, as follows:

Snew = AX4+pBS. (2.100)
The solution update is then defined as
Xnew = X+ OSpew - (2.101)

The formula for « (2.50) still holds, because we have preserved in (2.101) the form of equation
(2.44) and just replaced AX with Spey. In fact, formula (2.50) can be simplified a little bit. From
(2.49), we know that Ipey is orthogonal to Ar = FSpey. Likewise, I should be orthogonal to
Fs (recall that r was I'yey, and S was Speyw at the previous iteration). We can conclude that

(r-Ar) = (r-Fspew) = ((r-FAX)+pB(r-Fs) = (r-FAX). (2.102)

Comparing (2.102) with (2.99), we can see that adding a portion of the previous step to the
current direction does not change the value of the numerator in expression (2.99). However,
the value of the denominator can be changed. Minimizing the denominator maximizes the
residual increase at each step and leads to a faster convergence. This is the denominator
minimization that constrains the value of the adjustable coefficient 8 in (2.100).

The procedure for finding g8 is completely analogous to the derivation of formula (2.50).
We start with expanding the dot product (Ar - Ar):

(FSnew - FSnew) = FAX-FAX+2B(FAX-Fs)+ B%Fs-Fs. (2.103)

Differentiating with respect to 8 and setting the derivative to zero, we find that
0 = 2(FAX+pBFs)-Fs. (2.104)
Equation (2.104) states that the conjugate direction Fsy.y is orthogonal (perpendicular) to the

previous conjugate direction Fs. It also defines the value of g8 as

_ (FAX-Fs)

P (Fs-Fs)

(2.105)

Can we do even better? The positive quantity that we minimized in (2.103) decreased by

(FAX-Fs)?
FAX-FAX—FSpew - FSpew = ——F— 2.106
(Fs-Fs) ( )
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Can we decrease it further by adding another previous step? In general, the answer is positive,
and it defines the method of conjugate directions. I will state this result without a formal proof
(which uses the method of mathematical induction).

e If the new step is composed of the current direction and a combination of all the previous
steps:

Sio= AXnt+ Y Bisi. (2.107)

i<n

then the optimal convergence is achieved when

g = (FAXnp - Fsj) (2.108)
S (Fsi -Fsp) '
e The new conjugate direction is orthogonal to the previous ones:
(Fsn-Fsi) = 0 forall i<n (2.109)

To see why this is an optimally convergent method, it is sufficient to notice that vectors
Fsi form an orthogonal basis in the data space. The vector from the current residual to the
smallest residual also belongs to that space. If the data size is n, then n basis components (at
most) are required to represent this vector, hence no more then n conjugate-direction steps are
required to find the solution.

The computation template for the method of conjugate directions is

r <«— Fx-d

iterate {
AX <«— random numbers
S <«— AX+),_.fBisi where g =
Ar  <«— Fs

«~— —(r-Ar)/(Ar-Ar)

<«~— X+4a«aS

<~ I +aAr

__ (FAX-Fs)
(Fsi-Fs)

—-— = X Q

What happens if we “feed” the method with gradient directions instead of just random
directions? It turns out that in this case we need to remember from all the previous steps S;
only the one that immediately precedes the current iteration. Let us derive a formal proof of
that fact as well as some other useful formulas related to the method of conjugate gradients.

According to formula (2.49), the new residual ey is orthogonal to the conjugate direction
AT = FSpew. According to the orthogonality condition (2.109), it is also orthogonal to all
the previous conjugate directions. Defining AX equal to the gradient F'r and applying the
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definition of the adjoint operator, it is convenient to rewrite the orthogonality condition in the
form

0 = (rp-Fsj)) = (Frn-si) = (AXpyr-Si) forall i<n (2.110)

According to formula (2.107), each solution step S; is just a linear combination of the gradient
AX; and the previous solution steps. We deduce from formula (2.110) that

0 = (AXp-Si) = (AXp-AXj) forall i<n (2.111)

In other words, in the method of conjugate gradients, the current gradient direction is always
orthogonal to all the previous directions. The iteration process constructs not only an orthog-
onal basis in the data space but also an orthogonal basis in the model space, composed of the
gradient directions.

Now let us take a closer look at formula (2.108). Note that Fs; is simply related to the
residual step at i-th iteration:
ri —ri—
Fsj=— -1 (2.112)
o
Substituting relationship (2.112) into formula (2.108) and applying again the definition of the
adjoint operator, we obtain

_FAXn-(ri—ric) _AXn‘F/(ri —ri-1) _ AXn-(AXiy — AXj)

hi= ai(Fsi -Fsj) oj(Fsi - Fsi) aj(Fs; - Fsp)

(2.113)

Since the gradients AX; are orthogonal to each other, the dot product in the numerator is equal
to zero unless i = n — 1. It means that only the immediately preceding step Sp—; contributes to
the definition of the new solution direction Sp in (2.107). This is precisely the property of the
conjugate gradient method we wanted to prove.

