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Our society is often designated as being an ‘‘infor-
mation society.’’ It could also be defined as an
‘‘image society.’’ This is not only because image is a
powerful and widely used medium of communica-
tion, but also because it is an easy, compact, and
widespread way to represent the physical world. If
we think about it, it is indeed striking to realize just
how much images are omnipresent in our lives
through numerous applications such as medical and
satellite imaging, videosurveillance, cinema,
robotics, etc.

Many approaches have been developed to process
these digital images, and it is difficult to say which
one is more natural than the other. Image processing
has a long history. Maybe the oldest methods come
from 1D signal processing techniques. They rely on
filter theory (linear or not), on spectral analysis, or
on some basic concepts of probability and statistics.
For an overview, we refer the interested reader to
the book by Gonzalez and Woods (1992).

In this article, some recent mathematical concepts
will be revisited and illustrated by the image
restoration problem, which is presented below. We
first discuss stochastic modeling which is widely
based on Markov random field theory and deals
directly with digital images. This is followed by a
discussion of variational approaches where the
general idea is to define some cost functions in a
continuous setting. Next we show how the scale
space theory is connected with partial differential
equations (PDEs). Finally, we present the wavelet
theory, which is inherited from signal processing
and relies on decomposition techniques.

Introduction

As in the real world, a digital image is composed of
a wide variety of structures. Figure 1 shows different

kinds of ‘‘textures,’’ progressive or sharp contours,
and fine objects. This gives an idea of the complex-
ity of finding an approach that allows to cope with
the different structures at the same time. It also
highlights the discrete nature of images which will
be handled differently depending on the chosen
mathematical tools. For instance, PDEs based
approaches are written in a continuous setting,
referring to analogous images, and once the exist-
ence and the uniqueness of the solution have been
proved, we need to discretize them in order to find a
numerical solution. On the contrary, stochastic
approaches will directly consider discrete images in
the modeling of the cost functions.

The Image Restoration Problem

It is well known that during formation, transmis-
sion, and recording processes images deteriorate.
Classically, this degradation is the result of two
phenomena. The first one is deterministic and is
related to the image acquisition modality, to possible
defects of the imaging system (e.g., blur created by
an incorrect lens adjustment or by motion). The
second phenomenon is random and corresponds to
the noise coming from any signal transmission. It
can also come from image quantization. It is
important to choose a degradation model as close
as possible to reality. The random noise is usually
modeled by a probabilistic distribution. In many
cases, a Gaussian distribution is assumed. However,
some applications require more specific ones, like
the gamma distribution for radar images (speckle
noise) or the Poisson distribution for tomography.
Unfortunately, it is usually impossible to identify the
kind of noise involved for a given real image.

A commonly used model is the following. Let
u : � � R2!R be an original image describing a real
scene, and let f be the observed image of the same
scene (i.e., a degradation of u). We assume that

f ¼ Auþ � ½1�

where � stands for a white additive Gaussian noise
and A is a linear operator representing the blur
(usually a convolution). Given f, the problem is



then to reconstruct u knowing [1]. This problem
is ill-posed, and we are able to carry out only an
approximation of u. In this article, we will focus on
the simplified model of pure denoising:

f ¼ uþ � ½2�

The Probabilistic Approach

The Bayesian Framework

In this section, we show how the problem of pure
denoising, that is, recovering u from the equation
f = uþ � knowing only some statistical information
on � can be solved by using a probabilistic
approach. In this context, f, u, and � are considered
as random variables. The general idea for recovering
u is to maximize some prior probability. Most
models involve two parts: a prior model of possible
restored images u and a data model expressing
consistency with the observed data.

� The prior model is given by a probability space
(�u, p), where �u is the set of all values of u. The
model is specified by giving the probability p(u)
on all these values.
� The data model is a larger probability space

(�u, f , p), where �u, f is the set of all possible values
of u and all possible values of the observed image
f. This model is completed by giving the condi-
tional probability p(f=u) of any image f given u,
resulting in the joint probabilities p(f , u) =
p(f=u)p(u). Implicitly, we assume that the spaces
(�u) and (�u, f ) are finite although huge.

The next step is to use a Bayesian approach
introduced in image processing by Besag (1974)
and Geman and Geman (1984). The probabilities
p(u) and p(f=u) are supposed to be known and,
given an observed image f, we seek the image
u which maximizes the conditional a posteriori

probability p(u=f ) (MAP: Maximum A Posteriori).
Thanks to the Bayes’ rule, we have

pðu=f Þ ¼ pðf=uÞpðuÞ
pðf Þ ½3�

Let us explain the meaning of the different terms
in [3]:

� The term p(f=u) expresses the probability, the
likelihood, that an image u is realized in f. It also
quantifies the lack of total precision of the model
and the presence of noise.
� The term p(u) expresses our incomplete a priori

information about the ideal image u (it is the
probability of the model, i.e., the propensity that
u be realized independently of the observation f ).
� The term p(f ) which is the probability to observe f

is a constant and does not play any role when
maximizing the conditional probability p(u=f )
with respect to u.

Let us remark that the problem maxu p(u=f ) is
equivalent to minu E(u) =�log p(f=u)� log p(u).
So Bayesian models lead to a minimization
process.

Then the main question is how to assign these
probabilities? The easiest probability to determine is
p(f=u). If the images u and f consist in a set of values
u = (ui, j), i, j = 1, N and f = (fi, j), i, j = 1, N, we sup-
pose the conditional independence of (fi, j=ui, j) in any
pixel:

pðf=uÞ ¼
YN
i¼1

pðfi;j=ui;jÞ

and if the restoration model is of the form f = uþ �
where � is a white Gaussian noise with variance � 2,
then

pðfi;j=ui;jÞ ¼
1ffiffiffiffiffiffiffiffiffi
2��
p exp�ðfi;j � ui;jÞ2

2�2

and

pðf=uÞ ¼ 1

ð2��ÞN=2
exp �

XN
i;j

ðfi;j � ui;jÞ2

2�2

Therefore, at this stage, the MAP reduces to
minimize

EðuÞ ¼ K�kf � uk2 � log pðuÞ ½4�

where k.k stands for the Euclidean norm on RN2

and
K� is a constant. So, it remains now to assign a
probability law p(u). To do that, the most common
way is to use the theory of Markov random fields
(MRFs).

(a)

(b)
(c)

(d)

(e)

Figure 1 Digital image example. 1 the close-ups show

examples of low resolution, low contrasts, graduated shadings,

sharp transitions, and fine elements. (a) low resolution, (b) low

contrasts, (c) graduated shadings, (d) sharp transitions, and

(e) fine elements.
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The Theory of Markov Random Fields

In this approach, an image is described as a finite set
S of sites corresponding to the pixels. For each site,
we associate a descriptor representing the state of
the site, for example, its gray level. In order to take
into account local interaction between sites, one
needs to endow S with a system of neighborhoods V.

Definition 1 For each site s, we define its neighbor-
hood V(s) as:

VðsÞ¼ ftg such that s =2VðsÞ and t2VðsÞ) s2VðtÞ

Then we associate to this neighborhood system the
notion of clique: a clique is either a singleton or a set
of sites which are all neighbors of each other.
Depending on the neighborhood system, the family
of cliques will be different and involve more and less
sites. We will denote by C the set of all the cliques
relative to a neighborhood system V (see Figure 2).

Before introducing the general framework of
MRFs, let us define some notations. For a site s,
Xs will stand for a random variable taking its values
in some set E (e.g., E= {0, 1, . . . , 255}) and xs will be
a realization of Xs and xs = (xt)t 6¼s will denote an
image configuration where site s has been removed.
Finally, we will denote by X the random variable
X = (Xs, Xt, . . . ) with values in � = EjSj.

Definition 2 We say that X is an MRF if the local
conditional probability at a site s is only a function
of V(s), that is,

pðXs ¼ xs=X
s ¼ xsÞ ¼ pðXs ¼ xs=xt; t2VðsÞÞ

Therefore, the gray level at a site depends only on
gray levels of neighboring pixels. Now we give the
following fundamental theorem due to Hammersley–
Clifford (Besag 1974) which states the equivalence
between MRFs and Gibbs fields.

Theorem 1 Let us suppose that S is finite, E is a
discrete set and for all x2� = EjSj, p(X = x) > 0,
then X is an MRF relatively to a system of
neighborhoods V if and only if there exists a family
of potential functions (Vc)c2C such that
p(x) = (1=Z) exp(�

P
c2C Vc(x)).

The function V(x) =
P

c2C Vc(x) is called the
energy potential or the Gibbs measure and Z is a
normalizing constant: Z = exp(�

P
x2� V(x)).

If, for example, the collection of neighborhoods is
the set of 4-neighbors, then the theorem says that
V(x) =

P
c = {s}2C1

Vc(xs)þ
P

c = {(s, t)}2C2
Vc(xs, xt).

Application to the Denoising Problem

Now, given this theorem we can reformulate, thanks
to [4], the restoration problem (with the change of
notation u = x and us = xs): find u minimizing the
global energy

EðuÞ ¼ K�kf � uk2 þ VðuÞ ½5�

The next step is now to precise the Gibbs
measure. In restoration, the potential V(u) is often
dedicated to impose local regularity constraints, for
example, by penalizing differences between neigh-
bors. This can be modeled using cliques of order 2 in
the following manner:

VðuÞ¼ �
X
ðs;tÞ 2 C2

�ðus � utÞ

where � is a given real function. This term penalizes
the difference of intensities between neighbors which
may come from an edge or some noise. This discrete
cost function is very similar to the gradient penalty
terms in the continuous framework (see the next
section). The resulting final energy is (sometimes
E(u) is written E(u=f ))

EðuÞ¼K�

X
s2 S

ðfs � usÞ2 þ �
X
ðs;tÞ 2 C2

�ðus � utÞ

where the constant � is a weighting parameter
which can be estimated.

The difficulty in choosing the strength of the
penalty term defined by � is to be able to penalize
the noise while keeping the most salient features,
that is, edges. Historically, the function � was first
chosen as �(z) = z2 but this choice is not good since
the resulting regularization is too strong introducing
a blur in the image and loss of the edges. A better
choice is �(z) = jzj (Rudin et al. 1992) or a
regularized version of this function. Of course,
other choices are possible depending on the con-
sidered application and the desired degree of
smoothness.

In this section, it has been shown how to model
the restoration problem through MRFs and the
Bayesian framework. Numerically, two main types
of algorithms can be used to minimize the energy:
deterministic algorithms and stochastic algorithms.
The former are generally used when the global
energy is strictly convex (e.g., algorithms based on

C1 C2 C1 C2

Figure 2 Examples of neighborhood system and cliques.
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gradient descent). The latter are rather used when
E(u) is not convex. There are stochastic minimiza-
tion algorithms mainly based on simulated anneal-
ing. Their main interest is that they always converge
(almost surely) to a minimizer (this is not the case
for deterministic algorithms which give only local
minimizers) but they are often strongly time
consuming.

We refer the reader to Li (1995) for more details
about MRFs and Bayesian framework and
Kirkpatrick et al. (1983) for more information on
stochastic algorithms.

The Variational Approach

Minimizing a Cost Function over a
Functional Space

One important issue in the previous section was the
definition of p(u) which gives some a priori on the
solution. In the variational approach, this idea is
also present but the way to infer it is in fact to
define the more suitable functional space that
describes images and their geometrical properties.
The choice of a functional space sets a norm which
in turn will constrain the solution to a certain
smoothness.

We illustrate this idea in this section on the
denoising problem [2] which can be seen as a
decomposition one. This means that given the
observation f, we look for u and � such that
f = uþ �, where � incorporates all oscillations, that
is, noise, and also texture. Let us define a functional
to be minimized which takes into account the data f
and possibly some statistical informations about �:

min
ðu;�Þ

�ðjujEÞ such that  ðj�jGÞ¼ �
�

with f ¼ uþ �g
½6�

This formulation means that we look, among all
decompositions f = uþ �, for the one which mini-
mizes �(jujE) under the constraint  (j�jG) = �.
Banach spaces E and G, and functions � and  
will be discussed in the next subsection. Since a
minimization problem under constraints can be
expressed with an additional term weighted by a

Lagrange multiplier, the formulation [6] can be
rewritten as:

min
ðu;�Þ

�ðjujEÞ þ � ðj�jGÞ; f ¼ uþ �
� �

½7�

A similar writing consists in replacing � by f � u so
that [7] rewrites

min
u

�ðjujEÞ þ � ðjf � ujGÞ
� �

½8�

which is the classical formulation in image restora-
tion. From a numerical point of view, the minimiza-
tion is usually carried out by solving the associated
Euler equations but this may be a difficult task. The
main concern is the search for E and G and their
norm (or seminorm). It is guided by the choice that
an image u is composed of various geometric
structures (homogeneous regions, edges) while
�= f � u represents oscillations (noise and textures).

Examples of Functional Spaces

In this section, we revisit some possible choices of
functional spaces summarized in Table 1.

The first case (a) was inspired by the classical
Tikhonov regularization. The functional space
H1(�)(� � R2) is the space of functions in L2(�)
such that the distributional gradient Du is in L2(�).
Unfortunately, functions in H1(�) do not admit
discontinuities across curves and this is a major
problem with respect to image analysis since images
are made of smooth patches separated by sharp
variations.

Considering the problem reported in (a), Rudin et al.
(1992) proposed to work on BV(�), the space of
bounded variations (BV) Ambrosio et al. (2000)
defined by

BVð�Þ ¼ u2L1ð�Þ;
Z

�

Duj j <1
� �

with

Z
�

Duj j ¼ sup

�Z
�

udiv’ dx;

’ ¼ ð’1; ’2; . . . ; ’NÞ 2 C1
0ð�Þ

N;

j’jL1ð�Þ � 1

�
½9�

Table 1 Examples of functional spaces and their norm (see model [8])

Model E and jujE �(t) G and jujG  (t)

(a) H1(�), jujE =
R

� jruj2 dx
� �1=2

t2 L2(�) with its usual norm t2

(b) BV (�), jujE =
R

� jDuj t L2(�) with its usual norm t2

(c) BV (�), jujE =
R

� jDuj t fb 2 L2(�); b = div�, j�jL1(�)2 � 1, � � N j@� = 0g t
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It is equivalent to define BV(�) as the space of
L1(�) functions whose distributional gradient Du is
a bounded measure and [9] is its total variation. The
space BV(�) has some interesting properties:

1. lower semicontinuity of the total variationR
� Duj j with respect to the L1(�) topology,

2. if u2BV(�), we can define, for H1 almost
everywhere x2 Su, the complement of Lebesgue
points (i.e., the jump set of u), a normal nu(x)
and two approximate ‘‘right’’ and ‘‘left’’ limits
uþ(x) and u�(x), and

3. Du can be decomposed as a sum of a regular
measure, a jump measure, and a Cantor measure:

Du ¼ ru dxþ ðuþ � u�ÞnuH1
=Su
þ Cu

where ru is the approximate gradient and H1 the
one-dimensional Hausdorff measure.

This ability to describe functions with disconti-
nuities across a hypersurface Su makes BV(�) very
convenient to describe images with edges. In this
context, the image restoration problem is well
posed and suitable numerical tools can be proposed
(Chambolle and Lions 1997).

One criticism of the model (b) in Table 1 pointed
out by Meyer (2001) is that if f is a characteristic
function and if f is sufficiently small with respect to
a suitable norm, then the model (Rudin et al. 1992)
gives u = 0 and �= f contrary to what one should
expect (u = f and �= 0). In fact, the main reason of
this phenomenon is that the L2-norm for the �
component is not the right one since very oscillating
functions can have large L2-norm (e.g.,
fn(x) = cos(nx)). To better describe such oscillating
functions, Meyer (2001) introduced the space of
functions which can be expressed as a divergence
of L1-fields. This work was developed in RN and
this framework was adapted to bounded 2D
domains by Aubert and Aujol (2005) (see (c) in
Table 1). An example of image decomposition is
shown in Figure 3.

In this section, we have shown how the choice of
the functional spaces is closely related to the
definition of a variational formulation. The

functionals are written in a continuous setting and
they can usually be minimized by solving the
discretized Euler equations iteratively, until conver-
gence. These PDEs and the differential operators are
constrained by the energy definition but it is also
possible to work directly on the equations, forget-
ting the formal link with the energy. Such an
approach has also been much developed in the
computer vision community and it is illustrated in
the next section.

We refer the reader to Aubert and Kornprobst
(2002) for a general review of variational
approaches and PDEs as applied to image analysis.

Scale Spaces and PDEs

Another approach to perform nonlinear filtering
is to define a family of image smoothing operators
Tt, depending on a scale parameter t. Given an
image f (x), we can define the image u(t, x) = (Ttf )(x)
which corresponds to the image f analyzed at scale t.
In this section, following Alvarez–Guichard–Lions–
Morel (Alvarez et al. 1993), we show that u(t, x)
is the solution of a PDE provided some suitable
assumptions on Tt.

Basic Principles of a Scale Space

This section describes some natural assumptions to
be fulfilled by scale spaces. We first assume that the
output at scale t can be computed from the output at
a scale t � h for very small h. This is natural, since a
coarser scale view of the original picture is likely to
be deduced from a finer one. Tt is obtained by
composition of transition filters, denoted by Ttþh, t.
So the first axiom is

(A1) Ttþh = Ttþh, tTt T0 = Id

Another assumption is that operators act locally,
that is, (Ttþh, tf )(x) depends essentially upon the
values of f (y) with y in a small neighborhood of x.
Taking into account the fact that as the scale
increases, no new feature should be created by the
scale space, we have the local comparison principle:
if an image u is locally brighter than another image
v, then this order must be conserved by the analysis.
This is expressed by:

(A2) For all u and v such that u(y) > v(y) in a
neighborhood of x and y 6¼ x, then for h small
enough, we have

ðTtþh;tuÞðxÞ � ðTtþh;tvÞðxÞ

The third assumption states that a very smooth
image must evolve in a smooth way with the scale

Original u η

Figure 3 Example of image decomposition (see Aubert and

Aujol (2005)).
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space. Denoting the scalar product of two vectors of
RN by <x, y> , this assumption can be written as

(A3) Let u(y)=1=2hA(y� x), y� xiþ hp,y� xiþ c
be a quadratic form of R2, x fixed
(A =r2u(x)2 S(2) the set of 2	 2 symmetric
matrices, p =ru(x) a vector of R2, c = u(x) a
constant.). We shall say that a scale space is
regular if there exists a function F(t, x, c, p, A),
continuous with respect to A, such that

ðTtþh;tu� uÞðxÞ
h

! Fðt; x; c; p;AÞ when h! 0

Scale Spaces are Governed by PDEs

In the following theorem, it is stated that the former
assumptions are sufficient to prove that scale spaces
are in fact governed by PDEs.

Theorem 2 Under assumptions A1, A2, A3, there
exists a continuous function F : [0, T]	�	R	
R2	S(2)!R satisfying F(t,x,c,p,A)� F(t,x,c,p,B)
for all p2R2, A and B in S(2) with A�B such that

	tðuÞ

¼ Ttþh;tu� u

h
!Fðt;x;u;ru;r2uÞ; h!0þ ½10�

uniformly for x2R2, uniformly for u.

In eqn [10], the left-hand side term can be
interpreted as the partial temporal derivative with
respect to t so that the notion of PDEs arises. More
precisely, if f is continuous and uniformly bounded,
then it can be established that u(t, x) = (Ttf )(x) is the
viscosity solution(see Definition 3) of

@u

@t
þHðt; x; u;ru;r2uÞ ¼ 0 ðhere H ¼ �FÞ

uð0; xÞ ¼ f ðxÞ
½11�

The map H : [0, T]	�	R	R2	 S(2)!R is called
a Hamiltonian and the decreasing property of H
with respect to S is called degenerate ellipticity.

The theory of viscosity solutions was introduced
in the 1980s by Crandall and P L Lions (Crandall
and Lions 1981, Crandall et al. 1992). When strong
solutions of [11] do not exist, this theory allows
to define solutions which are only continuous or
even discontinuous. The definition of viscosity
solutions is

Definition 3 Let H : �	R	R2	 S(2)!R be con-
tinuous and degenerate elliptic and let u2C0

([0, T]	�). Then u is a viscosity solution of [11]
in [0, T]	� if and only if

(i) u is a subsolution, that is, 8�2C2([0, T]	�),
8(t0, x0) a local strict maximum point of (u� �)
(t, x), we have

@�

@t
ðt0; x0Þ þHðt0;x0 ; uðt0; x0Þ;r�ðt0; x0Þ;

r2�ðt0; x0ÞÞ � 0

(ii) u is a supersolution, that is, 8�2C2([0, T]	�),
8(t0, x0) a local strict minimum point of (u� �)
(t, x), we have

@�

@t
ðt0; x0Þ þHðt0;x0 ; uðt0; x0Þ;r�ðt0; x0Þ;

r2�ðt0; x0ÞÞ � 0

In this definition, it is noticeable that derivatives of
u are replaced by the derivatives of the test functions
�. Obviously, it can be verified that this notion of
weak solutions coincides with classical solution
when u has enough regularity.

Diffusion Operators Coming from the Scale Space

A step further is to assume additional properties on
the scale spaces and estimate the corresponding
operator. Invariance properties include geometric
invariance axioms, contrast invariance, or scale
invariance. For example, if we assume the axioms
A1–A3, gray-level shift invariance:

(I1) Tt(0) = 0, Tt(uþ c) = Tt(u)þ c for all u and all
constant c.

and translation invariance:

(I2) Tt(
h.u) = 
h.(Ttu) for all h in R2, t � 0, where
(
h.u)(x) = u(xþ h).

Then it can be established that F in [10] is
independent of (x, u), that is, u(t, x) = (Ttf )(x) is
the unique viscosity solution of

@u

@t
¼ Fðru;r2uÞ

uð0; xÞ ¼ f ðxÞ

With more precise assumptions, one can even
recover explicitly the operator F. As an example, if
we look for a linear scale space which verifies some
isometry assumption:

(I3) Tt(R.u)(x) = R.(Ttu)(x) for all orthogonal trans-
formation R on R2, where (R.u)(x) = u(Rx).
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Then it can be proved that the scale space is the
unique solution of the heat equation:

@u

@t
��u ¼ 0

uð0; xÞ ¼ f ðxÞ
½12�

Figure 4 is an example of [12] applied to a noisy
image at different scale, that is, at different time.
Note that noise is quickly removed but one has to
stop the evolution very early if we would like to
preserve some edges. In the nonlinear cases, several
operators have also been found based on curvature.
For instance, under suitable axioms (Alvarez et al.
1993), including contrast, scale, and affine invari-
ance, the associated scale space is

@u

@t
� signð�Þðt�Þ1=3jruj ¼ 0

where � ¼ div
ru

jruj

	 


uð0; xÞ ¼ f ðxÞ

½13�

This equation is called affine morphological scale
space (AMSS) and three restored images are shown
in Figure 5. Some qualitative differences are shown
in Figure 6.

Remark Scale space theory has shown the formal
link between some operators and PDEs. It has to be
noticed that one may propose some PDEs which do
not directly come from the scale space framework.
Starting from [12] which performs isotropic smooth-
ing and smears edges, many nonlinear diffusion
models have been proposed to smooth images while
preserving edges (see e.g., Perona and Malik
(1990)). &

To know more on scale space and PDEs, we refer
the reader to Weickert (1998) and Aubert and
Kornprobst (2002).

The Wavelet Approach

Before the 1980s, the Fourier transform played a
major role for analyzing oscillating signals. The
interest of such a transform for real application
increased after the discovery of the fast Fourier
transform. However, the Fourier transform has
some limit. The Fourier transform extracts from
the signal details of the frequency content but loses
all information on the location of particular fre-
quency. Moreover, for computing the Fourier trans-
form F f (�), we need to know f(t) for all the real
values of t. These difficulties can be overcome by
first windowing the signal, and then by taking its
Fourier transform:

Fwinf ð�; tÞ ¼
Z

R

f ðsÞgðs� tÞe�i�sds

where g is a window function. The parameter �
plays the role of a frequency localized around the
abscissa t of the temporal signal and Fwinf (�, t) give
an information about what is happening around
s = t, for the frequency �. The main drawback of
this method is that the window has a fixed length
which is a serious disadvantage when we want to
treat signals having variations of different orders of
magnitude. All these issues highlighted that a
mathematical theory of time–frequency representa-
tion was necessary. This was achieved with the
wavelet representation. In this section, we first recall
some elements of this theory (for 1D signal) and
then we show how it can be applied for restoring
noisy images.

The Wavelet Decomposition

The basic idea is to construct from a function  ,
called mother wavelet, an orthonormal basis { j, k} of
L2(R) deduced from  by translation and dilatation.
It is required that  be regular, oscillating (but not
too much), that  and F are well localized and that
 has some null moments. Once this function  is

Original image 40 iterations 90 iterations 150 iterations

Figure 4 Illustration of heat equation [12].

Original image 40 iterations 90 iterations 150 iterations

Figure 5 Illustration of the AMSS model [13].

Heat AMSS Heat AMSS

Figure 6 Some close-ups of Figures 4 and 5 showing

qualitative differences after 40 iterations.
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chosen, we set  j, k(x) = 2j=2 (2jt � k), j, k2Z. An
elegant and practical way for obtaining such a basis is
to construct a multiresolution analysis of L2(R)
(Mallat 1989).

Definition 4 A multiresolution analysis of L2(R) is
a sequence Vj, j2Z of subspaces of L2(R), with the
following properties:

(i)
T

j Vj = {0},
(ii) Vj � Vjþ1,

(iii)
S

j Vj = L2(R),
(iv) f (t)2Vj if and only if f (2t)2Vjþ1, and
(v) There exists a regular function � with compact

support such that the family �(t � k), k2Z, is
an orthonormal basis of V0 for the scalar
product of L2(R). Such a function � is called a
scaling function.

Then it is straightforward to check that the family
�j, k(t) defined by �j, k(t) = 2j=2�(2jt � k) is an ortho-
normal basis of Vj.

A basic example of multiresolution analysis of
L2(R) is to choose V0 as the set of piecewise
constant functions on R and take � as the
characteristic function of the interval [0, 1):
�(t) =�[0, 1)(t).

Let us now look at the link between wavelet basis
and multiresolution analysis. We just give main
ideas, all details can be found in the work of Mallat
(1989). Assume that we have a multiresolution
analysis, and let us define W0 as the orthogonal
complement of V0 in V1. We build the mother
wavelet  by imposing that the family  (t � k),
k2Z, is an orthonormal basis of W0. For example,
if �(t) =�[0, 1)(t), it can be shown that  (t) =
�[0, 1=2)(t)� �[1=2, 1)(t) (called the Haar wavelet). By
change of scale, one gets that the family
 j, k(t) = 2j=2 (2jt � k), k2Z, is an orthonormal
basis of Wj, the orthogonal complement of Vj in
Vjþ1, that is,

Vj
Wj ¼ Vjþ1 ½14�

Since the Vj’s are a multiresolution analysis, we have
VJ = 
 J�1

j =�1Wj and L2 = 
 j =þ1
j =�1Wj. It is then clear

that  j, k(t) is an orthonormal basis of L2(R), that is,
for each function f 2L2(R), we get the following
decomposition:

f ðtÞ ¼
Xþ1
�1

X
k

fj;k j;kðtÞ with fj;k¼hf ;  j;kiL2

Let us see now how in practice a multiresolution
analysis can be interpreted. Let f be a function in
L2(R). We denote A2j f (resp. D2j f ) the operator
which approximates f (resp. gives the details of f ) at

resolution 2j. More precisely, A2j f (resp. D2j f ) is the
projection of f on Vj (resp. on Wj):

A2j f ðtÞ ¼
Xk¼þ1

k¼�1
hf ; �j;ki�j;kðtÞ

A2j f is characterized by the sequence of scalar
products Ad

2j f = {hf ,�j, ki}k2Z. We call Ad
2j f the

discrete approximation of f at resolution 2j.
In the same way, we have

D2j f ðtÞ ¼
Xk¼þ1

k¼�1
hf ;  j;ki j;kðtÞ

D2j f is characterized by the sequence of scalar
products Dd

2j f = {hf , j, ki}k2Z.

We call Dd
2j f the details of f at resolution 2j.

According to [14], approximation and detail are
linked by the relation

A2jþ1f ¼ A2j f þD2j f

This means that D2j f represents the details to be
added to obtain from one level of approximation to
the next level of approximation.

Finally, the decomposition of a signal f on a
wavelet basis is obtained as an accumulation of
details at scale 2j from 0 to þ1:

f ¼
Xj¼þ1

j¼�1
D2j f ¼

Xj¼þ1
j¼�1

Xk¼þ1
k¼�1

hf ;  j;ki j;k ½15�

Instead of considering the sum over all dyadic
levels j, one can sum over j � J for a fixed J; in this
case, we have

f ¼
Xk¼þ1

k¼�1

X
j�J

hf ;  j;ki j;k þ
Xk¼þ1

k¼�1
hf ; �J;ki�J;k

We conclude this section by showing how we can
construct a 2D wavelet basis from the 1D case. We
can simply use a tensor product. Scaling function
and mother wavelet are given, respectively, as
follows:

�ðx; yÞ ¼ �ðxÞ�ðyÞ; � ¼ ð 1;  2;  3Þ

with

 1ðx; yÞ ¼ �ðxÞ ðyÞ
 2ðx; yÞ ¼ �ðyÞ ðxÞ
 3ðx; yÞ ¼  ðxÞ ðyÞ

As for the 1D case, A2j f denotes the projection of
f on Vj, D1

2j the horizontal details, D2
2j the vertical

8 Image Processing: Mathematics



details, and D3
2j the other details (the indice l in Dl

2j

is the same as in  l). For a 2D image f, we then have
the following decomposition (see Figure 7):

f ¼
X
 l 2�

Xk¼þ1
k¼�1

X
j�J

hf ;  j;ki j;k

þ
Xk¼þ1

k¼�1
hf ; �J;ki�J;k

Application to the Denoising Problem

We go back to the denoising problem. Our goal is to
solve this problem by using a variational approach
and wavelets. We recall that we have an ideal image
u that has been corrupted by a white Gaussian noise
� resul ting in an obs ervation f with f = u þ � . As it
has been seen in the sect ion ‘‘The vari ational
appro ach,’’ this question can be tackl ed by solving
the variational problem

min
u

��ðjujEÞ þ jf � ujG
� �

½16�

for suitable choices of E, G, and �. Here we propose to
choose G = L2(�) (� is the domain image) and for E
the Besov space B1

1(L1(�)) and �= Identity. Besov
spaces B


q (Lp(�)) are used in many domains of
mathematics as harmonic analysis or approximation
theory. There exist different ways for defining them.
Roughly speaking, they consist of functions having 

derivatives in LP(�); the third parameter q allows one
to make finer distinctions in smoothness. Here we are
only concerned with the Besov space B1

1(L1(�)). One
important property needed here is that the norm of a
function in E = B1

1(L1(�)) is equivalent to the l1-norm
of the wavelet coefficients, that is if { j, k} is an
orthonormal basis of L2(�) and if uj, k, are the wavelet
coefficients of u2E, then jujE =

P
j

P
k, juj, k, j.

Remark When one is concerned with a finite
domain, then some changes must be made with
respect to the construction given in [15] to obtain an

orthonormal basis of L2(�). To avoid further
technical complications, we ignore this question.

&

Let us denote, respectively, by {uj, k, } and {fj, k, }
the wavelet coefficients of u and f, then solving [16]
amounts to finding the minimizer of the functional

FðuÞ ¼ �
X
j;k; 

juj;k; j þ
X
j;k; 

juj;k; � fj;k; j2 ½17�

One notes immediately that minimizing problem
[17] reduces to finding the minimizer s, given t, of
E(s) = js� tj2 þ �jsj and that the minimizer of E(s) is
given by s = t � (�=2) if t > �=2, s = 0 if jtj � �=2
and s = t þ (�=2) if t < �(�=2).

Thus, we shrink the wavelet coefficients fj, k, 

toward zero by an amount of �=2 to obtain the
minimizer. This is exactly the wavelet shrinkage
algorithm of Donoho and Johnstone (1994). It is
remarkable that the wavelet shrinkage algorithm,
which has been found by using statistical tools, can
also be explained via a variational approach
(Chambolle et al. 1998). Figure 8 shows an example
of the result on a noisy image.

For more details, we refer the reader to Mallat
(1998).

Conclusion

Image processing is a challenging domain of applied
mathematics which has to deal with discrete and
continuous representations. In this article, we have
covered the core mathematical tools used in the
area. The example of gray-scale image restoration
allowed us to illustrate and compare the different
methodologies. Naturally, as mentioned in the
introduction, image processing refers to a wide
variety of applications and an intensive research
has been carried out on the different topics using the
methodologies described here. The reader will find
in the references (therein) several illustrations of
challenging problems.

See also: �-Convergence and Homogenization; Convex
Analysis and Duality Methods; Elliptic Differential

A2–1f D2–1f1

D 2–1f2 D 2–1f3 

Figure 7 Illustration on the wavelets methodology.

Original noisy
image

BV regularization Wavelet
shrinkage

Figure 8 Illustration of two regularization methods.
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Equations: Linear Theory; Evolution Equations: Linear
and Nonlinear; Fluid Mechanics: Numerical Methods;
Fractal Dimensions in Dynamics; Free Interfaces and
Free Discontinuities: Variational Problems; Geometric
Measure Theory; Ginzburg–Landau Equation;
Inequalities in Sobolev Spaces; Minimax Principle in the
Calculus of Variations; Optimal Transportation; Partial
Differential Equations: Some Examples; Stochastic
Differential Equations; Variational Techniques for
Ginzburg–Landau Energies; Wavelets: Applications;
Wavelets: Mathematical Theory.
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Introduction

In this article we present comprehensive mathema-
tical results on the incompressible Euler equations.
Our presentation is focussed on the two aspects of
the equations. The first one is on the theories of
classical solutions and the problem of global in time
continuation/finite time blow-up of the local classi-
cal solutions. The second topic is concerned on the
weak solutions, mainly for the two-dimensional
(2D) Euler equations for existence and uniqueness
questions.

The motion of homogeneous incompressible ideal
fluid in a domain � � Rn is described by the
following system of Euler equations:

@v

@t
þ ðv � rÞv ¼ �rp ½1�

div v ¼ 0 ½2�

vðx; 0Þ ¼ v0ðxÞ ½3�

where v = (v1, v2, . . . , vn), vj = vj(x, t), j = 1, 2, . . . , n,
is the velocity of the fluid flows, p = p(x, t) is the
scalar pressure, and v0(x) is a given initial velocity
field satisfying div v0 = 0. Here we use the standard
notion of vector calculus, denoting

10 Incompressible Euler Equations: Mathematical Theory
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rp ¼ @p

@x1
;
@p

@x2
; . . . ;

@p

@xn

� �

ðv � rÞvj ¼
Xn

k¼1

vk @vj

@xk

div v ¼
Xn

k¼1

@vk

@xk

Equation [1] represents the balance of momentum
for each portion of fluid, while eqn [2] represents
the conservation of mass of fluid during its motion,
combined with the homogeneity (constant density)
assumption on the fluid. Equations [1] and [2] are
first obtained by Euler in 1755. Although we could
consider, more generally, the inhomogeneous incom-
pressible Euler equations, in mathematical fluid
mechanics considerations the incompressible Euler
equations usually mean the above system [1]–[2].
For a bounded domain with fixed boundary @�, the
natural boundary condition is

vðx; tÞ � �ðxÞ ¼ 0 8ðx; tÞ 2 @�� ½0;1Þ ½4�

where �(x) is the unit normal vector at the boundary
point x 2 @�. Several studies are concerned with the
Cauchy problem of the system [1]–[3], where we
consider the case

� ¼
Rnðwhole domain of RnÞ; or

Rn=Znðperiodic domainÞ

(
½5�

In this article for simplicity we suppose
� = Rn, n = 2, 3 unless otherwise stated. We note
that the Euler equation is obtained formally by
setting the viscosity = 0, or, equivalently, Reynolds
number =1 in the Navier–Stokes equations. Thus,
we may view the Euler equations as the one
describing approximately the extremely high
Reynolds number turbulent flows. For detailed
mathematical studies on the finite Reynolds number
Navier–Stokes equations, see Temam (1984) and
Lions (1996). For much shorter and more compre-
hensive review see Constantin (1995). In the study of
the Euler equations the notion of vorticity, != curl v,
plays a very important role. In particular, we can
reformulate the system in terms of vorticity fields
only as follows. We first suppose we are working in
three-dimensional (3D) space, and rewrite [1] as

@v

@t
� v� curl v ¼ �r pþ 1

2
jvj2

� �
½6�

Taking curl of [6], and using elementary vector
identities we obtain the following vorticity formulation:

@!

@t
þ ðv � rÞ! ¼ ! � rv ½7�
div v ¼ 0; curl v ¼ ! ½8�

!ðx; 0Þ ¼ !0ðxÞ ½9�

The linear elliptic system [8] for v can be solved
explicitly in terms of ! to give the Biot–Savart law

vðx; tÞ ¼ 1

4�

Z
R3

ðx� yÞ � !ðy; tÞ
jx� yj3

dy ½10�

Substituting this v into [7] formally, we obtain a
integrodifferential system for !. The term in the
right-hand side of [7] is called the ‘‘vortex stretching
term,’’ and is regarded as the main source of
difficulties in the mathematical theory of the 3D
Euler equations. In the 2D case we take the vorticity
as the scalar, != @v2=@x1 � @v1=@x2, and the
evolution equation of ! becomes

@!

@t
þ ðv � rÞ! ¼ 0 ½11�

combined with the 2D Biot–Savart law,

vðx; tÞ ¼ 1

2�

Z
R2

ð�y2 þ x2; y1 � x1Þ
jx� yj2

!ðy; tÞ dy ½12�

In many studies of the Euler equations it is
convenient to introduce the notion of ‘‘particle
trajectory mapping,’’ �(�, t) defined by

@�ð�; tÞ
@t

¼ vð�ð�; tÞ; tÞ

�ð�; 0Þ ¼ �; � 2 �

½13�

The mapping �(�, t) transforms from the location of
the initial fluid particles to the location at time t,
and the parameter � is called the Lagrangian particle
marker. If we denote the Jacobian of the transfor-
mation, det (r��(�, t)) = J(�, t), then we can show
easily that

@J

@t
¼ ðdiv vÞJ

which implies the fact that the velocity field v
satisfies the incompressibility, div v = 0 if and only if
the mapping �(�, t) is volume preserving. At this
moment, we note that, although the Euler equations
are originally derived by applying the mass con-
servation and the momentum balance principles, we
could also derive them by applying the principle of
least action to the action defined by

Að�Þ ¼ 1

2

Z t2

t1

Z
�

@�ðx; tÞ
@t

����
����
2

dx dt

Here, �(�, t) : �!� is a parametrized family of
volume-preserving diffeomorphism. This variational
approach to the Euler equations implies that we can
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view solutions of the Euler equations as a geodesic
curve in the L2-metric on the infinite-dimensional
manifold of volume-preserving diffeomorphisms (see
for more details, e.g., Arnol’d and Khesin (1998)).

The 3D Euler equations have many conserved
quantities. We list some important ones below.

1. Energy

EðtÞ ¼ 1

2

Z
�

jvðx; tÞj2 dx ½14�

2. Helicity

HðtÞ ¼
Z

�

vðx; tÞ � !ðx; tÞ dx ½15�

3. Circulation

�CðtÞ ¼
I

CðtÞ
v � dl ½16�

where C(t) = {�(�, t)j� 2 C} is the curve moving
along with the fluid.

4. Impulse

IðtÞ ¼ 1

2

Z
�

x� !dx ½17�

5. Moment of impulse

MðtÞ ¼ 1

3

Z
�

x� ðx� !Þ dx ½18�

The proof of conservations of the above quantities
can be carried out without difficulty by using
elementary vector calculus (for details see, e.g.,
Chorin and Marsden (1993), Majda and Bertozzi
(2002), Marchioro and Pulvirenti (1994)). The
helicity above, in particular, represents the degree
of knotedness of the vortex lines in the fluid, where
the vortex lines are the integral curves of the
vorticity fields. Arnol’d and Khesin (1998) discuss
in detail aspects of helicity and other geometric
aspects of the Euler equations. For the 2D Euler
equations there is no analog of helicity, while the
circulation conservation is replaced by the vorticity
flux integral, Z

AðtÞ
!ðx; tÞ dx ½19�

where A(t) = {�(�, t)j� 2 A} is a planar region
moving along the fluid. The impulse and the
moment of impulse integrals are replace by

1

2

Z
�

ðx2;�x1Þ! dx ½20a�
and

� 1

3

Z
�

jxj2!dx ½20b�

respectively.
In the 2D ideal incompressible fluids we have

extra conserved quantities; namely for any p 2
[1,1] the integral Z

�

j!ðx; tÞjpdx ½21�

is conserved (as a matter of fact we can extend this
statement by replacing the integral by

R
� f (!(x, t))dx

for any continuous function f ). There are many
known explicit solutions to the Euler equations (See
e.g., Lamb (1932) and Majda and Bertozzi (2002)).
Local Existence and the Blow-Up
Problem

The Classical Results

We first introduce some notations of function
spaces. The Lebesgue space Lp(�), p 2 [1,1], is the
Banach space defined by the norm

kfkLp :¼
R

� jf ðxÞj
pdx

� �1=p
; p 2 ½1;1Þ

ess: supx2� jf ðxÞj; p ¼ 1

(

Let us set � := (�1,�2, . . . ,�n) 2 (Zþ [ {0})n with
j�j=�1þ�2þ � � � þ�n. Then, D� :=D�1

1 D�2

2 � � �D�n
n ,

where Dj = @=@xj, j = 1, 2, . . . , n. For given k 2 Z
and p 2 [1,1) the Sobolev space, Wk, p(�) is the
Banach space of functions consisting of functions
f 2 Lp(�) such that

kfkWk;p :¼
Z

�

jD�f ðxÞjp dx

� �1=p

<1

where the derivatives are in the sense of distribu-
tions. For p =1 we replace the Lp-norm by the L1

norm. In order to cooperate with the fractional
derivatives of order s 2 R, we use the space Ls

p(�)
defined by the Banach spaces norm,

kfkLs;p :¼ kð1��Þs=2fkLp

where (1��)s=2f =F�1[(1þ j�j2)s=2F (f )(�)] with
F (�) and F�1(�) denoting the Fourier transform
and its inverse. Below we outline the key ideas of
proving the local existence theorems for the Euler
equations. For more details we refer the reader to
Majda and Bertozzi (2002). For simplicity, we use
the function space Hm(Rn) = Wm, 2(Rn), n = 2, 3.
Taking derivatives D� on [1], and then taking its
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L2 inner product with D�v, and summing over the
multi-indices � with j�j � m, we obtain

1

2

d

dt
kvk2

Hm ¼�
X
j�j�m

ðD�ðv � rÞv� ðv � rÞD�v;D�vÞL2

�
X
j�j�m

ððv � rÞD�v;D�vÞL2

�
X
j�j�m

ðD�rp;D�vÞL2

� Iþ IIþ III

By integration by parts, we obtain

III ¼ �
X
j�j�m

ðD�p;D�div vÞL2 ¼ 0

Integrating by parts again, and using the fact that
div v = 0, we have

II ¼ � 1

2

X
j�j�m

Z
R3
ðv � rÞjD�vj2 dx

¼ 1

2

X
j�j�m

Z
R3

div vjD�vj2 dx ¼ 0

We now use the so-called commutator type of
estimate,X

j�j�m

kD�ðfgÞ � fD�gkL2

� CðkrfkL1kgkHm�1 þ kfkHmkgkL1Þ

and obtain

I �
X
j�j�m

kD�ðv � rÞv� ðv � rÞD�vkL2kvkHm

� CkrvkL1kvk
2
Hm

Summarizing the above estimates, I–III, we have

d

dt
kvk2

Hm � CkrvkL1kvk
2
Hm ½22�

Further estimate, using the Sobolev inequality, krvkL1

� CkvkHm for m > 5=2, gives

d

dt
kvk2

Hm � Ckvk3
Hm

Thanks to Gronwall’s lemma, we have the local-in-
time uniform estimate

kvðtÞkHm �
kv0kHm

1� Ctkv0kHm

� 2kv0kHm

for all t 2 [0, 1=(2Ckv0kHm )]. This is the key a priori
estimate for the construction of the local solutions.
The local-in-time solution of the Euler equations in
the Sobolev space Hm(Rn) for m > n=2þ 1, m 2 Z,
was obtained by Kato (1972). For the above-
constructed local-in-time solutions, one of the
most outstanding open problems in mathematical
fluid mechanics is whether the solution can be
continued to any future time up to infinity, or the
solution will lose regularity and blow up in finite
time. Even in terms of numerical experiments, the
answer is not yet settled down. In the direction of
solving this problem there is a celebrated results,
called the Beale–Kato–Majda criterion (1984),
which states

lim sup
t%T	

kvðtÞkHs ¼ 1 if and only if

Z T	

0

k!ðsÞkL1ds ¼ 1 ½23�

We outline the proof of this result below (for more
details see Majda and Bertozzi (2002)). We first
recall the Beale–Kato–Majda’s version of the loga-
rithmic Sobolev inequality,

krvkL1 �Ck!kL1ð1þ logð1þkvkHmÞÞ þCk!kL2 ½24�

for m> 5=2. Now suppose
R T	

0 k!(t)kL1 dt <1.
Taking L2 inner product of [7] with !, then after
integration by part we obtain

1

2

d

dt
k!k2

L2 ¼ ðð! � rÞv; !ÞL2

� k!kL1krvkL2k!kL2

¼ k!kL1k!k
2
L2

where we used the identity krvkL2 = k!kL2 . Apply-
ing the Gronwall lemma, we obtain

k!ðtÞkL2 � k!0kL2 exp

Z T	

0

k!ðsÞkL1 ds

� �
� Cð!0;T	Þ ½25�

for all t 2 [0, T	]. Substituting [24] into [22], and
combining this with [25], we have

d

dt
kvk2

Hm

� C 1þ k!kL1½1þ logð1þ kvkHmÞ½ �kvk2
Hm

Applying the Gronwall’s lemma, we obtain

kvðtÞkHm � kv0kHm

� exp C1 exp C2

Z T	

0

k!ð�ÞkL1 d�

� �� �
� Cðv0;T	Þ

for all t 2 [0, T	] and for some constants C1, C2.
Thus, we proved the ‘‘necessity part’’ of [23], The
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‘‘sufficiency part’’ is an easy consequence of the
Sobolev inequality,Z T	

0

k!ðsÞkL1 ds � T	 sup
0�t�T	

krvðtÞkL1

� CT	 sup
0�t�T	

kvðtÞkHm

for m > 5=2.

Other Related Results

The previous local existence result in Hm(Rn), m >
n=2þ 1, is basically due to T Kato in 1972. He and
G Ponce extended this existence result using the
fractional Sobolev space, Ls

p(Rn), s > n=2þ 1, s 2 R
in 1986. These results were further extended, using
the Besov and the Triebel–Lizorkin spaces, by the
present author in 2001.

For bounded domain � � Rn, R Temam obtained
the local-existence result using the space Wk, p(�) in
1975. On the other hand, in the setting of the
Hölder space, C1,�(Rn) L Lichtenstein (1925) and
W Wolibner (1933) obtained local existence of
solutions of the Euler equations. More recently,
J-Y Chemin considered the Zygmund Cs(Rn), which
is identical to the Hölder space C[s], s�[s](Rn) for
noninteger s, where [s] means the largest integer not
greater than s, but is different from C[s], 0(Rn) for
integer s. He proved, in 1992, local existence of
solutions to the 3D Euler equations in this space in
1992. See Chemin (1998) for details of this proof.

The Beale–Kato–Majda criterion for the finite-
time blow-up of the classical solutions of the 3D
Euler equations has been refined recently by many
authors; replacing the L1-norm of vorticity !(x, t)
by the weaker BMO (the space of functions with
bounded mean oscillations) norm (H Kozono and
Y Taniuchi, 2000), and by the even weaker Besov
space or Triebel–Lizorkin space norms by the
present author in 2001 (see Triebel (1983) for
more details on those spaces). Here we just note
that these spaces are refinements of the usual
Sobolev spaces. For a bounded domain case, there
is a result by A Ferrari in 1993. The blow-up
problem is still open even in the case of axisym-
metric 3D Euler equations if there is a nonzero swirl
(angular velocity). In this case, the blow-up is
controlled only by the angular component of the
vorticity as shown by the present author (1996). In
the region off the axis, in particular, the axisym-
metric 3D Euler equation has the same form as the
2D Boussinesq equations.

Some researchers also tried to approach to
regularity/singularity problem of the 3D Euler
equations by investigating the geometric structure
of the vortex stretching term, and obtained a
geometric type of blow-up criterion (P Constantin,
C Fefferman, and A Majda, 1996). For more
detailed review of studies in this direction see
Constantin (1995).

Since the blow-up problem of the 3D Euler
equation itself looks too difficult to solve, it has
also been studied on the simplified model problems.
In 1985, P Constantin, P D Lax, and A Majda
considered the following 1D model problem of the
3D Euler equations:

�t þ ðHð�Þ�Þx ¼ 0; �ðx; 0Þ ¼ �0ðxÞ

where H(�) is the Hilbert transform defined by

Hð!Þ ¼ 1

�
PV

Z 1
�1

!ðyÞ
x� y

dy

They proved finite-time blow-up of this model
problem by explicitly obtaining the solution. There
is another, 2D model problem of the 3D Euler
equations, the quasigeostrophic equations,

�t þ ðu � rÞ� ¼ 0

u ¼r? ; � ¼ �ð��Þ1=2 
�ðx; 0Þ ¼ �0ðxÞ

½26�

where r?= (�@2, @1). Contrary to the above 1D
model equation, this 2D model has real physical
relevance in the atmospheric science, and �(x, t)
represents the temperature of the air. The resem-
blance of this equation to the 3D Euler equation
was first observed by P Constantin, A Majda, and
E Tabak in 1994, and they derived the finite blow-
up criterion of the equations. In spite of many
interesting partial results, including the work by
D Cordoba (1998), the blow-up problem of [26] is
still open.
The 2D Euler Equations and the
Weak Solutions

The Case of W 1, p Weak Solutions

In 2D Euler equations, the problem of global well-
posedness of the classical solutions is settled down.
This is an immediate consequence of the conserva-
tion of k!(t)kL1 as stated in [21] combined with the
Beale–Kato–Majda criterion [23]. On the other
hand, the notion of weak solutions is not well
understood. A weak solution of the Euler equations
is a singular (nondifferentiable) solution of the
equations. More precisely, by a weak solution of
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[1]–[2] in �� (0, T) we mean a vector field v 2
C([0, T); L2

loc(�)) satisfying the integral identity:

�
Z T

0

Z
R3

vðx; tÞ � @�ðx; tÞ
@t

dxdt

�
Z

R3
vðx;0Þ ��ðx;0Þdx

�
Z T

0

Z
R3

vðx; tÞ
 vðx; tÞ :r�ðx; tÞdxdt¼ 0 ½27a�

Z T

0

Z
R3

vðx; tÞ � r ðx; tÞ dx dt ¼ 0 ½27b�

for every vector test function �= (�1,�2, . . . ,�n) 2
C10 (�� [0, T)) satisfying div �= 0, and for every
scalar test function  2 C10 (�� [0, T)). Here we
used the notation (u
 v)ij = uivj, and A : B =Pn

i, j = 1 AijBij for n� n matrices A and B. We
observe that [27a] and [27b] are obtained by
multiplying � and  to [1] and [2], respectively,
and integrating by parts. Thus, even the locally
square-integrable vector fields, which are not differ-
entiable in the classical sense, could be solutions of
the Euler equations. For the general 3D Euler
equations, we do not yet have the global existence
theorems for the weak solutions. Actually, it is even
suggested that we need more weaker notion of
solution (the so-called ‘‘measure-valued solutions’’)
to describe generic global solutions for the 3D Euler
equations. For the 2D Euler equations, however, we
have global existence theorems for !0 2 L1(R2) \
Lp(R2) for p 2 [1,1]. This better situation of 2D
Euler equations compared to the 3D case for the
weak solutions is mainly due to the conservation
law of Lp-norm described in [21]. Here we present
briefly the existence proof of the weak solutions for
2D Euler equations in the simplest situation. We will
prove the global existence of weak solutions for
!0 2 Lp(R2), 1 < p <1. Let 	"(x) = (1="2)	(x="),
where 	 2 C10 (R2) is a standard mollifier, satisfying
	 � 0, supp 	 � {x 2 R2jjxj < 1}, and

R
R2 	 dx = 1.

Let v0 be the velocity associated with the initial
vorticity !0, given by the Biot–Savart law [12].
Define the sequence of initial data v"0(x) = 	" 	
v0(x) =

R
R2 	"(x� y)v0(y) dy. For each v"0 we have

global-in-time smooth solutions v"(x, t). Moreover,
thanks to [21], we have the following estimate of the
vorticity that is uniform in ":

k!ðtÞ"kLp ¼ k!"0kLp � k!0kLp ½28�

where we used the property of the mollifier in the
second inequality. If we take the (distributional)
derivative of the Biot–Savart law [12], we find
rv = K 	 !þ C!, where K(x) is a kernel function
defining a singular integral operator of the convolu-
tion type, and C is a constant vector. The well-
known Calderon–Zygmund inequality implies that

krvkLp � Cpk!kLp ½29�

Combining [28] and [29] we have

sup
0�t�T

krv"ðtÞkLp � Cðv0Þ; 8T > 0 ½30�

namely the sequence {v"} is uniformly bounded in
L1(0, T; W1, p(R2)). Next, we claim that {v"} satis-
fies the inequality

kv"ðt1Þ � v"ðt2ÞkH�3ðR2Þ � Ckv0k2
2kt1 � t2j ½31�

for all t1, t2 with 0 < t1 � t2 < T, where C is an
absolute constant. Here the negative-order Sobolev
space H�m(�), m > 0, is defined as the dual of
Hm

0 (�), and can be identified with the space of
functions C10 (�) completed with metric in Hm(�).
Indeed, let � 2 C10 (R2). Taking L2(R2) inner pro-
duct of [1] with � we have the estimatesZ

R2

@v"ðx; tÞ
@t

� �ðxÞ dx

����
����

�
Z

R2
ð� � rÞp" dx

����
����þ

Z
R2
� � ðv" � rÞv" dx

����
����

¼
Z

R2
p"r� dx

����
����þ

Z
R2
ðv" � rÞ�v" dx

����
����

� kp"ðtÞkH�2kr�kH2 þ kv"ðtÞk2
L2kr�k1

� Cðkp"ðtÞkH�2 þ kv"0k
2
L2Þk�kH3 ½32�

where we used the Sobolev inequality kr�kL1 �
Ck�kH3 and the energy equality in the last step.
Since [32] holds for all � 2 C10 (R2), by taking the
closure of C10 (R2) in H3(R2) we obtain

dv"ðtÞ
dt

				
				

H�2

� Ckp"ðtÞkH�2 þ kv0k2
L2 ½33�

We now estimate kp"(t)kH�2 . Taking the divergence
operation on [1], we have the Poisson equation

�p" ¼ �divðv" � rv"Þ

Let 
 2 C10 (R2), thenZ
R2

�p"ðx; tÞ
ðxÞ dx

����
���� ¼

Z
R2

divðv" � rv"Þ
 dx

����
����

¼
Z

R2
ðv" � rÞv" � r
 dx

����
����

¼
Z

R2
ðv" � rÞr
 � v" dx

����
����

� kv"ðtÞk2
L2k�2
kL1

� Ckv0k2
L2k
kH4 ½34�
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where we used the energy equality [14] and the
Sobolev inequality in the last step. Since [34] holds
for all 
 2 C10 (R2), taking the closure of C10 (R2) in
H4(R2), we obtainZ

R2
�p"ðx; tÞ
ðxÞ dx

����
���� � Ckv0k2

L2k
kH4

8
 2 H4ðR2Þ ½35�

Thus,

k�p"ðtÞkH�4 � Ckv0k2
L2 8t 2 ½0;TÞ

This provides us with

kp"ðtÞkH�2 � kD2p"ðtÞkH�4 � Ck�p"ðtÞkH�4

� Ckv0k2
L2

Combining [33] with [36], we obtain

sup
0�t�T

dv"ðtÞ
dt

				
				

H�2

� Ckv0k2
L2

Thus, from

v"ðt1Þ � v"ðt2Þ ¼
Z t1

t2

dv"ðtÞ
dt

dt

we have

kv"ðt1Þ � v"ðt2ÞkH�2 � sup
0�t�T

dv"ðtÞ
dt

				
				

H�2

jt1 � t2j

� Ckv0k2
L2 jt1 � t2j

Thus, [31] is proved as claimed. Thanks to the
Aubin–Nitsche compactness lemma together with
[30] and [31] we have a subsequence, denoted by the
same notation, {v"} and v in L1(0, T; W1, p(R2)) such
that

v" ! v weakly� 	 in L1ð0;T; W1; pðR2ÞÞ ½36�

and

v" ! v in L2
locðR2 � ð0;TÞÞ ½37�

as "! 0. We know that as a classical solution each
v" and v"0 satisfiesZ

R2
�ðx; 0Þv"0ðxÞdx

þ
Z T

0

Z
R2
ð�t � v" þr� : v" 
 v"Þ dx dt ¼ 0 ½38�

for all � 2 C10 (R2 � [0, T)) with div�= 0 andZ T

0

Z
R2
r � v" dx dt ¼ 0 ½39�

for all  2 C10 (R2 � [0, T)). We can check easily that
the convergence [36] and [37] is enough to pass to the
limit "! 0 in [38] and [39] to obtain the correspond-
ing equations with v" and v"0 replaced by v and v0.
Thus, v is a weak solution of the Euler equations with
initial data v0. This completes the outline of the proof
of weak solutions to the 2D Euler equations.
Notes on Further Results

The study of weak solutions of the 2D Euler
equations was initiated by V Yudovich in 1963,
where he proved the existence of weak solutions for
initial data !0 2 L1(R2) \ L1(R2). Subsequenthy,
theory of weak solutions has been developed by
studies of the vortex sheet problem due to DiPerna
and Majda in 1987. For the existence of weak
solutions to the vortex sheet initial data, namely
the existence problem for initial vorticity !0 2
H�1(R2) \M(R2), where M(R2) is the space of
Radon measures on R2, is still an outstanding open
problem. The main physical motivation of this
problem is to understand the dynamics of vortex
sheets in the 3D turbulence. For this problem
J M Delort proved existence assuming single-
signedness of the initial vortex sheet in 1991. The
proof is simplified by A Majda in 1993, using the
conservation of moment of impulse. The result is
also reproved by L C Evans and S Müller in 1994,
using the weak compactness of the Hardy space.
Later in 2001, M C Lopes Filho, H J Nussenzveig
Lopes and Z Xin allowed the change of sign for
initial vortex sheet, but assumed special reflection
symmetry to prove existence of global weak solu-
tions. Related to this problem is the one of
characterizing the precise borderline function space
to which initial data belongs, and above which there
is no concentration phenomenon for weakly approx-
imating sequence of solutions; a recent analysis of
this problem was done by E Tadmor in 2001.

For the uniqueness problem of the weak solutions of
the 2D Euler equations, there are remarkable works by
V Scheffer (1993) and A Shnirelman (1997), where
they constructed explicitly an L2

loc(R
2 � R) weak

solution starting from zero initial data. Also M Vishik
(1999) extended the uniqueness class of the weak
solutions of the 2D Euler equations, improving
previous work by V Yudovich (1995). The class
found by M Vishik, in particular, includes the BMO.
There is another problem closely related to the weak
solutions of the 2D Euler equations, called the vortex
patch problem. The main question was if there is any
singularity of the boundary of a patch
�(t) = {X(�, t) j� 2 �0}, where X(�, t) is the particle
trajectory mapping generated by a weak solution
v(x, t), which is evolving from the initial data
!0(x) =��0

(x), the characteristic function of set �0
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with smooth boundary. The problem itself is well
defined, due to the work of V Yudovich (1963), and
there exists unique particle trajectories associated with
such weak solutions. The problem was settled by J-Y
Chemin in 1991. He proved the global-in-time
preservation of the C1,� regularity of the boundary
@�(t), contrary to the previous numerical experiments.
The proof of this result was later simplified by A
Bertozzi and P Constantin in 1993.

Another interesting problem related to the weak
solutions of the Euler equations (2D or 3D) is
whether or not the energy is preserved for the weak
solutions, namely if there is any ‘‘intrinsic dissipa-
tion’’ to the singular solutions of the ideal fluids. In
1949, L Onsager conjectured that if the weak
solution of 3D Euler equations belongs to certain
Hölder space, then the energy is conserved. This
conjecture, in the setting of Besov space, was
proved by P Constantin, W E and E S Titi in 1994.
This question of possibility of dissipation of energy
for weak solutions is further studied by J Duchon and
R Robert in 2000. Later, in 2003 the present author
considered the problem of helicity conservation for
the weak solutions of the 3D Euler flows, which is
related to the question of crossing/reconnections of
the vortex tubes for weak solutions, and showed that
for large class of weak solutions in certain Besov
spaces the helicity is preserved.

See also: Compressible Flows: Mathematical Theory;
Evolution Equations: Linear and Nonlinear; Fluid
Mechanics: Numerical Methods; Interfaces and
Multicomponent Fluids; Intermittency in Turbulence;
Inviscid Flows; Non-Newtonian Fluids; Partial Differential
Equations: Some Examples; Stability of Flows;
Stochastic Hydrodynamics; Turbulence Theories;
Viscous Incompressible Fluids: Mathematical Theory;
Vortex Dynamics.
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Introduction

If, in a problem of quantization, state spaces with
indefinite inner product are used instead of Hilbert
spaces, one speaks of quantization with indefinite
metric. The main domain of application is the
quantization of gauge fields, like the electromagnetic
vector potential A�(x) or Yang–Mills fields in quan-
tum chromodynamics (QCD) and the standard model.

The conceptual problem with the indefinite metric
is the occurrence of senseless negative probabilities
in the formalism. Such negative probabilities,
however, only arise in expectation values of fields
that are not gauge invariant and hence do not
correspond to observable quantities. Equivalently,
the inner product of vectors generated by applica-
tion of such fields to the vacuum vector with itself
can be negative or null. In order to extract the
observable content of an indefinite-metric quantum
theory, a subsidiary condition is needed to single
out the physical subspace. Restricted to this subspace,
the inner product is positive semidefinite. This
subsidiary condition can be seen as the implementa-
tion of a gauge, as, for example, the Lorentz gauge
@�A�(x) = 0 in quantum electrodynamics (QED).
This procedure is also known under the name
Gupta–Bleuler formalism.

The use of indefinite metric in the quantization of
gauge theories like QED can be avoided entirely.
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This is called quantization in a physical gauge. The
problem with such gauges is that they are not
Lorentz invariant and that the vector potential A�(x)
is not a local field. An example is the Coulomb
gauge defined by A0(x) = 0 and @iAi(x) = 0 in QED.
Furthermore, Dirac spinor fields  (x) in such gauges
do not anticommute when localized in spacelike
separated regions. The Dirac fields therefore are also
nonlocal quantities. Although not in contrast with
special relativity, as Dirac spinors and the vector
potential are not gauge invariant and hence are
unobservable, this leads to severe technical problems
in the formulation of interacting theories. In
particular, the theory of renormalization heavily
uses both locality and invariance. Therefore, the
Gupta–Bleuler formalism generally is the preferred
quantization procedure for a gauge theory.

That a local and invariant quantization is not
possible using a (positive-metric) Hilbert space has
been proved by F Strocchi in a series of articles
published between 1967 and 1970. If one wants to
preserve locality and/or invariance of the quantized
field theory, it is thus strictly necessary to give up
the positivity of the state space.

A short digression into the early history of the
idea might be of interest. It dates back to 1941,
where the use of indefinite metric in the quantiza-
tion of relativistic equations was proposed by Paul
Dirac in a lecture at the London Royal Society. The
negative probabilities for the bosonic vector poten-
tial were thought to be connected with the problem
of negative-energy solutions of relativistic equations
as a type of surrogate of the ‘‘Dirac sea’’ in the
quantization of fermions. Furthermore, Dirac pro-
posed that negative-energy solutions and negative
probabilities would jointly lead to the cancellation of
divergences in QED. The latter idea was taken up by
W Heisenberg in his lectures on the theory of
elementary particles held in Munich in 1961, but the
generally accepted solution to the problem of ultra-
violet divergences was achieved without recourse to
Dirac’s original motivation. In 1950 the consistent
quantization of vector potential in the Lorentz gauge
was formulated by S N Gupta and K Bleuler
eliminating the use of negative-energy solutions.
Since then the indefinite metric has become a building
block of the standard theory of quantized gauge fields.
No-Go Theorems

The strict necessity of the Gupta–Bleuler procedure
for the local or covariant quantization of gauge
fields has been demonstrated by F Strocchi in
the form of no-go theorems for positive metric.
Here we review their content for the case of the
electromagnetic field. Related statements can be
obtained for nonabelian gauge theories. The main
problem lies in the fact that standard assumptions
on the quantization of relativistic fields are in
conflict with Maxwell equations that should hold
as operator identities in a positive-metric theory
containing no unobservable states. Let

F��ðxÞ ¼ @�A�ðxÞ � @�A�ðxÞ ½1�

be the quantized electromagnetic field strength
tensor. Classically, the existence of A�(x) is guaran-
teed from the first set of Maxwell equations
�����@�F��(x) = 0. Here (and henceforth) indices are
raised and lowered with respect to the Minkowski
metric g�� and ����� is the completely antisymmetric
tensor on Rd. Furthermore, we apply Einstein’s
convention on summation over repeated upper and
lower indices. Standard assumptions from axiomatic
quantum field theory are:

1. The field strength tensor F��(x) is an operator-
valued distribution acting on a (dense core of a)
Hilbert space H with scalar product h., .i – in the
indefinite-metric case, h., .i only needs to be an
inner product.

2. F��(x) transforms covariantly, that is, there is a
strongly continuous unitary (with respect to h., .i)
representation U of the orthochronous, proper
Poincaré group on H such that for translation a 2
Rd combined with a restricted Lorentz transfor-
mation �, one has

Uða;�ÞF��ðxÞUða;�Þ�1

¼ ð��1Þ��ð��1Þ��F��ð�xþ aÞ ½2�

3. There exists a unique (up to multiplication with
C-numbers) translation invariant vector � 2 H
(the ‘‘vacuum’’), that is, U(a, 1)� = �8a 2 Rd.

4. The representation of the translations fulfills the
spectral condition

Z
R4
h�;Uða; 1Þ�ieip�a da ¼ 0 ½3�

8�, � 2 H if p is not in the closed forward light
cone V̄

þ
= {p 2 R4: p � p � 0, p0 � 0}. Here the

dot is the Minkowski inner product.
So far the assumptions concerned only observable
quantities. In the following, we also demand.

5. The vector potential A�(x) is realized as an
operator-valued distribution on H and trans-
forms covariantly under translations

Uða;1ÞA�ðxÞUða; 1Þ�1 ¼ A�ðxþ aÞ ½4�
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The assumptions on the nature of the vector
potential so far are rather weak. Strocchi’s no-go
theorems show that one cannot add further desirable
properties as Lorentz covariance and/or locality
without getting into conflict with the Maxwell
equations:

Theorem 1 Suppose that the above assumptions
(1)–(3) and (5) hold. If Maxwell’s equations in the
absence of charges,

�����@�F��ðxÞ ¼ 0; @�F��ðxÞ ¼ 0 ½5�

are valid as 	 operator identities on H and the gauge
potential transforms covariantly

Uða;�ÞA�ðxÞUða;�Þ�1 ¼ ð��1Þ��A�ð�xþ aÞ ½6�

the two-point function of the electromagnetic field
tensor vanishes identically:

h�; F��ðxÞF��ðyÞ�i ¼ 0 8 x; y 2 R4 ½7�

To gain a better understanding, where the difficul-
ties in the quantization of the Maxwell equations
arise from, here is a rough sketch of the proof:
Maxwell equations and covariance imply that
f���(x� y) = h�, A�(x)F��(y)�i fulfills @�@�f���(x)
= 0 and hence its Fourier transform has support in
the union of the forward and backward light cone.
The Fourier transform thus can be split into a
positive- and a negative-frequency part, and
f��� = fþ��� þ f���� accordingly. By the general analysis
of axiomatic field theory (see Axiomatic Quantum
Field Theory), the functions f���� are boundary values
of complex analytic functions on certain tubar
domains T � transforming covariantly under a certain
representation of the complex Lorentz group. By a
theorem of Araki and Hepp giving a general
representation of such functions and using the
antisymmetry of the field tensor, the following
formula can be derived:

f����ðzÞ ¼ ðg��@� � g��@�Þf�ðzÞ þ �����@
�h�ðzÞ

z 2 T � ½8�

with f�, h� invariant under complex Lorentz trans-
formations. Taking boundary values in T �, one
obtains f��� = (g��@� � g��@�)f þ �����@�h, with
f = f̄ þ þ f̄ � and h = h̄

þ þ h̄
�
, where the bar stands

for the distributional boundary value. Maxwell’s
equations imply @�f��� = (@�@�g�� � @�@�)f = 0 and
��
���@�f��� = (@�@�g�� � @�@�)h = 0. The only Lor-

entz-invariant solutions to these equations are
constant, which implies the statement of Theorem 1.

The second no-go theorem eliminates the assump-
tion that the vector potential A�(x) is covariant;
however, a local gauge is assumed. The result is the
same as in Theorem 1:

Theorem 2 Suppose that the above assumptions (1)–
(5) and Maxwell’s equations hold as operator iden-
tities on H. If, furthermore, the gauge is local, that is,

½A�ðxÞ;A�ðyÞ� ¼ 0 if x� y is spacelike ½9�

the two-point function of the field strength tensor
vanishes again as in Theorem 1.

Analyzing the interplay of the covariance proper-
ties of F��(x) with the locality of A�(x), Strocchi was
able to show that the function f���(x� y) must have
the same covariance properties as in Theorem 1,
which implies the assertion of Theorem 2.

The first two no-go theorems deal with the free
electromagnetic field that is not coupled to charge-
carrying fields. This is, of course, already a real
obstruction also for an interacting theory, since, by
the LSZ formalism, one expects the asymptotic
incoming and outgoing fields Ain=out

� (x), Fin=out
�� (x) to

be free. In fact, it has been proved by D Buchholz
that, in the positive-metric case, such asymptotic
fields can always be constructed. If one assumes a
local and covariant gauge and positivity, the
vanishing of the two-point function would also
imply that the field F��(x) = 0 identically by the
Reeh–Schlieder theorem.

The next no-go theorem shows that the problems
connected to the quantization of the Maxwell
equations are not connected only to the free
electromagnetic fields. Let us assume that the second
set of Maxwell equations is given by

@�F��ðxÞ ¼ j�ðxÞ ½10�

where j� is the leptonic current, that is,
j�(x) = e : y(x)
� (x): in the case of QED, where  is
the quantized Dirac field associated with electrons and
positrons. Here : � : stands for Wick ordering and 
�
are the Dirac matrices,  y= �
0. The conservation of
the current @�j�(x) = 0 implies that the current charge

QC ¼ lim
R!1

Z
R3

Z
R

�ðx0Þ�ðx=RÞj0ðx0; xÞ dx0 dx ½11�

is a constant of motion, where � and � are
compactly supported infinitely differentiable func-
tions with

R
R �(x0) = 1 and �(x) = 1 for jxj < 1.

Now, an alternative definition of charge, called
gauge charge (it generates the global U(1)-gauge
transformation), is given by

QG� ¼ 0; ½QC;A�ðxÞ� ¼ 0 and

½QG;  ðxÞ� ¼ �e ðxÞ ½12�
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A third formulation of charge, the Maxwell charge
QM, can also be given by replacing j0(x) in [11] by
@�F

�0(x). Obviously, if Maxwell equations hold as
operator identities, QC = QM. On observable states,
all charges QM, QC, and QG ought to coincide.
Strocchi’s third theorem shows that this cannot be
achieved within a local gauge:

Theorem 3 If the Maxwell equations [9] hold and
the Dirac field  (x) is local with respect to the
electromagnetic field tensor F��(x), that is,

½F��ðxÞ;  ðyÞ� ¼ 0 if x� y is spacelike ½13�

then [QM, (x)] = 0, hence QC = QM 66¼ QC.

The proof is a simple consequence of the
observation that j0(x) = @�F�0(x) = @iFi0(x) is a
three-divergence as F00(x) = 0 by antisymmetry of
F��(x). Hence,

½QC;  ðyÞ� ¼ lim
R!1

Z
R4
½j0ðxÞ;  ðyÞ��ðx0Þ�ðx=RÞ dx0 dx

¼ � lim
R!1

Z
R4
½Fi0ðxÞ;  ðyÞ��ðx0Þ@i�ðx=RÞ

� dx0 dx ¼ 0 ½14�

since, for R sufficiently large, the support
of �(x0)@i�(x=R) becomes spacelike separated
from y.

It should be noted that the proof of none of the
above theorems relies on the definiteness of the
inner product. The main clue of the indefinite-metric
formalism, therefore, is rather to give up Maxwell
equations as operator identities. In the usual
positive-metric formalism, where all states in H are
physical states, this would not be legitimate. But in
indefinite metrics, many states are unobservable – in
particular, those with negative ‘‘norm’’ h�, �i < 0.
On such states we can neglect the Maxwell
equations.
Axiomatic Framework

The formalism of axiomatic quantum field theory
(see Axiomatic Quantum Field Theory) requires a
revision in order to cover the case of gauge fields.
The necessary adaptations have been elaborated by
G Morchio and F Strocchi, but also earlier work
of E Scheibe and J Yngvasson played a significant
role in this development.

Let �(x) be a V 0-valued quantum field, where V
is a finite-dimensional C-vector space with involu-
tion �. The prime stands for the (topological) dual.
For the case of QED, V is eight dimensional,
containing four dimensions for the vector potential
A�(x) and another four for the Dirac spinors
 (x), y(x).

Such a quantum field can be reconstructed from its
vacuum expectation values (Wightman functions) as
follows: let S1 = S(R4, V) be the space of rapidly
decreasing functions f : R4 ! V endowed with the
Schwarz topology. Then the Borcher’s algebra S be
the free, unital, involutive tensor algebra over S1, that
is, S = C1	n�0 S
n

1 with the multiplication induced
by the tensor product and involution (f1 
 � � � 

fn)�= f �n 
 � � � 
 f �1 . S is endowed with the direct-sum
topology. One can show that any linear, normalized,
continuous functional W :S ! C, W(1) = 1, is
determined by its restrictions Wn to S
n

1 . By the
Schwarz kernel theorem, Wn 2 S0(R4n, V
n). Con-
versely, any such sequence of Wightman distribu-
tions Wn determines a W.

Given a Hermitian Wightman functional W such
that W(f �) = W(f ),8f 2 S,LW = {f 2 S: W(h� 
 f ) =
08h 2 S} forms a left ideal and the inner product
W(f � 
 h) induces a nondegenerate inner product
h., .i on H0 = S=LW . Furthermore, Borchers’ algebra
S acts from the left on H0. The quantum field �(x)
defined as the restriction of this canonical represen-
tation to the space S1 � S according to �(f ) =
‘‘
R

R4 �a(x)fa(x)dx’’ where the index a runs over a
basis of V.

If the Wightman functional W has further proper-
ties from axiomatic QFT (see Axiomatic Quantum
Field Theory) like invariance with respect to a given
representation of the Lorentz group on V, translation
invariance, locality, and the spectral property, the
quantum field �(x) fulfills the related requirements in
analogy with the items (1)–(5) listed in the previous
section for the case of the vector potential A�(x). The
Wightman distributions Wn as in the positive-metric
case are related to the vacuum expectation values of
the theory by

Wa1;...;an
n ðx1; . . . ; xnÞ ¼ h�; �a1ðx1Þ � � ��anðxnÞ�i ½15�

where � is the equivalence class of 1 in H0.
The state-space H0 produced by the Gelfand–

Naimark–Segal (GNS) construction for inner-
product spaces might be too small to contain all
states of physical interest. For example, in the QED
case, it does not contain charged states (cf. Theorem 3).
Depending on the physical problem, one might
also be interested in constructing coherent or
scattering states and translation-invariant states
apart from the vacuum. Such states appear in
problems related to symmetry breaking and confine-
ment (the so-called �-vacua) or in some problems of
conformal QFT (see Boundary Conformal Field
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Theory) in two dimensions. It, therefore, has
become the standard point of view that one needs
to make a suitable closure of H0 such that this
closure includes the states of interest (for an
alternative point of view, see the last paragraph of
the following section).

Typically, larger closures are favorable, as they
contain more states. One therefore focuses on
maximal Hilbert closures of H0. A Hilbert topology

 is induced by an auxiliary scalar product (., .) on
H0. It is admissible, if it dominates the indefinite
inner product jh�, �ij2 � C(�, �)(�, �) 8�, � 2 H0

for some C > 0. This guarantees that the inner
product extends to the Hilbert space closure H of
H0 with respect to 
 . Furthermore, there exists a
self-adjoint contraction � on H such that h�, ��i=
(�, ��) 8�,� 2 H. A Hilbert topology 
 is maximal
if there is no admissible Hilbert topology 
 0 that is
strictly weaker than H0. The classification of
maximal admissible Hilbert topologies in terms of
the metric operator � is given by the following
theorem:

Theorem 4 A Hilbert topology 
 on H0 generated
by a scalar product (., .) is maximal if and only if the
metric operator � has a continuous inverse ��1 on the
Hilbert space closure H of H0. In that case, one can
replace (.,) by the scalar product (�, �)1 = (�, j�j�)
without changing the topology 
 . The new metric
operator �1 then fulfills �2

1 = 1H.

For a proof of the first statement, see the original
work of Morchio and Strocchi (1980). One can
easily check that �1 = �j��1j which implies the
second assertion of the theorem. A Hilbert space
(H, (., .)) with an indefinite inner product induced by
a metric operator � with �2 = 1H is called a Krein
space. For an extensive study of Krein spaces, see the
monograph by Azizov and Iokhvidov (1989).

Furthermore, one can show that given a nonmax-
imal admissible Hilbert space topology 
 induced by
some (., .), one obtains a maximal admissible Hilbert
topology as follows: given the metric operator �, we
define a scalar product (�, �)1 = (�, (1� P0)�) on
H with P0 the null space projector of �. Obviously,
this scalar product is still admissible and it leads to a
new metric operator �1 and a new closure H1 of H0.
Furthermore, it is easy to show that the scalar
product (�, �)2 = (�, j�1j�)1 still induces an admis-
sible Hilbert topology which is also maximal, as
�2 = �1j��1

1 j clearly fulfills the Krein relation
�2

2 = 1H2
.

The question of the existence of a Krein space
closure of H0, therefore, reduces to the question of
the existence of an admissible Hilbert topology on
H0. The following condition on the Wightman
functions Wn replaces the positivity axiom in the
case of indefinite-metric quantum fields:

Theorem 5 Given a Wightman functional W, there
exists an admissible Hilbert space topology 
 on
H0 =S=LW if and only if there exists a family of
Hilbert seminorms pn on Sn such that jWnþn

(f 
 h)j � pn(f )pm(h), 8n, m 2 N0, f 2 Sn, h 2 Sm.

In some cases, covering also examples with
nontrivial scattering in arbitrary dimension, the
condition of Theorem 5 can be checked explicitly
(see Non-trivial Models of Quantum Fields with
Indefinite Metric).

It should be mentioned that different choices of the
Hilbert seminorms pn lead to potentially different
maximal Hilbert space closures (Hoffmann
1998, Constantinescu and Gheondea 2001). In fact,
often the topology is not even Poincaré invariant and
hence the states that can be approximated with local
states depend on a chosen inertial frame. This fact,
for the case of QED, has been interpreted in terms of
physical gauges.

Many results from axiomatic field theory (see
Axiomatic Quantum Field Theory) with positive
metric also hold in the case of QFT with indefinite
metric, like the PCT and the Reeh–Schlieder
theorem, the irreducibility of the field algebra (for
massive theories) and the Bisoniano–Wichmann
theorem (see Algebraic Approach to Quantum Field
Theory). Other classical results, like the Haag–
Ruelle scattering theory and the spin and statistics
theorem definitively do not hold, as has been proved
by counterexamples. This is, however, far from
being a disadvantage, as, for example, it permits the
introduction of various gauges in the scattering
theory of the vector potential A�(x) and fermionic
scalar ‘‘ghost’’ fields in the BRST quantization (see
BRST Quantization) formalism.
Gupta–Bleuler Gauge Procedure

Here the Gupta–Bleuler gauge procedure is pre-
sented in a slightly generalized form following
Steinmann’s monograph. Classically, the equations
of motion for the vector potential A�(x),

@�@�A�ðxÞ þ �@�@�A�ðxÞ ¼ j�ðxÞ ½16�

together with Lorentz gauge condition
B(x) = @�A�(x) = 0 imply the Maxwell equations
[10]. Here, � 2 R plays the role of a gauge
parameter. As seen above, both equations, the so-
called pseudo-Maxwell equations [16] and the
Lorentz gauge condition B(x) = 0, cannot both hold
as operator identities. The idea for the quantization
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of the theory therefore is to give up the Lorentz
gauge condition as an operator identity on the entire
state space H.

Suppose one has constructed such a theory with
an indefinite inner state space H. Already for the
noninteracting theory, any invariant, spectral, local,
and covariant solution requires indefinite metric, cf.
the explicit formula [18] below. To complete the
Gupta–Bleuler program, one needs to find a sub-
space of (equivalence classes of) physical states H0 of
the inner-product space H0 such that the following
conditions hold:

1. the vacuum is a physical state, that is, � 2 H0;
2. observable fields like j�(x) and F��(x) map H0 to

itself;
3. the inner product h.,.i restricted to H0 is positive

semidefinite;
4. observable fields map H00, the set of null vectors

in H0, to itself; and
5. the Maxwell equations hold on H0 in the sense

h�; @�F��ðxÞ�i ¼ h�; j�ðxÞ�i; 8�;� 2 H0 ½17�

Then one obtains Hph as the completion of the
quotient space H0=H00. The physical Hilbert space
Hph contains the vacuum � (1), observable fields
act on Hph (2) and (4), it is a Hilbert space (3)
and the Maxwell equations hold on it (5).

To see that such a construction is possible,
consider the noninteracting case j�(x) = 0, that is,
the limit case of vanishing electrical charge e! 0,
first. By taking the divergence of [16], one obtains
(1� �)@�@�@

�A�(x) = 0. Excluding the Landau
gauge (�= 1), this implies (@�@�)

2A�(x) = 0. The
most general solution for the two-point vacuum
expectation values that is in agreement with [16]
and the requirements of locality, translation invar-
iance, the spectral condition, uniqueness of the
vacuum, and the Lorentz covariance of A�(x) is then

h�;A�ðxÞA�ðyÞ�i
¼ ð�g�� þ �@�@�ÞDþðx� yÞ

þ �

1� � @�@�E
þðx� yÞ ½18�

where Dþ and Eþ are the inverse Fourier
transforms of �(p0)	(p2) and �(p0)	0(p2) respectively,
p2 = p � p, � being the Heavyside function, 	 the Dirac
measure on R of mass one in zero and 	0 its
derivative. � and � are gauge parameters, for
example, the Feynman gauge corresponds to
�= �= 0. We have also omitted an overall factor
corresponding to a field strength normalization
(choice of numerical value of �h – here �h = 1).
Using Wick’s theorem and the GNS construction
for inner-product spaces (cf. the preceding section),
it is possible to realize a representation of the vector
potential A�(x) as operator-valued distribution on
some indefinite-metric state space H with Fock
structure, for example, a Krein closure of the GNS
space with � the GNS vacuum and D 
 H the
canonical domain of definition. In the case of
Feynman gauge, the metric operator � can be
obtained by a second quantization of the operator
f� !

P4
�= 1 g��f� on the one-particle space S1.

In particular, the field B(x) acts as an operator-
valued distribution on H and, by taking the
divergence of [16], it follows that @�@�B(x) = 0.
Thus, B(x) = Bþ(x)þ B�(x) can be decomposed into
a positive (‘‘annihilation’’) and a negative (‘‘crea-
tion’’) frequency part B�(x). One obtains:

Theorem 6 The space H0= {� 2 D: Bþ(x)� = 0}
fulfills all requirements (1)–(5) of the Gupta–Bleuler
gauge procedure.

Condition (1) is obvious and (2) follows from the
fact that the fields F��(x) and B(x) commute, which
can be checked on the level of two-point functions
[18]. In the same spirit, one can also use [18] to
check (3) and (4) by explicit calculations on the one-
particle space and showing that H0 is the Fock space
over the one-particle states annihilated by Bþ(x).
Finally, by Hermiticity of A�(x), Bþ(x)�= B�(x) and
thus h�, B(x)�i= h�, Bþ(x)�i þ hBþ(x)�, �i= 0. As
the field B(x) stands for the obstruction to Maxwell
equations, this implies condition (5).

It should be noted that the physical state space
Hph does not depend on the gauge parameters �, �
and that it is spanned by repeated application of the
field tensor F��(x) to the vacuum.

By current conservation, the divergence of [16]
still yields @�@�B(x) = 0 also in the interacting case
where e 6¼ 0. One can then choose the same gauge
condition as in Theorem 6 to define H0. One can
then try to prove that this space fulfills all the
requirements of the Gupta–Bleuler procedure, for
example, in the sense of perturbation theory. Using
more advanced formulations as, for example, BRST
quantization and Bogoliubov’s local S-matrix form-
alism, this program has been completed up to a
solution of the infrared problem (see Perturbative
Renormalization Theory and BRST).

A different procedure, motivated by the necessity of
coincidence of all charges QC, QG, and QM on the
physical state space, has been elaborated by Steinmann.
It deviates from the standard procedure in the sense that
the physical space H0 is not included in H, but Hph is
directly obtained from the GNS procedure after taking
certain limits of Wightman functions restricted to
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certain gauge-invariant algebras constructed from the
Borchers algebra and a limiting procedure in a gauge
parameter. The Wightman functional on this gauge-
invariant algebras are positive (in the sense of perturba-
tion theory), the limiting procedure, however, implies
that the so-obtained physical states are singular (i.e.,
have diverging inner product) to states in H, hence
the so-defined state spaces corresponding to going to
a physical gauge after solving the problem of a
perturbative construction of an indefinite-metric solu-
tion, are not subspaces of H.

See also: Algebraic Approach to Quantum Field Theory;
Axiomatic Approach to Topological Quantum Field
Theory; Axiomatic Quantum Field Theory; Boundary
Conformal Field Theory; BRST Quantization;
Perturbative Renormalization Theory and BRST;
Quantum Fields with Indefinite Metric: Non-Trivial
Models.
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Introduction

Let g be a Riemannian metric on a smooth compact
manifold M of dimension m. We assume for the
moment that the boundary of M is empty and
postpone until later a discussion of the more general
setting. If x = (x1, . . . , xm) is a local system of
coordinates on M, let

gij :¼ g @ x
i ; @

x
j

� �

give the components of the metric tensor. Let D be
an operator of Laplace type on a smooth vector
bundle V over M. Adopt the Einstein convention
and sum over repeated indices. Relative to a local
coordinate frame for V, D has the form

D ¼ � gijId@ x
i @

x
j þ Ak@ x

k þ B
n o

where Ak and B are endomorphisms (i.e., matrices)
of V.

We assume that V is equipped with a positive-
definite inner product and that D is self-adjoint.
There is then a complete orthonormal basis {�i} for
L2(V), where �i 2 C1(V) and D�i =�i�i. The collec-
tion {�i,�i} is called a discrete spectral resolution of
D. For example, if D = �@2

� on the circle, then the
discrete spectral resolution is

e
ffiffiffiffiffi
�1
p

n�; n2
n o

n2Z

If we order the eigenvalues �1 � �2 � � � � and repeat
each eigenvalue according to multiplicity, then there
is the following estimate due to Weyl:

�n � n2=m as n!1



We now suppose given a pair of vector bundles V1

and V2 over M and a kth-order partial differential
elliptic operator

A : C1ðV1Þ ! C1ðV2Þ

Locally, we decompose

A ¼
X
jIj�k

aI@
I
x

where I = (i1, . . . , im) is a multi-index and where

@ I
x ¼ @ x

1

� �i1 . . . @ x
m

� �im

The aI are linear maps from V1 to V2. The leading
symbol of A is then defined by setting

�LðAÞðx; �Þ :¼ ð
ffiffiffiffiffiffiffi
�1
p

Þk
X
jIj¼k

aIðxÞ�I

where �I = (�1)i1 . . . (�m)im , and

� ¼ ð�1; . . . ; �mÞ

are local fiber coordinates on the cotangent bundle.
The leading symbol is an invariantly defined map

�L : T�M! EndðV1; V2Þ

For example, if V1 = V2 and if D is an operator of
Laplace type, then the leading symbol is given by the
metric tensor, that is,

�LðDÞ ¼ gij�i�jId ¼ j�j2Id

If d is exterior differentiation, then the leading
symbol is given by exterior multiplication, that is,

�LðdÞð�Þ! ¼
ffiffiffiffiffiffiffi
�1
p

� ^ !

The operator A is said to be elliptic if �L(A) is an
isomorphism from V1 to V2 for any � 6¼ 0. If A is an
elliptic partial differential operator, then

indexðAÞ :¼ dim kerðAÞ � dim cokerðAÞ
¼ dim kerðA�AÞ � dim kerðAA�Þ

is well defined. As the index vanishes if m is odd, we
assume for the most part that m is even.

If A" is a smooth one-parameter family of such
operators, then index (A") is independent of ". The
index depends only on the homotopy class of the
leading symbol of A within the class of invertible
symbols; it does not depend on the underlying
metric of the manifold and it does not depend on
the fiber metrics chosen for V1 and V2.

The Atiyah–Singer index theorem expresses the
index as the integral of suitably chosen polynomials
in the curvature tensor for the classical elliptic
complexes and, more generally, in terms of

cohomological information for general elliptic com-
plexes. Further details appear later in the article.

The primary focus here is on the complexes which
are of Dirac type, that is, complexes where A is a
first-order partial differential operator and where
the associated second operators D1:= A�A and
D2:= AA� are of Laplace type.

Here is a brief outline of this article. The classical
elliptic complexes (de Rham, signature, spin,
Dolbeault, Yang–Mills) are discussed first. Next
the characteristic classes are introduced, followed by
the relevant formula for the index of the classical
elliptic complexes, manifolds with boundary, and
the equivariant index. Index theory is an enormous
topic and here only classical features are emphasized
as a complete treatment is beyond the scope of a
short expository note such as this one. As some
guide to various applications in mathematical
physic s, the reader is refe rred to the Further Reading
section.

The Classical Elliptic Complexes

The de Rham Complex

Let �pM be the bundle of smooth p forms over M
and let

d : C1ð�pMÞ ! C1ð�pþ1MÞ

and

� : C1ð�pMÞ ! C1ð�p�1MÞ

be the exterior derivative and dually the interior
derivative, respectively. We set

� :¼ ðd þ �Þ2 on C1ð�MÞ

and the decompose � = �p �p, where �p is an
operator of Laplace type on C1(�pM).

We have d2 = 0. The de Rham cohomology
groups are given by taking the quotient of the closed
forms by the exact forms:

HpðM; RÞ :¼ kerðd : C1ð�pMÞ ! C1ð�pþ1MÞÞ
imðd : C1ð�p�1MÞ ! C1ð�pMÞÞ

The Hodge–de Rham theorem identifies Hp(M; R)
with the kernel of the Laplacian

kerð�pÞ ¼ HpðM; RÞ

and with the topological cohomology groups.
If � is a cotangent vector, let e(�) :! ! � ^ ! be

exterior multiplication. Let i(�) be the dual
operator, interior multiplication. If {ei} is a local
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ortho-normal frame for TM, let eI = ei1 ^ � � � ^ eip ,
where I = {1 � i1 < � � � < ip � m}. Then we have

eðe1ÞeI ¼ 0 if i1 ¼ 1

e1 ^ eI if i1 > 1

�

iðe1ÞeI ¼ ei2 ^ � � � ^ eip if i1 ¼ 1

0 if i1 > 1

�

Define a Clifford module structure on �M by

�ð�Þ :¼ eð�Þ � ið�Þ

If {ei} is a local orthonormal basis for TM, then

�ðeiÞ�ðejÞ þ �ðejÞ�ðeiÞ ¼ �2�ijId

so the usual Clifford commutation rules are satisfied.
Let r be the Levi-Civita connection on M. We may
then expand

d ¼ eðeiÞrei
; � ¼ �iðeiÞrei

d þ � ¼ �ðeiÞrei

The de Rham complex is then defined by taking

�evenM :¼ �k�2kM; �oddM :¼ �k�2kþ1M

d þ � : C1ð�evenMÞ ! C1ð�oddMÞ

The Signature Complex

The signature complex arises from a different decom-
position of the exterior algebra. Let Clif M be the
Clifford algebra of T�M; this is the universal unital
algebra generated by T�M subject to the Clifford
commutation relations given above:

�1 � �2 þ �2 � �1 ¼ �2gð�1; �2Þ � Id

We suppose M is orientable and let

orn ¼ e1 � � � � � em 2 Clif M

be the orientation class. The map � ! �(�) extends
to a unital algebra homomorphism

� : Clif M! Endð�MÞ

�(orn) defines an endomorphism of �M which is,
modulo suitable sign conventions, the Hodge ?
operator. If m = 2k is even, then

ðd þ �Þ�ðornÞ ¼ ��ðornÞðd þ �Þ

Set

� :¼ ð
ffiffiffiffiffiffiffi
�1
p

Þk�ðornÞ

As �2 = Id, we can decompose

�M�C ¼ �þM� ��M

where �	M are the 	1 eigenspaces of �. The
signature complex is then given by

ðd þ �Þ : C1ð�þMÞ ! C1ð��MÞ

Twisted Signature Complex

Let V be an auxiliary complex vector bundle over
M which is equipped with a unitary connection rV .
We use the connection rV on V and the Levi-Civita
connection on TM to covariantly differentiate
tensors of all types. The twisted signature complex
is defined by setting

ðdþ �ÞV
:¼ð�ðeiÞ� IdÞrei

: C1ð�þM�VÞ!C1ð��M�VÞ

Yang–Mills complex

This complex in dimension 4 arises from yet another
decomposition of the exterior algebra. We use the
discussion in the previous section to decompose

�2M ¼ �2;þM� �2;�M

into the 	1 eigenspaces of �. Let

	 : �2M! �2;�M

be orthogonal projection. The Yang–Mills complex
is the 3-term sequence

d : C1ð�0MÞ ! C1ð�1MÞ

and

	d : C1ð�1MÞ ! C1ð�2;�MÞ

We can wrap up this sequence to obtain an
equivalent elliptic complex

ðd þ �Þ : C1ð�even;�MÞ ! C1ð�odd;þMÞ

As with the signature complex, this complex can
be twisted by taking coefficients in an auxiliary
vector bundle V. It is crucial to the study of four-
dimensional geometry using Yang–Mills theory.

Dolbeault Complex

Let z = (z1, . . . , zk) be a local system of holomorphic
coordinates on a complex manifold M, where
zi = xi þ

ffiffiffiffiffiffiffi
�1
p

yi. We define

dzi :¼ dxi þ
ffiffiffiffiffiffiffi
�1
p

dyi; d�zi :¼ dxi �
ffiffiffiffiffiffiffi
�1
p

dyi

@z
i ¼ 1

2 @ x
i �

ffiffiffiffiffiffiffi
�1
p

@
y
i

� �
; �@ z

i ¼ 1
2 @ x

i þ
ffiffiffiffiffiffiffi
�1
p

@
y
i

� �
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and decompose d = @ þ �@, where

@ :¼ eðdziÞ@ z
i and �@ :¼ eðd�ziÞ@ �z

i

on the complexified exterior algebra. Let �0 be the
adjoint of @ and �00 be the adjoint of �@. Let

d�zI :¼ d�zi1 ^ � � � ^ d�zip

�ð0;evenÞ :¼ Spanfd�zIgjIj is even

�ð0;oddÞ :¼ Spanfd�zIgjIj is odd

The Dolbeault complex is then defined by

ð �@ þ �00Þ : C1ð�ð0;evenÞMÞ ! C1ð�ð0;oddÞMÞ

This complex can be twisted by taking coefficients
in a holomorphic bundle V over M.

The Spin Complex

Let M be orientable. Let PSO be the principal SO
bundle of orthonormal frames for the tangent
bundle. A spin structure s on M is a principal
Spin bundle PSp together with a double cover

 : PSp ! PSO which respects the usual double
cover 
 : Spin ! SO of the structure groups.
Equivalently, a spin structure is a lifting of the
transition functions from SO to Spin which
preserves the cocycle condition. One says that M
is spin if it admits a spin structure.

A manifold is orientable if and only if the first
Stiefel–Whitney class of M vanishes; an orientable
manifold is spin if and only if the second Stiefel–
Whitney class of M vanishes as well; these are
Z2-valued cohomology classes. Inequivalent spin
structures are parametrized by the cohomology group
H1(M; Z2) or, equivalently, by real-line bundles on M.

The spin representation S of Spin defines an
associated spin bundle SM =S(M, s). There is a
natural Clifford action c of TM on SM. The Levi-
Civita connection lifts to define the spin connec-
tion on S and the Dirac operator is defined by

AðsÞ :¼ cðdxiÞr@ x
i

on C1ðSMÞ

Let m = 2k and let � := (
ffiffiffiffiffiffiffi
�1
p

)kc(orn). Since
c(�)2 = Id, one can decompose

SM ¼ SþM� S�M

as the direct sum of the half-spin bundles to obtain
the spin complex:

AðsÞ : C1ðSþMÞ ! C1ðS�MÞ

As with the signature complex, the spin complex can
be twisted by taking coefficients in an auxiliary vector
bundle V.

Relating the Classic Elliptic Complexes

One has natural isomorphisms of virtual representa-
tions of the spinor group:

�þ � �� ¼ ðSþ � S�Þ � ðSþ þ S�Þ
�even � �odd ¼ ð�1Þm=2ðSþ � S�Þ � ðSþ � S�Þ

which show that the signature complex and de Rham
complexes are the spin complexes with coefficients in
the virtual bundles

SþMþ S�M and ð�1Þm=2ðSþM� S�MÞ

respectively. If M is complex and spin, then the
Dolbeault complex is the spin complex with coeffi-
cients in the square root of the canonical bundle.

One can consider complex spinors to define the
group Spinc(m). Any spin manifold admits a Spinc

structure with trivial associated complex line bun-
dle. Any complex manifold admits a Spinc structure
with associated complex line bundle given by the
canonical bundle. Thus, a complex manifold admits
a Spinc structure if and only if it is possible to take a
square root of the canonical line bundle; inequiva-
lent Spin structures are parametrized by inequivalent
square roots. If M is orientable, then M admits a
Spinc structure if and only if the second Stiefel–
Whitney class of M lifts from H2(M; Z2) to
H2(M; Z); in the complex setting, this lifting is
performed by the first Chern class. Inequivalent
Spinc structures are parametrized by H2(M; Z) or,
equivalently, by complex line bundles over M.

Characteristic Classes

The Euler Form

Let r be the Levi-Civita connection on M. Let

Rðx; yÞ :¼ rxry �ryrx �r½x;y


be the curvature operator. Let {e1, . . . , em} be a local
orthonormal frame for TM and let

Rijkl :¼ gðRðei; ejÞek; elÞ

give the components of the curvature relative to a
local orthonormal frame. Let

"I;J :¼ gðei1 ^ � � � ^ eim ; ej1 ^ � � � ^ ejmÞ

be the totally antisymmetric tensor; this is the sign
of the permutation which sends i� ! j�. Let
m = 2m̄. The Euler form is given by setting

Em :¼ 1

8 �m	 �m �m!
"I;JRi1i2j1j2 . . . Rim�1imjm�1jm
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Let 
ij := Rikkj and � := 
ii be the Ricci tensor and the
scalar curvature, respectively. Then,

E2 ¼
1

4	
� and E4 ¼

1

32	2
f�2 � 4j
j2 þ jRj2g

The Pontrjagin Forms

Since R(x, y) = �R(y, x), we can regard R as a
2-form-valued endomorphism of the tangent bundle.
We define the Pontrjagin forms pi 2 C1(�4iM) by
expanding

det I þ 1

2	
R

� 	
¼ 1þ p1 þ p2 þ � � �

These differential forms are closed and the corre-
sponding cohomology classes

Pi ¼ ½pi
 2 H4iðM; RÞ

in the de Rham cohomology are independent of
the particular Riemannian metric on M which was
chosen.

The Â genus and the Hirzebruch L polynomial
are expressed in terms of these classes using the
splitting principle. Let A be a skew-symmetric
matrix. One sets

pðAÞ :¼ detðI þ AÞ ¼ 1þ p1ðAÞ þ p2ðAÞ þ � � �

As A is skew symmetric, it decomposes as the direct
sum of 2� 2 blocks of the form

0 �i

��i 0

� 	

We then have

pðAÞ ¼
Y
�

1þ �2
�


 �
so

piðAÞ ¼ si �
2
1; �

2
2; . . .

� �
where si is the ith symmetric function;

p1 ¼
X

i

�2
i ; p2 ¼

X
i<j

�2
i �

2
j

and so forth. Let

Lð~�Þ :¼
Y
�

��
tanhð��Þ

¼ 1þ L1ð~�Þ þ L2ð~�Þ þ � � �

Âð~�Þ :¼
Y
�

��

2 sinh 1
2��
� �

¼ 1þ Â1ð~�Þ þ Â2ð~�Þ þ � � �

As Li and Âi are even symmetric functions of ~�, one
can write Li = Li(p1(A), . . . , pk(A)). For example,

L ¼ 1þ 1
3 p1 þ 1

45 7p2 � p2
1

� �
þ � � �

Â ¼ 1� 1
24 p1 þ 1

5760 ð7p2
1 � 4p2Þ þ � � �

Substituting (1=2	)R for A then permits one to
define the Hirzebruch polynomial L(R) and the Â
genus Â(R).

The Chern Forms

Let V be a k-dimensional complex vector bundle
over M. Let r be a Hermitian connection on V and
let � be the associated curvature endomorphism.
The Chern forms ci 2 C1(�2iM) are defined by
expanding

det I þ
ffiffiffiffiffiffiffi
�1
p

2	
�

 !
¼ 1þ c1 þ c2 þ � � �

As with the Hirzebruch polynomial and the Â genus,
the Chern character and Todd genus are expressed
in terms of the generating functions:

Tdð~�Þ ¼
Y
�

��
1� e���

and

chð~�Þ ¼
X
�

��
�!

One has

Td ¼ 1þ Td1 þ Td2 þ � � �
¼ 1þ 1

2 c1 þ 1
12 c2

1 þ c2

� �
þ � � �

Ch ¼ ch0 þ ch1 þ ch2 þ � � �
¼ kþ c1 þ 1

2 c2
1 � 2c2

� �
þ � � �

The Index Theorem

The Gauss–Bonnet Theorem

We return to the de Rham complex. Let


ðMÞ ¼
X

p

ð�1Þp dim HpðM; RÞ

be the Euler–Poincaré characteristic; 
(M) = 0 if m is
odd. Let M have a simplicial structure with n(k) cells
of degree k; n(0) is the number of vertices, n(1) is the
number of edges, n(2) is the number of triangles, etc.
Then


ðMÞ ¼
X

k

ð�1ÞknðkÞ
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so the Euler–Poincaré characteristic is a combina-
torial invariant. By the Hodge–de Rham theorem,

indexðd þ �Þ ¼ dim kerð�evenÞ � dim kerð�oddÞ
¼ 
ðMÞ

The Chern–Gauss–Bonnet theorem expresses this
invariant in terms of curvature


ðMÞ ¼
Z

M

Em dx

where Em is the Euler form given above. If one twists
the de Rham complex to take coefficients in an
auxiliary vector bundle V, then no new information
results, since

indexfd þ �gV ¼ 
ðMÞ � dimðVÞ

The Hirzebruch Signature Theorem

Let sign (M) be the index of the signature complex
on a manifold of dimension 4k; the index vanishes
in dimensions m � 2 mod 4. Let ? be the Hodge
duality operator. As ?�p ?�1= �m�p, ? preserves the
eigenspaces of the Laplacian. In particular, ? induces
an isomorphism

? : HpðM; RÞ ¼ kerð�pÞ
! Hm�pðM; RÞ ¼ kerð�m�pÞ

which implements Poincaré duality. In dimension
2k, ?2 = Id. Decompose

H2kðM; RÞ ¼ H2k;þðM; RÞ �H2k;�ðM; RÞ

into the 	1 eigenspaces of ?; these may be identified
with ker(�2k,	) acting on C1(�2k,	M). As the
contributions to the signature away from the middle
dimension cancel,

signðMÞ ¼ dim H2k;þðM; RÞ � dim H2k;�ðM; RÞ

As with the de Rham complex, there is a
topological description of this invariant. If � and �
are closed 2k forms, one sets

h�; �i :¼
Z

M

� ^ �

One can use Stoke’s theorem to see that this
induces a symmetric bilinear form on the de
Rham cohomology groups H2k(M; R). Poincaré
duality then shows that this symmetric bilinear
form is nondegenerate, so this is a form of type

(p, q); sign(M) is the signature of this quadratic
form:

signðMÞ ¼ q� p

The Hirzebruch signature formula expresses sign
(M) in terms of curvature; if L is the Hirzebruch
polynomial described above and if m = 4k, then

signðMÞ ¼
Z

M

Lk

Let V be an auxiliary coefficient bundle. Taking
coefficients in V then yields the formula

signVðMÞ ¼
X

4iþ2j¼m

2j

Z
M

Li ^ chjðVÞ

The Index of the Yang–Mills Complex

Let YMV be the Yang–Mills complex with coeffi-
cients in an auxiliary vector bundle V, then the
index can be evaluated using the formulas given
above as

indexfYMVg ¼ 1
2fdimðVÞ
ðMÞ� signðM; VÞg
¼ 1

2

R
MfdimVE4�dimVL1�4ch2ðVÞg

The Index of the Dolbeault Complex

If V is a holomorphic bundle over a complex
manifold M, then

indexfð �@ þ �00ÞVg ¼
X

2iþ2j¼m

Z
M

TdiðMÞ ^ chjðVÞ

The index of the untwisted Dolbeault complex is
called the arithmetic genus and denoted by ag(M).

The Index of the Spin Complex

If M is a spin manifold and if AV is the Dirac
operator with coefficients in an auxiliary coefficient
bundle, then

indexfAVg ¼
X

4iþ2j¼m

Z
M

ÂiðMÞ ^ chjðMÞ

The index of the spin complex is called the Â genus
and is denoted by Â(M). If M is a Spinc manifold,
the appropriate formula becomes

indexfAc
Vg ¼

X
4iþ2jþ2k¼m

Z
M

ÂiðMÞ ^ chjðMÞ ^ �k

where �= 1
2 c1(L), L being the complex line bundle

associated with the Spinc structure.
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Properties

The classic elliptic complexes defined above are
multiplicative with respect to Cartesian product.
Suppose that M1 and M2 are Riemannian manifolds
with the appropriate structures. For the signature
complex, suppose M1 and M2 are oriented; for the
Dolbeault complex, suppose M1 and M2 are holo-
morphic; for the spin complex, suppose M1 and M2

are spin. By taking the twisting coefficient bundle to
be trivial in the interests of simplicity, one has


ðM1 �M2Þ ¼ 
ðM1Þ
ðM2Þ
signðM1 �M2Þ ¼ signðM1ÞsignðM2Þ

agðM1 �M2Þ ¼ agðM1ÞagðM2Þ
ÂðM1 �M2Þ ¼ ÂðM1ÞÂðM2Þ

These complexes behave well under finite coverings.
Let F ! M2 ! M1 be a finite covering projection
with jFj sheets. Then


ðM2Þ ¼ jFj
ðM1Þ
signðM2Þ ¼ jFjsignðM1Þ

agðM2Þ ¼ jFjagðM1Þ
ÂðM2Þ ¼ jFjÂðM1Þ

The connected sum M1#M2 is defined by punching
out small disks about points Pi in Mi and then
joining along the spherical boundaries that remain.
It is necessary, of course, to smooth out the resulting
corners. Note that if M1 and M2 are complex
manifolds, then M1#M2 is no longer a complex
manifold in general. Since


ðSmÞ ¼ 2; signðSmÞ ¼ 0; and ÂðSmÞ ¼ 0

the following additivity results follow from the
integral formulas given above:


ðM1#M2Þ ¼ 
ðM1Þ þ 
ðM2Þ � 2

signðM1#M2Þ ¼ signðM1Þ þ signðM2Þ
ÂðM1#M2Þ ¼ ÂðM1Þ þ ÂðM2Þ

Examples and Applications

Let Sm be the standard sphere and let CPj be the
complex projective plane. One then has


ðS4Þ ¼ 2; signðS4Þ ¼ 0


ðS2 � S2Þ ¼ 4; signðS2 � S2Þ ¼ 0


ðCP2Þ ¼ 3; signðCP2Þ ¼ 1

In dimension 4, the Riemann–Roch formula yields

agðM4Þ ¼ 1
4 f
ðMÞ þ signðMÞg

This would yield ag(S4) = 1
2 ; since 1

2 is not an integer,
this shows that S4 does not admit a complex
structure; a similar argument shows that Sn does
not admit a complex structure for n 6¼ 2, 6, and it is
not known whether S6 admits a holomorphic
structure; it does admit an almost-complex
structure.

If we set M = CP2#CP2, then

agðMÞ ¼ 1
4 ð3þ 3� 2þ 1þ 1Þ ¼ 3

2

and thus CP2#CP2 does not admit a complex
structure. These examples are typical of the use of
the index theorem to prove the nonexistence of
certain structures.

The General Index Theorem

Let S(T�M) be the sphere bundle of unit cotangent
vectors and let D(T�M) be the disk bundle of
cotangent vectors of length at most 1. Let

P : C1ðV1Þ ! C1ðV2Þ

be an elliptic pseudodifferential operator. The
leading symbol p := �L(P) induces a smooth map

p : SðT�MÞ ! EndðV1; V2Þ:

We form �(M) by gluing two copies of D(M)
together along their common boundary S(M) and
we define a bundle �(p, V1, V2) over �(M) by gluing
V1 to V2 over S(M) using the clutching function p.
The Atiyah–Singer index theorem expresses the
index of P in terms of cohomological data involving
the Chern class of the symbol bundle and the
characteristic classes of the tangent bundle of M. If
�(M) is given a suitable orientation, then

indexðPÞ ¼
X

2iþ4j¼2m

Z
�ðMÞ

chið�ðp; V1; V2ÞÞ ^ TdjðMÞ

It specializes to the results given above for
the classical elliptic complexes. Conversely, by
using K-theoretic methods, the index theorem in
full generality can be derived from the special case
of the twisted signature complex.

Manifolds with Boundary

If the boundary of M is nonempty, we must impose
suitable boundary conditions.

Local Boundary Conditions

Choose local coordinates x = (x1, . . . , xm) near the
boundary of M so that xm is the geodesic distance to
the boundary. On the boundary, we can decompose
a differential form ! 2 C1(�M) in the form
!=!1 þ dxm ^ !2, where !1 and !2 are tangential
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differential forms. Absolute and relative boundary
conditions are defined by setting

Ba! :¼ !2j@M and Br! :¼ !1j@M

Let (d þ �)a and (d þ �)r be the associated realiza-
tions. These operators preserve the grading of the
exterior algebra �M = �evenM� �oddM and define
elliptic complexes

ðd þ �Þa : C1ð�evenMÞ ! C1ð�oddMÞ
ðd þ �Þr : C1ð�evenMÞ ! C1ð�oddMÞ

We consider a collection

J ¼ f1 � j1 < � � � < jp < mg

of tangential indices and let

dxJ ¼ dxj1 ^ � � � ^ dxjp

The associated absolute boundary conditions for the
Laplacian are defined by

~Bað�JdxJ þ  Jdxm ^ dxJÞ
¼ ð Jj@MdxJÞ � @ x

m�Jj@M

� �
dxJ

If ? is the Hodge operator, then one sets dually:

~Brð!Þ ¼ ~Bað?!Þ

Let �p
a and �p

r be the associated realizations of the
Laplacian with these boundary conditions. The
Hodge–de Rham theorem extends to this setting to
yield isomorphisms

ker �p
a

� �
¼ HpðM; RÞ

and

ker �p
r

� �
¼ HpðM; @M; RÞ

The Hodge ? operator intertwines �p
a and �m�p

r

and implements the Poincaré duality isomorphism
Hp(M; R) = Hm�p(M, @M; R). This also shows that

indexðd þ �Þa ¼
X

p

ð�1Þp dim HpðM; RÞ ¼ 
ðMÞ

and

indexðd þ �Þr ¼
X

p

ð�1Þp dim HpðM; @M; RÞ

¼ 
ðM; @MÞ ¼ 
ðMÞ � 
ð@MÞ

Let Em be the Euler form if m is even. We set
Em = 0 if m is odd. Let L be the second fundamental

form. Let A = (a1, . . . , am�1) and B = (b1, . . . , bm�1)
be collections of distinct indices ranging from 1 to
m� 1. Set

Lm�1 :¼
X

k

1

	k8kk!ðm� 1� 2kÞ!volðSm�1�2kÞ

� "A;BRa1a2b2b1
. . . Ra2k�1a2kb2kb2k�1

� La2kþ1b2kþ1
. . . Lam�1bm�1

The Chern–Gauss–Bonnet theorem generalizes to
this setting to yield


ðMÞ ¼ indexðd þ �Þa

¼
Z

M

Emdxþ
Z
@M

Lm�1dy

For example,


ðM2Þ ¼ 1

4	

Z
M2

�dxþ 2

Z
@M2

Laady

� �


ðM3Þ ¼ 1

8	

Z
@M3

fRabba þ LaaLbb � LabLabgdy


ðM4Þ ¼ 1

32	2

Z
M4

f�2 � 4j
j2 þ jRj2gdx

þ 1

24	2

Z
@M4

f3�Laa þ 6RamamLbb

þ 6RacbcLab þ 2LaaLbbLcc

� 6LabLabLcc þ 4LabLbcLacgdy

The interior integral vanishes if m is odd. The
boundary integral can be nonzero in any dimen-
sions. Thus, in particular, the index of this elliptic
complex can be nonzero even if m is odd; 
(Dm) = 1
for any m. The index of (d þ �)r is computed
similarly.

Spectral Boundary Conditions

In contrast to the de Rham complex, there do not
exist local boundary conditions for the signature,
spin, and Dolbeault complexes. To simplify the
discussion, we assume that the metric is the product
near the boundary; there are appropriate compen-
sating terms involving the second fundamental form
in the more general setting. Let A : C1(V1) !
C1(V2) denote either the twisted signature or the
twisted spin complexes; there are some additional
difficulties for the Dolbeault complex. Near the
boundary, we can express

A ¼ � @x
m þ AT

� �
where AT is a self-adjoint tangential operator of
Dirac type on V1j@M and � is a unitary bundle
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isomorphism from V1j@M to V2j@M. Let {�i,�i} be the
discrete spectral resolution of AT. One defines

�ðAT; sÞ ¼
X
�k 6¼0

sgnð�kÞj�kj�s

as a measure of the spectral asymmetry of AT. This
is well defined for Re(s)
 1 and has a meromorphic
extension to the complex plane C. It turns out that 0
is a regular value and one defines

�ðATÞ :¼ 1
2 f�ðAT; sÞ þ dim kerðATÞgjs¼0

The spectral boundary conditions can now be
imposed. Let �� be orthogonal projection in
L2(V1j@M) on the span of the eigensections of AT

corresponding to non-negative eigenvalues and let
A� be the associated realization defined by this
boundary condition.

One can use the Atiyah–Patodi–Singer index
theorem to generalize the relations given above to
this setting. Let fA be the local integral given above
that involves the Hirzebruch L polynomial for the
signature complex or the Â genus for the spin
complex. One then has

indexðA�Þ ¼ �ðATÞ þ
Z

M

fA

There are suitable correction formulas involving
integrals of polynomials in the second fundamental
form and in the curvature tensor if the structures are
not product near the boundary.

Equivariant Problems

The Classical Lefschetz Formula

Let M be a compact Riemannian manifold without
boundary. Let T be a smooth map from M to M. Then
pullback T� induces an action on C1(�pM) which
commutes with the exterior derivative d and hence an
action on the de Rham cohomology groups Hp(M; R).
The Lefschetz number of T is then given by

LðTÞ ¼
X

p

ð�1ÞptrfT� on HpðM; RÞg

To illustrate the Lefschetz number, let M = T2 be
the two-dimensional torus. Let e1 := dx1, let
e2 := dx2, and let e12 := dx1 ^ dx2. Then,

H0ðT2; RÞ ¼ 1 �R
H1ðT2; RÞ ¼ e1 � R þ e2 �R
H2ðT2; RÞ ¼ e12 � R

Let T(x1, x2) = (n11x1 þ n12x2, n21x1 þ n22x2). Then,

T�ð1Þ ¼ 1

T�ðe1Þ ¼ n11e1 þ n12e2

T�ðe2Þ ¼ n21e1 þ n22e2

T�ðe12Þ ¼ ðn11n22 � n12n21Þe12

and, consequently, the Lefschetz number becomes

LðTÞ ¼ detðI � T�Þ
¼ 1� ðn11 þ n22Þ þ ðn11n22 � n12n21Þ

The classical Lefschetz fixed-point formula expresses
L in terms of data for the fixed-point setF (T) and is an
example of the equivariant index theorem. One
assumes that the fixed-point set of T consists of smooth
submanifolds N1, . . . , Nk and that the induced map
dT� on the normal bundles of these manifolds is
nondegenerate. This means that det (I � dT�) 6¼ 0, that
is, that there are no infinitesimal normal directions
which are left fixed. One then has

LðTÞ ¼
X

i

signðdetðI � dT�ÞÞ
ðNiÞ

The Lefschetz Formula for the Other Classical
Elliptic Complexes

Let T be an orientation-preserving isometry of M.
When dealing with the spin complex, suppose that T
preserves the spin structure; when dealing with the
Dolbeault complex, suppose that T preserves the
holomorphic structure. If

A : C1ðV1Þ ! C1ðV2Þ

is one of the classical elliptic complexes, then by
assumption T� commutes with A and hence pre-
serves the eigenspaces of the associated Laplacians.
The Lefschetz number is defined by setting

LAðTÞ :¼ trðT� on kerðA�AÞÞ
� trðT� on kerðAA�ÞÞ

Setting T = Id, one recovers the standard index.
To simplify the discussion, we assume henceforth

that T is an orientation-preserving isometry of M
with only isolated fixed points. Let {�1, . . . , �m=2} be
the rotation angles of dT at a fixed point x of T. Set

�j :¼ cosð�jÞ þ
ffiffiffiffiffiffiffi
�1
p

sinð�jÞ

We take the sum over the isolated fixed points x and
then the product over the rotation angles 1 � j �
m=2 to express
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LsignðTÞ ¼
X

x

Y
j

�
ffiffiffiffiffiffiffi
�1
p

cot
�j

2

� 	� �

LspinðTÞ ¼
X

x

Y
j

� 1

2

ffiffiffiffiffiffiffi
�1
p

csc
�j

2

� 	� �

LDolbðTÞ ¼
X

x

Y
j

ð1� ��jÞ�1

In considering the spin complex, we assume T
preserves the spin structure. This permits us to lift dT
from SO(m) to Spin(m) and defines liftings of the
rotation angles �i from [0, 2	] to [0, 4	] in such a way
that the formula given above for the spin complex is
well defined. In considering the Dolbeault complex,
we assume that T preserves a complex structure, so the
formula given above for the Dolbeault complex
involving the complex eigenvalues �j is well defined.
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Introduction

Given 1 � p < n, it was shown by Sobolev that there
exists a constant K > 0 such that, for any u 2
C10 (Rn), the space of smooth functions with
compact support in Rn,Z

Rn
jujp

?

dx

� 	1=p?

� K

Z
Rn
jrujp dx

� 	1=p

½1


where ru is the gradient of u and p? = np=(n� p). It
is easily seen that p? in [1] is critical in the following
sense. Let k � kp stand for the Lp-norm. For u 2
C10 (Rn), and � > 0, let also u� be the function given
by u�(x) = u(�x). For p and q two real numbers,

kru�kp ¼ �1�ðn=pÞkrukp

ku�kq ¼ ��n=qkukq

Letting �! 0 and �! þ1, it follows that an
inequality like kukq � Kkrukp holds true for all u
(in particular for the u�’s) only when q = p?. To
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prove [1], the approach of Sobolev was based on the
straightforward representation formula

uðxÞ ¼ ��ðn=2Þ
2�n=2

Z
Rn

Xn

k¼1

xk � yk

jx� yjn @kuðyÞdy

where � is the Gamma function, and on an
n-dimensional version of a theorem of Hardy–
Littlewood concerning fractional integrals that we
apply to the right-hand side of the above representa-
tion formula. More direct arguments were later
discovered in independent works by Gagliardo and
Nirenberg. In particular, the explicit inequality

Z
Rn
jujn=ðn�1Þdx

� �ðn�1Þ=n
� 1

2

Yn

k¼1

Z
Rn
jDkujdx

� �1=n

� 1

2

Z
Rn
jrujdx ½2�

was proved to hold, where Dk is the partial
derivative Dk =@=@xk. Inequality [2] is of the form
[1] when p=1, since 1? =n=(n� 1). By geometric
measure theory, and the coarea formula, it can be
expressed as an isoperimetric type inequality.

There have been several symbols and several
definitions for Sobolev spaces. Before they became
generally associated with the name of Sobolev, they
were sometimes referred to by other names, for
instance, as ‘‘Beppo Levi spaces.’’ We often find two
definitions and two notations in the literature. For �
a domain in Rn, p � 1 real, and u of class Cm in �,
we let

kukm;p ¼
X

0�j�j�m

kD�ukp
p

0
@

1
A

1=p

½3�

when the right-hand side makes sense, where k � kp is
the Lp-norm, �= (�1, . . . ,�n) is a multi-index,
j�j=

P
i �i, and D� = D�1

1 � � �D�n
n . We define

Hm;pð�Þ¼ the completion of
fu 2 Cmð�Þ s.t. kukm;p < þ1g
with respect to the norm k � km; p

Wm; pð�Þ ¼ u 2 Lpð�Þ s.t. D�u 2 Lpð�Þf
for all 0 � j�j � mg

where D� is the weak (or distributional) partial
derivative of u with respect to the multi-index �. Both
Hm, p(�) and Wm, p(�) are Banach spaces (and even
Hilbert when p = 2). It is easily seen that Hm, p(�) �
Wm, p(�), but we had to wait for the work of Meyers
and Serrin to realize that Hm, p(�) = Wm, p(�). The
spaces Hm, p(�), also denoted Wm, p(�), are referred to
as Sobolev spaces. The spaces Hm, p

0 (�), also denoted
Wm, p

0 (�), are defined as the closure of C10 (�) in
Hm, p(�), where C10 (�) is the space of smooth
functions with compact support in �.

Inequality [1] states that the Sobolev space
H1, p

0 (Rn) is naturally embedded in the Lebesgue
space Lp? (Rn), a particular case of what we now
refer to as Sobolev embeddings.
Sobolev Inequalities and the Sobolev
Embedding Theorem in Its First Part

Let m be an integer and let p � 1 be real. The
Sobolev space Hm, p(Rn), also denoted by Wm, p(Rn),
is defined by in one of the two equivalent ways:

Hm; pðRnÞ ¼ the completion of

fu 2 CmðRnÞ s.t: kukm;p < þ1g
with respect to the norm k � km;p

or

Hm;pðRnÞ ¼ u 2 LpðRnÞ s.t: D�u 2 LpðRnÞf
for all 0 � j�j � mg

where D� is the weak (or distributional) partial
derivative of u with respect to the multi-index �, and
k � km, p is as in [3]. The Sobolev space (Hm, p(Rn),
k � km, p) is a Banach space, and even a Hilbert space
when p = 2. The space is reflexive when p > 1, and
we also have that Hm, p(Rn) = Hm, p

0 (Rn), where
Hm, p

0 (Rn) is defined as the closure of C10 (Rn) in
Hm, p(Rn). What we usually refer to as the first part
of Sobolev inequalities can be expressed as follows.

Sobolev embeddings (Part I). For p, q two real
numbers with 1 � q < p, and k, m two integers with
0 � m < k, if 1=p = 1=q� (k�m)=n, then Hk, q �
Hm, p, and there exists K > 0 such that kukm, p �
Kkukk, q for all u 2 Hk, q.

The Sobolev theorem in its first part states that
the above Sobolev embeddings (resp. inequalities)
hold true for the Euclidean space. A particular case
of interest is when k = 1. In this case, we get, as in
the introduction, that for any 1 � p < n, H1, p(Rn) �
Lp? (Rn) where p? = np=(n� p). The embedding for
the Euclidean space reduces to the Sobolev inequal-
ity [1]. An important remark is that there is a
hierarchy for Sobolev embeddings. In particular,
that if H1, 1 � Ln=(n�1), 1? = n=(n� 1), then all the
other embeddings Hk, q � Hm, p hold true. Thanks to
this remark, the Sobolev embedding theorem for
Euclidean space easily follows from an inequality
like [2]. The hierarchy for Sobolev embeddings is an
easy consequence of Hölder’s inequalities when
k = 1, and of Hölder’s inequalities together with
Kato’s inequality when k > 1.
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There are several extensions of Sobolev inequal-
ities in the literature. Famous extensions were
discovered by Gagliardo and Nirenberg. The Nash
inequality, which reads as

Z
Rn

u2 dx

� �ðnþ2Þ=n
�K

Z
Rn
juj dx

� �4=n

�
Z

Rn
jruj2 dx ½4�

for all u 2 H1, 2(Rn), is one of the Gagliardo–
Nirenberg’s inequalities. The Nash inequality easily
follows from [1] when p = 2 and Hölder’s inequal-
ity. There are also extensions of Sobolev spaces, for
instance, spaces of BV-functions or Orlicz–Sobolev
spaces.
The Sobolev Embedding Theorem in Its
Second Part

For m integer, let Cm
B (Rn) be the space of functions

of class Cm in Rn for which the norm

kukCm ¼
X

0�j�j�m

sup
x2Rn
jD�uðxÞj

is finite. What we usually refer to as the second part
of Sobolev inequalities can be expressed as follows.

Sobolev embeddings (Part II). For q � 1 a real
number, and k, m two integers with 0 � m < k, if
1=q� (k�m)=n < 0, then Hk, q � Cm

B , and there
exists K > 0 such that kukCm � Kkukk, q for all
u 2 Hk, q.

The Sobolev theorem in its second part states that
the above Sobolev embeddings (resp. inequalities)
hold true for the Euclidean space. Refinements were
then obtained by Morrey with embeddings in
Hölder spaces. Let, for instance, C0,�(Rn) be the
Hölder space of continuous functions in Rn for
which the norm

kukC0;� ¼ sup
x2Rn
juðxÞj þ sup

x 6¼y

juðyÞ � uðxÞj
jy� xj�

is finite. For k = 1, m = 0, and q � 1 such that 1=q�
1=n < 0, the embedding H1, q(Rn) � C0

B(Rn) can be
refined into an embedding like H1, q(Rn) � C0,�(Rn),
where � 2 (0, 1) is such that 1=q� (1� �)=n < 0.
The Case of Domains and the Kondrakov
Theorem

The Sobolev embeddings in their first and second
parts extend to regular domains �. A typical
condition is that � satisfies a cone property. When
� is bounded, and thus of finite volume, an
embedding like H1, p(�) � Lp?(�) implies that we
also have that H1, p(�) � Lq(�) for all 1 � q � p?.
The Kondrakov theorem states that such embed-
dings are all compact, unless q = p?, in the sense that
bounded sequences of functions in H1, p possess
converging subsequences in Lq.

For p � 1 real, the Sobolev embedding theorem in
its first part provides embeddings of H1, p into
Lebesgue spaces when p < n, while the Sobolev
embedding theorem in its second part provides
embeddings of H1, p into Hölder spaces when p > n.
For p = n, it is false that H1, n can be embedded
into L1. However, when � is bounded, we can
prove that exp (u) 2 L1(�) when u 2 H1, n

0 (�), and
that Z

�

expðuÞ dx � K expð�kukn
1;nÞ

where �, K > 0 are independent of u. We also have
that Z

�

expð�jujn=ðn�1ÞÞ dx � K

for all u 2 H1, n
0 (�) such that krukn � 1, where �,

K > 0 are independent of u. Such inequalities are often
referred to as Moser–Trüdinger type inequalities.
The Case of Riemannian Manifolds

Riemannian manifolds are natural extensions of
Euclidean space. For (M, g) a Riemannian manifold,
m integer, and p � 1 real, we define the Sobolev
space Hm, p(M) by

Hm;pðMÞ¼ the completion of

fu 2 CmðMÞ s.t. kukm;p < þ1g
with respect to the norm k � km;p

where kukm, p =
Pm

i = 0 kriukp,riu is the ith covari-
ant derivative of u, and k � kp is the Lp-norm
in (M, g). A notation like kriukp stands for the
Lp-norm of the pointwise norm jriuj of riu. Sobolev
spaces on manifolds are Banach spaces, even Hilbert
when p = 2, and they are reflexive when p > 1. They
do not depend on the metric when M is compact.

For compact Riemannian manifolds, everything
works as for bounded domains. The Sobolev
embeddings in their first and second parts remain
valid. The Kondrakov theorem also remains valid.
However, since constant functions are in Sobolev
spaces when the manifold is compact, the Lp-norm
of u in the H1, p-norm of u should be added to the
right-hand side in inequalities like [1]. More
precisely, if (M, g) is a compact Riemannian
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manifold of dimension n, and 1 � p < n, then the
inequality for the embedding H1, p(M) � Lp? (M)
reads as: there exists K > 0 such that for any
u 2 H1, p(M),

Z
M

jujp
?

dvg

� �p=p?

�K

Z
M

jrujpdvg þ
Z

M

jujpdvg

� �
½5�

where dvg is the Riemannian volume element with
respect to g. When (M, g) is no longer compact, the
Sobolev embedding theorem might become false. A
nontrivial key observation is that a Sobolev inequal-
ity like [5] on a complete manifold (M, g) implies the
existence of a uniform (with respect to the center)
lower bound for the volume of balls of radius 1. It
follows that for any n � 2, there exist complete
Riemannian n-manifolds (M, g) for which, for any
p 2 [1, n), H1, p(M) 6� Lp?(M). Possible examples are
warped products of the real line R and the
(n� 1)-sphere Sn�1. When the Ricci curvature is
bounded from below, the condition that there is a
uniform (with respect to the center) lower bound for
the volume of balls of radius 1 is necessary and
sufficient in order to get that the Sobolev embed-
dings are valid.
Isoperimetric and Euclidean
Type Inequalities

Let (M, g) be a complete Riemannian n-manifold.
Euclidean type inequalities are said to hold on (M, g)
if there exists K > 0 such that for any 1 � p < n,
and any u 2 H1, p(M),

Z
M

jujp
?

dvg

� �1=p?

� K

Z
M

jrujpdvg

� �1=p

½6�

where p? = np=n� p. As for the Euclidean space, if
the above inequality holds for some p0, then it
holds, with distinct K, for all p0 � p < n. In
particular, if the inequality holds for p = 1, it holds
for all p’s. The inequality when p = 1 was shown to
be true by Hoffman and Spruck when the manifold
is simply connected of nonpositive sectional curva-
ture. Such manifolds are referred to as Cartan–
Hadamard manifolds. The inequality when p = 2 is
related to the nonparabolicity of the manifold,
namely the existence of a minimal Green’s function,
and to the behavior of the minimal Green’s function.

By geometric measure theory and the coarea
formula, [6] when p = 1 is equivalent to the
isoperimetric inequality

Areagð@�Þ � 1

C
Volgð�Þðn�1Þ=n ½7�
where C > 0, � is a smooth bounded domain in
M, Areag(@�) is the volume of @� for the metric
induced by g, and Volg(�) is the volume of � with
respect to g. Moreover, the constants C and K
(for p = 1) are the same in the sense that if [6] for
p = 1 holds with K, then [7] holds with C = K, and
if [7] holds with C, then [6] for p = 1 holds with
K = C.

The sharp constant for the isoperimetric inequal-
ity [7] in Euclidean space is known. When n = 2 its
value is C(2) = 1=(4�) and the sharp isoperimetric
inequality is the well-known inequality L2 � 4�A,
where A is the volume of a smooth bounded domain
in R2, and L is the length of its boundary. For
arbitrary n, the sharp constant C(n) for the isoperi-
metric inequality is given by

CðnÞ ¼ 1

n

n

!n�1

� �1=n

½8�

where !n�1 is the volume of the unit (n� 1)-sphere.
Moreover, still for the Euclidean space, equality
holds in the sharp isoperimetric inequality if and
only if � is a ball. A famous conjecture concerning
sharp isoperimetric inequalities, often referred to as
the Cartan–Hadamard conjecture, is that the sharp
isoperimetric inequality holds on Cartan–Hadamard
manifolds. Thanks to works by Croke, Kleiner, and
Weil, the conjecture is known to be true in
dimensions 2, 3, and 4. From the Bishop–Gromov
comparison theorem, we also get that the only
complete manifold of non-negative Ricci curvature
for which the sharp isoperimetric inequality holds is
the Euclidean space itself.

The sharp constants K = K(n, p) for [6] when p > 1
have been computed in Euclidean space by Aubin,
Rodemich, and Talenti. The extremal functions were
also computed, where, by definition, an extremal
function is a function which realizes the case of
equality in the inequality. We get that

Kðn; pÞ ¼ 1

n

nðp� 1Þ
n� p

� �ðp�1Þ=p

� �ðnþ 1Þ
�ðn=pÞ�ðnþ 1� n=pÞ!n�1

� �1=n

½9�

where, as above, � is the gamma function. More-
over, u is an extremal function for the sharp
inequality in Euclidean space if and only if, up to a
scale factor,

u xð Þ ¼ �

�2 þ jx� ajp=ðp�1Þ

nðn� 2Þ

0
BBB@

1
CCCA

ðn�pÞ=p

½10�
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for some � > 0, and a 2 Rn. When p = 2, the
functions u in [10] are both the only extremal
functions for the sharp Sobolev inequality in Euclidean
space, and the only positive solutions of the equation
�u = u2?�1 in Rn, where � = �

P
i D2

i is the Laplace–
Beltrami operator (the usual Laplacian with a minus
sign in front of it). Sharp constants are also known for
several of the Gagliardo–Nirenberg inequalities in
Euclidean space. The sharp constant for the Nash
inequality in Euclidean space was computed by Carlen
and Loss. If the sharp isoperimetric inequality holds on
a complete Riemannian n-manifold, then the sharp
inequalities [6] hold for all 1 � p < n.
Sharp Inequalities on Compact
Riemannian Manifolds

The study of sharp Sobolev inequalities on compact
manifolds if often referred to as the AB program for
Sobolev inequalities. For (M, g) a compact Rieman-
nian n-manifold, and 1 � p < n, [5] can be rewritten
in two different forms:

Z
M

jujp
?

dvg

� �1=p?

�A

Z
M

jrujpdvg

� �1=p

þ B

Z
M

jujpdvg

� �1=p

½11�

and

Z
M

jujp
?

dvg

� �p=p?

�A0
Z

M

jrujpdvg

þ B0
Z

M

jujpdvg ½12�

where A, B, A0, B0 are positive constants independent
of u. An easy remark is that if [12] holds with
constants A0 and B0, then [11] holds with A = (A0)1=p

and B = (B0)1=p. The sharp first (resp. second)
constants in [11] and [12] are defined as the lowest
possible values for A and A0 (resp. for B and B0) in
[11] and [12]. The sharp first constants are
independent of the manifold and are given by
A0= Ap = K(n, p)p, where K(n, p) is as in [9]. The
sharp second constants depend on the manifold
and are given by B0= Bp = V

�p=n
g , where Vg is the

volume of (M, g). A typical question in the AB
program is to know whether or not we can take A
or B to be the sharp constants in [11] and, similarly,
whether or not we can take A0 or B0 to be the sharp
constants in [12]. Another typical question in the AB
program is whether or not there are nonzero
extremal functions for the saturated form of the
sharp inequalities when they are valid. Concerning
the B-part of the program, the sharp inequality [11]
with B = V

�1=n
g is true on any manifold, and constant

functions are extremal functions. On the other hand,
it can be proved that the stronger [12] with
B0= V

�p=n
g is always false when p > 2, whatever

the manifold. Concerning the A-part of the
AB-program, Hebey and Vaugon proved that the
sharp inequality [12] with A0= K(n, 2)2 is true on
any manifold. In other words, for any compact
Riemannian manifold (M, g) of dimension n � 3,
there exists B0 > 0 such that, for any u 2 H1, 2(M),

Z
M

juj2
?

dvg

� �2=2?

�Kðn; 2Þ2
Z

M

jruj2dvg

þ B0
Z

M

juj2dvg ½13�

We then get the saturated form of [13] by taking
B0= B0(g) to be the lowest possible B0 in [13]. In
general, when p 6¼ 2, we can prove that the sharp
inequality [11] with A = K(n, p) is true on any
manifold, and that there are nonzero extremal
functions for the saturated form of the sharp inequal-
ity. On the other hand, the stronger [12] with
A0= K(n, p)p when p > 2 is false when the curvature
is positive, but true when the curvature is negative.
The p = 2 case in the A-part of the AB program is of
importance for its connection with the Yamabe
problem. The p = 1 case in the A-part of the AB
program is of importance for its connection with the
isoperimetric inequality. The AB program has also
been considered for Gagliardo–Nirenberg inequal-
ities, including the Nash inequality, and Sobolev–
Poincaré inequalities on compact manifolds.
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Introduction

Infinite-dimensional Hamiltonian systems arise in
many areas in pure and applied mathematics and in
mathematical physics. These are partial differential
equations (PDEs) which can be written as evolution
equations (dynamical systems) in the form

_F ¼ fF; Hg

where H is the Hamiltonian (‘‘energy’’) and {. , .} is a
Poisson bracket on an infinite-dimensional phase space,
called Poisson manifold. Unlike finite-dimensional
Hamiltonian systems, which are ordinary differential
evolution equations on finite-dimensional phase spaces,
for which general existence and uniqueness theorems
for solutions exist, this is not the case for PDEs. There
are no general existence and uniqueness theorems for
solutions of infinite-dimensional Hamiltonian systems.
These have to be established case by case. This article
gives only a broad mathematical framework of infinite-
dimensional Hamiltonian systems. Precise definitions
are presented and the concept is illustrated through
physical examples.
Hamilton’s Equations on Poisson
Manifolds

A Poisson manifold is a manifold P (in general
infinite dimensional) equipped with a bilinear
operation {. , .}, called Poisson bracket, on the
space C1(P) of smooth functions on P such that:

1. (C1(P), {. , .}) is a Lie algebra, that is, {. , .} : C1

(P)� C1(P)! C1(P) is bilinear, skew-symmetric
and satisfies the Jacobi identity {{F, G}, H}þ
{{H, F}, G}þ {{G, H}, F} = 0 for all F, G, H 2
C1(P) and

2. {. , .} satisfies the Leibniz rule, that is, { . , .}
is a derivation in each factor: {F � G, H} = F �
{G, H} þ G � {F, H}, for all F, G, H 2 C1(P).

The notion of Poisson manifolds was rediscovered
many times under different names, starting with Lie,
Dirac, Pauli, and others. The name Poisson manifold
was coined by Lichnerowicz.

For any H 2 C1(P), the Hamiltonian vector field
XH is defined by

XHðFÞ ¼ fF; Hg; F 2 C1ðPÞ
It follows from (2) that, indeed, XH defines a
derivation on C1(P), hence a vector field on P.
Hamilton’s equations of motion for a function F 2
C1(P) with Hamiltonian H (energy function) are
then defined by the flow (integral curves) of the
vector field XH, that is,

_F ¼ XHðFÞ ¼ fF; Hg ½1�

where the overdot implies differentiation with
respect to time. F is then called a Hamiltonian
system on P with energy (Hamiltonian function) H.
Examples of Poisson Manifolds and
Hamilton’s Equations

Finite-Dimensional Classical Mechanics

For finite-dimensional classical mechanics, we take
P = R2n and coordinates (q1, . . . , qn, p1, . . . , pn)
with the standard Poisson bracket for any two
functions F(qi, pi), H(qi, pi) given by

fF; Hg ¼
Xn

i¼1

@F

@pi

@H

@qi
� @H

@pi

@F

@qi
½2�

Then the classical Hamilton’s equations are

_qi ¼ fqi; Hg ¼ @H

@pi

_pi ¼ fpi; Hg ¼ � @H

@qi

½3�

i = 1, . . . , n. This finite-dimensional Hamiltonian
system is a system of ordinary differential equations
for which there are well-known existence and
uniqueness theorems, that is, it has locally unique
smooth solutions, depending smoothly on the initial
conditions.
Example: harmonic oscillator As a concrete exam-
ple, consider the harmonic oscillator: here P = R2 and
the Hamiltonian (energy) is H(q, p) = 1

2 (q2 þ p2).
Then Hamilton’s equations are

_q ¼ p; _p ¼ �q ½4�
Infinite-Dimensional Classical Field Theory

Let V be a Banach space and V� its dual space
with respect to a pairing h. , .i : V � V� ! R (i.e.,
h. , .i is a symmetric, bilinear, and nondegenerate
function). On P = V � V�, the canonical Poisson
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bracket for F, H 2 C1(P), ’ 2 V, and � 2 V� is
given by

fF; Hg ¼ �F

��
;
�H

�’

� �
� �H

��
;
�F

�’

� �
½5�

where the functional derivatives �F=��2V, �F=�’2V�

are the ‘‘duals’’ under the pairing h. ,.i of the partial
gradients D1F(�)2V�, D2F(’)2V�� ’V. The corre-
sponding Hamilton’s equations are

_’ ¼ f’; Hg ¼ �H
��

_� ¼ f�; Hg ¼ � �H
�’

½6�

As a special case in finite dimensions, if V ’ Rn so
V� ’ Rn and P = V � V� ’ R2n, and the pairing is
the standard inner product in Rn, then the Poisson
bracket [5] and Hamilton’s equations [6] are
identical with [2] and [3], respectively.

Example: wave equations As a concrete example,
consider the wave equations. Let V = C1(R3) and
V�= Den(R3) (densities) and the L2 pairing
h’,�i=

R
’(x)�(x) dx. Take the Hamiltonian to be

Hð’; �Þ=
Z

1
2 �

2 þ 1
2 jr’j

2 þ Fð’Þ
� �

dx

where F is some function on V. Then Hamilton’s
equations [6] become

_’ ¼ �; _� ¼ r2’� F0ð’Þ ½7�

where the prime denotes differentiation with respect
to ’, which imply the wave equation

@2’

@t2
¼ r2’� F0ð’Þ ½8�

Different choices of F give different wave equations,
for example, for F = 0 we get the linear wave equation

@2’

@t2
¼ r2’

for F = (1/2)m’, we get the Klein–Gordon equation

r2’� @
2’

@t2
¼ m’

So, these wave equations and the Klein–Gordon
equation are infinite-dimensional Hamiltonian sys-
tems on P = C1(R3)�Den (R3).

Cotangent Bundles

The finite-dimensional examples of Poissson brackets
[2] and Hamilton’s equations [3] and the infinite-
dimensional examples [5] and [6] are the local versions
of the general case where P = T�Q is the cotangent
bundle (phase space) of a manifold Q (configuration
space). If Q in an n-dimensional manifold, then T�Q is
a 2n-Poisson manifold locally isomorphic to R2n

whose Poisson bracket is locally given by [2] and
Hamilton’s equations are locally given by [3]. If Q is
an infinite-dimensional Banach manifold, then T�Q is
a Poisson manifold locally isomorphic to V � V�

whose Poisson bracket is given by [5] and Hamilton’s
equations are locally given by [6].
Symplectic Manifolds

All the examples above are special cases of symplectic
manifolds (P,!). This means that P is equipped with
a symplectic structure ! which is a closed (d!= 0),
(weakly) nondegenerate 2-form on the manifold P.
Then, for any H 2 C1(P), the corresponding Hamil-
tonian vector field XH is defined by dH =!(XH, .)
and the canonical Poisson bracket is given by

fF;Hg ¼ !ðXF;XHÞ; F;H 2 C1ðPÞ ½9�

For example, on R2n the canonical symplectic
structure ! is given by !=

Pn
i = 1 dpi ^ dqi = d�,

where �=
Pn

i = 1 pi ^ dqi. The same formula for !
holds locally in T�Q for any finite-dimensional Q
(Darboux’s lemma). For the infinite-dimensional
example P = V � V�, the symplectic form ! is given
by !((’1,�1), (’2,�2)) = h’1,�2i � h’2,�1i. Again,
these two formulas for ! are identical if V = Rn.
Remarks

(i) If P is a finite-dimensional symplectic manifold,
then P is even dimensional.

(ii) If the Poisson bracket {. , .} is nondegenerate,
then {. , .} comes form a symplectic form !, that
is, {. , .} is given by [9].
The Lie–Poisson Bracket

Not all Poisson brackets are of the from given in the
above examples [2], [5], and [9], that is, not all
Poisson manifolds are symplectic manifolds. An
important class of Poisson bracket is the so-called
Lie–Poisson bracket. It is defined on the dual of any
Lie algebra. Let G be a Lie group with Lie algebra
g = TeG ’ {left-invariant vector fields on G} and let
[. , .] denote the Lie bracket (commutator) on g. Let
g� be the dual of a g with respect to a pairing
h. , .i : g� � g ! R. Then, for any F, H 2 C1(g�) and
� 2 g�, the Lie–Poisson bracket is defined by

fF;Hgð�Þ ¼ � �;
�F

��
;
�H

��

� �� �
½10�



Infinite-Dimensional Hamiltonian Systems 39
where �F=��, �H=�� 2 g are the ‘‘duals’’ of the
gradients DF(�), DH(�) 2 g�� ’ g under the pairing
h. , .i. Note that the Lie–Poisson bracket is degen-
erate in general, for example, for G = SO(3) the
vector space g� is three dimensional, so the Poisson
bracket [10] cannot come from a symplectic
structure. This Lie–Poisson bracket can also be
obtained in a different way by taking the canonical
Poisson bracket on T�G (locally given by [2] and [5]
and then restrict it to the fiber at the identity
T�e G = g�. In this sense, the Lie–Poisson bracket [10]
is induced from the canonical Poisson bracket
on T�G. It is induced by the symmetry of left-
multiplication, as discussed in the next section.

Example: rigid body A concrete example of the
Lie–Poisson bracket is given by the rigid body. Here
G = SO(3) is the configuration space of a free rigid
body. Identifying the Lie algebra (so(3), [. , .]) with
(R3,� ), where � is the vector product on R3 and
g�= so(3)� ’ R3, the Lie–Poisson bracket translates
into

fF; HgðmÞ ¼ �m � ðrF �rHÞ ½11�

For any F 2 C1(so(3)�), we have

dF

dt
ðmÞ ¼ rF � _m ¼ fF; HgðmÞ

¼ �m � ðrF �rHÞ ¼ rF � ðm�rHÞ

hence _m = m�rH. With the Hamiltonian

H ¼ 1

2

m2
1

I2
1

þm2
2

I2
2

þm2
3

I2
3

� 	

we get Hamilton’s equation as

_m1 ¼
I2 � I3

I2I3
m2m3; _m2 ¼

I3 � I1

I3I1
m3m1

_m3 ¼
I1 � I2

I1I2
m1m2

These are Euler’s equations for the free rigid body.

Reduction by Symmetries

The examples discussed so far are all canonical
examples of Poisson brackets, defined either on a
symplectic manifold (P,!) or T�Q, or on the dual of
a Lie algebra g�. Different, noncanonical Poisson
brackets can arise from symmetries. Assume that a
Lie group G is acting in a Hamiltonian way on the
Poisson manifold (P, {. .}). This means that we have
a smooth map ’ : G� P ! P :’(g, p) = g � p such
that the induced maps ’g =’(g, .) : P ! P are
canonical transformations, for each g 2 G. In terms
of Poisson manifolds, a canonical transformation is
a smooth map that preserves the Poisson bracket.
So, the action of G on P is a Hamiltonian action if
’�g{F, H} = {’�gF,’�gH} for all F, H 2 C1(P), g 2 G.
For any � 2 g, the canonical transformations ’exp(t�)

generate a Hamiltonian vector field �F on P and a
momentum map J : P! g� given by J(x)(�) = F(x),
which is Ad� equivariant.

If a Hamiltonian system XH is invariant under a
Lie group action, that is, H(’g(x)) = H(x), then we
obtain a reduced Hamiltonian system on a reduced
phace space (reduced Poisson manifold). We recall
the Marsden–Weinstein reduction theorem:

Reduction Theorem For a Hamiltonian action of
a Lie group G on a Poisson manifold (P, {. , .}),
there is an equivariant momentum map J : P ! g�,
and for every regular � 2 g� the reduced phase
space P� � J�1(�)=G� carries an induced Poisson
structure {. , .}�, (G� the isotropy group). Any
G-invariant Hamiltonian H on P defines a
Hamiltonian H� on the reduced phase space P�
and the integral curves of the vector field XH

project onto integral curves of the induced vector
field X̂H�

on the reduced space P�.

Example: rigid body The rigid body discussed
above can be viewed as an example of this
reduction theorem. If P = T�G and G is acting on
T�G by the cotangent lift of the left-translation
lg : G ! G, lg(h) = gh, then the momentum map
J : T�G ! g� is given by J(�g) = T�e Rg(�g) and the
reduced phase space (T�G)� = J�1(�)=G� is iso-
morphic to the coadjoint orbit O� through � 2 g�.
Each coadjoint orbit O� carries a natural symplec-
tic structure !� and in this case, the reduced Lie–
Poisson bracket {. , .}� on the coadjoint orbit O� is
induced by the symplectic form !� on O� as in [9].
Furthermore, T�G=G ’ g�, and the induced Pois-
son bracket {. , .}� on O� is identical with the Lie–
Poisson bracket restricted to the coadjoint orbit
O� 	 g�. For the rigid body this construction is
applied to G = SO(3).

We now discuss some infinite-dimensional exam-
ples of reduced Hamiltonian systems.
Infinite-Dimensional Lie Groups

A general theory of infinite-dimensional Lie groups
is hardly developed. Even Bourbaki only develops a
theory of infinite-dimensional manifolds, but all of
the important theorems about Lie groups are stated
for finite-dimensional ones.
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An infinite-dimensional Lie group G is a group
and an infinite-dimensional manifold with smooth
group operations

m : G � G ! G; mðg; hÞ ¼ g � h; C1 ½12�

i : G ! G; iðgÞ ¼ g�1; C1 ½13�

Such a Lie group G is locally diffeomorphic to an
infinite-dimensional vector space. This can be a
Banach space whose topology is given by a norm
k�k, a Hilbert space whose topology is given by an
inner product h. , .i, or a Frechet space whose
topology is given by a metric but not by a norm.
Depending on the choice of the topology on G, the
Banach, Hilbert, or Frechet Lie groups, respectively,
can be treated.

The Lie algebra g of G is defined as
g = {left-invariant vector fields on G} ’ TeG, where
the isomorphism is given (as in finite dimensions) by

� 2 TeG 7!X�ðgÞ ¼ TeLgð�Þ ½14�

and the Lie bracket on g is induced by the Lie bracket
of left-invariant vector fields [�, �] = [X�, X�](e),
�, � 2 g.

These definitions in infinite dimensions are iden-
tical with the definitions in finite dimensions. The
big difference although is that infinite-dimensional
manifolds, hence Lie groups, are not locally com-
pact. For Frechet Lie groups, one has the additional
nontrivial difficulty of defining the differentiability
of functions defined on a Frechet space. Hence, the
very definition of a Frechet manifold is not
canonical. This problem does not arise for Banach
and Hilbert Lie groups; the differential calculus
extends in a straightforward manner from Rn to
Banach and Hilbert spaces, but not to Frechet
spaces.
Finite- versus Infinite-Dimensional
Lie Groups

The lack of local compactness of infinite-dimensional
Lie groups causes some deficiencies of the Lie theory
in infinite dimensions. Some classical results in finite
dimensions are summarized below, which are not
true in general in infinite dimensions:

1. The exponential map exp : g ! G is defined as
follows: To each � 2 g we assign the correspond-
ing left-invariant vector field X� defined by [14].
We take the flow ’�(t) of X� and define
exp(�) =’�(1). The exponential map is a local
diffeomorphism from a neighborhood of zero in g
onto a neighborhood of the identity in G; hence,
exp defines canonical coordinates on the Lie
group G. This is not true in infinite dimensions.

2. If f1, f2 : G1 ! G2 are smooth Lie group
homomorphisms (i.e., fi(g � h) = fi(g) � fi(h), i = 1, 2)
with Tef1 = Tef2, then locally f1 = f2. This is not
true in infinite dimensions.

3. If H is a closed subgroup of G, then H is a Lie
subgroup of G. This is not true in infinite
dimensions.

4. For any finite-dimensional Lie algebra g, there
exists a connected Lie group G whose Lie algebra
is g, that is, such that g ’ TeG. This is not true in
infinite dimensions.

Some classical finite-dimensional examples of Lie
groups are the matrix groups GL(n), SL(n), O(n),
SO(n), U(n), SU(n), Sp(n) with smooth group
operations given by matrix multiplication and
matrix inversion.
Examples of Infinite-Dimensional
Lie Groups

Abelian Gauge Group G= (C1(M), þ )

Let M be a finite-dimensional manifold and let
G= C1(M). With group operation being addition,
that is, m(f , g) = f þ g, i(f ) =�f , e = 0. G is an
abelian C1 Frechet Lie group with Lie algebra
g = TeC

1(M) ’ C1(M), with trivial bracket
[�, �] = 0, and exp = id. If one completes these spaces
in the Ck-norm, k <1 then Gk is a Banach Lie
group, and if the Hs-Sobolev norm is used with s >
(1/2) dim M then Gs is a Hilbert Lie group.
Application of G= (C1(M),þ ) to Maxwell’s equa-
tions Let E, B be the electric and magnetic fields
on R3; then Maxwell’s equations for a charge
density 	 are:

_E ¼ curl B; _B ¼ �curl E ½15�

div B ¼ 0; div E ¼ 	 ½16�

Let A be the magnetic potential such that B = �curl A.
As configuration space, we take V = Vec(R3),
vector fields (potentials) on R3, so A 2 V, and as
phase space, we have P = T�V ’ V � V� 3 (A, E),
with the standard L2 pairing hA, Ei=

R
A(x)E(x) dx,

and canonical Poisson bracket given by [5], which
becomes

fF;HgðA;EÞ ¼
Z

�F

�A

�H

�E
� �H
�A

�F

�E

� 	
dx ½17�
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As Hamiltonian, we take the total electromagnetic
energy

HðA; EÞ= 1

2

Z
ðjcurl Aj2 þ jEj2Þ dx

Then Hamilton’s equations in the canonical vari-
ables A and E are

_A ¼ �H
�E
¼ E ) _B ¼ �curl E

and

_E ¼ � �H
�A
¼ �curl curl A ¼ curl B

So the first two equations of Maxwell’s equations [15]
are Hamilton’s equations, the third one is obtained
automatically from the potential divB =�div curlA
=0 and the fourth equation, divE=	, is obtained
through the following symmetry (gauge invar-
iance): the Lie group G=(C1(R3),þ) acts on V
by ’ �A=Aþr’,’2G, A2V. The lifted action
to V�V� becomes ’ � (A,E)=(Aþr’,E), and
has the momentum map J :V�V� ! g� ’ {charge
densities}

JðA;EÞ ¼ div E ½18�

With g = C1(R3) and g�= Den(R3), we identify
the elements of g� with charge densities. The
Hamiltonian H is G invariant, that is, H(’ �
(A, E)) = H(Aþr’, E) = H(A, E). Then the reduced
phase space for 	 2 g� is

ðV � V�Þ	 = J�1ð	Þ=G = {ðE; BÞjdivE = 	; divB = 0}

and the reduced Hamiltonian is

H	ðE; BÞ ¼ 1

2

Z
ðjEj2 þ jBj2Þ dx ½19�

The reduced Poisson bracket becomes, for any
functions F, H on (V � V�)	,

fF; Hg	ðE; BÞ

¼
Z

�F

�E
� curl

�H

�B
� �H
�E
� curl

�F

�B

� 	
dx ½20�

and a straightforward computation shows that

_F ¼ fF; H	g	

,
_E ¼ curl B; _B ¼ �curl E

div B ¼ 0; div E ¼ 	

(
½21�

So, Maxwell’s equations [15], [16] form an infinite-
dimensional Hamiltonian system on this reduced
phase space with respect to the reduced Poisson
bracket.
Abelian Gauge Group G= (C1(M, R � {0}), �)

Let M be a finite-dimensional manifold and let
G= C1(M, R � {0}), the group operation being the
multiplication, that is, m(f , g) = f � g, i(f ) = f�1, e = 1.
For k <1, Ck(M, R � {0}) is open in C1(M, R), and
if M is compact then Ck(M, R � {0}) is a Banach Lie
group. If s> (1/2) dim M then Hs(M, R � {0}) is
closed under multiplication, and if M is compact
then Hs(M, R � {0}) is a Hilbert Lie group.

Nonabelian Gauge Groups G= (Ck (M, G), �)

The abelian example can be generalized by replacing
R � {0} with any finite-dimensional (nonabelian) Lie
group G. Let G= Ck(M, G) with pointwise group
operations m(f ,g)(x)= f (x) � g(x),x 2M and i(f )(x)=
(f (x))�1, where ‘‘�’’ and ‘‘( . )�1’’ are the operations
in G. If k <1 then Ck(M, G) is a Banach Lie
group. Let g denote the Lie algebra of G, then the
Lie algebra of G= Ck(M, G) is g = Ck(M, g), with
pointwise Lie bracket [�, �](x) = [�(x), �(x)], x 2M,
the latter bracket being the Lie bracket in g.
The exponential map exp : g ! G defines the
exponential map EXP :g=Ck(M,g)!G=Ck(M,G),
EXP(�)=exp 
 �, which is a local diffeomorphism.
The same holds for Hs(M,G) if s> (1/2)dimM.

Applications of these infinite-dimensional Lie
groups are in gauge theories and quantum field
theory, where they appear as groups of gauge
transformations.

Loop Groups G= Ck (S
1
, G)

As a special case of the example above, we take
M = S1, the circle. Then G= Ck(S1, G) =Lk(G) is
called a loop group and g = Ck(S1, g) = lk(g) its loop
algebra. They find applications in the theory of
affine Lie algebras, Kac–Moody Lie algebras (central
extensions), completely integrable systems, soliton
equations (Toda, Korteweg–de Vries (KdV),
Kadomtsev–Petviashvili (KP)), quantum field theory.
Central extensions of Loop algebras are examples of
infinite-dimensional Lie algebras which need not
have a corresponding Lie group.

