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Introduction 

There are three essential ideas underlying general relativity �GR�� The �rst is that space	
time may be described as a curved
 four	dimensional mathematical structure called a 

pseudo	Riemannian manifold� In brief
 time and space together comprise a curved four	
dimensional non	Euclidean geometry� Consequently
 the practitioner of GR must be 

familiar with the fundamental geometrical properties of curved spacetime� In particu	
lar
 the laws of physics must be expressed in a form that is valid independently of any 

coordinate system used to label points in spacetime� 

The second essential idea underlying GR is that at every spacetime point there exist 

locally inertial reference frames
 corresponding to locally �at coordinates carried by freely 

falling observers
 in which t h e p h ysics of GR is locally indistinguishable from that of 

special relativity� This is Einstein�s famous strong equivalence principle and it makes 

general relativity an extension of special relativity t o a c u r v ed spacetime� The third key 

idea is that mass �as well as mass and momentum �ux� curves spacetime in a manner 

described by the tensor �eld equations of Einstein� 

These three ideas are exempli�ed by c o n trasting GR with Newtonian gravity� I n t h e 

Newtonian view
 gravity is a force accelerating particles through Euclidean space
 while 

time is absolute� From the viewpoint of GR as a theory of curved spacetime
 there is no 

gravitational force� Rather
 in the absence of electromagnetic and other forces
 particles 

follow the straightest possible paths �geodesics� through a spacetime curved by mass� 

Freely falling particles de�ne locally inertial reference frames� Time and space are not 

absolute but are combined into the four	dimensional manifold called spacetime� 

In special relativity there exist global inertial frames� This is no longer true in the 

presence of gravity� H o wever
 there are local inertial frames in GR
 such that within a 






suitably small spacetime volume around an event �just how small is discussed e�g� in 

MTW Chapter �
 one may c hoose coordinates corresponding to a nearly	�at spacetime� 

Thus
 the local properties of special relativity c a r r y o ver to GR� The mathematics of 

vectors and tensors applies in GR much as it does in SR
 with the restriction that vectors 

and tensors are de�ned independently at each spacetime event �or within a su�ciently 

small neighborhood so that the spacetime is sensibly �at�� 

Working with GR
 particularly with the Einstein �eld equations
 requires some un	
derstanding of di�erential geometry� In these notes we w i l l d e v elop the essential math	
ematics needed to describe physics in curved spacetime� Many p h ysicists receive their 

introduction to this mathematics in the excellent  boo  k  o  f  W  einberg ������ Weinbe  r g 

minimizes the geometrical content of the equations by representing tensors using com	
ponent notation� We believe that it is equally easy to work with a more geometrical 

description
 with the additional bene�t that geometrical notation makes it easier to dis	
tinguish physical results that are true in any coordinate system �e�g�
 those expressible 

using vectors� from those that are dependent on the coordinates� Because the geometry 

of spacetime is so intimately related to physics
 we believe that it is better to highlight 

the geometry from the outset� In fact
 using a geometrical approach a l l o ws us to develop 

the essential di�erential geometry as an extension of vector calculus� Our treatment 

is closer to that Wald ����� and closer still to Misner
 Thorne and Wheeler ����
 

MTW�� These books are rather advanced� For the newcomer to general relativity w e 

warmly recommend Schutz ������ Our notation and presentation is patterned largely 

after Schutz� It expands on MTW Chapters �
 �
 and �� The student wishing addi	
tional practice problems in GR should consult Lightman et al� ������ A slightly more 

advanced mathematical treatment is provided in the excellent notes of Carroll ������ 

These notes assume familiarity with special relativity� W e will adopt units in which 

the speed of light c �  � Greek indices ��
 �
 etc�
 which t a k e the range f�� � �� �g� 

will be used to represent components of tensors� The Einstein summation convention 

is assumed� repeated upper and lower indices are to be summed over their ranges
 

e�g�
 A�B� 

� A�B� 

� A�B� 

� A�B� 

� A�B�� Four	vectors will be represented with 

�an arrow o ver the symbol
 e�g�
 A
 while one	forms will be represented using a tilde
 

�e�g�
 B� Spacetime points will be denoted in boldface type� e�g�
 x refers to a point 

with coordinates x� � Our metric has signature ��� the �at spacetime Minkowski metric 

components are ��� 

� diag��� �� �� ��� 

Vectors and one�forms 

The essential mathematics of general relativity is di�erential geometry
 the branch o f 

mathematics dealing with smoothly curved surfaces �di�erentiable manifolds�� The 

physicist does not need to master all of the subtleties of di�erential geometry in order 

�


� 



to use general relativity� � F or those readers who want a deeper exposure to di�erential 

geometry
 see the introductory texts of Lovelock and Rund ���
 Bishop and Goldberg 

���
 or Schutz ����� It is su�cient to develop the needed di�erential geometry as a 

straightforward extension of linear algebra and vector calculus� However
 it is important 

to keep in mind the geometrical interpretation of physical quantities� For this reason
 

we will not shy from using abstract concepts like p o i n ts
 curves and vectors
 and we will 

�distinguish between a vector A and its components A� � U n l i k e some other authors �e�g�
 

Weinberg ����
 we will introduce geometrical objects in a coordinate	free manner
 only 

later introducing coordinates for the purpose of simplifying calculations� This approach 

requires that we distinguish vectors from the related objects called one	forms� Once 

the di�erences and similarities between vectors
 one	forms and tensors are clear
 we will 

adopt a uni�ed notation that makes computations easy� 

��� Vectors 

We begin with vectors� A vector is a quantity with a magnitude and a direction� This 

primitive concept
 familiar from undergraduate physics and mathematics
 applies equally 

in general relativity� An example of a vector is d�x
 the di�erence vector between two 

in�nitesimally close points of spacetime� Vectors form a linear algebra �i�e�
 a vector 

� �space�� If A is a vector and a is a real number �scalar� then aA is a vector with the 

same direction �or the opposite direction
 if a � �� whose length is multiplied by jaj� If 

� � � �A and B are vectors then so is A � B� These results are as valid for vectors in a curved 

four	dimensional spacetime as they are for vectors in three	dimensional Euclidean space� 

Note that we h a ve i n troduced vectors without mentioning coordinates or coordinate 

transformations� Scalars and vectors are invariant under coordinate transformations� 

�vector components are not� The whole point of writing the laws of physics �e�g�
 F � m�a� 

using scalars and vectors is that these laws do not depend on the coordinate system 

imposed by the physicist� 

We denote a spacetime point using a boldface symbo  l � x� �This notation is not meant 

to imply coordinates�� Note that x refers to a point
 not a vector� In a curved spacetime 

the concept of a radius vector �x pointing from some origin to each p o i n t x is not useful 

because vectors de�ned at two di�erent points cannot be added straightforwardly as 

they can in Euclidean space� For example
 consider a sphere embedded in ordinary 

three	dimensional Euclidean space �i�e�
 a two	sphere�� A v ector pointing east at one 

point on the equator is seen to point radially outward at another point on the equator 

whose longitude is greater by � � 

� � The radially outward direction is unde�ned on the 

sphere� 

Technically
 w e are discussing tangent vectors that lie in the tangent space of the 

manifold at each point� For example
 a sphere may b e e m bedded in a three	dimensional 

Euclidean space into which m a y be placed a plane tangent to the sphere at a point� A two	
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dimensional vector space exists at the point of tangency� H o wever
 such a n e m bedding 

is not required to de�ne the tangent space of a manifold �Wald ����� As long as the 

space is smooth �as assumed in the formal de�nition of a manifold�
 the di�erence vector 

d�x be  t  ween two in�nitesimally close points may be de�ned� The set of all d�x de�nes 

the tangent space at x� By assigning a tangent v ector to every spacetime point
 we 

can recover the usual concept of a vector �eld� However
 without additional preparation 

one cannot compare vectors at di�erent spacetime points
 because they lie in di�erent 

tangent spaces� In later notes we i n troduce will parallel transport as a means of making 

this comparison� Until then
 we consider only tangent v ectors at x� T o emphasize the 

�status of a tangent v ector
 we will occasionally use a subscript notation� AX 

� 

��� One�forms and dual vector space 

Next we i n troduce one	forms� A one	form is de�ned as a linear scalar function of a vector� 

That is
 a one	form takes a vector as input and outputs a scalar� For the one	form P�
 

P��V� � is also called the scalar product and may be denoted using angle brackets� 

�P��V� � � hP�� V i � �� 

The one	form is a linear function
 meaning that for all scalars a and b and vectors V� and 

�W 
 the one	form P� satis�es the following relations� 

� � � � � � �P �aV � b � W i � ahP�� V i � bhP��W i � aP �V � � bP�� 

�W � � hP�� aV � b � W � � ��� 

Just as we m a y consider any function f� � as a mathematical entity independently of 

any particular argument
 we m a y consider the one	form P� independently of any particular 

�vector V � W e m a y also associate a one	form with each spacetime point
 resulting in a 

�one	form �eld P� � PX 

� N o w the distinction between a point a v ector is crucial� P�X 

is 

a one	form at point x while P��V� � is a scalar
 de�ned implicitly at point x� The scalar 

product notation with subscripts makes this more clear� hP�X 

� �VX 

i� 

One	forms obey their own linear algebra distinct from that of vectors� Given any t wo 

� �scalars a and b and one	forms P� and Q
 w e m a y de�ne the one	form aP � b �Q by 

� Q��V� � � haP� � b � � Q� � � � b � ��aP � b � Q�V� i � ahP�� V i � bh 

� V i � aP �V � � Q�V � � ��� 

Comparing equations ��� and ���
 we see that vectors and one	forms are linear operators 

on each other
 producing scalars� It is often helpful to consider a vector as being a linear 

� � � �scalar function of a one	form� Thus
 we m a y w r i t e hP�� V i � P �V � � V �P��� The set of 

all one	forms is a vector space distinct from
 but complementary to
 the linear vector 

space of vectors� The vector space of one	forms is called the dual vector �or cotangent� 

space to distinguish it from the linear space of vectors �tangent space�� 

� 



Although one	forms may appear to be highly abstract
 the concept of dual vector 

spaces is familiar to any student o f q u a n tum mechanics who has seen the Dirac bra	ket 

notation� Recall that the fundamental object in quantum mechanics is the state vector
 

represented by a k et j�i in a linear vector space �Hilbert space�� A distinct Hilbert 

space is given by the set of bra vectors h�j� Bra vectors and ket vectors are linear scalar 

functions of each other� The scalar product h�j�i maps a bra vector and a ket vector to a 

scalar called a probability amplitude� The distinction between bras and kets is necessary 

because probability amplitudes are complex numbers� As we will see
 the distinction 

be  t  ween vectors and one	forms is necessary because spacetime is curved� 

� Tensors 

Having de�ned vectors and one	forms we can now de�ne tensors� A tensor of rank �m� n�
 

also called a �m� n� tensor
 is de�ned to be a scalar function of m one	forms and n vectors 

that is linear in all of its arguments� It follows at once that scalars are tensors of rank 

��� ��
 vectors are tensors of rank �� �� and one	forms are tensors of rank ��� �� We 

� � �may denote a tensor of rank ��� �� by T�P 

�� Q�� one of rank ��� � by T�P 

�� Q�A�
 etc� 

Our notation will not distinguish a ��� �� tensor T 

from a ��� � tensor T
 although a 

notational distinction could be made by placing m arrows and n tildes over the symbo  l 
 

or by appropriate use of dummy indices �Wald ����� 

The scalar product is a tensor of rank �� �
 which w e will denote I 

and call the 

identity tensor� 

� � � � �I�P 

�� V � � h P 

�� V i � P �V � � V �P�� � ��� 

�We call I 

the identity because
 when applied to a �xed one	form P� and any vector V 
 it 

returns P��V� �� Although the identity t e n s o r w as de�ned as a mapping from a one	form 

and a vector to a scalar
 we see that it may equally be interpreted as a mapping from a 

one	form to the same one	form� I�P 

�� �� � P�
 where the dot indicates that an argument 

�a vector� is needed to give a scalar� A similar argument shows that I 

may be considered 

�the identity operator on the space of vectors V � I��� �V � � V� � 

A tensor of rank �m� n� is linear in all its arguments� For example
 for �m � � � n � �� 

we h a ve a straightforward extension of equation ���� 

� � � � �Q� c R � dS�� � ac T�P 

�� R� � ad T�P 

�� S� � bc T� �T�aP � b 

� Q�R� � bd T� q�� S�� � ��� 

Tensors of a given rank form a linear algebra
 meaning that a linear combination of 

tensors of rank �m� n� is also a tensor of rank �m� n�
 de�ned by straightforward extension 

of equation ���� Two tensors �of the same rank� are equal if and only if they return the 

same scalar when applied to all possible input vectors and one	forms� Tensors of di�erent 

rank cannot be added or compared
 so it is important t o k eep track of the rank of each 
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tensor� Just as in the case of scalars
 vectors and one	forms
 tensor �elds TX 

are de�ned 

by associating a tensor with each spacetime point� 

There are three ways to change the rank of a tensor� The �rst
 called the tensor �or 

outer� product
 combines two tensors of ranks �m�� n �� and � m�� n �� to form a tensor 

of rank �m� 

� m�� n � 

� n�� b y simply combining the argument lists of the two tensors 

and thereby expanding the dimensionality of the tensor space� For example
 the tensor 

� �product of two v ectors A and B gives a rank ��� �� tensor 

� � � �T 

� A � B� � T�P 

�� Q� � A�P�� B� �Q� � ��� 

We use the symbol � to denote the tensor product� later we will drop this symbo  l f o r 

notational convenience when it is clear from the context that a tensor product is implied� 

� � � � �Note that the tensor product is non	commutative� A � B � �� B � A �unless B � cA for 

� � � � �some scalar c� because A�P�� B� � � A� �Q� � � Q� B�P�� for all P and Q� W e use the symbo  l � 

� � �to denote the tensor product of any t wo tensors
 e�g�
 P� � T 

� P � A � B is a tensor 

of rank ��� �� The second way t o c hange the rank of a tensor is by c o n traction
 which 

reduces the rank of a �m� n� tensor to �m � � n � �� The third way is the gradient� We 

will discuss contraction and gradients later� 

��� Metric tensor 

The scalar product �eq� � requires a vector and a one	form� Is it possible to obtain a 

scalar from two v ectors or two one	forms� From the de�nition of tensors
 the answer is 

clearly yes� Any tensor of rank ��� �� will give a scalar from two v ectors and any tensor 

of rank ��� �� combines two one	forms to give a scalar� However
 there is a particular 

��� �� tensor �eld gX 

called the metric tensor and a related ��� �� tensor �eld g 

;� called
X 

the inverse metric tensor for which special distinction is reserved� The metric tensor is 

�a symmetric bilinear scalar function of two v ectors� That is
 given vectors V� and W 
 g 

returns a scalar
 called the dot product� 

� � � � �g�V� � W � � V � W � W � 

�V � g�W� � V � � ��� 

� �Similarly
 g 

;� returns a scalar from two one	forms P and Q
 w h ich w e also call the dot 

product� 

� � � � � �g 

;��P 

�� Q� � P � Q � P � Q � g 

;��P 

�� Q� � ��� 

Although a dot is used in both cases
 it should be clear from the context whether g or g 

;� 

is implied� We reserve the dot product notation for the metric and inverse metric tensors 

just as we reserve the angle brackets scalar product notation for the identity tensor �eq� 

��� Later �in eq� �� we will see what distinguishes g from other ��� �� tensors and g 

;� 

from other symmetric ��� �� tensors� 

� 



One of the most important properties of the metric is that it allows us to convert 

�vectors to one	forms� If we forget to include W in equation ��� we get a quantity
 denoted 

V� 
 that behaves like a one	form� 

�V � � � � g�V� � � � � g� � � V� � � ��� 

where we h a ve inserted a dot to remind ourselves that a vector must be inserted to give 

a scalar� �Recall that a one	form is a scalar function of a vector�� We use the same letter 

�to indicate the relation of V and V� � 

Thus
 the metric g is a mapping from the space of vectors to the space of one	forms� 

� � � �g � V � V � By de�nition
 the inverse metric g 

;� is the inverse mapping� g 

;� � V � V � 

��The inverse always exists for nonsingular spacetimes�� Thus
 if V� is de�ned for any V 

by equation ���
 the inverse metric tensor is de�ned by 

� �V � � � � g 

;��V � � � � g 

;�� � � V� � � ��� 

Equations ��� and ������� give us several equivalent w ays to obtain scalars from vectors 

� � �V and W and their associated one	forms V� and W � 

� � � � � � � �W � V � 

�hV� �W i � hW � V i � V � 

� � W � I�V� �W � � I�W� � V � � g�V� � W � � g 

;��V� �W � � �� 

��� Basis vectors and one�forms 

It is possible to formulate the mathematics of general relativity e n tirely using the abstract 

formalism of vectors
 forms and tensors� However
 while the geometrical �coordinate	free� 

interpretation of quantities should always be kept in mind
 the abstract approach often is 

not the most practical way to perform calculations� To simplify calculations it is helpful 

to introduce a set of linearly independent basis vector and one	form �elds spanning 

our vector and dual vector spaces� In the same way
 practical calculations in quantum 

mechanics often start by expanding the ket vector in a set of basis kets
 e�g�
 energy 

eigenstates� By de�nition
 the dimensionality of spacetime �four� equals the numbe  r o f 

linearly independent basis vectors and one	forms� 

We denote our set of basis vector �elds by f�e� X 

g
 where � labels the basis vector 

�e�g�
 � � � � � �� �� and x labels the spacetime point� Any four linearly independent basis 

vectors at each spacetime point will work� we do not not impose orthonormality o r a n y 

other conditions in general
 nor have w e implied any relation to coordinates �although 

�later we will�� Given a basis
 we m a y expand any v ector �eld A as a linear combination 

of basis vectors� 

� � �e� X 

� A� 

X�e� X 

� A� 

X�e� X 

� A� 

X�e� X 

� A� 

X�e� X 

� ���AX 

� A
X 

� 



Note our placement of subscripts and superscripts
 chosen for consistency with the Ein	
stein summation convention
 which requires pairing one subscript with one superscript� 

The coe�cients A� are called the components of the vector �often
 the contravariant 

�components�� Note well that the coe�cients A� depend on the basis vectors but A does 

not� 

Similarly
 w e m a y c hoose a basis of one	form �elds in which to expand one	forms 

like A�X� Although any set of four linearly independent one	forms will su�ce for each 

spacetime point
 we prefer to choose a special one	form basis called the dual basis and 

�denoted fe�
X 

g� Note that the placement of subscripts and superscripts is signi�cant� 

we never use a subscript to label a basis one	form while we n e v er use a superscript 

to label a basis vector� Therefore
 e�� is not related to �e� 

through the metric �eq� ��� 

e��� � � �� g��e�� � �� Rather
 the dual basis one	forms are de�ned by imposing the following 

� requirements at each spacetime point� 

he�� 

X
� �e� Xi � 	� � ���� 

where 	�� 

is the Kronecker delta
 	� �  if � � � and 	�� 

� � otherwise
 with the � 

same values for each spacetime point� �We m ust always distinguish subscripts from 

superscripts� the Kronecker delta always has one of each�� Equation ��� is a system of 

four linear equations at each spacetime point for each of the four quantities e�� and it 

has a unique solution� �The reader may s h o w t h a t a n y n o n trivial transformation of the 

we mdual basis one	forms will violate eq� ��� Now a y expand any one	form �eld P�X 

in 

the basis of one	forms� 

P�X 

� P� X 

e�� 

X 

� ��� 

The component P� 

of the one	form P� is often called the covariant component to distin	
�guish it from the contravariant component P 

� of the vector P � In fact
 because we h a ve 

consistently treated vectors and one	forms as distinct
 we should not think of these as 

being distinct �components� of the same entity a t a l l � 

There is a simple way to get the components of vectors and one	forms
 using the fact 

that vectors are scalar functions of one	forms and vice versa� One simply evaluates the 

vector using the appropriate basis one	form� 

� � � �� �A� e� � � he��� Ai � he� � A �e� 

i � he� � �e� 

iA� � 	�� 

A� � A� � ��� 

and conversely for a one	form� 

�P���e�� � hP 

�� �e�i � hP� 

e�� � �e�i � he� � �e�iP� 

� 	��P� 

� P� 

� ��� 

We h a ve suppressed the spacetime point x for clarity
 but it is always implied� 

� 



��� Tensor algebra 

We can use the same ideas to expand tensors as products of components and basis 

tensors� First we note that a basis for a tensor of rank �m�n� i s p r o vided by the tensor 

product of m vectors and n one	forms� For example
 a ��� �� tensor like the metric tensor 

�can be decomposed into basis tensors e�� � e� � T he components of a tensor of rank �m�n�
 

labeled with m superscripts and n subscripts
 are obtained by e v aluating the tensor using 

m basis one	forms and n basis vectors� For example
 the components of the ��� �� metric 

tensor
 the ��� �� inverse metric tensor and the �� � identity tensor are 

;� � � g�� 

� g��e�� �e� 

� � �e� 

� �e� 

� g 

�� � g � e��� e� � � e�� � e� � 	� � I� e��� �e� 

� � he�� � �e� 

i � ���� 

�The last equation follows from eqs� � and ��� The tensors are given by summing over 

the tensor product of basis vectors and one	forms� 

� ;� g � g�� 

e�� � e� � g � g 

�� �e� 

� �e� 

� I 

� 	�� 

�e� 

� e�� � ��� 

The reader should check that equation ��� follows from equations ��� and the duality 

condition equation ���� 

Basis vectors and one	forms allow us to represent a n y tensor equations using com	
ponents� For example
 the dot product between two v ectors or two one	forms and the 

scalar product between a one	form and a vector may be written using components as 

� � � � �� P� 

P�A � B � g�� 

A�A� � hP�� Ai � P� 

A� � P� � Q � g � ��� 

The reader should prove these important results� 

If two tensors of the same rank are equal in one basis
 i�e�
 if all of their components 

are equal
 then they are equal in any basis� While this mathematical result is obvious 

from the basis	free meaning of a tensor
 it will have important p h ysical implications in 

GR arising from the Equivalence Principle� 

As we discussed above
 the metric and inverse metric tensors allow us to transform 

�vectors into one	forms and vice versa� If we e v aluate the components of V and the 

one	form V� de�ned by equations ��� and ���
 we g e t 

;� � g 

�� V�V� 

� g��e�� V� � � g�� 

V � � V � � g � e��� V � � � ���� 

Because these two equations must hold for any v ector V� 
 w e conclude that the matrix 

de�ned by g�� is the inverse of the matrix de�ned by g�� 

� 

�� g g�� 

� 	�� 

� ��� 

We also see that the metric and its inverse are used to lower and raise indices on compo	
� �nents� Thus
 given two v ectors V and W 
 w e m a y e v aluate the dot product any of four 

equivalent w ays �cf� eq� �� 

� � �� V� 

W�V � W � g�� 

V �W � � V � W� 

� V�W
� � g � ���� 

� 



In fact
 the metric and its inverse may be used to transform tensors of rank �m� n� 

into tensors of any rank � m � k � n � k� where k � �m� �m �  � � � � � n � Consider
 for 

example
 a �� �� tensor T 

with components 

�T �� 

� T� e��� �e� 

� �e�� � ���� 

If we fail to plug in the one	form �e�
 the result is the vector T 

� �e�� �A one	form must be �� 

inserted to return the quantity T 

� �� This vector may then be inserted into the metric �� 

tensor to give the components of a ��� �� tensor� 

T��� 

� g��e�� T 

� �e�� � g�� 

T 

� � ������ �� 

We could now use the inverse metric to raise the third index
 say
 giving us the component 

of a �� �� tensor distinct from equation ����� 

� � ��T�� 

� � g 

;�� e� � T ��� 

e� � � g 

�� T��� 

� g g�� 

T 

� � ������ 

In fact
 there are �m�n di�erent tensor spaces with ranks summing to m � n� The metric 

or inverse metric tensor allow all of these tensors to be transformed into each other� 

Returning to equation ����
 we h y ust distinguish vectors �with components see w we m 

V 

� � from one	forms �with components V� 

�� The scalar product of two v ectors requires 

the metric tensor while that of two one	forms requires the inverse metric tensor� In 

general
 g�� �� g�� 

� The only case in which the distinction is unnecessary is in �at 

ca se�Lorentz� spacetime with orthonormal Cartesian basis vectors
 in which g�� 

� ��� 

is everywhere the diagonal matrix with entries ��� �� �� ��� However
 gravity curves 

spacetime� �Besides
 we m a y wish to use curvilinear coordinates even in �at spacetime�� 

As a result
 it is impossible to de�ne a coordinate system for which g�� � g�� 

everywhere� 

We m ust therefore distinguish vectors from one	forms and we m ust be careful about the 

placement of subscripts and superscripts on components� 

At this stage it is useful to introduce a classi�cation of vectors and one	forms drawn 

�from special relativity with its Minkowski metric ��� 

� Recall that a vector A � A��e� 

� �is called spacelike
 timelike o r n ull according to whether A � A � ��� 

A�A� is positive
 

� �negative or zero
 respectively� In a Euclidean space
 with positive de�nite metric
 A � A 

is never negative� However
 in the Lorentzian spacetime geometry of special relativity
 

�time enters the metric with opposite sign so that it is possible to have A � A� � �� In 

particular
 the four	velocity u� � dx�
d� of a massive particle �where d� is proper time� 

is a timelike v ector� This is seen most simply by performing a Lorentz boost to the 

z �rest frame of the particle in which c a s e ut � 
 ux � uy � u � � and ��� 

u�u � �� 

� u � �Now
 ��� 

u�u is a Lorentz scalar so that � u � � i n a n y Lorentz frame� Often this is 

written p� � p� � �m� where p� � mu� is the four	momentum for a particle of mass m� 

For a massless particle �e�g�
 a photon� the proper time vanishes but the four	momentum 

�




is still well	de�ned with p� � p� � �� the momentum vector is null� We adopt the same 

notation in general relativity
 replacing the Minkowski metric �components ��� 

� with the 

� � � �actual metric g and evaluating the dot product using A � A � g�A�A� �	 g�� 

A�A� � The 

�same classi�cation scheme extends to one	forms using g 

;�� a one	form P is spacelike
 

timelike o r n ull according to whether P� � P� � g 

;��P 

�� P�� � g�� P� 

P� 

is positive
 negative 

� �or zero
 respectively� Finally
 a v ector is called a unit vector if A � A � � and similarly 

for a one	form� The four	velocity of a massive particle is a timelike u n i t v ector� 

Now that we h a ve i n troduced basis vectors and one	forms
 we can de�ne the contrac	
tion of a tensor� Contraction pairs two argument s o f a r a n k � m� n� tensor� one vector and 

one one	form� The arguments are replaced by b a s i s v ectors and one	forms and summed 

over� For example
 consider the �� �� tensor R
 which m a y b e c o n tracted on its second 

vector argument to give a � � � �� tensor also denoted R 

but distinguished by its shorter 

argument list� 

� X 

�R�A� � � B� � R� e��� A��e�� �� B� � 	�� 

R� e��� A� �e�� � B� � ���� 

��� 

In later notes we will de�ne the Riemann curvature tensor of rank �� ��� its contraction
 

de�ned by equation ����
 is called the Ricci tensor� Although the contracted tensor would 

appear to depend on the choice of basis because its de�nition involves the basis vectors 

and one	forms
 the reader may s h o w that it is actually invariant under a change of basis 

�and is therefore a tensor� as long as we use dual one	form and vector bases satisfying 

equation ���� Equation ���� becomes somewhat clearer if we e x p r e s s i t e n tirely using 

tensor components� 

R�� 

� R�
��� 

�	 ���� 

Summation over � is implied� Contraction may be performed on any pair of covariant 

and contravariant indices� di�erent tensors result� 






��� Change of basis 

We h a ve made no restrictions upon our choice of basis vectors �e�� Our basis vectors are 

simply a linearly independent set of four vector �elds allowing us to express any v ector as 

a linear combination of basis vectors� The choice of basis is not unique� we m a y transform 

from one basis to another simply by de�ning four linearly independent c o m binations of 

our original basis vectors� Given one basis f�e� X 

g
 w e m a y de�ne another basis f�e�0 X 

g
 

distinguished by placing a prime on the labels
 as follows� 

�e�0 X 

� � 

�
�0 X�e� X 

�	 ���� 

The prime is placed on the index rather than on the vector only for notational conve	
nience� we do not imply that the new basis vectors are a permutation of the old ones� 




�

Any linearly independent linear combination of old basis vectors may be selected as 

the new basis vectors� That is
 any nonsingular four	by	four matrix may be used for 

�
�0 

� The transformation is not restricted to being a Lorentz transformation� the local 

reference frames de�ned by the bases are not required to be inertial �or
 in the presence of 

gravity
 freely	falling�� Because the transformation matrix is assumed to be nonsingular
 

the transformation may b e i n verted� 

�0 � �e� X 

� � � X 

�e�0 X 

� � �0 X 

��0 

� X 

� 	� � ����� 

Comparing equations ���� and ����
 note that in our notation the inverse matrix places 

the prime on the other index� Primed indices are never summed together with unprimed 

indices� 

If we c hange basis vectors
 we m ust also transform the basis one	forms so as to 

preserve the duality condition equation ���� The reader may v erify that
 given the 

transformations of equations ���� and ����
 the new dual basis one	forms are 

�0 �0 

e�
X 

� � �� 

X 

� ����� X
e 

We m a y also write the transformation matrix and its inverse by scalar products of the 

old and new basis vectors and one	forms �dropping the subscript X for clarity�� 

��0 �0 

��
�0 

� he�� � �e�0 i � � he� � �e� 

i � ���� 



� 

�Apart from the basis vectors and one	forms
 a vector A and a one	form P� are
 by 

de�nition
 invariant under a change of basis� Their components are not� For example
 

using equation ���� or ��� we � n d 

� A�0 � �0 

A � A� �e� 

� A�0 

�e�0 � � he��0 

� Ai � � � 

A� � ���� 

The vector components transform oppositely to the basis vectors �eq� ���� One	form 

components transform like basis vectors
 as suggested by the fact that both are labeled 

with a subscript� 

A � A� 

e�� � A�0 e��
0 

� A�0 � h 

�� A��e�0 i � � 

�
�0 

A� 

� ���� 

Note that if the components of two v ectors or two one	forms are equal in one basis
 they 

are equal in any basis� 

Tensor components also transform under a change of basis� The new components may 

be found by recalling that a �m� n� tensor is a function of m vectors and n one	forms 

and that its components are gotten by e v aluating the tensor using the basis vectors and 

one	forms �e�g�
 eq� ��� For example
 the metric components are transformed under the 

change of basis of equation ���� to 

�g�0 �0 � g��e�0 � �e�0 � � g�� 

e� ��e�0 � e�� ��e�0 � � g�� 

��
�0 

��
�0 

� ���� 

�Recall that �evaluating� a one	form or vector means using the scalar product
 eq� �� 

We see that the covariant components of the metric �i�e�
 the lower indices� transform 

exactly like one	form components� Not surprisingly
 the components of a tensor of rank 

�m� n� transform like the product of m vector components and n one	form components� 

If the components of two tensors of the same rank are equal in one basis
 they are equal 

in any basis� 

��� Coordinate bases 

We h a ve made no restrictions upon our choice of basis vectors �e�� Before concluding 

our formal introduction to tensors
 we i n troduce one more idea� a coordinate system� A 

� coordinate system is simply a set of four di�erentiable scalar �elds x 

X 

�not one vector 

�eld � note that � labels the coordinates and not vector components� that attach a 

unique set of labels to each spacetime point x� That is
 no two points are allowed to 

have identical values of all four scalar �elds and the coordinates must vary smoothly 

throughout spacetime �although we will tolerate occasional �aws like the coordinate 

singularities at r � � and  � � in spherical polar coordinates�� Note that we impose 

no other restrictions on the coordinates� The freedom to choose di�erent coordinate 

systems is available to us even in a Euclidean space� there is nothing sacred about 

Cartesian coordinates� This is even more true in a non	Euclidean space
 where Cartesian 

coordinates covering the whole space do not exist� 



�


x

Coordinate systems are useful for three reasons� First and most obvious
 they allow 

us to label each spacetime point b y a set of numbers �x�� x 

�� x 

�� x 

��� The second and 

more important use is in providing a special set of basis vectors called a coordinate 

basis� Suppose that two in�nitesimally close spacetime points have coordinates x� and 

� � dx� � The in�nitesimal di�erence vector between the two p o i n ts
 denoted d�x
 is a 

vector de�ned at x� W e de�ne the coordinate basis as the set of four basis vectors �e� X 

such that the components of d�x are dx� � 

d�x � dx� �e� 

de�nes �e� 

in a coordinate basis � ���� 

From the trivial appearance of this equation the reader may incorrectly think that we 

have imposed no constraints on the basis vectors� However
 that is not so� According to 

equation ����
 the basis vector �e� X
 for example
 must point in the direction of increasing 

�x at point x� This corresponds to a unique direction in four	dimensional spacetime just 

as the direction of increasing latitude corresponds to a unique direction �north� at a given 

point on the earth� In more mathematical treatments �e�g� Walk ����
 �e� 

is associated 

with the directional derivative �
�x 

� at x� 

It is worth noting the transformation matrix between two coordinate bases� 

���
� 

� 

�x 

��

� ����
�x 

� 

Note that not all bases are coordinate bases� If we w anted to be perverse we c o u l d 

de�ne a non	coordinate basis by
 for example
 permuting the labels on the basis vectors 

but not those on the coordinates �which
 after all
 are not the components of a vector�� In 

this case he��� d �xi
 the component o f d�x for basis vector �e�
 w ould not equal the coordinate 

di�erential dx� � This would violate nothing we h a ve written so far except equation ����� 

Later we will discover more natural ways that non	coordinate bases may arise� 

The coordinate basis f�e�g de�ned by equation ���� has a dual basis of one	forms fe��g
de�ned by equation ���� The dual basis of one	forms is related to the gradient� We 

obtain this relation as follows� Consider any scalar �eld fX� T reating f as a function of 

the coordinates
 the di�erence in f be  t  ween two in�nitesimally close points is 

df � 

�f 

dx� � ��f dx 

� � ����
�x 

� 

Equation ���� may b e t a k en as the de�nition of the components of the gradient �with an 

alternative brief notation for the partial derivative�� However
 partial derivatives depend 

on the coordinates
 while the gradient � c o variant d e r i v ative� should not� What
 then
 is 

the gradient � is it a vector or a one	form� 



From equation ����
 because df is a scalar and dx� is a vector component
 �f 
�x� 

must be the component of a one	form
 not a vector� The notation ��
 with its covariant 

�subscript� index
 reinforces our view that the partial derivative is the component o f a 

�one	form and not a vector� We denote the gradient one	form by r� L i k e all one	forms
 

the gradient m a y be decomposed into a sum over basis one	forms e�� � Using equation 

���� and equation ��� as the requirement f o r a d u a l b a s i s 
 w e conclude that the gradient 

is 

r 

� � e�� �� 

in a coordinate basis � ���� 

Note that we m ust write the basis one	form to the left of the partial derivative operator
 

for the basis one	form itself may depend on position� We will return to this point i n 

Section � when we discuss the covariant derivative� In the present case
 it is clear from 

equation ���� that we m ust let the derivative act only on the function f � W e can now 

rewrite equation ���� in the coordinate	free manner 

df � h 

� rf � d�xi � ���� 

If we w ant the directional derivative o f f along any particular direction
 we simply replace 

d�x by a v ector pointing in the desired direction �e�g�
 the tangent v ector to some curve�� 

Also
 if we let fX 

equal one of the coordinates
 using equation ���� the gradient gives us 

the corresponding basis one	form� 

� 

� rx � e�� in a coordinate basis � ���� 

� 

The third use of coordinates is that they can be used to describe the distance between 

two points of spacetime� However
 coordinates alone are not enough� We also need the 

metric tensor� We write the squared distance between two spacetime points as 

ds� � jd�x j� � g�d�x� d�x� � d�x � d�x � ��� 



This equation
 true in any basis because it is a scalar equation that makes no reference 

to components
 is taken as the de�nition of the metric tensor� Up to now the metric 

could have been any symmetric � � � �� tensor� But
 if we insist on being able to measure 

distances
 given an in�nitesimal di�erence vector d�x
 only one ��� �� tensor can give t h e 

squared distance� We de�ne the metric tensor to be that tensor� Indeed
 the squared 

� � � �magnitude of any vector A is jA j� � g�A�A�� 

Now w e specialize to a coordinate basis
 using equation ���� for d�x� In a coordinate 

basis �and only in a coordinate basis�
 the squared distance is called the line element and 

takes the form 

ds� � g�� Xdx
� dx� in a coordinate basis � ���� 

We h a ve used equation ��� to get the metric components� 

If we transform coordinates
 we w i l l h a ve t o c hange our vector and one	form bases� 

� �0 

Suppose that we transform from x 

X 

to x 

X 


 with a prime indicating the new coordinates� 

�
For example
 in the Euclidean plane we could transform from Cartesian coordinate �x� � 

0 �0 

x� x� � y� to polar coordinates �x � r� x � �� x � r cos 
 y � r sin � A one	to	one 

mapping is given from the old to new coordinates
 allowing us to de�ne the Jacobian 

�0 

matrix ��0 

� 

� � x 
�x� and its inverse ��
�0 

� �x 

� 
�x�
0 

� V ector components transform 

like dx�
0 

� � �x 

�0 


�x� � dx� � T ransforming the basis vectors
 basis one	forms
 and tensor 

components is straightforward using equations ���������� The reader should verify that 

equations ����
 ����
 ���� and ���� remain valid after a coordinate transformation� 

We h a ve n o w i n troduced many of the basic ingredients of tensor algebra that we will 

need in general relativity� Before moving on to more advanced concepts
 let us re�ect on 

our treatment o f v ectors
 one	forms and tensors� The mathematics and notation
 while 

straightforward
 are complicated� Can we simplify the notation without sacri�cing rigor� 

One way to modify our notation would be to abandon ths basis vectors and one	forms 

and to work only with components of tensors� We could have de�ned vectors
 one	forms 

and tensors from the outset in terms of the transformation properties of their components� 

However
 the reader should appreciate the clarity of the geometrical approach t h a t w e 

have adopted� Our notation has forced us to distinguish physical objects like v ectors from 

basis	dependent o n e s l i k e v ector components� As long as the de�nition of a tensor is not 

forgotten
 computations are straightforward and unambiguous� Moreover
 adopting a 

basis did not force us to abandon geometrical concepts� On the contrary
 computations 

are made easier and clearer by retaining the notation and meaning of basis vectors and 

one	forms� 

� 



��� Isomorphism of vectors and one�forms 

Although vectors and one	forms are distinct objects
 there is a strong relationship be	
tween them� In fact
 the linear space of vectors is isomorphic to the dual vector space 

of one	forms �Wald ����� Every equation or operation in one space has an equivalent 

equation or operation in the other space� This isomorphism can be used to hide the 

distinction between one	forms and vectors in a way that simpli�es the notation� This 

approach i s u n usual �I haven�t seen it published anywhere� and is not recommended in 

formal work but it may be pedagogically useful� 

As we s a w in equations ��� and ���
 the link between the vector and dual vector 

� � � �spaces is provided by g and g 

;� � If A � B �components A� � B��
 then A � B 

�components A� 

� B� 

� where A� 

� g�� 

A� and B� 

� g�� 

B� � So
 why do we bother with 

one	forms when vectors are su�cient� The answer is that tensors may be functions of 

both one	forms and vectors� However
 there is also an isomorphism among tensors of 

di�erent rank� We h a ve just argued that the tensor spaces of rank �� �� �vectors� and 

��� � are isomorphic� In fact
 all �m�n tensor spaces of rank �m� n� with �xed m � n 

are isomorphic� The metric and inverse metric tensors link together these spaces
 as 

exempli�ed by equations ���� and ����� 

The isomorphism of di�erent tensor spaces allows us to introduce a notation that 

uni�es them� We could e�ect such a uni�cation by discarding basis vectors and one	forms 

and working only with components
 using the components of the metric tensor and its 

inverse to relate components of di�erent t ypes of tensors as in equations ���� and ����� 

However
 this would require sacri�cing the coordinate	free geometrical interpretation of 

vectors� Instead
 we i n troduce a notation that replaces one	forms with vectors and �m� n� 

tensors with �m � n� �� tensors in general� We d o t h i s b y replacing the basis one	forms 

e�� w ith a set of vectors de�ned as in equation ���� 

� �� �e � � � � g 

;�� e��� � � � g �e� 

� � � � ���� 

We will refer to �e 

� as a dual basis vector to contrast it from both the basis vector �e� 

and the basis one	form e�� � The dots are present in equation ���� to remind us that a 

one	form may be inserted to give a scalar� However
 we no longer need to use one	forms� 

Using equation ����
 given the components A� 

of any one	form A�
 w e m ay form the 

�vector A de�ned by equation ��� as follows� 

� ��A � A� 

�e 

� � A�g �e� 

� A� �e� 

� ���� 

� �The reader should verify that A � A� 

�e 

� is invariant under a change of basis because �e 

transforms like a basis one	form� 

The isomorphism of one	forms and vectors means that we can replace all one	forms 

with vectors in any tensor equation� Tildes may be replaced with arrows� The scalar 

�




product between a one	form and a vector is replaced by the dot product using the metric 

�eq� � or ���� The only rule is that we m ust treat a dual basis vector with an upper 

index like a basis one	form� 

� � � �e� 

� �e� 

� g�� 

� �e 

� � �e� 

� he��� �e� 

i � 	 � 

� �e 

� � �e � e�� � e� � g 

�� � ���� 

The reader should verify equations ���� using equations ��� and ����� Now
 if we need 

the contravariant component o f a v ector
 we can get it from the dot product with the 

dual basis vector instead of from the scalar product with the basis one	form� 

� � 

� Ai � ����A� � �e A � he�� � �

�We m a y also apply this recipe to convert the gradient one	form r �eq� ��� to a vector
 

though we m ust not allow the dual basis vector to be di�erentiated� 

� 

�� r � �e 

��� 

� g �e� 

�� 

in a coordinate basis � ���� 

It follows at once that the dual basis vector �in a coordinate basis� is the vector gradient 

�of the coordinate� �e� � rx� � This equation is isomorphic to equation ����� 

The basis vectors and dual basis vectors
 through their tensor products
 also give a 

basis for higher	rank tensors� Again
 the rule is to replace the basis one	forms with the 

corresponding dual basis vectors� Thus
 for example
 we m a y write the rank ��� �� metric 

tensor in any of four ways� 

� � � g � g�� 

�e 

� � �e � g 

� �e� 

� �e � g �e 

� � �e� 

� g 

�� �e� 

� �e� 

� ����� � 

In fact
 by comparing this with equation ��� the reader will see that what we h a ve 

written is actually the inverse metric tensor g 

;� 
 w h i c h is isomorphic to g through the 

replacement o f e�� with �e� � But
 what are the mixed components of the metric
 g� and�


�
g � F rom equations ��� and ����
 we see that they both equal the Kronecker delta 

	
� 

�
� 

� Consequently
 the metric tensor is isomorphic to the identity tensor as well as to its 

inverse� However
 this is no miracle� it was guaranteed by our de�nition of the dual basis 

vectors and by the fact we de�ned g 

;� to invert the mapping from vectors to one	forms 

implied by g� The reader may fear that w e have de�ned away the metric by showing it to 

be isomorphic to the identity tensor� However
 this is not the case� We need the metric 

tensor components to obtain �e� from �e� 

or A� from A�� W e cannot take a d v antage of 

the isomorphism of di�erent tensor spaces without the metric� Moreover
 as we showed 

in equation ���
 the metric plays a fundamental role in giving the squared magnitude 

of a vector� In fact
 as we will see later
 the metric contains all of the information about 

the geometrical properties of spacetime� Clearly
 the metric must play a fundamental 

role in general relativity� 

� 



��� Example	 Euclidean plane 

We close this section by applying tensor concepts to a simple example� the Euclidean 

plane� This �at two	dimensional space can be covered by Cartesian coordinates �x� y� 

with line element and metric components 

ds� � dx� � dy� � gxx 

� gyy  

�  � g xy 

� gyx  

� � � ���� 

We prefer to use the coordinate names themselves as component labels rather than using 

numbers �e�g� gxx 

rather than g���� The basis vectors are denoted �ex 

and �ey 


 and their use 

in plane geometry and linear algebra is standard� Basis one	forms appear unnecessary 

because the metric tensor is just the identity tensor in this basis� Consequently the 

dual basis vectors �eq� ��� are �e 

x � �ex
 �e 

y � �ey 

and no distinction is needed between 

superscripts and subscripts� 

However
 there is nothing sacred about Cartesian coordinates� Consider polar coor	
dinates ��� �
 de�ned by the transformation x � � cos 
 y � � sin � A simple exercise 

in partial derivatives yields the line element in polar coordinates� 

ds� � d�� � ��d� � g�� 

�  � g ��  

� �� � g �� 

� g��  

� � � ���� 

This appears eminently reasonable until
 perhaps
 one considers the basis vectors �e� 

and 

�e� 


 recalling that g�� 

� �e� 

� �e� 

� Then
 while �e� 

� �e� 

�  and �e� 

� �e� 

� �
 �e� 

� �e� 

� ��� �e� 

is 

not a unit vector� The new basis vectors are easily found in terms of the Cartesian basis 

vectors and components using equation ����� 

x y 

�e� 

� 

p
x� � y� 

�ex 

� �ey 

� �e� 

� �y �ex 

� x �ey 

� ���p
x� � y� 

The polar unit vectors are  � � �e� 

and  � �;��e� 

� 

Why does our formalism give us non	unit vectors� The answer is because we insisted 

that our basis vectors be a coordinate basis �eqs� ��
 ��
 �� and ���� In terms of the 

orthonormal unit vectors
 the di�erence vector between points ��� � and � ��d�� �d� is 

 d�x � �  d� � �d� In the coordinate basis this takes the simpler form d�x � �e� 

d���e� 

d � 

dx��e�� In the coordinate basis we don�t have t o w orry about normalizing our vectors� 

all information about lengths is carried instead by the metric� In the non	coordinate 

 basis of orthonormal vectors f  �� g we h a ve to make a separate note that the distance 

elements are d� and �d� 

In the non	coordinate basis we can no longer use equation ���� for the line element� 

We m ust instead use equation ���� The metric components in the non	coordinate basis 

 f  �� g are 

g�� 

� g�� �  � g �� � g� � � ����� � �� �� � � �� 

� 



The reader may also verify this result by transforming the components of the metric 

 from the basis f�e�� �e� 

g to f  �� g using equation ���� with �� 

� � 
 � 

� � �;� � Now
 � 
�� 

equation ��� still gives the distance squared
 but we are responsible for remembe  r i ng 

 d�x � �  d� �  �d� In a non	coordinate basis
 the metric will not tell us how to measure 

distances in terms of coordinate di�erentials� 

With a non	coordinate basis
 we m ust sacri�ce equations ���� and ����� Nonetheless
 

for some applications it proves convenient t o i n troduce an orthonormal non	coordinate 

basis called a tetrad basis� Tetrads are discussed by W ald ����� and Misner et al ������ 

The use of non	coordinate bases also complicates the gradient �eqs� ��
 �� and ���� 

In our polar coordinate basis �eq� ���
 the inverse metric components are 

�� �� � g 

��  g �  � g 

��  � �;� � g � � � ���� 

�The matrix g�� 

is diagonal
 so its inverse is also diagonal with entries given by t h e 

� � g��reciprocals�� The basis one	forms obey the rules e�� � e� � They are isomorphic to 

� g��the dual basis vectors �e 

� �e� 

�eq� ���� Thus
 �e 

� � �e� 

� � 
 �e 

� � �;��e� 

� �;� � 

� 

�Equation ���� gives the gradient one	form as r � e�� ��
�� �� �e ��
� �� Expressing this 

as a vector �eq� ��� we get 

�   �� r � �e 

� 

� 

� �e 

� 

� 

� � �  � ����
�� � �� � � 

The gradient is simpler in the coordinate basis� The coordinate basis has the added 

advantage that we can get the dual basis vectors �or the basis one	forms� by applying 

� �the gradient to the coordinates �eq� ���� �e 

� � r�
 �e 

� � r� 

From now on
 unless otherwise noted
 we will assume that our basis vectors are 

a coordinate basis� We will use one	forms and vectors interchangeably through the 

mapping provided by the metric and inverse metric �eqs� �
 � and ���� Readers who 

dislike one	forms may c o n vert the tildes to arrows and use equations ���� to obtain 

scalars from scalar products and dot products� 

�




�


� Di�erentiation and Integration 

In this section we discuss di�erentiation and integration in curved spacetime� These 

might seem like a delicate subjects but
 given the tensor algebra that we h a ve d e v eloped
 

tensor calculus is straightforward� 

��� Gradient of a scalar 

Consider �rst the gradient of a scalar �eld fX� We h a ve already shown in Section � 

�that the gradient operator r is a one	form �an object that is invariant under coordinate 

transformations� and that
 in a coordinate basis
 its components are simply the partial 

derivatives with respect to the coordinates� 

� rf � � ��f � e�� � � r�f � e�� � ���� 

where �� 

� ��
�x 

��� We h a ve i n troduced a second notation
 r�
 called the covariant 

derivative with respect to x� � By de�nition
 the covariant d e r i v ative behaves like t h e 

component of a one	form� But
 from equation ����
 this is also true of the partial 

derivative operator ��� W h y h a ve w e in troduced a new symbo  l� 

Before answering this question
 let us �rst note that the gradient
 because it behaves 

like a tensor of rank ��� � �a one	form�
 changes the rank of a tensor �eld from �m� n� 

to �m� n � �� �This is obviously true for the gradient of a scalar �eld
 with m � n � ��� 

That is
 application of the gradient i s l i k e taking the tensor product with a one	form� The 

di�erence is that the components are not the product of the components
 because r� 

is 

not a number� Nevertheless
 the resulting object must be a tensor of rank �m� n � �� 

e�g�
 its components must transform like components of a �m� n � � tensor� The gradient 

of a scalar �eld f is a ��� � tensor with components ���f �� 



��� Gradient o f a v ector	 covariant derivative 

The reason that we h a ve i n troduced a new symbol for the derivative will become clear 

� �when we take the gradient o f a v ector �eld AX 

� A � In general
 the basis vectors 

X 

e� X 

� 

are functions of position as are the vector components� So
 the gradient m ust act on 

both� In a coordinate basis
 we h a ve 

� � �� � � 

�rA � r�A� �e� 

� � e� ���A
� �e� 

� � � ��A
� � e� �e� 

� A� e� ��� 

�e� 

� � �r�A
� � e� �e� 

� ���� 

We h a ve dropped the tensor product symbo  l � for notational convenience although it 

is still implied� Note that we m ust be careful to preserve the ordering of the vectors 

and tensors and we m ust not confuse subscripts and superscripts� Otherwise
 taking the 

gradient o f a v ector is straightforward� The result is a �� � tensor with components 

r�A
� � But now r� 

�� ��� T his is w hy w e have introduced a new derivative sym bol�  W  e 

reserve the covariant derivative notation r� 

for the actual components of the gradient o f 

a tensor� We note that the alternative notation A� 

�� 

� r�A
� is often used
 replacing the 

comma of a partial derivative A�
�� 

� ��A
� with a semicolon for the covariant derivative� 

The di�erence seems mysterious only when we ignore basis vectors and stick e n tirely 

to components� As equation ���� shows
 vector notation makes it clear why there is a 

di�erence� 

Equation ���� by itself does not help us evaluate the gradient o f a v ector because 

we do not yet know what the gradients of the basis vectors are� However
 they are 

straightforward to determine in a coordinate basis� First we note that
 geometrically
 

��




�� 

�e� 

is a vector at x� it is the di�erence of two v ectors at in�nitesimally close points
 

divided by a coordinate interval� �The easiest way to tell that �� 

�e� 

is a vector is to 

note that it has one arrow�� So
 like a l l v ectors
 it must be a linear combination of basis 

vectors at x� W e can write the most general possible linear combination as 

�� 

e� X 

� !� � ����� �� X 

e� X 

� 

��� Christo
el symb o l s 

We h a ve i n troduced in equation ���� a set of coe�cients
 !�
�� 


 called the connection 

coe�cients or Christo�el symbols� � T echnically
 the term Christo�el symbols is reserved 

for a coordinate basis�� It should be noted at the outset that
 despite their appear	
ance
 the Christo�el symbols are not the components of a �� �� tensor� Rather
 they 

may be considered as a set of four �� � tensors
 one for each basis vector �e� 


 because 

� ! 

�r�e� 

� �� 

e���e�� H o wever
 it is not useful to think of the Christo�el symbols as tensor 

components for �xed � because
 under a ch a n g e o f b a sis
 th e b a sis v ectors �e� 

themselves 

change and therefore the four �� � tensors must also change� So
 forget about the 

Christo�el symbols de�ning a tensor� They are simply a set of coe�cients telling us how 

to di�erentiate basis vectors� Whatever their values
 the components of the gradient o f 

�A
 known also as the covariant derivative o f A� 
 are
 from equations ���� and ����
 

� A� r�A
� � ��A

� � ! � ������

How does one determine the values of the Christo�el symbols� That is
 how does one 

evaluate the gradients of the basis vectors� One way is to express the basis vectors in 

terms of another set whose gradients are known� For example
 consider polar coordinates 

��� � in the Cartesian plane as discussed in Section �� The polar coordinate basis vectors 

were given in terms of the Cartesian basis vectors in equation ���� We k n o w that the 

gradients of the Cartesian basis vectors vanish and we k n o w h o w to transform from 

Cartesian to polar coordinates� It is a straightforward and instructive exercise from this 

to compute the gradients of the polar basis vectors� 

  � � r�e� 

� e�� � �e� 

� r�e� 

� e�� � �e� 

� � e�� � �e� 

� ����
� � 

�We h a ve restored the tensor product symbol as a reminder of the tensor nature of the 

objects in eq� ���� From equations ���� and ���� we conclude that the nonvanishing 

Christo�el symbols are 

� � ! � ! 

� 

�� 

� �;� � ! � �� � ������  ��  

It is instructive to extend this example further� Suppose that we add the third 

dimension
 with coordinate z
 to get a three	dimensional Euclidean space with cylindrical 

�




coordinates ��� � z�� The line element �cf� eq� ��� now becomes ds� � d�� � �� d� � dz� � 

Because �e� 

and �e� 

are independent o f z and �ez 

is itself constant
 no new non	vanishing 

Christo�el symbols appear� Now consider a related but di�erent manifold� a cylinder� 

A cylinder is simply a surface of constant � in our three	dimensional Euclidean space� 

This two	dimensional space is mapped by coordinates �� z  �
 with basis vectors �e� 

and 

�ez 

� What are the gradients of these basis vectors� They vanish� But
 how can that be� 

From equation ����
 �� 

�e� 

� ���e�� H a ve w e forgotten about the �e� 

direction� 

This example illustrates an important lesson� We cannot project tensors into basis 

vectors that do not exist in our manifold
 whether it is a two	dimensional cylinder or 

a four	dimensional spacetime� A cylinder exists as a two	dimensional mathematical 

surface whether or not we c hoose to embed it in a three	dimensional Euclidean space� 

If it happens that we c a n e m bed our manifold into a simpler higher	dimensional space
 

we do so only as a matter of calculational convenience� If the result of a calculation is 

a v ector normal to our manifold
 we m ust discard this result because this direction does 

not exist in our manifold� If this conclusion is troubling
 consider a cylinder as seen by 

a t wo	dimensional ant crawling on its surface� If the ant goes around in circles about 

the z	axis it is moving in the �e� 

direction� The ant w ould say that its direction is not 

changing as it moves along the circle� We conclude that the Christo�el symbols indeed 

all vanish for a cylinder described by coordinates �� z  �� 

��� Gradients of one�forms and tensors 

Later we will return to the question of how t o e v aluate the Christo�el symbols in general� 

First we i n vestigate the gradient of one	forms and of general tensor �elds� Consider a 

one	form �eld A�X 

� A� Xe�
� 

X
� Its gradient in a coordinate basis is 

� � � �� � � 

�rA � r�A� 

e�� � � e� ���A� 

e�� � � � ��A� 

� e�� e� � A� 

e�� ���e� � � �r�A� 

� e� e� � ��� 

Again we h a ve de�ned the covariant derivative operator to give the components of the 

gradient
 this time of the one	form� We cannot assume that r� 

has the same form here 

as in equation ����� However
 we can proceed as we did before to determine its relation
 

if any
 to the Christo�el symbols� We note that the partial derivative of a one	form in 

equation ��� must be a linear combination of one	forms� 

���e�
� 

X 

� "�
�� X 

e� X 

� ���� 

for some set of coe�cients "�
�� 

analogous to the Christo�el symbols� In fact
 these 

coe�cients are simply related to the Christo�el symbo  l s 
 a s w e m a y see by di�erentiating 

the scalar product of dual basis one	forms and vectors� 

� � � � �� � ��he�� � �e�i � " �� 

he� � �e�i � ! 

�
��he� � �e�i � " �� 

� ! � ������ 

�� 



"
We h a ve used equation ��� plus the linearity of the scalar product� The result is 

�
�� 

� �!� 

��
 so that equation ���� becomes
 simply
 

���e�
� 

X 

� �!�
�� X 

e� X 

� ���� 

Consequently
 the components of the gradient of a one	form A�
 also known as the co	
variant derivative o f A� 


 are 

r�A� 

� ��A� 

� !� A� 

� ������ 

This expression is similar to equation ���� for the covariant derivative o f a v ector except 

for the sign change and the exchange of the indices � and � on the Christo�el symbo  l 

�obviously necessary for consistency with tensor index notation�� Although we still don�t 

know t h e v alues of the Christo�el symbols in general
 at least we h a ve i n troduced no 

more unknown quantities� 

We leave it as an exercise for the reader to show that extending the covariant deriva	
tive to higher	rank tensors is straightforward� First
 the partial derivative of the com	
ponents is taken� Then
 one term with a Christo�el symbol is added for every index on 

the tensor component
 with a positive sign for contravariant indices and a minus sign 

for covariant indices� That is
 for a �m� n� tensor
 there are m positive terms and n 

negative terms� The placement of labels on the Christo�el symbols is a straightforward 

extension of equations ���� and ����� We illustrate this with the gradients of the ��� �� 

metric tensor
 the �� � identity tensor and the ��� �� inverse metric tensor� 

� 

� � rg � � r�g�� 

� e�� � e�� � e� � r�g�� 

� ��g�� 

� !�
��g�� 

� ! �� 

g�� 

� ���� 

� 

� � 	�� 

� !� 	� rI 

� � r�	
�
� 

� e�� � �e� 

� e� � r�	
�
� 

� ��	
�
� 

� ! � ������ �� � 

and 

� 

;� �� � ��g 

�� 

� �� � �� rg � � r�g 

�� � e�� � �e� 

� �e� 

� r�g � ! ��g � ! ��g � ���� 

Examination of equation ���� shows that the gradient of the identity tensor vanishes 

identically� While this result is not surprising
 it does have important implications� 

Recall from Section � the isomorphism between g
 I 

and g 

;� �eq� ���� A s a result of 

this isomorphism
 we w ould expect that all three tensors have v anishing gradient� Is this 

really so� 

For a smooth �di�erentiable� manifold the gradient of the metric tensor �and the 

inverse metric tensor� indeed vanishes� The proof is sketched as follows� At a g i v en 

point x in a smooth manifold
 we m a y construct a locally �at orthonormal �Cartesian� 

coordinate system� We de�ne a locally �at coordinate system to be one whose coordinate 

basis vectors satisfy the following conditions in a �nite neighborhood around X� �e� X 

� 

�e� X 

� � for � �� � and �e� X 

� �e� X 

� � �with no implied summation�� 

�� 



The existence of a locally �at coordinate system may be taken as the de�nition of 

a smooth manifold� For example
 on a two	sphere we m a y erect a Cartesian coordinate 

system x��
 with orthonormal basis vectors �e��
 applying over a small region around x� 

�We use a bar to indicate the locally �at coordinates�� While these coordinates cannot
 

in general
 be extended over the whole manifold
 they are satisfactory for measuring 

distances in the neighborhood of x using equation ���� with g���� � ����� � g 

����
 w here �����
is the metric of a �at space or spacetime with orthonormal coordinates �the Kronecker 

delta or the Minkowski metric as the case may be�� The key point is that this statement 

is true not only at x but also in a small neighborhood around it� �This argument relies 

on the absence of curvature singularities in the manifold and would fail
 for example
 if 

it were applied at the tip of a cone�� Consequently
 the metric must have v anishing �rst 

derivative a t x in the locally �at coordinates� ���g���� � � � The gradient of the metric 

�and the inverse metric� vanishes in the locally �at coordinate basis� But
 the gradient 

of the metric is a tensor and tensor equations are true in any basis� Therefore
 for any 

smooth manifold
 

� � rg � rg 

;� � � � ���� 

��� Evaluating the Christo
el symb o l s 

We can extend the argument made above t o p r o ve the symmetry of the Christo�el sym	
bols� !� � ! 

� for any coordinate basis� At p o i n t x
 the basis vectors corresponding�� �� 

to our locally �at coordinate system have v anishing derivatives� ����e�� � � � F rom equation 

����
 this implies that the Christo�el symbols vanish at a point in a locally �at coordi�

nate basis� Now let us transform to any other set of coordinates x� � The Jacobian of 

this transformation is �� 

�� � �x 

�
�x�� �eq� ���� Our basis vectors transform �eq� ��� 

according to �e�� � � 

� 

���e�� W e v aluate ����e�� � � using the new basis vectors
 beinge now 

careful to use equation ���� for their partial derivatives �which d o not vanish in non	�at 

coordinates�� 

���x � �x 

� � ����e�� � 

�x 

��� 

� 

�e� 

� 

�x 

��
!	

�� 

�e	 

� � � ����
�� �x 

�� �x x 

Exchanging #� and #� we see that 

	! � ! 

	 in a coordinate basis � ����� �� 

implying that our connection is torsion	free �Wald ����� 

We can now use equations ����
 ���� and ��� to evaluate the Christo�el symbols in 

terms of partial derivatives of the metric coe�cients in any coordinate basis� We write 

r�g�� 

� � and permute the indices twice
 combining the results with one minus sign 

and using the inverse metric at the end� The result is 

� 

 ��! � g ���g�� 

� �� 

g�� 

� ��g�� 

� in a coordinate basis � ������ � 

�� 



Although the Christo�el symbols vanish at a point in a locally �at coordinate basis
 

they do not vanish in general� This con�rms that the Christo�el symbols are not tensor 

components� If the components of a tensor vanish in one basis they must vanish in all 

bases� 

We c a n n o w summarize the conditions de�ning a locally �at coordinate system x 

��
X 

� X� 

� � or
 equivalently
 ���g���about point x�� g����X� 

� ����� and !��
��� � X� 

� �� 

��� Transformation to locally �at coordinates 

We h a ve d e r i v ed an expression for the Christo�el symbols beginning from a locally �at 

coordinate system� The problem may be turned around to determine a locally �at 

coordinate system at point x�
 given the metric and Christo�el symbols in any coordinate 

system� The coordinate transformation is found by expanding the components g�� X 

of 

the metric in the non	�at coordinates x� i n a T aylor series about x� 

and relating them 

to the metric components ����� in the locally �at coordinates x�� using equation ����� 

�x� g�� X 

� g�� X� 

� � x 

� � x� 

� ��g�� X� 

� O�x � x��
� � �����

�x 

�� ��

� O�x � x��
� � ����

��x 

� �x 

Note that the partial derivatives of ����� vanish as do those of any correction terms to 

��the metric in the locally �at coordinates at x�� � x� 

� Equation ���� imposes the two 

conditions required for a locally �at coordinate system� g����X� 

� ����� and ���g���� X� 

� �� 

However
 the second partial derivatives of the metric do not necessarily vanish
 implying 

that we cannot necessarily make the derivatives of the Christo�el symbols vanish at x�� 

Quadratic corrections to the �at metric are a manifestation of curvature� In fact
 we will 

see that all the information about the curvature and global geometry of our manifold is 

contained in the �rst and second derivatives of the metric� But �rst we m ust see whether 

general coordinates x� can be transformed so that the zeroth and �rst derivatives of the 

metric at x� 

match the conditions implied by equation ����� 

x
We expand the desired locally �at coordinates x�� in terms of the general coordinates 

� in a Taylor series about the point x�� 

�� �� � � � � � x � x� 

� A��
��x � x� 

� � B 

��
���x � x� 

��x 

� � x� 

� � O�x � x��
� � ���� 

��where x� 


 A�� and B 

��
�� 

are all constants� We leave it as an exercise for the reader to� 

show
 by substituting equations ���� into equations ����
 that A�� and B 

��
�� 

must satisfy� 

the following constraints� 

 ���g�� X� 

� �����A
��
�A

��
� 

� B �� 

� A��
�! �� X� 

� ����
� 

If these constraints are satis�ed then we h a ve found a transformation to a locally �at 

coordinate system� It is possible to satisfy these constraints provided that the metric and 

��




the Christo�el symbols are �nite at x�� This proves the consistency of the assumption 

underlying equation ����
 at least away from singularities� �One should not expect to 

�nd a locally �at coordinate system centered on a black hole�� 

From equation ����
 we see that for a given matrix A��
� 


 B 

�� is completely �xed by�� 

the Christo�el symbols in our non�at coordinates� So
 the Christo�el symbols determine 

the quadratic corrections to the coordinates relative to a locally �at coordinate system� 

As for the A��
� 

matrix giving the linear transformation to �at coordinates
 it has � 

independent coe�cients in a four	dimensional spacetime� The metric tensor has only 

� independent coe�cients �because it is symmetric�� From equation ����
 we see that 

we are left with � degrees of freedom for any transformation to locally �at spacetime 

coordinates� Could these � have a n y special signi�cance� Yes� Given any locally �at 

coordinates in spacetime
 we m a y rotate the spatial coordinates by a n y amount � l a b e l e d 

by one angle� about any direction �labeled by t wo angles�
 accounting for three degrees 

of freedom� The other three degrees of freedom correspond to a rotation of one of the 

space coordinates with the time coordinate
 i�e�
 a Lorentz boost� This is exactly the 

freedom we w ould expect in de�ning an inertial frame in special relativity� Indeed
 in a 

locally inertial frame general relativity reduces to special relativity b y the Equivalence 

Principle� 

��
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1 Introduction 

The first set of 8.962 notes, Introduction to Tensor Calculus for General Relativity, 
discussed tensors, gradients, and elementary integration. The current notes continue 
the discussion of tensor calculus with orthonormal bases and commutators (§2), parallel 
transport and geodesics (§3), and the Riemann curvature tensor (§4). 

2 Orthonormal Bases, Tetrads, and Commutators 

A vector basis is said to be orthonormal at point X if the dot product is given by the 
Minkowski metric at that point: 

{�µ} is orthonormal if and only if eˆ · �eν̂ = ηµν . (1)eˆ �µ 

(We have suppressed the implied subscript X for clarity.) Note that we will always place 
a hat over the index for any component of an orthonormal basis vector. The smoothness 
properties of a manifold imply that it is always possible to choose an orthonormal basis 
at any point in a manifold. One simply choose a basis that diagonalizes the metric 
g and furthermore reduces it to the normalized Minkowski form. Indeed, there are 
infinitely many orthonormal bases at X related to each other by Lorentz transformations. 
Orthonormal bases correspond to locally inertial frames. 

For each basis of orthonormal vectors there is a corresponding basis of orthonormal 
one-forms related to the basis vectors by the usual duality condition: 

˜ˆeµ, �eν̂ = δµ
ν . (2) 

The existence of orthonormal bases at one point is very useful in providing a locally 
inertial frame in which to present the components of tensors measured by an observer at 

1 
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�

rest in that frame. Consider an observer with 4-velocity � V · �V at point X. Since  � V = −1, 
the observer’s rest frame has timelike orthonormal basis vector �0 = V . The observer has 

eˆ

eˆ

a set of orthonormal space axes given by a set of spatial unit vectors �eî. For a given �0, 
there are of course many possible choices for the spatial axes that are related by spatial 
rotations. Each choice of spatial axes, when combined with the observer’s 4-velocity, 
gives an orthonormal basis or tetrad. Thus, an observer carries along an orthonormal 
bases that we call the observer’s tetrad. This basis is the natural one for splitting 
vectors, one-forms, and tensors into timelike and spacelike parts. We use the observer’s 
tetrad to extract physical, measurable quantities from geometric, coordinate-free objects 
in general relativity. 

For example, consider a particle with 4-momentum �P . The energy in the observer’s 
ˆ �V � eˆinstantaneous inertial local rest frame is E = −� · P = −�0 · P = 〈ẽ0 , P 〉. The observer 

can define a (2, 0) projection tensor 

V ⊗ �h ≡ g −1 + � V (3) 

with components (in any basis) hαβ = gαβ + V αV β . This projection tensor is essentially 
the inverse metric on spatial hypersurfaces orthogonal to �V ; the corresponding (0, 2)

tensor is hµν = gαµgβν h

αβ . The reader can easily verify that hµν V µ = hµν V ν = 0, hence

µν̂

µˆ = diag(0, 1, 1, 1). Then, the spatial momentum
in the observer’s tetrad, hˆ = hˆν 
î � eî P . (Normally it is meaningless to equate components follow from P î = 〈ẽ , P 〉 = Pˆ = � · �i 

components of one-forms and vectors since they cannot be equal in all bases. Here we are 
restricting ourselves to a single basis — the observer’s tetrad — where it happens that 

ˆ
spatial components of one-forms and vectors are equal.) Note that P i�eˆ = h(g( �P )): the i 

spatial part of the momentum is extracted using h. Thus, in any basis, P µ = EV µ+hµ
ν P

ν 

P into parts parallel and perpendicular to �splits � V . (Note  hµ ≡ gκν h
µκ.)ν 

2.1 Tetrads 

If one can define an orthonormal basis for the tangent space at any point in a manifold, 
then one can define a set of orthonormal bases for every point in the manifold. In this 
way, equation (1) applies everywhere. At all spacetime points, the dot product has been 
reduced to the Minkowski form: gˆν µˆµˆ = ηˆν . One then has an orthonormal basis, or 
tetrad, for all points of spacetime. 

If spacetime is not flat, how can we reduce the metric at every point to the Minkowski 
form? Doesn’t that require a globally flat, Minkowski spacetime? How can one have the 
Minkowski metric without having Minkowski spacetime? 

The resolution of this paradox lies in the fact that the metric we introduced in a 
coordinate basis has at least three different roles, and only one of them is played by 

µˆ
� �

µˆ
µBν̂ . Both  gµνηˆν . First, the metric gives the dot product: A · B = gµν A

µBν = ηˆν A
ˆ

2 
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and ηˆν fulfill this role. Second, the metric components in a coordinate basis give the µˆ

connection through the well-known Christoffel formula involving the partial derivatives 
of the metric components. Obviously since ηˆν has zero derivatives, it cannot give the µˆ

connection. Third, the metric in a coordinate basis gives spacetime length and time 
through d�x = dxµ�eµ. Combining this with the dot product gives the line element, 
ds2 = d�x · d�x = gµν dxµdxν . This formula is true only in a coordinate basis! 

Usually when we speak of “metric” we mean the metric in a coordinate basis, which 
relates coordinate differentials to the line element: ds2 = gµν dxµdxν . An orthonormal 
basis, unless it is also a coordinate basis, does not have enough information to pro-
vide the line element (or the connection). To determine these, we must find a linear 
transformation from the orthonormal basis to a coordinate basis: 

µ�eµ = E ˆµ�µeˆ . (4) 

The coefficients E ˆ are called the tetrad components. Note  that  ̂µ µ labels the (tetrad) µ 

basis vector while µ labels the component in some coordinate system (which may have 
µno relation at all to the orthonormal basis). For a given orthonormal basis, E ˆµ may be 

˜µ µregarded as (the components of) a set of 4 one-form fields, one one-form E ˆ = E ˆµẽ
µ 

for each value of µ̂. Note that the tetrad components are not the components of a (1,1) 
tensor because of the mixture of two different bases. 

The tetrad may be inverted in the obvious way: 

�µ = Eµ
µ �eµ where Eµ

µ E ˆν = δµ
ν . (5)eˆ ˆ ˆ

µ 

The dual basis one-forms are related by the tetrad and its inverse as for any change of 
˜ˆ eµ µbasis: ˜ ˆeµ = Eµ eµ, ˜ˆ = E ˆµẽ

µ,µ 

The metric components in the coordinate basis follow from the tetrad components: 

µ ν gµν = �eµ · �eν = ηˆν E ˆµE ˆ (6)µˆ ν 

or g = ET ηE in matrix notation. Sometimes the tetrad is called the “square root of the 
metric.” Equation (6) is the key result allowing us to use orthonormal bases in curved 
spacetime. 

To discuss the curvature of a manifold we first need a connection relating nearby 
points in the manifold. If there exists any basis (orthonormal or not) such that 〈ẽλ , ∇eµ〉 ≡  
Γλ

µν ẽ
ν = 0 everywhere, then the manifold is indeed flat. However, the converse is not 

true: if the basis vectors rotate from one point to another even in a flat space (e.g. the 
polar coordinate basis in the plane) the connection will not vanish. Thus we will need 
to compute the connection and later look for additional quantities that give an invariant 
(basis-free) meaning to curvature. First we examine a more primitive object related to 
the gradient of vector fields, the commutator. 
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2.2 Commutators 

The difference between an orthonormal basis and a coordinate basis arises immediately 
when one considers the commutator of two vector fields, which is a vector that may 
symbolically be defined by 

[A, �� B ] ≡ ∇A∇B −∇B ∇A (7) 

where ∇A is the directional derivative (∇A = Aµ∂µ in a coordinate basis). Equation 
(7) introduces a new notation and new concept of a vector since the right-hand side 
consists solely of differential operators with no arrows! To interpret this, we rewrite the 
right-hand side in a coordinate basis using, e.g., ∇A∇B f = Aµ∂µ(Bν ∂ν f) (where f is 
any twice-differentiable scalar field): 

[ �A, �B ] =  

� 

Aµ ∂Bν 

∂xµ 
− Bµ ∂Aν 

∂xµ 

� 
∂ 

∂xν 
. (8) 

This is equivalent to a vector because {∂/∂xν } provide a coordinate basis for vectors 
in the formulation of differential geometry introduced by Cartan. Given our heuristic 
approach to vectors as objects with magnitude and direction, it seems strange to treat a 
partial derivative as a vector. However, Cartan showed that directional derivatives form 
a vector space isomorphic to the tangent space of a manifold. Following him, differential 
geometry experts replace our coordinate basis vectors �eµ by ∂/∂xµ. (MTW introduce this 
approach in Chapter 8. On p. 203, they write �eα = ∂P/∂xα where P refers to a point in 
the manifold, as a way to indicate the association of the tangent vector and directional 
derivative.) With this choice, vectors become differential operators (e.g. A = Aµ∂µ) and  
thus the commutator of two vector fields involves derivatives. However, we need not 
follow the Cartan notation. It is enough for us to define the commutator of two vectors 
by its components in a coordinate basis, 

A, �[ � B ] = (Aµ∂µB
ν − Bµ∂µA

ν )�eν in a coordinate basis, (9) 

where the partial derivative operators act only on Bν and Aν but not on �eν . 
Equation (9) implies 

[A, � � �� B ] =  ∇AB −∇B A + T µ AαBβ�eµ , (10)αβ 

where T µαβ ≡ Γµ − Γµ in a coordinate basis is a quantity called the torsion tensor. αβ βα 

The reader may easily show that the torsion tensor also follows from the commutator of 
covariant derivatives applied to any twice-differentiable scalar field, 

(∇α∇β −∇β ∇α)f = T µ f (11)αβ ∇µ

4 
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This equation shows that the torsion is a tensor even though the connection is not. The 
torsion vanishes by assumption in general relativity. This is a statement of physics, 
not mathematics. Other gravity theories allow for torsion to incorporate possible new 
physical effects beyond Einstein gravity. 

The basis vector fields �eµ(x) are vector fields, so let us examine their commutators. 
From equation (9) or (10), in an coordinate basis, the commutators vanish identically 
(even if the torsion does not vanish): 

[�eµ, �eν ] = 0 in a coordinate basis . (12) 

The vanishing of the commutators occurs because the coordinate basis vectors are dual 
eµ �xµ for a set of 4 scalar fields xµ. It  may  be  to an integrable basis of one-forms: ˜ = ∇

shown that this integrability condition (i.e. that the basis one-forms may be integrated 
to give functions) is equivalent to equation (12) (see Wald 1984, problem 5 of Chapter 
2). 

Now let us examine the commutator for an orthonormal basis. We use equation (9) 
by expressing the tetrad components in a coordinate basis using equation (5). The result 
is 

[�µ, �ν ] =  ∂ˆ�ν − ∂ˆeˆ
α
µˆeˆeˆ eˆ µeˆ ν�µ ≡ ωˆ
ˆν�α , (13) 

αwhere ∂ˆ ≡ Eµ
µ ∂µ. Equation (13) defines the commutator basis coefficients ωˆ

µˆµ ˆ ˆν 

(cf. MTW eq. 8.14). Using equations (5), (12), and (13), one may show 

α α α αωˆ
µˆ = E ˆ

α ∇ˆE
α −∇ν̂E

α
µ = Eµ Eν

ν̂ ∂µE
ˆ
ν − ∂ν E

ˆ
µ . (14)ˆν µ ν̂ ˆ µ̂

In general the commutator basis coefficients do not vanish. Despite the appearance of 
a second (coordinate) basis, the commutator basis coefficients are independent of any 
other basis besides the orthonormal one. The coordinate basis is introduced solely for 
the convenience of partial differentiation with respect to the coordinates. 

The commutator basis coefficients carry information about how the tetrad rotates as 
one moves to nearby points in the manifold. It is useful practice to derive them for the 
orthonormal basis {�er̂, �eˆ} in the Euclidean plane. θ 

2.3 Connection for an orthonormal basis 

The connection for the basis {�µ} is defined by eˆ

∂ˆeˆ
α 

ν�µ ≡ Γˆ
µˆeˆ . (15)ˆν�α 

(The placement of the lower subscripts on the connection agrees with MTW but is 
reversed compared with Wald and Carroll.) From the local flatness theorem (metric 
compatibility with covariant derivative) discussed in the first set of notes, 

∇ˆ µˆ = Eα 
ˆ∂αgˆν − Γβ̂

µ ̂ ˆαgˆ ˆ = 0  . (16)αgˆν α µˆ ˆαgβ̂ν̂ − Γβ̂
ν ̂ µβ 
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In an orthonormal basis, gˆν = ηˆν is constant so its derivatives vanish. We conclude µˆ µˆ

that, in an orthonormal basis, the connection is antisymmetric on its first two indices: 

β̂ β̂Γˆν ̂ ν ̂ α , Γˆν ̂ µβ ν ̂ µβ ν ̂µˆα = −Γˆµ ̂ µˆα ≡ gˆ ˆΓ ˆα = ηˆ ˆΓ ˆα . (17) 

In an orthonormal basis, the connection is not, in general, symmetric on its last two 
indices. (That is true only in a coordinate basis.) 

Another equation for the connection coefficients comes from combining equations (13) 
with equation (15): 

β̂ β̂ωˆµˆ = −Γˆµˆ αˆµ , ωˆµˆ α ̂ ω µˆ = ηα ̂ ωαˆν α ̂ ν + Γˆν ̂ α ̂ ν ≡ gˆβ ˆν ˆβ µˆ . (18)ˆν 

Combining these last two equations yields 

1

Γˆµˆ = (ωˆαˆ ν ̂ µ − ωˆµˆ
αˆν µ ̂ ν + ωˆαˆ α ̂ ν ) in an orthonormal basis. (19)

2 

The connection coefficients in an orthonormal basis are also called Ricci rotation coeffi-
cients (Wald) or the spin connection (Carroll). 

It is straightforward to generalize the results of this section to general bases that are 
neither orthonormal nor coordinate. The commutator basis coefficients are defined as in 
equation (12). Dropping the carets on the indices, the general connection is (MTW eq. 
8.24b) 

1 
Γαµν ≡ gαβ Γ

β
µν = (∂µgαν + ∂ν gαµ − ∂αgµν + ωµαν + ωναµ − ωαµν ) in any basis. (20)

2 

The results for coordinate bases (where ωαµν = 0) and for orthonormal bases (where 
∂αgµν = 0) follow as special cases. 
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1 Introduction 

These notes supplement Section 3 of the 8.962 notes “Introduction to Tensor Calculus for 
General Relativity.” Having worked through the formal treatment of vectors, one-forms 
and tensors, we are ready to evaluate two particularly useful and important examples, 
the number-flux four-vector and the stress-energy (or energy-momentum) tensor for a 
gas of particles. A good elementary discussion of these objects is given in chapter 4 of 
Schutz, A First Course in General Relativity; more advanced treatments are in chapters 
5 and 22 of MTW. Some of the mathematical material presented here is formalized in 
Section 4 of the 8.962 notes; to avoid repetition we will present the computations here in 
a locally flat frame (orthonormal basis with locally vanishing connection) frame rather 
than in a general basis. However, the final results are tensor equations valid in any basis. 

2 Number-Flux Four-Vector for a Gas of Particles 

We wish to describe the fluid properties of a gas of noninteracting particles of rest mass 
m starting from a microscopic description. In classical mechanics, we would describe 
the system by giving the spatial trajectories xa(t) where  a labels the particle and t is 
absolute time. (An underscore is used for 3-vectors; arrows are reserved for 4-vectors. 
While the position x isn’t a true tangent vector, we retain the common notation here.) a 

The number density and number flux density are 

n = 
�

δ3 = 
� dxa(x − xa(t)) , J  δ3(x − xa(t)) (1)

dta a 
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where the Dirac delta function has its usual meaning as a distribution: 

d3x f  (x) δ3(x − y) =  f (y) . (2) 

In order to get well-defined quantities when relativistic motions are allowed, we at-
tempt to combine the number and flux densities into a four-vector N . The obvious 
generalization of equation (1) is 

� = 
�

δ3 d�xa
N (x − xa(t)) . (3)

dta 

However, this is not suitable because time and space are explicitly distinguished: (t, x). 
A first step is to insert one more delta function, with an integral (over time) added to 
cancel it: 

N ′� = 
�

dt′ δ4(x − xa(t )) 
d�xa 

. (4)
dt′ a 

The four-dimensional Dirac delta function is to be understood as the product of the 
three-dimensional delta function with δ(t − ta(t′)) = δ(x0 − t′): 

0 1 2 3δ4(x − y) ≡ δ(x 0 − y )δ(x 1 − y )δ(x 2 − y )δ(x 3 − y ) . (5) 

Equation (4) looks promising except for the fact that our time coordinate t′ is frame-
dependent. The solution is to use a Lorentz-invariant time for each particle — the 
proper time along the particle’s worldline. We already know that particle trajectories in 
spacetime can be written xa(τ ). We can change the parametrization in equation (4) so 
as to obtain a Lorentz-invariant object, a four-vector: 

N� = 
�

dτ δ4(x − xa(τ )) 
d�xa 

. (6)
dτa 

2.1 Lorentz Invariance of the Dirac Delta Function 

Before accepting equation (6) as a four-vector, we should be careful to check that the 
delta function is really Lorentz-invariant. We can do this without requiring the existence 
of a globally inertial frame (something that doesn’t exist in the presence of gravity!) 
because the delta function picks out a single spacetime point and so we may regard 
spacetime integrals as being confined to a small neighborhood over which locally flat 
coordinates may be chosen with metric ηµν (the Minkowski metric). 

To prove that δ4(x − y) is Lorentz invariant, we note first that it is nonzero only if 
xµ = yµ. Now suppose we that perform a local Lorentz transformation, which maps dxµ 

µ µ x = | det Λ| d4x. Clearly, δ4(¯to dx¯ = Λ¯
ν dxν and d4x to d4 ̄ x − ȳ) is nonzero only if 
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¯ ¯xµ = yµ and hence only if xµ = yµ. From this it follows that δ4(x̄ − ȳ) =  Sδ4(x − y) for  
some constant S. We will show that S = 1.  

To do this, we write the Lorentz transformation in matrix notation as x = Λx and¯
we make use the definition of the Dirac delta function: 

f (¯ x δ4(¯ x) =  d4 x | det Λ| Sδ4(x − y)f (Λx) =  S | det Λ| f (¯y) =  d4 ¯ x − ȳ)f (¯ y) . (7) 

Lorentz transformations are the group of coordinate transformations which leave the 
Minkowski metric invariant, η = ΛT ηΛ. Now, det η = −1, from which it follows that 
| det Λ| = 1. From equation (7), S = 1 and the four-dimensional Dirac delta function is 
Lorentz-invariant (a Lorentz scalar). 

As an aside, δ4(x) is  not invariant under arbitrary coordinate transformations, be-
cause d4x isn’t invariant in general. (It is invariant only for those transformations with 
| det Λ| = 1). In part 2 of the notes on tensor calculus we show that | det g|1/2d4x is fully 
invariant, so we should multiply the Dirac delta function by | det g|−1/2 to make it in-
variant under general coordinate transformations. In the special case of an orthonormal 
basis, g = η so that | det g| = 1.  

3 Stress-Energy Tensor for a Gas of Particles 

The energy and momentum of one particle is characterized by a four-vector. For a gas 
of particles, or for fields (e.g. electromagnetism), we need a rank (2, 0) tensor which 
combines the energy density, momentum density (or energy flux — they’re the same) 
and momentum flux or stress. The stress-energy tensor is symmetric and is defined so 
that 

νT(˜ ν eµ, ẽ ) =  T µν is the flux of momentum pµ across a surface of constant x . (8) 

It follows (Schutz chapter 4) that in an orthonormal basis T 00 is the energy density, 
T 0i is the energy flux (energy crossing a unit area per unit time), and T ij is the stress 
(i-component momentum flux per unit area per unit time crossing the surface xj = 
constant. The stress-energy tensor is especially important in general relativity because 
it is the source of gravity. It is important to become familiar with it. 

The components of the number-flux four-vector N ν = N (˜� eν ) give the flux of particle 
number crossing a surface of constant xν (with normal one-form ẽν ). From this, we can 
obtain the stress-energy tensor following equation (6). Going from number (a scalar) to 

p = mV = md�momentum (a four-vector) flux is simple: multiply by � � x/dτ . Thus,  

dτ δ4(x − xa(τ ))mVa ⊗ �T = 
�

� Va . (9) 
a 
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4 Uniform Gas of Non-Interacting Particles 

The results of equations (6) and (9) include a discrete sum over particles. To go to the 
continuum, or fluid, limit, we suppose that the particles are so numerous that the sum 
of delta functions may be replaced by its average over a small spatial volume. To get 
the number density measured in a locally flat (orthonormal) frame we must undo some 
of the steps leading to equation (6). Using the fact that dt/dτ = γ, comparing equations 
(3) and (6) shows that we need to evaluate 

dτ δ4(x − xa(τ)) = 
�

γa 
−1 δ3(x − xa(t)) . (10) 

a a 

Now, aside from the factor γ−1, integrating equation (10) over a small volume ∆V anda 

dividing by ∆V would yield the local number density. However, we must also keep 
track of the velocity distribution of the particles. Let us suppose that the velocities are 
randomly sampled from a (possibly spatially or temporally varying) three-dimensional 
velocity distribution f(x, v, t) normalized so that, in an orthonormal frame, 

d3v f(x, v, t) = 1  . (11) 

To make the velocity distribution Lorentz-invariant takes a little more work which we 
will not present here; the interested reader may see problem 5.34 of the Problem Book 
in Relativity and Gravitation by Lightman, Press, Price, and Teukolsky. 

In an orthonormal frame with flat spacetime coordinates, the result becomes 

dτ δ4(x − xa(τ)) = n(x) d3v γ−1 f(x, v) . (12) 
a 

Using �V = γ(1, v) and substituting into equation (3), we obtain the number-flux four-
vector �

N = (n, J) , J  = n(x) d3v f(x, v)v . (13) 

Although this result has been evaluated in a particular Lorentz frame, once we have it 
we could transform to any other frame or indeed to any basis, including non-orthonormal 
bases. 

The stress-energy tensor follows in a similar way from equations (9) and (12). In a 
local Lorentz frame, 

V µV ν 

T µν = mn(x) d3v f(x, v) 
V 0 

. (14) 

If there exists a frame in which the velocity distribution is isotropic (independent 
of the direction of the three-velocity), the components of the stress-energy tensor are 
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particularly simple in that frame: 

T 00 ≡ ρ = d3v f(x, v) γmn(x) , T  0i = T i0 = 0  , 

T ij 1 2 = pδij where p ≡ d3v f(x, v)γmn(x)v . (15)
3 

Here ρ is the energy density (γm is the energy of a particle) and p is the pressure. 
Equation (15) isn’t Lorentz-invariant. However, we can get it into the form of a 

spacetime tensor (an invariant) by using the tensor basis plus the spatial part of the 
metric: 

T = ρ�e0 ⊗ �e0 + pηij�ei ⊗ �ej . (16) 

We can make further progress by noting that the pressure term may be rewritten after 
defining the projection tensor 

h = g −1 + �e0 ⊗ �e0 (17) 

since gµν = ηµν in an orthonormal basis and therefore h00 = η00 +1 = 0, h0i = hi0 = 0  and  
hij = δij . The tensor h projects any one-form into a vector orthogonal to �e0. Combining 
results, we get 

e0 ⊗ �e0 + p g −1T = (ρ + p)� . (18) 

Equation (18) is in the form of a tensor, but it picks out a preferred coordinate 
system through the basis vector �e0. To eliminate this remnant of our nonrelativistic 
starting point, we note that, for any four-velocity �U , there exists an orthonormal frame 

U = �e0. Thus, if we identify �(the instantaneous local inertial rest frame) in which � U as 
the fluid velocity, we obtain our final result, the stress-energy tensor of a perfect gas: 

U ⊗ �T = (ρ + p) � U + p g −1 or T µν = (ρ + p)UµUν + p gµν (19) 

If the sleight-of-hand of converting �e0 to �U seems unconvincing (and it is worth checking!), 
the reader may apply an explicit Lorentz boost to the tensor of equation (18) with three-
velocity U i/U0 to obtain equation (19). We must be careful to remember that ρ and p 
are scalars (the proper energy density and pressure in the fluid rest frame) and �U is the 
fluid velocity four-vector. 

From this result, one may be tempted to rewrite the number-flux four-vector as 
N = nU where �� � U is the same fluid 4-velocity that appears in the stress-energy tensor. 
This is valid for a perfect gas, whose velocity distribution is isotropic in a particular 
frame, where n would be the proper number density. However, in general T 0i is nonzero 
in the frame in which N i = 0, because the energy of particles is proportional to γ but 
the number is not. Noting that the kinetic energy of a particle is (γ − 1)m, we could 
have a net flux of kinetic energy (heat) even if there is no net flux of momentum. In 
other words, energy may be conducted by heat as well as by advection of rest mass. This 
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leads to a fluid velocity in the stress-energy tensor which differs from the velocity in the 
number-flux 4-vector. 

Besides heat conduction, a general fluid has a spatial stress tensor differing from pδij 

due to shear stress provided by, for example, shear viscosity. 
An example where these concepts and techniques find use is in the analysis of fluctu-

ations in the cosmic microwave background radiation. When the radiation (photon) field 
begins to decouple from the baryonic matter (hydrogen-helium plasma) about 300,000 
years after the big bang, anisotropies in the photon momentum distribution develop 
which lead to heat conduction and shear stress. The stress-energy tensor of the ra-
diation field must be computed by integrating over the full non-spherical momentum 
distribution of the photons. Relativistic kinetic theory is one of the ingredients needed 
in a theoretical calculation of cosmic microwave background anisotropies (Bertschinger 
& Ma 1995, Astrophys. J. 455, 7).  
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3 Parallel transport and geodesics 

3.1 Differentiation along a curve 

As a prelude to parallel transport we consider another form of differentiation: differen-
tiation along a curve. A curve is a parametrized path through spacetime: x(λ), where 
λ is a parameter that varies smoothly and monotonically along the path. The curve 
has a tangent vector �V ≡ d�x/dλ = (dxµ/dλ) �eµ. Here one must be careful about the 
interpretation: xµ are not the components of a vector; they are simply 4 scalar fields. 
However, �V = d�x/dλ is a vector (i.e. a tangent vector in the manifold). 

V a unit vector (provided �If we wish, we could make � V is non-null) by setting dλ = 
|d�x · d�x |1/2 to measure path length along the curve. However, we will impose no such 
restriction in general. 
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Now, suppose that we have a scalar field fX defined along the curve. We define the 
derivative along the curve by a simple extension of equations (36) and (38) of the first 
set of lecture notes: 

df ∇f, �≡ ∇V f ≡ 〈 ˜ V 〉 = V µ∂µf ,  V = 
d�x

. (21)
dλ dλ 

We have introduced the symbol ∇V for the directional derivative, i.e. the covariant 
derivative along �V , the tangent vector to the curve x(λ). This is a natural generalization 
of ∇µ, the covariant derivative along the basis vector �eµ. 

For the derivative of a scalar field, ∇V involves just the partial derivatives ∂µ. Sup-

pose, however, that we differentiate a vector field �AX along the curve. Now the compo-
nents of the gradient ∇µA

ν are not simply the partial derivatives but also involve the 
connection. The same is true when we project the gradient onto the tangent vector �V 
along a curve: 

A DAµ 

≡ �eµ ≡ ∇V A ≡ 〈 ˜ A, �
d �

� ∇ � V 〉 = V ν (∇ν A
µ) �eµ = 

dAµ 

+ Γµ
κν A

κV ν �eµ . (22)
dλ dλ dλ 



We retain the symbol ∇V to indicate the covariant derivative along 

�

V but we have 
introduced the new notation D/dλ = V µ∇µ �= d/dλ = V µ∂µ. 

3.2 Parallel transport 

The derivative of a vector along a curve leads us to an important concept called parallel 
transport. Suppose that we have a curve x(λ) with tangent � A(0) defined V and a vector �

at one point on the curve (call it λ = 0). We define a procedure called parallel transport 
by defining a vector �A(λ) along each point of the curve in such a way that DAµ/dλ = 0:  

∇V A = 0  ⇔ parallel transport of � V . (23) � A along �

Over a small distance interval this procedure is equivalent to transporting the vector �A 
along the curve in such a way that the vector remains parallel to itself with constant 
length: A(λ + ∆λ) =  A(λ) +  O(∆λ)2 . In a locally flat coordinate system, with the 
connection vanishing at x(λ), the components of the vector do not change as the vector 
is transported along the curve. If the space were globally flat and we used rectilinear 
coordinates (with vanishing connection everywhere), the components would not change 
at all no matter how the vector is transported. This is not the case in a curved space or 
in a flat space with curvilinear coordinates because in these cases the connection does 
not vanish everywhere. 
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3.3 Geodesics 

Parallel transport can be used to define a special class of curves called geodesics. A  
geodesic curve is one that parallel-transports its own tangent vector �V = d�x/dλ, i.e., 

� V kept parallel to itself a curve that satisfies ∇V V = 0. In other words, not only is �

(with constant magnitude) along the curve, but locally the curve continues to point 
in the same direction all along the path. A geodesic is the natural extension of the 
definition of a “straight line” to a curved manifold. Using equations (22) and (23), we 
get a second-order differential equation for the coordinates of a geodesic curve: 

DV µ dV µ dxµ 

= + Γµ
αβ V αV β = 0 for a geodesic , V  µ ≡ . (24)

dλ dλ dλ 
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Indeed, in locally flat coordinates (such that the connection vanishes at a point), this 
is the equation of a straight line. However, in a curved space the connection cannot be 
made to vanish everywhere. A well-known example of a geodesic in a curved space is a 
great circle on a sphere. 

There are several technical points worth noting about geodesic curves. The first is 
that � � V , � V /dλ  = 0 (eq. 24) and V · V = g(� V ) is constant along a geodesic because d�

∇V g = 0 (metric compatibility with gradient). Therefore, a geodesic may be classified 
V V <  0), spacelike (� V >  0) or null by its tangent vector as being either timelike (� · � V · �

(� · �V V = 0). The second point is that a nonlinear transformation of the parameter λ will 
invalidate equation (24). In other words, if xµ(λ) solves equation (24), yµ(λ) ≡ xµ(ξ(λ)) 
will not solve it unless ξ = aλ + b for some constants a and b. Only a special class of 
parameters, called affine parameters, can parametrize geodesic curves. 

The affine parameter has a special interpretation for a non-null geodesic. We deduce 
this relation from the constancy along the geodesic of � �V ·V = (d�x·d�x)/(dλ2) ≡ a, implying 
ds = adλ and therefore s = aλ + b where s is the path length (ds2 = gµν dxµdxν ). For 

V · � = 0), all affine parameters are linear functions of path length a non-null geodesic (� V �
(or proper time, if the geodesic is timelike). The linear scaling of path length amounts 
simply to the freedom to change units of length and to choose any point as λ = 0.  
Note that originally we imposed no constraints on the parameterization. However, the 
solutions of the geodesic equation automatically have λ being an affine parameter. There 
is no fundamental reason to use an affine parameter; one could always take a solution 
of the geodesic equation and reparameterize it or eliminate the parameter altogether by 
replacing it with one of the coordinates along the geodesic. For example, for a timelike 
trajectory, xi(t) is a perfectly valid description and is equivalent to xµ(λ). But the spatial 
components as functions of t = x0 clearly do not satisfy the geodesic equation for xµ(λ). 

Another interesting point is that the total path length is stationary for a geodesic: � B � B 
δ ds = δ 

A A 

dxµ dxν 

gµν 
dλ dλ 

1/2 

dλ = 0 (25) 
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if λ is an affine parameter. The δ refers to a variation of the integral arising from 
a variation of the curve, xµ(λ) → xµ(λ) +  δxµ(λ), with fixed endpoints. The metric 
components are considered here to be functions of the coordinates. The variational 
principle is discussed in section 2 of the 8.962 notes “Hamiltonian Dynamics of Particle 
Motion,” where it is shown that stationary path length implies the geodesic equation (24) 
if the parameterization is affine. Equation (25) is invariant under reparameterization, so 
its stationary solutions are a broader class of functions than the solutions of equation 
(24). In general, the tangent vector of the stationary solutions are not normalized: 
|V · � = constant, implying that λ is not affine. It is easy to show that any � V |1/2 = Q(λ) �
stationary solution may be reparameterized, λ → τ through dτ /dλ = Q(λ), and that 
the resulting curve xµ(λ(τ )) obeys the geodesic equation with affine parameter τ . This  

V by �transformation replaces the unnormalized tangent vector � V /Q(λ). For an affine 
parameterization, the tangent vector must always have constant length. 

Equation (25) is a curved space generalization of the statement that a straight line 
is the shortest path between two points in flat space. 

3.4 Integrals of motion and Killing vectors 

Equation (24) is a set of four second-order nonlinear ordinary differential equations for 
the coordinates of a geodesic curve. One may ask whether the order of this system 
can be reduced by finding integrals of the motion. An integral, also called a conserved 
quantity, is a function of xµ and V µ = dxµ/dλ that is constant along any geodesic. At 
least one integral always exists: � V = gµν V µV ν . (For an affine parameterization, � · �V · � V V 
is constant along the curve.) Are there others? Sometimes. One may show that equation 
(24) may be rewritten as an equation of motion for Vµ ≡ gµν V ν , yielding 

dVµ 1 
= (∂µgαβ )V αV β . (26)

dλ 2 

Consequently, if all of the metric components are independent of some particular coor-
dinate xµ, the corresponding component of the tangent one-form is constant along the 
geodesic. This result is very useful in reducing the amount of integration needed to 
construct geodesics for metrics with high symmetry. However, the condition ∂µgαβ = 0  
is coordinate-dependent. There is an equivalent coordinate-free test for integrals, based 
on the existence of special vector fields K call Killing vectors. Killing vectors are, by 
definition, solutions of the differential equation 

∇µKν + ∇ν Kµ = 0  . (27) 

(The Killing vector components are, of course, Kµ = gµν Kν .) The Killing equation (27) 
usually has no solutions, but for highly symmetric spacetime manifolds there may be 
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one or more solutions. It is a nice exercise to show that each Killing vector leads to the 
integral of motion 

V ,  �〈 ̃ K 〉 = KµVµ = constant along a geodesic . (28) 

Note that if one of the basis vectors (for some basis) satisfies the Killing equation, then 
the corresponding component of the tangent one-form is an integral of motion. The test 
for integrals implied by equation (26) is a special case of the Killing vector test when the 
Killing vector is simply a coordinate basis vector. 

The discussion here has focused on geodesics as curves. The notes “Hamiltonian 
Dynamics of Particle Motion” interprets them as worldlines for particles because, as 
we will see, a fundamental postulate of general relativity is that, in the absence of non-
gravitational forces, particles move along geodesics. Given this fact, we are free to choose 
units of the affine parameter λ so that dxµ/dλ is the 4-momentum P µ, normalized by 
P · P = −m2 for a particle of mass m (instead of dxµ/dλ = V µ, V · V = −1). Thus, 
the tangent vector, denoted �V above, is equivalent to the particle 4-momentum vector. 
The affine parameter λ then measures proper time divided by particle mass. Although 
one might fear this makes no sense for a massless particle, in fact it is the only way to 
affinely parameterize null geodesics because the proper time change dτ vanishes along a 
null geodesic so dxµ/dτ is undefined. For a massless particle, one takes the limit m → 0 
starting from the solution for a massive particle, with the result that dλ = dτ /m is finite 
as m → 0. 
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1 Introduction 

These notes present a treatment of geodesic motion in general relativity based on Hamil-
ton’s principle, illustrating a beautiful mathematical point of tangency between the 
worlds of general relativity and classical mechanics. 

2 Geodesic Motion 

Our starting point is the standard variational principle for geodesics as extremal paths. 
Adopting the terminology of classical mechanics, we make the action stationary under 
small variations of the parameterized spacetime path xµ(τ ) → xµ(τ ) + δxµ(τ ) subject to 
fixed values at the endpoints. The action we use is the path length: 

� � 
dxµ dxν �1/2 

S1[x(τ )] = gµν (x) dτ ≡ L1(x, dx/dτ ) dτ . (1)
dτ dτ 

Variation of the trajectory leads to the usual Euler-Lagrange equations 
� � 

d ∂L ∂L 
dτ ∂(dxµ/dτ ) 

− 
∂xµ 

= 0 , (2) 

from which one obtains the equation of motion 

d2xµ 

dτ 2 
+ Γµ 

αβ 

dxα 

dτ 
dxβ 

dτ 
− 

1 
L1 

dL1 

dτ 
dxµ 

dτ 
= 0 . (3) 

The last term arises because the action of equation (1) is invariant under arbitrary

reparameterization. If the path length is taken to be proportional to path length, dτ ∝


1
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ds = (gµν dx
µdxν )1/2, then L1 = ds/dτ = constant and the last term vanishes, giving the 

standard geodesic equation 

d2xµ dxα dxβ 

+ Γµ
αβ = 0 . (4)

dτ 2 dτ dτ 

It may be shown that any solution of equation (3) can be reparameterized to give a 
solution of equation (4). Moreover, at the level of equation (4), we needn’t worry about 
whether τ is an affine parameter; we will see below that for any solution of equation 
(4), τ is automatically proportional to path length. The full derivation of the geodesic 
equation and discussion of parameterization of geodesics can be found in most general 
relativity texts (e.g. Misner et al 1973, ¶13.4). 

The Lagrangian of equation (1) is not unique. Any Lagrangian that yields the same 
equations of motion is equally valid. For example, equation (4) also follows from 

1 dxµ dxν 

S2[x(τ )] = gµν (x) dτ ≡ L2(x, dx/dτ ) dτ . (5)
2 dτ dτ 

Unlike equation (1), which is extremal for geodesic curves regardless of their parame
terization, equation (5) is extremal for geodesics only when τ is an affine parameter, 
dτ /ds = constant. In other words, τ measures path length up to a linear rescaling. 

p
The freedom to linearly rescale the affine parameter allows us to define τ so that 

µ = dxµ/dτ gives the 4-momentum (vector) of the particle, even for massless particles 
for which the proper path length vanishes. One may easily check that dτ = ds/m where 
m is the mass. 

With the form of the action given by equation (5), the canonical momentum conjugate 
to xµ equals the momentum one-form of the particle: 

∂L2 dxν 

= gµν . (6)pµ ≡ 
∂(dxµ/dτ ) dτ 

The coincidence of the conjugate momentum with the momentum one-form encourages 
us to consider the Hamiltonian approach as an alternative to the geodesic equation. 
In the Hamiltonian approach, coordinates and conjugate momenta are treated on an 
equal footing and are varied independently during the extremization of the action. The 
Hamiltonian is given by a Legendre transformation of the Lagrangian, 

dxµ 

H(p, x, τ ) ≡ pµ − L(x, dx/dτ, τ ) (7)
dτ 

where the coordinate velocity dxµ/dτ must be expressed in terms of the coordinates and 
momenta. For Lagrangian L2 this is simple, with the result 

1 
H2(pµ, x ν , τ ) = gµν (x)pµpν . (8)

2 

2 



Notice the consistency of the spacetime tensor component notation in equations (6)-
(8). The rules for placement of upper and lower indices automatically imply that the 
conjugate momentum must be a one-form and that the Hamiltonian is a scalar. 

The reader will notice that the Hamiltonian H2 exactly equals the Lagrangian L2 (eq. 
5) when evaluated at a given point in phase space (p, x). However, in its meaning and use 
the Hamiltonian is very different from the Lagrangian. In the Hamiltonian approach, we 
treat the position and conjugate momentum on an equal footing. By requiring the action 
to be stationary under independent variations δxµ(τ ) and δpν (τ ), we obtain Hamilton’s 
equations in four-dimensional covariant tensor form: 

dxµ ∂H2 dpµ ∂H2 
= = . (9)

dτ ∂pµ 
, 

dτ 
− 
∂xµ 

Evaluating them using equation (8) yields the canonical equations of motion, 

κα βλ dxµ 

= gµν pν , 
dpµ 

=
1 ∂gκλ 

pκpλ =
1 ∂gαβ 

g g pκpλ = g βλΓκ
µβ pκpλ . (10)

dτ dτ 
− 
2 ∂xµ 2 ∂xµ 

These equations may be combined to give equation (4). 
The canonical equations (9) imply dH/dτ = ∂H/∂τ . Because H2 is independent of 

the parameter τ , it is therefore conserved along the trajectory. Indeed, its value follows 
simply from the particle mass: 

1µν 2 g pµpν = −m → H2(p, x) = − m 2 . (11)
2 

It follows that solutions of Hamilton’s equations (10) satisfy ds2 = gµν dx
µdxν ∝ dτ 2 , 

hence τ must be an affine parameter. 