To simplify formula (2.113), rewrite formula (2.50) as

(ri—1-FAX) (F'ri_1- AXp) (AX; - AX))
o = — = - - 77 - = 7V (2.114)
(Fsi -Fsi) (Fsi -Fsi) (Fsi -Fsi)
Substituting (2.114) into (2.113), we obtain
AXp - AX AXp - AX
g (AXn-AXn)  (AXn-AXp) 2.115)

_Oln—l(FSn—l ‘FSn—1)  (AXn—1-AXp_1)
The computation template for the method of conjugate gradients is then

r <«— Fx-d
B <«— 0
iterate {
AX <«— Fr

if not the first iteration B =~ «—  (&XAX)

Y
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y <— (AX-AX)

S <«— AX+p8s
Ar <«— Fs

«~— —y/(Ar-Ar)
<«~— X+as

«~— I +aAr

-— = X Q
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Chapter 3

Empty binsand inver seinterpolation

Let us review the big picture. In Chapter 1 we developed adjoints and in Chapter 2 we devel-
oped inverse operators. Logically, correct solutions come only through inversion. Real life,
however, seems nearly the opposite. This is puzzling but intriguing.

Every time you fill your car with gasoline, it derives much more from the adjoint than
from inversion. I refer to the fact that “practical seismic data processing” relates much more
to the use of adjoints than of inverses. It has been widely known for about the last 15 years
that medical imaging and all basic image creation methods are like this. It might seem that an
easy path to fame and profit would be to introduce the notion of inversion, but it is not that
easy. Both cost and result quality enter the picture.

First consider cost. For simplicity, consider a data space with N values and a model (or
image) space of the same size. The computational cost of applying a dense adjoint opera-
tor increases in direct proportion to the number of elements in the matrix, in this case N2,
To achieve the minimum discrepancy between theoretical data and observed data (inversion)
theoretically requires N iterations raising the cost to N3,

Consider an image of size m x m = N. Continuing, for simplicity, to assume a dense
matrix of relations between model and data, the cost for the adjoint is m* whereas the cost
for inversion is m®. We’ll consider computational costs for the year 2000, but noticing that
costs go as the sixth power of the mesh size, the overall situation will not change much in the
foreseeable future. Suppose you give a stiff workout to a powerful machine; you take an hour
to invert a 4096 x 4096 matrix. The solution, a vector of 4096 components could be laid into
an image of size 64 x 64 = 2° x 26 = 4096. Here is what we are looking at for costs:

adjoint cost | (m xm)? | (512 x 512)? | (2927)? | 2%
inverse cost | (m x m)? (64 x 64)° | (2026)3 | 236

These numbers tell us that for applications with dense operators, the biggest images that we are
likely to see coming from inversion methods are 64 x 64 whereas those from adjoint methods
are 512 x 512. For comparison, the retina of your eye is comparable to your computer screen at

73
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1000 x 1000. We might summarize by saying that while adjoint methods are less than perfect,
inverse methods are “legally blind” :-)

http://sepwww.stanford.edu/sep/jon/family/jos/gifmovie.html holds a movie blinking between
Figures 3.1 and 3.2.

Figure 3.1: Jos greets Andrew, “Wel-
come back Andrew” from the Peace
Corps. At a resolution of 512 x 512,
this picture is about the same as the
resolution as the paper it is printed on,
or the same as your viewing screen, if
you have scaled it to 50% of screen

size. |iin-512x512|[NR]

”58405' A .__

This cost analysis is oversimplified in that most applications do not require dense opera-
tors. With sparse operators, the cost advantage of adjoints is even more pronounced since for
adjoints, the cost savings of operator sparseness translate directly to real cost savings. The
situation is less favorable and much more muddy for inversion. The reason that Chapter 2
covers iterative methods and neglects exact methods is that in practice iterative methods are
not run to their theoretical completion but they run until we run out of patience.

Cost is a big part of the story, but the story has many other parts. Inversion, while being
the only logical path to the best answer, is a path littered with pitfalls. The first pitfall is that
the data is rarely able to determine a complete solution reliably. Generally there are aspects of
the image that are not learnable from the data.

In this chapter we study the simplest, most transparant example of data insufficiency. Data
exists at irregularly spaced positions in a plane. We set up a cartesian mesh and we discover
that some of the bins contain no data points. What then?

3.1 MISSING DATA IN ONE DIMENSION

A method for restoring missing data is to ensure that the restored data, after specified filtering,
has minimum energy. Specifying the filter chooses the interpolation philosophy. Generally
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r .

Figure 3.2: Jos greets Andrew, “Wel-
come back Andrew” again. At a reso-
lution of 64 x 64 the pixels are clearly
visible. From far the pictures are
the same. From near, examine their

glasses. |iin-64x64|[NR]

HE 24

the filter is a roughening filter. When a roughening filter goes off the end of smooth data, it
typically produces a big end transient. Minimizing energy implies a choice for unknown data
values at the end, to minimize the transient. We will examine five cases and then make some
generalizations.

