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Preface to the Second Edition

Atomic physics has continued to thrive and develop in the years since the first
edition was published. Substantial advances were made in understanding the
relation between quantum mechanics and classical mechanics, in particular
in cases where the classical dynamics is irregular or “chaotic”. Some of the
most striking and enlightening examples of how the dynamical properties of
a classical system manifest themselves in the corresponding quantum system
have been provided by small atoms in the presence or absence of external
fields. This is documented in a number of recently published books, viz.:
Atoms in Strong Magnetic Fields by Ruder et al., Chaos in Atomic Physics
by Bliimel and Reinhardt, Atoms and Molecules in Intense Fields edited
by Cederbaum et al., Classical, Semiclassical and Quantum Dynamics in
Atoms edited by Friedrich and Eckhardt, and Atoms and Molecules in Strong
Ezternal Fields edited by Schmelcher and Schweizer. The development over
the last decade or so has catalyzed the evolution of semiclassical theories,
and it has reinstated classical mechanics as relevant in the atomic domain,
notwithstanding that quantum mechanics is the correct description and that
the uncertainty relation invalidates the picture of point particles moving with
well defined coordinates and momenta on classical trajectories. After the
dramatic successes in the atomic domain, the modern semiclassical theories
have since been applied to problems as diverse as conductance fluctuations in
semiconductor microstructures and shell effects and magic numbers in alkali
metal clusters; see Semiclassical Physics by Brack and Bhaduri.! Atomic
physics has here been able to reclaim at least part of its role as a pioneering
field at the forefront of theoretical physics.

High precision studies of atoms in electromagnetic traps have become
more sophisticated, and the temperatures to which a collection of atoms in
a trap can be cooled have decreased continuously. Progress in techniques
for trapping and cooling atoms was rewarded with the 1997 Nobel Prize in
physics, after it had paved the way for the first successful preparation of Bose-
Einstein condensates of atomic gases in 1995. The possibility of experimenting
with this new state of matter promises a lot of exciting new physics.

! Detailed references to the books mentioned above are contained in the list at the
end of Chapter 5 ([RW94, BR97, CK97, FE97, SS98, BB97a)).
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In preparing the second edition of Theoretical Atomic Physics I have en-
deavoured to do justice to the recent developments in the field. Semiclassical
theory is given considerably more attention. Its introduction in Sect. 1.5.3
has been extended, and I have added Sect. 4.1.2 on semiclassical scattering
theory, Sect. 5.3.3 on periodic orbit theory and Sect. 5.3.4 on scaling proper-
ties for atoms in external fields. Section 4.4.4 on the threshold behaviour of
ionization cross sections and part (c) of Sect. 5.3.5 on the classical and quan-
tum dynamics of two-electron atoms are also new. I have included references
to new work related to the topics discussed in the book, when this was easy
to do, and I have added Sect. 5.4 giving a brief introduction to Bose-Einstein
condensation. Solutions to the problems are given after the appendices.

T am grateful to the many colleagues who responded enthusiastically to the
first edition and to those who drew my attention to errors or made suggestions
for improvements, in particular to Berthold-Georg Englert, Saul Epstein,
Peter Koch and Richard Lenk. I learnt to appreciate the power of semiclassical
theory through frequent contacts with physicists in or from John Briggs’
atomic physics group in Freiburg, in particular Klaus Richter, Jan-Michael
Rost, Gregor Tanner and the late Dieter Wintgen. I have benefited greatly
from work done with my present graduate students, Christopher Eltschka,
Petra Meerwald, Michael J. Moritz, Thomas Purr, and post-doc Johannes
Trost. Finally I would like to thank Dr. Hans J. Kolsch, Mrs. Jacqueline
Lenz, Mrs. Petra Treiber and Dr. Victoria Wicks at Springer-Verlag for their
help and cooperation.

Garching, April 1998 Harald Friedrich

Preface to the First Edition

In the first few decades of this century atomic physics and quantum mechan-
ics developed dramatically from early beginnings to maturity and a degree of
completeness. After about 1950 fundamental research in theoretical physics
focussed increasingly on nuclear physics and high energy physics, where new
conceptual insights were expected to be more probable. A further field of
growing importance was theoretical solid state physics, which led to or ac-
companied many revolutionary technological developments. In this environ-
ment the role of atomic physics as an independent discipline of theoretical
physics became somewhat subdued. In the last two decades, however, high
precision experimental techniques such as high resolution laser spectroscopy
have opened up new and interesting fields in atomic physics. Experiments
can now be performed on individual atoms and ions in electromagnetic traps
and the dependence of their properties on their environment can be studied.
Effects and phenomena which used to be regarded as small perturbations
or experimentally irrelevant exceptional cases have moved into the centre of
attention. At the same time it has become clear that interesting and intricate
effects can occur even in seemingly simple systems with only few degrees of
freedom.

The successful description and interpretation of such effects usually re-
quires the solution of a non-trivial Schrédinger equation, and perturbative
methods are often inadequate. Most lectures and textbooks which go beyond
an introductory “Quantum Mechanics I” are devoted to many-body theo-
ries and field theories at a high level of abstraction. Not enough attention is
given to a more practical kind of advanced quantum mechanics as required by
modern atomic physics. In order to meet this demand I have taught several
courses on “Theoretical Atomic Physics” at the Munich Universities since
1984. The present book grew out of these lectures. It is an updated ver-
sion of the textbook Theoretische Atomphysik, which appeared in German
in September 1990, and contains the kind of advanced quantum mechan-
ics needed for practical applications in modern atomic physics. The level of
abstraction is deliberately kept low — almost all considerations start with
the Schrédinger equation in coordinate representation. The book is intended
as a textbook for students who have had a first introductory contact with
quantum mechanics. I have, however, aimed at a self-contained presentation
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which should — at least in principle — be understandable without previous
knowledge.

The book contains five chapters, the first two of which present mostly
conventional material as can be found in more detail in available textbooks
on quantum mechanics and atomic physics. The first chapter contains a con-
cise review of quantum mechanics and the second chapter a deliberately brief
summary of traditional atomic theory. I have taken pains to treat bound
states and continuum states on the same footing. This enables the inclusion
of a comparatively straightforward introduction to quantum defect theory
(Chap. 3), which has become a powerful and widely used tool for analyzing
atomic spectra and which, up to now, has not been treated at such a basic
level in a student textbook. The scope of the reaction theory presented in
Chap. 4 is that of “simple reactions” induced by the collision of a single elec-
tron with an atom or ion. This avoids many complications otherwise occurring
in the definitions of coordinates, channels and potentials. On the other hand,
important concepts such as cross sections, scattering matrix, transition op-
erator, reactance matrix, polarization effects, Born approximation, break-up
channels, etc. can already be discussed in this simple framework.

The last chapter contains a selection of special topics which are currently
subject to intense and sometimes controversial discussion. The interest in
multiphoton processes has grown strongly with the availability of high-power
lasers and underlines the importance of non-perturbative methods in quan-
tum mechanics. The possibility of using very short laser pulses to study spa-
tially and temporally localized excitations of individual atoms has revived
interest in the relation between classical mechanics and quantum mechanics.
The final section discusses “chaos”, which is currently one of the most pop-
ular and rapidly growing subfields in almost all fields of physics. While most
specific investigations of chaos are numerical experiments on model systems,
there are a few prominent examples in atomic physics of simple but real sys-
tems, which can be and have been observed in the laboratory and which have
all the properties currently causing excitement in connection with chaos.

It is a pleasure to thank the many colleagues and friends who unselfishly
helped me in the course of writing this book. Special thanks are due to Karl
Blum, Wolfgang Domcke, Berthold-Georg Englert, Christian Jungen, Man-
fred Kleber, Achim Weiguny and Dieter Wintgen, who read through individ-
ual chapters and/or sections and suggested several improvements of the orig-
inal manuscript. Valuable suggestions and hints were also provided by John
S. Briggs, Hubert Klar and Peter Zoller. Gerd Handke and Markus Draeger
conscientiously checked more than a thousand formulae and helped to avoid
disaster. The original drawings were produced with the competent help of
Mrs. I. Kuchenbecker and a plot program specially tailored for the purpose
by Markus Draeger. Special thanks are also due to Dr. H.-U. Daniel from
Springer-Verlag. His experience and competence contributed significantly to

Preface to the First Edition IX

the success of the project. Finally I would like to thank my wife Elfi, who not
only read through the German and the English manuscript word by word,
but also supported my work with patience and encouragement during the
last three years.

Garching, June 1991 Harald Friedrich
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1. Review of Quantum Mechanics

Atomic phenomena are described mainly on the basis of non-relativistic quan-
tum mechanics. Relativistic effects can generally be accounted for in a sat-
isfactory way with perturbative methods. In recent years it has become in-
creasingly apparent that a better understanding of the classical dynamics of
an atomic system can lead to a deeper appreciation of various features in
its observable quantum mechanical properties, see e.g. [FE97] and Sect. 5.3.
This does not, however, invalidate the generally accepted point of view that
quantum mechanics is the relevant theory for atomic physies.

This chapter gives a brief review of quantum mechanics as it is needed
for use in later chapters. Although the reader is expected to have some ex-
perience in the subject already, the presentation starts at the beginning and
is self-contained so that it should, at least in principle, be understandable
without previous knowledge of quantum mechanics. A more thorough in-
troduction can be found in numerous textbooks, e.g. [Sch68, Bay69, Gas74,
Mes70, Sch92].

1.1 Wave Functions and Equations of Motion

1.1.1 States and Wave Functions

Non-relativistic quantum mechanics describes the state of a physical system
at a given time ¢ with a complex-valued wave function ¥(X;t). The wave
function 1 depends on the parameter t and a complete set of variables sum-
marized as X. As an example let us think of a system of N electrons, which
plays a central role in atomic physics. Then X can stand for the N spatial
coordinates 71, ... 7y and the N spin coordinates ms,, ... ms, of the electrons.
The spatial coordinates r; are ordinary (real) vectors in three-dimensional
space; the spin coordinates ms, can each assume only two values, ms, = £1/2.

The set of wave functions describing a given system is closed with respect
to linear superposition. This means that all multiples and sums of possible
wave functions are again possible wave functions. Mathematically, the pos-
sible wave functions of a system form a vector space. The scalar product of
two wave functions ¥(X;t), ¢(X;t') in this vector space is defined as
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wwww»:/w%xwaxwmx . (11)

The integral in (1.1) stands for integration over the continuous variables and
summation over the discrete variables. In the above-mentioned example of
an N-electron system we have

1/2 1/2

/dX:/d3r1..,/d3er >y

o =—1/2 mey=—1/2
The scalar product (1.1) is linear,

(Pl + coa) = (Pld1) + c(|d2) (1.2)

and it is replaced by its complex conjugate if we interchange the wave func-
tions,

(ply) = (Wlo)™ - (1.3)

Two wave functions 1 and ¢ are orthogonal if the scalar product (¥|¢) van-
ishes. The scalar product (1|¢) is a non-negative real number, and its square
root is the norm of the wave function 1. Square integrable wave functions,
i.e. wave functions (X ;t) with the property

wie) = [WEesnPax <co (14)
are normalizable. This means that they become wave functions of norm unity,
wiv) = [waoPax =1 (1.5)

when multiplied by an appropriate constant. The non-negative function
[¥(X;t)|* is a probability density. If, at time t, a physical state is described
by the wave function 9(X;t) (which is normalized to unity, (y|1)) = 1), then
the integral

/!wxmwx
5V

over a part 0V of the full space of values of the variable X gives the probability
that a measurement of the variable X (at time t) will yield values within §V.
The concept of probability densities can also be applied to wave functions
which are not normalizable, as long as we only study relative probabilities.

The square integrable functions (1.4) form a subspace of the space of all
wave functions. This subspace has the properties of a Hilbert space. In partic-
ular it is complete, meaning that the limit of each convergent sequence of wave
functions in the Hilbert space is again a wave function in the Hilbert space. It
also has a denumerable basis, i.e. there exists a sequence ¢;1(X), ¢2(X),. ..,
of linearly independent square integrable functions such that any square in-
tegrable function (X ) can be written as a linear combination
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1/J(X) = ch¢n(X) (1'6)
n=1

with uniquely determined coeflicients c,. The basis is orthonormal if its wave
functions obey the orthonormality relation

(¢ild5) =iy (1.7)

In this case the coefficients ¢, in (1.6) can be obtained by forming the scalar
product with ¢;:

ci = (g:ly) - (1.8)

The notation can be simplified if we leave out the variables X, which
often aren’t specified anyhow, and write the wave functions as abstract state
vectors |¢). The complex conjugate wave functions ¢*, with which the s
are multiplied to form scalar products, are written as (¢|. From the word
“bracket” we call the state vector |¢) forming the right-hand part of a scalar
product {¢]y) a ket, and we call the left-hand part (¢| a bra. Equation (1.6)
now has the simplified form

W)= calén) (1.9)
n=1
or, with (1.8),

[9) =D I$n)(daly) - (1.10)

The bra-ket notation is very useful, because many statements and formulae
such as (1.9), (1.10) are independent of the particular choice of variables.

1.1.2 Linear Operators and Observables

An operator O turns a possible wave function |1) into another possible wave
function O|y). A linear operator has the property

O(191) + clypa)) = Olr) + cOla) . (1.11)

For each linear operator O there is a Hermitian conjugate operator Of. It is
defined by the condition that the scalar product of any bra (¢| with the ket
OTW)) be the complex conjugate of the scalar product of the bra (| with the
ket O|g):

(#10"19) = ($|014)* . (1.12)
Equation (1.12) is the bra-ket notation for the equation

/ ¢* (X){OT(X)}dX = ( / w*<X){O¢(X)}dX)* : (1.13)
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In quantum mechanics an especially important class of operators consists of
the Hermitian operators. Hermitian operators are linear operators O with the

property
ot=0 . (1.14)
Eigenstates of a linear operator O are non-vanishing wave functions |1u)

for which the action of the operator O merely amounts to multiplication with
a number w:

Olyw) = wits) (1.15)

The number w is called eigenvalue of O. The spectrum of the operator 10)
consists of all its eigenvalues. Because of

($lOlg) = WulOMu)* = (YulOku)* (1.16)
and

_ (Yu|Opu)

O T VA (1.17)

the eigenvalues of a Hermitian operator are always real. Eigenstates of a
Hermitian operator with different eigenvalues

Olyn) = wilth) ,  Ola) = wals) (1.18)

are always orthogonal, because the product (w; — wz){¥2|%1) has to vanish
due to

(¥2|0lp1) = wi(yaltr) = walyhalipn) (1.19)

If the eigenvalue w is degenerate (this means that there is more than one
linearly independent eigenstate with this eigenvalue), then we can construct
orthogonal linear combinations of these eigenstates which of course stay eigen-
states with eigenvalue w.

_ As an example of a Hermitian operator we look at the projection operator
Py. Its action on an arbitrary state vector |¢) is to project out the component
proportional to the state |¢) (which we assume to be normalized to unity),

Pylw) = (#lv) |9) = |#)(#l¥) (1.20)
(compare (1.6), (1.9)). In compact bra-ket notation we have
By =18)(8l - (1.21)

The state |¢) itself is an eigenstate of Py with eigenvalue unity. All states
orthogonal to |¢) are eigenstates of f’¢ with eigenvalue zero, which is thus
highly degenerate. If we sum up the projections onto all orthogonal com-
ponents of a state |1), then we must recover the state ) — see (1.10). If
the states |¢n) form an (orthonormal) basis of the whole Hilbert space, then
(1.10) must hold for all states |¢). This can be expressed in a compact way
in the completeness relation,

1.1 Wave Functions and Equations of Motion 5

D ln)(gal =1 (1.22)

The bold 1 is the unit operator whose action on any wave function is to leave
it unchanged.

The observables of a physical system are described by Hermitian opera-
tors. The (real) eigenvalues are the possible results of measurement of the
observable. If the state of a system is described by an eigenstate of a Hermi-
tian operator, this means that measuring the observable will definitely yield
the corresponding eigenvalue.

Any wave function must be decomposable into eigenstates of a given ob-
servable. This means that the eigenstates of an observable form a complete
set. If all eigenstates of an observable are square integrable, then they form
a basis of the Hilbert space of square integrable wave functions. Since eigen-
states with different eigenvalues are orthogonal and degenerate eigenstates
can be orthogonalized, it is then always possible to find an orthonormal basis
of eigenstates:

Ols) = wilys),  (ils) =6i - (1.23)

An arbitrary wave function |} in Hilbert space can be expanded in eigen-
states of O:

W) = enltn) (1.24)

If the wave function |1) is normalized to unity,
W) =Y leal* =1, (1.25)
n

then the absolute squares

lenl? = [(¥nl)® (1.26)

of the expansion coefficients represent the probabilities for finding the system
described by |+) in the respective eigenstates [1,,) and for a measurement of
the observable O yielding the respective eigenvalues wy,. The ezpectation value
(O) of the observable O in the state |1) (assumed normalized to unity) is the
mean of all possible eigenvalues w,, weighted with the probabilities (1.26):

(0) =" lenl?wn = ($IOly) . (1.27)

The numbers (1;{O|1;) defined with reference to a given basis |¢;) form
the matriz of the operator O in the basis {|1;)}. The matrix of a Hermi-
tian operator is Hermitian. The matrix of an operator in a basis of its own
eigenstates is diagonal (provided degenerate eigenstates are orthogonalized).

Observables can also have eigenstates which are not normalizable, and
whose eigenvalues are in general continuous. In this case we must replace
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or complement the discrete subscripts 4, n in (1.23)-(1.27) by continuous
subscripts, and the sums by integrals.

_ If a wave function [¢) is simultaneously an eigenstate of two observables
A and B with eigenvalues o and [ respectively, then obviously

ABlp) = aflp) = Balyp) = BAlY) . (1.28)

A necessary and sufficient condition for A and B to have a common complete
set, of eigenstates is that A and B commute:

AB=BA or [A,B]=0 . (1.29)
[A,B] = AB — BA is the commutator of A and B. If A and B do not
commute, then they are not simultaneously measurable, which means there
is no complete set of wave functions which can simultaneously be classified
by eigenvalues of A and B.

In order to describe a physical system completely, we need a complete set
of commuting observables. In this context “complete set” means that there
is no further independent observable that commutes with all members of the
set. The eigenvalues of the observables of a complete set form a complete set
of variables for the wave functions. The choice of observables and variables
is not unique; it defines the representation in which we study the evolution
and the properties of the physical system.

For a spinless point particle in three-dimensional space, the three compo-
nents &, , 2 of the displacement operator # form a complete set of observ-
ables. Application of the displacement operators merely amounts to multi-
plying with the respective position coordinates, e.g.

go(z,y, 2;t) = yip(z,y, 2;t) . (1.30)
The corresponding momenta are described by the vector operator
h
P = TV , (1.31)
ie.
. h 0
Pz =15 etc. (1.32)

Here we have introduced Planck’s constant h, which has the dimensions of an
action and has the value 1.05457266(63) x 10734 Js = 6.5821220(20) x 106
eVs [CT86].

Position and momentum operators for the same degree of freedom do not
commute:

. h

[Bz, &] = T (1.33)
This means that position and momentum in the same direction are not si-
multaneously measurable, as is expressed quantitatively in Heisenberg's un-
certainty relation:

Ap, Az > %h . (1.34)
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The uncertainties Ap, and Az in a given state |¢) are defined as the
fluctuations of the observables around their respective expectation values

(2) = (YI2P), (Pa) = (PP2|):
Az = /(2%) = (2)*, Apz = V(B) — (B2)® - (1.35)

Position and momentum operators for different degrees of freedom com-
mute, so we can write (1.33) more generally as

ST (1.36)
Here the subscripts 4 and j can stand for different coordinates of one point
particle or for different particles in a many-body system.

Throughout this book relations and equations are almost always formu-
lated in coordinate representation, where the spatial coordinates are variables
of the wave functions. Because of (1.30) we omit the hat *, which generally
characterizes operators, from the position variables. The position variables
are only written with a hat on a few isolated occasions, where the operator
nature of the variable is intentionally emphasized.

1.1.3 The Hamiltonian and Equations of Motion

The Hermitian operator describing the energy of a system is the Hamalton-
ian. For a system of N spinless point particles of mass m;, the Hamiltonian
usually consists of the kinetic energy

X 2

and a potential energy v

H=T+V . (1.37)
The potential energy is in general a function of the N displacement vectors,
V = V(#1,...#n)- In coordinate representation V is usually given by a real

function V(r1,...rx) of the position variables. Applying the operator V' to
a wave function then simply amounts to multiplying the wave function with
the function V(ry,..7n).

The Hamiltonian of a physical system determines its evolution in time.
In the Schrédinger picture the evolution of a state |1(¢)) is described by the
Schrodinger equation:

2 _ . dl¥)
Hp(t) = lﬁ—cﬁ— ) (1.38)

which in coordinate representation corresponds to a partial differential equa-
tion:
3 Y

Hy(X;t) = ih%t . (1.39)
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The evolution of a state |1(t)) can formally be described with the help of
the time evolution operator:

(1) = U(t,to) |9 (to)) - (1.40)

If the Hamiltonian is not explicitly time dependent, then the time evolution
operator is

Ult,to) = exp [—%I:I(t - to)] . (1.41)

For a time-dependent Hamiltonian, (1.41) must be replaced by
s gt
Ult,ty) = [exp (—l H(t) dt’):l , (1.42)
R Ji +
where the symbol [---]4 indicates time ordering of products of operators:
[O(tl) v é(tn)] = é(tll) - ~O(tlﬂ) when t;, > ¢, ... > t;,. The time
+
evolution operator is unitary. That means
Ut =00t =1 . (1.43)
In the Heisenberg picture we regard the state vector
) = UT (£, t0) (1)) = [(to)) (1.44)

as a time-independent quantity, and the Schrodinger equation (1.38) leads to
an equation of motion for the Heisenberg representation

Ou(t) = Ut(t,t0)0U (t,t0) (1.45)

of the respective operators 0, namely:

A0y A o . 30y
— = H; . .
ik 1 [OH, H] + ik ot (1 46)
The expectation value of an operator does not depend on whether we work

in the Schrodinger picture or in the Heisenberg picture:

(0) = (W(®)IOlY(t) = (YulOn(®)¥n) - (1.47)
The evolution of (O) follows from (1.38) or (1.46):
L dO) s [80

For a time-independent Hamiltonian H the wave function

9(0) = exp (- Bt o) (1.49)

is a solution of the Schrédinger equation (1.38) if and only if |[¢g) is an
eigenstate of H with eigenvalue E,

Hlyg) = Elye) - (1.50)
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Equation (1.50) is the time-independent or stationary Schridinger equation.
Since any linear combination of solutions of the time-dependent Schrédinger
equation (1.38) is again a solution we can use the eigenstates |¢g,) of H to
construct a general solution of (1.38):

[W(E) = cn eXp(—%Ent> [Ye.) - (1.51)

As long as the potential energy is sufficiently attractive, the Hamiltonian
H has only discrete eigenvalues and normalizable eigenstates at low energies.
They describe bound states of the system. In this energy region the time-
independent Schrédinger equation (1.50) is an equation for the eigenvalues
E,, and the corresponding eigenfunctions | g, ). The lowest eigenvalue is the
ground state energy and the corresponding eigenstate the ground state of the
system. If the potential energy V(r1,...,7n) converges to a constant in the
asymptotic region (where at least one |r;] — o), then the time-independent
Schrédinger equation can be solved for all energies above this constant and
the corresponding eigenstates are in general not normalizable. Such contin-
uum wave functions describe unbound states of the system (scattering states,
reactions) and their concrete meaning depends on their asymptotic proper-
ties, i.e. on the asymptotic boundary conditions.

1.2 Symmetries

1.2.1 Constants of Motion and Symmetries

If the Hamiltonian H does not depend explicitly on time, then the expectation
value of H is a constant in time, as is the expectation value of any (time-
independent) operator which commutes with H. This follows immediately
from (1.48). The energy and the observables commuting with H are the
constants of motion. Solutions of the time-independent Schrédinger equation
can be labelled by the energy and the eigenvalues of the other constants
of motion. The eigenvalues of the constants of motion are often called good
quantum numbers.

An important example is the orbital angular momentum of a point particle
of mass u:

L=#xp (1.52)

ie. L, = gp, — 2Py, etc. If the potential energy V(r) depends only on the
length 7 = || and not on the direction of the vector 7,

. ﬁz
H=54V0) (1.53)

then all components of I commute with H,
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B, Lo = [H,L,) = (B, L] =0 (1.54)

as does the square L = ﬁ + ﬁ + 12,
s a2
[H,L]=0 . (1.55)
However, the components of L themselves do not commute, rather
(Lo, Ly} =ikl, , [Ly,L.)=ikl,, [L.,L.)=ikL, . (1.56)
f,z and all components of L are constants of motion, but iz and one compo-

nent alone already form a complete set of observables for the orbital angular
motion of the particle. In spherical coordinates,

z=rsinfcos¢, y=rsinfsing, z=rcosf |, (1.57)

~2 ~
the eigenstates of the angular momentum operators L and L, are the spher-
ical harmonics Y} m (0, ¢), which are labelled by the angular momentum quan-
tum number | and the azimuthal quantum number m:

P Yim =10+ DY, 1=0,1,2,... ;
L.Yim=mhYim, m=—l, —l+1,...,01-1,1 . (1.58)

A precise definition and some important properties of the functions Y; ,,, (8, ¢)
are given in Appendix A.1. Here we just mention the orthonormality relation

/ Yio(2) Vi (2) A2

T 2m
:/ siné d9/ de ¥/, (8, 8) Y m: (0, 8)
0 0
= O b - (1.59)

The spherical harmonics up to { = 3 are given explicitly in Table 1.1.
Let K be a constant of motion. The unitary operator generated by K

Uk (k) = exp(—ikK) (1.60)
defines a transformation of the wave functions,

) = Uk (k)) (1.61)
and of the operators,

O = Uk(k)OUL(k) . (1.62)
This transformation conserves expectation values and matrix elements:

(¥|Oklpr) = (¥[O]¢) (1.63)

Since K commutes with A, and hence any function of K commutes with H,
we have:

H, =Ux(k)HU} (k) =H , (1.64)

1.2 Symmetries 11

Table 1.1. Spherical harmonics Y (8, ¢) for | < 3

I m Yim I m Yim
1 15 .
00 — 2 £2 4/ =sin?fetH?
\/E 327 sm €
10 3 st 3 0 L(Scos“”é)—?:cose)
4 167
ER [21
1 = i¢ il _ +ig
1 +1 F P sinfe 3 1 F o1n sinf(5cos?0 — 1) e
5 24 105 +2i¢
2 0 167r(?;cos 6—1) 3 2 1/32 sin® G cosf e

1 : : ;
2 +1 3121/-8—isinecoseei‘d’ 3 +3 ZH/%sin?’Gei&d’

which means the Hamiltonian is invariant under the symmetry transforma-
tion defined by Uy (k). Conversely, if we assume the invariance (1.64) for all
(real) values of the parameter k, then for infinitesimal k& we have

(1—ikK +--)H(1 +ikK +---) = H +ik[H,K] + O(k*) = H, (1.65)

which only works if K commutes with H. Thus the Hamiltonian is invariant
under the symmetry transformations (1.60) if and only if it commutes with
their generator K.

As an example let’s look again at the orbital angular momentum Lofa
point particle, in particular at its z-component, which has the following form
in spherical coordinates:

. h®
f,=22
i 0¢

The symmetry transformations generated by L, are rotations around the
z-axis through all possible angles a:

R, () = exp (—%QLZ) . (1.67)

The invariance of the Hamiltonian under rotations manifests itself in the
commutation of the Hamiltonian with the components of orbital angular
momentum.

Mathematically, symmetry transformations which are generated by one
or more generators form a group. This means that two symmetry transfor-
mations operating in succession form a symmetry transformation of the same
kind, and to every symmetry transformation R there belongs an inverse
symmetry transformation R~! which undoes the original transformation:
R~IR = 1. The transformations of a symmetry group can be labelled by
one or more continuous parameters, as in the example of rotations, or by

(1.66)
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discrete parameters, as is the case for reflections. An important example of a
reflection is the reflection at the origin in coordinate space:

Hw(xv y,Z) = V’(*x: *y,*Z) . (168)
Since IT? = 1, there are only two possible eigenvalues for IT: +1 and —1.
The corresponding eigenstates are called states of positive parity and states
of negative parity respectively. If the potential energy V(z,y, z) of a point
particle does not depend on the sign of the coordinates, then parity is a good
quantum number.

Identifying constants of motion and good quantum numbers is an im-
portant step towards solving the Schrédinger equation. If O is a constant of
motion we can look for eigenstates of H in subspaces consisting of eigenstates
of O with given eigenvalue w. In most cases this is much simpler than trying
to solve the Schrodinger equation directly in the space of all possible wave
functions, as the following example shows.

1.2.2 The Radial Schrodinger Equation

The time-independent Schrédinger equation for a point particle in a radially
symmetric potential V' (r) is, in coordinate representation,

h2
<_§;A + V(r)) P(r) = Ey(r) . (1.69)

The Laplacian operator A = 8%/9z% + 9%2/0y? + 8%/02% = —p?/h? can
be expressedﬁ in spherical coordinates with the help of the orbital angular
momentum L:

d? L 20 L?
or? ror r2h?
Since L2 and L, are constants of motion, we can label the solutions of the
Schrédinger equation (1.69) by the good quantum numbers ! and m:

Y(r) = filr)Yi,m(0,4) . (1.71)

Parity is also a good quantum number for the wave function (1.71), because
the radial coordinate r is unaffected by the reflection 7 — —r and (see (A.5))

AYim(8,6) = (—1)' Yim(6,0) - (1.72)

Inserting (1.71) into (1.69) leads to an equation for the radial wave funciion

fulr):

A= (1.70)

2
{*5 (di; + %%) + lﬂ%g.h_ + V(T)] filry =Efi(r) ; (1.73)

it does not depend on the azimuthal quantum number m.
The radial Schrédinger equation (1.73) is an ordinary differential equation
of second order for the radial wave function f; and is thus a substantial
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simplification compared to the partial differential equation (1.69). A further
not so substantial but very useful simplification is achi~ved, if we formulate
an equation not for fi(r), but for ¢; = rfi, i.e. for the radial wave function
¢i(r) defined by

vir) = "y 0.0) (170

The radial Schrodinger equation now reads

R? 42 I+ 1)A?
[ B ML AL 7 =F .7
(-5 + e+ V() ) lr) = ) (1.75)
and this looks just like the Schrédinger equation for a point particle moving
in one spatial dimension in an effective potential consisting of V(r) plus the

centrifugal potential I(I + 1)A*/(2ur?):

Il +1)R?
2pur?

Note, however, that the radial Schrédinger equations (1.73) and (1.75) are
only defined for non-negative values of the radial coordinate . The boundary
condition which the radial wave function ¢;(r) must fulfill at » = 0 can
be derived by inserting an ansatz ¢;(r) o« r® into (1.75). As long as the
potential V(r) is less singular than r~2, the leading term on the left-hand
side is proportional to 72 and vanishes only if « = [+ 1 or @ = —I. The
latter possibility is to be discarded, because an infinite value of ¢;(r — 0)
would lead to an infinite contribution to the norm of the wave function near
the origin; a finite value, as would occur for [ = 0, leads to a delta function
singularity originating from A(1/r) on the left-hand side of the Schrédinger
equation (1.69), and this cannot be compensated by any of the other terms
in the equation. The boundary condition for the radial wave function at the
origin 7 = 0 is thus

$1(0) =0 forall [ | 1.77)

Veg(r) = V() + (1.76)

and its behaviour near the origin is given by
di(r) <ttt for T —0 (1.78)

(as long as the potential V(r) is less singular than r~2).

The radial Schrédinger equation (1.75) is a one-dimensional Schrédinger
equation for a particle which moves in the effective potential (1.76) for » > 0
and hits an infinite repulsive wall at r = 0. In a one-dimensional symmetric
potential V' (|z]) the odd solutions, i.e. those of negative parity, automatically
fulfill the condition ¢(0) = 0. Since the effective potential (1.76) for | = 0
has the same form as the potential in the one-dimensional Schrédinger equa-
tion, there is a one-to-one correspondence between the solutions of the radial
equation for | = 0 and the negative-parity solutions of the one-dimensional
equation with the same potential.
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Using the orthonormality (1.59) of the spherical harmonics we see that
the scalar product of two wave functions 1m and ¥}, ... of type (1.74) is
given by

(Pl ) = / B (Pl e () B
= 51)[! Jm,m’ / (;57(7‘) ¢7;(7‘) dr . (1.79)
0

If the potential V' (r) is real the phase of the wave function (1.74) can always
be chosen such that the radial wave function ¢; is real.

1.2.3 Example: The Radially Symmetric Harmonic Oscillator

The potential for this case is

V(r)= M wir? (1.80)

For angular momentum quantum numbers [ > 0 the effective potential Vg
also contains the centrifugal potential. The potential tends to infinity for
r — 0o and there are only bound solutions to the Schrédinger equation. For
each angular momentum quantum number ! there is a sequence of energy
eigenvalues,

Eng=0@n+l+3)w, n=0,1,2,... , (1.81)

and the corresponding radial wave functions ¢, (r) (which are normalized
to unity) are

L 2n+ln! % r +1 2
Pt = 2/ ) 2((2n+2l+1)”> <E) L' <ﬂ2>

2
xexp(—ﬁ) . (1.82)

The polynomials L&(z) are the generalized Laguerre polynomials and are
polynomials of order n in z. (The ordinary Laguerre polynomials correspond
to o = 0.) For the definition and some important properties of the Laguerre
polynomials see Appendix A.2. The quantity 3 in (1.82) is the oscillator width
given by
)
B = i or ol =hw . (1.83)
Hw w32
For | = 0 (1.81) gives us the spectrum (2n + 3/2)fw, n = 0, 1, ... of the
one-dimensional oscillator states of negative parity. The radial wave functions
(1.82) are summarized in Table 1.2 and illustrated in Fig. 1.1 for low values
of the quantum numbers n and {.
The radial wave functions ¢n; are complemented via (1.74) to give
eigenfunctions of the three-dimensional Schrédinger equation for a (spinless)
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Table ) 1.2. Radial eigenfunctions (1.82) for the harmonic oscillator,
(V7 B)? ¢nu(r), z =1/

I n=0 n=1 n=2

0 2we=/2 gm (é—xz) e=/2 iz (1—5—53: + )e a*/2

22 e=2%/2 (_ _ x2) o—2/2 ( e 4 )e—zz/z

f
22 e / o212 32 ) —x2/2
—_ 3 4 -9z 4 ¢
2 O 4( 2) —z2/2 2
— - e —11 2 4) —x*/2
> V1o V945~ \2 /10395 ( Fhr)e

H
m

= 2] 122
\/\\/\/\/NL /\’A\’/\\/\//\\/"g— —/\/\/\/\/\LL
/\/\ \/\_, aX /x_‘
~ AR
RS S N\ nis

. T~ n=§
/\\/ \//\\/

/\/ n=6
A YA

v,,/\/\/\/—_ et NN T——
AV A— nsl

0 2 4 6 8 o} 2 4 6 8 0 2 4 6
e/p o p 170

Fig. 1.1. Radial eigenfunctions ¢, (r) of the spherical harmonic oscillator (1.82) for

angular momentum quantum numbers [ = 0, 1, 2 and principal quantum numbers
(1.84) up to N =19

point particle in the potential (1.80). For every radial quantum number
n and angular momentum quantum number [ there are 2/ + 1 eigenfunc-
tions corresponding to the various values of the azimuthal quantum number
m = —[, =41, ... ,1—1, l. These eigenfunctions all have the same energy
eigenvalue F,, ; , because the radial Schrédinger equation does not depend on
m. This is true in any radially symmetric potential; a peculiarity of the har-
monic oscillator spectrum is its additional degeneracy: the energy depends not
on the quantum numbers n and | independently, but only on the combination

N=2n+1 , (1.84)
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which is hence called the principal quantum number (of the radially symmetric
harmonic oscillator). The energy eigenvalues are grouped into equidistant
oscillator shells of energy Exy = (N + 3/2)fw, N =0, 1, 2,.... The degree
of degeneracy of the Nth oscillator shell is given by summation over all !
values compatible with this principal quantum number; for even values of N
this means all even [ less or equal to N, for odd N all odd ! less or equal
to N. Regardless of whether N is even or odd, the number of independent
eigenstates with energy eigenvalue En = (N + 3/2)fw is given by

d@+1)=(N+1)(N+2)/2 . (1.85)
l

Due to (1.72) each oscillator shell is characterized by a definite parity, namely
(-1

1.3 Bound States and Unbound States

Let’s look at the radial Schrédinger equation (1.75) for a particle of mass p
in an effective potential Veg(r) which vanishes for r — oo:

e d* (1.86)
————+V =F . .
(=5 gy + Ven)) 1) = B0
The behaviour of the solutions of (1.86) depends in an essential way on
whether the energy E is smaller or larger than zero.

1.3.1 Bound States

For a start let’s assume that Vg is short ranged, meaning that V.g vanishes
beyond a definite radius ro:
Vet(r) =0 forr>ry . (1.87)

This is of course only reasonable if | = 0, because the centrifugal potential
falls off as 1/r2 at large 7 (see (1.76)).
If E < 0, the equation (1.86) in the outer region is simply
d’¢
dr?

where « is a (positive) constant depending on the energy E = —|El:

k =+/2ulE|/R* . (1.89)

Two linearly independent solutions of the ordinary second-order differential
equation (1.88) are

prr) =t Gy = (1.90)

=Kk’¢, rT270 , (1.88)

1.3 Bound States and Unbound States 17

In the inner region r < 7o the solution of (1.86) depends on the potential
Vet (7). The general solution contains two integration constants, one of which
is determined by the boundary condition (1.77) at the origin, ¢(0) = 0; the
other constant is undetermined, because any multiple of a solution ¢(r) of
(1.86) is again a solution. The boundary condition (1.77) determines the
solution of (1.86) in the inner region uniquely, except for multiplication by
an arbitrary constant.

In order to get a solution of (1.86) for all » > 0, we must connect the
solution ¢,<r, in the inner region to a linear combination of the solutions
(1.90) in the outer region r > 0. We must, however, discard any contribution
from ¢4 (), because the probability for finding the particle would otherwise
grow exponentially for 7 — oco. The conditions that the wave function be
continuous and have continuous derivative lead to the following matching
conditions at the matching radius r¢:

¢TST0(TO) = Ce—m’o ’ ¢;§m(r0) =—K Ce—ﬁro . (191)

Dividing the second of these equations by the first leads to a matching con-
dition free of the proportionality constant C:

o R G e

For arbitrary energies E < 0 the matching condition (1.92) is in general not
fulfilled, as is illustrated in Fig. 1.2 for a square well potential. If the potential

Vert 1s sufficiently attractive, there is a discrete sequence Fy, Eq, E3,... of
2
1
=-0.6
0
>
] %
@
c
W /
-2{ @oc sin (VKZE r) Poce™
“Koz
fo
-3 +
1 2 3
T
Fig. 1.2. Matching of inner and outer solutions ¢ for negative energies F = —x?2
in an attractive square well potential (V(r) = —KZ for r < ro, V = 0 for r > 70,

sz/(Q;L) = 1). With the parameters used in this figure, K2 = 2.5, ro = 1.6, there
is an energy between F=—0.6 and E = —1.0 at which (1.92) is fulfilled. (See also
Sect. 1.3.3)
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energies for which (1.92) is fulfilled. The corresponding wave functions are
square integrable and are the bound states in the potential Veg(r).

The discussion above remains valid if the effective potential in the outer
region does not vanish, but corresponds instead to a centrifugal potential
with finite angular momentum quantum number [ > 0:

11+ 1)R?
Vea(r) = —QMT)

Instead of the simple exponential functions (1.90), the solutions in the outer
region are now modified Bessel functions (see Appendix A.3):

p4+(r) = \/E;IH»%(’")v ¢-(r) = \/R?KH%(KT) : (1.94)

Asymptotically ¢ (r) is again an exponentially growing solution,

b (r) o & [1+0(:T)} , (1.95)

which must be discarded on physical grounds, while ¢_(r) decreases expo-
nentially in the asymptotic region. An exact expression for ¢_(r), which is
valid not only asymptotically, is

The matching condltlon at r = rg is now

Brera(ro) ¢ (ro) _ 1 Kiy(sro) (1.97)

; T>To . (1.93)

Grero(ro)  é_(ro) 1o Kipy(sro)

where we have used the property (A.30) of the functions K, 1.

We can venture one step further and allow the effective potentlal in the
outer region to contain a long ranged Coulomb contribution proportional to
1/r:

I+ 1R C
‘/eﬂ”(T)Z —2‘[17-_7 ; TZT() . (198)
The solutions of (1.86) in the outer region are now Whittaker functions (see
Appendix A.4). At r = ro we now match to the wave function

G- (r) =W, 13 (287) (1.99)
which decreases exponentially for 7 — oo. The parameter
_ KC (1.100)
h2k
describes the relative strength of the 1/r term in the potential. The depen-

dence of v on energy E or on « is determined by a length parameter a,

_ ! (1.101)
7= ra ’
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The length a, which gives a scale for the spatial extension of the bound states
in the Coulomb-type potential, is called the Bohr radius:

h2

For large values of r the leading term of (1.99) is
¢_(r) = e ""(2kr)" [1 +0 (é)] . (1.103)

1.3.2 Unbound States

Circumstances are quite different at positive energies £ > 0. For a short
ranged potential (1.87) the radial Schrodinger equation in the outer region
7 > 0 reads
d2¢>
dr?
with the wave number

k=+\2pE/R? . (1.105)

Two linearly independent solutions of (1.104) are
¢s(r) = sinkr ¢c(r) = coskr . (1.106)

In the absence of the short ranged potential, ¢ solves the radial Schrédinger
equation for all r and fulfills the boundary condition ¢(0) = 0; it is called the
reqular solution, because the corresponding wave function ¥ (r) (cf. (1.74))
is regular at the origin. In the presence of the short ranged potential there
is a different inner solution ¢,<r,(r) which fulfills the boundary condition
¢(0) = 0. This solution is unique, except for multiplication by an arbitrary
constant. Matching it continuously and with continuous derivative to a linear
combination of outer solutions (1.106) leads to the matching equations

¢TST0(TO) = A¢s("'0) + B¢C(TO) y (1.107)
Gr<ro(r0) = Adiy(ro) + Bec(ro) (1.108)

In contrast to the negative energy case, we now have no physical reasons for
discarding one of the two basis functions (1.106). Thus we have two constants
A and B which we can always choose such that (1.107) and (1.108) are
simultaneously fulfilled. For any energy E > 0 there is a solution to the
Schrodinger equation. Asymptotically the eigenfunctions are bounded, but
they don’t vanish; they describe unbound states in the potential Vog(r).

The physical solution of the radial Schrédinger equation in the outer re-
gion thus has the form

o(r) = Ags(r) + Boe(r), r=>710 (1.109)

+k%¢=0 , (1.104)
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with the constants A and B to be determined from the matching equations
(1.107), (1.108). Solutions of the Schrédinger equation are in general complex.
However, if the potential V.g in (1.86) is real, we can always find real solutions
¢ and hence assume that the constants A and B are real. It is helpful to
rewrite (1.109) as

d(r) = VA2 + B2[cos § ¢s(r) + sind ¢c(r)], r>re (1.110)
where 4 is the angle defined by
sind = B cosd = A4 . (1.111)

VAT B VA1 B?

Inserting (1.106) gives
é(r) = VA2 + B2 sin(kr + 9) , r>ry . (1.112)

At each energy E > 0 the two constants A and B derived via the matching
equations (1.107), (1.108) thus determine the amplitude and the phase of
the physical wave function in the outer region. The amplitude is in principle
an arbitrary constant, which can be fixed by a normalization condition (see
Sect. 1.3.4). The phase 4, on the other hand, is a very important quantity. At
each energy E it tells us how much the outer waves of the physical solution
are shifted from the waves of the regular solution ¢s(r) of the “free wave
equation” — see Fig. 1.3. From (1.111) we get an equation for the phase shift
which no longer contains the amplitude:

B
=— 1.11
tan é 1 ( 3)

Note that matching conditions determine the phase shift § only up to an
additive constant which is any integral multiple of 7. The asymptotic phase
shift is a very important quantity, because it carries the information about
the physical effect of the potential in the inner region into the asymptotic
region. Such phase shifts determine observable cross sections in scattering
and reaction experiments (see Chap. 4).

The above discussion of unbound states in a short ranged potential can
easily be generalized to the case that the effective potential Ves (r) in the outer
region r > 7 is the centrifugal potential (1.93). The two linearly independent
solutions of (1.86) in the outer region are now

¢s(r) = krjilkr) ,  @c(r) =krm(kr), 12710 (1.114)

where ¢ is again the regular solution of the free equation, in which Vg (r)
consists of the centrifugal potential alone for all 7. j; and n; are the spherical
Bessel and Neumann functions which are defined in Appendix A.3. Their
asymptotic behaviour is such that the wave functions ¢s and ¢. asymptoti-
cally correspond to a sine and a cosine:
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Fig. 1.3. Asymptotic phase shifts in the radial wave function, obtained by matching
the inner wave function to the outer wave function at the matching radius ro. The
dashed lines are the regular solutions ¢s of the free wave equation (1.104) at two
different (positive) energies; the solid lines are the regular physical solutions in the
presence of the attractive square well potential of Fig. 1.2 (V(r) =~ K& = —2.5 for
r<ro=16,V =0forr>re, h®/(2u) = 1). (See also Sect. 1.3.3)

6s(r) = sin (kr - %T) [1 +0 (%)] ,
$el(r) = cos (kr - %”) [1 1o (%)] . (1.115)

All considerations following (1.104), including equations (1.107) to (1.111)
and (1.113), remain valid at least asymptotically. The physical solution of
the radial Schrodinger equation has the asymptotic form

(1) x sin (kr — %T + 61) , (1.116)

and §; is its asymptotic phase shift against the “free wave” kr j;(kr).

If we let the effective potential in the outer region include a Coulomb
potential as in (1.98), then the appropriate linearly independent solutions of
(1.86) in the outer region are

¢S(T) = F‘l(n: kT‘) ’ ¢C(T) = Gl(nv kT) ) 2T - (1117)

Here Fj is the regular Coulomb function which solves the free equation, in
which Vg has the form (1.98) for all r. Gy is the irreqular Coulomb function,
which also solves the free equation, but which does not vanish at r = 0.
The Coulomb functions (see Appendix A.4) depend not only on kr, but also
on the Coulomb parameter n, which determines the relative strength of the
Coulomb term in the Hamiltonian (see also (1.100)):



22 1. Review of Quantum Mechanics
uC 1
— _ — 1.118
h2k ka ( )

where a is again the Bohr radius (1.102).

Asymptotically, the regular and irregular Coulomb functions can be writ-
ten as a sine and a cosine respectively, but the argument is a bit more com-
plicated than in (1.106) and (1.115):

l
Fi(n,kr) — sin(kr—nankr—%%—al) , for r— o0,

l
Gi(n,kr) — cos (kr —n In2kr — —275 +al) , for r—o0. (1.119)

The I-dependent real constants o; are the Coulomb phases, which can be
expressed with the help of the complex gamma function (see (A.10) in Ap-
pendix A.2):

oy =arg[l'(l +1+in)] . (1.120)

In addition, the argument of the sine and the cosine in (1.119) contains an
r-dependent term 7 In 2kr, due to which the wavelength of a Coulomb wave
approaches its asymptotic limit 27 /k only very slowly. This is of course a
manifestation of the long ranged nature of the Coulomb potential.

Nevertheless, the discussion following (1.104) above remains valid, even in
the presence of a Coulomb potential. The physical solution of the Schrédinger
equation has the asymptotic form

¢(r) o sin (kTAn In2kr — %r +Ul+51) , (1.121)

and ¢; describes its asymptotic phase shift against the “free Coulomb wave”
Ey(n, kr).

Table 1.3. Regular solutions ¢s and irregular solutions ¢. of the radial Schrédinger
equation (1.86) for positive energies E = h*k?/(2u). The Coulomb parameter is

n = —(u/h*)(C/k)

Vess (7) #s(r) $e(r)
0 sin kr cos kr
2
e+ Dr kr ji(kr) kr nu(kr)
2ur?
. In I
asymptotically sin (Icr - ?> cos (kr - —2—)
2
WEDR_C pyn k) Guln, kr)

2ur? r
Ir lm
asymptotically sin (kr —n In2kr — 5 + zn) cos (kr — 7 In2kr — 5 + o-,)
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At each energy E > 0 the asymptotic phase shift §; tells us how a short
ranged deviation of the potential Veg from a reference potential affects the
wave function at large r. Asymptotically the physical wave function is a
superposition of two solutions of the “free radial Schréodinger equation” con-
taining the reference potential alone, namely of the regular solution ¢s and
an irregular solution ¢.. The tangent of §; is the relative weight of the irreg-
ular component. This statement does not depend on the reference potential,
provided it vanishes asymptotically. The three cases discussed in this section
are summarized in Table 1.3.

1.3.3 Examples
Square Well Potential. In this case we have

-V forr <y,
vir) = { 0 forr>rg. (1.122)

If the effective potential Veg consists only of V(r) with no centrifugal potential
and no Coulomb contribution, then for negative energies —Vy < E < 0 the
solution ¢r<,, of the Schrédinger equation in the inner region is

Gr<ro(r) =sinKr . (1.123)

The wave number K in the inner region depends on the energy E =
—h2k%/(2u) and the potential parameter Ko = 1/2uVp/R? (see Fig. 1.2):

K=y/K:—K2 . (1.124)

The matching condition (1.92) now reads

K cot Krg = —k=—/KZ - K? , (1.125)

and can be fulfilled at most for a finite number of wave numbers K; or energies
E; (see Problem 1.1).

For finite angular momentum quantum number [ > 0 the effective po-
tential Vg contains the centrifugal potential, and the regular solution in the
inner region is

brero(r) = Krji(Kr) . (1.126)
The matching condition (1.97) at 7 = rp now reads
11 (K K;_1(kro
= 2ro) 1(K7o) Sk A4 2( ) ) (1.127)
Ji(Kro) Ky 1 (kro)

where we have used the property (A.35) of the spherical Bessel functions.

For positive energies E = h2k%/(2u), the regular solution in the inner
region again has the form (1.123) in the absence of a centrifugal term, but
the wave number in the inner region is now
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K = /K2 + k2 (1.128)

(see Fig. 1.3). At r = 7o the matching conditions (1.107), (1.108) can be
rewritten to

1
% tan Krg = P tan(kro + o) (1.129)

from which we derive
k
8o = —kro + arctan (f{— tan Kr()) . (1.130)

In the presence of a centrifugal potential, ! > 0, we get a simple result for
the case of an infinite repulsive square well of radius ry, because the physical
wave function must then vanish at r = ro,

d1(ro) :Akrojz(kTo)-l—BkT'on[(kTo) =0 , (1.131)

in other words,
B gilkro) 1132
tanél—z— ni(kre) (1.132)

Attractive Coulomb Potential. In this case we have
C
Vi) =-—, (1.133)

and the constant C is e.g. for a hydrogen atom the square of the elementary

electric charge, C = 2.

The bound states are characterized by a Coulomb principal quantum num-

ber, n =1, 2,3 ..., and the corresponding energy eigenvalues are
R
E, = - (1.134)
R is the Rydberg energy:
_ ke _1m (1.135)
2h2 2 pa?

where a again stands for the Bohr radius (1.102). Similar to the radially
symmetric harmonic oscillator (see Sect. 1.2.3) the energy eigenvalues (1.134)
in a Coulomb potential have an additional degeneracy, which is expressed
in the present case by the fact that they do not depend on the angular
momentum quantum number [; values of ! are, however, restricted to be
smaller than n. Thus the angular momentum quantum numbers contributing
to the nth Coulomb shell of eigenvalues are

1=0,1,...n—1 . (1.136)

Except for n = 1, the Coulomb shells have no definite parity, because they
contain both even and odd angular momenta. The degeneracy of the nth

Coulomb shell is given by
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n-—1
d@i+1)=n* . (1.137)
1=0

The radial eigenfunctions ¢, ;(r) are
1
2

I+1
¢n,z(r)=%[MJ (31) I (2_’") er/tn) (1138

a(n+1)! na na

L7 again stands for a generalized Laguerre polynomial (see Appendix A.2). In
(1.138) the degree of the Laguerre polynomial, which corresponds to a radial
quantum number, is n — ! — 1. This means that the radial eigenfunction
¢n, has exactly n — [ — 1 nodes (zeros) in the region r > 0. The radial
eigenfunctions (1.138) are tabulated in Table 1.4 and illustrated in Fig. 1.4
for angular momentum quantum numbers [=0, 1, 2 and for the lowest values
of n.

Table 1.4. Radial eigenfunctions (1.138) in a Coulomb potential, z,, = 27/(na)

I n=101+1 n=101+2 n=101+3

0 %e_%ll 2\3/:/?2_0.( —xzg)e 22 632_(1 (6——61‘34-9:%) e~ 3T

! 23%371 e 633671 (1= zs)emde 163% (20— 1024 +23) e~
2 sfa%c)_a i 482356 (6= ag)eies 60327% (42 — 14 +2f) o= 2%
’ ww m (8~ zs) 4 W (72 ~ 1876 +x3) e 57

It is important to note that the argument 2r/(na) appearing in the
Coulomb eigenfunctions (1.138) depends on the principal quantum number n.
The reference length na increases with n. One consequence hereof is that the
wavelengths of the inner oscillations do not decrease steadily with increasing
n as in the case of the harmonic oscillator (see Fig. 1.1). The wavelengths of
the inner oscillations of the Coulomb functions depend strongly on the radius
r, but they hardly depend on the principal quantum number n. This is easily
understood:

As the principal quantum number n increases, the energy eigenvalue
(1.134) approaches zero. For energies close to zero, the right-hand side E¢(r)
of the radial Schrédinger equation (1.75) is only important at large values of
r, where the potential energy V() also contributes little. In the inner region,
the small energy differences corresponding to the different principal quantum
numbers play only a minor role. As a consequence, the radial wave functions
¢n, for a given angular momentum quantum number [ and large principal
quantum numbers n are almost identical except for a normalization constant.
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Fig. 1.4. Radial eigen-

functions ¢, 1(r) in a Cou-

lomb potential (1.138) for

angular momentum quan-

tum numbers up to [ =2
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This can be clearly seen in Fig. 1.5, in which the radial wave functions have
been renormalized such that their norm becomes inversely proportional to
their separation in energy at large quantum numbers:

mi(r) =4/ %i— Fra(r) - (1.139)

In this normalization the heights of the inner maxima are independent of n
for large n, and the wave functions for a given | converge to a well defined
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Fig. 1.5. Renormalized radial Coulomb eigenfunctions (1.139) for | = 0. The solid
line labelled n =00 is the limiting wave function (1.140)

limiting wave function d)l(E:O) with infinitely many nodes in the limit n — oo.
This limiting wave function is a solution of the radial Schrédinger equation
(1.75) at energy E = 0 and has the explicit form

I(EZO)(T) = a\/\/% Jary1 (\/%) . (1.140)

J,(z) is the ordinary Bessel function (see Appendix A.3). For small argu-
ments £ we have

1 rz\v
(@) = — (5) . 10 (1.141)
whilst asymptotically
T \"% v 1
J(z) = (5 z) cos (z — 5T Zﬂ') , T—o00 . (1.142)

The convergence of the Coulomb eigenfunctions as n — oo is related to
the convergence of the energy eigenvalues. The energy eigenvalues (1.134) of
the bound states only make up part of the spectrum of the Hamiltonian and
the corresponding bound state eigenfunctions only span a part of the Hilbert
space. The bound states in a Coulomb potential do not form a complete
set. This becomes obvious if we try to expand a simple square integrable
wave function (normalized to unity) according to (1.24). The sum ), |ca|?
converges rapidly, but in general to a value noticeably less than unity (see
Problem 1.2).

The eigenfunctions in a Coulomb potential only become a complete set
if we include the unbound states of the continuum £ > 0. The unbound
eigenfunctions are just the regular Coulomb functions Fj(n, kr) introduced in
Sect. 1.3.2. From (A.45) in Appendix A.4 we obtain the following formula for
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the behaviour of the regular Coulomb functions in an attractive Coulomb po-
tential (7 < 0) at small separations (r — 0) close to the continuum threshold
(k —0):

JZka [or\'t!
Fz(n,kr):m<§> , T—=0, k—0 . (1.143)

As the energy E = h2?k?/(2u) converges to zero from above, the radial
Schrodinger equation (1.75) becomes identical to the equation we obtain for
negative energies E,, = —R/n? when the principal quantum number n con-
verges to infinity. Hence the continuum wave functions F;(n, kr) must also

converge to the solution qbl(E:O) in (1.140) at the continuum threshold,
. ﬂhzk (E=0)
Lim Fy(n, kr) = ETIAL (r) . (1.144)

The proportionality constant follows from the behaviour (1.141), (1.143) at
r — 0.

1.3.4 Normalization of Unbound States

The orthogonality of solutions of the time-independent Schrodinger equation
at different energies holds for bound states and for unbound states. Since the
unbound wave functions are not square integrable, they cannot be assigned
a finite norm. A natural prescription for normalizing unbound states is to
require that their scalar product be proportional to a delta function. This
can be done in different ways.

For radial wave functions ¢ (r) which asymptotically correspond to a sine
with factor unity,

or(r) — sin(kr + 8,5) , forr - oo , (1.145)
we have
/m br(r) i (r) dr = -72[5(/6 -k, (1.146)
0

assuming that k& and &’ are both positive. The phase d,5 in (1.145) may be
a constant; it may, however, also contain the r-dependent Coulomb mod-
ification nln2kr. If we want the scalar product between two radial wave
functions to be a delta function in the wave numbers without the factor 7/2
in (1.146), we must normalize them to be asymptotically proportional to

\/g sin (kr -+ as)-

In many applications we want the wave functions to be energy normalized,
which means

(Pplpp) =0(E-FE) . (1.147)
For E = h?k?/(2u) we have
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2
§(k—K) = ﬁ6(E - EY= MtS(E ~-E) . (1.148)
dk m
Hence energy normalized wave functions ¢g can be obtained from the wave
functions ¢y in (1.145), (1.146) by the following multiplication:

¢r(r) = (W;ik)i7 dr(r) - (1.149)

The solutions of the radial Schrédinger equation are energy normalized if
they have the following asymptotic form:

2
¢e(r) = whl:k

With (1.144) we see that the energy normalized regular Coulomb functions

[ 2
FP(n,kr) = }%g—kﬂ("’ kr) (1.151)

converge at threshold, E — 0, to the wave function (1.140), which is the
limiting wave function for the renormalized bound states (1.139):

lim ¢y, (r) = ¢I(E:O)(r) = lim FF(n,kr) . (1.152)
n—oo E=0

sin(kr + 6,5) for r — o00. (1.150)

Figure 1.6 shows the renormalized bound radial eigenfunctions (1.139) and
the energy normalized regular Coulomb functions (1.151) together with the
limiting wave function (1.140), all for angular momentum quantum number
l=0.

004 -\/-\-/\/\/
e\ N\ N Y

Fig. 1.6. Renormalized bound ra-
dial eigenfunctions (1.139) (E < 0),
energy normalized regular Coulomb

=4
ot ° functions (1.151) (E > 0) and the
hhe r y p p limiting wave function (1.140) (dot-
0 b B ‘0 ¥ ted line) for [=0



30 1. Review of Quantum Mechanics

1.4 Resonances and Channels

Resonances appear above the continuum threshold at energies where a bound
state might have occurred, meaning that a slight modification of the Hamil-
tonian would have led to a bound state. In a one-dimensional potential reso-
nances can typically occur if almost bound states in the inner region are shel-
tered from the outer region by a potential barrier (see Sect. 1.4.3). In systems
with several degrees of freedom resonances often occur when a bound motion
in one degree of freedom couples weakly to and can decay into unbound mo-
tion in another degree of freedom. These so-called Feshbach resonances are
best described in the picture of coupled channels. The concept of channels is
of a very fundamental importance and is introduced in a general way in the
following subsection.

1.4.1 Channels

Consider a physical system whose wave functions ¥(X,Y) depend on two sets
X and Y of variables. Let O be an observable which only acts on functions
of the variable Y, i.e. for a product wave function ¥(X)¢(Y’) we have

Op(X)(Y) = p(X) Od(Y) . (1.153)
The eigenvalue problem for Ois
Orn = wndn (1.154)

and defines a complete set of eigenfunctions ¢, (Y). O can stand for a whole
set of observables; w, then stands for the corresponding set of eigenvalues.

If O commutes with the Hamiltonian H, then the problem of solving
the full Schrédinger equation can be reduced to the solution of a reduced
Schrédinger equation for each eigenvalue wy, of 0. Each eigenfunction ¢, (Y)
of O — more precisely, each eigenvalue w,, which is not the same in the
degenerate case — defines a channel, and the dynamics of the reduced problem
in the variable X in a given channel is not coupled to the motion in the other
channels.

Coupling of channels occurs if O does not commute with H. Since the
functions ¢, (Y") form a complete basis in the space of all functions of Y, we
can expand any wave function ¥(X,Y) of the whole system in this basis:

Y(X,Y) =D ¢n(X)dn(Y) . (1.155)

The functions 1, (X) are the channel wave functions which are to be deter-
mined by solving the Schrédinger equation. Inserting the ansatz (1.155) into
the time-independent Schrodinger equation leads to

STH Y (X)¢a(Y) = EY  hn(X)$n(Y) . (1.156)
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Multiplying from the left by ¢, (Y") and integrating over Y yields the coupled
channel equations in their most general form:

o (X) + D Hpnn(X) = Eym(X) (1.157)

n#Em

The diagonal Hamiltonians I:Im,m and the coupling operators ﬁm)n , m#En,
are reduced operators which act only in the space of wave functions (X).
They are defined through the eigenfunctions ¢,(Y"),

where the subscript Y on the bracket indicates integration (and/or summa-
tion) over the variable Y alone.

The coupled channel equations (1.157) are particularly useful if the di-
agonal operators fim,m play a dominant role, while the coupling operators
I:Im,n, m # n, are “small”. This happens if the operator O commutes with
a dominant part of the Hamiltonian which then doesn’t contribute to the
coupling operators. It is also helpful if symmetry considerations restrict the
number of channels coupling to each other to a finite and preferably small
number, or if the expansion (1.155) can be terminated after a small number
of terms on physical grounds.

For further insights let us define the situation more precisely. Assume for
example, that H consists of the operators Hx and Hy, which act only on
functions of X and Y respectively, together with a simple coupling potential
given by the function V(X,Y):

H=Hx +Hy +V(X)Y) . (1.159)

The eigenfunctions ¢, (Y) of Hy may be used to define channels. The diagonal
Hamiltonians of the coupled channel equations are

ﬁm,m = HX + <¢m|I:IY!¢m>Y + (¢mIV(Xa Y)|¢m>Y ) (1-160)

and the coupling operators form a matrix of potentials:
Hpp = Vi (X) = /dY oE(YVIV(X,Y)a(Y), m#n . (1161)

The diagonal Hamiltonians (1.160) contain the operator Hx, which is the
same in all channels, and an additional channel-dependent potential

Vinm{X) = /|¢m(y)|2 V(X,Y)dY (1.162)

as well as a constant energy

Em = (¢m|Hy|¢m)y (1.163)

corresponding to the internal energy of the Y variables in the respective
channels.
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To be even more precise let us assume that (X, Y’) describes a point par-
ticle of mass 2 moving in an effective radial potential Veg(r) and interacting
with a number of other bound particles. Our ansatz for ¥(X,Y) is

p=3 LmOy; o0y, (1.164)

n,l,m

where X, are the bound states of the other particles. Now X is the radial
coordinate r and Y stands for the angular variables (8, ¢) of the point particle
as well as all other degrees of freedom. The coupled channel equations now
have the form

2 d2
(_E/: aﬁ + Veff(T) + kak,(f’) + Ek> ¢k('r')
+ D Ve (N)w (r) = Be(r) (1.165)
k'#k
and the channel index k covers the angular momentum quantum numbers
of the point particle and all other quantum numbers of the other degrees of
freedom.

If the coupling potentials vanish asymptotically (r — 0o0) we can distin-
guish between closed and open channels of the system. In closed channels the
motion is bound and the channel wave functions ¢ (r) vanish asymptotically.
In open channels the motion is unbound and the channel wave functions os-
cillate asymptotically. Assuming that the effective potential Veg(r) and the
additional potentials Vi x(r) vanish asymptotically, the open channels at a
given energy E of the whole system are those whose internal energy Ej is
smaller than F, whilst channels with Ey > FE are closed. The internal ener-
gies E}. define the channel thresholds, above which the channel wave functions
@r(r) in the respective channels have the properties of continuum wave func-
tions. Bound states of the whole system and discrete energy eigenvalues occur

Vk(f)

r
Fig. 1.7. Schematic illustration of diagonal potentials (1.166) in a system of coupled
channels
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only if all channels are closed. Thus the continuum threshold of the whole
system is identical to the lowest channel threshold. For energies at which at
least one channel is open, there is always a solution of the coupled chan-
nel equations. Figure 1.7 schematically illustrates a typical set of diagonal
channel potentials

Vi(r) = Vet (r) + Viee(r) + B, (1.166)

as they occur in (1.165). Physical examples for systems of coupled channels
are discussed in Sect. 3.2.

1.4.2 Feshbach Resonances

For the simplest example of a Feshbach resonance consider a system of two
coupled channels described by the following coupled channel equations:

(*%f— ¥ Vl‘”) #1(r) + Via(r)de(r) = Eu(r)

“ona?
For real potentials we must require that Vi o(r) = V3,1(r) if the two-channel
Hamiltonian is to be Hermitian. Let’s assume that channel 1 is open and
channel 2 is closed, and that the energy scale is such that the channel thresh-
old E; of the open channel lies at E = 0.

An almost bound state, i.e. a resonance, tends to occur near an energy
at which there would be a bound state in the closed channel 2 if channel
coupling were switched off. Let ¢o(r) be the wave function of such a bound
state in uncoupled channel 2:

h? d2
(=5 oz + 18000 ) nlr) = Eodolr) (1.168)

The existence of such a bound state ¢y has a dramatic influence on the
solutions of the coupled equations (1.167) in the vicinity of the energy Ep.
To see this we assume that the wave function ¢»(r) in the closed channel 2
is simply a multiple A¢q(r) of this bound state. Then the coupled equations
(1.167) can be rewritten as

(“ 3 s+ Y2l0)) 62(0) + Vaa () (r) = Eontr) (1.167)

(E 4 g_ﬂa‘_ir_z - V1(T)> #1(r) = AVi2(r)do(r)

A(E — Eo)¢o(r) = Vau(r)di(r) . (1.169)

The upper equation (1.169) can be solved using the Green’s function
G(r,r"), which is defined by the relation

2 12
(E-k?—ﬂ% ——Vl(r)) G(r,ry=68(r—r") . (1.170)

It is immediately obvious that the wave function
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¢l (T) = ¢reg + Aév1,2¢0
= eealr) A/ G(r,rWVa,2(r')go(r') dr”’ (1.171)
0

is a solution of the upper equation (1.169), if ¢reg(r) is a solution of the
corresponding homogeneous equation:
2 42
o Vl(r)) Brog(r) =0 . (1.172)
2u dr?
We take ¢eq to be the regular solution, which vanishes at r = 0; then ¢,

in (1.171) also fulfills this boundary condition (see (1.178) below). If ¢reg is
energy normalized, then its asymptotic form is (cf. (1.150))

Dreg(r) = 7'31};]6 sin(kr + pg) , T — 00 . (1.173)

Sbg is a background phase shift, which originates mainly from the diagonal po-
tential V;(r) and usually depends only weakly on the energy E = h?k%/(2y).
If Vi(r) contains a long ranged Coulomb contribution, then dpg will contain
the usual r-dependent Coulomb term (see Table 1.3 in Sect. 1.3.2).

If we insert the solution (1.171) for ¢;(r) into the lower equation (1.169),

A [(E—Eo)¢0(7‘) = Va1(r) /OOOG(T, YW1 2(r)go(r') dr’
= Var(r)breg(r) (1.174)

and form the scalar product with the bra (¢o|, then we obtain an explicit
expression for the coefficient A4,

_ (0] V2,1|Preg)
E — Ey — (¢o|V2,1GV1 2| do)

The matrix element in the denominator is the double integral

(¢0|V2,1G VA 2|0)
:/0 dT'[) dr,¢5(r)‘/2’1(r)c(7'7TI)Vlyz(TI)(bo(’l',) ) (1.176)

For a given diagonal potential Vi(r) in the open channel 1 we can express
the Green’s func.tlon G(r,r") through the regular solution ¢reg Of the ho-
mogeneous equation (1.172) and the corresponding irregular solution, which
behaves like a cosine asymptotically,

2p
Gire (1) = T2k cos(kr + bpg), 7> o0 . (1.177)

The Green’s function is (see Problem 1.4)

Yy — ¢reg(7‘)¢irr('f',) for r _<_'r, ,
G ) " { ‘f’reg(rl)ff’irr(T) for " <r

(1.175)

(1.178)
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For sufficiently large values of r we can assume that the variable v’ in the
integral in (1.171) is always smaller than r, because ¢o(r’) is a bound wave
function so that the integrand vanishes for large r’. Hence we can insert the
lower line of (1.178) for G(r,r’) and perform the integration over /. With
(1.175) this leads to the following asymptotic form of ¢,(r):

451 (T) = ¢reg (T') + tan (5 ¢i"(7')

1 2
Y whl;k sin(kr + Gpg +6) , T —o00 (1.179)

and the angle ¢ is given by

|<¢0|V2,1I¢reg)‘2 ) (1.180)
E —~ Ey — {¢o|Va,1GV1,2|¢0)

Being solutions of a homogeneous system of differential equations, the
two channel wave functions are determined only to within multiplication
by a common arbitrary constant. To obtain a continuum wave function in
channel 1 which is energy normalized, we should multiply the wave function
¢1 of (1.179) — and simultaneously the corresponding wave function Agp in
channel 2 — by cos d. Then the whole two-channel wave function is also energy
normalized, because the normalization integrals are dominantly given by the
divergent contribution of the open channel wave function.

Coupling the bound state ¢o(r) in the closed channel 2 to the open chan-
nel 1 leads to an additional asymptotic phase shift § in the open channel wave
function (1.179). This additional phase shift characterizes the resonance. The
matrix elements

A = ($o|V2,1G Vi 3|¢0) (1.181)

tand = —m

and
I' = 27[{o| Va,1 |reg) (1.182)

in (1.180) are actually energy-dependent, because ¢yez and the Green’s func-
tion G depend on E, but this energy dependence is insignificant compared
with the energy dependence resulting from the pole structure of the formula
(1.180) for tand. The position of the pole, i.e. the zero of the denominator,
defines the position of the resonance, ER:

Ep = Eo + A = Ey + (¢0|V2,1GV12l¢0) - (1.183)

It differs from the energy Ey of the uncoupled bound state in the closed
channel 2 by the shift A. Around the resonance energy Egr the phase § rises
more or less suddenly by 7. The width of the resonance is determined by the
energy I"in (1.182); at E = Egr — I'/2 and E = Egr + I'/2 the phase has risen
by 1/4 and 3/4 of 7 respectively. The function

6=— arctan( /2 ) (1.184)

E _ Eg
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Fig. 1.8. The solid line
shows the additional
b] asymptotic phase shift
6(F) (without background
phase shift) near an iso-
2 lated Breit-Wigner reso-
nance at ¥ = Er = 2.0
with a width I = 0.4 (see
(1.184)). The dotted line
46 is the derivative (1.185)

is illustrated for constant values of the parameters Er and I" in Fig. 1.8. An
isolated resonance which is described by an additional asymptotic phase shift
as in (1.184) is called a Breit- Wigner resonance.

The derivative of the phase shift (1.184) with respect to energy is

ds r/2
dE ~ (E - Er)? + (I'/2)?

and has a maximum at the resonance energy Eg, with

-1
ds
r=2(=— . 1.186)
(5. <

In general a resonance appears as a jump in the phase shift which need not,
however, have precisely the form of the Breit-Wigner resonance (1.184). In
the general case, the point of maximum gradient d§/dE serves as definition
for the position ER of the resonance, and the width can be defined via (1.186).
Determining the position and width of a resonance is usually no problem as
long as the resonance is so narrow that the matrix elements (1.181), (1.182)
and also the background phase shift 8y, can be regarded as constants over the
whole width of the resonance. For a broader resonance, however, the unique
definition of its position and width can become a difficult problem (see also
Sect. 1.4.3).

The derivative of the phase shift with respect to energy is also a measure
for the strength of the closed channel component in the solution of the cou-
pled channel equations. Assuming energy normalized solutions of the coupled
channel equations (1.167) or rather (1.169), the channel wave function ¢, in
the closed channel 2 is

@2(r) = A cosd go(r) (1.187)

where the factor cos § stems from the energy normalization of the open chan-
nel wave function, as explained above in the paragraph following (1.180). The

(1.185)
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strength of the closed channel admixture is quantitatively given by the square
of the amplitude A cosd in front of the (bound) wave function ¢g, which is
normalized to unity. With (1.175), (1.180) we have

|(¢0|V2,1'¢reg)|2 1
(E — Fr)?2 1+tan®6

1 r/2 _1ds

T T (E—Er)2+ /2% wdE

|Acosd|? =

(1.188)

1.4.3 Potential Resonances

Another important situation which can lead to resonances occurs when a po-
tential barrier separates the inner region of small separations r from the outer
region of large 7. Such potential barriers can result from the superposition of
an attractive short ranged potential and the repulsive centrifugal potential.
As an example we study the potential

I+ 1)R?
-r?/B? + L

7t (1.189)

V(T) = ‘V()e )
which is illustrated in Figs. 1.9 and 1.10 for angular momentum quantum
number | =2 and two different potential strengths V5. In Fig. 1.9 there is a
resonance just above the continuum threshold and well below the maximum
of the barrier. It appears as a jump of the phase shift §;~2 by a little less
than 7. In Fig. 1.10 the potential is less attractive and the resonance lies close
to the maximum of the barrier. The phase shift now jumps by appreciably
less than 7, but there is a point of maximum gradient and the width of the

resonance can be defined via (1.186).

1 T 10
|
4
L b1

of |
\1\ 05

-1

v
-2 0
Q 1 2 3 4 5 o] 1 2 3
r E

Fig. 1.9. The left half shows the potential (1.189) for angular momentum quantum
number [ = 2, V5 = 12.5 and 8 = 1.0 (h*/p = 1). The right half shows the phase
shift d;=2 of (1.116) as a function of the energy E. The maximum of the gradient
dé/dE is at Er = 0.21 and the width of the resonance according to (1.186) is
I = 0.03
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Fig. 1.10. The same as Fig. 1.9 for V5 = 10.0. The maximum gradient of the phase
shift is at Er = 0.6 and the width of the resonance according to (1.186) is I' ~ 0.5

For a Feshbach resonance (see Sect. 1.4.2), the background phase shift
due to the potential in the open channel and the additional phase shift re-
sulting from the coupling to the bound state in the closed channel add up
to give the total phase shift dpz + § (see (1.179)). If the energy dependence
of the background phase shift and the coupling matrices is negligible and if
the resonance is isolated (i.e. the width of the resonance should be smaller
than the distance in energy to neighbouring resonances), then the jump of
the phase shift is well described by the arctan form of the Breit-Wigner res-
onance. For potential resonances such as those shown in Figs. 1.9 and 1.10
it is not so straightforward to decompose the total phase shift into a weakly
energy-dependent background phase shift and a resonant part. As Fig. 1.10
illustrates, the jump of a phase shift around a broad potential resonance can
be appreciably smaller than what the Breit-Wigner formula (1.184) would
lead one to expect.

At energies above the resonances in Figs. 1.9 and 1.10 the phase shifts
decrease slowly and tend to zero for E — oo. This is related to the fact
that the potential (1.189) with the parameters of Figs. 1.9 and 1.10 does not
support any bound states. The difference between the phase shift at threshold
E = 0 and at infinitely large energies is connected with the number of bound
states in the potential through Levinson’s theorem. According to this theorem
6(E = 0) is always an integral multiple of 7 and

§(E=0)-6(F - )= Npm , (1.190)

where N}, is the number of bound states. Levinson’s theorem (1.190) holds
for the phase shift due to a short ranged potential in the radial Schrodinger
equation. In this context, “short ranged” means that V(r) vanishes faster
than 1/7% asymptotically. The relation (1.190) for the phase shifts also holds
if the “free radial equation” (excluding the short ranged potential) contains
as reference potential the centrifugal potential and/or a repulsive Coulomb
potential. In the presence of an attractive Coulomb potential there are in-
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finitely many bound states, §(E = 0) is in general not an integral multiple of
7 and Levinson’s theorem is not applicable.! (See Sect. 3.1.2.)

1.5 Methods of Approximation

1.5.1 Time-Independent Perturbation Theory

We are often looking for eigenvalues and eigenstates of a Hamiltonian
H=Hy+ AW, Asmall, (1.191)

which only differs by a “small perturbation” AW from a simpler Hamiltonian
H, of which we know the spectrum and the eigenstates (which we shall assume
to be normalized to unity):

HolpV) = EQp?) . (1.192)

In order to define an ordered sequence of increasingly accurate approxi-
mations of the eigenstates |} of H, we expand these in powers of the small
parameter A:

[Wn) = [0) + D) + INP) + . (1.193)
Similarly for the eigenvalues E,, of H:
E,=E® + \E® + NEQ + ... . (1.194)

Inserting (1.193), (1.194) into the time-independent Schrodinger equation,
(Ho +2W) (|97) + D) + ..
=(BE® + AED + NXE® + ) (109 + Py +...) , (1.195)

and collecting powers of A yields a hierarchy of approximations. In zeroth
order we retrieve the unperturbed eigenvalue equation (1.192). In first order
we have

Hoxp(D) + AW [y 0) = EP D) + AED [p) (1.196)

If we form the scalar product with the bra (1/)&0)[, then the terms containing
|/\1p,(11)) cancel, because of

W HolAplD) = EP (9P elV) (1.197)
and we obtain an expression for the energy shifts in first order:
AELM = (W ) (1.198)

L' A further but rare exception from (1.190) occurs in a short ranged potential
(without centrifugal potential and without Coulomb potential) if there is a “half-
bound state” exactly at threshold. More details about such exceptional situations
can be found in [New82].
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In order to deduce the change |/\1,l)(1)) of the wave functions in first order
from (1. 196) we form the scalar product with any (unperturbed) eigenstate

(2 (0)| of Hy as bra. Because of
(WD Ho M) = EQ (D [ApiD) (1.199)

this yields the following expression for the overlap (i.e. the scalar product) of
|)\w(1)) with the unperturbed states:

<w52>IAwS>>(E§°’ = ER) = (@ DWIpD) = ABED () [?) . (1.200)

For m = n the left-hand side of (1.200) vanishes and we retrieve (1.198).
For m # n and provided that E( ) is non- degenerate, i.e. E(O) # E,(lo) for all
m # n, we obtain

(i AW [1”)
W) = oo (1.201)

Since the eigenstates of Hy form a complete set, (1.201) defines the expan-
sion of l)\w,(ll)> in the unperturbed basis (see (1.6), (1.8)). Only the coefficient
of |1/),(10)) is left undetermined by (1.200). It is a natural choice to set this coef-

ficient zero, which ensures that the norm of the perturbed state ]1/15»0) + A«/)ﬁf))
deviates from unity in second order at the earliest. The perturbation of the
wave function in first order is thus

O AW [
) = 3 W)y (1.202)
m#n n T m

Collecting terms of second order in X in (1.195),
HoNyi2) + AW D)
= BOWHD) + AEDDP) + PEDO) (1.20)

and forming the scalar product with the bra (1/1,(10)| leads to an expression for
the second-order contribution to the energy shift:

O AW Oy2
NEP = QAW apl) = > [ AW ) ((L) W’(O)” : (1.204)
m#n - Em

The above considerations are valid for small perturbations of non-degen-
erate eigenstates of the unperturbed Hamiltonian Hy. In the degenerate case

an eigenvalue E® has N eigenstates, |¢££)1), e |w7(33\,), and each (unitary)
transformation of these IV states amongst each other,
va) = chw“” ; (1.205)

1.5 Methods of Approximation 41

again yields N eigenstates of Hy with the same eigenvalue E. A sensible
choice of the coefficients ¢; ; in (1.205) is that which diagonalizes the perturb-
ing operator AW in the N-dimensional subspace spanned by the degenerate
eigenstates:

(W AW ) = eidi; (1.206)
Equation (1.206) is fulfilled if the states (1.205) in the N-dimensional

subspace are eigenstates of AW, ie. if the respective “residual states”
AW ~ 61)"(/) ) are each orthogonal to all N states |3 j) or, equivalently,

to all lwn’k), k =1,... N. Using (1.205) this orthogonahty condition can
be written as a homogeneous set of simultaneous linear equations for the
coefficients ¢; ;:

N
0 & 0
WO = eitwd ) = 30 (WA BE) = ei6es) ey =0 . (1.207)
j=1

For each ¢ (1.207) is a set of N equations, k = 1,... N, for the N unknowns
¢i1,--- ¢i,N - Non-trivial solutions exist only if the determinant of the matrix
of coeflicients vanishes:

det ((w AW 5 —eﬂsk,j) =0 . (1.208)

The pre-diagonalized states |1/)g1i) obtained by solving (1.207) are still only
eigenstates of H to zeroth order in A. The N roots of the secular equation
(1.208) define the N eigenvalues €1, ... en of /\W in the N-dimensional sub-
space spanned by the degenerate eigenstates of Ho The corresponding new
energies Ef,(l ) 4 €; are the perturbed energies to first order in A,

AE) =¢; (1.209)

The first-order correction to the pre-diagonalized state [yg ) is |)\wf:2),

and its projections onto the unperturbed basis states |1/1$L))) with E # ET(,?)
can be calculated via the same steps that led to (1.201), giving

o
(W AWy )
EY - ERY

In order to obtain the projections of \/\1/):32) onto the other pre-diagonalized
states |1/)2']-) in the subset of degenerate unperturbed states, we insert |7/)2,¢>
and its first- and second-order corrections into the second-order equation
(1.203) in place of |1/),<LO)) and its first- and second-order corrections. Forming
the scalar product with the bra (ng| yields (5 # 1)

@Oy = (1.210)

W W)y = ABN (wd apl)y (1.211)

Inserting a complete set (1.22), involving the unperturbed states W)(o)) with
Ef,?) #* E,(»,?) and the pre-diagonalized states from the degenerate subset, in
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between AW and l)\w;lz) on the left-hand side of (1.211), and remembering
(1.206), (1.209) gives

MBS = BN Dol = ST (ud W @) (9 wll))
EQD#EY (1.212)

With the explicit expression (1.210) for (1/) |)\1p(1)) (1.212) results in
(W AW ) (ol AW [ )

<wg,j|>‘w7(111)‘>: Z 1 1 0 )
50 g0 ABS — AEG) EO 5D

(1.213)

The first-order correction |)\1/1,(112) to the pre-diagonalized state |13 ;) con-
tains contributions from the unperturbed degenerate subset according to
(1.213) and from the orthogonal subset according to (1.210) and is

(0) A7 12d
© _ o m

n

(1
M) =
B %L

DY

1% 5O g AEY) - 2EBY) B -

3 AW IR W
("/J ,Jl W’ ) < l |1f0) ) W’d,]) . (1.214)

The overlap of |)\1/),(112) with ¢ ;) should vanish, so that the norm of the
perturbed state deviates from unity in second order at the earliest.

The second-order correction to the energy eigenvalue is obtained by in-
serting |1/)ﬂﬂ) and its first- and second-order corrections into the second-order
equation (1.203) and forming the scalar product with the bra (wgl] This
yields

0 0
5O g2 EY - EY
WaAW L) W AW IR)) Wi Wl
i#i g 2 E© i T g noom

Pre-diagonalizing a limited number of unperturbed eigenstates is a useful
and valid procedure, not only in the case of exact degeneracy of the un-

perturbed eigenstates. In equations (1.202) and (1.204) the contributions of

states with unperturbed energies E,(n) close to E( ) can become very large

due to the small energy denominator. Hence it can be appropriate to pre-
diagonalize the states with unperturbed eigenvalues close to E,(IO). An unper-
turbed energy can be regarded as “close to E(O)” if the absolute value of the
energy difference E® — EY is of the same order or smaller than the absolute
value of the coupling matrix element (1/),(,(1))|/\W[w,(10)), see Problem 1.5.
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In order to calculate energy shifts in second order or perturbations of the
wave functions in first order, we strictly speaking need to have solved the
unperturbed problem (1.192) completely, because the summations in (1.202)
and (1.204) or (1.214) and (1.215) require a complete set of (unperturbed)
eigenstates and eigenvalues. For unperturbed Hamiltonians with unbound
eigenstates, the summations have to be replaced or complemented by inte-
grations over the corresponding contributions of the continuum.

1.5.2 Ritz’s Variational Method

The expectation value of a given Hamiltonian H in a Hilbert space of nor-
malizable states can be regarded as a functional which maps each state |¢)
onto a real number E[¢]:

(A
e

The state |3) is an eigenstate of H if and only if E[4] is stationary at the
point [1), meaning that an infinitesimally small variation |1) — |1 + d¢) of
the state leaves the energy unchanged:

SE=0 . (1.217)
To see this we evaluate §E = E[y + 6¢] — E[4] to first order in |d1),

(WIHIY) + GYIHI) + @IHIY)

=E[y] . (1.216)

BT+ (5ul) + 1)
(V1Y) + (69lp) + (¥[6¢) ’
and this expression vanishes if and only if
(6y|H — Ely) + ($|H - E[sp) =0 . (1.219)

If |¢) is an eigenstate of H, then its eigenvalue is identical to the expectation
value (1.216), and (1.219) is automatically fulfilled for all |41)). Conversely, if
(1.219) is fulfilled for all (infinitesimal) |1}, then it must be fulfilled for the
pair of variations |§y) and i|d1); with (1.11), (1.12) we have

—i(6Y|H — By +i(y|H — E|6) =0 . (1.220)

It follows from (1.219) and (1.220) that (1| H — E|§%) and (6¢|H — E|y) must
both vanish independently. On the other hand, if (34/|H — E|v) vanishes for
all (infinitesimal) |§%) in the Hilbert space, then the state (H — E)|)) must
be orthogonal to all states in the Hilbert space and must consequently be
zero. That means [)) is an eigenstate of H with eigenvalue E.

Tt is often much easier to calculate the energy expectation value E[i] for
a limited number of model states |¢) than to solve the eigenvalue problem
for the Hamiltonian H. In such cases we may look for model states at which
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E[y] is stationary under small variations within the space of model states
and regard them as approximate eigenstates of H. It is particularly sensible
to search for a minimum of E[t] in order to approximate the ground state
of the system. The expectation value (1.216) can be written as a weighted
mean of all exact eigenvalues of H (see (1.27)) and as such cannot be smaller
than the smallest eigenvalue E;:

< W)
T (Wly)
As a special case let’s look at a set of model states forming a subspace

of a Hilbert space spanned by a basis |1),... [¥n) (which need not be or-
thonormal). The general model state is then a linear combination

E, all |9) . (1.221)

N
) =3 el (1.222)
i=1
of these basis states, and the coefficients ¢; are the parameters defining the
model state.
The projection of the Hamiltonian H onto the subspace spanned by the
|¥1) ... |¥n) is a reduced operator h which is defined by the matrix elements

hij = (Walhls) = (WalH;) , 65=1,...N . (1.223)
The expectation values of h and H are the same within the model subspace:

(WIHY) _ (@lhly) _ B . (1.224)

() ()

Since the model subspace is itself a vector space of state vectors, we may apply
the same reasoning as used above in full Hilbert space and conclude that the
energy functional (1.224) is stationary if and only if the corresponding model
state |¢) is an eigenstate of the projection h of the Hamiltonian onto the
model subspace. |1) is an eigenstate of h means that (h — E)|) vanishes, or
equivalently that (H — E)|v) is orthogonal to all basis states [11) ... [¥n) of
the model subspace:

(WilH—ElY)=0, i=1,...N . (1.225)
Inserting the explicit ansatz (1.222) for |¢) in (1.225) we have

N

Z(hi’j —Eni,j)cj =0 3 1= 1, N y (1226)

j=1

where h; ; are the matrix elements of the Hamiltonian (1.223) and n; ; are
the elements of the overlap matriz:
niy = (WilY;), Li=1...N . (1.227)

Equation (1.226) is a homogeneous system of N simultaneous linear equa-
tions for the N unknown coefficients c;. It contains the overlap matrix n; j,
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because we didn’t assume orthonormality of the basis. The secular equation
now reads

det(hi,j - Eni,j) =0 (1228)

and yields IV eigenvalues e of h belonging to N eigenstates of the form
(1.222). Each eigenstate |¢(*)) is characterized by an N-component vector
of coefficients cgk), and as eigenstates of the Hermitian operator h they are
mutually orthogonal:

N N
(p®Fp®y = ZZ(CEH)* N4 c;l) < 8ky - (1.229)

i=1 j=1
If they are normalized to unity we have
<¢(k)|¢(l)) =01
(PN HlYOY =iy, kdl=1,...N. (1.230)

The method of diagonalizing in a subspace is particularly useful if we are
looking for approximations to describe not only the ground state of a system.
Equation (1.221) sets an upper bound for the ground state energy and hence
we know, the lower the value of E[y], the closer it is to the exact ground state
energy E;. For an excited state there is in general no condition like (1.221),
and it is not always a good thing to approximate it by a model state with
as low an energy as possible. Bounding conditions of the form (1.221) do,
however, hold for a set of model states, if the states don’t mix among each
other, i.e. if they fulfill (1.230). More precisely: Let Ey < E3 < E3--- be the
exact eigenvalues of H arranged in ascending order and let €1 < e+ <epn
be the energy expectation values of N states fulfilling the conditions (1.230).
Then

E <eg forali=1,...N . (1.231)

This is the Hylleraas-Undheim theorem. With the Hylleraas-Undheim the-
orem it is clear that all approximate eigenvalues obtained by diagonalizing
H in a subspace can only become smaller (or stay the same) when the sub-
space is enlarged. To see this just regard the enlarged subspace as the Hilbert
space and apply the Hylleraas-Undheim theorem (1.231) to the eigenstates in
the smaller subspace. An elegant three-line proof of the Hylleraas-Undheim
theorem is contained on p. 326 of [New82].

The Hylleraas-Undheim theorem can also be useful in situations more
general than diagonalizing in a subspace. Assume for example, that varying
E[y] in a set of parametrized model states which don’t form a closed sub-
space yields two (or more) stationary points, an absolute minimum at |¢1),
say, and a local minimum at |12). In general we don’t know whether E[y] is
larger or smaller than the exact energy of the first excited state, and further-
more, |¢1) and |12) need not be orthogonal. On the other hand, it is usually
comparatively simple to calculate the 2 x 2 matrices h;; = (t;|H|4;) and
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n;; = (1:|9;) and to solve the equations (1.226), (1.228). This corresponds
to post-diagonalization of the Hamiltonian in the two-dimensional subspace
spanned by [¢1) and |i3). It yields an improved (lower) approximation &,
for the ground state energy and a second energy £z, which may lie a little
above E[i5], but which we definitely know to be an upper bound for the
exact energy of the first excited state.

Further improvements can be achieved by diagonalizing two (or more)
states according to (1.226), (1.228) for different sets of values of the model
parameters. Each diagonalization leads to a set £;7 < g5 < ... of energies
and the best approximation for the ground state is the (diagonalized) wave
function with the lowest value of £;. The best approximation for the sec-
ond (the first excited) state is the wave function with the lowest value of €5,
which may occur for a different set of values of the model parameters, etc.
In this method of variation after diagonalization the resulting approximate
eigenstates need not be orthogonal, because they emerge from different di-
agonalizations. The corresponding energies ¢; are, however, definitely upper
bounds for the respective exact energies of the ith state, because each ¢; is
the ith energy in a diagonal set of states (1.230).

1.5.3 Semiclassical Approximation

The connection between classical mechanics and quantum mechanics has in-
terested researchers ever since Schrodinger formulated his wave equation in
1926. In recent years, the rich structure observed in the classical dynamics of
seemingly simple systems with a few degrees of freedom has made the ques-
tion of how such classical behaviour is related to the corresponding quantum
dynamics a central theme of theoretical physics (see Sect. 5.3); the study of
“simple” atoms plays an important role in this context [FE97].

The connection between classical mechanics and quantum mechanics is
comparatively well understood for one-dimensional systems. One approach
which relates the concept of a wave function to motion on a trajectory with
an almost classical momentum is the semiclassical approximation of Wentzel,
Kramers and Brillouin, the WKB method.

The WKB approximation can be derived by writing the wave function
1(z) describing the one-dimensional motion of a point particle of mass p in
a (real) potential V(z) as

Y(z) = explig(z)] (1.232)
with a complex function g(x). If we write the time-independent Schrédinger
equation as

2
W+ P___(};) Y =0 (1.233)
and insert (1.232), we obtain
N2 _ E_z_ s
(¢) =535 +ig" . (1.234)

ﬁ?
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The function p(x) appearing in (1.233) and (1.234) is the local momentum
corresponding to a classical decomposition of the energy E into a kinetic and
a potential energy:

E = ;D(Ta;)—z- +V(z), plz)==x2uE-V(z)] . (1.235)
From (1.234) we have

' *iz_) 1 -E//Vigi-hu 19 ;_7'3 "2
g'(z) = 5 +1p2g =+7 12—-pg + P (") . (1.236)

Regarding A as a small quantity gives, to leading order, ¢’ = £p/A. Including
the next term on the right-hand side of (1.236) via ¢ = £p’/F yields

iy o P
g(:c)-:th+12p
R
= g(x) = iﬁ p(z')dz’ + 3 Inp(z) + const. (1.237)

Inserting this expression for g(z) into (1.232) defines the WKB approxima-
tion,

T—— ﬁexp (iﬁ / ’p(x,)d$/> . (1.238)

In the classically allowed region, V(z) < E, the local momentum p(z) is real,
as is the action integral [* p(z') dz’, and Ywkgs(z) is an oscillating function
characterized by the local de Broglie wavelength

Az) = 2Th

p(z)
The amplitude proportional to p~1/2 ensures that the probability density
[Ywks|? is inversely proportional to the particle’s velocity p/u, so that the
product of these quantities, which corresponds to the current density, is in-
dependent of z, as required for a stationary state. In the classically forbidden
region, £ < V(z), the local momentum p(x) is purely imaginary and the
exponential in the WKB expression (1.238) is a monotonically increasing or
decreasing function.

The WKB wave function (1.238) can be expected to be a good approxima-
tion to an exact solution of the Schrédinger equation if the local momentum
p(z) is a slowly varying function of the coordinate x. One way of quantifying
this statement is to construct the second derivative of (1.238) and to observe
that Ywkg is a solution to the following equation:

7 2
% - 2(1;2) ) Ywkg =0 . (1.240)
The last term on the left-hand side of (1.240) corresponds to an additional
potential Vaaq.,

(1.239)

" P’
Ywks + ﬁd)WKB +
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2p P 3(p)?
— 32 Vadd.(2) = w1 (1.241)

Without this term, (1.240) is identical to the Schrédinger equation (1.233).
The condition for validity of the WKB approximation is, thus, that the addi-
tional term (1.241) be small compared to the function p?/h? of the potential
term in the Schrodinger equation,

/!

p’ 3p?
2173 4 p4

2 <1 , (1.242)

or, in terms of the de Broglie wavelength (1.239),

2 2
1 (dA) _2>‘d A

1672

i a2 <1l . (1.243)

Figure 1.11 illustrates the exact wave function ¢ and the WKB wave
function Ywkp for bound motion of a particle with total energy F in a
potential V(x). Both ¢ and ¥wkp can be chosen to be real when V is real.
The exact wave function is a solution of the Schrédinger equation (1.233);
in the classically allowed region between the two classical turning points a
and b the “kinetic energy” proportional to p? is positive, and the sign of the
second derivative ¢ of the wave function is opposite to the sign of 1, i.e.
the wave function oscillates and is always curved towards the z-axis. In the
classically forbidden regions p? is negative, and 1" and ¢ have the same sign,
so the wave function is curved away from the z-axis; if the entire regions to
the right of b and to the left of a are classically forbidden, the wave function
decays to zero away from the classical turning points.

The WKB wave function becomes singular at the classical turning points
where the local momentum vanishes, but it quickly approaches the exact
wave function away from the turning points when the condition (1.242) is
fulfilled. The decaying WKB wave function on the classically forbidden side

Vix) Fig. 1.11. Exact and WKB
wave functions for the bound
motion of a particle in a
real potential V(z). The thin
solid line shows the exact
solution of the Schrédinger
equation (1.233); the dashed
line shows the WKB wave
function (1.238), which is
singular due to the fac-
tor p(z)~1/? at the classical
. turning points @ and b where
a b p=20
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of an isolated classical turning point zo (= a or b in Fig. 1.11) has to be
matched to the oscillating WKB wave function on the classically allowed side
according to the connection formula,

Ao (L)

2 (1 /1C , ,
— ————cos | = p(a’)dz
In(z)l Rtz

This form of the connection formula does not depend on whether the classi-
cally allowed side is to the left or to the right of the turning point zy. The
right-hand side of (1.244) is proportional to a superposition of two complex
oscillating waves (1.238), an incident wave travelling towards the turning
point and a reflected wave travelling back from the turning point, which is
multiplied by a reflection coefficient exp (—i¢). Thus the phase ¢ on the right-
hand side of the connection formula (1.244) describes the phase loss which
the WKB wave function experiences due to reflection at the classical turning
point; this is the WKB reflection phase.

The derivation and interpretation of the connection formula (1.244) are
discussed at great length in many texts on semiclassical theory [FF65, BM72,
FF96]. If the potential is approximately linear in a region which surrounds the
classical turning point and is large enough to accommodate many de Broglie
wavelengths, then the reflection phase ¢ can be shown [BM72] to be equal to
/2, and the amplitude factor N on the left-hand side of (1.244) is unity. This
result is obtained in general in the limit of short waves. It can, however, be
useful to work with reflection phases differing from 7 /2 away from the short
wave limit, when the condition (1.243) for validity of the WKB approximation
is well fulfilled except near the turning point, but the linear approximation to
the potential is not good. For example, for a particle reflected by an infinite
steep wall the reflection coefficient is —1 and the reflection phase is 7w rather
than /2. This result is typical of the long wave limit, where the wavelength
on the classically allowed side of the turning point is large compared with the
penetration depth of the wave function on the classically forbidden side. In
more general situations it is often necessary to use other values of the reflec-
tion phase. In fact, inserting the right reflection phase ¢ in the connection
formula (1.244) is the key to obtaining a WKB wave function which is an
accurate approximation to an exact solution of the Schrodinger equation on
the classically allowed side of an isolated classical turning point [FT96]. (See
Problem 1.6.)

During one whole period of oscillation the WKB wave function (1.238)
gains the phase

%j{p(w’)dz’ « %S(E) : (1.245)

and it loses the phases ¢, and ¢, due to reflection at the classical turning
points a and b. The integrated action, S(E) in (1.245), is just the area en-

- g) . (1.244)



50 1. Review of Quantum Mechanics

closed by the classical trajectory in the two-dimensional phase space spanned
by the coordinate z and the momentum p. A generalized Bohr-Sommerfeld
quantization condition for stationary bound states can be obtained by requir-
ing the net phase gain during one period of oscillation, viz. %S(E) — (o — Db,
to be an integral multiple of 27 in order that the wave function be a unique
function of the coordinate. This leads to

! b Ko
§S(E):/a p(x)dx:‘n'h(n%-z) , n=0,1,2,... . (1.246)
In (1.246) py is the Maslov index, which is equal to the total phase loss

measured in units of 7/2,

¢a + ¢b

e = —W . (1.247)
In the limit of small wavelengths each reflection phase is 7/2, so the Maslov
index is two and the right-hand side of (1.246) becomes wh(n + 1/2). In the
more general case the reflection phases can be non-integral multiples of 7 /2,
and then the Maslov index in the quantization rule (1.246) is non-integral
[F'T96).