Diffeomorphism Groups

Among the most important ‘‘classical’’ infinite-
dimensional Lie groups are the diffeomorphism
groups of manifolds. Their differential structure is
not the one of a Banch Lie group as defined above.
Nevertheless, they have important applications.

Let M be a compact manifold (the noncompact
case is technically much more complicated but
similar results are true) and let G= Diff1(M) be
the group of all smooth diffeomorphisms on M,
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group operation being the composition, that is,
m(f , g) = f 
 g, i(f ) = f�1, e = idM. For C1 diffeo-
morphisms, Diff1(M) is a Frechet manifold and
there are nontrivial problems with the notion
of smooth maps between Frechet spaces. There is
no canonical extension of the differential calculus
from Banach spaces (same as for Rn) to Frechet
spaces. One possibility is to generalize the notion
of differentiability. For example, if we use the
so-called C1� differentiability, then G= Diff1(M)
becomes a C1� Lie group with C1� differentiable
group operations. These notions of differentiability
are difficult to apply to concrete examples.
Another possibility is to complete Diff1(M) in
the Banach Ck-norm, 0 � k <1, or in the Sobolev
Hs-norm, s> (1/2) dim M; Diffk(M) and Diffs(M)
become, in this case, Banach and Hilbert mani-
folds, respectively. Then we consider the inverse
limits of these Banach and Hilbert Lie groups,
respectively:

Diff1ðMÞ ¼ lim
 

DiffkðMÞ ½22�

becomes the so-called inverse limit of Banach (ILB)
Lie group, or with the Sobolev topologies

Diff1ðMÞ ¼ lim
 

DiffsðMÞ ½23�

becomes the so-called inverse limit of Hilbert (ILH)
Lie group. Nevertheless, the group operations are
not smooth, but have the following differentiability
properties. If the diffeomorphism group is equipped
with the Sobolev Hs-topology, then Diffs(M)
becomes a C1 Hilbert manifold if s> (1/2) dim M
and the group multiplication

m : DiffsþkðMÞ �DiffsðMÞ ! DiffsðMÞ ½24�

is Ck differentiable; hence, for k = 0, m is only
continuous on Diffs(M). The inversion

i : DiffsþkðMÞ ! DiffsðMÞ ½25�

is Ck differentiable; hence, for k = 0, i is only
continuous on Diffs(M). The same differentiability
properties of m and i hold in the Ck topology. This
situation leads to the notion of nested Lie groups.

The Lie algebra of Diff1(M) is given by
g = TeDiff1(M) ’ Vec1(M), the space of smooth
vector fields on M. Note that the space Vec(M)
of all vector fields is a Lie algebra only for C1

vector fields, but not for Ck or Hs vector fields if
k <1, s <1, because one loses derivatives by
taking brackets.

The exponential map on the diffeomorphism
group is given as follows: for any vector field X 2
Vec1(M) take its flow ’t 2 Diff1(M), then define
EXP : Vec1(M) ! Diff1(M) : X 7!’1, the flow at
time t = 1. The exponential map EXP is not a local
diffeomorphism; it is not even locally surjective.

Applications of Diff1(M) occur in general rela-
tivity, where the diffeomorphism group plays the
role of a symmetry group of coordinate transforma-
tions. Let (M, g) be a Lorentz 4-manifold. Then the
vacuum Einstein’s field equations are

RicðgÞ ¼ 0

These are invariant under coordinate transfor-
mations, that is, under the action of Diff1(M).
Moreover, Einstein’s field equations form a
Hamiltonian system on the space P = {metrics
on M}=Diff1(M).

Subgroups of Diff1(M)

Several subgroups of Diff1(M) have important
applications.

Group of volume-preserving diffeomorphisms Let
� be a volume on M and G= Diff1� (M) = {f 2
Diff1(M) j f ��=�} the group of volume-preserving
diffeomorphisms. Diff1� (M) is a closed subgroup of
Diff1(M) with Lie algebra g = Vec1� (M) = {X 2
Vec1(M) j div�X = 0} the space of divergence free
vector fields on M. Vec1� (M) is a Lie subalgebra of
Vec1(M).

Remark: We can neither apply the finite-
dimensional theorem that if Vec1� (M) is Lie algebra
then there exists a Lie group whose Lie algebra it is;
nor that if Diff1� (M) 	 Diff(M) is a closed subgroup
then it is a Lie subgroup.

Applications of Diff1� (M) occur, for example, in
fluid dynamics. Euler’s equations for an incompres-
sible fluid,

@u

@t
þ u � ru ¼ �rp; div u ¼ 0 ½26�

are equivalent to the equations of geodesics on
Diff1� (M).

Symplectomorphism group Let ! be a symplectic
2-from on M and G= Diff1! (M) = {f 2 Diff1(M) j
f �!=!} the group of canonical transformations (or
symplectomorphisms). Diff1! (M) is a closed sub-
group of Diff1(M) with Lie algebra g = Vec1! (M) =
{X 2 Vec1(M) jLX!= 0} the space of locally
Hamiltonian vector fields on M. Vec1! (M) is a Lie
subalgebra of Vec1(M).

Applications of symplectomorphism groups occur,
for example, in plasma physics. Maxwell–Vlasov’s
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equations for a plasma density f(x, v, t) generating
the electric and magnetic fields E and B are

@f

@t
þ v � @f

@x
þ ðEþ v� BÞ @f

@v
¼ 0

@B

@t
¼ �curl E;

@E

@t
¼ curl B� Jf

div E ¼ 	f ; div B ¼ 0

½27�

where Jf and 	f are the current and charge densities,
respectively. This coupled nonlinear system of
evolution equations is an infinite-dimensional
Hamiltonian system of the form _F = {F, H}	f

on the
reduced phace space

MV ¼ ðT�Diff1! ðR6Þ � T�VÞ=C1ðR6Þ ½28�

(V is the same space as in the example of Maxwell’s
equations) with respect to the following reduced
Poisson bracket, which is induced via gauge sym-
metry from the canonical Poisson bracket on
T�Diff1! (R6)� T�V:

fF; Gg	f
ðf ; E; BÞ

¼
Z

f
�F

�f
;
�G

�f


 �
dx dv

þ
Z

�F

�E
� curl

�G

�B
� �G
�E
� curl

�F

�B

� 	
dx dv

þ
Z

�F

�E
� @f

@v

�G

�f
� �G
�E
� @f

@v

�F

�f

� 	
dx dv

þ
Z

fB � @

@v

�F

�f
� @

@v

�G

�f

� 	
dx dv ½29�

and with Hamiltonian

Hðf ; E; BÞ ¼ 1

2

Z
v2f ðx; v; tÞdv

þ 1

2

Z
ðjEj2 þ jBj2Þdx ½30�

More complicated plasma models are formulated
as Hamiltonian systems. For example, for the
two-fluid model the phase space is constituted by
coadjoint orbits of the semidirect product (n) of the
group G= Diff1(R6 ) n (C1(R6)� C1(R6)). For the
MHD model: G= Diff1 (R6) n (C1(R6)� �2(R3)).
The KdV Equation and Fourier Integral
Operators

There are many known examples of PDEs which are
infinite-dimensional Hamiltonian systems, such as the
Benjamin–Ono, Boussinesq, Harry Dym, KdV, and KP
equations and others. In many cases, the Poisson
structures and Hamiltonians are given ad hoc on a
formal level. This is illustrated here with the KdV
equation, where at least one of the three known
Hamiltonian structures is well understood.

The KdV equation

ut þ 6uux þ uxxx ¼ 0 ½31�

is an infinite-dimensional Hamiltonian system with
the Lie group of invertible Fourier integral operators
being a symmetry group. Gardner found that with the
bracket

fF; Gg ¼
Z 2�

0

�F

�u

@

@x

�G

�u
dx ½32�

and Hamiltonian

HðuÞ ¼
Z 2�

0

u3 þ 1
2 u3

x

� 

dx ½33�

u satisfies the KdV equation [31] if and only if

_u ¼ fu; Hg

An important question concerns the origin of the
Poisson bracket [32] and Hamiltonian [33]. It was
shown earlier that this bracket is the Lie–Poisson
bracket on a coadjoint orbit of Lie group G= FIO, the
group of invertible Fourier integral operators on the
circle S1. The latter is discussed briefly in the following.

A Fourier integral operator on a compact mani-
fold M is an operator

A : C1ðMÞ ! C1ðMÞ ½34�

locally given by

AðuÞðxÞ ¼ ð2�Þ�n
ZZ

ei’ðx;y;�Þaðx; �ÞuðyÞdy d� ½35�

where ’(x, y, �) is a phase function with certain
properties and the symbol a(x, �) belongs to a certain
symbol class. A pseudodifferential operator is a
special kind of Fourier integral operators, locally of
the form

PðuÞðxÞ ¼ ð2�Þ�n
ZZ

eiðx�yÞ��pðx; �ÞuðyÞdy d� ½36�

Denote by FIO and �DO the groups under composi-
tion (operator product) of invertible Fourier integral
operators and invertible pseudodifferential operators
on M, respectively. Then we have the following results.

Both groups �DO and FIO are smooth infinite-
dimensional ILH Lie groups. The smoothness
properties of the group operations (operator multi-
plication and inversion) are similar to the case of
diffeomorphism groups [24] and [25]. The Lie
algebra of both ILH Lie groups �DO and FIO is
the Lie algebra of all pseudodifferential operators
under the commutator bracket. Moreover, FIO is a
smooth infinite-dimensional principal fiber bundle
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over the diffeomorphism group of canonical trans-
formations Diff1! (T�M� {0}) with structure group
(gauge group) �DO.

For the KdV equation, we take the special case
where M = S1. Then the Gardner bracket [32] is the
Lie–Poisson bracket on the coadjoint orbit of FIO
through the Schrödinger operator P 2 �DO. Com-
plete integrability of the KdV equation follows from
the infinite system of conserved integrals in involu-
tion given by Hk = tr(Pk); in particular, the Hamil-
tonian [33] equals H = H2.

See also: Bi-Hamiltonian Methods in Soliton Theory;
Functional Integration in Quantum Physics; Hamiltonian
Fluid Dynamics; Hamiltonian Systems: Obstructions to
Integrability; Korteweg–de Vries Equation and Other
Modulation Equations; Symmetries and Conservation Laws.
Further Reading

Adams M, Ratiu TS, and Schmid R (1985) In: Kac V (ed.) The Lie
Group Structure of Diffeomorphism Groups and Invertible
Fourier Integral Operators, with Applications, MSRI Publica-

tions, vol. 4. New York: Springer.
Chernoff P and Marsden JE (1974) Properties of Infinite

Dimensional Hamiltonian Systems, Lecture Notes in Mathe-

matics, vol. 425. New York: Springer.

Marsden JE and Ratiu T (1994) Introduction to Mechanics and
Symmetry. New York: Springer.

Marsden JE, Ebin GD, and Fischer A (1972) Diffeomorphism

groups, hydrodynamics and relativity. In: Vanstone JR (ed.)
Proc. 13th Biennial Sem. Canadian Math. Congress, pp.

135–279. Montreal.

Marsden JE, Weinstein A, Ratiu T, Schmid R, and Spencer RG

(1983) Hamiltonian systems with symmetry, coadjoint orbits
and plasma physics. Atti Accad. Sci. Torino 117(Suppl.):

289–340.

Olver PJ (1993) Applications of Lie Groups to Differential
Equations. New York: Springer.

Palais R (1968) Foundations of Global Nonlinear Analysis.
Reading, MA: Addison-Wesley.

Schmid R (1987) Infinite Dimensional Hamiltonian Systems.
Lecture Notes, vol. 3. Naples: Bibliopolis.

Temam R (1988) Infinite Dimensional Dynamical Systems in
Mechanics and Physics. New York: Springer.
Instantons: Topological Aspects

M Jardim, IMECC–UNICAMP, Campinas, Brazil

ª 2006 Elsevier Ltd. All rights reserved.
Introduction

Let X be a closed (connected, compact without
boundary) smooth manifold of dimension 4, pro-
vided with a Riemannian metric denoted by g. Let
�p

X denote space of smooth p-forms on X, that is,
the sections of ^pTX. The Hodge operator acting on
p-forms,

� : �
p
X!�

4�p
X

satisfies �2 = (�1)p. In particular, � splits �2
X into

two subspaces �2,�
X with eigenvalues �1:

�2
X ¼ �2;þ

X � �2;�
X ½1�

Note also that this decomposition is an orthogonal
one, with respect to the inner product:

h!1; !2i ¼
Z

X

!1 ^ �!2

A 2-form ! is said to be self-dual if �!=! and it
is said to be anti-self-dual if �!=�!. Any 2-form !
can be written as the sum

! ¼ !þ þ !�

of its self-dual !þ and anti-self-dual !� components.
Now let E be a complex vector bundle over X as
above, provided with a connection r, regarded as a
C-linear operator

r : �ðEÞ!�ðEÞ 
 �1
X

satisfying the Leibnitz rule:

rðf
Þ ¼ fr
þ 

 df

for all f 2 C1(X) and 
 2 �(E). Its curvature
Fr=r 
 r is a 2-form with values in End(E), that
is, Fr 2 �(End(E))
 �2

X, satisfying the Bianchi
identity rFr= 0.

The Yang–Mills equation is

r � Fr ¼ 0 ½2�

It is a second-order nonlinear equation on the
connection r. It amounts to a nonabelian general-
ization of Maxwell equations, to which it reduces
when E is a line bundle; the four components of r
are interpreted as the electric and magnetic
potentials.

An instanton on E is a smooth connection r
whose curvature Fr is anti-self-dual as a 2-form,
that is, it satisfies:

Fþr ¼ 0; that is; � Fr ¼ �Fr ½3�

The instanton equation is still nonlinear (it is linear
only if E is a line bundle), but it is only first-order
on the connection.
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Note that if Fr is either self-dual or anti-self-dual
as a 2-form, then the Yang–Mills equation is
automatically satisfied:

�Fr ¼ �Fr ) r � Fr ¼ �rFr ¼ 0

by the Bianchi identity. In other words, instantons
are particular solutions of the Yang–Mills equation.
Furthermore, while the Yang–Mills equation [2]
makes sense over any Riemannian manifold, the
instanton equation [3] is well defined only in
dimension 4.

A gauge transformation is a bundle automorphism
g : E!E covering the identity. The set of all gauge
transformations of a given bundle E!X forms a
group through composition, called the gauge group
and denoted by G(E). The gauge group acts on the
set of all smooth connections on E by conjugation:

g 	 r ¼ g�1rg

It is then easy to see that [3] is a gauge-invariant
condition, since Fg	r= g�1Frg. The anti-self-duality
equation [3] is also conformally invariant: a con-
formal change in the metric does not change the
decomposition [1], so it preserves self-dual and
anti-self-dual 2-forms.

The topological charge k of the instanton r is
defined by the integral

k ¼ � 1

8�2

Z
X

trðFr ^ FrÞ

¼ c2ðEÞ �
1

2
c1ðEÞ2 ½4�

where the second equality follows from Chern–Weil
theory.

If X is a smooth, noncompact, complete Rieman-
nian manifold, an instanton on X is an anti-self-dual
connection for which the integral [4] converges.
Note that, in this case, k as above need not be an
integer; however, it is always expected to be
quantized, that is, always a multiple of some fixed
(rational) number which depends only on the base
manifold X.

Summary This note is organized as follows.
After revisiting the variational approach to the
anti-self-duality equation [3], we study instantons
over the simplest possible Riemannian 4-manifold,
R4 with the flat Euclidean metric. In the subse-
quent sections, we present ’t Hooft’s explicit
solutions, the ADHM construction, and its dimen-
sional reductions to R3, R2 and R. We conclude by
explaining the construction of the central object of
study in gauge theory, the instanton moduli
spaces.
Variational Aspects of Yang–Mills
Equation

Given a fixed smooth vector bundle E!X, let A(E)
be the set of all (smooth) connections on E. The
Yang–Mills functional is defined by

YM : AðEÞ!R

YMðrÞ ¼ kFrk2
L2 ¼

Z
M

trðFr ^ �FrÞ
½5�

The Euler–Lagrange equation for this functional is
exactly the Yang–Mills equation [2]. In particular,
self-dual and anti-self-dual connections yield critical
points of the Yang–Mills functional.

Splitting the curvature into its self-dual and
anti-self-dual parts, we have

YMðrÞ ¼ kFþrk
2
L2 þ kF�rk

2
L2

It is then easy to see that every anti-self-dual
connection r is an absolute minimum for the
Yang–Mills functional, and that YM(r) coincides
with the topological charge [4] of the instanton r
times 8�2.

One can construct, for various 4-manifolds but
most interestingly for X = S4, solutions of the
Yang–Mills equations which are neither self-dual
nor anti-self-dual. Such solutions do not minimize
[5]. Indeed, at least for gauge group SU(2) or
SU(3), it can be shown that there are no other
local minima: any critical point which is neither
self-dual nor anti-self-dual is unstable and must be
a ‘‘saddle point’’ (Bourguignon and Lawson
Jr. 1981).
Instantons on Euclidean Space

Let X = R4 with the flat Euclidean metric, and
consider a Hermitian vector bundle E!R4. Any
connection r on E is of the form d þ A, where d
denotes the usual de Rham operator and A 2
�(End(E))� �1

R4 is a 1-form with values in the
endomorphisms of E; this can be written as follows:

A ¼
X4

k¼1

Ak dxk; Ak : R4!uðrÞ

In the Euclidean coordinates x1, x2, x3, x4, the
anti-self-duality equation [3] is given by

F12 ¼ F34; F13 ¼ �F24; F14 ¼ F23

where

Fij ¼
@Aj

@xi
� @Ai

@xj
þ ½Ai;Aj�



46 Instantons: Topological Aspects
The simplest explicit solution is the charge-1 SU(2)
instanton on R4. The connection 1-form is given by

A0 ¼
1

1þ jxj2
	 Imðqd�qÞ ½6�

where q is the quaternion q = x1 þ x2iþ x3j þ x4k,
while Im denotes the imaginary part of the product
quaternion; we are regarding i, j, k as a basis of the
Lie algebra su(2); from this, one can compute the
curvature:

FA0
¼ 1

1þ jxj2

 !2

	 Imðdq ^ d�qÞ ½7�

We see that the action density function

jFA0
j2 ¼ 1

1þ jxj2

 !2

has a bell-shaped profile centered at the origin and
decays like r�4.

Let t�, y : R4!R4 be the isometry given by the
composition of a translation by y 2 R4 with a
homothety by � 2 Rþ. The pullback connection
t��, yA0 is still anti-self-dual; more explicitly,

A�;y ¼ t��;yA0 ¼
�2

�2 þ jx� yj2
	 Imðqd�qÞ

FA�;y
¼ �2

�2 þ jx� yj2

 !2

	 Imðdq ^ d�qÞ

Note that the action density function jFAj2 has again
a bell-shaped profile centered at y and decays like
r�4; the parameter � measures the concentration of
the energy density function, and can be interpreted
as the ‘‘size’’ of the instanton A�, y.

Instantons of topological charge k can be obtained
by ‘‘superimposing’’ k basic instantons, via the so-
called ’t Hooft ansatz. Consider the function
� : R4!R given by

�ðxÞ ¼ 1þ
Xk

j¼1

�2
j

ðx� yjÞ2

where �j 2 R and yj 2 R4. Then the connection
1-form A = A�dx� with coefficients

A� ¼ i
X4

�¼1

����
@

@x�
lnð�ðxÞÞ ½8�

is anti-self dual; here, ���� are the matrices given by
(�, �= 1, 2, 3):

��� ¼
1

4i
½��; ��� ���4 ¼

1

2
��

where �� are the Pauli matrices.
The connection [8] correspond to k instantons
centered at points yi with size �i. The basic
instanton [6] is exactly (modulo gauge transforma-
tion) what one obtains from [8] for the case k = 1.
The ’t Hooft instantons form a 5k-parameter family
of anti-self-dual connections.

SU(2) instantons are also the building blocks for
instantons with general structure group (Bernard
et al. 1977). Let G be a compact semisimple Lie group,
with Lie algebra g. Let � : su(2)! g be any injective
Lie algebra homomorphism. If A is an anti-self-dual
SU(2) connection 1-form, then it is easy to see that
�(A) is an anti-self-dual G-connection 1-form. Using
[8] as an example, we have that

A ¼ i
X
�;�

�ð����Þ
@

@x�
lnð�ðxÞÞdx� ½9�

is a G-instanton on R4.
While this guarantees the existence of G-instan-

tons on R4, note that the instanton [9] might be
reducible (e.g., � can simply be the obvious
inclusion of su(2) into su(n) for any n) and that
its charge depends on the choice of representation �.
Furthermore, it is not clear whether every
G-instanton can be obtained in this way, as the
inclusion of a SU(2) instanton through some
representation � : su(2)! g.
The ADHM Construction

All SU(r) instantons on R4 can be obtained through
a remarkable construction due to Atiyah, Drinfeld,
Hitchin, and Manin. It starts by considering
Hermitian vector spaces V and W of dimension c
and r, respectively, and the following data (the so-
called ADHM data):

B1;B2 2 EndðVÞ; i 2 HomðW;VÞ
j 2 HomðV;WÞ

Assume, moreover, that (B1, B2, i, j) satisfy the
ADHM equations:

½B1 ;B2� þ ij ¼ 0 ½10�

½B1 ;B
y
1� þ ½B2 ;B

y
2� þ iiy � jyj ¼ 0 ½11�

Now consider the following maps

	 : V 
 R4!ðV � V �WÞ 
 R4


 : ðV � V �WÞ 
 R4!V 
 R4
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given as follows (1 denotes the appropriate identity
matrix):

	ðz1; z2Þ ¼
B1 þ z11
B2 þ z21

j

0
@

1
A ½12�


ðz1; z2Þ ¼ �B2 � z21 B1 þ z11 ið Þ ½13�

where z1 = x1 þ ix2 and z2 = x3 þ ix4 are complex
coordinates on R4. The maps [12] and [13] should
be understood as a family of linear maps parame-
trized by points in R4.

A straightforward calculation shows that the ADHM
equation [10] implies that 
	= 0 for every (z1, z2) 2
R4. Therefore, the quotient E = ker
=im 	= ker
 \
ker	y forms a complex vector bundle over R4 or rank r
whenever (B1, B2, i, j) is such that 	 is injective and 
 is
surjective for every (z1, z2) 2 R4.

To define a connection on E, note that E can be
regarded as a sub-bundle of the trivial bundle (V �
V �W)
 R4. So let � : E! (V � V �W)
 R4 be the
inclusion, and let P : (V � V �W)
 R4!E be the
orthogonal projection onto E. We can then define a
connection r on E through the projection formula

rs ¼ Pd�ðsÞ

where d denotes the trivial connection on the trivial
bundle (V � V �W)
 R4.

To see that this connection is anti-self-dual, note
that projection P can be written as follows:

P ¼ 1�Dy��1D

where

D : ðV � V �WÞ 
 R4!ðV � VÞ 
R4

D ¼



	y

� �

and � =DDy. Note that D is surjective, so that � is
indeed invertible. Moreover, it also follows from
[11] that 

y=	y	, so that ��1 = (

y)�11.

The curvature Fr is given by

Fr ¼P dð1�DyI ��1DÞd
� �

¼ P dDy��1ðdDÞ
� �

¼P ðdDyÞ��1ðdDÞ þ Dydð��1ðdDÞ
� �

¼ðdDyÞ��1ðdDÞ

for P(Dyd(��1(dD))) = 0 on E = kerD. Since ��1 is
diagonal, we conclude that Fr is proportional to
dDy ^ dD, as a 2-form.

It is then a straightforward calculation to show
that each entry of dDy ^ dD belongs to �2,�.

The extraordinary accomplishment of Atiyah, Drin-
feld, Hitchin, and Manin was to show that every
instanton, up to gauge equivalence, can be obtained in
this way (see, e.g., Donaldson and Kronheimer 1990).
For instance, the basic SU(2) instanton [6] is associated
with the following data (c = 1, r = 2):

B1;B2 ¼ 0; i ¼ 1
0

� �
; j ¼ ð 0 1Þ

Remark The ADHM data (B1, B2, i, j) are said to
be stable if 
 is surjective for every (z1, z2) 2 R4, and
it is said to be costable if 	 is injective for every
(z1, z2) 2 R4. (B1, B2, i, j) is regular if it is both stable
and costable. The quotient:

fregular solutions of ð10Þ and ð11Þg=UðVÞ

coincides with the moduli space of instantons
of rank r = dim W and charge c = dim V on R4 (see
below). It is also an example of a quiver variety (see
Finite Dimensional Algebras and Quivers), asso-
ciated to the quiver consisting of two vertices V and
W, two loop-edges on the vertex V and two edges
linking V to W, one in each direction.
Dimensional Reductions of the
Anti-Self-Dual Yang–Mills Equation

As pointed out above, a connection on a Hermitian
vector bundle E!R4 of rank r can be regarded as
1-form

A ¼
X4

k¼1

Akðx1; . . . ; x4Þdxk; Ak : R4!uðrÞ

Assuming that the connection components Ak are
invariant under translation in one direction, say x4,
we can think of

A ¼
X3

k¼1

Akðx1; x2; x3Þdxk

as a connection on a Hermitian vector bundle over
R3, with the fourth component �= A4 being
regarded as a bundle endomorphism � : E!E,
called a Higgs field. In this way, the anti-self-duality
equation [3] reduces to the so-called Bogomolny (or
monopole) equation:

FA ¼ �d� ½14�

where � is the Euclidean Hodge star in dimension 3.
Now assume that the connection components Ak

are invariant under translation in two directions, say
x3 and x4. Consider

A ¼
X2

k¼1

Akðx1; x2Þdxk
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as a connection on a Hermitian vector bundle over
R2, with the third and fourth components combined
into a complex bundle endomorphism:

� ¼ ðA3 þ i 	 A4Þðdx1 � i 	 dx2Þ

taking values on 1-forms. The anti-self-duality
equation [3] is then reduced to the so-called
Hitchin’s equations:

FA ¼ ½�;���; �@A� ¼ 0 ½15�

Conformal invariance of the anti-self-duality equa-
tion means that Hitchin’s equations are well defined
over any Riemann surface.

Finally, assume that the connection components Ak

are invariant under translation in three directions, say
x2, x3, and x4. After gauging away the first compo-
nent A1, the anti-self-duality equations [3] reduce to
the so-called Nahm’s equations:

dTk

dx1
þ 1

2

X
j;l

�kjl½Tj;Tl� ¼ 0; j; k; l ¼ f2; 3; 4g ½16�

where each Tk is regarded as a map R!u(r).
Readers who are interested in monopoles and

Nahm’s equations are referred to the survey
by Murray (2002) and references therein. The best
source for Hitchin’s equations still are Hitchin’s
(1987a, b) original papers. A beautiful duality,
known as Nahm transform, relates the various
reductions of the anti-self-duality equation to periodic
instantons; see the survey article by Jardim (2004).

It is also worth mentioning the book by Mason
and Woodhouse (1996), where other interesting
dimensional reductions of the anti-self-duality equa-
tion are discussed, providing a deep relation
between instantons and the general theory of
integrable systems.
The Instanton Moduli Space

Now fix a rank-r complex vector bundle E over a
four-dimensional Riemannian manifold X. Observe
that the difference between any two connections is a
linear operator:

ðr �r0Þðf�Þ ¼ fr�þ � 	 df � fr0�� � 	 df

¼ f ðr �r0Þ�

In other words, any two connections on E differ by
an endomorphism-valued 1-form. Therefore, the set
of all smooth connections on E, denoted by A(E),
has the structure of an affine space over
�(End(E))� �1

M.
The gauge group G(E) acts on A(E) via
conjugation:

g 	 r :¼ g�1rg

We can form the quotient set B(E) =A(E)=G(E),
which is the set of gauge equivalence classes of
connections on E.

The set of gauge equivalence classes of anti-self-
dual connections on E is a subset of B(E), and it is
called the moduli space of instantons on E!X. The
subset of MX(E) consisting of irreducible anti-self-
dual connections is denoted M�

X(E).
Since the choice of a particular vector bundle

within its topological class is immaterial, these sets
are usually labeled by the topological invariants
(Chern or Pontrjagyn classes) of the bundle E. For
instance, M(r, k) denotes the moduli space of
instantons on a rank-r complex vector bundle
E!X with c1(E) = 0 and c2(E) = k > 0. It turns
out that MX(E) can be given the structure of a
Hausdorff topological space. In general,MX(E) will
be singular as a differentiable manifold, but M�

X(E)
can always be given the structure of a smooth
Riemannian manifold.

We start by explaining the notion of a L2
p vector

bundle. Recall that L2
p(Rn) denotes the completion

of the space of smooth functions f : Rn!C with
respect to the norm:

kfk2
L2

p
¼
Z

X

ðjf j2 þ jdf j2 þ 	 	 	 þ jdðpÞf j2Þ

In dimension n = 4 and for p > 2, by virtue of the
Sobolev embedding theorem, L2

p consists of continu-
ous functions, i.e., L2

p(Rn) � C0(Rn). So we define
the notion of a L2

p vector bundle as a topological
vector bundle whose transition functions are in L2

p,
where p > 2.

Now for a fixed L2
p vector bundle E over X, we can

consider the metric space Ap(E) of all connections on
E which can be represented locally on an open subset
U � X as a L2

p(U) 1-form. In this topology, the subset
of irreducible connections A�p(E) becomes an open
dense subset of Ap(E). Since any topological vector
bundle admits a compatible smooth structure, we may
regard L2

p connections as those that differ from a
smooth connection by a L2

p 1-form. In other words,
Ap(E) becomes an affine space modeled over the
Hilbert space of L2

p 1-forms with values in the
endomorphisms of E. The curvature of a connection
in Ap(E) then becomes a L2

p�1 2-form with values in
the endomorphism bundle End(E).

Moreover, let Gpþ1(E) be defined as the topolo-
gical group of all L2

pþ1 bundle automorphisms. By
virtue of the Sobolev multiplication theorem,
Gpþ1(E) has the structure of an infinite-dimensional
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Lie group modeled on a Hilbert space; its Lie
algebra is the space of L2

pþ1 sections of End(E).
The Sobolev multiplication theorem is once again

invoked to guarantee that the action Gpþ1(E)

Ap(E)!Ap(E) is a smooth map of Hilbert mani-
folds. The quotient space Bp(E) =Ap(E)=Gpþ1(E)
inherits a topological structure; it is a metric (hence
Hausdorff) topological space. Therefore, the sub-
space MX(E) of Bp(E) is also a Hausdorff topolo-
gical space; moreover, one can show that the
topology of MX(E) does not depend on p.

The quotient space Bp(E) fails to be a Hilbert
manifold because in general the action of Gpþ1(E) on
Ap(E) is not free. Indeed, if A is a connection on a
rank-r complex vector bundle E over a connected
base manifold X, which is associated with a
principal G-bundle. Then the isotropy group of A
within the gauge group

�A ¼ fg 2 Gpþ1ðEÞjgðAÞ ¼ Ag

is isomorphic to the centralizer of the holonomy
group of A within G.

This means that the subspace of irreducible connec-
tions A�p(E) can be equivalently defined as the open
dense subset of Ap(E) consisting of those connections
whose isotropy group is minimal, that is,

A�pðEÞ ¼ fA 2 ApðEÞj�A ¼ centerðGÞg

Now Gpþ1(E) acts with constant isotropy on A�p(E);
hence, the quotient B�p(E) =A�p(E)=Gpþ1(E) acquires
the structure of a smooth Hilbert manifold.

Remark The analysis of neighborhoods of points
in Bp(E)nB�p(E) is very relevant for applications of
the instanton moduli spaces to differential topology.
The simplest situation occurs when A is an SU(2)
connection on a rank-2 complex vector bundle E
which reduces to a pair of U(1) and such [A] occurs
as an isolated point in Bp(E)nB�p(E). Then a
neighborhood of [A] in Bp(E) looks like a cone on
an infinite-dimensional complex projective space.

Alternatively, the instanton moduli space MX(E)
can also be described by first taking the subset of all
anti-self-dual connections and then taking the
quotient under the action of the gauge group.
More precisely, consider the map

� : ApðEÞ!L2
pðEndðEÞ � �2;þ

X Þ
�ðAÞ ¼ FþA

½17�

Thus, ��1(0) is exactly the set of all anti-self-dual
connections. It is Gpþ1(E)-invariant, so we can take
the quotient to get

MXðEÞ ¼ ��1ð0Þ=Gpþ1ðEÞ
It follows that the subspace M�
X(E) =B�p(E) \

MX(E) has the structure of a smooth Hilbert
manifold. Index theory comes into play to show
that M�

X(E) is finite dimensional. Recall that if D is
an elliptic operator on a vector bundle over a
compact manifold, then D is Fredholm (i.e., ker D
and coker D are finite dimensional) and its index

ind D ¼ dim ker D� dim coker D

can be computed in terms of topological invariants,
as prescribed by the Atiyah–Singer index theorem.
The goal here is to identify the tangent space of
M�

X(E) with the kernel of an elliptic operator.
It is clear that, for each A 2 Ap(E), the tangent

space TAAp(E) is just L2
p(End(E)� �1

X). We define
the pairing

ha;bi ¼
Z

X

a ^ �b ½18�

and it is easy to see that this pairing defines a
Riemannian metric (the so-called L2-metric) onAp(E).

The derivative of the map � in [17] at the point A
is given by

dþA : L2
pðEndðEÞ � �1

XÞ!L2
p�1ðEndðEÞ � �2

XÞ
a 7! ðdAaÞþ

so that for each A 2 ��1(0) we have

TA�
�1ð0Þ ¼ a 2 L2

pðEndðEÞÞ � �1
X j dþAa ¼ 0

n o
Now for a gauge equivalence class [A] 2 B�p(E), the

tangent space T[A]B�p(E) consists of those 1-forms
which are orthogonal to the fibers of the principal
Gpþ1(E) bundleA�p(E)!B�p(E). At a point A 2 Ap(E),
the derivative of the action by some g 2 Gpþ1(E) is

�dA : L2
pþ1ðEndðEÞÞ!L2

pðEndðEÞ � �1
XÞ

Usual Hodge decomposition gives us that there is an
orthogonal decomposition:

L2
pðEndðEÞ � �1

XÞ ¼ im dA � ker d�A

which means that:

T½A�B�pðEÞ ¼ a 2 L2
pðEndðEÞ � �1

XÞ j d�Aa ¼ 0
n o

Thus, the pairing [18] also defines a Riemannian
metric on B�p(E). Putting these together, we conclude
that the space T[A]M�

X tangent to M�
X(E) at an

equivalence class [A] of anti-self-dual connections
can be described as follows:

T½A�M�
XðEÞ

¼ a 2 L2
pðEndðEÞ��1

XÞ jd�Aa¼ dþAa¼ 0
n o

½19�
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It turns out that the so-called deformation operator

A = d�A � dA:


A : L2
pðEndðEÞ � �1

XÞ
!L2

pþ1ðEndðEÞÞ � L2
p�1ðEndðEÞ � �2

XÞ

is elliptic. Moreover, if A is anti-self-dual then coker

A is empty, so that T[A]M�

X(E) = ker 
A. The
dimension of the tangent space T[A]M�

X(E) is then
simply given by the index of the deformation
operator 
A. Using the Atiyah–Singer index theorem,
we have for SU(r) bundles with c2(E) = k:

dimM�
XðEÞ ¼ 4rk� ðr2 � 1Þð1� b1ðXÞ þ bþðXÞÞ

The dimension formula for arbitrary gauge group G
can be found in Atiyah et al. (1978).

For example, the moduli space of SU(2) instantons
on R4 of charge k is a smooth Riemannian manifold
of dimension 8k� 3. These parameters are inter-
preted as the 5k parameters describing the positions
and sizes of k separate instantons, plus 3(k� 1)
parameters describing their relative SU(2) phases.

The detailed construction of the instanton moduli
spaces can be found in Donaldson and Kronheimer
(1990). An alternative source is Morgan’s lecture
notes (Friedman and Morgan 1998). It is interesting
to note thatM�

X(E) inherits many of the geometrical
properties of the original manifold X. Most notably,
if X is a Kähler manifold, then M�

X(E) is also
Kähler; if X is a hyper-Kähler manifold, thenM�

X(E)
is also hyper-Kähler. One expects that other
geometric structures on X can also be transferred
to the instanton moduli spaces M�

X(E).
See also: Characteristic Classes; Finite-Dimensional
Algebras and Quivers; Gauge Theoretic Invariants
of 4-Manifolds; Gauge Theory: Mathematical
Applications; Integrable Systems: Overview; Index
Theorems; Moduli Spaces: An Introduction; Solitons and
Other Extended Field Configurations; Twistor Theory:
Some Applications [in Integrable Systems, Complex
Geometry and String Theory].
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Introduction

The notion of integrability plays many different rôles
in quantum field theory (QFT). In this article we
interpret it in a narrow sense and describe some QFTs
that are completely integrable, in the sense that there
are as many integrals of motion as degrees of freedom.
Necessarily this implies, since we are talking about
field theories, that there is an infinite number of
conserved quantities. The existence of such a tower of
conserved quantities of increasing Lorentz spin
implies, via the Coleman–Mandula theorem, that the
theories are trivial in spacetime dimensions greater
than 2. On the other hand, in 1þ 1 dimensions there is
a rich menagerie of such integrable quantum field
theories (IQFTs). These theories are fascinating in their
own right as nontrivial QFTs for which data like the
S-matrix and spectrum can be determined exactly. We
will describe these exact S-matrices for a series of
seminal examples. In addition, we briefly describe the
applications of these theories to statistical systems in
two dimensions.
Classical Integrable Systems and
Field Theories

For a field theory to be integrable it must have an
infinite number of conserved charges. Necessarily
these must be spacetime symmetries which extend the
Poincaré symmetry in some way. It turns out that, due
to a theorem of Coleman and Mandula, such
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extensions are very restrictive: they are only possible in
1þ 1 dimensions (one dimension of space and one of
time) apart from noninteracting theories. Below we
describe some of the most important examples.
Affine Toda Theories

These theories describe the interactions of a set of
scalar fields which we write as a vector f. The action is

S ¼
Z

d2x
1

2
@�f
� �2�VðfÞ

� �
½1�

The potential has to be very specially chosen in
order that the resulting theory is integrable. The
resulting theories are classified by affine Lie alge-
bras. We shall describe only the theories related to a
simply laced Lie algebra g (so of ADE type). In this
case, for the affine version of the theory,

VðfÞ ¼ m2

�2

Xr

a¼0

na e�aa�f ½2�

where f is an r-rank g vector and aa, a = 1, . . . , r, are
a set of simple roots of g . The fact that we are
considering the affine version of the theory means
that we include the term involving the extended root
(the lowest root) a0 = �

Pr
a = 1 naaa, which defines

the integers na(n0 = 1). If this term is absent then the
potential does not have a minimum. Such nonaffine
theories are interesting in their own right since they
include the Liouville theory, but we shall not
describe them here.

One way to expose the infinite set of conserved
charges at the classical level is to write the equations
of motion in Lax form. This has the form of the
vanishing of the field strength, or zero-curvature
condition, of an auxiliary gauge connection in g

with components (Ax, At):

Ax ¼ @tf �H þ
m

2�

Xr

a¼0

e�aa�f=2 ea þ fað Þ

At ¼ @xf �H þ m

2�

Xr

a¼0

e�aa�f=2 ea � fað Þ
½3�

Here, {ei, fi} are related to generators of g in a
Cartan–Weyl basis, via

ea ¼ zEaa
; fa ¼ z�1E�aa

; a ¼ 1; . . . ; r

e0 ¼ z�hEa0
; f0 ¼ zhE�a0

½4�

where z is a auxiliary variable known as the spectral
parameter and h is the Coxeter number of g . Using
the following commutators of g ,

½Eaa
;Eab
� ¼ �abaa �H

½H;Ea � ¼ aEa

½Eaa
;E�ab

� ¼ 0

½5�
it is straightforward to verify that the zero-curvature
condition

Fxt ¼ @xAt � @tAx þ ½Ax;At� ¼ 0 ½6�

is equivalent to the equations of motion which
follow from extremizing the action [1].

The fact that there exists a flat connection which
depends on an auxiliary parameter z is sufficient to
ensure integrability. In brief, the idea is that the
gauge connection can be ‘‘abelianized’’ by a gauge
transformation:

~A� ¼ U@�U�1 þUA�U�1 with ½~At; ~Ax� ¼ 0 ½7�

Hence, @t
~Ax � @x

~At = 0. This can be done in two
inequivalent ways, such that ~A� are polynomials in z
and z�1, respectively. The corresponding coefficients
are then conserved currents whose integrals give
conserved charges. It can be shown that for the
Toda theories these conserved charges have Lorentz
spin given by an exponent {sa} of g modulo its
Coxeter number h:

An : h¼ nþ1; f1;2;3; . . . ;ng
Dn : h¼ 2n�2; f1;3;5; . . . ;2n�3;n�1g
E6 : h¼ 12; f1;4;5;7;8;11g
E7 : h¼ 18; f1;5;7;9;11;13;17g
E8 : h¼ 30; f1;7;11;13;17;19;23;29g

½8�

This spectrum of conserved quantities seems to be a
ubiquitous feature of IQFTs. These theories can be
generalized by replacing g , or rather its (untwisted
affinization) with any affine algebra.

The Sinh/Sine-Gordon Theory

These theories are the simplest of the Toda theories
described above, associated to the Lie algebra A1. In
this case there is a single field and the potential has
the form

Vð�Þ ¼ m2

2�2
e�� þ e���
� �

½9�

We have rescaled the field by 1=
ffiffiffi
2
p

relative to the
normalization in [2]. This potential defines the ‘‘sinh-
Gordon theory.’’ However, we can also take �! i� to
give the sine-Gordon theory with an action

S ¼
Z

d2x
1

2
@��
� �2þm2

�2
cosð��Þ

� �
½10�

The sine-Gordon theory is a useful paradigm for
IQFTs because it exhibits most of the features of
more complicated examples. To start with, it illus-
trates another important property of some integrable
systems; namely, the existence of solitons. In the sine-
Gordon case, the minima of the potential lie at
�= 2n�=�, for an integer n, so there is a topological
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Figure 1 Classical scattering of a kink and an antikink. The

final velocities equal the initial velocities and the only effect is to

introduce a velocity-dependent time delay as shown.
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kink that separates a vacuum n on the left and nþ 1
on the right, as well as an antikink. The explicit
solution for the kink moving with velocity v is

�ðx; tÞ ¼ 4

�
tan�1 exp mðx cosh �� t sinh �� �Þð Þ ½11�

where � is a constant and, since we are working in
1þ 1 dimensions, we have introduced the rapidity �,
in terms of which the velocity is

v ¼ tanh �; �1 � � � 1 ½12�

The antikink solution is simply the negative of the
above. The kinks have a mass

M ¼ 8m

�2
½13�

The existence of topological solitons is not a
consequence of integrability, per se, for example, the
�4 theory in 1þ 1 dimensions also has kinks;
however, in the integrable setting, the solitons have
special properties that survive in the quantum theory.
The first property is that multisoliton solutions can be
found exactly using a variety of different techniques.
They are most easily written down using the tau
function, which is related to the field via

� ¼ � 1

i�
log

	

	�
½14�

The N-soliton solution can then be written com-
pactly as

	 ¼
X

f�pg¼0;1

exp
XN
p¼1

�p�ðpÞ þ
XN

p;q¼1

�p�q�ðpqÞ

 !
½15�

The sum is over the 2N possibilities for which �p = 0
or 1, for each p, and we have introduced

�ðpÞ ¼ mðx cosh �p � t sinh �p � �pÞ 	
i�

2
½16�

The rapidity of the pth soliton is �p, and the choice
of sign corresponds to the kink and antikink,
respectively. The ‘‘interaction coefficient’’ is

exp �ðpqÞ ¼ tanh2 1
2 ð�p � �qÞ
� �

½17�

For example, the two-soliton solution is

	 ¼ 1þ e�ð1Þ þ e�ð2Þ þ e�þ�ð1Þþ�ð2Þ ½18�

The multisoliton solutions have a natural physical
interpretation as the histories of a set of solitons
which scatter off each other. To make this more
precise, consider the two-soliton solution [18] in
more detail. Suppose that �1 < �2, v1 > v2. Focus on
the solution in the vicinity of the first soliton, that is,
x 
 v1t þ �1. In the limit t!�1, the solution is
approximately

	 ’ 1þ e�ð1Þ ½19�

while, as t!1, it is approximately

	 ’ e�ð2Þ 1þ e�þ�ð1Þ
� �

½20�

In both the limits, the solution represents an isolated
soliton, the only difference is that the final ‘‘position
offset’’ has been displaced: �1 7�! �1 ��. It is a
consequence of integrability that the solitons inter-
act in such a simple way. There were two solitons in
the initial configuration and two in the final
configuration traveling with the same velocities.
The only effect is to introduce a time delay of

�t ¼ � �ð�Þ
m sinhð�=2Þ ½21�

in the center-of-mass frame with �1 = ��2 = �=2,
which we illustrate in Figure 1. We shall see that this
kind of simple scattering is a characteristic feature of
integrable field theories which extends to the
quantum theory. It reflects the enormous restriction
that the existence of the infinite set of integrals of
motion puts on the dynamics.
Integrability at the Quantum Level

In this section we turn to the particular implications
of integrability for the field theories at the quantum
level. In discussing theories in 1þ 1 dimensions it is
convenient, as in [12], to use the rapidity. The
energy and momentum of a particle of mass m are
E = m cosh � and p = m sinh �, respectively.

The sinh- and sine-Gordon theory, and their affine
Toda generalizations, are scalar field theories with a
well-behaved potential and as such they can be
quantized in the conventional manner. It can be
shown that integrability survives quantization and we
now address its consequences. The key observation is
that having an infinite set of higher-spin conserved
quantities is very restrictive on the possible quantum
processes. Assuming that the theory has a mass gap,
the asymptotic states ja, �i are particles with rapidity
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Figure 3 The scattering of three particles can factorize in two

distinct ways as illustrated, leading to a nontrivial condition: the

Yang–Baxter equation.
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� and additional quantum numbers needed to specify
the state are indicated by the label a. These states are
eigenstates of the conserved charges,

Qsja; �i ¼ qsðaÞes�ja; �i ½22�

Here, s is the spin of the charge which ranges over
some infinite subset of the integers. Since the charges
must commute with the S-matrix, it follows imme-
diately that if an incoming state of n particles has a
set of rapidities {�1, . . . , �n} then the outgoing state
must also have n particles with the same set
{�1, . . . , �n}: there is consequently no particle crea-
tion! For example, we have illustrated the scattering
of two particles in Figure 2. The two-particle
S-matrix element will be denoted as

Scd
abð�1 � �2Þ : ja; �1; b; �2i�!jc; �2; d; �1i ½23�

Note that masses of the incoming particles must match
the outgoing ones: ma = md and mb = mc. We have
already seen this kind of behavior with the classical
scattering of solitons in the sine-Gordon theory. In
spite of the fact that the scattering is purely elastic, it
can be nontrivial for two reasons: if there are mass
degeneracies in the theory, the quantum numbers
{a1, . . . , an} can change and, in addition, the S-matrix
element can depend nontrivially on the momenta.

The fact that the incoming and outgoing states
have the same set of momenta leads to the notion of
factorizability. To see what this means, consider the
case of three particles. Let us imagine that we
prepare the initial state to consist of three fairly
narrow wave packets in position space with
momenta smeared in accordance with the uncer-
tainty principle. The key to the following argument
is the fact that the infinite set of higher-spin
conserved charges (with commute with the S-matrix)
allow one to move the positions of the three
particles relative to each other in an arbitrary way.
In addition, the theory has a mass gap, so interac-
tions have a finite range. By using this freedom, we
can arrange for particles 1 and 2 to interact first,
a
b

c
d 

Figure 2 The two particle S-matrix with particles a and b in the

initial state and c and d in the final state. For consistency,

ma = md and mb = mc .
well before they come within interaction range of
the third. Subsequently, the first two particles
interact with the third as on the right-hand side of
Figure 3. This ability to move the wave packets
around using the symmetries means that the three-
particle S-matrix element must ‘‘factorize’’ into a
product of three two-particle elements:

Sdef
abcð�1; �2; �3Þ
¼
X
ghi

Sgh
abð�1 � �2ÞSif

hcð�1 � �3ÞSde
gi ð�2 � �3Þ ½24�

However, we could also use the symmetries afforded
by the conserved charges to shift the positions of the
particles so that particle 2 and 3 interact first, as on
the left-hand side of Figure 3. Since the charges
commute with the S-matrix, the result must the
same; hence, there is a nontrivial consistency
condition:X

ghi

Shi
bcð�2 � �2ÞSdg

ahð�1 � �3ÞSef
gi ð�2 � �3Þ

¼
X
ghi

Sgh
abð�1 � �2ÞSif

hcð�1 � �3ÞSde
gi ð�2 � �3Þ ½25�

This is the celebrated Yang–Baxter equation. Notice
that it is only nontrivial if there are mass degen-
eracies, otherwise the particles on internal lines are
determined by the external particles.

The factorization of the S-matrix extends readily to
the case of more particles in an obvious way. An
n-body element factorizes into a two-body element
for each pair of particles. One might think that
considerations of the n-particle S-matrix would lead
to additional constraints; however, it can readily be
shown that this is not the case and that the Yang–
Baxter equation acts as a basic ‘‘move’’ which allows
one to reorder the n-particle S-matrix into an
arbitrary order. Further conditions on the S-matrix
come from the axioms of analytic S-matrix theory:

(i) UnitarityX
ef

Sef
abð�ÞS

cd
ef ð��Þ ¼ �ac�bd ½26�
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Figure 5 The bootstrap equations result from considering the

interaction of a particle d with the bound state c of a and b in two

distinct ways as illustrated.
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(ii) Crossing symmetry Each particle a has an
antiparticle �a and

Scd
abð�Þ ¼ S�ac

b�d
ð�i� �Þ ½27�

(iii) Analyticity The S-matrix is a meromorphic
function of � on the physical strip, 0 � Im � � �.
Singularities in most instances occur along the
imaginary axis and the simple poles correspond to
direct or cross-channel resonances. In this case, if
Sde

ab(�) has a simple pole at �= iuc
ab (necessarily a

nonphysical rapidity difference) in the direct channel
there exists a bound state of a and b of mass

m2
c ¼ m2

a þm2
b þ 2mamb cos uc

ab ½28�

The situation is illustrated in Figure 4. The new
particle must itself be included in the particle spectrum.
The S-matrix elements at the pole have the form

Sde
abð�Þ ¼

X
c

Pc
ab

irc
ab

�� iuc
ab

P�c
�d�e
þ � � � ½29�

where Pc
ab can be thought of as a kind of projection

operator with X
ab

Pc
abP

�d
�b�a
¼ �cd ½30�

Unitarity of the QFT requires that rc
ab is real and

positive, although there are also examples of
nonunitarity theories with exact S-matrices. If
ab! c can occur then so can a�c! �b and b�c! �a.
From [28], we deduce the following identity:

uc
ab þ u

�b
a�c þ u�a

b�c ¼ 2� ½31�

The data {uc
ab} for any given scattering theory are

known as the fusing angles.
(iv) The Bootstrap equations These give a non-

linear relation between S-matrix elements. The basic
idea is that if particle c appears as a resonance in the
scattering of a and b then the S-matrix element of c
with another state d can be deduced in terms of the
scattering of d with a and b. This is illustrated in
Figure 5. Using [30], we can write the resulting
equation for the S-matrix element of c and d directly:

Sef
cdð�Þ ¼

X
ghi

P�c
�a�b

Seg
ah �� i�u

�b
a�c

� �
Shi

bd �þ i�u�a
b�c

� �
Pf

gi ½32�
a b

d e

a b

d e

c

Figure 4 Near a direct channel pole, the scattering of a and b

is dominated by the bound state c.
The bootstrap constraints are very powerful because
they allow one to extract the S-matrix elements of new
particles that appear as bound states. This leads to the
philosophy of the ‘‘bootstrap program’’ where one
attempts to build consistent S-matrices starting from
the S-matrix for a subset of particles which act as a
seed for the algorithm. The process is quite an art, but
at the end one has to be satisfied that the complete
analytic structure is consistent with all the axioms. The
key is to be able to account for all the poles in a
consistent way, either in terms of bound states, as
above, or in terms of the Coleman–Thun mechanism.
This allows some poles to be interpreted in ways other
than the existence of a bound state. The bootstrap
algorithm is very complicated in general and at the
present time a complete classification of solutions is
not known. However, there are a large number of
known solutions which appear to be intimately related
to Lie algebras and associated structures known as
Yangians and quantum groups. Below we describe
some of the simplest known solutions.
Minimal S-Matrices

These scattering theories are in some sense the
simplest. The particle spectrum is generally non-
degenerate and so the Yang–Baxter equation is
trivial. As is ubiquitous in the subject of IQFT, the
classification of the theories is related to Lie
algebras, although what seems to be important is
not so much the algebra in question but rather the
details of the associated root system. In this case the
appropriate algebras are the simply laced algebras of
ADE type. The number of particles is equal to the
rank r of the Lie algebra and the masses are given by
the r elements of one of the eigenvectors of the
Cartan matrix of the algebra g :

Xr

b¼1

Cabmb ¼ 2� 2 cos
�

h

� �
ma ½33�

where h is the Coxeter number of g . The conserved
charges have spins corresponding to the exponents
of g modulo h. We briefly explain how the complete
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S-matrix can be written down in terms of properties
of the root system of g . Let F be the set of roots of g ,
and aa, a = 1, . . . , r, a set of simple roots, as in the
last section. In terms of these, Cab = 2aa � ab=a2

b. Let
wa, a = 1, . . . , r, be a corresponding set of funda-
mental weights, aa � wb = �ab.

Key to defining the theories is the notation of the
Weyl group of g , the group generated by reflections
in the simple roots:

RaðaÞ ¼ a � 2a � aa

a2
a

aa ½34�

The element w = R1R2 � � �Rr is known as a Coxeter
element of the Weyl group, and it has special
properties that are significant in the present context.
In particular, its eigenvalues are of the form
exp (2�isa=h), where h is the Coxeter number of g

and the integers sa are the exponents of the algebra
as in [8]. Note that there is always a pair with s1 = 1
and sr = h� 1. Clearly, w acts as a rotation in the
two-dimensional space spanned by the two corre-
sponding eigenvectors. We can define an antisym-
metric function u(a, b) on roots to be h=� times the
(signed) angle between the projections of a and b
onto this two-dimensional eigenspace. In prepara-
tion for what follows, it is useful to also define the
roots

fa ¼ RrRr�1 � � �Raþ1ðaaÞ ½35�

We can now present P Dorey’s amazingly compact
formula for the complete S-matrix. For the scatter-
ing of particle a with particle b,

Sabð�Þ ¼
Y

b2Gb

f1þ uðfa; bÞg
wa�b ½36�

In this formula �b is the set of positive roots of g

which lie in the orbit of fb under w. We have also
defined the building block

fxg ¼ ðxþ 1Þðx� 1Þ

ðxÞ ¼
sinh

�

2
þ i�x

h

� �

sinh
�

2
� i�x

h

� � ½37�

The fusing rules are also particularly elegant in
the language of root systems. There is a three-point
coupling between ai, i = 1, 2, 3, if there exist three
roots a(i) 2 �ai such that a(1) þ a(2) þ a(3) = 0.
Furthermore, the fusing occurs in the a1, a2 channel
at rapidity difference

iu�a3
a1a2
¼ i�

h
uðað1Þ;að2ÞÞ ½38�

This is Dorey’s fusing rule.
For the case of An�1, the S-matrices are particu-
larly simple. The mass spectrum is

ma ¼ m sin
�a

n
; a ¼ 1; . . . ; n� 1 ½39�

and Dorey’s rule gives the possible fusings as
ab! (aþ b)mod n, which occur at the rapidity
values

� ¼ iuab ¼
i
aþ b

n
� aþ b < n

i 2� aþ b

n

� �
� aþ b � n

8>><
>>: ½40�

The charge conjugation operator maps a! �a = n� a
and the explicit form for the S-matrix elements is

Sabð�Þ ¼ faþ b� 1gfaþ b� 3g � � � fja� bj þ 1g ½41�

The element Sab(�) has one direct channel pole at
�= iuab corresponding to the exchange of the
particle aþ b mod n, and a cross-channel pole at
�= iua�b corresponding to the exchange of particle
a� b mod n.

Affine Toda Theories

The bootstrap program has been solved for all the
affine Toda theories. For the simply laced theories
described earlier, the result is directly related to
the minimal S-matrices constructed above. The
only difference is that there are additional factors
which depend on the coupling � of the Toda
theory but which do not introduce any additional
poles onto the physical strip. These CDD factors
are included by simply changing the basic building
block [37]:

fxg!fxgToda ¼
ðxþ 1Þðx� 1Þ

ðx� 1þ BÞðxþ 1� BÞ ½42�

where

B ¼ 1

2�
� �2

1þ �2=4�
½43�

The S-matrix structure for the Toda theories
based on the nonsimply laced algebras is a good
deal more complicated. Integrability is only main-
tained in the quantum theory if the ratios of the
physical masses of the particles depend on the
coupling constant � is some very special way.

The Sine-Gordon Theory

We have seen that the sine-Gordon theory has
solitons at the classical level. At the quantum level,
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we expect that these kinks become bona fide particle
states, in addition to the particle corresponding to
the quantum fluctuations of the field �. Focusing on
the solitons, we expect a degenerate doublet
corresponding to the kink and antikink. For the
scattering of two solitons, there are six allowed
processes illustrated in Figure 6. Unitarity [26] leads
to the constraints

Sð�ÞSð��Þ ¼ 1

STð�ÞSTð��Þ þ SRð�ÞSRð��Þ ¼ 1

STð�ÞSRð��Þ þ SRð�ÞSTð��Þ ¼ 0

½44�

while crossing symmetry [27] (using the fact that the
soliton and antisoliton are antiparticles) gives

Sði�� �Þ ¼ STð�Þ; SRði�� �Þ ¼ SRð�Þ ½45�

By themselves, these constraints are rather mild;
however, the complete soliton S-matrix must also
satisfy the Yang–Baxter equation [25]. The solu-
tion to all the constraints is not unique, however,
the Zamolodchikovs conjectured that the exact
answer is

Sð�Þ ¼ 1

i�
sinh

8�



ði�� �Þ

� �
Uð�Þ

STð�Þ ¼
1

i�
sinh

8�



�

� �
Uð�Þ

SRð�Þ ¼
1

�
sin

8�2




� �
Uð�Þ

½46�
with

Uð�Þ¼�
8�




� �
� 1þ i

8�




� �
� 1� 8�



� i

8�




� �

�
Y1
n¼1

Rnð�ÞRði�� �Þ
Rnð0ÞRnði�Þ

Rnð�Þ¼
� 2n

8�



þ i

8�




� �

� ð2nþ 1Þ8�


þ i

8�




� �

�
� 1þ 2n

8�



þ i

8�




� �

� 1þ ð2n� 1Þ 8�


þ i

8�




� �

½47�

where 
= �2(1� �2=8�)�1. The reason for confi-
dence in the conjecture is that from the soliton
S-matrix one can complete the bootstrap program
and account for all the poles in terms of particles in
the theory. In particular, there is a finite set of
bound states of the soliton and antisoliton, called
breathers, with masses

mk ¼ 2M sin
k


16
; k ¼ 1; 2; . . . <

8�



½48�

Here, M is the soliton mass. The bootstrap
equations give the S-matrix for the scattering of a
soliton or antisoliton with the kth breather,

Skð�Þ¼
sinh �þ i cos

k


16

sinh �� i cos
k


16

�
Yk�1

j¼1

sin2 k� 2j

32

 � �

4
þ i

�

2

� �

sin2 k� 2j

32

 � �

4
� i

�

2

� � ½49�

while, for the scattering of breather k with l,
Sklð�Þ¼
sinh2

�þ i sin
� kþ l

16


�

sinh �þ i sin
� k� l

16


�

sinh2 �� i sin
� kþ l

16


�

sinh �� i sin
� k� l

16


�

�
Yl�1

j¼1

sin2 k� l � 2j

32

 þ i

�

2

� �
cos2 kþ l � 2j

32

 þ i

�

2

� �

sin2 k� l � 2j

32

 � i

�

2

� �
cos2

kþ l � 2j

32

 � i

�

2

� � ½50�
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where we assume, without loss of generality, that
k � l. The remarkable thing is that the scattering of
the lowest-mass breather m1 with itself,

S11ð�Þ ¼
sinh �þ i sin




8

sinh �� i sin



8

½51�

is precisely the Toda S-matrix for A1 with �! i�=
ffiffiffi
2
p

(the origin of the factor of
ffiffiffi
2
p

is mentioned after eqn
[9]). This uniquely identifies the lowest-mass breather
as being the quantum of the � field.

The quantum structure that we have described
above can be directly related to the classical
scattering of solitons. In order to implement the
classical limit, we can reintroduce �h which is
achieved by replacing �2 by �2�h. In this limit, the
S-matrix elements have the form

Sð�Þ ¼ exp
2i

�h
ð�ð�Þ þ Oð�hÞÞ ½52�

The phase �(�) is related via the WKB approxima-
tion to the time delay in the classical theory of
soliton scattering via

�ð�Þ ¼ const:þ
Z �

0

d�0M sinhð�=2Þ�tð�Þ ½53�

where �t(�) is the time delay in the center of mass
(21). It is possible to verify [53] for the processes
S(�) and ST(�). Note that the reflection process has
no classical analogue.
IQFT, Conformal Field Theories and
Statistical Systems

We have described some IQFTs and their factoriz-
able S-matrices in theories with a mass gap. We can
ask the question, ‘‘what happens at very high
energies compared with all the mass scales?’’ For a
generic QFT such a limit may not exist, however,
for a special class of theories the limit is a massless
scale-invariant theory corresponding to a fixed point
of the renormalization group. The massive theory
can be thought of as a deformation of the massless
theory by a particular relevant operator. At the fixed
point, the Poincaré symmetry is enhanced to the full
conformal group in the appropriate number of
dimensions and the resulting theory is known as a
conformal field theory (CFT). In 1þ 1 dimensions
the conformal group is infinite dimensional and so
many CFTs are themselves integrable, in the sense
that the complete spectrum of fields is known and
their correlation functions can be constructed.
Hence, an alternative way of thinking about many
IQFTs is as a perturbation of a CFT by a specific
relevant operator:

SIQFT ¼ SCFT þ g

Z
d2xOðxÞ ½54�

We will suppose that the operator has conformal
dimensions (�, ��). This description of the theory
can be turned around to ask the following question:
which relevant deformations of a given CFT lead to
IQFTs? Remarkably, since CFTs are so well under-
stood, the question can often be answered exactly.
The idea is that the conserved quantities of a CFT
are all (anti-)holomorphic with respect to a holo-
morphic coordinate z = xþ it. Conserved quantities
include the stress tensor of spin 2 but include, in
addition, an infinite tower of currents of ever
increasing spin {Ts}. After perturbation, one has

�@Ts ¼ gRð1Þ þ � � � þ gnRðnÞ þ � � � ½55�

The conformal dimensions of the R(n) are (s�n(1��),
1�n(1��)). Since the conformal dimensions of
fields in a CFT are bounded below by zero, it follows
that the series on the right-hand side truncates. The
question of whether Ts remains conserved away from
the CFT boils down to the question as to whether the
right-hand side has the form @�, for some �.
Zamolodchikov found an ingenious counting argu-
ment which showed in certain circumstances that the
right-hand side has precisely this form for some s> 2.
This is sufficient to establish that the perturbed theory
is an IQFT. In certain cases the spectrum of spins of
the conserved quantities that are established by the
counting argument is enough to make a connection
with a known factorizable S-matrix.

This way of viewing IQFT as perturbations of CFTs
is especially fruitful when we make the connection
of the Euclidean QFT with the classical statistical
mechanics of a two-dimensional system. In this
connection, the Feynman path integral is reinterpreted
as the sum over the configurations in the canonical
ensemble with the Euclidean action interpreted as the
energy. Usually, we consider statistical systems which
are discrete, so typically defined on a lattice. The
Euclidean QFTs are to be thought of as these statistical
systems in the continuum limit where the lattice spacing
is taken to zero keeping the long-range physics fixed.
CFTs which have no massive degrees of freedom are
identified with points of second-order phase transitions
in the statistical system where correlation lengths are
infinite. Perturbations of CFTs by relevant operators
correspond to taking the statistical system away from
criticality by changing some external parameter.

The prototypical example of such a statistical
system is the Ising model. In the lattice version of
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this model, there are a set spins {�i} at each lattice
site which can take the discrete values 	1. The
partition function of the theory is

ZðH;TÞ ¼
X
f�ig

exp

�
� T�1

X
hi;ji

�i�j �H
X

i

�i

�
½56�

The Ising model is the simplest model of a ferro-
magnet, where T is the temperature and H is the
external applied field. The theory has a second-order
phase transition for T = Tc, the Curie temperature,
and H = 0 when the competition between the energy,
which favors aligning the spins, and entropy, which
favors disorder, exactly balance. In the two-dimen-
sional neighborhood of the critical point, the lattice
theory admits a continuum limit which can be
described as the perturbation of a CFT, describing
the critical Ising model, by a pair of relevant operators
with couplings T � Tc and H. In the case of the Ising
model, the CFT is simply the theory of a free massless
fermion in two-dimensional Euclidean space.

It turns out that in the two-dimensional space
of relevant perturbations, there are two directions
which lead to IQFTs. The most obvious is changing
the temperature away from Tc while keeping H = 0.
This leads to a particularly simple IQFT, that of a
free massive fermion. More unexpectedly, the direc-
tion for which H varies away from 0, but T = Tc,
also leads to an IQFT. In this case, Zamolodchikov’s
counting argument shows that there are higher-spin
conserved charges of spin including

s ¼ 1; 7; 11; 13; 17; 19; . . . ½57�

This is remarkable because, as we have described
previously, there is a minimal solution of the
bootstrap program that describes the scattering of
eight particles which has a spectrum of conserved
charges that includes these spins. It is the minimal
scattering theory related to the algebra E8.

The fact that the scattering theory of the off-
critical Ising model in the magnetic field direction
has been identified is remarkable. From the S-matrix
one can proceed to investigate the off-critical corre-
lation functions using a technique known as the
‘‘form factor programe.’’ Detailed simulation of the
original lattice model [56] has provided strong
support for the veracity of the E8 scattering theory.
For instance, the two lightest masses in the scatter-
ing theory determine the ratio of the two longest
correlation lengths m2=m1 = 2 cos (�=5).

In general, the identification of an IQFT and the CFT
at its ultraviolet limit can be more difficult to establish.
One way to proceed is to use the thermodynamic Bethe
ansatz. This technique involves considering the ther-
modynamics of a gas of the particles in a periodic box.
Since the scattering is purely elastic, thermodynamic
quantities can be calculated, albeit in terms of a set of
coupled nonlinear integral equations. If the box is small
enough, ultraviolet effects dominate and various
features of the CFT can be recovered.
Other IQFTs

There is a rich menagerie of other IQFTs that we
have no space to discuss in detail. One is sigma
models, whose fields take values in a Riemannian
target space M with an action

S¼
Z

d2xgab@�Xa@�Xb ½58�

where gabdXa dXb is the metric of M . These theories
are integrable at the classical level if the target space
is either a group manifold of a compact simple
group G or a symmetric space coset G=H, where H
is a suitable subgroup of G. The former are known
as the ‘‘principal chiral models.’’ There are two
kinds of conserved quantities, both local and
nonlocal. At the quantum level, the conserved
currents which imply classical integrability can be
subject to quantum anomalies. An analysis of these
anomalies proves that the principal chiral models
are all integrable at the quantum level, while only
the subset of symmetric space coset models, namely

SOðnþ 1Þ=SOðnÞ; SUðnÞ=SOðnÞ
SUð2nÞ=SpðnÞ; SOð2nÞ=SOðnÞ � SOðnÞ
Spð2nÞ=SpðnÞ � SpðnÞ

½59�

are quantum integrable. S-matrices have been proposed
for all these integrable sigma models. They have a more
complicated structure than most of the cases discussed
here, because the particles fall into representations of the
associated Lie groups and the Yang–Baxter equation,
such as for the sine-Gordon solitons, is now nontrivial.
Remarkably, gross features of the S-matrices, such as the
mass spectrum fusing rules, are identical to the Toda
theories or the minimal S-matrices.

Returning to IQFTs that are associsted with
deformations of CFTs, there are more general
classes which are associated with the renormaliza-
tion group trajectories between two nontrivial fixed
points. These theories have both massless and
massive degrees of freedom. Even more remarkable
are the staircase models of Zamolodchikov that
exhibit an infinite series of crossover behavior where
the renormalization group trajectory passes close to
an infinite series of fixed points in sequence.

For all of the theories described above, one might
have thought more generally that integrability is a
very rigid property of a theory. In general, for
example, the number of external coupling constants
is very limited and the mass ratios are all fixed. For
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example, in Toda theories there is only an overall
mass scale m and the coupling �. If the form of the
potential is altered in any way then integrability is
lost. However, in certain circumstances, integrability
appears to be a looser constraint that allows more
flexibility. One class of such theories is known as
the homogeneous sine-Gordon theories. These are
integrable deformations of gauged WZW models
associated with the coset G=U(1)r, where r is the
rank of a simple compact group G. In these theories
there is a rich spectrum of both stable and unstable
particles with masses and an S-matrix that depends
continuously on a set of r coupling constants.

See also: Algebraic Approach to Quantum Field Theory;
Bethe Ansatz; Constructive Quantum Field Theory; Eight
Vertex and Hard Hexagon Models; Functional Equations
and Integrable Systems; Integrable Systems: Overview;
Quantum Field Theory: A Brief Introduction; Quantum
Field Theory in Curved Spacetime; Sine-Gordon
Equation; Symmetries in Quantum Field Theory of Lower
Spacetime Dimensions; Two-Dimensional Models; Yang–
Baxter Equations.
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Discrete Dynamical Systems

The expression ‘‘dynamical system’’ usually refers to
a coupled system of ordinary differential equations
(ODEs), namely,

_xjðtÞ ¼ fjðt; x1; . . . ; xNÞ; j ¼ 1; . . . ;N ½1�

where t belongs to some set of nonzero measure I of
the real line R, typically an interval [a, b] or a
semiline or the whole line, and xj are sufficiently
smooth functions from I to R or to C.

The system [1] is complemented by initial or
boundary conditions that make it into an ‘‘initial-
value’’ or a ‘‘boundary-value’’ problem. Under suitable
regularity assumptions on the RHS, the existence and
uniqueness of the solution of the initial-value problem
is guaranteed, but in most cases the solution can be
known only ‘‘approximately’’ either through perturba-
tion theory or just through numerical integration. This
is not the proper place to discuss finite-difference
schemes for systems of ODEs: what is relevant is that
such numerical schemes (think, e.g., of Euler or
Runge–Kutta schemes) ‘‘discretize’’ the continuous
independent variable t by replacing it by an integer
variable n 2 Z: in the simplest case, the interval [a, b]
is replaced by a set of L equally spaced points tn = aþ
n(b� a)=L(n = 1, . . . , L), the first derivative is
approximated by a (forward) difference, and the
system [1] is converted into a system of ‘‘difference’’
equations of the form

xjðnþ 1Þ ¼ xjðnÞ þ hFðn; x1ðnÞ; . . . ; xNðnÞÞ ½2�

where h denotes the time step (b� a)=L.
The coupled system [2] is an example of a ‘‘discrete

dynamical system,’’ explicit (because the updated
variables only depend upon the values taken



at previous discrete times), first order (only ‘‘nearest-
neighbor’’ discrete times, n, nþ 1 are involved), but
nonautonomous, as the RHS is allowed to depend
explicitly upon the independent variable n, analo-
gously to its continuum counterpart.

In the following, ‘‘autonomous’’ but not necessa-
rily explicit discrete dynamical systems of a special
type will be considered: in fact, we will require them
to be equipped with a Hamiltonian structure, and
we will define the notion of complete integrability
(in the Arnol’d–Liouville sense) for such systems.

This article emphasizes on some aspects and
properties of integrable discrete systems, neglecting
others that could be equally important. In particular,
as no nonautonomous discrete systems will be
considered, discrete analogs of Painleve’ equations
will never be discussed in this article, and conse-
quently the intriguing issues concerning ‘‘singularity
confinement’’ in the discrete and ‘‘algebraic entropy’’
will not be touched upon (see, e.g., Grammaticos
et al. (2004)). Similarly, neither the integrability for
discrete systems in multidimensional space nor
‘‘quantum integrable mappings’’ will be discussed.

Lagrangian and Hamiltonian
Formulations

Following the historical path along which modern
classical mechanics has been developed, first the
concept of a Lagrangian map is introduced, and then
Hamiltonian (in fact, symplectic) maps are defined
through a proper discrete version of the Legendre
transformation.

Let xj(n) (j = 1, . . . , N, n 2 Z) be N sequences of
real numbers and let L(x, y) be a smooth function
from RN � RN into the reals, x denoting the N-tuple
x1, . . . , xN. L is regarded as a ‘‘discrete Lagrange
function’’: corresponding to each discrete time n, it
is assigned a certain value Ln :=L(x(n), x(nþ 1)).
The corresponding discrete action functional S[L] is
defined in a natural way:

S½L� ¼
XNb

n¼Na

Ln ½3�

The actual ‘‘discrete trajectory’’ will be given by
the sequence x(n) that corresponds to a ‘‘critical
point’’ of the action [3] subject to the constraints
�x(Na) = �x(Nb) = 0. Note that the values Na (Nb)
may well possibly coincide with �1 (þ1). Such
‘‘critical points’’ are given by the solution of the
discrete Euler–Lagrange equations:

@L
@xj

����
xj¼xjðnÞ;yj¼xjðnþ1Þ

þ @L
@yj

����
xj¼xjðn�1Þ;yj¼xjðnÞ

¼ 0 ½4�

It is worthwhile to remark the intrinsic nature of
eqns [4], whose form turns out to be independent of
the choice of a coordinate chart. In fact, by omitting
the explicit dependence on n and simply denoting
x(n) = x, x(nþ 1) = ~x, x(n� 1) = x�, [4] can be cast
in the form

r1Lðx; ~xÞ þ r2Lðx�; xÞ ¼ 0 ½5�

which makes its ‘‘implicit’’ nature for the updated
variable ~x more transparent. Clearly, as a map from
the pair (x� , x) to the pair (x, ~x), it is in general a
multivalued map, or a ‘‘correspondence’’, as it is
called in the literature (Suris 2003, Veselov 1991).
In order that [5] be solvable for ~x, the Hessian
matrix Hjk = @2L=@xj@yk should be nondegenerate.

As will be noted shortly, the Lagrangian map [4]
(or [5]) is in fact a canonical, or better a symplectic
transformation on a suitably defined cotangent
bundle T�X to the configuration space X 2 RN.
Namely, one defines the conjugate momentum to x as

p :¼ r2Lðx�; xÞ ½6�

so that [5] can be rewritten as the following system:

p ¼ �r1Lðx; ~xÞ ½7�

~p ¼ r2Lðx; ~xÞ ½8�

This system defines a correspondence (x, p)! (~x, ~p),
which is indeed a ‘‘symplectic’’ one, as it preserves
the standard symplectic form !(x, p) =

PN
j = 1 dpj ^

dxj, and, of course, the associated Poisson brackets.
The simplest way to recognize this property is by
constructing the generating function of the corre-
sponding canonical transformation. To this end, let
us introduce

Sðx; ~pÞ ¼ �L þ
XN
j¼1

~pjð~xj � xjÞ ½9�

The discrete Euler–Lagrange equation then takes the
form

~xj � xj ¼
@S
@~pj

½10�

pj � ~pj ¼
@S
@xj

½11�

which is canonically generated by S þ
P

j x(j)~p(j). A
strict analog of the Hamiltonian formulation for
continuous-time Lagrangian systems does not indeed
exist in the discrete-time case. One of the main
consequences, well known to the specialists but
worth emphasizing in the present context, is that
even a symplectic map in one degree of freedom
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(two-dimensional T�X) is generically not integrable:
the existence of an invariant function F(x, p) =
F(~x, ~p) is not entailed by the symplectic structure,
so that, as discussed later, integrable maps of the
standard type are indeed exceptional. On the other
hand, note that invariant functions do exist when-
ever a Lagrangian has some additional symmetry:
this is the case when a Lie group acts on the
configuration space X and the Lagrange function is
invariant under its induced action on X�X, so that
a discrete version of the Noether theorem applies
(Suris 2003).

Complete Integrability

The definition of a ‘‘completely integrable’’ discrete-
time system is now in order. Let � be a symplectic
map on the 2N-dimensional phase space
M := (R2N, dp ^ dq), equipped with N smooth
invariant functions Fj, such that

� F1, . . . , FN are functionally independent, that is,
their gradients rFj are linearly independent ofM;
� F1, . . . , FN are in involution:

fFj; Fkg ¼ 0; j; k ¼ 1; . . . ;N

Let T be a connected component of the common
level set

fðx; pÞ 2 T : Fkðx; pÞ ¼ ck; k ¼ 1; . . . ;Ng

Then T is diffeomorphic to Tl � RN�l, for some 0 �
l � N; if T is compact, then it is diffeomorphic to an
N-dimensional torus TN.

In the compact case, there exists an open ball � 2
RN such that, in T � �, there exist new canonical
coordinates (Ik,�k), k = 1, . . . , N; Ik 2 T ,�k 2 �, the
so-called action-angle coordinates, enjoying the
following properties:

� the actions Ik depend just on the Fj’s
� in action-angle coordinates the map is a linear

shift on the N-dimensional torus:

~Ik :¼ �ðIkÞ ¼ Ik

~�k :¼ �ð�kÞ ¼ �k þ �kðI1; I2; . . . ; INÞ

Hence, in action-angle variables a completely integr-
able map is a canonical transformation from (I,�) to
(~I (= I), ~�), whose generating function W only
depends on the action variables. It takes the form

~Ik � Ik ¼ 0 ½12�

~�k � �k ¼
@W

@Ik
:¼ @

@Ik

XN
j¼1

Z ~x

x

dxj pjðI; xÞ ½13�

Integrable Maps of the Standard Type

As the simplest integrable models, first consider
some highly nontrivial examples of ‘‘standard
maps,’’ that is, scalar discrete second-order differ-
ence equations of the following type (Suris 2003):

xnþ1 � 2xn þ xn�1 ¼ Gðxn; hÞ ½14�

with h a real parameter, which exhibit an invariant
function, say

Jðxn�1; xnÞ ¼ Jðxn; xn þ 1Þ ½15�

Clearly, [14] can serve as a discretization of the
Newtonian equation:

€x ¼ f ðxÞ ½16�

if limh! 0 h2G(x; h) exists and is equal to f (x).
All ‘‘standard maps’’ are Lagrangian, being

stationary points of the discrete action:

S ¼
X
n2Z

1
2 ½xnþ1 � xn�2 þ Vðxn; hÞ
� �

½17�

with G(x; h) = @V(x; h)=@x. A point in the phase
space is a pair xn, pn = xn � xn�1, and [14] is
symplectic for dp ^ dx, reading

xnþ1 � xn ¼ pnþ1 ½18�

pn � pnþ1 ¼ Gðxn; hÞ ½19�

The corresponding generating function is given by
S = V(x; h)þ (1=2)p2

nþ1. Integrability of [19] means
the existence of a function F fromM into itself such that

Fðxnþ1; pnþ1Þ ¼ Fðxn; pnÞ ½20�

where [15] and [20] are equivalent provided
J(x, x� y) = F(x, y).

Suris has found three families of functions G that
ensure integrability: a rational family, a trigonometric
family, and a hyperbolic family. There is no room here
to display the relevant formulas, nor to explain why,
under natural analiticity assumptions both in h and x,
no other integrable family exists. However, it is worth
mentioning that they turn out to be integrable
discretizations of the scalar second-order differential
equations [16] for the following ‘‘force’’ functions f (x):

fratðxÞ ¼ Aþ Bxþ Cx2 þDX3 ½21�

ftrigðxÞ ¼ A sinð!xÞ þ B cosð!xÞ þ C sinð!2xÞ
þD cosð!2xÞ ½22�

fhypðxÞ ¼ A expðxÞ þ B expð�xÞ þ C expð2xÞ
þD expð�2xÞ ½23�

A curious fact is that those Newton forces that
one can ‘‘discretize’’ in order to get integrable maps
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are exactly the external forces that one can add to
the internal two-body interactions of the Calogero–
Moser or Calogero–Sutherland models to preserve
complete integrability.

Integrable Discrete Systems and
the Lax Approach

Since, in a seminal paper, Lax (1968) introduced it
for the Korteweg–de Vries (KdV) equation, the
search for a ‘‘Lax representation’’ played a crucial
role in the construction of integrable systems, both
finite and infinite dimensional. In particular, the
continuous time dynamical system [1] (assumed to
be autonomous) is said to be equipped with a Lax
representation if there exist two matrices L, M
whose entries depend upon the coordinates xj,
whenceforth upon the time t, such that the time
evolution [1] can be cast in the form

_LðtÞ ¼ ½LðtÞ;MðtÞ� ½24�

Hence, the one-parameter family of matrices L(t)
undergoes the ‘‘isospectral’’ deformation:

LðtÞ ¼ UðtÞLð0ÞðUðtÞÞ�1 ½25�

U(t) being the unique solution of the linear matrix
differential equation:

_UðtÞ ¼MðtÞUðtÞ ½26�

with the initial condition U(0) = I. Then, the
existence of a Lax representation in term of, say,
k� k matrices entails the existence of k integrals of
motion, given, for instance, by the eigenvalues of
L(t), or by the traces tl := tr(L(t))l.

Some remarks are in order:

� In the case of a Hamiltonian system, the matrices L,
M depend, of course, on the point in the phase space.
� No guarantee exists, a priori, that the eigenvalues

of L, or equivalently the traces tl, be ‘‘sufficiently
many’’ and in involution. Note, however, that in
many examples the Lax matrices L, M depend on
an extra scalar parameter � (so that they are
elements of an affine or ‘‘loop’’ Lie algebra),
which might increase the number of integrals of
motion well beyond the dimension of the matrix.

The N-body systems of Calogero type and Toda
type are celebrated examples of integrable dynami-
cal systems equipped with a Lax representation.

How this description can be adapted to the
discrete-time case? The isospectral equation [25]
suggests the proper way. One has to look for two
matrices depending on the coordinates (or on the
phase-space variables) x (again, they can be called L,

M), such that the discrete-time evolution, modeled,
for instance, by [2], can be cast in the form of a
similarity transformation:

~L ¼MLM�1 ½27�

where L = L(x), ~L = L(~x), and M = M(x, ~x). As
usual, by denoting by n the discrete time (i.e., the
number of iterations), so that x = x(n), ~x = x(nþ 1),
eqn [27] implies that a discrete version of [25]
holds:

LðnÞ ¼ UðnÞLð0Þ½UðnÞ��1 ½28�

where U(n) := M(n)M(n� 1) 	 	 	M(1).
As in the continuous case, the existence of a

discrete Lax representation entails the existence of
conserved quantities (invariants of the map or of the
correspondence) but by itself it does not say
anything about completeness and involutivity of
such invariants. There is, however, an approach that
incorporates the involutivity property in the very
construction of Lax equations, both discrete and
continuous, namely the ‘‘R-matrix approach.’’
Indeed, from the experimental observation of a
number of examples, both finite and infinite dimen-
sional, one can assert that the matrix M taking part
in the ‘‘continuous’’ Lax representation [24] may be
presented in the form (Suris 2003)

M ¼ Rðf ðLÞÞ ½29�

In [29], L, M are element of some matrix Lie algebra
g, R is a linear map from g into itself, and f is a
conjugation-covariant function, namely

f ðALA�1Þ ¼ Af ðLÞA�1 ½30�

A being an arbitrary element of the group G with
Lie algebra g.

Polynomials in the variable L with scalar coeffi-
cients are typical examples of conjugation-covariant
functions. Moreover, in a matrix Lie algebra, one
can identify g with its dual space g� through the
nondegenerate bilinear form provided by the trace:
(L1, L2) := tr(L1L2). Then, the trace F of a conjuga-
tion-covariant function f will be a typical example of
a conjugation-invariant function, and, conversely,
the gradient of a conjugation-invariant function F,
defined as

hrF;Xi ¼ d

d�
FðLþ �XÞj�¼0 ½31�

will be a typical example of a conjugation-covariant
function. In the above setting, one can define the
following Lie–Poisson bracket on g:

fF;GgðLÞ :¼ ðL; ½rF;rG�Þ ½32�
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where F, G are arbitrary (i.e., not necessarily
invariant) functions from g into C, so that the
Hamilton equation

_L ¼ fH;Lg ½33�

takes the Lax form

_L ¼ ½L;rH� ½34�

It is immediate to check that invariant functions of
L are Casimir functions of [32] so that they will not
generate any nontrivial flow.

Assume now that the linear mapping R, usually
called r-matrix, introduced in [29], is such that it
defines a new Lie bracket on g, through the formula

½L1;L2�R ¼ 1
2 ð½L1;RðL2Þ� þ ½RðL1Þ;L2�Þ ½35�

and consequently a new Lie–Poisson bracket

fF;GgRðLÞ :¼ ðL; ½rF;rG�RÞ ½36�

Then the following theorem holds:

Let H be an invariant function on g. Then:

(i) The Hamilton equations on g generated by H with
respect to the Poisson bracket [36] have the Lax
form

_L ¼ ½L;RðrHÞ� ½37�

(ii) The invariants of g, that is, the Casimir function
of the standard Lie–Poisson bracket [32], are in
involution for [36] so that the corresponding
flows are mutually commuting.

A particular realization of such R operator, very
important for the application, arises in the so-called
Adler–Kostant–Symes (AKS) construction (Adler
1979, Kostant 1979, Symes 1980), where the Lie
algebra g admits a decomposition in two subalgebras,
gþ and g�, so that, as linear spaces, it holds that

g ¼ gþ 
 g� ½38�

Denoting by �� the corresponding projections, the
linear mapping

R :¼ �þ � �� ½39�

defines a new Lie bracket on g, and the correspond-
ing Lax equations take the two equivalent forms:

_L ¼ ½L; �þðf ðLÞÞ� ¼ �½L; ��ðf ðLÞÞ� ½40�

For the present purposes, it is of paramount
importance that the AKS construction has a discrete-
time version (Suris 2003).

In fact, let G be a Lie group with Lie algebra g, and let
Gþ, G� be its subgroups having gþ, g� as Lie algebras.

Then, in a certain component of the identity element I,
any element g of G is uniquely factorizable as

g ¼ �þðgÞ��ðgÞ; ��ðgÞ 2 G� ½41�

Moreover, let F : g ! G be a conjugation-covariant
function. Consider now the map

L! ~L :¼ ��1
þ ðFðLÞÞ 	 L 	 �þðFðLÞÞ

¼ ��ðFðLÞÞ 	 L 	��1
� ðFðLÞÞ ½42�

and regard it as a difference equation, yielding
~L = L(nþ 1) in terms of L = L(n). Then, the follow-
ing properties hold:

� For whatever function F, the map [42] commutes
with any continuous flow [40], mapping solutions
into solutions.
� It can be ‘‘explicitly integrated’’ with respect to

the discrete time n, yielding

LðnÞ ¼ ��1
þ ðFnðL0ÞÞ 	 L0 	�þðFnðL0ÞÞ ½43�

or the equivalent expression in terms of the
complementary projection ��.

� It is interpolated by the continuous flow [40] with
time step h if

expðhf ðLÞÞ ¼ FðLÞ $ f ðLÞ ¼ h�1 logðFðLÞÞ ½44�

In other words, the discrete-time systems that one
derives through this approach are just a sequence
of pictures taken at equally spaced times of some
continuous flow pertaining to the hierarchy [40]:
so, by construction they are Poisson maps with an
involutive family of integrals given by the con-
jugation-invariant functions of L (typically, tr Ln).

� As far as

FðLÞ ¼ I þ hf ðLÞ þ oðh2Þ ½45�

the map [42] serves as an integrable exact
discretization of the flow [40], sharing both its
Poisson structure and its constants of the
motion.

An Integrable Discretization of the
Toda Lattice

Consider a simple but an illuminating example of
the above construction, showing an integrable
discretization of the ‘‘open-end Toda lattice,’’
which is described (Suris 2003) by the Newtonian
equations of motion:

€xj ¼ expðxjþ1 � xjÞ � expðxj � xj�1Þ
j ¼ 1; . . . ;N ½46�
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and can be cast into a Hamiltonian form by setting
pj = _xj; qj = xj. If, according to H Flaschka (1974),
one introduces the variables

bj ¼ _xj; aj ¼ expðxjþ1 � xjÞ ½47�

eqn [46] takes the form

_bj ¼ aj � aj�1; _aj ¼ ajðbjþ1 � bjÞ ½48�

and enjoys the Lax representation [24] in terms of
the N �N matrices:

Lða; bÞ ¼
XN
k¼1

ajEj;jþ1 þ
XN
k¼1

bjEj;j þ
XN
k¼1

Ejþ1;j ½49�

Mða; bÞ ¼ A :¼
XN
k¼1

ajEj;jþ1 or

Mða; bÞ ¼ �B :¼
XN
k¼1

bjEj;j þ
XN
k¼1

Ejþ1;j

½50�

In the above formula, Ej,k is the matrix having 1 in the
jk position and 0 elsewhere, so that, obviously,
EN,Nþ1 = ENþ1,N = 0. An inspection to [49] and [50]
shows that A is just the strictly upper triangular part of
L(a, b), while B is its lower triangular part. The pair
(A, B) constitutes the so-called LU decomposition of
L(a, b). One is clearly in the AKS setting, the Lie algebra
g being just the algebra of N �N matrices, and the Lie
subalgebras g� being the strictly upper and lower
triangular matrices. The tridiagonal matrix L(a, b)
belongs to a Poisson submanifold of g, invariant under
the flows [40], and a complete family of commuting
integrals of motion is given, for instance, by Ik = trLk.

Now, the elements of the group GLN, realized as
the group of invertible N �N matrices, uniquely
factorize into a product of an invertible lower-
triangular matrix times an upper-triangular matrix
with units on the diagonal, and the Lie algebras of
those subgroups are just the aforementioned sub-
algebras g�. Then, one is naturally tempted to look
for an integrable discretization provided by a
conjugation-covariant function of the type [45],
starting with the simplest possible choice, namely

FðLÞ ¼ I þ hf ðLÞ

Setting

~Lða; bÞ :¼ Lð~a; ~bÞ
¼ ��1

þ ðI þ hLÞ 	 L 	 �þðI þ hLÞ
¼ ��ðI þ hLÞ 	 L 	 ��1

� ð1þ hLÞ ½51�

it turns out that the matrix equation [51] is
equivalent to the map

ða; bÞ ! ð~a; ~bÞ

described by the following equations:

~bk ¼ bk þ h
ak

�k
� ak�1

�k�1

� �

~ak ¼ akð�kþ1 � �kÞ

where �k, which are the ‘‘field variables’’ entering
into the LU factorization [51], are explicitly and
uniquely defined by the recurrent relation (amount-
ing to a finite continued fraction):

�k ¼ 1þ hbk � h2 ak�1

�k�1
; k ¼ 1; . . . ;N ½52�

As a0 = 0, the initial condition is simply �1 = 1þ hb1.
It follows from the general results of the previous

section that [51] is an integrable Poisson map, sharing
with the continuous Toda hierarchy both the Poisson
structure and the integrals of motion. Its initial-value
problem can be uniquely solved in terms of the LU
factorization of the group element (I þ hL0)n, the
initial condition L0 being any matrix pertaining to
the tridiagonal submanifold [49]. According to [44],
the interpolating Hamiltonian flow is provided by the
function f ( L) = h �1 log (1 þ hL). To make contact
with the discussion in the section ‘‘Lagrangian and
Hamiltonian formulations,’’ we observe that, in terms
of the canonical variables xj, pj, the discrete Toda [51]
lattice becomes the following symplectic map:

1þ hpj ¼ expð~xj � xjÞ þ h2 expðxj � ~xj�1Þ ½53�

1þ h~pj ¼ expð~xj � xjÞ þ h2 expðxjþ1 � ~xjÞ ½54�

It can evidently be written in the discrete Newtonian
form:

expð~xj � xjÞ � expðxj � x�jÞ
¼ h2 expðx�jþ1 � xjÞ � expðxj � ~xj�1Þ ½55�

whose Lagrangian function is given by

L ¼
XN
k¼1

 ð~xk � xkÞ � h
XN
k¼1

expðxkþ1 � ~xkÞ ½56�

with

 ð	Þ ¼ h�1ðexpð	Þ � 1� 	Þ ½57�

The variables �j acquire the following extremely
simple expression in the Lagrangian coordinates xj, ~xj:

�j ¼ expð~xj � xjÞ

For integrable Hamiltonian systems with long-
range two-body interaction, such as Calogero–
Moser type systems, and their so-called relativistic
version (Ruijsenaars systems), an exact integrable
discretization has also been found. However, at least
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in the more natural Lax representation, the related
R-matrix is dynamical (namely, it depends on the
phase-space coordinates), and the simple factoriza-
tion scheme holding for the Toda lattice system (and
for the related ones) is not available.

Further knowledge on the intriguing subject of
‘‘discrete integrable systems’’ can be acquired by
looking at the monographs and papers listed in the
‘‘Further Reading’’ section. In particular, the excellent
book by Y B Suris, which also provides an exhaustive
list of references (updated to 2003), is recommended.

See also: Billiards in Bounded Convex Domains;
Boundary Value Problems for Integrable Equations;
Calogero–Moser–Sutherland Systems of Nonrelativistic
and Relativistic Type; Integrable Systems and Discrete
Geometry; Integrable Systems and the Inverse
Scattering Method; Integrable Systems: Overview;
Painlevé Equations; Quantum Calogero–Moser Systems;
Toda Lattices; Yang–Baxter Equations.
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Historical Overview

The relevance of algebraic geometry in the theory of
dynamical systems has a long history. Three models
may serve as guiding threads from old to the current
state of the theory. Each time algebraic geometry is
used to integrate an evolution equation; this is
achieved by an underlying addition rule. The very
origin for this seems to be Fagnano’s addition
rule for the arc of a lemniscate (see Siegel (1969)).
In analogy to the addition of two arcs on a circle
x2 þ y2 = 1, or the duplication formula for

arcsin r ¼
Z r

0

drffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

namely Z r

0

drffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p ¼ 2

Z u

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

if r = 2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

(a restatement of the trigonometric
identity r = sin(2x) = 2 sin x cos x), Fagnano found,
and proved, by substitution, a geometric rule for
duplicating the arc of a lemniscate:

x4 þ 2x2y2 þ y4 ¼ x2 � y2

The length of the arc is now given by

s ¼
Z r

0

drffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4
p

and later Gauss designated the limit of integration
by r = sinlemn(s). Fagnano was able to show thatZ r

0

drffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r4
p ¼ 2

Z u

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u4
p

with the substitution

r2 ¼ 4u2ð1� u4Þ
ð1þ u4Þ2

which is remarkable not only because it doubles the
length, but also because it does so by rational
functions, and in fact shows that the arc of the
lemniscate can be halved by straightedge and compass.
Gauss showed that the constructible fractions of an arc
of a lemniscate are the same as the ones for the circle.

Thanks to subsequent work by Euler, and to the
theory of abelian functions due to Abel, Jacobi, and
others in the nineteenth century, we now realize that
Fagnano’s discovery revealed the algebraic group
structure of the singular quartic curve (or of a
smooth cubic, if preferred, an elliptic curve).

This is the key fact that provides the ‘‘integration
by quadratures’’ for the simple pendulum. We
follow McKean and Moll (1997) to sketch this
prototype example of a system which is algebraically
completely integrable (ACI), defined in the section
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‘‘Hitchin systems.’’ Newton’s law gives the equation
of motion €�þ sin �= 0, where � parametrizes the
position of the bob in terms of the angle the
pendulum makes with the vertical axis, as it rotates
about its pivot (the length has been normalized so as
to match the gravitational constant). The energy is a
first integral, I = cos �� 1=2 _�2, and the substitution

x ¼
ffiffiffiffiffiffiffiffiffiffiffi

2

1� I

r
� sin

�

2

linearizes the motion:

t ¼
Z x

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þð1� k2x2Þ

p dx

with k2 = (1� I)=2 between 0 and 1, precisely
because of Fagnano’s and Euler’s addition rule.

The second striking example of addition rule,
yielding solutions to a nonlinear partial differential
equation (PDE), together with this first will provide
the two themes of this article, and embed into an
infinite-dimensional family of conservation laws that
will accommodate the representation-theoretic
aspect of the symmetries. In their 1895 article,
Korteweg and de Vries (KdV) gave official status to
the (then controversial) representation of solitary
waves in shallow water:

ut ¼ 6uux � uxxx

(again up to normalization) is by now the well-known
KdV equation, where u represents the amplitude of the
wave and x the direction along a canal. It so happens
that by integrating twice the ordinary differential
equation (ODE) obtained by the one-wave ansatz,
z = x� ct (where c is the constant velocity), one sees
that the solution u and its derivative uz = u0 satisfy
identically an algebraic equation:

�cu0 � 6uu0 þ u000 ¼ 0

ð�cu� 3u2 þ u00 þ aÞu0 ¼ 0

ðu0Þ2

2
¼ u3 þ c

u2

2
� auþ b

u ¼2}þ const: ðup to a linear transformationÞ
ð}0Þ2 ¼ 4}3 � g2}� g3 ¼ 4ð}� e1Þð}� e2Þð}� e3Þ

In disguise, then, the PDE and the Hamiltonian
evolutions are the same; the motion becomes linear
(and quasiperiodic) on the torus C=�, where � is the
period lattice of the } function. It took considerably
greater effort to generalize this correspondence to
higher genus. This article is devoted to such a
correspondence as well as some of the surprising
connections between complete integrability and
other areas of mathematics such as: representation

theory (the corresponding geometric objects are
Grassmann manifolds as opposed to Jacobians);
differential algebras (Weyl algebras, commutative
rings of differential operators, and differential
Galois theory); and reduction in symplectic
geometry.

It is often helpful to highlight the relevant features
in the simplest example, even if it is of special kind.
The KdV equation and, as Hamiltonian counterpart,
Neumann’s system (see Neumann (1859)) will serve
best. The abelian sum identified by Fagnano cannot
be defined on points of a curve X of genus g > 0;
what one can add are points of the g-fold symmetric
product X(g) up to linear equivalence, defining (up to
noncanonical isomorphism) an abelian variety, the
Jacobian Jac(X) = Cg=�; analytically, the Jacobian is
described by abelian coordinates z1, . . . , zg: if
�1, . . . , �g, �1, . . . ,�g is a basis of 1-cycles on X
with standard intersection matrix and !1, . . . , !g is
the dual basis of holomorphic differentials, then
zj =

Pg
i = 1

R Pi

P0
!j is defined in terms of a fixed base

point P0 2 X and of (P1, . . . , Pg) 2 X(g) up to the
period lattice �. It is in these coordinates that the
Hamiltonian flows become linear. In canonical
coordinates q1, . . . , qgþ1, p1, . . . , pgþ1, the harmonic
oscillator

_qi ¼ pi

_pi ¼ �eiqi

when constrained to the unit sphere
Pgþ1

i = 1 q2
i has

equations

_qi ¼ pi

_pi ¼ �eiqi þ qi

X
j

ðejq
2
j � p2

j Þ

This system is completely integrable in the sense that
there exist enough involutory invariants, g gener-
ically (in the (qi, pi) variables) independent functions
on the 2g-dimensional tangent bundle of the unit
sphere with canonical symplectic structure; in fact
the coefficients of the polynomial

f ð�Þ ¼
Ygþ1

i¼1

ð�� eiÞ2
 Xgþ1

k¼1

q2
k

�� ek

 ! Xgþ1

k¼1

p2
k

�� ek
þ 1

 !

�
Xgþ1

k¼1

qkpk

�� ek

 !2!

are invariant and the hyperelliptic Riemann sur-
face X whose model in the affine plane is given by
�2 = f (�) is called the spectral curve of the system.
Since the polynomial f (�) is monic of degree
2gþ 1 and has generically simple roots, X has
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genus g. A change of variables permits integration
by quadratures,

qiðtÞ ¼
#½�2i�1�ð0Þ#½�2i�1�ðz0 � D þ 2

ffiffiffiffiffiffiffi
�1
p

tUÞ
#½0�ð0Þ#½0�ðz0 � D þ 2

ffiffiffiffiffiffiffi
�1
p

tUÞ

where z0, U 2 Cg are constant vectors, J denotes the
Riemann theta function of X, �k(k = 1, . . . , 2g) are
theta characteristics and D is the Riemann constant.
While these are technical objects of classical
Riemann function theory whose detailed definition
is best found in a textbook (see, e.g., Mumford
(1984)), the point here is that the motion is
linearized along the line with direction U , on the
hyperelliptic Jacobian Jac(X), which is a 2gþ1 : 1
cover of the phase space.

A yet deeper fact links the integrable Hamiltonian
motion and the (soliton) PDE, namely the statement
that

Pgþ1
i = 1 (eiq

2
i þ p2

i ) = u(t1, t3) solves the KdV
equation, where the variables are renamed as
x = t1, t = t3 to denote two of the g commuting
Hamiltonian flows.

The Neumann system as well allows us to uncover
another deep relation between dynamics and geo-
metry, namely the moduli aspect: on the one hand,
Mumford (1984) used the Neumann system to recover
the equation of the spectral curve from a vanishing
property of theta functions with characteristics,
thereby giving the first characterization of the moduli
subvariety of hyperelliptic curves in terms of thetanulls
(for any genus). On the other hand, Françoise (1987)
explored the relevance of the integrable system to the
Picard–Fuchs equations. The fundamental link is
provided by Arnol’d’s theory, according to which a
set of action-angle variables (qi, pi), i = 1, . . . , n, for a
completely integrable Hamiltonian system can be
calculated in terms of a basis �i of the first homology
of the fibers, which are n-dimensional tori,R
�j

dqi = 	ij; hence, in the case of an algebraically
integrable system such as the Neumann example (or,
in Françoise’s paper, the Kowalevski top), in principle
one can express the (coefficients of the) differential
equations satisfied by the periods in terms of the
commuting Hamiltonians, despite the fact that
periods and Hamiltonians are transcendental func-
tions the ones of the others. A more general family of
period matrices is subject to the Gauss–Manin
connection, and the question of whether its general
abelian variety is Lagrangian with respect to a
holomorphic symplectic structure on the family yields
a cubic condition on the periods (Donagi and Mark-
man 1996).

These are two major applications of PDEs to
algebraic geometry: characterizing subvarieties of
moduli spaces (of curves) and expressing the

Gauss–Manin connection acting on sections of a
Hodge-theoretic bundle over the moduli space in
terms of the evolution equations of a completely
integrable system. In the former case, the flows of
the system act on the theta functions of a (fixed)
curve; in the latter, the Hamiltonians are related,
via the action variables, to computing the mono-
dromy over the branch points of the base of the
system. The generalization of specific (e.g., hyper-
elliptic) cases is very difficult to work out and
remains largely open 40 years after the field of
integrable equations started being actively
investigated.

Before concluding this historical overview, a
beautiful theory that escaped attention is worth
mentioning. In the late nineteenth century, for
example, Baker (1907) constructed the first genus-2
solutions of the KdV equation, although he was
apparently not aware of the equation itself; in the
process, he also defined what is known as the Hirota
bilinear operator, a device introduced by R Hirota
in the 1970s to capture an equivalent version of the
KdV, or the more general Kadomtsev–Petviashvili
(KP) equation,

ðut � 6uux þ uxxxÞx ¼ uyy

Just as the Lax pair allows for a linearization of the
isospectral deformations, Hirota’s bilinear form
reveals the representation-theoretic (and algebro-
geometric) nature of the equations, via the vanishing
of a natural pairing on a pair of solutions, besides
providing a formula for exact solutions; the defini-
tion of the bilinear operation is the following: for
functions F and G,

Dtn
F �G ¼ @

@t0n
� @

@tn

� �
FðtÞGðt0Þ t¼t0

��
t ¼ðt1; t2; . . .Þ

so that Hirota’s direct method gives the following
solution: set u = 2(@2=@x2) log F, then

KdV, DxDt þD4
x

� �
F � F ¼ 0

KP, D2
x

D4
x þ 3D2

y � 4DxDt

� 	
F � F

2F2
¼ 0

Baker was intent on generalizing the properties of
the Weierstrass } function. He focused on genus 2
(and obtained partial results for general genus), in
which case any curve is hyperelliptic,

f : �2 ¼ �2gþ1 þ a2g�
2g þ � � � þ a0

and used a suitable basis of holomorphic differen-
tials particular to the hyperelliptic case, whose
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integrals give abelian coordinates zi that happen to
be dual to the KdV flows,

!1 ¼
d�

2�
; !2 ¼

�d�

2�
; . . . ; !g ¼

�g�1d�

2�

to characterize the genus-2 theta function by
differential equations (equivalent to the KdV hier-
archy), as well as give the quartic equation for the
Kummer surface in P3, namely the 2:1 image of the
Jacobian of the curve mapped by the divisor 2�,
that is, by a basis of the space of theta functions
with second-order characteristics, simply as the
determinant of

�a0
1
2 a1 2}11 �2}12

1
2 a1 �ða2 þ 4}11Þ 1

2 a3 þ 2}12 2}22

2}11
1
2 a3 þ 2}12 �ða4 þ 4}22Þ 2

�2}12 2}22 2 0

2664
3775

where

}ijðzÞ ¼ �
@2

@zi@zj
log 
ðzÞ

and the 
 function, defined in analogy to the genus-1
case, is proportional to the Riemann theta function.

To summarize this introduction, the exchange
between algebraic geometry (the classification of
algebraic varieties) and dynamical systems has been
extremely fruitful in either direction: algebraic
geometry surprisingly provides exact solutions to
evolution equations that have special algebraic
symmetries (and arise in nature!), and conversely
those very evolutionary equations yield the structure
of particularly complicated varieties, by characteriz-
ing their (rational) functions.

Isospectral Deformations

The isospectral deformations in question have been
encoded by Lax-pair equations, which take their
name from Peter D Lax, who gave a version of the
KdV equation in such form.

Lax pairs enter in two essentially different ways in
the theory of integrable systems. The evolution
equations take the form: @tn

L = [B, L], where
t1, t2, t3, . . . is a sequence of commuting time flows,
L is an operator whose coefficients depend on time,
and B is another operator of the same kind; since
heuristically this is the infinitesimal version of the
equation L(t) = U(t)�1L(0)U(t) (with B = U�1@tU),
the spectrum of L is preserved and provides
conserved quantities; in fact, Moser (1980) specu-
lated that every completely integrable system might
have such a form.

In the form that immediately yields a hierarchy of
PDEs, the (hierarchy of) deformations pertain to a
ring of (formal) pseudodifferential operators, where
the variable x = t1 is singled out and @ denotes
differentiation with respect to x:

LðtÞ 2 D ¼
Xn

j¼0

ujðxÞ@ j; uj analytic near x ¼ 0

( )

� P ¼
Xn

�1
ujðxÞ@ j

( )
The multiplication rule that makes P into a ring (in
fact, a C-algebra) is composition:

@ � u ¼ u@ þ u0

@�1 � u ¼ u@�1 � u0@�2 þ u00@�3 � � � �

We normalize L by an automorphism of D
(generated by a change of variable and conjugation
by a function)

L ¼ @n þ un�2ðxÞ@n�2 þ � � � þ u0ðxÞ

In P any (normalized) L has a unique nth root,
n = ord L, of the form L= @ þ u�1(x)@�1 þ
u�2(x)@�2 þ � � � . Finally, the deformation equations,

@tn
L ¼ ½ðLnÞþ;L�

define the KP hierarchy, which takes its name from
the first nontrivial deformation equation, known as
the KP equation encountered above, if we set
x = t1, y = t2, t = t3 (notice that this reduces to KdV,
up to rescaling, when the solution is independent
of y). The algebro-geometric solutions are those
with the property that only a finite number of time
evolutions are independent. This turned out to be
equivalent to a classical problem of elementary
differential algebra, known as the Burchnall–
Chaundy problem after the two co-authors who
solved it in the 1920s.

The Burchnall–Chaundy problem: which L(x)’s
have centralizer CD(L) that is larger than a
polynomial ring C[L1], L1 2 D? The key to the
solution is the following fact (which clearly does
not hold for operators in more than one variable,
or finite-dimensional operators such as matrices):
if ord L > 0 and A, B 2 D both commute with L,
then [A, B] = 0; in particular, CD(L) is commuta-
tive, hence every maximal-commutative subalgebra
of D is a centralizer. It was proved in the early
1900s by I Schur that CD(L) = {

PN
�1 cjLj, cj 2 C} \

D. It follows that centralizers are rings of affine
curves: their transcendence degree over the field of
coefficients is 1, and Spec C(L) can be regarded as
an affine curve X0 (with natural compactification
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X by a smooth point at infinity). Burchnall and
Chaundy proceeded to show that the rings of
operators whose orders are not all multiples of a
fixed integer >1, and having the same spectral
curve X (up to isomorphism), correspond to line
bundles over X (more precisely, rank-1 torsion-
free sheaves); thus, the hierarchy of evolutions
linearizes on Jac X, as indicated by the examples
treated above.

In this setting, it has been very challenging to
generalize the integrable flows, both to the higher-
rank and to the higher-dimensional case. When all
the operators in the commutative ring have order
divisible by an integer r > 1, their common kernel
defines a rank-r vector bundle over the spectral
curve, and although the theory in principle is
similar to the case of line bundles, there are no
explicit formulas for solution. On the other hand,
in order that the spectrum be a variety X of
dimension d > 1 rather than a curve, it is natural to
seek commutative rings of partial differential
operators in d variables; but again, while some
constructions work in principle, explicit formulas
are elusive.

The form in which Lax pairs occur for finite-
dimensional Hamiltonian systems is quite differ-
ent: here what is preserved is the spectrum of a
finite-dimensional linear operator, a matrix. The
first examples, from which the theory took off,
were inspired guesses. The Neumann system
described above fits in the following theory:
Moser (1980) showed that the Neumann system
together with other important classical examples
are special cases of rank-2 perturbations (since
(2 = dimhp, qi)) which preserve the spectrum of a
matrix

L ¼ Aþ aq� qþ bq� pþ cp� qþ dp� p

where A is a fixed constant matrix which can be
normalized to a diagonal, diag(e1, . . . , egþ1),

det
a b

c d


 �
6¼ 0

and u� v denotes the matrix [uivj]. The symplectic
structure is the standard !=

P
dpi ^ dqi so that a

Hamiltonian H defines a flow

_qi ¼
@H

@pi
; _pi ¼ �

@H

@qi

and

@G

@t
¼ �fH;Gg ¼

X @H

@pi

@G

@qi
� @G

@pi

@H

@qi

The Hamiltonian flow of

H ¼ 1

2

 
ahBq; qi þ ðbþ cÞhBq; pi þ dhBp; pi

� ad � bc

2

X
i 6¼j

bi � bj

ei � ej
ðqipj � qjpiÞ2

!

(where B = diag(b1, . . . , bgþ1) is any fixed diagonal
matrix) is equivalent to the Lax-pair equation
_L = [M, L], where M is a suitable matrix:

M ¼ 1

2
ðb� cÞ½bi	ij� þ ðad � bcÞ bi � bj

ei � ej
ðqipj � qjpiÞ


 �
The Weinstein–Aronszajn formula

det In �
Xr

i¼1

�i � �i

 !
¼ det

�
Ir � ½h�i; �ji�

	
(where each of the �1, . . . , �r, �1, . . . , �r is a
(gþ 1 = n)-vector) gives for the spectral invariants

lð�Þ
eð�Þ ¼

detð�� LÞ
detð�� AÞ

¼ detðI � ðð�� AÞ�1qÞ � ðaqþ bpÞ
� ðð�� AÞ�1pÞ � ðcqþ dpÞÞ
¼ detðI2 �W�ðq; pÞÞ

with

W�ðq; pÞ ¼
hð�� AÞ�1q; qi hð�� AÞ�1q; pi
hð�� AÞ�1q; pi hð�� AÞ�1p; pi

" #

�
a b

c d


 �
and det (I �W�(q, p)) = 1� tr W� þ det W� = 1�
��(q, p), defining the rational function ��.

Moser also showed that the system is completely
integrable and linearizes on the (generalized) Jaco-
bian of the curve �2 = e2(�)��(x, y). Letting a =� 1,
b =�c = 1, d = 0 gives the Neumann system.

The dilation q 7!�q gives a Lax pair with
a parameter, A 7!Aþ �2q� qþ �(q� p� p� q),
which makes the spectral curve look more natural.
Indeed,

Remark (Adler and van Moerbeke 1980). The
Neumann flow is equivalent to the Lax pair:
_L1 = [M1, L1], where L1 = A�2 þ �(q� p� p� q)þ
q� q and M1 = A�þ q� p� p� q. Moreover, the
Hamiltonians are of Adler–Kostant–Symes (AKS)
type, namely projections (with respect to an ad-
invariant inner product) of gradients of orbit-invariant
functions to half of the splitting of a Lie algebra.
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Specifically, {
PN
�1 Aj�

jjAj 2 gl(n, C)} = K	N, with
K = {

PN
0 Aj�

j} and N = {
P�1
�1 Aj�

j}; if the inner
product is hA, Bi=

P
iþj =�1 tr AiBj, the dual of N

can be identified with K = K?, and the Hamiltonian
for the Neumann flow can be taken to be
H = (1/2)(L1�

�2)2, �3Igþ1

� 

under the Lie–Poisson

brackets and suitable reduction. The flows linearize
on the Jacobian of the (hyperelliptic) curve
det(L1 � �) = 0.

It is possible to recover the link between the finite
and infinite integrable systems (Neumann and KdV)
mentioned in the introductory overview, if we notice
that squared eigenfunctions for the Lax operator
L =L2 = @2 þ u become algebraic on the spectral
curve: Dubrovin et al. (2001) introduced the Baker
function, namely the unique function  (x, P) with
the following properties:

(i) For jxj sufficiently small it is meromorphic on X n
{P1}, with pole divisor bounded by 	= P1 þ � � � þ
Pg, independent of x, such that h0(	 � P1) = 0,
and near P1 (x, P)e�xz = 1þO(z�1) is holo-
morphic, with z chosen to be �1=2 in our case.

(ii) We let � be the unique meromorphic differential
with zeros on 	 and a double pole of the
form (��þ holomorphic)dz�1 at P1. Note:
(1) that Riemann–Roch show that � is unique.
(2) We also get a characterization of the dual
Baker function, defined as  (x, 
P) in the
hyperelliptic case where 
 is the involution
(�,�) 7! (�,��), as meromorphic on X n {P1}
with poles bounded by 	0 and behavior e�xz(1þ
O(z�1)) near P1, where 	 þ 	0 are the 2g zeros of �.
(3) Furthermore, � = d�=W( , �), where W is
the Wronskian (with respect to the variable x).
Then, upon fixing a meromorphic function h,
normalized at P1, h =��1=2þ entire, with gþ 1
fixed poles distinct from 	, we have:

If�j ¼Resej
h�; qj ¼

ffiffiffiffi
�j
p

 ðx; ejÞ; pj ¼
ffiffiffiffi
�j
p

�ðx; ejÞ;
then �gþ1

j¼1 q2
j ¼ 1; �gþ1

j¼1 qjpj ¼ 0; �gþ1
j¼1 ðejq

2
j þ p2

j Þ ¼
uðxÞ and fqj;pjg satisfy the Neumann system:

Indeed, the constraints follow from the ‘‘residue
theorem’’ applied to the differential h� � (it has
a residue of �1 at P1); the differential equations
€qj = ejqj � uqj follow from the assumption
L =� .

The function u = �2
Pgþ1

k = 1 (
P

l 6¼k el)q
2
k, evolving

under suitable abelian flows, is a solution of the
KdV equation; the ‘‘times’’ of the KdV hierarchy are
linear combinations of the Neumann Hamiltonians;
more precisely, of the invariant vector fields deter-
mined by the tangent directions to the image of X in

JacX, with Abel map normalized at P1, at some
point P: DP =

Pg
k = 1 �(P)g�kDk.

The other way around (Moser–Trubowitz,
McKean–van Moerbeke),

If L = @2 þ u(x) is a finite-gap operator and
e1, . . . , egþ1 are among the 2gþ 1 edges of the
gaps, there exist constants �1, . . . , �gþ1 so that
the functions pj(x) =

ffiffiffiffi
�j
p

 (x, ej) satisfy
Pgþ1

1

p2
j (x) 
 1. Since L j = ej j, the pj(x) solve the

Neumann system.

The squared eigenfunctions also provide a natural
interpretation for Moser’s Lax pair. If V� is the
kernel of L� �, then the Baker function  (x, P) and
its dual �(x, P) give a basis of V� except at the
branch points (ei, 0) where  =�. But then the
normalized basis of V� is related to  , � by a
constant matrix:

y0

y1


 �
¼ C

 
�


 �
while

B
 
�


 �
¼ � 0

0 ��


 �
 
�


 �
if B is the differential operator of the Burchnall–
Chaundy ring corresponding to multiplication by �,
so that

�V U
W V


 �T

¼MB ¼ C
� 0
0 ��


 �
C�1

By evaluating at x = 0, we find:

C ¼ 1

W
�0 � 0
��  


 �����
x¼0

with W = �0 �  0�. Finally, we calculate:

C
� 0
0 ��


 �
C�1 ¼ �

W
 �0 þ  0� 2 0�0

�2 � �ð �0 þ  0�Þ


 �
so that U(�)= �0 þ 0�,V(�)= �2 �,W(�)=2 0�0

are polynomials like the entries of W�(q,p) � e2(�),
and the fact that UW þV2 does not depend on x
expresses the fact that W= constant.

An object that links the two distinct occurrences
of Lax pairs is Sato’s infinite-dimensional Grass-
mann manifold. One particular model will serve as
illustration, with more general settings covered by
Dickey (2003). Sato defined a one-to-one correspon-
dence between cyclic D-submodules I of P, namely
of the type I =DS (which turns out to be equivalent
to the property: P= I 	 P(�1)), and subspaces of a
ring of formal power series, which make up an
infinite-dimensional Grassmann manifold, more
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precisely elements of Gr;, the ‘‘big cell.’’ This way,
KP can be viewed as deformation of D modules.

There are two ways to set up the Grassmannian:
(1) more direct as a limit of finite-dimensional
Grassmannians; (2) more intrinsic, using the rings
D � P.

1. Let dimV = mþ n = N, Gr(m, V) = {m� frames
in V}=GL(m) ,!P( ^m V) via �(0), . . . , �(m�1) 7! �(0) ^
� � � ^ �(m�1).

If we fix a basis e0, . . . , eN�1 of V, and
write a frame in coordinates, �(i) = �0, ie0 þ � � � þ
�N�1, ieN�1, then

�ð0Þ ^ � � �^ �ðm�1Þ ¼
X

0�‘0<���<‘m�1<N

�‘0...‘m�1
e‘0 ^�� �^ e‘m�1

with �‘0...‘m�1
¼ detð�‘i; jÞi; j¼0;...;m�1

A point in the ambient P(^m V) lies in the embedded
Gr(m,V), its projective coordinates �‘0...‘m�1

(0�
‘i <N) satisfy the Plücker relations (PRs):

Xm
i¼0

ð�1Þi�k0...km�2‘i�‘0...‘̂i...‘m
¼ 0

Therefore,

Grðm;VÞ ¼ ðfGrðm;VÞnf0gÞ=GLð1Þ

wherefGr(m, V) = {(�Y)Y��mN
satisfying the PRs} is a line

bundle over Gr(m, V), Y is a Young diagram con-
sisting of rows

‘m�1 � ðm� 1Þ

..

.

‘1 � 1

‘0

so it is contained in the rectangle �mN.
For the commutative diagram:

fGrðm0;N0Þ project
�!

fGrðm;NÞ

# identity # identityfGrðm0;N0Þ embed
 -

fGrðm;NÞ

the following facts can be checked. Let
m � m0, n � n0, N0= m0 þ n0:

(i) if (�0Y)Y��m0N0
satisfies PRs, so does its restric-

tion to Y’s within �mN;
(ii) if (�Y)Y��mN

satisfies PRs, so does (�0Y)Y��m0N0

where �0Y = 0 unless Y � �mN.

These facts make it possible to define: Gr =
(fGrn{0})=GL(1), where fGr = {(�Y)Y all Young diagrams

satisfying all PRs}

fGr project
�!

fGrðm;NÞ

" dense # identityfGrfin embed
 -

fGrðm;NÞ

and fGrfin ¼ fð�Þ 2 fGr : �Y ¼ 0 for almost all Yg

¼
[
m;N

fGrðm;NÞ

The KP time deformations are defined as follows:

�YðtÞ :¼
X
allY 0

�Y 0=YðtÞ�Y0 where�Y0=YðtÞ :¼detðp‘0
i
�‘jðtÞÞ

p0ðtÞ¼1; pnðtÞ :¼
X

�1þ2�2þ3�3þ���¼n

t�1

1 t�2

2 . . .=ð�1!�2! . . .Þ

Write �Y=; as �Y , where �Y(t)= det(p‘i�j(t)) are
the Schur functions.

To connect with the KP hierarchy, let

wnðx; tÞ :¼ ð�1Þn
��n;1
ðxþ tÞ

�;ðxþ tÞ

where xþ t=(xþ t1, t2, . . .), and S := 1þw1(x, t)
@�1þ���. Then L=S@S�1 satisfies the KP hierarchy,
namely @tnS=BnS�S@n, where Bn := (S@nS�1)þ,()
[@tn
� Bn, @tk

�Bk]=0()@tn
L=[(Ln)þ,L].

Note The Plücker coordinate �;(t) =
P

allY �Y(t)
�Y = �(�, t) is a generating function for the Plücker
coordinates, �Y(t) =�Y(@t)�;(t), where

@t :¼ @

@t1
;
1

2

@

@t2
;
1

3

@

@t3
; . . .

� �
Now by reducing to Gr(m, N) and checking that

every �Y(t) satisfies PRs, we have a dynamical
system on fGr.

Conclusion (Sato). Although any f (t) 2 C[[t1, t2, . . . ]]
admits a formal expression of the form

P
Y cY�Y(t),

where the coefficients are

cY ¼ �Yð@tÞf ðtÞjt¼0

it represents the � function for some � 2 fGr () its
coefficients satisfy the following PRs:

Xm
i¼0

ð�1Þi�k0...km�1‘i

@t

2

� �
�‘o...‘̂i...‘m

� @t

2

� �
� � � ¼ 0

which is the KP hierarchy in Hirota bilinear form.

Integrable Systems and Algebraic Geometry 71



2. Let

V :¼ PPx
ffi Pconst ¼

X
�1<i<<1

ai@
i; ai 2 C

( )
equipped with the induced filtration V(i) by order,
induced by

PðiÞ ¼
X

�1<k�i

ak@
k; ak 2 C

( )
and define

Gr ¼ fvector subspaces W of V

s.t. dimðW \ Vð0ÞÞ ¼ dim V=ðW þ Vð0ÞÞ <1g

‘‘same size’’ as the reference subspace {
P

��0 c�e� :
c� 2 C} = V(0).

The correspondence between such a W and a
cyclic submodule of P is given as follows:

I 7!W ¼ S�1Vð0Þ ¼ fv 2 V : Iv � Vð0Þg
W 7! I ¼ fA 2 P : AW � Vð0Þg

Generic points of particular interest in construct-
ing KP solutions make up the ‘‘big cell’’:

Gr; �
open dense

Gr()V ¼W 	 Vð0Þ

() �; 6¼ 0 and a � function can

be defined as above

In standard basis of V, ei := @�i�1modPx, i 2 Z,
the action

xei ¼ ðiþ 1Þeiþ1

@ei ¼ ei�1

:

gives V a P-module structure. Let � be the shift
operator: @ei = ei�1; then

�ðtÞ ¼ eðt1�þt2�2þ���Þ � �

so, this linearizes the flows!

This survey would not be complete without an
example of the formula that links the � and the
theta function; more general statements and groups of
symmetries can be found in Dickey (2003). A solution
of the KP hierarchy can be expressed in terms of the �
function �W associated with an element W of Gr(H), in
the model Gr(H), where H = L2(S1), H = Hþ 	H�
with standard basis Hþ= h1, z, z2, . . .i, H�=
hz�1, z�2, . . .i and p
 the projections, �W(g) = det (�g �
pþ � �g�1 � (pþjW)�1), where g = e�tiz

i
. The associated

Baker function  W(g, z) is a function of the form

 Wðg; zÞ ¼ gðzÞ 1þ
X�1

i¼�1
aiz

i

 !

with ai 2 C[[t1, t2, . . . ]] for each i, such that the map
z 7!  W(g, z) is an element of g�1W. If �= 1þP�1

i =�1 aiz
i, then L =�@��1 is a solution of the KP

hierarchy.
Moreover,

g�1 Wðg; �Þ ¼
�W t� �

1

���

� �� �
�

�Wððt�ÞÞ�
This is the analog of the expression for the Baker
function in terms of the theta function, when W
corresponds to an element of the Jacobian of the
spectral curve � via the Krichever map

 ðx;PÞ ¼ exp x

Z
� � xa

� �
� #ðUxþ AðPÞ � AðDÞ ��Þ#ðAðDÞ þ�Þ
#ðAðPÞ � AðDÞ ��Þ#ðUx� AðDÞ ��Þ

where P 2 �, A(�) is the Abel map, � the Riemann
constant, U 2 Cg a suitable vector, D a generic
divisor of points P1, . . . , Pg 2 �, � a differential of
the second kind, and a a constant depending on the
curve. For the KdV solutions, the condition on W 2
Gr; is that z2W �W and the solution is

uWðx; t2; t3; . . .Þ ¼ 2@ log �Wðx; t2; t3; . . .Þ

In the Grassmannian formulation, the Hirota
bilinear operator mentioned in the introductory
overview makes its third and most general appear-
ance (we regard Baker’s and Hirota’s definitions as
the first two – the one based on a residue formula in
algebraic geometry, the other on the vanishing of a
differential form):

Definitions

(i) In P, it is possible to conjugate any
L= @ þ u�1(x)@�1 þ � � � into @ by a K = 1þ
v�1(x)@�1 þ � � � , determined up to elements
of C[@] = CD(@): K�1LK = @.

(ii) We define a formal Baker function for L as the
element of the module M (the free, rank-1
P-module = space of formal expressions f = exz~f

where ~f =
PN
�1 fj(x)zj, with generator exz) such

that L = z ; so that  = Kexz for K as in (i).
(iii) We say that the formal adjoint Ay of a (formal

pseudo) differential operator A =
PN

j =�1 uj(x)@j

is Ay=
PN

j =�1 (�@)juj(x), and that the dual
Baker function  y to  = Ke�tjz

j
is the Baker

function of (Ly); the operator which corresponds
to K in (i) is (Ky)�1, that is, (Ky)�1LyKy= �@.

Then, the KP hierarchy is equivalent to the
following formula:

Resz ðt0; zÞ yðt; zÞ ¼ 0
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Moreover, as proved in Dickey (2003), if  1 and  2

are formal power series of the form
 1 = Ke�tiz

i
, 2 = Je��tiz

i
, for K, J 2 1þ P(�1), satis-

fying the condition

Resz @�1

i1
@�2

i2
� � � @�m

im
 

� 	
� � ¼ 0

then there exists an operator L satisfying the Lax
equations, whose wave function and adjoint wave
function are  1, 2, respectively.

To conclude this overview of Lax equations, we
point out that they can be viewed as zero-curvature
condition for a (formal) connection (on the trivial
bundle over the formal deformation space whose
fiber is P), rephrasing the fact that the time flows
commute and hence define time deformations; such
formulation can be found in Mulase (1984).

Symplectic Reduction and r Matrices

While the Lax-pair presentation provides natural
spectral invariants, the group/representation-
theoretic nature of integrability (sometimes referred
to as hidden symmetries) is best seen in the context
of Marsden–Weinstein reduction. We perform it in
the example of a generalization of Moser’s rank-2
perturbation; we extract the basic construction from
Adams et al. (1988). A more comprehensive treat-
ment can be found in Babelon et al. (2003).

Definition We let Mn, r denote the space of n� r
complex matrices, with n � r and give M = Mn, r �
Mn, r the symplectic structure !(F, G) = tr(dF ^ dGT)
for F, G 2M. A rank-r perturbation of a fixed n� n
matrix A is L = Aþ FGT.

Definition We split the formal loop algebraggl(r) = ggl(r)þ 	ggl(r)� where ggl(r)þ consists of r� r

matricial polynomials in � and ggl(r)� of strictly
negative formal power series. Under the pairing
hX(�), Y(�)i= tr(X(�)Y(�))� (where the subscript �
means the coefficient of ��1), the dual of ggl(r)þ is

identified with ggl(r)�, which therefore admits a Lie–
Poisson structure.

In sketch, we consider an action on M whose
moment map lands in ggl(r)�; we check that the
AKS flows on ggl(r)� correspond to isospectral
deformations of L = Aþ FGT for flows on MA;
finally, we perform a Marsden–Weinstein reduction
for an (equivariant) GL(r) action to obtain a
completely integrable system on a symplectic leaf,
whose flows are linear on the Jacobian of the
spectral curve. We recall very briefly the general
definitions.

Moment Map

1. A smooth group action of G on a symplectic
manifold (M,!) is said to be Hamiltonian if there
exists a ‘‘moment map’’ J : M! g� such that the
Hamiltonian vector field associated with J and a
fixed element � 2 g is the same as the infinitesi-
mal action associated with �. However, an
infinitesimal definition is given because in the
formal setup the group of a Lie algebra is often
delicate to define. We recall that:

2. The Lie–Poisson structure of g� is defined by

f�;  gg� ð�Þ ¼< �; ½d�ð�Þ; d ð�Þ� >
for �;  2 C1ðg�Þ; � 2 g�

where d� : g� ! g�� (which in our situation will
always be identified with g) is defined by

<d�ð�Þ; �>¼ d

dt
�ð�þ t�Þ

���
t¼0
; �; � 2 g�

Now we say that J : M! g� is a moment map if
3. its linear dual j : g! C1(M) is a Lie-algebra

homomorphism; or if
4. it is a Poisson map with respect to the Lie–Poisson

structure: �, 2 C1(g�)) {J��, J� } = J�{�,  }g� .
In case we do have a Hamiltonian G-action, then
the subspace C1G (M) of G-invariant functions is a Lie
subalgebra ofC1(M). If G acts freely and properly on
M, then M/G is a manifold with a Poisson structure
inherited from the one on M through the identifica-
tion C1(M=G) ffi C1G (M). The symplectic leaves of
M/G have the form M� = J�1(�)=G� = J�1(O�)=G,
where � 2 g�, G� is the isotropy group of � in G and
O� is the G-orbit through �. The reduced manifold
M� has a natural symplectic structure !� such that
i�!= ��!�, where i : J�1(�)!M is inclusion and
� : J�1(�)!M� is the natural projection taking
points to their G�-orbits.

This class of examples can be treated with the
technique of a (classical) r-matrix, as follows. Given a
linear map R : g! g, the alternating bilinear form
[X, Y]R = (1/2)([RX, Y]þ [X, RY]) satisfies the Jacobi
identity , certain quadratic conditions on R are
satisfied. Assuming they are, for all pairs of invariant
functions I, J on g�, we have {I, J}R = 0 (where { , }R

is the attendant (Lie–Poisson) structure). Indeed,
{I, J}R(�) = h[dI(�), dJ(�)]R,�i= (1/2)h[RdI(�),dJ(�)],
�i þ (1/2)h[dI(�), RdJ(�)],�i, but, for example,
h[RdI(�), dJ(�)],�i= hRdI(�), ad�dJ(�)(�)i= 0.

Remark As is clear from the proof above, our
definition of invariant need only be infinitesimal,
that is, f 2 I(g�) iff <�, [df (�), X]> = 0 8� 2 g�,
X 2 g. Of course, when we have a corresponding Lie
group the invariants are the functions which are
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invariant under the natural action, such as the
symmetric functions of the eigenvalues of a matrix.

AKS Flows

For a splitting g = K	N, as given above, with
g�= N� 	 K�, an example of r-matrix is given by
R(X) = Xþ �X� (where þ,� denote projection to
K, N): the Jacobi identity is straightforward to
check. As a consequence, invariants on g� are in
involution with respect to { , }R and these are called
AKS flows, after work done independently by AKS:
_X = [df ( ~X)þ, X] = � [df ( ~X)�, X], given here for the
special case in which we can identify K with K� and
~X is the element in K� that corresponds to X 2 K.

We now proceed to the appropriate moment maps.
We generalize the constant matrix A introduced
above (isospectral deformations) by allowing multiple
eigenvalues �i of multiplicities ni � r, n1 þ � � � þ
nk = n, so that det (A� �I) =

Qk
i = 1 (�i � �)ni . Let

a(�) =
Qk

i = 1 (�i � �). We split an n� r matrix F
into k blocks Fi accordingly.

Definition/statement

(i) Jn
r (F, G)(x1, . . . , xn) =�

Pn
j = 1 tr(FjXjG

T
j ) is the

moment map of the action [(g1, . . . , gn)
(F, G)]i = (Fig

�1
i , Gig

T
i ), where gi 2 GL(r) so

that under standard identifications Jn
r (F, G) =

�(GT
1 F1, . . . , GT

n Fn) and restricting the action to
the diagonal subgroup {(g, . . . , g)}, Jr(F, G) =
�GTF.

(ii) For X(�) 2 ggl(r)þwe define�(X(�)) = (X(�1), . . . ,
X(�r)) and obtain the exact sequence

0! að�Þ gglðrÞþ !
 gglðrÞþ !� gn
r ! 0

By dualizing, and identifying gn
r to its dual by

using the trace componentwise, we get

��ðY1; . . . ;YnÞ ¼
Xk

i¼1

Yi

�� �i

and finally check that ~Jr =�� � Jn
r is a moment

map. By combining (i) and (ii), we get a
moment map

~JrðF;GÞ ¼
Xk

i¼1

GT
i Fi

�i � �
¼ GTðA� �Þ�1F

which becomes injective on M=H, where M is
a suitable open submanifold of M and
H = GL(n1)� � � � �GL(nk) acts blockwise by
(hiFi, h�1T

i Gi).
(iii) We also notice that the ‘‘Moser space’’ MA =

{Aþ FGTjF, G 2M} of rank-r perturbations can
be identified with the orbit space M=Gr, Gr =
GL(r) acting as in (i).

To finish, we turn on the obvious AKS flows onggl(r)�: the key observation is that they are isospec-
tral for the rank-r perturbation Aþ FGT: we see that
the Poisson-commutative ring Fþ of projected
invariants defines, by composition with ~Jr, a
Poisson-commutative ring F of isospectral flows on
Mn, r �Mn, r.

Hitchin Systems

The Hitchin system, introduced in the late 1980s,
20 years later still encompasses the most general class
of ‘‘algebraically completely integrable’’ systems, which
we now discuss. In its most basic form, the concept of
‘‘algebraic completely integrable’’ (ACI) Hamiltonian
system, is an extra condition on the integrability of
classical mechanics, in the following sense.

A Hamiltonian system with n degrees of freedom,
that is, defined on a symplectic manifold M of (real)
dimension 2n is (Arnol’d–Liouville) completely
integrable if it admits n functions in involution
whose differentials are linearly independent (possi-
bly, generically on M). When M is a component of
the set of real points of an algebraic variety MC and
the symplectic form ! and Hamiltonian function H
are rational without poles on M, the concept of
algebraic complete integrability can be introduced.
For this condition to hold, we require that the vector
fields corresponding to the Hamiltonians in involu-
tion still have no poles on a compactification of the
fibers on MC.

Nonexample (Mumford 1984, x4). Consider

M ¼ R2; ! ¼ dx ^ dy; H ¼ x4 þ y4

Here a compactification of the fiber, the affine
curve x4 þ y4 = c, is the projective curve X4 þ
Y4 = cZ4, which is smooth (provided c 6¼ 0) and
has four points at infinity. The vector field XH

defined by H, XHc!= �dH, is tangent to the fiber
in the affine plane, but has a pole at infinity as can
be checked by a change of coordinates; 4 is the
lowest exponent for which this simple nonexample
works!

Note In the algebraically completely integrable
situation, the fibers are abelian varieties or exten-
sions of such by C�k for some power k. This gives
rise to the issues of variations of periods over the
base mentioned in the introductory overview.

The Neumann system is ACI, with integral tori
given by the Jacobians of the spectral curves:

� : �2 ¼ gð�Þ ¼
Y2gþ1

1

ð�� eiÞ ¼ UW þ V2
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where

L ¼ eð�Þ

X qipi

�� ei

X p2
i

�� ei

1þ
X q2

i

�� ei
�
X qipi

�� ei

26664
37775

¼
V U

W �V

" #
; eð�Þ ¼

Ygþ1

1

ð�� eiÞ

U ¼
Yg

i¼1

ð�� �iÞ; ð�1; . . . ; �gÞ ‘‘elliptical spherical

coordinates’’

 ¼ 1;
U

V þ �

� �
eigenvector : L ¼ � 

divisor :
Xg

i¼1

ð�i;Vð�iÞÞ

Hitchin (1982) devised a geometrical model of the
spectral curve, a compact algebraic curve contained in
the surface T �P1, and its line bundles. He also provided
subsequently (1987) a dramatic generalization.

Hitchin’s construction, in the Neumann-system
example, highlights the following objects:

� L 2 H0(P1, End(E)�O(gþ 1)), E rank (r = )2
bundle over P1;
� T = total space of the line bundle O(gþ 1) over P1;
� �= tautological section: P1 ! T, where ~L� ~�I 2

H0(T, End(~E)� ~O(gþ 1)) (tildes denote pullback);
� �: det (~L� ~�I) = 0. The line bundle  (eigenvec-

tors) is defined as the kernel of ~L� ~�I; and
� the moduli space of spectral curves is a linear

system on the surface T. Fixing {e1, . . . , egþ1} in
the above example gives constraints that define it
as subsystem of a complete linear system, as well
as providing a Poisson structure on the whole
((2g� 1)þ g)-dimensional manifold (base =
curves, fiber = Jacobians) which reduces to the
standard

P
dpi ^ dqi. Equivalent to choosing a

section s 2 H0(P1,O(g� 1)� K�1
P1 ),

�

# r : 1

P1

s$ ðe1; . . . ; egþ1Þ
E! E�OP1ðgþ 1Þ $ L

ð� : 1Þ 2 P1

Generalizations

� P1 ! Riemann surface X of genus g > 1;
� E stable rank-r vector bundle over X. To give

a concrete example, we will take r = 2 and fix
det E ¼ OX:

Hitchin’s Abelianization Program

Fact (Hitchin). Every such bundle E over X can be
realized as the direct image of a line bundle over a
spectral curve �

r : I! X.

We introduce the moduli space M=
SUX(2,OX) = S-equivalence classes of E’s, E semi-
stable rank-2 bundle over X, det E =OX. The
dimension of M is 3g� 3.

Hitchin (1987) proved that T �M is ACI (gener-
ically, there exist 3g� 3 regular functions in involu-
tion with respect to the standard symplectic
structure, with invariant manifolds isomorphic to
Prym �, where � = spectral curve).

To recognize the analog of the features high-
lighted above, we recall that Kodaira–Spencer
deformation theory gives the following description
of the cotangent bundle: since a rank-r vector bundle
over X is determined by a 1-cocycle with values in
GL(r,OX), a first-order deformation of E is given by
a 1-cocycle with values in the associated bundle of
Lie algebras, hence by a class in H1(X, End(E)), so
the cotangent bundle has Serre-dual fiber
H0(X, E� E� � K).

Hitchin map (E,�) 2 T �M (Higgs field, trace zero,
� 2 H0(X, End0(E)� K)):

H:� 7! det� (more generally for any r � 2,
tr ^i � 2 H0(X, K�i)) i = 2, . . . , r;

� 7! �� defines Prym �,�2 = det� 2 H0(X, K�2)
defines �.

Explicit Hamiltonians for the Hitchin System

The cases in which X is genus 0 and 1 were solved
explicitly by Nekrasov (1996) using explicit parame-
trizations of the moduli spaces; this includes the case of
insertions (singular curves), yielding (elliptic) Gaudin
models. We report the solution for the genus-2 case
(van Geemen and Previato 1996).

Remark The map H projectivizes,

�H : PH0ðX;End0ðEÞ � KÞ ! PH0ðX;K�2Þ
detðc�Þ ¼ c2 det�

Coordinates on T �M can be given as follows :
� � Picg�1X = canonical theta divisor

� :M! j2�j ¼ P2g�1

E 7!DE ¼ f� 2 Picg�1X : h0ðE� �Þ > 0g

X hyperelliptic ) � is 2:1 except for g = 2 (every
point of M is fixed under the hyperelliptic
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involution), where Mffi P3. For a vector space V
the Euler sequence gives

PT �PV ffi I ¼ fðx; hÞ 2 PV � PV� : x 2 hg

In our case,

PV � PV� ¼ j2�j � j2�0j

Define six polynomial functions Hi on P3 � P3�

by the requirement: for generic q 2 P3, (Hi = 0) \
PTqP3 = ‘i [ ‘0i, the six pairs of bitangents to K \
PT�qP3, where K is the Kummer surface (the
remaining 16 bitangents are cut out by the tropes.)

Recall that the Grassmannian of lines in
P3, Gr(2, 4), is defined by an equation

P6
1 X2

i = 0
in Klein’s coordinates

ðX1 : . . . : X6Þ 2 P5

X1 ¼ p01 þ p23; X2 ¼ iðp01 � p23Þ

X3 ¼ iðp02 � p13Þ; X4 ¼ p02 þ p13

X5 ¼ p03 þ p12; X6 ¼ iðp03 � p12Þ

where pij = ZiWj �WjZi are Plücker’s coordinates
on the line

hðZ0 : . . . : Z3ÞðW0 : . . . : W3Þi � P3�

Using coordinates on the incidence variety I given
by the sections 	i of the bundle projection PT �P3 !
P3, �i : P3 ! PT �P3 = I � P3 � P3�, q 7! (q, �i(q)) =
(q, Xi(q, �)), explicitly given, for q = (x : y : z : t), by

�1 ¼ ðy : �x : t : �zÞ; �2 ¼ ðy : �x : �t : zÞ
�3 ¼ ðz : t : �x : �yÞ; �4 ¼ ðz : �t : �x : yÞ
�5 ¼ ðt : z : �y : �xÞ; �6 ¼ ðt : �z : y : �xÞ
xj ¼ Xjðh�iðqÞ; piÞ

Fact For a point q 2 P3, p 2 PT�qP3, p 62 �i(q), the
ith Klein coordinate of the line h�i(q), pi is zero and

p 2 ‘i [ ‘0i , Hiðp; qÞ ¼
X
j 6¼i

x2
j

�i � �j
¼ 0

with xj = Xj(h�i(q), pi).

Conclusion In an affine patch C3 �C3� 3 (q, p) =
((x : y : z : 1), (u : v : w : �(xuþ yvþ zw)))

Ha
i ðp; qÞ ¼

X
j 6¼i

Xjð�iðqÞ; pÞ2

�i � �j

give six Hitchin Hamiltonians, any three of which
are generically independent. The Ha

i have degree � 4
in x, y, z and are homogeneous of degree 2 in
u, v, w; they Poisson-commute with respect to
dx ^ duþ dy ^ dvþ dz ^ dw.

Example An example is constituted by

�2 ¼ ð�2 � 1Þð�2 � 4Þð�2 � 9Þ
ððx : y : z : 1Þ; ðu : v : w : �ðxuþ yvþ zwÞÞÞ
2 A3 � A3�

H1 ¼uvð�70xy� 32x3y� 18xy3� 10z� 32x2z

þ 18y2zÞ þ v2ð�9� 30y2� 16x2y2� 9y4� 32xy2

� 16z2Þ þ u2ð�16� 40x2� 16x4� 9x2y2þ 18xyz

� 9z2Þ þ vwð�18xþ 10xy2þ 10yz� 32x2yz

� 18y3z� 32xz2Þ þ uwð32yþ 10x2y� 10xz

� 32x2z� 18xy2zþ 18yz2Þ þw2ð�9x2� 16y2

þ 10xyz� 16x2z2� 9y2z2Þ

The concept of reduction and r-matrix have been
generalized to Hitchin systems. Notably, Hitchin later
showed that the Hamiltonians of the system appear as
symbols of a heat operator that corresponds to a
projectively flat connection, the quantization of the
moduli space of bundles, obtained by changing the
complex structure of the Riemann surface X.

Other Aspects

Special Functions

Special functions have also been traditionally signifi-
cant in both algebraic geometry and integrable
systems. Within the examples presented, elliptic
functions gave rise to surprisingly sophisticated the-
ories. The 1-wave solution encountered in the intro-
duction, u = 2}þ const. in the limit when one or both
periods of the Weierstrass function go to zero,
becomes exponential or rational, respectively. The
higher-genus analogs give rise to solitons, or rational
solutions. On the other hand, the KP solutions which
are doubly periodic in the x variable (‘‘elliptic
solitons’’) were classified by Krichever (cf. Dubrovin
et al. (2001)), as forming an ACI Hamiltonian system
(‘‘elliptic Calogero–Moser’’), which, 25 years later, is
still generating important work, with Hamiltonian

H ¼
Xn

i¼1

p2
1 þ

1

2

X
i 6¼j

}ðqi � qjÞ

(where } is the Weierstrass function of a lattice L
with associated elliptic curve X = C=L, q 2 X the
origin) and u = 2

Pn
i = 1 }(x� xi(t2, t3, . . . )) is a solu-

tion of the KP hierarchy for suitable time flows tj of
the system (t1 = x) and KP Baker function

 ðx;�Þ ¼ 
ð�� xÞ

ð�Þ � 
ðxÞ e

ð�ð�Þ�xÞ

The associated spectral curves have been classified in
moduli by Treibich and Verdier (cf. Treibich
(2001)); Krichever produced a two-field model as
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well as a universal Poisson structure for the system;
Donagi and Markman (1996) realized it as a
generalized Hitchin system.

More classically, elliptic potentials were the subject
of much study, in particular by Lamé and Hermite in
the nineteenth century and Ince in the twentieth; a
sample result due to Ince makes one feel like Alice in
Wonderland, who ‘‘knelt down and looked along the
passage into the loveliest garden you ever saw’’: the
Lamé operator L = �@2 þ a(aþ 1)}(x� x0) with
real, smooth potential is finite gap (namely, almost
all the periodic eigenvalues are double) iff a 2 Z (if a
is positive the number of gaps is a). A generalization
to several variables (due to Chalykh and Veselov),

L ¼ ��þ
X
�2Rþ

g�}ðh�; xiÞ

where Rþ is the set of positive roots for a simple complex
Lie algebra of rank n, h�,�i is some scalar product in
Rn, invariant under the action of the Weyl group, and
g� = m�(m� þ 1)h�, �i for some m� 2 Z, provides one
of the few known examples of quantum completely
integrable rings of differential operators in several
variables. Roughly speaking, this means that the
centralizer of L contains n operators with functionally
independent symbols, where n is the number of variables.

What is more, Chalykh et al. (2003) combine
differential Galois theory and elliptic function
theory to characterize (under some mild assump-
tions) the generalized Lamé operators that are
algebraically completely integrable: the differential
Galois group of the solutions is abelian.

Duality, Fourier–Mukai Transform, and Bispectrality

Duality is a concept imported from mathematical
physics; as a mathematical phenomenon, it has not
reached theoretical maturity. First observed in exam-
ples, as in Fock et al. (2000), where different definitions
of dual ACI Hamiltonian systems were given (action-
angle, action–action, and quantum), it resurfaced for
the Hitchin system, in more than one guise, whether it
be an interchange of position and momentum variables
(Gawȩdzki and Tran-Ngoc-Bich 1998) or a duality
between the Lagrangian tori that fiber two such
systems, coming from a Fourier–Mukai transform,
namely a twist by the (universal) Picard line bundle:

P
#

JacðXÞ � ðH0ðX;KÞ ¼ T�JacðXÞÞ
Notably, the Picard bundle was used by Nakayashiki

to give a spectacular generalization of the Burchnall–
Chaundy result for a genus-2 curve X (more generally,
Jac(X) is replaced by a generic abelian variety in the
statement): the coordinate ring of Jac(X)��X is the

common spectrum of a ring of commuting (g!� g!)
matrix partial differential operators in g variables. The
Fourier transform allowed him to extend Sato’s corre-
spondence @�1 $ z and giveF a unique (free, rank-g!)
DJac(X)-module structure, whereF is a suitable coherent
sheaf over Jac(X) generalizing the Baker function.

In this model, the interchange of the x and z
variables is known as bispectrality (cf. Grünbaum
(2001)): a somewhat narrower question is a char-
acterization of the differential operators L in x for
which there exists a differential operator B in k and
a common eigenfunction:

L ðx; kÞ ¼ f ðkÞ ðx; kÞ
B ðx; kÞ ¼ �ðxÞ ðx; kÞ

(

for some functions f , �, typically polynomial. This
question proved to be related with the KP hierarchy
and isomonodromy deformations. When to a hier-
archy there is associated an ACI Hamiltonian system
(as in the Neumann case shown above), bispectrality
may produce a dual system, in a sense related to the
ones discussed, but somewhat mysteriously so.

Conclusion

Many important mathematical topics and individual
contributions regrettably have to go unmentioned in
an article of this length. The aim was to illustrate
by simplest examples the geometric nature of
integrable systems and equations, in the areas of
spectral curves, moduli of vector bundles over them,
Grassmann manifolds, special functions, Poisson
geometry, representation theory, as well as mention
constructions that are not yet complete, such as
spectral varieties of higher dimension, dualities
sweeping vaster moduli spaces, and quantization.

See also: Billiards in bounded convex domains;
�@-Approach to Integrable Systems; Functional Equations
and Integrable Systems; Integrable Systems and
Discrete Geometry; Integrable Systems and Recursion
Operators on Symplectic and Jacobi Manifolds;
Integrable Systems and the Inverse Scattering Method;
Integrable Systems in Random Matrix Theory; Integrable
Systems: Overview; Multi-Hamiltonian Systems;
Recursion Operators in Classical Mechanics; Riemann–
Hilbert Methods in Integrable Systems; Solitons and Kac–
Moody Lie Algebras.
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Introduction

Although the main subject of this article is the
connection between integrable discrete systems and
geometry, we feel obliged to begin with the
differential part of the relation.

Classical Differential Geometry
and Integrable Systems

The oldest (1840) integrable nonlinear partial
differential equation recorded in literature is the
Lamé system

@2Hi

@uj@uk
� 1

Hj

@Hj

@uk

@Hi

@uj
� 1

Hk

@Hk

@uj

@Hi

@uk
¼ 0;

i; j; k distinct ½1�

@

@uk

1

Hk

@Hj

@uk

� �
þ @

@uj

1

Hj

@Hk

@uj

� �
þ 1

H2
i

@Hj

@ui

@Hk

@ui
¼ 0 ½2�
describing orthogonal coordinates in the three-
dimensional Euclidean space E3 (indices i, j, k range
from 1 to 3). Already in 1869, it was found by
Ribaucour that the nonlinear Lamé system possesses a
discrete symmetry enabling to construct, in a linear
way, new solutions of the system from the old ones. He
gave also a geometric interpretation of this symmetry
in terms of certain spheres tangent to the coordinate
surfaces of the triply orthogonal system. In 1918,
Bianchi showed that the result of superposition of the
Ribaucour transformations is, in a certain sense,
independent of the order of their composition.

Such properties of a nonlinear equation are
hallmarks of its integrability, and indeed, the Lamé
system was solved using soliton techniques in
1997–98. The above example illustrates the close
connection between the modern theory of integrable
partial differential equations and the differential
geometry of the turn of the nineteenth and twentieth
centuries. A remarkable property of certain para-
metrized submanifolds (and then of the correspond-
ing equations) studied that time is that they allow
for transformations which exhibit the so-called
‘‘Bianchi permutability property.’’ Such transforma-
tions called, depending on the context, the Darboux,
Calapso, Christoffel, Bianchi, Bäcklund, Laplace,
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Koenigs, Moutard, Combescure, Lévy, Goursat,
Ribaucour, or the fundamental transformation of
Jonas, can be geometrically described in terms of
certain families of lines called line congruences.

In the connection between integrable systems and
differential geometry, a distinguished role is played
by the multidimensional conjugate nets, described by
the Darboux system, which is just the first part [1] of
the Lamé system with indices ranging form 1 to N �
3. On the level of integrable systems, this dominant
role has the following explanation: the Darboux
system, together with equations describing isoconju-
gate deformations of the net, forms the multicompo-
nent Kadomtsev–Petviashvilii (KP) hierarchy, which
is viewed as a master system of equations in soliton
theory. In fact, in appropriate variables, the whole
multicomponent KP hierarchy can be rewritten as an
infinite system of the Darboux equations.
Ti x
x

Tk x

Tj x
TiTj x

TiTjTk x

Figure 1 The geometric integrability scheme.
Transition to the Discrete Domain

The recent progress in studying discrete integrable
systems showed that, in many respects, they should be
considered as more fundamental than their differential
counterparts. Consequently, the natural problem of
extending the geometric interpretation of integrable
partial differential equations to the discrete domain
arose, leading not only to the transition to the discrete
domain of many results on the connection between the
differential geometry and integrable systems, but also –
and this seems to be even more important – to the
description of integrability in a very elementary and
purely geometric way.

At the level of integrable equations, the transition
‘‘from differential to discrete’’ often makes formulas
more complicated and longer. On the contrary, at the
geometric level, in such a transition the properties of
discrete submanifolds, relevant to their integrability,
become simpler and more transparent. Indeed, the
mathematics necessary to understand the basic ideas of
the integrable discrete geometry does not exceed the
‘‘ruler and compass constructions,’’ and many proofs
can be performed using elementary incidence geometry.

We will concentrate our attention on the multi-
dimensional lattice made from planar quadrilaterals,
which is the discrete analog of a conjugate net. Together
with the discussion of its properties, which are the core
of the geometric integrability, we briefly present the
analytic methods of construction of these lattices and
we also describe some basic multidimensional integr-
able reductions of them. Then we discuss integrable
discrete surfaces; some of them have been found in the
early period of the ‘‘case-by-case’’ studies. We shall
however try to present them, from a unifying perspec-
tive, as reductions of the quadrilateral lattice (QL).
Multidimensional Integrable Lattices

The Quadrilateral Lattice

An N-dimensional lattice x : ZN!RM is a lattice
made from planar quadrilaterals, or a quadrilateral
lattice (QL) in short, if its elementary quadrilaterals
{x, Tix, Tjx, TiTjx} are planar; that is, iff the follow-
ing system of discrete Laplace equations is satisfied:

�i�jx ¼ ðTiAijÞ�ixþ ðTjAjiÞ�jx;

i 6¼ j; i; j ¼ 1; . . . ;N ½3�

where Aij : ZN!R are functions of the discrete
variable; here Ti is the translation operator in the ith
direction, and �i = Ti � 1 is the corresponding
difference operator. For simplicity, we work here
in the affine setting neglecting projective geometric
aspects of the theory.
The geometric integrability scheme In the case
N = 2 the definition [3] allows one to uniquely
construct, given two discrete curves intersecting in a
common vertex and two functions A12, A21 : Z2!R,
a quadrilateral surface. For N > 2 the planarity
constraints [3] are instead compatible if and only if
the geometric data Aij satisfy the nonlinear system

�kAij þ ðTkAijÞAik

¼ ðTjAjkÞAij þ ðTkAkjÞAik

i; j; k distinct ½4�

This constraint has a very simple interpretation: in
building the elementary cube (see Figure 1), the
seven points x, Tix, Tjx, Tkx, TiTjx, TiTkx, and
TjTkx (i, j, k are distinct) determine the eighth point
TiTjTkx as the unique intersection of three planes in
the three-dimensional space.

The connection of this elementary geometric point
of view with the classical theory of integrable
systems is transparent: the planarity constraint
corresponds to the set of linear spectral problems
[3] and the resulting QL is characterized by the
nonlinear equations [4], arising as the compatibility
conditions for such spectral problems. Since the QL
equations [4] are a master system in the theory of
integrable equations, planarity can be viewed as the
elementary geometric root of integrability. The idea
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that integrability be associated with the consistency
of a geometric (and/or algebraic) property when
increasing the dimensionality of the system is
recurrent in the theory of integrable systems.

Other forms of the Darboux system The i $ j
symmetry of the RHS of eqns [4] implies the
existence of the potentials Hi : ZN!R (the Lamé
coefficients) such that

Aij ¼
�jHi

Hi
; i 6¼ j ½5�

and then eqns [4] take the form

�k�jHi � Tj
�kHj

Hj

� �
�jHi

� Tk
�jHk

Hk

� �
�kHi ¼ 0; i; j; k distinct ½6�

which is the discrete version of the first part [1] of
the Lamé system.

The Lamé coefficients allow to define the suitably
normalized tangent vectors X i : ZN!RM by equations

�ix ¼ ðTiHiÞX i ½7�

and the functions Qij : ZN!R, i 6¼ j, (the rotation
coefficients) by equations

�iHj ¼ ðTiHiÞQij; i 6¼ j ½8�

Then eqns [3] and [6] can be rewritten in the first-
order form

�jX i ¼ ðTjQijÞX j; i 6¼ j ½9�

�kQij ¼ ðTkQikÞQkj; i; j; k distinct ½10�

The discrete Darboux system [10] implies the
existence of other potentials �i defined by the
compatible equations

Tj�i

�i
¼ 1� ðTiQjiÞðTjQijÞ; i 6¼ j ½11�

The i $ j symmetry of the RHS of eqns [11] implies
the existence of yet another potential � : ZN!R,

�i ¼
Ti�

�
½12�

which is called the �-function of the QL. In terms of
the �-function, and of the functions

�ij ¼ �Qij; i 6¼ j ½13�

whose geometric interpretation will be given in a
later section, the discrete Darboux equations take
the following Hirota-type form:

ðTiTj�Þ� ¼ ðTi�ÞTj� � ðTi�jiÞTj�ij; i 6¼ j ½14�

ðTk�ijÞ� ¼ ðTk�Þ�ijþðTk�ikÞ�kj; i; j; k distinct ½15�
Analytic Methods

We will show how one can construct large classes of
solutions of the discrete Darboux equations and the
corresponding QLs using two basic analytical
methods of the soliton theory: the �@-dressing
method and the algebro-geometric techniques.
The �@-dressing method Consider the nonlocal
�@-problem

�@�ðzÞ þ ðR̂�ÞðzÞ ¼ �@�ðzÞ

lim
jzj!1

�ðzÞ � �ðzÞð Þ ¼ 0
½16�

where �@= @=@�z, R̂ is the integral operator

ðR̂�ÞðzÞ ¼
Z

C

Rðz; z0Þ�ðz0Þ dz0 ^ d�z0

and �(z) is a given rational function of z.
Let Q�i 2 C, i = 1, . . . , N be pairs of distinct points

of the complex plane, which define the dependence
of the kernel R on the discrete variable n 2 ZN:

Rðz; z0; nÞ ¼
YN
i¼1

z�Qþi
z�Q�i

� �ni

� R0ðz; z0Þ
YN
i¼1

z0 �Q�i
z0 �Qþi

� �ni

We consider only kernels R0(z, z0) such that the
nonlocal �@-problem is uniquely solvable. If �(z; n) is
the unique solution with the canonical normal-
ization �= 1, then the function

 ðz; nÞ ¼ �ðz; nÞ
YN
i¼1

z�Q�i
z�Qþi

� �ni

satisfies the system of the Laplace equations [3] with
the Lamé coefficients given by

HiðnÞ ¼ lim
z!Qþ

i

z�Qþi
z�Q�i

� �ni

 ðz; nÞ
� �

By construction, the system of such Laplace equa-
tions is compatible, therefore the Lamé coefficients
satisfy eqns [6]. To various n-independent measures
d�a on C there correspond coordinates

xaðnÞ ¼
Z

C

 ðz; nÞd�aðzÞ

of a QL x, having Hi(n) as the Lamé coefficients. To
have real lattices, the kernel R0, the points Q�i , and
the measures d�a should satisfy certain additional
conditions.