-“I-I-

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy.

Let u denote an unknown (missing) value. The dataset on which the examples are based
is (---,u,u, 1,u,2,1,2,u,u,---). Theoretically we could adjust the missing U values (each
different) to minimize the energy in the unfiltered data. Those adjusted values would obviously
turn out to be all zeros. The unfiltered data is data that has been filtered by an impulse function.
To find the missing values that minimize energy out of other filters, we can use subroutine
m s1() on page 81. Figure 3.3 shows interpolation of the dataset with (1,—1) as a roughening
filter. The interpolated data matches the given data where they overlap.

Figure 3.3: Top is given data. Middle sen t T t T

is given data with interpolated val-

ues. Missing values seem to be in- interg eeo?® T T ’ T T T T te,
terpolated by straight lines. Bottom

shows the filter (1, —1), whose output T

has minimum energy. fter

[ER] |
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Figure 3.4: Top is the same input
data as in Figure 3.3. Middle is in-
terpolated. Bottom shows the fil-
ter (—1,2,—1). The missing data
seems to be interpolated by parabo-

las. |iin-mparab90|[ER]

Figure 3.5: Top is the same input.
Middle is interpolated. Bottom shows
the filter (1,—3,3,—1). The missing
data is very smooth. It shoots upward
high off the right end of the obser-
vations, apparently to match the data

slope there. [ER]

Figure 3.6: Bottom shows the fil-
ter (1,1). The interpolation is rough.
Like the given data itself, the interpo-
lation has much energy at the Nyquist
frequency. But unlike the given data,
it has little zero-frequency energy.

[iin-moscil90] [ER]

given s Tot
w1011,
ﬁlter, T

l ®

wer ¢ Je]
ey e el
& i

i
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Figures 3.3-3.6 illustrate that the rougher the filter, the smoother the interpolated data, and
vice versa. Let us switch our attention from the residual spectrum to the residual itself. The
residual for Figure 3.3 is the slope of the signal (because the filter (1, —1) is a first derivative),
and the slope is constant (uniformly distributed) along the straight lines where the least-squares
procedure is choosing signal values. So these examples confirm the idea that the least-squares
method abhors large values (because they are squared). Thus, least squares tends to distribute
residuals uniformly in both time and frequency to the extent allowed by the constraints.

This idea helps us answer the question, what is the best filter to use? It suggests choosing
the filter to have an amplitude spectrum that is inverse to the spectrum we want for the interpo-
lated data. A systematic approach is given in chapter 6, but I offer a simple subjective analysis
here: Looking at the data, we see that all points are positive. It seems, therefore, that the data
is rich in low frequencies; thus the filter should contain something like (1, —1), which vanishes
at zero frequency. Likewise, the data seems to contain Nyquist frequency, so the filter should
contain (1, 1). The result of using the filter (1,—1)*(1,1) = (1,0,—1) is shown in Figure 3.7.
This is my best subjective interpolation based on the idea that the missing data should look
like the given data. The interpolation and extrapolations are so good that you can hardly
guess which data values are given and which are interpolated.

Figure 3.7: Top is the same as in .
Figures 3.3 to 3.6. Middle is in- given t TTT

terpolated. Bottom shows the fil-

ter (1,0,—1), which comes from inter T T

the coefficients of (1,—1) * (1,1). Bevelr[Tle T *Tee
Both the given data and the interpo- ﬁlterT
lated data have significant energy at .
both zero and Nyquist frequencies. l

[ER]

3.1.1 Missing-data program

Now let us see how Figures 3.3-3.7 could have been calculated and how they were calculated.
They could have been calculated with matrices, in which matrices were pulled apart according
to subscripts of known or missing data; instead I computed them with operators, and applied
only operators and their adjoints. First we inspect the matrix approach because it is more
conventional.

Matrix approach to missing data

Customarily, we have referred to data by the symbol d. Now that we are dividing the data
space into two parts, known and unknown (or missing), we will refer to this complete space
as the model (or map) space m.
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There are 15 data points in Figures 3.3-3.7. Of the 15, 4 are known and 11 are missing.
Denote the known by k and the missing by u. Then the sequence of missing and known is
(u,u,u,u,k,u,k,k,k,u,u,u,u,u,u). Because I cannot print 15 x 15 matrices, please allow me
to describe instead a data space of 6 values (m,M>,M3,M4,M5,Mg) with known values only
m, and ms, that is arranged like (u,k,k,u,u,u).