L
L

At this point, it is worth explaining why we did not use the original, parameterization-
invariant Largrangian of equation (1) as the basis of a Hamiltonian treatment. Because 
1 is homogeneous of first degree in the coordinate velocity, (dxµ/dτ )∂L1/∂(dx

µ/dτ ) = 
1 and the Hamiltonian vanishes identically. This is a consequence of the parameteriza

tion invariance of equation (1). The parameterization-invariance was an extra symmetry 
not needed for the dynamics. With a non-zero Hamiltonian, the dynamics itself (through 
the conserved Hamiltonian) showed that the appropriate parameter is path length. 

3 Separating Time and Space 

The Hamiltonian formalism developed above is elegant and manifestly covariant, i.e. the 
results are tensor equations and therefore hold for any coordinates and any reference 
frame. However, the covariant formulation is inconvenient for practical use. For one 
thing, every test particle has its own affine parameter; there is no global invariant clock 
by which to synchronize a system of particles. Sometimes this is regarded, incorrectly, 
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as a shortcoming of relativity. In fact, relativity allows us to parameterize the spatial 
position of any number of particles using the coordinate time t = x0 . (After all, time was 
invented precisely to label spacetime events with a timelike coordinate.) An observer 
would report the results of measurement of any number of particle trajectories as xi(t); 
there is no ambiguity nor any loss of generality as long as we specify the metric. 

Our goal is to obtain a Hamiltonian on the six-dimensional phase space {pi, xj } which 
yields the form of Hamilton’s equations familiar from undergraduate mechanics: 

dxi ∂H dpi ∂H 
= = . (12)

dt ∂pi 
, 

dt 
− 
∂xi 

However, unlike undergraduate mechanics, we require that these equations of motion be 
fully correct in general relativity. Their solutions must be consistent with solutions of 
equation (10). We might hope simply to eliminate τ as a parameter, replacing it with t, 
while retaining the spatial components of pµ and xν for our phase space variables. But 
what is the Hamiltonian, and can we ensure relativistic covariance? 

The answer comes from a third expression for the action, regarded now as a functional 
of the 6-dimensional phase space trajectory {pi(t), xj (t)}: 

dxi 

S3[pi(t), x
j (t)] = 2S2 = pµdx

µ = p0 + pi dt . (13)
dt 

Note that S3 is manifestly a spacetime scalar, but that we have separated time and space 
components of the momentum one-form. Our desire to have a global time parameter has 
forced this space-time split. 

Equation (13) is highly suggestive if we recall the Legendre transformation H = 
pidx

i/dt − L (written here for three spatial coordinates parameterized by t rather than 
four coordinates parameterized by τ ). Inverting the transformation, we conclude that 
the factor in parentheses in equation (13) must be the Lagrangian so that S3 = L dt, 
and therefore the Hamiltonian is H = −p0. 

This result is appealing: the Hamiltonian naturally works out to be (minus) the time 
component of the momentum one-form. It is suggestive that, in locally flat coordinates, 
−p0 = p0 is the energy. However, despite appearances, the Hamiltonian is not in general 
the proper energy. Our formalism works for arbitrary spacetime coordinates and is not 
restricted to flat coordinates or inertial frames. We only require that t be time-like so 
that it can parameterize timelike spacetime trajectories. 

Equation (13) with p0 = −H is not useful until we write the Hamiltonian in terms 
of the phase space coordinates and time: H = H(pi, xj , t). We could do this by writing 
L = pµdxµ/dt in terms of xi and dxi/dt, but it is simpler to write p0 directly in terms of 
(pi, xj , t). How? 

A hint is given by the fact that in abandoning the affine parameterization by τ , we 
don’t obtain the normalization of the four-momentum (eq. 11) automatically. Therefore 
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we must add it as a constraint to the action of equation (13). We wish to use the 
1energy integral H2 = 
2 m

2 to reduce the order of the system (eqs. 10). Solving this −
relation for −p0 in terms of the other variables yields the Hamiltonian on our reduced 
(6-dimensional) phase space. 

For this procedure to be valid, it has to be shown that extremizing S3 with respect 
to all possible phase space trajectories {pi(t), xi(t)} is equivalent to extremizing S2 with 
respect to {xi(τ), t(τ)} for τ being an affine parameter. Equivalently, we must show 
that solutions of equations (9) are solutions of equations (9) and vice versa. A proof is 
presented in Section 4.2 below. 

Before presenting the technicalities, we state the key result of these notes, the Hamil
tonian on our six-dimensional phase space {pi, xj }, obtained by solving H2(pi, p0, x

j , t) = 
1 m2 for p0 = −H:
2− 

0i g pi
H(pi, x

j , t) = −p0 = 
g pi 

+
(gij pipj + m2)

+ 

� 
0i

�2 
�1/2 

. (14) 
g00 −g00 g00 

Note that here, as in the covariant case, the conjugate momenta are given by the (here, 
spatial) components of the momentum one-form. The inverse metric components gµν 

are, in general, functions of xi and t. Equation (14) is exact; no approximation to the 
metric has been made. We only require that t be timelike, i.e. g00 < 0, in order to 
parameterize timelike geodesics. 

The next section presents mathematical material that is optional for 8.962. However, 
it is recommended for those students prepared to explore differential geometry somewhat 
further. The application to Hamiltonian mechanics should help the student to better 
understand the mathematics of general relativity. 

4 Hamiltonian mechanics and symplectic manifolds 

The proof that the 8-dimensional phase space may be reduced to the six spatial dimen
sions while retaining a Hamiltonian description becomes straightforward in the context 
of symplectic differential geometry (see Section 4.2 below). Classical Hamiltonian me
chanics is naturally expressed using differential forms and exterior calculus (Arnold 1989; 
see also Exercise 4.11 of Misner et al 1973). We present an elementary summary here, 
both to provide background for the proof to follow and to elucidate differential geom
etry through its use in another context. In fact, we are not ignoring general relativity 
but extending it; the Hamiltonian mechanics we develop is fully consistent with general 
relativity. 

The material presented in this section is mathematically more advanced than Schutz 
(1985). Treatments may be found in Misner et al (1973, Chapter 4), Schutz (1980), 
Arnold (1989), and, briefly, in Appendix B of Wald (1984) and Carroll (1997). 
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We begin with the configuration space of a mechanical system of n degrees of freedom 
characterized by the generalized coordinates qi (which may, for example, be the four 
spacetime coordinates of a single particle’s worldline, or the three spatial coordinates 
only). The configuration space is a manifold V whose tangent space T Vq at each point 
q in the manifold is given by the set of all generalized velocity vectors d�q/dt at q. Note 
that t is any parameter for a curve q(t); we are not restricting ourselves to Newtonian 
mechanics with its absolute time. 

The union of all tangent spaces at all points of the manifold is called the tangent 
bundle, denoted T V . The set T V has the structure of a manifold of dimension 2n. There 
exists a differentiable function on T V , the Lagrangian, whose partial derivatives with 
respect to the velocity vector components defines the components of a one-form, the 
canonical momentum: 

∂L 
� . (15)p ≡ 

∂(d�q/dt) 

To see that this is a one-form, we note that it is a linear function of a tangent vector: 
p�(d�q) = pidqi is a scalar. At each point in the configuration space manifold, the set of 
all �p defines the cotangent space T ∗Vq. (The name cotangent is used to distinguish the 
dual space of one-forms from the space of vectors.) 

The union of all cotangent spaces at all points of the manifold is called the cotangent 
bundle, T ∗V . Like the tangent bundle, the cotangent bundle is a manifold of dimension 
2n. A point of T ∗V is specified by the coordinates (pi, qj ). The cotangent bundle is well 
known: it is phase space. 

Having set up the phase space, we now discard the original configuration space V , 
its tangent vector space T Vq and the tangent bundle T V . To emphasize that the phase 
space is a manifold of dimension 2n, we will denote it M 2n rather than by T ∗V . 

Being a manifold, the phase space has a tangent space of vectors. Each parameterized 
curve γ(t) in phase space has, at each point in the manifold, a tangent vector ξ� whose 
coordinate components are the 2n numbers (dpi/dt, dqj /dt). The phase space also has 
one-forms, or linear functions of vectors. For example, the gradient of a scalar field 
H(pi, qj ) in phase space is a one-form. However, it will prove convenient to denote the 
gradient of a scalar using a new notation, the exterior derivative: dH ≡ �H. In the 
coordinate basis, dH has components (∂H/∂pi, ∂H/∂qj ). In this section, forms will be 
denoted with boldface symbols. 

One must be careful not to read too much into the positions of indices: ∂H/∂pi and 
∂H/∂qi are both components of a one-form in phase space. They may also happen to be 
spacetime vectors and one-forms, respectively, but we are now working in phase space. 
In phase space, pi and qj have equal footing as coordinates. We will retain the placement 
of indices (i, j go from 1 to n) simply as a reminder that our momenta and position 
displacements may be derived from spacetime one-forms and vectors. This way we can 
arrive at physical equations of Hamiltonian dynamics that are tensor equations (hence 
valid for any coordinate system) in both spacetime and phase space. 
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As in spacetime, we define the basis one-forms by the gradient (here, the exterior 
derivative) of the coordinate fields: {dpi, dqj }. We can combine one-forms and vectors 
to produce higher-rank tensors through the operations of gradient and tensor product. 
It proves especially useful to define the antisymmetric tensor product, or wedge product. 
The wedge product of two one-forms α and β is 

α ∧ β ≡ α ⊗ β − β ⊗ α . (16) 

The wedge product of two one-forms gives a 2-form, an antisymmetric (0, 2) tensor. The 
wedge product (tensor product with antisymmetrization) can be extended to produce 
p-forms with p less than or equal to the dimension of the manifold. A p-form is a fully 
antisymmetric, linear function of p vectors. Forms will be denoted by Greek letters. 

Given a p-form α, we can obtain a (p + 1)-form by exterior differentiation, dα. 
Exterior differentiation consists of the gradient followed by antisymmetrization on all 
arguments. For p-form ωp and q-form ωq , the exterior derivative obeys the relation 

d(ωp ∧ ωq ) = dωp ∧ ωq + (−1)pωp ∧ dωq . (17) 

(Here p and q are integers having nothing to do with phase space coordinates.) Note 
that ddω = 0 for any form ω. Any form ω for which dω = 0 is called a closed form. 

Forms are most widely used to provide a definition of integration free from coordinates 
and the metric. Consider, for example, the line integral giving the work done by a force, 
F d�� x. If the force were a one-form θ instead of a vector, and if ξ� were the tangent · 

vector to a path γ (ξ� = d�x/dt where t parameterizes the path), we could write the work 
as θ(ξ� ) or 

γ θ for short. No coordinates are involved until we choose a coordinate 
γ 

basis, and no metric is required because we integrate a one-form instead of a vector with 
a dot product. 

Similarly, a 2-form may be integrated over an orientable 2-dimensional surface. Inte
gration is built up by adding together the results from many small patches of the surface. 
An infinitesimal patch may be taken to be the parallelogram defined by two tangent 

η. The integral of the 2-form ω over the surface σ is 
σ ω(� η) or ω forvectors, ξ� and � ξ, �

σ 
short. 

The spacetime manifold received additional structure with the introduction of the 
metric, a (0, 2) tensor used to give the magnitude of a vector (and to distinguish timelike, 
spacelike and null vectors). A manifold with a positive-definite symmetric (0, 2) tensor 
defining magnitude is called a Riemannian manifold. When the eigenvalues of the metric 
have mixed signs (as in the case of spacetime), the manifold is called pseudo-Riemannian. 

Phase space has no metric; there is no concept of distance between points of phase 
space. It has a special antisymmetric (0, 2) tensor instead, in other words a 2-form. 
We will call this fundamental form the symplectic form ω; Arnold (1989) gives it the 
cumbersome name �the form giving the symplectic structure.� In terms of the coordinate 
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basis one-forms dpi and dqj , the symplectic form is 

ω ≡ dpi ∧ dq i = dp1 ∧ dq 1 + dpn ∧ dq n . (18)+ · · ·

Note the implied sum on paired upper and lower indices. 
One of the uses of the metric is to map vectors to one-forms; the symplectic form 

fulfills the same role in phase space. Filling one slot of ω with a vector yields a one-
form, ω(·, ξ� ). It is easy to show that this mapping is invertible by representing ω in the 
coordinate basis and showing that it is an orthogonal matrix. Therefore, every one-form 
has a corresponding vector. 

There is a particular one-form of special interest in phase space, dH where H(p, q, t) 
is the Hamiltonian function. The corresponding vector is the phase space velocity, i.e. 
the tangent to the phase space trajectory: 

dpi
ω(·, ξ� ) = dpi(·)dq i(ξ� ) − dq i(·)dpi(ξ� ) = 

dqi 
dpi − dq i 

dt dt 
∂H ∂H 

= dH(·) = dpi + dq i . (19)
∂pi ∂qi 

Equating terms, we see that Hamilton’s equations are given concisely by ω(ξ� ) = dH. 
Besides giving the antisymmetric relationship between coordinates and momenta 

apparent in Hamilton’s equations, the symplectic form allows us to define canonical 
transformations of the coordinates and momenta. The phase space components (pi, qj ) 

¯
transform with a 2n × 2n matrix Λ to (pī, q j ). A canonical transformation is one that 
leaves the symplectic form invariant. In matrix notation, this implies ΛT ωΛ = ω. Thus, 
canonical invariance of a Hamiltonian system is analogous to Lorentz invariance in special 
relativity, where the transformations obey ΛT ηΛ = η where η is the Minkowski metric. 

The standard results of Hamiltonian mechanics are elegantly derived and expressed 
using the language of symplectic differential geometry. For example, Arnold (1989, ¶38 
and ¶44D) shows that transformation of phase space induced by Hamiltonian evolution is 
canonical. This implies that the phase space area (the integral of ω, a 2-form) is preserved 
by Hamiltonian evolution. It is easy to show that not only ω but also ω2 ≡ ω ∧ ω 
is a canonical invariant, as is ωp ≡ ω ∧ · · · ∧ ω with p factors of ω, for all p ≤ n. 
(Antisymmetry limits the rank of a p-form to p ≤ n.) Thus, phase space volume is 
preserved by Hamiltonian evolution (Liouville theorem). 

4.1 Extended phase space 

Inspired by relativity, we can absorb the time parameter into the phase space to obtain 
a manifold of 2n + 1 dimensions, denoted M2n+1 and called extended phase space. As 
we will see, this extension allows a concise derivation of the extremal form of the action 
under Hamiltonian motion. 
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Before proceeding, we should emphasize that the results of the previous section are 
not limited to nonrelativistic systems. Indeed, they apply to the phase space (pµ, xν) 
of a single particle in general relativity where the role of time is played by the affine 
parameter τ . The relativistic Hamilton’s equations (9) follow immediately from equation 
(19). Nonetheless, if we wish to parameterize trajectories by coordinate time (as we must 
for a system of more than one particle), we must show the consistency of the space-time 
split apparent in equation (14). We can do this by re-uniting coordinates and time in 
M2n+1 . 

In M2n, the symplectic form dpi ∧ dqi is the fundamental object. In M2n+1, we must 
incorporate the one-form dt. This is done with a new one-form, the integral invariant 
of Poincaré-Cartan: 

ω ≡ pidq 
i − H(pi, q

j, t)dt . (20) 

(The reader must note from context whether ω refers to this one-form or to the sym
plectic 2-form.) This one-form looks deceptively like the integrand of the action, or 
the Lagrangian. However, it is a differential form on the extended phase space, not a 
function. Once we integrate it over a curve γ in M2n+1, however, we get the action: 

� � B 
� � 

S = ω = pidq
i − H(pi, q

j, t)dt . (21) 
γ A 

The integration is taken from A to B in the extended phase space. 
Now suppose we integrate ω from A to B along two slightly different paths and take 

the difference to get a close loop integral. To evaluate this integral we can use Stokes’ 
theorem. In the language of differential forms, Stokes’ theorem is written (Misner et al 
1973, Chapter 4, or Wald 1984, Appendix B) 

ω = dω (22) 
∂M M 

Here, M is a p-dimensional compact orientable manifold with boundary ∂M and ω is a 
(p−1)-form; dω is its exterior derivative, a p-form. Note that M can be a submanifold of 
a larger space, so that Stokes’ theorem actually implies a whole set of relations including 
the familiar Gauss and Stokes laws of ordinary vector calculus. 

Applying equation (22) to the difference of actions computed along two neighboring 
paths with (qi, t) fixed at the endpoints and using equation (17), we get 

dpi ∧ dq iδS = dω = − dH ∧ dt , (23) 
σ σ 

where σ denotes the surface area in the extended phase space bounded by the two paths 
from A to B. Note the emergence of the fundamental symplectic form on M2n . 
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in M
Now, let us express the integrand of equation (23) in the coordinate basis of one-forms 

2n+1, evaluating one of the vector slots using the tangent vector ξ� to one of the two 
curves from A to B. The result is similar to equation (19): 

dqi ∂H dH ∂H 
dω(·, ξ� ) = 

dt 
− 

∂pi 
dpi + 

dpi ∂H 
dq i + dt . (24)− 

dt 
− 

∂qi dt 
− 

∂t 

The principal of least action states that δS = 0 for small variations about the true path, 
with (qi, t) fixed at the end points. This will be true, for arbitrary small variations, if 
and only if dω(·, ξ� ) = 0 for the tangent vector along the extremal path. From equation 
(24), Hamilton’s equations follow. 

The solution of Hamilton’s equations gives an extended phase-space trajectory with 
tangent vector ξ� being an eigenvector of the 2-form dω with zero eigenvalue. Arnold 
(1989) proves that, for any differentiable function H defined on M2n+1, the two-form 
dω has exactly one eigenvector with eigenvalue zero, (∂H/∂pi, −∂H/∂qi , 1). This is a 
vector field in M2n+1 and it defines a set of integral curves (field lines, to which it is 
tangent) called the �vortex lines� of the one-form ω. The vortex lines are precisely the 
trajectories of Hamiltonian flow, i.e. the solutions of equations (12). 

A bundle of vortex lines is called a vortex tube. From Stokes’ theorem, the circulation 
of a vortex tube, defined as the integral of the Poincaré-Cartan integral invariant around 
a closed loop bounding the vortex tube, is an integral of motion. (This is why ω is called 
an integral invariant.) If the bounding curves are taken to lie on hypersurfaces of constant 

pidqitime, it follows that is also an integral of motion. By Stokes’ theorem, this 
implies that the fundamental form dpi ∧ dqi is an integral invariant. Thus, Hamiltonian 
evolution is canonical and preserves phase space areas and volumes. 

M

p

q

By adding t to our manifold we have partially unified coordinates and time. Can we 
go all the way to obtain a spacetime covariant formulation of Hamiltonian dynamics? For 
the case of single particle motion, the answer is clearly yes. If we write H = −p0 and t = 
0, the integral invariant of Poincaré-Cartan takes the simple form ω = pµdqµ where µ 
takes the range 0 to n. Now dω looks like the symplectic form on M2n+2, except that here 
0 is not a dynamical variable but rather a function on M2n+1 . However, we can promote 
it to the status of an independent variable by defining a new Hamiltonian H �(pµ, qν ) on 

2n+2 such that H � = constant can be solved for p0 to give −p0 = H(pi, qj , q0 = t). A 
simple choice is H � = p0 + H. 

M

Having subsumed the parameter for trajectories into the phase space, we must intro
duce a new parameter, τ . Because ∂H �/∂τ = 0, the solution of Hamilton’s equations in 

2n+2 will ensure that H � is a constant of motion. This is exactly what happened with 
the relativistically covariant Hamiltonian H2 in Section 2 (eqs. 8 and 11). 

The reader may now ask, if the Hamiltonian is independent of time, is it possible to 
reduce the dimensionality of phase space by two? The answer is yes; the next section 
shows how. 
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4.2 Reduction of order 

Hamilton’s equations imply that when ∂H/∂t = 0, H is an integral of motion. In this 
case, phase space trajectories in M2n are confined to the (2n− 1)-dimensional hypersur
face H = constant. This condition may be used to eliminate t and choose one of the 
coordinates to become a new �time� parameter, with a new Hamiltonian defined on the 
reduced phase space. 

This procedure was used in Section 3 to reduce the relativistically covariant 8
dimensional phase space {pµ, xν } with Hamiltonian given by equation (8) to the 6
dimensional phase space {pi, xj } with the Hamiltonian of equation (14). While this 
reduction is plausible, it remains to be proved that the reduced phase space is a sym
plectic manifold and that the new Hamiltonian is given by the momentum conjugate to 
the time coordinate. The proof is given here. 

Starting from the conserved Hamiltonian H(p, q) ≡ H(p0, pi, q
0, qj ) = h with 1 ≤

i, j ≤ n − 1, we assume that (in some region) this equation can be solved for the mo
mentum coordinate p0: 

p0 = −K(Pi, Q
j , T ; h) (25) 

0where Pi = pi, Qi = qi, and T = q . Note that any of the coordinates may be elimi
nated, with its conjugate momentum becoming (minus) the new Hamiltonian. Thus, the 
reduction of order is compatible with relativistic covariance. However, it can be applied 
to any Hamiltonian system, relativistic or not. 

Next we write the integral invariant of Poincaré-Cartan in terms of the new variables: 

ω = p0dq 
0 + pidq 

i − Hdt = PidQ
i − KdT − d(Ht) + tdH . (26) 

Recall that this is a one-form defined on M2n+1 . 
Now let γ be an integral curve of the canonical equations (12) lying on the 2n

dimensional surface H(p, q) = h in the (2n + 1)-dimensional extended phase space 
i{p, q, t}. Thus, γ is a vortex line of the two-form pdq − Hdt = p0dq0 + pidq − Hdt. 

We project the extended phase space M2n+1 onto the phase space M2n = {p, q} by dis
carding the time parameter t. The surface H = h projects onto a (2n− 1)-dimensional 
manifold M2n−1 with coordinates {Pi, Q

j , T}. Discarding t, the integral curve γ projects 
onto a curve γ̄ also in M2n−1 . 

M

The coordinates (Pi, Q
j , T ) = (pi, q

j , q0) locally (and perhaps globally) cover the 
submanifold M2n−1 (the surface H = constant in M2n = {p, q}). We now show that 

2n−1 is the extended phase space for a symplectic manifold with Hamiltonian K. 
We do this by examining equation (26) while noting that the integral curve γ lies on 

the surface H = constant. Clearly the last term in equation (26) vanishes on M2n−1 . 
Next, d(Ht) does not affect the vortex lines of ω because dd(Ht) = 0. (The variation of 
the action is invariant under the addition of a total derivative to the Lagrangian.) But 
the vortex lines of PidQi − KdT satisfy Hamilton’s equations (Sect. 4.1). Thus we have 
proven that reduction of order preserves Hamiltonian evolution. 
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The solution curves γ̄ on M2n−1 are vortex lines of pdq = P dQ − KdT . Thus, they 

in M
are extremals of the integral pdq. In other words, if the Hamiltonian function H(q, p) 

2n+1 is independent of time, then the phase space trajectories satisfying Hamilton’s 
equations are extremals of the integral pdq in the class of curves lying on M2n−1 with 
fixed endpoints of integration. The converse is also true (Arnold 1989): if ∂H/∂t = 0, 
the extremals of the �reduced action� 

� 
pdq = 

� 

∂(d�

∂L 
q/dτ) 

(τ) 
d�q 
dτ 

dτ (27) 
γ γ 

with fixed endpoints, δq = 0, are solutions of Hamilton’s equations in M2n+1 . This is 
known as Maupertuis’ principle of least action. Note that the principle can only be 
implemented if pi is expressed as a function of q and �q so that the integral is a functional of 
the configuration space trajectory. Also, because the time parameterization is arbitrary, 
Maupertuis’ principle determines the shape of a trajectory but not the time (t does not 
appear in eq. 27); in order to determine the time we must use the energy integral. 

These results justify the approach of Section 3. The spacetime trajectories are ex
tremals of equation (13) as a consequence of ∂H2/∂τ = 0 (eq. 8) and Maupertuis’ 

1principle. The order is reduced further by using H2 = 
2 m

2 to solve for −p0 as the new −
Hamiltonian H(pi, xj , t), equation (14). 
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Introduction 

The deflection of light by massive bodies is an old problem having few pedagogical treat
ments. The full machinery of general relativity seems like a sledge hammer when applied 
to weak gravitational fields. On the other hand, photons are relativistic particles and 
their propagation over cosmological distances demands more than Newtonian dynamics. 
In fact, for weak gravitational fields or for small perturbations of a simple cosmologi
cal model, it is possible to discuss gravitational lensing in a weak-field limit similar to 
Newtonian dynamics, albeit with light being deflected twice as much by gravity as a 
nonrelativistic particle. 

The most common formalism for deriving the equations of gravitational lensing is 
based on Fermat’s principle: light follows paths that minimize the time of arrival (Schei
der et al. 1992). As we will show, light is deflected by weak static gravitational fields as 
though it travels in a medium with variable index of refraction n = 1 − 2φ where φ is 
the dimensionless gravitational potential. 

With the framework of Hamiltonian dynamics given in the notes Hamiltonian Dy
namics of Particle Motion, here we present a synopsis of the theory of gravitational 
lensing. The Hamiltonian formulation begins with general relativity and makes clear 
the approximations which are made at each step. It allows us to derive Fermat’s least 
time principle in a weak gravitational field and to calculate the relative time delay when 
lensing produces multiple images. It is easily applied to lensing in cosmology, including 
a correct treatment of the inhomogeneity along the line of sight, by taking advantage of 
the standard formalism for perturbed cosmological models. 

Portions of these notes are based on a chapter in the PhD thesis of Barkana (1997). 
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2 Hamiltonian Dynamics of Light 

Starting from the notes Hamiltonian Dynamics of Particle Motion (Bertschinger 1999), 
we recall that geodesic motion of a particle of mass m in a metric gµν is equivalent to 
Hamiltonian motion in 3 + 1 spacetime with Hamiltonian 

0i g pi
H(pi, x

j , t) = −p0 = 
g pi 

+
(gij pipj + m2)

+ 

� 
0i

�2 
�1/2 

. (1) 
g00 −g00 g00 

2This Hamiltonian is obtained by solving gµν pµpν = −m for p0. The spacetime coor
dinates xµ = (t, xi) are arbitrary aside from the requirement that g00 < 0 so that t is 
timelike and is therefore a good parameter for timelike and null curves. The canonical 
momenta are the spatial components of the 4-momentum one-form pµ. The inverse met
ric components gµν are, in general, functions of xi and t. With this Hamiltonian, the 
exact spacetime geodesics are given by the solutions of Hamilton’s equations 

dxi ∂H dpi ∂H 
= = . (2)

dt ∂pi 
, 

dt 
− 
∂xi 

Our next step is to determine the Hamiltonian for the problem at hand, which requires 
specifying a metric. Because we haven’t yet derived the Einstein field equations, all we 
can do is to pick an ad hoc metric. In order to obtain useful results, we will choose 
a physical metric representing a realistic cosmological model, an expanding Big Bang 
cosmology (a Robertson-Walker spacetime) superposed with small-amplitude spacetime 
curvature fluctuations arising from spatial variations in the matter density. For now, the 
reader will have to accept the exact form of the metric without proof. 

The line element for our metric is 

2ds2 = a (t) −(1 + 2φ)dt2 + (1 − 2φ)γij dx
idxj . (3) 

In the literature, t is called �conformal� time and xi are �comoving� spatial coordinates. 
The cosmic expansion scale factor is a(t) and is related to the redshift of light emitted 
at time t by a(t) = 1/(1 + z). To get the non-cosmological limit (weak gravitational 
fields in Minkowski spacetime), one simply sets a = 1. The Newtonian gravitational 
potential φ(xi, t) obeys (to a good approximation) the Poisson equation. (In cosmology, 
the source for φ is not ρ but rather ρ − ρ̄ where ρ̄ is the mean mass density; we will show 
this in more detail later in the course.) We assume |φ| � 1 which is consistent with 
cosmological observations implying φ ∼ 10−5 . 

In equation (3) we write γij (xk ) as the 3-metric of spatial hypersurfaces in the unper
turbed Robertson-Walker space. For a flat space (the most popular model with theorists, 
and consistent with observations to date), we could adopt Cartesian coordinates for 

2




which γij = δij . However, to allow for easy generalization to nonflat spaces as well as 
non-Cartesian coordinates in flat space we shall leave γij unspecified for the moment. 

Substituting the metric implied by equation (3) into equation (1) with m = 0 yields 
the Hamiltonian for a photon: 

H(pi, x
j , t) = p(1 + 2φ) , p ≡ 

� 
γij pipj 

�1/2 
. (4) 

g

We have neglected all terms of higher order than linear in φ. Not surprisingly, in a 
perturbed spacetime the Hamiltonian equals the momentum plus a small correction for 
gravity. However, it differs from the proper energy measured by a stationary observer, 
E = −V µpµ, because the 4-velocity of such an observer is V µ = (a(1 − φ), 0, 0, 0) (since 
µν V µV ν = −1) so that E = a−1p(1 + φ). The latter expression is easy to understand 
because a−1 converts comoving to proper energy (the cosmological redshift) and in the 
Newtonian limit φ is the gravitational energy per unit mass (energy). 

Why is the Hamiltonian not equal to the energy? The answer is because it is conjugate 
to the time coordinate t which does not measure proper time. The job of the Hamiltonian 
is to provide the equations of motion and not to equal the energy. The factor of 2 in 
equation (4) is important � it is responsible for the fact that light is deflected twice as 
much as nonrelativistic particles in a gravitational field. 

To first order in φ, Hamilton’s equations applied to equation (4) yield 

dxi
i dpi i 

dt 
= n (1 + 2φ) , 

dt 
= −2p�iφ + γk

ij pk n
j (1 + 2φ) , n ≡ 

γij 

p

pj 
. (5) 

We will drop terms O(φ2) throughout. We have defined a unit three-vector ni in the 
photon’s direction of motion (normalized so that γij ninj = 1). The symbol γk

ij = 
1 γkl(∂iγjl + ∂j γil − ∂lγij ) is a connection coefficient for the spatial metric that vanishes 
2 
if we are in flat space and use Cartesian coordinates. Beware that �i is the covariant 
derivative with respect to the 3-metric γij and not the covariant derivative with respect 
to γµν , although there is no difference for a spatial scalar field: �iφ = ∂iφ. 

Note that the cosmological expansion factor has dropped out of equations (5). These 
equations are identical to what would be obtained for the deflection of light in a perturbed 
Minkowski spacetime. The reason for this is that the metric of equation (3) differs from 
the non-cosmological one solely by the factor a2(t) multiplying every term. This is called 
a conformal factor because it leaves angles invariant. In particular, it leaves null cones 
invariant, and therefore is absent from the equations of motion for massless particles. 

In the following sections we shall represent three-vectors (and two-vectors) in the 
3-space with metric γij using arrows above the symbol. To lowest order in φ, we may 
interpret these formulae as giving the deflection of light in an unperturbed spacetime 
due to gravitational forces, just as in Newtonian mechanics. The difference is that our 
results are fully consistent with general relativity. 
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3 Fermat’s Principle 

When ∂tφ = 0, the Hamiltonian (eq. 4) is conserved along phase space trajectories and 
the equations of motion follow from an alternative variational principle, Maupertuis’ 
principle (Bertschinger 1999). Maupertuis’ principle states that if ∂H(pi, qj , t)/∂t = 0, 
then the solution trajectories of the full Hamiltonian evolution are given by extrema of 
the reduced action pi dq

i with fixed endpoints. This occurs because 

pi dq
i − H dt = pi dq

i − d(Ht) + t dH . (6) 

The Ht term, being a total derivative, vanishes for variations with fixed endpoints. The 
t dH term vanishes for trajectories that satisfy energy conservation, and we already know 
(from the Hamilton’s equations of the full action) that only such trajectories need be 
considered when ∂H/∂t = 0. Thus, the condition δ pi dq

i = 0, when supplemented by 
conservation of H, is equivalent to the original action principle. 

Expressing pi in terms of dxi/dt using Hamilton’s equations (5) in the full phase space 
for the Hamiltonian of equation (4), the reduced action becomes 

pi dx
i = pγij n

j dxi = H(1 − 2φ)γij n i dxj = H dt . (7) 

Using H = constant ≡ h, Mauptertuis’ principle yields Fermat’s principle of least time, 
� � � �1/2

dxi dxj 

δ dt = δ [1 − 2φ(x)] γij ds = 0 (8)
ds ds 

for light paths parameterized by s. We leave it as an exercise for the reader to show, 
using the Euler-Lagrange equations, that if s measures path length, equation (8) yields 
equations (5) exactly (to lowest order in φ) when ∂tφ = 0. In comparing with equation 
(5), one must be careful to note that there the trajectory is parameterized by dt = 
(1 − 2φ)ds so that �n = d�x/ds is a unit vector. 

Thus, for a static potential φ (even in a non-static cosmological model with expansion 
factor a(t)), light travels along paths that minimize travel time but not path length 
(as measured by the spatial metric γij ). The null geodesics behave as though traveling 
through a medium with index of refraction 1 − 2φ. To minimize travel time, light rays 
will tend to avoid regions of negative φ; therefore light will be deflected around massive 
bodies. 

Fermat’s principle is exact for gravitational lensing only with static potentials. In 
most astrophysical applications, the potentials are sufficiently relaxed so that ∂tφ may 
be neglected relative to ni�iφ and Fermat’s principle still applies. The one notable ex
ception is microlensing, where the lensing is caused by stars (or other condensed objects) 
moving across the line of sight. In this case, one may still apply Fermat’s principle after 
boosting to the rest frame of the lens. 
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4 Reduction to the Image Plane 

In equation (8), the action is invariant under an arbitrary change of parameter, s s�(s)→
with ds�/ds > 0. This is not a physical symmetry of the dynamics, and as a consequence 
we may eliminate a degree of freedom by using one of the coordinates to parameterize 
the trajectories. A similar procedure was used to eliminate t in going from equation (6) 
to equation (8). Here, as there, the Lagrangian is independent of the time parameter, 
enabling a reduction of order. However, for reasons that will soon become clear, this 
reduction cannot be done using the reduced action (Maupertuis’ principle) but instead 
follows from reparameterization of the Lagrangian. 

To clarify the steps, we start with 
� 

dxi dxj �1/2 
iL3(x , dxj /ds) = [1 − 2φ(x)] γij (9)

ds ds 

for the Lagrangian in the three-dimensional configuration space (eq. 8). Because the 
Lagrangian does not depend explicitly on s, the Hamiltonian is conserved and we may 
attempt to reduce the order as in the previous section. The first step is to construct the 
Hamiltonian. Under a Legendre transformation, L3 → H3(pi, xj , s) = pi(dxi/ds) − L3 

iwhere pi = ∂L3/∂(dx
i/ds) is the momentum conjugate to x . But we quickly run into 

trouble: as the reader may easily show, H3 vanishes identically. 
What causes this horror? The answer is that L3 is homogeneous of first degree in 

the coordinate velocity dxi/ds, which is equivalent to the statement that the action of 
equation (8) is invariant under reparameterization. Physically, the Hamiltonian vanishes 
because of the extra symmetry of the Lagrangian, which is unrelated to the dynamics. 
The physical Hamiltonian should include only the physical degrees of freedom, so we 
must eliminate the reparameterization-invariance if we are to use Hamiltonian methods. 

This is done very simply by rewriting the action (eq. 8) using one of the coordinates 
as the parameter. The radial distance from the observer is a good choice: for small 
deflections of rays traveling nearly in the radial direction toward the observer, r will be 
single-valued along a trajectory. 

To fix the parameterization we must write the spatial line element in a Robertson-
Walker space in terms of r and two angular coordinates: 

dl2 ≡ γij dx
idxj = dr2 + R2(r)γab(ξ)dξ

adξb . (10) 

Here 1 ≤ a, b ≤ 2 and γab is the metric of a unit 2-sphere. The coordinates ξa are angles 
and are dimensionless. Note that r measures radial distance (γrr = 1) and R(r) measures 
angular distance. We will not give the exact form of R(r) here except to note that for 
a flat space, R(r) = r. In the standard spherical coordinates, γθθ = 1 and γφφ = sin2 θ. 
We will leave the coordinates in the sphere arbitrary for the moment, and use γab and 
its inverse γab to lower and raise indices of two-vectors and one-forms in the sphere. 
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Our action, equation (8), is the total elapsed light-travel time t (using our original 
spacetime coordinates, eq. 3). The reparameterization means that now we express the 
action as a functional of the two-dimensional trajectory ξa(r): 

� rS 
� �1/2

dxa dxb 

t[ξa(r)] = [1 − 2φ(ξ, r)] 1 + R2(r)γab dr . (11)
dr dr0 

This action is to be varied subject δξa = 0 at r = 0 (the observer) and r = rS (the 
source). 

In writing equation (11), we have neglected ∂φ/∂t and we have neglected terms O(φ2) 
(weak-field approximation). As we will see, the angular term inside the Lagrangian is 
small when the potential is small, and therefore we can expand the square root, dropping 
all but the lowest-order terms. To the same order of approximation, we may neglect 
the curvature of the unit sphere, and set γab = δab. (We can always orient spherical 
coordinates so that γab = δab plus second-order corrections in ξ.) These approxima
tions together constitute the small-angle approximation. In practice it is well satisfied; 
observed angular deflections of astrophysical lenses are much less than 10−3 . 

With the weak-field and small-angle approximations, the action becomes 

� rS 
� � 

dξb 1 dξa dξb 

t[ξa(r)] = rS + L2 dr , L2 ξa , , r = R2(r)δab 
dr dr 

− 2φ(ξa , r) . (12)
dr 20 

Note that the Lagrangian now depends on the �time� parameter, so we have eliminated 
the parameterization-invariance. 

To get a Hamiltonian system, we make the Legendre transformation of the Lagrangian 
L2. The conjugate momentum is pa = R2(r)δabdξ

b/dr. The Hamiltonian becomes 

2 

H(pa, ξ
b , r) = 

2R

p
2(r) 

+ 2φ(�ξ, r) . (13) 

On account of the small-angle approximation, �
≡ δab

p and ξ� are two-dimensional vectors in 
Euclidean space (p2 papb). Noting that r plays the role of time, this Hamiltonian 
represents two-dimensional motion with a time-varying mass R2(r) and a time-dependent 
potential 2φ. 

With the Hamiltonian of equation (13), Hamilton’s equations give 

dξ� p p� d� ∂φ 
dr 

= 
R2(r) 

, 
dr 

= −2 
∂ξ�

. (14) 

These equations and the action may be integrated subject to the �initial� conditions 
ξ = ξ0, �p = 0 and t = t0 at the observer, r = 0: 
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� r2 
ξ�(r) = ξ�0 − 

R(r) 
R(r − r�) ∂φ 

(ξ�(r�), r�) dr� 
R(r�) ∂ξ�0

� r ∂φ 
p(r) = −2 (ξ�(r�), r�) dr� (15) 

0 ∂ξ�
� r � 

p2(r�)
t(r) = t0 − r − 

R2(r ) 
− 2φ(ξ�(r�), r�) dr� . 

0 
�

Note that here t is the coordinate time along the past light cone; the elapsed time (the 
action) is t0 − t. The two terms in the time delay integral arise from geometric path 
length (the p2 term) and gravity. Half of the gravitational potential part comes from the 
slowing down of clocks in a gravitational field (gravitational redshift) and the other half 
comes from the extra proper distance caused by the gravitational distortion of space. 

Equations (15) provide only a formal solution, since φ is evaluated on the unknown 
path ξ�(r�). The reader may verify the solution by inserting into equations (14). One 
needs the following identity for the angular distance in a Robertson-Walker space, which 
we present without proof: 

� 
∂ R(r − r�)

= 
1 

. (16)
∂r R(r)R(r�) R2(r) 

It is easy to verify this for the flat case R(r) = r. 
When the potential varies with time, we cannot use Fermat’s principle or the further 

reduction achieved in this section. Instead, one has to integrate the original equations of 
motion (5). It can be shown (Barkana 1997) that, under the small-angle approximation, 
these equations also have the formal solution given by equation (15), with the single 
change that φ also becomes a function of t and that t must be evaluated along the 
trajectory: φ(ξ�(r�), r�, t(r�)). Thus, we obtain the physical result that the potential is to 
be evaluated along the backward light cone. 

Astrophysical Gravitational Lensing 

The astrophysical application of gravitational lensing is based on the following consid
erations. Given an observed image position ξ�0, we wish to deduce the source position 
ξS ≡ ξ�(rS ) using equation (15) to relate ξ�(rS ) to ξ�0. The result is a mapping from the 
image plane ξ�0 to the source plane ξ�S ). This mapping is called the lens equation. 

By integrating the deflection ξ�S − ξ�0 for a given distribution of mass (hence potential) 
along the line of sight from the observer, and for a given cosmological model (hence 
angular distance R(r)), one can compute the source plane positions for the observed 
images. 
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In practice, we wish to solve the inverse problem, namely to deduce properties of the 
mass and spatial geometry along the line of sight from observed lens systems. How can 
this be done if we know only the image positions but not the source positions? 

There are several methods that can be used to deduce astrophysical information from 
gravitational lenses (Blandford and Narayan 1992). First, the lens mapping ξ�S(ξ�0) can 
become multivalued so that a given source produces multiple images. In this case, the 
images provide constraints on lensing potential and geometry because all the ray paths 
must coincide in the source plane. This method can strongly constrain the mass of a 
lens, especially when the symmetry is high so that an Einstein ring or arc is produced. 

Another method uses information from t(r). If the source is time-varying and pro
duces multiple images, then each image must undergo the same time variation, offset 
by the t − t0 + r integral in equation (15). Because this method involves measurement 
of a physical length scale (the time delay between images, multiplied by the speed of 
light), it offers the prospect of measuring cosmological distances in physical units, from 
which one can determine the Hubble constant. This is a favorite technique with MIT 
astrophysicists. 

Another way to get a timescale occurs if the lens moves across the line of sight, in the 
phenomenon called microlensing. Gravitational lensing magnifies the image according 
to the determinant of the (inverse) magnification matrix


a
S∂ξ

∂ξb 
0 
. If the angular position


of the lens is close to ξS so that the rays pass close to the lens, the magnification can 
be substantial (e.g. a factor of ten). A lens moving transverse to the line of sight will 
therefore cause a systematic increase, then decrease, of the total flux from a source. From 
a statistical analysis of the event rates, magnifications and durations, it is possible to 
deduce some of the properties of a class of lensing objects, such as dim stars (or stellar 
remnants) in the halo surrounding our galaxy (more colorfully known as MACHOs for 
�MAssive Compact Halo Objects�). 

A fourth method, called weak lensing, uses statistical information about image dis
tortions for the case where the deflections are not large enough to produce multiple 
images, but are large enough to produce detectable distortion. This method can provide 
statistical information about the lensing potential. It is a favorite method for trying to 
deduce the spectrum of dark matter density fluctuations. 

There are many other applications of gravitational lensing. The study and observation 
of gravitationl lenses is one of the major areas of current research in astronomy. 

Thin Lens Approximation 

Our derivation of the lens equations (15) made the following, well-justified approxi
mations: the spacetime is a weakly perturbed Roberston-Walker model with small-
amplitude curvature fluctuations (φ2 � 1), the perturbing mass distribution is slowly
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evolving (∂tφ neglected), and the angular deflections are small ( ξS − ξ�0 ∼ φ < 10−3). 
Nearly all calculations of lensing are made with an additional approximation, the 

thin-lens approximation. This approximation supposes that the image deflection occurs 
in a small range of distance δr about r = rL. In this case, the first of equations (15) 
gives the thin lens equation 

∂φ 
(�

dr� 

R
ξ�S = ξ0 − 

RLS 
�γ(ξ�0, RL) , �γ(ξ, R) = 2 ξ, r�) , (17) 

S ∂ξ� R 

where RS ≡ R(rS ), RL ≡ R(rL) and RLS ≡ R(rS − rL). The deflection angle �γ = 
−2 �g dr where �g = − � = −(1/R)∂φ/∂ξ� is the Newtonian gravity vector (up to �⊥φ 
factors of a from the cosmology). 

Let us estimate the deflection angle γ for a source directly behind a Newtonian point 
mass with g = GM/r2 (here r is the proper distance from the point mass to a point 
on the light ray). The impact parameter in the thin-lens approximation is b = ξ0RL. 
Because the deflection is small, the path is nearly a straight line past the lens, and the 
integral of g along the path gives, crudely, 2bg(b) = 2GM/b = 2GM/(ξ0RL). (The factor 
of two is chosen so that this is, in fact, the exact result of a careful calculation.) With 
the source lying directly behind the lens, ξS = 0. 

Substituting this deflection into the thin lens equation (17) gives 

RLS 4GM 
0 = ξ0 − . (18)

RLRS ξ0 

Vectors are suppressed because this lens equation holds at all positions around a ring of 
radius ξ0 = |ξ�0 in the image plane. An image directly behind a point mass produces an |
Einstein ring. Solving for ξ0 gives the Einstein ring radius: 

� �1/2
4GMRLS

ξ0 = 
RLRS c2 

.	 (19) 
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4 Curvature  

We introduce curvature by considering parallel transport around a general (non-geodesic) 
closed curve. In flat space, in a globally flat coordinate system (for which the connection 
vanishes everywhere), parallel transport leaves the components of a vector unchanged. 
Thus, in flat space, transporting a vector around a closed curve returns the vector to its 
starting point unchanged. Not so in a nonflat space. This change under a closed cycle 
is called an “anholonomy.” 

Consider, for example, a sphere. Suppose that we have a vector pointing east on the 
equator at longitude 0◦ . We parallel transport the vector eastward on the equator by 
180◦ . At each point on the equator the vector points east. Now the vector is parallel 
transported along a line of constant longitude over the pole and back to the starting 
point on the equator. At each point on this second part of the curve, the vector points 
at right angles to the curve, and its direction never changes. Yet, at the end of the curve, 
at the same point where the curve started, the vector points west! 

The reader may imagine that the example of the sphere is special because of the 
sharp changes in direction made in the path. However, parallel transport around any 
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Figure 1: Parallel transport around a closed curve. The vector in the lower-left corner is 
parallel transported in a counter-clockwise direction along around 4 segments d�x1, d�x2, 
−d�x1, and  −d�x2. At the end of the journey, the vector has been rotated. This mismatch 
(“anholonomy”) does not occur for parallel transport in a flat space; its existence is the 
defining property of curvature. 

smooth closed curve results in an anholonomy on a sphere. For example, consider a 
latitude circle away from the equator. Imagine you are an airline pilot flying East from 
Boston. If you were flying on a great circle route, you would soon be flying in a south-
east direction. If you parallel transport a vector along a geodesic, its direction relative 

A · V ) = 0  for  to the tangent vector (direction of motion) does not change, i.e. ∇V ( � �

A along tangent � �parallel transport of � V . Parallel transport implies ∇V A = 0;  moreover,  
∇V V = 0 for a geodesic. However, a constant-latitude circle is not a geodesic, hence 
∇V V �� = 0. In order to maintain a constant latitude, you will have to constantly steer 
the airplane north compared with a great circle route. Consequently, the angle between 
� A · � �A (which is parallel-transported) and the tangent changes: ∇V ( � V ) =  A · (∇V V ). A 
nonzero rotation accumulates during the trip, leading to a net rotation of A around a 
closed curve. 

We can refine this into a definition of curvature as follows. Suppose that our closed 
curve consists of four infinitesimal segments: d�x1, d�x2, −d�x1 and −d�x2. In  a  flat  space  
this would be called a parallelogram and the difference d �A between the final and initial 
vectors would vanish. In a curved space we can create a parallelogram by taking two 
pairs of coordinate lines and choose d�x1 and d�x2 to point along the coordinate lines 
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(e.g.	 in directions �e1 and �e2). Parallel transport around a closed curve gives a change 
A that must be proportional to �in the vector d � A, to  d�x1, and  to  d�x2. Remarkably, it is 

proportional to nothing else. Therefore, d �A is given by a rank (1, 3) tensor called the 
Riemann curvature tensor: 

d � �	
1 dxβ . (29)A( · ) ≡ −R( · , A, d�x1, d�x2) =  −�eµR

µ Aν dxα 
ναβ 2 



The dots indicate that a one-form is to be inserted; recall that a vector is a function 
of a one-form. The minus sign is purely conventional and is chosen for agreement with 
MTW. Note that the Riemann tensor must be antisymmetric on the last two slots be-
cause reversing them amounts to changing the direction around the parallelogram, i.e. 
swapping the final and initial vectors � A.A, hence changing the sign of d �

All standard GR textbooks show that equation (29) is equivalent to the following 
important result known as the Ricci identity 

(∇α∇β −∇β∇α)Aµ = Rµ Aν in a coordinate basis . (30)ναβ

In a non-coordinate basis, there is an additional term on the left-hand side, −∇CA

µ 

where �C ≡ [�eα, �eβ ]. This commutator vanishes for a coordinate basis (eq. 12). 

Equation (30) is a remarkable result. In general, there is no reason whatsoever that 
the derivatives of a vector field should be related to the vector field itself. Yet the 
difference of second derivatives is not only related to, but is linearly proportional to the 
vector field! This remarkable result is a mathematical property of metric spaces with 
connections. It is equivalent to the statement that parallel transport around a small 
closed parallelogram is proportional to the vector and the oriented area element (eq. 
29). 

Equation (30) is similar to equation (11). The torsion tensor and Riemann tensor 
are geometric objects from which one may build a theory of gravity in curved spacetime. 
In general relativity, the torsion is zero and the Riemann tensor holds all of the local 
information about gravity. 

It is straightforward to determine the components of the Riemann tensor using equa-
tion (30) with �A = �eν . The result is 

Rµ
ναβ = ∂αΓµ

νβ − ∂βΓµ
να + Γµ

καΓκ − Γµ Γκ in a coordinate basis . (31)νβ κβ να 

Note that some authors (e.g., Weinberg 1972) define the components of Riemann with 
opposite sign. Our sign convention follows Misner et al (1973), Wald (1984) and Schutz 
(1985). 

Note that the Riemann tensor involves the first and second partial derivatives of 
the metric (through the Christoffel connection in a coordinate basis). Weinberg (1972) 
shows that the Riemann tensor is the only tensor that can be constructed from the metric 
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tensor and its first and second partial derivatives and is linear in the second derivatives. 
Recall that one can always define locally flat coordinates such that Γµ

νλ = 0 at a point. 
However, one cannot choose coordinates such that Γµ

νλ = 0 everywhere unless the space 
is globally flat. The Riemann tensor vanishes everywhere if and only if the manifold is 
globally flat. This is a very important result. 

If we lower an index on the Riemann tensor components we get the components of a 
(0, 4) tensor: 

1 � � 
ΓβRµνκλ = gµαRα

νκλ = (gµλ,νκ − gµκ,νλ + gνκ,µλ − gνλ,µκ) +  gαβ Γα
µλΓ

β
νκ − Γα

µκ νλ ,
2 

(32) 
where we have used commas to denote partial derivatives for brevity of notation: gµλ,νκ ≡ 
∂κ∂ν gµλ. In this form it is easy to determine the following symmetry properties of the 
Riemann tensor: 

Rµνκλ = Rκλµν = −Rνµκλ = −Rµνλκ , Rµνκλ + Rµκλν + Rµλνκ = 0  . (33) 

It can be shown that these symmetries reduce the number of independent components 
of the Riemann tensor in four dimensions from 44 to 20. 

4.1 Bianchi identities, Ricci tensor and Einstein tensor 

We note here several more mathematical properties of the Riemann tensor that are 
needed in general relativity. First, by differentiating the components of the Riemann 
tensor one can prove the Bianchi identities: 

∇σ R
µ µ (34)νκλ + ∇κR

µ
νλσ + ∇λR νσκ = 0  . 

Note that the gradient symbols denote the covariant derivatives and not the partial 
derivatives (otherwise we would not have a tensor equation). The Bianchi identities 
imply the vanishing of the divergence of a certain (2, 0) tensor called the Einstein tensor. 
To derive it, we first define a symmetric contraction of the Riemann tensor, known as 
the Ricci tensor: 

Rµν ≡ Rα
µαν = Rνµ = ∂κΓ

κ
µν − ∂µΓκ

κν + Γκ
κλΓ

λ
µν − Γκ

µλΓ
λ

κν . (35) 

One can show from equations (33) that any other contraction of the Riemann tensor 
either vanishes or is proportional to the Ricci tensor. The contraction of the Ricci tensor 
is called the Ricci scalar: 

R ≡ gµν Rµν . (36) 

Contracting the Bianchi identities twice and using the antisymmetry of the Riemann 
tensor one obtains the following relation: 

1µν ≡ Rµν − gµν R∇ν G
µν = 0  , G = Gνµ . (37)

2 
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The symmetric tensor Gµν that we have introduced is called the Einstein tensor. Equa-
tion (37) is a mathematical identity, not a law of physics. Through the Einstein equations 
it provides a deep illustration of the connection between mathematical symmetries and 
physical conservation laws. 
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Introduction 

These notes show how observers can set up a coordinate system and measure the space-
time geometry using clocks and lasers. The approach is similar to that of special rela
tivity, but the reader must not be misled. Spacetime diagrams with rectilinear axes do 
not imply flat spacetime any more than flat maps imply a flat earth. 

Cartography provides an excellent starting point for understanding the metric. Ter
restrial maps always provide a scale of the sort �One inch equals 1000 miles.� If the 
map is of a sufficiently small region and is free from distortion, one scale will suffice. 
However, a projection of the entire sphere requires a scale that varies with location and 
even direction. The Mercator projection suggests that Greenland is larger than South 
America until one notices the scale difference. The simplest map projection, with lat
itude and longitude plotted as a Cartesian grid, has a scale that depends not only on 
position but also on direction. Close to the poles, one degree of latitude represents a far 
greater distance than one degree of longitude. 

The map scale is the metric. The spacetime metric has the same meaning and use: it 
translates coordinate distances and times (�one inch on the map�) to physical (�proper�) 
distances and times. 

The terrestrial example also helps us to understand how coordinate systems can be 
defined in practice on a curved manifold. Let us consider how coordinates are defined on 
the Earth. First pick one point and call it the north pole. The pole is chosen along the 
rotation axis. Now extend a family of geodesics from the north pole, called meridians 
of longitude. Label each meridian by its longitude φ. We choose the meridian going 
through Greenwich, England, and call it the�prime meridian,� φ = 0. Next, we define 
latitude λ as an affine parameter along each meridian of longitude, scaled to π/2 at the 
north pole and decreasing linearly to −π/2 at the point where the meridians intersect 
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again (the south pole). With these definitions, the proper distance between the nearby 
points with coordinates (λ, φ) and (λ + dλ, φ + dφ) is given by ds2 = R2(dλ2 + cos2 λ dφ2). 
In this way, every point on the sphere gets coordinates along with a scale which converts 
coordinate intervals to proper distances. 

This example seems almost trivial. However, it faithfully illustrates the concepts 
involved in setting up a coordinate system and measuring the metric. In particular, 
coordinates are numbers assigned by obsevers who exchange information with each other. 
There is no conceptual need to have the idealized dense system of clocks and rods filling 
spacetime. Observe any major civil engineering project. The metric is measured by two 
surveyors with transits and tape measures or laser ranging devices. Physicists can do the 
same, in principle and in practice. These notes illustrate this through a simple thought 
experiment. The result will be a clearer understanding of the relation between curvature, 
gravity, and acceleration. 

The metric in 1+1 spacetime 

We study coordinate systems and the metric in the simplest nontrivial case, spacetime 
with one space dimension. This analysis leaves out the issue of orientation of spatial axes. 
It also greatly reduces the number of degrees of freedom in the metric. As a symmetric 
2 matrix, the metric has three independent coefficients. Fixing two coordinates imposes 
two constraints, leaving one degree of freedom in the metric. This contrasts with the six 
metric degrees of freedom in a 3+1 spacetime. However, if one understands well the 1+1 
example, it is straightforward (albeit more complicated) to generalize to 2+1 and 3+1 
spacetime. 

We will construct a coordinate system starting from one observer called A. Observer 
A may have any motion whatsoever relative to other objects, including acceleration. 
But neither spatial position nor velocity is meaningful for A before we introduce other 
observers or coordinates (�velocity relative to what?�) although A’s acceleration (relative 
to a local inertial frame!) is meaningful: A stands on a scale, reads the weight, and 
divides by rest mass. Observer A could be you or me, standing on the surface of the 
earth. It could equally well be an astronaut landing on the moon. It may be helpful 
in this example to think of the observers as being stationary with respect to a massive 
gravitating body (e.g. a black hole or neutron star). However, we are considering a 
completely general case, in which the spacetime may not be at all static. (That is, there 
may not be any Killing vectors whatsoever.) 

We take observer A’s worldine to define the t-axis: A has spatial coordinate xA ≡ 0. 
A second observer, some finite (possibly large) distance away, is denoted B. Both A and 
B carry atomic clocks, lasers, mirrors and detectors. 

Observer A decides to set the spacetime coordinates over all spacetime using the 
following procedure, illustrated in Figure 1. First, the reading of A’s atomic clock gives 
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Figure 1: Setting up a coordinate system in curved spacetime. There are two time-
like worldlines and two pairs of null geodesics. The appearance of flat coordinates is 
misleading; the metric varies from place to place. 

the t-coordinate along the t-axis (x = 0). Then, A sends a pair of laser pulses to B, who 
reflects them back to A with a mirror. If the pulses do not return with the same time 
separation (measured by A) as they were sent, A deduces that B is moving and sends 
signals instructing B to adjust her velocity until t6 − t5 = t2 − t1. The two continually 
exchange signals to ensure that this condition is maintained. A then declares that B has 
a constant space coordinate (by definition), which is set to half the round-trip light-travel 

1time, xB ≡ 2 (t5 − t1). A sends signals to inform B of her coordinate. 
Having set the spatial coordinate, A now sends time signals to define the t-coordinate 

along B’s worldline. A’s laser encodes a signal from Event 1 in Figure 1, �This pulse 
was sent at t = t1. Set your clock to t1 + xB .� B receives the pulse at Event 3 and sets 
her clock. A sends a second pulse from Event 2 at t2 = t1 + Δt which is received by B 
at Event 4. B compares the time difference quoted by A with the time elapsed on her 
atomic clock, the proper time ΔτB . To her surprise, ΔτB = Δt. 

At first A and B are sure something went wrong; maybe B has begun to drift. But 
repeated exchange of laser pulses shows that this cannot be the explanation: the round-
trip light-travel time is always the same. Next they speculate that the lasers may be 
traveling through a refractive medium whose index of refraction is changing with time. 
(A constant index of refraction wouldn’t change the differential arrival time.) However, 
they reject this hypothesis when they find that B’s atomic clock continually runs at a 
different rate than the timing signals sent by A, while the round-trip light-travel time 
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Figure 2: Testing for space curvature. 

measured by A never changes. Moreover, laboratory analysis of the medium between 
them shows no evidence for any change. 

Becoming suspicious, B decides to keep two clocks, an atomic clock measuring τB 

and another set to read the time sent by A, denoted t. The difference between the two 
grows increasingly large. 

The observers next speculate that they may be in a non-inertial frame so that special 
relativity remains valid despite the apparent contradiction of clock differences (gtt = 1) 
with no relative motion (dxB /dt = 0). We will return to this speculation in Section 3. In 
any case, they decide to keep track of the conversion from coordinate time (sent by A) 
to proper time (measured by B) for nearby events on B’s worldline by defining a metric 
coefficient: 

� �2
ΔτB 

gtt(t, xB ) ≡ lim . (1)
Δt 0 

− 
Δt→

The observers now wonder whether measurements of spatial distances will yield a 
similar mystery. To test this, a third observer is brought to help in Figure 2. Observer 
C adjusts his velocity to be at rest relative to A. Just as for B, the definition of rest 
is that the round-trip light-travel time measured by A is constant, t8 − t1 = t9 − t2 = 
2xC ≡ 2(xB + Δx). Note that the coordinate distances are expressed entirely in terms 
of readings of A’s clock. A sends timing signals to both B and C. Each of them sets 
one clock to read the time sent by A (corrected for the spatial coordinate distance xB 

and xC , respectively) and also keeps time by carrying an undisturbed atomic clock. The 
former is called coordinate time t while the latter is called proper time. 
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The coordinate time synchronization provided by A ensures that t2 − t1 = t5 − t3 = 

6 − t4 = t7 − t5 = t9 − t8 = 2Δx. Note that the procedure used by A to set t and x 
relates the coordinates of events on the worldlines of B and C: 

(t4, x4) = (t3, x3) + (1, 1)Δx , (t5, x5) = (t4, x4) + (1,−1)Δx , 

(t6, x6) = (t5, x5) + (1, 1)Δx , (t7, x7) = (t6, x6) + (1,−1)Δx . (2) 

Because they follow simply from the synchronization provided by A, these equations 
are exact; they do not require Δx to be small. However, by themselves they do not 
imply anything about the physical separations between the events. Testing this means 
measuring the metric. 

g

To explore the metric, C checks his proper time and confirms B’s observation that 
proper time differs from coordinate time. However, the metric coefficient he deduces, 
tt(xC , t), differs from B’s. (The difference is first-order in Δx.) 
The pair now wonder whether spatial coordinate intervals are similarly skewed relative 

to proper distance. They decide to measure the proper distance between them by using 
laser-ranging, the same way that A set their spatial coordinates in the first place. B 
sends a laser pulse at Event 3 which is reflected at Event 4 and received back at Event 
5 in Figure 2. From this, she deduces the proper distance of C, 

1 
Δs = (τ5 − τ3) (3)

2 

where τi is the reading of her atomic clock at event i. To her surprise, B finds that Δx 
does not measure proper distance, not even in the limit Δx 0. She defines another →
metric coefficient to convert coordinate distance to proper distance, 

� �2
Δs 

lim . (4)gxx ≡ 
Δx 0 Δx→

τ

The measurement of proper distance in equation (4) must be made at fixed t; oth
erwise the distance must be corrected for relative motion between B and C (should 
any exist). Fortunately, B can make this measurement at t = t4 because that is when 
her laser pulse reaches C (see Fig. 2 and eqs. 2). Expanding τ5 = τB (t4 + Δx) and 
3 = τB (t4 − Δx) to first order in Δx using equations (1), (3), and (4), she finds 

gxx(x, t) = −gtt(x, t) . (5) 

The observers repeat the experiment using Events 5, 6, and 7. They find that, while the 
metric may have changed, equation (5) still holds. 

The observers are intrigued to find such a relation between the time and space parts 
of their metric, and they wonder whether this is a general phenomenon. Have they 
discovered a modification of special relativity, in which the Minkowski metric is simply 
multipled by a conformal factor, gµν = Ω2ηµν ? 
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They decide to explore this question by measuring gtx. A little thought shows that 
they cannot do this using pairs of events with either fixed x or fixed t. Fortunately, they 
have ideal pairs of events in the lightlike intervals between Events 3 and 4: 

ds2 
34 ≡ lim gtt(t4 − t3)

2 + 2gtx(t4 − t3)(x4 − x3) + gxx(x4 − x3)
2 . (6)

Δt,Δx 0→

Using equations (2) and (5) and the condition ds = 0 for a light ray, they conclude 

gtx = 0 . (7) 

Their space and time coordinates are orthogonal but on account of equations (5) and (7) 
all time and space intervals are stretched by 

√
gxx. 

Our observers now begin to wonder if they have discovered a modification of special 
relativity, or perhaps they are seeing special relativity in a non-inertial frame. However, 
we know better. Unless the Riemann tensor vanishes identically, the metric they have 
determined cannot be transformed everywhere to the Minkowski form. Instead, what 
they have found is simply a consequence of how A fixed the coordinates. Fixing two 
coordinates means imposing two gauge conditions on the metric. A defined coordinates 
so as to make the problem look as much as possible like special relativity (eqs. 2). 
Equations (5) and (7) are the corresponding gauge conditions. 

It is a special feature of 1+1 spacetime that the metric can always be reduced to a 
conformally flat one, i.e. 

ds2 = Ω2(x)ηµν dx
µdxν (8) 

for some function Ω(xµ) called the conformal factor. In two dimensions the Riemann 
tensor has only one independent component and the Weyl tensor vanishes identically. 
Advanced GR and differential geometry texts show that spacetimes with vanishing Weyl 
tensor are conformally flat. 

Thus, A has simply managed to assign conformally flat coordinates. This isn’t a 
coincidence; by defining coordinate times and distances using null geodesics, he forced 
the metric to be identical to Minkowski up to an overall factor that has no effect on null 
lines. Equivalently, in two dimensions the metric has one physical degree of freedom, 
which has been reduced to the conformal factor Ω ≡ √

gxx = 
√
−gtt. 

This does not mean that A would have had such luck in more than two dimensions. 
2In n dimensions the Riemann tensor has n2(n − 1)/12 independent components (Wald 

p. 54) and for n ≥ 3 the Ricci tensor has n(n + 1)/2 independent components. For n = 2 
and n = 3 the Weyl tensor vanishes identically and spacetime is conformally flat. Not 
so for n > 3. 

It would take a lot of effort to describe a complete synchronization in 3+1 spacetime 
using clocks and lasers. However, even without doing this we can be confident that 
the metric will not be conformally flat except for special spacetimes for which the Weyl 
tensor vanishes. Incidentally, in the weak-field limit conformally flat spacetimes have 
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no deflection of light (can you explain why?). The solar deflection of light rules out 
conformally flat spacetime theories including ones proposed by Nordstrom and Weyl. 

It is an interesting exercise to show how to transform an arbitrary metric of a 1+1 
spacetime to the conformally flat form. The simplest way is to compute the Ricci scalar. 
For the metric of equation (8), one finds 

R = Ω−2(∂2 − ∂2 
x) ln Ω2 . (9)t 

Starting from a 1+1 metric in a different form, one can compute R everywhere in space-
time. Equation (9) is then a nonlinear wave equation for Ω(t, x) with source R(t, x). It 
can be solved subject to initial Cauchy data on a spacelike hypersurface on which Ω = 1, 
∂tΩ = ∂xΩ = 0 (corresponding to locally flat coordinates). 

We have exhausted the analysis of 1+1 spacetime. Our observers have discerned one 
possible contradiction with special relativity: clocks run at different rates in different 
places (and perhaps at different times). If equation (9) gives Ricci scalar R = 0 ev
erywhere with Ω = 

√
−gtt, then the spacetime is really flat and we must be seeing the 

effects of accelerated motion in special relativity. If R = 0, then the variation of clocks 
is an entirely new phenomenon, which we call gravitational redshift. 

The metric for an accelerated observer 

It is informative to examine the problem from another perspective by working out the 
metric that an arbitrarily accelerating observer in a flat spacetime would deduce using 
the synchronization procedure of Section 2. We can then more clearly distinguish the 
effects of curvature (gravity) and acceleration. 

Figure 3 shows the situation prevailing in special relativity when observer A has 
µan arbitrary timelike trajectory xA(τA) where τA is the proper time measured by his 

atomic clock. While A’s worldline is erratic, those of light signals are not, because here 
t = x0 and x = x1 are flat coordinates in Minkowski spacetime. Given an arbitrary 

µworldline xA(τA), how can we possibly find the worldines of observers at fixed coordinate 
displacement as in the preceding section? 

The answer is the same as the answer to practically all questions of measurement in 
GR: use the metric! The metric of flat spacetime is the Minkowski metric, so the paths of 
laser pulses are very simple. We simply solve an algebra problem enforcing that Events 
1 and 2 are separated by a null geodesic (a straight line in Minkowski spacetime) and 
likewise for Events 2 and 3, as shown in Figure 3. Notice that the lengths (i.e. coordinate 
differences) of the two null rays need not be the same. 

The coordinates of Events 1 and 3 are simply the coordinates along A’s worldine, 
while those for Event 2 are to be determined in terms of A’s coordinates. As in Section 2, 
A defines the spatial coordinate of B to be twice the round-trip light-travel time. Thus, 

0if event 0 has x0 = tA(τ0), then Event 3 has x = tA(τ0 + 2L). For convenience we will 
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Figure 3: An accelerating observer sets up a coordinate system with an atomic clock, 
laser and detector. 

set τ0 ≡ τA − L. Then, according to the prescription of Section 2, A will assign to Event 
2 the coordinates (τA, L). The coordinates in our flat Minkowksi spacetime are 

Event 1: x 0 = tA(τA − L) , x 1 = xA(τA − L) , 

Event 2: x 0 = t(τA, L) , x 1 = x(τA, L) , 

Event 3: x 0 = tA(τA + L) , x 1 = xA(τA + L) . (10) 

Note that the argument τA for Event 2 is not an affine parameter along B’s wordline; 
it is the clock time sent to B by A. A second argument L is given so that we can look 
at a family of worldlines with different L. A is setting up coordinates by finding the 
spacetime paths corresponding to the coordinate lines L = constant and τA = constant. 
We are performing a coordinate transformation from (t, x) to (τA, L). 

Requiring that Events 1 and 2 be joined by a null geodesic in flat spacetime gives 
µ µthe condition x2 − x1 = (C1, C1) for some constant C1. The same condition for Events 

µ2 and 3 gives xµ = (C2,−C2) (with a minus sign because the light ray travels 3 − x2 

toward decreasing x). These conditions give four equations for the four unknowns C1, 
C2, t(τA, L), and x(τA, L). Solving them gives the coordinate transformation between 
(τA, L) and the Minkowski coordinates: 

1 
t(τA, L) = [tA(τA + L) + tA(τA − L) + xA(τA + L) − xA(τA − L)] ,

2

1


x(τA, L) = [xA(τA + L) + xA(τA − L) + tA(τA + L) − tA(τA − L)] . (11)
2 
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Note that these results are exact; they do not assume that L is small nor do they restrict 
A’s worldline in any way except that it must be timelike. The student may easily evaluate 

1 and C2 and show that they are not equal unless xA(τA + L) = xA(τA − L). 
Using equations (11), we may transform the Minkowski metric to get the metric in 

the coordinates A has set with his clock and laser, (τA, L): 

ds2 = −dt2 + dx2 = gttdτ 
2 + 2gtxdτAdL + gxxdL

2 . (12)A 

Substituting equations (11) gives the metric components in terms of A’s four-velocity 
components, 

−gtt = gxx = VA
t (τA + L) + V x 

A (τA + L) VA
t (τA − L) − VA

x(τA − L) , gtx = 0 . (13) 

This is precisely in the form of equation (8), as it must be because of the way in which 
A coordinatized spacetime. 

It is straightforward to work out the Riemann tensor from equation (13). Not surpris
ingly, it vanishes identically. Thus, an observer can tell, through measurements, whether 
he or she lives in a flat or nonflat spacetime. The metric is measurable. 

Now that we have a general result, it is worth simplifying to the case of an observer 
with constant acceleration gA in Minkowski spacetime. Problem 3 of Problem Set 1 
showed that one can write the trajectory of such an observer (up to the addition of 
constants) as x = g−1 cosh gAτA, t = g−1 sinh gAτA. Equation (13) then gives A A 

A + dL2 . (14)ds2 = e 2gAL −dτ 2 

One word of caution is in order about the interpretation of equation (14). Our 
derivation assumed that the acceleration gA is constant for observer A at L = 0. However, 
this does not mean that other observers (at fixed, nonzero L) have the same acceleration. 
To see this, we can differentiate equations (11) to derive the 4-velocity of observer B at 
(τA, L) and the relation between coordinate time τA and proper time along B’s worldline, 
with the result 

V µ 
B (τA, L) = (cosh gAτA, sinh gAτA) = (cosh gB τB , sinh gB τB ) , 

dτB 
= 

gA 
= egL . (15)

dτA gB 

The four-acceleration of B follows from aB = dV µµ
B /dτB = e−gLdV µ/dτA and its mag-

gAe
−gL nitude is therefore gB = . The proper acceleration varies with L precisely so 

that the proper distance between observers A and B, measured at constant τA, remains 
constant. 

4 Gravity versus acceleration in 1+1 spacetime 

Equation (14) gives one form of the metric for a flat spacetime as seen by an accelerating 
observer. There are many other forms, and it is worth noting some of them in order to 
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gain some intuition about the effects of acceleration. For simplicity, we will restrict our 
discussion here to static spacetimes, i.e. metrics with g0i = 0 and ∂tgµν = 0. In 1+1 
spacetime this means the line element may be written 

ds2 = −e 2φ(x)dt2 + e−2ψ(x)dx2 . (16) 

(The metric may be further transformed to the conformally flat form, eq. 8, but we leave 
it in this form because of its similarity to the form often used in 3 + 1 spacetime.) 

Given the metric (16), we would like to know when the spacetime is flat. If it is flat, 
we would like the explicit coordinate transformation to Minkowski. Both of these are 
straightforward in 1+1 spacetime. (One might hope for them also to be straightforward 
in more dimensions, at least in principle, but the algebra rapidly increases.) 

The definitive test for flatness is given by the Riemann tensor. Because the Weyl 
tensor vanishes in 1+1 spacetime, it is enough to examine the Ricci tensor. With equation 
(16), the Ricci tensor has nonvanishing components 

= −e−(φ+ψ) dg� dφφ+ψRtt = e φ+ψ dg� , Rxx where g�(x) = e φ g(x) = e . (17)
dx dx dx 

The function g(x) is the proper acceleration along the x-coordinate line, along which 
the tangent vector (4-velocity) is V µ = e−φ(1, 0). This follows from computing the 

V 

x


4-acceleration with equation (16) using the covariant prescription aµ(x) = �V V µ =


x
ν �ν V µ. The magnitude of the acceleration is then g(x) ≡ (gµν a

µaν )1/2, yielding g(x) =

e

x 
ψ dφ/dx. The factor eψ converts dφ/dx to g(x) = dφ/dl where dl = 

√
gxx dx measures 

proper distance. 
A stationary observer, i.e. one who remains at fixed spatial coordinate x, feels a time-

independent effective gravity g(x). Nongravitational forces (e.g. a rocket, or the contact 
force from a surface holding the observer up) are required to maintain the observer at 
fixed x. The gravity field g(x) can be measured very simply by releasing a test particle 
from rest and measuring its acceleration relative to the stationary observer. For example, 
we measure g on the Earth by dropping masses and measuring their acceleration in the 
lab frame. 

We will see following equation (18) below why the function �g(x) = (dτ /dt)g(x) rather 
than g(x) determines curvature. For now, we simply note that equation (17) implies that 
spacetime curvature is given (for a static 1+1 metric) by the gradient of the gravitational 
redshift factor 

√
−gtt = eφ rather than by the �gravity� (i.e. acceleration) gradient 

dg/dx. 
In linearized gravitation, g = g� and so we deduced (in the notes Gravitation in 

the Weak-Field Limit) that a spatially uniform gravitational (gravitoelectric) field can 
be transformed away by making a global coordinate transformation to an accelerating 
frame. For strong fields, g = �g and it is no longer true that a uniform gravitoelectric field 
can be transformed away. Only if the gravitational redshift factor eφ(x) varies linearly 
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with proper distance, i.e. g� ≡ d(eφ)/dl is a constant, is spacetime is flat, enabling one 
to transform coordinates so as to remove all evidence for acceleration. If, on the other 
hand, d�g/dx = 0 � even if dg/dx = 0 � then the spacetime is not flat and no coordinate 
transformation can transform the metric to the Minkowski form. 

Suppose we have a line element for which �g(x) = constant. We know that such a 
spacetime is flat, because the Ricci tensor (hence Riemann tensor, in 1+1 spacetime) 
vanishes everywhere. What is the coordinate transformation to Minkowski? 

µ̄The transformation may be found by writing the metric as g = ΛT ηΛ where Λ = ν 
¯∂ ̄ ¯xµ/∂xν is the Jacobian matrix for the transformation x(x). (Note that here g is the 

¯matrix with entries gµν and not the gravitational acceleration!) By writing t̄ = t(t, x) 
¯ ¯and x = x(t, x), substituting into g = ΛT ηΛ, using equation (16) and imposing the 

integrability conditions ∂2¯ t/∂x∂t and ∂2 ̄ x/∂x∂t, one finds t/∂t∂x = ∂2¯ x/∂t∂x = ∂2 ̄

1 1 
g t , x(t, x) = cosh �t̄(t, x) = sinh � ¯ g t if 

dg�
= 0 , (18) 

g g dx 

up to the addition of irrelevant constants. We recognize this result as the trajectory in 
flat spacetime of a constantly accelerating observer. 

Equation (18) is easy to understand in light of the discussion following equation (14). 
The proper time τ for the stationary observer at x is related to coordinate time t by 
dτ = −gtt(x) dt = eφdt. Thus, g(x)τ = eφ g t = g t or, in the notation of equation 

e
(15), gB τB = gAτA (since τA was used there as the global t-coordinate). The condition 
φ g = g�(x) = constant amounts to requiring that all observers be able to scale their 
gravitational accelerations to a common value for the observer at φ(x) = 0, �g. If they 
cannot (i.e. if d�g/dx = 0), then the metric is not equivalent to Minkowski spacetime 
seen in the eyes of an accelerating observer. 

With equations (16)�(18) in hand, we can write the metric of a flat spacetime in 
several new ways, with various spatial dependence for the acceleration of our coordinate 
observers: 

2�g x(−dt2 g x ds2 = e + dx2) , g(x) = �g e−� (19) 
12= −g� (x − x0)

2dt2 + dx2 , g(x) = (20) 
x − x0 

= −[2� g(x − x0)]
−1dx2 , g(x) = 

2(x − x0) 
. (21)g(x − x0)]dt

2 + [2�
g�

The first form was already given above in equation (14). The second and third forms are 
peculiar in that there is a coordinate singularity at x = x0; these coordinates only work 
for x > x0. This singularity is very similar to the one occuring in the Schwarzschild line 
element. Using the experience we have obtained here, we will remove the Schwarzschild 
singularity at r = 2GM by performing a coordinate transformation similar to those used 
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here. The student may find it instructive to write down the coordinate transformations 
for these cases using equation (18) and drawing the (t, x) coordinate lines on top of 
the Minkowski coordinates (¯ x). While the singularity at x = x0 can be transformed t, ¯
away, it does signal the existence of an event horizon. Equation (20) is called Rindler 
spacetime. Its event horizon is discussed briefly in Schutz (p. 150) and in more detail 
by Wald (pp. 149�152). 

Actually, equation (21) is closer to the Schwarzschild line element. Indeed, it becomes 
the r-t part of the Schwarzschild line element with the substitutions x → r, −2�gx0 → 1 
and �g → −GM/r2 . These identifications show that the Schwarzschild spacetime differs 
from Minkowski in that the acceleration needed to remain stationary is radially directed 
and falls off as e−φ r−2 . We can understand many of its features through this identification 
of gravity and acceleration. 

For completeness, I list three more useful forms for a flat spacetime line element: 

2gds2 = dt2 + � (t − t0)
2dx2 , g(x) = 0 (22)−

= dU dV (23)−
= −e v−ududv . (24) 

The first is similar to Rindler spacetime but with t and x exchanged. The result is 
suprising at first: the acceleration of a stationary observer vanishes. Equation (22) has 
the form of Gaussian normal or synchronous coordinates (Wald, p. 42). It represents 
the coordinate frame of a freely-falling observer. It is interesting to ask why, if the 
observer is freely-falling, the line element does not reduce to Minkowski despite the fact 
that this spacetime is flat. The answer is that different observers (i.e., worldlines of 
different x) are in uniform motion relative to one another. In other words, equation (22) 
is Minkowski spacetime in expanding coordinates. It is very similar to the Robertson-
Walker spacetime, which reduces to it (short of two spatial dimensions) when the mass 
density is much less than the critical density. 

Equations (23) and (24) are Minkowski spacetime in null (or light-cone) coordinates. 
x, V = t̄+ ¯For example, U = t̄− ¯ x. These coordinates are useful for studying horizons. 

s

Having derived many results in 1 + 1 spacetime, I close with the cautionary remark 
that in 2 + 1 and 3 + 1 spacetime, there are additional degrees of freedom in the met
ric that are quite unlike Newtonian gravity and cannot be removed (even locally) by 
transformation to a linearly accelerating frame. Nonetheless, it should be possible to 
extend the treatment of these notes to account for these effects � gravitomagnetism and 
gravitational radiation. As shown in the notes Gravitation in the Weak-Field Limit, a 
uniform gravitomagnetic field is equivalent to uniformly rotating coordinates. Gravita
tional radiation is different; there is no such thing as a spatially uniform gravitational 
wave. However, one can always choose coordinates so that gravitational radiation strain 
ij and its first derivatives vanish at a point. 
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Introduction 

Action principles are widely used to express the laws of physics, including those of 
general relativity. For example, freely falling particles move along geodesics, or curves 
of extremal path length. 

Symmetry transformations are changes in the coordinates or variables that leave the 
action invariant. It is well known that continuous symmetries generate conservation laws 
(Noether’s Theorem). Conservation laws are of fundamental importance in physics and 
so it is valuable to investigate symmetries of the action. 

It is useful to distinguish between two types of symmetries: dynamical symmetries 
corresponding to some inherent property of the matter or spacetime evolution (e.g. the 
metric components being independent of a coordinate, leading to a conserved momentum 
one-form component) and nondynamical symmetries arising because of the way in 
which we formulate the action. Dynamical symmetries constrain the solutions of the 
equations of motion while nondynamical symmetries give rise to mathematical identities. 
These notes will consider both. 

An example of a nondynamical symmetry is the parameterization-invariance of the 
path length, the action for a free particle: 

� τ2 
� τ2 dxµ dxν 

�1/2 

S[xµ(τ )] = L1 (x
µ(τ ), ẋµ(τ ), τ ) dτ = gµν (x) dτ . (1) 

τ1 τ1 dτ dτ 

This action is invariant under arbitrary reparameterization τ τ �(τ ), implying that any →
solution xµ(τ ) of the variational problem δS = 0 immediately gives rise to other solutions 
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yµ(τ ) = xµ(τ �(τ )). Moreover, even if the action is not extremal with Lagrangian L1 for 
some (non-geodesic) curve xµ(τ ), it is still invariant under reparameterization of that 
curve. 

There is another nondynamical symmetry of great importance in general relativity, 
coordinate-invariance. Being based on tensors, equations of motion in general relativity 
hold regardless of the coordinate system. However, when we write an action involving 
tensors, we must write the components of the tensors in some basis. This is because 
the calculus of variations works with functions, e.g. the components of tensors, treated 
as spacetime fields. Although the values of the fields are dependent on the coordinate 
system chosen, the action must be a scalar, and therefore invariant under coordinate 
transformations. This is true whether or not the action is extremized and therefore it is 
a nondynamical symmetry. 

Nondynamical symmetries give rise to special laws called identities. They are distinct 
from conservation laws because they hold whether or not one has extremized the action. 

The material in these notes is generally not presented in this form in the GR text
books, although much of it can be found in Misner et al if you search well. Although these 
symmetry principles and methods are not needed for integrating the geodesic equation, 
they are invaluable in understanding the origin of the contracted Bianchi identities and 
stress-energy conservation in the action formulation of general relativity. More broadly, 
they are the cornerstone of gauge theories of physical fields including gravity. 

Starting with the simple system of a single particle, we will advance to the Lagrangian 
formulation of general relativity as a classical field theory. We will discover that, in the 
field theory formulation, the contracted Bianchi identities arise from a non-dynamical 
symmetry while stress-energy conservation arises from a dynamical symmetry. Along 
the way, we will explore Killing vectors, diffeomorphisms and Lie derivatives, the stress-
energy tensor, electromagnetism and charge conservation. We will discuss the role of 
continuous symmetries (gauge invariance and diffeomorphism invariance or general co
variance) for a simple model of a relativistic fluid interacting with electromagnetism and 
gravity. Although this material goes beyond what is presented in lecture, it is not very 
advanced mathematically and it is recommended reading for students wishing to under
stand gauge symmetry and the parallels between gravity, electromagnetism, and other 
gauge theories. 

2 Parameterization-Invariance of Geodesics 

The parameterization-invariance of equation (1) may be considered in the broader con
text of Lagrangian systems. Consider a system with n degrees of freedom — the gen
eralized coordinates qi — with a parameter t giving the evolution of the trajectory in 
configuration space. (In eq. 1, qi is denoted xµ and t is τ .) We will drop the superscript 

ion q when it is clear from the context. 
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Theorem: If the action S[q(t)] is invariant under the infinitesimal transformation 
t t + �(t) with � = 0 at the endpoints, then the Hamiltonian vanishes identically. →

The proof is straightforward. Given a parameterized trajectory qi(t), we define a new 
parameterized trajectory q̄(t) = q(t + �). The action is 

t2 

S[q(t)] = L(q, q̇, t) dt . (2) 
t1 

Linearizing q̄(t) for small �, 

dq̄ d 
q̄(t) = q + q̇� , = q̇ + ( ̇q�) . 

dt dt 
The change in the action under the transformation t t + � is, to first order in �, 

S[q(t + �)] − S[q(t)] = 

= 

= 

� t2 

t1 

� 

� t2 

t1 

� 

[L�]t2 
t1 

→ 

∂L 
∂t 

� + 
∂L 
∂qi 

q̇i� + 
∂L 
∂q̇i 

dL 
dt 

� + 

� 
∂L 
∂q̇i 

q̇i 

� 
d� 
dt 

� 

+ 
� t2 

t1 

� 
∂L 
∂q̇i 

q̇i − L 

� 

d 
dt 

dt 

d� 
dt 

( ̇q i�) 

� 

dt . 

dt 

(3) 

The boundary term vanishes because � = 0 at the endpoints. Parameterization-invariance 
means that the integral term must vanish for arbitrary d�/dt, implying 

∂L 
H ≡ 

∂q̇i 
q̇i − L = 0 . (4) 

Nowhere did this derivation assume that the action is extremal or that qi(t) satisfy the 
Euler-Lagrange equations. Consequently, equation (4) is a nondynamical symmetry. 

The reader may easily check that the Hamiltonian H1 constructed from equation 
(1) vanishes identically. This symmetry does not mean that there is no Hamiltonian 
formulation for geodesic motion, only that the Lagrangian L1 has non-dynamical degrees 
of freedom that must be eliminated before a Hamiltonian can be constructed. (A similar 
circumstance arises in non-Abelian quantum field theories, where the non-dynamical 
degrees of freedom are called Faddeev-Popov ghosts.) This can be done by replacing the 
parameter with one of the coordinates, reducing the number of degrees of freedom in the 
action by one. It can also be done by changing the Lagrangian to one that is no longer 

1 xµ ˙ νinvariant under reparameterizations, e.g. L2 = 
2 gµν ˙ x . In this case, ∂L2/∂τ = 0 leads 

1to a dynamical symmetry, H2 = 
2 g

µν pµpν = constant along trajectories which satisfy the 
equations of motion. 

The identity H1 = 0 is very different from the conservation law H2 = constant arising 
from a time-independent Lagrangian. The conservation law holds only for solutions of the 
equations of motion; by contrast, when the action is parameterization-invariant, H1 = 0 
holds for any trajectory. The nondynamical symmetry therefore does not constrain the 
motion. 
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3 Generalized Translational Symmetry 

Continuing with the mechanical analogy of Lagrangian systems exemplified by equation 
(2), in this section we consider translations of the configuration space variables. If the 

iLagrangian is invariant under the translation qi(t) → qi(t) + a for constant ai, then 
pia

i is conserved along trajectories satisfying the Euler-Lagrange equations. This well-
known example of translational invariance is the prototypical dynamical symmetry, and 
it follows directly from the Euler-Lagrange equations. In this section we generalize the 
concept of translational invariance by considering spatially-varying shifts and coordinate 
transformations that leave the action invariant. Along the way we will introduce several 
important new mathematical concepts. 

In flat spacetime it is common to perform calculations in one reference frame with 
a fixed set of coordinates. In general relativity there are no preferred frames or coordi
nates, which can lead to confusion unless one is careful. The coordinates of a trajectory 
may change either because the trajectory has been shifted or because the underlying 
coordinate system has changed. The consequences of these alternatives are very dif
ferent: under a coordinate transformation the Lagrangian is a scalar whose form and 
value are unchanged, while the Lagrangian can change when a trajectory is shifted. The 
Lagrangian is always taken to be a scalar in order to ensure local Lorentz invariance (no 
preferred frame of reference). In this section we will carefully sort out the effects of both 
shifting the trajectory and transforming the coordinates in order to identify the under
lying symmetries. As we will see, conservation laws arise when shifting the trajectory is 
equivalent to a coordinate transformation. 

We consider a general, relativistically covariant Lagrangian for a particle, which de
pends on the velocity, the metric, and possibly on additional fields: 

� τ2 

S[x(τ )] = L(gµν , Aµ, . . . , ẋ
µ) dτ . (5) 

τ1 

Note that the coordinate-dependence occurs in the fields gµν (x) and Aµ(x). An example 
of such a Lagrangian is 

1 
xµ ˙ νL = gµν ˙ x + qAµẋ

µ . (6)
2 

The first piece is the quadratic Lagrangian L2 that gives rise to the geodesic equation. 
The additional term gives rise to a non-gravitational force. The Euler-Lagrange equation 
for this Lagrangian is 

D2xµ dxν 

dτ 2 
= qF µν dτ 

, Fµν = ∂µAν − ∂ν Aµ = µ ν Aµ . (7)� Aν −�

We see that the non-gravitational force is the Lorentz force for a charge q, assuming 
that the units of the affine parameter τ are chosen so that dxµ/dτ is the 4-momentum 
(i.e. mdτ is proper time for a particle of mass m). The one-form field Aµ(x) is the 
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Figure 1: A vector field and its integral curves. 

electromagnetic potential. We will retain the electromagnetic interaction term in the 
Lagrangian in the presentation that follows in order to illustrate more broadly the effects 
of symmetry. 

Symmetry appears only when a system is changed. Because L is a scalar, coordinate 
transformations for a fixed trajectory change nothing and therefore reveal no symmetry. 
So let us try changing the trajectory itself. Keeping the coordinates (and therefore 
the metric and all other fields) fixed, we will shift the trajectory along the integral 
curves of some vector field ξµ(x). (Here ξ� is any vector field.) As we will see, a vector 
field provides a one-to-one mapping of the manifold back to itself, providing a natural 
translation operator in curved spacetime. 

Figure 1 shows a vector field and its integral curves xµ(λ, τ) where τ labels the curve 
and λ is a parameter along each curve. Any vector field ξ�(x) has a unique set of integral 
curves whose tangent vector is ∂xµ/∂λ = ξµ(x). If we think of ξ�(x) as a fluid velocity 
field, then the integral curves are streamlines, i.e. the trajectories of fluid particles. 

The integral curves of a vector field provide a continuous one-to-one mapping of the 
manifold back to itself, called a pushforward. (The mapping is one-to-one because the 
integral curves cannot intersect since the tangent is unique at each point.) Figure 2 
illustrates the pushforward. This mapping associates each point on the curve xµ(τ) with 
a corresponding point on the curve yµ(τ). For example, the point P0 (λ = 0, τ = 3) 
is mapped to another point P (λ = 1, τ = 3). The mapping x → y is obtained by 
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P0 

P 

xµ(τ) 

yµ(τ) 

λ=0 

λ=1 

τ=0 

Figure 2: Using the integral curves of a vector field to shift a curve xµ(τ) to a new curve 
yµ(τ). The shift, known as a pushforward, defines a continuous one-to-one mapping of 
the space back to itself. 

integrating along the vector field ξ�(x): 

∂xµ 

= ξµ(x) , xµ(λ = 0, τ) ≡ xµ(τ) , yµ(τ) ≡ xµ(λ = 1, τ) . (8)
∂λ 

The shift amount λ = 1 is arbitrary; any shift along the integral curves constitutes a 
pushforward. The inverse mapping from y → x is called a pullback. 

The pushforward generalizes the simple translations of flat spacetime. A finite trans
lation is built up by a succession of infinitesimal shifts yµ = xµ + ξµdλ. Because the 
vector field ξ�(x) is a tangent vector field, the shifted curves are guaranteed to reside in 
the manifold. 

Applying an infinitesimal pushforward yields the action 
� τ2 

S[x(τ) + ξ(x(τ))dλ] = L(gµν (x + ξdλ), Aµ(x + ξdλ), ẋµ + ξ̇µdλ) dτ . (9) 
τ1 

This is similar to the usual variation xµ xµ + δxµ used in deriving the Euler-Lagrange →
equations, except that ξ is a field defined everywhere in space (not just on the trajectory) 
and we do not require ξ = 0 at the endpoints. Our goal here is not to find a trajectory 
that makes the action stationary; rather it is to identify symmetries of the action that 
result in conservation laws. 

We will ask whether applying a pushforward to one solution of the Euler-Lagrange 
equations leaves the action invariant. If so, there is a dynamical symmetry and we 
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will obtain a conservation law. Note that our shifts are more general than the uniform 
translations and rotations considered in nonrelativistic mechanics and special relativity 
(here the shifts can vary arbitrarily from point to point, so long as the transformation 
has an inverse), so we expect to find more general conservation laws. 

On the face of it, any pushforward changes the action: 

� τ2 ∂L ∂L ∂L dξµ 

S[x(τ) + ξ(x(τ))dλ] = S[x(τ)] + dλ (∂αgµν )ξ
α + (∂αAµ)ξα + dτ . 

τ1 ∂gµν ∂Aµ ∂ẋµ dτ 
(10) 

It is far from obvious that the term in brackets ever would vanish. However, we have one 
more tool to use at our disposal: coordinate transformations. Because the Lagrangian 
is a scalar, we are free to transform coordinates. In some circumstances the effect of the 
pushforward may be eliminated by an appropriate coordinate transformation, revealing 
a symmetry. 

We consider transformations of the coordinates xµ xµ(x), where we assume this ¯→
mapping is smooth and one-to-one so that ∂x̄µ/∂xα is nonzero and nonsingular every
where. A trajectory xµ(τ) in the old coordinates becomes ¯ xµ(τ) in the new xµ(x(τ)) ≡ ¯
ones, where τ labels a fixed point on the trajectory independently of the coordinates. 

The action depends on the metric tensor, one-form potential and velocity components, 
which under a coordinate transformation change to 

∂xα ∂xβ ∂xα d¯ ∂¯xµ xµ dxα 

µ¯ = gαβ 
∂¯ν 

, A¯ = Aα , = . (11)g¯ν 
xµ µ

∂¯ x ∂x̄µ dτ ∂xα dτ 

We have assumed that ∂x̄µ/∂xα is invertible. Under coordinate transformations the 
action does not even change form (only the coordinate labels change), so coordinate 
transformations alone cannot generate any nondynamical symmetries. However, we will 
show below that coordinate invariance can generate dynamical symmetries which apply 
only to solutions of the Euler-Lagrange equations. 

Under a pushforward, the trajectory xµ(τ) is shifted to a different trajectory with 
¯coordinates yµ(τ). After the pushforward, we transform the coordinates to xµ(y(τ)). 

Because the pushforward is a one-to-one mapping of the manifold to itself, we are free 
¯ ¯ xµ(τ) = xµ(τ).to choose our coordinate transformation so that x = x, i.e. xµ(y(τ)) ≡ ¯

In other words, we transform the coordinates so that the new coordinates of the new 
trajectory are the same as the old coordinates of the old trajectory. The pushforward 
changes the trajectory; the coordinate transformation covers our tracks. 

The combination of pushforward and coordinate transformation is an example of a 
diffeomorphism. A diffeomorphism is a one-to-one mapping between the manifold and 
itself. In our case, the pushforward and transformation depend on one parameter λ and 
we have a one-parameter family of diffeomorphisms. After a diffeomorphism, the point 
P in Figure 2 has the same values of the transformed coordinates as the point P0 has in 
the original coordinates: xµ(λ, τ) = xµ(τ).¯
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Naively, it would seem that a diffeomorphism automatically leaves the action un
changed because the coordinates of the trajectory are unchanged. However, the La
grangian depends not only on the coordinates of the trajectory; it also depends on tensor 
components that change according to equation (11). More work will be required before 
we can tell whether the action is invariant under a diffeomorphism. While a coordinate 
transformation by itself does not change the action, in general a diffeomorphism, because 
it involves a pushforward, does. A continuous symmetry occurs when a diffeomorphism 
does not change the action. This is the symmetry we will be studying. 

The diffeomorphism is an important operation in general relativity. We therefore 
digress to consider the diffeomorphism in greater detail before returning to examine its 
effect on the action. 

3.1 Infinitesimal Diffeomorphisms and Lie derivatives 

In a diffeomorphism, we shift the point at which a tensor is evaluated by pushing it 
forward using a vector field and then we transform (pull back) the coordinates so that 
the shifted point has the same coordinate labels as the old point. Since a diffeomor
phism maps a manifold back to itself, under a diffeomorphism a rank (m, n) tensor is 
mapped to another rank (m, n) tensor. This subsection asks how tensors change under 
diffeomorphisms. 

The pushforward mapping may be symbolically denoted φλ (following Wald 1984, 
Appendix C). Thus, a diffeomorphism maps a tensor T(P0) at point P0 to a tensor 
T̄(P ) ≡ φλT(P0) such that the coordinate values are unchanged: xµ(P ) = xµ(P0). (See ¯
Fig. 2 for the roles of the points P0 and P .) The diffeomorphism may be regarded as an 
active coordinate transformation: under a diffeomorphism the spatial point is changed 
but the coordinates are not. 

We illustrate the diffeomorphism by applying it to the components of the one-form 
Ã = Aµẽ

µ in a coordinate basis: 

∂xα 

Āµ(P0) ≡ Aα(P ) (P ) , where xµ(P ) = xµ(P0) . (12)¯
xµ∂ ̄

Starting with Aα at point P0 with coordinates xµ(P0), we push the coordinates forward 
to point P , we evaluate Aα there, and then we transform the basis back to the coordinate 
basis at P with new coordinates x̄µ(P ). 

The diffeomorphism is a continuous, one-parameter family of mappings. Thus, a 
general diffeomorphism may be obtained from the infinitesimal diffeomorphism with 
pushforward yµ = xµ + ξµdλ. The corresponding coordinate transformation is (to first 
order in dλ) 

x̄µ = xµ − ξµdλ (13) 
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so that x̄µ(P ) = xµ(P0). This yields (in the xµ coordinate system) 

∂xα 

Āµ(x) ≡ Aα(x + ξdλ) = Aµ(x) + [ξα∂αAµ(x) + Aα(x)∂µξ
α] dλ + O(dλ)2 . (14) 

xµ∂ ̄

xµ/∂xα = δµ
α − ∂αξµdλ to first order in dλ, ∂xα/∂ ̄We have inverted the Jacobian ∂ ̄ xµ = 

δα
µ + ∂µξ

αdλ + O(dλ)2 . In a similar manner, the infinitesimal diffeomorphism of the 
metric gives 

∂xα ∂xβ 

ḡµν (x) gαβ (x + ξdλ)≡ 
∂ ̄ xxµ ∂ ̄ ν 

= gµν (x) + [ξα∂αgµν (x) + gαν (x)∂µξ
α + gµα(x)∂ν ξ

α] dλ + O(dλ)2 . (15) 

¯In general, the infinitesimal diffeomorphism T ≡ φΔλT changes the tensor by an 
amount first-order in Δλ and linear in ξ�. This change allows us to define a linear 
operator called the Lie derivative: 

with ¯Lξ T ≡ lim 
φΔλT(x) − T(x) 

xµ(P ) = xµ(P0) = xµ(P ) − ξµΔλ + O(Δλ)2 . (16)
Δλ→0 Δλ 

The Lie derivatives of Aµ(x) and gµν (x) follow from equations (14)–(16): 

Lξ Aµ(x) = ξα∂αAµ + Aα∂µξ
α , Lξ gµν (x) = ξα∂αgµν + gαν ∂µξ

α + gµα∂ν ξ
α . (17) 

The first term of the Lie derivative, ξα∂α, corresponds to the pushforward, shifting a 
tensor to another point in the manifold. The remaining terms arise from the coordinate 
transformation back to the original coordinate values. As we will show in the next 
subsection, this combination of terms makes the Lie derivative a tensor in the tangent 
space at xµ. 

Under a diffeomorphism the transformed tensor components, regarded as functions 
of coordinates, are evaluated at exactly the same numerical values of the transformed 
coordinate fields (but a different point in spacetime!) as the original tensor components in 
the original coordinates. This point is fundamental to the diffeomorphism and therefore 
to the Lie derivative, and distinguishes the latter from a directional derivative. Thinking 
of the tensor components as a set of functions of coordinates, we are performing an active 
transformation: the tensor component functions are changed but they are evaluated at 
the original values of the coordinates. The Lie derivative generates an infinitesimal 
diffeomorphism. That is, under a diffeomorphism with pushforward xµ xµ + ξµdλ,→
any tensor T is transformed to T + Lξ Tdλ. 

The fact that the coordinate values do not change, while the tensor fields do, dis
tinguishes the diffeomorphism from a simple coordinate transformation. An important 
implication is that, in integrals over spacetime volume, the volume element d4x does not 
change under a diffeomorphism, while it does change under a coordinate transformation. 
By contrast, the volume element 

√−g d4x is invariant under a coordinate transformation 
but not under a diffeomorphism. 
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3.2 Properties of the Lie Derivative 

The Lie derivative Lξ is similar to the directional derivative operator �ξ in its properties 
but not in its value, except for a scalar where Lξ f = �ξ f = ξµ∂µf . The Lie derivative of 
a tensor is a tensor of the same rank. To show that it is a tensor, we rewrite the partial 
derivatives in equation (17) in terms of covariant derivatives in a coordinate basis using 
the Christoffel connection coefficients to obtain 

Lξ Aµ = ξα �αAµ + Aα�µξ
α + T αµβ Aαξβ , 

Lξ gµν = ξα �αgµν + gαν �µξ
α + gµα�ν ξ

α + T αµβ gαν ξ
β + T ανβ gµαξβ , (18) 

where T αµβ is the torsion tensor, defined by T αµβ = Γα
µβ − Γα

βµ in a coordinate basis. 
The torsion vanishes by assumption in general relativity. Equations (18) show that Lξ Aµ 

and Lξ gµν are tensors. 
The Lie derivative Lξ differs from the directional derivative �ξ in two ways. First, 

the Lie derivative requires no connection: equation (17) gave the Lie derivative solely 
in terms of partial derivatives of tensor components. [The derivatives of the metric 
should not be regarded here as arising from the connection; the Lie derivative of any 
rank (0, 2) tensor has the same form as Lξ gµν in eq. 17.] Second, the Lie derivative 
involves the derivatives of the vector field ξ� while the covariant derivative does not. The 
Lie derivative trades partial derivatives of the metric (present in the connection for the 
covariant derivative) for partial derivatives of the vector field. The directional derivative 
tells how a fixed tensor field changes as one moves through it in direction ξ�. The Lie 
derivative tells how a tensor field changes as it is pushed forward along the integral curves 
of ξ�. 

More understanding of the Lie derivative comes from examining the first-order change 
in a vector expanded in a coordinate basis under a displacement �ξdλ: 

d � � A(x) = Aµ(x + ξdλ)�eµ(x + ξdλ) − Aµ(x)�eµ(x) . (19)A = A(x + ξdλ) − �

The nature of the derivative depends on how we obtain �eµ(x + ξdλ) from �eµ(x). For 
the directional derivative �ξ , the basis vectors at different points are related by the 
connection: 

�eµ(x + ξλ) = δβ
µ + dλ ξαΓβ

µα �eβ (x) for �ξ . (20) 

For the Lie derivative Lξ , the basis vector is mapped back to the starting point with 

∂¯βx
�eµ(x + ξdλ) = �eβ (x) = δβ

µ − dλ ∂µξ
β �eβ (x) for Lξ . (21)

∂xµ 

Similarly, the basis one-form is mapped using 

∂xµ 

ẽµ(x + ξdλ) = ẽβ (x) = δµ
β + dλ ∂β ξ

µ ẽβ (x) for Lξ . (22)
∂¯βx
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A/dλ = Lξ A is a tangent vector on the manifold. These mappings ensure that d � �

The Lie derivative of any tensor may be obtained using the following rules: (1) The 
Lie derivative of a scalar field is the directional derivative, Lξ f = ξα∂αf = �ξ f . (2) 
The Lie derivative obeys the Liebnitz rule, Lξ (T U) = (Lξ T )U + T (Lξ U), where T and 
U may be tensors of any rank, with a tensor product or contraction between them. The 
Lie derivative commutes with contractions. (3) The Lie derivatives of the basis vectors 
are Lξ�eµ = −�eα∂µξ

α . (4) The Lie derivatives of the basis one-forms are Lξ ẽ
µ = ẽα∂αξµ. 

These rules ensure that the Lie derivative of a tensor is a tensor. Using them, the 
Lie derivative of any tensor may be obtained by expanding the tensor in a basis, e.g. for 
a rank (1, 2) tensor, 

ν ⊗ ˜κ) ≡ (Lξ S
µ
νκ) �µ ⊗ ˜ν ⊗ ˜κ Lξ S = Lξ (S

µ �µ ⊗ ẽ e e e eνκe
ν ⊗ ˜κ = [ξα∂αSµ

νκ − Sα
νκ∂αξµ + Sµ

ακ∂ν ξ
α + Sµ

να∂κξ
α] �eµ ⊗ ẽ e . (23) 

The partial derivatives can be changed to covariant derivatives without change (with 
vanishing torsion, the connection coefficients so introduced will cancel each other), con
firming that the Lie derivative of a tensor really is a tensor. 

The Lie derivative of a vector field is an antisymmetric object known also as the 
commutator or Lie bracket: 

LV U = (V µ∂µU
ν − Uµ∂µV ν )�eν ≡ [V , �� � U ] . (24) 

The commutator was introduced in the notes Tensor Calculus, Part 2, Section 2.2. With 
� U ] = �V U −�U V . Using rule (4) of the Lie derivative given after vanishing torsion, [V , � � �

equation (22), it follows at once that the commutator of any pair of coordinate basis 
vector fields vanishes: [�eµ, �eν ] = 0. 