One can find a similar interpretation of the
normalized tangent vectors X i and of the rotation
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coefficients Qij. If �i(z; n) are the unique solutions of
the nonlocal �@-problem [16] with the normalizations

�iðz; nÞ ¼ Qþi �Q�i
z�Qþi

� � YN
k¼1;k 6¼i

Qþi �Qþk
Qþi �Q�k

 !nk

then the functions  i(z; n), defined by

 iðz; nÞ ¼
YN
k¼1

z�Q�k
z�Qþk

 !nk

�iðz; nÞ

satisfy the direct analog of the linear problem [9],

�j iðz; nÞ ¼ ðTjQijðnÞÞ jðz; nÞ; i 6¼ j ½17�

where

QijðnÞ ¼ lim
z!Qþ

j

z�Qþj
z�Q�j

 !nj

 iðz; nÞ
 !

Again, by construction, eqns [17] are compatible
and the functions Qij(n) satisfy the discrete Darboux
equations [10]. The functions

Xa
i ðnÞ ¼

Z
C

 iðz; nÞ d�aðzÞ

are coordinates of the normalized tangent vectors X i

of the QL x constructed above.

The algebro-geometric techniques Given a compact
Riemann surface R of genus g, consider a nonspecial
divisor D =

Pg
�= 1 P�. Choose N pairs of points Q�i 2

R and the normalization point Q1. Given n 2 ZN,
there exists a unique Baker–Akhiezer function  (n),
defined as a meromorphic function on R, with the
following analytical properties: (1) as a function of P 2
R n [N

i = 1Q�i ,  (n) may have as singularities only
simple poles in the points of the divisor D; (2) in the
points Q�i function (n) has poles of the order�ni; and
(3) in the point Q1 function  (n) is normalized to 1.

When z�i (P) is a local coordinate on R centered at
Q�i , then condition (2) implies that the function  (n)
in a neighborhood of the point Q�i is of the form

 ðP; nÞ ¼ z�i ðPÞ
� ��ni

X1
s¼0

�i
s;�ðnÞ z�i ðPÞ

� �s

 !
½18�

The Baker–Akhiezer function, as a function of the
discrete variable n 2 ZN, satisfies the system of
Laplace equations [3] with the Lamé coefficients
Hi(n) = �i

0,þ(n).
Again, by construction, the Lamé coefficients

satisfy eqns [6]. To various n-independent measures
d�a on R there correspond coordinates

xaðnÞ ¼
Z
R
 ðP; nÞ d�aðPÞ

of a QL x.
We present the expression of the Baker–Akhiezer
function and of the �-function of the QL in terms of
the Riemann theta functions. Let us choose on R the
canonical basis of cycles {a1, . . . , ag, b1, . . . , bg} and
the dual basis {!1, . . . ,!g} of holomorphic differen-
tials on R, that is,

H
aj
!k = 	jk. Then the matrix B of

b-periods defined as Bjk =
H

bj
!k is symmetric and

has positively defined imaginary part. Denote by
!PQ the unique differential holomorphic in
Rn{P, Q} with poles of the first order in P, Q and
residues, correspondingly, 1 and �1, which is
normalized by conditions

H
aj
!PQ = 0. The Riemann

function 
(z; B), z 2 Cg, is defined by its Fourier
expansion


ðz; BÞ ¼
X

m2Zg

exp �ihm;Bmi þ 2�ihm; zif g

where h� , �i denotes the standard bilinear form in Cg.
Finally, the Abel map A is given by A(P) =
(
R P

P0
!1, . . . ,

R P
P0
!g), where P0 2 R, and the Riemann

constants vector K is given by

Kj ¼
1þ Bjj

2
�
X
k 6¼j

I
ak

!kðPÞAjðPÞ!j

� �
;

j ¼ 1; . . . ; g

The explicit form of the vacuum Baker–Akhiezer
function  can be written down with the help of the
theta functions as follows:

 ðn;PÞ ¼

 AðPÞ þ

PN
k¼1 nk A Q�k

� �
� A Qþk

� �� �
þ Z

� �

 AðQ1Þ þ

PN
k¼1 nk A Q�k

� �
� A Qþk

� �� �
þ Z

� �

� 
 AðQ1Þ þ Zð Þ

 AðPÞ þ Zð Þ exp

XN
k¼1

nk

Z P

Q1

!Q�
k

Qþ
k

 !

where Z = �
Pg

j = 1 A(Pj)� K.
Denote by r�kj and s�kj the constants in the

decomposition of the abelian integrals near the
point Q�jZ P

P0

!Q�
k

Qþ
k
¼

P!Q�j �	kj log z�j ðPÞ þ r�kj þO z�j ðPÞ
� �

Z P

P0

!Q1Qþ
k
¼

P!Q�j �	kj	þ� log z�j ðPÞ þ s�kj þO z�j ðPÞ
� �

Then the expression of the �-function of the QL within
the subclass of algebro-geometric solutions reads

�ðnÞ

¼ 

XN
k¼1

nk A Q�k
� �

� A Qþk
� �� �

þ AðQ1Þ þ Z

 !

�
YN

k;j¼1

�
nknj

kj

YN
k¼1

�nk

k
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Figure 2 The fundamental transformation as the binary

transformation.
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where

�kj¼ exp
r�kj � rþkj

2

 !
¼ �jk

�k¼
1

�kk


 A Qþk
� �

þ Z
� �

 A Q�k

� �
þ Z

� � exp s�kk � sþkk

� �
Finally, we remark that the geometric integrability

scheme and the algebro-geometric methods work
also in the finite fields setting, giving solutions of the
corresponding integrable cellular automata.

The Darboux-Type Transformations

We present the basic ideas and results of the theory
of the Darboux-type transformations of the multi-
dimensional QL.

Line congruences and the fundamental transformation
To define the transformations we need to define
first N-dimensional line congruences (or, simply,
congruences), which are families of lines in RM

labeled by points of ZN with the property that any
two neighboring lines l and Til, i = 1, . . . , N, are
coplanar and therefore (eventually in the projective
extension PM of RM) intersect.

The QL F (x) is a fundamental transform of the QL
x if the lines connecting the corresponding points of
the lattices form a congruence. The superposition of a
number of fundamental transformations can be
compactly formulated in the vectorial fundamental
transformation. The data of the vectorial fundamental
transformation are: (1) the solution Y i : ZN!V, V
being a linear space, of the linear system [9]; (2) the
solution Y	i : ZN! V	, V	 being the dual of V, of the
linear system [8]. These allow to construct the linear
operator-valued potential W(Y , Y	) : ZN!L(V),
defined by the following analog of eqn [7]:

�i WðY ;Y	Þ ¼ Y i 
 TiY
	
i

� �
; i ¼ 1; . . . ;N ½19�

Similarly, one defines W(X , Y	) : ZN!L(V, RM) and
W(Y , H) : ZN!V. The transforms of the lattice x
and other related functions are given by

FðxÞ ¼ x�WðX ;Y	ÞWðY ;Y	Þ�1WðY ;HÞ
FðHiÞ ¼ Hi � Y	i WðY ;Y	Þ�1WðY ;HÞ;

i ¼ 1; . . . ;N

FðX iÞ ¼ X i �WðX ;Y	ÞWðY ;Y	Þ�1Y i;

i ¼ 1; . . . ;N

FðQijÞ ¼ Qij � Y	j WðY ;Y	Þ�1Y i;

i; j ¼ 1; . . . ;N; i 6¼ j

Fð�iÞ ¼ �i 1þ TiY
	
i

� �
WðY ;Y	ÞY i

� �
;

i ¼ 1; . . . ;N

Fð�Þ ¼ � det WðY ;Y	Þ
Notice that, by the coplanarity of any two neighbor-
ing lines of the congruence, also the quadrilaterals
{x, Tix,F (x),F (Tix)} are planar (see Figure 2). Then
the construction of the transformed lattice mimics
the geometric integrability scheme. In consequence,
any quadrilateral

{x; F 1ðxÞ; F 2ðxÞ; F 1 F 2ðxÞð Þ=F 2 F 1ðxÞð Þ}

is planar as well. Therefore, on the discrete level,
there is no difference between the lattice coordinate
directions and the fundamental transformation direc-
tions. The distinction becomes visible in the limit
from the QL to the conjugate net. Therefore, the
vectorial description of the superposition of the
fundamental transformations not only implies their
permutability but also provides the explanation of the
validity of the practical rule of ‘‘integrable discretiza-
tion by Darboux transformations.’’

The Lévy and Combescure transformations It is
easy to see that the family ti of lines passing through
the points x and Tix of a QL forms a congruence,
called the ith tangent congruence of the lattice.
When the congruence of the transformation is the
ith tangent congruence of the lattice x, then the
corresponding reduction of the fundamental trans-
formation is called the ‘‘Lévy transformation’’ Li.

It turns out that, for a generic congruence l, the lattice
made from intersection points of the lines l and T�1

i l is a
QL, called the ith focal lattice of the congruence. When
the fundamental transform of the lattice x is the ith focal
lattice of the transformation congruence, then the
corresponding reduction of the fundamental transfor-
mation is called the ‘‘adjoint Lévy transformation’’ L	i .

Both Lévy transformations use only a half of the
fundamental transformation data, and the corre-
sponding reduction formulas (in the scalar case) for
the lattice points read as follows:

LiðxÞ ¼ x� X iðYiÞ�1WðY;HÞ
L	i ðxÞ ¼ x�WðX ;Y	Þ ðY	i Þ

�1Hi
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Notice that the composition of the Lévy and the
adjoint Lévy transformations gives (see Figure 2) the
fundamental transformation, also called, for this
reason, the binary transformation.

Another reduction of the fundamental transforma-
tion, important from a technical point of view, is the
‘‘Combescure transformation,’’ in which the tangent
lines of the transformed lattice C(x) are parallel to those
of the lattice x. The transformation formula reads

CðxÞ ¼ x�WðX ;Y	Þ

where only the solution Y	 of the adjoint linear
system [8], necessary to build the transformation
congruence, is needed.

The Laplace transformations and the geometric
meaning of the Hirota equation The Laplace
transform Lij(x), i 6¼ j, of the QL x is the jth focal
lattice of its ith tangent congruence (see Figure 3). It
is uniquely determined once the lattice x is given.
The transformation formulas of the lattice points
and of the �-function read as follows:

LijðxÞ ¼ x� 1

Aji
�ix ½20�

Lijð�Þ ¼ �ij ¼ �Qij ½21�

The superpositions of Laplace transformations
satisfy the following identities

Lij � Lji ¼ id

Ljk � Lij ¼ Lik

Lki � Lij ¼ Lkj

which allow to identify them with the Schlesinger
transformations of the monodromy theory.

In the simplest case N = 2 one obtains the
so-called Laplace sequence of two-dimensional QLs

x‘ ¼ L‘12ðxÞ; �‘ ¼ L‘12ð�Þ
L�1

12 ¼ L21; ‘ 2 Z

Equations [14] and [21] imply that the �-functions
of the Laplace sequence satisfy the celebrated Hirota
equation (the fully discrete Toda system)

�‘T1T2�‘ ¼ ðT1�‘ÞðT2�‘Þ � ðT1�‘�1ÞðT2�‘þ1Þ
ij 
(x)

Ti     ij 
(x

 
)

Ti x

Tj x TiTj x
Tj      ij (x )

Tj   x

x

–1

Figure 3 The Laplace transformation Lij .
Distinguished Integrable Reductions

We will present here basic reductions of the multi-
dimensional QL. The geometric criterion for their
integrability is the compatibility with the geometric
integrability scheme.
The circular lattices and the Ribaucour congruences
QLs ZN!EM for which each quadrilateral is
inscribed in a circle are called ‘‘circular’’ lattices.
They are the integrable discrete analogs of submani-
folds parametrized by curvature coordinates (e.g.,
the orthogonal coordinate systems described by the
Laméequations [1]–[2]).

The integrability of circular lattices is the consequence
of the fact that if the three ‘‘initial’’ quadrilaterals
{x, Tix, Tjx, TiTjx}, {x, Tix, Tkx, TiTkx}, {x, Tjx, Tkx,
TjTkx} are circular, then also the three new quadri-
laterals constructed by adding the vertex TiTjTkx
are circular as well (see Figure 4). In fact, all the
eight vertices belong to a sphere, and, in consequence,
all the vertices of any K-dimensional, K = 2, . . . , N,
elementary cell belong to a (K � 1)-dimensional sphere.

There are various equivalent algebraic descrip-
tions of the circular lattices:

1. the normalized tangent vectors X i satisfy the
constraint

X i � TiX j þ X j � TjX i ¼ 0; i 6¼ j

2. the scalar function x � x : ZN!R satisfies the
Laplace equations [3] of the lattice x;

3. the functions X�i = (xþ Tix) � X i : ZN!R satisfy
the same linear system [9] as the normalized
tangent vectors X i; and

4. the functions X i � X i : ZN!R satisfy eqns [11]
and thus can serve as the potentials �i.

The Ribaucour transformation R is the restriction
of the fundamental transformation to the class of
circular lattices such that also the ‘‘side’’ quadrilat-
erals {x, Tix,R(x),R(Tix)} are circular. Again there
is no geometric difference between the lattice
directions and the Ribaucour transformation direc-
tion. Moreover, the quadrilaterals {x,R1(x),
Ti x

Tj x
TiTj x 

Tk 
x

x

TiTjTk 
x

Figure 4 The geometric integrability of circular lattices.
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R2(x),R1(R2(x)) =R2(R1(x))} are circular as well.
In consequence, the vertices of the elementary K-cells,
K = 2, . . . , N, of the circular lattice and the correspond-
ing vertices of its Ribaucour transform are contained in
a K-dimensional sphere. Finally, for K = N, one obtains
a special ZN family of N-dimensional spheres, called
the Ribaucour congruence of spheres.

Algebraically, the Ribaucour transformation
needs only a half of the data (necessary to build
the congruence) of the fundamental transformation.
The data of the vectorial Ribaucour transformation
consists of the solution Y	i : ZN!V	, of the linear
system [8]. Then, because of the circularity con-
straint, Y i : ZN!V given by

Y i ¼ WðX ;Y	Þ þ TiWðX ;Y	Þð ÞTX i

is a solution of the linear system [9], and the constraints

WðY ;HÞ þWðX�;Y	ÞT ¼ 2 WðX ;Y	ÞTx

WðY ;Y	Þ þWðY ;Y	ÞT ¼ 2 WðX ;Y	ÞTWðX;Y	Þ

are admissible.
We remark that the above constraints have a simple

geometric meaning when one considers the circular
lattices in EM as the stereographic projections of QLs
in the Möbius sphere SM; that is, as a special case of
QLs subjected to quadratic constraints.
x

T1x

T1T2xT2x

Figure 5 Elementary quadrilaterals of the isothermic lattice.
The symmetric lattice Given a QL x with rotation
coefficients Qij and potentials �i given by [11], then
the functions ~Qij, defined by equation

�jTj
~Qij ¼ �iTiQji; i 6¼ j

and called, because of their geometric interpretation,
the backward rotation coefficients, satisfy the
Darboux system [10] as well. A QL is called
symmetric if its forward rotation coefficients Qij

are also its backward rotation coefficients. Again the
constraint is compatible with the geometric integr-
ability scheme, that is, it propagates in the construc-
tion of the lattice. One can show that a QL is
symmetric if and only if its rotation coefficients
satisfy the following trilinear constraint:

ðTiQjiÞðTjQkjÞðTkQikÞ¼ ðTjQijÞðTiQkiÞðTkQjkÞ
i; j; k distinct

To obtain the corresponding reduction of the
fundamental transformation we again need only half
of the data. Given a solution Y	i : ZN!V	, of the
linear system [8], then, because of the symmetric
constraint, Y i : ZN!V, defined by

Y i¼ �iðTiY
	ÞT
is the solution of the linear system [9]; notice that,
equivalently, we could start from Y i. The constraint

WðY ;Y	Þ¼WðY ;Y	ÞT

is then admissible and gives a new symmetric lattice.
There are other multidimensional reductions of

the QL like, for example, the D-invariant and
Egorov lattices or discrete versions of immersions
of spaces of constant negative curvature. We remark
that the transformations and reductions discussed
above have also a clear interpretation on the level of
the analytic methods.
Integrable Discrete Surfaces

In this section we present some distinguished examples
of discrete integrable surfaces. Notice that, although
the geometric integrability scheme is meaningless for
N = 2, it can be applied indirectly, by considering the
discrete surfaces, together with their transformations,
as sublattices of multidimensional lattices.

We remark also that one can consider integrable
evolutions of discrete curves, which give equations
of the Ablowitz–Ladik hierarchy, and the corre-
sponding integrable spin chains.
Discrete Isothermic Nets

An isothermic lattice is a two-dimensional circular
lattice x : Z2!EM with harmonic quadrilaterals;
that is, given x, T1x and T2x, then the point T1T2x
is the intersection of the circle (passing through
x, T1x and T2x) and the line passing through x and
the meeting point of the tangents to the circle at T1x
and T2x (see Figure 5). Therefore, given two discrete
curves intersecting in the common vertex x0, the
unique isothermic lattice can be found using the
above ‘‘ruler and compass’’ construction.

Algebraically the reduction looks as follows. Any
oriented plane in EM can be identified with the
complex plane C. Given any four complex points
z1, z2, z3, and z4, their complex cross-ratio is defined by

qðz1; z2; z3 ; z4Þ¼
ðz1 � z2Þðz3 � z4Þ
ðz2 � z3Þðz4 � z1Þ
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One can show that the cross-ratio is real if and only
if the four points are cocircular or collinear. In
particular, a harmonic quadrilateral with vertices
numbered anticlockwise has cross-ratio equal to �1.
Therefore, abusing the notation (it can be forma-
lized using Clifford algebras), the isothermic lattice
is defined by the condition

qðx;T1x;T1T2x;T2xÞ ¼ �1

We remark that the definition of isothermic lattices
can be slightly generalized allowing for the above
cross-ratio to be a ratio of two real functions of
single discrete variables.

The restriction of the Ribaucour transformation
to the class of isothermic lattices, named after
Darboux who constructed it for isothermic surfaces,
has as its data a real parameter � and the starting
point D(x0), and can be described as follows. Given
the elementary quadrilateral {x, T1x, T2x, T1T2x}
of the isothermic lattice, and given the point D(x),
then the points D(T1x) and D(T2x) belong to the
corresponding planes and are constructed from
equations

qðx;DðxÞ;DðT1xÞ;T1xÞ ¼ �
qðx;DðxÞ;DðT2xÞ;T2xÞ ¼ ��

It turns out that the point D(T1T2x), constructed by
the application of the geometric integrability
scheme, is such that the quadrilateral {D(x),
D(T1x),D(T2x), D(T1T2x)} is harmonic. Moreover,
the construction of the Darboux transformation is
compatible; that is, the new side quadrilaterals have
the correct cross-ratios � and ��.

There are various integrable reductions of the
isothermic lattice, for example, the constant mean
curvature lattice and the minimal lattice.
Asymptotic Lattices and Their Reductions

An asymptotic lattice is a mapping x : Z2!R3 such
that any point x of the lattice is coplanar with its
four nearest neighbors T1x, T2x, T�1

1 x, T�1
2 x (see

Figure 6). Such a plane is called the tangent plane
of the asymptotic lattice in the point x.

It can be shown that any asymptotic lattice x can
be recovered from its suitably rescaled normal (to
T1x
x

T1  x

T2x

–1 

T2  x
–1 

Figure 6 Asymptotic lattices.
the tangent plane) field N : Z2!R3 via the discrete
analog of the Lelieuvre formulas

�1x ¼ ðT1NÞ �N; �2x ¼ N � ðT2NÞ ½22�

By the compatibility of the Lelieuvre formulas, the
normal field N satisfies the discrete Moutard
equation

T1T2N þN ¼ FðT1N þ T2NÞ ½23�

for some potential F : Z2!R.
Given a scalar solution 
 of the Moutard equation

[23], a new solution M(N) of the Moutard
equation, with the new potential

MðFÞ ¼ ðT1
ÞðT2
Þ
ðT1T2
Þ


F

can be found via the Moutard transformation
equations

MðT1NÞ �N ¼ 


T1

ðMðNÞ � T1NÞ ½24�

MðT2NÞ �N ¼ 


T2

ðMðNÞ � T2NÞ ½25�

Now, via the Lelieuvre formulas [22], one can
construct a new asymptotic lattice M(x) = x�
M(N)�N. The lines connecting corresponding points
of the asymptotic lattices x and M(x) are tangent to
both lattices. Such a Z2-family of lines in R3 is called
Weingarten (or W for short) congruence. Notice that
this is not a congruence as considered earlier.

Various integrable reductions of asymptotic lat-
tices are known in the literature: pseudospherical
lattices, asymptotic Bianchi lattices and isothermally
asymptotic (or Fubini–Ragazzi) lattices, and discrete
(proper and improper) affine spheres.

Formally, the Moutard transformation is a reduc-
tion of the (projective version of the) fundamental
transformation for the Moutard reduction of the
Laplace equation. However, the geometric relation
between asymptotic lattices and QLs is more subtle
and the geometric scenery of this connection is the line
geometry of Plücker. Straight lines in R3 � P3 are
considered there as points of the so-called Plücker
quadric QP � P5. A discrete asymptotic net in P3,
viewed as the envelope of its tangent planes, corre-
sponds to a congruence of isotropic lines inQP, whose
focal lattices represent the asymptotic directions. The
discrete W-congruences are represented by two-
dimensional QLs in the Plücker quadric.

The Koenigs Lattice

A two-dimensional QL x : Z2!PM is called a
Koenigs lattice if, for every point x of the lattice,
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Figure 7 The Koenigs lattice.
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the six points x�1, Tix�1, T2
i x�1, i = 1, 2, of its

Laplace transforms belong to a conic (see Figure 7).
The nonlinear constraint in definition of the Koenigs
lattice can be linearized, with the help of the Pascal
‘‘mystic hexagon’’ theorem, to the form that the line
passing through x and T1T2x, the line passing
through x1 and T2

1x�1, and the line passing through
x�1 and T2

2x1 intersect in a point.
Algebraically, the geometric Koenigs lattice con-

dition means that the Laplace equation of the lattice
in homogeneous coordinates x : Z2!RMþ1

	 can be
gauged into the form

T1T2xþ x ¼ T1ðFxÞ þ T2ðFxÞ ½26�

It turns out that, if N is a solution of the Moutard
equation [23], then x = T1N þ T2N satisfies the
Koenigs lattice equation. Therefore, the algebraic
theory of the discrete Koenigs lattice equation [26],
its (Koenigs) transformation, and the permutability
of the superpositions of such transformations is
based on the corresponding theory for the Moutard
equation [23].

Geometrically, the Koenigs lattices are selected
from the QLs as follows. Given a two-dimensional
QL x : Z2!PM and given a congruence l with lines
passing through the corresponding points of the
lattice. Denote by yi = T�1

i l \ l, i = 1, 2, points of the
focal lattices of the congruence. For every line l,
denote by { the unique projective involution exchan-
ging yi with Tiyi. If, for every congruence l, the
lattice K(x) : Z2!PM, with points K(x) = {(x), is a
QL, then the lattice x is a Koenigs lattice. The above
construction gives also the corresponding reduction
of the fundamental transformation.

A distinguished reduction of the Koenigs lattice is
the quadrilateral Bianchi lattice. The natural con-
tinuous limit of the corresponding equation is
equivalent to the Bianchi (or hyperbolic Ernst)
system describing the interaction of planar gravita-
tional waves.
Discrete Two-Dimensional Schrödinger Equation

In the previous sections we have discussed examples
of integrable discrete geometries described by
equations of hyperbolic type. Below we present
some results associated with the elliptic case; it is
remarkable that the QL provides a way to connect
these two subjects.

Consider a solution N : Z2!R3 of the general self-
adjoint five-point scheme on the star of the Z2 lattice

aT1N þ T�1
1 ðaNÞ þ bT2N þ T�1

2 ðbNÞ � cN ¼ 0 ½27�

then the lattice x : Z2!R3 obtained by the
Lelieuvre type formulas

�1x ¼� T�1
2 b

� �
N � T�1

2 N

�2x ¼ T�1
1 a

� �
N � T�1

1 N
½28�

is a QL having N as normal (to the planes of
elementary quadrilaterals) vector field.

The following gauge-equivalent form of eqn 27,
namely

�

T1�
T1 þ T�1

1

�

T1�
 

� �
þ �

T2�
T2 

þ T�1
2

�

T2�
 

� �
� q ¼ 0 ½29�

an integrable discretization of the Schrödinger
equation

@2 

@x2
1

þ @
2 

@x2
2

�Q ¼ 0

is also the Lax operator associated with an integrable
generalization of the Toda law to the square lattice.

The five-point scheme [27] is also a distinguished
illustrative example of the sublattice theory. Indeed,
it can be obtained restricting to the even sublattice
Z2

e the discrete Cauchy–Riemann equations

T1T2
� 
¼ iGðT1
� T2
Þ ½30�

Because of the equivalence (on the discrete level!)
between eqn [30] and the discrete Moutard equation
[23], the five-point scheme [27] inherits integrability
properties (Darboux-type transformations, superpo-
sition formulas, analytic methods of solution) from
the corresponding (and simpler) integrability proper-
ties of the discrete Moutard equation.

See also: Bäcklund Transformations; �@-Approach to
Integrable Systems; Integrable Discrete Systems;
Integrable Systems and Algebraic Geometry; Integrable
Systems and the Inverse Scattering Method; Integrable
Systems: Overview; Nonlinear Schrödinger Equations;
Sine-Gordon Equation; Stability Theory and KAM; Toda
Lattices.
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Cieśliński J (1997) The spectral interpretation of N-spaces of
constant negative curvature immersed in R2N�1. Physics
Letters A 236: 425–430.

Doliwa A, Grinevich PG, Nieszporski M, and Santini PM (2004)

Integrable lattices and their sublattices: from the discrete
Moutard (discrete Cauchy–Riemann) 4-point equation to the

self-adjoint 5-point scheme, nlin.SI/0410046.
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Doliwa A, Santini PM, and Mañas M (2000) Transformations of
quadrilateral lattices. Journal of Mathematical Physics 41:

944–990.

Klimczewski P, Nieszporski M, and Sym A (2000) Luigi Bianchi,

Pasquale Calapso and solitons. Rend. Sem. Mat. Messina, Atti
del Congresso Internazionale in Onore di Pasquale Calapso,

Messina, 12–14 October 1998, pp. 223–240.
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Introduction

Let (M,!) be a symplectic manifold of dimension
2n. We denote by ] the natural isomorphism
between T	M and TM, defined by the equation

i]�! ¼ ��; � 2 T	M ½1�

We say that ]df is the Hamiltonian vector field
defined by the Hamiltonian f : M! R.

Associated with the nondegenerated closed 2-form !
there is also a Poisson bracket on C1(M), the space of
real differentiable functions on M, defined by

f:; :g! : C1ðMÞ � C1ðMÞ ! C1ðMÞ
ðf ; gÞ 7! ff ; gg! ¼ !ð]df ; ]dgÞ
We say that two smooth functions F, G : M! R
are in involution if

fF;Gg! ¼ 0 ½2�

Suppose we have n independent smooth functions
in involution H1, . . . , Hn, such that the associated
Hamiltonian vector fields X1, . . . , Xn are complete
on the level manifold

Ma ¼ fx 2M : HjðxÞ ¼ aj; j ¼ 1; . . . ; ng ½3�

The classical theorem of Arnol’d–Liouville states that

1. the submanifold Ma is invariant with respect to
each one of the Hamiltonian commuting flows
generated by H1, . . . , Hn;

2. every connected component of Ma is diffeo-
morphic to a product of a Euclidean space by a
torus, Rn�k � Tk;

3. there exist coordinates f1, . . . , fn�k, ’1, . . . ,’k in
Ma such that the Hamiltonian systems in Ma,
associated with the Hamiltonians Hj, have the form

_fs ¼ cj
s _’m ¼ ! j

m ð! 
 ! ðaÞ; c ¼ const:Þ ½4�
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4. if Ma is compact then it is diffeomorphic to Tn

and there exists a neighborhood of Ma on M,
symplectically diffeomorphic to Bn�Tn.

A completely integrable Hamiltonian system is a
Hamiltonian vector field X, that admits n integrals
H1, . . . , Hn satisfying the hypothesis of Arnol’d–
Liouville theorem.

It may happen that a system has more than n
independent integrals of motion. In this case it is
called superintegrable and not all the integrals are in
involution. Supposing that

Ma ¼ fx 2M : HjðxÞ ¼ aj; j ¼ 1; . . . ; nþ kg

is compact and connected and that H1, . . . , Hn�k

commute with all the n þ k integrals, then Ma is
diffeomorphic to the torus Tn� k. In particular, if the
system is maximally superintegrable, that is,
k = n � 1, Ma is diffeomorphic to T1 = S1 and all
the trajectories are closed.

To prove that a system is completely integrable, we
have to find a sufficient number of integrals of the
system in involution. The Lax pair is an extremely
powerful tool in this task, although it does not
guarantee the involution of the integrals found.

A Lax pair of a vector field X on a smooth
manifold M is a pair of operators (L, M) such that

_L ¼ ½M;L� ¼ML� LM ½5�

This equation is equivalent to

U�1LU ¼ L0 ½6�

where U is the solution operator of the Cauchy
problem

_U ¼MU; Uð0Þ ¼ I ½7�

So, the eigenvalues of L are integrals of X. Notice
that all the pairs (Lk, M), k 2 N, are Lax pairs of the
system and we may conclude that the functions
tr Lk, k 2 N, are integrals of X.

The first goal of this article is to relate
integrable Hamiltonian systems and recursion
operators, where some of the most important
properties of the latter are exhibited. Very natu-
rally, the Poisson–Nijenhuis manifolds appear in
this context and the Toda lattice is the example
chosen in order to show the whole theory working
in practice. Also, we see how recursion operators
can help in the construction of quadratic algebras
of integrals of motion and, in the last section, we
present the generalization to Jacobi manifolds of
the Nijenhuis structures defined for Poisson
manifolds.
Integrable Systems on Poisson–Nijenhuis
Manifolds

Let X be a vector field on a smooth manifold M.
A recursion operator of X is a (1, 1)-tensor R
invariant of X:

LXR ¼ 0 ½8�

The (1, 1)-tensors, and in particular the recursion
operators, may be regarded as fiber endomorphisms
of TM. So, given a (1, 1)-tensor R, we denote by
tR : T�M! T�M the transpose of R : TM! TM,
that is,

htRð�Þ;Xi ¼ h�;RðXÞi; � 2 T�M; X 2 TM ½9�

where h. , .i denotes the canonical pairing between
T�M and TM.

Recursion operators also generate symmetries. If R
is a recursion operator and Y is a symmetry of X, that
is, [X, Y] = 0, then RY is also a symmetry of X. So,
given a recursion operator R of X, we may construct a
sequence of symmetries of X, RkY, k 2 N.

The Nijenhuis torsion of a (1, 1)-tensor R is the
(1, 2)-tensor T (R) defined by

T ðRÞðX;YÞ ¼ ½RX; RY� � R ½X; RY� þ ½RX;Y�ð
�R½X;Y�Þ; X;Y 2 XðMÞ ½10�

A Nijenhuis operator is a (1, 1)-tensor, R, with
vanishing Nijenhuis torsion, that is,

LRXR ¼ RLXR ½11�

These operators can generate sequences of closed
1-forms. If R is a Nijenhuis operator and � is a
closed 1-form such that dtR(�) = 0, then
dtRk(�) = 0, k 2 N. In the particular case of �
being exact, that is, � = df and the first cohomol-
ogy group being trivial, then we have a sequence of
local integrals of motion dfk = tRk(df ).

A Nijenhuis recursion operator R and a symmetry
Y of a vector field X lead to a sequence of
commuting symmetries RkY, k 2 N,

½RiY;RjY� ¼ 0; i; j 2 N ½12�

To define the integrability in terms of a (1, 1)-
tensor is of special relevance when we try to extend
everything to the infinite-dimensional case.

Notice that in coordinates (q1, . . . , qn), the condi-
tion [8] is equivalent to

_R ¼ ½A;R� ½13�

where A is the n� n matrix defined by

Aij ¼
@Xj

@qi

� �
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and Xj = X(qj) = _qj, j = 1, . . . , n. So, the pair
(R, A) is a local Lax pair of the system and the
eigenvalues of R are integrals of X.

If a recursion operator R of a vector field X on a
manifold M has vanishing Nijenhuis torsion and n
doubly degenerated eigenvalues �i, with nowhere-
vanishing differentials, (d�i)p 6¼ 0, then X defines a
completely integrable Hamiltonian system.

Now suppose X defines a completely integrable
Hamiltonian system with Hamiltonian H on a
symplectic manifold (M,!). Let (I1, . . . , In, ’1,
. . . ,’n) be the action-angle variables in a neighbor-
hood of an invariant torus. Two cases may happen:

1. The Hamiltonian H is separable in the action
variable, that is,

H ¼
X

k

HkðIkÞ ½14�

In this case, the (1, 1)-tensor

R ¼
X

k

�kðIkÞ dIk �
@

@Ik
þ d’k �

@

@’k

� �
½15�

where �k are functions with nowhere-vanishing
differentials, is a recursion operator of X, and has
vanishing Nijenhuis torsion and doubly degener-
ated eigenvalues.

2. The Hamiltonian has nonvanishing Hessian

det
@2H

@Ik@Ij

� �
6¼ 0 ½16�

In this case we may define new coordinates

�k ¼
@H

@Ik
; k ¼ 1; . . . ; n ½17�

and a new symplectic structure

!1 ¼
X

k

d�k ^ d’k ¼
X
k;j

@2H

@Ik@Ij
dIk ^ d’j ½18�

The vector field X is Hamiltonian with respect to
!1, with Hamiltonian

H ¼ 1

2

X
k

�2
k ½19�

and the (1, 1)-tensor

R ¼
X

k

�k ðIkÞ d�k �
@

@�k
þ d’k �

@

@’k

� �
½20�

is a recursion operator of X.
Nijenhuis operators also allow the construction of
master symmetries from conformal ones.

A conformal symmetry of a tensor field T is a
vector field Z such that

LZT ¼ �T; for some constant �

A master symmetry of a vector field X is a vector
field Y such that

½X; ½X;Y�� ¼ 0; but ½X;Y� 6¼ 0

Let R be a recursion operator of X0 and Z0 be a
conformal symmetry of X0 and R such that

LZ0
X0 ¼ �X0 and LZ0

R ¼ R ½21�

for some constants �,�.
If R is also a Nijenhuis operator, then defining the

sequences of commuting symmetries Xk = RkX0

and of conformal symmetries Zk = RkZ0, k 2 N,
we have, for all k, j 2 N0,

LZk
R ¼ �Rkþ1 ½22�

½Zk;Zj� ¼ �ðj� kÞZjþk ½23�

½Zk;Xj� ¼ ð�þ j�ÞXkþj ½24�

A bi-Hamiltonian manifold is a smooth manifold
M endowed with two linearly independent Poisson
tensors �0, �1, compatible in the sense that their
Schouten bracket vanishes, [�0, �1] = 0.

A vector field is said to be bi-Hamiltonian if it is
Hamiltonian with respect to both Poisson structures.
The equation that rules the flow of this vector field
is said to be a bi-Hamiltonian system.

When one of the Poisson structures is obtained
from the other by means of a Nijenhuis operator, we
obtain a Poisson–Nijenhuis manifold. Hence, a
Poisson–Nijenhuis manifold is a differentiable mani-
fold M endowed with a Poisson tensor � and a
(1, 1)-tensor R such that

R�] ¼ �]tR; ½R�;�� ¼ 0 and ½R�;R�� ¼ 0

A classical example is the one of a bi-Hamiltonian
manifold (M, �0, �1) where �0 is nondegenerated. In
this case we may define the Nijenhuis operator
R = �]

1�]�1
0 and the manifold M is a Poisson–

Nijenhuis one.
The characteristics of the Poisson–Nijenhuis

manifold guarantee that all the bivectors �k = Rk�
are compatible Poisson tensors and the manifold is
not just bi-Hamiltonian but multi-Hamiltonian.

From what we saw, a Hamiltonian system is
completely integrable if and only if it is bi-Hamiltonian
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in a neighborhood of an invariant torus with the
eigenvalues of the existing recursion operator provid-
ing its complete integrability. These Poisson–Nijenhuis
manifolds appear quite frequently in dynamics and
allow us to obtain some interesting properties easily.
We finish this section with the Toda lattice. This
system is a good illustration of what has been said until
now.

Consider R2 n�1 with coordinates (a1, . . . , an�1,
b1, . . . , bn) equipped with the following compatible
Poisson tensors:

�0 ¼
1

4

Xn�1

i¼1

ai
@

@ai
^ @

@bi
� @

@biþ1

� �
½25�

�1 ¼
Xn�1

i¼1

a2
i

@

@b iþ1
^ @

@bi
� 1

4

Xn�1

i¼1

ai
@

@ai

^ aiþ1
@

@aiþ1
þ 2biþ1

@

@biþ1
� 2bi

@

@bi

� �
½26�

Not only these two Poisson tensors are degener-
ated but also there is no Nijenhuis operator that
transforms �0 into �1. This can be seen considering
the 1-form

Pn
i = 1 dbi. This 1-form belongs to the

kernel of �0 but not to the kernel of �1. So, the bi-
Hamiltonian manifold (R2n�1, �0, �1) is not a
Poisson–Nijenhuis one.

The Toda lattice is the bi-Hamiltonian system in
R2n�1:

X1 ¼ �]
0ðdH1Þ ¼ �]

1ðdH0Þ ½27�

defined by the Hamiltonians

H0 ¼ 2
Xn

i¼1

bi

H1 ¼ 4
Xn�1

i¼1

a2
i þ 2

Xn

i¼1

b2
i

½28�

that is,

_ai ¼ aiðbiþ1 � biÞ; if 1 � i � n� 1

_b1 ¼ 2a2
1

_bi ¼ 2 a2
i � a2

i�1

� �
; if 2 � i � n� 1

_bn ¼ �2a2
n�1

Since we do not have a Nijenhuis operator in this
setting, we are going to consider a new system in
R2n that reduces to the Toda lattice, derive a
hierarchy of Hamiltonians, symmetries, Poisson
tensors, conformal symmetries and the associated
relations and then transport everything to R2n�1 by
reduction.
Consider the Flaschka transformation

� : R2n ! R2n�1

ðq1; . . . ; qn; p1; . . . ; pnÞ 7! ða1; . . . ; an�1; b1; . . . ; bnÞ

where

ai ¼
1

2
exp

qi � qiþ1

2

� 	
; bj ¼ �

1

2
pj

i ¼ 1; . . . ; n� 1; j ¼ 1; . . . ; n ½29�

This application is a Poisson morphism between

(R2n, e�0, e�1) and (R2n�1, �0, �1), where

e�0 ¼
Xn

i¼1

@

@pi
^ @

@qi
½30�

e�1 ¼
Xn�1

i¼1

eqi�qiþ1
@

@piþ1
^ @

@pi

þ
Xn

i¼1

pi
@

@qi
^ @

@pi
þ
X
i<j

@

@qj
^ @

@qi

 !
½31�

The Poisson tensor e�0 is nondegenerated and we
may define the Nijenhuis operator R = e�]

1
e�]�1

0 . So,
(R2n, e�0, e�1) is a Poisson–Nijenhuis manifold and
the bivectors of the sequence (e�k = Rke�0), k 2 N,
are compatible Poisson tensors.

The Toda lattice is the reduced bi-Hamiltonian
system, by means of the Flaschka transformation, of
the bi-Hamiltonian system

eX1 ¼ e�]
0ðdeH1Þ ¼ e�]

1ðdeH0Þ ½32�

where

eH0 ¼
Xn

i¼1

pi

eH1 ¼
Xn

i¼1

p2
i

2
þ
Xn�1

i¼1

eqi�qiþ1

½33�

We may define the sequence of commuting
vector fields eXk = Rn�1eX1, k 2 N, and the sequence
of Hamiltonians deHk = tRk(deH0), k 2 N, first inte-
grals of all the vector fields eXj and in involution
with respect to all the Poisson structures e�j.

Moreover, considering the conformal symmetry ofe�0, e�1, and eH0 defined by

eZ0 ¼
Xn

i¼1

ðnþ 1� 2iÞ @
@qi
þ
Xn

i¼1

pi
@

@pi
½34�

we have the following relations on R2n:

LeZm
R ¼ Rmþ1 ½35�
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½eZm; eZk� ¼ ðk�mÞeZkþm ½36�

½eZk; eXmþ1� ¼ meXkþmþ1 ½37�

LeZk

e�m ¼ ðm� k� 1Þe�kþm ½38�

eZk:eHm ¼ ðmþ nþ 1ÞeHkþm ½39�

Although we do not have a Nijenhuis operator on
(R2n�1, �0, �1), the deformation relations [35]–[39],
obtained for the Poisson–Nijenhuis manifold
(R2n, e�0, e�1), may be reduced to the bi-Hamiltonian
manifold (R2n�1, �0, �1) by means of the Flaschka
transformation �.
Recursion Operators and Algebras
of Integrals of Motion

A master integral of a vector field X is a differenti-
able function g such that

LXLXg ¼ 0 and LXg 6¼ 0 ½40�

So, a master integral g generates an integral of
motion LXg of the system X. It is worth noticing that
if f and g are master integrals, then not only LXf and
LXg are integrals but also (LXf )g� f (LXg) is an
integral of the system. This means that several master
integrals may lead to extra integrals of motion. This
procedure often leads to the construction of the
integrals which provide the superintegrability of the
system in consideration. This is the case of, for
instance, the generalized rational Calogero–Moser
system or the geodesic flow on the sphere.

Recursion operators are often used to construct
sequences of master symmetries of vector fields. The
obvious connection between master symmetries and
master integrals carries the recursion operators to
this level. In many cases, the integrals of motion
generated by the master integrals constructed on the
basis of the existence of a recursion operator close in
a quadratic algebra with respect to the Poisson
structure we are considering (by quadratic algebra
we mean that the brackets between the generators
are polynomials of degree 2 in the generators).

Let X be a vector field on a manifold M, R a
Nijenhuis operator which is also a recursion
operator of X, and P a (1, 1)-tensor such that

LXP ¼ aðRÞ

and

LPXR ¼ bðRÞ
where a and b are polynomials with constant
coefficients. The sequences Xi = RiX, Yi = Ri(PX),
i 2 N0, X�1 = Y�1 = 0 satisfy

½Xi;Xj� ¼ 0 ½41�

½Xi;Yj� ¼ aðRÞXiþj � ibðRÞXiþj�1 ½42�

½Yi;Yj� ¼ ðj� iÞbðRÞYiþj�1 ½43�

If (M, �) is a nondegenerated Poisson manifold
with trivial first cohomology group, R� is a bivector
and X and Y are Hamiltonian vector fields with
respect to � and R�, that is, there exist functions
H0, H1, G0, and G1 satisfying

X ¼ �]ðdH1Þ ¼ R�]ðdH0Þ
Y ¼ �]ðdG1Þ ¼ R�]ðdG0Þ

then the sequences of exact differentials

tRiðdH1Þ ¼ dHi and tRiðdG1Þ ¼ dGi

may be constructed. In this case, the functions Gj are
master integrals of all the vector fields Xi and the
integrals Xi(Gj) and Li

k,j = Xi(Gk)Gj �Xi(Gj)Gk,
j, k 2 N0, close in a quadratic algebra with respect
to the Poisson bracket associated with �.

If M is not a Poisson manifold but we can find a
master integral G of all the vector fields Xi of the
sequence, then the functions Gj = Yj(G) are also
master integrals of the same vector fields and the
functions Xi(Gj) and Li

k,j = Xi(Gk)Gj �Xi(Gj)Gk

are integrals of Xi.
Now let us consider the completely integrable

bi-Hamiltonian system case. In a neighborhood of
an invariant torus, a completely integrable
bi-Hamiltonian system may be written in the form

eHðy1; . . . ; ynÞ ¼ y1 þ 	 	 	 þ yn ½44�

with

�0 ¼
Xn

i¼1

@

@yi
^ @

@�i

�1 ¼
Xn

i¼1

yi
@

@yi
^ @

@�i

the compatible Poisson tensors that provide the
complete integrability of the bi-Hamiltonian system.
In this case, we may define the recursion operator

R ¼
Xn

i¼1

yi
@

@yi
� dyi þ

@

@�i
� d�i

� �
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for which �1 = R�0, and the bi-Hamiltonian vector
field

X ¼ �]
0ðdeHÞ ¼ �]

1 d
Xn

i¼1

lnðyiÞ
 !" #

The (1, 1)-tensor

P ¼
Xn

i¼1

�i
@

@�i
� d�i þ

@

@yi
� dyi

� �
satisfies LXP = Id and LPXR = 0. So, the vector fields

Yk ¼ RkðPXÞ ¼
Xn

i¼1

yk
i �i

@

@�i

and the function G =
Pn

i = 1 yi�i help defining the
functions Gi = Yi(G), i 2 N0.

The integrals of Xk

XkðGjÞ and Lk
i;j ¼ XkðGiÞGj �GiXkðGjÞ ½45�

happen to close in a quadratic algebra with respect
to the bracket defined by �0.
Recursion Operators on Jacobi
Manifolds

In this section we extend the notion of Poisson–
Nijenhuis manifold to the Jacobi setting.

Let M be a smooth manifold with a bivector field
� and a vector field E. We equip the space C1(M)
with the bracket

ff ; gg ¼ �ðdf ; dgÞ þ fEðgÞ � gEðf Þ

which is bilinear and skew-symmetric, and satisfies
the Jacobi identity if and only if

½�;�� ¼ �2E ^ � and ½E;�� ¼ 0 ½46�

When these conditions are satisfied, (M, �, E) is
called a Jacobi manifold with Jacobi bracket {	 , 	}.
The pair (C1(M),{ , }) is a local Lie algebra in the
sense of Kirillov. If the vector field E identically
vanishes on M, eqns [46] reduce to [�, �] = 0 and
(M, �) is just a Poisson manifold. But there are other
examples of Jacobi manifolds that are not Poisson,
for example, contact manifolds.

We denote by (�, E)# : T�M� R ! TM� R the
vector bundle map associated with (�, E), that is, for
all �,	 sections of T�M and f 2 C1(M),

ð�;EÞ#ð�; f Þ ¼ ð�#ð�Þ þ f E;�iE�Þ

Let R : X(M) � C1(M)! X(M)� C1(M) be a
C1(M)-linear map defined by

RðX; f Þ ¼ ðNXþ fY; iX
 þ gf Þ ½47�
where N is a tensor field of type (1, 1) on M, Y 2
X(M),
 2 �1(M) and g 2 C1(M). Let us denote by
T (R) the Nijenhuis torsion of R with respect to the
Lie bracket on X(M)� C1(M) given by

½ðX; f Þ; ðZ; hÞ� ¼ ð½X;Z�;XðhÞ � Zðf ÞÞ ½48�

As in the case of Poisson manifolds, if R has a
vanishing Nijenhuis torsion, we call R a Nijenhuis
operator.

Suppose now that M is equipped with a Jacobi
structure (�0, E0) and a Nijenhuis operator R. Then,
we may define a bivector field �1 and a vector field
E1 on M, by setting

ð�1;E1Þ# ¼ R 
 ð�0;E0Þ#

If one looks for the conditions that imply that the
pair (�1, E1) defines a new Jacobi structure on M
compatible with (�0, E0), in the sense that (�0 þ
�1, E0 þ E1) is again a Jacobi structure, one
finds that �1 is skew-symmetric if and only if
R 
 (�0, E0)# = (�0, E0)# 
 tR. When �1 is skew-
symmetric, (�1, E1) defines a Jacobi structure on
M if and only if, for all (�, f ), (	, h) 2
�1(M)� C1(M),

T ðRÞ ð�0;E0Þ#ð�; f Þ; ð�0;E0Þ#ð	; hÞ
� 	

¼ R 
 ð�0;E0Þ# C ð�0;E0Þ;Rð Þ ð�; f Þ; ð	; hÞð Þð Þ

where C((�0,E0),R) is the Magri concomitant of
(�0, E0) and R. In the case where (�1, E1) is a Jacobi
structure, it is compatible with (�0, E0) if and only
if, for all (�, f ),(	, h) 2 �1(M)� C1(M),

ð�0;E0Þ# C ð�0;E0Þ;Rð Þ ð�; f Þ; ð	; hÞð Þð Þ ¼ 0

A Jacobi–Nijenhuis manifold (M, (�0, E0),R) is a
Jacobi manifold (M, �0, E0) with a Nijenhuis opera-
tor R such that: (1) R 
 (�0, E0)# = (�0, E0)# 
 tR
and (2) the map (�0, E0)# 
 C((�0, E0),R) identically
vanishes. R is called the recursion operator of
(M, (�0, E0),R).

A recursion operator on a Jacobi–Nijenhuis mani-
fold displays a hierarchy of Jacobi–Nijenhuis structures
on the manifold. In fact, if ((�0, E0),R) is a Jacobi–
Nijenhuis structure on M, there exists a hierarchy
((�k, Ek), k 2 N) of Jacobi structures on M, which are
pairwise compatible. For all k 2 N, (�k, Ek) is the
Jacobi structure associated with the vector bundle map
(�k, Ek)# given by (�k, Ek)# = Rk 
 (�0, E0)#. More-
over, for all k, l 2 N, the pair ((�k, Ek),Rl) defines a
Jacobi–Nijenhuis structure on M.

See also: Bi-Hamiltonian Methods in Soliton Theory;
Classical r-Matrices, Lie Bialgebras, and Poisson Lie
Groups; Contact Manifolds; Integrable Systems and
Algebraic Geometry; Integrable Systems: Overview;
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Multi-Hamiltonian Systems; Recursion Operators in
Classical Mechanics.
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Introduction

A British experimentalist, J S Russell, first observed
a soliton in 1834 while riding on horseback beside a
narrow barge channel. He challenged the theoreti-
cians of the day ‘‘to predict the discovery after it
happened, that is to give an a priori demonstration
a posterori.’’ This work created a controversy
which, in fact, lasted almost 50 years, and which
involved such distinguished scientists as Stokes and
Airy. It was resolved by Korteweg and deVries in
1895, who derived the KdV equation as an
approximation to water waves,

@q

@t
þ 6q

@q

@x
þ @

3q

@x3
¼ 0 ½1�

This equation is a nonlinear partial differential
equation (PDE) of the evolution type, where t and
x are related to time and space respectively, and
q(x, t) is related to the height of the wave above the
mean water level. Korteweg and de Vries were able
to show that equation [1] supports a particular
solution that exhibits the behavior described by
Russell. This solution, which was later called
1-soliton solution, is given by

q1ðx� p2tÞ= p2=2

cosh2ðð1=2Þpðx� p2tÞ þ cÞ
½2�
where p, c are constants. The location of this soliton
at time t, that is, its maximum position, is given by
p2 � 2c=p, its velocity is given by p2, and its
amplitude by p2=2. Thus, faster solitons are higher
and narrower. It should be noted that q1 is a
traveling-wave solution, that is, q1 depends only on
the variable X = x� p2t, thus in this case the PDE [1]
reduces (after integration) to the second-order
ordinary differential equation (ODE)

�p2q1ðXÞ þ 3q2
1ðXÞ þ

d2q1

dX2
ðXÞ ¼ 0

Under the assumption that q and dq=dX tend to
zero as jXj ! 1, this ODE yields the 1-soliton
solution [2].

The problem of finding a solution describing the
interaction of two 1-soliton solutions is much more
difficult and was not addressed by Korteweg and
deVries. This question was studied by M Kruskal
and N Zabusky in 1965. Studying numerically the
interaction of two solutions of the form [2] (i.e., two
solutions corresponding to two different p1 and p2),
Kruskal and Zabusky discovered the defining prop-
erty of solitons: after interaction, these waves
regained exactly the shapes they had before. This
posed a new challenge to mathematicians, namely to
explain analytically the interaction properties of
such coherent waves. In order to resolve this
challenge one needs to develop a larger class of
solutions than the 1-soliton solution. We note that
eqn [1] is nonlinear and no effective method to solve
such nonlinear equations existed at that time.

Gardner et al. (1967) not only derived an explicit
solution describing the interaction of an arbitrary
number of solitons, but also discovered what was to



evolve into a new method of mathematical physics.
The 2-soliton solution is given by

q2ðx; tÞ=

2 p2
1e�1 þ p2

2e�2
� �

þ 4e�1þ�2ðp1 � p2Þ2

þ2A12 p2
2e2�1þ�2 þ p2

1e�1þ2�2
� �

1þ e�1 þ e�2 þA12e�1þ�2ð Þ2
½3�

where

�j ¼ pjx� p3
j t þ �0

j ; j ¼ 1; 2; A12 ¼
p1 � p2ð Þ2

p1 þ p2ð Þ2

and pj, �
0
j are constants. A snapshot of this solution

with p1 = 1, p2 = 2 is given in Figure 1. After some
time the taller soliton will overtake the shorter one
and the only effect of the interaction will be a ‘‘phase
shift,’’ that is, a change in the position the two
solitons would have reached without interaction.

Regarding the general method introduced in
Gardner et al. (1967), we note that if eqn [1] is
formulated on the infinite line, then the most interest-
ing problem is the solution of the initial-value
problem: given initial data q(x, 0) = q0(x) which
decay as jxj ! 1, find q(x, t). If q0 is small and qqx

can be neglected, then eqn [1] becomes linear and
q(x, t) can be found using the Fourier transform,

qðx; tÞ ¼ 1

2�

Z 1
�1

eikxþik3tq̂0ðkÞ dk ½4a�

where

q̂0ðkÞ ¼
Z 1
�1

e�ikxq0ðxÞ dx ½4b�

The remarkable discovery of Gardner et al. (1967)
is that for eqn [1] there exists a ‘‘nonlinear analog’’ of
the Fourier transform capable of solving the initial-
value problem even if q0 is not small. Although this
nonlinear Fourier transform cannot in general be
written in closed form, q(x, t) can be expressed
through the solution of a linear integral equation, or
more precisely through the solution of a linear 2� 2
matrix Riemann–Hilbert (RH) problem (see the
section ‘‘A nonlinear Fourier transform’’). This linear
integral equation is uniquely specified in terms of
q0(x). For particular initial data, q(x, t) can be written
explicitly. For example, if q0(x) = q1(x), where q1(x) is
obtained by evaluating eqn [2] at t = 0, then
q(x, t) = q1(x� p2t). Similarly, if q0(x) = q2(x, 0),
where q2(x, 0) is obtained by evaluating eqn [3] at
t = 0, then q(x, t) = q2(x, t).

The most important question, both physically and
mathematically, is the description of the long-time
behavior of the solution of the initial-value problem
mentioned above. If the nonlinear term of eqn [1] can
be neglected, one finds a linear dispersive equation. In
this case different waves travel with different wave
speeds, these waves cancel each other out and the
solution decays to zero as t!1. Indeed, using
the stationary-phase method to compute the large
t behavior of the integral appearing in eqn [4a],
it can be shown that q(x, t) decays like 0(1=

ffiffi
t
p

)
as t!1, x=t = 0(1). The situation with the KdV
equation is more interesting: dispersion is balanced by
nonlinearity and q(x, t) has a ‘‘nontrivial’’ asymptotic
behavior as t!1. Indeed, using a nonlinear analog
of the steepest descent method discovered by Deift and
Zhou (1993) to analyze the RH problem mentioned
earlier, it can be shown that q(x, t) asymptotes to
qN(x, t), where qN(x, t) is the exact N-soliton solution.
This underlines the physical and mathematical sig-
nificance of solitons: they are the coherent structures
emerging from any initial data as t!1. This
implies that if a nonlinear phenomenon is modeled
by the KdV equation on the infinite line, then one
can immediately predict the structure of the solution
as t!1, x=t = 0(1): it will consist of N ordered
single solitons, where the highest soliton occurs to
the right; the number N and the parameters pj and �0

j

depend on the particular initial data q0(x). It should
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Figure 1 A snapshot of the 2-soliton solution of the KdV equation.
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be noted that this result can be obtained only using
the machinery of the theory of integrability, and
until now cannot be obtained using standard PDE
techniques.

So far we have concentrated on the KdV equation.
However, there exist numerous other equations
which exhibit similar behavior. Such equations are
called ‘‘integrable’’ and the method of solving their
initial-value problem is called the ‘‘inverse-scattering’’
or ‘‘inverse-spectral’’ method.

The following section presents a brief historical
review of some of the important developments of
soliton theory. Next, typical solitons, lumps, and
dromions are given. The inverse-spectral method is
discussed in the penultimate section. Finally, the
extension of this method to boundary-value prob-
lems is briefly discussed.

Important Analytical Developments in
Soliton Theory

Lax (1968) introduced the so-called Lax pair
formulation of the KdV. In an example, he showed
that eqn [1] can be written as the compatibility
condition of the following pair of linear eigenvalue
equations for the eigenfunction  (x, t, k):

 xx þ ðqþ k2Þ ¼ 0 ½5a�

 t þ ð2q� 4k2Þ x � ðqx þ �Þ ¼ 0; k 2 C ½5b�

where � is an arbitrary constant. The nonlinear
Fourier transform mentioned earlier can be obtained
by performing the spectral analysis of eqn [5a]. The
time evolution of the associated nonlinear Fourier
data, which are now called spectral data, is linear
and can be determined using eqn [5b]. Following
Lax’s formulation, Zakharov and Shabat (1972)
solved the nonlinear Schrödinger (NLS) equation

iqt þ qxx � 2�jqj2q ¼ 0; � ¼ �1 ½6�

which has ubiquitous physical applications including
nonlinear optics. Soon thereafter the sine-Gordon
equation

qxx � qtt ¼ sin q ½7�

and the modified KdV equation

qt þ 6q2qx þ qxxx ¼ 0 ½8�

were solved. Since then, numerous nonlinear equations
have been solved. Thus, the mathematical technique
introduced by Gardner et al. (1967) for the solution
of a particular physical equation gave rise to a new
method in mathematical physics, the so-called inverse-
scattering (spectral) method. Among the most

important equations solved by this method are a
particular two-dimensional reduction of Einstein’s
equation and the self-dual Yang–Mills equations.

The next important development in the analysis of
integrable equations was the study of the KdV with
space-periodic initial data. This occurred in the
mid-1970s in the USA and in the USSR. This method
involves algebraic-geometric techniques; in particular
there exists a periodic analog of the N-soliton
solution which can be expressed in terms of a certain
Riemann-theta function of genus N.

In the mid-1970s, it was also realized that there
exist integrable ODEs. For example, a stationary
reduction of some of the equations introduced in
connection with the space-periodic problem men-
tioned above led to the integration of some classical
tops. Furthermore, the similarity reduction of some
of the integrable PDEs led to the classical Painlevé
equations. For example, letting q = t�1=3u(�),
�= xt�1=3 in the modified KdV equation [8], and
integrating we find

d2

d�2
þ 2u3 � 1

3
�uþ � ¼ 0 ½9�

where � is a constant. This is Painlevé II, that is, the
second equation in the list of six classical ODEs
introduced by Painlevé and is his school around 1900.
These equations are nonlinear analogs of the linear
special functions such as Airy, Bessel, etc. The connec-
tion between integrable PDEs and ODEs of the Painlevé
type was established by Ablowitz and Segur (1977).
Their work marked a new era in the theory of these
equations. Indeed, soon thereafter Flaschka and Newell
(1980) introduced an extension of the inverse-spectral
method, the so-called isomonodromy method, capable
of integrating these equations. The most remarkable
achievement of this new development is the construction
of nonlinear analogs of the classical connection formulas
that exist for the linear special functions. These
formulas, although rather complicated, are as explicit
as the corresponding linear ones (Fokas et al. 2005).

It was mentioned earlier that the inverse-spectral
method gives rise to a matrix RH problem. An RH
problem involves the determination of a function
analytic in given sectors of the complex plane, from
the knowledge of the jumps of this function across the
boundaries of these sectors. The algebraic-geometric
method for solving the space-periodic initial-value
problem can be interpreted as formulating an RH
problem which can be analyzed using functions defined
on a Riemann surface. Also, it was noted by Fokas and
Ablowitz (1983a) and later rigorously established by
Fokas and Zhou (1992) that the isomonodromy
method also gives rise to a novel RH problem. This
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implies the following interesting unification: Self-
similar, decaying, and periodic initial-value problems
for integrable evolution equations in one space variable
lead to the study of the same mathematical object,
namely to the RH problem.

Every integrable nonlinear evolution equation in
one spatial dimension has several integrable versions in
two spatial dimensions. Two such integrable physical
generalizations of the Korteweg–deVries equation are
the so-called Kadomtsev–Petviashvili I (KPI) and II
(KPII) equations. In the context of water waves, they
arise in the weakly nonlinear, weakly dispersive, weakly
two-dimensional limit, and in the case of KPI when
the surface tension is dominant. The NLS equation also
has two physical integrable versions known as the
Davey–Stewartson I (DSI), and II (DSII) equations. They
can be derived from the classical water-wave problem in
the shallow-water limit and govern the time evolution of
the free surface envelope in the weakly nonlinear,
weakly two-dimensional, nearly monochromatic limit.
The KP and DS equations have several other physical
applications.

A method for solving the Cauchy problem for
decaying initial data for integrable evolution equations
in two spatial dimensions emerged in the early 1980s.
This method is sometimes referred to as the �@ (d-bar)
method. We recall that the inverse-spectral method
for solving nonlinear evolution equations on the line
is based on a matrix RH problem. This problem
expresses the fact that there exist solutions of the
associated x-part of the Lax pair which are sectionally
analytic. Analyticity survives in some multidimen-
sional problems: it was shown formally by Fokas and
Ablowitz (1983b) that KPI gives rise to a nonlocal RH
problem. However, for other multidimensional pro-
blems, such as the KPII, the underlying eigenfunctions
are nowhere analytic and the RH problem must be
replaced by the �@ problem. Actually, a �@ problem had
already appeared in the work of Beals and Coifman
(1982) where the RH problem appearing in the analysis
of one-dimensional systems was considered as a special
case of a �@ problem. Soon thereafter, it was shown in
Ablowitz et al. (1983) that KPII required the essential
use of the �@ problem. The situation for the DS equations
is analogous to that of the KP equations.

Multidimensional integral PDEs can support
localized solutions. Actually there exist two types
of localized coherent structures associated with
integrable evolution equations in two spatial vari-
ables: the ‘‘lumps’’ and the ‘‘dromions.’’ The spectral
meaning, and therefore the genericity of these
solutions was established by Fokas and Ablowitz
(1983b) and Fokas and Santini (1990).

The analysis of integrable singular integro-differential
equations and of integrable discrete equations, although

conceptually similar to the analysis reviewed above, has
certain novel features.

The fact that integrable nonlinear equations
appear in a wide range of physical applications is
not an accident but a consequence of the fact that
these equations express a certain physical coherence
which is natural, at least asymptotically, to a variety
of nonlinear phenomena. Indeed, Calogero (1991)
has emphasized that large classes of nonlinear
evolution PDEs, characterized by a dispersive linear
part and a largely arbitrary nonlinear part, after
rescaling yield asymptotically equations (for the
amplitude modulation) having a universal character.
These ‘‘universal’’ equations are, therefore, likely to
appear in many physical applications. Many integr-
able equations are precisely these ‘‘universal’’ models.

Solitons, Lumps, and Dromions

Solitons, lumps, and dromions, are important not
because they are exact solutions, but because they
characterize the long-time behavior of integrable
evolution equations in one and two space dimen-
sions. The question of solving the initial-value
problem of a given integrable PDE, and then
extracting the long-time behavior of the solution is
quite complicated. It involves spectral analysis, the
formulation of either an RH problem or of a �@
problem, and rigorous asymptotic techniques. On
the other hand, having established the importance of
solitons, lumps, and dromions, it is natural to
develop methods for obtaining these particular
solutions directly, avoiding the difficult approaches
of spectral theory. There exist several such direct
methods, including the so-called Bäcklund transfor-
mations, the dressing method of Zakharov–Shabat,
the direct linearizing method of Fokas–Ablowitz,
and the bilinear approach of Hirota.

Solitons

Using the bilinear approach, multisoliton solutions
for a large class of integrable nonlinear PDEs in
one space dimension are given in Hietarinta
(2002). Here we only note that the 1-soliton
solution of the NLS [6], of the sine-Gordon [7],
and of the modified KdV equation [8] are given,
respectively, by

qðx; tÞ= pReiðpIxþ p2
R
�p2

Ið Þtþ�Þ

cosh½pRðx� 2pItÞ þ ��
½10�

qðpxþ qtÞ= 4 arc tan½epxþqtþ��; p2 ¼ 1þ q2 ½11�
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qðx� p2tÞ= �p

cosh½px� p2t þ �� ½12�

where pR, pI, �, p, q are real constants.

Lumps

The KPI equation is

@x½qt þ 6qqx þ qxxx� ¼ 3qyy ½13�

The 1-lump solution of this equation is given by

qðx; y; tÞ ¼ 2@2
x ln jLðx; y; tÞj2 þ 1

4�2
I

� �
;

L ¼ x� 2�yþ 12�2t þ a

� ¼ �R þ i�I; �I > 0

½14�

where � and a are complex constants.
The focusing DSII equation is

iqt þ qzz þ q�z�z � 2q @�1
�z jqj

2
z þ @�1

z jqj
2
�z

� �
= 0 ½15�

where z = xþ iy, and the operator @�1
�z is defined by

@�1
�z f

� �
ðz;�zÞ¼ 1

2i�

Z
R2

f ð�; ��Þ
� � z

d� ^ d��

The 1-lump solution of this equation is given by

qðz;�z; tÞ¼ 	eiðp2þ�p2Þtþpz��p�z

jzþ �þ 2iptj2 þ j	j2
½16�

where �, 	, p are complex constants. A typical
1-lump solution is depicted in Figure 2.

Dromions

The DSI equation is

iqt þ @2
x þ @2

y

� �
qþ qu ¼ 0

uxy ¼ 2 @2
x þ @2

y

� �
jqj2

½17�

The 1-dromion solution of this equation is given by

qðx; y; tÞ¼ 
eX��Y

�eXþ�X þ 	e�Y��Y þ �eXþ�X�Y��Y þ �
X ¼ pxþ ip2t; Y ¼ qyþ iq2t

j
j2 ¼ 4pRqRð�	 � ��Þ

½18�

where p, q are complex constants and �,	, �, � are
positive constants.

A Nonlinear Fourier Transform

The solution of the initial-value problem of an
integrable nonlinear evolution equation on the
infinite line is based on the spectral analysis of the
x-part of the Lax pair. Thus, for the KdV equation
one must analyze eqn [5a]. This equation is the
famous time-independent Schrödinger equation. We
now give a physical interpretation of the relevant
spectral analysis. Let KdV describe the propagation
of a water wave and suppose that this wave is frozen
at a given instant of time. By bombarding this water
wave with quantum particles, one can reconstruct its
shape from knowledge of how these particles
scatter. In other words, the scattering data provide
an alternative description of the wave at fixed time.
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Figure 2 A typical 1-lump solution.
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The mathematical expression of this description
takes the form of a linear integral equation found
by Faddeev (the so-called Gel’fand–Levitan–March-
enko equation) or equivalently the form of a 2� 2
matrix RH problem uniquely specified by the
scattering data. This alternative description of the
shape of the wave will be useful if the evolution of
the scattering data is simple. This is indeed the case,
namely using eqn [5b], it can be shown that the
scattering data evolve linearly. Thus, this highly
nontrivial change of variables from the physical to
scattering space provides a linearization of the KdV
equation.

In what follows we will describe some of the
relevant mathematical formulas. We first
‘‘assume’’ that there exists a real solution q(x, t)
of the initial-value problem which has sufficient
smoothness and which decays for all t as jxj ! 1.
We then discuss how this assumption can be
eliminated.

As it was mentioned earlier most of the analysis
of the inverse-scattering transform is carried out
on the x-part of the Lax pair, that is, on eqn [5a].
Hence, we first concentrate on eqn [5a] and for
convenience of notation we suppress the time
dependence.

The Direct Problem

As jxj ! 1, q! 0, thus there exist solutions of eqn
[5a] which tend to exp[�ikx] as jxj ! 1. Let
 (k, x) and  ̂(k, x) denote solutions of eqn [5a]
with the following asymptotic property:

 ! eikx;  ̂! e�ikx; as x!1; k 2 R ½19�

Under the transformation k! �k, eqn [5a] remains
invariant and the boundary condition for  is mapped
to the boundary condition for  ̂. Hence

 ̂ðk; xÞ ¼  ð�k; xÞ ½20�

We denote by 
(k, x) the solution of eqn [5a] which
tends to exp[�ikx] as x! �1,


! e�ikx; as x! �1; k 2 R ½21�

It is more convenient to work with eigenfunctions
(i.e., solutions of [5a]) normalized to unity as x ! 1,
thus we introduce M(k, x) and N(k, x) as follows:

M ¼ 
eikx; N ¼  e�ikx ½22�

The functions M and N can be expressed in terms of
q through the solution of linear Volterra integral
equations. Indeed, M satisfies

Mxx � 2ikMx ¼ �qM; k 2 R

M! 1; x! �1 ½23�

The homogeneous version of [23] has solutions 1
and e2ikx. Thus,

M ¼ c1 þ c2e2ikx þMp ½24�

where c1, c2 are constants and Mp is given by

Mp ¼ u1ðxÞ þ u2ðxÞe2ikx ½25�

The functions u1, u2 satisfy

u01 þ e2ikxu02 ¼ 0; 2ike2ikxu02 ¼ �qM

Thus,

u1ðxÞ ¼
1

2ik

Z x

�1
d�qð�ÞMðk; �Þ;

u2ðxÞ ¼ �
1

2ik

Z x

�1
d�e�2ik�qð�ÞMðk; �Þ

½26�

Substituting [25] and [26] into [24] and using the
boundary condition [23], we find

Mðk; xÞ

¼ 1þ i

2k

Z x

�1
d�ð�1þ e2ikðx��ÞÞqð�ÞMðk; �Þ ½27�

Similarly, one may establish that N satisfied

Nðk; xÞ

¼ 1þ i

2k

Z 1
x

d�ð�1þ e�2ikðx��ÞÞqð�ÞNðk; �Þ ½28�

The kernel of eqn [27], as a function of k, is
bounded and analytic for Im k > 0. Thus, if q 2
L1, M(k, x) as a function of k is holomorphic for
Im k > 0. Similarly, N(k, x) as a function of k is
holomorphic for Im k > 0.

Thus, we have found particular solutions of eqn
[5a] which are holomorphic for Im k > 0. Further-
more, these solutions are simply related for k real.
Indeed, the linear independence of solutions of the
second-order ODE [5a] implies


ðk; xÞ ¼ aðkÞ ̂ðk; xÞ þ bðkÞ ðk; xÞ; k 2 R

Using [20] and replacing 
 and  in terms of M and
N, we find

Mðk; xÞ
aðkÞ ¼ Nð�k; xÞ þ 
ðkÞe2ikxNðk; xÞ


ðkÞ ¼ bðkÞ
aðkÞ ; k 2 R ½29�
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The functions a(k) and b(k) are given by

aðkÞ ¼ 1� i

2k

Z 1
�1

d�qð�ÞMðk; �Þ; k 2 R

bðkÞ ¼ i

2k

Z 1
�1

d�qð�ÞMðk; �Þe�2ik�; k 2 R

½30�

Indeed as x!1, N ! 1, thus, eqn [29] implies

M! aðkÞ þ bðkÞe2ikx as x!1 ½31�

On the other hand, eqn [27] implies that

M! 1þ i

2k

Z 1
�1

d�ð�1þ e2ikðx��Þqð�ÞMðk; �ÞÞ

x!1 ½32�

Comparing eqns [31] and [32], we find eqns [30].
The expression for a(k) implies that this function

is also holomorphic for Im k > 0.
In summary, in the ‘‘direct problem,’’ we have

found particular solutions of eqn [5a] which are
sectionally holomorphic:

Mðk; xÞ
Nðk; xÞ

	 

and

Mð�k; xÞ
Nð�k; xÞ

	 


are holomorphic for Im k > 0 and Im k < 0, respec-
tively. These solutions, which are characterized in
terms of q by eqns [27] and [28], are simply related
by eqn [29].

The Inverse Problem

Equation [28] expresses N in terms of q. Is it possible
to find an alternative expression for N in terms of
some appropriate ‘‘spectral data’’? The answer is
positive and is a direct consequence of the fact that
eqn [29] defines the ‘‘jump condition’’ of an RH
problem. Indeed, it can be shown that a(k) may have
simple zeros k1, . . . , kn in the positive imaginary axis
of the k-complex plane. Hence, in general, M=a can
be expressed in the form

Mðk; xÞ
aðkÞ ¼ Mðk; xÞ þ

Xn

j¼1

AjðxÞ
k� ipj

; pj > 0

whereM(k, x) as a function of k is holomorphic for
Im k > 0. It can also be shown that Aj(x) = Cj

exp[�2pj, x]N(kj, x). Hence eqn [29] becomes

Mðk;xÞ �Nð�k;xÞ

¼
Xn

j¼1

Cje
�2pjxNðipj;xÞ

k� ipj
þ 
ðkÞe2ikxNðk;xÞ; k 2 R

Taking the (�) projection of this equation, and
using the fact that bothM and N tend to 1 as k!1,
we find

Nðk; xÞ � 1

2i�

Z 1
�1

dl
ðlÞe2ilxNðl; xÞ
l þ kþ i0

¼ 1�
Xn

j¼1

Cje
�2pjx

kþ ipj
Nðipj; xÞ ½33�

In summary, this equation expressed N(k, x) in
terms of the scattering data (
(k), {Cj, pj}

n
1).

Since both eqns [28] and [33] are associated with
the same q, these equations can be used to obtain
the following expression for q:

q ¼�2
@

@x

"
1

2�

Z 1
�1

dl
ðlÞe2ilxNðl; xÞ

� i
Xn

j¼1

Cje
�2pjxNðipj; xÞ

#
½34�

Indeed, eqn [28] implies

lim
k!1

Nðk; xÞ ¼ 1� i

2k

Z 1
x

d�qð�Þ

Comparing this expression with the large-k behavior
of eqn [33], we find [34].

Time Dependence of the Scattering Data

We now use eqn [5b] to compute the time
dependence of the scattering data by evaluating
eqn [5b] as x!�1 we find �= 4ik3. Then,
evaluating it as x!1 and using


 � ae�ikx þ beikx; x! þ1

we find

at ¼ 0; bt ¼ 8ik3b

Hence,

aðt; kÞ ¼ að0; kÞ; 
ðt; kÞ ¼ 
ð0; kÞe8ik3t ½35�

Thus,

pjðtÞ ¼ pjð0Þ; CjðtÞ ¼ Cjð0Þe8p3
j t ½36�

The above formal results motivate the follow-
ing definitions (for simplicity, we assume that a(k)
has no zeros). Given a decaying real function
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q0(x), x 2 R, define M0(k, x) as the solution of the
linear Volterra integral equation

M0ðk;xÞ ¼ 1þ i

2k

Z x

�1
d�ð�1þ e2ikðx��Þqð�ÞM0ðk; �ÞÞ

Imk� 0

Given M0(k,x), define a0(k) and b0(k) by

M0ðk; xÞ ! a0ðkÞ þ b0ðkÞe2ikx; x!1; k 2 R

Given a0 and b0, define N(k, x, t) by the solution of
the linear integral equation

Nðk; x; tÞ � 1

2�

Z 1
�1

dl
b0ðlÞ
a0ðlÞ

e8il3tþ2ilx Nðl; x; tÞ
l þ kþ i0

¼ 1

A theorem of Gohberg and Krein implies that this
equation has a unique global solution. Given
a0, b0, N, define q(x, t) by

qðx; tÞ ¼ � 1

�

@

@x

Z 1
�1

dk
b0ðkÞ
a0ðkÞ

e8ik3tþ2ikxNðk; x; tÞ

Then it can be shown that q(x, t) satisfies the KdV
equation and q(x, 0) = q0(x).

A Unification

After the emergence of a method for solving the
initial-value problem for nonlinear integrable evolu-
tion equations in one and two space variables, the
most outstanding open problem in the analysis of
these equations became the solution of initial
boundary-value problems. A general approach for
solving such problems for evolution equations in one
space dimension was provided by Fokas (1997).
This approach has already been used for the study of
nonlinear integrable evolution PDEs on the half-line
(Fokas 2002, 2005), on the interval, and in a time-
dependent domain. An important advantage of this
new method is that it yields the formulation of a
matrix RH problem (or a �@ problem in the case of a
convex time-dependent domain), which although has
more complicated jump matrices than the analogous
problem on the infinite line, it still has an explicit
exponential (x, t) dependence. This fact allows one to
describe effectively the asymptotic properties of the
solution, using the powerful Deift–Zhou method
(Deift and Zhou 1993). For example, the long-time
asymptotics of boundary-value problems on the half
line are discussed in Fokas and Its (1996).

It is remarkable that the above results have
motivated the discovery of a new method for solving

boundary-value problems, not only for linear evolu-
tion PDEs, but also for linear elliptic PDEs in two
dimensions. This includes the Laplace, the biharmonic
and the Helmholtz equations in a convex polygon
(Dassios and Fokas 2005). In a most recent develop-
ment, this method has also been applied to certain
classes of linear PDEs with variable coefficients. This
highly unexpected development unifies and extends
several classical branches of mathematics. In particu-
lar, it unifies the classical transform methods for
simple linear PDEs as well as the method of images,
the treatment of linear PDEs via certain ingenious
techniques such as the Wiener–Hopf technique, the
formulation of Ehrenpreis type integral representa-
tions, and the solution of integrable nonlinear PDEs
via the inverse-scattering transform. Furthermore, it
extends these results to arbitrary domains and to
certain classes of PDEs with variable coefficients.

Regarding linear equations we note the following:
Almost as soon as linear two-dimensional PDEs

made their appearance, d’Alembert and Euler discov-
ered a general approach for constructing large classes
of their solutions. This approach involved separating
variables and superimposing solutions of the resulting
ODEs. The method of separation of variables natu-
rally led to the solution of PDEs by a transform pair.
The prototypical such pair is the direct and the inverse
Fourier transforms; variations of this fundamental
transform include the Laplace, Mellin, sine, cosine
transforms, and their discrete analogs.

The proper transform for a given boundary-value
problem is specified by the PDE, by the domain, and
by the given boundary conditions. For some simple
boundary-value problems, there exists an algorithmic
procedure for deriving the associated transform. This
procedure involves constructing the Green’s function
of a single eigenvalue equation, and integrating this
Green’s function in the k-complex plane, where
k denotes the eigenvalue.

The transform method has been enormously
successful for solving a great variety of initial- and
boundary-value problems. However, for sufficiently
complicated problems the classical transform method
fails. For example, there does not exist a proper analog
of the sine transform for solving a third-order evolution
equation on the half-line. Similarly, there do not exist
proper transforms for solving boundary-value pro-
blems for elliptic equations even of second order and in
simple domains. The failure of the transform method
led to the development of several ingenious but
ad hoc techniques, which include: conformal mappings
for the Laplace and the biharmonic equations; the
Jones method and the formulation of the Wiener–Hopf
factorization problem; the use of some integral
representation, such as that of Sommerfeld; the
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formulation of a difference equation, such as the
Malyuzhinet’s equation. The use of these techniques
has led to the solution of several classical problems in
acoustics, diffraction, electromagnetism, fluid
mechanics, etc. The Wiener–Hopf technique played a
central role in the solution of many of these problems.

A crucial role in the new method is played by the
global equation satisfied by the boundary values of q
and of its derivatives. For evolution equations and for
elliptic equations with simple boundary conditions, this
involves the solution of a system of algebraic equations,
while for elliptic equations with arbitrary boundary
conditions, it involves the solution of an RH problem.
For simple polygons, this RH problem is formulated on
the infinite line, thus it is equivalent to a Wiener–Hopf
problem. This explains the central role played by the
Wiener–Hopf technique in many earlier works.

For linear PDEs, the explicit x1, x2 dependence of
q(x1, x2) is consistent with the Ehrenpreis formulation
of the solution. Thus, this method provides the
concrete implementation as well as the generalization
to concave domains of this fundamental principle. For
nonlinear equations, it provides the extension of the
Ehrenpreis principle to integrable nonlinear PDEs.

See also: Boundary value Problems for Integrable
Equations; �@-Approach to Integrable Systems; Integrable
Systems and Algebraic Geometry; Integrable Discrete
Systems; Integrable Systems and Discrete Geometry;
Integrable Systems in Random Matrix Theory; Integrable
Systems: Overview; Korteweg–de Vries Equation and
Other Modulation Equations; Partial Differential
Equations: Some Examples; Riemann–Hilbert Methods in
Integrable Systems; Sine-Gordon Equation; Toda
lattices; Twistor Theory: Some Applications [in Integrable
Systems, Complex Geometry and String Theory].
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transcendent. Physical Review Letters 38: 1103–1106.

Ablowitz MJ, Yaakov DB, and Fokas AS (1983) On the inverse

scattering transform for the Kadomtsev–Petviashvili equation.

Studies in Applied Mathematics 69: 135–142.
Beals R and Coifman RR (1982) Scattering, transformations

spectrales, et equations d’evolution nonlineaire. I. In: Seminaire

Goulaouic–Meyer–Schwartz, Exposè 21. École Polytechnique,
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Random Matrix Models

A random matrix model is a probability space
(�,P,F ) where the sample space � is a set of
matrices. There are three classic finite N random
matrix models (see, e.g., Mehta (1991)):

1. Gaussian orthogonal ensemble (�= 1):
(a) � = N �N real symmetric matrices;
(b) P= ‘‘unique’’ measure that is invariant under

orthogonal transformations and the matrix
elements are i.i.d. random variables; expli-
citly, the density is

cN exp �trðA2Þ
� �

dA ½1�

where cN is a normalization constant and
dA =

Q
i dAii

Q
i<j dAij, the product Lebesgue

measure on the independent matrix elements.
2. Gaussian unitary ensemble (�= 2):

(a) � = N �N Hermitian matrices;
(b) P= ‘‘unique’’ measure that is invariant

under unitary transformations and the (inde-
pendent) real and imaginary matrix elements
are i.i.d. random variables; and

3. Gaussian symplectic ensemble (�= 4) (see Mehta
(1991) for a definition).

Generally speaking, the interest lies in the
N!1 limit of these models. Here we concentrate
on one aspect of this limit. In all three models the
eigenvalues, which are random variables, are real
and with probability 1 they are distinct. If �max(A)
denotes the largest eigenvalue of the random
matrix A, then for each of the three Gaussian
ensembles we introduce the corresponding distri-
bution function

FN;�ðtÞ :¼ P�ð�max < tÞ; � ¼ 1; 2; 4
The basic limit laws (see Tracy and Widom
(1996) and references therein) state that

F�ðsÞ :¼ lim
N!1

FN;� 2�
ffiffiffiffiffi
N
p
þ �s

N1=6

� �
; � ¼ 1;2;4 ½2�

exist and are given explicitly by

F2ðsÞ ¼ det I � KAiry

� �
¼ exp �

Z 1
s

ðx� sÞq2ðxÞ dx

� �

where

KAiry¼
: AiðxÞAi0ðyÞ � Ai0ðxÞAiðyÞ

x� y

acting on L2ðs;1ÞðAiry kernelÞ

and q is the unique solution to the Painlevé II
equation

q00 ¼ sqþ 2q3

satisfying the condition

qðsÞ � AiðsÞ as s!1

� in eqn [2] is the standard deviation of the
Gaussian distribution on the off-diagonal matrix
elements. For the normalization we have chosen
�= 1=

ffiffiffi
2
p

; however, for subsequent comparisons, the
normalization �=

ffiffiffiffiffi
N
p

is perhaps more natural.
The orthogonal and symplectic distribution func-

tions are

F1ðsÞ ¼ exp � 1

2

Z 1
s

qðxÞ dx

� �
ðF2ðsÞÞ1=2

F4ðs=
ffiffiffi
2
p
Þ ¼ cosh

1

2

Z 1
s

qðxÞ dx

� �
ðF2ðsÞÞ1=2

Graphs of the densities dF�=ds are in the adjacent
figure and some statistics of F� can be found in
Figure 1.

The Airy kernel is an example of an integrable
integral operator and a general theory is developed in
Tracy and Widom (1994). A vertex operator approach
to these distributions (and many other closely related
distribution functions in random matrix theory) was
initiated by Adler, Shiota, and van Moerbeke (see the
review article var Moerbeke (2001) for further
developments of this latter approach).

Historically, the discovery of the connection
between Painlevé functions (PIII in this case) and
Toeplitz/Fredholm determinants appears in work
of Wu et al. (1976) on the spin–spin correlation
functions of the two-dimensional Ising model. Painlevé
functions first appear in random matrix theory in



–4 –2 0 2
s

0.1

0.2

0.3

0.4

0.5

Probability densities

β = 1

β = 2

β = 4

β

1

2

4

μβ

–1.20653

–1.77109

–2.30688

σβ

1.2680

0.9018

0.7195

Sβ

0.293

0.224

0.166

Kβ

0.165

0.093

0.050
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Jimbo et al. (1980) where they prove that the Fredholm
determinant of the sine kernel is expressible in terms of
PV . Gaudin (using Mehta’s then newly invented
method of orthogonal polynomials (Porter 1965))
was the first to discover the connection between
random matrix theory and Fredholm determinants.
Universality Theorems

A natural question is to ask whether the above limit
laws depend upon the underlying Gaussian assump-
tion on the probability measure. To investigate this for
unitarily invariant measures (�= 2), one replaces in [1]

exp �trðA2Þ
� �

! exp �trðVðAÞÞð Þ

Bleher and Its (1999) choose

VðAÞ ¼ gA4 � A2; g > 0

and subsequently a large class of potentials V was
analyzed by Deift et al. (1999). These analyses
require proving new Plancherel–Rotach type formu-
las for nonclassical orthogonal polynomials. The
proofs use Riemann–Hilbert methods. It was shown
that the generic behavior is GUE; hence, the limit
law for the largest eigenvalue is F2. However, by
finely tuning the potential new universality classes
will emerge at the edge of the spectrum. For �= 1, 4
a universality theorem was proved by Stojanovic
(2000) for the quartic potential.

In the case of noninvariant measures, Soshnikov
(1999) proved that for real symmetric Wigner matrices
(complex Hermitian Wigner matrices), the limiting
distribution of the largest eigenvalue is F1 (respectively,
F2). (A symmetric Wigner matrix is a random matrix
whose entries on and above the main diagonal are
independent and identically distributed random vari-
ables with distribution function F. Soshnikov assumes
that F is even and all moments are finite.) The
significance of this result is that non-Gaussian Wigner
measures lie outside the ‘‘integrable class’’ (e.g., there
are no Fredholm determinant representations for the
distribution functions) yet the limit laws are the same as
in the integrable cases.
Appearance of F� in Limit Theorems

In this section we briefly survey the appearances of
the limit laws F� in widely differing areas.

Combinatorics

A major breakthrough occurred with the work of
Baik, Deift, and Johansson (see Baik et al. (2000) and
references therein) when they proved that the limiting
distribution of the length of the longest increasing
subsequence in a random permutation is F2. Precisely,
if ‘N(�) is the length of the longest increasing
subsequence in the permutation � 2 SN, then

P
‘N � 2

ffiffiffiffiffi
N
p

N1=6
< s

 !
! F2ðsÞ

as N!1. Here the probability measure on the
permutation group SN is the uniform measure.
Further discussion of this result can be found in
Johansson (2000b).

Baik and Rains (2001) showed by restricting the set
of permutations (and these restrictions have natural
symmetry interpretations) that F1 and F4 also appear.
Even the distributions F2

1 and F2
2 (Tracy and Widom

1999) arise. By the Robinson–Schensted–Knuth corre-
spondence, the Baik–Deift–Johansson result is equiva-
lent to the limiting distribution on the number of boxes
in the first row of random standard Young tableaux.
(The measure is the push-forward of the uniform
measure on SN.) These same authors conjectured that
the limiting distributions of the number of boxes in the
second, third, etc., rows were the same as the limiting
distributions of the next-largest, next-next-largest,
etc., eigenvalues in GUE. Since these eigenvalue
distributions were also found in Tracy and Widom
(1996), they were able to compare the then unpub-
lished numerical work of Odlyzko and Rains (2000)
with the predicted results of random matrix theory.
Subsequently, Baik et al. (2000) proved the conjecture
for the second row. The full conjecture was proved by
Okounkov (2000) using topological methods and by,
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among others, Johansson (2001) using analytical
methods. For an interpretation of the Baik–Deift–
Johansson result in terms of the card game patience
sorting, see the very readable review paper by Aldous
and Diaconis (1999).
Figure 2 Random tilings.
Growth Processes

Growth processes have an extensive history both in
the probability literature and the physics literature
(see, e.g., Meakin (1998) and references therein), but
it was only recently that Johansson (2002b) proved
that the fluctuations about the limiting shape in a
certain growth model (‘‘corner growth model’’) are
F2. Johansson further pointed out that certain
symmetry constraints (inspired from the Baik and
Rains (2001) work) lead to F1 fluctuations (see
Growth Processes in Random Matrix Theory).

Subsequently, Baik and Rains (2000) and Gravner
et al. (2002) have shown the same distribution
functions appearing in closely related lattice growth
models. Prähofer and Spohn (2000) reinterpreted the
work of Baik et al. in terms of the physicists’ poly-
nuclear growth (PNG) model thereby clarifying the role
of the symmetry parameter �. For example, �= 2
describes growth from a single droplet, whereas �= 1
describes growth from a flat substrate. They also
related the distribution functions F� to fluctuations of
the height function in the KPZ equation (Kardar et al.
1986, Meakin 1998). (The connection with the KPZ
equation is heuristic.) Thus, one expects on physical
grounds that the fluctuations of any growth process
falling into the 1þ 1KPZ universality class will be
described by the distribution functions F� or one of the
generalizations by Baik and Rains (2000). Such a
physical conjecture can be tested experimentally. Ear-
lier Myllys et al. established experimentally that a slow,
flameless burning process in a random medium (paper!)
is in the 1þ 1KPZ universality class. This sequence of
events is a rare instance in which new results in
mathematics inspire new experiments in physics.

In the context of the PNG model, Prähofer and
Spohn have given a process interpretation, the Airy
process, of F2.

There is an extension of the growth model in
Gravner et al. (2002) to growth in a random
environment. In Gravner et al. (2002) the following
model of interface growth in two dimensions is
considered by introducing a height function on the
sites of a one-dimensional integer lattice with the
following update rule: the height above the site x
increases to the height above x� 1, if the latter
height is larger; otherwise, the height above x
increases by 1 with probability px. It is assumed
that the px are chosen independently at random with
a common distribution function F, and that the initial
state is such that the origin is far above the other sites.
In the pure regime, Gravner–Tracy–Widom identify
an asymptotic shape and prove that the fluctuations
about that shape, normalized by the square root of
the time, are asymptotically normal. This contrasts
with the quenched version: conditioned on the
environment and normalized by the cube root of
time, the fluctuations almost surely approach the
distribution function F2. We mention that these same
authors find, under some conditions on F at the right
edge, a composite regime where now the interface
fluctuations are governed by the extremal statistics of
px in the annealed case while the fluctuations are
asymptotically normal in the quenched case.

Random Tilings

The Aztec diamond of order n is a tiling by dominoes of
the lattice squares [m, mþ 1]� [‘, ‘þ 1], m, n 2 Z,
that lie inside the region {(x, y) : jxj þ jyj � nþ 1}. A
domino is a closed 1� 2 or 2� 1 rectangle in R2 with
corners in Z2. A typical tiling is shown in Figure 2. One
observes that near the center the tiling appears random,
called the temperate zone, whereas near the edges the
tiling is frozen, called the polar zones. As n!1 the
boundary between the temperate zone and the polar
zones (appropriately scaled) converges to a circle
(‘‘arctic circle theorem’’). Johansson (2002a) proved
that the fluctuations about this limiting circle are F2.

Statistics

Johnstone (2001) considers the largest principal
component of the covariance matrix XtX where X
is an n� p data matrix all of whose entries are
independent standard Gaussian variables and proves
that for appropriate centering and scaling, the
limiting distribution equals F1 in the limit n, p!1
with n=p! � 2 Rþ. Soshnikov has removed the
Gaussian assumption but requires that n� p =
O(p1=3). Thus, we can anticipate applications of
the distributions F� (and particularly F1) to the
statistical analysis of large data sets.
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Queuing Theory

Glynn and Whitt (1991) consider a series of n single-
server queues each with unlimited waiting space
with a first-in and first-out service. Service times are
i.i.d. with mean one and variance �2 with distribu-
tion V. The quantity of interest is D(k, n), the
departure time of customer k (the last customer to
be served) from the last queue n. For a fixed number
of customers, k, they prove that

Dðk; nÞ � n

�
ffiffiffi
n
p

converges in distribution to a certain functional D̂k

of k-dimensional Brownian motion. They show that
D̂k is independent of the service time distribution V.
It was shown in, for example, Gravner et al. (2002)
that D̂k is equal in distribution to the largest
eigenvalue of a k� k GUE random matrix. This
fascinating connection has been greatly clarified in
recent work of O’Connell and Yor (2002).

From Johansson (2002), it follows for V Poisson that

P
Dðbxnc;nÞ � c1n

c2n1=3
< s

� �
! F2ðsÞ

as n!1 for some explicitly known constants c1

and c2 (depending upon x).
Superconductors

Vavilov et al. (2001) have conjectured (based upon
certain physical assumptions supported by numer-
ical work) that the fluctuation of the excitation gap
in a metal grain or quantum dot induced by the
proximity to a superconductor is described by F1 for
zero magnetic field and by F2 for nonzero magnetic
field. They conclude their paper with the remark:

The universality of our prediction should offer ample
opportunities for experimental observation.
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Introduction

This section introduces some elementary notions
and sets the (mathematically low brow) tone of this
presentation.

A dynamical system is characterized by an evolu-
tion equation the general structure of which reads

Qt ¼ F ½1�

Here Q � Qðx, tÞ is the dependent variable, and it
might be a scalar, a vector, a matrix, you name it.
The focus of interest is on its evolution as function
of the (real, scalar) ‘‘time’’ variable t. The a priori
unknown quantity Q might moreover depend on
another independent ‘‘space’’ variable (scalar or
vector) x, Q � Qðx, tÞ. The appended variable t in
the left-hand side of the above equation denotes
partial differentiation, and this notation will be used
throughout, although when t is the only independent
variable differentiation with respect to it might be
instead denoted by a superimposed dot:

Qt �
@Q x; tð Þ

@t
; Qx �

@Q x; tð Þ
@x

; _Q � dQ tð Þ
dt

The quantity in the right-hand side of the evolution
equation (1), which has of course the same (scalar,
vector, matrix) character as Q, is an assigned
function of t, x and Q, F � ðx, t, QÞ (more generally,
its dependence on Q might be functional, see
below). A typical example of the dynamical systems
we shall consider is the N-body problem character-
ized by the Newtonian equations of motion

€qn ¼� !2qn

þ 2g2
XN

m¼1;m6¼n

qn � qmð Þ�3; n ¼ 1; 2; . . . N ½2�

where the dependent variable is the N-vector ~q �
ðq1, . . . qNÞ, the components of which are the ‘‘particle
coordinates’’ qn � qnðtÞ. Note however that these
equations of motion are of second-order in time
(contrary to (1)); but they can of course be reformulated
as first-order ODEs indeed their Hamiltonian version,
derived in the standard manner from the Hamiltonian

H ¼ 1

2

XN
n¼1

p2
n þ !2q2

n

� �

þ g2

2

XN
m; n¼1;m 6¼n

qn � qmð Þ�2 ½3a�

reads

_qn ¼ pn ½3b�

_pn ¼�!2qn

þ 2g2
XN

m¼1;m 6¼n

qn � qmð Þ�3; n ¼ 1; 2; . . . N ½3c�

Other typical examples are the (‘‘Korteweg-de
Vries’’, ‘‘Burgers’’, ‘‘Nonlinear Schrödinger’’, ‘‘sine
Gordon’’) PDEs satisfied by the scalar dependent
variable q � qðx, tÞ,

qt ¼�qxxx þ 2qxq ¼ �qxx þ q2
� �

x
½4�

qt ¼�qxx þ 2qxq ¼ �qx þ q2
� �

x
½5�

qt ¼ i qxx þ s qj j2q
h i

; s ¼ � ½6�

qt � qx ¼ s; st þ sx ¼ sin q ½7�
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as well as the integrodifferential (‘‘Benjamin–Ono’’)
equation

qt ¼ P

Z 1
�1

dy
qyy yð Þ
x� y

þ qxq ½8�

and the (‘‘Kadomtsev–Petviashvili’’) PDE satisfied by
the scalar dependent variable q � qðx, y, tÞ,

qtx ¼ �qxxx þ qxqð Þxþ sqyy; s ¼ � ½9�

This last equation should of course be reformulated
as an integrodifferential equation to fit with (1).

These are all examples of integrable systems (see
below). In this presentation we restrict attention to
dynamical systems of these general types, without
considering evolutions in which the space variable,
and/or the time variable, and/or the dependent
variable, only take discrete values, forsaking thereby
the discussion of discrete evolution equations,
cellular automata and functional equations, see
other entries of this Encyclopedia. We shall consider
mainly the ‘‘initial-value problem’’ in which the
solution is assigned at the initial time, say at t = 0,

Qðx; 0Þ ¼ Q0ðxÞ

and the subsequent evolution of the dependent
variable, namely the values taken by Qðx, tÞ for t >
0, is the focus of attention. Note however that,
except when there is no dependence at all on the
space variable x (see for instance (2)), the functional
class to which Qðx, tÞ belongs as regards its
x-dependence should be specified (and the assigned
initial-value Q0ðxÞ should of course belong to this
functional class). A typical class of functions are
those vanishing (adequately fast) at (spatial) infinity;
another typical class are those characterized by
periodicity properties as functions of x; and still
another class are those restricted to a finite spatial
domain (for instance, the positive x-axis, x > 0, or a
finite interval, a � x � bÞ, in which cases the initial-
value problem must be supplemented by assigning
boundary conditions. These latter class of problems,
called initial/boundary-value problems, are generally
more difficult; even the identification of which
boundary conditions are adequate to identify
uniquely the solution may be a nontrivial task. In
the following we will always focus on the simpler
class of problems characterized by solutions defined
in the entire space region and vanishing (sufficiently
fast) asymptotically (far away).

Thus, in the spirit of the initial-value problem, a
dynamical system is generally characterized by
assigning its evolution equation, the functional
class to which its solutions are required to belong,
and possibly in addition some (additional) restric-
tion on the set of initial data.
Let us finally mention that, aside from considering
the initial-value problem, the study of dynamical
systems may focus on the identification of special
(classes of) solutions, for instance those obtained by
using symmetry properties of the evolution equation
under consideration (yielding, say, ‘‘similarity solu-
tions’’), and, in the integrable case, ‘‘solitonic’’ and
‘‘multisolitonic’’ solutions (see below).
Integrable dynamical systems

The solution of a dynamical system, however simple
the equation that defines its time evolution, see (1), may
be extremely complicated, indeed its time-dependence
might feature one or more of the characteristics of
deterministic chaos, such as a sensitive dependence on
the initial data. But there are ‘‘exceptional’’ dynamical
systems, the behavior of which is instead, in some
sense, simple. Such systems are termed – in the least
technical sense of the word – ‘‘integrable’’.

This characterization can be made precise for
Hamiltonian systems with a finite number N of degrees
of freedom, the equations of motion of which read

_qn ¼
@H ~p;~q
� �
@pn

; _pn ¼ �
@H ~p;~q
� �
@qn

; n ¼ 1;. . . N

Such a system is integrable if there exist, in addition
to the Hamiltonian H ~p,~q

� �
� Hð1Þ ~p,~q

� �
itself,

N � 1 other (nontrivial and functionally indepen-
dent) constants of motion HðmÞ ~p,~q

� �
in involution,

namely such that their Poisson brackets vanish:

HðnÞ;HðmÞ
n o

�
XN
‘¼1

@HðnÞ ~p;~q
� �

@q‘

@HðmÞ ~p;~q
� �

@p‘

"

�
@HðmÞ ~p;~q

� �
@q‘

@HðnÞ ~p;~q
� �

@p‘

#
¼ 0;

n;m ¼ 1; . . . ;N

Let us however emphasize the crucial role of the words
‘‘there exist’’, as used just above. For definiteness let us
require that the constants of motion HðnÞ ~p,~q

� �
be

analytic functions of their 2N arguments, and not
excessively multivalued: they might feature some
branch points, but not so many to vanify their
effectiveness in constraining the time evolution of the
dynamical variables qnðtÞ, pnðtÞ sufficiently to avoid
their behavior from being too complicated. On the
other hand it is of course not necessary that these
functions HðnÞ ~p,~q

� �
be explicitly known.

When these conditions hold it is in principle
possible (‘‘Liouville theorem’’) to identify a



108 Integrable Systems: Overview
canonical transformation from the canonical coor-
dinates and momenta qn and pn to action-angle
variables �n and In such that

In ¼ HðnÞ ~p;~q
� �

½10�

Then these action variables evolve trivially,

InðtÞ ¼ Inð0Þ; �nðtÞ ¼ �nð0Þ þ Inð0Þt; n ¼ 1; . . . N

Note that, once these new canonical variables are
identified, the solution of the initial-value problem for
the original Hamiltonian problem is provided directly
by the expressions of the action-angle variables �n and
In in terms of the original variables qn and pn, as well
as the expressions of the latter in terms of the former.
The second step of this procedure requires inverting
the expressions (10), and the corresponding expres-
sions of the angle variables �n in terms of the original
variables qn and pn; a necessary condition in order that
this step allow to identify uniquely, at least in
principle, the original canonical variables qn and pn

in terms of the action-angle variables In and �n – hence
imply a simple time-evolution of these original vari-
ables – is the requirement, as mentioned above, that
the expressions of the constants of the motion
HðnÞ ~p,~q

� �
in terms of their arguments qn and pn not

be excessively multivalued.
The statements outlined above can be rigorously

formulated for finite-dimensional Hamiltonian sys-
tems, and they can be heuristically extended to all
analogous dynamical systems with a finite number of
degrees of freedom, even if they are not Hamiltonian.

A system with N degrees of freedom might possess
more than N constants of motion. Such a system
that possesses 2N � 1 (nontrivial and functionally
independent) constants of motion (the maximal
number, to avoid the evolution being frozen) is
called superintegrable, and its evolution is in some
sense analogous to that of a system with a single
degree of freedom, in particular all its confined and
nonsingular motions are then completely periodic,

qnðt þ TÞ ¼ qnðtÞ; pnðt þ TÞ ¼ pnðtÞ; n ¼ 1; . . . ;N

The period T depends generally on the initial data. If it
does not, at least for an open set of such data having
full dimensionality in phase space, the system is called
isochronous: all its motions in that phase space region
are then completely periodic with the same period.

A dynamical system might be integrable in a region
of its ‘‘natural’’ phase space, and nonintegrable in
another region. Sometimes such systems are referred to
as partially integrable. There even are systems which
are isochronous (hence superintegrable) in a region of
their phase space, and behave instead chaotically in
another region. These regions are generally separated
by boundaries where the evolution of the system runs
into singularities, and the constants of motion asso-
ciated with the integrable behavior become excessively
multivalued in the regions where the behavior is
chaotic. (see Isochronous Systems).

Dynamical systems featuring an additional space
variable x (see Section 1) can be interpreted as infinite-
dimensional dynamical systems (by considering the
variable x as a continuous label for the dependent
variable Q). Accordingly, a necessary condition in
order that such systems be considered integrable is the
requirement that they possess an infinite number of
constants of the motion. But – even for such systems
that allow a Hamiltonian formulation – this condition
cannot be considered sufficient (due to the inherent
ambiguities in the counting of infinities), and in fact a
completely cogent, universally accepted definition of
integrability for infinite-dimensional dynamical sys-
tems is still lacking (various definitions can of course
be given in special contexts). It is nevertheless rather
well understood by practitioners what is meant by
such a term at least for integrable equations such as
those indicated at the end of the previous section,
which generally give rise to the solitonic phenomenol-
ogy – as explained below.

The study of integrable systems has an illustrious
history, to which many eminent mathematicians and
mathematical physicists contributed after the
Newtonian revolution: Euler, Jacobi, Poincaré, Pain-
levé, Kowalewskaya, Kolmogorov, Moser . . . Below
we report – most tersely – on the bloom that this topic
has witnessed over the last 3–4 decades, without being
generally able, due to space constraints, to attribute
the appropriate credit to the many colleagues, most of
them still living, who contributed to this endeavor. For
more detailed treatments of the topics outlined below,
of related developments not mentioned here, and of
such credits, the interested reader is referred to the
bibliography given below, including the additional
references traceable from there.
Integrable many-body problems

An important class of integrable dynamical systems
is provided by N-body problems characterized by
Hamiltonians such as

H ~p;~q
� �

¼ 1

2

XN
n¼1

p2
n þ Vð~qÞ ½11�

with a potential energy Vð~qÞ that includes ‘‘exter-
nal’’ and ‘‘two-body’’ forces,

Vð~qÞ ¼
XN
n¼1

Vð1ÞðqnÞ þ
1

2

XN
m; n¼1;m6¼n

Vð2Þ qn � qmð Þ;

Vð2Þð�qÞ ¼ Vð2ÞðqÞ ½12�
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The corresponding Hamiltonian and Newtonian
equations of motion read

_qn ¼ pn; _pn ¼ �
@Vð1ÞðqnÞ
@qn

�
XN

m¼1;m 6¼n

@Vð2Þ qn � qmð Þ
@qn

;

€qn ¼ �
@Vð1ÞðqnÞ
@qn

�
XN

m¼1;m 6¼n

@Vð2Þ qn � qmð Þ
@ ¼ qn

½13�

The Lax pair and the constants of motion Suppose
that two N �N matrices L � L ~p,~q

� �
and M �

M ~p,~q
� �

could be found such that the matrix ‘‘Lax
equation’’

_L ¼ L;M½ � ½14�

be equivalent to the Hamiltonian equations of
motion (13). Here and throughout the notation
[A, B] denotes the commutator:

A;B½ � � A B� B A

Because this matrix equation clearly entails that
the N traces

Tn ¼ trace Ln½ �; n ¼ 1; . . . ;N

are constants of the motion,

_Tn ¼ 0; n ¼ 1; . . . ;N

the possibility to write the Hamiltonian equations
(13) in the Lax form (14) yields as a bonus N
constants of the motion, namely it entails that the
Hamiltonian system under consideration is integr-
able. (One must moreover show that these constants
of motion are in involution; this is usually the case).

Hence a route to identify integrable N-body pro-
blems is via the search of Lax pairs L, M of matrices
such that (14) correspond to (13), with an appropriate
assignment of the potential energy (12). For N > 2 this
is a nontrivial task, because (13) is a system of 2N
ODEs in 2N unknowns, while the matrix Lax
equation (14) amounts to a system of N2 ODEs.
Functional equations and the identification of
integrable many-body problems A convenient
ansatz to identify a Lax pair suitable for the purpose
outlined above reads as follows:

Lnm¼ pn for n¼m;Lnm¼� qn�qmð Þ for m 6¼ n;

Mnm¼
XN

‘¼1;‘6¼n

�ðqn�q‘Þ for n¼m;

Mnm¼ �ðqn�qmÞ; for m 6¼ n

where �ðqÞ,�ðqÞ and �ðqÞ are 3 functions to be
determined. It is then easily seen that these functions
may be assigned so that the corresponding Lax
equation (14) be equivalent to the Hamiltonian
equations (13) with

Vð1ÞðqÞ ¼ 0 ½15a�

Vð2ÞðqÞ ¼ �ðqÞ�ð�qÞ ½15b�

provided the function �ðxÞ satisfies the functional
equation

�ðxÞ�0ðyÞ � �ðyÞ�0ðxÞ
�ðxþ yÞ ¼ �ðxÞ � �ðyÞ; �ðxÞ ¼ �ð�xÞ

The general solution of this functional equation
yields via [15b] the two-body potential

Vð2ÞðqÞ ¼ g2 a2}ða q !; !0j Þ ½16�

where g and a are two arbitrary constants and
}ðx !,!0j Þ is the Weierstrass elliptic function (with
semiperiods ! and !0, as well arbitrary). One
concludes therefore that the N-body problem char-
acterized by the Hamiltonian (11) with (12), (15a)
and (16) is integrable.

This Hamiltonian system has played, since the mid-
seventies, a seminal role in the developments of finite-
dimensional integrable systems that occurred over the
last few decades. However, since the Weierstrass
function is doubly-periodic, from a ‘‘physical’’ point
of view this N–body problem is rather unrealistic, or
perhaps rather suited for the study of crystalline
configurations, including their statistical mechanics.
But there are two special cases, obtained by assigning
an infinite value to one or both of the semiperiods of
the Weierstrass function in (16), that qualify Vð2ÞðqÞ as
a physical two-body potential:

Vð2ÞðqÞ ¼ g2 a2

sinh2 a qð Þ
½17a�

Vð2ÞðqÞ ¼ g2

q2
½17b�

(Of course the second of these two-body potentials,
(17b), is merely the special case of the first, (17b),
corresponding to a = 0). These Hamiltonian models
are then naturally interpretable as one-dimensional
many-body problems with repulsive two-body forces
singular at zero separation and vanishing at large
distances. Actually the fact that these systems are
integrable is far from remarkable, since it is
generally true that any many-body problem char-
acterized by repulsive forces vanishing at large
distances (hence causing unconfined motions) is
integrable: indeed in such models the particles
eventually separate and move freely, so that their
trajectories cannot display the extreme complication
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characterizing a chaotic (i.e., nonintegrable) beha-
vior. But these models are in fact superintegrable
and they (as well as various integrable extensions of
them) feature many (physically and mathematically)
interesting properties. For instance the asymptotic
behavior of their trajectories,

qnðtÞ ¼ pð�Þn t þ qð�Þn þ oð1Þ; pnðtÞ ¼ pð�Þn þ oð1Þ
as t! �1; n ¼ 1; . . . ;N ½18�

is characterized by the simple rules

pðþÞn ¼ p
ð�Þ
Nþ1�n; n ¼ 1; . . . ;N;

qðþÞn ¼ qð�Þn þ
XN

m¼1;m6¼n

� pð�Þm � pð�Þn ; g; a
� �

n ¼ 1; . . . ;N

½19�

with

�ðp; g; aÞ ¼ signðpÞ
log 1þ ga=pð Þ2
h i

2a

The formula (19) indicates that the shift q
ðþÞ
n � q

ð�Þ
n

among the asymptotic positions of the particles (see
(18)) is merely a sum of two-body shifts � (which
incidentally vanish altogether if a = 0, namely in the
(17b) case), and it only depends on the velocities
p
ð�Þ
n of the particles in the remote past (not on the

corresponding asymptotic positions q
ð�Þ
n , in spite of

their relevance in determining the order in which the
different particles approach each other through the
motion).

A generalization of the above model in the (17b)
case – nontrivial inasmuch as it yields confined
motions – is characterized by the additional presence
in the potential (12) of the one-body potential

Vð1ÞðqÞ ¼ 1
2 !

2q2 ½20�

yielding the Hamiltonian (3a). This model is integr-
able, indeed superintegrable, indeed isochronous, all
its (real) solutions being completely periodic with
period

T ¼ 2�

!
½21�

A neat way to understand this result is by noting
that, if ~qðtÞ is a (possibly complex) solution of the
model discussed above (in this subsection, with the
two-body potential (17b) and no one-body poten-
tial, see (15a)), then

qnðtÞ ¼ exp�i!tð Þ~qnð�Þ; � ¼
expð2 i!tÞ � 1

2 i!

provides a (possibly real) solution of the Newtonian
equations of motion (2), namely of the same model
but with the additional one-body potential (20).
Remarkably this model was solved firstly in the
quantal case (at the beginning of the seventies), and
only a few years later in the classical case considered
here (by J. Moser, who, for the != 0 case,
introduced the special version of the Lax matrix
appropriate for this case).

Another class of many-body problems, introduced
in the mid-sixties by M. Toda, played a seminal role
in the study of integrable dynamical systems, indeed
the first application (independently by H. Flaschka
and S. Manakov) of the Lax approach to integrable
many-body problems occurred in that context. This
model is often referred to as the Toda lattice,
because its (two-body) interaction (of exponential
type) is only assumed to act among ‘‘nearest
neighbors’’.

A particularly interesting, and just as integrable,
generalization of this class of Hamiltonian many-
body problems features an extra parameter, say c,
which might be considered to play the role of ‘‘speed
of light’’. These models reduce to those considered
above for c =1, and for finite c they are invariant
under the Poincaré group of coordinate transforma-
tions (while of course the many-body problems
described above are invariant under the Galilei
group). They are sometimes termed RS models, to
recognize those who first introduced them
(S. Ruijsenaars and H. Schneider) as well as the
possibility to interpret them in some sense as
‘‘relativistic’’ generalizations of the ‘‘nonrelativistic’’
models described above.
Reduction of the solution to algebraic opera-
tions The solution of the models described above
can actually be reduced to purely algebraic opera-
tions. For instance for the model characterized by
the Newtonian equations of motion (2) such a
solution of the initial-value problem is provided by
the following prescription: the particle coordinates
qnðtÞ coincide with the N eigenvalues of the N �N
matrix:

~QnmðtÞ ¼ qnð0Þ cosð!tÞ þ _qnð0Þ
sinð!tÞ
!

for n ¼ m;

~QnmðtÞ ¼
ig sinð!tÞ

! qnð0Þ � qmð0Þ½ � for n 6¼ m
Many-body problems related to the motion of the
zeros of linear PDEs Another convenient approach
to manufacture and investigate integrable many-
body problems is by identifying the motion of the
particles with that of the zeros of (polynomial)
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solutions of linear (hence solvable) evolution PDEs.
Assume for instance that the monic polynomial

 ðz; tÞ ¼ xN þ
XN
m¼1

cmðtÞxN�m ¼
YN
n¼1

z� znðtÞ½ � ½22�

satisfies the (compatible) linear PDE�
A0þA1 zþA2 z2þA3 z3

�
 zz

þ B0þB1 z�2 N�1ð ÞA3 z2
� �

 z

þC ttþ E� N�1ð ÞD2 z½ � t

þ D0þD1 zþD2 z2
� �

 zt

� N N�1ð Þ A2�A3 zð ÞþNB1½ � ¼ 0 ½23�

where the letters A0,A1,A2,A3,B0,B1,C,D0,D1,
D2,E denote 11 arbitrary constants. Then the zeros
znðtÞ evolve according to the system of ODEs

C€zn þ E _zn ¼B0 þ B1zn � 2 N � 1ð ÞA3z2
n

þ
XN

m¼1;m 6¼n

zn � zmð Þ�1

� 2C _zn _zm � _zn þ _zmð Þ D0 þD1znð Þ½
�D2zn _znzm þ _zmznð Þ
þ 2 A0 þ A1zn þ A2z2

n þ A3z3
n

� ��
½24�

interpretable as the Newtonian equations of motion
of an N-body problem with one- and two-body
(velocity-dependent) forces. This problem is integr-
able, indeed its solution can be reduced to the
algebraic problem of finding the zeros of the
polynomial  ðz, tÞ, see (22), whose time evolution
can be ascertained by solving the linear PDE (23),
itself a purely algebraic problem as it amounts to
solving the system of (constant coefficients, linear)
ODEs implied via (22) by this PDE (23) for the N
coefficients cmðtÞ.

This class of many-body problems is rather rich,
thanks to the arbitrariness of the 11 constants it
features. Several subcases, characterized by special
choices of these constants, are suitable to display a
gamut of different phenomenological behaviors:
confined and nonconfined motions, periodic and
nonperiodic evolutions, limit cycles, Hamiltonian
cases, . . . .
Solvable many-body problems in the plane The
many-body problems considered above were all
essentially one-dimensional. But via a simple trick
it is possible to obtain from some of them many-
body problems in the plane (which should of course
be rotation-invariant to be certified as such).
Consider for instance the special case of the above
model, (24), with C = 1 and with A0 = A1 = A3 =
B0 = D0 = D2 = 0 so that its equations of motion,

€zn þ E _zn ¼B1zn þ
XN

m¼1;m6¼n

zn � zmð Þ�1

� 2 _zn _zm �D1 _zn þ _zmð Þzn þ 2A2z2
n

� �
½25�

are invariant under rescaling of the dependent
variables ðzn¼) cznÞ. Let us then assume to work
in the complex rather than the real, and let us set

E ¼ � þ i!; A2 ¼ �þ i~�; B1 ¼ � þ i ~�;

D1 ¼ � þ i~�

where the Greek letter indicate now real constants,
and let us moreover relate the N complex coordi-
nates zn to N two-vectors~rn in the horizontal plane
via the self-evident positions

zn ¼ xn þ iyn;~rn ¼ xn; yn; 0ð Þ; k̂ ¼ 0; 0; 1ð Þ ½26�

It is then easily seen that the integrable equations of
motion (25) become the following rotation-invariant
Newtonian equations of motion identifying a (no
less integrable) N-body problem in the plane:

~r
		
n þ � þ !k̂^

� �
~r
	
n

¼ � þ ~�k̂^
� �

~rn þ
XN

m¼1;m 6¼n

r�2
nm

2 ~r
	
n ~r
	
m 	~rnm

� �
þ~r
	
m ~r
	
n 	~rnm

� �
�~rnm ~r

	
n 	~r
	
m

� �n oh
� � þ ~�k̂^
� �

~r
	
n þ~r

	
m

� �
r2
n � ~rn 	~rmð Þ

� �n
�~rn ~rm 	 ~r

	
n þ~r

	
m

� �h i
þ~rm ~rn 	 ~r

	
n þ~r

	
m

� �h io
þ 2 �þ ~�k̂^
� �

~rn r2
n � 2 ~rn 	~rmð Þ

� �
þ~rmr2

n

� 	i
½27�

Here and below we use the short-hand notation
~rnm =~rn �~rm entailing r2

nm = r2
n þ r2

m � 2~rn 	~rm, the
symbol ^ denotes the three-dimensional vector pro-
duct so that k̂ ^~rn = �yn, xn, 0ð Þ (see (26)), and the rest
of the notation is self-evident. Note that these rotation-
invariant Newtonian equations of motion are also
translation-invariant if �= ~�= �= ~�=�= ~�= 0.
The ‘‘goldfish’’ model The attribute of ‘‘goldfish’’
has been attributed to the special case of the above
model with all ‘‘coupling constants’’ vanishing,
thanks to the neatness of its equations of motion,
which in their complex version read

€zn ¼ 2
XN

m¼1;m6¼n

_zn _zm

zn � zm
; n ¼ 1; . . . ;N
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and in their real (‘‘physical’’) version as Newtonian
equations of motion of an N-body problem in the
horizontal plane read

~r
		
n¼2

XN
m¼1;m6¼n

~r
	
n

_~r	m 	~rnm

� �
þ _~r	m _~r	n 	~rnm

� �
�~rnm ~r

	
n 	~r
	
m

� �
r2
nm

n¼1; . . . ;N

(This name has also been attributed to some
extensions of this model, see the entry Isochronous
Systems in this Encyclopedia). This model is
invariant under time rescaling ðt) ctÞ, in its
physical version it is translation- and rotation-
invariant, it only features two-body forces and in
spite of their velocity-dependence it is Hamiltonian
(it is in fact a simple instance of the RS models
mentioned above). The solution of its initial-value
problem (in its complex version) is given by a
remarkably neat rule: the N coordinates znðtÞ are the
N roots of the following algebraic equations in z:

XN
n¼1

_znð0Þ
z� znð0Þ

¼ 1

t
½28�

The phenomenology of its generic solution is also
remarkable, corresponding to the ‘‘game of musical
chairs’’: in the remote past all particles but one are
almost at rest in N � 1 positions (‘‘sitting in N � 1
chairs’’) and one particle comes in from infinity,
moving initially as a free particle; as it approaches,
all the particles begin to move around (‘‘dancing’’);
in the remote future one particle goes away (moving
eventually with the same speed as the incoming
particle), and all the others settle down in the same
N � 1 positions (‘‘of the N � 1 chairs’’), but with
the possibility that the outgoing particle be different
from the incoming one, and that the other particles
have reshuffled their ‘‘seating’’.

Another remarkable version (also translation- and
rotation-invariant, as well as Hamiltonian) of the
N-body model in the plane (27) obtains if all the
‘‘coupling constants’’ vanish except !. Then all its
nonsingular solutions – which are given by the same
prescription indicated just above, except for the
replacement of 1

t with i!
expði!tÞ�1 in the right-hand side

of (28) – are completely periodic with periods which
are an integer multiple – no larger than a number
depending on N, generally (much) smaller than N! –
of T (see (21)), the domains of phase space that give
rise to solutions with different periodicity being
separated from each other by boundaries character-
ized by lower-dimensional sets of initial data
yielding trajectories that run into singularities
corresponding to particle collisions (note that when
two or more particles collide their individuality gets
lost, and their velocities diverge).
Integrable many-body problems in spaces with
arbitrary dimensions Integrable, or even solvable,
many-body problems in spaces with more than two
dimensions – with rotation-invariant equations of
motion of Newtonian type – can be manufactured
by starting from an appropriate integrable, or
solvable, second-order matrix evolution equation,
and by then parametrizing the evolving matrix in
terms of multidimensional vectors so as to transform
the matrix evolution equation into a covariant –
hence rotation-invariant – system of evolution
equations for these vectors, interpretable as New-
tonian equations of motion of a many-body problem
in multidimensional space.

For instance the matrix equation

_M ¼ AMþMAþM3

is integrable. Here M �MðtÞ is a square matrix of
arbitrary order and A is an arbitrary constant
matrix. By parametrizing appropriately these two
matrices one concludes that either one of the
following two Newtonian systems of ODEs is
integrable:

~r
		
nm ¼

XN
	¼1

�n	~r	m þ
XM

¼1

XN
	¼1

~rn
 ~r	
 	~r	m

� �
n ¼ 1; . . . ;N;m ¼ 1; . . . ;M;

~r
		
nm ¼

XN
	¼1

�n	~r	m þ
XM

¼1

XN
	¼1

~r	
 ~r	
 	~rnm

� �
n ¼ 1; . . . ;N;m ¼ 1; . . . ;M:

Here N and M are arbitrary positive integers, the
NM constants �nm are also arbitrary, the NM
‘‘particle coordinates’’ ~rnm �~rnmðtÞ are S-vectors,
with S an arbitrary positive integer, and the dots
sandwiched among these S-vectors denote the
standard scalar product in S-dimensional space.

Let us emphasize the physical relevance of this
class of many-body problems, characterized by
linear and cubic forces. This is reinforced by the
fact that these models are Hamiltonian.
Nonlinear harmonic oscillators Two classes of
integrable systems obtain from the classes written
above by first setting to zero all the constants �nm

and by then performing the change of variables

~wnmðtÞ ¼ expði!tÞ~rnmð�Þ; � ¼
expði!tÞ � 1

i!
½29�
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with ! > 0. The corresponding Newtonian equa-
tions of motion read

~w
		

nm � 3i!~w
	

nm � 2~wnm ¼
XM

¼1

XN
	¼1

~wn
 ~w	
 	 ~w	m

� �
n ¼ 1; . . . ;N;m ¼ 1; . . . ;M;

~w
		

nm � 3i!~w
	

nm � 2~wnm ¼
XM

¼1

XN
	¼1

~w	
 ~w	
 	 ~wnm

� �
n ¼ 1; . . . ;N;m ¼ 1; . . . ;M

These equations of motion cause the N M evolving
S-vectors ~wnm � ~wnmðtÞ to be complex (see the
second term in their left-hand sides), but a real
system (with double the number of dependent
variables) can be easily obtained by setting

~wnm ¼~unm þ i~vnm

Remarkably (but clearly suggested by (29)), all the
nonsingular solutions of each of these two many-
body problems are completely periodic, with a
period which is an integer multiple of the period T,
see (21). This justifies the title given to this
subsection. It also shows that these are isochronous
systems (see Isochronous Systems).
Integrable nonlinear PDEs

As indicated in Section 1 another class of integrable
systems are nonlinear evolution PDEs. In this
section we outline (some of) their properties,
focussing mainly on the Korteweg-de Vries PDE
(4), the solution of which by C. S. Gardner,
J. M. Greene, M. D. Kruskal and R. M. Miura in
the mid-sixties was the opening shot of a major
scientific development which is still blooming.
Other important early steps of this development
were, in the late sixties, the introduction by P. D.
Lax of what is now called the Lax pair technique,
and at the beginning of the seventies the solution by
V. E. Zakharov and A. B. Shabat of the Nonlinear
Schrödinger equation (6) – an evolution PDE of
great applicative importance. Subsequently many
researchers developed various techniques to iden-
tify, classify and investigate integrable nonlinear
PDEs, a continuing activity for an overall appraisal
of which the interested reader is referred to the
bibliography reported below.

Here we outline one of the approaches to
obtaining these results; other approaches are tersely
mentioned below.
Identification and investigation of integrable
PDEs via the inverse spectral transform
technique

The class of linear dispersive evolution PDEs reads

utðx; tÞ ¼ �i! �i
@

@x


 �
uðx; tÞ;�1 < x <1 ½30�

where the ‘‘dispersion function’’ !ðzÞ is, say, a (real)
polynomial (which must be odd to guarantee that
this PDE be real). The solution of this PDE is
achieved via the introduction of the Fourier trans-
form ûðk, tÞ,

uðx; tÞ ¼ ð2�Þ�1

Z 1
�1

dk expði kxÞ ûðk; tÞ ½31a�

ûðk; tÞ ¼
Z 1
�1

dx expð�i kxÞuðx; tÞ ½31b�

whose evolution corresponding to (30) is then given
by the simple linear ODE

ûtðk; tÞ ¼ �i!ðkÞûðk; tÞ;�1 < k <1 ½32a�

which can be immediately integrated:

ûðk; tÞ ¼ ûðk; 0Þ exp½�i!ðkÞt� ½32b�

Thus the solution of the initial-value problem of (30)
is achieved via three steps: (i) at the initial time one
obtains the initial value of the Fourier transform,
ûðk, 0Þ, from the initial datum uðx, 0Þ (via (31b)); (ii)
one then obtains ûðk, tÞ (via (32b)); (iii) one finally
obtains uðx, tÞ (via (31a)). From these formulas the
main features of the resulting phenomenology are
easily evinced (even when the above integrals cannot
be explicitly performed).

A class of integrable nonlinear evolution PDEs
reads

utðx; tÞ ¼ �ðRÞuxðx; tÞ ½33�

where the assigned function �ðzÞ is again, say, a
(real) polynomial, while R is now the integrodiffer-
ential ‘‘recursion operator’’ defined by the following
formula that specifies its action on a generic
function f ðx, tÞ (vanishing asymptotically so as to
allow all integrations to converge):

R f ðx; tÞ ¼ fxxðx; tÞ � 4uðx; tÞf ðx; tÞ

þ 2ux x; tð Þ
Z 1

x

dy f y; tð Þ ½34�

Note that the presence of the time variable t plays
no relevant role (it is merely parametric). A
remarkable property of this operator – which
depends on uðx, tÞ – is that any power of it acting
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on uxðx, tÞ yields a nonlinear combination of uðx, tÞ
and its x-derivatives – without any left-over integra-
tion, in fact yielding a result which is itself an exact
x-derivative, ready for exact integration in case of a
further application of R, see the last term in the
right-hand side of (34). For instance

Rux ¼ uxxx � 6ux u ¼ uxx � 3u2
� �

x
;

R2ux ¼ uxxxxx � 10uxxx u� 20uxx ux þ 30ux u2

¼ uxxxx � 10uxx u� 5u2
x þ 10u3

� �
x

and so on. Hence the simplest nonlinear evolution
equation contained in the class (33) is the Korteweg-
de Vries (KdV) equation

ut þ uxxx ¼ 6ux u ½35�

(corresponding to �ðzÞ=�z; and note the identity
with (4), via the trivial rescaling qðx,tÞ= 3 uðx, tÞ).
Note that, if one neglects all nonlinear contribu-
tions, the class (33) reduces to (30) with

!ðzÞ ¼ �z� �z2
� �

The solution of this class of nonlinear PDEs, (33),
is given by a somewhat analogous procedure to that
described above for the class of linear dispersive
PDEs (30).

Firstly, one introduces the spectral transform, a
nonlinear generalization of the Fourier transform
which indeed reduces to it if nonlinear effects are
altogether neglected. That relevant for the class of
PDEs (33) is based on the spectral problem
associated with the linear Schrödinger operator

L ¼ � @

@x


 �2

þ uðx; tÞ;�1 < x <1 ½36�

Via it, the spectral transform

S uðx; tÞ½ � ¼ Rðk; tÞ;�1 < k <1; pn; �nðtÞ;f
n ¼ 1; . . . ;Ng ½37�

is introduced. Here the function Rðk, tÞ is the
‘‘reflection coefficient’’ associated to the eigenvalue
k2 of the continuous spectrum of L, while the
nonnegative number N gives the number of discrete
eigenvalues of L, and the positive quantities pn and
�nðtÞ are associated to these discrete eigenvalues,
specifically �p2

n are the ‘‘binding energies’’, and
�nðtÞ the ‘‘normalization coefficients’’, associated to
the ‘‘bound states’’ possessed by the ‘‘potential’’
uðx, tÞ. (All this terminology comes from the inter-
pretation of the above spectral problem in quantum-
mechanical terms). And it can be shown not only
that there is a one-to-one correspondence among a
function uðx, tÞ and its spectral transform S[u(x, t)],
but moreover that both the direct spectral problem
to compute S[u(x, t)] from u(x, t) (arbitrarily
assigned within an appropriate class), and the
inverse spectral problem to compute u(x, t) from
S[u(x, t)] (arbitrarily assigned within an appropriate
class), only entail solving linear equations (an ODE
in the former case, a Fredholm integral equation in
the latter case).

Note that, in the above definition of the spectral
transform, the time variable t plays merely a
parametric role. But the usefulness of this spectral
transform to solve the PDE (33) resides in the fact
that, if u(x, t) evolves in time according to this PDE,
the corresponding evolution of the spectral trans-
form is quite simple: the number N and the positive
numbers pn are time-independent (as already
implied by our notation), while the time evolution
of the reflection coefficient R(k, t) and of the
normalization coefficients �nðtÞ is given by the
simple linear ODEs

Rtðk; tÞ ¼ 2ik� �4k2
� �

Rðk; tÞ;�1< k<1 ½38a�

_�nðtÞ ¼ �2pn�ð4p2
nÞ�nðtÞ; n ¼ 1; . . . ;N ½38b�

which can be readily integrated:

Rðk; tÞ ¼ Rðk; 0Þ exp 2ik� �4k2
� �

t
� �

½39a�

�n tð Þ ¼ �n 0ð Þ exp �2pn�ð4p2
nÞt

� �
½39b�

Hence the solution of the initial-value problem for
the class of nonlinear PDEs (33) can now be
achieved via the following three steps: (i) at the
initial time, via the solution of the direct spectral
problem, the spectral transform S[uðx, 0Þ] (see (37))
is obtained (from u(x, 0), arbitrarily assigned within
an appropriate class); (ii) the spectral transform at
time t is then obtained via (39); (iii) by solving the
inverse spectral problem, u(x, t) is obtained from
S[u(x, t)] (see (37)).

The analogy of this procedure to that outlined
above for the class of linear dispersive PDEs (30) is
clear, and the fact that in this manner the solution
of the initial-value problem for the nonlinear PDEs
(33) can be achieved via a sequence of steps
involving only the solution of linear problems is
an indication of the integrable character of this
class of nonlinear evolution PDEs. And it allows to
gain thereby a lot of insight on the behavior of
these solutions, and also to construct classes of
explicit solutions of these equations, as we now
indicate.
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Solitons

The integrable nonlinear PDE (33) possesses the
single-soliton solution

uðx; tÞ ¼ �2p2

cosh2 p x� �ðtÞ½ �f g
½40a�

�ðtÞ ¼ 2pð Þ�1log
�ðtÞ
2p

� 

¼ �ð0Þ þ vt;

v ¼ �� 4p2
� �

½40b�

to which corresponds the simple spectral transform

S u x; tð Þ½ � ¼ Rðk; tÞ ¼ 0;p1 ¼ p;f
�1ðtÞ ¼ �ðtÞ ¼ �ð0Þexp �2p�ð4p2Þt

� �
; N ¼ 1g ½41�

This solution, (40), describes a localized wave of
constant shape moving with the constant speed v:
the ‘‘soliton’’. It is characterized by two (real)
parameters, �ð0Þ and p. The first identifies the
initial location of the soliton; its arbitrariness
corresponds to the translation invariant character
of (33). The second, p, the spectral significance of
which is clear from (41), determines the shape of
the soliton (both its ‘‘height’’ 2p2 and its ‘‘width’’ 1

p)
as well as its speed v (see (40b)); note that the
shape is identical for all the nonlinear evolution
PDEs of the class (33), while the speed depends on
the function �ðzÞ, see (40b), namely it depends on
which specific equation of the class (33) one is
considering. For instance for the KdV equation
(35), corresponding to �ðzÞ=�z, the speed of the
soliton is

v ¼ 4p2 ½42�

thus all solitons of the KdV equation move from left
to right, and taller and thinner solitons move faster
than less tall and more fat ones.

More generally, every PDE of the class (33)
possesses the N-soliton solution

uðx; tÞ ¼ �2
@

@x


 �2

log det Iþ Cðx; tÞ½ � ½43a�

Here I is the N �N unit matrix and CðtÞ is the
N �N matrix

Cmnðx;tÞ¼ �mðtÞ�nðtÞ½ �1=2 exp �ðpmþpnÞx½ �
pmþpn

½43b�

where the time-evolution of the �nðtÞ’s is given by
(39b). Indeed the spectral transform of this solution
is given by (37) with Rðk, tÞ=0 and �nðtÞ given by
(39b). To discuss the multisolitonic phenomenology,
let us focus on the KdV equation, so that the speed
of each soliton is given by the simple formula (42)
and let us order the N positive numbers pn in
increasing order,

p1 < p2 < 	 	 	 < pN

so that the corresponding soliton velocities,
vn = 4p2

n, are as well ordered in increasing order:

v1 < v2 < 	 	 	 < vN

The N-soliton solution (43) is not so transparent,
especially if N is large, but it becomes quite simple
in the remote past and future:

uðx; tÞ 

XN
n¼1

�2p2
n

cosh2 pn x� �nðtÞ½ �f g
;

�nðtÞ ¼ �ð�Þn þ vnt; t! �1

with the 2N (real) constants �
ð�Þ
n related to one

another (see below). It is thus seen that, both in the
remote past and future, the N-soliton solution (43)
splits into the sum of N separated solitons. In the
remote past the solitons are ranged, from left to
right, in order of decreasing amplitude, and they
move to the right with speeds ordered in decreasing
magnitude; then the taller and faster solitons
gradually catch up and eventually ‘‘overtake’’ the
fatter and slower ones (the quotation marks under-
score the fact that whenever two, or possibly more,
solitons get together, their individuality is in fact
lost: for a while the solution might have just one
peak, or instead the ‘‘overtaking’’ of two solitons
may rather appear as an ‘‘exchange of identity’’,
with the taller soliton becoming fatter and the fatter
becoming taller as they get close together until they
separate again because the one in front, having
become taller, speeds up while the one behind,
having become fatter, slows down). The final out-
come is of course that the order of the solitons gets
altogether reversed, with the taller and faster head-
ing the escape to the right. The most remarkable
aspect of this phenomenology is that precisely the
same solitons that existed in the remote past are
found in the remote future, the only effect of their
‘‘interaction’’ having been to shift the position of the
n-th soliton, relative to what it would have been if it
had been moving in isolation, by the amount

�n ¼ �ðþÞn � �ð�Þn

These N shifts are moreover determined (while
either the N quantities �

ð�Þ
n or the N quantities �

ðþÞ
n

can be arbitrarily assigned), being given by the
simple rule

�n ¼
Xn�1

m¼1

�ðpn; pmÞ �
XN

m¼nþ1

�ðpn; pmÞ ½44a�
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�ðpn; pmÞ ¼
1

pn
log

pn þ pm

pn � pmj j


 �
½44b�

Of course in (44a) a sum vanishes if its lower limit
exceeds its upper limit.

This formula (44), has a simple phenomenological
significance. From the two-soliton case ðN = 2Þ it is
seen that in a two-body encounter the taller and
faster soliton gets advanced by the amount
�ðp2, p1Þ, while the slower and fatter one gets
delayed by the amount �ðp1, p2Þ. Hence the overall
shift (44) experienced by the n-th soliton in the
N-soliton case is the sum of the n� 1 positive shifts
derived from its ‘‘overtaking’’ n� 1 slower solitons
and the N � n negative shifts derived from its being
‘‘overtaken’’ by N � n faster solitons. This outcome
is obvious when each two-soliton encounter occurs
separately, but is quite nontrivial in the general case
when, at some intermediate time, several solitons
might all encounter simultaneously.

This soliton phenomenology strongly suggest
ascribing to each soliton an individuality, even
though in configuration space it only shows up as
a separate entity in the remote past and future. The
separated identity of each soliton is instead quite
clear in the spectral transform context, since each of
them corresponds to a (time-independent) discrete
eigenvalue of the spectral problem. Indeed in the
spectral context this identity is clear also for the
generic solution of the class of integrable nonlinear
PDEs (33) which, in contrast to the purely solitonic
solution (43), is not characterized by a vanishing
reflection coefficient Rðk, tÞ. And indeed, even in
configuration space, the soliton phenomenology
described above is still featured by a generic solution
(each of which is characterized, via its spectral
transform (37), by the number N of its solitons), up
to the additional presence of a ‘‘background’’
component of this solution (corresponding to the
nonvanishing reflection coefficient Rðk, tÞÞ, which
however behaves in a manner analogous to the
solution of the linear, dispersive part of the PDE
under consideration, becoming eventually locally
small due to its dispersive character.

Kinks, breathers, boomerons and trappons,
dromions The solitonic phenomenology described
above for the class of integrable PDEs (33), and in
particular for the KdV equation (35), is more or less
common to all integrable nonlinear evolution PDEs –
of which many other classes exist besides (33). But
there also are some significant differences, some of
which we now review tersely.

For certain integrable PDEs the typical shape of
the soliton is not localized, but it rather has the form
of a ‘‘kink’’. Some integrable PDEs also feature
additional kinds of localized ‘‘solitons’’ which, in
isolation, move overall with constant speed as
ordinary solitons, but feature in addition a time-
dependent amplitude modulation and are therefore
called ‘‘breathers’’. For integrable matrix nonlinear
evolution PDEs – or, equivalently, for integrable
systems of coupled PDEs – the new phenomenology
may emerge of solitons that, even in isolation, move
with a variable speed, the change of which over
time is correlated with the variable interplay of
the amplitudes of the different components of the
solution: typically such solitons come in from one
side in the remote past and boomerang back to that
side in the remote future (‘‘boomerons’’), or they
may be trapped to oscillate around some fixed
position (‘‘trappons’’); and there are integrable
evolution equations in which both these types of
solitons are simultaneously present in a generic
solution. All these phenomenologies refer to the
simpler class of integrable evolution PDEs in 1þ 1
(one space and one time) variables, with asympto-
tically vanishing boundary conditions (at large space
distances; or perhaps asymptotically constant, as in
the case of kinks). There also exist integrable
evolution PDEs in 2þ 1 dimensions (such as the
KP equation (9)) the generic solution of which may
feature localized soliton-like components, although
in this case appropriate boundary conditions play a
crucial role (for this reason such solitons have been
called ‘‘dromions’’, hinting at their being to some
extent driven by the boundary conditions, as objects
moving in a stadium).

While there are quite many (classes of) integrable
PDEs in 1þ 1 dimensions, there are only a few in
2þ 1 dimensions, and there is a widespread belief
that no integrable PDEs exist in Dþ 1 dimensions
with D > 2. But already in the early days of soliton
theory it was pointed out that there do exist quite
many (classes of) integrable PDEs in 1þD dimen-
sions (namely, one space and D time variables) and
that it is quite possible via a different formulation of
the initial-value problem to interpret such equations
as (no less integrable) PDEs in Dþ 1 dimensions (D
space and one time variables); and integrable PDEs
in Dþ 1 dimensions have also been identified and
investigated in the context of (the simpler class of)
C-integrable PDEs (see below).
Other properties of integrable PDEs

For the linear evolution equations (30) the main
message implied by their solvability via the Fourier
transform is, that the time-evolution is much simpler
in Fourier space (see (32)) than in configuration
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space. This has a profound impact on the under-
standing of all phenomena describable by such
equations, to the extent of determining the kind of
experimental tools better suited to understand the
underlining physics (for instance, the use of mono-
chromatic beams of light, the use of high-energy
particle accelerators, and so on). The same kind of
message is as well relevant for the class of integrable
nonlinear PDEs solvable via the spectral transform
technique – even more so inasmuch as the time-
evolution is in this case so much simpler in the
spectral space (being actually linear there, see (38)
and (39)) than in configuration space (where the
evolution is nonlinear, see (33)). It is indeed the
basis for the possession by the class of integrable
nonlinear PDEs (33) of several other remarkable
properties as outlined tersely in the following
subsections.
Bäcklund transformations A Bäcklund transforma-
tion is a formula relating two functions, say uð0Þðx, tÞ
and uð1Þðx, tÞ, so that, if one of them satisfies a
(generally nonlinear) PDE, the other one satisfies the
same PDE. In the context of the class (33) of
integrable PDEs, such a (class of) Bäcklund trans-
formations is provided by the formula

gðLÞ uð0Þðx; tÞ � uð1Þðx; tÞ
h i

þ hðLÞG 1 ¼ 0 ½45�

where gðzÞ and hðzÞ are two (a priori arbitrary)
entire functions (say, two polynomials), while L and
G are two integrodifferential operators the effect of
which on a function f ðx, tÞ (such that all relevant
integrations are convergent) reads

Gf ðx; tÞ ¼ uð0Þx ðx; tÞþuð1Þx ðx; tÞ
h i

f ðx; tÞ

þ uð0Þðx; tÞ�uð1Þðx; tÞ
h i
�
Z 1

x

dy uð0Þðy; tÞ�uð1Þðy; tÞ
h i

f ðy; tÞ ½46a�

Lf ðx; tÞ ¼ fxxðx; tÞ � 2 uð0Þðx; tÞ þ uð1Þðx; tÞ
h i

f ðx; tÞ

þ G
Z 1

x

dyf ðy; tÞ ½46b�

Note that here the variable t plays no relevant role
(its presence is merely parametric), and that G and L
depend (in a symmetrical way) on uð0Þðx, tÞ and
uð1Þðx, tÞ, whose presence causes the Bäcklund
transformation (45) to be nonlinear in these
functions. Also important is the observation that,
for uð0Þðx,tÞ= uð1Þðx,tÞ= uðx, tÞ, the operator L
becomes the recursion operator R, see (34).
The reason why the formulas (45) constitute a
class of Bäcklund transformations is because – as a
property of the spectral transform based on the
linear Schrödinger operator L, see (36) – if two
‘‘potentials’’ uð0Þðx, tÞ and uð1Þðx, tÞ are related by
(45), the corresponding ‘‘reflection coefficients’’
Rð0Þðk, tÞ and Rð1Þðk, tÞ are related algebraically, as
follows:

gð�4k2Þ Rð0Þðk; tÞ � Rð1Þðk; tÞ
h i

þ 2ikhð�4k2Þ Rð0Þðk; tÞ þ Rð1Þðk; tÞ
h i

¼ 0 ½47a�

entailing

Rð1Þðk; tÞ ¼ Rð0Þðk; tÞgð�4k2Þ þ 2ikhð�4k2Þ
gð�4k2Þ � 2ikhð�4k2Þ ½47b�

Clearly this formula entails that, if Rð0Þðk, tÞ satisfies
(38a), so does Rð1Þðk, tÞ. Hence, as the fact that
Rð0Þðk, tÞ satisfies (38a) is a consequence of the fact
that uð0Þðx, tÞ satisfies (33), likewise the fact that
Rð1Þðk, tÞ satisfies (38a) provides the basis for
concluding that uð1Þðx, tÞ also satisfies (33).

The simpler version of the Bäcklund transforma-
tion (45) obtains by setting gðzÞ=�2phðzÞ with p
an arbitrary constant, hence it reads

wð0Þx ðx; tÞ þwð1Þx ðx; tÞ

¼ 2p wð0Þðx; tÞ �wð1Þðx; tÞ
h i

� 1

2
wð0Þðx; tÞ �wð1Þðx; tÞ
h i2

½48�

Here and below we use for convenience the
functions wðjÞðx, tÞ related to uðjÞðx, tÞ as follows:

wðjÞðx; tÞ ¼
Z 1

x

dy uðjÞðy; tÞ;

wðjÞx ðx; tÞ ¼ � uðjÞðx; tÞ
½49�

A convenient application of Bäcklund transfor-
mations is to yield new solutions of (33) from
known solutions; for instance from the trivial
solution uð0Þðx,tÞ= wð0Þðx, tÞ= 0 the single-soliton
solution (40) can be readily obtained via (48) and
(49) (of course an appropriate time-dependence
must be attributed to the x-independent ‘‘integra-
tion constant’’ that obtains from the integration
of (48), which is an ODE in the independent
variable x).

Another important property of Bäcklund trans-
formations is their commutativity. Consider two sets
of two polynomials, gðmÞðzÞ and hðmÞðzÞ, m = 1, 2, and
the two Bäcklund transformations (45) they gener-
ate, say BT1 and BT2. Take as starting point some
function uð0ÞðxÞ and associate to it two functions,
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uð1ÞðxÞ respectively uð2ÞðxÞ, obtained from uð0ÞðxÞ via
these two Bäcklund transformations, BT1 respec-
tively BT2. Then obtain a new function, say uð12ÞðxÞ,
from uð1ÞðxÞ via BT2; and likewise obtain uð21ÞðxÞ
from uð2ÞðxÞ via BT1. The property of commutativ-
ity entails that, provided an appropriate choice is
made of integration constants (see (45)),

uð12ÞðxÞ¼ uð21ÞðxÞ ½50�

This property is highly nontrivial when viewed, as
we just did, in configuration space; it is instead
rather obvious in the spectral space, indeed the
corresponding property for the ‘‘reflection coeffi-
cients’’ reads (in self-evident notation, see (47b))

Rð12ÞðkÞ ¼ Rð21ÞðkÞ ¼ Rð0ÞðkÞBð1ÞðkÞBð2ÞðkÞ ½51a�

BðmÞðkÞ ¼ gðmÞð�4 k2Þ þ 2ikhðmÞð�4 k2Þ
gðmÞð�4 k2Þ � 2ikhðmÞð�4 k2Þ ;

m ¼ 1; 2 ½51b�

hence it corresponds simply to the commutativity of
the ordinary product.

Nonlinear superposition principle Another
remarkable property of the class of evolution
equations (33) is a straightforward consequence of
the commutativity property, (50), of Bäcklund
transformations. It reads (hereafter with a slight
abuse of language we refer to ‘‘solutions’’ wðjÞ even
though the actual solutions are the functions uðjÞ

related to the wðjÞ by (49))

wð12Þ¼wð21Þ¼wð0Þ �
2 p1þp2ð Þ wð1Þ �wð2Þ

� �
2 p1�p2ð Þþwð1Þ �wð2Þ

½52�

where wð0Þ�wð0Þðx, tÞ is an arbitrary solution of
(33), wð1Þ�wð1Þðx, tÞ respectively wð2Þ�wð2Þðx, tÞ
are likewise the solutions of the same PDE related
to wð0Þ by the Bäcklund transformation (48) with
p=p1 respectively p=p2, and wð12Þðx, tÞ=wð21Þðx, tÞ
is another solution of the same PDE. Note that this
formula, for which the title of this subsection seems
appropriate, provides a completely explicit, rational
expression of a new solution of (33) in terms of
three other solutions of the same equation: an
arbitrary solution wð0Þ, and the two solutions wð1Þ

and wð2Þ related to it by a simple Bäcklund
transformation, see (48).

Soliton ladder A simple application of the preced-
ing formula is to start from the trivial solution

wð0Þ ¼ 0 ½53�
so that (see (48))

wðjÞðx; tÞ ¼ �2pj 1� tan pj x� x
ðjÞ
0 þ �ð4p2Þt

h in oh i
;

j ¼ 1; 2 ½54a�

where, in order that this function be real, either

Im x
ðjÞ
0

h i
¼ 0 ½54b�

or

Im x
ðjÞ
0

h i
¼ �

2pj
½54c�

Via (49), the expression (54a) with (54b) yields, for
each value of j, a version of the single-soliton
solution (40). Insertion of (53) and (54a) in (52)
yields, via (49), the two-soliton solution of (33),
provided 0 < p1 < p2 and x

ð1Þ
0 satisfies (54b) while

x
ð2Þ
0 satisfies (54c) (otherwise the solution produced

by (52) is complex or singular).
Having thus obtained the two-soliton solution,

one can apply the nonlinear superposition formula
(52) to get the three-soliton solutions, by inserting in
place of wð0Þ the single-soliton expression (54a)
(with parameter, say, p1) and in place of wð1Þ and
wð2Þ the two-soliton expression (with parameters p1

and p2 respectively p1 and p3); and the process can
be continued, as suggested by the title of this
subsection. In this manner the multisolitonic solu-
tion can be constructed by a sequence of purely
algebraic operations: and simple rules can be given,
detailing the restrictions on the soliton parameter pn

and the reality properties of the constants x
ðnÞ
0 ((54b)

or (54c)) to insure that the solution so arrived at be
real and nonsingular, and thus coincide with (43).
Conservation laws As mentioned above, integrable
evolution PDEs are interpretable as infinite-
dimensional dynamical systems. It is therefore
natural that they possess an infinite number of
conserved quantities. For instance every PDE of the
class [33] possesses the following infinite sequence
of conserved quantities:

Cn ¼
�1ð Þn

2nþ 1

Z 1
�1

dx Rn xuxðx; tÞ þ 2uðx; tÞ½ �;

n ¼ 0; 1; 2; . . . ; ½55a�

where R is the recursion operator (34). An alter-
native definition for this sequence is

Cn ¼
�1ð Þn

2nþ 1

Z 1
�1

dx~R
n
uðx; tÞ;

n ¼ 0; 1; 2; . . . ; ½55b�
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where the integrodifferential operator ~R is in some
sense the adjoint of R, being defined by the
formula

~Rf ðx; tÞ ¼ fxxðx; tÞ � 4uðx; tÞf ðx; tÞ

þ 2

Z 1
x

dy uðy; tÞfyðy; tÞ ½55c�

that specifies its action on a generic function f ðx, tÞ
(such that the integration converge). The first 3 of
these conserved quantities read as follows:

C0 ¼
Z 1
�1

dx uðx; tÞ;

C1 ¼
Z 1
�1

dx u2ðx; tÞ;

C2 ¼
Z 1
�1

dx 2 u3ðx; tÞ þ u2
xðx; tÞ

� �
These constants of the motion (55) are functionally
independent and, in the context of a Hamiltonian
formulation characterized by the Poisson bracket

A;Bf g ¼
Z 1
�1

dx
�A

� uðxÞ
@

@ x

�B

� uðxÞ

(where A and B are functionals of uðxÞ and �=� uðxÞ
denotes the functional derivative), they are in
involution,

Cn;Cmf g ¼ 0

Note that, in this context, the KdV PDE (35)
coincides with the Hamiltonian equation

utðx; tÞ ¼ uðx; tÞ;Hf g ¼ @

@ x


 �
�H

� uðx; tÞ

with

H ¼ 1

2
C2 ¼

1

2

Z 1
�1

dx 2 u3ðx; tÞ þ u2
xðx; tÞ

� �

Several alternative sequences of constants of
motion also exist. For instance another infinite
sequence is provided by the two equivalent formulas

cn ¼ �1ð Þn
Z 1
�1

dx R̂
2n 	 1 ½56a�

cn ¼ �1ð Þn
Z 1
�1

dx Ln
0 uðx; tÞ ½56b�

with the integrodifferential operators R̂ and L0

defined by the formulas
R̂f ðx; tÞ ¼ fxðx; tÞ �
Z x

�1
dy uðy; tÞ f ðy; tÞ;

L 0 f ðx; tÞ ¼ fxxðx; tÞ � 2 uðx; tÞ f ðx; tÞ

þ uxðx; tÞ
Z 1

x

dy f ðy; tÞ

þ uðx; tÞ
Z 1

x

dy uðy; tÞ
Z 1

y

dz f ðz; tÞ

Note that the integrodifferential operator L0 is just
L, see (46), with uð0Þðx, tÞ= 0 and uð1Þðx, tÞ= uðx, tÞ.

The constants cn are also all independent of each
other, but there is a relationship between the
constants of the two sequences, (55) and (56),

X
n¼0

cn z2nþ1 ¼ sin
X
n¼0

Cn z2nþ1

" #

which is to be understood by expanding the right-
hand side in powers of z and then equating the
coefficients of equal powers of z:

c0 ¼ C0;

c1 ¼ C1 � 1
6 C3

0;

c2 ¼ C2� 1
2 C2

0C1 þ 1
120 C5

0

and so on.
Of course all these conservation laws are applic-

able to the class of solutions of (33) defined for all
(real) values of x and vanishing asymptotically (as
x! �1). But they can also be reformulated as local
‘‘continuity equations’’. And – rather remarkably –
all these results hold as well for the explicitly time-
dependent class of PDEs that obtains if one allows
the polynomial �ðzÞ in the right-hand side of (33) to
feature an arbitrary time-dependence, say

�ðz; tÞ ¼
XM
m¼0

�mðtÞzm ½57�

Finally let us note that there is an additional
conserved quantity for this (generalized) class of
PDEs,

C ¼
Z 1
�1

dx xuðx; tÞ þ
Z t

0

dt0�ð~R; t0Þuðx; tÞ
� 


with ~R defined by (55c). This implies that, for the
generic solution of this (generalized) class of PDEs
the center of mass

XðtÞ ¼
R1
�1 dx x uðx; tÞR1
�1 dx uðx; tÞ
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moves according to the formula

XðtÞ ¼X0 þ
XM
m¼0

�1ð Þmþ1ð2 mþ 1Þ Cm

C0


 �

�
Z t

0

dt0�mðt0Þ;X0 ¼
C

C0

Hence for all the autonomous evolution PDEs of the
class (33) (with �ðz, tÞ=�ðzÞ,�mðtÞ=�m, see (57))
the center of mass of the generic solution moves
uniformly,

XðtÞ ¼ X0 þ Vt

with the (constant) speed

V ¼
XM
m¼0

�1ð Þmþ1ð2 mþ 1Þ Cm

C0


 �
�m
Other techniques to identify, classify
and investigate integrable PDEs

The spectral transform approach on which we
focussed above is just one of the various techniques
used to identify and investigate integrable nonlinear
evolution PDEs. (Incidentally; because the less
standard aspect of this approach is the inverse
transformation to reconstruct, in the framework of
the spectral problem, the ‘‘potential’’ u(x) from its
spectral transform, this approach is often called the
Inverse Spectral, or Scattering, Transform method –
abbreviated as IST). In this subsection we tersely
mention some other approaches, referring to the
literature indicated below for more adequate
treatments.

An approach starts from a trivially integrable
PDE – say, linear and autonomous, see for instance
(30) – and performs a nonlinear change of
dependent, and possibly as well of independent,
variables. The PDE thus obtained is generally
integrable, indeed the term C-integrable is used to
denote such equations (to distinguish them from
the S-integrable equations solvable via IST: the
letter C refers to the Change of variables, the letter
S to the Spectral, or Scattering, transform). A
simple instance of C-integrable equations is the
Burgers equation (5), which is linearized via the
change of dependent variable

~qðx; tÞ ¼ qðx; tÞ exp �
Z x

�1
dyq y; tð Þ

� 


qðx; tÞ ¼
~qðx; tÞ

1�
R x
�1 dy ~q y; tð Þ
entailing the linear PDE

~qt þ ~qxx ¼ 0

A second example is the ‘‘Liouville equation’’

uxt ¼ expðuÞ ½58a�

or equivalently, in ‘‘light-cone coordinates’’ ð�= xþ t,
� =�xþ tÞ

u�� � u�� ¼ expðuÞ ½58b�

the general solution of which reads

uðx; tÞ ¼ f ðxÞ � gðtÞ � 2 log

�
a

Z x

x0

dx0 exp f ðx0Þ½ �

þ 2að Þ�1

Z t

t0

dt0 exp �g t0ð Þ½ �
�

with f(x) and g(t) arbitrary functions and x0, t0, a
arbitrary constants. And a third example is the
Eckhaus equation

qt ¼ i qxx þ 2 qj j2
� �

x
þ qj j4

h i
q

n o
½59�

which is linearized by the transformation

q̂ðx; tÞ ¼ qðx; tÞ exp

Z x

�1
dy qðy; tÞj j2

� 


qðx; tÞ ¼ q̂ðx; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

R x
�1 dy q̂ y; tð Þj j2

q
entailing the linear PDE

q̂t ¼ iq̂xx

Thanks to the simplicity of the technique to
solve them, C-integrable PDEs provide a conveni-
ent tool to investigate the phenomenology asso-
ciated with nonlinear PDEs. For instance the
Burgers equation (5), which possesses kink-like
solitons, is a simple nonlinear generalization of the
heat equation; and the ‘‘relativistic invariance’’ of
the Liouville equation, see (58b), makes it a
convenient ‘‘toy model’’ in the context of relati-
vistic field theory. The Eckhaus equation, (59),
provides an interesting theoretical tool because of
its similarity with the phenomenologically impor-
tant NLS equation (6), as well as the fact that,
thanks to its C-integrability, the structure of its
solutions – which feature a remarkable solitonic
zoology, including the possibility of ‘‘anelastic’’
solitonic reactions – can be studied in considerable
detail, entailing an understanding of why such
anelastic reactions are unlikely to be featured by
solutions obtained in the context of the initial-
value problem.
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C-integrable PDEs are generally as well S-integrable,
being generally associable with a spectral problem that
can be explicitly solved; the converse, instead, is not
generally true. Hence C-integrability represents a
higher level of integrability than S-integrability; a
ranking that is quite useful in spite of its lack of strict
cogency caused by the possibility to consider also the
transformation from a function to its spectral trans-
form as a change of (dependent) variable.