Our approach is to minimize the energy in the residual, which is the filtered map (model)
space. We state the fitting goals 0 ~ Fm as

0 fa, 0 0 O 0 0 7
0 a a 0 0 0 O [ my ]
0 a3 a a 0 0 O mo
0 N _ 0 a3 a2 a 0 O ms
0 ~ = 0 0 a; a a 0 my 3.1
0 0 0 0 a3 a a ms
0 0 0 0 0 a a | Me |
. 0 | L O 0 0 0 0 az |

We rearrange the above fitting goals, bringing the columns multiplying known data values (m,
and mj3) to the left, getting y = —Fxmg ~ Fym,,.

"y ] [ 0 0 7 Fa; 0 0 0 7
Y2 a; O a 0 0 0
Y3 @ a aa 0 0 O my
Vs _ | » o= [ ms ] ~ 0 a 0 0 My 32)
Ys 0 a3 ms 0 a a; O ms '
Yo 0 O 0 a3 a Mg
Y7 0 O 0 0 a3 a

L Vs | | 0 0 . 0 0 0 az |

This is the familiar form of an overdetermined system of equations y &~ Fymy which we could
solve for my as illustrated earlier by conjugate directions, or by a wide variety of well-known
methods.

The trouble with this matrix approach is that it is awkward to program the partitioning of
the operator into the known and missing parts, particularly if the application of the operator
uses arcane techniques, such as those used by the fast-Fourier-transform operator or various
numerical approximations to differential or partial differential operators that depend on reg-
ular data sampling. Even for the modest convolution operator, we already have a library of
convolution programs that handle a variety of end effects, and it would be much nicer to use
the library as it is rather than recode it for all possible geometrical arrangements of missing
data values.

Note: Here I take the main goal to be the clarity of the code, not the efficiency or accuracy
of the solution. So, if your problem consumes too many resources, and if you have many more
known points than missing ones, maybe you should fit y &~ Fymy and ignore the suggestions
below.
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Operator approach to missing data

For the operator approach to the fitting goal —Fgmy ~ Fymy we rewrite it as —Fgmyg ~ FIm
where

Fa; 0 0 0 O 0O 7
a a 0 0 0 O 1 IR mi 7]
a3 a a 0 0 O 0 m»
N 0 a3 a a 0 O 0 ms
—Fme ~ 0 0 a; a a; 0 1 my = Hm
0O 0 0 a3 a a 1 ms
0O 0 0 0 a3 a L 1 4 L Me |
. 0 0 0 0 O a3 |
(3.3)

Notice the introduction of the new diagonal matrix J, called a masking matrix or a constraint-
mask matrix because it multiplies constrained variables by zero leaving freely adjustable vari-
ables untouched. Experience shows that a better name than “mask matrix” is “selector ma-
trix” because what comes out of it, that which is selected, is a less-confusing name for it than
which is rejected. With a selector matrix the whole data space seems freely adjustable, both
the missing data values and known values. We see that the CD method does not change the
known (constrained) values. In general, we derive the fitting goal (3.3) by

0 ~ Fm (3.4)
0 ~ FA+U-J)m 3.5)
0 ~ FIm+F(—-J)m (3.6)
0 ~ FIm+Fmiuown (3.7)
0 ~ r = RFIm+rg (3.8)

As usual, we find a direction to go Am by the gradient of the residual energy.

0 d d
Am = r'r = rjr = mJF +r))r = JFr 39
am’ <8m/ ) (8m’ ( + 0)> (59

We begin the calculation with the known data values where missing data values are re-
placed by zeros, namely (I —J)m. Filter this data, getting F(I —J)m, and load it into the
residual ro. With this initialization completed, we begin an iteration loop. First we compute
Am from equation (3.9).

Am <«— JFr (3.10)

F’ applies a crosscorrelation of the filter to the residual and then J’ sets to zero any changes
proposed to known data values. Next, compute the change in residual Ar from the proposed
change in the data Am.

Ar <«— FJAmM (3.11)
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This applies the filtering again. Then use the method of steepest descent (or conjugate di-
rection) to choose the appropriate scaling (or inclusion of previous step) of Am and Ar, and
update m and r accordingly and iterate.

I could have passed a new operator FJ into the old solver, but found it worthwhile to write
a new, more powerful solver having built-in constraints. To introduce the masking operator
J into the sol ver _snp subroutine on page 53, I introduce an optional operator Jop, which is
initialized with a logical array of the model size. Two lines in the sol ver _ti ny module on
page 53

st at
st at

Fop( T, F, g,
Fop( F, F, g,

rd)
gd)

F Rd
F g

H H*
O @

become three lines in the standard library module sol ver _snp.
of the size of model space.) Am is g and Ar is gg.