A particularly important case is that of a potential proportional to the
inverse square of the coordinate,

h?
which is just the centrifugal potential for angular momentum quantum num-
ber | when z is the radial coordinate and v = (I + 1) (cf. (1.76)). The
Schrédinger equation with this potential alone can be solved exactly, and the
solution is () o« VkzJ,(kx), k = \/2uFER? , where J,, is the ordinary Bessel
function of index v = 1/ + 1/4. The asymptotic behaviour of ¥ follows from
(A.17) in Appendix A.3,

P(x) ~ cos (k:c - ug - %) . (1.249)
The classical turning point zg is given by kzo = /7, and the action integral
in the WKB wave function can be calculated analytically. The asymptotic
form of the WKB wave function on the classically allowed side of the turning
point, cf. (1.244), is

y20, >0 , (1.248)

Ywks(z) ~ cos (km — \/'?g — %) , (1.250)

where ¢ is the reflection phase.

The asymptotic phase of the WKB wave function (1.250) can be reconciled
with the asymptotic phase of the exact wave function (1.249) by the so-
called Langer modification, in which the potential for the WKB calculation
is manipulated by the replacement

2
v — 7+ % corresponding to I(l+1) — (1+3) . (1.251)
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The exact wave function (1.249) and the WKB wave function (1.250) then
agree asymptotically (provided they are normalized appropriately) if the re-
flection phase ¢ in the WKB wave function assumes the value 7/2 as in
the short wave limit. An alternative procedure for reconciling the phases in
(1.249) and (1.250) is to leave the potential intact and to insert as reflection
phase

¢:g—+ﬂ<\/’y+%—\/§) . (1.252)

This reflection phase for the centrifugal potential approaches the value /2
in the (semiclassical) limit ¥ — oo and the value 7 in the (anticlassical) limit
v — 0. This is in fact the right value for s-waves (! = v = 0), where the node
required in the wave function at z = 0 has the same effect as reflection by an
infinite steep wall.

Although the Langer modification helps to improve the results of the
WKB approximation when the reflection phase is kept fixed at 7/2, leaving
the potential intact and inserting the correct reflection phase (1.252) leads to
wave functions which approach the exact solution of the Schrodinger equation
much more rapidly in the classically allowed region [FT96].

The WKB method is useful not only for approximating quantum mechani-
cal calculations quantitatively, but also for visualizing physical circumstances
qualitatively. As an example let’s study the highly excited bound states of
the radial Schrédinger equation, with a potential V(r) which vanishes as a
power of r beyond a certain radius rg,

C
V(T):_r—a forr>re, C>0 , (1.253)

and which is repulsive at small r (in order to avoid singularities at the inner
classical turning point) — see Fig. 1.12. Near the continuum threshold £ = 0

Vir)

0 4
Fig. 1.12. Schematic illustration of the potential V(r) of (1.253)
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the inner classical turning point a hardly depends on the energy E, but the
outer classical turning point b goes to co as £ — 0,

b(E) = (%) v . (1.254)

The integrated action in the quantization condition (1.246) is given by

b(E)
%S(E)ZL p(r)dr

:/amp(r)dr—l—/r:(E) 2 (%— \El) dar . (1.255)

The integral [’°p(r)dr converges to a constant for E — 0. The second
integral on the right-hand side of (1.255) remains finite in the limit E — 0,
if the exponent « is larger than two. In this case the action (1.255) remains
bounded from above as we approach the threshold E = 0, and there is at most
a finite number of bound states. If a < 2, however, the second integral on
the right-hand side of (1.255) diverges in the limit £ — 0 and the integrated
action S grows beyond all bounds; in this case there are infinitely many
bound states. These statements do not depend on the shape of the potential
at small radii r and are quite generally valid, even though they were derived
here in the framework of the WKB approximation.

Thus the number of bound states in a potential V (r) depends decisively
on the asymptotic behaviour of the potential. Short ranged potentials, namely
those which vanish more rapidly than r~2, can support at most a finite num-
ber of bound states. Long ranged potentials, namely those behaving asymp-
totically as

r—00 C
Vir) — -—, 0<a<2 , (1.256)
/,'»Ot

always support an infinite number of bound states (as long as the long-range
tail is attractive, C > 0). This class of attractive long ranged potentials
includes, of course, the attractive Coulomb potential discussed in Sect. 1.3.3.

Potentials asymptotically proportional to 1/7% represent a special case. A
potential behaving asymptotically as

rooo B2

V(ir) — 277 (1.257)
supports an infinite number of bound states if and only if v < —1/4 (see
[MF53], p. 1665). Note that the integrated action (1.255) is infinite in the limit
E — 0 for an attractive 1/r? potential. The condition for supporting infinitely
many bound states in a 1/72 potential coincides with the requirement that the
potential still be attractive after being subjected to the Langer modification
(1.251). (See Problem 1.8.)
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1.6 Angular Momentum and Spin

An angular momentum operator J is a vector of operators jx, jy, jz obeying
the following commutation relations (see (1.56)):

(Jo, ) =ikd, . [Jy, J) =ikde , [Jo, Ju) =ikJ, . (1.258)
These can be summarized in the suggestive if somewhat unorthodox equation

JxJ=ihd . (1.259)
From the commutation relations (1.258) it already follows that the eigenval-

<2 N N ~

ues of J~ = J2 + Jy2 + J2 have the form j(j 4+ 1)A2 and that to each value
of j there are exactly 25 + 1 different eigenvalues of Ja namely mh with
m=—j, —j+1,..., 7—1, j. The number 2j + 1 must be a positive integer,
so that 7 itself must be integral or half-integral. For orbital angular momenta,
which can be written as operators in the spatial variables (see (1.66)), the re-
quirement of uniqueness of the wave function in coordinate space restricts the
angular momentum quantum numbers to integers. This restriction does not

hold for spin angular momenta, for which there are no classical counterparts
in coordinate space.

1.6.1 Addition of Angular Momenta

Let J, and J5 be two commuting angular momenta ([Jiz, Joz] = [J1z, Joy] =
0, ete.) with angular momentum quantum numbers j;, m; and j2, my respec-
tively. Since J; and J, obey the commutation relations (1.258), the sum

J=J,+J,; (1.260)
also obeys these relations and is also an angular momentum. J 2 has the

eigenvalues j(j + 1)h? and J, has the eigenvalues mh.
The squares of the angular momenta commute,

-2 A A2 A

(J°, 03 =[J", 03 =0 , (1.261)
and the components of the summed angular momentum J commute with J 2
and J%, e.g. for J, = Jy, + Jo,:

[(J.,J3 = [J.,J3 =0 . (1.262)

However, the components of J 1 and J 2 do not commute with the square of
the summed angular momentum,

~2 -, - ~ -
J =J¢+J2+2d,d, (1.263)

because eg. {12 doesn’t commute the terms j]zjgx and jlngy in the scalar
product Jq-J5 .

Four mutually commuting operators are already sufficient to completely
classify the angular momentum eigenstates, and these four operators can be
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chosen in dlfferent ways. In the uncoupled representation the four operators
are J17 le, Jz, ng The correspondmg eigenstates |ji,m1,j2, m2) are also
eigenstates of J, = Jy, + Jo, with the elgenvalues mh (m = m1 + ma), but
they are in general not eigenstates of J . In the coupled representation the
22 2 A

basis states |4, m, j1,j2) are eigenstates of the four operators J , J,, J; and
~2 ~ a

J,. They are in general not eigenstates of Jy, and Js,.

For given values of j; and jo, the basis states in the coupled representation
can of course be expressed as linear combinations of the uncoupled basis
states:

|jam7jlaj2> = Z (jlamlvj?)m?'j’mﬂjhmlijva) . (1264)
m1,m;
Vice-versa we can express the uncoupled states as linear combinations of the
coupled states:

1, ma, j2,m2) = 3 (7, mljy, ma, ja, ma)lj,m, g1, j2,) - (1.265)
im
The coefficients appearing in (1.264), (1.265) are the Clebsch-Gordan coeffi-
cients,

(jlvml9j27m2lj7m> = <j»m|jlaml7j2am2>* ) (1266)
which are real if the phases of the basis states are appropriately chosen.

Obviously the Clebsch-Gordan coefficient (j1, m1, j2, m2|j, m) is only non-
zero if

A further selection rule is the triangle condition which determines the minimal
and maximal summed angular momentum quantum number j for given values
of ji and jo,

bi—dl<ji<pn+i . (1.268)

For fixed j; and jj, each possible summed angular momentum quantum
number j encompasses exactly 2j+1 eigenstates corresponding to the different
eigenvalues m# of J,. Since coupling cannot affect the dimension of the space
spanned by the basis states, the total number of coupled states for all possible
values of j (at fixed values of j; and j2) is equal to the number (2j; + 1) x
(2j2 + 1) of states in the uncoupled basis:

J1+7J2
YN @+ =+ D22 +1) . (1.269)

j=lj1—Jal
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1.6.2 Spin

It is known from experimental investigations that an electron has an internal
angular momentum called spin, and that the total angular momentum J of
an electron is the sum of its orbital angular momentum I and its spin S:

J=L+§ . (1.270)
The electron’s spin has no classical counterpart and cannot be related to

ordinary coordinates. All physical states are eigenstates of S 2 with eigenvalue
s(s+1)R?, and the spin quantum number s always has the same value s = 1/2.
Any component, e.g. S,, of S has two eigenvalues mgh, namely ms = +1/2
and ms = —1/2.

The wave function of an electron thus depends not only on e.g. the spatial
coordinate 7, but also on the spin variable mg:

Y =9(r,ms) . (1.271)

Since the discrete variable ms can only take on two values, it is convenient
to write the wave function (1.271) as a pair of ordinary functions of r corre-

sponding to the two values ms = 1/2 and mg = —1/2:
v (T)) (mr’ms - +%)> 1.272
1/) ( (7‘) w("" mg = _% . ( ‘ )

These two-component entities are called spinors in order to distinguish them
from ordinary vectors in coordinate space. If we introduce the two basis
spinors

)0

we can write the general one-electron wave function (1.272) as

Y=o (r)x, +¥_(r)x_ . (1.274)
The scalar product of two spinors of the form (1.272) or (1.274) is

(l¢) = / & Z W (r,ma)d(rma) = (,16,) + (_16_) . (1.275)

=—a
2

S

States 9 normalized to unity fulfill the condition

(Wb + W) = [ (W, ) +lp_ @) =1, (1.276)

and |1, (r)|? is e.g. the probability density for finding the electron at the
position 7 and in the spin state x, .

Linear operators can not only act on the component functions v, Y,
they can also mix up the components in a spinor. The most general linear
operators in spin space are 2 X 2 matrices of complex numbers. These can be
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expressed as linear combinations of four basis matrices; the most commonly
used basis consists of the unit matrix and the three Pauli spin matrices:

. 0 1 . (0 —i . (1 0
012<1 O)’ ay—(i 0), oz—(o 71> . (1.277)

Thus the most general linear operator in the Hilbert space of one-electron
states has the form

18] :Oo+0151+02&y+03(}z , (1.278)

where O; are spin-independent operators such as P, # and functions thereof.

The spinors x, and x_ of (1.273) are eigenstates of 6, with eigenvalues +1
and —1 respectively. Since they are also supposed to be eigenstates of the z-
component S, of the spin with eigenvalues +(1/2)A and —(1/2)% respectively,
the relation between S, and &, must simply be:

S, =ihs, . (1.279)
Together with the other two components,
Sy =1ihé,,  S,=3ins, (1.280)

we have the spin operator § as

S=1ns . (1.281)
From the commutation relations of the Pauli spin matrices,

Gp0y =10, = =646, , etc., (1.282)

it immediately follows that the spin components defined by (1.279)-(1.281)
obey the commutation relations (1.258) characteristic of angular momentum
operators:

(82,8, =inS, , [$,,8.] =ikS. , [S.,8.]=ihS, . (1.283)
Furthermore, the properties

62=062=62=1 (1.284)
imply that

~2 ~ N ~

S =82+52+82=3r , (1.285)

Which of course just means that all states are eigenstates of S : with eigenvalue
(s + 1)h? corresponding to s = 1/2.

The spin S is a vector operator consisting of three components, just like
the position # and the momentum p. The components of § are, however, in
contrast to position and momentum, not ordinary operators acting on func-
tions, but 2 x 2 matrices which linearly transform the spinor components. The
spinor components must not be confused with the components of ordinary
vectors in coordinate space.
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1.6.3 Spin-Orbit Coupling

In addition to the usual kinetic and potential energy terms, the Hamiltonian
for an electron in a radially symmetric potential V (r) contains a further term
which couples the spin and spatial degrees of freedom:

. h2 A A
H= ——ZZA + V() + Vis(r)L-§ . (1.286)

The spin-orbit coupling term can be physically understood as the interaction
energy of two magnetic dipoles associated with the orbital angular momentum
L and the spin S respectively. More precisely the spin-orbit coupling appears
as an additional contribution to the conventional Hamiltonian (1.53) in the
non-relativistic limit of the relativistic Dirac equation (see Sect. 2.1.4, (2.45)).
The coupling function Vg derived in this way is

1 14dv
2u2c? r dr
The Hamiltonian (1.286) no longer commutes with the components of the
orbital angular momentum L, but it commutes with the components of the

total angular momentum J = L + § , because we can express the spin-orbit
coupling operator in terms of the squares of the angular momenta

Vis(r) = (1.287)

P-8=1J"-1"-8% | (1.288)

and the components of the summed angular momentum commute with all
squares (see (1.262)). Hence it is appropriate to couple the eigenstates of
orbital angular momentum and spin to eigenstates of the total angular mo-
mentum J. This is done with the Clebsch-Gordan coefficients as a special
case of (1.264):

|jv m»l75> = Z (Lmbs, mslja m) )/l,’rm (0, ¢)Xms . (1'289)

mi,Ms

The quantum number s in (1.289) is of course always 1/2. Since ! and my
are always integers, j and m must always be half integers (meaning odd
multiples of 1/2). Because of the triangle condition (1.268) there are exactly
two possible values of j for each value of [ larger than zero, namely j = [+1/2
and j =1 —1/2. For [ = 0 there is only one possible value of j, namely +1/2.

The coupled eigenstates |f,m,(,s) are called generalized spherical har-
monics and are written as Y; ;. They are two-component spinors, and it
is clear from (1.273) and the selection rule m = m; + m, (see (1.267)) that
the upper component corresponding to a contribution with mg = +1 /2 con-
tains a spherical harmonic with m; = m — 1/2, while the lower component
contains a spherical harmonic with m; = m + 1/2. The generalized spherical
harmonics are thus essentially two-component spinors of spherical harmonics.
Inserting the known Clebsch-Gordan coefficients [New82, Tin64] yields the
explicit expressions
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v, l:—-l_(‘/j—{—mylym-%(ev(ﬁ)) ]:l+_1_
1S T VT Yy (6,6)) 2

1 (_V]+l —my'l,m—%(07¢)>
V2 2\ VTFTTmY,py3(6,0) /

The time-independent Schrédinger equation Hy = Ev with the Hamil-
tonian (1.286) corresponds to two coupled partial differential equations for
the two components ¥, (r) and _(r) of the spinor wave function (1.272).
A substantial simplification can be achieved if we extend the ansatz (1.74)
for separating radial and angular variables to the present case of spinor wave
functions using the generalized spherical harmonics:

—1-1 (.20

yj,m,l = 2

w(rvms) = ¢J+(r)yj,m,l - (1.291)

In addition to the relation (1.70) (with (1.58)) we can now use the fact that
the generalized spherical harmonics Y}, are eigenfunctions of the spin-orbit
coupling operator (1.288),

PP B
L-SYyme =50 +1) 10+ = s(s + DYjmt (1.292)
where s(s + 1) = 3/4. For the two possible cases j = [ £ 1/2 we have
. A h2 1Y) m,i forj=1+4+1/2 ,
L‘Syj,m,l =5 ’ ., /
2 | -(+1)Yjmy forj=1-1/2

Thus the Schrodinger equation can be reduced to a radial Schrédinger equa-
tion

(1.293)

h? d? | U(l+1)h? B
<_E =t i—ém—z— +V(r)+ 7F(J, l)VLs(r)) b;.(r)
= 20aln) (1.204)

and the factor F(j,1) is l or —(I + 1) for j =1+ 1/2 and j =1 -1/2
respectively. For a given orbital angular momentum quantum number [, the
spin-orbit potentials for the two possible values of j have opposite sign.

Including the spin variable in the description of an electron in a ra-
dially symmetric potential still allows us to reduce the time-independent
Schrédinger equation to an ordinary differential equation for the radial wave
function. The radial Schrédinger equation now depends not only on the or-
bital angular momentum quantum number [, but also on the total angular
momentum quantum number j (not, however, on m).
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Problems

1.1 Consider a point particle of mass p in a radially symmetric potential

| -W forr <y
V(T)_{ 0 forr>ry ,

where Vj is a positive constant considerably larger than A2/(ur?). Give
an approximate (£1) estimate for the number of bound states for [ = 0.

1.2 a) Consider the following radial wave function which is normalized to
unity:
_12r 20082
¢(r) = (v/7b) e
Calculate the overlaps (i.e. the scalar products) (¢|¢n 1=0) with the

radial eigenfunctions (1.82) of the harmonic oscillator with an oscil-
lator width 8 # b.

b) Consider the following radial wave function which is normalized to
unity:
o(r) = 22 %e_r/b
Calculate the overlaps (@|¢ni—0) with the radial eigenfunctions
(1.138) of the attractive Coulomb potential with a Bohr radius a # b.

c) Evaluate the first four or five terms of the sum
>l lgni=0)?

n
for the explicit values b = (/2 and b = a/2 respectively. Estimate
the limit to which the sum converges in both cases.

d) Repeat the exercise c) for the Coulomb potential for b = a and b = 2a.
Hint:
_TI'la+v+1)(s—1)

—S8T (23 s 1
ez LY (z)dx TeatutT ,

0

/ e Tt L2 () de = — 4 (/ e %z L%(x) dz)
0 ds \Jo

1.3 Use the recurrence relation (A.13) and the orthogonality relation (A.12)
to show that the expectation value of the radius r in the Coulomb eigen-
functions (1.138) (with Bohr radius a) is given by:

(@ dlrién) = 313n% =10+ 1)]

1.4 Show that the free Green’s function for | = 0,

2u
Go(r,r") = 7 sin(kr<) cos(krs)
(r< is the smaller, 7 the larger of the two radii r, r') fulfills the defining
equation:
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n? a2 , ,
<E+ ﬂm) G(r,r'y =6(r — 1)

1.5 Consider a Hamiltonian

f[‘—'ﬁo-FW

in a two-dimensional Hilbert space, where

r (€1 O s (0 w
wo=(5 ) = %)

Calculate the eigenstates and eigenvalues of H

a) in lowest non-vanishing order perturbation theory treating W as the
perturbation,

b) by exact diagonalization of H.

How do the results in both cases depend on the difference €1 — €5 of the

unperturbed energies?

1.6 a) Use the quantization condition (1.246) to calculate the energy eigen-

values of the bound states of a one-dimensional harmonic oscillator,
V(z) = (p/2)w?z?.
b) Use the quantization condition to calculate the energy eigenvalues of
the bound states in a one-dimensional infinitely deep well,
Viz) = 0, O<z<L ,
T 1400, <0 or z>L
¢) Consider a particle of mass i reflected by a one-dimensional potential
step,
0, z<L ,
Vim) = {+Vo, t>L
at an energy E, 0 < E < Vj. Calculate the reflection phase ¢ and
the amplitude factor N for the WKB wave function according to the
connection formula (1.244).
Now consider a particle of mass p bound in the finite square well

potential
0, O<z<L ,
V(z)—{—i—Vo, <0 or z>L
Discuss the accuracy of the wave functions and the energy eigen-
values obtained via the generalized Bohr-Sommerfeld quantization
condition (1.246) when the appropriate reflection phases and nor-
malization constants are used.

1.7 Consider a point particle of mass p in a one-dimensional potential V (z).

Calculate the energy expectation value for the Gaussian wave function

W) = (Vrb) ™}/ 2 e/
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(which is normalized to unity), and think about the limit b — oco.
Show that a potential V(z) with lim ;o V(z) = 0, which is more at-
tractive than repulsive, meaning

/ V(z)de <0

always supports at least one bound state. Why doesn’t this statement
hold for a particle in three dimensions?

1.8 Consider a point particle of mass g in a radially symmetric potential
V(r), which is equal to —C/r? (C > 0) beyond a certain radius 7o,
C
V(r):—r—z, r>ry
and which is repulsive near the origin r = 0. Use the WKB approximation
and the Langer modification (1.251) to show that, for values of C larger
than a certain [-dependent threshold C(!), the energy eigenvalues for high
quantum numbers 7 are given by
E,i=—c e—cz(l)n
Determine the constant cs(l).
1.9 Use (1.70) to verify the following identities:
R 0 1
[pZ,T] = _2h2 (E + ;) s
[p%, %] = —2h* rd +3
’ or
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2. Atoms and Ions

This chapter summarizes the traditional theory of one- and many-electron
systems, which has been developed and successfully applied to many atomic
problems over more than seven decades. The presentation is deliberately brief.
A more detailed introduction to atomic physics can be found in the textbook
by Bransden and Joachain [BJ83]. At a much more formal level there is
“Atomic Many-Body Theory” by Lindgren and Morrison [LMS85]. Finally
we mention “Atomic Structure” by Condon and Odabasi [CO80], where a
comprehensive account of conventional atomic structure calculations can be
found.

2.1 One-Electron Systems

2.1.1 The Hydrogen Atom

In non-relativistic quantum mechanics a system consisting of a proton of mass
m, and an electron of mass m, is described by the following Hamiltonian:

52 ~2 2
Py P e (21)

El

Hy = <

2mp  2me  |Te — T
where p;, and P, are the momentum operator, for the proton and the electron
respectively, and 7, and 7. are the respective spatial coordinates. Introducing
the centre-of-mass coordinate R and the relative distance coordinate r,

_ MpTp + MeTe , T=Te—Tp (2.2)
My + Me
we can rewrite (2.1) as
. P2 p? €2
Hy=——"—"-—4+— - | 2.3
" 2(mp +me)  2p T (23)

where P is the total momentum and P the relative momentum in the two-
body system:

P:ﬁp‘}'ﬁev :&__&_ . (2.4)

me Mg

Sl RN
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In coordinate representation the momentum operators have the explicit form:
. h h
The mass p appearing in (2.3) and (2.4) is the reduced mass
MeMp M

Me +mp 1 +me/my
Since the ratio me/m, = 0.000544617013 (11) is very small (the numerical
value is taken from [CT86]), the reduced mass y is only a little smaller than
the rest mass me of the electron, namely by aboutﬂ 0.5% 0.

Thus the Hamiltonian Hy consists of a part P?/2(m, + m,) describing
the free motion of the centre of mass and an internal Hamiltonian,

p= (26)

a2 2
gy P& ‘
H=to-7 (2.7)

describing the motion of the electron relative to the position of the proton.
Eigenfunctions em(R) and eigenvalues Ecy, for the centre-of-mass motion
are known, Yem(R) o< exp(iK - R), Ecy = R2K?/2(mp, + me), so solving the
two-body problem (2.1) or (2.3) is reduced to the problem of solving the
one-body Schrédinger equation with the internal Hamiltonian (2.7).

This is just the one-body problem in an attractive Coulomb potential
which was discussed in detail in Sect. 1.3.3. The energy eigenvalues are

Enz——2', Tl=1,2,3,...,
n
1=0,1,...,n~1,
m=—l, —1+1,...,1-1,1 , (2.8)

where the Rydberg energy R = pe/(2h?) is now smaller by a factor u/m,
than the Rydberg energy Ry, = mee?/(2h%) corresponding to a proton of
infinite mass [CT86, BN97, UH97):

Roo = 13.605698eV |
Roo/(27he) = 109737.315686 (1) cm ™t |
Roo/(27h) = 3.28984196038 (3) x 10'°Hz . (2.9)
In coordinate space, the bound eigenfunctions of the Hamiltonian (2.7)
have the form (1.74) and the radial wave functions are given by (1.138). The
Bohr radius @ = A?/(ue?) is now larger by a factor m./p than the Bohr

radius ap = A%/(mee?) corresponding to an infinite proton mass. According
to [CT86] the numerical value for aq is:

ag = 0.529177249 (24) x 10 8cm . (2.10)

In atomic units we measure energies in units of twice the Rydberg energy
and lengths in units of the Bohr radius, r — ar, p — ph/a, H — 2RH. The
time scale in atomic units is to = A/(2R) &~ 0.242 x 10716 5. In atomic units
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and coordinate representation, the (internal) Hamiltonian for the hydrogen
atom is
1

N 1
H=-4--, (2.11)

which corresponds to 4 = 1, i = 1 and e = 1. In atomic units, the bound
spectrum of the hydrogen atom is simply E,, = —1/(2n?) and the Bohr radius
is unity.

2.1.2 Hydrogenic Ions

The considerations of the preceding section apply almost without change to a
system consisting of an electron and an arbitrary atomic nucleus with charge
number Z. Such a system is a hydrogenic ion which is (Z — 1)-fold positively
charged. In the formula for the reduced mass, the mass mp must now be
replaced by the mass myy. of the nucleus, which depends not only on the
charge number Z, but also on the mass number A (or equivalently, on the
number of neutrons A — Z):

MeMnuc Me
= = . 2.12
K Me + Mnyc 1+ me/myuc ( )

Since myye > myp for all nuclei barring the proton itself, 4 is now even closer
to the electron mass me.

For charge numbers Z > 1, the essential difference between a hydrogenic
ion and the hydrogen atom lies in the potential energy, which is stronger by
a factor Z:

a, -0z

2u T
Looking at the formula (1.135) for the Rydberg energy and (1.102) for the
Bohr radius we see that the formulae (2.8) for the energy eigenvalues and
(1.138) for the radial wave functions still hold, provided we insert the Rydberg
energy Rz instead of R,

(2.13)

Z?pet
= 2.14
Rz =5 (2.14)
and the Bohr radius az,
fi2
az = T (2.15)

instead of a. In atomic units the Hamiltonian Hz and the energy eigenvalues
E,, are given by

~ 1 VA A
Hy=—-—-A-—=, E,=-—
z 2 r’ 2n2 '

while the Bohr radius is az = 1/Z.

(2.16)
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The hydrogen atom and the hydrogenic ions Het, Lit*, Bet*++ ..,
U9+ ... constitute the simplest example of an iso-electronic sequence: atoms
and ions with the same number of electrons have very similar spectra. In se-
quences with more than one electron, however, the energies don’t follow such
a simple scaling rule as (2.16), because only the electron-nucleus part of the
potential energy is proportional to Z, while the electron-electron interaction
is independent of Z (see Sect. 2.2 and Sect. 2.3).

2.1.3 The Dirac Equation

The time-dependent Schrodinger equation (1.39) violates the symmetry re-
quirements of special relativity, as is already obvious from the different roles
played by the spatial coordinates and the time; the Schrédinger equation con-
tains second derivatives with respect to the spatial coordinates, but only first
derivatives with respect to time. As a way out of this situation Dirac pro-
posed a Hamiltonian containing the momentum components p, = (h/i)3/0z
etc. linearly. For a free particle of mass mg Dirac’s Hamiltonian is

H=cop+pmec? . (2.17)

Here ¢ = 2.99792458 x 108 ms™! is the speed of light, which is included so
that the coefficient 3 and the vector of coefficients (az, oy, ;) = (a1, a2, az)
are physically dimensionless.

The square of Dirac’s Hamiltonian,

3 3
R 1 L A
H?=¢ Z 5 (ak + akai)pipr + moc® Z(%@ + Bai)pi
ik=1 i=1
+8*m3ct (2.18)

can only fulfill the relativistic energy-momentum relation E? = p?c? + mac?,

if the coefficients «;, 8 fulfill the following anticommutation relations:
oo + oy =265, f+Pai=0, =1 . (2.19)

This means they can’t simply be numbers. As square matrices they must
at least be 4 x 4 matrices in order to fulfill (2.19). We thus replace the
Schrédinger equation by an equation

(co + Bmoc?)p =109, (2:20)
for four-component quantities called four-component spinors:
Y1(r,t)
¢2(7'7 t)
,t) = . 2.21
VD= ga(rt) 22
1/)4(1"1 t)
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Equation (2.20) is the Dirac equation representing four partial differential
equations for the four components of 1. In the so-called standard represen-
tation the coefficients o;, (3 are expressed through the Pauli spin matrices
(1.277):

o0 G w0
2= 6. 0) *T s 0)°
(0 &, (1 0
(2 %) o=(2 ). o)

Each entry in a matrix in (2.22) stands for a 2 X 2 matrix, e.g.

0 0 01 10 0 O
R -
1 0 0O 0 0 0 -1
Inserting an ansatz for a stationary solution,
b(r,t) = P(r,t=0)e” VPE (2.24)
turns the Dirac equation (2.20) into a time-independent Dirac equation,
(ca-p+ Pmec)y = Ey . (2.25)

In order to simplify notation and interpretation we write the four-component
spinors 1 as pairs of two-component quantities:

v= () o= () =) a2

Inserting (2.26) into (2.25) and using the representation (2.22) of the coefhi-
cients o;, 0B leads to two coupled equations for the two-component spinors

Ya and Pp:

G-pyYp==(E—moct)pa ,

==

G-pia= c(E +moc?)Yp . (2.27)

For a particle at rest, p1v4 = 0, pyp = 0, we obtain two (linearly indepen-
dent) solutions of (2.27) with positive energy E = moc?, namely 94 = ((1))
or () and ¢p = 0, and two solutions with negative energy E = —moc?,
namely ¢5 = (3) or (9) and ¥4 = 0. The positive energy solutions are in-
terpreted as the two spin states of the ordinary particle (of spin s = 1/2),
and the negative energy solutions are related to the corresponding states of
the associated anti-particle. (For a discussion of the concept of anti-particles.
see textbooks on relativistic quantum mechanics, e.g. [BD64].) In situations
more general than a particle at rest, the positive energy solutions of (2.27)
usually have non-vanishing lower components ¥ g, but these are small, except
in the extremely relativistic case (E > moc?), and are consequently called
small components in contrast to the large components ¥ 4.
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In order to describe e.g. a hydrogen atom, we must extend the above
treatment of a free particle to the case of a particle in a potential. The
concept of a particle in a static potential V(r) obviously contradicts the basic
requirements of relativity, because it distinguishes one reference frame from
all others. On the other hand, a relativistic theory does not allow the simple
separation of a two-body problem into a centre-of-mass part and an internal
relative motion part, as was possible in the non-relativistic case (Sect. 2.1.1).
We can nevertheless justify the relativistic treatment of an electron in the
potential of an atomic nucleus, because the nucleus is comparatively heavy
and can be assumed to be at rest (in an appropriate reference frame). This
picture makes sense as long as the energy of the electron is small compared
with the rest energy mpycc? of the atomic nucleus.

We extend the Dirac equation (2.20) or (2.27) to a particle in a static
potential V(r) by simply adding V(r) to the Hamiltonian. Equation (2.27)
then becomes

G-pYp = %[E - V(r) —moc®la
&pYa=[E- V() +modlys - (228)

If the potential is radially symmetric, V = V(r), then the radial motion
can be separated from the angular motion as in the non-relativistic case.
To this end we use the generalized spherical harmonics )} m, introduced in
Sect. 1.6.3 and make the following ansatz for the two-component spinors 4
and ¥pg:

Ya = @yj,m,u y YB= igg')‘yj,m,la : (2:29)
We make use of the identity (Problem 2.1)

&p= Tiz(&-r) (? r% +ia~i,) , (2.30)
of the properties

%(&'T)yj,m,l=j+l/2 =~Yjmi=i-1/2

%(&'T)yj,m,l=j—1/2 =—YVjmi=j+1/2 > (2.31)

and of the fact that the operator &-L = (2/h)S-L can be expressed through
J?—L%— 52, in other words, through [j(j+1)~I(I+1)—3/4]k2 (1.292). From
(2.30), (2.31) we see that each total angular momentum quantum number j
allows exactly two possibilities for the orbital angular momentum quantum
numbers l4 and {p in the ansatz (2.29):

1

o1 .. o1 .
l=j+=; (ll)lA=]+_7lB=J_§~ (2.32)

. o1
D la=j—3 5

2’ 2
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Inserting (2.29) into (2.28) and using (2.30), (2.31) leads to the radial Dirac
equation for the radial wave functions F(r) and G(r):

he (% + gp) —[E - V(r) + moc}]G
he (‘;—f - ;G) =—[E-V(r) —med]F . (2.33)

The absolute value of the constant « is j+1/2; its sign depends on the orbital
angular momentum numbers given by (2.32):!

k=-j—4% for(i), w=j+3 for(ii) . (2.34)

The radial Dirac equation (2.33) is a system of two coupled ordinary
differential equations of first order. Solving the radial Dirac equation is in
general no more difficult than solving the radial Schrédinger equation (1.75)
or (1.294). For an attractive Coulomb potential, V (r) = —Ze®/r?, the energy
eigenvalues can be given analytically in the regime of bound particle states
0 < E < moc?:

e (Za)? 2
By =0 [1 o= 51‘)2] ’
di=j+%-V({G+1/2?%-(Za)? . (2.35)

Here a = e?/(hc) = 0.00729735308 (33) = 1/137 [CT86] is the dimensionless
fine structure constant which characterizes the strength of the electromag-
netic interaction. Note that in atomic units corresponding to A =1, e = 1,
the speed of light is 1/a.

The energies (2.35) depend not only on the principal quantum number
n=1,23,..., but also on the total angular momentum quantum number
j, which, for given n, can assume the values j = 1/2, 3/2,... n — 1/2. For
each j with 1/2 < j < n —1/2 (i.e. j # 1/2, j # n — 1/2) there are two
linearly independent solutions of the radial Dirac equation characterized by
the orbital angular momentum quantum numbers I4 = j +1/2 and 4 =
j —1/2 in the large components. Obviously the formula (2.35) is only valid
for Za < 1. This implies Z < 137, which is fulfilled for all known atomic
nuclei.

Expanding (2.35) in powers of Za yields

2 (Za)? (Za)* 1 3 5
_ _ _ LA DA 36
Eng=moc® |1 -~ \Griz ) " (2:36)

The first term is simply the rest energy moc? of the particle and the sec-
ond term corresponds to the non-relativistic spectrum with binding energies
R/n?. The next term contains corrections which are smaller than the non-
relativistic binding energies by at least a factor of (Za)?/n. This fine structure

! The constant « is related to the factor F'(j,1) in front of the spin-orbit contribu-
tion in the radial Schrédinger equation (1.294) by k = —1 — F(j,1a).
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o3 ) 3y, ‘o ) Fig. ‘2.1. Fine structure
= SN — 35y, 305, } .08 (1425 o splitting of the energy lev-
. 35!/:~3P|/: ' els up to n = 3 in the hy-

drogen atom, as predicted
by the Dirac equation

‘ (2.35). The numbers are
n=2 : in 10~° atomi
e 2p,, %9 T energies in atomic
O units; on this scale the non-
2.08 relativistic binding energies
l are 0.5x10%/n®

25y, 2P,

1Sy,

causes an n- and j-dependent lowering of all energy levels. For a given n the
shift is largest for j = 1/2 and smallest for j =n — 1/2.

Figure 2.1 shows the fine structure splitting of the low-lying levels of the
hydrogen atom, as predicted by the Dirac equation. The standard nomen-
clature for hydrogenic single-particle states is as follows: Energy levels are
labelled nl;, where n is the Coulomb principal quantum number and j is
the total orbital angular momentum quantum number. The orbital angular
momentum quantum numbers 4, = = 0,1, 2, 3,... are denoted by the
letters s, p, d, f,... (continue alphabetically). Examples: 2s; /2 stands for
n=21=0,j=1/2and 7gg/ stands forn =7,1 =4, j = 9/2.

Going beyond the Dirac equation, the electron-proton interaction can be
treated with the methods of quantum electrodynamics. The states of given
n and j with {4 = j £+ 1/2 are then no longer degenerate. The 2s; /2 level,
for example, lies roughly 0.2 x 10~® atomic units above the 2p; /2 level, a
separation corresponding to about 10% of the fine structure splitting to the
2p3/2 level. This Lamb shift has been accurately confirmed by experiment.
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2.1.4 Relativistic Corrections to the Schrédinger Equation

The Dirac equation (2.28) can be rewritten as one second-order partial dif-
ferential equation for the large components 1 4. To see this, resolve the lower
equation for ¥ g,
c
= ———— P 2.37
wB Fo V('I‘) T moC2 pa , ( )
and insert the result into the upper equation:
2

A o~ C ~ A 2
P —— e G- = -V - 2.38
Upm002+E—V0pr (B=V=mc)pa ( )
or, replacing E — mqc? by e:
1 e-v]!
L&D |14+ =—= F-ps=(c-V . 2.39
2mga p [ + 2m0c2] Gpva=( J¥a (2.39)

In the weakly relativistic case the energy FE of the particle is not very
different from its rest energy moc?, so the difference ¢ = E — moc? is small
compared with mgc?, as is the potential V. It then makes sense to expand
the square bracket in (2.39), and the left-hand side becomes

L sp(1-=Y ) 6.5y
2myg p 2mpc? pPya

_ e-V\ (6:9)(6-P) , h(6-VV)(6-D)
B Kl B 2m002> 2mg *3 4mdc? va - (2:40)
Using the identity (Problem 2.1)
(6-A)(&-B) = A-B +i5 - (A x B) (2.41)

(in particular (6-p)(6-p) = p?) and assuming a radially symmetric potential,
V =V(r), VV = (r/r)dV/dr, we obtain the equation

-V 2 R 1 14V,
(1-52) 2 )

" 9mec? ) 2my Y4m§c2 rdr
R 1dV
—_— & 5 =(e-V . 2.42
P el P>] Ya=(e=V)va (2.42)

In the first term on the left-hand side we approximate € — V by $?/(2mo). In
the last term we have /i - (r x p) = 2L 5. The middle term is not Hermitian.
This is due to the fact that we are trying to account for the coupling between
the large components 14 and the small components 1 in a Schrédinger-type
equation for the large components alone. Darwin introduced the Hermitian
average,

oo L [MAV o he e
D7 8m2e [ir dr P =W gy
K2 2dvV  d?V h2
_ 2dv AV _ A% _ 2.43
8m3c? (r dr = dr? ) 8m2c? Avi(r) (2.43)
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With these manipulations we obtain a Schrodinger equation including
relativistic corrections to first order in p?/(mqc)?:

P’ _ P°p°
2my  8mjc?

+V(r)+ Hps + ﬁn) Ya=epa . (2.44)

Besides the Darwin term (2.43) the Hamiltonian in (2.44) contains the spin-
orbit coupling

N 1 14V . 4

Hips=——-——L-S 2.45
LS = omic2r dr (2:45)
and a correction to the kinetic energy including the fourth power of the
momentum operator. This makes (2.44) a differential equation of fourth or-
der, which is actually no progress compared with the original Dirac equation
(2.28) or (2.33). However, the effects of the relativistic corrections to the
non-relativistic Schrodinger equation are small and can usually be calculated

with perturbative methods.

In an attractive Coulomb potential V(r) = —Ze?/r, the spin-orbit cou-
pling and the Darwin term are explicitly:
R Ze? 1 . 4 N wh2Ze?
Hps = —~L-§S, Hp=—194 . 2.46
Ls 2méc? r3 © TP T omie2 (r) (2.46)

In this case the Darwin term contributes only for [ = 0; the spin-orbit coupling
contributes only for [ > 0. We can recover the result (2.36) using first-order
perturbation theory with the perturbing operator consisting of the two terms
(2.46) and the p*p? term (Problem 2.2).

Further correctlons can be obtained by considering that the atomic nu-
cleus isn’t a structureless point particle, but has a finite spatial size of the
order of 107!2 cm and an internal angular momentum called the nuclear spin.
These corrections are even smaller than the fine structure effects discussed
above and appear in the spectrum as hyperfine structure.

2.2 Many-Electron Systems

2.2.1 The Hamiltonian

For an atom or ion consisting of N electrons and an atomic nucleus of mass
Mpye and charge number Z, the non-relativistic Hamiltonian for the whole
system is

. P2 N /P2
Hy 7 = 2. 4 ( & ) 3 2.47
’ 2mnye ; 2me I"'et - rnucl ZJ: |7'ez - Tegl ( )

Prouc and Tnyc are the momentum and the position of the nucleus, and p;
and 7,; are the momenta and position coordinates of the N electrons. We can
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separate the centre-of-mass motion from the internal dynamics by introducing
the centre-of-mass coordinate,

N
1
R = M (mnucrnuc + Me Z rei) y M= Mpuc + Nme y (2.48)

i=1
together with the relative distance coordinates 7;, which stand for the dis-
placement of the respective electrons from the position of the nucleus:

Ti = 7Tei — Thuc - (249)
The associated momenta are

~ h k

P= TVR y Pi= Tvr" . (2-50)

Expressing the momenta P,y and Pe; in (2.47) in terms of the momenta
(2.50),

N m A ~ " Me A ~
Pnuc = Ar;lcp - ZP‘L y DPei = Hep+pi ) (251)

allows us to decompose the total kinetic energy in (2.47) into a centre-of-mass
part and an internal part:

~D N A 52 N

Pruc DPe; P
— 4+ =t = —— . 2.52
e L7 2me 2M T & 2u P—— ZJ bi'P; (2.52)

Here p = MeMnuc/(Me + Mnuc) again is the reduced mass of an electron rel-
ative to the atomic nucleus. The two-body potential describing the mutual
electrostatic repulsion of the electrons depends on differences of two electron
coordinates, and these differences do not depend on whether we use the elec-
tron coordinates T.; in a fixed reference frame or the displacements (2.49)
from the atomic nucleus.

The Hamiltonian describing the internal structure of the atom or ion has
the form

N
i =Z’2"—i+ZV(i)+ZW(i,j) . (2.53)

It differs from the Hamiltonian we would obtain for an infinitely heavy nu-
cleus in that the kinetic energy term contains the reduced mass u instead of
the free electron mass m.. Furthermore, the last term on the right-hand side
of (2.52) leads to a momentum-dependent correction H;-B;/Mnuc to the two-
body interaction. This correction is called the mass polarization term and
originates from the fact that the centre of mass (2.48) of the whole system
is not identical to the position 7,y of the nucleus, from where the internal
electron displacements (2.49) are measured. However, this correction is very
small and can be treated perturbatively. The same is true, at least in light
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atoms (and ions), for the relativistic corrections such as spin-orbit coupling

discussed in Sect. 2.1.4. Ignoring these corrections for the time being, we have

an N-electron problem defined by the Hamiltonian (2.53) with the electro-

static attraction of the electrons by the nucleus as the one-body interaction,
Ze?

Vi) =— — (2.54)

and a two-body interaction due to the mutual electrostatic repulsion of the
electrons,

62

W (i, ) = = (2.55)

2.2.2 Pauli Principle and Slater Determinants

The wave functions describing the internal dynamics of an N-electron atom
or ion depend on the internal spatial coordinates 7; and the spin coordinates
ms,, which we shall collect in one symbol z;. The indistinguishability of the
electrons manifests itself in the fact that the Hamiltonian (2.53) does not
depend on the ordering of the electron labels i. If we change a given wave
function ¥(z1, ... zn) by permuting the electron labels,

Py(z1,... 8) = Y(Tpa),--- TP(V)) (2.56)

then the action of the Hamiltonian on the wave function does not depend on
whether it acts before or after such a permutation:

PHy(x,... xy) = HPY(zy,... zn) . (2.57)

Each permutation P of the numbers 1,... N defines an operator P ac
cording to (2.56), and each such operator commutes with the Hamiltonian,
because of (2.57):

[H,Pl=0 . (2.58)

It would seem reasonable to classify the eigenstates of H according to the
eigenvalues of the permutation operators, i.e. according to their behaviour
under reordering of the particle labels. In a two-body system there is only
one non-trivial permutation, namely P»;, which replaces the pair 1, 2 by 2, 1.
Obviously the corresponding operator gives the unit operator when squared,
Py Py = 1, so its only possible eigenvalues are +1 and —1. In systems of
more than two indistinguishable particles there are many more possibilities,
but only these two eigenvalues are realized in nature. All wave functions in
systems of indistinguishable particles are either totally symmetric, i.e. inter-
changing any two particle labels doesn’t change the wave function at all,
or they are totally antisymmetric, which means that interchanging any two
particle labels multiplies the wave function by —1:
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Pjp(x1, e Tic1, iy, Tjo1, L5, - TN)
1/)(111, . ,1'1'._1,21]', 9 Tj—1,T4, - .’EN)

= —1/1(1:1,..,zi_l,zi,..,xj_l,a:j,..zN) . (2.59)
Furthermore, the behaviour of the wave functions under permutations of the
particle labels is an internal property of the particles and does not depend on
their dynamic state or their environment. Particles with totally symmetric
wave functions are called bosons, particles with totally antisymmetric wave
functions are called fermions. Electrons are fermions. The statement that
fermions only occur in totally antisymmetric states is called the Pauli prin-
ciple.

Any permutation of the numbers 1,... N can be decomposed into a se-
quence of successive swaps of just two numbers. This decomposition is not
unique, but the number of swaps making up a given permutation is either
always even or always odd. One calls the permutation itself even or odd ac-
cordingly. The total antisymmetry of a wave function can thus be written
compactly:

Py=(-1)Fy (2.60)
with (—1)P = 1 for even permutations and (—1)” = —1 for odd permutations.

From a given wave function 1, which need not be totally antisymmetric,
we can project out a totally antisymmetric part using the antisymmetrizer

~ 1 ~
A= i ;(—1)PP ) (2.61)

To see that .Aid) is totally antisymmetric, we apply an arbitrary permutation
Q:
A a 1 R
Ay = —=> (-1)PQPy . (2.62)
QAy ﬁm;()
Since the permutations mathematically form a group, the set of all permu-
tations QP (Q fixed, P covering all permutations) again contains each per-
mutation exactly once. Furthermore (—1)P = (—1)?(—1)?F, so that we can
rewrite (2.62) using P’ = QP:

QAY = (—1)Q\/% S Py = (-1)%4y . (2.63)
<

In a similar way it can be shown that
AA=VNIA, A'=A . (2.64)

This means that A/ v/ N! has the properties of a projection operator.
A particularly important set of totally antisymmetric wave functions are
those constructed by antisymmetrizing simple product wave functions:

N
O = [[wilzs) - (2.65)

i=1
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Such product wave functions appear e.g. as eigenfunctions of an N-body
Hamiltonian which can be written as a sum of one-body Hamiltonians (such
as the Hamiltonian (2.53) if we were to leave out the two-body interac-
tion W (4, 7)). Applying the antisymmetrizer to (2.65) produces the antisym-
metrized product wave function

. 1 5 1
APy = 7 ;(—I)ngl’i(fmi)) = \/~—N_—!det[¢i(xj)] . (2.66)

We write det[1);(x;)], because the sum over the products in (2.66) can for-
mally be written as the determinant of the N x N matrix [1;(z;)]:

Yi(z1)  Yi(m2) - Yi(zN)

det[vi(z4)] = (2.67)

Yn(z1) ¥n(z2) - Yn(zN)
Antisymmetrized product wave functions are called Slater determinants.

The determinant notation shows that an antisymmetrized product wave
function vanishes identically when two or more single-particle wave functions
1; are the same. This leads to an alternative formulation of the Pauli prin-
ciple, applicable to Slater determinants: no two fermions may occupy the
same single-particle state. A more general and at the same time more precise
formulation is: a Slater determinant vanishes identically if and only if the
single-particle states from which it is built are linearly dependent.

Like an ordinary determinant, a Slater determinant is invariant under
elementary replacements of rows:

i oY=t Y ity (2.68)
J#i

More generally: if we replace the (linearly independent) set of single-particle
wave functions 1; by any set of linearly independent linear combinations
i, then det[y](z;)] differs from det{t);(x;)] by at most a constant factor.
A Slater determinant is thus characterized not so much by a particular set
of single-particle states, but rather by the subspace spanned in the single-

particle Hilbert space by these single-particle states.

When many-body wave functions are Slater determinants, the many-body
scalar products such as (1.1) can be expressed in terms of scalar products of
the single-particle wave functions involved. The overlap of two Slater deter-
minants ¥ = (N1)~1/2 det[y;(z;)] and & = (N!)~Y/2 det[p;(z;)] is:

(PI¥) = det((¢:l¥5)) (2.69)

and the right-hand side is now an ordinary determinant of a matrix of num-
bers, viz. the numbers

Ay = (dalv5) - (2.70)

For a one-body operator, more precisely, for a many-body operator which
can be written as a sum of single-particle operators V, we have
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N N
(@Y VE)Iw) = (8®) > (4:lVI¥;)Bsi (2.71)
i=1 =1

where the matrix B is the inverse of the matrix A defined by (2.70). For an
operator which can be written as a sum of two-particle operators we have

(@D W(i,H)®)

i<j
N
= 2(@0) D (8udsWhbith) (BuiBy  BusBu) - (272)
i,7,k,l=1

The formulae (2.71), (2.72) are valid for any (not necessarily orthonormal)
set of single-particle wave functions as long as det A # 0. Simpler formulae
apply when @ and ¥ are built from the same set of orthonormal single-particle
states. Then (@|¥) is only non-vanishing if the same single-particle states are
occupied in ¢ and ¥. Furthermore, (¥|¥) = 1. The factor 1/+/(N') in (2.66)
is just chosen such that a Slater determinant built from orthonormal single-
particle states is normalized to unity.

For orthonormal single-particle states and @ = ¥, the formula (2.71) is
simplified to

N

N
@D VW) = (alVigs) - (2.73)

i=1 i=1

There is also a non-vanishing matrix element (J| Zfil V(3)|¥) when at most
one of the single-particle states occupied in ¥ (¥, say) is replaced in &
by another single-particle state (ip, say) which is unoccupied in ¥. Such a
Slater determinant @ is called a one-particle-one-hole excitation Wy of V.
The matrix element of a one-body operator between ¥y, and ¥ is:

N
(Ton| D V@IP) = (WplVign) (2.74)
i=1
(Formula (2.71) cannot be applied to this case, because (¥pn|¥) = 0.)
For orthonormal single-particle states and ¢ = ¥, the formula (2.72) for
two-body operators is simplified to

N
s . 1 A A
@SS WED) =5 3 (WabslWlvsy) — iy W) - (2.75)
i< 1,j=1
The matrix element of a two-body operator between ¥ and a one-particle-
one-hole excitation ¥y, is:
N

(ol WG I = S (it W i) — il Wlpnys)) . (276)

i<j i=1
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If the bra is a two-particle-two-hole excitation Wy p,h p, of ¥, €. Pp, = Pp,,
br, = Pp, and ¢; = o; for all other 9;, then there is also a non-vanishing
matrix element

(wplmhlhz ] Z W(‘L,j)|W)

i<j

= <¢I‘1 prlwiwhl whz) - (¢p1¢pzlwl¢h2¢h1) ) (2‘77)

2.2.3 The Shell Structure of Atoms

If the Hamiltonian (2.53) contained only the one-body interaction and there
were no two-body interactions, then it would describe independent motion of
the N electrons. The Hamiltonian would be a sum of N single-particle Hamil-
tonians of the form (2.13) whose eigenfunctions are simply the eigenfunctions
of the hydrogenic ion. Each product of N such single-particle eigenfunctions
would be an eigenfunction of the N-particle Hamiltonian, and so would each
Slater determinant made by antisymmetrizing such a product (because pig
commutes with all permutations and hence also with the antisymmetrizer
(2.61)). The energy eigenvalue of such a Slater determinant would simply
be the sum of the single-particle energies of the occupied states. The en-
ergetically lowest N single-particle states would make up the ground state
(Pauli principle), and the excited states would be one-particle-one-hole, two-
particle-two-hole, etc. excitations of the ground state Slater determinant.

This simple picture is disturbed by the two-body interaction 3 W(3,5).
It is not small and contributes significantly to the total energy of the atom or
ion. However, a large part of the two-body interaction can be accounted for
by a mean single-particle potential, often called mean field, which formally
retains the independence of the electrons. A consistent derivation of the mean
single-particle potential is given in Sect. 2.3.1. Qualitatively the electrostatic
repulsion of one given electron by all other electrons is described by an av-
erage screening potential which modifies the single-particle potential (elec-
trostatic attraction by the nucleus) acting on that electron. Those parts of
the two-body interaction which are not included in the mean single-particle
potential constitute a residual two-body interaction and this is much less than
the full two-body interaction. Take e.g. an electron in an N-electron atom or
ion whose nucleus has charge number Z. At large distances from the nucleus
(and the other electrons) the electron feels a screened Coulomb potential
—(Z — N + 1)e?/r. At small separations r < az, however, it feels the full
unscreened attraction of the naked nucleus: —Ze?/r. In the transition region
from small to large separations the mean single-particle potential changes
smoothly from the unscreened potential to the screened potential as is illus-
trated schematically for the case of a neutral sodium atom (Z = N = 11) in
Fig. 2.2.

The single-particle eigenstates in such a mean single-particle potential are
no longer the eigenstates of a pure Coulomb potential, but they can still be
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classified by the quantum numbers n, [, m. Since the mean single-particle
potential is always taken to be radially symmetric, the single-particle ener-
gies for given angular momentum quantum number [ are degenerate in the
azimuthal quantum number m. However, eigenstates with a given principal
quantum number n are no longer degenerate in I/, because the potential is
no longer a pure Coulomb potential. A glance at Fig. 2.2 shows that states
with low [ are most strongly influenced by the stronger attraction of the un-
screened nucleus, because their wave functions have the largest amplitudes
at small separations — see Fig. 1.4 and (1.78). As a result the levels with low
l are shifted downwards considerably relative to the levels with higher [. A
typical spectrum of a single-particle Hamiltonian containing a mean single-
particle potential as in Fig. 2.2 is shown in Fig. 2.3. The downward shift of
the [ = 0 levels is so large that the energy of the 4s state already lies below
the energy of the 3d state. Larger gaps appear in the spectrum above the
1s, 2p, 3p,... levels.

The energy levels in Fig. 2.3 define subshells which accomodate a num-
ber of single-particle states according to their degeneracy, and each of these
single-particle states can be occupied by at most one electron. (We reserve
the term “shell” for all states belonging to one principal quantum number n.)
Considering that there are two possible spin states associated with each or-
bital wave function 1 (r), the total number of single-particle states in each nl
subshell is simply 2(2{+1). In s, p, d, f,...subshells there are 2, 6, 10, 14, ...
etc. states.

We assume that the ground state wave functions of neutral atoms are built
by successively filling the subshells of single-particle states. The electrons in
the energetically lower closed (i.e. completely filled) subshells are compara-
tively tightly bound, and the least bound electrons are the outer electrons
in the last occupied subshell. In this picture, chemically similar elements,
which were grouped together in the periodic table long before the invention
of quantum mechanics, have the same number of outer electrons and the
last occupied subshells within a group have the same angular momentum
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quantum number [. The noble gases He, Ne, Ar, Kr, Xe, Rn are built wholly
of closed subshells and the last occupied subshell is that of a single-particle
level at the lower edge of one of the larger gaps in the single-particle spectrum
1s, 2p, 3p, 4p, 5p, 6p.

The simple picture of the shell structure of atoms (in their ground states)
following from Figs. 2.2 and 2.3 is able to explain the positions assigned to
the elements in the periodic table according to their chemical properties.
This is a great success of the concept of independent electrons in well defined
single-particle states. Nevertheless, the exact eigenstates of the Hamiltonian
(2.53) are of course much more complicated. For a quantitative description
of atoms with more than one electron we need to consider correlations which
go beyond the independent single-particle picture.

2.2.4 Classification of Atomic Levels

In order to classify the eigenstates of the N-electron Hamiltonian it is rea-
sonable to look for constants of motion, i.e. for good quantum numbers. Let’s
assume for the time being that the effects of the spin-orbit coupling are neg-
ligible. Then the total orbital angular momentum L and the total spin S,
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which are made up of the single-particle orbital angular momenta L; and the
single-particle spins S; of the electrons respectively,
N N
L="L:, §=8; , (2.78)
=1 i=1
are constants of motion, i.e. their components and their squares L2 and §?
commute with the Hamiltonian (2.53). The eigenvalues of L2 and §2 are
L{L + 1)A? and S(S + 1)A? respectively, and to each pair of values of L and
S there are (2L + 1) x (25 + 1) degenerate eigenstates corresponding to the
different eigenvalues of f/z and S’z.

It is customary to denote the total orbital angular momentum quantum
number L = 0,1, 2, 3,... by the capital letters S, P, D, F,... (continue
alphabetically), while the total spin quantum number S is noted by writing
the spin multiplicity 25 + 1 to the upper left of the letter denoting L: 3P
means S=1, L=1, *D means S=3/2, L=2, etc. Since all electron spins are
1/2, the total spin quantum number S is an integer and the spin multiplicity
25 + 1 odd for an even number N of electrons, while S is a half-integer and
25 + 1 even if N is odd.

In the presence of a small spin-orbit coupling Vis(r;)L;-S; in the one-
body interaction the Hamiltonian (2.53) no longer commutes with the orbital
angular momenta and the spins (neither with the components nor with the
squares), but it commutes with the total angular momentum of the electrons:

J=L+§ . (2.79)
We can treat the effects of the spin-orbit coupling approximately if we couple
the states classified by L and S to eigenstates of J2 and J,, similar to the one-
electron case described in Sect. 1.6.3. The resulting states are now labelled by
a further quantum number J for the total angular momentum, and it is writ-
ten as a subscript to the letter denoting L, in analogy to the labelling of one-
electron levels. Example: 4D5/2 means S = 3/2, L = 2, J = 5/2. According
to the triangle condition (1.268), each term 25+1[L splits into 25 + 1 (in case
S <L)yor2L+1 (in case L < S) levels 2*'L;, J = |L~ S|, |L -S| +1,...,
L+S—-1,L+ S, and each such level encompasses 2J + 1 eigenstates of jz,
which remain degenerate in the presence of the spin-orbit coupling. (This de-
generacy is lifted if we consider the effects of the hyperfine interaction with
a non-vanishing nuclear spin I, because then only the total angular momen-
tum I + J of the atomic nucleus plus the orbiting electrons is a constant of
motion.)

As long as the picture of independent particles is applicable, we can in ad-
dition label the atomic states by the principal and orbital angular momentum
quantum numbers n, ! of the occupied single-particle states. The complete set
of n,! quantum numbers of the occupied single-particle states defines a con-
figuration. A configuration with, say, two occupied 1s single-particle states,
two occupied 2s states and three occupied 2p states is conventionally written
as (1s)2(2s)%(2p)3.
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When constructing a many-body state out of single-particle states we
must of course respect the requirements of the Pauli principle. This is still
comparatively easy for atoms and ions with two electrons (or with two outer
electrons), because the coupled spin states of two s = 1/2 particles have a
well defined symmetry with respect to permutation of the two particle labels.
In this special case of angular momentum coupling (j; = 1/2, ja = 1/2) let’s
abbreviate (1.264) to

1S, Ms) = > (ma,, mg,|S, Ms)|ms,,ms,) (2.80)

Mgy Mgy
In this notation the triplet of states coupled to S =1 is simply
I1,1) = |1/2 1/2)
I1,0) 11/2,-1/2) +|-1/2,1/2))
- )
,-1) = -1/2,-1/2) , (2.81)
and the S = 0 (singlet) state is

|0,0) = 11/2,-1/2) —|-1/2,1/2)) . (2.82)

5

The three states of the triplet S = 1 are symmetric with respect to in-
terchanging the two particle labels, while the singlet state is antisymmetric.
Since the whole two-particle wave function ¥(ry, ms,, 72, ms,) has to be an-
tisymmetric, its behaviour with respect to interchange of the two spatial
coordinates must be symmetric in the singlet state and antisymmetric in the
triplet states. Thus a helium configuration in which both electrons occupy
the (non-degenerate) 1s spatial state is only possible in the singlet spin state.
Figure 2.4 shows the energy levels of the bound states of helium, separated
according to S = 0 (para-helium) and S = 1 (ortho-helium). Provided they
are allowed by the Pauli principle, the configurations of ortho-helium lie en-
ergetically lower than the corresponding configurations in para-helium. This
can be understood as an effect of the residual interaction involving a short
ranged repulsion of the electrons. It is less effective in a wave function anti-
symmetric with respect to interchange of spatial coordinates, which has to
vanish for |[r; — r2| = 0, than it is in a symmetric wave function, where it
vields a positive contribution to the total energy. (See Problem 2.3.)

When the spins of more than one electron from a given subshell are cou-
pled to total spin S, then the state with the largest value of S is energetically
lowest, because it feels the effects of the short ranged electron-electron re-
pulsion least due to the symmetry properties of the spatial part of the wave
function. This is Hund’s first rule. For a given value of S the electrons can
couple to different values L of the total orbital angular momentum. Amongst
these states, the effect of the short ranged repulsion is least in the states with
the largest values of L. Of all states with the same value of S, the state with
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the maximum value of L is hence the energetically lowest. This is Hund’s
second rule.

As an example Fig. 2.5 shows the lowest-lying states of the carbon atom,
which has two electrons in the 2p subshell. The ground state trlplet 3P and
the next two excited singlets D and 'S are based on the (1s)? (2s)? (2p)? con-
figuration, in which the lowest single-particle states are occupied. The next
highest term is a quintuplet 5S° corresponding to a (1s)2 (2s) (2p)? configu-
ration, in which the 2s subshell is occupied by only one electron, while the
2p subshell is occupied by three electrons. The small “o” at the upper right
of the letter denoting L stands for odd parity and indicates that the whole
many-body wave function has odd parity with respect to the simultaneous re-
flection of all spatial coordinates at the origin. This notation was already used
for the P and the F states in helium in Fig. 2.4. The parity of a many-body
wave function is important, because it influences the selection rules for elec-
tromagnetic transitions. A configuration characterized by the single-particle
orbital angular momentum quantum numbers l1, ... Iy has odd parity if the
sum Eivzl l; is odd (see (1.72)). Note that the parity of a many-electron state
is in general a good quantum number, and this is not bound to the validity
of the independent particle picture.

Figure 2.5 also shows the splitting of the ground state triplet into three
3p; levels, J = 0, 1, 2 due to the spin-orbit coupling. The D, 1S and °5°
terms do not split up, because either L or S (or both) are zero. The ground
state triplet is regular, meaning that the energies of the levels increase with
increasing values of J. Multiplets with the opposite behaviour are called
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Fig. 2.5. The lowest energy levels in the carbon atom. The configuration labels
should in principle carry a further (ls)2 for the two occupied states in the n=1
shell. Amongst the (2s)* (2p)? states the triplet term (S = 1) is lowest according to
Hund’s first rule. The Pauli principle forbids 3§ and 3D terms, because they would
contain a spatial wave function symmetric in the particle labels in conjunction
with a spin wave function which is also symmetric in the particle labels. The L = 1
triplet is regular, i.e. the energy increases with increasing total angular momentum
quantum number J. The L = 2 term is the lower of the singlet states according
to Hund’s second rule. The first excited configuration shows up in the quintuplet
term of the 2s (2p)® configuration. This configuration has odd parity

inverted. It is empirically established that ground state terms of atoms whose
outer subshell is at most half filled form regular multiplets, while the ground
state multiplets are inverted in atoms whose outer subshell is more than half
filled.

The above classification of atomic states is based on the assumption that
orbital and spin angular momenta are at least approximately constants of
motion. This LS coupling, which is also called Russell-Saunders coupling,
loses its justification when the influence of the spin-orbit coupling in the one-
body interaction increases as is the case for the heavier atoms. It may then be
more appropriate to assume that the single-particle total angular momenta
of the electrons

Ji=Li+8; (2-83)

are approximate constants of motion, and to couple these to the total angular
momentum of all the electrons. For two electrons,

J=Jdi+J;: , (2.84)
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this can be done in a straightforward way (compare Sect. 1.6.1) and leads to
the jj coupling scheme.

A comprehensive compilation of the known levels of atoms and ions from
hydrogen to manganese can be found in [BS75, BS78, BS81, BS82]. A detailed
and comprehensive discussion of the levels of atoms with one or two electrons
is contained in the classic book by Bethe and Salpeter [BS77]. For a thorough
discussion of the structure of low-lying states see also Atomic Structure by
Condon and Odabasi [CO80].

2.3 The N-Electron Problem

The many-body problem poses a major challenge in all areas of physics. It
is not soluble in general, but various approximations have been successful
in different fields. This section contains a brief summary of some techniques
which have been successful and/or widely used in the many-electron problem
of atomic physics.

2.3.1 The Hartree-Fock Method

The central idea of the Hartree-Fock method is to retain the simplicity of the
independent single-particle picture, and to approximate an exact solution of
the N-electron problem as well as possible within this framework. This means
that we describe the system by the “best” Slater determinant. In the spirit of
the Ritz variational method (Sect. 1.5.2) we search for a Slater determinant ¥
for which the energy expectation value E[¥] remains stationary under small
variations ¥ — W + 8% of the Slater determinant: §E[¥] = 0.

Let ¥ = (1/v/N1) det[y;(x;)] be a Slater determinant of orthonormalized
single-particle states 1;. When varying ¥ we must take care that the var-
ied wave function is again a Slater determinant. Appropriate variations are
achieved by modifying the single-particle states occupied in ¥ through small
admixtures of single-particle states 1, which are not occupied in ¥:

Wi — Vi =i + Nidp, - (2.85)

Expanding the Slater determinant &' = (1/v/NT) det[}(z;)] around the orig-
inal Slater determinant ¥ shows that the leading terms in 6% = ¥’ — ¥ are
those in which only one single-particle state is modified. These terms yield
contributions of the form A\;%,;, where ¥,,; is a one-particle-one-hole excita-
tion of ¥ in which the single-particle state 1; is replaced by the single-particle
state 1, (which is unoccupied in ¥). Contributions in which more than one
single-particle state is modified correspond to two-particle-two-hole, three-
particle-three-hole excitations etc. They, however, carry two, three or more
factors A; and are hence small to higher order than the contributions of the
one-particle-one-hole excitations.
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The infinitesimal variations of a Slater determinant which ensure that
the varied wave function is again a Slater determinant are thus one-particle-
one-hole excitations. From (1.219), (1.220) it immediately follows that the
condition §E[¥] = 0 is equivalent to the condition that all matrix elements
of H between ¥ and one-particle-one-hole excitations vanish:

SEW] =0 <= (ulHP)=0 forall @, . (2.86)

This is Brillouin’s theorem.

Brillouin’s theorem leads directly to a set of equations for the “best”
Slater determinant. With the Hamiltonian (2.53) as a sum of one-body and
two-body operators and the formulae (2.74), (2.76) for its matrix elements
with one-particle-one-hole excitations, we have

<wp|— S+ 3 (¢ (WetoWlpsn) — et Wlvnwi)) = 0. (2.87)
=1

The whole left-hand side of (2.87) can be interpreted as the matrix element
of an effective one-body Hamiltonian he between the single-particle state 1,
which is unoccupied in ¥, and the single-particle state 1y, which is occupied
in ¥. The condition § E[¥] = 0 is fullfilled if the one-body operator he, which
itself depends on ¥, has no non-vanishing matrix elements between single-
particle states which are occupied in ¥ and single-particle states which are un-
occupied in ¥. A sufficient (but not necessary) condition is that the one-body
operator i).q/ be diagonal in the single-particle states ¥1,..., ¥n,..., ¥p,...:

2 R N R R
(aly + V1) + 3 (WibalWIpiths) — Wivpal W 001
i=1

= (Yalhw|thp) = €abap - (2.88)

Now %, and 1 are any occupied or unoccupied single-particle states, but
the sum in (2.88) runs only over the single-particle states occup1ed in ¥,
%1,..., Yn. These are the Hartree-Fock equations.
The one-body Hamiltonian hg; contains various contributions:
2

hw:g—M+V+Wd—Wex . (2.89)
The kinetic energy $°/(2u) and the one-body potential V come from the one-
body part of the N-electron Hamiltonian H and do not depend on the Slater
determinant ¥. The first terms in the bracket following the summation sign
in (2.88) constitute the direct potential W4, which is defined by its one-body
matrix elements

N
(Va|Waltis) = D (sthalW i) (2.90)
i=1
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For the two-body interaction (2.55) without spin-dependent corrections, Wy
is simply a local potential depending on the spatial coordinate r:

Wd = Wd(r) Z("/)L l"pz)

/|
/dr ZZW’I (', ms)| _2r,| .. (2.91)

i=1 ms

The integrand in (2.91) contains the electrostatic two-body interaction
e?/|r — v'| multiplied by the single-particle density g at the position 7':

N N
def

o(r') T (@Y 60 — ) =Y li(r ma) P (2.92)

i=1 i=1 ms
Thus Wq4(r) is the electrostatic potential due to the N electrons of the Slater
determinant ¥.

The second terms in the bracket following the summation sign in (2.88)
yield the exchange potential Wey. It is also a one-body operator defined by
its matrix elements,

~ N A
(ValWexltos) = > _(Vithal Wivpts) (2.93)
i=1
but it has the much more complicated form of a non-local potential. The action
of such a non-local potential on a single-particle wave function ¥(r, ms) is
determined by an integral kernel Wex (7, ms; 7/, ml):

Wexth(r, ms) = /dr' ZWex(r,ms; r',ml) (', ml) . (2.94)
Writing out the two-body matrix elements on the right-hand side of (2.93)
shows that the integral kernel in (2.94) corresponds to

N
Wex(r,me; v/, ml) = > 9} (v, mp)Wepi(r,ms) . (2.95)
i=1
If we neglect momentum-dependent corrections and take w simply to be
the electrostatic repulsion (2.55) then

Wex(r, mes, 7/, ml)_z¢t(T M) 77— (' (7' m)

l |

k4

= O, m, E Omayma, Yi(P) ———2 7 (7). (2.96)

Pt B
On the right-hand side of (2.96) we assumed that the single-particle states v;
each correspond to a well defined spin state, ¥;(r, ms) = ¥;(r)Xm,, (compare

(1.273)).
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When we calculate the expectation value of Wd - Wex for a given single-
particle state 1; occupied in ¥, the two contributions corresponding to i = j
cancel:

(951 Wa = Wexlths) = 3 (WatslWlaws) — awslWlss)) . (297)
S i
Thus a part of the exchange potential just cancels the unphysical self-energies
(w¢1/1i]W|1/)i11),v): in the contribution of the direct potential.

The Hartree-Fock equations (2.88) replace the N-electron problem by a
one-body probleni characterized by the one-body Hamiltonian he (2.89). But
hy still depends on the Slater determinant ¥, which is to be determined by
solving the Hartree-Fock equations. Thus the Hartree-Fock method involves a
problem of self-consistency, which is usually solved iteratively. We start with a
Slater determinant ¥y, diagonalize the one-body Hamiltonian h% defined by
the single-particle states occupied in %, obtain a new set of single-particle
states and a new Slater determinant ¥;, diagonalize hy,, obtain ¥, etc.,
until the procedure reaches convergence. A widespread simplification of this
unrestricted Hartree-Fock procedure is the restricted Hartree-Fock procedure,
in which we assume that the single-particle wave functions in each iteration
step are eigenfunctions of the single-particle orbital angular momentum,

_ )

bi(r,me) = B Ym0, 0)xm, (2.98)

and that all radial wave functions in a subshell are identical. The Hartree-Fock
equations can then be reduced to a set of radial equations for the determi-
nation of the radial wave functions ¢§t) in each occupied subshell.

In the Hartree-Fock method, the variational method doesn’t lead to diag-
onalization of a reduced Hamiltonian in a subspace of Hilbert space (compare
Sect. 1.5.2). The reason for this is that the set of variational wave functions,
i.e. of Slater determinants, is not a subspace which is closed with respect to
linear superposition; a sum of Slater determinants need not itself be a Slater
determinant. Consequently, two different Slater determinants which solve the
Hartree-Fock equations (for the same values of the good quantum numbers of
the system) need not be diagonal in H. Only for the ground state (of a given
symmetry) do we know that the Hartree-Fock energy E[¥ur] = (Yur|H |Pur)
is an upper bound for the exact energy eigenvalue.

The Hartree-Fock energy E[¥qr| is not identical to the sum of single-
particle energies €; of the occupied states, as obtained by solving the Hartree-
Fock equations (2.88). This is because the summation of the single-particle
energies counts the contribution of the two-body interaction between electron
pairs twice. With (2.73) and (2.75) we have
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N N2
Uyp | H |Pyp) = i+ Vi
(uar | H | Zr) ;W"zf [#:)

N
+ % Z ((¢i¢j|w|'¢'i"/}j>_<'¢'i¢j|W|¢jwi)) (2.99)
ij=1

N N
=S5 3 (sl Whos) — (sl Wiy
i=1 1,j=1

In general the final Hartree-Fock wave function is not a single Slater de-
terminant, but a sum of several Slater determinants each containing the same
occupied radial single-particle states and whose spin and angular parts are
coupled to good quantum numbers of the total angular momentum and per-
haps also of the total orbital angular momentum and the total spin (compare
Sect. 2.2.4).

For lighter atoms and ions, the effects of relativistic corrections to the
non-relativistic Schrédinger equation are small and can be treated in first-
order perturbation theory starting from the Hartree-Fock wave function. For
heavier atoms and ions the effective fine structure constant Za ~ Z/137 is
no longer such a small number and, as Z becomes larger, perturbation theory
becomes increasingly inadequate for describing relativistic corrections. One
way of improving the description of relativistic effects is to replace the kinetic
energy $2/(2u1) in the one-body Hamiltonian (2.89) by Dirac’s Hamiltonian
(2.17) for a free particle:

B =ca-p+Buct +V + Wy — Wex . (2.100)

In this way, relativistic corrections to the one-electron problem are included
consistently (cf. Sect. 2.1.4). The relativistic treatment of the two-body inter-
action is much more difficult, because the picture of a heavy resting mass as
origin of the static potential only holds for the attraction of the electrons by
the atomic nucleus (compare Sect. 2.1.3) and not for the interaction between
two electrons. In practice the potentials Wa and Wey are initially defined
via the static interaction (2.55). Retardation effects due to the fact that all
interactions can propagate no faster than the speed of light are subsequently
treated with perturbative methods. The Dirac-Fock method consists in look-
ing for self-consistent eigenfunctions of the one-body Hamiltonian (2.100).
For radially symmetric potentials this means self-consistently solving the ra-
dial Dirac equation instead of the radial Schrodinger equation.

2.3.2 Correlations and Configuration Interaction

The Hartree-Fock method (or the Dirac-Fock method) yields the best N-
electron wave function compatible with the picture of N independent elec-
trons. In order to account for correlations, which go beyond this picture, we
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have to admit variational wave functions which are more general than sin-
gle Slater determinants. An obvious ansatz for a correlated N-electron wave
function v is a sum of Ng Slater determinants ¥,,, which may include var-
ious different N-electron configurations (with the same values of the good
quantum numbers):

Ns
$=% b, . (2.101)
v=1

Effects of configuration interaction are included if we diagonalize the N-
electron Hamiltonian in the subspace spanned by the ¥, in Hilbert space.
This corresponds to a variational calculation in which the mixing coefficients
¢, in (2.101) are the variational parameters (compare Sect. 1.5.2). In the
multi-configurational Hartree-Fock method (MCHF) the energy expectation
value E[t)] is minimized with respect to variations both of the coefficients
¢y in (2.101) and of the single-particle states in the Slater determinants ¥,,.
If the sum in (2.101) includes enough terms, this procedure can in princi-
ple approximate the exact solution to any accuracy, because every totally
antisymmetric N-electron wave function can be written as a sum of Slater
determinants. In practice of course, the MCHF problem is most readily solved
if not too many terms are included in the sum in (2.101).

Configuration interaction calculations can also be performed with the
Slater determinants of the Dirac-Fock method. The corresponding general-
ization of the MCHF method is called the multi-configurational Dirac-Fock
method (MCDF).

If the number of configurations included in the ansatz (2.101) is suffi-
ciently large, then a simple diagonalization of the Hamiltonian in the sub-
space spanned by the ¥, can yield a good approximation of the exact eigen-
states, even without explicit consideration of self-consistency as in the MCHF
method. If we start from a complete basis of single-particle states, then the
exact eigenstates can in principle be approximated within arbitrary accu-
racy in this way. Such large scale diagonalizations are quite generally called
“configuration interaction calculations” (CI). Usually various many-electron
configurations are constructed from single-particle wave functions which are
chosen so that the corresponding one-body and two-body matrix elements
are not too difficult to calculate. The N-electron energies and eigenfunctions
are obtained by diagonalizing the Hamiltonian matrix, which now may have
quite large dimensions — typically up to several thousand.

A frequent choice for the spatial part of the single-particle wave functions
is based on expansions in Slater-type orbitals: ¢;(r) oc ™ exp(—(r). The
coefficients in such expansions as well as the coefficients ¢ in the exponents
are treated as variational parameters. Another basis of single-particle states,
which are characterized by their similarity to the eigenfunctions (1.138) of
the pure Coulomb potential, is the Sturm-Liouville basis. The single-particle
states in this basis have the same form as in (1.138), but the number n in
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the argument of the Laguerre polynomial and the exponential function is
replaced by a constant integer ng rather than varying from shell to shell.
In contrast to the pure Coulomb bound states (1.138), the Sturm-Liouville
states form a complete set, because of the completeness of the Laguerre poly-
nomials. Furthermore, the single-particle states with n = ng are identical to
the eigenstates of the pure Coulomb potential with this principal quantum
number. On the other hand, in a Sturm-Liouville basis single-particle states
with different principal quantum numbers are no longer orthogonal.

As the simplest example of a many-electron system Table 2.1 summarizes
the ground state energies of the two-electron helium iso-electronic sequence
from H~ to Ne®*t as they are obtained in various approximations, together
with the experimental values Fex, [BS75]. The first column contains the
Hartree-Fock energies? [Fro77, Fro87, SK88] and the second column contains
the results of an MCHF calculation [SK88]. The third column contains the
“exact” results F,, within non-relativistic quantum mechanics, as obtained
by Pekeris [Pek58] in a very clever CI calculation as early as 1958 — a time
when computer capacity was far less abundant than today. The difference
between the exact ground state energy and the Hartree-Fock energy (fourth
column) is usually called the correlation energy; it is a measure of the devia-
tion of the exact (correlated) two-body wave function from the Hartree-Fock
configuration. The absolute magnitude of the correlation energy changes little
within the iso-electronic sequence, because the electron-electron interaction

Table 2.1. Ground state energies (in atomic units) for the helium iso-electronic
sequence

Eur EyvcHF Eur Eor — Enr Epr — Eur Eexp
H™ —0.487927 —0.527510 -—0.527751 -0.039824 <0.00001 —0.52776
He —2.861680 —2.903033 —2.903724 -0.042044 -0.00013 —2.90378
Lit —~7.236416 —7.279019 -—7.279913 -0.043497 -0.00079 —7.28041

Bett —13.611300 —13.654560 —13.655566 —0.044266 —0.00270 —13.65744
B3t -21.986235 -22.029896 ~22.030972 —0.044737 —0.00692 —22.03603
C* -32.361194 —32.405123 —32.406247 —0.045053 —0.01480 —32.41733
N°+  —44.736163 —44.780287 —44.781445 —0.045282 —0.02804 —44.80351
0% —59.111141 -59.155411 —59.156595 —0.045454 —0.04865  —59.19580
F™ 75486124 —75.530508 —75.531712 —0.045588 —0.07898  —75.59658
Ne®t —03.861111 —93.905586 —93.906807 —0.045696 —0.12169  —94.00835

2 The fact that the energy of the H™ ion in the first column of Table 2.1 lies above
the energy —0.5 of the H atom shows a weakness of the restricted Hartree-Fock
method, which was used here and in which both electrons were restricted to hav-
ing the same spatial part of the single-particle wave function. In an unrestricted
Hartree-Fock calculation the Hartree-Fock energy can come arbitrarily close to
the value —0.5. To see this construct a two-electron Slater determinant in which
one occupied single-particle state is the ground state of atomic hydrogen and the
other is a very distant almost plane wave with (almost) vanishing wave number.
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doesn’t depend on the charge number Z. On the other hand, the one-body
contribution to the total binding energy increases rapidly with increasing Z,
and so the relative importance of the correlations decreases with increasing
charge number in the iso-electronic sequence. An estimate of the magnitude
of relativistic corrections can be derived from the fifth column, which lists
the differences between the energies obtained in the Dirac-Fock and Hartree-
Fock methods. These differences are of the same order of magnitude as the
differences between the exact non-relativistic results (column 3) and the ex-
perimental data (column 6). At this level of accuracy we must, however,
also consider the effects of radiative corrections which follow from a deeper
description of the atoms and ions in the framework of quantum electrodynam-
ics. For precision calculations of the various corrections in the two-electron
system see e.g. [KH86, Dra88].

The art of solving the Hartree-Fock equations has been driven to a high
degree of perfection in the last decades [Fro77, Fro87].. The same is true for
high-dimensional CI calculations for the determination of energies and wave
functions of low-lying states [Sch77]. A thorough description of the details
of such calculations for the structure of atomic many-body systems can be
found in the book by Lindgren and Morrison [LM85]. (See also [COS80].)

In contrast to the substantial and comprehensive body of knowledge
which has accumulated during many years of successful investigations of the
electronic structure of low-lying states, our understanding of highly excited
atomic states is still very incomplete. Only in the situation that just one elec-
tron is highly excited with the other electrons forming a low-lying state of the
atomic (or ionic) “core”, can we make far reaching and general statements
concerning the structure of atomic spectra and wave functions. This case,
which largely corresponds to a one-electron problem, is treated in detail in
Chapter 3. The systematic understanding of the spectrum of an atom or ion
already becomes a very difficult problem if two electrons are highly excited.
For a detailed description of the problem of two or more highly excited elec-
trons, see [Fan83| or Part D of the book by Fano and Rau [FR86]. Recent
progress based on less conventional approaches is described in Sect.5.3.5,
part (c).

2.3.3 The Thomas-Fermi Model

One of the simplest models of an N-electron atom or ion is the Thomas-Ferms
model, which was developed more than seventy years ago. The model is based
on the single-particle density of a degenerate free electron gas, in which all
single-particle states up to the Fermi energy,
h2
= k2
2u ¥
are occupied and all single-particle states with higher energies are unoccu-
pied. In 6 N-dimensional phase space the occupied single-particle states fill

Er (2.102)
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a volume which is the product of the spatial volume V; and the volume
4T”(fikp)?‘ of the Fermi sphere in momentum space. A volume of V4 (hkg)3
is thus filled in phase space, and each cell of size A% = (27h)? can accomodate
two single-particle states — one with spin up and one with spin down. The
number N of occupied one-electron states is thus (see also Problem 2.4)
2 4 Ve
= ———V,—(hkp)® = k3 =
N (27h)3 73 (k)" = k37
This gives us a relation between the density ¢ = N/V; and the Ferm¢ wave
number kg:

kp = (3n20)Y/3 . (2.104)

In the Thomas-Fermi model we describe an atom by a radially symmetric
single-particle potential V(r) for the electrons, and we let the Fermi momen-
tum hkp depend on the radial distance r, just like the semiclassical momen-
tum in the WKB approximation (1.235) (see Fig. 2.6):

(2.103)

2
By = %—L K2(r) + V() (2.105)

where Eg < 0 is the total energy of the least bound electron. In this picture
the kinetic energy of the least bound electron is

h2
T(r)=Ey-V(r) = Ek‘;l(r) , (2.106)

and it depends on the spatial coordinate r, in analogy to the semiclassical
approximation (1.235). The kinetic energy (2.106) of the least bound electron
vanishes at the outer turning point rg, which defines the “edge” of the atom.

We can obtain a differential equation for the single-particle potential V'(r),
or for T(r), by relating the electrostatic potential —V/e to the sources of
charge —ep (outside of the atomic nucleus at r = 0) via the Poisson equation:

AV = —AT = —4ne?p . (2.107)

Fig. 2.6. Schematic repre-
sentation of an atom or ion
in the Thomas-Fermi model.
All single-particle states in the
single-particle potential V(r)
are occupied up to the energy
Ey. Locally the system resem-
bles a degenerate free electron
gas in which the states are oc-
cupied up to the Fermi en-
ergy Er = (h*/2p)kf = Eo -
V/(r) = T(r). The local kinetic
energy T'(r) of the least bound
electron vanishes at the outer
turning point ro




94 2. Atoms and Ions

We can express the density ¢ in terms of kp via (2.104) and in terms of T
via (2.106),

1 2% 3/2
0=33 (ﬁT> , (2.108)

and so we obtain the following differential equation for the function 7" of 7
(compare (1.70)):

2 2d 142 4e® (2u, \*/?
(m + ;5) T = ;d—’r‘i(TT) = g (ﬁT> . (2.109)
This equation assumes a universal form when we refer the local kinetic energy

of the least bound electron T(r) to the potential Coulomb energy —Ze2/r
due to the atomic nucleus and introduce the dimensionless Thomas-Ferm:

function
T
Equation (2.109) thus becomes the Thomas-Fermi equation,
42 3/2
ex_x_ (2.111)
dz?  /z
where z is a dimensionless length:
r 1 971’2 173
=—-, b=aZ73|{— ; .
T=g a (128> ; (2.112)

a = h?/(ue?) is the Bohr radius. The outer turning point zo = ro/b is the
first zero of x(z); x vanishes identically beyond zg.

The boundary condition for the Thomas-Fermi function at z = 0 follows
from the fact that the potential V'(r) in (2.106) is dominated by the attractive
Coulomb potential —Ze?/r near the atomic nucleus r = 0. From (2.110) we
get the boundary condition for x:

x(0)=1 . (2.113)
The behaviour of x(x) for small z is in fact [Eng88]:
x(x)*=°1+ Bz + 2232 4L 0(2%?) . (2.114)

Since the Thomas-Fermi function x is never zero between z = 0 and the outer
turning point zo =7¢/b, its second derivative (2.111) never vanishes and its
first derivative cannot change sign in this interval. It follows that x(z) is a
monotonically decreasing function falling from unity at £ = 0 to zero at the
outer turning point zo. The gradient at * = 0 is given by the (negative)
constant B in (2.114).

The outer boundary condition for the Thomas-Fermi function follows from
the consideration that the integral of the single-particle density from the
origin to the outer turning point must yield the total number N of electrons:
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41r/ o(ryridr=N . (2.115)
0

With (2.108), (2.110) and (2.112) this can be expressed in the dimensionless
quantities:

Z/Io x(@)]¥?vzdz =N . (2.116)
0

From the differential equation (2.111) we can replace x*/2 by x”v/z and
formally integrate (2.116):

Zo
N = Z/ ox"dz = Zzx' - xlg° - (2.117)
0
With x(0) =1 and x(zo) = 0 (2.117) becomes
N-Z7
zox'(z0) = Z . (2.118)

Since x(z) is a monotonically decreasing function, the right-hand side
of (2.118) cannot be positive. This means that N cannot be larger than the
charge number Z of the nucleus. For N = Z corresponding to a neutral atom,
the outer turning point zg lies at infinity; the energy Ep in (2.105), (2.106)
vanishes and the single-particle potential is simply (cf. (2.106), (2.110))

V(r)= '—Z‘?‘Xo (%) . (2.119)

All neutral atoms are described in the Thomas-Fermi model by a universal
Thomas-Fermi function xo which is shown as the solid line in Fig. 2.7. It is
the (unique) solution of the equation (2.111) with the boundary conditions
that x(0) = 1 and that the first zero of x lies at infinity. The gradient at
x =0 in this case is B = —1.588 (see e.g. p.65 of [Eng88]).

Solutions of (2.111) which fall off faster than xo at x = 0 cut the z-axis at
finite values of z and with finite (negative) gradient. For these solutions the

10

X

Fig. 2.7. Solutions of the
Thomas-Fermi equation
(2.111). The solid line shows
the case of a neutral atom
N = Z, the dashed line
shows an example of a pos-
itively charged ion with N =
zZ/2
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right-hand side of (2.118) is a finite negative number which corresponds to a
positively charged ion, N < Z. For example: The solution x(z) starting with
a gradient B = —1.608 at z = 0 already cuts the z-axis at =~ 2.9 and the
right-hand side is approximately —1/2. This case corresponds to an ion with
half as many electrons as the associated neutral atom and is shown as the
dashed line in Fig. 2.7. Solutions of (2.111) which fall off more slowly than
Xo at £ = 0 never reach the z-axis, not even at infinity, and are not suited
for the description of isolated atoms or ions in the Thomas-Fermi model. The
Thomas-Fermi model cannot describe negative ions.

Although the Thomas-Fermi model represents a drastic approximation of
the N-electron problem, it is very useful for describing general trends in the
properties of atoms. Equation (2.112), for example, shows that the behaviour
of typical lengths as a function of charge number Z is given by proportionality

“to Z~'/3. For a detailed description of Thomas-Fermi theory in particular and
of semiclassical theories in atomic physics in general see [Eng88].

2.3.4 Density Functional Methods

The one-body contribution Ey to the potential energy of IV electrons in an
external local potential V(r) is

N
By = @3V = [Virer)dr (2.120)
i=1
Ey is a unique function, i.e. a functional, of the single-particle density o(r),
which is defined quite generally (and not only for Slater determinants) by
the first equation (2.92). The relation (2.120) can be obtained by replacing
the V(r;) in the matrix element by [§(r — ;) V(r)dr and then pulling the
integral over the vector r out of the matrix element. If we are dealing with
Slater determinants, then the direct part Wy of the two-body interaction
(compare (2.91)) contributes a term

= —/drl/dr olruo(ra) (2.121)

-7l

to the total energy (compare (2.75)), and this term is also a functional of the
single-particle density o.

Investigating the quite general question whether the energy of an N-
electron system is a functional of the single-particle density leads to a very
strong statement concerning the ground state of an N-electron system. This
is the Hohenberg-Kohn theorem [HK64, KS65], which states: “For a system
of N electrons in an external potential V' (r) there is a universal functional
F[p] of the single-particle density g, which is independent of V and has the
property that the expression

Bl = [ V(r)e(r)dr + Fle(r)] (2122)
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assumes a minimum for the density corresponding to the ground state of the
system, and the value at this minimum is the correct ground state energy (in
this external potential).”

The first term on the right-hand side of (2.122) is the one-body contri-
bution (2.120) to the potential energy. The universal functional F in (2.122)
contains a term of the form (2.121) for the direct two-body contribution to
the potential energy. Beyond this it contains a contribution FEy;, of the ki-
netic energy as well as an “exchange and correlation” term, which collects all
those contributions to the potential energy not already contained in (2.120)

r (2.121). The nature of this term and of the kinetic energy contribution
Ey;, is in general unknown.

In the simple Thomas-Fermi model where the atom is treated locally as a
degenerate electron gas (Sect. 2.3.3), it is easy to evaluate the kinetic energy
as a functional of the single-particle density: The sum of the kinetic energies
of all occupied single-particle states is equal to the integral of A%k?/(2u) over
the occupied states in phase space:

Rk K2

5
2 = 107 —Vikd . (2.123)

Ty = ——= Vidn / RE2dk——

(2m ft)3
The total kinetic energy Ey;, is equal to the integral of the kinetic energy
density Ty /V: over the spatial volume of the Thomas-Fermi atom. Inserting
the expression (2.104) for kp yields Exin as functional of ¢ (in the framework
of Thomas-Fermi model):

(Bxin)TF = 47r/ 37 g(r)]5/3r2dr . (2.124)

102

Within the Thomas-Fermi model, the energy as functional of the single-
particle density is thus given by a term of the form (2.120) for the potential
energy of the electrons in the external potential due to the electrostatic at-

-traction by the atomic nucleus, a term of the form (2.121) for the mutual

electrostatic repulsion of the electrons and the kinetic energy term (2.124).
The condition that this functional be stationary with respect to small vari-
ations of the single-particle density actually does lead to the Thomas-Fermi
equation (2.111) [Eng88].

Next to the N-body Schrédinger equation, the Hohenberg-Kohn theorem
offers an alternative approach to the N-electron problem. Usually one starts
with a physically or pragmatically founded ansatz for the density functional
Flo(r)] in (2.122) and tries to minimize the energy E[g]. A description of
various methods which have been developed in this spirit can be found in
[DP85].
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2.4 Electromagnetic Transitions

The Hamiltonians (2.1) and (2.7) or (2.47) and (2.53) describe the atomic
degrees of freedom of a one- or many-electron atom (or ign) with and with-
out inclusion of the atomic nucleus respectively. Such an atomic Hamiltonian
H A Dossesses a spectrum of eigenvalues, and the associated eigenstates are
solutions of the correspondmg stationary Schrodinger equation. The eigen-
states of Hy are usually “seen” by observing electromagnetic radiation emit-
ted or absorbed during a transition between two eigenstates. The fact that
such transitions occur and that an atom doesn’t remain in an eigenstate of
H a forever is due to the interaction between the atomic degrees of freedom
and the degrees of freedom of the electromagnetic field. A Hamiltonian H
able to describe electromagnetic transitions must thus account not only for
the atomic degrees of freedom, but also for the degrees of fregdom of the
electromagnetic field. An eigenstate of the atomic Hamiltonian Hy is in gen-
eral not an eigenstate of the full Hamiltonian H;a system which is in an
eigenstate of Ha at a given time will evolve as prescribed by the time evo-
lution operator (1.40), (1.41), (1.42) containing the full Hamiltonian H, and
may be in a different eigenstate of Ha at a later time. If we look at the
interaction between atom and electromagnetic field as a perturbation of the
non-interacting Hamiltonian, then this perturbation causes time-dependent
transitions between the unperturbed eigenstates, even if the perturbation it-
self is time independent. Such transitions can be generally described in the
framework of time-dependent perturbation theory which is expounded in the
following section.

2.4.1 Transitions in General, “Golden Rule”

Consider a physical system which is described by the Hamiltonian
H=Hy+W |, (2.125)

but which is in an eigenstate ¢; of the Hamiltonian HO at time t = 0. The
latter Hamiltonian Hy is assumed to differ from the full Hamiltonian H by
a “small perturbation” W. Even if Hy isn’t the exact Hamiltonian, its (or-
thonormalized) eigenstates ¢y,

Hogn = Endn (2.126)

still form a complete basis in which we can expand the exact time-dependent
wave function ¥(t):

#0 = T en)on oxp <_EEt) . (2.127)

The coefficients c,(t) in this expansion are time dependent, because the time
evolution of the eigenstates of Hy is, due to the perturbation W, not given
by the exponential functions exp [—(i/k)Ept| alone.
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The initial condition that the system be in the eigenstate ¢; of Hy at time
t = 0 is expressed in the following initial conditions for the coefficients ¢, (t):

en(t=0) = ébn; . (2.128)
At a later time t, the probability for finding the system in the eigenstate ¢¢
of H() is:

wig(t) = les@)? . (2.129)

In order to calculate the coefficients ¢, (t) we insert the expansion (2.127)
in the time-dependent Schrédinger equation (1.38) and obtain using (2.125),
(2.126),

1hz¢n ( -1 ncn) exp (—%Ent)
= ; Cn €Xp (——ﬁEnt> (Endn + Wey) . (2.130)

If we multiply from the left with the bra (¢.,|, (2.130) becomes a system of
coupled ordinary differential equations for the coefficients ¢, (¢):

g .
ih% = ;Wmn ¢, €Xp [%(Em - En)t] , (2.131)

with
n = ($mlWidn) - (2.132)
We can formally integrate the equations (2.131):

em(t) = cm(0) + 1 / d¢ ZWmn exp {h(Em )t | en(t)

1 i
= cn(0) + 171—/[; dt’ En Wnn €xp {E(Em - E,)t
+ L/tdt’ E Wonn €xp i(E - E )t']

t' i
X /0 dt”’ ZI: Whni exp [FL(E" - El)t"] a(t”) ,
etc. (2.133)

To obtain the second equation (2.133) we inserted the expression given by
the first equation for ¢,(t’) in the integral (in the first equation). To obtain
higher terms insert a similar expression for ¢;(t”) in the integral in the last
row. .

To first order in the matrix elements of the perturbing operator W, the
coefficients ¢, (t) are given by the second row in (2.133). Inserting the initial
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conditions (2.128) we obtain an expression for the transition amplitude c¢(t)
to the final state ¢s:

1 i
ce(t) = E_/O dt’ Wy exp [% (Ef — Ei)tl] . (2.134)

If the perturbing operator W, and hence the matrix element W4, do not
depend on time, we can integrate (2.134) directly and obtain

.2 - 3
lee(t)? = wing(t) = |Wal> 22 [[((g‘_ g‘));z/](fh)] (2.135)
For large times t (2.135) becomes
Wit (t) ~ [Wal? %’rta(& _E) . (2.136)

This means that for large times t the transition probability per unit time,
P,_¢, becomes independent of ¢:

P = %wi_,f(t) - 2—”|Wﬁ|'~’ 5(E; - E) . (2.137)

It makes sense to assume that the diagonal matrix elements (¢;|W|¢:)
and (¢>f|W1¢f) vanish, because a perturbing operator diagonal in the basis
doesn’t cause transitions. Then E; and E are not only the eigenvalues of the
unperturbed Hamiltonian Hy in the initial and final state respectively, but
they are also the expectation values of the full Hamiltonian H = Hy + 174
in the respective states. The delta function in the formula (2.137) for the
transition probabilities expresses energy conservation in the long time limit.

In many practical examples (such as the electromagnetic decay of an
atomic state) the energy spectrum of the final states of the whole system (in
this case of atom plus electromagnetic field) is continuous. In order to obtain

the total probability per unit time for transitions from the initial state ¢;

to all possible final states ¢ we must integrate over an infinitesimal energy
range around Ej:

E+s
P = lim / —|<¢:|W|¢,>126(Ef E)o(Er)dEr (2.138)
or rather,
2 N
Ps = S (6:|W 90 Pe(Br=By) . (2.139)

Here p(E%) is the density of final states.

The formula (2.139) is Fermi’s famous Golden Rule; it gives the proba-
bility per unit time for transitions caused by a time-independent perturbing
operator in first-order perturbation theory.

The precise definition of the density o(Ff) of final states ¢¢ depends on
the normalization of the final states. Consider for example a free particle in
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a one-dimensional box of length L. The number of bound states (normalized
to unity) per unit energy is (see Problem 2.5)

2 —-1/2
oL(E) = L (Zu E) . (2.140)

The bound states normalized to unity have the form /2/Lsinkx, where
E = h?k?/(2u). Matrix elements like |W5|? contain the square of the factor
\/2/L, so the product |Ws|?0.(E) no longer depends on the length L of the
box. If we normalize the wave functions ¢¢ so that they are simply a sine
with factor unity, then the density ¢ must obviously be

o(E) = — (ZZ >—1/2 : (2.141)

The amplitude of the wave functions and the density of states ¢ are now
independent of L, and there is a smooth transition to the continuum case
L — oo. If we work with (unbound) wave functions normalized in energy,

(¢:(E)|¢s(E')) = 6(E - E") (2.142)

their amplitude is a sine with a factor \/2u/(wh2k) = [2u/(n*h2E)]*/* (see
Sect. 1.3.4, (1.150)), and the correct density of states is

oBE)=1 . (2.143)

When applying the Golden Rule (2.139) we have to take care that the density
of the final states and their normalization are chosen consistently.