The Lax approach, described in some detail above
in the context of finite-dimensional integrable
dynamical systems, was in fact originally invented
in the context of integrable PDEs. For instance the
KdV equation (35) corresponds to the (operator)
Lax equation (to be compared with the matrix Lax
equation (14))

Lt ¼ L;M½ �

where now the Schrödinger operator L is defined by
(36) (so that Lt = utðx, tÞÞ and the operator M is
defined as follows:

M ¼ �4
@

@x


 �3

þ 6uðx; tÞ @
@x
þ 3uxðx; tÞ

Closely connected with this approach is the AKNS
method (due to M. J. Ablowitz, D. J. Kaup, A. C.
Newell and H. Segur), based on the observation that
the KdV equation (35) coincides with the integr-
ability condition

 xxt ¼  txx ½60�

for the following pair of linear PDEs (the first of
which is just the eigenvalue equation for the
Schrödinger operator L, see (36)) satisfied by the
function  ðx, k, tÞ :

 xx ¼ uðx; tÞ � k2
� �

 ½61a�

 t ¼ �uxðx; tÞ þ 4ik3
� �

 

þ 2 uðx; tÞ þ 2 k2
� �

 x ½61b�

and, more generally, that every equation of the
class (33) coincides with the integrability condition
(60) for the eigenvalue equation (61a) and the
equation

 t ¼ aðx; k; tÞ þ bðx; k; tÞ x ½61c�

with an appropriate choice of the two functions
aðx, k, tÞ and bðx, k, tÞ. Indeed this ansatz, (61c),
with aðx, k, tÞ and bðx, k, tÞ low-order polynomials
in k, provides a quite straightforward technique to
identify the simpler equations of the class (33); ditto
for the extension of this approach based on more
general eigenvalue problems than (61a).

Another powerful approach suitable to identify
and investigate integrable PDEs is the so-called
‘‘dressing method’’ (introduced by V. E. Zakharov
and A. B. Shabat and pursued by many others), in
which one starts again (as in the approach leading to
C-integrable equations) from an easily solvable
evolution equation and then performs transforma-
tions (less elementary than just a change of
variables) that modify (‘‘dress’’) the original equa-
tion, obtaining thereby new (nontrivial and interest-
ing) evolution equations, the integrability of which
hinges on the control one has on the (dressing)
transformation relating (both ways) the solutions of
the new equations with those of the original
equation. Of course many specific techniques are
accommodated within this (admittedly vague)
description; we must confine our remarks here to
noting the crucial role that the Riemann-Hilbert
problem generally plays in this context (indeed the
Riemann-Hilbert problem also lies at the core of the
solvability of the inverse spectral problem, although
techniques not explicitly relying on it are also
available).

Algorithmic approaches, particularly suitable to
manufacture multisolitonic solutions and to identify
nonlinear PDEs that are integrable inasmuch as they
feature such solutions, were developed already at the
beginning of the 70’s. The pioneer of this approach
was R. Hirota; less than a decade later a
more sophisticated and general development – the
so-called ‘‘tau-function’’ method – was invented
by M. Sato and his pupils/collaborators.

Finally let us mention that many remarkable
connections exist among integrable PDEs and
integrable finite-dimensional dynamical systems
such as those discussed above; for instance the
time-evolution (taking generally place in the com-
plex plane) of the poles of rational solutions of
certain integrable PDEs obey the equations of
motion of integrable dynamical systems interpreta-
ble as many-body problems.
Why are certain nonlinear PDEs both integrable
and widely applicable?

Several integrable PDEs play a key role in various
applicative contexts, justifying the question figuring
as title of this subsection. A metamathematical but
enlightening, and heuristically quite useful, reply to
this question reads as follows.

Consider as starting point a large class of non-
linear PDEs, and associate to it via some kind of
asymptotic limit procedure a single nonlinear
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PDE – to which it is then justified to attribute a
certain universal character. If this procedure corre-
sponds to a physically (or, more generally, applica-
tively) significant limit, it stands to reason that this
universal PDE play a role in several applicative
contexts (because the original class of PDEs, being
large, certainly contains several equations of appli-
cative relevance). And if the limit procedure is in
some sense asymptotically exact, and it therefore
preserves the property of integrability, it is also
likely that this universal PDE be integrable, because
for this it is sufficient that the original, large class of
PDEs contain just one integrable PDE.

For instance most phenomena characterized by a
dominant dispersive plane wave in a weakly non-
linear context can be shown, via an asymptotically
exact multiscale expansion, to be modeled by the
Nonlinear Schroedinger equation (6), the solution of
which provides then the evolution, in appropriately
rescaled ‘‘slow’’ and ‘‘coarse-grained’’ time and
space variables, of the amplitude modulation of the
dominant dispersive wave. This explains why this
nonlinear PDE plays a key role in so many, disparate
applicative contexts, and it also implies, in the light
of the above argument, its integrability.

The reasoning outlined above is quite robust,
and it allows to infer that, if instead the universal
limit equation is not integrable, then the large class
of PDEs from which it originates cannot contain
any integrable equation, providing thereby the
point of departure to obtain (quite useful) neces-
sary conditions for integrability. Indeed these
conditions are adequate to distinguish among
different levels of integrability, for instance among
C-integrability and S-integrability; with the
Eckhaus equation (59) playing in this context a
somewhat analogous role for C-integrable PDEs to
that played by the Nonlinear Schrödinger equation
(6) for S-integrable PDEs.
Outlook

Many more important developments than could be
covered in this overview have occurred in the last
few decades; for these we refer to the books listed
below (and there are many more), and to the
literature cited there.

Let us end this entry by emphasizing that both the
study of integrable systems, and its application to
phenomenologically interesting situation – including
technological innovations, for instance in nonlinear
optics and telecommunications – are still in the
forefront of current research; although perhaps the
‘‘heroic era’’ of this field of study is over.
See also: Abelian Higgs Vortices; Bäcklund
Transformations; Bethe Ansatz; Bifurcations of Periodic
Orbits; Bi-Hamiltonian Methods in Soliton Theory;
Billiards in Bounded Convex Domains; Boundary-Value
Problems for Integrable Equations; Breaking Water
Waves; Calogero–Moser–Sutherland Systems of
Nonrelativistic and Relativistic Type; Cauchy Problem for
Burgers-type Equations; Cellular Automata; Classical
r-Matrices, Lie Bialgebras, and Poisson Lie Groups;
�@-Approach to Integrable Systems; Einstein Equations:
Exact Solutions; Functional Equations and Integrable
Systems; Ginzburg–Landau Equation; Hamiltonian
Systems: Obstructions to Integrability; Holonomic
Quantum Fields; Instantons: Topological Aspects;
Integrability and Quantum Field theory; Integrable
Discrete Systems; Integrable Systems and Algebraic
Geometry; Integrable Systems and Discrete Geometry;
Integrable Systems and the Inverse Scattering Method;
Integrable Systems in Random Matrix Theory; Inverse
Problem in Classical Mechanics; Isochronous Systems;
Isomonodromic Deformations; Integrable Systems and
Recursion Operators on Symplectic and Jacobi
Manifolds; Korteweg–de Vries Equation and Other
Modulation Equations; Multi-Hamiltonian Systems;
Nonlinear Schrödinger Equations; Ordinary Special
Functions; Painlevé Equations; Peakons; q-Special
Functions; Quantum Calogero–Moser Systems;
Quantum n-Body Problem; Random Matrix Theory in
Physics; Recursion Operators in Classical Mechanics;
Riemann–Hilbert Methods in Integrable Systems;
Riemann–Hilbert Problem; Separation of Variables for
Differential Equations; Sine-Gordon Equation; Solitons
and Kac–Moody Lie Algebras; Solitons and Other
Extended Field Configurations; Twistors; Toda Lattices;
Vortex Dynamics; WDVV Equations and Frobenius
Manifolds; Yang–Baxter Equations.
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ª 2006 Elsevier Ltd. All rights reserved.
Introduction

We present the theory of hydrodynamic behavior of
interacting particle systems in the context of exclu-
sion processes, in which no more than one particle
per site is allowed.

Denote by TN = Z=NZ the discrete torus with N
points and let Td

N = (TN)d. The state space EN =
{0, 1}Td

N consists of all configurations obtained by
distributing particles on the discrete torus Td

N respect-
ing the exclusion rule which prevents more than one
particle per site. The configurations are denoted by the
Greek letter 
 so that 
(x) is equal to 0 or 1 if site
x 2 Td

N is vacant or occupied for the configuration 
.
Denote by {�x : x 2 Zd} the group of translations

in EN: (�x
)(z) = 
(xþ z) for each x, z in Zd. Here
and below summations are performed modulo N. A
function f : {0, 1}Zd

! R with finite support is called
a cylinder function.

Fix a family of non-negative cylinder functions
cj, 1 � j � d. Let cx, xþej

(
) = cj(�x
) and consider the
Markov process {
t : t � 0} on EN with generator LN

given by

ðLNf Þð
Þ¼
Xd

j¼1

X
x2Td

N

cx;xþejð
Þ½f ð�x;xþej
Þ�f ð
Þ� ½1�

Here, {e1, . . . ,ed} stands for the canonical basis of Rd

and �x,y
 for the configuration obtained from 
 by
exchanging the occupation variables 
(x) and 
(y):

ð�x; y
ÞðzÞ ¼

ðzÞ if z 6¼ x; y

ðyÞ if z ¼ x

ðxÞ if z ¼ y

8<
: ½2�

In this dynamics at each bond {x, xþ ej} the
occupation variables 
(x), 
(xþ ej) are exchanged
at rate cx, xþej

(
). This happens simultaneously and
independently at each bond.
Notice that the total number of particles is
conserved by the dynamics since only exchanges are
allowed. Denote by �N, K(0 � K � jTd

Nj) the hyper-
plane of all configurations 
 of EN with K particles.
Assume that the rates cj are nondegenerate for 
t to
be an irreducible Markov process on each �N, K.

For 0 � � � 1, denote by 	N
� the Bernoulli

product measure of parameter � on EN. Under 	N
� ,

the variables {
(x), x 2 Td
N} are independent, with

marginals given by

	N
� f
ðxÞ ¼ 1g ¼ � ¼ 1� 	N

� f
ðxÞ ¼ 0g

Assume that the measures 	N
� , 0 � � � 1 are station-

ary for the Markov process 
t. An elementary
computation shows that this is the case if each function
cj does not depend on 
(0), 
(ej), in which case the
process is in fact reversible with respect to 	N

� .
Let Mþ(Td) be the space of finite positive

measures on the torus Td endowed with the
weak topology. For each configuration 
, let
�N = �N(
, du) be the positive measure on Td

obtained by assigning mass N�d to each particle:

�N :¼ N�d
X

x2Td
N


ðxÞ�x=NðduÞ ½3�

where �u stands for the Dirac measure on u. The
measure �N is called the empirical measure asso-
ciated to the configuration 
. The integral of a
continuous function G : Td ! R with respect to �N

is denoted by

h�N;Gi ¼ N�d
X

x2Td
N

Gðx=NÞ
ðxÞ

Fix a density profile �0 : Td ! [0, 1]. A sequence
of probability measures 
N on EN is said to be
associated to �0 if �N converges in probability to
�0(u)du under 
N:

lim
N!1


N

(
h�N;Gi �

Z
Td

GðuÞ�0ðuÞ du

����
���� > �

)
¼ 0



for all continuous functions G : Td ! R and all � > 0.
For a continuous profile 	0 consider, for instance, the
product measure �N

	0(�) on EN whose marginals are
given by

�N
	0ð�Þf�ðxÞ ¼ 1g ¼ 	0ðx=NÞ

It is easy to check that the sequence of probability
measures �N

	0(�) is associated to 	0.
Denote by Wx, xþej

the instantaneous current of
particles from x to xþ ej. This is the rate at which a
particle jumps from x to xþ ej minus the rate at
which a particle jumps from xþ ej to x:

Wx; xþej
¼ f�ðxÞ � �ðxþ ejÞgcx;xþej

ð�Þ

Suppose that the mean value of the current vanishes
under all stationary states �N

� . This denotes that the
average displacement of each particle vanishes in the
mean. In particular, in view of the central limit
theorem, to observe an evolution of the density in
the macroscopic scale, a diffusive rescaling of time is
needed. On the other hand, if there is a net flux of
particles, the evolution has to be examined in the
Euler scale tN.

Denote by �(N) the time rescaling: N2 if the mean
displacement of particles vanishes and N otherwise.
For each probability measure 
N on EN, let P
N be
the probability measure on the path space
D(Rþ, EN) induced by 
N and the Markov process
�t speeded up by �(N). Expectation with respect to
P
N is denoted by E
N .

Denote by �N
t (du) = �N(�t�(N), du) the empirical

measure at time t. Fix a density profile 	0 : Td ! [0, 1]
and a sequence of probability measures 
N on
EN associated to 	0. The goal of the theory of
hydrodynamic limit of interacting particle systems is to
show that for each t > 0,�N

t converges, as N " 1, to
a deterministic path �(t, du) = 	(t, u)du whose density
	 is the solution of some partial differential equation,
called the hydrodynamic equation.

The main tools available are entropy production
and Dirichlet forms. Denote by HN(
Nj�N) the
entropy of a probability measure 
N on EN with
respect to a reference probability measure �N:

HNð
Nj�NÞ¼ sup
f

(Z
EN

f d
N � log

Z
EN

ef d�N

)

where the supremum is carried over all functions
f : EN ! R.

It follows from the general theory of Markov
processes that the entropy of the state of the process
with respect to an invariant state decreases in time.
The rate at which the entropy production decreases
can be estimated by the Dirichlet form: let SN

t be the

semigroup associated to the generator LN defined in
[1] speeded up by �(N). An elementary computation
gives that

HN 
NSN
t j�N

�

� �
þ 2�ðNÞ

Z t

0

ds IN
� 
NSN

s

� �
� HN 
Nj�N

�

� �
Here, IN

� (
N) is the convex and lower semiconti-
nuous functional given by

IN
� ð
NÞ ¼ �hf 1=2;LNf 1=2i�N

�

where f stands for the Radon–Nikodym derivative
d
N=d�N

� and h� , �i�N
�

for the scalar product in
L2(�N

� ).
Therefore, if the initial state 
N has entropy with

respect to a reference measure �N
� bounded by C0Nd,

by convexity of IN
� ,

N�dHN 
NSN
t j�N

�

� �
þ 2t�ðNÞN�dIN

� t�1

Z t

0

ds
NSN
s

� �
� C0 ½4�

for all t � 0. This elementary estimate plays a
fundamental role in the following sections.

The Entropy Method

Consider an exclusion process with generator given
by [1]. Fix T > 0, a density profile 	0 : Td ! [0, 1]
and a sequence of probability measures 
N asso-
ciated to 	0. Let Q
N be the measure on the path
space D([0, T],Mþ(Td)) induced by the process �N

t

and the initial state 
N.
To prove that �N

t converges to 	(t, u)du in
probability, we first show that the sequence Q
N

converges to the probability measure Q� concen-
trated on the deterministic trajectory 	(t, u)du,
whose density is the solution of some partial
differential equation with initial condition 	0. It
follows from this result and general arguments that
�N

t converges to 	(t, u)du for each 0 � t � T.
To prove that Q
N converges to Q�, assume that

we are able to prove tightness of the sequence Q
N .
Since there is at most one particle per site, all limit
points Q� of the sequence Q
N are concentrated on
trajectories �(t, du) = 	(t, u)du, which are absolutely
continuous with respect to Lebesgue.

To characterize the limit points Q�, fix a smooth
function G : Td ! R and consider the martingale

MG;N
t ¼ �N

t ;G
� �

� �N
0 ;G

� �
�
Z t

0

�ðNÞLN �N
s ;G

� �
ds ½5�
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An elementary computation of its quadratic variation
shows that MG, N

t vanishes in L2(P
N ) as N " 1.
Denote by C0 the space of cylinder functions

which have zero mean with respect to all invariant
states �N

� . Assume that the currents W0, ej
, 1 � j � d,

belong to C0 so that a diffusive scaling �(N) = N2 is
in force. Notice that

LN�ðxÞ ¼
Xd

j¼1

Wx�ej; x �Wx; xþej

In particular, after a summation by parts, the
integral term on the right-hand side of [5] can be
written asZ t

0

N1�d
Xd

j¼1

X
x2Td

N

ðrN
uj

HÞðx=NÞWx; xþejðsÞ ds ½6�

where (rN
uj

H)(x=N) = N{H(xþ ej=N)�H(x=N)}.
Notice that this sum is in principle of order N.

To illustrate the entropy method, consider the
symmetric simple exclusion process obtained by
taking cj = 1=2 in [1] and observe that the current
W0, ej

= (1=2){�(0)� �(ej)}. A second summation by
parts permits to rewrite the martingale [5] as

�N
t ;G

� �
� �N

0 ;G
� �

� 1

2

Z t

0

�N
s ;�NG

� �
ds

where �N is the discrete Laplacian.
Since the martingale MG, N

t vanishes in L2(P
N ),
as N " 1, all limit points Q� are concentrated on
weak solutions of the linear heat equation. It remains
to recall that there is a unique weak solution of the
Cauchy problem for the heat equation to conclude
that the sequence Q
N converges to Q�, the
measure concentrated on the deterministic path
�t(du) = 	(t, u)du whose density 	 is the solution of
the heat equation with initial condition 	0.

The symmetric simple exclusion process has the
very special property that the martingale MG, N

t can
be written as a function of the empirical measure.
This is not the case for all the other models, for
which a further argument is needed to close eqn [5]
in terms of the empirical measure.

To present the additional arguments needed,
assume that cj(�) = 1þ [�(�ej)þ �(2ej)]. In this
case, the current W0, ej is equal to

f�ð0Þ � �ðejÞg þ f�ð0Þ�ð�ejÞ � �ðejÞ�ð2ejÞg
þ f�ð0Þ�ð2ejÞ � �ð�ejÞ�ðejÞg

A second summation by parts in [6] permits to
rewrite it asZ t

0

N�d
Xd

j¼1

X
x2Td

N

ð@2
uj

HÞðx=NÞ�xhð�sN2ÞdsþoNð1Þ ½7�

where h(�) = �(0)þ 2�(0)�(�ej)� �(0)�(2ej). The
remainder oN(1) appears because we replaced dis-
crete space derivatives by continuous ones.

In contrast with the symmetric simple exclusion
process, the martingale MG, N

t defined in [5] is not a
function of the empirical measure and an argument
is needed to close the equation.

For each positive integer ‘ and d-dimensional
integer x, denote by �‘(x) the empirical density of
particles in a box of length 2‘þ 1 centered at x:

�‘ðxÞ¼ 1

ð2‘þ 1Þd
X
jy�xj�‘

�ðyÞ

For a cylinder function h : EN ! R, let ~h(�) be the
expected value of h with respect to the invariant
state �N

� : ~h(�) = E�N
�

[h(�)]. For ‘ � 1 and a cylinder
function h, let

V‘ð�Þ ¼
���� 1

ð2‘þ 1Þd
X
jyj�‘
ð�yhÞð�Þ � ~hð�‘ð0ÞÞ

����
Theorem 1 Consider a sequence of probability
measures mN on EN such that IN

� (mN) � C0Nd�2 for
some 0 < � < 1 and some finite constant C0. Then,

lim sup
"!0

lim sup
N!1

E
N N�d
X

x2Td
N

�xV"Nð�Þ

2
4

3
5 ¼ 0

This statement, due to Guo et al. (1988), permits
the replacement of a local function h by a function
of the density of particles over a macroscopic cube.
It is the main step in the proof of the hydrodynamic
behavior of gradient systems, defined below, and its
proof can be found in Kipnis and Landim (1999,
chapter 5).

Assume that the sequence 
N has entropy with
respect to a reference invariant state �N

� bounded by
C0Nd for some finite constant C0. It follows from
[4] that the sequence of measures T�1

R T
0 ds
NSN

s

satisfies the assumptions of Theorem 1. Therefore,
due to the presence of the time integral, we may
replace the cylinder function h in [7] by ~h(�"N(x)).
Since �"N(0) can be written as h�N, �"i, where
�" = (2")�d1{[�", "]d}, we now have expressed the
martingale [5] in terms of the empirical measure.

Repeating the arguments presented for the sym-
metric simple exclusion process, we may conclude
that all limit points Q� of the sequence Q
N are
concentrated on paths �t(du) = 	(t, u)du, whose
density 	 is a weak solution of the parabolic
equation

@t	 ¼�ð	þ 	2Þ
	ð0; �Þ ¼ 	0ð�Þ

(
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because ~h(�) =�þ �2 for h(�) = �(0)þ 2�(0)�(�ej)�
�(0)�(2ej). It remains to show the uniqueness of
weak solutions of this differential equation to
conclude.

The second integration by parts in [6] was possible
because the currents could be written as the difference
of local functions and their translations, a very special
property not shared by most interacting particle
systems. Processes with this attribute are called
gradient systems.

Nongradient Models

Consider an exclusion process with rates cj(�) = 1þ
�(�ej), in which case the current is given by

W0; ej
¼ f�ð0Þ � �ðejÞg þ f�ð0Þ � �ðejÞg�ð�ejÞ

a cylinder function in C0.
Fix T > 0, a density profile 	0 : Td ! [0, 1] and a

sequence of probability measures 
N associated to
	0 and having entropy with respect to a reference
invariant state �N

� bounded by C0Nd for some finite
constant C0. Recall the definition of the sequence of
measures Q
N , assumed to be tight.

To characterize the limit points of Q
N , fix a
smooth function G : Td ! R and examine the
martingale MG, N

t introduced in [5]. After an
integration by parts, the integral term of the
martingale becomes [6]. While a second integration
by parts is possible for the first part of the current
�(0)� �(ej), the second piece remainsZ t

0

N1�d
Xd

j¼1

X
x2Td

N

�
rN

uj
H
�
ðx=NÞ�xwjð�sN2Þ ds ½8�

where wj = {�(0)� �(ej)}�(�ej). Notice the extra
factor N multiplying the sum and that wj belongs
to C0. The next result and Theorem 4 are due to
Varadhan (1994).

Theorem 2 Consider a sequence of probability
measures mN on EN such that HN(mNj�N

� ) � C0Nd

for some 0 < � < 1 and some finite constant C0. Fix a
smooth function G : Td ! R and a cylinder function
� in C0. There exists a seminorm k�k� such that

limsup
N!1

(
EmN

	����
Z T

0

dsN1�d
X

x2Td
N

Gðx=NÞ�x�ð�sN2Þ
����

)2

�C0 TkGk2
2 sup

0���1
k�k2

� ½9�

The explicit form of the seminorm k�k� can be
found in Kipnis and Landim (1999, chapter 7). The
proof of Theorem 2 requires a sharp estimate on the
spectral gap of the generator LN. Denote by �‘

the cube {�‘, . . . , ‘}d and by L�‘
the restriction of

the generator LN to the cube �‘, obtained by
suppressing all jumps from �‘ (resp. �c

‘) to �c
‘

(resp. �‘). For 0 � K � j�‘j, let ��‘, K be the uniform
measure on the configurations of {0, 1}�‘ with K
particles. The following estimate is needed in the
proof of Theorem 2:

Theorem 3 There exists a finite constant C0 such
that

hf ; f i��‘;K
� C0‘

2hf ; ð�L�‘
Þf i��‘;K

for all ‘ � 1, 0 � K � j�‘j and zero-mean function f
in L2(��‘, K).

This result is due to Quastel (1992) for symmetric
simple exclusion processes. Yau developed a general
method to prove sharp estimates for the spectral gap
of the generator for conservative dynamics (see Lu
and Yau (1993) and Yau (1997)).

Since the parallelogram identity is easy to check,
by polarization we can define a semi-inner product
�� , �	� from the seminorm k�k�. Denote by H� the
Hilbert space induced by C0 and the semi-inner
product �� , �	� .

Denote by L the generator [1] extended to Zd.
Notice that Lf belongs to C0 for any cylinder
function f, and that the gradients �(ej)� �(0), and
the currents wj, 1 � j � d, also belong to C0. The
next result states that all functions in H� can be
written as a linear combination of gradients and
cylinder functions in the image of the generator.

Theorem 4 Denote by LC0 the space {Lg : g 2 C0}.
For each 0 � � � 1,

H� ¼ LC0 
 f�ðejÞ � �ð0Þ : 1 � j � dg

In particular, there exists a matrix {Di, j(�) : 1 �
i, j � d} and a sequence of functions {fi, k(�,�) 2
C0 : k � 1}, 1 � i � d, for which

wi þ
Xd

j¼1

Di; jð�Þf�ðejÞ � �ð0Þg � Lfi; kð�; �Þ

vanishes in H� as k " 1. For reversible systems (and
more generally for generators satisfying a sector
condition), it can be shown that the sequence of
local functions fi, k(�, �) can be taken independent of
� : fi, k(�, �) = fi, k(�). Moreover, with a little extra
effort, one obtains a bound uniform in �:

inf
f2C0

sup
0���1

wiþ
Xd

j¼1

Di; jð�Þf�ðejÞ��ð0Þg�Lf

�����
�����
�

¼ 0 ½10�

This estimate together with some algebraic relations
in H� give a variational formula for the matrix Di, j:

126 Interacting Particle Systems and Hydrodynamic Equations



for every vector v in Rd,

v �Dð�Þv ¼ 1

�ð1� �Þ inf
f2C0

Xd

i¼1

viwi � Lf

�����
�����

2

�

½11�

It can also be shown that the matrix D is continuous
and strictly elliptic.

We may now complete the proof of the hydro-
dynamic behavior. Recall that the main difficulty
was to express formula [8] in terms of the empirical
measure. Fix 1 � i � d and consider a sequence of
cylinder functions {fi, k : k � 1} satisfying [10] asymp-
totically as k " 1. Adding and subtracting the
expression

P
1�k�d Dj, k(�"N(0)){�"N(ej)� �"N(0)}�

Lfj, k, [8] becomes the sum of three terms.
The first one is just the expression which appears

inside the expectation in [9] with G = (rN
uj

H) and �
given by

wj þ
Xd

k¼1

Dj; kð�"Nð0ÞÞf�"NðejÞ � �"Nð0Þg � Lfj; k

Since the sequence of measure 
N satisfies the
assumptions of Theorem 2, a modification of the
proof of this theorem, to take into account
the dependence of � on N and ", shows that the limit
of the expectation of the absolute value of the first
term in the decomposition, as N " 1 and then " # 0,
is bounded by

C0 Tk@ujHk
2
2 sup

0���1
k�j; �k2

�

where

�j; �¼ wj þ
Xd

k¼1

Dj; kð�Þf�ðejÞ � �ð0Þg � Lfj; k

By [10], the penultimate expression vanishes as k " 1.
The second term in the decomposition isZ t

0

dsN1�d
Xd

j; k¼1

X
x2Td

N

�
rN

uj
H
�
ðx=NÞ�xLfj; kð�sN2Þ

The presence of the generator L and the diffusive
rescaling of time permit to show that the expecta-
tion of the absolute value of this expression is of
order N�1 for each fixed k.

Finally, the third term is equal to

�
Z t

0

dsN1�d
Xd

j; k¼1

X
x2Td

N

�
rN

uj
H
�
ðx=NÞDj; k

� �"NsN2ðxÞ
� �

�"NsN2ðxþ ekÞ � �"NsN2ðxÞ
� 


A second integration by parts is now possible and
one obtains that the previous expression is equal to

Z t

0

dsN�d
Xd

j; k¼1

X
x2Td

N

�
@2

uj; uk
H
�
ðx=NÞ dj; k �"NsN2ðxÞ

� �
þ oNð1Þ

where d0j, k = Dj, k. We have already seen in the
derivation of the hydrodynamic equation for gradi-
ent systems that this sum can be expressed as a
function of the empirical measure. Since all limit
points are concentrated on paths �t(du) which are
absolutely continuous, this integral converges to

Xd

j; k¼1

Z t

0

ds

Z
Td

du
�
@2

uj; uk
H
�
ðuÞ dj; kð	ðs; uÞÞ

Since the martingale [5] vanishes, all limit points
are concentrated on trajectories �t(du) = 	(t, u)du
which are weak solutions of

@t	 ¼
Xd

j; k¼1

@uj
�j; k þDj; kð	Þ
� �

@uk
	

� 


where D is the strictly elliptic and continuous matrix
given by the variational formula [11]. Here, the
identity matrix �j, k comes from the first piece of the
current which permitted a second integration by
parts. A uniqueness result of weak solutions of the
Cauchy problem with initial condition 	0 concludes
the proof of the hydrodynamic behavior of this
nongradient system.

Hyperbolic Equations

Consider the asymmetric simple exclusion process
obtained by setting cj(�) = �(0)[1� �(ej)] in formula
[1]. Notice that the current W0, ej

= �(0)[1� �(ej)]
has mean �(1� �) with respect to the invariant state
�N
� , suggesting the Euler rescaling of time �(N) = N.
Let � be the partial order on EN defined by � � 


if �(x) � 
(x) for every x in Td
N. The asymmetric

exclusion process is attractive: there exists a
stochastic evolution on EN � EN with the following
two properties: (1) it preserves the order, in the
sense that �t � 
t for all t � 0 if �0 � 
0 and (2) each
coordinate evolves according to the original asym-
metric exclusion dynamics. This coupling, which
may be constructed by letting particles jump
together as much as possible, is the main tool in
the derivation of the hydrodynamic equation of
asymmetric processes.

Fix a smooth function G : Td ! R and recall
definition [5] of the martingale MG, N

t . An elemen-
tary computation shows that the quadratic variation
of this martingale vanishes as N " 1. On the other
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hand, after an integration by parts, the integral term
of the martingale becomesZ t

0

N�d
Xd

j¼1

X
x2Td

N

�
rN

uj
H
�
ðx=NÞ�sNðxÞ

� ½1� �sNðxþ ejÞ� ds

Assume that the state of the process at any
macroscopic time s is close to a product measure
associated to some profile 	(s,�). Since the martin-
gale vanishes asymptotically, taking expectations in
[5], we obtain that the density profile should be a
weak solution of the quasilinear hyperbolic
equation

@t	 þ
Xd

j¼1

@uj
Fð	Þ ¼ 0 ½12�

where F(a) = a(1� a).
It is well known that solutions of this equation

may develop shocks even if the initial profile 	0( � ) is
smooth and that there is no uniqueness of weak
solutions. Several criteria have been introduced to
select the relevant solution among the weak solu-
tions. Kružkov (1970), for instance, in the case
where density profile 	0 : Td ! R is bounded,
proved that there exists a unique measurable
function 	 which satisfies the entropy condition

@t 	� cj j þ
Xd

i¼1

@ui
Fð	Þ � FðcÞj j � 0 ½13�

in the sense of distributions on (0,1)� Td, for
every c 2 R, and which converges to the initial
condition in L1(Td) as t#0: limt! 0 k	t � 	0k1 = 0.

Fix T > 0 and a density profile 	0 : Td! [0, 1].
To couple the original process with another one
starting from a different initial sate, we need to
impose the initial distribution to be of product form.
Consider, therefore, a sequence of ‘‘product’’ prob-
ability measures 
N associated to 	0 and recall the
definition of the sequence of measures Q
N given in
the section ‘‘The entropy method,’’ assumed to be
tight.

We have to prove that all limit points are
concentrated on entropy solutions of [12]. Coupling
the original process �t with another one, denoted by

t, starting from the Bernoulli product measure with
density �, and examining the time evolution ofP

x2Td
N
j�tN(x)� 
tN(x)j, we derive an entropy

inequality at the microscopic level: let �
N be a
sequence of probability measures on the product
space EN � EN whose first coordinate is 
N.
Denote by PN

�
N the measure on the path space
D([0, T], EN � EN) induced by �
N and the coupling

informally described at the beginning of this section.
Rezakhanlou (1991) proved the following theorem:

Theorem 5 For every smooth positive function H
with compact support in (0,1)� Td and every
" > 0,

lim
‘!1

lim
N!1

PN
�
N

"Z 1
0

dt N�d
X

x2Td
N

@tHðt;x=NÞ �‘t ðxÞ� 
‘t ðxÞ
�� ���

þ
Xd

i¼1

ð@ui
HÞðt;x=NÞ F �‘t ðxÞ

� �
�F 
‘t ðxÞ
� ��� ��)��"

#
¼ 1

If we now assume that the second coordinate 
t is
initially distributed according to the stationary state
�N
� , it is not difficult to replace 
‘t in the above

formula by �, obtaining a microscopic version of the
entropy inequality.

In the one-dimensional nearest-neighbor case, by
coupling arguments, we may replace the average
�‘(0) over a large microscopic box by an average
�"N(0) over a small macroscopic box, deriving the
entropy inequality [13]. To conclude the proof it
remains to show, by means of coupling argument
again, that the density profile at time t converges in
L1(Td) to the initial condition as t # 0.

In higher dimensions or in the one-dimensional
non-nearest-neighbor case, it has not been proved
that replacement of �‘(0) by �"N(0) is allowed. One
is thus forced to consider measure-valued solutions
of eqn [12]. Details can be found in Kipnis and
Landim (1999, chapter 8).

Relative Entropy Method

The relative entropy method, due to Yau (1991), is
based on the analysis of the time evolution of the
entropy of the state of the process with respect to
the product measure associated to the solution of the
hydrodynamic equation.

While the entropy method requires uniqueness of
weak solutions and proves the existence of weak
solutions, the relative entropy method requires the
existence of a smooth solution and proves the
uniqueness of such smooth solutions.

Consider the exclusion process with rates cj(�) =
1þ [�(�ej)þ �(2ej)]. We have seen that the hydro-
dynamic equation of this model is given by the
nonlinear parabolic equation

@t	 ¼ �f	þ 	2g ½14�

Fix a profile 	0 : Td ! [0, 1] bounded away from
0 and 1: 0 < � � 	0(u) � 1� �. Let 	(t, u) be the
solution of the hydrodynamic equation [14] with
initial condition 	0 and denote by �N

	(t, �) the product
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measure with slowly varying parameter associated
to the profile 	(t, �):

�N
	ðt;�Þf�; �ðxÞ ¼ 1g ¼ 	ðt; x=NÞ; for x 2 Td

N

Theorem 6 Let {
N : N � 1} be a sequence of
probability measures on EN whose entropy with
respect to �N

	0(�) is of order o(Nd):

HN

�

Nj�N

	0ð�Þ

�
¼ oðNdÞ

Then, the relative entropy of the state of the process
at the macroscopic time t with respect to �N

	(t, �) is
also of order o(Nd):

HN

�

NSN

t j�N
	ðt;�Þ

�
¼ oðNdÞ for every t � 0

It is not difficult to deduce from this result a
strong version of the hydrodynamic limit behavior
of the interacting particle system:

Corollary 1 Under the assumptions of the theorem,
for every cylinder function � and every continuous
function H : Td!R,

lim
N!1

E
NSN
�

	����N�d
X

x2Td
N

Hðx=NÞ�x�ð�Þ

�
Z

Td
HðuÞ~�ð	ðt; uÞÞ du

����


¼ 0

The relative entropy method can be extended to
nongradient systems and to asymmetric processes,
whose macroscopic evolution is described by quasi-
linear hyperbolic equations, up to the first shock.

The hydrodynamic behavior of an interacting
particle system corresponds to a law of large
numbers for the empirical measure. The central
limit theorem is well understood in equilibrium, but
remains to this date an important open question in
nonequilibrium. The large deviations for diffusive
systems have also been investigated, as well as the
hydrodynamic behavior of systems in contact with
reservoirs. The Navier–Stokes equations have been
derived as a correction of the hydrodynamic
equation of asymmetric particle systems. We refer
to Kipnis and Landim (1999) for further details.

See also: Boltzmann Equation (Classical and Quantum);
Bose–Einstein Condensates; Breaking Water Waves;
Fourier Law; Interacting Stochastic Particle Systems;
Macroscopic Fluctuations and Thermodynamic
Functionals; Multi-Scale Approaches.

Further Reading

De Masi A and Presutti E (1991) Mathematical Methods for
Hydrodynamic Limits, Lecture Notes in Mathematics,

vol. 1501. New York: Springer.

Fritz J (2001) An Introduction to the Theory of Hydrodynamic
Limits, Lectures in Mathematical Sciences, vol. 18. Tokyo:

The University of Tokyo, ISSN 09198140.

Guo MZ, Papanicolaou GC, and Varadhan SRS (1988) Nonlinear

diffusion limit for a system with nearest neighbor interactions.
Communications in Mathematical Physics 118: 31–59.

Jensen L and Yau HT (1999) Hydrodynamical Scaling Limits of
Simple Exclusion Models, IAS/Park City Mathematical Series,

vol. 6, pp. 167–225. Providence, RI: American Mathematical
Society.

Kipnis C and Landim C (1999) Scaling Limits of Interacting Particle

Systems. Grundlheren der mathematischen Wissenschaften,
vol. 320. New York: Springer.
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Introduction

According to the basic principles of mechanics, the
motion of atoms and molecules is governed, in the
semiclassical approximation, by the deterministic
Hamiltonian equations of motion. While all evi-
dence points in this direction, for many problems
this Hamiltonian approach is so complicated that it
hardly yields any useful results. A simple example
are many (109) polystyrene balls (size 1mm)
immersed in water. The Hamiltonian description
would have to deal with the degrees of freedom of
all the fluid molecules and all the polystyrene balls.
Clearly, a more useful approach is to collect the
incessant bombardment of a polystyrene ball by
water molecules into a stochastic force acting on the
ball with postulated statistical properties. For
example, following Einstein, one could regard
successive collisions as independent and occurring
after an exponentially distributed waiting time. In
addition to such stochastic forces, the polystyrene
balls are charged and interact with each other
through the screened Coulomb force.

On the one-particle level, stochastic models have a
long tradition within statistical physics. Considerable
part of the classical theory of Markov processes is the
mathematical response to such type of description.
The aspect of interaction is more recent. Its origin can
be traced back to the Metropolis algorithm in early
computer simulations (ffi1953). It was recognized
that the Hamiltonian dynamics is a rather slow tool
to statistically sample the Gibbs equilibrium distribu-
tion Z�1 exp [�H=kBT]. A more efficient route is to
devise a stochastic algorithm which has as its unique
stationary measure the Gibbs distribution. Such
schemes are now known as Markov Chain Monte
Carlo and of extremely wide use, not only in
statistical physics but also in quantum chromody-
namics (QCD) and other quantum field theories. The
time appearing in the stochastic algorithm has no
physical significance; it merely counts how often a
certain operation is performed.

The second clearly identifiable push toward the
use of interacting stochastic particle systems came
from the study of critical dynamics. Close to a point
of second-order phase transition, the equilibrium
properties are very effectively handled by means of
statistical field theories. Thus, it was natural to
search for an extension into the time domain, which
then led to time-dependent Ginzburg–Landau the-
ories, where now time refers to physical time. These
are interacting stochastic models, where one keeps
only a few basic fields, together with their behavior
under time reversal, their vector character, and
whether they are dynamically conserved or not.

In probability theory, interacting stochastic particle
systems date back to the seminal papers by M Kac in
1956 and independently by R L Dobrushin and by
F Spitzer in 1970. Spitzer was motivated by spin-flip
and spin-exchange dynamics, while Dobrushin had
the vision of many locally interacting components. In
the early days, one of the prime goals was the
construction of the stochastic process in infinite
volume, an enterprise which had important mathe-
matical spin-off, for example, the theory of Dirichlet
forms on function spaces. Physical models offer a rich
menu to the probabilist, but there is also considerable
input from other areas. To give just one example: in
queueing theory one considers queues in series, that
is, a customer served at one counter immediately
moves on to the next one. If one regards as field the
number of customers at each counter, one has an
interacting stochastic particle system, the interaction
being mediated through the servers.

This article is split into two sections. In the first
one, we list and explain a few prototypical interact-
ing stochastic particle systems. Of course, the list is
hardly exhaustive and we restrict ourselves from the
outset to models from statistical physics. In the
second part, we summarize prominent lines of recent
research. Again the wealth of material is over-
whelming and we draw the line according to the
rules of mathematical physics.
Model Systems

Our list is determined by the intrinsic mathematical
properties of the stochastic particle system. Alter-
natively, a classification is possible according to the
physical system, which would, however, be less
transparent for our purposes. We restrict ourselves
to models with only position-like degrees of free-
dom, but if needed velocity-like fields may be
included. The most basic distinction is the behavior
under time reversal. A model is called (statistically)
‘‘time reversible’’ if a particular history and its time-
reversed image have the same probability. Techni-
cally, one imposes this through the condition of
detailed balance. Nonreversible systems are much
less explored, but currently a very active area of
research.



Interacting Stochastic Particle Systems 131
Reversible Models

1. Spin-flip, Glauber dynamics. One considers
spins attached to the sites of a regular lattice,
which for symplicity we take as the hypercubic
lattice Zd. The spin at site x 2 Zd is denoted by
�x =�1 and the whole spin configuration is
denoted by �. Thus, the state space of the Markov
processs is {�1, 1}Zd

= �. Spin configurations
evolve in time through random spin flips, that is,
through a change from �x to ��x according to
configuration-dependent rates cx(�). cx(�) is local,
in the sense that it depends only on the spins close
to x, and is translation invariant, that is, if �y is
the shift by y, then cxþy(�y�) = cx(�). If the current
spin configuration is �(t), then after a short
time dt

�xðtþdtÞ¼ �xðtÞ with probability 1�cxð�ðtÞÞdt
��xðtÞ with probability cxð�ðtÞÞdt

�

The update is performed independently at each
lattice site. Technically, it is more concise to specify
the generator, L, of the Markov process. It acts on
local functions f :�!R and is given by

Lf ð�Þ ¼
X
x2Zd

cxð�Þ f ð�xÞ � f ð�Þð Þ ½1�

where � x denotes the configuration � with the spin
at site x reversed. The transition probability from
the configuration � to the configuration �0 in time
t � 0 is given by the matrix element (eLt)�,�0 of the
Markov semigroup eLt.

To impose time reversibility, one needs an energy
function H(�) constructed according to the rules of
equilibrium statistical mechanics. The condition of
detailed balance then reads

cxð�Þ ¼ cxð�xÞe��ðHð�xÞ�Hð�ÞÞ ½2�

with �= 1=kBT the inverse temperature. Note that
on the right only energy differences appear, which
are always well defined. In finite volume the
unique invariant measure is the Gibbs measure
Z�1e��H.

2. Spin-exchange, Kawasaki dynamics, stochastic
lattice gases. We model particles hopping on the
lattice Zd and switch to the occupation variables �x,
where �x = 0 stands for site x empty and �x = 1
stands for site x occupied. The state space is
� = {0, 1}Zd

. Since the number of particles is con-
served, the basic dynamical process is a random
jump of a particle from x to a nearby site y,
provided �y = 0. Therefore, we specify the exchange
rates cxy(�) between x and y. They are local,
translation invariant and symmetric, that is,
cxy(�) = cyx(�). The generator now reads

Lf ð�Þ ¼ 1

2

X
x;y2Zd

cxyð�Þ f ð�xyÞ � f ð�Þð Þ ½3�

where �xy is the configuration � with the occupan-
cies at sites x and y exchanged.

The condition of detailed balance refers to the
exchange and reads

cxyð�Þ ¼ cxyð�xyÞe��ðHð�xyÞ�Hð�ÞÞ ½4�

In [4] we can freely add to H the chemical potential
��
P

x �x. Thus for stochastic lattice gases there is a
one-parameter family of invariant measures, labeled
by the chemical potential �.

3. Interacting Brownian motions. These motions
model, for example, suspensions as mentioned in the
‘‘Introduction’’. One considers a box � � Rd con-
taining N Brownian particles. The jth Brownian
particle has position xj 2 �. Thus, the state space of
the Markov process is �N. We assume that the
Brownian particles interact through a (sufficiently
local) even pair potential U. Then the total potential
energy is

HðxÞ ¼ 1

2

XN
i;j¼1

Uðxi � xjÞ; x ¼ ðx1; . . . ; xNÞ ½5�

The dynamics of the Brownian particles is given
through the stochastic differential equations

dxjðtÞ ¼ �
XN

i¼1;i6¼j

rUðxjðtÞ � xiðtÞÞ dt

þ
ffiffiffiffiffiffiffiffiffi
2D0

p
dWjðtÞ; j ¼ 1; . . . ;N ½6�

Wj(t), j = 1, . . . , N, are a collection of independent
Brownian motions and D0 is the diffusion coeffi-
cient of a single Brownian particle. Equation [6] has
to be supplemented with suitable boundary condi-
tions at the surface @�. Since the forces in [6] are the
gradient of a potential, time reversibility is auto-
matically satisfied with the invariant measure being
Z�1

N exp(�H(x)=D0) dx1 � � � dxN.
4. Ginzburg–Landau models. Ginzburg–Landau

models should be viewed as discretized versions of
stochastic partial differential equations. At every
lattice site x 2 Zd, there is a real-valued field
�x 2 R, a field configuration being denoted by �.
Formally, the state space is RZd

. Since the single-site
space is noncompact, some growth condition at
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infinity must be imposed. Next we give ourselves an
energy, H(�), one standard example being

Hð�Þ ¼
X

x;y2Zd ;jx�yj¼1

ð�x � �yÞ2 þ
X
x2Zd

Vð�xÞ ½7�

The on-site potential increases sufficiently rapidly, so as
to make large field values unlikely. The �-field evolves
according to the set of stochastic differential equations

d�xðtÞ ¼ �
@H

@�x
ð�ðtÞÞdtþ

ffiffiffiffiffiffiffiffi
2=�

p
dWxðtÞ;

x 2 Zd

½8�

where {Wx(t), x 2 Zd} is a collection of independent
Brownian motions. If V(�x) =�2

x, then �(t) is
a Gaussian field theory. To have an Ising-type phase
transition, one would have to choose V(�x) =��2

x þ �4
x.

It is rather simple to modify [8] as to incorporate
a conservation law. To each directed bond (x, y),
jx� yj= 1, one associates the current jxy =�jyx. If
e is a unit vector, jej= 1, then

d�xðtÞ þ
X

e;jej¼1

jxxþeðtÞdt ¼ 0; x 2 Zd ½9�

The current has both a deterministic part, given
through the gradient of a chemical potential, and a
random part:

jxyðtÞdt ¼ � @H

@�x
� @H

@�y

� �
ð�ðtÞÞdt þ dWxyðtÞ;

jx� yj ¼ 1

½10�

where Wxy(t) = �Wyx(t) is a collection of indepen-
dent Brownian motions labeled by nearest-neighbor
bonds. The conserved quantity is

P
x �x. Again, the

dynamics has a one-parameter family of stationary
measures labeled by the ‘‘magnetic field’’. Since in
[8] and [10] the drift is the gradient of a potential,
Ginzburg–Landau models are reversible.

5. Interface dynamics. The scalar field � describes
the location of an interface. The energy of an
interface does not depend on its absolute displace-
ments. Thus, interface models are special Ginzburg–
Landau models, which have an energy H(�)
invariant under the global shift �x ! �x þ a for all
x 2 Zd. An example is

Hð�Þ ¼
X

x;y2Zd ;jx�yj¼1

Vð�x � �yÞ ½11�

with even V. Note that in order to have a normal-
izable equilibrium measure, the interface must be
pinned somewhere.

6. Several components. For lattice gases, there may
be several components. In a Ginzburg–Landau theory
instead of a scalar, Ising-like field, one could consider a
vector-valued, Heisenberg-like, field and require the
energy to be invariant under global rotations of the field
variables. The construction is as before and we do not
have to repeat it.

7. Constrained, glassy dynamics. The constraint is
enforced by setting some of the rates equal to zero.
For example, in the case of standard Glauber
dynamics, one could allow for a spin-flip only if at
least two neighboring spins have the opposite sign.
The Gibbs measure is still invariant, but the approach
to equilibrium will be slowed down due to the
constraint. It may even happen that the configuration
space splits into several invariant subsets.

After this long and still incomplete list, let us turn
to the nonreversible models.
Nonreversible Models

Mathematically, one merely has to drop the condition
of detailed balance. To have a more concrete example,
let Li be the generator for the Glauber dynamics
satisfying detailed balance with inverse temperature
�i, i = 1, 2. Then L = L1 þ L2 generates a nonreversible
dynamics provided �1 6¼ �2. Physically, it corresponds
to coupling the spins to two bulk thermal reservoirs of
different temperatures. Our example leads to a general
point which should be noted: While reversible models
have a wide range of physical applicability, for
nonreversible models nonequilibrium conditions have
to be maintained over sufficiently long time spans,
which poses considerable difficulties experimentally.
Thus on a theoretical level, the efforts go into exploring
properties of, say, semirealistic models.

Very roughly there are two broad classes of
nonreversible models.
Boundary-driven models We consider a finite
volume �. Inside � the dynamics is reversible as
explained before. At the boundary @� the system is
coupled to particle, resp. energy, reservoirs. In case the
boundary chemical potential, resp. temperature, is not
uniform, the dynamics is nonreversible. To be more
concrete let us reconsider the lattice gas discussed in
item (2) (see the discussion following eqn [2]). Inside
� the generator L� is given by [3] and satisfies
detailed balance [4]. The boundary generator is

L@�f ð�Þ ¼
X
x2@�

cxð�Þðf ð�xÞ � f ð�ÞÞ ½12�

where the notation is as in [1] with {�1, 1}
substituted by {0, 1} . cx(�) satisfies [2] with the
same � as in the bulk, but a chemical potential �x

depending on x 2 @�. �x controls the injection/
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absorption of particles at x. The generator for the
nonreversible dynamics is then

L ¼ L� þ L@� ½13�

Bulk-driven models A prototype is the two-
temperature model mentioned above. More widely
studied is a nonconservative force acting globally.
Here the standard example are particles moving in �
with periodic boundary conditions and subject to an
additional uniform force field of strength F, which
clearly cannot be written as the gradient of a
potential. In the case of Brownian particles, by
changing to a comoving frame of reference, one
would be back to the reversible case F = 0. For
lattice gases the lattice provides a fixed frame and
the driven model has properties very different from
the undriven one. This leads us to:

8. Driven lattice gases. The generator L is still
given by [3]. Formally, we insert in [4] instead of H
the Hamiltonian H(�)�

P
x (F � x)�x. The exchange

rates then satisfy the condition of ‘‘local’’ detailed
balance as

cxyð�Þ ¼ cxyð�xyÞ e��ðHð�xyÞ�Hð�ÞÞ

	 e��ðF�ðx�yÞÞð�x��yÞ ½14�

This means, particles preferentially jump in the
direction of F. On the infinite lattice the dynamics
admits two classes of stationary measures. First,
there is the Gibbs measure with particles piling up
along F and formally given by

Z�1 e
��ðHð�Þ�

P
x

ðF�xÞ�xÞ
½15�

With respect to this measure the dynamics is
reversible. Second, there are translation invariant
measures with nonzero steady-state current. This
cannot happen for reversible models. A very widely
studied particular case is the asymmetric simple
exclusion process for which d = 1, H(�) = 0, and
jumps are only to nearest-neighbor sites.
Items of Interest

As there are thousands of research papers in
mathematical physics alone, it is literally impossible
to provide any sort of summary. On the other hand,
the type of questions investigated are generic. Thus,
we just explain what one would like to understand
without paying much attention to the fractal
boundary between ‘‘proven’’ and ‘‘unproven.’’ For
the construction of the stochastic processes listed
above, there is a well-developed probabilistic theory
available. Thus, the main focus is on ‘‘qualitative
properties’’ of the stochastic particle system. As in
the previous section, we distinguish between rever-
sible and nonreversible models.

Reversible Models

1. Equilibrium state. The most basic question
concerns the classification of invariant measures in
infinite volume. By construction, they are the Gibbs
measures for the Hamiltonian appearing in the condi-
tion of detailed balance. In principle there could be
more, which so far has been excluded only in dimension
1 or 2. Properties of the invariant measure belong to the
domain of equilibrium statistical mechanics.

Thus we can turn directly to:
2. Spectral analysis of the generator L. We fix

some extreme Gibbs measure stationary for L.
By detailed balance, eLt is a symmetric Markov
semigroup in L2(�,�). Hence, L is self-adjoint and
L 
 0. Furthermore, it has a nondegenerate eigen-
value 0. The rate of approach to equilibrium is
determined by the spectral gap of L. Related are log-
Sobolev inequalities which serve as a stronger
notion. For models with a conservation law, there
is no spectral gap. Thus, the more appropriate
question is to study how fast the gap vanishes as
the volume � increases. In the case of independent
components, the spectral subspaces for L are
organized as single excitation, double excitation
etc. Such a structure persists as the interaction is
turned on which, on a mathematical level, is similar
to the particle spectrum of a quantum field theory.

Physically more directly relevant are:
3. Spacetime correlations. To be concrete, let us

consider a Ginzburg–Landau field theory �x(t)
starting with a translation invariant Gibbs measure
�. Then �x(t) is a spacetime stationary process. The
two-point correlation function is the covariance

h�xðtÞ�0ð0Þi � h�0ð0Þi2 ½16�

Its Fourier transform is directly linked to energy–
momentum resolved scattering intensity from a probe
which is modeled by the respective Ginzburg–Landau
theory. For t = 0, the expression [16] is the static
correlation, again belonging to the domain of equili-
brium statistical mechanics. The time decay depends
on whether the field is dynamically conserved or not.

Correlation functions do not always capture the
physics of the system well. This is certainly true for:

4. Dynamics at low temperatures. Let us consider
the Glauber dynamics for the ferromagnetic Ising
model in the finite but large volume �. Then there is
a very high free energy barrier between configura-
tions typical for theþ phase and those typical for the�
phase. If one starts the spin system in the þ phase, one
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may study through which configurations the system
moves to the � phase and how much time such a
process will take. If the two phases are symmetric with
the external magnetic field h = 0, the spin system
tunnels, while for h < 0 and small the þ phase is
metastable. Another widely studied situation, also
experimentally, is the quenching from high to low
temperatures. In our context this means that the initial
measure is Bernoulli, while the Glauber dynamics runs
at low temperatures. Then spin clusters coarsen as time
proceeds developing well-defined interfaces which are
governed through motion by mean curvature.

Close to a point of second-order phase transition,
one has to deal with:

5. Critical dynamics. The usual Glauber dynamics
becomes very slow at the critical point and reliable
equilibrium is hard to achieve. It is thus a challenge
to design faster algorithms. One proposal is the
Swendsen–Wang algorithm which is based on the
Fortuin–Kasteleyn representation and flips a whole
cluster of spins simultaneously.

So far we concentrated on statistical properties.
Researchers have been fascinated by the observation
that for stochastic particle systems, the transition to a
deterministic macroscopic evolution can be handled
with full rigor. Such a program has been baptized:

6. Hydrodynamic limit, which is meaningful only
for particle systems with one or several conservation
laws. Let us discuss then a reversible lattice gas with
Hamiltonian H. We start the dynamics with a state
of local equlibrium which is Gibbs with a slowly
varying chemical potential, that is,

Z�1 exp �� Hð�Þ �
X

x

�ð"xÞ�x

 !" #
; "� 1 ½17�

Such a measure is almost time invariant. For small ",
at least approximately, such a structure should
persist in the course of time at the expense of
properly regulating the chemical potential. For our
example, the correct timescale is "�2t in microscopic
units, and the evolution equation for the density,
related thermodynamically to the chemical poten-
tial, is a nonlinear diffusion equation of the form

@

@t
	t ¼ r �Dð	tÞr	t ½18�

We turn to the nonreversible models.
Nonreversible Models

While for reversible models the study of the
stationary Gibbs measure is its own field of inquiry,
here the first entry must be:
7. Nonequilibrium steady state. This steady state is
determined through the dynamics, since the stationary
measure � has to satisfy �(Lf ) = 0 for a sufficiently
large class of functions f. As in equilibrium, phase
transitions may occur. In the nonconservative case it
would mean that the infinitely extended system has
several extreme stationary measures. In the conserva-
tive case, say with the density as locally conserved field,
it would mean that there is an interval of densities for
which there is no extreme stationary measure. Given
the nonequilibrium steady state, one may wonder
about its typical fluctuations and large deviations. In
contrast to thermal equilibrium, weak long-range
correlations are the rule.

8. Spacetime correlations in the steady state.
Through the bulk drive the power-law decay of time
correlations may change. For example for the sym-
metric and asymmetric exclusion process, the steady
states are Bernoulli with density 	, denoted by h�i	. For
the on-site density–density correlation, one finds, for
large t,

h�0ðtÞ�0ð0Þi1=2 �
1

4
ffi t�1=2 for F ¼ 0

t�2=3 for F 6¼ 0

�
½19�

9. Hydrodynamic limit. The concept of slowly
varying conserved fields remains valid; only local
equilibrium must be replaced by local stationarity.
Generically, there are nonzero currents in the steady
state. Therefore, the macroscopic fields change on
the timescale "�1t (cf. item (5)) and are governed by
a hyperbolic conservation law of the form

@

@t
	t þ div jð	tÞ ¼ 0 ½20�

in the case of a single conservation law. Here, j(	) is
the average steady state in the stationary measure at
density 	. Several conservation laws have an intri-
guing rich variety of solutions. Even on the level of
continuum partial differential equations, such sys-
tems of hyperbolic conservation laws still pose
unresolved basic problems.

See also: Ginzburg–Landau Equation; Glassy Disordered
Systems: Dynamical Evolution; Interacting Particle
Systems and Hydrodynamic Equations; Macroscopic
Fluctuations and Thermodynamic Functionals; Stochastic
Differential Equations.
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Introduction

Many important industrial problems involve flows
with multiple constitutive components. Examples
include extractors, separators, reactors, sprays, poly-
mer blends, and microfluidic applications such as DNA
analysis, and protein crystallization. Due to inherent
nonlinearities, topological changes, and the complexity
of dealing with unknown, active, and moving surfaces,
multiphase flows are challenging. Much effort has been
put into studying such flows through analysis, asymp-
totics, and numerical simulation. Here, we focus on
review on studies of multicomponent fluids using
continuum numerical methods.

There are many ways to characterize moving
interfaces. The two main approaches to simulating
multiphase and multicomponent flows are interface
tracking and interface capturing. In interface-tracking
methods (examples include boundary-integral,
volume-of-fluid, front-tracking, immersed-boundary,
and immersed-interface methods), Lagrangian (or
semi-Lagrangian) particles are used to track the
interfaces. In (BIMs), the flow equations are mapped
from the immiscible fluid domains to the sharp
interfaces separating them thus reducing the dimen-
sionality of the problem (the computational mesh
discretizes only the interface). In interface-capturing
methods such as level-set and phase-field methods,
the interface is implicitly captured by a contour of a
particular scalar function.

The equations governing the motion of an
unsteady, viscous, incompressible, immiscible two-
fluid system are the Navier–Stokes equations (the
subscript i denotes the ith flow component):

	i
@ui

@t
þ ui � rui

� �
¼ r � �i þ 	ig; i ¼ 1; 2 ½1�

�i ¼ �piI þ 2�iDi ½2�
where 	i is the density, ui is the fluid velocity, pi is
the pressure, �i is the viscosity, and g is the
gravitational acceleration vector. In eqn [2], �i is
the stress tensor, I is the identity matrix, and Di is
the rate of deformation tensor and defined as
Di = (1=2)(rui þruT

i ). The velocity field is subject
to the incompressibility constraint,

r � ui ¼ 0 ½3�

We let � denote the fluid interface. The effect of
surface tension is to balance the jump of the normal
stress along the fluid interface. This gives rise to a
Laplace–Young condition for the discontinuity of
the normal stress across �:

½�n�� ¼ �
n ½4�

where [�]� denotes the jump �2 � �1 across �,
 is
the curvature of � (positive for a spherical interface),
� is the surface tension coefficient which is assumed
to be constant, and n is the unit normal vector along
� directed toward fluid 2. The fluid velocity is
continuous across �.

In order to circumvent the problems associated
with implementing the Laplace–Young calculation
at the exact interface boundary, Brackbill and
collaborators developed a method referred to as
the continuum surface force (CSF) method. See the
review by Scardovelli and Zaleski (1999). In this
method, the surface tension jump condition is
converted into an equivalent singular volume force
that is added to the Navier–Stokes equations.
Typically, the singular force is smoothed and acts
only in a finite transition region across the interface.
The system of equations [1]–[2] and the boundary
condition, eqn [4] can be combined into the
following distribution formulation that holds in
both phases:

	 ut þ u � ruð Þ¼ � rpþr � ð2�DÞ þ 	g þ Fsing;

r � u ¼ 0 ½5�

where the subscript i is dropped (i.e., it is under-
stood that u = ui in fluid i, etc.,) and Fsing is singular
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surface tension force that is given by Fsing =�����n,
where �� is the surface delta-function.
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Figure 1 VOF representation of an interface: (a) actual

interface, (b) volume fraction, and (c) an approximation to the

interface is produced using an interface reconstruction method

such as piecewise linear approximation as shown.
Numerical Methods for Multicomponent
Fluid Flows

Interface-Tracking Methods

Boundary-integral methods (BIMs) BIMs can be
highly accurate for modeling free surface flows
with relatively regular interface topologies. The
BIM was apparently first used by Rosenhead in
1932 to study vortex sheet roll-up. In this
approach, the interface is explicitly tracked, but
the flow solution in the entire domain is deduced
solely from information possessed by discrete
points along the interface.

BIMs have been used for both inviscid and Stokes
flows. For a review of Stokes flow computations, see
Pozrikidis (2001), and for a review of computations
of inviscid flows, see Hou et al. (2001). For flows
with both inertia and viscosity, volume integrals
must be incorporated into the formulation.

When inertial forces are negligible (left-hand side
term of eqn [1] is dropped), the velocity u(x0) at a
given point x0 on the interface can be obtained by
means of the boundary-integral formulation,

ð�þ 1Þuðx0Þ ¼ 2u1ðx0Þ �
1

4	

Z
�

f ðxÞGðx0; xÞ

� nðxÞ dsðxÞ ½6�

��� 1

4	

Z
�

uðxÞ � Tðx0; xÞ � nðxÞ dsðxÞ ½7�

where � is the viscosity ratio, u1 is an imposed
velocity prevailing in the absence of the interfaces, and
f (x) is the capillary force function f = ��. The tensors
G and T are the Stokeslet and stresslet, respectively:

Gðx0; xÞ ¼
I

r
þ x̂x̂

r3

Tðx0; xÞ ¼ �
6x̂x̂x̂

r5

½8�

where x̂ ¼ x� x0; r ¼ jx̂j ½9�

The boundary conditions at the interface, that is, the
stress balance equation [4] and continuity of the
velocity across the interface, are automatically
satisfied by the boundary-integral formulation.

The normal velocity of the interface �(x, t) is
given by

dx

dt
� nðxÞ ¼ uðx; tÞ � nðxÞ ½10�
The shape of the interface does not depend on the
tangential velocity and there are many possible
choices that can be taken, see Hou et al. (2001).

The principal advantages gained by using BIMs
are the reduction of the flow problem by one
dimension since the formulation involves quantities
defined on the interface only and the potential for
highly accurate solutions if the flow has topologi-
cally regular interfaces. In addition, highly efficient
adaptive surface mesh refinement algorithms have
recently been developed to improve the performance
and accuracy of the methods (Cristini et al. 2001).
The main disadvantages are the development of
accurate quadratures of integrals with singular
kernels (particularly in 3D) and the need for local
surgery of the interface in the event of topological
changes.

BIMs have been successfully used for simulations
of complex multiphase flows: drop deformation and
breakup; jets; capillary waves; mixing; drop-to-drop
interaction; suspension of liquid drops in viscous
flow (e.g., see Cristini et al. (2001), Hou et al.
(2001), and Pozrikidis (2001) and the references
therein).

Volume-of-fluid (VOF) method In the VOF
method (see Scardovelli and Zaleski (1999) for a
recent review), the location of the interface is
determined by the volume fraction cij of fluid 1 in
the computational cell, �ij. In cells containing the
interface 0 < cij < 1, cij = 1 in cells containing fluid 1,
and cij = 0 in cells containing fluid 2 as shown in
Figure 1b.

A VOF algorithm is divided into two parts: a
reconstruction step and a propagation step. A
typical interface reconstruction is shown in
Figure 1c. In the piecewise linear interface construc-
tion (PLIC) method, the true interface, as shown in
Figure 1a, is approximated by a straight line
perpendicular to an interface normal vector nij in
each cell �ij. The normal vector nij is determined
from the volume fraction gradient using data from
neighboring cells. With given a volume fraction cij
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and a normal vector nij, the interface is given by the
straight line with normal nij such that area beneath
the line in cell �ij is equal to cij. More recently,
parabolic reconstructions of the interface have been
used to gain higher-order accuracy for the surface
tension force (e.g., the ‘‘parabolic reconstruction of
surface tension’’ or PROST algorithm).

Once the interface has been reconstructed, its
motion by the underlying flow field must be
modeled by a suitable advection algorithm. The
key here is that the explicit interface reconstruction
enables fluxes to be developed that exactly conserve
mass and do not diffuse the interface.

Capillary effects may be represented by the
continuous surface stress (Scardovelli and Zaleski
1999),

T ¼ ��ðI � n� nÞjr~cj; Fsing ¼ �r � T ½11�

where ~c is a smoothed version of the volume
fraction. For the flows in which the capillary force
is the dominant physical mechanism, the PROST
algorithm discussed above can be used to signifi-
cantly reduce spurious currents due to inaccurate
representation of surface tension terms and asso-
ciated pressure jump in normal stress.

The distribution form of the fluid equations [5] is
typically solved using a variant of the projection
method for incompressible single phase flows.

VOF methods are popular and have been used in
commercial multiphase flow codes, in models of
inkjet printers, flows with surfactants and in many
other applications (e.g., see Scardovelli and Zaleski
(1999) and James and Lowengrub (2004) and the
references therein). The principal advantage of VOF
methods is their inherent volume-conserving prop-
erty. Nevertheless, spurious bubbles and drops may
be created. The reconstruction of the interface from
the volume fractions and the computation of
geometric quantities such as curvature are typically
less accurate than other methods discussed here
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Figure 2 (a) The basic idea in the front-tracking method is to us

Lagrangian mesh, which is used to track the interface. (b). Blow-up

Eulerian mesh, �i , jþ(1=2).
since the curvature and normal vectors are obtained
by differentiating a nearly discontinuous function
(volume fraction).

Front-tracking methods The basic idea behind the
original front-tracking method is the use of two
grids as illustrated in Figure 2. One is a standard,
Eulerian finite difference mesh that is used to solve
the fluid equations. The other is a discretized
interface mesh that is used to explicitly track the
interface and compute surface tension force which is
then transferred to the finite difference mesh via a
discrete delta-function. Front tracking was first
proposed by Richtmyer and Morton and further
developed by Glimm and co-workers.

A similar approach was taken by Unverdi and
Tryggvason (see Tryggvason et al. (2001) and Peskin
(2002) for recent reviews), who combined a moving
grid description of the interface with flow computa-
tions on a fixed grid. In this immersed-boundary
approach, all the fluid phases are treated together by
solving a single set of governing equations. This
method has its roots in the original marker-and-cell
(MAC) method, where marker particles are used to
identify each fluid and the immersed-boundary
method of Peskin and McQueen, that was designed
to track moving elastic boundaries in homogeneous
fluids.

The interface is represented discretely by Lagran-
gian markers that are connected to form a front
which lies within and moves through a stationary
Eulerian mesh.

In Tryggvason’s original implementation, the
basic structural unit is a line segment. Since the
interface moves and deforms during the computa-
tion, interface elements must occasionally be added
or deleted to maintain regularity and stability. In the
event of merging/breakup, elements must be relinked
to effect a change in topology.

The interface is represented using an ordered list
of marker particles xk = ((x1)k, (x2)

k
), 1 � k � N.
A
A

f,k

ui – 1/2, j + 1

ui – 1/2, j 

vi, j  – 1/2

ui – 1/2, j 

ui + 1/2, j + 1

vi , j +  1/2

pij

(c)

e two grids – a stationary finite difference mesh and a moving

of the subgrid control volume in (a). (c) Control volume for the
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The first step in this algorithm is the advection of the
marker particles. A simple bilinear interpolation is
used to find the velocity inside each grid cell (indicated
in Figure 2c). The marker particles are then advected in
a Lagrangian manner. Once the points have been
advected, a list of connected polynomials (px

i (s), py
i (s))

is constructed using the marker particles. This gives a
parametric representation of the interface, with s
typically an approximation of the arclength. Both
lists are ordered and thus identify the topology of the
interface. In later works, higher-order polynomials
have been used (e.g., cubic splines) and semi-Lagran-
gian evolutions have been implemented where other
tangential velocities have been used.

As the interface evolves, the markers drift along
the interface following tangential velocities and
more markers may be needed if the interface is
stretched by the flow. Typically, the markers are
redistributed along the interface to maintain an
accurate interface representation.

Next, we compute the surface tension force,

Fsingðx; tÞ ¼
Z

�ðtÞ
��f �ðx� xf ðsÞÞnf ds ½12�

where the subscript f means values evaluated at the
interface �(t) and s is arclength. The discrete
numerical implementation of this distribution onto
the fixed grid is in the form of a sum over interface
elements, xf , k:

FijðxÞ ¼
X

k

f k�ðx� xf ;kÞ�sk ½13�

where �sk is the average of the straight line
distances from the point xf , k to the two neighboring
points xf , kþ1 and xf , k�1 as indicated by the subgrid
control volume shown in Figures 2a and 2b. The
delta-function is typically taken to be Peskin’s
discrete Dirac delta-function:

�ðx�xf ;kÞ

¼
Q2
i¼1

1

4h
1þ cos

	½xi�ðxf ;iÞk�
2h

� �
if jx�xf ;kj � 2h

0 otherwise [14]

8<
:

Other higher-order alternative forms of the regular-
ized delta-function using the product formula have
recently been proposed.

Using the Frenet relation, the surface tension force
on a short segment of the front is given by

f k ¼
Z B

A

��f nf ds ¼
Z B

A

�
@tf

@s
ds ¼ �ðtB � tAÞ ½15�

where A and B are the segment endpoints that lie
on the boundary of the subgrid control volume
(Figures 2a and 2b), and tf is a tangent vector
computed by fitting a polynomial to the endpoints
of each element.

In the case of flows with varying density and/or
viscosity between the fluid components, there is a
need to calculate the phase indicator function I(x, t)
(defined by interface geometry and position), which
has the value 0 in fluid 1 and 1 in fluid 2. The
indication function can be determined via the
solution of the equation

�Iðx; tÞ ¼ r �
Z

�ðtÞ
nf �ðx� xf ðs; tÞÞds ½16�

This equation is discretized on the Eulerian mesh
and a discrete delta-function (e.g., eqn [14]) is used.
The fluid properties such as density and viscosity are
determined via the indicator function, that is,
�(x, t) = �1 þ (�2 � �1)I(x, t), etc.

As in the volume of fluid algorithm, the distribu-
tion form of the Navier–Stokes equations [5] are
typically solved using a version of Chorin’s projec-
tion method.

An alternative flow solver that can be used to
integrate the flow equations in the presence of an
interface is the immersed-interface method (IIM).
The IIM was developed by Leveque and Li (see the
review Li 2003), and can be used together with
front-tracking as well as level-set methods.

The IIM directly incorporates jump conditions for
the normal stress into the finite difference stencil. The
key idea of this method is to use the jump conditions
in Taylor series expansions of pressure and velocity
near interfaces to derive difference equations that
achieve pointwise second-order accuracy.

The principal advantage of front-tracking algo-
rithms is their inherent accuracy, due in part to the
ability to use a large number of grid points on the
interface. Front-tracking methods can be compli-
cated to implement, particularly in 3D, but give the
precise location and geometry of the interface. In
addition, explicit front tracking permits more than
one interface to be present in a single computational
cell without coalescence, which can be important in
dense bubbly flows, emulsions, etc. One of major
handicaps of front-tracking methods is the difficulty
in modeling topological changes of the interface
such as breakup and coalescence without ad hoc cut-
and-connect and reconnecting parameterized inter-
face (particularly, difficulties in 3D).
Interface-Capturing Methods

Level-set method Level-set methods, introduced by
Osher and Sethian (see the recent review papers
(Osher and Fedkiw 2001, Sethian and Smereka
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2003) and the recent texts (Osher and Fedkiw
2002, Sethian 1999)), are popular computational
techniques for tracking moving interfaces. These
methods rely on an implicit representation of the
interface as the zero set of an auxiliary function
(level-set function). The application of these meth-
ods to incompressible, multiphase flows started with
the work of Osher, Merriman, Sussman, Smereka,
Hou, and their collaborators.

In the level-set method, the level-set function

(x, t) is defined as follows (see Figure 3):


ðx; tÞ
> 0 if x 2 fluid 1
¼ 0 if x 2 � ðthe interface between fluidsÞ
< 0 if x 2 fluid 2

(

and the evolution of 
 is given by


t þ u � r
 ¼ 0 ½17�

which means that the interface moves with fluid.
To keep the interface geometry well resolved, the

level-set function 
 should be a distance function near
the interface. However, under the evolution [17] it
will not necessarily remain as such. We note that
special velocity extensions v off the interface (i.e.,
v = u at the interface, v 6¼ u away from interface)
have been recently developed to better maintain 
 as
a distance function (e.g., Sethian and Smereka (2003)
and Macklin and Lowengrub (2005)). Typically, a
reinitialization step (solving a Hamilton–Jacobi type
equation, eqn [18]) below, is performed to keep 
 as
a distance function near the interface while keeping
original zero-level set unchanged. More specifically,
given a level-set function, 
, at time t, the contours
are redistributed according to the steady-state solu-
tion of the equation

@d

@�
¼ S�ð
Þð1� jrdjÞ; dðx; 0Þ ¼ 
ðxÞ ½18�

where S� is the smoothed sign function defined as

S�ð
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


2 þ �2
p ½19�
where � is usually is one or two grid lengths. After
solving eqn [18] to steady state 
(x, t) is then
replaced by d(x, �steady). Note that d(x, �steady) is
typically a good approximation of the signed
distance function.

The density and viscosity are defined as

�ð
Þ ¼ �2 þ ð�1 � �2ÞH�ð
Þ

and

�ð
Þ ¼ �2 þ ð�1 � �2ÞH�ð
Þ ½20�

where H�(
) is the smoothed Heaviside function
given by

H�ð
Þ ¼

0 if 
 <��
1
2 1þ 


� þ 1
	 sinð	
=�Þ

� �
if j
j ��

1
if 
> �

8>><
>>:

The mollified delta-function is ��(
) = dH�=d
. The
surface tension force is given as

Fsing ¼ ��r �
r

jr
j

� �
��ð
Þ

r

jr
j ½21�

The fluid equations [5] are solved using projection
methods, the IIM or the ghost-fluid (GF) method
(e.g., Osher and Fedkiw (2001, 2002) and Fedkiw
et al. (2003)). The GF method is similar to the IIM
in that jump discontinuities are incorporated in the
finite difference stencil. In the GF algorithm, subcell
resolution is used to mark the interface position and
the values of discontinuous quantities are artificially
extended to grid points neighboring the interface via
extrapolation. A fully second order accurate GF
method for moving interfaces has recently been
developed (Macklin and Lowengrub 2005).

Applications of the level-set method include
multiphase flows, viscoelastic fluid flows and fluid–
structure interactions (e.g., see the reviews Osher and
Fedkiw (2001, 2002), Sethian (1999), and Sethian
and Smereka (2003)).

Advantages of the level-set algorithm include the
simplicity with which it can be implemented, the
ability to capture merging and breakup of interfaces
automatically, and the ease with which the interface
geometry can be described using the level-set
function. A disadvantage of the level-set method is
that mass is not conserved.

Accurate numerical simulations of multiphase
flow and topology transitions require the computa-
tional mesh to resolve both the macroscales (e.g.,
droplet size, flow geometry) and the microscales to
accurately capture local interface geometries near
contact region, van der Waals forces, surfactant
distribution, and Marangoni stresses. Adaptive mesh
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algorithms have recently been used greatly to
increase accuracy and computational efficiency in
level-set methods. Typically, the methods involve
Cartesian adaptive mesh refinement. Problems
tackled using this approach include droplet forma-
tion in inkjet printers and wake development behind
a ship. Another approach, recently developed, is to
use adaptive unstructured mesh refinement (Zheng
et al. 2005), as shown in Figure 4, in which the
impact of a drop onto a fluid interface is captured.
Hybrid Methods

More recently, a number of hybrid methods, which
combine good features of each algorithm, have been
developed. These include coupled level-set volume-
of-fluid (CLSVOF) algorithms, particle level-set
methods, marker-VOF methods and level-contour
front-tracking methods.

Level-set and VOF methods have recently been
combined. The volume fraction is used to maintain
volume conservation, while the level-set function is
used to describe the interface geometry. After every
time step, the volume-fraction function and level-set
function are made compatible. The coupling
between the level-set function 
 and the VOF
function c occurs through the normal of the
reconstructed interface and through the fact that
the level-set function is reset to the exact signed
normal distance to the reconstructed interface
(where the area below the reconstructed interface is
given by the volume-fraction function).

In the particle level-set method, Lagrangian
disconnected marker particles are randomly posi-
tioned near the interface and are passively advected
by the flow in order to rebuild the level-set function
in under-resolved zones, such as high-curvature
regions and near filaments. In these regions, the
standard nonadaptive level-set method regularizes
excessively the interface structure and mass is lost.
The use of marker particles significantly ameliorates
these difficulties.
Recently, a hybrid method has been developed,
which uses both marker particles, to reconstruct and
move the interface, and the volume-fraction function
to conserve volume. In this approach, a smooth
motion of the interface, typical of marker methods is
obtained together with volume conservation, as in
standard VOF methods. This work improves both
the accuracy of interface tracking, when compared
to standard VOF methods, and the conservation of
mass, with respect to the original marker method.

Finally, a hybrid method that combines a level
contour reconstruction technique with front-tracking
methods has recently been developed to auto-
matically model the merging and breakup of inter-
faces in three-dimensional flows.
Phase-Field Method

Phase-field, or diffuse-interface, models are an
increasingly popular choice for modeling the motion
of multiphase fluids (see Anderson et al. (1998) for a
recent review). In the phase-field model, sharp fluid
interfaces are replaced by thin but nonzero thickness
transition regions where the interfacial forces are
smoothly distributed. The basic idea is to introduce
a conserved order parameter (e.g., mass concentra-
tion) that varies continuously over thin interfacial
layers and is mostly uniform in the bulk phases (see
Figure 5).

For density-matched binary liquids (let �= 1
for simplicity), the coupling of the convective
Cahn–Hilliard equation for the mass concentration
with a modified momentum equation that includes a
phase-field-dependent surface force is known as
Model H (Hohenberg and Halperin 1977). In the
case of fluids with different densities a phase-field
model has been proposed by Lowengrub and
Truskinovsky. Complex flow morphologies and
topological transitions such as coalescence and
interface breakup can be captured naturally and in
a mass-conservative and energy-dissipative fashion
since there is an associated free energy functional.
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The phase field is governed by the following
advective Cahn–Hilliard equation:

@c

@t
þ u � rc ¼ r � ðMðcÞr�Þ ½22�

� ¼ F0ðcÞ � �2�c ½23�

where M(c) = c(1� c) is the mobility, F(c) =
(1=4)c2(1� c)2 is a Helmholtz free energy that
describe the coexistence of immiscible phases, and
� is a measure of interface thickness and � � 
 (see
Figure 5). It can be shown that in the sharp interface
limit �! 0, the classical Navier–Stokes system
equations and jump conditions are recovered.

The singular surface tension force is Fsing =
�6

ffiffiffi
2
p

��r � (rc�rc), where � is the surface ten-
sion coefficient. An alternative surface tension force
formulation based on the CSF is Fsing = �6

ffiffiffi
2
p

��r�
(rc=jrcj)jrcjrc.

Recently, very efficient nonlinear multigrid meth-
ods have been developed to solve implicit discretiza-
tions of the Cahn–Hilliard equation (e.g., Kim et al.
(2004)). These schemes have been combined with
projection methods to solve the Navier–Stokes
equations to perform simulations of multiphase
flows.

An example of simulation of liquid thread breakup
using a phase-field method is shown in Figure 6.
A long cylindrical thread of a viscous fluid 1 is in an
infinite mass of another viscous fluid 2. If the thread
becomes varicose with wavelength �, the equilibrium
of the column is unstable, provided � exceeds the
circumference of the cylinder. This is the Rayleigh
capillary instability that results in surface-tension-
driven breakup of the thread.

An advantage of the phase-field approach is that it
is straightforward to include more complex physical
effects. For example, the binary model can be
straightforwardly extended to describe three-
component flows as follows.

Consider a ternary mixture and denote the
composition of components 1, 2, and 3, expressed
as mass fractions, by c1, c2, and c3, respectively.
Therefore,

X3

i¼1

ci ¼ 1; 0 � ci � 1 ½24�

The composition of a ternary mixture (A, B, and C)
can be mapped onto an equilateral triangle (the
Gibbs triangle (Porter and Easterling 1993)) whose
corners represent 100% concentration of A, B, or C
as shown in Figure 7a. Mixtures with components
lying on lines parallel to BC contain the same
percentage of A, those with lines parallel to AC have
the same percentage of B concentration, and
analogously for the C concentration. In Figure 7a,
the mixture at the position marked ‘	’ contains 60% A,
10% B, and 30% C. Because the concentrations sum
to unity, only two of them need to be determined,
say c1, c2.

The evolution of c1 and c2 is governed by the
following advective ternary Cahn–Hilliard equation:

@c1

@t
þ u � rc1 ¼ r � ðMðc1; c2Þr�1Þ ½25�
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@c2

@t
þ u � rc2 ¼ r � ðMðc1; c2Þr�2Þ ½26�

�1 ¼
@Fðc1; c2Þ

@c1
� �2�c1 � 0:5�2�c2 ½27�

�2 ¼
@Fðc1; c2Þ

@c2
� 0:5�2�c1 � �2�c2 ½28�

where M(c1, c2) =
P3

i<j cicj is the mobility and
F(c1, c2) is the Helmholtz free energy that can be
used to model the miscibility of the components. An
example of a free energy (used in the simulation
shown in Figure 8 below) for which fluids 1 and 3
are immiscible and fluid 2 is preferentially miscible
with fluid 3 is:

Fðc1; c2Þ¼ 2c2
1 1� c1 � c2ð Þ2þ c1 þ 0:2ð Þ c2 � 0:2ð Þ2

þ 1:2� c1 � c2ð Þ c2 � 0:4ð Þ2

The contours of F on the Gibbs triangle are shown
in Figure 7b.

The singular surface tension force is Fsing =
�6

ffiffiffi
2
p

�
P3

i = 1 �ir � (rci �rci), where the physical
surface tension coefficients �ij between two fluids i
and j are decomposed into the phase-specific surface
tensions �i such that �ij = �i þ �j.
Figure 8 Evolution of concentration of fluid 1 (top row), 2 (middl

visualized in gray-scale where darker regions denote larger values o
As a demonstration of the evolution possible in
partially miscible liquid systems, we present an
example in which there is a gravity-driven
(Rayleigh–Taylor) instability that enhances the
transfer of a preferentially miscible contaminant
from one immiscible fluid to another in 2D. In this
system, the ternary Cahn–Hilliard system is solved
using nonlinear multigrid methods and a projection
method (Kim and Lowengrub (in press)) is used to
solve the flow equations [5].

In Figure 8 (first column), the top half of the domain
initially consists of a mixture of fluids 1 and 2,
and the bottom half consists of fluid 3, which is
immiscible with fluid 1. The contours of c1, c2, and c3

are visualized in gray-scale where darker regions
denote larger values of c1, c2, and c3, respectively.
In the top row, the contours of fluid 1 are shown, the
middle and bottom rows correspond to fluids 2 and 3,
respectively.

Fluid 2 is preferentially miscible with fluid 3.
Fluid 1 is assumed to be the lightest and fluid 2 the
heaviest. The density of the 1/2 mixture is heavier
than that of fluid 3, so the density gradient induces
the Rayleigh–Taylor instability.

The evolution of the three phases is shown in
Figure 8. As the simulation begins, the 1/2 mixture
falls and fluid 2 diffuses into fluid 3. A characteristic
Rayleigh–Taylor (inverted) mushroom forms, the
e row), and 3 (bottom row). The contours of c1, c2, and c3 are

f c1, c2, and c3, respectively.
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surface area of the 1/3 interface increases, and
vorticity is generated and shed into the bulk.
As fluid 2 is diffused from fluid 1, the pure fluid
1 rises to the top as shown in Figure 8. Imagining
that fluid 2 is a contaminant in fluid 1, this
configuration provides an efficient means of cleans-
ing fluid 1 since the buoyancy-driven flow enhances
the diffusional transfer of fluid 2 from fluid 1 to
fluid 3.

The advantages of the phase-field method are:
(1) topology changes are automatically described;
(2) the composition field c has a physical meaning
not only near interface but also in the bulk phases;
(3) complex physics can easily be incorporated into
the framework, the methods can be straightforwardly
extended to multicomponent systems, and miscible,
immiscible, partially miscible, and lamellar phases
can be modeled.

Associated with diffuse interfaces is a small scale
�, proportional to the width of the interface. In real
physical systems describing immiscible fluids, � can
be vanishingly small. However, for numerical
accuracy � must be at least a few grid lengths in
size. This can make computations expensive. One
way of ameliorating this problem is to adaptively
refine the grid only near the transition layer. Such
methods are under development by various research
groups.

Phase-field methods have been used to model
viscoelastic flow, thermocapillary flow, spinodal
decomposition, the mixing and interfacial stretch-
ing, in a shear flow, droplet breakup process,
wave-breaking and sloshing, the fluid motion near
a moving contact line, and the nucleation and
annihilation of an equilibrium droplet (see the
references in the review paper Anderson et al.
(1998)).
Conclusions and Future Directions

In this paper we have reviewed the basic ideas of
interface-tracking and interface-capturing methods
that are critical in simulating the motion of inter-
faces in multicomponent fluid flows. The differences
between these various formulations lie in the
representation and the reconstruction of interfaces.
The advantages and disadvantages of the algorithms
have been discussed. While there has been much
progress on the development of robust multifluid
solvers, there is much more work to be done.
Promising future directions for research include the
incorporation of adaptive mesh refinement into the
algorithms and the development of efficient hybrid
schemes that combine the best features of individual
methods.
See also: Breaking Water Waves; Capillary Surfaces;
Fluid Mechanics: Numerical Methods; Incompressible
Euler Equations: Mathematical Theory; Inviscid
Flows; Non-Newtonian Fluids; Partial Differential
Equations: Some Examples; Viscous Incompressible
Fluids: Mathematical Theory; Vortex Dynamics.
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Introduction

Intermittency has several meanings in turbulence.
The oldest one, now most often labeled ‘‘external’’
or ‘‘large-scale’’ intermittency, refers to the coex-
istence of turbulent and laminar regions in inho-
mogeneous turbulent flows, such as in boundary
layers or in free shear layers. In those cases, the
interface between laminar irrotational flow and
turbulent vortical fluid is typically sharp and
corrugated. An observer sitting near the edge of
the layer is immersed in turbulent fluid only part of
the time.

The intermittency coefficient � measures the
fraction of turbulent fluid over the sampling
universe over which the statistics are taken. For
example, in a boundary layer such as that in
Figure 1, the intermittency coefficient as a function
of wall distance measures the fraction of turbulent
fluid at a given distance from the wall. External
intermittency is important in any attempt to model
realistic turbulent flows, which are almost always
inhomogeneous. Consider, for example, the classical
homogeneous relation in eqn [1] between the mean
kinetic energy K of the turbulent fluctuations and
the energy dissipation rate " :

" ¼ C
K3=2

L
½1�
where L is the length scale of the largest eddies, and
C 
 0.1 is an experimentally determined constant.
Such relations are often implicit in turbulent models,
and they have to be modified to account for
intermittency. Equation [1] only holds within the
turbulent regions where the energy and the dissipa-
tion rates are KT and "T, while the overall mean
values used in the modeling conservation equations
are K = �KT and "= �"T. The true overall relation
should therefore be

" ¼ C��1=2 K3=2

L
½2�

which may differ substantially from eqn [1],
especially near the edge of the layer. Experimental
values and rough theoretical estimates for the
distribution of the intermittency coefficient are
available for most practical turbulent flows.
Internal Intermittency

While the external intermittency just described is
probably the most important one from the point of
view of applications, it is not the most interesting
from the theoretical point of view. Turbulence is a
multiscale phenomenon which is inhomogeneous
at all length scales, from the largest ones to the
inner viscous cutoff (see Turbulence Theories).
Moreover, this inhomogeneity goes beyond what
could be expected just from the statistics of a
random process. Consider, for example, the velo-
city difference �u between two points separated
by a distance r. The original Kolmogorov formula-
tion of the energy cascade assumes that the
probability density function (PDF), p(�u), is a
universal function in the inertial range of scales,
whose only parameter is a velocity scale depending
on r. It then follows from Kolmogorov’s analysis
that

pð�uÞ ¼ F �u=ð�"rÞ1=3
h i

½3�

where �" is the average energy transfer rate across
scales per unit mass, and the average ( ) is taken
either over the whole flow or over a suitably designed
ensemble of experiments. In an equilibrium system,
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global energy conservation implies that �" is equal to
the average viscous dissipation per unit mass:

�" ¼ �jruj2 ½4�

In eqn [4], the kinematic viscosity of the fluid is �, and
jruj is the L2-norm of the velocity gradient tensor.
Equation [3] is valid as long as the separation r is
much larger than the Kolmogorov viscous cutoff
�= (�3=�")1=4, and much smaller than the integral
scale of the largest eddies L" = u03=�", where u0 is the
root-mean-square value of the fluctuations of one
velocity component. The extent of this inertial range
is a function of the Reynolds number ReL = u0L"=� :

L"=� ¼ Re
3=4
L ½5�

The strict similarity hypothesis in eqn [3] is not well
satisfied by experiments. While the velocity distribu-
tion at a given point is approximately Gaussian,
Figure 2a shows that the velocity increments become
increasingly non-Gaussian as the spatial separation
is made much smaller than L". It was also soon
noted that the dependence of eqn [3] on a single
parameter such as �" was theoretically suspect, since
it is difficult to see how the PDFs of a whole set of
local properties, such as the �u for different
intervals, could depend only on a single global
property. Kolmogorov himself sought to bypass that
difficulty by substituting eqn [3] by a ‘‘refined
similarity’’ hypothesis,

pð�uÞ ¼ F �u=ð"rrÞ1=3
h i

½6�

where "r is no longer a global average, but the mean
value of the dissipation over a ball of radius of order
r centered at the midpoint of the interval. This
refined similarity is better satisfied by experiments
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Figure 2 PDFs of the differences of the velocity component in the

scales). r=L" = 0:02�0:36, increasing by factors of 2; equivalent t

number ReL = 105.. (a) �u is normalized with the global energy dissip

(b) �u is scaled with the locally averaged dissipation over the separ
(see Figure 2b), although, from the practical point of
view, it just transfers the problem of characterizing
�u to that of characterizing the statistics of "r.

It has become customary to measure the behavior
of p(�u) in terms of its structure functions,

SðnÞ¼
Z 1
�1

�unpð�uÞd�u ½7�

which can be normalized as generalized flatness
factors,

�ðnÞ¼SðnÞ=Sð2Þn=2 ½8�

It follows from the strict similarity hypothesis [3] that

SðnÞ� rn=3 ½9�

and that all the �(n) should be independent of the
separation.

For example, the fourth-order flatness of a
Gaussian distribution is �(4) = 3. Figure 3 shows
that this is not true. The flatness increases as the
separation decreases, and it only levels off at lengths
of the order of the Kolmogorov viscous scale. For
separations in that viscous range the flow is smooth,
�u � (@xu)r, and

�ðnÞ � ð@xuÞn=ð@xuÞ2
n=2

½10�

It follows from eqn [10] and from Figure 3 that the
velocity gradients become increasingly non-Gaussian
as L" and � separate at high Reynolds numbers. The
velocity differences across intervals which are large
with respect to � also become very non-Gaussian
when r� L".

Because the velocity difference between two
points which are not too close to each other can be
expressed as the sum of velocity differences over
subintervals, a loose application of the central limit
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Figure 3 Fourth-order flatness of the differences of the

velocity component in the direction of the separation, for
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r=�= 2.. The Reynolds numbers of the different flows range
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Figure 4 Intense vortex tangle in the logarithmic layer of a

turbulent channel. The vortex diameters are of the order of 10�,

and the size of the bounding box is of the order of the channel

width. Reproduced with permission of J C del Álamo.
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theorem would suggest that its PDF should be
roughly Gaussian. The key conditions for that to
happen are that the summands should be mutually
independent, that their magnitudes should be com-
parable, and that each of them has a probability
distribution with a finite variance. The first of those
three conditions is probably a good approximation
if the separation is much longer than the viscous
cutoff, but the second one depends on the structure
of the flow. The experimental non-Gaussian beha-
vior suggests the existence of occasional very strong
velocity jumps. In the viscous range of scales, those
structures have been identified both experimentally
and numerically as very strong linear vortices, in
whose neighborhoods the strongest gradients are
generated. An example of a tangle of such structures
is shown in Figure 4.

In another example, the vorticity in decaying
two-dimensional turbulence concentrates very
quickly into relatively few strong compact vortices,
which are stable except when they interact with
each other. The velocity field is dominated by them,
and the flatness of the velocity increments reaches
values of the order of �(4)�50–100, even at
moderate Reynolds numbers. That case is interest-
ing because something can be said about the
probability distribution of the velocity gradients.
We have noted that the PDF of a sum of mutually
comparable independent random variables with
finite variances tends to Gaussian when the number
of summands is large. This well-known theorem is a
particular case of a more general result about sums
of random variables whose incomplete second
moments diverge as

�2ðsÞ¼
Z s

�s

x2pðxÞdx � s2�� when s!1 ½11�
When 0 < � � 2, the sums of such variables tend
to a family of ‘‘stable’’ distributions parametrized by
�. The Gaussian case is the limit of that family when
�= 2. In the case of two-dimensional vortices with
very small cores, the velocity gradients at a distance
R from the center of the vortex behave as 1=R2. If
we take s in eqn [11] to be one of those velocity
derivatives, its probability distribution is propor-
tional to the area covered by gradients with a given
magnitude, and

�2ðsÞ�
Z s1=2

0

R�42�R dR � s�1 ½12�

The velocity derivatives at any point, which are
the sums of the velocity derivatives induced by all
the randomly distributed neighboring vortices,
should therefore be distributed according to the
stable distribution with �= 1, which is Cauchy’s

pðsÞ¼ c

�ðc2 þ s2Þ ½13�

This distribution has no moments for n >1. Its
tails decay as s�2, and the distribution of the
gradients essentially reflects the properties of the
closest vortex. In real two-dimensional turbulent
flows, the distribution [13] is followed fairly well,
but its extreme tails only reach to the maximum
values of the velocity gradient found within the
viscous vortex cores, which are not exactly point
vortices.
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Other similar general results can be derived that
link the behavior of the structure functions with the
properties of the stable distributions corresponding
to the type of flow singularities expected in the limit
of infinite Reynolds number.

The common feature of the two cases just
described is the presence of strong structures that
live for long times because viscosity stabilizes
them. They are therefore more common than
what could be expected on purely statistical
grounds. They are responsible for the tails of the
probability distributions of the velocity derivatives,
but they are not the only intermittent features of
turbulent flows. The increase of the flatness in
Figure 3 below r �50� is clearly connected with
the presence of the coherent vortices, but even for
larger separations there is a smooth evolution of
�(4) that suggests that the formation of intense
structures is a gradual process that takes place
across the inertial range. Much less is known
about those hypothetical inertial structures than
about the viscous ones.

We can now recast the problem of intermittency
in Navier–Stokes turbulence into geometric terms.
The defining empirical observation for that system is
that the energy dissipation given by eqn [4] does not
vanish even in the infinite Reynolds number limit in
which � !0. This means that the flow has to
become singular as jrujL	=u

0 � Re
1=2
L . The strict

similarity approximation assumes that those singu-
larities are uniformly distributed across the flow, but
the experimental evidence just discussed shows that
this is not true. The singularities are distributed
inhomogeneously, and the inhomogeneity develops
across the inertial cascade. The problem of inter-
mittency is to characterize the geometry of the
support of the flow singularities in the limit of
infinite Reynolds number.

In the absence of detailed physical mechanisms
for the dynamics of the inertial range, most
intermittency models are based on plausible pro-
cesses compatible with the invariances of the
inviscid Euler equations. The precise power law
given in eqn [9] for the structure functions depends
on the strict similarity hypothesis [3], but the fact
that it is a power law only depends on the scaling
invariances of the equations of motion. The
energies and sizes of the eddies in the inertial
range are too small for the integral scales of the
flow to be relevant, and too large for the viscosity
to be important. They therefore have no intrinsic
velocity or length scales. Under those conditions,
any function of the velocity which depends on
a length has to be a power. Consider a quantity
with dimensions of velocity, such as u(r) = S(n)1=n,
which is a function of a distance such as r.
On dimensional grounds we should be able to
write it as

uðrÞ ¼ UFð
Þ ½14�

where 
= r=L, and L and U(L) are arbitrary length
and velocity scales. The value of u(r) should not
depend on the choice of units, and we can
differentiate eqn [14] with respect to L to give

@Lu ¼ðdU=dLÞFð
Þ �U
L�1ðdF=d
Þ¼0 ½15�

which can only be satisfied if

dF

d

¼ �F)F � 
� ½16�

and �= L(dU=dL)=U is constant. This suggests
generalizing eqn [9] to

SðnÞ�r �ðnÞ ½17�

where the exponents are empirically adjusted. Only
�(3) = 1 can be derived directly from the Navier–
Stokes equations. Equation [17] implies that �(n)
satisfies a power law with exponent �(n)� n�(2)=2.
In Figure 3, for example, the flatness follows a
reasonably good power law outside the viscous
range, consistent with �(4)� 2�(2)� �0.12. The
anomalous behavior near the viscous limit, and
similar limitations at the largest scales, mean that
only very high Reynolds number flows can be used
to measure the scaling exponents, and that the range
over which they are measured is never very large.
Moreover, the integrand of the higher-order struc-
ture functions peaks at the extreme tails of the
probability distributions of the velocity differences,
which implies that very long experimental samples
have to be used to accumulate enough statistics to
measure the high-order exponents. For these and for
other reasons, the scaling exponents above n & 8�10
are poorly known. This is unfortunate because we
will see later that some of the most interesting
intermittency properties of the velocity field, such as
the nature of the flow singularities in the infinite
Reynolds number limit, depend on the behavior of
the �(n) for large n.

Experimental values for the scaling exponents are
given in Table 1. They are generally smaller than the
ones predicted by the strict similarity approxima-
tion, implying that the moments of the velocity
differences decrease with the separation more slowly
than they would if they were self-similar, and
suggesting that new stronger structures become
important as the scale decreases.

Note that we have included in the table values for
odd-order powers. Up to now we have not specified



Table 1 Longitudinal scaling exponents

Order Experimental Strict similarity

2 0:.70	 .:01 0.667

3 1.00 1

4 1:.30	 .:03 1.333

5 1:.56	 .:04 1.667

6 1:.79	 .:03 2.000

7 1:.99	 .:10 2.333

8 2:.22	 .:05 2.667

The values on the second column are averages from different

experiments, and the standard deviations reflect scatter among

experiments. The third column is the value from the strict

similarity equation [9].
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which velocity component is being analyzed, but
most experiments refer to the one in the direction
of the separation. That is the easiest case to
measure, specially if time is used as a surrogate
for distance, and those PDFs are not symmetric
even in isotropic turbulence. Negative increments
are more common than positive ones because of the
extra energy required to stretch a vortex, and the
effect is clearly visible in the distributions in
Figure 2. Those longitudinal odd-order structure
functions do not vanish, and their scaling expo-
nents are the ones given in the table. The transverse
structure functions are those in which the velocity
component is normal to the separation, and their
odd-order moments vanish by symmetry in iso-
tropic turbulence. There has been a lot of discus-
sion about whether the longitudinal scaling
exponents of even orders differ from the transverse
ones. Early results suggested that the latter are
lower than the former, undermining the case for
intermittency theories based on similarity argu-
ments, and suggesting that a more mechanistic
approach was needed. The present consensus
seems to be that both sets of exponents are
equal, but that there are residual effects of low
Reynolds numbers and of flow anisotropy that are
difficult to avoid experimentally. The question is
still open.
Multiplicative Models

The most successful phenomenological models for
the geometry of intermittency are based on the
concept of a multiplicative cascade. Consider some
flow property v, such as the locally averaged
energy transfer rate by eddies of size rk, which
cascades into smaller eddies of size rkþ1 which is
some fraction of rk. Denote by pk(vk) the
probability distribution of the value of v at the
step k of the cascade.

Assume that the cascade is Markovian in the sense
that the probability distribution of vk depends only
on its value in the previous step,

pkþ1ðvkþ1Þ¼
Z

pTðvkþ1jvk; kÞpkðvkÞ dvk ½18�

This is in contrast to some more complicated
functional dependence, such as on the values of vk

in some extended spatial neighborhood, or on
several previous cascade stages. This assumption
intuitively implies that vkþ1 evolves faster, or on a
smaller scale, than vk, and that it is in some kind of
equilibrium with its precursor. If the cascade is
deterministic in that sense, vk can be represented as
a product

vk=v0 ¼ qkqk�1. . . q1 ½19�

in which the factors qk = vk=vk�1 are statistically
independent of each other.

If the underlying process is invariant to scaling
transformations, the transition probability density
function has to have the form

pTðvkþ1jvkÞ¼ v�1
k wðqkþ1; kÞ ½20�

The multiplicative model works most naturally
for positive variables, and we will assume that
to be the case in the following, but most results
can be generalized to arbitrary distributions. We
will also assume for simplicity that all the
cascade steps are equivalent, so that the distribu-
tion w(q) of the multiplicative factors is indepen-
dent of k, and depends only on our choice for
rkþ1=rk.

Local deterministic self-similar cascades lead
naturally to intermittent distributions, in the sense
that the high-order flatness factors for vk become
arbitrarily large as k increases. It follows from eqns
[18]–[20] that the nth order moment for pk can be
written as

SkðnÞ¼
Z
�npkð�Þ d�¼S0ðnÞSwðnÞk ½21�

where Sw(n) is the nth order moment of the
multiplicative factor q, and n is any real number
for which the integral exists. If we define flatness
factors as in eqn [7], we can rewrite eqn [21] as

�kðnÞ¼�0ðnÞ�wðnÞk ½22�

It follows from Chebichev’s inequality that

SðnÞ� Sðn� 2ÞSð2Þ� Sðn� 4ÞSð2Þ2 . . . ½23�
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from where

1 � �ð4Þ � �ð6Þ . . . ½24�

which is true for any distribution of positive
numbers. Equality only holds for trivial distributions
concentrated on a single value. The product in eqn
[22] therefore increases without bound with the
number of cascade steps, and the flatness factors
diverge.

It is tempting to substitute k in [21] by a
continuous variable, in which case the PDFs form
a continuous semigroup generated by infinitesimal
scaling steps. This leads to beautiful theoretical
developments, but it is not necessarily a good idea
from the physical point of view. For example, while
it might be reasonable to assume that the properties
of an eddy of size r depend only on those of the
eddy of size 2r from which it derives, the same
argument is weaker when applied to eddies of
almost equal sizes. We will restrict ourselves here
to the discrete case.

Limiting Distributions

The multiplicative process just described can be
summarized as a family of distributions pk(vk) such
that the probability density for the product of two
variables is

pðvk1
vk2
Þ¼pk1þk2

ðvk1þk2
Þ ½25�

and it is natural to ask whether there is a limiting
distribution for large k. We know that, in the case of
sums, rather than products, such distributions tend
to be Gaussian under fairly general conditions, and
the first attempt to analyze [25] was to reduce it to a
sum by defining

z ¼ k�1 logðvk=v0Þ ½26�

The argument was that z would tend to a Gaussian
distribution, and that the limiting distribution for vk

would be lognormal. This was soon shown to be
incorrect. The central part of the distribution
approaches lognormality, but the tails do not,
because the central limit theorem says nothing
about their behavior. The family of lognormal
distributions is a fixed point of eqn [25], but it is
unstable, and it is only attained if the individual
generating distributions are themselves lognormal.

The lognormal distribution has moments

SwðnÞ ¼ expðanþ bn2Þ ½27�

which are conserved under [21], so that the product
of lognormally distributed variables stays lognormal.
The moments in eqn [27] are generated by the
recursive relation
QwðnÞ¼
Swðnþ 3ÞS3

wðnþ 1Þ
SwðnÞS3

wðnþ 2Þ ¼ 1 ½28�

with suitable conditions for n < 2. Under [21],
Qk(n) = Qk

w(n), and it is clear that only when all
the Qw(n) are exactly equal to 1 do they continue to
be so under multiplication. Otherwise, any Qw

initially larger than 1 tends to infinity after enough
cascade steps, while any one initially smaller than 1
tends to 0. Only an exactly lognormal distribution
of the generating factors results in a lognormal
limiting distribution, and even small errors lead to
very different patterns of moments. This contrasts
with the situation for sums of random variables, in
which the Gaussian distribution is not only a fixed
point, but also has a very large basin of attraction.
Multifractals

The problem with using the transformation [26] to
find the limiting distribution of a multiplicative
process is not so much the technique of analyzing
the statistics of products in terms of those of sums,
but the inappropriate use of the central limit
theorem. It can be bypassed by using instead the
theory of large deviations of sums of random
variables. The key result is obtained by expanding
the characteristic function of pk when k
 1, and
states that

pkðvkÞ�
�
000
2�k

� �1=2
ek½
ðzÞ�z� ½29�

where z is defined as in [26] and 
, which plays the
role of an entropy, is a smooth function of z. Primes
stand for derivatives with respect to z. Let us define
zn as the point where


0n � 
0ðznÞ¼ �n ½30�

which corresponds to the location of the maximum
of 
þ nz. The entropy 
 can be computed from the
moments of the transition probability density. Using
Laplace’s method to expand the nth moment of pk,
we obtain

SkðnÞ ¼
Z 1
�1

kekðnþ1ÞzpkðvkÞ dz

� 
000

00n

� �1=2
ekð
nþnznÞ ½31�

from where, using [21],

�n � log SwðnÞ ¼ 
ðznÞ þ nzn ½32�

The essence of Laplace’s approximation is that, for
k
 1, most of the contribution to the integral in
eqn [31] comes from the neighborhood of zn, so that
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it makes sense to consider each such neighborhood
as a separate ‘‘component’’ of the cascade.

The geometric interpretation of this classification
into components as a multifractal was developed in
the context of three-dimensional homogeneous
turbulence. We have up to now assumed very little
about the nature of each cascade step, but it is
natural in turbulence to interpret it as the process in
which eddies decay to a smaller geometric scale. The
argument works for any variable for which scale
similarity can be invoked, but we have seen that
most experiments are done for the magnitude of the
velocity increments across a distance r. If we
assume for simplicity that rk=rkþ1 = e, so that
rk=r0 = exp(�k), eqns [26] and [29] can be written as

vk=v0 ¼ ðrk=r0Þ�zn ; pkðznÞ � ðrk=r0Þ�
n ½33�

The multifractal interpretation is that the ‘‘compo-
nent’’ indexed by n, whose velocity increments are
‘‘singular’’ in terms of r with exponent zn, lies on a
fractal whose volume is proportional to its prob-
ability, and which therefore has a dimension
D(zn) = 3þ 
n.

Note that eqn [32] implies that the scaling
exponents in eqn [17] can now be expressed as

�ðnÞ ¼ � log SwðnÞ ¼ ��n ½34�

There was an enumeration there of several things
which are equivalent: the exponents, the spectra, the
distribution, and the limiting distribution p1(v) –
univocally determine each other. Note however that
different quantities have different scaling exponents.
For example, it follows from eqn [6] that, if the
scaling exponents for the local dissipation are
�"(n), the exponents for �u would be
��u(n) = n=3þ �"(n=3).

Some properties can be easily derived from the
previous discussion. If we assume, for example, that
the multiplicative factor q is bounded above by qb,
which is reasonable for many physical systems, eqn
[26] implies that zn � log qb. In fact, if the transition
probability behaves near qb as w(q)� (qb � q)�, the
scaling exponents tend to

�n ¼ n log qb � ð� þ 1Þ log nþOð1Þ ½35�

for n
 1. In the case in which w(q) has a
concentrated component at q = qb, the log n is
missing in eqn [35]. In all cases, the singularity
exponent of the set associated with n!1 is
z1= log qb, because the very high moments are
dominated by the largest possible multiplier. In the
case of a concentrated distribution the dimension of
this set approaches a finite limit, but otherwise

DðnÞ��ð� þ 1Þ log n ½36�
which becomes infinitely negative. This should not
be considered a flaw. The set of events which only
happen at isolated points and at isolated instants has
dimension D = �1 in three-dimensional space, and
those which only happen at isolated instants, and
only under certain circumstances, have still lower
negative dimensions. Sets with very negative dimen-
sions are however extremely sparse, and are difficult
to characterize experimentally.

The multifractal spectrum of the velocity differ-
ences in three-dimensional Navier–Stokes turbulence
has been measured for several flows in terms of the
scaling exponents, and appears to be universal. The
probability distribution w(q) of the multipliers has
also been measured directly, and agrees well with
the values implied by the exponents. It is also
approximately independent of r, although not
completely, perhaps due to the same experimental
problems of anisotropy and limited Reynolds
number which plague the measurement of the
scaling exponents. There has been extensive theore-
tical work on the consequences of imposing various
physical constraints on the multipliers, specially the
conservation requirement that the average value of
the dissipation has to be conserved across each
cascade step. Several simple models have been
proposed for the transition distribution which
approximate the experimental exponents well, but
the relation lacks specificity. Models that are very
different give very similar results, and it is impos-
sible to choose among them using the available data.

Multiplicative cascades and the resulting inter-
mittency are not limited to Navier–Stokes turbu-
lence. The equations of motion have only entered
the discussion in this section through the assumption
of scaling invariance. Multifractal models have in
fact been proposed for many chaotic systems, from
social sciences to economics, although the geometric
interpretation is hard to justify in most of them. It is
also important to realize that the fact that a given
process can in principle be described as a cascade
does not necessarily mean that such a description is
a good one. Neither does a cascade imply a
multiplicative process. For each particular case, we
need to provide a dynamical mechanism that
implements both the cascade and the transition
multipliers. In three-dimensional Navier–Stokes
turbulence, the basic transport of energy to smaller
scales and to higher gradients is vortex stretching.
The differential strengthening and weakening of the
vorticity under axial stretching and compression
also provide a natural way of introducing the self-
similar transition probabilities of the local dissipation.

Examples of nonintermittent cascades abound.
We have already mentioned that the vorticity in
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decaying two-dimensional turbulence gets concen-
trated into stable vortex cores which eventually
block the decay. The resulting enstrophy distribu-
tion is highly intermittent, but it is not well
described by a multifractal. Conversely, forced
two-dimensional turbulence is dominated by an
inverse energy cascade to larger scales, which is not
intermittent.

In addition, the intermittency of some systems is
not a small-scale effect. Turbulent mixing of a
passive scalar, which is the key process in
turbulent heat transfer and in the atmospheric
dispersion of pollutants, is an extremely intermit-
tent phenomenon. The gradients of the scalar tend
to be very localized, but they concentrate in sheets,
narrow in thickness but otherwise extended. Some
progress has recently been made on a simplified
model due to Kraichnan for this problem, which is
the linear stirring of a passive scalar by a random
noise with delta correlation. Its statistics have been
computed analytically, but the constraints of
linearity and of uncorrelated forcing are strong,
and the same methods do not appear to be
extensible to mixing by real turbulence (see
Lagrangian Dispersion (Passive Scalar)). Another
problem in which intermittency is confined to
large-scale surfaces is the motion of a three-
dimensional pressureless gas, which has been used
as a model for hypersonic turbulence and for the
large-scale evolution of dark matter in the early
universe.

In summary, intermittency is a fascinating property
of many random systems, including three-dimensional
Navier–Stokes turbulence, which interferes, sometimes
strongly, with their description by simple cascade
models. Significant advances have been made in its
quantitative kinematic analysis. In some cases we also
have a qualitative understanding of its roots. But in very
few cases do we understand it well enough to make
quantitative predictions.

See also: Ergodic Theory; Incompressible Euler
Equations: Mathematical Theory; Lagrangian Dispersion
(Passive Scalar); Turbulence Theories; Vortex Dynamics;
Wavelets: Applications.
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Introduction

Intersection theory is the theory that governs the
rigorous definition of intersections of cycles. This
can take place in a variety of mathematical contexts,
for instance, the intersections of two cycles on an
oriented manifold in algebraic topology, of two
currents on a differentiable manifold in differential
geometry, or of two subvarieties on a nonsingular
algebraic variety in algebraic geometry.
In algebraic geometry the theory is especially well
developed (Fulton 1998). A cycle on an algebraic
variety (or scheme) is a formal linear combination of
irreducible closed subvarieties. These are subject to
an equivalence relation called rational equivalence.
For every rational function on every subvariety, its
zero set is deemed rationally equivalent to its poles
(with appropriate multiplicities).

As an example, in the complex projective plane
CP2, any two lines are rationally equivalent since
the ratio of two linear forms will vanish on one line
and have a pole along the other. Similarly, a curve
of degree d is rationally equivalent to d lines. Any
two points in CP2 can be joined by a line (a copy of
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CP1), and a rational function on CP1 can be chosen
to vanish at one point and have a pole at the other.
The groups of cycles modulo rational equivalence,
known as Chow groups, are

CH2ðCP2Þ ffi Z; generated by the fundamental

class ½CP2�
CH1ðCP2Þ ffi Z; generated by the class of a line

CH0ðCP2Þ ffi Z; generated by the class of a point

Two distinct lines ‘1 and ‘2 meeting at a point p have
this point as their intersection-theoretic product:

½‘1� � ½‘2� ¼ ½p� ½1�

Intersection theory must also provide a self-intersection
[‘1] � [‘1]. Because ‘1 and ‘2 are rationally equivalent,
this must also be the class of a point, but symmetry
precludes the choice of a distinguished point on ‘1.
Instead, [‘1] � [‘1] is declared to be the rational
equivalence class of a point on ‘1, an element of
CH0(‘1) rather than a specific cycle. This example
illustrates that intersections cannot generally be defined
on the level of cycles.
Algebraic Intersection Products

Refined Intersections

For a general nonsingular variety X, say of dimen-
sion m, if U and V are subvarieties of X of respective
dimensions c and d, then there is a refined
intersection product

½U� � ½V� 2 CHcþd�mðU \ VÞ ½2�

The traditional definition of the intersection
product is based on two ideas. First, given two
cycles that intersect properly, which by definition
means that no component of their intersection has
codimension less than the sum of the codimensions
of the given cycles, the intersection product should
be a formal sum of these components, each with a
multiplicity that correctly reflects the geometry of
the intersection. Second, given two arbitrary cycles,
it should be possible to replace one of them by a
rationally equivalent cycle which intersects the other
properly.

While these ideas are simple, it took several
decades for them to be carried out successfully.
The case of curves on a surface meeting at a point
was understood in the nineteenth century. General-
izing the classically understood canonical divisor
class on a variety, work in the 1930s by Severi,
Todd, and others showed that there are groups of
equivalence classes of cycles in which canonical
invariants of higher degrees can be defined (in
modern language, higher Chern classes of the
tangent bundle). Weil’s foundations for algebraic
geometry of the 1940s included a study of intersec-
tions of cycles. It was not until the 1950s that the
notion of Chow groups was formalized and inter-
section theory was properly developed in this
context. Chevalley, Chow, Samuel, Severi, and
others contributed essential components of the
theory. In an interesting parallel development, an
intersection theory based on intersection multipli-
cities in algebraic topology was put forth by
Alexander and Lefschetz in the 1920s, a decade
before the introduction of the cup product in
cohomology.
Deformation to the Normal Cone

In the 1970s, Fulton and MacPherson established a
construction of the intersection product in algebraic
intersection theory that does not require moving
cycles into general position. To accomplish this, they
used an elegant geometric construction known as
deformation to the normal cone.

Let i : X! Y be an embedding of codimension d
of nonsingular varieties. Let V be a subvariety of Y
of dimension k whose intersection with X is of
interest. We may view X as the zero set of a section s
of some algebraic vector bundle E on Y. By

ðy; �Þ 7! ð��1sðyÞ; �Þ

we have a map of the product of Y with the
punctured affine line, Y � (A1 n {0}), into E�A1.
We denote the closure of the image by M�

XY. An
alternative, more intrinsic description is in terms of
the blowup construction of algebraic geometry:

M�
XY ¼ BlX�f0gðY �A1Þ

Geometrically, M�XY has a copy of Y over each � 6¼ 0
and a copy of the normal bundle NXY over �= 0. This
is the key construction that Fulton and MacPherson
make use of. The same construction applied to V, that
is, the closure of V � (A1 n {0}) in M�

XY, has over 0 a
sort of singular normal bundle known as the normal
cone

CX\VV � NXYjX\V

One of the properties of Chow groups is that they
are unchanged upon pullback to the total space of a
vector bundle (apart from the obvious dimension
shift). The refined intersection of V with X, denoted
i![V], is defined to be the unique element of
CHk�d(X \ V) whose pullback to NXY is equal to
[CX\VV].
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This single construction encompasses and inter-
polates between two extreme cases of intersections:

i!½V� ¼ ½X \ V� when X and V

meet transversely
½3�

i!½V� ¼ cdðNXYÞ \ ½V� when V � X ½4�

Equation [3] makes reference to transverse inter-
section, a notion that is stronger than proper
intersection. In situations when it applies, for
example, in eqn [1], it signifies that intersection
operations behave as one might expect. Equation
[4] includes the self-intersection formula which says
that [X] � [X] is equal to the top Chern class of
NXY.

With this construction, which is well documented
in Fulton (1998), the general refined intersection in
eqn [2] is obtained by reduction to the diagonal. Let
�X denote the diagonal inclusion X! X�X of the
nonsingular variety X. For subvarieties U and V of
X, we define

½U� � ½V� ¼ �!
X½U � V� ½5�

Equation [5] makes the Chow groups of X into a
ring, the Chow ring CH	(X), which is graded by
codimension by setting

CHkðXÞ ¼ CHm�kðXÞ
Links with Topology

Cycle Map to Homology

For algebraic varieties over the complex numbers,
there is a cycle map which links the Chow groups
with a topological homology group. If X is an
algebraic variety over C, then let H	(X) denote the
Borel–Moore homology of X, that is, the homology
of locally finite singular chains on X (viewed as a
topological space with the classical topology). If X is
embedded as a closed subset of an oriented
differentiable manifold M, then there are
identifications

HiðXÞ ffi Hn�iðM; M nXÞ ½6�

where n is the dimension of M. There is a cycle class
map

CHkðXÞ ! H2kðXÞ

which sends the class of each irreducible subvariety
Z of dimension k in X to its fundamental class
[Z] 2 H2k(X).

Let M be an oriented differentiable manifold of
dimension n and let X and Y be closed subsets of M.
Then the cup product Hi(M, MnX)
Hj(M, MnY)
! Hiþj(M, Mn(X \ Y)) induces, via eqn [6], an
intersection product

HiðXÞ 
HjðYÞ ! Hiþj�nðX \ YÞ

which is the topological analog of the refined
intersection product of eqn [5]. The products are
compatible via the cycle class map. The topology of
complex algebraic varieties and the compatibilities
between algebraic and topological intersections are
discussed in Fulton (1998). An interesting applica-
tion of this interplay of intersection theories is the
convolution product in Borel–Moore homology,
which is important in geometric representation
theory (see Chriss and Ginzburg (1997)).
Riemann–Roch Theorems

The classical Riemann–Roch theorem relates the
dimensions of linear systems on an algebraic curve
(algebraic quantities) with their degrees and
the curve’s genus (topological quantities). The
Hirzebruch–Riemann–Roch theorem states that on
a nonsingular projective variety X, if E is an
algebraic vector bundle on X and �(E) denotes its
Euler characteristic (the alternating sum of the ranks
of the sheaf-theoretic cohomology groups), then

�ðEÞ ¼
Z

X

chðEÞ � tdðTXÞ ½7�

where
R

X denotes the degree of the zero-dimensional
component of the quantity that follows, and the Chern
character ch(E) and Todd class td(TX) are certain
standard universal polynomials of Chern classes.

Grothendieck had the inspired idea that eqn [7]
could be generalized to a covariance property for the
Chern character times the Todd class. If X and Y are
nonsingular varieties and f : X! Y is a projective
morphism (or, more generally, a proper morphism),
then there is a well-defined push-forward f	 on
Chow groups. There is also a kind of push-forward
for vector bundles. The Grothendieck group of
vector bundles on X, denoted K0(X), is the group
of formal linear combinations of vector bundles,
modulo the relations [E] = [E0]þ [E00] whenever E0 is
a sub-bundle of E with quotient bundle E00. Every
coherent sheaf F has a well-defined class in K0(X),
namely, the alternating sum of [Ei] where E� is any
finite resolution of F by vector bundles (locally free
sheaves). The push-forward f	[E] is defined as the
alternating sum of the classes in K0(Y) of the higher
direct images Rif	E. The Grothendieck–Riemann–
Roch theorem states that

chðf	½E�Þ � tdðTYÞ ¼ f	ðchðEÞ � tdðTXÞÞ ½8�
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in CH	(Y)
Q. Notice that eqn [7] represents the
case that Y is a point.

There is an even more general formulation valid
for singular varieties. It is necessary to work with a
homology version of the Grothendieck group,
namely, the Grothendieck group K0(X) of coherent
sheaves on X. The Baum–Fulton–MacPherson ver-
sion of the Grothendieck–Riemann–Roch theorem
prescribes transformations

�X : K0ðXÞ ! CH	ðXÞ 
Q ½9�

which are covariant for proper morphisms. When
X is nonsingular, �X is given by the ‘‘Chern
character’’ times the ‘‘Todd class’’, and covariance
becomes eqn [8].

In the case of varieties over the complex numbers,
there is also a transformation from the algebraic
Grothendieck group K0(X) to a topological analog,
satisfying various compatibilities. The composition
with the homology Chern character gives Riemann–
Roch transformations K0(X)! H	(X; Q) satisfying
properties akin to those of eqn [9].

The Analytic Setting

The Atiyah–Singer index theorem stands as
an important generalization of the Hirzebruch–
Riemann–Roch theorem. The index of an elliptic
differential operator on a differentiable manifold
plays the role of the Euler characteristic, and is
equated with a topological quantity. One of the
consequences of the index theorem is the validity of
eqn [7] for general compact complex manifolds.

More in the domain of pure analysis is the
question of intersecting two currents on a differenti-
able manifold. Currents arise naturally out of
Chern–Weil theory. To each current is associated a
wave front, a subset of the cotangent bundle that
reflects the geometry of the singular set of the
current. A current can be pulled back to an
embedded submanifold whenever the embedding is
transverse to the wave front. By reduction to the
diagonal, this gives an intersection of two currents
with transverse wave fronts which reduces to the
usual wedge product in the case of smooth differ-
ential forms (see Hörmander (1990)).
Applications of Intersection Theory

Enumerative Geometry

Intersection theory has proved to be a useful tool in
diverse areas such as enumerative geometry, singular-
ity theory, and moduli problems. Enumerative pro-
blems have intrigued generations of geometers.
Chasles, Maillard, Schubert, and Zeuthen are among
the geometers of the second half of the nineteenth
century who solved an impressive array of problems,
including, as a notable example, Steiner’s five conics
problem to determine the number of plane conics
tangent to five given conics in general position.

In modern terms, the successful solution to an
enumerative problem involves setting up a space which
parametrizes the geometric objects being counted,
suitably compactified, and carrying out an intersec-
tion-theoretic computation on this space. Steiner’s
problem illustrates how ‘‘excess intersection’’ can
occur and cause difficulty. Inside the CP5 of plane
conics, including degenerate conics, those tangent to a
given conic constitute a sextic hypersurface. So
65 = 7776 would appear plausible; this was, in fact,
the originally proposed solution. However, the most
degenerate conics, the double lines, all appear as limits
of families of conics tangent to any given conic. The
refined intersection of five of these sextics has a cycle
class of degree 4512 supported on the Veronese
surface of double lines. This leaves 3264, the correct
answer given by Chasles in 1864. The issue of
providing rigorous foundations for these kinds of
calculations was recognized by Hilbert, who set it as
the 15th of his 23 major mathematical problems
outlined in 1900. A good survey of early and modern
efforts in enumerative geometry can be found in
Kleiman and Thorup (1987).
Singularity Theory and Degeneracy Loci

In any situation where a geometric object is
described by parameters, there will be values of the
parameter at which the geometry changes qualita-
tively. The significance of this is evident in the space
of conics above. Singularity theory is concerned with
the loci in parameter spaces on which these
transitions can occur. Let � : Y ! P be a map of
differential manifolds, or of nonsingular algebraic
varieties, which is generally (but not everywhere)
submersive, so that there are singular fibers. Let d
denote the dimension of P, which can be considered
as a parameter space, and let c be the dimension of
Y. Consider the loci

�Skð�Þ ¼ fy 2 Y j rkðTy;Y ! T�ðyÞ;PÞ � d � kg

of singularity theory. Thom made an influential
study of these in the 1950s, and Porteous in 1971
gave the following formula, now called the Thom–
Porteous formula:

½�Skð�Þ� ¼ sððkþc�dÞkÞð�
	TP � TYÞ ½10�

The symbol on the right is shorthand for
s(kþc�d,..., kþc�d), the case a1 = � � � = ak = kþ c� d of
the Schur determinant s(a1,..., ak) = det (saiþj�i)1�i, j�k,
and for vector bundles E and F the si(F � E) are
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defined by the formula s(F � E) =
P

i (�1)ici(E)=P
i (�1)ici(F). In algebraic intersection theory, eqn

[10] has the precise meaning that when �Sk(�) has the
expected codimension k(kþ c� d) in Y (or is empty),
its cycle class is equal to the given polynomial in
Chern classes. The Thom–Porteous formula applies
to the degeneracy loci of arbitrary maps of vector
bundles E! F. Degeneracy loci constitute an active
area of research in intersection theory, and there are
generalizations, for example, to cases where there
are more bundles or bundle maps with symmetry
(see Fulton and Pragacz (1998)).

Moduli Spaces

The parameter spaces that have appeared often admit
interpretations as moduli spaces. Moduli problems
start with geometric objects to be classified, and ask for
families of these objects over an arbitrary base space to
be represented as faithfully as possible by maps from
the base space to some space called a moduli space. For
enumerative applications it is most useful for the
moduli space to be compact. One of the principal
examples is the moduli of algebraic curves of given
genus g: for g 
 2, the moduli space of smooth curves
Mg has a compactification �Mg by stable curves, as
defined and studied by Deligne and Mumford. While
the Mg are singular, the singularities are mild enough
to permit the definition of an intersection theory for
Mg and �Mg, as was done by Mumford in the 1980s.
More generally, if X is a complex projective variety,
Kontsevich’s spaces of stable maps �Mg, n(X,�) com-
pactify the moduli of genus g curves with n marked
points together with algebraic maps to X having image
in homology class � 2 H2(X). These spaces, and some
high-powered intersection theory that takes place on
them, are vitally important in Gromov–Witten theory.
K-theory also provides an alternative approach to
intersection products in algebraic geometry.
Extensions and Related Theories

Motives and Higher Chow Groups

Intersection theory has evolved into a mature theory
with numerous extensions and offshoots. Many of
these are a result of endeavors to forge links with
other branches of mathematics. One of the exten-
sions, higher Chow groups, has its roots in a basic
property of intersection theory, the excision prop-
erty, which states that if X is a variety and U � X an
open subvariety, with Z = XnU, then the inclusion
and restriction maps fit into a right exact sequence

CH	Z! CH	X! CH	U ! 0

This is reminiscent of the long exact homology
sequence of a pair in algebraic topology. Indeed,
there is a corresponding long exact sequence of
Borel–Moore homology groups, but the elementary
algebraic theory lacks such a long exact sequence.
Bloch introduced higher Chow groups in the 1980s
to fill this gap. The theory, which is quite
complicated, provides groups CH	(X, j), with
CH	(X, 0) = CH	X, such that there is a long exact
sequence

� � � ! CH	ðU; jþ 1Þ ! CH	ðZ; jÞ ! CH	ðX; jÞ
! CH	ðU; jÞ ! � � �

These groups are closely connected to algebraic K-
theory and also to a related theory called motivic
cohomology.

Motives, a sort of universal cohomology theory
envisaged by Grothendieck, conjecturally form a
category which can be extended to a bigger category
of mixed motives that reflects mixed structures in
cohomology, such as mixed Hodge structures.
Recently, Voevodsky et al. (2000) have introduced
motivic cohomology groups which form an integral
part of a homotopy theory for algebraic varieties.
Voevodsky’s work, including a proof of the Milnor
conjecture of K-theory, earned him a Fields Medal
in 2002.
Arithmetic Intersection Theory

There is an arithmetic version of intersection theory
which applies to an arithmetic scheme X, which is,
informally, a scheme defined over every prime field
(all finite fields Fp and also Q) in a consistent way.
This means that X can be base-extended to any
field. In situations where the complex variety X(C)
is nonsingular, there is an arithmetic Chow ringdCH	(X), introduced by Gillet and Soulé in 1990.
Elements of dCH	(X) are equivalence classes of pairs
(Z, g) where Z is an algebraic cycle on X and g is
known as a Green current for Z, a current on X(C)
satisfying the relation

i

2�
@ �@gþ �ZðCÞ ¼ ! ½11�

for some smooth differential form ! satisfying some
conditions. Here, �Z(C) denotes the current of
integration along Z(C). The point to notice is that
eqn [11] relates analysis (the Green current) and
algebra (the cycle) on X on one side with topology
on the other, as ! will be a closed form whose class
in de Rham cohomology is Poincaré dual to [Z(C)].

Arithmetic intersection theory is used to define
arithmetic height functions. Height functions have
important applications to Diophantine problems, and
were an essential component of the proof by Faltings of
the Mordell conjecture, which earned him a Fields
Medal in 1986. Arithmetic intersection theory grew
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out of an earlier theory of Arakelov, in which X(C) is
endowed with a Kähler metric, and the form ! in eqn
[11] is required to be harmonic. The Arakelov Chow
group is only a ring when harmonic forms are closed
under wedge product, which is not the case generally
but which is true in some interesting cases, for example,
for Grassmannian varieties. Arakelov treated the case
of arithmetic surfaces, that is, the case when X(C) is an
algebraic curve (‘‘surface’’ refers to a second dimension
in the arithmetic direction), and introduced a pairing of
arithmetic divisors, in analogy with the usual pairing of
divisors on an algebraic surface. Arakelov’s work, its
subsequent generalizations, and more recent develop-
ments are covered in Faltings (1992).

Equivariant Theories and Stacks

Moduli problems such as those mentioned previously
are often best represented not by traditional varieties,
but by a more sophisticated sort of object called a
stack. Taking inspiration from Mumford’s intersec-
tion theory on Mg, intersection theory on algebraic
stacks has grown into a mature theory in its own
right. Examples of stacks include orbifolds, for which
there is the Chen–Ruan (orbifold) cohomology theory
as well as an algebraic analog due to Abramovich,
Graber, and Vistoli (see Abramovich, et al. (2002)).
Another class of examples are quotient stacks of a
variety by the action of an algebraic group. In these
cases the Chow groups of the stack are equivariant
Chow groups, part of a rich theory modeled on
equivariant cohomology in algebraic topology.
Behrend (2002) provides a nice survey of stacks,
equivariant intersection theory, and their uses in
Gromov–Witten theory. The Bott residue formula is
an important tool in equivariant intersection theory
which is particularly well suited to making concrete
calculations, for example, in enumerative geometry.
A description with nice examples can be found in
Ellingsrud and Strømme (1996).

See also: Cohomology Theories; Hamiltonian Group
Actions; Index Theorems; K-Theory; Moduli Spaces:
An Introduction.
Further Reading

Abramovich D, Graber T, and Vistoli A (2002) Algebraic orbifold

quantum products. In: Adem A, Morava J, and Ruan Y (eds.)

Orbifolds in Mathematics and Physics (Madison 2001),
Contemporary Mathematics vol. 310, pp. 1–24. Providence:

American Mathematical Society.

Behrend K (2002) Localization and Gromov–Witten invariants.

In: de Bartolomeis P, Dubrovin B, and Reina C (eds.)
Quantum Cohomology (Cetraro 1997), Lecture Notes in

Mathematics vol. 1776, pp. 3–38. Berlin: Springer.

Chriss N and Ginzburg V (1997) Representation Theory and
Complex Geometry. Boston: Birkhäuser.
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Formulation of the Problem

Consider the Newton equation

€x ¼ FðxÞ; FðxÞ ¼ �rvðxÞ; x 2 Rd ½1�

where

v 2 C2ðRd;RÞ
j@j

xvðxÞj � cjjjð1þ jxjÞ���jjj

for x 2 Rd; jjj � 2; and some � > 1; cjjj 
 0

½2�
(where j is the multi-index j 2 (N [ {0})d, jjj=Pd
n=1 jn). In classical mechanics, eqn [1] describes

the dynamics of a particle with the mass m = 1 in the
force field F with the potential v. For eqn [1] the
energy E = (1/2)(ẋ(t))2 þ v(x(t)) is an integral of
motion.

Under the assumptions [2], it follows that (Reed
and Simon 1979): for any (p�, x�) 2 R2d, p� 6¼ 0,
eqn [1] has a unique solution x 2 C2(R, R2) such
that

xðtÞ ¼ p�t þ x� þ y�ðtÞ
y�ðtÞ ! 0; _y�ðtÞ ! 0; as t! �1

½3�

in addition, for almost any (p�, x�)
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xðtÞ ¼ aðp�;x�Þt þ bðp�; x�Þ þ yþðtÞ
aðp�; x�Þ 6¼ 0; yþðtÞ ! 0; _yþðtÞ ! 0

as t! þ1
½4�

furthermore, the set D of all (p�, x�) 2 R2d, p� 6¼ 0,
for which [4] holds for fixed v, is an open subset of
R2d and Mes(R2dnD) = 0.

We say that a, b arising in [4] (and defined on D) are
the scattering data for eqn [1]. In addition, the scattering
data a, b at fixed energy E > 0 means a, b on {(p�, x�) 2
D j p2

�=2 = E}. Roughly speaking, for a particle moving
according to [1], the functions a, b relate the free motion
at time t! �1 with the free motion at time t! þ1.

Note that

aðp�; x� þ t0p�Þ ¼ aðp�; x�Þ
bðp�; x� þ t0p�Þ ¼ bðp�; x�Þ þ t0aðp�; x�Þ
ðp�; x�Þ 2 D; t0 2 R

½5�

Formula [5] imply that a, b on D are uniquely
determined by a, b on {(p�, x�) 2 D j p�x�= 0},
where p�x� is the scalar product of p� and x�.

If v(x) � 0, then a(p�, x�) = p�, b(p�, x�) =
x�, (p�, x�) 2 Rd, p� 6¼ 0. Therefore, it is convenient
to use for a, b the following representation:

aðp�; x�Þ ¼ p� þ ascðp�; x�Þ
bðp�; x�Þ ¼ x� þ bscðp�; x�Þ; ðp�; x�Þ 2 D ½6�

where the subscript sc is an abbreviation of the word
‘‘scattering.’’

The direct scattering problem for eqn [1], under
the assumptions [2], consists in the following: given
v, find a, b.

The inverse-scattering problem for eqn [1], under
the assumptions [2], consists in the following: given
a, b (or some partial information about a, b), find v.

In the present article, we discuss, mainly, the
aforementioned inverse-scattering problem.
Abel’s Result of 1826

Consider the Newton equation [1] in dimension
d = 1 for x 2 ]�1, x1], x1 > 0, where

v 2 C2ð� �1; x1�;RÞ
vðxÞ ¼ 0 for x < 0

dvðxÞ
dx

> 0 for 0 < x < x1

½7�

Under the assumptions [7], for any p� > 0, where
E = p2

�=2 < v(x1), eqn [1] has a unique solution
x 2 C2(R,]�1, x1]) such that

xðtÞ ¼ p�t for t � 0 ½8�
in addition,

xðtÞ ¼ �p�t þ bðp�Þ as t! þ1 ½9�

Let

TðEÞ ¼ bð
ffiffiffiffiffiffi
2E
p

Þffiffiffiffiffiffi
2E
p ; 0 < E < vðx1Þ;

ffiffiffiffiffiffi
2E
p

> 0 ½10�

(T(E) is the time during which a particle starting
at x = 0 with the impulse p�=

ffiffiffiffiffiffi
2E
p

returns to
x = 0).

Let x(v), v 2 [0, v(x1)], be the inverse function to
v(x), x 2 [0, x1]. Then (under the assumptions [7]),

TðEÞ ¼
ffiffiffi
2
p Z E

0

ðE� vÞ�1=2 dxðvÞ
dv

dv

0 < E < vðx1Þ ½11�

xðvÞ ¼ 1ffiffiffi
2
p

�

Z v

0

ðv� EÞ�1=2TðEÞdE

0 < v < vðx1Þ ½12�

Actually, the formulas [11], [12] relating the travel
time T and the potential v are the results from
Abel (1826) (see also Keller (1976) for a discus-
sion of this result). Formula [11] is a result on
direct scattering, whereas [12] is a result on
inverse scattering. In addition, if T(E), 0 < E <
v(x1), is given, then [11] is the Abel integral
equation for x(v), 0 < v < v(x1), and [12] solves
this equation.

Concerning further results on inverse scattering
for the one-dimensional Newton equation, see Keller
(1976) and Astaburuaga et al. (1991). Note that for
the one-dimensional case the scattering data a, b do
not in general determine v uniquely.

The Abel integral equation and the Abel
formula solving this equation were used also, in
particular, by Firsov (1953) and Keller et al.
(1956), where inverse scattering was considered
for the three-dimensional Newton equation at
fixed energy for the case of spherically symmetric
monotonous decreasing potential in jxj.

Note also that the Abel method for solving the
integral equation [11] was used by Radon (1917)
for finding the inversion formula for the Radon
transformation. In the next section, we reduce the
inverse-scattering problem for the Newton equa-
tion [1] in dimension d � 2, under the assumptions
[2], to the inversion problem for the X-ray
transformation (i.e., the Radon transformation
along straight lines).
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Inverse Scattering for the
Multidimensional Newton Equation

Consider

TSd�1 ¼ fð�; xÞ 2 Sd�1 � Rd j �x ¼ 0g ½13�

Consider the X-ray transformation P defined by the
formula

Pf ð�; xÞ ¼
Z

R

f ðt�þ xÞdt; ð�; xÞ 2 TSd�1 ½14�

where

f 2 CðRd;RmÞ
f ðxÞ ¼ Oðjxj��Þ as jxj ! 1 for some � > 1 ½15�

Consider the functions asc, bsc of [6]

Theorem 1 (Novikov 1999). For the Newton
equation [1], under the assumptions [2], the follow-
ing formulas hold:

PFð�; xÞ ¼ lim
s!þ1

sascðs�; xÞ; ð�; xÞ 2 TSd�1 ½16�

Pvð�;xÞ ¼ lim
s!þ1

s2�bscðs�;xÞ; ð�;xÞ 2TSd�1 ½17�

in addition,

jPFð�; xÞ � sascðs�; xÞj

� d3c222�þ4

�ð�� 1Þð1þ jxj=
ffiffiffi
2
p
Þ2��1

s3

ðs=
ffiffiffi
2
p
� 1Þ4

½18�

jPvð�; xÞ � s2�bscðs�; xÞj

� d3c222�þ4

�ð�� 1Þ2ð1þ jxj=
ffiffiffi
2
p
Þ2��2

s4

ðs=
ffiffiffi
2
p
� 1Þ5

½19�

for (�, x) 2 TSd�1, s � z(d, c,�, jxj), where �bsc is the
scalar product of � and bsc, z is the root of the equation

d2c2�þ2

ð�� 1Þð1þ jxj=
ffiffiffi
2
p
Þ��1

z2

ðz=
ffiffiffi
2
p
� 1Þ3

¼ 1

z 2�
ffiffiffi
2
p

;þ1½ ½20�

c = max (c1, c2) (and �, c1, c2 are the constants of [2]).

Theorem 1 gives a method for finding PF and Pv
from asc and bsc at high energies. It has been proved in
Novikov (1999) by means of analysis of the following
nonlinear integral equation for the function y� of [3]:

y�ðtÞ ¼ Ap�; x�ðy�ÞðtÞ

where

Ap�; x�ðuÞðtÞ ¼
Z t

�1

Z �

�1
Fðp�sþ x� þ uðsÞÞds d�

p� 6¼ 0
In dimension d � 2, Theorem 1 and methods for
the reconstruction of f from Pf (Gelfand et al. 1980,
Natterer 1986, Novikov 1999) give a method for the
reconstruction of F and v from the scattering data a,
b at high energies. Note that for d = 1 Theorem 1
is valid but f cannot be uniquely reconstructed
from Pf.

Theorem 1 is an analog of the Born formula for
the Schrödinger equation at high energies (see, e.g.,
Faddeev (1956), Enss and Weber (1995), and
Novikov (1998) as regards this Born formula and
its variations). On the other hand, Theorem 1 was
preceded by a result of Gerver and Nadirashvili
(1983) on the high-energy asymptotics for the travel
time between boundary points for the Newton
equation in a bounded strictly convex domain with
smooth boundary. There is a considerable similarity
between this result and Theorem 1.

We continue our review on inverse scattering for
the multidimensional Newton equation, and make
the following well-known observation.

Observation 1 Suppose that v(x) > E > 0 for x 2 U,
where U is a compact subset of Rd. Then the scattering
data a, b for energies smaller than or equal to E contain
no information about v(x) for x 2 U.

In addition to Theorem 1 and Observation 1, one
has the following conjecture.

Conjecture 1 (Novikov 1999). Suppose that v
satisfies [2], d � 2, and the energy E is sufficiently
large, E > E(v). Then the scattering data a, b at
fixed energy E uniquely determine v.

Gerver and Nadirashvili (1983) proved a result
similar to Conjecture 1 for the case of the Newton
equation in a bounded strictly convex domain G
with smooth boundary. Their proof of this result
contains no reconstruction method but does contain
a stability estimate. It is based on the Maupertuis
principle and the results of Muhometov and Roma-
nov (1978), Beylkin (1979), and Bernstein and
Gerver (1980). For the case v 2 C2(Rd, R), supp v �
G (where G has the properties mentioned above),
in Novikov (1999) a connection between the
boundary-value data of Gerver and Nadirashvili
(1983) and the scattering data a, b is given and it is
shown that for d � 2 the scattering data a, b and the
domain G uniquely determine v at fixed sufficiently
large energy E > E(v, G).

For more information concerning results men-
tioned above, see Novikov (1999) and Gerver and
Nadirashvili (1983). One can see from the review
of this section that very few results on inverse
scattering for the multidimensional Newton equa-
tion are given in the literature, at present. It should
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be remarked that the inverse-scattering theory in
multidimensions is much more developed for the
Schrödinger equation than for the Newton
equation.
Inverse Scattering for the Schrödinger
Equation in Multidimensions

The inverse-scattering theory for the multidimen-
sional Schrödinger equation has been developed by
many authors (see, e.g., surveys given in Grinevich
(2000) and Novikov (2001)).

Quantum-mechanical analogs of Theorem 1
appear, for example, in Faddeev (1956), Enss
and Weder (1995), Novikov (1998) (see also
references therein). Similarly, the quantum-mechan-
ical analogs of Conjecture 1 have been proved, for
example, in Novikov (1992, 1994) and Grinevich
and Novikov (1995) (see also references therein). On
the other hand, as a rule, classical-mechanical analogs
of results of the works on inverse Schrödinger
scattering in multidimensions are unknown. This
leads to many open problems. For the one-dimen-
sional case some results on finding classical limits of
results on inverse Schrödinger scattering are given in
Lax and Levermore (1983) and Bogdanov (1985).
Note that inverse scattering for the two-dimensional
Schrödinger equation at fixed energy (see Novikov
(1992), Grinevich and Novikov (1995), and
Grinevich (2000) and references therein) has con-
siderable similarity with inverse scattering for the
one-dimensional Schrödinger equation. Therefore,
an interesting open problem consists in extending
the aforementioned study of Lax and Levermore
(1983) and Bogdanov (1985) to the case of inverse
scattering for the two-dimensional Schrödinger
equation at fixed energy. Perhaps, in this way one
can find proper two-dimensional analogs of the Abel
formulas [11] and [12].
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Introduction

The equations governing the motion of an ideal
(inviscid) fluid were derived by Euler in 1755. They
were, together with the equation of vibrating strings,
the first partial differential equations introduced in the
field of mathematical physics. While several partial
differential equations, coming from the modeling of
physical phenomena, have had a satisfactory mathe-
matical solution, it is piquant to note that the old Euler
equations remain essentially unsolved. Together with
the Navier–Stokes equations of viscous fluids, the
Euler equations play a central role in the modern
analysis of partial differential equations.

The mathematical difficulties encountered in the
study of Euler equations seem to be deeply linked with
the understanding of turbulence, which remains one of
the great open problems in the field of macroscopic
physics.

The relevance of Euler equations as a model of
fluid flow is rather subtle, and the discussion is far
from closed. On the one hand, Euler equations have
disturbing aspects, which, in their most visible form,
yield paradoxes. On the other hand, the systematic
recourse to some viscosity seems to put a serious
obstacle to a proper understanding of turbulence. In
this article we will try to give some insight into this
issue.

To be rigorous, every fluid has some compressi-
bility, that is to say the density varies with the
pressure. Compressibility gives rise to pressure
waves, which propagate in the fluid with some finite
speed. When the velocity of the fluid particles is
slow relative to the speed of the pressure waves, it is
legitimate to make the approximation that the flow
is incompressible; it is the case for meteorological
flows, for example. Then, there are no more
pressure waves; nevertheless the motion can be
very unstable and intricate (turbulent). Although
very often in physical flows these two features
coexist, following the tradition, we clearly separate
the compressible and incompressible cases.
The Equations of the Perfect Fluid

Until now a rigorous derivation of the fluid
equations from a system of interacting particles
governed by Newton’s laws is not known. Thus,
the mathematical models of fluid motion result
from heuristic considerations.

Let us specify some notations.
The fluid motion is supposed to take place in

some domain (not necessarily bounded) � of the
physical space <3.

We shall use the so-called Eulerian description of
the fluid motion: �(t, x) denotes the local density of
the fluid at time t and position x, and u(t, x) the
velocity of the fluid particle located at x at time t.

The first equation (conservation equation) expresses
the conservation of mass:

@�

@t
þ divð�uÞ ¼ 0 ½1�

The second equation (momentum equation)
expresses Newton’s law (in the absence of internal
friction):

�
@u

@t
þ ðu 	 rÞu

� �
¼ �rp ½2�

where the scalar function p(t, x) is the pressure
inside the fluid, and

ðu 	 rÞu ¼
X

i

ui@i u

With [1] and [2], we have five scalar unknown
functions (�, ui, p) and only four equations. To get a
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closed set of equations, we need to add a supple-
mentary relationship:

divðuÞ ¼ 0; for the incompressible flows ½3�

In the case of compressible flows, eqns [1] and [2] must
be completed by a thermodynamical description of the
fluid, which yields a relationship between �, p, the
internal energy, the specific entropy, etc. We will only
consider here the simple case of an isentropic gas
which is modeled by the relationship

p ¼ pð�Þ ½4�

with p(�) = c p� for a perfect gas (c > 0, � > 1).

Condition at the Boundary @W of the Domain

In the case of a perfect fluid, we simply have to
write that the velocities of the fluid particles at the
boundary are tangent to the boundary, that is,

u � n ¼ 0 on @� ½5�

where n denotes the unit normal vector to the
boundary (pointing outward).
The Incompressible Perfect Fluid: Main
Properties of Smooth Flows

We shall suppose �= 1. Equations [1]–[3] and [5]
then yield the classical Euler system:

@u

@t
þ ðu � rÞu ¼ �rp on �

div u ¼ 0; u � n ¼ 0 on @�

½6�

The Constants of the Motion

Let us examine the constants of the motion of the
dynamical system defined by [6], that is, the functionals
which are conserved by the motion of the fluid.

First we have the classical constants of motion
associated with the natural symmetries by Noether’s
theorem.

The time translational invariance of the system
implies that the kinetic energy is conserved:

Ec ¼
1

2

Z
�

u2 dx

In the case � =<3, the homogeneity of space implies
the conservation of the impulsion:Z

�

u dx

The space isotropy, on the other hand, yields the
conservation of the angular momentum:Z

�

x ^ u dx
There is a more hidden constant of the motion,
called helicity, which was discovered in 1961 by
J J Moreau (1961) (see, e.g., Serre (1979)).

Let us define the vorticity of the flow:

! ¼ curl u

then the helicity is

Z
�

! � u dx

Of course, here, we suppose u to be vanishing at
infinity in such a manner that the above integrals
make sense.

One may wonder about the existence of other
constants of the motion of the form (first-order
functionals):

Z
Fðx;uðxÞ;ruðxÞÞdx

The answer, due to Serre (1979), is that any
functional of the above form which is conserved by
the flow is a linear function of the energy, the
impulsion, the angular momentum, the helicity plus
a trivial term (i.e., taking the same value for any
field u such that div u = 0).
Beltrami Equation and Kelvin’s Theorem

Another important issue is to know how the vorticity
field evolves in a regular flow. If we apply the operator
curl to the equation [6] in order to eliminate the
pressure term, we get:

@!

@t
þ ðu � rÞ!� ð! � rÞu ¼ 0 ½7�

which is the Beltrami equation.
To exploit the Beltrami equation, we need the

Lagrangian flow ’(t, x), associated with the field u,
which is defined by the differential equation:

@’

@t
ðt; xÞ ¼ uðt; ’ðt; xÞÞ; ’ð0; xÞ ¼ x

Then we can state the following proposition.

Proposition During the smooth motion of an
incompressible perfect fluid, we have:

!ðt; ’ðt; xÞÞ ¼ D’ðt; xÞ½!ð0; xÞ�; for all t; x

where D’(t, x) denotes the derivative at the point x
(t fixed) of the mapping x!’(t, x).

The first consequence of this result is to point
out the class of irrotational flows, for which
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!(t, x) = 0. Indeed, if the vorticity vanishes initi-
ally, it follows from the proposition that it will
vanish for ever.

Another consequence is the behavior of vortex
lines. By definition, a vortex line is any integral
curve of the vorticity field. More precisely, a
vorticity line at time t, C(s) is defined by the
differential equation

dC

ds
ðsÞ ¼ !ðt;CðsÞÞ

Now we can check that vortex lines are merely
transported by the flow: if C(s) is a vortex line at
time t = 0,’(t, C(s)) is a vortex line at time t.

We end this section with the famous Kelvin’s
circulation theorem (1869) (see, e.g., Marchioro and
Pulvirenti (1994)).

Theorem Let L be a closed (oriented) contour drawn
inside the fluid. We suppose that L is transported by
the flow; ’t(L) denotes the contour at time t. Then the
circulation of the velocity field u(t, x) along ’t(L) is
independent of t.
Stationary Solutions: D’Alembert’s Paradox

Let us focus now on the flow around a bounded
body �, whose complement �

c
will be supposed to

be simply connected.
A stationary solution u(x), p(x) satisfies:

ðu � rÞu ¼ �rp

div u ¼ 0; u �n ¼ 0 on @�

But since (u � r)u =r( 1
2 u2)þ (curl u) ^ u, any

stationary field u(x) satisfying curl u = 0, div u = 0,
u � n = 0 on @�, defines a stationary solution with
associated pressure p =� 1

2 u2.
We also need to specify a condition at infinity

for the field u. We impose that the velocity is equal
(at infinity) to some constant value U. Since �

c
is

simply connected, the condition curl u = 0 implies
that the flow is potential, that is, there is a scalar
function F(x) such that u = U þrF.

Thus, the determination of an irrotational flow
around an obstacle amounts to solving the following
exterior Neuman problem.

Find F satisfying:

�F ¼ 0 in �
c

@F

@n
¼ �U � n on @�

rF ¼ 0 at infinity
This problem is well known and has a unique
solution, which satisfies, at infinity:

FðxÞ ¼ Oð1=jxj2Þ rFðxÞ ¼ Oð1=jxj3Þ

Then a classical calculation (integration by parts) gives
the resulting force exerted by the flow on the body:

R ¼ �
Z
@�

pn d� ¼
Z
@�

1

2
u2n d� ¼ 0

This property of inviscid potential flows was first
noticed by Jean Le Rond d’Alembert (1717–1783).
Furthermore, d’Alembert performed a series of
experiments to measure the drag on a sphere in a
flowing fluid and he expected that the force would
go to zero as the viscosity of the fluid approached
zero. But this was not the case: the drag seemed
to converge toward a nonzero value. Hence, this
property was called d’Alembert’s paradox.

Of course, d’Alembert’s paradox tells us that some-
thing is going wrong: this model of flow around a body
is not physically relevant. But it is not obvious to
identify precisely what is going wrong.

Physics tells us that in a flow around a flying
airplane, the viscous term (as measured by an
dimensionless number called Reynolds number) is
very small. The main effect of the viscosity is then
to alter the limit condition at the boundary of the
body. The relevant boundary condition is no longer
u � n = 0, but the purely viscous condition u = 0,
or more realistically a condition of friction type
(turbulent boundary condition).

A common approach is to disqualify the perfect-
fluid model in arguing that this modification of the
boundary condition has important consequences on
the flow near the body (giving rise to a turbulent
boundary layer, for example).

It seems to us that such a disqualification of the
perfect-fluid model discards prematurely interesting
issues. Indeed, we must notice first that the
stationary solution on which d’Alembert’s reasoning
is based is highly unstable and not acceptable
physically. Thus, a realistic solution would necessa-
rily be either nonstationary or with some vorticity.
On this basis, we can imagine other scenarios to
explain the existence of a resulting force exerted
on the body. For example, we may imagine a
stationary solution with a discontinuous velocity
field (i.e., with a vortex sheet). The process
conducive to such a stationary solution is called
Prandtl’s scenario (Batchelor 1967). The mathema-
tical proof that Prandtl’s scenario does exist is a
difficult (open) issue, which seems closely related to
the (probable) nonuniqueness of weak solutions of
the Cauchy problem.
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The Cauchy Problem for the
Incompressible Perfect Fluid

The Case W � R
3

In the Cauchy problem, given an initial velocity field
u0(x), we want to determine the corresponding
solution u(t, x) of [6] at each time t.

The first significant result on the Cauchy problem
for three-dimensional Euler equations was given by
Kato (1975).

Theorem For u0 in the Sobolev space Hs(<3), for
s > 5=2, there is T > 0 and a unique classical solution
(of the Cauchy problem) u(t, x) on [0, T]�<3 . u
depends continuously on t in the space Hs.

By a classical solution we mean that the field
u(t, x) is derivable in terms of the variables t, x and
satisfies the equations in the usual sense.

Here HS (<3) denotes the Sobolev space of the
fields u, which are square integrable and with spatial
derivatives of order s (in the case where s is an
integer) also square integrable.

Remark These results have been generalized to some
extent during the last few decades, but the following
issues are still open:

1. Do singularities occur at a finite time for such
regular solutions?

2. For a less regular initial datum, do weak solutions
exist (in the sense of distributions)?

The Case W � R
2

This case is better understood, the first mathematical
results trace back to Lichtenstein (1925) and Wolibner
(1933); they take a plain form with the famous theorem
of Youdovitch 1963 (see, e.g., Chemin (1995)).

In two dimensions, the vorticity != curl u identifies
with a scalar function, and the Beltrami equation
becomes

@!

@t
þ divð!uÞ ¼ 0 ½8a�

curl u ¼ ! ½8b�

div u ¼ 0; u � n ¼ 0 on @� ½8c�

This formulation, which appears as a transport
equation [8a] for !, coupled with the elliptic system
[8b]–[8c], which determines u from !, is particularly
convenient.

The constants of motion associated with the usual
symmetries, of course, persist; notice, however, that
the helicity degenerates since, in two dimensions,
! �u = 0. But now from [8a] we see that ! is merely
convected by the incompressible velocity field u. We
deduce that, for any continuous function f, the
functional Z

�

f ð!ðt;xÞÞdx

is a constant of motion.
Thus, a specific feature of the two-dimensional case

is to introduce an infinite set of constants of motion.
By a skilful exploitation of this fact, Youdovitch
succeeded in proving the following result.

Theorem For a given !0 in the space L1(�), there
is a unique weak solution !(t, x) of [8], such that
!(t, x) is in L1(�) for all t, and ! depends
continuously on t in the space Lp, 1 � p <1.

Lp denotes, in a standard way, the Lebesgue space
of the functions f such that jf jp is integrable over
� and L1(�), the space of measurable bounded
functions on �.

Thus, if we limit ourselves to initial data with
bounded scalar vorticity, the Cauchy problem for
the two-dimensional incompressible perfect fluid is
satisfactorily solved. The situation is much more
intricate if we consider a less regular initial datum
(e.g., if !0 is a measure supported by a curve (vortex
sheet)).
Arnol’d’s Work on Two-Dimensional Inviscid Flows

Youdovitch’s theorem implies that the incompressible
Euler equations, with !0 in L1(�), is a satisfactory
model of two-dimensional flows – an important issue
to study further the properties of this model.

A famous result due to Arnol’d (see Arnol’d and
Khesin (1998) and Marchioro and Pulvirenti (1994))
deals with the nonlinear stability of the stationary
solutions.

Let us determine the smooth stationary solutions
of the two-dimensional Euler equations in a bounded
domain � of the plane. We have to solve:

ðu � rÞ! ¼ 0 ½9a�

curl u ¼ ! ½9b�

div u ¼ 0; u � n ¼ 0 on @� ½9c�

Since we have div u = 0, we may introduce the stream
function of u,  , which is given by the Dirichlet’s
problem:

�� ¼ !;  ¼ 0 on @�

so that u = curl .
The system [9] becomes:

r ^ r! ¼ 0; �� ¼ !;  ¼ 0 on @�
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Let us focus on solutions which are characterized by a
relationship != f ( ), where f is a smooth function.
Such solutions are given by the resolution of the
following nonlinear elliptic problem:

�� ¼ f ð Þ;  ¼ 0 on @� ½10�

This problem has always at least a solution, for
example, if f is a bounded function of  .

Let  � be a solution of [10], and !�= f ( �)
the corresponding vorticity function. We shall say that
the stationary solution !� is stable in the L2-norm if:

For all " > 0, there is a � > 0, such that for all initial
datum !0 in L1(�) satisfying

Z
�

ð!� �!0Þ2dx � �; we have :

Z
�

ð!� �!ðtÞÞ2 dx � "; for all t

where !(t) denotes the solution of the Cauchy problem
associated with the initial datum !0 by Youdovitch’s
theorem.