(We use a temporary array t m

stat = Fop( T, F, g, rd) #9g=F Rd
if ( present( Jop)) { tmrg; stat=Jdop( F, F, tm Q) #9g=Jg
stat = Fop( F, F, g, 99) #G=Fug

The full code includes all the definitions we had earlier in sol ver _t i ny module on page 53.
Merging it with the above bits of code we have the simple solver sol ver _snp.

modul e sol ver _snp_nod {
use chai n0O_nod + sol ver_report_nod

#0=W(FJm- d

| ogi cal, paraneter, private T = .true., F = .false
cont ai ns
subroutine solver_snp( md, Fop, stepper, niter &

, Wop, Jop, nD, err, resd, mmov, rmov, verb) {
optional Wop, Jop, nD, err, resd, nmov, rnov, verb
interface { #---------------mmnn begin

i nteger function Fop(adj,add, md){real::n{:
i nteger function Whp(adj,add, md){real::n(:),d(:);logical,intent(in)::adj, add}
i nteger function Jop(adj,add, md){real::n(:),d(:);logical,intent(in)::adj, add}
i nteger function stepper(forget,mg,rr,gg) {

definitions
),d(:);logical,intent(in)::adj,add}

real, dinmension(:) mag,rr,gg

| ogi cal forget }
}
real, dinension(:), intent(in) d, nmD
i nteger, intent(in) niter
| ogi cal , intent(in) verb
real, dinmension(:), i ntent (out) merr, resd
real, dinmension(:,:), intent(out) rnov, nmov
real , dinmension(size(m) g
real , dinmension(size(d)), target rr, gg
real, dinmension(size(d)+size(m), target tt
real, dinmension(:), pointer rd, gd, td
real, dinmension(:), pointer rm gm tm
i nt eger iter, stat
| ogi cal f orget
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rd => rr(1:size(d));

gd => gg(1:size(d));

td => tt(1l:size(d)); tm=> tt(1+size(d):)

if(present( Wp)) stat=Wop(F,F,-d,rd) # begin initialization --------

else rd = -d #Rd = -W d
if(present( nD)){ menD #m = 110]
if(present( Wop)) call chai nO(Wp, Fop,F, T, mrd, td)
el se stat = Fop(F, T,mrd ) #Rd+= WF nD
} else m=0
forget = T, #------mmmmmmmm e begin iterations ------------

doiter = 1,niter {
i f(present(Wp)) call chai nO(Wp, Fop, T,F,g,rd, td)

el se stat = Fop(T,F, g, rd ) #g = (W)’ Rd
if(present(Jop)){ tmeg; stat = Jop(F,F,tm g )} #g3 = J g

i f(present(Wp)) call chai nO(Wop, Fop, F, F, g, gd, td)

el se stat = Fop(F, F, g, gd ) #Gd = (W) g
stat = stepper(forget, mg, rr,gg) #mt=dm R+=dR
if(stat ==1) exit # got stuck descendi ng

if(present( mmv)) mrov(:,iter) = m(:size(mov, 1)) # report -----

if(present( rnov)) rmov(:,iter) = rd(:size(rnov,1))
if(present( err )) err( iter) = dot_product(rd,rd)
if(present( verb)){ if(verb) call solver_report(iter,mg,rd)}
f or get =F

}
if(present( resd)) resd = rd

There are two methods of invoking the solver. Comment cards in the code indicate the
slightly more verbose method of solution which matches the theory presented in the book.

The subroutine to find missing data is mi s1() . It assumes that zero values in the input data
correspond to missing data locations. It uses our convolution operatort cai 1() on page 9. You
can also check the Index for other operators and modules.

modul e m s_nod {
use tcai 1+maskl+cgst ep_nod+sol ver _snp_nod
# use ntcail

cont ai ns
# fill in mssing data on 1-axis by mnimzing power out of a given filter.
subroutine msl ( niter, mm aa) {
i nt eger, intent (in) ©roniter # nunber of iterations
real, dinmension (:), pointer :1 aa # roughening filter
real, dinmension (:), intent (inout) :: mm #in - data with zeroes
# out - interpol ated

real, dinmension (:),allocatable ;1 zero # filter output
| ogi cal, dinmension(:), pointer ;1 ek
i nt eger ;1 stat

# real, dinension (:),allocatable :: dd

al | ocat e(zero(size(mm +size(aa))); zero =0
al | ocate( nsk(size(nmm)))
# al | ocate( dd(size(nmm) +size(aa)))
# sol ve F m=0 w J
mek=(mM¥=0.); call maskl_init (mnmsk)
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call tcail_init(aa)
call sol ver_snp(n=mm d=zer o, Fop=t cai 1_| op, st epper =cgst ep, ni ter=ni ter, MO=mm Jop=maskl_| op)
# solve (FJ) m=d

call ntcail_init(aa, nmsk) # F(1-J)
stat = ntcail_ lop(.false.,.false.,mMmdd) # F(1-J) m
dd = - dd #d=- F(-J) m
nmsk=(m¥=0.); call maskl_init(nsk) # J

H OH OH H H

call sol ver_snp(nmemm d=dd, Fop=nt cai 1_| op, st epper =cgst ep, ni ter =ni t er, nD=mm)
call cgstep_close ()
deal | ocat e(zero)

}

I sought reference material on conjugate gradients with constraints and didn’t find any-
thing, leaving me to fear that this chapter was in error and that I had lost the magic property
of convergence in a finite number of iterations. I tested the code and it did converge in a finite
number of iterations. The explanation is that these constraints are almost trivial. We pretended
we had extra variables, and computed a Am = ¢ for each of them. Then we set the Am =g to
zero, hence making no changes to anything, like as if we had never calculated the extra Am’s.