3.3 Diffeomorphism-invariance and Killing Vectors 

Having defined and investigated the properties of diffeomorphisms and the Lie derivative, 
we return to the question posed at the beginning of Section 3: How can we tell when the 
action is translationally invariant? Equation (10) gives the change in the action under a 
generalized translation or pushforward by the vector field ξ�. However, it is not yet in a 
form that highlights the key role played by diffeomorphisms. 

To uncover the diffeomorphism we must perform the infinitesimal coordinate trans
formation given by equation (13). To first order in dλ this has no effect on the dλ term 
already on the right-hand side of equation (10) but it does add a piece to the unperturbed 
action. Using equation (11) and the fact that the Lagrangian is a scalar, to O(dλ) we 
obtain 

� τ2 
� τ2 xµ 

S[x(τ)] = L(gµν , Aµ, ẋ
µ) dτ = L gαβ 

∂¯ν 
, Aα , dτ 

∂xα ∂xβ ∂xα dxα ∂¯

xµ xµ dτ ∂xατ1 τ1 ∂¯ x ∂¯
� τ2 ∂L ∂L ∂L dξµ 

= S[x(τ)] + dλ 
∂gµν 

(gαν ∂µξ
α + gµα∂ν ξ

α) + (Aα∂µξ
α) − dτ . (25) 

τ1 ∂Aµ ∂ẋµ dτ 
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The integral multiplying dλ always has the value zero for any trajectory xµ(τ) and 
vector field ξ� because of the coordinate-invariance of the action. However, it is a special 
kind of zero because, when added to the pushforward term of equation (10), it gives a 
diffeomorphism: 

� τ2 ∂L ∂L 
S[x(τ) + ξ(x(τ))dλ] = S[x(τ)] + dλ 

τ1 ∂gµν 
Lξ gµν + 

∂Aµ 
Lξ Aµ dτ . (26) 

If the action contains additional fields, under a diffeomorphism we obtain a Lie derivative 
term for each field. 

Thus, we have answered the question of translation-invariance: the action is transla
tionally invariant if and only if the Lie derivative of each tensor field appearing in the 
Lagrangian vanishes. The uniform translations of Newtonian mechanics are generalized 
to diffeomorphisms, which include translations, rotations, boosts, and any continuous, 
one-to-one mapping of the manifold back to itself. 

In Newtonian mechanics, translation-invariance leads to a conserved momentum. 
What about diffeomorphism-invariance? Does it also lead to a conservation law? 

Let us suppose that the original trajectory xµ(τ) satisfies the equations of motion 
before being pushed forward, i.e. the action, with Lagrangian L(gµν (x), Aµ, ẋ

µ), is sta
tionary under first-order variations xµ xµ + δxµ(x) with fixed endpoints δxµ(τ1) = →
δxµ(τ2) = 0. From equation (26) it follows that the action for the shifted trajectory is 
also stationary, if and only if Lξ gµν = 0 and Lξ Aµ = 0. (When the trajectory is varied 
xµ xµ + δxµ, cross-terms ξδx are regarded as being second-order and are ignored.) →

If there exists a vector field ξ� such that Lξ gµν = 0 and Lξ Aµ = 0, then we can 
shift solutions of the equations of motion along ξ�(x(τ)) and generate new solutions. 
This is a new continuous symmetry called diffeomorphism-invariance, and it generalizes 
translational-invariance in Newtonian mechanics and special relativity. The result is a 
dynamical symmetry, which may be deduced by rewriting equation (26): 

� τ2S[x(τ) + ξ(x(τ))Δλ] − S[x(τ)] ∂L ∂L Lξ Aµlim = dτ 
Δλ→0 Δλ τ1 ∂gµν 

Lξ gµν + 
∂Aµ 

� τ2 ∂L ∂L dξµ 

= ξα + dτ 
τ1 ∂xα ∂ẋµ dτ 

� τ2 d ∂L ∂L dξµ 

= ξµ + dτ 
τ1 dτ ∂ẋµ ∂ẋµ dτ 

� τ2 d 
= (pµξ

µ) dτ 
τ1 dτ 

= [pµξ
µ]τ2 . (27)τ1 

All of the steps are straightforward aside from the second line. To obtain this we first 
expanded the Lie derivatives using equation (17). The terms multiplying ξα were then 
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combined to give ∂L/∂xα (regarding the Lagrangian as a function of xµ and ẋµ). For 
the terms multiplying the gradient ∂µξ

α , we used dξµ(x(τ ))/dτ = ẋα∂αξµ combined 
with equation (6) to convert partial derivatives of L with respect to the fields gµν and 
Aµ to partial derivatives with respect to ẋµ. (This conversion is dependent on the 

xµ ˙ νLagrangian, of course, but works for any Lagrangian that is a function of gµν ˙ x and 
Aµẋ

µ.) To obtain the third line we used the assumption that xµ(τ ) is a solution of the 
Euler-Lagrange equations. To obtain the fourth line we used the definition of canonical 
momentum, 

∂L 
. (28)pµ ≡ 

xµ∂ ˙
For the Lagrangian of equation (6), pµ = gµν ẋ

ν + qAµ is not the mechanical momentum 
(the first term) but also includes a contribution from the electromagnetic field. 

Nowhere in equation (27) did we assume that ξµ vanishes at the endpoints. The 
vector field ξ� is not just a variation used to obtain equations of motion, nor is it a 
constant; it is an arbitrary small shift. 

Theorem: If the Lagrangian is invariant under the diffeomorphism generated by a 
p(�vector field ξ�, then ˜ ξ ) = pµξ

µ is conserved along curves that extremize the action, i.e. 
for trajectories obeying the equations of motion. 

This result is a generalization of conservation of momentum. The vector field ξ� may 
be thought of as the coordinate basis vector field for a cyclic coordinate, i.e. one that does 
not appear in the Lagrangian. In particular, if ∂L/∂xα = 0 for a particular coordinate 
xα (e.g. α = 0), then L is invariant under the diffeomorphism generated by �eα so that 
pα is conserved. 

When gravity is the only force acting on a particle, diffeomorphism-invariance has 
a purely geometric interpretation in terms of special vector fields known as Killing vec
tors. Using equation (18) for a manifold with a metric-compatible connection (implying 
�αgµν = 0) and vanishing torsion (both of these are true in general relativity), we find 
that diffeomorphism-invariance implies 

Lξ gµν = �µξν + �ν ξµ = 0 . (29) 

This equation is known as Killing’s equation and its solutions are called Killing vector 
fields, or Killing vectors for short. Thus, our theorem may be restated as follows: If the 
spacetime has a Killing vector ξ�(x), then pµξ

µ is conserved along any geodesic. A much 
shorter proof of this theorem follows from �V (pµξ

µ) = ξµ�V pµ + pµV ν �ν ξ
µ. The first 

term vanishes by the geodesic equation, while the second term vanishes from Killing’s 
equation with pµ ∝ V µ. Despite being longer, however, the proof based on the Lie 
derivative is valuable because it highlights the role played by a continuous symmetry, 
diffeomorphism-invariance of the metric. 

One is not free to choose Killing vectors; general spacetimes (i.e. ones lacking sym
metry) do not have any solutions of Killing’s equation. As shown in Appendix C.3 of 
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Wald (1984), a 4-dimensional spacetime has at most 10 Killing vectors. The Minkowski 
metric has the maximal number, corresponding to the Poincaré group of transforma
tions: three rotations, three boosts, and four translations. Each Killing vector gives a 
conserved momentum. 

The existence of a Killing vector represents a symmetry: the geometry of spacetime as 
represented by the metric is invariant as one moves in the ξ�-direction. Such a symmetry 
is known as an isometry. In the perturbation theory view of diffeomorphisms, isometries 
correspond to perturbations of the coordinates that leave the metric unchanged. 

Any vector field can be chosen as one of the coordinate basis fields; the coordinate 
lines are the integral curves. In Figure 2, the integral curves were parameterized by 
λ, which becomes the coordinate whose corresponding basis vector is �eλ ≡ ξ�(x). For 
definiteness, let us call this coordinate λ = x0 . If ξ� = �e0 is a Killing vector, then x0 is 
a cyclic coordinate and the spacetime is stationary: ∂0gµν = 0. In such spacetimes, and 
only in such spacetimes, p0 is conserved along geodesics (aside from special cases like 
the Robertson-Walker spacetimes, where p0 is conserved for massless but not massive 
particles because the spacetime is conformally stationary). 

Another special feature of spacetimes with Killing vectors is that they have a con
served 4-vector energy-current Sν = ξµT µν . Local stress-energy conservation �µT µν = 0 
then implies �ν S

ν = 0, which can be integrated over a volume to give the usual form 
of an integral conservation law. Conversely, spacetimes without Killing vectors do not 
have an tensor integral energy conservation law, except for spacetimes that are asymp
totically flat at infinity. (However, all spacetimes have a conserved energy-momentum 
pseudotensor, as discussed in the notes Stress-Energy Pseudotensors and Gravitational 
Radiation Power.) 

4 Einstein-Hilbert Action for the Metric 

We have seen that the action principle is useful not only for concisely expressing the 
equations of motion; it also enables one to find identities and conservation laws from 
symmetries of the Lagrangian (invariance of the action under transformations). These 
methods apply not only to the trajectories of individual particles. They are readily 
generalized to spacetime fields such as the electromagnetic four-potential Aµ and, most 
significantly in GR, the metric gµν itself. 

To understand how the action principle works for continuous fields, let us recall how it 
works for particles. The action is a functional of configuration-space trajectories. Given 
a set of functions qi(t), the action assigns a number, the integral of the Lagrangian 
over the parameter t. For continuous fields the configuration space is a Hilbert space, 
an infinite-dimensional space of functions. The single parameter t is replaced by the 
full set of spacetime coordinates. Variation of a configuration-space trajectory, qi(t) → 
qi(t) + δqi(t), is generalized to variation of the field values at all points of spacetime, e.g. 
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gµν (x) → gµν (x) + δgµν (x). In both cases, the Lagrangian is chosen so that the action is 
stationary for trajectories (or field configurations) that satisfy the desired equations of 
motion. The action principle concisely specifies those equations of motion and facilitates 
examination of symmetries and conservation laws. 

In general relativity, the metric is the fundamental field characterizing the geometric 
and gravitational properties of spacetime, and so the action must be a functional of 
gµν (x). The standard action for the metric is the Hilbert action, 

1 
SG[gµν (x)] = gµν Rµν 

√−g d4 x . (30)
16πG 

Here, g = det gµν and Rµν = Rα
µαν is the Ricci tensor. The factor 

√−g makes the volume 
element invariant so that the action is a scalar (invariant under general coordinate trans
formations). The Einstein-Hilbert action was first shown by the mathematician David 
Hilbert to yield the Einstein field equations through a variational principle. Hilbert’s 
paper was submitted five days before Einstein’s paper presenting his celebrated field 
equations, although Hilbert did not have the correct field equations until later (for an 
interesting discussion of the historical issues see L. Corry et al., Science 278, 1270, 1997). 

(The Einstein-Hilbert action is a scalar under general coordinate transformations. 
As we will show in the notes Stress-Energy Pseudotensors and Gravitational Radiation 
Power, it is possible to choose an action that, while not a scalar under general coor
dinate transformations, still yields the Einstein field equations. The action considered 
there differs from the Einstein-Hilbert action by a total derivative term. The only real 
invariance of the action that is required on physical grounds is local Lorentz invariance.) 

In the particle actions considered previously, the Lagrangian depended on the gen
eralized coordinates and their first derivatives with respect to the parameter τ . In a 
spacetime field theory, the single parameter τ is expanded to the four coordinates xµ. If 
it is to be a scalar, the Lagrangian for the spacetime metric cannot depend on the first 
derivatives ∂αgµν , because �αgµν = 0 and the first derivatives can all be transformed to 
zero at a point. Thus, unless one drops the requirement that the action be a scalar under 
general coordinate transformations, for gravity one is forced to go to second derivatives 
of the metric. The Ricci scalar R = gµν Rµν is the simplest scalar that can be formed 
from the second derivatives of the metric. Amazingly, when the action for matter and 
all non-gravitational fields is added to the simplest possible scalar action for the metric, 
the least action principle yields the Einstein field equations. 

To look for symmetries of the Einstein-Hilbert action, we consider its change under 
variation of the functions gµν (x) with fixed boundary hypersurfaces (the generalization 
of the fixed endpoints for an ordinary Lagrangian). It proves to be simpler to regard 
the inverse metric components gµν as the field variables. The action depends explicitly 
on gµν and the Christoffel connection coefficients, Γα

µν , the latter appearing in the Ricci 
tensor in a coordinate basis: 

Rµν = ∂αΓα
µν − ∂µΓα

αν + Γα
µν Γ

β
αβ − Γα

βµΓβ
αν . (31) 
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Lengthy algebra shows that first-order variations of gµν produce the following changes 
in the quantities appearing in the Einstein-Hilbert action: 

δ
√−g = − 

1 
2 

√−g gµν δg
µν = + 

1 
2 

√−g gµν δgµν , 

δΓα 
µν = − 

1 
2 

� 
�µ(gνλδg αλ) + �ν (gµλδg αλ) − �β (gµκgνλg αβ δg κλ) 

� 
, 

δRµν = �α(δΓα 
µν ) − �µ(δΓα 

αν ) , 
� � 

gµν δRµν 

δ(gµν Rµν 
√−g) 

= 

= 

�µ�ν −δgµν + gµν gαβ δg αβ 

(Gµν δg
µν + gµν δRµν )

√−g , 

, 

(32) 

1where Gµν = Rµν − 
2 Rgµν is the Einstein tensor. The covariant derivative �µ appearing 

in these equations is taken with respect to the zeroth-order metric gµν . Note that, 
while Γα

µν is not a tensor, δΓα
µν is. Note also that the variations we perform are not 

necessarily diffeomorphisms (that is, δgµν is not necessarily a Lie derivative), although 
diffeomorphisms are variations of just the type we are considering (i.e. variations of 
the tensor component fields for fixed values of their arguments). Equations (32) are 
straightforward to derive but take several pages of algebra. 

Equations (32) give us the change in the gravitational action under variation of the 
metric: 

≡ 
� 

µν ]δSG SG[gµν + δgµν ] − SG[g

1


= (Gµν δg
µν + �µv

µ)
√−g d4 x , vµ µν gαβ δg αβ ) .(33)

16πG 
≡ �ν (−δgµν + g

Besides the desired Einstein tensor term, there is a divergence term arising from gµν δRµν = 
�µv

µ which can be integrated using the covariant Gauss’ law. This term raises the ques
tion of what is fixed in the variation, and what the endpoints of the integration are. 

In the action principle for particles (eq. 2), the endpoints of integration are fixed 
time values, t1 and t2. When we integrate over a four-dimensional volume, the endpoints 
correspond instead to three-dimensional hypersurfaces. The simplest case is when these 
are hypersurfaces of constant t, in which case the boundary terms are integrals over 
spatial volume. 

In equation (33), the divergence term can be integrated to give the flux of vµ through 
the bounding hypersurface. This term involves the derivatives of δgµν normal to the 
boundary (e.g. the time derivative of δgµν , if the endpoints are constant-time hyper
surfaces), and is therefore inconvenient because the usual variational principle sets δgµν 

but not its derivatives to zero at the endpoints. One may either revise the variational 
principle so that gµν and Γα

µν are independently varied (the Palatini action), or one can 
add a boundary term to the Einstein-Hilbert action, involving a tensor called the extrin
sic curvature, to cancel the �µv

µ term (Wald, Appendix E.1). In the following we will 
ignore this term, understanding that it can be eliminated by a more careful treatment. 
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(The Schrödinger action presented in the later notes Stress-Energy Pseudotensors and 
Gravitational Radiation Power eliminates the �µv

µ term.) 
For convenience below, we introduce a new notation for the integrand of a functional 

variation, the functional derivative δS/δψ, defined by 

δS 
δS[ψ] ≡ 

δψ 
δψ
√−g d4 x . (34) 

gµνHere, ψ is any tensor field, e.g. . The functional derivative is strictly defined only 
when there are no surface terms arising from the variation. Neglecting the surface term 
in equation (33), we see that δSG/δgµν = (16πG)−1Gµν . 

4.1 Stress-Energy Tensor and Einstein Equations 

To see how the Einstein equations arise from an action principle, we must add to SG 

the action for matter, the source of spacetime curvature. Here, “matter” refers to all 
particles and fields excluding gravity, and specifically includes all the quarks, leptons 
and gauge bosons in the world (excluding gravitons). At the classical level, one could 
include electromagnetism and perhaps a simplified model of a fluid. The total action 
would become a functional of the metric and matter fields. Independent variation of each 
field yields the equations of motion for that field. Because the metric implicitly appears 
in the Lagrangian for matter, matter terms will appear in the equation of motion for the 
metric. This section shows how this all works out for the simplest model for matter, a 
classical sum of massive particles. 

Starting from equation (1), we sum the actions for a discrete set of particles, weighting 
each by its mass: 

iSM = −ma −g00 − 2g0iẋa
i − gij ẋaẋ

j
a 

�1/2 
dt . (35) 

a 

The subscript a labels each particle. We avoid the problem of having no global proper 
time by parameterizing each particle’s trajectory by the coordinate time. Variation of 

i i 
a(t) for particle a with ΔSM = 0, yields the geodesic each trajectory, xa(t) → xa(t) + δxi 

equations of motion. 
Now we wish to obtain the equations of motion for the metric itself, which we do by 

combining the gravitational and matter actions and varying the metric. After a little 
algebra, equation (33) gives the variation of SG; we must add to it the variation of SM. 
Equation (35) gives 

�

� 1 V µV ν


δSM = dt ma
a a δgµν (xa

i (t), t) = dt 
� 1 

ma 
V 0 

i
− 
2 

VaµVaν 
δgµν (xa(t), t) . (36)

2 V 0 
a a a a 

Variation of the metric naturally gives the normalized 4-velocity for each particle, V µ = a 

dxµ/dτa with VaµV µ = −1, with a correction factor 1/V 0 = dτa/dt. Now, if we are a a 
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to combine equations (33) and (36), we must modify the latter to get an integral over 
4-volume. This is easily done by inserting a Dirac delta function. The result is 

1 � ma VaµVaν 
δ3(x i iδSM = − 

2 a 
√−g a 

− xa(t)) δgµν (x)
√−g d4 x . (37)

V 0 

The term in brackets may be rewritten in covariant form by inserting an integral over 
affine parameter with a delta function to cancel it, dτa δ(t− t(τa))(dt/dτa). Noting that 
V 0 = dt/dτa, we get a 

1 1 
δSM = − 

2 
Tµν δg

µν (x)
√−g d4 x = + 

� 

T µν δgµν (x)
√−g d4 x , (38)

2 

where the functional differentiation has naturally produced the stress-energy tensor for 
a gas of particles, 

� δ4(x − x(τa))
T µν = 2 

δSM 
= dτa √−g

maV µV ν . (39)
δgµν a 

a a 

Aside from the factor 
√−g needed to correct the Dirac delta function for non-flat coor

dinates (because 
√−g d4x is the invariant volume element), equation (39) agrees exactly 

with the stress-energy tensor worked out in the 8.962 notes Number-Flux Vector and 
Stress-Energy Tensor. 

Equation (38) is a general result, and we take it as the definition of the stress-energy 
tensor for matter (cf. Appendix E.1 of Wald). Thus, given any action SM for particles 
or fields (matter), we can vary the coordinates or fields to get the equations of motion 
and vary the metric to get the stress-energy tensor, 

T µν δSM 
. (40)≡ 2 

δgµν 

Taking the action to be the sum of SG and SM, requiring it to be stationary with 
respect to variations δgµν , now gives the Einstein equations: 

Gµν = 8πGTµν . (41) 

The pre-factor (16πG)−1 on SG was chosen to get the correct coefficient in this equation. 
The matter action is conventionally normalized so that it yields the stress-energy tensor 
as in equation (38). 

4.2 Diffeomorphism Invariance of the Einstein-Hilbert Action 

We return to the variation of the Einstein-Hilbert action, equation (33) without the 
surface term, and consider diffeomorphisms δgµν = Lξ g

µν : 

16πG δSG = Gµν (Lξ g
µν )
√−g d4 x = −2 

� 

Gµν (�µξν )
√−g d4 x . (42) 
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Here, ξ� is not a Killing vector; it is an arbitrary small coordinate displacement. The Lie 
derivative Lξ g

µν has been rewritten in terms of −Lξ gµν using gµαgαν = δµ
ν . Note that 

diffeomorphisms are a class of field variations that correspond to mapping the manifold 
back to itself. Under a diffeomorphism, the integrand of the Einstein-Hilbert action 
is varied, including the 

√−g factor. However, as discussed at the end of 3.1, the §
volume element d4x is fixed under a diffeomorphism even though it does change under 
coordinate transformations. The reason for this is apparent in equation (16): under 
a diffeomorphism, the coordinate values do not change. The pushforward cancels the 
transformation. If we simply performed either a passive coordinate transformation or 
pushforward alone, d4x would not be invariant. Under a diffeomorphism the variation 
δgµν = Lξ gµν is a tensor on the “unperturbed background” spacetime with metric gµν . 

We now show that any scalar integral is invariant under a diffeomorphism that van
ishes at the endpoints of integration. Consider the integrand of any action integral, 
Ψ
√−g, where Ψ is any scalar constructed out of the tensor fields of the problem; e.g. 

Ψ = R/(16πG) for the Hilbert action. From the first of equations (32) and the Lie 
derivative of the metric, 

1 Lξ 
√−g = 

√−g gµν Lξ gµν = (�αξα)
√−g . (43)

2 

Using the fact that the Lie derivative of a scalar is the directional derivative, we obtain 

δS = Lξ (Ψ
√−g) d4 x = 

� 

(ξµ�µΨ + Ψ�µξ
µ)
√−g d4 x = Ψξµ d3Σµ . (44) 

We have used the covariant form of Gauss’ law, for which d3Σµ is the covariant hyper
surface area element for the oriented boundary of the integrated 4-volume. Physically 
it represents the difference between the spatial volume integrals at the endpoints of 
integration in time. 

For variations with ξµ = 0 on the boundaries, δS = 0. The reason for this is 
simple: diffeomorphism corresponds exactly to reparameterizing the manifold by shifting 
and relabeling the coordinates. Just as the action of equation (1) is invariant under 
arbitrary reparameterization of the path length with fixed endpoints, a spacetime field 
action is invariant under reparameterization of the coordinates (with no shift on the 
boundaries). The diffeomorphism differs from a standard coordinate transformation in 
that the variation is made so that d4x is invariant rather than 

√−g d4x, but the result 
is the same: scalar actions are diffeomorphism-invariant. 

In considering diffeomorphisms, we do not assume that gµν extremizes the action. 
Thus, using δSG = 0 under diffeomorphisms, we will get an identity rather than a 
conservation law. 

Integrating equation (42) by parts using Gauss’s law gives 

8πG δSG = − Gµν ξν d
3Σµ + ξν �µG

µν √−g d4 x . (45) 
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Under reparameterization, the boundary integral vanishes and δSG = 0 from above, but 
ξν is arbitrary in the 4-volume integral. Therefore, diffeomorphism-invariance implies 

�µG
µν = 0 . (46) 

Equation (46) is the famous contracted Bianchi identity. Mathematically, it is an 
identity akin to equation (4). It may also be regarded as a geometric property of the 
Riemann tensor arising from the full Bianchi identities, 

�σ R
α
βµν + �µR

α
βνσ + �ν R

α
βσµ = 0 . (47) 

Contracting on α and µ, then multiplying by gσβ and contracting again gives equation 
(46). One can also explicitly verify equation (46) using equation (31), noting that Gµν = 
Rµν 1 = gµαg− 

2 Rgµν and Rµν νβ Rαβ . Wald gives a shorter and more sophisticated proof 
in his Section 3.2; an even shorter proof can be given using differential forms (Misner 
et al chapter 15). Our proof, based on diffeomorphism-invariance, is just as rigorous 
although quite different in spirit from these geometric approaches. 

The next step is to inquire whether diffeomorphism-invariance can be used to obtain 
true conservation laws and not just offer elegant derivations of identities. Before answer
ing this question, we digress to explore an analogous symmetry in electromagnetism. 

4.3 Gauge Invariance in Electromagnetism 

Maxwell’s equations can be obtained from an action principle by adding two more terms 
to the total action. In SI units these are 

1 
SEM[Aµ, g

µν ] = − 
16π

F µν Fµν 
√−g d4 x , SI[Aµ] = 

� 

AµJ
µ√−g d4 x , (48) 

where Fµν ≡ ∂µAν − ∂ν Aµ = µ. Note that gµν is present in SEM implicitly�µAν − �ν A
through raising indices of Fµν , and that the connection coefficients occurring in �µAν 

are cancelled in Fµν . Electromagnetism adds two pieces to the action, SEM for the free 
field Aµ and SI for its interaction with a source, the 4-current density Jµ. Previously 
we considered SI = qAµẋ

µ dτ for a single particle; now we couple the electromagnetic 
field to the current density produced by many particles. 

The action principle says that the action SEM + SI should be stationary with respect 
to variations δAµ that vanish on the boundary. Applying this action principle (left as a 
homework exercise for the student) yields the equations of motion 

�ν F µν = 4πJµ . (49) 

In the language of these notes, the other pair of Maxwell equations, �[αFµν] = 0, arises 
from a non-dynamical symmetry, the invariance of SEM[Aµ] under a gauge transformation 
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Aµ → Aµ +�µΦ. (Expressed using differential forms, dF = 0 because F = dA is a closed 
2-form. A gauge transformation adds to F the term ddΦ, which vanishes for the same 
reason. See the 8.962 notes Hamiltonian Dynamics of Particle Motion.) The source-free 
Maxwell equations are simple identities in that �[αFµν] = 0 for any differentiable Aµ, 
whether or not it extremizes any action. 

If we require the complete action to be gauge-invariant, a new conservation law ap
pears, charge conservation. Under a gauge transformation, the interaction term changes 
by 

4δSI ≡ SI[Aµ + �µΦ] − SI[Aµ] = Jµ(�µΦ)
√−g d x 

4 = ΦJµ d3Σµ − Φ(�µJ
µ)
√−g d x . (50) 

For gauge transformations that vanish on the boundary, gauge-invariance is equivalent 
to conservation of charge, �µJ

µ = 0. This is an example of Noether’s theorem: a 
continuous symmetry generates a conserved current. Gauge invariance is a dynamical 
symmetry because the action is extremized if and only if Jµ obeys the equations of motion 
for whatever charges produce the current. (There will be other action terms, such as 
eq. 35, to give the charges’ equations of motion.) Adding a gauge transformation to 
a solution of the Maxwell equations yields another solution. All solutions necessarily 
conserve total charge. 

Taking a broad view, physicists regard gauge-invariance as a fundamental symmetry 
of nature, from which charge conservation follows. A similar phenomenon occurs with 
the gravitational equivalent of gauge invariance, as we discuss next. 

4.4 Energy-Momentum Conservation from Gauge Invariance 

The example of electromagnetism sheds light on diffeomorphism-invariance in general rel
ativity. We have already seen that every piece of the action is automatically diffeomorphism
invariant because of parameterization-invariance. However, we wish to single out gravity 
— specifically, the metric gµν — to impose a symmetry requirement akin to electromag
netic gauge-invariance. 

We do this by defining a gauge transformation of the metric as an infinitesimal 
diffeomorphism, 

gµν → gµν + Lξ gµν = gµν + �µξν + �ν ξµ (51) 

where ξµ = 0 on the boundary of our volume. (If the manifold is compact, it has a 
natural boundary; otherwise we integrate over a compact subvolume. See Appendix A 
of Wald for mathematical rigor.) Gauge-invariance (diffeomorphism-invariance) of the 
Einstein-Hilbert action leads to a mathematical identity, the twice-contracted Bianchi 
identity, equation (46). The rest of the action, including all particles and fields, must 
also be diffeomorphism-invariant. In particular, this means that the matter action must 
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be invariant under the gauge transformation of equation (51). Using equation (38), this 
requirement leads to a conservation law: 

δSM = T µν (�µξν )
√−g d4 x = 

� 

ξν (�µT
µν )
√−g d4 x = 0 �µT

µν = 0 . (52)− ⇒ 

In general relativity, total stress-energy conservation is a consequence of gauge-invariance 
as defined by equation (51). Local energy-momentum conservation therefore follows as 
an application of Noether’s theorem (a continuous symmetry of the action leads to a 
conserved current) just as electromagnetic gauge invariance implies charge conservation. 

There is a further analogy with electromagnetism. Physical observables in general 
relativity must be gauge-invariant. If we wish to try to deduce physics from the metric 
or other tensors, we will have to work with gauge-invariant quantities or impose gauge 
conditions to fix the coordinates and remove the gauge freedom. This issue will arise 
later in the study of gravitational radiation. 

An Example of Gauge Invariance and Diffeomor

phism Invariance: The Ginzburg-Landau Model 

The discussion of gauge invariance in the preceding section is incomplete (although fully 
correct) because under a diffeomorphism all fields change, not only the metric. Similarly, 
the matter fields for charged particles also change under an electromagnetic gauge trans
formation and under the more complicated symmetry transformations of non-Abelian 
gauge symmetries such as those present in the theories of the electroweak and strong 
interactions. In order to give a more complete picture of the role of gauge symmetries 
in both electromagnetism and gravity, we present here the classical field theory for the 
simplest charged field, a complex scalar field φ(x) representing spinless particles of charge 
q and mass m. Although there are no fundamental particles with spin 0 and nonzero 
electric charge, this example is very important in physics as it describes the effective field 
theory for superconductivity developed by Ginzburg and Landau. 

The Ginzburg-Landau model illustrates the essential features of gauge symmetry 
arising in the standard model of particle physics and its classical extension to gravity. 
At the classical level, the Ginzburg-Landau model describes a charged fluid, e.g. a fluid 
of Cooper pairs (the electron pairs that are responsible for superconductivity). Here we 
couple the charged fluid to gravity as well as to the electromagnetic field. 

The Ginzburg-Landau action is (with a sign difference in the kinetic term compared 
with quantum field theory textbooks because of our choice of metric signature) 

1 
∗

λ 
∗∗SGL[φ,Aµ, g

µν ] = − 
2 
1 
gµν (Dµφ) (Dν φ) + µ 2φ φ− (φ φ)2 √−g d4 x , (53)

2 4 
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where φ∗ is the complex conjugate of φ and 

D µ − iqAµ(x) (54)µ ≡ �
is called the gauge covariant derivative. The electromagnetic one-form potential 
appears so that the action is automatically gauge-invariant. Under an electromagnetic 
gauge transformation, both the electromagnetic potential and the scalar field change, as 
follows: 

Aµ(x) → Aµ(x) + �µΦ(x) , φ(x) → eiqΦ(x)φ(x) , Dµφ eiqΦ(x)Dµφ , (55)→
where Φ(x) is any real scalar field. We see that (Dµφ)∗(Dν φ) and the Ginzburg-Landau 
action are gauge-invariant. Thus, an electromagnetic gauge transformation corresponds 
to an independent change of phase at each point in spacetime, or a local U(1) symmetry. 

The gauge covariant derivative automatically couples our charged scalar field to the 
electromagnetic field so that no explicit interaction term is needed, unlike in equation 
(48). The first term in the Ginzburg-Landau action is a “kinetic” part that is quadratic in 
the derivatives of the field. The remaining parts are “potential” terms. The quartic term 
with coefficient λ/4 represents the effect of self-interactions that lead to a phenomenon 
called spontaneous symmetry breaking. Although spontaneous symmetry breaking is of 
major importance in modern physics, and is an essential feature of the Ginzburg-Landau 
model, it has no effect on our discussion of symmetries and conservation laws so we 
ignore it in the following. 

The appearance of Aµ in the gauge covariant derivative is reminiscent of the appear
ance of the connection Γµ in the covariant derivative of general relativity. However, αβ 

the gravitational connection is absent for derivatives of scalar fields. We will not discuss 
the field theory of charged vector fields (which represent spin-1 particles in non-Abelian 
theories) or spinors (spin-1/2 particles). 

A complete model includes the actions for gravity and the electromagnetic field in 
addition to SGL: S[φ, Aµ, gµν ] = SGL[φ, Aµ, gµν ] + SEM[Aµ, gµν ] + SG[gµν ]. According to 
the action principle, the classical equations of motion follow by requiring the total action 
to be stationary with respect to small independent variations of (φ, Aµ, gµν ) at each point 
in spacetime. Varying the action yields 

δS 
= gµν DµDν φ + µ 2 − λφ∗φ φ , 

δφ 
δS 1 

= GL ,δAµ 
−

4π 
�ν F µν + Jµ 

δS 1 1 1 
T GL = µν µν , (56)

δgµν 16πG
Gµν −

2 
T EM −

2 

where the current and stress-energy tensor of the charged fluid are 

∗ ∗JGL iq 
[φ(Dµφ) − φ (Dµφ)] ,µ ≡ 

2 
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λ 
∗∗

1 αβ ∗T GL ≡ (Dµφ) (Dν φ) + − 
2 
g (Dαφ) (Dβ φ) + 

1 
µ 2φ∗φ − (φ φ)2 gµν . (57)µν 2 4 

The expression for the current density is very similar to the probability current density 
in nonrelativistic quantum mechanics. The expression for the stress-energy tensor seems 
strange, so let us examine the energy density in locally Minkowski coordinates (where 
gµν = ηµν ): 

1 2 1 2 1 
∗ρGL = T GL =

2 
|D0φ + Diφ| − 

2 
µ 2φ φ + 

λ 
(φ∗φ)2 . (58)00 | 

2 
|

4 
Aside from the electromagnetic contribution to the gauge covariant derivatives and the 
potential terms involving φ∗φ, this looks just like the energy density of a field of rela
tivistic harmonic oscillators. (The potential energy is minimized for |φ| = µ/

√
λ. This 

is a circle in the complex φ plane, leading to spontaneous symmetry breaking as the 
field acquires a phase. Those with a knowledge of field theory will recognize two modes 
for small excitations: a massive mode with mass 

√
2µ and a massless Goldstone mode 

corresponding to the field circulating along the circle of minima.) 
The equations of motion follow immediately from setting the functional derivatives 

to zero. The equations of motion for gµν and Aµ are familiar from before; they are 
simply the Einstein and Maxwell equations with source including the current and stress-
energy of the charged fluid. The equation of motion for φ is a nonlinear relativistic wave 

2equation. If Aµ = 0, µ2 = −m , λ = 0, and gµν = ηµν then it reduces to the Klein-
Gordon equation, (∂2 − ∂2 + m2)φ = 0 where ∂2 ≡ δij ∂i∂j is the spatial Laplacian. Our t 

equation of motion for φ generalizes the Klein-Gordon equation to include the effects 
of gravity (through gµν ), electromagnetism (through Aµ), and self-interactions (through 
λφ∗φ). 

Now we can ask about the consequences of gauge invariance. First, the Ginzburg-
Landau current and stress-energy tensor are gauge-invariant, as is easily verified using 
equations (55) and (57). The action is explicitly gauge-invariant. Using equations (56), 
we can ask about the effect of an infinitesimal gauge transformation, for which δφ = 
iqΦ(x)φ, δAµ = �µΦ, and δgµν = 0. The change in the action is 

δS δS 
δS = (iqΦφ) + (�µΦ) 

√−g d4 x 
δφ δAµ 

δS δS 
= iqφ

δφ 
− �µ 

δAµ 
Φ(x)

√−g d4 x , (59) 

where we have integrated by parts and dropped a surface term assuming that Φ(x) 
vanishes on the boundary. Now, requiring δS = 0 under a gauge transformation for the 
total action adds nothing new because we already required δS/δφ = 0 and δS/δAµ = 0. 
However, we have constructed each piece of the action (SGL, SEM and SG) to be gauge
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invariant. This gives: 

δS 
δSGL = 0 iqφ = 0 ,GL⇒ 

δφ 
− �µJ

µ 

1 
δSEM = 0 − 

4π 
�µ�ν F µν = 0 . (60)⇒ 

For SGL, gauge invariance implies charge conservation provided that the field φ obeys 
the equation of motion δS/δφ = 0. For SEM, gauge invariance gives a trivial identity 
because F µν is antisymmetric. 

Similar results occur for diffeomorphism invariance, the gravitational counterpart of 
gauge invariance. Under an infinitesimal diffeomorphism, δφ = Lξ φ, δAµ = Lξ Aµ, and 
δgµν = Lξ gµν = �µξν + �ν ξµ. The change in the action is 

δS δS δS 
δS = 

δφ 
Lξ φ + 

δAµ 
Lξ Aµ + 

δgµν 
Lξ gµν 

√−g d4 x 

δS 1 − 
4π 
�ν F µν + Jµ= ξµ�µφ + Lξ Aµ + 

δφ 

1 
+ − 

8πG
Gµν + T µν �µξν 

√−g d4 x , (61) 

where Jµ = GL and T µν = GL + T µνJµ T µν 
EM. As above, requiring that the total action be 

diffeomorphism-invariant adds nothing new. However, we have constructed each piece 
of the action to be diffeomorphism-invariant, i.e. a scalar under general coordinate 
transformations. Applying diffeomorphism-invariance to SGL gives a subset of the terms 
in equation (61), 

δS 
0 = ξµ�µφ + Jµ (ξα �αAµ + Aα�µξ

α) + T µν 
GL�µξν 

√−g d4 x 
δφ 

δS 
= ν T GL ξµ(x)

√−g d4 xµν− 
δφ 
�µφ + Jα �µAα − �α (J

αAµ) − � 

δS ν T GL = − 
δφ 
�µφ − (�αJα)Aµ ξµ(x)

√−g d4 x , (62)µν+ JαFµα − � 

where we have discarded surface integrals in the second line assuming that ξµ(x) = 0 on 
the boundary. 

Equation (62) gives a nice result. First, as always, our continuous symmetry (here, 
diffeomorphism-invariance) only gives physical results for solutions of the equations of 
motion. Thus, δS/δφ = �αJα = 0 can be dropped without further consideration. The 
remaining terms individually need not vanish from the equations of motion. From this 
we conclude 

�ν T µν = F µν JGL 
ν . (63)GL 
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This has a simple interpretation: the work done by the electromagnetic field transfers 
energy-momentum to the charged fluid. Recall that the Lorentz force on a single charge 
with 4-velocity V µ is qF µν Vν and that 4-force is the rate of change of 4-momentum. 
The current qV µ for a single charge becomes the current density Jµ of a continuous 
fluid. Thus, equation (63) gives energy conservation for the charged fluid, including the 
transfer of energy to and from the electromagnetic field. 

The reader can show that requiring δSEM = 0 under an infinitesimal diffeomorphism 
proceeds in a very similar fashion to equation (62) and yields the result 

�µT µν = −F µν JGL 
ν . (64)EM 

This result gives the energy-momentum transfer from the viewpoint of the electromag
netic field: work done by the field on the fluid removes energy from the field. Combining 
equations (63) and (64) gives conservation of total stress-energy, �µT µν = 0. 

Finally, because SG depends only on gµν and not on the other fields, diffeomorphism 
invariance yields the results already obtained in equations (45) and (46). 
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Introduction 

In special relativity, electromagnetism is described by a one-form field Aµ(x) in flat 
spacetime. Similarly, in the weak-field limit gravitation is described by a symmetric 
tensor field hµν (x) in flat spacetime. Pursuing the analogy can lead us to many insights 
about GR. These notes detail linearized GR, discussing particle motion via Hamiltonian 
dynamics, the gravitational field equations, the transverse gauge (giving the closest thing 
to an inertial frame in GR), gauge transformations, motion in accelerated and rotating 
frames, Mach’s principle, and more. 

Linear theory is also useful for most practical computations in general relativity. 
Linear theory suffices for nearly all experimental applications of general relativity per
formed to date, including the solar system tests (light deflection, perihelion precession, 
and Shapiro time delay measurements), gravitational lensing, and gravitational wave 
detection. The Hulse-Taylor binary pulsar offers some tests of gravity beyond lineaer 
theory (Taylor et al 1992), as do (in principle) cosmological tests of space curvature. 

Some of this material is found in Thorne et al (1986) and some in Bertschinger (1996) 
but much of it is new. The notation differs slightly from chapter 4 of my Les Houches 
lectures (Bertschinger 1996); in particular, φ and ψ are swapped there, and hij in those 
notes is denoted sij here (eq. 11 below). 

Throughout this set of notes, the Minkowski metric ηµν is used to raise and lower 
indices. In this set of notes we refer to gravity as a field in flat spacetime as opposed 
to the manifestation of curvature in spacetime. With one important exception, this 
pretense can be made to work in the weak-field limit (although it breaks down for strong 
gravitational fields). As we will see, gravitational radiation can only be understood 
properly as a traveling wave of space curvature. 
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2 Particle Motion and Gauge Dependence 

We begin by studying an analogue of general relativity, the motion of a charged particle. 
The covariant action for a particle of mass m and charge q has two terms: one for the 
free particle and another for its coupling to electromagnetism: 

� � 
dxµ dxν �1/2 

dxµ 

S[xµ(τ )] = −m −ηµν dτ + qAµ dτ . (1)
dτ dτ dτ 

Varying the trajectory and requiring it to be stationary, with τ being an affine parameter 
such that V µ = dxµ/dτ is normalized ηµν V µV ν = −1, yields the equation of motion 

dV µ 

= 
q
F µ V ν , Fµν = ∂µAν − ∂ν Aµ . (2)

dτ m ν 

Regarding gravity as a weak (linearized) field on flat spacetime, the action for a 
particle of mass m also has two terms, one for the free particle and another for its 
coupling to gravity: 

� � �−1/2� � 
dxµ dxν �1/2 

m dxµ dxν dxµ dxν 

S[xµ(τ )] = −m −ηµν dτ + hµν −ηµν dτ . 
dτ dτ 2 dτ dτ dτ dτ 

(3) 
This result comes from using the free-field action with metric gµν = ηµν + hµν and 
linearizing in the small quantities hµν . Note that for this to be valid, two requirements 
must be satisfied: First, the curvature scales given by the eigenvalues of the Ricci tensor 
(which have units of inverse length squared) must be large compared with the length 
scales under consideration (e.g. one must be far from the Schwarzschild radius of any 
black holes). Second, the coordinates must be nearly orthonormal. One cannot, for 
example, use spherical coordinates; Cartesian coordinates are required. (While this 
second condition can be relaxed, it makes the analysis much simpler. If the first condition 
holds, then coordinates can always be found such that the second condition holds also.) 

Requiring the gravitational action to be stationary yields the equation of motion 

dV µ 1 
= ηµν (∂αhνβ + ∂β hαν − ∂ν hαβ ) V αV β = −Γµ V αV β . (4)αβdτ 

− 
2 

The object multiplying the 4-velocities on the right-hand side is just the linearized 
Christoffel connection (with ηµν rather than gµν used to raise indices). 

Equations (2) and (4) are very similar, as are the actions from which they were 
derived. Both Fµν and Γµ are tensors under Lorentz transformations. This fact ensures αβ 

that equations (2) and (4) hold in any Lorentz frame. Thus, in the weak field limit it is 
straightforward to analyze arbitrary relativistic motions of the sources and test particles, 
as long as all the components of the Lorentz-transformed field, h¯ν = Λµ 

¯Λ
ν
ν̄hµν areµ¯ µ
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small compared with unity (otherwise the linear theory assumption breaks down). A 
simple example of the Lorentz transformation of weak gravitational fields was given in 
problem 1 of Problem Set 6. 

From these considerations one might conclude that regarding linearized gravity as a 
field in flat spacetime with gravitational field strength tensor Γµ

αβ presents no difficulties. 
However, there is a very important difference: the electromagnetic force law is gauge-
invariant while the gravitational one is not. 

The electromagnetic field strength tensor, hence equation (2), is invariant under the 
gauge transformation 

Aµ(x) → Aµ(x) + ∂µΦ(x) . (5) 

h

The Christoffel connection is, however, not invariant under the gravitational gauge trans
formation 

µν (x) → hµν + ∂µξν (x) + ∂ν ξµ(x) . (6) 

(Note that in both special relativity and linearized GR, �µ = ∂µ.) While Fµν is a 
tensor under general coordinate transformations, Γµ is not. Because the gravitational αβ 

gauge transformation is simply an infinitesimal coordinate transformation, our putative 
gravitational field strength tensor is not gauge-invariant. While the form of equation 
(4) is unchanged by Lorentz transformations, it is not preserved by arbitrary coordinate 
transformations. 

Try to imagine the Lorentz force law if the electromagnetic fields were not gauge-
invariant. We would be unable to get a well-defined prediction for the motion of a 
particle. 

The situation in gravity is less bleak because we recognize that the gauge transfor
mation is equivalent to shifting the coordinates, xµ → xµ − ξµ(x). If the coordinates are 
deformed, fictitious forces (like the Coriolis force) are introduced by the change in the 
Christoffel symbols. But while this perspective is natural in general relativity, it doesn’t 
help one trying to obtain trajectories in the weak-field limit. 

Can one ignore the gauge-dependence of Γµ by simply regarding hµν (x) as a given αβ 

field? Yes, up to a point. However, as we will see later, the gauge-dependence rears its 
ugly head when one tries to solve the linearized field equations for hµν . The Einstein equa
tions contain extra degrees of freedom arising from the fact that a gauge-transformation 
of any solution is also a solution. Gravitational fields can mimic fictitious forces. In the 
full theory of GR this is no problem in principle, because gravity itself is a fictitious force 
� gravitational deflection arises from the use of curvilinear coordinates. (Of course, in 
a curved manifold we have no choice!) 

Regardless of how we interpret gravity, in practice we must eliminate the gauge free
dom somehow. There are two ways to do this: one may form gauge-invariant quantities 
(e.g. the electromagnetic field strength tensor) or impose gauge conditions that fix the 
potentials hµν . 
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It happens that while the Christoffel connection is not gauge-invariant, in linearized 
gravity (but not in general) the Riemann tensor is gauge-invariant. Thus one way to form 
gauge-invariant quantities is to replace equation (4) by the geodesic deviation equation, 

d2(Δx)µ 

= Rµ V αV β (Δx)ν (7)
dτ 2 αβν 

where (Δx)ν is the infinitesimal separation vector between a pair of geodesics. While 
this tells us all about the local environment of a freely-falling observer, it fails to tell us 
where the observer goes. In most applications we need to know the trajectories. Thus 
we will have to find other strategies for coping with the gauge problem. 

Hamiltonian Formulation and Gravitomagnetism 

Some aid in solving the gauge problem comes if we abandon manifest covariance and use 
t = x0 to parameterize trajectories instead of the proper time dτ . This yields the added 
benefit of highlighting the similarities between linearized gravity and electromagnetism. 
In particular, it illustrates the phenomenon of gravitomagnetism. 

Changing the parameterization in equation (1) from τ to t and performing a Legendre 
transformation gives the Hamiltonian 

�1/22H(x i, πi, t) = 
� 
p 2 + m + qφ , p i ≡ πi − qAi , . (8)φ ≡ −A0 

Here we denote the conjugate momentum by πi to distinguish it from the mechanical 
momentum pi . (Note that pi and πi are the components of 3-vectors in Euclidean space, 
so that their indices may be raised or lowered without change.) It is very important to 
treat the Hamiltonian as a function of the conjugate momentum and not the mechanical 
momentum, because only in this way do Hamilton’s equations give the correct equations 
of motion: 

idxi 
= 
p

,
dπi 

= q 
� 
−∂iφ + vj ∂iAj 

� 
, E ≡ 

� 
p2 + m = 

m
. (9)

dt E 
≡ v i 

dt 
2 √

1 − v2 

Combining these gives the familiar form of the Lorentz force law, 

dpi 
= q (E + v ×B)i , B = �× A (10)

dt 
E ≡ −�φ − ∂tA , 

where underscores denote standard 3-vectors in Euclidean space. The dependence of the 
fields on the potentials ensures that the equation of motion is still invariant under the 
gauge transformation φ → φ − ∂tΦ, A → A + �Φ. 

Now we repeat these steps for gravity, starting from equation (3). For convenience, 
we first decompose hµν as 

h00 = −2φ , h0i = wi , hij = −2ψδij + 2sij , where sj j = δij sij = 0. (11) 
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The ten degrees of freedom in hµν are incorporated into two scalars under spatial rotations 
(φ and ψ), one 3-vector, and one symmetric 2-index tensor, the traceless strain sij . Notice 
that wi and sij generalize the weak-field metric used previously in 8.962. 

To first order in hµν , the Hamiltonian may now be written 

E ≡ (δij pipj + m 2)1/2H(x i, πi, t) = (1 + φ)E , , 
2)1/2 wi − sj iπjpi ≡ (1 + ψ)πi − (δij πiπj + m . (12) 

Here, πi is the conjugate momentum while pi and E are the proper 3-momentum and 
energy measured by an observer at fixed xi, just as they are in equation (8). To prove 
this, we construct an orthonormal basis for such an observer: 

1 
e¯ = √

−g00 
�e0 = (1 − φ)�e0 , �eī = �ei + g0i�e0 − 

1 
hj �ej = (1 + ψ)�ei + wi�e0 − sj i�ej . (13)�0 

2 i

This basis is constructed by first setting �0 e¯ �0e¯ � �e0 and normalizing it with �0 e¯ = −1.· 
Next, �e¯ is required to be orthogonal to �0, giving the g0i�e0 term (to first order in the i e¯
metric perturbations). Requiring �eī e¯ = δij gives the remaining term. Now, using �j· 
the results from the notes Hamiltonian Dynamics of Particle Motion, the spacetime 

imomentum one-form is P� = −He�0 + πie� . Setting E = −P�(�0) and pi = P�(�eī) gives the 
desired results (to first order in the metric perturbations). 

Equation (12) has the simple Newtonian interpretation that the Hamiltonian is the 
sum of E, the kinetic plus rest mass energy, and Eφ, the gravitational potential energy. 
This result is remarkably similar to equation (8), with just two differences. In place of 
charge q, the gravitational coupling is through the energy E. Gravitation also has a rank 
(0, 2) spatial tensor hij in addition to spatial scalar and vector potentials. 

Although the gravitational potentials represent physical metric perturbations, hav
ing obtained the Hamiltonian we can forget about this for the moment in order to gain 
intuition about weak-field gravity by applying our understanding of analogous electro
magnetic phenomena. 

Hamilton’s equations applied to equation (12) give 

e¯

idxi ∂H 
= = (1 + φ + ψ)vj (δij − viwj − sij ) , v i 

p
,

dt ∂πi 
≡ 
E 

dπi 
= 

∂H 
= E 

� 
−∂iφ + vj ∂iwj − (∂iψ)v 2 + (∂isjk)v

j v k 
� 

(14)
dt 

− 
∂xi 

Let us compare our result with equation (9). The equation for dxi/dt is more complicated 
than the corresponding equation for electromagnetism because of the more complicated 
momentum-dependence of the gravitational �charge� E. Alternatively, one may adopt 
the curved spacetime perspective and note that dxi and dt are coordinate differentials and 
not proper distances or times, so that the coordinate velocity dxi/dt must be corrected 
to give the proper 3-velocity vi measured by an observer at fixed xi in an orthonormal 
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frame, with the same result. The Newtonian and curved spacetime interpretations are 
consistent. 

Equations (14) may be combined to give the weak-field gravitational force law 

kdpi 
= E 

� 
g + v × H 

� 
+

1 
E 
� 
−vj ∂thij + vj v (∂ihjk − ∂k hij ) ,

i 2dt 
g H = �× w . (15)≡ −�φ − ∂tw , 

As before, underscores denote standard 3-vectors in Euclidean space. (The terms in
volving hij may be expanded by substituting hij = −2ψδij + 2sij . No simplification 
results, so they are left in a more compact form above.) This equation, the gravitational 
counterpart of the Lorentz force law, is exact for linearized GR (though it is not valid for 
strong gravitational fields). Combined with the first of equations (14), it is equivalent 
to the geodesic equation for timelike or null geodesics in a weakly perturbed Minkowski 
spacetime. 

Equation (15) is remarkably similar to the Lorentz force law. It reveals electric-
type forces (present for particles at rest) and magnetic-type forces (force perpendicular 
to velocity). In addition there are velocity-dependent forces arising from the tensor 
potentials, i.e. from the spatial curvature terms in the metric. The Newtonian limit is 
obvious when v � 1. But equation (15) is correct also for relativistic particles and for 
relativistically moving gravitational sources, as long as the fields are weak, i.e. hµν | � 1.|

It is straightforward to check that equation (15) is invariant under a gauge transfor
mation generated by shifting the time coordinate, equation (6) with ξ0 = Φ and ξi = 0. 
However, the force law is not invariant under gauge (coordinate) transformations gen
erated by ξi . Thus, the Hamiltonian formulation has not solved the gauge problem, 
although it has isolated it. As a result, it has provided important insight into the nature 
of relativistic gravitation. 

The fields gi = −∂iφ − ∂twi and H i = �ijk ∂j wk are called the gravitoelectric and grav
itomagnetic fields, respectively. (Here, �ijk is the fully antisymmetric three-dimensional 
Levi-Civita symbol, with �123 = +1.) They are invariant under the gauge transformation 
generated by ξ0 = Φ and therefore are not sensitive to how one chooses hypersurfaces of 
constant time, although they do depend on the parameterization of spatial coordinates 
within these hypersurfaces. Once those coordinates are fixed, the gravitoelectric and 
gravitomagnetic fields have a clear meaning given by equation (15). Noting that p = Ev, 
these fields contribute to the acceleration dv/dt = g + v × H. 

There are four distinct gravitational phenomena present in equation (15). They are 

•	 The quasi-Newtonian gravitational field g. 

•	 The gravitomagnetic field H, which is responsible for Lense-Thirring precession 
and the dragging of inertial frames. 
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•	 The scalar part of hij , i.e. hij = −2ψδij , which (for ψ = φ) doubles the deflection 
of light by the sun compared with the simple Newtonian calculation. 

•	 The transverse-traceless part of hij , or gravitational radiation, described by the 
transverse-traceless strain matrix sij . 

The rest of these notes will explore these phenomena in greater detail. 

Field Equations 

Greater understanding of the physics of weak-field gravitation comes from examining the 
Einstein equations and comparing them with the Maxwell equations. This will allow us 
to solve the gauge problem and thereby to explore the phenomena mentioned above with 
confidence that we are not being misled by coordinate artifacts. 

Starting from equation (11), we obtain the linearized Christoffel symbols 

Γ0 = ∂tφ , Γ0 = ∂iφ , Γ0 
ij = −∂(iwj) + ∂t(sij − δij ψ) , 

Γ

00 i0 

i = ∂iφ+ ∂twi , Γj
i0 = ∂[iwj] + ∂t(sij − δij ψ) ,00 

Γk = δij ∂k ψ − 2δk(i∂j)ψ − ∂k sij + 2∂(isj)k .	 (16)ij 

(Notice that the Kronecker delta is used to raise and lower spatial components.) The 
Ricci tensor has components 

i 2R00 = ∂2φ+ ∂t(∂iw ) + 3∂t ψ ,

1 1 j
∂2 wi + ∂i(∂j w

j ) + 2∂t∂iψ + ∂t∂j s i ,R0i = − 
2 2 

2	 kRij = −∂i∂j (φ− ψ) − ∂t∂(iwj) + (∂t 
2 − ∂ )(sij − ψδij ) + 2∂k ∂(isj) (17) 

ij ∂i∂j .where ∂2 ≡ δ The Einstein tensor components are 

ijG00 = 2∂2ψ + ∂i∂j s ,

1 1 j
G0i = − 
2 
∂2 wi + ∂i(∂j w

j ) + 2∂t∂iψ + ∂t∂j s i ,2 
Gij = (δij ∂

2 − ∂i∂j )(φ− ψ) + ∂t δij (∂k w k ) − ∂(iwj) + 2δij (∂t 
2ψ) 

2 k+ (∂t 
2 − ∂ )sij + 2∂k ∂(is − δij (∂k ∂ls 

kl) .	 (18)j) 

Γ

It is fascinating that the time-time part of the Einstein tensor contains only the spatial 
parts of the metric, and h00 = −2φ appears only in Gij . Although the equation of motion 
for nonrelativistic particles in the Newtonian limit is dependent only on h00 (through 
i 
00), the Newtonian gravitational field equation (the Poisson equation) is sensitive only 

to hij ! I do not know if this is a merely a coincidence; it is not true for the fully nonlinear 
Einstein equations. 
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It is also fascinating that G00 contains no time derivatives and G0i contains only 
first time derivatives. If the Einstein equations Gµν = 8πGTµν are to provide evolution 
equations for the metric, we would have expected a total of ten independent second-order 
in time equations, one for each component of gµν . (After all, typical mechanical systems 
have, from the Euler-Lagrange equations, second-order time evolution equations for each 
generalized coordinate.) What is going on? 

A clue comes from similar behavior of the Maxwell equations: 

∂ν F µν = 4πJ µ , ∂[κFµν] = 0 . (19) 

The substitution Fµν = ∂µAν − ∂ν Aµ automatically satisfies the source-free Maxwell 
equations and gives 

∂2A0 + ∂t(∂j A
j ) = −4πJ 0 , ∂t(∂iA

0 + ∂tA
i) + ∂i(∂j A

j ) − ∂2Ai = 4πJ i , (20) 

≡ δij ∂i∂j . 

A

where once again ∂2 Only the spatial parts of the Maxwell equations provide 
second-order time evolution equations. Does this mean that Ai evolves dynamically but 

0 does not? 
The answer to that question is clearly no, because Aµ is gauge-dependent and one 

can easily choose a gauge in which ∂ν F 0ν contains second time derivatives of A0 . (The 
Lorentz gauge, with ∂µAµ = 0, is a well-known example.) 

However, there is a sense in which the time part of the Maxwell equations (the first of 
eqs. 20) is redundant and therefore need not provide an equation of motion for the field. 
As the reader may easily verify, the time derivative of this equation, when subtracted 
from the spatial divergence of the spatial equations (the second of eqs. 20), enforces 
charge conservation, ∂µJ µ = 0. (We are working in flat spacetime so there is no need for 
the covariant derivative symbol.) This is another way of expressing the statement that 
gauge-invariance implies charge conservation. We are perfectly at liberty to choose a 
gauge such that ∂j Aj = 0 (the Coulomb or transverse gauge), in which case only Ai need 
be solved for by integrating a time evolution equation. Coulomb’s law, ∂2A0 = −4πJ 0 , 
may be regarded as a constraint equation to ensure conservation of charge. 

Similarly, general relativity has a conservation law following from gauge-invariance: 
∂µT µν = 0. Now there are four conserved quantities, the energy and momentum. (In 
the weak-field limit, but not in general, T µν can be integrated over volume to obtain a 
globally conserved energy and momentum.) The reader can easily verify the redundancy 
in equations (18): ∂tG00 + ∂iG0i = 0, ∂tG0i + ∂j Gij = 0. Thus, if the matter evolves so as 
to conserve stress-energy T µν , then the G00 and G0i Einstein equations are redundant. 
They are present in order to enforce stress-energy conservation. In the literature they 
are known as the (linearized) Arnowitt-Deser-Misner (ADM) energy and momentum 
constraints (Arnowitt et al. 1962). 

The Ricci and Einstein tensors are invariant (in linearized theory) under gauge 
transformations (eq. 6). This follows from the fact that a gauge transformation is 
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R
a diffeomorphism and changes each tensor by the addition of a Lie derivative term: 

µν → Rµν + Lξ Rµν and similarly for Gµν . The Lie derivative is first-order in both 
the shift vector ξ� and the Ricci tensor, and therefore vanishes in linear theory. Put 
another way, because the Ricci tensor vanishes for the flat background spacetime, its Lie 
derivative vanishes. 

Although Rµν and Gµν are gauge-invariant, their particular forms in equations (17) 
and (18) are not, because of the appearance of the metric perturbations (φ, wi, ψ, sij ). 
Part of this dependence, in G0i and Gij , can be eliminated by using the gravitoelectro
magnetic fields, giving 

G0i = 
1
(�×H)i + 2∂t∂iψ + ∂t∂j s

j 
i , 

G
2 

ij = ∂(igj) − δij (∂k g 
k ) + (∂i∂j − δij ∂

2)ψ + 2δij (∂
2ψ)t 

k+ (∂2 − ∂2)sij + 2∂k ∂(is − δij (∂k ∂ls 
kl) . (21)t j) 

Note that the potentials φ and wi (from h00 and h0i) enter into both the equations 
of motion and the Einstein equations only through the fields gi and Hi, giving strong 
support to the interpretation of g and H as physical fields for linearized GR. But what 
of ψ and sij ? We explore this question in the next section. 

Gauge-fixing: Transverse Gauge 

Up to this point, we have imposed no gauge conditions at all on the metric tensor 
potentials. However, we have four coordinate variations at our disposal. Under the gauge 
transformation (6), the potentials change by 

1 1 
δφ = ∂tξ

0 , δwi = −∂iξ0 + ∂tξ
i , δψ = −

3 
∂iξ

i , δsij = ∂(iξj) − δij (∂k ξ
k ) . (22)

3 

Examing equations (21), it is clear that substantial simplification would result if could 
choose a gauge such that 

∂j s
j = 0 . (23)i 

Indeed, this is possible, by gauge-transforming any sij which does not obey this condition 
jusing the spatial shift vector ξi obtained by solving ∂j (s i + δsj i) = 0, or 

1 j∂2ξi + ∂i(∂j ξ
j ) = −2∂j s i . (24)

3 

This is an elliptic equation which may be solved by decomposing ξi into longitudinal 
(curl-free) and transverse (divergence-free) parts. Solutions to this equation always exist; 
indeed, suitable boundary conditions must be specified in order to yield a unique solution. 
In Section 8 we will discuss the physical meaning of the extra solutions. 
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Equation (23) is called the transverse-traceless gauge condition. It is widely used 
when studying gravitational radiation, but we will see that it is also useful for other 
applications. 

Similarly, although we have hidden the vector potential wi in the gravitoelectromag
netic fields, the gauge may be fixed by requiring it to be transverse: 

∂iw i = 0 . (25) 

(The equations of motion depend only on � × w, so we expect to lose no physics by 
setting the longitudinal part to zero.) To convert a coordinate system that does not 
satisfy equation (25) to one that does, one solves the following elliptic equation for ξ0: 

i∂2ξ0 − ∂t(∂iξ
i) = ∂iw . (26) 

Once again, this equation (in combination with eq. 24 for ξi) may have multiple solutions 
depending on boundary conditions. (For given ξi, this is simply a Poisson equation for 
ξ0.) 

The combination of gauge conditions given by equations (23) and (25) imposes four 
conditions on the coordinates. They generalize the Coulomb gauge conditions of elec
tromagnetism, ∂iAi = 0. As a result, both wi and the traceless part of hij (i.e., sij ) 
are transverse. The gauge condition on sij is well-known and is almost always used in 
studies of gravitational radiation; it reduces the number of degrees of freedom of sij from 
five to two, corresponding to the two orthogonal polarizations of gravitational radiation. 
However, the metric is not fully constrained until a gauge condition is imposed on wi as 
well. Equation (25) reduces the number of degrees of freedom of wi from three to two. 
The total number of physical degrees of freedom is six: one each for the spatial scalar 
fields φ and ψ, two for the transverse vector field wi, and two for the transverse-traceless 
tensor field sij . 

Based on its similarity with the Coulomb gauge of electromagnetism, Bertschinger 
(1996) dubbed these gauge conditions the Poisson gauge. Here we will call them trans
verse gauge. In transverse gauge, the Einstein equations become 

G00 = 2∂2ψ = 8πGT00 ,

1


G0i = (�×H)i + 2∂t∂iψ = 8πGT0i , 

G
2 

ij = (δij ∂
2 − ∂i∂j )(φ − ψ) − ∂t∂(iwj) + 2δij (∂

2ψ) + (∂2 − ∂2)sij (27)t t 

= ∂(igj) − δij (∂k g 
k ) + (∂i∂j − δij ∂

2)ψ + 2δij (∂
2ψ) + (∂2 − ∂2)sij = 8πGTij .t t 

The G00 equation is precisely the Newtonian Poisson equation, justifying the alternative 
name Poisson gauge. 
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6 Scalar, Vector and Tensor Components 

Having reduced the number of degrees of freedom in the metric to six, let us now reexam
ine the statement made at the end of Section 3 that there are four distinct gravitational 
phenomena. They may be classified by the form of the metric variables as scalar (φ 
and ψ), vector (wi) and tensor (sij ). The scalar-vector-tensor decomposition was first 
performed by Lifshitz (1946) in the context of perturbations of a Robertson-Walker 
spacetime, but it works (at least) for perturbations of any spacetime (such as Minkowski) 
with sufficient symmetry (i.e. with sufficient number of Killing vector fields). See Section 
4.2 of Bertschinger (1996) for the cosmological application. 

The scalar-vector-tensor decomposition is based on decomposing both the metric and 
stress-energy tensor components into longitudinal and transverse parts. Three-vectors 
like w (regarded as a three-vector in Euclidean space) and T0i are decomposed as follows: 

i i i w = w + w⊥ , = �ei�
ijk ∂j wk,� = 0 , � · w = δij ∂iwj,⊥ = 0 . (28)� �× w� ⊥ 

In the transverse gauge, w� = 0 but we are retaining it here for purposes of illustration. 
The terms �longitudinal� and �transverse� come from the Fourier transform repre

sentation. Because w = �Φw for some scalar field Φw, the Fourier transform of w is 
parallel to the wavevector k. Similarly, w = �×A for some vector field A , hence its w w⊥
Fourier transform is perpendicular (i.e. transverse) to k. A spatial constant vector may 
be regarded as being either longitudinal or transverse. 

Jackson (1975, Section 6.5) gives explicit expressions for the longitudinal and trans
verse parts of a three-vector field in flat space: 

1 w(x�) 
d3 1 

w = 
w(x�) 

d3 x� . (29) 
x − x�� −

4π 
� �� ·

| 
x� , w⊥ = 4π 

�×�× 
x − x�| | | 

Note that this decomposition is nonlocal, i.e. the longitudinal and transverse parts carry 
information about the vector field everywhere. Thus, if w is nonzero only in a small region 
of space, its longitudinal and transverse parts will generally be nonzero everywhere. One 
cannot deduce causality by looking at w or w alone.� ⊥

Similarly, a symmetric two-index tensor may be decomposed into three parts depend
ing as to whether its divergence is longitudinal, transverse, or zero: 

hij = hij,� + hij,⊥ + hij,T . (30) 

We will refer to these parts as longitudinal (or scalar), rotational (or solenoidal or vector) 
and transverse (or tensor) parts of hij . In the transverse gauge h + ij = hij,T, but we 
retain the other parts here for purpose of illustration. 

The longitudinal and rotational parts are defined in terms of a scalar field h�(x) and 
a transverse vector field h⊥(x) such that 

1 
hij,� = ∂i∂j − δij ∂

2 h� , hij,⊥ = ∂(ihj),⊥ . (31)
3 
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As stated above, the divergences of hij,� and hij,⊥ are longitudinal and transverse vectors, 
respectively, and the divergence of hij,T vanishes identically: 

2 1 
δjk ∂k hij,� = ∂i(∂

2h�) , δjk∂k hij,⊥ = ∂2hi,⊥ , δjk ∂khij,T = 0 . (32)
3 2 

Thus, the longitudinal part is obtainable from a scalar field, the rotational part is ob
tainable only from a (transverse) vector field, and the transverse part is obtainable only 
from a (transverse traceless) tensor field. The reader may find it a useful exercise to 
construct integral expressions for these parts, similar to equations (29). 

The stress-energy tensor may be decomposed in a similar way. Doing this, the lin
earized Einstein equations (27) in transverse gauge give field equations for the physical 
fields (ψ, gi, Hi, sij ): 

∂2ψ = 4πGT00 , 

� · g − 3∂t 
2ψ = −4πG(T00 + T ii) , 

−16πGf , f ≡ T 0i�ei , (33)�×H = ⊥ 

(∂2 − ∂2)sij = 8πGTij,Tt 

plus constraint equations to ensure ∂µT µν = 0: 

∂t�ψ = −4πGf , 

1 1 
∂(igj) − δij (∂k g 

k ) + (∂i∂j − δij ∂
2)ψ = 8πG(Πij − Πij,T) , (34)

3 3 
1 

where Πij ≡ Tij − δij T kk . 3 

Note that the third constraint equation may be further decomposed into longitudinal 
and rotational parts as follows: 

1 
(∂i∂j − δij ∂

2)(ψ − φ) = 8πG Πij,� , −∂t∂(iwj) = 8πG Πij,⊥ . (35)
3 

Equations (33)�(35) may be regarded as the fundamental Einstein equations in linear 
theory. No approximations have been made in deriving them, aside from hµν | � 1.|

7 Physical Content of the Einstein equations 

Equations (33)�(35) are remarkable in bearing similarities to both Newtonian gravity 
and electrodynamics. They exhibit precisely the four physical features mentioned at the 
end of Section 3: the quasi-Newtonian gravitational field g, the gravitomagnetic field H, 
the spatial potential ψ, and the transverse-traceless strain sij . 
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To see the effects of these fields, let us rewrite the gravitational force law, equation 
(15), using equation (11) with the transverse gauge conditions (23) and (25): 

dp � 
g + v ×H + v(∂tψ) − v 2

� � 
= E �⊥ψ + E −vj ∂ts i j + �ijk vj v lΩk 

� 
�ei (36)ldt 

iwhere �⊥ ≡ (δij − v vj /v2)�ei∂j is the gradient perpendicular to v and 

Ωkl ≡ ∂ms 
(k �l)mn (37)n 

is the �curl� of the strain tensor skl . (We define the curl of a symmetric two-index tensor 
by this equation). 

We can build intuition about each component of the gravitational field (g, H, ψ, sij ) 
by comparing equations (33)�(36) with the corresponding equations of Newtonian grav
itation and electrodynamics. 

First, the gravitoelectric field g is similar to the static Newtonian gravitational field 
in its effects, but its field equation (33b) differs from the static Poisson equation. While 
the potential ψ obeys the Newtonian Poisson equation (33a), its time derivative enters 
the equations of motion for both g and for particle momenta. Why? Note first that 
we’ve regarded φ as the more natural generalization of the Newtonian potential because 
it gives the deflection for slowly-moving particles; the terms with ψ in equation (36) 
all vanish when vi = 0. Under what conditions then do we have φ = ψ and why does 
equation (33b) differ from the Newtonian Poisson equation? 

The answers lie in source motion and causality. If the sources are static (or their 
motion is negligible), ∂tψ = 0 from equation (33a). The first of equations (35) shows 
that if the shear stress is small (compared with T00), then φ ≈ ψ (up to solutions of 
∂i∂j (φ −ψ) = 0). Small stresses imply slow motions, so we deduce that the gravitational 
effects are describable by static gravitational fields in the Newtonian limit. Thus, one 
cannot argue that the Einstein equations violate causality because ψ is the solution of 
a static elliptic equation. The gravitational effects on slowly moving particles come not 
from ψ but from g, whose source depends on the ∂2ψ as well as on the pressure. t 

It is instructive to compare the field equations for g and H with the Maxwell equations 
for E and B: 

E = 4πρc , �× E + ∂tB = 0 ,� ·
B = 0 , �×B − ∂tE = 4πJ (38)c� ·

were Jµ = (ρc, Jc) is the four-current density. By comparison, g and H obey 

� · g − 3∂t 
2ψ = −4πG(T00 + T ii) , �× g + ∂tH = 0 , 

H = 0 , �×H = −16πGf . (39)� · ⊥ 

How do we interpret these? 
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Gauss’ law for the gravitoelectric field differs from its electrostatic counterpart be
cause of the time-dependence of ψ and the inclusion of spatial stress as as source. (The 
electromagnetic source, being a vector rather than a tensor, has no such possibility.) 
We already noted that the ∂2ψ term is needed to ensure causality. (The proof of this t 

is somewhat detailed, requiring a transformation to the Lorentz gauge where all metric 
components obey wave equations.) 

The source-free equations, of both electrodynamics and gravitodynamics ensure that 
magnetic field lines have no ends. Faraday’s law of induction ∂tB + �×E = 0 (and its 
gravitational counterpart) ensures � ·B = 0 persists when the current sources evolve in 
Ampere’s law. 

So far gravitation and electrodynamics appear similar. However, Ampere’s law reveals 
a fundamental difference between the two theories. There is no gravitational displacement 
current. The gravitomagnetic field does not obey a causal evolution equation � it is 
determined by the instantaneous energy current. Moreover, it is not the whole current 
f = T 0i�ei that appears as its source but rather only the transverse current. (The 
longitudinal current would be incompatible with the transverse field �×H.) 

Recall that the Maxwell equations enforce charge conservation through the time 
derivative of Gauss’ law combined with the divergence of Ampere’s law. Gravitation is 
completely different: ∂µT µ0 = 0 is enforced by equations (33a) and (34a), which are not 
even present in our gravitational �Maxwell� equations. So gravitation doesn’t need a 
displacement current to enforce energy conservation. However, the displacement current 
plays another fundamental role in electromagnetism, which was recognized by Maxwell 
before there was any experimental evidence for this term: it leads to wave equations for 
the electromagnetic fields. 

s

The conclusion is inescapable � g and H do not obey causal wave equations. This 
does not mean GR violates causality, because one must include the effects of ψ and sij 
on any particle motion (eq. 36). This is left as an extended exercise for the reader. 
However, it is worth noting that one cannot simply deduce causality from the fact that 
ij evolves according to a causal wave equation (eq. 33d). The source for sij is the 
transverse-traceless stress, which extends over all space even if T µν = 0 outside a finite 
region. (This gives rise to �near-field� contributions from gravitational radiation sources 
similar to the near-field electromagnetic fields of radiating charges.) 

So far we have discussed the physics of g and H in detail but there are some aspects 
of the spatial metric perturbation fields ψ and sij remaining to be discussed. Starting 
with equation (36), we see that ψ plays two roles. The first was discussed in the notes 
Hamiltonian Dynamics of Particle Motion: ψ doubles the deflection of light (or any 
particle with v = 1). Its effect on the proper 3-momentum is to produce a transverse 
force −Ev2 ψ. However, a time-varying potential also changes the proper energy of a �⊥
particle through the longitudinal force Ev(∂tψ) = p∂tψ. This effect is not the same as a 
time-varying gravitational (or electric) field; the Lorentz force law contains no such term 
as p∂tφ. It is purely a relativistic effect arising from the tensorial nature of gravity. 
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Finally, the best-known relativistic phenomenon of gravity is gravitational radiation, 
described (in transverse gauge) by the transverse-traceless potential sij . One could de
duce the whole set of linearized Einstein equations by starting from the premise that 
gravitational radiation should be represented by a traceless two-index tensor (physically 
representing a spin-two field) and, because static gravitational fields are long-ranged, 
the graviton must be massless hence gravitational radiation must be transverse. (These 
statements will not be proven; doing so requires some background in field theory.) All 
the other gravitational fields may be regarded as auxiliary potentials needed to enforce 
gauge-invariance (local stress-energy conservation). In a similar way, Maxwell’s equa
tions may be built up starting from the premise that the transverse vector potential A⊥
obeys a wave equation with source given by the transverse current. 

Gravitational radiation affects particle motion in three ways. The first two are ap
parent in equation (36). Noting that vlΩk appears in the equation of motion the same l 

way as the gravitomagetic field H, we conclude that gravitational radiation contributes 
a force perpendicular to the velocity. However, that force is quadratic rather than linear 
in the velocity (for a given energy). Second, gravitational radiation contributes a term 
to the force that is linear in the velocity but dependent on the time derivative: −vj ∂tsij . 

Both of these effects appear only in motion relative to the coordinate system. Be
cause gravitational radiation produces no �force� on particles at rest in the coordinates, 
particles at rest remain at rest. The Christoffel symbol Γi receives no contribution 00 

from hij . 
Does this mean that gravitational radiation has no effect on static particles? No � 

it means instead that gravitational radiation cannot be understood as a force in flat 
spacetime; it is fundamentally a wave of space curvature. One cannot deduce its effects 
from the coordinates alone; one must also use the metric. The proper spatial separa
tion between two events (e.g. points on two particle worldlines) with small coordinate 

i iseparation Δxi = (Δx)n is (gij ΔxiΔxj )1/2 = (Δx)(1 + sij n nj ). (Note that Schutz and 
most other references used hij = 1 sij .) We see that sij is the true strain � the change 

2 
in distance divided by distance due to a passing gravitational wave. This strain effect, 
and not the velocity-dependent forces appearing in equation (36), is what is being sought 
by LIGO and other gravitational radiation detectors. The velocity-dependent forces do 
make a potentially detectable signature in the cosmic microwave background anisotropy, 
however, which provides a way to search for very long wavelength gravitational radiation. 

Residual Gauge Freedom: Accelerating, Rotating, 
and Inertial Frames 

Before concluding our discussion of linear theory, it is worthwhile examining equations 
(24) and (26) to deduce the gauge freedom remaining after we impose the transverse 
gauge conditions (23) and (25). Doing so will help to clarify the differences between 
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gravity, acceleration, and rotation. 
The gauge conditions are unaffected by linear transformations of the spatial coordi

nates, which are homogeneous solutions of equations (24) and (26): 

0 iξ0 = a (t) + bi(t)x i , ξi = a (t) + c(ij) + c[ij](t) x
j , c(ij) = constant . (40) 

x

Equations (24) and (26) also have quadratic solutions in the spatial coordinates, but these 
are excluded because gauge transformations require that the coordinate transformation 
µ → yµ = xµ − ξµ be one-to-one and invertible. (The symmetric tensor cij must be 

constant because otherwise ξ0 would have a contribution 1 �
2 cij x

ixj .) 
The various terms in equation (40) have straightforward physical interpretations: 

a0(t) represents a global redefinition of the time coordinate t → t−a0(t), bi(t) is a velocity 
which tilts the t-axis as in an infinitesimal Lorentz transformation (t� = t − vx), dai/dt 
is the other half of the Lorentz transformation (e.g. x� = x − vt), c(ij) represents a static 
stretching of the spatial coordinates, and c[ij] is a spatial rotation of the coordinates 
about the axis �ijk cjk . 

Notice that the class of coordinate transformations allowed under a gauge transfor
mation is broader than the Lorentz transformations of special relativity. Transformations 
to accelerating (d2ai/dt2) and rotating (dc[ij]/dt) frames occur naturally because the for
mulation of general relativity is covariant. That is, the equations of motion have the 
same form in any coordinate system. (However, the assumption hµν | � 1 greatly limits |
the coordinates allowed in linear theory.) 

Using equations (22) and (40), the changes in the fields are 

1 
δg = −ä + �ω × r , δH = −2 ω , δψ =

1 
c kk , δsij = c(ij) − δij c 

k
k (41)− 

3 3 

where r ≡ xi�ei is the �radius vector� (which has the same meaning here as in special 
relativity) and the angular velocity ωi is defined through 

dc[ij] ≡ �ijkω
k . (42)

dt 

The spatial curvature force terms in equation (36) are invariant because the residual 
gauge freedom of transverse gauge in equation (41) allows only for constant spatial 
deformations (i.e., time-independent δhij ). Gravitational radiation is necessarily time-
dependent, so it is completely fixed by the transverse-traceless gauge condition equation 
(23). The spatial curvature potential ψ is arbitrary up to the addition of a constant. 
Thus, only the gravitoelectric and gravitomagnetic fields have physically relevant gauge 
freedom after the imposition of the transverse gauge conditions. 

Note that equations (41) leave the Einstein equations (33)�(34) and (39) invariant. 
The Riemann, Ricci and Einstein tensors are gauge-invariant for a weakly perturbed 
Minkowski spacetime. 
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However, the gravitational force equation (36) is not gauge-invariant. Under the 
gauge transformation of equations (40) and (41) it acquires additional terms: 

dp � � 
δ = E δg + v × δH = E (−ä + �ω × r + 2ω × v) . (43)

dt 

The reader will recognize these terms as exactly the fictitious forces arising from ac
celeration and rotation relative to an inertial frame. The famous Coriolis acceleration 
is 2ω × v. (The centrifugal force term is absent because it is quadratic in the angular 
velocity and it vanishes in linear theory.) 

The Weak Equivalence Principle is explicit in equation (43): acceleration is equivalent 
to a uniform gravitational (gravitoelectric) field g. Moreover, we have also discovered 
that rotation is equivalent to a uniform gravitomagnetic field H. Uniform fields are 
special because they can be transformed away while remaining in transverse gauge. 

The observant reader may have noticed the word �inertial� used above and wondered 
about its meaning and relevance here. Doesn’t GR single out no preferred frames? That 
is absolutely correct; GR distinguishes no preferred frames. However, we singled out a 
class of frames (i.e. coordinates) by imposing the transverse gauge conditions (23) and 
(25). Transverse gauge provides the relativistic notion of inertial frames. This 
is not just one frame but a class of frames because equation (36) is invariant under (small 
constant velocity) Lorentz transformations: bi and dai/dt are absent from equation (43). 
Thus, the Galilean-invariance of Newton’s laws is extended to the Lorentz-invariance 
of the relativistic force law in transverse gauge. However, the gravitational force now 
includes magnetic and other terms not present in Newton’s laws. 

Although the gravitational force equation is not invariant, it is covariant. Fictitious 
forces are automatically incorporated into existing terms (g and H); the form of equa
tion (36) is invariant even though the values of each term are not. This points out a 
profound fact of gravity in general relativity: nothing in the equations of motion 
distinguishes gravity from a fictitious force. 

Indeed, the curved spacetime perspective regards gravitation entirely as a fictitious 
force. Nonetheless, we can, by imposing the transverse gauge (or other gauge) conditions, 
make our own separation between physical and fictitious forces. (Here I must note the 
caveat that transverse gauge has not been extended to strong gravitational fields so I 
don’t know whether all the conclusions obtained here are restricted to weak gravitational 
fields.) Uniform gravitoelectric or gravitomagnetic fields can always be transformed away, 
hence they may be regarded as being due to acceleration or rotation rather than gravity. 
Spatially varying gravitoelectric and gravitomagnetic fields cannot be transformed away. 
They can only be caused by the stress-energy tensor and they are not coordinate artifacts. 

This separation between gravity and fictitious forces is somewhat unnatural in GR 
(and it requires a tremendous amount of preparation!), but it is helpful for building 
intuition by relating GR to Newtonian physics. 
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This discussion also sheds light on GR’s connection to Mach’s principle, which states 
that inertial frames are determined by the rest frame of distant matter in the universe 
(the �fixed stars�). This is not strictly true in GR. Non-rotating inertial frames would 
be ones in which H = 0 everywhere. Locally, any nonzero H can be transformed away 
by a suitable rotation, but the rotation rates may be different at different places in which 
case there can exist no coordinate system in which H = 0 everywhere. (In this case the 
coordinate lines would quickly tangle, cross and become unusable.) Transverse energy 
currents, due for example to rotating masses, produce gravitomagnetic fields that cannot 
be transformed away. (See the gravitational Ampere’s law in eqs. 39.) However, the 
gravitomagnetic fields may be very small, in which case there do exist special frames in 
which H ≈ 0 and there are no Coriolis terms in the force law. 

We happen to live in a universe with small transverse energy currents: the distant 
matter is not rotating. (Sensitive limits are placed by the isotropy of the cosmic mi
crowave background radiation.) Thus, due good fortune, Mach was partly correct. How
ever, were he to stand close to a rapidly rotating black hole, and remain fixed relative to 
the distant stars, he would get dizzy from the gravitomagnetic field. (He would literally 
feel like he was spinning.) Thus, Mach’s principle is not built into GR but rather is a 
consequence of the fact that we live in a non-rotating (or very slowly rotating) universe. 
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Introduction 

These notes show how observers can set up a coordinate system and measure the space-
time geometry using clocks and lasers. The approach is similar to that of special rela
tivity, but the reader must not be misled. Spacetime diagrams with rectilinear axes do 
not imply flat spacetime any more than flat maps imply a flat earth. 

Cartography provides an excellent starting point for understanding the metric. Ter
restrial maps always provide a scale of the sort �One inch equals 1000 miles.� If the 
map is of a sufficiently small region and is free from distortion, one scale will suffice. 
However, a projection of the entire sphere requires a scale that varies with location and 
even direction. The Mercator projection suggests that Greenland is larger than South 
America until one notices the scale difference. The simplest map projection, with lat
itude and longitude plotted as a Cartesian grid, has a scale that depends not only on 
position but also on direction. Close to the poles, one degree of latitude represents a far 
greater distance than one degree of longitude. 

The map scale is the metric. The spacetime metric has the same meaning and use: it 
translates coordinate distances and times (�one inch on the map�) to physical (�proper�) 
distances and times. 

The terrestrial example also helps us to understand how coordinate systems can be 
defined in practice on a curved manifold. Let us consider how coordinates are defined on 
the Earth. First pick one point and call it the north pole. The pole is chosen along the 
rotation axis. Now extend a family of geodesics from the north pole, called meridians 
of longitude. Label each meridian by its longitude φ. We choose the meridian going 
through Greenwich, England, and call it the�prime meridian,� φ = 0. Next, we define 
latitude λ as an affine parameter along each meridian of longitude, scaled to π/2 at the 
north pole and decreasing linearly to −π/2 at the point where the meridians intersect 
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again (the south pole). With these definitions, the proper distance between the nearby 
points with coordinates (λ, φ) and (λ + dλ, φ + dφ) is given by ds2 = R2(dλ2 + cos2 λ dφ2). 
In this way, every point on the sphere gets coordinates along with a scale which converts 
coordinate intervals to proper distances. 

This example seems almost trivial. However, it faithfully illustrates the concepts 
involved in setting up a coordinate system and measuring the metric. In particular, 
coordinates are numbers assigned by obsevers who exchange information with each other. 
There is no conceptual need to have the idealized dense system of clocks and rods filling 
spacetime. Observe any major civil engineering project. The metric is measured by two 
surveyors with transits and tape measures or laser ranging devices. Physicists can do the 
same, in principle and in practice. These notes illustrate this through a simple thought 
experiment. The result will be a clearer understanding of the relation between curvature, 
gravity, and acceleration. 

The metric in 1+1 spacetime 

We study coordinate systems and the metric in the simplest nontrivial case, spacetime 
with one space dimension. This analysis leaves out the issue of orientation of spatial axes. 
It also greatly reduces the number of degrees of freedom in the metric. As a symmetric 
2 matrix, the metric has three independent coefficients. Fixing two coordinates imposes 
two constraints, leaving one degree of freedom in the metric. This contrasts with the six 
metric degrees of freedom in a 3+1 spacetime. However, if one understands well the 1+1 
example, it is straightforward (albeit more complicated) to generalize to 2+1 and 3+1 
spacetime. 

We will construct a coordinate system starting from one observer called A. Observer 
A may have any motion whatsoever relative to other objects, including acceleration. 
But neither spatial position nor velocity is meaningful for A before we introduce other 
observers or coordinates (�velocity relative to what?�) although A’s acceleration (relative 
to a local inertial frame!) is meaningful: A stands on a scale, reads the weight, and 
divides by rest mass. Observer A could be you or me, standing on the surface of the 
earth. It could equally well be an astronaut landing on the moon. It may be helpful 
in this example to think of the observers as being stationary with respect to a massive 
gravitating body (e.g. a black hole or neutron star). However, we are considering a 
completely general case, in which the spacetime may not be at all static. (That is, there 
may not be any Killing vectors whatsoever.) 

We take observer A’s worldine to define the t-axis: A has spatial coordinate xA ≡ 0. 
A second observer, some finite (possibly large) distance away, is denoted B. Both A and 
B carry atomic clocks, lasers, mirrors and detectors. 

Observer A decides to set the spacetime coordinates over all spacetime using the 
following procedure, illustrated in Figure 1. First, the reading of A’s atomic clock gives 
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Figure 1: Setting up a coordinate system in curved spacetime. There are two time-
like worldlines and two pairs of null geodesics. The appearance of flat coordinates is 
misleading; the metric varies from place to place. 

the t-coordinate along the t-axis (x = 0). Then, A sends a pair of laser pulses to B, who 
reflects them back to A with a mirror. If the pulses do not return with the same time 
separation (measured by A) as they were sent, A deduces that B is moving and sends 
signals instructing B to adjust her velocity until t6 − t5 = t2 − t1. The two continually 
exchange signals to ensure that this condition is maintained. A then declares that B has 
a constant space coordinate (by definition), which is set to half the round-trip light-travel 

1time, xB ≡ 2 (t5 − t1). A sends signals to inform B of her coordinate. 
Having set the spatial coordinate, A now sends time signals to define the t-coordinate 

along B’s worldline. A’s laser encodes a signal from Event 1 in Figure 1, �This pulse 
was sent at t = t1. Set your clock to t1 + xB .� B receives the pulse at Event 3 and sets 
her clock. A sends a second pulse from Event 2 at t2 = t1 + Δt which is received by B 
at Event 4. B compares the time difference quoted by A with the time elapsed on her 
atomic clock, the proper time ΔτB . To her surprise, ΔτB = Δt. 

At first A and B are sure something went wrong; maybe B has begun to drift. But 
repeated exchange of laser pulses shows that this cannot be the explanation: the round-
trip light-travel time is always the same. Next they speculate that the lasers may be 
traveling through a refractive medium whose index of refraction is changing with time. 
(A constant index of refraction wouldn’t change the differential arrival time.) However, 
they reject this hypothesis when they find that B’s atomic clock continually runs at a 
different rate than the timing signals sent by A, while the round-trip light-travel time 
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Figure 2: Testing for space curvature. 

measured by A never changes. Moreover, laboratory analysis of the medium between 
them shows no evidence for any change. 

Becoming suspicious, B decides to keep two clocks, an atomic clock measuring τB 

and another set to read the time sent by A, denoted t. The difference between the two 
grows increasingly large. 

The observers next speculate that they may be in a non-inertial frame so that special 
relativity remains valid despite the apparent contradiction of clock differences (gtt = 1) 
with no relative motion (dxB /dt = 0). We will return to this speculation in Section 3. In 
any case, they decide to keep track of the conversion from coordinate time (sent by A) 
to proper time (measured by B) for nearby events on B’s worldline by defining a metric 
coefficient: 

� �2
ΔτB 

gtt(t, xB ) ≡ lim . (1)
Δt 0 

− 
Δt→

The observers now wonder whether measurements of spatial distances will yield a 
similar mystery. To test this, a third observer is brought to help in Figure 2. Observer 
C adjusts his velocity to be at rest relative to A. Just as for B, the definition of rest 
is that the round-trip light-travel time measured by A is constant, t8 − t1 = t9 − t2 = 
2xC ≡ 2(xB + Δx). Note that the coordinate distances are expressed entirely in terms 
of readings of A’s clock. A sends timing signals to both B and C. Each of them sets 
one clock to read the time sent by A (corrected for the spatial coordinate distance xB 

and xC , respectively) and also keeps time by carrying an undisturbed atomic clock. The 
former is called coordinate time t while the latter is called proper time. 
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The coordinate time synchronization provided by A ensures that t2 − t1 = t5 − t3 = 

6 − t4 = t7 − t5 = t9 − t8 = 2Δx. Note that the procedure used by A to set t and x 
relates the coordinates of events on the worldlines of B and C: 

(t4, x4) = (t3, x3) + (1, 1)Δx , (t5, x5) = (t4, x4) + (1,−1)Δx , 

(t6, x6) = (t5, x5) + (1, 1)Δx , (t7, x7) = (t6, x6) + (1,−1)Δx . (2) 

Because they follow simply from the synchronization provided by A, these equations 
are exact; they do not require Δx to be small. However, by themselves they do not 
imply anything about the physical separations between the events. Testing this means 
measuring the metric. 

g

To explore the metric, C checks his proper time and confirms B’s observation that 
proper time differs from coordinate time. However, the metric coefficient he deduces, 
tt(xC , t), differs from B’s. (The difference is first-order in Δx.) 
The pair now wonder whether spatial coordinate intervals are similarly skewed relative 

to proper distance. They decide to measure the proper distance between them by using 
laser-ranging, the same way that A set their spatial coordinates in the first place. B 
sends a laser pulse at Event 3 which is reflected at Event 4 and received back at Event 
5 in Figure 2. From this, she deduces the proper distance of C, 

1 
Δs = (τ5 − τ3) (3)

2 

where τi is the reading of her atomic clock at event i. To her surprise, B finds that Δx 
does not measure proper distance, not even in the limit Δx 0. She defines another →
metric coefficient to convert coordinate distance to proper distance, 

� �2
Δs 

lim . (4)gxx ≡ 
Δx 0 Δx→

τ

The measurement of proper distance in equation (4) must be made at fixed t; oth
erwise the distance must be corrected for relative motion between B and C (should 
any exist). Fortunately, B can make this measurement at t = t4 because that is when 
her laser pulse reaches C (see Fig. 2 and eqs. 2). Expanding τ5 = τB (t4 + Δx) and 
3 = τB (t4 − Δx) to first order in Δx using equations (1), (3), and (4), she finds 

gxx(x, t) = −gtt(x, t) . (5) 

The observers repeat the experiment using Events 5, 6, and 7. They find that, while the 
metric may have changed, equation (5) still holds. 

The observers are intrigued to find such a relation between the time and space parts 
of their metric, and they wonder whether this is a general phenomenon. Have they 
discovered a modification of special relativity, in which the Minkowski metric is simply 
multipled by a conformal factor, gµν = Ω2ηµν ? 
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They decide to explore this question by measuring gtx. A little thought shows that 
they cannot do this using pairs of events with either fixed x or fixed t. Fortunately, they 
have ideal pairs of events in the lightlike intervals between Events 3 and 4: 

ds2 
34 ≡ lim gtt(t4 − t3)

2 + 2gtx(t4 − t3)(x4 − x3) + gxx(x4 − x3)
2 . (6)

Δt,Δx 0→

Using equations (2) and (5) and the condition ds = 0 for a light ray, they conclude 

gtx = 0 . (7) 

Their space and time coordinates are orthogonal but on account of equations (5) and (7) 
all time and space intervals are stretched by 

√
gxx. 

Our observers now begin to wonder if they have discovered a modification of special 
relativity, or perhaps they are seeing special relativity in a non-inertial frame. However, 
we know better. Unless the Riemann tensor vanishes identically, the metric they have 
determined cannot be transformed everywhere to the Minkowski form. Instead, what 
they have found is simply a consequence of how A fixed the coordinates. Fixing two 
coordinates means imposing two gauge conditions on the metric. A defined coordinates 
so as to make the problem look as much as possible like special relativity (eqs. 2). 
Equations (5) and (7) are the corresponding gauge conditions. 

It is a special feature of 1+1 spacetime that the metric can always be reduced to a 
conformally flat one, i.e. 

ds2 = Ω2(x)ηµν dx
µdxν (8) 

for some function Ω(xµ) called the conformal factor. In two dimensions the Riemann 
tensor has only one independent component and the Weyl tensor vanishes identically. 
Advanced GR and differential geometry texts show that spacetimes with vanishing Weyl 
tensor are conformally flat. 

Thus, A has simply managed to assign conformally flat coordinates. This isn’t a 
coincidence; by defining coordinate times and distances using null geodesics, he forced 
the metric to be identical to Minkowski up to an overall factor that has no effect on null 
lines. Equivalently, in two dimensions the metric has one physical degree of freedom, 
which has been reduced to the conformal factor Ω ≡ √

gxx = 
√
−gtt. 

This does not mean that A would have had such luck in more than two dimensions. 
2In n dimensions the Riemann tensor has n2(n − 1)/12 independent components (Wald 

p. 54) and for n ≥ 3 the Ricci tensor has n(n + 1)/2 independent components. For n = 2 
and n = 3 the Weyl tensor vanishes identically and spacetime is conformally flat. Not 
so for n > 3. 

It would take a lot of effort to describe a complete synchronization in 3+1 spacetime 
using clocks and lasers. However, even without doing this we can be confident that 
the metric will not be conformally flat except for special spacetimes for which the Weyl 
tensor vanishes. Incidentally, in the weak-field limit conformally flat spacetimes have 
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no deflection of light (can you explain why?). The solar deflection of light rules out 
conformally flat spacetime theories including ones proposed by Nordstrom and Weyl. 

It is an interesting exercise to show how to transform an arbitrary metric of a 1+1 
spacetime to the conformally flat form. The simplest way is to compute the Ricci scalar. 
For the metric of equation (8), one finds 

R = Ω−2(∂2 − ∂2 
x) ln Ω2 . (9)t 

Starting from a 1+1 metric in a different form, one can compute R everywhere in space-
time. Equation (9) is then a nonlinear wave equation for Ω(t, x) with source R(t, x). It 
can be solved subject to initial Cauchy data on a spacelike hypersurface on which Ω = 1, 
∂tΩ = ∂xΩ = 0 (corresponding to locally flat coordinates). 

We have exhausted the analysis of 1+1 spacetime. Our observers have discerned one 
possible contradiction with special relativity: clocks run at different rates in different 
places (and perhaps at different times). If equation (9) gives Ricci scalar R = 0 ev
erywhere with Ω = 

√
−gtt, then the spacetime is really flat and we must be seeing the 

effects of accelerated motion in special relativity. If R = 0, then the variation of clocks 
is an entirely new phenomenon, which we call gravitational redshift. 

The metric for an accelerated observer 

It is informative to examine the problem from another perspective by working out the 
metric that an arbitrarily accelerating observer in a flat spacetime would deduce using 
the synchronization procedure of Section 2. We can then more clearly distinguish the 
effects of curvature (gravity) and acceleration. 

Figure 3 shows the situation prevailing in special relativity when observer A has 
µan arbitrary timelike trajectory xA(τA) where τA is the proper time measured by his 

atomic clock. While A’s worldline is erratic, those of light signals are not, because here 
t = x0 and x = x1 are flat coordinates in Minkowski spacetime. Given an arbitrary 

µworldline xA(τA), how can we possibly find the worldines of observers at fixed coordinate 
displacement as in the preceding section? 

The answer is the same as the answer to practically all questions of measurement in 
GR: use the metric! The metric of flat spacetime is the Minkowski metric, so the paths of 
laser pulses are very simple. We simply solve an algebra problem enforcing that Events 
1 and 2 are separated by a null geodesic (a straight line in Minkowski spacetime) and 
likewise for Events 2 and 3, as shown in Figure 3. Notice that the lengths (i.e. coordinate 
differences) of the two null rays need not be the same. 

The coordinates of Events 1 and 3 are simply the coordinates along A’s worldine, 
while those for Event 2 are to be determined in terms of A’s coordinates. As in Section 2, 
A defines the spatial coordinate of B to be twice the round-trip light-travel time. Thus, 

0if event 0 has x0 = tA(τ0), then Event 3 has x = tA(τ0 + 2L). For convenience we will 
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Figure 3: An accelerating observer sets up a coordinate system with an atomic clock, 
laser and detector. 

set τ0 ≡ τA − L. Then, according to the prescription of Section 2, A will assign to Event 
2 the coordinates (τA, L). The coordinates in our flat Minkowksi spacetime are 

Event 1: x 0 = tA(τA − L) , x 1 = xA(τA − L) , 

Event 2: x 0 = t(τA, L) , x 1 = x(τA, L) , 

Event 3: x 0 = tA(τA + L) , x 1 = xA(τA + L) . (10) 

Note that the argument τA for Event 2 is not an affine parameter along B’s wordline; 
it is the clock time sent to B by A. A second argument L is given so that we can look 
at a family of worldlines with different L. A is setting up coordinates by finding the 
spacetime paths corresponding to the coordinate lines L = constant and τA = constant. 
We are performing a coordinate transformation from (t, x) to (τA, L). 

Requiring that Events 1 and 2 be joined by a null geodesic in flat spacetime gives 
µ µthe condition x2 − x1 = (C1, C1) for some constant C1. The same condition for Events 

µ2 and 3 gives xµ = (C2,−C2) (with a minus sign because the light ray travels 3 − x2 

toward decreasing x). These conditions give four equations for the four unknowns C1, 
C2, t(τA, L), and x(τA, L). Solving them gives the coordinate transformation between 
(τA, L) and the Minkowski coordinates: 

1 
t(τA, L) = [tA(τA + L) + tA(τA − L) + xA(τA + L) − xA(τA − L)] ,

2

1


x(τA, L) = [xA(τA + L) + xA(τA − L) + tA(τA + L) − tA(τA − L)] . (11)
2 
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Note that these results are exact; they do not assume that L is small nor do they restrict 
A’s worldline in any way except that it must be timelike. The student may easily evaluate 

1 and C2 and show that they are not equal unless xA(τA + L) = xA(τA − L). 
Using equations (11), we may transform the Minkowski metric to get the metric in 

the coordinates A has set with his clock and laser, (τA, L): 

ds2 = −dt2 + dx2 = gttdτ 
2 + 2gtxdτAdL + gxxdL

2 . (12)A 

Substituting equations (11) gives the metric components in terms of A’s four-velocity 
components, 

−gtt = gxx = VA
t (τA + L) + V x 

A (τA + L) VA
t (τA − L) − VA

x(τA − L) , gtx = 0 . (13) 

This is precisely in the form of equation (8), as it must be because of the way in which 
A coordinatized spacetime. 

It is straightforward to work out the Riemann tensor from equation (13). Not surpris
ingly, it vanishes identically. Thus, an observer can tell, through measurements, whether 
he or she lives in a flat or nonflat spacetime. The metric is measurable. 

Now that we have a general result, it is worth simplifying to the case of an observer 
with constant acceleration gA in Minkowski spacetime. Problem 3 of Problem Set 1 
showed that one can write the trajectory of such an observer (up to the addition of 
constants) as x = g−1 cosh gAτA, t = g−1 sinh gAτA. Equation (13) then gives A A 

A + dL2 . (14)ds2 = e 2gAL −dτ 2 

One word of caution is in order about the interpretation of equation (14). Our 
derivation assumed that the acceleration gA is constant for observer A at L = 0. However, 
this does not mean that other observers (at fixed, nonzero L) have the same acceleration. 
To see this, we can differentiate equations (11) to derive the 4-velocity of observer B at 
(τA, L) and the relation between coordinate time τA and proper time along B’s worldline, 
with the result 

V µ 
B (τA, L) = (cosh gAτA, sinh gAτA) = (cosh gB τB , sinh gB τB ) , 

dτB 
= 

gA 
= egL . (15)

dτA gB 

The four-acceleration of B follows from aB = dV µµ
B /dτB = e−gLdV µ/dτA and its mag-

gAe
−gL nitude is therefore gB = . The proper acceleration varies with L precisely so 

that the proper distance between observers A and B, measured at constant τA, remains 
constant. 

4 Gravity versus acceleration in 1+1 spacetime 

Equation (14) gives one form of the metric for a flat spacetime as seen by an accelerating 
observer. There are many other forms, and it is worth noting some of them in order to 
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gain some intuition about the effects of acceleration. For simplicity, we will restrict our 
discussion here to static spacetimes, i.e. metrics with g0i = 0 and ∂tgµν = 0. In 1+1 
spacetime this means the line element may be written 

ds2 = −e 2φ(x)dt2 + e−2ψ(x)dx2 . (16) 

(The metric may be further transformed to the conformally flat form, eq. 8, but we leave 
it in this form because of its similarity to the form often used in 3 + 1 spacetime.) 

Given the metric (16), we would like to know when the spacetime is flat. If it is flat, 
we would like the explicit coordinate transformation to Minkowski. Both of these are 
straightforward in 1+1 spacetime. (One might hope for them also to be straightforward 
in more dimensions, at least in principle, but the algebra rapidly increases.) 

The definitive test for flatness is given by the Riemann tensor. Because the Weyl 
tensor vanishes in 1+1 spacetime, it is enough to examine the Ricci tensor. With equation 
(16), the Ricci tensor has nonvanishing components 

= −e−(φ+ψ) dg� dφφ+ψRtt = e φ+ψ dg� , Rxx where g�(x) = e φ g(x) = e . (17)
dx dx dx 

The function g(x) is the proper acceleration along the x-coordinate line, along which 
the tangent vector (4-velocity) is V µ = e−φ(1, 0). This follows from computing the 

V 

x


4-acceleration with equation (16) using the covariant prescription aµ(x) = �V V µ =


x
ν �ν V µ. The magnitude of the acceleration is then g(x) ≡ (gµν a

µaν )1/2, yielding g(x) =

e

x 
ψ dφ/dx. The factor eψ converts dφ/dx to g(x) = dφ/dl where dl = 

√
gxx dx measures 

proper distance. 
A stationary observer, i.e. one who remains at fixed spatial coordinate x, feels a time-

independent effective gravity g(x). Nongravitational forces (e.g. a rocket, or the contact 
force from a surface holding the observer up) are required to maintain the observer at 
fixed x. The gravity field g(x) can be measured very simply by releasing a test particle 
from rest and measuring its acceleration relative to the stationary observer. For example, 
we measure g on the Earth by dropping masses and measuring their acceleration in the 
lab frame. 

We will see following equation (18) below why the function �g(x) = (dτ /dt)g(x) rather 
than g(x) determines curvature. For now, we simply note that equation (17) implies that 
spacetime curvature is given (for a static 1+1 metric) by the gradient of the gravitational 
redshift factor 

√
−gtt = eφ rather than by the �gravity� (i.e. acceleration) gradient 

dg/dx. 
In linearized gravitation, g = g� and so we deduced (in the notes Gravitation in 

the Weak-Field Limit) that a spatially uniform gravitational (gravitoelectric) field can 
be transformed away by making a global coordinate transformation to an accelerating 
frame. For strong fields, g = �g and it is no longer true that a uniform gravitoelectric field 
can be transformed away. Only if the gravitational redshift factor eφ(x) varies linearly 
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with proper distance, i.e. g� ≡ d(eφ)/dl is a constant, is spacetime is flat, enabling one 
to transform coordinates so as to remove all evidence for acceleration. If, on the other 
hand, d�g/dx = 0 � even if dg/dx = 0 � then the spacetime is not flat and no coordinate 
transformation can transform the metric to the Minkowski form. 

Suppose we have a line element for which �g(x) = constant. We know that such a 
spacetime is flat, because the Ricci tensor (hence Riemann tensor, in 1+1 spacetime) 
vanishes everywhere. What is the coordinate transformation to Minkowski? 