Now we can state the following result.

Theorem (Arnol’d) Let ! be a stationary solution
given by [10]. We assume that one of the following
assumptions holds:

(C1) There are positive constants c1, c2, such that

c1 � f 0 � c2

(C2) There are positive constants c1, c2, with c2 < �1

(first eigenvalue of the Dirichlet problem on the
domain �) such that:

c1 � �f 0 � c2

Then ! is stable in the L2-norm.

Remarks

(i) This result was the first nonlinear stability result
for stationary flows.

(ii) The proof makes use of the conservation of the
functionals of the vorticity field.

Another significant contribution of Arnol’d to
hydrodynamics was to reveal the geometrical aspect
of the instability of the perfect-fluid motion. We give
a brief insight into this issue.

Let us come back to the Lagrangian description
of motion. We want to determine the function
’(t, x). Each mapping ’t(x) =’(t, x) is, for t fixed,
a diffeomorphism of � preserving the Lebesgue
measure and the orientation (equivalently stated, it
is an element of SDiff(��)).
In other words, a fluid motion is a curve t! ’t

drawn on the ‘‘manifold’’ M = SDiff(��) (the config-
uration space of the system).

At time t, the relationship

@’

@t
ðt; xÞ ¼ uðt; ’ðt; xÞÞ

states that the velocity field u(t,’t(x)) belongs to the
space tangent to M at ’t. The tangent space at ’
to M is the space of vector fields v(’(x)), where v(x)
is an incompressible vector field on �� satisfying
v �n = 0 on @�. This space is naturally endowed
with a norm given by the kinetic energy

1

2

Z
�

vðxÞ2dx

and thus M is endowed with a Riemannian
structure.

It is easy to check that the perfect-fluid motions
correspond to the curves ’t drawn on M which are
the critical points of the action integral:

1

2

Z t2

t1

dt

Z
�

@’

@t
ðt; xÞ

����
����
2

dx; for all t1 < t2

ðwith the constraints ’ðt1; :Þ ¼ ’1; ’ðt2; :Þ ¼ ’2Þ

That is to say, the perfect-fluid motions are the
geodesics of the Riemannian manifold M.

The main interest of this geometric framework is
to bring back, at least formally, the perfect-fluid
motions to well-known objects. Indeed, we know
that the Riemannian curvature of a manifold has a
profound impact on the behavior of geodesics on it.
If the Riemannian curvature is positive, then nearby
geodesics oscillate about one another, and if the
curvature is negative, geodesics rapidly diverge from
one another. More precisely, the stability of geode-
sics is expressed in terms of the curvature by means
of Jacobi’s equation [1]. If ’t is a geodesic curve
starting from ’0, with velocity field v(t) (whose
norm is supposed equal to 1), if the sectional
curvature of the manifold in all the 2-planes
containing v(t) is less than �c(<0), a perturbation
of the initial datum will increase at least as exp(ct):

dð’t; ~’tÞ 	 dð’0; ~’0Þ expðctÞ

where ~’0 denotes the perturbed initial datum and d
the geodesic distance on the manifold. Moreover, if
the curvature at every point and for all the sections
is less than �c, and if M is compact, then the geodesic
flow, that is, the one-parameter group of transfor-
mations (’0, v(0))! (’t, v(t)), is mixing (in the usual
meaning of ergodic theory). Arnol’d succeeded in
calculating the sectional curvature for flows on the
two-dimensional torus; he showed that the
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curvature is negative for ‘‘most’’ of the sections. This
gives an enlightening geometrical picture of the
instability of Lagrangian flows.

It was tempting to connect the above considera-
tions on the instability of two-dimensional flows
with the problem of weather forecast. In 1963
EN Lorenz stated that a two-week forecast would be
a theoretical bound for predicting the atmospheric
motion. Lorenz’s assertion was based on numerical
simulations. He took as model for the large-scale
atmospheric motion the two-dimensional Euler
equations on the torus, which he truncated to a
small number of Fourier modes (about 20). This
model is highly unstable and displays exponential
sensitivity with respect to the initial datum. How-
ever, the parallel between the behavior of this
system and the instability of the Lagrangian flow is
misleading. On the one hand, if we again do the
Lorenz computations on Euler equations, taking
into account a large number of Fourier modes, we
note a striking phenomenon: the flow has a tendency
to self-organize into large vortices, called coherent
structures, and simultaneously the exponential
sensitivity, as measured in terms of the energy
norm of the velocity field, disappears. On the other
hand, the problem of predicting the Lagrangian flow
is very different, the Lagrangian flow can be
exponentially unstable, while the corresponding
velocity field quietly converges, in the energy norm,
towards some equilibrium. We must keep in mind
that the meteorologist aims to predict the values of
the velocity field at some future time and not the
trajectories of the fluid particles. In fact, it appears
that Lorenz has ignored phenomena of a statistical
nature which occur when a large number of degrees
of freedom are considered; thus, his theoretical
bound for the prediction of the atmospheric motion
has no definite basis. More detailed reflections on
this issue can be found in Robert and Rosier (2001).
The Cauchy Problem for the Euler
Equations for Compressible Inviscid
Fluids

As remarked in the introduction, compressible flows
yield pressure waves. The equations of motion being
nonlinear, these waves interact in an intricate
manner giving rise to shocks. This is the main
feature of compressible fluid flows. Compressible
flows are situated in the more general domain of
nonlinear hyperbolic systems, which were inten-
sively studied during the last decades. We only give
here an example of the kind of result which can be
obtained.
The following theorem, which states that for a set
of regular initial data, shocks do not occur till some
finite time, is a consequence of a more general result
on hyperbolic systems due to Majda (1984).

We consider � =<3 and the system [1], [2], [4].

Theorem Assume p0, u0 2 HS \ L1(<3), with
s> 5=2 and p0(x) > 0. Then there is a finite time
T > 0, depending on the Hs and L1 norms of the
initial data, such that the Cauchy problem for [1],
[2], [4] has a unique bounded smooth solution p,
u 2 C1([0, T]�<3), with p(t, x) > 0 for all t, x.
Inviscid Flows and Turbulence

Loosely speaking, turbulence is the intricate motion
of a slightly viscous flow. Going back to the first
half of the last century, there are two main
approaches to turbulence. The first is due to Leray.
The dissipation of energy is a characteristic feature
of three-dimensional turbulence, and Leray thought
that, even if very small, the viscosity of the fluid
plays an important role, so that to understand
turbulence the first step is to study the Navier–
Stokes equations. A radically different approach is
due to Onsager. Onsager (1949) started with the
fundamental remark that the 4/5 law of turbulence,
which relates the dissipation of energy to the
increments of the velocity field, does not involve
viscosity. Furthermore, he observed that the proof of
the conservation of energy for the solutions of Euler
equations uses an integration by parts which
supposes some regularity of the velocity field. He
then imagined that an inviscid dissipation mechan-
ism, due to a lack of regularity of the solutions, was
at work in Euler equations. In modern terminology,
he suggested to model turbulent flows by nonregular
(weak) solutions satisfying the Euler equations in the
sense of distributions. He also conjectured that if a
solution satisfies a Hölder regularity condition of
order >1=3, then the energy would be conserved.

Onsager’s views were revolutionary and forgotten
for a long time. Recent works, such as the proof of
Onsager’s conjecture, the construction of weak
solutions with energy dissipation, and the discovery
of the explicit local form of the energy dissipation
for weak solutions, show a renewed interest in these
views (see, e.g., Constantin and Titi (1994), Eyink
(1994), Robert (2003), and Shnirelman (2003)).

See also: Compressible flows: Mathematical Theory;
Dissipative Dynamical Systems of Infinite Dimension;
Hyperbolic Dynamical Systems; Incompressible Euler
Equations: Mathematical Theory; Non-Newtonian Fluids;
Partial Differential Equations: Some Examples; Chaos
and Attractors; Turbulence Theories.
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Introduction

This paper reviews recent developments, following
closely (sometimes verbatim) the review paper
Calogero F (2004c) (see the Bibliography below);
for more traditional investigations of isochronous
systems see other entries of this Encyclopedia (and
for the mathematical investigation of isochronous
centers in the plane, related to the 16th Hilbert
problem, see for instance the survey paper referred
to at the end of this entry).

The isochronous systems treated herein are char-
acterized by the property to possess an open domain
having full dimensionality in their phase space such
that all the motions evolving from a set of initial
data in it are completely periodic with the same
fixed period. The natural measure of this open
domain might, or it might not, be infinite when the
measure of the entire phase space is itself infinite:
for instance, if the entire phase space is the two-
dimensional Euclidian plane, such a domain might
be the exterior, or the interior, of a circle of finite
radius.

It is justified to call such systems superintegrable,
or perhaps partially superintegrable inasmuch as the
property of isochronicity of all their motions holds
only in a subregion of the entire phase space. This
terminology is justified by the observation that,
roughly speaking, all confined motions of a super-
integrable system – in which all but one of the
degrees of freedom are constrained by the existence
of the maximal possible number of constants of
motion – are completely periodic, although not
necessarily all with a fixed period – entailing that
isochronicity entails superintegrability, while the
converse is not the case (see the entry Integrable
systems in this Encyclopedia).

A simple trick – amounting essentially to a
change of independent, and possible as well of
dependent, variables, allows to deform a largely
arbitrary dynamical system so that the deformed
system obtained from it be isochronous. This
‘‘trick’’, which is now explained, entails therefore
that isochronous systems are not rare. Below we
provide several examples; others can be found in
the further reading suggested at the end of this
entry, and/or can be manufactured ad libitum using
the trick.



The Trick

We now show that, given a largely arbitrary
dynamical system, it is possible to introduce a
deformed version of it featuring a real constant !,
that has the following properties: for != 0, it
coincides with the original, undeformed system; for
! > 0, it possesses an open region having full
dimensionality in its phase space such that all
solutions evolving from an initial datum in it are
completely periodic with a period ~T which is a finite
integer multiple, or perhaps a simple fraction, of the
basic period

T ¼ 2�

!
½1�

Let us indeed, consider a quite general dynamical
system which we write as follows:

�0 ¼ F �; �ð Þ ½2�

Here � � �(�) is the dependent variable, which
might be a scalar, a vector, a tensor, a matrix, you
name it. The independent variable is � , and the main
limitation on the dynamical system [2] is that it be
permissible to treat this variable as complex; this
requires that the derivative with respect to this
complex variable � that appears in the left-hand side
of the evolution equation [2] make sense, namely
that this dynamical system be analytic, entailing that
the dependent variable � be an analytic function of
the complex variable � (but this does not require
�(�) to be a holomorphic nor a meromorphic
function of � ; �(�) might feature all sorts of
singularities, including branch points, in the com-
plex �-plane, indeed this will generally happen since
we generally assume the evolution equation (??) to
be nonlinear). The quantity F in the right-hand side
of [2] – which has of course the same scalar, vector,
matrix. . . character as � – might depend (arbitrarily
but analytically) on � as well as on � . (Let us also
emphasize that this approach is as well applicable to
more general dynamical systems that also feature
other, ‘‘spacelike’’, independent variables, for
instance are a system of PDEs rather than ODEs;
the interested reader is referred to the literature cited
below).

In spite of the generality of this dynamical system,
[2], there generally holds a result (‘‘Theorem of
existence, uniqueness and analyticity’’) that charac-
terizes the solution �(�) of its initial-value problem
determined by the assignment

�ð0Þ¼ �0

Here, for notational simplicity, we assign the initial
datum �0 at � = 0; and we assume of course that the

right-hand side of [2] is not singular for � = 0 and
�= �0. The relevant result guarantees, not only for
the initial datum �0, but for a (sufficiently small but
open) set of initial data in its neighborhood, the
existence of a circular disk in the complex �-plane,
centered at � = 0 (where the initial data are assigned)
and having a nonvanishing radius �, such that the
solutions �(�) corresponding to these initial data are
holomorphic in it, namely for �j j < � (and note that
if �(�) is a multicomponent object, the property to
be holomorphic is featured by each and everyone of
its components).

Let us now introduce the following changes of
dependent and independent variables:

zðtÞ ¼ exp i�!tð Þ� �ð Þ ½3a�

� � � tð Þ ¼ exp i!tð Þ � 1

i!
½3b�

This transformation is called ‘‘the trick’’. The
essential part of it is the change of independent
variable [3b]: and let us re-emphasize that, here and
hereafter, the new independent variable t is con-
sidered as the real, ‘‘physical time’’ variable. Note
that [3b] entails

� 0ð Þ ¼ 0; _� 0ð Þ ¼ 1

and, most importantly, that �(t) is a periodic
function of t with period T, see [1]. More specifi-
cally, as the time t increases from zero onwards, the
complex variable � travels counterclockwise round
and round on the circle C the diameter of which, of
length 2/!, lies on the imaginary axis in the complex
�-plane, with one extreme at the origin, � = 0, and
the other at the point � = 2i/!, making a full circle in
the time interval T. As for the prefactor exp(i�!t)
that multiplies �(�) in the right-hand side of [3a], its
purpose is to allow, via an appropriate choice of the
parameter �, the deformed system, see below, to
have a neater look; however this choice is hereafter
restricted by the condition that � be real and
rational, say

� ¼ p

q

with p and q two coprime integers and q > 0. This
restriction is essential to guarantee, via [3], that if
�(�) is holomorphic in � in the (closed) disk
encircled by the circle C, then z(t) is completely
periodic (namely, each and everyone of its compo-
nents is periodic) with the period

~T ¼ qT ½4�
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The deformed dynamical system is the one that
obtains from [2] via the trick [3]. It clearly reads as
follows:

_z ¼ i�!zþ exp i �þ 1ð Þ!t½ �

� F exp �i�!tð Þz;
exp i!tð Þ � 1

i!

� �
½5�

And it is plain, on the basis of the arguments we just
gave, that this system is isochronous, a sufficient
condition for the complete periodicity with period
~T, see [4], of its solutions being provided by the
inequality

2

!
< �

which can clearly be satisfied by initial data situated
inside an open domain of such data, at least
provided ! is sufficiently large (actually, in all the
examples reported below no restriction on the value
of ! is required, namely such an open domain exists
for any arbitrary value of ! > 0).

Examples

In this subsection we report tersely several examples
of isochronous dynamical systems; in each case we
also provide the reference where more information
can be found. Except when explicitly otherwise
mentioned, these dynamical systems are to be
considered in the complex context.

The first example we report is a Hamiltonian
N-body problem which is a generalization of a well-
known integrable (indeed, superintegrable) system
(see Integrable Systems: Overview). It is characterized
by the (normal) Hamiltonian

Hðz; pÞ ¼ 1

2

XN
n¼1

p2
n þ !2z2

n

� �

þ 1

4

XN
m;n¼1;m 6¼n

XK

k¼1

f
ðkÞ
nm

k zn � zmð Þ2k
½6a�

and correspondingly by the Newtonian equations of
motion

€zn þ !2zn ¼
XN

m¼1;m6¼n

XK

k¼1

f
ðkÞ
nm

zn � zmð Þ1þ2k
½6b�

Here the 1
2 N(N � 1)K ‘‘coupling constants’’ f (k)

nm are
arbitrary, except for the symmetry restriction
f (k)
nm = f (k)

mn (see [6a]).
The next example we report is a real N-body

problem in the horizontal plane, characterized by
the Newtonian equations of motions

~r
��
n ¼!k̂ ^~r

�
n þ 2

XN
m¼1;m 6¼n

�nm þ �nmk̂^
� �

;

�
~r
�
n ~r
�
m �~rnm

� �
þ~r
�
m ~r
�
n �~rnm

� �
�~rnm ~r

�
n �~r
�
m

� �h i
r2
nm

½7�

Here ~rn � (xn, yn, 0) is a real two-vector in the
horizontal plane, k̂ � (0, 0, 1) is the unit vector
orthogonal to the horizontal plane, the symbol ^
denotes the (three-dimensional) vector product so
that k̂ ^~rn = (�yn, xn, 0), and we use the short-hand
notation~rnm =~rn �~rm entailing r2

nm = r2
n þ r2

m � 2~rn �
~rm. Note that these equations are translation- and
rotation-invariant; and they are Hamiltonian,
although the corresponding Hamiltonian function
is not of normal type (kinetic plus potential
energy).

The N(N � 1) ‘‘coupling constants’’ �nm and �nm

are of course real, but they are otherwise arbitrary
except for the symmetry restrictions �nm =�mn,
�nm = �mn which are required in order that this
system be Hamiltonian. If all these coupling
constants vanish, this dynamical system has a
clear physical interpretation: it describes the
motion of N equal, electrically charged, point
particles, moving in the horizontal plane under
the effect of a magnetic field orthogonal to that
plane (in the approximation in which the electro-
static interparticle interaction is neglected). In that
case each particle moves on a circle, the center and
radius of which depend on the initial data, while
the time taken to go round it is, in all cases, T, see
[1]. If the 1

2 N(N � 1) coupling constants �nm

vanish, �nm = 0, and the 1
2 N(N � 1) coupling con-

stants �nm all equal unity, �nm = 1, the system is a
well-known integrable (indeed solvable) system;
and this is as well the case if the 1

2 N(N � 1)
coupling constants �nm vanish, �nm = 0, and the
1
2 N(N � 1) coupling constants �nm equal minus one
half, and only act among ‘‘nearest neighbors’’,
�nm =�1

2 (	m, nþ1 þ 	m, n�1) (see the entry Integrable
systems in this Encyclopedia).

Because of its many interesting features as well as
the neatness of its equations of motion (especially in
their complex version, see below) the honorary title
of ‘‘goldfish’’ has been attributed to this model,
characterized by the Newtonian equations of motion
in the plane [7]. A more detailed discussion of it – in
particular of its behavior for initial data outside of
the region yielding isochronous motions – is made in
the next section.

Several interesting classes of isochronous dyna-
mical systems are reported in Calogero F. (2004b).
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We only mention here a remarkably general
example, characterized by the Newtonian equa-
tions of motion

€zþ i! _z ¼
XK

k¼1

f ð�kÞ z; _zþ i!zð Þ

where z � (z1, . . . , zN) is the N-vector whose com-
plex components zn � zn(t) are the dependent vari-
ables, while the ‘‘forces’’ f (�k)(z, ~z) are required to be
analytic in all their arguments and to satisfy the
scaling properties

f ð�kÞð�z;~zÞ ¼ ��kf ð�kÞðz;~zÞ

which however entail no restriction on the velocity-
dependence of these forces, namely on the depen-
dence of f (�k)(z, ~z) on the (components of the)
second, ~z, of its two N-vector arguments.

The next example we report is characterized by
the Newtonian equations of motion

~r
��
n þ i!~r

�
n þ 2!2~rn ¼

XN
m¼1;m 6¼n

Mm~rmn

r3
mn

where we assume the N dependent variables ~rn �
~rn(t) to be three-vectors (although the property of
isochronicity of this deformed system would hold no
less if these were S-vectors, with S an arbitrary
positive integer) and we use the short-hand notation
~rmn =~rm �~rn. This system is (perhaps) remarkable
inasmuch as it represents a (complex) deformation
of the classical N-body gravitational problem, to
which it clearly reduces for != 0.

The next example we report is characterized by
the following (first-order) equations of motion of
oscillator type:

_xn � ipn!xn ¼ fnðx; yÞ; n ¼ 1; . . . ;N

_ym þ iqm!ym ¼ gmðx; yÞ; m ¼ 1; . . . ;M
½8�

Here the N-vector x, respectively the M-vector y,
have as components the N þM complex dependent
variables xn � xn(t), ym � ym(t); the N þM para-
meters pn, qm are all nonnegative integers (or they
could be nonnegative rational numbers); and the
N þM complex functions fn, gm are restricted by
the following conditions (which are sufficient to
guarantee the isochronicity of this dynamical
system):

(1) fn(x, y) and gm(x, y) are holomorphic at
x = 0, y = 0;

(2) lim" ! 0["�1f ("x, "y)] = 0, lim" ! 0["�1g("x, "y)]
= 0;

(3) f (x, y) and g(x, y) are polynomial in the ym;

(4a) lim"! 0["�1�pnfn("px, "�qy)] = nondivergent, n =
1, . . . , N;

(4b) lim"!0["�1þqmgm("px,"�qy)]=nondivergent,m=
1,...,M.

In the conditions (4a) and (4b) the notation "px indicates
of course the N-vector of components "pnxn, and
likewise "�qy is the M-vector of components "�qmym.

Note that this dynamical system, [8], includes the
Hamiltonian case characterized by the restrictions

N ¼M; pn ¼ qn; fnðx; yÞ ¼
@Vðx; yÞ
@yn

; gnðx; yÞ

¼ �
@Vðx; yÞ
@xn

which imply that the equations of motion [8] are
just the Hamiltonian equations entailed by the
Hamiltonian function

Hðx; yÞ ¼ i!
XN
n¼1

pnxnyn þ Vðx; yÞ

isochronicity being now guaranteed by the following
conditions on the function V(x, y):

(1) V(x, y) is holomorphic at x = 0, y = 0;
(2) lim"! 0 ["�2V("x, "y)] = 0;
(3) V(x, y) is polynomial in the yn;
(4) lim"! 0["�1V("px, "�py)] = nondivergent.

The last two examples we report can be char-
acterized as assemblies of non-linear harmonic
oscillators, inasmuch as these two dynamical sys-
tems (which are actually special cases of more
general systems) have the remarkable property that
their generic solutions (namely, all their solutions,
except for a lower-dimensional set of singular
solutions in which one or more of the ‘‘moving
particles’’ shoot off to infinity at a finite time) are
completely periodic with the fixed period T, see [1].
Their Newtonian equations of motion read

~z
��

nm � 3i!~z
�
nm � 2!2~znm ¼ c

XN

¼1

XM
�¼1

~zn� ~z
� �~z
m

� �

~z
��

nm � 3i!~z
�
nm � 2!2~znm ¼ c

XN

¼1

XM
�¼1

~z
� ~z
� �~znm

� �
These are two (different) systems of NM Newtonian
equations of motion satisfied by the NM complex
S-vectors ~znm (with S an arbitrary positive integer);
hence here the index n runs from 1 to N, and the
index m runs from 1 to M, with N and M two
arbitrary positive integers, while c is of course an
arbitrary complex constant (which might actually be
rescaled away). The dot sandwiched between two
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S-vectors denotes the standard (Euclidian) scalar
product, entailing the rotation-invariant character,
in S-dimensional space, of these equations of
motion. Since these systems only feature linear and
cubic forces, these models are remarkably close to
physics; and they become even more applicable if
they are written in their real versions, that obtain in
an obvious manner by setting

~znm ¼~xnm þ i~ynm; c ¼ aþ ib

In contrast to what we did for the previous examples,
let us outline here the derivation of these results.
Actually the two systems of Newtonian equations
written above are merely special subcases, corres-
ponding to appropriate parametrizations of a square
matrix M (of appropriate rank) in terms of S-vectors, of
the following nonlinear matrix evolution equation:

€M� 3i! _M� 2!2M ¼ cM3 ½9�

Hence the findings reported above are merely special
cases of the more general result according to which
the generic solution of this nonlinear matrix evolu-
tion equation – with M �M(t) a square matrix of
arbitrary rank – is periodic with period T, see [1]:

Mðt þ TÞ ¼MðtÞ

And this result is an immediate consequence, via the
following matrix version of the trick

MðtÞ ¼ expði!tÞ�ð�Þ; � ¼ expði!tÞ � 1

i!
½10�

of a previous result due to V. I. Inozemtsev,
according to which the matrix evolution equation

�00 ¼ c�3

which clearly corresponds to [9] via [10], is
integrable and all its solutions �(�) are mero-
morphic functions of the independent variable � .

The Transition to Deterministic Chaos

In this section we illustrate, using the real N-body
problem in the plane characterized by the New-
tonian equations of motion [7], the behavior of an
isochronous system of the kind described above
when the initial data fall outside of the region
yielding isochronous motions.

To do this it is convenient to use the complex
version of the equations of motion [7], that obtain
from [7] by setting

zn ¼ xn þ iyn;~rn ¼ xn; yn; 0ð Þ;
k̂ ¼ ð0; 0; 1Þ; anm ¼ �nm þ i�nm

½11�

and read as follows:

€zn ¼ i! _zn þ 2
XN

m¼1;m 6¼n

anm _zn _zm

zn � zm
½12�

The main tool of our analysis is the (particularly
simple) version of the trick appropriate to this
model,

znðtÞ ¼ �nð�Þ; � ¼
expði!tÞ � 1

i!
½13a�

entailing

znð0 ¼ �nð0Þ; _znð0Þ ¼ �0nð0Þ ½13b�

that relates our equations of motion [12] to the
equations of motion

�00n ¼ 2
XN

m¼1;m 6¼n

anm�
0
n�
0
m

�n � �m
½14�

These equations of motion, together with the initial
data �n(0), �0n(0) (see [13b]) define the solutions �n �
�n(�) in the complex �-plane. The ‘‘physical’’
evolution of the points zn � zn(t) as functions of
the real time variable t is then given by the evolution
of the corresponding coordinates �n(�), see [13a], as
the complex variable � travels round and round on
the circle C in the complex �-plane, the diameter of
which of length 2/!, has one extreme at the origin
� = 0 and the other on the positive imaginary axis at
� = 2i/!. It is therefore clear that the behavior of
zn(t) as a function of the real, ‘‘physical time’’
variable t depends on the analytic structure of �n(�)
as function of the complex variable � , in particular
of the singularities, if any, of this function �n(�) that
fall in the disk D encircled by the circle C in the
complex �-plane.

Let us tersely review the relevant analysis. We
recall first of all that (it can be proven that) there
exists in phase space an open region of initial data
zn(0), żn(0), characterized by large values of the
moduli jzn(0)� zm(0)j of the initial interparticle
distances and by small values of the moduli of the
initial particle velocities jżn(0)j (see [14] and [13b]),
that guarantees (all components �n(�) of) the
corresponding solution �(�) of [14] to be holo-
morphic in (a disk of radius � centered at the origin
� = 0 of the complex �-plane that includes) the circle
C, hence the corresponding solution z(t) to be
completely periodic with period T, see [13a] and
[1]. This result guarantees the isochronous character
of this model, [12], for any arbitrarily given assign-
ment of the coupling constants anm.
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Next, let us restrict, for simplicity, our considera-
tion to models [12] in which the coupling constants
anm are real and nonnegative,

anm � 0 ½15�

Then the singularities of the generic solution �(�) of
[14] – which occur at values �b of � where two
coordinates �n(�) coincide, say ��(�b) = �
(�b) = b
(see the right-hand side of [14]) – are branch points
characterized by the exponent, say,

� ¼ ��
 ¼
1

1þ a�

½16�

so that in their neighborhood, namely for � � �b,

�sð�Þ ¼ b	 c � � �bð Þ�þv � � �bð Þ

þ
X1
k¼1

X1
‘;m¼0‘þm�1

’
ðsÞ
k‘m � � �bð Þkþ‘�þmð1��Þ

s ¼ �; 
 ½17a�

�nð�Þ ¼ bn þ vn � � �bð Þ

þ
X1
k¼1

X1
‘¼	k1

X1
m¼0

’
ðnÞ
k‘m � � �bð Þkþ‘�þmð1��Þ

n 6¼ �; 
 ½17b�

The 	 sign in front of c in the right- hand side of the
first, [17a], of these formulas indicates that one sign
must be chosen for s =�, the opposite for s = 
.
Note that here the 4þ 2(N � 2) = 2N constants
�b, b, c, v, bn, vn are a priori arbitrary – except for
the obvious restrictions bn 6¼ b, bn 6¼ bm – while the
coefficients ’(s)

k‘m,’(n)
k‘m can be computed from these

constants, recursively, by inserting this ansatz, [17],
in the equations of motion [14]. The fact that the
number, 2N, of a priori undetermined coupling
constants equals the number of arbitrary initial data
for this system of ODEs, [14], indicates that this
kind of branch points, characterized by the expo-
nents �nm, see [16], is the typical singularity featured
by the generic solution �(�) of [14]. (Branch points
with different exponents may appear, but only in
nongeneric solutions �(�) which, at some value �b of
� , feature the coincidence of more than two
components, say ��(�b) = �
(�b) = ��(�b)).

We conclude therefore that the generic solution �(�)
of [14] features a, generally infinite, number of branch
points, that generally affect each of its components
�n(�), and which are characterized, for the class of
models to which we are restricting attention here, see
[15]) by (real) exponents �nm, see [16], which are then
clearly characterized by the inequalities

0 < �nm 
 1

What does this tell us about the generic solution z(t)
of the equations of motions of primary interest to
us, [12], in particular about its evolution as function
of the real ‘‘time’’ variable t?

To the solution �(�) is associated a Riemann
surface the structure of which is determined by the
character and distribution of the branch points of
�(�) in the complex �-plane (each of which is
generally featured by each component �n(�) of �(�),
although generally not in the same way: see [17]),
and we know from [13a] that the values taken by
z(t) as t evolves from t = 0 towards t =1 coincide
with the values taken by �(�) as the independent
variable � travels, on that Riemann surface asso-
ciated with �(�), counterclockwise round and round
on the circle C defined above (the diameter of which
lies on the imaginary axis in the complex �-plane,
with one end at � = 0 and the other at � = 2i/!),
employing a period T, see [1], to make each full
round. Hence the behavior of the solution z(t) of
[12] depends on the structure of the Riemann
surface associated with the corresponding solution
�(�) of [14], and specifically on the number of
different sheets of that surface that are visited as one
travels on it before returning, if ever, to the main
sheet from which the travel started at t = � = 0.

If no other sheet is visited besides the main one,
the corresponding solution z(t) is of course periodic
with period T, see [1] and [13a],

z t þ Tð Þ ¼ z tð Þ ½18�
This happens provided no branch point is featured
by �(�) on its main sheet inside the circle C; and, as
already indicated above, it has been proven (even in
the more general case with arbitrary coupling
constants anm) that there is an open region having
full dimensionality in the phase space of initial data,
see [13b], that yields such an outcome, implying the
isochronicity of the model characterized by the
Newtonian equations of motion [12]. This region
R of initial data has a boundary – a lower-
dimensional domain in the phase space of initial
data – out of which emerge motions leading, at a
time tb smaller than T, to a ‘‘particle collision’’, say
z
(tb) = z�(tb).

The character of the solution z(t) yielded by initial
data outside of the region R depends on the
structure of the Riemann surface associated with
the corresponding solution �(�). This is mainly
determined by the values of the branch point
exponents �nm, which are themselves determined by
the values of the coupling constants anm, see [17]
and [16]. Let us focus on the (more interesting) case
in which these constants anm are rational numbers,
entailing that the coefficients �nm determining the
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character of the branch points are as well rational,
see [16], so that each of the cuts associated with
them opens the way, in the Riemann surface, to a
finite number of sheets. There are then two
possibilities, each generally characterized by open
regions of initial data having full dimensionality in
phase space, the boundaries of which always are
(lower-dimensional) domains out of which emerge
motions leading, in a time tb smaller than T, to a
‘‘particle collision’’.

One possibility is that the number B of sheets
visited before returning to the main sheet be finite,
B <1; the corresponding solutions z(t) are then
completely periodic with period ~T = (Bþ 1)T,
z(t þ ~T) = z(t).

Another possibility is that the number of new
sheets visited be unlimited, namely that the structure
of the Riemann surface be such that, by traveling
round and round on it along the circle C one never
returns back to the main sheet. This can happen,
even if the exponents �nm are all rational so that via
the cuts associated to each of them access is gained
to only a finite number of new sheets, because of the
possibility that an infinity of branch points be
located inside the circle C on the infinite sheets
associated to these branch points, via a never ending
mechanism of branch points nesting. Whenever this
happens the corresponding solution z(t) is aperiodic;
and it is moreover likely that it then be chaotic, in
the sense of displaying a sensitive dependence on its
initial data. Indeed this will happen whenever some
ones out of this infinity of branch points fall
arbitrarily close to the contour C, because then a
minute change in the initial data, to which there will
correspond a minute change in the pattern of these
branch points of �(�) in the complex �-plane, will
cause some relevant branch point to cross over from
outside the circle C to inside it, or viceversa, and this
will eventually affect quite significantly the time
evolution of z(t), by causing a change in the
sequence of sheets that get visited by traveling
along the circle C on the Riemann surface associated
to the corresponding �(�).

This phenomenology has a clear ‘‘physical inter-
pretation’’, which can be qualitatively understood
as follows. The N-body problem characterized by
the Newtonian equations of motion [12] generally
yields confined motions, the trajectory of each
particle tending to wind round and round – it
would indeed reduce to a circle were it not for the
interaction with the other particles. A possibility, as
we know, is that this N-body motion be completely
periodic, with the same period T that characterizes
the circular motion of each particle when the two-
body interparticle interaction is altogether missing

(anm = 0). Another possibility, in the case discussed
above with rational coupling constants, is that there
exist other motions which are as well completely
periodic, but with periods which are integer multi-
ples of T. A third possibility, which cannot a priori
be excluded, is that there also exist motions which
are aperiodic but in some way overall ordered,
perhaps featuring trajectories that eventually wind
up around limit cycles. And still another possibility
is that the motions described by the solution z(t) be
aperiodic and disordered. In this case the physical
mechanism causing a sensitive dependence on the
initial data can be understood as follows. Such
disordered motions necessarily feature near misses,
in which, typically, two particles pass quite close to
each other (while the probability that an actual
collision occur among point particles moving in a
plane is of course a priori nil). Such a near miss in
the motion described by z(t) corresponds – see the
discussion above – to a branch point of the
corresponding solution �(�) occurring quite close
to the circle C in the complex �-plane (which is the
one-dimensional region of the two-dimensional
complex �-plane in which the values of �(�)
correspond to the values z(t) describing the motion
of physical particles moving as functions of the
time t); and in the generic case of a two-body near
miss, there is a correspondence between the fact
that such a branch point occur just inside, or just
outside, the circle C, and the way the particles pass,
on one or the other side, by each other. Likewise,
the tiny change in the initial data that causes, in the
context of the solutions �(�) – see the discussion
above – a branch point of �(�) to pass from inside
to outside the circle C, or viceversa, corresponds, in
the context of the ‘‘physical’’ solutions z(t), to a
change occurring in the corresponding near miss,
from the case in which the two particles involved in
it slide by each other on one side to the case in
which they instead slide by each other on the other
side – entailing a significant change in the sub-
sequent motion (indeed, the closer a near miss, the
more it affects the motion, due to the singularity
of the two-body interaction at zero separation,
see [12]).

The phenomenology outlined here does indeed
occur in this goldfish model. It also occurs – rather
similarly if more simply, since in this case only
square-root branch points occur, irrespective of the
values of the coupling constants – in the model [6]
with K = 1. Indeed, it is clear that this phenomen-
ology provides a paradigm of rather general applic-
ability for the transition from isochronicity to
deterministic chaos, indeed perhaps for the generic
onset of deterministic chaos.
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See also: Bifurcations of Periodic Orbits;
Calogero–Moser–Sutherland Systems of Nonrelativistic
and Relativistic Type; Integrable Systems: Overview;
Quantum Calogero–Moser Systems; Synchronization of
Chaos.
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Introduction

In this article we consider families of linear
differential equations whose monodromy data do
not depend on the parameters. Such families are
called isomonodromic deformations of any of the
equations of the family (for the definitions of a
regular and Fuchsian linear system and of
their monodromy groups, see Riemann–Hilbert
Problem).

Schlesinger’s Equation

The best-studied example of an isomonodromic
deformation is the Fuchsian system on Riemann’s
sphere CP1 = C [1 considered by L Schlesinger:

dX

dt
¼

Xpþ1

j¼1

Aj

t � aj

 !
X ½1�

Here the poles aj 2 C are free parameters and the
matrices-residua Aj depend analytically on
a := (a1, . . . , apþ1); therefore, system [1] is in fact a
family of linear systems which is an analytic
deformation of the system obtained for aj = a0

j .

One can think of system [1] as defined by the
Pfaffian system

dX ¼ !sX; !s ¼
Xpþ1

j¼1

Aj

t � aj
dðt � ajÞ ½2�

Suppose first that the poles aj vary within
small nonintersecting disks of the points a0

j , so
small that the standard system of generators of
the monodromy group could be defined by one
and the same contours for all values of the
parameters aj (see Figure 1 from Riemann–Hilbert
Problem). Suppose also that one chooses 1 as
base point and that one has

Xjt¼1 ¼ I ½3�

(where I is the identity matrix) for all values of the
parameters aj. Finally, suppose that all matrices Aj

are nonresonant, that is, without two eigenvalues
differing by a nonzero integer. Then the following
conditions are necessary and sufficient for system [1]
to be isomonodromic:

dAiðaÞ ¼ �
Xpþ1

j¼1;j 6¼i

½AiðaÞ;AjðaÞ�
ai � aj

dðai � ajÞ

i ¼ 1; . . . ; pþ 1 ½4�

This system (called Schlesinger’s equations) results
from the Frobenius integrability condition
d!s =!s ^ !s of system [2].
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174 Isomonodromic Deformations
Remarks 1

(i) To find the matrices-residua Aj as functions of a
and given their values Ajja=a0 is a Cauchy
problem. It is solvable for a close to a0 and
the matrices Aj are analytic in a.

(ii) The differential of Ai being a commutator
[Ai, .], the matrix Ai remains within its con-
jugacy class throughout the deformation.

(iii) Schlesinger’s equations are the necessary and
sufficient conditions for isomonodromy also in
the case when system [1] has a logarithmic
pole at 1 whose matrix-residuum does not
change throughout the deformation. In this
case the solution to system [1] in its Levelt’s
decomposition at 1 (see Riemann–Hilbert
Problem) equals U1(1=t)t�D1t�E1G, where
D1 is a diagonal matrix with integer entries,
E1 is an upper-triangular constant matrix, and
U1 is holomorphic at 1 and such that
U1(0) = I.

Definition 2 The deformation satisfying condition
[4] with initial condition [3] for the solution to
system [1] is called the normalized Schlesinger
deformation.

Remark 3 When the matrices-residua Aj are
nonresonant, then every isomonodromic deforma-
tion of system [1] with aj = a0

j is either the normal-
ized Schlesinger deformation or is a nonnormalized
Schlesinger deformation, that is, obtained from
the normalized one by a change of variables
X 7!C(a)X, C(a) 2 GL(n, C). In this way, one has
Xjt=1= C(a) instead of [3] and the deformation is
described by a Pfaffian system with a form of the
kind !n =!s þ

Ppþ1
j=1 �j(a)daj.

Example 4 The following one-parameter Fuchsian
family is an isomonodromic Schlesinger deformation:

dX

dt
¼

Xpþ1

j¼1

Aj

t � ba0
j

 !
X

Here the matrices Aj are constant and the parameter
b takes nonzero values. Indeed, one either checks
directly that there holds condition [4] or one makes
the change of time (which does not change
monodromy) t 7! bt after which the parameter
b disappears.

A A Bolibrukh has shown that in the resonant
case every isomonodromic deformation of a Fuch-
sian system is described by an integrable Pfaffian
system with 1-form !=!n þ !m, where the mero-
morphic 1-form !m vanishes at 1 and has poles of
orders �rj along the hyperplanes {x� aj = 0}; here rj

is the largest nonzero integer difference between two
eigenvalues of the matrix Aj.

Consider now Schlesinger’s equation in the global
situation, that is, when the poles aj belong to the
universal covering Z of the space Cnn�, where � is
the ‘‘diagonal,’’ that is, the union of all sets
{ai = aj}, i 6¼ j. Suppose that the matrices Aj are
nonresonant. There are values of a (their set is
denoted by �) for which some entries of some of the
matrices-residua Aj tend to 1. Typically, at such
points the matrices Aj have poles of second order;
this is a result due to Bolibrukh. Indeed, set
Aj = Q�1

j JjQj, where Jj is the Jordan normal form
of Aj; hence, this is a constant matrix; we assume
that Qj 2 SL(n, C). Typically, at points of � the
matrices Qj and Q�1

j have simple poles, which
makes a pole of second order for Aj.

B Malgrange and, independently, T Miwa have
proved that system [4] is completely integrable and
that it has the Painlevé property: ‘‘The only
movable singularities of its solutions are poles.’’
(The fixed singularities of the solutions are, by
definition, along the points of Z which are over �.
The positions of the movable singularities depend
on the initial condition, that is, on the values of the
matrices Aj for a = a0.) In other words, the
solutions to Schlesinger’s equation are matrices
meromorphic on Z.

Theorem 5 The set � of movable singular points
of the Schlesinger equation is the set of zeros of a
function � (the Miwa �-function) holomorphic on Z
and such that

1

2

X
i;j;i 6¼j

trðAiðaÞAjðaÞÞdðai � ajÞ
ai � aj

¼ d logð�ðaÞÞ

Some improvements of this result are due to
Malgrange and Bolibrukh.
Isomonodromy and Confluence

The idea to consider a linear system of ordinary
differential equations with a pole of order higher than
1 as embedded into a family of Fuchsian systems with
confluence of the poles has been proposed by V I
Arnol’d in 1984 and independently by J-P Ramis in
1988. The idea has been used by A Duval, B Khesin,
A A Glutsyuk, and other authors. In particular, it is
interesting to relate the Stokes multipliers (defined in
the next section) of the system obtained as a result of
a confluence to the monodromy groups of the
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Fuchsian systems obtained for values of the para-
meters before the confluence occurs.

Example 6 Consider the one-parameter family of
linear systems:

ðt2 � �ÞdX=dt ¼ ðAð�Þt þ Bð�ÞÞX ½5�

Here the matrices A, B, and X are n� n.
Suppose that t 2 C (i.e., we do not consider
singularity at 1), � 2 (C, 0). Then for � 6¼ 0 the
system is Fuchsian – it has two logarithmic poles at
��1=2 whose confluence for �= 0 gives as a result a
pole at 0 which might be of order 2 if B(0) 6¼ 0 or 1
if B(0) = 0.

In this section we consider only the situation
when the family producing the confluence is
isomonodromic for values of the parameters before
the confluence.

Example 7 This is the case of family [5] with B � 0
and A being a constant nonresonant n� n matrix.
Indeed, the change of time t 7!�1=2t(�) transforms the
family into the family (t2 � 1)dX=dt = tAX
(independent of �) which is a Fuchsian system (at 1
as well).

Suppose now that t 2 CP1 (i.e., we consider the
singularity at 1 as well). Hence, the monodromy
operator M1 around 1 is independent of � up to
conjugacy (it is conjugate to exp(�2�iA)). On the
other hand, consider the monodromy operator M0

defined by a contour circumventing counterclock-
wise both poles at ��1=2 (one can choose as such
a contour a circumference centered at the origin
and of sufficiently large radius). It equals M�1

1 ,
and it is well defined for �= 0 as well. (This is
not the case of the monodromy operators defined
by contours circumventing only one of the poles
at ��1=2.) Hence, up to conjugacy M0 is indepen-
dent of �. As M0 is in a sense the only
monodromy operator that can be defined by
a contour depending continuously on � for all
� 2 (C, 0) and not passing through a pole of the
system, one can say that the family is strongly
isomonodromic.

Example 8 Consider now family [5] with n = 2,

A ¼ d 0
0 d

� �
; B ¼ 0 �

0 0

� �

where d 2 C. For � 6¼ 0 the family is isomonodromic –
the change of time (�) followed by the change of
variables

X 7! �1=2 0
0 1

� �
Xð��Þ
brings the family to the form

ðt2 � 1Þ dX

dt
¼ d 0

0 d

� �
t þ 0 1

0 0

� �� �
X

which is independent of �, hence, isomonodromic.
However, the change of variables (��) is not defined
for �= 0. The monodromy operator M0 (defined as
above) is scalar for �= 0 and conjugate to a Jordan
block of size 2 for � 6¼ 0. Hence, the family is not
strongly isomonodromic.

The following example is closely connected
to singularity theory. It has been suggested by
F Pham.

Example 9 Consider the Abelian integrals

I1 ¼
Z

dx=ðx3 þ sxþ tÞ and

I2 ¼
Z

x dx=ðx3 þ sxþ tÞ

taken over a closed contour � belonging to a
nonsingular fiber of the function f (x) = x3 þ sxþ t.
Suppose that x3 þ sxþ t 6¼ 0 on �. Obviously, I1

and I2 depend only on [�], the class of homotopy
equivalence of �. Set

x3 þ sxþ t ¼ ðx� x1Þðx� x2Þðx� x3Þ;
xj ¼ xjðs; tÞ

Then one has

Ik ¼ 2�i
X3

j¼1

�k;jx
k�1
j = 3x2

j þ s
� �

; k ¼ 1; 2

where the integers �k, j depend only on [�] (the
contour � is homotopy equivalent to a linear
combination with integer coefficients of small
loops around the roots of f; the integral along such
a loop is computed using residua). Note that

_xj :¼ dxj=dt ¼ �1= 3x2
j þ s

� �
An easy computation shows that the integrals I1, I2

satisfy the following Picard–Fuchs system of differ-
ential equations:

�t _I1 � 2s_I2=3 ¼ 2I1=3

2s2 _I1=9� t _I2 ¼ I2=3

The system admits also a presentation of the form

t2 þ 4s3

27

� �
_I1
_I2

� �
¼ �2t=3 2s=9
�4s2=27 �t=3

� �
I1

I2

� �

Here the unknown variables form a vector column
of length 2; to obtain a 2� 2 matrix, one has to
choose another contour �0 (linearly independent
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with � as a linear combination of the loops around
the roots xi) which gives the second column of the
matrix. The system is strongly isomonodromic – its
matrix-residuum at 1 equals diag(2=3, 1=3); hence,
the monodromy operator M0 up to conjugacy equals
diag(exp(�4�i=3), exp(�2�i=3)).

A A Bolibrukh has considered the possibility of
confluence of poles in Schlesinger’s equation
(i.e., the possibility to have equalities of the form
ai = aj in system [1]). He has considered the so-called
normalized isomonodromic confluences, that
is, isomonodromic confluences defined by Pfaffian
systems with coefficient forms !=!s þ !m alone
(see the previous section). He has shown that
a normalized isomonodromic confluence of singular
points of Fuchsian systems of linear differential
equations on Riemann’s sphere can only lead to
a system with regular singular points. This is a
partial answer to a problem stated by V I Arnol’d:
how to express a system with regular singular
points as a limit of Fuchsian systems?
Other Results

In the case of a linear system with irregular singular
point, isomonodromy means that the formal mono-
dromy and the Stokes multipliers do not change
throughout the deformation. The formal mono-
dromy can be computed from the formal normal
form (the latter can be found algorithmically; this is
due to H Turrittin). Consider, for simplicity, the
nonresonant case, that is, the case when the leading
matrix in the Laurent series of the system at the
singular point has distinct eigenvalues (this defini-
tion differs from the one in the case of a Fuchsian
singular point). The Stokes multipliers are linear
operators acting on the solution space. They are
defined as follows: there exist sectors of maximal
opening centered at the singular point on each of
which the solution is uniquely defined by its
asymptotic development. Two solutions X1, X2

having one and the same asymptotic development
in two overlapping sectors are related by X1 = X2C,
where C is a Stokes multiplier. The monodromy
operator is expressed as a product of the operator
of formal monodromy and the Stokes multipliers.
Isomonodromic deformations of systems with irregu-
lar singular points have been constructed by B
Malgrange. Isomonodromic deformations have been
used by Y Sibuya and C H Lin and by Y Sibuya and
T J Tabara to investigate Stokes multipliers.

At the beginning of the twentieth century,
P Painlevé and B Gambier have classified the
differential equations of second order,
uxx ¼ Rðx; u; uxÞ ½6�

(where R is analytic in x and rational in u and ux)
whose solutions do not have branch-type movable
singularities. From the 50 equations (up to local
transformation) discovered by them only six are not
reduced to linear ones. These are the so-called
Painlevé equations. They appear often as isomo-
nodromy conditions for families of linear differen-
tial equations and this has given the idea to
develop the isomonodromic deformation method. It
consists in associating with eqn [6] a linear system

d�=d� ¼ Að�; x; u; uxÞ� ½7�

with matrix-valued coefficients rational in �.
The deformation of the coefficients in x is described
by eqn [6] in such a way that the monodromy data of
system [7] remain the same. Thus, the monodromy
data of system [7] are first integrals of eqn [6].

Example 10 The Painlevé II equation

uxx � xu� 2u3 ¼ �

is associated with the system

d�

d�
¼

�4i�2 � ix� 2iu2 4i�u� 2ux �
i�

�

�4i�u� 2ux þ
i�

�
4i�2 þ ixþ 2iu2

0
B@

1
CA�

The idea to present the Painlevé equations as
isomonodromy conditions originate from the works
of Fuchs (1907) and Garnier (1912). It has been
used, for example, in the papers of Flaschka and
Newell (1980), Jimbo and Miwa (1981), and Its and
Novokshenov (1986).

See also: Holonomic Quantum Fields; Integrable
Systems: Overview; Painlevé Equations;
Riemann–Hilbert Problem; WDVV Equations and
Frobenius Manifolds.
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Introduction

A ‘‘link’’ is a finite family of disjoint, smooth,
oriented or unoriented, closed curves in R3 or
equivalently S3. A ‘‘knot’’ is a link with one
component. The ‘‘Jones polynomial’’ VL(t) is a
Laurent polynomial in the variable

ffiffi
t
p

which is
defined for every oriented link L but depends on
that link only up to orientation-preserving diffeo-
morphism, or equivalently isotopy, of R3. Links can
be represented by diagrams in the plane and the
Jones polynomials of the simplest links are given
below.

V
= 1

V
= –      +    

1
√t

√t

= t + t 
3

 – t 
4V

V
= –  (1 + t 

2)√t

V
= 1

t 
2

1
t 

 –  + 1– t + t 
2

The Jones polynomial of a knot (and generally a
link with an odd number of components) is a
Laurent polynomial in t.

The most elementary ways to calculate VL(t)
use the ‘‘linear skein theory’’ ideas of Conway
(1970). Indeed, it is not hard to see by induction
that VL(t) is defined by its invariance under
isotopy, the normalization V (t) = 1 and the skein
formula

1

t
VLþ � tVL� ¼

ffiffi
t
p
� 1ffiffi

t
p

� �
VL0
which holds for any three oriented links having
diagrams which are identical except near one crossing
where they differ as below.

L0L+ L–

As such the Jones polynomial resembles the
Alexander (1928) polynomial �L(t) which can be
calculated in exactly the same manner as VL(t)
except that the skein relation becomes

�Lþ��L� ¼
ffiffi
t
p
� 1ffiffi

t
p

� �
�L0

A two-variable generalization PL of both �L and
VL, sometimes called the HOMFLYPT polynomial,
was found in Freyd et al. (1985) and Przytycki and
Traczyk (1988). It satisfies the most general skein
relation

xPLþ þ yPL� þ zPL0
¼ 0

for homogeneous variables x, y, and z.
The other skein-like definition of VL was found in

Kauffman (1987). Begin with unoriented link dia-
grams up to planar istotopy. The Kauffman bracket
hLi of such a diagram is calculated using

〈 〉 〉 = A 〈 〉 + A–1〈

where the h�i notation means that the relation may
be applied to that part of the link diagrams inside
the bracket, the rest of the diagrams being identical.
If hLi were to be an invariant of three-dimensional
isotopy it is easy to see that

〈 〉 = – A2
 – A–2

which further implies

〈 〉 = A–3 〈 〉

Thus, hLi cannot be a three-dimensional isotopy
invariant as such. However, if L is given an



180 The Jones Polynomial
orientation (then called ~L), a simple renormalization
solves the problem and it is true that

ð�Þ VLðA4Þ ¼ A�3 writhe ð~LÞhLi

where writhe (~L) is the sum over the crossings of L
of þ1 for a positive crossing and �1 for a
negative crossing .

The formula (�) is readily proved by induction but
a more structural proof will be discussed later on,
connected with physics. If the crossings in a link
alternate between over and under as one follows the
string around, the highest and lowest degree terms in
the Kauffman bracket can readily be located. This
led to the proof of some old conjectures about
alternating knots in Murasugi (1987), Kauffman
(1987), and Thistlethwaite (1987).

The Kauffman two-variable polynomial FL(a, x) is
defined in Kauffman (1990) by considering the
linear skein relation involving all four possibilities
at a crossing:

L+ L– L0 L∞

This polynomial contains VL(T) as a specializa-
tion but not the Alexander polynomial.

The above polynomials are quite powerful at
distinguishing links one from another, including
links from their mirror images, which corresponds
for the Jones polynomial to replacing t by t�1. More
power can be added to the polynomials if simple
geometric operations are allowed. ‘‘Cabling’’ entails
replacing a single strand with several parallel copies
and the polynomials of cables of a link are also
isotopy invariants if attention is paid to the writhe
of a diagram.

The following problem, however, is open at the
time of writing this article: ‘‘Does there exist a knot
in R3, different from the unknot , whose Jones
polynomial is equal to 1?’’

For links with more than one component, it is
known (Thistlethwaite 2001, Eliahou et al. 2003)
that the answer to the corresponding question is yes,
the simplest example being:
One of the reasons that the question above has
not been answered is presumably that, unlike with
the Alexander polynomial, we have little intuitive
understanding of the meaning of the ‘‘t’’ in VL(t).
Perhaps, the most promising theory in this context is
in Khovanov (2000) where a complex is constructed
whose Euler characteristic, in an appropriately
graded sense, is the Jones polynomial. The homol-
ogy of the complex is a finer invariant of links
known as ‘‘Khovanov homology.’’
Braids

A braid (see Birman (1974)) on n strings is a
collection of curves in R3 joining n points in a
horizontal plane to the n points directly below
them on another horizontal plane. If the end-
points of the braid are on a straight line, the
braid can be drawn as in the example below
(where n = 4).

The crucial property of a braid is that the tangent
vector to the curves can never be horizontal. Braids
are considered up to isotopies which are supported
between the top and bottom planes.

Braids on n strings form a group, called Bn, under
concatenation (plus some isotopy) as below:

α =

β =

αβ =

Let �1,�2, . . . ,�n�1 be the braids below:

σ1 = σ2 =, ,

σn–1 =,

. . . . . .

. . .. . .
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Artin’s presentation (Birman 1974) of the braid
group is on the generators �1,�2, . . . ,�n�1 with the
relations

�i�iþ1�i ¼ �iþ1�i�iþ1 for 1 � i � n� 2

�i�j ¼ �j�i if ji� jj � 2

Thus, to find linear representations of Bn, it suffices
to find matrices �1, �2, . . . , �n�1 satisfying the above
relations (with � replaced by �). One such representa-
tion (of dimension n) called the (nonreduced) Burau
representation is given by the row-stochastic matrices

�1 ¼

1� t t 0 0 . . .

1 0 0 0 . . .

0 0 1 0 . . .

..

. ..
. ..

. ..
. . .

.

0 0 0 . . . 1

0
BBBBBB@

1
CCCCCCA

�2 ¼

1 0 0 0 . . .

0 1� t t 0 . . .

0 1 0 0 . . .

0 0 0 1 . . .

..

. ..
. ..

. ..
. . .

.

0 0 0 . . . 1

0
BBBBBBBBB@

1
CCCCCCCCCA
; . . .

. . . ; �n�1 ¼

1 0 . . . 0

0 1 . . . 0

..

. ..
. . .

. ..
.

0 . . . 1� t t

0 . . . 1 0

0
BBBBBB@

1
CCCCCCA

This representation is known not to be faithful for
n � 5 but faithful for n � 3. The case n = 4 remains
open. (See Moody (1991), Long and Paton (1993),
and Bigelow (1999)).

Braids can be viewed in several ways, which lead to
several generalizations. For instance, identifying the
vertical axis for a braid with time and taking the
intersection of horizontal planes with the braids shows
that elements of Bn can be thought of as motions of n
distinct points in the plane. Thus, it is natural that

Bn ffi �1ðfCnn�g=SnÞ

when � is the set {(z1, . . . , zn)jzi = zj for some i 6¼ j}
and the symmetric group Sn acts freely on Cnn� by
permuting coordinates. But � is the zero-set of the
frequently encountered functionY

i<j

ðzi � zjÞ

so the braid group may naturally be generalized as
the fundamental group of Cn minus the singular
set of some algebraic function (Birman 1974). Or,
motions of points can be extended to motions of the
whole plane and a braid defines a diffeomorphism of
the plane minus n points. Thus, the braid group may
be generalized as the ‘‘mapping class group’’ of a
surface with marked points (Birman 1974).
The Temperley–Lieb Algebra

If � 2 C one may define the algebra TL(n, �) with
identity 1 and generators e1, e2, . . . , en�1 subject to
the following relations:

e2
i ¼ ei

eiei�1ei ¼ �ei

eiej ¼ ejei if ji� jj � 2

Counting reduced words on the ei’s shows that

dimfTLðn; �Þg � 1

nþ 1

2n
n

� �

and in Jones (1983) it is shown that these numbers,
the Catalan numbers, are indeed the dimensions of
the Temperley–Lieb algebras. In the obvious way,
TL(n, �) 	 TL(nþ 1, �). If ��1 is not in the set
{4 cos2 q�; q 2 Q}, TL(n, �) is semisimple and its
structure is given by the following Bratteli diagram:

3

2

5

1

1

1

1

95 1

1

1

1

2

5 4

where the integers on each row are the dimensions
of the irreducible representations of TL(n, �) and the
diagonal lines give the restriction of representations
of TL(n, �) to TL(n� 1, �). These representations
are naturally indexed by Young diagrams with n
boxes and at most two rows: with the
diagonal lines in the Bratteli diagram corresponding
to removal/addition of a box. The dimension of the
representation corresponding to the diagram whose
second row has r boxes (r � n) is

n
r

� �
� n

r� 1

� �
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One may attempt to make TL(n, �) into a
C�-algebra and look for Hilbert space represen-
tations (with ei 6¼ 0), by imposing e�i = ei. From
(Wenzl 1987), this is only possible (for all n) when

1. � 2 R, 0 < � � 1=4, or
2. ��1 2 {4 cos2 �=m, m = 3, 4, 5, . . . }.

The proof uses the fact that fn, inductively defined by

fnþ1 ¼ fn �
½2
q½nþ 1
q
½nþ 2
q

fnenþ1fn

must be an orthogonal projection with eifn = fnei = 0
for i � n. These fn are sometimes called Jones–Wenzl
idempotents. (Here ��1 = 2þ q2 þ q�2 and for this
and later formulas we define the quantum integer
[n]q = (qn � q�n)=(q� q�1)).

When ��1 = 4 cos2 (�=m), the Hilbert space repre-
sentations decompose according to Bratteli diagrams
obtained by truncating – eliminating the 1 on the
mth row, and all representations below and to the
right of it, so that for m = 7 we would obtain

4

1

5

1

1

1

1

1

1

95

51414

2

2 3

5

In terms of Young diagrams, this corresponds to
only taking those diagrams whose row lengths differ
by at most m� 2. The existence of these Hilbert
space representations is from Jones (1983).

The Temperley–Lieb algebras arose in Jones (1983)
as orthogonal projections onto subfactors of II1 factors.
As such the Hilbert space structure was manifest. The
trace on a II1 factor also yielded a trace on the TL(n, �).

To be precise, there is for each m a unique linear
map tr : TL(n, �)!C with:

1. tr(1) = 1
2. tr(ab) = tr(ba)
3. tr(xenþ1) = �tr(x) for x 2 TL(nþ 1, �).

This trace may be calculated either from (1), (2),
and (3), or using the representations, as a weighted
sum of ordinary matrix traces. The weight for the
representation of TL(n, �), the second row of whose
Young diagram has r boxes, is

½n� rþ 1
q
ð½2
qÞ

n

Thus, if x 2 TL(n, �) and �r is the n
r

� �
� n

r�1

� �
dimensional irreducible representation, then

trðxÞ ¼ 1

ðqþ q�1Þn
X½n=2

r¼0

½n� rþ 1
q trace ð�rðxÞÞ

One also has

trðfnÞ ¼
½nþ 2
q
ð½2
qÞ

nþ1

so that the disappearance of the ‘‘1’’ from the
Bratteli diagram is mirrored by the vanishing of the
trace of the corresponding projection.

Positivity of tr, tr(a�a) � 0, is responsible for all the
Hilbert space structures. To explicitly construct the
Hilbert space representations, one may use the GNS
construction: take the quotient of the �-algebra by the
kernel of the form ha, bi= tr(b�a) which makes this
quotient a Hilbert space on which TL(n, �) will act
with the ei’s as orthogonal projections. Explicit bases
can be obtained easily if desired, using paths on the
Bratteli diagram, or Young tableaux.

A useful diagrammatic presentation of TL(n, �)
was discovered in Kauffman (1987). A (Kauffman)
TL diagram (for non-negative integers m and n) is a
rectangle with n marked points on the top and m on
the bottom with nonintersecting smooth curves
inside the rectangle connecting the boundary points
as illustrated below.

A (5, 7)-diagram

Two Kauffman TL diagrams are considered the same
if they connect the same pairs of boundary points.

The vector space TL(m, n, �) with basis the set of
(m, n) diagrams, and � 2 C, becomes a category with
this concatenation together with the rule that closed
curves may be removed, each one counting a
(multiplicative) factor of �. We illustrate their
product in TL(m, n, �) below:

× = δ 
2=
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Of special interest is the algebra TL(n, n, �). If we
define Ei to be the diagram below:

1 2 i i + 1

1 2 i i + 1

then E2
i = �Ei, EiEi�1Ei = Ei, and EiEj = EjEi for

ji� jj � 2. Thus, provided � 6¼ 0, we have an
isomorphism between TL(n, ��2) and TL(n, n, �) by
mapping ei to (1=�)Ei.

One of the nicest features of the Kauffman
diagrams is that they yield simple explicit bases for
the irreducible representations. To see this, call a
curve in a diagram a ‘‘through-string’’ if it connects
the top of the rectangle to the bottom. Then all
(m, n) diagrams are filtered by the number of
through-strings and if we let TL(m, n, k, �) be
the span of (m, n) diagrams with at most k
through-strings, we have TL(k, n, �)TL(n, m, k, �) 	
TL(k, m, k, �). Thus, Vn, m = TL(n, m, m, �)=TL(n, m,
m� 1, �) is a TL(n, ��2)-module, a basis of which is
given by (m, n)-diagrams with m through-strings
(m � n). The number of such diagrams is n

m

� �
�

n
m�1

� �
and it follows from Jones (1983) that all these

representations are irreducible for ‘‘generic’’ � (i.e.,
� 62 {2 cos Q�}) and that they may be identified with
those indexed by Young diagrams as below:

Vn, m

m

n – m

The invariant inner product on Vn, m is defined by
hv, wi= w�v for the natural identification of Vm, m

with C (� is the obvious involution from (m, n)
diagrams to (n, m) diagrams.).
The Original Definition of VL(t)

Given a braid � 2 Bn one may form an oriented link
�̂ called the closure of � by tying the top of the braid
to the bottom as illustrated below:

β = β =ˆ
All oriented links occur in this way (Birman 1974)
but if � 2 Bn, ����1 and ���1

n (in Bnþ1) have the
same closure.

Theorem 1 (Markov) (Birman 1974). Let � be the
equivalence relation on

‘1
n = 1 Bn (all braids on any

number of strings) generated by the two ‘‘moves’’
� � ���1

n and � � ����1. Then �1 � �2 if and only
if the links �̂1 and �̂2 are the same.

It is easily checked that, if 1, e1, e2, e3, . . . satisfy
the TL rel ations of the sect ion ‘‘The Temper ley–Lieb
algeb ra,’’ then send ing �i to (t þ 1)ei�1 (with ��1 =
2þ t þ t�1) defines a representation �n of Bn inside
TL(n, �) for each n. The representation is unitary for
the C�-algebra structure when ��1 = 4 cos2 �=n,
n = 3, 4, 5, . . . (and t = e�2�i=n). It is an open question
whether �n is faithful for all n. It contains the Burau
representation as a direct summand.

Combining the properties of the trace tr defined
on TL with Markov’s theorem, one obtains imme-
diately that, for � 2 Bn, the following function of t
depends only on �̂:

�
ffiffi
t
p
� 1ffiffi

t
p

� �n�1 ffiffi
t
p �e

trð�nð�ÞÞ

(here e 2 Z is the ‘‘exponent sum’’ of � as a word on
�1,�2, . . . ,�n�1).

A simple check using the (oriented) skein-theoretic
definition of the Jones polynomial shows that this
function of t is precisely V�̂(t). This is how VL(t)
was first discovered in Jones (1985).

Although less elementary, this approach to VL(t)
does have some advantages. Let us mention a few.

1. One may use representation theory to do calcula-
tions. For instance, using the weighted sum of
ordinary traces to calculate tr as in the section
‘‘The Temperley–Lieb algebra,’’ one obtains read-
ily the Jones polynomial of a torus knot (i.e., �̂
where �= (�1�2 � � ��p�1)q 2 Bp if p and q are
relatively prime). It is

tðp�1Þðq�1Þ=2

1� t2
ð1� tpþ1 � tqþ1 � tpþqÞ

2. If one restricts attention to links realizable as �̂ for
� 2 Bn for fixed n, the computation of V�̂(t) can be
performed in polynomial time as a function of the
number of crossings in �̂. Thus, one has computa-
tional access to rather complicated families of links.

3. Unitarity of the representation when t = e�
2�i
n can

be used to bound the size of jVL(t)j. For instance,
if � 2 Bk and V�̂(t) = (�

ffiffi
t
p
� (1=

ffiffi
t
p

))k�1, then �
is in the kernel of �n, and jV

�̂
(e�2�i=n)j �

(2 cos �=n)k�1 for any other � 2 Bk.
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The representation of the braid group inside the TL
algebra should be thought of as an extension of the
Jones polynomial to ‘‘special knots with boundary.’’
The coefficients of the words in the ei’s (or equivalently
the Kauffman TL diagrams) are all invariants of the
braid. We can further remove the braid restriction and
consider arbitrary knots and links with boundary,
known as ‘‘tangles’’ (Conway 1970).

A 3-tangle

Tangles may be oriented or not and their
invariants may be evaluated either by reduction to
a system of elementary tangles using skein relations
or by organizing the tangle and representing it in an
algebra. See Turaev (1994).

A similar algebraic approach is available for the
HOMFLYPT and Kauffman two-variable polyno-
mials. The algebra playing the role of the TL algebra
is the Hecke algebra for HOMFLYPT (Freyd et al.
1985, Jones 1987) and the BMW algebra (Birman and
Wenzl 1989, Murakami 1990) for the Kauffman
polynomial. The BMW algebra was discovered after
the Kauffman polynomial in order to provide an
analog of the TL and Hecke algebras. For detailed
analysis of the Hilbert space and other structures for
both Hecke and BMW algebras, see Wenzl (1988) and
Wenzl (1990).
Connections with Statistical Mechanics

One might say that turning a knot into a braid
organizes the knot by ‘‘putting it on a lattice,’’
thereby creating a physical model with the crossings
of the knot as interactions. Taking the trace of the
braid is evaluating the partition function with
periodic (vertical) boundary conditions.

This is more than wishful thinking. The Temperley–
Lieb algebra arose from transfer matrices in both
the Potts and ice-type models in two dimensions
(Temperley and Lieb 1971) and each ‘‘ei’’ implements
the addition of one more interaction to the system.
(The same ei’s as in the ice-type models were
rediscovered in the subfactor context in Pimsner and
Popa (1986)). Thus, the Jones polynomial of a closed
braid is the partition function for a statistical mecha-
nical model on the braid. In Jones (1983), it is observed
that knowledge of the Jones polynomial for a family of
links called French sinnets would constitute a solution
of the Potts model in two dimensions.

In Temperley and Lieb (1971), the TL relations
are used to establish the mathematical equivalence
of the Potts and ice-type (six-vertex) models. In
Baxter (1982, chapter 12), this equivalence is shown
for Potts models on an arbitrary planar graph. In
view of this, it is not surprising that statistical
mechanical models can be defined directly on link
diagrams to give explicit formulas for VL(t) (and
other invariants) as partition functions. This works
most easily for the Q-state Potts model.

Given an unoriented link diagram D, shade the
regions of the plane black and white and form the
planar graph � whose vertices are the black regions
and whose edges are the crossings as below:

D
Γ

Assign þ and � to each edge according to the
following scheme:

+

–

Fix Q 2 N and two symmetric matrices w�(a, b)
for 1 � a, b � Q. The partition function of the
diagram is then

ZD ¼
X
states

Y
edges of �

w�ð�; �0Þ

where a ‘‘state’’ is a function from the vertices of �
to {1, 2, . . . , Q} and, given an edge of � and a state,
� and �0 denote the values of the state at the ends of
that edge (wþ and w� are used according to the sign
of the edge).

The ‘‘Potts model’’ is defined by the property that
the ‘‘Boltzmann weights’’ w�(�,�0) depend only on
whether �= �0 or not. It is a miracle that the choice
(with Q = 2þ t þ t�1)

w�ð�; �0Þ ¼ t�1 if � ¼ �0
�1 otherwise

�
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gives the Jones polynomial of the link defined by D
as its partition function (up to a simple normal-
ization). See Jones (1989) for details.

It is natural to look for other choices of w� which
give knot invariants. The Fateev–Zamolodchikov
(1982) model gives a classical knot invariant but
besides that (and some variants on the Jones
polynomial) there is only one other known choice of
any interest, discovered in Jaeger (1992). In this case,
Q = 100 and the Boltzmann weights are symmetric
under the action of the Higman–Sims group on the
Higman–Sims graph with 100 vertices. The knot
invariant is a special value of the Kauffman two-
variable polynomial.

The other side of Temperley–Lieb equivalence is
the ‘‘ice-type’’ model which is a ‘‘vertex model.’’
That is to say the ‘‘spins’’ reside on the edges of a
graph and the interactions occur at the vertices. To
use vertex models in knot theory, the knot projec-
tion D itself is the (4-valent) graph. The ice-type
model has two spin states per edge so that a state of
the system is a function from the edges of the graph
to the set {�}; the Boltzmann weights are given by
two 4� 4 matrices w�(�1,�2,�3,�4) where the �’s
are �1 and wþ and w� are the contributions of

σ2

σ1

σ4

σ3

σ2

σ1

σ4

σ3

and

to the partition function, respectively. Furthermore,
we may think of a state as a locally constant
function � on D so for any f : {�1}!R we may
form the term

R
D f (�)d	 corresponding to interac-

tion with an external field (d	 is the curvature or
change of angle form on D). Then the partition
function is

ZD ¼
X
states

Y
crossings of D

w�ð�1; �2; �3; �4Þ

0
@

1
Ae
R

D
f ð�Þd	

A (nonphysical) specialization of the six-vertex
model yields values of f and w� for which ZD is a
link invariant equal to VL(t). See Jones (1989).

As with the Potts model, one may try to generalize
to more general w� and f. This is much more
successful for these ‘‘vertex’’ models than it was for
models like the Potts model. The theory of quantum
groups (Jimbo 1986, Drinfeld 1987, Rosso 1988)
allows one to obtain link invariants (as partition
functions for vertex models) for each simple finite-
dimensional Lie algebra A and each assignment of an
irreducible representation of A to the components of
the link. The images of the braid generators �i in the
corresponding braid group representations are called
‘‘R-matrices.’’ It is the Yang–Baxter equation that
gives isotopy invariance of the partition function. In
this way, one obtains (by an infinite family of one-
variable specializations) the HOMFLYPT polynomial
(sln) and the Kauffman polynomial (orthogonal and
symplectic algebras) and more polynomials. The
geometric operation of cabling corresponds to the
tensor product of representations.
Connections with Quantum Field Theory

Conformal Field Theory

If ’ is a (multicomponent) field in one chiral half of
a two-dimensional conformal field theory (CFT), the
correlation functions

h’ðz1Þ’ðz2Þ � � �’ðznÞi

(where zi 2 C) are expected to be singular if zi = zj

for some i 6¼ j, holomorphic otherwise and satisfy a
linear differential equation. Thus, analytic continua-
tion should determine a unitary monodromy repre-
sentation of �1(Cnn{(z1, z2, . . . , zn)jzi = zj for some
i 6¼ j}) on the vector space of solutions to the
differential equation near a point. In Tsuchiya and
Kanie (1988), these representations were calculated
for the SU(2) WZW (Wess–Zumino–Witten) model,
where the differential equation is known as the
Khniznik–Zamolodchikov equation. The corre-
sponding braid group representations were shown
to be those obtained in the section ‘‘The original
definition of VL(t)’’ and cablings thereof.
Topological Quantum Field Theory

In Witten (1989), the following formula appears:

VLðe2�i=ðkþ2ÞÞ

¼
Z

A

exp
i

�h

Z
S3

trðA ^ dAþ 2=3 A ^ A ^ AÞ
� �

�
Y

j

tr Pexp

I
j

A

 !
½DA


where A ranges over all functions from S3 to the Lie
algebra su(2), modulo the action of the gauge group
SU(2). Also �h = �=k and j runs over the components
of the link L, to each of which is assigned an
irreducible representation of SU(2). Parallel trans-
port around a component j using A yields the linear
map Pexp

H
i A whose trace is constant modulo gauge

transformations. And [DA] is a fictitious diffeo-
morphism invariant measure on all A’s modulo
gauge transformation.



186 The Jones Polynomial
There are at least two ways to interpret this
formula.

1. As a solvable topological quantum field theory
(TQFT) in 2þ 1 dimensions, according to Witten
(1988) and Atiyah (1988, 1989). One is then
obliged to expand the context and conclude that
VL(e2�i=n) is defined for (possibly empty) links in
an arbitrary 3-manifold. The TQFT axioms then
provide an explicit formula for the invariant if the
3-manifold is obtained from surgery on a link. In
particular, the invariant of a 3-manifold without a
link is a statistical mechanics type sum over
assignments of irreducible representations of
SU(2) to the components of the surgery link. The
key condition making this sum finite is that only
representations up to a certain dimension (deter-
mined by n) are allowed. This is the vanishing of
the Jones–Wenzl idempotent of the section ‘‘The
Temperley–Lieb algebra.’’ This explicit formula
was rigourously shown to be a manifold invariant
in Reshetikhin and Turaev (1991). For a more
simple treatment, see Lickorish (1997) and for the
whole TQFT treatment, see Blanchet et al. (1995).

2. As a perturbative QFT. The stationary-phase
Feynman diagram technique may be applied to
obtain the coefficients of the expansion of Witten’s
formula in powers of �h or equivalently 1=n. These
coefficients are known to be ‘‘finite type’’ or
Vassiliev invariants and have expressions as
integrals over configurations of points on the link,
see Vassiliev (1990) and Bar-Natan (1995).

Algebraic Quantum Field Theory

In the Haag–Kastler operator algebraic framework
of quantum field theory (Haag 1996), statistics of
quantum systems were interpreted in Doplicher
et al. (1971, 1974) (DHR) in terms of certain
representations of the symmetric group correspond-
ing to permuting regions of spacetime. To obtain the
symmetric group, the dimension of spacetime needs
to be sufficiently large. It was proposed in
Fredenhagen et al. (1989) that the DHR theory
should also work in low dimensions with the braid
group replacing the symmetric group, and that
unitary braid group representations defined above
should be the ones occurring in quantum field
theory. The ‘‘statistical dimension’’ of the DHR
theory turns up as the square root of the index of a
subfactor (this connection was clearly established in
Longo (1989, 1980)). The mathematical issue of the
existence of quantum fields with braid statistics was
established in Wassermann (1998) using the language
of loop group representations. Actual physical systems
with nonabelian braid statistics have not yet been
found but have been proposed in Freedman (2003)
as a mechanism for quantum computing.
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stablished in the early 2000s).
Finally, the problem of taking into account real

stronomical parameter values is considered and a
ecent result on an application of (computer-
ssisted) KAM techniques to the solar subsystem
ormed by Sun, Jupiter, and the asteroid Victoria is
riefly mentioned.

he Planetary (1þ n)-Body Problem

he evolution of (1þ n)-body systems (assimilated
o point masses) interacting only through gravita-
ional attraction is governed by Newton’s equations.
Kac–Moody Lie Algebras see Solitons and Kac–Moody Lie Algebras
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Introduction

Kolmogorov–Arnol’d–Moser (KAM) theory deals
with the construction of quasiperiodic trajectories
in nearly integrable Hamiltonian systems and it was
motivated by classical problems in celestial
mechanics such as the n-body problem. Notwith-
standing the formidable bulk of results, ideas and
techniques produced by the founders of the modern
theory of dynamical systems, most notably by
H Poincaré and G D Birkhoff, the fundamental
question about the persistence under small perturba-
tions of invariant tori of an integrable Hamiltonian
system remained completely open until 1954. In that
year, A N Kolmogorov stated what is now usually
referred to as the KAM theorem (in the real-analytic
setting) and gave a precise outline of its proof,
presenting a strikingly new and powerful method to
overcome the so-called small-divisor problem (reso-
nances in Hamiltonian dynamics produce, in the
perturbation series, divisors which may become
arbitrarily small, making convergence argument
extremely delicate). Subsequently, KAM theory has
been extended and applied to a large variety of
different problems, including infinite-dimensional
dynamical systems and partial differential equations
with Hamiltonian structure. However, establishing
the existence of quasiperiodic motions in the n-body
problem turned out to be a longer story, which only
very recently has reached a satisfactory level; the
point being that the n-body problems present strong
degeneracies, which violate the main hypotheses of
the KAM theorem.

This article gives an account of the ideas and
results concerning the construction of quasiperiodic
solutions in the planetary n-body problem. The
synopsis of the article is the following.

The next section gives the analytical description of
the planet ary (1 þ n)-body proble m.

In the sub section ‘‘Kolmogo rov’s theore m and the
RPC3 BP (1954 ),’’ original version of the KAM
theorem is recalled, giving an outline of its proof
and showing its implications for the simplest many-
body case, namely, the restricted, planar, and
circular three-body problem.

In the section ‘‘Arn ol’d’s theorem, ’’ the existenc e
of a positive measure set of initial data in phase
space giving rise to quasiperiodic motions near
coplanar and nearly circular unperturbed Keplerian
trajectories is presented. The rest of the section is
devoted to the proof of Arnol’d’s theorem following
the historical developments: Arnol’d’s proof (1963a)
for the planar three-body case is presented, the
extension to the spatial three-body case due to
Laskar and Robutel (1995) is discussed, and Her-
man’s proof – in the form given by Féjoz in 2004 –
of the genera l spatial (1 þ n)-case is prese nted.

In the sect ion ‘‘Low er dimensio nal tori,’’ a brief
discussion of the construction of lower-dimensional
elliptic tori bifurcating from the Keplerian unper-
turbed motions is given (these results have been
e
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If u(i) 2 R3 denotes the position of the ith body in a
given reference frame and if mi denotes its mass,
then Newton’s equations read

d2uðiÞ

dt2
¼ �

X
0�j�n

j 6¼i

mj
uðiÞ � uðjÞ

juðiÞ � uðjÞj3
; i ¼ 0; 1; . . . ; n ½1�

Here the gravitational constant is taken to be equal
to 1 (which amounts to rescale the time t).
Equations [1] are equivalent to the standard
Hamilton’s equations corresponding to the Hamil-
tonian function

HNew :¼
Xn

i¼0

jUðiÞj2

2mi
�

X
0�i<j�n

mimj

juðiÞ � uðjÞj ½2�

where (U(i), u(i)) are standard symplectic variables
and the phase space is the ‘‘collisionless domain’’cM := {U(i), u(i) 2 R3: u(i) 6¼ u(j), 0 � i 6¼ j � n}; the
symplectic form is the standard one:

P
i dU(i) ^

du(i) :=
P

i, k dU(i)
k ^ du(i)

k ; j�j denotes the standard
Euclidean norm. Introducing the symplectic coordi-
nate change (U, u) =�hel(R, r),

�hel :

uð0Þ ¼ rð0Þ; uðiÞ ¼ rð0Þ þ rðiÞ ði¼ 1; . . . ;nÞ
Uð0Þ ¼Rð0Þ �

Xn

i¼1
RðiÞ; UðiÞ ¼RðiÞ

ði¼ 1; . . . ;nÞ

8>><>>: ½3�

one sees that the Hamiltonian Hhel :=HNew ��hel

does not depend upon r(0) (recall that a local
diffeomorphism is called symplectic if it preserves
the symplectic form). This means that R(0) (� total
linear momentum) is a global integral of motion.
Without loss of generality, one can restrict attention
to the invariant manifold M0 := {R(0) =0} (invar-
iance of eqn [1] by changes of inertial reference
frames).

In the ‘‘planetary’’ case, one assumes that one of
the bodies, say i = 0 (the Sun), has mass much larger
than that of the other bodies (this accounts for the
index ‘‘hel,’’ which stands for ‘‘heliocentric’’). To
make the perturbative character of the problem
transparent, one may introduce the following rescal-
ings. Let

mi ¼ " �mi; XðiÞ ¼ RðiÞ

"m
5=3
0

; xðiÞ ¼ rðiÞ

m
2=3
0

ði ¼1; . . . ; nÞ ½4�

and rescale time by a factor "m
7=3
0 (which amounts

to dividing the new Hamiltonian by such a
factor); then, the flow of the Hamiltonian Hhel on
M0 is equivalent to the flow of the Hamiltonian

Hplt :¼
Xn

i¼1

jXðiÞj2

2�i
� �iMi

jxðiÞj

 !

þ "
X

1�i<j�n

XðiÞ �XðjÞ � �mi �mj=m
2
0

jxðiÞ � xðjÞj

� �
½5�

on the phase space M := {X(i), x(i) 2 R3: 1 � i � n
and 0 6¼ x(i) 6¼ x(j)} with respect to the standard
symplectic form

Pn
i = 1 dX(i) ^ dx(i); the mass para-

meters are defined as

Mi :¼ 1þ " �mi

m0
; �i :¼ �mi

m0 þ " �mi
¼ �mi

m0

1

Mi
½6�

The following observations can be made:

1. The Hamiltonian

Hð0Þplt :¼
Xn

i¼1

jXðiÞj2

2�i
� �iMi

jxðiÞj

 !

is integrable and represents the sum of n two-
body systems formed by the Sun and the ith
planet (disregarding the interaction with the
other planets).

2. The transformation �hel in eqn [3] preserves
the total angular momentum bC :=

Pn
i = 0 U(i)�

u(i), which is a vector-valued integral for
HNew. Thus, the three components, Ck, of
C :=

Pn
i = 1 X(i) � x(i) (which is proportional tobC and is termed the ‘‘total angular momen-

tum’’), are integrals for Hplt. The integrals Ck

do not commute: if {�,�} denotes the standard
Poisson bracket, then {C1, C2} = C3 (and, cycli-
cally, {C2, C3} = C1, {C3,C1} = C2). Nevertheless,
one can form two (independent) commuting
integrals, for example, jCj2 and C3. This shows
that the (spatial) (1þ n)-body problem has
(3n� 2) degrees of freedom.

3. An important special case is the planar (1þ n)-
body problem. In such a case, one assumes that
all the ‘‘single’’ angular momenta C(i) := X(i) � x(i)

are parallel. In this case, the motion takes place
on a fixed plane orthogonal to C and (up to a
rotation of the reference frame) one can take, as
symplectic variables, X(i), x(i) 2 R2. The Hamilto-
nian Hpln governing the dynamics of the planar
(1þ n)-body problem is, then, given on the right-
hand side of eqn [5] with X(i), x(i) 2 R2. Notice
that the planar (1þ n)-body problem has 2n
degrees of freedom.

4. For a deeper understanding of the perturbation
theory of the planetary many-body problem, it is
necessary to find ‘‘good’’ sets of symplectic
coordinates, which the founders of celestial
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mechanics (most notably, Jacobi, Delaunay, and
Poincaré) have done. In particular, Delaunay
introduced an analytic set of symplectic ‘‘action-
angle’’ variables. Recall the Delaunay variables
for the two-body ‘‘reduced Hamiltonian’’

HKep ¼
jXj2

2�
� �M

jxj

Let {k1, k2, k3} be a standard orthonormal basis
in the x-configuration space; let the angular
momentum C = X� x be nonparallel to k3 and
let the energy E =HKep < 0. In such a case, x(t)
describes an ellipse lying in the plane orthogonal
to C, with focus in the origin and fixed symmetry
axes. Let a be the semimajor axis of the ellipse
spanned by x; { (the inclination) be the angle
between k3 and C; G = jCj; � = G cos {= C � k3;
L = m

ffiffiffiffiffiffiffi
Ma
p

; ‘ be the mean anomaly of x (:= 2�
times the normalized area spanned by x mea-
sured from the perihelion P, which is the point
of the ellipse closest to the origin); � be the
angle between k1 and N := k3 � C (:= oriented
‘‘node’’); and g be the argument of the perihelion
(:= the angle between N and (O, P)). Then
(letting T := R=(2�Z))

ðL;G;�Þ 2 fL > 0g � fG > � > 0g
ð‘; g; �Þ 2 T3

½7�

are conjugate symplectic coordinates and if �Del

is the corresponding symplectic map, then
HKep � �Del = �(�3M2)=(2L2).

Note that the Delaunay variables become
singular when C is vertical (the node is no more
defined) and in the circular limit (the perihelion
is not unique). In these cases different variables
have to be used.

5. Let (X(i), x(i)) =�Del((Li, Gi, �i), (‘i, gi, �i)). Then
Hplt expressed in the Delaunay variables
{(Li, Gi, �i), (‘i, gi, �i): 1 � i � n} becomes

HDel ¼Hð0ÞDelþ "H
ð1Þ
Del; H

ð0Þ
Del :¼�

Xn

i¼1

�3
i M2

i

2L2
i

½8�

Note that the number of action variables on
which the integrable Hamiltonian H(0)

Del depends
is strictly less than the number of degrees of
freedom. This ‘‘proper degeneracy,’’ as we shall
see in next sections, brings in an essential
difficulty one has to face in the perturbative
approach to the many-body problem. In fact, this
feature of the many-body problem is common to
several other problems of celestial mechanics.

Maximal KAM Tori

Kolmogorov’s Theorem and the RPC3BP (1954)

Kolmogorov’s invariant tori theorem deals with
the persistence, in nearly integrable Hamiltonian
systems, of Lagrangian (maximal) tori, which, in
general, foliate the integrable limit. Kolmogorov
(1954) stated his theorem and gave a precise
outline of the proof. Let us briefly recall this
milestone of the modern theory of dynamical
systems.

Let M := Bd � Td (Bd being a d-dimensional ball
in Rd centered at the origin) be endowed with the
standard symplectic form dy ^ dx :=

P
dyi ^ dxi

(y 2 Bd, x 2 Td). A Hamiltonian function N on M
having a Lagrangian invariant d-torus of energy E
on which the N-flow is conjugated to the linear
dense translation x ! xþ !t, ! 2 RdnQd can be
put in the form

N :¼ Eþ ! � yþQðy; xÞ
@ �

y Qð0; xÞ ¼ 0; 8� 2 Nd; j�j � 1
½9�

(as usual, j�j=�1 þ � � � þ �d, !�y :=
Pd

i = 1 !iyi,
and @�y = @�1

y1
� � � @�d

yd
); in such a case, the Hamiltonian

N is said to be in Kolmogorov normal form. The
vector ! is called the ‘‘frequency vector’’ of the
invariant torus {y = 0}� Td. The Hamiltonian N is
said to be nondegenerate if

deth@2
y Qð0; �Þi 6¼ 0 ½10�

where the brackets denote average over Td and @2
y

the Hessian with respect to the y-variables.
We recall that a vector ! 2 Rd is said to be

‘‘Diophantine’’ if there exist � > 0 and � 	 d � 1
such that

j! � kj 	 �

jkj� ; 8k 2 Zdnf0g ½11�

The set Dd of all Diophantine vectors in Rd is a set of
full Lebesgue measure. We also recall that Hamilto-
nian trajectory is called quasiperiodic with (rationally
independent) frequency ! 2 Rd if it is conjugate to
the linear translation � 2 Td!�þ !t 2 Td.

Theorem (Kolmogorov 1954) Consider a one-
parameter family of real-analytic Hamiltonian func-
tions H" := N þ "P where N is in Kolmogorov normal
form (as in eqn [9]) and " 2 R. Assume that ! is
Diophantine and that N is nondegenerate. Then,
there exists "0 > 0 and for any j"j � "0, a real-analytic
symplectic transformation �" :M!M putting H" in
Kolmogorov normal form, H" � �" = N", with
N" := E" þ ! � y0 þQ"(y

0, x0). Furthermore, jE" � Ej,
k�" � idkC2 , and kQ" �QkC2 are small with ".
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In other words, the Lagrangian unperturbed torus
T 0 := {y = 0}� Td persists under small perturbation
and is smoothly deformed into the H"-invariant
torus T " := �"({y

0= 0}� Td); the dynamics on such
torus, for all j"j � "0, consists of dense quasiperiodic
trajectories. Note that the H"-flow on T "
is analytically conjugated by �" to the translation
x0 ! x0 þ !t with the same frequency vector of N,
while the energy of T ", namely E", is in general
different from the energy E of T 0.

Kolmogorov’s proof is based on an iterative
(Newton) scheme. The map �" is obtained
as limk!1 �

(1) � � � � � �(k), where the �(j)’s are
("-dependent) symplectic transformations of M
successively closer to the identity. It is enough
to describe the construction of �(1); �(2) is
then obtained by replacing H" with H" � �(1),
and so on. The map �(1) is "-close to the identity
and it is generated by g(y0, x) := y0 �xþ
"(b�x þ s(x)þ y0 �a(x)), where s and a are (resp.
scalar- and vector-valued) real-analytic functions
on Td with zero average and b 2 Rd; this means
that the symplectic map �(1) : (y0, x0)! (y, x) is
implicitly given by the relations y = @xg and
x0= @y0g. It is easy to see that there exists a unique
g of the above form such that for a suitable "0 > 0,

H" � �ð1Þ ¼ E1 þ ! � y0 þQ1ðy0; x0Þ þ "2P1

8 j"j � "0 ½12�

with @�y Q1(0, x0) = 0, for any� 2 Nd and j�j � 1; here,
E1, Q1, and P1 depend on " and, for a suitable c1 > 0
and for j"j � "0, jE� E1j � c1j"j, kQ�Q1kC2 � c1j"j,
and kP1kC2 � c1.

Notice that the symplectic transformation �(1) is
actually the composition of two ‘‘elementary’’ transfo-
mations: �(1) =�(1)

1 � �
(1)
2 where �(1)

2 : (y0, x0)! (	, 
)
is the symplectic lift of the Td-diffeomorphism given
by x = 
 þ "a(
) (i.e., �(1)

2 is the symplectic map
generated by y0 � 
 þ "y0 � a(
)), while �(1)

1 : (	, 
)!
(y, x) is the angle-dependent action translation gener-
ated by 	 � xþ "(b � xþ s(x));�(1)

2 acts in the ‘‘angle
direction’’ and straightens out the flow up to order
O("2), while �(1)

1 acts in the ‘‘action direction’’ and is
needed to keep the frequency of the torus fixed.

Since H" � �1 =: N1 þ "2P1 is again a perturbation
of a nondegenerate Kolmogorov normal form (with
same frequency vector !), one can repeat the
construction by obtaining a new Hamiltonian of
the form N2 þ "4P2. Iterating, after k steps, one gets
a Hamiltonian Nk þ "2k

Pk. Carrying out the
(straightforward but lengthy) estimates, one can
check that kPkkC2 � ck � c2k

, for a suitable constant
c > 1 independent of k (the fast growth of the
constant ck is due to the presence of the small

divisors appearing in the explicit construction of the
symplectic transformations �(j)). Thus, it is clear that
taking "0 small enough the iterative procedure
converges (superexponentially fast) yielding the
thesis of the above theorem.

6. While the statement of the invariant tori theorem
and the outline of the proof are very clearly
explained in Kolmogorov (1954), Kolmogorov
did not fill out the details nor gave any estimates.
Some years later, Arnol’d (1963a) published a
detailed proof, which, however, did not follow
Kolmogorov’s idea. In the same year, J K Moser
published his invariant curve theorem (for area-
preserving twist diffeomorphisms of the annulus)
in smooth setting. The bulk of techniques and
theorems stemmed out from these works is
normally referred to as KAM theory; for reviews,
see Arnol’d (1988) or Bost (1984–85). A very
complete version of the ‘‘KAM theorem’’ both in
the real-analytic and in the smooth case (with
optimal smoothness assumptions) is given in
Salamon (2004); the proof of the real-analytic
part is based on Kolmogorov’s scheme. The
KAM theory of M Herman, used in his approach
to the planetary problem, is based on the abstract
functional theoretical approach of R Hamilton
(which, in turn, is a development of Nash–Moser
implicit function theorem; see Bost (1984–85) for
references); it is interesting, however, to note that
the heart of Herman’s KAM method is based on
the above-mentioned Kolmogorov’s transforma-
tion �(1) (compare Féjoz (2002)).

7. In the nearly integrable case, one considers a one-
parameter family of Hamiltonians H0(I)þ "H1(I, x)
with (I, x) 2 M := U � Td standard symplectic
action-angle variables, U being an open subset of
Rd. When "= 0, the phase space M is foliated
by H0-invariant tori {I0}� Td, on which the flow
is given by x ! xþ @yH0(I0)t. If I0 is
such that ! := @yH0(I0) is Diophantine and if
det @2

y H0(I0) 6¼ 0, then from Kolmogorov’s theorem
it follows that the torus {I0}� Td persists under
perturbation. In fact, introduce the symplectic
variables (y, x) with y = I � I0 and let N(y):=
H0(I0 þ y), which by Taylor’s formula can be
written as H0(I0)þ ! � yþQ(y) with Q(y) quad-
ratic in y and @2

y Q(0) = @2
y H0(I0) invertible. One can

then apply Kolmogorov’s theorem with P1(y, x) :=
H1(I0 þ y, x).

Notice that Kolmogorov’s nondegeneracy con-
dition det @2

y H0(I0) 6¼ 0 simply means that the
frequency map

I 2 Bd 
 U ! !ðIÞ :¼ @yH0ðIÞ ½13�
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is a local diffeomorphism (Bd being a ball
around I0).

8. The symplectic structure implies that if n denotes
the number of degrees of freedom (i.e., half of the
dimension of the phase space) and d is the
number of independent frequencies of a quasi-
periodic motion, then d � n; if d = n, the quasi-
periodic motion is called maximal. Kolmogorov’s
theorem gives sufficient conditions in order to get
maximal quasiperiodic solutions. In fact, Kolmo-
gorov’s nondegeneracy condition is an open
condition and the set of Diophantine vectors is
a set of full Lebesgue measure. Thus, in general,
Kolmogorov’s theorem yields a positive invariant
measure set spanned by maximal quasiperiodic
trajectories.

As mentioned above, the planetary many-body
models are properly degenerate and violate
Kolmogorov’s nondegeneracy conditions and,
hence, Kolmogorov’s theorem – clearly motivated
by celestial mechanics – cannot be applied.

There is, however, an important case to which a
slight variation of Kolmogorov’s theorem can be
applied (Kolmogorov did not mention this in 1954).
The case referred to here is the simplest nontrivial
three-body problem, namely, the restricted, planar,
and circular three-body problem (RPC3BP for short).
This model, largely investigated by Poincaré, deals
with an asteroid of ‘‘zero mass’’ moving on the plane
containing the trajectory of two unperturbed major
bodies (say, Sun and Jupiter) revolving on a Keplerian
circle. The mathematical model for the restricted
three-body problem is obtained by taking n = 2 and
setting m2 = 0 in eqn [1]: the equations for the two
major bodies (i = 0, 1) decouple from the equation
for the asteroid (i = 2) and form an integrable two-
body system; the problem then consists in studying
the evolution of the asteroid u(2)(t) in the given
gravitational field of the primaries. In the circular
and planar cases, the motion of the two primaries is
assumed to be circular and the motion of the
asteroid is assumed to take place on the plane
containing the motion of the two primaries; in fact
(to avoid collisions), one considers either inner or
outer (with respect to the circle described by the
relative motion of the primaries) asteroid motions.
To describe the Hamiltonian Hrcp governing the
motion of the RCP3BP problem, introduce planar
Delaunay variables ((L, G), (‘, ĝ)) for the asteroid
(better, for the reduced heliocentric Sun–asteroid
system). Such variables, which are closely related to
the above (spatial) Delaunay variables, have the
following physical interpretation: G is proportional
to the absolute value of the angular momentum of

the asteroid, L is proportional to the square root of
the semimajor axis of the instantaneous Sun–
asteroid ellipse, ‘ is the mean anomaly of the
asteroid, while ĝ the argument of the perihelion.
Then, in suitably normalized units, the Hamiltonian
governing the RPC3BP is given by

HrcpðL;G; ‘; g; "Þ :¼� 1

2L2
�G

þ "H1ðL; G; ‘; g; "Þ ½14�

where g := ĝ� � , � 2 T being the longitude of Jupi-
ter; the variables ((L, G), (‘, g)) are symplectic coordi-
nates (with respect to the standard symplectic form);
the normalizations have been chosen so that the
relative motion of the primary bodies is 2� periodic
and their distance is 1; the parameter " is (essentially)
the ratio between the masses of the primaries; the
perturbation H1 is the function x(2)�x(1) � 1=jx(2) �
x(1)j expressed in the above variables, x(2) being the
heliocentric coordinate of the asteroid and x(1) that of
the planet (Jupiter): such a function is real-analytic on
{0 < G < L}� T2 and for small " (for complete
details, see, e.g., Celletti and Chierchia (2003)).

The integrable limit

Hð0Þrcp :=Hrcpj"= 0 =�1=ð2L2Þ �G

has vanishing Hessian and, hence, violates
Kolmogorov’s nondegeneracy condition (as
described in item (7) above). However, there is
another nondegeneracy condition which leads to a
simple variation of Kolmogorov’s theorem, as
explained briefly below.

Kolmogorov’s nondegeneracy condition det2
y H0

(I0) 6¼ 0 allows one to fix d-parameters, namely, the
d-components of the (Diophantine) frequency vector
!= @yH0(I0). Instead of fixing such parameters, one
may fix the energy E = H0(I0) together with the
direction {s! : s 2 R} of the frequency vector: for
example, in a neighborhood where !d 6¼ 0, one can
fix E and !i=!d for 1 � i � d � 1. Notice also that if
! is Diophantine, then so is s! for any s 6¼ 0 (with
same � and rescaled �). Now, it is easy to check that
the map I 2 H�1

0 (E)! (!1=!d, . . . ,!d�1=!d) is (at
fixed energy E) a local diffeomorphism if and only if
the (d þ 1)� (d þ 1) matrix

@2
y H0 @yH0

@yH0 0

 !

evaluated at I0 is invertible (here the vector @yH0 in
the upper right corner has to be interpreted as a
column while the vector @yH0 in the lower left
corner has to be interpreted as a row). Such
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‘‘iso-energetic nondegeneracy’’ condition, rephrased
in terms of Kolmogorov’s normal forms, becomes

det
h@2

y Qð0; �Þi !
! 0

� �
6¼ 0 ½15�

Kolmogorov’s theorem can be easily adapted to the
fixed energy case. Assuming that ! is Diophantine
and that N is isoenergetically nondegenerate, the
same conclusion as in Kolmogorov’s theorem holds
with N" := Eþ !" � y0 þQ"(y

0, x0), where !" =�"!
and j�" � 1j is small with ".

In the RCP3BP case, the isoenergetic nondegene-
racy is met, since

det
@2
ðL;GÞH

ð0Þ
rcp @ðL;GÞHð0Þrcp

@ðL;GÞHð0Þrcp 0

 !
¼ 3

L4

Therefore, one can conclude that on each negative
energy level, the RCP3BP admits a positive measure
set of phase points, whose time evolution lies on two-
dimensional invariant tori (on which the flow is
analytically conjugate to linear translation by a
Diophantine vector), provided the mass ratio of the
primary bodies is small enough; such persistent tori
are a slight deformation of the unperturbed ‘‘Kepler-
ian’’ tori corresponding to the asteroid and the Sun
revolving on a Keplerian ellipse on the plane where
the Sun and the major planet describe a circular orbit.

In fact, one can say more. The phase space for the
RCP3BP is four dimensional, the energy levels are
three dimensional, and Kolmogorov’s invariant tori
are two dimensional. Thus, a Kolmogorov torus
separates the energy level, on which it lies, into two
invariant components, and two Kolmogorov’s tori
form the boundary of a compact invariant region so
that any motion starting in such region will never
leave it. Thus, the RCP3BP is ‘‘totally stable’’: in a
neighborhood of any phase point of negative energy, if
the mass ratio of the primary bodies is small enough,
the asteroid stays forever on a nearly Keplerian ellipse
with nearly fixed orbital elements L and G.

Arnol’d’s Theorem

Consider again the planetary (1þ n)-body problem
governed by the Hamiltonian Hplt in eqn [5]. In the
integrable approximation, governed by the Hamil-
tonian H(0)

plt , the n planets describe Keplerian ellipses
focused on the Sun. Arnol’d (1963b) has stated the
following theorem.

Theorem (Arnol’d 1963b) Let " > 0 be small
enough. Then, there exists a bounded, Hplt-invariant
set F (") 
M of positive Lebesgue measure corre-
sponding to planetary motions with bounded
relative distances; F (0) corresponds to Keplerian

ellipses with small eccentricities and small relative
inclinations.

This theorem represents a major achievement in
celestial mechanics solving more than tri-ćentennial
mathematical problem. Arnol’d (1963b) gave a
complete proof of this result only in the planar
three-body case and gave some indications of how to
extend his approach to the general situation.
However, to give a full proof of Arnol’d’s theorem
in the general case turned out to be more than a
technical problem and new ideas were needed: the
complete proof (due, essentially, to M Herman) has
been given only in 2004.

In the following subsections, we briefly review
the history and the ideas related to the proof of
Arnol’d’s theorem. As for credits: the proof of Arnol’d’s
theorem in the planar 3BP case is due to Arnol’d himself
(Arnol’d 1963b); the spatial 3BP case is due to Laskar
and Robutel (1995) and Robutel (1995); the general
case is due to Herman (1998) and Féjoz (2004). The
exposition we have given does not always follow the
original references.

The planar three-body problem Recall the Hamil-
tonian Hpln of the planar (1 þ n )-body pro blem
given in item (3) of the sect ion ‘‘The planetary
(1 þ n)-body proble m.’’ A co nvenient set of sym-
plectic variables for nearly circular motions are the
‘‘planar Poincaré variables.’’ To describe such vari-
ables, consider a single, planar two-body system
with Hamiltonian

jXj2

2�
� �M

jxj ; X 2 R2; 0 6¼ x 2 R2

ðwith respect to dX ^ dxÞ ½16�

and introduce – as done before formula [14] for
H(0)

rcp – planar Delaunay variables ((L, G), (‘, g))
(here, g = ĝ = argument of the perihelion). To remove
the singularity of the Delaunay variables near zero
eccentricities, Poincaré introduced variables
((�, 	), (�, 
)) defined by the following formulas:

� ¼ L; H ¼ L�G

� ¼ ‘þ g; h ¼ �gffiffiffiffiffiffiffi
2H
p

cos h ¼ 	ffiffiffiffiffiffiffi
2H
p

sin h ¼ 


½17�

As Poincaré showed, such variables are symplectic and
analytic in a neighborhood of (0,1)� T� {0, 0};
notice that the symplectic map ((�, 	), (�, 
))! (X, x)
depends on the parameters �, M, and ". In Poincaré
variables, the two-body Hamiltonian in eqn [16]
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becomes ��=(2�2), with � := (�=m0)3=M. Now,
re-insert the index i, let �i : ((�i, 	i), (�i, 
i))! (X(i),
x(i)) and �(�, 	,�, 
) = (�1(�1, 	1,�1, 
1), . . . , �n(�n,
	n,�n, 
n)). Then, the Hamiltonian for the planar
(1þ n)-body problem takes the form

Hpln � � ¼ H0ð�Þ þ "H1ð�; �; 	; 
Þ

H0 :¼ � 1

2

Xn

i¼1

�i

�2
i

; �i :¼ �i

m0

� �3 1

Mi

H1 :¼ Hcompl
1 þHprinc

1

½18�

where the so-called ‘‘complementary part’’ Hcompl
1

and the ‘‘principal part’’ Hprinc
1 of the perturbation

are, respectively, the functionsX
1�i<j�n

XðiÞ �XðjÞ and
X

1�i<j�n

�i�j

m2
0

1

jxðiÞ � xðjÞj ½19�

expressed in Poincaré variables.
The scheme of proof of Arnol’d’s theorem in the

planar, three-body case (one star, n = 2 planets) is as
follows. The Hamiltonian is given by eqn [13] with
n = 2; the phase space is eight dimensional (four
degrees of freedom). This system, as mentioned several
times, is properly degenerate and Kolmogorov’s
theorem cannot be applied directly; furthermore, a
full (four-dimensional) set of action variables needs
to be identified.

A first observation is that, in the planetary model,
there are ‘‘fast variables’’ (the �i’s describing the
revolutions of the planets) and ‘‘secular variables’’
(the 	i’s and 
i’s describing the variations of position
and shape of the instantaneuous Keplerian ellipses).
By averaging theory (see, e.g., Arnol’d (1998)), one
can ‘‘neglect,’’ in nonresonant regions, the fast-angle
dependence up to high order in " obtaining an
effective Hamiltonian, which, up to O("2), is given
by the ‘‘secular’’ Hamiltonian

Hsec :¼ H0ð�Þ þ " �H1ð�; 	; 
Þ

�H1ð�; 	; 
Þ :¼
Z
H1

d�

ð2�Þ2
½20�

‘‘Nonresonant region’’ means, here, an open �-set
where @�H0 � k 6¼ 0 for k 2 Z2, jk1j þ jk2j � K and
for a suitable K 	 1.

In order to analyze the secular Hamiltonian, we
shall beriefly consider �H1 as a function of the
symplectic variables 	 and 
, regarding the ‘‘slow
actions’’ �i as parameters.

For symmetry reasons, �H1 is even in (	, 
) and the
point (	, 
) = (0, 0) is an elliptic equilibrium for �H1:
the eigenvalues of the matrix S@2

(	, 
)
�H1(�, 0, 0),

S being the standard symplectic matrix, are purely

imaginary numbers {�i�1, �i�2}. The real numbers
{�i} are symplectic invariants of the secular Hamil-
tonian and are usually called first (or linear) Birkh-
off invariants. In a neighborhood of an elliptic
equilibrium, one can use Birkhoff’s normal form
theory (see, e.g., Siegel (1971)): if the linear
invariants (�1, �2) are nonresonant up to order r
(i.e., if � � k := �1k1 þ �2k2 6¼ 0 for any k 2 Z2

such that jk1j þ jk2j � r), then one can find a
symplectic transformation �Bir so that

�H1 � �Bir ¼ FðJ1; J2; �Þ þ or; Jj ¼
	2

j þ 
2
j

2
½21�

where F is a polynomial of degree [r=2] of the form
�1J1 þ �2J2 þ (1=2)MJ � J þ � � � ,M=M(�) being a
(2� 2) matrix (and or=jJjr=2! 0 as jJj! 0). Arnol’d,
using computations performed by Le Verrier,
checked the nonresonance condition up to order
r = 6 in the asymptotic regime a1=a2! 0 (where ai

denote the semimajor axes of approximate Kepler-
ian ellipses of the two planets); these computations
represent one of the most delicate parts of the paper.

Thus, combining averaging theory and Birkhoff
normal form theory, one can construct a symplec-
tic change of variables defined on an open
subset of the phase space (avoiding some linear
resonances) (�,�, 	, 
)! (�0,�0, J,’), where 	j þ
i
j =

ffiffiffiffiffiffi
2Jj

p
exp (i’j), casting the three-body Hamil-

tonian into the form

H0ð�0Þ þ " �ð�0Þ � J þ 1
2Mð�

0ÞJ � J
� �

þ "2F 1ð�0; JÞ þ "pF 2ð�0; �0; J; ’Þ
:¼ eH0ð�0; J; "Þ þ "pF 2ð�0; �0; J; ’Þ ½22�

for a suitable prefixed order p 	 3; notice that the
nonresonance condition needed to apply averaging
theory is not particularly hard to check since it
involves the unperturbed and completely explicit
Kepler Hamiltonian H0. The idea is now to consider
"pF 2 as a perturbation of the completely integrable
Hamiltonian eH0 and to apply Kolmogorov’s theo-
rem. Finally, one can check the Kolmogorov’s
nondegenearcy condition, which since

det @2
ð�0;JÞ

eH0ð�0; J0; "Þ ¼ "2 ðdet H000Þ det MþOð"Þ
� �

amounts to check the invertibility of the matrix M.
Such a condition is also checked in Arnol’d (1963b)
with the aid of Le Verrier’s tables and in the
asymptotic regime a1=a2! 0.

The spatial three-body problem In order to extend
the previous argument to the spatial case, Arnol’d
suggested connecting the planar and spatial case
through a limiting procedure. Such strategy presents
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analytical problems (the symplectic variables for the
spatial case become singular in the planar limit),
which have not been overcome. However, the
particular structure of the three-body case allows
one to derive a four-degree-of-freedom Hamiltonian,
to which the proof of the planar case can be easily
adapted. The procedure described below is based on
the classical Jacobi’s reduction of the nodes.

First, we inroduce a convenient set of symplectic
variables. Let, for i = 1, 2, ((Li, Gi, �i), (‘i, gi, �i))
denote the Delaunay variables introduced in items
(5) and (6) above: these are the Delaunay variables
associated to the two-body system, Sun–ith planet.
Then, as Poincaré showed, the variables ((��i ,��i ),
(	�i , 
�i ), (�i, �i)), where

��i ¼ Li

��i ¼ ‘i þ gi

	�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðLi �GiÞ

p
cos gi


�i ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðLi �GiÞ

p
sin gi

½23�

are symplectic and analytic near circular, non-
coplanar motions; for a detailed discussion of these
and other sets of interesting classical variables, see,
for example, Biasco et al. (2003) and references
therein; the asterisk is introduced to avoid confusion
with a closely related but different set of Poincaré
variables (see below). Let us denote by

H3bp :¼ Hð0Þð��Þ þ "Hð1Þð��; ��; 	�; 
�;�; �Þ

the Hamiltonian equation [8] (with n = 2) expressed
in terms of the symplectic variables
((��,��), (	�, 
�), (�, �)), ��= (��1, ��2), etc. Recalling
the physical meaning of the Delaunay variables, one
realizes that �1 þ�2 is the vertical component,
C3 = C � k3, of the total argument C = C(1) þ C(2),
where C(i) denotes the angular momentum of the ith
planet with respect to the origin of an inertial
heliocentric frame {k1, k2, k3}. This suggests that the
symplectic variables can be introduced:

ð��; ��; 	�; 
�;�;  Þ ¼ �ð��; ��; 	�; 
�;�; �Þ

with (�1, �2, 1, 2) := (�1, �1 þ�2, �1 � �2, �2).
Let

H�3bp :¼ H3bp � ��1

denote the Hamiltonian of the spatial three-body
problem in these symplectic variables. Since the
Poisson bracket of �2 = �1 þ�2 and H�3bp vanishes
(C3 being an integral for the H3bp-flow), the
conjugate angle  2 is cyclic for H�3bp, that is,

H�3bp ¼ H�3bpð��; ��; 	�; 
�;�1;�2;  1Þ

Now (because the total angular momentum C
is preserved), one may restrict attention to the
ten-dimensional invariant (and symplectic) submani-
fold Mver defined by fixing the total angular
momentum to be vertical. Such submanifold is
easily described in terms of Delaunay variables; in
fact, C � k1 = 0 = C � k2 is equivalent to

�1 � �2 ¼ � and G2
1 ��2

1 ¼ G2
2 ��2

2 ½24�

Thus, M�
ver := �(Mver) is given by

M�
ver ¼  1 ¼ �; �1 ¼ b�1ð��; 	�; 
�; �2Þ

n o
with

b�1 :¼ �2

2
þ ð�

�
1 �H�1Þ

2 � ð��2 �H�2Þ
2

2�2

H�i :¼ 	
�
i

2 þ 
�i 2

2

Since M�
ver is invariant for the flow �t

� of
H�3bp, 1(t) � � and _ 1 � 0 for motions starting on
M�

ver, which implies that (@�1
H�3bp)jM�

ver
= 0. This

fact allows one to introduce, for fixed values of the
vertical angular momentum �2 = c 6¼ 0, the follow-
ing reduced Hamiltonian

Hc
redð��; ��; 	�; 
�Þ
:¼ H�3bpð��; ��; 	�; 
�; b�1ð��; 	�; 
�; cÞ; c; �Þ

on the eight-dimensional phase spaceMred := {��i > 0,
� 2 T2, (	�, 
�) 2 B4} endowed with the standard
symplectic form d�� ^ d�� þ d	� ^ d
� (B4 being a
ball around the origin in R4). In fact, the (standard)
Hamilton’s equations for Hc

red are immediately recog-
nized to be a subsystem of the full (standard)
Hamilton’s equations for H3bp when the initial data
are restricted onM�

ver and the constant value of �2 is
chosen to be c. More precisely, if the Hamiltonian flow
of Hc

red onMred is denoted by �t
c, then

�t
� z�; b�1ð��; 	�; 
�; cÞ; c; �;  2

� �
¼ �t

cðz�Þ; b�1ðtÞ; c; �;  2ðtÞ
� �

½25�

where we have used the shorthand notations:
z�= (��,��,	�, 
�)2Mred; b�1(t)= b�1 ��t

c(z
�);  2(t)=

 2þ
R t

0 @�2
H�3bp(�s

c(z
�), b�1(s),c,�)ds. At this point,

the scheme used for the planar case may be easily
adapted to the present situation. The nondegeneracy
conditions have been checked in Robutel (1995) where
indications, based on a computer program, have been
given for the validity of the theorem in a wider set of
initial data.

Notice that the dimension of the reduced phase
space of the spatial case is 8, which is also the
dimension of the phase space of the planar case.
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Therefore, also the Lagrangian tori obtained with
this procedure have the same dimension of the tori
obtained in the planar case (i.e., four).
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these problems Herman proposed a new approach,
which is described below.

Instead of Kolmogorov’s nondegeneracy assump-
tion – which says that the frequency map [13]
The general case Consider the general case follow-
ing the strategy of M Herman as presented by Féjoz
(2004), to which the reader is referred for complete
proofs and further references.

The symplectic variables used in Féjoz (2004), to
cope with the spatial planetary (1þ n)-body prob-
lem (Sun and n planets), are closely related to the
variables defined in eqn [23]. For 1 � i � n, let
((Li, Gi, �i), (‘i, gi, �i)) denote the Delaunay variables
associated with the two-body system, Sun–ith
planet. Then (as shown by Poincaré) the variables
((�i,�i), (	i, 
i), (pi,qi)), where �i =Li,�i = ‘iþ giþ �i,
and

	i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðLi �GiÞ

p
cosðgi þ �iÞ


i ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðLi �GiÞ

p
sinðgi þ �iÞ

pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðGi ��iÞ

p
cos �i

qi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðGi ��iÞ

p
sin �i

½26�

are symplectic and analytic near circular, non-
coplanar motions (see, e.g., Biasco et al. (2003)). Let

Hnbp :¼ Hð0Þð�Þ þ "Hð1Þð�; �; 	; 
; p; qÞ ½27�

denote the Hamiltonian (eqn [8]) expressed in terms
of the Poincaré symplectic variables ((�,�), (	, 
),
(p, q)), � = (�1, . . . , �n), etc.

As the number of the planets increases, the
degeneracies become stronger and stronger. Further-
more, a clean reduction, such as the reduction of the
nodes, is no more available if n > 2. To overcome

I!!(I) is a local diffeomorphism – one may
consider weaker nondegeneracy conditions. In
particular, in Féjoz (2004), one considers non-
planar frequency maps. A smooth curve u 2 A!
!(u) 2 Rd, where A is an open nonempty interval,
is called ‘‘nonplanar’’ at u0 2 A if all the u-derivatives
up to order (d � 1) at u0,!(u0),!0(u0), . . . ,!(d�1)(u0)
are linearly independent in Rd; a smooth
map u 2 A 
 Rp!!(u) 2 Rd, p � d, is called
nonplanar at u0 2 A if there exists a smooth
curve ’ : Â!A such that ! � ’ is nonplanar at t0 2
Â with ’(t0) = u0. A S Pyartli has proved (see, e.g.,
Féjoz (2004)) that if the map u 2 A 
 Rp!!(u) 2 Rd

is nonplanar at u0, then there exists a neighborhood
B 
 A of u0 and a subset C 
 B of full Lebesgue
measure (i.e., meas(C) = meas(B)) such that !(u) is
Diophantine for any u 2 C. The nonplanarity condi-
tion is weaker than Kolmogorov’s nondegeneracy
conditions; for example, the map

!ðIÞ :¼ @I
I4
1

4
þ I2

1I2 þ I1I3 þ I4

� �
¼ I3

1 þ 2I1I2 þ I3; I
2
1; I1; 1

� �
violates both Kolmogorov’s nondegeneracy and the
isoenergetic nondegeneracy conditions but is non-
planar at any point of the form (I1, 0, 0, 0), since
!(I1, 0, 0, 0) = (I3

1, I2
1, I1, 1) is a nonplanar curve (at

any point).
As in the three-body case, the frequency map is

that associated with the averaged secular
Hamiltonian

Hsec :¼ Hð0Þð�Þ þ " �Hð1Þ

�Hð1Þð�; 	; 
; p; qÞ :¼
Z
Hð1Þ d�

ð2�Þn
½28�

which has an elliptic equilibrium at 	= 
= p = q = 0
(as above, � is regarded as a parameter). It is a
remarkably well-known fact that the quadratic part
of �H(1) does not contain ‘‘mixed terms,’’ namely,

�Hð1Þ ¼ �Hð1Þ0 þ " Qpln 	 � 	 þQpln 
 � 
 þQspt p � p
�

þQspt q � qþO4

�
½29�

where the function �H(1)
0 and the symmetric matrices

Qpln and Qspt depend upon � while O4 denotes
terms of order 4 in (	, 
, p, q). The eigenvalues of the
matrices Qpln and Qspt are the first Birkhoff
invariants of �H(1) (with respect to the symplectic
variables (	, 
, p, q)). Let �1, . . . ,�n and &1, . . . , &n
denote, respectively, the eigenvalues of Qpln and
Qspt; then the frequency map for the (1þ n)-body
problem will be defined as (recall eqn [18])

�! ð!̂; "�Þ ½30�

with

!̂ :¼ �1

�3
1

; . . . ;
�n

�3
n

� �
� :¼ ð�; &Þ :¼ ð�1; . . . ; �nÞ; ð&1; . . . ; &nÞð Þ

½31�

Herman pointed out, however, that the frequencies
� and & satisfy two independent linear relations,
namely (up to renumbering the indices),

&n ¼ 0;
Xn

i¼1

ð�i þ &iÞ ¼ 0 ½32�

which clearly prevents the frequency map to be
nonplanar; the second relation in eqn [32] is usually



called ‘‘Herman resonance’’ (while the first relation
is a well-known consequence of rotation invariance).

The degeneracy due to rotation invariance may
be easily taken care of by considering (as in the
three-body case) the (6n� 2)-dimensional invariant
symplectic manifold Mver, defined by taking the
total angular momentum C to be vertical, that is,
C � k1 = 0 = C � k2. But, when n > 2, Jacobi’s reduc-
tion of the nodes is no more available and to get rid
of the second degeneracy (Herman’s resonance), the
authors bring in a nice trick, originally due – once
more! – to Poincaré. In place of considering Hnbp

restricted on Mver, Féjoz considers the modified
Hamiltonian

H

nbp :¼ Hnbp þ 
C2

3; C3 :¼ C � k3 ¼ jCj ½33�

where 
 2 R is an extra artificial parameter. By an
analyticity argument, it is then possible to prove that
the (rescaled) frequency map

ð�; 
Þ ! ð!̂; �1; . . . ; �n; &1; . . . ; &n�1Þ 2 R3n�1

is nonplanar on an open dense set of full measure
and this is enough to find a positive measure set of
Lagrangian maximal (3n� 1)-dimensional invariant
tori for H


nbp; but, since H

nbp and Hnbp commute, a

classical Lagrangian intersection argument allows
one to conclude that such tori are invariant also for
Hnbp yielding the complete proof of Arnol’d’s
theorem in the general case. Notice that this
argument yields (3n� 1)-dimensional tori, which in
the three-body case means five dimensional. Instead,
the tori found in the sect ion ‘‘The spatial three -body
proble m’’ are four dimensi onal. The point is that
in the reduced phase space, the motion of the
nodeline – denoted as  2(t) in eqn [25] – does not
appear.

We conclude this discussion by mentioning that
the KAM theory used in Féjoz (2004) is a modern
and elegant function-theoretic reformulation of the
classical theory and is based on a C1 local inversion
theorem (F Sergeraert and R Hamilton) on ‘‘tame’’
Frechet spaces (which, in turn, is related to the
Nash–Moser implicit function theorem; see Bost
(1984–85)).
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due to J K Moser and S M Graff for the hyperbolic
case and V K Melnikov, H Eliasson, and S B Kuksin
for the technically more difficult elliptic case; for
references, see, e.g., Chierchia et al. (2004)).

The normal form of a Hamiltonian admitting an
n-dimensional elliptic invariant torus T of energy E
proper frequencies !̂ 2 Rn, and ‘‘normal frequen-
cies’’ � 2 Rp in a 2d-dimensional phase space with
d = nþ p is given by

N :¼ Eþ !̂ � yþ
Xp

j¼1

�j

	2
j þ 
2

j

2
½34

Here the symplectic form is given by dy ^ dxþ
d	 ^ d
, y 2 Rn, x 2 Tn, (	, 
) 2 R2p; T is then given
by T := {y = 0}� {	= 
= 0}. Under suitable assump-
tions, a set of such tori persists under the effect of a
small enough perturbation P(y, x, 	, 
). Clearly, the
union of the persistent tori (if n < d) forms a set of
zero measure in phase space; however, in general
n-parameter families persist.

In the many-body case considered in this article
the proper frequencies are the Keplerian frequencies
given by the map �! !̂(�) (eqn [31]), which is a
local diffeomorphism of Rn. The normal frequencies
�, instead, are proportional to " and are the first
Birkhoff invariants around the elliptic equilibria as
discussed above. Under these circumstances, the main
nondegeneracy hypothesis needed to establish the
Lower Dimensional Tori

The maximal tori for the many-body problems
described above are found near the elliptic equilibria
given by the decoupled Keplerian motions. It is
natural to ask what happens of such elliptic
equilibria when the interaction among planets is
taken into account. Even though no complete
answer has yet been given to such a question, it
appears that, in general, the Keplerian elliptic
equilibria ‘‘bifurcate’’ into elliptic n-dimensional
tori. This section presents a short and nontechnical
account of the existing results on the matter (the
general theory of lower-dimensional tori is, mainly,

,

�

,

,

persistence of the Keplerian n-dimensional elliptic tori
boils down to the so-called Melnilkov condition:

�j 6¼ 0 6¼ �i � �j; 8j 6¼ i ½35�

Such condition has been checked for the planar
three-body case in Féjoz (2002), for the spatial
three-body case in Biasco et al. (2003) and for the
planar n-body case in Biasco et al. (2004). The
general spatial case is still open: in fact, while it is
possible to establish lower-dimensional elliptic tori
for the modified Hamiltonian H


nbp in [33], it is not
clear how to conclude the existence of elliptic tori
for the actual Hamiltonian Hnbp since the argument
used above works only for Lagrangian (maximal)
tori; on the other hand, the direct asymptotics
techniques used in Biasco et al. (2003) do not
extend easily to the general spatial case.

Clearly, the lower-dimensional tori described in
this section are not the only ones that arise in
n-body dynamics. For more lower-dimensional tori
in the planar three-body case, see Féjoz (2002).



Physical Applications

The above results show that, in principle, there may
exist ‘‘stable planetary systems’’ exhibiting quasiper-
iodic motions around coplanar, circular Keplerian
trajectories – in the Newtonian many-body approx-
imation – provided the masses of the planets are
much smaller than the mass of the central star.

A quite different question is: in the Newtonian
many-body approximation, is the solar system or,
more in generally, a solar subsystem stable?

Clearly, even a precise mathematical reformula-
tion of such a question might be difficult. However,
it might be desirable to develop a mathematical
theory for important physical models, taking into
account observed parameter values.

As a very preliminary step in this direction, consider
one of the results of Celletti and Chierchia (see Celletti
and Chierchia (2003), and references therein).

In Celletti and Chierchia (2003), the (isolated)
subsystem formed by the Sun, Jupiter, and asteroid
Victoria (one of the main objects in the Asteroidal
belt) is considered. Such a system is modeled by an
order-10 Fourier truncation of the RPC3BP, whose
Hamiltonian has been described in the section
‘‘Kolmogorov’s theorem and the RPC3BP (1954).’’
The Sun–Jupiter motion is therefore approximated by
a circular one, the asteroid Victoria is considered
massless, and the motions of the three bodies are
assumed to be coplanar; the remaining orbital
parameters (Jupiter/Sun mass ratio, which is approx-
imately 1/1000; eccentricity and semimajor axis of the
osculating Sun–Victoria ellipse; and ‘‘energy’’ of the
system) are taken to be the actually observed values.
For such a system, it is proved that there exists an
invariant region, on the observed fixed energy level,
bounded by two maximal two-dimensional Kolmo-
gorov tori, trapping the observed orbital parameters of
the osculating Sun–Victoria ellipse.

As mentioned above, the proof of this result is
computer assisted: a long series of algebraic compu-
tations and estimates is performed on computers,
keeping a rigorous track of the numerical errors
introduced by the machines.
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quations; Stability Problems in Celestial Mechanics;
tability Theory and KAM.
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Introduction

In most physical cases, the evolution of a system of N
indistinguishable interacting particles XN = (x1, x2, . . . ,
xN) with velocities VN = (v1, v2, . . . , vN) is described by
a Hamiltonian system

dXN

dt
¼ @HðXN;VNÞ

@VN

dVN

dt
¼ � @HðXN;VNÞ

@XN

½1�

in the phase space RdN
X � RdN

V . When N becomes
large, it is natural to consider replacing the above
discrete phase space by a continuous phase space
of dimension 1 � d � 3, Rd

x � Rd
v and to introduce

a measure f (x, v, t) that describes the density of
particles which, at the point x 2 Rd and at time t,
have velocity v. This measure may also be
interpreted as a generalization of the empirical
measure

�NðtÞ ¼
1

N

X
1�i�N

�xiðtÞ;viðtÞ

defined in the phase space Rd
x � Rd

v by the above
system of N particles. In this way, one constructs a
link between the microscopic and the macroscopic
descriptions. The macroscopic physical quantities
are, for instance, the first moments of this density:

�ðx; tÞ ¼
Z

Rd
v

f ðx; v; tÞdv ðdensityÞ

�ðx; tÞuðx; tÞ ¼
Z

Rd
v

vf ðx; v; tÞdv ðmomentumÞ

�ðx; tÞEðx; tÞ ¼
Z

Rd
v

jvj2

2
f ðx; v; tÞdv ðenergyÞ

Kinetic theory studies the intermediate stage shown
in Figure 1.

Its first successes were related to classical thermo-
dynamics and in particular to the molecular hypoth-
esis. The contributions of Maxwell (1860, 1872)
and of Boltzmann (1867) led to the ‘‘Boltzmann’’

equation, described in the companion article of
Mario Pulvirenti (see Boltzmann Equation (Classical
and Quantum)). In 1905, Lorentz used the same
point of view to describe the motion of electrons in a
metal. However, the different physical context leads
to some basic differences between the Boltzmann
equation and the Lorentz equation. The Boltzmann
equation is derived under the assumption that the
driving forces result from collisions between pairs of
molecules. Therefore, the problem is nonlinear with
a quadratic nonlinearity. In the Lorentz model the
driving force is the interaction of the electrons with
the atoms of the metal, which remain fixed.
Collisions between electrons are ignored, so that
the Lorentz equation is linear.

The most general form of a kinetic equation is as
follows:

@tf ðx; v; tÞ þ rvHf � rxf ðx; v; tÞ
� rxHf � rvf ðx; v; tÞ ¼ Cðf Þ ½2�

The term C(f ) represents the effect of interactions
either between particles or with the background.
Without this term, the eqn [2] is reduced to the
classical Liouville equation

@tf ðx; v; tÞ þ rvHf � rxf ðx; v; tÞ
� rxHf � rvf ðx; v; tÞ ¼ 0 ½3�

which says that the function f is transported by the
flow of the Hamiltonian Hf (x, v). This Hamiltonian
depends on the model and may involve the unknown
function f itself. In the simplest case H(x, v) = jvj2=2,
eqn [3] and its solutions are given by

@tf ðx; v; tÞ þ v � rvf ðx; v; tÞ ¼ 0

f ðx; v; tÞ ¼ f ðx� vt; v; 0Þ ½4�

Nowadays kinetic equations appear in a variety of
sciences and applications, such as astrophysics,
aerospace engineering, nuclear engineering, particle–
fluid interactions, semiconductor technology, social
sciences, and biology, for example in chemotaxis
and immunology.

They are used first to model phenomena and then
to obtain a qualitative and quantitative description
of situations involving sufficiently many particles so
as to prohibit any computation at the level of
particles, and yet the medium is still too rarefied to
allow the use of macroscopic equations. As detailed
in the next section, a macroscopic description
requires that the function f (x, v, t) be close to local
thermodynamical equilibrium. For classical and
quantum Boltzmann equations (see Boltzmann

Hamiltonian Systems Kinetic equations Macroscopic equations→ →1 2

Figure 1 Illustration of the role of kinetic equations in linking

microscopic and macroscopic properties.
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Equation (Classical and Quantum)) these equilibria
are either Maxwellian, Bose–Einstein, or Fermi–
Dirac distributions.

Several effects, especially the influence of the
boundary, may prevent the system from reaching
local thermodynamical equilibrium and, therefore,
even in macroscopic descriptions, kinetic equations
may still be used to take into account the effect of
the boundary. In this case, the term ‘‘Knudsen
boundary layer’’ is currently used.

Finally, one should keep in mind that there exist
some macroscopic phenomena which cannot be
deduced from the corresponding microscopic phys-
ics by the mediation of a kinetic equation. Once
again, returning to the companion article (see
Boltzmann Equation (Classical and Quantum)) one
observes that, since the only equilibria are Maxwel-
lian, the macroscopic equations are those describing
perfect gases. A real gas with a nontrivial van der
Waals law is ‘‘too dense’’ to be explained by this
theory. The alternative seems to go directly from the
microscopic direction to the macroscopic descrip-
tion. This is a subject which is still under investiga-
tion and for which the reader may consult Olla et al.
(1993).

Kinetic Equations Entropy
and Irreversibility

At the level of particles, the basic laws of physics are
reversible. Yet these same laws are not reversible
when seen at the level of a macroscopic description.
This lack of reversibility is measured by the decay of
entropy (mathematicians prefer convex functions;
therefore, the mathematical entropy considered in
this contribution is the negative of the physical
entropy, and with irreversibility it decays). The
kinetic equations lie in between, as shown in
Figure 1; the decay of entropy should appear along
one of the two arrows of this diagram.

Since the appearance of irreversibility is related to
loss of information and averaging, it should be
driven by a ‘‘mixing’’ process.

In general two mechanisms are responsible for
such effects:

1. an ergodic or a relaxation mechanism by which a
process averages itself; and

2. the introduction of some external random param-
eter. Observable quantities are then defined as
averages over that parameter.

It seems important to compare these two ‘‘pro-
cesses.’’ This will be illustrated below with the most
classical examples of the theory.

The Diffusion Limit for the Neutron Transport
Equation

Equations very similar to the one introduced by
Lorentz are used to describe the interaction of neutrons
with atoms in a nuclear reactor: this is the reason why
these types of equations are often called neutron
transport equations. An important issue is the deriva-
tion of a macroscopic diffusion equation. Assuming
that neutrons are not subject to acceleration effects,
considering the problem with constant modulus of
velocity (jvj= 1), introducing a ‘‘small’’ parameter �
which here corresponds to the absorption of the
medium, one can study the following simplified model:

�@tf� þ v � rxf�

þ �ðxÞ
�

�
f� �

Z
jv0 j¼1

kðv; v0Þf�ðv0Þdv0
�
¼ 0 ½5�

In [5] one assumes, for the kernel k(v, v0), the
following properties:

8v; v0; kðv; v0Þ ¼ kðv0; vÞ; 0 < kðv; v0ÞZ
jv0 j¼1

kðv; v0Þdv ¼ 1 ½6�

and denotes by K the operator

f 7!Kf ¼
Z
jv0j¼1

kðv; v0Þf ðv0Þdv0

In the simplest case (say without boundary) eqn [5]
is well-posed both for positive and negative time
but hypothesis [6] has the following important
consequences:

1. For positive time, it defines, for each � > 0, a
contraction semigroup in any Lp space and, there-
fore, the sequence of solutions or a subsequence
thereof converges, say weakly, to a limit f (x, v, t).

2. One also observes that v 7! 1 is (up to a multi-
plicative constant) the only solution of the equation

f � Kf ¼ f ðvÞ �
Z
jv0 j¼1

kðv; v0Þf ðv0Þdv ¼ 0 ½7�

Therefore, the ��1 in front of the collision term
forces the limit f (x, v, t) to be independent of v.
In this simple problem, this is the thermodyna-
mical equilibrium.

Dividing by � and integrating over jvj= 1 gives the
relation

@t

Z
jvj¼1

f�ðx; v; tÞdv

þrx
1

�

Z
jvj¼1

vf�ðx; v; tÞdv ¼ 0 ½8�
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Now using the Fredholm alternative implies the
existence and uniqueness of a function v 7!�(v) such
that

�ðvÞ �
Z
jv0 j¼1

kðv; v0Þ�ðv0Þdv0

¼ v;

Z
jv0 j¼1

�ðv0Þdv0 ¼ 0 ½9�

Multiply eqn [5] by �(v) and integrate over jvj= 1 to
obtain

lim
�!0

�ðxÞ
�

Z
jvj¼1

ððI � KÞ�ÞðvÞf�ðx; v; tÞdv

¼ lim
�!0

�ðxÞ
�

Z
jvj¼1

�ðvÞðI � KÞf�ðx; v; tÞdv

¼ � lim
�!0
rx

Z
jvj¼1

�ðvÞ � vf�ðx; v; tÞdv ½10�

Since the operator (I � K) is self-adjoint non-
negative, with 0 as the leading eigenvalue, the
matrix

D ¼
Z
jvj¼1

�ðvÞ � vdv

¼
Z
jvj¼1

�ðvÞ � ðI � KÞ�ðvÞdv

is positive definite, and one finally obtains the
diffusion equation

@tf �rx
D

�ðxÞrxf

� �
¼ 0 ½11�

The above derivation is an example of what is called
the ‘‘moments method.’’ It is implicit even in the
papers of Maxwell. It has been systematically used
in several domains:

� To understand the relation between the Boltzmann
equation and the Euler and Navier–Stokes
equations (Golse 2005);
� To compute the critical size of a nuclear assembly.

One shows that this size is well approximated by
the size of the domain for which the Laplacian,
with appropriate boundary conditions, has lead-
ing eigenvalue 0. It is for the spectral analysis of
this problem that the averaging lemma (see the
section ‘‘Some speci fic math ematical tools ’’) was
derived.
� To analyze the macroscopic limit for the solution

of the radiative transfer equations, which describe
the propagation of the intensity of photons in a
large class of phenomena ranging from stellar
atmospheres to the cooling of glass, including

optical tomography in biomedical imaging. In a
simplified form, the so-called ‘‘grey model,’’ these
equations can be reduced to

�@tI�ðx; v; tÞ þ v � rxI�ðx; v; tÞ

þ 1

�
�
� 1

4�

Z
jv0j¼1

I�ðx; v0; tÞÞdv0
��

I�ðx; v; tÞ

� 1

4�

Z
jv0 j¼1

I�ðx; v0; tÞÞ dv0
�
¼ 0 ½12�

In contrast to the previous example, the problem
is, in many cases, nonlinear. The opacity � is a
positive function that depends on the intensity I�
through

~Iðx; tÞ ¼ 1

4�

Z
jv0j¼1

I�ðx; v0; tÞ dv0

and which goes to 1 with ~I� going to zero. The
moments method can be applied with the aver-
aging lemma, and one shows that the limit of I� is
a function that is independent of v and satisfies
the following degenerate parabolic equation:

@tI �rx
1

3�ðIÞrxI

� �
¼ 0 ½13�

This equation is similar to the one obtained in the
description of porous media and contains the
following information: for initial data I(x, 0) with
compact support, in contrast to the behavior of
solutions of the standard diffusion equation, the
solution I(x, t) remains compactly supported in x.
The boundary of this support is the thermal front
and for a finite time, up to saturation (by water in
porous media, by reacted deuterium in laser-
confined fusion), this front remains fixed.

What made the analysis of the above macroscopic
limit simple was the existence of an � > 0 dependent
process which, for vanishing �, forces the solution to
converge to a ‘‘thermodynamical’’ equilibrium. The
irreversibility was already present in the first arrow
of Figure 1. This is what made the analysis of the
second arrow simple. The subtleties of the appear-
ance of the irreversibility in the first arrow may be
well explained by the next examples.

The Linear Billiard Model

In the absence of an external electric field, the model
proposed by Lorentz could be viewed as a limit of a
system of particles evolving freely between spherical
obstacles and reflecting on these obstacles according
to the law of geometric optics. Along these lines,
two types of results have been proved in two space
variables.
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In 1973, Gallavotti considered the case where the
obstacles are randomly spaced under a Poisson
configuration and proved the following theorem:

Theorem 1 Consider obstacles(balls) of radius �
and center ci. Assume that the probability of finding
exactly N such obstacles in a bounded measurable
set � 	 R2 is given by the ‘‘Poisson law’’

PðdcNÞ ¼ e���j�j
�N
�

N!
dc1 dc2 � � � dcN ½14�

with

cN ¼ c1; c2; . . . ; cN and �� ¼
�

�
½15�

Denote by E� the expectation with respect to the
above Poisson distribution. For given � and cN

introduce

OcN ;� ¼ R2n [1�i�N fjx� cij � �g ½16�

and fcN , �, the solution of the problem

@tfcN ;�ðx; v; tÞ þ v � rxfcN ;�ðx; v; tÞ ¼ 0

in OcN ;� � S1 ½17�

with specular reflection on the boundary and
v-independent initial data:

fcN ;�ðx; v; 0Þ ¼ 	ðxÞ in OcN ;� � S1 ½18�

Then

h�ðx; t;�Þ ¼ E�½fcN ;�� ½19�

converges weakly for t 
 0 to the solution of the
transport equation

@tf ðx; v; tÞ þ v � rf ðx; v; tÞ þ �
�
2f ðx; vÞ

� 1

4

Z
S

f ðx; v0Þjv� v0jdv0
�
¼ 0 ½20�

f ðx; v; 0Þ ¼ 	ðxÞ in R2 � S1 ½21�

The situation is completely different when the
obstacles are periodically spaced, a situation which
seems closer to Lorentz’s original idea. Golse (2003)
(and previous contributions quoted in this article)
obtained the following result:

Theorem 2 Assume that the obstacles are periodi-
cally spaced and conveniently scaled, defining the
domain

O� ¼ R2n [
j2Z2
fx; jx� �jj � �2g ½22�

Then there exists a family of continuous uniformly
bounded initial data such that no subsequence
extracted from the family of solutions of

@tf� þ v � rxf� ¼ 0 in O� � S1 ½23�

with specular reflections on the boundary, converges
to solutions of equations of the type [20].

This pathology is related to the existence of
particles that can travel freely for a very long time
before meeting the obstacles, and the proof with
some arithmetic (Diophantine approximations and
continued fractions) relies on the analysis of such
trajectories.

A comparison between the Theorems 1 and 2
shows that the ergodic property of the free flow on
the periodic lattice is not strong enough to lead to a
collisional kinetic equation unless some complemen-
tary randomness is introduced.

The examples of this section should be compared
with the rigorous derivation of the Boltzmann
equation by Lanford (see Boltzmann Equation
(Classical and Quantum)). The reader should
observe that this derivation corresponds to the
same type of scaling (finite mean free path).
However, no extra randomness is needed in this
case. The proof uses the fact that configurations
leading only to a finite number of binary collisions
are of full measure. This corresponds to an
ergodicity property which is enforced by the fact
that the problem is genuinely nonlinear.

Mean-Field Scaling and Vlasov Equations

The neutron transport equation is devoted to the
interaction with obstacles and the Boltzmann
equation to binary collisions. A simpler situation
from the mathematical point of view corresponds
to the case where each particle is under the action
of the average of all other particles. Then the name
‘‘mean field limit’’ is used. The simplest example is
the derivation of a Vlasov-type equation from a
system of N classical particles interacting with a C2

potential V(jxj). The following Hamiltonian is
used:

Hðx1; . . . ; xN; v1; . . . ; vNÞ

¼
X

1�k�N

jvkj2

2
þ 1

2N

X
1�l 6¼k�N

Vðjxk � xljÞ ½24�

and the name mean-field scaling is related to the
factor N�1 before the potential. Assuming that the
particles are undistinguishable, one introduces
the joint probability density FN � FN(x1, . . . , xN,
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v1, . . . , vN) in the N-particle phase space, which
satisfies the Liouville equation

@tFN þ fHN; FNg :¼ @tFN þ
X

1�k�N

�
vkrxk

FN

� 1

2N

X
1�l 6¼k�N

rxk
ðVðjxk � xlÞÞ

� rvk
FN

�
¼ 0 ½25�

From [25], with the notations

Xn ¼ðx1; . . . ; xnÞ; Vn ¼ ðv1; . . . ; vnÞ
Xn

N ¼ðxnþ1; . . . ; xNÞ; Vn
N ¼ ðxnþ1; . . . ; xNÞ

one deduces an infinite hierarchy of equations for
the marginals

Fn
NðXn;Vn; tÞ ¼

Z
fNðXN;VN; tÞdXn

N dVn
N

for 1 � n � N; Fn
N � 0 for N < n :

@tF
nðXn;Vn; tÞ þ

X
1�i�n

vnrxi
Fn

NðXn;Vn; tÞ

� 1

N

X
1�i<j�n

rvi
rxi

Vðjxi � xjjÞFn
NðXn;Vn; tÞ

� 	

�N � n

N

� X
1�i�n

rvi

Z Z
rxi

Vðjxi � x�jÞ

� Fnþ1
N ðXn;Vn; x

�; v�; tÞdx�dv�
�
¼ 0 ½26�

Letting N go to infinity, one obtains ‘‘formally,’’ for
the distribution functions,

Fn ¼ lim
N!1

Fn
N

the Vlasov hierarchy:

@tF
nðXn;Vn; tÞ þ Vn � rXn

FnðXn;Vn; tÞ

�
X

1�i�n

rvi

�Z Z
rxi

Vðjxi � x�jÞ

� Fnþ1
N ðXn;Vn; x

�; v�; tÞdx�dv�
�
¼ 0 ½27�

Observe that for any density F(x, v, t) that satisfiesZ Z
Fðx; v; tÞdx dv ¼ 1; Fðx; v; tÞ 
 0 ½28�

and is a solution of the V potential Vlasov equation:

@tFðx; v; tÞ þ v � rxFðx; v; tÞ

�
Z Z

rxVðjx� x�jÞFðx�; v�Þdx�dv�
� �
�rvFðx; v; tÞ ¼ 0 ½29�

the factorization formula

FnðXn;Vn; tÞ ¼
Y

1�i�n

Fðxi; vi; tÞ ½30�

defines a solution of the above Vlasov hierarchy.
A uniqueness argument implies that any solution

of the Vlasov hierarchy which is factorized at time
zero will remain factorized at any subsequent time.
Such a property, also observed for the hierarchy
leading to the Boltzmann equation, is called the
propagation of chaos. To make the proof rigorous,
one has to analyze the limiting process in the
hierarchy and prove the uniqueness of the solution
of the infinite hierarchy. For a smooth potential, this
has been done by Braun and Hepp in 1977 and by
Spohn in 1981. An interesting approach consists,
following Dobrushin, in introducing the Wasserstein
distance; see Golse (2003) for a detailed exposition.

In the case of the Vlasov–Poisson equation [29]
with V(jxj) = 1=4�jxj the potential turns out to be
too singular for the above derivation. In particular,
the corresponding solution of the N-particle pro-
blem is not uniformly defined. However, for the
corresponding equation (and for variants thereof,
including the effect of the magnetic field, the
Vlasov–Maxwell system) a series of mathematical
results concerning existence and stability of solu-
tions have been obtained. An excellent recent
exposition of these results can be found in the
book of Glassey (1996).

Equation [29] as well as the original system turns
out to be fully reversible. Neither irreversibility nor
averaging has appeared in the limit process which
corresponds to the first arrow of Figure 1; this is due
to the ‘‘weak coupling.’’ Therefore, irreversibility
should now appear on the second arrow. Integrating
eqn [29] with respect to v gives the relation (often
called Fick’s law):

@t�ðx; tÞ þ rx

Z
vFðx; v; tÞdv ¼ 0 ½31�

But now expressing the current j =
R

vF(x, v, t)dv in
terms of macroscopic variables turns out to be a
difficult issue in the absence of a ‘‘relaxation’’ effect.
Up to now there has been no derivation of such
macroscopic equations from first principles.

The same type of problems exist for the two-
dimensional Euler equation, which is in some sense
very similar to the Vlasov equation. It has been
observed that these equations develop for ‘‘turbulent
initial data’’ a kind of ‘‘mixing process’’ leading to
coherent structures that would play the role of
thermodynamical equilibrium (in the absence of
relaxation). The Jupiter red spot is the most
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well-known example of such a structure. These
coherent structures are obtained by maximizing an
entropy which does not come directly from the
dynamics but which is inspired by similar problems
in statistical mechanics. Finally, one has to take into
account in this construction the existence of an
infinite set of conserved quantities: for each regular
function G, vanishing at infinity, one has

d

dt

ZZ
GðFðx; v; tÞÞdx dv ¼ 0

This approach was already started by Onsager in 1945
and pursued by many scientists. A recent reference is
the article of Chavanis and Sommeria (1998).

Derivation of Kinetic Equations from the
Schrödinger Equation

Oscillatory solutions of the Schrödinger equation,
with wavelength of the order of the Planck constant,
tend to behave like particles. This is described in
detail by different tools of high-frequency approxi-
mation. In particular, the limit of the Wigner
transform of the density  (x, t)�  (y, t):

Wðx; 
; tÞ¼ 1

ð2�Þ3d

Z
R3d

e�i
y xþ �hy

2
; t

� �

�  x� �hy

2
; t

� �
dy ½32�

is a solution of a Liouville equation. Therefore, one
should expect that in the presence of ‘‘many’’
obstacles (‘‘many potentials’’) the limit should be
given by a kinetic equation. As shown by the
previous section the introduction of randomness
seems compulsory in reaching this goal.

Consider a big cube � = �L of size L in R3. Let
!= (x�),�= 1, 2, . . . , N denote the configuration of
random obstacles distributed uniformly in �. The
density of obstacles is �= N=L3 and the expectation
with respect to this uniform measure is denoted by

E :¼
Y

1���N

�
L�d

Z
dx�

�

With V(jxj) a smooth, short-range potential, the
random potential created by the obstacles is

V!ðxÞ ¼
X

1���N

Vðjx� x�jÞ

then one of the typical results (low-density limit,
which corresponds to the quantum version of
Gallavotti classical result) obtained, reads as follows:

Theorem 3 (Erdös and Yau 1988) Assume that the
density of obstacles is �= �0� with a fixed �0.

Denote by  �!(t) the solution of the Schrödinger
equation

i@t 
�
! ¼ � 1

2 �x 
�
! þ V! 

�
! ½33�

with initial condition localized and oscillating at the
scale �, that is, with h and S smooth

 �!ð0Þ ¼ �3=2hð�xÞ exp i
SðxÞ
�

� �
½34�

Consider the density matrix ��!(t, x, y) = �!(t, x)�
 
�

!(t, y) and its Wigner transform

W�
!ðx; 
; tÞ

¼ 1

ð2�Þ3
Z

R3
e�i
y��! t; xþ �y

2
; x� �y

2

� �
dy

½35�

Then for any t > 0, EW�
!(t) converges weakly with �

going to zero to a solution F(t) of the kinetic equation

@tFðt; x; 
Þ þ 
 � rxFðt; x; 
Þ

¼
Z
jTð
; 
0Þj2�ðj
j2 � j
0j2ÞðFðt; x; 
0Þ

� Fðt; x; 
ÞÞd
0 ½36�

where T is the amplitude of the scattering operator
associated to the Schrödinger equation with the
short range potential V.

The proof uses several ingredients including
scattering theory with expansion in term of Dyson
series; see Erdös and Yau (1998).

Semiconductor Modeling

In modern computers, the electronic devices are so
small that the electric current may have no space/time
to reach a thermodynamical equilibrium. Therefore,
this turns out to be a field where the kinetic equations
are the most naturally used. Details of what can be
deduced from a mathematical analysis can be found
in Poupaud (1994). The equations involve the
distribution of electrons fe(x, k, t) and holes
fh(x, k, t) and have the following form:

�@tfeðt; x; kÞ þ veðkÞrxfeðt; x; kÞ

þ q

�h
rxUðt; xÞ � rkfeðt; x; kÞ

¼ 1

�
ðQeðfeÞðt; x; kÞ þ Reðfe; fhÞðt; x; kÞÞ ½37�

�@tfhðt; x; kÞ þ vhðkÞrxfhðt; x; kÞ

� q

�h
rxUðt; xÞ � rkfhðt; x; kÞ

¼ 1

�
QhðfhÞðt; x; kÞ þ Rhðfh; feÞðt; x;kÞ ½38�
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The variable k ranges over a torus B of R3 which, in
physics books, carries the name of Brillouin zone.
The velocities of propagation of electrons and holes
are determined in terms of the energy band by the
formula

ve;h¼
1

�h
rkEe;hðkÞ ½39�

The potential U is determined in terms of the doping
profile C(x), the conductivity �r, and the density of
electrons and holes according to the formula

��xUðt; xÞ ¼ q

�r
CðxÞ � 1

jBj

Z
B

feðt; x; kÞdk

�

þ 1

jBj

Z
B

fhðt; x; kÞdk

�
½40�

Finally Qe,h and Re,h are binary integral operators in
the variable k 2 B which model collisions and
generation–recombination processes. Concerning
the ‘‘mathematical approach’’ the situation is as
follows.

The relations [39] can be deduced from the high-
frequency analysis of the solution of the Schrödinger
equation

i�h@t ¼ �
�h2

2
� þ V

x

�h

� �
 ½41�

with V a periodic potential constructed on the dual
lattice of B. The method uses the Bloch decom-
position of the solution and the Wigner series
(Poupaud 1994). No mathematical derivation of
the collisions operator is currently available. The
situation should be compared to what is said in the
secti on ‘‘Derivation of ki netic equations from the
Schrö dinger e quation,’’ but in a much m or e
complicated setting.

On the other hand, the collision operators Qe,h

and Re,h, as given by phenomenological arguments,
have enough good relaxation properties to allow a
rigorous limit of the system [37]–[38] for � going to
zero (Poupaud 1994). This leads to the justification
of the so-called drift–diffusion models and to the
possibility of constructing correctors (with respect to
�) and to treating the effect of heterojunctions by
boundary layer analysis.

Some Specific Mathematical Tools

Few proofs were given in the above exposition and
details would not be suitable for a review article.
However, the mathematical approach to kinetic
equations has generated some new tools, and it
may be useful to give the most prominent ones.

The Averaging Lemma

Compactness results appear in spectral theory and in
the construction of solutions of nonlinear equations
(whenever strong convergence is needed for the
limit). Being hyperbolic, the transport operator
v � rx propagates singularities along characteristics.
Therefore, at first sight it seems hopeless that one
might obtain any regularizing effect from the free
streaming part of a kinetic model. The key to
obtaining regularizing effects from the transport
operator v � rx is to seek those effects not on the
number density itself, but on velocity averages
thereof; in other words, on the macroscopic densities.

Here is the prototype of all velocity averaging
results.

Theorem 4 Let F� be a bounded family in L2(Rd �
Rd). Assume that the family v � rxF� is also bounded
in L2(Rd � Rd). Then, for each 	 2 L2(Rd), the
family of moments ��(x) defined by

��ðxÞ ¼
Z

Rd
F�ðx; vÞ	ðvÞdv

is relatively compact in L2(Rd).

For the proof one starts with the expression
G� = F� þ v � rxF� takes the Fourier transform with
respect to x of this relation and writes for �̂�(
) the
expression

�̂� ¼
Z

Rd

Ĝ�ð
; vÞ	ðvÞdv

1þ iv:

½42�

Then use the Cauchy–Schwarz inequality to obtain

j�̂�j2 �
Z

Rd

j	ðvÞj2dv

1þ jv � 
j2

 !Z
Rd
jG�ð
; vÞj2dv ½43�

and complete the proof by standard arguments.
The averaging lemma was first observed by

Agoshkov (1984) for abstract results concerning
the regularity of solutions of kinetic equations in
domains with boundary. Independently, it was
rediscovered in the improved form given above by
Golse, Perthame, and Sentis (1985) and used for the
spectral theory in the diffusion approximation. The
extension to Lp, p > 1, spaces and to L1 (with use of
entropy estimate) were instrumental in proving the
validity of the Rosseland approximation for the
radiative transfer equations and for the proof of
existence by Lions and Di Perna of renormalized
solutions of the Boltzmann equation. A more refined
result needs to be used to establish the incompres-
sible limit of the solutions of the Boltzmann
equations; see Golse (2005) for details and a
complete list of references.
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The Dispersive Property

Consider for the solutions in Rd
x � Rd

v of the
elementary kinetic equations

@tf þ v � rxf ¼ 0; f ðx; v; 0Þ ¼ f 0ðx; vÞ ½44�

the local density

�ðx; tÞ ¼
Z

Rd
v

f ðx; v; tÞdv ½45�

From the relation

j�ðx; tÞj ¼
Z

Rd
v

f ðx; v; tÞdv

¼
Z

Rv

f 0ðx� vt; v; tÞdv

�
Z

Rd
sup
w2Rd

jf 0ðx� vt;wÞjdv ½46�

deduce with an elementary change of variable the
following estimate, which carries the name of
dispersion lemma,

j�ðx; tÞj � 1

jtjd
kf 0kL1ðRd

x ;L1ðRd
v ÞÞ

½47�

From interpolation and duality arguments follows:

Proposition 1 The macroscopic density � defined
by [45] satisfies the inequality

k�kLqðRt ;LpðRd
xÞÞ
� CðdÞkf 0kLaðR2dÞ ½48�

for any choice of real numbers a, p, and q such that

1 � p <
d

d � 1
;

2

q
¼ d

1� 1
p

1 � a ¼ 2p

pþ 1
<

2d

2d � 1

½49�

The values a = 1, p = 1, and q =1 are obvious.
The other limiting values are the interesting ones.
They are given by p = d=(d � 1), that is, p = d0 then
q = 2 and a = 2d=(2d � 1).

These inequalities carry the name of Strichartz
inequalities because they are very similar to classical
inequalities obtained by Strichartz for the solution of
the free Schrödinger equation. This should not be
surprising since the Wigner transform of the densities

f ðx; v; tÞ ¼ 1

ð2�Þd
Z

e�iyv ðxþ 1
2 y; tÞ

�  ðx� 1
2 y; tÞdy ½50�

then turns out to be a solution of the transport
equation

@tf þ v � rxf ¼ 0 ½51�

However, the estimates for kinetic equations are not
easily translated into estimations for the Schrödinger
equation because the properties of the initial data in
terms of norms cannot be simply estimated in terms of
the inverse Wigner transform. Spaces with Fourier
transform in Lp, p 6¼ 2, are not easy to characterize and
not natural for the Schrödinger equation. The above
estimates have been very useful in analyzing the large-
time behavior of solutions and also in proving the
regularity of the three-dimensional Vlasov equation.

The Entropy and Entropy Dissipation

For solutions of the Boltzmann equation the
Boltzmann H function

Hðf Þ ¼
Z

R3�R3
f ðx; vÞ log f ðx; vÞdx dv

decreases in time and the same is true for the
relative entropy to an absolute Maxwellian M(v) =
(2�)�3=2e�jvj

2=2:

HðFjMÞ ¼
Z

R3�R3
f ln

f

M

� �
� f þM

� �
dx dv

This leads to the systematic introduction in the theory
of the notion of relative entropy. It turned out to be
instrumental in proving relaxation toward equilib-
rium of solutions of kinetic (or similar) equations
and for the analysis of hydrodynamical limits.

A striking example considered by Desvillettes and
Villani is the linearized Fokker–Planck equation in
any space dimension:

@tF þ v � rxF �rxVðxÞ � rvF

¼ rvðrvF þ FvÞ ½52�

When x 7!V(x) is a smooth potential strictly convex
at infinity, this system has a unique steady state
given by the relation

F1ðx; vÞ ¼ e�VðxÞMðvÞ ¼ e�VðxÞ e�jvj
2=2

ð2�Þd=2
½53�

For any solution of [52] one has

@tHðFjMÞ þ
Z

Rd�Rd
Fjrv log

F

M
j2 dx dv ¼ 0 ½54�

which says that the entropy dissipation is the
relative Fisher information (with respect to v) of F.
Now, to study the relaxation to equilibrium, one
uses the logarithmic Sobolev inequality:

HðFjMÞ � 1

2

Z
Rd�Rd

Fjrv log
F

M
j2 dx dv ½55�

Details, references, and extensions can be found in
Arnold et al. (2004).
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Conclusions

Kinetic equations have been studied since the end of
the nineteenth century, both from the physical and
mathematical points of view, but it seems that since
the middle of the last century the interest in this
approach has considerably increased.

The fact that these equations are well adapted to the
description of media which have not ‘‘thermalized’’
(because they are too rarefied or because the domain
where they evolve is too small) has been a basic reason
for their use in many applied fields; to the ones already
quoted one may add the analysis of the air between the
reading head and a compact disk, the computations of
the characteristics of an ionic motor, and many others.

As a consequence, mathematical progress has
been very important. Without going into the details,
this contribution is focused on this, and in particular
on what can be obtained by the deterministic
approach and where the introduction of randomness
seems compulsory.

The kinetic formulation turned out to be well
adapted to large-scale computers, in particular with
Monte Carlo simulations. One should observe that
the point of view of modern functional analysis
contributes stability estimates to the understanding
and improvement of numerical methods. For an
introduction to such numerical methods, the reader
should first concentrate on the Boltzmann equation
itself, which has been one of the basic motivations;
consult the book of Sone (2002) the references
therein and in particular the book of Bird (1994).