EXERCISES:

1 Figures 3.3-3.6 seem to extrapolate to vanishing signals at the side boundaries. Why is
that so, and what could be done to leave the sides unconstrained in that way?

2 Show that the interpolation curve in Figure 3.4 is not parabolic as it appears, but cubic.
(HINT: First show that (V2)V2u =0.)

3 Verify by a program example that the number of iterations required with simple constraints
is the number of free parameters.

4 A signal on a uniform mesh has missing values. How should we estimate the mean?

3.2 WELLS NOT MATCHING THE SEISMIC MAP

Accurate knowledge comes from a well, but wells are expensive and far apart. Less accu-
rate knowledge comes from surface seismology, but this knowledge is available densely in
space and can indicate significant trends between the wells. For example, a prospective area
may contain 15 wells but 600 or more seismic stations. To choose future well locations, it
is helpful to match the known well data with the seismic data. Although the seismic data is
delightfully dense in space, it often mismatches the wells because there are systematic dif-
ferences in the nature of the measurements. These discrepancies are sometimes attributed to
velocity anisotropy. To work with such measurements, we do not need to track down the
physical model, we need only to merge the information somehow so we can appropriately
map the trends between wells and make a proposal for the next drill site. Here we consider
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only a scalar value at each location. Take w to be a vector of 15 components, each component
being the seismic travel time to some fixed depth in a well. Likewise let S be a 600-component
vector each with the seismic travel time to that fixed depth as estimated wholly from surface
seismology. Such empirical corrections are often called “fudge factors”. An example is the
Chevron oil field in Figure 3.8. The binning of the seismic data in Figure 3.8 is not really
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Figure 3.8: Binning by data push. Left is seismic data. Right is well locations. Values in bins

are divided by numbers in bins. (Toldi) |iin-wellseis90 | [ER]

satisfactory when we have available the techniques of missing data estimation to fill the empty
bins. Using the ideas of subroutine ni s1() on page 81, we can extend the seismic data into the
empty part of the plane. We use the same principle that we minimize the energy in the filtered
map where the map must match the data where it is known. I chose the filter A = V'V = —V?
to be the Laplacian operator (actually, its negative) to obtain the result in Figure 3.9.

Figure 3.9 also involves a boundary condition calculation. Many differential equations
have a solution that becomes infinite at infinite distance, and in practice this means that the
largest solutions may often be found on the boundaries of the plot, exactly where there is the
least information. To obtain a more pleasing result, I placed artificial “average” data along
the outer boundary. Each boundary point was given the value of an average of the interior
data values. The average was weighted, each weight being an inverse power of the separation
distance of the boundary point from the interior point.

Parenthetically, we notice that all the unknown interior points could be guessed by the
same method we used on the outer boundary. After some experience guessing what inverse
power would be best for the weighting functions, I do not recommend this method. Like
gravity, the forces of interpolation from the weighted sums are not blocked by intervening
objects. But the temperature in a house is not a function of temperature in its neighbor’s
house. To further isolate the more remote points, I chose weights to be the inverse fourth
power of distance.
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Figure 3.9: Seismic binned (left) and extended (right) by minimizing energy in VZs.
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The first job is to fill the gaps in the seismic data. We just finished doing a job like this in
one dimension. I’ll give you more computational details later. Let us call the extended seismic
data s.

Think of a map of a model space m of infinitely many hypothetical wells that must match
the real wells, where we have real wells. We must find a map that matches the wells exactly
and somehow matches the seismic information elsewhere. Let us define the vector w as shown
in Figure 3.8 so W is observed values at wells and zeros elsewhere.

Where the seismic data contains sharp bumps or streaks, we want our final earth model
to have those features. The wells cannot provide the rough features because the wells are too
far apart to provide high spatial frequencies. The well information generally conflicts with the
seismic data at low spatial frequencies because of systematic discrepancies between the two
types of measurements. Thus we must accept that m and S may differ at low spatial frequencies
(where gradient and Laplacian are small).