The Feshbach resonances discussed in Sect. 1.4.2 can also be described in
the framework of time-dependent perturbation theory. If we regard the equa-
tions (1.169) without channel coupling as the (time-independent) Schrédinger
equation with the unperturbed Hamiltonian Hy and the coupling potentials
V1,2, Va,1 as the perturbation, then the transition probability per unit time
from a bound initial state ¥; = 0, 2 = ¢o(r) to an unbound final state
VY1 = breg(T), Y2 = 0 is, according to the Golden Rule,

P = 2 0lVi1loneg)? o) - (2144)

Since the density of final states is unity according to (2.143), the width I
given by (1.182) is related to P by

r h

P:ﬁ, or -113:7:7; . (2.145)
P describes the time rate of change (decrease) of the occupation probability
w; of the initial state,

dwy;

= = ~Puwi (2.146)
which corresponds to an exponential decay law:

wi(t) = wi(0)e /™ . (2.147)
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The time 7 is the lifetime of the bound initial state ¢ with respect to the
decay into the continuum which is mediated by the coupling potential V3 ;.
The second equation (2.145) states that the width I" and the lifetime 7 of a
resonance fulfill a relation similar to the uncertainty relation.

2.4.2 The Electromagnetic Field

Classically we describe the electromagnetic field with the help of the scalar
potential &(r,t) and the vector potential A(r,t), which together define the
electric field E(r,t) and the magnetic field B(r,t) (see any textbook on
electrodynamics, e.g. [Jac75]):

10A
E=-V&-—~-—
v cat’
¢ is the speed of light (compare Sect. 2.1.3). The potentials are not unique
and depend on the choice of gauge. The fields E and B remain unchanged
when we replace the potentials ¢ and A by new potentials # and A’ which
are related to the original potentials by a gauge transformation:
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A=A+VA, P =0--Z (2.149)

A is a scalar function of r and ¢. In the Coulomb gauge, which is also called
the radiation gauge or transverse gauge, we have

V-A=0, A= —-4mwp , (2.150)

B=VxA . (2.148)

where p is the electric charge density. If there are no sources of charge
the scalar potential vanishes in the Coulomb gauge. A physical system of
electrically charged particles in an electromagnetic field is described by a
Hamiltonian in which the kinetic energy is defined via the kinetic momenta
Dkin = P — (¢/c) A while the potential energy contains the scalar potential &.
When the electromagnetic field is included, the Hamiltonian for a system of

N electrons with charge ¢ = —e and mass p is thus
N . 2
: [P: + (e/c) A(rs, t)] ’
H= - ; : .
; ( o ed(ri,t) | +V (2.151)

Since the Hamiltonian (2.151) contains the potentials A and &, and not the
physical fields (2.148), it depends on the particular choice of gauge, as do its
absolute energy eigenvalues. Observable quantities such as energy differences
and transition probabilities are, however, independent of the choice of gauge.

The interaction of an atom or ion with an external electromagnetic field
is most easily described by treating the field classically and inserting the
corresponding potentials A(r;,t), ¢(r;,t) as functions in the Hamiltonian
(2.151) [cf. Sect. 3.4]. This procedure cannot, however, account for the ob-
served phenomenon of spontaneous emission, in which an excited atom (or
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ion) emits a photon in the absence of an external field. For a consistent de-
scription of the observed electromagnetic transitions including spontaneous
emission, we must treat the electromagnetic field quantum mechanically. The
full Hamiltonian then contains an interaction between atom and field which
causes transitions between the eigenstates of the non-interacting Hamiltonian
as described in Sect. 2.4.1, even if there is initially no field present.

To obtain a prescription for the quantization of the electromagnetic field
we study the source-free field in a vacuum. As can be derived from Maxwell’s
equations, the vector potential A(r,t) fulfills the free wave equation,

? 5?2 o2 197

(ﬁ-{-w-l- 5?).4— =2 3t2A . (2.152)
A general solution of (2.152) can be obtained by superposing plane wave solu-
tions, which we shall mark with a mode label A\. Each mode ) is characterized
by a wave vector k) pointing in the direction of propagation of the plane
wave, by an angular frequency wy = c|ky| and by a polarization vector w of
unit length:

A)‘ e_'iw)‘t — L‘3/21r,\ ei(er—th) . (2.153)

Many relations are easier to formulate if we discretize the continuous distri-
bution of wave vectors. To this end we think of the three-dimensional space
as divided into large but finite cubes of side length L and require periodic
boundary conditions for the plane waves. With the normalizing factor L-3/2
on the right-hand side of (2.153), the integral of the square of the amplitude
over one such cube is unity for each mode A:

/d3rlA)\(r)|2=1 . (2.154)
L3

In the Coulomb gauge (2.150) it follows from V-A = 0 that
7T,\-k,\ =0 (2155)

in each mode A. To each wave vector k) there are thus only two indepen-
dent directions of polarization and both are perpendicular to the direction of
propagation.

The general (real) vector potential for a source-free electromagnetic field
in a vacuum is a real superposition of the plane waves (2.153),

A(r,t) =) (qrAre ™ 4+ gy Ajetinrt) (2.156)
A
and the associated electric field E and magnetic field B are
16A i —iwxt * A% _+iwxt
E:—Eﬁzzzwk(q,\A,\e A —gYAle )
B=VxA=i) kyx(gpAre “* —g{Ajet) . (2.157)

A
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The energy £ of the electromagnetic field is obtained by integrating the energy
density & (E + B?) over a cube of length L:
1

€= L3d3 r(E*+ B?%) = 22 Wit . (2.158)

Here we used the fact that integrals like f L3 d3r exp (2iky-7) with oscillating
integrands vanish because of the periodic boundary conditions.

We obtain a more familiar form of (2.158) if we replace the mode ampli-
tudes g) and g} by the variables

iw >y

1 *
Qx= m(q,\ +q\), Pa= \/_(q,\ ) (2.159)
namely:
1
E=Y" §(P§ +wiQ?) . (2.160)
A

This form underlines the similarity between the source-free electromagnetic
field and a set of uncoupled harmonic oscillators. The correspondence of the
free electromagnetic field and a set of harmonic oscillators is apparent in the
energy spectrum. To each mode A there belongs a sequence of equidistant
energies nyhwy , ny =0, 1, 2,... representing the contribution of this mode
to the total energy. In the case of the electromagnetic field n, is the number
of photons in the mode A; for the set of oscillators n, is the quantum number
determining the excitation of the oscillator in the mode A.

To quantize the electromagnetic field we interpret the variables Py and
@) as quantum mechanical momentum and displacement operators for the
oscillators in the various modes A. So the Hamiltonian pr for the field is

Hr=3 %(133 +u203) . (2.161)
A
The eigenstates of this Hamiltonian are labelled by the occupation numbers
T\, Mg, ... in the individual modes.
Eigenstates and eigenvalues of the Hamiltonian (2.161) can be derived
elegantly if we introduce the operators

bl = (2hwy) " (waQx — iP)) = 2:};\02 o,
z C1 AL B w
by = (2hwy) "2 (waQx +iPy) = \/ﬁ% ) (2.162)

as is usually done for ordinary harmonic oscillators. (See also Sect. 5.2.2.)
The commutation relations for the operators bl, by follow from the canonical
commutation relations (1.36) for the displacement and momentum operators

Qx, Px:
[bx, b}, ] = dax - (2.163)
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5; and by are creation and annihilation operators for photons which respec-
tively raise or lower the occupation number in the mode A by unity (see
Problem 2.6):

B..,ma, Y =vaaF1]..,ma+1,..)
balooy iy o= VA |, na =1, . (2.164)

The operator Ny = bf\b,\ counts the number of quanta (photons) in the mode
A

Naloooyma, o)y =nmaloo,ma, .0, (2.165)
and the Hamiltonian for the whole electromagnetic field is
Hp = hwyblbx . (2.166)
A

Going from (2.161) to (2.166) involves a renormalization of the Hamil-
tonian which consists in neglecting the constant but infinite contribution of
the zero-point energies of all modes Y, fiwy /2. The quantization prescription
used above isn’t unique anyway. In the classical formula (2.158) for the en-
ergy we could have changed the order of g} and g, and inserting the quantum
operators (2.162) would then have given a Hamiltonian ), fuwy B)\l;f\, which,
because of (2.163), differs from (2.166) by twice the total zero-point energy
22wy

We obtain a quantum mechanical operator corresponding to the classical
vector potential A(r,t) by expanding the latter according to (2.156) and iden-
tifying the amplitudes ¢, and ¢} with the annihilation and creation operators
of photons by and 13; according to (2.162). The time dependence of the com-
binations bye~“*t and bl eti“st appearing in this procedure is just that de-
scribing the evolution of the field operators in the Heisenberg representation
(cf. (1.45) in Sect. 1.1.3). To see this recall that with Ug(t) = exp [~ (i/h) Hyt)
we have

UL(&)bAUr(t) = bye™ >t | Ul (2)bl Up(t) = b} e¥irt . (2.167)

We have thus constructed the operator Ag = ﬁ}(t)AUp(t) in the Heisen-
berg representation. To get the corresponding operator A for the vector po-
tential in the Schrédinger representation we just leave out the oscillating
time-dependent factors e @At and etiwat;

R onhe? I
Ary =" ’;A (Axby + A3BL) . (2.168)
A

Here the functions A, and A} are the spatial parts of the plane waves (2.153),
normalized to a cube of length L, together with an appropriate polarization
vector, e.g.:

Ax(r)y = L™ 2, eifxm | (2.169)
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Later on we shall apply the Golden Rule (2.139) to electromagnetic tran-
sitions, and for this purpose it is important to know the density of photon
states. The plane waves (2.153) which fit into a cube of length L (with peri-
odic boundary conditions) have wave numbers given by k = (ng,ny,n;)2r/L
(with integer ns, ny and n;). The density of possible wave vectors is thus
(2m/L)~3. If we ask for the number of photon states of a given polarization
whose wave vector has an absolute value between k and k+dk and a direction
in the solid angle df2, then we obtain a density (L/27)3k? df2. In reference
to the energy fuw = hck, the density g7, of photon states of given polarization

is
k2 (th)2
df2 = = — . .
oL (2%) e —dnN = (2#) (ﬁ,c)3 df? (2.170)
2.4.3 Interaction Between Atom and Field

Multiplying out the contributions in the Hamiltonian (2.151) for an N-
electron atom (or ion) we obtain

N 52
A p
H = _1’ A’ k3} A 1 1
o 2# 2/16 Z{pl ("' + (7' ) P]
e2 N N
* 3 DAt —ed d(rit) . (2.171)
i=1 i=1

For classical fields the potentials A(r,t) and &(r,t) are real-valued functions.
For a fully quantum mechanical treatment of a system consisting of an atom
and an electromagnetic field we need a Hamiltonian encompassing the atomic
degrees of freedom and the degrees of freedom of the field. To this end we
add the Hamiltonian (2.166) describing a free electromagnetic field to the ex-
pression (2.171); the interaction between atom and field is taken into account
by replacing the potentials in (2.171) by the corresponding operators. For a
source-free field in the radiation gauge we set & = 0, while A is given by the
expression (2.168). The full Hamiltonian thus contains a non-interacting part
Hy for the degrees of freedom of the atom plus the field (without interaction),

A A A N Az
Ho=Hp + He = 2M+V+15n,~ , (2.172)
=1

and an interaction term W. If, in the spirit of first-order perturbation theory,
we neglect the contribution quadratic in the vector potential, then

Z[p A(r) + A(r)Bi] | (2.173)

2;40

with A(7) defined as in (2.168).
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In most cases of interest, the wavelengths 2r/|ky| of the photons emit-
ted or absorbed by an atom are much larger than its spatial dimensions.
The exponential functions (2.169) occurring in the matrix elements of the
interaction operator (2.173) are thus well approximated by unity:

elkxri g1, (2.174)
For reasons which will become clear in the next section, this approximation is

called the dipole approrimation. In the dipole approximation the interaction
operator (2.173) simply becomes

2 .
WL 3/2M ZZ 2’:0 N CET (2.175)
=1 A

2.4.4 Emission and Absorption of Photons

The Golden Rule (2.139) enables us to calculate the probabilities for the
emission and absorption of photons in the dipole aproximation via matrix
elements

Ws = (| W16s) (2.176)

of the operator (2.175). The initial state ¢; and the final state ¢¢ are eigen-
states of the non-interacting Hamiltonian (2.172) and can each be written as
a product of an atomic eigenstate |@,) of Hy and an eigenstate of the field
operator Hy (2.166):

|¢51> = |@.)|,n)‘,) s |¢f) =|¢f>|---, nﬂ\,) . ) (2.177)
The corresponding energies F; and Ef of the initial and final state consist of
respective eigenvalues ¢; or g of Hy plus the energy of the photon field. If
only one mode A has a different number of photons in the initial and final
states while all other modes play a spectator role, then

E; =¢€; + nyhwy plus energy of the spectator modes,

E¢ =¢¢ + n)\hwy plus energy of the spectator modes. (2.178)
The matrix element (2.176) can now be reduced to a matrix element involving
only the atomic degrees of freedom:

Wa = L3 /2 € 2mwhc?
. e

where the factor F) stands for the field contribution to the transition matrix
element,

Fy={(..,nh...Jbx+bi]...,nx..0) (2.180)

and can be readily evaluated via (2.164) for given values of n) and n/. The
requirement of energy conservation, Ef = Fj, can also be divided into an
atomic and a photonic part:

e — & = (na —n)) hwx (2.181)

Z(@lm pild) By, (2.179)

i=1




108 2. Atoms and Ions

which merely says that the energy loss (or gain) of the atom is equal to the
energy of the emitted (or absorbed) photons.

In the atomic matrix element Zfil(@lwxﬁildi;) in (2.179), the momenta
P: can be expressed through commutators of the displacement vectors r; with
the non-interacting Hamiltonian Hy. If we neglect momentum-dependent cor-
rections such as the mass polarization term (cf. Sect. 2.2.1, Problem 2.8), only
the first term on the right-hand side of (2.172) contributes to the commutator
[ro, 7;]. Then

po = u(Ho,ri] = uz(Hamil (2.182)
and the atomic matrix element becoms a matrix element of the electric dipole
operator

N
d=-ed r , (2.183)
=1
namely
e N i -
- D (@elma-pil®i) = (e — &) 5 (@ldi®) (2.184)
=1

This representation of the atomic matrix element follows from the assumption
(2.174), which is hence called the “dipole approximation”. If we denote the
vector (Ps| Zf\’:l 7;|{®;) by 74, then

N
(@|d|®i) = —e (e Y 7ili) = —erq . (2.185)
i=1
Inserting (2.179) and (2.184) into the Golden Rule (2.139) we now obtain
with (2.185)

472 ef — &;)2
Py = FL*(—:}—;—)- e jma-ra|? F or(Er) . (2.186)

Spontaneous Emission. In order to apply the formula (2.186) to spon-
taneous emission we start with an initial state of the electromagnetic field
containing no photons in any mode, ny = 0, for all A. The transition ma-
trix element (2.176) now differs from zero only if the final state of the field
contains precisely one photon in one mode A, ny = 1, and the value of the
corresponding field factor (2.180) is, according to (2.164), precisely unity.
Furthermore, the atomic energy difference ¢; — & must in this case exactly
equal the energy hw) of the emitted photon. With (2.170) the probability per
unit time for an atomic transition from an initial state &; to a final state &
accompanied by the emission of a photon of polarization 7ry into the solid
angle df? is

1 wie?

i = — g . 2 . .
P,_¢df2 nh o3 |7ex-rg|° de2 (2.187)
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If, for a given wave vector k), we add the contributions (2.187) from the
two possible directions of polarization perpendicular to ky, then the sum of
the absolute squares of the scalar product yields the absolute square of the
projection of the vector rg onto the plane perpendicular to k). Since rg can
in general be complex, g = x5 + iyg, we have more precisely,

o, Tal2 + |7, al2 = |zal?sin? Or + |yg|?sin? 6 2.188
1 2 fi

where 6r and 6y are the angles between the wave vector k) and the real and
imaginary parts, 5 and yg respectively, of r4. Integrating over all possible
directions {2 of the wave vector k) we obtain the probability per unit time
Pse,; for the atomic transition ; — &; accompanied by the emission of a
photon of arbitrary polarization in any direction. With |zg|? + |yg)? = |rs/|2
we have
4 ezwi 2
isi,f = /R.*f d? = § ) |'I‘ﬁ| . (2189)
To obtain the total spontaneous decay rate per unit time P of an atomic
state $; we sum the decay rates (2.189) over all possible final states &;:

P=Y Pe; . (2.190)

er<egj

This total decay rate corresponds to the time rate of change (decrease) of
the occupation probability w;(t) of the initial state @;, and the reciprocal
quantity

r—1/R (2.191)

is, in analogy to (2.147), the lifetime of the atomic state @; with respect to
electromagnetic decay.

In a more complete description going beyond the framework of pertur-
bation theory, we should not assume infinitely sharp atomic energy levels.
Due to the interaction between the atom and the field only the ground state
of the atom, which cannot spontaneously decay, is a truly bound state. All
excited states are strictly speaking resonances in the continuum analogous
to the Feshbach resonances described in Sect. 1.4.2. Thus each excited state
of an atom has a natural line width I, which is related to its lifetime with
respect to electromagnetic decay via the second equation (2.145).

Induced Emission. If the electromagnetic field in the initial state is not
empty but contains ny photons in the mode ), then a non-trivial field factor
F? = ny+1 has to be multiplied to the right-hand sides of (2.187) and (2.189)
(cf. (2.180), (2.164)). The part proportional to ny describes the probability
for induced emission, which depends on the strength of the external field. The
connection between the external field strength and the number n) actually
to be inserted in the formulae depends on the particular physical experiment.

Let’s look for example at an atom in an electromagnetic field in which all
modes are occupied isotropically with an intensity distribution I(w). Then
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the energy density in the frequency interval between w and w + dw is equal to
the number of modes with arbitrary polarization and direction of propagation
N,hdw, N, = 2 x 4w gr,, multiplied by the (mean) energy density per mode,
nyhw/L3. With (2.170) this means that

h sw\3
_ 3 __ (X
I(w)dw = 8mg hdwnyhw/L° = p (c) nydw (2.192)
in other words,
I(w) rc\3
— x2 =
na =T — (w) . (2.193)

Multiplying this factor onto the right-hand side of (2.189) gives the following
formula for the probability per unit time Pi¢ ; for an atomic transition from
@; to P through induced emission of a photon of arbitrary polarization in
any direction:

o AT g (2.194)
inf =372 °¢ Iral I(w) . :
The factors
47 , 2
Bs = 32 ¢ 76l (2.195)

are the Finstein coefficients, which also appear in an analogous treatment of
absorption. Historically they played an important role for the understand-
ing of Planck’s formula for the intensity distribution I(w) in the particular
example of black-body radiation.

Absorption. Absorption can occur only if the electromagnetic field in the
initial state has a non-vanishing number ny of photons in at least one mode
A. After absorption of a photon from this mode the occupation number in
the final state is n} = ny — 1, and the field factor (2.180) is FZ = n,. In the
case of absorption there is no additional free photon in the final state and,
provided the final state of the atom lies in the discrete part of the (atomic)
spectrum, we must use the discrete form (2.137) of the Golden Rule. In place
of (2.186) we obtain the absorption probabilty per unit time as

P_s= 47r2L’3w>\ e? |7l')‘~1‘ﬁ|21u O(es — & — hwy) . (2.196)

In order to describe absorption out of a uniform radiation field with an in-

tensity distribution I(w) we would have to integrate over the frequencies w

and over all directions, which, with the appropriate expression for ny, would
lead to a formula analogous to (2.194).

Another experimentally important situation is the bombardment of an
atom by a uniform monochromatic beam of photons (see Fig. 2.8). In this
case the relevant physical quantity is the cross section o,ps for the absorption
of a photon. o, is the absorption probability per unit time (2.196) divided
by the current density of the incoming photons. This current density is simply
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(a) (b) .

1]
©

Fig. 2.8. (a) Photoabsorption out of a monochromatic beam of photons: An
electron is elevated from a low-lying bound state to a higher-lying bound state.
(b) Photoionization: A bound electron is excited into a continuum state

the density ny /L3 of the photons multiplied by their speed of propagation c,
so we have

£2
hc
For initial and final states @; and @; normalized to unity the vector r5 defined
by (2.185) has the dimensions of length and the cross section (2.197) has the
dimensions of an area. Quantitatively the number of photons absorbed equals
the number incident on an area of size o,ps perpendicular to the direction of
incidence.

Photoionization. With slight modifications the formula (2.197) can be used
to describe the ionization of an atom through absorption of a photon. In this
case the wave function &5 of the atomic final state has the following form
asymptotically (i.e. for large separations of the outgoing electron):

@f(xl, sy IN-1, .’EN) = di;(xl, P ,.'EN_l)I,[)(:IIN) . (2.198)

Here 9 () is the continuum wave function of the outgoing electron and may
have the form (1.291) or (1.74) with a radial wave function of the form (1.116)
or (1.121). &¢ is an (N — 1)-electron wave function for the other electrons
which are still bound after photoionization. Since the final states now have
a continuous spectrum, we have to use the continuum version (2.139) of the
Golden Rule. For energy normalized radial wave functions of the outgoing
electron (cf. (1.150)) the density of final states is unity according to (2.143),
and in place of (2.197) we obtain the following formula for the photoionization
cross section:

Oabs(E) = 4n? — hw) |my-r5|* 6(es — & — E) . (2.197)

2
opn(E) = 4n? ;_c hwy |mx-ral? . (2.199)

Due to the normalization of final states, (®:(E)|®¢(E’')) = 6(E — E’), the
vector 74 defined by (2.185) now has the dimensions of a length times the
inverse square root of an energy, so that oph(E) again has the dimensions
of an area. The constant e?/(hc) ~ 1/137 appearing in (2.197), (2.199) is
of course the fine structure constant, which characterizes the strength of the
electromagnetic interaction (see (2.35)).

In real situations the initial and/or final atomic states, $; and /or &5, may
be members of degenerate or almost degenerate multiplets which are not
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resolved experimentally. This must then be taken into consideration when
applying formulae like (2.197) or (2.199) for transition probabilities or cross
sections. Our ignorance of the precise initial state is taken into account by
averaging over all initial states in the multiplet. The fact that transitions to
any state in a multiplet of final states contribute to the observed transition is
taken into account by summing over all final states in the multiplet. This is
performed explicitly in Sect. 3.1.3 for the particular example of one-electron
atoms.

2.4.5 Selection Rules

The probability for an electromagnetic transition depends decisively on the
atomic matrix element

rg = ¢,|Zn|¢ (®s|#|®:) (2.200)

This matrix element of the vector operator # = —(1/e)d (cf. (2.183)) is
conveniently evaluated via its spherical components

N N
1 . . Z

7’3(2'5) =F E 7($1 + lyi) , ,’,(0) = zZ; . (2201)
=1 2 i=1

In spherical components the scalar product of # with another vector such as
the polarization vector =y is :

+1 .
Fn= Y (f(")) ™ (2.202)

v=-1
For a one-electron atom the spherical components of # can be expressed in

terms of the radius 7 = /22 + y2 + 22 and the spherical harmonics Y;,m (6, ¢)
defined in Sect. 1.2.1 (cf. Table 1.1):

4
A = fg—r r¥ie1(6,¢), #© =, /?" rYi0(8) . (2.203)

If the atomic states @; and @; are simply one-electron wave functions (without
spin) of the following form:

¢l. ¢lr

&(r) = L Yim(0,8) s &i(r) = Vi (0,9) (2.204)

then we can use the formula (A.6) for an integral over a product of three

spherical harmonics to reduce the matrix elements rﬁ v) (v = +1,0, —1) of
the spherical components (2.203) of # to an integral over the radial wave
functions:
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,'.(U) — (@fl’f‘(")|¢~)

/ #1,(r)r ¢y (r)d \/—7/‘19 1t.me () Y10 ()Y, m, (2)
- /0 67, (r) r s (r) dr F(le, 1) ley mel L, v, b i) (2.205)

Here (If, m¢|1, v, i, m;) is the Clebsch-Gordan coefficient for coupling the ini-
tial angular momentum l;, m; together with the angular momentum 1, v of the
spherical component of the vector operator # to the final angular momentum
lg, mg (see Sect. 1.6.1).

The angular momentum quantum numbers l¢, 1 and [; must fulfill a tri-
angle condition of the form (1.268), and this means that It and [; can differ
by at most unity. It furthermore follows from the parity (1.72) of the spher-
ical harmonics that the sum of I, 1 and !; must be even, since the parity of
the integrand in the integral over {2 in (2.205) would otherwise be negative
causing the integral itself to vanish. Together with the condition m; +v = mjs
(cf. (1.267)) we obtain the following selection rules for the one-body angular
momentum in dipole transitions :

Al=lk~-L=%x1, Am=ms—m; =0, £1 . (2.206)

Transitions which do not fulfill these selection rules are forbidden (in the
dipole approximation). The factor F(l¢,1;) in (2.205) is explicitly

F(lg, ) = { f/Rh+1) forl=k+1, (2.207)

7\/[1/(2& + 1) forlf =1;-1.

If we include the spin dependence of the one-electron wave functions and
assume atomic eigenstates of the form (1.291), then the formula (2.205) is
replaced by an equation of the form

O = (Bl f N Bs) = (Gl sy Gry mell, v, iy ma) (2.208)

where the m quantum numbers now characterize the eigenvalues of the z-
component of the total angular momentum J = L+$. The quantity (j¢|#]j;)
in (2.208) is called reduced matriz element of the vector operator # and no
longer depends on the m quantum numbers of the atomic states or on the
component index v of the operator. Equation (2.208) is an illustration of the
Wigner-Eckart theorem, as is (2.205) above. This important theorem holds
quite generally for matrix elements of the (spherical) components of a vector
or tensor operator in angular momentum eigenstates. It says that the de-
pendence of such matrix elements on the m quantum numbers and on the
component index of the operator is given solely by the appropriate Clebsch-
Gordan coeflicients. The correct Clebsch-Gordan coefficients are those which
couple the angular momentum of the initial state (here j;, m;) with the order
and the component index of the operator (here 1,v) to the angular momen-
tum of the final state (here j¢, m¢). From the conditions (1.267), (1.268) for
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non-vanishing Clebsch-Gordan Coefficients we obtain the selection rules for
the quantum numbers of the total angular momentum:

Aj=js—ji=0,%1, Am=ms—m;=0,+1 . (2.209)

The Wigner-Eckart theorem allows us to derive analogous selection rules
for the angular momentum quantum numbers in many-electron atoms with-
out knowing the precise structure of the atomic wave functions. For the total
angular momentum (2.79) with the quantum numbers J,M we obviously
have

AJ=Jr—Jy=0,4+1, AM=M;—M; =0, +1 . (2.210)

If the atomic wave functions are well described in LS coupling so that the
total orbital angular momentum and the total spin are “good quantum num-
bers”, then the selection rules for the orbital angular momentum quantum
numbers L, My, are

AL=L; —Li=0,+1, AMyp =My, — My =0,+1 . (2.211)

Since the interaction operator (2.175) doesn’t act on the spin parts of the
wave functions, the quantum numbers of the total spin cannot change in a
transition,

AS=0, AMg=0 . (2.212)

As in a one-electron atom, the parity of the initial and final atomic states must
be different for the matrix element of the dipole operator to be non-vanishing.
In a many-electron atom however, the parity is not simply related to the
orbital angular momentum, and hence AL = 0 transitions aren’t generally
forbidden.

Above and beyond the selection rules (2.210), (2.211) above, all transitions
in which both the initial angular momentum (J; or L;) and the corresponding
final angular momentum vanish are forbidden. This is because the initial and
final angular momenta and the order 1 of the vector operator # must always
obey a triangle condition of the form (1.268).

Transitions which are forbidden in the dipole approximation may be al-
lowed for electromagnetic processes of higher order. If e.g. we go beyond the
dipole approximation (2.174) by including the next term iky-7; in the ex-
pansion of the exponential function we obtain the probabilities for electric
quadrupole transitions as well as for magnetic dipole transitions. These are
generally very small, because the absolute value of ky - r; is very small for
typical wave numbers ky and for displacement vectors r; corresponding to
the spatial dimensions of an atom. In order to obtain probabilities for transi-
tions in which two or more photons are emitted or absorbed simultaneously,
we have to go beyond a description based on first-order perturbation theory
(see also Sect. 5.1 in Chap. 5).
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2.4.6 Oscillator Strengths, Sum Rules

Dipole transitions between atomic states @; and &; can be characterized
using the dimensionless oscillator strengths. These are the absolute squares
of appropriately normalized matrix elements of the components of the vector

operator 7. In a cartesian basis the oscillator strength féz) is, for example,
defined by

N
& = ‘2‘ (@] Yzl (2.213)
i=1
where fw = ef — €. Summed over the three cartesian components we obtain:
fo= 50+ 10+ 5D = S wl@dAB)P (2214).
The contribution of the transition from &; to @; in the cross section oaps(F)

for absorption of photons polarized in the z-direction, 7y = €&, out of a
uniform beam is e.g. (cf. (2.197))

2
e
Oabs(E) = 47r2ﬁ & 6(ee —ei— E) . (2.215)
Consider a given (normalized) initial atomic state ; and a complete set of

(bound) final states @y, then using the commutation relation (1.33) between
position and momentum we obtain:

A N
—N= (QSXI Z(ﬁrizi - Iiﬁx;)|¢i>
= N N
=D (B P |8} (Bl Y 7l B)
n i=1 i=
N 1N
=SB 3l Bn) (Bl D fa, 1 Bi)
n i=1 i=
i N ' N
=p5 D> 26— en)( B Dzl Bu)(Bal Y il i)
n =1 i=1

- % Zmn|(¢n| Zm,-|¢i)|2 , (2.216)

where the momentum components p,, were replaced by the commutators
A A, T3] according to (2.182) in the second last line, and we used the fact
that the &, are eigenfunctions of Ha with the eigenvalues ¢,,. With the
definition (2.213) we obtain a sum rule for the oscillator strengths f, (m).

Z =N . (2.217)
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Analogous sum rules obviously hold for the y- and z-components, and so we
obtain the Thomas-Reiche-Kuhn sum rule for the oscillator strengths defined
by (2.214):

me —Z( O+ P) =N . (2.218)

Before applying the above considerations to an atomic system we have
to complement the formulae in order to take account of the fact that the
complete set of final states contains continuum states. For final states &g
in the continuum we modify the definitions (2.213), (2.214) of the oscillator
strengths,

df(z) 2 N \
4B F'iwl(%lZ}A@.n , ete.

dfp _df | A | dfg)
dF dE dF dE

If the final states @ are energy normalized, then the functions d f;;i)/ dE
and dfg;/dE have the dimensions of an inverse energy. The photoionization
cross section (2.199) for incoming photons polarized in the z-direction is

¢ 12 dfg)
he 2p dE

Inclusion of continuum states complements the sum rules (2.217), (2.218) to

(=)
Z 9+ / de* dE=N, etc. |,
0

me /0 de‘dE=3N, (2.221)

(2.219)

opn(E) = 4n? (2.220)

where we have assumed the ionization threshold to lie at E = 0.

The sum rules for the oscillator strengths are a valuable help for estimat-
ing the importance of individual transitions in a particular physical system.
In a numerical calculation of the transition probabilities to a finite number
of final states, an estimate of the extent to which the corresponding oscil-
lator strengths exhaust the sum rule may give valuable information on the
reliability of the calculation and the importance of neglected contributions.
The number N need not always be the total number of electrons. For pho-
toabsorption by a lithium atom with one outer electron we may for example
assume N = 1 at low energies. If the energy is large enough to excite the
electrons in the low-lying 1s shell, then we must count these electrons in the
formulation of the sum rule.
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Problems

2.1 A and B are two vectors and & is the vector of the Pauli spin matrices
(1.277). Prove the identity
(6-A)(6-B)=A-B+i6-(AxB)

Show that the scalar product of & and the momentum operator P can
be expressed by the orbital angular momentum L and the displacement
vector 7 as follows:

.. 1, Ao ..
Gp= T—2(a'~'r) (YTE + 10-L)

2.2 Use first-order perturbation theory to calculate the energy shifts due to
the spin-orbit coupling H Ls, the Darwin term Hp and the relativistic
correction Hye to the kinetic energy in the eigenstates of the hydrogen
atom with quantum numbers up to n = 2.

. Ze® 1. »  ~  whZe? N PP’
. _rrar He=-——4"—
S , HD 2m(2)62 (5(1") , ke

2.3 a) Assume that both electrons in the helium atom or in a helium-like
ion occupy the same orbital wave function

Y(r) = o= 673278

For which value of 3 is the expectation value of the two-body

Hamiltonian 2 ) )

A= P _ Z_e) e

=12 2“ Ti ]1‘1 d 1’2!

a minimum? How do 8 and the minimal energy depend on the charge
number Z?
Hint:

la B Z |b|l+1 (cos@) for |a| < |b] ,

i
Py(cosb) = Z Ylm(-Q ) Yim(92)

2041
m=—1
where {2, and §2, are the solid angles belonging to @ and b respec-
tively, and 6 is the angle between a and b; the P, are the Legendre
polynomials (Appendix A.1).
Calculate the expectation values of H in the P and 3P states of
the helium atom, constructed by appropriate angular momentum
coupling from the 1s2p configuration. Use hydrogenic single-particle
wave functions with the parameter § as obtained in Problem 2.3 a).

b

Rl
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2.4 Consider a “gas” of non-interacting fermions in a finite cube of side
length L:
V= { 0 inside the cube
+o00 outside of the cube
a) Determine the eigenfunctions and eigenvalues of the one-body Hamil-
tonian 2
A= v
2p
b) Let each single-particle wave function with an energy not greater
than Er = h%k%/(2p) be occupied by two fermions (spin up and spin
down). How does the number N of fermions depend on the energy
Ey when Ef is large?
2.5 Calculate the eigenfunctions and eigenvalues of the Hamiltonian for a
particle of mass p in a one-dimensional box of length L:
. 0 for0<z<L,
V(x)~{+oo forz <Oorz>1L.
Show that the number of eigenstates per unit energy is given by the
formula (2.140) for large E.

2.6 Let 9, (z) be the eigenfunctions of the Hamiltonian for a one-dimensional
harmonic oscillator:
I N P - 1
H=—+_wz®, HyYp=(n+-) wi,
2 2 2
Show that the operators
bt = (2hw) V2 (wz —ip) , b= (2hw)~V?*(wz +ip)

act as creation and annihilation operators of oscillator quanta and, with
suitable choice of phases of the eigenstates v, are given by

BT¢n =vVn+1¢np, 5"/’11 = ﬁd’n-l
Hint: Calculate the commutators of b and b with H.

2.7 Calculate the lifetime of the 2p state of the hydrogen atom with respect
to electromagnetic decay.

2.8 How is the relation (2.182),
i A
pi = u—[H, i ’
Pi = pyHa,ri]

affected if Ha contains not only the usual kinetic energy, but also the
mass polarization term (Sect. 2.2.1)7

. 52 1
Hp = L E PiP; + terms commuting with r; .
1 2” Mnuc i<j

i=
How are formulae for transition probabilities such as (2.186) and sum
rules such as (2.217) modified if the mass polarization term is taken into
account?
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3. Atomic Spectra

A precise theoretical description of the energies and other properties of atomic
states in principle requires the solution of the N-electron problem discussed
in Sect. 2.2 and Sect. 2.3. This is of course not possible in general, but a
"lot of work based on various approximate and numerical methods has, over
the years, been quite successful in explaining important properties of atomic
spectra qualitatively and in simple cases quantitatively, mainly in the region
of low-lying states [LM85, CO80]. On the other hand, the description of the
structure of an atom or ion soon becomes very complicated when several
electrons are highly excited [Fan83, FR86]. The many-electron problem in
the regime of highly excited states is in fact still largely unsolved today.
The structures of atomic spectra and wave functions can, however, be
understood relatively simply and systematically if there is at most one elec-
tron in a highly excited state, while all other electrons are described by more
tightly bound wave functions close to the atomic nucleus. The reason is that
this case corresponds asymptotically to a one-electron problem in an attrac-
tive Coulomb potential (for neutral atoms and positive ions). The study of
such highly excited Rydberg atoms has become a field of intense research in
recent years, and this is largely due to advances in high precision experi-
mental techniques such as laser spectroscopy. The present chapter deals with
atomic spectra in such cases, which can be understood in the framework of
an extended one-electron picture. For a detailed study of the general subject
of Rydberg atoms, the reader is referred to the recently published monograph
by Gallagher [Gal94].

3.1 One Electron in a Modified Coulomb Potential

3.1.1 Rydberg Series, Quantum Defects

For an electron with orbital angular momentum quantum number [ in a pure
Coulomb potential,

Ze? L+ 1)R?

Vo(r) =1 - == +=5 0= @1

the solutions of the radial Schrédinger equation have the energy eigenvalues
(cf. (1.134), (2.8))
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R
En=I-—2, n=l+1,142,... , (3.2)
n
where R is the Rydberg energy; I is the continuum threshold. If the potential
V(r) differs from the pure Coulomb form (3.1) only at short distances,
V(r)=Vo(r) + Va(r), lim r?Vu(r) =0 (3.3)
r—00

then the energy eigenvalues can still be written in the form (3.2) if we replace
the quantum number n by an effective quantum number

n*=n-—p, . (3.4)
Explicitly:
R R
E,=1-—5=1-+—— . 35
o0 A O (39

The corrections u,, are called quantum defects and the energies (3.5) form a
Rydberg series.

The usefulness of the Rydberg formula (3.5) follows from the fact that the
quantum defects u,, depend only weakly on n for large n and converge to a
finite value in the limit n — oo. That this is so can be understood most easily
in the framework of the semiclassical approximation which was discussed in
Sect. 1.5.3.

For an energy E < I the relevant action integral in the quantization
condition (1.246) is, in the pure Coulomb case,

b
So(E) =2 / VB — Vo) dr . (3.6)

For | = 0 the inner turning point is the origin. The outer turning point b
grows larger and larger as £ — I:
Ze?

I-E "’

b(E) = (3.7)

and

b Ze? ® 11
SC(E)=2/ 2u(E—I+—)dr=2\/2p,Z62/ — ——dr
o T o V7r b
2
=2m/w-3-)5i , (3.8)
or, with (3.7),

pZ2et 2w 2
E=1 3 (SC(E)) . (3.9)
The quantization condition reads Sc(E) = 2mh(n + pe/4) (cf. (1.246)).
With the appropriate Maslov index pg, which must obviously be four in
the present case, it yields the energy formula (3.2) with the correct Ryd-
berg energy R = uZ2e*/(2h?). The Maslov index of four can be interpreted
as the sum of a contribution equal to one, coming from the reflection at the
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outer turning point, where the potential is smooth, and a contribution equal
to three, coming from the reflection at the attractive 1/r singularity at the
origin [MK69].
For [ > 0 the inner and outer turning points a and b are given by
1 1 1

EY) = N — —
o(E) k2az K\ (kaz)? v

b(E) = i + %, / —(mlz)z -7, (3.10)

where we have introduced the abbreviations

1 1 nZe?
n:E\/Q,u(I——E), P A y=I1l+1) . (3.11)

az

The action integral (3.6) can still be evaluated in closed form, and the quanti-
zation condition Sc(E) = 2nfi(n+pe/4) actually reproduces the exact energy
eigenvalues if the Maslov index 4 is taken to be two and the centrifugal po-
tential is subjected to the Langer modification, [(I + 1) — (I + 1/2)?; this
trick even works for [ = 0, where it corresponds to introducing an otherwise
absent inverse-square potential /2/(8ur?). The fact that WKB quantization
with the Langer modification yields the exact bound state energies in a su-
perposition of centrifugal and attractive Coulomb potentials [Lan37] is a co-
incidence which should not be given too much weight [Tro97]. For energies
near threshold, E = I, the de Broglie wavelength A in an attractive Coulomb
potential is essentially proportional to /7 in the classically allowed region.
Both terms (dA/dr)? and Ad2\/dr? on the left-hand side of the condition
for validity of the WKB approximation (1.243) are proportional to 1/r, and
they become arbitrarily large as r — 0. For a Coulomb potential, the WKB
ansatz cannot be expected to be a good approximation for the wave function
for small values of the radial coordinate.

Close to threshold, where E — I, however, the energy dependence of the
bound state wave functions is dominated by the regime of large values of r,
where the semiclassical approximation may be expected to be reliable. The
influence of an additional short ranged potential on the spectrum near thresh-
old can be found by replacing the action S¢ in the quantization condition by
the full action

b
S(E) = 2/ VORE —V(Dldr . (3.12)
This involves an additional contribution S (E) given by
Se(E) = S(E) - SC(E)

b b
:2/’\/2N[E—V(r)] dr — 2/ V2UE - Vo@]dr . (3.13)

The inner turning point is a in the absence and a’ in the presence of
the additional short ranged potential; near threshold the outer turning



124 3. Atomic Spectra

vt} Fig. 3.1. Radial mod-
ified Coulomb poten-
tial (3.3) (including
centrifugal potential)
with inner turning
point @' and outer
turning point b. The
energy dependence of
the outer turning point
is given by (3.7) close
to threshold

0 bIE) '

point b is determined by the long ranged Coulomb potential according to
(3.7) in both cases, cf. Fig. 3.1. The quantization condition now connects
the integer n not to Sc but to Sc¢ + Ssr; in place of (3.2) we now obtain
the Rydberg formula (3.5) and the quantum defects are, in the semiclassical
approximation,
1
SC __

Hn = %
In the limit £ — I, b — oo, the diverging contributions to the two integrals
in (3.13) cancel and their difference converges to a finite value.!

As an example for Rydberg series Table 3.1 lists the spectrum of one-
electron excitations in potassium (see [Ris56]). In order to derive the quan-
tum defects from the experimental term energies with sufficient accuracy, the
corrections to the Rydberg energy which arise from the mass of the nucleus
(cf. (2.12)) must be taken into account. With the nuclear masses from [WB77]
and the Rydberg energy R from (2.9) we obtain the following result for the
isotope K3%: R = Roou/me = 109735.771 cm™. The continuum threshold is
at I = 35009.77cm™L.

The quantum defects of the excited states in potassium are shown as
functions of the energy relative to the continuum threshold, F —1I, in Fig. 3.2.
For each set of quantum numbers S (= %), L, J we obtain a Rydberg series of
states nl in which the quantum defects depend only weakly on the principal
quantum number n or energy E. The energy dependence in each series can be
reproduced very accurately by a straight line. The quantum defects decrease
rapidly with increasing angular momentum [, because the inner region, where
the full potential deviates from the pure Coulomb potential, is screened more
and more effectively by the centrifugal potential (see Problem 3.1).

Sa(En) . (3.14)

! These considerations still hold if the “short ranged potential” falls off a little more
slowly than required by the condition in (3.3), e.g. for lim, o 72Vir = const. # 0.
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Table 3.1. Excitation energies E (in cm™!), effective quantum numbers n* and as-
sociated quantum defects 4, = n—n" for one-electron excitations in the potassium
atom (from [Ris56])

Term E n* HUn Term E n* Ln

45351, 0.00 1.77043 2.22957 | 4p2Py, 12985.17 2.23213 1.76787
55251/,  21026.58 2.80137 2.19863 2Py 13042.88 2.23506 1.76494
652512,  27450.69 3.81013 2.18987 | 5p?Py; 24701.43 3.26272 1.73728
752512  30274.28 4.81384 2.18616 %Py 24720.17 3.26569 1.73431
85251/,  31765.37 5.81577 2.18423 | 6p2Py,, 28999.27 4.27286 1.72714
9s25,,,  32648.35 6.81691 2.18309 %Py 29007.71 4.27587 1.72413
10s%5,,, 33214.22 7.81763 2.18237 | 7p?Pi; 31069.90 527756 1.72244
115%5;,, 33598.54 8.81810 2.18190 %Py 3107440 5.28058 1.71942

125%S,,, 33817.46 9.81847 2.18153 8p2P1/2 32227.44 6.28015 1.71985

-13325'1/2 34072.22 10.8187 2.1813 2P3/2 32230.11 6.28316 1.71684

9p?Py,, 3294021 7.28174 1.71826
Pyjs  32941.94 7.28478 1.71522
3d®Ds;, 2153470 2.85370 0.14630 | 10p?P,, 33410.23 8.28279 1.71721
2Dyyp  21537.00 2.85395 0.14605 2Py, 33411.39 8.28579 1.71421
4d°Ds;;  27397.10 3.79669 0.20331
2Dy 27398.14 3.79695 0.20305 | 4f°F 28127.85 3.99318 0.00682
5d%Ds/, 3018524 4.76921 0.23079
2Dsy/n  30185.74 4.76946 0.23054 | 5f°F 30606.73 4.99227 0.00773
6d%Ds;,  31695.89 5.75448 0.24552
D3/ 31696.15 5.75470 0.24530 | 6f7F 31953.17 5.99177 0.00823
7d*Ds;;  32598.30 6.74580 0.25420
2Dy 32598.43 6.74598 0.25402 | 7f°F 32764.80 6.99148 0.00852
8d%Ds;,  33178.12 7.74021 0.25979
2Dy 33178.23 7.74045 0.25955 | 8f7F 33291.40 7.99127 0.00873
9d°Ds;;  33572.06 8.73652 0.26348
2Dy, 3357211 8.73667 0.26333 | 9f°%F 33652.32 8.99109 0.00891
10d°Ds,; 33851.55 9.73371 0.26629
2Dy, 33851.59 9.73388 0.26612 | 10f°F  33910.42 9.99094 0.00906
11d%Ds;, 34056.94 10.7317 0.2683
’D3je  34057.00 10.7320 0.2680 11f2F  34101.36 10.9909 0.0091

Because of their weak energy dependence, it is useful to complement the
quantum defects p, = u(E,) defined at the discrete energies E,, to a contin-
uous quantum defect function p(E) which describes the influence of the short
ranged potential Vj,. In the semiclassical approximation an extension of the
formula (3.14) to arbitrary energies E < I immediately yields an explicit
formula for the quantum defect function:

W(B) = o= Su(E) (3.15)

An exact definition of the quantum defect function (beyond the semiclassical
approximation) can be formulated by asymptotically matching the solutions
of the radial Schrédinger equation to linear combinations of Whittaker func-
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Fig. 3.2. Quantum defects (o) of the L Rydberg series in the potassium atom as
functions of the energy relative to the continuum threshold (see also Table 3.1). The
splitting within the individual doublets is not resolved in the figure. The almost
horizontal straight lines are the quantum defect functions u(E); their intersections
with the set of curves (3.20) define the energies of the bound states. At the con-
tinuum threshold £ = I the quantum defects match smoothly to the asymptotic
phase shifts divided by =, which are shown as dashed lines in the figure. (The
Roman numeral I after the element symbol “K” indicates the neutral potassium
atom. In this notation potassium ions with a single positive charge are written K
11, doubly charged ions are written K III, etc.)

tions [Sea83]. In practice it is customary to approximate the weakly energy-
dependent function u(E) by fitting a polynomial in E —I through the discrete
values given by the quantum defects, u(E,) = pn.

In the bound state region E < I we can introduce the variable v, defined

by
/| R R

as a substitute for the energy variable E. The variable v is the continuous
effective quantum number. In a pure Coulomb potential the condition that
the energy corresponding to a given value of the continuous effective quantum
number v is one of the eigenvalues (3.2) of the Schrédinger equation reads

V(EB)=n=1+11+2,... . (3.17)

3.1 One Electron in a Modified Coulomb Potential 127

For a modified Coulomb potential of the form (3.3) the condition for a bound
state is, according to (3.5),

WE) +pn=n (3.18)
or, expressed in terms of the quantum defect function u(E),
VEY+u(E)=n . (3.19)

Thus the energies E, of the bound states are given by the intersections of
the quantum defect function with the set of curves

p™ =n—V(E)=n—\/T—M% (3.20)

in the u-F plane, as shown in Fig. 3.2.

The technology of high resolution laser spectroscopy has made the obser- -
vation of very highly excited Rydberg states possible. The left-hand part
of Fig. 3.3 shows an observed photoabsorption spectrum (cf. (2.197) in
Sect. 2.4.4) with lines up to n = 310 in the 6snd 1D, Rydberg series in bar-
ium. The right-hand part of the figure shows the energy differences E,11—E,
as a function of the effective quantum number n* on a logarithmic scale. The
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Fig. 3.3. The left-hand part shows photoabsorption cross sections with final states
in the 6snd D2 Rydberg series in barium. The right-hand part shows the energy
differences of successive Rydberg states as a function of the effective quantum num-
ber nf on a logarithmic scale (every fifth energy difference is plotted). The straight
line shows the proportionality (nf)™® following from the Rydberg formula (3.5).
(From [NJ88])
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straight line shows the proportionality to (n*)~3 following from the Rydberg
formula (3.5). Apart from resolving such small energy differences (=~ 1078
atomic units), it is a remarkable achievement that measurements involving
such highly excited Rydberg atoms are possible at all. The spatial extension
of a Rydberg atom grows quadratically with the principal quantum number
n (see Problem 1.3) and exceeds 10° Bohr radii for n = 300, this means that
the Rydberg atoms observed in Fig. 3.3 are almost one hundredth of a mil-
limetre in size! In further measurements states in this Rydberg series with
principal quantum numbers n > 500 were identified [NR87].

3.1.2 Seaton’s Theorem, One-Channel Quantum Defect Theory

Below the continuum threshold, the short ranged deviation of the full po-

tential from a pure Coulomb potential is described by the quantum defects -

or the quantum defect function. Above the continuum threshold the short
ranged deviation from the Coulomb potential manifests itself in the asymp-
totic phase shifts (cf. Sect. 1.3.2, (1.121)). At the continuum threshold, the
quantum defects are related to the phase shifts, because the appropriately
normalized solutions of the radial Schrodinger equation in the limit n — oo
(i.e. E — I from below) and in the limit £ — I (from above) converge to the
same well defined solution at E = I, just as in the pure Coulomb case (see
(1.152)). The quantitative connection between the quantum defects and the
phase shifts at threshold is given by Seaton’s theorem:

. _ N
nli’n;o pn=(E=1I)= - éx_n’lI&(E) . (3.21)

The factor 1/7 appears on the right-hand side of (3.21), because a shift of
one half-wave in the asymptotic part of a wave function corresponds to a
change of unity in the effective quantum number and the quantum defect
below threshold, while it corresponds to a change of m in the phase shift
above threshold.

The relation (3.21) can immediately be verified in the framework of the
semiclassical approximation. There the radial wave function has the form
(1.238),

sy cp) 2 exo [ [ ptrar] (322)

and the phase of the wave is just the action integral in the exponent divided
by h. The asymptotic phase shift caused by a short ranged potential Vi
added to the pure Coulomb potential is the difference of the phases with and
without Vg,:

7B = [ VEE=Vel) ~ Valrdr

- %/ VoRE Vo] ar . (3.23)
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(Again, the inner turning point is a in the absence and a’ in the presence
of Vi.) Because of the short range of V;; the difference (3.23) becomes in-
dependent of r for sufficiently large r. Thus the asymptotic phase shift in
the semiclassical approximation is just 1/(2%) times the additional contribu-
tion to the action due to the short ranged potential (cf. (3.13)). In the limit
E — I this is precisely 7 times the right-hand side of (3.14) in the limit
b — oo corresponding to n — oo.

The close connection between the “quasi-continuum” of the bound states
just below threshold and the genuine continuum above threshold is charac-
teristic for long ranged Coulomb-type potentials. The wave functions consist
mainly of a large number of oscillations far out in the 1/r potential, be
it a large finite number just below threshold or an infinite number above
threshold. The main influence of an additional short ranged potential Vj; is
to shift these outer oscillations, and this manifests itself in the phase shift
above threshold and in the quantum defect function and the quantum defects
below threshold.

The two mathematically similar but physically different situations just
below and just above the continuum threshold can be summarized in one
uniform equation of one-channel quantum defect theory (QDT),

tanfr(v + p)] =0 . (3.24)

Here u(E) is the function which describes the physical effects of the additional
short ranged potential: below threshold u is the quantum defect function
described above, and above threshold p(E) is the asymptotic phase shift §(E)
divided by m. Below threshold v(F) is a variable corresponding to the energy,
namely the continuous effective quantum number (3.16). Above threshold, v
stands for the asymptotic phase shift divided by —:

W(E) = ,/I_iE for E<I, u(E)= —%J(E) for E>1 . (3.25)

With the identification (3.25) the QDT equation (3.24) above threshold
is, for the present one-channel case, a trivial identity §(E) = 6(E). Below
threshold (3.24) simply means that v(E) + u(F) must be an integer n — this
is just the condition (3.19) for the existence of a bound state.

Just as the asymptotic phase shifts are defined only to within an additive
multiple of 7, the quantum defects and the quantum defect function are only
unique modulo unity. The particular choice of quantum defects or the quan-
tum defect function determines where to start counting in a given Rydberg
series.

3.1.3 Photoabsorption and Photoionization

The cross sections (2.197) for photoabsorption and (2.199) for photoionization
are given, as discussed in Sect. 2.4.6, by the respective oscillator strengths
féz) and d f,(;i) /dE. The relation between the cross sections and the oscillator
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strengths depends on the polarization of the incoming light and on the orien-
tation, i.e. on the azimuthal quantum numbers, of the initial and final atomic
states. In order to get rid of these geometric dependences it is convenient to
define mean oscillator strengths, which is quite easily done for one-electron
atoms with wave functions of the form (1.74).

For initial and final state wave functions

Do 1y,m; ("') = M Yli»mi(07¢) )

¢m,lf() lf»mf(e ¢) ) (3'26)

we define the mean osc1llator strength for transitions from the initial multiplet
ni, li to the final state multiplet n¢, I by averaging over the initial states and
summing over the final states (cf. last paragraph in Sect. 2.4.4) as well as
averaging over the three spatial directions z, v, z

¢nf,lhmr (T)

+1; +i¢
f"flf’" L= 2l +1 Z Z Z f(lr)lfmnn Lim;
mi=—1; mf——lf i=1
2/4 +1 1 +1;
2
3h mz 2% +1 mzl |(@"hlhmf|r|¢niyli,mi>| . (3'27)
==l i=—b

We can rewrite the absolute square in (3.27) in spherical components
(2.201):

+1
[(thlhm(IT|¢niyli;mi),2 = Z |(¢nﬁlhmfIT(")|¢nhli;mi>|2 . (328)

v=-—1
With the expression (2.205) for the matrix elements of the spherical compo-
nents of r we have
li

Z l(@nfylhmf|T|¢"iyliymi>|2

mi=—1;
! 00 2
) ( / ¢m,z,<r>r¢n.,z,<r>dr) F(le, b
__li

+1
X Z <lf1 mflla v, liami)2

rv=-—1

o 2 l>
([ buarrnatrar) g2 (3.29)
Here we have assumed that Is is either [;+1 or [;—1 and used the fact that the
sum of the squares of the Clebsch-Gordan coefficients over m; and v gives
unity [Edm60]. For the factors F'(l¢,l;) we inserted the explicit expression
(2.207); l> is the larger of the two angular momentum quantum numbers

I

Il
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l; and ls. Since the expression (3.29) no longer depends on the azimuthal
quantum number mg of the final state, the factor 1/(2ls + 1) cancels with
the summation over ms in (3.27), and the expression for the mean oscillator
strengths is simpliﬁed to

_ 2 2
fnrlr,mli M 2l + 1 (/ ¢"H’ylt r)r¢"i,li (7') dT‘) . (330)

The frequency w = (gr — €;)/Hk, and hence also the oscillator strengths, are
positive for er > ¢; (absorption) and negative for & < &; (emission). From
(3.30) it is easy to see that the mean oscillator strengths fulfill the relation

(26 + 1) fagemats + Cle + 1) fagtingg, =0 (3.31)

For the mean oscillator strengths, where the sum over the azimuthal quan-
tum numbers is already contained in their definition, we obtain a sum rule
of the form (see also (3.39) below)

Z f’nflf,nili =1 . (332)

ng,le

The sum may further be decomposed into contributions from the two possible
angular momentum quantum numbers in the final states, [ = [; + 1 and
le = ; — 1, yielding [BS57] (see also (3.40) below):

- 1 (l, + 1)(2[i + 3)
S Py = D@L
ng

3 2L +1
= 152, -1)
Z =1 = -3 2l—+1— . (3.33)
g

The matrix elements (3.28) contain no spin dependence and allow no spin
changing transitions. If, however, the final state multiplets with good total
angular momentum quantum number j, which are split due to the effects
of spin-orbit coupling, can be resolved in the experiment, then the (mean)
oscillator strength for given final state quantum numbers n¢ and s will be
distributed among the various j multiplets in proportion to their multiplicity
25 + 1. In an n; 25y /2 — T 2Pj transition, for example, the transition to the
J = 3/2 states (25 + 1 = 4) is twice as strong altogether as the transition to
the j = 1/2 states (25 + 1 = 2).

The cross section for the absorption of photons of arbitrary polarization by
a one-electron atom of undetermined orientation is a series of sharp spikes,
whose strength is given by the mean oscillator strength (3.30) (multiplied
by the constant factor 2w2e%h/(uc) from (2.215)). Only comparatively small
distances r contribute in the radial integral in (3.30), because the initial wave
function ¢, () vanishes for large r. With increasing principal quantum
number ns of the final states the amplitudes of the radial wave functions
@ne 1, (1) of the final states (which are normalized to unity) become smaller
and smaller in the inner region, just as for the pure Coulomb functions in
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Fig. 1.4. Hence the oscillator strengths also become smaller and smaller with
increasing principal quantum number n¢ of the final states.

In order to expose the dependence of the cross sections and oscillator
strengths on the principal quantum number for large principal quantum num-
bers, we renormalize the radial wave functions of the final states in analogy
to (1.139) so that the square of their norm becomes inversely proportional to
the separation 2R/(n})® between successive energy eigenvalues:

¢Ef11f = (nf)a ¢nf,lf . (334)

Here nf are the eﬁectlve quantum numbers ng — p,,, which determine the
energies of the final states according to (3.5). In the limit nf — oo corre-
sponding to E — I (from below), the wave functions (3.34) merge smoothly
into the energy normalized continuum wave functions ¢z, for E > I. With
(3.34) we can rewrite the (mean) oscillator strengths (3.30) as

- 2R 2 2
Frgle s = ( )3 3;: 2l +1 (/ o 1, (1) r¢n,1(r)dr) ,  (3.35)

where the radial matrix element now converges to a finite number at the
continuum threshold E = I.

The representation (3.35) of the discrete oscillator strengths facilitates
their smooth matching to the photoabsorption cross sections and oscilla-
tor strengths to final states in the continuum. If we define mean oscillator
strengths in analogy to (3.27) as

df Bt & & 3\ df g
£,706 fmhnx 17
T mT o L Z
mi=—1 mf——lf
+1¢ +1
2l F1 z I(¢E,lr,mf’r|¢ni,lx,mi>|2 ) (3.36)
mf:—lf mi=-—1;
then the same manipulatlons which led from (3.27) to (3.30) yield
dfrbmt _ 20 / 2
—_— = n . 37
bl 2y 2 ([ bma)r b () (337)

The cross section for the photoionization of atoms of unknown orientation
by photons of arbitrary polarization is given by the mean oscillator strength
(3.37) (multiplied by the constant factor 2m%e®h/(uc) from (2.220)). From
(3.35) we see that the discrete oscillator strengths multiplied by the density
(n#)3/(2R) of the final states merge smoothly into the continuous form (3.37)
at the threshold E = I:

*\3 f
) o, = Jim, LBt (3.39)

li
niboo 2R

An example of the smooth transition from the discrete line spectrum below
the continuum threshold to the continuous photoionization spectrum above
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Fig. 3.4. Measured oscillator strengths for 35 — nP transitions in sodium. The
discrete oscillator strengths (from [KB32]) are multiplied by the respective factors
(nf)®. Near threshold the areas under the dashed lines correspond to the original
oscillator strengths. The continuous oscillator strengths above threshold are the
photoionization cross sections from [HC67] divided by the factor 2m%e®h/(puc)

threshold is shown in Fig. 3.4 for the case of sodium. The left-hand part of the
figure shows the discrete oscillator strengths (3.35) multiplied by (nf)3/(2R)
(2R is unity in atomic units), and the right-hand part shows the photoioniza-
tion cross sections divided by 272e%h/(uc). The pronounced minimum at an
energy around 0.05 atomic units above the threshold is attributed to a zero
with an accompanying sign change in the radial matrix element in (3.37).
In the discrete part of the spectrum the separation between successive lines
in the near-threshold region is just 2R/(n})3, so that the areas under the
dashed lines correspond to the original oscillator strengths.

The transitions to the continuum must of course be taken into account
when formulating sum rules. Thus (3.32) correctly reads

2 : r3 o del nil;
fn ls,nils + = LR dE=1 . (339)
f4f, 1 ’ dE

ng,ls

The correct form of (3.33) is

= d 1+ 125 +3
Z-fnfli+1,ﬂili + / fEl ol dE = §( it )( s ) )
ng

dE Qli +1
F ® dfpy-1;t . 1L(2L—1)
nz' fnfli"lynll\ + ‘/I dE dE = 37 9L +1 . (3.40)

Finally it should be mentioned that the derivation of the sum rules in
Sect. 2.4.6 relied on a commutation relation of the form (2.182), in par-
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ticular on the commuting of the dipole operator and the potential energy.
In a one-electron atom this is only fulfilled if the potential energy is a local
function of the displacement variable. For non-local one-body potentials as
they occur in the Hartree-Fock method (see Sect. 2.3.1), the Thomas-Reiche-
Kuhn sum rule can, strictly speaking, not be applied with N = 1. We find
a way out of this problem by realizing that the non-locality in the Hartree-
Fock potential originates from the Pauli principle, which requires e.g. the
wave function of the valence electron in an alkali atom to be orthogonal to
the occupied single-particle states in the lower closed shells. The sum rule
with N = 1 holds approximately, if we include fictitious transitions to the
states forbidden by the Pauli principle. Since &; < ; for such transitions and
hence fp,1, n, is negative, the sum of the oscillator strengths for the allowed
transitions becomes larger.

3.2 Coupled Channels

3.2.1 Close-Coupling Equations

The simple picture of one electron in a modified Coulomb potential described
in Sect. 3.1 can be transferred, to a large part, to many-electron atoms, when
one electron is in a highly excited loosely bound state, while all other electrons
form a more or less tightly bound core. In the simplest case we can assume
that the core electrons are not excited and only affect the spectrum via. their
influence on the mean single-particle potential for the “outer” electron. In a
further step we can allow a finite number of excitations of the core electrons.
The total wave function of the atom (or ion) then has the form

U(z1,..., an) = AL YY) (mey, 22, ... TN (1) (3.41)
J

where the summation index j labels the various internal states of the core,

whose wave functions wl([ft) each define a “channel” and depend on the internal
variables. The internal variables are all variables except the spatial coordinate
T, of the outer electron; we are counting the spin of the outer electron as one
of the internal variables. In each channel j, 1;(r1) is the associated channel
wave function; it is simply a one-electron wave function for the outer electron.
We shall later include the angular coordinates of the outer electron among
the internal coordinates, so the channel wave functions will depend only on
the radial coordinate of the outer electron. To begin with, however, we shall
derive the equations of motion for the full orbital one-electron wave functions
¥i(r1)-

We assume that the wave functions of the core are antisymmetric with
respect to exchange amongst the particle labels 2— N; the total wave function
is made fully antisymmetric by the residual antisymmetrizer which takes care
of the exchange of the outer electron with the electrons 2 — N of the core:
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N
Ai=1-> P, . (3.42)
v=2
In order to derive equations of motion for the channel wave functions, we
rewrite 1;(r1) as [ dr’' 8(r1 — r');(r’) in (3.41) giving

@ (zy,..., TN) = Z / dr' &;(+') (3.43)

with

®;(r') = A {pY) (ms,, 22, ... TN)8(r1 — 7')}
Equation (3.43) represents an expansion of the total wave function in the ba-
sis of states @;(r') which are labelled by the discrete index j numbering the
channels and the continuous vector parameter r’ corresponding to the posi-

tion of the outer electron. Due to the effect of the residual antisymmetrizer
(3.42), this basis is not orthogonal, i.e. the overlap matrix

(@:(r)®; (")) = (86 (r1 — )AL A sy — 7))
= N{@&6(ry — )| Ailpd)s(r — 7)) (3.44)

int
need not necessarily vanish for i # j or r # . For the second line of (3.44)
we have used the property .AA‘LAL = N.A; of the residual antisymmetrizer
(3.42) (which is defined without a normalization factor — cf. (2.61), (2.64)).
Diagonalizing the Hamiltonian H in the basis (3.43) leads to an equation
of the type (1.226), generalized to the case of discrete and continuous basis
state labels:

> / dr' [H; j(r,7') — E A; j(r,7)] (") =0 (3.45)
j
with
Hij(r,7') = W06(r1 — r)|HA WS (r — )
A j(r,7") = @08 — P Ai[w$)8(r — 7)) (3.46)

In (3.45) we have cancelled the common factor N appearing in front of the
matrix elements (3.46) as in (3.44).
Equation (3.45) represents a set of coupled channel equations

Hiii + Z Hi¥; = E(Ai,i¢i + ZAi,jwj) ) (3.47)

J#i J#i
for the channel wave functions 1;, and the Hamiltonian and overlap operators
I:Im and /i,»,j are integral operators defined by the integral kernels (3.46).
These equations look a little more complicated than the coupled channel
equations (1.157) which were derived under quite general assumptions in
Sect. 1.4.1. This is due to the non-orthogonality of the basis states, which
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results from the fact that our present ansatz (3.41) already takes into account
the indistinguishability of all electrons and collects all equivalent channnels,
which differ only by rearrangement of the electron labels, into one channel.

The overlap kernels 4, ;(r, ') can be decomposed into a direct part orig-
inating from the 1 in the residual antisymmetrizer (3.42), and an exchange
part K; j(r, ') coming from the genuine permutations in (3.42). Because of
the orthonormality of the core states the direct part of the overlap kernels is
simply a Kronecker symbol in the channel indices and a delta function in the
spatial coordinate, but the exchange parts are genuinely non-local:

1_7(”'7')_5,.76(7'—7')— (T"I‘) ’
N
Kij(r,m) =Y (08(rs — )| Prou|pS)s(r — ) (3.48)
v=2 .

In each contribution to the exchange part, the spatial coordinate r; of the
outer electron is exchanged with one of the coordinates 7, ... rn of the core
electrons, and the matrix element vanishes for large |7/| (or large |r|) because
of the exponential decay of the wave function of the bound core state met)

(or 1/;1(3) For large separations the overlap operator thus becomes the unit
operator.

Similar considerations apply for the Hamiltonian operators ﬁi, j- They too
can be decomposed into a direct part Hy arising from the 1 in the residual
antisymmetrizer (3.42), and an exchange part H., described by an integral
kernel Hey; j(r,7'), which is short ranged and non-local just as in the case
of the overlap operators.

In order to expose the structure of the direct part Hj of the one-body
Hamiltonian, it is useful to decompose the N-electron Hamiltonian (2.53) as

follows:
H=H +Hy_y+Hy . (3.49)

H; acts only on functions of r; and Hy_n acts only on functions of the
remaining, the internal, variables:

5 _ P}
Hy = ﬂ’l"V('l’l) ,

- N_Z&+2Vr,,)+ Y W) (3.50)

I<v<v!

71 is coupled to the other degrees of freedom by the interaction term

N ~
=S W1y (3.51)
v=2
Since H; does not act on the internal wave functions, the integration over
the internal variables in (1/1-(')5(1" - rl)IHllw.(J)cS('r’ — 1)) yields a Kronecker

int int
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symbol in the channel indices and the diagonal matrix elements are simply
the one-body matrix elements of the kinetic energy p1 2 /(2u) plus the potential
energy V(ry) of the outer electron. From H,_n we obtain diagonal contri-
butions corresponding to the internal energies in the respective channels,

Ei = WO Hy_n 9y (3.52)

int int

multiplied by §(r — ='). The prime on the ket bracket indicates integration
and summation over the internal variables. We assume that the internal wave
functions are eigenfunctions of H,_n, or at least that Hy n is diagonal in
the internal states included in the expansion (3.41); then its contributions
to the direct one-body Hamiltonian which are non-diagonal in the channel
labels vanish. The contribution from the interaction term Hw couples the
channels. With the expression (2.55) for the electron-electron interaction this
contribution consists of the local coupling potentials

Vij(r) = (vl Z 532>' : (3.53)

The decomposmon of the Hamiltonian and overlap operators into direct
and exchange parts exposes the structure of (3.47) as a system of coupled
Schrédinger-like equations:

ﬁ2
(iﬁ + V(r)) () + z Vi (r)5(r)

+Z/Hexi,j(r,r’)¢j(r’) dr’
= (E-Byb(r) ~E} / Kij(r,v);(r')dr’ . (3.54)
i

The coupled equations (3.54) are generally known under the name of close-
coupling equations. They consist of a set of coupled integro-differential equa-
tions for the channel wave functions 1;(r). The interactions consist of a direct
local potential and a non-local exchange potential. The explicit energy de-
pendence of the non-local contribution on the right-hand side is due to the
fact that the equation of motion has the form of a generalized eigenvalue
problem (3.45).

The longest ranged contributions to the potential energy in (3.54) are the
direct diagonal potential V'(r) describing the electrostatic attraction by the
atomic nucleus,

Vi) = _ZTGZ , (3.55)

and the direct interaction potentials (3.53). Using the multipole expansion

r—rul Z [IEZ:}ET:}}M P(cosb,) (3.56)
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we can expand the potentials (3.53) in a series for large |r|,

oo 2 N
Vis(r) =Y 7 Wl Yorb Pcos)w), Irl o0 . (357)
=0 v=2
Here P, are the Legendre polynomials (Appendix A.1) and 6, is the angle
between r and r,. The [ = 0 contribution in (3.57) yields a potential which
is diagonal in the channel indices and describes the electrostatic repulsion by
the core electrons. It ensures that the outer electron only sees the net charge
Z — (N —1) of the atomic nucleus plus core electrons at large distances. The
higher contributions corresponding to ! > 0 depend on the multipole moments
and multipole matriz elements

N
M) = (313" 1t Picos )2y (3.58)
v=2
of the internal states. Since the internal states are usually eigenstates of the
the parity operator for the N —1 core electrons (cf. Sect. 2.2.4), the diagonal
multipole moments Mi(’li) vanish for odd I. For neutral atoms and positive
ions (i.e. for Z > N), the structure of the close-coupling equations is thus
dominated by the diagonal long ranged Coulomb potential —(Z — N +1)e2/r
describing the attraction of the outer electron by the net charge of the nucleus
plus core electrons. The next contributions depend on multipole moments and
multipole matrix elements of the internal core states; they fall off at least as
fast as 1/r3 in the diagonal potentials and at least as fast as 1/r2 in the non-
diagonal coupling potentials. Due to the exponential decay of the bound state
wave functions of the internal core states, the non-local exchange potentials
fall off exponentially at large distances.
The internal states 1/11(;1 defining the channels generally have a well defined
angular momentum, the channel spin. It is made up of the orbital angular

momenta of the core electrons 2 — N together with the spin angular momenta, -

of all electrons. The resulting channel spin must still be coupled with the
orbital angular momentum of the outer electron to form the total angular
momentum of all electrons, which is a good quantum number. When we
separate the close-coupling equations (3.54) into radial and angular parts,
there will only be coupling between terms belonging to the same values of the
total angular momentum quantum numbers J, M; and, if the perturbation
due to spin-orbit coupling is sufficiently small, to the same values L, M|, of
the total orbital angular momentum and S, Mg of the total spin. The coupled
equations (3.54) thus fall into various sets of coupled radial equations which,
apart from the non-local exchange potentials, each have the general form
(1.165). Each such set of coupled radial equations is characterized by the
quantum numbers J, L, S and the N-electron parity, as was described for
atomic states in general in Sect. 2.2.4. With the usual phase conventions in
the angular momentum coupling, the potentials appearing in the coupled
radial equations are real. The transition from the coupled equations (3.54) to
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coupled radial equations will be discussed in more detail in connection with
inelastic scattering in Sect. 4.3.2.

3.2.2 Autoionizing Resonances

The internal energy F5 of an excited state wl(ft) of the core electrons lies higher

than the internal energy E; of the ground state 1/)1(,}2 . The channel threshold
I, in channel 1 coincides with the continuum threshold of the whole system,
and the channel threshold I, above which channel 2 is open, lies higher by
the amount E; — E; corresponding to the internal excitation energy of the
core.

L=I, L=I+E—E . (3.59)

At energies between I; and I, there can be states in channel 2 which
would be bound if there were no coupling to the open channel 1. In the
independent-particle picture such a state corresponds to a two-electron ex-
citation: firstly a core electron is excited defining the internal state wl(ft) ;
secondly the outer electron occupies an (excited) state in the electron-core
potential (see Fig. 3.5). Due to channel coupling, the excited core electron
can impart its excitation energy E» — E; to the outer electron, which thus
attains an energy above the continuum threshold and can be ejected without
absorption or emission of electromagnetic radiation. This process is called

autotonization.

v

Fig. 3.5. Schematic illustration of an autoionizing resonance in the single-particle
picture. Electrons are indicated by filled circles, unoccupied single-particle states
by empty circles

Such autoionizing states appear in the coupled channel equations as Fesh-
bach resonances, which were described in Sect. 1.4.2. The bound state in the
uncoupled channel 2 is described by a bound radial wave function ¢o(r),
and all other coordinates (including the angular coordinates of the outer
electron) are accounted for in the internal wave function of the excited core

state 1/1](“22 The radial wave function ¢.eg in the uncoupled open channel 1
has the asymptotic form [2u/(mk?k)]Y/2 sin (kr + 8pg) (cf. (1.173)), where
dpg is the background phase shift due to the diagonal potential. The factor
[211/(7h2k)]1/? ensures normalization in energy. The effects of the channel

coupling can easily be calculated if we assume that the channel wave function
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@2 in the closed channel 2 is always proportional to the wave function of the
bound state ¢o. We then obtain a solution of the coupled equations in the
following form:

@1(1) = COS OresPreg () + SiN bres A1 (1)

(Vi ) (3.60)

The modification of the wave function in channel 1 is described by the term
sin byes A, in which A¢(r) asymptotically merges into the irregular solu-
tion of the uncoupled equation:

Api(r) = v/2u/(wh?k) cos (kr + fpg) , T — 00 . (3.61)

dres is the additional asymptotic phase due to coupling of the bound state

@2(r) = cOS Ores

in channel 2 to the open channel 1. Near the energy Egr of the autoionizing

resonance it rises more or less suddenly by #n and is quantitatively given rather
well by the formula (1.184):

/2
tan Jres = _E——/E—R-‘ (362)
According to (1.182), the width I" is given by
I' = 2m(¢reg|Vr2100)° (3.63)

and it determines the lifetime of the state with respect to autoionization
according to (2.145). The potential V; o is real (as is the matrix element
{@reg|V1,2|¢00)) and encompasses all contributions which couple the channels,
including non-local exchange contributions.

The channel wave functions (3.60) correspond exactly to the solutions of
the two-channel equations in Sect. 1.4.2, together with the common factor
€0S dres Which ensures that the wave functions in the open channel 1 are en-
ergy normalized. The associated total wave functions are then also energy
normalized, because the normalization integrals are dominated by the diver-
gent contributions from the radial wave functions in the open channel.

With (3.62) and (3.63), the radial wave function ¢ in (3.60) can be
rewritten as

Sin bpes

02(r) = G Val0)

so that the entire N-electron wave function has the form

@E = COS 6res Al {"/}l(it) ¢l‘eg(r) }

3 Sin byes @ ¢olr) (1) Ad)] Aga(r) } 5
T{regV1,2160) {“""‘ mPreelVialdo) Yin = 5 - (3.69)

It is appropriate to normalize the radial wave function ¢ of the bound
state in the (uncoupled) channel 2 such that the contribution 4; {wi(:t) do(r)/r}

$o(r) ‘ (3.64)
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of channel 2 to the N-electron wave function (3.65) is normalized to unity.
Due to antisymmetrization, this does not necessarily mean that ¢o itself is
normalized to unity. With (3.62) and (3.63), the absolute square of the factor
in front of the contribution from channel 2 in (3.65) can be written as

Sin2 5res _ l F/2 _ l déres (3 66)

7% (¢reg|Vi,2ld0)> 7w (E - Er)2+(['/2)? m dE '

Thus the admixture of channel 2 near an autoionizing resonance is described
by a Lorentzian curve with a maximum at the resonance energy Er and a
width corresponding to the width of the resonance (see Fig. 1.8 in Sect. 1.4.2).

Equation (3.65) shows that the “unperturbed wave function” (bres = 0)
acquires an admixture due to the coupling of the channels. This admixture
is not merely the naeked bound state ./iﬂ/)l(ft) @o(r)/r, but is itself dressed by a
modification of the open channel wave function.

The existence of autoionizing resonances manifests itself not only in the
radiationless decay of excited states, but also in other observable quantities
such as photoabsorption cross sections. In order to calculate, for example, the
oscillator strength dfg; (@) /dE for photoionization from an initial N-electron
state @;, we have to apply the upper formula (2.219) and insert the two-
channel final state wave function g from (3.65):

Sin Ores 2
7r(¢reg|V1,2|¢0)]

do tan bres 2
T d vr<¢regivl,2|¢o>]
Here d; and dy are the N-electron matrix elements which describe the

dipole transitions from the initial state @; to the two components of the final
state (3.65):

dfs)  2u
B - fw d1COS Opes — do

= %“wdf 082 8res [1 (3.67)

dy = (1)¢reg(r) Pree /) Z AlI‘P )

mt

dy = (w2 <¢,eg1v1,24¢o>wf,:qu’l(TNZ JAS) . (368)

It may be worth commenting on the physical dimensions of d; and ds. Due to
the energy normalization of the wave function ¢, each occurrence of ¢reg
rather than a normalized bound state wave function contributes the inverse
square root of an energy to the physical dimension, as is e.g. obvious in (3.63).
The same holds for A¢;. Hence the dipole transition strength d; as defined
in (3.68) has the dimension of length times an inverse square root of energy,
whereas d2 is just a length.

The formula (3.67) shows that the observable photoabsorption cross sec-
tions in the vicinity of an autoionizing resonance are formed from two in-
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terfering amplitudes. The resulting line shapes can best be discussed if we
rewrite (3.67) as

dfe 2, (g+e)?
dE T RV Ty o (3.69)
where
- F
g = —cot 5res = EI_‘—/2R (370)

is the dimensionless reduced energy, which measures the energy relative to
the position of the resonance in units of half the width of the resonance. The
parameter '

. T
1= G (Grog| Va2l o)

is the dimensionless shape parameter, which depends on the relative strength

of the dipole transition matrix elements (3.68) and determines the shape of

the absorption line. In (3.69) (2u/f)wd? is a weakly energy-dependent factor

corresponding to the oscillator strength we would expect in the absence of

coupling to the bound state in channel 2. The energy dependence of the cross

section near the resonance is dominantly given by the Beutler-Fano function
o (a+e)?

Beutler-Fano resonances of the form (3.69) occur not only in photoabsorp-
tion, but in all observable quantities which are determined by a transition
matrix element ($g|O|®;) as in (2.219). The matrix elements (3.68) must
then be replaced by the corresponding matrix elements of the transition op-
erator O.

Different values of the shape parameter ¢ in the Beutler-Fano function

(3.71)

(3.72) lead to absorption lines of different shape as illustrated in Fig. 3.6.

At g = —¢ the function and hence also the oscillator strength vanish. This
corresponds to completely destructive interference of the two terms in (3.67).
The absorption line is steeper on the side of this zero and flatter on the other
side. The sign of ¢ determines which side is the steep one. The maximum of
the Beutler-Fano function is at € = 1/g; the height of the maximum is 1+ ¢2.
Far from resonance, i.e. for € — 00, the Beutler-Fano function is unity and
the oscillator strength merges into the oscillator strength we would expect in
the absence of channel coupling. For very small values of ¢ the Beutler-Fano
function describes an almost symmetric fall off to zero around the resonance
energy (window resonance). (See Problem 3.4.)
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Fig. 3.6. The Beutler-Fano
(a) A q:05 —— function (3.72) for various posi-
tive (a) and negative (b) values
of the shape parameter ¢

Flq:e)

Flael (b I q:-05 ——

-10 -5 0 5 ¢ 10

3.2.3 Configuration Interaction, Interference of Resonances

The considerations of Sect. 1.4.2 and Sect. 3.2.2 can be extended to the case
of more than one closed and/or open channel.

Let’s look for example at a system consisting of one open channel 1 and
two closed channels 2 and 3, the latter two being dominated by a bound state
$o2 Or ¢o3 respectively,

h? d?
(-—T + Vi) $0i = Epipos , 1=2,3 . (3.73)
The coupled channel equations

2 2
(~Gpar + %) 50+ TVt =B, =123 @70

2p dr?
par i
may be simplified using the assumptions
$2(r) = A202(r) ,  ¢3(r) = Asdos(r) (3.75)

which lead to (cf. (1.169))
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K2 d2
<E +—=— V1) $1(r) = A2Vi 202(r) + A3V 3doa(r)

24 dr?
Ao(E — Eg2)¢02(r) = Va,101(r) + AaVa3dos(r)
A3(E — Eo3)¢o3(r) = Va,101(r) + A2Vz 202(r) - (3.76)

The formal resolution of the first equation (3.76) for ¢; using the Green’s
function (1.178) now yields (cf. (1.171))

b1 = breg + Az G Viados + A3 G Visdos - (3.77)

If we insert this expression for ¢; in the lower two equations (3.76) and form
matrix elements with the bra states ¢o2 and ¢o3 respectively, we obtain an
inhomogeneous system of two equations for the two amplitudes Az and Aj:

(E - 52)A2 - W2,3A3 = Wz,l N (E - 63)A3 - W3]2A2 = W3,1 . (378)

In analogy to (1.183), €; are energies close to the energies of the uncoupled
eigenstates in the closed channels,

€i = Eoi + (0iVi1 G Vailgos) , i=2,3 (3.79)
and W, ; are the (real) coupling matrix elements

Wi,l = <¢Oi|‘/i,1|¢reg> y 1= 2, 3 ’

Wa,3 = ($o2[Va,3|¢03) + (b021V2,1 G V13|¢03) = W2 - (3.80)
W, 3 also contains the effect of the indirect coupling of the closed channels via
the open channel 1 as is expressed in the second matrix element on the right-
hand side. It has the physical dimension of an energy, whereas W; ; have the

dimension of the square root of an energy. In place of (1.175) the resolution
of the equations (3.78) now yields expressions for the two amplitudes A2 and

A31

(B —e3)Wa1 + W 3Ws,
(E-e)(E~e3) -Ws '

_ (B ea)Wo + WaalWan (3.81)
(E —e2)(E —e3) — W3

From the asymptotic form of (3.77) we obtain an expressiqn for the tangent

of the asymptotic phase shift des in the wave function of the open channel

due to coupling to the two bound states ¢o2 and ¢o3. In place of (1.180),

which was applicable to the case of one bound state, we now have

(E - €3)W2?1 +(E - 52)W32,1 + 2W2,1W3,1W2,3
tan lsres = -7 (E — 62)(E — 53) — W22’3

Ao

Az

(3.82)

The formula (3.82) for &;es describes two resonant jumps through m, and
the odd multiples of 7/2 are passed at the zeros of the denominator

D(E) = (E — £2)(E —€3) — W5's - (3.83)
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If we abbreviate the numerator on the right-hand side of (3.82) by —N(E),
N(E) = n[(E — es)W5 + (E — e2)Wg| + 2Wo 1Wa 1 Waa] ,  (3.84)
then the derivative of the phase shift d.es at the zeros of D(E) is given by
el (12T (RRoNDY D
dE |p_, D? D? peo N

If the poles of tanées defined by the zeros of D(E) don’t overlap too
strongly, i.e. their separation should not be much smaller than their residues,
then these poles describe two resonances caused by the coupling of the bound
states @o2 and ¢o3 to the open channel 1. The positions E, and E_ of the
resonances reflect the interaction of the two bound states and are given by

(3.85)

(cf. Problem 1.5)

2
Ei—;Ez-;—ssi\/(Ezzea) W, (3.86)

If we neglect the generally weak dependence on energy E of the matrix el-
ements W; ; and of the ¢; defined by (3.79), then the corresponding widths
are given via the general formula (1.186) as:

_ I+ 13 o Iea — e3) (W — W) + 2W 1 W3 1 Wa 3
2 \/%(62 - 63)2 + W2?3

Here I = 2rW.,%) and Iy = 2nWg2, are the widths one would expect ac-
cording to (1.182) due to coupling to only one of the closed channels 2 or 3
respectively. The sum of the two widths remains essentially unchanged due
to cancellation of the terms following the plus-minus sign on the right-hand
side of (3.87), but the distribution of the total width over the two resonances
depends extremely sensitively on the interaction. In an extreme case, one res-
onance can carry all the width, while the other resonance has vanishing width
and corresponds to a bound state in the continuum. The complete vanishing
of the autoionization probability for a superposition of bound states from the
closed channels 2 and 3 can be interpreted as a consequence of completely
destructive interference of the decay amplitudes of the two components of
the state. (See Problem 3.3.)

The occurrence of resonances with exactly vanishing width follows quite
generally from the formula (3.82) without the need for any further assump-
tions [FW85]. The phase shift s is a half-integral multiple of 7 at the zeros
of the denominator (3.83) and an integral multiple of 7 at the zeros of the
numerator (3.84). When a zero of the numerator lies close to a zero of the
denominator, the derivative of the phase shift becomes very large, because a
finite jump of at least 7/2 must occur over a very small energy range. We
obtain an infinitely narrow resonance, i.e. a bound state in the continuum,
when numerator and denominator vanish simultaneously, and this is the case
when the following equations are fulfilled:

Iy (3.87)
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W.
E — €9 = — A W2,3 , E - £3 = — W3'1 W2'3 . (388)

3,1 2,1
In this case the asymptotic phase shift &yes is undetermined, because the wave
function ¢;(r) in the open channel describes a bound state which vanishes
asymptotically.

The interference of two resonances from different closed channels also
affects the photoabsorption cross sections and oscillator strengths. For the
three channel wave functions making up the energy normalized final state
&, the corresponding generalization of (3.60) is

& (T) = COo8 5res¢reg (T) + sin dres Ay (T) s
$2(r) = cos bres Aapoa(r) ,  @3(r) = cosresAados(r) (3.89)

" and the total wave function @ is a corresponding generalization of (3.65). If
we calculate the oscillator strengths (2.219) with this final state wave func-
tion, then we obtain, as extension of (3.67),

dfem _ 2p dz
dE h “dy

Here (2u1/R)wd? is the oscillator strength we would expect in the absence of
coupling of the open channel to the closed channels. The parameters dz and
ds are the dipole transition matrix elements connecting the initial state to
the components from the respective closed channels in the final state wave
function. These are essentially the channel wave functions ¢g2 and ¢g3, which
may be dressed with small admixtures from the open channel as in (3.68).
Replacing the cos? in (3.90) by 1/(1+tan?) and using the explicit expressions
(3.81) for the amplitudes A3, A3, we obtain

2
wd2 cos? bres ( —ZAs + A3> . (3.90)

dfg;; 2
d_fg_ = #Wdf D(E) + -+ [(E — e3)Wa,1 + Wa3sWa 1]

2
ds 1

+ = (B — €2)W3,1 + W3,2W2,] DEFTNER (3.91)

dy

where D(E) and N(E) again stand for the denominator (3.83) and the nu-
merator (3.84) in the expression (3.82) for the phase shift.

For different values of the coupling matrix elements W j, of the (shifted)
energies €3, €3 of the non-interacting resonances and of the relative dipole ma-~
trix elements da/d; and d3/ds, the formula (3.91) for the oscillator strengths
can produce very different energy dependences and line shapes. Figure 3.7
shows two examples in which qualitatively different interference effects lead
to a narrow resonance. In both cases the phase shift (3.82) and the oscillator
strength (3.91) were calculated using the same matrix elements W3, = 0.5
and W3, = 0.3 for the direct coupling of the closed channels to the open

channel and the same relative dipole matrix elements (d2/dy = d3/d; = 2.0).
In Fig. 3.7(a) the other parameters are e = 4.0, €3 =16.0, W3 = ~1.5.
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Fig. 3.7. Resonant phase shifts (3.82) and oscillator strengths (3.91) for two exam-
ples of two interfering resonances. The coupling of the two closed channels 2 and 3 to
the open channel is given by the matrix elements W31 =0.5, W31 =0.3, and the rel-
ative dipole matrix elements are dz/d; =da/d; =2.0. Further parameters in case (a)
are e2=4.0, £3=6.0, W3 2=—1.5. In case (b) we have e2=4.9, e3=5.1, W32=0.
The oscillator strengths in the lower parts of the figure are given in units of the
oscillator strength (2u/h)wd? which we would obtain in the absence of coupling to
the two closed channels

In this case both resonances are clearly separated, but the lower resonance
carries almost all the width while the upper resonance is very narrow, be-
cause the conditions (3.88) for a bound state in the continuum are almost
fulfilled. In the oscillator strength we clearly see a broad and a narrow res-
onance of the Beutler-Fano type. The maximum of the narrow resonance is
very high, because the denominator D(E)? + N(E)? on the right-hand side
of (3.91) becomes very small. The zero of the oscillator strength lies to the
left of the maximum for both resonances and this corresponds to a positive
shape parameter g (see Fig. 3.6).

In Fig. 3.7(b) the matrix element W5, for the direct coupling of the
two closed channels was taken to vanish and the energies e, and e3 were
chosen very close together (namely at 4.9 and 5.1 respectively). This case
corresponds to the superposition of two resonances which do not interact
directly and whose separation is substantially smaller than their widths. Now
the separation between the two poles (3.86) of tan ;s is so small that it is no
longer possible to identify two independent resonances. However, the phase
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shift is forced to rise from one half-integral multiple of m to the next half-
integral multiple of 7 in the narrow interval between the two poles, and this
also leads to a sudden jump in the phase shift (see top half of the figure). In
the oscillator strengths (bottom half of the figure) we observe a very narrow
(and high) Beutler-Fano resonance cutting into a broad resonance.

Apart from the two examples illustrated in Fig. 3.7 there are many other
possible line shapes corresponding to different widths, separations and shape
parameters of the resonances. Observable spectra often are the product of
complicated interference effects and it is by no means obvious that a maxi-
mum in a photoabsorption cross section unambiguously corresponds to a well
defined autoionizing state of the atom.

So far we have assumed that only one channel is open. If e.g. two chan-
nels are open, then the asymptotic phase shifts of the continuum waves are

not uniquely defined and there are two linearly independent solutions of the

coupled channel equations for each energy E. If we use the Golden Rule
to calculate transition probabilities we obtain an incoherent superposition
of two contributions corresponding to the two independent final states. For
a detailed and comprehensive description of the theory of photoaborption
spectra see e.g. the article by Starace [Sta82].

3.2.4 Perturbed Rydberg Series

‘We can describe the effect of an isolated autoionizing resonance in the frame-
work of quantum defect theory by adding a pole term to the right-hand side
(3.24):

. ry2
" E—-ERr
Again p(E) is a weakly energy-dependent quantum defect function expressing
the deviation of the potential in the open channel 1 from a pure Coulomb
potential, and v(E) has the two meanings (3.25) below and above threshold.
At energies E below threshold the modified QDT equation (3.92) remains an
equation for determining bound state energies, but these energies are now
given by the intersections of the set of curves (3.20) with the function

tan [7(v + p)] (3.92)

i(E) = u(E) — % arctan —EI:/—ZER . (3.93)

For energies E above threshold the QDT equation (3.92) describes the reso-
nant jump of the phase shift through ,

r/2
6 =mu(E) — arctanE—:/—E; , (3.94)
and the weakly energy-dependent function mu(E) appears as a background
phase shift.

Strictly speaking we cannot simply superpose the effects of the potential
and the Feshbach resonance linearly; hence the quantum defect function u(E)
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Fig. 3.8. The function # from
(3.93) for an isolated resonance or
pseudo-resonant perturbation with
a width I'=0.02 Rydberg energies.
A constant value 0.1 was assumed
for u(E). The position of the per-
turber is (a) Er = I +0.05R, (b)
Er =1, (¢) Er = I-0.05R. For
E > I the function 71 is the asymp-
| l | ' ”" totic phase shift relative to the regu-
lar Coulomb function; for E < I the
intersections of ji(E) with the set of
1 curves (3.20) define the energies of
the bound states, which are shown
ol 7 again as vertical lines at the bottom
i ) of each part of the figure

(b)

L

{c)

LT

(E-D/R

-01

in (3.92)-(3.94) may differ slightly from the quantum defect function for the
open channel in the absence of the Feshbach resonance.

A typical realization of the QDT including an autoionizing resonance at
an energy ERr above the continuum threshold is illustrated in Fig. 3.8(a).

Although the physical situation is quite different, the formal aspects of
the considerations above change little when the energy of the two-electron
excitation lies not above, but below the continuum threshold I. Since the
mathematical justification of quantum defect theory holds both above and
below threshold [Sea83], we can also apply the formulae (3.92), (3.93) to the
case where the energy Fg, at which the bound state in channel 2 makes
itself felt, lies below the threshold. Now the two-electron excitation is not an
autoionizing resonance, but an additional bound state which appears as a
pseudo-resonant perturbation of the Rydberg series of bound states. Instead
of a jump by 7 in the phase shift we now have a more or less sudden jump



150 3. Atomic Spectra

by unity in the quantum defects of the bound states. This is illustrated in
Fig. 3.8(c). Far below the energy Er of the perturber the quantum defects lie
on the weakly energy-dependent curve u(FE). Near Er the quantum defects
become larger, so that the effective quantum numbers n* = n — y,, and hence
also the energies (3.5) lie closer than in the unperturbed Rydberg series. Far
above the energy of the perturber the quantum defects are shifted by unity
in comparison to the unperturbed states. That doesn’t change their energies,
but it does change their numbering: the nth state in the unperturbed series
at B, = I —R/(n— uy)? is now the (n+ 1)th state in the perturbed series at
roughly the same energy. Over an energy range corresponding approximately
to the width I', the spectrum is compressed in order to accommodate one
additional bound state. The effect of the perturber on the energy levels can
also be seen in the spectra shown as vertical lines at the bottom of each part
of Fig. 3.8.

Finally, it may happen that the energy ER of the resonance lies very close
to the threshold so that the interval Er —I'/2, Egr + I'/2 covers both energies
below threshold and energies above threshold. In this case, which is illustrated
in Fig. 3.8(b), the bound state in the closed channel 2 manifests itself partly
as a perturbation of the Rydberg series of bound states and partly as the tail
of a resonance in the continuum.

A pseudo-resonant perturbation of a Rydberg series of bound states af-
fects not only the energy eigenvalues but also other observable quantities
such as photoabsorption cross sections or oscillator strengths. The effect of a
perturber on the discrete oscillator strengths f,, in a Rydberg series can be
described by a formula analogous to (3.69), if we replace the left-hand side
by discrete oscillator strengths multiplied by the density of states (cf. (3.38)):

(n*)? . (n*)® 0 (g+e)?
TR T (399)
~with
E — Egr do/dy
- . gq= 3.96
T2 0 1T 7R Vialdo) (399

Here f7(10) are the discrete oscillator strengths one would expect without the
perturbation of the Rydberg series, and d2/d; is a weakly energy-dependent
parameter describing the relative strength of the dipole transitions to the
two channels, as in (3.71). The matrix element (#F|V12|do) contains the
renormalized wave functions ¢F in channel 1, which merge smoothly into the
energy normalized continuum wave functions at the continuum threshold; it
is a weakly energy-dependent quantity describing the effective strength of the
channel coupling.
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3.3 Multichannel Quantum Defect Theory (MQDT)

3.3.1 Two Coupled Coulomb Channels

In this section we study a two-channel system in which the diagonal potentials
both correspond to a modified Coulomb potential:

r—o0 C
Vi) =L -2 (3.97)
Between the two channel thresholds I; and I; (I; < I3) the closed channel 2
now contains not only one bound state leading to an autoionizing resonance
(see Sect. 3.2.4), but an infinite number of such states which form a Rydberg
series. Due to coupling to the open channel 1 this leads to a whole Rydberg
series of autoionizing resonances at the energies

R I R
SRAS P A—
(n3)? [n2 — pa(n2)]?
where n} and p2(n2) are now effective quantum numbers and quantum defects

in channel 2. The widths I7,, of the resonances are described by a formula
analogous to (3.63):

En, =1, - (3.98)

Fnz = 27r<¢reglvl,2|¢n2>2 ( *)3 (¢I‘GEIV1 2|¢ng) . (3'99)
Here ¢,,, are the bound radial wave functions in the closed channel 2, and
n
E () = /¢ 2) ny () (3.100)

are the correspondmg renormalized wave functions which merge smoothly
into the energy normalized continuum wave functions — now in channel 2 —
at the threshold I,. Near this threshold the matrix element on the right-hand
side of (3.99) depends only weakly on energy and we see immediately, without
any calculation, that the autoionization widths are inversely proportional to
the third power of the effective quantum number n} in channel 2 for large n,.
The autoionization widths thus decrease at the same rate as the separations
between successive resonances as we approach the series limit.

The physics of a Rydberg series of autoionizing resonances as described
above can be summarized in a compact and transparent way by an extension
of the formula (3.92):

R,
tan [w(ve + p2)]
In the energy range between the two channel thresholds v, is just the asymp-

totic phase shift of the continuum wave function in the open channel 1 mul-
tiplied by —1/7 (as in (3.25)),

tan (v + p1)] = (3.101)

1
IJl(E) = —; (51(E) , E>I , (3102)
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while v, represents the continuous effective quantum number in the closed
channel 2, which is defined via the energy separation from the channel thresh-
old 12:

R
(E) = ”f;_—_E , E<I . (3.103)

The dimensionless quantity Rj 2 describes the strength of the coupling be-
tween the channels 1 and 2 and should depend at most weakly on energy.

In the energy region between the channel thresholds I; and I (3.101) is
an explicit equation for the asymptotic phase shift §; of the open channel
wave function:

2
RI,Z

tan [w(ve + p2)] (3104)

01 = wp1(E) — arctan [

The term 7wu;(E) appears as a background phase shift due to the diago-
nal potential in channel 1 (more precisely: due to its deviation from a pure
Coulomb potential), just like the term wu(E) in (3.94). The arc-tangent term
now yields not only one single isolated jump of the phase shift through 7, but
a whole Rydberg series of jumps, which occur at the energies E,, where the
denominator tan [m(vy + y2)] in the argument vanishes. But this condition is
just the single-channel QDT equation (3.24) for the closed channel 2, and
p2(E) now plays the role of the weakly energy-dependent quantum defect
function which smoothly connects the quantum defects p2(n2) in the Ryd-
berg series of energies (3.98). Near a zero of tan [r(v2 4 u2)] we can expand
the function in a Taylor series and, using the abbreviation

T»(E) = tan [r(v2 + p2)] (3.105)
we obtain
~ de _ s *\3
To(FE) = (E — E,,) iE . = (E - Ey,;) R (n3)° . (3.106)

Near the zeros of T2(E) the equation (3.104) thus simplifies to

2R RZ,
— _ ot e 3.107
61 = mpy(F) — arctan |:7r(n§)3 E= B (3.107)

If we write R; 2 as — times the coupling matrix element containing the
renormalized bound state wave functions (3.100),

Rip = —7{($reglV12I¢m,) (3.108)
then (3.107) assumes the form (3.94) for an isolated resonance at the position
E,, with the width (3.99). Transferring the picture of an isolated Feshbach
resonance to a Rydberg series of autoionizing resonances thus leads to the
approximate expression (3.108) for the (dimensionless) coupling parameter
R1,2. (The minus sign, which doesn’t play a role at this stage, corresponds
to the most usual convention (GF84].)
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Beside the behaviour of the phase shift §;, several other results from
Sect. 3.2.2 can be adapted to the case of a Rydberg series of resonances.
The explicit formulae (3.60) and (3.64) for the radial channel wave functions
become

$1(r) =" cos [w(v1 + 111)] breg(r) — sin [r(v1 + p1)] Gire(r)
sin [r(vy +p1)] | [(n3)?
ry = —
¢2( ) R]_,Q R ¢n2 (T’)
_sinfr(n + )
= R, B . (3.109)
Apart from a minus sign, m(vy + p1) = —(81 — 1) is just the resonant part

of the asymptotic phase shift without the weakly energy-dependent back-

- ground phase shift mu;, which is already accounted for in the regular and

irregular solutions ¢,eg and ¢ in the (uncoupled) open channel. ¢>,Ef2 are
the renormalized bound state wave functions (3.100), which merge smoothly
into the energy normalized continuum wave functions d)ﬁzi); of channel 2 at
the threshold I,.