See also: Boltzmann Equation (Classical and Quantum);
Breaking Water Waves; Einstein’s Equations with Matter;
Fourier Law; Interacting Stochastic Particle Systems;

Nonequilibrium Statistical Mechanics: Dynamical
Systems Approach; Partial Differential Equations: Some
Examples; Quantum Dynamical Semigroups.
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Introduction

A knot homology is a theory which assigns to a knot
K (or link L) in S3 a graded homology group whose
graded Euler characteristic is a knot polynomial
associated to K. In all known examples, the knot
polynomials in question are specializations of the
HOMFLY polynomial PK(a, q), which we take to be
determined by the skein relation

aPð%-Þ � a�1Pð%-Þ ¼ ðq� q�1ÞPð

2

1Þ ½1�

and normalized so that P of the unknot is equal to 1.
Let PN(K) be the specialization of PK given by

PNðKÞ ¼ PKðqN; qÞ ½2�

Then for each N 
 0, there is a bigraded knot
homology Hi, j

N (K), which satisfies

PNðKÞ ¼
X

i;j

ð�1Þiqj dim Hi;j
NðKÞ ½3�

We refer to the first grading i as the homological
grading, and the second grading j as the polynomial
or q-grading.

The idea of a knot homology was introduced by
Khovanov (2000) in a seminal paper, in which he
defined the homology theory corresponding to the
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Jones polynomial (N = 2). In subsequent work, he
defined such a theory for N = 3, and then, in
collaboration with Rozansky, for any N > 0.
Recently, the two authors have introduced a triply
graded homology theory Hi, j, k(K) whose graded
Euler characteristic gives the entire HOMFLY
polynomial:

PKða; qÞ¼
X
i;j;k

ð�1Þiqjak dimHi;j;kðKÞ ½4�

All of these theories are combinatorial in nature.
In contrast, the knot homology for N = 0 arises

from a very different source – the Heegaard Floer
homology of Ozsváth and Szabó. This theory traces
its roots back to invariants of 3- and 4-manifolds
defined using Seiberg–Witten and Donaldson theory.
The definition of H0(K) is not combinatorial, but
because of its connections with these invariants, the
theory is known to carry a good deal of geometric
information about the knot K. The interplay
between the two apparently different sorts of knot
homologies (N > 0 and N = 0) has enhanced our
understanding of both sides.

This article will mostly focus on the cases N = 0
and N = 2, which are the oldest and best-studied
examples of knot homologies and are related to the
two best-known specializations of the HOMFLY
polynomial – the Alexander and Jones polynomials.
We have chosen to use a uniform notation to
emphasize the similarities between theories, but the
reader should be aware that other notation is more
common in the literature. H0 is often referred to as
the knot Floer homology (written HFK), and is
usually normalized with a polynomial grading of
j0 = j=2, corresponding to the substitution t = q2,
which gives the standard normalization of the
Alexander polynomial. H2 is generally called the
reduced Khovanov homology, and often denoted by
Khr or Khred.
Construction

Seen from a distance, all knot homologies are
defined in much the same way. Given a knot K, we
must first choose some additional data D which
give a concrete geometric presentation of the knot.
Using this data, we write down a bigraded chain
complex (Ci, j

N (D), dN). This complex depends on
our initial choice of D, but when we take
homology, we are left with groups Hi, j

N (K) which
are invariants of the knot K (cf. the simplicial
homology of a topological space X, where the
chain groups depend on the choice of some initial
geometric data – a triangulation of X – but the
homology groups are invariants of X).
In all cases, the generators of CN(D) correspond
naturally to terms which appear in a classical model
for computing PN(K). In other words, we can write

PNðKÞ¼
X
�2S

ð�1Þið�Þq jð�Þ ½5�

where the sum runs over a set of states S determined
by D, and the functions i and j are also determined
by D. Ci, j

N (D) is the free abelian group generated by
{� 2 Sji(�) = i, j(�) = j} and the differential dN is
chosen to preserve the j-grading: j(dNx) = j(x). It
follows that CN(D) decomposes into an infinite
direct sum of complexes, one for each value of j, and
[3] is a consequence of [5].

Beyond these global similarities, the definition of
CN(D) varies with the value of N. In the second half
of the article, we give explicit details of the
constructions for N = 0 and N = 2.
Filtered Complexes and Deformations

An important characteristic shared by all the CN’s is
the existence of deformations with homology Z.
Recall that (CN(D), dN) is a graded chain complex:
j(dNx) = j(x). By a deformation of such a complex,
we mean a new chain complex (CN(D), dN þ d0N) in
which the underlying group remains the same, but
the differential has been perturbed by the addition of
a new term d0N which strictly raises the j-grading:
j(d0N(x)) > j(x).

Any deformation of a graded complex is naturally
a filtered complex, and as such, gives rise to a
spectral sequence. The E0 term of this spectral
sequence is the original unperturbed complex
(CN(D), dN), so the underlying group of the E1

term is just HN(K). Thus, it is independent of the
choice of initial data D. In fact, it can often be
shown that all terms in the spectral sequence beyond
the first one are invariants of K. This is known to
be the case for N = 0 and N = 2, and is most likely
true for all other N as well (cf. the Leray–Serre
sequence associated to a fibration, where the first
two terms depend on a choice of geometric data but
the E2 and higher terms are all invariants of the
fibration).

For each value of N, CN(D) admits a natural
deformation whose homology is Z in homological
grading 0, and zero in every other grading. When
N = 0, 2, the filtration grading of this generator is
known to be an invariant of K. (This is probably the
case for N > 2 as well.) Equivalently, this is the
j-grading of the surviving copy of Z in the spectral
sequence. When N = 0, this invariant is convention-
ally normalized to be half the j-grading of the
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generator, and is called �(K). When N = 2, it is
called s(K).
Geometric Properties

Some elementary properties of the HN’s generalize
those of the HOMFLY polynomial. If K1#K2

denotes the connected sum of K1 and K2, then over Q

HNðK1#K2Þ ffi HNðK1Þ �HNðK2Þ ½6�

and if �K is the mirror image of K,

Hi;j
Nð�KÞ ffi H�i;�j

N ðKÞ ½7�

Moreover, H0 satisfies an additional symmetry

Hi;j
0 ðKÞ ffi Hi�j;�j

0 ðKÞ ½8�

generalizing the symmetry of the Alexander poly-
nomial: P0(q) = P0(q�1). (With integer coefficients,
these equalities all hold at the chain level. The
correct statements about the homology can be
obtained from the Kunneth formula and universal
coefficient theorem.)

HN(K) also contains deeper information related to
the genus of surfaces bounding K. If K is a knot in
S3, recall that g(K) – the Seifert genus of K – is the
minimal genus of an orientable surface smoothly
embedded in S3 and bounding K. If we view S3 as
the boundary of the 4-ball B4, we can define a
second quantity g�(K) – the slice genus – by relaxing
the requirement that the surface be embedded in S3

and instead requiring it to be embedded in B4.
Both s(K) and �(K) give lower bounds on the slice

genus of K:

j�ðKÞj � g�ðKÞ ½9�

jsðKÞj � 2g�ðKÞ ½10�

These bounds are far from independent. In fact, in
all known examples, s(K) = 2�(K). It is an open
problem to determine whether this is true for all
knots.

From [6], it follows that s and � are additive
under connected sum. Thus, both invariants define
homomorphisms from the concordance group of
knots in S3 to Z. The inequalities in eqns [9] and [10]
are not always sharp, but there is one case where
equality is known to hold. This is when K is
represented by a diagram with all positive crossings
(or, more generally, K is quasipositive.) In this case,
the slice genus is also equal to the Seifert genus, and
all three are easily computed using Seifert’s
algorithm.

The proof of [10] depends on the fact that
for N > 0, HN is functorial in the following sense.
If S 	 S3 
 [0, 1] is a smoothly embedded, orientable
cobordism between links L1 and L2, then for each
N > 0, there is an induced map �S

N : HN(L1)!
HN(L2). �S

N is a graded map: it preserves the
homological grading, and lowers the j-grading by
(N � 1)�(S). Under deformation, it becomes a
filtered map which induces a rational isomorphism
on the deformed homologies.

H0 and Heegaard Floer Homology

The proof of [9] depends on the close connection
between the knot Floer homology and the Heegaard
Floer homology. Roughly speaking, the Heegaard
Floer groups of 3-manifolds obtained by surgery on
K are determined by the groups Hi, j

0 (K) together
with additional differentials obtained by relaxing the
requirement that nz(�) = nw(�) = 0. The relation
with the slice genus again arises by studying maps
induced by cobordisms, but in this case, the relevant
cobordism is the surgery cobordism between S3 and
the 0-surgery on K.

This connection also leads to another important
property of H0: it detects the Seifert genus. If we let
M(K) be the largest value of j for which the group
H�, j

0 (K) is nontrivial, then

MðKÞ ¼ 2gðKÞ ½11�

This fact generalizes a well-known inequality invol-
ving the degree of the Alexander polynomial: if
m(K) is the largest power of q appearing in P0(K),
then m(K) � 2g(K).
Computations

The difficulty of computing HN(K) varies with the
value of N. When N = 1, the theory is essentially
trivial: H 0, 0

1 (K) ffi Z for any knot K, and all other
groups vanish. Of the remaining knot homologies,
H2(K) is the easiest to compute. The theory for
alternating knots was worked out by E S Lee, and
extensive calculations have also been made for
nonalternating knots using computer programs
written by Bar-Natan and Shumakovitch.

Computing H0 is more difficult, on account of the
noncombinatorial nature of d0. Three families of
knots for which H0 is well understood are alternat-
ing knots, (1,1) knots (described in the next section),
and knots which admit lens space surgeries. Beyond
this, there is an array of techniques which may or
may not work in any given case. The best of these is
probably a setup introduced by Ozsváth and Szabó,
in which the generators of C0(D) correspond to
states in the Kauffman state model of the Alexander
polynomial. Combining this method with the known
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Figure 1 Heegaard splitting of S3 corresponding to the

standard decomposition of S3 into two solid tori.
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results for alternating knots and (1,1) knots gives a
fairly good understanding of H0(K) for knots with
10 or fewer crossings; for larger knots, relatively
little is known.

Few computations of HN for N > 2 have been
made, although the definition in this case is purely
combinatorial.

Thin and Thick Knots

For simple knots, both H0 and H2 are thin. This
means that there exists a constant cN(K)(N = 0, 2)
such that H i, j

N (K) is trivial unless j� 2i = cN(K). In
such cases, we necessarily have c0(K) = 2�(K) (resp.
c2(K) = s(K)), and HN(K) is completely determined
by cN(K) and PN(K). The relationship is best
expressed in terms of the Poincaré polynomial of
HN(K):

PNðKÞ ¼
X

i;j

tiqj dim Hi;j
NðKÞ

¼ ð�tÞ�cNðKÞ=2PNðKÞðqð�tÞ1=2Þ ½12�

If K is an alternating knot, both H0(K) and H2(K)
are thin, and c0(K) = c2(K) = �(K). (Note that in this
case the bound on g�(K) coming from � and s
coincides with the classical bound coming from the
signature.) Many nonalternating knots are thin as
well; in all examples in which both groups have
been computed, either both H0(K) and H2(K) are
thin, or neither is. In addition, all such knots appear
to have c0(K) = c2(K) = �(K).

Those knots whose homologies are not thin are
called thick. There are a dozen such knots with ten
or fewer crossings: using the standard numbering in
the knot tables (see, e.g., Rolfsen (1976)) these are
819, 942, 10124, 10128, 10132, 10136, 10139,10145, 10152,
10153, 10154, and 10161. It is a curious and as yet
unexplained coincidence that, for all of these knots,
the ranks of H0(K) and H2(K) are equal.

There is an analogous notion of thinness when
N > 2, but there exist alternating knots for which
HN cannot be thin for N � 0 (this can be seen from
the HOMFLY polynomials).
α2
α1α1

z

w

Figure 2 Going from a doubly pointed diagram to a Heegaard

diagram of the knot complement.
Construction of H0

We now turn to a more detailed description of the
definition of H0(K). The geometric data D used to
define C0 is a Heegaard diagram for the complement
of K. One convenient way to specify such a diagram
is by a doubly pointed Heegaard diagram of S3. The
data for such a diagram consist of a surface � of
genus g, two g-tuples of attaching circles {�1, . . . ,�g}
and {�1, . . . ,�g} on �, and two points z, w 2 �
which are disjoint from all the �’s and �’s. Each set
of attaching circles is composed of g disjoint simple
closed curves, arranged so that when �g is cut along
them the result is a sphere with 2g holes. Any such
set of attaching circles determines a unique genus-g
handlebody H with boundary � and the property
that each attaching circle bounds a disk in H.

The choice of � and � curves determines the
underlying 3-manifold in which the knot is
embedded. Starting with �
 [0, 1], we fill in
one component of the boundary with the handle-
body determined by the �-curves, and the other
component with the handlebody determined by the
�-curves to obtain a closed 3-manifold. By hypoth-
esis, this manifold is required to be S3. A simple
Heegaard diagram of S3 with g = 1 is shown in
Figure 1.

To go from a doubly pointed Heegaard diagram
to a diagram of the knot complement, we remove
neighborhoods of z and w and replace them with a
tube to get a surface �0 of genus gþ 1. We also add
an additional �-handle �gþ1, which runs from z to w
in � in such a way that it does not intersect the
other �’s, and then comes back over the tube. This
process is illustrated in Figure 2.

A Heegaard diagram of S3� K determines a
presentation of �1(S3 � K) with one generator xi

for each �-circle and one relator wj for each �-circle.
To find the relator wj, one travels along �j,
recording each intersection with some �i by append-
ing x�1

i to the relator. The sign is determined by the
sign of the intersection. As an example, consider the
two doubly pointed diagrams of Figure 3, both of
which correspond to the same Heegaard diagram of
S3. (It is isotopic to the one shown in Figure 1.) The
fundamental groups of the associated knot comple-
ments can be read off from the corresponding genus-
2 Heegaard splittings. Starting from the point where
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Figure 3 Doubly pointed Heegaard diagrams for the unknot

and the trefoil. Opposite sides of the square are identified to form

a torus. The dotted line represents �2:
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�1 intersects the left-hand side of the square and
moving to the right, we get

�1ðS3 � K1Þ ¼ hx1; x2jx1x�1
1 x1 ¼ 1i

�1ðS3 � K2Þ ¼ hx1; x2jx2x1x�1
2 x�1

1 x�1
2 x1 ¼ 1i

The first group is isomorphic to Z, and the knot in
Figure 3a is the unknot. The second is isomorphic to
�1 of the complement of the trefoil knot, and in fact
the knot in Figure 3b is the left-handed trefoil.

The definition of C0(D) is based on a classical
method for computing the Alexander polynomial
known as the Fox calculus, which takes as its input
a presentation of �1(S3 � K). According to Fox
calculus,

P0ðKÞ ¼ �qn detðdxi
wjÞ1�i;j�g ½13�

Here dxi
wj is an element of the group ring

Z½H1ðS3 � KÞ� ffi Z½q�2�

It is determined by the following rules:

dxi
xj ¼ 	ij ½14�

dxiab ¼ dxiaþ jajdxib ½15�

dxi
x�1

i ¼ � x�1
i

�� �� ½16�

where

j 
 j : �1ðS3 � KÞ!H1ðS3 � KÞ ffi Z ¼ hq2i ½17�

is the abelianization map. The factor of �qn is chosen
so that P0(K)(1) = 1 and P0(K)(q) = P0(K) (q�1).

As an example, consider the two presentations
above. In the first presentation, j 
 j sends x1 to 1 and
x2 to q2, so

dx1
x1x�1

1 x1

� �
¼ 1� x1x�1

1

�� ��þ x1x�1
1

�� ��
¼ 1� 1þ 1

¼ 1 ½18�
which is the Alexander polynomial of the unknot. If
we abelianize the relator in the second presentation,
we see that jx1j= jx2j= q2, so

dx1
x2x1x�1

2 x�1
1 x�1

2 x1

� �
¼ x2j j � x2x1x�1

2 x�1
1

�� ��þ x2x1x�1
2 x�1

1 x�1
2

�� �� ½19�

¼ q2 � 1þ q�2 ½20�

which is the Alexander polynomial of the trefoil.
When g = 1, the complex C0(D) is generated by

the points of �1 \ �1. These intersection points may
be naturally identified with the appearances of the
generator x1 in w1, and thus with the monomials
appearing in dx1

w1. For example, the three mono-
mials which appear on the right-hand sides of eqns
[18] and [19] correspond, respectively, to the points
labeled p1, p2, and p3 in Figure 3. The j-grading of
each generator is given by the exponent of q which
the corresponding monomial contributes to the
Alexander polynomial. Thus, all three generators in
Figure 3a have j-grading 0, while in Figure 3b, the
generators p1, p2, and p3 have j-gradings 2, 0, and �2
respectively.

For general g, the monomials appearing in the
determinant of eqn [13] correspond to intersection
points of the two totally real tori �=�1 
 
 
 
 
 �g

and �= �1 
 
 
 
 
 �g inside the symmetric product
Symg�. The knot Floer homology is the Lagran-
gian Floer homology of � and � inside the
symplectic manifold Symg(�� z�w). The genera-
tors of C0(D) are the points of � \ �; the
differential is defined by counting holomorphic
disks with boundary on � and �. To be precise, for
x 2 � \ �,

d0x¼
X

�2�2ðx;yÞ;
ð�Þ¼1

nzð�Þ¼nwð�Þ¼0

#Mð�Þy ½21�

Here �2(x, y) denotes the set of homotopy classes of
maps of the strip D = {aþ ib j b 2 [0, 1]} into Symg�
which take the right-hand boundary to � and the
left-hand boundary to �, and which limit to x as
b!�1 and to y as b!1. 
(�) denotes the formal
dimension of the space of pseudoholomorphic disks
in this homotopy class. There is a natural action by
translation on the space of such maps, so when

(�) = 1 we can divide out by this action and obtain
an oriented zero-dimensional moduli space M(�).
Finally, by nz(�) and nw(�) we denote the intersec-
tion number of such a strip with the divisors
determined by z and w inside of Symg�. The
requirement that they vanish forces the strip to lie
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Figure 4 0- and 1-resolutions of a crossing.
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in Symg(�� z�w). It can be shown that, for
� 2 �2(x, y),

jðxÞ � jðyÞ ¼ nzð�Þ � nwð�Þ ½22�

so j(d0x) = j(x).
When g = 1, computing the differential amounts

to counting maps of the strip into the Heegaard
torus. This can be done algorithmically using the
Riemann mapping theorem, so computation of H0 is
purely combinatorial. Knots of this form are called
(1,1) knots. They are one of our few windows into
the behavior of H0 for large knots.

As an example, consider the diagram of Figure 3a.
The two shaded regions represent the domains
of classes �1 2 �2(p1, p2) and �3 2 �2(p3, p2).
The Riemann mapping theorem implies that up
to reparametrization, there is a unique holo-
morphic map of the strip into each region, so
#M(�1) = �1 = #M(�2). The differential in
C0(D1) is given by

d0ðp1Þ ¼ �p2 ¼ d0ðp3Þ
d0ðp2Þ ¼ 0

and H0(U) ffi Z. This reflects the fact that we could
have chosen the more efficient diagram of S3 �U
shown in Figure 1, simply by moving �1 to remove
two of the intersection points.

For comparison, consider the diagram for the
trefoil shown in Figure 3b. All three generators of
C0(D2) have different j-gradings, so we must have
d0 � 0. Thus, H0(T) ffi Z3. The two disks �1 and �2

are still present, but now nz(�1) = nw(�2) = 1, so
neither disk contributes to the differential. This is
reflected in the fact that �1 cannot be moved to
reduce the number of intersection points without
passing through either z or w.

Deformations

In this case, finding an appropriate deformation of
C0(D) is simple: we just drop the condition that
nz(�) = 0 in the definition of the differential. If a
homotopy class � 2 �2(x, y) contributes nontrivially
to the sum, it must have a holomorphic representative,
which necessarily intersects the divisor in Symg�
defined by z non-negatively. Thus, nz(�) � 0. From
[22], it follows that j(x)� j(y) = nz(�) � 0, so this
new differential has the form d0 þ d00, where d00
strictly lowers the j-grading.

The fact that the homology of C0(D) with respect
to the perturbed differential is Z goes back to the
knot Floer homology’s roots in Heegaard Floer
homology. By dropping the condition that
nz(�) = 0, we have effectively forgotten about the
basepoint z, and thus about the knot. The new
complex simply computes the Heegaard Floer groupcHF(S3), which is isomorphic to Z. When g = 1, this
can be seen directly: if we remove the basepoint z,
any genus-1 Heegaard diagram of S3 can be isotoped
into the standard diagram of Figure 1.
Construction of H2

In this case, the geometric data D needed to define
the chain complex C2(D) is a planar diagram of
the knot, and the classical model on which the
construction of C2(D) is based is the Kauffman state
model for the Jones polynomial. There is a related
homology theory ~H2(D), known as the unreduced
Khovanov homology, whose graded Euler character-
istic is (qþ q�1)P2(K). This is the original categor-
ification of the Jones polynomial defined in
Khovanov (2000).

To construct ~C2(D), we consider complete resolu-
tions of the planar diagram D. As shown in Figure 4,
there are two different ways to resolve each crossing
of D. If D has n crossings, there will be 2n ways to
resolve all n, one for each vertex of the cube [0, 1]n.
To a vertex v, we associate the crossingless planar
diagram Dv obtained from the corresponding reso-
lution of D. Thus, each vertex of the cube is
decorated by a 1-manifold Dv.

If e is an edge joining vertices v0 and v1 (where v0

has one more 0 coordinate than v1), we write
e : v0! v1, and decorate e with a two-dimensional
cobordism Se from Dv0

to Dv1
. Se is a product

cobordism outside a neighborhood of a single
crossing, where it is the one-handle cobordism
between the 0-resolution and the 1-resolution. The
resulting cobordism is necessarily composed of
a union of product cobordisms (cylinders) together
with a single nontrivial cobordism (a pair of pants).
Thus, starting from D, we have constructed an
n-dimensional cube whose vertices are decorated by
1-manifolds and whose edges are decorated by
cobordisms between them. This is the cube of
resolutions of D.

The next step in the construction of ~C2(D) is to
apply a graded (1þ 1)-dimensional TQFT A to the
cube of resolutions. A is a functor which associates
to each 1-manifold X a group A(X), and to each
two-dimensional cobordism W : X1!X2 a homo-
morphism A(W) :A(X1)!A(X2). If we apply A to
all the manifolds and cobordisms of the cube of



Table 1 Summary of cube of resolutions

Vertex v ! 1-manifold Dv ! Group A(Dv )

Edge ! Cobordism ! Homomorphism

e : v1! v2 Se : Dv1
!Dv2

A(Se ) :A(Dv1
)!A(Dv2

)

X
1

X  X

 11 

 X1 X  1

01 11

j = 3

j = 5
j = 7

j = 5

j = 3
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resolutions, we obtain a new cube, decorated with
groups and cobordisms between them. This process
is summarized in Table 1.

We can now describe the chain complex ~C2(D).
As a group,

~C2ðDÞ¼
M

v

AðDvÞ ½23�

where the sum runs over all vertices of the cube of
resolutions. For x 2 A(Dv), the differential is given by

d2x ¼
X

e:v!v0
ð�1ÞsðeÞAðSeÞðxÞ ½24�

The signs in this sum are determined by assigning a
sign (�1)s(e) to each edge e in such a way that every
two-dimensional face of the cube has an odd
number of � signs on its edges. (This ensures that
d2 = 0.) There are many ways to do this, but they all
result in isomorphic complexes.

The homological grading i on ~C2(D) is easily
determined. For x 2 A(Dv), we set i(x) = i(v)� c(D),
where i(v) is the sum of all the coordinates of v, and
c(D) is a constant. Clearly, i(d2x) = i(x)þ 1. In order
to have invariance, it turns out that c(D) must be
chosen to be equal to the number of negative
crossings in D.

It remains to specify the TQFT A. At the level of
groups, A(S1) is a free abelian group of rank 2:

AðS1Þ ¼ A ¼ h1;Xi ½25�

General principles then imply that

A
�an

S1
�
¼ A�n ½26�

To specify the maps induced by cobordisms, it is
enough to describe the maps associated to the two
pairs of pants shown in Figure 5. They are given by
Am : A   A Δ : A A   A

Figure 5 Maps induced by pairs of pants.
mð1� 1Þ ¼ 1

�ð1Þ ¼ 1�XþX� 1 ½27�

mð1�XÞ ¼ mðX� 1Þ ¼ X

�ðXÞ ¼ X�X ½28�

mðX�XÞ ¼ 0 ½29�

Note that the multiplication m makes A into a
commutative ring isomorphic to Z[X]=(X2).
A is a graded TQFT. In other words, there is a

grading q on A and its tensor products, determined by

qð1Þ ¼ 1

qða� bÞ ¼ qðaÞ þ qðbÞ
½30�

qðXÞ ¼ �1 ½31�

From eqns [27]–[29], it is easy to see that

qðmða� bÞÞ ¼ qða� bÞ � 1

qð�ðaÞÞ ¼ qðaÞ � 1
½32�

If we define j(x) = k(D)þ q(x)þ i(x), it follows that
j(d2x) = j(x). Taking the graded Euler characteristic
gives

�ð~C2ðDÞÞ ¼ qkðDÞ
X

v

ð�qÞiðvÞðqþ q�1Þnv ½33�

where nv is the number of components of Dv. If we
define k(D) to be the writhe of D, this is precisely
Kauffman’s formula for the unnormalized Jones
polynomial.

Figure 6 illustrates ~C2(D) for a simple two-
crossing link. The figure shows the original link (in
the center), the cube of resolutions, and basis vectors
for ~C2(D), together with their j-gradings. We leave it
to the reader to check that the homology ~H2(L) is
four dimensional, supported in j-gradings 1 and 3 at
the vertex labeled 00, and in gradings 5 and 7 at the
vertex labeled 11.
X  X

 11 

 X1 X  1 X
1

00 10
j = 1

j = 3

j = 5 j = 5

j = 3

Figure 6 The cube of resolutions for the Hopf link.
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To get the reduced chain complex C2(D), we must
divide the graded Euler characteristic by a factor of
(qþ q�1). This is accomplished by choosing a
marked point on K and requiring that for each
resolution Dv, the vector associated to the circle
containing the marked point lie in the subspace of A
spanned by X. If D is a diagram of a knot, the
resulting homology H2(K) is independent of the
choice of marked point. For links, H2(L) depends on
the component of the link on which the marked
point lies.
Deformations

Deformations in the N = 2 theory are constructed
using a technique introduced by E S Lee. The idea is
to replace the graded TQFT A with a filtered TQFT
A0. As a group, we still have A(S1) = A, but the
multiplication and comultiplication maps are per-
turbations of those for A:

m0ð1� 1Þ ¼1

�0ð1Þ ¼ 1�XþX� 1� r1� 1 ½34�

m0ð1�XÞ ¼ m0ðX� 1Þ ¼ X

�0ðXÞ ¼ X�Xþ s1� 1 ½35�

m0ðX�XÞ ¼ rXþ s ½36�

The new terms involving r and s have q gradings
strictly greater than the terms which are shared with
eqns [27]–[29]. Thus, the differential defined by
replacing m and � by m0 and �0 will be a
perturbation of the original differential on ~C2(D).

The simplicity of the homology with respect to the
new differential depends on the fact that when the
polynomial X2 � rX� s has simple roots, the TQFT
A0 decomposes as a direct sum of two one-
dimensional TQFTs. This implies that for a knot,
the deformed homology ~H02(K) decomposes as a
direct sum of two copies of H1(K). This group is
always isomorphic to Z, so ~H02(K) ffi Z�Z. If s = 0,
the same strategy can be used to define deformations
of the reduced chain complex C2(D). In this case, we
find that the deformed homology is isomorphic to a
single copy of Z.

See also: Floer Homology; Gauge Theory: Mathematical
Applications; The Jones Polynomial; Knot Theory and
Physics; Topological Quantum Field Theory: Overview.
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Introduction

As in all other physical theories, one expects that
gravitational phenomena will ultimately be ruled by
quantum mechanics. This requires to consider the
quantization of the best available theory of gravity,
namely Einstein’s general relativity. This problem has
been considered since the 1930s (see Loop Quantum
Gravity). The application of the rules of quantum
mechanics to general relativity is immediately problem-
atic. Unlike other physical interactions, general
relativity describes gravitational phenomena through a
distortion of spacetime rather than through a field living
in spacetime. Therefore, its quantization is bound to be
very different from that of other physical theories. In
particular, the well-established framework of perturba-
tive quantum field theory, used with remarkable success
in describing electroweak and strong interactions (in the
latter case at least in certain regimes), runs into trouble
when applied to general relativity. At present, it is not
clear if this is a fundamental problem or if there might
exist an implementation of perturbative quantum field
theory that works well in the gravitational case. On the
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other hand, there exist examples of field theories where
perturbative methods fail but that nevertheless can be
quantized. This suggests that the consideration of
nonperturbative techniques in the quantization of the
gravitational field could be a promising avenue.

In particular, canonical quantization methods
appear attractive for attempting a nonperturbative
quantization of gravity. Canonical methods force
the introduction, in a clear way, of a Hilbert space
of states and definition of the quantum operators of
interest. The application of canonical methods to
classical general relativity was pioneered by Dirac
and Bergmann in the late 1950s. During the 1960s,
the resulting canonical theories were considered in a
quantum setting by DeWitt. At the time it appeared
that making progress in the canonical quantization
of general relativity was going to be quite a
challenge. In particular, the canonical theory has
constraints, which have to be implemented as
operator identities quantum mechanically. The
wave functions were functionals of the spatial metric
of spacetime. One of the operator identities to
be satisfied implies that the wave functions only
depend on properties of the spatial metric that
are invariant under spatial diffeomorphisms. This
is a direct consequence of general relativity being
a theory that is independent of coordinate choice
since a diffeomorphism changes the assignment of
coordinates to points in the manifold. Finding such
wave functions already presented a challenge, since
there is no well-grounded mathematical theory of
functionals of diffeomorphism-invariant classes of
metrics. Moreover, the other operator identity to be
imposed, known as the Hamiltonian constraint or
Wheeler–DeWitt equation, was a nonpolynomial
complicated operator equation that does not admit
a simple geometrical interpretation and needs to be
regularized. Since one does not have a background
metric to rely upon, traditional regularization
techniques of quantum field theory are not suitable
to deal with the Hamiltonian constraint.

These difficulties severely hampered development
of canonical methods for the quantization of general
relativity for approximately two decades. The
situation started to change when Ashtekar noticed
that one could choose a different set of variables
to describe general relativity canonically. Instead of
using as variable the spatial metric qab, Ashtekar
chooses to use a set of (densitized) frame fields ~Ea

i .
The relationship between the metric and the
densitized frames is det (qab)qab = ~Ea

i
~Eb

i and we are
assuming the Einstein summation convention, that
is, the index i is summed from 1 to 3 (such an index
labels which vector in the triad one is referring to).
The resulting theory has an additional symmetry
with respect to usual general relativity, in the sense
that it is invariant under the choice of frame. This
symmetry operates on the index i as if it were
an SO(3) symmetry. As canonical momenta the
usual choice is to pick the extrinsic curvature of the
3-geometry. Ashtekar chooses a variable related to it
that behaves under frame transformations as an
SO(3) connection, Ai

a. The resulting theory is there-
fore cast in terms of a canonical pair (~E

a

i , Ai
a), with i

an SO(3) index. One can therefore consider the
canonical pair as that of a Yang–Mills theory
associated with the SO(3) group. In fact, associated
with the extra symmetry under triad rotations the
theory has a new set of constraints that take
the form of a Gauss law, Da

~E
a

i = 0 with Da the
covariant derivative formed with the connection Ai

a.
This allows us to view the phase space of a Yang–
Mills theory as the kinematical arena on which to
discuss quantum gravity. The theory is of course
different from the Yang–Mills theory. In particular,
it still has constraints that imply that it is invariant
under spacetime diffeomorphisms. In the canonical
picture, these constraints appear asymmetrically as
one constraint is associated with time evolution
(‘‘Hamiltonian constraint’’) and a set of three
constraints is associated with spatial diffeomorph-
isms (‘‘diffeomorphism constraint’’).

If one quantizes the theory starting from the
Ashtekar formulation, given the resemblance with
Yang–Mills theory, the natural choice for a represen-
tation of the quantum wave functions is to consider
wave functions of the connection �[A] that are
invariant under SO(3) transformations. Such a repre-
sentation is known as ‘‘connection representation.’’
There is significant experience in Yang–Mills theory in
constructing such wave functions. In particular, it is
known that if one considers the parallel transport
operator defined by a connection around a closed
curve (holonomy) and one takes its trace (‘‘Wilson
loop’’), the resulting object is invariant under SO(3)
transformations. What is more important, the set of
traces of holonomies along all possible closed loops is
an overcomplete basis for all gauge-invariant func-
tions. More recently, it has been shown that one can
construct a less redundant complete basis using
techniques from spin networks. We will discuss later
on how to do this.

Since any gauge-invariant functional can be
expanded in the basis of Wilson loops, one can
choose to represent it through the coefficients of
such an expansion. These coefficients are functions
of the curve upon which the corresponding element
of the basis of Wilson loops is based. The
representation of wave functions in terms of such
coefficients is called ‘‘loop representation.’’ Wave
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functions in the loop representation are functions of
a closed curve (more precisely of families of closed
curves, or spin networks, as we will discuss below).

We still have to deal with the diffeomorphism
and Hamiltonian constraints. The diffeomorphism
constraint when written in the loop representation
implies that the wave functions are not functions of
loops but rather of topologically invariant properties of
the loops under general diffeomorphisms of the spatial
manifold containing the loops. Such functions are
technically known in the mathematical literature as
‘‘knot invariants.’’ This is the first point of connection
between knot invariants and quantum gravity; they
constitute the kinematical arena of the theory. One still
has to deal with the Hamiltonian constraint, which has
to be imposed as an operator equation. We shall see that
knot theory also seems to have a lot to say about
solutions of the Hamiltonian constraint. This is quite
remarkable, since the Hamiltonian constraint embodies
in detail the specific dynamics of Einstein’s theory of
gravitation, and to our knowledge this is an input that
has never gone into the ideas of knot theory.

In terms of the Ashtekar variables, the Hamiltonian
constraint takes the form

H ¼ Ea � Eb � Bc þ �Ecð Þ�abc ½1�

where we have used a conventional vector notation
for the frame indices and kept explicit the spatial
indices. �abc is the Levi-Civita totally antisymmetric
tensor. We have included a possible cosmological
constant �. The Ashtekar formulation can be
constructed in different ways. In the original
formulation, the connection Ai

a was a complex
variable and the Hamiltonian took the form we
listed above. However, the resulting theory was only
equivalent to real general relativity if the variables
satisfied certain reality conditions. One can choose
to use a real connection instead, but then the
Hamiltonian constraint has additional terms. At
the moment, we will concentrate on the constraint
as listed above. The constraint has to be implemen-
ted as a quantum operator acting on wave functions.
Since it involves the product of operators, it needs to
be regularized. Most regularization methods are
problematic in this context, since they use a metric,
and here the metric is a quantum operator, not an
external fixed quantity. If we ignore these difficul-
ties, one observes that, if one were to choose a
quantum state, for instance in the connection
representation, for which,

�Êa
i �½A� ¼ �B̂a

i �½A� ½2�

the state would be annihilated by the Hamiltonian
constraint, and this would be true no matter what
regularization was chosen. Classically, the condition
Ea

i 	 Ba
i is satisfied for the de Sitter geometry, so one

could envision the state as a quantum state
associated with such geometry. The exact solution
of the above equation is given by a state that is the
exponential of the integral on the spatial slice of the
Chern–Simons form built from the connection

�CS½A� ¼ exp k

Z
d3x tr A ^ dAð

�

þ 2

3
A ^ A ^ A

��
½3�

and the constant k needs to be chosen as k = 6=� for
the state to be a solution.

One can ask, ‘‘what is the expression of this state
in the loop representation?’’ To answer this, one
needs to compute the coefficients of its expansion in
the basis of Wilson loops W�[A], where as we stated
earlier, � should be a collection of (intersecting)
loops (later we will discuss the generalization to spin
networks). The expression for the coefficients will
be a function only of the loops � and is given by

�CS½�� ¼
Z

DAW� ½A��CS½A� ½4�

This expression is invariant under diffeomorph-
isms of the manifold or, equivalently, under smooth
deformations of the curve �. That is, it is what in the
mathematical literature is called ‘‘knot invariant.’’ In
fact, this integral has been studied by Witten in the
context of Chern–Simons theory and has been
shown to be related to the Kauffman bracket knot
polynomial, which in turn is related to the cele-
brated Jones polynomial. Therefore, the implication
of these results is that the Kauffman bracket knot
polynomial appears to be the representation in the
loop representation of a state of quantum gravity
that solves the quantum Einstein equations (with a
cosmological constant). The reader may be intrigued
by the word ‘‘polynomial’’ in this context. It should
be noted that the Chern–Simons state �CS[A]
depended on a parameter k, which had to take a
certain value for it to solve the quantum Einstein
equations. The resulting knot invariant is a poly-
nomial in exp (k). If one expands out the result, an
infinite power series in k results. There will be
infinite coefficients in the series, but they are just
combination of the finite number of coefficients of
the polynomial. Knot polynomials are a powerful
tool for analyzing and distinguishing knots. The
coefficients of the polynomials are all knot invari-
ants. Typically, for ‘‘simple’’ knots, the first few
coefficients of the knot polynomial are nonzero. As
one considers more complicated knottings, higher
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coefficients become nonvanishing. The ultimate goal
of knot theory is to be able to consider two arbitrary
knots and to unambiguously determine if the two
knots are related by a smooth transformation. The
knot polynomials appear as promising tools for
achieving this task that has remained elusive up
to now.

Returning to quantum gravity, to have a well-known
knot polynomial as a solution of the quantum Einstein
equations is a remarkable fact. The first connection we
outlined between knot theory and quantum gravity was
less unexpected: if one describes a theory that is
diffeomorphism invariant in terms of loops, the
appearance of knots is inevitable. But we are now
finding that knot invariants from the mathematical
literature, which were constructed without any knowl-
edge of the details of the dynamics of the Einstein
equations, seem to manage to solve such equations. This
is either a big coincidence or a pointer to some
unexplained deep connection yet to be understood.
Notice, for instance, that other theories of gravity would
not have the Kauffman bracket as a quantum state.

There is a certain technicality about the Kauffman
bracket that makes it difficult to argue with precision
that it is a state of quantum gravity. To understand
this technicality better, it is perhaps best to concen-
trate on the form of the quantum state written above
if the connection is an abelian connection. In that
case, the integral in question,

�CS abelian½�� ¼
Z

DA

I
�

dya exp iAað Þ

� exp

Z
d3x�abcAa@bAc

� �
½5�

by turning it into a Gaussian integral. The result is

�CS abelian½�� ¼
I
�

dxa

I
�

dyb�abc
ðx� yÞc

jx� yj ½6�

This integral has problems, since the integrand is
ill-defined when x = y. Notice that the integral
would be well defined if the two contour integrals
were evaluated on different, nonintersecting curves.
The result would be the well-known formula for
the Gauss linking number of the curves, yielding
zero if they are not linked and and integer multiple
of 4� if they were. So the integral we were trying to
compute was actually the Gauss linking number of
the curve with itself. Such a quantity is not well
defined for ordinary curves. To deal with this
problem, mathematicians introduced the concept of
framed knots. A framed knot is a curve with a
prescription to determine a second curve from it.
One way to see it is to construct another curve that
is ‘‘infinitesimally close’’ in space to the original
one. It is clear that there is no canonical way to
compute such a second curve. Then, when one
considers quantities like the self-linking number,
one makes them well defined by evaluating the two
integrals on the two curves, the original one and
the one yielded by the prescription. In reality, the
notion of framing is a bit more elaborate than what
we hint at here, since one could consider invariants
constructed with more than two integrals and could
still be ill-defined if one only considers two curves.
The notion has to be extended as well to handle
intersections in the curves. We will ignore these
subtleties in this discussion.

The Kauffman bracket knot invariant is an
invariant of framed knots, just like the self-linking
number. It is not well defined for a single curve. It
requires a framing of the knot. In quantum gravity,
there is no compelling reason to consider framed
curves. It is true that framed curves arise naturally in
q-deformed field theories and perhaps a q-deformed
version of quantum gravity is what needs to be
considered to accommodate the Chern–Simons state,
but at the moment there are no proposals along
these lines that have widespread consensus.

So, it appears the Kauffman bracket does not have
a natural role to play as a state of quantum gravity.
However, it is known that the frame dependence of
the Kauffman bracket knot polynomial can be
captured in an overall factor that depends on the
self-linking number. If one strips the polynomial of
this factor, one gets the Jones polynomial, which is a
knot invariant of single curves. Could it be that this
polynomial has a chance of being a solution of the
quantum Einstein equations?

To determine this, the analogy with Chern–
Simons theory is no longer useful, since there is no
straightforward way to transform the relation
between the Kauffman and Jones polynomials into
relations between states in the connection represen-
tation. To analyze if the Jones polynomial could be
a solution of the quantum Einstein equations, one
needs to write the quantum Einstein equations
directly in terms of loops.

There have been several attempts to rewrite the
quantum Einstein equations directly in the loop
representation. In one of these attempts, the curva-
ture that appears in the Hamiltonian constraint was
represented by the ‘‘loop derivative.’’ This is a
differential operator that can be introduced in the
space of loops by considering that two loops that
differ by a small element of area are ‘‘close.’’ One
can build an attractive differential calculus in loop
space that actually encodes many of the kinematical
properties that are useful to formulate Yang–Mills
theory.
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The Hamiltonian constraint in terms of the loop
derivative is an operator that has an explicit form.
The coefficients of the Jones polynomial can also be
given an explicit form by computing perturbatively
the integral in the Chern–Simons theory. The results
are generalizations of the types of integrals that arise
in the self-linking number, but involving a larger
number of integrals. One can therefore envisage
carrying out an explicit computation in which one
checks if the coefficients of the Jones polynomial are
annihilated or not by the Hamiltonian constraint of
quantum gravity in the loop representation. Such a
calculation has been carried out for the first few
coefficients. It turns out that the second coefficient
(the first coefficient is normalized to unity, so it
trivially satisfies the constraint) is indeed annihilated
by the Hamiltonian constraint of vacuum quantum
gravity (with zero cosmological constant). It has
been shown that the third coefficient is not, and
there are good arguments to indicate that other
coefficients will not be states of quantum gravity.

So, a remarkable result has been found in that one
of the coefficients of the Jones polynomial (related
to the Arf and Casson invariants) is annihilated by a
version of the quantum Hamiltonian constraint of
general relativity. The result is quite nontrivial; it
requires a fair amount of calculation to actually
show that the coefficient is annihilated. The mean-
ing of this quantum state and the deep reason why it
is annihilated remain at present a mystery.

The quantum Hamiltonian constraint based on the
loop derivative makes certain assumptions about the
space of functions one is using to quantize the theory.
In quantum field theory, not all classical operators
have a well-defined quantum counterpart. The choice
being made is to assume that the curvature Fab is a
well-defined quantum operator defined by the loop
derivative. Differentiability of knot polynomials is
not a new idea. It is the core idea of the Vassiliev knot
invariants, which are defined by a set of identities,
one of them acting as a ‘‘derivative in knot space.’’ It
can be shown that the loop derivative is a concrete
implementation of the Vassiliev derivative and, there-
fore, Vassiliev invariants are the ‘‘arena’’ in which this
version of quantum gravity takes place.

The Hamiltonian based on the loop derivative has
problems, in the sense that it is obtained by a
regularization procedure that requires extra external
geometric structures. This is common practice in
Yang–Mills theory, where one has at hand a fixed
external background metric. However, in gravity the
geometry is a dynamical object and, if one con-
structs expressions that resort to some fixed external
geometry, one gets inconsistencies. In particular, it is
expected that the Hamiltonian based on the loop
derivative will not reproduce the correct Poisson
algebra of canonical general relativity. This sort of
problem plagued early attempts to construct a
quantum version of the Hamiltonian constraint in
the early 1990s.

A point that we mentioned earlier but did not
elaborate upon, is that the Wilson loops constitute an
overcomplete basis of states. Therefore, if one takes a
quantum state and expands it on such a basis, one gets
that the coefficients of the expansion satisfy certain
identities, called the Mandelstam identities. These are
nonlinear identities that states in the loop representa-
tion have to satisfy. These identities are very incon-
venient at the time of constructing quantum states. The
identities stem from the fact that if one chooses a
matrix representation of the group of interest, the fact
that one is in a given representation is indicated by
certain identities the matrices satisfy. To break free
from these constraints, one possibility is to consider
multiple representations when constructing Wilson
loops. To do this, one considers piecewise-continuous
graphs with intersections (the nonintersecting case is
a trivial subcase). Along the lines connecting the
intersections one considers holonomies in a given
representation for a given line. In the case of the group
SU(2), which is the one of interest in quantum gravity,
such representations are labeled by a (half-) integer.
One then considers invariant tensors in the group to
‘‘tie the holonomies together’’ at intersections. The
resulting object is a gauge-invariant object for a given
connection based on a ‘‘spin network.’’ The latter
is an embedded piecewise-continuous graph with an
assignment of integers to each of its lines and an
assignment of ‘‘intertwiners’’ at each intersection (if
the intersections are trivalent or lower, one can choose
canonical intertwiners and forget about them).

One can then consider the ‘‘spin network represen-
tation’’ in which one expands gauge-invariant states
in terms of the basis of Wilson nets. Knot polynomials
for these types of graphs have been considered in the
mathematical literature (‘‘polynomials of colored
graphs’’). The construction with the Chern–Simons
state can be repeated, and there exist suitable general-
izations of the Kauffman bracket and Jones polyno-
mials. The Hamiltonian based on the loop derivative
can also be introduced in this context; again, its action
is well defined on suitable generalizations of Vassiliev
invariants for these kinds of graphs. This opens the
possibility of encoding the quantum dynamics of
general relativity as a combinatorial action in the
space of Vassiliev invariants.

An alternative Hamiltonian based on assuming that
the holonomies and the volume operators are well
defined quantum mechanically (but not the curvature)
has been introduced that has the advantage of not
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requiring external structures for its regularization. In
fact, it can be explicitly checked that it satisfies the
correct Poisson algebra without anomalies at the
quantum level. The exploration of the action of this
Hamiltonian constraint on knot polynomials has not
been carried out as systematically as for the one based
on the loop derivative, but it has been explicitly shown
that the first coefficient in the expansion of the Jones
polynomial is annihilated by this Hamiltonian con-
straint. The first coefficient, written in terms of loops,
was simply the numeral 1 and was automatically
annihilated. In terms of spin network states, the first
coefficient is the ‘‘chromatic evaluation’’ of the net-
work (the result of computing the Wilson loop on a
connection that is pure gauge). It is somewhat
nontrivial to show that this quantity is actually
annihilated by the Hamiltonian constraint in question.

At the moment, the issue of what the correct
Hamiltonian constraint is that describes a realistic
and physically correct theory of quantum gravity is
still open to debate. There are certain concerns that
the action of the operators considered up to now is
too simple to encompass the true dynamics of
general relativity. Constructing a semiclassical the-
ory that could confirm or deny the viability of the
proposals is a complicated task, since one has to
make contact with physics that is not diffeomor-
phism invariant in the context of a theory that is.
Moreover, in canonical quantum gravity, there
exists the ‘‘problem of time.’’ Since the Hamiltonian
vanishes, the dynamics implied by it is trivial, and
one has to disentangle the true dynamics by
relational constructions among the variables of the
theory. One then needs to compare the resulting
predictions with classical general relativity.

Whether the current proposals are viable and
whether knot theory will play a role at a ‘‘kinematical
level’’ or it will actually play a key role in the detailed
dynamics of quantum general relativity is yet to be
seen. It is reassuring that in partial constructions,
celebrated knot polynomials have appeared to have
some knowledge of the dynamics of the Einstein
equations.

Quantum gravity being an unfinished symphony,
we cannot entirely conclude how great an impact
knot theory will have on it in the end. One can only
note that beautiful mathematical results seem to tie
in naturally with the partial constructions that have
been carried out thus far.

See also: BF Theories; Braided and Modular Tensor
Categories; Finite-Type Invariants; Finite-type invariants
of 3-Manifolds; The Jones Polynomial; Knot Theory and
Physics; Loop Quantum Gravity; Mathematical Knot
Theory; Quantum Dynamics in Loop Quantum Gravity;
Quantum Geometry and its Applications; Yang–Baxter
Equations.
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Introduction

This article is an introduction to some of the relation-
ships between knot theory and theoretical physics.
Knots themselves are macroscopic physical phenomena
in three-dimensional space, occurring in rope, vines,
telephone cords, polymer chains, DNA, certain species
of eel, and many other places in the natural and man-
made world. The study of topological invariants of
knots leads to relationships with statistical mechanics
and quantum physics. This is a remarkable and deep
situation where the study of a certain (topological)
aspects of the macroscopic world is entwined with
theories developed for the subtleties of the microscopic
world. The present article is an introduction to the
mathematical side of these connections, with some
hints and references to the related physics.

We begin with a short introduction to knots,
links, braids, and the bracket polynomial invariant
of knots and links. The article then discusses
Vassiliev invariants of knots and links, and how
these invariants are naturally related to Lie algebras
and to Witten’s gauge-theoretic approach. This part



of the article is an introduction to how Vassiliev
invariants in knot theory arise naturally in the
context of Witten’s functional integral.

The article is divided into several sections beyond
the introduction. Section two is a quick introduction
to the topology of knots and links. The third one
discusses Vassiliev invariants and invariants of rigid
vertex graphs. The fourth section introduces the
basic formalism and shows how Witten’s functional
integral is related directly to Vassiliev invariants.
The fifth section discusses the loop transform and
loop quantum gravity in this context. The final
section is an introduction to topological quantum
field theory, and to the use of these techniques in
producing unitary representations of the braid
group, a topic of intense interest in quantum
information theory.

Figure 1 A knot diagram.

I

II
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doing combinatorial topology with knots and links,
notably in working out the behavior of knot
invariants. A knot invariant is a function defined
from knots and links to some other mathematical
object (such as groups or polynomials or numbers)
such that equivalent diagrams are mapped to
equivalent objects (isomorphic groups, identical
polynomials, identical numbers).

Another significant structure related to knots and
links is the Artin braid group. A braid is an
embedding of a collection of strands that have
their ends in two rows of points that are set one
above the other with respect to a choice of vertical.
The strands are not individually knotted and they
are disjoint from one another. See Figures 3–5 for
illustrations of braids and moves on braids. Braids
can be multiplied by attaching the bottom row of
one braid to the top row of the other braid. Taken
up to ambient isotopy, fixing the endpoints, the
braids form a group under this notion of multi-
plication. In Figure 3 we illustrate the form of the

III

Figure 2 The Reidemeister moves.
Knots, Braids, and Bracket Polynomial

The purpose of this section is to give a quick
introduction to the diagrammatic theory of knots,
links, and braids. A knot is an embedding of a circle in
three-dimensional space, taken up to ambient isotopy.
That is, two knots are regarded as equivalent if one
embedding can be obtained from the other through a
continuous family of embeddings of circles in 3-space.
A link is an embedding of a disjoint collection of
circles, taken up to ambient isotopy. Figure 1 illus-
trates a diagram for a knot. The diagram is regarded
both as a schematic picture of the knot, and as a plane
graph with extra structure at the nodes (indicating
how the curve of the knot passes over or under itself
by standard pictorial conventions).

Ambient isotopy is mathematically the same as
the equivalence relation generated on diagrams by
the Reidemeister moves. These moves are illustrated
in Figure 2. Each move is performed on a local part
of the diagram that is topologically identical to the
part of the diagram illustrated in this figure (these
figures are representative examples of the types of
Reidemeister moves) without changing the rest of
the diagram. The Reidemeister moves are useful in
basic generators of the braid group, and the form of
the relations among these generators. Figure 4
illustrates how to close a braid by attaching the
top strands to the bottom strands by a collection of
parallel arcs. A key theorem of Alexander states that
every knot or link can be represented as a closed
braid. Thus, the theory of braids is critical to the
=

=

=

s1 s2

s3

Braid generators

s1s2s1 = s2s1s2

s1s3 = s3s1

s 
–1
1

s 
–1s1 = 11

Figure 3 Braid generators.



theory of knots and links. Figure 5 illustrates the
famous Borrowmean rings (a link of three unknotted
loops such that any two of the loops are unlinked)
as the closure of a braid.

We now discuss a significant example of an
invariant of knots and links, the bracket polynomial.
The bracket polynomial can be normalized to
produce an invariant of all the Reidemeister moves.
This normalized invariant is known as the Jones
(1985) polynomial. The Jones polynomial was
originally discovered by a different method than
the one given here.

The bracket polynomial, hKi= hKi(A), assigns to
each unoriented link diagram K a Laurent poly-
nomial in the variable A, such that

1. If K and K0 are regularly isotopic diagrams, then
hKi= hK0i.

2. If K qO denotes the disjoint union of K with an
extra unknotted and unlinked component O (also
called ‘‘loop’’ or ‘‘simple closed curve’’ or
‘‘Jordan curve’’), then

hK qOi ¼ �hKi

where

� ¼ �A2 � A�2

3. hKi satisfies the following formulas:

h�i ¼ Ah� i þ A�1hÞði
h�i ¼ A�1h� i þ AhÞði

Hopf link

Figure-8 knot

Trefoil knot

Figure 4 Closing braids to form knots and links.

b CL(b)

Figure 5 Borromean rings as a braid closure.
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the switch of this crossing, where the curved line
is undercrossing the straight segment.

In computing the bracket, one finds the following
behavior under Reidemeister move I:

h�i ¼ �A3h^i

and

h�i ¼ �A�3h^i

where � denotes a curl of positive type as indicated
in Figure 6, and � indicates a curl of negative type,
as also seen in this figure. The type of a curl is the
sign of the crossing when we orient it locally. Our
convention of signs is also given in Figure 6. Note
that the type of a curl does not depend on the
orientation we choose. The small arcs on the right-
hand side of these formulas indicate the removal of
the curl from the corresponding diagram.

The bracket is invariant under regular isotopy and
can be normalized to an invariant of ambient
isotopy by the definition

fKðAÞ ¼ ð�A3Þ�wðKÞhKiðAÞ

where we chose an orientation for K, and where
w(K) is the sum of the crossing signs of the oriented
link K. w(K) is called the writhe of K. The
convention for crossing signs is shown in Figure 6.

The State Summation

In order to obtain a closed formula for the bracket,
we now describe it as a state summation. Let K be
any unoriented link diagram. Define a state, S, of K
to be a choice of smoothing for each crossing of K.
There are two choices for smoothing a given
crossing, and thus there are 2N states of a diagram
with N crossings. In a state we label each smoothing
with A or A�1 as in the expansion formula for the
bracket. The label is called a vertex weight of the

: or

: or

+ –

+ +

– –

Figure 6 Crossing signs and curls.
where the small diagrams represent parts of
larger diagrams that are identical except at the
site indicated in the bracket. We take the
convention that the letter chi, �, denotes a
crossing where the curved line is crossing over
the straight segment. The barred letter denotes
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tate. There are two evaluations related to a state.
he first one is the product of the vertex weights,
enoted hKjSi. The second evaluation is the number
f loops in the state S, denoted kSk.
Define the state summation, hKi, by the formula

hKi ¼
X

S

hKjSi�kSk�1

t follows from this definition that hKi satisfies the
quations

h�i ¼ Ah� i þ A�1hÞði
hK qOi ¼ �hKi
hOi ¼ 1

he first equation expresses the fact that the entire
et of states of a given diagram is the union, with
espect to a given crossing, of those states with an
-type smoothing and those with an A�1-type

moothing at that crossing. The second and the
hird equation are clear from the formula defining
he state summation. Hence, this state summation
roduces the bracket polynomial as we have
escribed it at the beginning of the section.

emark By a change of variables one obtains the
riginal Jones polynomial, VK(t), for oriented knots
nd links from the normalized bracket:

VKðtÞ ¼ fKðt�1=4Þ

emark The bracket polynomial provides a con-
ection between knot theory and physics, in that the
tate summation expression for it exhibits it as a
eneralized partition function defined on the knot
iagram. Partition functions are ubiquitous in
tatistical mechanics, where they express the sum-
ation over all states of the physical system of

robability weighting functions for the individual
tates. Such physical partition functions contain
rge amounts of information about the correspond-
g physical system. Some of this information is

irectly present in the properties of the function,
uch as the location of critical points and phase
ransition. Some of the information can be obtained
y differentiating the partition function, or perform-
g other mathematical operations on it.

In fact, by defining a generalization of the bracket
olynomial, defined on knot diagrams but not
variant under the Reidemeister moves, we can

apture significant partition functions that are
hysically meaningful. There is no room in this
urvey to detail how this generalization can be used
o express the Potts model for planar graphical
onfigurations, and how it expresses the relationship
etween the Potts model and the Temperley–Lieb
algebra in diagrammatic form. There is much more
in this connection with statistical mechanics in that
the local weights in a partition function are often
expressed in terms of solutions to a matrix equation
called the Yang–Baxter equation, that turns out to
fit perfectly invariance under the third Reidemeister
move. As a result, there are many ways to define
partition functions of knot diagrams that give rise to
invariants of knots and links. The subject is
intertwined with the algebraic structure of Hopf
algebras and quantum groups, useful for producing
systematic solutions to the Yang–Baxter equation.
In fact, Hopf algebras are deeply connected with
the problem of constructing invariants of three-
dimensional manifolds in relation to invariants of
knots. We have chosen, in this survey article, not to
discuss the details of these approaches, but rather to
proceed to Vassiliev invariants and the relationships
with Witten’s functional integral. The reader is
referred to Kauffman (1987, 1994, 2002), Jones
(1985), and Reshetikhin and Turaev (1991) for
more information about relationships of knot theory
with statistical mechanics, Hopf algebras, and
quantum groups. For topology, the key point is
that Lie algebras can be used to construct invariants
of knots and links. This is shown nowhere more
clearly than in the theory of Vassiliev invariants that
we take up in the next section.
Vassiliev Invariants and Invariants
of Rigid Vertex Graphs

In this section we study the combinatorial topology
of Vassiliev invariants. As we shall see, by the end of
this section, Vassiliev invariants are directly con-
nected with Lie algebras, and representations of Lie
algebras can be used to construct them. This aspect
of link invariants is one of the most fundamental for
connections with physics. Just as symmetry con-
siderations in physics lead to a fundamental rela-
tionship with Lie algebras, topological invariance
leads to a fundamental relationship of the theory of
knots and links with Lie algebras.

If V(K) is a (Laurent polynomial valued or, more
generally, commutative ring valued) invariant of
knots, then it can be naturally extended to an
invariant of rigid vertex graphs by defining the
invariant of graphs in terms of the knot invariant via
an ‘‘unfolding of the vertex.’’ That is, we can regard
the vertex as a ‘‘black box’’ and replace it by any
tangle of our choice. Rigid vertex motions of the
graph preserve the contents of the black box, and
hence implicate ambient isotopies of the link
obtained by replacing the black box by its contents.



Invariants of knots and links that are evaluated on
these replacements are then automatically rigid vertex
invariants of the corresponding graphs. If we set up a
collection of multiple replacements at the vertices
with standard conventions for the insertions of the
tangles, then a summation over all possible replace-
ments can lead to a graph invariant with new
coefficients corresponding to the different replace-
ments. In this way, each invariant of knots and links
implicates a large collection of graph invariants.

The simplest tangle replacements for a 4-valent
vertex are the two crossings, positive and negative, and
the oriented smoothing. Let V(K) be any invariant of
knots and links. Extend V to the category of rigid
vertex embeddings of 4-valent graphs by the formula

VðK�Þ ¼ aVðKþÞ þ bVðK�Þ þ cVðK0Þ

where Kþ denotes a knot diagram K with a specific
choice of positive crossing, K� denotes a diagram
identical to the first with the positive crossing
replaced by a negative crossing and K� denotes a
diagram identical to the first with the positive
crossing replaced by a graphical node.

There is a rich class of graph invariants that can
be studied in this manner. The Vassiliev invariants
(Bar-Natan 1995) constitute the important special
case of these graph invariants where a = þ1, b =�1
and c = 0. Thus, V(G) is a Vassiliev invariant if

VðK�Þ ¼ VðKþÞ � VðK�Þ

Call this formula the exchange identity for the
Vassiliev invariant V. See Figure 7.

V is said to be of finite type k if V(G) = 0
whenever jGj > k, where jGj denotes the number of
(4-valent) nodes in the graph G. The notion of finite
type is of extraordinary significance in studying
these invariants. One reason for this is the following
basic lemma.

Lemma If a graph G has exactly k nodes, then the
value of a Vassiliev invariant vk of type k on G,
vk(G), is independent of the embedding of G.

Proof Omitted. &

(K *)

V(K *) = V(K  +) – V(K –)

⏐

⏐ ⏐ ⏐

(K +)⏐ (K –)⏐

Figure 7 Exchange identity for Vassiliev invariants.
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Figure 8 Chord diagrams.
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Figure 9 The four-term relation from topology.
The upshot of this lemma is that Vassiliev
invariants of type k are intimately involved with
certain abstract evaluations of graphs with k nodes.
In fact, there are restrictions (the four-term relations)
on these evaluations demanded by the topology and
it follows from results of Kontsevich (see Bar-Natan
(1995) that such abstract evaluations actually deter-
mine the invariants. The knot invariants derived from
classical Lie algebras are all built from Vassiliev
invariants of finite type. All of this is directly related
to Witten’s functional integral (Witten 1989).

In the next few figures we illustrate some of these
main points. In Figure 8 we show how one
associates a so-called chord diagram to represent
the abstract graph associated with an embedded
graph. The chord diagram is a circle with arcs
connecting those points on the circle that are welded
to form the corresponding graph. In Figure 9 we
illustrate how the four-term relation is a conse-
quence of topological invariance.

In Figure 10 we show how the four-term relation is a
consequence of the abstract pattern of the commutator
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entity for a matrix Lie algebra. That is, we show how
diagrammatic version of the formula

TaTb � TbTa ¼ f ab
c Tc

its directly with the four-term relation. The formula
e have quoted here states that the commutator of

he matrices Ta and Tb is equal to a sum of the
atrices Tc with coefficients (the structure coeffi-

ients of the Lie algebra) f ab
c . Such a relation is the

ost concrete way to define a matrix Lie algebra.
here are other levels of abstraction that can be
mployed here. The same diagrammatic can be
terpreted directly in terms of the Jacobi identity

hat defines a Lie algebra. We shall content
urselves with this matrix point of view here, and
dd that it is assumed here that the structure
oefficients are invariant under cyclic permutation,
n assumption that is not needed in the general case.
he four-term relation is directly related to a
ategorical generalization of Lie algebras.
Figure 11 illustrates how the weights are assigned

o the chord diagrams in the Lie algebra case – by
serting Lie algebra matrices into the circle and

aking a trace of a sum of matrix products. The
elationship between Vassiliev invariants and Lie
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igure 10 The four-term relation from categorical Lie algebra.
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igure 11 Calculating Lie algebra weights.
algebras has been known since Bar-Natan’s thesis
(see also Kauffman (1995). In Bar-Natan (1995) the
reader will find a good account of Kontsevich’s
theorem, showing how Lie algebra weight systems,
and in fact any weight system satisfying the four-
term relation, can be used to construct knot
invariants. Conceptually, the ideas behind the
Kontsevich theorem are directly related to Witten’s
approach to knot invariants via quantum field
theory. We give an exposition of this approach in
the next section of this article.

Example Let PK(t) = fK(et) (A = et) where fK(A) is
the normalized bracket polynomial invariant dis-
cussed in the last section. Then PK(t) is expressed as
a power series in t with coefficients vn(K),
n = 0, 1, 2, . . . , that are invariants of the knot or
link K. It is not hard to show that these coefficient
invariants (extended to graphs so that the Vassiliev
exchange identity is satisfied) are Vassiliev invar-
iants of finite type. In fact, most of the so-called
polynomial invariants of knots and links (relatives
of the bracket and Jones polynomials) give rise to
Vassiliev invariants in just this way. Thus, Vassiliev
invariants of finite type are ubiquitous in this area
of knot theory. One can think of Vassiliev
invariants as building blocks for the other invar-
iants, or that these invariants are sources of
Vassiliev invariants.
Vassiliev Invariants and Witten’s
Functional Integral

Edward Witten (1989) proposed a formulation
of a class of 3-manifold invariants as generalized
Feynman integrals taking the form Z(M), where

ZðMÞ ¼
Z

DAeðik=4�ÞSðM;AÞ

Here M denotes a 3-manifold without boundary and
A is a gauge field (also called a gauge potential or
gauge connection) defined on M. The gauge field is a
1-form on a trivial G-bundle over M with values in a
representation of the Lie algebra of G. The group G
corresponding to this Lie algebra is said to be the
gauge group. In this integral, the action S(M, A) is
taken to be the integral over M of the trace of the
Chern–Simons 3-form A ^ dAþ (2=3)A ^ A ^ A.
(The product is the wedge product of differential
forms.) Z(M) integrates over all gauge fields modulo
gauge equivalence.

The formalism and internal logic of Witten’s
integral supports the existence of a large class of
topological invariants of 3-manifolds and associated
invariants of knots and links in these manifolds.



The invariants associated with this integral have
been given rigorous combinatorial descriptions but
questions and conjectures arising from the integral
formulation are still outstanding. Specific conjec-
tures about this integral take the form of just how it
implicates invariants of links and 3-manifolds, and
how these invariants behave in certain limits of the
coupling constant k in the integral. Many conjec-
tures of this sort can be verified through the
combinatorial models. On the other hand, the really
outstanding conjecture about the integral is that it
exists! At the present time there is no measure
theory or generalization of measure theory that
supports it in full generality. Here is a formal
structure of great beauty. It is also a structure
whose consequences can be verified by a remarkable
variety of alternative means.

The formalism of the Witten integral implicates
invariants of knots and links corresponding to each
classical Lie algebra. In order to see this, we need to
introduce the Wilson loop. The Wilson loop is an
exponentiated version of integrating the gauge field
along a loop K in three space that we take to be an
embedding (knot) or a curve with transversal self-
intersections. For this discussion, the Wilson loop
will be denoted by the notation

WKðAÞ

to denote the dependence on the loop K and the
field A. It is usually indicated by the symbolism

tr(Pe
H

K
A
). Thus,

WKðAÞ ¼ tr
�

Pe
H

K
A
�

Here the P denotes path ordered integration – we
are integrating and exponentiating matrix valued
functions, and so must keep track of the order of the
operations. The symbol tr denotes the trace of the
resulting matrix. This Wilson loop integration exists
by normal means and does not require functional
integration.

With the help of the Wilson loop functional on
knots and links, Witten writes down a functional
integral for link invariants in a 3-manifold M:

ZðM;KÞ ¼
Z

DAeðik=4�ÞSðM;AÞtr Pe
H

K
A

� �
¼
Z

DAeðik=4�ÞSWKðAÞ

Here S(M, A) is the Chern–Simons Lagrangian, as in
the previous discussion. We abbreviate S(M, A) as S
and write WK(A) for the Wilson loop. Unless
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chosen point x on the loop K that is regarded
as the center of the deformation. The volume
element Vol = �rstdxrdxsdxt is taken with regard
to the infinitesimal directions of the loop
deformation from this point on the original
loop.

(ii) The same formula applies, with a different
interpretation, to the case where x is a double
point of transversal self-intersection of a loop K,
and the deformation consists in shifting one of
the crossing segments perpendicularly to the
plane of intersection so that the self-intersection
point disappears. In this case, one Ta is inserted
into each of the transversal crossing segments so
that TaTaWK(A) denotes a Wilson loop with
a self-intersection at x and insertions of Ta at
xþ �1 and xþ �2, where �1 and �2 denote small
displacements along the two arcs of K that
intersect at x. In this case, the volume form is
nonzero, with two directions coming from the
plane of movement of one arc, and the perpen-
dicular direction is the direction of the other arc.

Remark One shows that the result of a topological
variation has an analytic expression that is zero if
the topological variation does not create a local
volume. Thus, we have shown that the integral of
e(ik=4�)S(A)WK(A) is topologically invariant as long as
the curve K is moved by the local equivalent of
regular isotopy.

In the case of switching a crossing, the key point is
to write the crossing switch as a composition of first
moving a segment to obtain a transversal intersec-
tion of the diagram with itself, and then to continue
the motion to complete the switch. Up to the choice
of our conventions for constants, the switching
formula is, as shown below (see Figure 12).
otherwise mentioned, the manifold M will be the
three-dimensional sphere S3.

An analysis of the formalism of this functional
integral reveals quite a bit about its role in knot
theory. One can determine how the Witten integral
behaves under a small deformation of the loop K.

Theorem

(i) Let Z(K) = Z(S3, K) and let �Z(K) denote the
change of Z(K) under an infinitesimal change in
the loop K. Then

�ZðKÞ ¼ ð4�i=kÞ
Z

dAeðik=4�ÞS½Vol�TaTaWKðAÞ

where Vol = �rstdxrdxsdxt.
The sum is taken over repeated indices, and

the insertion is taken of the matrices TaTa at the
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ZðKþÞ � ZðK�Þ

¼ ð4�i=kÞ
Z

DAeðik=4�ÞSTaTahK��jAi

¼ ð4�i=kÞZðTaTaK��Þ

here K�� denotes the result of replacing the
rossing by a self-touching crossing. We distinguish
his from adding a graphical node at this crossing by
sing the double-star notation.
A key point is to notice that the Lie algebra
sertion for this difference is exactly what is done

in chord diagrams) to make the weight systems for
assiliev invariants (without the framing compensa-

ion). Thus, the formalism of the Witten functional
tegral takes one directly to these weight systems in

he case of the classical Lie algebras. In this way, the
unctional integral is central to the structure of the
assiliev invariants.

he Loop Transform and Quantum
ravity

uppose that  (A) is a (complex-valued) function
efined on gauge fields. Then we define formally the
op transform b (K), a function on embedded loops
three-dimensional space, by the formula

b ðKÞ ¼ Z DA ðAÞWKðAÞ

f � is a differential operator defined on  (A), then
e can use this integral transform to shift the effect
f � to an operator on loops via integration by
arts:

d� ðKÞ ¼ Z DA� ðAÞWKðAÞ

¼ �
Z

DA ðAÞ�WKðAÞ

hen � is applied to the Wilson loop, the result can
e an understandable geometric or topological
peration. One can illustrate this situation with
perators G and H:

G ¼ �Fa
ijdxi�=�Aa

j ðxÞ
H ¼ ��arsF

a
ij�=�A

s
i�=�A

r
j

z = z

= (c/k)z + O (1/k 
2 )

– z

igure 12 The difference formula.
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with summation over the repeated indices. Each of
these operators has the property that its action on
the Wilson loop has a geometric or topological
interpretation. One has

dG ðKÞ ¼ � b ðKÞ
where this variation refers to the effect of varying K.
As we saw in the previous section, this means that ifb (K) is a topological invariant of knots and links,
then dG (K) = 0 for all embedded loops K. This
condition is a transform analog of the equation
G (A) = 0. This equation is the differential analog
of an invariant of knots and links. It may happen
that � b (K) is not strictly zero, as in the case of our
framed knot invariants. For example, with

 ðAÞ ¼ exp ðik=4�Þ
Z

trðA^ dAþ ð2=3ÞA^A^AÞ
� �

we conclude that dG (K) is zero for flat deformations
(in the sense of the previous section) of the loop K,
but can be nonzero in the presence of a twist or curl.
In this sense, the loop transform provides a subtle
variation on the strict condition G (A)=0.

In Ashtekar et al. (1992) and other publications by
Ashtekar, Rovelli, Smolin, and their colleagues, the
loop transform is used to study a reformulation and
quantization of Einstein gravity. The differential-
geometric gravity theory of Einstein is reformulated
in terms of a background gauge connection and in the
quantization, the Hilbert space consists in functions
 (A) that are required to satisfy the constraints
G = 0 and H = 0. Thus, we see that bG(K) can be
partially zero in the sense of producing a framed knot
invariant, and that bH(K) is zero for non-self-
intersecting loops. This means that the loop trans-
forms of G and H can be used to investigate a subtle
variation of the original scheme for the quantization
of gravity. This program is being actively pursued by
a number of researchers. The Vassiliev invariants
arising from a topologically invariant loop transform
are of significance to this theory.
Braiding, Topological Quantum Field
Theory, and Quantum Computing

The purpose of this section is to discuss in a very
general way how braiding is related to topological
quantum field theory and to the enterprise
(Freedman et al. 2002) of using this sort of theory
as a model for anyonic quantum computation. The
ideas in the subject of topological quantum field
theory are well expressed by Michael Atiyah (1990)



and Edward Witten (1989). The simplest case of this
idea is C N Yang’s original interpretation of the
Yang–Baxter equation. Yang articulated a quantum
field theory in one dimension of space and one
dimension of time, in which the R-matrix giving the
scattering amplitudes for an interaction of two
particles whose (let us say) spins corresponded to
the matrix indices so that Rcd

ab is the amplitude for
particles of spin a and spin b to interact and produce
particles of spin c and d. Since these interactions are
between particles in a line, one takes the convention
that the particle with spin a is to the left of the
particle with spin b, and the particle with spin c is to
the left of the particle with spin d. If one follows the
concatenation of such interactions, then there is an
underlying permutation that is obtained by follow-
ing strands from the bottom to the top of the
diagram (thinking of time as moving up the page).
Yang designed the Yang–Baxter equation for R so
that the amplitudes for a composite process depend
only on the underlying permutation corresponding
to the process and not on the individual sequences of
interactions.

In taking over the Yang–Baxter equation for
topological purposes, we can use the same inter-
pretation, but think of the diagrams with their
under- and over-crossings as modeling events in a
spacetime with two dimensions of space and one
dimension of time. The extra spatial dimension is
taken in displacing the woven strands perpendicular
to the page, and allows the use of braiding operators
R and R�1 as scattering matrices. Taking this picture
to heart, one can add other particle properties to the
idealized theory. In particular, one can add fusion
and creation vertices where, in fusion, two particles
interact to become a single particle and, in creation,
one particle changes (decays) into two particles.
Matrix elements corresponding to trivalent vertices
can represent these interactions (see Figure 13).

Once one introduces trivalent vertices for fusion
and creation, there is the question how these
interactions will behave in respect to the braiding
operators. There will be a matrix expression for the
compositions of braiding and fusion or creation as
indicated in Figure 14. Here we will restrict
ourselves to showing the diagrammatics with the
intent of giving the reader a flavor of these

structures. It is natural to assume that braiding
intertwines with creation as shown in Figure 15
(similarly with fusion). This intertwining identity is
clearly the sort of thing that a topologist will love,
since it indicates that the diagrams can be inter-
preted as embeddings of graphs in three-dimensional
space. Figure 16 illustrates the Yang–Baxter equa-
tion. The intertwining identity is an assumption like
the Yang–Baxter equation itself, which simplifies the
mathematical structure of the model.

It is to be expected that there will be an operator
that expresses the recoupling of vertex interactions
as shown in Figure 17 and labeled by Q. The actual
formalism of such an operator will parallel the
mathematics of recoupling for angular momentum
(see, e.g., Kauffman (1994)). If one just considers
the abstract structure of recoupling then one sees
that for trees with four branches (each with a single
root) there is a cycle of length 5, as shown in

Figure 13 Creation and fusion.

= R

Figure 14 Braiding.

Q

Figure 17 Recoupling.

=

RIR I

RI

RI

RI

R I

R I

R I

Figure 16 Yang–Baxter equation.

=

Figure 15 Intertwining.
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Figure 17. One can start with any pattern of three
vertex interactions and go through a sequence of five
recouplings that bring one back to the same tree
from which one started. It is a natural simplifying
axiom to assume that this composition is the identity
mapping. This axiom is called the pentagon identity
(Figure 18).

Finally, there is a hexagonal cycle of interactions
between braiding, recoupling and the intertwining
identity as shown in Figure 19. One says that the
interactions satisfy the hexagon identity if this
composition is the identity.

A three-dimensional topological quantum field
theory is an algebra of interactions that satisfies the
Yang–Baxter equation, the intertwining identity, the
pentagon identity and the hexagon identity. There is
no room in this summary to detail the way that
these properties fit into the topology of knots and
three-dimensional manifolds, but a sketch is in
order. For the case of topological quantum field
theory related to the group SU(2) there is a
construction based entirely on the combinatorial
topology of the bracket polynomial (see the section

‘‘Kno ts, braids , and bracket polynom ial’’). For more
information on this approach, the reader is referred
to Kauffman (1994, 2002).

It turns out that the algebraic properties of a
topological quantum field theory give it enough
power to rigourously model three manifold invar-
iants described by the Witten integral. This is done
by regarding the 3-manifold as a union of two
handlebodies with boundary an orientable surface
Sg of genus g. The surface is divided up into
trinions as illustrated in Figure 20. A trinion is a
surface with boundary that is topologically equiva-
lent to a sphere with three punctures. In Figure 20
we illustrate two trinions, the second shown as a
neighborhood of a trivalent vertex, and a surface
of genus 3 that is decomposed into three trinions.
It turns out that there is a way to associate a
vector space V(Sg) to a surface with a trinion
decomposition, defined in terms of the associated
topological quantum field theory, such that the
isomorphism class of the vector space V(Sg) does
not depend upon the choice of decomposition.
This independence is guaranteed by the braiding,
hexagon, and pentagon identities in such a way
that one can associate a well-defined vector jM�i in
V(Sg) whenever M is a 3-manifold whose boundary is
Sg. Furthermore, if a closed 3-manifold M3 is decom-
posed along a surface Sg into the union of M� and Mþ,
where these parts are otherwise disjoint 3-manifolds
with boundary Sg, then the inner product I(M) =
hM�jMþi is, up to normalization, an invariant of the
3-manifold M3. With the definition of topological
quantum field theory given above, knots and links can
be incorporated as well, so that one obtains a source of
invariants I(M3, K) of knots and links in orientable
3-manifolds.

The invariant I(M3, K) can be formally compared
with the Witten integral

ZðM3;KÞ ¼
Z

DAeðik=4�ÞSðM;AÞWKðAÞ

Q
Q

Q

Q

Q

Figure 18 Pentagon identity.

=

Q

Q

Q

R

R

R

Figure 19 Hexagon identity.

Figure 20 Decomposition of a surface into trinions.
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It can be shown that up to limits of the heuristics,
Z(M, K) and I(M3, K) are essentially equivalent for
appropriate choice of gauge groups.

This point of view leads to more abstract
formulations of topological quantum field theories
as ways to associate vector spaces and linear
transformations to manifolds and cobordisms of
manifolds. (A cobordism of surfaces is a 3-manifold
whose boundary consists of these surfaces.)

As the reader can see, a three-dimensional TQFT is,
at base, a highly simplified theory of point-particle
interactions in (2þ 1)-dimensional spacetime. It can be
used to articulate invariants of knots and links and
invariants of 3-manifolds. The reader interested in the
SU(2) case of this structure and its implications for
invariants of knots and 3-manifolds can consult
Kauffman (1994, 2002) and Crane (1991). One expects
that physical situations involving 2þ 1 spacetime will
be approximated by such an idealized theory. It is
thought, for example, that aspects of the quantum Hall
effect will be related to topological quantum field
theory (Wilczek 1990). One can imagine a physics
where the geometrical space is two dimensional and the
braiding of particles corresponds to their interactions
through circulating around one another in the plane.
Anyons are particles that do not just change their wave
functions by a sign under interchange, but rather by a
complex phase or even a linear combination of states. It
is hoped that TQFT models will describe applicable
physics. One can think about the possible applications
of anyons to quantum computing. The TQFTs then
provide a class of anyonic models where the braiding is
essential to the physics and to the quantum
computation.

The key point in the application and relationship
of TQFT and quantum information theory is, in our
opinion, contained in the structure illustrated in
Figure 21. There we show a more complex braiding
operator, based on the composition of recoupling
with the elementary braiding at a vertex. (This
structure is implicit in the hexagon identity of

Figure 19.) The new braiding operator is a source of
unitary representations of braid group in situations
(which exist mathematically) where the recoupling
transformations are themselves unitary. This kind of
pattern is utilized in the work of Freedman et al.
(2002) and in the case of classical angular momentum
formalism has been dubbed a ‘‘spin-network quantum
simulator’’ by Rasetti and collaborators (see, e.g.,
Marzuoli and Rasetti (2002). Kauffman and Lomo-
naco (2006) show how certain natural deformations
(Kauffman 1994) of Penrose (1969) spin networks can
be used to produce such the Freedman–Kitaev model
for anyonic topological quantum computation. It is
legitimate to speculate that networks of this kind are
present in physical reality.

Quantum computing can be regarded as a study of
the structure of the preparation, evolution, and
measurement of quantum systems. In the quantum
computation model, an evolution is a composition of
unitary transformations (usually finite-dimensional
over the complex numbers). The unitary transforma-
tions are applied to an initial state vector that has been
prepared prior to this process. Measurements are
projections to elements of an orthonormal basis of
the space upon which the evolution is applied. The
result of measuring a state j i, written in the given
basis, is probabilistic. The probability of obtaining a
given basis element from the measurement is equal to
the absolute square of the coefficient of that basis
element in the state being measured.

It is remarkable that the above lines constitute an
essential summary of quantum theory. All applications
of quantum theory involve filling in details of unitary
evolutions and specifics of preparations and measure-
ments. Such unitary evolutions can be seen as approxi-
mated arbitrarily closely by representations of the Artin
braid group. The key to the anyonic models of quantum
computation via topological quantum field theory, or
via deformed spin networks, is that all unitary evolu-
tions can be approximated by a single coherent method
for producing representations of the braid group. This
beautiful mathematical fact points to a deep role for
topology in the structure of quantum physics.

The future of knots, links, and braids in relation
to physics will be very exciting. There is no question
that unitary representations of the braid group and
quantum invariants of knots and links play a
fundamental role in the mathematical structure of
quantum mechanics, and we hope that time will
show us the full meaning of this relationship.
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Introduction

The Kontsevich integral was invented by Kontsevich
(1993) as a tool to prove the fundamental theorem of
the theory of finite-type (Vassiliev) invariants (see Bar-
Natan (1995a)). It provides an invariant exactly as
strong as the totality of all Vassiliev knot invariants.

The Kontsevich integral is defined for oriented
tangles (either framed or unframed) in R3; therefore,
it is also defined in the particular cases of knots,
links, and braids (see Figure 1).

As a starter, we give two examples where simple
versions of the Kontsevich integral have a

straightforward geometrical meaning. In these
examples, as well as in the general construction of
the Kontsevich integral, we represent 3-space R3 as
the product of a real line R with coordinate t and a
complex plane C with complex coordinate z.

Example 1 The number of twists in a braid with
two strings z1(t) and z2(t) placed in the slice 0 � t � 1
(see Figure 2) is equal to

1

2�i

Z 1

0

dz1 � dz2

z1 � z2

Figure 1 A tangle, a braid, a link, and a knot.
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z1(t ) z2(t )

Figure 2 Counting the number of twists.

zj (t ) zj (t )′
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Example 2 The linking number of two spatial
curves K and K0 (see Figure 3) can be computed as

lkðK;K0Þ ¼ 1

2�i

Z
m<t<M

X
j

"j

dðzjðtÞ � z 0jðtÞÞ
zjðtÞ � z 0jðtÞ

where m and M are the minimum and the maximum
values of t on the link K [ K0, j is the index that
enumerates all possible choices of a pair of strands
of the link as functions zj(t), z0j(t) corresponding to K
and K0, respectively, and "j =�1 according to the
parity of the number of chosen strands that are
oriented downwards.

The Kontsevich integral can be regarded as a far-
going generalization of these formulas. It aims at
encoding all information about how the horizontal
chords on the knot (or tangle) rotate when moved in
the vertical direction. From a more general view-
point, the Kontsevich integral represents the mono-
dromy of the Knizhnik–Zamolodchikov connection
in the complement to the union of diagonals in Cn

(see Bar-Natan (1995a) and Ohtsuki (2002)).

Figure 3 Counting the linking number.
Chord Diagrams and Weight Systems

Algebras A(p)

The Kontsevich integral of a tangle T takes values in
the space of chord diagrams supported on T.

Let X be an oriented one-dimensional manifold,
that is, a collection of p numbered oriented lines and
q numbered oriented circles. A chord diagram of
order n supported on X is a collection of n pairs
of unordered points in X, considered up to an
orientation- and component-preserving diffeo-
morphism. In the vector space formally generated
by all chord diagrams of order n, we distinguish the
subspace spanned by all four-term relations
– + –

where thin lines designate chords, while thick lines are
pieces of the manifold X. Apart from the fragments
shown, all the four diagrams are identical. The
quotient space over all such combinations is denoted
by An(X) =An(p, q). Let A(p, q) = �1n = 0 An(p, q)
and let Â(p, q) be the graded completion of A(p, q)
(i.e., the space of formal infinite series

P1
i = 0 ai with

ai 2 Ai(p, q)). If, moreover, we divide A(p, q) by all
‘‘framing independence’’ relations (any diagram with
an isolated chord, i.e., a chord joining two adjacent
points of the same connected component of X, is set to
0), then the resulting space is denoted by A0(p, q), and
its graded completion by Â0(p, q).

The spaces A(p, 0) =A(p) have the structure of an
algebra (the product of chord diagrams is defined by
concatenation of underlying manifolds in agreement
with the orientation). Closing a line component into a
circle, we get a linear map A(p, q)! A(p� 1, qþ 1)
which is an isomorphism when p = 1. In particular,
A(S1) ffi A(R1) has the structure of an algebra; this
algebra is denoted simply byA; the Kontsevich integral
of knots takes its values in its graded completion
Â. Another algebra of special importance is
Â(3) = Â(3, 0), because it is where the Drinfeld
associators live.

Hopf Algebra Structure

The algebra A(p) has a natural structure of a Hopf
algebra with the coproduct � defined by all ways to
split the set of chords into two disjoint parts. To give
a convenient description of its primitive space, one
can use generalized chord diagrams. We now allow
trivalent vertices not belonging to the supporting
manifold and use STU relations (Bar-Natan 1995a)

= –

to express the generalized diagrams as linear combi-
nations of conventional chord diagrams, for example,

= – +2

Then the primitive space coincides with the sub-
space of A(p) spanned by all connected generalized
chord diagrams (‘‘connected’’ means that they remain
connected when the supporting manifold X is
disregarded).
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Weight Systems

A ‘‘weight system’’ of degree n is a linear function
on the space An. Every Vassiliev invariant v of
degree n defines a weight system symb(v) of the
same degree called its ‘‘symbol.’’

Algebras B(p)

Apart from the spaces of chord diagrams modulo four-
term relations, there are closely related spaces of Jacobi
diagrams. A Jacobi diagram is defined as a unitrivalent
graph, possibly disconnected, having at least one
vertex of valency 1 in each connected component and
supplied with two additional structures: a cyclic order
of edges in each trivalent vertex and a labeling of
univalent vertices taking values in the set {1, 2, . . . , p}.
The space B(p) is defined as the quotient of the vector
space formally generated by all p-colored Jacobi
diagrams modulo the two types of relations:
Antisymmetry: IHX:

= =– –

The disjoint union of Jacobi diagrams makes the
space B(p) into an algebra.

The symmetrization map �p:B(p)! A(p), defined
as the average over all ways to attach the legs of color i
to ith connected component of the underlying manifold

1

2

11
2
1

1

2

2 2

+

is an isomorphism of vector spaces (the formal
PBW isomorphism (Bar-Natan 1995a, Le and
Murakami 1995) which is not compatible with
the multiplication. The relation between A(p) and
B(p) very much resembles the relation between
the universal enveloping algebra and the sym-
metric algebra of a Lie algebra. The algebra
B=B(1) is used to write out the explicit formula
for the Kontsevich integral of the unknot (see
Bar-Natan et al. (2003) and below).
tmax

c2
c1

tmin

c2

tmax

c1

tmin

c1 c 2 tmaxtmin

t

z

t2

t1

Figure 4 Connected components.
The Construction

Kontsevich’s Formula

We will explain the construction of the Kontsevich
integral in the classical case of (closed) oriented
knots; for an arbitrary tangle T, the formula is the
same; only the result is interpreted as an element of
Â(T). As above, represent three-dimensional space
R3 as a direct product of a complex line C with
coordinate z and a real line R with coordinate t.
The integral is defined for Morse knots, that is,
knots K embedded in R3 = Cz � Rt in such a way
that the coordinate t restricted to K has only
nondegenerate (quadratic) critical points. (In fact,
this condition can be weakened, but the class of
Morse knots is broad enough and convenient to
work with.)

The Kontsevich integral Z(K) of the knot K is the
following element of the completed algebra Â0:

ZðKÞ ¼
X1
m¼0

1

ð2�iÞm

�
Z

tmin < tm < � � � < t1
<tmax

tj are noncritical

X
P¼fðzj;z 0jÞg

ð�1Þ#P

�DP

m̂

j¼1

dzj � dz 0j
zj � z 0j

Explanation of the Constituents

The real numbers tmin and tmax are the minimum and
the maximum of the function t on K.

The integration domain is the m-dimensional
simplex tmin < tm < � � � < t1 < tmax divided by the
critical values into a certain number of ‘‘connected
components.’’ For example, Figure 4 shows an
embedding of the unknot where, for m = 2, the
integration domain has six connected components.

The number of summands in the integrand is
constant in each connected component of the
integration domain, but can be different for different
components. In each plane {t = tj} 	 R3 choose an
unordered pair of distinct points (zj, tj) and (z0j, tj) on
K, so that zj(tj) and z0j(tj) are continuous branches of
the knot. We denote by P = {(zj, z0j)} the collection of
such pairs for j = 1, . . . , m. The integrand is the sum
over all choices of the pairing P. In the example
above for the component {tmin < t1 < c1, c2 < t2 <
tmax}, we have only one possible pair of points on
the levels {t = t1} and {t = t2}. Therefore, the sum
over P for this component consists of only one
summand. Unlike this, in the component {tmin <
t1 < c1, c1 < t2 < c2}, we still have only one
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possibility for the level {t = t1}, but the plane {t = t2}
intersects our knot K in four points. So we have

4
2

� �
= 6 possible pairs (z2, z02), and the total number

of summands is six (see Figure 5).
For a pairing P, the symbol ‘‘#P’’ denotes the

number of points (zj, tj) or (z0j, tj) in P, where the
coordinate t decreases along the orientation of K.

Fix a pairing P. Consider the knot K as an oriented
circle and connect the points (zj, tj) and (z0j, tj) by a
chord. Up to a diffeomorphism, this chord does not
depend on the value of tj within a connected
component. We obtain a chord diagram with m
chords. The corresponding element of the algebra A0
is denoted by DP. Figure 5, for each connected
component in our example, shows one of the possible
pairings, the corresponding chord diagram with
the sign (�1)#P and the number of summands of the
integrand (some of which are equal to zero in A0 due
to the framing independence relation).

Over each connected component, zj and z0j are
smooth functions of tj.

By
m̂

j¼1

dzj � dz0j
zj � z0j

we mean the pullback of this form to the integration
domain of variables t1, . . . , tm. The integration
domain is considered with the orientation of the
space Rm defined by the natural order of the
coordinates t1, . . . , tm.

By convention, the term in the Kontsevich integral
corresponding to m = 0 is the (only) chord diagram
of order 0 with coefficient 1. It represents the unit of
the algebra A0.
(–1)2

1 summand

36 summands

(–1)1

Figure 5 Pairings and chord diagrams.
Framed Version of the Kontsevich Integral

Let K be a framed oriented Morse knot with writhe
number w(K). Denote the corresponding knot
without framing by �K. The framed version of the
Kontsevich integral can be defined by the formula

ZfrðKÞ ¼ eðwðKÞ=2Þ� � Zð�KÞ 2 Â

where � is the chord diagram with one chord and the
integral Z(�K) 2 Â0 is understood as an element of the
completed algebra Â (without one-term relations) by
virtue of a natural inclusionA0!A defined as identity
on the primitive subspace of A0 (see Goryunov
(1999) and Le and Murakami (1996)).
Basic Properties

Constructing the Universal Vassiliev Invariant

The Kontsevich integral Z(K)

1. converges for any Morse knot K,
2. is invariant under deformations of the knot in the

class of Morse knots, and
3. behaves in a predictable way under the deforma-

tion that adds a pair of new critical points to a
Morse knot:

Z = Z(H ) . Z

Here the first and the third pictures depict two
embeddings of an arbitrary knot, differing only in
the shown fragment, H = is the ‘‘hump’’ (unknot
embedded in R3 in the specified way), and the
product is the product in the completed algebra Â0
6 summands

(–1)1

1 summand

(–1)2

6 summands

(–1)2

1 summand

(–1)2
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of chord diagrams. The last equality allows one to
define a genuine knot invariant by the formula

IðKÞ ¼ ZðKÞ=ZðHÞc=2

where c denotes the number of critical points of K and
the ratio means the division in the algebra Â0 according
to the rule (1þ a)�1 = 1� aþ a2� a3 þ � � � .

The expression I(K) is sometimes referred to as
the ‘‘final’’ Kontsevich integral as opposed to the
‘‘preliminary’’ Kontsevich integral Z(K). It repre-
sents a universal Vassiliev invariant in the following
sense: Let w be a weight system, that is, a linear
functional on the algebra Â0. Then the composition
w(I(K)) is a numerical Vassiliev invariant, and any
Vassiliev invariant can be obtained in this way.

The final Kontsevich integral for framed knots is
defined in the same way, using the hump H with
zero writhe number.

Is Universal Vassiliev Invariant Universal?

At present, it is not known whether the Kontsevich
integral separates knots, or even if it can tell the
orientation of a knot. However, the corresponding
problem is solved, in the affirmative, in the case of
braids and string links (theorem of Kohno–
Bar-Natan (Bar-Natan 1995b, Kohno 1987).

Omitting Long Chords

We will state a technical lemma which is highly
important in the study of the Kontsevich integral. It
is used in the proof of the multiplicativity, in the
combinatorial construction, etc.

Suppose we have a Morse knot K with a
distinguished tangle T (Figure 6). Let m and M be
the maximal and minimal values of t on the tangle T.
In the horizontal planes between the levels m and M,
we can distinguish two kinds of chords: ‘‘short’’
chords that lie either inside T or inside K nT, and
‘‘long’’ chords that connect a point in T with a point
in K nT. Denote by ZT(K) the expression defined by
the same formula as the Kontsevich integral Z(K)
where only short chords are taken into consideration.
More exactly, if C is a connected component of the
m

M

t

T

short

long

Figure 6 Short and long chords.
integration domain whose projection on the coordi-
nate axis tj is entirely contained in the segment [m, M],
then in the sum over the pairings P we include only
those pairings that include short chords.

Lemma ‘‘Long’’ chords can be omitted when
computing the Kontsevich integral: ZT(K) = Z(K).

Kontsevich’s Integral and Operations on Knots

The Kontsevich integral behaves in a nice way with
respect to the natural operations on knots, such as
mirror reflection, changing the orientation of the
knot, mutation of knots (see Chmutov and Duzhin
(2001)), cabling (see Willerton (2002)). We give
some details regarding the first two items.

Fact 1 Let R be the operation that sends a knot
to its mirror image. Define the corresponding
operation R on chord diagrams as multiplication
by (�1)n, where n is the order of the diagram. Then
the Kontsevich integral commutes with the opera-
tion R: Z(R(K)) = R(Z(K)), where by R(Z(K)) we
mean simultaneous application of R to all the chord
diagrams participating in Z(K).

Corollary The Kontsevich integral Z(K) and the
universal Vassiliev invariant I(K) of an amphicheiral
knot K consist only of even order terms. (A knot K is
called ‘‘amphicheiral,’’ if it is equivalent to its mirror
image: K = R(K).)

Fact 2 Let S be the operation on knots which
inverts their orientation. The same letter will also
denote the analogous operation on chord diagrams
(inverting the orientation of the outer circle or,
which is the same thing, axial symmetry of the
diagram). Then the Kontsevich integral commutes
with the operation S of inverting the orientation:
Z(S(K)) = S(Z(K)).

Corollary The following two assertions are
equivalent:

(i) Vassiliev invariants do not distinguish the
orientation of knots and

(ii) all chord diagrams are symmetric: D = S(D)
modulo four-term relations.

The calculations of Kneissler (1997) show that up
to order 12 all chord diagrams are symmetric. For
bigger orders, the problem is still open.

Multiplicative Properties

The Kontsevich integral for tangles is multiplicative:

ZðT1Þ � ZðT2Þ ¼ ZðT1 � T2Þ

whenever the product T1 � T2, defined by vertical
concatenation of tangles, exists. Here, the product
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on the left-hand side is understood as the image of
the element Z(T1)
 Z(T2) under the natural map
A(T1)
A(T2)!A(T1 � T2).

This simple fact has two important corollaries:

1. For any knot K, the Kontsevich integral Z(K) is
a group-like element of the Hopf algebra Â0,
that is,

�ðZðKÞÞ ¼ ZðKÞ 
 ZðKÞ

where � is the comultiplication in A defined
above.

2. The final Kontsevich integral, taken in a different
normalization

I0ðKÞ ¼ ZðHÞIðKÞ ¼ ZðKÞ
ZðHÞc=2�1

is multiplicative with respect to the connected
sum of knots:

I0ðK1#K2Þ ¼ I0ðK1ÞI0ðK2Þ
Arithmetical Properties

For any knot K the coefficients in the expansion of
Z(K) over an arbitrary basis consisting of chord
diagrams are rational (see Kontsevich (1993), Le
and Murakami (1996), and below).
Combinatorial Construction of the
Kontsevich Integral

Sliced Presentation of Knots

The idea is to cut the knot into a number of
standard simple tangles, compute the Kontsevich
integral for each of them, and then recover the
integral of the whole knot from these simple
pieces.

More exactly, we represent the knot by a family
of plane diagrams continuously depending on a
parameter "2 (0, "0) and cut by horizontal planes
into a number of slices with the following
properties.

1. At every boundary level of a slice (dashed lines
in the pictures below), the distances between
various strings are asymptotically pro-
portional to different whole powers of the
parameter ".

2. Every slice contains exactly one special event
and several strictly vertical strings which
are farther away (at lower powers of ") from
any string participating in the event than its
width.
3. There are three types of special events:

associativity: A+ = A– =

braiding: B+ = B– =

min/max: m = M =

where, in the two last cases, the strings may be
replaced by bunches of parallel strings which
are closer to each other than the width of this
event.
Recipe of Computation of the Kontsevich Integral

Given such a sliced representation of a knot, the
combinatorial algorithm to compute its Kontsevich
integral consists in the following:

1. Replace each special event by a series of chord
diagrams supported on the corresponding tangle
according to the rule

m;M 7! 1

Bþ 7!R; Bþ 7!R�1

Aþ 7!�; A� 7!��1

where

R ¼ � exp
2

� �
¼ þ 1

2
þ 1

2 � 22
þ 1

3! � 23
þ � � �

� ¼ 1� �ð2Þ
ð2�iÞ2

½a; b�

� �ð3Þ
ð2�iÞ3

ð½a; ½a; b�� þ ½b; ½a; b��Þ þ � � �

(� 2 Â(3) is the Knizhnik–Zamolodchikov
Drinfeld associator defined below; it is an infinite
series in two variables a = , b = ).

2. Compute the product of all these series from
top to bottom taking into account the connec-
tion of the strands of different tangles, thus
obtaining an element of the algebra Â0.

To accomplish the algorithm, we need two
auxiliary operations on chord diagrams:

1. Si :A(p)!A(p) defined as multiplication by
(�1)k on a chord diagram containing k end-
points of chords on the string number i. This is
the correction term in the computation of R
and � in the case when the tangle contains
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some strings oriented downwards (the upwards
orientation is considered as positive).

2. �i :A(p)! A(pþ 1) acts on a chord diagram D
by doubling the ith string of D and taking the
sum over all possible lifts of the endpoints of
chords of D from the ith string to one of the two
new strings. The strings are counted by their
bottom points from left to right. This operation can
be used to express the combinatorial Kontsevich
integral of a generalized associativity tangle
(with strings replaced by bunches of strings) in
terms of the combinatorial Kontsevich integral
of a simple associativity tangle.

Example

Using the combinatorial algorithm, we compute the
Kontsevich integral of the trefoil knot 31 to the
terms of degree 2. A sliced presentation for this knot
shown in Figure 7 implies that Z(31) = S3(�)
R�3S3(��1) (here the product from left to right
corresponds to the multiplication of tangles from
top to bottom). Up to degree 2, we have

� ¼ 1þ 1
24 ½a; b� þ � � �

R ¼ X 1þ 1
2aþ 1

8a
2 þ � � �

� �
where X means that the two strands in each term of
the series must be crossed over at the top. The
operation S3 changes the orientation of the third
strand, which means that S3(a) = a and S3(b) = �b.
Therefore,

S3ð�Þ ¼ 1� 1
24 ½a; b� þ � � �

S3ð��1Þ ¼ 1þ 1
24 ½a; b� þ � � �

R�3 ¼ X 1� 3
2 aþ 9

8 a2 þ � � �
� �

and
~ε2

~ε2

ε

~1

~

Figure 7 A sliced presentation of the trefoil.
Zð31Þ ¼ 1� 1
24 ½a; b� þ � � �

� �
�Xð1� 3

2 aþ 9
8 a2 þ � � �

�
1þ 1

24 ½a; b� þ � � �
� �

¼ 1� 3
2 Xa� 1

24 abXþ 1
24 baX

þ 1
24 Xab� 1

24 Xbaþ 9
8 Xa2 þ � � �

Closing these diagrams into the circle, we see that in
the algebra A we have Xa = 0 (by the framing
independence relation), then baX = Xab = 0 (by the
same relation, because these diagrams consist of two
parallel chords) and abX = Xba = Xa2 =

N
. The

result is Z(31) = 1þ (25/24)
N
þ � � � . The final

Kontsevich integral of the trefoil (in the multi-
plicative normalization) is thus equal to

I0ð31Þ ¼Zð31Þ=ZðHÞ

¼ 1þ 25

24

O
þ � � �

� ��
1þ 1

24

O
þ � � �

� �
¼ 1þ

O
þ � � �
Drinfeld Associator and Rationality

The Drinfeld associator used as a building block in
the combinatorial construction of the Kontsevich
integral can be defined as the limit

�KZ ¼ lim
"!0

"�bZðAT"Þ"a

where a = , b = , and AT" is the positive associa-
tivity tangle (special event Aþ shown above) with
the distance between the vertical strands constant 1
and the distance between the close endpoints equal
to ". An explicit formula for �KZ was found by Le
and Murakami (1996); it is written as a nested
summation over four variable multi-indices and
therefore does not provide an immediate insight
into the structure of the whole series; we confine
ourselves by quoting the beginning of the series
(note that �KZ is a group-like element in the free
associative algebra with two generators; hence, its
logarithm belongs to the corresponding free Lie
algebra):

logð�KZÞ ¼ � �ð2Þ½x;y� � �ð3Þð½x; ½x;y�� þ ½y; ½x;y�Þ

� �ð2Þ
2

10
ð4½x; ½x; ½x;y��� þ ½y; ½x; ½x;y���

þ 4½y; ½y; ½x;y���Þ
� �ð5Þð½x; ½x; ½x; ½x;y���� þ ½y; ½y; ½y; ½x;y����Þ
þ ð�ð2Þ�ð3Þ � 2�ð5ÞÞð½y; ½x; ½x; ½x;y����
þ ½y; ½y; ½x; ½x;y����Þ
þ 1

2 �ð2Þ�ð3Þ � 1
2 �ð5Þ

� �
½½x;y�; ½x; ½x;y���

þ 1
2 �ð2Þ�ð3Þ � 3

2 �ð5Þ
� �

½½x;y�; ½y; ½x;y���
þ � � �
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where x= (1=2� i)a and y= (1=2� i)b. In general, �KZ

is an infinite series whose coefficients are ‘‘multiple
zeta values’’ (Le and Murakami 1996, Zagier 1994)

�ða1; . . . ; anÞ ¼
X

0<k1<k2<���<kn

k�a1

1 . . . k�an
n

There are other equivalent definitions of �KZ, in
particular one in terms of the asymptotical behavior
of solutions of the simplest Knizhnik–Zamolodchikov
equation

dG

dz
¼ a

z
þ b

z� 1

� �
G

where G is a function of a complex variable taking
values in the algebra of series in two noncommuting
variables a and b (see Drinfeld (1991)).

It turns out (theorem of Le and Murakami (1996))
that the combinatorial Kontsevich integral does not
change if �KZ is replaced by another series in Â(3)
provided it satisfies certain axioms (among which
the pentagon and hexagon relations are the most
important, see Drinfeld (1991) and Le and
Murakami (1996)).

Drinfeld (1991) proved the existence of an
associator �Q with rational coefficients. Using it
instead of �KZ in the combinatorial construction, we
obtain the following:

Theorem (Le and Murakami 1996). The coeffi-
cients of the Kontsevich integral of any knot (tangle)
are rational when Z(K) is expanded over an
arbitrary basis consisting of chord diagrams.
Explicit Formulas for the Kontsevich
Integral

The Wheels Formula

Let O be the unknot; the expression I(O) = Z(H)�1

is referred to as the ‘‘Kontsevich integral of the
unknot.’’ A closed form formula for I(O) was
proved in Bar-Natan et al. (2003):

Theorem

IðOÞ ¼ exp
X1
n¼1

b2nw2n

¼ 1þ
X1
n¼1

b2nw2n

 !
þ 1

2

X1
n¼1

b2nw2n

 !2

þ � � �

Here b2n are modified Bernoulli numbers, that is,
the coefficients of the Taylor series

X1
n¼1

b2nx2n ¼ 1

2
ln

ex=2 � e�x=2

x

(b2 = 1=48, b4 =�1=5760, b6 = 1=362 880, . . . ), and
w2n are the ‘‘wheels,’’ that is, Jacobi diagrams of the
form

w2 ¼ ; w4 ¼ ; w6 ¼ ; . . .

The sums and products are understood as operations
in the algebra of Jacobi diagrams B, and the result is
then carried over to the algebra of chord diagrams A
along the isomorphism �.

Generalizations

There are several generalizations of the wheels
formula.

1. Rozansky’s rationality conjecture (Rozansky
2003) proved by Kricker (2000) affirms that the
Kontsevich integral of any (framed) knot can be
written in a form resembling the wheels formula.
Let us call the ‘‘skeleton’’ of a Jacobi diagram the
regular 3-valent graph obtained by ‘‘shaving off’’
all univalent vertices. Then the wheels formula
says that all diagrams in the expansion of I(O)
have one and the same skeleton (circle), and the
generating function for the coefficients of dia-
grams with n legs is a certain analytic function,
more or less rational in ex. In the same way, the
theorem of Rozansky and Kricker states that the
terms in I(K) 2 B̂, when arranged by their
skeleta, have the generating functions of the
form p(ex)=AK(ex), where AK is the Alexander
polynomial of K and p is some polynomial
function. Although this theorem does not give
an explicit formula for I(K), it provides a lot of
information about the structure of this series.

2. Marché gives a closed form formula for the
Kontsevich integral of torus knots T(p, q).

The formula of Marché, although explicit, is
rather intricate, and here, by way of example, we
only write out the first several terms of the final
Kontsevich integral I0 for the trefoil (torus knot of
type (2,3)), following Willerton (2002):

I0ð Þ ¼ � þ � 31

24
þ 5

24
þ 1

2
þ � � �
First Terms of the Kontsevich Integral

A Vassiliev invariant v of degree n is called
‘‘canonical’’ if it can be recovered from the
Kontsevich integral by applying a homogeneous
weight system, that is, if v = symb(v) � I. Canonical
invariants define a grading in the filtered space of
Vassiliev invariants which is consistent with the
filtration. If the Kontsevich integral is expanded
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over a fixed basis in the space of chord diagrams Â0,
then the coefficient of every diagram is a canonical
invariant. According to Stanford (2001) and Willerton
(2002), the expansion of the final Kontsevich integral
up to degree 4 can be written as follows:

I0ðKÞ ¼ �c2ðKÞ � 1
6 j3ðKÞ

þ 1
48 4j4ðKÞ þ 36c4ðKÞ � 36c2

2ðKÞ þ 3c2ðKÞ
� �

þ 1
24 �12c4ðKÞ þ 6c2

2ðKÞ � c2ðKÞ
� �

þ 1
2 c2

2ðKÞ þ � � �

where cn are coefficients of the Conway polynomial
rK(t) =

P
cn(K)tn and jn are modified coefficients of

the Jones polynomial JK(et) =
P

jn(K)tn. Therefore, up
to degree 4, the basic canonical Vassiliev invariants of
unframed knots are c2, j3, j4, c4 þ (1=12)c2, and c2

2.
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Modulation equations are simplified equations
used to model complicated physical systems. Typi-
cally they are derived from the fundamental partial
differential equations that describe the system via
asymptotic analysis. Furthermore, the modulation
equations are in a sense ‘‘universal’’ in that many
different physical systems are described by the same
modulation equation. This comes about because
the form of the modulation equation depends on
only a very few, qualitative features of the original
partial differential equation. Thus, they serve a sort
of ‘‘normal form’’ for these partial differential
equations and as such justify greater study than
their apparently special character might otherwise
merit.

The Korteweg–de Vries (KdV) equation

@tu ¼ @3
xuþ 6u@xu; u ¼ uðx; tÞ; x 2 R; t � 0 ½1�



was one of the earliest modulation equations to be
intensively studied. It was derived in an attempt to
understand the propagation of solitary waves on the
surface of water in a channel of finite depth. The
KdV equation was first derived by Boussinesq but
then independently rederived and studied in detail
by Korteweg and de Vries. (For an interesting
discussion of the early history of the KdV equation
see Pego and Weinstein (1997).)

Derivation of the KdV Equation

As mentioned above, the KdV equation is a sort of
normal form describing the propagation of small-
amplitude, long-wavelength disturbances in a variety
of different physical systems. In this section we
describe in detail how it arises as an approximation
to the Fermi–Pasta–Ulam (FPU) model of coupled,
nonlinear oscillators. Although the KdV equation is
most commonly encountered as an approximation
to water waves, its study as an approximation to the
FPU model was extremely important historically
because it was in this context that its complete
integrability was discovered by Miura (1968) and
Gardner et al. (1974).

Consider an infinite set of particles of mass
m = 1 at positions qj(t), j 2 Z, interacting with
their nearest neighbors via a potential V(q).
Newton’s equations for the motion of such
particles are:

d2qj

dt2
¼V0ðqjþ1ðtÞ � qjðtÞÞ

� V0ðqjðtÞ � qj�1ðtÞÞ; j 2 Z ½2�

If we rewrite these equations in terms of the
difference variables r(j, t) = qjþ1(t)� qj(t), then [2]
becomes

d2r

dt2
ðj; tÞ¼V0ðrðjþ 1; tÞÞ

þ V0ðrðj� 1; tÞÞ � 2V0ðrðj; tÞÞ; j 2 Z ½3�

We are interested in small-amplitude, long-
wavelength, solutions of [3]. One way of studying
such motions is to change the lattice spacing in [3]
from 1 to h and then let h tend to zero. A nice
derivation of the KdV equation from that point of
view is contained in Ablowitz and Segur (1981).
Here, following Schneider and Wayne (1999), we
will keep the lattice spacing fixed at 1 and rescale
the spatial variable in the KdV equation. This is
closer to the approximation method used in the
water wave problem.

Since we want to focus on small-amplitude, long-
wavelength solutions of [3], we begin by making the

hypothesis that there exists some real-valued func-
tion R(x, t) such that the solution of [3] can be
written as

rðj; tÞ ¼ "2Rð"j; tÞ ½4�

The prefactor "2 insures that the solution is of small
amplitude while rescaling j! "j means that phe-
nomena that occur on length scales of O(1) in the
equation for R will occur on length scales of O(1=")
in the original equation – that is, they will be long-
wavelength solutions. The differing powers of "
chosen for rescaling the amplitude and the spatial
scale are chosen so that the dispersive and nonlinear
effects will balance each other. Inserting [4] into [3]
and expanding to lowest order in " we find that the
nonvanishing terms of lowest order in " are

@2R

@t2
¼ "2V00ð0Þ @

2R

@x2
½5�

This is just the wave equation and thus to leading
order we expect solutions of [3] to split into a left-
and right-moving waves, each moving with speed
c" = "

ffiffiffiffiffiffiffiffiffiffiffiffi
V00(0)

p
. (We assume that c2 � V00(0) > 0.)

Thus, we make a refinement of the hypothesized
form of the solution and replace [4] by

rðj; tÞ ¼ "2Uð"ðjþ ctÞ; "3tÞ
þ "2Vð"ðj� ctÞ; "3tÞ þ "4’ð"j; "tÞ ½6�

The presence of the term "4’ may be somewhat
surprising. We will discuss the reason for its
appearance in more detail below, but for the
moment we mention merely that its presence does
not affect the fact that to leading order the solution
is approximated by the left- and right-moving waves
represented by the "2U and "2V terms, respectively.
We also note that the additional time dependence
"3t in U and V is chosen, as is typical in the
multiscale method to incorporate the higher-order
terms omitted in [5] into the evolution.

Substituting [6] into [3] and expanding the
resulting equation in " we find that the lowest
order in " that occurs is O("4) and these terms all
cancel exactly because of the form of our hypothe-
sized solution. The terms of O("6) are:

f2c@X@TU � 2c@X@TV þ @2
� ’g

¼ c2 1
12 @

4
XU þ 1

12 @
4
X V þ @2

� ’
� �

þ 1
2V
000ð0Þf@2

XðU2 þ V2 þ 2UVÞg ½7�

Here, X, T, �, and � represent the rescaled indepen-
dent variables, that is, U = U(X, T), V = V(X, T),
and ’=’(�, �).
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Note that if it were not for the presence of the term
2UV on the right-hand side of this last equation the
equations for U and V would completely decouple,
that is, there would be no interaction between the
left- and right-moving parts of the solution to this
order. At this point, we can take advantage of the
(heretofore) arbitrary function ’. If we assume that U
and V are given, we can choose ’ to satisfy the
inhomogeneous wave equation:

@2
� ’ ¼ c2@2

� ’þ V000ð0Þ@2
XðUVÞ ½8�

Then, provided ’ remains of O(1) over the time-
scales of interest (which one can verify a posteriori),
we see that all terms of O("6) in the expansion of [3]
will vanish provided

2@TU ¼ c

12
@3

XU þ 1

2c
V000ð0Þ@XðU2Þ

�2@TV ¼ c

12
@3

X V þ 1

2c
V000ð0Þ@XðV2Þ

½9�

This means that the left- and right-moving parts of the
solution satisfy a pair of uncoupled KdV equations.

Remark 1 To rewrite [9] in the standard form [1]
one can make a simple rescaling – for instance,
choose X =�x, T = t and u(x, t) = �U(�x, t), with
�= (c=24)(1=3) and �=V000(0)=(12c�).

We can now comment on the reasons we chose
the particular scalings of the amplitude and of the
independent variables used in [6]. The terms @2

XU2

and @2
XV2 are the lowest-order contributions from

the nonlinear part of [3], while the terms @4
XU and

@4
XV represent the lowest-order contributions from

the linear part of the equation, except for the
‘‘trivial’’ translation that comes for [5]. In particular,
in the absence of nonlinear effects the terms @4

XU
and @4

XV (or equivalently, the terms @3
XU and @3

XV in
[9]) would cause traveling waves to ‘‘disperse’’ and
thus, the KdV equation represents a balance
between nonlinear and dispersive effects. It is this
balance between dispersion and nonlinearity which
permits traveling-wave solutions to propagate with-
out chang e of form (see the section ‘‘Integr ability of
the KdV equati on’’).

More generally, we expect the KdV equation to
arise as a modulation equation whenever a small-
amplitude, long-wavelength linear wave is simulta-
neously perturbed by dispersive and nonlinear
effects of the same order of magnitude. This is, of
course, oversimplified. For instance, the original
equation may have no quadratic terms in the
nonlinearity, for instance, which means that the
term @XU2 in the modulation equation will be
replaced by a term like @XUp, for p > 2 – this

leads to the modified KdV equation as the appro-
priate modulation equation. Or, for certain para-
meter values in the original equation the coefficient
in front of the leading-order dispersive term may
vanish, in which case a fifth-order modulation
equation known as the Kawahara equation is more
appropriate. However, both of these cases are in
some sense nongeneric and the relatively weak
hypotheses needed to obtain the KdV equation as
the appropriate modulation equation indicate why it
is encountered in so many diverse circumstances. We
note, however, that the multiscale method used
above to derive the KdV equation does not give a
unique choice for the appropriate modulation
equation at any given order of approximation and
we discuss in a later section some other equations
that could be used as models in the situation above.

Validity of the KdV Approximation

While the above derivation of the KdV equation is
simple and intuitive one may wonder how accurate
an approximation it actually provides to the true
solutions of [3] (or to the evolution of water waves,
probably the most important physical situation in
which the KdV approximation is used). In particu-
lar, note that in the notation of [9] the phenomena
intrinsic to the KdV equation occur on timescales
T =O(1). However, this corresponds to a very
long timescale t =O(1="3) in the original FPU
model and it could easily be the case that although
the error made in derivation of the KdV approx-
imation at any given time is quite small, over these
very long timescales the errors could accumulate
in such a way as to destroy the accuracy of the
approximation.

The KdV and other modulation equations have
been used since the nineteenth century but only
relatively recently have rigorous estimates of the
accuracy of this approximation been proved. In
fact, the first estimates demonstrating that the
KdV equation actually provided an accurate
approximation to the true motion of water
waves over the timescales expected from the
heuristic derivation were not proved until Craig
(1985). More recently, powerful general methods
have been developed to justify not just the KdV
equation but other modulation equations like the
nonlinear Schrödinger equation and Ginzburg–
Landau equation as well.

For instance, the following method, introduced
in Kirrmann et al. (1992), has been used to justify
the use of modulation equations in the water-wave
problem, the evolution of Taylor–Couette patterns
in viscous fluids, and a number of other
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circumstances. We will explain it in the context of
a general, abstract evolution equation to indicate
its generality. Suppose that one wishes to approx-
imate the small-amplitude solutions of a general
evolution equation (or system of such equations) of
the form

@tu ¼ LuþNðuÞ ½10�

where L is a linear operator and N represents the
nonlinear terms. Suppose that via some formal
analysis like that in the previous section we have
derived a function "2 that is believed to be a good
approximation to a true solution of [10]. In that
example, for instance, "2 would be the sum of the
solutions of the two KdV equations in [9], and in
general it will be given by the solution of the
modulation equation that is expected to approxi-
mate [10]. We must show that the difference
between "2 and a true solution of [10] remains
small over the timescales of interest. We write this
difference as u� "2 = "�R so that if � > 2, and if
R =O(1), "2 does provide the leading-order
approximation to the true solution. We can make
Rjt = 0 small by choosing the initial conditions of
our modulation equation appropriately and thus
we need to follow how R evolves in time. If we use
the equation satisfied by u we see that R evolves as

@tR ¼LRþ "�� Nð"2 þ "�RÞ
�

�Nð"2 Þ
�
þ "��Resð"2 Þ ½11�

where Res("2 ) = L("2 )þN ("2 )� @t("
2 ), the

‘‘residual’’ of our approximation is simply the
amount by which the approximation fails to satisfy
the original equation at any given time. In the
example in the previous section the residual would
include the terms O("8) that we ignored in our
expansion.

One must now, in any given example consider
three points:

1. The linear evolution of R:

@tR ¼ LRþDNð"2 ÞR ½12�

Controlling the solutions of this linear, but
nonconstant coefficient partial differential equa-
tion is often the most difficult step in proving
that solutions of the modulation equation give
accurate approximations to the true solution.
One can frequently find norms that are preserved
by solutions of the leading-order equation
@tR = LR. However, the term DN ("2 ) =O("2)
if N is a quadratic nonlinearity. Over the very
long timescales (i.e., O("�3)) of interest in these
approximation problems this O("2) term can

cause uncontrolled growth of R, leading to a
breakdown in the approximation. In order to
control [12] one must typically make use of some
special features of the problem under consider-
ation. For instance, it is sometimes possible to
make a coordinate transformation which elim-
inates the terms of O("2) on the right-hand side
of [12], after which relatively standard methods
suffice to control the solutions of [12].

2. The nonlinear terms in [11]: these terms are of the
form "��[N ("2 þ "�R)�N ("2 )]�DN ("2 )R.
From Taylor’s theorem we see that, if the non-
linear term is reasonably smooth, these terms are
of O("�). If � > 3, these terms are small and can
be controlled over the timescales of interest by a
straightforward application of Gronwall’s inequal-
ity or standard ‘‘energy estimates.’’

3. Finally, one must consider the influence of the
inhomogeneous terms "�� Res("2 ). Note that if
this term is small enough, say O("�), with � � 3
this term can also be controlled over the relevant
timescales by an application of the Gronwall
inequality. In order to make this term small, we
need to be sure that our approximation "2 fails
to solve the true equation at any given time by a
small amount. In doing so, we can exploit the
fact that we can add to our leading-order
approximation terms of higher order without
affecting the fact that to leading order the true
solution is still approximated by the solution of the
modulation equation. This is the role of the term
"4’ in the approximation [6] in the previous
section. The leading-order approximation is given
by the functions U and V which solve the KdV
equations but by adding the additional term "4’ to
the approximation we cancel the remaining terms of
O("6) in [7], thereby reducing the size of the residue
in that example to O("8). This method works in
other examples as well so that the inhomogeneous
term in [11] can usually be treated by this means.
However, in each case, we must prove that the
additional terms one adds to the approximation
remain bounded over the timescales of interest and
demonstrating this fact may not be as easy as it was
in the case of the FPU model where the additional
term satisfied a simple wave equation.

Using this approach one can show that the
approximation derived heuristically in the previous
section does accurately model the behavior of
solutions of the FPU model over the expected
timescales. More precisely, if r(j, t) is the solution
of [3] and if U and V are the solutions of the
modulation equations [9] (with appropriately
chosen, small-amplitude, long-wavelength initial
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conditions), one can prove (see Schneider and
Wayne (1999)) that for any T0 > 0 there is an "0 >
0 and C > 0 such that for all 0 < " < "0,

sup
t2½0;T0="3�

krð�; tÞ � ð"2Uð"ð� þ ctÞ; "3tÞ

þ ð"2Vð"ð� � ctÞ; "3tÞÞk‘1 �C"7=2

One can also use this method to show that the
solution of the water-wave problem with general
small-amplitude, long-wavelength, initial data can
be approximated by the sum of the solutions of a
pair of uncoupled KdV equations (Schneider and
Wayne 2000), one representing the left-moving part
of the solution and one representing the right-
moving part of the solution, though in this context
the technical difficulties associated with the exis-
tence theory for the water-wave problem mean the
details are quite a lot more complicated.

Integrability of the KdV Equation

One reason that normal forms for systems of
ordinary differential equations are so useful is that
they are frequently integrable – that is, they possess
sufficiently many integrals, or constants of motion,
that essentially explicit formulas for their solutions
can be obtained. Remarkably, the same is true for
the KdV equation and for many other modulation
equations. An argument for why this is so has been put
forth by Calogero and Eckhaus based on the univer-
sality of these equations – see Calogero and Eckhaus
(1987) and references therein, as well as the article
Integrable Systems: Overview for more on this point.

Recall that Boussinesq and Korteweg and de Vries
introduced the KdV equation to study solitary
traveling waves on a fluid surface. For [1], one has
an explicit family of such solutions given by:

uðx; tÞ ¼ 2A2sech2ðA½xþ 4A2t�Þ; A � 0

Note that from this formula one sees that waves of
large amplitude are narrower and travel faster than
waves of small amplitude.

In a famous numerical study, Zabusky and
Kruskal made a remarkable discovery. They con-
sidered solutions of the KdV equation in which a
solitary wave of large amplitude overtook one of
smaller amplitude. They found that after a highly
nonlinear interaction the two solitary waves re-
emerged with their original amplitudes and speeds
and the only reminder of their interaction was a
phase shift in their relative positions. Their discov-
ery began a search for a mathematical explanation
of this remarkable ‘‘nonlinear superposition princi-
ple’’ which culminated with the solution of the KdV

equation via the method of inverse scattering and
the identification of the KdV equation as an infinite-
dimensional, completely integrable Hamiltonian
system.

We begin by describing how a transformation
discovered by Miura (1968) and then generalized by
Gardner et al. (1974) leads very easily to the
conclusion that there are infinitely many conserved
quantities for the KdV equation. The basic idea is
that given a transformation which maps solutions of
one equation to solutions of a second, the existence
of simple or ‘‘obvious’’ conserved quantities for the
first equation may lead, via the transformation, to
more complicated conserved quantities for the
second.

Given u = u(x, t), define w(x, t) implicitly via the
formula

uðx; tÞ ¼ wðx; tÞ þ i"@xwðx; yÞ þ "2ðwðx; tÞÞ2 ½13�

Note that if w is smooth enough and " is small, we
can invert this relation recursively to obtain w in
terms of u via the formula

w ¼ u� i"@xu� "2ðu2 þ @2
xuÞ

þ i"3ð@3
xuþ 4u@2

xuÞ þ "4ð2u3 þ 5ð@xuÞ2

þ 6u@2
xuþ @4

xuÞ þ Oð"5Þ ½14�

Now compute

@tu�@3
xu�6u@xu

¼ f@tw�6w@xw�6"2w2@xw�@3
xwg

þ2"2wf@tw�6w@xw�6"2w2@xw�@3
xwg

þ i"@xf@tw�6w@xw�6"2w2@xw�@3
xwg ½15�

From this we see immediately that if w satisfies the
modified KdV equation

@tw ¼ 6ðw@xwþ "2w2@xwÞ þ @3
xw ½16�

then u, defined by [13] satisfies the KdV equation.
However, one also sees immediately that the integral
of w is a conserved quantity of [16] for all values of
", that is, if we define I "(t) =

R
w(x, t) dx, then I " is a

constant for all values of ". (We will assume here
that w is defined on the real line, and that w and its
derivatives go to zero as jxj tends to infinity. Similar
results hold for x running over a finite interval with
periodic boundary conditions.) But this in turn
immediately implies that if we use [14] to expand
I " in powers of " the coefficients in this expansion
must also be constants in time. Since these coeffi-
cients will be expressed as integrals of u and its
derivatives, they will give us (infinitely many)
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conserved quantities for the KdV equation! Looking
at the first few of these we find:

1. K0 =
R

u(x, t) dx. The conservation of this quan-
tity follows immediately from the form of the
KdV equation.

2. K1 =
R
@xu(x, t) dx = 0, if we assume that u and

its derivatives tend to zero as jxj tends to infinity.
Thus, we gain no new information from this
quantity and in fact, all the integrals coming
from the odd powers of " turn out to be ‘‘trivial’’
so we ignore them and focus just on the even
powers of ".

3. K2 =
R

(u2 þ @2
xu) dx =

R
u2 dx. That this is a con-

served quantity is again easy to see directly from
the KdV equation, just by multiplying the
equation by u and integrating with respect to x.

4. K4 =
R

(3u2þ5(@xu)2þ6u@2
xuþ@4

xu)dx=
R

(3u2�
(@xu)2)dx. Theoriginof this integral isnot soobvious
and we comment further on its meaning below.

Clearly by continuing this procedure we can generate
an infinite number of conserved quantities for the KdV
equation. Indeed, if one chose another conserved
quantity for the modified KdV equation, [16], sayR

w2(x, t) dx one could generate another sequence of
conserved quantities via this same procedure. How-
ever, Kruskal, Miura, Gardner, and Zabusky proved
that in fact, all of the conserved quantities that can be
written as polynomials in u and its derivatives are
already obtained by the procedure above.

The constant of the motion K4 found above is of
particular interest because one can write the KdV
equation as

ut ¼ @x
�K4

�u

	 

½17�

where �=�u denotes the variational derivative of K4

with respect to u(x). One can interpret this equation
as a Hamiltonian system where @x defines the
(nonstandard) symplectic structure and remarkably,
Zhakarov and Faddeev (1971) proved that the KdV
equation is actually a completely integrable Hamil-
tonian system. In particular, there exists a canonical
transformation such that with respect to the new
coordinates the Hamiltonian is a function only of
the action variables (and hence in particular, the
action variables remain constant in time). The
transform which brings the Hamiltonian into its
action-angle form is known as the inverse spectral
transform and its details would take us beyond the
limits of this article. However, very briefly, by
observing that the Miura transformation [13]
defines a Ricatti differential equation, and using
the transformation that converts the Ricatti

equation to a linear ordinary differential equation
one can relate the solution of the KdV equation to
an eigenvalue problem for a linear Schrödinger
operator. The potential term in the Schrödinger
operator is given by the solution u(x, t) of the KdV
equation. Remarkably, it turns out that the eigen-
values of this Schrödinger operator are constants of
the motion if u is a solution of the KdV equation
and are very closely related to the action variables
for the Hamiltonian system. For more details on the
inverse-scattering method and its use in solving the
KdV equation we refer the reader to the mono-
graphs of Ablowitz and Segur (1981), Newell
(1985), or the recent book by Kappeler and Pöschel
(2003) which develops the theory for the KdV
equation on a finite interval with periodic boundary
conditions in a particularly elegant fashion.

Other Mathematical Aspects of the
KdV Equation

In addition to the inverse-scattering transform
approach, more traditional approaches to the exis-
tence and uniqueness of solutions have also been
studied, starting with Temam’s proof of the well-
posedness of solutions of the KdV equation with
periodic boundary conditions in the Sobolev space
H2. Noting that the Hamiltonian for the
KdV equation described in the preceding section
is closely related to the H1 norm, this might seem a
natural space in which to study well-posedness, but
surprisingly Kenig, Ponce, and Vega, and Bourgain
showed that the equation is also well posed in
Sobolev spaces Hs, with s < 1 and more recent
work has extended the global well-posedness results
to Sobolev spaces of small negative order. Aside from
their intrinsic interest, these results have other
physical implications. If one wishes to study statis-
tical aspects of the behavior of ensembles of solutions
of these equations, statistical mechanics suggests that
the natural invariant measure for these equations is
given by the Gibbs’ measure. However, the Gibbs’
measure is typically supported on functions less
regular than H1, so that in order to define and
study this measure one needs to know that solutions
of the equation are well behaved in such spaces.

Another natural mathematical question arises
from the fact that the KdV equation is only an
approximation to the original physical equation.
Viewed from another perspective, the original
system can be seen as a perturbation of the KdV
equation. It then becomes natural to ask whether the
special features of the KdV equation are preserved
under perturbation. Viewing the KdV equation as a
completely integrable Hamiltonian system this is
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very analogous to the questions studied by the
Kolmogorov–Arnol’d–Moser (KAM) theory and
has led to a development of KAM-like results for a
number of different partial differential equations
like the KdV equation. The results are somewhat
technical in nature but roughly speaking they say
that if one considers the KdV equation with periodic
boundary conditions, temporally periodic or quasi-
periodic solutions will persist under small perturba-
tions. The situation is more complicated and less
well understood for the equation on the whole line
due to the presence of a continuum of scattering
states. For a very thorough review of the problem
with periodic boundary conditions see Kappeler and
Pöschel (2003).

Other Modulation Equations

As we stressed in its derivation, the KdV equation is
an appropriate modulation equation for small-
amplitude, long-wavelength solutions in dispersive
nonlinear partial differential equations. However, as
mentioned in the section ‘‘Derivation of the KdV
equation’’ the method of multiple scales does not give
a unique modulation equation even in this specific
physical regime. Already in his original studies
Boussinesq derived at least three different model
equations for small-amplitude, long-wavelength
water waves and a variety of such models continue
to be studied today. For instance, an easy variation in
the derivation of the KdV equation leads to the
regularized long wave, or Benjamin–Bona–Mahoney
equation in which the @3

xu term in the KdV equation
is replaced by the term @2

x@tu. The validity of these
alternatives to the KdV equation can also be studied
with the aid of the methods described in the section
‘‘Validity of the Kdv approximation.’’

There have been many discussions of which of these
modulation equations is the ‘‘correct’’ one. while they
may all yield equivalent approximations to the original
physical problem the KdV equation has at least two
advantages: it is independent of the expansion para-
meter ", and it is completely integrable. None of the
other equations that have been proposed as approx-
imations to these small-amplitude, long-wavelength
phenomena share both of these properties.

If we think in terms of the Fourier transforms of
the long-wavelength functions studied above they
are solutions whose Fourier transform is concen-
trated near zero. One can also ask about modulation
equations for solutions whose Fourier transform is
concentrated about nonzero wave numbers. Such
solutions represent a wave train with some fixed
underlying wavelength, �c, modulated on a much
longer length scale, �c=".

If we make the ansatz that the solution has the
form

uðx; tÞ 	 "Að"ðx� cgtÞ; "2tÞei2�ðx�cptÞ=�c

þ complex conjugate ½18�

and insert this hypothesized form of the solution into
the original equation, then under mild assumptions
on the form and properties of the original equation,
similar to those under which we derived the KdV
equation in an earlier section we find that to the
lowest, nontrivial order in ", the amplitude A evolves
according to the nonlinear Schrödinger equation

�i@TA ¼ c1@
2
X Aþ c2 AjAj2 ½19�

If c1 and c2 are both real, the nonlinear Schrödinger
equation can also be solved via the inverse-scattering
method and it represents another completely integr-
able modulation equation.

In this article, we have discussed modulation
equations only for Hamiltonian, or conservative
systems. However, similar equations have also played
an important role in the study of dissipative
equations like the Navier–Stokes equation. The
most common modulation context in that setting is
the Ginzburg–Landau equation, which can be derived
as a modulation equation for Taylor–Couette rolls or
for the convection rolls in the Rayleigh–Bénard
problem. Like the nonlinear Schrödinger equation,
the Ginzburg–Landau equation describes how slow
variations of the amplitude of an underlying periodic
pattern evolve and as such it arises in a host of other
situations in addition to the fluid dynamics examples
mentioned above. For an extensive review of the
applications of the Ginzburg–Landau equation, as
well as its mathematical properties and some special
solutions, see the recent article of Mielke (2002).

See also: Bi-Hamiltonian Methods in Soliton Theory;
Central Manifolds, Normal Forms; Hamiltonian Fluid
Dynamics; Infinite-Dimensional Hamiltonian Systems;
Integrable Systems and the Inverse Scattering Method;
Integrable Systems: Overview; KAM Theory and
Celestial Mechanics; Multiscale Approaches; Partial
Differential Equations: Some Examples; WDVV
Equations and Frobenius manifolds.
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K-theory was invented in the category of algebraic
vector bundles over algebraic varieties by
A Grothendieck, who was directly motivated by
the Hirzebruch–Riemann–Roch theorem which he
subsequently greatly generalized. He also defined
K-homology in terms of coherent sheaves and
established the basic properties of K-theory
and K-homology including Poincaré duality for
nonsingular varieties. The origin for the choice of
the letter K in K-theory was apparently the German
word ‘‘Klasse.’’

Using the formalism of Grothendieck, M F Atiyah
and F Hirzebruch (cf. Karoubi 1978), developed
topological K-theory in the category of topological
(complex) vector bundles over topological spaces. It
is this theory that will be the first principal focus of
this article. A topological (complex) vector bundle
over a compact topological space X is a topological
space E together with a continuous map p : E! X
that is onto, such that p�1(x) is a vector space that is
isomorphic to Cn for all x 2 X, and there is an open
cover {U} of X together with homeomorphisms
hU : p�1(U)! U 
Cn called ‘‘local trivializations’’
with the property that hV � h�1

U :U \V 
Cn!U \V

Cn is of the form (Id,gUV), where gUV :U \V!
GL(n,C) are continuous maps satisfying the

following cocycle condition on triple overlaps,
gUVgVWgWU = 1. X
Cn is called the trivial vector
bundle. Two vector bundles p :E ! X and q :F!X
over X are said to be isomorphic if there is a
homeomorphism 	 :E! F with the property that
p=q �	, and which is a linear isomorphism when
restricted to each fiber. The direct sum and tensor
product of vector spaces carries over to vector
bundles. There are canonical isomorphisms E� F ffi
F�E and E� F ffi F�E, making the set Vect(X) of
isomorphism classes of complex vector bundles over
X into a commutative semiring. Vect(X) can be
made into the commutative ring K0(X) as follows.
K0(X) is generated by pairs ([E], [F]), together with
the relation ([E], [F])= ([E0], [F0]) if E� F0 �Gffi
E0 � F�G for some [G] 2 Vect(X). Also K1(X) is
defined to be the group of homotopy classes of
continuous maps from X to the infinite unitary
group. Around the same time, R Bott proved his
celebrated periodicity theorem, which says that the
odd homotopy group of the (infinite) unitary group
is the integers, whereas the even homotopy groups
are all trivial. Incorporating Bott’s periodicity
theorem for the unitary group into K-theory, Atiyah
and Hirzebruch proved that topological K-theory
K�(X)=K0(X)�K1(X) is a periodic generalized
cohomology theory, and in what follows, the
notation Kn(X) means n modulo 2. If M is not
compact, then we can compactify M by adding to it
a point þ ‘‘at infinity,’’ and denote it by Mþ. Let

 :þ!Mþ be the inclusion, inducing the pullback
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map �!:K�(Mþ)! K�(þ)ffiZ. Then K�(M) is defined
to be ker(�!), also called the reduced K-theory. If X1

is a closed subset of X, the K-theory of the pair
(X,X1) is defined as the reduced K-theory of the
quotient space X=X1. A fundamental computation
of Bott is the computation of the K-theory of
Euclidean space, Kn(Rn)ffiZ with canonical gen-
erator called the Bott class b 2 Kn(Rn), and
Kn�1(Rn)= {0}.

Some of the basic properties of K-theory are listed
as follows. Details can be found in Karoubi (1978).

1. Pullback If f : N !M is a continuous map, then
given a vector bundle � : E!M over M, the
pullback vector bundle is defined as f 	(E) = {(x, v) 2
N � E : f (x) = �(v)} over N. This induces a pullback
homomorphism, f ! : K�(M)! K�(N).

2. Push-forward Let f : N!M be a smooth proper
map between compact manifolds which is
K-oriented, that is, TN � f 	TM is a spinC vector
bundle over N. Then there is a pushforward
homomorphism, also called a Gysin map,
f! : K�(N)!K�þd(M). where d = dim M� dim N,
whose construction will be explained in the next
section.

3. Homotopy If f : N !M and g : N !M are
homotopic maps, then the pullback maps f ! = g!

are equal. If in addition, f and g are K-oriented,
proper maps which are homotopic via proper
maps, then the Gysin maps f! = g! are equal.

4. Excision Let M1 be a closed subset of M and U
be an open subset of M such that U is contained
in the interior of M1. Then the inclusion of pairs
(MnU, M1nU) ,! (M, M1) induces an isomorph-
ism in K-theory, K�(M, M1) ffi K�(MnU, M1nU).

5. Exactness Let M1 be a closed subset of M. Then
there is a six-term exact sequence in K-theory,

K0ðM;M1Þ �! K0ðMÞ �! K0ðM1Þ

" #�
K1ðM1Þ  � K1ðMÞ  � K1ðM;M1Þ

6. Cup product There is a canonical map given by
external tensor product, Ki(M)� Kj(N)!
Kiþj(M�N). When N = M, one can compose this
with the homomorphism induced by the diagonal
map M!M�M given by x! (x, x), to get a cup
product, Kp(M)� Kq(M)! Kpþq(M).

7. Bott periodicity This is arguably the most impor-
tant property of K-theory. It says that the zero-
section embedding �M : M ,!M� Rn induces a
Gysin isomorphism, �M! : K�(M)!ffi K�þn(M� Rn),
which is given as follows. Let �M : M�Rn !M
and �Rn : M� Rn ! Rn denote the projections
onto the factors, and b = �!1 2 Kn(Rn) the Bott
element, where � : {0} ,!Rn is the inclusion of the
origin. Then the Bott periodicity isomorphism is
given by �M!(x) = �!

M(x) [ �!
Rn(b) 2 K�þn(M� Rn)

for all x 2 K�(M).

Using the fact that any vector bundle over a
contractible space is trivial, together with Bott’s
periodicity theorem, one deduces the calculation
of the K-theory of spheres. The calculation for the
odd-dimensional spheres given, K0(S2n�1) ffi Z ffi
K1(S2n�1), and for the even-dimensional spheres
K0(S2n�1) ffi Z2 and K1(S2n) ffi {0}, for all n
 1.

There is a natural homomorphism of rings called
the Chern character, Ch : K�(X)! H�(X, Q) which
is characterized by the following axioms:

1. Naturality If f : N !M is a smooth map, and if
E is a vector bundle over M, then Ch(f !(E)) =
f 	(Ch(E)).

2. Additivity Ch(E� F) = Ch(E)þ Ch(F).
3. Normalization If L is the canonical line bundle

over CPn which restricts to the Hopf line bundle
over CP1, then Ch(L) = exp (x), where x is the
generator of H2(CPn, Z) ffi Z.

Atiyah and Hirzebruch, cf. Karoubi (1978), also
proved that the Chern character induces an iso-
morphism of the rings K�(X)�Q and H�(X, Q). The
Chern–Weil representative of the Chern character is
tr(exp((i=2�)�E)), where �E is the curvature of a
Hermitian connection on E.

There are many variants of K-theory, such as
KO-theory, where the unitary group is replaced
by the orthogonal group, which is periodic of
order eight, and G-equivariant K-theory, where G
is a compact Lie group. K-theory and its variants
have many interesting applications such as deter-
mining the maximum number of linearly inde-
pendent vector fields on spheres, which is due to
Adams, cf. Karoubi (1978). We will content
ourselves with the description of two important
applications.
Grothendieck–Riemann–Roch Theorem
for Smooth Manifolds

Recall that an oriented real vector bundle E over M is
said to be a spinC vector bundle if the bundle of
oriented frames on E, SO(E) has a circle bundle
SpinC(E) such that the restriction to each fiber yields
the central extension 0! U(1)! SpinC(n)!
SO(n)! 0 that defines the group SpinC(n), where n
is the rank of E. It turns out that the obstruction to the
existence of a spinC structure on E is the third integral
Stieffel–Whitney class of E, W3(E) 2 H3(M, Z).
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A generalization of Bott periodicity is the Thom
isomorphism in K-theory. It says that if � : E!M is
a rank-n spinC vector bundle over M, then the zero-
section embedding �M : M ,!E induces a Gysin iso-
morphism, �M! : K�(M) ffi K�þn(E), which is given as
follows. There is a canonical element �M! 1 2 Kn(E)
called the Thom class in K-theory, which is character-
ized by the property that �!1 restricts to give the Bott
class on each fiber. Then the Thom isomorphism in K-
theory is given by �M!(x) = �!(x) [ �M! 1 2 K�þn(E) for
all x 2 K�(M). For canonical representatives of the
Thom class, cf. Mathai–Quillen Formalism, or Mathai
and Quillen (1986).

Recall the definition of the Gysin map for smooth
embeddings. Let X be a smooth, compact manifold,
and Y a smooth manifold. Let h : X! Y be a smooth
embedding that is K-oriented. Since TX� TX has a
canonical almost-complex structure, it follows that
the normal bundle NYX = h	(TY)=TX is a spinC
vector bundle. If �X : X ,!NYX is the zero-section
embedding, then we have the Thom isomorphism
�X! : K�(X)!ffi K�þn(NYX), where n = dim(Y)� dim(X)
is the codimension of the embedding. Upon choosing a
Riemannian metric on Y, there is a diffeomorphism �
from a tubular neighborhood U of h(X) onto a
neighborhood of the zero section in the normal bundle
�(X). That is, �! : K�(NYX)!ffi K�(U). For any open
subset j : U ,!Y, the extension by zero defines a
homomorphism j : K�(U)! K�(Y). Then the Gysin
map of the embedding h is defined as h! = j � �! �
�X! : K�(X)! K�þn(Y), which turns out to be inde-
pendent of the choices made.

Next recall the definition of the Gysin map for
smooth submersions. Let � : Y ! Z be a smooth
submersion of smooth manifolds, which is K-
oriented and a proper map. Since every smooth
compact manifold can be smoothly embedded in
R2q for q sufficiently large, a parametrized version
yields an embedding � : Y ,!Z� R2q that is spinC.
Therefore the Gysin map is a homomorphism
�! :K

�(Y)!K�þa(Z�R2q), where a= dim(Z)þ2q�
dim(Y). Let �Z :Z ,!Z�R2q denote the zero-section
embedding. Then we have the Thom isomorphism
�Z! :K�(Z)!ffi K�þ2q(Z�R2q). Then the Gysin map
of the submersion � is defined as �! =�! � (�Z! )�1 :
K�(Y) ! Kþb(Z), where b= dim(Y)�dim(Z), and
turns out to be independent of the choices made.

Let f : N !M be a smooth proper map that is
K-oriented. Then f can be canonically factored, first
into the smooth embedding gr(f ) : N ,!N �M,
which is the graph of the function, that is,
gr(f )(x) = (x, f (x)), and which is K-oriented. The
Gysin map is gr(f )! : K�(N)! K�þdim(M)(N �M).
Second, the projection pM : N �M!M is a
K-oriented proper submersion, when restricted to
the image of gr(f). The Gysin map is pM! : K�(M�
N)! K�þb(M), where b = dim(N). The Gysin map
of f is defined as f! = pM! � gr(f )! : K�(N)! K�þd(M),
where d = dim(M)þ dim(N).

Given such a smooth proper map f : N !M that
is K-oriented. Then there are Gysin maps in
cohomology, f	 : H�(N, Q)! H�þd(M, Q) (where
we consider the Z2-grading given by even and odd
degree), and in K-theory, f! : K�(N)! K�þd(M)
which increases the degree by d = dim(M)þ
dim(N). The Grothendieck–Riemann–Roch theorem
due to Atiyah and Hirzebruch, cf. Karoubi 1978, in
the smooth category can be phrased as the commu-
tativity of the diagram,

K�ðNÞ �!f!

K�þdðMÞ
ToddðTNÞ[Ch# ToddðTMÞ[Ch#

H�ðN;QÞ �!f	 H�þdðM;QÞ

That is,

Chðf!ð�ÞÞ [ ToddðTMÞ ¼ f	ðChð�Þ [ ToddðTNÞÞ

for all � 2 K�(N), where Todd(E) is the Todd genus
characteristic class of a Hermitian vector bundle E
over M. The Chern–Weil representative of the Todd
genus is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det
ði=2�Þ�E

tanh ði=2�Þ�Eð Þ

� �s

where �E is the curvature of a Hermitian connection
on E. There are many useful variants of this
beautiful formula.
The Atiyah–Singer Index Theorem

The 2004 Abel Prize citation mentions the Atiyah–
Singer (1971) index theorem as being one of the
greatest achievements of twentieth-century mathe-
matics. It has stimulated considerable interaction
between mathematicians and mathematical physi-
cists. We content ourselves here with a rudimentary
description of the results.

Let F be the space of all Fredholm operators on
an infinite-dimensional complex Hilbert space H.
Recall that an operator A is said to be Fredholm if
both the kernel and cokernel of A are finite
dimensional. The index of such a Fredholm operator
is index(A) = dim(ker(A))� dim(coker(A)) 2 Z. The
index map is continuous, so it induces a map on the
connected components of F , which turns out to be
an isomorphism.
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K-theory is naturally related to the space of all
Fredholm operators F endowed with the norm
topology. Any continuous map A : X! F from a
compact space to F has an index in K0(X), which
is given by index(A) = ker (A)� coker(A) in the
special case when dim(ker(A))(x) is constant in x 2
X. In general, one uses the fact that the index is
stable under compact perturbation, and shows that
one can always achieve the special case after a
compact perturbation. It is again the case that the
index map is continuous, and so induces a map,
index : [X,F ]! K0(X), which turns out to be an
isomorphism, thanks to a fundamental theorem
of Kuiper which proves that the group of all
invertible operators on an infinite-dimensional
complex Hilbert space is contractible in the norm
topology.

Now let � : N ! Z be a fiber bundle with typical
fiber a smooth compact manifold M, where N and Z
are also smooth compact manifolds. Consider a
smooth family of elliptic operators D = {Dz}z2Z

along the fibers of �, parametrized by Z, where
Dz : C1(��1(z), E j ��1(z))! C1(��1(z), F j ��1(z)) and
E, F are vector bundles over N. Such a family of
elliptic operators has a symbol

�ðDÞ : �	ðEÞ ! �	ðFÞ

where � : T	(N=Z)! N is the projection and
T	(N=Z) is the vertical cotangent bundle. Ellipticity
for the family is the condition that �(D) is an
isomorphism outside the zero section, so that the
triple (�	(E), �	(F), �(D)) determines an element in
K0(T	(N=Z)) denoted by �(D).

The analytic index of the family D is index(D) 2
K0(Z), and it turns out that it only depends on the
class of the symbol �(D) 2 K0(T	(N=Z)), so the
analytic index can be viewed as a homomorphism,

index : K0ðT	ðN=ZÞÞ ! K0ðZÞ

Consider an embedding � : N ,!Z� Rn that is
compatible with the projection � : N ! Z. The
fiberwise differential is an embedding d� : T(N=Z)!
Z�R2n, which induces a Gysin map

d�! : K0ðTðN=ZÞÞ ! K0ðZ� R2nÞ

upon identifying T	(N=Z) with T(N=Z). Let
j : Z! Z� R2n be the inclusion j(z) = (z, 0). It
induces the Bott isomorphism j! : K0(Z) ffi K0(Z�
R2n). The topological index of the family D is, by
definition,

indext ¼ j�1
! � d�! : K0ðT	ðN=ZÞÞ ! K0ðZÞ

The Atiyah–Singer (1971) index theorem
for families of elliptic operators D asserts the
equality of the analytic index and the topological
index,

indexðDÞ ¼ indextð�ðDÞÞ 2 K0ðZÞ

Combined with the Grothendieck–Riemann–Roch
theorem, one has the following exquisite formula in
H�(Z, Q):

ChðindexðDÞÞ ¼ �	�	fToddðT	CðN=ZÞÞ [ Chð�ðDÞÞg

where � : T	C(N=Z)! N is the projection.
The map sending a complex vector bundle E over

Z to its determinant line bundle det(E) = �maxE
induces a homomorphism, det : K0(Z)! �0(Pic(Z)),
where �0(Pic(Z)) denotes the isomorphism classes of
complex line bundles over Z. Then

c1ðdetðindexðDÞÞÞ

¼ �	�	fToddðT	CðN=ZÞÞ [ Chð�ðDÞÞg
� �½2�

where [2] denotes the degree-2 component, and the
left-hand side denotes the first Chern class of the
determinant line bundle of the index class. This
formula is often used in the study of anomalies in
physics.
K-Theory of C	-Algebras

The Gelfand–Naimark theorem asserts that unital
abelian C	-algebras A can be identified with the
space of continuous functions C(X), where X is the
compact Hausdorff space known as the spectrum of
A, consisting of characters of A. Conversely, given a
compact Hausdorff space X, the characters of C(X)
consist of the evaluation maps at points of X.

Let E be a vector bundle over X. Then there is a
vector bundle F over X such that E� F ffi X�Cn.
Setting A = C(X), M= C(X, E), N = C(X, F), we
see that M�N ffi An, showing that each vector
bundle E over X determines a canonical finite
projective module M over A. The converse is also
true and is a result of Serre and Swan, cf. Blackadar
(1986), which asserts that every finite projective
module M over A is the space of all continuous
sections of a vector bundle over X. So we have an
equivalence of the category of vector bundles over X
and the category of finite projective modules over A.

This motivates the following generalization of
topological K-theory for a general unital C	-algebra
A. Let Proj(A) denote the isomorphism classes of
finite projective modules over A. It is a commutative
semigroup under the operation of direct sum, which
can be made into the commutative group K0(A) as
follows: K0(A) is generated by pairs ([M], [N ]),
together with the relation ([M], [N ]) = ([M0], [N 0])
if M�N 0 � G ffiM0 � N � G for some [G] 2 Proj



250 K-Theory
(A). Also K1(A) = �0(GL(1, A)) where GL(1, A)
denotes the direct limit of GL(n, A) where
ðGLðn;AÞ embeds in GLðnþ 1;AÞ as 1�GLðn;AÞ:
Then, defining Kj(A) = �j�1(GL(1, A)) for j
 1,
together with generalized Bott periodicity which
asserts that there is a canonical isomorphism
�j�1(GL(1, A)) ffi �jþ1(GL (1, A)), we see that
K�(A) = K0(A)� K1(A) is a generalized periodic
cohomology theory. If A is a C	-algebra without
unit, then consider Aþ= A�C, with product given
by (a,	)(b,
) = (abþ a
þ b	,	
) with unit (0, 1).
The projection p : Aþ!C defined as p(a,	) =	
induces a map p! : K�(A

þ)! K�(C). In the nonunital
case, K�(A) is defined as ker(p!). Observe that
K1(A) = K1(Aþ), but this is often not the case with
K0. It is easy to see that when A has a unit, then the
two definitions of K0 agree. An important caveat in
the case of noncommutative C	-algebras is that the
K-theory is often not a ring as there is no analog of
the tensor product operation.

Some of the basic properties of K-theory are listed
as follows. Details can be found in Blackadar
(1986).

1. Cup product A continuous bilinear map of
C	-algebras, A� B! C, induces a cup product,
Ki(A)� Kj(B)! Kiþj(C).
In particular, the continuous product A� A!A
induces a cup product homomorphism,
Ki(A)� Kj(A)! Kiþj(A).

2. Induced homomorphism If f : A! B is a homo-
morphism of C	-algebras, then there is an
induced homomorphism, f! : K�(A)! K�(B).

3. Homotopy If f : A! B and g : A! B are
homomorphisms of C	-algebras that are homo-
topic, the induced homomorphisms on K-theory
f	= g	 are equal.

4. Excision If I is a closed two-sided ideal in A,
then there is a six-term exact sequence in
K-theory,

K0ðIÞ �! K0ðAÞ �! K0ðA=IÞ

" #�
K1ðA=IÞ  � K1ðAÞ  � K1ðIÞ

5. Morita invariance The inclusion homomorph-
ism of A into the top left of the diagonal in
Mn(A) induces an isomorphism in K-theory,
K�(A) ffi K�(Mn(A)).

6. Continuity Let A = limn!1 An be a C	-direct
limit. Then, K�(A) = limn!1 K�(An).

7. Stability Let K be a C	-algebra of all compact
operators on an infinite-dimensional complex
Hilbert space. Then since K= limn!1Mn(C) is
a C	-direct limit, we see that K�(A�K) =
limn!1 K�(A�Mn(C)) = K�(A).

8. Bott periodicity The continuous product A�
C!A induces the cup product Ki(A)�Kj(C)!
Kiþj(A). The computation by Bott asserts
that there is a canonical element b2K2(C) that
gives an isomorphism K2(C)ffiZ, and
Bott periodicity asserts that the cup product
with b gives rise to an isomorphism Ki(A)ffi
Kiþ2j(A).

We mention in passing that Connes has defined a
Chern character homomorphism, Ch : K�(A)!
HE�(A), mapping into the entire cyclic homology
of A, having similar properties as the ordinary
Chern character. Due to space constraints, it will
not be defined here.
A C	-Algebra Generalization of the
Atiyah–Singer Index Theorem and
the Baum–Connes Conjecture

We content ourselves here with a rudimentary
account of the C	-algebra generalization of the
Atiyah–Singer index theorem and the Baum–Connes
conjecture, and its relevance to the quantum Hall
effect and strict deformation quantization. Let A be
a C	-algebra.

Let HA = A�H, which is the analog of a Hilbert
space. Let FA be the space of all A-Fredholm
operators on HA. Recall that an operator T is said to
be A-Fredholm if both the kernel and cokernel of T þ
K are closed and finitely generated projective modules,
where K is an A-compact operator. The space of
A-compact operators is by definition the closure of
the A-finite rank operators. The index of T is

indexðTÞ ¼ ½kerðT þ KÞ� � ½cokerðT þ KÞ� 2 K0ðAÞ

The index map turns out to be well defined and
independent of the choice of A-compact perturba-
tion K. It is continuous, so it induces a map on the
connected components of FA, which turns out to
be an isomorphism, by a theorem of Mingo
(cf. Rosenberg (1983, 1989)).

Now let M be a smooth compact manifold. An
A-vector bundle over M is a locally trivial Banach
vector bundle E over M whose fibers have the
structure of finitely generated left A-modules, with
morphisms respecting the A-module structure. The
isomorphism classes of A-vector bundles over M
form a commutative semigroup under direct sums,
and the associated commutative group is easily
identified with K0(C(M)� A). Let D : C1(M, E)!
C1(M, F) be an elliptic A-operator acting between
smooth sections of A-vector bundles E, F over M. It
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turns out that by elliptic regularity, such an operator
is A-Fredholm, and has an analytic index,

indexðDÞ 2 K0ðAÞ

Associated to each such operator is a symbol

�ðDÞ : �	ðEÞ ! �	ðFÞ

where � : T	M ! M is the projection. Ellipticity is
the condition that �(D) is an isomorphism outside
the zero section, so that the triple (�	(E), �	(F),�(D))
determines an element in K0(C0(T	M)� A) denoted
by �(D). It turns out that the analytic index of D
depends only on the class �(D) 2 K0(C0(T	M)� A).
Therefore, the analytic index can be viewed as a
homomorphism,

index : K0ðC0ðT	MÞ � AÞ ! K0ðAÞ

Consider an embedding � : M ,!Rn, which induces
an embedding d� : TM! R2n. The associated Gysin
map is d�! : K0(C0(T	M)� A)! K0(C0(R2n)� A).
Let j : {0}! R2n denote inclusion of the origin in R2n.
It induces a Gysin map j! : K0(A)! K0(C0(R2n)� A)
which is the Bott periodicity isomorphism. Then the
topological index is the homomorphism

indext ¼ j�1
! � d�! : K0ðC0ðT	MÞ � AÞ ! K0ðAÞ

The C	-generalization of the Atiyah–Singer
index theorem due to Mishchenko–Formenko, cf.
Kasparov (1988), asserts the equality of the
analytic index and the topological index,

indexðDÞ ¼ indextð�ðDÞÞ 2 K0ðAÞ

Now let M be a compact even-dimensional
spinC manifold. Then there is a spinC Dirac
operator D : C1(M, Sþ)! C1(M, S�), where S� is
the bundle of half-spinors on T	M� L, where L is
a line bundle over M with the property that the
first Chern class of L modulo 2, c1(L)mod 2 is
equal to the second Stieffel–Whitney class of M,
w2(M). Let � be a torsion-free discrete group, and
B� be its classifying space. It is a paracompact
space with the property that it is the quotient of �
acting freely on a contractible space E�. Let C	r (�)
denote the reduced group C	-algebra, and consider
the canonical flat C	r (�) bundle V over B� defined
as follows:

V ¼ fE�� C	r ð�Þg=�

where � acts on the left on C	r (�) and on the right on
E�. Let f : M! B� be a continuous map. Then f 	V
is a flat C	r (�)-bundle over M. Upon choosing a flat
connection on f 	V, we can couple the spinC Dirac
operator DV to act on sections of S� � f 	V. The
ellipticity of DV ensures that it is a C	r (�)-Fredholm
operator, so it has an analytic index, index(DV) 2
K0(C	r (�)) by the earlier discussion, which is
also equal to the topological index indext(�(DV)) 2
K0(C	r (�)).