Our final map m would be very unconvincing if it simply jumped from a well value at one
point to a seismic value at a neighboring point. The map would contain discontinuities around
each well. Our philosophy of finding an earth model m is that our earth map should contain
no obvious “footprint” of the data acquisition (well locations). We adopt the philosopy that
the difference between the final map (extended wells) and the seismic information X =m —s
should be smooth. Thus, we seek the minimum residual r which is the roughened difference
between the seismic data S and the map m of hypothetical omnipresent wells. With roughening
operator A we fit

0 ~ r = Am-s) = Ax (3.12)
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along with the constraint that the map should match the wells at the wells. We could write this
as 0 = (I —J)(m —w). We honor this constraint by initializing the map m = w to the wells
(where we have wells, and zero elsewhere). After we find the gradient direction to suggest
some changes to m, we simply will not allow those changes at well locations. We do this with
a mask. We apply a "missing data selector”" to the gradient. It zeros out possible changes at
well locations. Like with the goal (3.7), we have

0 ~ r = AIX+AXkmown (3.13)

After minimizing r by adjusting X, we have our solution m = X +-S.

Now we prepare some roughening operators A. We have already coded a 2-D gradient
operatori gr ad2 on page 59. Let us combine it with its adjoint to get the 2-D laplacian operator.
(You might notice that the laplacian operator is “self-adjoint” meaning that the operator does
the same calculation that its adjoint does. Any operator of the form A’A is self-adjoint because
(AA =AA"=AA.)

nmodul e | apl ac2 { # Lapl aci an operator in 2-D
use igrad2
| ogical, paraneter, private :: T = .true., F = .false

real, dinension (m*nR*2), allocatable :: tnp
#% i ni t (L, nR)
integer ni, n2
call igrad2_init (nl, nR)
#% lop (X, V)
integer statl, stat2
if( adj) {
statl = igrad2_l op (
stat2 = igrad2_l op (
} else {
statl = igrad2_l op ( , , tm) # tmp = grad x
stat2 = igrad2_lop ( T, add, y, tnp) #y =y + grad tnp

'n
n
<

, tm) #tmp = grad y
add, x, tmp) # x = x + grad’ tnp

i

‘I'I
o
<

Subroutine | apfill2() on the current page is the same idea as nis1() on page 81 except
that the filter A has been specialized to the laplacian implemented by module | apl ac2 on the
current page.

modul e lapfill { # fill enpty 2-D bins by nmini mum out put of Lapl aci an operator
use | apl ac2
use cgstep_nod

use naskl
use sol ver_snp_nod
cont ai ns

subroutine lapfill2( niter, ml, n2, yy, nfixed) {
i nt eger, intent (in) o oniter, ml, nR
I ogi cal, dinmension (nl*nR), intent (in) :: nfixed # mask for known
real, di mension (nl*nR), intent (in out) :: yy # node
real, di mensi on (nil*nR) ;. zero # laplacian output
| ogical, dimension (:), poi nter ;o ek

al | ocat e(nsk(size(nfixed)))
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nsk=. not. nfi xed
call maskl_init(nsk)

call laplac2_init ( nil, n2); zero = 0. # initialize

call solver_snmp(nryy, d=zero, Fop=laplac2_|lop, stepper=cgstep, niter=niter, nmD=yy, Jop=naskl_| op)
call laplac2_close () # garbage col l ection

call cgstep_close () # garbage col | ection

Subroutine | apfill2() can be used for each of our two problems, (1) extending the seis-
mic data to fill space, and (2) fitting the map exactly to the wells and approximately to the seis-
mic data. When extending the seismic data, the initially non-zero components S # 0 are fixed
and cannot be changed. That is done by calling I apfi |l 2() with nfixed=(s/=0.). When
extending wells, the initially non-zero components W # 0 are fixed and cannot be changed.
That is done by calling | apfi | |1 2() with nfi xed=(w =0.).

The final map is shown in Figure 3.10.

4000 8000 12000 16000 20000 24000 28000 4000 8000 12000 16000 20000 24000 2800C
I I I I I I

00007

0000T—

00002—

Map based on Laplacian Map based on Laplacian

Figure 3.10: Final map based on Laplacian roughening. |iin-finalmap90 ‘ [ER,M]

Results can be computed with various filters. I tried both V? and V. There are disadvan-
tages of each, V being too cautious and V? perhaps being too aggressive. Figure 3.11 shows
the difference X between the extended seismic data and the extended wells. Notice that for V
the difference shows a localized “tent pole” disturbance about each well. For V2 there could
be large overshoot between wells, especially if two nearby wells have significantly different
values. I don’t see that problem here.

My overall opinion is that the Laplacian does the better job in this case. I have that opinion
because in viewing the extended gradient I can clearly see where the wells are. The wells are
where we have acquired data. We’d like our map of the world to not show where we acquired
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data. Perhaps our estimated map of the world cannot help but show where we have and have
not acquired data, but we’d like to minimize that aspect.

A good image of the earth hides our data acquisition footprint.