If we use the wave functions (3.109) as final state wave functions to cal-
culate the oscillator strengths for photoabsorption according to (2.219), then
in place of (3.67) we now obtain

dfei _ 2p
dEl — Fwdf cos? [Ty +p1)] |1 - E; Ry

_2p of{tan(m(ve + pa)] — Ripda/dr}?
Bt tan® [w(vz + p2)] + Ry,

dy tan [r(vy + p1)]]?

, (3.110)

where (2u1/h)wd? represents the weakly energy-dependent oscillator strength
which we would expect in the absence of coupling to the closed channel 2,
and the ratio ds/d;, which is now dimensionless, describes the relative os-
cillator strength for transitions from the initial state to both final state
channels. In deriving the lower equation (3.110) we inserted the expres-
sion R?,/ tan [w(v, + u2)] for tan [w(v1 + pu1)] according to (3.101). Equation
(3.110) has the same form as (3.69),

dfei _ 2p 5 (g+¢)?

dE = R M T1ger (3-111)
provided we define the reduced energy ¢ as
tan [7(v2 + p2)]
e = —+1 A <2 e 3.11
RZ, (3.112)
The shape parameter g is now
_ dy/dy
q v (3.113)
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Near a resonance energy, i.e. near a zero of tan [w(vz + p2)], the reduced
energy (3.112) is a linear function of the energy E (see (3.106)), and it is
indeed given by the expression on the right-hand side of (3.70) if we express
R}, through the width I" (cf. (3.127) below). As the continuous effective
quantum number v, varies through the interval reaching from 1 /2 below to
1/2 above a resonance position, the reduced energy (3.112) takes on values
covering the entire interval —oo to +o00. In the Rydberg series of resonances
each individual “Beutler-Fano resonance” is thus compressed into an energy
interval corresponding to an interval of unit length in the continuous effective
quantum number in the closed channel 2. (See Fig. 3.9.)

ﬁI/]'[

Fig. 3.9. Phase shift (3.104) and os-
cillator strength (3.110) in a Ryd-
berg series of autoionizing reso-
nances for the following values of the
2QDT parameters: g1 = 0.1, p2 =
10 0.1, Ri2 = 0.3, d2/d1 = —-1.0.
The separation of the two channel
thresholds I; and I is 0.1 Rydberg
energies. The oscillator strengths in
3 the lower part of the figure are given
in units of the oscillator strength
(21/R)wd?, which we would expect

in the absence of coupling to the
\J Rydberg series in the closed chan-
I E I nel 2

Q.
=

|

o
m|

0

The discussion above as summarized in Fig. 3.9 refers to the energy in-
terval I; < E < I, in which channel 1 is open while channel 2 is closed. In
order to describe the situation at energies below the threshold I, where both
channels are closed, we must return to the interpretation of the quantity 21
as the continuous effective quantum number in channel 1:

R
Now (3.101) is an equation for determining the energies of the bound states
in the coupled two-channel system. If the (uncoupled) channel 2 supports a
bound state at an energy below I1, then the associated zero in the function
T,(E) (3.105) leads to a pseudo-resonant perturbation in the Rydberg series
of bound states and it manifests itself as a jump by unity in the quantum
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Fig. 3.10. The left-hand part of the figure shows the quantum defects (modulo
unity) of the 4snp 'P° Rydberg series in Ca I, which is perturbed by the lowest
state in the 3dnp 'P° channel. The right-hand part of the figure shows 1/7 times
the asymptotic phase shift in the now open 4s np 'P° channel (again modulo unity).
The resonant jumps in the phase shift are due to higher states in the 3d channel
and correspond to autoionizing resonances as in Fig. 3.9. (From [Sea83])

defects, as described for a single perturber in Sect. 3.2.4. As an example
Fig. 3.10 shows the quantum defects of a Rydberg series in calcium consisting
of 4snp states coupled to P°. Near n = 7 this Rydberg series is perturbed
by the lowest state in the 3dnpP° channel. Above threshold the picture
continues as a series of jumps of the phase shift corresponding to autoionizing
resonances as in Fig. 3.9.

In the photoabsorption spectrum the perturber below threshold appears
as a modulation of the oscillator strengths (renormalized with the factor -
(n*)3) as described in (3.95), but we now have to insert the periodic form
(3.112) for the reduced energy e.

Above the second channel threshold I both channels are open. At each
energy E > I, > I; there are two linearly independent solutions of the cou-
pled channel equations and each linear combination hereof is again a solution.
At a given energy the asymptotic phase shift in channel 1 is not fixed but
depends on the asymptotic behaviour of the wave function in channel 2. Con-
versely, a definite choice of the asymptotic phase shift in channel 1 fixes the
asymptotic behaviour of the wave function in channel 2.

The asymptotic behaviour of the solutions in the case of two open channels
can be readily understood if we continue the explicit expressions (3.109) for
the wave functions just below the channel threshold I to energies above
I,. Pairs ¢1, ¢ of wave functions containing a maximum admixture from
channel 2 are characterized by sin [7(v1 + p1)] = %1 and cos [r(v1 + 1)] =
0. When moving to energies above I3, the renormalized bound state wave
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functions ¢Eﬂ merge into the energy normalized regular solutions ¢>5§é in
uncoupled channel 2. With the appropriate choice of sign we thus obtain a
pair of channel wave functions with the following asymptotic behaviour:

$1(r) "ZC BN (), ba(r) =T ﬁi—zdéig(r) . (3.115)

(The superscript (1) has been introduced in order to distinguish the irregu-
lar (and regular) solutions in channel 1 from the corresponding solutions in
channel 2.) As both channels are open we can interchange the channel labels
to construct a solution of the coupled channel equations with an asymptotic
behaviour complementary to that described by (3.115):
. 1 - 2

$1(r) "= E2—1¢§2;(r) , ba(r) = 9D (r) (3.116)
For the coupling matrix elements R; and Rz appearing in (3.115) and
(3.116) we can extend the (approximate) formula (3.108) to energies E>I
and obtain the (approximate) expressions

Ry = —m(¢QV1262) , Rap = —n( D|Va116{)) = Riz . (3.117)

reg reg
The matrix elements are finite, because the coupling potential falls off asymp-

totically at least as fast as 1/r.
The general solution of the coupled equations in the case of two channels
is a linear combination of the two solutions with the asymptotic behaviour

(3.115) and (3.116) respectively:
700 B
o1(r) =" gl () + AdR (1)
T—00 A .
#a(r) = 9B () + BAR () - (3.118)

For the asymptotic phase shifts 6; —wpy = —m(v1+p1) and 82 —mpz =
—m(vg+p2) we obtain

A B
tan [7T(V1 + /.1,1)] = ——B- RQYI , tan [ﬂ’(l/z + ﬂZ)] = —Z R1,2 , (3119)

from which follows
tan [r(v; + 1)) tan [w(vs + p2)] = R%, . (3.120)
Equation (3.120) again has the same form as (3.101), but it now represents a

compatibility equation for the asymptotic phase shifts in the two open chan-

nels.
The equations (3.101), (3.104) and (3.120) can be written in a unified way

as one equation of two-channel quantum defect theory (2QDT):

tan [w(vy + p1)] R; 2

=0 . 3.121
Ry tan [m(vp + p2)] ( )
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Its different meanings — as an equation for determining the bound state energy
eigenvalues when both channels are closed, as an explicit equation for the
phase shift of the open channel wave function when just one channel is open,
or as a compatibility equation for the asymptotic phase shifts when both
channels are open — follow in a straightforward way if we insert the different
definitions of the quantities v;, namely continuous effective quantum number
in channel 7 below the respective channel threshold I; and —1/7 times the
asymptotic phase shift above I;:

T R for E<I;,
vi(E) = i (3.122)

—=0; for E > I;
7r

The formulae in this section were derived by generalizing the consider-
ations of Sect. 1.4.2 on isolated Feshbach resonances. The approximate ex-
pressions (3.109) for the wave functions and (3.108), (3.117) for the cou-
pling parameter are based on this picture of isolated Feshbach resonances.
A more rigorous treatment, e.g. by Seaton [Sea83] and by Giusti and Fano
[GF84], shows that the 2QDT equation (3.121) is valid quite generally, even
if the channel coupling parameter |Ry 2| is large, so that resonances and per-
turbers aren’t isolated. The only condition for the validity of the formulae
of quantum defect theory is that the deviations of the diagonal potentials
from the pure Coulomb potential and the non-diagonal coupling potentials
fall off sufficiently fast for large r. In a rigorous derivation the 2QDT parame-
ters p1, ft2, Ry 2 appear as weakly energy-dependent quantities whose precise
definition is given by the actual solutions of the coupled channel equations.

Finally it should be pointed out that there are various formulations of
quantum defect theory in use. In this chapter we asymptotically represent the
channel wave functions as superpositions of the regular and irregular solutions
of the uncoupled equations including the deviations of the diagonal potentials
from the pure Coulomb potential. The original formulation of Seaton was
based on the regular and irregular (pure) Coulomb functions. The argument
of tangent functions such as (3.105) then contains the asymptotic phase shift
including the weakly energy-dependent background phase shift. The effect
of deviations of the diagonal potentials from the pure Coulomb potential is
contained in diagonal elements R;; of the matrix appearing in the MQDT
equation. For two channels the MQDT equation in Seaton’s formulation reads

tanmyy + Ry 1 Ry

R, tanmvy + Ro o =0 (3.123)

When both channels are open, the matrix (R; ;) is the reactance matriz of
scattering theory, which will be defined in Sect. 4.3.2. The formulation of
MQDT used in the present chapter and summarized in (3.121) can be de-
rived from Seaton’s MQD'T by shifting the phases of the basis wave functions
until the diagonal elements of the matrix R;; vanish. The resulting matrix
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which has no diagonal elements is frequently referred to as the phase shifted
reactance matriz.

A further formulation of MQDT is due to Fano [Fan70] and is based on
a diagonalization of Seaton’s reactance matrix. The resulting superpositions
of channels are called eigenchannels. The eigenvalues of the reactance matrix
are written as tan & and the angles § are the eigenphases (see also Sect. 4.3.2).

3.3.2 The Lu-Fano Plot

The physical content of 2QDT can easily be illustrated graphically. Below
the upper threshold I channel 2 is closed and the 2QDT equation (3.121) is

R?, ]d

®
LN

Il

1
—q = N t. —
V1= H p arctan [tan (v T )]

The right-hand side is a function fi; which depends on the energy E or on the
continuous effective quantum number v, = [R/(I2 — E)]/2. It is an extension
of the function (3.93) for a single perturber to the case of a whole Rydberg
series of perturbers. If the 2QDT parameters 1, g2 and Ry 2 were not weakly
energy dependent but constant, then i; would be exactly periodic in v, with
period unity. Above the lower threshold I; the left-hand side of (3.124) stands
for 1/ times the asymptotic phase shift in the open channel 1, which is only
defined modulo unity, and below I; it is —1 times the continuous eflective
quantum number in channel 1. As in the case of a single isolated perturber
discussed in Sect. 3.2.4, the intersections of the function fi; below I with the
set of curves (3.20) define the quantum defects

pny =11 — vi(En,) (3.125)

and energies E,, of the bound states. If we plot these quantum defects to-
gether with the phase 6,(E)/m (both modulo unity) as functions of the con-
tinuous effective quantum number v, in the upper channel 2 (also modulo
unity), then — given constant 2QDT parameters — both the quantum defects
and the phases lie on one period of the function fi; from (3.124). This rep-
resentation is called a Lu-Fano plot [LF70]. Figure 3.11 shows three typical
examples of Lu-Fano plots.

Some general properties of the Lu-Fano plot can be formulated quantita-
tively if we study the derivatives of the function ji; (v2). With the abbreviation
(3.105), Ty = tan [w(v2 + p2)], we have

d(fn) _ oo 1+T3
dl/2 1.2 T22 + sz !
2(j To(RE, — 1
d (“21) = 27'R122—‘__"‘2g T 3
dvy (T35 + Rip)

The gradient of the curve is always positive. For weak coupling, |R12| <1,
the maximum gradient is at T, = 0, which corresponds to vy = ny — g, and

Q+713 . (3.126)

i (3.124)
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Fig. 3.11. Examples of Lu-Fano plots with the constant 2QDT parameters (a)
11=03, pa=0.4, R12=0.1, (b) u1=0.3, p2=0.4, R;2=0.6. The parameters
in part (c), g1 = 0.1, p2 =0.1, Ry 2 =0.3, are the same as in Fig. 3.9. Figure
3.11(c) is thus a reduction of the upper part of Fig. 3.9 to one period in energy (or
rather v2) and phase

we obtain resonant jumps around the zeros of T, as expected. The value of
the maximum gradient is 1/R?, and defines the width of the resonance (or of
the pseudo-resonant perturbation) according to the general formula (1.186):

4R,
Here we have used the fact that
d vi d
iE "R, (3-128)

Strictly speaking a maximum of the derivative with respect to E will not lie
at exactly the same position as the corresponding maximum of the derivative
with respect to v5. This difference is generally ignored, firstly because it is
very small due to the weak energy dependence of the factor v3/R in (3.128),
and secondly because this makes formulae such as (3.127) very much simpler.
The minimal gradients of the function fi;(v2) lie at T = oo, i.e. at v =
ny + 4 — py (for |Ryz| < 1), which is exactly in the middle between the
resonance energies, and the value of the minimal gradient is Rf 2-

For strong coupling, i.e. for |Ry 2| > 1, conditions reverse: the gradient in
the Lu-Fano plot is minimal for 73 = 0 and maximal for 75 = oo. In this case
the resonant jumps occur at v, = ny + % — p2 and the associated widths of

the resonances (or pseudo-resonant perturbations) are
4R 1
=3 T, (3.129)

Very strong coupling of the channels thus leads to a Rydberg series of very
narrow resonances whose positions lie between the positions of the bound
states in the excited channel [Mie68].
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The case |Ry,2| = 1 is somewhat special. The Lu-Fano plot is now essen-
tially a straight line with unit gradient and it is no longer possible to uniquely
define the positions of resonances.

A peculiarity of the 2QDT formula (3.124) is that the 2QDT parameters
it contains are not uniquely defined. The function fi;(r2) which one obtains
with the parameters p1,, p2, Ry 2 is not affected if we replace the parameters
by
™
2 |

In real physical situations the 2QDT parameters are not constant but
weakly energy dependent. Hence the function (3.124) is not exactly periodic
in v5 and we obtain a slightly different curve in the Lu-Fano plot for each
period of tan [r (g + pug)]. This is illustrated in Fig. 3.12 for the example of
the coupled 1P° series in Ca I discussed in Sect. 3.3.1 above (cf. Fig. 3.10).

s , +1
-~ = e 3.130
9 ’ 1,2 Rl 2 ( )

’

Hy = p1+ My = pi2 +

10—

< 0S5k

32\3 (v;-mz)
Fig. 3.12. Lu-Fano plot for coupled 4snp and 3dnp 1P° channels in Ca I. (From
[Sea83])
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3.3.3 More Than Two Channels

After the detailed treatment of two-channel quantum defect theory in Sects.
3.3.1 and 3.3.2 it is now relatively easy to extend the results to the more
general case of N coupled Coulomb channels. The central formula of MQDT
is a generalization of the two-channel equation (3.121) and reads

det{tan [w(v; + ;)] i; + (1 — s 5)Ri 5} =0 . (3.131)

The coupling of the various channels ¢ = 1, 2,... N is described by the
weakly energy-dependent real symmetric matrix R; ;. We shall continue to
use the representation corresponding to the phase shifted reactance matrix in
which R; ; has no diagonal elements. The diagonal effects of deviations from
the pure Coulomb potential are contained in the weakly energy-dependent
parameters ;. The quantities v; have one of two meanings depending on
whether the respective channel i is closed or open. For energies below the
channel threshold I;, v; is the continuous effective quantum number in the
closed channel i; at energies above I; the quantity —nv; is the asymptotic
phase shift of the channel wave function in the open channel  (3.122).

Because it is so important we shall derive the MQDT equation (3.131)
in another way. Let’s first consider the energy range where all N channels
are open. For a given energy there are then N linearly independent solutions
of the coupled channel equations, and each solution ¢ has N components;
namely the channel wave functions ¢;(r), i = 1,... N. We choose a basis o)
of solutions with channel wave functions d)fj ) whose asymptotic behaviour
corresponds to a generalization of (3.115), (3.116):

o) D), 6O RN, AT . (3132)

The general solution of the coupled channel equations is now an arbitrary
superposition

N
&= Z Z;00 (3.133)
j=1

of these basis solutions. In a given channel 7 the channel wave function of the
general solution (3.133) is

N
¢i(7‘) = Z ZJQS,E]) (T) == Z,¢,(rg§(r) + (Z Ri’ij) ¢1(:3 (T) . (3134)
=1 i
The quotient of the coefficients in front of ¢l(;2 and ¢,(rl)g in the asymptotic
expression on the right-hand side of (3.134) is the tangent of the additional
phase 6; — mp; = —7w(v; + pi) by which the channel wave function ¢; is
asymptotically shifted with respect to the regular solution q&ﬁi)g in channel .
In other words,
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tan [W(Vi + Ni)]Zi = — Z Ri’ij y
J#i
tan [w(v; + )l Zi + Y RijZ; =0 . (3.135)
j#i

Equation (3.135) is a homogeneous system of N linear equations for the N
unknowns Z;, and its matrix of coefficients consists of the diagonal elements
tan [r(v; + ;)] and the non-diagonal elements R; ;. Non-vanishing solutions
exist when the determinant of this matrix vanishes, and this is just the content
of the MQDT equation (3.131).

This derivation of the MQDT equation can be extended to lower energies
at which some or all channels are closed To this end the definitions of the
regular and irregular solutions qﬁreg and ¢m must be continued to energies
below the respective channel thresholds I; in the closed channels. A detailed
description of such a procedure has been given by Seaton for the case that
dbﬁi)g and 451(2 are the regular and irregular Coulomb functions [Sea83].

The MQDT equation (3.131) has different meanings in different energy
ranges. For simplicity we number the channels in order of increasing channel
thresholds:

L<<---<In . (3.136)

For E < I, all channels are closed and (3.131) is a condition for the existence
of a bound state.

For I; < E < I, only channel 1 is open while all other channels are closed.
The MQDT equation is now an explicit equation for the asymptotic phase
shift of the wave function in the open channel 1. Expanding the determinant
we can rewrite (3.131) as

N
tan [r(vy + )] det Ry = » (—1)/Ry;detRy; (3.137)
j=2
or
Z;'V=2(_1)le,j detle

(3.138)
detRu

&1 = wuy — arctan

Here R1 ; is the matrix which emerges from the matrix {tan [m(v; + p:)] 6 ; +
(1—6;;)R; ;} in (3.131) if we eliminate the first row and the jth column. In
particular, Ry; is the matrix we would use to formulate an MQDT equation
for the N — 1 closed channels i = 2,... N without considering coupling to
the open channel 1. The zeros of det Ry; thus correspond to bound states of
the mutually coupled closed channels i = 2,... N. Equation (3.138) describes
N —1 coupled Rydberg series of autoionizing resonances due to these bound
states of the coupled closed channels.

ForI; < - < I, < E <I,4 < - < Iy the lower n channels are open
and the upper N —n channels are closed. Now there are n linearly independent
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solutions of the coupled channel equations and each solution is characterized
by n asymptotic phase shifts d; in the open channels i = 1,... n. For n > 2
the MQDT equation (3.131) has the meaning of a compatibility equation for
these asymptotic phase shifts.

The intricate and complicated structure which spectra can acquire when
more than two channels couple already becomes apparent in the three-channel
case [GG83, GL84, WF87]. In the energy interval I < E < I < I3 in which
channel 1 is open while channels 2 and 3 are closed, the interference of two
Rydberg series of autoionizing resonances leads to quite complex spectra. In
this energy range the 3QDT equation (3.131) (with N = 3) is an explicit
equation for the phase shift §; in the open channel. Using the abbreviations

T>(E) = tan (v + p2)] , T3(E) =tan[n(vs + ps)] , (3.139)
the 3QDT equation reads
R12,2T3 + RE3T2 - 2R1’2R1’3R2,3

ToT3 — R4

The 3QDT equation (3.140) has the same form as equation (3.82) in
Sect. 3.2.3, which describes the influence of coupling to just two bound states
in different closed channels. Equation (3.82) becomes the 3QDT equation
(3.140) if we replace (E —¢;), i = 2, 3, by 1/7 times the periodic functions
T;(E) defined in (3.139), and the coupling matrix elements W; ; by —R; ;/m
as suggested by (3.117),

tan (0) — wpy) = — (3.140)

E—¢g— %rl = —l—tan [7(vs + i)}, Wij;— —E‘;’—J . (3.141)
Both J;es in (3.82) and §1 — mpy in (3.140) refer to the additional phase shift
due to the non-diagonal coupling effects.

Whereas Sect. 3.2.3 described the interference of just two autoionizing
resonances, the 3QDT equation (3.140) accounts for the interference of two
whole Rydberg series of resonances. The zeros of the denominator on the
right-hand side define the positions of resonant jumps of the phase shift
through #, as did the zeros of (3.83), provided the widths are sufficiently
small, meaning smaller than the separation of neighbouring resonances. The
zeros of the denominator in (3.140) are given by

Ty(Er) = R33/Ts(Er) , (3.142)

which corresponds to a 2QDT equation for the bound states in the two closed
channels 2 and 3. In the present case I < I3, so the positions of the reso-
nances form a Rydberg series in channel 2 which is perturbed by perturbers
from channel 3. The widths of the resonances can be calculated via the gen-
eral formula (1.186), and if we ignore possible weak energy dependences in
the 3QDT parameters and exploit (3.142) this yields [GL84, FW85]

o AR 4R (T3 — R2,3R1,3/R1,2)?
v {2 T? + Ri; + (vs/1)3(T? + 1)RZ,

(3.143)
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For each perturber from channel 3, v3 takes on values in an interval of unit
length and T3(E) covers all values from —oo to +o0. The perturbed positions
of the resonances are given by the 2QDT formula (3.142) and can be described
by a jump through unity in appropriately defined quantum defects, just like
in a perturbed Rydberg series of bound states. At the same time, the widths
of the resonances are modified substantially and can be significantly narrower
or broader than the widths 4RR?,/(7v3) in the unperturbed Rydberg series
of resonances (3.127). This modification is described by the extra quotient
on the right-hand side of (3.143).

In each period of T3(E) there is a point of vanishing width at

T, = Basfhia ‘ (3.144)
Ry
If the energy defined by (3.144) coincides with a resonance energy obeying
(3.142), then we do indeed obtain a resonance of exactly vanishing width,
i.e. a bound state in the continuum. The conditions (3.142), (3.144) for the
occurrence of a bound state in the continuum can be rewritten in a more
symmetric form analogous to (3.88):

_ Ry 3Ry Ty = Ry3Ri3

T:
2 Riz Ry,

(3.145)

In order to estimate the maximum broadening caused according to (3.143)
by perturbation of the Rydberg series of resonances, we study the quotient
on the right-hand side,

(T3 — R23R1,3/R1,2)?
TZ + Ri 3 + (v3/12)3(T5 + 1)R3,
< (Ts — RosRi3/Ri2)?  (p+n)?

= , 3.146
< T Rg, Tt 72 (3.146)
where
T3 Ry 3
L T L% 1 3.147
7 R34 P Ri2Ry3 ( )

The right-hand side of (3.146) is a Beutler-Fano function (3.72) with energy
parameter 77 and shape parameter p from (3.147). Its maximum is 1+ p?, and
hence the maximum widths can be no larger than

4R R?,
Fmax = —= | RE, + ==} . 3.148
max 71'1/% (RI,Q + R22’3 ( )

The zeros in the denominator on the right-hand side of (3.140) can only be
interpreted as the positions of resonances if their separation is larger than the
widths of the resonances. This condition is fulfilled if the maximum widths
(3.148) are smaller than the separations which can be approximated by the
separations 2R /v3 in the unperturbed Rydberg series (of resonances). We
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thus obtain the following condition for the validity of the general formula
(3.143) for the widths in a perturbed Rydberg series of autoionizing reso-
nances:

R} s
R, + izzz <5 (3.149)
If, however, the conditions (3.145) for a bound state in the continuum are
fulfilled exactly or approximately, then numerator and denominator on the
right-hand side of (3.140) vanish at exactly or almost exactly the same energy
and we obtain vanishing or very small widths irrespective of whether (3.149)
is fulfilled or not.

Finally we can also give a formula for the photoabsorption cross sections or
oscillator strengths in a perturbed Rydberg series of autoionizing resonances.
To this end we exploit the analogy to the situation described in Sect. 3.2.3,
where there are just two bound states in different closed channels and where
the oscillator strengths are described by (3.91). Making the transition (3.141)
we obtain

dfei _ 2p .o
aE = reh
« [D — (d2/d1)(TsR1,2 — Ry 3Ry3) — (da/da)(ThR13 — Ry3R12))°

2 2 ’
Di+N (3.150)
where N(E) now stands for minus the numerator in the quotient on the
right-hand side of the 3QDT equation (3.140) and D(E) stands for the de-
nominator:

N(E)=R2,T5+ R3Ts —2Ri2R13R23

D(E)=T2T3 — RZ; . (3.151)
The formula (3.150) for oscillator strengths in a system of three coupled
Coulomb channels was first derived in 1984 by Giusti-Suzor and Lefebvre-
Brion [GL84].

The general expression (3.150) can formally be written as a product of

an unperturbed oscillator strength multiplied by a Beutler-Fano function (cf.
(3.111)):

dfei _ 2p 5 (+8)°

—_— = 3.152
dE RN 1y (3.152)
where the energy parameter & and the parameter § are now given by

& = D(E)/N(E) and (3.153)

_ (d2/d1)(R1,2T3 — Ra3Ru3) + (ds/d1)(TaRi,3 — Ry 3R12)
N(E)

L1

(5.154)
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Near a zero Eg of D(E), the energy parameter is again a linear function of
energy,

E-E
f=——R (3.155)

where I' is the width given by (3.143). The formula (3.154) can be used to
define shape parameters as long as it makes sense to assign a single value of
¢ to an individual resonance. If the widths are not too large, (3.152) again
describes a series of Beutler-Fano-type resonances. In contrast to an unper-
turbed Rydberg series of autoionizing resonances, however, the widths vary
strongly within the series according to (3.143) and the shape parameters can
no longer be accounted for by one energy-independent or only weakly energy-
dependent number as in (3.113). If the resonances are so narrow that we can

take the function T5(F) = tan [w(v2 + pg)], which covers the whole range of -

values from —oo to +00 in each period, as essentially constant over the width
of a resonance, then we can insert its value (3.142) at each resonance energy
into (3.154) and obtain a simple formula describing the variation of the shape
parameter ¢ within a perturbed Rydberg series of autoionizing resonances:

G= (_d2/d1) ( T3 — Ry 3d3/da ) . (3.156)
Ry T3 — Ry 3R13/R12
The first factor on the right-hand side of (3.156) is the shape parameter
¢ which one would expect in an unperturbed Rydberg series of autoionizing
resonances according to (3.113). The second factor describes the changes due
to the perturbations. In each period of T3 there is a zero of § at

d

T35 = Rag3 _d_a_ (3.157)
2
and a pole at
R
Ty =Ry 5 (3.158)
1,2

The pole position (3.158) is just the point of vanishing width (3.144). Here
the height 1 + §2 of a resonance line becomes infinite in principle, but the
product of the height and the width (3.143) remains finite. The sign of the
shape parameter ¢ changes both at the zero (3.157) and at the pole (3.158).
This sign change is known under the name of g-reversal and is conspicuous in
spectra as an interchange of the steep and the flat sides of Beutler-Fano-type
resonance lines (see Fig. 3.13).

The relation (3.156) was derived from (3.154) with the help of some rather
crude approximations, but it does enable us to qualitatively understand some
of the different structures which can appear in a perturbed Rydberg series
of autoionizing resonances. Figure 3.13 shows two examples of the oscillator
strength (3.150) as a function of the continuous effective quantum number v,
in channel 2. The series is perturbed around v =~ 17 by a state with effective
quantum number v3 = 7 (in channel 3). The two g-reversals, one at the point
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Fig. 3.13. Oscillator strengths (3.150) in a perturbed Rydberg series of autoionizing
resonances. The following 3QDT parameters are common to both parts of the figure:
po=p3=0, R1,2=04, Ry 3=-0.2, Ry3=0.5, I3 — I, = 0.026 Rydberg energies.

- The centre of the perturber (T3 =0 for v3 =7.0) is at v, =17.13. In part (a) the

dipole transition parameters are d2/d1 = d3/d1 = 1, so that the point of vanishing
width and the point of vanishing g-value lie on opposite sides of the centre T3 =0. In
part (b) we have d2/d1 = 0.5, ds/d1 = —1, so that both g-reversals lie to the left
of T3 =0. The oscillator strengths df /dE are given in units of the oscillator strength
(2p/R)wdf which we would expect in absence of coupling to the channels 2 and 3

of vanishing width and one at the zero of the shape parameter, are easy to
discern in both cases.

If more than one channel is open, then a resonant state in a Rydberg
series of autoionizing resonances can decay into several decay channels, and
the total autoionization width is a sum of the partial widths into the individ-
ual open channels. If such a Rydberg series is perturbed by states in further
closed channels, then one consequence of such perturbations is a strong en-
ergy dependence of the branching ratios, which are the ratios of the partial
decay widths [VC88]. A rather detailed description of characteristic features
of MQDT spectra in cases with two or more open channels has recently been
given by Cohen [Coh98].

In real physical situations we often have to consider more than two or three
Coulomb channels. Figure 3.14 shows part of a photoionization spectrum to
J = 2 states in neutral barium in an energy interval in which both the
5d3/2 ns and the 5d3,2 nd series of autoionizing resonances are perturbed by
the 5ds/51451/5 resonance. The lower part of the figure shows the results
of an MQDT calculation involving six closed and two open channels. Many
significant features in the spectrum are accurately reproduced by the MQDT
fit. Note, however, that an application of MQDT with so many channels
already involves a large number of parameters which are not easy to determine
uniquely by fitting even such a rich spectrum.

Problems of non-uniqueness of the MQDT paramaters typically occur
when we treat them as independent empirical parameters to be determined
in a fit to experimental data. In an analysis of Rydberg spectra of molecules,
Jungen and Atabek implemented a frame transformation which allowed them



168 3. Atomic Spectra

50,,,100  5dg,,14s Sdy ,12d
23d 22d 21d 20d 19d
M m, M [ [ e |
282s 21s 2
18¢g 179
n n

—» INTENSITY

L

46650 46600 46550 46500
-
)

hv(cm
Fig. 3.14. Photoionization spectrum in barium near the 5ds/; 1451/, J =2 state,
which perturbs the 5d3/2 ns and the 5d3/2 nd series. The lower part of the figure
shows the results of an MQDT analysis involving six closed and two open channels.
(From [BH89J)

to calculate a large number of independent elements of the reactance matrix
on the basis of a few fundamental dynamical parameters. This made it pos-
sible to apply the MQDT with quite large numbers (up to 30) of channels
[JATT].

An ab initio theory without empirical parameters requires a solution (at
least an approximate solution) of the many-electron Schrédinger equation,
or, in the present case, of the coupled channel equations. In the so-called
R-matriz method [Gre83, OG85|, coordinate space is divided into an inner
region of radius R and an outer region. The many-electron problem is solved
approximately in the inner region and, at r = R, the solutions are matched
to the appropriate asymptotic one-electron wave functions in each channel,
which consist of superpositions of regular and irregular Coulomb functions
or, in closed channels, of the corresponding Whittaker functions. MQDT is
still useful in connection with such ab initio theories, because the weakly
energy-dependent MQDT parameters can be calculated (and stored) on a
comparatively sparse mesh of energies and the complicated and sometimes
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violent energy dependences in physical observables follow from the MQDT
equations. The combination of MQDT and R-matrix methods has been ap-
plied with growing success, especially to the description of the spectra of
alkali earth atoms [AL87, AL89, LA91, AB94, AL94, LAY, LU95|.

3.4 Atoms in External Fields

Everything said up to now has to be modified more or less strongly if we con-
sider atoms (and ions) which are not isolated, but influenced by an external
electromagnetic field. For low-lying bound states of an atom the influence
of external fields can often be satisfactorily accounted for with perturbative
methods, but this is no longer possible for highly excited states and/or very
strong fields, in which case intricate and physically interesting effects occur,
even in the “simple” hydrogen atom. The study of atoms (and molecules) in
strong external fields has been a topic of considerable interest for some years
now, and this is documented by the recent publication of several books on
the subject [NC90, RW94, CK97, SS98}.

In this section we consider a classical electromagnetic field described by
the scalar potential #(r,t) and the vector potential A(r,t). The Hamiltonian
for an N-electron atom or ion is then (see (2.151))

N 5 2
B=3% <[p1 + (C/ELA(T”t)] - eqs(ri,t)) +V (3.159)

An important consequence of external fields is that the Hamiltonian
(3.159) is in general no longer rotationally invariant, so that its eigenstates
aren’t simultaneously eigenstates of angular momentum. For spatially ho-
mogeneous fields and the appropriate choice of gauge the Hamiltonian does,
however, remain invariant under rotations around an axis parallel to the di-
rection of the field, so that the component of total angular momentum in the
direction of the field remains a constant of motion. For an electron in a po-
tential V(r) which is not radially symmetric, but invariant under rotations
around the z-axis, say, we can at least reduce the three-dimensional prob-
lem to a two-dimensional problem by transforming to cylindrical coordinates

Q! Z7 ¢:

i=1

x=gcos¢, y=pgsing, z=z; o=vz*+y® . (3.160)
With the ansatz
Y(r) = fmlo,2) 6™ (3.161)

we can reduce the stationary Schrédinger equation to an equation for the
function fn,(g,2):

K2 [ 8% 10 m? 52
5 (34 3ms = S+ 53) V(e 9] fler®

= Efunle.?) . (3.162)
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3.4.1 Atoms in a Static, Homogeneous Electric Field

We describe a static homogeneous electric field E, which is taken to point in
the direction of the z-axis, by a time-independent scalar potential

&(r) = —E, 2 (3.163)

and a vanishing vector potential. The Hamiltonian (3.159) then has the fol-
lowing special form:

N A2 N
A~ pl ~
H = i=£ . 2—/-1/-‘ + V + eEz i=§ - Z; . (3164)

The shifts in the energy eigenvalues caused by the contribution of the field
in (3.164) are given in time-independent perturbation theory (see Sect. 1.5.1)
to first order by (1.198),

N
AES) = eE, (Yn] Z zilYn) (3.165)
i=1
where 1, are the eigenstates of the unperturbed (E, = 0) Hamiltonian. As
mentioned in Sect. 2.2.4, these eigenstates are usually eigenstates of the N-
electron parity operator, so that the expectation values (3.165) of the operator
Zf’:l z;, which changes the parity, vanish. In second order the energy shifts
are given by (1.204),

AB® = (eB,y T 12! Lim i)l (3.166)
En - Em
m#n
where E,, and E,, are the eigenvalues of the unperturbed Hamiltonian. The
right-hand side of (3.166) should include the continuum, so the sum is to
_be replaced by an integral above the continuum threshold. The energy shifts
(3.166) depend quadratically on the strength E, of the electric field and are
known under the name quadratic Stark effect.

The energy shifts (3.166) are closely connected with the dipole polarizabil-
ity of the atom in an electric field. The modification of wave functions caused
by an infinitesimally weak electrical field can be described in first-order per-
tubation theory. According to (1.202) the modified eigenfunctions (to first
order) are

N
[01) = i) e, 3 Pl iz ) (3167)
m#n n = ~“m
The wave functions (3.167) are no longer eigenfunctions of the N-electron
parity, and they have a dipole moment induced by the external field and
pointing in the direction of the field (the z-direction). The z-component of
the induced dipole moment is

3.4 Atoms in External Fields 171

N
dz = —e(W4l S mlun)
i=1

N ) 2
:262EZZ |<¢’"|§i=_1;’|¢">l =a4E, . (3.168)

m#n

Using the dipole polarizability aq defined by (3.168) (for the state ;) we
can write the energy shift (3.166) of the quadratic Stark effect as

AE® = ~% E? . (3.169)

In the unusual case that an eigenvalue of the unperturbed Hamiltonian
is degenerate and has eigenstates of different parity, we already obtain non-

~ vanishing energy shifts in first order, and this is called the linear Stark effect.

The first-order energy shifts are calculated by diagonalizing the perturbing
N . . ;

operator eE, Y. ; z; in the subspace of the eigenstates with the degener-

ate (unperturbed) energy, see (1.207). An important example is found in

the one-electron atoms, where each principal quantum number n > 2 cor-

responds to a degenerate energy eigenvalue with eigenfunctions of different

parity (—1)!. The interaction matrix elements between two degenerate eigen-

functions 1 (1) = Yi, m, (2)Pn i, (r)/r and Y2(r) = Yi,,m, (2)bn,1, () /7 are

($rleBazlpn) = eBarly (3.170)

where riOQ) is the v = 0 spherical component of the vector matrix element as

defined in (2.205). The matrix element (3.170) is non-vanishing only if the
azimuthal quantum numbers in the bra and ket are the same, m; = ma. For
n = 2 there is a non-vanishing matrix element between the [ =0 and [ =1
states with m = 0. The two further | = 1 states with azimuthal quantum
numbers m = +1 and m = —1 are unaffected by the linear Stark effect (see
Problem 3.8). Figure 3.15(a) shows the splitting of the n = 2 term in the
hydrogen atom due to the linear Stark effect. For comparison Fig. 3.15(b)
shows the energy shift (3.169) of the n = 1 level due to the quadratic Stark
effect (see Problem 3.9).

The perturbative treatment of the Stark effect is not unproblematic. This
becomes obvious when we consider that the perturbing potential eE, Zf_’__ 1%
(positive field strength E, assumed) tends to —oco when one of the z; goes to
—00. The perturbed Hamiltonian (3.164) is not bounded from below and has
no ground state; strictly speaking it has no bound states at all and no discrete
eigenvalues, but a continuous energy spectrum unbounded from above and
below. In the presence of the electric field the bound states of the unperturbed
Hamiltonian become resonances and the width of each such resonance is /7,
where 7 is the lifetime of the state with respect to decay via field ionization.
For low-lying states and not too strong fields these lifetimes are so long that
the states can be regarded as bound for all practical purposes, but for highly
excited states and/or very strong fields the lifetimes can be short and the
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Fig. 3.15. (a) Splitting of the degenerate n = 2 level in hydrogen due to the
linear Stark effect (Problem 3.8). (b) Energy shift of the hydrogen ground state
due to the quadratic Stark effect (3.169). f is the electric field strength in units of
Eo =~ 5.142 x 10° V/cm (3.175), and the energies are in atomic units

widths of the resonant states large. Even for an arbitrarily small but finite
field strength perturbation theory loses its justification at sufficiently high
excitations. The transition from vanishing to small but finite field strengths
is not continuous at threshold. For vanishing strength of the external field
the long ranged Coulomb potential supports infinitely many bound states
accumulating at threshold. In an arbitrarily weak but non-vanishing electric
field there are no bound states.

Classically field ionization is possible above the Stark saddle. For a one-
electron potential,

VA 2
V(r)= —Te +eE,z, E;>0 , (3.171)

the Stark saddle is located on the negative z-axis at the local maximum
of V(z =0,y =0, z2). Here the potential energy has a minimum in the two
directions perpendicular to the z-axis (see Fig. 3.16). The position zs and
energy Vs of the Stark saddle are:

zg = _,/%E , Vo =—-2e\/ZeE, . (3.172)
z

For a one-electron atom described by a pure Coulomb potential —Ze?/r, it
is possible in parabolic coordinates to decouple the Schrédinger equation into
ordinary differential equations, even in the presence of an external electric
field. As the electric field in the z-direction doesn’t disturb the rotational
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Fig. 3.16a, b. Potential energy (3.171) for a one-electron atom in an electric field of
f = 0.02 atomic units (see (3.175)). (a) Potential along the z-axis; (b) equipotential
lines in the zz-plane. The point “S” marks the Stark saddle

symmetry around the z-axis, it is sensible to keep the azimuthal angle ¢ as
one of the coordinates. The two other coordinates £ and n have the physical
dimension of a length and are defined by

E=r+z, n=r—z; r=%3¢+n), z=3¢E-n . (3.173)

The coordinates £ and 7 can assume values between zero and +oo. They are
called parabolic, because surfaces defined by £ = const and 7 = const are
rotational paraboloids around the z-axis.

In parabolic coordinates and atomic units the Hamiltonian for an electron
under the influence of a Coulomb potential and an external electric field is

e 2 [ (2) v 2 (12)] - a2
T T &g ee\*ae) "o \"on )| T 2nog2

27 £E—n
Pt - B S 3.174
£+ = (@178
Here f is the electric field strength in atomic units:
E, e pu2e’ 9
= E—o s E() = E = e = 5.142 x 10 V/cm . (3.175)

If we multiply the Schrédinger equation Hy = Et by (€ + 71)/2 and insert
the product ansatz

¥ = f1(€) f2(n) e™? (3.176)
for 1), then we obtain two decoupled equations for f1(£) and fa2(7)

d (%)+(_§_§_m_2_f§2>f1+zlf1=0 )

de \*'d¢ 4 4
d [/ d E 2
o (ndinz) + (5 n— % + £n2) fat Z2f2=0 . (8.177)
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There are two separation constants, Z; and Z;, which are related by

Z1+2,=2 . (3'178)
Dividing the upper equation (3.177) by 2¢ and the lower by 27 yields
1/d2 1d m? Z f E
[ (mrie-m)-24 Llno-2n0 . @19
1/ d? 1d m? Zy f E
(s )-2-4 | =Frm G

The equations (3.179), (3.180) have the form of two cylindrical radial
Schridinger equations with azimuthal quantum number m/2 (cf. (3.162)).
In addition to the cylindrical radial potential (m/2)2/(2£?), equation (3.179)
for f1(€), the uphill equation, contains a Coulomb potential —Z; /2¢ and
an increasing linear potential (f/8)¢ originating from the electric field. For
any (positive or negative) value of the separation constant Z1, this uphall
potential supports a sequence of bound solutions with discrete eigenvalues.
Conversely, for each energy E there is a discrete sequence of values of Z; for
which the uphill equation has bound solutions, which are characterized by
the respective number nq = 0, 1, 2,... of nodes of f1(£) in the region £ > 0.
As Z; grows larger and larger (it may even be larger than the nuclear charge
Z) the number n, increases. We obtain a minimal value of Z; (which may be
negative if the energy E is positive) when the whole uphill potential is just
deep enough to support one nodeless eigenstate. (See Fig. 3.17.)

In the field-free case f = 0, equation (3.180) has the same form as (3.179).
In the negative energy regime there is a discrete sequence of energies, namely
E,=-2%2/(2n%), n=1, 2, ..., at which both equations (3.179) and (3.180)
with appropriate values of Z; and Z; simultaneously have square integrable
solutions with n; and ny nodes respectively. For a given azimuthal quantum

“number m = 0, 1, £2,... £ (n—1) the parabolic quantum numbers n; =
0,1,2,...and ny =0, 1, 2,... are related to the separation constants Z, Zo
and the Coulomb principal quantum number n by [LL59]

|m|2+1 :n% , i=1,2; ni4na+lml+1l=n . (3.181)

If, however, the field strength f is non-vanishing (positive), then the down-
hill equation (3.180) can be solved for a given value of the separation constant

Zy (= Z — Z;) at any energy with the appropriate boundary conditions. The

solutions f2(n) do not behave like regular and irregular Coulomb functions
asymptotically, because the potential decreases linearly and so the kinetic
energy increases linearly with 7.2 The low-lying bound states of the field-
free case become narrow resonances in the presence of a finite field. As the

n; +

2 For a general discussion on the asymptotic behaviour of continuum wave func-
tions in the presence of an electric field see e.g. [TF85].
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Fig. 3.17. Effective potentials in the uphill equation (3.179) (a) and in the downhill
equation (3.180) (b) for m = 1 and four different values of the separation constant
Z1 (Z1 + Z2 = 1). The electric field strength is f = 0.02 atomic units

energy increases, so does the width of these resonances, corresponding to a
decreasing lifetime with respect to field ionization.

A systematic theoretical investigation of the Stark spectrum of hydrogen
was published in 1980 by Luc-Koenig and Bachelier [LB80]. Figure 3.18 shows
the spectrum for azimuthal quantum number |m| = 1. In the field-free case
each principal quantum number n accommodates n — |m/| degenerate eigen-
states, which can be labelled by the possible values of the parabolic quantum
number n; =0, 1, ..., n—|m|—1. A finite field strength lifts the degeneracy
in this 7 manifold. The energy is shifted downward most for states with small
values of the (uphill) quantum number n,, because they have the largest frac-
tion of the wave function concentrated in the downhill direction. Since small
values of ny are connected to small values of the separation constant Z; and
correspondingly large values of Z, = 1 — Z;, these states have the largest
decay widths, because larger values of Z imply a more strongly attractive
Coulomb potential and a smaller potential barrier against field ionization in
the downhill equation. Conversely, solutions corresponding to large values of
71 and small values of ny can have very small widths and large lifetimes
with respect to field ionization even above the Stark saddle. A pronounced
resonance structure above the Stark saddle and even above the “field-free

i[onization threshold” can indeed be observed e.g. in photoionization spectra
RWS6].
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EA Fig. 3.18. Stark split-
ting and decay widths
with respect to field ion-
ization for the |m| = 1
states in hydrogen. The
thin lines show states
with widths less than
5 x 102 atomic units,
the thick lines indicate
widths between 5x 10712
and 5 x 1078, and the
dashed lines represent
resonances broader than
..... 5 x 107% atomic units.
The energy of the Stark
saddle is shown by the
thick curve running from
the upper left to the
lower right corner in the
figure. (From [LB80])
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Stark states of hydrogen have been studied with improved experimental
and calculational techniques in recent years [GN85, RW86, Kol89, Ali92],
in particular in the interesting region near the saddle and the field-free
threshold. Kolosov [Kol89] calculated the positions and widths of resonant

_Stark states appearing as eigenstates of the Hamiltonian with complex eigen-
values. Results for resonances with the maximum uphill quantum number,
nm = n-1,ny = 0, m = 0, and with the second largest n; for energies
around the field-free threshold are shown in Fig. 3.19 and compared with
experimental photoionization spectra from Glab et al. [GN85) at three differ-
ent electric field strengths. The calculated positions of the resonances with
ny=n—1,ng =0and withn; =n—2, ng =1are indicated by arrows, and
the widths are shown as hatching or as horizontal bars. A correlation between
experimental structures and calculated resonances is obvious, even at positive
energies. Alijah [Ali92] calculated the photoionization spectrum as a function
of energy from the wave functions obtained by direct numerical integration
of the Schrédinger equation. His results are shown in Fig. 3.20 together with
the experimental photoionization spectrum of Rottke and Welge {RW86] at
a field strength of 5.714 kV/cm. The numerical calulation reproduces all the
experimentally observed features.

Tonisation signal
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Fig. 3.19. Experimental photoionization spectra of hydrogen in a Stark field for
three field strengths E,: (a) 6.5 kV/cm, (b) 8.0 kV/cm, (c) 16.7 kV/cm [GN85].
The arrows show the calculated positions of resonant Stark states with parabolic
quantum numbers (n1,n2) (m = 0). The hatchings show the widths of the states
with maximum uphill quantum number n; (= n—1). The widths of the states with
n; =n — 2, np = 1 are shown as horizontal bars. (From [Kol89])

3.4.2 Atoms in a Static, Homogeneous Magnetic Field

A §tatic. homogeneous magnetic field pointing in the z-direction can be de-
scribed in the symmetric gauge by a vector potential
1 1{7Y
A(r) = -5(1' xBy==| z | B, . (3.182)
2\ o

In this gauge the Hamiltonian (3.159) keeps its axial symmetry around the
z-axis and has the following special form:

N .o N 2

- P2 . pw

A=) i+V+wL,+§ @) (3183)
=1 i=1



178 3. Atomic Spectra

Fig. 3.20. Photoionization
spectrum of hydrogen in an
T T electric field (5.714 kV /cm)
' from the initial state n; = 1,
m T ng = 0, m = 0 with Am = 0.

The upper part of the fig-
ure shows the experimental
results of Rottke and Welge
[RWS86]; the sharp lines be-
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Here w is one half of the cyclotron frequency which characterizes the en-
ergy eigenstates of an otherwise free electron in a magnetic field (see Prob-

lem 3.10):
we _eB, (3.184)

2 2uc

In the Hamiltonian (3.183) L, stands for the z-component of the total orbital -

angular momentum of the N electrons, and the contribution wk, is just the
energy —u- B of the magnetic moment p = —e/ (2uc)L due to this orbital
motion in the magnetic field B. The ratio —e/(2uc) of the magnetic moment
to the orbital angular momentum is the gyromagnetic ratio.

If, for the time being, we neglect the term in the Hamiltonian (3.183)
which is quadratic in the field strength B,, i.e. quadratic in w, then the
external magnetic field simply leads to an additional energy wk,. Eigenstates
of the unperturbed (field-free) Hamiltonian, in which effects of spin-orbit
coupling are negligible and in which the total spin vanishes, i.e. in which
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the orbital angular momentum equals the total angular momentum, remain
eigenstates of the Hamiltonian in the presence of the magnetic field, but the
degeneracy in the quantum number My, is lifted. Quantitatively the energies
are shifted by

ABy, =SB py, (3.185)
2pc
This is the normal Zeeman effect. Note that the result (3.185) is not based on
perturbation theory, but only on the neglect of spin and of the contributions
quadratic in w to the Hamiltonian (3.183). Except for the small difference
between the reduced mass . and the electron mass m., the constant efi/(2uc)
is the Bohr magneton [CT86],
eh
MeC

Except in states with vanishing total spin, we generally cannot neglect the
contributions of the spin to the energy shifts in a magnetic field. The most
important contribution comes from the magnetic moments due to the spins
of the electrons. The interaction of these spin moments with a magnetic field
is obtained most directly if we introduce the field into the Dirac equation
(2.28) via the substitution p; — P; + (e/c)A(r;) and perform the transition
to the non-relativistic Schrédinger equation (Problem 3.11). To first order we
obtain the following Hamiltonian for a free electron in an external magnetic
field:

2

Y = % + -278;& (L;+28,) B . (3.187)
Note the factor two in front of the spin. It implies that the spin %/2 of an
electron leads to a magnetic moment just as big as that due to an orbital
angular momentum of A.

The interaction of an atom with a magnetic field is thus given to first
order in the field strength by a contribution

= 5.78838263(52) x 10™°eV /tesla, . (3.186)

pB =

Ws = i(IZ +28)-B = 225(f, +28,) (3.188)

in the N-electron Hamlltoman ThlS corresponds to the energy of a mag-
netic dipole with a magnetic moment —(L +28)e/(2uc) in the magnetic field
B. The magnetic moment now is no longer simply proportional to the total
angular momentum J = L + §, which means that there is no constant gyro-
magnetic ratio. The splitting of the energy levels in the magnetic field now
depends not only on the field strength and the azimuthal quantum number
as in the normal Zeeman effect (3.185); for this reason the more general case,
in which the spin of the atomic electrons plays a role, is called the anomalous
Zeeman effect.

The unperturbed atomic states can be labelled by the total angular
momentum quantum number J and the quantum number M, for the z-
component of the total angular momentum, and the unperturbed energies
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don’t depend on M. If the atom is described in LS coupling, then the un-
perturbed eigenstates ¥, s,7,p, in a degenerate J-multiplet also have a good
total orbital angular momentum quantum number L and a good total spin
quantum number S (cf. Sect. 2.2.4). If the energy shifts due to the perturbing
operator (3.188) are small compared with the separations of the energies of
different J-multiplets, then these energy shifts are given in first-order pertur-
bation theory by the expectation values of the perturbing operator (3.188) in
the unperturbed states ¥z, s j a,. As shown below, the perturbing operator
is diagonal in the quantum number M within each J-multiplet and hence a
diagonalization according to the formula (1.207) of degenerate perturbation
theory is not necessary.

We can derive a quantitative formula for the matrix elements of the per-
turbing operator (3.188) by applying the Wigner-Eckart theorem for the com-
ponents of vector operators in the angular momentum eigenstates. Thereby
the dependence of the matrix elements on the (spherical) component index
of the vector and on the azimuthal quantum numbers the in bra and ket is
the same for all vector operators and is given by appropriate Clebsch-Gordan
coefficients (see Sects. 1.6.1, 2.4.5). In particular,

T, 5,50, 18:\01,5,5,m,) = (LST|SILST)(J, Ms|1,0,J, M)

Ty 5,70, |21 5,0.01,) = (LSTNTILST)(J, My|1,0,J,My)

(@p, 5,000, |F- 8101, 5.0,m,) = (LST|FILST)(LST|S|LST){CG},

Wy 5,00, | T2, 5,0.00,) = (LSTIFILSTNLSI|F|LST){CG}. (3.189)

All matrix elements like (3.189) which are not diagonal in M, vanish. This
follows in the two lower equations, because we actually calculate matrix el-
ements of a scalar product of two vector operators, and in the two upper
equations, because we are dealing with the v = 0 spherical component of
a vector operator in both cases. (This also implies that non-diagonal ma-

trix elements of the perturbing operator (3.188) vanish.) Quantities such as

(LSJ|S|LSJ) are the reduced matrix elements, which are characteristic of
the whole J-multiplet and independent of azimuthal quantum numbers or
component indices. The expression {CG} in the two lower equations stands
for the same combination of Clebsch-Gordan coefficients, and its precise com-
position is irrelevant for the following discussion.

Dividing the first equation (3.189) by the second and the third by the
fourth leads to the same number in both cases, narr}ely the quotient of the
reduced matrix elements (LSJ|S|LSJ) and (LSJ|J|LSJ). Hence the quo-
tients of the left-hand sides must also be equal, giving

(Pr,5,0,m,|5:11,5,0,m,)
 (,s,0m, |- 81¥L,5,0,m,

) R
= . (Pr,5,0,M4|J2191,8,0,M, )
(Pr,s,0,m,\THPL,5,0,M,) o ’

@y 5,0m,\J-S1¥L5.0.M,)
=—== — . 3.190
O Msh (3.190)

3.4 Atoms in External Fields 181

We can replace the operator product J-$ by (:f 2+ §2_ [2)/2 in analogy to
(1.288) and express the expectation value of J -§ in terms of the eigenvalues
of J%, 8% and L?:
(L,5,5,M,15:190,5,0,0,)
_JI+1)+58+1)-L(L+1)
- 2J(J +1)

Mjh . (3.191)

With L, + 25, = J, + S, we obtain the following expression for the energy
shifts of the anomalous Zeeman effect in first-order perturbation theory:

eB A A
AEL s M, = ﬂ; (Pr,5,0M5 |z + S |¥0,5,0M,)

eB, JJ+1)+8(S+1)—-L(L+1)
=—=(1

S ( * 5I(T+1) )Mm
_ehB,

= pe gM; . (3.192)

The dependence of the gyromagnetic ratio on the J-multiplet is contained in
the Landé factor

U +S(S+1) - LL+1)

2J(J +1)
B3I+ +S(S+1) - L(L+1)
= R ARy . (3.193)

For § = 0 and J = L we have ¢ = 1 and recover the result of the normal
Zeeman effect (3.185).

As the strength of the magnetic field increases, the interaction with the

field becomes stronger than the effects of spin-orbit coupling. It is then sen-
sible to first calculate the atomic states without spin-orbit coupling and to
classify them according to the quantum numbers of the z-components of the
total orbital angular momentum and the total spin: ¥y, g ar, ms. The energy
shifts due to the interaction with the magnetic field (3.188) are then — without
any further perturbative assumptions — simply
ehB,
2uc
This is the Paschen-Back effect. An example for the transition from the
anomalous Zeeman effect in weak fields to the Paschen-Back effect in stronger
fields is illustrated schematically in Fig. 3.21.

The perturbing operator (3.188) describes the paramagnetic interaction
between the magnetic field and the (permanent) magnetic dipole moment of
the atom. The operators L, and S, commute with L2 and $2. If the total
orbital angular momentum L and the total spin S are good quantum num-
bers in the absence of an external magnetic field, then they remain good
quantum numbers in the presence of the perturbing operator (3.188). L is
no longer a good quantum number when the contribution quadratic in w

AEwm,, M5 = (M +2Mgs) . (3.194)
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0 1 2

pg-B/AE,
Fig. 3.21. Schematic illustration of level splitting in a magnetic ﬁ?ld for.the exam-
ple of a P, /2 and a %P3, multiplet, which are separated by a spin-orbit splitting
AE, in the field-free case. If the product of field strength B and magneton (3.186)
is smaller than AE, we obtain the level splitting of the anomalous Zeeman effect
(3.192), for ug B > AEo we enter the region of the Paschen-Back effect (3.194)

in (3.183) (the diamagnetic term) becomes important. This term is a two-
dimensional harmonic oscillator potential in the two directions perpendicular

to the direction of the magnetic field. .

Consider the Schrédinger equation for a free electron (without spin) in
an external field in the symmetric gauge. This is easy to solve in cylindrical
coordinates (Problem 3.10). The eigenfunctions are

wN,m,k(@ ¢'7 Z) = ¢N,m(9) eim¢ eikz ’ (3'195)

and the energy eigenvalues are

2.2
EN,m,k=(2N+m+|m|+1)ﬁw+—2——,N=0, 1,2,...,
B om =0, 1, +2, ..,
—o0 <k < +0o. (3.196)

Here &y m(0) exp (img) are the eigenstates of the two-dimensional harmonic
oscillator (Landau states) labelled by the cylindrical principal quantum num-
ber N and the azimuthal quantum number m for the z-component of the
orbital angular momentum. The factor exp (ikz) describes the free motion of
the electron parallel to the direction of the magnetic field. ‘

We obtain a measure for the relative importance of the diamagnetic term
when we compare the oscillator energy Aw in (3.196) with the Rydberg energy
R = pet/(2h?) characterizing the atomic interactions:

hw Ei
=R T B
2.3
Bo =5 ~ 2.35 x 10° gauss = 2.35 x 10° tesla . (3.197)

h3
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For field strengths appreciably smaller than By, which currently includes all
fields that can be generated in a terrestrial laboratory, the diamagnetic term
has no influence on low-lying atomic states. This justifies its omission in the
treatment of the normal and anomalous Zeeman effects and the Paschen-
Back effect. In an astrophysical context, however, magnetic field strengths of
the order of 10* to 108 T have been observed at the surfaces of white dwarfs
and neutron stars. At such field strengths the quadratic contribution to the
Hamiltonian (3.183) can by no means be neglected [WZ88]. The influence of
this term is often called the quadratic Zeeman effect.

At field strengths of a few tesla as can be generated in the laboratory,
the magnetic field strength parameter v defined by (3.197) is of the order of
107% and the quadratic Zeeman effect is not important for low-lying states of
atoms. It may play a role, however, in the context of semiconductor physics,
where electrons bound to a shallow donor are often described in a hydrogen
model with an effective mass roughly one power of ten smaller than the
electron mass and an effective charge roughly one power of ten smaller than
the elementary charge e. In such situations effective field strength parameters
near unity may be achieved at field strengths of a few tesla [KG90].

For small field strength parameters, typically around 10~° for free atoms
in strong laboratory fields, the quadratic Zeeman effect does have a con-
siderable influence on highly excited Rydberg states. Since the separation of
successive terms in a Rydberg series decreases as 2R /n® with increasing prin-
cipal quantum number n, we can already expect a significant perturbation
due to the diamagnetic term near n = 40 or n = 50.

The intricacy of the quadratic Zeeman effect can already be illustrated
in the simplest example of a one-electron atom, e.g. the hydrogen atom. An
overview of many papers written on the H atom in a magnetic field can be
found e.g. in [FW89, HR89], see also [Gay91]. A monograph devoted to this
subject has recently been published by Ruder et al. [RW94].

Ignoring spin effects the Schrodinger equation for a hydrogen atom in
a uniform magnetic field is, in atomic units and cylindrical coordinates (cf.
(3.183), (3.162)),

o 16 8 m
2\00%> 000 022 g2

m 1

+5v+gret - \/9—2;?} fm(0,2) = Efm(0,2)
Effects of spin-orbit coupling are mainly important for relatively weak fields,
and the centre-of-mass motion, whose separation is not quite as straight-
forward as in the absence of an external field, only becomes important in
extremely strong fields. For values of the field strength parameter between
¥ ~ 1075 and v = 10*%, the one-electron Schrodinger equation (3.198) is
a reliable description of the real physical system. The azimuthal quantum
number m is a good quantum number, as is the parity 7, which is frequently

(3.198)
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expressed in terms of the z-parity m, = (—1)™n describing the symmetry
of the wave function with respect to a reflection at the zy-plane (perpen-
dicular to the direction of the magnetic field). In each m™ subspace of the
full Hilbert space the Schrédinger equation remains a non-separable equation
in two coordinates, i.e. there is no set of coordinates in which it can be re-
duced to ordinary differential equations as was possible for the Stark effect.
If we drop the trivial normal Zeeman term (m/2)y, the potential in (3.198)
is independent of the sign of m:

m? ! 27 (3.199)
Vm(Q,Z)=2—02—\/—z2—+——;+8‘Y o .
Equipotential lines of the potential (3.199) are shown in Fig. 3.22 for the case
m = 0.

—

Fig. 3.22. Equipotential lines
for the potential (3.199) with
-P m=0

For very strong fields corresponding to field strength parameters v near
unity or larger, the energies needed to excite Landau states perpend}cular
to the field are larger than the typical Coulomb energies for the motion of
the electron parallel to the field. In this regime it makes sense to expand the

wave function f,(g,2) in Landau channels:
fm(e,2) =Y SN m(e)¥n(z) (3.200)
N=0

Inserting the ansatz (3.200) into the Schrédinger equation (3.198) and pro-
jecting onto the various Landau channels yields, in each m™ subspace, a set
of coupled channel equations for the channel wave functions ¥n(z), and the

potentials are

0 pa—

VN,N’(Z) = ENmON,N’ +/o ngéN,m(Q)ﬁQN',m(g) .
The diagonal potentials are asymptotically Coulomb potentials proportional
to 1/|z|, and the channel thresholds En,m are (without the normal Zeeman
term (m/2)7)

Enm =[N+ (m|+1)/2ly=En+ N7y . (3.202)

(3.201)
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The continuum threshold in a given m™ subspace is at E,, = (Jm| + 1)v/2,
which lies higher than the “zero-field threshold” above which the atom can
ionize classically. This is because an electron escaping to z = +00 must at
least have the zero-point energy of the lowest Landau vibration.

For very strong fields the Schrodinger equation (3.198) thus describes a
system of coupled Coulomb channels, and the separation of successive chan-
nel thresholds is larger than the Coulomb binding energies in the various
channels. In each m™ subspace we obtain a Rydberg series of bound states
with wave functions dominated by the lowest Landau channel N = 0, and a
sequence of Rydberg series of autoionizing resonances corresponding to the
excited Landau channels N > 0. Autoionization occurs, because an excited
Landau state, which would be bound in the absence of channel coupling, can
transfer its energy perpendicular to the field into energy parallel to the field
and decay into the continuum. Autoionization doesn’t require two electrons,
only two (coupled) degrees of freedom! The calculation of bound state spectra
and of the energies and widths of autoionizing states is comparatively easy
in the strong field regime [Fri82, FC83]. Results of numerical calculations
in this region were confirmed experimentally in far-infrared magneto-optical
experiments on shallow donors in the GaAs semiconductor, where a small ef-
fective mass and a small effective charge give access to effective field strength
parameters near unity for laboratory field strengths of a few tesla [KG90].

Figure 3.23 illustrates the spectrum in the regime of very strong fields for
three values of the field strength parameter in the m™ = 0% subspace. As
the field strength decreases, the separation of successive Landau thresholds
becomes smaller and smaller and we get interferences between the various
Landau channels. In a comparatively small range of field strengths — down
to v = 0.01 - the coupled equations can be solved directly and the spectrum
can be interpreted qualitatively in the framework of quantum defect theory.
At laboratory field strengths corresponding to v = 1075, the separation of

-successive Landau thresholds is of the order of 1073 to 104 eV, so a realistic

calculation in the Landau basis would involve tens of thousands of coupled
Landau channels.

For weak fields v < 1 and energies clearly below the zero-field threshold
E = 0, the quadratic Zeeman effect can largely be treated with perturba-
tive methods. In the zero-field case the degenerate states belonging to given
values of the Coulomb principal quantum n and the azimuthal quantum num-
ber m can be labelled by the orbital angular momentum quantum number
= |m|,|m|+1,...,n -1, and states with even ! have z-parity (=)™
while states with odd ! have the opposite z-parity. For finite field strengths
we initially observe “/-mixing” and the degeneracy is lifted by a splitting
proportional to the square of the magnetic field strength. It is customary
to label the states originating from a given (n,m) manifold with an integer
k, starting with k = 0 for the energetically highest state and ending with
k = n — |m| — 1 for the energetically lowest state. States from successive n-
manifolds in a given m™ subspace begin to overlap as the field strength (or
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the principal quantum number n) increases. The interaction between differ-
ent states is small at first and they can still be labelled by the two numbers
n and k. With further increasing field strength or excitation energy, however,
the order within the spectrum is lost more and more (see Fig. 3.24), until
finally, as we approach the zero-field threshold, it becomes impossible to as-
sign two meaningful quantum numbers to individual quantum states of this
two-dimensional system. As we shall see in Sect. 5.3.5(b), this is the region
where the classical dynamics becomes chaotic.

The fact that the hydrogen atom is a two-body system has been ignored
above, except for the use of the reduced mass 4 in (3.197). This is, strictly
speaking, not enough, because the reduction of the two-body problem to a
one-body problem for the internal motion of the atom is non-trivial in the
presence of an external magnetic field. The Hamiltonian for the two-body
atom in a uniform magnetic field B =V x A is

[Bp - (e/c)A(rp)]2
2mp

[De + (e/)A(re)]” e?
+ e el (3.203)

ﬁ(rea Tp?ﬁev ﬁp) =

where m,,, 7, and P, denote the mass and the displacement and momentum
vectors for the proton, while me, T and P are for the electron. Neither the
total canonical momentum Py, + Pe nor the total kinetic momentum Py =
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Fig. 3..24. Part of the spectrum of the hydrogen atom in a homogeneous magnetic
field with field strengths up to 7 tesla. The figure shows the bound states in the
m™ = 07 subspace in an energy region corresponding roughly to principal quantum
numbers around n = 40. (From [FW89])

Pp—(e/c)A(rp) +Pe+(e/c)A(re) is conserved in the presence of the external
field, but the so-called pseudomomentum,

~ ~ € (54
R =pp— SA(rp) + SBxry + P + SA(re) — SBxre
C C [ C
-~ e
=Py — ZBX ("'e - "'p) , (3.204)

is. Conservation of the pseudomomentum means that the total Hamiltonian
can be separated into an internal part, depending only on the relative co-
ordinate » = T¢ — 7p and its canonically conjugate momentum p, and a
pseudomomentum part, which, however, depends on a combination of inter-
nal and centre-of-mass variables. This pseudoseparation of variables leads to
the following Hamiltonian describing the internal motion of the hydrogen
atom [DS94, RW94, SC97]:
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2 5 2
emp, —me [K + (e/c)BxT] 2
Al )J * 2(me + mp)

2 . 1 7.
Hint(rap)zﬂ[p+cm +m, ’
P e

e
T
(3.205)
where p = memp/(me + myp) is the usual reduced mass.
The Hamiltonian (3.205) contains a correction to the charge in the kinetic
energy term and an additional gauge-independent potential term
1 (5 e 2 K2 e - e?
a7 (B 5Bxr) =7 + 5K B+ gy
where the total mass m, + m, of the atom has been abbreviated as M. The
first term on the right-hand side of (3.206) is a constant. The last term is
quadratic in B and can easily be seen in the symmetric gauge (3.182) to
“cancel the above-mentioned charge correction in the diamagnetic (quadratic)
contribution arising from the kinetic energy. The linear term on the right-
hand side of (3.206) corresponds to the effect of an external electric field,

(Bxr)? , (3.206)

N 1 -
Bus = KxB . (3.207)

Thus the motion of the atom as a whole in a magnetic field B, more precisely
a non-vanishing component of the pseudomomentum (3.204) perpendicular to
B, effectively leads to an additional electric field (3.207) in the Hamiltonian
describing the internal motion of the atom. This effect is called the motional
Stark effect.

The fact that the (conserved) pseudomomentum depends on both the
centre of mass and the internal variables introduces a correlation between the
internal motion and the motion of the centre of mass of the atom. Vanishing
pseudomomentum does not mean that the centre of mass is at rest. In fact
it can be shown [SC97] that the classical centre of mass meanders diffusively
when the (classical) internal motion is chaotic, which is the case for energies
close to the zero-field threshold, see Sect. 5.3.5 (b).

For vanishing pseudomomentum, the internal Hamiltonian (3.205) in the
symmetric gauge differs from the Hamiltonian (3.183) for the one-electron
case N = 1 only in a correction of the normal Zeeman term by a factor
(mp — me)/(mp + me). The potential (3.199) is unaffected in this case.

The development of high resolution laser spectroscopy and advanced com-
puter technology have made detailed comparisons between measured and cal-
culated spectra of the hydrogen atom in a uniform magnetic field possible,
even in the highly irregular region close to the zero-field threshold [HW87].
Delande et al. [DB91] extended calculations to the continuum region at labo-
ratory field strengths, which was a remarkable achievement. The bottom part
of Fig. 3.25 shows their computed photoabsorption spectrum for transitions
from the 3s state to bound and continuum states around threshold in the
m™ = 0~ subspace at a field strength of 6.113 T (v = 2.6 x 107%). The top
part of the figure shows the corresponding experimental spectrum measured
by Iu et al. [[W91]. The agreement is hardly short of perfect. Interestingly
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Fig. 3.25. Photoabsorption spectra for transitions from the 3s state to bound and
continuum states around threshold in the m™ = 0~ subspace in a magnetic field of
6.113 T. The upper half of the figure shows experimental results for lithium, the
lower half shows the calculated spectrum for hydrogen. To facilitate the comparison
the spectra have been convoluted with a Gaussian of width 0.05 cm™!. (From
[IW91])

the experiments were performed with lithium, which is easier to handle than
atomic hydrogen. Obviously the two tightly bound 1s electrons in the lithium
atom have virtually no influence on the near threshold final states of the outer
electron, which are very extended spatially and contain no I = 0 components
because of their negative parity.

3.4.3 Atoms in an Oscillating Electric Field

The theory of the interaction between an atom and the electromagnetic field
as discussed in Sect. 2.4 describes the resonant absorption and emission of
photons between stationary eigenstates of the field-free atom. But an atom
is also influenced by a (monochromatic) electromagnetic field if its frequency
doesn’t happen to match the energy of an allowed transition. For small inten-
sities we obtain splitting and frequency-dependent shifts of energy levels; for
sufficiently high intensities as are easily realized by modern laser technology,
multiphoton processes (excitation, ionization) play an important role.

The most important contribution to the interaction of an atom with a
monochromatic electromagnetic field is the influence of the oscillating electric
field,

E(r,t) = Eg cos (k-7 —wt) . (3.208)

We assume that the wavelength of the field is so much larger than the dimen-
sions of the atom that the spatial inhomogeneity of the field can be neglected,
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and we neglect magnetic interactions. In addition to these assumptions, which
amount to the dipole approximation of Sect. 2.4.3, we take the light to be
linearly polarized in the z-direction:

0
E=FEgcoswt, Eyg=| 0 . (3.209)
E,
In the radiation gauge (2.150) such a field is given by the electromagnetic
potentials

A=-SEysinwt, =0 . (3.210)
w
Alternatively, in the field gauge we have
A=0, &=-Ej7rcoswt . (3.211)

The field gauge (3.211) has the advantage that the interaction between atom
and field only contributes as an additional oscillating potential energy in the
Hamiltonian. In this case the Hamiltonian (3.159) has the form

N .o N
ﬁ:Z%+V+eEZZzicoswt . (3.212)
i=1 i=1
The periodic time dependence of the Hamiltonian (3.212) suggests looking
for solutions of the time-dependent Schrodinger equation which are, to within
a phase, also periodic with the same period T' = 2w /w. If we insert the
resulting ansatz

P(t) =e” NP (1), Be(t+T)=2c(t) , (3.213)

into the time-dependent Schrédinger equation Hy = ihoy /0t, then we obtain
an equation for determining the periodic function @.(t):

(f[ - ihi) b, =P, . (3.214)
ot
Equation (3.214) has the form of an eigenvalue equation for the operator
A 7]
= H —ih— . 3.215
H=H-ih P ( )

Its eigenvalues are called quasi-energies and the associated solutions (3.213) |

are the quasi-energy states or Floguet states. They are complete in the sense
that any solution of the time-dependent Schrodinger equation can be written
as a superposition of Floquet states with time-independent coefficients. For
each eigenstate 9. of H with eigenvalue £ there is a whole family of eigenstates
&.e'*t with the eigenvalues € + kfiw, k = 0, £1, +2,... . They all belong
to the same Floquet state (3.213).

The dynamics described by the Hamiltonian (3.215) become formally sim-
ilar to the quantum mechanics of a time-independent Hamiltonian, if we con-
sider the space spanned by the basis states @, as functions of the coordinates
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and the time in the interval 0 — T". The scalar product of two states ¢; and
¢2 in this Hilbert space is defined as the time average of the ordinary scalar
product over a period T and is denoted by a double bracket:

1 T
(o) = 7 [ GrOla) e (3:216)

The “quasi-energy method” summarized in (3.213)-(3.216), and exten-
sions thereof, has been applied to numerous problems related to the dynam-
ics of the interaction of light with atoms. Comprehensive summaries can be
found in the monograph by Delone and Krainov [DK85] and in the article by
Manakov et al. [MO86].

If we want to apply perturbation theory in the spirit of Sect. 1.5.1, we
start with eigenstates 1, of the field-free Hamiltonian H,y with eigenvalues

- E,,, and we take the products

bk = Pn € (3.217)
as the unperturbed states. They are eigenstates of the Hamiltonian
~ - 0
= Hy — ih— 3.218
Ho o —ihm ( )
with the respective eigenvalues
E,n=FE,+kfw . (3.219)

If we treat the oscillating potential in (3.212) as a small perturbation in
the “Schrédinger equation”, then we can adapt the formalism of time-
independent perturbation theory as described in Sect. 1.5.1 to the present
situation. In the case of non-degenerate unperturbed eigenstates the energy
shifts are given in first order by the expectation values of the perturbation,
which trivially vanish, because the time average (3.216) over one period of
the cosine vanishes. In second order we obtain, in analogy to (1.204),

N 2

. ; t
AE'(I?) — (CEZ)2 Z |«¢n,0| Zz:] Z; COs W I¢Tn,k»l . (3'220)
En - Em k

Ep v #En ’

Time averaging over one period causes all matrix elements ((qbn,olZfV:l
z; coS wt|m k) to vanish — except those for kK = +1 and k = —1. In the
two non-vanishing cases we obtain a factor 1/2 times the ordinary matrix
element between 1, and v¥,,. Equation (3.220) thus becomes

AE® _ (eE.)? Z Kol 1 2iltom))?
n 4

Bmihogs, Drn= Bm—hw
N
N {¥nl 32024 2ilm) |2 (3.221)
B E,—E,+ hw .

The energy shifts in this ac Stark effect thus depend on the frequency w of the
oscillating (i.e. alternating current) field. In the limit w — 0 (3.221) reverts
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to the formula (3.166) for the ordinary quadratic Stark effect — except for a
factor 1/2 arising from the fact that an ac field of amplitude E, and intensity
E2 cos?wt corresponds, time averaged, to a dc field of intensity E2/2.

Similar to (3.169) we can describe the ac Stark shifts via a frequency-
dependent polarizability, which is defined in analogy to (3.168):

I |($n] o1 2il9hm) 2

ag(w)=e

Et hakEn E, +hw-E,
N
+ E [(¥nl 2icy zi|Ym) 2 (3.222)
B, B E, - hw—E, ) '

For w — 0, ag(w) becomes the ordinary static (or dc) polarizability aq.
As a function of w the frequency-dependent polarizability goes through a
singularity whenever fuw passes the energy of an allowed dipole transition. If
the function aq(w) is known from other sources, e.g. from a non-perturbative
solution of the Schrédinger equation, then its pole structure can be used to
extract the energies and other properties of the states ¢¥m,. An example of the
calculation and analysis of frequency-dependent polarizabilities can be found
in [MOS8S].

The derivation of the formula (3.221) was based on the choice (3.211) for
the gauge of the electromagnetic field. Different gauges lead to different for-
mulae for the energy shifts in the ac Stark effect. These formulae make sense
despite their gauge dependence, because the physically observable quantities
are not the absolute energy values but only energy differences, and they do
not depend on the choice of gauge. The gauge dependence of energy shifts in
the ac Stark effect is dicussed in more detail e.g. by Mittleman [Mit82].

Beyond the observations which can be described by perturbative means,
there are several experiments concerning the behaviour of matter in an ex-

ternal laser or microwave field which crucially require a reliable theory for

atoms (and ions) in an oscillating external field. Such a theory is necessary
in order to understand e.g. multiphoton processes occurring in strong fields
or the role played by “chaos” in the microwave ionization of Rydberg atoms.
These special topics will be discussed in more detail in Chap. 5, Sects. 5.1
and 5.3.

Problems

3.1 Consider an electron in a radially symmetric potential

[ —e*/r forr>ry
V(T)_{—Zez/r forr<rg , Z>1

Use the semiclassical formula (3.14) to discuss how the quantum defects
fin, (n large) depend on the angular momentum quantum number l.
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3.2 Use the sum rules (3.33) to show that electromagnetic dipole transitions
in which the principal quantum number n and the angular momentum
quantum number !/ change in the same sense (i.e. both become larger or
both become smaller) tend to be more probable than transitions in which
n and [ change in opposite sense.

Calculate the mean oscillator strengths for the 2p — 3s and the 2p — 3d
transition in hydrogen.

3.3 a) Two bound states ¢g2(r) and ¢os(r) in the closed channels 2 and 3

interact via a channel coupling potential V5 3(r). Determine the eigen-
values E; and E_ and the eigenstates,

_ (@200 _ bz¢02)

Ve (%%3) Y- (53%3
of the Hamiltonian in the space spanned by these two states, i.e. solve
the two-state problem defined by the lower two lines of (3.76) in the
absence of coupling to the open channel 1.

b) Use the Golden Rule (Sect. 2.4.1) to calculate the lifetimes and

widths of the states ¢, and 1_ in a) with respect to decay into
the open channel 1. Compare your results with (3.87).

3.4 For two non-interacting resonances, W3 = 0, the formula (3.91) for
the oscillator strength determining the photoabsorption cross sections
simplifies to:

dfmi _ 2 2[D+ (da/d1)(E — e3)Waa + (ds/d1)(E — &2)Ws,1)?
dEe ~ At D? + N2 '
with
N(E)=7|(E — e3)W3, + (E —e2)W31]
D(E) = (E — e2)(E — &3)
Discuss the location of zeros and maxima of dfg;/dE in the two special
cases

d d d d
le,l—Z ~ lWa,l—B‘ < lez—esl, ‘W2,1—2' ~ |W3,1—31 > |eg—esf .
d1 dl dl dl

Hint: The structure of the oscillator strength function becomes clearer if

written as
dfen _ 20 0 {1+
dE R '1+(N/D)?

3.5 A Rydberg series of bound states characterized by vanishing quantum
defect 1 = 0 is perturbed by an isolated pseudo-resonant perturbation of
width I' located at Eg = I — 0.04R. Use graphical methods to determine
the energies and effective quantum numbers of the bound states with
quantum numbers n = 3 to n = 10 for the following values of the width:

I'=001R, I'=0001R, I'—>0
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3.6

3.7

3.8

3.9

3. Atomic Spectra

a) Extract from Fig. 3.10 numerical values for the energies of the lowest
six 1P° states of the calcium atom relative to the ionization threshold.

b) Give an estimate for the two-channel MQDT parameters u;, pz,
(both modulo unity) and |R; 2| in the description of the (4snp) and
(3d np) P° series in calcium.

An isolated perturbation of constant width I' (see (3.93)) wanders
through a Rydberg series of bound states,

R
(n*)?
i.e. its energy ER is a variable parameter. Show that the minimal sep-
aration of two successive energy levels E,, and E,,;; relative to the un-
perturbed separation 2R/(n*)3 is given in the limit of small width I’
by

1
En+1 - En . F(n*)3 2
2R/(n*)® | n \ TR
The degeneracy of the four orbital wave functions with principal quan-
tum number n = 2 in the hydrogen atom is lifted in the presence of an
external homogeneous electric field of strength E,. Calculate the matrix

({¥n=2,1,m|€ E; z|n=2,r,m’)) of the perturbing operator and determine
its eigenstates and eigenvalues.

E,=1-

Verify that applying the commutator of the Hamiltonian Hy = p2 /(2p)
— €?/r with the operator b = az(a + r/2) to the ground state wave
function 1o (r) = exp (—r/a)/(ay/ma) of the hydrogen atom amounts to
multiplying this wave function by (A2/p) z (see also Problem 1.9):

. a K2
[Ho, blpo = — z 9o
n
Use the completeness relation (1.22) to calculate the static dipole polar-
izability
2
20y Wnliol
@ 3 Wmlboll
mz#0

for the hydrogen atom in its ground state.

3.10 A homogeneous magnetic field B = B,e, (e, is the unit vector in the z-

direction) can be described e.g. by a vector potential As in the symmetric
gauge (3.182),
1 1 7Y
A(r)=—z(rxB)==z]| = | B, ,
2 2 0

or by a vector potential Ay, in the Landau gauge,
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)
AL(T) = 0 Bz
0
a) Determine the scalar function f(r) which transforms one gauge into
the other according to A; = A, + Vf.
b) Show that if the wave function 11, solves the stationary Schrédinger
equation for a free electron in the Landau gauge,

1
o (PHe a) g =B
then the gauge-transformed wave function
ie

ur) = exp (=42 1)) wtr)

solves the corresponding equation in the symmetric gauge:
1 /. e 2

- (p+°4,) ¥ = By,

2u c
¢) Calculate the eigenstates and eigenvalues of the Hamiltonian for a

free electron in a uniform magnetic field B,

=2t (+ eA(r))2
T2 p c ’
in both the symmetric gauge and the Landau gauge. Discuss the
spectrum and its degeneracies.

3.11 In the presence of an electromagnetic field, the Dirac equation (2.28)

becomes
1
& (13 n —eA) wp = —(E +e® —moct)a ,
C (4

1
G- (B+ZA) Ya=—(E+ed+moct)pn
C c

where A is the vector potential and @ is the scalar potential.

Derive a Schrédinger equation for the large components ¢4 in the non- .
relativistic limit.

Hint: Approximate the expression following from the lower equation for
the small components g by replacing ¢/(E + e® + moc?) by 1/(2moc).
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4. Simple Reactions

Next to spectroscopic investigations of atoms, reactions provide one of the
most important sources of information on the structure of atoms and their
interactions. Reaction theory in general is a prominent and well developed
field of theoretical physics [Bur77, AJ77, New82, Bra83, Joa87, Sit91]. In this
chapter we shall restrict ourselves to the discussion of simple reactions which
are induced by the collision of an electron with an atom or ion. In the simplest
case, where we can assume the atom (or ion) to be a structureless object, this
amounts to a two-body problem which can be reduced to a one-body problem
for a particle with a reduced mass as described in Sect. 2.1.

4.1 Elastic Scattering

The (elastic) scattering of a particle by a potential is a time-dependent pro-
cess. Under typical laboratory conditions it can, however, be adequately de-
scribed using the time-independent Schrédinger equation (see e.g. [Mes70]).
The precise form of the boundary conditions, which the wave function must
fulfill in order to correctly describe incoming and scattered particles, depends
on whether the potential is short ranged or long ranged.

4.1.1 Elastic Scattering by a Short Ranged Potential

In order to describe the elastic scattering of a structureless particle of mass
4 by a short ranged potential V' (r),

TIEQO 2Vry=0 , (4.1)
we look for solutions of the time-independent Schrédinger equation,
[-ax V)| wir) = Bur) (42)
which have the following asymptotic form (k = /2uE/h):
oikr

P(r) = e** + £(6, ¢) r — 00 . (4.3)

)
r
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Fig. 4.1. Schematic illustration of the incoming plane wave and the outgoing spher-
ical wave as described by a stationary solution of the Schrodinger equation obeying
the boundary conditions (4.3)

The first term on the right-hand side of (4.3) describes an incoming plane
wave with particle density o = |#|? = 1, moving with a velocity v = hk/u in
the direction of the positive z-axis; the current density, which is defined by

- h * *
j= m(@ﬁ Vi —pVyT) (44)

is just Ak/u times the unit vector in the z-direction for such a plane wave.
The second term on the right-hand side of (4.3) describes an outgoing spher-
ical wave (see Fig. 4.1); it is modulated by a scattering amplitude f which
depends on the polar angle 8 and the azimuthal angle ¢ (see (1.57)). This out-
going spherical wave corresponds to an outgoing current density j,,, which,
according to (4.4), is given in leading order in 1/7 by

hk 1
o = i@ 0P 540 (%) - (4.

Asymptotically the particle flux scattered into the solid angle df2, i.e. through
the surface 72d§2 = 2sin 6 d6 d¢, is simply (hk/u)|f(0,¢)|? df2; the ratio of
this flux to the incoming current density defines the differential scattering

cross section,
do

5= fe.0r . (46)

Integrating over all directions (6, ¢) yields the integrated scattering cross sec-
tion, which is also called the total elastic scattering cross section,

do = |£(6,¢)I*de2,

do . Zm L 2
o= d_QdQ_/O d¢/0 sin6dé|f(6,4)® . (4.7)
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Each solution of the stationary Schrédinger equation (4.2) fulfills the con-

tinuity equation in the form
. 0 .

V-]=—a—f=0, or f]-ds:O . (4.8)
This means that the net particle flux through a closed surface vanishes. For
an asymptotically large sphere (r — co) with surface element ds = r2d2r/r,
the integrated contribution of the incoming plane wave in (4.3) to this net
flux vanishes on symmetry grounds, while the contribution I, from the
outgoing spherical wave is positive unless the scattering amplitude vanishes
identically,

o = § douds = == [I5(@P a2 =20 . (4.9)

Since the total particle flux through the surface vanishes, the current density
(4.4) must contain terms which cancel the positive contribution (4.9). The
terms describing the interference between the incoming plane wave and the
outgoing spherical wave do just this. An explicit calculation (Problem 4.1)
shows that such interference is only important in the forward direction §=0,
and this leads to a relation between the scattering amplitude in the forward
direction and the integrated scattering cross section,

S1F0=0) ~ f(6=0)] = 3[f(0=0)] = = . (410)

The relation (4.10) expresses particle number conservation and is called the
optical theorem.

It is often useful to treat scattering problems using an equivalent integral
equation in place of the Schrédinger equation (4.2). In order to derive the
integral equation we rewrite the Schrodinger equation to make it look like an
inhomogeneous differential equation,

h2
[E + ZL_A] P(r) =Viryy(r) . (4.11)
This is solved using the free-particle Green’s function
N u eiklr—r’l
g(’l’, T ) - 27("'1-2 |7‘ _ 7"| El (412)
which fulfills the following equation:
h2
(E + §;A> G(r,Y=46(r-7") . (4.13)

The Green’s function (4.12) is an extension of the Green’s function defined
in Sect. 1.4.2 to three-dimensional vector arguments. It is the coordinate
representation of the Green’s operator G which has the properties of an inverse
operator to E + (h?/2u)A = E — p?/(2p):
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1

g_i—»oE:tw— p2/(2n) (4.14)
An infinitesimally small imaginary contribution =+ie is added to the real en-
ergy E so that we can invert the operator E — p2/(2u). The plus or minus
signs lead to a different asymptotic behaviour of the resulting wave func-
tion. A positive infinitesimal imaginary part of the energy corresponds to the
Green’s function (4.12) above and leads to a solution (4.15) below contain-
ing an outgoing spherical wave as in (4.3); a negative imaginary part of the
energy corresponds to the complex conjugate Green’s function and leads to
incoming spherical waves in the asymptotic region.

It is easy to verify that the wave function

P(r) = ¥ + /Q(r,r') V(rYy(r')dr’ (4.15)

solves the Schrédinger equation (4.11). Since the right-hand side of (4.11)
isn’t a genuinely inhomogeneous term but depends on the solution v, equation
(4.15) isn’t an explicit solution of the Schrédinger equation but a transforma-
tion into an equivalent integral equation, which is known as the Lippmann-
Schwinger equation. Its solutions automatically fulfill the boundary condi-
tions (4.3). For 7 > r’ we can approximate the free-particle Green’s function
(4.12) by (see Problem 4.2)

ikr ’
’ M€ —ik,r’ r
= - 4 o{— 4.16

G(r,m) 2th? 7 [e + (r)] ( )
and obtain the form (4.3) with an implicit expression for the scattering am-
plitude,

50.0) =~k [T VE e ar (417)

In (4.16) and (4.17) k, is the wave vector with length & which points in
direction of the radius vector r {without ’).

We can interpret the integral in (4.17) as the matrix element of an abstract
transition operator T' between an initial state 1;(r') = exp (ik2’) and a final
state ¥¢(r') = exp (ik,.-7') ,

. 2
T = (el Tln) % elVIe) =~ 1(0.6) (418)

Using the T-matriz defined in this way, we can interpret the scattering pro-
cess in the spirit of time-dependent perturbation theory (Sect. 2.4.1) as a
transition from the incoming plane wave 1;, travelling in the direction of the
z-axis, to an outgoing plane wave 1, travelling outwards in the direction of
the vector r = (7,6, ¢) (Problem 4.3).

If the influence of the potential is small, it may be justified to replace
the exact wave function (r’) in the integrand on the right-hand side of
(4.15) or (4.17) by the “unperturbed” incoming plane wave ¢;(r’) =exp (ikz").
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This assumption defines the Born approzimation. In the Born approximation
equations (4.15) and (4.17) become explicit expressions for the wave function
and the scattering amplitude respectively. E.g. the scattering amplitude is,
in the Born approximation,

"= /e_iq'#v(r') dr' = —Eo Vi) (4.19)

Here q = k(e, — e,). The vector e, is the unit vector in the direction of
the positive z-axis and e, is the unit vector in the direction of the radius
vector 7. The formula (4.19) shows that the scattering amplitude in the Born
approximation is derived by a Fourier transformation from the potential. The
argument q is the wave vector of the momentum transfer occurring for elastic
scattering in the direction of the radius vector r:

hq = (hk)e, — (hk)e, . (4.20)

Comparing (4.18) and (4.19) shows that the Born approximation amounts to
replacing the transition operator T by the potential V.

If the potential is radially symmetric, V =V{(r), then the time-independ-
ent Schrédinger equation can be reduced to radial Schrédinger equations
(cf. Sect. 1.2.2). The boundary conditions (4.3) aren’t radially symmetric,
but the symmetry with respect to rotations around the z-axis is maintained.
Hence we can assume that the azimuthal quantum number my; is a good
quantum number and agrees with the value m; = 0 of the incoming plane
wave. Scattering amplitude and cross section do not depend on the azimuthal
angle ¢. The solution ¥(r) of the stationary Schrodinger equation can be
expanded in partial waves as follows,

) = Z %’2 Vi0(8) = Z @ 22—:1 P(cosb) (4.21)
1=0 =0

and the radial wave functions ¢;(r) are regular solutions of the respective
radial Schrédinger equation (1.75). The P in (4.21) are the Legendre polyno-
mials (see Appendix A.1). Using the identity

2= (2 +1)i'5i(kr)P(cosb) (4.22)
=0

and the following ansatz for the scattering amplitude,

Zfl Vi yame 2l I 10( ) = ZflP,(cose) R (4.23)

the partial waves expansion of the wave function (4.3) in the asymptotic
region is
oo el . elkr
P(r) = Z [(2l + 1)i'5i(kr) + sz] Py(cosb) . (4.24)

=0
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Here j;(kr) are the spherical Bessel functions introduced in Sect. 1.3.2 (see
Appendix A.3). Asymptotically we have (see (A.33))

Gi(kr) = sin (kr — In/2)/(kr) + o(1/r?y,

so the asymptotic form of the radial wave function ¢;(r) emerges as

oo [ A [(2l41 o
) "= 2111 [( k s in (kr = 1) + fiet® 1/2)]

_ 2;1:1 [(21;:1 +1ﬁ> sin (kr —lg) + freos (kr fzg)] . (4.25)

On the other hand, the solution of the radial Schrédinger equation is
asymptotically proportional to sin (kr—lm/2+6;) (cf. (1.116) in Sect. 1.3.2),
so that (4.25) establishes a relation between the partial wave amplitude f and
the asymptotic phase shift or scattering phase shift 6;. Except for a common
complex proportionality constant ¢;, the coefficient of sin (kr — im/ 2) is equal
to cos 8, and the coefficient of cos (kr — I7/2) is equal to sin d;,

k

If we use (4.26) to build expressions for exp (+id;) = cosd; + isind; and for
the quotient exp (2id;) = exp (+id;)/ exp (—id;), then we obtain the following
expression for the partial wave amplitudes:

cos i) = ¢ (2l——+—1 +ifl) , sind=afi . (4.26)

2041 , o 2041
fi = —21+T (62'6‘ -1) = T+e‘6‘ sind; . (4.27)
The coefficient ¢; appearing in (4.26) is seen to be
sin 51 k —i&;
= =— ¢! 4.28
AT Tasit (4.28)

so the radial wave function asymptotically is

oo [ AT g s 2A+1
di(r) = mle‘;l—k—sm(kr—lgﬁ—él) , (4.29)

and the partial wave expansion of the full wave function (4.21) has the asymp-
totic form

= Z 2+l it €' sin (kr — lg— + 61) Pi(cost) . (4.30)

Equation (4.23) with (4.27) provides us with an explicit expression for
the differential cross section (4.6) in terms of the scattering phase shifts d;,

do
& s

= % S 6i0r =30 (20 4 1) sin &y (21’ + 1) sin b Pr(cos @) Pr(cosf) . (4.31)
L
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In the corresponding formula for the integrated cross section (4.7) we can
exploit the orthogonality of the Legendre polynomials (or of the spherical
harmonics (1.59)) and obtain

oo o0
s ; 4 .
o=z g Ql+1)]eF0 — 12 = = E (21 +1)sin®6; . (4.32)
=0 —

If we make the radial Schrédinger equation (1.75) look like an inhomoge-
neous differential equation,

2 2 2
(B+ 5 — et ) ) =VOORO) (4:33)

then we can use the radial free-particle Green’s function (cf. (1.178), Prob-
lem 1.4)

Gi(r,r') = -

2 ; 7 ' < !
1k {r]l(kr) r'ny(kr’) forr <r (4.30)

w2 (k') r(kr) for <t

to formulate a radial Lippmann-Schwinger equation in analogy to (4.15),

di(r) =/ —— th kr5i( kr)+/ Gi(r, 7V (" (r')dr' . (4.35)

Again n; is the spherical Neumann function, which is asymptotically equal
to cos (kr — lw/2)/(kr) (see Sect. 1.3.2, Appendix A.3). The first term on
the right-hand side of (4.35) is the (energy normalized) regular solution of
the “homogeneous” equation (V = 0). At large distances r we can insert the
lower line of (4.34) into the integral in (4.35) because of the short range of
the potential,

tilr) =1/ - 2u k{kr]l(kr) —
y /O Do\/%%kr’jl(kr’)V(r’)dn(r’) ar'| (4.36)

and obtain the following (implicit) equation for the phase shifts:

2 o0
tand = —/ 247 / ke ju(kr YV (FY i () dr . (4.37)
0

If the influence of the potential on the radial wave functions is small, we
can replace the exact radial wave function ¢;(r’) in the integral in (4.37) by
the regular solution of the “homogeneous equation”. This Born approzima-
tion for the phase shift leads to the following explicit expression for tan d;,

h2
Even though (4.38) is only an approximation, which should work best at
high energies and wave numbers k, it does allow us to read off some properties

ouk [
tand &~ — o2 [ (ke )2V () R A (4.38)
0



206 4. Simple Reactions

of the phase shift which are more generally valid, e.g. that tan d; vanishes at
k = 0 and k — oo. Equation (4.38) also shows that the phase shift just
above threshold initially falls in a repulsive potential, V' (r) > 0, and initially
rises in an attractive potential, V(r) < 0. (The latter statement need not
hold if the potential is deep enough to support one or more bound states.)
For potentials which vanish exponentially in the asymptotic region, we can
extract the threshold behaviour of the phase shifts from the behaviour of the
spherical Bessel functions near ¢ = kr = 0. Since j;(0) is proportional to o

for small values of ¢ (A.32), the phase shift §; (modulo 7) is proportional to
f2UH,

oi(k) = nm — agk®+ . (4.39)

At threshold the contribution of the partial wave [ =0 becomes dominant,
and the integrated scattering cross section (4.32) is simply
. 2

1113%)0 =4dray . (4.40)
The proportionality constant o is called the scattering length. According
to (1.130) the scattering length of a radially symmetric repulsive hard-core
potential is just the radius of the hard core (see also Problem 4.4).

The low energy elastic scattering of an electron by a neutral atom, e.g.
a noble gas atom, can approximately be described as scattering by a short
ranged potential. According to the considerations in Sect. 3.2.1 there is no
long ranged Coulomb potential in this case (N = Z + 1). All higher (I >
0) direct diagonal contributions of the form (3.57) also vanish, because the
internal wave function iy, has vanishing total angular momentum, and hence
all expectation values of vector operators and higher tensors vanish according
to the Wigner-Eckart theorem. At large electron-atom separations the leading
contribution to the potential comes from the fact that the electric field of the
electron polarizes the atom and induces a dipole moment,

Vir) T2 e 2 (4.41)

ord
here oy is the dipole polarizability of the atom (see Problem 4.5). For such
a potential, which falls off asymptotically as a polynomial in 1/r, we cannot
apply the formula (4.39) for the threshold behaviour of the phase shift. For a
1/r% potential as in (4.41) the threshold behaviour is given in the framework
of effective range theory [OR62, BM89] by

4oy

3
TQdg

@+ 3)(2 + )2l — 1)

For a discussion of the scattering lengths o in this case see [Szm90] and
references therein.

At smaller separations it is not so obvious that the electron-atom inter-
action can be adequately described by a simple potential. In addition to the

tan 5o *=° —aok (1 + 24 k21 k) - Eg‘ikZ +O(K%

tan 6, *=° K+0(K), 1>0 . (4.42)
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so-called direct static potential involving the density of the electrons in the
occupied states of the target atom (cf. (2.91) or, more generally (3.53) for
i =7), the consideration of exchange effects in the elastic channel alone al-
ready leads to complicated non-local contributions. One consequence of these
exchange contributions is the orthogonality of the scattering wave functions
to the occupied single-particle states in the target atom as required by the
Pauli principle.