By Baum, Connes, and Douglas, the K-homology
of B�, K0(B�), is generated by the triples (M, E, f ) as
described above, modulo relations that we will not
present here because of space constraints. The
assembly map


 : K0ðB�Þ ! K0ðC	r ð�ÞÞ

is a homomorphism given by 
([(M, E, f )]) =
index(DV). The Baum–Connes conjecture asserts
that 
 is an isomorphism. There are variants of
this conjecture when � has torsion. The Baum–
Connes conjecture has been verified when � is an
amenable group or, for instance, a word hyperbolic
group. There are also variants of this conjecture for
certain foliations and groupoids, and is an extremely
active area of research. The injectivity of the
assembly map is related to the Novikov conjecture
on the homotopy invariance of the higher signatures
(Kasparov 1988), and the obstructions to the
existence of Riemannian metrics of positive scalar
curvature on compact spin manifolds (Rosenberg
1983, 1989). A variant of the Baum–Connes
conjecture, where the reduced group C	-algebra is
replaced by the twisted reduced group C	-algebra, is
used in the analysis of the noncommutative geome-
try approach to the integer and fractional quantum
Hall effect, and also the gaps in the spectrum of
magnetic Schrödinger operators (Bellissard et al.
1994, Marcolli and Mathai 2001).
Twisted K-theory and the Chern
Character

We begin by reviewing some results due to Dixmier
and Douady (1963). Let M be a smooth manifold, let
H denote an infinite-dimensional, separable, Hilbert
space and let K be the C	-algebra of compact
operators on H. Let U(H) denote the group of
unitary operators on H endowed with the strong
operator topology and let PU(H) = U(H)=U(1) be the
projective unitary group with the quotient space
topology, where U(1) consists of scalar multiples of
the identity operator on H of norm equal to 1. Since
U(H) is contractible in the operator norm topology, it
follows that PU(H) = BU(1) is an Eilenberg–MacLane
space K(Z, 2). Therefore, BPU(H) is an Eilenberg–
MacLane space K(Z, 3). That is, principal PU(H)
bundles P over X are classified up to isomorphism by
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the Dixmier–Douady class DD(P) in H3(X, Z) and
conversely.

For g 2 U(H), let Ad(g) denote the automorphism
T! gTg�1 of K. As is well known, Ad is a
continuous homomorphism of U(H), given the
strong operator topology, onto Aut(K) with kernel
the circle of scalar multiples of the identity where
Aut(K) is given the point-norm topology. Under this
homomorphism we may identify PU(H) with
Aut(K). Define an Azumaya bundle to be a locally
trivial bundle E over X with fiber K and structure
group Aut(K). They are of the form KP = {P�K}=
PU(H) and isomorphism classes of Azumaya bundles
are also parametrized by their Dixmier–Douady
class DD(P) in H3(X, Z) and conversely.

Since K�K ffi K, the isomorphism classes of
locally trivial bundles over X with fiber K and
structure group Aut(K) form a group under the
tensor product, where the inverse of such a bundle
is the conjugate bundle. This group is known as
the infinite Brauer group and is denoted by Br1(X).
So, a restatement of the Dixmier–Douady theorem
is that Br1(X) ffi H3(X, Z) . H3(X, Z) can also
be described in terms of bundle gerbes (Murray
1996).

The twisted K-theory, K�(X, P), is defined as the
K-theory of the C	-algebra of continuous sections of
the Azumaya bundle KP, K�(C(X,KP)). It was
studied in the torsion case by Donovan and Karoubi,
where one can replace the compact operators K by
finite-dimensional matrices, and was studied in the
general case by Rosenberg (1983, 1989). Let F be
the space of all Fredholm operators endowed with
the norm topology. Then, one can form the bundle
of Fredholm operators FP = {P� F }=PU(H), where
PU(H) acts on F via the adjoint action. Consider the
fibration KP ! FP ! GL(CP), where CP = {P� C}=
PU(H) and C=B(H)=K is the Calkin algebra. Since
�0(C(X,KP)) = {0}, we see that �0(C(X,FP)) =
�0(C(X, GL(CP))). Consider the short exact sequence
of C	-algebras,

0! CðX;KPÞ ! CðX;BPÞ ! CðX; CPÞ ! 0

where BP = {P� B(H)}=PU(H) and where PU(H)
acts on B(H) via the adjoint action. It gives rise to
a six-term exact sequence

K0ðCðX;KPÞÞ �! K0ðCðX;BPÞÞ �! K0ðCðX;CPÞÞ
index" #
K1ðCðX;CPÞÞ  � K1ðCðX;BPÞÞ  � K1ðCðX;KPÞÞ

By definition, K1(C(X,CP))ffi �0(C(X,GL(1,CP)))
and a standard argument shows that this is also
equal to �0(C(X,GL(CP))). By Kuiper’s theorem, it is
not difficult to see that K�(C(X,BP))= {0}.
Therefore,

index : �0ðCðX;FPÞÞ ! K0ðX;PÞ

is an isomorphism. Let X1 be a closed subset of X,
and IX1

be the closed ideal of sections of KP that
vanish on X1. Then K�(X, X1, P) is by definition
K�(IX1

). A geometric description of twisted K-theory
in terms of modules for bundle gerbes is described in
Bouwknegt et al. (2002).

Some of the basic properties of twisted K-theory
are listed as follows. Many of these properties
follow from the corresponding properties for the
K-theory of C	-algebras. See Atiyah and Segal and
Bouwknegt et al. (2002).

1. Normalization If P is trivial, then K�(M, P) =
K�(M).

2. Module property K�(M, P) is a module over
K0(M).

3. Pullback If f : N !M is a continuous map,
and P a principal PU(H) bundle over M, then
there is a pullback homomorphism f : K�(M, P)!
K�(N, f(P)).

4. Push-forward Let f : N!M be a smooth proper
map between compact manifolds which is K-
oriented, that is, TN � f 	TM is a spinC vector
bundle over N. Let P be a principal PU(H) bundle
over M. Then there is a pushforward homomorph-
ism, also called a Gysin map, f : K�(N, f !(P))!
K�þd(M, P), where d = dim M � dim N.

5. Homotopy If f : N ! M and g : N !M are
homotopic maps, then the pullback maps f ! = g!

are equal. If in addition, f and g are K-oriented,
then the pushforward maps f! = g! are equal.

6. Excision Let M1 be a closed subset of M and U
be an open subset of M such that U is contained
in the interior of M1. Then the inclusion of
pairs (MnU, M1nU) ,! (M, M1) induces an iso-
morphism in K-theory, K�(M, M1, P) ffi
K�(MnU, M1nU, P jMnU).

7. Exactness Let M1 be a closed subset of M and
� : M1 !M be the inclusion. Let P be a principal
PU(H) bundle over M. Then the short exact
sequence

0! IM1
! CðM;KPÞ ! C M1;KPjM1

� �
! 0

gives rise to the six-term exact sequence in K-theory,

K0ðM;M1;PÞ�!K0ðM;PÞ�!K0ðM1; �
!ðPÞÞ

" #�
K1ðM1; �

!ðPÞÞ �K1ðM;PÞ �K1ðM;M1;PÞ
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8. Cup product Let P be a principal PU(H) bundle
over M and Q be a principal PU(H) bundle over N.
An identificationH�H ffi H gives rise to a principal
PU(H) bundle P�Q over M�N whose Dixmier–
Douady invariant is DD(P�Q) = p	1(DD(P))þ
p	2(DD(Q)), where pj denote projections onto the
jth factor, j = 1, 2. Then there is a canonical map
given by external tensor product,

KiðM;PÞ � KjðN;QÞ ! KiþjðM�N;P�QÞ

called the cup product.
9. Bott periodicity Let P be a principal PU(H)

bundle over M. Bott periodicity says that there is
a canonical isomorphism

K�ðM;PÞ ffi K�þnðM� Rn; �ðPÞÞ

where � : M� Rn !M is the projection onto the
first factor. Let b 2 Kn(Rn) be the Bott element.
Then the isomorphism above is given by �!(x) [
b 2 K�þn(M� Rn,�!(P)) for all x 2 K�(M, P).

There is a natural homomorphism of rings called the
twisted Chern character, which depends both on a
choice of P and a de Rham representative H of DD(P),

ChP : K�ðM;PÞ ! H�ðM;HÞ

Here H�(M, H) denotes the twisted cohomology,
which is by definition the cohomology of the
complex (��(M), d �H^). The twisted Chern char-
acter is characterized by the following axioms:

1. Naturality If f : N !M is a smooth map, and if
x 2 K�(M, P), then Chf(P)(f

!(x)) = f 	(ChP(x)).
2. Additivity If x, y 2 K�(M, P), then ChP(x� y) =

ChP(x)þ ChP(y).
3. ChP respects the K0(M)-module structure of

K0(M, P).
4. Normalization If P is trivial, then ChP reduces

to the ordinary Chern character Ch.

It turns out that the twisted Chern character
induces an isomorphism of the rings K�(M, P)�Q
and H�(M, H). The Chern–Weil representative of the
twisted Chern character is derived in Bouwknegt
et al. (2002).
Twisted K-Theory and Duality in Type II
String Theories

Let E be an oriented S1-bundle over M,

S1�!E
�#
M

characterized by its first Chern class c1(E) 2
H2(M, Z), in the presence of (possibly nontrivial)
H-flux H 2 H3(E, Z). We will argue that the T-dual
of E is again an oriented S1-bundle over M, denoted
by Ê,

Ŝ1�! Ê
�̂#
M

supporting H-flux Ĥ 2 H3(Ê, Z), such that

c1ðÊÞ ¼ �	H; c1ðEÞ ¼ �̂	Ĥ

where �	 : Hk(E, Z)!Hk�1(M, Z) and, similarly, ��	
denote the pushforward maps. Then we can form
the following commutative diagram:
The correspondence space E�M Ê is a circle bundle
over E with first Chern class �	(c1(Ê)), and it is also
a circle bundle over Ê with first Chern class
��	(c1(E)), by the commutativity of the diagram
above. If Ê = E or if Ê = M� S1, then the correspon-
dence space E�M Ê is diffeomorphic to E� S1.

T-duality gives an isomorphism of the twisted
K-theories of E and Ê as well as an isomorphism
between the twisted cohomologies of E and Ê, and
can be expressed in the following commutative
diagram:

K�ðE;PÞ �!T K�þ1ðÊ; P̂Þ

ChP# #ChP̂

H�ðE;HÞ �!T	 H�þ1ðÊ; ĤÞ

where the horizontal arrows are isomorphisms. Here
P is a principal PU(H) bundle over E such that
DD(P) = H and P̂ is a principal PU(H) bundle over
Ê such that DD(P̂) = H. We refer to Bouwknegt
et al. (2004) for details. The T-duality isomorphism
above gives compelling evidence that a type IIA
string theory A on a circle bundle of radius R in the
presence of a background H-flux, and a type IIB
string theory B on a ‘‘T-dual’’ circle bundle of radius
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1/R in the presence of a ‘‘T-dual’’ background H-flux,
are equivalent in the sense that the string states of
string theory A are in canonical one-to-one correspon-
dence with the string states of string theory B.

We briefly mention two other applications of
twisted K-theory. Consider the adjoint action of a
compact connected simple Lie group G on itself,
and the corresponding twisted G-equivariant
K-theory, twisted by a multiple of the generator
of H3(G, Z). The relevance of the equivariant case
to conformal field theory was highlighted by the
result of Freed, Hopkins and Teleman (see Freed
(2002)) that it is graded isomorphic to the
Verlinde algebra of G, with a shift given by the
dual Coxeter number. Here the Verlinde algebra
consists of equivalence classes of positive-energy
representations of the loop group of G which was
originally shown to be a ring in a rather nontrivial
way. On the other hand, the ring structure of the
twisted G-equivariant K-theory of G is just
induced by the product on G, which makes this
result all the more remarkable.

Fractional analytic index theory, developed in
Mathai et al. is a generalization of Atiyah–Singer
index theory, assigning a fractional-valued analytic
index to each projective elliptic operator on a compact
manifold, where the fraction need not be an integer.
These projective elliptic operators act on projective
vector bundles, where the usual compatibility condi-
tion on triple overlaps to give a global vector bundle,
may fail by a scalar factor. These are the geometric
objects in twisted K-theory, when the twist is torsion.
In Mathai et al., a fractional index theorem is
proved, computing the fractional-valued analytic
index of projective elliptic operators essentially in
terms of topological data. The Dirac operator in
the absence of a spin structure is also defined there
for the first time resolving a long standing mystery,
and its index is computed.

Some topics not covered in this brief account of
K-theory include: KK-theory, cf. Blackadar (1986)
and Kasparov (1988), which is natural setting for
the Atiyah–Singer index theorem and its general-
izations, as well as higher algebraic K-theory.
See also: C*-Algebras and Their Classification;
Characteristic Classes; Cohomology Theories;
Equivariant Cohomology and the Cartan Model; Gerbes
in Quantum Field Theory; Index Theorems; Intersection
Theory; Mathai–Quillen Formalism; Spectral Sequences.
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Introduction

To describe transport by a random flow, one needs
to apply the statistical methods to the motion of
fluid particles, that is, to the Lagrangian dynamics.
We first present the propagators describing evolving
probability distributions of different configurations
of fluid particles. We then use those propagators to
describe decay and steady states of a passive scalar
field transported by random flows.

Consider an evolution of a passive scalar tracer
�(r, t) in a random flow. The mean value of the
scalar tracer at a given point is an average over
values brought by different trajectories:

�ðr; sÞh i ¼
Z
Pðr; s; R; 0Þ �ðR; 0Þ dR ½1�

Here, P(r, s; R, t) is the probability density function
(PDF) to find the particle at time t at position R
given its position r at time s. That PDF is called the
propagator or the Green function. Multipoint
correlation functions of the tracer

CNðr; sÞ � �ðr
1
; sÞ . . .�ðr

N
; sÞh i

¼
Z
PNðr; s;R;0Þ�ðR1

;0Þ . . .�ðRN;0ÞdR ½2�

are expressed via the multiparticle Green functions
PN which are the joint PDFs of the equal-time
positions R= (R1, . . . ,RN) of N fluid trajectories.

The trajectory of the fluid particle that passes at
time s through the point r is described by the vector
R(t; r, s) which satisfies R(t; r, t) = r and the stochas-
tic equation

_R ¼ vðR; tÞ þ uðtÞ ½3�

Here, u(t) describes the molecular Brownian motion
with zero average and covariance hui(t)uj(t0)i
= 2��ij�(t � t0). We also consider macroscopic
velocity v as random with various statistical properties
in space and time. There is a clear scale separation
between macroscopic velocity v and molecular
diffusion u that allows one to treat them separately.

Using [3], one can write the Green’s function as
an integral over paths that satisfy q(s) = r and
q(t) = R:

Pðr; s; R; tÞ ¼
�Z

DpDq exp �
Z t

s

{pð�Þ � ½ _qð�Þ
�

� vðqð�Þ; �Þ � uð�Þ�d�
��

v;u

½4�

¼
�Z

DpDq exp �
Z t

s

½{pð�Þ � ð _qð�Þ
�

� vðqð�Þ; �ÞÞ þ �p2ð�Þ� d�
��

v

½5�

¼
�Z

Dq exp

�
� 1

4�

Z t

s

½ _qð�Þ

� vðqð�Þ; �Þ�2 d�

��
v

¼ Pðr; s; R; tjvÞh iv ½6�

The integration over the auxiliary field p in [4]
enforces the delta function of [3]. One passes from
[4] to [5] by averaging over the Gaussian Brownian
noise, and from [5] to [6] by calculating Gaussian
integral over p.

Generally, exact calculations are only possible for
Gaussian random processes short-correlated in time-
like in [5]. The simplest case is the Brownian motion
when the advection is absent. One then obtains from
[6] the Gaussian PDF of the displacement:

PðR; tÞ ¼ ð4��tÞ�d=2e�R2=ð4�tÞ ½7�

which satisfies the heat equation (@t � �r2) P(r, t) = 0.
The short-correlated case is far from being an exotic
exception but rather presents a long-time limit of an
integral of any finite-correlated random function.
Indeed, such an integral can be presented as a sum of
many independent equally distributed random numbers,
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the statistics of such sums is a subject of the central limit
theorem. One can move beyond the central limit
theorem considering the correlation time finite (yet
small comparing to the time of evolution). Such
generalization is the subject of the large deviation
theory. Consider some quantity X which is an integral
of some random function over time t much larger than
the correlation time � . At t� � , X behaves as a sum of
many independent identically distributed random
numbers yi: X =

PN
1 yi with N / t=� . The generating

function hezXi of the moments of X is the product,
hezXi= eNS(z), where we have denoted hezyi� eS(z)

(assuming that the generating function hezyi exists for
all complex z). The PDF P(X) is given by the inverse
Laplace transform (2�i)�1

R
e�zXþNS(z) dz with the

integral over any axis parallel to the imaginary one.
For X / N, the integral is dominated by the saddle point
z0 such that S0(z0) = X=N and

PðXÞ / e�NHðX=N�hyiÞ ½8�

Here H =�S(z0)þ z0S0(z0) is the function of the
variable X=N � hyi; it is called entropy function as it
appears also in the thermodynamic limit in statis-
tical physics. A few important properties of H (also
called rate or Cramér function) may be established
independently of the distribution P(y). It is a convex
function which takes its minimum at zero, that is,
for X equal to the mean value hXi= NS0(0). The
minimal value of H vanishes since S(0) = 0. The
entropy is quadratic around its minimum with
H00(0) = ��1, where � = S00(0) is the variance of y.
We thus see that the mean value hXi= Nhyi grows
linearly with N. The fluctuations X� hXi on the
scale O(N1=2) are governed by the central limit
theorem that states that (X� hXi)=N1=2 becomes for
large N a Gaussian random variable with variance
hy2i � hyi2 � � as in [7]. Finally, its fluctuations on
the larger scale O(N) are governed by the large
deviation form [8]. The possible non-Gaussianity of
the y’s leads to a nonquadratic behavior of H
for (large) deviations from the mean, starting from
X� hXi=N ’ �=S000(0). Note that if y is Gaussian,
then X is Gaussian too for any t, but the universal
formula [8] with H = (X�Nhyi)2=2N� is valid
only for t� � .
Single-Particle Diffusion

For the pure advection without noise, the dis-
placement of the single Lagrangian trajectory is
R(t)� R(0) =

R t
0 V(s) ds, with V(t) = v(R(t), t) being

the Lagrangian velocity. One can show that V(t) is
statistically stationary in the frame of reference with
no mean flow and under statistical homogeneity and
stationarity of the incompressible Eulerian velocities.
For �= 0, the mean square displacement satisfies the
equation

d

dt
h½RðtÞ � Rð0Þ�2i ¼ 2

Z t

0

hVð0Þ � VðsÞi ds ½9�

The behavior of the displacement is crucially
dependent on the Lagrangian correlation time � of
V(t) defined byZ 1

0

hVð0Þ � VðsÞi ds ¼ hv2i� ½10�

No general relation between the Eulerian and
the Lagrangian correlation times has been estab-
lished, except for the case of short-correlated
velocities. For times t� � , the two-point function
in [9] is approximately equal to hV(0)2i= hv2i.
The fluid particle transport is then ballistic with
h[R(t)� R(0)]2i ’ hv2it2 and the PDF P(R, t) is
determined by the whole single-time velocity PDF.
When the correlation time of V(t) is finite (a generic
situation in a turbulent flow where � is of order of a
large-scale turnover time), an effective diffusive regime
is expected to arise for t� � with h(R(t)� R(0))2i ’
2hv2i�t. Indeed, the particle displacements over time
segments much larger than � are almost independent.
At long times, the displacement �R(t) behaves then as a
sum of many independent variables and falls into the
class of stationary processes treated in the previous
section. In other words, �R(t) for t� � becomes
a Brownian motion in d dimensions, normally
distributed with h�Ri(t)�Rj(t)i ’ Dij

e t, where the
so-called eddy diffusivity tensor is as follows:

Dij
e ¼

1

2

Z 1
0

hVið0ÞVjðsÞ þ Vjð0ÞViðsÞi ds ½11�

The symmetric second-order tensor Dij
e is the only

characteristics of the velocity which matters in this
limit of t� � . The trace of the tensor is equal to
hv2i� , that is, equal to the large-time value of the
integral in [9], while its tensorial properties reflect
the rotational symmetries of the advecting velocity
field. If the latter is isotropic, the tensor reduces to a
diagonal form characterized by a single scalar value
De. The main problem of turbulent diffusion is to
obtain the effective diffusivity tensor given the
velocity field v and the value of the molecular
diffusivity �.
Two-Particle Dispersion in Smooth
Flows

Even when velocity v(R, t) is a smooth function of
the coordinates, Lagrangian dynamics can be quite
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complicated. Indeed, d ordinary differential equations
_R = v(R, t) generally produce chaotic dynamics (for
d � 3 already for steady flows and for d = 2 for time-
dependent flows). The tools for the description of what
is called chaotic advection are similar to those of the
theory of dynamical chaos. The description consistently
exploits two simple ideas: to single out the variables
that can be represented by the sum of a large number of
independent random quantities and to separate vari-
ables that fluctuate on different timescales.

The distance, R12 = R1 � R2, between two fluid
particles with trajectories Ri(t) = R(t; r i) passing at
t = 0 through points r i satisfies the equation

_R12¼ vðR1; tÞ � vðR2; tÞ ½12�

If the velocity field can be considered smooth on
the scale R12, then one expands v(R1, t)� v(R2, t) =
�(t, R1)R12, introducing the strain matrix � which
can be treated as independent of R12. The distance
thus satisfies locally a linear system of ordinary
differential equations (we omit subscripts replacing
R12 by R)

_RðtÞ ¼ �ðtÞRðtÞ ½13�

This equation, with the strain treated as given and
R(0) = r, may be explicitly solved for arbitrary �(t)
only in the 1D case

ln½RðtÞ=r� ¼ ln WðtÞ ¼
Z t

0

�ðsÞ ds � X ½14�

When t is much larger than the correlation time � of
the strain, the variable X is a sum of N independent
equally distributed random numbers with N = t=�
and one can apply [8]. In the multidimensional case,
to use the large deviation theory, one introduces the
evolution matrix W such that R(t) = W(t)R(0). The
modulus R is expressed via the positive symmetric
matrix WTW. In almost every realization of the
strain, the matrix t�1 ln WTW stabilizes at t !1,
that is, its eigenvectors tend to d-fixed orthonormal
eigenvectors f i. To understand that intuitively,
consider some fluid volume, say a sphere, which
evolves into an elongated ellipsoid at later times. As
time increases, the ellipsoid is more and more
elongated and it is less and less likely that the
hierarchy of the ellipsoid axes will change. The
limiting eigenvalues

�i ¼ lim
t!1

t�1 ln jWf ij ½15�

are called Lyapunov exponents. The major property
of the Lyapunov exponents is that they are realiza-
tion independent if the flow is ergodic (i.e., spatial
and temporal averages coincide). The relation [15]
states that two fluid particles separated initially by r
pointing into the direction f i will separate (or
converge) asymptotically as exp (�it). The incom-
pressibility constraints det (W) = 1 and

P
�i = 0

imply that a positive Lyapunov exponent will exist
whenever at least one of the exponents is nonzero.
Consider indeed

EðnÞ ¼ lim
t!1

t�1 lnh½RðtÞ=r�ni ½16�

whose derivative at the origin gives the largest
Lyapunov exponent �1. The function E(n) obviously
vanishes at the origin. Furthermore, E(�d) = 0, that
is, incompressibility and isotropy make that hR�di is
time independent as t!1. Apart from n = 0, �d,
the convex function E(n) cannot have other zeroes if
it does not vanish identically. It follows that dE=dn
at n = 0, and thus �1, is positive. A simple way to
appreciate intuitively the existence of a positive
Lyapunov exponent is to consider the saddle-point
2D flow vx =�x, vy =��y with the axes randomly
rotating after time interval T. A vector initially at
the angle 	 with the x-axis will be stretched after
time T if cos	 � [1þ exp (2�T)]�1=2, that is, the
measure of the stretching directions is larger
than 1=2.

A major consequence of the existence of a positive
Lyapunov exponent for any random incompressible
flow is the exponential growth of the interparticle
distance R(t). In a smooth flow, it is also possible to
analyze the statistics of the set of vectors R(t) and to
establish a multidimensional analog of [8]. The idea is
to reduce the d-dimensional problem to a set of d
scalar problems for slowly fluctuating stretching
variables excluding the fast fluctuating angular degrees
of freedom. Consider the matrix I(t) = W(t)WT(t),
representing the tensor of inertia of a fluid element
such as the above-mentioned ellipsoid. The matrix is
obtained by averaging Ri(t)Rj(t)d=‘2 over the initial
vectors of length ‘ and I(0) = 1. Introducing the
variables that describe stretching as the lengths of the
ellipsoid axis e2
1 , . . . , e2
d , one can deduce similarly to
[8] the asymptotic PDF:

Pð
1; . . . ; 
d; tÞ

/ exp �t Hð
1=t � �1; . . . ; 
d�1=t � �d�1Þ½ �

	 �ð
1 � 
2Þ . . . �ð
d�1 � 
dÞ

	 �ð
1 þ � � � þ 
dÞ ½17�

The entropy function H depends on the statistics
of �. In the �-correlated case, H is everywhere
quadratic:

HðxÞ / d�1
Xd

i¼1

x2
i ; �i / dðd � 2iþ 1Þ ½18�
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Two-Particle Dispersion in Nonsmooth
Flows

To consider dispersion in the inertial interval of
turbulence, one should assume �v(r, t)j / r�, where
generally � < 1. Rewriting then eqn [12] for the
distance between two particles as _R = �v(R, t), we
infer that dR2=dt = 2R � �v(R, t) / R1þ�. It suggests

RðtÞ1�� � Rð0Þ1��/ t ½19�

For large t, R(t) / t1=(1��), with the dependence of
the initial separation quickly forgotten. Of course,
for the random process R(t), relation [19] is of the
mean-field type and should pertain (if true) to the
large-time behavior of the averages ðhR(t)pi /
tp=(1��), for p > 0Þ implying their super-diffusive
growth, faster than the diffusive one / tp=2. The
power-law scaling may be amplified to the scaling
behavior of the PDF of the interparticle distance,
P(R, t) =�P(�R,�1��t). The power-law growth of
the second moment, hR(t)2i/ t3, is the celebrated
Richardson dispersion relation, which was the first
quantitative phenomenological prediction in devel-
oped turbulence. It seems to be confirmed by
experimental data and the numerical simulations. It
is important to remark that, even assuming the
validity of the Richardson relation, it is impossible
to establish general large-time properties of the PDF
P(R; t) such as those for the single-particle PDF of
the distance between two particles. This is because
the correlation time of the Lagrangian velocity
difference, R=�v(R) / hR2i1=3/ t, is comparable
with the total time of the process.

It is instructive to contrast the exponential growth
[16] of the distance between the trajectories with the
power-law growth [19]. In a smooth flow, the closer
two trajectories are initially, the more time is needed
to effectively separate them. In a nonsmooth
turbulent flow, the trajectories separate in a finite
time independent of their initial distance R(0),
provided that the latter is also in the inertial range.
This explosive separation of trajectories results in a
breakdown of the deterministic Lagrangian flow
since the trajectories cannot be labeled by the
initial conditions. That agrees with the fundamental
theorem stating that the ordinary differential equa-
tion _R = v(R, t) does not have unique solution
if v(r, t) is non-Lipschitz. As shown by the
example of the equation _x = jxj� with two solutions
x = [(1� �)t]1=(1��) and x = 0 both starting at zero,
one should expect multiple Lagrangian trajectories
starting or ending at the same point for velocity
fields with � < 1. Even though the deterministic
Lagrangian description breaks down, the statistical
description is still possible and one can make
sense of propagators like P(r, s; R, tjv). They are
expected to be weak solutions of the equation
[@t �r � v(R, t)]P(r, s; R, tjv) = 0 in the nonsmooth
case. According to this assumption, the Lagrangian
trajectories behave stochastically already in a
given velocity field and for negligible molecular
diffusivity – and not only due to a random noise or
to random fluctuations of the velocities.

The general conjecture about the existence and
diffuse nature of propagators is known to be true for
the Gaussian ensemble of velocities decorrelated in
time (Kraichnan 1968):

hviðr; tÞvjðr 0; t0Þi ¼ 2�ðt � t0ÞDijðr � r 0Þ ½20�

Here the Lagrangian velocity v(R, t) has the same
white noise temporal statistics as the Eulerian
velocity v(r, t) for fixed r and the displacement
along a Lagrangian trajectory R(t)� R(0) is a
Brownian motion for all times. To model non-
smooth velocity field of turbulence, we choose
Dij(r) = D0�

ij � (1=2)dij(r) and

dijðrÞ ¼ D1½ðd � 1þ �Þ�ijr � � �r ir jr ��2� ½21�

Here D0 gives the eddy diffusivity of a single fluid
particle (discussed earlier), whereas dij(r) describes
the statistics of the velocity differences. For 0 < � < 2,
the Kraichnan ensemble is supported on the velo-
cities that are Hölder continuous in space with a
fixed exponent � arbitrarily close to �=2. It mimics
this way the main property of turbulent velocities.
The rough (distributional) behavior of Kraichnan
velocities in time, although not very physical, is not
expected to modify essentially the qualitative prop-
erties of propagators (it is the spatial regularity, not
the temporal one, of a vector field that is crucial for
the uniqueness of its trajectories).

In exactly the same way as one derives [6] and [7]
from [4], one gets P(R, t) = j
̂j1=2(4�t)�d=2e�
ijRiRj=4t,
where (
̂�1)ij = Dij(0)þ ��ij. In much the same way
one can examine the two-particle PDF. The PDF
P2(r, s; R, t) of the distance R between two particles
satisfies the equation

ð@t �M2ÞP2ðr; s; R; tÞ ¼ �ðt � sÞ�ðr� RÞ ½22�

where M2 = �D1(d � 1)r1�d@rr
d�1þ�@r and [22] can

be readily solved:

lim
r!0
P2ðr; s; R; tÞ / Rd�1

jt � sjd=ð2��Þ

	 exp �const:
R2��

jt � sj

� �
½23�
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That confirms the diffusive character of the limiting
process describing the Lagrangian trajectories in
fixed non-Lipschitz velocities: the endpoints of the
process stay at finite distance when the initial points
converge. The PDF [23] changes from Gaussian to
log–normal when � changes from 0 to 2. The
Richardson dispersion hR2(t)i / t3 is reproduced
for �= 4=3.
Multiparticle Propagators

In studying multiparticle statistics, an important
question is what memory of the initial configuration
remains when final distances far exceed initial
ones. To answer this question, one must analyze
the conservation laws of turbulent diffusion.
Many-particle evolution in nonsmooth velocities
exhibits nontrivial statistical integrals of motion
(martingales) that are proportional to the positive
powers of the distances. The integrals involve
geometry in such a way that the distance growth is
balanced by the decrease of the shape fluctuations.
The existence of multiparticle conservation laws
indicates the presence of a long-time memory and is
a reflection of the coupling among the particles due
to the simple fact that they are all in the same
velocity field. The conserved quantities may be easily
built for the limiting cases. Already for a smooth
velocity, the d-volume �i1i2...id Ri1

12 . . . Rid
1d is indeed

preserved for ðd þ 1Þ Lagrangian trajectories. In the
opposite case of a very irregular velocity, the fluid
particles undergo a Brownian motion. The distances
between the Brownian particles grow according to
hR2

nm(t)i= R2
nm(0)þDt. The statistical integrals

of motion are hR2
nm � R2

pri, h2(d þ 2)R2
nmR2

pr �
d(R4

nm þ R4
pr)i, and an infinity of similarly built

harmonic polynomials (zero modes of Laplacian).
The statistics of the relative motion of N particles

is described by the joint PDF averaged over rigid
translations: Prel

N (r, s; R, t) =
R
PN(s, r; Rþ 
, t) d
.

For smooth velocities,

Prel
N ðr;0; R; tÞ ¼

Z DYN
n¼1

�ðRnþ
�WðtÞrnÞ
E

d
 ½24�

Such PDF depends only on the statistics of the
evolution matrix W(t) discussed earlier. Under the
evolution governed by W(t), all distances between
points grow exponentially for large times while their
ratios Rnm=Rkl tend to a constant. For whatever initial
positions, asymptotically in time, the points tend to be
situated on the line. Note that the existence of
deterministic trajectories leads to the collapse property
limrN!rN�1

Prel
N (r; R; t) =Prel

N�1(r 0; R0; t) �(RN�1 � RN),
where R0 = (R1, . . . , RN�1).
The long-time asymptotics of the propagators in
the nonsmooth case can be found explicitly for the
Kraichnan ensemble of velocities:

ð@t þMNÞPrel
N ðr; s; R; tÞ ¼ �ðt � sÞ�ðR� rÞ ½25�

MN ¼
X
n<m

dijðrnmÞrr i
n
rr j

m
½26�

When initial points get close or final points far
apart and time gets large, the multiparticle PDF is
factorized:

lim
�!0
Prel

N ð�r; 0; R; tÞ ¼
X



��
 f
ðrÞg
ðR; tÞ ½27�

where f
 must be taken as zero modes of My
N and its

powers while @tg
 =�MNg
. The remarkable fea-
ture of the zero modes of My

N is that they are
conserved in mean by the Lagrangian evolution:

@t f ðRðtÞÞh i ¼
Z

f ðRÞMNPrel
N ðr; 0; R; tÞ dR0

¼
Z
Prel

N ðr; 0; R; tÞMy
Nf ðRÞ dR0 ¼ 0

The scaling exponents of the zero modes depend, in
a nontrivial way, on the number of particles N. For
�� 1 and d� 1, one finds

�N ¼
N

2
ð2� �Þ �NðN � 2Þ

2ðd þ 2Þ � ½28�

Passive Scalar

For practical applications, for example, in the
diffusion of pollution, the most relevant quantity is
the average h�(r, t)i which can be expressed via the
single-particle propagator. As discussed earlier, for
times longer than the Lagrangian correlation time,
the particle diffuses and h�i obeys the effective heat
equation

@t �ðr; tÞh i ¼ Dij
e þ ��ij

� 	
rirj �ðr; tÞh i ½29�

with the eddy diffusivity Dij
e given by [11]. The

simplest decay problem is that of a uniform scalar
spot of size L released in the fluid. Its averaged
spatial distribution at later times is given by the
solution of [11] with the appropriate initial condi-
tion. On the other hand, the decay of the scalar in
the spot is governed by the multipoint Lagrangian
propagators. Taking the point of measurement
inside the spot, consider the single-point moment
h�Ni(t) described by [2]. If there is no molecular
diffusion and the trajectories are unique (spatially
smooth velocity), particles that end at the same
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point remained together throughout the evolution
and all the moments are preserved. On the contrary,
when velocity is nonsmooth and the propagator is
diffusive, we expect the decay even at the limit �! 0.
This is an example of the so-called dissipative
anomaly: the symmetry t! �t remains broken
even when the symmetry-breaking factor � goes
to zero. Consider a spherical spot of � released in
a spatially smooth incompressible 3D flow with
�1 > �2 > 0 > �3. During the time less than
td = j�3j�1 ln (L=rd), diffusion is unimportant and �
inside the spot does not change. At larger time, the
dimensions of the spot with negative Lyapunov
exponents are frozen at rd, while the rest keep
growing exponentially, resulting in an exponential
growth of the total volume exp (
1 þ 
2). That leads
to an exponential decay of scalar moments averaged
over velocity statistics: h[�(t)]Ni/ exp (��Nt). The
decay rates �N can be expressed via the PDF [18] of
stretching variables 
i. Since � decays as the inverse
volume,

h½�ðtÞ�Ni /
Z

d
1d
2 exp �tHð
1=t � �1; 
2=t � �2Þ½

�Nð
1 þ 
2Þ� ½30�

At large t, the integral is determined by the saddle
point. At small N, the saddle point lies within the
parabolic domain of H so �N increases with N
quadratically. At large N, the main contribution is
due to the realization with smallest possible spot of
size L so �N saturates.

For the decay in incompressible nonsmooth flow,
using the Kraichnan model one gets

h�2nðtÞi ¼
Z
P2n 0; R;�1ð ÞC2n t1=ð2��ÞR;0


 �
dR ½31�

When J0 =
R

C2(r, t)dr 6¼ 0, the function td=(2��)

C2(t1=(2��)r,0) tends to J0 �(r) in the long-time limit
and [31] is reduced to

h�2nðtÞi 
 ð2n� 1Þ!! Jn
0tnd=ð��2Þ

	
Z
P2n 0; R1;R1; . . . ;Rn;Rn;�1ð Þ dR ½32�

The decay is self-similar: P(t, �) = td=2(2��)

Q(td=2(2��)�). That means that the PDF of �=
ffiffi
��
p

is asymptotically time independent, with ��(t) =
�h(r�)2i being time-dependent (decreasing) dissipa-
tion rate. This should be contrasted with the lack of
self-similarity for the smooth case.
One can also consider steady state of � pumped by
a source 	(r, t):

@t�þ ðv � rÞ�þ ��� ¼ 	 ½33�

Assuming that pumping is white Gaussian with a
zero mean and variance 	(r1, t1)	(r2, t2) =�(r12)�
(t2 � t1), r ij = r i � r j, one can express the correlation
functions via the multiparticle propagators. For
example, assuming zero conditions at the distant
past and space homogeneity, one gets

C2ðr; tÞ ¼
Z t

�1
dt0
Z

PðR; r; t0Þ�ðRÞ dR ½34�

The function �(R) is nonzero within the correlation
scale L of the pumping which restricts integration to
R(t) < L. For smooth velocity, this gives
F2(r) = j�3j�1�(0) ln (L=r) at r < L. For nonsmooth
velocity, the statistics of scalar fluctuations at
small scales is described by the set of structure
functions SN(r) � h[�(r)� �(0)]Ni/ r�N with the
scaling exponents determined by the zero
modes (see Falkovich et al. (2001)). Therefore,
existence of Lagrangian statistical invariants
explains the anomalous scaling of passive scalar
(here, anomaly means that scale invariance broken
by pumping is not restored even when the pumping
scale goes to infinity).

See also: Anomalies; Intermittency in Turbulence; Large
Deviations in Equilibrium Statistical Mechanics; Lyapunov
Exponents and Strange Attractors; Random Walks in
Random Environments; Stochastic Differential Equations;
Turbulence Theories.
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Introduction

Large deviation theory (LDT) deals with the study
of probabilities of extremely rare events. As an
example, consider the case of independent identi-
cally distributed random variables �1, . . . ,�N with
the mean value E(�i) = m. Then the typical devia-
tions of the sum MN = �1 þ � � � þ �N from its mean
value Nm are of the order of

ffiffiffiffiffi
N
p

, while in LDT we
study the probabilities of the deviations which are
linear in N. In ‘‘good’’ cases we know that for b > 0

PrfMN �Nm � bNg � expf�IðbÞNg
as N !1

½1�

where I(�) > 0 is the ‘‘rate’’ function.
Questions of LDT are very natural in statistical

mechanics, and they have deep physical meaning,
notwithstanding the fact that the corresponding
events are rare. One reason is that (some) rare
events in the grand canonical ensemble become
typical events in the canonical ensemble.

An interesting feature of LDT in statistical
mechanics is that the behavior [1] of LD is not
universal, and sometimes is replaced by a nonclassi-
cal one:

PrfMN �Nm � bNg � exp �~IðbÞN�
� �

½2�

with � < 1. That usually happens in the ‘‘phase
transition’’ regime, and then the quantity ~I(b), as
well as the exponent �, have very much to do with
the geometry of a droplet of one phase formed inside
the other.

Below, we will illustrate all these features on the
example of the Ising model.
The Ising Model in the Finite Box

Our random variables �x will take values �1, with
x 2 Zd. They are called spins. For every finite box
� � Zd, we will define Gibbs states in �. To do this
we need the Hamiltonians

H�;�ð�Þ ¼ �
X
x;y n:n:
x;y2�

�x�y �
X
x;y n:n:

x2�;y 62�

�x�y

Here, � is some spin configuration on Zd, which is
called ‘‘boundary condition,’’ while � 2 �� is any
spin configuration in �.
The ‘‘grand canonical Gibbs measure’’ ��, �, T in �
with boundary condition � at inverse temperature
�= T�1 is given by

��;�;Tð�Þ ¼ Z�1
�;�;T expð��H�;�ð�ÞÞ ½3�

where

Z�;�;T ¼
X
�2��

expð��H�;�ð�ÞÞ

is called ‘‘partition function’’; it makes the measure
[3] to be a probability distribution.

The boundary condition � 	 þ1(�1) will be
denoted by þ(�). For every value of T, the Gibbs
measures ��(l),�, T with (�)-boundary condition in
the cubic box �(l) of size l converge, as l!1, to
the probability measures that we will denote by
��, T . If the two happen to be different, then �þ, T is
called the (þ)-phase, and ��, T the (�)-phase. That
happens to be the case iff the temperature T is lower
than the critical temperature Tc = Tc(d). The critical
temperature depends on dimension; Tc(1) = 0, while
Tc(d) > 0 for d � 2. The expectation

E�þ;T ð�0Þ 	 mð�Þ

is called spontaneous magnetization; m(�) > 0 iff
� > T�1

c .
LD Properties of the Gibbs States ��(l),�, T

In what follows, we will discuss the LD properties of
the sum M� = �1 þ � � � þ � �j j, where the spins
�x, x 2 �, are distributed according to the Gibbs
state ��,�, T . Note that E��, T

(�0) =�m(�).
Classical Case

If we look on the LDs of the sum M� when the
temperature T is high enough (in which case the
limiting states �þ, T and ��, T coincide), or else if the
temperature is low, and the deviations are negative –
that is, we consider the events M� þ �j jm(T�1) 
 b �j j
with b < 0 – then their probabilities behave classically:

There exists a (high) temperature T0 such that if
T > T0, then

lim
�!Zd

1

j�j Pr M� þ �j jm T�1
� �


 b �j j
� �

¼ �ITðbÞ for b 
 0 ½4�

lim
�!Zd

1

j�j Pr M� þ �j jm T�1
� �

� b �j j
� �

¼ �ITðbÞ for b � 0 ½5�
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where the function IT(b) � 0 is strictly concave on
the segment (m(T�1)� 1, m(T�1)þ 1). It vanishes
at only one point b = 0.

There exists a (low) temperature T1 such that if
T < T1, then the relation [4] holds with the function
IT(b) > 0 strictly concave on the segment (m(T�1)�
1, 0). The limit [5] also does exist, but it can vanish
once we are in the phase transition region. In order
to see some nontrivial behavior, we have to change
the normalization 1= �j j in [5].

Nonclassical Case

The proper normalization happens to be the surface
term, 1= �j j(d�1)=d:

There exists a temperature T1 such that if T < T1,
then

lim
�!Zd

1

j�jðd�1Þ=d Pr M� þ �j jm T�1
� �

� b �j j
� �

¼ �WT bð Þ for b > 0 ½6�

The function WT(b) obeys WT(b) = b(d�1)=dwT , with
wT > 0, provided the value b > 0 is not too large:
b 
 b(d), where b(d) is some constant, depending on
the dimension and temperature; one can show that
b(d) � 1=2d. For larger b’s the dependence is more
complex.

The key object here is the constant wT . To obtain
it, one has to solve the following variational
problem. Let �T(�), � 2 Sd�1 be the surface tension
between the (þ)-phase and the (�)-phase of the Ising
model at the temperature T. Then, for every closed
compact (hyper)surface Md�1 � Rd, we define its
surface energy as

WT Mð Þ ¼
Z

M

�T �sð Þ ds

where �s is the normal vector to M at s 2M. The
functional WT(M) has the meaning of the energy of
the M-shaped droplet of the (þ)-phase floating in the
(�)-phase. It is called the ‘‘Wulff functional.’’ Let
WT be the surface which minimizes WT(�) over all
the surfaces enclosing the unit volume. Such a
minimizer does exist and is unique up to translation.
It is called the ‘‘Wulff shape.’’ The value wT is just
the surface energy of the Wulff shape:

wT ¼ WT WTð Þ

The value b(d) is defined as the maximal value of
b’s, for which the dilatation b1=dWT can fit into the
unit cube. For higher values of b, the shape of the
(þ)-phase droplet in the cube with (�)-boundary
condition is deformed by its walls, so its surface
energy is given by a more complicated variational
problem.
Moderate Deviations and the Droplet
Condensation

The reason behind the different order of the
probabilities of the events M� þ �j jm(T�1) 

b �j j, b < 0, and M� þ �j jm(T�1) � b �j j, b > 0, at
low temperatures is the following. A typical config-
uration contributing to the first event contains many
small droplets of (�)-spins, of size 
 ln �j j, floating
in the sea of (þ)-spins. On the contrary, in the case
of the second event a typical configuration con-
tains, in addition to small droplets, one large
droplet of the size of �. It has a random shape,
but in the limit �! Zd that shape converges to a
nonrandom one, which happens to be the Wulff
shape WT . (The precise meaning of that statement
depends on dimension; in case d = 2 the conver-
gence holds in the Hausdorff metrics, while in
higher dimensions it is known only in L1 sense.)
That statement makes the following question
natural: consider the event

M� � E M�ð Þ � �j j	; 0 < 	 < 1

For which 	 should we expect, in addition to
microscopic (þ)-droplets of size 
 ln �j j, the forma-
tion of a large droplet, of volume � �j j	, in a
corresponding typical configuration? In other
words, how many extra (þ)-spins should we pump
into our systems in order for the microscopic
droplets to condense into a macroscopic one? (In
the formulation of this question, we have to use the
expectation E(M�) instead of the asymptotically
equivalent quantity � �j jm(T�1). The difference,
E(M�)þ �j jm(T�1) � O( @�j j), being irrelevant in
the LD case, becomes significant here.)

The answer is the following:

� if 	 < d=(d þ 1), then a typical configuration
contains only microscopic droplets;
� if 	 > d=(d þ 1), then any typical configuration

contains, in addition to microscopic droplets, one
large droplet of volume � �j j	.

Therefore, the condensation happens at the value
	 = d=(d þ 1). This picture has its counterpart in the
behavior of the probabilities of ‘‘moderate deviations’’
(MD), that is, events when M� þ �j jm(T�1) � �j j	:

� if 	 < d=ðd þ 1Þ, then the deviation is due to
independent fluctuations of sizes of many small
droplets, and the usual Gaussian behavior holds:

Pr M� � E M�ð Þ � �j j	f g

� exp � �j j	ð Þ2

2Var M�ð Þ

( )
¼ exp �c �j j2	�1

n o
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� if 	 > d=ðd þ 1Þ, then the deviation is due to the
formation of a large droplet, and so

Pr M� � E M�ð Þ � �j j	f g � exp �c0 �j j	ððd�1Þ/dÞ
n o

Note that the two estimates match at 	= d=(d þ 1).
Other Questions

There are many related questions; some are partially
solved, others are widely open, if considered on a
rigorous mathematical level.

One can ask about the asymptotic behavior of
probabilities of the events like

M� � E M�ð Þ ¼ b�

where the values b� lie in the LD or MD region. The
difference between such questions and those treated
above is of the same nature as the difference between
the integral and the local limit theorems. Partial answers
to them are given in Dobrushin and Shlosman (1994).

Many results about the Wulff shape and its
relation to the Ising model are known, starting by
Dobrushin et al. (1992). Some are still challenging.
One such question concerns the so-called roughening
phase transition. It is known rigorously that the
Wulff shape WT in the d � 3 Ising model has flat
facets at low temperatures T. It is believed that such a
feature holds true only for T < TR, where the
roughening temperature TR is strictly less than the
critical temperature Tc(d) for d = 3. At the tempera-
tures T 2 (TR, Tc(3)), the Wulff shape WT does not
have facets. This conjecture seems to be very difficult.

The question about the typical behavior of
the MD of the Ising model at the threshold
value M� � E(M�) � �j jd=(dþ1) was recently
answered in Biscup et al. (2003).
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Introduction

Topological strings have been well studied since
they were introduced in the early 1990s. Essen-
tially, they are simplified string theories that
capture the information about a sector of the full
(or ‘‘physical’’) string theory. Thus, while sharing
many of the structural features of usual string
theory, they hold out the possibility of being
amenable to explicit calculations. This is especially
true with regard to stringy quantum corrections
(the higher genus contributions from the point of
view of the string world sheet), which are normally
rather intractable in the full physical string theory.
This has allowed them to play a useful role in
enhancing the understanding of string theory and
many of its mysterious quantum properties, such as
the various dualities.
In particular, in the last several years, topological
strings have served as an important laboratory for
testing and understanding the connection between the
large-N expansion of gauge theories and closed-
string theories. In this article we will sketch how
this connection is illustrated in a duality between
large-N Chern–Simons gauge theory and closed
topological string theories. We will survey the origin
and current status of these developments and
indicated some of its remarkable mathematical
ramifications.
Background

In order to appreciate the conjecture relating the
Chern–Simons theory and topological string the-
ories, we need to go back to the seminal work of
’t Hooft, who pointed to the connection between the
large-N expansion of gauge field theories and string
theories.

The starting point is a gauge field theory (with,
say, gauge group U(N)), where we take the limit of
the rank N of the gauge group to infinity (see Brezin
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and Wadia (1993) for a collection of papers on the
topic). The idea is then to make an expansion in
inverse powers of N for various observables such as
the free energy and correlation functions. For
definiteness, let us take a gauge theory containing
only gauge fields A in the adjoint representation of
U(N). The quantum theory is (schematically) defined
by the path integral

Z ¼
Z
½DA�eiSðAÞ ½1�

For now, the action S(A) for the gauge fields is left
unspecified. It could be either the usual Yang–Mills
functional or of the Chern–Simons form which we
describe below. S(A) is normalized in such a
way that the gauge coupling constant, denoted
by �, only appears via an overall multiplicative
factor of 1=�.

Then the expression, for instance, for the free
energy F = ln Z has an expansion in a power series
in �, whose individual terms are given by the usual
Feynman diagrammatic rules. Namely, we have is
a sum over connected vacuum diagrams (those
without any external legs) formed from the
vertices determined by the action S(A). Even
without going into the details of the action, we
can write down the dependence on N and �
coming from a diagram with h faces, V vertices,
and E edges. Every edge is associated with a
propagator (arising from the inverse of the quad-
ratic term in S(A)) and thus comes with a weight
of �. Every vertex, coming from the cubic and
higher-order terms in S(A), comes with a factor of
��1. There is a factor of N coming from summing
over the color indices that circulate in every loop
(face). We thus get a weight of Nh�E�V and so the
total contribution to the free energy can be
organized as

F ¼
X1

g¼0;h¼1

Cg;hNh�2g�2þh

¼
X1

g¼0;h¼1

Cg;hN2�2g�2g�2þh ½2�

Here we have defined � � �N, the ’t Hooft
coupling, as the combination that will be kept
fixed when taking the limit of large N. We have
also used the fact that V � Eþ h = 2� 2g, where g
is the number of handles of the closed two-
dimensional surface one can associate with the
Feynman diagram. (It is best to visualize the
Feynman diagram as a ‘‘fatgraph’’ which forms
the skeleton of a closed Riemann surface.) The
coefficients Cg,h represent the sum of the
contributions from all genus g diagrams with h
boundaries and depend on the details of the
theory.

We note that the reorganization of the contribu-
tions to the free energy is reminiscent of the genus
expansion in a string theory. In fact, eqn [2] as it
stands looks like an open-string expansion on world
sheets with g handles and h boundaries. Indeed, in
many cases the gauge theory arises as a limit of an
open-string theory. (Recall that a massless nonabe-
lian gauge boson is one of the low-lying excitations
of an open-string theory.) So the double expansion
in terms of g and h is not too surprising.

However, the interesting conjecture of ’t Hooft
is in the relation to closed-string theory. Note
that the expansion in inverse powers of N depends
only on the number of handles g. In fact, 1=N
seems to play the role of closed-string coupling in
that it suppresses higher genus diagrams. The total
contribution to a given genus g comes from
summing over all the holes h in eqn [2], for
example,

F ¼
X1
g¼0

N2�2gFgð�Þ ½3�

The conjecture is to identify this with a closed-string
expansion in which Fg(�) is a closed-string ampli-
tude on a genus g Riemann surface. (In carrying out
the sum over the holes, we have assumed the
existence of a radius of convergence. This is
plausible since the number of planar diagrams
(g = 0), for instance, grows only exponentially with
the number of holes.) The question, since ’t Hooft,
has been: what is this closed-string theory? In other
words, what is the background on which the closed
string propagates?

A breakthrough came from Maldacena’s identi-
fication of the background for the particular case of
U(N) N = 4 supersymmetric Yang–Mills theory.
His conjecture was that this theory is dual to type
IIB closed-string theory on AdS5 � S5 with a
curvature scale set by � and with closed-string
coupling / �=N. This proposal passed a number of
nontrivial checks and is widely held to be true. It
also stimulated the search for closed-string duals to
other large-N gauge theories.

In what follows, we explain how the conjecture of
’t Hooft has a nice realization in the case of three-
dimensional U(N) Chern–Simons gauge theory on
S3. The dual closed-string theory, obtained by
summing over the holes, turns out to be the
A-model topological string on the (six-dimensional)
resolved conifold background. The parameter �
maps into a Kahler parameter in the closed-string
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geometry and once again the closed-string coupling
is /�=N.
The Large-N Expansion of Chern–Simons
Theory

Nonabelian Chern–Simons theory is based on the
following action functional for the U(N) gauge
connection A:

SCSðAÞ ¼
k

4�

Z
M

tr A ^ dAþ 2
3 A ^ A ^ A

� �
½4�

Here M is a three-dimensional manifold. k is called the
level and is integer quantized for the path-integral
equation [1] to be single valued. Note that, classically,
� as defined earlier is proportional to 1=k. One of the
nice properties of SCS(A) is that it is independent of the
metric on M, unlike the Yang–Mills functional. Thus,
it is a prototype of a topological field theory. In fact,
the observables in this theory capture topological
information about the 3-manifold M.

Witten succeeded in quantizing the Chern–
Simons theory by relating its Hilbert space to the
space of conformal blocks in the two-dimensional
U(N) WZW theory. (for more details on the
quantization, see Chern-Simons Models: Rigorous
Results). Here, merely the answers for various
observables in the theory will be quoted. In
particular, the free energy for the theory on S3

can be written in a completely explicit form:

ZðS3;N; kÞ ¼ exp FðS3;N; kÞ

¼ 1

ðN þ kÞN=2
YN�1

j¼1

2 sin
j�

N þ k

� �N�j

½5�

One of the features one observes in the quantization
is the shift (‘‘finite renormalization’’) of the effective
level from k to kþN. This can also be seen in
perturbation theory. Consequently, while taking the
large-N limit, the natural quantity to be held fixed
as the ’t Hooft coupling is �= 2�N=(kþN).

We can then carry out the ’t Hooft expansion in
powers of � and 1=N, of expressions, for example,
for the free energy in eqn [5]:

F ¼N2

2
log�� 3

2

� �
� 1

12
log N þ �0ð�1Þ

þ
X1
g¼2

1

N2g�2

B2g

2gð2g� 2Þ

þ
X1
g¼0

X1
h¼2

Fg;h�
2g�2þh ½6�
The coefficents Fg,h are nonzero only for even h and
are given by

F0;h ¼�
2�ðh� 2Þ

ð2�Þh�2ðh� 2Þhðh� 1Þ

F1;h ¼
�ðhÞ

6ð2�Þhh

Fg;h ¼
2�ð2g� 2þ hÞ
ð2�Þ2g�2þh

2g� 3þ h

h

� �

� B2g

2gð2g� 2Þ

½7�

where the last line is for g > 1. B2g are the Bernoulli
numbers. The first few terms in eqn [6] are
nonperturbative contributions which do not have a
Feynman-diagram interpretation. The power series in
� is, on the other hand, of the same form as eqn [2].
In fact, there is an open-string interpretation for these
terms which will be considered later.

Given the explicit form of the answer, we can
carry out the summation over the holes h. Using
some resummation techniques, we find

F ¼
X1
g¼0

�i
t

N

� �2g�2

FgðtÞ ½8�

with t � i� and

FgðtÞ ¼
ð�1ÞgjB2gB2g�2j

2gð2g� 2Þð2g� 2Þ!

þ jB2gj
2gð2g� 2Þ!

X1
n¼1

n2g�3e�nt ½9�

(This expression is for g > 1. There are very similar
expressions for genus 0 and 1 as well.) With the
identification of the string coupling gs = � it=N, the
Fg(t) actually turn out to be the genus g amplitudes
of a closed topological string, in line with the
general expectation of the previous section. This is
explained in the following.
Topological Strings

Physical strings are defined in terms of a two-
dimensional sigma model (the theory on the world
sheet) made reparametrization invariant by coupling
to two-dimensional gravity. Topological strings are
simpler versions of this, where the world-sheet
theory is a two-dimensional topological sigma
model. The latter is defined in terms of a sigma
model (usually with N = 2 superconformal symme-
try) with an additional twist which drastically cuts
down the physical states to a subset of the low-lying
modes. There are actually two inequivalent twists
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denoted by A and B, respectively, but we will
restrict to the A twist in this article. One of the
simplifications of the A twisted sigma model is that
the path integral localizes to contributions from only
holomorphic maps from the world sheet to the
target space (which will be taken to be a Calabi–Yau
3-fold). Also, all the observables in the theory
depend only on the Kahler parameters of the target
space and not the complex structure parameters (see
Topological Sigma Models as well as the book by
Hori et al. (2003) for more details).

The topological string theory is defined by an
appropriate integration of the observables of the
topological sigma model over the moduli space of
the world-sheet Riemann surface. For instance, the
free energy of the string theory at genus g is given by

Ftop
g ðtÞ ¼

Z
Mg

<
Y6g�6

i¼1

ðb; �iÞ >X ½10�

Here b is one of the reparametrization ghost fields
on the world sheet and �i are Beltrami differentials.
The averaging is with respect to the world-sheet
sigma model for the Calabi–Yau target X, as the
subscript indicates. We have also shown the depen-
dence of Fg on the Kahler parameters of X,
collectively denoted by t. The localization to the
holomorphic maps in the path integral implies that
Ftop

g (t) takes the generic form

Ftop
g ðtÞ ¼

X
�

Ng;�q� q� �
Y

i

qni

i ½11�

Here qi = e�ti and ni are the integer coefficents
labeling the element � 2 H2(X). This is in the same
basis of two cycles of H2(X) in terms of which the
complex Kahler parameters ti are expressed. (Recall
that in string theory the Kahler parameters are
complexified because of the presence of an addi-
tional 2-form field.) The Ng,� are the Gromov–
Witten invariants for X and are in general rational
numbers. For nonzero �, the corresponding terms
are often called world-sheet instanton contributions
since they correspond to topologically nontrivial
maps from the world sheet to 2-cycles in the target
space. The all-genus free energy of the topological
string is also defined to be

Ftopðt; gsÞ ¼
X1
g¼0

g2g�2
s Ftop

g ðtÞ ½12�

with gs being the string coupling.
Since topological strings are related to physical

strings by a twist on the world sheet, it is natural
that topological string computations are related to
computations in the physical string theory. In fact,
as shown by Antoniadis, Gava, Narain, and Taylor
as well as Bershadsky, Cecotti, Ooguri, and Vafa,
observables such as Ftop

g (t) are related to special
superpotential terms in the type II string compacti-
fication on the Calabi–Yau X. Using duality to
M-theory, these answers were reinterpreted by
Gopakumar and Vafa in terms of contributions
coming from BPS states of wrapped D-branes. This
gives a completely different perspective on topolog-
ical strings. For instance, the all-genus free energy
can naturally be reorganized as

Ftopðt; gsÞ

¼
X1
g¼0

X
�

X1
d¼1

ng
�

1

d
2 sin

dgs

2

� �2g�2

qd� ½13�

where the ng
� are integer invariants (Gopakumar–

Vafa) since they count the number of BPS states.
This will prove to be useful in extracting all-genus
answers for topological string amplitudes, which is
normally quite difficult using the perturbative
definition given earlier.
The Large-N Dual to Chern–Simons
Theory

We are now in a position to state the duality
(Gopakumar and Vafa 1999) between large-N
Chern–Simons theory and topological strings in a
precise way. The conjecture is that the closed
topological string theory on the S2 resolved conifold
geometry is exactly dual to the U(N) Chern–Simons
theory on S3. The resolved conifold geometry is a
noncompact Calabi–Yau 3-fold described by the
equation

xy� zw ¼ 0 ½14�

where the singularity is resolved by a 2-sphere
x = 	z, w = 	y. The resulting space can thus be
characterized as an O(�1)þO(�1) bundle over P1.
It has a single Kahler parameter t for the nontrivial
2-cycle of the S2. In addition, the string theory is
characterized by the string coupling gs. These
parameters map on the gauge theory side to the
’t Hooft parameter � and N via the dictionary

t ¼ i�; gs ¼
�

N
½15�

This conjecture can be checked by comparing
various exact calculations in the Chern–Simons
theory with corresponding calculations in the topo-
logical string on this conifold background. The use
of the duality to M-theory enables us to make exact
computations on this side as well. One of the
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nontrivial checks of this duality comes from a
comparison of the free energies. In eqns [8] and
[9], we already have carried out the sum over the
holes in the Chern–Simons theory and organized it
as a closed-string genus expansion. Note that these
expressions are already of the form [11] expected of
a closed topological string. One simply has to check
that it is indeed that on the S2 resolved conifold.

In the language of the integer invariants ng
�, the S2

resolved conifold is particularly simple. The only
nonzero invariant is n0

1 = 1. Physically, this corre-
sponds to a single brane wrapped on the genus-zero
S2. Putting this into eqn [13], and making the
expansion in powers of gs, we find exactly eqn [9]
for the genus-g contribution to the free energy. This
is quite a remarkable agreement and represents a
triumph for the ideas of large-N duality.
Geometric Transitions and Large-N
Duality

To understand the reason for this duality a bit
better, we utilize an old observation of Witten that
Chern–Simons theory is an open topological string
theory. As mentioned earlier, the expansion [2] (or
[6]) is suggestive of an open-string expansion in
terms of handles and holes. Witten observed that
open topological strings on the noncompact 3-fold
T	M (with Dirichlet boundary conditions on M for
the end points of the string) is Chern–Simons theory
on M. In fact, in the modern language of D-branes,
we would say that U(N) Chern–Simons theory is the
world-volume theory of N D-branes wrapped on M,
for the topological A-model on T	M.

In particular, Chern–Simons theory on S3 is the
theory of branes wrapped on S3 inside T	S3. The
latter is the conifold geometry but now deformed by
a nonzero size S3. It is described by the equation

xy� zw ¼ � ½16�

where � is the deformation which parametrizes the
size of the S3.

The above large-N duality can be considered as an
open–closed string duality. Namely, that the theory
of open A-model topological strings on the S3

resolved conifold (with N D-branes) is dual to closed
A-model topological strings on the S2 resolved
conifold. Cast in this way, we see that the duality
involves a transition in the background geometry in
going from the open-string to the closed-string
description. The sum over the holes changes the
background. The S3, as it were, shrinks to zero size
and a transverse S2 opens up. This geometric
transition makes the connection between the
Chern–Simons theory and the closed topological string
somewhat less mysterious. Maldacena’s conjecture for
super Yang–Mills involves a similar passage from
D-branes in flat space to a closed-string theory on
anti-de Sitter space. In fact, it appears as if the best way
to understand ’t Hooft’s idea in generality is to think of
it as an open–closed string duality.
Further Checks and Consequences

The free energy is not the only gauge-invariant
observable in Chern–Simons theory. One important
class of observables, which played an important role
in the connection with knot invariants, are the
Wilson loop expectation values. Given a knot K in
S3, we can define, in terms of an arbitrary
representation R of U(N), the trace of the holonomy
around the knot averaged with respect to the Chern–
Simons path-integral measure:

WRðKÞ ¼< trR P exp i

I
K

A

� �
> ½17�

P denotes path ordering. Similarly, we can also
define the expectation values of links: products of
traces of holonomies around various interlinked
paths. The nonperturbative solution of Chern–
Simons theory gives exact answers for the expecta-
tion values of these Wilson loops. The discussion
below is, however, confined to knots.

Since the trace of holonomies is being considered
in different representations, it makes sense to study
the generating functional

ZðU;VÞ ¼
X

R

trRðUÞtrRðVÞ

¼ exp
X1
n¼1

1

n
tr UntrVn

" #
½18�

The source V here is a U(M) matrix, unrelated to the
U(N) holonomy U around K. The second equality in
[18] follows from use of the Frobenius formula. It
was shown by Ooguri and Vafa that this generating
functional is the natural object from the point of
view of the open–closed string duality.

We have already mentioned that the U(N) Chern–
Simons theory can be thought of as the theory of N
topological D-branes wrapped on the Lagrangian S3

cycle inside T	S3. For a knot K in the S3, we consider
another Lagrangian 3-cycle ĈK in T	S3 which
intersects the S3 exactly in K. A canonical construc-
tion for ĈK is

ĈK ¼
n
ðqðsÞ;pÞ 2 T	S3j

X
i

pi _qi ¼ 0
o

½19�
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where the knot K is parametrized by the closed curve
q(s). By construction, ĈK intersects the S3 in K.
Now consider M D-branes wrapped on ĈK. One now
has to consider the fields coming from the strings
stretching between the two sets of branes. One can
show that integrating out these fields (which are in the
bifundamental of the product group U(N)� U(M))
modifies the original Chern–Simons action to

SeffðAÞ ¼ SCSðAÞ þ
X1
n¼1

1

n
trUntrVn ½20�

Here V is the holonomy around K of the U(M)
gauge field Ã. Thus, this configuration of M probe
branes gives rise exactly to the generating function
eqn [18] for Wilson loops of K.

The geometric transition which relates the Chern–
Simons theory to the closed-string theory now
suggests what one needs to do to compute this
generating function on the closed-string side. We
have to follow the configuration of the M probe
branes on ĈK through the conifold transition in
which the S3 shrinks and one blows up the S2. It is
not easy in general to figure out the Lagrangian
cycle CK which results from following ĈK through
the transition. It has only been done in a class of
knots including the simple unknot. But assuming we
know CK, the generating function for Wilson loops
is given by the free energy on the S2 resolved
conifold in the presence of M probe branes on CK.
This requires one to know more than the closed-
string partition function computed earlier. We now
also need to compute amplitudes for world sheets
with boundary on CK. These are called open-string
Gromov–Witten invariants and the study of this
subject is in its infancy. For simple knots such as the
unknot, for which CK is known, these can be
computed. One finds again a remarkable agreement
with the nonperturbative answers of Chern–Simons
theory. Thus, the computation of knot invariants
gets related to open-string Gromov–Witten invar-
iants. There have been a number of other tests
involving more general knots and links. One also
has to be careful of subtleties such as in the choice
of framing. The reader is referred to the articles
by Marino (2002, 2004) for these topics.
Conclusions

The large-N duality of ’t Hooft is realized in Chern–
Simons theory in a very explicit way. Thanks to the
analytic control we have over both Chern–Simons
theory as well as closed topological strings, the
conjecture passes very nontrivial checks that extend
to all-genus case. This is more than we can do in the
AdS/CFT conjecture where most computations are
at tree level in the supergravity limit. In contrast,
here we see the essential stringiness of the closed-
string dual to Chern–Simons theory.

Also, by viewing it as an open–closed string
duality, many aspects of the correspondence were
clarified. It, therefore, provides a useful toy model
for a general understanding of open–closed string
duality. Indeed, a proof of this duality using world
sheet techniques has been proposed by Ooguri and
Vafa. One would like to carry over some of the
intuition that operates in this duality to the case of
other physically interesting gauge theories.

From the mathematical point of view, as already
indicated, this duality leads to previously unsuspected
relations between Gromov–Witten invariants and
invariants of 3-manifolds, including those of knots.
In fact, by considering more general geometric
transitions and using this duality locally, one can
learn about all-genus topological string amplitudes
for a wide class of noncompact toric geometries. This
line of development culminated in the formulation of
the topological vertex by Aganagic, Klemm, Marino,
and Vafa, which captures the essence of the
topological closed-string amplitudes for noncompact
toric geometries. As in the case of the general
correspondence between the gauge theory and grav-
ity, this duality sheds new light on both sides of the
equation. We learn to see new integrality properties
in knot and 3-manifold invariants which have an
interpretation in terms of enumerative problems in
3-folds. The surprises that such a deep connection
presages have not yet been exhausted.

See also: AdS/CFT Correspondence; Chern–Simons
Models: Rigorous Results; Duality in Topological
Quantum Field Theory; Free Probability Theory; The
Jones Polynomial; Knot Theory and Physics; Large-N
Dualities; Quantum 3-Manifold Invariants; Schwarz-Type
Topological Quantum Field Theory; String Field Theory;
Topological Gravity, Two-Dimensional; Topological
Quantum Field Theory: Overview.
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Introduction

Gopakumar and Vafa (1999) conjectured that U(N)
Chern–Simons gauge theory on S3 is dual, for large
values of N, to a closed topological string theory
on a suitable Calabi–Yau 3-fold X. They suggested
that this duality is realized by a geometric ‘‘transi-
tion,’’ a topological surgery which can be realized by
birational contractions followed by the complex
deformations of Calabi–Yau varieties. Here we will
give some general comments on the history of this
conjecture and then present some of its mathema-
tical implications; we will focus on the geometric
transition and the novel mathematics that it has
generated.

A duality relating gauge theories and string
theories (with gravity) was first conjectured by
’t Hooft (1974). In 1998 Maldacena conjectured a
duality between Yang–Mills gauge theory with
N = 4 SUSY on a four-dimensional manifold M
and IIB type closed string on the anti-de Sitter space
AdS5 � S5. Chern–Simons string theory is a three-
dimensional theory and purely topological, hence it
is in principle simpler than four-dimensional Yang–
Mills theory, which also involves a metric.

In this survey, we discuss the IIA open/closed
dualities: we will mostly be concerned with the partition
function, that is we will be working in the context of
‘‘topological strings.’’ The duality has been extended to
a duality of strings, adding fluxes on the closed sector
and branes on the open sector. There is much
mathematical evidence supporting the conjecture.
Overview

The conjecture says that U(N) Chern–Simons gauge
theory on S3 is dual, for large values of N, to type
IIA closed topological string theory on a suitable
Calabi–Yau manifold X. A starting point for the
geometry, and its mathematical implications, is that
S3 can be thought of as a vanishing cycle in a local
Calabi–Yau manifold Y = T�S3, which deforms to a
singular Calabi–Yau Y0; X is a Calabi–Yau bira-
tional resolution of Y0. X are Y are related by a
geometric transition. In fact, Witten showed that
quantum Chern–Simons theory on S3 can be thought
of as open IIA (with U(N) branes) on Y = T�S3; thus,
a more general conjecture says, loosely speaking,
that open IIA theory on a Calabi–Yau manifold Y is
dual, for large N, to closed IIA on a Calabi–Yau X
which is related to Y via a geometric transition. A
consequence of a physics ‘‘duality’’ is a matching of
the free energies of the dual theories. In this
particular case, if the conjecture is true, the Chern–
Simons free energy Z(S3, U(N)) should determine,
and be determined by, the closed prepotential
F cl(X, t). Note that Z(S3, U(N)) is purely topologi-
cal, and that F cl(X, t) includes all genera, as we will
discuss later. A mathematical application is comput-
ing Gromov–Witten invariants for higher genus via
large-N dualities (Mariño 2004). Another conse-
quence involves the matching of the observable in S3

and X.
This conjecture is now supported by a vast

amount of evidence. Vafa, Gopakumar and Ooguri
noted, via a string-theory analysis, that topological
and knot invariants of S3 (computed through U(N)
Chern–Simons theory on S3) determine and are
determined by, for large N, the Gromov–Witten
invariants of X in a neighborhood of the exceptional
locus of the birational contraction X!Y0.

The extension to the full string theory would say
that open string of type IIA compactified on a
Calabi–Yau manifold Y with branes is conjectured
to be dual to closed string of type IIA compactified
on a Calabi–Yau manifold X with fluxes, if X and Y
are related by a geometric transition.

A mathematical consequence of this statement
is that the closed Gromov–Witten invariants of X
agree, with a suitable identification of the para-
meters, with combinations of open Gromov–Witten
invariants and knot invariants of Y. This has been
shown to hold for some classes of examples.

This circle of ideas has stimulated much work in
physics and mathematics on the nature of the
mathematical correspondence behind this duality, as
well as the property of the enumerative and topo-
logical invariants involved. The ‘‘mirrors’’ of the above
transitions have been studied in a series of papers,
starting with the work of Dijkgraaf and Vafa (2002).

The mathematics behind the open/closed dualities
is still not understood: it is reasonable to speculate
that the natural setup is a framework of symplectic
field theory.

We shall start by discussing the principal topics
of this large-N duality: Chern–Simons quantum field
theory, IIA closed prepotential (and Gromov–Witten
invariants), and Chern–Simons as open string (and
IIA open prepotential). Next we shall study the
geometric transitions and conclude with some
mathematical predictions of the duality.
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We shall not discuss some other interesting
implications of this duality. For example, we shall
not discuss its mirror IIB duality: it is known that
the part of the closed prepotential in IIA correspond-
ing to rational curves can be expressed as its IIB
mirror dual with periods over certain suitable cycles;
the IIA open contribution corresponding to open
discs is expressed in terms of integrals over chains
and the Abel–Jacobi map. We only remark that this
large-N duality has also been interpreted as a duality
between seven-dimensional manifolds with G2

holonomy.
History

The chronology of various important contributions
in the field of large-N duality is as follows:

� 1976: ’t Hooft’s conjecture
� 1988: Clemens introduces transitions
� 1988: Witten introduces quantum Chern–Simons

theory on 3-manifolds
� 1992: Witten discusses Chern–Simons theory as

open string
� 1998: Gopakumar–Vafa–Ooguri
� 2001: Verification for unknot, Katz–Liu, Li, and

Song
� 2001: Lift to manifolds with G2 holonomy
� 2002: The conjecture verified for many examples

of conifold transitions, including compact case;
the topological vertex is introduced
� 2003: Relations with Donaldson–Thomas invariants
Background

The varieties of interest in the physical theory
must satisfy certain ‘‘supersymmetry’’ conditions; in
particular, a complex algebraic manifold is required
to be Calabi–Yau, a real seven-dimensional Rieman-
nian manifold is required to have G2 holonomy
group. Also of particular interest are the Lagrangian
real submanifolds of the Calabi–Yau 3-folds. By a
Calabi–Yau manifold X we mean a manifold with
c1(X) = 0, h0(�k) = 0, where �k is the sheaf of
holomorphic k-forms, and 0 < k < dim (X). If
dim X � 2, we also assume that X is simply
connected, but not necessarily compact. For exam-
ple, if dim (X) = 1, X is a torus, if dim (X) = 2, X is
a K3 surface, if dim (X) � 3, X is simply called a
Calabi–Yau manifold. A compact Kähler manifold
(M, g, J) of complex dimension m � 3 is a Calabi–
Yau variety if and only if its holonomy is SU(m). A
subvariety L of a symplectic manifold (X,!) is
Lagrangian if !jL = 0 and dim L = (1=2) dim X.
Sometimes we consider noncompact manifolds,
thought of as neighborhoods of a compact projective
Calabi–Yau manifold. Typically, our symplectic
manifold is a Calabi–Yau 3-fold (X,!) together
with its Kähler form !. If there exists an antiholo-
morphic involution, then the fixed locus is a
Lagrangian submanifold.
The Dualities

We will take the point of view that dualities in
physics imply relations between geometric invari-
ants, without dwelling on the physics of the dualities
themselves. A consequence of a physics ‘‘duality’’ is
the matching of the prepotential of two dual string
theories.

A Few Comments on Chern–Simons Theory: Free
Energy (Partition Function)

Let L be a closed oriented manifold together with a
principal G-bundle. The classical Chern–Simons
action is defined as S(L, A) =

R
L �(A), where � is a

3-form on L which depends on a connection A and a
suitable bilinear invariant form on the Lie algebra g.
It is well defined under gauge transformations
modulo the integers; e2�iS(L, A) is well defined. In
the large-N dualities considered here, the groups of
interests are SU(N) and U(N). The first check of the
duality was found with G = SU(N) and M = S3; later
it was discovered that the correct group for the
matching of the observables must be U(N), while
both can be used for the free energies. We shall
consider G = SU(N) and M = S3. Without loss of
generality, the bundle can be taken to be the product
U(N)� S3; any bilinear invariant form on the Lie
algebra su(N) is necessarily an integer multiple k of
the Cartan–Killing form on the Lie algebra. Then
S = S(k, A) and

Sðk;AÞ¼ � k

8�2

Z
S3

tr A ^ dAþ 2
3 A ^ A ^ A

� �

where k is the ‘‘level’’ of the theory. Witten defines
the quantum Chern–Simons theory by taking the
integral of the Chern–Simons action over all possible
connections A modulo gauge equivalence G:

ZðS3;SUðNÞÞ

¼
Z
A=G
ðDAÞe2�iSðAÞ

¼
Z
A=G
ðDAÞexp � ki

4�

Z
S3

tr A^dAþ 2
3A^A^A

� �� �

Witten shows how to calculate the free energy
Z(S3,SU(N)) through topological surgery, assuming
Z(S2�S1)=1. Witten also defines the partition
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function of knots and links in L (the ‘‘expectation
values’’), which are knot and link invariants. The
expectation values are computed by evaluating the
trace of the holonomy transformation of a U(N)
connection around the knot, and then taking a
suitable average of the U(N) connections. These
invariants depend on a choice of the framing of the
knot (or link).

The explicit computations involve physics, repre-
sentation theory, and topology. If L = S3, then:

Z S3; SUðNÞ
� �

¼ðkþNÞ�N=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþN

N

r

�
YN�1

j¼1

2 sin
j�

kþN

� �� �N�j

Reshetikin and Turaev, among others, described
mathematically the Chern–Simons free energy and
the expectation values.
A Few Comments on Closed-String Theory: Free
Energy (Prepotential)

In IIA closed-string theory on X, a Calabi–Yau
manifold, one considers holomorphic stable maps
of closed Riemann surfaces of genus g,� : �g!X,
with ��(�g) = [�]2H2(X, Z), for all genera g and
homology classes � 2H2(X, Z).

Then one forms the closed prepotential F cl(X, t),
which encodes the enumerative invariants of
such maps to X, and which depends on the
Kähler parameters t of X. Sometimes the prepoten-
tial is also called ‘‘free energy’’ in the physics
literature or Gromov–Witten prepotential, as it
contains the Gromov–Witten invariants of X.
Setting F g(q) =

P
� 2H2(X, Z) Cg,�q�, the closed pre-

potential is defined as

F clðX; qÞ¼
X1
g>0

g2g�2
s F gðqÞ

Here q is a formal variable such that q�1þ�2 = q�1 � q
�
2

(for �1,�2 2H2(X, Z)) and gs is the string coupling
constant. Cg,� are the genus g Gromov–Witten
invariants of X, corresponding to the class � and
they have been defined as

Cg;� ¼
Z
½Mg;0ðX;�Þ�virt

1

It is difficult to explicitly compute the invariants
Cg,�; in particular, there is no known general
method for calculating these invariants. They are
computed mostly via ‘‘localization’’ methods, in the
presence of a suitable torus action. In the case of
g = 0 the invariants are often computed via IIA–IIB
duality, calculating certain periods in the mirror
manifold W.

Example (Faber–Pandharipande). Let XffiOP1(�1)

OP1(�1); X is a neighborhood of a rigid
rational curve, which can be thought of as a local
Calabi–Yau manifold; then all the effective curves
�2H2(X,Z) must be of the form �=d[P1], 8d2N.
Faber and Pandharipande showed that

F clðX; qÞ ¼
X1
d¼1

qd

2 sinðdgs=2Þ2
½1�

This formula was proved with localization methods
after it was conjectured by Gopakumar and Vafa using
large-N dualities. In fact, a consequence of a duality
between two theories is the matching of the free energies
of two dual string theories. In this particular case, the
conjectures imply that Chern–Simons free energy
determines, and is determined by, the all-genus closed
prepotential of a suitable Calabi–Yau manifold X:

ZðS3;UðNÞÞ ¸ F clðX; tÞ

Note that the left-hand side is purely topological,
as we saw in the previous section, while the right-
hand side is holomorphic.

The trait d’union between the two prepotentials is
given by the interpretation of Chern–Simons theory
on S3 as open-string theory on T�S3 and the
geometric transition.
A Few Comments on Open-String Theory
with Branes: Open Prepotential

Let Y be a Calabi–Yau manifold together with {[Li},
Lagrangian submanifolds; to each submanifold
Li is assigned a gauge group Gi : Li is wrapped
with Gi-branes. Here we shall focus on the case
Gi = U(Ni) and we will write (Y; Li, U(Ni)).

Witten shows that the open prepotential
F op(Y,�, top, gs) depends on ’t Hooft’s coupling con-
stants �i associated to Chern–Simons theory on the
Lagrangian submanifolds (Li, U(Ni)), together with
the open Kähler parameters top 2H2(X; [ Li, Z), and
the string coupling constant gs. To describe the open
prepotential, Witten argues, we consider all maps
of Riemann surfaces with boundary to Y, with
the condition that the boundaries are mapped to the
Lagrangian submanifolds Li; one should also include
all the ‘‘highly degenerate holomorphic maps,’’ in
particular those which contract �g, h to a ‘‘ribbon
graph’’ on the Lagrangian [Li. The contribution of
these highly degenerate maps is captured by the
quantum Chern–Simons theory of the Lagrangians
{Li, U(Ni)}.
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Application 1 (Chern–Simons free energy as open
prepotential). Let us consider open IIA on
Y = T�S3 with U(N)-branes wrapped on L = S3:
L is a Lagrangian submanifold with the standard
symplectic structure; note that in T�L there are no
nontrivial homology curves. Then, according to
Witten, the corresponding open prepotential
F op(Y, [ Li) must only depend on the ‘‘highly
degenerate’’ maps and must consist of the Chern–
Simons term FCS on L = S3. In particular,

FCS ¼ log ZðS3Þ ¼ F opðY; �; gsÞ

where �= 2N�=(kþN) is the ’t Hooft coupling
constant. Periwal (1993) showed that, for large N,
log Z(S3) could be expanded as a closed-string
expansion:

FCS �ð Þ ¼
X
g�0

F g �ð Þg2 2g
s

where gs =: 2�=(kþN) is the Chern–Simons cou-
pling constant. In 1998 Gopakumar and Vafa, using
physics arguments, deduced that the expansion
would have the closed form [1], which was later
proved by Faber and Pandharipande.

The explicit description of the open prepotential
in the presence of homology classes is not known;
one would need to combine the enumerative
invariants of open maps together with the quantum
Chern–Simons factor. We shall discuss an approach
at the end of this note, but consider first the
geometric transition.
The Transition

The conjecture says that U(N) Chern–Simons gauge
theory on S3 is dual, for large values of N, to IIA
closed topological string theory on a suitable
Calabi–Yau manifold X. A starting point to find
such X is that S3 is a Lagrangian 3-cycle in the
manifold Y = T�S3; performing a topological surgery
by replacing S3 with S2 one obtains a (local) Calabi–
Yau manifold X, on which the dual IIA theory is
compactified. The key observation is that Y can be
identified with the algebraic variety of equation
{xy� zw = t} � C4 and that this is a complex
smoothing (in fact the Milnor fiber) of Y0 with
equation {xy� zw = 0} � C4. On the other hand, X
is a small resolution of this singularity, where P1 is
the exceptional locus of the birational contraction.
The origin is an ‘‘ordinary double point’’ singularity
and the nontrivial sphere S3 � Y is the vanishing
cycle of the degeneration. The manifolds involved
are noncompact: the exceptional curve [P1] = t is
the only nontrivial homology class in X, and the
enumerative invariants in X can be thought as the
contribution of the exceptional curve in a neighbor-
hood of a Calabi–Yau manifold. We shall present
the steps leading to this construction and the
evidence for the conjecture.
The Local Construction of X

Let Y� = f(w1, . . . , w4)2C4 such that
P4

j = 1 w2
j =�g.

Proposition 1 Let � be a nonzero real positive
parameter; then:

� L = S3 � T�S3 is a Lagrangian submanifold of
T�S3 with its standard symplectic structure;
� T�S3 ffi Y� and L ffi L�

def
= fRe(

P4
j = 1 w2

j =�)g.

In fact, we can embed T�S3 in R8 as

X4

j¼1

q2
j ¼ 1;

X4

j¼1

qjpj ¼ 0

where S3 = {pi = 0}; consider then the morphism
C4!R8 defined by setting

qj ¼
ReðwjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

P
i v2

i

q ; pj ¼ ImðwjÞ

which induces the diffeomorphism Y� ffi T�S3 of the
statement.

Remark 1 Let Y0 = f
P4

j = 1 w2
j = 0g � C4; then:

� Y0 is singular at the origin,
� Y� is a complex deformation of Y0, and
� L� is called a ‘‘vanishing cycle.’’

With a change of coordinates we can write the
equation of Y� as {xy� zw = 0}; the singularity is
still at the origin. This singularity is an ordinary
double point, which is often referred in physics
literature as ‘‘the conifold singularity.’’ Let
X�C4�P1 be defined:

�zþ �y ¼ 0; �xþ �w ¼ 0

[�, �]2P1.

Remark 2 X is smooth and the morphism

� : X�!Y0; ððx; y; z;wÞ; ½�; ��Þ 7! ðx; y; z;wÞ

is an isomorphism �j
XnP1

: (XnP1) ’ (Y0n{0}) and
P1 7! (0, 0, 0, 0, )�C4. � is a small (nondivisorial)
birational resolution of the singularity at the origin.
Y� is a deformation (smoothing) of Y0. Note that
topologically S3 ffi L� � Y� has been replaced by
P1 ffi S2 � X. The algebraic properties of the topo-
logical surgery between Y� and X were first studied
by Clemens in 1988.
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Transitions in Geometry

A transition between X and Y is a birational
contraction from a smooth Calabi–Yau X to a
singular variety Y0 followed by a complex deforma-
tion to another smooth Calabi–Yau manifold Y:

X
#

Y

?

Y0

The vanishing cycles of the complex deformation
[Li are always Lagrangian submanifolds of Y. The
transition makes sense if dim (X) = dim (Y) � 2 and
it is nontrivial if dim (X) = dim (Y) � 3, when the
topology of X is different from the topology of Y.
The possible transitions among Calabi–Yau 3-folds
have been classified.

Conjecture 1 Let X and Y be Calabi–Yau mani-
folds related by a geometric transition: then IIA
open theory with U(U) branes compactified on
(Y, [Li) is dual to IIA closed theory compactified
on X (with fluxes).

As a consequence:

Conjecture 2 Let X and Y be Calabi–Yau mani-
folds related by a geometric transition: then
F op(Y,�, gs, top) =F cl(X, q, gs) for a suitable identi-
fication of the parameters.

The results stated in the previous section can be
summarized in the the following statement, which is
the proof of the above conjecture for the special case
of a local conifold transition:

Theorem 1 Let X ffi OP1(�1)
OP1(�1) and
Y = T�S3 with U(N) branes wrapped on L = S3.
Then X and Y are related by a conifold transition
and log FCS(S3) =F op(Y,�) =F cl(X, q), with the
identification

� ¼ 2N�

kþN
¼ q; gs ¼

2�

kþN

This matching of the free energies is supporting
evidence for the large-N conjecture. At this moment,
we still do not know if Conjectures 1 and 2 hold for
more general transitions.
A Few Comments on Knots and Links

Later, Ooguri and Vafa extended the conjecture to
the observables, that is, by adding knots and links in
S3; the guiding principle is that a knot (or link) C � S3

should determine a noncompact Lagrangian sub-
manifold LC � X; it is conjectured that the knot
(and link) invariants, expressed as expectation
values, should determine and be determined by the
enumerative invariants of morphisms of bounded
Riemann surfaces, with boundaries mapped onto
LC. We refer to these invariants as open Gromov–
Witten invariants. While both statements have been
verified with mathematical techniques only when C
is the unknot, there is much supporting evidence for
the conjecture in general. We will not describe these
aspects here but only make a few remarks.

The expectation values of a knot C are computed
by taking first the trace of a holonomy matrix of a
U(N) connection A along C and then integrating over
all connections (modulo gauge equivalence). As for
the case of the Chern–Simons free energy, the
definition of expectation values has been worked
out both in the realm of physics and of mathematics.
The expectation values are knot and link invariants,
and depend on a choice of the framing of the knot (or
link). The open Gromov–Witten invariants have not
yet been constructed, as we shall discuss in the
following section; however, starting with the work of
Katz and Liu, Li and Song open invariants have been
successfully calculated in the presence of a torus
action. The resulting invariants do depend on the
choice of the torus action, which has been shown to
match the choice of the framing of the knot (or link).
More on the Open Prepotential

The open Gromov–Witten invariants, in analogy with
the closed case, should ‘‘count’’ in an appropriate sense
open morphisms; at this point, it is not known how to
define this quantity. To proceed in analogy with the
closed case, one would need to define the appropriate
moduli space of open maps and its virtual fundamental
class. On the other hand, open invariants have been
successfully calculated in the presence of a torus
action, assuming the existence of the moduli and
virtual fundamental class and that the Atiyah–Bott
localization theorems can be applied. We shall follow
this approach in sketching how the IIA prepotential
has been computed in many examples.
Open Invariants

Let [�]2H2(Y; [Li, Z) be the relative homology
class of Riemann surfaces in Y with boundary on the
union of the Lagrangian 3-cycles [iLi and a class
[	]2H1([Li).

If �g, h is a Riemann surface of genus g and h
boundary components, let � : �g, h!Y be a morph-
ism with

��ð�g;hÞ ¼ ½�� 2H2ðY;[Li;ZÞ
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The open generating function is

FoðY;[Li; top; gsÞ ¼
X1

g;h�0

g2g�2þh
s Fg;hðtopÞ

with

Fg;hðtopÞ ¼
X
�;	

Cg;h;�;	q
�y	

Here q and y are formal variables such that
q�1þ�2 =q�1 � q�2 and yh1þh2 =yh1 � yh2 , for �1,�22
H2(Y; [Li,Z),	1,	22H1([Li,Z); top is the open
Kähler parameter, gs is the string coupling constant
and Cg,h,�,	 should ‘‘count’’ in an appropriate sense
the maps �.

Example (Ooguri–Vafa; Katz–Liu; Li–Song). If
Y =OP1

(�1)
OP1
(�1), then t is the class of the P1 ffi

S2, t=2 represents the class of the lower hemisphere in
S2. The Lagrangian L is the Lagrangian L in the
previous sections, which corresponds to the unknot in
S3 � Y; it is the fixed locus of an antiholomorphic
involution on X and it intersects S2 in an equator.
Then, for a suitable choice of the torus action:

FoðY;[Li; top; gsÞ ¼
X

d

yd

2d sin d�=2ð Þ e�dt=2

There is a complete form for more general torus
actions. The above formula was first computed by
Ooguri and Vafa, using string-theory arguments,
and then computed by the mathematicians, Katz and
Liu, and Li and Song.
More on the Open IIA Prepotential

If there is only one rigid open curve in Y, say a disk
C, with boundary on L � Y, then, as Witten
showed, the open prepotential is a combination of
the open enumerative invariants as described above
with �= d[C] and 	= @C and the expectation values
of the unknot @C. The variable Y is changed in the
trace of the holonomy of a connection.

In the presence of a torus action, one can treat the
fixed locus as if it were rigid and proceed accordingly.
With these techniques, Conjecture 2 has been
verified for many cases of conifold transitions, with
top nontrivial, for a suitable identifications of the
parameters, including when both X and Y are
compact manifolds (Diaconescu–Florea 2003).

See also: AdS/CFT Correspondence; Chern–Simons
Models: Rigorous Results; Large-N and Topological
Strings; Mirror Symmetry: A Geometric Survey; String
Field Theory.
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Introduction

As a prototype of lattice gauge theory, quantum
chromodynamics (QCD) will be considered in this
article. All statements about QCD can easily be
extended to other theories, with different gauge
group and different content of particles.

QCD is a gauge theory with gauge group SU(3)
(color group), coupled to spin-1/2 particles (quarks)
belonging to the fundamental representation of the
color group. There exist in Nature six different
species (flavors) of quarks, with masses ranging
from mup � 5 MeV to mtop � 180 GeV: the values of
these masses are determined by other interactions
and can be treated as input parameters of the theory
as well as the number of quark flavors. In standard
notation, the Lagrangian reads

L ¼ � 1

2
trðG��G��Þ þ

X
f

� f ði 6D � mf Þ f ½1�

The sum runs over the six quark flavors f.
G�� = @�A� � @�A� þ ig[A�, A�] is the field strength
tensor, A� =

P
TaAa

� the (gluon) gauge field,
Ta(a = 1, . . . , 8) are the eight generators of the
gauge group in the fundamental representation,
normalized as tr(TaTb) = (1=2)�ab.  f is a color
triplet of fields. Under a gauge transformation U(x),

 f ðxÞ! 0f ðxÞ ¼ UðxÞ f ðxÞ ½2�

A�ðxÞ! A0�ðxÞ
¼ UðxÞA�UyðxÞ þ iUðxÞ@�UyðxÞ ½3�

D� is the covariant derivative of  

D� f ¼ ð@� � igA�Þ f ½4�

and transforms like  f by construction.
L is invariant under the gauge transformation

equations [2] and [3]. As a consequence of gauge
invariance, the theory has one single coupling
constant g.

To make connection with the observations, one
has to solve the theory, that is, one has to construct
a Hilbert space on which the fields act as operators
obeying the equations of motion and the canonical
commutation relations. In textbook field theory,
this is done by splitting the Lagrangian L into two
parts:

L ¼ L0 þ LI ½5�

with L0 the part of L which is bilinear in the fields
and LI the rest. L0 can be solved exactly since it
describes free particles and the corresponding
equations of motion are linear. The resulting Hilbert
space is the Fock space of free particles. LI is treated
as a perturbation producing scattering between the
fundamental particles. This approach works well
in quantum electrodynamics, where the observed
particles (electrons and photons) coincide with the
excitations of the fundamental fields of the
Lagrangian.

In QCD, the fundamental excitations (the quarks
and the gluons) are observed as particles neither in
Nature nor as a product of high-energy collisions
between elementary particles. This feature is known
as confinement of color. The conjecture is that
excitations with nontrivial color are forbidden to
propagate as free particles. However, if hadrons are
probed at short distances by photons or by leptons,
everything works as if they were composite states of
quarks. The accepted explanation relies on asymp-
totic freedom: the effective coupling constant
becomes small at short distances (high momentum
transfers) and the constituents behave as free
particles.

At large distances, the fundamental excitations are
not observed, the interaction is strong and the
perturbative picture describing scattering between
quarks and gluons is not adequate for the real
world.

An alternative quantization procedure is needed
which does not rely on perturbation theory. A
formally exact quantization procedure is the Feynman
path integral. The solution of the theory is given in
terms of a functional integral Z[J], which generates
the correlators of the fields in the ground state
(vacuum). Indicating symbolically the Lagrangian
coordinates, namely the fields, by a single symbol �,
one has

Z½ J � ¼
Z Y

x

d�ðxÞexp �S½�� �
Z

JðxÞ�ðxÞdx

� �
½6�

The connected Euclidean vacuum correlators are
given in terms of functional derivatives of Z[J]

< 0jTð�ðx1Þ�ðx2Þ � � ��ðxnÞÞj0 >conn

¼ 1

Z½0�
�nZ½ J �

�Jðx1Þ�Jðx2Þ � � � �JðxnÞ

����
JðxÞ¼0

½7�
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‘‘Euclidean’’ means that they are analytic con-
tinuations to imaginary times. Going to Euclidean
system is necessary to isolate the vacuum state. The
amplitudes can be analytically continued back to
Minkowski space. The Hilbert space and all the
physical observables can be constructed in terms of
the correlators, a property known as reconstruction
theorem. Formally (i.e., assuming that everything
makes sense only if the functional integral exists),

< 0jTð�ðx1Þ�ðx2Þ � � ��ðxnÞÞj0 >conn

¼ 1

Z

Z Y
x

d�ðxÞ

� expð�S½��Þ�ðx1Þ�ðx2Þ � � ��ðxnÞ ½8�

The continuation to imaginary time changes sign to
the kinetic energy, and Z formally becomes the partition
function of a four-dimensional statistical model with
Hamiltonian SE[�], a general fact in Feynman integrals.

By definition of functional integral, Z is defined
by discretizing a finite volume V of spacetime to a
finite set of points and then sending their number to
infinity, making a set dense in V. If the limit exists, a
ZV is obtained. The volume V is then sent to infinity,
to cover the whole spacetime (thermodynamical
limit) and ZV eventually converges to Z. A rigorous
proof of the existence of these limits does not exist
for QCD, but there are qualitative arguments that
this is the case, which will be presented below.

In the lattice formulation of field theory, a regular
lattice, usually cubic, is taken as a discretization of
spacetime.

From the very definition of Feynman integral, it
follows that the formulation of field theory on the
lattice is nothing but an approximation to the limit
which defines Z. It will provide a good approxima-
tion if the lattice spacing is small enough with
respect to the physical lengths involved and if the
lattice is large compared to them.

Perturbation theory amounts to split the action
into a bilinear term S0 and an interaction term SI

containing the higher powers of the fields. The Z
integral is then computed by expanding the weight
in a power series of SI:

Z Y
x

d�ðxÞ expð�S0 � SIÞ

¼
Z Y

x

d�ðxÞ expð�S0Þ
X

n

ð�SIÞn

n!
½9�

The Feynman integral thus becomes Gaussian, can
be computed, and gives the usual perturbative
expansion. The two limits (integral and series
expansion) do not commute in general. For QCD,
there are indeed arguments that the renormalized
perturbative expansion does not converge and is
plagued by singularities known as renormalons.
Wilson’s Formulation

For field theories of scalar particles, the lattice
discretization is performed by assigning a value of
the field to each site of the lattice. The Wilson
formulation for gauge theories is not made in terms of
the fields A�, which are defined in the Lie algebra of
the gauge group, but in terms of parallel transports,
which are elements of the group itself. The building
blocks are parallel transports along links parallel to
spacetime axes connecting neighboring sites

U�ðxÞ

� P exp

�
ig

Z xþ�̂

x

A�dx�
�
� expðigaA�ðxÞÞ ½10�

where �̂ indicates the vector of length a in the �
direction and P the ordered product. The last
approximate equality is valid in the limit of small
lattice spacing a. g is the coupling constant.

Under a gauge transformation V(x);

U�ðxÞ!VðxÞU�ðxÞVyðxþ �̂Þ ½11�

It follows from eqn [11] that the parallel transport
along a closed path is gauge invariant. The density
of action can be written in terms of the parallel
transport along the elementary square of links in the
hyperplanes �� ���, known as plaquette:Y

��

¼ tr½U�ðxÞU�ðxþ �̂ÞUy�ðxþ �̂ÞUy�ðxÞ� ½12�

By expanding in powers of a, one easily finds

Y
��

¼ Nc �
1

2
a4tr½G��G��� þOða6Þ ½13�

with Nc the number of colors, 3 for QCD. The
lattice action can be defined as

S ¼
X
x��

� 1� 1

Nc
���

� �
½14�

with �= 2Nc=g
2, and tends to the continuum action

as a! 0, O(a2). An infinite number of higher-order
terms in a exist, which come from the expansion of
the links, but they are expected to be irrelevant in
the continuum limit a! 0.

The measure of the Feynman integral is assumed
to be the Haar measure of the gauge group for each
link, which again can be shown to tend to the
continuum measure in the continuum limit.
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Everything is gauge invariant, contrary to the
perturbative formulation, where a gauge fixing is
required to define the vector meson propagator.

By Weierstrass theorem, the integral is finite for any
finite number of links, the gauge group being compact.

Any other choice of the lattice action differing from
the Wilson action of eqn [14] by terms of higher order in
a will have the same continuum limit: there is significant
freedom in the choice of the action.

In the language of statistical mechanics, the
Euclidean lattice formulation is a spin model.
Different choices of the action correspond to different
spin models. In the vicinity of a second-order phase
transition, however, the correlation length becomes
large with respect to the lattice spacing and all the
irrelevant terms become negligible. All the spin
models at the critical point belong to the same
universality class and define the same field theory.

This is what happens for QCD because of
asymptotic freedom. By renormalization group
arguments, the lattice spacing behaves as

að�Þ � 1

�
expð�b0�Þ ½15�

at sufficiently large �, where �b0 is the coefficient of
lowest-order term of the �-function, b0 is positive and �
is a physical scale. As � !1, a tends exponentially to
zero in physical units and the coarse structure of the
lattice becomes unimportant, indicating that the short-
distance limit in the definition of the Feynman integral
exists. The theory also develops a mass scale � which
insures the existence of a finite correlation length and
hence of the thermodynamical limit. In practice, when �
is increased, the lattice space becomes exponentially
small in physical units. As a consequence, however, the
physical scale becomes exponentially large in lattice
units, and an exponentially large lattice is needed to
insure the large-distance convergence. This makes life
difficult if the Feynman integral has to be computed
numerically.
Quarks

Fermion fields are defined on lattice sites. The
naive lattice transcription of the fermion term
in eqn [1] consists in replacing the covariant
derivatives by finite differences with parallel
transports to make the result gauge covariant. In
principle, D� (x) = Uy(x) (xþ �̂)�  (x) is a correct
definition. In practice, a more symmetric difference
is used which is correct O(a2), namely

DL
� ðxÞ

¼ 1

2
½UðxÞ ðxþ �̂Þ �Uyðx� �̂Þ ðx� �̂Þ� ½16�
The fermionic Lagrangian then reads

X
x

� ðxÞ½i6DL �m� ðxÞ

�
X

x;x0��

� �ðxÞM�1
��ðx;x0Þ �ðx0Þ ½17�

It is convenient to indicate this expression in the
form Sf = � M�1 , where  is a large column whose
elements are labeled by the site x and by the
component �. The functional integral over  can
explicitly be done by using the standard rules of
integration on Grassman variables, since the action
is bilinear,

Z ¼
Z Y

dU�ðxÞd ðxÞd � ðxÞ

� expð�SE½U� � � M Þ ½18�

The result is

Z ¼
Z Y

dU�ðxÞ expð�SE½U�Þ det M ½19�

The effect of fermions is to multiply the weight by a
functional determinant which depends on the gauge
field configuration.

A problem exists, however, in this procedure
already at the level of free fermions, that is, putting
U = 1 in the action and in the determinant of
eqn [18]. The equation of motion reads, in Fourier
transform,

X
�

�� sin 2	
k�
L

� �
�m

� �
~ ðkÞ ¼ 0 ½20�

With respect to the continuum, the momentum
p� = 2	k�=L has been replaced by its sinus. At
small values of p�, eqn [20] coincides with the
Dirac equation. However, an alternative solution
exists at p� � 	, for each � independently. The new
equation differs from the other by a change of sign
of ��. Changing sign of one of the gammas means
changing sign to �5 � �1�2�3�4, which is the
chirality of the fermion. Instead of one fermion,
we then have 24 = 16 fermion species, organized in
pairs with opposite chiralities. It is impossible to
have a single fermion with a given chirality. A
number of recipes have been proposed to circum-
vent this artifact of the lattice regulation, for
example, introduce by hand a term in the action
which removes the spurious particles in the limit of
zero lattice spacing (Wilson’s fermions); double the
lattice spacing by constructing two sublattices on
even and odd sites, respectively, which propagate
fermions of opposite chirality (staggered fermions),
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so that the argument of the sinus in the derivative is
doubled. More recently, an idea which goes back to
Ginsparg and Wilson has been implemented, which
consists in replacing a strictly local equation of
motion like eqn [20] by an equation with the
same continuum limit which is nonlocal, but with a
nonlocality falling off exponentially at large
distances, a recipe which makes propagation of
chiral fermions possible. This is an important
improvement, even if very demanding in computer
power.
Numerical Simulations

Solving analytically the lattice version of QCD
would allow one to follow constructively all the
steps which bring to the definition of Z, that is, the
ultraviolet and the infrared limit, as explained
earlier. Presently that is out of reach. Also an
attempt by Wilson to solve the lattice renormaliza-
tion group equations by techniques of decimation is
not conclusive.

The problem can be attacked numerically. One
way would be to compute the integral numerically.
That is, however, prohibitive: it would be like
solving exactly the equations of motion for the
molecules of a gas. The lattice theory is in fact a
four-dimensional statistical mechanics with the
Boltzmann factor �= 2Nc=g

2 and Hamiltonian
equal to the Euclidean action. As in statistical
mechanics the way out is to create a significant
sample of configurations with weight exp (��SE)
and to determine the field correlators which describe
physics by an average on this ensemble. This is done
by Monte Carlo techniques.

The basic principle is to start from an arbit-
rary field configuration and make a sequence of
random changes, normally on a single link at a
time, with uniform probability in the group
measure so as to converge toward the equilibrium
distribution exp (��SE). For that purpose, the
probability PC0C to change from a configuration C
to another C0 is constrained to obey the detailed
balance relation

PC0C expð��S½C�Þ ¼ PCC0 expð��S½C0�Þ ½21�

A common algorithm is known as metropolis. The
way to implement the condition (eqn [21]) is to accept
the new trial configuration C0 if S[C0] 	 S[C], and to
accept it with probability exp (� �[S(C0)� S(C)]) if
S[C0] 
 S[C]. An alternative method is known as
‘‘heat-bath’’. If the probability of the configuration for
one link at a fixed value of the other variables is
explicitly known, the change can be accepted with that
probability.

In the presence of dynamical quarks, the integral
eqn [18] is converted into an integral on bosonic
variables by inverting the matrix M:

Z ¼
Z Y

dU�ðxÞ d
ðxÞ d
ðxÞy

� expð�SE½U� � 
y½MyM��1
Þ ½22�

The property has been used such thatR Q
d
(x) d
y(x) exp (�
y[MyM]�1
) = jdet Mj. A

metropolis updating is then performed on the
combined U� and 
 variables. To have a choice
of the trial uniform in the measure, an algorithm is
commonly used which is based on ergodicity,
known as hybrid molecular dynamics. A fictitious
conjugate momentum is associated with all
variables, and a fictitious Hamiltonian is defined
by adding to the action, considered as a potential
energy, the sum of the squares of the conjugate
momenta. A classical evolution is then performed in
time by small steps which should displace the state
in phase space ergodically: the evolution is called a
trajectory. After a number of steps, a metropolis test
is made as explained above.

Typically, the computer time needed to produce a
significant configuration is proportional to the
volume V of the lattice for pure gauge systems, to
V5=4 in the hybrid algorithm for full QCD.

As explained before, in order to have a good
approximation to the Feynman integral the lattice
spacing has to be small compared to the physical
scales, for example, with respect to the Compton
wavelength of the heaviest quark. On the other
hand, to control volume effects it has to be large
compared to the biggest physical length, for
example, with respect to the Compton wavelength
of the lightest quark. Since there is a factor
mtop=mup � 3� 103 between these two lengths, the
lattice size needed would be prohibitive from
numerical point of view. In practice, lattices of
size L4 are affordable with L 	 64� 128. For
this reason, only the light quarks u, d, s are kept,
which have mass smaller than the typical scale of
the theory, which can be identified as the square
root of the string tension. In the limit in which light
quark masses are small compared to QCD scale,
the Lagrangian is invariant under any unitary
mixing of them. A global SU(3) invariance exists,
which is known as flavor symmetry, and is broken
by the difference of quark masses. Heavier
quarks can be described by an effective theory,
since they have negligible dynamical effects at low
energies.
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A Selection of Physics Results

String Tension

A big excitement followed the first numerical
calculations by M Creutz at the beginning of the
1980s in which the static potential V(r) between a
quark and an antiquark was computed in pure-
gauge theory on the lattice. One way to measure it is
to measure the correlator of two Polyakov lines at a
distance r on a significant ensemble of field config-
urations. The Polyakov line is the parallel transport
in the fundamental representation along the time
axis across the lattice: with periodic boundary
conditions it is a closed loop, and hence it is gauge
invariant. It can be proved that the log of this
correlator is equal to �V(r)aLt with Lt the extension
of the lattice in the time direction. It was found that

VðrÞ ¼ �r ½23�

The parameter � is known as string tension. A
potential of the form eqn [23] means confinement:
an infinite amount of energy is required to pull apart
the particles at infinite distance. The parameter �
can be determined phenomenologically from the
mass spectrum of the mesons and �2	 � 1 GeV.
What is measured on the lattice is

�að�Þ2n2 ½24�

where n is the distance of the two Polyakov lines in
lattice spacings and a(�) the lattice spacing in
physical units. In fact, the computer only produces
pure numbers. If the lattice QCD belongs to the
same universality class of QCD at the critical point,
that is, if the lattice really defines QCD, the
dependence of a(�) on � is dictated by the
�-function of the renormalization group. At suffi-
ciently large �= 6=g2,

að�Þ � 1

�latt

expð�b0�Þ ½25�

with b0 = (11=3)Nc=16	2. �latt is the energy scale of
the theory. The measurement of the potential gives
indeed a dependence of the lattice spacing on �
consistent with eqn [25] and allows one to deter-
mine �=�2

latt. The absolute value of the lattice
spacing can be determined by comparison with the
physical value of the string tension. The theory is
able to produce a physical scale. The correlation
length is finite and as a consequence the infrared
limit of the Feynman integral exists.

Mass Spectrum

Any operator with the quantum numbers of a
particle can be used as interpolating field for it.
The correlator of the operator at large distances
behaves like a sum of exponentials exp (�mr) with
m the masses of the particles with the same quantum
numbers. At large distances the lightest particle
dominates, especially if the operator has a good
overlap, that is, if its matrix element between
vacuum and the state of the particle is the biggest.
From the correlators mr can be determined. On the
lattice r = na(�) so that, by eqn [25] what is really
determined is the ratio m=�latt. If �latt has been
determined, for example, from the string tension,
the mass of the particle results in physical units.
Alternatively, the ratios of any two masses can be
determined and the scale fixed by the value of one of
them. A good agreement is obtained already in pure
gauge (quenched approximation) indicating that the
quark loops are relevant at the level of 10%
typically. This fact supports the idea that the large
Nc-limit is a good approximation to reality, quark
loops being nonleading in that limit. The light
particle masses are more difficult to compute,
being sensitive to the masses of light quarks which
cannot be taken at realistic values due to computa-
tional difficulties: large lattices are required and big
fluctuations are present near the chiral point. The
spectrum of particles made of heavy quarks can be
computed using effective theories, and nicely fits
experiment. A byproduct is a precise determination
of the gauge coupling constant, competitive with
phenomenological determinations from short dis-
tance perturbative QCD.

Weak Interaction Matrix Elements

There exist matrix elements of currents (or products
thereof) entering in weak amplitudes which involve
large distances and are not computable in perturba-
tion theory. Lattice can be used to evaluate them.
Renormalization problems can appear in this
approach when the cutoff is removed, which,
however, are not difficulties of principle but only
of technical nature. This activity is of fundamental
importance to have precise predictions in order to
understand the limits of the standard model.

Finite-Temperature QCD and the Deconfinement
Transition

The static thermodynamics of a system of fields is
described by the partition function

ZT ¼ tr½expð�H=TÞ� ½26�

It is easy to show that ZT is equal to the Euclidean
Feynman integral on the imaginary time interval
(0, 1=T) with boundary conditions in time periodic
for bosons and antiperiodic for fermions. Indeed, the
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Boltzmann factor is formally an imaginary time
evolution by 1/T. A lattice of extension LtL

3
S with

Ls � Lt provides the partition function at a tem-
perature T = 1=aLt, if a is the lattice spacing in
physical units.

Finite-temperature simulations are important to
investigate the transition from the phase in which
color is confined to a phase in which quarks and
gluons can propagate as free particles. This phase is
called deconfined phase or quark gluon plasma.

Big experiments at Brookhaven and at CERN are
looking for this phase transition in high-energy
collisions between heavy nuclei, but no definite
evidence has yet been produced for it. Lattice
simulations instead definitely prove that such a
transition exists. For pure SU(3) gauge theory
(quenched) at T � 270 MeV, a first-order phase
transition is observed, at which the string tension
vanishes. In a more realistic theory with
dynamical quarks, a transition is also observed at
T � 160 MeV, where chiral symmetry, which is
spontaneously broken at zero temperature, is
restored. This transition is also associated to decon-
finement even if, in the presence of light quarks, the
string tension does not exist. Indeed, when pulling
apart a quark and an antiquark, an instability for
production of quark–antiquark pairs sets in when
the potential energy becomes large enough, which
physically manifests itself as a production of light
mesons. An alternative order parameter is needed.
The possibility of defining alternative order para-
meters is discussed in next section.

The equation of state can also be studied relating
internal energy to pressure, which is useful to
understand heavy ion collisions.

From the features of the deconfinement transition,
information can be extracted on the mechanisms by
which QCD confines color.

A connected issue is the behavior of QCD at
nonzero baryon density or chemical potential. The
corresponding thermodynamics is described by a
grand canonical ensemble

Z�¼ tr½exp½�ðH þ �NÞ=T�� ½27�

where N =
R

d3x y is the baryon number operator
and � the chemical potential. In the process of
converting the partition function Z� into a Feynman
integral, the term H at the exponent of eqn [27]
generates the Euclidean action, which is real. The
term proportional to N becomes imaginary. The
integral is well defined, but the analogy with a four-
dimensional statistical mechanics is broken, the
effective Hamiltonian being non-Hermitian and no
sampling can be made. Approximate methods have
been developed, but the problem is open. Exploring
numerically the region of phase space with � 6¼ 0
would be interesting, since a rich structure is
expected, which could be relevant to dense systems
such as neutron stars.

Mechanisms of Color Confinement

Understanding how QCD manages to confine color
is one of the most fascinating problems in field
theory.

To prove confinement, one should, in principle,
prove that, at zero temperature, no gauge-invariant
quasilocal operator exists, carrying nontrivial color
and obeying cluster property at large distances. This
proof is not known. There exists evidence form
lattice simulations that a string tension exists, as
discussed before. In any case, a guess can be made of
the physical mechanism of confinement. If confine-
ment is an absolute property reflecting a symmetry
property of the vacuum, an order parameter should
exist which discriminates between confined and
deconfined phase, and the transition between the
two phases has to be a true transition. Observing a
crossover in some part of the boundary between the
two phases would disprove this view. A lattice
determination of the order of the deconfining
transition is therefore of fundamental importance.

A possible mechanism of confinement proposed by
G ’t Hooft is dual superconductivity of the vacuum:
dual means interchange of electric with magnetic
with respect to ordinary superconductors. In the same
way as the magnetic field is constrained into
Abrikosov flux tubes in an ordinary superconductor,
the chromoelectric field acting between a quark and
an antiquark would be constrained into flux tubes by
a dual Meissner effect producing an energy propor-
tional to the distance, or a string tension.

This mechanism can be investigated by lattice
simulations, by checking if any magnetically charged
operator exists whose vacuum expectation value is
nonzero in the confined phase signaling condensation
of magnetic charges and zero in the deconfined phase.
Progress has been made in this direction which,
however, is not yet conclusive. Chromoelectric flux
tubes between q–q̄ pairs are observed in lattice field
configurations.

Topology

Euclidean QCD admits classical solutions with finite
action and with a nontrivial topology which makes
them stable. These solutions, known as instantons
or multi-instantons, realize a mapping of the three-
dimensional sphere at infinity on the gauge group, and
the topological charge is the winding number of this
mapping. The Jacobian of this mapping is the Chern
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current K� and its divergence @�K�(x) � Q(x) is the
density of topological charge. Q =

R
d4x Q(x) is the

topological charge which has integer values.
Explicitly,

QðxÞ ¼ g2

16	2
tr½G��G

�
�� � ½28�

with G��� = (1=2)�����G�� the dual field strength tensor.
Q(x) plays an important role in hadron physics,

being related to the anomaly of the flavor singlet
axial current J5

� =
P

f
� �5�� f . J5

� is conserved at the
classical level in the chiral limit mf = 0, but this
symmetry does not survive quantization. In fact,

@�J5
� ¼ 2Nf QðxÞ ½29�

A consequence of eqn [29] is the high mass m
0 �
1 GeV of the flavor singlet partner 
0 of the
pseudoscalar flavor octet. An Nc!1 argument by
Witten and Veneziano relates m
0 to the response of
the quenched (no quark) vacuum to topological
excitation, the topological susceptibility � �

R
d4x <

0jTQ(x)Q(0)j0 > . The relation is

2Nf

f 2
	

� ¼ ½m2

0 þm2


 � 2m2
K�½1þOð1=NcÞ� ½30�

This approximate relation has been checked on the
lattice. � has been determined by different methods
which agree in confirming it. This is an important
verification of QCD.

Instantons are stable solutions in the continuum,
approximately stable in the lattice discretized ver-
sion. A cooling procedure which locally freezes
short-distance quantum fluctuations would leave
the instantons untouched if they were stable. On
the lattice the instanton is stable anyhow if the
distance in correlation reached by the local cooling
procedure is small compared to the size of the
instanton: cooling is indeed a diffusion process and
the distance involved grows as the square root of the
number of cooling iterations. Instanton configura-
tions can nicely be exposed by cooling.

See also: Anomalies; Quantum Chromodynamics;
Renormalization: General Theory; Spin Foams;
Symmetry Breaking in Field Theory.
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Introduction

The Leray–Schauder theory gives a powerful and
versatile continuation method for proving the
existence, multiplicity, and bifurcation of solutions
of nonlinear operator, differential and integral
equations. Let X and Y be topological spaces, A 
 X,
f : X!Y, a continuous mapping, and y 2 Y. The
fundamental idea of a continuation method to solve
the equation f (x) = y in A consists in embedding it into
a one-parameter family of equations

Fðx; �Þ ¼ zð�Þ ½1�

where the continuous functions F : X� [0, 1]! Y,
z : [0, 1]! Y are chosen in such a way that F( � , 1) =
f , z(1) = y and

1. equation F(x, 0) = z(0) has a nonempty set of
solutions in A;

2. one of those solutions at least can be continued
into a solution in A of [1] for each � 2 [0, 1].

Simple examples show that Assertion 2 can be
violated when all solutions of [1] leave A after some
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�� 2 ]0, 1[. A way to avoid such a situation consists
in ‘‘closing the boundary,’’ through the ‘‘boundary
condition’’:

Fðx; �Þ 6¼ zð�Þ for each ðx; �Þ 2 @A� ½0; 1�

When this condition is satisfied, Assertion 2 can
still fail when two existing solutions for � small
disappear after coalescing at some �0 < 1. Losing all
solutions through this process can be eliminated by
reinforcing Assumption 1 into

20. Equation F(x, 0) = z(0) has a ‘‘robust’’ nonempty
set of solutions in A.

This statement can be made precise through the
concept of topological degree of a mapping, an
‘‘algebraic’’ count of the number of its zeros. In a
finite-dimensional setting, this concept was intro-
duced by Kronecker for smooth mappings and
by Brouwer for continuous mappings. Its extension
by Leray and Schauder to some classes of mappings
in Banach spaces made much wider applications
to nonlinear differential and integral equations
possible.
Topological Degree of a Mapping

If U � Rn is a bounded open set, z 2 Rn and
F : �U ! Rn is a C1 mapping such that z 62 F(@U)
and det F0(x) 6¼ 0 on F�1(z), the Brouwer degree
degB[F, U, z] is defined (analytically) by

degB½F;U; z� :¼
X

x2F�1ðzÞ
sign det F0ðxÞ

¼
X

x2F�1ðzÞ
ð�1Þ�ðxÞ

where �(x) is the sum of the multiplicities of the
negative eigenvalues of F0(x). The case of a
continuous F such that z 62 F(@U) is treated by
approximating F through mappings of the above
type, and showing that the corresponding degrees
stabilize to an unique value, defining degB[F, U, z] in
the general case. This number remains the same
under sufficiently small perturbations of F and/or z,
which expresses the ‘‘robustness’’ mentioned above.
When n = 2 and U is bounded by a closed Jordan
curve, then degB[F, U, 0] is nothing but the winding
number of F=kFk along @U.

Leray and Schauder have extended Brouwer
degree to the important class of compact perturba-
tions of identity in a normed space. A compact
mapping f : A!B between metric spaces is a
continuous mapping on A such that f(A) is relatively
compact. If f : A!B is continuous and compact on
each bounded B � A, f is called ‘‘completely con-
tinuous’’ on A.

If X is a real normed space, U � X an open bounded
set, f : �U!X compact, and z 62 (I � f )(@U), the
Leray–Schauder degree degLS[I � f , U, z] of I � f in
U over z is constructed from Brouwer degree by
approximating the compact mapping f over �U by
mappings f� with range in a finite-dimensional sub-
space X� of X containing z. One shows that the values
of the Brouwer degrees degB[(I � f�)jX�

, U \X�, z]
stabilize for sufficiently small positive � to a common
value which defines degLS[I � f , U, z].

Again, this topological degree is an algebraic
count of the number of elements of (I � f )�1(z),
equal to 0 when z 62 (I � f )(U). When f is of class
C1, and I � f 0(x) invertible at each fixed point x 2
(I � f )�1(z), (I � f )�1(z) is finite and the
Leray–Schauder formula holds:

degLS½I � f ;U; z� ¼
X

x2ðI�f Þ�1ðzÞ

ð�1Þ�ðxÞ ½2�

where �(x) is the sum of the algebraic multiplicities
of the eigenvalues of f 0(x) contained in [1, þ1].

Let I = [0, 1]. For A � X� I, and � 2 I, we write
A� = {x 2 X : (x,�) 2 A}. The Leray–Schauder degree
inherits the basic properties of Brouwer degree:

1. Additivity. If U = U1 [U2, where U1 and U2

are open and disjoint, and if z =2 (I � f )(@U1) [
(I � f )(@U2), then

degLS½I � f ;U; z� ¼ degLS½I � f ;U1; z�
þ degLS½I � f ;U2; z�

2. Existence. If degLS[I � f , U, z] 6¼ 0, then
z 2 (I � f )(U).

3. Homotopy invariance. Let � � X� I be a
bounded open set, and let F : ��!X be compact.
If x� F(x,�) 6¼ z for each (x,�) 2 @�, then
degLS[I � F( 	 ,�), ��, z] is independent of �.

In particular, if a is an isolated fixed point of f,
and B(a, r) denotes the open ball of center a and
radius r, degLS[I � f , B(a, r), 0] is defined and inde-
pendent of r for sufficiently small r > 0. Its value is
called the ‘‘Leray–Schauder index’’ of I � f at a, and
denoted by indLS[I � f , a].
Fixed-Point Theorems for Compact
Perturbations of Identity in a Normed
Space

An important application of Leray–Schauder degree
is the obtention of general fixed point theorems for
compact mappings in normed spaces based on
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continuation along a parameter. If F : A �
X� I!X, we denote by �A the (possibly empty)
solution set defined by

�A ¼ fðx; �Þ 2 A : x ¼ Fðx; �Þg

Let � � X� I be a bounded open set and
F : ��!X be a compact mapping. The general
Leray–Schauder fixed-point theorem goes as follows:

Theorem If the following conditions hold:

(i) �
�� \ @� = ; (a priori estimate)

(ii) degLS[I � F( 	 , 0), �0, 0] 6¼ 0 (degree condition),
then �

�� contains a continuum C along which
� takes all values in I. In other words, �

��

contains a compact connected subset C connect-
ing �

��
0 to �1. If one refines Assumption (ii) into

(iii) �
��
0 is a finite nonempty set {a1, . . . , a�} and

indLS[I � F( 	 , 0), a1] 6¼ 0, the conclusion takes
the form of an ‘‘alternative’’: if assumptions
(i) and (iii) hold, then (a1, 0) belongs either to
a continuum in �

�� containing one of the points
(a2, 0), . . . , (a�, 0), or to a continuum in �

��

along which � takes all the values in I.

Condition (iii) automatically holds in the following
important special case: If �

�� \ @� = ;, F( 	 , 0) = 0,
and 0 2 �0, then �

�� contains a continuum C 3 (0, 0)
along which � takes all values in I. When dealing with
the fixed-point problem x = f (x) with f : �U � X!X
compact, U open and bounded, a natural choice is
F(x, �) =�f (x), � = U � I, giving the statement: If
0 2 U and if x 6¼ �f (x) for each (x,�) 2 @U � I, then
{(x,�) 2 �U � I : x =�f (x)} contains a continuum C 3
(0, 0) along which � takes all values in I.

Condition (i) requires the a priori knowledge of
the localization of the solution set �

�� and is in
general very difficult to check. An important special
case occurs when �X is a priori bounded: if F is
completely continuous on X� I, F(	 , 0) = 0, and
�X � B(r)� I for some r > 0, then �X contains a
continuum C 3 (0, 0) along which � takes all values
in I. Its special case with F(�, x) =�f (x) can be
stated as Schaefer’s alternative: Let f : X!X be
completely continuous. Then either there exists, for
each � 2 [0, 1], at least one x 2 X such that
x =�f (x), or the fixed point set {x 2 X :
x =�f (x), 0 < � < 1} is unbounded in X. Schaefer’s
alternative is equivalent to the following Schauder
fixed-point theorem:

Theorem Any compact mapping f : B(r)!B(r) has
a fixed point.

A simple consequence of Schauder’s theorem is
that, for any continuous and bounded g : R ! R,
any open bounded D � Rn, any � different from an
eigenvalue of �� on D with Dirichlet boundary
conditions, the nonlinear Dirichlet problem

�uþ �uþ gðuÞ ¼ hðxÞ in D

u ¼ 0 on @D

has a weak solution for each h 2 L2(D).
An interesting consequence of Leray–Schauder

theorem with �X a priori bounded is that, for any
bounded domain D � Rn with @D of class C2, the
Dirichlet problem for the equation of surfaces with
constant mean curvature �

ð1þ kruk2Þ�u�
Xn

i;j¼1

@iu @ju @
2
iju

¼ n�ð1þ kruk2Þ3=2

has a unique solution for arbitrary smooth boundary
data if and only if the mean curvature of the boundary
@D is everywhere greater than [n=(n� 1)]j�j.

The use of auxiliary continuous functionals gives
a fixed-point theorem in the absence of a priori
bounds:

Theorem (Capietto–Mawhin–Zanolin). Let � �
X� I be an open set and F : ��!X be completely
continuous. If �

��
0 is bounded, degLS[I � F( 	 , 0),

U0, 0] 6¼ 0 for some open bounded neighborhood
U0 of �

��
0 , and if there exists a continuous

mapping ’ : X� I!Rþ, proper on �
��, and c� <

min�
��
0
’(	 , 0) 
 max�

��
0
’(	 , 0) < cþ such that �� 62

{c�, cþ} and �@� 62 [c�, cþ], then �
�� contains a

continuum C along which � takes all values in I.

This result implies, for example, that for g : R!R
continuous, odd and superlinear (limjuj!1 g(u)=
u =þ1), and p : [0, 1]� R2 with at most linear
growth in u and u0 at infinity, the two-point
boundary-value problem

u00 þ gðuÞ ¼ pðt; u; u0Þ; uð0Þ ¼ uð1Þ ¼ 0

has, for all sufficiently large j, at least one solution
uj having exactly jþ 1 zeros on [0, 1], and
kujkC1!1 if j!1.
Extensions of Leray–Schauder degree

Fixed-point theorems for operators between suitable
nonlinear spaces can also be proved using topologi-
cal continuation arguments. For example, if C � X
is a nonempty convex set, one has the following
extension of a result of the previous section to
mappings in C: if U � C is open and bounded,
F : clCU � I!C compact and such that x 6¼ F(x,�)
for each (x,�) 2 @CU � I, F(	 , 0) = x0 2 U, then
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F(	 ,�) has a fixed point in U for each � 2 I. The
special case where C is a wedge is useful in finding
positive solutions of nonlinear differential or inte-
gral equations. For nonlinear spaces, the degree has
to be replaced by the fixed-point index,
which generalizes both the ‘‘Hopf–Lefschetz num-
ber’’ and Leray–Schauder degree.

The Leray–Schauder degree also has been
extended to other classes of operators. Compact
operators can be replaced by k-set-contractive or
condensing mappings f, with respect to various
measures of noncompactness, and fixed-point pro-
blems can be replaced by problems of the form x 2
F(x) for multivalued mappings F. Equivariant degree
theories have been developed when U is invariant
and f equivariant with respect to the action of some
compact Lie group G on X. The special case of
G = S1 is of special importance in the study of
periodic solutions of autonomous differential sys-
tems. Degree theories have also been constructed for
various classes of mappings between two different
Banach spaces or manifolds, which include mono-
tone-like and nonlinear Fredholm operators. We just
describe a simple but useful situation in this
direction.

Many differential equations, when expressed as
equations in an abstract space, do not have the
fixed-point form but can be written as Lx = Nx with
L : D(L) � X! Z linear, N : �U!Z, X and Z real
normed spaces. If L is invertible, the equation is
trivially equivalent to the fixed-point problem
x = L�1Nx, to which Leray–Schauder theory can be
applied when L�1N is compact. The situation is
more delicate when L has no inverse. If L is a linear
Fredholm mapping of index zero (its range R(L) is
closed and has a finite codimension equal to the
dimension of its null space N(L)), the set F (L) of
linear continuous mappings of finite rank A : X!Z
such that Lþ A : D(L)!Z is a bijection is none-
mpty and the compactness of (Lþ A)�1G does not
depend upon the choice of A 2 F (L). G is then called
‘‘L-compact’’ on E, and ‘‘L-completely continuous’’
on E when compact on each bounded set of E.

The following continuation theorem for perturbed
Fredholm mapping of index zero holds.

Theorem Let � � X� I be open and bounded,
L : D(L) � X!Z linear Fredholm of index zero,
N : �� ! Z L-compact, and let �={(x,�)2 (D(L)�I)
\�� :Lx=N(x,�)}. If

(i) � \ @� 6¼ ; (a priori estimate),
(ii) N(��0 � {0}) � Y, with Y � R(L) = Z (transvers-

ality condition), and
(iii) degB[N( 	 , 0)jkerL, �0 \ kerL, 0] 6¼ 0 (degree

condition)
then � contains a continuum C along which � takes
all values in I.

When dealing with equation Lx = f (x) with f
L-completely continuous, an interesting special case
of the above result follows from the choice
N(x,�) =�f (x)þ (1� �)Qf (x), with Q : Z!Z a
projector such that N(Q) = R(L). In this case, the
homotopy is equivalent to

Lx ¼ �f ðxÞ ð� 2�0; 1�Þ
Qf ðxÞ ¼ 0; x 2 NðLÞ ð� ¼ 0Þ

An application (among many) of this result,
for g : R!R continuous such that �1 <
lim supu!�1 g(u) < lim infu!þ1 g(u) < þ1, D � Rn

open, bounded, �k an eigenvalue of the Dirichlet
problem for �� on D, is the weak solvability of the
nonlinear problem

�uþ �kuþ gðuÞ ¼ hðxÞ in D

u ¼ 0 on @D

for each h 2 L2(D) such thatZ
D

hðxÞ’ðxÞ dx <
h

lim sup
u!�1

gðuÞ
i

�
Z

D

’þðxÞ dx�
h

lim inf
u!þ1

gðuÞ
i Z

D

’�ðxÞ dx

for all eigenfunctions ’ associated to �k. The
addition of the nonlinearity g ‘‘widens’’ the range
{h 2 L2(D) :

R
D h’= 0} of the corresponding linear

problem.
Bifurcation Theory

Leray–Schauder degree is a powerful tool in bifurca-
tion theory, where, given a family F of solutions,
one tries to detect and analyze other ones branching
or bifurcating from F . Consider the equation

x ¼ �Lxþ Rðx; �Þ ½3�

in a real normed space X, where L : X!X, linear,
and R : X� R ! X are completely continuous, and
R(0,�) = 0 for each � 2 R. Thus, {(0,�) :� 2 R} is
the trivial solution set of [3]. A bifurcation point
(��, 0) for [3] is the limit of a sequence (�k, xk) of
solutions of [3] in Rn{0}.

If

lim
x!0

kRðx; �Þk
kxk ¼ 0

uniformly on bounded �-sets ½4�

it is easy to prove that if (��, 0) is a bifurcation point for
[3], then �� is a characteristic value (reciprocal of an
eigenvalue) of L. Leray–Schauder theory gives a partial
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converse to this result known as Krasnosel’skii’s
bifurcation theorem:

Theorem For each real characteristic value �� of L
with odd algebraic multiplicity, (��, 0) is a bifurcation
point of [3]. Of fundamental importance in the proof is
the special case of [2] with f = L and N(I � L) = {0}.

Another fruitful concept is Krasnosel’skii’s bifur-
cation from infinity. We say (��,1) is a bifurcation
point for [3] if there exists a sequence (�n, xn) of
solutions of [3] such that �n!�� and kxnk!1.
The corresponding bifurcation result goes as follows
(Krasnosel’skii): if

lim
kxk!1

kRðx; �Þk
kxk ¼ 0

uniformly on bounded �-sets ½5�

then, for each real characteristic value �� of L with
odd algebraic multiplicity, (��,1) is a bifurcation
point of [3].

Global versions of Krasnosel’skii’s theorems can be
given, whose statements are reminiscent of Leray–
Schauder’s alternative theorem. Let S denote the
closure in R �X of the set of (�, x) 2 R � (X n {0})
satisfying [3]. For bifurcation from zero, one has
Rabinowitz global bifurcation theorem:

Theorem If [4] holds and �� is a real characteristic
value of L with odd algebraic multiplicity, then S
contains a component C which either is unbounded,
or contains (���, 0), where ��� 6¼ �� is a character-
istic value of L.

As an application, one can show that the non-
linear Sturm–Liouville problem

�ðpðxÞu0Þ0 þqðxÞu¼�aðxÞuþhðx;u;u0;�Þ ðx2�0;1½Þ
a0uð0Þþb0u0ð0Þ¼ a1uð1Þþb1u0ð1Þ¼0

with p2C1 positive, q, a, h continuous, a positive,
(a2

0þb2
0)(a2

1þb2
1) 6¼0 and h(x,u,v)=o(jujþ jvj) if

jujþ jvj ! 0 uniformly on compact �-intervals, has,
for each k2N, an unbounded component of
solution Ck in R�C1([0,1]) emanating from (�k,0),
with �k an eigenvalue of the problem with h�0
(Rabinowitz).

One has also global bifurcation from infinity: if
[5] holds and if �� is a real characteristic value of L
with odd algebraic multiplicity, then [3] has an
unbounded component of solutions D which con-
tains (��,1).

See also: Bifurcation Theory; Bifurcations in Fluid
Dynamics; Bifurcations of Periodic Orbits; Minimal
Submanifolds; Minimax Principle in the Calculus of
Variations; Partial Differential Equations: Some
Examples; Riemann–Hilbert Problem; Topological
Defects and Their Homotopy Classification; Viscous
Incompressible Fluids: Mathematical Theory.
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Introduction

Local continuous transformations were introduced
by Lie as a tool for solving ordinary differential
equations. In this program, he followed the spirit of
Galois, who used finite groups to develop algo-
rithms for solving algebraic equations (the general
quadratic, cubic, and quartic), or else to prove that
some equations (the generic quintic) could not be
solved by quadrature.

Lie’s work led eventually to the definition and
study of Lie groups. Lie groups are beautiful in their
own right – so beautiful that they have been studied
independently of their origin as a tool for solving
differential equations and studying the special
functions determined by certain classes of these
equations.
Lie Groups

Lie groups exist at the interface of the two great
divisions of mathematics: algebra and topology.
Their algebraic properties derive from the group
axioms. Their geometric properties arise from the
parametrization of the group elements by points in a
differentiable manifold. The rigidity of these struc-
tures arises from the continuity requirements
imposed on the group composition and inversion
maps.

The algebraic axioms are standard.

Definition A group G consists of a set
gi, gj, gk, . . .2G together with a combinatorial
operation � that satisfy the four axioms:

(i) Closure. If gi 2 G, gj 2 G, then gi � gj 2 G.
(ii) Associativity. If gi, gj, gk 2 G, then (gi � gj)�

gk = gi � (gj � gk).
(iii) Identity. There is a unique operation e 2 G that

satisfies e � gi = gi = gi � e.
(iv) Inverse. Every group operation gi 2 G has an

inverse, denoted g�1
i , that satisfies gi � g�1

i = e =
g�1

i � gi.

Lie groups have more structure than groups. In
particular, each gi 2 G is a point in an n-dimen-
sional manifold Mn. That is, the subscript i
actually identifies a point x 2Mn, so that we
can write gi = g(x) or most simply gi = x.
The group multiplication can be expressed in the
form gi � gj = gk ! g(x) � g(y) = g(z), where x 2Mn,
y 2Mn, z =�(x, y) 2Mn. The group inversion map
can be expressed in the form g(x)! g(x)�1 = g(y),
y = (x) 2Mn. The topological axioms for
Lie groups can be taken as:

(v) Continuity of composition. The mapping
z =�(x, y) defined by the group composition
law is differentiable.

(vi) Continuity of inversion. The mapping y = (x)
defined by the group inversion law is
differentiable.

The dimension of the Lie group is the dimension
of the manifold that parametrizes the operations in
the group.

The most familiar examples of Lie groups consist
of n� n nonsingular matrices over the fields R, C, Q
of real numbers, complex numbers, and quaternions.
For example, the set of 2� 2 real unimodular
matrices

a b
c d

� �
; ad � bc ¼ 1

is a three-dimensional submanifold embedded in
R22

= R4.
Matrix Lie Groups

Not every Lie group is a matrix group. Yet, it is a
surprising and useful result that almost every Lie
group encountered in physics is a matrix Lie
group. These are all subgroups of the general
linear groups GL(n; F) of n� n nonsingular
matrices over the field F (R, C, Q). These groups
have real dimension n2 � (1, 2, 4), respectively. The
special linear subgroups SL(n; F) are defined as the
subgroups of n� n matrices with determinant
þ1: M 2 SL(n; F) if det M =þ1. This definition is
problematic for quaternions, as they do not
commute. To avoid this problem, it is useful to
map quaternions into 2� 2 complex matrices in
the same way complex numbers can be mapped
into 2� 2 real matrices:

aþ ib!
a b

�b a

� �

q0 þ Iq1 þ J q2 þKq3 !
q0 þ iq3 iq1 þ q2

iq1 � q2 q0 � iq3

� �

Here (1, i) are basis vectors for C1 considered as
a real two-dimensional linear vector space,
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(1, I ,J ,K) are basis vectors for Q1 considered as a
real four-dimensional linear vector space, and (a, b)
and (q0, q1, q2, q3) are all real. The squares of the
imaginary quantities i and I ,J ,K are all �1: i2 = �1;
I2 =J 2 =K2 =�1 and the imaginary quaternion
basis elements anticommute: {I ,J } =
{J ,K} = {K, I } = 0. The unimodular subgroup
SL(n; Q) of GL(n; Q) is obtained by replacing each
quaternion matrix element by a 2� 2 complex
matrix, setting the determinant of the resulting 2n�
2n matrix group to þ1, and then mapping each of the
n2 complex 2� 2 matrices back to quaternions.

Many other important groups are defined by
imposing linear or quadratic constraints on the n2

matrix elements of GL(n; F) or SL(n; F). The
compact metric-preserving groups U(n; F) leave
invariant lengths (preserve a positive-definite metric
g = In) in linear vector spaces. The matrices M 2
U(n; F) satisfy MyInM = In. These conditions define
the orthogonal groups O(n) = U(n; R) and the uni-
tary groups U(n) = U(n; C). Their noncompact
counterparts O(p, q) and U(p, q) leave invariant
nonsingular indefinite metrics

g ¼ Ip;q ¼
Ip 0
0 �Iq

� �

in real and complex n = (pþ q)-dimensional linear
vector spaces: MyIp, qM = Ip, q.

Intersections of matrix Lie groups are also Lie
groups. The special metric-preserving groups are
intersections of the special linear groups SL(n; F) �
GL(n; F) (with F = Q, SL(n; Q) is defined as
described above) and the metric-preserving sub-
groups U(n; F) � GL(n; F):

SLðn;RÞ \Uðn;RÞ¼ SOðnÞ; nðn� 1Þ=2
SLðn;CÞ \Uðn;CÞ¼ SUðnÞ; n2� 1

SLðn;QÞ \Uðn;QÞ¼ SpðnÞ ¼ USpð2nÞ; nð2nþ 1Þ

The real dimensions of these groups are given in the
right-hand column. Under the replacement of qua-
ternions by 2� 2 complex matrices, the group of
n� n metric-preserving and unimodular matrices
Sp(n) over Q is identified as USp(2n), an isomorphic
group of 2n� 2n matrices over C.

Noncompact forms SO(p,q),SU(p,q), and Sp(p,q)=
USp(2p,2q) are defined similarly.

The Lie group SU(2) rotates spin states to spin
states in a complex two-dimensional linear vector
space. It leaves lengths, inner products, and
probabilities invariant. If an interaction is spin
independent, only an invariant (‘‘Casimir invar-
iant’’) constructed from the spin operators can
appear in the Hamiltonian. The same group can act
in isospin space, rotating proton to neutron states.
The Lie group SU(3) similarly rotates quark states
or color states into quark states or color states,
respectively. The Lie group SU(4) rotates spin–
isospin states into themselves. The conformal group
SO(4, 2) leaves angles but not lengths in spacetime
invariant. It is the largest group that leaves the
source-free Maxwell equations invariant. It is also
the largest group that transforms all the (bound,
scattering, and parabolic) hydrogen atom states
into themselves.

Lie groups such as the Poincaré group (inhomo-
geneous Lorentz group) and the Galilei group have
the matrix structures

t1

Oð3; 1Þ t2

t3

t4

0 0 0 0 1

2
6666664

3
7777775

x
y

z

ct

1

2
6666664

3
7777775

v1 t1

Oð3Þ v2 t2

v3 t3

0 0 0 1 t4

0 0 0 0 1

2
6666664

3
7777775

x
y

z

t

1

2
6666664

3
7777775

respectively. In these transformations t = (t1, t2, t3)
describes translations in the space (x-, y-, and z-)
directions, v = (v1, v2, v3) describes boosts, and t4

resets clocks. The matrices in these defining matrix
representations are reducible.

The Heisenberg covering group H4 is a four-
dimensional Lie group with a simple 3� 3 matrix
structure:

Heisenberg covering group ¼ H4 ¼
1 l d
0 n r
0 0 1

2
4

3
5;

n 6¼ 0

This matrix representation of H4 is faithful but
nonunitary.
‘‘Linearization’’ of a Lie Group

At the topological level, a Lie group is homoge-
neous. That is, every point in a manifold that
parametrizes a Lie group looks like every other
point. At the algebraic level, this is not true – the
identity group operation e is singled out as an
exceptional group element. At the analytic level, the
group composition law z =�(x, y) is nonlinear, and
can therefore be arbitrarily complicated.
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The study of Lie groups is enormously simplified
by exploiting these three observations. Specifically,
it is useful to ‘‘linearize’’ the group multiplication
law in the neighborhood of the identity. The
linearization leads to a local Lie group. This is a
linear vector space on which there is an additional
structure. Once the local Lie group properties are
known in the neighborhood of the identity, they are
known everywhere else in the group, since the group
is homogeneous.

A Lie group is linearized in the neighborhood of
the identity by expressing an operator near the
identity in the form g(�) = I þ �X, where the local
Lie group operator �X = �xiXi, the Xi are n
linearly independent vector fields on the manifold
Mn, and the small coordinates �xi measure the
distance (in some rough sense) of g(�) from the
point that parametrizes the identity group opera-
tion e = g(0). For another group operation
g(�Y) = I þ �Y in the neighborhood of the identity,
the following holds.

1. The product g(�X)g(�Y) = (I þ �X)(I þ �Y) = I þ
(�Xþ �Y)þ (h.o.t) is in the local Lie group.

2. The commutator gi � gj � g�1
i � g�1

j in the group
leads to

gð�XÞgð�YÞgð�XÞ�1gð�YÞ�1

¼ I þ 1
2 �� XY � YXð Þ þ h:o:t

¼ I þ 1
2 �� X;Y½ � þ h:o:t

in the local Lie group.

The first condition shows that the local Lie
group is a linear vector space. The n vector fields
Xi can be chosen as a set of basis vectors in this
space.

The second condition shows that the commutator
of two vectors in this linear vector space is also in
this linear vector space. The commutator endows
this linear vector space with an additional combina-
torial operation (‘‘vector multiplication’’) and pro-
vides it with the structure of an algebra, called a Lie
algebra.

Definition A Lie algebra la consists of a set of
operators X, Y, Z, . . . , together with the operations
of vector addition, scalar multiplication, and com-
mutation [X,Y] that satisfy the following three
axioms:

(i) Closure (linear vector space). If X, Y 2 la,�Xþ
�Y 2 la and [X, Y] 2 la.

(ii) Antisymmetry. [X, Y] = �[Y, X].
(iii) Jacobi identity. [X, [Y, Z]]þ [Y, [Z, X]]þ

[Z, [X, Y]] = 0.
The structure of a Lie algebra, or local Lie group,
is summarized by the structure constants, defined in
terms of the basis vectors Xi, by

Xi;Xj

� �
¼ cij

kXk summation convention

The structure constants cij
k are components of a

third-order tensor, covariant and antisymmetric
in two indices (cij

k =�cji
k) and contravariant in

the third. These components obey the Jacobi
identity, which places a quadratic constraint on
them:

cij
scsk

t þ cjk
scsi

t þ cki
scsj

t ¼ 0

Linearization of a Lie group generates a Lie
algebra. A Lie group can be recovered by the
inverse process. This is the exponential operation.
A group operation a finite distance from the origin
(the point identified with the identity group opera-
tion) of the manifold that parametrizes the Lie
group can be obtained from the limiting procedure
(�= 1=K! 0):

gðXÞ ¼ lim
K!1

Y
I þ 1

K
X

� �K

¼ eX ¼ EXPðXÞ

The exponential operation is well defined for real
numbers, complex numbers, quaternions, n� n
matrices over these fields, and vector fields.

A 1:1 correspondence between Lie groups and Lie
algebras does not exist. Isomorphic Lie groups have
isomorphic Lie algebras. But nonisomorphic Lie
groups may also possess isomorphic Lie algebras.
The best known examples of nonisomorphic Lie
groups and their isomorphic Lie algebras are

SOð3Þ 6¼ SUð2Þ; soð3Þ ¼ suð2Þ
SOð4Þ 6¼ SUð2Þ� SUð2Þ; soð4Þ ¼ suð2Þþsuð2Þ
SOð5Þ 6¼ Spð2Þ ¼USpð4Þ; soð5Þ ¼ spð2Þ ¼ uspð4Þ

There is a 1:1 correspondence between Lie algebras
and ‘‘locally’’ isomorphic Lie groups. This has been
extended to global Lie groups by a beautiful
theorem due to E Cartan.

Theorem (Cartan) There is a 1:1 correspondence
between Lie algebras and simply connected Lie
groups. Every Lie group with the same Lie algebra
is either the simply connected (‘‘universal covering’’)
group or is the quotient of this universal covering
group by one of its discrete invariant subgroups.

This relation is summarized in Figure 1.
As a concrete example, the Lie algebra of

SO(3), which is the group of real 3� 3 matrices
satisfying MyI3M = I3 and det(M) = þ1, is
spanned by the three ‘‘angular momentum vector
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Figure 1 Cartan’s theorem states that there is a 1:1 correspondence between Lie algebras and simply connected Lie groups. All
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fields’’ Li(x) = �ijkxj@k or the three angular
momentum matrices

L1 ¼ L23 ¼

0 0 0

0 0 þ1

0 �1 0

2
664

3
775

L2 ¼ L31 ¼ �L13 ¼

0 0 �1

0 0 0

þ1 0 0

2
664

3
775

L3 ¼ L12 ¼

0 þ1 0

�1 0 0

0 0 0

2
664

3
775

The Lie group SU(2) is the group of complex 2� 2
matrices satisfying MyI2M = I2 and det(M) =þ1. Its
Lie algebra is spanned by the three spin matrices
Sj = (i=2)�j, which are multiples of the Pauli spin
matrices �j :

S1 ¼
i

2

0 þ1

þ1 0

� �
; S2 ¼

i

2

0 �i

þi 0

� �

S3 ¼
i

2

þ1 0

0 �1

� �

The two Lie algebras are isomorphic as they share
isomorphic commutation relations [J1, J2] = �J3 (and
cyclic), Jj = Lj or Jj = Sj. The group SU(2) is simply
connected. Its maximal discrete invariant subgroup D
consists of all multiples of the identity, �I2, so that
�= 	1. According to Cartan’s theorem, SO(3) =
SU(2)=D2, D2 = {I2, �I2}. The group SO(3) is doubly
connected, with a two-element homotopy group.
Matrix Lie Algebras

A deep theorem of Ado guarantees that every Lie
algebra is equivalent to a matrix Lie algebra, even
though the same is not true of Lie groups.

Sets of n� n matrices that close under vector
addition, scalar multiplication, and commutation
(M1 2 la,M2 2 la) [M1,M2] = M1M2 �M2M1 2 la)
form matrix Lie algebras. The antisymmetry proper-
ties and Jacobi identity are guaranteed by matrix
multiplication.

Lie algebras for the general linear groups
GL(n; F) consist of n� n matrices over F. Lie
algebras for the special linear groups SL(n; F)
consist of traceless n� n matrices. The Lie algebras
of the unitary groups consist of anti-Hermitian
matrices. The Lie algebras of U(p, q; F) consist of
matrices that obey

MyIp;q þ Ip;qM ¼ 0; M 2 uðp; q; FÞ

The matrix Lie algebras of other matrix Lie groups
are obtained by constructing the most general Lie
group operation in the neighborhood of the identity
by linearization. For example, the Lie algebra of the
Heisenberg covering group H4 is

1 l d

0 n r

0 0 1

2
64

3
75!

1 �l �d

0 1þ �n �r

0 0 1

2
64

3
75

! I3 þ �n N þ �r Rþ �l Lþ �d D

N ’ aya R ’ ay

0 0 0

0 1 0

0 0 0

2
64

3
75

0 0 0

0 0 1

0 0 0

2
64

3
75
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L ’ a D ’ I ¼ a; ay
� �

0 1 0

0 0 0

0 0 0

2
64

3
75

0 0 1

0 0 0

0 0 0

2
64

3
75

The four 3� 3 matrices N, R, L, D that span the Lie
algebra h4 of H4 satisfy commutation relations
isomorphic with the commutation relations satisfied
by the photon operators (aya, ay, a, I = [a, ay]). The
3� 3 matrix representations of the group H4 and
the algebra h4 are faithful. The representation of H4

is nonunitary and that of h4 is non-Hermitian.
There is a simple way to relate a large class

of operator Lie algebras to matrix Lie algebras.
If A, B, C, . . . belong to a Lie algebra of n� n
matrices with [A, B] ¼ C, the matrix-to-operator
mapping

A! A ¼ xiAi
j@j

preserves commutation relations, for

A;B½ � ¼ xiAi
j@j;x

rBr
s@s

� �
¼ xiAi

j @j; x
r

� �
Br

s@s � xrBr
s @s; x

i
� �

Ai
j@j

¼ xiAi
jBj

s@s � xrBr
iAi

j@j ¼ xi A;B½ �i
j@j ¼ C

This relation depends on the bilinear products xi@j

satisfying commutation relations

xi@j; x
r@s

� �
¼ xi@s�j

r � xr@j�s
i

These commutation relations are satisfied by pro-
ducts of creation and annihilation operators ayi aj for
either bosons (byi bj) or fermions (f yi fj). These matrix-
to-operator mappings can be extended to include
bilinear products such as xixj, xi@j, @i@j and their
boson and fermion counterparts aiaj, ayi aj, ayi a

y
j . For

example, the vector fields associated with the
operator J1 for SO(3) and SU(2) are xi(L1)i

j@j =
x2@3 � x3@2 and ui(S1)i

j@j = (i=2)(u1@2 þ u2@1).
Boson and fermion bilinear products ayi aj(1 � i,

j � n) are isomorphic to u(n). Boson bilinear products
bibj, byi bj, byi b

y
j are isomorphic to usp(2n) while

fermion bilinear products fifj, f yi fj, f yi f yj are isomorphic
to so(2n).
Structure of Lie Algebras

The study of Lie algebras is greatly facilitated by
studying their structure. The structure is determined
by the commutation properties of the Lie algebra.

Invariant Subalgebra

If a Lie algebra has an invariant subalgebra, then
the commutator of anything in the algebra with
anything in the subalgebra is in the subalgebra.
Suppose a is a linear vector subspace of g.
If [g, a] 
 a, then a is an invariant subspace of g.
In particular, [a, a] 
 a and a is therefore also
a subalgebra of g: it is an invariant subalgebra
in g.

Example The Lie algebra iso(3) consists of the
three rotation operators Lij = xi@j � xj@i and the
three displacement operators Pk = @k. The subset
of displacement operators is an invariant subspace
in iso(3), since it is mapped into itself by all
commutators. It is also a subalgebra in iso(3). This
particular invariant subalgebra is commutative.
Solvable Algebra

If g is a Lie algebra, the linear vector space obtained
by taking all possible commutators of the operators
in g is called the ‘‘derived’’ algebra: [g, g] = g(1) 
 g.
If g(1) = g, there is no point in continuing this
process. If g(1) � g, it is useful to define g = g(0)

and to continue this process by defining g(2) as the
derived algebra of g(1): g(2) = [g(1), g(1)]. We can
continue in this way, defining g(nþ1) as the algebra
derived from g(n). Ultimately (for finite-dimensional
Lie algebras), either g(nþ1) = 0 or g(nþ1) = g(n) for
some n. If the former case occurs,

g ¼ gð0Þ � gð1Þ � gð2Þ � 
 
 
 � gðnÞ � gðnþ1Þ ¼ 0

the Lie algebra g(0) is called solvable. Each algebra
g(i) is an invariant subalgebra of g(j), i > j.

Example The Lie algebra spanned by the boson
number, creation, annihilation, and identity opera-
tors is solvable. The series of derived algebras has
dimensions 4, 3, 1, 0.

gð0Þ gð1Þ gð2Þ gð3Þ

aya � � �
ay ay � �
a a � �
I I I �
Semidirect Sum Algebra

When a Lie algebra g has an invariant subalgebra a,
the linear vector space of the Lie algebra g can be
written as the direct sum of the linear vector
subspace of the subalgebra a plus a complementary
subspace b. The subspace b is generally not by itself
a Lie algebra. The Lie algebra g is written as a
semidirect sum of the two subspaces. The semidirect
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sum structure satisfies the commutation relations
shown:

b; b½ � 
 b ^ a

g ¼ b ^ a b; a½ � 
 a

a; a½ � 
 a

The subspace b can be given the structure of an
algebra modulo the component of the commutator
in a: b = g mod a.

Example The three-dimensional Lie algebra spanned
by the photon operators ay, a, I has a semidirect sum
decomposition where b is spanned by ay, a and a is
spanned by I. The subspace b is not closed under
commutation, and a is commutative. The Lie algebra
iso(3) also has the structure of a semidirect sum, with
b = b = so(3) and the invariant subalgebra a is
spanned by the three displacement operators Pk.

Nonsemisimple Algebra

A Lie algebra is nonsemisimple if it has a solvable
invariant subalgebra.

Example The Lie algebra spanned by bilinear
products of photon creation and annihilation opera-
tors ayi aj, creation operators ayi , annihilation opera-
tors aj, and the identity operator I(1 � i, j � n)
is nonsemisimple. The solvable invariant subalgebra
is spanned by the 2nþ 2 operators consisting of the
single photon operators ayi , aj, the identity operator
I, and the total number operator n̂ =

Pn
i = 1 ayi ai.

Semisimple Algebra

A Lie algebra is semisimple if it has no solvable
invariant subalgebras.

Example The Lie algebra so(4) is semisimple. This
Lie algebra has two invariant subalgebras, both
isomorphic to so(3). The direct sum decomposition

soð4Þ ¼ soð3Þ þ soð3Þ

is well known to physical chemists and is respon-
sible for the dualities that exist between rotating and
laboratory frame descriptions of molecular systems.

Simple Algebra

A Lie algebra is simple if it has no invariant
subalgebras at all. The prettiest page in the theory
of Lie groups is the classification theory of the
simple Lie algebras. We turn to this subject now.
Nonsemisimple Semisimple Simple

Figure 2 When the regular matrix representation of a Lie

algebra is reducible, fully reducible, or irreducible, the Lie

algebra is nonsemisimple, semisimple, or simple.
Lie Algebra Tools

Two powerful tools have been developed for study-
ing the structure of a Lie algebra. These are the
regular representation and the Cartan–Killing form.
Regular Representation

This representation assigns the structure constants to
a set of n n� n matrices according to

X� ! RðX�Þ	
 ¼ c�	

; X�;X	

� �
¼ c�	


X


The matrices of the regular representation contain
exactly as much information as the components of
the structure tensor. They can be studied by
standard linear algebra methods. For example, a
secular equation can be used to put the commuta-
tion relations into canonical form.

The structure of the matrices of the regular
representation determines the structure of the Lie
algebra. The identification is carried out according to
the usual rules of representation theory, as shown in
Figure 2. If a basis X� can be found in which all the
matrices of the regular representation are simulta-
neously reducible, the algebra possesses an invariant
subalgebra. If the representation is not fully reduci-
ble, the invariant subalgebra is solvable. If the regular
representation is fully reducible, the algebra consists
of the direct sum of two (or more) smaller, mutually
commuting subalgebras. If the regular representation
is irreducible, the algebra is simple.

If a Lie algebra is solvable (solv), all matrices in
the regular representation can be transformed to
upper triangular matrices. If the Lie algebra is
nilpotent (nil � solv), the diagonal matrix elements
in the upper triangular matrices are zero. The
converses are also true.

Cartan–Killing Form

The Cartan–Killing form is a second-order sym-
metric tensor that is constructed from the third-
order antisymmetric tensor c�	


 by cross-contraction

g�� ¼ c�	

c�


	 ¼ g�� ¼ tr RðX�ÞRðX�Þ ¼ X�;X�

� 	
¼ X�;X�

� 	
The metric g�� can be used to place an inner product
(X�, X�) on this linear vector space. This inner
product is not necessarily positive definite.
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The matrix g�� can also be treated by standard
linear algebra methods. Since it is real and
symmetric, it can be diagonalized. If there are
n� negative eigenvalues, nþ positive eigenvalues,
and n0 vanishing eigenvalues (n = n� þ nþ þ n0), the
Lie algebra has a corresponding linear vector space
decomposition of the form

g ¼ g� þ gþ þ g0

The inner product is positive definite on the
subspace gþ and negative definite on g�. We call
g0 the singular subspace. The subspace g0 is closed
under commutation and in fact is a nilpotent
invariant subalgebra of g.
Subspace Spanned by

g0þ ay1a1 � ay2a2, 1ffiffi
2
p (ay1a2 þ ay2a1)

g0�
1ffiffi
2
p (ay1a2 � ay2a1)

g00 ay3a3

g0 ay1a1 þ ay2a2, ay3, a3, I
Decomposition of Lie Algebras

The most general Lie algebra g is the semidirect sum
of a semisimple Lie algebra ss and a solvable
invariant subalgebra solv:

ss; ss½ � ¼ ss

g ¼ ss ^ solv ss; solv½ � 
 solv

solv; solv½ � � solv

The decomposition of g into its component parts
is accomplished by a simple two-step algorithm.