µ̄The transformation may be found by writing the metric as g = ΛT ηΛ where Λ = ν 
¯∂ ̄ ¯xµ/∂xν is the Jacobian matrix for the transformation x(x). (Note that here g is the 

¯matrix with entries gµν and not the gravitational acceleration!) By writing t̄ = t(t, x) 
¯ ¯and x = x(t, x), substituting into g = ΛT ηΛ, using equation (16) and imposing the 

integrability conditions ∂2¯ t/∂x∂t and ∂2 ̄ x/∂x∂t, one finds t/∂t∂x = ∂2¯ x/∂t∂x = ∂2 ̄

1 1 
g t , x(t, x) = cosh �t̄(t, x) = sinh � ¯ g t if 

dg�
= 0 , (18) 

g g dx 

up to the addition of irrelevant constants. We recognize this result as the trajectory in 
flat spacetime of a constantly accelerating observer. 

Equation (18) is easy to understand in light of the discussion following equation (14). 
The proper time τ for the stationary observer at x is related to coordinate time t by 
dτ = −gtt(x) dt = eφdt. Thus, g(x)τ = eφ g t = g t or, in the notation of equation 

e
(15), gB τB = gAτA (since τA was used there as the global t-coordinate). The condition 
φ g = g�(x) = constant amounts to requiring that all observers be able to scale their 
gravitational accelerations to a common value for the observer at φ(x) = 0, �g. If they 
cannot (i.e. if d�g/dx = 0), then the metric is not equivalent to Minkowski spacetime 
seen in the eyes of an accelerating observer. 

With equations (16)�(18) in hand, we can write the metric of a flat spacetime in 
several new ways, with various spatial dependence for the acceleration of our coordinate 
observers: 

2�g x(−dt2 g x ds2 = e + dx2) , g(x) = �g e−� (19) 
12= −g� (x − x0)

2dt2 + dx2 , g(x) = (20) 
x − x0 

= −[2� g(x − x0)]
−1dx2 , g(x) = 

2(x − x0) 
. (21)g(x − x0)]dt

2 + [2�
g�

The first form was already given above in equation (14). The second and third forms are 
peculiar in that there is a coordinate singularity at x = x0; these coordinates only work 
for x > x0. This singularity is very similar to the one occuring in the Schwarzschild line 
element. Using the experience we have obtained here, we will remove the Schwarzschild 
singularity at r = 2GM by performing a coordinate transformation similar to those used 
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here. The student may find it instructive to write down the coordinate transformations 
for these cases using equation (18) and drawing the (t, x) coordinate lines on top of 
the Minkowski coordinates (¯ x). While the singularity at x = x0 can be transformed t, ¯
away, it does signal the existence of an event horizon. Equation (20) is called Rindler 
spacetime. Its event horizon is discussed briefly in Schutz (p. 150) and in more detail 
by Wald (pp. 149�152). 

Actually, equation (21) is closer to the Schwarzschild line element. Indeed, it becomes 
the r-t part of the Schwarzschild line element with the substitutions x → r, −2�gx0 → 1 
and �g → −GM/r2 . These identifications show that the Schwarzschild spacetime differs 
from Minkowski in that the acceleration needed to remain stationary is radially directed 
and falls off as e−φ r−2 . We can understand many of its features through this identification 
of gravity and acceleration. 

For completeness, I list three more useful forms for a flat spacetime line element: 

2gds2 = dt2 + � (t − t0)
2dx2 , g(x) = 0 (22)−

= dU dV (23)−
= −e v−ududv . (24) 

The first is similar to Rindler spacetime but with t and x exchanged. The result is 
suprising at first: the acceleration of a stationary observer vanishes. Equation (22) has 
the form of Gaussian normal or synchronous coordinates (Wald, p. 42). It represents 
the coordinate frame of a freely-falling observer. It is interesting to ask why, if the 
observer is freely-falling, the line element does not reduce to Minkowski despite the fact 
that this spacetime is flat. The answer is that different observers (i.e., worldlines of 
different x) are in uniform motion relative to one another. In other words, equation (22) 
is Minkowski spacetime in expanding coordinates. It is very similar to the Robertson-
Walker spacetime, which reduces to it (short of two spatial dimensions) when the mass 
density is much less than the critical density. 

Equations (23) and (24) are Minkowski spacetime in null (or light-cone) coordinates. 
x, V = t̄+ ¯For example, U = t̄− ¯ x. These coordinates are useful for studying horizons. 

s

Having derived many results in 1 + 1 spacetime, I close with the cautionary remark 
that in 2 + 1 and 3 + 1 spacetime, there are additional degrees of freedom in the met
ric that are quite unlike Newtonian gravity and cannot be removed (even locally) by 
transformation to a linearly accelerating frame. Nonetheless, it should be possible to 
extend the treatment of these notes to account for these effects � gravitomagnetism and 
gravitational radiation. As shown in the notes Gravitation in the Weak-Field Limit, a 
uniform gravitomagnetic field is equivalent to uniformly rotating coordinates. Gravita
tional radiation is different; there is no such thing as a spatially uniform gravitational 
wave. However, one can always choose coordinates so that gravitational radiation strain 
ij and its first derivatives vanish at a point. 
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Preface

These lectures represent an introductory graduate course in general relativity, both its foun-

dations and applications. They are a lightly edited version of notes I handed out while

teaching Physics 8.962, the graduate course in GR at MIT, during the Spring of 1996. Al-

though they are appropriately called “lecture notes”, the level of detail is fairly high, either

including all necessary steps or leaving gaps that can readily be filled in by the reader. Never-

theless, there are various ways in which these notes differ from a textbook; most importantly,

they are not organized into short sections that can be approached in various orders, but are

meant to be gone through from start to finish. A special effort has been made to maintain

a conversational tone, in an attempt to go slightly beyond the bare results themselves and

into the context in which they belong.

The primary question facing any introductory treatment of general relativity is the level

of mathematical rigor at which to operate. There is no uniquely proper solution, as different

students will respond with different levels of understanding and enthusiasm to different

approaches. Recognizing this, I have tried to provide something for everyone. The lectures

do not shy away from detailed formalism (as for example in the introduction to manifolds),

but also attempt to include concrete examples and informal discussion of the concepts under

consideration.

As these are advertised as lecture notes rather than an original text, at times I have

shamelessly stolen from various existing books on the subject (especially those by Schutz,

Wald, Weinberg, and Misner, Thorne and Wheeler). My philosophy was never to try to seek

originality for its own sake; however, originality sometimes crept in just because I thought

I could be more clear than existing treatments. None of the substance of the material in

these notes is new; the only reason for reading them is if an individual reader finds the

explanations here easier to understand than those elsewhere.

Time constraints during the actual semester prevented me from covering some topics in

the depth which they deserved, an obvious example being the treatment of cosmology. If

the time and motivation come to pass, I may expand and revise the existing notes; updated

versions will be available at http://itp.ucsb.edu/~carroll/notes/. Of course I will

appreciate having my attention drawn to any typographical or scientific errors, as well as

suggestions for improvement of all sorts.

Numerous people have contributed greatly both to my own understanding of general

relativity and to these notes in particular — too many to acknowledge with any hope of

completeness. Special thanks are due to Ted Pyne, who learned the subject along with me,

taught me a great deal, and collaborated on a predecessor to this course which we taught

as a seminar in the astronomy department at Harvard. Nick Warner taught the graduate

course at MIT which I took before ever teaching it, and his notes were (as comparison will

http://itp.ucsb.edu/~carroll/notes/


iv

reveal) an important influence on these. George Field offered a great deal of advice and

encouragement as I learned the subject and struggled to teach it. Tamás Hauer struggled

along with me as the teaching assistant for 8.962, and was an invaluable help. All of the

students in 8.962 deserve thanks for tolerating my idiosyncrasies and prodding me to ever

higher levels of precision.

During the course of writing these notes I was supported by U.S. Dept. of Energy con-

tract no. DE-AC02-76ER03069 and National Science Foundation grants PHY/92-06867 and

PHY/94-07195.
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December 1997 Lecture Notes on General Relativity Sean M. Carroll

1 Special Relativity and Flat Spacetime

We will begin with a whirlwind tour of special relativity (SR) and life in flat spacetime.

The point will be both to recall what SR is all about, and to introduce tensors and related

concepts that will be crucial later on, without the extra complications of curvature on top

of everything else. Therefore, for this section we will always be working in flat spacetime,

and furthermore we will only use orthonormal (Cartesian-like) coordinates. Needless to say

it is possible to do SR in any coordinate system you like, but it turns out that introducing

the necessary tools for doing so would take us halfway to curved spaces anyway, so we will

put that off for a while.

It is often said that special relativity is a theory of 4-dimensional spacetime: three of

space, one of time. But of course, the pre-SR world of Newtonian mechanics featured three

spatial dimensions and a time parameter. Nevertheless, there was not much temptation to

consider these as different aspects of a single 4-dimensional spacetime. Why not?

space at a
fixed time

t

x, y, z

Consider a garden-variety 2-dimensional plane. It is typically convenient to label the

points on such a plane by introducing coordinates, for example by defining orthogonal x and

y axes and projecting each point onto these axes in the usual way. However, it is clear that

most of the interesting geometrical facts about the plane are independent of our choice of

coordinates. As a simple example, we can consider the distance between two points, given

1
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by

s2 = (∆x)2 + (∆y)2 . (1.1)

In a different Cartesian coordinate system, defined by x′ and y′ axes which are rotated with

respect to the originals, the formula for the distance is unaltered:

s2 = (∆x′)2 + (∆y′)2 . (1.2)

We therefore say that the distance is invariant under such changes of coordinates.

∆

∆

∆

y

x’

x

y

y’

x

x’

s

y’

∆

∆

This is why it is useful to think of the plane as 2-dimensional: although we use two distinct

numbers to label each point, the numbers are not the essence of the geometry, since we can

rotate axes into each other while leaving distances and so forth unchanged. In Newtonian

physics this is not the case with space and time; there is no useful notion of rotating space

and time into each other. Rather, the notion of “all of space at a single moment in time”

has a meaning independent of coordinates.

Such is not the case in SR. Let us consider coordinates (t, x, y, z) on spacetime, set up in

the following way. The spatial coordinates (x, y, z) comprise a standard Cartesian system,

constructed for example by welding together rigid rods which meet at right angles. The rods

must be moving freely, unaccelerated. The time coordinate is defined by a set of clocks which

are not moving with respect to the spatial coordinates. (Since this is a thought experiment,

we imagine that the rods are infinitely long and there is one clock at every point in space.)

The clocks are synchronized in the following sense: if you travel from one point in space to

any other in a straight line at constant speed, the time difference between the clocks at the
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ends of your journey is the same as if you had made the same trip, at the same speed, in the

other direction. The coordinate system thus constructed is an inertial frame.

An event is defined as a single moment in space and time, characterized uniquely by

(t, x, y, z). Then, without any motivation for the moment, let us introduce the spacetime

interval between two events:

s2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 . (1.3)

(Notice that it can be positive, negative, or zero even for two nonidentical points.) Here, c

is some fixed conversion factor between space and time; that is, a fixed velocity. Of course

it will turn out to be the speed of light; the important thing, however, is not that photons

happen to travel at that speed, but that there exists a c such that the spacetime interval

is invariant under changes of coordinates. In other words, if we set up a new inertial frame

(t′, x′, y′, z′) by repeating our earlier procedure, but allowing for an offset in initial position,

angle, and velocity between the new rods and the old, the interval is unchanged:

s2 = −(c∆t′)2 + (∆x′)2 + (∆y′)2 + (∆z′)2 . (1.4)

This is why it makes sense to think of SR as a theory of 4-dimensional spacetime, known

as Minkowski space. (This is a special case of a 4-dimensional manifold, which we will

deal with in detail later.) As we shall see, the coordinate transformations which we have

implicitly defined do, in a sense, rotate space and time into each other. There is no absolute

notion of “simultaneous events”; whether two things occur at the same time depends on the

coordinates used. Therefore the division of Minkowski space into space and time is a choice

we make for our own purposes, not something intrinsic to the situation.

Almost all of the “paradoxes” associated with SR result from a stubborn persistence of

the Newtonian notions of a unique time coordinate and the existence of “space at a single

moment in time.” By thinking in terms of spacetime rather than space and time together,

these paradoxes tend to disappear.

Let’s introduce some convenient notation. Coordinates on spacetime will be denoted by

letters with Greek superscript indices running from 0 to 3, with 0 generally denoting the

time coordinate. Thus,

xµ :

x0 = ct
x1 = x
x2 = y
x3 = z

(1.5)

(Don’t start thinking of the superscripts as exponents.) Furthermore, for the sake of sim-

plicity we will choose units in which

c = 1 ; (1.6)
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we will therefore leave out factors of c in all subsequent formulae. Empirically we know that

c is the speed of light, 3×108 meters per second; thus, we are working in units where 1 second

equals 3×108 meters. Sometimes it will be useful to refer to the space and time components

of xµ separately, so we will use Latin superscripts to stand for the space components alone:

xi :
x1 = x
x2 = y
x3 = z

(1.7)

It is also convenient to write the spacetime interval in a more compact form. We therefore

introduce a 4 × 4 matrix, the metric, which we write using two lower indices:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.8)

(Some references, especially field theory books, define the metric with the opposite sign, so

be careful.) We then have the nice formula

s2 = ηµν∆x
µ∆xν . (1.9)

Notice that we use the summation convention, in which indices which appear both as

superscripts and subscripts are summed over. The content of (1.9) is therefore just the same

as (1.3).

Now we can consider coordinate transformations in spacetime at a somewhat more ab-

stract level than before. What kind of transformations leave the interval (1.9) invariant?

One simple variety are the translations, which merely shift the coordinates:

xµ → xµ′

= xµ + aµ , (1.10)

where aµ is a set of four fixed numbers. (Notice that we put the prime on the index, not on

the x.) Translations leave the differences ∆xµ unchanged, so it is not remarkable that the

interval is unchanged. The only other kind of linear transformation is to multiply xµ by a

(spacetime-independent) matrix:

xµ′

= Λµ′

νx
ν , (1.11)

or, in more conventional matrix notation,

x′ = Λx . (1.12)

These transformations do not leave the differences ∆xµ unchanged, but multiply them also

by the matrix Λ. What kind of matrices will leave the interval invariant? Sticking with the

matrix notation, what we would like is

s2 = (∆x)Tη(∆x) = (∆x′)Tη(∆x′)

= (∆x)TΛTηΛ(∆x) , (1.13)
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and therefore

η = ΛTηΛ , (1.14)

or

ηρσ = Λµ′

ρΛ
ν′

σηµ′ν′ . (1.15)

We want to find the matrices Λµ′

ν such that the components of the matrix ηµ′ν′ are the

same as those of ηρσ; that is what it means for the interval to be invariant under these

transformations.

The matrices which satisfy (1.14) are known as the Lorentz transformations; the set

of them forms a group under matrix multiplication, known as the Lorentz group. There is

a close analogy between this group and O(3), the rotation group in three-dimensional space.

The rotation group can be thought of as 3 × 3 matrices R which satisfy

1 = RT1R , (1.16)

where 1 is the 3 × 3 identity matrix. The similarity with (1.14) should be clear; the only

difference is the minus sign in the first term of the metric η, signifying the timelike direction.

The Lorentz group is therefore often referred to as O(3,1). (The 3 × 3 identity matrix is

simply the metric for ordinary flat space. Such a metric, in which all of the eigenvalues are

positive, is called Euclidean, while those such as (1.8) which feature a single minus sign are

called Lorentzian.)

Lorentz transformations fall into a number of categories. First there are the conventional

rotations, such as a rotation in the x-y plane:

Λµ′

ν =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 . (1.17)

The rotation angle θ is a periodic variable with period 2π. There are also boosts, which

may be thought of as “rotations between space and time directions.” An example is given

by

Λµ′

ν =


coshφ − sinh φ 0 0
− sinh φ coshφ 0 0

0 0 1 0
0 0 0 1

 . (1.18)

The boost parameter φ, unlike the rotation angle, is defined from −∞ to ∞. There are

also discrete transformations which reverse the time direction or one or more of the spa-

tial directions. (When these are excluded we have the proper Lorentz group, SO(3,1).) A

general transformation can be obtained by multiplying the individual transformations; the
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explicit expression for this six-parameter matrix (three boosts, three rotations) is not suffi-

ciently pretty or useful to bother writing down. In general Lorentz transformations will not

commute, so the Lorentz group is non-abelian. The set of both translations and Lorentz

transformations is a ten-parameter non-abelian group, the Poincaré group.

You should not be surprised to learn that the boosts correspond to changing coordinates

by moving to a frame which travels at a constant velocity, but let’s see it more explicitly.

For the transformation given by (1.18), the transformed coordinates t′ and x′ will be given

by

t′ = t coshφ− x sinhφ

x′ = −t sinh φ+ x coshφ . (1.19)

From this we see that the point defined by x′ = 0 is moving; it has a velocity

v =
x

t
=

sinh φ

coshφ
= tanhφ . (1.20)

To translate into more pedestrian notation, we can replace φ = tanh−1 v to obtain

t′ = γ(t− vx)

x′ = γ(x− vt) (1.21)

where γ = 1/
√

1 − v2. So indeed, our abstract approach has recovered the conventional

expressions for Lorentz transformations. Applying these formulae leads to time dilation,

length contraction, and so forth.

An extremely useful tool is the spacetime diagram, so let’s consider Minkowski space

from this point of view. We can begin by portraying the initial t and x axes at (what are

conventionally thought of as) right angles, and suppressing the y and z axes. Then according

to (1.19), under a boost in the x-t plane the x′ axis (t′ = 0) is given by t = x tanhφ, while

the t′ axis (x′ = 0) is given by t = x/ tanhφ. We therefore see that the space and time axes

are rotated into each other, although they scissor together instead of remaining orthogonal

in the traditional Euclidean sense. (As we shall see, the axes do in fact remain orthogonal

in the Lorentzian sense.) This should come as no surprise, since if spacetime behaved just

like a four-dimensional version of space the world would be a very different place.

It is also enlightening to consider the paths corresponding to travel at the speed c = 1.

These are given in the original coordinate system by x = ±t. In the new system, a moment’s

thought reveals that the paths defined by x′ = ±t′ are precisely the same as those defined

by x = ±t; these trajectories are left invariant under Lorentz transformations. Of course

we know that light travels at this speed; we have therefore found that the speed of light is

the same in any inertial frame. A set of points which are all connected to a single event by
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x’

x

t
t’

 x = -t
x’ = -t’

 x = t
x’ = t’

straight lines moving at the speed of light is called a light cone; this entire set is invariant

under Lorentz transformations. Light cones are naturally divided into future and past; the

set of all points inside the future and past light cones of a point p are called timelike

separated from p, while those outside the light cones are spacelike separated and those

on the cones are lightlike or null separated from p. Referring back to (1.3), we see that the

interval between timelike separated points is negative, between spacelike separated points is

positive, and between null separated points is zero. (The interval is defined to be s2, not the

square root of this quantity.) Notice the distinction between this situation and that in the

Newtonian world; here, it is impossible to say (in a coordinate-independent way) whether a

point that is spacelike separated from p is in the future of p, the past of p, or “at the same

time”.

To probe the structure of Minkowski space in more detail, it is necessary to introduce

the concepts of vectors and tensors. We will start with vectors, which should be familiar. Of

course, in spacetime vectors are four-dimensional, and are often referred to as four-vectors.

This turns out to make quite a bit of difference; for example, there is no such thing as a

cross product between two four-vectors.

Beyond the simple fact of dimensionality, the most important thing to emphasize is that

each vector is located at a given point in spacetime. You may be used to thinking of vectors

as stretching from one point to another in space, and even of “free” vectors which you can

slide carelessly from point to point. These are not useful concepts in relativity. Rather, to

each point p in spacetime we associate the set of all possible vectors located at that point;

this set is known as the tangent space at p, or Tp. The name is inspired by thinking of the

set of vectors attached to a point on a simple curved two-dimensional space as comprising a
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plane which is tangent to the point. But inspiration aside, it is important to think of these

vectors as being located at a single point, rather than stretching from one point to another.

(Although this won’t stop us from drawing them as arrows on spacetime diagrams.)

p

manifold 

    M

Tp

Later we will relate the tangent space at each point to things we can construct from the

spacetime itself. For right now, just think of Tp as an abstract vector space for each point

in spacetime. A (real) vector space is a collection of objects (“vectors”) which, roughly

speaking, can be added together and multiplied by real numbers in a linear way. Thus, for

any two vectors V and W and real numbers a and b, we have

(a+ b)(V +W ) = aV + bV + aW + bW . (1.22)

Every vector space has an origin, i.e. a zero vector which functions as an identity element

under vector addition. In many vector spaces there are additional operations such as taking

an inner (dot) product, but this is extra structure over and above the elementary concept of

a vector space.

A vector is a perfectly well-defined geometric object, as is a vector field, defined as a

set of vectors with exactly one at each point in spacetime. (The set of all the tangent spaces

of a manifold M is called the tangent bundle, T (M).) Nevertheless it is often useful for

concrete purposes to decompose vectors into components with respect to some set of basis

vectors. A basis is any set of vectors which both spans the vector space (any vector is

a linear combination of basis vectors) and is linearly independent (no vector in the basis

is a linear combination of other basis vectors). For any given vector space, there will be

an infinite number of legitimate bases, but each basis will consist of the same number of
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vectors, known as the dimension of the space. (For a tangent space associated with a point

in Minkowski space, the dimension is of course four.)

Let us imagine that at each tangent space we set up a basis of four vectors ê(µ), with

µ ∈ {0, 1, 2, 3} as usual. In fact let us say that each basis is adapted to the coordinates xµ;

that is, the basis vector ê(1) is what we would normally think of pointing along the x-axis,

etc. It is by no means necessary that we choose a basis which is adapted to any coordinate

system at all, although it is often convenient. (We really could be more precise here, but

later on we will repeat the discussion at an excruciating level of precision, so some sloppiness

now is forgivable.) Then any abstract vector A can be written as a linear combination of

basis vectors:

A = Aµê(µ) . (1.23)

The coefficients Aµ are the components of the vector A. More often than not we will forget

the basis entirely and refer somewhat loosely to “the vector Aµ”, but keep in mind that

this is shorthand. The real vector is an abstract geometrical entity, while the components

are just the coefficients of the basis vectors in some convenient basis. (Since we will usually

suppress the explicit basis vectors, the indices will usually label components of vectors and

tensors. This is why there are parentheses around the indices on the basis vectors, to remind

us that this is a collection of vectors, not components of a single vector.)

A standard example of a vector in spacetime is the tangent vector to a curve. A param-

eterized curve or path through spacetime is specified by the coordinates as a function of the

parameter, e.g. xµ(λ). The tangent vector V (λ) has components

V µ =
dxµ

dλ
. (1.24)

The entire vector is thus V = V µê(µ). Under a Lorentz transformation the coordinates

xµ change according to (1.11), while the parameterization λ is unaltered; we can therefore

deduce that the components of the tangent vector must change as

V µ → V µ′

= Λµ′

νV
ν . (1.25)

However, the vector itself (as opposed to its components in some coordinate system) is

invariant under Lorentz transformations. We can use this fact to derive the transformation

properties of the basis vectors. Let us refer to the set of basis vectors in the transformed

coordinate system as ê(ν′). Since the vector is invariant, we have

V = V µê(µ) = V ν′

ê(ν′)

= Λν′

µV
µê(ν′) . (1.26)

But this relation must hold no matter what the numerical values of the components V µ are.

Therefore we can say

ê(µ) = Λν′

µê(ν′) . (1.27)
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To get the new basis ê(ν′) in terms of the old one ê(µ) we should multiply by the inverse

of the Lorentz transformation Λν′

µ. But the inverse of a Lorentz transformation from the

unprimed to the primed coordinates is also a Lorentz transformation, this time from the

primed to the unprimed systems. We will therefore introduce a somewhat subtle notation,

by writing using the same symbol for both matrices, just with primed and unprimed indices

adjusted. That is,

(Λ−1)ν′

µ = Λν′

µ , (1.28)

or

Λν′

µΛσ′

µ = δσ′

ν′ , Λν′

µΛν′

ρ = δµ
ρ , (1.29)

where δµ
ρ is the traditional Kronecker delta symbol in four dimensions. (Note that Schutz uses

a different convention, always arranging the two indices northwest/southeast; the important

thing is where the primes go.) From (1.27) we then obtain the transformation rule for basis

vectors:

ê(ν′) = Λν′

µê(µ) . (1.30)

Therefore the set of basis vectors transforms via the inverse Lorentz transformation of the

coordinates or vector components.

It is worth pausing a moment to take all this in. We introduced coordinates labeled by

upper indices, which transformed in a certain way under Lorentz transformations. We then

considered vector components which also were written with upper indices, which made sense

since they transformed in the same way as the coordinate functions. (In a fixed coordinate

system, each of the four coordinates xµ can be thought of as a function on spacetime, as

can each of the four components of a vector field.) The basis vectors associated with the

coordinate system transformed via the inverse matrix, and were labeled by a lower index.

This notation ensured that the invariant object constructed by summing over the components

and basis vectors was left unchanged by the transformation, just as we would wish. It’s

probably not giving too much away to say that this will continue to be the case for more

complicated objects with multiple indices (tensors).

Once we have set up a vector space, there is an associated vector space (of equal dimen-

sion) which we can immediately define, known as the dual vector space. The dual space

is usually denoted by an asterisk, so that the dual space to the tangent space Tp is called

the cotangent space and denoted T ∗
p . The dual space is the space of all linear maps from

the original vector space to the real numbers; in math lingo, if ω ∈ T ∗
p is a dual vector, then

it acts as a map such that:

ω(aV + bW ) = aω(V ) + bω(W ) ∈ R , (1.31)

where V , W are vectors and a, b are real numbers. The nice thing about these maps is that

they form a vector space themselves; thus, if ω and η are dual vectors, we have

(aω + bη)(V ) = aω(V ) + bη(V ) . (1.32)
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To make this construction somewhat more concrete, we can introduce a set of basis dual

vectors θ̂(ν) by demanding

θ̂(ν)(ê(µ)) = δν
µ . (1.33)

Then every dual vector can be written in terms of its components, which we label with lower

indices:

ω = ωµθ̂
(µ) . (1.34)

In perfect analogy with vectors, we will usually simply write ωµ to stand for the entire dual

vector. In fact, you will sometime see elements of Tp (what we have called vectors) referred to

as contravariant vectors, and elements of T ∗
p (what we have called dual vectors) referred

to as covariant vectors. Actually, if you just refer to ordinary vectors as vectors with upper

indices and dual vectors as vectors with lower indices, nobody should be offended. Another

name for dual vectors is one-forms, a somewhat mysterious designation which will become

clearer soon.

The component notation leads to a simple way of writing the action of a dual vector on

a vector:

ω(V ) = ωµV
ν θ̂(µ)(ê(ν))

= ωµV
νδµ

ν

= ωµV
µ ∈ R . (1.35)

This is why it is rarely necessary to write the basis vectors (and dual vectors) explicitly; the

components do all of the work. The form of (1.35) also suggests that we can think of vectors

as linear maps on dual vectors, by defining

V (ω) ≡ ω(V ) = ωµV
µ . (1.36)

Therefore, the dual space to the dual vector space is the original vector space itself.

Of course in spacetime we will be interested not in a single vector space, but in fields of

vectors and dual vectors. (The set of all cotangent spaces over M is the cotangent bundle,

T ∗(M).) In that case the action of a dual vector field on a vector field is not a single number,

but a scalar (or just “function”) on spacetime. A scalar is a quantity without indices, which

is unchanged under Lorentz transformations.

We can use the same arguments that we earlier used for vectors to derive the transfor-

mation properties of dual vectors. The answers are, for the components,

ωµ′ = Λµ′

νων , (1.37)

and for basis dual vectors,

θ̂(ρ′) = Λρ′
σθ̂

(σ) . (1.38)
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This is just what we would expect from index placement; the components of a dual vector

transform under the inverse transformation of those of a vector. Note that this ensures that

the scalar (1.35) is invariant under Lorentz transformations, just as it should be.

Let’s consider some examples of dual vectors, first in other contexts and then in Minkowski

space. Imagine the space of n-component column vectors, for some integer n. Then the dual

space is that of n-component row vectors, and the action is ordinary matrix multiplication:

V =



V 1

V 2

·
·
·
V n


, ω = (ω1 ω2 · · · ωn) ,

ω(V ) = (ω1 ω2 · · · ωn)



V 1

V 2

·
·
·
V n


= ωiV

i . (1.39)

Another familiar example occurs in quantum mechanics, where vectors in the Hilbert space

are represented by kets, |ψ〉. In this case the dual space is the space of bras, 〈φ|, and the

action gives the number 〈φ|ψ〉. (This is a complex number in quantum mechanics, but the

idea is precisely the same.)

In spacetime the simplest example of a dual vector is the gradient of a scalar function,

the set of partial derivatives with respect to the spacetime coordinates, which we denote by

“d”:

dφ =
∂φ

∂xµ
θ̂(µ) . (1.40)

The conventional chain rule used to transform partial derivatives amounts in this case to the

transformation rule of components of dual vectors:

∂φ

∂xµ′
=

∂xµ

∂xµ′

∂φ

∂xµ

= Λµ′

µ ∂φ

∂xµ
, (1.41)

where we have used (1.11) and (1.28) to relate the Lorentz transformation to the coordinates.

The fact that the gradient is a dual vector leads to the following shorthand notations for

partial derivatives:
∂φ

∂xµ
= ∂µφ = φ, µ . (1.42)
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(Very roughly speaking, “xµ has an upper index, but when it is in the denominator of a

derivative it implies a lower index on the resulting object.”) I’m not a big fan of the comma

notation, but we will use ∂µ all the time. Note that the gradient does in fact act in a natural

way on the example we gave above of a vector, the tangent vector to a curve. The result is

ordinary derivative of the function along the curve:

∂µφ
∂xµ

∂λ
=
dφ

dλ
. (1.43)

As a final note on dual vectors, there is a way to represent them as pictures which is

consistent with the picture of vectors as arrows. See the discussion in Schutz, or in MTW

(where it is taken to dizzying extremes).

A straightforward generalization of vectors and dual vectors is the notion of a tensor.

Just as a dual vector is a linear map from vectors to R, a tensor T of type (or rank) (k, l)

is a multilinear map from a collection of dual vectors and vectors to R:

T : T ∗
p × · · · × T ∗

p × Tp × · · · × Tp → R

(k times) (l times) (1.44)

Here, “×” denotes the Cartesian product, so that for example Tp×Tp is the space of ordered

pairs of vectors. Multilinearity means that the tensor acts linearly in each of its arguments;

for instance, for a tensor of type (1, 1), we have

T (aω + bη, cV + dW ) = acT (ω, V ) + adT (ω,W ) + bcT (η, V ) + bdT (η,W ) . (1.45)

From this point of view, a scalar is a type (0, 0) tensor, a vector is a type (1, 0) tensor, and

a dual vector is a type (0, 1) tensor.

The space of all tensors of a fixed type (k, l) forms a vector space; they can be added

together and multiplied by real numbers. To construct a basis for this space, we need to

define a new operation known as the tensor product, denoted by ⊗. If T is a (k, l) tensor

and S is a (m,n) tensor, we define a (k +m, l + n) tensor T ⊗ S by

T ⊗ S(ω(1), . . . , ω(k), . . . , ω(k+m), V (1), . . . , V (l), . . . , V (l+n))

= T (ω(1), . . . , ω(k), V (1), . . . , V (l))S(ω(k+1), . . . , ω(k+m), V (l+1), . . . , V (l+n)) . (1.46)

(Note that the ω(i) and V (i) are distinct dual vectors and vectors, not components thereof.)

In other words, first act T on the appropriate set of dual vectors and vectors, and then act

S on the remainder, and then multiply the answers. Note that, in general, T ⊗ S 6= S ⊗ T .

It is now straightforward to construct a basis for the space of all (k, l) tensors, by taking

tensor products of basis vectors and dual vectors; this basis will consist of all tensors of the

form

ê(µ1) ⊗ · · · ⊗ ê(µk) ⊗ θ̂(ν1) ⊗ · · · ⊗ θ̂(νl) . (1.47)
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In a 4-dimensional spacetime there will be 4k+l basis tensors in all. In component notation

we then write our arbitrary tensor as

T = T µ1···µk
ν1···νl

ê(µ1) ⊗ · · · ⊗ ê(µk) ⊗ θ̂(ν1) ⊗ · · · ⊗ θ̂(νl) . (1.48)

Alternatively, we could define the components by acting the tensor on basis vectors and dual

vectors:

T µ1···µk
ν1···νl

= T (θ̂(µ1), . . . , θ̂(µk), ê(ν1), . . . , ê(νl)) . (1.49)

You can check for yourself, using (1.33) and so forth, that these equations all hang together

properly.

As with vectors, we will usually take the shortcut of denoting the tensor T by its com-

ponents T µ1···µk
ν1···νl

. The action of the tensors on a set of vectors and dual vectors follows

the pattern established in (1.35):

T (ω(1), . . . , ω(k), V (1), . . . , V (l)) = T µ1···µk
ν1···νl

ω(1)
µ1

· · ·ω(k)
µk
V (1)ν1 · · ·V (l)νl . (1.50)

The order of the indices is obviously important, since the tensor need not act in the same way

on its various arguments. Finally, the transformation of tensor components under Lorentz

transformations can be derived by applying what we already know about the transformation

of basis vectors and dual vectors. The answer is just what you would expect from index

placement,

T µ′

1···µ′

k ν′

1···ν′

l
= Λµ′

1
µ1 · · ·Λµ′

k µk
Λν′

1

ν1 · · ·Λν′

l

νlT µ1···µk
ν1···νl

. (1.51)

Thus, each upper index gets transformed like a vector, and each lower index gets transformed

like a dual vector.

Although we have defined tensors as linear maps from sets of vectors and tangent vectors

to R, there is nothing that forces us to act on a full collection of arguments. Thus, a (1, 1)

tensor also acts as a map from vectors to vectors:

T µ
ν : V ν → T µ

νV
ν . (1.52)

You can check for yourself that T µ
νV

ν is a vector (i.e. obeys the vector transformation law).

Similarly, we can act one tensor on (all or part of) another tensor to obtain a third tensor.

For example,

Uµ
ν = T µρ

σS
σ

ρν (1.53)

is a perfectly good (1, 1) tensor.

You may be concerned that this introduction to tensors has been somewhat too brief,

given the esoteric nature of the material. In fact, the notion of tensors does not require a

great deal of effort to master; it’s just a matter of keeping the indices straight, and the rules

for manipulating them are very natural. Indeed, a number of books like to define tensors as
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collections of numbers transforming according to (1.51). While this is operationally useful, it

tends to obscure the deeper meaning of tensors as geometrical entities with a life independent

of any chosen coordinate system. There is, however, one subtlety which we have glossed over.

The notions of dual vectors and tensors and bases and linear maps belong to the realm of

linear algebra, and are appropriate whenever we have an abstract vector space at hand. In

the case of interest to us we have not just a vector space, but a vector space at each point in

spacetime. More often than not we are interested in tensor fields, which can be thought of

as tensor-valued functions on spacetime. Fortunately, none of the manipulations we defined

above really care whether we are dealing with a single vector space or a collection of vector

spaces, one for each event. We will be able to get away with simply calling things functions

of xµ when appropriate. However, you should keep straight the logical independence of the

notions we have introduced and their specific application to spacetime and relativity.

Now let’s turn to some examples of tensors. First we consider the previous example of

column vectors and their duals, row vectors. In this system a (1, 1) tensor is simply a matrix,

M i
j. Its action on a pair (ω, V ) is given by usual matrix multiplication:

M(ω, V ) = (ω1 ω2 · · · ωn)



M1
1 M1

2 · · · M1
n

M2
1 M2

2 · · · M2
n

· · · · · ·
· · · · · ·
· · · · · ·

Mn
1 Mn

2 · · · Mn
n





V 1

V 2

·
·
·
V n


= ωiM

i
jV

j . (1.54)

If you like, feel free to think of tensors as “matrices with an arbitrary number of indices.”

In spacetime, we have already seen some examples of tensors without calling them that.

The most familiar example of a (0, 2) tensor is the metric, ηµν . The action of the metric on

two vectors is so useful that it gets its own name, the inner product (or dot product):

η(V,W ) = ηµνV
µW ν = V ·W . (1.55)

Just as with the conventional Euclidean dot product, we will refer to two vectors whose dot

product vanishes as orthogonal. Since the dot product is a scalar, it is left invariant under

Lorentz transformations; therefore the basis vectors of any Cartesian inertial frame, which

are chosen to be orthogonal by definition, are still orthogonal after a Lorentz transformation

(despite the “scissoring together” we noticed earlier). The norm of a vector is defined to be

inner product of the vector with itself; unlike in Euclidean space, this number is not positive

definite:

if ηµνV
µV ν is


< 0 , V µ is timelike
= 0 , V µ is lightlike or null
> 0 , V µ is spacelike .
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(A vector can have zero norm without being the zero vector.) You will notice that the

terminology is the same as that which we earlier used to classify the relationship between

two points in spacetime; it’s no accident, of course, and we will go into more detail later.

Another tensor is the Kronecker delta δµ
ν , of type (1, 1), which you already know the

components of. Related to this and the metric is the inverse metric ηµν , a type (2, 0)

tensor defined as the inverse of the metric:

ηµνηνρ = ηρνη
νµ = δρ

µ . (1.56)

In fact, as you can check, the inverse metric has exactly the same components as the metric

itself. (This is only true in flat space in Cartesian coordinates, and will fail to hold in more

general situations.) There is also the Levi-Civita tensor, a (0, 4) tensor:

ǫµνρσ =


+1 if µνρσ is an even permutation of 0123
−1 if µνρσ is an odd permutation of 0123
0 otherwise .

(1.57)

Here, a “permutation of 0123” is an ordering of the numbers 0, 1, 2, 3 which can be obtained

by starting with 0123 and exchanging two of the digits; an even permutation is obtained by

an even number of such exchanges, and an odd permutation is obtained by an odd number.

Thus, for example, ǫ0321 = −1.

It is a remarkable property of the above tensors – the metric, the inverse metric, the

Kronecker delta, and the Levi-Civita tensor – that, even though they all transform according

to the tensor transformation law (1.51), their components remain unchanged in any Cartesian

coordinate system in flat spacetime. In some sense this makes them bad examples of tensors,

since most tensors do not have this property. In fact, even these tensors do not have this

property once we go to more general coordinate systems, with the single exception of the

Kronecker delta. This tensor has exactly the same components in any coordinate system

in any spacetime. This makes sense from the definition of a tensor as a linear map; the

Kronecker tensor can be thought of as the identity map from vectors to vectors (or from

dual vectors to dual vectors), which clearly must have the same components regardless of

coordinate system. The other tensors (the metric, its inverse, and the Levi-Civita tensor)

characterize the structure of spacetime, and all depend on the metric. We shall therefore

have to treat them more carefully when we drop our assumption of flat spacetime.

A more typical example of a tensor is the electromagnetic field strength tensor. We

all know that the electromagnetic fields are made up of the electric field vector Ei and the

magnetic field vector Bi. (Remember that we use Latin indices for spacelike components

1,2,3.) Actually these are only “vectors” under rotations in space, not under the full Lorentz
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group. In fact they are components of a (0, 2) tensor Fµν , defined by

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 = −Fνµ . (1.58)

From this point of view it is easy to transform the electromagnetic fields in one reference

frame to those in another, by application of (1.51). The unifying power of the tensor formal-

ism is evident: rather than a collection of two vectors whose relationship and transformation

properties are rather mysterious, we have a single tensor field to describe all of electromag-

netism. (On the other hand, don’t get carried away; sometimes it’s more convenient to work

in a single coordinate system using the electric and magnetic field vectors.)

With some examples in hand we can now be a little more systematic about some prop-

erties of tensors. First consider the operation of contraction, which turns a (k, l) tensor

into a (k− 1, l− 1) tensor. Contraction proceeds by summing over one upper and one lower

index:

Sµρ
σ = T µνρ

σν . (1.59)

You can check that the result is a well-defined tensor. Of course it is only permissible to

contract an upper index with a lower index (as opposed to two indices of the same type).

Note also that the order of the indices matters, so that you can get different tensors by

contracting in different ways; thus,

T µνρ
σν 6= T µρν

σν (1.60)

in general.

The metric and inverse metric can be used to raise and lower indices on tensors. That

is, given a tensor T αβ
γδ, we can use the metric to define new tensors which we choose to

denote by the same letter T :

T αβµ
δ = ηµγT αβ

γδ ,

Tµ
β

γδ = ηµαT
αβ

γδ ,

Tµν
ρσ = ηµαηνβη

ργησδT αβ
γδ , (1.61)

and so forth. Notice that raising and lowering does not change the position of an index

relative to other indices, and also that “free” indices (which are not summed over) must be

the same on both sides of an equation, while “dummy” indices (which are summed over)

only appear on one side. As an example, we can turn vectors and dual vectors into each

other by raising and lowering indices:

Vµ = ηµνV
ν

ωµ = ηµνων . (1.62)
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This explains why the gradient in three-dimensional flat Euclidean space is usually thought

of as an ordinary vector, even though we have seen that it arises as a dual vector; in Euclidean

space (where the metric is diagonal with all entries +1) a dual vector is turned into a vector

with precisely the same components when we raise its index. You may then wonder why we

have belabored the distinction at all. One simple reason, of course, is that in a Lorentzian

spacetime the components are not equal:

ωµ = (−ω0, ω1, ω2, ω3) . (1.63)

In a curved spacetime, where the form of the metric is generally more complicated, the dif-

ference is rather more dramatic. But there is a deeper reason, namely that tensors generally

have a “natural” definition which is independent of the metric. Even though we will always

have a metric available, it is helpful to be aware of the logical status of each mathematical

object we introduce. The gradient, and its action on vectors, is perfectly well defined re-

gardless of any metric, whereas the “gradient with upper indices” is not. (As an example,

we will eventually want to take variations of functionals with respect to the metric, and will

therefore have to know exactly how the functional depends on the metric, something that is

easily obscured by the index notation.)

Continuing our compilation of tensor jargon, we refer to a tensor as symmetric in any

of its indices if it is unchanged under exchange of those indices. Thus, if

Sµνρ = Sνµρ , (1.64)

we say that Sµνρ is symmetric in its first two indices, while if

Sµνρ = Sµρν = Sρµν = Sνµρ = Sνρµ = Sρνµ , (1.65)

we say that Sµνρ is symmetric in all three of its indices. Similarly, a tensor is antisym-

metric (or “skew-symmetric”) in any of its indices if it changes sign when those indices are

exchanged; thus,

Aµνρ = −Aρνµ (1.66)

means that Aµνρ is antisymmetric in its first and third indices (or just “antisymmetric in µ

and ρ”). If a tensor is (anti-) symmetric in all of its indices, we refer to it as simply (anti-)

symmetric (sometimes with the redundant modifier “completely”). As examples, the metric

ηµν and the inverse metric ηµν are symmetric, while the Levi-Civita tensor ǫµνρσ and the

electromagnetic field strength tensor Fµν are antisymmetric. (Check for yourself that if you

raise or lower a set of indices which are symmetric or antisymmetric, they remain that way.)

Notice that it makes no sense to exchange upper and lower indices with each other, so don’t

succumb to the temptation to think of the Kronecker delta δα
β as symmetric. On the other

hand, the fact that lowering an index on δα
β gives a symmetric tensor (in fact, the metric)
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means that the order of indices doesn’t really matter, which is why we don’t keep track index

placement for this one tensor.

Given any tensor, we can symmetrize (or antisymmetrize) any number of its upper or

lower indices. To symmetrize, we take the sum of all permutations of the relevant indices

and divide by the number of terms:

T(µ1µ2···µn)ρ
σ =

1

n!
(Tµ1µ2···µnρ

σ + sum over permutations of indices µ1 · · ·µn) , (1.67)

while antisymmetrization comes from the alternating sum:

T[µ1µ2···µn]ρ
σ =

1

n!
(Tµ1µ2···µnρ

σ + alternating sum over permutations of indices µ1 · · ·µn) .

(1.68)

By “alternating sum” we mean that permutations which are the result of an odd number of

exchanges are given a minus sign, thus:

T[µνρ]σ =
1

6
(Tµνρσ − Tµρνσ + Tρµνσ − Tνµρσ + Tνρµσ − Tρνµσ) . (1.69)

Notice that round/square brackets denote symmetrization/antisymmetrization. Further-

more, we may sometimes want to (anti-) symmetrize indices which are not next to each

other, in which case we use vertical bars to denote indices not included in the sum:

T(µ|ν|ρ) =
1

2
(Tµνρ + Tρνµ) . (1.70)

Finally, some people use a convention in which the factor of 1/n! is omitted. The one used

here is a good one, since (for example) a symmetric tensor satisfies

Sµ1···µn
= S(µ1···µn) , (1.71)

and likewise for antisymmetric tensors.

We have been very careful so far to distinguish clearly between things that are always

true (on a manifold with arbitrary metric) and things which are only true in Minkowski

space in Cartesian coordinates. One of the most important distinctions arises with partial

derivatives. If we are working in flat spacetime with Cartesian coordinates, then the partial

derivative of a (k, l) tensor is a (k, l + 1) tensor; that is,

Tα
µ

ν = ∂αR
µ

ν (1.72)

transforms properly under Lorentz transformations. However, this will no longer be true

in more general spacetimes, and we will have to define a “covariant derivative” to take the

place of the partial derivative. Nevertheless, we can still use the fact that partial derivatives
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give us tensor in this special case, as long as we keep our wits about us. (The one exception

to this warning is the partial derivative of a scalar, ∂αφ, which is a perfectly good tensor

[the gradient] in any spacetime.)

We have now accumulated enough tensor know-how to illustrate some of these concepts

using actual physics. Specifically, we will examine Maxwell’s equations of electrodynam-

ics. In 19th-century notation, these are

∇× B− ∂tE = 4πJ

∇ · E = 4πρ

∇×E + ∂tB = 0

∇ · B = 0 . (1.73)

Here, E and B are the electric and magnetic field 3-vectors, J is the current, ρ is the

charge density, and ∇× and ∇· are the conventional curl and divergence. These equations

are invariant under Lorentz transformations, of course; that’s how the whole business got

started. But they don’t look obviously invariant; our tensor notation can fix that. Let’s

begin by writing these equations in just a slightly different notation,

ǫijk∂jBk − ∂0E
i = 4πJ i

∂iE
i = 4πJ0

ǫijk∂jEk + ∂0B
i = 0

∂iB
i = 0 . (1.74)

In these expressions, spatial indices have been raised and lowered with abandon, without

any attempt to keep straight where the metric appears. This is because δij is the metric on

flat 3-space, with δij its inverse (they are equal as matrices). We can therefore raise and

lower indices at will, since the components don’t change. Meanwhile, the three-dimensional

Levi-Civita tensor ǫijk is defined just as the four-dimensional one, although with one fewer

index. We have replaced the charge density by J0; this is legitimate because the density and

current together form the current 4-vector, Jµ = (ρ, J1, J2, J3).

From these expressions, and the definition (1.58) of the field strength tensor Fµν , it is

easy to get a completely tensorial 20th-century version of Maxwell’s equations. Begin by

noting that we can express the field strength with upper indices as

F 0i = Ei

F ij = ǫijkBk . (1.75)

(To check this, note for example that F 01 = η00η11F01 and F 12 = ǫ123B3.) Then the first two

equations in (1.74) become

∂jF
ij − ∂0F

0i = 4πJ i
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∂iF
0i = 4πJ0 . (1.76)

Using the antisymmetry of F µν , we see that these may be combined into the single tensor

equation

∂µF
νµ = 4πJν . (1.77)

A similar line of reasoning, which is left as an exercise to you, reveals that the third and

fourth equations in (1.74) can be written

∂[µFνλ] = 0 . (1.78)

The four traditional Maxwell equations are thus replaced by two, thus demonstrating the

economy of tensor notation. More importantly, however, both sides of equations (1.77) and

(1.78) manifestly transform as tensors; therefore, if they are true in one inertial frame, they

must be true in any Lorentz-transformed frame. This is why tensors are so useful in relativity

— we often want to express relationships without recourse to any reference frame, and it is

necessary that the quantities on each side of an equation transform in the same way under

change of coordinates. As a matter of jargon, we will sometimes refer to quantities which

are written in terms of tensors as covariant (which has nothing to do with “covariant”

as opposed to “contravariant”). Thus, we say that (1.77) and (1.78) together serve as the

covariant form of Maxwell’s equations, while (1.73) or (1.74) are non-covariant.

Let us now introduce a special class of tensors, known as differential forms (or just

“forms”). A differential p-form is a (0, p) tensor which is completely antisymmetric. Thus,

scalars are automatically 0-forms, and dual vectors are automatically one-forms (thus ex-

plaining this terminology from a while back). We also have the 2-form Fµν and the 4-form

ǫµνρσ. The space of all p-forms is denoted Λp, and the space of all p-form fields over a mani-

fold M is denoted Λp(M). A semi-straightforward exercise in combinatorics reveals that the

number of linearly independent p-forms on an n-dimensional vector space is n!/(p!(n− p)!).

So at a point on a 4-dimensional spacetime there is one linearly independent 0-form, four

1-forms, six 2-forms, four 3-forms, and one 4-form. There are no p-forms for p > n, since all

of the components will automatically be zero by antisymmetry.

Why should we care about differential forms? This is a hard question to answer without

some more work, but the basic idea is that forms can be both differentiated and integrated,

without the help of any additional geometric structure. We will delay integration theory

until later, but see how to differentiate forms shortly.

Given a p-form A and a q-form B, we can form a (p + q)-form known as the wedge

product A ∧B by taking the antisymmetrized tensor product:

(A ∧B)µ1···µp+q
=

(p+ q)!

p! q!
A[µ1···µp

Bµp+1···µp+q] . (1.79)
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Thus, for example, the wedge product of two 1-forms is

(A ∧B)µν = 2A[µBν] = AµBν − AνBµ . (1.80)

Note that

A ∧B = (−1)pqB ∧A , (1.81)

so you can alter the order of a wedge product if you are careful with signs.

The exterior derivative “d” allows us to differentiate p-form fields to obtain (p+1)-form

fields. It is defined as an appropriately normalized antisymmetric partial derivative:

(dA)µ1···µp+1 = (p+ 1)∂[µ1Aµ2···µp+1] . (1.82)

The simplest example is the gradient, which is the exterior derivative of a 1-form:

(dφ)µ = ∂µφ . (1.83)

The reason why the exterior derivative deserves special attention is that it is a tensor, even in

curved spacetimes, unlike its cousin the partial derivative. Since we haven’t studied curved

spaces yet, we cannot prove this, but (1.82) defines an honest tensor no matter what the

metric and coordinates are.

Another interesting fact about exterior differentiation is that, for any form A,

d(dA) = 0 , (1.84)

which is often written d2 = 0. This identity is a consequence of the definition of d and the

fact that partial derivatives commute, ∂α∂β = ∂β∂α (acting on anything). This leads us to

the following mathematical aside, just for fun. We define a p-form A to be closed if dA = 0,

and exact if A = dB for some (p−1)-form B. Obviously, all exact forms are closed, but the

converse is not necessarily true. On a manifold M , closed p-forms comprise a vector space

Zp(M), and exact forms comprise a vector space Bp(M). Define a new vector space as the

closed forms modulo the exact forms:

Hp(M) =
Zp(M)

Bp(M)
. (1.85)

This is known as the pth de Rham cohomology vector space, and depends only on the

topology of the manifold M . (Minkowski space is topologically equivalent to R4, which is

uninteresting, so that all of the Hp(M) vanish for p > 0; for p = 0 we have H0(M) = R.

Therefore in Minkowski space all closed forms are exact except for zero-forms; zero-forms

can’t be exact since there are no −1-forms for them to be the exterior derivative of.) It is

striking that information about the topology can be extracted in this way, which essentially

involves the solutions to differential equations. The dimension bp of the space Hp(M) is



1 SPECIAL RELATIVITY AND FLAT SPACETIME 23

called the pth Betti number of M , and the Euler characteristic is given by the alternating

sum

χ(M) =
n∑

p=0

(−1)pbp . (1.86)

Cohomology theory is the basis for much of modern differential topology.

Moving back to reality, the final operation on differential forms we will introduce is

Hodge duality. We define the “Hodge star operator” on an n-dimensional manifold as a

map from p-forms to (n− p)-forms,

(∗A)µ1···µn−p
=

1

p!
ǫν1···νp

µ1···µn−p
Aν1···νp

, (1.87)

mapping A to “A dual”. Unlike our other operations on forms, the Hodge dual does depend

on the metric of the manifold (which should be obvious, since we had to raise some indices

on the Levi-Civita tensor in order to define (1.87)). Applying the Hodge star twice returns

either plus or minus the original form:

∗ ∗A = (−1)s+p(n−p)A , (1.88)

where s is the number of minus signs in the eigenvalues of the metric (for Minkowski space,

s = 1).

Two facts on the Hodge dual: First, “duality” in the sense of Hodge is different than the

relationship between vectors and dual vectors, although both can be thought of as the space

of linear maps from the original space to R. Notice that the dimensionality of the space of

(n− p)-forms is equal to that of the space of p-forms, so this has at least a chance of being

true. In the case of forms, the linear map defined by an (n− p)-form acting on a p-form is

given by the dual of the wedge product of the two forms. Thus, if A(n−p) is an (n− p)-form

and B(p) is a p-form at some point in spacetime, we have

∗ (A(n−p) ∧ B(p)) ∈ R . (1.89)

The second fact concerns differential forms in 3-dimensional Euclidean space. The Hodge

dual of the wedge product of two 1-forms gives another 1-form:

∗ (U ∧ V )i = ǫi
jkUjVk . (1.90)

(All of the prefactors cancel.) Since 1-forms in Euclidean space are just like vectors, we have

a map from two vectors to a single vector. You should convince yourself that this is just the

conventional cross product, and that the appearance of the Levi-Civita tensor explains why

the cross product changes sign under parity (interchange of two coordinates, or equivalently

basis vectors). This is why the cross product only exists in three dimensions — because only



1 SPECIAL RELATIVITY AND FLAT SPACETIME 24

in three dimensions do we have an interesting map from two dual vectors to a third dual

vector. If you wanted to you could define a map from n− 1 one-forms to a single one-form,

but I’m not sure it would be of any use.

Electrodynamics provides an especially compelling example of the use of differential

forms. From the definition of the exterior derivative, it is clear that equation (1.78) can

be concisely expressed as closure of the two-form Fµν :

dF = 0 . (1.91)

Does this mean that F is also exact? Yes; as we’ve noted, Minkowski space is topologically

trivial, so all closed forms are exact. There must therefore be a one-form Aµ such that

F = dA . (1.92)

This one-form is the familiar vector potential of electromagnetism, with the 0 component

given by the scalar potential, A0 = φ. If one starts from the view that the Aµ is the

fundamental field of electromagnetism, then (1.91) follows as an identity (as opposed to a

dynamical law, an equation of motion). Gauge invariance is expressed by the observation

that the theory is invariant under A → A + dλ for some scalar (zero-form) λ, and this is

also immediate from the relation (1.92). The other one of Maxwell’s equations, (1.77), can

be expressed as an equation between three-forms:

d(∗F ) = 4π(∗J) , (1.93)

where the current one-form J is just the current four-vector with index lowered. Filling in

the details is left for you to do.

As an intriguing aside, Hodge duality is the basis for one of the hottest topics in theoretical

physics today. It’s hard not to notice that the equations (1.91) and (1.93) look very similar.

Indeed, if we set Jµ = 0, the equations are invariant under the “duality transformations”

F → ∗F ,

∗F → −F . (1.94)

We therefore say that the vacuum Maxwell’s equations are duality invariant, while the invari-

ance is spoiled in the presence of charges. We might imagine that magnetic as well as electric

monopoles existed in nature; then we could add a magnetic current term 4π(∗JM) to the

right hand side of (1.91), and the equations would be invariant under duality transformations

plus the additional replacement J ↔ JM . (Of course a nonzero right hand side to (1.91) is

inconsistent with F = dA, so this idea only works if Aµ is not a fundamental variable.) Long

ago Dirac considered the idea of magnetic monopoles and showed that a necessary condition

for their existence is that the fundamental monopole charge be inversely proportional to
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the fundamental electric charge. Now, the fundamental electric charge is a small number;

electrodynamics is “weakly coupled”, which is why perturbation theory is so remarkably

successful in quantum electrodynamics (QED). But Dirac’s condition on magnetic charges

implies that a duality transformation takes a theory of weakly coupled electric charges to a

theory of strongly coupled magnetic monopoles (and vice-versa). Unfortunately monopoles

don’t exist (as far as we know), so these ideas aren’t directly applicable to electromagnetism;

but there are some theories (such as supersymmetric non-abelian gauge theories) for which

it has been long conjectured that some sort of duality symmetry may exist. If it did, we

would have the opportunity to analyze a theory which looked strongly coupled (and therefore

hard to solve) by looking at the weakly coupled dual version. Recently work by Seiberg and

Witten and others has provided very strong evidence that this is exactly what happens in

certain theories. The hope is that these techniques will allow us to explore various phenom-

ena which we know exist in strongly coupled quantum field theories, such as confinement of

quarks in hadrons.

We’ve now gone over essentially everything there is to know about the care and feeding of

tensors. In the next section we will look more carefully at the rigorous definitions of manifolds

and tensors, but the basic mechanics have been pretty well covered. Before jumping to more

abstract mathematics, let’s review how physics works in Minkowski spacetime.

Start with the worldline of a single particle. This is specified by a map R → M , where

M is the manifold representing spacetime; we usually think of the path as a parameterized

curve xµ(λ). As mentioned earlier, the tangent vector to this path is dxµ/dλ (note that it

depends on the parameterization). An object of primary interest is the norm of the tangent

vector, which serves to characterize the path; if the tangent vector is timelike/null/spacelike

at some parameter value λ, we say that the path is timelike/null/spacelike at that point. This

explains why the same words are used to classify vectors in the tangent space and intervals

between two points — because a straight line connecting, say, two timelike separated points

will itself be timelike at every point along the path.

Nevertheless, it’s important to be aware of the sleight of hand which is being pulled here.

The metric, as a (0, 2) tensor, is a machine which acts on two vectors (or two copies of the

same vector) to produce a number. It is therefore very natural to classify tangent vectors

according to the sign of their norm. But the interval between two points isn’t something

quite so natural; it depends on a specific choice of path (a “straight line”) which connects

the points, and this choice in turn depends on the fact that spacetime is flat (which allows

a unique choice of straight line between the points). A more natural object is the line

element, or infinitesimal interval:

ds2 = ηµνdx
µdxν . (1.95)

From this definition it is tempting to take the square root and integrate along a path to

obtain a finite interval. But since ds2 need not be positive, we define different procedures
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for different cases. For spacelike paths we define the path length

∆s =
∫ √

ηµν
dxµ

dλ

dxν

dλ
dλ , (1.96)

where the integral is taken over the path. For null paths the interval is zero, so no extra

formula is required. For timelike paths we define the proper time

∆τ =
∫ √

−ηµν
dxµ

dλ

dxν

dλ
dλ , (1.97)

which will be positive. Of course we may consider paths that are timelike in some places and

spacelike in others, but fortunately it is seldom necessary since the paths of physical particles

never change their character (massive particles move on timelike paths, massless particles

move on null paths). Furthermore, the phrase “proper time” is especially appropriate, since

τ actually measures the time elapsed on a physical clock carried along the path. This point of

view makes the “twin paradox” and similar puzzles very clear; two worldlines, not necessarily

straight, which intersect at two different events in spacetime will have proper times measured

by the integral (1.97) along the appropriate paths, and these two numbers will in general be

different even if the people travelling along them were born at the same time.

Let’s move from the consideration of paths in general to the paths of massive particles

(which will always be timelike). Since the proper time is measured by a clock travelling on

a timelike worldline, it is convenient to use τ as the parameter along the path. That is, we

use (1.97) to compute τ(λ), which (if λ is a good parameter in the first place) we can invert

to obtain λ(τ), after which we can think of the path as xµ(τ). The tangent vector in this
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parameterization is known as the four-velocity, Uµ:

Uµ =
dxµ

dτ
. (1.98)

Since dτ 2 = −ηµνdx
µdxν , the four-velocity is automatically normalized:

ηµνU
µUν = −1 . (1.99)

(It will always be negative, since we are only defining it for timelike trajectories. You could

define an analogous vector for spacelike paths as well; null paths give some extra problems

since the norm is zero.) In the rest frame of a particle, its four-velocity has components

Uµ = (1, 0, 0, 0).

A related vector is the energy-momentum four-vector, defined by

pµ = mUµ , (1.100)

where m is the mass of the particle. The mass is a fixed quantity independent of inertial

frame; what you may be used to thinking of as the “rest mass.” It turns out to be much

more convenient to take this as the mass once and for all, rather than thinking of mass as

depending on velocity. The energy of a particle is simply p0, the timelike component of its

energy-momentum vector. Since it’s only one component of a four-vector, it is not invariant

under Lorentz transformations; that’s to be expected, however, since the energy of a particle

at rest is not the same as that of the same particle in motion. In the particle’s rest frame we

have p0 = m; recalling that we have set c = 1, we find that we have found the equation that

made Einstein a celebrity, E = mc2. (The field equations of general relativity are actually

much more important than this one, but “Rµν − 1
2
Rgµν = 8πGTµν” doesn’t elicit the visceral

reaction that you get from “E = mc2”.) In a moving frame we can find the components of

pµ by performing a Lorentz transformation; for a particle moving with (three-) velocity v

along the x axis we have

pµ = (γm, vγm, 0, 0) , (1.101)

where γ = 1/
√

1 − v2. For small v, this gives p0 = m + 1
2
mv2 (what we usually think of

as rest energy plus kinetic energy) and p1 = mv (what we usually think of as [Newtonian]

momentum). So the energy-momentum vector lives up to its name.

The centerpiece of pre-relativity physics is Newton’s 2nd Law, or f = ma = dp/dt. An

analogous equation should hold in SR, and the requirement that it be tensorial leads us

directly to introduce a force four-vector fµ satisfying

fµ = m
d2

dτ 2
xµ(τ) =

d

dτ
pµ(τ) . (1.102)

The simplest example of a force in Newtonian physics is the force due to gravity. In relativity,

however, gravity is not described by a force, but rather by the curvature of spacetime itself.
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Instead, let us consider electromagnetism. The three-dimensional Lorentz force is given

by f = q(E + v × B), where q is the charge on the particle. We would like a tensorial

generalization of this equation. There turns out to be a unique answer:

fµ = qUλFλ
µ . (1.103)

You can check for yourself that this reduces to the Newtonian version in the limit of small

velocities. Notice how the requirement that the equation be tensorial, which is one way of

guaranteeing Lorentz invariance, severely restricted the possible expressions we could get.

This is an example of a very general phenomenon, in which a small number of an apparently

endless variety of possible physical laws are picked out by the demands of symmetry.

Although pµ provides a complete description of the energy and momentum of a particle,

for extended systems it is necessary to go further and define the energy-momentum tensor

(sometimes called the stress-energy tensor), T µν . This is a symmetric (2, 0) tensor which tells

us all we need to know about the energy-like aspects of a system: energy density, pressure,

stress, and so forth. A general definition of T µν is “the flux of four-momentum pµ across a

surface of constant xν”. To make this more concrete, let’s consider the very general category

of matter which may be characterized as a fluid — a continuum of matter described by

macroscopic quantities such as temperature, pressure, entropy, viscosity, etc. In fact this

definition is so general that it is of little use. In general relativity essentially all interesting

types of matter can be thought of as perfect fluids, from stars to electromagnetic fields to

the entire universe. Schutz defines a perfect fluid to be one with no heat conduction and no

viscosity, while Weinberg defines it as a fluid which looks isotropic in its rest frame; these

two viewpoints turn out to be equivalent. Operationally, you should think of a perfect fluid

as one which may be completely characterized by its pressure and density.

To understand perfect fluids, let’s start with the even simpler example of dust. Dust

is defined as a collection of particles at rest with respect to each other, or alternatively

as a perfect fluid with zero pressure. Since the particles all have an equal velocity in any

fixed inertial frame, we can imagine a “four-velocity field” Uµ(x) defined all over spacetime.

(Indeed, its components are the same at each point.) Define the number-flux four-vector

to be

Nµ = nUµ , (1.104)

where n is the number density of the particles as measured in their rest frame. Then N0

is the number density of particles as measured in any other frame, while N i is the flux of

particles in the xi direction. Let’s now imagine that each of the particles have the same mass

m. Then in the rest frame the energy density of the dust is given by

ρ = nm . (1.105)
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By definition, the energy density completely specifies the dust. But ρ only measures the

energy density in the rest frame; what about other frames? We notice that both n and

m are 0-components of four-vectors in their rest frame; specifically, Nµ = (n, 0, 0, 0) and

pµ = (m, 0, 0, 0). Therefore ρ is the µ = 0, ν = 0 component of the tensor p⊗N as measured

in its rest frame. We are therefore led to define the energy-momentum tensor for dust:

T µν
dust = pµNν = nmUµUν = ρUµUν , (1.106)

where ρ is defined as the energy density in the rest frame.

Having mastered dust, more general perfect fluids are not much more complicated. Re-

member that “perfect” can be taken to mean “isotropic in its rest frame.” This in turn

means that T µν is diagonal — there is no net flux of any component of momentum in an

orthogonal direction. Furthermore, the nonzero spacelike components must all be equal,

T 11 = T 22 = T 33. The only two independent numbers are therefore T 00 and one of the T ii;

we can choose to call the first of these the energy density ρ, and the second the pressure

p. (Sorry that it’s the same letter as the momentum.) The energy-momentum tensor of a

perfect fluid therefore takes the following form in its rest frame:

T µν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.107)

We would like, of course, a formula which is good in any frame. For dust we had T µν =

ρUµUν , so we might begin by guessing (ρ+ p)UµUν , which gives
ρ+ p 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 . (1.108)

To get the answer we want we must therefore add
−p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.109)

Fortunately, this has an obvious covariant generalization, namely pηµν . Thus, the general

form of the energy-momentum tensor for a perfect fluid is

T µν = (ρ+ p)UµUν + pηµν . (1.110)

This is an important formula for applications such as stellar structure and cosmology.
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As further examples, let’s consider the energy-momentum tensors of electromagnetism

and scalar field theory. Without any explanation at all, these are given by

T µν
e+m =

−1

4π
(F µλF ν

λ − 1

4
ηµνF λσFλσ) , (1.111)

and

T µν
scalar = ηµληνσ∂λφ∂σφ− 1

2
ηµν(ηλσ∂λφ∂σφ+m2φ2) . (1.112)

You can check for yourself that, for example, T 00 in each case is equal to what you would

expect the energy density to be.

Besides being symmetric, T µν has the even more important property of being conserved.

In this context, conservation is expressed as the vanishing of the “divergence”:

∂µT
µν = 0 . (1.113)

This is a set of four equations, one for each value of ν. The ν = 0 equation corresponds to

conservation of energy, while ∂µT
µk = 0 expresses conservation of the kth component of the

momentum. We are not going to prove this in general; the proof follows for any individual

source of matter from the equations of motion obeyed by that kind of matter. In fact, one

way to define T µν would be “a (2, 0) tensor with units of energy per volume, which is con-

served.” You can prove conservation of the energy-momentum tensor for electromagnetism,

for example, by taking the divergence of (1.111) and using Maxwell’s equations as previously

discussed.

A final aside: we have already mentioned that in general relativity gravitation does not

count as a “force.” As a related point, the gravitational field also does not have an energy-

momentum tensor. In fact it is very hard to come up with a sensible local expression for the

energy of a gravitational field; a number of suggestions have been made, but they all have

their drawbacks. Although there is no “correct” answer, it is an important issue from the

point of view of asking seemingly reasonable questions such as “What is the energy emitted

per second from a binary pulsar as the result of gravitational radiation?”
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2 Manifolds

After the invention of special relativity, Einstein tried for a number of years to invent a

Lorentz-invariant theory of gravity, without success. His eventual breakthrough was to

replace Minkowski spacetime with a curved spacetime, where the curvature was created by

(and reacted back on) energy and momentum. Before we explore how this happens, we have

to learn a bit about the mathematics of curved spaces. First we will take a look at manifolds

in general, and then in the next section study curvature. In the interest of generality we will

usually work in n dimensions, although you are permitted to take n = 4 if you like.

A manifold (or sometimes “differentiable manifold”) is one of the most fundamental

concepts in mathematics and physics. We are all aware of the properties of n-dimensional

Euclidean space, Rn, the set of n-tuples (x1, . . . , xn). The notion of a manifold captures the

idea of a space which may be curved and have a complicated topology, but in local regions

looks just like Rn. (Here by “looks like” we do not mean that the metric is the same, but only

basic notions of analysis like open sets, functions, and coordinates.) The entire manifold is

constructed by smoothly sewing together these local regions. Examples of manifolds include:

• Rn itself, including the line (R), the plane (R2), and so on. This should be obvious,

since Rn looks like Rn not only locally but globally.

• The n-sphere, Sn. This can be defined as the locus of all points some fixed distance

from the origin in Rn+1. The circle is of course S1, and the two-sphere S2 will be one

of our favorite examples of a manifold.

• The n-torus T n results from taking an n-dimensional cube and identifying opposite

sides. Thus T 2 is the traditional surface of a doughnut.

identify opposite sides

31
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• A Riemann surface of genus g is essentially a two-torus with g holes instead of just

one. S2 may be thought of as a Riemann surface of genus zero. For those of you who

know what the words mean, every “compact orientable boundaryless” two-dimensional

manifold is a Riemann surface of some genus.

genus 0 genus 1 genus 2

• More abstractly, a set of continuous transformations such as rotations in Rn forms a

manifold. Lie groups are manifolds which also have a group structure.

• The direct product of two manifolds is a manifold. That is, given manifolds M and

M ′ of dimension n and n′, we can construct a manifold M ×M ′, of dimension n+ n′,

consisting of ordered pairs (p, p′) for all p ∈M and p′ ∈M ′.

With all of these examples, the notion of a manifold may seem vacuous; what isn’t a

manifold? There are plenty of things which are not manifolds, because somewhere they

do not look locally like Rn. Examples include a one-dimensional line running into a two-

dimensional plane, and two cones stuck together at their vertices. (A single cone is okay;

you can imagine smoothing out the vertex.)

We will now approach the rigorous definition of this simple idea, which requires a number

of preliminary definitions. Many of them are pretty clear anyway, but it’s nice to be complete.
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The most elementary notion is that of a map between two sets. (We assume you know

what a set is.) Given two sets M and N , a map φ : M → N is a relationship which assigns, to

each element of M , exactly one element of N . A map is therefore just a simple generalization

of a function. The canonical picture of a map looks like this:

ϕ

M

N

Given two maps φ : A → B and ψ : B → C, we define the composition ψ ◦ φ : A → C

by the operation (ψ ◦ φ)(a) = ψ(φ(a)). So a ∈ A, φ(a) ∈ B, and thus (ψ ◦ φ)(a) ∈ C. The

order in which the maps are written makes sense, since the one on the right acts first. In

pictures:

ψ   ϕ

A

B

C

ϕ ψ

A map φ is called one-to-one (or “injective”) if each element of N has at most one

element of M mapped into it, and onto (or “surjective”) if each element of N has at least

one element of M mapped into it. (If you think about it, a better name for “one-to-one”

would be “two-to-two”.) Consider a function φ : R → R. Then φ(x) = ex is one-to-one, but

not onto; φ(x) = x3 − x is onto, but not one-to-one; φ(x) = x3 is both; and φ(x) = x2 is

neither.

The set M is known as the domain of the map φ, and the set of points in N which M

gets mapped into is called the image of φ. For some subset U ⊂ N , the set of elements of

M which get mapped to U is called the preimage of U under φ, or φ−1(U). A map which is
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one-to-one, 
not onto

onto, not
one-to-one

both neither

x x

x  - xe x 3

23

x

both one-to-one and onto is known as invertible (or “bijective”). In this case we can define

the inverse map φ−1 : N → M by (φ−1 ◦ φ)(a) = a. (Note that the same symbol φ−1 is

used for both the preimage and the inverse map, even though the former is always defined

and the latter is only defined in some special cases.) Thus:

-1

M N
ϕ

ϕ

The notion of continuity of a map between topological spaces (and thus manifolds) is

actually a very subtle one, the precise formulation of which we won’t really need. However

the intuitive notions of continuity and differentiability of maps φ : Rm → Rn between

Euclidean spaces are useful. A map from Rm to Rn takes an m-tuple (x1, x2, . . . , xm) to an

n-tuple (y1, y2, . . . , yn), and can therefore be thought of as a collection of n functions φi of
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m variables:
y1 = φ1(x1, x2, . . . , xm)
y2 = φ2(x1, x2, . . . , xm)

·
·
·

yn = φn(x1, x2, . . . , xm) .

(2.1)

We will refer to any one of these functions as Cp if it is continuous and p-times differentiable,

and refer to the entire map φ : Rm → Rn as Cp if each of its component functions are at

least Cp. Thus a C0 map is continuous but not necessarily differentiable, while a C∞ map

is continuous and can be differentiated as many times as you like. C∞ maps are sometimes

called smooth. We will call two sets M and N diffeomorphic if there exists a C∞ map

φ : M → N with a C∞ inverse φ−1 : N → M ; the map φ is then called a diffeomorphism.

Aside: The notion of two spaces being diffeomorphic only applies to manifolds, where a

notion of differentiability is inherited from the fact that the space resembles Rn locally. But

“continuity” of maps between topological spaces (not necessarily manifolds) can be defined,

and we say that two such spaces are “homeomorphic,” which means “topologically equivalent

to,” if there is a continuous map between them with a continuous inverse. It is therefore

conceivable that spaces exist which are homeomorphic but not diffeomorphic; topologically

the same but with distinct “differentiable structures.” In 1964 Milnor showed that S7 had 28

different differentiable structures; it turns out that for n < 7 there is only one differentiable

structure on Sn, while for n > 7 the number grows very large. R4 has infinitely many

differentiable structures.

One piece of conventional calculus that we will need later is the chain rule. Let us

imagine that we have maps f : Rm → Rn and g : Rn → Rl, and therefore the composition

(g ◦ f) : Rm → Rl.

g    f

g

R

R

R
m

n

l

f

We can represent each space in terms of coordinates: xa on Rm, yb on Rn, and zc on

Rl, where the indices range over the appropriate values. The chain rule relates the partial
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derivatives of the composition to the partial derivatives of the individual maps:

∂

∂xa
(g ◦ f)c =

∑
b

∂f b

∂xa

∂gc

∂yb
. (2.2)

This is usually abbreviated to
∂

∂xa
=
∑

b

∂yb

∂xa

∂

∂yb
. (2.3)

There is nothing illegal or immoral about using this form of the chain rule, but you should

be able to visualize the maps that underlie the construction. Recall that when m = n

the determinant of the matrix ∂yb/∂xa is called the Jacobian of the map, and the map is

invertible whenever the Jacobian is nonzero.

These basic definitions were presumably familiar to you, even if only vaguely remembered.

We will now put them to use in the rigorous definition of a manifold. Unfortunately, a

somewhat baroque procedure is required to formalize this relatively intuitive notion. We

will first have to define the notion of an open set, on which we can put coordinate systems,

and then sew the open sets together in an appropriate way.

Start with the notion of an open ball, which is the set of all points x in Rn such that

|x − y| < r for some fixed y ∈ Rn and r ∈ R, where |x − y| = [
∑

i(x
i − yi)2]1/2. Note that

this is a strict inequality — the open ball is the interior of an n-sphere of radius r centered

at y.

r

y

open ball

An open set in Rn is a set constructed from an arbitrary (maybe infinite) union of open

balls. In other words, V ⊂ Rn is open if, for any y ∈ V , there is an open ball centered

at y which is completely inside V . Roughly speaking, an open set is the interior of some

(n − 1)-dimensional closed surface (or the union of several such interiors). By defining a

notion of open sets, we have equipped Rn with a topology — in this case, the “standard

metric topology.”
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A chart or coordinate system consists of a subset U of a set M , along with a one-to-

one map φ : U → Rn, such that the image φ(U) is open in R. (Any map is onto its image,

so the map φ : U → φ(U) is invertible.) We then can say that U is an open set in M . (We

have thus induced a topology on M , although we will not explore this.)

U

U

M

ϕ(   )

R
n

ϕ

A C∞ atlas is an indexed collection of charts {(Uα, φα)} which satisfies two conditions:

1. The union of the Uα is equal to M ; that is, the Uα cover M .

2. The charts are smoothly sewn together. More precisely, if two charts overlap, Uα∩Uβ 6=
∅, then the map (φα ◦ φ−1

β ) takes points in φβ(Uα ∩Uβ) ⊂ Rn onto φα(Uα ∩Uβ) ⊂ Rn,

and all of these maps must be C∞ where they are defined. This should be clearer in

pictures:

Uα

ϕ (    )

ϕ (    )

ϕ

ϕ

ϕ    ϕ

ϕ    ϕ
β α

α β

α

β
Uβ

Uα

α

β

Uβ

-1

-1
these maps are only
defined on the shaded
regions, and must be
smooth there.

M

R

R

n

n
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So a chart is what we normally think of as a coordinate system on some open set, and an

atlas is a system of charts which are smoothly related on their overlaps.

At long last, then: a C∞ n-dimensional manifold (or n-manifold for short) is simply

a set M along with a “maximal atlas”, one that contains every possible compatible chart.

(We can also replace C∞ by Cp in all the above definitions. For our purposes the degree of

differentiability of a manifold is not crucial; we will always assume that any manifold is as

differentiable as necessary for the application under consideration.) The requirement that

the atlas be maximal is so that two equivalent spaces equipped with different atlases don’t

count as different manifolds. This definition captures in formal terms our notion of a set

that looks locally like Rn. Of course we will rarely have to make use of the full power of the

definition, but precision is its own reward.

One thing that is nice about our definition is that it does not rely on an embedding of the

manifold in some higher-dimensional Euclidean space. In fact any n-dimensional manifold

can be embedded in R2n (“Whitney’s embedding theorem”), and sometimes we will make

use of this fact (such as in our definition of the sphere above). But it’s important to recognize

that the manifold has an individual existence independent of any embedding. We have no

reason to believe, for example, that four-dimensional spacetime is stuck in some larger space.

(Actually a number of people, string theorists and so forth, believe that our four-dimensional

world is part of a ten- or eleven-dimensional spacetime, but as far as GR is concerned the

4-dimensional view is perfectly adequate.)

Why was it necessary to be so finicky about charts and their overlaps, rather than just

covering every manifold with a single chart? Because most manifolds cannot be covered

with just one chart. Consider the simplest example, S1. There is a conventional coordinate

system, θ : S1 → R, where θ = 0 at the top of the circle and wraps around to 2π. However,

in the definition of a chart we have required that the image θ(S1) be open in R. If we include

either θ = 0 or θ = 2π, we have a closed interval rather than an open one; if we exclude both

points, we haven’t covered the whole circle. So we need at least two charts, as shown.

U

S1

2

U1

A somewhat more complicated example is provided by S2, where once again no single
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chart will cover the manifold. A Mercator projection, traditionally used for world maps,

misses both the North and South poles (as well as the International Date Line, which involves

the same problem with θ that we found for S1.) Let’s take S2 to be the set of points in R3

defined by (x1)2 + (x2)2 + (x3)2 = 1. We can construct a chart from an open set U1, defined

to be the sphere minus the north pole, via “stereographic projection”:

x

x

x   = -1

x1

2

3

(y  , y  )1 2
3

(x  , x  , x  )1 32

Thus, we draw a straight line from the north pole to the plane defined by x3 = −1, and

assign to the point on S2 intercepted by the line the Cartesian coordinates (y1, y2) of the

appropriate point on the plane. Explicitly, the map is given by

φ1(x
1, x2, x3) ≡ (y1, y2) =

(
2x1

1 − x3
,

2x2

1 − x3

)
. (2.4)

You are encouraged to check this for yourself. Another chart (U2, φ2) is obtained by project-

ing from the south pole to the plane defined by x3 = +1. The resulting coordinates cover

the sphere minus the south pole, and are given by

φ2(x
1, x2, x3) ≡ (z1, z2) =

(
2x1

1 + x3
,

2x2

1 + x3

)
. (2.5)

Together, these two charts cover the entire manifold, and they overlap in the region −1 <

x3 < +1. Another thing you can check is that the composition φ2 ◦ φ−1
1 is given by

zi =
4yi

[(y1)2 + (y2)2]
, (2.6)

and is C∞ in the region of overlap. As long as we restrict our attention to this region, (2.6)

is just what we normally think of as a change of coordinates.

We therefore see the necessity of charts and atlases: many manifolds cannot be covered

with a single coordinate system. (Although some can, even ones with nontrivial topology.

Can you think of a single good coordinate system that covers the cylinder, S1 ×R?) Never-

theless, it is very often most convenient to work with a single chart, and just keep track of

the set of points which aren’t included.
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The fact that manifolds look locally like Rn, which is manifested by the construction of

coordinate charts, introduces the possibility of analysis on manifolds, including operations

such as differentiation and integration. Consider two manifolds M and N of dimensions m

and n, with coordinate charts φ on M and ψ on N . Imagine we have a function f : M → N ,

M Nf

R Rψ

ϕϕ-1

m
f       ϕ-1 n

-1ψ ψ

Just thinking of M and N as sets, we cannot nonchalantly differentiate the map f , since we

don’t know what such an operation means. But the coordinate charts allow us to construct

the map (ψ ◦ f ◦ φ−1) : Rm → Rn. (Feel free to insert the words “where the maps are

defined” wherever appropriate, here and later on.) This is just a map between Euclidean

spaces, and all of the concepts of advanced calculus apply. For example f , thought of as

an N -valued function on M , can be differentiated to obtain ∂f/∂xµ, where the xµ represent

Rm. The point is that this notation is a shortcut, and what is really going on is

∂f

∂xµ
≡ ∂

∂xµ
(ψ ◦ f ◦ φ−1)(xµ) . (2.7)

It would be far too unwieldy (not to mention pedantic) to write out the coordinate maps

explicitly in every case. The shorthand notation of the left-hand-side will be sufficient for

most purposes.

Having constructed this groundwork, we can now proceed to introduce various kinds

of structure on manifolds. We begin with vectors and tangent spaces. In our discussion

of special relativity we were intentionally vague about the definition of vectors and their

relationship to the spacetime. One point that was stressed was the notion of a tangent space

— the set of all vectors at a single point in spacetime. The reason for this emphasis was to

remove from your minds the idea that a vector stretches from one point on the manifold to

another, but instead is just an object associated with a single point. What is temporarily

lost by adopting this view is a way to make sense of statements like “the vector points in
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the x direction” — if the tangent space is merely an abstract vector space associated with

each point, it’s hard to know what this should mean. Now it’s time to fix the problem.

Let’s imagine that we wanted to construct the tangent space at a point p in a manifold

M , using only things that are intrinsic to M (no embeddings in higher-dimensional spaces

etc.). One first guess might be to use our intuitive knowledge that there are objects called

“tangent vectors to curves” which belong in the tangent space. We might therefore consider

the set of all parameterized curves through p — that is, the space of all (nondegenerate)

maps γ : R → M such that p is in the image of γ. The temptation is to define the tangent

space as simply the space of all tangent vectors to these curves at the point p. But this is

obviously cheating; the tangent space Tp is supposed to be the space of vectors at p, and

before we have defined this we don’t have an independent notion of what “the tangent vector

to a curve” is supposed to mean. In some coordinate system xµ any curve through p defines

an element of Rn specified by the n real numbers dxµ/dλ (where λ is the parameter along

the curve), but this map is clearly coordinate-dependent, which is not what we want.

Nevertheless we are on the right track, we just have to make things independent of

coordinates. To this end we define F to be the space of all smooth functions on M (that

is, C∞ maps f : M → R). Then we notice that each curve through p defines an operator

on this space, the directional derivative, which maps f → df/dλ (at p). We will make the

following claim: the tangent space Tp can be identified with the space of directional derivative

operators along curves through p. To establish this idea we must demonstrate two things:

first, that the space of directional derivatives is a vector space, and second that it is the

vector space we want (it has the same dimensionality as M , yields a natural idea of a vector

pointing along a certain direction, and so on).

The first claim, that directional derivatives form a vector space, seems straightforward

enough. Imagine two operators d
dλ

and d
dη

representing derivatives along two curves through

p. There is no problem adding these and scaling by real numbers, to obtain a new operator

a d
dλ

+ b d
dη

. It is not immediately obvious, however, that the space closes; i.e., that the

resulting operator is itself a derivative operator. A good derivative operator is one that

acts linearly on functions, and obeys the conventional Leibniz (product) rule on products

of functions. Our new operator is manifestly linear, so we need to verify that it obeys the

Leibniz rule. We have(
a
d

dλ
+ b

d

dη

)
(fg) = af

dg

dλ
+ ag

df

dλ
+ bf

dg

dη
+ bg

df

dη

=

(
a
df

dλ
+ b

df

dη

)
g +

(
a
dg

dλ
+ b

dg

dη

)
f . (2.8)

As we had hoped, the product rule is satisfied, and the set of directional derivatives is

therefore a vector space.
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Is it the vector space that we would like to identify with the tangent space? The easiest

way to become convinced is to find a basis for the space. Consider again a coordinate chart

with coordinates xµ. Then there is an obvious set of n directional derivatives at p, namely

the partial derivatives ∂µ at p.

p

1

ρ

2

ρ

x
x2

1

We are now going to claim that the partial derivative operators {∂µ} at p form a basis for

the tangent space Tp. (It follows immediately that Tp is n-dimensional, since that is the

number of basis vectors.) To see this we will show that any directional derivative can be

decomposed into a sum of real numbers times partial derivatives. This is in fact just the

familiar expression for the components of a tangent vector, but it’s nice to see it from the

big-machinery approach. Consider an n-manifold M , a coordinate chart φ : M → Rn, a

curve γ : R →M , and a function f : M → R. This leads to the following tangle of maps:

f -1       ϕ

ϕϕ-1

f
M

R
R

γ

ϕ γ

f γ

xµ

R
n

If λ is the parameter along γ, we want to expand the vector/operator d
dλ

in terms of the
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partials ∂µ. Using the chain rule (2.2), we have

d

dλ
f =

d

dλ
(f ◦ γ)

=
d

dλ
[(f ◦ φ−1) ◦ (φ ◦ γ)]

=
d(φ ◦ γ)µ

dλ

∂(f ◦ φ−1)

∂xµ

=
dxµ

dλ
∂µf . (2.9)

The first line simply takes the informal expression on the left hand side and rewrites it as

an honest derivative of the function (f ◦ γ) : R → R. The second line just comes from the

definition of the inverse map φ−1 (and associativity of the operation of composition). The

third line is the formal chain rule (2.2), and the last line is a return to the informal notation

of the start. Since the function f was arbitrary, we have

d

dλ
=
dxµ

dλ
∂µ . (2.10)

Thus, the partials {∂µ} do indeed represent a good basis for the vector space of directional

derivatives, which we can therefore safely identify with the tangent space.

Of course, the vector represented by d
dλ

is one we already know; it’s the tangent vector

to the curve with parameter λ. Thus (2.10) can be thought of as a restatement of (1.24),

where we claimed the that components of the tangent vector were simply dxµ/dλ. The only

difference is that we are working on an arbitrary manifold, and we have specified our basis

vectors to be ê(µ) = ∂µ.

This particular basis (ê(µ) = ∂µ) is known as a coordinate basis for Tp; it is the

formalization of the notion of setting up the basis vectors to point along the coordinate

axes. There is no reason why we are limited to coordinate bases when we consider tangent

vectors; it is sometimes more convenient, for example, to use orthonormal bases of some

sort. However, the coordinate basis is very simple and natural, and we will use it almost

exclusively throughout the course.

One of the advantages of the rather abstract point of view we have taken toward vectors

is that the transformation law is immediate. Since the basis vectors are ê(µ) = ∂µ, the basis

vectors in some new coordinate system xµ′

are given by the chain rule (2.3) as

∂µ′ =
∂xµ

∂xµ′
∂µ . (2.11)

We can get the transformation law for vector components by the same technique used in flat

space, demanding the the vector V = V µ∂µ be unchanged by a change of basis. We have

V µ∂µ = V µ′

∂µ′

= V µ′ ∂xµ

∂xµ′
∂µ , (2.12)
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and hence (since the matrix ∂xµ′

/∂xµ is the inverse of the matrix ∂xµ/∂xµ′

),

V µ′

=
∂xµ′

∂xµ
V µ . (2.13)

Since the basis vectors are usually not written explicitly, the rule (2.13) for transforming

components is what we call the “vector transformation law.” We notice that it is com-

patible with the transformation of vector components in special relativity under Lorentz

transformations, V µ′

= Λµ′

µV
µ, since a Lorentz transformation is a special kind of coordi-

nate transformation, with xµ′

= Λµ′

µx
µ. But (2.13) is much more general, as it encompasses

the behavior of vectors under arbitrary changes of coordinates (and therefore bases), not just

linear transformations. As usual, we are trying to emphasize a somewhat subtle ontological

distinction — tensor components do not change when we change coordinates, they change

when we change the basis in the tangent space, but we have decided to use the coordinates

to define our basis. Therefore a change of coordinates induces a change of basis:

ρ

2
ρ

1

ρ

2 ρ

1

x

x

µ

µ’
’

’

Having explored the world of vectors, we continue to retrace the steps we took in flat

space, and now consider dual vectors (one-forms). Once again the cotangent space T ∗
p is the

set of linear maps ω : Tp → R. The canonical example of a one-form is the gradient of a

function f , denoted df . Its action on a vector d
dλ

is exactly the directional derivative of the

function:

df

(
d

dλ

)
=
df

dλ
. (2.14)

It’s tempting to think, “why shouldn’t the function f itself be considered the one-form, and

df/dλ its action?” The point is that a one-form, like a vector, exists only at the point it is

defined, and does not depend on information at other points on M . If you know a function

in some neighborhood of a point you can take its derivative, but not just from knowing

its value at the point; the gradient, on the other hand, encodes precisely the information
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necessary to take the directional derivative along any curve through p, fulfilling its role as a

dual vector.

Just as the partial derivatives along coordinate axes provide a natural basis for the

tangent space, the gradients of the coordinate functions xµ provide a natural basis for the

cotangent space. Recall that in flat space we constructed a basis for T ∗
p by demanding that

θ̂(µ)(ê(ν)) = δµ
ν . Continuing the same philosophy on an arbitrary manifold, we find that (2.14)

leads to

dxµ(∂ν) =
∂xµ

∂xν
= δµ

ν . (2.15)

Therefore the gradients {dxµ} are an appropriate set of basis one-forms; an arbitrary one-

form is expanded into components as ω = ωµ dxµ.

The transformation properties of basis dual vectors and components follow from what is

by now the usual procedure. We obtain, for basis one-forms,

dxµ′

=
∂xµ′

∂xµ
dxµ , (2.16)

and for components,

ωµ′ =
∂xµ

∂xµ′
ωµ . (2.17)

We will usually write the components ωµ when we speak about a one-form ω.

The transformation law for general tensors follows this same pattern of replacing the

Lorentz transformation matrix used in flat space with a matrix representing more general

coordinate transformations. A (k, l) tensor T can be expanded

T = T µ1···µk
ν1···νl

∂µ1 ⊗ · · · ⊗ ∂µk
⊗ dxν1 ⊗ · · · ⊗ dxνl , (2.18)

and under a coordinate transformation the components change according to

T µ′

1···µ′

k ν′

1···ν′

l
=
∂xµ′

1

∂xµ1
· · · ∂x

µ′

k

∂xµk

∂xν1

∂xν′

1
· · · ∂x

νl

∂xν′

l

T µ1···µk
ν1···νl

. (2.19)

This tensor transformation law is straightforward to remember, since there really isn’t any-

thing else it could be, given the placement of indices. However, it is often easier to transform

a tensor by taking the identity of basis vectors and one-forms as partial derivatives and gradi-

ents at face value, and simply substituting in the coordinate transformation. As an example

consider a symmetric (0, 2) tensor S on a 2-dimensional manifold, whose components in a

coordinate system (x1 = x, x2 = y) are given by

Sµν =
(
x 0
0 1

)
. (2.20)
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This can be written equivalently as

S = Sµν(dx
µ ⊗ dxν)

= x(dx)2 + (dy)2 , (2.21)

where in the last line the tensor product symbols are suppressed for brevity. Now consider

new coordinates

x′ = x1/3

y′ = ex+y . (2.22)

This leads directly to

x = (x′)3

y = ln(y′) − (x′)3

dx = 3(x′)2 dx′

dy =
1

y′
dy′ − 3(x′)2 dx′ . (2.23)

We need only plug these expressions directly into (2.21) to obtain (remembering that tensor

products don’t commute, so dx′ dy′ 6= dy′ dx′):

S = 9(x′)4[1 + (x′)3](dx′)2 − 3
(x′)2

y′
(dx′ dy′ + dy′ dx′) +

1

(y′)2
(dy′)2 , (2.24)

or

Sµ′ν′ =

 9(x′)4[1 + (x′)3] −3 (x′)2

y′

−3 (x′)2

y′

1
(y′)2

 . (2.25)

Notice that it is still symmetric. We did not use the transformation law (2.19) directly, but

doing so would have yielded the same result, as you can check.

For the most part the various tensor operations we defined in flat space are unaltered

in a more general setting: contraction, symmetrization, etc. There are three important

exceptions: partial derivatives, the metric, and the Levi-Civita tensor. Let’s look at the

partial derivative first.

The unfortunate fact is that the partial derivative of a tensor is not, in general, a new

tensor. The gradient, which is the partial derivative of a scalar, is an honest (0, 1) tensor, as

we have seen. But the partial derivative of higher-rank tensors is not tensorial, as we can see

by considering the partial derivative of a one-form, ∂µWν , and changing to a new coordinate

system:

∂

∂xµ′
Wν′ =

∂xµ

∂xµ′

∂

∂xµ

(
∂xν

∂xν′
Wν

)

=
∂xµ

∂xµ′

∂xν

∂xν′

(
∂

∂xµ
Wν

)
+Wν

∂xµ

∂xµ′

∂

∂xµ

∂xν

∂xν′
. (2.26)



2 MANIFOLDS 47

The second term in the last line should not be there if ∂µWν were to transform as a (0, 2)

tensor. As you can see, it arises because the derivative of the transformation matrix does

not vanish, as it did for Lorentz transformations in flat space.

On the other hand, the exterior derivative operator d does form an antisymmetric (0, p+1)

tensor when acted on a p-form. For p = 1 we can see this from (2.26); the offending non-

tensorial term can be written

Wν
∂xµ

∂xµ′

∂

∂xµ

∂xν

∂xν′
= Wν

∂2xν

∂xµ′∂xν′
. (2.27)

This expression is symmetric in µ′ and ν ′, since partial derivatives commute. But the exterior

derivative is defined to be the antisymmetrized partial derivative, so this term vanishes

(the antisymmetric part of a symmetric expression is zero). We are then left with the

correct tensor transformation law; extension to arbitrary p is straightforward. So the exterior

derivative is a legitimate tensor operator; it is not, however, an adequate substitute for the

partial derivative, since it is only defined on forms. In the next section we will define a

covariant derivative, which can be thought of as the extension of the partial derivative to

arbitrary manifolds.

The metric tensor is such an important object in curved space that it is given a new

symbol, gµν (while ηµν is reserved specifically for the Minkowski metric). There are few

restrictions on the components of gµν , other than that it be a symmetric (0, 2) tensor. It is

usually taken to be non-degenerate, meaning that the determinant g = |gµν | doesn’t vanish.

This allows us to define the inverse metric gµν via

gµνgνσ = δµ
σ . (2.28)

The symmetry of gµν implies that gµν is also symmetric. Just as in special relativity, the

metric and its inverse may be used to raise and lower indices on tensors.

It will take several weeks to fully appreciate the role of the metric in all of its glory, but

for purposes of inspiration we can list the various uses to which gµν will be put: (1) the

metric supplies a notion of “past” and “future”; (2) the metric allows the computation of

path length and proper time; (3) the metric determines the “shortest distance” between two

points (and therefore the motion of test particles); (4) the metric replaces the Newtonian

gravitational field φ; (5) the metric provides a notion of locally inertial frames and therefore

a sense of “no rotation”; (6) the metric determines causality, by defining the speed of light

faster than which no signal can travel; (7) the metric replaces the traditional Euclidean

three-dimensional dot product of Newtonian mechanics; and so on. Obviously these ideas

are not all completely independent, but we get some sense of the importance of this tensor.

In our discussion of path lengths in special relativity we (somewhat handwavingly) in-

troduced the line element as ds2 = ηµνdx
µdxν , which was used to get the length of a path.
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Of course now that we know that dxµ is really a basis dual vector, it becomes natural to use

the terms “metric” and “line element” interchangeably, and write

ds2 = gµν dxµ dxν . (2.29)

(To be perfectly consistent we should write this as “g”, and sometimes will, but more often

than not g is used for the determinant |gµν |.) For example, we know that the Euclidean line

element in a three-dimensional space with Cartesian coordinates is

ds2 = (dx)2 + (dy)2 + (dz)2 . (2.30)

We can now change to any coordinate system we choose. For example, in spherical coordi-

nates we have

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ , (2.31)

which leads directly to

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 . (2.32)

Obviously the components of the metric look different than those in Cartesian coordinates,

but all of the properties of the space remain unaltered.

Perhaps this is a good time to note that most references are not sufficiently picky to

distinguish between “dx”, the informal notion of an infinitesimal displacement, and “dx”,

the rigorous notion of a basis one-form given by the gradient of a coordinate function. In

fact our notation “ds2” does not refer to the exterior derivative of anything, or the square of

anything; it’s just conventional shorthand for the metric tensor. On the other hand, “(dx)2”

refers specifically to the (0, 2) tensor dx⊗ dx.

A good example of a space with curvature is the two-sphere, which can be thought of as

the locus of points in R3 at distance 1 from the origin. The metric in the (θ, φ) coordinate

system comes from setting r = 1 and dr = 0 in (2.32):

ds2 = dθ2 + sin2 θ dφ2 . (2.33)

This is completely consistent with the interpretation of ds as an infinitesimal length, as

illustrated in the figure.

As we shall see, the metric tensor contains all the information we need to describe the

curvature of the manifold (at least in Riemannian geometry; we will actually indicate some-

what more general approaches). In Minkowski space we can choose coordinates in which the

components of the metric are constant; but it should be clear that the existence of curvature
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S

ds
θ

sinθ dφ

d

2

is more subtle than having the metric depend on the coordinates, since in the example above

we showed how the metric in flat Euclidean space in spherical coordinates is a function of r

and θ. Later, we shall see that constancy of the metric components is sufficient for a space

to be flat, and in fact there always exists a coordinate system on any flat space in which

the metric is constant. But we might not want to work in such a coordinate system, and we

might not even know how to find it; therefore we will want a more precise characterization

of the curvature, which will be introduced down the road.

A useful characterization of the metric is obtained by putting gµν into its canonical

form. In this form the metric components become

gµν = diag (−1,−1, . . . ,−1,+1,+1, . . . ,+1, 0, 0, . . . , 0) , (2.34)

where “diag” means a diagonal matrix with the given elements. If n is the dimension of

the manifold, s is the number of +1’s in the canonical form, and t is the number of −1’s,

then s − t is the signature of the metric (the difference in the number of minus and plus

signs), and s+ t is the rank of the metric (the number of nonzero eigenvalues). If a metric

is continuous, the rank and signature of the metric tensor field are the same at every point,

and if the metric is nondegenerate the rank is equal to the dimension n. We will always deal

with continuous, nondegenerate metrics. If all of the signs are positive (t = 0) the metric

is called Euclidean or Riemannian (or just “positive definite”), while if there is a single

minus (t = 1) it is called Lorentzian or pseudo-Riemannian, and any metric with some

+1’s and some −1’s is called “indefinite.” (So the word “Euclidean” sometimes means that

the space is flat, and sometimes doesn’t, but always means that the canonical form is strictly

positive; the terminology is unfortunate but standard.) The spacetimes of interest in general

relativity have Lorentzian metrics.

We haven’t yet demonstrated that it is always possible to but the metric into canonical

form. In fact it is always possible to do so at some point p ∈ M , but in general it will
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only be possible at that single point, not in any neighborhood of p. Actually we can do

slightly better than this; it turns out that at any point p there exists a coordinate system in

which gµν takes its canonical form and the first derivatives ∂σgµν all vanish (while the second

derivatives ∂ρ∂σgµν cannot be made to all vanish). Such coordinates are known as Riemann

normal coordinates, and the associated basis vectors constitute a local Lorentz frame.

Notice that in Riemann normal coordinates (or RNC’s) the metric at p looks like that of flat

space “to first order.” This is the rigorous notion of the idea that “small enough regions of

spacetime look like flat (Minkowski) space.” (Also, there is no difficulty in simultaneously

constructing sets of basis vectors at every point in M such that the metric takes its canonical

form; the problem is that in general this will not be a coordinate basis, and there will be no

way to make it into one.)

We won’t consider the detailed proof of this statement; it can be found in Schutz, pp. 158-

160, where it goes by the name of the “local flatness theorem.” (He also calls local Lorentz

frames “momentarily comoving reference frames,” or MCRF’s.) It is useful to see a sketch

of the proof, however, for the specific case of a Lorentzian metric in four dimensions. The

idea is to consider the transformation law for the metric

gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν , (2.35)

and expand both sides in Taylor series in the sought-after coordinates xµ′

. The expansion

of the old coordinates xµ looks like

xµ =

(
∂xµ

∂xµ′

)
p

xµ′

+
1

2

(
∂2xµ

∂xµ′

1∂xµ′

2

)
p

xµ′

1xµ′

2 +
1

6

(
∂3xµ

∂xµ′

1∂xµ′

2∂xµ′

3

)
p

xµ′

1xµ′

2xµ′

3 + · · · , (2.36)

with the other expansions proceeding along the same lines. (For simplicity we have set

xµ(p) = xµ′

(p) = 0.) Then, using some extremely schematic notation, the expansion of

(2.35) to second order is

(g′)p + (∂′g′)p x
′ + (∂′∂′g′)p x

′x′

=

(
∂x

∂x′
∂x

∂x′
g

)
p

+

(
∂x

∂x′
∂2x

∂x′∂x′
g +

∂x

∂x′
∂x

∂x′
∂′g

)
p

x′

+

(
∂x

∂x′
∂3x

∂x′∂x′∂x′
g +

∂2x

∂x′∂x′
∂2x

∂x′∂x′
g +

∂x

∂x′
∂2x

∂x′∂x′
∂′g +

∂x

∂x′
∂x

∂x′
∂′∂′g

)
p

x′x′ .(2.37)

We can set terms of equal order in x′ on each side equal to each other. Therefore, the

components gµ′ν′(p), 10 numbers in all (to describe a symmetric two-index tensor), are

determined by the matrix (∂xµ/∂xµ′

)p. This is a 4 × 4 matrix with no constraints; thus,

16 numbers we are free to choose. Clearly this is enough freedom to put the 10 numbers of

gµ′ν′(p) into canonical form, at least as far as having enough degrees of freedom is concerned.
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(In fact there are some limitations — if you go through the procedure carefully, you find

for example that you cannot change the signature and rank.) The six remaining degrees of

freedom can be interpreted as exactly the six parameters of the Lorentz group; we know that

these leave the canonical form unchanged. At first order we have the derivatives ∂σ′gµ′ν′(p),

four derivatives of ten components for a total of 40 numbers. But looking at the right hand

side of (2.37) we see that we now have the additional freedom to choose (∂2xµ/∂xµ′

1∂xµ′

2)p. In

this set of numbers there are 10 independent choices of the indices µ′
1 and µ′

2 (it’s symmetric,

since partial derivatives commute) and four choices of µ, for a total of 40 degrees of freedom.

This is precisely the amount of choice we need to determine all of the first derivatives of the

metric, which we can therefore set to zero. At second order, however, we are concerned with

∂ρ′∂σ′gµ′ν′(p); this is symmetric in ρ′ and σ′ as well as µ′ and ν ′, for a total of 10× 10 = 100

numbers. Our ability to make additional choices is contained in (∂3xµ/∂xµ′

1∂xµ′

2∂xµ′

3)p.

This is symmetric in the three lower indices, which gives 20 possibilities, times four for the

upper index gives us 80 degrees of freedom — 20 fewer than we require to set the second

derivatives of the metric to zero. So in fact we cannot make the second derivatives vanish;

the deviation from flatness must therefore be measured by the 20 coordinate-independent

degrees of freedom representing the second derivatives of the metric tensor field. We will

see later how this comes about, when we characterize curvature using the Riemann tensor,

which will turn out to have 20 independent components.

The final change we have to make to our tensor knowledge now that we have dropped

the assumption of flat space has to do with the Levi-Civita tensor, ǫµ1µ2···µn
. Remember that

the flat-space version of this object, which we will now denote by ǫ̃µ1µ2···µn
, was defined as

ǫ̃µ1µ2···µn
=


+1 if µ1µ2 · · ·µn is an even permutation of 01 · · · (n− 1) ,
−1 if µ1µ2 · · ·µn is an odd permutation of 01 · · · (n− 1) ,
0 otherwise .