Figure 4.2 shows phase shifts for the example of elastic electron scattering
by neon at energies up to about E = A*k?/(2u) = 20 eV in the partial waves
{ =0, 1 and 2 as functions of the wave number k. The crosses are the experi-
mental phase shifts deduced from measured elastic differential cross sections
(such as the one illustrated in Fig. 4.3) by Williams [Wil79]. The solid lines
are the results of solving the radial Schrédinger equation with a simple local
potential consisting of the direct static terms plus a polarization potential
(4.41) which merges into a constant for separations smaller than a certain
value rg. At negative energies this potential supports bound states quite sim-
ilar to the single-particle states occupied in the target atom. The automatic
orthogonality of the scattering wave functions to these bound states already
accounts for a large part of the exchange effects expressing the requirements
of the Pauli principle. The phase shifts §; are only defined to within an inte-
gral multiple of 7. If we draw the function 6;(E) (or &;(k)) continuously from
k=0 to k — 0o, then for a local potential the difference 6;{0) —6;(co) is equal
to the number of bound states (in the partial wave [) multiplied by = ac-
cording to Levinson’s theorem (1.190). For a more sophisticated description

~ ©
2 o
5
(2]
O
a
= 9 s—wave
2 -
£
2
z ° Fig. 4.2. Phase shifts for elastic scat-
o -1 p—wave tering of electrons by neon. The crosses
3 show experimental data from [Wil79]. The
s solid lines were obtained by solving the ra-
5 dial Schrédinger equation with a simple lo-
2 cal potential consisting of the electrostatic
: terms plus a polarization potential (4.41)
which merges into a constant for separa-
tions smaller than a phenomenological pa-
d—wave rameter ro. The polarizability was taken
e cooee] to be the experimental value ag = 2.66a3
© [TP71] and the value of ro was 0.974ao for
0.0 -5 1.0 1=0, 1.033ap for [=1 and 1.11lap for [ =2.

k (a.u.) (From [IF92])
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_d_g T T T T T Fig. 4.3. Differential scattermg Cross sec-
df = tion (in atomic units, a3) for the elastic
20 scattering of electrons by neon at E=20
’ eV as measured by Register and Trajmar
[RT84]. The solid line shows the cross sec-
tion calculated via (4.31) with the phase
shifts of Fig. 4.2 for | < 2 and the phase
shifts given by (4.42) for { > 2. (From
[IF92])
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involving non-local potentials, a generalization of Levinson’s theorem [Swab5]
tells us that occupied single-particle states in the target atom, which cannot
be occupied by the projectile electron due to the Pauli principle, have to be
included in the bound state count when applying Levinson’s theorem. The
electron-neon phase shifts in Fig. 4.2 are drawn to start at threshold at 27
for { =0, at = for | = 1 and at zero for | = 2, corresponding to the occupied
target states (1s, 2s, 2p) [Bur77]. If the simple potential picture were valid
up to arbitrarily high energies, all phase shifts would tend to zero in the high
energy limit in this representation. (There are no genuine bound states in the
electron-neon system.)-

Phase shifts for low energy elastic electron scattering by noble gas atoms
can be derived with more sophisticated theories [OL83], but Figs. 4.2 and
4.3 show that simple model potentials with the correct asymptotic behaviour
can work quite well.

4.1.2 Semiclassical Description of Elastic Scattering

The problem of elastic scattering by a radially symmetric potential is a con-
venient example for demonstrating the use of semiclassical approximations
based on classical mechanics supplemented by interference effects, see e.g.
[BM72). In the semiclassical approximation of the scattering amplitude, the
partial waves expansion (4.23) is transformed into a sum over classical trajec-
tories or rays. A basic tool for this transformation is the Poisson summation
formula,

igmz i /j g™ Ml (4.43)
=0 M=—oc0 ¥V~ 2

which follows from the identity

oo

Z 2miML — Z sl—n) , (4.44)

M=—-0cc n=-—oo
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and relates the sum over discrete angular momentum quantum numbers to
a sum of integrals over a continuous angular momentum. The length of the
angular momentum vector is \/I(l + 1)A, and it is well approximated by

L=h (l + %) , (4.45)

when [ is large. For large | the Legendre polynomial P;(cos §) is well approx-
imated by

2h Lo
Pi(cosf) = Temg (—h- - %) , (4.46)

except for a small range of angles § within #/L of the forward direction # = 0
or the backward direction § = w. With this approximation the scattering
amplitude (4.23) with the partial wave amplitudes f; given by (4.27) is

HOE Z M (e*% —1) Py(cos?)

2ik
1=0
_ LdL . 2h L8
~ inM o(/M2rML ( 2i6 | / wor
M——oo / h2k (e ) wLsiné COS( h 4)

— —inM [ —im/4 7+ +im/4 r—
TR aaT ———ﬂhuEsinBMzwe (e Iy +e IM) . (4.47)

The integrals I }T/[ and I, come from decomposition of the cosine of the second
last line of (4.47) into two exponentials; with the abbreviation

§(L) = ho; (4.48)

where L is related to ! via (4.45), we have

Iﬁ:/ VLdL

« {exp|: (25(z ):tL9+27rML)] — exp [% (iL0+27rML)]} (4.49)

Equation (4.47) with (4.49) re-expresses the scattering amplitude (4.23) in
terms of the angular momentum (4.45) and the phase function (4.48), which
both have the dimensions of an action. If we regard (4.45) as a definition of
the variable L rather than as an approximation, then the only approxima-
tion at this stage is the replacement of the Legendre polynomials according
to (4.46). The phase of the first exponentials in (4.49) contains the contribu-
tion 26(L), which expresses in terms of an action the phase shift in the radial
wave function during the scattering process. The contribution +L8 + 27 ML
constitutes the action of a projectile with angular momentum L which prop-
agates through an angle £, 0 < 6 < m, in addition to M complete turns
through 27 around the origin. The last line of (4.47) contains terms connect-
ing all possible angular momenta L with all possible angles +6 + 2w M. This
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expression is condensed to a sum over classical trajectories in the spirit of
the semiclassical approximation by exploiting the assumption that the ac-
tions involved are very large compared to A. The contributions of almost all
angular momenta to the integrals over L are assumed to vanish, because of
cancellations due to the very rapid oscillations of the exponential factors.
Non-vanishing contributions are assumed to come only from the immediate
vicinity of those angular momenta for which the phase of the exponential is
stationary as a function of L; this defines the stationary phase approzimation.

The phases of the second exponentials in (4.49) depend linearly on L and
have no stationary points. Points of stationary phase of the first exponentials
are given by

ds

oM £60=—-2" . (4.50)

dL

An explicit expression for the phase function § can be obtained from the
WKB approximation to the radial wave function (cf. (1.244)),

&VEB(r) \/I%(T_) cos (’—li /Tpl(r')dr’ - g) , (4.51)

defined via the radial classical momentum

o) = \f2uiz - Vo)) - L

The phase ¢ on the right-hand side of (4.51) is the phase loss of the WKB
wave due to reflection at the classical turning point ro, which corresponds
to the radius of closest approach of the projectile. Equating the asymptotic
phase of the WKB wave function (4.51) and the asymptotic phase of the
quantum mechanical radial wave function (4.29) yields an explicit relation

between the quantum mechanical scattering phase shift §; and the reflection
phase ¢ in the WKB wave function (cf. Sect. 1.5.3),

: / / ¢
— r —kr|—<- . 4.53
6 =1l=+ =+ lim (1 /Upl( )dT k ) ( )

= (4.52)

If, in the spirit of the semiclassical approximation, we replace [(I + 1)h?
by L2 (cf. (4.45)) and ¢ by 7/2, then the phase function (4.48) becomes

~ Tr oo
5) =12+ [ Ipur) - pecd dr = rops (454)
7o

where

pr(r) = V2ulE - V()] — L2/r?, po = 2LE ; (4.55)
the derivative of the phase function is

d§ = o Ldr 1

—_— = = - ==-O(L) . 4.56

dL 2 /TU TZ\/Q;L[E— V() — L2/r2 2 (L) ( )
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Here we have introduced the classical deflection function ©(L), which gives
the total angle © through which a classical projectile of mass u is scattered by
the radially symmetric potential V'(r), as function of the (classical) angular
momentum L; it is often expressed in terms of the impact parameter b =
L/\2uE, see e.g. [LL71], paragraph 18, equations (18.1), (18.2). Thus the
condition of stationary phase (4.50) is

e(L)=F6-2Mn ; (4.57)

it selects, for each scattering angle 8, those values of angular momentum L for
which the total deflection angle © is equal to plus or minus 6 modulo 27. In
a typical quantum mechanical scattering experiment, it is only the scattering
angle 4,0 < 8 < 7 between the incoming and outgoing beam of particles
that can be detected. Classically we can, in addition, distinguish whether the
projectile was deflected in a clockwise or anticlockwise sense and how often, if
at all, it encircled the target completely. The integer M in the relation (4.57)
between @ and 6 counts how many times the classical trajectory encircles the
origin in the clockwise sense. The relation between 8 and © is illustrated in
Fig. 4.4.

M=1

Eig. 4.4. Schematic illustration of classical trajectories for a few angular momenta
(impact parameters) leading to different deflection angles © corresponding to the
same scattering angle ¢

The contribution of the vicinity of a given point Lo of stationary phase
to the integrals If,, in (4.49) is estimated by expanding the phase of the
exponential around its stationary point,

2

25(L) + LO + 2n M L =~ 26(Lo) + Lo6 + 2rM Lo + :—L%(L — Lo)? . (4.58)
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Extending the integral over L in the vicinity of Ly to an integral from —oo
to oo and ignoring the L-dependence of the factor V'L reduces the integral
to a factor depending on Ly, times a simple Gaussian integral

* i d28 i do
—a2(L — Lo)2 L=—\/j 2__ 1990 _ 1t

/oo exp[=a®(L—LoJldL ===, @" =g = 55 dL
Inserting this result into the integrals (4.49) in the last line of (4.47) yields

the following expression for the semiclassical approximation fi(6) to the
scattering amplitude:

(4.59)

. e/, exp((i/h)[2S(Li) - LiO(Li)])
Fol0) = V2uFE sinf Z

. J1de/drl,, (4.60)
For a given scattering angle 6, the sum is to be taken over all angular momenta
L; for which the total deflection angle © corresponds to the (observable)
scattering angle 6 according to (4.57).

The expression (4.60) illustrates several features which are characteristic
of semiclassical approximations to quantum mechanical amplitudes describ-
ing physical processes:

(i) The amplitude is expressed as a sum over terms each corresponding to
a classical trajectory for realizing the process. Here this is a sum over
(classical) angular momenta (impact parameters) leading to the given
scattering angle.

(i) Each term contains a phase essentially given by the classical action along
the trajectory in units of A. Here this phase consists of a radial and an
angular contribution and is (26 — L;0)/h.

(iii) Each term also contains a topological phase, which is usually a multiple
of /4 and is related to the topology of the classical trajectory. Here this
phase is « = —Mm F 7/4 + m/4, where M is the number of times the
trajectory encircles the origin completely. The “F” sign comes from the
coefficients e¥17/4 in front of I, and I;; in the last line of (4.47) and
corresponds to the sign in front of 8 on the right-hand side of (4.57);
the “4” sign stands for the sign of the gradient d©/dL of the deflection
function at the point of stationary phase.

(iv) Each term is weighted by an amplitude depending on the density of clas-
sical trajectories in the vicinity of the trajectory concerned. Here this
factor is /L; |d@/dL|41/2 and diverges at stationary points of the deflec-
tion function corresponding to an accumulation of trajectories deflected
by the same angle, an effect known as rainbow scattering.

If there is only one classical angular momentum contributing to the scat-
tering angle @ according to (4.57), then all the phases in (4.60) drop out of
the expression for the differential cross section, giving
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-1
- ; 4.61
sin @ ( )

do 2 L [de|™' b |do

(35) ~imor - s 12| = |5

e uEsing |dL db

this is exactly the same as the classical expression, see [LL71], paragraph 18,
equation (18.8).

If more than one classical trajectory contributes to the semiclassical ap-
proximation (4.60) of the scattering amplitude, then the corresponding ap-
proximation to the differential cross section will contain the effects of interfer-
ence of the various contributions. The semiclassical cross section goes beyond
the pure classical description in that it contains these quantum mechanical
interference effects.

The semiclassical approximation can be useful in providing an intu-
itive picture of a given quantum mechanical process. An application to
electron-atom scattering has recently been given by Burgdorfer et al. [BR95].
They studied the elastic scattering of electrons by krypton atoms using a
parametrized electron-atom potential derived from Hartree-Fock calculations.
Fig. 4.5 shows the quantum mechanical and semiclassical (4.54) scattering
phase shifts for this potential, together with the classical deflection angle
as functions of the (classical) angular momentum L for an impact energy
of 100 eV. The differential scattering cross section at 100 eV is shown in
Fig. 4.6. The solid line is the quantum mechanical result (4.31), which agrees
quite well with the experimental data. The three distinct minima indicate a
dominance of the [ = 3 partial wave in determining the shape of the cross
section. The dashed curve shows the differential cross section obtained by
calculating the scattering amplitude according to (4.47) with (4.49), and it
reproduces the result of the direct partial wave summation very satisfactorily.
This shows that the approximation of the Legendre polynomials according

Fig. 4.5. Description of electron-
krypton scattering at £ = 100 eV
with a parametrized electron-atom
potential. The upper panel shows
quantum mechanical phase shifts
(open circles) together with the
semiclassical approximation 6(L)/k
(cf. (4.48), (4.54)) (solid line). The
lower panel shows the classical de-
flection function ©(L) in units of
. L . . L L . 7. The abscissa is labelled by the
0 2 4 6 8 angular momentum L defined by
L (au) (4.45). (From [BR95))
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Fig. 4.6. Experimental differential cross section (filled circles and triangles) for
electron scattering by krypton at 100 eV [WC75, JH76). The solid line is the calcu-
lated quantum mechanical result (4.31), the dashed curve is the result obtained by
calculating the scattering amplitude according to (4.47) with (4.49), and the dot-
ted curve is the result of the semiclassical approximation based on the scattering
amplitude (4.60). (From [BR95])

to (4.46) doesn’t cause serious error, even though low angular momentum
quantum numbers provide the dominant contributions to the cross section.
Finally, the dotted line in Fig. 4.6 shows the result of the semiclassical ap-
proximation based on the scattering amplitude (4.60). Although there are
noticeable deviations from the full quantum mechanical result, the semiclas-
sical approximation does reproduce the the oscillatory structure of the cross
section very well qualitatively. In the semiclassical description this oscillatory
structure is due to the interference of amplitudes from three classical trajec-
tories, as can be deduced from the deflection function in Fig. 4.5 with the
help of (4.57). There is always one trajectory with angular momentum larger
than about 34 which is deflected by an angle © between zero and —7, so
that @ = —6, (M = 0) corresponds to the scattering angle 8 in the interval
[0, 7]. There are two further trajectories, one with angular momentum close
to 3A and one with smaller angular momentum, for which the deflection angle
lies between —m and —2, so that & = 8 — 27, (M = 1) corresponds to the
same scattering angle . The very good qualitative agreement between the
quantum mechanical and the semiclassical cross sections shows that the two
interpretations, one based on a purely quantum mechanical picture and at-
tributing the oscillatory structure to the dominance of the | = 3 partial wave,
and the other, semiclassical interpretation attributing it to the interference
of a small number of classical trajectories, are not mutually exclusive.
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4.1.3 Elastic Scattering by a Pure Coulomb Potential

In order to describe scattering by a pure Coulomb potential,
Ze?

Vo(r) = —— (4.62)
we have to modify the description of Sect. 4.1.1 substantially because of
the long ranged nature of the potential. There is an analytic solution of the
stationary Schrédinger equation, which is regular at the origin and fulfills
asymptotic boundary conditions appropriate to the scattering problem,

Yo(r) = e ™2 (1 + in) &% F(—in, 1;ik(r — 2)) . (4.63)
Here 7 is the Coulomb parameter as in (1.118),
Zue? 1
T (4.64)

I' is the complex gamma function (A.10) and F is the confluent hypergeo-
metric series (A.42). For large values of k(r — z) the wave function ¥c(r) has
the form

2
wc(r) _ ei[kz+n]n k(r—=z)] [1 + __77— +.- :|

ik(r — 2)
ei(kr~nln2kr) (1 + in)2
+ fc(8) - {1 - = 2) +] (4.65)
with
-n —i{n In[sin® —200 :
fo= s O o = arg (D) (460

To the left of the scattering centre, z = rcos# < 0, the first term on
the right-hand side of (4.65) asymptotically describes an incoming wave
exp (ikegz), but its effective wave number k.g = k + n[lnk(r — 2)]/z con-
verges only very slowly to its asymptotic value k. For a given angle § # 0,
the contribution j;, of this term to the current density according to (4.4) is,
in leading order in 1/r,

; hk 1
Jn=—e€e,+0|[ = . (4.67)
n T

The second term on the right-hand side of (4.65) describes an outgoing spher-
ical wave with an effective wave number k —n(In 2kr) /7, which also converges
very slowly to its asymptotic value k as 7 — co. The angular modulation is
asymptotically described by the function fc of (4.66), which is called the
Coulomb scattering amplitude or Rutherford scattering amplitude. The cor-
rc;sponding current density (again for given 6 # 0) is, in leading order in
1/r,

. hk r 1
Joutr = 7'1"(:(9)|2T—3 +0 (T—3> : (4.68)
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The differential cross section is again defined as the asymptotic ratio of out-
going particle flux to the incoming current density and is, in analogy to (4.6),

doc _peyp = — T = (4.69)
e~ V° 4k?sin® (0/2) a%qt
Here q is the length of the vector g which stands for the vector difference
of the outgoing and ingoing wave vectors as in (4.20), ¢ = 2ksin (6/2) (see
Fig. 4.7(c)).

The formula (4.69) is the famous Rutherford formula for elastic scattering
by a pure Coulomb potential. The differential cross section doesn’t depend
on the sign of the potential. Furthermore, it does not depend on energy
and scattering angle independently, but only on the absolute value of the
momentum transfer Ag. The Rutherford cross section (4.69) diverges strongly
in the forward direction (§ — 0) so that the integrated cross section becomes
infinite. This is of course due to the long range of the Coulomb potential,
which even deflects particles passing the scattering centre at large distances.
Figure 4.7(a) shows the hyperbolical classical orbits of a particle scattered by
an attractive Coulomb potential, and Fig. 4.7(b) shows the Rutherford cross
section (4.69).

10

o1
C

Fig. 4.7. (a) Hyperbolical classical orbits of
a particle scattered by an attractive Coulomb
potential for k = 1/az and n = —1. The coor-
dinates z and z are in units of the Bohr radius
az. (b) The Rutherford cross section (4.69).
Part (c) illustrates the identity ¢ = 2k sin (6/2)
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The Rutherford cross section (4.69) is also obtained if the scattering am-
plitude fc(6) is replaced by its Born approximation according to (4.19). The
classical formula (4.61) also reproduces the Rutherford cross section (4.69)
[LL71]. For Coulomb scattering in three dimensions we are confronted with
the remarkable coincidence that quantum mechanics, classical mechanics and
the Born approximation all give the same differential scattering cross section.
Note, however, that the scattering amplitudes are real both in the classical de-
scription and in the Born approximation, and differ from the exact quantum
mechanical expression (4.66), which has a non-trivial phase. It is also interest-
ing to note that the equality of Coulomb cross sections obtained in quantum
mechanics, classical mechanics and the Born approximation is a peculiarity
of three-dimensional coordinate space. It no longer holds for scattering by a
potential proportional to 1/r in e.g. two-dimensional coordinate space. The
exact quantum mechanical result in this case is just the square root of the
Rutherford cross section (4.69) multiplied by tanh (7|n|); it becomes equal to
the classical cross section in the low-energy limit || — oo and approaches the
result of the Born approximation in the high-energy limit || — 0 [Bar83]. It
should be mentioned in this context that the potential between two charges
is not inversely proportional to, but depends logarithmically on their separa-
tion in two-dimensional space. The result for two-dimensional scattering by
a 1/r potential does, however, provide a safeguard against giving too much
weight to the triple coincidence of the cross sections in three-dimensional
space. It also illustrates the fact that the classical limit for 1/r potentials is
not reached at high energies, but for total energy tending to zero.!

4.1.4 Elastic Scattering by a Modified Coulomb Potential, DWBA

An important real situation frequently encountered in electron scattering is
that the potential only corresponds to a pure Coulomb potential at large sep-
arations and that there are short ranged modifications due e.g. to decreasing
screening of the nucleus of the target ion by its electrons (cf. Fig. 2.2),

V(r) = Vo(r) + Var(r) . lim r?Ve(r) =0 . (4.70)

In order to expose the effect of the additional short ranged potential we
again make the Schrodinger equation look like an inhomogeneous differential
equation (cf. (4.11)), but we now take the “inhomogeneous term” to be only
the part due to the additional short ranged potential,

E+%Aqumwm=xmwm. (4.71)

! This is in fact generally true for homogeneous potentials, which consist only of
terms proportional to lengths taken to a certain power, when this power lies
between zero and —2, see Sect. 5.3.4.
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Let Go(r, ') be the appropriate Green’s function obeying
h2
[+ 54 V()| Getrr) = s =) (472)
The equivalent integral equation in this case is

W(r) = vo(r) + /Qc(r,r’)Vsr(r’)w(r’) dr’ . (4.73)

In the asymptotic region 7 — oo, the second term on the right-hand side
of (4.73) has the form of an outgoing spherical wave (in the long ranged
Coulomb potential),

ei(kr—'nankr)

¥(r) =vo(r) + [0, 9)————, r—o . (4.74)

In contrast to (4.17) the angular amplitude f" is now not defined via incoming
plane waves but via distorted waves Yc,r,

50,0) = 5tz [ oWl 00 a0 (475)

The distorted waves 9c (') are solutions of the Schrédinger equation with
a pure Coulomb potential, but their asymptotic form (cf. (4.63), (4.65)) cor-
responds to an incoming modified plane wave in the direction of the radius
vector 7 instead of in the direction of the z-axis, plus an incoming instead of
an outgoing spherical wave [Bra83]. Explicitly,

Do (r') =e ™2 (1 —in) e Flin,1; —i(ker' +ky 7)) . (4.76)

As in (4.16) and (4.17), k, is the wave vector with length k which points in
direction of the radius vector r (without ‘).
Since the first term on the right-hand side of (4.74) also contains an

outgoing spherical wave (see (4.65)), modulated by the Coulomb amplitude

(4.66), the total amplitude modulating the outgoing spherical wave is a sum
of the Coulomb amplitude fc and the additional amplitude (4.75),

. X ei(kr—n In 2k7)
w(r) T2 dilkz+nInk(r—2)] 4 [fc(6) + f/(9’¢)]——r— ) (4.77)

The differential cross section for elastic scattering is now

= 15c() + 0. (479)

The scattering amplitude for the elastic scattering of a particle by a po-
tential Vi + Vi, is thus a sum of two contributions: the first contribution is the
amplitude for scattering by the “unperturbed” potential V¢, the second con-
tribution describes the modification of the exact solution in the unperturbed
potential caused by the additional perturbing potential. This decomposition
is named after Gell-Mann and Goldberger and can be performed quite gen-
erally for a sum of two potentials. The cross section contains a contribution
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|fc|? from the Coulomb scattering amplitude, a contribution |f’|? from the
additional scattering amplitude and a further contribution fcf'™ + f&f’ due
to interference of the two amplitudes fc and f’.

If the influence of the additional short ranged potential is small, we can
replace the exact wave function 7 in the integrand on the right-hand side of
(4.75) by the (distorted) incoming Coulomb wave (4.63) in the spirit of the
Born approximation. This is the distorted wave Born approximation (DWBA)
and leads to the following explicit expression for the additional scattering
amplitude,

FOVEA = _2:}12 / P&, (r Ve (r') Yo(r’) dr’ . (4.79)

If the additional short ranged potential Vj, is radially symmetric, it makes
sense to expand the wave function in partial waves. For an incoming Coulomb
wave p(r) travelling in the z-direction we have, in analogy to (4.22),

Yo(r) = (2 +1)i e ﬂ(zr—kr) P(cosf) . (4.80)
=0

Here F; are the regular Coulomb functions, which were introduced in Sect.
1.3.2 and which solve the radial Schrédinger equation in a pure Coulomb
potential. The Coulomb phases o; are defined by (1.120). The additional
scattering amplitude f’ now doesn’t depend on the azimuthal angle ¢ and
can be expanded in analogy to (4.23):

o0
F1(0) = f{ Pi(cost) . (4.81)
=0
The same steps that lead from (4.24) to (4.27) now allow us to extract from
the wave function (4.74) a relation between the partial wave amplitudes f;
and the phase shifts §; due to the effect of the additional short ranged po-
tential in the respective partial waves (cf. (1.119), (1.121)):

fll — _2_%;;}_1 2ot (62151 _ 1) — 2IT+1 e?ial eiél sind; . (482)

Because of the short range of the potential V,, the additional phase shifts
d; in (4.82) converge rapidly to zero (or to an integral multiple of 7) as
the angular momentum quantum number ! increases. Hence the expansion
(4.81) is rapidly convergent. On the other hand, the partial waves expansion
of the Coulomb scattering amplitude fe converges very slowly. In order to
calculate e.g. the cross section (4.78) it is thus best to use the analytically
known expression (4.66) for fc and to expand only the additional scattering
amplitude f’ in partial waves. The phase shifts §; can be extracted from the
asymptotic behaviour of the radial wave functions

¢i(r) < Fi(n, kr) +tané, Gi(n,kr), r—o00 , (4.83)
(cf. Table 1.3).
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We obtain an implicit equation for the phase shifts by extending (4.37)
to the case of modified Coulomb potentials,

tand; = —4/ %l;—;:/ Fi(n, kr' YV (ri(r) dr’ . (4.84)
0

In the spirit of the DWBA we obtain an approximate explicit expression for
tan d; if we replace the exact radial wave function ¢; in the integrand on the
right-hand side of (4.84) by the regular Coulomb function F; (multiplied by
[2u/(mh2k)]1/? to ensure normalization in energy),

tandy ~ o / [y, ke )2V () A (4.85)
0

If the Coulomb potential is repulsive, 7 > 0, then tand; vanishes at the
threshold £ — 0 just as in the case of a short ranged potential alone. For an
attractive Coulomb potential, n < 0, tan§; generally tends to a finite value.
Remember that the phase shifts at threshold are connected to the quantum
defects of the corresponding Rydberg states below threshold, as expressed in
Seaton’s theorem (3.21) and illustrated in Fig. 3.2 for the e”-K™* system. A
byproduct of this consideration is the insight that the additional phase shift
6; due to a short ranged potential on top of a pure Coulomb potential cannot
in general be identical to the phase shift caused by the short ranged potential
alone.

4.1.5 Feshbach Projection. Optical Potential

All real applications of the considerations in the preceding sections of this
chapter depend crucially on the potential. For large electron-atom (or -ion)
separations the leading terms are known — polarization potential (4.41) for
the scattering by neutral atoms or Coulomb potential (4.62) for scattering
by charged ions. At smaller separations, however, excitations of the target
become important as do exchange effects, and the interaction potential may
become very complicated. In this region it is not obvious that it is justified
to describe the electron-atom interaction by a Schrodinger equation with a
potential.

One possibility of deriving an equation of motion of the Schrédinger type
is Feshbach’s projection formalism. This involves projection operators P and
Q which decompose the whole space of wave functions into a subspace of wave
functions P¥, whose dynamics are to be studied further, and an orthogonal
residual space, the Q—space, which is only of interest in so far as it is coupled
to and influences the states in ﬁ-space:

T=Pr+Q¥, P+9=1, PO=0 . (4.86)

Elastic scattering is usually described in a ‘P-space in which the target atom
is given by a fixed (generally the ground state) wave function, while arbi-
trary wave functions are allowed for the projectile electron. This corresponds
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to a single term in the close-coupling expansion (3.41). All wave functions
orthogonal to P- -space constitute Q -space.

Multiplying from the left by :P and by Q enables us to transform the
stationary Schrodinger equation H¥ = EV for the wave function ¥ in (4.86)
into two coupled equations for P¥ and QV,

PHP(PY) + PHQ(QW) = E(P¥)

OHO(OF) + QHP(PY) = E(QF) . (4.87)
Here we used the property of projection operators, viz. PP =Pand 0Q = Q.
If we resolve the lower equation (4.87) for Q¥,

- 1 NP

QU = ————QHP(PY) , 4.88

5 ona 2PPY) (4.88)
and insert the result into the upper equation we obtain an effective Schrodin-
ger equation for the component P¥ = 9,

. " e aa 1 .
Heg=FEy, Heg=PHP+PHQ E_0h% QHP . (4.89)
The first term PHP in the formula for the effective Hamiltonian Hog
contains all direct and exchange contributions of the elastic channel, but no
contributions due to coupling to excited states of the target atom. These are
contained in the second term ﬁﬁQ[E — QAfIQ]*IQI:I’IA’, which introduces
an explicitly energy-dependent contribution to the effective potential. If the
energy E lies above the continuum threshold of OHQ, it should be given
an infinitesimally small imaginary part in the denominator in (4.89), similar
o (4.14). This makes the effective Hamiltonian non-Hermitian. The projec-
tion of the Schrédinger equation onto a subpace of the full space of states
thus leads to an explicitly energy-dependent additional potential in the effec-
tive Schrédinger equation for the projection of the total wave function onto
this subspace. If the projectile electron can decay into continuum states of
0- space, this effective P-space potential is non-Hermitian. The effective po-
tential Veﬁ in the effective Schroédinger equation in P- -space is usually called
the optical potential.
One immediate consequence of the non-Hermitian nature of the optical
potential Vg is that the continuity equation is no longer fulfilled in the form
(4.8). We actually have

Vi = (57 A%~ $AU) = (0 Ve~ 9VSe)
f jeds = [ 9-3dr=23l(wiVinlu] - (4.90)

If the boundary conditions are chosen such that the projectile electron trav-
els outward in Q-space and not inward, then %[(wlf/eﬂh/))] is negative, cor-
responding to a loss of particle flux due to absorption from P-space into
O-space.
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If the non-Hermitian optical potential has the form of a complex radially
symmetric potential Veg(r), then an expansion in partial waves still makes
sense, but the radial wave functions ¢; and the phase shifts §; are now com-
plex. The imaginary part of the phase shift is generally positive for a negative
imaginary part of the potential (cf. (4.38)), so the absolute value of exp (2id;)
is smaller than unity. The formulae (4.31) and (4.32) for the elastic scattering
cross section remain valid in a (short ranged) complex potential. In addition,
the total absorption cross section s is defined as the loss of particle flux
relative to the incoming current density fik/u. The asymptotic form of the
wave function (4.30) is

oo oo (2[+1) 21, e+ikr le-—ikr
PYir) "= ; s [P — () | Pi(cost) . (4.91)
The total loss of particle flux then is
B = i
_ . _ 2 2 | p2i6 (2 / 2 .
j{y ds = o g( F12(1— 252 [ Pcost)?dR ,  (4.92)

where we have already exploited the orthogonality of the Legendre polyno-
mials P,. Using [ Pi(cos8)?d2 = 4 /(20 + 1) (cf. (A.3), (1.59)) the loss of
particle flux divided by the incoming current density, i.e. the total absorption
cross section, amounts to

. T ;
Gate =~ }[j-ds = 3@ - PP (4.93)
=0

How well the Schrédinger-type equation (4.89) describes elastic scattering
depends of course on how accurately the effective Hamiltonian Heg or rather
the optical potential V.g is calculated. One of the simplest approximations
consists in completely ignoring the coupling to Q-space. This leads to the

one-channel version of the close-coupling equations (3.54), which disregards -

all excitations of the target atom but includes exactly the exchange effects
between projectile electron and target. The resulting potential is known as
the static exchange potential. If the target atom or ion is described by a
Hartree-Fock wave function, then the static exchange potential is simply the
associated Hartree-Fock potential (Sect. 2.3.1).

In order to derive the longer ranged polarization potential (4.41), one has
to go beyond the static exchange approximation and consider the coupling
to O-space. An exact treatment of the coupling term in (4.89) would, how-
ever, involve an exact solution of the N-electron problem, which is of course
impossible. A successful approximate access to the coupling potential is pro-
vided by replacing the whole set of eigenstates of OHQ by a finite (small)
number of cleverly chosen pseudostates [CU87, CU89]. For a calculation of
optical potentials in this spirit see e.g. [BM88].
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4.2 Spin and Polarization

In Sect. 4.1 we didn’t consider the fact that electrons have spin. If the poten-
tial by which an electron is scattered is completely independent of spin, then
the spin state of the electron is not affected by the scattering process and
the cross sections are independent of the state of spin. In general, however,
electron-atom interactions at least contain a spin dependence in the form of
a spin-orbit coupling — see Sect. 1.6.3. Hence the spin state is affected by
scattering and the cross sections depend on the state of spin before and after
the collision.

4.2.1 Consequences of Spin-Orbit Coupling

Let’s assume for the time being that the spin of the incoming electron is given
by the spin-up state |x,) (cf. (1.273)). The asymptotic form of the wave
function solving the stationary Schrodinger equation (with a short ranged
potential) is now (instead of (4.3))

e ()2 () e

The differential cross section for elastic scattering is the outgoing particle
flux, which now contains a spin-up and a spin-down contribution, divided by
the incoming current density,

&7~ 150,90+ 90 AP (4.95)

Here g(0, ¢) is the spin-flip amplitude, and its absolute square describes the
probability that the orientation of the spin is reversed by the collision. The
formula (4.95) implies that we do not separate spin-up and spin-down compo-
nents for the outgoing electron, i.e. we don’t measure the spin of the scattered
electron.

If the target atom (or ion) itself has no spin, and if there are no fur-
ther contributions in the potential breaking radial symmetry, then the spin
of the projectile electron and its orbital angular momentum couple to good
total angular momentum labelled by the quantum number j = [ + 1/2. The
stationary Schrodinger equation can be decomposed into radial Schrédinger
equations (1.294), in which the potentials depend not only on the orbital
angular momentum quantum number [ but also on the total angular momen-
tum quantum number j. The solutions of these radial Schrédinger equations
are asymptotically characterized by phase shifts 5l(j ).

We choose the quantization axis for all angular momenta to be the z-
axis, which points in the direction of the incoming particle current, and we
can assume the total wave function to be an eigenstate of the z-component
of the total angular momentum. The corresponding quantum number must
be m = +1/2 for consistency with the right-hand side of (4.94). We use the
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generalized spherical harmonics Y, introduced in Sect. 1.6.3 to decompose
the wave function (4.94) into components with good values of j, m and [. In
the special case m = +1/2, (1.290) becomes

1 (\/H_ll/z,o(@)) ,

Vit mi = V2 +1\ VIYi1(6,9)

_ 1 —V1Y,0(6)
Viegmi= Val+1 (vz +1Yz:(9,¢)> ' (4.96)

These relations can be inverted,
Vio(@) _ [1+1 l
( 0 )= Va1 Y T Vg Yedmd o

0 L 111
(Yl.l(ﬁ,qb))" a1t YA Y-t (4.97)

Expanding the spatial part of the plane wave according to (4.22) and
using the upper equation (4.97) yields

ey, = VI S VAT T ji(kr) (Yt,(())(()))
1=0

=V 3 i ju(kr) (\/z IVt~ Viioyma) - (498)
=0

If we expand the scattering amplitudes f and g in spherical harmonics in
analogy to (4.23),

16)= 3 5o o)
=0
0060,6)= 3 a/TTH D57~ Yia(0.9) (4.99)
=1

then we can use (4.97) and decompose the outgoing spherical wave into com-
ponents with good j, m and [,

FO) ) _ s~ Vér
(9(9,¢>)> _g A+ 1 [(fl HIgIVEH 1V,

-[i-0+ l)gz]\/iy,_%,m,,] . (4.100)

If we now collect the radial parts of the incoming plane wave and the outgo-
ing spherical wave for given values of ! and j, we obtain expressions which
look like the expression in the big square bracket in (4.24), except that the
coefficient f; in (4.24) is now replaced by different linear combinations of f
and g;, namely f; +1g; for j =1+1/2and fi —(I+1) g for j =1~1/2. The
same steps which led from (4.24) to (4.27) now give
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_2+1  S(141/2)
fi+lg = T [exp (216l ) — 1} ,
_21+1 . (1—1/2)
fi— U+ == [exp (215, ) - 1} . (4.101)
Resolving for the partial wave amplitudes f; and g; yields

fi= i+1 [exp <2i61(l+1/2)) - l] + L [exp (Qiél(l‘lﬂ)) — 1]

2k 3ik
o= Q%E [exp (2i5z(l+1/2)> ~ exp (2151(1—1/2))] . (4.102)

We can use (4.100), (4.102) to deduce the direct and the spin-flip parts of
the cross section (4.95) from the phase shifts, which can be obtained from the
asymptotic solutions of the radial Schrédinger equations (1.294). By the way,
the dependence of the spin-flip amplitude on the azimuthal angle ¢ is given
simply by exp (i®) regardless of [, so the cross section again depends only on
. If the effect of spin-orbit coupling is negligible, then the phase shifts are
independent of j for given [; in this case g; vanishes and f; is again given by
the expression (4.27).

For scattering by a long ranged modified Coulomb potential we obtain
formulae such as (4.100) and (4.102) for the additional scattering amplitude
due to the short ranged deviations from a pure Coulomb potential, which
now include the effects of spin-orbit coupling. The corresponding extension
of (4.82) reads

l+1 o
fl/ _ + e?lcn [EXP (2161(l+1/2)) _ 1]

2ik
I, _
+ 5 e [exp (215,“ v 2)) - 1] ,
ik 1+1/2 1-1/2
9= 5 [exp (215} +1/ )) ~ exp (2‘16,( -1 ))] . (4.103)

We can also apply the Gell-Mann—Goldberger procedure to a decompo-
sition of the total potential in the radial Schrédinger equation (1.294) into
an unperturbed part containing everything except the spin-orbit coupling
and the spin-orbit part (h2/2)F(j,1)Vrs(r). Since the effect of the spin-orbit
coupling is small, we can apply the DWBA formula (4.85) to obtain an ap-
proximate expression for the additional phase due to the spin-orbit term in
the radial potential:

o0
(tans®) ~-E R / B Vst dr . (4.104)
LS k 0

Now ¢; is the regular solution (asymptotically normalized to sin(kr +...)) of
the radial Schrodinger equation containing the full radial potential with the
exception of the spin-orbit coupling. For a given [ the j-dependence of the
right-hand side of (4.104) is determined by the factor F'(j,!), which is simply
lforj=1+2%and —(1+1) forj=1 — 1 (see Sect. 1.6.3).
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4.2.2 Application to General Pure Spin States

A pure state of a physical system is one which can be described by a single
quantum mechanical wave function — in contrast to a mized state consisting
of a statistical mixture of various quantum mechanical states (see Sect. 4.2.3).
A pure spin state of an electron is defined by a two-component spinor (g).
In order to describe the scattering of an electron whose incoming wave is in
such a general pure spin state, we have to complement the treatment based
on (4.94) above.

First we consider the case that the incoming electron is in the spin-down
state [x_). Instead of (4.94) we now have

P ke (0N L€ (9(8,9)
Y =e (1 + —\ e ) r—o00 . (4.105)
The z-component of the total angular momentum is now m’ = —1/2. The

partial wave expansion of the scattering amplitudes is now (instead of (4.99))

an
20+ 1

g0+ D1 o Vi1 ( 4.106
+1 2l+1 b1 ’ ( )

and leads to the same expressions (4.102) for the partial wave amplitudes f;
and g; (see Problem 4.6). The amplitudes f, g in (4.94) and f/, ¢’ in (4.105)
thus only differ in their ¢-dependence of the spin-flip amplitude, which is
given by the spherical harmonics Y} 11 and is proportional to F exp (+i¢)
(see A.3, A.4). We thus have f'(8) = f(6), and the spin-flip amplitudes g, ¢’
can be expressed by a common function go which depends only on the polar
angle 6:

9(0,9) = go(8)e*'?, ¢'(8,6) = —go(0) e . (4.107)

The wave function corresponding to an incoming electron in an arbitrary
pure spin state can now be constructed as a linear combination of the two

special cases (4.94) and (4.105),
Jrooo ikz [ A e*" ( Af(0) — Bgo(8)e™'?
7200 jkz 290
Ay + By =€ (B)+ (Ago(e)e+‘¢+Bf(9) . (4.108)
The differential cross section is again defined by the ratio of the outgoing flux

to the incoming current density and is now

do _ |Af(6) — Bgo(6) e7*|* + |Ago(6) e*'? + Bf(6)?
o - A2 + |BJ?

f’(9): f Yi0(6)

g'(6,

i Mg I Mg

T

2% * Lig
~ 1F(O)F +190(0) 2 + Qs[f(mgo(e)*]%ﬁ . (4.100)
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direction of polarization

direction of incidence

Fig. 4.8. Scattering of electrons polarized perpendicular to the direction of inci-
dence. The cross section depends not only on the polar angle 6 but also on the
azimuthal angle ¢

Again this formula implies that we don’t measure the spin of the scattered
electron. If both A and B are different from zero, the incoming electron
is no longer polarized parallel to the z-axis and the differential cross section
(4.109) depends not only on the polar angle § but also on the azimuthal angle
¢ (see Fig. 4.8). The relative importance of the ¢-dependent contribution is
determined by the imaginary part of the product fg3 and is usually expressed
with the help of the Sherman function S(9),

* *
5(8) = S(fgd] _ ifgo - f"90 (4.110)
Ifl2 +1g0l>  1f1? +1g0l?

It is a speciality of spin % particles that an arbitrary (pure) spin state
is a spin-up (or a spin-down) state with respect to an appropriately chosen
quantization axis. To see this consider an arbitrary normalized spin state
[x) = (g) , |A]?+|BJ? =1 . Using the Pauli spin matrices (1.277) we define
the three-component polarization vector

P={xléhx) - (4.111)
In the present case its components are
P, =2R[A*B}, P,=2S]A*B], P,=|A*-|B|* , (4.112)

and its length is unity. The projection of the spin operator & onto the direc-
tion of P is

G, =P-& = Py + Pyoy + Ps6, (4.113)

and it is easy to show (Problem 4.7) that the spinor |x) = (g) is an eigenstate
of &,, with eigenvalue +1.2

2 The deeper reason for the fact that every two-component spinor uniquely corre-
sponds to a direction of polarization lies in the isomorphism of the group SU(2) of
special unitary transformations of two-component spinors with the group SO(3)
of rotations in three-dimensional space. A similar correspondence does not apply
for spinors with more than two components, i.e. for spins larger than or equal to
one.
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Equation (4.108) shows that scattering of the electron into the direction
(8, ¢) transforms the initial spin state |x) = (g) of the incoming wave into
the new spin state

A’ A
()-3(5)
g__ ! ( £(6) —m@k”¢)
VI +gol? \90(0)e®  f(6)
The transformation is described by the transformation matrix S, which is in
general not unitary and is not to be confused with the scattering matrix to

be treated later (see Sect. 4.3.2). The polarization vector P’ of the scattered
electron is

,_bdsiesh) (4115)

(4.114)

~ (xIsts|x)
The denominator in (4.115) is needed for correct normalization, because the
transformed spinor S|x) is no longer normalized to unity.

4.2.3 Application to Mixed Spin States

A mized state of a quantum mechanical system contains different wave func-
tions with certain statistical probabilities. In order to describe our lack of
knowledge of the precise state of a physical system we imagine a collection
or ensemble of copies of the system covering all individual states which are
compatible with our limited knowledge. Such a statistical mixture of states
cannot be described by a single wave function, but only by an incoherent su-
perposition of quantities related to the individual members of the ensemble.
An appropriate quantity for describing an ensemble is the density operator

o0=> walx.)x.| - (4.116)

Here |x, ) are (orthonormalized) state vectors (wave functicns) for pure quan-
tum mechanical states, and the sum (4.116) covers all states which might be
contained in the ensemble. Partial information which may make some states
more probable than others is contained in the real, non-negative probabilities
wy. The sum of these probabilities is of course unity. If we have no informa-
tion at all about the system, then all w, are equal and their value is the
inverse of the number of possible states, i.e. of the number of states in the
ensemble.

The density operator (4.116) is a weighted mean of the projection oper-
ators |x, ){x..| onto the individual states |x,). A density operator is always
Hermitian and its trace is the sum of the probabilities, i.e. unity. In a par-
ticular representation the density operator becomes the density matriz. The
statistical expectation value (O of an observable O in a mixed state is the
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appropriately weighted mean of the quantum mechanical expectation values
in the individual states,

(O) = > wa(x.|0Ix,) = Tr{O8} . (4.117)

A pure state corresponds to the special case that one probability w,, is unity
while all other probabilities vanish. The statistical expectation value (4.117)
then is identical to the quantum mechanical expectation value in the (pure)
state. The density operator g, for a pure state is just the projection operator
onto this state, in particular

Op0p = 0p - (4.118)
A completely unpolarized electron is one for which absolutely nothing is
known about its spin state. With respect to an arbitrary axis of quantiza-

tion, both spin states |x, ) and |x_) are equally probable. The corresponding
density operator is

6=2lx )00+ x|, (4.119)

and the associated density matrix is just 1/2 times the 2 x 2 unit matrix. In
order to describe the scattering of unpolarized electrons we have to incoher-
ently add the cross section (4.95) from Sect. 4.2.1 and the corresponding cross
section for an incoming electron in a spin-down state, both weighted with the
factor 1/2. (Because of f = f’ and (4.107) both cross sections are equal in
this case, and the sum (4.95) is unchanged.) This corresponds to averaging
over the initial states compatible with the measured boundary conditions, as
discussed in connection with electromagnetic transitions in Sect. 2.4.4.

A general mixed spin state is neither completely polarized like a pure
state, nor completely unpolarized as in (4.119). In the spirit of (4.117) we
define the polarization vector for a mixed spin state as

P = (&) = Tx{65}) . (4.120)

If we take the direction of P as the axis of quantization and assume a density
operator

o=w Ix )0 +w x|, w,two =1, (4.121)

then the component of P in the direction of this axis is obviously the dif-
ference of the probabilities for the spin pointing parallel and antiparallel to
P, namely w, —w_. This is also the length of the polarization vector, which
is smaller than unity for a mixed spin state. The length of the polarization
vector serves as definition for the (degree of) polarization. The polarization
can vary between zero and unity; it is unity for completely polarized electrons
(pure spin state) and zero for completely unpolarized electrons.

If the incoming electron is partially polarized with respect to an axis of
quantization, which need not be the z-axis, then we describe such a (mixed)
spin state by a density operator like (4.121). In order to calculate the dif-
ferential cross section in such a case, we must first determine the differential
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cross sections for the two pure states |x, ) and |x_) with respect to the axis of
quantization according to (4.109) and then incoherently superpose the results
with the weights w, and w_.

Scattering into the direction (6, ¢) transforms an incoming (pure) spin
state |x) into the spin state S|x) according to (4.114). Extending this result
to mixed states shows that the density operator ¢ of an incoming electron is
transformed into the density operator

Sgst
g _ 4.122

¢ = Tr{SeST} (4.122)
by the scattering process. The denominator in (4.122) ensures correct nor-
malization, Tr{g'} = 1. With (4.120) we can give a general formula for the
polarization vector P’ of the electron scattered into the direction (6, ¢),
Tr{6SsSt}

Tr{SgSt}

As an application of the formula (4.123) consider the case that the in-
coming electron is completely unpolarized. Then § is just 1/2 times the unit
matrix and (4.123) simplifies to

P Tr{SSt}

Tr{SS'}

Inserting the explicit expression (4.114) for the transformation matrix S
yields

P, =-5(@)sing, P,=S0)cos¢p, P,=0 , (4.125)

where S(8) again stands for the Sherman function (4.110). This means that

scattered electrons can have a finite polarization even if the incoming elec-
trons are unpolarized. The direction of the polarization vector is perpendicu-

P =Ti{54} = (4.123)

(4.124)

lar to the scattering plane, which is spanned by the direction of the incoming -

electron (the z-axis) and the direction of the scattered electron (8, ¢).

The polarization of electrons by scattering can be exploited in double
scattering experiments in which a beam of initially unpolarized electrons is
successively scattered by two targets. After scattering by the first target the
electrons are (partially) polarized, and the cross section for scattering by the
second target acquires a left-right asymmetry due to its dependence on the
azimuthal angle ¢. Thus polarization effects can be observed without actually
having to distinguish the spin states of the electrons (see e.g. [Kes85, GK91]).

If the target atom or ion itself has a non-vanishing angular momentum,
then the angular momentum coupling for the whole system becomes much
more complicated. In this case we must consider various states of polarization
not only of the projectile electron, but also of the target atom (or ion). In
general there are several orbital angular momenta [ which can couple with
the spin of the projectile electron and the angular momentum of the target
atom to a given total angular momentum quantum number of the system.
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This leads to coupled radial Schréodinger equations as they also appear in the
description of inelastic scattering — see Sect. 4.3.2.

The number and quality of experiments with polarized electrons are im-
pressive — see e.g. [Kes85, Kes91]. For a comprehensive monograph on the
application of density matrix techniques see [Blu81]. The treatment of polar-
ization effects in electron-atom scattering on the basis of the density matrix
formalism is also described extensively in [Bar89]. The density matrix for-
malism has also been applied to situations of greater complexity, such as
the scattering of electrons by optically active molecules of given orientation
[BF90].

4.3 Inelastic Scattering

4.3.1 General Formulation

In an inelastic scattering process the target atom (or ion) undergoes a change
from its initial internal state to a different final internal state due to the
collision with the projectile electron. In order to describe such a process, our
ansatz for the wave function must contain contributions from at least two
channels. A natural starting point for the description of inelastic collisions is
found in the coupled channel equations (3.54), which we shall now write in
the simplified form

h2
(-oa ) ) + L Vi) = (B = EJutr) - (4120)
# J#
Again 7 is the spatial coordinate of the projectile electron, j (or i) labels a

number of open channels defined by various internal states wl(gt) of the target
atom and E; are the associated internal excitation energies. The potentials
V;.; are largely given by the matrix elements of the interaction operator (3.51)
between the internal states,

Vig = Wl Bwloid) +... (4.127)
The dots on the right-hand side stand for the (short ranged) exchange terms
in the effective potential and for possible contributions due to coupling to a
not explicitly included Q-space. The matrix of potentials V; ; is an operator
in the space of vectors of channel wave functions (¥1, ¥2,...), and it is in
general explicitly energy dependent and non-Hermitian if coupling to and
loss of flux into the O-space is important.

As long as all interactions are short ranged, a solution of the coupled
channel equations (4.126) describing an incoming electron in channel 7 fulfills
the following boundary conditions:

eik

! f5i(6,¢), T —o00 . (4.128)

P;(r) = 8567 + T
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Here

k= IQH(EFLZ_ E;) (4.129)

is the asymptotic wave number of the outgoing electron in the (open) chan-
nel j. Differential cross sections are defined as in Sect. 4.1.1 by the ratio
of outgoing particle flux through the surface element r2df2 to the incoming
current density. For elastic scattering i — i we again obtain the form (4.6),

dgl(;’l = |f‘i,1(01 ¢)]2 ’ (4130)
but the differential cross section for inelastic scattering ¢ — 7, j #1 has the
slightly modified form

downj _ ki, 2
st = B0 0P (4131)
The origin of the factor k;/k; on the right-hand side of (4.131) is that the
current density in the entrance channel is hik;/u, while the outgoing current
in channel j is given by a formula similar to (4.5) but with a factor hk;/u. If
we interpret the inelastic scattering amplitude (or transition amplitude) fj;
as the matrix element of a transition operator (cf. (4.18) and (4.141) below),
then the expression (4.131) can be derived in the spirit of time-dependent
perturbation theory (Sect. 2.4.1), and the proportionality to k; comes in via
the density of final states in the Golden Rule (2.139) (see Problem 4.3). Thus
the phase space factor k;/k; accounts for the different density of states for
free electrons in the exit channel 7 and the entrance channel 4.
Integrated cross sections are defined in analogy to (4.7),

o 9Kk [ o2
i ,/ 2040 = ki/|f1,1(rz)| an . (4.132)

The total cross section (with respect to channel i as the entrance channel)
is a sum of the integrated elastic cross section o;_.;, the total inelastic cross

section jinel = Ej# oi—; and the absorption cross section ;abs, which
accounts for the loss of flux into open channels of Q-space,
Titot = Ojmi + E Oimj + Oiabs = Oiel + Oijinel + Oi,abs - (4.133)
J#i

We can also formulate a Lippmann-Schwinger equation in the many-
channel case. To this end we again proceed by making the Schrédinger equa-
tion (4.126) look like an inhomogeneous differential equation,

R? -
(E’ + —A) U=V . (4.134)
2p
We have introduced a more compact notation using vectors and matrices: ¥

stands for the vector of channel wave functions (1, ¥2,...), V stands for
the matrix of potentials (V;;), and E’ is the diagonal matrix containing the
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asymptotic energies £ — E; in the respective channels as the diagonal matrix
elements. Since the “homogeneous equation” (V = 0) corresponds to a set of
uncoupled free-particle Schrédinger equations, we can easily define a diagonal
matrix G of Green’s functions,

Gia O 0 o

G= (()) g(2)’2 gg3 s Gu= —# el?‘_;’_‘T . (4.135)
which fulfills an extension of (413) to the many-channel case,

(E’ + %i—A) G=1 . (4.136)

Using this multichannel Green’s function we can write the general solution
of (4.134) as

¥ = Yhom + GVE | (4.137)

where W, is a solution of the “homogeneous equation”.

The wave function (4.137) fulfills boundary conditions corresponding to
an incoming plane wave in channel ¢ (and only in channel 7) if we define Yhom
to have the following components:

Yi(r) = Yini(r) =e®7 | ;=0 forj#i . (4.138)
The components of the full wave function (4.137) are then
P(r) = 8; %% 4 /gjyj (r,7) Z Vim¥n (') dr' . (4.139)

Since all G; ; have the form (4.16) asymptotically (with k; in place of k), the
channel wave functions 1; have the asymptotic form (4.128), and we obtain a
generalization of (4.17) as an implicit equation for the scattering amplitudes,

f5.1(8,9) = 7#2/&*]‘"’ Vin¥n(r')dr' . (4.140)

Here k; is the vector of length k; pointing in the direction of the radius vector
T

The right-hand side of (4.140) depends on the label 7 of the entrance chan-
nel, because the channel wave functions 1, to be inserted in the integrand
are those which solve the Schrodinger equation (or the Lippmann-Schwinger
equation) with incoming boundary conditions in the one channel i. Similar to
the one-channel case, we can interpret the sum over the integrals in (4.140) as
the matrix element of a transition operator T between an initial state Yini,
defined by just an incoming plane wave ¥, (') = exp (ik;z’) in channel ,i,
and a final state Yoy, 5, defined by just a plane wave Yoy, ;(7') = exp (ik;- ')
in the exit channel j:

. . 2mh?
Tout,j;in‘i = (Qlout,j'T|Win,z'> = <Wout,jlvlg’> = —WT iji(e,(ﬁ) . (4.141)
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As in the one-channel case, the Born approximation now consists in replacing
the exact channel wave functions 1, in (4.139), (4.140) by the “homogeneous
solution” 6, ; exp (ik;z’), which is equivalent to replacing the transition oper-
ator T by the potential V. The transition amplitudes in Born approximation
are

2T hZ W’ouc,y 'V] 1|wm z)

= _aﬂ__h2<wout,j’v|kpin,i> . (4142)

If we ignore the effects of antisymmetrization etc., we can write out the

matrix element in (4.142) explicitly according to (4.127). If we take the in-

teraction Hyw to consist of just the Coulomb attraction between the outer

electron 1 and the target nucleus (charge number Z) and the Coulomb re-
pulsion due to the other electrons v = 2,... N, we obtain

B B ikpry () Ze2 ikiTy
fii= *W(e Vint | Z |'r'1 . | T1 le z/)mt

msly ms

N 2 9
) * e Ze
il (21———| T)

wlnt(r27 e "‘N; b ') - (4143)

Here k; is the wave vector of the incoming plane wave in channel i. Because
of the orthogonality of the internal states wm in the entrance channel and
1/)-(” in the inelastic exit channel, the part of the potential which describes the

int

attraction of electron 1 by the target nucleus, and which depends only on 7y,

does not contribute to the matrix element in (4.143). In order to calculate the

contribution of the other part coming from the electron-electron repulsion, we

exploit the fact that 1/jr, —7,| is the Fourier transform of (2/7)*/2|k;—k;| 2.
The resulting identity,

i(k;—k;)r
ell 1) dry = 47

B _ __H —ikyr’ V. aikiZ qat
Tii = 27rﬁ2/e Vige dri=

moEEe T (4.144)

allows us to perform the integration over 71 in (4.143),

[ry =7

B (J) i(ki—kj)-ro
fj,'i = ﬁ2|k k |2 1m, | Z T wmt . (4145)
As in elastic scattering, we use the wave vector g to describe the mo-
mentum transfer, which is now the difference of two momentum vectors of
different length,

q=k; —k; |, (4.146)
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and the formula for the inelastic scattering cross section is (in Born approx-
imation)

doB, ki 4 k;
10 = = mk—juw&hze-% vl (4.147)

The first factor 4/(g*a?) on the right-hand side is a generalization of the
Rutherford differential cross section (4.69) for the scattering of an electron of
mass ¢ by a singly charged nucleus; a; = h?/(ue?) is the corresponding Bohr
radius. In contrast to the elastic scattering case, however, this Rutherford
factor does not diverge in the forward direction, because the wave vector ¢
(4.146) has a length of at least

qmin = ki — k;| . (4.148)

The last factor on the right-hand side of (4.147) contains the information
about the structure of the initial and final states of the target atom. In
analogy to the oscillator strengths for electromagnetic transitions (Sect. 2.4.6)
we can define generalized oscillator strengths,

2u E; — E _
Fiala) = 35 == ,m|2 ar OV (4.149)

which depend on the length of the momentum transfer vector. These general-
ized oscillator strengths merge into the ordinary oscillator strengths defined
by (2.213) in the hypothetical limit of vanishing momentum transfer.

The theory summarized in equations (4.143)—(4.149), which was originally
formulated by Bethe, establishes a connection between the cross sections of
inelastic electron scattering and photoabsorption. Conditions for the validity
of the Bethe theory are the applicability of the Born approximation (4.142)
and the negligible effect of exchange contributions between the projectile
electron and the electrons of the target atom. It is thus most useful for high
energies of the incoming and outgoing electron. For a detailed treatise on
Bethe theory see [Ino71].

When an electron is scattered by a charged ion, the diagonal potentials
asymptotically have the form of a pure Coulomb potential (4.62). Let ¢ label
the entrance channel; the asymptotic boundary conditions for the channel
wave functions are then (cf. (4.77), (4.128))

wj (r) T200 6.7',1 ei[kiz+m Ink;(r—2z)] + fo (0) eilkir=n; In2k;r)

ei(kj r—n; In2k;r)

r

fia6,8) . (4.150)

Since the asymptotic wave number k; depends on the channel label j via
(4.129), the Coulomb parameter (4.64) also depends on the channel label,
nj = —1/(kjaz). The additional scattering amplitudes f;, in (4.150) are
due to the deviations of the full potential from a pure Coulomb potential
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—(Ze?/r)8; ;. These deviations consist of additional contributions to the di-
agonal potentials (j =14) and all coupling potentials (j # 7). They are gen-
erally short ranged according to the considerations of Sect. 3.2.1. As in the
one-channel case, the elastic scattering cross section is the absolute square
of a sum consisting of the pure Coulomb scattering amplitude fc and the
additional scattering amplitude le¢ The inelastic cross sections are given by
the additional scattering amplitude f]’i alone,

do’i——»z_ ’ 2 .
d.Q _|fC(9)+f1,z(91¢)l )
doi—;  kj .,
=P, i (4.151)

The additional scattering amplitudes f“- obey implicit equations of the
form (4.140), except that the plane waves exp (—ik;-r’) are now replaced by
distorted (Coulomb) waves 1/)0’3 (cf. (4.75), (4.76)). 1c,; describes a Coulomb
wave in channel j with an incoming modified plane wave travelling in the
direction of the radius vector = plus an incoming spherical wave. With the
usual assumptions of the Born approximation (for distorted waves) we obtain
an explicit expression for the additional scattering amplitude in the elastic
channel (j = ¢) and for the transition amplitude to the inelastic channels
(G #9),

PWBA — L (P Vialie) (4.152)
Here ¢ is the Coulomb wave (4.63) in the entrance channel i, i.e. with wave
number k;, Coulomb parameter 7;, incoming modified plane wave travelling
in the direction of the positive z-axis and outgoing spherical wave.

4.3.2 Coupled Radial Equations

The internal states wmt of the target atom or ion are eigenstates of the total
angular momentum of the N —1 electrons with total angular momentum
quantum number J;, and we shall assume that they are also eigenstates of
the z-component of the operator with quantum number Mj;. For a complete
specification of all possible elastic and inelastic reactions we assume that the
channel label i (or j) characterizes not only the internal state of the target
atom with its angular momentum quantum numbers J;, M;, but also the spin
state x4 or x_ of the projectile electron.

When we expand the channel wave functions in partial waves we can no
longer assume that the z-component of the orbital angular momentum is a
good quantum number and zero (as in (4.21)), so we expand as follows:

00 +1 ¢
W) =D 3 T Yim(8,9) (4.153)

=0 m=-I
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Furthermore, the potentials no longer conserve the orbital angular momen-
tum; their action on the angular coordinates can be expressed as follows:

ViiYom =Y YimVi;(,ml',m') . (4.154)
tm

The partial waves expansion (4.153) reduces matrix elements of the po-
tentials V;; to a sum of radial matrix elements of the “radial potentials”
Vi,;({, m; ', m’). The connection between such radial matrix elements and
the matrix elements of the associated N-electron wave function is given by
(4.127),

<¢llmylm|V,JI¢Jl ,m’ Y'l' ’>

$i, P,
= (B 2 | 2 ) +
= (Gs,1,m|Vi,5(1, m; llaml)|¢j,l',m’> . (4.155)

If we insert the expansion (4.153) into the coupled channel equations
(4.126) we thus obtain the coupled radial equations

B2 d2 UL+ 1)K?
R el L
+ > Vigbml,m') ¢ (1) = (B — Bi) digm(r) . (4.156)

gt m

How many and which combinations of channel label j and angular momentum
quantum number I, m’ have to be included in the sum in (4.156) for given i,
| and m, depends crucially on the angular momentum quantum numbers J;,

M; and J;, M; of the internal states wl(;i and wi(,]lt), because they determine
the action of the potentials on the spin and angular variables. Since the total
angular momentum of the N-electron system is a good quantum number,
the coupled channel equations (4.156) reduce to blocks belonging to different
angular momentum quantum numbers of the whole system. If we start with
a (truncated) expansion involving a finite number of internal states wmt,
each such block contains at most a finite number of equations. A further
reduction of these blocks may be possible if the N-electron Hamiltonian has
further symmetries or good quantum numbers. If e.g. spin-dependent forces
can be neglected, then the total orbital angular momentum and the total
spin are conserved and only partial waves belonging to the same values of
the corresponding quantum numbers couple.

For each block of coupled radial equations there are as many linearly
independent vectors @ of channel wave functions ¢, ; » solving the equations
as there are equations in the block. Asymptotically, each radial wave function
of a solution is a superposition of two linearly independent solutions of the
uncoupled free equation, e.g. of (cf. Table 1.3, (1.150))
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s r—oo 211« . - _71
$i(r) = ,/ﬂ_h%i sin (k;r l2) ,
oo 2
ey (r)" ,/ng cos(kir—lg) . (4.157)

The coefficients of such superpositions can be obtained e.g. by direct numer-
ical solution of the coupled channel equations if the potentials are known.
They determine the asymptotic form of the wave function for given initial
conditions and hence the observable cross sections.
A frequently used basis of vectors of solutions &(bm) ig defined by the
following boundary conditions:
ST () T2 80y B S B0 () + Ritimig e G50 () . (4.158)
- The coefficients of the cosine terms define the reactance matrizc R =
(Rit.mij1,m'), which is also known as the K-matriz.® In the trivial case that
the coupled channel equations reduce to a single equation of the form (1.75)
or (1.294), the reactance matrix is simply the tangent of the asymptotic phase
shift § due to the potential,

R =tand . (4.159)

If the potential is real, this phase shift and its tangent are also real. In the
genuine many-channel case, the reactance matrix is a Hermitian matrix as
long as the potential V contains no non-Hermitian contributions (absorp-
tion). Since the potential matrix is generally not only Hermitian in this case,
but real and symmetric, and since R is defined via real boundary conditions,
R itself is then a real symmetric matrix.

We obtain an alternate basis of vectors of solutions of the coupled channel
equations, ¥(»b™) if we express the radial wave functions as superpositions
not of sine and cosine functions as in (4.157), but of outgoing and incoming
spherical waves,

- 2B yi(kir-

+ T200 +i(kir—1m/2)

1) = 95,(r) +i61,(r) TE [ e

- c i AS T2 2“ —i(k;r—Im .

Ga(r) = ¢iu(r) —ighy(r) ="/ —5-e (kir—in/2) (4.160)

wj(ll/l Z’)( ) quo 5 %7 51 l’ m,m’ ¢2 l(T) Si,l,m;j,l’,m’ ¢Il’(7—) . (4'161)

The asymptotic coefficients of the outgoing components ¢;{L, define the scat-
tering matriz or S-matriz: S = (Sit,myl,m’)-

Since both bases of vectors of solutions, (4™ and ¥(®L™) obeying the
boundary conditions (4.158) and (4.161) respectively, span the same space

3 Not to be confused with the R-matriz. This defines a particular method for
solving the Schrédinger equation by first constructing bound auxiliary states in
an internal region and then matching them to the appropriate scattering wave
functions with the help of the R-matrix (see e.g. [Bra83, MW91al).
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of solutions of the coupled channel equations, there must be a linear trans-
formation which transforms one basis into the other. This transformation
is

=i | @™ 4+ NS i @O | = @by (4.162)
7l m
We can see that (4.162) is correct by looking at the asymptotic behaviour of
both sides of the equation in the sine-cosine basis (4.157). The coefficients of
the sine terms on both sides form the same matrix —i(1 +S). Requiring that
the coefficients of the cosine terms also be the same leads to

~i(1+S)R=1-S . (4.163)
This yields an explicit expression for the S-matrix as a function of R,
S=(1+iR)(1-iR)™! . (4.164)

Leaving effects of absorption aside, the S-matrix (4.164) is unitary, because
R is Hermitian. In the trivial case that the coupled channel equations reduce
to a single equation of the form (1.75) or (1.294), the S-matrix is simply
given by the phase shift 4 due to the potential (cf. (4.159)),
_ 1+4itand 4
“1-itans °©

At a given energy E the Hermitian matrix R can always be diagonalized.
The corresponding transformation defines linear combinations of the chan-
nels labelled by ¢, [ and m; these linear combinations are called eigenchannels.
The eigenvalues g of R are real and can each be written as the tangent of
an angle as suggested by (4.159). The corresponding angles are called eigen-
phases. Each eigenvalue g of R is associated with a vector of solutions of the
coupled channel equations in which all radial wave functions are asymptoti-
cally proportional to a superposition of the sine and cosine functions (4.157)
with the same coefficient, namely ¢ =tané, in front of the cosine term. If
the energy dependence of an eigenphase shows a sudden rise by 7, then this
points to a resonant, almost bound state just as in the one-channel case. Since
the S-matrix S is a function of R, it is diagonal in the same basis in which
R is diagonal and the eigenvalues of S are simply given by the eigenphases:
exp 2id.

We can establish a relation connecting the S-matrix to observable cross
sections by recalling the boundary conditions (4.128) of the channel wave
functions for a typical scattering experiment. In a partial waves expansion
(4.153) of the total wave function, we obtain incoming spherical waves only
from the plane wave part of the channel wave function in the entrance chan-
nel i (cf. (4.22)). A comparison with the spherical waves in (4.160) shows
that the solution of the stationary Schrédinger equation obeying the bound-
ary conditions (4.128) is given as the following superposition of the basis
vectors @ (il:m=0).

(4.165)
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T
v = Z( —7h) i /1_;71 gELo (4.166)

The associated channel wave functions 9;(r) are corresponding superposi-
tions of the radial wave functions (4.161),

Jd— 20+1 4,1,0
ZYWM Z<-”h>l“\/2,,k Wi (7)
U m'

,
§ :il_l
U'm’ 3

fm(2l+1
X ﬂ-(k’:' —) (51',11 61,1/ 50,m' — Si,l,O;j,l’,m’) . (4167)
vy

The relation connecting the scattering amplitudes defined by (4.128) with
the elements of the S-matrix is thus

iVEE; £500,0) = > Yim (6, 9) Z*’ v

ll m/
m(20 + 1) (S5,0,055,1',m — L IRRING d0,m') - (4.168)

If the potentials conserve orbital angular momentum, the S-matrix is diagonal
inland m

Si,0i5,0m = Si5,0 011 So,ms - (4.169)
The expression (4.168) for the scattering amplitude then simplifies to

f3i(0,9) = \/_Z\/w(ml (Sitgp — 654 Yi0(0) (4.170)

and agrees with the result (4.23), (4.27) in the case of elastic scattering.

If the diagonal potentials contain a long ranged Coulomb contribution,
the preceding considerations have to be modified as in Sect. 4.1.4. The sine
and cosine waves in (4.157) or the spherical waves in (4.160) have to be
replaced by the appropriate distorted waves of the pure Coulomb potential.
The reactance matrix R now describes the influence of the short ranged
deviations from the pure Coulomb potential. This reactance matrix and its
continuation to energies at which some or all channels are closed form the
foundation of Seaton’s formulation of multichannel quantum defect theory
(see Sect. 3.3).

So far in this section we have not discussed the complications introduced
by explicitly considering the spin of the electron. How to incorporate the
spin of the projectile electron was discussed in Sect. 4.2 for the example of
elastic scattering by a target atom with vanishing total angular momentum.
In general, a target atom in an internal state 1[11(;2 may have a non-vanishing
angular momentum J; associated with 2.J; +1 eigenstates of the z-component

rooo s ikiz
(Sj ;€%
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of the angular momentum labelled by the quantum numbers M; =—J;, —J; +

. Ji. An arbitrary pure or mixed spin state of the electron is described
by a 2 x 2 density matrix, as discussed in Sect. 4.2. Correspondingly, an
arbitrary pure or mixed state in the quantum numbers M; of the target atom
is described by a (2J; + 1) x (2J; + 1) density matrix. An arbitrary state
of polarization of electron and atom (with angular momentum J;) is thus
described by a [2(2J; + 1)] x [2(2J; + 1)] density matrix. The theoretical
description of the change induced in the polarization of electron and atom
by scattering is then based on a study of the transformations which map
the [2(2J; + 1)] x [2(2J; + 1)] density matrices in the entrance channel onto
[2(2J; + 1)] x [2(2J; + 1)] density matrices in the respective exit channels.
For a detailed discussion see [Bar89).

We shall now, for the time being, explicitly specify the quantum num-
bers ms = £1/2 for the z-component of the electron spin and M, for the
z-component of the angular momentum of the target atom, so that the chan-
nel label ¢ accounts only for the remaining degrees of freedom in 1/)1(;: The
general inelastic scattering amplitude is then fjm: ari,m 0, (6, @) for the
transition from the entrance channel ¢ to the exit channel j accompanied by
a transition of the quantum numbers for the z-components from mg, M; to
mg, M;. A complete experimental determination of all amplitudes for given
channel labels i, j is very difficult in general, because e.g. it is not easy to
prepare the target atom in a definite eigenstate of the z-component of its
angular momentum. The incomplete information about the states of polar-
ization of the electron and the target atom can be appropriately described
using density matrices. The density matrix e.g. for a totally unpolarized elec-
tron and a totally unpolarized target atom (with angular momentum J;) in
the entrance channel is simply 1/[2(2J; + 1)] times the unit matrix. If we
also forgo measuring the components of the electron spin and the angular
momentum of the atom in the exit channel, then the differential cross section
for inelastic scattering from channel ¢ to channel j is in this case an inco-
herent superposition of all contributions in question with a weighting factor
1/[2(27; + 1)),

do 1 +3 Ji +3 J;
ae 2(2J;+1) ;lM;J,m,_ IM;
s=T 3 T Tt Mg=—5 g
k.
X frma im0, )% (4.171)
2

This corresponds to averaging over all initial states and summing over all fin-
al states compatible with the observed boundary conditions (cf. Sect. 2.4.4,
last paragraph, and Sect. 4.2.3).
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4.3.3 Threshold Effects

The energy dependence of the cross section (4.131) or (4.132) for inelastic
scattering in the vicinity of a channel threshold E = Ej; is largely determined
by the phase space factor k;/k;. The transition amplitude f;; is given by a
matrix element of the form (4.140) and generally assumes a finite value at
E =E,;. It will be essentially constant in a sufficiently small interval around
E;. An exception occurs when lower partial waves are absent in the partial
waves expansion for symmetry reasons. Let [ be the lowest orbital angular
momentum quantum number contributing to the integral in (4.140) in a
partial waves expansion of the plane wave 15, ; = exp (—ik;-7’). Then the
dependence of the integral on the wave number k; is given by the spherical
Bessel function ji(k;r’) (cf. (4.22)) and is proportional to k% (A.32). The
absolute square of the transition amplitude is thus proportional to kal and,
remembering the phase space factor k;/k;, we obtain Wigner’s threshold law
for inelastic scattering cross sections,

0ii(E) (\/E——Ej)m“ . (4.172)

Here [ is the lowest orbital angular momentum quantum number observed in
the exit channel.

The opening of a channel j at the threshold E; also affects the energy de-
pendence of inelastic cross sections to other exit channels as well as the elastic
scattering cross section. Consider as an example the energy dependence of
the integrated elastic scattering cross section. If we treat all of the inelastic
scattering as absorption due to a non-Hermitian optical potential in the spirit
of Sect. 4.1.5, then the total inelastic scattering cross section is related to the
phase shifts §; of the elastic channel via (4.93). (We assume that the optical
potential is radially symmetric.) If E; is the lowest inelastic threshold, then

the phase shifts §, — and consequently the S-matrix elements S; = exp (2id;)

(cf. (4.165)) — are real at energies below E; and complex above Ej;. If other
channels are already open below Ej, then the threshold E; will cause a more
or less sudden change in the imaginary part of the S;s. If s-waves are not
forbidden in the exit channel j, then the total inelastic cross section (4.93)
will rise proportional to (E — E]‘)l/2 just above Ej, according to Wigner’s
threshold law (4.172). This affects the integrated elastic cross section, which
is given by the formula (4.32),

oo
Tel = 22(21+1 |s,—1|2_122 @1 +1) (|Si]? + 1 — 2RS))
l 1=0 7’ =0
_ 2w
=5 (21+1)(17§R5,) Tabs - (4.173)

v 1=0
Since the real parts of the S; s are smooth functions of energy, the integrated
elastic cross section (4.173) drops off proportional to —(E — E;)'/? just above
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E;. Further investigations of the mathematical properties of the S-matrix (see
e.g. [New82]) show that the cross section is proportional to (E; — E)/2 just
below the threshold E; with a positive or negative proportionality constant.
A negative constant leads to a cusp at threshold, as illustrated in Fig. 4.9(a),
and a positive constant leads to a rounded cusp as in Fig. 4.9(b). In both cases
the channel threshold E; manifests itself as a singularity with infinite gradient
in the integrated elastic cross section, provided s-waves are not excluded in
the exit channel j on symmetry grounds.

{a) (b)
Gel Gel

Fig. 4.9a, b. Schematic illustra-
tion of singularities in the in-

tegrated elastic cross section at
+ > } Lt an inelastic channel threshold E;:
E; E E; (a) cusp, (b) rounded cusp

m

It may well happen that the internal energy F; in the entrance channel
is larger than the internal energy E; in the exit channel. This case, which
corresponds to an exothermic reaction in chemistry, is called superelastic scat-
tering. The exit channel j is then already open at the threshold E; of the
entrance channel, and the outgoing electron has an asymptotic kinetic en-
ergy which is larger by E; — E; than the asymptotic kinetic energy of the
incoming electron. At the reaction threshold E;, the wave number k; in the
entrance channel starts at zero, but the wave number k; in the exit chan-
nel is finite. Unless the corresponding scattering amplitudes vanish, the cross
sections (4.131), (4.132) diverge at the reaction threshold for superelastic
scattering.

The threshold behaviour of inelastic scattering cross sections is very dif-
ferent when the interaction potentials contain a long ranged Coulomb term.
In the matrix element for the scattering amplitude (cf. (4.140)) we now have
a Coulomb wave instead of the plane wave in the exit channel. The partial
waves expansion (4.80) shows that the energy dependence of the transition
amplitude f;, just above the threshold Ej is given by the regular Coulomb
functions Fl('f]], k;r) (divided by k;r). In an attractive Coulomb potential we
have according to (1.144), (1.140)

Fy(n;, kjr) E~E; mwh? 1 ( /81')
— Y = —J. — ) 4.174
k;r 2uk;r az /R 2+ az ( )

so that |fJ’»71 2 is inversely proportional to k; just above E;, regardless of which
angular momenta contribute to the partial waves sum. Thus the inelastic cross
sections (4.151) tend smoothly to finite values at the respective thresholds,
when there is an attractive Coulomb potential in the exit channel.
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The differential cross section for elastic scattering in the presence of an
attractive Coulomb potential behaves smoothly above an inelastic threshold,
in accordance with the smooth behaviour of the inelastic cross sections -
remember, the integrated elastic cross section diverges. Below an inelastic
threshold, however, an attractive Coulomb potential supports whole Rydberg
series of Feshbach resonances. Consider the simple case that only the elastic
channel i is open below the channel threshold E; and that the electron-ion
interaction can be described by a radially symmetric potential. The phase
shift & in each partial wave ! is then given by a formula like (3.104),

[ R

Here u;, R;; and p; are just the weakly energy-dependent MQDT para-
meters in the two-channel case (Sect. 3.3.1), which also depend on I. Equation
(4.175) describes a Rydberg series of resonant jumps of the phase shift by =
(cf. Fig. 3.9). The individual partial wave amplitudes f; (see (4.82)} oscillate
between zero and a maximum value of |f/|= (2l + 1)/k; an infinite number
of times just below the threshold Ej, and this leads to increasingly narrow
oscillations in the differential cross section (4.78) as we approach E; from
below. In practice these oscillations can only be resolved up to a certain
energy above which the observed cross section merges into a smooth function
which connects to the cross section above the threshold.

2
R,
tan [7(v; + py)]

0 = Ty, — arctan [

4.3.4 An Example

A comprehensive review on electron-atom scattering was written by Mec-
Carthy and Weigold in 1991 [MW91a]. Most of the theoretical investigations
of inelastic electron-atom scattering have of course been performed for the
hydrogen atom. Here the spectrum and the eigenstates of the target atom
are known and many matrix elements can be evaluated analytically.

Detailed calculations of cross sections for inelastic electron-hydrogen scat-
tering at comparatively low energies have been performed e.g. by Callaway
[Cal82, Cal88]. Williams [Wil76, Wil88] has performed accurate measure-
ments in the energy region between the first inelastic threshold (3/4)R =~
10.20 eV and the n = 3 threshold at (8/9)R =~ 12.09 eV, see also [SS89].
In this energy region the channels in which the hydrogen-atom electron is
excited to the n=2 shell are open, but all higher channels are closed.

The calculations in [Cal82] are based on a close-coupling expansion.
Eigenstates of the hydrogen atom up to principal quantum number n = 3
were included exactly; higher closed channels were approximated by pseu-
dostates. When spin-dependent effects are neglected, the coupled channel
equations reduce to blocks labelled by a good total orbital angular momentum
quantum number L and a good total spin S. Different variational methods
[Cal78, Nes80] were used to solve the coupled channel equations.
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05 Fig. 4.10. Integrated cross sections
for inelastic electron scattering by
hydrogen just above the inelastic
. threshold (10.20 eV). The upper
oLk - curve shows the 1s — 2p excitation,
the lower curve shows the 1s — 2s
excitation. The dots are the exper-
imental data of Williams and the
solid lines are the theoretical re-

~§ 03 sults from [Cal82], which have been
H smoothed a little in order to simu-
= late finite experimental resolution.
" (From [Wil88])
£ o2 >

o1t

0.20 025 0.30 10.35
Energy {eV)

Figure 4.10 shows integrated inelastic scattering cross sections for energies
just above the first inelastic threshold. The upper curve shows the excitation
of the hydrogen atom into the 2p state, the lower curve shows excitation
into the 2s state. The dots are the experimental values and the solid lines
show the results of the calculations of [Cal82], which have been smoothed a
little in order to simulate the finite experimental resolution. This gives the
theoretical curves a finite gradient at threshold (10.20 eV), where it really
should be infinite. A bit above the inelastic threshold both curves show a
distinct maximum suggesting a resonance. The calculations for L =1 and
S$ =0 actually do yield a resonant eigenphase in this region. Fitting its energy
dependence to an analytic form similar to (1.184) gives a resonance position
Er=~10.2 eV and a width of I"'~0.02 eV.

Figure 4.11 shows the integrated inelastic cross sections of Fig. 4.10 at
somewhat higher energies just below the n = 3 threshold. Again the upper
curve shows the 1s — 2p transition while the lower curve shows the 1s —
2s transition. The solid curves again show the (smoothed) results of the
calculations [Cal82], and the dots are the data from [Wil88]. Just below the
n =3 threshold the barely closed n =3 channels support a number of bound
states which couple to and can decay into the open n=1 and n=2 channels
and hence appear as Feshbach resonances. The positions and widths of these
resonances are derived from the jumps in the eigenphases which are fitted to
the analytic form (1.184) [Cal82]. The irregularly oscillating structure in the
cross sections is obviously due to these resonances, the positions of which are
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Fig. 4.11. Integrated cross sections for inelastic electron scattering by hydrogen
just below the threshold for n = 3 excitations of the hydrogen atom (12.09 eV).
The upper curve shows the 1s — 2p excitation, the lower curve shows the 1s — 2s
excitation. The dots are the experimental data of Williams and the solid lines are
the theoretical results from [Cal82], which have been smoothed a little in order to
simulate finite experimental resolution. The vertical lines above the abscissa show
the positions of a number of Feshbach resonances. (From [Wil88])

T2.06

shown as vertical lines above the abscissa. Similar structures can also be seen
in differential inelastic cross sections as measured by Warner et al. [WR90].

Recent experimental advances have made high precision studies of Fesh-
bach resonances in H™ possible [SZ95, BK96]. The hydrogen atom has the
unique property that its excited energy levels include degenerate states of
different parity. This means that the internal states need not be parity
eigenstates, and the leading asymptotic terms in the diagonal channel po-
tentials can be dipole terms proportional to 1/r? rather than quadrupole
terms proportional to 1/r3 as discussed in Sect. 3.2.1. Those channels in
which the asymptotic contribution P/r? is sufficiently attractive, meaning
2uP/h% < —1/4, are expected to support an infinite dipole series of resonant
states, whose energy levels converge exponentially to the respective (degen-
erate) channel thresholds, see Sect. 1.5.3 and Problem 1.8. Close enough
to threshold, however, the level splitting due to spin-orbit coupling and
the Lamb shift, which lift the degeneracy of the hydrogen atom levels (cf.
Sect. 2.1.3), can no longer be neglected, so the dipole series are in reality
truncated after a finite number of states. The truncation of such dipole se-
ries of Feshbach resonances can be studied quantitatively in the framework
of a coupled channels calculation in which the non-degeneracy of the chan-
nel thresholds due to spin-orbit splitting and the Lamb shift is explicitly
accounted for [PF98].
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4.4 Exit Channels with Two Unbound Electrons

The considerations of Sects. 4.1-4.3 are based on the assumption that only
one of the spatial coordinates can become very large, namely the displace-
ment vector of the incoming or scattered electron. The many-electron wave
function vanishes in regions of coordinate space where the coordinates of two
or more electrons are large. In these circumstances the asymptotic bound-
ary conditions of the wave functions are easy to formulate, and an ab initio
description of the possible elastic and inelastic scattering processes can be
justified in a straightforward way, e.g. via the close-coupling ansatz (3.41) in
connection with Feshbach’s projection formalism.

The formulation of reaction theory becomes much more difficult if states
with two or more outgoing electrons become important. This is the case if
the energy of the projectile electron is sufficient to ionize the target atom
or detach an electron from the target ion. This section briefly sketches and
highlights some aspects of the theoretical description of such (e,2e) reactions
with exactly two outgoing electrons in the exit channel. For a more detailed
description of (e,2e) reactions see e.g. [Rud68] or the articles by Byron and
Joachain [BJ89] and McCarthy and Weigold [MW91b].

4.4.1 General Formulation

For a better understanding of the general structure of the wave functions in an
(e,2e) reaction we shall first replace the electrons by distinguishable particles
without electric charge. The complications due to the indistinguishability of
the electrons and the long ranged Coulomb interactions will be discussed in
Sect. 4.4.2.

The dynamics of two outgoing particles is described by continuum wave
functions depending on both displacement vectors r; and 7, i.e. on six coor-
dinates altogether. The remaining degrees of freedom are described by bound
internal wave functions ¢>i(:t) depending on the remaining displacement vec-
tors r3,... rx and all spin coordinates. They may be taken to be eigenstates
of a corresponding internal Hamiltonian Hiye with the respective eigenvalues
E, . Each such eigenstate defines a break-up channel n.

The description of inelastic scattering in Sect. 4.3 was limited to scat-
tering channels with one outer electron. This made it easy to reduce the
equations of motion to the coupled channel equations (4.126) for the orbital
wave functions of the outer electron. If both scattering channels and break-up
channels are important, it is not so easy to formulate a set of coupled chan-
nel equations, because the channel wave functions are functions in different
spaces: either functions of one displacement vector (scattering channels) or
functions of two displacement vectors (break-up channels). We can achieve a
consistent description by working in the space of wave functions of the whole
N-particle system. A channel wave function is always associated with a cor-
responding internal wave function depending on the respective remaining
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degrees of freedom — ¢i(:t)(7'3, ... TNjMg, -.. Msy) in the break-up channels
and 1/1,(,{2 (Ta,... TN;Ms, ... Mey) in the scattering channels.

In order to study the asymptotic structure of the wave function, we
again use the method of Green’s functions. First we write the N-particle
Hamiltonian H as a sum of the kinetic energies {1 = —(h?/2p) Ay, and
£y = —(h?/2u)A,, of particle 1 and particle 2 respectively, plus an inter-
nal Hamiltonian H int and a residual term VR containing all contributions not
included in the previous terms,

H= 51 + g+ IA{int + VR , (4.176)

and we make the N-particle Schrodinger equation look like an inhomogeneous
equation,

(E — 1 — ty — Hi)¥ = Vo¥ . (4.177)

The Green’s function G, which is now also an operator in the space of internal
wave functions qﬁf&) (ra,... TN;...), is defined as a solution of the following
equation,

(E —fy —fy — Hn)G =6(r1 — 7)) 6(r2 —73)1 . (4.178)

The bold 1 on the right-hand side of (4.178) stands for the unit operator in
. : (n)
the space of internal wave functions @y, -

A formal solution of the “inhomogeneous equation” (4.177) is
v =GWRY . (4.179)

The right-hand sides of the Lippmann-Schwinger equations for elastic and
inelastic scattering, (4.15) and (4.137), each contained a solution of the as-
sociated “homogeneous equation”, which was necessary to fulfill the incom-
ing boundary conditions. The initial state contains only one free electron,
while all other electrons are bound, and it is not a solution of the homoge-
neous version of (4.178), defined by Vg = 0. Hence the right-hand side of
the Lippmann-Schwinger equation (4.179) need not contain a solution of the
“homogeneous equation”.

We can use the integral equation (4.179) to derive the asymptotic form of
the wave function in the break-up channels. Equation (4.178) can be fulfilled
by a Green’s function of the following structure,

G =S Ga(ri,rairh SN B (4.180)

where the sum should cover a complete set of internal states qﬁf:t) (and not

only bound states). In the break-up channels, E > E,, the dependence of
the Green’s function on the displacement vectors is given by the factors
Gn(r1,72; 71, 75) which fulfill the following equations:

(E — En — t1 — £2) Gn(r1, 72571, 75) = 6(r1 — r)é(ry —1ry) . (4.181)
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E — E,, is the asymptotic kinetic energy available to the two outgoing particles
in the open break-up channel n.

For a more economical notation we collect the two displacement vectors
r1 and 72 into one six-component displacement vector,

R=(ry,r) . (4.182)
With the abbreviations
R,
B—En= o K

o2 + o2 b? 82 82 o?

st estast et s+ o

ol "o TR T T e 0 (4189)
(4.181) becomes the equation defining the Green’s function for the Helmholtz
equation in six dimensions (except for a factor 2u/h?%),

AS = A‘r] + Arg =

/ 2 '
(K2 + A¢)Gn(R,R) = h—‘;a(R—R) . (4.184)

The G.reen’s function which fulfills (4.184) and which is appropriate for
two outgoing electrons in the break-up channel n is (see Problem 4.9)

 pK? iH{V (KR~ R))

Gn(R, R/) = 8n2hi2 IR — R/|2 : (4.185)

Here HS" is the Hankel function of order v (see Appendix A.3). For small
values of | R — R'| we obtain (A.19)

no_ Iz 1
gn(R,R)——m—'lm y |R-—R’|—->O ; (4186)
for large values of |[R — R'| (A.18),
olKn|R-R'|

On(R,R') = ﬁ%KWZ IR-R|—oco . (4.187)

" GrR- R’
For R>»> R’ we can expand in R'/R, as we did in Sect. 4.1.1 (cf. (4.16)),

iK,R

G.(R.R) = T Mg _© " —iKp-R' _i
B R) = Vip K s [T 0 ()| @asy)
Here KR is the six-component wave vector of length K, pointing in the
direction of the (six-component) displacement vector R.
W(f obtauT the asymptotic form of the wave function by inserting the
Green’s function given by (4.180) and (4.188) into (4.179),
olK

R—oo ﬁ 3/2 nR n n ~
v= ;*fl 2 B W|¢i(nt)>(¢i(nt)w1(1KR)|VRIW>+"~' (4.189)

Here 9y, "'(R') = exp(iKgr-R') is a plane wave with a six-component wave
vector Kg for the free motion of the two particles 1 and 2, which together
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have a kinetic energy FE — E,. The sum in (4.189) should be understood as a
sum over all genuine break-up channels, for which E > E,, and ¢i(;’t) is a bound
state in the internal coordinates. Channels with E < E,, do not contribute
asymptotically (R — o), and unbound internal states, which correspond to
a break-up into more than two unbound particles, are hinted at by the dots

on the right-hand side.
If we divide the six-component wave vector Kg into two three-component
parts, k; for the first three components and k2 for the last three components,

we have
w}lKR)(RI) - eikl-rll eikTTIZ . (4190)

Thus wf(lK”') is just a product of two plane waves for the independent free
motion of the two outgoing particles 1 and 2.

Since Kg points in the same direction as the six-component displacement
vector R in six-dimensional space, there is a common proportionality constant

3, such that

k’l - ,6’!‘1 y kz = ﬁ'f‘z . (4.191)
Equation (4.191) says that the wave vector ky points in the same direction
as the displacement vector r; in three-dimensional space and that ko points
in the same direction as 7. This amounts to four real conditions, because a
direction in three-dimensional space is fixed by two angles. However, a direc-
tion in six-dimensional space is fixed by five angles. The remaining condition,
contained in the fact that the six-component vectors Kg and R are parallel,
is

a2 (4.192)

ky T2
The length K, of the vector K is fixed by the kinetic energy available in
the exit channel,

K2

2p

The distribution of this kinetic energy among the two outgoing particles 1

and 2 is uniquely determined by the ratio (4.192).
The asymptotic form of the wave function ¥ in a break-up channel n

as given by (4.189) is thus a product of the internal eigenstate qz')mt and an
outgoing spherical wave in six-dimensional coordinate space, multiplied by a
phase space factor K,3L/2 and a break-up amplitude f,, which depends on the
direction of the (six—component) displacement vector R,

w == )y K3/ : 4194
Zlm (2 R)5/2 K¥? fo($21, $22,0) + ... (4.194)

2
= g— (k2+k})=E—-E, . (4.193)
un

Here (2; is the solid angle defining the direction of the vector 71 (in three-
dimensional space), 2 is the solid angle for the direction of 72, and a is the
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so-called hyper-angle; its tangent is just the ratio (4.192) which determines
the distribution of the asymptotic kinetic energy among the two outgoing
particles,

T
tana = —
T2

(4.195)
The length R of the six-component displacement vector is often called the
hyper-radius. The hyper-radius and the five angles 2, {22, « are the spherical
coordinates of R in six-dimensional coordinate space. These six-dimensional
spherical coordinates are called hyperspherical coordinates.

Comparing (4.194) with (4.189) shows that the break-up amplitude f, is
given by a matrix element containing plane waves for free particle motion in
the bra, in complete analogy to the case of elastic (4.17) or inelastic scattering
(4.140), (4.141),

Fa821, 20,0) = Vi (@GR Vr)w) (4.196)

mt
The operator V& in the matrix element in (4.196) contains all contributions
to the Hamiltonian which are not already contained in the kinetic energy of
the two particles 1 and 2 or in the internal Hamiltonian for the remaining
degrees of freedom. The wave function ¥ in the ket is a solution of the full
stationary Schrodinger equation which has the form (4.194) in the asymptotic
part of six-dimensional coordinate space for finite values of tan a.

At this point the normalization of the total wave function ¥ and the
physical dimensions of the break-up amplitude f, are not yet determined.
The reason is that the Lippmann-Schwinger equation (4.179) has the form of
a homogeneous integral equation, so that neither the equation itself nor its
asymptotic form (4.189) fix the normalization of the wave function.?

We can fix the normalization of the total wave function by referring to
the boundary conditions in the entrance channel. In the asymptotic region
R — o0, the hyper-angle a=m/2, tana=r1/ro=00, just covers that part of
configuration space in which only particle 1 is very far away. In this region
the asymptotic behaviour of the wave function is thus determined by the
boundary conditions in the entrance channel 7 and all elastic and inelastic
scattering channels,

1k 21 ‘,‘/)mt + Z

The wave functions w(]c are the internal wave functions in the scattering
channels and are eigenfunctions of a corresponding internal Hamiltonian for
the particles 2 to N. For o =0, tana = ry/ry = 0, the asymptotic region
R — oo covers that part of configuration space in which only particle 2 is

(D) :—;—H)o . (4.197)

int

4 One Lippmann-Schwinger equation is not sufficient to uniquely determine the
total wave function in the presence of break-up channels. A detailed discussion
of this problem can be found in [Glo83].



252 4. Simple Reactions

very far away. This corresponds to elastic or inelastic scattering in conjunction
with an exchange of the particles 1 and 2. Asymptotically the wave function
is

. eik)j’r‘z . T2
v=> . 5 (2)R) el (4.198)
7

8

Here wl(,]m) are the same internal wave functions as in (4.197), but they now

describe particles 1, 3,... N. The various asymptotic regions are illustrated
in Fig. 4.12 with the help of hyper-radius and hyper-angle.

scattering —=

4

{direct)
z[8 \ ~.
Ho TN
s | >
\ N,
4 Fig. 4.12. Various asymptotic regions
N o in six-dimensional coordinate space rep-
_’, N A resented by the hyper-radius R and the
~ \ \ o hyper-angle o
v

In connection with the normalization of the wave functions we can now
discuss the physical dimensions of the quantities appearing in (4.196). The
total wave function ¥ in the ket has the same dimension as a dimensionless
plane wave multiplied by a bound wave function, normalized to unity, for (N —
1) particles in three-dimensional coordinate space, i.e. [length]_(3/2)(N“1). On
the other hand, the wave function in the bra has the dimension of a bound
wave function, normalized to unity (namely d)i(:”t) ), for only (IV — 2) particles,
multiplied by two dimensionless plane waves (4.190); thus the dimension of
the wave function in the bra is [length]~(3/2(NV=2)_ Since the integration over
all 3N spatial coordinates contributes a dimension [length}*", the dimension
of the matrix element in (4.196) is energyxlength®/2, and the dimension of
the break-up amplitude f, is length%/2.

The definitions of cross sections are based on a generalization of the cur-
rent density (4.4) to particle currents in six-dimensional coordinate space,

G = %[zﬁ*(R)sz(R) — Y(R)Vev* (R)] - (4.199)

The subscript “6” refers to the six-dimensional space, as in (4.183). For a
wave function of the form (4.194) with a spatial part
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eiKnR
(27 R)5/2
we obtain an outgoing current density in six-dimensional space in complete
analogy to the three-dimensional case (4.5),

. RKA | fu()2 R 1 '
o= M IIER 0 (55) (4:201)

We have abbreviated the solid angle (§21, {22, @) in six-dimensional space by
2. The corresponding angular element is (see Problem 4.11)

d$2, = sin? acos® ada df?; 2,

W(R) = K32 fo($21,02,0) (4.200)

=sin? a cos® a dasin 01 d6; d¢y sin b, db, dg, . (4.202)
The quantity
6| R de2
dS iom = I.76| h .
o T (4.203)

is the particle flux into the solid angle d{2y, divided by the incoming current
density fk;/p (of one particle) in the entrance channel i. Outgoing particle
flux in the solid angle df2, implies that particle 1 is travelling in a direction
contained in df2;, that particle 2 is travelling in a direction contained in d{2,,
and that the arctangent of the ratio k;/k2 lies between o and o + do. It is
customary to express this ratio in terms of the asymptotic kinetic energy
Ty = k?k?/(2u) of particle 1 or To = hA%kZ/(2p) of particle 2. These kinetic
energies are related to the hyper-angle o via

k1 = Kpsina, ky=K,cosa . (4.204)
With
Kisin? o cos? alda) = k2kZ|da| = kikZ|dks|
- %m(kgn = k1k2% dT, (4.205)

(4.203) becomes the triple differential cross section in its usual form,

d301_m _ klkg ﬁ]fn(.Ql,.Qg,TQ)lz
A2, d2,dT, ~  k; h? (27)8

This is the number of reactions, normalized to the incoming current dens-
ity, in which particle 1 travels away in the direction {2, and particle 2 travels
away with kinetic energy 75 in the direction 25, while the remaining particles
stay behind in the bound eigenstate ¢i(:t) of the internal Hamiltonian (see
also Fig. 4.13). Since the square of the break-up amplitude has the physical
dimension of a length to the fifth power (see discussion shortly after (4.198)
above), the triple differential cross section (4.206) has the dimension of an
area divided by an energy.

(4.206)




254 4. Simple Reactions

EX

Fig. 4.13. Schematic illustration of an (e,2e) reaction. k; is the wave vector of
the incoming particle parallel to the z-axis, k1 is the wave vector of the outgoing
particle 1 travelling away in the direction £2;, and k2 is the wave vector of the
outgoing particle 2 travelling away in the direction {2, with the kinetic energy
Ty = K?k3 /(2p)

4.4.2 Application to Electrons

In order to apply the formulation of the preceding section to (e,2e) reactions,
we have to take into consideration firstly the indistinguishability of the elec-
trons and secondly their electric charge, which is the origin of the long ranged
Coulomb interaction.

If the target atom (or ion) is a one-electron atom, then there are only two
electrons whose indistinguishability must be considered. If there are more
than two electrons altogether, we must also consider effects of exchange be-
tween the two continuum electrons in the break-up channels and the bound
electrons left behind. Here we shall assume that these latter effects are ac-
counted for by appropriate modifications in the definition of the interaction
Vg, similar to the discussion in Sect. 3.2.1 (cf. (3.54)), and we shall only treat
the exchange of the two continuum electrons.