Wells — Seismic

Figure 3.11: Difference between wells (the final map) and the extended seismic data. Left
is plotted at the wells (with gray background for zero). Center is based on gradient rough-
ening and shows tent-pole-like residuals at wells. Right is based on Laplacian roughening.

iin-diffdiffo0 | [ER]

To understand the behavior theoretically, recall that in one dimension the filter V inter-
polates with straight lines and V? interpolates with cubics. This is because the fitting goal
0~ Vm, leads to %m’V’Vm =0 or V'Vm = 0, whereas the fitting goal 0 ~ V>m leads to
V*m = 0 which is satisfied by cubics. In two dimensions, minimizing the output of V gives us
solutions of Laplace’s equation with sources at the known data. It is as if V stretches a rubber
sheet over poles at each well, whereas V2 bends a stiff plate.

Just because V2 gives smoother maps than V does not mean those maps are closer to
reality. This is a deeper topic, addressed in Chapter 6. It is the same issue we noticed when
comparing figures 3.3-3.7.

3.3 SEARCHING THE SEA OF GALILEE

Figure 3.12 shows a bottom-sounding survey of the Sea of Galilee! at various stages of pro-
cessing. The ultimate goal is not only a good map of the depth to bottom, but images useful
for the purpose of identifying archaeological, geological, or geophysical details of the sea
bottom. The Sea of Galilee is unique because it is a fresh-water lake below sea-level. It seems
to be connected to the great rift (pull-apart) valley crossing east Africa. We might delineate the

'Data collected by Zvi ben Avraham, TelAviv University.  Please communicate with him
zvi @upiterl. tau.ac.il for more details or if you make something publishable with his data.
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Jordan River delta. We might find springs on the water bottom. We might find archaeological
objects.

The raw data is 132,044 triples, (X;, Yi, Z;), where X; ranges over about 12 km and where Y;
ranges over about 20 km. The lines you see in Figure 3.12 are sequences of data points, i.e.,
the track of the survey vessel. The depths z; are recorded to an accuracy of about 10 cm.

The first frame in Figure 3.12 shows simple binning. A coarser mesh would avoid the
empty bins but lose resolution. As we refine the mesh for more detail, the number of empty
bins grows as does the care needed in devising a technique for filling them. This first frame
uses the simple idea from Chapter 1 of spraying all the data values to the nearest bin with
bi n2() on page 13 and dividing by the number in the bin. Bins with no data obviously need
to be filled in some other way. I used a missing data program like that in the recent section
on “wells not matching the seismic map.” Instead of roughening with a Laplacian, however, 1
used the gradient operator i gr ad2 on page 59 The solver is grad2fill ().

modul e grad2fill { #mnr(n =LJ m+ L knomn where L is a lowut filter.
use igrad2
use cgstep_nod

use nmaskl
use sol ver_snp_nod
cont ai ns

subroutine grad2fill2( niter, ml, n2, mm nfixed) {
i nt eger, intent (in) ::oniter, ml, nR
| ogi cal, dinmension (nl*nR), intent (in) :: nfixed # mask for known
real, di mension (nl*nR), intent (in out) :: mm # node
real, di mensi on (nil*nR*2) Lyy # | owcut out put
| ogical, dinmension (:), poi nter ;o ek

al | ocat e(nsk(si ze(nfixed)))

nmsk=. not. nfi xed

call maskl_init(nsk)

call igrad2_init(nd, n2); yy = 0. #initialize

call solver_snmp(nmermm d=yy, Fop=i grad2_| op, stepper=cgstep, niter=niter, nD=mm Jop=maskl_| op)
call cgstep_close ()

The output of the roughening operator is an image, a filtered version of the depth, a filtered
version of something real. Such filtering can enhance the appearance of interesting features.
For example, scanning the shoreline of the roughened image (after missing data was filled),
we see several ancient shorelines, now submerged.

The adjoint is the easiest image to build. The roughened map is often more informative
than the map itself.

The views expose several defects of the data acquisition and of our data processing. The
impulsive glitches (St. Peter’s fish?) need to be removed but we must be careful not to throw
out the sunken ships along with the bad data points. Even our best image shows clear evidence
of the recording vessel’s tracks. Strangely, some tracks are deeper than others. Perhaps the
survey is assembled from work done in different seasons and the water level varied by season.
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Figure 3.12: Views of the bottom of the Sea of Galilee. |iin-locfil90|[ER,M]
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Perhaps some days the vessel was more heavily loaded and the depth sounder was on a deeper
keel. As for the navigation equipment, we can see that some data values are reported outside
the lake!

We want the sharpest possible view of this classical site. A treasure hunt is never easy
and no one guarantees we will find anything of great value but at least the exercise is a good
warm-up for submarine petroleum exploration.

3.4 INVERSE LINEAR INTERPOLATION

In Chapter 1 we defined linear interpolation as the extraction of values from between mesh
points. In a typical setup (occasionally the role of data and model are swapped), a model
is given on a uniform mesh and we solve the easy problem of extracting values between the
mesh points with subroutine | i nt 1() on page 16. The genuine pr