(2.38)

We will now define the Levi-Civita symbol to be exactly this ǫ̃µ1µ2···µn
— that is, an object

with n indices which has the components specified above in any coordinate system. This is

called a “symbol,” of course, because it is not a tensor; it is defined not to change under

coordinate transformations. We can relate its behavior to that of an ordinary tensor by first

noting that, given some n× n matrix Mµ
µ′ , the determinant |M | obeys

ǫ̃µ′

1µ′

2···µ′

n
|M | = ǫ̃µ1µ2···µn

Mµ1
µ′

1
Mµ2

µ′

2
· · ·Mµn

µ′

n
. (2.39)

This is just a true fact about the determinant which you can find in a sufficiently enlightened

linear algebra book. If follows that, setting Mµ
µ′ = ∂xµ/∂xµ′

, we have

ǫ̃µ′

1µ′

2···µ′

n
=

∣∣∣∣∣∂xµ′

∂xµ

∣∣∣∣∣ ǫ̃µ1µ2···µn

∂xµ1

∂xµ′

1

∂xµ2

∂xµ′

2
· · · ∂x

µn

∂xµ′

n

. (2.40)
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This is close to the tensor transformation law, except for the determinant out front. Objects

which transform in this way are known as tensor densities. Another example is given by

the determinant of the metric, g = |gµν |. It’s easy to check (by taking the determinant of

both sides of (2.35)) that under a coordinate transformation we get

g(xµ′

) =

∣∣∣∣∣∂xµ′

∂xµ

∣∣∣∣∣
−2

g(xµ) . (2.41)

Therefore g is also not a tensor; it transforms in a way similar to the Levi-Civita symbol,

except that the Jacobian is raised to the −2 power. The power to which the Jacobian is

raised is known as the weight of the tensor density; the Levi-Civita symbol is a density of

weight 1, while g is a (scalar) density of weight −2.

However, we don’t like tensor densities, we like tensors. There is a simple way to convert

a density into an honest tensor — multiply by |g|w/2, where w is the weight of the density

(the absolute value signs are there because g < 0 for Lorentz metrics). The result will

transform according to the tensor transformation law. Therefore, for example, we can define

the Levi-Civita tensor as

ǫµ1µ2···µn
=
√
|g| ǫ̃µ1µ2···µn

. (2.42)

It is this tensor which is used in the definition of the Hodge dual, (1.87), which is otherwise

unchanged when generalized to arbitrary manifolds. Since this is a real tensor, we can raise

indices, etc. Sometimes people define a version of the Levi-Civita symbol with upper indices,

ǫ̃µ1µ2···µn , whose components are numerically equal to the symbol with lower indices. This

turns out to be a density of weight −1, and is related to the tensor with upper indices by

ǫµ1µ2···µn = sgn(g)
1√
|g|

ǫ̃µ1µ2···µn . (2.43)

As an aside, we should come clean and admit that, even with the factor of
√
|g|, the

Levi-Civita tensor is in some sense not a true tensor, because on some manifolds it cannot

be globally defined. Those on which it can be defined are called orientable, and we will

deal exclusively with orientable manifolds in this course. An example of a non-orientable

manifold is the Möbius strip; see Schutz’s Geometrical Methods in Mathematical Physics

(or a similar text) for a discussion.

One final appearance of tensor densities is in integration on manifolds. We will not do this

subject justice, but at least a casual glance is necessary. You have probably been exposed

to the fact that in ordinary calculus on Rn the volume element dnx picks up a factor of the

Jacobian under change of coordinates:

dnx′ =

∣∣∣∣∣∂x
µ′

∂xµ

∣∣∣∣∣ dnx . (2.44)
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There is actually a beautiful explanation of this formula from the point of view of differential

forms, which arises from the following fact: on an n-dimensional manifold, the integrand is

properly understood as an n-form. The naive volume element dnx is itself a density rather

than an n-form, but there is no difficulty in using it to construct a real n-form. To see how

this works, we should make the identification

dnx↔ dx0 ∧ · · · ∧ dxn−1 . (2.45)

The expression on the right hand side can be misleading, because it looks like a tensor (an

n-form, actually) but is really a density. Certainly if we have two functions f and g on M ,

then df and dg are one-forms, and df ∧ dg is a two-form. But we would like to interpret

the right hand side of (2.45) as a coordinate-dependent object which, in the xµ coordinate

system, acts like dx0 ∧ · · · ∧ dxn−1. This sounds tricky, but in fact it’s just an ambiguity of

notation, and in practice we will just use the shorthand notation “dnx”.

To justify this song and dance, let’s see how (2.45) changes under coordinate transfor-

mations. First notice that the definition of the wedge product allows us to write

dx0 ∧ · · · ∧ dxn−1 =
1

n!
ǫ̃µ1···µn

dxµ1 ∧ · · · ∧ dxµn , (2.46)

since both the wedge product and the Levi-Civita symbol are completely antisymmetric. Un-

der a coordinate transformation ǫ̃µ1···µn
stays the same while the one-forms change according

to (2.16), leading to

ǫ̃µ1···µn
dxµ1 ∧ · · · ∧ dxµn = ǫ̃µ1···µn

∂xµ1

∂xµ′

1
· · · ∂x

µn

∂xµ′

n

dxµ′

1 ∧ · · · ∧ dxµ′

n

=

∣∣∣∣∣ ∂xµ

∂xµ′

∣∣∣∣∣ ǫ̃µ′

1···µ′

n
dxµ′

1 ∧ · · · ∧ dxµ′

n . (2.47)

Multiplying by the Jacobian on both sides recovers (2.44).

It is clear that the naive volume element dnx transforms as a density, not a tensor, but

it is straightforward to construct an invariant volume element by multiplying by
√
|g|:

√
|g′| dx0′ ∧ · · · ∧ dx(n−1)′ =

√
|g|dx0 ∧ · · · ∧ dxn−1 , (2.48)

which is of course just (n!)−1ǫµ1···µn
dxµ1 ∧ · · · ∧ dxµn . In the interest of simplicity we will

usually write the volume element as
√
|g| dnx, rather than as the explicit wedge product√

|g|dx0 ∧ · · · ∧ dxn−1; it will be enough to keep in mind that it’s supposed to be an n-form.

As a final aside to finish this section, let’s consider one of the most elegant and powerful

theorems of differential geometry: Stokes’s theorem. This theorem is the generalization of

the fundamental theorem of calculus,
∫ a
b dx = a − b. Imagine that we have an n-manifold
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M with boundary ∂M , and an (n− 1)-form ω on M . (We haven’t discussed manifolds with

boundaries, but the idea is obvious; M could for instance be the interior of an (n − 1)-

dimensional closed surface ∂M .) Then dω is an n-form, which can be integrated over M ,

while ω itself can be integrated over ∂M . Stokes’s theorem is then∫
M

dω =
∫

∂M
ω . (2.49)

You can convince yourself that different special cases of this theorem include not only the

fundamental theorem of calculus, but also the theorems of Green, Gauss, and Stokes, familiar

from vector calculus in three dimensions.
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3 Curvature

In our discussion of manifolds, it became clear that there were various notions we could talk

about as soon as the manifold was defined; we could define functions, take their derivatives,

consider parameterized paths, set up tensors, and so on. Other concepts, such as the volume

of a region or the length of a path, required some additional piece of structure, namely the

introduction of a metric. It would be natural to think of the notion of “curvature”, which we

have already used informally, is something that depends on the metric. Actually this turns

out to be not quite true, or at least incomplete. In fact there is one additional structure

we need to introduce — a “connection” — which is characterized by the curvature. We will

show how the existence of a metric implies a certain connection, whose curvature may be

thought of as that of the metric.

The connection becomes necessary when we attempt to address the problem of the partial

derivative not being a good tensor operator. What we would like is a covariant derivative;

that is, an operator which reduces to the partial derivative in flat space with Cartesian

coordinates, but transforms as a tensor on an arbitrary manifold. It is conventional to spend

a certain amount of time motivating the introduction of a covariant derivative, but in fact

the need is obvious; equations such as ∂µT
µν = 0 are going to have to be generalized to

curved space somehow. So let’s agree that a covariant derivative would be a good thing to

have, and go about setting it up.

In flat space in Cartesian coordinates, the partial derivative operator ∂µ is a map from

(k, l) tensor fields to (k, l+1) tensor fields, which acts linearly on its arguments and obeys the

Leibniz rule on tensor products. All of this continues to be true in the more general situation

we would now like to consider, but the map provided by the partial derivative depends on the

coordinate system used. We would therefore like to define a covariant derivative operator

∇ to perform the functions of the partial derivative, but in a way independent of coordinates.

We therefore require that ∇ be a map from (k, l) tensor fields to (k, l+1) tensor fields which

has these two properties:

1. linearity: ∇(T + S) = ∇T + ∇S ;

2. Leibniz (product) rule: ∇(T ⊗ S) = (∇T ) ⊗ S + T ⊗ (∇S) .

If ∇ is going to obey the Leibniz rule, it can always be written as the partial derivative

plus some linear transformation. That is, to take the covariant derivative we first take the

partial derivative, and then apply a correction to make the result covariant. (We aren’t going

to prove this reasonable-sounding statement, but Wald goes into detail if you are interested.)

55
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Let’s consider what this means for the covariant derivative of a vector V ν . It means that, for

each direction µ, the covariant derivative ∇µ will be given by the partial derivative ∂µ plus

a correction specified by a matrix (Γµ)ρ
σ (an n× n matrix, where n is the dimensionality of

the manifold, for each µ). In fact the parentheses are usually dropped and we write these

matrices, known as the connection coefficients, with haphazard index placement as Γρ
µσ.

We therefore have

∇µV
ν = ∂µV

ν + Γν
µλV

λ . (3.1)

Notice that in the second term the index originally on V has moved to the Γ, and a new index

is summed over. If this is the expression for the covariant derivative of a vector in terms of

the partial derivative, we should be able to determine the transformation properties of Γν
µλ

by demanding that the left hand side be a (1, 1) tensor. That is, we want the transformation

law to be

∇µ′V ν′

=
∂xµ

∂xµ′

∂xν′

∂xν
∇µV

ν . (3.2)

Let’s look at the left side first; we can expand it using (3.1) and then transform the parts

that we understand:

∇µ′V ν′

= ∂µ′V ν′

+ Γν′

µ′λ′V λ′

=
∂xµ

∂xµ′

∂xν′

∂xν
∂µV

ν +
∂xµ

∂xµ′
V ν ∂

∂xµ

∂xν′

∂xν
+ Γν′

µ′λ′

∂xλ′

∂xλ
V λ . (3.3)

The right side, meanwhile, can likewise be expanded:

∂xµ

∂xµ′

∂xν′

∂xν
∇µV

ν =
∂xµ

∂xµ′

∂xν′

∂xν
∂µV

ν +
∂xµ

∂xµ′

∂xν′

∂xν
Γν

µλV
λ . (3.4)

These last two expressions are to be equated; the first terms in each are identical and therefore

cancel, so we have

Γν′

µ′λ′

∂xλ′

∂xλ
V λ +

∂xµ

∂xµ′
V λ ∂

∂xµ

∂xν′

∂xλ
=
∂xµ

∂xµ′

∂xν′

∂xν
Γν

µλV
λ , (3.5)

where we have changed a dummy index from ν to λ. This equation must be true for any

vector V λ, so we can eliminate that on both sides. Then the connection coefficients in the

primed coordinates may be isolated by multiplying by ∂xλ/∂xλ′

. The result is

Γν′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν′

∂xν
Γν

µλ − ∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν′

∂xµ∂xλ
. (3.6)

This is not, of course, the tensor transformation law; the second term on the right spoils it.

That’s okay, because the connection coefficients are not the components of a tensor. They

are purposefully constructed to be non-tensorial, but in such a way that the combination

(3.1) transforms as a tensor — the extra terms in the transformation of the partials and
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the Γ’s exactly cancel. This is why we are not so careful about index placement on the

connection coefficients; they are not a tensor, and therefore you should try not to raise and

lower their indices.

What about the covariant derivatives of other sorts of tensors? By similar reasoning to

that used for vectors, the covariant derivative of a one-form can also be expressed as a partial

derivative plus some linear transformation. But there is no reason as yet that the matrices

representing this transformation should be related to the coefficients Γν
µλ. In general we

could write something like

∇µων = ∂µων + Γ̃λ
µνωλ , (3.7)

where Γ̃λ
µν is a new set of matrices for each µ. (Pay attention to where all of the various

indices go.) It is straightforward to derive that the transformation properties of Γ̃ must be

the same as those of Γ, but otherwise no relationship has been established. To do so, we

need to introduce two new properties that we would like our covariant derivative to have (in

addition to the two above):

3. commutes with contractions: ∇µ(T
λ

λρ) = (∇T )µ
λ

λρ ,

4. reduces to the partial derivative on scalars: ∇µφ = ∂µφ .

There is no way to “derive” these properties; we are simply demanding that they be true as

part of the definition of a covariant derivative.

Let’s see what these new properties imply. Given some one-form field ωµ and vector field

V µ, we can take the covariant derivative of the scalar defined by ωλV
λ to get

∇µ(ωλV
λ) = (∇µωλ)V

λ + ωλ(∇µV
λ)

= (∂µωλ)V
λ + Γ̃σ

µλωσV
λ + ωλ(∂µV

λ) + ωλΓ
λ
µρV

ρ . (3.8)

But since ωλV
λ is a scalar, this must also be given by the partial derivative:

∇µ(ωλV
λ) = ∂µ(ωλV

λ)

= (∂µωλ)V
λ + ωλ(∂µV

λ) . (3.9)

This can only be true if the terms in (3.8) with connection coefficients cancel each other;

that is, rearranging dummy indices, we must have

0 = Γ̃σ
µλωσV

λ + Γσ
µλωσV

λ . (3.10)

But both ωσ and V λ are completely arbitrary, so

Γ̃σ
µλ = −Γσ

µλ . (3.11)
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The two extra conditions we have imposed therefore allow us to express the covariant deriva-

tive of a one-form using the same connection coefficients as were used for the vector, but

now with a minus sign (and indices matched up somewhat differently):

∇µων = ∂µων − Γλ
µνωλ . (3.12)

It should come as no surprise that the connection coefficients encode all of the information

necessary to take the covariant derivative of a tensor of arbitrary rank. The formula is quite

straightforward; for each upper index you introduce a term with a single +Γ, and for each

lower index a term with a single −Γ:

∇σT
µ1µ2···µk

ν1ν2···νl
= ∂σT

µ1µ2···µk
ν1ν2···νl

+Γµ1

σλ T
λµ2···µk

ν1ν2···νl
+ Γµ2

σλ T
µ1λ···µk

ν1ν2···νl
+ · · ·

−Γλ
σν1
T µ1µ2···µk

λν2···νl
− Γλ

σν2
T µ1µ2···µk

ν1λ···νl
− · · · . (3.13)

This is the general expression for the covariant derivative. You can check it yourself; it

comes from the set of axioms we have established, and the usual requirements that tensors

of various sorts be coordinate-independent entities. Sometimes an alternative notation is

used; just as commas are used for partial derivatives, semicolons are used for covariant ones:

∇σT
µ1µ2···µk

ν1ν2···νl
≡ T µ1µ2···µk

ν1ν2···νl;σ . (3.14)

Once again, I’m not a big fan of this notation.

To define a covariant derivative, then, we need to put a “connection” on our manifold,

which is specified in some coordinate system by a set of coefficients Γλ
µν (n3 = 64 independent

components in n = 4 dimensions) which transform according to (3.6). (The name “connec-

tion” comes from the fact that it is used to transport vectors from one tangent space to

another, as we will soon see.) There are evidently a large number of connections we could

define on any manifold, and each of them implies a distinct notion of covariant differentia-

tion. In general relativity this freedom is not a big concern, because it turns out that every

metric defines a unique connection, which is the one used in GR. Let’s see how that works.

The first thing to notice is that the difference of two connections is a (1, 2) tensor. If

we have two sets of connection coefficients, Γλ
µν and Γ̂λ

µν , their difference Sµν
λ = Γλ

µν − Γ̂λ
µν

(notice index placement) transforms as

Sµ′ν′

λ′

= Γλ′

µ′ν′ − Γ̂λ′

µ′ν′

=
∂xµ

∂xµ′

∂xν

∂xν′

∂xλ′

∂xλ
Γλ

µν −
∂xµ

∂xµ′

∂xν

∂xν′

∂2xλ′

∂xµ∂xν
− ∂xµ

∂xµ′

∂xν

∂xν′

∂xλ′

∂xλ
Γ̂λ

µν +
∂xµ

∂xµ′

∂xν

∂xν′

∂2xλ′

∂xµ∂xν

=
∂xµ

∂xµ′

∂xν

∂xν′

∂xλ′

∂xλ
(Γλ

µν − Γ̂λ
µν)

=
∂xµ

∂xµ′

∂xν

∂xν′

∂xλ′

∂xλ
Sµν

λ . (3.15)
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This is just the tensor transormation law, so Sµν
λ is indeed a tensor. This implies that any

set of connections can be expressed as some fiducial connection plus a tensorial correction.

Next notice that, given a connection specified by Γλ
µν , we can immediately form another

connection simply by permuting the lower indices. That is, the set of coefficients Γλ
νµ will

also transform according to (3.6) (since the partial derivatives appearing in the last term

can be commuted), so they determine a distinct connection. There is thus a tensor we can

associate with any given connection, known as the torsion tensor, defined by

Tµν
λ = Γλ

µν − Γλ
νµ = 2Γλ

[µν] . (3.16)

It is clear that the torsion is antisymmetric its lower indices, and a connection which is

symmetric in its lower indices is known as “torsion-free.”

We can now define a unique connection on a manifold with a metric gµν by introducing

two additional properties:

• torsion-free: Γλ
µν = Γλ

(µν).

• metric compatibility: ∇ρgµν = 0.

A connection is metric compatible if the covariant derivative of the metric with respect to

that connection is everywhere zero. This implies a couple of nice properties. First, it’s easy

to show that the inverse metric also has zero covariant derivative,

∇ρg
µν = 0 . (3.17)

Second, a metric-compatible covariant derivative commutes with raising and lowering of

indices. Thus, for some vector field V λ,

gµλ∇ρV
λ = ∇ρ(gµλV

λ) = ∇ρVµ . (3.18)

With non-metric-compatible connections one must be very careful about index placement

when taking a covariant derivative.

Our claim is therefore that there is exactly one torsion-free connection on a given manifold

which is compatible with some given metric on that manifold. We do not want to make these

two requirements part of the definition of a covariant derivative; they simply single out one

of the many possible ones.

We can demonstrate both existence and uniqueness by deriving a manifestly unique

expression for the connection coefficients in terms of the metric. To accomplish this, we

expand out the equation of metric compatibility for three different permutations of the

indices:

∇ρgµν = ∂ρgµν − Γλ
ρµgλν − Γλ

ρνgµλ = 0



3 CURVATURE 60

∇µgνρ = ∂µgνρ − Γλ
µνgλρ − Γλ

µρgνλ = 0

∇νgρµ = ∂νgρµ − Γλ
νρgλµ − Γλ

νµgρλ = 0 . (3.19)

We subtract the second and third of these from the first, and use the symmetry of the

connection to obtain

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλ
µνgλρ = 0 . (3.20)

It is straightforward to solve this for the connection by multiplying by gσρ. The result is

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (3.21)

This is one of the most important formulas in this subject; commit it to memory. Of course,

we have only proved that if a metric-compatible and torsion-free connection exists, it must

be of the form (3.21); you can check for yourself (for those of you without enough tedious

computation in your lives) that the right hand side of (3.21) transforms like a connection.

This connection we have derived from the metric is the one on which conventional general

relativity is based (although we will keep an open mind for a while longer). It is known

by different names: sometimes the Christoffel connection, sometimes the Levi-Civita

connection, sometimes the Riemannian connection. The associated connection coefficients

are sometimes called Christoffel symbols and written as
{

σ
µν

}
; we will sometimes call

them Christoffel symbols, but we won’t use the funny notation. The study of manifolds with

metrics and their associated connections is called “Riemannian geometry.” As far as I can

tell the study of more general connections can be traced back to Cartan, but I’ve never heard

it called “Cartanian geometry.”

Before putting our covariant derivatives to work, we should mention some miscellaneous

properties. First, let’s emphasize again that the connection does not have to be constructed

from the metric. In ordinary flat space there is an implicit connection we use all the time

— the Christoffel connection constructed from the flat metric. But we could, if we chose,

use a different connection, while keeping the metric flat. Also notice that the coefficients

of the Christoffel connection in flat space will vanish in Cartesian coordinates, but not in

curvilinear coordinate systems. Consider for example the plane in polar coordinates, with

metric

ds2 = dr2 + r2dθ2 . (3.22)

The nonzero components of the inverse metric are readily found to be grr = 1 and gθθ = r−2.

(Notice that we use r and θ as indices in an obvious notation.) We can compute a typical

connection coefficient:

Γr
rr =

1

2
grρ(∂rgrρ + ∂rgρr − ∂ρgrr)

=
1

2
grr(∂rgrr + ∂rgrr − ∂rgrr)
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+
1

2
grθ(∂rgrθ + ∂rgθr − ∂θgrr)

=
1

2
(1)(0 + 0 − 0) +

1

2
(0)(0 + 0 − 0)

= 0 . (3.23)

Sadly, it vanishes. But not all of them do:

Γr
θθ =

1

2
grρ(∂θgθρ + ∂θgρθ − ∂ρgθθ)

=
1

2
grr(∂θgθr + ∂θgrθ − ∂rgθθ)

=
1

2
(1)(0 + 0 − 2r)

= −r . (3.24)

Continuing to turn the crank, we eventually find

Γr
θr = Γr

rθ = 0

Γθ
rr = 0

Γθ
rθ = Γθ

θr =
1

r
Γθ

θθ = 0 . (3.25)

The existence of nonvanishing connection coefficients in curvilinear coordinate systems is

the ultimate cause of the formulas for the divergence and so on that you find in books on

electricity and magnetism.

Contrariwise, even in a curved space it is still possible to make the Christoffel symbols

vanish at any one point. This is just because, as we saw in the last section, we can always

make the first derivative of the metric vanish at a point; so by (3.21) the connection coeffi-

cients derived from this metric will also vanish. Of course this can only be established at a

point, not in some neighborhood of the point.

Another useful property is that the formula for the divergence of a vector (with respect

to the Christoffel connection) has a simplified form. The covariant divergence of V µ is given

by

∇µV
µ = ∂µV

µ + Γµ
µλV

λ . (3.26)

It’s easy to show (see pp. 106-108 of Weinberg) that the Christoffel connection satisfies

Γµ
µλ =

1√
|g|
∂λ

√
|g| , (3.27)

and we therefore obtain

∇µV
µ =

1√
|g|
∂µ(

√
|g|V µ) . (3.28)
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There are also formulas for the divergences of higher-rank tensors, but they are generally

not such a great simplification.

As the last factoid we should mention about connections, let us emphasize (once more)

that the exterior derivative is a well-defined tensor in the absence of any connection. The

reason this needs to be emphasized is that, if you happen to be using a symmetric (torsion-

free) connection, the exterior derivative (defined to be the antisymmetrized partial derivative)

happens to be equal to the antisymmetrized covariant derivative:

∇[µων] = ∂[µων] − Γλ
[µν]ωλ

= ∂[µων] . (3.29)

This has led some misfortunate souls to fret about the “ambiguity” of the exterior derivative

in spaces with torsion, where the above simplification does not occur. There is no ambiguity:

the exterior derivative does not involve the connection, no matter what connection you

happen to be using, and therefore the torsion never enters the formula for the exterior

derivative of anything.

Before moving on, let’s review the process by which we have been adding structures to

our mathematical constructs. We started with the basic notion of a set, which you were

presumed to know (informally, if not rigorously). We introduced the concept of open subsets

of our set; this is equivalent to introducing a topology, and promoted the set to a topological

space. Then by demanding that each open set look like a region of Rn (with n the same for

each set) and that the coordinate charts be smoothly sewn together, the topological space

became a manifold. A manifold is simultaneously a very flexible and powerful structure,

and comes equipped naturally with a tangent bundle, tensor bundles of various ranks, the

ability to take exterior derivatives, and so forth. We then proceeded to put a metric on

the manifold, resulting in a manifold with metric (or sometimes “Riemannian manifold”).

Independently of the metric we found we could introduce a connection, allowing us to take

covariant derivatives. Once we have a metric, however, there is automatically a unique

torsion-free metric-compatible connection. (In principle there is nothing to stop us from

introducing more than one connection, or more than one metric, on any given manifold.)

The situation is thus as portrayed in the diagram on the next page.
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introduce a topology
(open sets)

(automatically
has a

connection)

space
topological

manifold

manifold
with

connection

Riemannian 
manifold

locally like      

introduce a connection

introduce a metric

Rn

set

Having set up the machinery of connections, the first thing we will do is discuss parallel

transport. Recall that in flat space it was unnecessary to be very careful about the fact

that vectors were elements of tangent spaces defined at individual points; it is actually very

natural to compare vectors at different points (where by “compare” we mean add, subtract,

take the dot product, etc.). The reason why it is natural is because it makes sense, in flat

space, to “move a vector from one point to another while keeping it constant.” Then once

we get the vector from one point to another we can do the usual operations allowed in a

vector space.

q

p

keep vector
constant

The concept of moving a vector along a path, keeping constant all the while, is known

as parallel transport. As we shall see, parallel transport is defined whenever we have a
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connection; the intuitive manipulation of vectors in flat space makes implicit use of the

Christoffel connection on this space. The crucial difference between flat and curved spaces is

that, in a curved space, the result of parallel transporting a vector from one point to another

will depend on the path taken between the points. Without yet assembling the complete

mechanism of parallel transport, we can use our intuition about the two-sphere to see that

this is the case. Start with a vector on the equator, pointing along a line of constant

longitude. Parallel transport it up to the north pole along a line of longitude in the obvious

way. Then take the original vector, parallel transport it along the equator by an angle θ, and

then move it up to the north pole as before. It is clear that the vector, parallel transported

along two paths, arrived at the same destination with two different values (rotated by θ).

It therefore appears as if there is no natural way to uniquely move a vector from one

tangent space to another; we can always parallel transport it, but the result depends on the

path, and there is no natural choice of which path to take. Unlike some of the problems we

have encountered, there is no solution to this one — we simply must learn to live with the

fact that two vectors can only be compared in a natural way if they are elements of the same

tangent space. For example, two particles passing by each other have a well-defined relative

velocity (which cannot be greater than the speed of light). But two particles at different

points on a curved manifold do not have any well-defined notion of relative velocity — the

concept simply makes no sense. Of course, in certain special situations it is still useful to talk

as if it did make sense, but it is necessary to understand that occasional usefulness is not a

substitute for rigorous definition. In cosmology, for example, the light from distant galaxies

is redshifted with respect to the frequencies we would observe from a nearby stationary

source. Since this phenomenon bears such a close resemblance to the conventional Doppler

effect due to relative motion, it is very tempting to say that the galaxies are “receding away

from us” at a speed defined by their redshift. At a rigorous level this is nonsense, what

Wittgenstein would call a “grammatical mistake” — the galaxies are not receding, since the

notion of their velocity with respect to us is not well-defined. What is actually happening

is that the metric of spacetime between us and the galaxies has changed (the universe has
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expanded) along the path of the photon from here to there, leading to an increase in the

wavelength of the light. As an example of how you can go wrong, naive application of the

Doppler formula to the redshift of galaxies implies that some of them are receding faster than

light, in apparent contradiction with relativity. The resolution of this apparent paradox is

simply that the very notion of their recession should not be taken literally.

Enough about what we cannot do; let’s see what we can. Parallel transport is supposed to

be the curved-space generalization of the concept of “keeping the vector constant” as we move

it along a path; similarly for a tensor of arbitrary rank. Given a curve xµ(λ), the requirement

of constancy of a tensor T along this curve in flat space is simply dT
dλ

= dxµ

dλ
∂T
∂xµ = 0. We

therefore define the covariant derivative along the path to be given by an operator

D

dλ
=
dxµ

dλ
∇µ . (3.30)

We then define parallel transport of the tensor T along the path xµ(λ) to be the require-

ment that, along the path,(
D

dλ
T
)µ1µ2···µk

ν1ν2···νl
≡ dxσ

dλ
∇σT

µ1µ2···µk
ν1ν2···νl

= 0 . (3.31)

This is a well-defined tensor equation, since both the tangent vector dxµ/dλ and the covariant

derivative ∇T are tensors. This is known as the equation of parallel transport. For a

vector it takes the form
d

dλ
V µ + Γµ

σρ

dxσ

dλ
V ρ = 0 . (3.32)

We can look at the parallel transport equation as a first-order differential equation defining

an initial-value problem: given a tensor at some point along the path, there will be a unique

continuation of the tensor to other points along the path such that the continuation solves

(3.31). We say that such a tensor is parallel transported.

The notion of parallel transport is obviously dependent on the connection, and different

connections lead to different answers. If the connection is metric-compatible, the metric is

always parallel transported with respect to it:

D

dλ
gµν =

dxσ

dλ
∇σgµν = 0 . (3.33)

It follows that the inner product of two parallel-transported vectors is preserved. That is, if

V µ and W ν are parallel-transported along a curve xσ(λ), we have

D

dλ
(gµνV

µW ν) =
(
D

dλ
gµν

)
V µW ν + gµν

(
D

dλ
V µ
)
W ν + gµνV

µ
(
D

dλ
W ν

)
= 0 . (3.34)

This means that parallel transport with respect to a metric-compatible connection preserves

the norm of vectors, the sense of orthogonality, and so on.
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One thing they don’t usually tell you in GR books is that you can write down an explicit

and general solution to the parallel transport equation, although it’s somewhat formal. First

notice that for some path γ : λ→ xσ(λ), solving the parallel transport equation for a vector

V µ amounts to finding a matrix P µ
ρ(λ, λ0) which relates the vector at its initial value V µ(λ0)

to its value somewhere later down the path:

V µ(λ) = P µ
ρ(λ, λ0)V

ρ(λ0) . (3.35)

Of course the matrix P µ
ρ(λ, λ0), known as the parallel propagator, depends on the path

γ (although it’s hard to find a notation which indicates this without making γ look like an

index). If we define

Aµ
ρ(λ) = −Γµ

σρ

dxσ

dλ
, (3.36)

where the quantities on the right hand side are evaluated at xν(λ), then the parallel transport

equation becomes
d

dλ
V µ = Aµ

ρV
ρ . (3.37)

Since the parallel propagator must work for any vector, substituting (3.35) into (3.37) shows

that P µ
ρ(λ, λ0) also obeys this equation:

d

dλ
P µ

ρ(λ, λ0) = Aµ
σ(λ)P σ

ρ(λ, λ0) . (3.38)

To solve this equation, first integrate both sides:

P µ
ρ(λ, λ0) = δµ

ρ +
∫ λ

λ0

Aµ
σ(η)P σ

ρ(η, λ0) dη . (3.39)

The Kronecker delta, it is easy to see, provides the correct normalization for λ = λ0.

We can solve (3.39) by iteration, taking the right hand side and plugging it into itself

repeatedly, giving

P µ
ρ(λ, λ0) = δµ

ρ +
∫ λ

λ0

Aµ
ρ(η) dη +

∫ λ

λ0

∫ η

λ0

Aµ
σ(η)Aσ

ρ(η
′) dη′dη + · · · . (3.40)

The nth term in this series is an integral over an n-dimensional right triangle, or n-simplex.
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∫ λ

λ0

A(η1) dη1

∫ λ

λ0

∫ η2

λ0

A(η2)A(η1) dη1dη2

∫ λ

λ0

∫ η3

λ0

∫ η2

λ0

A(η3)A(η2)A(η1) d
3η

η

η

η

1

3

2

η

η

2

1

η
1

It would simplify things if we could consider such an integral to be over an n-cube

instead of an n-simplex; is there some way to do this? There are n! such simplices in each

cube, so we would have to multiply by 1/n! to compensate for this extra volume. But we

also want to get the integrand right; using matrix notation, the integrand at nth order

is A(ηn)A(ηn−1) · · ·A(η1), but with the special property that ηn ≥ ηn−1 ≥ · · · ≥ η1. We

therefore define the path-ordering symbol, P, to ensure that this condition holds. In

other words, the expression

P[A(ηn)A(ηn−1) · · ·A(η1)] (3.41)

stands for the product of the n matrices A(ηi), ordered in such a way that the largest value

of ηi is on the left, and each subsequent value of ηi is less than or equal to the previous one.

We then can express the nth-order term in (3.40) as∫ λ

λ0

∫ ηn

λ0

· · ·
∫ η2

λ0

A(ηn)A(ηn−1) · · ·A(η1) d
nη

=
1

n!

∫ λ

λ0

∫ λ

λ0

· · ·
∫ λ

λ0

P[A(ηn)A(ηn−1) · · ·A(η1)] d
nη . (3.42)

This expression contains no substantive statement about the matrices A(ηi); it is just nota-

tion. But we can now write (3.40) in matrix form as

P (λ, λ0) = 1 +
∞∑

n=1

1

n!

∫ λ

λ0

P[A(ηn)A(ηn−1) · · ·A(η1)] d
nη . (3.43)

This formula is just the series expression for an exponential; we therefore say that the parallel

propagator is given by the path-ordered exponential

P (λ, λ0) = P exp

(∫ λ

λ0

A(η) dη

)
, (3.44)
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where once again this is just notation; the path-ordered exponential is defined to be the right

hand side of (3.43). We can write it more explicitly as

P µ
ν(λ, λ0) = P exp

(
−
∫ λ

λ0

Γµ
σν

dxσ

dη
dη

)
. (3.45)

It’s nice to have an explicit formula, even if it is rather abstract. The same kind of ex-

pression appears in quantum field theory as “Dyson’s Formula,” where it arises because the

Schrödinger equation for the time-evolution operator has the same form as (3.38).

As an aside, an especially interesting example of the parallel propagator occurs when the

path is a loop, starting and ending at the same point. Then if the connection is metric-

compatible, the resulting matrix will just be a Lorentz transformation on the tangent space

at the point. This transformation is known as the “holonomy” of the loop. If you know

the holonomy of every possible loop, that turns out to be equivalent to knowing the metric.

This fact has let Ashtekar and his collaborators to examine general relativity in the “loop

representation,” where the fundamental variables are holonomies rather than the explicit

metric. They have made some progress towards quantizing the theory in this approach,

although the jury is still out about how much further progress can be made.

With parallel transport understood, the next logical step is to discuss geodesics. A

geodesic is the curved-space generalization of the notion of a “straight line” in Euclidean

space. We all know what a straight line is: it’s the path of shortest distance between

two points. But there is an equally good definition — a straight line is a path which

parallel transports its own tangent vector. On a manifold with an arbitrary (not necessarily

Christoffel) connection, these two concepts do not quite coincide, and we should discuss

them separately.

We’ll take the second definition first, since it is computationally much more straight-

forward. The tangent vector to a path xµ(λ) is dxµ/dλ. The condition that it be parallel

transported is thus
D

dλ

dxµ

dλ
= 0 , (3.46)

or alternatively
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 . (3.47)

This is the geodesic equation, another one which you should memorize. We can easily

see that it reproduces the usual notion of straight lines if the connection coefficients are the

Christoffel symbols in Euclidean space; in that case we can choose Cartesian coordinates in

which Γµ
ρσ = 0, and the geodesic equation is just d2xµ/dλ2 = 0, which is the equation for a

straight line.

That was embarrassingly simple; let’s turn to the more nontrivial case of the shortest

distance definition. As we know, there are various subtleties involved in the definition of
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distance in a Lorentzian spacetime; for null paths the distance is zero, for timelike paths

it’s more convenient to use the proper time, etc. So in the name of simplicity let’s do the

calculation just for a timelike path — the resulting equation will turn out to be good for any

path, so we are not losing any generality. We therefore consider the proper time functional,

τ =
∫ (

−gµν
dxµ

dλ

dxν

dλ

)1/2

dλ , (3.48)

where the integral is over the path. To search for shortest-distance paths, we will do the

usual calculus of variations treatment to seek extrema of this functional. (In fact they will

turn out to be curves of maximum proper time.)

We want to consider the change in the proper time under infinitesimal variations of the

path,

xµ → xµ + δxµ

gµν → gµν + δxσ∂σgµν . (3.49)

(The second line comes from Taylor expansion in curved spacetime, which as you can see

uses the partial derivative, not the covariant derivative.) Plugging this into (3.48), we get

τ + δτ =
∫ (

−gµν
dxµ

dλ

dxν

dλ
− ∂σgµν

dxµ

dλ

dxν

dλ
δxσ − 2gµν

dxµ

dλ

d(δxν)

dλ

)1/2

dλ

=
∫ (

−gµν
dxµ

dλ

dxν

dλ

)1/2
1 +

(
−gµν

dxµ

dλ

dxν

dλ

)−1

×
(
−∂σgµν

dxµ

dλ

dxν

dλ
δxσ − 2gµν

dxµ

dλ

d(δxν)

dλ

)]1/2

dλ . (3.50)

Since δxσ is assumed to be small, we can expand the square root of the expression in square

brackets to find

δτ =
∫ (

−gµν
dxµ

dλ

dxν

dλ

)−1/2 (
−1

2
∂σgµν

dxµ

dλ

dxν

dλ
δxσ − gµν

dxµ

dλ

d(δxν)

dλ

)
dλ . (3.51)

It is helpful at this point to change the parameterization of our curve from λ, which was

arbitrary, to the proper time τ itself, using

dλ =

(
−gµν

dxµ

dλ

dxν

dλ

)−1/2

dτ . (3.52)

We plug this into (3.51) (note: we plug it in for every appearance of dλ) to obtain

δτ =
∫ [

−1

2
∂σgµν

dxµ

dτ

dxν

dτ
δxσ − gµν

dxµ

dτ

d(δxν)

dτ

]
dτ
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=
∫ [

−1

2
∂σgµν

dxµ

dτ

dxν

dτ
+

d

dτ

(
gµσ

dxµ

dτ

)]
δxσ dτ , (3.53)

where in the last line we have integrated by parts, avoiding possible boundary contributions

by demanding that the variation δxσ vanish at the endpoints of the path. Since we are

searching for stationary points, we want δτ to vanish for any variation; this implies

− 1

2
∂σgµν

dxµ

dτ

dxν

dτ
+
dxµ

dτ

dxν

dτ
∂νgµσ + gµσ

d2xµ

dτ 2
= 0 , (3.54)

where we have used dgµσ/dτ = (dxν/dτ)∂νgµσ. Some shuffling of dummy indices reveals

gµσ
d2xµ

dτ 2
+

1

2
(−∂σgµν + ∂νgµσ + ∂µgνσ)

dxµ

dτ

dxν

dτ
= 0 , (3.55)

and multiplying by the inverse metric finally leads to

d2xρ

dτ 2
+

1

2
gρσ (∂µgνσ + ∂νgσµ − ∂σgµν)

dxµ

dτ

dxν

dτ
= 0 . (3.56)

We see that this is precisely the geodesic equation (3.32), but with the specific choice of

Christoffel connection (3.21). Thus, on a manifold with metric, extremals of the length func-

tional are curves which parallel transport their tangent vector with respect to the Christoffel

connection associated with that metric. It doesn’t matter if there is any other connection

defined on the same manifold. Of course, in GR the Christoffel connection is the only one

which is used, so the two notions are the same.

The primary usefulness of geodesics in general relativity is that they are the paths fol-

lowed by unaccelerated particles. In fact, the geodesic equation can be thought of as the

generalization of Newton’s law f = ma for the case f = 0. It is also possible to introduce

forces by adding terms to the right hand side; in fact, looking back to the expression (1.103)

for the Lorentz force in special relativity, it is tempting to guess that the equation of motion

for a particle of mass m and charge q in general relativity should be

d2xµ

dτ 2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
=

q

m
F µ

ν
dxν

dτ
. (3.57)

We will talk about this more later, but in fact your guess would be correct.

Having boldly derived these expressions, we should say some more careful words about

the parameterization of a geodesic path. When we presented the geodesic equation as the

requirement that the tangent vector be parallel transported, (3.47), we parameterized our

path with some parameter λ, whereas when we found the formula (3.56) for the extremal of

the spacetime interval we wound up with a very specific parameterization, the proper time.

Of course from the form of (3.56) it is clear that a transformation

τ → λ = aτ + b , (3.58)



3 CURVATURE 71

for some constants a and b, leaves the equation invariant. Any parameter related to the

proper time in this way is called an affine parameter, and is just as good as the proper

time for parameterizing a geodesic. What was hidden in our derivation of (3.47) was that

the demand that the tangent vector be parallel transported actually constrains the parameter-

ization of the curve, specifically to one related to the proper time by (3.58). In other words,

if you start at some point and with some initial direction, and then construct a curve by

beginning to walk in that direction and keeping your tangent vector parallel transported,

you will not only define a path in the manifold but also (up to linear transformations) define

the parameter along the path.

Of course, there is nothing to stop you from using any other parameterization you like,

but then (3.47) will not be satisfied. More generally you will satisfy an equation of the form

d2xµ

dα2
+ Γµ

ρσ

dxρ

dα

dxσ

dα
= f(α)

dxµ

dα
, (3.59)

for some parameter α and some function f(α). Conversely, if (3.59) is satisfied along a curve

you can always find an affine parameter λ(α) for which the geodesic equation (3.47) will be

satisfied.

An important property of geodesics in a spacetime with Lorentzian metric is that the

character (timelike/null/spacelike) of the geodesic (relative to a metric-compatible connec-

tion) never changes. This is simply because parallel transport preserves inner products, and

the character is determined by the inner product of the tangent vector with itself. This

is why we were consistent to consider purely timelike paths when we derived (3.56); for

spacelike paths we would have derived the same equation, since the only difference is an

overall minus sign in the final answer. There are also null geodesics, which satisfy the same

equation, except that the proper time cannot be used as a parameter (some set of allowed

parameters will exist, related to each other by linear transformations). You can derive this

fact either from the simple requirement that the tangent vector be parallel transported, or

by extending the variation of (3.48) to include all non-spacelike paths.

Let’s now explain the earlier remark that timelike geodesics are maxima of the proper

time. The reason we know this is true is that, given any timelike curve (geodesic or not), we

can approximate it to arbitrary accuracy by a null curve. To do this all we have to do is to

consider “jagged” null curves which follow the timelike one:
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null

timelike

As we increase the number of sharp corners, the null curve comes closer and closer to the

timelike curve while still having zero path length. Timelike geodesics cannot therefore be

curves of minimum proper time, since they are always infinitesimally close to curves of zero

proper time; in fact they maximize the proper time. (This is how you can remember which

twin in the twin paradox ages more — the one who stays home is basically on a geodesic,

and therefore experiences more proper time.) Of course even this is being a little cavalier;

actually every time we say “maximize” or “minimize” we should add the modifier “locally.”

It is often the case that between two points on a manifold there is more than one geodesic.

For instance, on S2 we can draw a great circle through any two points, and imagine travelling

between them either the short way or the long way around. One of these is obviously longer

than the other, although both are stationary points of the length functional.

The final fact about geodesics before we move on to curvature proper is their use in

mapping the tangent space at a point p to a local neighborhood of p. To do this we notice

that any geodesic xµ(λ) which passes through p can be specified by its behavior at p; let us

choose the parameter value to be λ(p) = 0, and the tangent vector at p to be

dxµ

dλ
(λ = 0) = kµ , (3.60)

for kµ some vector at p (some element of Tp). Then there will be a unique point on the

manifold M which lies on this geodesic where the parameter has the value λ = 1. We define

the exponential map at p, expp : Tp →M , via

expp(k
µ) = xν(λ = 1) , (3.61)

where xν(λ) solves the geodesic equation subject to (3.60). For some set of tangent vectors

kµ near the zero vector, this map will be well-defined, and in fact invertible. Thus in the
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M

x  (  )

k

T

p

µ

p

λ

λ=1

ν

neighborhood of p given by the range of the map on this set of tangent vectors, the the

tangent vectors themselves define a coordinate system on the manifold. In this coordinate

system, any geodesic through p is expressed trivially as

xµ(λ) = λkµ , (3.62)

for some appropriate vector kµ.

We won’t go into detail about the properties of the exponential map, since in fact we

won’t be using it much, but it’s important to emphasize that the range of the map is not

necessarily the whole manifold, and the domain is not necessarily the whole tangent space.

The range can fail to be all of M simply because there can be two points which are not

connected by any geodesic. (In a Euclidean signature metric this is impossible, but not in

a Lorentzian spacetime.) The domain can fail to be all of Tp because a geodesic may run

into a singularity, which we think of as “the edge of the manifold.” Manifolds which have

such singularities are known as geodesically incomplete. This is not merely a problem

for careful mathematicians; in fact the “singularity theorems” of Hawking and Penrose state

that, for reasonable matter content (no negative energies), spacetimes in general relativity

are almost guaranteed to be geodesically incomplete. As examples, the two most useful

spacetimes in GR — the Schwarzschild solution describing black holes and the Friedmann-

Robertson-Walker solutions describing homogeneous, isotropic cosmologies — both feature

important singularities.

Having set up the machinery of parallel transport and covariant derivatives, we are at last

prepared to discuss curvature proper. The curvature is quantified by the Riemann tensor,

which is derived from the connection. The idea behind this measure of curvature is that we

know what we mean by “flatness” of a connection — the conventional (and usually implicit)

Christoffel connection associated with a Euclidean or Minkowskian metric has a number of

properties which can be thought of as different manifestations of flatness. These include the

fact that parallel transport around a closed loop leaves a vector unchanged, that covariant

derivatives of tensors commute, and that initially parallel geodesics remain parallel. As we
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shall see, the Riemann tensor arises when we study how any of these properties are altered

in more general contexts.

We have already argued, using the two-sphere as an example, that parallel transport

of a vector around a closed loop in a curved space will lead to a transformation of the

vector. The resulting transformation depends on the total curvature enclosed by the loop;

it would be more useful to have a local description of the curvature at each point, which is

what the Riemann tensor is supposed to provide. One conventional way to introduce the

Riemann tensor, therefore, is to consider parallel transport around an infinitesimal loop. We

are not going to do that here, but take a more direct route. (Most of the presentations in

the literature are either sloppy, or correct but very difficult to follow.) Nevertheless, even

without working through the details, it is possible to see what form the answer should take.

Imagine that we parallel transport a vector V σ around a closed loop defined by two vectors

Aν and Bµ:

(0, 0)

B

(  a, 0)

(  a,   b)

(0,   b)δ

ν

A
µ

Bν

δ

δ
A

µ

δ

The (infinitesimal) lengths of the sides of the loop are δa and δb, respectively. Now, we know

the action of parallel transport is independent of coordinates, so there should be some tensor

which tells us how the vector changes when it comes back to its starting point; it will be

a linear transformation on a vector, and therefore involve one upper and one lower index.

But it will also depend on the two vectors A and B which define the loop; therefore there

should be two additional lower indices to contract with Aν and Bµ. Furthermore, the tensor

should be antisymmetric in these two indices, since interchanging the vectors corresponds

to traversing the loop in the opposite direction, and should give the inverse of the original

answer. (This is consistent with the fact that the transformation should vanish if A and B

are the same vector.) We therefore expect that the expression for the change δV ρ experienced

by this vector when parallel transported around the loop should be of the form

δV ρ = (δa)(δb)AνBµRρ
σµνV

σ , (3.63)

where Rρ
σµν is a (1, 3) tensor known as the Riemann tensor (or simply “curvature tensor”).
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It is antisymmetric in the last two indices:

Rρ
σµν = −Rρ

σνµ . (3.64)

(Of course, if (3.63) is taken as a definition of the Riemann tensor, there is a convention that

needs to be chosen for the ordering of the indices. There is no agreement at all on what this

convention should be, so be careful.)

Knowing what we do about parallel transport, we could very carefully perform the nec-

essary manipulations to see what happens to the vector under this operation, and the result

would be a formula for the curvature tensor in terms of the connection coefficients. It is much

quicker, however, to consider a related operation, the commutator of two covariant deriva-

tives. The relationship between this and parallel transport around a loop should be evident;

the covariant derivative of a tensor in a certain direction measures how much the tensor

changes relative to what it would have been if it had been parallel transported (since the

covariant derivative of a tensor in a direction along which it is parallel transported is zero).

The commutator of two covariant derivatives, then, measures the difference between parallel

transporting the tensor first one way and then the other, versus the opposite ordering.

ν

µ

∆
∆

∆

µ

∆

ν

The actual computation is very straightforward. Considering a vector field V ρ, we take

[∇µ,∇ν ]V
ρ = ∇µ∇νV

ρ −∇ν∇µV
ρ

= ∂µ(∇νV
ρ) − Γλ

µν∇λV
ρ + Γρ

µσ∇νV
σ − (µ↔ ν)

= ∂µ∂νV
ρ + (∂µΓρ

νσ)V σ + Γρ
νσ∂µV

σ − Γλ
µν∂λV

ρ − Γλ
µνΓ

ρ
λσV

σ

+Γρ
µσ∂νV

σ + Γρ
µσΓσ

νλV
λ − (µ ↔ ν)

= (∂µΓρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ)V σ − 2Γλ

[µν]∇λV
ρ . (3.65)

In the last step we have relabeled some dummy indices and eliminated some terms that

cancel when antisymmetrized. We recognize that the last term is simply the torsion tensor,

and that the left hand side is manifestly a tensor; therefore the expression in parentheses

must be a tensor itself. We write

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ − Tµν

λ∇λV
ρ , (3.66)
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where the Riemann tensor is identified as

Rρ
σµν = ∂µΓρ

νσ − ∂νΓ
ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ . (3.67)

There are a number of things to notice about the derivation of this expression:

• Of course we have not demonstrated that (3.67) is actually the same tensor that ap-

peared in (3.63), but in fact it’s true (see Wald for a believable if tortuous demonstra-

tion).

• It is perhaps surprising that the commutator [∇µ,∇ν], which appears to be a differential

operator, has an action on vector fields which (in the absence of torsion, at any rate)

is a simple multiplicative transformation. The Riemann tensor measures that part of

the commutator of covariant derivatives which is proportional to the vector field, while

the torsion tensor measures the part which is proportional to the covariant derivative

of the vector field; the second derivative doesn’t enter at all.

• Notice that the expression (3.67) is constructed from non-tensorial elements; you can

check that the transformation laws all work out to make this particular combination a

legitimate tensor.

• The antisymmetry of Rρ
σµν in its last two indices is immediate from this formula and

its derivation.

• We constructed the curvature tensor completely from the connection (no mention of

the metric was made). We were sufficiently careful that the above expression is true

for any connection, whether or not it is metric compatible or torsion free.

• Using what are by now our usual methods, the action of [∇ρ,∇σ] can be computed on

a tensor of arbitrary rank. The answer is

[∇ρ,∇σ]X
µ1···µk

ν1···νl
= − Tρσ

λ∇λX
µ1···µk

ν1···νl

+Rµ1
λρσX

λµ2···µk
ν1···νl

+Rµ2
λρσX

µ1λ···µk
ν1···νl

+ · · ·
−Rλ

ν1ρσX
µ1···µk

λν2···νl
− Rλ

ν2ρσX
µ1···µk

ν1λ···νl
− · · · .(3.68)

A useful notion is that of the commutator of two vector fields X and Y , which is a third

vector field with components

[X, Y ]µ = Xλ∂λY
µ − Y λ∂λX

µ . (3.69)

Both the torsion tensor and the Riemann tensor, thought of as multilinear maps, have elegant

expressions in terms of the commutator. Thinking of the torsion as a map from two vector

fields to a third vector field, we have

T (X, Y ) = ∇XY −∇YX − [X, Y ] , (3.70)
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and thinking of the Riemann tensor as a map from three vector fields to a fourth one, we

have

R(X, Y )Z = ∇X∇YZ −∇Y ∇XZ −∇[X,Y ]Z . (3.71)

In these expressions, the notation ∇X refers to the covariant derivative along the vector field

X; in components, ∇X = Xµ∇µ. Note that the two vectors X and Y in (3.71) correspond

to the two antisymmetric indices in the component form of the Riemann tensor. The last

term in (3.71), involving the commutator [X, Y ], vanishes when X and Y are taken to be

the coordinate basis vector fields (since [∂µ, ∂ν ] = 0), which is why this term did not arise

when we originally took the commutator of two covariant derivatives. We will not use this

notation extensively, but you might see it in the literature, so you should be able to decode

it.

Having defined the curvature tensor as something which characterizes the connection, let

us now admit that in GR we are most concerned with the Christoffel connection. In this

case the connection is derived from the metric, and the associated curvature may be thought

of as that of the metric itself. This identification allows us to finally make sense of our

informal notion that spaces for which the metric looks Euclidean or Minkowskian are flat.

In fact it works both ways: if the components of the metric are constant in some coordinate

system, the Riemann tensor will vanish, while if the Riemann tensor vanishes we can always

construct a coordinate system in which the metric components are constant.

The first of these is easy to show. If we are in some coordinate system such that ∂σgµν = 0

(everywhere, not just at a point), then Γρ
µν = 0 and ∂σΓρ

µν = 0; thus Rρ
σµν = 0 by (3.67).

But this is a tensor equation, and if it is true in one coordinate system it must be true

in any coordinate system. Therefore, the statement that the Riemann tensor vanishes is a

necessary condition for it to be possible to find coordinates in which the components of gµν

are constant everywhere.

It is also a sufficient condition, although we have to work harder to show it. Start by

choosing Riemann normal coordinates at some point p, so that gµν = ηµν at p. (Here we

are using ηµν in a generalized sense, as a matrix with either +1 or −1 for each diagonal

element and zeroes elsewhere. The actual arrangement of the +1’s and −1’s depends on the

canonical form of the metric, but is irrelevant for the present argument.) Denote the basis

vectors at p by ê(µ), with components êσ
(µ). Then by construction we have

gσρê
σ
(µ)ê

ρ
(ν)(p) = ηµν . (3.72)

Now let us parallel transport the entire set of basis vectors from p to another point q; the

vanishing of the Riemann tensor ensures that the result will be independent of the path taken

between p and q. Since parallel transport with respect to a metric compatible connection

preserves inner products, we must have

gσρê
σ
(µ)ê

ρ
(ν)(q) = ηµν . (3.73)
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We therefore have specified a set of vector fields which everywhere define a basis in which

the metric components are constant. This is completely unimpressive; it can be done on any

manifold, regardless of what the curvature is. What we would like to show is that this is

a coordinate basis (which can only be true if the curvature vanishes). We know that if the

ê(µ)’s are a coordinate basis, their commutator will vanish:

[ê(µ), ê(ν)] = 0 . (3.74)

What we would really like is the converse: that if the commutator vanishes we can find

coordinates yµ such that ê(µ) = ∂
∂yµ . In fact this is a true result, known as Frobenius’s

Theorem. It’s something of a mess to prove, involving a good deal more mathematical

apparatus than we have bothered to set up. Let’s just take it for granted (skeptics can

consult Schutz’s Geometrical Methods book). Thus, we would like to demonstrate (3.74) for

the vector fields we have set up. Let’s use the expression (3.70) for the torsion:

[ê(µ), ê(ν)] = ∇ê(µ)
ê(ν) −∇ê(ν)

ê(µ) − T (ê(µ), ê(ν)) . (3.75)

The torsion vanishes by hypothesis. The covariant derivatives will also vanish, given the

method by which we constructed our vector fields; they were made by parallel transporting

along arbitrary paths. If the fields are parallel transported along arbitrary paths, they are

certainly parallel transported along the vectors ê(µ), and therefore their covariant derivatives

in the direction of these vectors will vanish. Thus (3.70) implies that the commutator

vanishes, and therefore that we can find a coordinate system yµ for which these vector fields

are the partial derivatives. In this coordinate system the metric will have components ηµν ,

as desired.

The Riemann tensor, with four indices, naively has n4 independent components in an

n-dimensional space. In fact the antisymmetry property (3.64) means that there are only

n(n−1)/2 independent values these last two indices can take on, leaving us with n3(n−1)/2

independent components. When we consider the Christoffel connection, however, there are a

number of other symmetries that reduce the independent components further. Let’s consider

these now.

The simplest way to derive these additional symmetries is to examine the Riemann tensor

with all lower indices,

Rρσµν = gρλR
λ

σµν . (3.76)

Let us further consider the components of this tensor in Riemann normal coordinates es-

tablished at a point p. Then the Christoffel symbols themselves will vanish, although their

derivatives will not. We therefore have

Rρσµν = gρλ(∂µΓλ
νσ − ∂νΓ

λ
µσ)
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=
1

2
gρλg

λτ(∂µ∂νgστ + ∂µ∂σgτν − ∂µ∂τgνσ − ∂ν∂µgστ − ∂ν∂σgτµ + ∂ν∂τgµσ)

=
1

2
(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) . (3.77)

In the second line we have used ∂µg
λτ = 0 in RNC’s, and in the third line the fact that

partials commute. From this expression we can notice immediately two properties of Rρσµν ;

it is antisymmetric in its first two indices,

Rρσµν = −Rσρµν , (3.78)

and it is invariant under interchange of the first pair of indices with the second:

Rρσµν = Rµνρσ . (3.79)

With a little more work, which we leave to your imagination, we can see that the sum of

cyclic permutations of the last three indices vanishes:

Rρσµν +Rρµνσ +Rρνσµ = 0 . (3.80)

This last property is equivalent to the vanishing of the antisymmetric part of the last three

indices:

Rρ[σµν] = 0 . (3.81)

All of these properties have been derived in a special coordinate system, but they are all

tensor equations; therefore they will be true in any coordinates. Not all of them are inde-

pendent; with some effort, you can show that (3.64), (3.78) and (3.81) together imply (3.79).

The logical interdependence of the equations is usually less important than the simple fact

that they are true.

Given these relationships between the different components of the Riemann tensor, how

many independent quantities remain? Let’s begin with the facts that Rρσµν is antisymmetric

in the first two indices, antisymmetric in the last two indices, and symmetric under inter-

change of these two pairs. This means that we can think of it as a symmetric matrix R[ρσ][µν],

where the pairs ρσ and µν are thought of as individual indices. An m ×m symmetric ma-

trix has m(m + 1)/2 independent components, while an n × n antisymmetric matrix has

n(n− 1)/2 independent components. We therefore have

1

2

[
1

2
n(n− 1)

] [
1

2
n(n− 1) + 1

]
=

1

8
(n4 − 2n3 + 3n2 − 2n) (3.82)

independent components. We still have to deal with the additional symmetry (3.81). An

immediate consequence of (3.81) is that the totally antisymmetric part of the Riemann tensor

vanishes,

R[ρσµν] = 0 . (3.83)
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In fact, this equation plus the other symmetries (3.64), (3.78) and (3.79) are enough to imply

(3.81), as can be easily shown by expanding (3.83) and messing with the resulting terms.

Therefore imposing the additional constraint of (3.83) is equivalent to imposing (3.81), once

the other symmetries have been accounted for. How many independent restrictions does this

represent? Let us imagine decomposing

Rρσµν = Xρσµν +R[ρσµν] . (3.84)

It is easy to see that any totally antisymmetric 4-index tensor is automatically antisymmetric

in its first and last indices, and symmetric under interchange of the two pairs. Therefore

these properties are independent restrictions on Xρσµν , unrelated to the requirement (3.83).

Now a totally antisymmetric 4-index tensor has n(n−1)(n−2)(n−3)/4! terms, and therefore

(3.83) reduces the number of independent components by this amount. We are left with

1

8
(n4 − 2n3 + 3n2 − 2n) − 1

24
n(n− 1)(n− 2)(n− 3) =

1

12
n2(n2 − 1) (3.85)

independent components of the Riemann tensor.

In four dimensions, therefore, the Riemann tensor has 20 independent components. (In

one dimension it has none.) These twenty functions are precisely the 20 degrees of freedom

in the second derivatives of the metric which we could not set to zero by a clever choice of

coordinates. This should reinforce your confidence that the Riemann tensor is an appropriate

measure of curvature.

In addition to the algebraic symmetries of the Riemann tensor (which constrain the

number of independent components at any point), there is a differential identity which

it obeys (which constrains its relative values at different points). Consider the covariant

derivative of the Riemann tensor, evaluated in Riemann normal coordinates:

∇λRρσµν = ∂λRρσµν

=
1

2
∂λ(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) . (3.86)

We would like to consider the sum of cyclic permutations of the first three indices:

∇λRρσµν + ∇ρRσλµν + ∇σRλρµν

=
1

2
(∂λ∂µ∂σgρν − ∂λ∂µ∂ρgνσ − ∂λ∂ν∂σgρµ + ∂λ∂ν∂ρgµσ

+∂ρ∂µ∂λgσν − ∂ρ∂µ∂σgνλ − ∂ρ∂ν∂λgσµ + ∂ρ∂ν∂σgµλ

+∂σ∂µ∂ρgλν − ∂σ∂µ∂λgνρ − ∂σ∂ν∂ρgλµ + ∂σ∂ν∂λgµρ)

= 0 . (3.87)

Once again, since this is an equation between tensors it is true in any coordinate system,

even though we derived it in a particular one. We recognize by now that the antisymmetry



3 CURVATURE 81

Rρσµν = −Rσρµν allows us to write this result as

∇[λRρσ]µν = 0 . (3.88)

This is known as the Bianchi identity. (Notice that for a general connection there would

be additional terms involving the torsion tensor.) It is closely related to the Jacobi identity,

since (as you can show) it basically expresses

[[∇λ,∇ρ],∇σ] + [[∇ρ,∇σ],∇λ] + [[∇σ,∇λ],∇ρ] = 0 . (3.89)

It is frequently useful to consider contractions of the Riemann tensor. Even without the

metric, we can form a contraction known as the Ricci tensor:

Rµν = Rλ
µλν . (3.90)

Notice that, for the curvature tensor formed from an arbitrary (not necessarily Christoffel)

connection, there are a number of independent contractions to take. Our primary concern is

with the Christoffel connection, for which (3.90) is the only independent contraction (modulo

conventions for the sign, which of course change from place to place). The Ricci tensor

associated with the Christoffel connection is symmetric,

Rµν = Rνµ , (3.91)

as a consequence of the various symmetries of the Riemann tensor. Using the metric, we can

take a further contraction to form the Ricci scalar:

R = Rµ
µ = gµνRµν . (3.92)

An especially useful form of the Bianchi identity comes from contracting twice on (3.87):

0 = gνσgµλ(∇λRρσµν + ∇ρRσλµν + ∇σRλρµν)

= ∇µRρµ −∇ρR + ∇νRρν , (3.93)

or

∇µRρµ =
1

2
∇ρR . (3.94)

(Notice that, unlike the partial derivative, it makes sense to raise an index on the covariant

derivative, due to metric compatibility.) If we define the Einstein tensor as

Gµν = Rµν −
1

2
Rgµν , (3.95)

then we see that the twice-contracted Bianchi identity (3.94) is equivalent to

∇µGµν = 0 . (3.96)
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The Einstein tensor, which is symmetric due to the symmetry of the Ricci tensor and the

metric, will be of great importance in general relativity.

The Ricci tensor and the Ricci scalar contain information about “traces” of the Riemann

tensor. It is sometimes useful to consider separately those pieces of the Riemann tensor

which the Ricci tensor doesn’t tell us about. We therefore invent the Weyl tensor, which is

basically the Riemann tensor with all of its contractions removed. It is given in n dimensions

by

Cρσµν = Rρσµν −
2

(n− 2)

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(n− 1)(n− 2)
Rgρ[µgν]σ . (3.97)

This messy formula is designed so that all possible contractions of Cρσµν vanish, while it

retains the symmetries of the Riemann tensor:

Cρσµν = C[ρσ][µν] ,

Cρσµν = Cµνρσ ,

Cρ[σµν] = 0 . (3.98)

The Weyl tensor is only defined in three or more dimensions, and in three dimensions it

vanishes identically. For n ≥ 4 it satisfies a version of the Bianchi identity,

∇ρCρσµν = −2
(n− 3)

(n− 2)

(
∇[µRν]σ +

1

2(n− 1)
gσ[ν∇µ]R

)
. (3.99)

One of the most important properties of the Weyl tensor is that it is invariant under confor-

mal transformations. This means that if you compute Cρσµν for some metric gµν , and then

compute it again for a metric given by Ω2(x)gµν , where Ω(x) is an arbitrary nonvanishing

function of spacetime, you get the same answer. For this reason it is often known as the

“conformal tensor.”

After this large amount of formalism, it might be time to step back and think about what

curvature means for some simple examples. First notice that, according to (3.85), in 1, 2, 3

and 4 dimensions there are 0, 1, 6 and 20 components of the curvature tensor, respectively.

(Everything we say about the curvature in these examples refers to the curvature associated

with the Christoffel connection, and therefore the metric.) This means that one-dimensional

manifolds (such as S1) are never curved; the intuition you have that tells you that a circle is

curved comes from thinking of it embedded in a certain flat two-dimensional plane. (There is

something called “extrinsic curvature,” which characterizes the way something is embedded

in a higher dimensional space. Our notion of curvature is “intrinsic,” and has nothing to do

with such embeddings.)

The distinction between intrinsic and extrinsic curvature is also important in two dimen-

sions, where the curvature has one independent component. (In fact, all of the information
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identify

about the curvature is contained in the single component of the Ricci scalar.) Consider a

cylinder, R × S1. Although this looks curved from our point of view, it should be clear

that we can put a metric on the cylinder whose components are constant in an appropriate

coordinate system — simply unroll it and use the induced metric from the plane. In this

metric, the cylinder is flat. (There is also nothing to stop us from introducing a different

metric in which the cylinder is not flat, but the point we are trying to emphasize is that it

can be made flat in some metric.) The same story holds for the torus:

identify

We can think of the torus as a square region of the plane with opposite sides identified (in

other words, S1 × S1), from which it is clear that it can have a flat metric even though it

looks curved from the embedded point of view.

A cone is an example of a two-dimensional manifold with nonzero curvature at exactly

one point. We can see this also by unrolling it; the cone is equivalent to the plane with a

“deficit angle” removed and opposite sides identified:
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In the metric inherited from this description as part of the flat plane, the cone is flat every-

where but at its vertex. This can be seen by considering parallel transport of a vector around

various loops; if a loop does not enclose the vertex, there will be no overall transformation,

whereas a loop that does enclose the vertex (say, just one time) will lead to a rotation by an

angle which is just the deficit angle.

Our favorite example is of course the two-sphere, with metric

ds2 = a2(dθ2 + sin2 θ dφ2) , (3.100)

where a is the radius of the sphere (thought of as embedded in R3). Without going through

the details, the nonzero connection coefficients are

Γθ
φφ = − sin θ cos θ

Γφ
θφ = Γφ

φθ = cot θ . (3.101)

Let’s compute a promising component of the Riemann tensor:

Rθ
φθφ = ∂θΓ

θ
φφ − ∂φΓθ

θφ + Γθ
θλΓ

λ
φφ − Γθ

φλΓ
λ
θφ
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= (sin2 θ − cos2 θ) − (0) + (0) − (− sin θ cos θ)(cot θ)

= sin2 θ . (3.102)

(The notation is obviously imperfect, since the Greek letter λ is a dummy index which is

summed over, while the Greek letters θ and φ represent specific coordinates.) Lowering an

index, we have

Rθφθφ = gθλR
λ

φθφ

= gθθR
θ
φθφ

= a2 sin2 θ . (3.103)

It is easy to check that all of the components of the Riemann tensor either vanish or are

related to this one by symmetry. We can go on to compute the Ricci tensor via Rµν =

gαβRαµβν . We obtain

Rθθ = gφφRφθφθ = 1

Rθφ = Rφθ = 0

Rφφ = gθθRθφθφ = sin2 θ . (3.104)

The Ricci scalar is similarly straightforward:

R = gθθRθθ + gφφRφφ =
2

a2
. (3.105)

Therefore the Ricci scalar, which for a two-dimensional manifold completely characterizes

the curvature, is a constant over this two-sphere. This is a reflection of the fact that the

manifold is “maximally symmetric,” a concept we will define more precisely later (although it

means what you think it should). In any number of dimensions the curvature of a maximally

symmetric space satisfies (for some constant a)

Rρσµν = a−2(gρµgσν − gρνgσµ) , (3.106)

which you may check is satisfied by this example.

Notice that the Ricci scalar is not only constant for the two-sphere, it is manifestly

positive. We say that the sphere is “positively curved” (of course a convention or two came

into play, but fortunately our conventions conspired so that spaces which everyone agrees

to call positively curved actually have a positive Ricci scalar). From the point of view of

someone living on a manifold which is embedded in a higher-dimensional Euclidean space,

if they are sitting at a point of positive curvature the space curves away from them in the

same way in any direction, while in a negatively curved space it curves away in opposite

directions. Negatively curved spaces are therefore saddle-like.

Enough fun with examples. There is one more topic we have to cover before introducing

general relativity itself: geodesic deviation. You have undoubtedly heard that the defining
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positive curvature
negative curvature

property of Euclidean (flat) geometry is the parallel postulate: initially parallel lines remain

parallel forever. Of course in a curved space this is not true; on a sphere, certainly, initially

parallel geodesics will eventually cross. We would like to quantify this behavior for an

arbitrary curved space.

The problem is that the notion of “parallel” does not extend naturally from flat to curved

spaces. Instead what we will do is to construct a one-parameter family of geodesics, γs(t).

That is, for each s ∈ R, γs is a geodesic parameterized by the affine parameter t. The

collection of these curves defines a smooth two-dimensional surface (embedded in a manifold

M of arbitrary dimensionality). The coordinates on this surface may be chosen to be s and

t, provided we have chosen a family of geodesics which do not cross. The entire surface is

the set of points xµ(s, t) ∈M . We have two natural vector fields: the tangent vectors to the

geodesics,

T µ =
∂xµ

∂t
, (3.107)

and the “deviation vectors”

Sµ =
∂xµ

∂s
. (3.108)

This name derives from the informal notion that Sµ points from one geodesic towards the

neighboring ones.

The idea that Sµ points from one geodesic to the next inspires us to define the “relative

velocity of geodesics,”

V µ = (∇TS)µ = T ρ∇ρS
µ , (3.109)

and the “relative acceleration of geodesics,”

aµ = (∇TV )µ = T ρ∇ρV
µ . (3.110)

You should take the names with a grain of salt, but these vectors are certainly well-defined.
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t

s

T

S

γ  (  )s tµ

µ

Since S and T are basis vectors adapted to a coordinate system, their commutator van-

ishes:

[S, T ] = 0 .

We would like to consider the conventional case where the torsion vanishes, so from (3.70)

we then have

Sρ∇ρT
µ = T ρ∇ρS

µ . (3.111)

With this in mind, let’s compute the acceleration:

aµ = T ρ∇ρ(T
σ∇σS

µ)

= T ρ∇ρ(S
σ∇σT

µ)

= (T ρ∇ρS
σ)(∇σT

µ) + T ρSσ∇ρ∇σT
µ

= (Sρ∇ρT
σ)(∇σT

µ) + T ρSσ(∇σ∇ρT
µ +Rµ

νρσT
ν)

= (Sρ∇ρT
σ)(∇σT

µ) + Sσ∇σ(T ρ∇ρT
µ) − (Sσ∇σT

ρ)∇ρT
µ +Rµ

νρσT
νT ρSσ

= Rµ
νρσT

νT ρSσ . (3.112)

Let’s think about this line by line. The first line is the definition of aµ, and the second

line comes directly from (3.111). The third line is simply the Leibniz rule. The fourth

line replaces a double covariant derivative by the derivatives in the opposite order plus the

Riemann tensor. In the fifth line we use Leibniz again (in the opposite order from usual),

and then we cancel two identical terms and notice that the term involving T ρ∇ρT
µ vanishes

because T µ is the tangent vector to a geodesic. The result,

aµ =
D2

dt2
Sµ = Rµ

νρσT
νT ρSσ , (3.113)
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is known as the geodesic deviation equation. It expresses something that we might have

expected: the relative acceleration between two neighboring geodesics is proportional to the

curvature.

Physically, of course, the acceleration of neighboring geodesics is interpreted as a mani-

festation of gravitational tidal forces. This reminds us that we are very close to doing physics

by now.

There is one last piece of formalism which it would be nice to cover before we move

on to gravitation proper. What we will do is to consider once again (although much more

concisely) the formalism of connections and curvature, but this time we will use sets of basis

vectors in the tangent space which are not derived from any coordinate system. It will turn

out that this slight change in emphasis reveals a different point of view on the connection

and curvature, one in which the relationship to gauge theories in particle physics is much

more transparent. In fact the concepts to be introduced are very straightforward, but the

subject is a notational nightmare, so it looks more difficult than it really is.

Up until now we have been taking advantage of the fact that a natural basis for the

tangent space Tp at a point p is given by the partial derivatives with respect to the coordinates

at that point, ê(µ) = ∂µ. Similarly, a basis for the cotangent space T ∗
p is given by the gradients

of the coordinate functions, θ̂(µ) = dxµ. There is nothing to stop us, however, from setting up

any bases we like. Let us therefore imagine that at each point in the manifold we introduce

a set of basis vectors ê(a) (indexed by a Latin letter rather than Greek, to remind us that

they are not related to any coordinate system). We will choose these basis vectors to be

“orthonormal”, in a sense which is appropriate to the signature of the manifold we are

working on. That is, if the canonical form of the metric is written ηab, we demand that the

inner product of our basis vectors be

g(ê(a), ê(b)) = ηab , (3.114)

where g( , ) is the usual metric tensor. Thus, in a Lorentzian spacetime ηab represents

the Minkowski metric, while in a space with positive-definite metric it would represent the

Euclidean metric. The set of vectors comprising an orthonormal basis is sometimes known

as a tetrad (from Greek tetras, “a group of four”) or vielbein (from the German for “many

legs”). In different numbers of dimensions it occasionally becomes a vierbein (four), dreibein

(three), zweibein (two), and so on. (Just as we cannot in general find coordinate charts which

cover the entire manifold, we will often not be able to find a single set of smooth basis vector

fields which are defined everywhere. As usual, we can overcome this problem by working in

different patches and making sure things are well-behaved on the overlaps.)

The point of having a basis is that any vector can be expressed as a linear combination

of basis vectors. Specifically, we can express our old basis vectors ê(µ) = ∂µ in terms of the
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new ones:

ê(µ) = ea
µê(a) . (3.115)

The components ea
µ form an n × n invertible matrix. (In accord with our usual practice of

blurring the distinction between objects and their components, we will refer to the ea
µ as

the tetrad or vielbein, and often in the plural as “vielbeins.”) We denote their inverse by

switching indices to obtain eµ
a , which satisfy

eµ
ae

a
ν = δµ

ν , ea
µe

µ
b = δa

b . (3.116)

These serve as the components of the vectors ê(a) in the coordinate basis:

ê(a) = eµ
a ê(µ) . (3.117)

In terms of the inverse vielbeins, (3.114) becomes

gµνe
µ
ae

ν
b = ηab , (3.118)

or equivalently

gµν = ea
µe

b
νηab . (3.119)

This last equation sometimes leads people to say that the vielbeins are the “square root” of

the metric.

We can similarly set up an orthonormal basis of one-forms in T ∗
p , which we denote θ̂(a).

They may be chosen to be compatible with the basis vectors, in the sense that

θ̂(a)(ê(b)) = δa
b . (3.120)

It is an immediate consequence of this that the orthonormal one-forms are related to their

coordinate-based cousins θ̂(µ) = dxµ by

θ̂(µ) = eµ
a θ̂

(a) (3.121)

and

θ̂(a) = ea
µθ̂

(µ) . (3.122)

The vielbeins ea
µ thus serve double duty as the components of the coordinate basis vectors

in terms of the orthonormal basis vectors, and as components of the orthonormal basis

one-forms in terms of the coordinate basis one-forms; while the inverse vielbeins serve as

the components of the orthonormal basis vectors in terms of the coordinate basis, and as

components of the coordinate basis one-forms in terms of the orthonormal basis.

Any other vector can be expressed in terms of its components in the orthonormal basis.

If a vector V is written in the coordinate basis as V µê(µ) and in the orthonormal basis as

V aê(a), the sets of components will be related by

V a = ea
µV

µ . (3.123)
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So the vielbeins allow us to “switch from Latin to Greek indices and back.” The nice property

of tensors, that there is usually only one sensible thing to do based on index placement, is

of great help here. We can go on to refer to multi-index tensors in either basis, or even in

terms of mixed components:

V a
b = ea

µV
µ

b = eν
bV

a
ν = ea

µe
ν
bV

µ
ν . (3.124)

Looking back at (3.118), we see that the components of the metric tensor in the orthonormal

basis are just those of the flat metric, ηab. (For this reason the Greek indices are sometimes

referred to as “curved” and the Latin ones as “flat.”) In fact we can go so far as to raise and

lower the Latin indices using the flat metric and its inverse ηab. You can check for yourself

that everything works okay (e.g., that the lowering an index with the metric commutes with

changing from orthonormal to coordinate bases).

By introducing a new set of basis vectors and one-forms, we necessitate a return to our

favorite topic of transformation properties. We’ve been careful all along to emphasize that

the tensor transformation law was only an indirect outcome of a coordinate transformation;

the real issue was a change of basis. Now that we have non-coordinate bases, these bases can

be changed independently of the coordinates. The only restriction is that the orthonormality

property (3.114) be preserved. But we know what kind of transformations preserve the flat

metric — in a Euclidean signature metric they are orthogonal transformations, while in a

Lorentzian signature metric they are Lorentz transformations. We therefore consider changes

of basis of the form

ê(a) → ê(a′) = Λa′

a(x)ê(a) , (3.125)

where the matrices Λa′
a(x) represent position-dependent transformations which (at each

point) leave the canonical form of the metric unaltered:

Λa′

aΛb′
bηab = ηa′b′ . (3.126)

In fact these matrices correspond to what in flat space we called the inverse Lorentz trans-

formations (which operate on basis vectors); as before we also have ordinary Lorentz trans-

formations Λa′

a, which transform the basis one-forms. As far as components are concerned,

as before we transform upper indices with Λa′

a and lower indices with Λa′
a.

So we now have the freedom to perform a Lorentz transformation (or an ordinary Eu-

clidean rotation, depending on the signature) at every point in space. These transformations

are therefore called local Lorentz transformations, or LLT’s. We still have our usual

freedom to make changes in coordinates, which are called general coordinate trans-

formations, or GCT’s. Both can happen at the same time, resulting in a mixed tensor

transformation law:

T a′µ′

b′ν′ = Λa′

a
∂xµ′

∂xµ
Λb′

b ∂x
ν

∂xν′
T aµ

bν . (3.127)
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Translating what we know about tensors into non-coordinate bases is for the most part

merely a matter of sticking vielbeins in the right places. The crucial exception comes when

we begin to differentiate things. In our ordinary formalism, the covariant derivative of a

tensor is given by its partial derivative plus correction terms, one for each index, involving

the tensor and the connection coefficients. The same procedure will continue to be true

for the non-coordinate basis, but we replace the ordinary connection coefficients Γλ
µν by the

spin connection, denoted ωµ
a
b. Each Latin index gets a factor of the spin connection in

the usual way:

∇µX
a
b = ∂µX

a
b + ωµ

a
cX

c
b − ωµ

c
bX

a
c . (3.128)

(The name “spin connection” comes from the fact that this can be used to take covari-

ant derivatives of spinors, which is actually impossible using the conventional connection

coefficients.) In the presence of mixed Latin and Greek indices we get terms of both kinds.

The usual demand that a tensor be independent of the way it is written allows us to

derive a relationship between the spin connection, the vielbeins, and the Γν
µλ’s. Consider the

covariant derivative of a vector X, first in a purely coordinate basis:

∇X = (∇µX
ν)dxµ ⊗ ∂ν

= (∂µX
ν + Γν

µλX
λ)dxµ ⊗ ∂ν . (3.129)

Now find the same object in a mixed basis, and convert into the coordinate basis:

∇X = (∇µX
a)dxµ ⊗ ê(a)

= (∂µX
a + ωµ

a
bX

b)dxµ ⊗ ê(a)

= (∂µ(ea
νX

ν) + ωµ
a
be

b
λX

λ)dxµ ⊗ (eσ
a∂σ)

= eσ
a(ea

ν∂µX
ν +Xν∂µe

a
ν + ωµ

a
be

b
λX

λ)dxµ ⊗ ∂σ

= (∂µX
ν + eν

a∂µe
a
λX

λ + eν
ae

b
λωµ

a
bX

λ)dxµ ⊗ ∂ν . (3.130)

Comparison with (3.129) reveals

Γν
µλ = eν

a∂µe
a
λ + eν

ae
b
λωµ

a
b , (3.131)

or equivalently

ωµ
a
b = ea

νe
λ
b Γ

ν
µλ − eλ

b∂µe
a
λ . (3.132)

A bit of manipulation allows us to write this relation as the vanishing of the covariant

derivative of the vielbein,

∇µe
a
ν = 0 , (3.133)

which is sometimes known as the “tetrad postulate.” Note that this is always true; we did

not need to assume anything about the connection in order to derive it. Specifically, we did

not need to assume that the connection was metric compatible or torsion free.
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Since the connection may be thought of as something we need to fix up the transformation

law of the covariant derivative, it should come as no surprise that the spin connection does

not itself obey the tensor transformation law. Actually, under GCT’s the one lower Greek

index does transform in the right way, as a one-form. But under LLT’s the spin connection

transforms inhomogeneously, as

ωµ
a′

b′ = Λa′

aΛb′
bωµ

a
b − Λb′

c∂µΛa′

c . (3.134)

You are encouraged to check for yourself that this results in the proper transformation of

the covariant derivative.

So far we have done nothing but empty formalism, translating things we already knew

into a new notation. But the work we are doing does buy us two things. The first, which

we already alluded to, is the ability to describe spinor fields on spacetime and take their

covariant derivatives; we won’t explore this further right now. The second is a change in

viewpoint, in which we can think of various tensors as tensor-valued differential forms. For

example, an object like Xµ
a, which we think of as a (1, 1) tensor written with mixed indices,

can also be thought of as a “vector-valued one-form.” It has one lower Greek index, so we

think of it as a one-form, but for each value of the lower index it is a vector. Similarly a

tensor Aµν
a
b, antisymmetric in µ and ν, can be thought of as a “(1, 1)-tensor-valued two-

form.” Thus, any tensor with some number of antisymmetric lower Greek indices and some

number of Latin indices can be thought of as a differential form, but taking values in the

tensor bundle. (Ordinary differential forms are simply scalar-valued forms.) The usefulness

of this viewpoint comes when we consider exterior derivatives. If we want to think of Xµ
a

as a vector-valued one-form, we are tempted to take its exterior derivative:

(dX)µν
a = ∂µXν

a − ∂νXµ
a . (3.135)

It is easy to check that this object transforms like a two-form (that is, according to the

transformation law for (0, 2) tensors) under GCT’s, but not as a vector under LLT’s (the

Lorentz transformations depend on position, which introduces an inhomogeneous term into

the transformation law). But we can fix this by judicious use of the spin connection, which

can be thought of as a one-form. (Not a tensor-valued one-form, due to the nontensorial

transformation law (3.134).) Thus, the object

(dX)µν
a + (ω ∧X)µν

a = ∂µXν
a − ∂νXµ

a + ωµ
a
bXν

b − ων
a
bXµ

b , (3.136)

as you can verify at home, transforms as a proper tensor.

An immediate application of this formalism is to the expressions for the torsion and

curvature, the two tensors which characterize any given connection. The torsion, with two

antisymmetric lower indices, can be thought of as a vector-valued two-form Tµν
a. The
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curvature, which is always antisymmetric in its last two indices, is a (1, 1)-tensor-valued

two-form, Ra
bµν . Using our freedom to suppress indices on differential forms, we can write

the defining relations for these two tensors as

T a = dea + ωa
b ∧ eb (3.137)

and

Ra
b = dωa

b + ωa
c ∧ ωc

b . (3.138)

These are known as the Maurer-Cartan structure equations. They are equivalent to

the usual definitions; let’s go through the exercise of showing this for the torsion, and you

can check the curvature for yourself. We have

Tµν
λ = eλ

aTµν
a

= eλ
a(∂µeν

a − ∂νeµ
a + ωµ

a
beν

b − ων
a
beµ

b)

= Γλ
µν − Γλ

νµ , (3.139)

which is just the original definition we gave. Here we have used (3.131), the expression for

the Γλ
µν ’s in terms of the vielbeins and spin connection. We can also express identities obeyed

by these tensors as

dT a + ωa
b ∧ T b = Ra

b ∧ eb (3.140)

and

dRa
b + ωa

c ∧ Rc
b − Ra

c ∧ ωc
b = 0 . (3.141)

The first of these is the generalization of Rρ
[σµν] = 0, while the second is the Bianchi identity

∇[λ|R
ρ
σ|µν] = 0. (Sometimes both equations are called Bianchi identities.)

The form of these expressions leads to an almost irresistible temptation to define a

“covariant-exterior derivative”, which acts on a tensor-valued form by taking the ordinary

exterior derivative and then adding appropriate terms with the spin connection, one for each

Latin index. Although we won’t do that here, it is okay to give in to this temptation, and

in fact the right hand side of (3.137) and the left hand sides of (3.140) and (3.141) can be

thought of as just such covariant-exterior derivatives. But be careful, since (3.138) cannot;

you can’t take any sort of covariant derivative of the spin connection, since it’s not a tensor.

So far our equations have been true for general connections; let’s see what we get for the

Christoffel connection. The torsion-free requirement is just that (3.137) vanish; this does

not lead immediately to any simple statement about the coefficients of the spin connection.

Metric compatibility is expressed as the vanishing of the covariant derivative of the metric:

∇g = 0. We can see what this leads to when we express the metric in the orthonormal basis,

where its components are simply ηab:

∇µηab = ∂µηab − ωµ
c
aηcb − ωµ

c
bηac
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= −ωµab − ωµba . (3.142)

Then setting this equal to zero implies

ωµab = −ωµba . (3.143)

Thus, metric compatibility is equivalent to the antisymmetry of the spin connection in its

Latin indices. (As before, such a statement is only sensible if both indices are either upstairs

or downstairs.) These two conditions together allow us to express the spin connection in

terms of the vielbeins. There is an explicit formula which expresses this solution, but in

practice it is easier to simply solve the torsion-free condition

ωab ∧ eb = −dea , (3.144)

using the asymmetry of the spin connection, to find the individual components.

We now have the means to compare the formalism of connections and curvature in Rie-

mannian geometry to that of gauge theories in particle physics. (This is an aside, which is

hopefully comprehensible to everybody, but not an essential ingredient of the course.) In

both situations, the fields of interest live in vector spaces which are assigned to each point

in spacetime. In Riemannian geometry the vector spaces include the tangent space, the

cotangent space, and the higher tensor spaces constructed from these. In gauge theories,

on the other hand, we are concerned with “internal” vector spaces. The distinction is that

the tangent space and its relatives are intimately associated with the manifold itself, and

were naturally defined once the manifold was set up; an internal vector space can be of any

dimension we like, and has to be defined as an independent addition to the manifold. In

math lingo, the union of the base manifold with the internal vector spaces (defined at each

point) is a fiber bundle, and each copy of the vector space is called the “fiber” (in perfect

accord with our definition of the tangent bundle).

Besides the base manifold (for us, spacetime) and the fibers, the other important ingre-

dient in the definition of a fiber bundle is the “structure group,” a Lie group which acts

on the fibers to describe how they are sewn together on overlapping coordinate patches.

Without going into details, the structure group for the tangent bundle in a four-dimensional

spacetime is generally GL(4,R), the group of real invertible 4 × 4 matrices; if we have a

Lorentzian metric, this may be reduced to the Lorentz group SO(3, 1). Now imagine that

we introduce an internal three-dimensional vector space, and sew the fibers together with

ordinary rotations; the structure group of this new bundle is then SO(3). A field that lives

in this bundle might be denoted φA(xµ), where A runs from one to three; it is a three-vector

(an internal one, unrelated to spacetime) for each point on the manifold. We have freedom

to choose the basis in the fibers in any way we wish; this means that “physical quantities”

should be left invariant under local SO(3) transformations such as

φA(xµ) → φA′

(xµ) = OA′

A(xµ)φA(xµ) , (3.145)
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where OA′

A(xµ) is a matrix in SO(3) which depends on spacetime. Such transformations

are known as gauge transformations, and theories invariant under them are called “gauge

theories.”

For the most part it is not hard to arrange things such that physical quantities are

invariant under gauge transformations. The one difficulty arises when we consider partial

derivatives, ∂µφ
A. Because the matrix OA′

A(xµ) depends on spacetime, it will contribute an

unwanted term to the transformation of the partial derivative. By now you should be able

to guess the solution: introduce a connection to correct for the inhomogeneous term in the

transformation law. We therefore define a connection on the fiber bundle to be an object

Aµ
A

B, with two “group indices” and one spacetime index. Under GCT’s it transforms as a

one-form, while under gauge transformations it transforms as

Aµ
A′

B′ = OA′

AOB′

BAµ
A

B − OB′

C∂µO
A′

C . (3.146)

(Beware: our conventions are so drastically different from those in the particle physics liter-

ature that I won’t even try to get them straight.) With this transformation law, the “gauge

covariant derivative”

Dµφ
A = ∂µφ

A + Aµ
A

Bφ
B (3.147)

transforms “tensorially” under gauge transformations, as you are welcome to check. (In

ordinary electromagnetism the connection is just the conventional vector potential. No

indices are necessary, because the structure group U(1) is one-dimensional.)

It is clear that this notion of a connection on an internal fiber bundle is very closely

related to the connection on the tangent bundle, especially in the orthonormal-frame picture

we have been discussing. The transformation law (3.146), for example, is exactly the same

as the transformation law (3.134) for the spin connection. We can also define a curvature or

“field strength” tensor which is a two-form,

FA
B = dAA

B + AA
C ∧ AC

B , (3.148)

in exact correspondence with (3.138). We can parallel transport things along paths, and

there is a construction analogous to the parallel propagator; the trace of the matrix obtained

by parallel transporting a vector around a closed curve is called a “Wilson loop.”

We could go on in the development of the relationship between the tangent bundle and

internal vector bundles, but time is short and we have other fish to fry. Let us instead finish

by emphasizing the important difference between the two constructions. The difference

stems from the fact that the tangent bundle is closely related to the base manifold, while

other fiber bundles are tacked on after the fact. It makes sense to say that a vector in the

tangent space at p “points along a path” through p; but this makes no sense for an internal

vector bundle. There is therefore no analogue of the coordinate basis for an internal space —



3 CURVATURE 96

partial derivatives along curves have nothing to do with internal vectors. It follows in turn

that there is nothing like the vielbeins, which relate orthonormal bases to coordinate bases.

The torsion tensor, in particular, is only defined for a connection on the tangent bundle, not

for any gauge theory connections; it can be thought of as the covariant exterior derivative

of the vielbein, and no such construction is available on an internal bundle. You should

appreciate the relationship between the different uses of the notion of a connection, without

getting carried away.
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4 Gravitation

Having paid our mathematical dues, we are now prepared to examine the physics of gravita-

tion as described by general relativity. This subject falls naturally into two pieces: how the

curvature of spacetime acts on matter to manifest itself as “gravity”, and how energy and

momentum influence spacetime to create curvature. In either case it would be legitimate

to start at the top, by stating outright the laws governing physics in curved spacetime and

working out their consequences. Instead, we will try to be a little more motivational, starting

with basic physical principles and attempting to argue that these lead naturally to an almost

unique physical theory.

The most basic of these physical principles is the Principle of Equivalence, which comes

in a variety of forms. The earliest form dates from Galileo and Newton, and is known as

the Weak Equivalence Principle, or WEP. The WEP states that the “inertial mass” and

“gravitational mass” of any object are equal. To see what this means, think about Newton’s

Second Law. This relates the force exerted on an object to the acceleration it undergoes,

setting them proportional to each other with the constant of proportionality being the inertial

mass mi:

f = mia . (4.1)

The inertial mass clearly has a universal character, related to the resistance you feel when

you try to push on the object; it is the same constant no matter what kind of force is being

exerted. We also have the law of gravitation, which states that the gravitational force exerted

on an object is proportional to the gradient of a scalar field Φ, known as the gravitational

potential. The constant of proportionality in this case is called the gravitational mass mg:

fg = −mg∇Φ . (4.2)

On the face of it, mg has a very different character than mi; it is a quantity specific to the

gravitational force. If you like, it is the “gravitational charge” of the body. Nevertheless,

Galileo long ago showed (apocryphally by dropping weights off of the Leaning Tower of Pisa,

actually by rolling balls down inclined planes) that the response of matter to gravitation was

universal — every object falls at the same rate in a gravitational field, independent of the

composition of the object. In Newtonian mechanics this translates into the WEP, which is

simply

mi = mg (4.3)

for any object. An immediate consequence is that the behavior of freely-falling test particles

is universal, independent of their mass (or any other qualities they may have); in fact we

97
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have

a = −∇Φ . (4.4)

The universality of gravitation, as implied by the WEP, can be stated in another, more

popular, form. Imagine that we consider a physicist in a tightly sealed box, unable to

observe the outside world, who is doing experiments involving the motion of test particles,

for example to measure the local gravitational field. Of course she would obtain different

answers if the box were sitting on the moon or on Jupiter than she would on the Earth.

But the answers would also be different if the box were accelerating at a constant velocity;

this would change the acceleration of the freely-falling particles with respect to the box.

The WEP implies that there is no way to disentangle the effects of a gravitational field

from those of being in a uniformly accelerating frame, simply by observing the behavior of

freely-falling particles. This follows from the universality of gravitation; it would be possible

to distinguish between uniform acceleration and an electromagnetic field, by observing the

behavior of particles with different charges. But with gravity it is impossible, since the

“charge” is necessarily proportional to the (inertial) mass.

To be careful, we should limit our claims about the impossibility of distinguishing gravity

from uniform acceleration by restricting our attention to “small enough regions of spacetime.”

If the sealed box were sufficiently big, the gravitational field would change from place to place

in an observable way, while the effect of acceleration is always in the same direction. In a

rocket ship or elevator, the particles always fall straight down:

In a very big box in a gravitational field, however, the particles will move toward the center

of the Earth (for example), which might be a different direction in different regions:
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Earth

The WEP can therefore be stated as “the laws of freely-falling particles are the same in a

gravitational field and a uniformly accelerated frame, in small enough regions of spacetime.”

In larger regions of spacetime there will be inhomogeneities in the gravitational field, which

will lead to tidal forces which can be detected.

After the advent of special relativity, the concept of mass lost some of its uniqueness, as

it became clear that mass was simply a manifestation of energy and momentum (E = mc2

and all that). It was therefore natural for Einstein to think about generalizing the WEP

to something more inclusive. His idea was simply that there should be no way whatsoever

for the physicist in the box to distinguish between uniform acceleration and an external

gravitational field, no matter what experiments she did (not only by dropping test particles).

This reasonable extrapolation became what is now known as the Einstein Equivalence

Principle, or EEP: “In small enough regions of spacetime, the laws of physics reduce to

those of special relativity; it is impossible to detect the existence of a gravitational field.”

In fact, it is hard to imagine theories which respect the WEP but violate the EEP.

Consider a hydrogen atom, a bound state of a proton and an electron. Its mass is actually

less than the sum of the masses of the proton and electron considered individually, because

there is a negative binding energy — you have to put energy into the atom to separate the

proton and electron. According to the WEP, the gravitational mass of the hydrogen atom is

therefore less than the sum of the masses of its constituents; the gravitational field couples

to electromagnetism (which holds the atom together) in exactly the right way to make the

gravitational mass come out right. This means that not only must gravity couple to rest

mass universally, but to all forms of energy and momentum — which is practically the claim

of the EEP. It is possible to come up with counterexamples, however; for example, we could

imagine a theory of gravity in which freely falling particles began to rotate as they moved

through a gravitational field. Then they could fall along the same paths as they would in

an accelerated frame (thereby satisfying the WEP), but you could nevertheless detect the
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existence of the gravitational field (in violation of the EEP). Such theories seem contrived,

but there is no law of nature which forbids them.

Sometimes a distinction is drawn between “gravitational laws of physics” and “non-

gravitational laws of physics,” and the EEP is defined to apply only to the latter. Then

one defines the “Strong Equivalence Principle” (SEP) to include all of the laws of physics,

gravitational and otherwise. I don’t find this a particularly useful distinction, and won’t

belabor it. For our purposes, the EEP (or simply “the principle of equivalence”) includes all

of the laws of physics.

It is the EEP which implies (or at least suggests) that we should attribute the action

of gravity to the curvature of spacetime. Remember that in special relativity a prominent

role is played by inertial frames — while it was not possible to single out some frame of

reference as uniquely “at rest”, it was possible to single out a family of frames which were

“unaccelerated” (inertial). The acceleration of a charged particle in an electromagnetic field

was therefore uniquely defined with respect to these frames. The EEP, on the other hand,

implies that gravity is inescapable — there is no such thing as a “gravitationally neutral

object” with respect to which we can measure the acceleration due to gravity. It follows

that “the acceleration due to gravity” is not something which can be reliably defined, and

therefore is of little use.

Instead, it makes more sense to define “unaccelerated” as “freely falling,” and that is

what we shall do. This point of view is the origin of the idea that gravity is not a “force”

— a force is something which leads to acceleration, and our definition of zero acceleration is

“moving freely in the presence of whatever gravitational field happens to be around.”

This seemingly innocuous step has profound implications for the nature of spacetime. In

SR, we had a procedure for starting at some point and constructing an inertial frame which

stretched throughout spacetime, by joining together rigid rods and attaching clocks to them.

But, again due to inhomogeneities in the gravitational field, this is no longer possible. If

we start in some freely-falling state and build a large structure out of rigid rods, at some

distance away freely-falling objects will look like they are “accelerating” with respect to this

reference frame, as shown in the figure on the next page.
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The solution is to retain the notion of inertial frames, but to discard the hope that they

can be uniquely extended throughout space and time. Instead we can define locally inertial

frames, those which follow the motion of freely falling particles in small enough regions of

spacetime. (Every time we say “small enough regions”, purists should imagine a limiting

procedure in which we take the appropriate spacetime volume to zero.) This is the best we

can do, but it forces us to give up a good deal. For example, we can no longer speak with

confidence about the relative velocity of far away objects, since the inertial reference frames

appropriate to those objects are independent of those appropriate to us.

So far we have been talking strictly about physics, without jumping to the conclusion

that spacetime should be described as a curved manifold. It should be clear, however, why

such a conclusion is appropriate. The idea that the laws of special relativity should be

obeyed in sufficiently small regions of spacetime, and further that local inertial frames can

be established in such regions, corresponds to our ability to construct Riemann normal coor-

dinates at any one point on a manifold — coordinates in which the metric takes its canonical

form and the Christoffel symbols vanish. The impossibility of comparing velocities (vectors)

at widely separated regions corresponds to the path-dependence of parallel transport on a

curved manifold. These considerations were enough to give Einstein the idea that gravity

was a manifestation of spacetime curvature. But in fact we can be even more persuasive.

(It is impossible to “prove” that gravity should be thought of as spacetime curvature, since

scientific hypotheses can only be falsified, never verified [and not even really falsified, as

Thomas Kuhn has famously argued]. But there is nothing to be dissatisfied with about

convincing plausibility arguments, if they lead to empirically successful theories.)

Let’s consider one of the celebrated predictions of the EEP, the gravitational redshift.

Consider two boxes, a distance z apart, moving (far away from any matter, so we assume

in the absence of any gravitational field) with some constant acceleration a. At time t0 the

trailing box emits a photon of wavelength λ0.
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The boxes remain a constant distance apart, so the photon reaches the leading box after

a time ∆t = z/c in the reference frame of the boxes. In this time the boxes will have picked

up an additional velocity ∆v = a∆t = az/c. Therefore, the photon reaching the lead box

will be redshifted by the conventional Doppler effect by an amount

∆λ

λ0
=

∆v

c
=
az

c2
. (4.5)

(We assume ∆v/c is small, so we only work to first order.) According to the EEP, the

same thing should happen in a uniform gravitational field. So we imagine a tower of height

z sitting on the surface of a planet, with ag the strength of the gravitational field (what

Newton would have called the “acceleration due to gravity”).

λ0

z

This situation is supposed to be indistinguishable from the previous one, from the point of

view of an observer in a box at the top of the tower (able to detect the emitted photon, but
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otherwise unable to look outside the box). Therefore, a photon emitted from the ground

with wavelength λ0 should be redshifted by an amount

∆λ

λ0
=
agz

c2
. (4.6)

This is the famous gravitational redshift. Notice that it is a direct consequence of the EEP,

not of the details of general relativity. It has been verified experimentally, first by Pound

and Rebka in 1960. They used the Mössbauer effect to measure the change in frequency in

γ-rays as they traveled from the ground to the top of Jefferson Labs at Harvard.

The formula for the redshift is more often stated in terms of the Newtonian potential

Φ, where ag = ∇Φ. (The sign is changed with respect to the usual convention, since we

are thinking of ag as the acceleration of the reference frame, not of a particle with respect

to this reference frame.) A non-constant gradient of Φ is like a time-varying acceleration,

and the equivalent net velocity is given by integrating over the time between emission and

absorption of the photon. We then have

∆λ

λ0

=
1

c

∫
∇Φ dt

=
1

c2

∫
∂zΦ dz

= ∆Φ , (4.7)

where ∆Φ is the total change in the gravitational potential, and we have once again set

c = 1. This simple formula for the gravitational redshift continues to be true in more general

circumstances. Of course, by using the Newtonian potential at all, we are restricting our

domain of validity to weak gravitational fields, but that is usually completely justified for

observable effects.

The gravitational redshift leads to another argument that we should consider spacetime

as curved. Consider the same experimental setup that we had before, now portrayed on the

spacetime diagram on the next page.

The physicist on the ground emits a beam of light with wavelength λ0 from a height z0,

which travels to the top of the tower at height z1. The time between when the beginning of

any single wavelength of the light is emitted and the end of that same wavelength is emitted

is ∆t0 = λ0/c, and the same time interval for the absorption is ∆t1 = λ1/c. Since we imagine

that the gravitational field is not varying with time, the paths through spacetime followed

by the leading and trailing edge of the single wave must be precisely congruent. (They are

represented by some generic curved paths, since we do not pretend that we know just what

the paths will be.) Simple geometry tells us that the times ∆t0 and ∆t1 must be the same.

But of course they are not; the gravitational redshift implies that ∆t1 > ∆t0. (Which we

can interpret as “the clock on the tower appears to run more quickly.”) The fault lies with
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“simple geometry”; a better description of what happens is to imagine that spacetime is

curved.

All of this should constitute more than enough motivation for our claim that, in the

presence of gravity, spacetime should be thought of as a curved manifold. Let us now take

this to be true and begin to set up how physics works in a curved spacetime. The principle of

equivalence tells us that the laws of physics, in small enough regions of spacetime, look like

those of special relativity. We interpret this in the language of manifolds as the statement

that these laws, when written in Riemannian normal coordinates xµ based at some point

p, are described by equations which take the same form as they would in flat space. The

simplest example is that of freely-falling (unaccelerated) particles. In flat space such particles

move in straight lines; in equations, this is expressed as the vanishing of the second derivative

of the parameterized path xµ(λ):
d2xµ

dλ2
= 0 . (4.8)

According to the EEP, exactly this equation should hold in curved space, as long as the

coordinates xµ are RNC’s. What about some other coordinate system? As it stands, (4.8)

is not an equation between tensors. However, there is a unique tensorial equation which

reduces to (4.8) when the Christoffel symbols vanish; it is

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 . (4.9)

Of course, this is simply the geodesic equation. In general relativity, therefore, free particles

move along geodesics; we have mentioned this before, but now you know why it is true.

As far as free particles go, we have argued that curvature of spacetime is necessary to

describe gravity; we have not yet shown that it is sufficient. To do so, we can show how the

usual results of Newtonian gravity fit into the picture. We define the “Newtonian limit” by

three requirements: the particles are moving slowly (with respect to the speed of light), the
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gravitational field is weak (can be considered a perturbation of flat space), and the field is

also static (unchanging with time). Let us see what these assumptions do to the geodesic

equation, taking the proper time τ as an affine parameter. “Moving slowly” means that

dxi

dτ
<<

dt

dτ
, (4.10)

so the geodesic equation becomes

d2xµ

dτ 2
+ Γµ

00

(
dt

dτ

)2

= 0 . (4.11)

Since the field is static, the relevant Christoffel symbols Γµ
00 simplify:

Γµ
00 =

1

2
gµλ(∂0gλ0 + ∂0g0λ − ∂λg00)

= −1

2
gµλ∂λg00 . (4.12)

Finally, the weakness of the gravitational field allows us to decompose the metric into the

Minkowski form plus a small perturbation:

gµν = ηµν + hµν , |hµν | << 1 . (4.13)

(We are working in Cartesian coordinates, so ηµν is the canonical form of the metric. The

“smallness condition” on the metric perturbation hµν doesn’t really make sense in other

coordinates.) From the definition of the inverse metric, gµνgνσ = δµ
σ , we find that to first

order in h,

gµν = ηµν − hµν , (4.14)

where hµν = ηµρηνσhρσ. In fact, we can use the Minkowski metric to raise and lower indices

on an object of any definite order in h, since the corrections would only contribute at higher

orders.

Putting it all together, we find

Γµ
00 = −1

2
ηµλ∂λh00 . (4.15)

The geodesic equation (4.11) is therefore

d2xµ

dτ 2
=

1

2
ηµλ∂λh00

(
dt

dτ

)2

. (4.16)

Using ∂0h00 = 0, the µ = 0 component of this is just

d2t

dτ 2
= 0 . (4.17)
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That is, dt
dτ

is constant. To examine the spacelike components of (4.16), recall that the

spacelike components of ηµν are just those of a 3 × 3 identity matrix. We therefore have

d2xi

dτ 2
=

1

2

(
dt

dτ

)2

∂ih00 . (4.18)

Dividing both sides by
(

dt
dτ

)2
has the effect of converting the derivative on the left-hand side

from τ to t, leaving us with
d2xi

dt2
=

1

2
∂ih00 . (4.19)

This begins to look a great deal like Newton’s theory of gravitation. In fact, if we compare

this equation to (4.4), we find that they are the same once we identify

h00 = −2Φ , (4.20)

or in other words

g00 = −(1 + 2Φ) . (4.21)

Therefore, we have shown that the curvature of spacetime is indeed sufficient to describe

gravity in the Newtonian limit, as long as the metric takes the form (4.21). It remains, of

course, to find field equations for the metric which imply that this is the form taken, and

that for a single gravitating body we recover the Newtonian formula

Φ = −GM
r

, (4.22)

but that will come soon enough.

Our next task is to show how the remaining laws of physics, beyond those governing freely-

falling particles, adapt to the curvature of spacetime. The procedure essentially follows the

paradigm established in arguing that free particles move along geodesics. Take a law of

physics in flat space, traditionally written in terms of partial derivatives and the flat metric.

According to the equivalence principle this law will hold in the presence of gravity, as long

as we are in Riemannian normal coordinates. Translate the law into a relationship between

tensors; for example, change partial derivatives to covariant ones. In RNC’s this version of

the law will reduce to the flat-space one, but tensors are coordinate-independent objects, so

the tensorial version must hold in any coordinate system.