The formulation in Sect. 4.4.1 with the asymptotic equations (4.194),
(4.197), (4.198) assumes that electron 1 is the incoming electron in channel <.
We could just as easily have chosen electron 2 as the incoming electron. If we
call the corresponding solution of the full Schrodinger equation ¥’, then the
asymptotic formulae for ¥’ are obviously

R—)oo
v Zlé‘"t (2 R)5/2 K32 g, (2, 25,0) + ... (4.207)

' =Ryl + Z

int

= @) | % —oo (4.208)

’ eikim T1
g = Z Gisi Q) m T (4.209)
Jj
The reciprocity in the direct scattering amplitudes f;; and the exchange am-
plitudes g; ; is already built into (4.208) and (4.209). The break-up amplitude
gn in (4.207) is given in analogy to (4.196) by
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gn (824,022, 0) = \/” (TP ER VR |y C (a210)

int

As can be seen by permutating the labels 1 and 2, it is related to the break-up
amplitude f,, by

gn(nlvgzaa):fn(QZNQlag_a) or .
gn (21,822, T2) = fu($22, 1, T1) . (4.211)

The reciprocity relation (4.211) is known as the Peterkop theorem.

How the indistinguishability of the electrons 1 and 2 affects the triple
differential cross section for final states in the break-up channel n depends
on whether the spins of the two electrons in the exit channel are coupled
to a total spin zero (singlet) or 1 (triplet) (cf. Sect. 2.2.4, (2.81), (2.82)). In
the singlet case, the total wave function must be symmetric with respect to
an interchange of the spatial coordinates 71 and 7, alone, because the spin
part of the wave function (2.82) is antisymmetric. We obtain an appropriate
solution of the full Schrodinger equation in this case, by adding the solution
¥ defined by (4.194), (4.197), (4.198) to the solution ¥’ defined by (4.207)-
(4.209),

Voo = (T + 7). (4.212)

V2

In the formula (4.206) for the triple differential cross section, this amounts to
replacing the break-amplitude f,, by the sum of f, and g, (divided by V?2).
We also have to add the cross sections for 21, §22,T% and (2, £21, T, because
we cannot distinguish the two electrons in the exit channel. With the help of
the Peterkop theorem (4.211) we thus obtain the following result for singlet
coupling of the spins of the outgoing electrons:

d3aiin _kiky p |22, 2, T)
dQl dQQ dTQ S=0 kl h2 (271')5 ’
fa=Ffnton - (4.213)

The analogous result for triplet coupling of the spins of the outgoing electrons
is

d2; 402, dT; k; 2 (27)5 ’
fr=fo—gn . (4.214)

The spin coupling of the outgoing electrons is not measured in general, so
the observed triple differential cross section is the average of the expressions
(4.213), (4.214), weighted with the multiplicity 25 + 1,
Boin _ kiks p L+ %lffllZ (4.215)
Cl.Q] dQQ de k‘, h2 (27{')5 ' ’
The consideration of the long ranged Coulomb interactions poses more
serious problems. In order to formulate an equation like (4.196) we must

( d%oy_n ) _Fkiks p |fE(821, 822, o) 2
S=1
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know the asymptotic form of the two-electron wave function (in the presence
of Coulomb forces), firstly to determine the “free waves” in the bra and
secondly to fix the solution ¥ of the full Schrédinger equation in the ket.
The crucial difficulty is that the continuum electrons are never really free,
not even at very large distances, because they feel not only the Coulomb
interaction due to the ion left behind (if it doesn’t happen to be a neutral
atom), but also their mutual long ranged Coulomb repulsion.

An obvious guess for extending the formula (4.196) to charged electrons
in the break-up channel consists in replacing the plane waves in the bra by
Coulomb waves 9, and g, in the field of the residual ion. ¢, and
Ye,r, are the distorted waves (4.76) introduced in Sect. 4.1.4; the associated
wave vector has the length k; or ko and points in the direction of the radius
vector 71 or 72 respectively.

Apart from the problem of finding the correct free waves for the bra in
(4.196) and (4.210), we also need the exact wave functions ¥ and ¥’ for the
respective ket. These are of course not available in general. We obtain an
approximate formula in the spirit of the Born approximation (with Coulomb
waves), if we replace the exact wave functions in the ket by Coulomb waves
in the entrance channel. The break-up amplitude (4.196) thus becomes

fyILDWBA(le (227 a)
= Vi L (00T, (r) P (r) Ve Wavc (1) (4.216)

where ¢ is the Coulomb wave (4.63) with plane-wave part travelling in
the direction of the z-axis and wave number k;. Note that the Coulomb
wave functions in the bra in (4.216) are defined with Coulomb parameters
(4.64) corresponding to the interaction of each electron with the charge Z
of the residual ion described by the internal wave function ¢i(:c): whereas the
Coulomb wave function in the ket is defined with the Coulomb parameter
corresponding to the interaction of the incoming electron with the charge
Z — 1 of the initial atom or ion.

The Born approximation works best when the energy of the incoming
electron is large. If we focus our attention on final states in which one electron
has a large energy while the other electron has a much smaller energy, then
exchange effects become unimportant and we can identify the fast electron
with the incoming electron. Going one step further and replacing the Coulomb
waves of the fast electron in the bra and ket by the corresponding plane
waves leads to the following customary form [Rud68, BJ89] of the break-up
amplitude in Born approximation:

(62, 20,0) = Vigs (@) T o, () VRlp e H) L (4217)

The Coulomb waves in the bras of (4.216) and (4.217) include the effect
of the Coulomb interaction of both or one of the outgoing electrons with the
residual ion. In an appropriate derivation of the expression for the scatter-
ing amplitude along the lines of Sect. 4.4.1, such contributions to the total
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Hamiltonian belong on the left-hand side of the Schrédinger equation (4.177)
and hence should no longer be included in the residual potential Vi. For ex-
ample, in (4.217) the bra wave function includes the effect of the Coulomb
interaction of the slow electron 2, but not that of the fast electron, with the
residual ion. The residual potential Vi in (4.217) thus no longer contains the
Coulomb interaction between the slow electron 2 and the residual ion, but
it does contain the Coulomb interaction between the fast electron 1 and the
residual ion as well as the Coulomb repulsion of the two outgoing electrons.
For an (e,2e) reaction on a one-electron atom (or ion) the residual ion has no
electrons at all and the residual potential to be inserted in (4.217) is simply
Ze? e?

SR

In the expressions (4.216) and (4.217) for the break-up amplitude the bra
represents an (approximate) wave function in the outgoing channel, the ket
represents the wave function in the incoming channel, and the residual inter-
action is that part of the total Hamiltonian which is not diagonalized in the
bra. This asymmetry is a consequence of the derivation and the subsequent
approximations. An alternative derivation can be based on an “unperturbed
Hamiltonian” for which the ket wave function for the incoming channel is an
eigenstate, leaving the residual interaction as that part of the total Hamil-
tonian which is not diagonalized in the ket. The bra should then contain
the exact wave function with appropriate boundary conditions, and might be
approximated by the bras in (4.216) or (4.217) in order to obtain an approxi-
mate expression for the break-up amplitude. The essential difference between
the resulting expressions and (4.216) and (4.217) lies in the different defini-
tion of the residual interactions. The expression post form of the (distorted
wave) Born approximation refers to the case that the outgoing wave function
is an eigenstate of the Hamiltonian without the residual interaction, and the
expression prior form refers to the case that the incoming wave function is
an eigenstate of the Hamiltonian without the residual interaction. These two
forms yield different results for the break-up amplitude, because the approx-
imations involved have a different impact in the two cases.

The fact that the outgoing electrons do not travel independently, not even
asymptotically, is still not included in the bra wave function in (4.216). In
order to incorporate effects of such post-collision interaction the product of
the two Coulomb functions should be replaced by a wave function accounting,
at least approximately, for the electron-electron correlation in the outgoing
channel. This can be achieved with the help of an additional phase ¢,

(K - _ )
PENR'Y = Doy (F) B0, (Th) €@ (4.219)
For a naked residual ion (no electrons) we are dealing with a pure three-

particle Coulomb problem. In this case the wave function (4.219) actually is

a solution asymptotically if we take ¢ to be the phase by which a Coulomb

wave for the relative motion of the two electrons differs from a plane wave

Vr(r],mh) = — (4.218)
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(with the same asymptotic wave number) [BB89|. For large separations of

the two outgoing electrons we have
¢=-—n"ln(kr’ +k-r") |

Ml 62

K2k

The Coulomb parameter %’ here is the one for the repulsive electron-electron

interaction (i’ is the reduced mass of the two electrons).

The post form of the DWBA expression (4.216) for the break-up ampli-
tude is not well suited for improving the outgoing wave function by including
the effects of the long range repulsive electron-electron interaction. This is
obvious when we realize that, in the case of a naked residual nucleus, there
would be no residual potential left for the matrix element. The DWBA ex-
pression for the break-up amplitude in the prior form with the improved
outgoing wave function (4.219) reads '
FPVBA(1, 02, 0) o< (¢ DG (R Valwlwe(rh)) (4.221)

n int

’ 1
k=g(kr—ks), r'=ri—ry, 0= (4.220)

with Vi given by that part of the Hamiltonian not diagonalized in the in-
coming wave function in the ket. For a naked residual ion (of any charge Z)
we have

o 2 2
Vr(ry,ry) = —— + ———
v o lrh =gl

€ (4.222)

The wave function (4.219) solves the Schrédinger equation for two elec-
trons in the field of a naked nucleus asymptotically, i.e. for large separations
of the two electrons from the nucleus and from each other, but it becomes
inaccurate for small separations of the two electrons, because their correla-
tions are insufficiently accounted for by the phase factor ¢!¢ alone. Improve-
ments have been engineered into the wave function, e.g. by Berakdar and
collaborators [Ber96, BO97] with some success, but it remains a fact that a
globally accurate wave function for the three-body Coulomb problem is not
yet available. A detailed discussion of the mathematics of the three- (and
more-) particle Coulomb problem can be found in the book by Faddeev and
Merkuriev [FM93].

4.4.3 Example

The interest in cross sections for (e,2e) reactions has been continuously strong
for several years. Special attention has been given to the simplest such reac-
tion,

e +H—-HY +e” +e (4.223)

for which experimental data have been available for some time [EK85, EJ86,
SE87]. As the residual ion H* has no internal degrees of freedom, there is
precisely one break-up channel in this reaction and the associated internal
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energy is zero. Figure 4.14 shows the triple differential cross section for the
reaction (4.223) as a function of the angle 8, of the slow electron. The other
variables were fixed as follows: asymptotic kinetic energy of the incoming
electron, =150 eV, kinetic energy of the slow electron after collision, 7, =3
eV; k;, k1 and k3 coplanar. The different parts of the figure correspond to
different scattering angles of the fast electron, namely 4°, 10° and 16°. Due
to the different magnitudes of the energies of the outgoing electrons and the
plane geometry of the three wave vectors, such a choice of reaction parameters
is called asymmetric coplanar [LM84, BJ85).

In addition to the measured points in Fig. 4.14 [EK85], the dotted
lines show the calculated cross sections obtained in the Born approximation
(4.217), (4.218). Although the Born approximation can be expected to be
quite a good approximation at such high energies, there is still a considerable
deviation from the experimental results. Brauner, Briggs and Klar [BB89]
were the first to evaluate the more sophisticated expression (4.221) with
a correct asymptotic form (4.219) for the outgoing three-particle Coulomb
wave. The triple differential cross section calculated in this way is shown as a
solid line in each part of Fig. 4.14 and agrees very well with the experimental
data. Note, however, that the calculated curve in each panel was normal-
ized to the experimental data at one point. Finally the dashed lines show
the results obtained with the formula (4.221) for the case that the incoming
particle and the faster outgoing particle is not an electron but a positron:

et +H-H" +e” +et . (4.224)

The difference between the results for electron and positron collisions em-
phasizes the influence of the interaction between the two outgoing particles,
which is repulsive in (4.223) and attractive in (4.224). In the simple Born
approximation the cross sections for (4.223) and (4.224) are equal.

The two maxima in Fig. 4.14 are characteristic for the asymmetric copla-
nar geometry. It can be shown within the framework of the Born approxi-
mation [BJ89] that maxima are expected in the direction of the momentum
transfer vector of the fast electron,

g==ki—k; , (4.225)

and in the direction of ~q. Note that the length of the momentum transfer
vector is small if the energy loss of the fast electron is small (Problem 4.12).

If we assume axial symmetry of the whole reaction around the z-axis, i.e.
if we ignore polarization effects, then the triple differential cross section at a
given impact energy depends on four independent variables, namely 81, 05,
@1 — ¢2 and T» or Ty. Different geometries allow different approximations in
the theory and illuminate different dynamical aspects of the reaction. Apart
from the asymmetric coplanar geometry discused above, considerable atten-
tion has been given e.g. to the non-coplanar symmeltric geometry, which has
been studied in particular by McCarthy and collaborators. Here we have
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Fig. 4.14. Triple differential cross section (4.206) for the reaction (4.223) in asym-
metric coplanar geometry as function of 62 for projectile energy Einc = 150 eV,
T>=3 eV and (a) 61 =4°, (b) 61 =10°, (c) 61 = 16°. The experimental points are
from [EK85] and from more recent measurements by Ehrhardt et al. The dotted
lines show the results of the Born approximation (4.217). The solid lines were cal-
culated using the formula (4.221) with the correct asymptotic form (4.219) for the
free three-particle Coulomb wave. They are normalized to the experimental data at
one point in each panel. The dashed lines show the results of the same calculation
for positron collisions (4.224). (From [BB89])
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Ty =T, 01 = 03 and ¢; — ¢ # 0, 7. In the framework of the impulse ap-
proximation, in which the electron to be ejected is treated almost as a free
electron, the triple differential cross section in non-coplanar symmetric ge-
ometry can be related to the wave function of the ejected electron before the
collision [MW76, MW88].

The calculations of [BB89] reproduce the angular dependence of the ion-
ization cross section quite well (Fig. 4.14), but they do not predict absolute
cross sections. In fact, the evaluation of absolute cross sections for the re-
action (4.223) has proved to be a very difficult problem over the years. The
integrated or total ionization cross section,

E 3
d°o
Te2¢(E) = /dnl/d-ﬁz/() dem ) (4.226)

was measured accurately as a function of energy by Shah et al. in 1987
[SE87], and many theoretical groups have since tried to reproduce these data.
The first calculation able to reproduce the absolute values and the shape of
the cross section (4.226) over an energy range extending from comparatively
small energies up to high energies was published by Bray and Stelbovics in
1993 [BS93]. In their method the Lippmann-Schwinger equation is solved in
momentum space in the spirit of the close-coupling expansion described in
Sect. 3.2.1, and the judicious choice of basis states representing the target
leads to convergent results, in contrast to some other close-coupling tech-
niques; for this reason the authors call their method the convergent close-
coupling (CCC) method.

The performance of the CCC method in reproducing the total ionization
cross section (4.226) is illustrated in Fig. 4.15. The open circles are the exper-
imental results from [SE87] and the solid line is the calculated cross section
from {BS93]. The calculation reproduces the experimental results well all the

e ~ o Shah et al
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pact on hydrogen. The open cir-
cles are the experimental results
from [SE87] and the solid line
is the cross section calculated
via the CCC (convergent close-
coupling) method [BS93]. The
short-dashed line shows the re-
sult of the Born approximation
(4.217), the long-dashed line is
from “intermediate energy R-
matrix” (IERM) calculation of
Scholz et al. [SW90], and the
+++ show the pseudostate cal-
culation of Callaway and Oza
[COT79]. (From [BS93])
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way from a bit above threshold (at 13.6 €V) to high energies where the Born
approximation (4.217) works well. The fact that reproducing the shape of this
curve has been no trivial matter is demonstrated by comparison with the less
successful results of other quite sophisticated efforts. The long-dashed line
in Fig. 4.15 is from an “intermediate energy R-matrix” (IERM) calculation
by Scholz et al. [SW90], and the points marked “+” were obtained by Call-
away and Oza [CO79], who calculated excitation probabilities of the target
hydrogen atom using a pseudostate expansion and extracted the ionization
probabilities from the continuum components of the pseudostates. The short-
dashed line in Fig. 4.15 shows the result of the Born approximation (4.217),
which becomes accurate only for energies above a few hundred eV.

The complexity of the two-electron problem in three-dimensional coordi-
nate space has encouraged investigations of simplified models of two-electron
atoms. On such model is the s-wave model, in which both electrons are re-
stricted to spherical states. The coordinate space for this model is spanned
by two variables, viz. the radial distances r; and 72 of the electrons from the
nucleus, and the potential energy is

2 2 2
V(ry,re) = (e Ze e (4.227)
71 T2 >

The reduction of variables from vectors in three-dimensional space to one-
dimensional variables ry, ro means that physical cross sections are reduced
to dimensionless probabilities. In a related but not entirely equivalent pic-
ture developed by Temkin and Poet [Tem62, Poe78]|, the three-dimensional
picture is retained, but the electron-electron interaction is truncated so as to
act only on the s-wave components of the one-electron wave functions, corre-
sponding again to the potential energy (4.227). The ionization probabilities
in the s-wave model were calculated by Ihra et al. [ID95] by solving the time-
dependent Schrédinger equation for wave packets with a small energy spread,
with this technique it is not necessary to know the (stationary) wave func-
tions for two continuum electrons. The resulting ionization probabilities are
shown in Fig. 4.16 together with the experimental ionization cross sections
of [SE87]; the spin averaged probabilities of the s-wave model (solid line) are
normalized to reproduce the experimental data at the maximum. Consider-
ing how hard it is for other approximate theories to reproduce the energy
dependence of the total ionization cross section (cf. Fig. 4.15), the agreement
between the ionization probabilities predicted in the s-wave model and the
data in Fig. 4.16 is remarkable. Since angular correlations are completely ab-
sent in the s-wave model, the good agreement in Fig. 4.16 shows that the net
effects of such angular correlations in the total ionization cross section must
be negligible over a wide range of energies. Note that the ionization cross
section calculated in the three-dimensional Temkin-Poet model based on the
potential (4.227) contains an additional factor proportional to the inverse
projectile energy, which describes the diminishing contribution of the s-wave
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to the incoming plane wave. Hence the experimental energy dependence of
the ionization cross section is not well reproduced in the Temkin-Poet picture.

4.4.4 Threshold Behaviour of Ionization Cross Sections

For total energies just above the break-up threshold E,, both outgoing par-
ticles in a break-up process must necessarily have small energies and wave
numbers, k; — 0, ks — 0. For short ranged interactions the “free wave”
w,(qk”)(R') in the break-up amplitude (4.196) is given by (4.190) and tends
to a constant in this limit. The same is true for the break-up amplitude,
unless the | = 0 components of the plane waves in (4.190) give vanishing con-
tributions to the matrix element in (4.196), or the matrix element vanishes
due to some other symmetry property. The energy dependence of the cross
section (4.206) near threshold is thus generally dominated by the factors k;
and k2, which are both proportional to K, according to (4.204), so the triple
differential cross section (4.206) depends linearly on the excess energy E— E,,
(4.183) in the limit of small excess energies. The integrated total break-up
cross section o, defined as in (4.226), acquires a further factor proportional
to E — E,, via the integration over T3 from zero to its maximum value (which
is £ — E,), so the energy dependence of the total break-up cross section is
generally given by

opnx(E-E.)?, E—E,, E>E, , (4.228)

as long as the forces on the outgoing particles are short ranged. Such sit-
uations are not so common in atomic physics (electron detachment from a
negative ion by a neutral projectile would be an example), but they are im-
portant in nuclear physics (e.g. neutron induced ejection of a neutron from a

nucleus).
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The situation is more complicated for electron impact ionization, be-
cause the “free wave” (4.190) does not contain the effects of the long-ranged
Coulomb interaction. It is instructive to look at what could be expected
if the correlation of the two continuum electrons were neglected, and the
“free wave” (4.190) were replaced by a product of two Coulomb waves, as in
(4.216). The low-energy behaviour (k — 0) of the radial Coulomb functions in
an attractive Coulomb potential can be deduced from (4.174) or from (A.45)
in Appendix A.4 and is seen to be proportional to [71=1/? « vk regardless
of the value of the angular momentum quantum number. This means that
Fy(n, kr)/(kr), which enters into the partial wave expansion of a free Coulomb
wave in place of the spherical Bessel functions in the expansion of the plane
wave, is proportional to 1/+v/k for all [. The break-up amplitude (4.196) is now
proportional to 1/v/k1ky for small k1, k2, so the differential ionization cross
section (4.215) becomes independent of energy near the ionization threshold.
After integrating over the energy of one of the outgoing electrons this leads
to the statement that the total ionization cross section depends linearly on
the excess energy near threshold, if (!) the correlations between the outgoing
electrons are neglected.

How these correlations affect the threshold behaviour of ionization cross
sections has been a topic of interest and controversy for almost half a century.
A pioneering study by Wannier from 1953 [Wan53] is still the valid reference
today. Wannier derived a threshold law for ionization by studying the volume
of classical phase space available to the two outgoing electrons. That this
is reasonable can be understood when considering that the classical limit
for Coulombic systems is at total energy zero, which is just the ionization
threshold in a system consisting of a projectile electron and a one-electron
target atom (cf. Sects. 4.1.3, 5.3.4(b)). Wannier’s derivation is based on the
recognition that, due to the electron-electron repulsion, the two electrons can
only both escape exactly at threshold if they move away from the nucleus in
opposite directions with equal velocities which tend to zero with increasing
separation. For small positive energies a small volume of classical phase space
opens to the ionization process, and carefully analyzing how this happens
leads to the following dependence of the total ionization cross section on the
excess energy E above the ionization threshold, now at E = 0:

1 /100Z — 9
Oe2e(E) x BV , vw = 1 ( Z-1 1) . (4.229)

This is Wannier’s threshold law. The Wannier exponent vw depends only
on the charge Z of the residual nucleus (or ion). Its value is 1.12689. .. for
Z =1, it is 1.05589... for Z = 2, and it approaches unity for Z — oo. This
is consistent with the result expected when neglecting correlations between
the outgoing electrons, an approximation which should become better and
better with increasing Z.

The experimental and theoretical investigation of the energy region near
the two-electron threshold is a field of continuing and intense activity, see
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e.g. [GL93] and references given there. Extensions have been formulated to
account for the difference between singlet and triplet coupling of the two
electron spins [KS76, GL93] and for ionization by positron impact [Kla81].
Wannier’s classical theory has been challenged frequently (see [Tem91] and
references given there), but it is still generally accepted as appropriate suf-
ficiently close to threshold. Various generalizations have extended the range
of energies above threshold within which the ionization cross section can
be fitted to a simple analytical form, both for electron induced [Fea93] and
positron induced [IM97a] ionization.

One widely studied simplification of the full two-electron problem is the
collinear model, in which both electrons are restricted to lie on opposite sides
on a straight line through the nucleus. The coordinate space for this model
is spanned by two variables, viz. the respective distances r; and ry of the
electrons from the nucleus, and the potential energy is

Zer  Ze? e?

Viry,rg) = —— — —

(4.230)
T1 T2 T+ T2

Classical ionization probabilities were calculated within this model by Rost
[Ros94], simply by initiating classical trajectories corresponding to an incom-
ing projectile electron and a bound target electron oscillating between the
nucleus and an outer classical turning point, and counting those trajectories
which asymptotically (i.e. after long times) describe two outgoing electrons.
The resulting ionization probabilities for electron impact ionization of hydro-
gen are shown in Fig. 4.17 (solid line) together with experimental data from
[MC68]. The dashed line shows the proportionality to E'127 expected from
Wannier’s threshold law (4.229). The solid and dashed lines are fitted to the
data at one point. Figure 4.17 illustrates two points. Firstly, the threshold
behaviour (4.229) is reproduced accurately for small energies, but the range
where this formula is relevant is quite small, and experimental verification or
falsification of Wannier’s law is difficult, because its deviation from a linear
behaviour is not very pronounced. (This difference is even less pronounced
for nuclear charges larger than one, but it is more pronounced in positron in-
duced ionization [IM97a].) Secondly, the collinear classical model reproduces
the energy dependence of the experimental (!) data well for energies up to
several eV above the ionization threshold. This indicates that the physics
determining the ionization cross section is already contained in the collinear
configuration, and it shows that classical dynamics determines the energy
dependence of the cross section well beyond the regime where Wannier’s law
(4.229) is applicable.

The convincing results in Fig. 4.17 may conceal the fact that the relation
between classical mechanics and quantum mechanics for Coulomb systems
near the break-up threshold is enriched with unexpected subtleties. If for
example we consider the unphysical case of a continuously varying nuclear
charge Z smaller than one, then (4.229) shows that the Wannier exponent
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tends to infinity as Z — 1/4.% Indeed, for Z = 1/4 two classical electrons at
equal distances on opposite sides of the nucleus feel no force at all, because the
attraction by the nucleus is exactly cancelled by the repulsion due to the other
electron. Recent calculations by Ihra et al. predict an exponential damping of
the ionization cross section by a factor proportional to exp (—const./E¥) in
this case, but the power v and the constant involved are different in the clas-
sical and quantum calculations [IM97b, CI98]. A further interesting example
is the s-wave model defined by the potential energy (4.227) in Sect. 4.4.3,
where ionization is forbidden classically but not quantum mechanically in
a finite energy interval above threshold [HD93]. A semiclassical treatment
based on Wannier’s picture predicts an exponential damping of the quantum
ionization probability in this case [MI97].

Problems

4.1 a) Verify the identity
1
lim a/ (14 2)f(z) 0= dg = 2if(1)
a—00 1

b) When we use the stationary scattering wave function (4.3) to calcu-
late the particle flux § j-ds through the surface of an asymptotically
large sphere, we obtain a contribution Ioy as in (4.9) and a contri-
bution linterf coming from interference terms between the incoming

5 The unphysical case Z = 1/4 is, however, equivalent to a situation in which two
particles of charge —4Z move in the field of a central particle of charge +Z,
which could be realized physically, at least in principle.
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plane wave and the outgoing spherical wave. Use the identity a) to
show that

Tintert = ; 2mi[f(§=0) — f*(6=0)] ,
which leads to the optical theorem (4.10).

4.2 Show that the free-particle Green’s function in three-dimensional coor-
dinate space,

ik|r—r’|

= H &

g(r, ') oh? |r — /| '

can be approximated by the expression (4.16) for r > r/,

ikr . , ’
g(’l‘,"") —_ H € I:e—lkrﬂr +0 <r_)] , kr — k._T_
T T

T onhZ 7

4.3 a) Calculate the density of states o(E) for plane waves of unit am-
plitude in three-dimensional coordinate space, ¥(k) = exp (ik-r),
E = h%k?/(2u). (Impose periodic boundary conditions in a cube of
length L and study the limit L — oo.)

b) Use the Golden Rule (2.139) to give an expression for the transition

probability per unit time from an initial state 1; into final states
consisting of the plane waves above with wave vectors pointing in
directions contained in the angular element df2.
Confirm the following observation: If the matrix element of the tran-
sition operator T' is related to the scattering amplitude f as in (4.18),
then the transition probability per unit time is just the differential
scattering cross section |f|? multiplied by the incoming current den-
sity hk/ .

4.4 Use the phase shifts (1.132) for elastic scattering by a hard sphere,
Ji(kro)

tan51 = —m

to discuss the dependence of the integrated scattering cross section (4.32),
_A4m > I . 2
o= —EEZ(Z + 1)sin“§;, ,
=0

on energy. Which partial waves [ contribute significantly to the cross
section at high energy E7

4.5 An electron at a distance r from an atom generates an electric field
E = er/r® at the position of the atom. An electric field of strength E
induces an electric dipole moment of d = agF in an atom with a dipole
polarizability aq. The force F' which a dipole of dipole moment d exerts
on an electron at a distance r is

F = (e/rs)[d —3r(r-d)/r?]



268 4. Simple Reactions

Show that an electron which is brought from infinity to a point at a

distance r from an atom with dipole polarizability a4 does the work
2 Od

W(r)=e 5rd

4.6 An electron (spin %) is scattered by a potential. Consider the solution
Y’ of the stationary Schrodinger equation with the boundary conditions
(4.105)

r_ ikz [0 ek (g'(6, )
w—ek (1)+ - <f,(0) ), T — 0

Show that the partial wave amplitudes f; and g; in the expansions

Trgy = / 4m

f(0)—§fm/—2l+le,o(9) )

96,0) =Y VT Dy 5o Yir-1(6,0)
=1

are given by formulae like (4.102),

= o (342) <] g o (%)

1 (14172 L (1-1/2)
g = 5k [exp (2151( / )) — exp (2161( / )]
Hint: Repeat the considerations following (4.96) for a z-component of the
total angular momentum m’ = —1/2 .

4.7 Consider a two-component spinor normalized to unity,
_(4 2 2 _
o= (5) . 14P+1BE -1
Show that the polarization vector P = (x|&|x) has the components given
in (4.112),
P, =2R[A*B], P,=29[A*B], P,=|A”-|B]?

& is the vector of the three Pauli spin matrices,

. (01 . (0 —i . (1 0
=1 0) T o) 7T 0 -1

Show that the projection 6p = P-& = P;6; + P,y + P,6, onto the
direction of P is given by

. (1A% - |B? 2AB*

TP = 24*B  |B?—|A%2)

and that the spinor |x) is an eigenstate of &p with eigenvalue +1.
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4.8 Consider the elastic scattering of two electrons with parallel spins (total
spin S =1). In the centre-of-mass system this corresponds to the scat-
tering of a particle of reduced mass u = me/2 in the repulsive Coulomb
potential e2/r. The indistinguishability of the two electrons leads to a
modification of the formulae for scattering amplitude and cross section.

a) Show that the Rutherford formula (4.69) for the differential cross
section is replaced by the following Mott formula,
doty _ 7* 1 1 cos (nIntan? 36)
d2 ~ 4k? |sin? 10 cost 16 sin” 10 cos? 16
b) Which orbital angular momentum quantum numbers ! contribute to
the partial waves expansion of the wave function?

¢) What changes in a) and b) if we consider the scattering of two elec-

trons whose spins are coupled to S = 07 Which differential cross sec-
tion do we observe in the scattering of unpolarized electrons?

4.9 Show that the Green’s function of the Helmholtz equation in n dimen-
sions,

13

K\ iHY (K|x — z'|)
N ) = A2 2l =
Glx, ) = (27r) 4|z — x'|¥ ’ 2 ’
fulfills the defining equation

(K% + A,)G(x, ') = 6(xz — ')

Here H,El)(g) is the Hankel function of order v (Appendix A.3). It is a
solution of Bessel’s differential equation

d2u)+1dw+ lfﬁ w0
de? ~ ode )
with the boundary conditions

. —o I'(V) fo0\~¥ . - 2i el
(o) = S (G e =T

4.10 Evaluate the integral

o0 R 2 2 2
I, = / dzy--- / de‘n e F17 T2 T
—00 —0Q

in two different ways: (i) as a product of n one-dimensional integrals,
(ii) by transforming it into a radial integral. Show that this leads to the
following formulae for the surface S,(R) and the volume V,,(R) of the
n-dimensional sphere of radius R:

2,n,n/2 71'"/2

Tm Rn—.l N Vn(R) ey e—— Rn
2

Sn(R) = TE+D
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4.11 Two displacement vectors r1 and 7, are described in hyperspherical
coordinates by the length R of the six-component vector (71, 72) and the
five angles 017 ¢17 027 ¢27 «,

r1 = Rsinasinfy cos¢y , T2 = Rcosasinfycosgpy
y1 = Rsinasinfysing; , y2 = Rcosasinfzsings

z1 = Rsinacosf; ,

2o = Rcosacosfy

where « = 0,... 5,60, =0,... mand ¢; = 0,... 2m.

a) Show that the hyperspherical angular element d{2, is given by

df2, =sin? a cos® adadi?; di2,
= sin? o cos? a da sin 81 dd; d¢y sin 6, dfy depo
b) The surface S, of an n-dimensional sphere of radius R is given by
(Problem 4.10)
S = 27r71/2 n—1
=
r'g)
Verify that integration over the hyperspherical solid angle 2, gives
the correct result for n=6, namely 3.

4.12 a) Determine the length and the direction of the momentum transfer
vector (4.225), q = k1 — k;, for the (e,2e) reaction in asymmetric
coplanar geometry with the parameters of Fig. 4.14.

b) Determine the length and the direction of the momentum transfer
vector g for the (e,2e) reaction (4.223) in symmetric coplanar geom-
etry (61 = 02, Ty = T3) with incoming kinetic energy Ei,c = 150 eV.
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5. Special Topics

The last few decades have seen great advances in experimental atomic physics.
Exotic states of atoms can be prepared with the help of intense and short
laser pulses, experiments can be performed on individual atoms and ions in
electromagnetic traps and the dependence of their properties on their envi-
ronment can be studied, and the advent of high resolution laser spectroscopy
has made precision studies of the finest details of complicated atomic spectra
possible. These developments have focussed our attention on effects and phe-
nomena which used to be regarded as small perturbations or special cases of
no experimental relevance. The experimental advances have confronted the
theory with new challenges. It has become apparent that intricate and in-
teresting effects can occur even in seemingly simple systems with only few
degrees of freedom, and that their theoretical description often is by no means
easy. Complementary to high precision spectroscopy, the availability of ultra-
short light pulses of a few femtoseconds duration has made it possible to
study highly localized excitations in atoms and molecules and follow the evo-
lution of wave packets on an atomic scale. The availabity of ultra-cold atoms
has made experimental tests of fundamental postulates of quantum mechan-
ics possible, and it has led to the realization in the laboratory of atomic
Bose-Einstein condensates.

In order to describe multiphoton processes, which typically occur in in-
tense light fields, it is necessary go beyond traditional perturbative treatments
of the interaction of atoms with light. This is the subject of Sect. 5.1. The
power of classical and semiclassical methods in understanding and describing
structure and dynamics on an atomic scale has become increasingly appar-
ent since the mid-1980s. Section 5.2 presents a brief discussion of how far
the concept of coherent wave packets moving along classical trajectories can
be formulated in a quantum mechanically consistent way, and Sect. 5.3 de-
scribes recent advances in our understanding of the relation between classical
and quantum dynamics, in particular for the interesting case that the classical
motion is chaotic. Finally, Sect. 5.4 is devoted to the subject of Bose-Einstein
condensates of atomic gases, which were prepared and observed for the first
time in 1995 and immediately recognized as an abundant source of exciting
new physics.



274 5. Special Topics

5.1 Multiphoton Absorption

The description of electromagnetic transitions in Sect. 2.4 is based on the
assumption that the interaction of the electromagnetic field with an atom
can be regarded as a small perturbation. This justifies applying first-order
perturbation theory in the form of the Golden Rule and yields probabilities
for transitions in which one photon is absorbed or emitted (Sect. 2.4.4). Tran-
sitions in which two or more photons are absorbed or emitted simultaneously
only become important in very strong fields. Nowadays such strong fields can
be produced by very intense lasers, and the investigation of atomic processes
in the presence of a laser field, in particular of multiphoton processes, has
become a very important subfield of atomic physics and optics. A summary
of experimental and theoretical work up to the early eighties is contained
in [CL84]. For comprehensive monographs see [DK85, Fai86]. More recent
developments are also summarized in [SK88]; see also [NC90, Gav92, DK94].

5.1.1 Experimental Observations on Multiphoton Ionization

If the energy of a single photon is smaller than the ionization potential of
an atom (in a given initial state), then photoionization can only proceed via
the absorption of several photons. The intensity of the laser determines how
much electromagnetic field energy is available in the immediate vicinity of the
atom (see Problem 5.1). Laser powers can be typically near 1013 W/cm? with
pulses lasting for nanoseconds. Early experiments on multiphoton ionization
involved just counting the ions created by a strong laser pulse. An example
is shown in Fig. 5.1, where strontium atoms were exposed to the pulses of a
Nd:YAG laser (=neodymium:yttrium-aluminium-garnet). The wavelength of
the laser light is 1.064 um corresponding to a photon energy of iw=1.165 eV.
At least five photons are needed to ionize a strontium atom; at least fifteen
photons are needed to eject two electrons [FK84].

The number of ions as a function of the laser intensity I follows a straight
line over large stretches in the doubly logarithmic representation of Fig. 5.1,
which indicates a power law. Extending the perturbation theory of Sect. 2.4
to higher orders gives the probability P(n) for absorbing n photons in lowest
non-vanishing order as

Pn)xI™ . (5.1)

The expected proportionality to I° for singly ionized strontium is well fulfilled
in Fig. 5.1, but the probability for double ionization rises more slowly than
the minimum number (fifteen) of photons would suggest. The deviations from
the straight lines at higher intensities in Fig. 5.1 can be attributed to a
saturation effect which occurs when all atoms in the region hit by the laser
pulse are ionized. The applicability of lowest-order perturbation theory is
limited to non-resonant absorption. Resonance effects involving appropriate
intermediate states can make the picture much more complicated [TL89].
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10000 = Fig. 5.1. Numbers of Sr* and Sr*+
- ions observed in multiphoton ionization
— by a Nd:YAG laser (hw =1.165 eV) as
B functions of the laser intensity. (From
[FK82])
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The general interest in multiphoton ionization grew rapidly after first in-
vestigations of the ejected electrons revealed that these could have kinetic
energies much larger than expected for absorption of the minimum number
of photons necessary. A first explanation of these observations was that an
electron already excited into the continuum could acquire a higher final ki-
netic energy by the further absorption of photons. This picture corresponds
to ionizing an atom out of a continuum state and has led to the rather unfor-
tunate name of above threshold ionization (ATI). A more appropriate name
is excess photon ionization (EPI), which merely expresses the observed fact
that electrons absorb more photons than necessary for ionization and refrains
from further interpretation.

Figure 5.2 shows ATI or EPI spectra for the ionization of xenon by pho-
tons from a Nd:YAG laser (fiw=1.165 eV) at four different laser intensities.
The minimum number of photons needed depends on whether the Xe* ion is
left behind in one or the other of two states energetically separated by 1.31
eV. If the ion is left behind in the lower P;/, state, which corresponds to the
ejection of an electron from a 5pg/y state, then at least eleven photons are
needed; for a Xe% ion in the Py, state corresponding to ejection of a 5py /9
electron we need at least twelve photons. The asymptotic kinetic energy of
an electron after absorption of n photons is just the difference of nhw and
the ionization potential Ip,

Eyin(n) = nhw —Ip . (5.2)



276 5. Special Topics
P2 — . . : : . . Fig. 5.2. Energy spectra qf
Pyp Mot 13w s v w1 1 ® electrons ejected in the multi-
we 11 2 13 e s w1 1 photon ionization of xenon by
4 R ' T ) a Nd:YAG laser (hw = 1.165
REA T 32aJ eV) for various intensities (=
3r w2l 0.004Ps
PN ST KA number shown as mJ X 2 x
2r # : i 10'2 [W/cm?]) and pressures.
¥ % The asymptotic kinetic energy
Ve expected according to (5.2)
° Bl : ? for electrons having absorbed
o n photons is shown for the
h 22aJ two ionization channels at the
3r Vo 0.16Ps
~ IR . top edge of the figure. (From
;o , ~ . 4
?‘ 2r “) l| :.‘ . "! '.-" : [KK83])
3, R I T S A R 4
el 2" =N [ ‘: | PR -
g o - i RJ PSR \'/‘ 4
2 i 17 md
&3¢ i 2.8Ps
® : i
2F I o K h
Hy 8 o~ N
‘. o) &
i P I h
LS £ S
> £ e N2 P 's:o,"r“\f,ﬁ""
. 12md
3r g 40Ps |
i
2 iy 1
CRAN R
VE e .
e s et
0.0 2.0 1.0 6.0 8.0 10.0

ELECTRON ENERGY (aV)

These energies are shown at the top of Fig. 5.2 for the two ionization chan-
nels. The maxima in Fig. 5.2 show appreciable absorption of up to eight
excess photons. The figure also shows features which have been established
as characteristic in the course of many further experiments. Amongst these
are the observation that the relative probability for absorbing a larger num-
ber of excess photons increases with increasing laser intensity, and that the
probability for absorbing no or only one excess photon is smaller than the
probability for absorption of a larger number of excess photons at sufficiently
high intensity (see also Fig. 5.3 below).

Whereas perturbative methods may be applied to multiphoton ionization
as long as the field strengths are not too high, they are not appropriate for de-
scribing the non-monotonic dependence of the heights of the absorption peaks
on the number of excess photons. (For a discussion of perturbative methods
see [Cra87, Kar91].) The explanation of simple-looking spectra such as those
in Fig. 5.2 is already a serious challenge to theory. Further experimental data
such as angular distributions of the ejected electrons have become available
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[FW88], and they should enable us to sort out the merits of various theoret-
ical approaches. The following two sections briefly sketch two examples of a
non-perturbative description of multiphoton ionization. Both sections treat
the example of an atom in a spatially constant monochromatic field. Further
complications arise when considering the finite temporal duration of a light
pulse and the rise and fall of its intensity explicitly. Large scale numerical
calculations which directly solve the time-dependent Schrodinger equation
have been quite successful in such situations, see e.g. [KS97] and references
given there.

5.1.2 Calculating Ionization Probabilities via Volkov States

Consider a one-electron atom in an oscillating electromagnetic field described
by a vector potential A. In the radiation gauge (2.150) the vector potential
for light polarized linearly in the z-direction is

A(r,t) = —Apegsinwt . (5.3)

For right or left circular polarization around the z-axis we have

Ao
A(r,t) = ———= (ep sinwt F e, coswt) . 5.4
(r,1) ﬂ( z Fey ) (5-4)
According to (2.148) the associated electric field E for linear or circular
polarization is

E(r,t) = Eye, coswt , or

E
E(r,t) = —2(eg coswt + eysinwt) . (5.5)

V2

In both cases the amplitudes Ey and A, are related by
Ey = %AO . (5.6)

Since the wavelength of the laser light is much larger than typical spatial
dimensions of the atom, we can assume a spatially homogeneous field, i.e.
constant amplitudes Ey, Ag (dipole approximation). The Hamiltonian is (cf.
(2.151))

g (/oA P |
2p
Apart from the vector potential A it also contains the static potential V (r)

describing the interaction of the electron with the residual ion in the absence
of a laser field.

If we decompose the Hamiltonian (5.7) into an atomic part p2/(2u) + V
and an additional term H; due to the laser field, then

e2

vir) . (5.7)

m=SAp+

AT
ue 2uc? (5:8)
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The technique of using a Green’s function to formally solve a Schrédinger
equation, which was repeatedly demonstrated in Chap. 4, can be generalized
to the time-dependent Schrodinger equation

L0 :
1h§¢(r,t) = Hi(r,t) (5.9)

(see e.g. Appendix A of [Rei80]). This yields an implicit expression for
the probability amplitude ag describing a transition caused by the time-
dependent interaction (5.8), in which an initial atomic state Yi(r,t) =
#i(r) exp [—(i/h)Eit] evolves into a final state e(r,t), which is a solution
of the full Schrédinger equation (5.9),

ap = %/ (| Haln) dt (5.10)

If the ionization limit of the field-free atom is at E =0 then the (negative)
energy eigenvalue E; of the initial bound state is just minus the (positive)
ionization potential Ip, which has to be overcome for ionization out of this
state.

The formula (5.10) looks similar to the expression (2.134) for transition
amplitudes in time-dependent perturbation theory. In contrast to this ex-
pression, however, (5.10) is exact (like analogous formulae (4.17), (4.140) in
time-independent scattering theory), provided the final state wave function
¢ really is an exact solution of the Schrodinger equation.

In an approximation originally due to Keldysch and developed by Reiss
[Rei80), the exact solution %¢ in (5.10) is replaced by solutions of the
Schrodinger equation for a free electron in a laser field. The bra of the
matrix element in (5.10) then contains a solution of the (time-dependent)
Schrédinger equation including the atomic potential but without a laser field,
while the ket contains a solution of the Schrédinger equation containing the
laser field but no atomic potential. For a spatially homogeneous monochro-
matic laser field these latter solutions are known analytically and are called
Volkov states.

In the absence of an atomic potential the Hamiltonian (5.7) is

- ) A(r,t)]?
fo_ P (/IACDE .11
2p
For linearly polarized light (5.3) we have
. =2 2 42
=P o s nwt+ S8 sinwt (5.12)
2u  pc 2uc?

and it is straightforward to verify that the following Volkov states are solu-

tions of the time-dependent Schrédinger equation:
hk? ., €A
Py (r,t) =exp [ik-r — iEM— t— lkxw_u% coswt

i e2AZ [t 1
<_ - sm?wt)] . (5.13)

T ho2pe® \2
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For circular polarization (5.4) we have

52
. P edo . . e A2
Hy="— - — p 9
0= 3, Vone (Pz sinwt F py coswt) + e (5.14)
and the corresponding Volkov states are
2
Yv(r,t) =exp lik-r — iﬁk—t
2u
. er . i 62A(2)
1\/§qu (kz coswt + ky sinwt) — 7 22 (5.15)

The Volkov states (5.13), (5.15) look like ordinary plane waves with an
additional oscillating phase,

Yv = explik-r — (i/R)Evt + Gosc)

The oscillating phase describes the wiggling of the electron in the oscillating
field. In the energy there is an additional term which is constant in space and
time and depends quadratically on the amplitude of the field. It is called the
ponderomotive energy Ep,
21.2
By = Wk +Ep EpzezA?):ezEg
dpc?  duw?

(5.16)

The Keldysch approximation allows an analytic evaluation of the integral
in (5.10). In the case of circular polarization (5.15) we obtain the following
expression for the probability per unit time that an electron is ejected into
the solid angle df2:

dP o0 2 .
0 = E (n—- %) Vv —e|di(k)|2 J? (ZSinG\/%\/n—s) ,
n=no (5.17)

where J,, is the ordinary Bessel function (Appendix A.3). The quantity ¢ in
(5.17) stands for the sum of the ionization potential and the ponderomotive
energy in units of the photon energy fw,

P Iy + Ep
== - (5.18)

@i(k) is the F(.)urier transform of the spatial part of the initial wave function
qﬁ.i(r)7 and 6 is the angle between the wave vector k and the z-axis. The
right-hand side of (5.17) depends only on the direction of the outgoing wave

vector k (more precisely: only on the polar angle 6); the length of k is fixed
by energy conservation,

R2k?
2u

Thg summation index n stands for the number of photons absorbed in the
ionization process. The summation in (5.17) begins with the smallest number

=nhw— (Ip + Ep) = (n —e)hw . (5.19)
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no for which n—e is positive. Note that the energy to be overcome consists of
the ionization potential Ip plus the ponderomotive energy Ep. More energy
is needed to ionize the atom in the presence of the electromagnetic field.

A formula like (5.17) can also be derived for linearly po}arized light (.see
[Rei80]). Expressions similar to (5.17) were already found in 1973 by Faisal
[Fai73). ' . _

The Keldysch approximation is quite successful if the atomic poFentlal.V
is very short ranged [BM89]. In realistic situations the Keldysch-.Falsal—R'elss
(KFR) theory is not always so successful in describing the multiphoton ion-
ization data quantitatively [Buc89]. This may be due to the fa(.:t that the
effect of the static long ranged Coulomb potential between the ejected elec—'
tron and the residual ion is not included. Furthermore, the consequences of
the Keldysch approximation are not gauge invariant. The KFR theory nev-
ertheless is able to reproduce some of the qualitative features of the ’enell‘gy
spectra of the ejected electrons. As an example Fig. .5.3 shf)ws ionlz.atlon
probabilities (5.17) integrated over all angles in comparison with experimen-
tal spectra from the multiphoton ionization of xenon by c1rcularlylpolar1zed
pulses from a Nd:YAG laser. The calculated ionization probabilities ha..ve
been decomposed into contributions from various photon numbers n which
are related to the energy of the ejected electron via (5.2).

Fig. 5.3. The upper picture
shows angle integrated ioniza-
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If the duration of the laser pulses is not too short, the energy of the photo-
electrons registered in the detector is given by (5.2) and the ponderomotive
energy need not be subtracted. The reason lies in the fact that the field
strength and hence the ponderomotive energy, which are regarded as constant
over a few wavelengths of the laser, fall off from their respective maximum
values to zero over a distance corresponding to the spatial extension of the
pulse. The resulting gradient of the ponderomotive energy exerts a force on
the electron, the ponderomotive force. After absorbing n photons the electron
leaves the atom with a kinetic energy given by (5.19). The ponderomotive
force then accelerates the electron away from the centre of the pulse so that
it reaches the detector with the asymptotic kinetic energy given by (5.2).
Such acceleration due to the ponderomotive force can also be observed in
different contexts, e.g. in the scattering of free electrons by a strong laser
pulse [Buc89]. For very short laser pulses (shorter than picoseconds) the laser
field has subsided before the acceleration by the ponderomotive force becomes
effective, and the energy shifts due to the ponderomotive energy in (5.19),
which can also be interpreted as ac Stark shifts of the bound state energies
(see Sect. 3.4.3), are observed in the detectors [RW90a, DP90].

5.1.3 Calculating Ionization Probabilities via Floquet States

This section briefly sketches the use of the theory of Floquet states intro-
duced in Sect. 3.4.3 for the non-perturbative treatment of multiphoton ion-
ization. For more details the reader is referred to an article on this subject
by Potvliege and Shakeshaft [PS92].

In the field gauge (3.211) the Hamiltonian H for an atom in a spa-
tially constant and monochromatic field is the sum of the time-independent
Hamiltonian Hy for the field-free atom and an additional potential oscillat-

ing with the circular frequency w. As discussed in Sect. 3.4.3 we can use the
ansatz

Y =exp[—(i/h)et] Pe(t) , P(t+2m/w) = D(t) (5.20)

to reduce the time-dependent Schrédinger equation to an eigenvalue equation
for the generalized Hamiltonian

~ - 0

H=H iz (5.21)
(cf. (3.213), (3.214)). The eigenvalues of (5.21) are the quasi-energies £, and
the associated solutions (5.20) are the Floquet states or quasi-energy states.
In a monochromatic field the Hamiltonian including the atom-field interaction
has the general form

H=Hy +Wewt + Whe vt | (5.22)
and the precise nature of the time-independent coupling operator W depends

on polarization and gauge. If we express the periodic time dependence of the
®. in terms of a Fourier series,
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&, = Ze_inWtwe,n , (523)

then the eigenvalue equation for the generalized Hamiltonian (5.21) becomes
a set of time-independent coupled equations for the Fourier components ¢ n,

I:IAws,n + W¢e,n+1 + W‘we,n—l = (e —nhw)en . (5.24)

Potvliege and Shakeshaft solved the coupled equations (5.24) numerically
for the case that Ha describes a hydrogen atom [PS89]. This involves the con-
sideration of asymptotic (r — oo) boundary conditions whose explicit form
depends on the choice of gauge. The calculations yield complex eigenvalues

g1 =B+ 4, — i% ) (5.25)

where E; are the energy eigenvalues of the field-free hydrogen atom, and
A; are real energy shifts which should become the ac Stark shifts (3.221)
in the weak-field limit. The origin of the imaginary part in (5.25) is that
each initially bound state can couple to and decay into continuum states for
sufficiently large n, i.e. by coupling to a sufficient number of photons. As a
consequence the absolute square of the wave function of the Floquet state
decreases proportional to exp(—I3t/h) corresponding to an ionization rate
per unit time of I3/ (see also [PS90}). Figure 5.4 shows I/A for ioniza-
tion from the 1s ground state of the hydrogen atom by a linearly polarized
Nd:YAG laser (hw=1.165 V) as a function of the laser intensity. The dashed
lines show for comparison the results of lowest non-vanishing order pertur-
bation theory for ionization by n=12 or n=13 photons. The resonance-like
structures in the non-perturbative curve occur when the quasi-energy of the
Floquet state which corresponds to the 1s state of the H atom in the field-free
limit crosses or almost crosses the quasi-energies of other states as the laser
intensity is varied.

One remarkable feature of Fig. 5.4 is that the non-perturbative result,
which includes ionization by an arbitrary number (at least twelve) of pho-
tons, lies substantially lower than the perturbative ionization probabilities for
exactly twelve or exactly thirteen photons. The authors of [PS89] conclude
that perturbative treatments can overestimate the probability for ionizing an
atom in a strong laser field by orders of magnitude. Perturbative methods
have, on the other hand, been successful in reproducing the angular dis-
tributions of the photo-electrons. Figure 5.5 shows angular distributions of
electrons ejected in the multiphoton ionization of hydrogen by photons with
an energy of 3.5 eV. The minimum number of photons needed for ionization
is four. The various parts of the figure correspond to absorption of up to
three excess photons. The perturbative calculation reproduces the measured
angular distributions quite well in all cases.
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Fig. 5.4. Probability per unit time for ionization of a hydrogen atom from its 1s
ground state by a strong laser field with the Nd:YAG frequency (fw=1.165 V) as
a function of the laser intensity. The dashed lines show the results of perturbation
theory in lowest non-vanishing order (5.1) for the absorption of n=12 (S =0) or
n=13 (S=1) photons. (From [PS89, PS92])
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ionization of hydrogen by
photons with an energy of 3.5
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of a perturbative calculation,
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5.2 Classical Trajectories and Wave Packets

So far in this book atomic phenomena have been described mainly on the
basis of quantum mechanics, which is undoubtedly remarkably successful in
this regard. Many effects which are correctly and satisfactorily described by
quantum mechanics can already be largely explained within the framework
of classical mechanics, which is frequently considered easier to understand
and visualize. It thus makes sense to compare the two theories, to establish
the correspondence of classical and quantum mechanical descriptions and to
highlight the genuine quantum effects which cannot be explained classically.

5.2.1 Phase Space Densities

In classical mechanics a physical system with f degrees of freedom is described
by a Hamiltonian function H(qi,... gs;p1,- .- ps;t) which depends on the f
coordinates ¢;, on f canonically conjugate momenta p; and perhaps also on
the time (see textbooks on mechanics, e.g. [Gol80, LL71] or [Sch90]). The
temporal evolution of the system is described by a trajectory (g;(t), p:(t)) in
phase space. The trajectory is a solution of the following system of 2f coupled
ordinary differential equations:

. _OH . OH

qi Op; y  Pi 94;
These are the canonical equations of classical mechanics. The initial con-
ditions ¢;(to), pi(to) uniquely determine the evolution of the system for all
times.

If we don’t know the state of the system at time ¢ exactly, we can describe
it by a classical phase space density pa1(gi, pi; to)- It is the probability density
for finding the system in the state g;, p; at time to. Being a probability density
o<1 cannot be negative, and its integral over all possible states in phase space
must be unity at all times,

/df(h/dfpi oalgi,pist) =1 . (5.27)

We obtain an equation of motion for the classical phase space density by
realizing that the probability for a state of the system cannot change along a
trajectory in phase space, because this just describes the evolution of the sys-
tem. This means that g (gi(t), pi(t);t) must be constant in time if ¢;(t), p:(t)
are solutions of the canonical equations (5.26),

d a doal 90l )
— . (1):t) = 75— )i - =0 . 5.28
az .ch(‘]z(t)vpl(t): t) ; (q' Bq; +p Ip; ) + at ( )

(5.26)

Inserting the expressions given by the canonical equations (5.26) for ¢; and
p; into (5.28) and writing the resulting sum as a Poisson bracket,
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N
def OH 69(:1 OH anl
H = =
{H, 0} ; (3pi dq;  Oq Op;) (5.29)
reduces (5.28) to the compact form
9ga
— —{H, o4} . .
S — —{H,ea} (5:30)

Equation (5.30) is the equation of motion for the classical phase space density
in a system described by the Hamiltonian function H, and it is called the
Liouville equation.

For simplicity we now consider a system consisting of a particle in a
conservative potential in three spatial dimensions. The Hamiltonian function
is

p?

H(r,p) = 5; +V(r) , (5.31)

and the Liouville equation has the form

a
EQCJ(T,P; t) = _5 Vi Qa1 — F(T) . vp Ocl , F("‘) = —V,-V(?’) . (532)

It describes the flow of g in phase space under the influence of the inertial
term (the first term on the right-hand side) and a field of force F'.

In quantum mechanics we describe the state of a system by a wave func-
tion |1 (t)) which (in coordinate representation) is a function of the displace-
ment vector, 1(r,t), and should be normalized to unity. The time evolution
of 1) is determined by the Hamiltonian operator H and is described by the
time-dependent Schréodinger equation,

., 0 -
ihel) = HIy) (5.33)

We can alternatively describe a pure state |¢) by the associated density
operator

o(t) = [ () {v(t)| (5.34)
(cf. Sect. 4.2.3). In coordinate representation the density operator is an inte-
gral operator with the integral kernel

o(r,v';t) = ¥(r, t)yp*(r',t) . (5.35)
The quantum mechanical wave function in momentum representation is a
function 1 depending on the momentum variable p, and it is related to the
wave function ¥(r,t) in coordinate representation by a Fourier transforma-
tion:

Dp.t) = g [ TN 0 dr (5.:30)

In momentum representation the density operator for the pure state (5.34)
has the form

o(p,p'it) = Y(p, )V (P, t) . (5.37)
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A mixed quantum mechanical state is described by an incoherent super-
position of pure states with (non-negative) probabilities w, (see Sect. 4.2.3),

6(t) = > wa [ () (W (D] (5.38)

and its coordinate and momentum representations are corresponding gener-
alizations of (5.35) and (5.37) respectively.

If the wave function |1(¢)) of a pure state (5.34) or the wave functions
[ (t)) of the mixed state (5.38) fulfill the time-dependent Schrodinger equa-
tion (5.33), then the associated density matrix fulfills the von-Neumann equa-
tion

0o i . .

2 = R d (5.39)
Here [ﬁ, g = Hb— pH is the commutator of H and § as usual. The von-
Neumann equation (5.39) for the quantum mechanical density operator has
the same form as the Liouville equation (5.30) for the classical phase space
density if we identify the Poisson bracket in the classical equation with (i/h)
times the commutator of quantum mechanics.

The similarity between classical and quantum mechanics becomes more
apparent if we represent the density operator, which depends on two displace-
ment vectors in coordinate representation and on two momentum vectors in
momentum representation, by its Wigner function g, (R, P;t), which de-
pends on one displacement vector and one momentum vector. We obtain the
Wigner function of g either from the coordinate representation o(r,r';t) by
a Fourier transformation with respect to the variable r — 1/, or from the mo-
mentum representation §(p,p’;t) by a Fourier transformation with respect
to the variable p — p’,

1 i K] S
ow (R, P;t) = (E?h)_ff/e ‘P”/F‘g<R+ 5 R- 5;t) ds
- ﬁ /e+1ﬂ'q/ﬁ§ (P+ 52’-,1) - g;t) dg . (5.40)
The Wigner function (5.40) is real, because the density operator is Hermitian.
The coordinate or momentum representation of the density operator can be
recovered from the Wigner function by inverting the corresponding Fourier
transformation in (5.40).

The Wigner function has several properties reminiscent of a classical phase
space density. Integrating over the momentum variables yields the (quantum
mechanical) probability density in coordinate space, e.g. for the pure state
(5.34),

/ 0w (R, P;t)dP = o(R, R;t) = [(R, D . (5.41)

Conversely, integrating over the spatial variables yields the quantum mechan-
ical probability density in momentum space,
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/ ow(R, P;t)dR = §(P, P;t) = [{(P,t)]* . (5.42)

Integrating the Wigner function over the whole of phase space we obtain the
conservation of total probability (cf. (5.27)),

[ew® Pityarar= [P R

:/|¢(P,t)|2dP: 1. (5.43)

However, the Wigner function is also different from a classical phase space
density in some crucial aspects. In particular, the values of the function can
be negative, and it is only after integrations such as in (5.41)-(5.43) that
genuine probability interpretations become possible.

We obtain an equation of motion for the Wigner function by formulating
the von-Neumann equation (5.39) in the Wigner representation. We assume
a Hamiltonian operator

H=T+V, T=—, V=V({) . (5.44)

The Wigner function [T, 0]w of the commutator of T and § is most easily cal-
culated by Fourier transformation from the momentum representation (lower
line (5.40)),

s +irq/n L 9\ 7y’
78 = orpys /dqe 20 (P+2> - (P—z)
- q q )\ _hP .
xg(P+2,P~5,t)—;ZVRQW(R,PJ) . (5.45)

The Wigner function for the commutator of the potential energy and ¢ is
more easily calculated by Fourier transformation from the coordinate repre-
sentation (upper line (5.40)),

b= g fane o v (R ) v (- 5)]

] s
R+—- R——; .
Xg( +5.R 2,t) (5.46)
The Wigner representation of the von-Neumann equation now reads
0 ifos . P
agw = 5 ([T»Q]w + [V’Q]w) ) (5.47)

with the two terms [T, 8], and [V, g, given by (5.45) and (5.46) respectively.
The kinetic energy term given by (5.45) has the same structure as the inertial
term in the classical Liouville equation (5.32). The potential energy term
acquires the same structure as the contribution due to the force-field in (5.32),
if the potential V(R £ 8/2) in (5.46) is expanded to second order in a Taylor
series about V(R),
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s 8%V
V(Ri§) V(R)j: Zs-VRV(R Zss]aRzaR ... (5.48)

If we insert the expansion (5.48) into (5.46) the even terms vanish and the
Wigner representation of the von-Neumann equation becomes

ot

The dots on the right-hand side of (5.49) stand for contributions from cubic
and higher terms in the expansion of the potential (5.48).

For potentials depending at most quadratically on the coordinates the ex-
pansion (5.48) is exact and the quantum mechanical von-Neuman equation in
Wigner representation is identical to the classical Liouville equation (5.32).
A Wigner function given at a certain time ¢¢ will thus evolve in phase space
exactly as if it were a classical phase space density obeying the Liouville equa-
tion, provided the potential contains no anharmonic terms. Many phenomena
which are often taught as typical examples of quantum mechanical behaviour,
such as the dispersion of a wave packet describing free particle motion, can
be completely understood classically. If in the case of a free particle an initial
probability distribution containing a spread of momenta disperses in coor-
dinate space in the course of time, then this is not a quantum mechanical
effect, just think e.g. of a 100-metre race with athletes running at different
speeds. The uncertainty relation of quantum mechanics does, however, forbid
an initial state with a finite uncertainty in coordinate space together with a
sharply defined momentum as would be necessary — both classically and in
quantum mechanics — to avoid dispersion of the probability distribution in
coordinate space. (See Problem 5.2.)

0 P
—ow(R,P;t) = —z'VRQw-i-VRV(R)'VpQW 4. . (5.49)

5.2.2 Coherent States

The concept of coherent states is useful for the description of the time-
dependent motion of wave packets, in particular if the Hamiltonian is the
Hamiltonian of a harmonic oscillator. To keep formulae simple we restrict
the discussion in this section to a one-dimensional harmonic oscillator,

2 92 .
12 2 2 h 8 /“’w2x2 . (550)

H= Q,u + 2¥ 2u Oz? + 2
(For a discussion of coherent states of a three-dimensional harmonic oscillator
see [AB91}].)

The eigenvalues of the Hamiltonian (5.50) are E, = (n + 1/2)fw, n=
0,1, 2,.... The associated eigenstates (normalized to unity) are [n), and in
coordmate representation they are polynomials of degree n multiplied by a
Gaussian. The ground state wave function consists of this Gaussian alone,

10) = olz) = (By/m) " V2e = /@D (5.51)
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According to (1.83) the natural oscillator width 3 is related to the oscillator
frequency w by
h

b=\ (5.52)

In momentum representation the ground state wave function is also a Gaus-
sian (cf. (5.36)),

Po(p) e~ 7%/ hyy(z) dz

1
T \V2nh
= (VTh/B)~ V2 e P B/ (2R (5.53)
We define the operators
pwz + ip Bt = pwx — ip
V2pfw T 2w

The commutation relations for b and b' follow from the commutation relations
(1.33) for position and momentum,

[b,b] =1 . (5.55)

b= (5.54)

The Hamiltonian (5.50) has a very simple form if it is expressed in terms of
the operators bi, b,

H=hw(bb+1/2) . (5.56)

From (5.55), (5.56) we obtain the commutation relations between bt or b and

(H,b") = hwbl | [H,b) = —hwb . (5.57)

It follows from the first equation (5.57) and the commutation relation
(b,bt] = 1 that the operator b transforms the eigenstate |n) of H into the
eigenstate |n + 1) (except for a normalization constant), i.e. bt is a quantum
creation operator. In the same way it follows from the second commutation
relation (5.57) that b is a quantum annihilation operator which transforms
the eigenstate |n) into an eigenstate with n — 1 quanta. Together with the
correct normalization and phase convention we have

bln) = vnin—1), bny=vn+1ijn+1) (5.58)

(see also Problem 2.6). bth is an operator which just counts the number
of oscillator quanta excited in the eigenstates of the Hamiltonian (5.50) or
(5.56),

btbin) = nin) . (5.59)

The coherent states |z) are defined as superpositions of eigenstates of the
Hamiltonian (5.50),
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= ey E L) = o268 (5.60)

where z is an arbitrary complex number. The states (5.60) are normalized to
unity,

n oo

(z]z) = 717 Z \/W (njn’) = e~ 1=I" Z , (5.61)

but they are not orthogonal‘ The mean number of quanta excited in the
coherent state |z) is

(zlb'blz) = |2 (5.62)

(see Problem 5.3).
In order to obtain the wave function of the coherent state |z) in coordinate
representation, we start from the second equation (5.60). We can factorize

the operator exp (z*lAﬁ) into a product

bt (= i)
P V2 phw

= exp <(z;)2> exp (\;;J) exp ( \/_ﬂ> . (5.63)

In doing so we have used the relation

o(A+B) _ (A B ~[4,B]/2 (5.64)

for the operators A = —iz*p//2phw and B = z*z/uw/(2h) = z*z/(v/28).
The relation (5.64) is a special case of the Baker-Campbell-Hausdorff relation
which applies when the commutator [A, B] — here it is the constant —(2*)2/2
~ commutes both with A and with B (see Problem 5.4). Before applying
(5.63) we recall that the action of an operator of the form exp (iap) on an
arbitrary wave function v (z) merely consists in shifting the argument by ah
(cf. (1.67)),

ePip(z) = e 0/02 (g Z n! axn (z) =(z +ah) .  (5.65)
The coordinate representation of |z} is thus
|2) = a2 (2)
:e—[\2|2_(z:)2]/2 (ﬁﬁ)_l/2 exp (_('T_—-_Z;\Z/_ﬂ> R (566)

The coherent state |z) is just a Gaussian wave packet which is shifted in
position and momentum from the harmonic oscillator ground state (5.51),
(5.53). To see this we construct the associated Wigner function according to
(5.40),
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ow (X, P) = %& /m e Ps/hy (X 4 5/2) YE(X —s/2)ds

(=) 2, (VTB)~ 1/ o—iPs/R exp<_(X+3/2—Z*\/§ﬂ)2>

2mh 232
X— _ 2
o (A
_ L x-x0Y8? —(PPEYR (5.67)

wh
The shifts X,, P, in position and momentum are

X, =V2BR(z) = )

\[(z—i—z
\/_ﬂ( z—2%) . (5.68)

The Wigner function (5.67) of a coherent state is positive everywhere so there
exists a corresponding classical system described by a numerically identical
phase space density.

Coherent states evolve in time in a particularly simple way. Consider a
coherent state |zp) which is characterized at time to by the complex number
zo. In order to apply the time evolution operator exp [—(i/A)H (t — to)] (cf.
(1.41)) to the first form (5.60) of |zp), we only have to multiply the eigenstates
in) of H by the respective phase factors exp [—i(n + 1/2)w(t — to)],

exp I:___H(t _ t())} |ZO> _ e—lzo| /2 Z (ZO) —i(n+1/2)w(t—to) !n>

Val

P,=—v2= \r(z)

_—iw(t—to)/2 .—|2]%/2 = [Z(t)*]n| )
=e e —_— (T

=e Wi/ |2(h)) (5.69)

where |z(t)) again is a coherent state, namely the one characterized by the
complex number

2(t) = e wtto) 5o (5.70)

Except for a phase factor exp [—iw(t — t¢)/2], which doesn’t affect probabil-
ities, the time evolution of a coherent state is simply given by a rotation of
the characteristic number z in the complex plane. Thus both the real and the
imaginary part of z oscillate with the oscillator frequency w, and the coherent
wave packet |z(¢)) oscillates in position and momentum without changing its
Gaussian shape or its widths (see Fig. 5.6(a)).

The coherent state (5.60) represents a minimal wave packet in which the
product of position uncertainty A, = ﬁ/\/ﬁ and momentum uncertainty
A, = h/(v/28) takes on the minimum value //2 allowed by the uncertainty
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relation (1.34). This minimal property is a property of any Gaussian wave
packet. Consider for example a Gaussian wave packet of the form (5.66)
but with a different width 3’ in place of the natural oscillator width 8 of
(5.52). Now the position uncertainty is A, = B’'/+/2 and the momentum
uncertainty is A, = h/(\/iﬁ’) If 8’ is smaller than the natural oscillator
width 3 given by (5.52), then the wave packet is squeezed in coordinate space
in comparison with the coherent states; the momentum space distribution is
correspondingly broader. If 4’ is larger than the natural oscillator width 3,
then the momentum distribution is narrower than for the coherent states; the
wave packet is squeezed in momentum space.

The time evolution of squeezed states is not quite as simple as for the co-
herent states, but almost. The Wigner function of any Gaussian wave packet
has the form (5.67) (with the appropriate width parameter) and is non-
negative. Its time evolution follows the quantum mechanical von-Neumann
equation and is exactly the same as the time evolution of a numerically iden-
tical phase space density according to the Liouville equation, because the
potential is harmonic. So the Wigner function follows the classical trajec-
tories in phase space, and these are concentric circles which are traversed
uniformly with a period 27 /w. The Wigner function thus executes a circular
motion in phase space, during which it keeps its shape but changes its ori-
entation with respect to the position and momentum axes as illustrated in
Figs. 5.6(b) and (c). (Note that all Wigner functions, and not only Gauss-
ian wave packets, evolve in this way as long as the potential is harmonic.)
Figure 5.6(b) shows the time evolution of a minimal wave packet which is
squeezed in position (8’ = (/2) and starts at its maximum (positive) dis-
placement at time t = 0. After one quarter of a period, wt = 7/2, it has
moved to z = 0 and is now squeezed in momentum, after half a period it
has moved to its maximum negative displacement and is again squeezed in
position, and so it goes on until it returns to the original state after a whole
period. Figure 5.6(c) on the other hand shows the time evolution of a min-
imal wave packet which is squeezed in momentum at t = 0, after a quarter
of a period it is squeezed in position, etc., etc. A time-independent way of
classifying the squeezed nature of the states is to call the wave packet in
Fig. 5.6(b) squeezed in amplitude ([p?/u+ pw?x?]}/?) and the wave packet in
Fig. 5.6(c) squeezed in phase (arctan (p/pwz)).

In the quantum mechanical description of the electromagnetic field in
Sect. 2.4.2 we treated the photons in a given mode as quanta of a harmonic
oscillator. For a single mode X the equations (2.156), (2.157) become

™ . .
A= A (q/\e—lth+q;e+1u,\t) ,

13/2
=153 l‘? (gre™ M — gie™ )
iky X A —iw * iw
B= 23‘7 (gre™i9rt — gretionty (5.71)
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Fig. 5.6a—c. Time evolution of minimal wave packets in phase space under the
influence of a harmonic oscillator potential with the natural oscillator width 8. The
wave packet starts at its maximum (positive) displacement at time ¢ = 0. Each
part of the picture shows contour lines of the Wigner function (corresponding from
the inside outwards to gy /(0w )max = 0.9, 0.7, 0.5) at t = 0, wt; = 75° and
wty = 150°. (a) shows the coherent state, (b) a state squeezed in amplitude and (c)
a state squeezed in phase

We have invoked the dipole approximation (exp (ikx-7) ~ 1), because this
keeps formulae simple and we are not concerned with the spatial structure
of the fields at the moment. If we replace the amplitudes g5 and g} by
position and momentum variables according to (2.159) and drop the fac-
tors exp (+iwxt) in order to move from the Heisenberg representation to the
Schrédinger representation as suggested by (2.167), then we obtain the follow-
ing relations connecting the electromagnetic field operators to the position
and momentum operators Z and py of the harmonic oscillator associated
with the mode A (in the Schrédinger representation):

A= L3/2\/47rc Zy

. A kx x

B=-fosVinhy , B=-por Vit (5.72)

In a given mode X the vector potential and the electric or the magnetic
field strength thus play the role of conjugate position and momentum vari-
ables for the harmonic oscillator describing this mode. (See also Problem 5.3.)

Coherent states play an important role in the investigation of the stat-
istical properties of light in the framework of quantum optics. States of
the electromagnetic field are usually called “classical” if they can be writ-
ten as a superposition of coherent states |z) with a regular, non-negative
amplitude function P(z). A coherent state |zg) itself would correspond to
P(z)=4(z—zp), which would be at the edge of the classical regime defined in
this way. A state of the field in which the photon number distribution is more
sharply peaked than in a coherent state can in general not be represented in
terms of superpositions of coherent states with regular, non-negative ampli-
tudes P(z). This is the regime of “non-classical light”. An eigenstate of the
field with a fixed finite number ny of photons in a given mode X is an exam-
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ple of non-classical light. The Wigner function (5.40) of such a state takes on
negative values and hence cannot be interpreted as a classical phase space
density (see Problem 5.3(c)).

The time evolution of coherent states reflects the classical dynamics. The
finite widths of their position and momentum distributions satisfy the re-
quirements of the uncertainty relation. In recent years there has been a con-
siderable interest in the creation and observation of squeezed states of light.
The popularity of squeezed states stems from the fact that their uncertainty
(in amplitude or phase) lies below the natural quantum mechanical uncer-
tainty (of the coherent state), and this makes it possible to overcome limits
to resolution due to natural quantum fluctuations in sensitive measurement
processes [MS83]. For a detailed treatment of the quantum theory of light see
e.g. [KS68, MS90].

After all that has been said in this section we must not forget that the
simple picture of a wave packet evolving along classical trajectories without
changing its shape is bound to the harmonic nature of the Hamiltonian. This
makes the classical oscillation frequency independent of the amplitude and
the quantum mechanical energy levels equidistant. Life isn’t always so simple
as can already be seen in the example of spatial dispersion for a free parti-
cle. The concept of coherent states can, however, be used with advantage in
other physical systems, e.g. in a space of angular momentum eigenstates. The
eigenvalues of the z component of angular momentum are actually equidis-
tant, but the spectrum for a given angular momentum quantum number [
is bounded from above and below (1.58). For a general description of co-
herent states in systems characterized by various symmetry groups see e.g.
[Per86, Hec87, ZF90].

5.2.3 Coherent Wave Packets in Real Systems

The harmonic oscillator treated in the preceding section is untypical for the
dynamical evolution of wave packets in as far as two important results cannot
be transferred to more general systems. Firstly, the evolution of the classical
and the quantum mechanical phase space distributions is no longer the same
if the potential contains anharmonic terms. Secondly, phase space distribu-
tions with finite uncertainties in position and momentum usually disperse in
coordinate space, even classically. A wave packet for a particle moving in a
general potential may follow a classical trajectory in an average way, but be-
yond this there usually is dispersion, which can be understood classically, and
there are genuine quantum mechanical effects resulting from terms indicated
by the dots on the right-hand sides of equations (5.48), (5.49).

Considerable effort has gone into the search for coherent wave pack-
ets which are exact solutions of the Schrodinger equation and at the same
time expose the correspondence to classical mechanics more clearly than the
usual stationary eigenstates [Nau89, GD89, DS90, YM90]. The behaviour of
wave packets in a Coulomb potential (1.133) is obviously of special interest
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in atomic physics. In a pure Coulomb potential the energy eigenvalues

E, = —R/n? are highly degenerate. For each eigenvalue there are (with-
out spin) n? eigenstates which can be labelled by the angular momentum
quantum number [ = 0,1,... n—1 and the azimuthal quantum number
m = —[,... 1. In a pure Coulomb potential there is a further constant of
motion in the form of the Runge-Lenz vector
M:i(ﬁxi—ixﬁ)—ezf . (5.73)
24 r

Classically its length is a measure for the eccentricity of the closed Kepler
ellipses, and it points in the direction of the larger principal axis. Using the
components of the angular momentum L and the Runge-Lenz vector (5.73)
Nauenberg [Nau89] and Gay et al. [GD89] constructed a generalized angular
momentum in two and three spatial dimensions respectively and searched
for solutions of the Schrodinger equation with a minimum uncertainty in
appropriate components of this generalized angular momentum. Superposing
degenerate eigenstates with a given principal quantum number 7 in this way
leads to a stationary solution of the Schrédinger equation which is no longer
characterized by good angular momentum quantum numbers [ and m, but
which is optimally localized around a classical Kepler ellipse (see Fig. 5.7).

R

Fig. 5.7. Probability density |1 (r)|* for a stationary solution of the Schrédinger
equation in a pure Coulomb potential showing optimal localization around a Kepler
ellipse of given eccentricity (0.6 in this case). (From [GD89])

In order to construct a non-stationary wave packet to simulate classical
motion along a Kepler ellipse we have to superpose eigenstates with different
principal quantum numbers n. The time evolution of a Gaussian superposi-
tion is shown in Fig. 5.8. Figure 5.8(a) shows a wave packet localized around
the perihelion of a Kepler ellipse at time ¢t = 0. After half a revolution the
wave packet has arrived at the aphelion, Fig. 5.8(b). Localization along the
trajectory is even a little narrower here. This is due to the slower speed near
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Fig. 5.8. Probability density for an
initial wave packet which is localized
around the perihelion of a Kepler el-
lipse (a). After half a revolution it is
localized around the aphelion (b). In
the course of time, dispersion and in-
terference effects become noticeable,
as can already be seen after two rev-
olutions (c). (From [Nau89])

@)

the aphelion and simply illustrates congestion. As time goes on the wave
packet actually disperses. After two revolutions it has already spread out
over the whole Kepler ellipse, Fig. 5.8(c). Figure 5.8(c) also shows signs of
quantum mechanical interference where the faster head of the wave packet
has caught up with the slower tail. These interference effects, which lead
to oscillations in the probability density, are genuine quantum effects which
cannot be described classically.

Coherent wave packets which are sharply localized and move along classi-
cal trajectories must be superpositions of stationary states involving different
energies. Such wave packets can only be produced in the laboratory by per-
turbations of the Hamiltonian which are strongly localized both in space and
in time. Nowadays this can be achieved with intense laser pulses of durations
of the order of picoseconds or less.

Figure 5.9 shows the results of an experiment in which Rydberg states
around n = 65 in potassium were excited by a laser pulse of 15 picoseconds.
At the corresponding energy the period of revolution for a classical Kepler
ellipse is near 40 ps. The potassium atom is ionized by a second, time-delayed
laser pulse. Most of the time the excited electron is far away from the K+
jon and, similar to a free electron, cannot absorb energy from the laser field
(cf. Problem 5.5). There is an appreciable probability for ionization only if
the electron is close to the K* ion, which happens every 40 picoseconds. The
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delay time (orbital periods) Fig. 5.9a,b. Photoionization
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observed photoionization rate as a function of the time delay of the second
laser pulse indeed shows maxima corresponding to this period. The signal
is washed out after several periods due to dispersion of the wave packet.
A little later we observe a revival to a more or less coherent wave packet
with oscillations again corresponding to the period of the classical revolution.
The reason for this revival is that the time evolution of a state consisting
of a superposition of a finite number of energy eigenstates always is quasi-
periodic (or periodic). The coherence of the various interfering contributions
is maintained during the evolution and enables the regeneration (to a large
extent) of the original localized wave packet.

Review articles on electronic wave packets in Rydberg atoms have been
published by Alber and Zoller [AZ91] and by Jones and Noordam [JN98].

5.3 Regular and Chaotic Dynamics in Atoms

The relation between classical mechanics and quantum mechanics is under-
stood reasonably well for systems which are integrable, meaning essentially
that the classical motion is quasiperiodic and corresponds, in an appropriate
representation, to a superposition of one-dimensional oscillations. Integrabil-
ity is, however, the exception rather than the rule in classical mechanics, even
for seemingly simple systems with few degrees of freedom. Although this has
been known in principle since the work of Poincaré and others around the
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turn of the century, the far-reaching implications have only recently become
generally realized and accepted [LL83, Sch84|. A tangible consequence of this
realization is the explosively developing field of non-linear dynamics, “chaos”,
which has now permeated into virtually all fields of physics and beyond. The
continuing progress in understanding the rich and diverse behaviour in clas-
sical dynamics makes it urgently desirable to understand if and how the
non-linearity of classical evolution survives the transition to strictly linear
quantum mechanics [Haa91]. Simple atoms have provided important exam-
ples of naturally occuring and experimentally accessible systems in which
the quantum manifestations of classical chaos can be studied. The study of
simple atoms, with or without the presence of external fields, has led to im-
portant and exciting advances in our understanding of the relation between
classical and quantum dynamics [GG89, Gay91, CK97, SS98]. A collection of
articles by some of the most prominent researchers in this field is contained
in [FE97]. A monograph on the subject has recently been written by Bliimel
and Reinhardt [BR97].

5.3.1 Chaos in Classical Mechanics

The trajectories (g;(t), pi(t)) describing the evolution of a system with f
degrees of freedom are solutions of the canonical equations (5.26) and, given
initial conditions g;(to), pi(to), they determine the state of the system for
all later times. It is helpful to collect the 2f components qi,... gf;p1,- .- Pr
of a point in phase space in one symbol z. How regular or “chaotic” the
classical motion is depends on how rapidly a small deviation Az from a
given trajectory z(t) can grow in time. We generally regard a system as
chaotic if a small deviation can increase exponentially in time, which means
that neighbouring trajectories diverge exponentially.

In order to formulate this statement more precisely we consider a given
trajectory x(t) and a small deviation Axz(ty) at time to. At a later time t;
the trajectory which started at x(to) + Ax(to) will deviate from the original
trajectory by a separation Az(t;). In the limit of infinitesimal deviations
there is a linear relation connecting the deviations at time to and at time ¢;.
Since the phase space points as well as the deviations Az are quantities with
2f components, this linear relation is mediated by 2f x 2f matrix which is
called the monodromy matriz or stability matriz M(t1,to):

Az(ty) = M(t1, to) Az(to) (5.74)

Since Az has several components an initial deviation in one direction in phase
space may grow strongly in the course of time, while an initial deviation in a
different direction might increase at a slower rate or even become smaller. In
a conservative system the Hamiltonian function H does not depend explicitly
on time, and it follows from the special structure of the canonical equations
(5.26) that the monodromy matrix is a symplectic matriz, which means
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0 1
MIMf=J, J= (_1 0) ; (5.75)
here 0 is the f x f matrix full of zeros and 1 is the f x f unit matrix. If
A1 is an eigenvalue of M, so are A}, 1/A; and 1/A}. The 2f eigenvalues of
the monodromy matrix occur in quartets or, if they are real or have unit
modulus, in pairs. Their product is unity, expressing the fact that the total
phase space volume of a set of initial conditions doesn’t change in the course
of the dynamical evolution in a conservative system (Liouville’s theorem).

The definition of chaos is based on the fastest-growing deviation from
a given trajectory, and the growth rate is related to the matriz norm of
the stability matrix. A matrix norm |M| is non-negative and can e.g. be
defined as the largest eigenvalue of the Hermitian matrix MM [HJ85]. The
dynamics is unstable in the point z in phase space if the norm of the stability
matrix increases exponentially along the trajectory beginning with z(tg) —
more precisely, if the Liapunov exponent

In |[M(t,¢
L MG )l
t—to—o0 t—1tg

A (5.76)

’

which is defined in the long-time limit, does not vanish but is positive.
Roughly speaking this says that neighbouring trajectories diverge exponen-
tially, and the Liapunov exponent (5.76) is the factor in the exponent which
determines the rate of divergence (see Fig. 5.10).

-
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L Fig. 5.10. Schematic illustration of the exponential
divergence of neighbouring trajectories in phase space

The Liapunov exponent is a property of the classical trajectory; all phase
space points along one trajectory have the same Liapunov exponent (see
Problem 5.6). Every trajectory is either stable (if its Liapunov exponent
vanishes), or unstable (if its Liapunov exponent is positive). An unstable tra-
jectory need not be very complicated. Simple periodic trajectories (periodic
orbits) can be stable or unstable. The Liapunov exponent of a periodic orbit
of period T can be defined via the eigenvalues of the monodromy M(T, 0)
over one period. If A is the largest modulus of an eigenvalue of M(T,0),
then the norm of M(T,0)" becomes equal to A™ for large n [HJ85] and the
Liapunov exponent is given by

. In(A™) InA
A= nll’rgo nl - T

(5.77)
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Instability of a periodic orbit means that infinitesimally small deviations lead
to trajectories which move away from the periodic orbit at an exponential
rate and hence cannot themselves be periodic (see Problem 5.7).

A region in phase space is chaotic if all trajectories are unstable. Chaos
can already occur in a system with only one spatial degree of freedom if
the Hamiltonian function depends explicitly on time. A periodic time depen-
dence as caused by an oscillating external field is an important example. The
simplest example of a mechanical system driven by a periodic force is the
periodically kicked rotor, which has been studied in considerable detail, in
particular by Bliimel and collaborators [BR97]. The Hamiltonian function is

2
H(9;p;t) = %— + kcosGZJ(t -nT) . (5.78)

The coordinate 6 describes the rotation around a fixed axis and p is the
associated canonically conjugate angular momentum (the moment of inertia
is unity). At the end of each period T the rotor gets a kick, the strength
of which is determined by the coefficient k& and the momentary angle 8 (see
Fig. 5.11). The kick changes the angular momentum by & sin 6. Between two
kicks the rotor rotates freely so that the angle increases by pT in a period.
The angle 6,41 and the angular momentum p, after n+1 periods can thus
be expressed by the following recursion relation:

Pn+l =Pn + ksinf, , 9n+1 =0n +pn+lT . (579)

This equation describes the entire dynamics of the kicked rotor as a mapping
of the two-dimensional phase space into itself. Because of its fundamental
importance it is known as the standard mapping. A trajectory which begins
at 8 =0y, p=po at time t =0 is completely described by the sequence of
points (6,,,pn), n=0,1,2,....

The dynamics described by the standard mapping (5.79) can be quite
complicated, as can be seen by studying the sequence of points (6,,p) in
phase space. In the integrable limit kK = 0 we have uniform rotation, the
angular momentum p is constant and the angle 6 increases by pT each pe-
riod. The points (6, pn) of a trajectory in phase space all lie on the straight
line p = const. Obviously a small deviation in initial conditions can only

¢ Fig. 5.11. The periodically kicked rotor. At time nT it

experiences a torque ksin 8 §(t — nT). Whether a kick accel-

erates or decelerates the rotational motion depends on the
sense of rotation and the angle 6 at the time of the kick
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Fig. 5.12. Trajectories of
the periodically kicked ro-
tor (5.78), (5.79) in phase
space for a coupling con-
stant kT = 0.97. (From
[Gre79])

/—-\_—-
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grow linearly in time in this case. For finite values of k¥ — actually kT is the
relevant quantity — we observe more structure in phase space. Figure 5.12
shows the sequence of points (6, p,) generated by five different sets of initial
conditions for kT = 0.97. We can clearly distinguish two different types of
trajectories: regular trajectories for which all points lie on a one-dimensional
curve, and irregular trajectories whose points (49n, pn) are spattered more or
less uniformly over a finite area in phase space. The two regular trajectories
in Fig. 5.12 describe quasiperiodic motion and the associated curves in phase
space form boundaries which cannot be crossed by other trajectories and
hence divide phase space into separated regions. Detailed numerical calcula-
tions by Greene [Gre79} and others have shown that the share of irregular or
chaotic trajectories increases with increasing values of the parameter kT'. For
large values of kT the boundary curves break up and the irregular trajectories
can explore the whole of phase space. Numerical calculations also show that
the distribution P(p) of angular momenta becomes a Gaussian after a large
number n of kicks, provided kT is sufficiently large, and that the square of
the width of this Gaussian grows linearly with n as in ordinary diffusion or
random walk processes. After n periods we have [CF86]

P(p)~ (kT\/ﬁ)_l e~ P/
<P2> = /sz(p) dp =~ %n(kT)z ) 550

As p? is proportional to the kinetic energy of the system, (5.80) implies that
the energy distribution of the system broadens as in diffusion.

In a conservative system the Hamiltonian function H does not depend
explicitly on time, the energy H(qi(t),... gz (¢); p1(t)... ps(t)) of the system
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is always an integral of motion and all trajectories with the same energy move
on a (2f—1)-dimensional subspace of phase space called the energy shell. In
a one-dimensional conservative system any bound motion is a (not usually
harmonic) oscillation between two classical turning points and hence is peri-
odic. The trajectories are closed curves in the two-dimensional phase space
(see Figs. 5.13(a) and (b)). A small deviation from a given trajectory leads
to a slightly different trajectory which again is periodic and the separation of
two trajectories can only grow linearly in time. Such a system has no chaos
(although there may be isolated unstable points).

The simplest conservative potentials capable of being chaotic have f=2
degrees of freedom. Chaos is possible if the system is not integrable, i.e. if
there is no further integral of motion. Otherwise the motion of the system
is usually periodic or quasiperiodic. In a two-dimensional system with two
independent integrals of motion a trajectory in four-dimensional phase space
is confined to a two-dimensional surface which usually has the topology of
a torus. The parameters of the torus are determined by the energy and the
second integral of motion (see Fig. 5.13(c)). More generally: a mechanical
system with f degrees of freedom is called integrable if its Hamiltonian func-
tion can be written as a function of f independent integrals of motion and
no longer depends on the associated canonically conjugate variables [Gol80].
In an integrable system all Liapunov exponents vanish [Mey86]. The f in-
tegrals of motion confine the trajectories in 2f-dimensional phase space to
f-dimensional subspaces which are also called “tori” if f > 2.

b) (3}
(a) A V(q) ( p oy
E, E2
E, & >
q <_/ q;
b LH
q

% 5.13. (a) Bound motion in a one-dimensional conservative system, H(q,p) =
1p° + V(g). (b) Periodic trajectories of the one-dimensional conservative system in
phase space. (c¢) Two-dimensional torus in the three-dimensional energy shell of a
conservative system with f = 2 degrees of freedom

Two anharmonically coupled oscillators already provide an example of a
two-dimensional conservative system which isn’t integrable. To be specific
let’s consider the Hamiltonian function

H =13 (p}+p5+4df + ¢ +14i63) - (5.81)

The potential energy V = (¢} + g5 + ’yqlqz)/Z in (5.81) is a homogeneous
function of the coordinates, V (aq1, ag2) = o 4V (q1, g2) , with d=4. Hence the
dynamics is essentially independent of energy, see Sect. 5.3.4. The properties
of the dynamics are determined by the coupling parameter v. In the integrable
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limit =0 the motion factorizes into two independent periodic oscillations in
the variables ¢; and ¢3.

We can visualize the dynamics in a conservative system with f =2 degrees
of freedom in a way similar to Fig. 5.12 if we look at a two-dimensional
surface of section of the three-dimensional energy shell and register the points
at which a trajectory pierces this surface (perhaps subject to a condition
concerning the direction of the motion normal to the surface). The resulting
figure is called a Poincaré surface of section. A periodic trajectory appears
on a Poincaré surface of section as a single point or a finite (small) number of
points. A quasiperiodic trajectory running on a two-dimensional torus in the
energy shell appears as a one-dimensional curve on the Poincaré surface of
section, similar to Fig. 5.12. An irregular or chaotic trajectory, which densely
fills a finite three-dimensional volume in the energy shell, covers a finite area
of the Poincaré surface of section with more or less uniformly spattered points.
Figure 5.14 shows Poincaré surfaces of section for the system (5.81) at four
different values of the coupling constant . At y=6 the motion is still largely

Fig. 5.14. Poincaré surfaces of section for the system (5.81) with the following
values of the coupling parameter v: 6 (a), 7 (b), 8 (c) and 12 (d). The surface of
section is the gipi-plane at g2 =0. (From [Eck88])
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on regular tori. With increasing values of the coupling constant the share of
phase space filled with irregular trajectories becomes bigger and bigger. At
~v =12 the whole of phase space is filled with irregular trajectories, except
for small islands of regularity. For a numerical calculation of the Liapunov
exponents of the trajectories in this example see [Mey86].

5.3.2 Traces of Chaos in Quantum Mechanics

Both the concept of Liapunov exponents and the picture of Poincaré sur-
faces of section are defined via classical trajectories and cannot be trans-
ferred to quantum mechanics in an obvious way. We shall not enter here into
the frequently controversial discussion on how to define “quantum chaos” or
whether or not this concept makes sense at all. Instead we shall turn to the
more modest question of how the fact that a classical system is chaotlc affects
the corresponding quantum mechanical system.

The quantum mechanical version of the periodically kicked rotor (5.78) is
described by the Hamiltonian operator

g o +kcos€Zc5t—nT) . (5.82)

2 892

Solutions of the time-dependent Schrédinger equation (1.38) can easily be
constructed with the help of the time evolution operator (1.40). To this end
we expand the wave function ¥(6,t) in a Fourier series in the angle 6,

o0

POt = Y e, (5.83)

V=—00

which is the same as expanding in eigenstates of the free rotor (k = 0).
The Hamiltonian is time-independent between two kicks so that the time
evolution (1.41) simply amounts to multiplication of the basis functions
exp (iv#) by the respective factors exp [—i(%/2)v*T]. In the infinitesimally
short time between ¢t_ immediately before and ¢, immediately after a kick
the Hamiltonian depends explicitly on time and we have to replace the pro-
duct H(t; —t_) in the time evolution operator by the integral ft (t) dt.
Thus the wave function 1 is just multiplied by exp (—ik cos§/h) durmg a
kick. If ¥,(8) = 3, cv(n) exp (ivf) is the wave function immediately after
the nth kick, then the wave function one period later is

'¢'n+1(9) - e——:lccosB/FL Z 1(1/0 KTV?/2) , (5.84)

v=—00
and its expansion in a Fourier series defines a new set of coefficients cy(n+1)
(see e.g. [Eck88]).
The search for traces of chaos led to the question whether the quantum
mechanical evolution according to (5.84) involves diffusive behaviour and
a linear increase of the kinetic energy in time or in number of kicks as in

5.3 Regular and Chaotic Dynamics in Atoms 305

(5.80). If the period T is an integral multiple of 47 /A, then the wave function
is simply multiplied by a factor exp (—ik cos 8/k) each period. In case of such
a resonance the kinetic energy even increases quadratically with the number
of kicks. According to [IS79] such resonances, for which there is no classical
equivalent, occur whenever the period T is a rational multiple of /4. The
time evolution (5.84) away from resonances was investigated numerically by
Casati et al. [CF86]. This led to the following picture: For small times an
initially localized distribution with only one or few non-vanishing coefficients
¢, spreads diffusively at first, but with a smaller diffusion constant than in the
corresponding classical case. After a certain time tg a saturation is reached,
the diffusive spreading ceases and we have quasiperiodic motion in phase
space. The time tg is larger if / is smaller. Thus classical chaos is suppressed
in quantum mechanics by the finite value of A [Cas90]. For more details on
the classical and quantum dynamics of the kicked rotor the reader is referred
to {Haa91, Blu97, BR97].

A conservative quantum mechanical system is primarily characterized by
its spectrum of energy eigenvalues. In a bound system the spectrum is dis-
crete. A state in a bounded energy interval is always a superposition of a fi-
nite number of energy eigenstates and so its time evolution must be (at least)
quasiperiodic. At sufficiently high excitation energies and level densities the
spectrum may nevertheless be very complicated, and the investigation of sta-
tistical properties of spectra has revealed connections to the regular or chaotic
nature of the corresponding classical dynamics. Some of the more basic re-
sults are presented below; more details are contained e.g. in the monograph
by Haake [Haa91].

The opposite of a (classically) chaotic system is an integrable system with
a Hamiltonian function which can be expressed in terms of integrals of mo-
tion. The corresponding quantum mechanical Hamiltonian operator should
then be a corresponding function of constants of motion so that the en-
ergy eigenvalues depend on several independent good quantum numbers. The
eigenvalues e.g. of a separable Hamiltonian of the form

H= By Hy+ oo+ Hy (5.85)
are just sums of the eigenvalues E,, of the operators fIi,

Eningyony =Eny + Epy +-+- + Epy . (5.86)
If the individual eigenvalue sequences E,,, n; = 1,2,... are not correlated,

then the summation in (5.86) produces a rather irregular sequence of eigen-
values for the whole system, somewhat similar to a sequence of randomly
distributed numbers. Such a random spectrum is called a Poisson spectrum.

If the classical system is chaotic it will probably not be possible to la-
bel the energy eigenvalues of the corresponding quantum mechanical system
by good quantum numbers in a straightforward way. The energy eigenvalues
are eigenvalues of a Hermitian matrix. When there are no good quantum
numbers at all (apart from the energy) one tries to understand the spectrum
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by studying the spectra generated by random matrices; these are matrices
whose elements are distributed randomly subject to certain restrictions. One
generally considers a whole ensemble of Hamiltonian matrices whose matrix
elements H; ; independently follow a Gaussian distribution, i.e. the probabil-
ity P(H; ;) for a particular value H; ; of the element (i,j) of the matrix is
given by

P(H; ;) o« exp (—const. HZ,) . 5.87
& i

The probability for the realization of a particular matrix H should not depend
on the choice of basis in Hilbert space. A change of basis |¢') = 3, Ui,;|¢;)
mediated by the unitary matrix U involves a unitary transformation of the
Hamiltonian matrix,

H; = (WilHWS) = Y UiHealy; or H' =U'HU . (5.88)
k,l :

Requiring invariance with respect to basis transformations means that the
probability for a certain matrix H, which is just the product of the N x N
independent element probabilities (5.87), is invariant under unitary transfor-
mations. The corresponding ensemble of random matrices is called a Gaussian
unitary ensemble (GUE).

In some cases, e.g. for the coupled oscillators (5.81), we can assume that
the matrix of the quantum mechanical Hamiltonian is not only Hermitian but
real and symmetric. It is then reasonable to replace the requirement of invari-
ance under unitary transformations by the requirement that the probability
for a given real and symmetric random matrix be invariant under orthogonal
transformations; these are transformations of the form (5.88) except that the
unitary matrix U is replaced by an orthogonal matrix O (whose transposed
matrix is equal to its inverse). The ensemble of random matrices is now called
a Gaussian orthogonal ensemble (GOE).

Although exact proofs are scarce the results of many numerical experi-
ments indicate that a quantum mechanical spectrum shows similarities to a
random or Poisson spectrum if the corresponding classical system is regular,
and to the spectrum of random matrices (GOE or GUE) if the corresponding
classical system is chaotic.

In order to formulate these statements more quantitatively we consider a

spectrum E; < E; < ... < Ep, < ... . Such a spectrum can be expressed in
terms of the mode number
N(E)=) O(E-E) . (5.89)
n

The Theta function ©(z) vanishes for < 0 and is unity for z > 0, so that
N(E) is just the number of eigenstates with energies up to (and including)
E. The mode number N(E) is a step function; it fluctuates around the mean
mode number N(E), which can be obtained by dividing the classically al-
lowed region in 2f-dimensional phase space by the fth power of 27/ — see
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100 Fig. 5.15. Example of
N(E) . the mode number N(F)
and the_ mean mode
number N(E) (dashed)
50
0

also (1.246). An example of N(E) and N(E) is illustrated in Fig. 5.15. The
derivative of the mode number with respect to energy is the level density,
and the derivative of the mean mode number defines the mean level density,

dN(E) _ S o(E- By, dE) = dN(E)

d(E) = (5.90)

dE dE

The statistical properties of a spectrum can best be studied if the weakly
energy-dependent effects reflecting the mean level density are normalized
away. This can be achieved by replacing the spectrum FE,, by the sequence of
numbers

~ E"’ -~
en = N(E,) = i d(E)dE (5.91)
1
which has all the fluctuation properties of the original spectrum but corre-
sponds to a mean level density of unity.