This procedure is sometimes given a name, the Principle of Covariance. I’m not

sure that it deserves its own name, since it’s really a consequence of the EEP plus the

requirement that the laws of physics be independent of coordinates. (The requirement that

laws of physics be independent of coordinates is essentially impossible to even imagine being

untrue. Given some experiment, if one person uses one coordinate system to predict a result

and another one uses a different coordinate system, they had better agree.) Another name
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is the “comma-goes-to-semicolon rule”, since at a typographical level the thing you have to

do is replace partial derivatives (commas) with covariant ones (semicolons).

We have already implicitly used the principle of covariance (or whatever you want to

call it) in deriving the statement that free particles move along geodesics. For the most

part, it is very simple to apply it to interesting cases. Consider for example the formula for

conservation of energy in flat spacetime, ∂µT
µν = 0. The adaptation to curved spacetime is

immediate:

∇µT
µν = 0 . (4.23)

This equation expresses the conservation of energy in the presence of a gravitational field.

Unfortunately, life is not always so easy. Consider Maxwell’s equations in special relativ-

ity, where it would seem that the principle of covariance can be applied in a straightforward

way. The inhomogeneous equation ∂µF
νµ = 4πJν becomes

∇µF
νµ = 4πJν , (4.24)

and the homogeneous one ∂[µFνλ] = 0 becomes

∇[µFνλ] = 0 . (4.25)

On the other hand, we could also write Maxwell’s equations in flat space in terms of differ-

ential forms as

d(∗F ) = 4π(∗J) , (4.26)

and

dF = 0 . (4.27)

These are already in perfectly tensorial form, since we have shown that the exterior derivative

is a well-defined tensor operator regardless of what the connection is. We therefore begin

to worry a little bit; what is the guarantee that the process of writing a law of physics in

tensorial form gives a unique answer? In fact, as we have mentioned earlier, the differential

forms versions of Maxwell’s equations should be taken as fundamental. Nevertheless, in this

case it happens to make no difference, since in the absence of torsion (4.26) is identical

to (4.24), and (4.27) is identical to (4.25); the symmetric part of the connection doesn’t

contribute. Similarly, the definition of the field strength tensor in terms of the potential Aµ

can be written either as

Fµν = ∇µAν −∇νAµ , (4.28)

or equally well as

F = dA . (4.29)

The worry about uniqueness is a real one, however. Imagine that two vector fields Xµ

and Y ν obey a law in flat space given by

Y µ∂µ∂νX
ν = 0 . (4.30)
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The problem in writing this as a tensor equation should be clear: the partial derivatives can

be commuted, but covariant derivatives cannot. If we simply replace the partials in (4.30)

by covariant derivatives, we get a different answer than we would if we had first exchanged

the order of the derivatives (leaving the equation in flat space invariant) and then replaced

them. The difference is given by

Y µ∇µ∇νX
ν − Y µ∇ν∇µX

ν = −RµνY
µXν . (4.31)

The prescription for generalizing laws from flat to curved spacetimes does not guide us in

choosing the order of the derivatives, and therefore is ambiguous about whether a term

such as that in (4.31) should appear in the presence of gravity. (The problem of ordering

covariant derivatives is similar to the problem of operator-ordering ambiguities in quantum

mechanics.)

In the literature you can find various prescriptions for dealing with ambiguities such as

this, most of which are sensible pieces of advice such as remembering to preserve gauge

invariance for electromagnetism. But deep down the real answer is that there is no way to

resolve these problems by pure thought alone; the fact is that there may be more than one

way to adapt a law of physics to curved space, and ultimately only experiment can decide

between the alternatives.

In fact, let us be honest about the principle of equivalence: it serves as a useful guideline,

but it does not deserve to be treated as a fundamental principle of nature. From the modern

point of view, we do not expect the EEP to be rigorously true. Consider the following

alternative version of (4.24):

∇µ[(1 + αR)F νµ] = 4πJν , (4.32)

where R is the Ricci scalar and α is some coupling constant. If this equation correctly

described electrodynamics in curved spacetime, it would be possible to measure R even in

an arbitrarily small region, by doing experiments with charged particles. The equivalence

principle therefore demands that α = 0. But otherwise this is a perfectly respectable equa-

tion, consistent with charge conservation and other desirable features of electromagnetism,

which reduces to the usual equation in flat space. Indeed, in a world governed by quantum

mechanics we expect all possible couplings between different fields (such as gravity and elec-

tromagnetism) that are consistent with the symmetries of the theory (in this case, gauge

invariance). So why is it reasonable to set α = 0? The real reason is one of scales. Notice that

the Ricci tensor involves second derivatives of the metric, which is dimensionless, so R has

dimensions of (length)−2 (with c = 1). Therefore α must have dimensions of (length)2. But

since the coupling represented by α is of gravitational origin, the only reasonable expectation

for the relevant length scale is

α ∼ l2P , (4.33)
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where lP is the Planck length

lP =

(
Gh̄

c3

)1/2

= 1.6 × 10−33 cm , (4.34)

where h̄ is of course Planck’s constant. So the length scale corresponding to this coupling is

extremely small, and for any conceivable experiment we expect the typical scale of variation

for the gravitational field to be much larger. Therefore the reason why this equivalence-

principle-violating term can be safely ignored is simply because αR is probably a fantastically

small number, far out of the reach of any experiment. On the other hand, we might as well

keep an open mind, since our expectations are not always borne out by observation.

Having established how physical laws govern the behavior of fields and objects in a curved

spacetime, we can complete the establishment of general relativity proper by introducing

Einstein’s field equations, which govern how the metric responds to energy and momentum.

We will actually do this in two ways: first by an informal argument close to what Einstein

himself was thinking, and then by starting with an action and deriving the corresponding

equations of motion.

The informal argument begins with the realization that we would like to find an equation

which supersedes the Poisson equation for the Newtonian potential:

∇2Φ = 4πGρ , (4.35)

where ∇2 = δij∂i∂j is the Laplacian in space and ρ is the mass density. (The explicit form of

Φ given in (4.22) is one solution of (4.35), for the case of a pointlike mass distribution.) What

characteristics should our sought-after equation possess? On the left-hand side of (4.35) we

have a second-order differential operator acting on the gravitational potential, and on the

right-hand side a measure of the mass distribution. A relativistic generalization should take

the form of an equation between tensors. We know what the tensor generalization of the mass

density is; it’s the energy-momentum tensor Tµν . The gravitational potential, meanwhile,

should get replaced by the metric tensor. We might therefore guess that our new equation

will have Tµν set proportional to some tensor which is second-order in derivatives of the

metric. In fact, using (4.21) for the metric in the Newtonian limit and T00 = ρ, we see that

in this limit we are looking for an equation that predicts

∇2h00 = −8πGT00 , (4.36)

but of course we want it to be completely tensorial.

The left-hand side of (4.36) does not obviously generalize to a tensor. The first choice

might be to act the D’Alembertian 2 = ∇µ∇µ on the metric gµν , but this is automatically

zero by metric compatibility. Fortunately, there is an obvious quantity which is not zero
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and is constructed from second derivatives (and first derivatives) of the metric: the Riemann

tensor Rρ
σµν . It doesn’t have the right number of indices, but we can contract it to form the

Ricci tensor Rµν , which does (and is symmetric to boot). It is therefore reasonable to guess

that the gravitational field equations are

Rµν = κTµν , (4.37)

for some constant κ. In fact, Einstein did suggest this equation at one point. There is a prob-

lem, unfortunately, with conservation of energy. According to the Principle of Equivalence,

the statement of energy-momentum conservation in curved spacetime should be

∇µTµν = 0 , (4.38)

which would then imply

∇µRµν = 0 . (4.39)

This is certainly not true in an arbitrary geometry; we have seen from the Bianchi identity

(3.94) that

∇µRµν =
1

2
∇νR . (4.40)

But our proposed field equation implies that R = κgµνTµν = κT , so taking these together

we have

∇µT = 0 . (4.41)

The covariant derivative of a scalar is just the partial derivative, so (4.41) is telling us that T

is constant throughout spacetime. This is highly implausible, since T = 0 in vacuum while

T > 0 in matter. We have to try harder.

(Actually we are cheating slightly, in taking the equation ∇µTµν = 0 so seriously. If as

we said, the equivalence principle is only an approximate guide, we could imagine that there

are nonzero terms on the right-hand side involving the curvature tensor. Later we will be

more precise and argue that they are strictly zero.)

Of course we don’t have to try much harder, since we already know of a symmetric (0, 2)

tensor, constructed from the Ricci tensor, which is automatically conserved: the Einstein

tensor

Gµν = Rµν −
1

2
Rgµν , (4.42)

which always obeys ∇µGµν = 0. We are therefore led to propose

Gµν = κTµν (4.43)

as a field equation for the metric. This equation satisfies all of the obvious requirements;

the right-hand side is a covariant expression of the energy and momentum density in the
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form of a symmetric and conserved (0, 2) tensor, while the left-hand side is a symmetric and

conserved (0, 2) tensor constructed from the metric and its first and second derivatives. It

only remains to see whether it actually reproduces gravity as we know it.

To answer this, note that contracting both sides of (4.43) yields (in four dimensions)

R = −κT , (4.44)

and using this we can rewrite (4.43) as

Rµν = κ(Tµν −
1

2
Tgµν) . (4.45)

This is the same equation, just written slightly differently. We would like to see if it predicts

Newtonian gravity in the weak-field, time-independent, slowly-moving-particles limit. In

this limit the rest energy ρ = T00 will be much larger than the other terms in Tµν , so we

want to focus on the µ = 0, ν = 0 component of (4.45). In the weak-field limit, we write (in

accordance with (4.13) and (4.14))

g00 = −1 + h00 ,

g00 = −1 − h00 . (4.46)

The trace of the energy-momentum tensor, to lowest nontrivial order, is

T = g00T00 = −T00 . (4.47)

Plugging this into (4.45), we get

R00 =
1

2
κT00 . (4.48)

This is an equation relating derivatives of the metric to the energy density. To find the

explicit expression in terms of the metric, we need to evaluate R00 = Rλ
0λ0. In fact we only

need Ri
0i0, since R0

000 = 0. We have

Ri
0j0 = ∂jΓ

i
00 − ∂0Γ

i
j0 + Γi

jλΓ
λ
00 − Γi

0λΓ
λ
j0 . (4.49)

The second term here is a time derivative, which vanishes for static fields. The third and

fourth terms are of the form (Γ)2, and since Γ is first-order in the metric perturbation these

contribute only at second order, and can be neglected. We are left with Ri
0j0 = ∂jΓ

i
00. From

this we get

R00 = Ri
0i0

= ∂i

(
1

2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00)

)
= −1

2
ηij∂i∂jh00
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= −1

2
∇2h00 . (4.50)

Comparing to (4.48), we see that the 00 component of (4.43) in the Newtonian limit predicts

∇2h00 = −κT00 . (4.51)

But this is exactly (4.36), if we set κ = 8πG.

So our guess seems to have worked out. With the normalization fixed by comparison

with the Newtonian limit, we can present Einstein’s equations for general relativity:

Rµν −
1

2
Rgµν = 8πGTµν . (4.52)

These tell us how the curvature of spacetime reacts to the presence of energy-momentum.

Einstein, you may have heard, thought that the left-hand side was nice and geometrical,

while the right-hand side was somewhat less compelling.

Einstein’s equations may be thought of as second-order differential equations for the

metric tensor field gµν . There are ten independent equations (since both sides are symmetric

two-index tensors), which seems to be exactly right for the ten unknown functions of the

metric components. However, the Bianchi identity ∇µGµν = 0 represents four constraints on

the functions Rµν , so there are only six truly independent equations in (4.52). In fact this is

appropriate, since if a metric is a solution to Einstein’s equation in one coordinate system

xµ it should also be a solution in any other coordinate system xµ′

. This means that there are

four unphysical degrees of freedom in gµν (represented by the four functions xµ′

(xµ)), and

we should expect that Einstein’s equations only constrain the six coordinate-independent

degrees of freedom.

As differential equations, these are extremely complicated; the Ricci scalar and tensor are

contractions of the Riemann tensor, which involves derivatives and products of the Christoffel

symbols, which in turn involve the inverse metric and derivatives of the metric. Furthermore,

the energy-momentum tensor Tµν will generally involve the metric as well. The equations

are also nonlinear, so that two known solutions cannot be superposed to find a third. It

is therefore very difficult to solve Einstein’s equations in any sort of generality, and it is

usually necessary to make some simplifying assumptions. Even in vacuum, where we set the

energy-momentum tensor to zero, the resulting equations (from (4.45))

Rµν = 0 (4.53)

can be very difficult to solve. The most popular sort of simplifying assumption is that the

metric has a significant degree of symmetry, and we will talk later on about how symmetries

of the metric make life easier.

The nonlinearity of general relativity is worth remarking on. In Newtonian gravity the

potential due to two point masses is simply the sum of the potentials for each mass, but
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clearly this does not carry over to general relativity (outside the weak-field limit). There is

a physical reason for this, namely that in GR the gravitational field couples to itself. This

can be thought of as a consequence of the equivalence principle — if gravitation did not

couple to itself, a “gravitational atom” (two particles bound by their mutual gravitational

attraction) would have a different inertial mass (due to the negative binding energy) than

gravitational mass. From a particle physics point of view this can be expressed in terms of

Feynman diagrams. The electromagnetic interaction between two electrons can be thought

of as due to exchange of a virtual photon:

e

e-

-

photon

But there is no diagram in which two photons exchange another photon between themselves;

electromagnetism is linear. The gravitational interaction, meanwhile, can be thought of

as due to exchange of a virtual graviton (a quantized perturbation of the metric). The

nonlinearity manifests itself as the fact that both electrons and gravitons (and anything

else) can exchange virtual gravitons, and therefore exert a gravitational force:

e

e-

-

graviton gravitons

There is nothing profound about this feature of gravity; it is shared by most gauge theories,

such as quantum chromodynamics, the theory of the strong interactions. (Electromagnetism

is actually the exception; the linearity can be traced to the fact that the relevant gauge group,

U(1), is abelian.) But it does represent a departure from the Newtonian theory. (Of course

this quantum mechanical language of Feynman diagrams is somewhat inappropriate for GR,

which has not [yet] been successfully quantized, but the diagrams are just a convenient

shorthand for remembering what interactions exist in the theory.)
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To increase your confidence that Einstein’s equations as we have derived them are indeed

the correct field equations for the metric, let’s see how they can be derived from a more

modern viewpoint, starting from an action principle. (In fact the equations were first derived

by Hilbert, not Einstein, and Hilbert did it using the action principle. But he had been

inspired by Einstein’s previous papers on the subject, and Einstein himself derived the

equations independently, so they are rightly named after Einstein. The action, however, is

rightly called the Hilbert action.) The action should be the integral over spacetime of a

Lagrange density (“Lagrangian” for short, although strictly speaking the Lagrangian is the

integral over space of the Lagrange density):

SH =
∫
dnxLH . (4.54)

The Lagrange density is a tensor density, which can be written as
√−g times a scalar. What

scalars can we make out of the metric? Since we know that the metric can be set equal to

its canonical form and its first derivatives set to zero at any one point, any nontrivial scalar

must involve at least second derivatives of the metric. The Riemann tensor is of course

made from second derivatives of the metric, and we argued earlier that the only independent

scalar we could construct from the Riemann tensor was the Ricci scalar R. What we did not

show, but is nevertheless true, is that any nontrivial tensor made from the metric and its

first and second derivatives can be expressed in terms of the metric and the Riemann tensor.

Therefore, the only independent scalar constructed from the metric, which is no higher than

second order in its derivatives, is the Ricci scalar. Hilbert figured that this was therefore the

simplest possible choice for a Lagrangian, and proposed

LH =
√−gR . (4.55)

The equations of motion should come from varying the action with respect to the metric.

In fact let us consider variations with respect to the inverse metric gµν , which are slightly

easier but give an equivalent set of equations. Using R = gµνRµν , in general we will have

δS =
∫
dnx

[√−ggµνδRµν +
√−gRµνδg

µν +Rδ
√−g

]
= (δS)1 + (δS)2 + (δS)3 . (4.56)

The second term (δS)2 is already in the form of some expression times δgµν ; let’s examine

the others more closely.

Recall that the Ricci tensor is the contraction of the Riemann tensor, which is given by

Rρ
µλν = ∂λΓ

λ
νµ + Γρ

λσΓσ
νµ − (λ↔ ν) . (4.57)

The variation of this with respect the metric can be found first varying the connection with

respect to the metric, and then substituting into this expression. Let us however consider
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arbitrary variations of the connection, by replacing

Γρ
νµ → Γρ

νµ + δΓρ
νµ . (4.58)

The variation δΓρ
νµ is the difference of two connections, and therefore is itself a tensor. We

can thus take its covariant derivative,

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + Γρ

λσδΓ
σ
νµ − Γσ

λνδΓ
ρ
σµ − Γσ

λµδΓ
ρ
νσ . (4.59)

Given this expression (and a small amount of labor) it is easy to show that

δRρ
µλν = ∇λ(δΓ

ρ
νµ) −∇ν(δΓ

ρ
λµ) . (4.60)

You can check this yourself. Therefore, the contribution of the first term in (4.56) to δS can

be written

(δS)1 =
∫
dnx

√−g gµν
[
∇λ(δΓ

λ
νµ) −∇ν(δΓ

λ
λµ)
]

=
∫
dnx

√−g ∇σ

[
gµσ(δΓλ

λµ) − gµν(δΓσ
µν)
]
, (4.61)

where we have used metric compatibility and relabeled some dummy indices. But now we

have the integral with respect to the natural volume element of the covariant divergence of

a vector; by Stokes’s theorem, this is equal to a boundary contribution at infinity which we

can set to zero by making the variation vanish at infinity. (We haven’t actually shown that

Stokes’s theorem, as mentioned earlier in terms of differential forms, can be thought of this

way, but you can easily convince yourself it’s true.) Therefore this term contributes nothing

to the total variation.

To make sense of the (δS)3 term we need to use the following fact, true for any matrix

M :

Tr(lnM) = ln(detM) . (4.62)

Here, lnM is defined by exp(lnM) = M . (For numbers this is obvious, for matrices it’s a

little less straightforward.) The variation of this identity yields

Tr(M−1δM) =
1

detM
δ(detM) . (4.63)

Here we have used the cyclic property of the trace to allow us to ignore the fact that M−1

and δM may not commute. Now we would like to apply this to the inverse metric, M = gµν .

Then detM = g−1 (where g = det gµν), and

δ(g−1) =
1

g
gµνδg

µν . (4.64)
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Now we can just plug in:

δ
√−g = δ[(−g−1)−1/2]

= −1

2
(−g−1)−3/2δ(−g−1)

= −1

2

√−ggµνδg
µν . (4.65)

Hearkening back to (4.56), and remembering that (δS)1 does not contribute, we find

δS =
∫
dnx

√−g
[
Rµν −

1

2
Rgµν

]
δgµν . (4.66)

This should vanish for arbitrary variations, so we are led to Einstein’s equations in vacuum:

1√−g
δS

δgµν
= Rµν −

1

2
Rgµν = 0 . (4.67)

The fact that this simple action leads to the same vacuum field equations as we had

previously arrived at by more informal arguments certainly reassures us that we are doing

something right. What we would really like, however, is to get the non-vacuum field equations

as well. That means we consider an action of the form

S =
1

8πG
SH + SM , (4.68)

where SM is the action for matter, and we have presciently normalized the gravitational

action (although the proper normalization is somewhat convention-dependent). Following

through the same procedure as above leads to

1√−g
δS

δgµν
=

1

8πG

(
Rµν −

1

2
Rgµν

)
+

1√−g
δSM

δgµν
= 0 , (4.69)

and we recover Einstein’s equations if we can set

Tµν = − 1√−g
δSM

δgµν
. (4.70)

What makes us think that we can make such an identification? In fact (4.70) turns out to

be the best way to define a symmetric energy-momentum tensor. The tricky part is to show

that it is conserved, which is in fact automatically true, but which we will not justify until

the next section.

We say that (4.70) provides the “best” definition of the energy-momentum tensor because

it is not the only one you will find. In flat Minkowski space, there is an alternative defini-

tion which is sometimes given in books on electromagnetism or field theory. In this context
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energy-momentum conservation arises as a consequence of symmetry of the Lagrangian un-

der spacetime translations. Noether’s theorem states that every symmetry of a Lagrangian

implies the existence of a conservation law; invariance under the four spacetime translations

leads to a tensor Sµν which obeys ∂µS
µν = 0 (four relations, one for each value of ν). The

details can be found in Wald or in any number of field theory books. Applying Noether’s

procedure to a Lagrangian which depends on some fields ψi and their first derivatives ∂µψ
i,

we obtain

Sµν =
δL

δ(∂µψi)
∂νψi − ηµνL , (4.71)

where a sum over i is implied. You can check that this tensor is conserved by virtue of the

equations of motion of the matter fields. Sµν often goes by the name “canonical energy-

momentum tensor”; however, there are a number of reasons why it is more convenient for

us to use (4.70). First and foremost, (4.70) is in fact what appears on the right hand side of

Einstein’s equations when they are derived from an action, and it is not always possible to

generalize (4.71) to curved spacetime. But even in flat space (4.70) has its advantages; it is

manifestly symmetric, and also guaranteed to be gauge invariant, neither of which is true for

(4.71). We will therefore stick with (4.70) as the definition of the energy-momentum tensor.

Sometimes it is useful to think about Einstein’s equations without specifying the theory

of matter from which Tµν is derived. This leaves us with a great deal of arbitrariness; consider

for example the question “What metrics obey Einstein’s equations?” In the absence of some

constraints on Tµν , the answer is “any metric at all”; simply take the metric of your choice,

compute the Einstein tensor Gµν for this metric, and then demand that Tµν be equal to Gµν .

(It will automatically be conserved, by the Bianchi identity.) Our real concern is with the

existence of solutions to Einstein’s equations in the presence of “realistic” sources of energy

and momentum, whatever that means. The most common property that is demanded of

Tµν is that it represent positive energy densities — no negative masses are allowed. In a

locally inertial frame this requirement can be stated as ρ = T00 ≥ 0. To turn this into a

coordinate-independent statement, we ask that

TµνV
µV ν ≥ 0 , for all timelike vectors V µ . (4.72)

This is known as the Weak Energy Condition, or WEC. It seems like a fairly reasonable

requirement, and many of the important theorems about solutions to general relativity (such

as the singularity theorems of Hawking and Penrose) rely on this condition or something

very close to it. Unfortunately it is not set in stone; indeed, it is straightforward to invent

otherwise respectable classical field theories which violate the WEC, and almost impossible

to invent a quantum field theory which obeys it. Nevertheless, it is legitimate to assume

that the WEC holds in all but the most extreme conditions. (There are also stronger energy

conditions, but they are even less true than the WEC, and we won’t dwell on them.)
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We have now justified Einstein’s equations in two different ways: as the natural covariant

generalization of Poisson’s equation for the Newtonian gravitational potential, and as the

result of varying the simplest possible action we could invent for the metric. The rest of

the course will be an exploration of the consequences of these equations, but before we start

on that road let us briefly explore ways in which the equations could be modified. There

are an uncountable number of such ways, but we will consider four different possibilities:

the introduction of a cosmological constant, higher-order terms in the action, gravitational

scalar fields, and a nonvanishing torsion tensor.

The first possibility is the cosmological constant; George Gamow has quoted Einstein as

calling this the biggest mistake of his life. Recall that in our search for the simplest possible

action for gravity we noted that any nontrivial scalar had to be of at least second order in

derivatives of the metric; at lower order all we can create is a constant. Although a constant

does not by itself lead to very interesting dynamics, it has an important effect if we add it

to the conventional Hilbert action. We therefore consider an action given by

S =
∫
dnx

√−g(R− 2Λ) , (4.73)

where Λ is some constant. The resulting field equations are

Rµν −
1

2
Rgµν + Λgµν = 0 , (4.74)

and of course there would be an energy-momentum tensor on the right hand side if we had

included an action for matter. Λ is the cosmological constant; it was originally introduced

by Einstein after it became clear that there were no solutions to his equations representing

a static cosmology (a universe unchanging with time on large scales) with a nonzero matter

content. If the cosmological constant is tuned just right, it is possible to find a static solution,

but it is unstable to small perturbations. Furthermore, once Hubble demonstrated that the

universe is expanding, it became less important to find static solutions, and Einstein rejected

his suggestion. Like Rasputin, however, the cosmological constant has proven difficult to kill

off. If we like we can move the additional term in (4.74) to the right hand side, and think of

it as a kind of energy-momentum tensor, with Tµν = −Λgµν (it is automatically conserved

by metric compatibility). Then Λ can be interpreted as the “energy density of the vacuum,”

a source of energy and momentum that is present even in the absence of matter fields. This

interpretation is important because quantum field theory predicts that the vacuum should

have some sort of energy and momentum. In ordinary quantum mechanics, an harmonic

oscillator with frequency ω and minimum classical energy E0 = 0 upon quantization has a

ground state with energy E0 = 1
2
h̄ω. A quantized field can be thought of as a collection of

an infinite number of harmonic oscillators, and each mode contributes to the ground state

energy. The result is of course infinite, and must be appropriately regularized, for example
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by introducing a cutoff at high frequencies. The final vacuum energy, which is the regularized

sum of the energies of the ground state oscillations of all the fields of the theory, has no good

reason to be zero and in fact would be expected to have a natural scale

Λ ∼ m4
P , (4.75)

where the Planck mass mP is approximately 1019 GeV, or 10−5 grams. Observations of the

universe on large scales allow us to constrain the actual value of Λ, which turns out to be

smaller than (4.75) by at least a factor of 10120. This is the largest known discrepancy between

theoretical estimate and observational constraint in physics, and convinces many people that

the “cosmological constant problem” is one of the most important unsolved problems today.

On the other hand the observations do not tell us that Λ is strictly zero, and in fact allow

values that can have important consequences for the evolution of the universe. This mistake

of Einstein’s therefore continues to bedevil both physicists, who would like to understand

why it is so small, and astronomers, who would like to determine whether it is really small

enough to be ignored.

A somewhat less intriguing generalization of the Hilbert action would be to include scalars

of more than second order in derivatives of the metric. We could imagine an action of the

form

S =
∫
dnx

√−g(R + α1R
2 + α2RµνR

µν + α3g
µν∇µR∇νR + · · ·) , (4.76)

where the α’s are coupling constants and the dots represent every other scalar we can make

from the curvature tensor, its contractions, and its derivatives. Traditionally, such terms

have been neglected on the reasonable grounds that they merely complicate a theory which

is already both aesthetically pleasing and empirically successful. However, there are at

least three more substantive reasons for this neglect. First, as we shall see below, Einstein’s

equations lead to a well-posed initial value problem for the metric, in which “coordinates” and

“momenta” specified at an initial time can be used to predict future evolution. With higher-

derivative terms, we would require not only those data, but also some number of derivatives

of the momenta. Second, the main source of dissatisfaction with general relativity on the part

of particle physicists is that it cannot be renormalized (as far as we know), and Lagrangians

with higher derivatives tend generally to make theories less renormalizable rather than more.

Third, by the same arguments we used above when speaking about the limitations of the

principle of equivalence, the extra terms in (4.76) should be suppressed (by powers of the

Planck mass to some power) relative to the usual Hilbert term, and therefore would not be

expected to be of any practical importance to the low-energy world. None of these reasons

are completely persuasive, and indeed people continue to consider such theories, but for the

most part these models do not attract a great deal of attention.

A set of models which does attract attention are known as scalar-tensor theories of

gravity, since they involve both the metric tensor gµν and a fundamental scalar field, λ. The
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action can be written

S =
∫
dnx

√−g
[
f(λ)R+

1

2
gµν(∂µλ)(∂νλ) − V (λ)

]
, (4.77)

where f(λ) and V (λ) are functions which define the theory. Recall from (4.68) that the

coefficient of the Ricci scalar in conventional GR is proportional to the inverse of Newton’s

constant G. In scalar-tensor theories, then, where this coefficient is replaced by some function

of a field which can vary throughout spacetime, the “strength” of gravity (as measured by

the local value of Newton’s constant) will be different from place to place and time to time.

In fact the most famous scalar-tensor theory, invented by Brans and Dicke and now named

after them, was inspired by a suggestion of Dirac’s that the gravitational constant varies

with time. Dirac had noticed that there were some interesting numerical coincidences one

could discover by taking combinations of cosmological numbers such as the Hubble constant

H0 (a measure of the expansion rate of the universe) and typical particle-physics parameters

such as the mass of the pion, mπ. For example,

m3
π

H0

∼ cG

h̄2 . (4.78)

If we assume for the moment that this relation is not simply an accident, we are faced with

the problem that the Hubble “constant” actually changes with time (in most cosmological

models), while the other quantities conventionally do not. Dirac therefore proposed that in

fact G varied with time, in such a way as to maintain (4.78); satisfying this proposal was

the motivation of Brans and Dicke. These days, experimental test of general relativity are

sufficiently precise that we can state with confidence that, if Brans-Dicke theory is correct,

the predicted change in G over space and time must be very small, much slower than that

necessary to satisfy Dirac’s hypothesis. (See Weinberg for details on Brans-Dicke theory

and experimental tests.) Nevertheless there is still a great deal of work being done on other

kinds of scalar-tensor theories, which turn out to be vital in superstring theory and may

have important consequences in the very early universe.

As a final alternative to general relativity, we should mention the possibility that the

connection really is not derived from the metric, but in fact has an independent existence as a

fundamental field. We will leave it as an exercise for you to show that it is possible to consider

the conventional action for general relativity but treat it as a function of both the metric

gµν and a torsion-free connection Γλ
ρσ, and the equations of motion derived from varying

such an action with respect to the connection imply that Γλ
ρσ is actually the Christoffel

connection associated with gµν . We could drop the demand that the connection be torsion-

free, in which case the torsion tensor could lead to additional propagating degrees of freedom.

Without going into details, the basic reason why such theories do not receive much attention

is simply because the torsion is itself a tensor; there is nothing to distinguish it from other,
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“non-gravitational” tensor fields. Thus, we do not really lose any generality by considering

theories of torsion-free connections (which lead to GR) plus any number of tensor fields,

which we can name what we like.

With the possibility in mind that one of these alternatives (or, more likely, something

we have not yet thought of) is actually realized in nature, for the rest of the course we will

work under the assumption that general relativity as based on Einstein’s equations or the

Hilbert action is the correct theory, and work out its consequences. These consequences, of

course, are constituted by the solutions to Einstein’s equations for various sources of energy

and momentum, and the behavior of test particles in these solutions. Before considering

specific solutions in detail, lets look more abstractly at the initial-value problem in general

relativity.

In classical Newtonian mechanics, the behavior of a single particle is of course governed

by f = ma. If the particle is moving under the influence of some potential energy field Φ(x),

then the force is f = −∇Φ, and the particle obeys

m
d2xi

dt2
= −∂iΦ . (4.79)

This is a second-order differential equation for xi(t), which we can recast as a system of two

coupled first-order equations by introducing the momentum p:

dpi

dt
= −∂iΦ

dxi

dt
=

1

m
pi . (4.80)

The initial-value problem is simply the procedure of specifying a “state” (xi, pi) which serves

as a boundary condition with which (4.80) can be uniquely solved. You may think of (4.80)

as allowing you, once you are given the coordinates and momenta at some time t, to evolve

them forward an infinitesimal amount to a time t+ δt, and iterate this procedure to obtain

the entire solution.

We would like to formulate the analogous problem in general relativity. Einstein’s equa-

tions Gµν = 8πGTµν are of course covariant; they don’t single out a preferred notion of “time”

through which a state can evolve. Nevertheless, we can by hand pick a spacelike hypersurface

(or “slice”) Σ, specify initial data on that hypersurface, and see if we can evolve uniquely

from it to a hypersurface in the future. (“Hyper” because a constant-time slice in four di-

mensions will be three-dimensional, whereas “surfaces” are conventionally two-dimensional.)

This process does violence to the manifest covariance of the theory, but if we are careful we

should wind up with a formulation that is equivalent to solving Einstein’s equations all at

once throughout spacetime.

Since the metric is the fundamental variable, our first guess is that we should consider

the values gµν |Σ of the metric on our hypersurface to be the “coordinates” and the time
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Initial DataΣ

t

derivatives ∂tgµν |Σ (with respect to some specified time coordinate) to be the “momenta”,

which together specify the state. (There will also be coordinates and momenta for the matter

fields, which we will not consider explicitly.) In fact the equations Gµν = 8πGTµν do involve

second derivatives of the metric with respect to time (since the connection involves first

derivatives of the metric and the Einstein tensor involves first derivatives of the connection),

so we seem to be on the right track. However, the Bianchi identity tells us that ∇µG
µν = 0.

We can rewrite this equation as

∂0G
0ν = −∂iG

iν − Γµ
µλG

λν − Γν
µλG

µλ . (4.81)

A close look at the right hand side reveals that there are no third-order time derivatives;

therefore there cannot be any on the left hand side. Thus, although Gµν as a whole involves

second-order time derivatives of the metric, the specific components G0ν do not. Of the ten

independent components in Einstein’s equations, the four represented by

G0ν = 8πGT 0ν (4.82)

cannot be used to evolve the initial data (gµν , ∂tgµν)Σ. Rather, they serve as constraints

on this initial data; we are not free to specify any combination of the metric and its time

derivatives on the hypersurface Σ, since they must obey the relations (4.82). The remaining

equations,

Gij = 8πGT ij (4.83)

are the dynamical evolution equations for the metric. Of course, these are only six equations

for the ten unknown functions gµν(x
σ), so the solution will inevitably involve a fourfold

ambiguity. This is simply the freedom that we have already mentioned, to choose the four

coordinate functions throughout spacetime.

It is a straightforward but unenlightening exercise to sift through (4.83) to find that

not all second time derivatives of the metric appear. In fact we find that ∂2
t gij appears in

(4.83), but not ∂2
t g0ν . Therefore a “state” in general relativity will consist of a specification
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of the spacelike components of the metric gij|Σ and their first time derivatives ∂tgij|Σ on the

hypersurface Σ, from which we can determine the future evolution using (4.83), up to an

unavoidable ambiguity in fixing the remaining components g0ν . The situation is precisely

analogous to that in electromagnetism, where we know that no amount of initial data can

suffice to determine the evolution uniquely since there will always be the freedom to perform a

gauge transformation Aµ → Aµ+∂µλ. In general relativity, then, coordinate transformations

play a role reminiscent of gauge transformations in electromagnetism, in that they introduce

ambiguity into the time evolution.

One way to cope with this problem is to simply “choose a gauge.” In electromagnetism

this means to place a condition on the vector potential Aµ, which will restrict our freedom

to perform gauge transformations. For example we can choose Lorentz gauge, in which

∇µA
µ = 0, or temporal gauge, in which A0 = 0. We can do a similar thing in general

relativity, by fixing our coordinate system. A popular choice is harmonic gauge (also

known as Lorentz gauge and a host of other names), in which

2xµ = 0 . (4.84)

Here 2 = ∇µ∇µ is the covariant D’Alembertian, and it is crucial to realize when we take

the covariant derivative that the four functions xµ are just functions, not components of a

vector. This condition is therefore simply

0 = 2xµ

= gρσ∂ρ∂σx
µ − gρσΓλ

ρσ∂λx
µ

= −gρσΓλ
ρσ . (4.85)

In flat space, of course, Cartesian coordinates (in which Γλ
ρσ = 0) are harmonic coordi-

nates. (As a general principle, any function f which satisfies 2f = 0 is called an “harmonic

function.”)

To see that this choice of coordinates successfully fixes our gauge freedom, let’s rewrite

the condition (4.84) in a somewhat simpler form. We have

gρσΓµ
ρσ =

1

2
gρσgµν(∂ρgσν + ∂σgνρ − ∂νgρσ) , (4.86)

from the definition of the Christoffel symbols. Meanwhile, from ∂ρ(g
µνgσν) = ∂ρδ

µ
σ = 0 we

have

gµν∂ρgσν = −gσν∂ρg
µν . (4.87)

Also, from our previous exploration of the variation of the determinant of the metric (4.65),

we have
1

2
gρσ∂νg

ρσ = − 1√−g ∂ν

√−g . (4.88)
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Putting it all together, we find that (in general),

gρσΓµ
ρσ =

1√−g ∂λ(
√−ggλµ) . (4.89)

The harmonic gauge condition (4.85) therefore is equivalent to

∂λ(
√−ggλµ) = 0 . (4.90)

Taking the partial derivative of this with respect to t = x0 yields

∂2

∂t2
(
√−gg0ν) = − ∂

∂xi

[
∂

∂t
(
√−ggiν)

]
. (4.91)

This condition represents a second-order differential equation for the previously uncon-

strained metric components g0ν , in terms of the given initial data. We have therefore

succeeded in fixing our gauge freedom, in that we can now solve for the evolution of the

entire metric in harmonic coordinates. (At least locally; we have been glossing over the fact

our gauge choice may not be well-defined globally, and we would have to resort to working

in patches as usual. The same problem appears in gauge theories in particle physics.) Note

that we still have some freedom remaining; our gauge condition (4.84) restricts how the

coordinates stretch from our initial hypersurface Σ throughout spacetime, but we can still

choose coordinates xi on Σ however we like. This corresponds to the fact that making a

coordinate transformation xµ → xµ + δµ, with 2δµ = 0, does not violate the harmonic gauge

condition.

We therefore have a well-defined initial value problem for general relativity; a state is

specified by the spacelike components of the metric and their time derivatives on a spacelike

hypersurface Σ; given these, the spacelike components (4.83) of Einstein’s equations allow

us to evolve the metric forward in time, up to an ambiguity in coordinate choice which

may be resolved by choice of gauge. We must keep in mind that the initial data are not

arbitrary, but must obey the constraints (4.82). (Once we impose the constraints on some

spacelike hypersurface, the equations of motion guarantee that they remain satisfied, as you

can check.) The constraints serve a useful purpose, of guaranteeing that the result remains

spacetime covariant after we have split our manifold into “space” and “time.” Specifically,

the Gi0 = 8πGT i0 constraint implies that the evolution is independent of our choice of

coordinates on Σ, while G00 = 8πGT 00 enforces invariance under different ways of slicing

spacetime into spacelike hypersurfaces.

Once we have seen how to cast Einstein’s equations as an initial value problem, one issue

of crucial importance is the existence of solutions to the problem. That is, once we have

specified a spacelike hypersurface with initial data, to what extent can we be guaranteed

that a unique spacetime will be determined? Although one can do a great deal of hard work
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Σ

to answer this question with some precision, it is fairly simple to get a handle on the ways

in which a well-defined solution can fail to exist, which we now consider.

It is simplest to first consider the problem of evolving matter fields on a fixed background

spacetime, rather than the evolution of the metric itself. We therefore consider a spacelike

hypersurface Σ in some manifold M with fixed metric gµν , and furthermore look at some

connected subset S in Σ. Our guiding principle will be that no signals can travel faster than

the speed of light; therefore “information” will only flow along timelike or null trajectories

(not necessarily geodesics). We define the future domain of dependence of S, denoted

D+(S), as the set of all points p such that every past-moving, timelike or null, inextendible

curve through p must intersect S. (“Inextendible” just means that the curve goes on forever,

not ending at some finite point.) We interpret this definition in such a way that S itself is a

subset of D+(S). (Of course a rigorous formulation does not require additional interpretation

over and above the definitions, but we are not being as rigorous as we could be right now.)

Similarly, we define the past domain of dependence D−(S) in the same way, but with “past-

moving” replaced by “future-moving.” Generally speaking, some points in M will be in one

of the domains of dependence, and some will be outside; we define the boundary of D+(S)

to be the future Cauchy horizon H+(S), and likewise the boundary of D−(S) to be the

past Cauchy horizon H−(S). You can convince yourself that they are both null surfaces.

Σ S

D  (S)

H  (S) D  (S)

H  (S)
+

- -

+
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The usefulness of these definitions should be apparent; if nothing moves faster than light,

than signals cannot propagate outside the light cone of any point p. Therefore, if every

curve which remains inside this light cone must intersect S, then information specified on S

should be sufficient to predict what the situation is at p. (That is, initial data for matter

fields given on S can be used to solve for the value of the fields at p.) The set of all points

for which we can predict what happens by knowing what happens on S is simply the union

D+(S) ∪D−(S).

We can easily extend these ideas from the subset S to the entire hypersurface Σ. The

important point is that D+(Σ) ∪D−(Σ) might fail to be all of M , even if Σ itself seems like

a perfectly respectable hypersurface that extends throughout space. There are a number

of ways in which this can happen. One possibility is that we have just chosen a “bad”

hypersurface (although it is hard to give a general prescription for when a hypersurface is

bad in this sense). Consider Minkowski space, and a spacelike hypersurface Σ which remains

to the past of the light cone of some point.

Σ

D  (   )Σ+

In this case Σ is a nice spacelike surface, but it is clear that D+(Σ) ends at the light cone,

and we cannot use information on Σ to predict what happens throughout Minkowski space.

Of course, there are other surfaces we could have picked for which the domain of dependence

would have been the entire manifold, so this doesn’t worry us too much.

A somewhat more nontrivial example is known as Misner space. This is a two-

dimensional spacetime with the topology of R1 × S1, and a metric for which the light cones

progressively tilt as you go forward in time. Past a certain point, it is possible to travel on a

timelike trajectory which wraps around the S1 and comes back to itself; this is known as a

closed timelike curve. If we had specified a surface Σ to this past of this point, then none

of the points in the region containing closed timelike curves are in the domain of dependence

of Σ, since the closed timelike curves themselves do not intersect Σ. This is obviously a worse

problem than the previous one, since a well-defined initial value problem does not seem to
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Σ

identify

closed
timelike
curve

Misner
space

exist in this spacetime. (Actually problems like this are the subject of some current research

interest, so I won’t claim that the issue is settled.)

A final example is provided by the existence of singularities, points which are not in the

manifold even though they can be reached by travelling along a geodesic for a finite distance.

Typically these occur when the curvature becomes infinite at some point; if this happens,

the point can no longer be said to be part of the spacetime. Such an occurrence can lead to

the emergence of a Cauchy horizon — a point p which is in the future of a singularity cannot

be in the domain of dependence of a hypersurface to the past of the singularity, because

there will be curves from p which simply end at the singularity.

Σ

Σ

D  (   )

H  (   )

Σ+

+

All of these obstacles can also arise in the initial value problem for GR, when we try to

evolve the metric itself from initial data. However, they are of different degrees of trouble-
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someness. The possibility of picking a “bad” initial hypersurface does not arise very often,

especially since most solutions are found globally (by solving Einstein’s equations throughout

spacetime). The one situation in which you have to be careful is in numerical solution of Ein-

stein’s equations, where a bad choice of hypersurface can lead to numerical difficulties even

if in principle a complete solution exists. Closed timelike curves seem to be something that

GR works hard to avoid — there are certainly solutions which contain them, but evolution

from generic initial data does not usually produce them. Singularities, on the other hand,

are practically unavoidable. The simple fact that the gravitational force is always attractive

tends to pull matter together, increasing the curvature, and generally leading to some sort of

singularity. This is something which we apparently must learn to live with, although there

is some hope that a well-defined theory of quantum gravity will eliminate the singularities

of classical GR.
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5 More Geometry

With an understanding of how the laws of physics adapt to curved spacetime, it is undeniably

tempting to start in on applications. However, a few extra mathematical techniques will

simplify our task a great deal, so we will pause briefly to explore the geometry of manifolds

some more.

When we discussed manifolds in section 2, we introduced maps between two different

manifolds and how maps could be composed. We now turn to the use of such maps in carrying

along tensor fields from one manifold to another. We therefore consider two manifolds M

and N , possibly of different dimension, with coordinate systems xµ and yα, respectively. We

imagine that we have a map φ : M → N and a function f : N → R.

M

x

f = f

f
φ

R

R

R
m n

µ yα

N

*
φ φ

It is obvious that we can compose φ with f to construct a map (f ◦ φ) : M → R, which is

simply a function on M . Such a construction is sufficiently useful that it gets its own name;

we define the pullback of f by φ, denoted φ∗f , by

φ∗f = (f ◦ φ) . (5.1)

The name makes sense, since we think of φ∗ as “pulling back” the function f from N to M .

We can pull functions back, but we cannot push them forward. If we have a function

g : M → R, there is no way we can compose g with φ to create a function on N ; the arrows

don’t fit together correctly. But recall that a vector can be thought of as a derivative operator

that maps smooth functions to real numbers. This allows us to define the pushforward of

129
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a vector; if V (p) is a vector at a point p on M , we define the pushforward vector φ∗V at the

point φ(p) on N by giving its action on functions on N :

(φ∗V )(f) = V (φ∗f) . (5.2)

So to push forward a vector field we say “the action of φ∗V on any function is simply the

action of V on the pullback of that function.”

This is a little abstract, and it would be nice to have a more concrete description. We

know that a basis for vectors on M is given by the set of partial derivatives ∂µ = ∂
∂xµ , and

a basis on N is given by the set of partial derivatives ∂α = ∂
∂yα . Therefore we would like

to relate the components of V = V µ∂µ to those of (φ∗V ) = (φ∗V )α∂α. We can find the

sought-after relation by applying the pushed-forward vector to a test function and using the

chain rule (2.3):

(φ∗V )α∂αf = V µ∂µ(φ∗f)

= V µ∂µ(f ◦ φ)

= V µ∂y
α

∂xµ
∂αf . (5.3)

This simple formula makes it irresistible to think of the pushforward operation φ∗ as a matrix

operator, (φ∗V )α = (φ∗)α
µV

µ, with the matrix being given by

(φ∗)α
µ =

∂yα

∂xµ
. (5.4)

The behavior of a vector under a pushforward thus bears an unmistakable resemblance to the

vector transformation law under change of coordinates. In fact it is a generalization, since

when M and N are the same manifold the constructions are (as we shall discuss) identical;

but don’t be fooled, since in general µ and α have different allowed values, and there is no

reason for the matrix ∂yα/∂xµ to be invertible.

It is a rewarding exercise to convince yourself that, although you can push vectors forward

from M to N (given a map φ : M → N), you cannot in general pull them back — just keep

trying to invent an appropriate construction until the futility of the attempt becomes clear.

Since one-forms are dual to vectors, you should not be surprised to hear that one-forms can

be pulled back (but not in general pushed forward). To do this, remember that one-forms

are linear maps from vectors to the real numbers. The pullback φ∗ω of a one-form ω on N

can therefore be defined by its action on a vector V on M , by equating it with the action of

ω itself on the pushforward of V :

(φ∗ω)(V ) = ω(φ∗V ) . (5.5)

Once again, there is a simple matrix description of the pullback operator on forms, (φ∗ω)µ =

(φ∗)µ
αωα, which we can derive using the chain rule. It is given by

(φ∗)µ
α =

∂yα

∂xµ
. (5.6)
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That is, it is the same matrix as the pushforward (5.4), but of course a different index is

contracted when the matrix acts to pull back one-forms.

There is a way of thinking about why pullbacks and pushforwards work on some objects

but not others, which may or may not be helpful. If we denote the set of smooth functions

on M by F(M), then a vector V (p) at a point p on M (i.e., an element of the tangent space

TpM) can be thought of as an operator from F(M) to R. But we already know that the

pullback operator on functions maps F(N) to F(M) (just as φ itself maps M to N , but

in the opposite direction). Therefore we can define the pushforward φ∗ acting on vectors

simply by composing maps, as we first defined the pullback of functions:

F F(M) (N)

φ*(V(p)) = V(p) φ

R

φ

V(p)
*

*

Similarly, if TqN is the tangent space at a point q on N , then a one-form ω at q (i.e., an

element of the cotangent space T ∗
q N) can be thought of as an operator from TqN to R. Since

the pushforward φ∗ maps TpM to Tφ(p)N , the pullback φ∗ of a one-form can also be thought

of as mere composition of maps:

T  Mp φ(p)T     N

φ*= ω(ω)
*

φ

φ*

ω

R

If this is not helpful, don’t worry about it. But do keep straight what exists and what

doesn’t; the actual concepts are simple, it’s just remembering which map goes what way

that leads to confusion.

You will recall further that a (0, l) tensor — one with l lower indices and no upper ones

— is a linear map from the direct product of l vectors to R. We can therefore pull back

not only one-forms, but tensors with an arbitrary number of lower indices. The definition is

simply the action of the original tensor on the pushed-forward vectors:

(φ∗T )(V (1), V (2), . . . , V (l)) = T (φ∗V (1), φ∗V (2), . . . , φ∗V (l)) , (5.7)
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where Tα1···αl
is a (0, l) tensor on N . We can similarly push forward any (k, 0) tensor Sµ1···µk

by acting it on pulled-back one-forms:

(φ∗S)(ω(1), ω(2), . . . , ω(k)) = S(φ∗ω
(1), φ∗ω

(2), . . . , φ∗ω
(k)) . (5.8)

Fortunately, the matrix representations of the pushforward (5.4) and pullback (5.6) extend to

the higher-rank tensors simply by assigning one matrix to each index; thus, for the pullback

of a (0, l) tensor, we have

(φ∗T )µ1···µl
=
∂yα1

∂xµ1
· · · ∂y

αl

∂xµl
Tα1···αl

, (5.9)

while for the pushforward of a (k, 0) tensor we have

(φ∗S)α1···αk =
∂yα1

∂xµ1
· · · ∂y

αk

∂xµk
Sµ1···µk . (5.10)

Our complete picture is therefore:

φ*

φ
*(  )

(  )k
0 (  )k

0

l l
0 (  )0

φ
NM

Note that tensors with both upper and lower indices can generally be neither pushed forward

nor pulled back.

This machinery becomes somewhat less imposing once we see it at work in a simple

example. One common occurrence of a map between two manifolds is when M is actually a

submanifold of N ; then there is an obvious map from M to N which just takes an element

of M to the “same” element of N . Consider our usual example, the two-sphere embedded in

R3, as the locus of points a unit distance from the origin. If we put coordinates xµ = (θ, φ)

on M = S2 and yα = (x, y, z) on N = R3, the map φ : M → N is given by

φ(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) . (5.11)

In the past we have considered the metric ds2 = dx2 + dy2 + dz2 on R3, and said that it

induces a metric dθ2 + sin2 θ dφ2 on S2, just by substituting (5.11) into this flat metric on
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R3. We didn’t really justify such a statement at the time, but now we can do so. (Of course

it would be easier if we worked in spherical coordinates on R3, but doing it the hard way is

more illustrative.) The matrix of partial derivatives is given by

∂yα

∂xµ
=
(

cos θ cosφ cos θ sin φ − sin θ
− sin θ sinφ sin θ cos φ 0

)
. (5.12)

The metric on S2 is obtained by simply pulling back the metric from R3,

(φ∗g)µν =
∂yα

∂xµ

∂yβ

∂xν
gαβ

=
(

1 0
0 sin2 θ

)
, (5.13)

as you can easily check. Once again, the answer is the same as you would get by naive

substitution, but now we know why.

We have been careful to emphasize that a map φ : M → N can be used to push certain

things forward and pull other things back. The reason why it generally doesn’t work both

ways can be traced to the fact that φ might not be invertible. If φ is invertible (and both φ

and φ−1 are smooth, which we always implicitly assume), then it defines a diffeomorphism

between M and N . In this case M and N are the same abstract manifold. The beauty of

diffeomorphisms is that we can use both φ and φ−1 to move tensors from M to N ; this will

allow us to define the pushforward and pullback of arbitrary tensors. Specifically, for a (k, l)

tensor field T µ1···µk
ν1···µl

on M , we define the pushforward by

(φ∗T )(ω(1), . . . , ω(k), V (1), . . . , V (l)) = T (φ∗ω
(1), . . . , φ∗ω

(k), [φ−1]∗V (1), . . . , [φ−1]∗V (l)) ,

(5.14)

where the ω(i)’s are one-forms on N and the V (i)’s are vectors on N . In components this

becomes

(φ∗T )α1···αk
β1···βl

=
∂yα1

∂xµ1
· · · ∂y

αk

∂xµk

∂xν1

∂yβ1
· · · ∂x

νl

∂yβl
T µ1···µk

ν1···νl
. (5.15)

The appearance of the inverse matrix ∂xν/∂yβ is legitimate because φ is invertible. Note

that we could also define the pullback in the obvious way, but there is no need to write

separate equations because the pullback φ∗ is the same as the pushforward via the inverse

map, [φ−1]∗.

We are now in a position to explain the relationship between diffeomorphisms and coordi-

nate transformations. The relationship is that they are two different ways of doing precisely

the same thing. If you like, diffeomorphisms are “active coordinate transformations”, while

traditional coordinate transformations are “passive.” Consider an n-dimensional manifold

M with coordinate functions xµ : M → Rn. To change coordinates we can either simply

introduce new functions yµ : M → Rn (“keep the manifold fixed, change the coordinate
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maps”), or we could just as well introduce a diffeomorphism φ : M → M , after which the

coordinates would just be the pullbacks (φ∗x)
µ : M → Rn (“move the points on the man-

ifold, and then evaluate the coordinates of the new points”). In this sense, (5.15) really is

the tensor transformation law, just thought of from a different point of view.

φ
*

φ

n

(    x)

x

y

µ

µ

µ

R

M

Since a diffeomorphism allows us to pull back and push forward arbitrary tensors, it

provides another way of comparing tensors at different points on a manifold. Given a diffeo-

morphism φ : M →M and a tensor field T µ1···µk
ν1···µl

(x), we can form the difference between

the value of the tensor at some point p and φ∗[T
µ1···µk

ν1···µl
(φ(p))], its value at φ(p) pulled

back to p. This suggests that we could define another kind of derivative operator on tensor

fields, one which categorizes the rate of change of the tensor as it changes under the diffeo-

morphism. For that, however, a single discrete diffeomorphism is insufficient; we require a

one-parameter family of diffeomorphisms, φt. This family can be thought of as a smooth

map R×M →M , such that for each t ∈ R φt is a diffeomorphism and φs ◦φt = φs+t. Note

that this last condition implies that φ0 is the identity map.

One-parameter families of diffeomorphisms can be thought of as arising from vector fields

(and vice-versa). If we consider what happens to the point p under the entire family φt, it is

clear that it describes a curve in M ; since the same thing will be true of every point on M ,

these curves fill the manifold (although there can be degeneracies where the diffeomorphisms

have fixed points). We can define a vector field V µ(x) to be the set of tangent vectors to

each of these curves at every point, evaluated at t = 0. An example on S2 is provided by

the diffeomorphism φt(θ, φ) = (θ, φ+ t).

We can reverse the construction to define a one-parameter family of diffeomorphisms

from any vector field. Given a vector field V µ(x), we define the integral curves of the

vector field to be those curves xµ(t) which solve

dxµ

dt
= V µ . (5.16)

Note that this familiar-looking equation is now to be interpreted in the opposite sense from

our usual way — we are given the vectors, from which we define the curves. Solutions to
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φ

(5.16) are guaranteed to exist as long as we don’t do anything silly like run into the edge of

our manifold; any standard differential geometry text will have the proof, which amounts to

finding a clever coordinate system in which the problem reduces to the fundamental theorem

of ordinary differential equations. Our diffeomorphisms φt represent “flow down the integral

curves,” and the associated vector field is referred to as the generator of the diffeomorphism.

(Integral curves are used all the time in elementary physics, just not given the name. The

“lines of magnetic flux” traced out by iron filings in the presence of a magnet are simply the

integral curves of the magnetic field vector B.)

Given a vector field V µ(x), then, we have a family of diffeomorphisms parameterized by

t, and we can ask how fast a tensor changes as we travel down the integral curves. For each

t we can define this change as

∆tT
µ1···µk

ν1···µl
(p) = φt∗[T

µ1···µk
ν1···µl

(φt(p))] − T µ1···µk
ν1···µl

(p) . (5.17)

Note that both terms on the right hand side are tensors at p.

T[   (p)]φt

(p)

p

[T(    (p))]φt tφ
*

T(p)

x  (t)µ

φt

M

We then define the Lie derivative of the tensor along the vector field as

£V T µ1 ···µk
ν1 ···µl

= lim
t→0

(
∆tT

µ1 ···µk
ν1 ···µl

t

)
. (5.18)
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The Lie derivative is a map from (k, l) tensor fields to (k, l) tensor fields, which is manifestly

independent of coordinates. Since the definition essentially amounts to the conventional

definition of an ordinary derivative applied to the component functions of the tensor, it

should be clear that it is linear,

£V (aT + bS ) = a£V T + b£V S , (5.19)

and obeys the Leibniz rule,

£V (T ⊗ S ) = (£V T ) ⊗ S + T ⊗ (£V S ) , (5.20)

where S and T are tensors and a and b are constants. The Lie derivative is in fact a more

primitive notion than the covariant derivative, since it does not require specification of a

connection (although it does require a vector field, of course). A moment’s reflection shows

that it reduces to the ordinary derivative on functions,

£V f = V (f ) = V µ∂µf . (5.21)

To discuss the action of the Lie derivative on tensors in terms of other operations we

know, it is convenient to choose a coordinate system adapted to our problem. Specifically,

we will work in coordinates xµ for which x1 is the parameter along the integral curves (and

the other coordinates are chosen any way we like). Then the vector field takes the form

V = ∂/∂x1; that is, it has components V µ = (1, 0, 0, . . . , 0). The magic of this coordinate

system is that a diffeomorphism by t amounts to a coordinate transformation from xµ to

yµ = (x1 + t, x2, . . . , xn). Thus, from (5.6) the pullback matrix is simply

(φt∗)µ
ν = δν

µ , (5.22)

and the components of the tensor pulled back from φt(p) to p are simply

φt∗[T
µ1···µk

ν1···µl
(φt(p))] = T µ1···µk

ν1···µl
(x1 + t, x2, . . . , xn) . (5.23)

In this coordinate system, then, the Lie derivative becomes

£V T µ1 ···µk

ν1 ···µl
=

∂

∂x 1
T µ1 ···µk

ν1 ···µl
, (5.24)

and specifically the derivative of a vector field Uµ(x) is

£V U µ =
∂U µ

∂x 1
. (5.25)

Although this expression is clearly not covariant, we know that the commutator [V, U ] is a

well-defined tensor, and in this coordinate system

[V, U ]µ = V ν∂νU
µ − Uν∂νV

µ
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=
∂Uµ

∂x1
. (5.26)

Therefore the Lie derivative of U with respect to V has the same components in this coordi-

nate system as the commutator of V and U ; but since both are vectors, they must be equal

in any coordinate system:

£V U µ = [V ,U ]µ . (5.27)

As an immediate consequence, we have £V S = −£W V . It is because of (5.27) that the

commutator is sometimes called the “Lie bracket.”

To derive the action of £V on a one-form ωµ, begin by considering the action on the

scalar ωµU
µ for an arbitrary vector field Uµ. First use the fact that the Lie derivative with

respect to a vector field reduces to the action of the vector itself when applied to a scalar:

£V (ωµU
µ) = V (ωµU

µ)

= V ν∂ν(ωµU
µ)

= V ν(∂νωµ)U
µ + V νωµ(∂νU

µ) . (5.28)

Then use the Leibniz rule on the original scalar:

£V (ωµU
µ) = (£Vω)µU

µ + ωµ(£V U )µ

= (£Vω)µU
µ + ωµV

ν∂νU
µ − ωµU

ν∂νV
µ . (5.29)

Setting these expressions equal to each other and requiring that equality hold for arbitrary

Uµ, we see that

£Vωµ = V ν∂νωµ + (∂µV
ν)ων , (5.30)

which (like the definition of the commutator) is completely covariant, although not manifestly

so.

By a similar procedure we can define the Lie derivative of an arbitrary tensor field. The

answer can be written

£V T µ1 µ2 ···µk

ν1 ν2 ···νl
= V σ∂σT

µ1µ2···µk
ν1ν2···νl

−(∂λV
µ1)T λµ2···µk

ν1ν2···νl
− (∂λV

µ2)T µ1λ···µk
ν1ν2···νl

− · · ·
+(∂ν1V

λ)T µ1µ2···µk
λν2···νl

+ (∂ν2V
λ)T µ1µ2···µk

ν1λ···νl
+ · · · .(5.31)

Once again, this expression is covariant, despite appearances. It would undoubtedly be

comforting, however, to have an equivalent expression that looked manifestly tensorial. In

fact it turns out that we can write

£V T µ1 µ2 ···µk

ν1ν2 ···νl
= V σ∇σT

µ1µ2···µk
ν1ν2···νl

−(∇λV
µ1)T λµ2···µk

ν1ν2···νl
− (∇λV

µ2)T µ1λ···µk
ν1ν2···νl

− · · ·
+(∇ν1V

λ)T µ1µ2···µk
λν2···νl

+ (∇ν2V
λ)T µ1µ2···µk

ν1λ···νl
+ · · · ,(5.32)
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where ∇µ represents any symmetric (torsion-free) covariant derivative (including, of course,

one derived from a metric). You can check that all of the terms which would involve connec-

tion coefficients if we were to expand (5.32) would cancel, leaving only (5.31). Both versions

of the formula for a Lie derivative are useful at different times. A particularly useful formula

is for the Lie derivative of the metric:

£V gµν = V σ∇σgµν + (∇µV
λ)gλν + (∇νV

λ)gµλ

= ∇µVν + ∇νVµ

= 2∇(µVν) , (5.33)

where ∇µ is the covariant derivative derived from gµν .

Let’s put some of these ideas into the context of general relativity. You will often hear it

proclaimed that GR is a “diffeomorphism invariant” theory. What this means is that, if the

universe is represented by a manifold M with metric gµν and matter fields ψ, and φ : M →
M is a diffeomorphism, then the sets (M, gµν , ψ) and (M,φ∗gµν , φ∗ψ) represent the same

physical situation. Since diffeomorphisms are just active coordinate transformations, this is

a highbrow way of saying that the theory is coordinate invariant. Although such a statement

is true, it is a source of great misunderstanding, for the simple fact that it conveys very little

information. Any semi-respectable theory of physics is coordinate invariant, including those

based on special relativity or Newtonian mechanics; GR is not unique in this regard. When

people say that GR is diffeomorphism invariant, more likely than not they have one of two

(closely related) concepts in mind: the theory is free of “prior geometry”, and there is no

preferred coordinate system for spacetime. The first of these stems from the fact that the

metric is a dynamical variable, and along with it the connection and volume element and

so forth. Nothing is given to us ahead of time, unlike in classical mechanics or SR. As

a consequence, there is no way to simplify life by sticking to a specific coordinate system

adapted to some absolute elements of the geometry. This state of affairs forces us to be very

careful; it is possible that two purportedly distinct configurations (of matter and metric)

in GR are actually “the same”, related by a diffeomorphism. In a path integral approach

to quantum gravity, where we would like to sum over all possible configurations, special

care must be taken not to overcount by allowing physically indistinguishable configurations

to contribute more than once. In SR or Newtonian mechanics, meanwhile, the existence

of a preferred set of coordinates saves us from such ambiguities. The fact that GR has no

preferred coordinate system is often garbled into the statement that it is coordinate invariant

(or “generally covariant”); both things are true, but one has more content than the other.

On the other hand, the fact of diffeomorphism invariance can be put to good use. Recall

that the complete action for gravity coupled to a set of matter fields ψi is given by a sum of

the Hilbert action for GR plus the matter action,

S =
1

8πG
SH [gµν ] + SM [gµν , ψ

i] . (5.34)
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The Hilbert action SH is diffeomorphism invariant when considered in isolation, so the matter

action SM must also be if the action as a whole is to be invariant. We can write the variation

in SM under a diffeomorphism as

δSM =
∫
dnx

δSM

δgµν
δgµν +

∫
dnx

δSM

δψi
δψi . (5.35)

We are not considering arbitrary variations of the fields, only those which result from a

diffeomorphism. Nevertheless, the matter equations of motion tell us that the variation of

SM with respect to ψi will vanish for any variation (since the gravitational part of the action

doesn’t involve the matter fields). Hence, for a diffeomorphism invariant theory the first

term on the right hand side of (5.35) must vanish. If the diffeomorphism in generated by a

vector field V µ(x), the infinitesimal change in the metric is simply given by its Lie derivative

along V µ; by (5.33) we have

δgµν = £V gµν

= 2∇(µVν) . (5.36)

Setting δSM = 0 then implies

0 =
∫
dnx

δSM

δgµν
∇µVν

= −
∫
dnx

√−gVν∇µ

(
1√−g

δSM

δgµν

)
, (5.37)

where we are able to drop the symmetrization of ∇(µVν) since δSM/δgµν is already symmetric.

Demanding that (5.37) hold for diffeomorphisms generated by arbitrary vector fields V µ, and

using the definition (4.70) of the energy-momentum tensor, we obtain precisely the law of

energy-momentum conservation,

∇µT
µν = 0 . (5.38)

This is why we claimed earlier that the conservation of Tµν was more than simply a conse-

quence of the Principle of Equivalence; it is much more secure than that, resting only on the

diffeomorphism invariance of the theory.

There is one more use to which we will put the machinery we have set up in this section:

symmetries of tensors. We say that a diffeomorphism φ is a symmetry of some tensor T if

the tensor is invariant after being pulled back under φ:

φ∗T = T . (5.39)

Although symmetries may be discrete, it is more common to have a one-parameter family

of symmetries φt. If the family is generated by a vector field V µ(x), then (5.39) amounts to

£V T = 0 . (5.40)
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By (5.25), one implication of a symmetry is that, if T is symmetric under some one-parameter

family of diffeomorphisms, we can always find a coordinate system in which the components

of T are all independent of one of the coordinates (the integral curve coordinate of the

vector field). The converse is also true; if all of the components are independent of one

of the coordinates, then the partial derivative vector field associated with that coordinate

generates a symmetry of the tensor.

The most important symmetries are those of the metric, for which φ∗gµν = gµν . A

diffeomorphism of this type is called an isometry. If a one-parameter family of isometries

is generated by a vector field V µ(x), then V µ is known as a Killing vector field. The

condition that V µ be a Killing vector is thus

£V gµν = 0 , (5.41)

or from (5.33),

∇(µVν) = 0 . (5.42)

This last version is Killing’s equation. If a spacetime has a Killing vector, then we know

we can find a coordinate system in which the metric is independent of one of the coordinates.

By far the most useful fact about Killing vectors is that Killing vectors imply conserved

quantities associated with the motion of free particles. If xµ(λ) is a geodesic with tangent

vector Uµ = dxµ/dλ, and V µ is a Killing vector, then

Uν∇ν(VµU
µ) = UνUµ∇νVµ + VµU

ν∇νU
µ

= 0 , (5.43)

where the first term vanishes from Killing’s equation and the second from the fact that xµ(λ)

is a geodesic. Thus, the quantity VµU
µ is conserved along the particle’s worldline. This can

be understood physically: by definition the metric is unchanging along the direction of

the Killing vector. Loosely speaking, therefore, a free particle will not feel any “forces” in

this direction, and the component of its momentum in that direction will consequently be

conserved.

Long ago we referred to the concept of a space with maximal symmetry, without offering

a rigorous definition. The rigorous definition is that a maximally symmetric space is one

which possesses the largest possible number of Killing vectors, which on an n-dimensional

manifold is n(n+ 1)/2. We will not prove this statement, but it is easy to understand at an

informal level. Consider the Euclidean space Rn, where the isometries are well known to us:

translations and rotations. In general there will be n translations, one for each direction we

can move. There will also be n(n− 1)/2 rotations; for each of n dimensions there are n− 1

directions in which we can rotate it, but we must divide by two to prevent overcounting

(rotating x into y and rotating y into x are two versions of the same thing). We therefore
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have

n +
n(n− 1)

2
=
n(n+ 1)

2
(5.44)

independent Killing vectors. The same kind of counting argument applies to maximally

symmetric spaces with curvature (such as spheres) or a non-Euclidean signature (such as

Minkowski space), although the details are marginally different.

Although it may or may not be simple to actually solve Killing’s equation in any given

spacetime, it is frequently possible to write down some Killing vectors by inspection. (Of

course a “generic” metric has no Killing vectors at all, but to keep things simple we often deal

with metrics with high degrees of symmetry.) For example in R2 with metric ds2 = dx2+dy2,

independence of the metric components with respect to x and y immediately yields two

Killing vectors:

Xµ = (1, 0) ,

Y µ = (0, 1) . (5.45)

These clearly represent the two translations. The one rotation would correspond to the

vector R = ∂/∂θ if we were in polar coordinates; in Cartesian coordinates this becomes

Rµ = (−y, x) . (5.46)

You can check for yourself that this actually does solve Killing’s equation.

Note that in n ≥ 2 dimensions, there can be more Killing vectors than dimensions. This

is because a set of Killing vector fields can be linearly independent, even though at any one

point on the manifold the vectors at that point are linearly dependent. It is trivial to show

(so you should do it yourself) that a linear combination of Killing vectors with constant

coefficients is still a Killing vector (in which case the linear combination does not count as

an independent Killing vector), but this is not necessarily true with coefficients which vary

over the manifold. You will also show that the commutator of two Killing vector fields is a

Killing vector field; this is very useful to know, but it may be the case that the commutator

gives you a vector field which is not linearly independent (or it may simply vanish). The

problem of finding all of the Killing vectors of a metric is therefore somewhat tricky, as it is

sometimes not clear when to stop looking.
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6 Weak Fields and Gravitational Radiation

When we first derived Einstein’s equations, we checked that we were on the right track by

considering the Newtonian limit. This amounted to the requirements that the gravitational

field be weak, that it be static (no time derivatives), and that test particles be moving slowly.

In this section we will consider a less restrictive situation, in which the field is still weak but

it can vary with time, and there are no restrictions on the motion of test particles. This

will allow us to discuss phenomena which are absent or ambiguous in the Newtonian theory,

such as gravitational radiation (where the field varies with time) and the deflection of light

(which involves fast-moving particles).

The weakness of the gravitational field is once again expressed as our ability to decompose

the metric into the flat Minkowski metric plus a small perturbation,

gµν = ηµν + hµν , |hµν | << 1 . (6.1)

We will restrict ourselves to coordinates in which ηµν takes its canonical form, ηµν =

diag(−1,+1,+1,+1). The assumption that hµν is small allows us to ignore anything that is

higher than first order in this quantity, from which we immediately obtain

gµν = ηµν − hµν , (6.2)

where hµν = ηµρηνσhρσ. As before, we can raise and lower indices using ηµν and ηµν , since

the corrections would be of higher order in the perturbation. In fact, we can think of

the linearized version of general relativity (where effects of higher than first order in hµν

are neglected) as describing a theory of a symmetric tensor field hµν propagating on a flat

background spacetime. This theory is Lorentz invariant in the sense of special relativity;

under a Lorentz transformation xµ′

= Λµ′

µx
µ, the flat metric ηµν is invariant, while the

perturbation transforms as

hµ′ν′ = Λµ′

µΛν′

νhµν . (6.3)

(Note that we could have considered small perturbations about some other background

spacetime besides Minkowski space. In that case the metric would have been written gµν =

g(0)
µν + hµν , and we would have derived a theory of a symmetric tensor propagating on the

curved space with metric g(0)
µν . Such an approach is necessary, for example, in cosmology.)

We want to find the equation of motion obeyed by the perturbations hµν , which come by

examining Einstein’s equations to first order. We begin with the Christoffel symbols, which

are given by

Γρ
µν =

1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν)

142



6 WEAK FIELDS AND GRAVITATIONAL RADIATION 143

=
1

2
ηρλ(∂µhνλ + ∂νhλµ − ∂λhµν) . (6.4)

Since the connection coefficients are first order quantities, the only contribution to the Rie-

mann tensor will come from the derivatives of the Γ’s, not the Γ2 terms. Lowering an index

for convenience, we obtain

Rµνρσ = ηµλ∂ρΓ
λ
νσ − ηµλ∂σΓλ

νρ

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) . (6.5)

The Ricci tensor comes from contracting over µ and ρ, giving

Rµν =
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh− 2hµν) , (6.6)

which is manifestly symmetric in µ and ν. In this expression we have defined the trace of

the perturbation as h = ηµνhµν = hµ
µ, and the D’Alembertian is simply the one from flat

space, 2 = −∂2
t + ∂2

x + ∂2
y + ∂2

z . Contracting again to obtain the Ricci scalar yields

R = ∂µ∂νh
µν − 2h . (6.7)

Putting it all together we obtain the Einstein tensor:

Gµν = Rµν −
1

2
ηµνR

=
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh− 2hµν − ηµν∂µ∂νh

µν + ηµν2h) . (6.8)

Consistent with our interpretation of the linearized theory as one describing a symmetric

tensor on a flat background, the linearized Einstein tensor (6.8) can be derived by varying

the following Lagrangian with respect to hµν :

L =
1

2

[
(∂µh

µν)(∂νh) − (∂µh
ρσ)(∂ρh

µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ) − 1

2
ηµν(∂µh)(∂νh)

]
. (6.9)

I will spare you the details.

The linearized field equation is of course Gµν = 8πGTµν , where Gµν is given by (6.8)

and Tµν is the energy-momentum tensor, calculated to zeroth order in hµν . We do not

include higher-order corrections to the energy-momentum tensor because the amount of

energy and momentum must itself be small for the weak-field limit to apply. In other words,

the lowest nonvanishing order in Tµν is automatically of the same order of magnitude as the

perturbation. Notice that the conservation law to lowest order is simply ∂µT
µν = 0. We will

most often be concerned with the vacuum equations, which as usual are just Rµν = 0, where

Rµν is given by (6.6).
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With the linearized field equations in hand, we are almost prepared to set about solving

them. First, however, we should deal with the thorny issue of gauge invariance. This issue

arises because the demand that gµν = ηµν + hµν does not completely specify the coordinate

system on spacetime; there may be other coordinate systems in which the metric can still

be written as the Minkowski metric plus a small perturbation, but the perturbation will be

different. Thus, the decomposition of the metric into a flat background plus a perturbation

is not unique.

We can think about this from a highbrow point of view. The notion that the linearized

theory can be thought of as one governing the behavior of tensor fields on a flat background

can be formalized in terms of a “background spacetime” Mb, a “physical spacetime” Mp,

and a diffeomorphism φ : Mb → Mp. As manifolds Mb and Mp are “the same” (since

they are diffeomorphic), but we imagine that they possess some different tensor fields; on

Mb we have defined the flat Minkowski metric ηµν , while on Mp we have some metric gαβ

which obeys Einstein’s equations. (We imagine that Mb is equipped with coordinates xµ and

Mp is equipped with coordinates yα, although these will not play a prominent role.) The

diffeomorphism φ allows us to move tensors back and forth between the background and

physical spacetimes. Since we would like to construct our linearized theory as one taking

place on the flat background spacetime, we are interested in the pullback (φ∗g)µν of the

physical metric. We can define the perturbation as the difference between the pulled-back

physical metric and the flat one:

hµν = (φ∗g)µν − ηµν . (6.10)

From this definition, there is no reason for the components of hµν to be small; however, if the

gravitational fields onMp are weak, then for some diffeomorphisms φ we will have |hµν | << 1.

We therefore limit our attention only to those diffeomorphisms for which this is true. Then

the fact that gαβ obeys Einstein’s equations on the physical spacetime means that hµν will

obey the linearized equations on the background spacetime (since φ, as a diffeomorphism,

can be used to pull back Einstein’s equations themselves).

φ
*

φ
*

M M
φb p

(    g)µν

gαβ
η µν

In this language, the issue of gauge invariance is simply the fact that there are a large

number of permissible diffeomorphisms between Mb and Mp (where “permissible” means
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that the perturbation is small). Consider a vector field ξµ(x) on the background spacetime.

This vector field generates a one-parameter family of diffeomorphisms ψǫ : Mb → Mb. For

ǫ sufficiently small, if φ is a diffeomorphism for which the perturbation defined by (6.10) is

small than so will (φ ◦ ψǫ) be, although the perturbation will have a different value.

(      ψ  )φ ε

(      ψ  )φ ε

M Mb p

ψ

*

ε
ξ µ

Specifically, we can define a family of perturbations parameterized by ǫ:

h(ǫ)
µν = [(φ ◦ ψǫ)∗g]µν − ηµν

= [ψǫ∗(φ∗g)]µν − ηµν . (6.11)

The second equality is based on the fact that the pullback under a composition is given by

the composition of the pullbacks in the opposite order, which follows from the fact that the

pullback itself moves things in the opposite direction from the original map. Plugging in the

relation (6.10), we find

h(ǫ)
µν = ψǫ∗(h + η)µν − ηµν

= ψǫ∗(hµν) + ψǫ∗(ηµν) − ηµν (6.12)

(since the pullback of the sum of two tensors is the sum of the pullbacks). Now we use our

assumption that ǫ is small; in this case ψǫ∗(hµν) will be equal to hµν to lowest order, while

the other two terms give us a Lie derivative:

h(ǫ)
µν = ψǫ∗(hµν) + ǫ

[
ψǫ∗(ηµν) − ηµν

ǫ

]
= hµν + ǫ£ξηµν

= hµν + 2ǫ∂(µξν) . (6.13)

The last equality follows from our previous computation of the Lie derivative of the metric,

(5.33), plus the fact that covariant derivatives are simply partial derivatives to lowest order.

The infinitesimal diffeomorphisms φǫ provide a different representation of the same phys-

ical situation, while maintaining our requirement that the perturbation be small. Therefore,

the result (6.12) tells us what kind of metric perturbations denote physically equivalent

spacetimes — those related to each other by 2ǫ∂(µξν), for some vector ξµ. The invariance of
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our theory under such transformations is analogous to traditional gauge invariance of elec-

tromagnetism under Aµ → Aµ + ∂µλ. (The analogy is different from the previous analogy

we drew with electromagnetism, relating local Lorentz transformations in the orthonormal-

frame formalism to changes of basis in an internal vector bundle.) In electromagnetism the

invariance comes about because the field strength Fµν = ∂µAν − ∂νAµ is left unchanged

by gauge transformations; similarly, we find that the transformation (6.13) changes the lin-

earized Riemann tensor by

δRµνρσ =
1

2
(∂ρ∂ν∂µξσ + ∂ρ∂ν∂σξµ + ∂σ∂µ∂νξρ + ∂σ∂µ∂ρξν

−∂σ∂ν∂µξρ − ∂σ∂ν∂ρξµ − ∂ρ∂µ∂νξσ − ∂ρ∂µ∂σξν)

= 0 . (6.14)

Our abstract derivation of the appropriate gauge transformation for the metric perturba-

tion is verified by the fact that it leaves the curvature (and hence the physical spacetime)

unchanged.

Gauge invariance can also be understood from the slightly more lowbrow but considerably

more direct route of infinitesimal coordinate transformations. Our diffeomorphism ψǫ can

be thought of as changing coordinates from xµ to xµ − ǫξµ. (The minus sign, which is

unconventional, comes from the fact that the “new” metric is pulled back from a small

distance forward along the integral curves, which is equivalent to replacing the coordinates

by those a small distance backward along the curves.) Following through the usual rules for

transforming tensors under coordinate transformations, you can derive precisely (6.13) —

although you have to cheat somewhat by equating components of tensors in two different

coordinate systems. See Schutz or Weinberg for an example.

When faced with a system that is invariant under some kind of gauge transformations,

our first instinct is to fix a gauge. We have already discussed the harmonic coordinate

system, and will return to it now in the context of the weak field limit. Recall that this

gauge was specified by 2xµ = 0, which we showed was equivalent to

gµνΓρ
µν = 0 . (6.15)

In the weak field limit this becomes

1

2
ηµνηλρ(∂µhνλ + ∂νhλµ − ∂λhµν) = 0 , (6.16)

or

∂µh
µ

λ − 1

2
∂λh = 0 . (6.17)

This condition is also known as Lorentz gauge (or Einstein gauge or Hilbert gauge or de Don-

der gauge or Fock gauge). As before, we still have some gauge freedom remaining, since we

can change our coordinates by (infinitesimal) harmonic functions.
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In this gauge, the linearized Einstein equations Gµν = 8πGTµν simplify somewhat, to

2hµν −
1

2
ηµν2h = −16πGTµν , (6.18)

while the vacuum equations Rµν = 0 take on the elegant form

2hµν = 0 , (6.19)

which is simply the conventional relativistic wave equation. Together, (6.19) and (6.17)

determine the evolution of a disturbance in the gravitational field in vacuum in the harmonic

gauge.

It is often convenient to work with a slightly different description of the metric pertur-

bation. We define the “trace-reversed” perturbation h̄µν by

h̄µν = hµν −
1

2
ηµνh . (6.20)

The name makes sense, since h̄µ
µ = −hµ

µ. (The Einstein tensor is simply the trace-reversed

Ricci tensor.) In terms of h̄µν the harmonic gauge condition becomes

∂µh̄
µ

λ = 0 . (6.21)

The full field equations are

2h̄µν = −16πGTµν , (6.22)

from which it follows immediately that the vacuum equations are

2h̄µν = 0 . (6.23)

From (6.22) and our previous exploration of the Newtonian limit, it is straightforward to

derive the weak-field metric for a stationary spherical source such as a planet or star. Recall

that previously we found that Einstein’s equations predicted that h00 obeyed the Poisson

equation (4.51) in the weak-field limit, which implied

h00 = −2Φ , (6.24)

where Φ is the conventional Newtonian potential, Φ = −GM/r. Let us now assume that

the energy-momentum tensor of our source is dominated by its rest energy density ρ = T00.

(Such an assumption is not generally necessary in the weak-field limit, but will certainly

hold for a planet or star, which is what we would like to consider for the moment.) Then

the other components of Tµν will be much smaller than T00, and from (6.22) the same must

hold for h̄µν . If h̄00 is much larger than h̄ij , we will have

h = −h̄ = −ηµνh̄µν = h̄00 , (6.25)
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and then from (6.20) we immediately obtain

h̄00 = 2h00 = −4Φ . (6.26)

The other components of h̄µν are negligible, from which we can derive

hi0 = h̄i0 −
1

2
ηi0h̄ = 0 , (6.27)

and

hij = h̄ij −
1

2
ηijh̄ = −2Φδij . (6.28)

The metric for a star or planet in the weak-field limit is therefore

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)(dx2 + dy2 + dz2) . (6.29)

A somewhat less simplistic application of the weak-field limit is to gravitational radiation.

Those of you familiar with the analogous problem in electromagnetism will notice that the

procedure is almost precisely the same. We begin by considering the linearized equations in

vacuum (6.23). Since the flat-space D’Alembertian has the form 2 = −∂2
t + ∇2, the field

equation is in the form of a wave equation for h̄µν . As all good physicists know, the thing to

do when faced with such an equation is to write down complex-valued solutions, and then

take the real part at the very end of the day. So we recognize that a particularly useful set

of solutions to this wave equation are the plane waves, given by

h̄µν = Cµνe
ikσxσ

, (6.30)

where Cµν is a constant, symmetric, (0, 2) tensor, and kσ is a constant vector known as the

wave vector. To check that it is a solution, we plug in:

0 = 2h̄µν

= ηρσ∂ρ∂σh̄µν

= ηρσ∂ρ(ikσh̄µν)

= −ηρσkρkσh̄µν

= −kσk
σh̄µν . (6.31)

Since (for an interesting solution) not all of the components of hµν will be zero everywhere,

we must have

kσk
σ = 0 . (6.32)

The plane wave (6.30) is therefore a solution to the linearized equations if the wavevector

is null; this is loosely translated into the statement that gravitational waves propagate at

the speed of light. The timelike component of the wave vector is often referred to as the
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frequency of the wave, and we write kσ = (ω, k1, k2, k3). (More generally, an observer

moving with four-velocity Uµ would observe the wave to have a frequency ω = −kµU
µ.)

Then the condition that the wave vector be null becomes

ω2 = δijk
ikj . (6.33)

Of course our wave is far from the most general solution; any (possibly infinite) number of

distinct plane waves can be added together and will still solve the linear equation (6.23).

Indeed, any solution can be written as such a superposition.

There are a number of free parameters to specify the wave: ten numbers for the coefficients

Cµν and three for the null vector kσ. Much of these are the result of coordinate freedom and

gauge freedom, which we now set about eliminating. We begin by imposing the harmonic

gauge condition, (6.21). This implies that

0 = ∂µh̄
µν

= ∂µ(Cµνeikσxσ

)

= iCµνkµe
ikσxσ

, (6.34)

which is only true if

kµC
µν = 0 . (6.35)

We say that the wave vector is orthogonal to Cµν . These are four equations, which reduce

the number of independent components of Cµν from ten to six.

Although we have now imposed the harmonic gauge condition, there is still some coor-

dinate freedom left. Remember that any coordinate transformation of the form

xµ → xµ + ζµ (6.36)

will leave the harmonic coordinate condition

2xµ = 0 (6.37)

satisfied as long as we have

2ζµ = 0 . (6.38)

Of course, (6.38) is itself a wave equation for ζµ; once we choose a solution, we will have

used up all of our gauge freedom. Let’s choose the following solution:

ζµ = Bµe
ikσxσ

, (6.39)

where kσ is the wave vector for our gravitational wave and the Bµ are constant coefficients.

We now claim that this remaining freedom allows us to convert from whatever coefficients

C(old)
µν that characterize our gravitational wave to a new set C(new)

µν , such that

C(new)µ
µ = 0 (6.40)
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and

C
(new)
0ν = 0 . (6.41)

(Actually this last condition is both a choice of gauge and a choice of Lorentz frame. The

choice of gauge sets UµC(new)
µν = 0 for some constant timelike vector Uµ, while the choice of

frame makes Uµ point along the time axis.) Let’s see how this is possible by solving explicitly

for the necessary coefficients Bµ. Under the transformation (6.36), the resulting change in

our metric perturbation can be written

h(new)
µν = h(old)

µν − ∂µζν − ∂νζµ , (6.42)

which induces a change in the trace-reversed perturbation,

h̄(new)
µν = h(new)

µν − 1

2
ηµνh

(new)

= h(old)
µν − ∂µζν − ∂νζµ − 1

2
ηµν(h

(old) − 2∂λζ
λ)

= h̄(old)
µν − ∂µζν − ∂νζµ + ηµν∂λζ

λ . (6.43)

Using the specific forms (6.30) for the solution and (6.39) for the transformation, we obtain

C(new)
µν = C(old)

µν − ikµBν − ikνBµ + iηµνkλB
λ . (6.44)

Imposing (6.40) therefore means

0 = C(old)µ
µ + 2ikλB

λ , (6.45)

or

kλB
λ =

i

2
C(old)µ

µ . (6.46)

Then we can impose (6.41), first for ν = 0:

0 = C
(old)
00 − 2ik0B0 − ikλB

λ

= C
(old)
00 − 2ik0B0 +

1

2
C(old)µ

µ , (6.47)

or

B0 = − i

2k0

(
C

(old)
00 +

1

2
C(old)µ

µ

)
. (6.48)

Then impose (6.41) for ν = j:

0 = C
(old)
0j − ik0Bj − ikjB0

= C
(old)
0j − ik0Bj − ikj

[ −i
2k0

(
C

(old)
00 +

1

2
C(old)µ

µ

)]
, (6.49)
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or

Bj =
i

2(k0)2

[
−2k0C

(old)
0j + kj

(
C

(old)
00 +

1

2
C(old)µ

µ

)]
. (6.50)

To check that these choices are mutually consistent, we should plug (6.48) and (6.50) back

into (6.40), which I will leave to you. Let us assume that we have performed this transfor-

mation, and refer to the new components C(new)
µν simply as Cµν .

Thus, we began with the ten independent numbers in the symmetric matrix Cµν . Choos-

ing harmonic gauge implied the four conditions (6.35), which brought the number of indepen-

dent components down to six. Using our remaining gauge freedom led to the one condition

(6.40) and the four conditions (6.41); but when ν = 0 (6.41) implies (6.35), so we have a

total of four additional constraints, which brings us to two independent components. We’ve

used up all of our possible freedom, so these two numbers represent the physical information

characterizing our plane wave in this gauge. This can be seen more explicitly by choosing

our spatial coordinates such that the wave is travelling in the x3 direction; that is,

kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω) , (6.51)

where we know that k3 = ω because the wave vector is null. In this case, kµCµν = 0 and

C0ν = 0 together imply

C3ν = 0 . (6.52)

The only nonzero components of Cµν are therefore C11, C12, C21, and C22. But Cµν is

traceless and symmetric, so in general we can write

Cµν =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 . (6.53)

Thus, for a plane wave in this gauge travelling in the x3 direction, the two components C11

and C12 (along with the frequency ω) completely characterize the wave.

In using up all of our gauge freedom, we have gone to a subgauge of the harmonic gauge

known as the transverse traceless gauge (or sometimes “radiation gauge”). The name

comes from the fact that the metric perturbation is traceless and perpendicular to the wave

vector. Of course, we have been working with the trace-reversed perturbation h̄µν rather

than the perturbation hµν itself; but since h̄µν is traceless (because Cµν is), and is equal to

the trace-reverse of hµν , in this gauge we have

h̄TT
µν = hTT

µν (transverse traceless gauge) . (6.54)

Therefore we can drop the bars over hµν , as long as we are in this gauge.
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One nice feature of the transverse traceless gauge is that if you are given the components

of a plane wave in some arbitrary gauge, you can easily convert them into the transverse

traceless components. We first define a tensor Pµν which acts as a projection operator:

Pµν = ηµν − nµnν . (6.55)

You can check that this projects vectors onto hyperplanes orthogonal to the unit vector nµ.

Here we take nµ to be a spacelike unit vector, which we choose to lie along the direction of

propagation of the wave:

n0 = 0 , nj = kj/ω . (6.56)

Then the transverse part of some perturbation hµν is simply the projection Pµ
ρPν

σhρσ, and

the transverse traceless part is obtained by subtracting off the trace:

hTT
µν = Pµ

ρPν
σhρσ − 1

2
PµνP

ρσhρσ . (6.57)

For details appropriate to more general cases, see the discussion in Misner, Thorne and

Wheeler.

To get a feeling for the physical effects due to gravitational waves, it is useful to consider

the motion of test particles in the presence of a wave. It is certainly insufficient to solve

for the trajectory of a single particle, since that would only tell us about the values of

the coordinates along the world line. (In fact, for any single particle we can find transverse

traceless coordinates in which the particle appears stationary to first order in hµν .) To obtain

a coordinate-independent measure of the wave’s effects, we consider the relative motion of

nearby particles, as described by the geodesic deviation equation. If we consider some nearby

particles with four-velocities described by a single vector field Uµ(x) and separation vector

Sµ, we have
D2

dτ 2
Sµ = Rµ

νρσU
νUρSσ . (6.58)

We would like to compute the left-hand side to first order in hµν . If we take our test

particles to be moving slowly then we can express the four-velocity as a unit vector in the

time direction plus corrections of order hµν and higher; but we know that the Riemann tensor

is already first order, so the corrections to Uν may be ignored, and we write

Uν = (1, 0, 0, 0) . (6.59)

Therefore we only need to compute Rµ
00σ, or equivalently Rµ00σ. From (6.5) we have

Rµ00σ =
1

2
(∂0∂0hµσ + ∂σ∂µh00 − ∂σ∂0hµ0 − ∂µ∂0hσ0) . (6.60)

But hµ0 = 0, so

Rµ00σ =
1

2
∂0∂0hµσ . (6.61)
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Meanwhile, for our slowly-moving particles we have τ = x0 = t to lowest order, so the

geodesic deviation equation becomes

∂2

∂t2
Sµ =

1

2
Sσ ∂

2

∂t2
hµ

σ . (6.62)

For our wave travelling in the x3 direction, this implies that only S1 and S2 will be affected

— the test particles are only disturbed in directions perpendicular to the wave vector. This

is of course familiar from electromagnetism, where the electric and magnetic fields in a plane

wave are perpendicular to the wave vector.

Our wave is characterized by the two numbers, which for future convenience we will

rename as C+ = C11 and C× = C12. Let’s consider their effects separately, beginning with

the case C× = 0. Then we have

∂2

∂t2
S1 =

1

2
S1 ∂

2

∂t2
(C+e

ikσxσ

) (6.63)

and
∂2

∂t2
S2 = −1

2
S2 ∂

2

∂t2
(C+e

ikσxσ

) . (6.64)

These can be immediately solved to yield, to lowest order,

S1 =
(
1 +

1

2
C+e

ikσxσ

)
S1(0) (6.65)

and

S2 =
(
1 − 1

2
C+e

ikσxσ

)
S2(0) . (6.66)

Thus, particles initially separated in the x1 direction will oscillate back and forth in the x1

direction, and likewise for those with an initial x2 separation. That is, if we start with a ring

of stationary particles in the x-y plane, as the wave passes they will bounce back and forth

in the shape of a “+”:

x

y

On the other hand, the equivalent analysis for the case where C+ = 0 but C× 6= 0 would

yield the solution

S1 = S1(0) +
1

2
C×e

ikσxσ

S2(0) (6.67)
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and

S2 = S2(0) +
1

2
C×e

ikσxσ

S1(0) . (6.68)

In this case the circle of particles would bounce back and forth in the shape of a “×”:

x

y

The notation C+ and C× should therefore be clear. These two quantities measure the two

independent modes of linear polarization of the gravitational wave. If we liked we could

consider right- and left-handed circularly polarized modes by defining

CR =
1√
2
(C+ + iC×) ,

CL =
1√
2
(C+ − iC×) . (6.69)

The effect of a pure CR wave would be to rotate the particles in a right-handed sense,

x

y

and similarly for the left-handed mode CL. (Note that the individual particles do not travel

around the ring; they just move in little epicycles.)

We can relate the polarization states of classical gravitational waves to the kinds of

particles we would expect to find upon quantization. The electromagnetic field has two in-

dependent polarization states which are described by vectors in the x-y plane; equivalently,

a single polarization mode is invariant under a rotation by 360◦ in this plane. Upon quan-

tization this theory yields the photon, a massless spin-one particle. The neutrino, on the

other hand, is also a massless particle, described by a field which picks up a minus sign

under rotations by 360◦; it is invariant under rotations of 720◦, and we say it has spin-1
2
.
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The general rule is that the spin S is related to the angle θ under which the polarization

modes are invariant by S = 360◦/θ. The gravitational field, whose waves propagate at the

speed of light, should lead to massless particles in the quantum theory. Noticing that the

polarization modes we have described are invariant under rotations of 180◦ in the x-y plane,

we expect the associated particles — “gravitons” — to be spin-2. We are a long way from

detecting such particles (and it would not be a surprise if we never detected them directly),

but any respectable quantum theory of gravity should predict their existence.

With plane-wave solutions to the linearized vacuum equations in our possession, it re-

mains to discuss the generation of gravitational radiation by sources. For this purpose it is

necessary to consider the equations coupled to matter,

2h̄µν = −16πGTµν . (6.70)

The solution to such an equation can be obtained using a Green’s function, in precisely the

same way as the analogous problem in electromagnetism. Here we will review the outline of

the method.

The Green’s function G(xσ − yσ) for the D’Alembertian operator 2 is the solution of the

wave equation in the presence of a delta-function source:

2xG(xσ − yσ) = δ(4)(xσ − yσ) , (6.71)

where 2x denotes the D’Alembertian with respect to the coordinates xσ. The usefulness of

such a function resides in the fact that the general solution to an equation such as (6.70)

can be written

h̄µν(x
σ) = −16πG

∫
G(xσ − yσ)Tµν(y

σ) d4y , (6.72)

as can be verified immediately. (Notice that no factors of
√−g are necessary, since our

background is simply flat spacetime.) The solutions to (6.71) have of course been worked

out long ago, and they can be thought of as either “retarded” or “advanced,” depending on

whether they represent waves travelling forward or backward in time. Our interest is in the

retarded Green’s function, which represents the accumulated effects of signals to the past of

the point under consideration. It is given by

G(xσ − yσ) = − 1

4π|x − y|δ[|x − y| − (x0 − y0)] θ(x0 − y0) . (6.73)

Here we have used boldface to denote the spatial vectors x = (x1, x2, x3) and y = (y1, y2, y3),

with norm |x − y| = [δij(x
i − yi)(xj − yj)]1/2. The theta function θ(x0 − y0) equals 1 when

x0 > y0, and zero otherwise. The derivation of (6.73) would take us too far afield, but it can

be found in any standard text on electrodynamics or partial differential equations in physics.
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Upon plugging (6.73) into (6.72), we can use the delta function to perform the integral

over y0, leaving us with

h̄µν(t,x) = 4G
∫

1

|x − y|Tµν(t− |x − y|,y) d3y , (6.74)

where t = x0. The term “retarded time” is used to refer to the quantity

tr = t− |x − y| . (6.75)

The interpretation of (6.74) should be clear: the disturbance in the gravitational field at (t,x)

is a sum of the influences from the energy and momentum sources at the point (tr,x − y)

on the past light cone.

t xi

y i

(t  , y  )i
r

Let us take this general solution and consider the case where the gravitational radiation

is emitted by an isolated source, fairly far away, comprised of nonrelativistic matter; these

approximations will be made more precise as we go on. First we need to set up some con-

ventions for Fourier transforms, which always make life easier when dealing with oscillatory

phenomena. Given a function of spacetime φ(t,x), we are interested in its Fourier transform

(and inverse) with respect to time alone,

φ̃(ω,x) =
1√
2π

∫
dt eiωtφ(t,x) ,

φ(t,x) =
1√
2π

∫
dω e−iωtφ̃(ω,x) . (6.76)

Taking the transform of the metric perturbation, we obtain

˜̄hµν(ω,x) =
1√
2π

∫
dt eiωth̄µν(t,x)
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=
4G√
2π

∫
dt d3y eiωt Tµν(t− |x − y|,y)

|x − y|
=

4G√
2π

∫
dtr d

3y eiωtreiω|x−y|Tµν(tr,y)

|x − y|

= 4G
∫
d3y eiω|x−y| T̃µν(ω,y)

|x − y| . (6.77)

In this sequence, the first equation is simply the definition of the Fourier transform, the

second line comes from the solution (6.74), the third line is a change of variables from t to

tr, and the fourth line is once again the definition of the Fourier transform.

We now make the approximations that our source is isolated, far away, and slowly moving.

This means that we can consider the source to be centered at a (spatial) distance R, with

the different parts of the source at distances R + δR such that δR << R. Since it is

slowly moving, most of the radiation emitted will be at frequencies ω sufficiently low that

δR << ω−1. (Essentially, light traverses the source much faster than the components of the

source itself do.)

observer

R

Rδ
source

Under these approximations, the term eiω|x−y|/|x−y| can be replaced by eiωR/R and brought

outside the integral. This leaves us with

˜̄hµν(ω,x) = 4G
eiωR

R

∫
d3y T̃µν(ω,y) . (6.78)

In fact there is no need to compute all of the components of ˜̄hµν(ω,x), since the harmonic

gauge condition ∂µh̄
µν(t,x) = 0 in Fourier space implies

˜̄h0ν =
i

ω
∂i
˜̄hiν . (6.79)

We therefore only need to concern ourselves with the spacelike components of ˜̄hµν(ω,x).

From (6.78) we therefore want to take the integral of the spacelike components of T̃µν(ω,y).
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We begin by integrating by parts in reverse:∫
d3y T̃ ij(ω,y) =

∫
∂k(y

iT̃ kj) d3y −
∫
yi(∂kT̃

kj) d3y . (6.80)

The first term is a surface integral which will vanish since the source is isolated, while the

second can be related to T̃ 0j by the Fourier-space version of ∂µT
µν = 0:

− ∂kT̃
kµ = iωT̃ 0µ . (6.81)

Thus, ∫
d3y T̃ ij(ω,y) = iω

∫
yiT̃ 0j d3y

=
iω

2

∫
(yiT̃ 0j + yjT̃ 0i) d3y

=
iω

2

∫ [
∂l(y

iyjT̃ 0l) − yiyj(∂lT̃
0l)
]
d3y

= −ω
2

2

∫
yiyjT̃ 00 d3y . (6.82)

The second line is justified since we know that the left hand side is symmetric in i and j,

while the third and fourth lines are simply repetitions of reverse integration by parts and

conservation of T µν . It is conventional to define the quadrupole moment tensor of the

energy density of the source,

qij(t) = 3
∫
yiyjT 00(t,y) d3y , (6.83)

a constant tensor on each surface of constant time. In terms of the Fourier transform of the

quadrupole moment, our solution takes on the compact form

˜̄hij(ω,x) = −2Gω2

3

eiωR

R
q̃ij(ω) , (6.84)

or, transforming back to t,

h̄ij(t,x) = − 1√
2π

2G

3R

∫
dω e−iω(t−R)ω2q̃ij(ω)

=
1√
2π

2G

3R

d2

dt2

∫
dω e−iωtr q̃ij(ω)

=
2G

3R

d2qij
dt2

(tr) , (6.85)

where as before tr = t− R.

The gravitational wave produced by an isolated nonrelativistic object is therefore pro-

portional to the second derivative of the quadrupole moment of the energy density at the
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point where the past light cone of the observer intersects the source. In contrast, the leading

contribution to electromagnetic radiation comes from the changing dipole moment of the

charge density. The difference can be traced back to the universal nature of gravitation. A

changing dipole moment corresponds to motion of the center of density — charge density in

the case of electromagnetism, energy density in the case of gravitation. While there is noth-

ing to stop the center of charge of an object from oscillating, oscillation of the center of mass

of an isolated system violates conservation of momentum. (You can shake a body up and

down, but you and the earth shake ever so slightly in the opposite direction to compensate.)

The quadrupole moment, which measures the shape of the system, is generally smaller than

the dipole moment, and for this reason (as well as the weak coupling of matter to gravity)

gravitational radiation is typically much weaker than electromagnetic radiation.

It is always educational to take a general solution and apply it to a specific case of

interest. One case of genuine interest is the gravitational radiation emitted by a binary star

(two stars in orbit around each other). For simplicity let us consider two stars of mass M in

a circular orbit in the x1-x2 plane, at distance r from their common center of mass.

x

x

x

M
M

v

v

r r

1

2

3

We will treat the motion of the stars in the Newtonian approximation, where we can discuss

their orbit just as Kepler would have. Circular orbits are most easily characterized by

equating the force due to gravity to the outward “centrifugal” force:

GM2

(2r)2
=
Mv2

r
, (6.86)

which gives us

v =
(
GM

4r

)1/2

. (6.87)

The time it takes to complete a single orbit is simply

T =
2πr

v
, (6.88)
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but more useful to us is the angular frequency of the orbit,

Ω =
2π

T
=
(
GM

4r3

)1/2

. (6.89)

In terms of Ω we can write down the explicit path of star a,

x1
a = r cos Ωt , x2

a = r sin Ωt , (6.90)

and star b,

x1
b = −r cos Ωt , x2

b = −r sin Ωt . (6.91)

The corresponding energy density is

T 00(t,x) = Mδ(x3)
[
δ(x1 − r cos Ωt)δ(x2 − r sin Ωt) + δ(x1 + r cos Ωt)δ(x2 + r sin Ωt)

]
.

(6.92)

The profusion of delta functions allows us to integrate this straightforwardly to obtain the

quadrupole moment from (6.83):

q11 = 6Mr2 cos2 Ωt = 3Mr2(1 + cos 2Ωt)

q22 = 6Mr2 sin2 Ωt = 3Mr2(1 − cos 2Ωt)

q12 = q21 = 6Mr2(cos Ωt)(sin Ωt) = 3Mr2 sin 2Ωt

qi3 = 0 . (6.93)

From this in turn it is easy to get the components of the metric perturbation from (6.85):

h̄ij(t,x) =
8GM

R
Ω2r2

− cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0

 . (6.94)

The remaining components of h̄µν could be derived from demanding that the harmonic gauge

condition be satisfied. (We have not imposed a subsidiary gauge condition, so we are still

free to do so.)

It is natural at this point to talk about the energy emitted via gravitational radiation.

Such a discussion, however, is immediately beset by problems, both technical and philo-

sophical. As we have mentioned before, there is no true local measure of the energy in

the gravitational field. Of course, in the weak field limit, where we think of gravitation as

being described by a symmetric tensor propagating on a fixed background metric, we might

hope to derive an energy-momentum tensor for the fluctuations hµν , just as we would for

electromagnetism or any other field theory. To some extent this is possible, but there are

still difficulties. As a result of these difficulties there are a number of different proposals in

the literature for what we should use as the energy-momentum tensor for gravitation in the
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weak field limit; all of them are different, but for the most part they give the same answers

for physically well-posed questions such as the rate of energy emitted by a binary system.

At a technical level, the difficulties begin to arise when we consider what form the energy-

momentum tensor should take. We have previously mentioned the energy-momentum tensors

for electromagnetism and scalar field theory, and they both shared an important feature —

they were quadratic in the relevant fields. By hypothesis our approach to the weak field limit

has been to only keep terms which are linear in the metric perturbation. Hence, in order

to keep track of the energy carried by the gravitational waves, we will have to extend our

calculations to at least second order in hµν . In fact we have been cheating slightly all along.

In discussing the effects of gravitational waves on test particles, and the generation of waves

by a binary system, we have been using the fact that test particles move along geodesics. But

as we know, this is derived from the covariant conservation of energy-momentum, ∇µT
µν = 0.

In the order to which we have been working, however, we actually have ∂µT
µν = 0, which

would imply that test particles move on straight lines in the flat background metric. This

is a symptom of the fundamental inconsistency of the weak field limit. In practice, the best

that can be done is to solve the weak field equations to some appropriate order, and then

justify after the fact the validity of the solution.

Keeping these issues in mind, let us consider Einstein’s equations (in vacuum) to second

order, and see how the result can be interpreted in terms of an energy-momentum tensor for

the gravitational field. If we write the metric as gµν = ηµν + hµν , then at first order we have

G(1)
µν [η + h] = 0 , (6.95)

where G(1)
µν is Einstein’s tensor expanded to first order in hµν . These equations determine

hµν up to (unavoidable) gauge transformations, so in order to satisfy the equations at second

order we have to add a higher-order perturbation, and write

gµν = ηµν + hµν + h(2)
µν . (6.96)

The second-order version of Einstein’s equations consists of all terms either quadratic in hµν

or linear in h(2)
µν . Since any cross terms would be of at least third order, we have

G(1)
µν [η + h(2)] +G(2)

µν [η + h] = 0 . (6.97)

Here, G(2)
µν is the part of the Einstein tensor which is of second order in the metric perturba-

tion. It can be computed from the second-order Ricci tensor, which is given by

R(2)
µν =

1

2
hρσ∂µ∂νhρσ − hρσ∂ρ∂(µhν)σ +

1

4
(∂µhρσ)∂νh

ρσ + (∂σhρ
ν)∂[σhρ]µ

+
1

2
∂σ(hρσ∂ρhµν) −

1

4
(∂ρhµν)∂

ρh− (∂σh
ρσ − 1

2
∂ρh)∂(µhν)ρ . (6.98)
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We can cast (6.97) into the suggestive form

G(1)
µν [η + h(2)] = 8πGtµν , (6.99)

simply by defining

tµν = − 1

8πG
G(2)

µν [η + h] . (6.100)

The notation is of course meant to suggest that we think of tµν as an energy-momentum

tensor, specifically that of the gravitational field (at least in the weak field regime). To make

this claim seem plausible, note that the Bianchi identity for G(1)
µν [η + h(2)] implies that tµν is

conserved in the flat-space sense,

∂µt
µν = 0 . (6.101)

Unfortunately there are some limitations on our interpretation of tµν as an energy-

momentum tensor. Of course it is not a tensor at all in the full theory, but we are leaving

that aside by hypothesis. More importantly, it is not invariant under gauge transformations

(infinitesimal diffeomorphisms), as you could check by direct calculation. However, we can

construct global quantities which are invariant under certain special kinds of gauge transfor-

mations (basically, those that vanish sufficiently rapidly at infinity; see Wald). These include

the total energy on a surface Σ of constant time,

E =
∫
Σ
t00 d

3x , (6.102)

and the total energy radiated through to infinity,

∆E =
∫

S
t0µn

µ d2x dt . (6.103)

Here, the integral is taken over a timelike surface S made of a spacelike two-sphere at infinity

and some interval in time, and nµ is a unit spacelike vector normal to S.

Evaluating these formulas in terms of the quadrupole moment of a radiating source

involves a lengthy calculation which we will not reproduce here. Without further ado, the

amount of radiated energy can be written

∆E =
∫
P dt , (6.104)

where the power P is given by

P =
G

45

[
d3Qij

dt3
d3Qij

dt3

]
tr

, (6.105)

and here Qij is the traceless part of the quadrupole moment,

Qij = qij −
1

3
δijδ

klqkl . (6.106)
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For the binary system represented by (6.93), the traceless part of the quadrupole is

Qij = Mr2

 (1 + 3 cos 2Ωt) 3 sin 2Ωt 0
3 sin 2Ωt (1 − 3 cos 2Ωt) 0

0 0 −2

 , (6.107)

and its third time derivative is therefore

d3Qij

dt3
= 24Mr2Ω3

 sin 2Ωt − cos 2Ωt 0
− cos 2Ωt − sin 2Ωt 0

0 0 0

 . (6.108)

The power radiated by the binary is thus

P =
27

5
GM2r4Ω6 , (6.109)

or, using expression (6.89) for the frequency,

P =
2

5

G4M5

r5
. (6.110)

Of course, this has actually been observed. In 1974 Hulse and Taylor discovered a binary

system, PSR1913+16, in which both stars are very small (so classical effects are negligible, or

at least under control) and one is a pulsar. The period of the orbit is eight hours, extremely

small by astrophysical standards. The fact that one of the stars is a pulsar provides a very

accurate clock, with respect to which the change in the period as the system loses energy

can be measured. The result is consistent with the prediction of general relativity for energy

loss through gravitational radiation. Hulse and Taylor were awarded the Nobel Prize in 1993

for their efforts.
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7 The Schwarzschild Solution and Black Holes

We now move from the domain of the weak-field limit to solutions of the full nonlinear

Einstein’s equations. With the possible exception of Minkowski space, by far the most

important such solution is that discovered by Schwarzschild, which describes spherically

symmetric vacuum spacetimes. Since we are in vacuum, Einstein’s equations become Rµν =

0. Of course, if we have a proposed solution to a set of differential equations such as this,

it would suffice to plug in the proposed solution in order to verify it; we would like to do

better, however. In fact, we will sketch a proof of Birkhoff’s theorem, which states that the

Schwarzschild solution is the unique spherically symmetric solution to Einstein’s equations

in vacuum. The procedure will be to first present some non-rigorous arguments that any

spherically symmetric metric (whether or not it solves Einstein’s equations) must take on a

certain form, and then work from there to more carefully derive the actual solution in such

a case.

“Spherically symmetric” means “having the same symmetries as a sphere.” (In this

section the word “sphere” means S2, not spheres of higher dimension.) Since the object of

interest to us is the metric on a differentiable manifold, we are concerned with those metrics

that have such symmetries. We know how to characterize symmetries of the metric — they

are given by the existence of Killing vectors. Furthermore, we know what the Killing vectors

of S2 are, and that there are three of them. Therefore, a spherically symmetric manifold

is one that has three Killing vector fields which are just like those on S2. By “just like”

we mean that the commutator of the Killing vectors is the same in either case — in fancier

language, that the algebra generated by the vectors is the same. Something that we didn’t

show, but is true, is that we can choose our three Killing vectors on S2 to be (V (1), V (2), V (3)),

such that

[V (1), V (2)] = V (3)

[V (2), V (3)] = V (1)

[V (3), V (1)] = V (2) . (7.1)

The commutation relations are exactly those of SO(3), the group of rotations in three di-

mensions. This is no coincidence, of course, but we won’t pursue this here. All we need is

that a spherically symmetric manifold is one which possesses three Killing vector fields with

the above commutation relations.

Back in section three we mentioned Frobenius’s Theorem, which states that if you have

a set of commuting vector fields then there exists a set of coordinate functions such that the

vector fields are the partial derivatives with respect to these functions. In fact the theorem

164
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does not stop there, but goes on to say that if we have some vector fields which do not

commute, but whose commutator closes — the commutator of any two fields in the set is a

linear combination of other fields in the set — then the integral curves of these vector fields

“fit together” to describe submanifolds of the manifold on which they are all defined. The

dimensionality of the submanifold may be smaller than the number of vectors, or it could be

equal, but obviously not larger. Vector fields which obey (7.1) will of course form 2-spheres.

Since the vector fields stretch throughout the space, every point will be on exactly one of

these spheres. (Actually, it’s almost every point — we will show below how it can fail to be

absolutely every point.) Thus, we say that a spherically symmetric manifold can be foliated

into spheres.

Let’s consider some examples to bring this down to earth. The simplest example is

flat three-dimensional Euclidean space. If we pick an origin, then R3 is clearly spherically

symmetric with respect to rotations around this origin. Under such rotations (i.e., under

the flow of the Killing vector fields) points move into each other, but each point stays on an

S2 at a fixed distance from the origin.

x

y

z

R 3

It is these spheres which foliate R3. Of course, they don’t really foliate all of the space, since

the origin itself just stays put under rotations — it doesn’t move around on some two-sphere.

But it should be clear that almost all of the space is properly foliated, and this will turn out

to be enough for us.

We can also have spherical symmetry without an “origin” to rotate things around. An

example is provided by a “wormhole”, with topology R × S2. If we suppress a dimension

and draw our two-spheres as circles, such a space might look like this:
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In this case the entire manifold can be foliated by two-spheres.

This foliated structure suggests that we put coordinates on our manifold in a way which

is adapted to the foliation. By this we mean that, if we have an n-dimensional manifold

foliated by m-dimensional submanifolds, we can use a set of m coordinate functions ui on

the submanifolds and a set of n−m coordinate functions vI to tell us which submanifold we

are on. (So i runs from 1 to m, while I runs from 1 to n −m.) Then the collection of v’s

and u’s coordinatize the entire space. If the submanifolds are maximally symmetric spaces

(as two-spheres are), then there is the following powerful theorem: it is always possible to

choose the u-coordinates such that the metric on the entire manifold is of the form

ds2 = gµνdx
µdxν = gIJ(v)dvIdvJ + f(v)γij(u)du

iduj . (7.2)

Here γij(u) is the metric on the submanifold. This theorem is saying two things at once:

that there are no cross terms dvIduj, and that both gIJ(v) and f(v) are functions of the

vI alone, independent of the ui. Proving the theorem is a mess, but you are encouraged

to look in chapter 13 of Weinberg. Nevertheless, it is a perfectly sensible result. Roughly

speaking, if gIJ or f depended on the ui then the metric would change as we moved in a

single submanifold, which violates the assumption of symmetry. The unwanted cross terms,

meanwhile, can be eliminated by making sure that the tangent vectors ∂/∂vI are orthogonal

to the submanifolds — in other words, that we line up our submanifolds in the same way

throughout the space.

We are now through with handwaving, and can commence some honest calculation. For

the case at hand, our submanifolds are two-spheres, on which we typically choose coordinates

(θ, φ) in which the metric takes the form

dΩ2 = dθ2 + sin2 θ dφ2 . (7.3)

Since we are interested in a four-dimensional spacetime, we need two more coordinates, which

we can call a and b. The theorem (7.2) is then telling us that the metric on a spherically
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symmetric spacetime can be put in the form

ds2 = gaa(a, b)da
2 + gab(a, b)(dadb+ dbda) + gbb(a, b)db

2 + r2(a, b)dΩ2 . (7.4)

Here r(a, b) is some as-yet-undetermined function, to which we have merely given a suggestive

label. There is nothing to stop us, however, from changing coordinates from (a, b) to (a, r),

by inverting r(a, b). (The one thing that could possibly stop us would be if r were a function

of a alone; in this case we could just as easily switch to (b, r), so we will not consider this

situation separately.) The metric is then

ds2 = gaa(a, r)da
2 + gar(a, r)(dadr + drda) + grr(a, r)dr

2 + r2dΩ2 . (7.5)

Our next step is to find a function t(a, r) such that, in the (t, r) coordinate system, there

are no cross terms dtdr + drdt in the metric. Notice that

dt =
∂t

∂a
da +

∂t

∂r
dr , (7.6)

so

dt2 =

(
∂t

∂a

)2

da2 +

(
∂t

∂a

)(
∂t

∂r

)
(dadr + drda) +

(
∂t

∂r

)2

dr2 . (7.7)

We would like to replace the first three terms in the metric (7.5) by

mdt2 + ndr2 , (7.8)

for some functions m and n. This is equivalent to the requirements

m

(
∂t

∂a

)2

= gaa , (7.9)

n+m

(
∂t

∂r

)2

= grr , (7.10)

and

m

(
∂t

∂a

)(
∂t

∂r

)
= gar . (7.11)

We therefore have three equations for the three unknowns t(a, r), m(a, r), and n(a, r), just

enough to determine them precisely (up to initial conditions for t). (Of course, they are

“determined” in terms of the unknown functions gaa, gar, and grr, so in this sense they are

still undetermined.) We can therefore put our metric in the form

ds2 = m(t, r)dt2 + n(t, r)dr2 + r2dΩ2 . (7.12)
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To this point the only difference between the two coordinates t and r is that we have

chosen r to be the one which multiplies the metric for the two-sphere. This choice was

motivated by what we know about the metric for flat Minkowski space, which can be written

ds2 = −dt2 + dr2 + r2dΩ2. We know that the spacetime under consideration is Lorentzian,

so either m or n will have to be negative. Let us choose m, the coefficient of dt2, to be

negative. This is not a choice we are simply allowed to make, and in fact we will see later

that it can go wrong, but we will assume it for now. The assumption is not completely

unreasonable, since we know that Minkowski space is itself spherically symmetric, and will

therefore be described by (7.12). With this choice we can trade in the functions m and n for

new functions α and β, such that

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2 . (7.13)

This is the best we can do for a general metric in a spherically symmetric spacetime. The

next step is to actually solve Einstein’s equations, which will allow us to determine explicitly

the functions α(t, r) and β(t, r). It is unfortunately necessary to compute the Christoffel

symbols for (7.13), from which we can get the curvature tensor and thus the Ricci tensor. If

we use labels (0, 1, 2, 3) for (t, r, θ, φ) in the usual way, the Christoffel symbols are given by

Γ0
00 = ∂0α Γ0

01 = ∂1α Γ0
11 = e2(β−α)∂0β

Γ1
00 = e2(α−β)∂1α Γ1

01 = ∂0β Γ1
11 = ∂1β

Γ2
12 = 1

r
Γ1

22 = −re−2β Γ3
13 = 1

r

Γ1
33 = −re−2β sin2 θ Γ2

33 = − sin θ cos θ Γ3
23 = cos θ

sin θ
. (7.14)

(Anything not written down explicitly is meant to be zero, or related to what is written

by symmetries.) From these we get the following nonvanishing components of the Riemann

tensor:

R0
101 = e2(β−α)[∂2

0β + (∂0β)2 − ∂0α∂0β] + [∂1α∂1β − ∂2
1α− (∂1α)2]

R0
202 = −re−2β∂1α

R0
303 = −re−2β sin2 θ ∂1α

R0
212 = −re−2α∂0β

R0
313 = −re−2α sin2 θ ∂0β

R1
212 = re−2β∂1β

R1
313 = re−2β sin2 θ ∂1β

R2
323 = (1 − e−2β) sin2 θ . (7.15)

Taking the contraction as usual yields the Ricci tensor:

R00 = [∂2
0β + (∂0β)2 − ∂0α∂0β] + e2(α−β)[∂2

1α+ (∂1α)2 − ∂1α∂1β +
2

r
∂1α]
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R11 = −[∂2
1α + (∂1α)2 − ∂1α∂1β − 2

r
∂1β] + e2(β−α)[∂2

0β + (∂0β)2 − ∂0α∂0β]

R01 =
2

r
∂0β

R22 = e−2β [r(∂1β − ∂1α) − 1] + 1

R33 = R22 sin2 θ . (7.16)

Our job is to set Rµν = 0. From R01 = 0 we get

∂0β = 0 . (7.17)

If we consider taking the time derivative of R22 = 0 and using ∂0β = 0, we get

∂0∂1α = 0 . (7.18)

We can therefore write

β = β(r)

α = f(r) + g(t) . (7.19)

The first term in the metric (7.13) is therefore −e2f(r)e2g(t)dt2. But we could always simply

redefine our time coordinate by replacing dt→ e−g(t)dt; in other words, we are free to choose

t such that g(t) = 0, whence α(t, r) = f(r). We therefore have

ds2 = −e2α(r)dt2 + eβ(r)dr2 + r2dΩ2 . (7.20)

All of the metric components are independent of the coordinate t. We have therefore proven

a crucial result: any spherically symmetric vacuum metric possesses a timelike Killing vector.

This property is so interesting that it gets its own name: a metric which possesses a

timelike Killing vector is called stationary. There is also a more restrictive property: a

metric is called static if it possesses a timelike Killing vector which is orthogonal to a

family of hypersurfaces. (A hypersurface in an n-dimensional manifold is simply an (n− 1)-

dimensional submanifold.) The metric (7.20) is not only stationary, but also static; the

Killing vector field ∂0 is orthogonal to the surfaces t = const (since there are no cross terms

such as dtdr and so on). Roughly speaking, a static metric is one in which nothing is moving,

while a stationary metric allows things to move but only in a symmetric way. For example,

the static spherically symmetric metric (7.20) will describe non-rotating stars or black holes,

while rotating systems (which keep rotating in the same way at all times) will be described

by stationary metrics. It’s hard to remember which word goes with which concept, but the

distinction between the two concepts should be understandable.

Let’s keep going with finding the solution. Since both R00 and R11 vanish, we can write

0 = e2(β−α)R00 +R11 =
2

r
(∂1α+ ∂1β) , (7.21)
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which implies α = −β + constant. Once again, we can get rid of the constant by scaling

our coordinates, so we have

α = −β . (7.22)

Next let us turn to R22 = 0, which now reads

e2α(2r∂1α+ 1) = 1 . (7.23)

This is completely equivalent to

∂1(re
2α) = 1 . (7.24)

We can solve this to obtain

e2α = 1 +
µ

r
, (7.25)

where µ is some undetermined constant. With (7.22) and (7.25), our metric becomes

ds2 = −
(
1 +

µ

r

)
dt2 +

(
1 +

µ

r

)−1

dr2 + r2dΩ2 . (7.26)

We now have no freedom left except for the single constant µ, so this form better solve the

remaining equations R00 = 0 and R11 = 0; it is straightforward to check that it does, for any

value of µ.

The only thing left to do is to interpret the constant µ in terms of some physical param-

eter. The most important use of a spherically symmetric vacuum solution is to represent the

spacetime outside a star or planet or whatnot. In that case we would expect to recover the

weak field limit as r → ∞. In this limit, (7.26) implies

g00(r → ∞) = −
(
1 +

µ

r

)
,

grr(r → ∞) =
(
1 − µ

r

)
. (7.27)

The weak field limit, on the other hand, has

g00 = − (1 + 2Φ) ,

grr = (1 − 2Φ) , (7.28)

with the potential Φ = −GM/r. Therefore the metrics do agree in this limit, if we set

µ = −2GM .

Our final result is the celebrated Schwarzschild metric,

ds2 = −
(
1 − 2GM

r

)
dt2 +

(
1 − 2GM

r

)−1

dr2 + r2dΩ2 . (7.29)

This is true for any spherically symmetric vacuum solution to Einstein’s equations; M func-

tions as a parameter, which we happen to know can be interpreted as the conventional
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Newtonian mass that we would measure by studying orbits at large distances from the grav-

itating source. Note that as M → 0 we recover Minkowski space, which is to be expected.

Note also that the metric becomes progressively Minkowskian as we go to r → ∞; this

property is known as asymptotic flatness.

The fact that the Schwarzschild metric is not just a good solution, but is the unique

spherically symmetric vacuum solution, is known as Birkhoff’s theorem. It is interesting to

note that the result is a static metric. We did not say anything about the source except that

it be spherically symmetric. Specifically, we did not demand that the source itself be static;

it could be a collapsing star, as long as the collapse were symmetric. Therefore a process

such as a supernova explosion, which is basically spherical, would be expected to generate

very little gravitational radiation (in comparison to the amount of energy released through

other channels). This is the same result we would have obtained in electromagnetism, where

the electromagnetic fields around a spherical charge distribution do not depend on the radial

distribution of the charges.

Before exploring the behavior of test particles in the Schwarzschild geometry, we should

say something about singularities. From the form of (7.29), the metric coefficients become

infinite at r = 0 and r = 2GM — an apparent sign that something is going wrong. The

metric coefficients, of course, are coordinate-dependent quantities, and as such we should

not make too much of their values; it is certainly possible to have a “coordinate singularity”

which results from a breakdown of a specific coordinate system rather than the underlying

manifold. An example occurs at the origin of polar coordinates in the plane, where the

metric ds2 = dr2 + r2dθ2 becomes degenerate and the component gθθ = r−2 of the inverse

metric blows up, even though that point of the manifold is no different from any other.

What kind of coordinate-independent signal should we look for as a warning that some-

thing about the geometry is out of control? This turns out to be a difficult question to

answer, and entire books have been written about the nature of singularities in general rel-

ativity. We won’t go into this issue in detail, but rather turn to one simple criterion for

when something has gone wrong — when the curvature becomes infinite. The curvature is

measured by the Riemann tensor, and it is hard to say when a tensor becomes infinite, since

its components are coordinate-dependent. But from the curvature we can construct various

scalar quantities, and since scalars are coordinate-independent it will be meaningful to say

that they become infinite. This simplest such scalar is the Ricci scalar R = gµνRµν , but we

can also construct higher-order scalars such as RµνRµν , R
µνρσRµνρσ, RµνρσR

ρσλτRλτ
µν , and

so on. If any of these scalars (not necessarily all of them) go to infinity as we approach some

point, we will regard that point as a singularity of the curvature. We should also check that

the point is not “infinitely far away”; that is, that it can be reached by travelling a finite

distance along a curve.

We therefore have a sufficient condition for a point to be considered a singularity. It is
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not a necessary condition, however, and it is generally harder to show that a given point is

nonsingular; for our purposes we will simply test to see if geodesics are well-behaved at the

point in question, and if so then we will consider the point nonsingular. In the case of the

Schwarzschild metric (7.29), direct calculation reveals that

RµνρσRµνρσ =
12G2M2

r6
. (7.30)

This is enough to convince us that r = 0 represents an honest singularity. At the other

trouble spot, r = 2GM , you could check and see that none of the curvature invariants blows

up. We therefore begin to think that it is actually not singular, and we have simply chosen a

bad coordinate system. The best thing to do is to transform to more appropriate coordinates

if possible. We will soon see that in this case it is in fact possible, and the surface r = 2GM

is very well-behaved (although interesting) in the Schwarzschild metric.

Having worried a little about singularities, we should point out that the behavior of

Schwarzschild at r ≤ 2GM is of little day-to-day consequence. The solution we derived

is valid only in vacuum, and we expect it to hold outside a spherical body such as a star.

However, in the case of the Sun we are dealing with a body which extends to a radius of

R⊙ = 106GM⊙ . (7.31)

Thus, r = 2GM⊙ is far inside the solar interior, where we do not expect the Schwarzschild

metric to imply. In fact, realistic stellar interior solutions are of the form

ds2 = −
(

1 − 2Gm(r)

r

)
dt2 +

(
1 − 2Gm(r)

r

)−1

dr2 + r2dΩ2 . (7.32)

See Schutz for details. Here m(r) is a function of r which goes to zero faster than r itself, so

there are no singularities to deal with at all. Nevertheless, there are objects for which the full

Schwarzschild metric is required — black holes — and therefore we will let our imaginations

roam far outside the solar system in this section.

The first step we will take to understand this metric more fully is to consider the behavior

of geodesics. We need the nonzero Christoffel symbols for Schwarzschild:

Γ1
00 = GM

r3 (r − 2GM) Γ1
11 = −GM

r(r−2GM)
Γ0

01 = GM
r(r−2GM)

Γ2
12 = 1

r
Γ1

22 = −(r − 2GM) Γ3
13 = 1

r

Γ1
33 = −(r − 2GM) sin2 θ Γ2

33 = − sin θ cos θ Γ3
23 = cos θ

sin θ
. (7.33)

The geodesic equation therefore turns into the following four equations, where λ is an affine

parameter:
d2t

dλ2
+

2GM

r(r − 2GM)

dr

dλ

dt

dλ
= 0 , (7.34)
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d2r

dλ2
+
GM

r3
(r − 2GM)

(
dt

dλ

)2

− GM

r(r − 2GM)

(
dr

dλ

)2

−(r − 2GM)

(dθ
dλ

)2

+ sin2 θ

(
dφ

dλ

)2
 = 0 , (7.35)

d2θ

dλ2
+

2

r

dθ

dλ

dr

dλ
− sin θ cos θ

(
dφ

dλ

)2

= 0 , (7.36)

and
d2φ

dλ2
+

2

r

dφ

dλ

dr

dλ
+ 2

cos θ

sin θ

dθ

dλ

dφ

dλ
= 0 . (7.37)

There does not seem to be much hope for simply solving this set of coupled equations by

inspection. Fortunately our task is greatly simplified by the high degree of symmetry of the

Schwarzschild metric. We know that there are four Killing vectors: three for the spherical

symmetry, and one for time translations. Each of these will lead to a constant of the motion

for a free particle; if Kµ is a Killing vector, we know that

Kµ
dxµ

dλ
= constant . (7.38)

In addition, there is another constant of the motion that we always have for geodesics; metric

compatibility implies that along the path the quantity

ǫ = −gµν
dxµ

dλ

dxν

dλ
(7.39)

is constant. Of course, for a massive particle we typically choose λ = τ , and this relation

simply becomes ǫ = −gµνU
µUν = +1. For a massless particle we always have ǫ = 0. We will

also be concerned with spacelike geodesics (even though they do not correspond to paths of

particles), for which we will choose ǫ = −1.

Rather than immediately writing out explicit expressions for the four conserved quantities

associated with Killing vectors, let’s think about what they are telling us. Notice that the

symmetries they represent are also present in flat spacetime, where the conserved quantities

they lead to are very familiar. Invariance under time translations leads to conservation of

energy, while invariance under spatial rotations leads to conservation of the three components

of angular momentum. Essentially the same applies to the Schwarzschild metric. We can

think of the angular momentum as a three-vector with a magnitude (one component) and

direction (two components). Conservation of the direction of angular momentum means

that the particle will move in a plane. We can choose this to be the equatorial plane of

our coordinate system; if the particle is not in this plane, we can rotate coordinates until

it is. Thus, the two Killing vectors which lead to conservation of the direction of angular

momentum imply

θ =
π

2
. (7.40)
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The two remaining Killing vectors correspond to energy and the magnitude of angular mo-

mentum. The energy arises from the timelike Killing vector K = ∂t, or

Kµ =
(
−
(
1 − 2GM

r

)
, 0, 0, 0

)
. (7.41)

The Killing vector whose conserved quantity is the magnitude of the angular momentum is

L = ∂φ, or

Lµ =
(
0, 0, 0, r2 sin2 θ

)
. (7.42)

Since (7.40) implies that sin θ = 1 along the geodesics of interest to us, the two conserved

quantities are (
1 − 2GM

r

)
dt

dλ
= E , (7.43)

and

r2dφ

dλ
= L . (7.44)

For massless particles these can be thought of as the energy and angular momentum; for

massive particles they are the energy and angular momentum per unit mass of the particle.

Note that the constancy of (7.44) is the GR equivalent of Kepler’s second law (equal areas

are swept out in equal times).

Together these conserved quantities provide a convenient way to understand the orbits of

particles in the Schwarzschild geometry. Let us expand the expression (7.39) for ǫ to obtain

−
(
1 − 2GM

r

)(
dt

dλ

)2

+
(
1 − 2GM

r

)−1
(
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= −ǫ . (7.45)

If we multiply this by (1 − 2GM/r) and use our expressions for E and L, we obtain

− E2 +

(
dr

dλ

)2

+
(
1 − 2GM

r

)(
L2

r2
+ ǫ

)
= 0 . (7.46)

This is certainly progress, since we have taken a messy system of coupled equations and

obtained a single equation for r(λ). It looks even nicer if we rewrite it as

1

2

(
dr

dλ

)2

+ V (r) =
1

2
E2 , (7.47)

where

V (r) =
1

2
ǫ− ǫ

GM

r
+
L2

2r2
− GML2

r3
. (7.48)

In (7.47) we have precisely the equation for a classical particle of unit mass and “energy”
1
2
E2 moving in a one-dimensional potential given by V (r). (The true energy per unit mass

is E, but the effective potential for the coordinate r responds to 1
2
E2.)
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Of course, our physical situation is quite different from a classical particle moving in one

dimension. The trajectories under consideration are orbits around a star or other object:

λ
λr(   )

r(   )

The quantities of interest to us are not only r(λ), but also t(λ) and φ(λ). Nevertheless,

we can go a long way toward understanding all of the orbits by understanding their radial

behavior, and it is a great help to reduce this behavior to a problem we know how to solve.

A similar analysis of orbits in Newtonian gravity would have produced a similar result;

the general equation (7.47) would have been the same, but the effective potential (7.48) would

not have had the last term. (Note that this equation is not a power series in 1/r, it is exact.)

In the potential (7.48) the first term is just a constant, the second term corresponds exactly

to the Newtonian gravitational potential, and the third term is a contribution from angular

momentum which takes the same form in Newtonian gravity and general relativity. The last

term, the GR contribution, will turn out to make a great deal of difference, especially at

small r.

Let us examine the kinds of possible orbits, as illustrated in the figures. There are

different curves V (r) for different values of L; for any one of these curves, the behavior of

the orbit can be judged by comparing the 1
2
E2 to V (r). The general behavior of the particle

will be to move in the potential until it reaches a “turning point” where V (r) = 1
2
E2, where

it will begin moving in the other direction. Sometimes there may be no turning point to

hit, in which case the particle just keeps going. In other cases the particle may simply move

in a circular orbit at radius rc = const; this can happen if the potential is flat, dV/dr = 0.

Differentiating (7.48), we find that the circular orbits occur when

ǫGMr2
c − L2rc + 3GML2γ = 0 , (7.49)

where γ = 0 in Newtonian gravity and γ = 1 in general relativity. Circular orbits will be

stable if they correspond to a minimum of the potential, and unstable if they correspond

to a maximum. Bound orbits which are not circular will oscillate around the radius of the

stable circular orbit.

Turning to Newtonian gravity, we find that circular orbits appear at

rc =
L2

ǫGM
. (7.50)
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For massless particles ǫ = 0, and there are no circular orbits; this is consistent with the

figure, which illustrates that there are no bound orbits of any sort. Although it is somewhat

obscured in this coordinate system, massless particles actually move in a straight line, since

the Newtonian gravitational force on a massless particle is zero. (Of course the standing of

massless particles in Newtonian theory is somewhat problematic, but we will ignore that for

now.) In terms of the effective potential, a photon with a given energy E will come in from

r = ∞ and gradually “slow down” (actually dr/dλ will decrease, but the speed of light isn’t

changing) until it reaches the turning point, when it will start moving away back to r = ∞.

The lower values of L, for which the photon will come closer before it starts moving away,

are simply those trajectories which are initially aimed closer to the gravitating body. For

massive particles there will be stable circular orbits at the radius (7.50), as well as bound

orbits which oscillate around this radius. If the energy is greater than the asymptotic value

E = 1, the orbits will be unbound, describing a particle that approaches the star and then

recedes. We know that the orbits in Newton’s theory are conic sections — bound orbits are

either circles or ellipses, while unbound ones are either parabolas or hyperbolas — although

we won’t show that here.

In general relativity the situation is different, but only for r sufficiently small. Since the

difference resides in the term −GML2/r3, as r → ∞ the behaviors are identical in the two

theories. But as r → 0 the potential goes to −∞ rather than +∞ as in the Newtonian

case. At r = 2GM the potential is always zero; inside this radius is the black hole, which we

will discuss more thoroughly later. For massless particles there is always a barrier (except

for L = 0, for which the potential vanishes identically), but a sufficiently energetic photon

will nevertheless go over the barrier and be dragged inexorably down to the center. (Note

that “sufficiently energetic” means “in comparison to its angular momentum” — in fact the

frequency of the photon is immaterial, only the direction in which it is pointing.) At the top

of the barrier there are unstable circular orbits. For ǫ = 0, γ = 1, we can easily solve (7.49)

to obtain

rc = 3GM . (7.51)

This is borne out by the figure, which shows a maximum of V (r) at r = 3GM for every L.

This means that a photon can orbit forever in a circle at this radius, but any perturbation

will cause it to fly away either to r = 0 or r = ∞.

For massive particles there are once again different regimes depending on the angular

momentum. The circular orbits are at

rc =
L2 ±

√
L4 − 12G2M2L2

2GM
. (7.52)

For large L there will be two circular orbits, one stable and one unstable. In the L → ∞
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limit their radii are given by

rc =
L2 ± L2(1 − 6G2M2/L2)

2GM
=

(
L2

GM
, 3GM

)
. (7.53)

In this limit the stable circular orbit becomes farther and farther away, while the unstable

one approaches 3GM , behavior which parallels the massless case. As we decrease L the two

circular orbits come closer together; they coincide when the discriminant in (7.52) vanishes,

at

L =
√

12GM , (7.54)

for which

rc = 6GM , (7.55)

and disappear entirely for smaller L. Thus 6GM is the smallest possible radius of a stable

circular orbit in the Schwarzschild metric. There are also unbound orbits, which come in

from infinity and turn around, and bound but noncircular ones, which oscillate around the

stable circular radius. Note that such orbits, which would describe exact conic sections in

Newtonian gravity, will not do so in GR, although we would have to solve the equation for

dφ/dt to demonstrate it. Finally, there are orbits which come in from infinity and continue

all the way in to r = 0; this can happen either if the energy is higher than the barrier, or for

L <
√

12GM , when the barrier goes away entirely.

We have therefore found that the Schwarzschild solution possesses stable circular orbits

for r > 6GM and unstable circular orbits for 3GM < r < 6GM . It’s important to remember

that these are only the geodesics; there is nothing to stop an accelerating particle from

dipping below r = 3GM and emerging, as long as it stays beyond r = 2GM .

Most experimental tests of general relativity involve the motion of test particles in the

solar system, and hence geodesics of the Schwarzschild metric; this is therefore a good place

to pause and consider these tests. Einstein suggested three tests: the deflection of light,

the precession of perihelia, and gravitational redshift. The deflection of light is observable

in the weak-field limit, and therefore is not really a good test of the exact form of the

Schwarzschild geometry. Observations of this deflection have been performed during eclipses

of the Sun, with results which agree with the GR prediction (although it’s not an especially

clean experiment). The precession of perihelia reflects the fact that noncircular orbits are

not closed ellipses; to a good approximation they are ellipses which precess, describing a

flower pattern.

Using our geodesic equations, we could solve for dφ/dλ as a power series in the eccentricity

e of the orbit, and from that obtain the apsidal frequency ωa, defined as 2π divided by the

time it takes for the ellipse to precess once around. For details you can look in Weinberg;

the answer is

ωa =
3(GM)3/2

c2(1 − e2)r5/2
, (7.56)
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where we have restored the c to make it easier to compare with observation. (It is a good

exercise to derive this yourself to lowest nonvanishing order, in which case the e2 is missing.)

Historically the precession of Mercury was the first test of GR. For Mercury the relevant

numbers are

GM⊙
c2

= 1.48 × 105 cm ,

a = 5.55 × 1012 cm , (7.57)

and of course c = 3.00 × 1010 cm/sec. This gives ωa = 2.35 × 10−14 sec−1. In other words,

the major axis of Mercury’s orbit precesses at a rate of 42.9 arcsecs every 100 years. The

observed value is 5601 arcsecs/100 yrs. However, much of that is due to the precession

of equinoxes in our geocentric coordinate system; 5025 arcsecs/100 yrs, to be precise. The

gravitational perturbations of the other planets contribute an additional 532 arcsecs/100 yrs,

leaving 43 arcsecs/100 yrs to be explained by GR, which it does quite well.

The gravitational redshift, as we have seen, is another effect which is present in the weak

field limit, and in fact will be predicted by any theory of gravity which obeys the Principle

of Equivalence. However, this only applies to small enough regions of spacetime; over larger

distances, the exact amount of redshift will depend on the metric, and thus on the theory

under question. It is therefore worth computing the redshift in the Schwarzschild geometry.

We consider two observers who are not moving on geodesics, but are stuck at fixed spatial

coordinate values (r1, θ1, φ1) and (r2, θ2, φ2). According to (7.45), the proper time of observer

i will be related to the coordinate time t by

dτi
dt

=
(
1 − 2GM

ri

)1/2

. (7.58)

Suppose that the observer O1 emits a light pulse which travels to the observer O2, such that

O1 measures the time between two successive crests of the light wave to be ∆τ1. Each crest

follows the same path to O2, except that they are separated by a coordinate time

∆t =
(
1 − 2GM

r1

)−1/2

∆τ1 . (7.59)
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This separation in coordinate time does not change along the photon trajectories, but the

second observer measures a time between successive crests given by

∆τ2 =
(
1 − 2GM

r2

)1/2

∆t

=

(
1 − 2GM/r2
1 − 2GM/r1

)1/2

∆τ1 . (7.60)

Since these intervals ∆τi measure the proper time between two crests of an electromagnetic

wave, the observed frequencies will be related by

ω2

ω1
=

∆τ1
∆τ2

=

(
1 − 2GM/r1
1 − 2GM/r2

)1/2

. (7.61)

This is an exact result for the frequency shift; in the limit r >> 2GM we have

ω2

ω1
= 1 − GM

r1
+
GM

r2
= 1 + Φ1 − Φ2 . (7.62)

This tells us that the frequency goes down as Φ increases, which happens as we climb out

of a gravitational field; thus, a redshift. You can check that it agrees with our previous

calculation based on the equivalence principle.

Since Einstein’s proposal of the three classic tests, further tests of GR have been proposed.

The most famous is of course the binary pulsar, discussed in the previous section. Another

is the gravitational time delay, discovered by (and observed by) Shapiro. This is just the

fact that the time elapsed along two different trajectories between two events need not be

the same. It has been measured by reflecting radar signals off of Venus and Mars, and once

again is consistent with the GR prediction. One effect which has not yet been observed is

the Lense-Thirring, or frame-dragging effect. There has been a long-term effort devoted to

a proposed satellite, dubbed Gravity Probe B, which would involve extraordinarily precise

gyroscopes whose precession could be measured and the contribution from GR sorted out. It

has a ways to go before being launched, however, and the survival of such projects is always

year-to-year.

We now know something about the behavior of geodesics outside the troublesome radius

r = 2GM , which is the regime of interest for the solar system and most other astrophysical

situations. We will next turn to the study of objects which are described by the Schwarzschild

solution even at radii smaller than 2GM — black holes. (We’ll use the term “black hole”

for the moment, even though we haven’t introduced a precise meaning for such an object.)
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One way of understanding a geometry is to explore its causal structure, as defined by the

light cones. We therefore consider radial null curves, those for which θ and φ are constant

and ds2 = 0:

ds2 = 0 = −
(
1 − 2GM

r

)
dt2 +

(
1 − 2GM

r

)−1

dr2 , (7.63)

from which we see that
dt

dr
= ±

(
1 − 2GM

r

)−1

. (7.64)

This of course measures the slope of the light cones on a spacetime diagram of the t-r plane.

For large r the slope is ±1, as it would be in flat space, while as we approach r = 2GM we

get dt/dr → ±∞, and the light cones “close up”:

r

t

2GM

Thus a light ray which approaches r = 2GM never seems to get there, at least in this

coordinate system; instead it seems to asymptote to this radius.

As we will see, this is an illusion, and the light ray (or a massive particle) actually has no

trouble reaching r = 2GM . But an observer far away would never be able to tell. If we stayed

outside while an intrepid observational general relativist dove into the black hole, sending

back signals all the time, we would simply see the signals reach us more and more slowly. This

should be clear from the pictures, and is confirmed by our computation of ∆τ1/∆τ2 when we

discussed the gravitational redshift (7.61). As infalling astronauts approach r = 2GM , any

fixed interval ∆τ1 of their proper time corresponds to a longer and longer interval ∆τ2 from

our point of view. This continues forever; we would never see the astronaut cross r = 2GM ,

we would just see them move more and more slowly (and become redder and redder, almost

as if they were embarrassed to have done something as stupid as diving into a black hole).

The fact that we never see the infalling astronauts reach r = 2GM is a meaningful

statement, but the fact that their trajectory in the t-r plane never reaches there is not. It

is highly dependent on our coordinate system, and we would like to ask a more coordinate-

independent question (such as, do the astronauts reach this radius in a finite amount of their

proper time?). The best way to do this is to change coordinates to a system which is better



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 183

r

t

2GM

∆τ

∆τ

∆τ

∆τ   > ∆τ

1

1

2

2
’

2

behaved at r = 2GM . There does exist a set of such coordinates, which we now set out to

find. There is no way to “derive” a coordinate transformation, of course, we just say what

the new coordinates are and plug in the formulas. But we will develop these coordinates in

several steps, in hopes of making the choices seem somewhat motivated.

The problem with our current coordinates is that dt/dr → ∞ along radial null geodesics

which approach r = 2GM ; progress in the r direction becomes slower and slower with respect

to the coordinate time t. We can try to fix this problem by replacing t with a coordinate

which “moves more slowly” along null geodesics. First notice that we can explicitly solve

the condition (7.64) characterizing radial null curves to obtain

t = ±r∗ + constant , (7.65)

where the tortoise coordinate r∗ is defined by

r∗ = r + 2GM ln
(

r

2GM
− 1

)
. (7.66)

(The tortoise coordinate is only sensibly related to r when r ≥ 2GM , but beyond there our

coordinates aren’t very good anyway.) In terms of the tortoise coordinate the Schwarzschild

metric becomes

ds2 =
(
1 − 2GM

r

)(
−dt2 + dr∗2

)
+ r2dΩ2 , (7.67)

where r is thought of as a function of r∗. This represents some progress, since the light cones

now don’t seem to close up; furthermore, none of the metric coefficients becomes infinite at

r = 2GM (although both gtt and gr∗r∗ become zero). The price we pay, however, is that the

surface of interest at r = 2GM has just been pushed to infinity.

Our next move is to define coordinates which are naturally adapted to the null geodesics.

If we let

ũ = t+ r∗
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8r* = -

t

r = 2GM

r*

ṽ = t− r∗ , (7.68)

then infalling radial null geodesics are characterized by ũ = constant, while the outgoing

ones satisfy ṽ = constant. Now consider going back to the original radial coordinate r,

but replacing the timelike coordinate t with the new coordinate ũ. These are known as

Eddington-Finkelstein coordinates. In terms of them the metric is

ds2 = −
(
1 − 2GM

r

)
dũ2 + (dũdr + drdũ) + r2dΩ2 . (7.69)

Here we see our first sign of real progress. Even though the metric coefficient gũũ vanishes

at r = 2GM , there is no real degeneracy; the determinant of the metric is

g = −r4 sin2 θ , (7.70)

which is perfectly regular at r = 2GM . Therefore the metric is invertible, and we see once

and for all that r = 2GM is simply a coordinate singularity in our original (t, r, θ, φ) system.

In the Eddington-Finkelstein coordinates the condition for radial null curves is solved by

dũ

dr
=

{
0 , (infalling)

2
(
1 − 2GM

r

)−1
. (outgoing)

(7.71)

We can therefore see what has happened: in this coordinate system the light cones remain

well-behaved at r = 2GM , and this surface is at a finite coordinate value. There is no

problem in tracing the paths of null or timelike particles past the surface. On the other

hand, something interesting is certainly going on. Although the light cones don’t close up,

they do tilt over, such that for r < 2GM all future-directed paths are in the direction of

decreasing r.

The surface r = 2GM , while being locally perfectly regular, globally functions as a point

of no return — once a test particle dips below it, it can never come back. For this reason

r = 2GM is known as the event horizon; no event at r ≤ 2GM can influence any other



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 185

u

r = 2GM

u = 

r = 0

const

~

~

r

event at r > 2GM . Notice that the event horizon is a null surface, not a timelike one. Notice

also that since nothing can escape the event horizon, it is impossible for us to “see inside”

— thus the name black hole.

Let’s consider what we have done. Acting under the suspicion that our coordinates may

not have been good for the entire manifold, we have changed from our original coordinate t

to the new one ũ, which has the nice property that if we decrease r along a radial curve null

curve ũ = constant, we go right through the event horizon without any problems. (Indeed, a

local observer actually making the trip would not necessarily know when the event horizon

had been crossed — the local geometry is no different than anywhere else.) We therefore

conclude that our suspicion was correct and our initial coordinate system didn’t do a good

job of covering the entire manifold. The region r ≤ 2GM should certainly be included in

our spacetime, since physical particles can easily reach there and pass through. However,

there is no guarantee that we are finished; perhaps there are other directions in which we

can extend our manifold.

In fact there are. Notice that in the (ũ, r) coordinate system we can cross the event

horizon on future-directed paths, but not on past-directed ones. This seems unreasonable,

since we started with a time-independent solution. But we could have chosen ṽ instead of

ũ, in which case the metric would have been

ds2 = −
(
1 − 2GM

r

)
dṽ2 − (dṽdr + drdṽ) + r2dΩ2 . (7.72)

Now we can once again pass through the event horizon, but this time only along past-directed

curves.

This is perhaps a surprise: we can consistently follow either future-directed or past-

directed curves through r = 2GM , but we arrive at different places. It was actually to be

expected, since from the definitions (7.68), if we keep ũ constant and decrease r we must

have t → +∞, while if we keep ṽ constant and decrease r we must have t → −∞. (The

tortoise coordinate r∗ goes to −∞ as r → 2GM .) So we have extended spacetime in two

different directions, one to the future and one to the past.
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The next step would be to follow spacelike geodesics to see if we would uncover still more

regions. The answer is yes, we would reach yet another piece of the spacetime, but let’s

shortcut the process by defining coordinates that are good all over. A first guess might be

to use both ũ and ṽ at once (in place of t and r), which leads to

ds2 =
1

2

(
1 − 2GM

r

)
(dũdṽ + dṽdũ) + r2dΩ2 , (7.73)

with r defined implicitly in terms of ũ and ṽ by

1

2
(ũ− ṽ) = r + 2GM ln

(
r

2GM
− 1

)
. (7.74)

We have actually re-introduced the degeneracy with which we started out; in these coordi-

nates r = 2GM is “infinitely far away” (at either ũ = −∞ or ṽ = +∞). The thing to do is

to change to coordinates which pull these points into finite coordinate values; a good choice

is

u′ = eũ/4GM

v′ = e−ṽ/4GM , (7.75)

which in terms of our original (t, r) system is

u′ =
(

r

2GM
− 1

)1/2

e(r+t)/4GM

v′ =
(

r

2GM
− 1

)1/2

e(r−t)/4GM . (7.76)

In the (u′, v′, θ, φ) system the Schwarzschild metric is

ds2 = −16G3M3

r
e−r/2GM(du′dv′ + dv′du′) + r2dΩ2 . (7.77)

Finally the nonsingular nature of r = 2GM becomes completely manifest; in this form none

of the metric coefficients behave in any special way at the event horizon.
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Both u′ and v′ are null coordinates, in the sense that their partial derivatives ∂/∂u′ and

∂/∂v′ are null vectors. There is nothing wrong with this, since the collection of four partial

derivative vectors (two null and two spacelike) in this system serve as a perfectly good basis

for the tangent space. Nevertheless, we are somewhat more comfortable working in a system

where one coordinate is timelike and the rest are spacelike. We therefore define

u =
1

2
(u′ − v′)

=
(

r

2GM
− 1

)1/2

er/4GM cosh(t/4GM) (7.78)

and

v =
1

2
(u′ + v′)

=
(

r

2GM
− 1

)1/2

er/4GM sinh(t/4GM) , (7.79)

in terms of which the metric becomes

ds2 =
32G3M3

r
e−r/2GM (−dv2 + du2) + r2dΩ2 , (7.80)

where r is defined implicitly from

(u2 − v2) =
(

r

2GM
− 1

)
er/2GM . (7.81)

The coordinates (v, u, θ, φ) are known as Kruskal coordinates, or sometimes Kruskal-

Szekres coordinates. Note that v is the timelike coordinate.

The Kruskal coordinates have a number of miraculous properties. Like the (t, r∗) coor-

dinates, the radial null curves look like they do in flat space:

v = ±u+ constant . (7.82)

Unlike the (t, r∗) coordinates, however, the event horizon r = 2GM is not infinitely far away;

in fact it is defined by

v = ±u , (7.83)

consistent with it being a null surface. More generally, we can consider the surfaces r = con-

stant. From (7.81) these satisfy

u2 − v2 = constant . (7.84)

Thus, they appear as hyperbolae in the u-v plane. Furthermore, the surfaces of constant t

are given by
v

u
= tanh(t/4GM) , (7.85)
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which defines straight lines through the origin with slope tanh(t/4GM). Note that as t →
±∞ this becomes the same as (7.83); therefore these surfaces are the same as r = 2GM .

Now, our coordinates (v, u) should be allowed to range over every value they can take

without hitting the real singularity at r = 2GM ; the allowed region is therefore −∞ ≤
u ≤ ∞ and v2 < u2 + 1. We can now draw a spacetime diagram in the v-u plane (with

θ and φ suppressed), known as a “Kruskal diagram”, which represents the entire spacetime

corresponding to the Schwarzschild metric.

88
8 8

u

v

r = 0

r = 0

constr = t = const

r = 2GM

r = 2GM r = 2GM

r = 2GM

t = - t = +

t = -t = +

Each point on the diagram is a two-sphere.
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Our original coordinates (t, r) were only good for r > 2GM , which is only a part of the

manifold portrayed on the Kruskal diagram. It is convenient to divide the diagram into four

regions:

II

IV

III

I

The region in which we started was region I; by following future-directed null rays we reached

region II, and by following past-directed null rays we reached region III. If we had explored

spacelike geodesics, we would have been led to region IV. The definitions (7.78) and (7.79)

which relate (u, v) to (t, r) are really only good in region I; in the other regions it is necessary

to introduce appropriate minus signs to prevent the coordinates from becoming imaginary.

Having extended the Schwarzschild geometry as far as it will go, we have described a

remarkable spacetime. Region II, of course, is what we think of as the black hole. Once

anything travels from region I into II, it can never return. In fact, every future-directed path

in region II ends up hitting the singularity at r = 0; once you enter the event horizon, you are

utterly doomed. This is worth stressing; not only can you not escape back to region I, you

cannot even stop yourself from moving in the direction of decreasing r, since this is simply

the timelike direction. (This could have been seen in our original coordinate system; for

r < 2GM , t becomes spacelike and r becomes timelike.) Thus you can no more stop moving

toward the singularity than you can stop getting older. Since proper time is maximized along

a geodesic, you will live the longest if you don’t struggle, but just relax as you approach

the singularity. Not that you will have long to relax. (Nor that the voyage will be very

relaxing; as you approach the singularity the tidal forces become infinite. As you fall toward

the singularity your feet and head will be pulled apart from each other, while your torso

is squeezed to infinitesimal thinness. The grisly demise of an astrophysicist falling into a

black hole is detailed in Misner, Thorne, and Wheeler, section 32.6. Note that they use

orthonormal frames [not that it makes the trip any more enjoyable].)

Regions III and IV might be somewhat unexpected. Region III is simply the time-reverse

of region II, a part of spacetime from which things can escape to us, while we can never get

there. It can be thought of as a “white hole.” There is a singularity in the past, out of which

the universe appears to spring. The boundary of region III is sometimes called the past
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event horizon, while the boundary of region II is called the future event horizon. Region IV,

meanwhile, cannot be reached from our region I either forward or backward in time (nor can

anybody from over there reach us). It is another asymptotically flat region of spacetime, a

mirror image of ours. It can be thought of as being connected to region I by a “wormhole,” a

neck-like configuration joining two distinct regions. Consider slicing up the Kruskal diagram

into spacelike surfaces of constant v:

A

B

C

D

E

Now we can draw pictures of each slice, restoring one of the angular coordinates for clarity:

A B C D E

r = 2GM

v

So the Schwarzschild geometry really describes two asymptotically flat regions which reach

toward each other, join together via a wormhole for a while, and then disconnect. But the

wormhole closes up too quickly for any timelike observer to cross it from one region into the

next.

It might seem somewhat implausible, this story about two separate spacetimes reaching

toward each other for a while and then letting go. In fact, it is not expected to happen in

the real world, since the Schwarzschild metric does not accurately model the entire universe.
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Remember that it is only valid in vacuum, for example outside a star. If the star has a radius

larger than 2GM , we need never worry about any event horizons at all. But we believe that

there are stars which collapse under their own gravitational pull, shrinking down to below

r = 2GM and further into a singularity, resulting in a black hole. There is no need for a

white hole, however, because the past of such a spacetime looks nothing like that of the full

Schwarzschild solution. Roughly, a Kruskal-like diagram for stellar collapse would look like

the following:

r = 2GMr = 0

vacuum
(Schwarzschild)

interior
of star

The shaded region is not described by Schwarzschild, so there is no need to fret about white

holes and wormholes.

While we are on the subject, we can say something about the formation of astrophysical

black holes from massive stars. The life of a star is a constant struggle between the inward

pull of gravity and the outward push of pressure. When the star is burning nuclear fuel

at its core, the pressure comes from the heat produced by this burning. (We should put

“burning” in quotes, since nuclear fusion is unrelated to oxidation.) When the fuel is used

up, the temperature declines and the star begins to shrink as gravity starts winning the

struggle. Eventually this process is stopped when the electrons are pushed so close together

that they resist further compression simply on the basis of the Pauli exclusion principle (no

two fermions can be in the same state). The resulting object is called a white dwarf. If the

mass is sufficiently high, however, even the electron degeneracy pressure is not enough, and

the electrons will combine with the protons in a dramatic phase transition. The result is a

neutron star, which consists of almost entirely neutrons (although the insides of neutron

stars are not understood terribly well). Since the conditions at the center of a neutron

star are very different from those on earth, we do not have a perfect understanding of the

equation of state. Nevertheless, we believe that a sufficiently massive neutron star will itself
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be unable to resist the pull of gravity, and will continue to collapse. Since a fluid of neutrons

is the densest material of which we can presently conceive, it is believed that the inevitable

outcome of such a collapse is a black hole.

The process is summarized in the following diagram of radius vs. mass:

0.5

1.0

1.5

log   R

white
  dwarfs

neutron
  stars

1 2 3 4

D

B

C
A

10

M/M

(km)

The point of the diagram is that, for any given mass M , the star will decrease in radius

until it hits the line. White dwarfs are found between points A and B, and neutron stars

between points C and D. Point B is at a height of somewhat less than 1.4 solar masses; the

height of D is less certain, but probably less than 2 solar masses. The process of collapse

is complicated, and during the evolution the star can lose or gain mass, so the endpoint of

any given star is hard to predict. Nevertheless white dwarfs are all over the place, neutron

stars are not uncommon, and there are a number of systems which are strongly believed to

contain black holes. (Of course, you can’t directly see the black hole. What you can see is

radiation from matter accreting onto the hole, which heats up as it gets closer and emits

radiation.)

We have seen that the Kruskal coordinate system provides a very useful representation

of the Schwarzschild geometry. Before moving on to other types of black holes, we will

introduce one more way of thinking about this spacetime, the Penrose (or Carter-Penrose,

or conformal) diagram. The idea is to do a conformal transformation which brings the entire

manifold onto a compact region such that we can fit the spacetime on a piece of paper.

Let’s begin with Minkowski space, to see how the technique works. The metric in polar

coordinates is

ds2 = −dt2 + dr2 + r2dΩ2 . (7.86)

Nothing unusual will happen to the θ, φ coordinates, but we will want to keep careful track
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of the ranges of the other two coordinates. In this case of course we have

−∞ < t < +∞
0 ≤ r < +∞ . (7.87)

Technically the worldline r = 0 represents a coordinate singularity and should be covered by

a different patch, but we all know what is going on so we’ll just act like r = 0 is well-behaved.

Our task is made somewhat easier if we switch to null coordinates:

u =
1

2
(t+ r)

v =
1

2
(t− r) , (7.88)

with corresponding ranges given by

−∞ < u < +∞
−∞ < v < +∞

v ≤ u . (7.89)

These ranges are as portrayed in the figure, on which each point represents a 2-sphere of

t

v = const

u = const

r

radius r = u− v. The metric in these coordinates is given by

ds2 = −2(dudv + dvdu) + (u− v)2dΩ2 . (7.90)

We now want to change to coordinates in which “infinity” takes on a finite coordinate

value. A good choice is

U = arctanu
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U = arctan u

u

/2

π

π

-   /2

V = arctan v . (7.91)

The ranges are now

−π/2 < U < +π/2

−π/2 < V < +π/2

V ≤ U . (7.92)

To get the metric, use

dU =
du

1 + u2
, (7.93)

and

cos(arctan u) =
1√

1 + u2
, (7.94)

and likewise for v. We are led to

dudv + dvdu =
1

cos2 U cos2 V
(dUdV + dV dU) . (7.95)

Meanwhile,

(u− v)2 = (tanU − tanV )2

=
1

cos2 U cos2 V
(sinU cosV − cosU sinV )2

=
1

cos2 U cos2 V
sin2(U − V ) . (7.96)

Therefore, the Minkowski metric in these coordinates is

ds2 =
1

cos2 U cos2 V

[
−2(dUdV + dV dU) + sin2(U − V )dΩ2

]
. (7.97)

This has a certain appeal, since the metric appears as a fairly simple expression multi-

plied by an overall factor. We can make it even better by transforming back to a timelike

coordinate η and a spacelike (radial) coordinate χ, via

η = U + V
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χ = U − V , (7.98)

with ranges

−π < η < +π

0 ≤ χ < +π . (7.99)

Now the metric is

ds2 = ω−2
(
−dη2 + dχ2 + sin2 χ dΩ2

)
, (7.100)

where

ω = cosU cosV

=
1

2
(cos η + cosχ) . (7.101)

The Minkowski metric may therefore be thought of as related by a conformal transfor-

mation to the “unphysical” metric

ds̄2 = ω2ds2

= −dη2 + dχ2 + sin2 χ dΩ2 . (7.102)

This describes the manifold R× S3, where the 3-sphere is maximally symmetric and static.

There is curvature in this metric, and it is not a solution to the vacuum Einstein’s equations.

This shouldn’t bother us, since it is unphysical; the true physical metric, obtained by a

conformal transformation, is simply flat spacetime. In fact this metric is that of the “Einstein

static universe,” a static (but unstable) solution to Einstein’s equations with a perfect fluid

and a cosmological constant. Of course, the full range of coordinates on R × S3 would

usually be −∞ < η < +∞, 0 ≤ χ ≤ π, while Minkowski space is mapped into the subspace

defined by (7.99). The entire R × S3 can be drawn as a cylinder, in which each circle is a

three-sphere, as shown on the next page.
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η

η = −π

η = π

χ = 0

χ = π

The shaded region represents Minkowski space. Note that each point (η, χ) on this cylinder

is half of a two-sphere, where the other half is the point (η,−χ). We can unroll the shaded

region to portray Minkowski space as a triangle, as shown in the figure. The is the Penrose

η,

χ,

χ=0

i

I

i

I

constt =

constr =

i -

+

+

0

-

r

t

diagram. Each point represents a two-sphere.

In fact Minkowski space is only the interior of the above diagram (including χ = 0); the

boundaries are not part of the original spacetime. Together they are referred to as conformal

infinity. The structure of the Penrose diagram allows us to subdivide conformal infinity
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into a few different regions:

i+ = future timelike infinity (η = π , χ = 0)

i0 = spatial infinity (η = 0 , χ = π)

i− = past timelike infinity (η = −π , χ = 0)

I+ = future null infinity (η = π − χ , 0 < χ < π)

I− = past null infinity (η = −π + χ , 0 < χ < π)

(I+ and I− are pronounced as “scri-plus” and “scri-minus”, respectively.) Note that i+,

i0, and i− are actually points, since χ = 0 and χ = π are the north and south poles of S3.

Meanwhile I+ and I− are actually null surfaces, with the topology of R × S2.

There are a number of important features of the Penrose diagram for Minkowski space-

time. The points i+, and i− can be thought of as the limits of spacelike surfaces whose

normals are timelike; conversely, i0 can be thought of as the limit of timelike surfaces whose

normals are spacelike. Radial null geodesics are at ±45◦ in the diagram. All timelike

geodesics begin at i− and end at i+; all null geodesics begin at I− and end at I+; all space-

like geodesics both begin and end at i0. On the other hand, there can be non-geodesic

timelike curves that end at null infinity (if they become “asymptotically null”).

It is nice to be able to fit all of Minkowski space on a small piece of paper, but we don’t

really learn much that we didn’t already know. Penrose diagrams are more useful when

we want to represent slightly more interesting spacetimes, such as those for black holes.

The original use of Penrose diagrams was to compare spacetimes to Minkowski space “at

infinity” — the rigorous definition of “asymptotically flat” is basically that a spacetime has

a conformal infinity just like Minkowski space. We will not pursue these issues in detail, but

instead turn directly to analysis of the Penrose diagram for a Schwarzschild black hole.

We will not go through the necessary manipulations in detail, since they parallel the

Minkowski case with considerable additional algebraic complexity. We would start with the

null version of the Kruskal coordinates, in which the metric takes the form

ds2 = −16G3M3

r
e−r/2GM (du′dv′ + dv′du′) + r2dΩ2 , (7.103)

where r is defined implicitly via

u′v′ =
(

r

2GM
− 1

)
er/2GM . (7.104)

Then essentially the same transformation as was used in flat spacetime suffices to bring

infinity into finite coordinate values:

u′′ = arctan

(
u′√

2GM

)
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v′′ = arctan

(
v′√

2GM

)
, (7.105)

with ranges

−π/2 < u′′ < +π/2

−π/2 < v′′ < +π/2

−π < u′′ + v′′ < π .

The (u′′, v′′) part of the metric (that is, at constant angular coordinates) is now conformally

related to Minkowski space. In the new coordinates the singularities at r = 0 are straight

lines that stretch from timelike infinity in one asymptotic region to timelike infinity in the

other. The Penrose diagram for the maximally extended Schwarzschild solution thus looks

like this:

I -

I
+

i +i +

I
+

I -

i 0

i - i -

i 0

r = const

t = const

r =
 2G

M

r = 2GM

r = 0

r = 0

The only real subtlety about this diagram is the necessity to understand that i+ and i− are

distinct from r = 0 (there are plenty of timelike paths that do not hit the singularity). Notice

also that the structure of conformal infinity is just like that of Minkowski space, consistent

with the claim that Schwarzschild is asymptotically flat. Also, the Penrose diagram for a

collapsing star that forms a black hole is what you might expect, as shown on the next page.

Once again the Penrose diagrams for these spacetimes don’t really tell us anything we

didn’t already know; their usefulness will become evident when we consider more general

black holes. In principle there could be a wide variety of types of black holes, depending on

the process by which they were formed. Surprisingly, however, this turns out not to be the

case; no matter how a black hole is formed, it settles down (fairly quickly) into a state which

is characterized only by the mass, charge, and angular momentum. This property, which

must be demonstrated individually for the various types of fields which one might imagine

go into the construction of the hole, is often stated as “black holes have no hair.” You
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i 0

i +

I
+

r = 0

2G
M

r = 0

-i

can demonstrate, for example, that a hole which is formed from an initially inhomogeneous

collapse “shakes off” any lumpiness by emitting gravitational radiation. This is an example

of a “no-hair theorem.” If we are interested in the form of the black hole after it has settled

down, we thus need only to concern ourselves with charged and rotating holes. In both cases

there exist exact solutions for the metric, which we can examine closely.

But first let’s take a brief detour to the world of black hole evaporation. It is strange to

think of a black hole “evaporating,” but in the real world black holes aren’t truly black —

they radiate energy as if they were a blackbody of temperature T = h̄/8πkGM , where M is

the mass of the hole and k is Boltzmann’s constant. The derivation of this effect, known as

Hawking radiation, involves the use of quantum field theory in curved spacetime and is way

outside our scope right now. The informal idea is nevertheless understandable. In quantum

field theory there are “vacuum fluctuations” — the spontaneous creation and annihilation

of particle/antiparticle pairs in empty space. These fluctuations are precisely analogous to

the zero-point fluctuations of a simple harmonic oscillator. Normally such fluctuations are

e

r = 2GM

r

t

+e e-

e-

+
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impossible to detect, since they average out to give zero total energy (although nobody knows

why; that’s the cosmological constant problem). In the presence of an event horizon, though,

occasionally one member of a virtual pair will fall into the black hole while its partner escapes

to infinity. The particle that reaches infinity will have to have a positive energy, but the

total energy is conserved; therefore the black hole has to lose mass. (If you like you can

think of the particle that falls in as having a negative mass.) We see the escaping particles

as Hawking radiation. It’s not a very big effect, and the temperature goes down as the mass

goes up, so for black holes of mass comparable to the sun it is completely negligible. Still,

in principle the black hole could lose all of its mass to Hawking radiation, and shrink to

nothing in the process. The relevant Penrose diagram might look like this:

i +

i 0

I
+

i -

I
-

r = 0

r = 0

r = 0

radiation

On the other hand, it might not. The problem with this diagram is that “information

is lost” — if we draw a spacelike surface to the past of the singularity and evolve it into

the future, part of it ends up crashing into the singularity and being destroyed. As a result

the radiation itself contains less information than the information that was originally in the

spacetime. (This is the worse than a lack of hair on the black hole. It’s one thing to think

that information has been trapped inside the event horizon, but it is more worrisome to think

that it has disappeared entirely.) But such a process violates the conservation of information

that is implicit in both general relativity and quantum field theory, the two theories that led

to the prediction. This paradox is considered a big deal these days, and there are a number

of efforts to understand how the information can somehow be retrieved. A currently popular

explanation relies on string theory, and basically says that black holes have a lot of hair,

in the form of virtual stringy states living near the event horizon. I hope you will not be

disappointed to hear that we won’t look at this very closely; but you should know what the

problem is and that it is an area of active research these days.



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 201

With that out of our system, we now turn to electrically charged black holes. These

seem at first like reasonable enough objects, since there is certainly nothing to stop us

from throwing some net charge into a previously uncharged black hole. In an astrophysical

situation, however, the total amount of charge is expected to be very small, especially when

compared with the mass (in terms of the relative gravitational effects). Nevertheless, charged

black holes provide a useful testing ground for various thought experiments, so they are worth

our consideration.

In this case the full spherical symmetry of the problem is still present; we know therefore

that we can write the metric as

ds2 = −e2α(r,t)dt2 + e2β(r,t)dr2 + r2dΩ2 . (7.106)

Now, however, we are no longer in vacuum, since the hole will have a nonzero electromagnetic

field, which in turn acts as a source of energy-momentum. The energy-momentum tensor

for electromagnetism is given by

Tµν =
1

4π
(FµρFν

ρ − 1

4
gµνFρσF

ρσ) , (7.107)

where Fµν is the electromagnetic field strength tensor. Since we have spherical symmetry,

the most general field strength tensor will have components

Ftr = f(r, t) = −Frt

Fθφ = g(r, t) sin θ = −Fφθ , (7.108)

where f(r, t) and g(r, t) are some functions to be determined by the field equations, and

components not written are zero. Ftr corresponds to a radial electric field, while Fθφ corre-

sponds to a radial magnetic field. (For those of you wondering about the sin θ, recall that

the thing which should be independent of θ and φ is the radial component of the magnetic

field, Br = ǫ01µνFµν . For a spherically symmetric metric, ǫρσµν = 1√−g
ǫ̃ρσµν is proportional

to (sin θ)−1, so we want a factor of sin θ in Fθφ.) The field equations in this case are both

Einstein’s equations and Maxwell’s equations:

gµν∇µFνσ = 0

∇[µFνρ] = 0 . (7.109)

The two sets are coupled together, since the electromagnetic field strength tensor enters

Einstein’s equations through the energy-momentum tensor, while the metric enters explicitly

into Maxwell’s equations.

The difficulties are not insurmountable, however, and a procedure similar to the one we

followed for the vacuum case leads to a solution for the charged case as well. We will not
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go through the steps explicitly, but merely quote the final answer. The solution is known as

the Reissner-Nordstrøm metric, and is given by

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2 , (7.110)

where

∆ = 1 − 2GM

r
+
G(p2 + q2)

r2
. (7.111)

In this expression, M is once again interpreted as the mass of the hole; q is the total electric

charge, and p is the total magnetic charge. Isolated magnetic charges (monopoles) have never

been observed in nature, but that doesn’t stop us from writing down the metric that they

would produce if they did exist. There are good theoretical reasons to think that monopoles

exist, but are extremely rare. (Of course, there is also the possibility that a black hole

could have magnetic charge even if there aren’t any monopoles.) In fact the electric and

magnetic charges enter the metric in the same way, so we are not introducing any additional

complications by keeping p in our expressions. The electromagnetic fields associated with

this solution are given by

Ftr = − q

r2

Fθφ = p sin θ . (7.112)

Conservatives are welcome to set p = 0 if they like.

The structure of singularities and event horizons is more complicated in this metric than

it was in Schwarzschild, due to the extra term in the function ∆(r) (which can be thought of

as measuring “how much the light cones tip over”). One thing remains the same: at r = 0

there is a true curvature singularity (as could be checked by computing the curvature scalar

RµνρσR
µνρσ). Meanwhile, the equivalent of r = 2GM will be the radius where ∆ vanishes.

This will occur at

r± = GM ±
√
G2M2 −G(p2 + q2) . (7.113)

This might constitute two, one, or zero solutions, depending on the relative values of GM2

and p2 + q2. We therefore consider each case separately.

Case One — GM2 < p2 + q2

In this case the coefficient ∆ is always positive (never zero), and the metric is completely

regular in the (t, r, θ, φ) coordinates all the way down to r = 0. The coordinate t is always

timelike, and r is always spacelike. But there still is the singularity at r = 0, which is now a

timelike line. Since there is no event horizon, there is no obstruction to an observer travelling

to the singularity and returning to report on what was observed. This is known as a naked

singularity, one which is not shielded by an horizon. A careful analysis of the geodesics
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GM   > p   + q2 2 2

(r)

r- GM r+ 2GM

p = q = 0
(Schwarzschild)

(2)

(1)

(3) 2 2 2

2 2 2GM   < p   + q

GM   = p   + q

r

∆

reveals, however, that the singularity is “repulsive” — timelike geodesics never intersect

r = 0, instead they approach and then reverse course and move away. (Null geodesics can

reach the singularity, as can non-geodesic timelike curves.)

As r → ∞ the solution approaches flat spacetime, and as we have just seen the causal

structure is “normal” everywhere. The Penrose diagram will therefore be just like that of

Minkowski space, except that now r = 0 is a singularity.

i

I

i

I

i -

+

+

0

-

(singularity)
r = 0

The nakedness of the singularity offends our sense of decency, as well as the cosmic cen-

sorship conjecture, which roughly states that the gravitational collapse of physical matter

configurations will never produce a naked singularity. (Of course, it’s just a conjecture, and it

may not be right; there are some claims from numerical simulations that collapse of spindle-

like configurations can lead to naked singularities.) In fact, we should not ever expect to find
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a black hole with GM2 < p2 + q2 as the result of gravitational collapse. Roughly speaking,

this condition states that the total energy of the hole is less than the contribution to the

energy from the electromagnetic fields alone — that is, the mass of the matter which carried

the charge would have had to be negative. This solution is therefore generally considered

to be unphysical. Notice also that there are not good Cauchy surfaces (spacelike slices for

which every inextendible timelike line intersects them) in this spacetime, since timelike lines

can begin and end at the singularity.

Case Two — GM2 > p2 + q2

This is the situation which we expect to apply in real gravitational collapse; the energy

in the electromagnetic field is less than the total energy. In this case the metric coefficient

∆(r) is positive at large r and small r, and negative inside the two vanishing points r± =

GM ±
√
G2M2 −G(p2 + q2). The metric has coordinate singularities at both r+ and r−; in

both cases these could be removed by a change of coordinates as we did with Schwarzschild.

The surfaces defined by r = r± are both null, and in fact they are event horizons (in a

sense we will make precise in a moment). The singularity at r = 0 is a timelike line (not

a spacelike surface as in Schwarzschild). If you are an observer falling into the black hole

from far away, r+ is just like 2GM in the Schwarzschild metric; at this radius r switches

from being a spacelike coordinate to a timelike coordinate, and you necessarily move in the

direction of decreasing r. Witnesses outside the black hole also see the same phenomena

that they would outside an uncharged hole — the infalling observer is seen to move more

and more slowly, and is increasingly redshifted.

But the inevitable fall from r+ to ever-decreasing radii only lasts until you reach the null

surface r = r−, where r switches back to being a spacelike coordinate and the motion in the

direction of decreasing r can be arrested. Therefore you do not have to hit the singularity

at r = 0; this is to be expected, since r = 0 is a timelike line (and therefore not necessarily

in your future). In fact you can choose either to continue on to r = 0, or begin to move

in the direction of increasing r back through the null surface at r = r−. Then r will once

again be a timelike coordinate, but with reversed orientation; you are forced to move in the

direction of increasing r. You will eventually be spit out past r = r+ once more, which is

like emerging from a white hole into the rest of the universe. From here you can choose to

go back into the black hole — this time, a different hole than the one you entered in the

first place — and repeat the voyage as many times as you like. This little story corresponds

to the accompanying Penrose diagram, which of course can be derived more rigorously by

choosing appropriate coordinates and analytically extending the Reissner-Nordstrøm metric

as far as it will go.

How much of this is science, as opposed to science fiction? Probably not much. If you

think about the world as seen from an observer inside the black hole who is about to cross the

event horizon at r−, you will notice that they can look back in time to see the entire history
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of the external (asymptotically flat) universe, at least as seen from the black hole. But they

see this (infinitely long) history in a finite amount of their proper time — thus, any signal

that gets to them as they approach r− is infinitely blueshifted. Therefore it is reasonable

to believe (although I know of no proof) that any non-spherically symmetric perturbation

that comes into a Reissner-Nordstrøm black hole will violently disturb the geometry we have

described. It’s hard to say what the actual geometry will look like, but there is no very

good reason to believe that it must contain an infinite number of asymptotically flat regions

connecting to each other via various wormholes.

Case Three — GM2 = p2 + q2

This case is known as the extreme Reissner-Nordstrøm solution (or simply “extremal

black hole”). The mass is exactly balanced in some sense by the charge — you can construct

exact solutions consisting of several extremal black holes which remain stationary with re-

spect to each other for all time. On the one hand the extremal hole is an amusing theoretical

toy; these solutions are often examined in studies of the information loss paradox, and the

role of black holes in quantum gravity. On the other hand it appears very unstable, since

adding just a little bit of matter will bring it to Case Two.

i 0

i 0

i 0

I
+

I
+

I -

I -r =
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The extremal black holes have ∆(r) = 0 at a single radius, r = GM . This does represent

an event horizon, but the r coordinate is never timelike; it becomes null at r = GM , but is

spacelike on either side. The singularity at r = 0 is a timelike line, as in the other cases. So
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for this black hole you can again avoid the singularity and continue to move to the future

to extra copies of the asymptotically flat region, but the singularity is always “to the left.”

The Penrose diagram is as shown.

We could of course go into a good deal more detail about the charged solutions, but let’s

instead move on to spinning black holes. It is much more difficult to find the exact solution

for the metric in this case, since we have given up on spherical symmetry. To begin with

all that is present is axial symmetry (around the axis of rotation), but we can also ask for

stationary solutions (a timelike Killing vector). Although the Schwarzschild and Reissner-

Nordstrøm solutions were discovered soon after general relativity was invented, the solution

for a rotating black hole was found by Kerr only in 1963. His result, the Kerr metric, is

given by the following mess:

ds2 = −dt2 +
ρ2

∆
dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2 +

2GMr

ρ2
(a sin2 θ dφ− dt)2 , (7.114)

where

∆(r) = r2 − 2GMr + a2 , (7.115)

and

ρ2(r, θ) = r2 + a2 cos2 θ . (7.116)

Here a measures the rotation of the hole and M is the mass. It is straightforward to include

electric and magnetic charges q and p, simply by replacing 2GMr with 2GMr− (q2 +p2)/G;

the result is the Kerr-Newman metric. All of the interesting phenomena persist in the

absence of charges, so we will set q = p = 0 from now on.

The coordinates (t, r, θ, φ) are known as Boyer-Lindquist coordinates. It is straight-

forward to check that as a→ 0 they reduce to Schwarzschild coordinates. If we keep a fixed

and let M → 0, however, we recover flat spacetime but not in ordinary polar coordinates.

The metric becomes

ds2 = −dt2 +
(r2 + a2 cos2 θ)2

(r2 + a2)
dr2 + (r2 + a2 cos2 θ)2dθ2 + (r2 + a2) sin2 θ dφ2 , (7.117)

and we recognize the spatial part of this as flat space in ellipsoidal coordinates.

They are related to Cartesian coordinates in Euclidean 3-space by

x = (r2 + a2)1/2 sin θ cos(φ)

y = (r2 + a2)1/2 sin θ sin(φ)

z = r cos θ . (7.118)

There are two Killing vectors of the metric (7.114), both of which are manifest; since the

metric coefficients are independent of t and φ, both ζµ = ∂t and ηµ = ∂φ are Killing vectors.
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Of course ηµ expresses the axial symmetry of the solution. The vector ζµ is not orthogonal to

t = constant hypersurfaces, and in fact is not orthogonal to any hypersurfaces at all; hence

this metric is stationary, but not static. (It’s not changing with time, but it is spinning.)

What is more, the Kerr metric also possesses something called a Killing tensor. This

is any symmetric (0, n) tensor ξµ1···µn
which satisfies

∇(σξµ1···µn) = 0 . (7.119)

Simple examples of Killing tensors are the metric itself, and symmetrized tensor products of

Killing vectors. Just as a Killing vector implies a constant of geodesic motion, if there exists

a Killing tensor then along a geodesic we will have

ξµ1···µn

dxµ1

dλ
· · · dx

µn

dλ
= constant . (7.120)

(Unlike Killing vectors, higher-rank Killing tensors do not correspond to symmetries of the

metric.) In the Kerr geometry we can define the (0, 2) tensor

ξµν = 2ρ2l(µnν) + r2gµν . (7.121)

In this expression the two vectors l and n are given (with indices raised) by

lµ =
1

∆

(
r2 + a2,∆, 0, a

)
nµ =

1

2ρ2

(
r2 + a2,−∆, 0, a

)
. (7.122)

Both vectors are null and satisfy

lµlµ = 0 , nµnµ = 0 , lµnµ = −1 . (7.123)
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(For what it is worth, they are the “special null vectors” of the Petrov classification for this

spacetime.) With these definitions, you can check for yourself that ξµν is a Killing tensor.

Let’s think about the structure of the full Kerr solution. Singularities seem to appear at

both ∆ = 0 and ρ = 0; let’s turn our attention first to ∆ = 0. As in the Reissner-Nordstrøm

solution there are three possibilities: G2M2 > a2, G2M2 = a2, and G2M2 < a2. The last

case features a naked singularity, and the extremal case G2M2 = a2 is unstable, just as in

Reissner-Nordstrøm. Since these cases are of less physical interest, and time is short, we will

concentrate on G2M2 > a2. Then there are two radii at which ∆ vanishes, given by

r± = GM ±
√
G2M2 − a2 . (7.124)

Both radii are null surfaces which will turn out to be event horizons. The analysis of these

surfaces proceeds in close analogy with the Reissner-Nordstrøm case; it is straightforward to

find coordinates which extend through the horizons.

Besides the event horizons at r±, the Kerr solution also features an additional surface

of interest. Recall that in the spherically symmetric solutions, the “timelike” Killing vector

ζµ = ∂t actually became null on the (outer) event horizon, and spacelike inside. Checking

to see where the analogous thing happens for Kerr, we compute

ζµζµ = − 1

ρ2
(∆ − a2 sin2 θ) . (7.125)

This does not vanish at the outer event horizon; in fact, at r = r+ (where ∆ = 0), we have

ζµζµ =
a2

ρ2
sin2 θ ≥ 0 . (7.126)

So the Killing vector is already spacelike at the outer horizon, except at the north and south

poles (θ = 0) where it is null. The locus of points where ζµζµ = 0 is known as the Killing

horizon, and is given by

(r −GM)2 = G2M2 − a2 cos2 θ , (7.127)

while the outer event horizon is given by

(r+ −GM)2 = G2M2 − a2 . (7.128)

There is thus a region in between these two surfaces, known as the ergosphere. Inside the

ergosphere, you must move in the direction of the rotation of the black hole (the φ direction);

however, you can still towards or away from the event horizon (and there is no trouble exiting

the ergosphere). It is evidently a place where interesting things can happen even before you

cross the horizon; more details on this later.
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Before rushing to draw Penrose diagrams, we need to understand the nature of the true

curvature singularity; this does not occur at r = 0 in this spacetime, but rather at ρ = 0.

Since ρ2 = r2 + a2 cos2 θ is the sum of two manifestly nonnegative quantities, it can only

vanish when both quantities are zero, or

r = 0 , θ =
π

2
. (7.129)

This seems like a funny result, but remember that r = 0 is not a point in space, but a disk;

the set of points r = 0, θ = π/2 is actually the ring at the edge of this disk. The rotation

has “softened” the Schwarzschild singularity, spreading it out over a ring.

What happens if you go inside the ring? A careful analytic continuation (which we will

not perform) would reveal that you exit to another asymptotically flat spacetime, but not an

identical copy of the one you came from. The new spacetime is described by the Kerr metric

with r < 0. As a result, ∆ never vanishes and there are no horizons. The Penrose diagram

is much like that for Reissner-Nordstrøm, except now you can pass through the singularity.

Not only do we have the usual strangeness of these distinct asymptotically flat regions

connected to ours through the black hole, but the region near the ring singularity has addi-

tional pathologies: closed timelike curves. If you consider trajectories which wind around in

φ while keeping θ and t constant and r a small negative value, the line element along such

a path is

ds2 = a2
(
1 +

2GM

r

)
dφ2 , (7.130)

which is negative for small negative r. Since these paths are closed, they are obviously

CTC’s. You can therefore meet yourself in the past, with all that entails.

Of course, everything we say about the analytic extension of Kerr is subject to the same

caveats we mentioned for Schwarzschild and Reissner-Nordstrøm; it is unlikely that realistic

gravitational collapse leads to these bizarre spacetimes. It is nevertheless always useful to

have exact solutions. Furthermore, for the Kerr metric there are strange things happening

even if we stay outside the event horizon, to which we now turn.
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We begin by considering more carefully the angular velocity of the hole. Obviously the

conventional definition of angular velocity will have to be modified somewhat before we can

apply it to something as abstract as the metric of spacetime. Let us consider the fate of a

photon which is emitted in the φ direction at some radius r in the equatorial plane (θ = π/2)

of a Kerr black hole. The instant it is emitted its momentum has no components in the r or

θ direction, and therefore the condition that it be null is

ds2 = 0 = gttdt
2 + gtφ(dtdφ+ dφdt) + gφφdφ

2 . (7.131)

This can be immediately solved to obtain

dφ

dt
= − gtφ

gφφ
±
√√√√( gtφ

gφφ

)2

− gtt

gφφ
. (7.132)

If we evaluate this quantity on the Killing horizon of the Kerr metric, we have gtt = 0, and

the two solutions are
dφ

dt
= 0 ,

dφ

dt
=

2a

(2GM)2 + a2
. (7.133)

The nonzero solution has the same sign as a; we interpret this as the photon moving around

the hole in the same direction as the hole’s rotation. The zero solution means that the

photon directed against the hole’s rotation doesn’t move at all in this coordinate system.

(This isn’t a full solution to the photon’s trajectory, just the statement that its instantaneous

velocity is zero.) This is an example of the “dragging of inertial frames” mentioned earlier.

The point of this exercise is to note that massive particles, which must move more slowly

than photons, are necessarily dragged along with the hole’s rotation once they are inside the

Killing horizon. This dragging continues as we approach the outer event horizon at r+; we

can define the angular velocity of the event horizon itself, ΩH , to be the minimum angular

velocity of a particle at the horizon. Directly from (7.132) we find that

ΩH =

(
dφ

dt

)
−

(r+) =
a

r2
+ + a2

. (7.134)

Now let’s turn to geodesic motion, which we know will be simplified by considering the

conserved quantities associated with the Killing vectors ζµ = ∂t and ηµ = ∂φ. For the

purposes at hand we can restrict our attention to massive particles, for which we can work

with the four-momentum

pµ = m
dxµ

dτ
, (7.135)

where m is the rest mass of the particle. Then we can take as our two conserved quantities

the actual energy and angular momentum of the particle,

E = −ζµpµ = m

(
1 − 2GMr

ρ2

)
dt

dτ
+

2mGMar

ρ2
sin2 θ

dφ

dτ
(7.136)
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and

L = ηµp
µ = −2mGMar

ρ2
sin2 θ

dt

dτ
+
m(r2 + a2)2 −m∆a2 sin2 θ

ρ2
sin2 θ

dφ

dτ
. (7.137)

(These differ from our previous definitions for the conserved quantities, where E and L were

taken to be the energy and angular momentum per unit mass. They are conserved either

way, of course.)

The minus sign in the definition of E is there because at infinity both ζµ and pµ are

timelike, so their inner product is negative, but we want the energy to be positive. Inside

the ergosphere, however, ζµ becomes spacelike; we can therefore imagine particles for which

E = −ζµpµ < 0 . (7.138)

The extent to which this bothers us is ameliorated somewhat by the realization that all

particles outside the Killing horizon must have positive energies; therefore a particle inside

the ergosphere with negative energy must either remain on a geodesic inside the Killing

horizon, or be accelerated until its energy is positive if it is to escape.

Still, this realization leads to a way to extract energy from a rotating black hole; the

method is known as the Penrose process. The idea is simple; starting from outside the

ergosphere, you arm yourself with a large rock and leap toward the black hole. If we call the

four-momentum of the (you + rock) system p(0)µ, then the energy E(0) = −ζµp(0)µ is certainly

positive, and conserved as you move along your geodesic. Once you enter the ergosphere,

you hurl the rock with all your might, in a very specific way. If we call your momentum

p(1)µ and that of the rock p(2)µ, then at the instant you throw it we have conservation of

momentum just as in special relativity:

p(0)µ = p(1)µ + p(2)µ . (7.139)

Contracting with the Killing vector ζµ gives

E(0) = E(1) + E(2) . (7.140)

But, if we imagine that you are arbitrarily strong (and accurate), you can arrange your

throw such that E(2) < 0, as per (7.158). Furthermore, Penrose was able to show that you

can arrange the initial trajectory and the throw such that afterwards you follow a geodesic

trajectory back outside the Killing horizon into the external universe. Since your energy is

conserved along the way, at the end we will have

E(1) > E(0) . (7.141)

Thus, you have emerged with more energy than you entered with.
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There is no such thing as a free lunch; the energy you gained came from somewhere,

and that somewhere is the black hole. In fact, the Penrose process extracts energy from the

rotating black hole by decreasing its angular momentum; you have to throw the rock against

the hole’s rotation to get the trick to work. To see this more precisely, define a new Killing

vector

χµ = ζµ + ΩHη
µ . (7.142)

On the outer horizon χµ is null and tangent to the horizon. (This can be seen from ζµ = ∂t,

ηµ = ∂φ, and the definition (7.134) of ΩH .) The statement that the particle with momentum

p(2)µ crosses the event horizon “moving forwards in time” is simply

p(2)µχµ < 0 . (7.143)

Plugging in the definitions of E and L, we see that this condition is equivalent to

L(2) <
E(2)

ΩH

. (7.144)

Since we have arranged E(2) to be negative, and ΩH is positive, we see that the particle must

have a negative angular momentum — it is moving against the hole’s rotation. Once you

have escaped the ergosphere and the rock has fallen inside the event horizon, the mass and

angular momentum of the hole are what they used to be plus the negative contributions of

the rock:

δM = E(2)

δJ = L(2). (7.145)

Here we have introduced the notation J for the angular momentum of the black hole; it is

given by

J = Ma . (7.146)
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We won’t justify this, but you can look in Wald for an explanation. Then (7.144) becomes

a limit on how much you can decrease the angular momentum:

δJ <
δM

ΩH
. (7.147)

If we exactly reach this limit, as the rock we throw in becomes more and more null, we have

the “ideal” process, in which δJ = δM/ΩH .

We will now use these ideas to prove a powerful result: although you can use the Penrose

process to extract energy from the black hole, you can never decrease the area of the event

horizon. For a Kerr metric, one can go through a straightforward computation (projecting

the metric and volume element and so on) to compute the area of the event horizon:

A = 4π(r2
+ + a2) . (7.148)

To show that this doesn’t decrease, it is most convenient to work instead in terms of the

irreducible mass of the black hole, defined by

M2
irr =

A

16πG2

=
1

4G2
(r2

+ + a2)

=
1

2

(
M2 +

√
M4 − (Ma/G)2

)
=

1

2

(
M2 +

√
M4 − (J/G)2

)
. (7.149)

We can differentiate to obtain, after a bit of work,

δMirr =
a

4G
√
G2M2 − a2Mirr

(Ω−1
H δM − δJ) . (7.150)

(I think I have the factors of G right, but it wouldn’t hurt to check.) Then our limit (7.147)

becomes

δMirr > 0 . (7.151)

The irreducible mass can never be reduced; hence the name. It follows that the maximum

amount of energy we can extract from a black hole before we slow its rotation to zero is

M −Mirr = M − 1√
2

(
M2 +

√
M4 − (J/G)2

)1/2

. (7.152)

The result of this complete extraction is a Schwarzschild black hole of mass Mirr. It turns

out that the best we can do is to start with an extreme Kerr black hole; then we can get out

approximately 29% of its total energy.



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 216

The irreducibility ofMirr leads immediately to the fact that the area A can never decrease.

From (7.149) and (7.150) we have

δA = 8πG
a

ΩH

√
G2M2 − a2

(δM − ΩHδJ) , (7.153)

which can be recast as

δM =
κ

8πG
δA+ ΩHδJ , (7.154)

where we have introduced

κ =

√
G2M2 − a2

2GM(GM +
√
G2M2 − a2)

. (7.155)

The quantity κ is known as the surface gravity of the black hole.

It was equations like (7.154) that first started people thinking about the relationship

between black holes and thermodynamics. Consider the first law of thermodynamics,

dU = TdS + work terms . (7.156)

It is natural to think of the term ΩHδJ as “work” that we do on the black hole by throwing

rocks into it. Then the thermodynamic analogy begins to take shape if we think of identifying

the area A as the entropy S, and the surface gravity κ as 8πG times the temperature

T . In fact, in the context of classical general relativity the analogy is essentially perfect.

The “zeroth” law of thermodynamics states that in thermal equilibrium the temperature is

constant throughout the system; the analogous statement for black holes is that stationary

black holes have constant surface gravity on the entire horizon (true). As we have seen,

the first law (7.156) is equivalent to (7.154). The second law, that entropy never decreases,

is simply the statement that the area of the horizon never decreases. Finally, the third

law is that it is impossible to achieve T = 0 in any physical process, which should imply

that it is impossible to achieve κ = 0 in any physical process. It turns out that κ = 0

corresponds to the extremal black holes (either in Kerr or Reissner-Nordstrøm) — where

the naked singularities would appear. Somehow, then, the third law is related to cosmic

censorship.

The missing piece is that real thermodynamic bodies don’t just sit there; they give off

blackbody radiation with a spectrum that depends on their temperature. Black holes, it was

thought before Hawking discovered his radiation, don’t do that, since they’re truly black.

Historically, Bekenstein came up with the idea that black holes should really be honest black

bodies, including the radiation at the appropriate temperature. This annoyed Hawking, who

set out to prove him wrong, and ended up proving that there would be radiation after all.

So the thermodynamic analogy is even better than we had any right to expect — although

it is safe to say that nobody really knows why.
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8 Cosmology

Contemporary cosmological models are based on the idea that the universe is pretty much

the same everywhere — a stance sometimes known as the Copernican principle. On the

face of it, such a claim seems preposterous; the center of the sun, for example, bears little

resemblance to the desolate cold of interstellar space. But we take the Copernican principle

to only apply on the very largest scales, where local variations in density are averaged

over. Its validity on such scales is manifested in a number of different observations, such

as number counts of galaxies and observations of diffuse X-ray and γ-ray backgrounds, but

is most clear in the 3◦ microwave background radiation. Although we now know that the

microwave background is not perfectly smooth (and nobody ever expected that it was), the

deviations from regularity are on the order of 10−5 or less, certainly an adequate basis for

an approximate description of spacetime on large scales.

The Copernican principle is related to two more mathematically precise properties that

a manifold might have: isotropy and homogeneity. Isotropy applies at some specific point

in the space, and states that the space looks the same no matter what direction you look in.

More formally, a manifold M is isotropic around a point p if, for any two vectors V and W

in TpM , there is an isometry of M such that the pushforward of W under the isometry is

parallel with V (not pushed forward). It is isotropy which is indicated by the observations

of the microwave background.

Homogeneity is the statement that the metric is the same throughout the space. In

other words, given any two points p and q in M , there is an isometry which takes p into q.

Note that there is no necessary relationship between homogeneity and isotropy; a manifold

can be homogeneous but nowhere isotropic (such as R × S2 in the usual metric), or it can

be isotropic around a point without being homogeneous (such as a cone, which is isotropic

around its vertex but certainly not homogeneous). On the other hand, if a space is isotropic

everywhere then it is homogeneous. (Likewise if it is isotropic around one point and also

homogeneous, it will be isotropic around every point.) Since there is ample observational

evidence for isotropy, and the Copernican principle would have us believe that we are not

the center of the universe and therefore observers elsewhere should also observe isotropy, we

will henceforth assume both homogeneity and isotropy.

There is one catch. When we look at distant galaxies, they appear to be receding from us;

the universe is apparently not static, but changing with time. Therefore we begin construc-

tion of cosmological models with the idea that the universe is homogeneous and isotropic in

space, but not in time. In general relativity this translates into the statement that the uni-

verse can be foliated into spacelike slices such that each slice is homogeneous and isotropic.
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We therefore consider our spacetime to be R × Σ, where R represents the time direction

and Σ is a homogeneous and isotropic three-manifold. The usefulness of homogeneity and

isotropy is that they imply that Σ must be a maximally symmetric space. (Think of isotropy

as invariance under rotations, and homogeneity as invariance under translations. Then ho-

mogeneity and isotropy together imply that a space has its maximum possible number of

Killing vectors.) Therefore we can take our metric to be of the form

ds2 = −dt2 + a2(t)γij(u)du
iduj . (8.1)

Here t is the timelike coordinate, and (u1, u2, u3) are the coordinates on Σ; γij is the max-

imally symmetric metric on Σ. This formula is a special case of (7.2), which we used to

derive the Schwarzschild metric, except we have scaled t such that gtt = −1. The function

a(t) is known as the scale factor, and it tells us “how big” the spacelike slice Σ is at the

moment t. The coordinates used here, in which the metric is free of cross terms dt dui and

the spacelike components are proportional to a single function of t, are known as comoving

coordinates, and an observer who stays at constant ui is also called “comoving”. Only

a comoving observer will think that the universe looks isotropic; in fact on Earth we are

not quite comoving, and as a result we see a dipole anisotropy in the cosmic microwave

background as a result of the conventional Doppler effect.

Our interest is therefore in maximally symmetric Euclidean three-metrics γij. We know

that maximally symmetric metrics obey

(3)Rijkl = k(γikγjl − γilγjk) , (8.2)

where k is some constant, and we put a superscript (3) on the Riemann tensor to remind us

that it is associated with the three-metric γij, not the metric of the entire spacetime. The

Ricci tensor is then
(3)Rjl = 2kγjl . (8.3)

If the space is to be maximally symmetric, then it will certainly be spherically symmetric.

We already know something about spherically symmetric spaces from our exploration of the

Schwarzschild solution; the metric can be put in the form

dσ2 = γijdu
i duj = e2β(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (8.4)

The components of the Ricci tensor for such a metric can be obtained from (7.16), the Ricci

tensor for a spherically symmetric spacetime, by setting α = 0 and ∂0β = 0, which gives

(3)R11 =
2

r
∂1β

(3)R22 = e−2β(r∂1β − 1) + 1
(3)R33 = [e−2β(r∂1β − 1) + 1] sin2 θ . (8.5)
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We set these proportional to the metric using (8.3), and can solve for β(r):

β = −1

2
ln(1 − kr2) . (8.6)

This gives us the following metric on spacetime:

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
. (8.7)

This is the Robertson-Walker metric. We have not yet made use of Einstein’s equations;

those will determine the behavior of the scale factor a(t).

Note that the substitutions

k → k
|k|

r →
√
|k| r

a → a√
|k|

(8.8)

leave (8.7) invariant. Therefore the only relevant parameter is k/|k|, and there are three

cases of interest: k = −1, k = 0, and k = +1. The k = −1 case corresponds to constant

negative curvature on Σ, and is called open; the k = 0 case corresponds to no curvature on

Σ, and is called flat; the k = +1 case corresponds to positive curvature on Σ, and is called

closed.

Let us examine each of these possibilities. For the flat case k = 0 the metric on Σ is

dσ2 = dr2 + r2dΩ2

= dx2 + dy2 + dz2 , (8.9)

which is simply flat Euclidean space. Globally, it could describe R3 or a more complicated

manifold, such as the three-torus S1 × S1 × S1. For the closed case k = +1 we can define

r = sinχ to write the metric on Σ as

dσ2 = dχ2 + sin2 χ dΩ2 , (8.10)

which is the metric of a three-sphere. In this case the only possible global structure is

actually the three-sphere (except for the non-orientable manifold RP3). Finally in the open

k = −1 case we can set r = sinhψ to obtain

dσ2 = dψ2 + sinh2 ψ dΩ2 . (8.11)

This is the metric for a three-dimensional space of constant negative curvature; it is hard

to visualize, but think of the saddle example we spoke of in Section Three. Globally such

a space could extend forever (which is the origin of the word “open”), but it could also
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describe a non-simply-connected compact space (so “open” is really not the most accurate

description).

With the metric in hand, we can set about computing the connection coefficients and

curvature tensor. Setting ȧ ≡ da/dt, the Christoffel symbols are given by

Γ0
11 =

aȧ

1 − kr2
Γ0

22 = aȧr2 Γ0
33 = aȧr2 sin2 θ

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ

a
Γ1

22 = −r(1 − kr2) Γ1
33 = −r(1 − kr2) sin2 θ

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
Γ2

33 = − sin θ cos θ Γ3
23 = Γ3

32 = cot θ . (8.12)

The nonzero components of the Ricci tensor are

R00 = −3
ä

a

R11 =
aä+ 2ȧ2 + 2k

1 − kr2

R22 = r2(aä+ 2ȧ2 + 2k)

R33 = r2(aä+ 2ȧ2 + 2k) sin2 θ , (8.13)

and the Ricci scalar is then

R =
6

a2
(aä+ ȧ2 + k) . (8.14)

The universe is not empty, so we are not interested in vacuum solutions to Einstein’s

equations. We will choose to model the matter and energy in the universe by a perfect

fluid. We discussed perfect fluids in Section One, where they were defined as fluids which

are isotropic in their rest frame. The energy-momentum tensor for a perfect fluid can be

written

Tµν = (p+ ρ)UµUν + pgµν , (8.15)

where ρ and p are the energy density and pressure (respectively) as measured in the rest

frame, and Uµ is the four-velocity of the fluid. It is clear that, if a fluid which is isotropic in

some frame leads to a metric which is isotropic in some frame, the two frames will coincide;

that is, the fluid will be at rest in comoving coordinates. The four-velocity is then

Uµ = (1, 0, 0, 0) , (8.16)

and the energy-momentum tensor is

Tµν =


ρ 0 0 0
0
0 gijp
0

 . (8.17)
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With one index raised this takes the more convenient form

T µ
ν = diag(−ρ, p, p, p) . (8.18)

Note that the trace is given by

T = T µ
µ = −ρ+ 3p . (8.19)

Before plugging in to Einstein’s equations, it is educational to consider the zero compo-

nent of the conservation of energy equation:

0 = ∇µT
µ
0

= ∂µT
µ
0 + Γµ

µ0T
0
0 − Γλ

µ0T
µ

λ

= −∂0ρ− 3
ȧ

a
(ρ+ p) . (8.20)

To make progress it is necessary to choose an equation of state, a relationship between ρ

and p. Essentially all of the perfect fluids relevant to cosmology obey the simple equation of

state

p = wρ , (8.21)

where w is a constant independent of time. The conservation of energy equation becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (8.22)

which can be integrated to obtain

ρ ∝ a−3(1+w) . (8.23)

The two most popular examples of cosmological fluids are known as dust and radiation.

Dust is collisionless, nonrelativistic matter, which obeys w = 0. Examples include ordinary

stars and galaxies, for which the pressure is negligible in comparison with the energy density.

Dust is also known as “matter”, and universes whose energy density is mostly due to dust

are known as matter-dominated. The energy density in matter falls off as

ρ ∝ a−3 . (8.24)

This is simply interpreted as the decrease in the number density of particles as the universe

expands. (For dust the energy density is dominated by the rest energy, which is proportional

to the number density.) “Radiation” may be used to describe either actual electromagnetic

radiation, or massive particles moving at relative velocities sufficiently close to the speed of

light that they become indistinguishable from photons (at least as far as their equation of

state is concerned). Although radiation is a perfect fluid and thus has an energy-momentum
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tensor given by (8.15), we also know that Tµν can be expressed in terms of the field strength

as

T µν =
1

4π
(F µλF ν

λ − 1

4
gµνF λσFλσ) . (8.25)

The trace of this is given by

T µ
µ =

1

4π

[
F µλFµλ − 1

4
(4)F λσFλσ

]
= 0 . (8.26)

But this must also equal (8.19), so the equation of state is

p =
1

3
ρ . (8.27)

A universe in which most of the energy density is in the form of radiation is known as

radiation-dominated. The energy density in radiation falls off as

ρ ∝ a−4 . (8.28)

Thus, the energy density in radiation falls off slightly faster than that in matter; this is

because the number density of photons decreases in the same way as the number density of

nonrelativistic particles, but individual photons also lose energy as a−1 as they redshift, as

we will see later. (Likewise, massive but relativistic particles will lose energy as they “slow

down” in comoving coordinates.) We believe that today the energy density of the universe

is dominated by matter, with ρmat/ρrad ∼ 106. However, in the past the universe was much

smaller, and the energy density in radiation would have dominated at very early times.

There is one other form of energy-momentum that is sometimes considered, namely that

of the vacuum itself. Introducing energy into the vacuum is equivalent to introducing a

cosmological constant. Einstein’s equations with a cosmological constant are

Gµν = 8πGTµν − Λgµν , (8.29)

which is clearly the same form as the equations with no cosmological constant but an energy-

momentum tensor for the vacuum,

T (vac)
µν = − Λ

8πG
gµν . (8.30)

This has the form of a perfect fluid with

ρ = −p =
Λ

8πG
. (8.31)

We therefore have w = −1, and the energy density is independent of a, which is what we

would expect for the energy density of the vacuum. Since the energy density in matter and
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radiation decreases as the universe expands, if there is a nonzero vacuum energy it tends

to win out over the long term (as long as the universe doesn’t start contracting). If this

happens, we say that the universe becomes vacuum-dominated.

We now turn to Einstein’s equations. Recall that they can be written in the form (4.45):

Rµν = 8πG
(
Tµν −

1

2
gµνT

)
. (8.32)

The µν = 00 equation is

− 3
ä

a
= 4πG(ρ+ 3p) , (8.33)

and the µν = ij equations give

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) . (8.34)

(There is only one distinct equation from µν = ij, due to isotropy.) We can use (8.33) to

eliminate second derivatives in (8.34), and do a little cleaning up to obtain

ä

a
= −4πG

3
(ρ+ 3p) , (8.35)

and (
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (8.36)

Together these are known as the Friedmann equations, and metrics of the form (8.7)

which obey these equations define Friedmann-Robertson-Walker (FRW) universes.

There is a bunch of terminology which is associated with the cosmological parameters,

and we will just introduce the basics here. The rate of expansion is characterized by the

Hubble parameter,

H =
ȧ

a
. (8.37)

The value of the Hubble parameter at the present epoch is the Hubble constant, H0. There

is currently a great deal of controversy about what its actual value is, with measurements

falling in the range of 40 to 90 km/sec/Mpc. (“Mpc” stands for “megaparsec”, which is

3 × 1024 cm.) Note that we have to divide ȧ by a to get a measurable quantity, since the

overall scale of a is irrelevant. There is also the deceleration parameter,

q = −aä
ȧ2

, (8.38)

which measures the rate of change of the rate of expansion.

Another useful quantity is the density parameter,

Ω =
8πG

3H2
ρ
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=
ρ

ρcrit

, (8.39)

where the critical density is defined by

ρcrit =
3H2

8πG
. (8.40)

This quantity (which will generally change with time) is called the “critical” density because

the Friedmann equation (8.36) can be written

Ω − 1 =
k

H2a2
. (8.41)

The sign of k is therefore determined by whether Ω is greater than, equal to, or less than

one. We have
ρ < ρcrit ↔ Ω < 1 ↔ k = −1 ↔ open
ρ = ρcrit ↔ Ω = 1 ↔ k = 0 ↔ flat
ρ > ρcrit ↔ Ω > 1 ↔ k = +1 ↔ closed .

The density parameter, then, tells us which of the three Robertson-Walker geometries de-

scribes our universe. Determining it observationally is an area of intense investigation.

It is possible to solve the Friedmann equations exactly in various simple cases, but it

is often more useful to know the qualitative behavior of various possibilities. Let us for

the moment set Λ = 0, and consider the behavior of universes filled with fluids of positive

energy (ρ > 0) and nonnegative pressure (p ≥ 0). Then by (8.35) we must have ä < 0.

Since we know from observations of distant galaxies that the universe is expanding (ȧ > 0),

this means that the universe is “decelerating.” This is what we should expect, since the

gravitational attraction of the matter in the universe works against the expansion. The fact

that the universe can only decelerate means that it must have been expanding even faster

in the past; if we trace the evolution backwards in time, we necessarily reach a singularity

at a = 0. Notice that if ä were exactly zero, a(t) would be a straight line, and the age of

the universe would be H−1
0 . Since ä is actually negative, the universe must be somewhat

younger than that.

This singularity at a = 0 is the Big Bang. It represents the creation of the universe

from a singular state, not explosion of matter into a pre-existing spacetime. It might be

hoped that the perfect symmetry of our FRW universes was responsible for this singularity,

but in fact it’s not true; the singularity theorems predict that any universe with ρ > 0 and

p ≥ 0 must have begun at a singularity. Of course the energy density becomes arbitrarily

high as a→ 0, and we don’t expect classical general relativity to be an accurate description

of nature in this regime; hopefully a consistent theory of quantum gravity will be able to fix

things up.
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now

Big
Bang

a(t)

t

-1H 0

The future evolution is different for different values of k. For the open and flat cases,

k ≤ 0, (8.36) implies

ȧ2 =
8πG

3
ρa2 + |k| . (8.42)

The right hand side is strictly positive (since we are assuming ρ > 0), so ȧ never passes

through zero. Since we know that today ȧ > 0, it must be positive for all time. Thus,

the open and flat universes expand forever — they are temporally as well as spatially open.

(Please keep in mind what assumptions go into this — namely, that there is a nonzero

positive energy density. Negative energy density universes do not have to expand forever,

even if they are “open”.)

How fast do these universes keep expanding? Consider the quantity ρa3 (which is constant

in matter-dominated universes). By the conservation of energy equation (8.20) we have

d

dt
(ρa3) = a3

(
ρ̇+ 3ρ

ȧ

a

)
= −3pa2ȧ . (8.43)

The right hand side is either zero or negative; therefore

d

dt
(ρa3) ≤ 0 . (8.44)

This implies in turn that ρa2 must go to zero in an ever-expanding universe, where a→ ∞.