A frequently studied property of spectra is the distribution of the sepa-
rations between neighbouring levels, E, 1 — E,, or €,41 — &5, the so-called
nearest neighbour spacings (NNS). It is relatively straightforward to show
that the NNS of a Poisson spectrum follow an exponential distribution (see
Problem 5.8). For a mean level density unity the probability density P(s) for
a separation s of neighbouring levels is given by

P(s)=e"" . (5.92)

The high probability for small separations of neighbouring levels expresses
the fact that degeneracies or near degeneracies are not unusual if there are
other good quantum numbers beside the energy, as is the case when the
corresponding classical system is regular. On the other hand, if there are no
further good quantum numbers, the residual interaction leads to repulsion of
close lying states and hinders degeneracies (see Problem 1.5). It can actually
be shown [Eck88, Haa91] that the NNS distribution P(s) for the eigenvalue
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spectra of random matrices is proportional to s for small separations in the
GOE case and to s? in the GUE case. The NNS distribution in the GOE case
is quite well approximated by a Wigner distribution

P(s) = gse_("/4)s2 . (5.93)

Figure 5.16 shows the NNS distributions for energy spectra of the Hamilton-
ian operator corresponding to the Hamiltonian function (5.81). The four parts
of the picture belong to the same four values of the coupling parameter as in
Fig. 5.14. Note the transition from a Poisson distribution (5.92) at y=6 (a),
where the classical dynamics is still largely regular, to the Wigner distribution
(5.93) at y=12, where the classical dynamics is largely irregular.
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Fig. 5.16a—d. NNS dis-
tributions of the quantum
mechanical energy spec-
trum for the coupled os-
(d) cillators (5.81). The four
parts of the picture belong
to the same values of the
coupling parameter 7 as in
Fig. 5.14. The curve in (a)
is the Poisson distribution
(5.92). The curve in (d)
is the Wigner distribution
(5.93). (From [Eck88])
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Higher correlations of the spectrum can be studied via various statistical

measures [BG84, BH85]. One popular measure is the spectral rigidity Az(L).

which measures the deviation of the mode number from a straight line over
a stretch of spectrum of length L,

L AB
A3z is on the average independent of the starting point z in the special cases
discussed above. The dependence of A3 on L is linear for a Poisson spectrum,

As(L) = % , (5.95)

and approximately logarithmic for a GOE spectrum,

Az(L) = 1 myin /HL[N(E) — Ae — B]%de . (5.94)

Az~ lz In(L) - 0007, L>1 . (5.96)
s
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1.0 Fig. 5.17a—d. Spectral ri-
o gidity of the quantum me-
8 chanical energy spectrum
0 of the coupled oscillators
0.5 . ....»m"-"""'““w' (5.81). The four parts of
* A the figure correspond to the
same values of the cou-
pling parameter 7 as in
0 (a) ® | Figs. 5.14 and 5.16. The
straight line in (a) is the ex-
pectation (5.95) for a Pois-
son spectrum. The curve in
(d) is the function (5.96)
expected for a GOE spec-
STeaseernatsertesatercen, trum. (From [Eck88])
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(See e.g. [BG84] for further details.) Figure 5.17 shows the spectral rigidity for
the coupled oscillators (5.81). The four parts of the figure again correspond
to the same four values of the coupling constant v as in Figs. 5.14 and 5.16.

Figures 5.14, 5.16 and 5.17 clearly show that the transition from regularity
to chaos in the classical system is accompanied by a simultaneous transition
in the statistical properties of the energy spectrum of the corresponding quan-
tum mechanical system. The NNS distribution and the spectral rigidity (and
further statistical measures — see e.g. [BH85]) correspond to the expectations
for a Poisson spectrum in the classically regular regime and to the expecta-
tions for an ensemble of random matrices in the classically chaotic regime.
Beware of over-interpretations of this statement! It does not mean that the
quantum mechanical spectrum of a classically chaotic system is identical in
detail to a random matrix spectrum. All the eigenvalues of a Hamiltonian
together contain much more information than a small number of statistical
measures. The identity of the physical system itself is still contained in the
spectrum and can be extracted e.g. by analysing long ranged spectral corre-
lations, as discussed in the following section. It is equally obvious that the
spectrum of a classically regular system won’t be identical in detail to a Pois-
son spectrum, even if the NNS distribution and other statistical measures
agree with the corresponding expectations.

This section concludes with a further warning, namely that there are
individual physical systems whose behaviour deviates from the generic be-
haviour described above. Consider e.g. a system of harmonic oscillators which
is always integrable and can be characterized by its normal modes. If the fre-
quencies are commensurable, then all energy eigenvalues (without zero-point
energy) are integral multiples of a smallest energy. There are many exact
degeneracies but no level spacings between zero and this smallest energy.
The NNS distribution will never approach the Poisson distribution (5.92) no
matter how many states are included in the statistical analysis.
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5.3.3 Semiclassical Periodic Orbit Theory

The use of classical trajectories and in particular of periodic orbits in the
analysis of quantum mechanical spectra has a long history [Gut97], and it
has in recent years become an important instrument for understanding and
describing the quantum mechanics of systems whose corresponding classical
dynamics may be integrable or not integrable [Cha92, FE97, BR97]. Elements
of the theory are sketched here for the case of a conservative system with f
degrees of freedom. A detailed elaboration is contained in the book by Brack
and Bhaduri [BB97a).

The starting point is the quantum mechanical propagator or Green’s func-
tion G(ga,ta; gb, ts), which describes the time evolution of a quantum mechan-
ical wave function in coordinate space, -

w(Qb;tb):/G(Quyta§Qb7tb)w(Qaata)an s : (5'97)

and is just the coordinate representation of the time evolution operator in-
troduced in Sect. 1.1.3,

G (gasta; @orts) = (95U (ts, ta)lda) (5.98)

In Feynman'’s path integral formulation of quantum mechanics, the propagator
is written as

Glantusantn) = [Platess (3 [ L@iar) (5.99)

where L(qi1,...qf;q1,-..4d5) is the classical Lagrangian, which is related to
the Hamiltonian function H(g1,...qs;p1...pf) by

L(q1,.. apidr,---dg) = D it — H(q1,- - 45ip1-- - Pf) - (5.100)
=1

The symbol | D[g] in (5.99) stands for a mathematically non-trivial integra-

tion over all paths in coordinate space connecting the initial coordinate g, at

time t, to the final coordinate g at time tp.

A semiclassical approximation of the propagator is derived using the sta-
tionary phase approximation in much the same way as it was used to derive
a semiclassical approximation to the integral representation of the scattering
amplitude in Sect. 4.1.2. The condition of stationary phase for the integrand
in (5.100) selects those paths between (qa,ta) and (gs,ts) for which the La-
grangian action,

ty
Waits—ta) = [ La.d)dt (5.101)
to
is stationary under infinitesimal variations of path, and these are just those
paths which fulfill the classical equations of motion, i.e. the classical trajec-
“tories [LL71]. The resulting semiclassical expression for the propagator is
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G (Qa, ta; qb, tb) = (27Tih‘)_f/2

62W i ;m/2 i
X Z det [aqaaqb}e“"““ /2 exp [EW(qavqb;tb—ta)} - (5.102)

cl.traj.

The significance of the various contributions to the expression on the right-
hand side of (5.102) can be appreciated by recalling the expression (4.60) for
the semiclassical scattering amplitude in Sect. 4.1.2. Each term in the sum
corresponds to a classical trajectory and carries a phase given by the action
along the trajectory. The weight of each contribution is related to the density
of trajectories and is given by the square root of the determinant of the f x f
matrix of second derivatives of the Lagrangian action, which is called the
van Vleck determinant and becomes singular at focal points. Each term also
contains an additional phase krajm/2, Where £ir,j counts the number of focal
points along the trajectory.

A connection to the quantum mechanical energy spectrum can be made
by realizing that the Fourier transform of the time evolution operator,

Uty ta) = exp [f(i/ﬁ)ﬁ'(t,, - ta)], is

oo oo .
/ e(i/h)Et(j(t, 0)dt = / Sl/M(E-H)t 44
0 0

he(i/h)(E—fI)t oo ik

=2° - = (5.103)

l(E - H) 0 EF-H

where the contribution at ¢ = oo is argued to vanish via an infinitesimal posi-
tive imaginary contribution to the energy E. An analogous Fourier transform
of the Green’s function (5.98) is just the coordinate representation of the term
on the right of the lower line of (5.103),

def 1 [ 4
G(QaaqbaE) = _h/ e( /h)EtG(qaaO; qb:t) dt
0

|Qa Z wn (Ib wn(Qa) ) (5.104)

= <<Ib|

The expression on the right-hand Slde of the lower line of (5.104) is obtained
by inserting the unit operator, expressed via a complete set of energy eigen-
functions v, (¢) with eigenvalues E,, according to (1.22). The Green’s function
(5.104) is thus a sum over pole terms, one for each eigenstate, and the re-
spective residues are defined by the product of the eigenfunctions’ values at
Qo and gy,. Taking the trace eliminates the dependence on the wave functions:

Tr[G(E)] = /@(q,q; E)dg=)" E—_1~E— : (5.105)

The pole terms 1/(E — E,) consist of a real principal value singularity at
E = E, plus an imaginary component proportional to §(E — E,), which
can be traced back to the infinitesimal imaginary contribution to the energy
mentioned above,
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1 1
. —p
Ly (E—En
so the imaginary part of the trace of the Green’s function is directly propor-
tional to the energy level density (5.90),

) —ir8(E — En) (5.106)

d(E) = —%S{T&[G(E)]} . (5.107)

A semiclassical approximation to the energy level density can thus be
obtained by subjecting the semiclassical approximation (5.102) of the time
Green’s function (propagator) to the Fourier transformation (5.104) and in-
serting the trace of the result into (5.107). The Fourier transformation in-
troduces an integral over time, so the Fourier transformed Green’s function
contains contributions from all classical trajectories which travel from g, to
gv in any time t. Approximating the time integrals with the help of the sta-
tionary phase approximation selects only those trajectories whose conserved
energy is equal to the energy F in the argument of the Fourier transformed
(approximate) Green’s function, and the result is

ésc(Qa’qb;E)
27 i . T
= GmRTIR > VIDlexp [ES(QaquE)—thrajE] . (5.108)
cl.traj.

Now the phase in the contribution of each trajectory is dominantly deter-
mined by the action,

qb .
S(Qanb§E):/ pdg (5.109)
Qo

which resembles the action integral introduced in Sect. 1.5.3 and is often
referred to as the reduced action in order to distinguish it from the Lagrangian
action (5.101). The amplitude factor /D] now involves the determinant of
an (f+1) x (f+1) matrix,

828 828
0¢a0qy 0q,0F
D = det , 5.110
1 625 a%s (5.110)
9Edq, OE?

and the index praj counts the number of focal points along the trajectory.
Taking the trace over the semiclassical Green’s function (5.108) leads to
a sum of integrals over all coordinates ¢ involving classical trajectories which
begin and end at ¢, g, =gy =¢. The f coordinates are re-expressed locally as
one coordinate in the instantaneous direction of the respective trajectory and
f—1 coordinates transverse to the instantaneous motion, and the integral over
these latter f—1 coordinates is performed via the stationary phase approxi-
mation. This selects just those trajectories for which also p(g,) = p(gs), so the
sum over trajectories closed in coordinate space is now reduced to the sum
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over trajectories closed in phase space, i.e. the periodic orbits. The integra-
tion over the coordinate along the trajectory is performed explicitly, yielding
a factor proportional to the period of the orbit. The resulting approximation
of the expression (5.107) for the energy level density is, eventually,

. 1 o~ exp|i (Sppo/ — Vppo ) Tip)
d(E) =d(E) - —R Tppo T '
B =B = ; np2=1 VIdetMppo™ =11 o111

The sums in (5.111) are over all “primitive periodic orbits”, i.e. periodic
orbits run around just once, and over all numbers n,, of passages around each
“ppo”. Sppo is the action (5.109) integrated over one passage of the ppo,

S f_pat o
ppo

and Tppo is its period. Mpp, stands for the 2( f—1) x2(f-1) reduced monodromy
matriz over one period of the orbit; it involves only the f—1 coordinates
and conjugate momenta transverse to the orbit. The topologically invariant
phase index vpp, is a generalized Maslov index which counts the focal points
along the trajectory and contains additional contributions arising from the
evaluation of integrals via the stationary phase approximation — for more
details see [BB97a]. Finally, the first term d(E) on the right-hand side of
(5.111) is a smoothly energy dependent term due to the contribution of the
trajectories of zero length (¢o — ¢, with no detours) to the trace of the
semiclassical Green’s function. It is identified with the mean level density
introduced in (5.90). _

The formula (5.111) connects the fluctuating part d(E) — d(E) of the
quantum mechanical energy level density to the periodic orbits of the corre-
sponding classical system and is known as Gutzwiller’s trace formula [Gut97].
In the form given here it assumes that the periodic orbits are isolated, but
extensions to more general situations have been formulated [BB97a]. The
beauty of the trace formula is that it is applicable irrespective of whether the
classical system is regular with stable orbits or chaotic with unstable periodic
orbits. The information on the stability or instability of an orbit is contained
in the amplitude factors 1/1/[det(Mppo™ — 1)| and their dependence on the
number of passages np.

The amplitude factors have a particularly simple form in the case of two
degrees of freedom, where there is only one coordinate transverse to the orbit
and the reduced monodromy matrix has just two eigenvalues, A; and As.
The two further eigenvalues of the full monodromy matrix are both unity.
Because of the symplectic property of the monodromy matrix, there are only
two essentially different possibilities. If A; and Ay are complex, they must
have unit modulus and

App = 2™ = det(Mppo™ — 1) = 4sin? (rnpw) . (5.113)
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In this case the orbit is stable. Such orbits are called elliptic periodic orbits
and are characterized by the winding number w in (5.113). If the eigenvalues
Ay, Ay of the reduced monodromy matrix have moduli different from unity,
then they must be real and

Ay = 22T | Ay = te N Toro

— 1 2
D= { 4sm2h (npATppo/2) (5.114)
4 cosh® (npATppo/2)

In this case the orbit is unstable and its Liapunov exponent is |A| according
to (5.77). Such an orbit is called a hyperbolic orbit for the “+” version of the
+ signs in (5.114), and it is called an inverse hyperbolic orbit for the “—"
version.

The contributions corresponding to several passages of a ppo in the trace
formula (5.111) interfere constructively at energies fulfilling

Sppo = f pdq = (TL + %p-ﬂ) 2rh . (5115)
ppo

= det(Mppo™® —

This equation strongly resembles a quantization condition, cf. (1.246), but
it must now be interpreted differently. E.g. for unstable periodic orbits the
amplitudes in (5.111) fall off exponentially with n, and the leading terms
will produce smooth maxima of constructive interference at energies fulfill-
ing (5.115). Equation (5.115) is thus a resonance condition describing the
positions of modulation peaks due to constructive interference of phases of
multiple passages of the periodic orbit. ’

The modulation frequency due to a periodic orbit is the inverse of the
separation of successive peaks given by (5.115). From the definitions (5.100),
(5.101) and (5.109) it follows {LL71] that S(ga,s; E) = W(qa, gs;t) + Et and
that 8S/0F = t, where t is the time a classical trajectory takes to travel
from q, to g, with (conserved) energy E. For the primitive periodic orbits
this implies

d

dE
so the separation of successive energies fulfilling (5.115) is approximately
2mh/Tppo- The modulations due to a ppo thus appear as prominent peaks
in the Fourier transformed spectra at times corresponding to the period of
the orbit. The classical periodic orbits with the shortest periods are respon-
sible for the longest ranged modulations in the quantum mechanical energy
spectra.

Gutzwiller’s trace formula underlines the importance of the periodic or-
bits for the phase space structure of a mechanical system. The periodic orbits
may form a subset of measure zero in the set of all classical trajectories, but it
is a dense subset, because any (bound) trajectory can be well approximated
for a given time by a periodic orbit of sufficiently long period. The sum over

SDPO(E) = Tppo ) (5.116)
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all periodic orbits in the trace formula is extremely divergent, and its math-
ematically safe evaluation has been the subject of extensive work by many
authors, see e.g. [Cha92, FE97]. Terms due to individual primitive periodic
orbits tend to diverge at points of bifurcation, and Main [Mai97] has discussed
techniques for smoothly bridging such points; they are based on connection
procedures similar to the uniform approximation of WKB wave functions
near classical turning points. As a semiclassical expression Gutzwiller’s trace
formula contains only contributions of leading order in f. Only a few authors
have so far addressed the question of higher-order corrections [GH97]. Diffrac-
tive corrections related to orbits “creeping” along the edge of the classically
allowed region have been discussed in particular by Wirzba [Wir92, Wir93].
It may also be worth mentioning that allowing non-integral Maslov indices
in the trace formula to account for finite wavelength effects at reflections and
focal points could be one possibility of improving results without too much
additional effort [FT96, BB97b).

After Gutzwiller derived the trace formula around 1970 [Gut97], it was
all but ignored for one and a half decades. Its first application to spectra
of a real physical system was the case of a hydrogen atom in a uniform
magnetic field [Win87a, FW89]. As a practical aid for understanding gross
features of quantum spectra on the basis of simple classical orbits it has
since been remarkably successful in describing such diverse phenomena as the
magic numbers of shell structure observed in alkali metal clusters [BB97a] and
conductance fluctuations in semiconductor microstructures [RU96, DS97].

5.3.4 Scaling Properties for Atoms in External Fields

One important advantage of studying atoms (or molecules) in external fields
is that the field parameters are tunable variables, and investigation of the
properties of the atom as a function of these variables provides a much richer
body of information than can be observed in the isolated specimen. Due to
scaling properties, the classical dynamics of an atom in external fields depends
on certain combinations of field parameters in a trivial way. This section
summarizes these scaling properties for the case of an external constant or
time-dependent electric or magnetic field, or any superposition thereof; see
also [Fri9s8].

(a) Classical Mechanics. We start by discussing the concept of mechanical
stmilarity for a conservative system X with a finite number of degrees of
freedom. Such a system is described by a kinetic energy

m [dr\?
T:E % (5.117)

and a potential energy U(r). (The mass m can be different for the various
degrees of freedom, but this is irrelevant for the following.) The similarity
transformation,
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dr’ _adr
dtr — Bdt
with the two positive constants o and 8, transforms the system X into a

system X', whose kinetic energy 7" is related to the kinetic energy T in
(5.117) by

r'=ar, t' =pt, (5.118)

T = (%)2 T . (5.119)

Suppose the potential energy in the system X is given by a homogeneous
function V(7 ) of degree d, i.e.

Viar)=aV(r) , (5.120)
multiplied by a parameter F, which gives us a handle on the potential
strength, U(r) = FV(r). Let the potential energy U’ in the system X'
be given by the same (homogeneous) function V, multiplied by a strength

parameter F/, U'(r") = F'V(r'). Because of the homogeneity (5.120), the
potential energy U’ is related to the potential energy U in X by

F/
U'(r') = Foﬂ’U(r) : (5.121)
If and only if the field strengths fulfill the relation
2
ol F' = (%) F (5.122)

then the potential energies are related by the same multiplicative factor
(a/B)? as the kinetic energies (5.119). The classical Lagrangian 7/ — U’ in the
system X’ is then just a multiple of the Lagrangian L = 7 — U in X, and the
equations of motion in both systems are the same [LL71]. The coordinate-
space trajectory 7(t).is a solution of the equations of motion in X if and only
if the trajectory »’(¢'), which is related to r(t) by the similarity transfor-
mation (5.118), is a solution of the equations of motion in X’. This is the
property of mechanical similarity of the systems X and X', and the condition
for mechanical similarity is that the field strengths obey (5.122). The (con-
served) energy E = imi(t)? + U[r(t)] of motion along the trajectory r(t) in
X is related to the associated energy E’ in X’ via

2
E = 9‘-) .
( 5) F C(5.123)

The condition (5.122) contains two parameters o and 8 and can always
be fulfilled for any values of the field strengths F' and F’. Together with
the relation (5.123) we can, for any field strengths F and F’ and energies
E and E’, uniquely determine the constants a and 3 defining the similarity
transformation (5.118) connecting the trajectory r(t) in X with the trajectory
r'(t) in 2,
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(It shall be taken for granted, throughout, that potential strengths and en-
ergies have the same sign in X’ as in X.) From (5.124) we see e.g. that tra-
jectories at different energies E, E’ for one and the same potential strength,
F' = F, are related by a stretching factor a = (E’/FE)'/¢ in coordinate space,
whereas the traversal times are stretched by the factor a\/E/E'.

The considerations above are readily generalized to a potential which can
be written as a sum of n homogeneous terms of degree d;, i = 1,..., n. The
potential U in the system X' is now

U(r)zzn:Fﬁ/i(r); Vilor)=a%Vi(r), i=1,...,n , (5.125)
i=1

and the potential U’ in the system X’ differs only through different potential
strengths,

U'(r) = zn:F{W(r’) . (5.126)
i=1

The systems X and X’ are mechanically similar, if U’ is just U multiplied
by (a/B)?, when 7/ and ¢’ are related to = and ¢ via (5.118). The condition
(5.122) must now be fulfilled for each of the n terms independently, and the
first equation (5.124) is replaced by the n equations

2 V4 s o 1/ds
o O -

EF]
The relation between the total energies E and E’ is again given by (5.123).
Equating the right-hand sides of (5.127) for two different terms ¢ and j
and collecting unprimed and primed quantities on separate sides leads to the
condition
|F/El% _ |F/E|
|Fj/E|4 "~ |Fj/E'|%
If we consider an ensemble of systems X' corresponding to different field
strengths F; and energies F (excluding changes of sign), then (5.128) shows
that the classical dynamics within the ensemble is invariant within mechanical
similarity if

(5.128)

|Fy/E|%
——— = const. (5.129)
|F;/E|%
for each pair of labels 1, j. For n > 2 these conditions are not independent.
The n + 1 parameters E, F; (i =1,..., n) are effectively subjected ton — 1

independent conditions, because o and 3 generate a two-parameter manifold
of mechanically similar systems.
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The Coulomb potential describing the forces in an atom (or molecule or
ion) is homogeneous with degree di = —1, and the corresponding strength
parameter F; may be assumed to be constant for a given specimen. This fixes
the scaling parameters,

E E\%?
according to (5.123), (5.127). In the presence of n — 1 homogeneous external
fields of degree d; (j = 2,..., n) the conditions (5.129) reduce to

F;/|E|%*! =const., j=2,...n , (5.131)
when inserting d; = —1, F} = const. for i = 1. The n — 1 conditions for
mechanical similarity are thus that the scaled field strengths F;, defined by

E; = Fj/|E|%* | ' (5.132)

be constant. The values of these n — 1 scaled field strengths determine the
properties of the classical dynamics which are invariant to within similarity
transformations (5.118). For each set of values of the scaled field strengths
there is now a one-parameter family of mechanically similar systems and not
a two-parameter family, because the field strength F} is kept fixed.

For a homogeneous external electric field the potential V2 is homogeneous
with degree one, and F) is the electric field strength f. The scaled electric
field strength is

F=r/E* | (5.133)

and all systems with the same value of f (and the same sign of E) are
mechanically similar.

A homogeneous external magnetic field is studied more conveniently by
directly subjecting the equations of motion for a charged particle in such
a magnetic field to the similarity transformation (5.118). The equations of
motion in the systems X and X’ are seen to be equivalent if the respective
magnetic field strengths v and 4 are related by

Y =v/8 . (5.134)

Comparing with (5.122) shows that this corresponds to the behaviour of a
homogeneous potential of degree two, and the square of the magnetic field
strength plays the role of “field strength” F. For an atom (d; = —1, F} =
const.) in a constant homogeneous magnetic field of strength v, the scaled
magnetic field strength 4 is thus defined via (5.132) with F; =%, d; = 2, as

¥ =~*/|E®, F=~/|EP? . (5.135)

The conditions for invariant classical dynamics of an atom in an exter-
nal electric or magnetic field are conventionally stated as the condition of
constant scaled energy, which is E/+/f for the electric field and E/v%/3 for
the magnetic field. The nomenclature evolved historically [FW89], and has
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probably been a mistake from the pedagogical point of view. This becomes
clear when we consider an atom in a superposition of homogeneous electric
and magnetic fields. We are then confronted with two different definitions
of scaled energy, and usually the conditions of mechanical similarity are ex-
pressed as requiring one of these scaled energies and the ratio f3/7* to be
constant. The more natural statement of the conditions for mechanical simi-
larity for an atom in a superposition of electric and magnetic fields is surely
that both scaled field strengths, f and ¥, be constant. This of course implies
the constancy of the above-mentioned scaled energies and of the ratio f3/44,
which is equal to f3/v* and is independent of energy.

In the presence of a time-dependent external field the expression (5.125)
for the potential energy of the system X must be generalized, e.g. to

Ur,t) =Y FVi(r) + FoVo(r)®(wt) ;
i=1

Vilar)=a%Vi(r), i=0,1,...,n (5.136)

where we have added a homogeneous potential Vp with strength Fy multiplied
by a time-dependent function $(wt), which is usually, but not necessarily, a
harmonic function (sine, cosine or exp (+iwt)). The time function @ need not
even be periodic, but the parameter w (> 0) is included explicitly to give us
a handle on the time scale. The corresponding potential energy in the system
PIUST

n
U'(r',t'y =Y FVi(r') + FgVo(r)&(w't’) . (5.137)
i=1
Again we study the effect of the similarity transformation (5.118) on the ki-
netic and potential energies. The systems X and X’ are mechanically similar
if kinetic and potential energies in X differ from those in X' by the same mul-
tiplicative factor. The time function & is generally assumed to be bounded,
so it cannot be a homogeneous function. Hence we have no freedom to choose
the parameter 8 connecting the times ¢ and t’; if U’ is to be proportional to
U there is no choice but to set

8= % , sothat w't'=wt . (5.138)

The time scale parameter w replaces the energy of the time-independent
case as an additional parameter (beside the field strengths) determining the
classical dynamics of the system. Whereas (5.123) fixes the ratio o/f in the
time-independent case, (5.138) fixes the time stretching parameter § in the
time-dependent case. This leaves one free parameter o and the n+1 conditions

N\ 2
ad*’Fi'=<a%) F,, i=01,....,n . (5.139)
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Resolving for a now yields

o 2Fi 1/(di—2)
-[3

For any pair (i, 7) of labels this implies

|Fifw?l%2 | w4

forall i=0,1,...,n . (5.140)

— = — (5.141)
IFj/wzld, 2 IF]{/w;2 d; -2
in other words, mechanical similarity is given if
|Fi/w?% 2
|FyJar |52 = const. (5.142)

The potential (5.136) may contain more than one time-dependent contri-
bution. As long as the dependence of each contribution on the coordinates is
homogeneous, the results derived for the label i = 0 above are easily gener-
alized to a finite number of time-dependent terms. Note, however, that only
one time scale parameter w can be accommodated, because there can be
only one time stretching factor 8, see (5.138). If the potential contains e.g. a
superposition of several harmonic terms with different frequencies, then the
mutual ratios of these frequencies have to be the same in all mechanically
similar systems, so that there is effectively only one parameter defining the
time scale.

For an atom (or ion) in a time-dependent field and n — 1 external static
fields we again assume the label i = 1 to describe the constant (F; =const.)
Coulomb field (d; = —1) of the atom, and this fixes the stretching parameter
a via (5.140),

a= (%)2/3 : (5.143)

The conditions (5.142) now suggest the following definition for the scaled
field strengths:

E, ¥ Fyjwd@+n (5.144)

With these definitions the n conditions for mechanical similarity can be ex-
pressed as the requirement

Fj =const., 5=0,2,3...,n . (5.145)

For an atom described by a constant Coulomb field (i = 1) in a superposition
of one (j = 0) time-dependent and n —1 (j = 2, ..., n) static external fields,
the classical dynamics is determined to within mechanical similarity by the
values (5.145) of these n scaled field strengths.

The time-dependent field is very often the oscillating electric field of mi-
crowave or laser radiation, so Fy = fraq is the amplitude of an oscillating field
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of circular frequency w, and dp = 1. The corresponding scaled field strength
frad, which is constant under the conditions of mechanical similarity, is

frad = frad/w4/3 (5.146)

according to (5.144). For an external static electric field of strength f, the
scaled field strength f is analogously given by f = f/w?*/3. For an additional
magnetic field of strength v (with F; corresponding to v2), the scaled field
strength ¥ is given by

¥V =y?, F=7q/w , (5.147)
according to (5.144). Under the conditions of mechanical similarity, ﬂad, f
and ¥ are constant, and so are f2 /v and f3/4* as in the time-independent
case.

(b) Quantum Mechanics. The quantum mechanical system corresponding
to the classical system X introduced above is described by the Schrédinger
equation,

R2 d
— S AG(r, ) + Ur Bp(r,t) = (1) (5.148)

and can be obtained by quantization via the canonical commutation relations
between the coordinates r; and the momenta p; = mdr;/dt,

[rispi} =1ihdi; . (5.149)

When the classical dynamics of the system X is related to the classical dynam-
ics of the system X’ via the non-canonical similarity transformation (5.118),
the coordinates transform as rj = or; and the momenta as p; = (a/F)p;.
(The latter also holds if the momentum p; contains a term proportional to a
vector potential describing a homogeneous magnetic field, because the vector
potential must be proportional to a product of the magnetic field strength,
transforming according to (5.134), and a linear function of the coordinates.)
The same quantum mechanics is thus obtained by quantization of the system
X’ via the non-canonical commutation relations,

AL (5.150)

where /' is an effective Planck’s constant,

’ az

h 3 ho. (5.151)

If the field strengths F; in X' are varied under the conditions of mechanical
similarity, then canonical quantization in the system X leads to the same
quantum mechanics as non-canonical quantization in the mechanically similar
“scaled system” system X’ according to (5.150), with a variable effective
Planck’s constant (5.151).

For a system with one time-independent homogeneous potential of degree
d, U(r) = FV(r), the constants a and § are given by (5.124), and the
effective Planck’s constant in the scaled system X' is
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2 1/d /N 1/d+1/2
, o F E
=—h=|—= - ho. 5.152
=50 (7) (3) 5152
It is interesting to study (for fixed energy E’ and field strength F’) which
combination of energy F and field strength F' corresponds to the semiclassical
limit, #/ — 0. This obviously depends in the following way on the degree d
of homogeneity of the potential:

0<d: F—-0 or |E|—> o0 (5.153)
-2<d<0: |F|—00 or E-—0 (5.154)
d=-2: |F|—o0c0 and E arbitrary (5.155)
d<-2: |Fl>o0 or |E|—o00 . (5.156)

When d > 0 or d < —2, the semiclassical limit for a given field strength
F corresponds to the high energy limit |E| — oco. However, if the degree d of
homogeneity of the potential lies between zero and —2, then the semiclassical
limit of the Schrédinger equation for a given field strength corresponds to
the limit of vanishing values of the energy E. This applies in particular to
all Coulomb systems, where d = —1, and it is perhaps not surprising when
remembering that the energies of the bound states of a one-electron atom
vanish in the (semiclassical) limit of large quantum numbers.

Now consider a potential U in (5.148) consisting of n contributions,
U(r) = S0, F;Vi(r), where V; is a (time-independent) homogeneous po-
tential of degree d;. The equivalence of the canonical Schrédinger equation
for energy E and field strengths F; to the non-canonical Schrédinger equa-
tion containing the modified Planck’s constant (5.151) is maintained, as long
as energy and field strengths are varied under the conditions of mechanical
similarity described above. This implies

o2 F, Ydi s g\ 1/di+1/2 )
h’:Fh:<FiI> (E) h for all i . (5.157)

The conditions of the semiclassical limit correspond in each contribution 7 to
the limiting behaviour (5.153)—(5.156), depending on the degree d; of homo-
geneity of the respective term. These conditions are compatible in the case
of mechanical similarity (5.128). For example, if the label i=1 describes the
fixed Coulomb potential in an atom, then the condition of constant scaled
field strengths (5.132) implies

Fj « |E)**d (5.158)

The semiclassical limit A’ — 0 corresponds to E — 0. For any further contri-
butions with a positive degree of homogeneity, e.g. an external electric field
with d; = 1, or an external magnetic field with d; = 2, the strengths F; must
tend to zero as prescribed by (5.158) in the semiclassical limit. Note, in par-
ticular, that a fixed strength of the Coulomb potential and a non-vanishing
external electric and/or magnetic field are incompatible with the conditions
of the semiclassical limit.
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(c¢) Scaled Fields Spectroscopy. The energy and the n—1 strengths of the
static external fields in which an atom is placed have n—1 conditions to fulfill
for mechanical similarity to hold, e.g. that the scaled field strengths (5.132)
be constant. When the field strength of the Coulombic forces describing the
atom is kept fixed, there remains one continuous parameter which can be
varied without changing the classical dynamics, except to within a similarity
transformation (5.118). This makes it possible to study the variations of the
quantum system corresponding to different values of the effective Planck’s
constant without changing the classical dynamics. Although the energy itself
or any one of the external field strengths could be chosen as the variable
parameter, a prudent choice is

_p1 1

X= PR
which has the dimensions of an inverse action and is just the inverse of the
effective Planck’s constant A’.

A justification for this choice can be found by looking at Gutzwiller’s
trace formula (5.111) or variations thereof [Cha92, FE97], which typically
express the energy level density or some other quantum mechanical property
by terms containing the actions Si,; along classical trajectories,

(5.159)

property of qm spectrum = function [exp (%Straj)jl ,

Straj:/ p-dr . (5.160)
traj

Regarding both sides of the upper line of (5.160) as functions of the variable
x defined by (5.159) leads to the following form of this general equation:

property of qm spectrum(x) = function (exp [ixSia;]) (5.161)
where we have expressed the actions Siraj through the “scaled actions”
2 '
o h
éraj = / p/ dr' = "_Straj = _Straj . (5.162)
traj :6 h

The scaled classical actions (5.162) depend only on the fixed energy E’, which
defines the energy at which the effective Planck’s constant A’ assumes its
physical value A, and on the n — 1 values of the scaled field strengths (5.132),
which determine the classical dynamics. In the general formula (5.161) these
scaled actions appear as Fourier conjugates to the variable x. Applying a
Fourier transform to (5.161) will thus reveal structures associated with clas-
sical trajectories at values of the conjugate variable corresponding to the
scaled actions of the trajectories. An example is given in Sect. 5.3.5(b).

For an atom in external static fields the scaling parameters a and 3 are
given by (5.130) and the natural variable (5.159) is

1 [E' 1
=—1\/= . 5.163
RV E R (o169
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The definition of the natural variable x depends on which field strength we
are keeping constant, and not on which external fields (of variable strength)
are present; the constancy of the strength Fy of the Coulombic (d; = —1)
potential describing the atom leads to the simple result (5.163), x « 1/4/]E|.
For. an external magnetic field of variable strength <y, this corresponds to
x o 4~ /3 when the scaled field strength 4 is kept constant, cf. (5.135). For
an external static electric field of variable strength, x oc 1/ \/|F| corresponds
to x « f~4 when the scaled field strength f is kept fixed, cf. (5.133). In
a superposition of electric and magnetic fields both relations apply, which
is consistent because f3/4% is constant under the conditions of mechanical
similarity.

The technique of scaled fields spectroscopy is well established in the case
of atoms in external electric and magnetic fields and has been been called
“scaled energy spectroscopy” [MWO91] and also “recurrence spectroscopy”
[MM97, DS97], because of the dominating role which periodic and recurring
classical orbits play in appropriately Fourier transformed spectra.

(d) Time-Dependent Potentials. The Schrodinger equation (5.148) with
the time-dependent potential (5.136) is equivalent to a non-canonical Schréd-
inger equation containing the effective Planck’s constant (5.151) with the
scaled potential (5.137) as long as the frequency parameter and the potential
strengths obey the conditions (5.138) and (5.140) for mechanical similarity. If
the label i = 1 describes the fixed (F; = F]) Coulomb potential (d; = —1) of
an atom, the stretching parameter « is given by (5.143), and the conditions for
mechanical similarity reduce to the requirement that the scaled field strengths
(5.144) be constant.

For a concrete experiment with a one-electron atom in a time-dependent
field, the initial (unperturbed) state of the atom is described by a quantum
number ng, and ng27h is the classical action S of the electron on the cor-
responding orbit. The similarity transformation (5.118) transforms actions
as

, a2 w\1/3
S_ﬂS_<M) s, (5.164)
according to (5.138) and (5.143), and hence now!/® is the corresponding
scaled quantum number which remains constant under the conditions of me-
chanical similarity. The cube of the scaled quantum number, njw, is naturally
called the scaled frequency. Using the initial quantum number nq as reference
rather than the frequency parameter w leads to

f=7ing (5.165)

as an alternative definition (instead of (5.146)) for the scaled strengths of the
time-dependent or static electric fields [Koc92, Ric97]. The corresponding
alternative to (5.147) for the scaled strength of an external magnetic field is

F=vnd . (5.166)
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With a and 3 given by (5.143) and (5.138), the effective Planck’s constant

is
wy1/3

ﬁ:(g) ho, (5.167)
and the semiclassical limit A’ — 0 corresponds to w — 0. Note that a finite
time scale for the time-dependent part of the potential is incompatible with
the semiclassical limit under the conditions of mechanical similarity. For fixed
field strength of the Coulomb potential describing the atom, the semiclassical
limit for an atom in external time-dependent and/or time-independent elec-
tric and magnetic fields corresponds to the static limit according to (5.167)
and to vanishing field strengths according to (5.144), (5.158).

5.3.5 Examples

(a) Ionization of the Hydrogen Atom in a Microwave Field. General
interest in simple Hamiltonians with a periodic time dependence received
a great boost after Bayfield and Koch observed the ionization of hydrogen
atoms in a microwave field in 1974 [BK74, BG77]. Hydrogen atoms in an ini-
tial state with principal quantum number ny =66 were ionized in a microwave
field of about 10 GHz. This corresponds to a photon energy of fiw ~ 4-107°
eV, so that more than 70 photons would have to be absorbed to ionize a
H atom (from the ng = 66 level). The perturbative approach, which may be
useful at least for relatively weak intensities and which was discussed in con-
nection with multiphoton ionization in Sect. 5.1, is not practicable when so
many photons are absorbed. Consequently intensified efforts have been un-
dertaken to solve the time-dependent Schrodinger equation directly for this
case.

There are experimental grounds (e.g. strong polarization of the H atom
prepared in an additional electric field) which may justify treating the prob-
lem in only one spatial dimension. This can of course only work if the mi-
crowave field is linearly polarized in the direction of this one spatial coordi-
nate. The Hamiltonian is then (in atomic units)

2

ﬁ:—%gﬁ~—2+fzcoswt , z>0 , (5.168)
where f is the strength of the oscillating electric field. This Hamiltonian is
somewhat similar to the Hamiltonian (5.82) of the kicked rotor. In the corre-
sponding classical system the periodic trajectories in the field-free case (f =0)
are just straight-line oscillations between the position of the nucleus (z=0)
and a maximal displacement which depends on the energy. The similarity to
a free rotor becomes most apparent when we perform a canonical transfor-
mation from the variables p, z to the appropriate action-angle variables I, 6.
Here I = S/(2nh) = (§ pdz)/(2nh) is the action in units of 27/ and is the
classical counterpart of the principal quantum number, and € is the canoni-
cally conjugate angle variable, which varies from zero to 27 during a period



326 5. Special Topics

'Ers=:oz7.‘EPss=.oqus. @M=.29 Fig. 5.18. Classical tra-
' ] jectories as calculated by
1 Jensen for the one-dimen-
sional hydrogen atom in
a microwave field of 7.11
GHz and a field strength of
9.1 V/cm. (From [Bay86])

1.3

of oscillation starting at the nucleus and ending with the return to the nu-
cleus [Jen84]. In the field-free case the trajectories in phase space are simply
straight lines I = const. as for the rotor. The influence of a microwave field
can be seen in Fig. 5.18, showing trajectories in phase space for a microwave
frequency of 7.11 GHz and a field strength of 9.1 V/cm. :

Figure 5.18 shows that most classical trajectories are quasiperiodic for
actions smaller than 65 to 70, while irregular trajectories dominate at higher
actions. These irregular trajectories, along which the action can grow to ar-
bitrarily large values as in the case of the kicked rotor, are interpreted as
tonizing trajectories. Thus the phase space picture Fig. 5.18 is interpreted as
indicating that initial states with an action (i.e. principal quantum number)
up to about 65 remain localized in quantum number (and hence bound) in
a microwave field of the corresponding frequency and strength, while initial
states above ng = 68 are ionized. The threshold above which ionization is
possible depends on the field strength and the frequency of the microwave
field. For increasing frequency and/or field strength ionization becomes possi-
ble for smaller and smaller quantum numbers of the initial state. For a given
microwave frequency w and a given initial quantum number ng there is a
critical field strength or threshold f., above which ionization begins. Accord-
ing to the scaling properties of an atom in a time-oscillating field, cf. (5.164),
(5.165), we expect this (classical) condition for ionization to relate the scaled
quantum number now!/3 to the scaled electric field strength fn§. Casati et
al. {CC87] derived the estimate f.,ng = 1/(50now'/3) for the threshold for
ionization.

More sophisticated calculations going beyond the one-dimensional model
(5.168) can be performed nowadays. Figure 5.19 shows a comparison of ex-
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Fig. 5.19. Experimental scaled field
strengths at which the probability
for ionizing a hydrogen atom in a mi-
crowave field of 9.923 GHz reaches
10% (dots) and 90% (squares) as
functions of the scaled frequency
niw. The dotted lines show the re-
sults of a classical calculation due to
Rath and Richards. (From [KL95])
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perimental ionization thresholds with the results of a full three-dimensional
classical calculation. The scaled electric field strengths at which the ioniza-
tion probability reaches 10% and 90% are plotted as functions of the scaled
frequency ndw and include initial quantum numbers between no = 32 and
no = 90 for a microwave frequency of 9.923 GHz [KL95]. The classical cal-
culations are due to Rath and Richards and include the effect of switching
on and switching off the microwave field. The classical calculations repro-
duce the non-trivial structure of the experimental threshold fields well for
scaled frequencies below about 0.8 atomic units, except perhaps near simple
fractions, 1/2, 1/3, etc. These discrepancies are attributed to quantum me-
chanical resonance effects, because they occur at scaled frequencies at which
just two, three, etc. photons of energy w (in atomic units) are needed to ex-
cite the initial state with quantum number ng to the next excited state with
quantum number ng+1.

Further work on atoms in time-oscillating fields includes the study of
ionization by circularly or elliptically polarized microwaves and the use of
alkali atoms in place of hydrogen. For overviews and descriptions of recent
advances the reader is referred to [Ric97, DZ97, BR97].

(b) Hydrogen Atom in a Uniform Magnetic Field. The hydrogen atom
in a uniform magnetic field has, in the last twelve years, become one of the
most widely studied if not the most widely studied example of a conser-
vative Hamiltonian system with chaotic classical dynamics [TN89, FW89,
HR89, Gay91, RW94, Mai97, SS98]. Its popularity is mainly due to the fact
that it is a real system for which observed spectra and the results of quan-
tum mechanical calculations agree down to the finest detail (see Fig. 3.25
in Sect. 3.4.2). The system corresponds very accurately to a point particle
moving in a two-dimensional potential (see (3.199) and Fig. 3.22). For a given
value L, of the z-component of the orbital angular momentum this potential
is (in cylindrical coordinates (3.160) and atomic units)
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12 1 1
Vg, 2) = —5% — ——— Zv%0% . 5.16
(0,2) 547 \/92+—22+879 (5.169)
The Hamiltonian describing the quantum mechanics of the system con-
tains the potential (5.169) and the operator $2/(2u) (cf. (3.183)), where p is
the canonical momentum. The classical velocity dr/dt is, however, related to
the (classical) kinetic momentum,

dr e
uo = ,ua =p+ ZA . (5.170)

If we transform the equations of motion to a coordinate system rotating
around the direction of the magnetic field with an angular frequency w, then
the velocity v’ in the rotating frame is given by [LL71]

v=v+rxw , (5.171)

where w is the vector of length w pointing in the direction of the magnetic
field. The canonical momentum p in the inertial frame is

B

ipr) = pv’, where w = %; ,  (5.172)

2uc

and where we have used the definition A = —rxB/2 of the symmetric gauge,
on which the derivation of the potential (5.169) was based. The canonical
momentum in the inertial frame thus corresponds to the kinetic momentum
in the frame of reference which rotates around the z-axis, pointing in the
direction of the magnetic field, with a constant rotational frequency w equal
to half the cyclotron frequency.

According to Sect. 5.3.4 the classical dynamics of the system depends not
on the energy F and the field strength 7 independently, but only on the scaled
field strength 5 = ~|E|~%/2 or on the scaled energy ¢ = Ey~%3% = £77%/3,
In the bound regime (negative energies) the separable limit corresponding to
a hydrogen atom without an external field is given by € = —oc0, 4 = 0. The
“field-free threshold” E =0 corresponds to e =0 (|§| = oo) and is identical
to the classical ionization threshold. Because of the finite zero-point energy
of the electron’s motion perpendicular to the field the (quantum mechanical)
ionization threshold actually lies higher (see (3.202)).

Numerical solutions of the classical equations of motion had already been
obtained in the 1980s by various authors [Rob81, RF82, HH83, DK84]. Fig-
ure 5.20(a—d) shows Poincaré surfaces of section for four different values of
the scaled energy and L, = 0. The surface of section is the gp,-plane at
z=0. Similar to Fig. 5.14, we clearly see an increasing share of phase space
filled with irregular trajectories as the parameter ¢ increases. This is demon-
strated again in Fig. 5.20(e), in which the share of regular trajectories in
phase space is plotted as a function of the scaled energy. Around € ~ —0.35
there is a more or less sudden transition to dominantly irregular dynamics,
but the share of regular trajectories is not a monotonic function of €. Above
€ = —0.1 virtually all of phase space is filled with irregular trajectories.

e
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Fig. 5.20. Poincaré surfaces of section for L, = 0 and four different values of the
scaled energy ¢ (a—d). The surface of section is the g p,-plane at 2=0. The bottom
panel (e) is taken from [SN93| and shows a measure for the share of regular orbits
in phase space as function of the scaled energy

In the field-free case, all bound orbits are periodic (Kepler ellipses). Near
the field-free limit there are only three periodic orbits which exist even for
arbitrarily weak but non-vanishing fields: the straight-line orbit perpendicu-
lar to the direction of the field (which is labelled I; for historical reasons),
the straight-line orbit parallel to the field (/) and the almost circular orbit
(C) which merges into an exact circle in the field-free limit. It is compar-
atively easy to investigate the stability of these orbits by calculating their
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Fig. 5.21. Liapunov exponent of the periodic orbit I, parallel to the direction of
the magnetic field. Whenever I becomes unstable a further initially stable orbit
Iy, I3, ... is born by bifurcation. The inset demonstrates schematically how such a
bifurcation shows up in the Poincaré surfaces of section

Liapunov exponents [Win87b, SN88, SN93]. The almost circular orbit is un-
stable for all finite values of € and its Liapunov exponent increases monoton-
ically with €. The straight-line orbit perpendicular to the field is stable below
€0=—0.127268612. The larger dip in Fig. 5.20(e) is attributed to the conflu-
ence of an unstable orbit with the perpendicular orbit I; at ¢ =—0.316186
[SN93]. Above £y the Liapunov exponent of I; grows proportional to the
square root of e—gg. The straight-line orbit parallel to the field, I, is stable
up to € =—0.391300824, and then intervals of instability and stability alter-
nate (see Fig. 5.21). Whenever I, becomes unstable, a new periodic orbit
is born by bifurcation. These orbits (labelled I, I3,...) are initially stable
but soon become unstable at higher values of ¢ at which further periodic
orbits are born by renewed bifurcation. As € increases the growing chaos is
accompanied by a proliferation of periodic orbits.

The transition to chaos manifests itself in the statistical properties of the
quantum mechanical spectrum of the hydrogen atom in a uniform magnetic
field, just as it does for the coupled harmonic oscillators (cf. Figs. 5.16, 5.17).
This was shown almost simultaneously in 1986 in [WF86], [DG86] and
[WW386]. Figure 5.22 shows the NNS distributions for four different values
of the scaled energy e. The transition from a distribution close to a Poisson
distribution (5.92) at e=—0.4 to a Wigner distribution (5.93) at e=—0.1 is
apparent.

Figure 5.23 shows the spectral rigidity (5.94) for values of € between
—0.4 and —0.15. The “odd curve out” at € = —0.30 clearly reveals what
can also be observed by closer inspection for other statistical measures: the

5.3 Regular and Chaotic Dynamics in Atoms 331

1.0 Fig. 5.22. NNS distributions for
P I €=-0.4 scaled energies between —0.4 and —0.1.
X (The dashed and solid lines show at-
0.5 tempts to fit analytic formulae to
N the distributions in the transition re-
gion between regularity and chaos (see
1.0 [FW89]))
€=-0.3
0.5 -
1.0
€=-02
€=-0.1
0.5
0
[} 1 2 3
X
1.0 P AR
b -0.30
oisson
0.8 / -040
08 f -0.35
< . y
0.4} -0.20
N/ -015
GOE
0.2 r 1
0.0 N N

0 5 10 1§ 2'5) 25 30 35 40

Fig. 5.23. Spectral rigidity (5.94) for various scaled energies
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transition from Poisson statistics in the regular regime to GOE statistics in
the chaotic regime is not monotonic. This is due to non-universal properties of
the dynamics which are specific to the system under investigation. Attempts
to find simple universal laws or rules for the statistical properties of energy
spectra in the transition region between regularity and chaos have been only
moderately successful [PR94].

Statistical measures such as NNS distributions and the spectral rigidity
describe correlations of short and medium range in the spectrum and show a
universal behaviour in the regular or classically chaotic limits. On the other
hand, long ranged correlations of the spectrum generally reflect specific prop-
erties of the physical system under consideration. This is expressed quanti-
tatively in Gutzwiller’s trace formula (5.111), which relates the fluctuating
part of the quantum mechanical level density to the classical periodic orbits.

As discussed in Sect. 5.3.4(c), spectra of an atom in a uniform mag-
netic field of strength ~ are most appropriately recorded for fixed scaled
field strength (corresponding to fixed scaled energy) as functions of the nat-
ural variable x = y~1/3, which is proportional to the inverse of the effective
Planck’s constant. The Fourier transformed spectra then reveal prominent
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Fig. 5.24. Absolute square of the Fourier transformed spectrum as a function of
the variable g, which is conjugate to y~/2, in the m™ =2% and m™* =2~ subspaces
at € = —0.2. The positions of the peaks are numerically equal to the scaled actions
of the classical periodic orbits shown in the right half of the figure. (From [Fri90])

Photoabsorption cross section
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structures at values of the conjugate variable corresponding to the scaled
actions of the periodic orbits. This is illustrated in Fig. 5.24 showing the
absolute square of the Fourier transformed spectrum in the m™ = 2% and
the m™ = 2~ subspaces for € = —-0.2. The maxima in the Fourier trans-
formed spectra can uniquely be related to simple classical periodic orbits;
the corresponding orbits are shown in the right half of the figure.

The relation between simple periodic classical orbits and modulations in
quantum mechanical spectra can also be extended to other observables such
as e.g. photoabsorption spectra. Figure 5.25 shows the famous photoabsorp-
tion cross sections for barium atoms as measured by Garton and Tomkins
in 1969 [GT69]. Near the field-free threshold EF = 0 we notice modulation
peaks separated by about 1.5 times the energy separation of the Landau
states of free electrons in a magnetic field. It was soon noticed that these
modulation peaks, which are called gquasi-Landau resonances, can be con-
nected to the classical periodic orbit perpendicular to the field by a relation
like (5.115). Later investigations of the photoabsorption cross sections re-
vealed whole series of modulations which can be related to classical periodic
orbits in essentially the same way as the modulations in the energy spectra
(Fig. 5.24) [HM90]. (The difference between barium and hydrogen is not so
important in the present context, where we are dealing with highly excited
states extending over large regions in coordinate space, because it only af-
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Fig. 5.25. Photoabsorption spectra of barium atoms in a uniform magnetic field.
(From [GT69])
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fects the potential V(g,z) in a very small region around the origin.) The
quasi-Landau modulations are a very instructive experimental example for
how unstable periodic classical orbits in a classically chaotic system manifest
themselves in quantum mechanical spectra.

The role of periodic classical orbits in shaping the structure of the quan-
tum spectra of atoms in a magnetic field is continuing to be a subject of
considerable interest. Recent advances have been achieved in understanding
the influence of the non-Coulombic core of the potential in atoms other than
hydrogen [O’M89, DM95a, HM95] and in incorporating “ghost orbits” into
the periodic orbit theory. Ghost orbits occur close to points of bifurcation and
are periodic solutions of the classical equations of motion in complex phase
space, which become real periodic orbits after bifurcation. For an overview
of recent developments see [Mai97].

The problem of one electron moving in an attractive Coulomb field and a
uniform magnetic field becomes substantially more complicated when an ad-
ditional electric field is applied. One reason for studying this problem is that
the real hydrogen atom is a two-body system, and its motion in a magnetic
field effectively induces an electric field in the Hamiltonian describing its in-
ternal motion, see Sect. 3.4.2. All features of regular and chaotic motion and
their manifestations in quantum spectra are of course present for an atom in
a superposition of electric and magnetic fields, and the richness and diversity
of effects is enormous. For an account of the present state of the art in this
field the reader is referred to [MU97, MS98] and references therein.

(c) The Helium Atom. The successful description of the spectrum of the
hydrogen atom on the basis of the Bohr-Sommerfeld quantization condition
(see Sect. 3.1.1) in the early days of quantum mechanics brought forth nu-
merous attempts to describe the energy spectrum of the helium atom in a
similar way [Bor25]. These attempts were unsuccessful for more than sixty
years, because a two-electron atom or ion is a non-integrable system, and the
relation between classical mechanics and quantum mechanics was not at all
well understood for such systems. Atoms (or ions) with at least two electrons
are essentially different from one-electron atoms, because they are, at any to-
tal energy, classically unstable for most initial conditions. This is so, because
one of the electrons can approach the nucleus arbitrarily closely and so ac-
quire an arbitrarily low energy, which leaves enough energy to be transferred
to another electron for it to be excited into the continuum. In phase space,
a thin skeleton of periodic orbits and non-periodic trapped orbits remains
bound, but most trajectories lead to ionization. Various periodic orbits of the
classical helium atom had been known early on [Bor25], but naive applica-
tions of the Bohr-Sommerfeld quantization condition had failed to reproduce
the energy eigenvalues of low-lying states which were known accurately from
experiment and from approximate solutions of the Schrodinger equation.

A satisfactory semiclassical approximation of the energy levels in helium
was achieved in 1991 on the basis of periodic orbit theory by Ezra, Richter,
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Tanner and Wintgen [ER91, WR92]. The method is based on approximating
the so-called “dynamical zeta function”, whose logarithmic derivative with
respect to energy is just the trace of the Green’s function (5.105). Individual
energy levels are identified with the zeros of the dynamical zeta function,
which correspond to the poles of the trace of the Green’s function. The dy-
namical zeta function can be approximated by a product of terms associ-
ated with classical periodic orbits such that the logarithmic derivative of this
product yields the semiclassical approximation to the trace of the Green’s
function as summarized in Gutzwiller’s trace formula (5.111). If the periodic
orbits can be classified by a digital code, then the product over all orbits can
be expanded in terms of the lengths of the codes and the expansion truncated
after a certain length. This method is known as cycle expansion technique
[CE89]. The zeros of the approximate dynamical zeta function obtained in
this way provide approximations to the energy levels of the system.

The analysis in [ER91] was based on the collinear model of helium, in
which both electrons are restricted to lie on different sides on a straight line
through the nucleus, see (4.230). In this model there are two spatial coordi-
nates, namely the separations r1, r2 of the two electrons from the nucleus, and
its four-dimensional classical phase space is a genuine subpace of the phase
space of the full two-electron problem in three dimensions. The periodic or-
bits within this model are easily classified in a systematic way by registering
collisions of each of the electrons with the nucleus. All orbits of the collinear
model are unstable, i.e. have positive Liapunov exponent, but the collinear
motion is seen to be stable against bending away from the straight line. The
symmetric vibration of both electrons has an infinite Liapunov exponent due
to the highly singular triple collision when both electrons meet at the nu-
cleus simultaneously. This so-called “Wannier” mode plays an important role
for the ionization process, as discussed in Sect. 4.4.4, but its relevance for
the line spectrum well below the break-up threshold is not so clear [Ros94].
The next simplest periodic motion of two electrons in collinear helium is the
asymmetric stretch vibration in which both electrons alternately collide with
the nucleus and are reflected at their outer turning point. In its application in
{[ER91] the cycle expansion was truncated so as to include the contributions
of all primitive periodic orbits with up to six collisions of one of the electrons
with the nucleus during one period. The energies obtained in this way are
compared in Table 5.1 with the results of exact quantum mechanical calcula-
tions for some of the (n;s,n2s) states with similar quantum numbers ny, ns.
The results show that the energies of several low-lying states of helium can
be approximated in the framework of semiclassical periodic orbit theory and
the collinear model with an accuracy of a few per cent of the level spacing.

The simplest version of the cycle expansion includes only one periodic
orbit, viz. the asymmetric stretch vibration mentioned above, and it corre-
sponds to a modified Bohr-Sommerfeld quantization of this periodic orbit,

Sas(En) = f pdg = 2mh(n + pq) - (5.173)



336 5. Special Topics

Table 5.1. Energies (in atomic units) of some (n1s, n2s) states of the helium atom.
The quantum mechanical energy Eqm is compared with the semiclassical approx-
imation Esc based on the cycle expansion and with the energies E,; obtained via
modified Bohr-Sommerfeld quantization of the asymmetric stretch vibration. (From
[ER91])

ni,n2 Eqm Es Eas

1,1  —-2.904 -2932 —3.100
2,2  —0.778 —0.778 —0.804
2,3  —0.590 —0.585
3.3  —0.354 —0.353 —0.362
3,4  —0281 —0.282
4,4  —-0201 -0.199 —0.205
4,5  —0.166 —0.166
4,6  —0.151 —0.151
55 —0129 -0129 —0.132
56  —0.110 —0.109
5,7  -0.100 —0.101
6,6  —0.0902 —0.0895 —0.0917

The constant g on the right-hand side plays the role of a negative quan-
tum defect, i.e. a quantum excess, and contains the Maslov index divided by
4 together with a winding-number correction accounting for the zero-point
motion of the (stable) bending mode. Because the potential is homogeneous
with degree —1, the energy dependence of the action on the left-hand side of
(5.173) is (cf. (5.162), (5.163) in Sect. 5.3.4(c)),

Sas(E) = % ) (5.174)

and the quantization condition (5.173) yields a Rydberg formula,

2
En, = —W : (5.175)

The quantum mechanical energies of the symmetrically excited (ns, ns) states
in helium actually follow such a Rydberg formula quite well, and the data
correspond to a value of 1.8205 for Sas(—1)/(27h) and a quantum excess pg =
0.0597. The deviation of the value 1.8205 from the value two, which one would
expect for two non-interacting electrons in the field of the Z =2 nucleus, is
attributed to mutual screening of the nucleus by the partner electron. The
action of the asymmetric stretch vibration is S,s(—1)/(2mh) = 1.8290. Our
experience with quantization of the one-dimensional Coulomb problem in
Sect. 3.1.1, (3.9), indicates that a contribution 3 rather than 1 to the Maslov
index is appropriate for reflection at an attractive Coulomb singularity. In any
case, the two reflections during one period of the asymmetric stretch vibration
lead to a half-integral contribution to pg4, and together with the winding-
number correction the quantum excess uq acquires a theoretical value 0.039
modulo unity [ER91]. The resulting energies (5.174) for the symmetrically
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excited states are shown in the column E,; in Table 5.1. Modified Bohr-
Sommerfeld quantization of the asymmetric stretch vibration thus gives a
fair account of the energies of the symmetrically excited states.

The interpretation that symmetrically excited states in helium are strongly
influenced by the asymmetric stretch vibration of the collinear configuration
is supported by quantum mechanical calculations. In the subspace defined
by a total orbital angular momentum of zero there are three independent
coordinates, viz. 71, 3 and ri2 = |r; — r2|. Figure 5.26 shows the probabil-
ity distribution |(ry,72,712)|? of the eigenfunction with n; =6, ny =6 on
the section of coordinate space defined by 112 = 71 + r2, corresponding to
the collinear configuration. The localization of the wave function along the
asymmetric stretch orbit, shown as a solid line, is quite apparent.
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Fig. 5.26. Probability distribution

r 11/1(7‘1,7‘2,7'12)|2 of the (6s,6s) he-

2 lium atom eigenfunction on the sec-

tion of coordinate space defined by

712 = r1+72. The solid line labelled

‘as’ shows the asymmetric stretch

0 0 25 50 75 100 orbit, the dashed line is the Wan-

r nier orbit, r1 = r2. (From [WR92|)

The analysis of the classical dynamics of two-electron atoms and ions has
revealed some interesting and curious results. The so-called “Langmuir or-
bit”, which corresponds to a maximal vibrational bending of the symmetric
electron-nucleus-electron configuration, has been shown to be stable for nu-
clear charge Z =2 [RW90b]. Further stable orbits exist in the “frozen planet”
configuration, in which both electrons are on the same side of the nucleus at
very different separations, and the farther electron (“frozen planet”) moves
slowly in a limited region of coordinate space, while the nearer electron os-
cillates rapidly to and from the nucleus [RW90c]. Although most classical
trajectories are unstable, the existence of such stable orbits means that the
classical dynamics of the helium atom is not fully ergodic.

In highly asymmetric configurations of a two electron-atom or ion, one
electron can move for a long time on a very extended Kepler orbit, while
the other electron stays near the nucleus. Even though such orbits are gen-
erally unstable, their Liapunov exponent can be arbitrarily small, because
the motion of the two electrons is almost independent, being on individual
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and only slightly perturbed Kepler ellipses for an arbitrarily long time. This
phenomenon of long intervals of regularity on trajectories which are in fact
unstable is called “intermittency”. The quantum analogue in two-electron
atoms is provided by the highly excited states in Rydberg series, where one
electron is excited to very high quantum numbers, while the other electron is
in a state of low or medium quantum number. Adaptations of periodic orbit
theory have been quite successful in establishing the link between classical
and quantum dynamics in these situations. For recent reviews, the reader is
referred to [RT97, BQ97, Ros98].

The developments over the last decade have reinstated classical mechan-
ics as a relevant theory, even in the atomic domain. It remains undisputed,
however, that quantum mechanics is the formalism for a correct quantitative
description of atomic phenomena. It is also clear that the uncertainty prin-
ciple holds and that it would be wrong to picture the electrons in an atom
as point particles moving on classical trajectories with well defined positions
and momenta. Through the advances described in this section it has, however,
become apparent that the properties of a classical system, in particular of its
periodic orbits, are visible in spectra of the corresponding quantum system,
and that we can understand and sometimes quantitatively describe features
of the quantum mechanical observables on the basis of our knowledge of the
classical orbits.

5.4 Bose-Einstein Condensation in Atomic Gases

5.4.1 Quantum Statistics of Fermions and Bosons

Consider a large number of independent identical particles, each described
by the same one-body Hamiltonian with eigenstates |v) and eigenvalues €,,
v =1,2,3,.... We can construct a basis of eigenstates of the many-body sys-
tem from the products of the one-body eigenstates, which should be antisym-
metrized or symmetrized if the particles are fermions or bosons respectively.
Due to the indistinguishability of the particles, a many-body state depends
only on the numbers n, of particles occupying the various one-body eigen-

states |v), and we shall collect all these numbers ny,n2,...,ny,... in one
label r. The total energy E, in the many-body state r is
[e o]
E,. = Zn,,su , (5.176)
v=1

and the total number N, of particles is
o0
Ne=>m, . (5.177)
v=1

The standard procedure for describing such a system in the framework of
statistical mechanics is to imagine an ensemble of systems corresponding to
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all possible realizations of the many-body state, and the values we deduce
for observable physical quantities depend on the probability with which the
various possibilities are realized. In the grand canonical ensemble the proba-
bilities are determined by the temperature T and the chemical potential u,
and are proportional to exp [—(Ey — uN,)/(ksT)], where kg is Boltzmann’s
constant. This is generally expressed with the help of the grand canonical
partition function,

Y =S e AEuN g 1/(kgT) (5.178)

so the probability P, for realizing an individual state r of the whole many-
body system is

1 g _ 1 _gye _
PT:?e B(E-—pN,) _ se BY 7 nulev—p)

1 7 '
=y [[e P . (5.179)
v=1
The full many-body partition function (5.178) can be rearranged to a
product,

Y = H Y,, y YV = Ze_ﬂ(sv—#)n , (5180)
v=1 n

and each factor Y, is actually a one-state partition function for a grand canon-
ical ensemble of one-state systems, in which the particles can only occupy the
one single-particle quantum state |v). For fermions, each state |v) can only
be occupied by n=0 or n=1 particles because of the Pauli principle, and the
summation over n is easily performed, Y, = 1+ exp[~8(e, — p)]. The prob-
ability for the state |v) being unoccupied is Py = 1/Y,, and the probability
for being occupied is P; = exp[—f(e, — u)}/Y., so the average occupation
number (n,) is

n,) = __exp[-fBle,—p)] _ 1
(ny) n;);lnPn T+ exp|—Ble, —p)] ~ opBG, — @1~ 18y

For bosons there is no restriction on the number of particles which can occupy
a given single-particle state |v), and Y, is a geometric series which sums to
Y, = 1/(1 — exp[—B(e, — p)]), provided &, > u. The average occupation
number in the state |v) is now

(ny) = i nP, = (1 - e‘B(e"_“)) i neAlev—mn (5.182)
n=0 n=1

. . /
T.‘he right-hand side of (5.182) can be evaluated by writing the sum as 1/3
times the derivative of Y ;- ;exp [-B(e, — p)n] = 1/ {1 —exp [-B(s, — p)]}
with respect to u, and this yields

_ 1
) = e — 1

(5.183)
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At energies much larger than the chemical potential, €, — 1 > kg7, the
difference between fermions (5.181) and bosons (5.183) disappears and the
(small) occupation probabilities approach an exponential behaviour, (n,) =
exp [—-B(e, — p)), typical for classical particles. At low temperatures, § — oo,
the occupation probability (5.181) for fermions degenerates to 1 — (e, — ),
i.e. the chemical potential corresponds to the Fermi energy (cf. (2.102)) up to
which all single-particle states are filled, while all higher-lying single-particle
states are unoccupied. This is the extreme case of a degenerate Fermi gas. For
bosons (5.183) the chemical potential must be smaller than the lowest single-
particle energy, and the occupation probability tends to infinity when €, — p.
The condensation to a degenerate Bose gas, i.e. Bose-Einstein condensation,
is conveniently illustrated for the example of an ideal gas.

An ideal gas can be considered to be a system of free particles of mass
m moving in a large cube of side length L. The single-particle states can
be labelled by three positive integers (vz, vy, V;) = v, and the corresponding
single-particle energies are (cf. Problem 2.4)

2.2
£y = %(uﬁ+u§+u§) :C’(%)Z , with C= %7;— . (5.184)
The average total number of particles (N ) is
V= 3 ()~ T /oo 52 di 1 . (5.185)
8 0 exp [B(CP? — p')] - 1

Vo Wy, Vz
where the sum over the discrete lattice vy, vy, v, has been replaced by an
integral over the vector ¥ = (v; — 1,1y — 1,v, — 1}/L in the octant ; > 0,
and g/ = p — gs is the chemical potential relative to the energy of the
non-degenerate ground state, # = 0.! The integral on the right-hand side of
(5.185) can be evaluated by decomposing the quotient into a geometric series,
yielding

(N) _ 1< /°° 2 _1B(CT ) g5 — TN gt VT
Ny _m e di= TS et VT (5186)
3 "2 lZ: o 2 ; 4(1BC)*2

Inserting the expression for C as given in (5.184) yields

3/2 oo ’
N) _ (mksT Xl . (5.187)
2mh? — [3/2

3

Equation (5.187) defines the temperature dependence of the chemical po-
tential u/. As T is decreased from some high value, u' must increase from
some large negative value, if the total average particle number (N) or number
density (N)/L? is to remain constant. At a critical temperature T., the value
of u' reaches zero. As the temperature is reduced below T, i’ remains zero.

! Terms of order /L are neglected in the exponent on the right-hand side of
(5.185), but reference to the energy of the non-degenerate ground state, £gs =
O(1/L?), is retained for pedagogical reasons.
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The formula (5.185) now only accounts for the particles in excited states, be-
cause its derivation relied on the condition u < €,. The critical temperature
is defined by inserting p’' = 0 in (5.187),

(N) _ (mkeT\** & 1
L3 2mh2 P 13/2

(5.188)

The sum on the right-hand side of (5.188) is just the value of the zeta function,
((z) = Y2, 17, for argument xz = 3/2; {(3/2) = 2.612.... The critical
temperature T is reached when the number density ¢ = (N)/L3? is, except
for the factor (3/2) = 2.612..., equal to the inverse cube of the thermal
wavelength A\(T') = 2wh//2nmkgT;
_2612...
¢ NT?

The thermal wavelength A(T') is the de Broglie wavelength 27/ /p of a particle
whose kinetic energy p?/(2m) is equal to mkgT'. At the critical temperature
the thermal wavelength becomes so large that it is of the order of the linear
dimensions of the volume p~! available to each particle.

As the temperature is reduced below T, the chemical potential 1’ remains
zero and the number Ny, of particles in excited states is given by

Nexe (mksT\* & 1 T\** (N)

(5.189)

The number Ny of particles which has condensed into the non-degenerate
ground state is

/
No = (N) ll - (%)3 2} , T<T, . (5.191)

For T'— 0 all particles condense into the ground state. This is the extreme
case of a degenerate Bose gas.

The condensation of a significant fraction of the Bose gas into its ground
state has dramatic consequences for its thermodynamical properties. The
condensed particles don’t contribute to the pressure of the gas, and they
don’t participate in the transfer of heat. Below T, the specific heat of the
gas falls off with diminishing temperature due to the diminishing fraction of
particles participating.

Atoms as a whole behave like fermions if their total number of nucleons
(protons and neutrons) and electrons is odd, and like bosons if it is even.
The standard textbook example for Bose-Einstein condensation is liquid “He,
which shows a phase transition to superfluidity at a temperature of 2.17K.

Homogeneous Bose-Einstein condensates have been a topic of continuing
study and interest in the field of condensed matter physics for many years.
The condensation of atoms trapped in an external potential produces spa-
tially confined Bose-Einstein condensates which have a finite volume and a
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surface and hence exhibit new and interesting features not present in the
homogeneous case. The successful preparation of such condensates of atomic
gases in 1995 greatly stimulated interest in their theoretical description. A
representative introduction to the theory of non-homogeneous Bose-Einstein
condensates is contained in the papers collected in [BEC96}.

5.4.2 The Effect of Interactions in Bose-Einstein Condensates

The Hamiltonian for a system of identical particles of mass m in a common
external potential V (r), which interact via a two-body potential W (r; — ;)
is (cf. (2.53))

N .o N
=52 S ve)+ S wi-rj) . 5.192
- EDILCARD LIRS (5.192)
The Hartree-Fock method described in Sect. 2.3.1 treats a system of inter-
acting fermions on the basis of Slater determinants, so that the independent-
particle picture is formally kept, but a part of the interaction between the
particles is taken into account in the form of a mean field. An analogous
ansatz for bosons is to start with a many-body wave function ¥ consisting of
a product of single-particle wave functions,

N
U(ry,...,rn) = [[wilrs) - (5.193)

The right-hand side of (5.193) should in principle be symmetrized with re-
spect to the particle labels. In a product ansatz for the ground state of the
many-boson system we assume all particles to occupy the same single-particle
state, ¥;(r) = ¥(r), i = 1,..., N, so the symmetry requirement is fulfilled
automatically. Minimizing the expectation value of the Hamiltonian (5.192)
with respect to variations of the single-particle wave functions leads to an
equation for ¢. The calculations are now simpler than for the fermion case
in Sect. 2.3.1; in particular, there is no exchange potential. Instead of the
Hartree-Fock equations (2.88) we obtain a “Schrédinger equation” with the
one-body Hamiltonian

R 52
hy = % FV(r) + W(r) (5.194)
and the mean-field contribution is (cf. (2.90), (2.91))
N
Wat(r) = [ dr' S st )W (e =)
i=1

= / dr' Ny PW(r — ') . (5.195)

The resulting “Schrédinger equation” is usually formulated for the renormal-
ized wave function
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¥n(r) = VNy(r) , (5.196)
and its time-dependent version reads [Gro63]
., 0 h?
22— (~ 5 A+ V() o)
+ YN (r,t) / [N (' OPW(r — ) dr . (5.197)

Since this equation is non-linear in ¥ it is necessary to specify the normal-
ization condition,

/Iww(r,t)l"’dr =N . (5.198)

Equation (5.198) is known as the Gross-Pitaevskii equation or also as the
non-linear Schrodinger equation. Its time-independent version reads

2
(‘%A + V("')) ¢'N(7‘) + ’lIJN(’I") / I"/)N(T")PW(T _ 1") dr’

=pYn(r) , (5.199)

where we have written the chemical potential i for the energy &4 of the single-
particle ground state, in accordance with the conditions for condensation
described in Sect. 5.4.1.

The two-body potential W may be expected to disturb the independent-
particle picture only weakly, if its range is short compared to the spatial
extension of the condensate wave function ¥n. In this case we may approxi-
mate [ |yn(r)|2W (r—7')dr’ by [~ (r)|? [ W(r') dr’ in (5.197) and (5.199).
According to (4.19), the spatial integral over the potential W is, except for
a constant, identical to the low-energy limit of the Born approximation fB
to the amplitude for particle-particle scattering under the influence of the
two-body potential W,

N .. Amh? g

/W(r )dr' = ’llil}) Tf . (5.200)
(Remember that the reduced mass of relative motion of two particles of mass
m is m/2.) In the low-energy limit the scattering amplitude (4.23) reduces
to the partial wave amplitude fi_o for the s-wave, which in turn can be
expressed via the scattering length ag according to (4.27), (4.39), fi—o =
(1/k)sindi—¢ + ... = —ag + O(k) for k — 0. If the effect of the interaction
is sufficiently weak, we may identify fB with —ag and obtain the following
generally used forms [DG97] of the time-dependent and time-independent
Gross-Pitaevskii equation:

in2 h? 4mh?

ih gtN = (—554+V(r)+ :rn a0|"/’N(T,t)|2) yn(r,t) ,  (5.201)
h? 4mh?

(—%A“LV(TH 71rn "‘0"/’1"("”2) Yn(r) = pn(r) . (5.202)
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The effect of two-body interactions on the condensate wave function is thus,
in a first approximation, controlled by the scattering length of the two-body
potential. The importance of atom-atom collisions for the understanding of
Bose-Einstein condensates has rekindled interest in quantum and semiclas-
sical analyses of the atom-atom interaction, in particular in the regime of
extremely low energies [Jul96, MW96, CH96, TE98, EF98|.

The condensate wave function 1 can be obtained by numerical solution
of the Gross-Pitaevskii equation. An example has been given by Dalfovo et al.
[DP96] for the case of a cylindrically symmetric harmonic external potential,

V(r) = %wi(ﬁ +y? 4+ A% . (5.203)

Calculations were performed for a perpendicular oscillator width 8, =
VAJ/(mwy) (cf. (1.83)) of 1.222 x 10™* cm, corresponding to about 23000
Bohr radii, and the frequency ratio A was chosen as V8. The physical pa-
rameters of the particles correspond to 8’Rb atoms; the scattering length g
was taken to be 100 Bohr radii and positive, corresponding to a repulsive
atom-atom potential; the number of atoms in the condensate was assumed
to be 5000. The resulting wave function along the z-axis perpendicular to
the axis of symmetry is shown in Fig. 5.27. The dashed line shows the z-
dependence of the wave function in the non-interacting case, where it is just
the Gaussian for the harmonic oscillator ground state. The solid line shows
the result of numerically solving the Gross-Pitaevskii equation (5.202). The
repulsive atom-atom interaction clearly stretches and flattens the profile of
the wave function. The dash-dotted line in Fig. 5.27 shows the result corre-
sponding to | (r)2 = [m/(4mkA%ag)] [ — V (r)], which is obtained simply by
neglecting the kinetic energy term —[h%/(2m)]Ayn in the Gross-Pitaevskii
equation (5.202). This so-called “Thomas-Fermi approximation” implies a
large product of scattering length and density; it describes the profile of the
condensate wave furiction in Fig. 5.27 quite well in the interior but poorly
near the surface.

One example of differences between homogeneous and confined conden-
sates is provided by recent work [0S97, DG97] on the excitation spectrum of
a trapped condensate. Excitations of the condensate wave function are de-
scribed in the framework of the Hartree-Fock approximation as one-particle-
one-hole excitations, in which one of the particles occupies an excited single-
particle state rather than the ground state ¢, cf. Sect. 2.3.1. A further-
reaching theory due to Bogoliubov is based on the concept of quasiparticles,
which is more general, because a single-quasiparticle state involves a super-
position of occupied and unoccupied particle states, see e.g. [ED96]. Bogoli-
ubov’s theory has a long history of successful applications to the description
of superfluidity in condensed matter and nuclear physics. It is able to describe
collective excitations such as the phonons in a homogeneous Bose-Einstein
condensate, but as a generalization of the Hartree-Fock approximation it can
also account for excitations dominantly of a single-particle nature.
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Fig. 5.27. Ground state wave function ¥~ (x,0,0) (in arbitrary units) for a Bose-
Einstein condensate of 5000 8’Rb atoms in the external potential (5.203). The
length labelling the abscissa is in units of the oscillator width 8, . The solid line
shows the solution of the Gross-Pitaevskii equation, the dashed line is the Gaussian
ground state harmonic oscillator wave function describing the non-interacting case,
and the dot-dashed line is the result of the Thomas-Fermi approximation, ¥ (r) =

VIm/(arh2ao)| [ — V(7). (From [DP96])

Dalfovo et al. [DG97] have recently used Bogoliubov theory to calculate
the excitation spectrum of a condensate of 10000 rubidium atoms in a spher-
ical external harmonic oscillator potential of oscillator width 0.791x10"4 cm
corresponding to about 15000 Bohr radii; the (positive) scattering length is
110 Bohr radii. The excitation spectrum obtained in this way is shown in the
top half of Fig. 5.28. The bottom half shows the spectrum obtained in the
Hartree-Fock approximation, in which the quasiparticles of Bogoliubov the-
ory reduce to single-particle excitations. The lengths of the lines in Fig. 5.28
are proportional to 2! 4 1, where [ is the orbital angular momentum quan-
tum number of the respective state. Also shown in Fig. 5.28 are the chemical
potential y, which follows from the solution of the Gross-Pitaevskii equation
(5.202) for the ground state of the condensate, and the critical temperature
kgT. which would apply in the case of non-interacting particles in the given
external potential. In the non-interacting case the chemical potential is equal
to the energy %ﬁw of the non-degenerate single-particle ground state, and the
excitation spectrum consists of positive integral multiples of Aw.

The lowest few excitations shown in the top half of Fig. 5.28 correspond
to collective phononic excitations and cannot be accounted for in the sim-
ple Hartree-Fock approach based on single-particle excitations. Apart from
these very low states, the Hartree-Fock approach does, however, reproduce
the general structure of the excitation spectrum well, even for excitation en-
ergies lower than the chemical potential. The occurrence of single-particle
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Fig. 5.28. Excitation spectrum of a
Bose-Einstein condensate of 10000
rubidium atoms in a spherically
symmetric harmonic potential with
frequency parameter w. The top half
shows the results derived using Bo-
goliubov theory, the bottom half is
based on simple single-particle exci-
tations. The lengths of the lines are
proportional to 2{ + 1, where [ is the
orbital angular momentum quan-
tum number. g labels the chemi-
cal potential obtained from the so-
lution of the Gross-Pitaevskii equa-
tion for the ground state wave func-
tion, kg7, denotes the critical tem-
perature for non-interacting bosons
in the external harmonic oscillator
potential. All energies are in units
T T T 1 of hw = hvuo. (From [DG97])
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excitations at low energies is attributed to the existence of a surface region
where the density is low, cf. Fig. 5.27, and hence is a characteristic feature
by which confined systems differ from homogeneous Bose gases [DG97].

5.4.3 Realization of Bose-Einstein Condensation in Atomic Gases

In order to experimentally realize Bose-Einstein condensation in an atomic
gas, it is necessary to accumulate a large number of atoms at very low tem-
perature. Neutral atoms can be trapped in an inhomogeneous magnetic field,
provided they have a substantial magnetic dipole moment, as is the case for
alkali atoms. Deceleration of moving atoms can be achieved by irradiation
with laser light which is tuned to be selectively absorbed by the faster atoms.
Modern procedures are quite intricate and subtle and involve e.g. the intel-
ligent exploitation of the hyperfine structure of the atomic sublevels, which
are temporarily populated in order to shield the coldest atoms from emis-
sion and absorption of photons, and hence to optimize their survival rates:
Progress in the development of techniques for trapping and cooling atoms
was rewarded in 1997 by the award of the Nobel Prize in physics to S. Chu,
C. Cohen-Tannoudji and W. Phillips.

A further process, viz. evaporative cooling, proved vital in achieving tem-
peratures low enough at densities high enough to enable condensation. A
radio-frequency magnetic field causes a spin-flip in the faster atoms near the
edge of the sample, these are no longer trapped and evaporate, thus cooling
the sample. The radio frequency is continuously reduced, thus peeling off
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Fig. 5.29. Velocity distributions of atoms released from a magneto-optical trap
after being evaporatively cooled. The various curves correspond to different final
radio frequencies vevap Which steer the evaporative cooling process and are a mea-
sure of the temperature of the sample. The left-hand part of the figure shows the
results of Anderson et al. for samples of ' Rb atoms (from [AE95]), the right-hand
part of the figure shows the results of Davis et al. for samples of sodium atoms
(from [DM95b])

layer after layer of comparatively faster atoms. The final frequency Vevap is a
measure of the temperature of the atoms remaining in the sample.

The procedure sketched above was applied in 1995 by Anderson et al.
[AE95] at the Joint Institute for Laboratory Astrophysics (JILA) in Boul-
der, Colorado, and by Davis et al. [DM95b] at the Massachusetts Institute of
Technology (MIT) to cool trapped samples of alkali atoms. The velocity dis-
tribution of the atoms was then determined by time-of-flight measurements
after the confining trap potential had been switched off. The resulting ve-
locity distributions are shown in Fig. 5.29 for different values of the radio
frequency Vevap which steers the evaporative cooling process and determines
the final temperature of the sample. The left-hand part of the figure shows
the results of Anderson et al. [AE95], who cooled a vapour of 8"Rb atoms. As
Vevap falls below 4.25 MHz, an increasing fraction of the sample belongs to
a sharp peak around velocity zero. This is seen as evidence of condensation
of this fraction of atoms to the lowest quantum state in the trap potential.
The sample at 4.25 MHz, where the transition begins, has a temperature of
1.7%x 1077 K and contains 2 x 10* atoms at a number density of 2.6 x 1012
per cubic centimetre; this corresponds to g = 0.3/A(T)3, cf. (5.189). Near
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4.1 MHz the sample still contains 2000 atoms, which are virtually all in the
condensate. The right-hand part of Fig. 5.29 shows the analogous results of
Davis et al. [DM95b], who worked with sodium atoms. Here the condensa-
tion of atoms sets in at a frequency of 0.7 MHz, where the temperature of
the sample is estimated to be 2x10~% K. Davis et al. observed condensates
of up to 5x10° atoms at number densities up to 104 cm=3.

The pioneering experimental work at JILA and MIT in 1995 established
the existence of Bose-Einstein condensates of atomic gases. Many other
groups have since succeeded in manufacturing such condensates. Efforts are
now concentrating on understanding the properties of this new state of matter
and are focussing e.g. on the internal energy and the specific heat of conden-
sates, on the stability of condensates of atoms with attractive interactions, on
the collective and single-particle excitations of condensates (cf. Sect. 5.4.2),
on collisions between two condensates, and on the possibility of constructing
intense coherent atomic beams analogous to laser beams [Ket97]. The study
of Bose-Einstein condensates and, more generally, of ultra-cold atoms (and
molecules) is a field promising a great deal of exciting new physics, including
mind-broadening insights concerning the foundations of quantum mechanics.

Problems

5.1 Consider an atom of radius nZ%ag, ag being the Bohr radius. Give an
estimate for the power in W/cm? which a laser must have, if the ‘elec-
tromagnetic field energy in the volume occupied by the atom is to be
roughly as big as the binding energy R/n? (R is the Rydberg energy).

5.2 a) Consider a free particle of mass p in one spatial dimension. At time
t =0 it is described by a minimal Gaussian wave packet of width 3
moving with the mean velocity vo = hko/p in the direction of the
positive z-axis,

Y(,t=0) = (Vrp) V2 e /(0 gikor

Calculate the wave functions ¥(z,t) in coordinate space and ¥ (p, t)
in momentum space as well as the associated probability densities
[¥(z, t)|? and |9(p, t)|? at a later time ¢.

b) Calculate the density matrix ¢ and the Wigner function p,, for the
pure state described by the wave function ¥(z,t) in a).

¢) Classically the free particle may be described at time t =0 by an
initial phase space density with finite uncertainty in position and
momentum,

1
oi(z, p;t=0) = We"z/"a e~ (P=po)?/e?

Use the classical trajectories p(t) = p(0), z(t) = =(0) + (p/u)t and
the form (5.28) of the Liouville equation,
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eale(®),p0) =0

to calculate the phase space density at a later time t. Compare the
resulting probability densities in position and momentum with the
quantum mechanical results.

5.3 a) Show that the coherent state (5.60) is an eigenstate of the quantum
annihilation operator with eigenvalue z*,
bz) = 2"1z)
and use this result to calculate the expectation value of the number
operator btb.

b) Use (5.72) to calculate the time average of the expectation value
of the energy (E2 + B2)L3/(87) of a monochromatic field in the
coherent state |z) = |zpe'“t). Compare the result with the quantity
hw({z)bth + 1/2|z) following from a).

c) Calculate the Wigner function (5.40) for the ground state (5.51)
of the one-dimensional harmonic oscillator and for the first excited
state,

1(z) = b'o(a) = (By/R) 12 2j§e"’/(2"2

5.4 Verify the special form (5.64) of the Baker-Campbell-Hausdorff relation
for two operators A and B, which both commute with their commutator,
(4,4, B]] = [B [4,B]]=0,

eA+B — oA oB o-1A.B)/2

Hint: Study the derivative of the function f A) = eMerB with respect

to A.

5.5 A photon (rest mass zero) behaves like a particle with energy E = Aw
and momentum p = fw/c . Show that a free electron cannot absorb or
emit a photon without violating energy and momentum conservation.

5.6 Show that the stability matrix defined by (5.74) for motion following a
classical trajectory z(t) obeys a chain rule of the form

M(ts, to) = M(tg, t1) M(ty,t0)

and conclude that the Liapunov exponent defined by (5.76) is the same
for all phase space points on the trajectory.
Hint: Matrix norms fulfill the inequality

M1 M| < M| - [M]

5.7 Consider a square of length L. In the centre of the square there is a
circular disc of radius a. A point particle travels from the middle of
one side of the square towards the disc at an angle a (see Fig. 5.30). It is
reflected by the sides of the square and the edge of the disc. Determine the
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Fig. 5.30. Realization of Sinai’s billiard [Sin70].
The parameters in Problem 5.7 were chosen to cor-
respond roughly to the dimensions in real billiards

direction of motion of the particle after up to five collisions with the disc
for L=2 m, a = 5 cm and an initial angle of a = 0.3°,0.0003°, 0.0000003°,
0.0000000003°. (Follow the trajectory only as long as collisions with the
initial side of the square and the disc alternate.) Estimate the Liapunov
exponent for the periodic orbit a=0.

5.8 Start with a number z from a randomly distributed set of numbers
(Poisson spectrum) and choose N further numbers y in the interval
xz < y < z + L. How big is the probability that none of the numbers
y lies in the interval (x,z+s)? Consider the limit N — co, L — oo at
constant level density d = N/L, and show that the probablhty densn:y
P(s) for a nearest neighbour spacing s is given by

P(s) =de™®
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Appendices: Special Mathematical Functions

For completeness these appendices briefly list without further discussion the
definitions and some important properties of the special functions occurring
in the book. More detailed treatments can be found in the relevant literature.
The “Handbook of Mathematical Functions” [AS70], the “Tables” by Grad-
shteyn and Ryzhik [GR65] and the compilation by Magnus, Oberhettinger
and Soni [MO66] are particularly useful. Apart from these comprehensive
works it is worth mentioning Appendix B in “Quantum Mechanics I” by
Messiah [Mes70], which describes a selection of especially frequently used
functions.

A.1 Legendre Polynomials, Spherical Harmonics

The Ith Legendre polynomial P;(z) is a polynomial of degree [ in z,
1 d
)= 24! da:l(
It has [ zeros in the interval between —1 and +1; for even (odd) I, P,(z) is
an even (odd) function of z.
The associated Legendre functions Pym(z), |z| < 1, are products of
(1 — £?)™/2 with polynomials of degree [ —m (m =0, ..., 1),

Pz z2-1), 1=0,1,... . (A1)

Pim(z) = (1~ 2" RA(@) . (A-2)

The spherical harmonics Y} (6, ¢) are products of exp (im¢) with polyno-
mials of degree m in sin § and of degree [ —m in cos 8, where the §-dependence
is given by the associated Legendre functions (A.2) as functions of x = cos#.
Form >0, 0 <6 < 7 we have

@l+1) (I —m)!
4r (I +m)

1/2
Yim(0,¢) = (-1)™ [ ] Py, (cos 8) ™?

Py(cos@)e™® . (A.3)

I @ +1) @ —my"? . mg_d™

- ar (I +m)! d(cos @)™
The spherical harmonics for negative azimuthal quantum numbers are ob-
tained via

Yi,-m(8,8) = (-1)™ [Yim(8,0)" . (A.4)
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A reflection of the displacement vector
z =7rsinf cos¢, y =rsinf sing, z =rcosb

at the origin (cf. (1.68)) is achieved by replacing the polar angle # by 7—6 and
the azimuthal angle ¢ by m+¢. This does not affect sinf, but cos§ changes
to —cos6. In the expression (A.3) for Y;,, spatial reflection introduces a
factor (—1)!~™ from the polynomial in cosf and a factor (—1)™ from the
exponential function in ¢. Altogether we obtain

Yim(n—0,7+¢) = (=1)' Yim(6,4) - (A.5)

The integral over a product of two spherical harmonics is given by the
orthonormality relation (1.59). The integral over three spherical harmonics
is a prototype example of the Wigner-Eckart theorem, which says that the
dependence of the matrix elements of (spherical) tensor operators in angular
momentum eigenstates on the component index of the operator and the az-
imuthal quantum numbers of the bra and ket is given by appropriate Clebsch-
Gordan coefficients (see Sect. 1.6.1). For the spherical harmonics Yz, ar as an
example of a spherical tensor of rank L we have

/ Y70 (2) Y301 (92) Yo (2) A2

= {Lm|L, M, 1, m) [%

The special Clebsch-Gordan coefficient (,0|L,0,!’,0) is given by [Edm60):

(1,0|L,0,1,0) = V2T + 1 (~1)¢-E=1072
(J—20)(J —2L)/(J —21)1]"?
(J +1)!
(J/2)!
A7
(J/2~l)'(J/2~ L\J/2 -y (A7)
The sum J = [ + L + I’ of the three angular momentum quantum numbers
must be even. The Clebsch-Gordan coefficient (A.7) vanishes for odd J.
Explicit expressions for the spherical harmonics up to I =3 are given in

Sect. 1.2.1 in Table 1.1. For further details see books on angular momentum
in quantum mechanics, e.g. [Edm60, Lin84].

A.2 Laguerre Polynomials

The generalized Laguerre polynomials L%(z), v = 0, 1, ... are polynomials
of degree v in z. They are given by
e* d¥ e
o _ u+¢x m A8
Li(x) = vige dx” Z( 2 ( ) ! (4.8)

u=0

1/2
] (,0|L,0,0',0) . (A.6)
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and have v zeros in the range 0 < x < 00. The ordinary Laguerre polynomials
L,(z) correspond to the special case a=0. In general « is an arbitrary real
number greater than —1. The binomial coefficient in (A.8) is defined as follows
for non-integral arguments:
r 1
(z) _ (z+1) . (A.9)
y) Ty+)I'(z-y+1)

Here I' is the gamma function. It is defined by

F(z+1)=/ t*etdt (A.10)
0

and has the property
(z+1)=2zI'(z) . (A.11)

For positive integers.z = n we have I'(n + 1) = nl. For half-integral z we can
derive I'(z) recursively from the value I'(1/2) = /7 via (A.11).
The orthogonality relation for the generalized Laguerre polynomials reads

e I'v+a+1
/ % 2% L%(z) L% () dz = % Sur . (A.12)
0 !
The following recursion relation is very useful, because it enables the nu-
merically efficient evaluation of the Laguerre polynomials for a given index
a:

(v+1)Ly4 () = Qv+at+l-z)Ly(z) + (v+a)ly 4(z) =0
v=1,2 ... . (A13)
Note: The Laguerre polynomials defined by (A.8) correspond to the defini-

tions in [AS70, GR65, MO66]. The Laguerre polynomials in [Mes70] contain
an additional factor I'(v+a+1).

A.3 Bessel Functions

The Bessel functions of order v are solutions of the following second-order
differential equation:

dzw dE

2
- . 14

2z ALt (2 —vHw =0 (A.14)
The ordinary Bessel function J,(2) is the solution which fulfills the following
boundary condition near the origin z = 0:

J(2) °=° G2 (v+# -1, -2, -3,..) (A.15)
v Tw+1) , =2, -3,...) . .
As a power series in z we have
(__Z2)k
2= (3) Z HT@+k+]) (A.16)



360 Appendices: Special Mathematical Functions

For |z| — oo the asymptotic form of J, is

Jy(z) P12 \/g cos [z - <u + %) %} . (A.17)

From the Bessel function J, with the asymptotic behaviour (A.17) and
a second solution of (A.14), which oscillates like a sine asymptotically,
we can construct two linear combinations asymptotically proportional to
exp xi(z — ...). They are called the first and second Hankel functions, HY

and H,(,z). Their asymptotic form is

HW (z)F12= \/;3: exp {+i [z - (u + %) g]} ,
H® (z) M2 \/g exp {—i [z - (1/ + %) g]} . (A.18)

Near z = 0 we have (for Rv > 0)
i 1"(1/)
T (32)

The modified Bessel functions I,,(z) of order v are connected to the ordi-
nary Bessel functions by the simple relation

HM(z) = —HP (2) = ~0, Rw>0 . (A.19)

i“I,(2) = J,(iz), (—w<argz<m/2) . (A.20)
They are hence solutions of the differential equation
d w d{
i +2=2 - (24 w=0 , (A.21)
and their behav1our for small |z| is, as for J,,
1 \v
z—0 ('z'z)
= = -1, -2,-3,...) . A.22
e e I ) (A.22)
For |z| — oo the asymptotic form of I, is
L(z)P2% 2= (laglz)l <7/2) . (A.23)

Vanz ’

For non-integral values of v the modified Bessel functions I,,(z) and I_,(2)
defined by (A.20), (A.16) are linearly independent, and there is a linear com-
bination

K, (o) =7 -1 (A.24)

sin (vm)

which vanishes asymptotically,

K,(z) 7=® %e_z, (largz| < 37/2) . (A.25)
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The Bessel functions of half-integral order v =1+1/2, { =0, 1, ... play
an important role as solutions of the radial Schrédinger equation (1.75) with
angular momentum quantum number ! in the absence of a potential. The
connection to the radial Schrédinger equation becomes clear when we write
the equations (A.14) and (A.21) as differential equations for the function

B() = VEu(s) (A.26)
(A.14) then becomes (with v = [+1)

424 z(z +1)

2 ——¢+¢=0 |, (A.27)
and (A.21) becomes

&% 1(1 + 1)

- te-e=0 . (A.28)

If we write z as kr (for E=h?k?/(2u)>0) or as kr (for E=—h%x2/(2u)<0),
then (A.27) or (A.28) respectively is just the radial Schrédinger equation
(1.75) for V = 0.

For the modified Bessel function K/, of half-integral order [ +1 /2 there
is a series expansion

!
I{l+1/2(‘Z \/—' o Z k|l hs k]z:)' ) k . (A29)

The derivative of K; /o can be expressed in terms of K1/ and Kj_1/2,

;—szH/z(z) =- (2) = Ki_172(2) . (A.30)

The spherical Bessel function j;(z) is defined as

3@ =3 G (A1)

For small z we have, according to (A.15),

1
ji(z) 2=° (2%1)” , (A.32)

and asymptotically according to (A.17),

z ji(z) 12 in (z — lg) . (A.33)

With (A.26) we see that 2j;(2) is a solution of (A.27), the radial Schrédinger
equation for positive energy. The linearly independent solution, which differs
asymptotically from (A.33) in that the sine is replaced by a cosine, is z n;(2),
where n; is the spherical Neumann function,

zny(z) 129 cos (z - l%) . (A.34)
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For the derivatives of the spherical Bessel functions we have the simple for-
mula

d . ) I+1
EJI(Z) = ji-1(2) = —Z—Jt(z) , =1 (A.35)

A.4 Whittaker Functions, Coulomb Functions

Whittaker functions appear as solutions of the radial Schrédinger equation in
the form (A.28) when it contains an (attractive) Coulomb potential —2v/z
in addition to the centrifugal potential I(l + 1)/22,
2¢  I(l+1)
dz2 22
The Whittaker functions W, ;;1/2(22) are solutions of (A.36) with the fol-
lowing behaviour for large values of |z|:

b+ Lp-¢=0 . (A.36)

W ir1/2(22) P27 72 (22)7 (A.37)

For positive energies (cf. (A.27)) the radial Schrédinger equation including
a Coulomb potential has the form
d? I(l+1 2
d*¢ _ll+1) )¢__zﬂ¢+¢=o , (A.38)

dz? 22 :

where a negative n corresponds to an attractive and a positive 7 to a re-

pulsive Coulomb potential. Two linearly independent solutions of (A.38) are
the regular Coulomb function Fj(n, z) and the irregular Coulomb function
G\(n, z). Their asymptotic (z — +o0) behaviour is

Fl(n,z)zazoosin(z—n ln2z—l%+al) ,
Gi(n,z) "= cos (z —nln2z— lg + al) . (A.39)
The constants o; are the Coulomb phases,

o=argl'(l+1+in) . (A.40)

The regular Coulomb function can be expressed in terms of the confluent
hypergeometric series,

o [T+ 1 +in)]

GBI ) e~ izt F(l+1—in,2l + 2;2iz) .

Fi(n,z) =2'e"%

(A.41)
The confluent hypergeometric series F is defined by
X Ta+n) () z2°
F(a,b;z) = Z @ TGrm (A.42)

n=0
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For small arguments z (and fixed Coulomb parameter 7) we have

I+ 1 +in)| i
@+ 1)

For |n| — oo, which corresponds to approaching the threshold according to
(1.118), we have

IT(L+ 1 +in)| ™2 Vag e il |pi+1/2 (A.44)

In order to obtain a formula for the regular Coulomb function of small argu-
ment z = kr close to threshold we combine (A.43) and (A.44) to

Fy(n,2) "=" 2l e (A.43)

k-0, r—0 [T (2kln|r)Ht 4
F £ LA Sk am(n+inl) )
i(n, kr) TIRCES N (A.45)
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Solutions to the Problems

1.1. Bound states only exist for energies
h2 2 52 k2
-5 <0, E+Vo=

2p
2 2 _
>0, K’+k—ﬁ

The solution of the radial Schrédinger equation for [ =0 is

Vo .

¢(r) csinkr , for r<ro; ¢(r)xe™, for r>ro.

The matching condition (1.92) implies

[2uV%o
cotkro = —k/k=— 2 K2 -1. (1)

Each intersection of the left-hand side and the right-hand side of (1) (as
functions of k) yields a bound state. The right-hand side varies from —oo
at k = 0 to zero at kmax = (1/%)v/2uVo. The number of branches of cot kr
which intersect the right-hand side is given by the largest number n for which
(n— $)7/To < kmax, thus the number of bound states is near (ro/mh)V2uVo.
Note that there is no bound state if (2urg/h?)Vo < (/2)?.