Thus (8.42) tells us that

ȧ2 → |k| . (8.45)

(Remember that this is true for k ≤ 0.) Thus, for k = −1 the expansion approaches the

limiting value ȧ → 1, while for k = 0 the universe keeps expanding, but more and more

slowly.
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For the closed universes (k = +1), (8.36) becomes

ȧ2 =
8πG

3
ρa2 − 1 . (8.46)

The argument that ρa2 → 0 as a → ∞ still applies; but in that case (8.46) would be-

come negative, which can’t happen. Therefore the universe does not expand indefinitely; a

possesses an upper bound amax. As a approaches amax, (8.35) implies

ä→ −4πG

3
(ρ+ 3p)amax < 0 . (8.47)

Thus ä is finite and negative at this point, so a reaches amax and starts decreasing, whereupon

(since ä < 0) it will inevitably continue to contract to zero — the Big Crunch. Thus, the

closed universes (again, under our assumptions of positive ρ and nonnegative p) are closed

in time as well as space.

a(t)

t
nowbang crunch

k = 0

k = -1

k = +1

We will now list some of the exact solutions corresponding to only one type of energy

density. For dust-only universes (p = 0), it is convenient to define a development angle

φ(t), rather than using t as a parameter directly. The solutions are then, for open universes,{
a = C

2
(cosh φ− 1)

t = C
2
(sinh φ− φ)

(k = −1) , (8.48)

for flat universes,

a =
(

9C

4

)1/3

t2/3 (k = 0) , (8.49)

and for closed universes, {
a = C

2
(1 − cosφ)

t = C
2
(φ− sinφ)

(k = +1) , (8.50)
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where we have defined

C =
8πG

3
ρa3 = constant . (8.51)

For universes filled with nothing but radiation, p = 1
3
ρ, we have once again open universes,

a =
√
C ′

(1 +
t√
C ′

)2

− 1

1/2

(k = −1) , (8.52)

flat universes,

a = (4C ′)1/4t1/2 (k = 0) , (8.53)

and closed universes,

a =
√
C ′

1 −
(

1 − t√
C ′

)2
1/2

(k = +1) , (8.54)

where this time we defined

C ′ =
8πG

3
ρa4 = constant . (8.55)

You can check for yourselves that these exact solutions have the properties we argued would

hold in general.

For universes which are empty save for the cosmological constant, either ρ or p will be

negative, in violation of the assumptions we used earlier to derive the general behavior of

a(t). In this case the connection between open/closed and expands forever/recollapses is

lost. We begin by considering Λ < 0. In this case Ω is negative, and from (8.41) this can

only happen if k = −1. The solution in this case is

a =

√
−3

Λ
sin

√−Λ

3
t

 . (8.56)

There is also an open (k = −1) solution for Λ > 0, given by

a =

√
3

Λ
sinh

√Λ

3
t

 . (8.57)

A flat vacuum-dominated universe must have Λ > 0, and the solution is

a ∝ exp

±
√

Λ

3
t

 , (8.58)

while the closed universe must also have Λ > 0, and satisfies

a =

√
3

Λ
cosh

√Λ

3
t

 . (8.59)
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These solutions are a little misleading. In fact the three solutions for Λ > 0 — (8.57), (8.58),

and (8.59) — all represent the same spacetime, just in different coordinates. This spacetime,

known as de Sitter space, is actually maximally symmetric as a spacetime. (See Hawking

and Ellis for details.) The Λ < 0 solution (8.56) is also maximally symmetric, and is known

as anti-de Sitter space.

It is clear that we would like to observationally determine a number of quantities to decide

which of the FRW models corresponds to our universe. Obviously we would like to determine

H0, since that is related to the age of the universe. (For a purely matter-dominated, k = 0

universe, (8.49) implies that the age is 2/(3H0). Other possibilities would predict similar

relations.) We would also like to know Ω, which determines k through (8.41). Given the

definition (8.39) of Ω, this means we want to know both H0 and ρ0. Unfortunately both

quantities are hard to measure accurately, especially ρ. But notice that the deceleration

parameter q can be related to Ω using (8.35):

q = −aä
ȧ2

= −H−2 ä

a

=
4πG

3H2
(ρ+ 3p)

=
4πG

3H2
ρ(1 + 3w)

=
1 + 3w

2
Ω . (8.60)

Therefore, if we think we know what w is (i.e., what kind of stuff the universe is made of),

we can determine Ω by measuring q. (Unfortunately we are not completely confident that

we know w, and q is itself hard to measure. But people are trying.)

To understand how these quantities might conceivably be measured, let’s consider geo-

desic motion in an FRW universe. There are a number of spacelike Killing vectors, but no

timelike Killing vector to give us a notion of conserved energy. There is, however, a Killing

tensor. If Uµ = (1, 0, 0, 0) is the four-velocity of comoving observers, then the tensor

Kµν = a2(gµν + UµUν) (8.61)

satisfies ∇(σKµν) = 0 (as you can check), and is therefore a Killing tensor. This means that

if a particle has four-velocity V µ = dxµ/dλ, the quantity

K2 = KµνV
µV ν = a2[VµV

µ + (UµV
µ)2] (8.62)

will be a constant along geodesics. Let’s think about this, first for massive particles. Then

we will have VµV
µ = −1, or

(V 0)2 = 1 + |~V |2 , (8.63)
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where |~V |2 = gijV
iV j. So (8.61) implies

|~V | =
K

a
. (8.64)

The particle therefore “slows down” with respect to the comoving coordinates as the universe

expands. In fact this is an actual slowing down, in the sense that a gas of particles with

initially high relative velocities will cool down as the universe expands.

A similar thing happens to null geodesics. In this case VµV
µ = 0, and (8.62) implies

UµV
µ =

K

a
. (8.65)

But the frequency of the photon as measured by a comoving observer is ω = −UµV
µ. The

frequency of the photon emitted with frequency ω1 will therefore be observed with a lower

frequency ω0 as the universe expands:

ω0

ω1
=
a1

a0
. (8.66)

Cosmologists like to speak of this in terms of the redshift z between the two events, defined

by the fractional change in wavelength:

z =
λ0 − λ1

λ1

=
a0

a1
− 1 . (8.67)

Notice that this redshift is not the same as the conventional Doppler effect; it is the expansion

of space, not the relative velocities of the observer and emitter, which leads to the redshift.

The redshift is something we can measure; we know the rest-frame wavelengths of various

spectral lines in the radiation from distant galaxies, so we can tell how much their wavelengths

have changed along the path from time t1 when they were emitted to time t0 when they were

observed. We therefore know the ratio of the scale factors at these two times. But we don’t

know the times themselves; the photons are not clever enough to tell us how much coordinate

time has elapsed on their journey. We have to work harder to extract this information.

Roughly speaking, since a photon moves at the speed of light its travel time should simply

be its distance. But what is the “distance” of a far away galaxy in an expanding universe?

The comoving distance is not especially useful, since it is not measurable, and furthermore

because the galaxies need not be comoving in general. Instead we can define the luminosity

distance as

d2
L =

L

4πF
, (8.68)

where L is the absolute luminosity of the source and F is the flux measured by the observer

(the energy per unit time per unit area of some detector). The definition comes from the
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fact that in flat space, for a source at distance d the flux over the luminosity is just one

over the area of a sphere centered around the source, F/L = 1/A(d) = 1/4πd2. In an FRW

universe, however, the flux will be diluted. Conservation of photons tells us that the total

number of photons emitted by the source will eventually pass through a sphere at comoving

distance r from the emitter. Such a sphere is at a physical distance d = a0r, where a0 is

the scale factor when the photons are observed. But the flux is diluted by two additional

effects: the individual photons redshift by a factor (1 + z), and the photons hit the sphere

less frequently, since two photons emitted a time δt apart will be measured at a time (1+z)δt

apart. Therefore we will have
F

L
=

1

4πa2
0r

2(1 + z)2
, (8.69)

or

dL = a0r(1 + z) . (8.70)

The luminosity distance dL is something we might hope to measure, since there are some

astrophysical sources whose absolute luminosities are known (“standard candles”). But r is

not observable, so we have to remove that from our equation. On a null geodesic (chosen to

be radial for convenience) we have

0 = ds2 = −dt2 +
a2

1 − kr2
dr2 , (8.71)

or ∫ t0

t1

dt

a(t)
=
∫ r

0

dr

(1 − kr2)1/2
. (8.72)

For galaxies not too far away, we can expand the scale factor in a Taylor series about its

present value:

a(t1) = a0 + (ȧ)0(t1 − t0) +
1

2
(ä)0(t1 − t0)

2 + . . . . (8.73)

We can then expand both sides of (8.72) to find

r = a−1
0

[
(t0 − t1) +

1

2
H0(t0 − t1)

2 + . . .
]
. (8.74)

Now remembering (8.67), the expansion (8.73) is the same as

1

1 + z
= 1 +H0(t1 − t0) −

1

2
q0H

2
0 (t1 − t0)

2 + . . . . (8.75)

For small H0(t1 − t0) this can be inverted to yield

t0 − t1 = H−1
0

[
z −

(
1 +

q0
2

)
z2 + . . .

]
. (8.76)
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Substituting this back again into (8.74) gives

r =
1

a0H0

[
z − 1

2
(1 + q0) z

2 + . . .
]
. (8.77)

Finally, using this in (8.70) yields Hubble’s Law:

dL = H−1
0

[
z +

1

2
(1 − q0)z

2 + . . .
]
. (8.78)

Therefore, measurement of the luminosity distances and redshifts of a sufficient number of

galaxies allows us to determine H0 and q0, and therefore takes us a long way to deciding

what kind of FRW universe we live in. The observations themselves are extremely difficult,

and the values of these parameters in the real world are still hotly contested. Over the next

decade or so a variety of new strategies and more precise application of old strategies could

very well answer these questions once and for all.
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1 Introduction

General relativity (GR) is the most beautiful physical theory ever invented. Nevertheless,

it has a reputation of being extremely difficult, primarily for two reasons: tensors are ev-

erywhere, and spacetime is curved. These two facts force GR people to use a different

language than everyone else, which makes the theory somewhat inaccessible. Nevertheless,

it is possible to grasp the basics of the theory, even if you’re not Einstein (and who is?).

GR can be summed up in two statements: 1) Spacetime is a curved pseudo-Riemannian

manifold with a metric of signature (−+++). 2) The relationship between matter and the

curvature of spacetime is contained in the equation

Rµν −
1

2
Rgµν = 8πGTµν . (1)

However, these statements are incomprehensible unless you sling the lingo. So that’s what we

shall start doing. Note, however, that this introduction is a very pragmatic affair, intended

to give you some immediate feel for the language of GR. It does not substitute for a deep

understanding – that takes more work!

Administrative notes: physicists love to set constants to unity, and it’s a difficult habit to

break once you start. I will not set Newton’s constant G = 1. However, it’s ridiculous not to

set the speed of light c = 1, so I’ll do that. For further reference, recommended texts include

A First Course in General Relativity by Bernard Schutz, at an undergrad level; and graduate

texts General Relativity by Wald, Gravitation and Cosmology by Weinberg, Gravitation by

Misner, Thorne, and Wheeler, and Introducing Einstein’s Relativity by D’Inverno. Of course

best of all would be to rush to <http://pancake.uchicago.edu/~carroll/notes/>, where

you will find about one semester’s worth of free GR notes, of which this introduction is

essentially an abridgment.

2 Special Relativity

Special relativity (SR) stems from considering the speed of light to be invariant in all reference

frames. This naturally leads to a view in which space and time are joined together to form

spacetime; the conversion factor from time units to space units is c (which equals 1, right?

couldn’t be simpler). The coordinates of spacetime may be chosen to be

x0 ≡ ct = t

x1 ≡ x

x2 ≡ y

x3 ≡ z. (2)
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These are Cartesian coordinates. Note a few things: these indices are superscripts, not

exponents. The indices go from zero to three; the collection of all four coordinates is denoted

xµ. Spacetime indices are always in Greek; occasionally we will use Latin indices if we mean

only the spatial components, e.g. i = 1, 2, 3.

The stage on which SR is played out is a specific four dimensional manifold, known as

Minkowski spacetime (or sometimes “Minkowski space”). The xµ are coordinates on this

manifold. The elements of spacetime are known as events; an event is specified by giving its

location in both space and time. Vectors in spacetime are always fixed at an event; there is

no such thing as a “free vector” that can move from place to place. Since Minkowski space

is four dimensional, these are generally known as four-vectors, and written in components

as V µ, or abstractly as just V .

We also have the metric on Minkowski space, ηµν . The metric gives us a way of taking

the norm of a vector, or the dot product of two vectors. Written as a matrix, the Minkowski

metric is

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3)

Then the dot product of two vectors is defined to be

A ·B ≡ ηµνA
µBν = −A0B0 + A1B1 + A2B2 + A3B3 . (4)

(We always use the summation convention, in which identical upper and lower indices

are implicitly summed over all their possible values.) This is especially useful for taking the

infinitesimal (distance)2 between two points, also known as the spacetime interval:

ds2 = ηµνdx
µdxν (5)

= −dt2 + dx2 + dy2 + dz2 . (6)

In fact, an equation of the form (6) is often called “the metric.” The metric contains all of the

information about the geometry of the manifold. The Minkowski metric is of course just the

spacetime generalization of the ordinary inner product on flat Euclidean space, which we can

think of in components as the Kronecker delta, δij. We say that the Minkowski metric has

signature (−+ ++), sometimes called “Lorentzian,” as opposed to the Euclidian signature

with all plus signs. (The overall sign of the metric is a matter of convention, and many texts

use (+−−−).)

Notice that for a particle with fixed spatial coordinates xi, the interval elapsed as it moves

forward in time is negative, ds2 = −dt2 < 0. This leads us to define the proper time τ via

dτ 2 ≡ −ds2 . (7)
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The proper time elapsed along a trajectory through spacetime will be the actual time mea-

sured by an observer on that trajectory. Some other observer, as we know, will measure a

different time.

Some verbiage: a vector V µ with negative norm, V · V < 0, is known as timelike. If the

norm is zero, the vector is null, and if it’s positive, the vector is spacelike. Likewise, tra-

jectories with negative ds2 (note – not proper time!) are called timelike, etc. These concepts

lead naturally to the concept of a spacetime diagram, with which you are presumably

familiar. The set of null trajectories leading into and out of an event constitute a light

cone, terminology which becomes transparent in the context of a spacetime diagram such

as Figure 1.

A path through spacetime is specified by giving the four spacetime coordinates as a

function of some parameter, xµ(λ). A path is characterized as timelike/null/spacelike when

its tangent vector dxµ/dλ is timelike/null/spacelike. For timelike paths the most convenient

parameter to use is the proper time τ , which we can compute along an arbitrary timelike

path via

τ =
∫ √

−ds2 =
∫ √

−ηµν
dxµ

dλ

dxν

dλ
dλ . (8)

The corresponding tangent vector Uµ = dxµ/dτ is called the four-velocity, and is auto-

matically normalized:

ηµνU
µU ν = −1 , (9)

as you can check.

A related vector is the momentum four-vector, defined by

pµ = mUµ , (10)

where m is the mass of the particle. The mass is a fixed quantity independent of inertial

frame, what you may be used to thinking of as the “rest mass.” The energy of a particle

is simply p0, the timelike component of its momentum vector. In the particle’s rest frame

we have p0 = m; recalling that we have set c = 1, we find that we have found the famous

equation E = mc2. In a moving frame we can find the components of pµ by performing a

Lorentz transformation; for a particle moving with three-velocity v = dx/dt along the x axis

we have

pµ = (γm, vγm, 0, 0) , (11)

where γ = 1/
√

1− v2. For small v, this gives p0 = m + 1
2
mv2 (what we usually think of

as rest energy plus kinetic energy) and p1 = mv (what we usually think of as Newtonian

momentum).
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spacelike

timelike

t

x

null

Figure 1: A lightcone, portrayed on a spacetime diagram. Points which are spacelike-, null-,
and timelike-separated from the origin are indicated.
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3 Tensors

The transition from flat to curved spacetime means that we will eventually be unable to

use Cartesian coordinates; in fact, some rather complicated coordinate systems become nec-

essary. Therefore, for our own good, we want to make all of our equations coordinate

invariant – i.e., if the equation holds in one coordinate system, it will hold in any. It also

turns out that many of the quantities that we use in GR will be tensors. Tensors may be

thought of as objects like vectors, except with possibly more indices, which transform under a

change of coordinates xµ → xµ′
according to the following rule, the tensor transformation

law:

Sµ′
ν′ρ′ =

∂xµ′

∂xµ

∂xν

∂xν′

∂xρ

∂xρ′ S
µ

νρ . (12)

Note that the unprimed indices on the right are dummy indices, which are summed over.

The pattern in (12) is pretty easy to remember, if you think of “conservation of indices”: the

upper and lower free indices (not summed over) on each side of an equation must be the same.

This holds true for any equation, not just the tensor transformation law. Remember also that

upper indices can only be summed with lower indices; if you have two upper or lower indices

that are the same, you goofed. Since there are in general no preferred coordinate systems in

GR, it behooves us to cast all of our equations in tensor form, because if an equation between

two tensors holds in one coordinate system, it holds in all coordinate systems.

Tensors are not very complicated; they’re just generalizations of vectors. (Note that

scalars qualify as tensors with no indices, and vectors are tensors with one upper index; a

tensor with two indices can be though of as a matrix.) However, there is an entire language

associated with them which you must learn. If a tensor has n upper and m lower indices, it

is called a (n, m) tensor. The upper indices are called contravariant indices, and the lower

ones are covariant; but everyone just says “upper” and “lower,” and so should you. Tensors

of type (n, m) can be contracted to form a tensor of type (n− 1, m− 1) by summing over

one upper and one lower index:

Sµ = T µλ
λ . (13)

The contraction of a two-index tensor is often called the trace. (Which makes sense if you

think about it.)

If a tensor is the same when we interchange two indices,

S···αβ··· = S···βα··· , (14)

it is said to be symmetric in those two indices; if it changes sign,

S···αβ··· = −S···βα··· , (15)

we call it antisymmetric. A tensor can be symmetric or antisymmetric in many indices at

once. We can also take a tensor with no particular symmetry properties in some set of indices
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and pick out the symmetric/antisymmetric piece by taking appropriate linear combinations;

this procedure of symmetrization or antisymmetrization is denoted by putting parentheses

or square brackets around the relevant indices:

T(µ1µ2···µn) =
1

n!
(Tµ1µ2···µn + sum over permutations of µ1 · · ·µn)

T[µ1µ2···µn] =
1

n!
(Tµ1µ2···µn + alternating sum over permutations of µ1 · · ·µn) . (16)

By “alternating sum” we mean that permutations which are the result of an odd number of

exchanges are given a minus sign, thus:

T[µνρ]σ =
1

6
(Tµνρσ − Tµρνσ + Tρµνσ − Tνµρσ + Tνρµσ − Tρνµσ) . (17)

The most important tensor in GR is the metric gµν , a generalization (to arbitrary coor-

dinates and geometries) of the Minkowski metric ηµν . Although ηµν is just a special case of

gµν , we denote it by a different symbol to emphasize the importance of moving from flat to

curved space. The metric is a symmetric two-index tensor. An important fact is that it is

always possible to find coordinates such that, at one specified point p, the components of the

metric are precisely those of the Minkowski metric (3) and the first derivatives of the metric

vanish. In other words, the metric will look flat at precisely that point; however, in general

the second derivatives of gµν cannot be made to vanish, a manifestation of curvature.

Even if spacetime is flat, the metric can still have nonvanishing derivatives if the coordi-

nate system is non-Cartesian. For example, in spherical coordinates (on space) we have

t = t

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ , (18)

which leads directly to

ds2 = −dt2 + dr2 + r2 dθ2 + r2 sin2 θ dφ2 , (19)

or

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (20)

Notice that, while we could use the tensor transformation law (12), it is often more straight-

forward to find new tensor components by simply plugging in our coordinate transformations

to the differential expression (e.g. dz = cos θ dr − r sin θ dθ).
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Just as in Minkowski space, we use the metric to take dot products:

A ·B ≡ gµνA
µBν . (21)

This suggests, as a shortcut notation, the concept of lowering indices; from any vector we

can construct a (0, 1) tensor defined by contraction with the metric:

Aν ≡ gµνA
µ , (22)

so that the dot product becomes gµνA
µBν = AνB

ν . We also define the inverse metric gµν

as the matrix inverse of the metric tensor:

gµνgνρ = δµ
ρ , (23)

where δµ
ρ is the (spacetime) Kronecker delta. (Convince yourself that this expression really

does correspond to matrix multiplication.) Then we have the ability to raise indices:

Aµ = gµνAν . (24)

Note that raising an index on the metric yields the Kronecker delta, so we have

gµνgµν = δµ
µ = 4 . (25)

Despite the ubiquity of tensors, it is sometimes useful to consider non-tensorial objects.

An important example is the determinant of the metric tensor,

g ≡ det (gµν) . (26)

A straightforward calculation shows that under a coordinate transformation xµ → xµ′
, this

doesn’t transform by the tensor transformation law (under which it would have to be invari-

ant, since it has no indices), but instead as

g →
[
det

(
∂xµ′

∂xµ

)]−2

g . (27)

The factor det(∂xµ′
/∂xµ) is the Jacobian of the transformation. Objects with this kind of

transformation law (involving powers of the Jacobian) are known as tensor densities; the

determinant g is sometimes called a “scalar density.” Another example of a density is the

volume element d4x = dx0dx1dx2dx3:

d4x→ det

(
∂xµ′

∂xµ

)
d4x . (28)
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To define an invariant volume element, we can therefore multiply d4x by the square root of

minus g, so that the Jacobian factors cancel out:
√
−g d4x→

√
−g d4x . (29)

In Cartesian coordinates, for example, we have
√
−g d4x = dt dx dy dz, while in polar coor-

dinates this becomes r2 sin θ dt dr dθ dφ. Thus, integrals of functions over spacetime are of

the form
∫
f(xµ)

√
−g d4x. (“Function,” of course, is the same thing as “scalar.”)

Another object which is unfortunately not a tensor is the partial derivative ∂/∂xµ, often

abbreviated to ∂µ. Acting on a scalar, the partial derivative returns a perfectly respectable

(0, 1) tensor; using the conventional chain rule we have

∂µφ→ ∂µ′φ =
∂xµ

∂xµ′ ∂µφ , (30)

in agreement with the tensor transformation law. But on a vector V µ, given that V µ →
∂xµ′

∂xµ V
µ, we get

∂µV
ν → ∂µ′V ν′

=

(
∂xµ

∂xµ′ ∂µ

)(
∂xν′

∂xν
V ν

)

=
∂xµ

∂xµ′

∂xν′

∂xν
(∂µV

ν) +
∂xµ

∂xµ′

∂2xν′

∂xν∂xµ
V µ . (31)

The first term is what we want to see, but the second term ruins it. So we define a covariant

derivative to be a partial derivative plus a correction that is linear in the original tensor:

∇µV
ν = ∂µV

ν + Γν
µλV

λ . (32)

Here, the symbol Γν
µλ stands for a collection of numbers, called connection coefficients,

with an appropriate non-tensorial transformation law chosen to cancel out the non-tensorial

term in (31). Thus we need to have

Γν′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν′

∂xν
Γν

µλ −
∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν′

∂xµ∂xλ
. (33)

Then ∇µV
ν is guaranteed to transform like a tensor. The same kind of trick works to define

covariant derivatives of tensors with lower indices; we simply introduce a minus sign and

change the dummy index which is summed over:

∇µων = ∂µων − Γλ
µνωλ . (34)

If there are many indices, for each upper index you introduce a term with a single +Γ, and

for each lower index a term with a single −Γ:

∇σT
µ1µ2···µk

ν1ν2···νl
= ∂σT

µ1µ2···µk
ν1ν2···νl

+Γµ1

σλ T
λµ2···µk

ν1ν2···νl
+ Γµ2

σλ T
µ1λ···µk

ν1ν2···νl
+ · · ·

−Γλ
σν1
T µ1µ2···µk

λν2···νl
− Γλ

σν2
T µ1µ2···µk

ν1λ···νl
− · · · . (35)
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This is the general expression for the covariant derivative.

What are these mysterious connection coefficients? Fortunately they have a natural

expression in terms of the metric and its derivatives:

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (36)

It is left up to you to check that the mess on the right really does have the desired transfor-

mation law. You can also verify that the connection coefficients are symmetric in their lower

indices, Γσ
µν = Γσ

νµ. These coefficients can be nonzero even in flat space, if we have non-

Cartesian coordinates. In principle there can be other kinds of connection coefficients, but

we won’t worry about that here; the particular choice (36) are sometimes called Christoffel

symbols, and are the ones we always use in GR. With these connection coefficients, we get

the nice feature that the covariant derivative of the metric and its inverse are always zero,

known as metric compatibility:

∇σgµν = 0 , ∇σg
µν = 0 . (37)

So, given any metric gµν , we proceed to calculate the connection coefficients so that

we can take covariant derivatives. Many of the familiar equations of physics in flat space

continue to hold true in curved space once we replace partial derivatives by covariant ones.

For example, in special relativity the electric and magnetic vector fields ~E and ~B can be

collected into a single two-index antisymmetric tensor Fµν :

Fµν =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 , (38)

and the electric charge density ρ and current ~J into a four-vector Jµ:

Jµ = (ρ, ~J) . (39)

In this notation, Maxwell’s equations

∇×B− ∂tE = 4πJ

∇ · E = 4πρ

∇× E + ∂tB = 0

∇ ·B = 0 (40)

shrink into two relations,

∂µF
νµ = 4πJν

∂[µFνλ] = 0 . (41)
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These are true in Minkowski space, but the generalization to a curved spacetime is immediate;

just replace ∂µ → ∇µ:

∇µF
νµ = 4πJν

∇[µFνλ] = 0 . (42)

These equations govern the behavior of electromagentic fields in general relativity.

4 Curvature

We have been loosely throwing around the idea of “curvature” without giving it a care-

ful definition. The first step toward a better understanding begins with the notion of a

manifold. Basically, a manifold is “a possibly curved space which, in small enough regions

(infinitesimal, really), looks like flat space.” You can think of the obvious example: the

Earth looks flat because we only see a tiny part of it, even though it’s round. A crucial

feature of manifolds is that they have the same dimensionality everywhere; if you glue the

end of a string to a plane, the result is not a manifold since it is partly one-dimensional and

partly two-dimensional.

The most famous examples of manifolds are n-dimensional flat space Rn (“R” as in real,

as in real numbers), and the n-dimensional sphere Sn. So, R1 is the real line, R2 is the

plane, and so on. Meanwhile S1 is a circle, S2 is a sphere, etc. For future reference, the most

popular coordinates on S2 are the usual θ and φ angles. In these coordinates, the metric on

S2 (with radius r = 1) is

ds2 = dθ2 + sin2 θ dφ2 . (43)

The fact that manifolds may be curved makes life interesting, as you may imagine.

However, most of the difficulties encountered in curved spaces are also encountered in flat

space if you use non-Cartesian coordinates. The thing about curved space is, you can never

use Cartesian coordinates, because they only describe flat spaces. So the machinery we

developed for non-Cartesian coordinates will be crucial; in fact, we’ve done most of the work

already.

It should come as no surprise that information about the curvature of a manifold is

contained in the metric; the question is, how to extract it? You can’t get it easily from the

Γρ
µν , for instance, since they can be zero or nonzero depending on the coordinate system

(as we saw for flat space). For reasons we won’t go into, the information about curvature

is contained in a four-component tensor known as the Riemann curvature tensor. This

supremely important object is given in terms of the Christoffel symbols by the formula

Rσ
µαβ ≡ ∂αΓσ

µβ − ∂βΓσ
µα + Γσ

αλΓ
λ
µβ − Γσ

βλΓ
λ
µα . (44)
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(The overall sign of this is a matter of convention, so check carefully when you read anybody

else’s papers. Note also that the Riemann tensor is constructed from non-tensorial elements

— partial derivatives and Christoffel symbols — but they are carefully arranged so that the

final result transforms as a tensor, as you can check.) This tensor has one nice property that

a measure of curvature should have: all of the components of Rσ
µαβ vanish if and only if

the space is flat. Operationally, “flat” means that there exists a global coordinate system in

which the metric components are everywhere constant.

There are two contractions of the Riemann tensor which are extremely useful: the Ricci

tensor and the Ricci scalar. The Ricci tensor is given by

Rαβ = Rλ
αλβ . (45)

Although it may seem as if other independent contractions are possible (using other indices),

the symmetries of Rσ
µαβ (discussed below) make this the only independent contraction. The

trace of the Ricci tensor yields the Ricci scalar:

R = Rλ
λ = gµνRµν . (46)

This is another useful item.

Although the Riemann tensor has many indices, and therefore many components, using

it is vastly simplified by the many symmetries it obeys. In fact, only 20 of the 44 = 256

components of Rσ
µαβ are independent. Here is a list of some of the useful properties obeyed

by the Riemann tensor, which are most easily expressed in terms of the tensor with all indices

lowered, Rµνρσ = gµλR
λ

νρσ:

Rµνρσ = −Rµνσρ = −Rνµρσ

Rµνρσ = Rρσµν

Rµνρσ +Rµρσν +Rµσνρ = 0 . (47)

These imply a symmetry of the Ricci tensor,

Rµν = Rνµ . (48)

In addition to these algebraic identities, the Riemann tensor obeys a differential identity:

∇[λRµν]ρσ = 0 . (49)

This is sometimes known as the Bianchi identity. If we define a new tensor, the Einstein

tensor, by

Gµν ≡ Rµν −
1

2
Rgµν , (50)
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then the Bianchi identity implies that the divergence of this tensor vanishes identically:

∇µGµν = 0 . (51)

This is sometimes called the contracted Bianchi identity.

Basically, there are only two things you have to know about curvature: the Riemann

tensor, and geodesics. You now know the Riemann tensor – lets move on to geodesics.

Informally, a geodesic is “the shortest distance between two points.” More formally,

a geodesic is a curve which extremizes the length functional
∫
ds. That is, imagine a path

parameterized by λ, i.e. xµ(λ). The infinitesimal distance along this curve is given by

ds =

√√√√∣∣∣∣∣gµν
dxµ

dλ

dxν

dλ

∣∣∣∣∣ dλ . (52)

So the entire length of the curve is just

L =
∫
ds . (53)

To find a geodesic of a given geometry, we would do a calculus of variations manipulation

of this object to find an extremum of L. Luckily, stronger souls than ourselves have come

before and done this for us. The answer is that xµ(λ) is a geodesic if it satisfies the famous

geodesic equation:
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0. (54)

In fact this is only true if λ is an affine parameter, that is if it is related to the proper

time via

λ = aτ + b . (55)

In practice, the proper time itself is almost always used as the affine parameter (for timelike

geodesics, at least). In that case, the tangent vector is the four-velocity Uµ = dxµ/dτ , and

the geodesic equation can be written

d

dτ
Uµ + Γµ

ρσU
ρUσ = 0 . (56)

The physical reason why geodesics are so important is simply this: in general relativity,

test bodies move along geodesics. If the bodies are massless, these geodesics will be null

(ds2 = 0), and if they are massive the geodesics will be timelike (ds2 < 0). Note that when

we were being formal we kept saying “extremum” rather than “minimum” length. That’s

because, for massive test particles, the geodesics on which they move are curves of maximum

proper time. (In the famous “twin paradox”, two twins take two different paths through

flat spacetime, one staying at home [thus on a geodesic], and the other traveling off into
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space and back. The stay-at-home twin is older when they reunite, since geodesics maximize

proper time.)

This is an appropriate place to talk about the philosophy of GR. In pre-GR days, Newto-

nian physics said “particles move along straight lines, until forces knock them off.” Gravity

was one force among many. Now, in GR, gravity is represented by the curvature of space-

time, not by a force. From the GR point of view, “particles move along geodesics, until forces

knock them off.” Gravity doesn’t count as a force. If you consider the motion of particles

under the influence of forces other than gravity, then they won’t move along geodesics – you

can still use (54) to describe their motions, but you have to add a force term to the right

hand side. In that sense, the geodesic equation is something like the curved-space expression

for F = ma = 0.

5 General Relativity

Moving from math to physics involves the introduction of dynamical equations which relate

matter and energy to the curvature of spacetime. In GR, the “equation of motion” for the

metric is the famous Einstein equation:

Rµν −
1

2
Rgµν = 8πGTµν . (57)

Notice that the left-hand side is the Einstein tensor Gµν from (50). G is Newton’s constant

of gravitation (not the trace of Gµν). Tµν is a symmetric two-index tensor called the energy-

momentum tensor, or sometimes the stress-energy tensor. It encompasses all we need to

know about the energy and momentum of matter fields, which act as a source for gravity.

Thus, the left hand side of this equation measures the curvature of spacetime, and the right

measures the energy and momentum contained in it. Truly glorious.

The components Tµν of the energy-momentum tensor are “the flux of the µth component of

momentum in the νth direction.” This definition is perhaps not very useful. More concretely,

we can consider a popular form of matter in the context of general relativity: a perfect fluid,

defined to be a fluid which is isotropic in its rest frame. This means that the fluid has no

viscosity or heat flow; as a result, it is specified entirely in terms of the rest-frame energy

density ρ and rest-frame pressure p (isotropic, and thus equal in all directions). If use Uµ to

stand for the four-velocity of a fluid element, the energy-momentum tensor takes the form

Tµν = (ρ+ p)UµUν + pgµν . (58)

If we raise one index and use the normalization gµνUµUν = −1, we get an even more under-
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standable version:

Tµ
ν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (59)

If Tµν encapsulates all we need to know about energy and momentum, it should be able

to characterize the appropriate conservation laws. In fact these are formulated by saying

that the covariant divergence of Tµν vanishes:

∇µTµν = 0 . (60)

Recall that the contracted Bianchi identity (51) guarantees that the divergence of the Ein-

stein tensor vanishes identically. So Einstein’s equation (57) guarantees energy-momentum

conservation. Of course, this is a local relation; if we (for example) integrate the energy den-

sity ρ over a spacelike hypersurface, the corresponding quantity is not constant with time. In

GR there is no global notion of energy conservation; (60) expresses local conservation, and

the appearance of the covariant derivative allows this equation to account for the transfer of

energy back and forth between matter and the gravitational field.

The exotic appearance of Einstein’s equation should not obscure the fact that it a natural

extension of Newtonian gravity. To see this, consider Poisson’s equation for the Newtonian

potential Φ:

∇2Φ = 4πGρ , (61)

where ρ is the matter density. On the left hand side of this we see a second-order differential

operator acting on the gravitational potential Φ. This is proportional to the density of

matter. Now, GR is a fully relativistic theory, so we would expect that the matter density

should be replaced by the full energy-momentum tensor Tµν . To correspond to (61), this

should be proportional to a 2-index tensor which is a second-order differential operator acting

on the gravitational field, i.e. the metric. If you think about the definition of Gµν in terms

of gµν , this is exactly what the Einstein tensor is. In fact, Gµν is the only two-index tensor,

second order in derivatives of the metric, for which the divergence vanishes.

So the GR equation is of the same essential form as the Newtonian one. We should ask

for something more, however: namely, that Newtonian gravity is recovered in the appro-

priate limit, where the particles are moving slowly (with respect to the speed of light), the

gravitational field is weak (can be considered a perturbation of flat space), and the field is

also static (unchanging with time). We consider a metric which is almost Minkowski, but

with a specific kind of small perturbation:

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)d~x2 , (62)

where Φ is a function of the spatial coordinates xi. If we plug this into the geodesic equation

and solve for the conventional three-velocity (using that the particles are moving slowly), we
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obtain
d2~x

dt2
= −∇Φ , (63)

where ∇ here represents the ordinary spatial divergence (not a covariant derivative). This is

just the equation for a particle moving in a Newtonian gravitational potential Φ. Meanwhile,

we calculate the 00 component of the left-hand side of Einstein’s equation:

R00 −
1

2
Rg00 = 2∇2Φ . (64)

The 00 component of the right-hand side (to first order in the small quantities Φ and ρ) is

just

8πGT00 = 8πGρ . (65)

So the 00 component of Einstein’s equation applied to the metric (62) yields

∇2Φ = 4πGρ , (66)

which is precisely the Poisson equation (61). Thus, in this limit GR does reduce to Newtonian

gravity.

Although the full nonlinear Einstein equation (57) looks simple, in applications it is not.

If you recall the definition of the Riemann tensor in terms of the Christoffel symbols, and

the definition of those in terms of the metric, you realize that Einstein’s equation for the

metric are complicated indeed! It is also highly nonlinear, and correspondingly very difficult

to solve. If we take the trace of (57), we obtain

−R = 8πGT . (67)

Plugging this into (57), we can rewrite Einstein’s equations as

Rµν = 8πG
(
Tµν −

1

2
Tgµν

)
. (68)

This form is useful when we consider the case when we are in the vacuum – no energy or

momentum. In this case Tµν = 0 and (68) becomes Einstein’s equation in vacuum:

Rµν = 0 . (69)

This is somewhat easier to solve than the full equation.

One final word on Einstein’s equation: it may be derived from a very simple Lagrangian,

L =
√
−gR (plus appropriate terms for the matter fields). In other words, the action for

GR is simply

S =
∫
d4x
√
−gR , (70)

an Einstein’s equation comes from looking for extrema of this action with respect to variations

of the metric gµν . What could be more elegant?
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6 Schwarzschild solution

In order to solve Einstein’s equation we usually need to make some simplifying assumptions.

For example, in many physical situations, we have spherical symmetry. If we want to solve

for a metric gµν , this fact is very helpful, because the most general spherically symmetric

metric may be written (in spherical coordinates) as

ds2 = −A(r, t)dt2 +B(r, t)dr2 + r2(dθ2 + sin2 θdφ2) , (71)

where A and B are positive functions of (r, t), and you will recognize the metric on the sphere

from (43). If we plug this into Einstein’s equation, we will get a solution for a spherically

symmetric matter distribution. To be even more restrictive, let’s consider the equation in

vacuum, (69). Then there is a unique solution:

ds2 = −
(
1− 2Gm

r

)
dt2 +

(
1− 2Gm

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) . (72)

This is the celebrated Schwarzschild metric solution to Einstein’s equations. The param-

eter m, of course, measures the amount of mass inside the radius r under consideration. A

remarkable fact is that the Schwarzschild metric is the unique solution to Einstein’s equation

in vacuum with a spherically symmetric matter distribution. This fact, known as Birkhoff’s

theorem, means that the matter can oscillate wildly, as long as it remains spherically sym-

metric, and the gravitational field outside will remain unchanged.

Philosophy point: the metric components in (72) blow up at r = 0 and r = 2Gm. Of-

ficially, any point at which the metric components become infinite, or exhibit some other

pathological behavior, is known as a singularity. These beasts come in two types: “co-

ordinate” singularities and “true” singularities. A coordinate singularity is simply a result

of choosing bad coordinates; if we change coordinates we can remove the singularity. A

true singularity is an actual pathology of the geometry, a point at which the manifold is

ill-defined. In the Schwarzschild geometry, the point r = 0 is a real singularity, an unavoid-

able blowing-up. However, the point r = 2Gm is merely a coordinate singularity. We can

demonstrate this by making a transformation to what are known as Kruskal coordinates,

defined by

u =
(

r

2Gm
− 1

)1/2

er/4Gmcosh(t/4Gm)

v =
(

r

2Gm
− 1

)1/2

er/4Gmsinh(t/4Gm). (73)

In these coordinates, the metric (72) takes the form

ds2 =
32(Gm)3

r
e−r/2Gm(−dv2 + du2) + r2(dθ2 + sin2 θdφ2) , (74)

17



where r is considered to be an implicit function of u and v defined by

u2 − v2 = er/2Gm
(

r

2Gm
− 1

)
. (75)

If we look at (74), we see that nothing blows up at r = 2Gm. The mere fact that we could

choose coordinates in which this happens assures us that r = 2Gm is a mere coordinate

singularity.

The useful thing about the Schwarzschild solution is that it describes both mundane

things like the solar system, and more exotic objects like black holes. To get a feel for it,

let’s look at how particles move in a Schwarzschild geometry. It turns out that we can cast

the problem of a particle moving in the plane θ = π/2 as a one-dimensional problem for the

radial coordinate r = r(τ). In other words, the distance of a particle from the point r = 0

is a solution to the equation

1

2

(
dr

dτ

)2

+ V (r) =
1

2
E2 . (76)

This is just the equation of motion for a particle of unit mass and energy E in a one-

dimensional potential V (r). This potential, for the Schwarzschild geometry, is given by

V (r) =
1

2
ε− ε

Gm

r
+
L2

2r2
− GmL2

r3
. (77)

Here, L represents the angular momentum (per unit mass) of the particle, and ε is a constant

equal to 0 for massless particles and +1 for massive particles. (Note that the proper time

τ is zero for massless particles, so we use some other parameter λ in (76), but the equation

itself looks the same). So, to find the orbits of particles in a Schwarzschild metric, just solve

the motion of a particle in the potential given by (77). Note that the first term in (77) is a

constant, the second term is exactly what we expect from Newtonian gravity, and the third

term is just the contribution of the particle’s angular momentum, which is also present in

the Newtonian theory. Only the last term in (77) is a new addition from GR.

There are two important effects of this extra term. First, it acts as a small perturbation

on any orbit – this is what leads to the precession of Mercury, for instance. Second, for r

very small, the GR potential goes to −∞; this means that a particle that approaches too

close to r = 0 will fall into the center and never escape! Even though this is in the context

of unaccelerated test particles, a similar statement holds true for particles with the ability

to accelerate themselves all they like – see below. However, not to worry; for a star such as

the Sun, for which the Schwarzschild metric only describes points outside the surface, you

would run into the star long before you approached the point where you could not escape.

Nevertheless, we all know of the existence of more exotic objects: black holes. A

black hole is a body in which all of the mass has collapsed gravitationally past the point

of possible escape. This point of no return, given by the surface r = 2Gm, is known as
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the event horizon, and can be thought of as the “surface” of a black hole. Although it

is impossible to go into much detail about the host of interesting properties of the event

horizon, the basics are not difficult to grasp. From the point of view of an outside observer,

a clock falling into a black hole will appear to move more and more slowly as it approaches

the event horizon. In fact, the external observer will never see a test particle cross the

surface r = 2Gm; they will just see the particle get closer and closer, and move more and

more slowly.

Contrast this to what you would experience as a test observer actually thrown into a black

hole. To you, time always seems to move at the same rate; since you and your wristwatch are

in the same inertial frame, you never “feel time moving more slowly.” Therefore, rather than

taking an infinite amount of time to reach the event horizon, you zoom right past – doesn’t

take very long at all, actually. You then proceed directly to fall to r = 0, also in a very short

time. Once you pass r = 2Gm, you cannot help but hit r = 0; it is as inevitable as moving

forward in time. The literal truth of this statement can be seen by looking at the metric

(72) and noticing that r becomes a timelike coordinate for r < 2Gm; therefore your voyage

to the center of the black hole is literally moving forward in time! What’s worse, we noted

above that a geodesic (unaccelerated motion) maximized the proper time – this means that

the more you struggle, the sooner you will get there. (Of course, you won’t struggle, because

you would have been ripped to shreds by tidal forces. The grisly death of an astrophysicist

who enters a black hole is detailed in Misner, Thorne, and Wheeler, pp. 860-862.)

The spacetime diagram of a black hole in Kruskal coordinates (74) is shown in Figure 2.

Shown is a slice through the entire spacetime, corresponding to angular coordinates θ = π/2

and φ = 0. There are two asymptotic regions, one at u→ +∞ and the other at u→ −∞; in

both regions the metric looks approximately flat. The event horizon is the surface r = 2Gm,

or equivalently u = ±v. In this diagram all light cones are at ±45◦. Inside the event horizon,

where r < 2Gm, all timelike trajectories lead inevitably to the singularity at r = 0. It should

be stressed that this diagram represents the “maximally extended” Schwarzschild solution

— a complete solution to Einstein’s equation in vacuum, but not an especially physically

realistic one. In a realistic black hole, formed for instance from the collapse of a massive

star, the vacuum equations do not tell the whole story, and there will not be two distinct

asymptotic regions, only the one in which the star originally was located. (For that matter,

timelike trajectories cannot travel between the two regions, so we could never tell whether

another such region did exist.)

In the collapse to a black hole, all the information about the detailed nature of the col-

lapsing object is lost: what it was made of, its shape, etc. The only information which

is not wiped out is the amount of mass, angular momentum, and electric charge in the

hole. This fact, the no-hair theorem, implies that the most general black-hole metric

will be a function of these three numbers only. However, real-world black holes will prob-
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u
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r = 0

r = 0

constr = t = const

r = 2GM

r = 2GM r = 2GM

r = 2GM

t = - t = +

t = -t = +

Figure 2: The Kruskal diagram — the Schwarzschild solution in Kruskal coordinates (74),
where all light cones are at ±45◦. The surface r = 2Gm is the event horizon; inside the
event horizon, all timelike paths hit the singularity at r = 0. The right- and left-hand side
of the diagram represent distinct asymptotically flat regions of spacetime.
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ably be electrically neutral, so we will not present the metric for a charged black hole (the

Reissner-Nordstrom metric). Of considerable astrophysical interest are spinning black

holes, described by the Kerr metric:

ds2 = −
[
∆− ω2 sin2 θ

Σ

]
dt2 −

[
4ωmGr sin2 θ

Σ

]
dtdφ+

Σ

∆
dr2 + Σdθ2

+

[
(r2 + ω2)2 −∆ω2 sin2 θ

Σ

]
sin2 θdφ2, (78)

where

Σ ≡ r2 + ω2 cos2 θ, ∆ ≡ r2 + ω2 − 2Gmr , (79)

and ω is the angular velocity of the body.

Finally, among the many additional possible things to mention, there’s the cosmic cen-

sorship conjecture. Notice how the Schwarzschild singularity at r = 0 is hidden, in a

sense – you can never get to it without crossing an horizon. It is conjectured that this is

always true, in any solution to Einstein’s equation. However, some numerical work seems to

contradict this conjecture, at least in special cases.

7 Cosmology

Just as we were able to make great strides with the Schwarzschild metric on the assumption

of sperical symmetry, we can make similar progress in cosmology by assuming that the

Universe is homogeneous and isotropic. That is to say, we assume the existence of a “rest

frame for the Universe,” which defines a universal time coordinate, and singles out three-

dimensional surfaces perpendicular to this time coordinate. (In the real Universe, this rest

frame is the one in which galaxies are at rest and the microwave background is isotropic.)

“Homogeneous” means that the curvature of any two points at a given time t is the same.

“Isotropic” is trickier, but basically means that the universe looks the same in all directions.

Thus, the surface of a cylinder is homogeneous (every point is the same) but not isotropic

(looking along the long axis of the cylinder is a preferred direction); a cone is isotropic around

its vertex, but not homogeneous.

These assumptions narrow down the choice of metrics to precisely three forms, all given

by the Robertson-Walker (RW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (80)

where the constant k can be −1, 0, or +1. The function a(t) is known as the scale factor

and tells us the relative sizes of the spatial surfaces. The above coordinates are called

comoving coordinates, since a point which is at rest in the preferred frame of the universe

21



will have r, θ, φ = constant. The k = −1 case is known as an open universe, in which the

preferred three-surfaces are “three-hyperboloids” (saddles); k = 0 is a flat universe, in which

the preferred three-surfaces are flat space; and k = +1 is a closed universe, in which the

preferred three-surfaces are three-spheres. Note that the terms “open,” “closed,” and “flat”

refer to the spatial geometry of three-surfaces, not to whether the universe will eventually

recollapse. The volume of a closed universe is finite, while open and flat universes have

infinite volume (or at least they can; there are also versions with finite volume, obtained

from the infinite ones by performing discrete identifications).

There are other coordinate systems in which (8.1) is sometimes written. In particular, if

we set r = (sinψ, ψ, sinhψ) for k = (+1, 0, −1) respectively, we obtain

ds2 = −dt2 + a2(t)


dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)
dψ2 + ψ2(dθ2 + sin2 θdφ2)
dψ2 + sinh2ψ(dθ2 + sin2 θdφ2)


(k = +1)
(k = 0)

(k = −1)
(81)

Further, the flat (k = 0) universe also may be written in almost-Cartesian coordinates:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

= −a2(η)(−dη2 + dx2 + dy2 + dz2). (82)

In this last expression, η is known as the conformal time and is defined by

η ≡
∫ dt

a(t)
. (83)

The coordinates (η, x, y, z) are often called “conformal coordinates.”

Since the RW metric is the only possible homogeneous and isotropic metric, all we have

to do is solve for the scale factor a(t) by using Einstein’s equation. If we use the vacuum

equation (69), however, we find that the only solution is just Minkowski space. Therefore

we have to introduce some energy and momentum to find anything interesting. Of course

we shall choose a perfect fluid specified by energy density ρ and pressure p. In this case,

Einstein’s equation becomes two differential equations for a(t), known as the Friedmann

equations: (
ȧ

a

)2

=
8πG

3
ρ− k

a2

ä

a
= −4πG

3
(ρ+ 3p) . (84)

Since the Friedmann equations govern the evolution of RW metrics, one often speaks of

Friedman-Robertson-Walker (FRW) cosmology.

The expansion rate of the universe is measured by the Hubble parameter:

H ≡ ȧ

a
, (85)
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and the change of this quantity with time is parameterized by the deceleration parameter:

q ≡ − äa
ȧ2

= −
(

1 +
Ḣ

H2

)
. (86)

The Friedmann equations can be solved once we choose an equation of state, but the

solutions can get messy. It is easy, however, to write down the solutions for the k = 0

universes. If the equation of state is p = 0, the universe is matter dominated, and

a(t) ∝ t2/3 . (87)

In a matter dominated universe, the energy density decreases as the volume increases, so

ρmatter ∝ a−3 . (88)

If p = 1
3
ρ, the universe is radiation dominated, and

a(t) ∝ t1/2 . (89)

In a radiation dominated universe, the number of photons decreases as the volume increases,

and the energy of each photon redshifts and amount proportional to a(t), so

ρrad ∝ a−4 . (90)

If p = −ρ, the universe is vacuum dominated, and

a(t) ∝ eHt . (91)

The vacuum dominated universe is also known as de Sitter space. In de Sitter space, the

energy density is constant, as is the Hubble parameter, and they are related by

H =

√
8πGρvac

3
= constant . (92)

Note that as a→ 0, ρrad grows the fastest; therefore, if we go back far enough in the history

of the universe we should come to a radiation dominated phase. Similarly, ρvac stays constant

as the universe expands; therefore, if ρvac is not zero, and the universe lasts long enough, we

will eventually reach a vacuum-dominated phase.

Given that our Universe is presently expanding, we may ask whether it will continue to

do so forever, or eventually begin to recontract. For energy sources with p/ρ ≥ 0 (including

both matter and radiation dominated universes), closed (k = +1) universes will eventually

recontract, while open and flat universes will expand forever. When we let p/ρ < 0 things

get messier; just keep in mind that spatially closed/open does not necessarily correspond to

temporally finite/infinite.
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The question of whether the Universe is open or closed can be answered observationally.

In a flat universe, the density is equal to the critical density, given by

ρcrit =
3H2

8πG
. (93)

Note that this changes with time; in the present Universe it’s about 5 × 10−30 grams per

cubic centimeter. The universe will be open if the density is less than this critical value,

closed if it is greater. Therefore, it is useful to define a density parameter via

Ω ≡ ρ

ρcrit

=
8πGρ

3H2
= 1 +

k

ȧ2
, (94)

a quantity which will generally change with time unless it equals unity. An open universe

has Ω < 1, a closed universe has Ω > 1.

We mentioned in passing the redshift of photons in an expanding universe. In terms of

the wavelength λ1 of a photon emitted at time t1, the wavelength λ0 observed at a time t0
is given by

λ0

λ1

=
a(t0)

a(t1)
. (95)

We therefore define the redshift z to be the fractional increase in wavelength

z ≡ λ0 − λ1

λ1

=
a(t0)

a(t1)
− 1 . (96)

Keep in mind that this only measures the net expansion of the universe between times t1 and

t0, not the relative speed of the emitting and observing objects, especially since the latter

is not well-defined in GR. Nevertheless, it is common to speak as if the redshift is due to a

Doppler shift induced by a relative velocity between the bodies; although nonsensical from a

strict standpoint, it is an acceptable bit of sloppiness for small values of z. Then the Hubble

constant relates the redshift to the distance s (measured along a spacelike hypersurface)

between the observer and emitter:

z = H(t0)s . (97)

This, of course, is the linear relationship discovered by Hubble.
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Massachusetts Institute of Technology

Department of Physics


Physics 8.962 Spring 2002


Problem Set #1 
Due in class Thursday, February 14, 2002. 

1. “Superluminal” Motion (5 points) 

The quasar 3C 273 emits relativistic blobs of plasma from near the massive black hole 
at its center. The blobs travel at speed v along a “jet” making an angle θ with respect 
to the line of sight to the observer. Projected onto the sky, the blobs appear to travel 
perpendicular to the line of sight with angular speed vapp/r where r is the distance to 
3C 273 (treating space as Euclidean) and vapp is the apparent speed. 

a) Show that 
v sin θ 

vapp = . (1)
1 − v cos θ 

b) For a given value of v, what value of θ maximizes vapp? What is the corre
-
sponding value of vapp? Can vapp exceed c without violating special relativity?


c) For 3C 273, vapp ≈ 10c. What is the largest possible value of θ (in degrees)? 

(For more information, see Unwin et al. 1985, Astrophys. J. 289, 109.) 

2. GZK Cutoff in the Cosmic Ray Spectrum (5 points) 

Calculate the threshhold energy of a nucleon N for it to undergo the reaction γ + N → 
N + π0 where γ represents a microwave background photon of energy kT with T = 2.73 
K. Assume the collision is head-on and take the nucleon and pion masses to be 938 MeV 
and 135 MeV, respectively. Explain why one might expect to observe very few cosmic 
rays of energy above ∼ 1011 GeV. (This expectation is called the Griesen-Zatsepin-
Kuzmin cutoff. Intriguingly, observations show no sharp cutoff and perhaps even an 
upturn. See, e.g., Nagano & Watson 2000, Rev. Mod. Phys. 72, 689, and Olinto 2002, 
astro-ph/0201257.) 
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3. Acceleration in Flat Spacetime (5 points) 

a) If a rocket has engines that give it a constant acceleration of 1g=9.8 m s−2


(relative to its instantaneous inertial rest frame, of course), and the rocket

starts from rest near the earth, how far from the earth (as measured in the

earth’s frame) will the rocket be after 40 years as measured on the earth?

How far after 40 years as measured in the rocket?


b) Compute the proper time for the occupants of a rocket ship to travel the

25,000 light years from the earth to the center of the galaxy. Assume they

maintain an acceleration of 1g for half the trip and decelerate for 1g for the

remaining half.


c) What fraction of the initial mass of the rocket can be payload in part (b)?

Assume an ideal rocket that converts rest mass into radiation and ejects all

of the radiation out of the back with 100% efficiency and perfect collimation.


4. Coordinate System for Accelerating Observers (5 points) 

t, ¯ y, ̄An astronaut with acceleration g in the x-direction assigns coordinates (¯ x, ¯ z) as  
follows. First, the astronaut defines his spatial coordinates to be ¯ y = ¯x = ¯ z = 0 and his 
proper time to be t̄. Second, at t̄ = 0, the astronaut assigns (¯ y, ̄x, ¯ z) to be the Euclidean 
coordinates in that inertial frame. Observers who remain at fixed values of the spatial 
coordinates (¯ y, ̄x, ¯ z) are called coordinate-stationary observers. 

The final conditions needed for assigning the coordinates are that the worldlines of 
the coordinate-stationary observers are orthogonal to the hypersurfaces t̄ = constant 
and that for each t̄ there is an instantaneous inertial rest frame in which all events with 
t̄ = constant are simultaneous. 

It is easy to see that ¯ zy = y and ¯ = z; henceforth we drop these coordinates from the 
problem. 

a) What is the 4-velocity of each clock, as a function of t̄? 

b) Find the explicit solution for the coordinate transformation x(¯ x), t(¯ x).t, ¯ t, ¯

c) Show that the line element in the new coordinates takes the form 

2ds2 ≡ −dt2 + dx2 = −(1 + g ̄ xx)2dt̄ + d¯2 . (2) 

Flat spacetime in this accelerating frame is called Rindler spacetime. 

2 



Massachusetts Institute of Technology

Department of Physics


Physics 8.962 Spring 2002


Problem Set #2 
Due in class Thursday, February 21, 2002. 

1. Transformation of the Metric (4 points) 

In a coordinate system with coordinates xµ, the invariant line element is ds2 = ηαβ dxαdxβ . 
¯If the coordinates are transformed, xµ → xµ, show that the line element is ds2 = 

¯ ¯g¯ν dxµdxν̄ , and express g¯ν in terms of the partial derivatives ∂xµ/∂x µ. For  two  ar-

bitrary 4-vectors � V , show that 
µ¯ µ¯

U and �

¯ β� V = ηαβ U
αV β = g¯β̄UαV 

¯
.U · � α 

2. MTW Exercise #3.12 (4 points) 

3. Electromagnetic Fields (6 points) 

A point charge q has 3-velocity v = v�ex in the lab frame, S. At  t = 0 its coordi-
nates are x = y = z = 0. Denote the rest frame of the charge by S ′ . A spacetime point √ P has coordinates (t = 0, x  = y = r/ 2, z  = 0) in frame S. Units are chosen so that the 
electrostatic field is E = q/r2 . Do not use MTW equation (3.23) for this problem. 

a) What are the nonzero components of the rank (0, 2) (lower-index) electro
-
magnetic field strength tensor F in frame S ′ at point P? (Use MTW eq.

3.7.)


b) Same question as part a), except give the components in frame S. From  this, 

deduce the electric and magnetic fields in the lab frame.


c) Now change coordinates from (t, x, y, z) to (t, r, θ, φ) where  (r, θ, φ) are the

usual spherical coordinates. In the orthonormal basis {�t, �r , �θ , �eˆ}, what  are 
eˆ eˆ eˆ φ

the nonzero components of F at point P ? 

d) Same question as part c), except use the coordinate basis {�et, �er , �eθ , �eφ}. 
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4. Bases for Rindler Spacetime (6 points) 

x)2dt̄2 + d¯
the flat spacetime of special relativity expressed in the accelerating coordinates (¯ x) of  
The line element for Rindler spacetime is ds2 = −(1 + g ̄ x2 .  This is simply  

t, ¯
Problem 4 of Set 1. Another set of coordinates are the flat coordinates (t, x) of special 
relativity. In this problem we consider the corresponding vector bases: {�et, �ex} (the or-

�t, �xdinary basis of special relativity, here called the global Lorentz basis) and {e¯ e¯} (the 
coordinate basis corresponding to (¯ x)).t, ¯

a) Using the coordinate transformation to flat coordinates found in Problem Set

�t, �x t, ¯
1, express the coordinate basis vectors {e¯ e¯} at (¯ x) as a linear combination 

of the global Lorentz basis vectors {�et, �ex}. 
b) Show that the orthonormal basis {�et̂ ≡ (1 + g ̄ e¯ eˆ e¯ t, ¯x)−1�t, �x ≡ �x} at (¯ x) is  

related to the global Lorentz basis vectors by a Lorentz transformation. Find 
the boost velocity vrel(t̄) that relates the two bases. Explain the physical 
interpretation of your result in terms of the addition of many small velocity 
increments in special relativity. (Note: an orthonormal basis defines a local 
Lorentz frame.) 

eµ(�eν̄) =  δµ
ν̄ , express the coordinate basis c) Using the dual basis condition ˜¯ ¯

x xone-forms {ẽt̄, ẽ¯} as a linear combination of {ẽt , ẽ }. 
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Massachusetts Institute of Technology

Department of Physics


Physics 8.962 Spring 2002


Problem Set #3 
Due in class Thursday, February 28, 2002. 

1. 3+1 Split of the Electromagnetic Field [based on a problem from Kip Thorne] 
(5 points) 

An observer with 4-velocity �V interacting with an electromagnetic field tensor F mea-
E� and �Vsures electric and magnetic fields � B� in her instantaneous local inertial reference V 

frame (that is, in an orthonormal basis with �eˆ = V .) These fields are 4-vectors with 0 

components 
1α α 

� γδE� ≡ FαβVβ ≡ −  εαβγδVβF .
V , B

V 2 
Please read MTW Exercise 3.13 for the definition and properties of the Levi-Civita tensor 
εαβγδ. 

E� and �
Va) Show that � B� lie orthogonal to the observer’s worldline, hence they V 

lie in the observer’s hypersurface of simultaneity. 

b) Show that the electromagnetic field tensor can be reconstructed from the

observer’s 4-velocity and the electric and magnetic fields measured in her

rest frame via the following tensor equation (valid for any basis):


β α β + εαβ δFαβ = V αE� − E� V V γB� . (1)
V V γδ V 

c) Read MTW Exercise 3.14 on “duals.” Then rewrite equation (1) in the

following form:


F = constant � E� + constant ∗ V ∧ � �V ∧ � (� BV )  (2)  V 

and deduce the values of the constants. 

2. Energy-Momentum Tensor (5 points) 

The energy-momentum tensor is defined so that, in an orthonormal basis, T 00 is the 

1 



energy density, T 0i = T i0 is the momentum density (and the energy flux density), and 
T ij = T ji is the spatial stress (momentum flux density). If ñ is the normal to a surface, 
T(ñ) =  T µν nµ�eν is the energy-momentum flux density crossing the surface. For a perfect 
fluid, T = ρ � U + p h where ρ is the energy density and p is the pressure (both in the U ⊗ �

U is the fluid 4-velocity, and h = g−1 + � U is a rank (2, 0) projection fluid rest frame), � U ⊗ �

tensor (and is the metric on the spatial hypersurface orthogonal to �U ). 

a) Consider an observer with 4-velocity �V who has an instantaneous local iner-
eˆtial (orthonormal) rest frame defined by the basis {�µ}. Show that the fluid 

4-velocity may be decomposed into time and space parts in the observer’s 
ˆ ˆ	 ˆ

U · � � U · � V . What  are  U 0 and U î inframe with U 0 = −� V and U i�eî = U + (  � V )�


terms of the fluid 3-velocity ui measured by the observer?


b) Using the results of part b), evaluate the energy density, momentum density,

and spatial stress measured by the observer from the orthonormal compo-

nents T ˆ eˆ


µν̂ in the basis {�µ}. Show that your results agree with a Lorentz 
transformation of the components in the fluid rest frame. 

c) From energy-momentum conservation 
modynamics in the form 

�∇ · T = 0, derive the first law of ther-

��∇ ·��∇ · (ρU ) +  p U = 0  . 

Show that in the instantaneous inertial fluid rest frame this reduces to the 
more familiar form d(ρV )/dt + pdV /dt = 0 where V is a small volume co-
moving with the fluid (i.e. the boundary of this volume moves with the fluid 
velocity). 

3.	 Connection Identities (5 points) 

Prove the following identities. Note that Γλµν ≡ gκλΓ
κ

µν = �eλ · (∂ν�eµ) in any basis 
(not necessarily a coordinate basis). 

a) ∂λgµν = Γµλν + Γνλµ.


b) gµκ∂λg
κν
 = −gκν ∂λgµκ. 

c)	 ∂λg
µν κν − Γν

κλg
µκ.= −Γµ

κλg

d)	 ∂λg = −g gµν ∂λg
µν = g gµν ∂λgµν where g ≡ det{gµν }. Use the results of


MTW Exercise 5.58.


e) Γλ = ∂ν log |g|1/2 .λν 

2 

(3)




� � 

� � 

� � 

� � 

� � 

f) gµν Γλ
µν = −|g|−1/2 ∂µ gλµ|g|1/2 in a coordinate basis. 

1/2Aµg) ∇µA
µ = |g|−1/2 ∂µ |g| in a coordinate basis. 

h) ∇ν Aµ
ν = |g|−1/2 ∂ν |g|1/2Aµ

ν − Γλ
µν Aλ

ν in a coordinate basis. 

1/2F µνi) ∇ν F
µν = |g|−1/2 ∂ν |g| in a coordinate basis, if F µν is antisymmetric. 

j) ∇2S ≡ gµν ∇µ∇ν S = |g|−1/2 ∂µ |g|1/2gµν ∂ν S in a coordinate basis. 

4. Connection for Rindler Spacetime (5 points) 

x)2dt̄2 + d¯2 .Consider Rindler spacetime with line element ds2 = −(1 + g¯ x

�t, �xa) Compute all nonzero connection coefficients using the coordinate basis {e¯ e¯}. 
b) Compute all nonzero connection coefficients using the orthonormal basis 

{�t, �x} given in Problem 4 of Set 2. eˆ eˆ

�¯ e¯c) Write the Minkowski basis vectors {�et, �ex} of flat spacetime in terms of {et, �x}
and gt̄. By taking the gradient of the Minkowski basis vectors and using the 
connection for the barred basis, show that the connection vanishes for the 
Minkowski basis. 

3
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Problem Set #4 
Due in class Thursday, March 7, 2002. 

1. Free fall in Rindler spacetime (5 points) 

A particle moving with no force in flat spacetime has 4-velocity V µ = constant in a 
global Lorentz basis {�eµ}. In this problem we examine this force-free motion in Rindler 

e¯ eˆspacetime using the coordinate basis {�µ} and the orthonormal basis {�µ} of Problem 4 
of Set 3. 

a) At coordinate time t̄, the particle is at spatial coordinate x̄. It has physical 
3-velocity v (i.e., dx/dt in locally flat coordinates) relative to the coordinate-

µstationary observer at x̄. What are the particle’s 4-velocity components V ˆ

and V µ̄? 

¯b) What are the values of dV µ/dτ and dV µ̂/dτ where dτ is proper time along 
the particle worldline? 

c) Even if v = 0 so that the particle is instantaneously at rest relative to the

coordinate-stationary observer, dV ˆ
x/dτ is nonzero. Why? How do you rec-
oncile this with the fact that {�µ} is a local Lorentz basis? Explain how you eˆ


could have predicted the correct value of dV ˆ
x/dτ (when v = 0) from Problem 
4c of Set 1. 

2. Relativistic Euler equation (5 points) 

This problem is an extension of Problem 2 of Set 3. 

U ⊗ �a) Starting from the stress-energy tensor for a perfect fluid, T = ρ � U + p h 
U ⊗ �where h = g−1 + � U , using local energy-momentum conservation 

derive the relativistic Euler equation 

�∇·T = 0,  

(ρ + p)∇U U = −h · �∇p .  (1)


b) For a nonrelativistic fluid and an orthonormal basis, show that this equation 
reduces to the Euler equation given in MTW Box 5.5. What extra terms are 
present if the connection is nonzero? 

1 
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�

�

c) Now apply equation (1) to Rindler spacetime for hydrostatic equilibrium.

Hydrostatic equilibrium means that the fluid is at rest in the ¯
x coordinates, 

xi.e. U ¯ = 0. Suppose that the equation of state (relation between pressure 
and density) is p = wρ where w is a positive constant. Find the general 
solution for ρ(x̄) with ρ(0) = ρ0. 

d) Suppose now instead that w = w0/(1 + g ̄x) where  w0 is a constant. Show 
x) =  ρ0 exp(−x/L). Find L, the density scale height, that the solution is ρ(¯ ¯

in terms of g, w0, and  c the speed of light. (L should have units of length.) 
Compare with the density profile of a nonrelativistic, plane-parallel, isother-
mal atmosphere (p = ρkT /µ where T is the temperature and µ is the mean 
molecular weight) in a constant gravitational field. (For this you will need 
the nonrelativistic Euler equation with gravity.) Why does hydrostatic equi-
librium in Rindler spacetime (where there is no gravity) give such similar 
results to hydrostatic equilibrium in a gravitational field? 

3. Spherical Hydrostatic Equilibrium (5 points) 

As we will see later in the course, the line element of a spherically symmetric static 
spacetime may be written � �−1 

2Φ(r)dt2 2ds2 = −e + 1 − 
2GM (r) 

dr2 + r 
� 
dθ2 + sin  2 θ dφ2 , (2) 

r 

where Φ(r) and  M (r) are some given functions. In hydrostatic equilibrium, U i = 0  for  
i ∈ {r, θ, φ}. Using equation (1), show that in hydrostatic equilibrium, p = p(r) with 

∂p ∂Φ 
= −(ρ + p) . (3)

∂r ∂r 

4. Parallel Transport on a Sphere (5 points) 

On the surface of a 2-sphere, ds2 = dθ2 + sin  2 θdφ2 . Consider the vector A0 = �eθ at 
θ = θ0, φ = 0. This vector is then parallel transported around all the way around 
(0 ≤ φ ≤ 2π) the latitude circle θ = θ0. What is the resulting vector A? What  is  its  

A · A )1/2? (Hint: derive a differential equation for Aθ as a function of φ.)magnitude ( � �

2 
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Problem Set #5 
Due in class Thursday, March 14, 2002. 

1. Deflection of light by the sun (5 points) 

In the weak-field limit GM/rc2 � 1, orbits of massless particles around a point mass M 
follow from the Hamiltonian � �1/2 2GM−2 2H(r, θ, pr, pθ) =  p 2 + r p 1 − 

2r θ rc

for motion in the plane with polar coordinates (r, θ). 

a) Defining u ≡ GM/rc2, from Hamilton’s equations derive the orbit equation � �2
du 2 GM H 

+ u = α2(1 − 2u)−2 where α ≡ 
pθc2 

. (1)
dθ 

b) Assuming u2 � 1 and  α2 � 1, we can write α2(1 − 2u)−2 ≈ α2(1 + 4u).

Substitute this result into equation (1). Then solve this equation analytically

to get u(θ) with initial condition u = 0  at  θ = 0. Analyze the turning point

and show that a light ray with impact parameter b � GM/c2 is deflected by

an angle 4GM/bc2 . Evaluate this angle in arcseconds (1 degree equals 3600

arcseconds) for a light ray that grazes the surface of the sun.


2. Gravitational lenses (5 points) 

The gravitational deflection of light can magnify and distort the images of background 
sources. Suppose that a star (the “source”) lies directly behind a point mass M (the 
“lens”) along the line of sight. Assume that M is sufficiently small so that spacetime is 
flat to an excellent approximation aside from the deflection of light effect computed in 
Problem 1. (A sufficient condition for this is that the deflection angle be small.) The 
distance from the observer to the lens is rOL, the distance from the observer to the source 
is rOS , and the distance from the lens to the source is rLS . 

a) Show that the observer sees the source imaged as a ring and find the angular 
radius of this ring. Einstein first calculated this effect in a short paper, “Lens-
like action of a star by the deviation of light in the gravitational field,” Science 
84, 506 (1936). He wrongly predicted that it would never be observed. The 
first Einstein ring lens was discovered by MIT Prof. Jackie Hewitt in 1987. 
For more information, see http://www.aoc.nrao.edu/pr/vla20/einstein.ring.html 

1 
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b) Suppose M = 1 solar mass, rOS = 50 kpc (the distance to a nearby small

galaxy, the Large Magellanic Cloud), and rOL = 25 kpc (a lens in the outskirts

of our galaxy). (1 kpc = 3.086×1019 m.) How large is the Einstein ring radius

compared with the angular resolution of the Hubble Space Telescope, about

0.1 arcsecond? Suppose instead that the lens is a galaxy of mass 1011 solar 
masses at a distance of 107 kpc and that the source is a bright point source 
twice as far away. Can Hubble resolve such a ring? 

c) Even if the Einstein ring is unresolvable, the lensing effect can be observed be
-
cause lensing magnifies the image (like an ordinary glass lens but with terrible

distortion) hence it increases the flux of light seen by the observer. A source

that is misaligned in angle by more than about the Einstein ring radius has

very little magnification. Thus, if a source moves across the line of sight past

the lens, it will appear to brighten and then fade in an effect called microlens
-
ing. Suppose that the source and lens distances from the observer are 50 and

25 kpc respectively, but that the lens moves perpendicular to the line of sight

with speed 100 km/s (a typical speed for stars in our galaxy). In the middle of

the lensing event, the observer, lens, and source are collinear. If the lens mass

is 1 solar mass, what will be the duration of the microlensing event in days, de
-
fined by the time of the source to cross the diameter of the Einstein ring? See

http://spiff.rit.edu/classes/phys240/lectures/microlens/microlens.html 

for microlensing observations and more information. 

3.	 Curvature of a sphere (5 points) 

a) Compute all the nonvanishing components of the Riemann tensor Rijkl (i, j, k, l = 
θ, φ) for the 2-sphere metric ds2 = dθ2 + sin  2 θdφ2 . 

b) Consider the parallel transport of a tangent vector �A = Aθ�eθ + Aφ�eφ on the 
sphere around an infinitesimal parallelogram of sides �eθdθ and �eφdφ. Using  
the results of part a), show that to first order in dΩ ≡ sin θdθdφ, the length 
of �A is unchanged but its direction rotates through an angle equal to dΩ. 

c) Show that, if A is parallel transported around the boundary of any simply

connected solid angle Ω, its direction rotates through an angle Ω. Compare

with the result of Problem 4 of Set 4.


4.	 Riemann tensor for 1+1 static spacetimes (5 points) 

a) Compute all the	 nonvanishing components of the Riemann tensor for the

spacetime with line element


ds2 = −e 2φ(x)dt2 + e −2ψ(x)dx2 

where φ(x) and  ψ(x) are arbitrary functions of x. 

1b) For the case φ = ψ = 
2 ln |2g(x − x0)| where g and x0 are constants, show


that the spacetime is flat and find a coordinate transformation to globally

t, ¯ x2 .
flat coordinates (¯ x) so that  ds2 = −dt̄2 + d¯

2 
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Problem Set #6 
Due in class Thursday, March 21, 2002. 

1. Particle motion in a weakly perturbed spacetime (12 points) 

The line element for a weakly perturbed spacetime is 

ds2 = −(1 + 2φ)dt2 + (1  − 2ψ)(dx2 + dy2 + dz2) . 

We are allowing for different fields φ and ψ in order to distinguish the effects of space 
curvature (ψ) from gravitational redshift (φ). Assume throughout that all terms of 
quadratic or higher order in the potentials can be neglected. 

a) Using equation (14) of the notes Hamiltonian Dynamics of Particle Motion,

write the Hamiltonian H(xi, pj , t) for a particle of mass m freely falling in

the spacetime with metric given above. Do not make any assumption about

p2 ≡ δij pipj compared with m2, but do linearize H in φ and ψ. Note: The

canonical momentum pi differs from both the coordinate momentum P µ and


µthe physical momentum P ˆ. 

b) Using the fact that H = −pt, verify that the Hamiltonian you found in part 
2a) satisfies the normalization of the 4-momentum, gµν pµpν = −m . 

c) From Hamilton’s equations, obtain equations of motion for xi and pi. Then 

take the nonrelativistic limit p2 � m2 and show that you obtain Newton’s

laws to lowest order in φ.


d) Consider a coordinate-stationary observer at fixed xi . Show that the ob-

server’s 4-velocity is �
V = (1  − φ)�et. Evaluate the connection coefficients 
Γi and show that the coordinate-stationary observer’s worldline is not a tt 

geodesic. Explain how this can be. 

e) The coordinate-stationary observer has an orthonormal basis �µ with �0 = V .

In terms of the canonical momenta and the potentials φ and ψ, what are the


eˆ eˆ

ˆ ˆ 0energy E = P 0 and 3-velocity vi = P i/P ˆ measured by the coordinate-√ 
2stationary observer? Show that E = m/ 1 − v . (You should retain terms 

linear in φ and ψ. Do not assume p2 � m2.) 

1 



f) Returning to the equation of motion for dpi/dt found in part c), show that

the effective gravitational potential for a relativistic particle in a weak grav-
√ 
itational field is φ + v2ψ and the effective gravitational mass is p2 + m2 . 
Writing pi = pni where ni is normalized so that δij ninj = 1, show that the de-
flection dni/dt for a photon is exactly twice the value predicted by Newtonian 
gravity plus the naive correspondence E = m, if  ψ = φ. 

g) Suppose that a photon moves in the x-y plane and that φ = ψ = −GM/r √ 
where r = x2 + y2 . Using the result of part f), the deflection angle can be 
determined in the impulse approximation, whereby the changes in ni are com-
puted by integrating dni/dt assuming that the photon takes an unperturbed, 
straight-line path (here, y = b where b is the impact parameter). Show that 
after the scattering, when the photon has moved back out to r � b, the  

2deflection angle is −ny (if ny � 1). Integrate dny /dt to get the deflection 
and show that your result agrees with Problem 1 of Set 5. 

2. Weighing a relativistic body (8 points) 

An object of mass m is at rest on a bathroom scale in a weak, uniform static gravita-
tional field. That is, the object has fixed spatial coordinates (x, y, z) and the spacetime 
metric has the standard weak-field form gµν = ηµν − 2φ diag(1, 1, 1, 1), with φ2 � 1, 
∂z φ = constant ≡ g, and  ∂µφ = 0  for  µ �= z. Neglect terms O(φ2) and  O(φg) throughout 
this problem. In this problem we will see that if one wants to interpret gravity as a force 
rather than the effect of spacetime curvature, then it is a velocity-dependent one. This 
is not a fundamental insight; the main purpose of this problem is to give practice with 
relating the metric to measurable quantities in curved spacetime. 

a) What force does the bathroom scale apply on the body? Compute both the

components and the (4-scalar) magnitude of the 4-force. (Hint: the equation

of motion for the body is m∇V V µ = mD2xµ/dτ 2 = F µ where F µ is the

4-force applied by the scale.)


b) Now suppose that the object moves with constant, relativistic coordinate 3-

velocity v = dx/dt in the x-direction, i.e. V x = vV t , V y = V z = 0.  What 

is V t? While the mass is on bathroom scale, what force (components and

magnitude) does the bathroom scale apply to the mass?


c) Now transform coordinates by applying a naive Lorentz transformation: x =¯
γ(x − vt), t̄ = γ(t − vx), ¯ zy = y, ¯ = z. Evaluate the components of the metric 
in the new coordinate system, g¯ν . Is the result an orthonormal basis? To 
first order in φ, what are the force components in this new coordinate basis? 

µ¯

d) Show that the barred coordinate basis can be transformed to an orthonormal 
¯ µ ¯ µ µ̄basis, �µ = Eµ
µ�µ with a tetrad matrix E ¯ = δµ 

ˆ + φA ¯µ and find A . To  ˆ ˆeˆ ˆe¯ µ µ ˆ µ

first order in φ, do the force components F ˆ µ?µ differ from F ¯
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Problem Set #7 
Due in class Thursday, April 4, 2002. 

1. Newtonian Limit of GR (5 points) 

a) By examining the relative acceleration of a family of test-particle trajectories

in Newtonian gravity and comparing with the Newtonian limit of the equation

of geodesic deviation, derive the correspondence Ri0j0 = ∂i∂j φ. (Do  not

compute the Riemann tensor from the metric.)


b) In the Newtonian limit, one might plausibly guess that all components of the

Riemann tensor are neglible except those which are related to Ri0j0 by the

symmetries of the tensor. From this argument, deduce the components of

the Ricci tensor Rµν in the Newtonian limit. Show that you obtain precisely

the components expected to first order in φ from the metric ds2 = −(1 +

2φ)dt2 + δij dxidxj if |∂tφ| � |∂iφ|.


c) Show that the Einstein equations Rµν − 1 
2 Rgµν = 8πGTµν do not reduce to the 

correct Newtonian limit (T00 = ρ, T0i � ρ, Tij � ρ) under the assumptions 
made in parts a) and b) (where R = Rµ

µ is the Ricci scalar). Show further-
more that there are no constants A and B such that ARµν +BRgµν = 8πGTµν 

yields the correct Newtonian limit either. From this, deduce that the assumed 
Riemann tensor values are incorrect. The missing piece is Rijkl. 

d) Let us guess that the spatial part of the metric must be nonflat, with gij =

(1 − γφ)δij for some constant γ. Evaluate the contributions made to the Rie
-
mann tensor by such a term (neglecting ∂tφ compared with ∂iφ). Correct the

Ricci tensor of part b) and deduce the values of γ, A, and  B that reproduce

the correct Newtonian limit results from the Einstein equations.


2. Nordström’s Gravity Theory (5 points) 
A metric theory devised by Nordström in 1913 (before GR) relates gµν to Tµν by the 
equations 

Cαβµν = 0  , R  = κgµν T µν (1) 

where Cαβµν is the Weyl tensor (the fully antisymmetric part of the Riemann tensor). 
The condition Cαβµν = 0 implies that the metric is conformally flat, i.e. 

gµν = e 2φηµν (2) 

for some field φ(x). 

1 



a) Show that in the Newtonian limit (φ2 � 1 and  |∂tφ| � |∂iφ|), R ∝ ∂2φ and

find the constant of proportionality.


b) Show that Nordström’s field equation reduces in the Newtonian limit to the 
correct gravitational field equations and determine the value of κ. 

c) Is the theory consistent with the Pound-Rebka gravitational redshift experi
-
ment?


d) Show that geodesic motion in the metric (2) reduces to d2xi/dt2 = −∂iφ in

the Newtonian limit for massive bodies, but that there is no deflection of

light by the sun.


3. Electromagnetic Stress-Energy Tensor (5 points) 
Derive the electromagnetic stress-energy tensor components T µν 

EM in terms of Fµν and the 
metric, from the functional derivative of the electromagnetic action. (See Section 4 of the 
notes Symmetry Transformations, the Hilbert Action, and Gauge Invariance. Be  careful  
to hold fixed Aµ during the functional differentiation, i.e. use Tµν = −2δSEM/δgµν .) 
Show that ∇µT µν 

EM = 0 for a free field but not if there is a current density Jµ. Compare 
your result with the Lorentz force on a moving charge, and explain why the stress-
energy of the electromagnetic field is not conserved in the presence of sources. What is 
conserved? 

4. Quantum Gravity-induced Curvature Coupling in Maxwell’s Equations

(from Caltech Ph 236) (5 points)

In Box 16.1 of MTW it is argued that in curved spacetime the Maxwell equations become


∇ν F µν = 4πJµ , ∇αFβγ + ∇β Fγα + ∇γ Fαβ = 0  . (3) 

a) As will be explained below, quantum gravity might induce a curvature cou
-
pling of the following form:


∇ν [(1 + αR)F µν ] = 4πJµ , ∇αFβγ + ∇β F+γα + ∇γ Fαβ = 0  (4)  

where α is some constant. Like equations (3), these reduce to the familiar 
Maxwell equations in flat spacetime (since R = 0 there). The fact that the 
second of these equations is unmodified means that we can still write Fµν in 
terms of a vector potential, Fµν = ∂µAν − ∂ν Aµ, and the theory is still gauge 
invariant. Show that this version of the Maxwell equations, like the more 
conventional version with α = 0, implies charge conservation. 

b) Quantum gravity is expected to introduce curvature couplings into the laws of

physics, with coupling constants that involve the Planck length lP, a  quantity 

with units of length formed from ¯
h, c, and  G. By dimensional considerations, 
estimate the numerical value of the coupling constant α in m2 which quantum 
gravity might induce. 

c) Assuming that the Lorentz force law still holds, ∇V V µ = (q/m)F µν Vν , how 

could this theory be tested, assuming that measurements were possible on

the scale of lP?
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Problem Set #8 
Due in class Thursday, April 18, 2002. 

1. Geodetic and Lense-Thirring Precession for GP-B (6 points) 
In October, 2002, the Gravity Probe B satellite will be launched to test the predictions 
of general relativity for the precession of an orbiting gyroscope. Information about the 
mission may be found at the link given at the 8.962 website. The satellite will be in a 
circular orbit flying directly over the Earth’s poles at an altitude of 650 km. 

a) Compute the predicted geodetic precession rate in arcseconds per year and

compare with the prediction given at the GP-B website. What direction is

the precession angular velocity �
Ω? Can you explain why your result is a little 
larger than the value given at the GP-B website? 

b) Evaluate the Lense-Thirring precession rate, average it over an orbit, and

then compare with the predicted rate in milliarcseconds per year given at the

GP-B website. You will need the moment of inertia of the Earth, which you

can find in a geophysics textbook or by a web search.


2. LIGO analyzed in transverse gauge (based on a problem from Kip Thorne) 
(8 points) 
Consider an idealized version of the LIGO interferometer, in which light passes from a 
beam splitter to two end mirrors and is reflected back to the beam splitter. Let both arms 
have length L = 4 km before the gravitational wave arrives, and let them be oriented 
along the x− and y-axes of a Cartesian coordinate system. Let a gravitational wave 
h+(t − z) travelling in the z-direction impinge on the interferometer. Assume that the 
frequencies present in the gravitational wave are all of order f ∼ 100 Hz so that the 
wavelength is much greater than L. With this assumption, h+(t − z) is approximately 
constant during the time a laser pulse travels back and forth once along an arm of the 
interferometer. Assume that the beam splitter and mirrors are free to move horizontally 
as the gravitational wave passes, i.e. neglect any mechanical forces on them. With this 
assumption, the beam splitter and mirrors remain at fixed values of the transverse-gauge 
(or TT) coordinates. 

a) Treating the gravitational wave as causing a stretching of space along one axis

and a compression along the other, show that when the waves are recombined

at the beam splitter they acquire a differential phase shift δφ = (4πL/λ)h+


where λ is the wavelength of the light.
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b) The argument of part a) is suggestive but not rigorous. A rigorous derivation

of the phase shift comes from solving the Maxwell equations in the presence of

a gravitational wave. Starting from the covariant Maxwell equations, derive

the wave equation gµν ∇µ∇ν Aα = 0 in vacuum assuming Lorentz gauge (for

electromagnetism not gravity!).


c) Solve the wave equation of part b) for a plane electromagnetic wave travelling

in the x-direction under the assumption that h+ is constant during the time

interval considered. (Neglect all terms quadratic in h and note that the

gravitational wave frequency is far less than the frequency of laser light.)

Show that wavefronts travel with phase speed 1 − 1 h+ in the transverse
-

2 
gauge coordinates. 

d) From the result of part c) and its counterpart for electromagnetic waves

travelling in the y-direction, show that the phase shift of waves returning to

the beam splitter is the same as obtained in part a).


e) If the interferometer arms act as Fabry-Perot cavities, the laser light effec
-
tively makes many round trips before exiting the interferometer, boosting

the effective arms length by about a factor of 100. Assuming 1 micron laser

light, how large is the phase shift (in radians) for h = 10−21? The  LIGO 

interferometer should be able to make such precise measurements within a

year or two!


3. Binary coalescence by gravitational radiation (6 points) 
The most likely signal expected in the first detection of gravitational waves by LIGO or 
other detectors is the merger of two neutron stars or black holes. Astronomers know that 
such systems exist; the Hulse-Taylor binary pulsar PSR 1913+16 is slowly losing orbital 
energy through the emission of gravitational radiation. Let us approximate the orbit of 
the two equal-mass (1.4 solar mass) neutron stars as circular and Keplerian. The binary 
separation a(t) decreases slowly owing to gravitational radiation. Using the quadrupole 
radiation formula (MTW equation 36.1), derive a formula for a(t). This involves several 
steps: 

1. Compute the time-dependent traceless mass quadrupole tensor Qij (t) for  the two  
stars orbiting in the x-y plane. 

2. Compute the time average 〈[d3Qij /dt3]2〉; you should get 8(Ma2ω3)2 where M is 
the stellar mass, a is the separation, and ω is the Kepler angular velocity. 

3. Compute the gravitational wave luminosity and equate to −dE/dt where E is the 
Newtonian energy of the system. 

The current orbital period of PSR 1913+16 is 7.75 hours. How long will it take (in 
years) before the binary coalesces? (The actual time will be shorter because the orbit is 
eccentric.) 

2 
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Problem Set #9 
Due in class Thursday, April 25, 2002. 

1. Gravitational Radiation with the Riemann Tensor (based on a problem 
from Caltech Ph 236) (8 points) 

Like electromagnetic radiation, gravitational radiation in the weak-field (linearized GR) 
limit can be described either by potentials (Aµ or hµν ) or by gauge-invariant fields. 

a) Show that in linearized theory the components of the Riemann tensor are 

1 
Rαβµν = (∂α∂ν hβµ + ∂β ∂µhαν − ∂α∂µhβν − ∂β ∂ν hαµ)  (1)  

2 

and show that Rαβµν is invariant under a gauge transformation hµν → hµν + 
∂µξν + ∂ν ξµ. 

b) Contract the full Bianchi identity and impose the Einstein equations to de
-
rive an expression for the divergence of the Riemann tensor in terms of the

gradient of the trace-reversed stress-energy tensor T µν = Tµν − 1


2 gµν T λλ. (For  
this part there is no need to assume weak fields; your equation should be 
exact.) 

c) Take one gradient of the Bianchi identity, contract an appropriate pair of

indices, and combine with the result of part b) to get a linear wave equation,

with source, for the Riemann tensor in the weak-field limit,


2Rαβµν = 8πG source involving double gradients of T κλ . (2) 

(Hint: Assuming linear theory, you may neglect products of the Riemann 
tensor that arise from the commutator of covariant derivatives.) 

d) Write down a solution to equation (2), analogous to MTW equation (18.14).

This solution could be used to develop a gauge-invariant linearized theory of

the emission of gravitational waves.


e) Now specialize to a plane gravitational wave propagating in the z-direction

through vacuum. The corresponding solution of equation (2) is Rαβµν =

Rαβµν (t − z). By using the Bianchi identity and the symmetries of Riemann,

derive explicit expressions for all the other components of Riemann in terms

of Ri0j0. (Recall that these are the components of Riemann that produce the

tidal gravitational forces felt by an object that is at rest in our chosen nearly

Lorentz frame.)


1 
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f) By using the vacuum Einstein field equation, show that the only nonzero

Ri0j0 are Rx0x0(t − z) =  −Ry0y0(t − z), which is the tidal force field carried

by the + polarization waves, and Rx0y0(t − z) =  Ry0x0(t − z), which is the

tidal field carried by the × polarization waves.


g) Define fields h+(t − z) and  h×(t − z), in terms of these components of the

Riemann tensor, by


1 1 
Rx0x0 = − ∂2h+(t − z) , Rx0y0 = − 

2 
∂t 

2h×(t − z) . (3)
2 t 

By comparing with equation (1), show that the transverse-traceless gauge 
by hTT = −hTT = h+, hTTmetric perturbations are related to h+ and h× xx yy = xy 

hTT = h×.yx 

h) Show that when one rotates the coordinate system about the waves’ propaga
-
tion direction (z-direction) through an angle θ [so that x′ + iy′ = (x +iy)e−iθ ],

the gravitational-wave fields h+ and h× transform according to the equation


h′ + ih×
′ = (h+ + ih×)e −i2θ . (4)+ 

This equation is often described by saying that h+ + ih× has spin-weight 2 
(i.e. the graviton is spin-2). 

2. Chirp mass (6 points) 

Gravitational radiation is expected to circularize the orbits of close binaries of neutron 
stars or black holes. (The Hulse-Taylor binary has not yet had time to circularize, but 
it will before the binary coalesces.) In this problem we approximate the inspiral phase 
of binary evolution as Newtonian with energy loss given by the quadrupole formula. For 
simplicity, we will assume that the orbital plane is face on to the observer. However, we 
allow the two stars to have different masses, M1 and M2. The separation of the two stars 
is r(t) which changes slowly compared with the orbital period 2π/ω. 

a) Using Newton’s laws, find expressions for ω and the energy of the binary

system in terms of G, M1, M2, and  r.


b) Assuming quadrupole gravitational radiation, find dr/dt in terms of G, M1,

M2, r, and  c. Check that your result agrees (if M1 = M2) with the result

obtained in Problem 3 of Set 8.


c) As the binary orbit shrinks through gravitational radiation, the frequency

increases. Gravitational wave observatories may be able to measure ω(t)

over many binary orbits. Calculate −dT /dt where T = 2π/ω is the orbital

period and show that


dT GMcω �5/3 

− ∝ (5)
dt c3 

2 



where Mc has units of mass and is called the chirp mass. Find the constant 
of proportionality and find Mc in terms of M1 and M2. From these results 
argue that Mc, but not M1 and M2 separately, can be determined from the 
frequency sweep during the inspiral phase. 

d) Observations also measure the amplitude of the gravitational wave strain,

h+(t) = 2s+(t). From this and the chirp mass derive an expression for the

distance to the source as a function of the amplitude of h+, G, Mc, ω, and 

c. Thus, with gravitational wave measurements alone one can determine the 
chirp mass and source distance (neglecting cosmological redshift effects). 

3. Uniform-Density Star (6 points) 

The goal of this problem is to solve the relativistic equations of stellar structure for 
a static, spherically symmetric star of uniform density ρ0, and thereby show that the 
mass and radius of the star satisfy GM/R < 4/9. 

a) Starting from the spherical static line element � �−1 
2Φ(r)dt2 2ds2 = −e + 1 − 

2GM (r) 
dr2 + r (dθ2 + sin  2 θdφ2) , (6) 

r 

evaluate Gt̂t̂ and Gr̂r̂ (orthonormal components of the Einstein tensor). (Feel 
free to use GRTensor or Mathematica!) Using the Einstein equations, find 
expressions for dΦ/dr and dM/dr in terms of G, ρ(r), and p(r). From these 
and the equation of hydrostatic equilibrium (Problem 3 of Set 4), show that 
you obtain the Oppenheimer-Volkoff equation 

1 dp G(M + 4πr3p) 
= − (7)

ρ + p dr r(r − 2GM ) 

where ρ, p, and  M are in general all functions of r. 

b) For ρ(r) =  ρ0 = constant, integrate the Oppenheimer-Volkoff equation to get

the pressure p(r) in terms of G, M , R and ρ0 where M is the total mass and

R is the stellar radius (beyond which ρ = p = 0). Show that the result is


p(r) (1 − 2GM r2/R3)1/2 − (1 − 2GM/R)1/2 

= . (8)
ρ0 3(1 − 2GM/R)1/2 − (1 − 2GM r2/R3)1/2 

c) Integrate the radial gravity equation for Φ(r) (most simply through dΦ(r)/dp(r)). 

d) Combine the results to obtain a one-parameter family of stellar models, char
-
acterized by the central pressure through p(0)/ρ0. Show that the central

pressure becomes infinite when GM/R = 4/9. How does the limit change if

the central pressure cannot exceed the energy density (the so-called dominant

energy condition, which holds for all known forms of matter)?
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Problem Set #10 
Due in class Thursday, May 2, 2002. 

1. Circular Orbits in a Static Spherical Spacetime (8 points) 

This problem explores circular orbits in the spacetime with metric given by equation (6) 
of Problem Set 9. Use the Hamiltonian method with the Hamiltonian H(xi, pj , t) =  −pt. 

2 2a) Show that L2 ≡ pθ + pφ/(sin
2 θ) is an integral of motion, i.e. dL2/dt = 0 


along any trajectory, circular or not.


b) For a circular orbit of radius r with θ = π/2, find ω ≡ dφ/dt in terms of only

Φ(r) and  r. Show that for the Schwarzschild solution it reduces to Kepler’s

Third Law, ω = (GM/r3)1/2 .


c) Consider an astronaut in a circular orbit. The astronaut sends out light

pulses once per orbit. These pulses are received by an observer at rest far

away where the spacetime is asymptotically flat. What is the astronaut’s

orbital period (i.e. the separation between pulse arrival times) as deduced by

the distant observer, in terms of Φ(r) and  r?


d) What is the astronaut’s orbital period as measured by a coordinate-stationary

observer at the same r as the astronaut?


e) What is the astronaut’s orbital period as measured by the astronaut? 

f) Suppose that the astronaut has mass m and crashes into the coordinate-

stationary observer so hard that he is converted into outwards-going photons

(don’t worry about momentum conservation!). What is the energy of these

photons as measured by the coordinate-stationary observer?


g) What is the energy of the photons reaching the distant observer? How does

this energy compare with the value of H for the astronaut before his demise?


2. Neutron Star Mass and Radius (6 points) 

Astrophysicists are actively trying to measure the mass and radius of a neutron star 
in order to constrain the equation of state of dense matter. This problem explores an 
idealized way in which they could succeed. 

1 



a) Spectral lines of radiation emitted from the surface of a nonrotating neutron

star can give a measure of the redshift z defined by 1 + z ≡ Eemitted/Eobserved.

What is the gravitational redshift from the surface of a spherical neutron

star of mass M and radius R? What is the maximum gravitational redshift

consistent with the causality bound GM/R < 0.33? Recent observations of

absorption lines in a neutron star spectrum suggest a gravitational redshift

in the range 0.12 ≤ z ≤ 0.23 (Pavlov 2002). If M = 1.35 M�, what is the

implied range for R in km? (GM�/c2 = 1.477 km.) How does this compare

with the radius of the innermost stable circular orbit (ISCO), 6GM ?


b) Suppose that the neutron star has rotation angular velocity ω and that the

emission comes only from a small region on its surface. For simplicity assume

that the spin axis is perpendicular to our line of sight and that the emitting

spot is at the rotational equator. Show that the observed redshift factor is

1 +  z = V t[1 + ω(Pφ/Pt)], where V µ is the 4-velocity of the emitter and Pµ


is the 4-momentum of the photon. Determine V t in terms of ω, R, and  M .

(Assume that the rotation does not affect the spacetime geometry.)


c) Suppose that the light ray reaching the observer was emitted making an angle

α to the surface of the neutron star. Show that the redshift can be written


γ

1 +  z = (1 ± v cos α)  (1)  

β 

where β = (1  − 2GM/R)1/2 , γ = (1  − v2)−1/2, and  v is proportional to ωR. 
Find the exact expression for v. Is equation (1) correct if the light is deflected 
by the gravity of the neutron star? Can the minimum and maximum redshift 
during one full rotation period be used to determine both M and R? 

3. Schwarzschild-de Sitter Spacetime (6 points) 

Consider a static spherical spacetime consisting of a black hole of mass M surrounded by 
a constant density medium with equation of state p = −ρ ≡ −ρv . This equation of state 
is equivalent to a cosmological constant Λ = 8πGρv (subscript v stands for “vacuum” 
since a cosmological constant is equivalent to vacuum energy). 

a) Determine the metric of this spacetime. [Hint: Although the Oppenheimer-

Volkoff equation breaks down for ρ+p = 0, one can still integrate Gr̂r̂ = 8πGp

to determine Φ(r).]


b) Show that there is a finite radius r such that a particle at rest (with dr/dt =

dθ/dt = dφ/dt = 0) remains at rest. Show that this solution is unstable using

the 1-D effective potential method. Estimate the distance of this unstable

point from the sun in parsecs if ρv = 6  × 10−27 kg m−3 . (Neglect the mass of

nearby stars and our galaxy. The nearest star is a little more than 1 parsec

away.)


c) Does a cosmological constant make the solar system expand with time? 
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Problem Set #11 
Due in class Thursday, May 9, 2002. 

1. Radial Infall into a Black Hole (8 points) 

a) Show that the trajectory r(τ ) for a freely-falling particle of mass m = 1 mov-
ing radially in Schwarzschild spacetime obeys the same differential equation 
as in the Newtonian case, 

1 GM 
ṙ2 − = E .  (1)

2 r 

How is E related to the general relativistic Hamiltonian H? Express E 
in terms of the radial momentum pr̂ measured by a coordinate-stationary 
observer at radius r and compare it with the Newtonian formula E = 1 2 

2 pr̂ − 
GM/r. 

b) Show that equation (1) has the exact parametric solution r = A(1 − cos η), 
τ = B(η − sin η) and determine the constants A and B in terms of GM and 
E. 

c) If a particle is dropped from rest at large r, E is infinitesimally small. Show 
that, once the particle crosses r = 2GM , it will reach the center after an 
additional proper time 4 GM .

3 

d) Show that, once an astronaut crosses r = 2GM , the longest he can live is 
πGM even if he has arbitrarily powerful rockets and tries to accelerate away 
from r =  0. (Hint: ∆τ = dr/ṙ.) 

e) Suppose that two particles, with different values of the Hamiltonian H (call 
them H1 and H2), fall in radially and pass each other at r = 2GM . Show 
that their relative speed as they pass each other is 

� H2 � � 1 − H2
2 � v = �� H1

2 + H2 �� . (2) 
2 

p1 · �(Hint: � p2 is related to the relative speed since pµ is the 4-velocity for 
massive particles. Also, be careful in taking the limit r → 2GM .) 

1 
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2. Redshift during Gravitational Collapse (8 points) 
Let us suppose that at the end of its life a massive star collapses so quickly to form a 
black hole that pressure forces may be ignored. Then, the surface of the star follows a 
radial timelike geodesic in Schwarzschild spacetime. Initially, the surface of the star is 
at rest at r = r0. 

a) Show that the trajectory of the infalling surface obeys 

dr β2 

= − H2 − β2 (3)
dt H 

where H is the Hamiltonian and β2 ≡ 1−2GM/r. If the star begins collapsing 
when it has radius r0, what is  H? 

b) By integrating dt/dr, show that, as the surface of the star approaches the

event horizon r = 2GM , the trajectory r(t) satisfies t = −2GM ln(r/2GM −

1) + constant + O(r − 2GM ). Does the surface cross the horizon in finite

coordinate time t? Does it cross the horizon in finite proper time?


c) During the collapse, radiation is emitted from the surface. Show that the

redshift factor 1 + z ≡ Eemitted/Eobserved for a distant stationary observer is


√ 
H + H2 − β2 

1 +  z = . (4)
β2 

What is the redshift factor initially, at r = r0? What  is  it  as  r → 2GM ? 

d) By integrating the radial null geodesic condition for light, show that as the

surface approaches 2GM , a distant observer receives radiation from the sur
-
face at coordinate time tobs = −4GM ln(r/2GM −1)+constant+O(r−2GM ).


e) Show that at late times the redshift factor grows exponentially: 1 + z ∝

exp(tobs/T ). Give an expression for the “wink-out” time T in terms of the

black hole mass M .


∗3. X-Ray Flare from Sgr A (4 points) 
∗At the center of our galaxy is a black hole of mass 2.6 × 106 M� called Sgr A . Last fall, 

a team led by MIT astronomers published observations of an X-ray flare that brightened 
over a few hundred seconds and then faded (F. Baganoff et al. 2001, Nature, 413, 45). 
The flare (perhaps an event similar to a solar flare or prominence) is thought to have 
occurred from material orbiting close to the black hole. This interpretation is based on 
the duration of the flare compared with relevant timescales as considered here. 

a) Assuming that the black hole is non-rotating, what is the orbital period (in

seconds) for the innermost stable circular orbit?


b) What is the wink-out time in seconds? 

c) At approximately what value of r/GM would an infalling astronaut be killed 
∗by tidal forces for Sgr A ? 
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Problem Set #12 
Due in class Thursday, May 16, 2002. 

1. Reissner-Nordstrom Black Hole (12 points)

The metric of a nonrotating black hole of mass M and charge Q is


2GM GQ2 
)1/2 

2ds2 = −β2dt2 + β−2dr2 + r (dθ2 + sin  2 θdφ2) , β  ≡ 1 − + 
2 

. (1) 
r r

Throughout this problem we assume Q2 < GM  2 . Realistic black holes cannot have any 
significant nonzero Q but as a mathematical solution this metric has many interesting 
features. 

a) What is the stress-energy tensor corresponding to this metric? (Hint: Use

GRTensor or results from Problem Set 9 # 3.) Is the pressure isotropic?

Show that the stress-energy tensor is that of electromagnetism with a static,

radial electric field. What is the Maxwell tensor component F tr in terms of

Q and r?


b) Consider an astronaut who falls radially inward starting from large r holding

an outwards-directed flashlight. Show that the radii where β = 0  are  event 

horizons, i.e. light emitted from these radii can never reach a distant observer.

Show that there are two event horizons, r = r± where r+ > r−.


c) Evaluate the tidal acceleration Rt̂
t̂ˆ

and show that it diverges only at r = 0.  
r r̂ 

If the astronaut were to approach very close to r = 0, would he be radially 
stretched or compressed? 

d) How is equation (1) of Problem Set 11 modified by nonzero Q? By analyzing

Veff (r) graphically, determine whether an infalling astronaut who crosses the

outer horizon at r+ will fall into the singularity. Can the astronaut cross

through both the outer and inner horizons? How many times?


e) Find the coordinate transformation u = u(r, t) and  v = v(r, t) akin to 

Kruskal-Szekeres that takes the metric for r >  r+ into the form


2ds2 = Ω2(r) −dv2 + du2 + r (u, v)(dθ2 + sin  2 θdφ2) . (2) 

Then find the transformation for the region r− < r  < r+. Make a Kruskal 
diagram of the (u, v) plane and indicate those two regions, which were called 
regions I and II in lecture. Also include the extension to regions III and 
IV thereby doubling the spacetime. Identify on your diagram the loci (r = 
r+, t  → −∞), (r = r+, t  → +∞), and (r → r−). 

1 



f) Suppose that the infalling astronaut crosses r = r+. According to your

Kruskal diagram, can the astronaut ever cross back? Can you reconcile this

with your results in part d)?


2. Einstein Static Universe (8 points)

In 1917, Einstein proposed the first cosmological model based on general relativity. The

metric was


dr2
2ds2 = −dt2 + + r (dθ2 + sin  2 θdφ2) , (3)

1 − Kr2 

where K >  0 is a constant. 

a) Show that the stress-energy tensor is that of a static, spatially uniform perfect

fluid and determine ρ and p in terms of G and K. If the universe contains only

cold matter (denoted by subscript m, with pm � ρm) and vacuum energy

(denoted by subscript v, with pv = −ρv ), what is the ratio ρv /ρm?


b) Embed the surface (θ = π/2, t  = constant) in a fictitious three-dimensional

embedding space by determining the function z = z(r) that takes the two-

dimensional metric to the form
⎡ ⎤ ( )2

dz 
ds2 = ⎣1 +  ⎦ dr2 + r 2dφ2 . (4)

dr 

Make a sketch of the embedded surface. Show that there are two copies of 
the region 0 ≤ r ≤ K−1/2 . What is the geometry of this surface? 

c) Find the coordinate transformation r = r(χ) that takes the line element to

the form


2ds2 = −dt2 + dχ2 + r (χ)(dθ2 + sin  2 θdφ2) . (5) 

What is the range of χ? 

d) An observer at r = 0 looks at a distant meterstick of length L � χ oriented

perpendicularly to the line of sight. What angle does the meterstick subtend?

Is the angle larger than, smaller than, or equal to the angle subtended in flat

spacetime, L/χ?


e) Einstein didn’t know about vacuum energy; instead he added a cosmological

constant Λ to his equations, Gµν − Λgµν = 8πGTµν . Why did he call Λ his

greatest blunder? Was it?


2
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