1.2. a) <¢|¢n>=\/§< 2pb )3/2 (ﬁz*bz)z[%'%'“(n+%)} '

B2 + b2 B2+ b? n!
_ (na)\3/2 n+1 n—2 .—(n—2) _na+b
b) (8lén) = (5) (s— g )(3—1) ot
¢) Harmonic oscillator, b = 3/2:
n 0 1 2 3 4 5

l(plda)|?  0.5120 0.2765 0.1244 0.0523 0.0212 0.0084
ST ()2 0.5120 0.7885 0.9129 0.9652 0.9864 0.9948

Coulomb potential, b = a/2:
n 1 2 3 4 5

l(lgn)2  0.7023 0.0419 0.0110 0.0045 0.0022
S (Blgu )2 0.7023 0.7442 0.7552 0.7597 0.7619
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d) Coulomb potential, b = a (use orthonormality relations rather than
formula b) above):

n 1 2 3 45
l{¢lgn)> 1 0 0 0 0
YUHele)? 1 1 1 1 1

Coulomb potential, b = 2a:
n 1 2 3 4 5

l(pldn)>  0.7023 0.25 0.0127 0.0039 0.0017
S™[(Bléu)? 0.7023 0.9523 0.9650 0.9689 0.9706

1.3. From (1.138) and abbreviating 2r/(na) as z, we have

(Pnilrldn) = (—-(I-lfl)i)-!a /Ow A+ [pL2HL (m)]
From (A.13) we have
PL2HL () = LA () — (n — DIZ () — (n+ DL ,(2) |

and, exploiting (A.12), we obtain

(an,llrlqsn,l)

_(n=1-1) (n+D)! (n+1+1)!

g Cog e B e
+(n+ l)z%

[4n® + (n+ 1+ 1)(n =) + (n+)(n—1—1)]

l\‘ll@ﬂ:-l@

[3n? —1(1+1)] .

1.4. One way is to show that
*© R a2 ,
" (B4 525 Golrir) 1(r) dr = 1) 1)
for sufficiently well-behaved square integrable trial functions f. For r # r’
the integrand vanishes, because (h%/2u)(d?/dr?)Go(r,r’) always equals
—EG(r, ). Thus showing (1) reduces to showing that

r'+e 42
lin}) (k2 + a—z-> sin(kr<) cos(krs) f(r)dr = —k f(r') . (2)
e—=0 J./_.

The contribution proportional to k2 on the left-hand side of (2) vanishes in
the limit € — 0. For the remaining contribution we integrate by parts twice
and obtain (for finite and positive ¢)
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r+e

Lhs. = [(% sin(kr<) cos(krs )) f(r)J

r'+e

_ [sin(kr<) cos(krﬁ%] .
r'+e ) d2f

+ / ,__ sin(kro) cos(hrs) g dr )
The latter two terms in (3) vanish in the limit € — 0 and the remaining term
yields

Lhis. = {=ksin[k(r' + )] sinfk(r’ - &) [}/(r" +¢)
~{kcoslk(r’ — )] coslk(r’ +EN}F (" - ) ,

which clearly becomes equal to the right-hand side of (2) in the limit £ — 0.

1.5. In this Hilbert space the state vectors are two-component vectors (g;),

and the eigenstates of Hy are y{” = (5) and . O = = (9) with (unperturbed)
eigenvalues € and &9 respectively.

a) In lowest non-vanishing-order perturbation theory (1.202) yields

b= +u =¥ ——u?
w
2 = P + i = 0 4 ——p® |
&2 — &1

and (1.204) yields
2
B =B +EBY =e1 + ——
€1 —€&2

,w2

Ey=EQ +EP =y - :
E1] —E&9g

b) To diagonalize H in this case we first solve the secular equation (cf.
(1.208), (1.228))

e —F w
det(lw EZ_E)=(51—E)<EZ—E>—w2:o,

yielding the exact eigenvalues

€1+ &2 €1 — &2 2
E. = 2
+ D) +jw +< 3 )

The corresponding eigenstates (Z;) follow from solving the simultaneous
equations

(E - 81)0,1 =waz , (E — 82)(12 =wap ,
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for the respective eigenvalues. The eigenstates can be characterized by the
ratios

2
ay E1 — E&g w €1 —&2
A= +—/1+
a2 2w ] ( 2w ) ’
and aj, as are of course only defined to within a common arbitrary factor.

The perturbative results are good for |e; — 3} > |w|, but they are poor
for |e1 — &2| < |w|.

1.6. a) For energy E the classical turning points b and a = —b are given by
b= +/2F/(uw?). From (1.246) we have
b
E
(n+ i—‘t) mh = / pwy/ b2 — 2 dx =/Aw—72£b2 = z(;— ,
—b

which yields E, = (n + p¢/4)hw, in agreement with the exact result
when the Maslov index p, is taken to be two, corresponding to a
phase loss of w/2 of the WKB wave at each turning point.

b) The classical turning points are a = 0 and b = L independent of E.
With p = «/2uE we have f:pdz = +/2uFE L, and the quantization
condition (1.246) yields the exact quantum mechanical result E, =
(rR)}(n+1)2/(2uL?), n=0,1,2,..., provided the Maslov index 14
is taken to be four, corresponding to a phase loss of 7 at each turning
point.

¢) For z > L we have |p(z)| = hx = /2u(Vp — E) = const., and the
WKB wave function,

N
¢WKB(I)=\/—ﬁ—’;e =) z>[L 1)
exactly solves the Schrédinger equation. For z < L we have p(z) =
hk = 2pE = const.’, and the (real) WKB wave function,

Ywks(z) = \/ih_k cos (k(L —z)— %) , <L (2)

is an exact solution of the Schrédinger equation in this region as well.
Matching these (exact) wave functions and their derivatives at x = L
fixes the two constants IV and ¢ in (1) and (2),

¢ = 2arctan (k/k), N =2+/sk/(k2+Kk?) . 3)

The exact wave function constructed in this way coincides with the
WKB wave function, except at the classical turning point L, where
the WKB wave function is not defined.

For the particle in the well bounded by two steps, the WKB wave
functions represent exact solutions of the Schrédinger equation in the
regions £ < 0, 0 < z < L and z > L. The (exact) wave functions
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decay as exp [—«lz|} for z < 0 and as +exp[—&(z — L)] for z > L;
the “4+” and “—” signs refer to solutions which are symmetric or
antisymmetric with respect to reflection at £ = L/2. Matching the
WKB wave functions at each turning point is the same as matching
the exact solutions; it leads to two expressions for the wave function
in the classically allowed region, and the condition that these be equal
is

cos(km—%—)::l:cos(k(L—z)—%), O<z<L , 4)

which is fulfilled if and only if kL = ¢ + nr, i.e. hkL = wh (n + %,ud,)
with pg = 2¢/(r/2). This is just the quantization condition (1.246),
(1.247) with the phase loss ¢ at each turning point as given by
(3). With the Maslov index corresponding to the correct reflection
phase(s) ¢ the quantization condition (1.246) gives the exact energy
eigenvalues. When matched with the correct phase ¢ and amplitude
factor N (3), the WKB wave function in the regions z < 0, 0<z <L
and = > L is equal to the corresponding continuous exact wave func-
tion with continuous derivative.

[Note that the quantization condition for the ground state (n = 0)
is tan (kL/2) = k/k = /2pVy/(h%k?) — 1 and always has a solu-
tion, no matter how small L and V, are. This is in contrast to the
situation for a potential step in the radial Schrodinger equation for
three-dimensional space (see Problems 1.1 and 1.7).]

1.7. For the kinetic energy T = —(k2?/2p)(d%/dz?) we have

- 2 oo R ) 2
it = Va5 [ (%e /(@ )> i

hZ 1 o<} 2,2 h2
- b -1 2 —z/b -
(V/7b) 2/1b4/_mme dx ek
which tends to zero as 1/b% as b — oo.

For any potential V'(z) the expectation value

Vi) = Ry [ vie g

approaches 1/(y/7b) times the constant [*° V(x)dz as b — oo. If this con-
stant is negative, then the more slowly vanishing negative contribution of the
potential energy will outweigh the more rapidly vanishing positive contri-
bution of the kinetic energy for sufficiently large b, giving in sum a negative
energy expectation value, which in turn must be larger than the lowest energy
eigenvalue due to (1.221).

The same reasoning cannot be applied in three dimensions, because there
the normalized Gaussian is (/7b)~3/2e~="/(26") and the potential energy
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expectation value vanishes as b3 for large b. Indeed, from Problem 1.1 we see
that the attractive spherical square well has no bound state if V4 is too small.
In two dimensions the Gaussian trial function does not lead to conclusive
results, but an alternative choice of trial functions can be used to prove the
existence of at least one bound state in a dominantly attractive potential (see
e.g. [PM90}).

1.8. For energies E = —|E| sufficiently close to threshold the outer classical
turning point b(E) is given by

__G _ |G _ h2 1\’
E——b—z, b(E)— TEI>TO’ CI—C—ﬂ(l-l'Q) . (1)

From (1.246) we have

(n+’j1_¢>,rh:/”

a

ro b '
p(r) dr=/ p(r) dr+/ p(r)dr . (2)

As E approaches zero the first term on the right-hand side of (2) tends to a
constant, but the second term grows beyond all bounds:

b(E) BuC, (P Vb2 =2
/ p(r)dr dr = 2;: l/ - " dar
To

To

@)
V2uCL [\/bT——ﬂ—bln <———b+ Vbz"’?)}

b
b+ /b2 — 1} T8
V3G [In (-T -3

b2¢° /2uC; Inb + const . (3)
For E — 0, which implies b — oo and n — 0o, we have

b ox exp [u\/’%ﬂ‘] or E= —% = —C e—cz(l)n
Hl

2nh 2rh
V2uC,  \/2uC — (1 +1/2)2R2

The magnitudes of the energies are determined by the constant c;, which
depends on the constants entering into (2) and (3). These in turn depend cru-
cially on the parameter ry and the nature of the potential inside r9. An infinite
sequence of bound states exists as long as C; = C — (I +1/2)2h%/(2y) is posi-
tive. The ratio E,,/E,+1 of successive binding energies is exp [c2(!)]. If C; <0
there is at most a finite number of bound states. Although these statements
were derived using the WKB approximation including the Langer modifica-
tion, they agree with the exact quantum mechanical results (see [MF53]).

b

To

with cp(l) = (4)
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1.9.
2
) 2 20 20
1) = —h*[A,r] = — a2 T -an

) = A = [+ 2]
The first identity follows immediately once we realize that

82 ¢ 9

o " T =2
and that

28 3 2

;Ergb— 25 = ;qﬁ for all ¢(r) .

Second identity:
B2, 7% = [p?, r]r + r[p®, 7]

0 0 a
=92 (= —_— = 9,2 i
2k (arr+1+rar+1) 2k (2rar+3) .

2.1. Using the properties (1.282), (1.284), we obtain
(6-A)(6-B) = (6,45 + yAy + 6,A,)(6:B; +6yBy +6.B;)
=G62A,By + 62AyBy + 62A.B,
+ 640y AxBy + 646, AyB, + 6,6,A,B,
+6y6.AyBy + 6,6yA, By + 65,6, A B,
=A-B+i6,(AyB, — A, By)
+i6y(A,By — AzB;) +i6,(A;By — AyBz)
=A-B+i6-(A x B) .
For A = r and B = p we have
0

R . o . h AP
(6r)(6P)=rP+i6(rxp)=1ro-+i6-L.

For A = B = r we have
(&-7r)(éT)= r?,

hence

(69) = = (&7)(67)(& )

1,. (k8 . .

2.2. The unperturbed eigenfunctions of the hydrogen atom (Z = 1) or a
hydrogenic ion (Z > 1) for fixed quantum numbers n and ! and arbitrary
quantum numbers j and m are degenerate with respect to the unperturbed
Hamiltonian (2.13). All three relativistic corrections are diagonal in j and m
so we choose the unperturbed eigenfunctions as



372 Solutions to the Problems

r
D jmi = gz’%()yj,m,l ) (1)
where ¢, ;(r) are the radial eigenfunctions (1.138) (with Bohr radius (2.15))
and Y;,m, are the generalized spherical harmonics (1.290).
For the spin-orbit term we obtain, for [ > 0,
Lz * [Bna(n)]? Yy
(Brjmotl 5 L-S1Pn.jm.1) =/O e drx S F(3,0)
where F(j,1) is the factor from (1.294), which is equal to [ for j =1 +1/2
and equal to —(I + 1) for j = [ — 1/2. Using the substitution z = 2r/(naz),
the energy shift in first-order perturbation theory is thus
AELs
Ze* 4(n—1-1)! /w 2-17720+1 R
= L )| e Fdz—F(j,1) . 2
9m2c® ntad(n + 1) Jo LR (2)] 4T (4,0 (2)
The only non-vanishing case up to n = 2 is that of the quantum numbers
n = 2,1 = 1, for which the Laguerre polynomials are unity and the integral
in (2) can be easily calculated. A more general formula can be obtained using
the expectation value of 1/r3 as given by Bethe and Salpeter [BS77]:

Z4e? 1 R
Ere= —F(3,1
ABLS = 5r B @l (L + 1)l 2 .0
F(j,1
= lmgcz(Zoz)4 (.1 (3)

4 C+1)+H’
where we have inserted ag/Z = h?/(Zmqe?) for az, and a = €?/(fic) ~ 1/137
is the fine structure constant. For [ = 1 the factor F(j,!) is unity for j = 3/2
and —2 for j =1/2.
The Darwin term contributes only for [ = 0, implying j = 1/2, and we
have

. wh2Ze?
(Pn,j,m,1=0l HD|Pn, j,m,1=0) = —Wld’n,j,m,z:o(r =0)?
(4]
K2Z%? 1

1 2 4
= —— —— Z N 4
2mic? (nag)? om0 (Ze) “)

where we have again written ag/Z for az.
Combining the formula (3) for [ # 0 and the formula (4) for [ = 0 we
have

(D jmilHis + Hp|®n, jm)

1y1-1 :

. 5 & I+ + )] forj=1+1/2 5

= gpamoc (Ze) {—[(z+ DU forj=1-1/2 )
The kinetic energy correction can be written as

52 52 2 2

pp 1 - Ze i Ze )
—_— e = ——— —_— + e ,

8m3c? moc? (HZ t > ( 2T
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where H is the unperturbed Hamiltonian (2.13). Hence

Ze?

2
N 1 ~
(Qn,j,m,l!erlén,j,m,l) = —'—(¢n,]‘,m‘ll (HZ + T) Ién,j,m,l>

T 2moc?
1

2mgc?

Rz\> R Ze? Z2et
x —ZZ - z—f‘(@n,j,m,”_@n,j,m,l) +APrjymtl =5~ Pnjma) | -
n n r r ()

The expectation value of the potential energy —Ze?/r in the unperturbed
eigenstates is just twice the total unperturbed energy —Rz/n?, by the virial
theorem. For the last term in the big square bracket in (6) we need to calculate
an integral as in (2) above, but with 2% instead of z2~! in the integrand.
This is easy to do directly for n < 2. A more general formula can be derived
using the expression for the expectation value of 1/r2 as given by Bethe and
Salpeter [BS77]:

Pt 5 Brmt) = 5y = 2 (7)
mamtl e ml = sy Dag w3+ Dad
Combining (6) and (7) gives
A oy _omed? o a[38 1
Brsonl Bl ngns) = "5~(20)" | 5 - ] ®)

Note that the sum (5) + (8) of the relativistic corrections in first-order
perturbation theory agrees with the leading terms of the expansion of the
exact eigenvalues according to (2.36).

2.3. The wave function 1(r) is the normalized 1s eigenfunction of the single-
particle hydrogenic Hamiltonian corresponding to a charge number Z’, de-
fined such that the Bohr radius A?/(Z’ue?) coincides with 3,
2 2
_?2 -2 M
Z'ue up
The two-electron wave function ¥ is essentially the symmetric product
Y(r1)1(rs) of the spatial one-electron wave functions; the antisymmetric
spin-parts give trivial factors of unity in all matrix elements.

"The expectation value of the one-body part of the Hamiltonian is given ac-
cording to (2.73), and the one-electron matrix elements can be calculated in a
straightforward way. It is more elegant to exploit the virial theorem, by which
the expectation value of the one-electron kinetic energy in 1 is just minus the
one-electron total energy —Rz = —(Z')2R of the hydrogenic Hamiltonian
corresponding to charge number Z’. Similarly, the expectation value of the

one-electron potential energy —Z'e?/r is twice the total energy, and hence
the expectation value of —Ze?/r is —2ZZ'R. Summing the contributions for

=,6, Z/e2



374 Solutions to the Problems

the two electrons, we obtain the following result for the expectation value of
the one-body terms in the Hamiltonian H:

(@] Z (— - —) @) = [2(Z")2 - 4ZZ'|R . (2)

For the expectation value of the interaction term we exploit the hint and
obtain
e 4me

I [ry — 7o )= w236

—2r1/B g=2r2/B
xZ/drl/drze r1/ r2/ (2l+1) YT lm(Ql>Ylm(Q2)

=5 [ dm [ am T e )
28 Jo 0 >

where we have used the substitutions z; = 2r;/3 and z- is the larger of
x1,22. The integral can be evaluated by elementary means,

oo 1 T1 oo 5
/ dz;zie™™ [—/ 3 e dzy +/ Tae” 2 dzz] ==,
0 I1 Jo . 1 4

and hence
e? 5€ 5
1) =7 28 4

Thus the total energy expectation value is

2 2

(| ZZ'R. @

[Ty — 72

(E) = (W|H|W) = [2(2')2 —4Z7' + %z] R

The minimum of (4) corresponding to d(F)/dZ’ = 0 occurs at
h2

e*(Z — 5/16) ®)

5
=7 - 6 corresponding to 3 =

and the minimum energy is

4 128

For charge numbers up to Z = 10 we obtain the following energies (in atomic
units, 2R), which compare quite favourably with the results of Hartree-Fock
calculations as listed in Table 2.1 in Sect. 2.3.2:

(E)min:( 272427 25)72

Z 1 2 3 4 5
(E)min —0.473 —2.848 -7.223 —-13.598 -21.973
z 6 7 8 9 10

(E)min —32.348 —44.723 —59.098 —75.473 —93.848
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For part b) of the problem we need the 1s wave function of Problem 2.3 a)
and the 2p one-electron wave functions ¥ m:

0 =2 0%00)  tyir) = 20y, (@) ©)

Note that both one-electron wave functions correspond to the Bohr radius
B defined by (1). The two-electron singlet and triplet wave functions in LS
coupling are

7, = %[wsm)wp,m(rz) + 1o (r2)pm(r1)]X(S = 0) ,
7, = %[ws(n)w@mm) — By () Upm(r)x(S = 1) . )

The symbol x stands for the antisymmetric (S = 0) or symmetric (S = 1)
spin part of the two-electron wave function. The subscript m in (7) labels the
azimuthal quantum number of the one-electron p-orbital and is at the same
time the quantum number of the z-component of the total orbital angular
momentum.

The expectation value of the one-body part of H can be calculated as
in part a) above, except that the total one-body energy of the hydrogenic
Hamiltonian corresponding to charge number Z’ now is —Z’?R/4 in the
second single—particle state. Thus (2) above is modified to

5 .5
@ Y (B-Z) - [Sey-joz]=, ®
T 4 2
i=1,2

and this holds for both singlet and triplet states (7).

The difference between singlet and triplet states shows up in the expec-
tation value of the interaction term. For example, for the singlet state we
have

2

[
<WS||~1~1——1~|'¢5)
<¢s(7'1)1/)p,m(7‘2)| E— [ (71)¥p,m(T2))
+ (%,m("l)%("z)lme,m(Tl)’/fs(ﬁ))
(ws(rl)wp,m(TZ)[ | I pr m("'l)l/)s(T‘z»
(wp,m (7‘1)1/)3(?2)[ I l |ws(rl)¢p,m('r2))]
=Fg+ Eex , (9)

where we have introduced the abbreviations
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Eq = ($s(r1)vp,m(ra)l ||¢s(7‘1)¢p, m(72))

I’r

= (1/’p,m(7'1)¢s(7'2)! ||¢p,m("'1)"/’s(7'2)> )
Eex = (¥s(T1)¥p,m (Tz)ll ||¢p, m(T1)¥s(72))
(¢P,m(r1)ws(r2)||r |,¢s(rl)wp»m(r2) . (10)

For the triplet state (9) is replaced by
e2
(B 80) = Ea = e (1)
|71
The task now is to calculate the direct and exchange parts of the interaction
energy as defined by (10).

For the direct part we have
2

€
E"_I,Z, 20 +1

/dr/ Mly.m(%)lz £ Y ($20) Y (122)

l‘+1

/ dr/ dry ¢1(T1)¢2(T2)] ‘ (12)

The last line in (12) follows from the fact that the integral over the angles
£2; reduces the sum over I’ and m’ to the single term !’ = 0. Inserting the
explicit forms of the radial wave functions,

2
p1(r) = ﬂme”-/ﬂ, $o(r) = 5o \/gﬁs/ze"”?”’» (13)

and implementing the substitutions z; = r;/( leads to
e? [ ©  zizd 2118 118
E, = — d d 1%2 -2z —x9 __ ZIR
d Gﬁ_/o z‘/(, T2 ¢ e 6,3 ®1 243

For the exchange part we have

Eo = /d'r /d $1(r1)¢3 (T2)¢2(T1)¢1(T2)

2

2l’ +1 r3r3

X Yl,m('rb)yl;m('ol) p+] 1/1’ m’('Ql) ,m’ (92)

2 00 oo T
=5 [ an [T ansenseerone s (19)

The last line in (14) follows from the fact that the integral over the angles
21 and 2, reduces the sum over I’ and m' to the single term corresponding
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to !’ = 1 and m’ = m. Note that the result does not depend on the azimuthal
quantum number m of the trial functions (7). Inserting the explicit forms
of the radial wave functions (13) and implementing the substitutions z; =
3r;/(28) leads to

e? (2)7/“’ b 23232,
Eox=——1|= dz; / day 212275 g %1 72
=185 \ 3 o 2
e (2\"21 224
=—| = —7'R.
188 <3) 4 T 6561

2.4. The wave functions obeying the correct boundary conditions, namely
P(z,y,2) =0ifz=0,y=00r2=0,orifx=L,y=Lorz=1L,are

¥ o sin(kz) sin(kyy) sin(k,2) ,
™ ™ L
kz‘:z Eny, kz:znz;
ne=1,2,..., ny=1,2..., n,=12,....

n, , ky =

Note that only positive ks count. Changing the sign of one of the wave num-
bers merely multiplies the total wave function by —1. The energy eigenvalues
are
h2m?
En,,ny,n, = Q}LLZ (nz + ng + nZ) .

The number of states with energy up to Er corresponds to the number of
cubes of side length m/L which fit into the octant k; > 0, ky, > 0, k, > 0 of
the sphere of radius kr, and hence the number of states including spin is

1 4 4 (L\°
N:2X§X§7Tk'p(;) 37{2kF,
in agreement with (2.103).

2.5. The eigenfunctions ¥(x) obeying the correct boundary condition 1 (0) =
(L) =0 are

PYn(z) = ’/ sink,zx , knz%r-, n=12...;

the factor 1/2/L ensures normalization to unity. The number pj of eigenstates
per unit wave number k is the reciprocal of the separation of k-values and
is equal to L/m. With E = kE?k2/(2u) the number pg of eigenstates per unit
energy is

dE L [2m
PE =Pk \ Gk 2V R2E
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2.6. Using [A2, B] = A[A, B] + [A, B]A and remembering (1.33) we have

1,6 = <o (101 - ‘%{zm) = bt
(1,5 = <o (415 + %{xﬁ,ﬁl) ~ b )
Hence

At n) = (0 3) ho@vn)  HGn) = (m 3 ) hlbn)

showing that bt 1y, is, within a factor, 1/),,“ and bd)n is, within a factor, ¥, 1.
Each v, is an eigenstate of bth = (H — 1hw)/(hw) with eigenvalue n. Let
b¥n = cn¥n—1. Then

(¥nlb1BlYn) = n = |cnl* (Wn-1ltbn-1) = leal* -

Except possibly for a phase, ¢, must be equal to +/n, and this also holds for
n = 0. If bTap, = dpfpy1, then

(Wnr1[6 1) = dn = (Wnlblgns1)” = chpy
hence d,, must be equal to vn + 1 (except possibly for a phase).

2.7. Since the transition matrix element in (2.189) does not depend on spin
we ignore the spin degrees of freedom and take the initial state to be

o= 20y @) bl = e eI ®
1 r =1i,m k) 2\/6 5/2 b
where a is the Bohr radius. The only final state to which ¥; can decay is
T 2r
¥ = il )Yoo(ﬂ) y () = ﬁe_r/a . (2
a

If we express the vector 7 in spherical components as in (2.201), (2.203), then

Iral® = |(@e | )2 Z (e[ |2

v=—1

o0 2
_ ( / b1(r)ba(r)r dr) x (CQ)? , 3)
0
with the Clebsch-Gordan coefficient

1
CG) = (00j1, —m,1,m) = x— .
(CG) = (00} ) 73
The last line of (3) can be obtained e.g. by exploiting (A.6), (A.7).
The total decay probability per unit time is given by (2.189), (2.190) and
is
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4 €28 462w3 1 © 2
P = 3 fic3 |""ﬁ|2 =3 (ﬁ,/o. r4e—3r/(2a) d?")
7ée2w3_2 4oz gy 2 _4e%? 9602 2\1°
T 9 ke 6 ~ 9 A 3

4 2\ hw2 s 1
—696(5) - (ﬁ) =6.268 x 108571,

and so the lifetime of the state is 7 = 1/P, = 1.595 x 10~° seconds. Note
that the decay probability does not depend on the m quantum number of
the initial state, so averaging over the three degenerate initial p-states states
doesn’t affect the result.

2.8. In this case we have

iz ,
HE[HA,"'i] =p; +

Z[pk pla 7"14]

nuc k#l

Using [AB, C] = A|B,C] + [A,C]B and remembering (1.33) we have
L h . .
[B-D1, 7] = £ (Brdri + Pidisi)

and so

i, . .
HE[HA,”] = p; + P - (1)
Mnuc ki ’

In obtaining (2.186) we inserted Ef;l u(i/R)[Ha, 7] for Ef;l Pi, whereas
(1) shows that

N i N
D _wplHarid = b+ (N
=1 i=1

i.e. we should have inserted

N
E ﬁi 3
uc ;77

mnuc
__™nue i ‘ -
Mpuc + (N 1)” Z” [ Av"":.] or ZP1

i=1
Formulae such as (2.186), (2.217) are modified in that the right-hand sides
acquire an additional factor m2,./[muuc + (N — 1))

3.1. The contributions of the two integrals in (3.13) in the region r > rg
cancel, provided the (common) outer classical turning point lies beyond 7,
which is the case for sufficiently large n, i.e. sufficiently close to the threshold
E = 0. The energy E can be neglected in the remaining finite integrals,
giving

2 (14122 ro [2 (14 1/2)2
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in the limit n — co. In (1) a = A% /(ue?) is the Bohr radius (corresponding to
charge number unity), az = a/Z is the Bohr radius corresponding to charge
number Z, ay is the inner classical turning point of the full potential given
by

_(1+1/2)%a

= = 2
ay = L1222 )
and ac is the inner classical turning point of the pure Coulomb potential,
2

We have made use of the Langer modification and replaced {(I+1) by (I+ %)2
For sufficiently small values of | analytic integration of (1) gives

n—»oo

Tl (2l + 1)[Az — arctan Az — (A — arctan A)] , (4)

with the l-dependent parameters

2T0
A=, —2 1
al+1/2)2 "

27, 27T
AZz\/az(l+()1/2)2 _12\/a(l+1;2)2 -b )

If l+ > /27y /a, then the inner turning point in the pure Coulomb potentlal
lies beyond 7o and the terms containing A in (4) don’t contribute. If { + § >
\/2Zrg/a, then the inner turning point in the full potential also lies beyond
7o and the (semi-classical) quantum defect vanishes.

Taking 7o = a/3 and Z = 19 as a rough model for potassium yields
the following quantum defects according to (4): 1.667 for | = 0, 0.970 for
1 =1,0.352 for | =2, 0.005 for | = 3 and zero for higher l-values. (Compare
Fig.3.2.)

3.2. The sign of an oscillator strength f,, », (or mean oscillator strength
frem;) is determined by the sign of the transition energy fiw = ef — &; (see
Sect. 2.4.6). Oscillator strengths are negative for emission, &; < ¢;, and posi-
tive for absorption, &; > ¢;, from a given initial state ;. The inequalities in
energy can be replaced by inequalities in the principal quantum number n,
because € depends monotonically on n. For transitions in which the orbital
angular momentum quantum number [ increases by unity, the upper equation
(3.33) says that the sum of all mean oscillator strengths is positive, i.e. the
sum of all (positive) oscillator strengths corresponding to an increase of n
must outweigh the sum of all (negative) oscillator strengths corresponding to
a decrease of n. Conversely, the sum of all oscillator strengths for transitions
in which ! decreases by unity is negative according to the lower equation
(3.33), and hence the oscillator strengths in which n decreases dominate.
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According to Table 1.4 the three radial wave functions relevant to the
concrete example in the problem are

2 3
__T -7/(2a) e~/ Ba)
Bop(T) = 2\/_‘15/2 e y ¢aa(r) = a1 ’—a7/2

47\ _1/@30)
¢38(T) 9\/_ 372 (6 4— +§—)e y

and the correspondlng radial integrals are

2
¢3 (r)rgap(r)d 6 — 4Z+ér_ e—57/(60) qp
° ? 54f e 9a?
To2 ( ) ’
21134

" satrrnryar = i [T (D) oo gr = 220
o oaTRE 2435 Jo \a 565
With hw = (% — %)R = 2 h%/(ua?) we have

_ 2 91334
f3s,2p = ﬁ ( / B3s(T)Td2p(T) dr) = S =0.0136,
_ 2 2134
fgd,2p 108 3(12 (/ ¢3d ’I‘(ﬁgp('f‘) dT) = —5— = (0.6958 .
Transitions from the 2p state to d-states must have non-negative oscillator
strengths, because the n = 1 shell only contains s-states. According to the
upper equation (3.33) the sum of all these oscillator strengths is 10/9. As

shown above, the transition to the 3d state already exhausts more than 60
per cent of the sum.

3.3. Part a) of the problem is essentially the same as Problem 1.5 b) in
Chapter 1. Writing (¢po2|V2,3/¢03) as Wa,3, the energy eigenvalues are

2
By = EozZan + \/W223 + <E02 ;Em) ’ (1)

and the (normalized) eigenstates can be expressed as

V Vite?' E\/l_x/%’
1+a2’ —_%Vler/%' @

We have assumed phases chosen such that W5 3 > 0 and used the abbrevia-
tion
_ Eoz — Eo3 _ 3)
2Ws 3
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In the spirit of the Golden Rule, the decay width due to decay to the
energy normalized regular wave function ¢.e in the open channel 1 is (cf.
(1.182), (2.144))

Iy = 27 |(|Vghreg) | -

Inserting the wave function ¢, given by the (real) coefficients ap, a3 in (2)
we obtain

Ty = 27|as(o2|Va,118reg) + a3(Po3| V3,1 dreg) |

=m (W3, +W3,)
4 3(Eoz — Eo3) (W3, — WE,) + 2Wy, W3 1 Wa 3

5Bz - Bon)]* + W2,

where we have written W 1 for (¢o:|Vi,1|¢reg), ¢ = 2,3. The same calculation
for the second solution ¥_ gives

ro=m (W3, +W3))
_ W%(Eoz — Eo3)(W3, — Wi,) + 2Wo 1 Ws 1 Wy 3

\/[%(Eoz - Eo:a)]2 + Wi,

Equations (4), (5) have the same structure as (3.87), which was obtained via
the exact solution of the Schrédinger equation in the space spanned by the
whole continuum channel 1 and the two isolated bound states in the chan-
nels 2 and 3. Also, equation (1) above has the same structure as (3.86). The
perturbative treatment in this problem misses the Green’s function correc-
tions to the resonance energies (cf. (3.79)) and to the direct coupling matrix
element (3.80).

, (4)

(5)

3.4. The structure of the oscillator strength function becomes clearer if we
write

%‘% = %w 2 xQ,
g = 1L+ (d2/d)[Wa,1/(E — e2)] + (ds/d1)[W3,1/(E — D (1)
1+ [7W2,/(E — £2) + 7W2,/(E — £3)]” '
The quotient @ can formally be written as a Beutler-Fano function,
q+e)?
o= @
with the energy-dependent parameter q and the “reduced energy” € given by
(dz/dl)WQJ(E — 63) + (d3/d1)W3,1(E - 62)
7rW2r{1(E—53) +WW§1(E—€2) !

-1
7rW221 7TW321
= J —_ . 3
€ (E—Eg +E—63 ( )
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The reduced energy ¢ has a pole at the energy
~ Wiies+ Wiie,

Fp=—21"° " “31°2
P 14122y1 ¥ W32,1 ) (4)
which lies between £ and £3. The reduced energy varies from € = —co at
E = —oc0 to € = +o0 at E = Ep, and again from ¢ = —co at E = Ep

to € = +o0o at E = 400. Near €2 the reduced energy ¢ is approximately
(E — €2)/(nW3,); near e3 it is approximately (E — e3)/(nW3,). Thus we
expect two Beutler-Fano type resonances whose low-energy and high-energy
tails are contracted into the regions above and below Ep respectively. If the
widths 27W3, and 27W2 | are sufficiently small, then the parameter ¢ in (3)
is roughly constant over the width of a resonance and we can assign shape
parameters

_dyfdy . d3fd;
= TWa Q3= TWat (5)

to the resonances around e, and €3 respectively. The zeros of dfg;/dE lie at
€ = —@2, € = —q3 and the maxima at € = 1/g2, € = 1/g3. For small magni-
tudes of d2/d; and d3/d; (compared with the magnitudes of W5 ; and W3 1)
we expect window resonances; for large magnitudes we expect pronounced
peaks (cf. Fig. 3.6). '

The above considerations assume weak energy dependence of the param-
eter g in (3) over the width of a resonance. The zeros Zy of dfg;/dE are
given exactly as the zeros of the quadratic form

q2

d d.
(B = e2)(E —e5) + W2 (E — &5) + W (E —2)
and are

+ 1/d d
Zy = 2t 2 (—Z—Wm + "?‘WS,I)

2 2 \d; d

1 d d 2 dod
+ 5\/[62 — €3 — (d—me - E%Wm)] + 4%W2,1W3,1 . (8)

Note that W3 1 d3/dy and W3 1 d3/d; have the dimensions of an energy. If the
magnitudes of these numbers are small compared to |e; — €3], then we can
neglect the term proportional to d2d3/d? under the square root in (6) and
obtain the two zeros

Z=€2—@W21 and Z=63—%W31. (7)

dy i~

This result agrees with the result following from the zeros of the reduced
energy € ~ (E — &3)/(nW3,) at —gz or &€ = (E — £3)/(wW$,) at —q3 as
obtained above. If W5 1d2/d; and W3 1d3/d; have large magnitudes compared
to |e2 — &3], then we can neglect the epsilons under the square root in (6) and
obtain one zero near the average energy (g2 + £3)/2 and one zero shifted by
—[(dg/dl)W2,1 + (dg/dl)Wgyl].
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3.5. It is more accurate first to read off the quantum defects u,, and then to
calculate the energies via En/R = —1/(n — un)?%. The results for I' = 0.01 R
are (approximately)

n 3 4 5 6 7 8 9 10

—E,/R 0.1126 0.0647 0.0445 0.0349 0.0267 0.0199 0.0154 0.0122
fn 0.02 0.07 0.26 0.72 0.88 0.92 0.93 0.94

The results for I' = 0.001 R are (approximately)

n 3 4 5 6 7 8 9 10
—-E,/R 0.1111 0.0628 0.0415 0.0386 0.0277 0.0204 0.0156 0.0123
i 0 0.01 0.09 0.91 0.99  0.995 1.0 1.0

For I' — 0 the perturber only affects the n = 5 state.at E = —0.04 R. For
small but finite I" there is one energy just below and one just above —0.04 R.
For vanishing I' this energy becomes degenerate. Explicitly, we have

n 3 4 5 6 7 8 9 10
—E,/R 01111 00625 0.04 0.04 0.0277 0.0204 0.0156 0.0123
fin 0 0 0 1 1 1 1 1

3.6. The quantum defects (modulo unity) of the bound states in Fig. 3.10
can be read off to be —0.07, 0.04, 0.21, 0.48, 0.68, 0.76, 0.80 and 0.83. The first
dot with an energy near —0.25R must correspond to an effective quantum
number near 2, so we know where to start counting. The effective quantum
numbers of the first eight states are thus 2.07, 2.96, 3.79, 4.52, 5.32, 6.24, 7.20
and 8.17, and the corresponding binding energies (—E) are (in Rydbergs)
0.233, 0.114, 0.070, 0.049, 0.035, 0.026, 0.019 and 0.015.

The energy of the perturber is the point of maximum gradient of u(E),
which lies near E = —0.05R. The width can be estimated according to
(1.186) as 2/w divided by this maximum gradient, which has a numerical
value of at least 14.3/R. The background quantum defect is the amount by
which the value of u(E) differs from 1/2 at the energy of the perturber. In
the present example the parameters Er = —0.052R, I' = 0.035R and a
background quantum defect of —0.06, inserted in the formula (3.93), give
quantum defects which differ by less than 0.02 from the values in Fig.3.10
(except for the lowest and the highest energy, when the difference is 0.04 and
0.03 respectively). The energy of the perturber relative to the series limit
of the second channel (e2 = 0 in Fig.3.10) is E — I = Er — 0.125R =
—0.177 R, which corresponds to an effective quantum number (in channel 2)
vy = /R/(I; — E) = 2.38. At the energy of the perturber v + 2 should be
an integer, so g is 0.62 (modulo unity). From the width formula (3.127) we
derive R} ; = mv3I'/4R = 0.371.

Summary: {R; 2| =0.61, pu3=-0.06, po=062.
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3.7. Near a perturber the quantum defects lie on a curve (3.93)

ry/2
: 1
E - Eg
The closest approach of two adjacent levels n and n+1 can be expected when
the state n is on the low-energy tail and the state n + 1 is on the high-energy
tail of the arctangent curve. Appropriate expansions of the arctangent yield
r r

21 (pun — po) = “E En 27 (pin41 — po — 1) = “Eo—EBn (2)

1
= pp — — arctan
™

It is convenient to introduce the parameter a describing the ratio of the
distance of E,,; from Eg to the separation of E, and E, ,1:

En+1 - ER = a( n+1 — n) ’ E, - ER = (OL - 1)( nt+1 — n) (3)
From the energy formula in the (perturbed) Rydberg series we have
1 1

1
B FBa_ R [2n(uns1 = 1 = pn) + 63 = (pns1 - 1)7] (4)

We neglect the small (compared with n) quantities u2 and (un4+1 — 1)? on
the right-hand side of (4) and replace the difference 41 — 1 — iy, according

to (2), (3):
(En+1 — En)2 nl’ <1 1 )
a3 M LA + . (5)

l-«

EnnE, 7R
We replace the product E,E, ;1 by R?/(n*)*, where n* is an effective quan-
tum number corresponding to an energy between E,, and E, ;. This gives

(Bny1—En)? I'(n)1 /(1 1

4R?/(n*)8 ~ R 4 ( tz a) ! ©)
where we have neglected the difference between the quantum number n in
(5) and the effective quantum number n*. The left-hand side of (6) is just
the square of the energy difference relative to the unperturbed energy dif-
ference 2R /(n*)3. The expression in the big brackets on the right-hand side
has its minimum at o = 0.5 and its minimum value is 4; hence the mini-
mum of the energy difference relative to the unperturbed energy difference is

Vv IT'(n*)3/(nmR). (See also: [FW85].)

3.8. Since z is the v = 0 spherical component of the vector » we must have
m’ = m. The triangle condition and parity demand I’ = [ + 1. Hence the only
non-vanishing matrix elements are between

e—7/(2a) r re—r/(2a)
Yo,0 = TN ( - E) and P10 = WYLO(G) :

When calculating the matrix element of eE,z between these states we can
exploit the fact that z is /47 /37 times the (real) function Y7o and that the
angle integral over Y ‘0 gives unity. Thus
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eE, [* TN\ 2 —r/a.2
<¢0,0|6Ezzl'¢'1,0>=m A (1—%)1' e "/ar2dr

o0
_ eEza/ 24— lzs e *dr = —3eE,a .
12 Jo 2

The matrix W of the perturbing operator is thus

_ 0 —3eFE,a
W= (—SeEza 0 ) ’

Its eigenvalues follow from the secular equation (cf. (1.208)), which in this
case reads E? = (3eE,a)?, yielding

E:l: = ﬂ:3€Ezll .

The corresponding (normalized) eigenstates are
1 1 -
= — _ y = — + .
P+ \/2—(%,0 Y1,0), ¥ \/5(%’0 ¥1,0)
(See Fig. 3.15.)

3.9. Remembering that [AB,C] = A[B,C] + [4,C]B and exploiting (1.33)
and the identities of Problem 1.9 gives

F ak’> [ 8 r zf{0 1
i =45 | (+5)+3(5+1)]

Remembering that 8/8z = (z/r)8/0r, we can verify the identity by ‘straight-
forward differentiation. ‘

Now
[($mlzlt0)® _ 1 (ol2|¥m) (¥ml[Ho, bllto)
E,, — Ey k2 E, - Ey

= %(d’o'd"pm)('wmli’w}o) .

Summing over all m gives (11/h2)(o|zbl1o) via the completeness relation, so
the expression for the dipole polarizability becomes

_ 2ue?
TRz

2
= 2 [ olz o) + 5 (olz?rivo)]

_2#62 4 52 _93
=73 (a+4a —20,.

(ol zblo)

aq

3.10.

Yy
Ay(r) = AL(r) + % (z) B, = AL(r) + V (%BZ) . (1)
0
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From
. h —q —G G h
s = 7V (e (e/hc)wa) = _gv fom e/ yy, 4 e~ (/R 2y,
we deduce
54+ %A —Ge/he)f )y o—(ie/he)f (5 4 €
p+=(AL+V))e Y=o p+iAL) VL. ()

Applying the big bracket on the left-hand side a second time yields an expres-
sion similar to the right-hand side of (2), but with [ + (e/c) AL}y, taking
the place of v¥y,. Thus

. e 2 . o . e 2
(P +=(AL+ Vf)) e~ (/R yy, = = (ie/Re)S (P + EAL) YL
=e (/MM uByy, (3)

where the lower line follows from the Schrédinger equation for 1. Except
for the factor 2u, (3) is just the Schrodinger equation for 1 = e~(e/R)
with the vector potential A; = A, + V.

In the symmetric gauge the Hamiltonian is (cf. (3.183)):

A 132 2 B o2, 2 2
Hs:§;+sz+§w (= +y'), (4)

where w = eB,/(2uc) = we/2 is half the cyclotron frequency. The azimuthal
quantum number m is a good quantum number, and the motion of the elec-
tron parallel to the z-axis is that of a free particle. The motion perpendicular
to the z-axis is that of a two-dimensional harmonic oscillator. A discussion of
the two-dimensional harmonic oscillator (which is frequently neglected in the
shadow of detailed treatments of the one- and the three-dimensional case) can
be found in e.g. [Tal70]. In polar coordinates (p = /22 + y?, tan¢ = y/x)
the eigenfunctions of the two-dimensional oscillator are

Unm(p,d) = eimd,!pN‘m(P) .

1 N,m are the radial eigenfunctions

-1 N! Y2 oniml o (o2 2 g
YN m(p) = (b\/”?) [(N T ‘m|)|:| (%) LlNI (%) e™r /@) s
where b = /h/(uw) is the oscillator width and LII:,"I stands for the Laguerre
polynomials. The corresponding eigenvalues of the two-dimensional oscillator
part of the Hamiltonian are (2N + |m| + 1)hw.

The full wave functions are thus characterized by the good quantum num-
bers N and m for the motion perpendicular to the field and by the wave
number k, for the free motion parallel to the field:

T, Nym = €557 ™0y (o) (5)

The total energy eigenvalues including A?k2/(2p) from the motion parallel to
the field and mhAw from the normal Zeeman term wL, are
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2.2
2+ (2N +|m|+m+1)hw , (6)

Ey, Nm =

with —oo <k, < oo, m=0,£1,£2,...and N =0,1,2,... .
In the Landau gauge the Hamiltonian is
~ 2 A2 ~2

The electron moves freely in the z-direction. Its momentum in the z-direction
is also a good quantum number, and the value of the z-momentum fixes the
centre of the harmonic oscillator motion in the y-direction. Note that the
oscillator frequency for this one-dimensional vibratory motion is now the full
cyclotron frequency we.

The eigenfunctions in the Landau gauge are characterized by the wave
numbers k; and k, for the good momenta in the z- and z-directions and by
the oscillator quantum number n for the one-dimensional oscillator motion
in the y-direction:

Br, kom = 5T R 2 (y) _ (8)

where 1, (y) are the eigenstates of the one-dimensional harmonic oscillator
(cf. Sect. 5.2.2). The corresponding energy eigenvalues are

R%k2 1
Ekg,-,k,,n = 2 z (n -+ —) hwc . (9)
m 2

In both the symmetric gauge and the Landau gauge the energy contains a
continuous term /2k2/(2u) for the free motion of the electron parallel to the
field, as well as a discrete part consisting of odd multiples of & 5w (= Aw) for
the so-called Landau states describing the motion perpendlcular to the field.
All eigenvalues are highly degenerate. For given values of k, and n in the
Landau gauge, all values of k, yield the same total energy; the corresponding
wave functions differ by the reference point yo = hik,/uw, around which the
oscillatory motion is centred. For given values of k, and Eosc = (2Nmax+1)Aw
in the symmetric gauge, all wave functions (5) with m = 1, N = Nyax — 1,
m=2, N =nmnax —2,..., N =0, m = Npax, as well as all eigenfunctions
with N = Nyax, m < 0, belong to the same energy (6).

From parts a) and b) we know that eigenstates in the different gauges are
related by

) = exp (—ppuszy ) vulr) = e o) (10)

where b = y/h/(uw) is the oscillator width associated with half the cyclotron
frequency. Because of the degeneracies, (10) doesn’t imply a one-to-one rela-
tion between the eigenstates (5) and (8). If, for example, we wish to relate
the eigenstate

1 2,2 2
oo = §7=© (@%+y%)/ (2%) (11)
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in the symmetric gauge to eigenstates of the same total energy F = hw =
Fuwe/2 in the Landau gauge, we must allow superpositions of eigenstates
Dr, k,=0,n=0 With various wave numbers k,, i.e.

1/2 2
. oo . 2 1 Rk,
WO,O,O = e—lzy/bgﬁma(k:)elkzx (%) €xp [_32' (y - 2/W) ] dk. ’

with an appropriate amplitude a(k;). (Note that the oscillator width in the
Landau gauge is b, = b/v/2.) The choice

\/E _p222
alke) = Grara® "

does indeed produce the wave function (11).

3.11. Using the hint we obtain the approximate expression
. (. €
1/13 = g (P + —C-A) )

which we insert into the upper equation to obtain

L (6 (p+a)] [6 (p+ SA) |4 = (B+ e& — moc®)a

2m0

2mge

With the help of the identity in Problem 2.1 we can drop the vectors & and
obtain

{ 1 (p+ A) _eqs} Va =.(E-m0c2)¢A.

2myg

4.1. Integrating the left-hand side of the asserted identity by parts, we obtain
for the left-hand side

1
,—“eiuﬂ-ﬂ(l+x)f(gc)|1 + lim 3/ elo(1- z> ~[(1+2)f(a))dz -
ia -1 ae—ooia J_;
The first term above is independent of a and equals 2if(1) as required for
the identity. The second term vanishes in the limit a — oo because of the
increasing frequency of the oscillating factor in the integrand.

Inserting the asymptotic form (4.3) for the wave function into the defini-
tion (4.4) of the current density gives

. T—00 hk . -
J = 71'92 + Jinterf + Jout » (1)

where jout is the current density (4.5), and
—ikr

jinterf - hﬂ [ lsz (9 ¢)

_ hk [f(e ¢)e|kr(l cose)(er+ez)+f (0 ¢)e—lkr(1 cosB)(e +ez):|

(er +€,) +e 2 f(0, qs)——(er + e,)]
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Introducing £ = cos # and writing j, for the radial component of jintert, i-e-
Jr= jinterf . 7'/7', we have

1 27
Iinterf = fjinterf -ds = 72/ dz d¢.7'r
-1 0
hkr [/ dze*r1-2)(1 4 z) f(g ¢)d¢

+/ dzekr1-2)(1 4 ) f*(t9,¢)d¢] .
-1 0

In the limit kr — oo the first integral on the right-hand side contributes
(ih/p) x 27 f(6 = 0), because of the identity in part a). Note that f(6, ) is
independent of ¢ at # = 0. The corresponding identity for —kr — —oo shows
us that the second integral gives a contribution —(iA/p) % 27 f*(8 = 0). Thus

Iinterf = —54778[]‘.(0 = O)] , T —00. (2)

The optical theorem follows from the observation that, since the first term
in (1) doesn’t contribute to the net flux on symmetry grounds, the sum of
the fluxes Ioyy from (4.9) and Lipterf from (2) above must vanish according to
(4.8).

4.2. For ' < r we have

\ 2 ’2
- ! rr T
[r—r'|:r\/1—2T;+(T—) r——+0( > )
T r T

and so the exponential can be approximated by

eiklr=1| _ gikr o—ik.-v’ [1 +0 (kr’d)]
r

Furthermore we have

ek iz 1 (,,/,.)2“%[”0(%’)]’

2(r-r'/r?)

showing that the corrections to the leading term in the expression for G are
smaller by a factor of the order 7' /r.

4.3. In a cube of length L periodic boundary conditions are fulfilled for wave
vectors of the form

ks
. 2m 2n 2m
k= I]Zy , w1thk1=—L—n1, ky:—i-ny, kZ:TnZ,
ny=0,+1,42,... , n,=0,+1,%2,... , n,=0,+1,£2,... .

In k-space there is one normalizable state for each cube of volume (27 /L)3;
hence the density of states is (L/27)3. In order to obtain the density of states
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with respect the modulus k of the wave vector, we write the volume element
in k-space as AV, = 4nk? Ak, giving
AN _(L\* AN
AV \2r) T 4ank2Ak
Hence we have
AN L3 kLB
=d4rk? - = ——
Pk = Ak Gl 2m2
For the density of states with respect to the energy E = A2k?/(2u), we obtain
AN (dE\T'  L3uk
A ~ P\ ) T omm
Bound states normalized to unity carry an amplitude factor 1/L3/2. When
working with bound states of unit amplitude, the density of states must
absorb the factor 1/L3® so that products such as those that occur in the

Golden Rule remain independent of the choice of amplitude. Thus the density
of states for plane waves with unit amplitude is

_ pk p¥?\2E

PE=on?12 = h® 2m2 -

If we now visualize the scattering process as a transition from incoming
plane waves v; (travelling in the direction of the z-axis) to final plane waves
¥ (travelling in the direction df2), then the transition probability per unit
time is, according to the Golden Rule,

P(0,6) = Tl T 1) Poe x S

4
ku .
= o Wl Tl 2d2 .

The perturbing operator causing the transition is T'. If we relate the matrix
element of the transition operator T to the scattering amplitude f(0, ¢) as
suggested by (4.18), then we obtain

dP(8,¢) hk
- = HEIFZ

By dividing the transition rate per unit time for scattering into the solid angle
df? by the incoming current density, we return to the original definition (4.6)
for the differential scattering cross section.

4.4. The integrated cross section can be written as a sum of contributions o7y,
which originate from the partial waves | and vary between zero (for §; = nr)
and maximum values of 4w (2l + 1)/k? (for & = (n + $)m),

)
4
g:ZO’[ s 01:%(2l+1)sin2& . (1)
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For a given partial wave [ we have
k—oo sin(kro —in/2)
tand; = ——————+- = —tan(kry —In/2
anor  cos(kro — In/2) an(kro —im/2) ,

and hence
o = (’I’l‘l‘%)‘l‘(—k‘l‘o, for k — oo .

The oscillatory asymptotic behaviour of j;(krg), ni(kro) as krg— oo turns
to a monotonic decrease of j /nl to zero as the argument krg goes to zero
(cf. (A.32)). An estimate of where this turnover takes place can be obtained
by looking at the wave number k;, where the classical radial kinetic energy
at 7o,
E — w ~ h_z k2 — (_li__%_)f.
2ur 2 T2 ’
vanishes; this happens at

1
k‘lT0=l+-§. (2)

Note that we have used the Langer modification, replacing I(l + 1) by (I +
1/2)2. For large values of [ we have (see e.g. Chap. 9.3 in [AS70})

Ji(kr0) 1moo 1 ekro \ P! @)
ni(kro) (21 + 1) '
For a given energy, i.e. for a given wave number k, partial waves up to
Imax = krg contribute significantly to the cross section; contributions from
higher partial waves fall off rapidly according to (3). An approximate value
for the total cross section is

lmax
é]tz Z 20 + 1) sin (kro — %r)

=0

l
max l 1-1
{ Zl [sm (kro — 5#) + sin’ (kro - —2—71")}
.2 lmax
+ (Imax + 1) sin® { kro — 5

4r lmi(l éz lmax(lmax + 1) 4n (k’l"())
k2 2 T k22

2
=2mry .

For scattering by a finite potential of depth (or height) Vo = hZkZ/(2u)
and range 19, the phase shifts will fall off rapidly for values of | above kgr9, so
the upper limit to the sum over contributing partial waves no longer depends
on k. An approximate upper bound for ¢ is

An k2’l‘2
Omax ™ 13 Y (2 +1) ~ o5 x (koro)? = 4m 220
0<i<koro

Solutions to the Problems 393

At high energies E — oo we expect the integrated scattering cross section to
decrease at least as fast as 1/E.

4.5. The work dW done in going from r to r — dr is
2
dW = Fdr = 224 (fg N ) dr
3 \r rr

= e(Md'r‘
=-2 )

where we have assumed the differential displacement to be in the radial di-
rection, dr = (r/r)dr. The work done in coming from infinity to a finite
position r is

W = —2e0y /r Lo = e’ag
o T8 2rt

4.6. In the special case m = —1/2 equation (1.290) becomes

1 (\ﬂYz,—l(o, 45))

Yerdmt = T (VT T¥000)
Y ! <“Vl+1'Yt,—1(6’,¢)

il = —e—— .

I-3mil T Vi¥ie(®)

These relations can be inverted:
< 0 2l+1yl+§,ml 2l+1y1__ml ,
0 I+1
("110(9)) 21+1y’+2v’"‘Jr 2l+1yl”-ml : 1)

Expanding the spatial part of the plane wave according to (4.22) and
using the upper equation (1) yields

VRS VAT T (kr) (y (0))

=0
;\/_Zu,(kr) (Vi+T Visyomt + VI%yma) -

We can use (1) and decompose the outgoing spherical wave into components
with good j, m and I,

(g}(z’aﬂ;)> i Viar [(fz +lgz)\/lTyl+‘ m,l

20+1

U = 4+ DIAVIV ] -

If we now collect the radial parts of the incoming plane wave and the outgo-
ing spherical wave for given values of [ and j, we obtain expressions which look
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like the big square bracket in (4.24), except that the coefficient f; in (4.24)
is now replaced by different linear combinations of f] and g;, namely f] + lg;
for j =1+1/2 and f] — (I + 1)g] for j =1 — 1/2. The same steps which led
from (4.24) to (4.27) now give

fl+lg = HT‘;:I [exp (2i6§l+1/2)) - 1] ,

fl=(0+1g = 22;1 [exp (2151(1—1/2)) - 1] .
Resolving for the partial wave amplitudes f] and g; yields

fl= l;;kl [exp (2i5,u+1/2)) - 1] + ﬁ [exp (2i§l(l—1/2)) — 1] ,

9= 5}—,; [exp (2i5,““/ 2)) —exp (2i5,‘"1/ 2))] _

4.7.

() 10 D@ (5) ()

=A*B+ B*A=2R|A*B] ,

b ()10 D (] =(5)(2)

- %(A*B _ B*A) = 25[A*B]

e (E) (6 %) (@) (8) () -we-m
P, iziPy Pz——;,Py >
_ ( |A|2 - |.B|2 2[R(A*B) — iS(A*B)])

2[R(A*B) +i3(A*B))] (IBI* - 14P%)

_ (AP —|B>  24B*
“\ 24*B  |BP2-|AP

@:g@+&@+g@:(

Operating on the spinor |x) = (g) with ép and recalling that |A|? + | B}?
=1 yields

oo () = (S Lo S ains) = (b +122) = (5)

4.8. In order to describe triplet scattering, we must work with solutions of
the Schrédinger equation which are antisymmetric with respect to the in-
terchange of the spatial coordinates ; and 72 of the two electrons, i.e. the
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wave functions must have negative parity with respect to the reflection of
the relative distance coordinate r = r; — rg at the origin, » — —7r. Such
solutions are readily constructed from the wave functions (4.65),

(1) = Yo (r) — Yo(-1) . (1)

For all spatial directions excluding § = 0 and # = 7 the asymptotic form of
the wave function (1) is

W (,’,) — ei[k:z+111n k(r—2z)] __ e—i[kz—nln k(r+2)]
ei(kr—n In 2kr)

+[fc() = fo(r = )| —— . 2

T
The differential scattering cross section is as usual defined as the outgoing
particle flux divided by the incoming current density, which is given by the
etilkz] term in (2):
doy 2
= - — . 3
T~ |o(6) - folm — 6)| 3)
Noting that sin(r — 8)/2 = cos(6/2) and that Insin?(6/2) — Incos?(6/2) =
Intan?(6/2), we use the expression (4.66) for the Coulomb scattering ampli-
tude to obtain

doly,  n* o—inlnsin(8/2) B o—inlncos2(8/2) |
d2 ~ 4k?| sin?(8/2) cos2(8/2)
172 1 1 einlntm2(9/2) +e~in Intan?(6/2)
=1k |5 ay2) T cosi(@/2) | sin’(6/2) c02(6/2)
n? 1 1 cos[nIntan?(6/2)]
== +— —-2— - (4)
4k? |sin*(8/2)  cos*(8/2) sin®(6/2) cos?(6/2)

Only odd angular momentum quantum numbers [ contribute to the partial
waves expansion, because the even partial waves have positive parity and drop
out in the superposition (1).

In singlet scattering the spatial wave function must be symmetric and
the difference (1) is replaced by a sum. The corresponding formula for the
differential scattering cross section becomes

|fc(8) + fo(m - 6)

_ 77_2 [ 1 + 1 cos[n Intan?(6/2))

4k? |sin?(8/2) = cosi(6/2) = “sin%(6/2) cos2(6/2)]|
In the scattering of unpolarized electrons (with no measurement of spin

in the final states) we observe a mean of the singlet and triplet cross sections,

weighted with the respective multiplicities 25 + 1, which are unity for S =0
and three for § = 1:

doy _
dn

(®)
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dom 1 (do} do}

=i (T )
__7]_[ 1 4 1 _ cos[nIntan®(6/2)]
4k? [sin*(6/2) = cos*(8/2) sin2(0/2)cosz(0/2)J

4.9. G(x,z') and the delta-function in the defining equation depend only on

. def
the difference £ — ' = p of the two coordinates, and for fixed &' we can

replace the derivatives with respect to the components of « by the derivatives
with respect to the corresponding components of p. Thus we have to show
that the function

K \" i) (K]p|)
Glp) = — (&) My (Xip)
0=-(5) Far ®
fulfills the equation
(K2 + 4,)G(p) = 8(p) . (2)
Since G depends only on p = |p|, the n-dimensional gradient is
pdG
VG P R
() o

and the corresponding Laplacian applied to G is

da LA, pi dG
() pdp ;f"’m pdp

S50 ()
—~lpdp P90 \p dp
ndG <~ d [1dG\ 8p
+ —_
TP dp 2 dp (p dp) Opi

_ndG <& 1dG | 1d%G\ p;
e (Few)s

i=1 pdp
ndG o= p? 1dG 142G d*¢ n-1dG
_nde —1(-__+-__):_+___.
pdp ; p\ pPdp  pdp? dp? p dp

Now G is equal to a constant (namely —(i/4)(K/2m)") times H,Sl)(Kp)/p”
and writing 2v + 1 for n — 1 we have

o K & (HOK)) | wt1d (HD (Kp)
n p¥ dp? p¥ p dp PX
_1 ( CHD (Kp) | 1dHD (Kp)
pY

Vz
32 PR —;Hﬁ“(Kp)) - (3)
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Bessel’s differential equation for H, ,51)(1{ p) tells us that

2HM(Kp) 1 dHM(Kp) w2
a7 TR dks) Kot (Ke)=—HOE)

and so (3) amounts to

H(Kp) _ 2B (Kp)
pU pl/
showing that (K2 + A,)G(p) must vanish as long as p is not at the singular

point, i.e. it vanishes for p # 0.
To complete the proof that G(p) fulfills (2) we show that

/V F(O)(E? + A)C(p) dp = £(0) (@)

for a small n-dimensional volume V enclosing the singular point p = 0. Equa-
tion (4) should hold for any appropriately well-behaved trial function f.
Since we are now operating in a small volume around p = 0 we may use
the leading term in the appropriate expansion for H,(,l)(K p) and obtain
—0 I'(v
G(p) "= _M—,,f.‘l%z',; : (5)
As the radius of the small volume decreases, its volume will decrease as the
n = (2v+2)th power in the radius, and the surface of the volume will decrease
as the (2v + 1)th power of the radius. The integral over fK2G vanishes in
the limit of vanishing volume V as long as f remains bounded in the vicinity
of p = 0. The remaining contribution to the integral on the left-hand side of
(4) can be rewritten using Green’s theorem,

[ 1008601 d0= [ @At dp
Vv \%4
+ 4 1f(96) -GV ) do. (6)
S(V)

bl

A,

In the limit of vanishing volume V' and vanishing surface S(V') of the volume,
the volume integral on the right-hand side of (6) and the second term in the
surface integral vanish as long as V f and Af remain bounded in the vicinity
of p = 0. The only non-vanishing contribution on the right-hand side of (6)
is thus

S(V)—0 vI'(v) 1 p
VG -do S"27° f(0 ( do . 7
fq(V) TO g sy P @

For a small sphere of radius p the surface integral on the right-hand side of (7)
is just 1/p?**! times the surface of the sphere, which is 27%/2p"~1/I'(n/2)
according to Problem 4.10. Recalling that n = 2v + 2, this amounts to
2nv+1 /(v + 1), so that the right-hand side of (7) reduces to f(0).
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4.10. As a product of n one-dimensional integrals we have

L, =(/7)" . (1)
Transforming to a radial integral yields
I, = / =R S.(R)dR , )
0

where S,,(R) = Sn(1)R™! is the surface of a sphere of radius R in n dimen-
sions; Sy, (1) is the surface of the unit sphere. Equation (2) can be integrated,
I'(n/2)

o0
I, = 5,,(1)/ R le R dR = Sn()—5—,
0

and equating this result to the right-hand side of (1) gives
27n/2 2q/2
Twm = T

The volume of the n-dimensional sphere is obtained by integrating the surface

(3):

S(1) = R*1. : (3)

R 27rn/2 R ) 71'"/2
R = = n- = —_——— 7
Va(R) /0 Sp(r)dr Tn/2) Jo r dr TG+ 1)R

4.11. In ordinary spherical coordinates the six-dimensional volume element
is

dr = r2dry r2dry d2; 2, = r2dry r3 drysinf; dfy dgy sinfadfadgy . (1)

Transformation to hyperspherical coordinates only affects the coordinates r;
and 5. The corresponding differential dr; dry transforms as

dr1/0a  8r1/6R
87‘2/6& 6r2/6R

_‘ Rcosa sina

drydry = dRdo

dRda = RdRda .

—Rsina cosa

Inserting this result into (1) and remembering that r} = R?sin’q, 3 =
R? cos? o gives

dr = R®dRsin? acos? adadf?; df2; = R°*dRd2,
with

2, = sin? acos® adads?, d2,; .

Integrating over the hyperspherical solid angle from zero to 7/2 gives

/2 T 27 T 2n
/ don = / sin? a cos? ada / sin 6 d6, / d¢y / sin 82 d6s / d¢s
0 0 0 1] 4]

/2
= (4#)2/ sin? acos? ada = (4%)2116- =73 .
0
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4.12. It is convenient to work in atomic units, where energies are given in
units of 2 Rydbergs =~ 27.21 ¢V and wave numbers are in units of the inverse
Bohr radius ~ 1.89 x 108 cm™!. k; is a vector pointing in the direction of the
momentum of the incoming electron (the z-axis), and its length follows from
Eine = k2/2: k; = 3.32. In the asymmetric coplanar geometry we have

_ M

T 7 = Epn.—05-T,=490, k3 =313.

The length and direction of the momentum transfer vector g can be derived
by applying elementary geometry to the triangle formed by the vectors ki,
k; and q; 6, is the angle between k; and k;.
By the cosine rule,
0.32 for 8 =4°
¢’ = kf + k? — 2k1k;cosby , q= {0.61 for 6, = 10°
0.92 for 6, = 16°
The angle 8, through which g is turned from the direction of —k; (i.e. from
the negative z-axis) is given by the sine rule:
k 43° for 6 = 4°
sinfg = —lsin91 , Oq= {63° for 6; = 10°
q 70° for 0; = 16°
In symmetric geometry
Ty 4+ Ty =Eine —05=501, Ti=Tp=251, ki=ky=224.

The length of the momentum transfer vector depends on 6, = 8; and is given
as above by the cosine rule,
1.18 for 6, = 10°
@ =k2+ k% —2kikicosb, g= {2.35 for 6; = 45°
3.66 for 6, = 80°
The angle 6, is again given by the sine rule:
k 19° for 6; = 10°
sinf, = “Lsinf; , 6= {42° for 6; = 45°
a 37° for f; = 80°
Note that 6, reaches a maximum when k; is orthogonal to q. In the right-
angled triangle formed by ki, k; and g we then see that sin(,,,,) = k1/ki:.

5.1. The power P of a laser in W/cm? can be expressed as the energy density
p (in J/cm?®) times the speed of light ¢ (in cm/s). The total energy in the
volume occupied by the atom is simply the product of the energy density
(assumed to be constant) and the volume,

_4m 5 s 4w 5 3P
E = —(n"a0)’p = 5~ (na0)”— ,

and the ratio Q of F to the binding energy is
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3 P n? _ 8r (n%ag)?

— 2 —_
Q= ( 0) 3 ahe? P,
where a ~ 1/137 is the fine structure constant. For a ratio Q ~ 1 we have
3 ahc? 10V
P~
8n nsag n8 W/em?

5.2. Adapting (5.36) to one spatial dimension gives the transformation be-
tween wave functions 9(z) in coordinate representation and 1(p) in momen-
tum representation:

b(p) = e P/ My(z) dz

\/_
P(x) = m /_’oo etiP=/M(p)dp .

At time t = 0 the wave function in momentum space is thus

D(p,t =0) = (ﬁn/ﬁ)‘”? o= (P=Pko)26%/(2h%) )

In momentum representation the Hamiltonian for the free particle is local,
2
g=2
2p
and applying functions of H to wave functions simply amounts to mu’lﬁpli—
cation. Thus the wave function in momentum representation at any time ¢ is
given by

b(p,t) =e /A (p,t = 0)
1/2 s 2 2
= <—\/%) ex P[—%g— a1 ﬁko)z] . (2)

The corresponding wave function in coordinate representation is

v = [v72 (10 )| el ]

The probability density in coordinate space is

1 2
ﬁBeXp[——B}—z(x—h—jgt)] » B=py[1+ h2;2 . (@)

The probability density in momentum space does not depend on time:

I (z, ) =

D = e )

The expression for the density matrix is a little simpler in momentum
representation:
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L p?—p
o(p,p'st fh exp ( Tu_t)
xexp{ 2@2 [(p— hko)? + (p’—nko)2]} : ©)

Introducing the sum and difference variables P = (p + p’}/2, ¢ = p — p’ and
reorganizing the exponents in (6) gives

. 2
. 95, 9.\N__ B _px2 B (it
9(P+2’P 2’t)‘ﬁhe OeXP[ @ \17 %

2
X exp (——-—Pz + 2§ Pko) )

where B is as defined in (4).
The Wigner function is given by the lower line of (5.40) adapted to the
one-dimensional situation:

(XPt)—th/w Xalng (P+ 4, P—1it)

_ Lﬁ o (X—Pt/u)?/ 5 e—(P-hko)’ﬂ’/hz _ (7)
T

Equation (7) already looks very much like classical evolution in phase
space. Indeed, the evolution of the classical phase space density in part c) can
be formulated by exploiting the fact that g, is constant along the classical
trajectories, because dgc/dt = 0. The trajectory going through the point
(z,p) at time t started at the point (z — pt/u,p) at time zero, hence

1 (e 2/42  —(r—m2 /2
oa(z,p;t) -_—.ch( Zt p,o) a—ﬂ? (z—pt/p)*/B* g—(P—p0)* /" (8)

This is quantitatively equal to the quantum mechanical result (7), if we choose
the width o describing the initial (and time-independent) spread in momen-
tum according to a = k/f.

5.3. Applying b according to (5.58) we have
b z —zz"/2 (Z ) Tin — 1 _ e—zz'/2 ’ﬂ/ —~1
=S R Ly

— y*e—%? /ZZ( |’n,)=Z*|Z) .

n=0
The conjugate equation is (z|l;T = (z|z and hence
(alb1Blz) = (2l227)2) = |2 - M)

We use (5.72) to express the electric and magnetic field strengths, in terms
of the momentum operator p and obtain
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L3, .,
5 (A1B® + B?|z) = (ZI— —-IZ) (2lp?|z) - 2)

The expectation value of 2 is related to the uncertainty A, (which is equal
to A/(24/B) in the present case) and the expectation value of $ according to
(1.35):
2 2 M2 -2
4, = 252 =®)-®°, (plz) = Qﬂz +(zlpl2)* . ®3)

From (5.67) we expect that the expectation value of p in the coherent state
|z) is P, as given in the lower line of (5.68). This is in fact the case and can be
verified by calculating the expectation value in momentum representation,

(z]p|z) = /—00 p|1/jvz(p)|2 dz .

Note that the absolute square of the momentum wave function above can be
derived directly from the Wigner function (see (5.42))

'&z(p)ﬁ:/ Qw(x’p)dx:%e*(p*P,fm/hz .

— 00
Since |z| does not depend on time and (z) = |z|sinw(t — tp) for an
appropriately chosen tg, we have
h?  2R?
(z|p%2) = 252 + —Iz|2 sin w(t —to) .

Time-averaging the sin? term gives a factor 1 /2, so

(a1%)z) = 52( P )

Now k?/B3? = hw and |z|? is the expectation value of b'b according to the
result of part a). Equation (4) merely expresses the fact that the energy of
the field is given by the harmonic oscillator Hamiltonian hw(bth + 1/2).

The harmonic oscillator ground state is just the coherent state |z = 0),
and, according to (5.67), its Wigner function is

1
0u(X, P) = — e XY P

The density matrix for the first excited state is

2zx’ 2 (.12 2
olz,z’) = e~ [#°+(=")*)/(28%)
Ve
Introducing the sum and difference coordinates X = (z + z)/2, s = ¢ — o,
this amounts to

2
of - 2 _ 57\ -X%/B% —s*/(48%)
(x + X — 2) 2x2 - e e .

The ngner function is
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— 1 © —iPs/hk S s
QW(X,P);QT—}:L/ € (X+§,X—§)ds

1 ( 2X2 ﬂ 28" p2 _ e_xz/ﬂze_Pzﬂz/hz-
B

5.4. Following the hint we calculate

%:Aemem+ SMBerB - (A+B)e,\A ,\B+[e,\A B eAB (1)

Now

A" B, 2

3|>‘

oQ
and it is easy to show by induction that
[A", B] = nA" (A, B] , (3)

(remember that [A, B] commutes with both A and B). Inserting (3) into (2)
gives

[eXA i AT An 1 )\[A, B] e,\A
n=1
Thus (1) becomes
df ={A+B+NA B} . | (4)

The dlfferentlal equation (4) is obviously also fulfilled by the operator function

f1 — PA+AB+(V/2)[A,B]

Since f(\) and f1()\) go through the same point, namely unity (i.e. unit op-
erator) at A = 0, they must be identical solutions of the differential equation
(4). Equating the values of f()) and fi(\) at A = 1 yields the required special
form of the Baker-Campbell-HausdorfI relation.

5.5. Let E; be the energy and p; the momentum of a free electron. The
relativistic energy-momentum relation is

E; = cy/mic? + p? .

After absorbing a photon of energy Aiw and momentum FAw/c, the final energy
FE¢ and momentum pr¢ of the electron obey

Ef = cy/mic? + p? .

Obviously the energy difference is

E; — B = hw :c\/m(z)c2 +p§—c\/m802+pi2 :
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Since the maximum final momentum of the electron is p; + Aw/c,

Ei—E < c\/mgc2 + (pi + hw/c)? — c\/m(z,c2 +p?

2pihw/c + (hw/c)?
=cy/mdc? + p? <\/1 + %ﬁ—)— - 1)
_ phwje
Vm3et + p? .
The right-hand side of the last inequality is always smaller than fiw, showing
that even a maximal transfer of momentum is insufficient to produce the
required energy gain for the electron.

The corresponding calculation swapping the roles of initial and final states
shows that a free electron cannot emit a single photon. Note, however, that
the inelastic scattering of photons, which can be pictured as simultaneous
absorption and emission of a photon, is kinematically allowed (Compton ef-
fect).

<c

5.6. Assume to < t; <ty and consider the propagation of an infinitesimal
deviation Az (tp) from a given trajectory. According to (5.74) the correspond-
ing deviations Az(t;) at time ¢; and Az(ty) at time ¢ are

Ax(ty) = M(t1,t0) Az(to) ,

Az(ta) = M(t2, t1) Az(t1) = M(t2, t1)M(t1, t0) Az(to) - 1)
On the other hand, the defining equation for M(t, o) is’

Al’(tz) = M(t2,t0)A$(t0) .

Since (1) holds for all infinitesimal Az(to), the matrix M(tz,to) must be
equal to M(to,t1)M(t1, to).

If to and ¢; define two different starting points on a given trajectory, then
the Liapunov exponent defined by (5.76) is

o= BIMER M)
t—o0 t—1gp 100 t—1t
depending on which starting point we choose. According to the chain rule,

however,
In “M(tv tl)M(tl ) tO)”

/\(): lim
t—o0 t_to
In ||M(t,t _ In||M(ty, ¢
< lim BIMEON o 0 IM(Eto)ll o
t—oo ) t—o0 t—to

the lower line following from the inequality in the hint. The second term on
the right-hand side in the lower line of (2) vanishes. The first term can be
rewritten as
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1 t1 —to

LIV .
t—1 (t—tl)(t—to)

t—o0 t—1o

= hr?olnHM(t,tl)” [
i mIMG )]
t—o00 t— t1

which is just the definition of A\;. We have thus shown that Ay < A;.
From M(t,t1) = M(t, t0)[M(t1,£0)]~1, we have

In [[MI(%, £0) [M(t1, 20)] ~*I

)\1 = lim
t—o0 t—1t
o In[M(tto)l L In (M, to)] 7
<
- zlingo t—t; + t]ir& t—t ' )

The second term on the right-hand side in the lower line of (3) vanishes, and
the first term is equal to A\¢ by reasoning analogous to that following (2).
Thus we have also shown that A\; < Ag.

Hence we conclude that the Liapunov exponent is the same for all phase
space points along a given trajectory.

5.7. Let y, be the vertical distance above the centre of the disc and z, the
horizontal distance from the centre of the disc of the point where the particle
hits the disc the nth time. Since all points (z,,y,) lie on a circle of radius a
we have

o,y =d’. ®
Let Y,, be the vertical height above the middle at which the particle leaves
the side of the square before the nth collision, and let T;, be the tangent of
the angle to the horizontal at which it leaves the side of the square.

Initially we have T} = tana, Y; = 0. The coordinates of the first collision
can be determined from (1) together with

y1—"
T=32— 2
1 ! - Iy ’ ( )
yielding
N1+ T+ /(a? = Y2)(1+ TE) + TE(YE — 12) — 2l
1= 1+T12 )
=Y +T1(l - I]) s (3)

where we have written [ for L/2. After hitting the disc the particle is reflected
at an angle to the horizontal given by

as=a+206, tanﬁ:z—l, (4)
1

and it returns to the side of the square at Y2 = y; + (I — 1) tan . Subse-
quently it travels to the disc (at an angle ay), which it hits at (z2,y2). (See
figure on page 406.)
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- L2z - -

A general recurrence formula for the coordinates of the nth collision with
the disc can be derived from (1) together with the generalization

’ -, -

ln = tanan = *y‘lvl:‘—z-f (5)
of (2). The result is

. ToYn + T2+ /(a2 = Y2) 1 + T2) + T2(Y,2 — 1?) - 20T, Y,

n — 1 + T,% ]
Yn = Y, + Tn(l - zn) . (6)

For the next iteration

Yn

Qnpy1 = ap + 2arctan ( ) and Y41 =yn+( —zp)tanomy; -

Tn

Inserting the lengths [ = 100 cm (L = 2m) and a = 5 cm given in the text,
we obtain the following coordinates (z,,y,) (in cm) for successive collisions
with the disc.

a=0.3°

z, 4.975

Yn 0.4975

a = 0.0003°

Ty 5.0 5.0 3.983
yn 4.974x10~* 3.880x10~2 3.023
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a = 0.0000003°

Tn 5.0 5.0 5.0 4.995
Yn 4.974x1077 3.880x10~° 3.007x10~3 2.330x10~!

a = 0.0000000003°

Tp 5.0 5.0 5.0 5.0 5.0
yn 4.974x10710 3.880x10~% 3.007x10~¢ 2.330x10~* 1.806x10~2

The vertical deviations y, at collision with the disc provide a suitable
measure of the deviation of a trajectory from the periodic straight-line tra-
jectory o = 0. Plotting these deviations on a logarithmic scale reveals the
following dependence of y,, on the collision number n:

Yn = const. X 1019" = const. x e*4" .

Thus the Liapunov exponent of the trajectory defined by a = 0 is 4.4 in
dimensionless units, where the collision number defines the time scale. The
period of the orbit at (constant) velocity v of the particle is 2(! — a)/v and
hence the Liapunov exponent in physical units (s71) is A = 4.4 x v/[2(l —a)].
Note that the initial angle has to be accurate to roughly one ten-millionth of
a degree if the particle is to hit the disc at least five times.

5.8. The probability W(s) that none of the N numbers y lie in the interval
(z,z + s) is [(L — 8)/L]N. For N — oo we have

W(s) = lim (1 - %)N = lim (1 - d—;)N —eds Q)

N—o0 —00

At the same time, the probability defined in (1) gives us the probability for
the spacing to the next number being at least the distance s, i.e. W is the sum
(integral) over all probabilities (probability densities) for nearest neighbour
spacings P(s’) greater than or equal to s:

W(s) = /00 P(s")ds', P(s)= —% =de % .
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above threshold ionization 275

absorption 221

absorption cross section 115,232, see
also total absorption cross section

ac Stark effect 191, 192, 281

action integral 47

action integrated 49,52

action-angle variables 325

additional asymptotic phase shift 35

additional degeneracy 15,24

additional scattering amplitude 235

angular momentum quantum number
10

annihilation operator

— for photons 105

anomalous Zeeman effect

anti-particle 67

anticommutation relations 66

antisymmetrizer 75

associated Legendre function 357

asymmetric coplanar (e,2e) reaction
259

asymptotic phase shift 20, 21, 129, 204

atomic degrees of freedom 98

atomic units 64,65

autoionization 139

autoionizing state 139

averaging over initial states 112,229

azimuthal quantum number 10

289

179,182

background phase shift 34

Baker-Campbell-Hausdorff relation
290, 349

basis 2

Bessel function 359, see also modified
Bessel funtion; ordinary Bessel
function; spherical Bessel function

Bethe theory 235

Beutler-Fano function 142,164, 165

bifurcation 315, 330, 334

Bohr magneton 179

Bohr radius 19, 24, 64, 65

Bohr-Sommerfeld quantization
condition 50, 60, 122

Boltzmann’s constant 339

Born approximation 203, 234, 236, 256

— for phase shift 205

Bose-Einstein condensation 340

boson 75,338 -

bound state 9,129

— in the continuum

bra 3

branching ratio 167

break-up amplitude 250, 251

break-up channel 247,251

Breit-Wigner resonance 36

Brillouin’s theorem 86

145,164

canonical equations 284

canonical momentum 328

centre-of-mass coordinate 63,73

centrifugal potential 13, 14, 20, 38, 50

channel 30

channel spin 138

channel threshold 32

channel wave function 30, 32, 35,134

chaos 298, 309

chaotic classical dynamics 186

chemical potential 339

classical deflection function 211

classical phase space density 284

Clebsch-Gordan coefficient 54, 57,
113, 180, 358

close-coupling

— convergent close-coupling method
261

— equations 137

— expansion 244

closed channel 32

coherent state 289

commutation relations 321

commutator 6,286

commuting operators 6

compatibility equation 156,163
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complete set of commuting observables
6

completeness relation 4

configuration 81

configuration interaction (CI) 90

confluent hypergeometric series 362

connection formula 49,60

conservative system 298, 301

constants of motion 9

continuity equation 201, 221

continuous effective quantum number
126,129, 166

continuum 27,129

continuum threshold 28, 33,122, 129

continuum wave function 9

coordinate representation 7, 285

core electrons 134

correlation energy 91

correlations 89

Coulomb eigenfunction 27

Coulomb gauge 102,103

Coulomb parameter 21,235

Coulomb phase 22,219, 362

Coulomb potential, attractive 38,72

Coulomb principal quantum number
24,70,174

Coulomb scattering amplitude 215,
236

Coulomb shell 24

coupled channel equations 31, 32, 36,
135,231

coupled channels 30

coupled representation 54

coupling operators 31

creation operator 289

~ for photons 105

critical field strength 326

cross section 110,131, 242, see also
absorption cross section; differential
cross section; elastic scattering cross
section; integrated cross section;
photoabsorption cross section;
photoionization cross section;
Rutherford differential cross section;
scattering cross section; total cross
section; total ionization cross section;
triple differential cross section

current density 200, 252

cusp 243

cycle expansion 335

cylindrical coordinates 169

cylindrical principal quantum number
182

Darwin term 72,117

degenerate Bose gas 340

degenerate eigenstates 4,5

— perturbation theory 40

degenerate Fermi gas 92, 340

degenerate or almost degenerate
multiplets 111

density matrix 228,241

density of final states 100

density operator 228,285

diagonal Hamiltonian 31

diagonalization of the Hamiltonian 90

diamagnetic term 182

differential cross section 200, 204,
216, 218, 226, 232, 241, see also triple
differential cross section

— for inelastic scattering 232

dipole approximation 107,108,190

dipole polarizability 170, 206, 267

dipole series 246

Dirac equation 57,67,68,71, 179,195

Dirac’s Hamiltonian 66, 89

Dirac-Fock method 89,92

direct part of overlap kernel 136

direct potential 86

direct static potential 207

dispersion of a wave packet 288

distorted wave 218,236

distorted wave Born approximation
(DWBA) 219

double scattering experiment 230

downhill equation 174

dressed state 141

DWBA (distorted wave Born
approximation) 219

dynamical zeta function 335

(e,2e) reaction 247

effective Hamiltonian 221

effective Planck’s constant 321

effective potential 221

effective quantum number 122,132,
see also continuous effective quantum
number

effective Schrodinger equation 221

eigenchannel 158,239

eigenphase 158, 239, 245

eigenstate 4

eigenvalue 4,5

Einstein coefficients 110

elastic scattering cross section 222,
236

electric dipole operator 108

electric field 102

electric field strength in atomic units
173

electric quadrupole transition 114

electromagnetic potentials 190

elementary electric charge 24

elliptic periodic orbit 314

energy level density 312

energy normalized regular Coulomb
function 29

energy normalized unbound states 28,
35

energy shell 302

ensemble 228, 306

equivalent channnels 136

equivalent integral equation 201, 202,
218

even permutation 75

excess photon ionization 275

exchange part of overlap kernel 136

exchange potential 87

exothermic reaction 243

expectation value 5,7,8,43

expectation value, statistical 228

exponential divergence 299

Fermi energy 92,93

Fermi momentum 93

Fermi sphere 93

Fermi wave number 93

Fermi’s Golden Rule 100

fermion 75, 338

Feshbach resonance 30, 33, 101, 139,
see also Rydberg series of Feshbach
resonances

Feshbach’s projection formalism 220

field gauge 190, 281

field ionization 171

fine structure 69

fine structure constant 69,111

Floquet state 190, 281

forbidden transition 113

four-component spinor 66, 67

Fourier transformed spectrum 333

free wave equation 103

free-particle Green’s function 59,201

frequency-dependent polarizability
192

functional 43,96

gamma function 22,359

gauge see also Coulomb gauge; field
gauge; Landau gauge; radiation
gauge; symmetric gauge

gauge transformation 102

Index 411

gauge-transformed wave function 195

Gaussian orthogonal ensemble (GOE)
306

Gaussian unitary ensemble (GUE)
306

Gaussian wave packet 290, 348

Gell-Mann—Goldberger decomposition
218,225

generalized Bohr-Sommerfeld
quantization condition 50

generalized eigenvalue problem 137

generalized Laguerre polynomial 14,
25, 358

generalized oscillator strength 235

generalized spherical harmonic 57, 58,
68

generator of symmetry transformation
11

generic behaviour 309

ghost orbits 334

GOE (Gaussian orthogonal ensemble)
306

GOE statistics 332

Golden Rule 100

good quantum number 9,83

grand canonical ensemble 339

Green’s function 33-35, 218, 233, 248,
267, 278, 310

— semiclassical 312

Green’s operator 201

Gross-Pitaevskii equation 343

ground state 9,44

group 11,75

GUE (Gaussian unitary ensemble)
306

Gutzwiller’s trace formula 313, 323,
332

gyromagnetic ratio 178

Hamiltonian (operator) 7
Hamiltonian function 284
Hankel function 360
Hartree-Fock equations 86, 88
Hartree-Fock method 92
Heisenberg picture 8
Heisenberg representation 8, 105
helium atom 334, see also ortho-
helium; para-helium
Helmholtz equation 249
Hermitian conjugate operator 3
Hermitian operator 4,5,7
Hilbert space 2
Hohenberg-Kohn theorem 96, 97
homogeneous equation 34
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homogeneous potential 316
Hund’s rules 82-84

hydrogen atom 24, 68

— in a magnetic field 327

— in a microwave field 325
hydrogenic ion 65
Hylleraas-Undheim theorem 45
hyper-angle 251

hyper-radius 251

hyperbolic periodic orbit 314
hyperfine interaction 81
hyperfine structure 72
hyperspherical coordinates 251,270

impact parameter 211

integrable limit 300

integrable system 297, 302

integral of motion 302

integrated action 49, 52

integrated cross section 205,232, 245

— elastic 242

intermittency 338

internal energy 31, 32,137

internal Hamiltonian 64

internal state 138

internal variables 134, 136

internal wave function 247

invariance under symmetry transforma-
tion 11

inverse hyperbolic periodic orbit 314

inverted multiplet 84

ionizing trajectory 326

irregular Coulomb function 21, 362

irregular solution 22

iso-electronic sequence 66, 91

jj coupling 85

K-matrix 238

Keldysch approximation 278
Keldysch-Faisal-Reiss theory 280
ket 3

kinetic energy 7

kinetic momentum 102, 328

l-mixing 185

Lagrangian 310, 316

Laguerre polynomial see generalized
Laguerre polynomial; ordinary
Laguerre polynomial

Lamb shift 70, 246

Landé factor 181

Landau channel 184

Landau gauge 194

Landau state 182,333

Langer modification 50, 52, 123

large components 67, 69, 195

Legendre polynomial 203, 357

level density 307

Levinson’s theorem 38,207

Liapunov exponent 299

lifetime 102, 109

linear operator 3

— in spin space 55

Liouville equation 285, 286, 348

Liouville’s theorem 299

Lippmann-Schwinger equation 202,
232,248, 251

local momentum 47

local potential 87

long ranged potential 52

long wave limit 49

LS (Russell-Saunders) coupling 84,
180

Lu-Fano plot 158

magnetic dipole transition 114

magnetic field 102

magnetic field strength parameter 183

magnetic moment 178,179

Maslov index 50, 122, 313, 336, 369

— non-integral 50

mass polarization term 73,118

matching conditions 17

matrix norm 299

matrix of operator 5

MCDF (multi-configurational Dirac-
Fock method) 90

MCHF (multi-configurational Hartree-
Fock method) 90

mean field 78

mean level density 307

mean mode number 306

mean oscillator strength 130, 131

mean single-particle potential 78

mechanical similarity 315

minimal wave packet 291

mixed spin state 229

mixed state 226,228, 286

mode label 103

mode number 306

modified Bessel function 18, 360

modified Coulomb potential 225

momentum representation 285

momentum transfer 203

monodromy matrix 298

motional Stark effect 188

Mott formula 269

MQDT parameters 244

multi-configurational Dirac-Fock
method (MCDF) 90

multi-configurational Hartree-Fock
method (MCHF) 90

multipole expansion 137

multipole matrix element 138

multipole moments 138

n-dimensional sphere 269

naked state 141

natural line width 109

natural oscillator width 289, 292

natural variable 332

nearest neighbour spacings (NNS)
307

negative parity 12

NNS distribution 330

non-classical light 293

non-coplanar symmetric geometry
259

non-degenerate eigenstates 40

non-Hermitian Hamiltonian 221

non-integral Maslov index 50, 315

non-linear Schrédinger equation 343

non-local potential 87

non-separable equation 184

norm

~ of matrix 298

— of wave function 2

normal Zeeman effect 179

normalizable wave function 2

nuclear spin 72

observables 5

odd parity 83

odd permutation 75

one-body angular momentum in dipole
transitions 113

one-body operator 76

one-channel quantum defect theory
129

one-dimensional harmonic oscillator
60, 288

one-particle-one-hole excitation 77,85

open channel 32

optical potential 221

optical theorem 201,267

orbital angular momentum quantum
number 68,70

ordinary Bessel function 27, 50, 359

ordinary Laguerre polynomial 359

ortho-helium 82,83

orthogonal transformation 306

Index 413

orthogonal wave functions 2

orthogonality relation 359

orthonormal basis 3,4

orthonormality relation 358

oscillator strength 115, 129, 132, 150,
153

oscillator width 14, 59

overlap 40

overlap matrix 44

ﬁ-spa.ce 220

para-helium 82,83

parabolic coordinates 172

parabolic quantum numbers 174

paramagnetic interaction 181

parity 12,24, see also z-parity

— of a many-body wave function 83

partial wave amplitude 204, 219, 225,
244

partial waves expansion 203,237, 242

partition function 339

Paschen-Back effect 181,182

path integral 310

Pauli principle 75, 82,207, 339

Pauli spin matrices 56,67, 227

periodic table 79

periodically kicked rotor 300

perturbation theory see time-
dependent perturbation theory;
time-independent perturbation
theory

perturbation theory for degenerate
states 40

perturbed Rydberg series of autoioniz-
ing resonances 166, 167

Peterkop theorem 255

phase shift 128,244

phase shifted reactance matrix 158,
161

phase space 50, 284

phase space factor 232,242,250

photoabsorption 129, 153

photoabsorption cross section 132,
150

photoabsorption spectrum 155, 333

photoionization 129

photoionization cross section 111,116

Planck’s constant 6

Poincaré surface of section 303

Poisson bracket 284,286

Poisson equation 93

Poisson spectrum 305, 309, 350

Poisson statistics 332

Poisson summation formula 208



414 Index

polarization vector 103,112, 227, 228

polarization, degree of 229

ponderomotive energy 279

ponderomotive force 281

position and momentum operators,
commutation relations 7

position variables 7

positive parity 12

positron 259

post form of DWBA 257

post-collision interaction 257

post-diagonalization 46

potential barrier 30, 37

potential energy 7,9

pre-diagonalized states 41

principal quantum number 16, 25, 69,
see also Coulomb principal quantum
number; cylindrical principal
quantum number

prior form of DWBA 257

probability 5

probability density 2,55

projection operator 4,75

propagator 310

— semiclassical 310

pseudo-resonant perturbation 149,
154

pseudomomentum 187

pseudoseparation of variables 187

pseudostate 222

pure state 226, 285

g-reversal 166, 167

Q—space 220

QDT (quantum defect theory) 185

QDT equation 148

quadratic Stark effect 170,192

quadratic Zeeman effect 183

quantization of the electromagnetic
field 103

quantum defect 122,124

quantum defect function 125,127,
129,148, 152

quantum defect theory (QDT) 185

quantum fluctuations 294

quasi-continuum 129

quasi-energy method 191

quasi-energy state 190, 281

quasi-Landau modulation 334

quasi-Landau resonance 333

quasiparticle 344

quasiperiodic motion 301

R-matrix method 168,238

radial Dirac equation 69

radial eigenfunctions 25

— in Coulomb potential 25, 26, 59

— of harmonic oscillator 15, 59

radial Lippmann-Schwinger equation
205

radial potential 237

radial Schrédinger equation 12,16,
22,25, 38, 58, 361

radial wave function 12,58

radiation gauge 102,106, 190

radiative corrections 92

rainbow scattering 212

random matrices 306, 309

reactance matrix 157,238

recurrence spectroscopy 324

recursion relation 359

reduced action 312

reduced energy 142,153, 155

reduced mass 64

reduced matrix element 113,180

reduced monodromy matrix 313

reduced operator 31,44

reduced Schrédinger equation 30

reference potential 23,38

reflection phase 49, 60, 210, 369

— for centrifugal potential 51

regular Coulomb function 21,362

regular multiplet 83,84

regular solution 19,22

regularity (in classical dynamics) 309

relative distance coordinate 63,73

relative momentum 63

relativistic correction 117

relativistic energy-momentum relation
66

renormalization 26, 105, 132

representation 6

repulsive Coulomb potential 38

residual antisymmetrizer 134

residual two-body interaction 78

resonance 305,314, see also Breit-
Wigner resonance; Feshbach
resonance; quasi-Landau resonance;
Rydberg series of autoionizing
resonances; Rydberg series of
Feshbach resonances; window
resonance

resonance position 35, 36,245

resonance width 35,102, 245

rest energy 68,69,71

restricted Hartree-Fock method 88,
91

retardation 89

revival 297

Ritz variational method 43, 85

rounded cusp 243

Runge-Lenz vector 295

Russell-Saunders (LS) coupling 84,
180

Rutherford differential cross section
216,235

Rutherford scattering amplitude 215

Rydberg atom 121

Rydberg energy 24,64,65,122,124

Rydberg formula 122,124

Rydberg series 122,124, 338

Rydberg series of autoionizing
resonances 151,152,154, 185

Rydberg series of bound states 185

Rydberg series of Feshbach resonances
244

S-matrix 238-240

s-wave model 262

scalar potential 102

scalar product 1,2,112,191

— of two spinors 55

scaled action 323,333

scaled energy 318,328

scaled energy spectroscopy 324
scaled field strength 318, 328
scaled frequency 324

scaled quantum number 324
scaling 315

scattering amplitude 200, 240
— semiclassical 212

scattering cross section

~ inelastic 235

— integrated 200

— total elastic 200

scattering length 206, 343
scattering matrix 238
scattering phase shift 204
scattering plane 230
Schrédinger equation 7,8
Schrédinger picture 7,8
Schrédinger representation 105
Seaton’s theorem 128

secular equation 41,45
selection rules 113
self-consistency 88

self-energy 88

semiclassical approximation 128
semiclassical limit 322

shape parameter 142,147,153
Sherman function 227,230
shift (in position of resonance) 35

Index 415

short ranged potential 16,52

short wave limit 49

similarity transformation 315

Sinai’s billiard 350

single-particle density 87,92, 96, 97

single-particle orbital angular
momentum quantum number 83

singlet state 82,83

Slater determinant 76,78

Slater-type orbital 90

small components 67

spectator modes 107

spectral rigidity 308, 330

spectrum of operator 4

speed of light 66,89

— in atomic units 69

spherical Bessel function 20, 204,
361

spherical components 112,130

spherical coordinates 10

spherical harmonic 10, 357, see also
generalized spherical harmonic

spherical Neumann function 20, 205,
361

spin-flip amplitude 223, 225, 226

spin-orbit coupling 72,81, 117,246

spinor 55,66, 67

spontaneous emission 102

squeezed state 292

— in amplitude 292

— in momentum space 292

— in phase 292

— of light 294

stability matrix 298, 349

standard mapping 300

standard representation 67

Stark effect

— linear 171,172

— quadratic 172

Stark saddle 172,175

static (dc) polarizability 192

static exchange potential 222

stationary phase approximation 210,
310, 312

stationary Schrédinger equation see
time-independent Schrédinger
equation

strong coupling 159

Sturm-Liouville basis 90

subshell 79

sum rule 115

summing over final states 112

superelastic scattering 243

symmetric gauge 177,194,328



416 Index

symmetry group 11
symplectic matrix 298

T-matrix 202

Temkin-Poet model 262

temperature 339

thermal wavelength 341

Theta function 306

Thomas-Fermi approximation (Bose-
Einstein condensate) 344

Thomas-Fermi function 94

Thomas-Fermi model 92-97

Thomas-Reiche-Kuhn sum rule 116,
134

threshold 129, see also channel
threshold; continuum threshold;
Wigner’s threshold law; zero-field
threshold

time evolution operator 8,98, 310

time ordering 8

time-dependent perturbation theory
98

time-dependent Schrédinger equation
99, 278, 285

time-independent Dirac equation 67

time-independent perturbation theory
191

time-independent Schrédinger equation
9,46

topological phase 212

torus 302

total absorption cross section 222

total angular momentum 68, 81

total cross section 232

total inelastic cross section 232

total ionization cross section 261

total momentum 63

total orbital angular momentum 70,
80, 81

total spin 80

totally symmetric wave function 74

trace formula see Gutzwiller’s trace
formula

trajectory 284

transition amplitude 100, 232

transition operator 202

transition probability per unit time
100

transverse gauge see radiation gauge

triangle condition 54,57, 81

triple differential cross section 253,
255, 259

triplet state 82,83

two-channel quantum defect theory
156

two-component spinor 67, 68

two-electron excitation 139

two-particle-two-hole excitation 78

unbound state 9,19

uncertainty relation 6,102, 292

uncoupled representation 54

uniform approximation 315

unit operator 5

unitary operator 8,10

unitary transformation 40, 306

unpolarized electron 229

unrestricted Hartree-Fock procedure
88,91

unstable (classical) dynamics 299

uphill equation 174

uphill potential 174

uphill quantum number 176

van Vleck determinant 311
vanishing width (of resonance) 164
variation after diagonalization 46
vector operator 6

vector potential 102

Volkov states 278,279
von-Neumann equation 286

‘Wannier exponent 264

‘Wannier’s threshold law 264

wave function 1

wave number 19

wave vector 103

weak coupling 158

Wentzel, Kramers and Brillouin (WKB)
approximation 46,47

Whittaker functions 18,362

width of resonance 35,102, 245

wiggling 279

Wigner distribution 308

Wigner function 286, 290, 348, 349

‘Wigner representation of von-Neumann
equation 287

Wigner’s threshold law for inelastic
scattering cross sections 242

Wigner-Eckart theorem 113,180, 206,
358

winding number 314, 336

window resonance 142

WKB approximation 46,47

z-parity 184
zero-field threshold 185
zeta function 341
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