1. Compute the Cartan–Killing metric for g and
determine the singular subspace. If there is none,
stop. If the dimension of g0 > 0, nil = g0 is the
maximal nilpotent invariant subalgebra of g.

2. Compute the structure constants of the Lie
algebra g0= g� nil = g mod nil = g=nil, the
Cartan–Killing metric tensor on g0, and the
decomposition g0= g0� þ g0þ þ g00. Then a = g00 is
abelian and invariant in g0. In fact, a is the largest
abelian invariant subalgebra in g0.

The algorithm stops here, for the algebra
g00= g0mod a = g0=a = g0� þ g0þ has no singular sub-
space under its Cartan–Killing metric.

Under this algorithm, the decomposition of g into
its semisimple part and its maximal solvable
invariant subalgebra is

g ¼ g0� þ g0þ
� 	

^ g00 ^ g0

� 	
The maximum solvable invariant subalgebra solv
in g is the semidirect sum of a and nil: solv = g00 ^
g0 = a ^ nil. In addition, ss = g mod solv =
g=solv = g0� þ g0þ. The subspace g0� is closed
under commutation and exponentiates into a
compact subgroup of G0. The subspace g0þ
exponentiates to a noncompact coset in G0 that is
simply connected.

Every element in a semisimple Lie algebra can be
expressed as the commutator of two elements in the
Lie algebra. In this sense, a semisimple algebra
reproduces itself under commutation.

To illustrate this algorithm, we tear apart the
eight-dimensional Lie algebra spanned by the photon
operators ayi aj, 1 � i, j � 2 and ay3a3, ay3, a3, I,
where the photon operators obey [ai, ayj ] = �ijI. The
regular representative of the general linear combi-
nation X =

P
ij mija

y
i aj þ nay3a3 þ ray3 þ la3 þ �I is

RðXÞ ¼

0 �m12 m21

0 m12 �m21

�m21 m21 þm11 �m22 0
m12 �m12 0 �m11 þm22

2
6666666666664

0
n l

�n �r
0

3
7777777777775

ay1a1

ay2a2

ay1a2

ay2a1

ay3a3

ay3
a3

I

The Cartan–Killing inner product is the trace of the
square of this matrix:

ðX;XÞ ¼ tr RðXÞ2 ¼ 2ðm11 �m22Þ2

þ 8m12m21 þ 2n2

The subspace g0 is spanned by ay1a1 þ ay2a2, ay3, a3, I,
leaving the four operators ay1a1 � ay2a2, ay1a2,
ay2a1, ay3a3 to span g0. A simple calculation shows
that g00 is spanned by ay3a3. As a result:
The Lie algebra is the direct sum g = sl(2; R)þ
u(1)þ h4.
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Structure of Semisimple Lie Algebras

The Cartan–Killing metric g�� is nonsingular on a
semisimple Lie algebra. The metric and its inverse g��,
can be used to raise and lower indices. In particular, the
tensor whose components are c��� = c	��g	� is third-
order antisymmetric: c��� = c��� = c��� =�c��� . . . .
Classification of semisimple Lie algebras is equivalent to
classifying such tensors.

Another useful way to describe semisimple Lie
algebras is to search for a canonical structure for the
commutation relations. A useful canonical form is
an eigenvalue form

X;Y½ � ¼ �Y

In a basis Xi, with X = xiXi and Y = yjXj, this
equation reduces to a standard eigenvalue equation
for the regular representationX

j

X
k

yj RðxiXiÞj k � ��j
k

� �
Xk ¼ 0

Thus, the search for a standard form for the commuta-
tion relations reduces to a study of the secular equation

det RðXÞ � �Ið Þ ¼
Xn

j¼0

ð��Þn�j�jðXÞ ¼ 0 ½1�

The coefficients �j(X) are homogeneous polynomials
of degree j in the coefficients xi of X = xiXi.

In order to extract maximum information from
this secular equation, a generic vector X 2 g is
chosen. Such a choice minimizes all degeneracies.
With a generic choice of X 2 g, it is useful to define
the rank, l, of the Lie algebra g as:

1. the number of functionally independent coeffi-
cients �j(X) in the secular equation;

2. the number of independent roots, �1,�2, . . . ,�l

of the secular equation;
3. the dimension of the subspace H � g that

commutes with X; and
4. the number of independent (Casimir) operators

that commute with all Xi : Cj(X) =�j(x
i!Xi):

[Cj(X), Xi] = 0.

For example, for so(3) or su(2), the secular
equation for X = xiXi is

det

0 x3 �x2

�x3 0 x1

x2 �x1 0

2
64

3
75� �I3

2
64

3
75

¼ ð��Þ3 þ ð��Þ�2ðxÞ ¼ 0

where �2(x) = x2
1 þ x2

2 þ x2
3. The rank is l = 1. There

is one independent coefficient �2(x) and one
independent root of this equation, �1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �ijxixj

p
=

i
ffiffiffiffiffiffiffiffiffi
x 
 x
p

. The only linear operators that commute
with X are scalar multiples of X. There is one
independent homogeneous operator that commutes
with all generators Xi, obtained by the substitutions
xi ! Li (for so(3)) or xi ! Si (for su(2)):

C2ðLÞ ¼ �2ðxi ! LiÞ ¼ L2
1 þ L2

2 þ L2
3

The secular equation [1] is over the field of real
numbers. This is not an algebraically closed field.
There is no guarantee that the number of indepen-
dent functions �j(x) in the secular equation is equal
to the number of (real) roots of this equation until
we extend the field from R to C, which is
algebraically closed. As a result, the classification
of semisimple Lie algebras is done over complex
numbers. After the complex extensions of the simple
Lie algebras have been classified, their different
inequivalent real forms can be determined.
Root Spaces

When the secular equation for the regular represen-
tation of a generic element in a Lie algebra is solved,
the commutation relations can be put into a simple
and elegant canonical form. This canonical form
depends on the rank, l, of the Lie algebra, not the
dimension, n, of the Lie algebra. This provides a
very useful simplification, as n � l2.

For this canonical form, the independent roots
�1(x),�2(x), . . . ,�l(x) are gathered into a single
vector a with l components. The vectors a =
(�1,�2, . . . ,�l) are called root vectors. The root
vectors exist in an l-dimensional space on which a
positive-definite inner product can be defined. The
root vectors for a rank-l semisimple Lie algebra g
span this Euclidean space. The basis vectors of g
can be identified with the roots in the root space.

The roots in a root space have the following
properties:

1. A positive-definite metric can be placed on the
root space.

2. The vector 0 is a root.
3. The root 0 is l-fold degenerate.
4. If a is a root and ca is a root, c = 	1, 0.
5. If a and b are roots,

b 0 ¼ b � 2a 
 b
a 
 a a

is also a root and 2a 
 b=a 
 a is an integer, n1. In
fact, b 0 is the root obtained by reflecting b in the
hyperplane orthogonal to a.

6. The set of reflections generated by nonzero roots
itself forms a group, the Weyl group of the Lie
algebra.
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7. The angle between roots a and b is determined by

cos2ða; bÞ ¼ a 
 b
a 
 a

a 
 b
b 
 b ¼

n1

2

n2

2
¼ 0;

1

4
;
2

4
;
3

4
; 1

The integers n1, n2 for noncolinear roots are
constrained by jn1n2j < 4.

8. The relative lengths of the roots are determined
by the angles between them:
cos2 (�(a, b)) �(a, b) a 
 a=b 
 b

3/4 30�, 150� 3	1

2/4 45�, 135� 2	1

1/4 60�, 120� 1
9. When the roots are normalized so thatX
a 6¼0

�i�j ¼ �ij or
X
a 6¼0

a 
 a ¼ l

the commutation relations can be placed in the
canonical form presented in the next section.
– α1 = –e1 + e2 α1 + 2α2

α1 + α2 = e1

α1 = e1 +

α2 = e2

– α2 = –e2

– α1 – α2 = –e1

– α1 – 2α2 = –e1 – e2

±e1 ±e2; ±e1; ±e2

e1 = 1
6

α1 α2
B2

2 1

α1 α2

G2 =
3 1

– α1 = – √3/2e1 +     e2
3
2

√3/2e1 +    e2
3
2

– α1 – α2 = – √3/2e1 +    e2
1
2

– α1 – 2α2 = – √3/2e1 –    e2
1
2

α1 + 2α2 = √3/2e1 –    e1
2

α1 + α2 = √3/2e1

– α1 – 3α2 = – √3/2e1 –    e2
3
2

α1 = √3/2e1 –     e2
3
2

–2α1 – 3α2 = – √3e1 2α1 + 3α2 = –

= √1/12e1

e2 = α2

–e2 = – α2

α1 + 3α2

Figure 3 Rank-2 root spaces: G2 30�, B2 = C2 45�, A2 60�, D2 = A1
It is possible to build up all possible root space
diagrams using an ‘‘Aufbau’’ construction. We start
with a rank-1 root space. This consists of three roots
in R1: a, 0, �a.

To construct rank-2 root spaces, a new noncolinear
root b is adjoined to the two nonzero roots. The new
root and the old roots span R2. The new root can only
have a limited set of angles with the roots already
present. The set of roots a, b is completed by reflection
in hyperplanes orthogonal to all roots present. If any
pair of roots violates the angle conditions, the result
is not a root space. In this way, the rank-2 root
spaces G2(30�),B2 =C2(45�),A2(60�), and D2 =A1þ
A1(90�) are constructed from A1. Proceeding in this
way, it is possible to construct rank-3 root spaces
(B3, C3, A3 = D3) from the rank-2 root spaces, the
rank-4 root spaces from the rank-3 root spaces, and so
forth. Ultimately, there are four unending chains
An, Bn, Cn, Dn and five exceptional root spaces
G2, F4, E6, E7, E8. The rank-2 root spaces are shown
in Figure 3 and the rank-3 root spaces are shown in
– α1 = –e1 + e2

 = e1 + e2

2α1 + α2 = 2e1

α1 + α2 = e1 + e2

 e2
α1 = e1 – e2

α2 = 2e2

– α2 = –2e2

–2α1 – α2 = –2e1

– α1 – α2 = –e1 – e2

±e1 ±e2; ± 2e1; ± 2e2

α1 α2
C2

2 1

e1 = 1/12

– α1 = –e1 + e2 α2 = e1 + e2

α1 = e1 – e2– α2 = –e1 – e2

±e1 ± e2

α2

B2 =
α1

1 1

– α2

– α2

α2

α1
±e1

±e2

= +

A1 A2⊕

2

 –    e2
1
2

 √3e1

′

þ A1 90�.
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+e1+e2

e1

–e1+e2
+e1+e3

–e,+e3

–e2,+e4
–e2+e4

e1–e3
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e1–e4e1–e4

–e1+e2

e2+e3
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+e1 +e3
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+e1–e3

–e2–e3
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2e1
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e
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Figure 4 Rank-3 root spaces: A3, B3, C3, D3 = A3.
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Figure 4. The normalization factors (cf. point (9) above)
are shown for the rank-2 root spaces in Figure 3.
β + α

α– α

– β

β + 2αββ – α

Figure 5 An a chain containing �.
Canonical Commutation Relations

The canonical commutation relations are expressed
in terms of root vectors. The l operators in g with
the l-fold degenerate root vector 0 are H1, H2, . . . ,
Hl. These l operators mutually commute. In a
matrix Lie algebra, they can be taken as simulta-
neously commuting diagonal matrices. Associated
with each nonzero root a 6¼ 0, there is exactly one
basis vector, Ea , in g. The canonical commutation
relations are expressed in terms of the roots as
follows:

Hi;Hj

� �
¼ 0 1 � i; j � l

Hi;Ea½ � ¼�iEa

Ea ;E�a½ � ¼a 
H

Ea ;Eb
� �

¼
NabEaþb a þ b a root

0 a þ b not a root

(

The structure constants Nab are determined from a
recursion relation derived from a chain of roots
b � m a, b � (m � 1)a, . . . , b þ (n � 1)a, b þ na,
where b � (m þ 1)a and b þ (n þ 1) a are not roots
(cf. Figure 5). The structure constants are

N2
a; b ¼ 1

2 nð1þmÞða 
 aÞ

The operators H and Ea are often called diagonal
and shift operators, respectively. They are general-
izations of the shift operators J3 and J	 of angular
momentum theory. The general idea is as follows.
Since the operators Hi mutually commute, the
matrices �(Hi) representing these operators can be
chosen as diagonal in any matrix representation.



Root Space a1 a2 a l�1 a l

Al�1 e1 � e2 e2 � e3 e l�1 � e l

Dl e1 � e2 e2 � e3 e l�1 � e l e l�1 þ e l

Bl e1 � e2 e2 � e3 e l�1 � e l þ1e l

Dl e1 � e2 e2 � e3 e l�1 � e l þ2e l
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The action of any of these operators on a basis
vector in this representation is Hijmi= mijmi. The
operator Ea shifts the eigenvalue of H according to

HðEa jmiÞ ¼ ð½H;Ea � þ EaHÞjmi ¼ ða þmÞðEa jmiÞ

In this sense the operators Ea act on basis vectors
jmi in such a way that the eigenvalue m is shifted by
a to mþ a.

For the simple classical Lie algebras, the roots can
be expressed in terms of an orthogonal Euclidean
basis set as shown in Table 1 and Figures 3 and 4
for the rank-2 and rank-3 root spaces. The roots for
the five remaining inequivalent simple Lie algebras
(‘‘exceptional’’ algebras) are shown in Table 2.

The diagonal and shift operators for several of the
classical Lie algebras can be related to bilinear
products of boson or fermion creation and annihila-
tion operators. For u(n), the bilinear products ayi aj

are related to Ea with a = ei � ej, 1 � i 6¼ j � n, and
Hi = ayi ai. This holds for either boson or fermion
operators. For sp(2n; R), we have the identifications
with bilinear products of boson operators as
follows: þei þ ej $ byi b

y
j , þei � ej $ byi bj, �ei �

ej $ bibj, and Hi = byi bi. In particular, þ2ei $ by2i

and �2ei $ b2
i . For so(2n), we have the identifica-

tions with bilinear products of fermion operators as
follows: þei þ ej $ f yi f yj , þei � ej $ f yi fj, �ei � ej $
fifj, and Hi = f yi fi. In particular, f yi f yi = f 2

i = 0. These
identifications make it a relatively simple matter to
construct unitary matrix representations of the
compact Lie groups SU(n) that are symmetric or
Table 2 Roots for the simple exceptional Lie algebras

Root space Rank Dimension Roots

G2 2 14 þe i � e

	[(e i þ
F4 4 52 	e i 	 e

	e1 	 e

E6 6 78 	e i 	 e
1
2 (	e1

E7 7 133 	e i 	 e
1
2 (	e1

E8 8 248 	e i 	 e
1
2 (	e1

aEven number of þ signs.
bEven number of þ signs within bracket.

Table 1 Roots for the simple classical Lie groups and algebras

Group Algebra Root space

SU(l ) su(l) Al�1

SO(2l ) so(2l) Dl

SO(2l þ 1) so(2l þ 1) Bl

Sp(l) = USp(2l) sp(l) = usp(2l) Cl
antisymmetric, of USp(2n) that are symmetric, and
of SO(2n) that are antisymmetric (bosons $ sym-
metric, fermions $ antisymmetric).
Dynkin Diagrams

Every root in a rank-l root space can be represented as
a linear combination of l ‘‘basis roots.’’ These basis
roots can be chosen in such a way that all coefficients
are integers. In fact, the basis roots can be chosen so
that all linear combinations that are roots involve only
positive integers (and zero) or only negative integers
and zero. This comes about because every shift
operator Ed can be written as a multiple commutator

Ed � Ea ; Eb ;Eg
� �� �

; d ¼ a þ b þ g

One simple way to construct such a basis set of
fundamental roots is to construct an (l � 1)-dimen-
sional plane through the origin of the root space that
contains no nonzero roots, and choose as l funda-
mental roots the l roots on one side of this
hyperplane that are closest to it. For the classical
simple Lie algebras, the fundamental roots are:
Conditions

j 1 � i 6¼ j 6¼ k � 3

e j )� 2ek ]

j , 	2e i 1 � i < j � 4

2 	 e3 	 e4

j 1 � i < j � 5

	 e2 	 e3 	 e4 	 e5)	
ffiffi
3
p

4 e6 a

j 1 � i < j � 6

	 e2 	 e3 	 e4 	 e5 	 e6)	
ffiffi
2
p

4 e7 b

j 1 � i < j � 8

	 e2 	 e3 	 e4 	 e5 	 e6 	 e7 	 e8) a

Rank Roots Conditions

l � 1 þe i � e j 1 � i 6¼ j � l

l 	e i 	 e j 1 � i < j � l

l 	e i 	 e j , 	ek 1 � i < j , k � l

l 	e i 	 e j , 	2ek 1 � i < j , k � l



Shrink

Figure 6 A chain with single links can be removed from a

diagram. If the original is an allowed Dynkin diagram, the shrunk

diagram is also allowed, and conversely.

p q Root space Constraint
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All roots in the rank-2 root spaces have been
expressed in terms of both two orthogonal vectors
and two fundamental roots in Figure 3.

If ai and aj are fundamental roots, their inner
product is zero or negative

cos ai;aj

� 	
¼ 0;�

ffiffiffi
1

4

r
;�

ffiffiffi
2

4

r
;�

ffiffiffi
3

4

r

This information has been used to classify the root
spaces of the inequivalent simple Lie algebras (over
C). The procedure is as follows. Each of the l
fundamental roots in a rank-l root space is repre-
sented by a dot in a plane. Dots representing roots
ai and aj are connected by nij lines, where
cos (ai, aj) = �

ffiffiffiffiffiffiffiffiffiffi
nij=4

p
. Orthogonal roots are not

connected by any lines. Such diagrams are called
Dynkin diagrams. Disconnected Dynkin diagrams
describe semisimple Lie algebras. Connected Dynkin
diagrams classify simple Lie algebras.

The properties of Dynkin diagrams arise from two
simple observations:

O1: The root space is positive definite.
O2: If u is a unit vector and vi are an orthonormal

set of vectors,X
ðu 
 viÞ2 � 1
arbitrary 1 Bl ,Cl i ¼ p þ 1

2 2 F4
These two observations lead to three important
properties of Dynkin diagrams.
D1: There are no loops. If ai (i = 1, 2, . . . , k) are in a
loop, then there are at least as many lines as
vertices. With ui = ai=jaij,

Xk

i¼1

ui;
Xk

j¼1

uj

 !
¼ kþ 2

Xk

i<j

ui 
uj > 0
Since 2ui 
uj � �1 if ui 
uj 6¼ 0, there cannot be
as many lines as vertices.
u1 v1up vq

(B, C, F )
D2: The number of lines connected to any node is
<4. If ai are connected to v, then with
ui = ai=jaij,X

v 
 uið Þ2¼
X

ni=4 < 1
w1
since v is linearly independent of the ai.
u1

wr – 1

v1up – 1 vq – 1

(D, E )
x

Figure 7 The only remaining candidate Dynkin diagrams have

either two vertices (B, C, F ) or one vertex (D, E ) connected to

three lines.
D3: A simple chain connecting any two nodes can be
shrunk. If the original diagram is allowed, the
shrunk diagram is also allowed, and conversely.
Since the shrunk diagram in Figure 6 violates D2,
the original is not an allowed Dynkin diagram.

According to these results, the maximum number
of lines that can be attached to a vertex is three. If a
vertex is attached to three lines, it can be connected
to three (one line each) other vertices, two (two plus
one) other vertices, or only one other vertex (all
three lines). This last case describes Dynkin diagram
G2 (cf. Figures 3 and 5).

The only remaining possibilities are shown in
Figure 7.

For diagrams of type (B, C, F) we define vectors

u ¼
Xp

i¼1

iui v ¼
Xq

j¼1

jvj

where as usual ui, vj are unit vectors ak=jakj. The
Schwartz inequality applied to u and v leads to the
inequality

1þ 1

p

� �
1þ 1

q

� �
> 2

The solutions with p � q are
For diagrams of type (D, E), we define vectors

u ¼
Xp�1

i¼1

iui; v ¼
Xq�1

j¼1

jvj; w ¼
Xr�1

k¼1

kwk

where as usual ui, vj, wk are unit vectors am=jamj.
With similar arguments, we obtain the inequality

1

p
þ 1

q
þ 1

r
> 2
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The solutions with p � q � r are
p q r Root space Regular Euclidean solid

arbitrary 2 2 Dp þ 2

3 3 2 E6 Tetrahedron

4 3 2 E7 Cube–octahedron

5 3 2 E8 Icosahedron–dodecahedron
All allowed Dynkin diagrams are shown in Figure 8.
In these diagrams roots making an angle of 120�

with each other (joined by single lines) have equal
length. Roots joined by double lines or triple lines
have different lengths. The arrows on double lines
α1 α2 αl – 1 αl

Al 

αl  – 1

αl  – 2α1 α2 αl

Dl 

α1 α2 αl –1 αl

Bl 

α1 α2 αl –1 αl

Cl 

α1 α2

G2

α1 α2 α3 α4

F4

α1 α2 α3 α4 α5

α6

E6

α1 α2 α3 α4 α5 α6

α7

E7

α1 α2 α3 α4 α5 α6

α8

α7

E8

Figure 8 Four infinite series (Al , Dl , Bl , Cl ) of Dynkin diagrams

exist and correspond to the classical simple Lie groups (SU

(l þ 1), SO(2l), SO(2l þ 1), USp(2l)). The five exceptional Dynkin

diagrams include a short finite series (El , l = 6, 7, 8), F4, and G2.
indicated the shorter and longer roots. Arrows point to
longer roots. The root space G2 and F4 are self-dual, so
it does not matter which way the arrow points.

Coxeter–Dynkin diagrams also appear in classical
geometry and catastrophe theory.
Real Forms

The metric tensor g	
 for a simple Lie algebra (over C)
in the canonical basis H, Ea is

1

1

1

1

1

0

0

1

1

0

0

g ←

H1

H2

Hl

E+α

E–α

E+β

E–β

½2�

In this basis, the Lie algebra decomposes into
positive- and negative-definite subspaces according to

g ¼ gþ þ g�

gþ spanned by Hi; Eþa þ E�að Þ=
ffiffiffi
2
p

g� spanned by Eþa � E�að Þ=
ffiffiffi
2
p

The choice of basis suggested above diagonalizes the
Cartan–Killing form in eqn [2]: g! Ip, q, with
p = l þ (1=2)(n� l) positive values þ1 on the diag-
onal and q = (1=2)(n� l) values �1 on the diagonal.
The trace of this matrix is the trace of g: þl.

An arbitrary element in this (complex) Lie algebra
is a linear superposition of the form

X ¼
X

i

hiHi þ
X
a 6¼0

eaEa ½3�

where all n coefficients hi, ea are complex. If all
these coefficients are taken real, the resulting Lie
algebra closes under commutation and describes a
noncompact Lie group. The subalgebra describing
the maximal compact subgroup is spanned by the
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linear combinations (Eþa � E�a)=
ffiffiffi
2
p

. The remain-
ing operators exponentiate to a noncompact coset

EXP hiHi þ ea
þ Eþa þ E�að Þ=

ffiffiffi
2
pn o

which is topologically equivalent to RK, K = l þ
(1=2)(n� l) = (1=2)(nþ l). Of all the real forms of
the complex Lie algebra described by this set of
canonical commutation relations (or root space, or
Dynkin diagram), this is the least compact real form.

The compact real form is obtained from [3] by
taking linear combinations

X ¼
X

i

ihiHi þ
X
a 6¼0

iea
þ Eþa þ E�að Þ=

ffiffiffi
2
p

þ
X
a 6¼0

ea
� Eþa � E�að Þ=

ffiffiffi
2
p

where hi, ea
þ, ea

� are real. The compact real forms of
the simple Lie algebras are:
Root space Group

Al � 1 SU(l)

Dl SO(2l)

Bl SO(2l þ 1)

Cl USp(2l) ¼ Sp(l)
If the imaginary factor i is absorbed into the
Cartan–Killing metric, this metric is diagonal, all
matrix elements are �1, the trace of this form is �n,
and the linear combinations for X are real.

Every complex simple Lie algebra (i.e., simple Lie
algebra over C) has a spectrum of inequivalent real
forms. These can all be obtained from the compact
real form by an analog of Minkowski’s ‘‘rotation
trick,’’ derived by Cartan. Cartan introduced a
metric-preserving linear mapping (‘‘involutive auto-
morphism’’) T : g! g with the property T2 = I and
(TX, TY) = (X, Y), with X, Y 2 g. The operator T
has eigenvalues 	1 and induces a decomposition
(‘‘Cartan decomposition’’) in g as follows:

g ¼ kþ p

TðgÞ ¼ TðkÞ þ TðpÞ

# #

k � p

As a result, the subspaces k and p are orthogonal.
The subspaces obey the following commutation and
inner-product properties:

k; k½ � 
 k;

k; p½ � 
 p;

p; p½ � 
 k;

k; kð Þ < 0

k; pð Þ ¼ 0

p; pð Þ < 0
Under the analytic continuation p ! ip, the com-
pact Lie algebra g is rotated to a noncompact Lie
algebra g0 whose commutation relations and inner-
product properties are

g ¼ kþ p ! g0 ¼ kþ p0

k; k½ � 
 k; ðk; kÞ < 0

k; p0½ � 
 p0; k; p0ð Þ ¼ 0

p0; p0½ � 
 k; p0; p0ð Þ > 0

The maximal compact subalgebra of g0 is k. The
subspace p0 exponentiates to a simply connected
submanifold on which the Cartan–Killing metric is
positive definite. This manifold is topologically
equivalent to RK, K = dim p. It is not geometrically
equivalent to RK once an invariant metric is placed
on it.

Three linear mappings that satisfy T2 = I suffice
to generate all real forms of all the simple classical
Lie algebras.
Block Matrix Decomposition

The compact Lie algebra u(n; F) has a block
submatrix decomposition (n = pþ q):

uðn; FÞ¼ Ap 0
0 Aq

� �
þ 0 þB
�By 0

� �

where Ayp = �Ap, Ayq = �Aq and B is an arbitrary
p� q matrix over F. Under the map

TðgÞ ¼ Ip;qgIp;q; Ip;q ¼
Ip 0
0 �Iq

� �

the diagonal subspace

Ap 0
0 Aq

� �

has eigenvalue þ1 and the off-diagonal subspace

0 þB
�By 0

� �

has eigenvalue �1. Under the Cartan rotation

uðn; FÞ ! uðp; q; FÞ ¼ Ap 0
0 Aq

� �
þ 0 þB
þBy 0

� �
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The real forms of the classical Lie groups obtained
in this way are

Dn;Bn

SOð2nÞ
! SOðp; qÞ

SOð2nþ 1Þ

An�1

SUðnÞ ! SUðp; qÞ

Cn

SpðnÞ ! Spðp; qÞ
USpð2nÞ ! USpð2p; 2qÞ

Subfield Restriction

The Lie algebra su(n) of complex traceless anti-
Hermitian matrices has a subalgebra so(n) of real
antisymmetric matrices. The algebra su(n) can be
expressed in terms of real n� n antisymmetric
matrices An and traceless symmetric matrices Sn:

suðnÞ ¼ soðnÞ þ suðnÞ � soðnÞ½ � ¼ An þ iSn

The Cartan rotation is

suðnÞ ! slðn; RÞ ¼ soðnÞ þ i suðnÞ � soðnÞ½ �
¼ An þ Sn

The classical Lie group generated by this transfor-
mation is SL(n; R).

A similar rotation can be carried out on unitary
matrices over the quaternion field, u(n; Q) = sp(n).
This algebra contains the subalgebra u(n) in which
quaternions q = q0 þ Iq1 þ J q2 þKq3 are restricted
to complex numbers q = q0 þ iq1. There is a natural
decomposition

spðnÞ ¼ uðnÞ þ spðnÞ � uðnÞ½ �

It is useful at this point to replace each quaternion
matrix element by a 2� 2 complex matrix: sp(n) !
usp(2n). This is a unitary representation of the
symplectic algebra. Replacing the complex matrix
Table 3 Real forms of the simple classical Lie algebras

Mapping Real form Maximal

Block submatrix so(p, q) so(p)þ s
so(p, q) so(p)þ s
su(p, q) u(1)þ su
sp(p, q) = usp(2p, 2q) usp(2p)þ

Subfield restriction sl(n; R) so(n)

sp(2n; R) u(n)

Field embedding so�(2n) u(n)

su�(2n) sp(n) = u
elements in u(n) by 2� 2 real matrices simultaneously
generates a real matrix representation of u(n) named
ou(2n). This is an orthogonal representation of the
unitary algebra. The decomposition above is

spðnÞ ! uðnÞ þ spðnÞ � uðnÞ½ �
! ouð2nÞ þ uspð2nÞ � ouð2nÞ½ � ¼ A2n þ iS2n

where as before A2n and S2n are 2n� 2n antisym-
metric and symmetric matrices. The Cartan rotation
maps this to sp(2n; R),

uspð2nÞ ! spð2n; RÞ ¼ A2n þ S2n

The classical Lie group generated in this way is
Sp(2n; R). Matrices in this group satisfy the quadratic
constraint MtGM=G, Gt =�G,det(G) 6¼ 0. The real
symplectic groups leave invariant Hamilton’s equations
of motion: dpi=dt=�@H=@qi, dqi=dt=þ@H=@pi.

Field Embeddings

The image of u(n)! ou(2n) consists of a set of
2n� 2n antisymmetric matrices of dimension n2.
These matrices form a subset of so(2n), which
consists of 2n� 2n antisymmetric matrices of
dimension 2n(2n� 1)=2. As a result, ou(2n) is a
subalgebra in so(2n). Thus, ou(2n) � k and
so(2n) � g and we have a Cartan decomposition

soð2nÞ ¼ ouð2nÞ þ soð2nÞ � ouð2nÞ½ �
# #

ouð2nÞ þ i soð2nÞ � ouð2nÞ½ � ¼ so�ð2nÞ

In the same way, the image of sp(2n) ! usp(2n)
consists of an n(2nþ 1)-dimensional set of 2n� 2n
anti-Hermitian matrices. This is a subset of su(2n),
which has dimension (2n)2 � 1. It is also a sub-
algebra of su(2n). Thus, usp(2n) � k and su(2n) � g,
so we have a Cartan decomposition

suð2nÞ ¼uspð2nÞ þ suð2nÞ � uspð2nÞ½ �
# #

uspð2nÞ þ i suð2nÞ � uspð2nÞ½ � ¼ su�ð2nÞ

These real forms are summarized in Table 3.
compact subalgebra Root space Condition

o(q) Dn p þ q = 2n

o(q) Bn p þ q = 2n þ 1

(p)þ su(q) An�1 p þ q = n

usp(2p) Cn p þ q = n

An�1

Cn

Dn

sp(2n) A2n�1



Table 5 Real forms of the exceptional Lie algebras

Maximal compact

subgroup

Root space ClassRank(Character) Root space Dimension

G2 G2(�14) G2 14

G2(þ2) A1 þ A1 6

F4 F4(�52) F4 52

F4(�20) B4 36

F4(þ4) C3 þ A1 24

E6 E6(�78) E6 78

E6(�26) F4 52

E6(�14) D5 þ D1 46

E6(þ2) A5 þ A1 38

E6(þ6) C4 36

E7 E7(�133) E7 133

E7(�25) E6 þ D1 79

E7(�5) D6 þ A1 69

E7(þ7) A7 63

E8 E8(�248) E8 248

E8(�24) E7 þ A1 136

E8(þ8) D8 120

Table 4 Equivalence among real forms of the simple classical

Lie algebras

A1 = B1 = C1 


su(2) = so(3) = sp(1) = usp(2) �3

su(1, 1) = sl(2; R) = so(2, 1) = sp(2; R) þ1

D2 = A1 þ A1 


so(4) = so(3) þ so(3) �6

so�(4) = so(3) þ so(2, 1) �2

so(3, 1) = sl(2; C) 0

so(2, 2) = so(2, 1) þ so(2, 1) þ2

B2 = C2 


so(5) = sp(2) = usp(4) �10

so(4, 1) = sp(1, 1) = usp(2, 2) �2

so(3, 2) = sp(4; R) þ2

D3 = A3 


so(6) = su(4) �15

so(5, 1) = su�(4) �5

so�(6) = su(3, 1) �3

so(4, 2) = su(2, 2) þ1

so(3, 3) = sl(4; R) þ3
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The root spaces A1[SU(2)], B1[SO(3)], and
C1[U(1; Q) ’ USp(2; C)] are equivalent. As a result,
the different real forms of their complex extensions
are related to each other. Similar remarks hold for
the real forms of B2 = C2, D2 = A1 þ A1, and
D3 = A3. The relations among these real forms are
summarized in Table 4. This table is useful in
inferring ‘‘spinor representations’’ among classical
groups. Thus, SO(3) has spinor representations
based on SU(2) and Sp(1); SO(4) has spinor
representations based on SU(2)� SU(2); SO(5) has
spinor representations based on USp(4); and SO(6)
has spinor representations based on SU(4).

For completeness, the real forms for the excep-
tional Lie algebras are collected in Table 5.

Real forms of the complex extension of a simple
Lie algebra are almost uniquely distinguished by an
index. This is the trace of the Cartan–Killing form
[2], once the appropriate factors of i have been
absorbed into it. If nc is the dimension of the
maximal compact subgroup, 
= tr(g) =þ1(n� nc)
�1(nc) = n� 2nc. The index ranges from �n for the
compact real form (for which nc = n) to þl for the
least compact real form.
Riemannian Symmetric Spaces

Exponentiation lifts Lie algebras to Lie groups and
subspaces in Lie algebras into submanifolds in Lie
groups. In particular, exponentiation of a Cartan
decomposition
g ¼ k þ p

# # #
G ¼ K � ðP ¼ G=KÞ

lifts the subspace p to the quotient (P = G=K).
A metric may be defined on the Lie group G as

follows. Define the distance between the identity
and some nearby point g(�) = EXP(�X) =
EXP(�xiXi) by

ds2ð0Þ ¼ Grs�x
r�xs

Move I and g(�) to the neighborhood of any point
g(x) 2 G by left multiplication: g(x)I ! g(x),
g(x)g(�xiXi)! g((xþ dx)iXi). The infinitesimals
dxi(x) at x (defined by g(x)) and �xi = dxi(0) at I
are linearly related,

�xi ¼Mi
jðxÞ dxjðxÞ

By requiring that the distance ds between I and
g(�xiXi) at the identity be the same as the
distance between g(xiXi)I and g(xiXi)g(�xiXi) =
g((xþ dx)iXi) at g(xiXi) leads to the condition

ds2 ¼ Grsð0Þ�xr�xs

¼ Grsð0ÞMr
iðxÞMs

jðxÞ dxiðxÞ dxjðxÞ
¼ GijðxÞ dxiðxÞ dxjðxÞ

An invariant metric G(x) over the Lie group G is
defined by

GijðxÞ ¼ Grsð0ÞMr
iðxÞMs

jðxÞ
GðxÞ ¼MtðxÞGð0ÞMðxÞ
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It is useful to identify G(0) with the Cartan–Killing
inner product on g. Since M(x) is nonsingular, the
signature of G(x) is invariant over the group.

The invariant metric on G can be restricted to
subspaces K � G and P = G=K � G. The signature
on these subspaces is the same as the signature on
the subspaces k and p in g. Thus, if G is compact,
the invariant metric is negative definite on K and on
P = G=K and positive definite on the analytically
continued space P0= G0=K. In short, it is definite
(negative, positive) on P, P0. These spaces are
Riemannian spaces and they are globally symmetric.
They have been investigated by studying the proper-
ties of the secular equation of the Lie algebra g,
restricted to the subspace p:

det RðpiPiÞ � �I
� �

¼
X

j

ð��Þn�j�̂jðpÞ ¼ 0 ½4�

where the Pi are basis vectors that span p. The
coefficients �̂j(p) in the secular equation [4] for
Riemannian symmetric spaces are related to the
coefficients �j(x) in the secular equation [1] for Lie
algebras. A rank for the Riemannian symmetric
space P = EXP(p) can be defined from the secular
equation following exactly the prescription followed
for the Lie algebra g. The rank of the Riemannian
symmetric space P = EXP(p) is

1. the number of functionally independent coeffi-
cients �̂j(p) in the secular equation;

2. the number of independent roots of the secular
equation;

3. the dimension of the maximal Euclidean sub-
space in P; and

4. the number of independent (Laplace–Beltrami)
operators that commute with all displacement
operators Pi: �j(P) = �̂j(p

i ! Pi).

Rank-1 Riemannian symmetric spaces are isotropic
as well as homogeneous.

Tables 3 and 5 contain all the information required
to enumerate all the classical and exceptional Rieman-
nian symmetric spaces. All the classical Riemannian
symmetric spaces are tabulated in Table 6. The
Table 6 All classical Riemannian symmetric spaces

Root space Quotient Dime

Apþq�1 SU(p, q)=S[U(p)� U(q)] 2pq

An�1 SL(n; R)=SO(n) 1
2 (n þ

A2n�1 SU�(2n)=USp(2n) (2n þ
Bpþq SO(p, q)=SO(p)� SO(q) pq

Dpþq SO(p, q)=SO(p)� SO(q) pq

Dn SO�(2n)=U(n) n(n �
Cpþq USp(2p, 2q)=USp(2p)� USp(2q) 4pq

Cn Sp(2n; R)=U(n) n(n þ
exceptional Riemannian symmetric spaces can be
constructed from the information in Table 5 following
the procedure used to construct Table 6 from Table 3.

As particular examples of Riemannian symmetric
spaces we consider the compact spaces SO(pþ q)=
[SO(p)� SO(q)] and their noncompact counterparts
SO(p, q)=[SO(p)� SO(q)]. These spaces have rank
min(p, q), dimension pq, and can be represented
explicitly in matrix form as

0 X

�Xt 0

� �
! EXP

0 X

�Xt 0

� �

¼
Dp Y

�Yt Dq

" #

Here X is a p� q matrix and �=þ1 for the
noncompact case and �1 for the compact case. The
block diagonal matrices Dp and Dq are defined from
the metric-preserving conditions (MtIpþqM = Ipþq,
MtIp, qM = Ip, q)

D2
p ¼ Ip þ �YYt; D2

q ¼ Iq þ �YtY

The pq coordinates in the Riemannian symmetric
spaces can be taken as the pq elements of the
submatrix Y.

These Riemannian symmetric spaces can be
treated as algebraic submanifolds in RK, K = pqþ
(1=2)q(qþ 1). The K coordinates on RK can be
identified with the pq matrix elements of Y and the
(1=2)q(qþ 1) matrix elements of the real symmetric
matrix Dq. These coordinates obey the (1=2)q(qþ 1)
algebraic constraints defined by

D2
q � �YtY ¼ Iq

For SO(3)/SO(2) and SO(2,1)/SO(2), this condition
is determined from the matrix

I2 þ �x �yð Þ x
y

h ih i1=2 x
y

�x �y z

2
64

3
75 to be

z2 � �ðx2 þ y2Þ ¼ 1
nsion Rank 


min(p, q) 1� (p � q)2

2)(n � 1) n � 1 n � 1

1)(n � 1) n � 1 �2n � 1

min(p, q) pq � 1
2 p(p � 1)� 1

2 q(q � 1)

min(p, q) pq � 1
2 p(p � 1)� 1

2 q(q � 1)

1) n/2 �n

min(p, q) �2(p � q)2 � (p þ q)

1) n þn
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For �=�1, the space is the sphere S2 defined by z2 þ
(x2 þ y2) = 1. For �=þ1, the space is the two-sheeted
hyperboloid H2

2 defined by z2 � (x2 þ y2) = 1. More
specifically, it is the upper sheet containing (0, 0, 1) of
the two-sheeted hyperboloid. The second sheet occurs
in the coset O(2,1)=SO(2). The symmetric spaces
SO(nþ 1)=SO(n) and SO(n, 1)=SO(n) are the sphere
Sn and the upper sheet of the two-sheeted hyperboloid
Hn

2þ. Both have dimension n and rank 1. The spaces
are simply connected, homogeneous, and isotropic.

For SO(4, 2)=SO(4)� SO(2), the eight-dimensional
algebraic manifold is defined by the three con-
straints in R11:

y9 y10

y10 y11

� �2

�� y1 y2 y3 y4

y5 y6 y7 y8

� � y1 y5

y2 y6

y3 y7

y4 y8

2
6664

3
7775

¼ 1 0

0 1

� �

The compact analytically continued space
SO(6)=SO(4)� SO(2) is obtained by setting �=�1.
These spaces have dimension 8 and rank 2. They are
homogeneous but not isotropic. For each, there are
‘‘two inequivalent directions.’’ There are two inde-
pendent Laplace–Beltrami operators on these spaces,
one quadratic and one quartic.

The complete list of globally symmetric pseudo-
Riemannian symmetric spaces can be constructed
almost as easily. Two linear operators, T1 and T2,
are introduced that obey T2

1 = I, T2
2 = I, T1T2 =

T2T1 6¼ I. The two are used to split g into
subspaces

T1 g�� ¼ � g�� ; T2 g�� ¼ � g��

where �= 	1, � = 	1. The decomposition and
double rotation

g ¼ gþþ þ gþ� þ g�þ þ g��

#T1

g0 ¼ gþþ þ gþ� þ iðg�þ þ g��Þ
#T2

g00 ¼ gþþ þ igþ� þ iðg�þ þ ig��Þ

generates a noncompact subgroup K00 as well as a
pseudo-Riemannian symmetric space P00:

K00 ¼ EXP gþþ þ igþ�ð Þ; P00 ¼ EXP ig�þ þ g��ð Þ

These have also been classified.
The simplest example of a pseudo-Riemannian
symmetric space is SO(2,1)=SO(1,1):

soð2; 1Þ !
0 �3 �2

��3 0 �1

�2 �1 0

2
64

3
75! 0 0 0

0 0 �1

0 �1 0

2
64

3
75

þ
0 �3 �2

��3 0 0

�2 0 0

2
64

3
75!M ¼

z x y

�x � �
y � �

2
64

3
75

The metric-preserving condition MtI2, 1M = I2, 1

leads to the constraint equation z2 þ x2 � y2 = 1.
This space is the single-sheeted hyperboloid H2

1. It is
two dimensional and has rank 1, but it is not
isotropic. Intersections with the plane x = 0 are
hyperbolas and with the planes y = const. are circles.
This space is not simply connected.
Summary

Lie groups are among the most powerful mathema-
tical tools available to physicists. They play a major
role in physics because they occur as transformation
groups from coordinate system to coordinate system
in real space (rotation group SO(3), Lorentz group
O(3,1), Galilei group, Poincaré group ISO(3,1)) or
in spaces describing internal degrees of freedom
(SU(2) for spin or isospin, SU(3) for quarks and
color, SU(4) for spin–isospin, etc.).

It is remarkable that a beautiful classification
theory for simple (the building blocks) Lie groups
exists, because of the rather amorphous nature of the
definition of a Lie group. In a search for structure,
the first step in the analysis of Lie groups is
linearization of the group multiplication law in the
neighborhood of the identity to a linear vector space
on which there is a Lie algebra structure. This in itself
is sufficient to create a strong connection to quantum
mechanics. Although there is not a 1:1 correspon-
dence between Lie groups and their Lie algebras,
there is a very beautiful connection between them.
This relates algebra (discrete invariant subgroups)
and topology (homotopy groups) in an elegant way.

The structure of Lie algebras is described using
tools from linear algebra: secular equations and
inner products. Together, these tools are used to
reduce Lie algebras to their basic units: nilpotent
and solvable invariant subalgebras, and semisimple
and simple Lie algebras. The commutation relations
for simple Lie algebras can be put into a canonical
form using another miracle of this theory: a positive-
definite root space that summarizes the properties of
the secular equation and the Cartan–Killing inner
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product. As the secular equation can only be solved
exactly over an algebraically closed field, the
classification of simple Lie algebras covers complex
Lie algebras. Each complex extension has several
real forms, which are easily classified.

Even more remarkable is the connection between
simple Lie groups and Riemannian spaces that ‘‘look
the same everywhere.’’ All Riemannian symmetric
spaces are quotients of a simple Lie group by a
subgroup that is maximal in some precise sense
(Cartan decomposition sense). Cartan was able to
classify all Riemannian symmetric spaces as a
consequence of his classification of all the real
forms of all the simple Lie groups. The algebraic
tools used to classify Lie algebras (secular equations,
Dynkin diagrams) were used again to classify these
spaces (Dynkin diagrams! Araki–Satake diagrams).
These spaces are classified by a root space, group–
subgroup pair, dimension, rank, and character.
Construction of invariant operators (Casimir invar-
iants, Laplace–Beltrami operators) is algorithmic.

Nonsemisimple Lie groups/algebras can be con-
structed from simple Lie algebras by carefully
introducing singular change of basis transforma-
tions. This leads to ‘‘group contraction,’’ not
discussed above. In this way, the Poincaré group
can be constructed systematically from the groups
SO(3, 2) or SO(4, 1): SO(3,2)! ISO(3,1),SO(4,1)!
ISO(3,1) in the limit of ‘‘large R.’’ Here, R is the
‘‘radius’’ of some universe of hyperbolic nature, with
signature (3, 2) or (4, 1). The Galilei group can be
constructed by contraction from the Poincaré group in
the limit c=3� 1010 cms�1!1.

We have not discussed here the theory of the
representations of Lie groups. A beautiful theorem by
Wigner and Stone guarantees that the tensor represen-
tations of a compact group are complete. Gel’fand has
given expressions for the complete set of tensor
representations of the classical compact Lie groups.
They are expressed by ‘‘dressing’’ the appropriate
Dynkin diagrams or else in terms of irreducible
representations of the symmetric group Sn. Gel’fand
has also given explicit, analytic, closed-form expres-
sions for the matrix elements of any of the shift
operators in any of these representations. For the
noncompact real forms, most of the unitary irreducible
representations can be obtained from these expressions
for matrix elements (‘‘master analytic representation’’)
by appropriate analytic continuation.
Since Lie groups exist at the interface of algebra
and topology, it is to be expected that there is a very
close relation with the theory of special functions. In
fact, the theory of special functions forms an
important chapter in the theory of Lie groups. On
the topological side, the shift operators Ea (think J	)
have coordinate representations hx0jEa jxi involving
first-order differential operators. On the algebraic
side, the matrix elements hn0jEa jni are square roots
of products of integers (divided by products of
integers). These topological and algebraic expres-
sions are related to each other in a myriad of ways.
All of the standard properties of special functions
(Rodriguez formulas, recursion relations in coordi-
nates and indices, differential equations, generating
functions, etc.) occur in a systematic way in a Lie-
theoretic formulation of this subject.

Finally, no review or even book could do justice
to the applications that Lie group theory finds in
physics.

The rich interplay that exists between freedom
and rigidity of structure found in Lie group theory
can be found in only the purest works of art – for
example, the fugues of Bach.

See also: Classical Groups and Homogeneous Spaces;
Compact Groups and their Representations; Cosmology:
Mathematical Aspects; Equivariant Cohomology and the
Cartan Model; Finite-Type Invariants of 3-Manifolds;
Functional Equations and Integrable Systems; Lie
Superalgebras and Their Representations; Lie,
Symplectic, and Poisson Groupoids and Their Lie
Algebroids; Measure on Loop Spaces; Quasiperiodic
Systems; Symmetry and Symplectic Reduction;
Symmetry Classes in Random Matrix Theory; Toda
Lattices.
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Basic Definitions

Let A be an algebra over a field K of characteristic
zero (usually K = R or C) with internal laws þ and �.
One sets Z2 = Z=2Z = {0, 1}. A is called a super-
algebra or Z2-graded algebra if it can be written into
a direct sum of two spaces A=A0 �A1, such that

A0 � A0 � A0; A0 � A1 � A1; A1 � A1�A0

Elements of A0 are called even or of degree 0 while
elements of A1 are called odd or of degree 1.
A superalgebra A is called associative if (X � Y) �
Z = X � (Y � Z) for all X, Y, Z 2 A. It is called
commutative if X � Y = (�1)degX.degYY �X for all
X, Y 2 A, where deg X is the degree of the element X.

A homomorphism � from a superalgebra A into a
superalgebra A0 is a linear application from A into
A0 which respects the Z2-gradation, that is, �(A0) �
A0

0
and �(A1) � A0

1
.

A Lie superalgebra G over a field K of character-
istic zero (usually K = R or C) is a superalgebra in
which the product, denoted [ , ], satisfies the
following properties:

Z2-gradation

[Gi;Gj] � Giþj ði; j 2 Z2Þ

Graded-antisymmetry

[Xi;Xj] ¼ �ð�1ÞdegXi:degXj[Xj;Xi]

Generalized Jacobi identity

ð�1ÞdegXi:degXk[Xi; [Xj;Xk]]

þ ð�1ÞdegXj:degXi[Xj; [Xk;Xi]]

þ ð�1ÞdegXk:degXj[Xk; [Xi;Xj]] ¼ 0

Note that G0 is a Lie algebra, called the even or
bosonic part of G, while G1, called the odd or
fermionic part of G, is not an algebra.

An associative superalgebra G=G0 � G1 over the
field K acquires the structure of a Lie superalgebra by
taking for the product [ , ] of two elements X, Y 2 G
the Lie superbracket (also called supercommutator or
graded commutator)

[X;Y] ¼ X � Y � ð�1ÞdegX:degYY �X
The notation [ , ] for the supercommutator is used to
avoid confusion with the usual commutator [X, Y] =
X � Y � Y �X.

A Lie superalgebra G is Z-graded if it can be
written as a direct sum of finite-dimensional Z2-
graded subspaces Gi such that

G ¼
M
i2Z

Gi; where [Gi;Gj] � Giþj

The Z-gradation is said to be consistent with the Z2-
gradation if

G0 ¼
X
i2Z

G2i and G1 ¼
X
i2Z

G2iþ1

It follows that G0 is a Lie subalgebra and that each
Gi(i 6¼ 0) is a G0-module.

A subalgebra K=K0 �K1 of a Lie superalgebra G
is a subset of elements of G which forms a vector
subspace of G that is closed with respect to the Lie
product of G such that K0 � G0 and K1 � G1.
A subalgebra K of G is called a proper subalgebra of
G if K 6¼ G. An ideal I of G is a subalgebra of G such
that [G, I] � I , that is, X 2 G, Y 2 I ) [X, Y] 2 I .
An ideal I of G is called a proper ideal of G if I 6¼ G.
If I and I0 are two ideals of G, [I , I0] is an ideal of G.

The definitions of the centralizer, the center, and
the normalizer of a Lie superalgebra follow those of
a Lie algebra. Let S be a subset of elements in the
Lie superalgebra G. The centralizer CG(S) is the
subset of G given by

CGðSÞ ¼ fX 2 G j [X;Y] ¼ 0; 8Y 2 Sg

The center Z(G) of G is the set of elements of G
which commute with any element of G (in other
words, it is the centralizer of G in G):

ZðGÞ ¼ fX 2 G j [X;Y] ¼ 0; 8Y 2 Gg

The normalizer NG(S) is the subset of G given by

NGðSÞ ¼ fX 2 G j [X;Y] 2 S; 8Y 2 Sg

The Lie superalgebra G is said to be nilpotent if
considering the series [G,G[i�1]]=G[i] with G[0] =G,
then there exists an integer n such that G[n] = {0}.

The Lie superalgebra G is said to be solvable if
considering the series [G(i�1),G(i�1)]=G(i) with G(0] =G,
then there exists an integer n such that G(n) = {0}. A
Lie superalgebra G is solvable if and only if G0 is
solvable.

Let G be a noncommutative Lie superalgebra.
The Lie superalgebra G is called simple if it does
not contain any nontrivial ideal. The Lie super-
algebra G is called semisimple if it does not
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contain any nontrivial solvable ideal. Let us
recall that if A is a semisimple Lie algebra, it
can be written as the direct sum of simple Lie
algebras Ai :A= �i Ai. This is not the case for
superalgebras.

Let G=G0 � G1 be a Lie superalgebra and V=
V0 � V1 be a Z2-graded vector space. Consider
the algebra EndV of endomorphisms of V,
which naturally acquires a superalgebra structure
by EndV= End0 V � End1 V, where Endi V= {� 2
EndVj�(V j) � V iþj}. A linear representation � of G
is a homomorphism of G into EndV, that is,

�ð�Xþ �YÞ ¼ ��ðXÞ þ ��ðYÞ
�ð[X;Y]Þ ¼ [�ðXÞ; �ðYÞ]
�ðG0Þ � End0V and �ðG1Þ � End1V

for all X, Y 2 G and �,� 2 C. The vector space V is the
representation space. The vector space V has the
structure of a G-module by X(v) = �(X)v for X 2 G
and v 2 V. The dimension (resp. superdimension) of the
representation � is the dimension (resp. graded dimen-
sion) of the vector space V : dim�= dimV0 þ dimV1
and sdim�= dimV0 � dimV1. In particular, the repre-
sentation ad :G!EndG (G being considered as a
Z2-graded vector space) such that ad(X)Y = [X, Y]
is called the adjoint representation of G.

In the basis (e1, . . . , em, emþ1, . . . , emþn) of V=
V0 � V1 (called homogeneous basis), where dimV0 = m
and dimV1 = n, an element of G is represented by the
matrix

M ¼ A B
C D

� �

where A, B, C, and D are m�m, m� n, n�m, and
n� n matrices, respectively. Even elements corre-
spond to block diagonal matrices (i.e., B = C = 0),
odd elements to block antidiagonal matrices (i.e.,
A = D = 0). One defines the supertrace function
denoted by str:

strðMÞ ¼ trðAÞ � trðDÞ

To a given representation � of G, one can associate a
bilinear form B� on G as

B�ðX;YÞ ¼ strð�ðXÞ�ðYÞÞ; 8X;Y 2 G

�(X) are the matrices of the generators X in the
representation � and str denotes the supertrace. A
bilinear form B on G is called

1. consistent if B(X, Y) = 0 for all X 2 G0 and all
Y 2 G1,

2. supersymmetric if, for all X, Y 2 G,

BðX;YÞ ¼ ð�1ÞdegX:degYBðY;XÞ
3. invariant if, for all X, Y, Z 2 G,

Bð[X;Y];ZÞ ¼ BðX; [Y;Z]Þ

The bilinear form associated to the adjoint repre-
sentation of G is called the Killing form on
G : K(X, Y) = str(ad(X)ad(Y)). It is consistent, super-
symmetric, and invariant.
Classification of Simple Lie
Superalgebras

The simple Lie superalgebras have been classified by
V G Kac. One distinguishes two general families: the
classical Lie superalgebras and the Cartan type
superalgebras.

Classical Lie Superalgebras

A simple Lie superalgebra G=G0 � G1 is called
classical if the representation of the even subalgebra
G0 on the odd part G1 is completely reducible. The
superalgebra is said to be of type I if the representa-
tion of G0 on G1 is the direct sum of two irreducible
representations of G0. In that case, one has G1 =
G�1 � G1 with

[G�1;G1] ¼ G0 and [G�1;G�1] ¼ 0

The superalgebra is said to be of type II if the
representation of G0 on G1 is irreducible.

A classical Lie superalgebra G is called basic if
there exists a nondegenerate invariant bilinear form
on G. The basic Lie superalgebras split into four
infinite families: A(m, n) or sl(mþ 1jnþ 1) for m 6¼ n
and A(n, n) or sl(nþ 1jnþ 1)=Z= psl(nþ 1jnþ 1),
where Z is a one-dimensional center for m = n
(unitary series), B(m, n) or osp(2mþ 1j2n), C(n) or
osp(2j2n), D(m, n) or osp(2m j 2n) (orthosymplectic
series); and three exceptional superalgebras F(4),
G(3), and D(2, 1;�), the last one being actually a
one-parameter family of superalgebras. The classical
Lie superalgebras which are not basic are called
strange, and correspond to two infinite families
denoted by P(n) and Q(n).

A basic Lie superalgebra G=G0 � G1 admits a
consistent Z-gradation G= �i2Z Gi (called distin-
guished), such that (see Tables 1 and 2)

� for superalgebras of type I, Gi = 0 for jij > 1 and
G0 =G0,G1 =G�1 � G1 and
� for superalgebras of type II, Gi = 0 for jij > 2 and
G0 =G�2 � G0 � G2,G1 =G�1 � G1.

Cartan Type Superalgebras

The Cartan type Lie superalgebras are the simple Lie
superalgebras in which the representation of the
even subalgebra on the odd part is not completely



Table 1 Z2-gradation of the classical Lie superalgebras

Superalgebra G G0 G1

A(m � 1, n � 1) Am�1 � An�1 � U(1) (m, n)� (m,n)

A(n � 1, n � 1) An�1 � An�1 (n, n)� (n, n)

C(n þ 1) Cn � U(1) (2n)� (2n)

B(m, n) Bm � Cn (2m þ 1, 2n)

D(m, n) Dm � Cn (2m, 2n)

F(4) A1 � B3 (2, 8)

G(3) A1 �G2 (2,7)

D(2, 1;�) A1 � A1 � A1 (2, 2, 2)

P(n) An ½2� � ½1n�1�
Q(n) An ad(An)

Lie Superalgebras and Their Representations 307
reducible. They are classified into four infinite
families called W(n) with n 	 2, S(n) with n 	 3,eS(n), and H(n) with n 	 4. S(n) and eS(n) are called
special Cartan type Lie superalgebras and H(n)
Hamiltonian Cartan type Lie superalgebras.
Classical Lie Superalgebras

The classical Lie superalgebras are described as matrix
superalgebras as follows. Let V=V0 � V1 be a Z2-
graded vector space, with dimV0 = m, dimV1 = n.
The Lie superalgebra gl(mjn) is defined as the super-
algebra EndV= End0 V � End1 V supplied with the
Lie superbracket.

The unitary superalgebra A(m� 1, n� 1) = sl(m jn)
is defined as the superalgebra of matrices M 2 gl(mjn)
satisfying the supertrace condition str(M) = 0. In the
case m = n, sl(njn) contains a one-dimensional ideal I
generated by I2n and one sets A(n� 1, n� 1) =
sl(n jn)=I 
 psl(n jn).

The orthosymplectic superalgebra osp(m j 2n) is
defined as the superalgebra of matrices M 2 gl(m j n)
satisfying the conditions

At ¼ �A; DtG ¼ �GD; B ¼ CtG

where t denotes the usual transposition and the
matrix G is given by

G ¼ 0 In

�In 0

� �
Table 2 Z-gradation of the classical basic Lie superalgebras

Superalgebra G G0

A(m � 1,n � 1) Am�1 � An�1 � U(1)

A(n � 1, n � 1) An�1 � An�1

C(n þ 1) Cn � U(1)

B(m,n) Bm � An�1 � U(1)

D(m,n) Dm � An�1 � U(1)

F(4) B3 � U(1)

G(3) G2 � U(1)

D(2, 1;�) A1 � A1 � U(1)
The strange superalgebra P(n) is defined as the
superalgebra of matrices M 2 gl(n j n) satisfying the
conditions

At ¼ �D; Bt ¼ B; Ct ¼ �C; trðAÞ ¼ 0

The strange superalgebra eQ(n) is defined as the
superalgebra of matrices M 2 gl(n j n) satisfying the
conditions

A ¼ D; B ¼ C; trðBÞ ¼ 0

The superalgebra eQ(n) has a one-dimensional center
Z. The simple superalgebra Q(n) is given by
Q(n) = eQ(n)=Z.
Structure of the Classical Lie
Superalgebras

Let G=G0 � G1 be a classical Lie superalgebra. A
Cartan subalgebra H of G is defined as a Cartan
subalgebra of G0, that is, the maximal nilpotent
subalgebra of G0 coinciding with its own normal-
izer: H= {X 2 G0 j [X,H] � H}. It follows that the
Cartan subalgebras of a Lie superalgebra are
conjugate since the Cartan subalgebras of a Lie
algebra are conjugate and any inner automorphism
of the even part G0 can be extended to an inner
automorphism of G; hence, they all have the
same dimension. By definition, the dimension of
a Cartan subalgebra H is the rank of G : rankG=
dim H.

A classical Lie superalgebra G with Cartan
subalgebra H can be decomposed as G=

L
�2H� G�

(H� is the dual of H), where

G� ¼ fx 2 G j [h; x] ¼ �ðhÞx; h 2 Hg

The set � � H�

� ¼ f� 2 H�jG� 6¼ 0g

is by definition the root system of G. A root � is
called even (resp. odd) if G� \ G0 6¼ ; (resp.
G1 � G�1 G2 � G�2

(m, n)� (m, n)

(n, n)� (n, n)

(2n)þ � (2n)�
(2m þ 1, n)� (2m þ 1, n) [2]� [2n�1]

(2m, n)� (2m, n) [2]� [2n�1]

8þ � 8� 1þ � 1�
7þ � 7� 1þ � 1�
(2, 2)þ � (2, 2)� 1þ � 1�
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G� \ G1 6¼ ;). The set of even roots �0 is the root
system of the even part G0 of G. The set of odd root
�1 is the weight system of the representation of G0
in G1. One has � = �0 [�1. A root can be both
even and odd (however this only occurs in the case
of the superalgebra Q(n)). The vector space spanned
by all the possible roots is called the root space. It is
the dual H� of the Cartan subalgebra H as vector
space.

Except for A(1, 1), P(n), and Q(n), using a non-
degenerate invariant bilinear form B on the super-
algebra G, one can define a bilinear form (
 , 
)
on the root space H� by (�i,�j) = B(Hi, Hj), where
the Hi form a basis of H. The following properties
hold:

1. G(�= 0) =H except for Q(n).
2. dim G� = 1 when � 6¼ 0 except for A(1, 1), P(2),

P(3), and Q(n).
3. Except for A(1, 1), P(n), Q(n), one has

(a) [G�,G�] 6¼ 0 if and only if �,�,�þ � 2 �,
(b) (G�,G�) = 0 for �þ � 6¼ 0,
(c) if � 2 � (resp. �0, �1), then �� 2 � (resp.

�0, �1), and
(d) � 2 � ) 2� 2 � if and only if � 2 �1 and

(�,�) 6¼ 0.

In the rest of this section, we restrict to the case
of a basic Lie superalgebra G of rank r, with Cartan
subalgebra H and root system � = �0 [�1. Then G
admits a Borel decomposition G=Nþ �H�N�,
where N� are subalgebras such that [H,N�] � N�
with dim Nþ= dim N�. If G=H

L
� G� is the root

decomposition of G, a root � is called positive if
G� \ Nþ 6¼ ; and negative if G� \ N� 6¼ ;. A root is
called simple if it cannot be decomposed into a sum
of positive roots. The set of all simple roots is
called a simple root system of G and is denoted here
by �0. The set B=H�Nþ is called a Borel
subalgebra of G. Such a Borel subalgebra is solvable
but not maximal solvable. Indeed, adding to B a
negative simple isotropic root generator (i.e., a
generator associated to an odd root of zero length),
the obtained subalgebra is still solvable since the
superalgebra sl(1j1) is solvable. However, B con-
tains a maximal solvable subalgebra B0 of the even
part G0.

In general, for a basic Lie superalgebra G, there
are many inequivalent classes of conjugacy of Borel
subalgebras (while for the simple Lie algebras, all
Borel subalgebras are conjugate).

To each class of conjugacy of Borel subalgebras of
G is associated a simple root system �0. Hence,
contrary to the Lie algebra case, to a given basic
Lie superalgebra G will be associated in general
many inequivalent simple root systems, up to a
transformation of the Weyl group W(G) of G (the
Weyl group of a basic Lie superalgebra being
generated by the Weyl reflections with respect to
the even roots; under a transformation of W(G), a
simple root system will be transformed into an
equivalent one with the same Dynkin diagram). The
generalization of the Weyl group for a basic Lie
superalgebra G gives a method for constructing all
the simple root systems of G and hence all the
inequivalent Dynkin diagrams of G. For � 2 �1, one
defines

w�ð�Þ ¼ � � 2
ð�; �Þ
ð�; �Þ� if ð�; �Þ 6¼ 0

w�ð�Þ ¼ � þ � if ð�; �Þ ¼ 0; ð�; �Þ 6¼ 0

w�ð�Þ ¼ � if ð�; �Þ ¼ ð�; �Þ ¼ 0

w�ð�Þ ¼ ��

Note that the transformation associated to an odd
root � of zero length cannot be lifted to an
automorphism of the superalgebra since w� trans-
forms even roots into odd ones, and vice versa, and
the Z2-gradation would not be respected. A simple
root system �0 being given, from any root � 2 �0

such that (�,�) = 0, one constructs the simple root
system w�(�0), where w� is the generalized Weyl
reflection with respect to � and one repeats the
procedure on the obtained system until no new basis
arises.

In the set of all inequivalent simple root
systems of a basic Lie superalgebra, there is one
simple root system that plays a particular role,
the distinguished simple root system, for which
the number of odd roots is equal to one,
constructed as follows. Consider the distinguished
Z-gradation of G,G= �i2Z Gi. The even simple
roots are given by the simple root system of the
Lie subalgebra G0 and the odd simple root is the
lowest weight of the representation G1 of G0. See
Table 3 for the root systems and Table 4 for the
distinguished simple root systems of the basic Lie
superalgebras.

Let �0 = (�1, . . . ,�r) be a simple root system
of G, such that (�i,�j) 2 Z and jmin (�i,�j)j= 1 if
(�i,�j) 6¼ 0. Then one defines the symmetric Cartan
matrix a with integer entries as aij = (�i,�j). One
associates to �0 a Dynkin diagram according to the
following rules:

1. One associates to each simple even root a white
dot, to each simple odd root of nonzero length
(aii 6¼ 0) a black dot, and to each simple odd root
of zero length (aii = 0) a gray dot.



Table 3 Root systems �0, �1 of the basic Lie superalgebras

Superalgebra G �0 �1

A(m � 1, n � 1) "i � "j , �k � �l �("i � �k )

B(m,n) �"i � "j , �"i , ��k � �l , �2�k �"i � �k , ��k

B(0, n) ��k � �l , �2�k ��k

C(n þ 1) ��k � �l , �2�k �"� �k

D(m,n) �"i � "j , ��k � �l , �2�k �"i � �k

F(4) ��, �"i � "j , �"i
1
2 (�"1 � "2 � "3 � �)

G(3) �2�, �"i , "i � "j ��, �"i � �
D(2, 1;�) �2"i �"1 � "2 � "3

1 � i , j � m, 1 � k , l � n for A(m � 1, n � 1), B(m, n), C(n þ 1), D(m, n). 1 � i , j � 3 for F (4), G(3), D(2, 1;�), with "1 þ "2 þ "3 = 0 in

the case of G(3). For A(n � 1, n � 1), one has to add the condition "1 þ 
 
 
 þ "n = �1 þ 
 
 
 þ �n .

Table 4 Distinguished simple root systems of the basic Lie superalgebras

Superalgebra G Distinguished simple root system �0

A(m � 1, n � 1) �1 � �2, . . . , �n�1 � �n , �n � "1,"1 � "2, . . . , "m�1 � "m

B(m, n) �1 � �2, . . . , �n�1 � �n , �n � "1, "1 � "2, . . . , "m�1 � "m , "m

B(0, n) �1 � �2, . . . , �n�1 � �n , �n

C(n) "� �1, �1 � �2, . . . , �n�1 � �n , 2�n

D(m, n) �1 � �2, . . . , �n�1 � �n , �n � "1, "1 � "2, . . . , "m�1 � "m , "m�1 þ "m

F(4) 1
2 (� � "1 � "2 � "3), "3, "2 � "3, "1 � "2

G(3) � þ "3, "1, "2 � "1

D(2, 1;�) "1 � "2 � "3, 2"2, 2"3
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2. The ith and jth dots are joined by �ij lines where

�ij ¼
2jaijj

minðjaiij; jajjjÞ
if aii:ajj 6¼ 0

�ij ¼
2jaijj

minðjaiij; 2Þ
if aii 6¼ 0 and ajj ¼ 0

�ij ¼ jaijj if aii ¼ ajj ¼ 0

3. We add an arrow on the lines connecting the ith
and jth dots when �ij > 1, pointing from i to j if
aii.ajj 6¼ 0 and jaiij > jajjj or if aii = 0, ajj 6¼ 0,
jajjj < 2, and pointing from j to i if aii = 0,
ajj 6¼ 0, jajjj > 2.

4. For D(2, 1;�), �ij = 1 if aij 6¼ 0 and �ij = 0 if
aij = 0. No arrow is put on the Dynkin diagram.

The distinguished Dynkin diagrams of the basic Lie
superalgebras are listed in Table 5.
Representation Theory of Basic Lie
Superalgebras

We restrict in the following to the basic Lie
superalgebras. We assume that G 6¼ psl(n, n) but the
following results still hold for sl(n j n). Let G=Nþ �
H�N� be a Borel decomposition of G where Nþ
(resp. N�) is spanned by the positive (resp. negative)
root generators of G,H is a Cartan subalgebra, and
H� is the dual of H. A representation � :G!EndV
with representation space V is called a highest-
weight representation with highest weight � 2 H� if
there exists a nonzero vector v� 2 V such that

Nþv� ¼ 0

hðv�Þ ¼ �ðhÞv�ðh 2 HÞ

The G-module V is called a highest-weight module,
denoted by V(�), and the vector v� 2 V a highest-
weight vector. From now on, H is the distinguished
Cartan subalgebra of G with basis of generators
(H1, . . . , Hr) where r = rankG and Hs denotes the
Cartan generator associated to the odd simple root.
The Kac–Dynkin labels are defined by

ai ¼ 2
ð�; �iÞ
ð�i; �iÞ

for i 6¼ s and as ¼ ð�; �sÞ

A weight � 2 H� is called a dominant weight if ai 	 0
for all i 6¼ s, integral if ai 2 Z for all i 6¼ s, and integral
dominant if ai 2 Z	0 for all i 6¼ s. A necessary
condition for the highest-weight representation of G
with highest weight � to be finite dimensional is that �
be an integral dominant weight.

One then defines the Kac module. Consider
G= �i2Z Gi the distinguished Z-gradation of G and
let K=G0 �Nþ, where Nþ= �i>0 Gi, be a sub-
algebra of G. Denote by U(G) and U(K) the
corresponding universal enveloping superalgebras.
Let � 2 H� be an integral dominant weight and
V0(�) be the G0-module with highest weight �,
which is extended to a K-module by setting



Table 5 Distinguished Dynkin diagrams of the basic Lie

superalgebras

Superalgebra G Distinguished Dynkin diagram

A(m � 1, n � 1)

B(m, n)

B(0, n)

C(n þ 1)

D(m, n)

F(4)

G(3)

D(2, 1;�)
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NþV0(�) = 0. From this K-module, it is possible to
construct a G-module in the following way. One
considers the factor space U(G)�U(K) V0(�) consist-
ing of elements of U(G)� V0(�) such that the
elements h� v and 1� h(v) have been identified
for h 2 K and v 2 V0(�). This space acquires the
structure of a G-module by setting g(u� v) = gu� v
for u 2 U(G), g 2 G, and v 2 V0(�). This G-module is
called the induced module from the K-module V0(�)
and denoted by IndGKV0(�). For example, in the case
of type I basic Lie superalgebras, if {f1, . . . , fd}
denotes a basis of odd generators of G=K, then

IndGKV0ð�Þ ¼
M

1�i1<


<ik�d

fi1 . . . fikV0ð�Þ

The Kac module V(�) is defined as follows:

1. For a superalgebra G of type I (the odd part is the
direct sum of two irreducible representations of the
even part), the Kac module is the induced module

Vð�Þ ¼ IndGK V0ð�Þ

2. For a superalgebra G of type II (the odd part is an
irreducible representation of the even part), the
induced module IndGK V0(�) contains a submodule
M(�) =U(G)Gbþ1

� V0(�), where  is the longest
simple root of G0 which is hidden behind the odd
simple root – that is, the longest simple root of
sp(2n) in the case of osp(m j 2n) and the simple
root of sl(2) in the case of F(4), G(3), and
D(2, 1;�) – and b = 2(�, )=( , ) is the compo-
nent of � with respect to  . The Kac module is
defined as the quotient of the induced module
IndGK V0(�) by the submodule M(�):

Vð�Þ ¼ IndGK V0ð�Þ=UðGÞGbþ1
� V0ð�Þ

In the case where the Kac module is not simple, it
contains a maximal submodule I (�) and the
quotient module V(�) =V(�)=I (�) is a simple
module.

The fundamental result concerning the representa-
tions of basic Lie superalgebras is the following:

1. Any finite dimensional irreducible representation
of G is of the form V(�) =V(�)=I (�), where � is
an integral dominant weight.

2. Any finite-dimensional simple G-module is
uniquely characterized by its integral dominant
weight �: two G-modules V(�) and V(�0) are
isomorphic if and only if � = �0.

3. The finite-dimensional simple G-module V(�) =
V(�)=I (�) has the weight decomposition

Vð�Þ ¼
M
���

V�

with

V� ¼ fv 2 VjhðvÞ ¼ �ðhÞv; h 2 Hg

The presence of odd roots will have another
important consequence in the representation theory
of superalgebras. Indeed, one might find that in certain
representations, weight vectors, different from the
highest one specifying the representation, are annihi-
lated by all the generators corresponding to positive
roots. Such vector have, of course, to be decoupled
from the representation. Representations of this kind
are called atypical, while the other irreducible repre-
sentations not suffering this pathology are called
typical. For a basic Lie superalgebra G with root
system �, one defines �0 = {� 2 �0j�=2 =2�1} and
�1 = {� 2 �1j2� =2�0}. Let 	0 be the half-sum of the
roots of �þ

0
, 	1 the half-sum of the roots of �þ

1
, and

	= 	0 � 	1. The representation � with highest
weight � is called typical if

ð�þ 	; �Þ 6¼ 0 for all � 2 �
þ
1

The highest weight � is then called typical. If
there exists some � 2 �

þ
1 such that (�þ 	,�) = 0,
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the representation � and the highest weight � are
called atypical. The number of distinct elements � 2
�
þ
1 for which � is atypical is the degree of

atypicality of the representation �. If there exists
one and only one � 2 �

þ
1 such that (�þ 	,�) = 0,

the representation � and the highest weight � are
called singly atypical.

The Kac module V(�) is a simple G-module if and
only if the highest weight � is typical. All the finite-
dimensional representations of B(0, n) are typical. All
the finite-dimensional representations of C(nþ 1) are
either typical or singly atypical.

The dimension of a typical finite-dimensional
representation V of G is given by

dim Vð�Þ ¼ 2
dim �þ

1

Y
�2�þ

0

ð�þ 	; �Þ
ð	0; �Þ

where dim V0(�) = dim V1(�) if G 6¼ B(0, n), and if
G= B(0, n),

dim V0ð�Þ � dim V1ð�Þ ¼
Y
�2�

þ
0

ð�þ 	; �Þ
ð	0; �Þ

The atypicality conditions are the following:

� For A(m, n) with � = (a1, . . . , amþn�1)

a1 an – 1 an an + 1 am + n – 1

Xn�1

k¼i

ak �
Xj

k¼nþ1

ak þ an ¼ iþ j� 2n

where 1 � i � n � j � mþ n� 1.
� B(m, n) with � = (a1, . . . , amþn)(m 6¼ 0)

a1 an – 1 an an + 1 am + n – 1 am + n 

Xn

q¼i

aq �
Xj

q¼nþ1

aq ¼ iþ j� 2n

Xn

q¼i

aq �
Xj

q¼nþ1

aq � 2
Xmþn�1

q¼jþ1

aq � amþn

¼ 2mþ i� j� 1 ¼ 0

where 1 � i � n � j � mþ n� 1.
� C(nþ 1) with � = (a1, . . . , anþ1)

a1 a2 an an + 1

a1 �
Xi

q¼2

aq � iþ 1 ¼ 0

a1 �
Xi

q¼2

aq � 2
Xnþ1

q¼iþ1

aq � 2nþ i� 1 ¼ 0

where 1 � i � n.
� D(m j n) with � = (a1, . . . , amþn)

a1 an – 1 an an + 1 am + n – 2 an + m – 1

an + mXn

q¼i

aq �
Xj

q¼nþ1

aq ¼ iþ j� 2n
where 1 � i � n � j � mþ n� 1Xn

q¼i

aq �
Xmþn�2

q¼nþ1

aq � amþn ¼ m� nþ i� 1

where 1 � i � n

Xn

q¼i

aq �
Xj

q¼nþ1

aq � 2
Xmþn�2

q¼jþ1

aq

¼ amþn�1 þ amþn þ 2mþ i� j� 2

where 1 � i � n � j � mþ n� 2

See also: Lie Groups: General Theory; Lie, Symplectic,
and Poisson Groupoids and Their Lie Algebroids.
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Introduction

Groupoids are mathematical structures able to describe
symmetry properties more general than those described
by groups. They were introduced (and named) by
H Brandt in 1926. Around 1950, Charles Ehresmann
used groupoids with additional structures (topological
and differentiable) as essential tools in topology and
differential geometry. In recent years, Mickael Karasev,
Alan Weinstein, and Stanisław Zakrzewski indepen-
dently discovered that symplectic groupoids can be used
for the construction of noncommutative deformations
of the algebra of smooth functions on a manifold, with
potential applications to quantization. Poisson group-
oids were introduced by Alan Weinstein as general-
izations of both Poisson Lie groups and symplectic
groupoids.

We present here the main definitions and first
properties relative to groupoids, Lie groupoids, Lie
algebroids, symplectic and Poisson groupoids and
their Lie algebroids.
m(x,y)

x y

α (m(x,y)) = α(x) β(x) = α (y) β(y) = β(m(x,y))

Γ

Γ0

Figure 1 Two arrows x and y 2 �, with the target of y ,�(y) 2 �0,

equal to the source of x ,�(x ) 2 �0, and the composed arrow m(x , y ).
Groupoids

What is a Groupoid?

Before stating the formal definition of a groupoid, let us
explain, in an informal way, why it is a very natural
concept. The easiest way to understand that concept is
to think of two sets, � and �0. The first one, �, is called
the ‘‘set of arrows’’ or ‘‘total space’’ of the groupoid,
and the other one, �0, the ‘‘set of objects’’ or ‘‘set of
units’’ of the groupoid. One may consider an element
x 2 � as an arrow going from an object (a point in �0)
to another object (another point in �0). The word
‘‘arrow’’ is used here in a very general sense: it means a
way for going from a point in �0 to another in �0. One
should not consider an arrow as a line drawn in the set
�0 joining the starting point of the arrow to its
endpoint: this happens only for some special groupoids.
Rather, one should think of an arrow as living outside
�0, with only its starting point and its endpoint in �0, as
shown in Figure 1.

The following ingredients enter the definition of a
groupoid.

1. Two maps � : �! �0 and � : �! �0, called the
‘‘target map’’ and the ‘‘source map’’ of the
groupoid. If x 2 � is an arrow, �(x) 2 �0 is its
endpoint and �(x) 2 �0 its starting point.

2. A ‘‘composition law’’ on the set of arrows; we can
compose an arrow y with another arrow x, and get
an arrow m(x, y), by following first the arrow y,
then the arrow x. Of course, m(x, y) is defined if and
only if the target of y is equal to the source of x. The
source of m(x, y) is equal to the source of y, and its
target is equal to the target of x, as illustrated in
Figure 1. It is only by convention that we write
m(x, y) rather than m(y, x): the arrow which is
followed first is on the right, by analogy with the
usual notation f � g for the composition of two
maps g and f. When there is no risk of confusion, we
write x � y, or x . y, or even simply xy for m(x, y).
The composition of arrows is associative.

3. An ‘‘embedding’’ " of the set �0 into the set �, which
associates a unit arrow "(u) with each u 2 �0.
That unit arrow is such that both its source and its
target are u, and it plays the role of a unit when
composed with another arrow, either on the right or
on the left: for any arrow x, m("(�(x)), x) = x, and
m(x, "(�(x))) = x.

4. Finally, an ‘‘inverse map’’ � from the set of
arrows onto itself. If x 2 � is an arrow, one may
think of �(x) as the arrow x followed in the
reverse sense. We often write x�1 for �(x).

Now we are ready to state the formal definition of
a groupoid.

Definition 1 A groupoid is a pair of sets (�, �0)
equipped with the structure defined by the following
data:

(i) an injective map " : �0!�, called the unit
section of the groupoid;

(ii) two maps � : �!�0 and � : �!�0, called,
respectively, the target map and the source
map; they satisfy

� � " ¼ � � " ¼ id�0
½1�

(iii) a composition law m : �2!�, called the pro-
duct, defined on the subset �2 of ���, called
the set of composable elements,

�2 ¼ fðx; yÞ 2 �� �; �ðxÞ ¼ �ðyÞg ½2�
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which is associative, in the sense that whenever
one side of the equality

mðx;mðy; zÞÞ ¼ mðmðx; yÞ; zÞ ½3�

is defined, the other side is defined too, and the
equality holds; moreover, the composition law
m is such that for each x 2 �,

m " �ðxÞð Þ; xð Þ ¼ m x; " �ðxÞð Þð Þ ¼ x ½4�

(iv) a map � : �! �, called the inverse, such that, for
every x 2 �, (x, �(x)) 2 �2 and (�(x), x) 2 �2, and

mðx; �ðxÞÞ ¼ "ð�ðxÞÞ; mð�ðxÞ;xÞ ¼ "ð�ðxÞÞ ½5�

The sets � and �0 are called, respectively, the
total space and the set of units of the groupoid,
which is itself denoted by �

�
ƒ
�

�0.

Identification and Notations

In what follows, by means of the injective map ", we
will identify the set of units �0 with the subset "(�0)
of �. Therefore, " will be the canonical injection in �
of its subset �0.

For x and y 2 �, we will sometimes write x . y, or
even simply xy for m(x, y), and x�1 for �(x). In
addition, we will write ‘‘the groupoid �’’ for ‘‘the
groupoid �

�
ƒ
�

�0.’’

Properties and Comments

The above definitions have the following consequences.

Involutivity of the inverse map The inverse map �
is involutive:

� � � ¼ id� ½6�

We have indeed, for any x 2 �,

� � �ðxÞ ¼mð� � �ðxÞ; �ð� � �ðxÞÞÞ
¼mð� � �ðxÞ; �ðxÞÞ ¼ mð� � �ðxÞ;mð�ðxÞ; xÞÞ
¼mðmð� � �ðxÞ; �ðxÞÞ; xÞ ¼ mð�ðxÞ; xÞ ¼ x
m(x,y)

α(x) β(y)β(x) = α(y)

x
y

Γ0

ι(x)
ι(y)

ι(m(x,y))

α-f
ibe

r β-fiber

Figure 2 A way to visualize groupoids.
Unicity of the inverse Let x and y 2 � be such that

mðx; yÞ ¼ �ðxÞ and mðy; xÞ ¼ �ðxÞ

Then we have

y ¼m y; �ðyÞð Þ ¼ m y; �ðxÞð Þ
¼m y;m x; �ðxÞð Þð Þ ¼ m mðy; xÞ; �ðxÞð Þ
¼m �ðxÞ; �ðxÞð Þ ¼ m � �ðxÞð Þ; �ðxÞð Þ ¼ �ðxÞ

Therefore for any x 2 �, the unique y 2 � such that
m(y, x) = �(x) and m(x, y) =�(x) is �(x).
The fibers of � and � and the isotropy groups The
target map � (resp. the source map �) of a groupoid
�

�
ƒ
�

�0 determines an equivalence relation on �:
two elements x and y 2 � are said to be �-equivalent
(resp. �-equivalent) if �(x) =�(y) (resp. if
�(x) = �(y)). The corresponding equivalence classes
are called the �-fibers (resp. the �-fibers) of the
groupoid. They are of the form ��1(u) (resp. ��1(u)),
with u 2 �0.

For each unit u 2 �0, the subset

�u ¼ ��1ðuÞ \ ��1ðuÞ
¼ fx 2 �; �ðxÞ ¼ �ðxÞ ¼ ug ½7�

is called the ‘‘isotropy group’’ of u. It is indeed a
group, with the restrictions of m and � as composi-
tion law and inverse map.

A way to visualize groupoids We have seen
(Figure 1) a way in which groupoids may be
visualized, by using arrows for elements in � and
points for elements in �0. There is another very
useful way to visualize groupoids, shown in
Figure 2.

The total space � of the groupoid is represented as
a plane, and the set �0 of units as a straight line in that
plane. The �-fibers (resp. the �-fibers) are represented
as parallel straight lines, transverse to �0.

Examples of Groupoids

The groupoid of pairs Let E be a set. The ‘‘group-
oid of pairs’’ of elements in E has, as its total
space, the product space E� E. The diagonal
�E = {(x, x); x 2 E} is its set of units, and the target
and source maps are

� : ðx; yÞ 7! ðx; xÞ; � : ðx; yÞ 7! ðy; yÞ

Its composition law m and inverse map � are

mððx; yÞ; ðy; zÞÞ ¼ ðx; zÞ
�ððx; yÞÞ ¼ ðx; yÞ�1 ¼ ðy; xÞ

Groups A group G is a groupoid with set of units
{e}, with only one element e, the unit element of the
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group. The target and source maps are both equal to
the constant map x 7! e.

Definition 2 A topological groupoid is a groupoid
�

�
ƒ
�

�0 for which � is a (maybe non-Hausdorff)
topological space, �0 a Hausdorff topological subspace
of �,� and � surjective continuous maps, m : �2 ! � a
continuous map, and � : �! � a homeomorphism.

A Lie groupoid is a groupoid �
�

ƒ
�

�0 for which
� is a smooth (maybe non-Hausdorff) manifold, �0 a
smooth Hausdorff submanifold of �, � and � smooth
surjective submersions (which implies that �2 is a
smooth submanifold of �� �), m : �2 ! � a smooth
map, and � : �! � a smooth diffeomorphism.

Properties of Lie Groupoids

Dimensions Let �
�

ƒ
�

�0 be a Lie groupoid. Since �
and � are submersions, for any x 2 �, the �-fiber
��1(�(x)) and the �-fiber ��1(�(x)) are submanifolds
of �, both of dimension dim �� dim �0. The inverse
map �, restricted to the �-fiber through x (resp. the
�-fiber through x), is a diffeomorphism of that fiber
onto the �-fiber through �(x) (resp. the �-fiber
through �(x)). The dimension of the submanifold
�2 of composable pairs in �� � is 2 dim �� dim �0.

The tangent bundle of a Lie groupoid Let �
�

ƒ
�

�0 be
a Lie groupoid. Its tangent bundle T� is a Lie
groupoid, with T�0 as set of units, T� : T�!T�0

and T� : T�! T�0 as target and source maps. Let us
denote by �2 the set of composable pairs in �� �, by
m : �2 ! � the composition law, and by � : �! � the
inverse. Then the set of composable pairs in T�� T�
is simply T�2, the composition law on T� is
Tm : T�2 ! T�, and the inverse is T� : T�! T�.

When the groupoid � is a Lie group G, the Lie
groupoid TG is a Lie group too. We will see that
the cotangent bundle of a Lie groupoid is a Lie
groupoid, and more precisely a symplectic groupoid.

Isotropy groups For each unit u 2 �0 of a Lie
groupoid, the isotropy group �u (defined earlier) is a
Lie group.

Examples of Topological and Lie Groupoids

Topological groups and Lie groups A topological
group (resp. a Lie group) is a topological groupoid
(resp. a Lie groupoid) whose set of units has only
one element e.

Vector bundles A smooth vector bundle � : E!M
on a smooth manifold M is a Lie groupoid, with the
base M as set of units (identified with the image of
the zero section); the source and target maps both
coincide with the projection �; the product and the
inverse maps are the addition (x, y) 7! xþ y and the
opposite map x 7! �x in the fibers.

The fundamental groupoid of a topological space Let
M be a topological space. A ‘‘path’’ in M is a
continuous map � : [0, 1]!M. We denote by [�] the
homotopy class of a path � and by �(M) the set of
homotopy classes of paths in M (with fixed end-
points). For [�] 2 �(M), we set �([�]) = �(1),
�([�]) = �(0), where � is any representative of the
class [�]. The concatenation of paths determines a
well-defined composition law on �(M), for which
�(M)

�
ƒ
�

M is a topological groupoid, called the
‘‘fundamental groupoid’’ of M. The inverse map is
[�] 7! [��1], where � is any representative of [�] and
��1 is the path t 7! �(1� t). The set of units is M, if
we identify a point in M with the homotopy class of
the constant path equal to that point.

When M is a smooth manifold, the same
construction can be made with piecewise smooth
paths, and the fundamental groupoid �(M)

�
ƒ
�

M is a
Lie groupoid.
Symplectic and Poisson Groupoids

Symplectic and Poisson Geometry

Let us recall some definitions and results in
symplectic and Poisson geometry, used in the next
sections.

Symplectic manifolds A ‘‘symplectic form’’ on a
smooth manifold M is a differential 2-form !, which
is closed, that is, which satisfies

d! ¼ 0 ½8�

and nondegenerate, that is, such that for each point
x 2M and each nonzero vector v 2 TxM, there
exists a vector w 2 TxM such that !(v, w) 6¼ 0.
Equipped with the symplectic form !, a smooth
manifold M is called a ‘‘symplectic manifold’’ and
denoted by (M,!).

The dimension of a symplectic manifold is always
even.

The Liouville form on a cotangent bundle Let N
be a smooth manifold, and T�N be its cotangent
bundle. The Liouville form on T�N is the 1-form �
such that, for any � 2 T�N and v 2 T�(T

�N),

�ðvÞ ¼ �;T�NðvÞh i ½9�

where �N : T�N ! N is the canonical projection.
The 2-form != d� is symplectic, and is called the

‘‘canonical symplectic form’’ on the cotangent
bundle T�N.
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Poisson manifolds A Poisson manifold is a smooth
manifold P equipped with a bivector field (i.e., a
smooth section of ^2 TP) � which satisfies

½�;�� ¼ 0 ½10�

the bracket on the left-hand side being the Schouten
bracket. The bivector field � will be called the
Poisson structure on P. It allows us to define a
composition law on the space C1(P, R) of smooth
functions on P, called the Poisson bracket and
denoted by (f , g) 7! {f , g}, by setting, for all f and
g 2 C1(P, R) and x 2 P,

ff ; ggðxÞ ¼ � df ðxÞ; dgðxÞð Þ ½11�

That composition law is skew-symmetric and satis-
fies the Jacobi identity, therefore turns C1(P, R) into
a Lie algebra.
Hamiltonian vector fields Let (P, �) be a Poisson
manifold. We denote by �] : T�P! TP the vector
bundle map defined by

�;�]ð	Þ
� �

¼ �ð	; �Þ ½12�

where 	 and � are two elements in the same fiber of
T�P. Let f : P! R be a smooth function on P. The
vector field Xf = �](df ) is called the Hamiltonian
vector field associated to f. If g : P! R is another
smooth function on P, the Poisson bracket {f , g} can
be written as

ff ; gg ¼ dg;�]ðdf Þ
� �

¼ � df ;�]ðdgÞ
� �

½13�
The canonical Poisson structure on a symplectic
manifold Every symplectic manifold (M,!) has a
Poisson structure, associated to its symplectic
structure, for which the vector bundle map
�] : T�M!M is the inverse of the vector bundle
isomorphism v 7! �i(v)!. We will always consider
that a symplectic manifold is equipped with that
Poisson structure, unless otherwise specified.
The KKS Poisson structure Let G be a finite-
dimensional Lie algebra. Its dual space G� has a
natural Poisson structure, for which the bracket of
two smooth functions f and g is

ff ; ggð
Þ ¼ 
; df ð
Þ; dgð
Þ½ �h i ½14�

with 
 2 G�, the differentials df (
) and dg(
) being
considered as elements in G, identified with its
bidual G��. It is called the Kirillov, Kostant, and
Souriau (KKS) Poisson structure on G�.
Poisson maps Let (P1, �1) and (P2, �2) be two
Poisson manifolds. A smooth map ’ : P1 ! P2 is
called a Poisson map if, for every pair (f , g) of
smooth functions on P2,

f’�f ; ’�gg1 ¼ ’�ff ; gg2 ½15�
Product Poisson structures The product P1 � P2

of two Poisson manifolds (P1, �1) and (P2, �2) has
a natural Poisson structure: it is the unique
Poisson structure for which the bracket of
functions of the form (x1, x2) 7! f1(x1)f2(x2) and
(x1, x2) 7! g1(x1)g2(x2) (where f1 and g1 2 C1

(P1, R), f2 and g2 2 C1(P2, R)) is

ðx1; x2Þ 7! ff1; g1g1ðx1Þff2; g2g2ðx2Þ

The same property holds for the product of any
finite number of Poisson manifolds.

Symplectic orthogonality Let (V,!) be a symplectic
vector space, that means a real, finite-dimensional
vector space V with a skew-symmetric nondegenerate
bilinear form !. Let W be a vector subspace of V.
The ‘‘symplectic orthogonal’’ of W is

orth W ¼ v 2 V;!ðv;wÞ ¼ 0 for all w 2Wf g ½16�

It is a vector subspace of V, which satisfies

dim WþdimðorthWÞ ¼ dim V; orthðorthWÞ ¼W

The vector subspace W is said to be isotropic if
W � orthW, coisotropic if orthW �W, and
Lagrangian if W =orthW. In any symplectic vector
space, there are many Lagrangian subspaces; there-
fore, the dimension of a symplectic vector space is
always even; if dim V =2n, the dimension of an
isotropic (resp. coisotropic, resp. Lagrangian) vector
subspace is � n (resp. 	 n, resp. =n).

Coisotropic and Lagrangian submanifolds A sub-
manifold N of a Poisson manifold (P, �) is said to be
coisotropic if the bracket of two smooth functions,
defined on an open subset of P and which vanish on
N, vanishes on N too. A submanifold N of a
symplectic manifold (M,!) is coisotropic if and only
if for each point x 2 N, the vector subspace TxN of
the symplectic vector space (TxM,!(x)) is coisotro-
pic. Therefore, the dimension of a coisotropic
submanifold in a 2n-dimensional symplectic mani-
fold is 	 n; when it is equal to n, the submanifold N
is said to be Lagrangian.

Poisson quotients Let ’ : M! P be a surjective
submersion of a symplectic manifold (M,!) onto a
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manifold P. The manifold P has a Poisson structure
� for which ’ is a Poisson map if and only if
orth( ker T’) is integrable. When that condition is
satisfied, that Poisson structure on P is unique.
Poisson Lie groups A Poisson Lie group is a Lie
group G with a Poisson structure �, such that the
product (x, y) 7! xy is a Poisson map from G�G,
endowed with the product Poisson structure, into
(G, �). The Poisson structure of a Poisson Lie group
(G, �) always vanishes at the unit element e of G.
Therefore, the Poisson structure of a Poisson Lie
group never comes from a symplectic structure on
that group.

Definition 3 A symplectic groupoid (resp. a Pois-
son groupoid) is a Lie groupoid �

�
ƒ
�

�0 with a
symplectic form ! on � (resp. with a Poisson
structure � on �) such that the graph of the
composition law m

ðx; y; zÞ 2 �� �� �; ðx; yÞ 2 �2 and z ¼ mðx; yÞf g
is a Lagrangian submanifold (resp. a coisotropic
submanifold) of �� �� �� with the product
symplectic form (resp. the product Poisson structure),
the first two factors � being endowed with the
symplectic form ! (resp. with the Poisson structure �),
and the third factor �� being � with the symplectic form
�! (resp. with the Poisson structure ��).

The next theorem states important properties of
symplectic and Poisson groupoids.

Theorem 4 Let �
�

ƒ
�

�0 be a symplectic groupoid
with symplectic 2-form ! (resp. a Poisson groupoid
with Poisson structure �). We have the following
properties.

(i) For a symplectic groupoid, given any point
c 2 �, each one of the two vector subspaces of
the symplectic vector space (Tc�,!(c)),

Tcð��1ð�ðcÞÞÞ and Tcð��1ð�ðcÞÞÞ
is the symplectic orthogonal of the other one.
For a symplectic or Poisson groupoid, if f is
a smooth function whose restriction to each
�-fiber is constant, and g a smooth function
whose restriction to each �-fiber is constant,
then the Poisson bracket {f , g} vanishes
identically.
(ii) The submanifold of units �0 is a Lagrangian
submanifold of the symplectic manifold (�,!)
(resp. a coisotropic submanifold of the Poisson
manifold (�, �)).

(iii) The inverse map � : �! � is an antisymplecto-
morphism of (�,!), that is, it satisfies ��!=�!
(resp. an anti-Poisson diffeomorphism of (�, �),
i.e., it satisfies ��� =��).

Corollary 5 Let �
�

ƒ
�

�0 be a symplectic groupoid
with symplectic 2-form ! (resp. a Poisson group-
oid with Poisson structure �). There exists on �0 a
unique Poisson structure �0 for which � : �! �0

is a Poisson map, and � : �! �0 an anti-Poisson
map (i.e., � is a Poisson map when �0 is equipped
with the Poisson structure ��0).

Examples of Symplectic and Poisson Groupoids

The cotangent bundle of a Lie groupoid Let �
�

ƒ
�

�0

be a Lie groupoid.
We have seen above that its tangent bundle T�

has a Lie groupoid structure, determined by that of
�. Similarly (but much less obviously), the cotan-
gent bundle T�� has a Lie groupoid structure
determined by that of �. The set of units is the
conormal bundle to the submanifold �0 of �,
denoted by N��0. We recall that N��0 is the vector
sub-bundle of T��0

� (the restriction to �0 of the
cotangent bundle T��), whose fiber N�p�0 at a
point p 2 �0 is

N�p�0 ¼ � 2 T�p�; �; vh i ¼ 0 for all v 2 Tp�0

n o

To define the target and source maps of the
Lie algebroid T��, we introduce the notion of
‘‘bisection’’ through a point x 2 �. A bisection
through x is a submanifold A of �, with x 2 A,
transverse both to the �-fibers and to the �-fibers,
such that the maps � and �, when restricted to A,
are diffeomorphisms of A onto open subsets �(A)
and �(A) of �0, respectively. For any point x 2M,
there exist bisections through x. A bisection A
allows us to define two smooth diffeomorphisms
between open subsets of �, denoted by LA and RA

and called the left and right translations by A,
respectively. They are defined by

LA : ��1 �ðAÞð Þ ! ��1 �ðAÞð Þ

LAðyÞ ¼ m �j�1
A � �ðyÞ; y

� �

and

RA : ��1 �ðAÞð Þ ! ��1 �ðAÞð Þ

RAðyÞ ¼ m y; �j�1
A � �ðyÞ

� �

The definitions of the target and source maps for
T�� rest on the following properties. Let x be a
point in � and A be a bisection through x. The two
vector subspaces, T�(x)�0 and ker T�(x)�, are com-
plementary in T�(x)�. For any v 2 T�(x)�, v� T�(v)
is in ker T�(x)�. Moreover, RA maps the fiber
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��1(�(x)) into the fiber ��1(�(x)), and its restriction
to that fiber does not depend on the choice of A; it
depends only on x. Therefore, TRA(v� T�(v)) is in
ker Tx� and does not depend on the choice of A. We
can define the map b� by setting, for any 
 2 T�x� and
any v 2 T�(x)�,

b�ð
Þ; vh i ¼ 
;TRA v� T�ðvÞð Þh i

Similarly, we define b� by setting, for any 
 2 T�x�
and any w 2 T�(x)�,

b�ð
Þ;wD E
¼ 
;TLA w� T�ðwÞð Þh i

We see that b� and b� are unambiguously defined,
smooth, and take their values in the submanifold
N��0 of T��. They satisfy

�� � b� ¼ � � ��; �� � b� ¼ � � ��

where �� : T��! � is the cotangent bundle
projection.

Let us now define the composition law bm on T��.
Let 
 2 T�x� and � 2 T�y� be such that b�(
) = b�(�).
This implies �(x) =�(y). Let A be a bisection
through x and B a bisection through y. There exist
a unique 
h� 2 T��(x)�0 and a unique �h� 2 T��(y)�0

such that


 ¼ L�1
A

� �� b�ð
Þ� �
þ ��x
h�

� ¼ ðR�1
B Þ
� b�ð
Þð Þ þ ��y�h�

Then bm(
, �) is given by

bmð
; �Þ ¼ ��xy
h� þ ��xy�h� þ ðR�1
B Þ
� L�1

A

� �� b�ðxÞ� �

We observe that in the last term of the above expression
we can replace b�(
) by b�(�), since these two expressions
are equal, and that (R�1

B )�(L�1
A )�= (L�1

A )�(R�1
B )�, since

RB and LA commute.
Finally, the inverse b� in T�� is ��.
With its canonical symplectic form, T��

�̂
ƒ

�̂
N��0 is

a symplectic groupoid. When the Lie groupoid � is a
Lie group G, the Lie groupoid T�G is not a Lie
group, contrary to what happens for TG. This shows
that the introduction of Lie groupoids is not at all
artificial: when dealing with Lie groups, Lie group-
oids are already with us! The set of units of the
Lie groupoid T�G can be identified with G� (the
dual of the Lie algebra G of G), identified itself with
T�e G (the cotangent space to G at the unit element e).
The target map b� : T�G! T�e G (resp. the source
map b� : T�G! T�e G) associates to each g 2 G
and 
 2 T�gG, the value at the unit element e of the
right-invariant 1-form (resp. the left-invariant
1-form) whose value at x is 
.
Poisson Lie groups as Poisson groupoids Poisson
groupoids were introduced by Alan Weinstein as a
generalization of both symplectic groupoids and Poisson
Lie groups. Indeed, a Poisson Lie group is a Poisson
groupoid with a set of units reduced to a single element.
Lie Algebroids

The notion of a Lie algebroid, due to Jean Pradines, is
related to that of a Lie groupoid in the same way as the
notion of a Lie algebra is related to that of a Lie group.

Definition 6 A Lie algebroid over a smooth
manifold M is a smooth vector bundle � : A!M
with base M, equipped with

(i) a composition law (s1, s2) 7! {s1, s2} on the space
�1(�) of smooth sections of �, called the bracket,
for which that space is a Lie algebra; and

(ii) a vector bundle map � : A! TM, over the identity
map of M, called the anchor map, such that, for all
s1 and s2 2 �1(�) and all f 2 C1(M, R),

fs1; fs2g ¼ ffs1; s2g þ ð� � s1Þ 
 fð Þs2 ½17�

Examples

Lie algebras A finite-dimensional Lie algebra is a
Lie algebroid (with a base reduced to a point and the
zero map as anchor map).

Tangent bundles and their integrable sub-bundles A
tangent bundle �M : TM!M to a smooth manifold
M is a Lie algebroid, with the usual bracket of
vector fields on M as composition law, and the
identity map as anchor map. More generally, any
integrable vector sub-bundle F of a tangent bundle
�M : TM!M is a Lie algebroid, still with the
bracket of vector fields on M with values in F as
composition law and the canonical injection of F
into TM as anchor map.

The cotangent bundle of a Poisson manifold Let
(P, �) be a Poisson manifold. Its cotangent bundle
�P : T�P! P has a Lie algebroid structure, with
�] : T�P! TP as anchor map. The composition law
is the bracket of 1-forms. It will be denoted by
(�, 	) 7! [�, 	] (in order to avoid any confusion with
the Poisson bracket of functions). It is given by the
formula, in which � and 	 are 1-forms and X a
vector field on P:

½�; 	�;Xh i ¼ � �; d 	;Xh ið Þ þ� d �;Xh i; 	ð Þ
þ LðXÞ�ð Þð�; 	Þ ½18�

We have denoted by L(X)� the Lie derivative of
the Poisson structure � with respect to the vector
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field X. Another equivalent formula for that
composition law is

½	; �� ¼ Lð�]	Þ� � Lð�]�Þ	 � d �ð	; �Þð Þ ½19�

The bracket of 1-forms is related to the Poisson
bracket of functions by

½df ;dg� ¼ dff ;gg for all f and g 2 C1ðP;RÞ ½20�

Properties of Lie Algebroids

Let � : A be a Lie algebroid with anchor map
� : A! TM.

A Lie algebras homomorphism For any pair (s1, s2)
of smooth sections of �,

� � fs1; s2g ¼ ½� � s1; � � s2�

which means that the map s 7! � � s is a Lie algebra
homomorphism from the Lie algebra of smooth
sections of � into the Lie algebra of smooth vector
fields on M.

The generalized Schouten bracket The composi-
tion law (s1, s2) 7! {s1, s2} on the space of sections of
� extends into a composition law on the space of
sections of exterior powers of (A,�, M), which is
called the ‘‘generalized Schouten bracket.’’ Its
properties are the same as those of the usual
Schouten bracket. When the Lie algebroid is a
tangent bundle �M : TM!M, that composition law
reduces to the usual Schouten bracket. When the Lie
algebroid is the cotangent bundle �P : T�P! P to a
Poisson manifold (P, �), the generalized Schouten
bracket is the bracket of forms of all degrees on the
Poisson manifold P, introduced by J-L Koszul,
which extends the bracket of 1-forms used earlier.

The dual bundle of a Lie algebroid Let $ : A� !M
be the dual bundle of the Lie algebroid � : A!M.
There exists on the space of sections of its exterior
powers a graded endomorphism d�, of degree 1 (that
means that if � is a section of ^kA�, d�(�) is a section
of ^kþ1A�). That endomorphism satisfies

d� � d� ¼ 0

and its properties are essentially the same as those of
the exterior derivative of differential forms. When
the Lie algebroid is a tangent bundle �M : TM!
M, d� is the usual exterior derivative of differential
forms.

On the spaces of sections of the exterior powers of
a Lie algebroid and of its dual bundle we can
develop a differential calculus very similar to the
usual differential calculus of vector and multivector
fields and differential forms on a manifold. Opera-
tors such as the interior product, the exterior
derivative, and the Lie derivative can still be defined
and have properties similar to those of the corre-
sponding operators for vector and multivector fields
and differential forms on a manifold.

The total space A� of the dual bundle of a Lie
algebroid � : A!M has a natural Poisson structure:
a smooth section s of � can be considered as a
smooth real-valued function on A� whose restriction
to each fiber $�1(x)(x 2M) is linear; this property
allows us to extend the bracket of sections of �
(defined by the Lie algebroid structure) to obtain a
Poisson bracket of functions on A�. When the Lie
algebroid A is a finite-dimensional Lie algebra G, the
Poisson structure on its dual space G� is the KKS
Poisson structure discussed earlier.
The Lie Algebroid of a Lie Groupoid

Let �
�

ƒ
�

�0 be a Lie groupoid. Let A(�) be the
intersection of ker T� and T�0

� (the tangent bundle
T� restricted to the submanifold �0). We see that A(�)
is the total space of a vector bundle � : A(�)! �0,
with base �0, the canonical projection � being the map
which associates a point u 2 �0 to every vector in
ker Tu�. In this section, we define a composition law
on the set of smooth sections of that bundle, and a
vector bundle map � : A(�)! T�0, for which
� : A(�)! �0 is a Lie algebroid, called the Lie
algebroid of the Lie groupoid �

�
ƒ
�

�0.
We observe first that for any point u 2 �0 and any

point x 2 ��1(u), the map Lx : y 7!Lxy = m(x, y) is
defined on the �-fiber ��1(u), and maps that fiber
into the �-fiber ��1(�(x)). Therefore, TuLx maps the
vector space Au = ker Tu� onto the vector space
ker Tx�, tangent at x to the �-fiber ��1(�(x)). Any
vector w 2 Au can therefore be extended into the
vector field along ��1(u), x 7! bw(x) = TuLx(w). More
generally, let w : U ! A(�) be a smooth section of
the vector bundle � : A(�)! �0, defined on an open
subset U of �0. By using the above-described
construction for every point u 2 U, we can extend
the section w into a smooth vector field bw, defined
on the open subset ��1(U) of �, by setting, for all
u 2 U and x 2 ��1(u):

bwðxÞ ¼ TuLxðwðuÞÞ

We have defined an injective map w 7! bw from the
space of smooth local sections of � : A(�)! �0, into
a subspace of the space of smooth vector fields
defined on open subsets of �. The image of that map
is the space of smooth vector fields bw, defined on
open subsets bU of � of the form bU = ��1(U), where
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U is an open subset of �0, which satisfy the two
properties:

1. T� � bw = 0,
2. for every x and y 2 bU such that �(x) =�(y),

TyLx(bw(y)) = bw(xy).

These vector fields are called ‘‘left-invariant vector
fields’’ on �.

The space of left-invariant vector fields on � is
closed under the bracket operation. We can therefore
define a composition law (w1, w2) 7! {w1, w2} on the
space of smooth sections of the bundle � : A(�)! �0

by defining {w1, w2} as the unique section such that

dfw1;w2g ¼ ½bw1; bw2�

Finally, we define the anchor map � as the map T�
restricted to A(�). With that composition law and
that anchor map, the vector bundle � : A(�)! �0 is
a Lie algebroid, called the Lie algebroid of the
Lie groupoid �

�
ƒ
�

�0.
We could exchange the roles of � and � and use

right-invariant vector fields instead of left-invariant
vector fields. The Lie algebroid obtained remains the
same, up to an isomorphism.

When the Lie groupoid �
�

ƒ
�

is a Lie group, its Lie
algebroid is simply its Lie algebra.
The Lie Algebroid of a Symplectic Groupoid

Let �
�

ƒ
�

�0 be a symplectic groupoid, with symplectic
form !. As we have seen above, its Lie algebroid
� : A! �0 is the vector bundle whose fiber, over
each point u 2 �0, is ker Tu�. We define a linear
map ![u : ker Tu�! T�u�0 by setting, for each w 2
ker Tu� and v 2 Tu�0,

![uðwÞ; v
D E

¼ !uðv;wÞ

Since Tu�0 is Lagrangian and ker Tu� complemen-
tary to Tu�0 in the symplectic vector space
(Tu�,!(u)), the map ![u is an isomorphism from
ker Tu� onto T�u�0. By using that isomorphism for
each u 2 �0, we obtain a vector bundle isomorphism
of the Lie algebroid � : A! �0 onto the cotangent
bundle ��0

: T��0 ! �0.
As seen in Corollary 5, the submanifold of units �0

has a unique Poisson structure � for which � : �! �0

is a Poisson map. Therefore, the cotangent bundle
��0

: T��0 ! �0 to the Poisson manifold (�0, �) has a
Lie algebroid structure, with the bracket of 1-forms as
composition law. That structure is the same as the
structure obtained as a direct image of the Lie
algebroid structure of � : A(�)! �0, by the above-
defined vector bundle isomorphism of � : A! �0

onto the cotangent bundle ��0
: T��0 ! �0. The Lie
algebroid of the symplectic groupoid �
�

ƒ
�

�0 can
therefore be identified with the Lie algebroid
��0

: T��0 ! �0, with its Lie algebroid structure of
cotangent bundle to the Poisson manifold (�0, �).

The Lie Algebroid of a Poisson Groupoid

The Lie algebroid � : A(�)! �0 of a Poisson group-
oid has an additional structure: its dual bundle
$ : A(�)� ! �0 also has a Lie algebroid structure,
compatible in a certain sense (indicated below) with
that of � : A(�)! �0.

The compatibility condition between the two Lie
algebroid structures on the two vector bundles in
duality � : A!M and $ : A� !M can be written as
follows:

d�½X;Y� ¼ LðXÞd�Y � LðYÞd�X ½21�

where X and Y are two sections of �, or, using the
generalized Schouten bracket of sections of exterior
powers of the Lie algebroid � : A!M,

d�½X;Y� ¼ ½d�X;Y� þ ½X; d�Y� ½22�

In these formulas d� is the generalized exterior
derivative, which acts on the space of sections of
exterior powers of the bundle � : A!M, considered
as the dual bundle of the Lie algebroid $ : A� !M.

These conditions are equivalent to the similar
conditions obtained by exchange of the roles of A
and A�.

When the Poisson groupoid �
�

ƒ
�

�0 is a symp-
lectic groupoid, we have seen that its Lie algebroid is
the cotangent bundle ��0

: T��0 ! �0 to the Poisson
manifold �0 (equipped with the Poisson structure for
which � is a Poisson map). The dual bundle is the
tangent bundle ��0

: T�0 ! �0, with its natural Lie
algebroid structure defined earlier.

When the Poisson groupoid is a Poisson Lie group
(G, �), its Lie algebroid is its Lie algebra G. Its dual
space G has a Lie algebra structure, compatible with
that of G in the above-defined sense, and the pair
(G,G�) is called a Lie bialgebra.

Conversely, if the Lie algebroid of a Lie groupoid
is a Lie bialgebroid (i.e., if there exists on the dual
vector bundle of that Lie algebroid a compatible
structure of Lie algebroid, in the above-defined
sense), that Lie groupoid has a Poisson structure
for which it is a Poisson groupoid.

Integration of Lie Algebroids

According to Lie’s third theorem, for any given
finite-dimensional Lie algebra, there exists a Lie
group whose Lie algebra is isomorphic to that
Lie algebra. The same property is not true for Lie
algebroids and Lie groupoids. The problem of
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finding necessary and sufficient conditions under
which a given Lie algebroid is isomorphic to the Lie
algebroid of a Lie groupoid remained open for more
than 30 years, although partial results were
obtained. A complete solution of that problem was
recently obtained by M Crainic and R L Fernandes.
Let us briefly sketch their results.

Let � : A!M be a Lie algebroid and � : A! TM its
anchor map. A smooth path a : I = [0, 1]! A is said to
be admissible if, for all t 2 I, � � a(t) = (d=dt)(� � a)(t).
When the Lie algebroid A is the Lie algebroid of a Lie
groupoid �, it can be shown that each admissible path
in A is, in a natural way, associated to a smooth path in
� starting from a unit and contained in an �-fiber.
When we do not know whether A is the Lie algebroid
of a Lie groupoid or not, the space of admissible paths
in A still can be used to define a topological groupoid
G(A) with connected and simply connected �-fibers,
called the Weinstein groupoid of A. When G(A) is a Lie
groupoid, its Lie algebroid is isomorphic to A, and
when A is the Lie algebroid of a Lie groupoid �,G(A) is
a Lie groupoid and is the unique (up to an isomorph-
ism) Lie groupoid with connected and simply con-
nected �-fibers with A as Lie algebroid; moreover, G(A)
is a covering groupoid of an open sub-groupoid of �.
Crainic and Fernandes have obtained computable
necessary and sufficient conditions under which the
topological groupoid G(A) is a Lie groupoid, that is,
necessary and sufficient conditions under which A is
the Lie algebroid of a Lie groupoid.

See also: Classical r-Matrices, Lie Bialgebras, and
Poisson Lie Groups; Lie Superalgebras and Their
Representations; Lie Groups: General Theory;
Nonequilibrium Statistical Mechanics (Stationary):
Overview; Poisson Reduction.
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Liquid crystals represent an important state of matter,
intermediate between regular solids with long-range
positional order of atoms or molecules (often accom-
panied by the orientational order, as in the case of
molecular crystals) and isotropic fluids with neither
positional nor orientational long-range order. The
basic feature of liquid crystals is orientational order of
building units, which might be individual molecules or
their aggregates, and complete or partial absence of the
long-range positional order. Molecular interactions
responsible for orientation order in liquid crystals are
relatively weak (most liquid crystals melt into the
isotropic phase at around 100–150 �C). As a result,
the structural organization of liquid crystals, most
importantly, the direction of molecular orientation,
is very sensitive to the external factors, such as
electromagnetic field and boundary conditions. This
sensitivity opened the doors for applications of
liquid crystals, including in information displays
and flat-panel TVs.

Liquid crystals, discovered more than 100 years
ago, represent nowadays one of the best studied
classes of soft matter, along with colloids, polymer
solutions and melts, gels and foams. There is
an extensive literature on physical phenomena in
liquid crystals, their chemical structure and material
parameters, display applications, etc.
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Thermotropic and Lyotropic Systems

Depending on the way the liquid crystalline state
(also known as ‘‘mesophase’’) is produced, one
distinguishes thermotropic and lyotropic liquid
crystals. Thermotropic liquid crystalline state can
exist in a certain temperature range for the materials
made of strongly anisometric molecules, either
elongated (calamitic molecules) or disk-like (discotic
molecules). Upon heating, many substances of this
type yield the following phase sequence: solid
crystal–liquid crystal–isotropic fluid.

Lyotropic liquid crystals form only in the presence of
a solvent, such as water or oil. Most commonly,
lyotropic mesophases are formed by solutions of
anisometric amphiphilic molecules (such as soaps,
phospholipids, and surfactants). Amphiphilic molecules
have two distinct parts: a (polar) hydrophilic head and a
(nonpolar) hydrophobic tail (generally, an aliphatic
chain). This feature gives rise to a special ‘‘self-
organization’’ of amphiphilic molecules in solvents.
Mesomorphic states also might be formed in the
solutions of certain polymers; polymers might also
form thermotropic (solvent-free) liquid crystals.

There are four basic types of liquid crystalline phases,
classified according to the dimensionality of the trans-
lational correlations of building units: nematic (no
translational correlations), smectic (1D correlations),
columnar (2D correlations), and various 3D-correlated
structures, such as cubic phases and blue phases.

‘‘Uniaxial nematic,’’ noted UN, is an optically
uniaxial fluid phase. The unit vector along the optic
axis is called the director n, n2 = 1; it indicates the
average orientation of the molecular axes (see
Figure 1). Even when the molecules are polar,
head-to-head overlapping and flip-flops establish
centrosymmetric arrangement in the nematic bulk.
Thus, n and �n are equivalent notations. It is
(a)

n

(b)

Figure 1 (a) Nematic (uniaxial) type of ordering in thermotropic

liquid crystals; the molecular long axes are on average aligned

along the director n; (b) a molecule of octylcyanobiphenyl, a

typical thermotropic liquid crystalline material capable of both

nematic and SmA types of ordering.
important to realize that n specifies only the
direction of orientation but not the degree of
orientational order. In biaxial nematics (BN), the
symmetry point group is one of a prism. A BN
phase is characterized by three directors, n, l, and
m = n� l, such that n � �n, l � �l, and m � �m.

When the building unit (molecule or aggregate) is
chiral, that is, not equal to its mirror image, UN
might show a helicoidal structure. It is then called a
cholesteric phase denoted Ch or N�. Note that UN,
BN, and N� phases are liquid phases (no long-range
correlations in molecular positions).

‘‘Smectics’’ are layered phases with a quasi-long-
range 1D translational order of centers of molecules
in a direction normal to the layers (see Figure 2).
This positional order is not exactly the long-range
order as in regular 3D crystals: as shown by Landau
and Peierls, the fluctuative displacements of layers in
1D lattice diverge logarithmically with the size of
the sample. However, for regular materials with
smectic period of the order of 1 nm, the effect is
noticeable only on scales of 1 mm and larger. In
smectic A (SmA), the molecules within the layers
show fluid-like arrangement, with no long-range
in-plane positional order; it is a uniaxial medium
with the optic axis n perpendicular to the layers (see
Figure 2). Some materials, such as octylcyanobiphe-
nyl (see Figure 1b), show both UN and SmA phase
(at somewhat lower temperatures). In the lyotropic
version of SmA, the so-called lamellar L� phase, the
amphiphilic molecules arrange into bilayers. If the
solvent is water, the exterior surfaces of the bilayer
are formed by polar heads; the hydrophobic tails are
Water

Water

Thermotropic SmA Lyotropic Lα phase

n

Figure 2 SmA type of ordering in the thermotropic SmA liquid

crystal (left) and the lyotropic analog, L� phase (right) formed by

equidistant arrangement of amphiphilic bilayers in water.
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hidden in the middle of the bilayer (note that
membranes of many biological cells are organized
in the similar way). The periodic structure of
alternating surfactant and water layers gives rise to
the L� phase (see Figure 2). Interestingly, the
structure might retain its smectic ordering even
when strongly diluted, being stabilized by thermal
fluctuations of bilayers.

Other types of smectics show in-plane order,
caused, for example, by a collective tilt of the rod-
like molecules with respect to the normals to the
layers (the so-called SmC). In chiral materials, the
tilt of the molecules might lead to the helicoidal
structure; we do not consider them here, although
the chiral SmC phase is of considerable interest for
applications in fast-switching optical devices.

‘‘Columnar phases’’ are most frequently formed
by hexagonal packing of cylindrical aggregates, as in
the case of thermotropic materials formed by disc-
like molecules. The positional order is 2D only, as
the intermolecular distances along the axes of the
aggregates are not regular.

‘‘3D-correlated structures’’ demonstrate a periodic
structure along all three coordinates, but they are
still different from the 3D crystals, as the periodicity
is caused by the repetition of molecular orientations
rather than by regular repetition of the molecular
centers of mass. For example, in cubic lyotropic
phases, the 3D network is formed by periodically
curved layers of amphiphilic molecules; the mol-
ecules are free to move within the layers.
Order Parameter

The concept of an order parameter (OP) has
emerged in its modern form in the Landau model
of phase transitions and has been later expanded to
describe other features such as topologically stable
defects in the ordered media. The OP of the liquid
crystal can be related to the anisotropy of macro-
scopic properties such as diamagnetic or dielectric
susceptibility. Measuring these anisotropies allows
one to determine the degree of orientational order.
The magnetic measurements are especially conveni-
ent compared with their electric counterparts, as in
this case the local field acting on the molecules
differs very little from the external field. In UN, the
components of the (symmetric) magnetic suscepti-
bility tensor �

=
read in the frame in which the z-axis

is parallel to the director n, as

�
¼ ¼

�? 0 0
0 �? 0
0 0 �k

0
@

1
A ½1�
The quantity �a =�k � �? is called the anisotropy
of the magnetic susceptibility. In most thermotropic
UNs, �k < 0 and �? < 0 (diamagnetism), and �a > 0,
so that n orients along the applied magnetic field. In
the isotropic phase, �a = 0; in UN, �a is determined by
(1) molecular susceptibilities of individual molecules
and (2) degree of molecular order. For the latter, one
can chose the temperature-dependent quantity
s(T) = (1=2) 3 cos2 �� 1

� �
, where � is the angle

between the axis of an individual molecule and the
director n and . . .h i means an average over molecular
orientations. The OP is thus the traceless symmetric
tensor Q

=
with the components that vanish in the

isotropic phase, and are proportional to �a in the UN
phase:

Q
¼
¼Q

��a=3 0 0
0 ��a=3 0
0 0 2�a=3

0
@

1
A ½2�

One can choose the constant Q in such a way
that in an arbitrary coordinate system, where
�ij =�?�ij þ �aninj,

Qij¼ sðTÞ ninj � 1
3�ij

� �
½3�

The tensor OP allows one to describe the biaxial
nematic phase as well:

Qij¼ s Tð Þ ninj � 1
3�ij

� �
þ b Tð Þ lilj �mimj

� �
½4�

where n, l, and m are three orthogonal directors and
b is the ‘‘biaxiality parameter’’; b = 0 in UN.
Elasticity of the Nematic Phase

In real samples of liquid crystals, the average
molecular orientation changes from point to point
because of the external fields, boundary conditions,
presence of foreign particles, etc. The OP becomes
spatially nonuniform, Qij(r). In most problems of
practical interest, the typical scale of distortions is
much larger than the molecular scale; the deforma-
tions are weak in the sense that the scalar part of the
OP, s(T), remains constant despite the spatial
gradients of the director field n(r).

The free-energy density associated with the (small)
deformations of the UN, classified as splay, twist,
and bend of the director (see Figure 3) writes in
terms of the director gradients ni; j = (@ni=@xj) as

fFO ¼ 1
2K1ðdiv nÞ2 þ 1

2K2ðn � curl nÞ2

þ 1
2K3ðn� curl nÞ2 ½5�

and is known as the Frank–Oseen energy density with
Frank elastic constants of splay (K1), twist (K2), and
bend (K3); all three are necessarily positive definite; the
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Figure 3 Basic types of director distortions in the bulk of the

uniaxial nematic.
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dimensionality is that of a force. The elastic constants
can be estimated as the typical energy of molecular
interactions responsible for the orientational order
divided by the characteristic length (a molecular size):
K 	 U=l 	 kBT=l 	 4� 10�21J=10�9 	 4 pN, which
yields a good estimate for many thermotropic UNs,
as the experimental values are between 1 and 10 pN.
The energy density [5] is often supplemented with the
so-called divergence terms:

f13 þ f24 ¼ K13 divðn div nÞ
� K24 divðn div nþ n� curl nÞ ½6�

The K24 term can be re-expressed as a quadratic
form of the first derivatives whereas the K13 term is
proportional to the second derivatives ni, jk and thus
might in principle be comparable to fFO 	 ni, jnk, l.
The volume integrals of these terms can be
re-expressed as the surface integrals by virtue of
the Gauss theorem (but only when the elastic moduli
K13 and K24 are constant which might not be the
case at certain interfaces and at the core of defects).
Therefore, when one seeks for equilibrium director
configurations by minimizing the total free-energy
functional

R
(fFO þ f13 þ f24)dV, the K13 and K24

terms do not enter the Euler–Lagrange variational
derivative for the bulk. However, they can
contribute to the energy and influence the equili-
brium director through boundary conditions at the
surface. Usually, K24 term is retained when the
system experiences a topological change of the
director field. The K13 term is often neglected;
very little is known about K13 value.

In the presence of external field, the free-energy
density acquires additional terms. For example, for
the magnetic field B, the energy density [5], [6] should
be supplemented by the term �(1=2)��1

0 �a(B � n)2,
where �0 = 4�� 10�7 Hm�1 is the magnetic perme-
ability of free space (magnetic constant).

The possibility to orient the director by an applied
electric or magnetic field leads to numerous practical
applications. Any actual liquid crystal cell is
confined; say, by a pair of parallel glass plates. The
molecular interactions between the liquid crystal
and the boundary substrates are anisotropic. This
anisotropy establishes one (sometimes more) pre-
ferred orientation of n at the boundary, the so-called
‘‘easy axis.’’ The phenomenon is called the ‘‘surface
anchoring.’’ Orienting action of the substrates
usually keeps the director uniform if the external
field is absent. However, the external field can
overcome both the ‘‘anchoring’’ at the surfaces and
the elasticity of the nematic bulk and reorient the
director. This is the ‘‘Frederiks effect,’’ first dis-
covered for the magnetic case. When the field is
removed, the surface anchoring restores the original
director structure. Thus, one can use the external
field and surface anchoring to switch the liquid
crystal orientation back and forth. The dielectric
version of the effect is used in electrooptic devices,
including displays. The liquid crystal is usually
sandwiched between two transparent electroconduc-
tive plates (e.g., glass covered with indium tin oxide)
coated with a suitable alignment layer. The voltage
across the cell controls the director configuration
and thus the optical properties of the cell.
Elasticity of the Smectic A Phase

For the SmA phase, the elastic free-energy density
should be modified to take into account (1)
restrictions that the layered structure imposes onto
the director twist and bend, and (2) elastic cost of
changes in the thickness of the layers:

f ¼ 1
2K1ðdiv nÞ2 þ 1

2B	
2 ½7�

where B is the Young modulus (layers compressi-
bility modulus) and 	= (d � d0)=d0, the relative
difference between the equilibrium period d0 and
the actual layer thickness measured along the
director n. The ratio of K1 to B defines an important
length scale


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K1=B

p
½8�

called ‘‘the penetration length’’; 
 is of the order
of the layer separation but diverges when the
system approaches the SmA–nematic transition.
The splay constant K1 in the SmA phase is of the
same order as in a nematic phase stable at higher
temperatures. With 
 
 d0 
 (1� 3) nm, one finds
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Figure 4 Miezowicz geometries for effective viscosities of the
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B 	 106 � 107 N=m2, a value that is 103 to 104 times
smaller than the compressibility modulus in a solid.

The SmA elastic free-energy density is often
written in terms of the mean curvature
H = (1=2)(�1 þ �2) and the Gaussian curvature
G = �1�2 of the layers:

f ¼ 1
2K1 �1 þ �2ð Þ2þK�1�2 þ 1

2B	
2 ½9�

As compared with eqn [7], it is supplemented by the
divergence saddle-splay term K; �2K1 < K � 0 (for
the system of flat layers to be energetically stable);
�1 = 1=R1 and �2 = 1=R2 are the local values of the
principal curvatures of the smectic layers.
Dynamics

Liquid crystals are fluids; they can flow preserving
the orientational order. Flow imposes an orienta-
tional torque on the liquid crystals. Most often, the
director tends to realign along the direction of flow.
There is also an inverse effect: director distortions
can cause the flow. This ‘‘backflow’’ effect is of
importance in liquid crystal displays. In the approxi-
mation of a constant scalar OP, the hydrodynamics
of liquid crystals is described in terms of seven
unknown variables: (1) mass density �(r, t), (2) three
components of the velocity field v(r, t), (3) energy
density, and (4) two components of the director field
n(r, t). These variables are found from seven
equations

1. conservation of mass,
2. three equations for the conserved components of

the linear momentum,
3. entropy balance equation, and
4. two director dynamics equations.

In contrast to an isotropic fluid, the stress tensor
depends not only on the gradients of the velocity,
but also on the director components. UN phase
should be characterized by five different viscosity
constants. The number of viscosities reduces to
three, when the director distortions are small.
These three can be chosen as the effective viscosities
for three idealized geometries of flow, also known as
Miezowicz geometries, in which one assumes that
the director is fixed (e.g., by a strong magnetic field)
(see Figure 4):

When n = (1, 0, 0) is perpendicular to both the
flow direction and the velocity gradient, the UN
behaves as an isotropic fluid with a viscosity �a;
however, director fluctuations coupled with the
certain values of the viscosity coefficients might
destabilize the initial director orientation (see
Figure 4a). When n is parallel to the flow
(Figure 4b) or parallel to the velocity gradient
(Figure 4c), the corresponding viscosities �b and �c

are generally different from �a and from each other;
�b < �a < �c for a typical thermotropic UN material
composed of the rod-like elongated molecules. The
result �b < �c can be explained by assuming that
the friction correlates with the cross section of the
molecules seen by the flow.
Topological Defects

Experimental Observations

When a thick UN sample (say, 100 mm thick) with
no special aligning layers is viewed under the
microscope, one usually observes a number of
mobile flexible lines, the so-called disclinations.
The disclinations are seen as thin and thick threads
(see Figure 5). Thin threads strongly scatter light and
show up as sharp lines. These are truly topologically
stable defect lines, along which the nematic sym-
metry of rotation is broken. The disclinations are
topologically stable in the sense that no continuous
deformation can transform them into a uniform
state, n(r) = const. Thin disclinations are singular in
the sense that the director is not defined along the
core of the defect line. Thick threads are line
defects only in appearance; they are not singular
disclinations. The director is smoothly curved and
well defined everywhere, except, perhaps, at a
number of point defects, the so-called hedgehogs
(see Figure 5).

In thin UN samples (1–50 mm) with the director
tangential to the bounding plates, the disclinations
are often perpendicular to the plates. Under
a microscope with two crossed polarizers, one
can see the ends of the disclinations as centers
with emanating pairs of dark brushes (see Figure 6)
giving rise to the so-called ‘‘Schlieren texture.’’ The
dark brushes display the areas where n is either in
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the plane of polarization of light or in the perpendi-
cular plane. The director rotates by an angle 
 �
when one goes around the end of the disclination at
the surface. Centers with four emanating brushes are
also observed; they correspond to point defects
located at the surface, the so-called boojums, (see
Figure 6). The director undergoes a 
2� rotation
around these four-brush centers. The principal
difference between the centers with two brushes
(ends of singular lines) and centers with four brushes
(surface point defects) can be seen after a gentle shift
of one of the bounding plates with respect to the
other. Upon shear-induced separation in the plane of
observation, the centers with two brushes are clearly
seen as connected by a singular trace – disclination,
while the centers with four brushes separate without
a visible singularity between them.

The intensity of linearly polarized light coming
through a uniform UN slab depends on the angle 

between the polarization direction and the projec-
tion of the director n onto the slab’s plane:

I ¼ I0 sin2 2
 sin2 �h



ne;eff � no

� �� �
½10�

where I0 is the intensity of incident light, 
 is the
wavelength of the light, ne, eff is the effective
refractive index that depends on the ordinary index
no, extraordinary index ne, and the director orienta-
tion. Equation [10] allows one to relate the number
jkj of director rotations by 
2� around the defect
core, to the number B of brushes:

jkj ¼ B=4 ½11�

Taken with a sign that specifies the direction of
rotation, k is called the ‘‘strength of disclination,’’
and is related to a more general concept of a
topological charge (but does not coincide with it).
Note that I = 0 when n is perpendicular to the plates
(so-called homeotropic state), as ne, eff = no. The
homeotropic state is used as one of the ground
states in modern flat-panel TV sets. By applying the
electric field, one tilts the director so that ne, eff 6¼ no

and the cell (or the corresponding pixel in the liquid
crystal panel) becomes transparent.
Nematic Droplets

When left intact, textures with defects in flat samples
relax into a more or less uniform state. Disclinations
with positive and negative k find each other and
annihilate. There are, however, situations when the
equilibrium state requires topological defects.
Nematic droplets suspended in an isotropic matrix
such as glycerin, water, polymer, etc., (see Figure 7)
and inverted systems, such as water droplets in a
nematic matrix are the most evident examples.

Consider a spherical nematic droplet of a
radius R and the balance of the surface anchoring
energy 	WaR

2 (Wa is the surface anchoring
coefficient), and the elastic energy 	KR; K is
some averaged Frank constant. Small droplets
with R << K=Wa avoid spatial variations of n at
the expense of violated boundary conditions. In
contrast, large droplets, R >> K=Wa, satisfy
boundary conditions by aligning n along the
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Figure 7 Polarizing-microscope texture of spherical nematic

droplets suspended in glycerin. (a) The director configuration is

radial and normal to the spherical surface; the inset shows the

point-defect hedgehog in the center of the droplet. (b) Tangential

director orientation at the interface results in the bipolar structure

with two defects-boojums at the poles. The director is twisted

because of the smallness of the twist elastic constant as

compared to the splay and bend constants.
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preferred direction(s) at the surface. Since the
surface is a sphere, the result is the distorted
director in the bulk, for example, a radial hedgehog
when the surface orientation is normal (see Figure 7).
The characteristic radius R is macroscopic (microns),
as K 	 10 pN and Wa 	 10�5–10�6 J m�2. Point
defects in large nematic droplets must satisfy restric-
tions on their topological characteristics that have
their roots in the Poincaré and Gauss theorems of
differential geometry.
Topological Classification
of Defects in UN

The language of topology, or, more precisely, of
homotopy theory, allows one to associate the
character of ordering of a medium and the types of
defects arising in it, to find the laws of decay,
merger and crossing of defects, to trace out their
behavior during phase transitions, etc. The key point
is occupied by the concept ‘‘of topological invari-
ant,’’ also called a ‘‘topological charge,’’ which is
inherent in every defect. The stability of the defect is
guaranteed by the conservation of its charge.
Homotopy classification of defects includes three
steps.

First, one defines the OP of the system. In a
nonuniform state, the OP is a function of
coordinates.

Second, one determines the OP (or degeneracy)
space R, that is, the manifold of all possible values
of the OP that do not alter the thermodynamical
potentials of the system. In the UN, R is a unit
sphere denoted S2=Z2 (also called the projective
plane RP2) with pairs of diametrically opposite
points being identical. Every point of S2=Z2
represents a particular orientation of n. Since
n � �n, any two diametrically opposite points at
S2=Z2 describe the same state.

The function n(r) maps the points of the nematic
volume into S2=Z2. The mappings of interest are
those of i-dimensional ‘‘spheres’’ enclosing defects.
A line defect is enclosed by a linear contour, i = 1; a
point defect is enclosed by a sphere, i = 2, etc.

Third, one defines the homotopy groups �i(R).
The elements of these groups are mappings of
i-dimensional spheres enclosing the defect in real
space into the OP space. To classify the defects of
dimensionality t0 in a t-dimensional medium, one
has to know the homotopy group �i(R) with
i = t � t0 � 1.

Each element of �i(R) corresponds to a class of
topologically stable defects; all these defects are
equivalent to one another under continuous
deformations. The elements of homotopy groups
are topological charges of the defects. For UN,
the homotopy group �1(S2=Z2) = Z2 = {0, 1=2} is
composed of two elements; there is thus only one
class of topologically stable defects (that appear
as thin singular lines under the microscope, see
Figure 5) with the addition rules 1=2þ 1=2 = 0
and 1=2þ 0 = 1=2 describing interaction of dis-
clinations. The topological point defects in the
bulk (hedgehogs) are described by the second
homotopy group, �2(S2=Z2) = Z = {0, 1, 2, . . .}, and
can be labeled by integer topological charges. The
simplest point defect is a ‘‘radial’’ hedgehog, seen
in the center of the radial droplet (see Figure 7a).
Boojums are special point defects that, in contrast
to hedgehogs, can exist only at the boundary of
the medium (see Figure 7b).

The relative stability of stable disclinations
depends on the Frank elastic constants of splay
(K11), twist (K22), bend (K33) and saddle-splay
(K24) in the Frank–Oseen elastic free-energy
density functional; the role of the elastic constant
K13 in the structure of defects is not clarified yet.

Consider the simplest case of ‘‘planar’’ disclina-
tions with n perpendicular to the line. In this case,
the K24-term in the line’s energy is zero. Assuming
K11 = K22 = K33 = K, by minimizing the bulk integral
of [5], one finds the equilibrium director configura-
tion around the line of strength k

n ¼ cos k’þ c½ �; sin k’þ c½ �; 0f g ½12�

where ’= arctan (y=x), x and y are Cartesian coor-
dinates normal to the line, c is a constant. The energy
per unit length of a straight planar disclination is

F1l ¼ �Kk2 ln
L

rc
þ Fc ½13�
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Figure 8 SmA phase with FCDs based on the confocal pairs

of ellipses and hyperbolas; the scheme on the right shows

the arrangement of the elliptic bases and smectic layers

wrapped around the confocal pairs of defects. Reproduced

from Lavrentovich OD (2003) In: Arodz et al. (eds.) Patterns of

Symmetry Breaking. Dordrecht: Kluwer Academic Publishers,

with kind permission of Springer Science and Business Media.
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where L is the characteristic size of the system, rc

and Fc are, respectively, the radius and the energy of
the disclination core, a region in which the distor-
tions are too strong to be described by a pheno-
menological theory.

The restriction of planar director distortions does
not allow the model to grasp the crucial difference
between half-integer and integer k’s. The lines of
integer k, as already discussed, are fundamentally
unstable, as the director can be reoriented along the
axis. This ‘‘escape in the third dimension,’’ is usually
energetically favorable, since the singular core is
eliminated. When opposite directions of the
‘‘escape’’ meet, a point defect hedgehog is formed,
as illustrated in Figure 5c.

Unlike point defects such as vacancies in
solids, topological point defects in nematics
cause disturbances over the whole volume.
The curvature energy of the point defect is
proportional to the size R of the system. For
example, for the radial hedgehog with
n = (x, y, z)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and the hyperbolic

hedgehog with n = (�x,�y, z)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
,

one finds, respectively,

Frh¼ 8�RðK11 � K24Þ þ Fcr and

Fhh¼ 8�R
K11

5
þ 2K33

15
þ K24

3

	 

þ Fch ½14�
Defects in Smectics

Layered structure of smectics leads to linear
defects of positional order, dislocations, in addi-
tion to disclinations. There is also a special class
of distortions known as focal conic domains
(FCDs) that are associated with large-scale cur-
vatures of layers. Imagine that because of the
boundary conditions, flow, or the external fields,
the smectic layers are curved over the scale much
larger than the thickness of the layers. It is easy
to see from eqn [9] that the curved layers will
prefer to maintain their equidistance, as the
curvature energy is much smaller than the layers
dilation energy at the large scales of deforma-
tions. Generally, the family of equidistant curved
surfaces is associated with the focal surfaces at
which the principal curvatures diverge. These
focal surfaces are thus energetically very costly.
A radical way to reduce the elastic energy would
be to decrease the dimensionality of the focal
surfaces, say, by transforming them into lines and
points. The latter case corresponds simply to a
system of concentric spherical layers. The former
is more complicated and corresponds to FCDs in
which the focal surfaces are represented by pairs
of confocal lines: ellipse and hyperbola (limiting
case: circle and straight line), and the pair of
confocal parabolae. Experiments confirm that the
FCDs are the most frequent type of structural
deformations in smectic materials see Figure 8.
Conclusion

To summarize, over the last few decades, liquid
crystals transformed from a mysterious and
curious form of condensed matter into a key
technological material, thanks to the progress in
the understanding of their elastic, optical, and
viscous properties. However, the intrinsic com-
plexity of these materials still leaves plenty of
room for further studies, not only of an applied
nature, but also fundamental. In the field of
thermotropic liquid crystals, researchers continue
to discover new types of structural organization,
such as the phases formed by ‘‘banana-shaped’’
molecules that are dramatically different from the
phases formed by ‘‘regular’’ rod-like and disk-like
molecules. There is a continuous work to sharpen
our understanding of even the ‘‘old’’ problems, such
as mechanisms of surface alignment, nature and
quantitative values of the elastic constants K13, K24,
and �K. Even in the case of the electric Frederiks
effect that is at the heart of modern applications, the
search continues as the corresponding process of
director reorientation is generally very complex. In
addition to the dielectric torque, it is controlled by
various factors, for example, a nonlocal character of
the electric field in the anisotropic medium, finite
electric conductivity, flexoelectric effect (i.e., electric
polarization brought about by the director deforma-
tions), surface electric polarization at the bounding
plates, dependence of the dielectric and other
material properties on the frequency of the applied
field which might be comparable with the
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characteristic frequency of dielectric relaxation, cou-
pling of the director reorientation and the material’s
flows, appearance of topological defects, etc. Many
research efforts nowadays are focused on composite
systems, such as liquid crystal colloids and polymer–
liquid crystal composites. Over the next decade or so,
one would expect that the emphasis in fundamental
studies will gradually shift from the thermotropic
liquid crystals to their lyotropic counterparts, as the
lyotropic type of orientational order is featured by
many systems of biological significance, such as
solutions of DNA, f-actin, etc.

See also: Non-Newtonian Fluids; Topological Defects
and Their Homotopy Classification.
Further Reading

Barbero G and Evangelista LR (2001) In: Ong HC (ed.) An
Elementary Course on the Continuum Theory for Nematic
Liquid Crystals, Series on Liquid Crystals. Singapore: World

Scientific.
Blinov LM and Chigrinov VG (1996) Electrooptic Effects in
Liquid Crystal Materials. New York: Springer.

Chaikin PM and Lubensky TC (1995) Principles of Condensed
Matter Physics. Cambridge University Press.

Chandrasekhar S (1992) Liquid Crystals, 460 pp. Cambridge:

Cambridge University Press.
Frank FC (1958) On the theory of liquid crystals. Transactions of

the Faraday Society 25: 19–28.

de Gennes PG and Prost J (1993) The Physics of Liquid Crystals.
Oxford: Oxford Science Publications.

Hartshorne NH and Stuart A (1970) Crystals and the Polarizing
Microscope. New York: American Elsevier.

Kitzerow HS and Bahr C (eds.) (2001) Chirality in Liquid
Crystals, 502 pp. New York: Springer.

Kleman M and Lavrentovich OD (2003) Soft Matter Physics: An
Introduction. New York, NY: Springer.

Larsen RG (1999) The Structure and Rheology of Complex
Fluids, 664 pp. New York: Oxford University Press.

Lavrentovich OD, Pasini P, Zannoni C, and Zumer S (eds.)

(2001) Defects in Liquid Crystals: Computer Simulations,
Theory and Experiments, 344 pp. Dordrecht: Kluwer Academic
Publishers.

Sonin AA (1995) The Surface Physics of Liquid Crystals, 180

pp. Australia: Gordon and Breach.
Wu ST and Yang DK (2001) Reflective Liquid Crystal Displays,

336 pp. Chichester: Wiley.
Ljusternik–Schnirelman Theory
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Introduction

Using Lagrange multipliers, the smallest and
the largest eigenvalue of a symmetric quadratic form

QðuÞ ¼
Xn

j;k¼1

ajkujuk ðajk ¼ akjÞ

can be obtained by minimizing and maximizing Q
on the unit sphere S n�1 = {u 2 Rn : kuk= 1}. If the
corresponding extremum is reached at u�, then u� is
an associated eigenvector.

In the setting of integral or partial differential
equations, a ‘‘recursive variational method’’ has
been proposed to determine all the eigenvalues 
1 �

2 � � � � � 
n and corresponding eigenvectors
u1, u2, . . . , un of Q or, in modern terms, of the
associated symmetric matrix A = (aij):


1 ¼ min
kuk¼1

QðuÞ ð¼ Qðu1ÞÞ


j ¼ min
kuk¼1;u�u1¼0;...;u�uj�1¼0

QðuÞ

ð¼ QðujÞÞ ðj ¼ 2; . . . ; nÞ
Further considerations have led to a nonrecursive
minimum–maximum principle:


j ¼ min
fXj�Rn : dim Xj¼jg

max
fu2Xj : kuk¼1g

QðuÞ ð1 � j � nÞ

and to a dual maximum–minimum principle
(Weyl):


j ¼ max
fp1;...;pj�12Rng

min
fkuk¼1;u�pi¼0;1�i�j�1g

QðuÞ

ð1 � j � nÞ

These principles have been widely used in various
existence and approximation questions of mathema-
tical physics, and extensions have been made to the
abstract setting of symmetric bilinear forms in
Hilbert spaces.

Around 1930, Ljusternik and Schnirelman have
extended this theory beyond the frame of quadratic
forms, replacing Q by a differentiable real-valued
function f and the unit sphere by a finite-
dimensional compact differentiable manifold M.
Their aim was the obtention of the ‘‘critical points’’
of f on M, that is, the points u 2M where the
differential f 0(u) of f at u (as a linear functional on
the tangent space TuM to M) is equal to zero, and of
the corresponding critical values, that is, the values
of f at critical points. When M is a sphere, the
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critical points are nontrivial solutions of the
equation

f 0ðuÞ ¼ �u ½1�

for some � 2 R (nonlinear eigenvalue problem).
Ljusternik and Schnirelman have replaced the
dimension of the vector spaces occurring in
the minimum–maximum principle for eigenvalues
by the concept of ‘‘category’’ of a closed set A in a
topological space X. An early success of their
approach was the existence of three geometrically
distinct closed geodesics without self-intersections
on any compact surface of genus zero. In 1960,
their theory has been extended to infinite-
dimensional manifolds and to other measures of
the ‘‘size’’ of a set than the category, allowing many
theoretical developments as well as various
applications to nonlinear differential equations.
Ljusternik–Schnirelman Category

Let X be a topological space (e.g., a normed vector
space, or a differentiable manifold, or a metric
space), and A a closed subset of X. The category of
A in X, catX(A), is the least integer k such that A
can be written as

Sk
j = 1 Aj, with Aj closed and

contractible in X, that is, continuously deformable
in X into a single point. If no such k exists, one sets
catX(A) = þ1. We write cat(X) for catX(X). For
example, if X is contractible (in itself), cat(X) = 1.
This is the case for any normed space X. For the
hypersphere, catRn(Sn�1) = 1, but cat(Sn�1) = 2.

The Ljusternik–Schnirelman category satisfies the
following properties, which are not too difficult to
prove. If A, B � X are closed,

1. catX(A) = 0 if and only if A = ;;
2. if A � B, catX(A) � catX(B);
3. catX(A [ B) � catX(A)þ catX(B);
4. if � : [0, 1]�X ! X is a continuous deformation

of X(�(0, A) = A), catX(A) � catX(�(1, A)); and
5. if X is a finite-dimensional manifold and A � X

is compact, there is a neighborhood B of A such
that catX(B) = catX(A).

Computing or even estimating the category of a
given set is in general difficult, requiring techniques
of algebraic topology. In particular, one can show
that, for the n-torus Tn = S1 � S1 � � � � � S1 (n times),
cat(Tn) = nþ 1, and for the n-dimensional projective
space Pn = Sn=Z2, obtained by identifying the anti-
podal points of Sn, cat(Pn) = nþ 1. It is clear that a
set of category p must contain at least p points. If X
is connected, any compact subset of category pþ 1
has (topological) dimension larger or equal to p.
Ljusternik–Schnirelman Minimax Method

The Ljusternik–Schnirelman category of M provides a
lower bound for the number of critical points of a
smooth function f on suitable finite-dimensional
manifolds M. Namely, if M is a compact Riemannian
C2-manifold without boundary, any f 2 C2(M, R)
has at least cat(M) distinct critical points, with
critical values

ck ¼ inf
A2Ak

sup
u2A

f ðuÞ ð1 � k � catðMÞÞ ½2�

where

Ak ¼ fA �M :A closed; catMðAÞ 	 kg
ð1 � k � catðMÞÞ ½3�

A fundamental technique in the proof is a deformation
lemma along the trajectories of the gradient system
associated to f (method of steepest descent). If rf
denotes the gradient of f in the Riemannian structure
of M, the Cauchy problem for the gradient system

d�

dt
¼ �rf ð�Þ; �ð0Þ ¼ u ½4�

has a unique globally defined continuous solution
� (t, u), which is such that

f ð� ð1; uÞÞ � f ðuÞ ¼
Z 1

0

d

dt
f ð�ðt; uÞÞ dt

¼ �
Z 1

0

krf ð�ðt; uÞÞk2 dt ½5�

Notice that, by property (4) of the category, each
deformation by � of a set in Aj remains in Aj. For
c 2 R, define

f c :¼ fu 2M : f ðuÞ � cg
Kc :¼ fu 2M : rf ðuÞ ¼ 0; f ðuÞ ¼ cg

½6�

From [5] it follows that given c 2 R and an open
neighborhood Uc of Kc, one has �(1, f cþ" nUc) � f c�"

for all sufficiently small " > 0. This implies that if
c := cj = cjþ1 = � � � = cjþq for some q 	 0, then
catM(Kc) 	 qþ 1. Assume, by contradiction, that
catM(Kc) � q, let Uc be an open neighborhood of Kc

such that catM(Uc) = catM(Kc) (Uc = ; if q = 0), " > 0
such that �(1, f cþ" nUc) � f c�", and A 2 Ajþq such
that supA f � cþ ", that is, A � f cþ". Then

catMð�ð1;A nUcÞÞ 	 catMðA nUcÞ
	 catMðAÞ � catMðUÞ 	 j

giving the contradiction c � sup�(1, A) f � c� ".
Notice that, for each j, cj = inf {c 2 R : catM(f c) 	 j},

which shows that the cj are precisely those levels of f
where catM(f c) changes. The presence of critical
values is detected by changes in the topology of the
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sublevel sets f c when c varies, a common feature of
many techniques for finding critical points of
functions.

A direct consequence is that for each even
f 2 C2(Rn, R), system [1] has at least n pairs of
solutions (u, �u) with kuk= 1. Indeed, the solu-
tions of [1] are the critical points of f on Sn�1. As f
takes the same values at antipodal points, it is well
defined on the projective space Pn�1, and
cat(Pn�1) = n.

TheLjusternik–Schnirelman theoremcan beextended
to the C1-situation. The category of M gives a lower
bound for the number of critical points of f on the closed
manifold M. If Crit(M) denotes the minimum of
the number of critical points of all C1-functions on M,
so that Crit(M) 	 cat(M), an interesting question is
to estimate the gap Crit(M)� cat(M). For M closed
connected, Crit(M) � dim(M)þ 1 (Takens). If
Crit(M) = 2, M is homeomorphic to a sphere, so that
the equality Crit(S) = cat(S) for homotopy spheres is
equivalent to Poincaré’s conjecture! Manifolds with
Crit(M) = cat(M)þ 1 are known, but not with
Crit(M) > cat(M)þ 1.
Ljusternik–Schnirelman Theory
in Infinite-Dimensional Manifolds

The main difficulty in extending the results of the
previous section to functions defined on infinite-
dimensional manifolds lies in the lack of compact-
ness. J T Schwartz and Palais have shown that such
an extension is possible for functions f satisfying on
M a compactness property (allowing an infinite-
dimensional deformation lemma), now referred to as
the Palais–Smale condition: each sequence (uk) with
(f (uk)) bounded and limk!1rf (uk) = 0 has a con-
vergent subsequence. Such a condition can be
localized at level c by replacing the boundedness of
(f (uk)) by limk!1 f (uk) = c. The infinite-dimensional
extension of Ljusternik–Schnirelman’s theorem goes
as follows: Let M be an infinite-dimensional Rieman-
nian (or even Finsler) connected complete manifold
of class C1 without boundary. Any f 2 C1(M, R)
bounded from below and satisfying Palais–Smale
condition has at least cat(M) distinct critical points.

A simple application can be given to the periodic
solutions of period T (T-periodic solutions) of
Lagrangian systems

u00 þ rVðuÞ ¼ hðtÞ ½7�

where V 2 C1(Rn, R), 2�-periodic in each compo-
nent uj(1 � j � n), h is continuous, T-periodic and
has mean value �h equal to zero. By the least action
principle, the T-periodic solutions of [7] are the
critical points of the action functional

f ðuÞ ¼
Z T

0

ku0ðtÞk2

2
� VðuðtÞÞ þ hðtÞuðtÞ

" #
dt

on the Hilbert space H1
T obtained by completion of

the space of T-periodic C1 functions for the norm
associated with the inner product

hu; vi :¼
Z T

0

uðtÞ � vðtÞ dt þ
Z T

0

u0ðtÞ � v0ðtÞ dt

It follows easily from condition �h = 0 that f is bounded
from below and that f (uþ 2�ej) = f (u) for all u 2 H1

T ,
with ej the jth unit vector in Rn(1 � j � n). Conse-
quently, we can see f as defined on the Riemannian

manifold Tn � fH1
T , where fH1

T = {u 2 H1
T : �u = 0}. It is

easy to show that cat(Tn � fH1
T) = cat(Tn) = nþ 1 and

that f satisfies Palais–Smale condition on Tn � fH1
T .

Consequently, system [7] has at least nþ 1 geometri-
cally distinct T-periodic solutions. The same result
holds for the more general systems

Mu00 þ Au þ rFðuÞ ¼ hðtÞ

occurring in the theory of multipoint Josephson
junctions or in space discretizations of the
sine-Gordon equation. In particular, the classical
forced pendulum equation

u00 þ a sin u ¼ hðtÞ

has at least two geometrically distinct T-periodic
solutions when h is T-periodic and �h = 0, a result
first proved, in a different way, by Mawhin and
Willem.

Another way to study nonlinear eigenvalue pro-
blems of the form

f 0ðuÞ ¼ �g0ðuÞ

in a Hilbert or a suitable reflexive Banach space X
is based upon a Rayleigh–Ritz approximation
through a sequence of finite-dimensional problems,
where the classical theory is applied. Conditions
upon f , g 2 C1(X, R) are given, generalizing
Ljusternik–Schnirelman’s ones, which ensure the
existence of infinitely many solutions. Again, some
compactness is needed to justify the limit process,
and expressed by some assumptions upon f and g
too lengthy to be reproduced here. The following
application is exemplary. Let � � RN be a bounded
domain and X = W1, p

0 (�), p > 1, be the Sobolev
space of functions u : � ! R obtained as the comple-
tion of the smooth functions with compact support
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in � for the norm kuk1, p = (
R

� kru (x)kp dx)1=p.
Define the functionals f and g on W1, p

0 (�) by

f ðuÞ ¼
Z

�

kruðxÞkpdx; gðuÞ ¼
Z

�

juðxÞjpdx

The critical points of f on {u 2 X : g(u) = 1} corre-
spond to the nontrivial solutions of the Dirichlet
eigenvalue problem

�pu ¼ �jujp�2u in �; u ¼ 0 on @� ½8�

for the p-Laplacian operator �p defined by

�puðxÞ :¼r � kruðxÞkp�2ruðxÞ
� �

which occurs in the modelization of various
problems in a porous medium. An eigenvalue is
any � 2 R such that problem [8] has a nontrivial
solution. The Ljusternik–Schnirelman technique
implies the existence of a sequence of eigenvalues
going to infinity, with the usual minimax character-
ization. When N = 1, direct computations show that
this sequence gives all eigenvalues, but the problem
remains open for N 	 2. The corresponding forced
problem

�pu� �jujp�2u ¼ hðxÞ in �; u ¼ 0 on @�

is always solvable (although not uniquely) when � is
not an eigenvalue, but solvability conditions at the
higher eigenvalues (Fredholm alternative) remain
almost terra incognita.
Index Theories and Critical Points
of Symmetric Functionals on
a Banach Space

Closely related to the Ljusternik–Schnirelman category
is the concept of index associated to the action of a
compact topological group G on a normed space X,
that is, to a continuous map G�X ! X, [g, u] 7! gu
such that 1 � u = u, (gh)u = g(hu), u 7! gu is linear.
The action is isometric if kguk= kuk, A � X
is invariant if gA = A for all g 2 G, f : X ! R is
invariant if f 
 g = f for all g 2 G, and h : X ! X
is equivariant if g 
 h = h 
 g for each g 2 G. Let
Fix G = {u 2 X : gu = u for all g 2 G}. The aim of an
index is to measure the size of invariant sets.
Explicitly, an index theory associates to each closed
invariant subset A of X a non-negative (possibly
infinite) integer G-ind(A), its G-index, such that

1. G-ind(A) = 0 if and only if A = ;;
2. if R : A ! B is equivariant and continuous,

G-ind(A) � G-ind(B);
3. G-ind(A [ B) � G-ind(A)þG-ind(B); and
4. if A is compact, there is a closed invariant
neighborhood U of A such that G-ind(U) =
G-ind(A).

A first example of index is Krasnosel’skii’s genus
or Z2-index which corresponds to the action
0 � u = u, 1 � u = �u of G = Z2. The invariant sets
are the ones symmetric with respect to the origin
and Z2-ind(A) is defined by Z2-ind(;) = 0 and, for
A 6¼ ;, as the smallest integer k such that there
exists an odd h 2 C(A, Rk n {0}). A consequence of
the Borsuk–Ulam theorem in algebraic topology is
that any symmetric bounded neighborhood of the
origin in Rn has Z2-index equal to n. Furthermore,
for a compact A � Rn n {0} symmetric with respect
to the origin, and eA = A=Z2 (A with antipodal
points identified), one has Z2-ind(A) = catRnn{0}(eA).

A second example, the S1-index, is important in
the study of periodic solutions of autonomous
Hamiltonian systems. S1-ind(;) = 0 and for a non-
empty closed invariant A � X, S1-ind(A) is defined
as the smallest integer k such that there exists a
positive integer n and h 2 C(A, Ck n {0})
with h 
 g = gn 
 h for all g 2 S1. A Borsuk–
Ulam-type theorem for S1-equivariant mappings
implies that if Z is a finite-dimensional invariant
subspace of X such that Fix S1 \ Z = {0} and D is
an open bounded invariant neighborhood of 0 in Z,
then S1-ind(@D) = (1=2)dim Z.

As the category of a Banach space X = 1, the
classical Ljusternik–Schnirelman approach does not
provide any information about the multiplicity of
the unconstrained critical points of f 2 C1(X, R). If f
is invariant under the action on X of a compact
group G and satisfies Palais–Smale condition, a
Ljusternik–Schnirelman minimax method associated
to a G-index provides multiplicity results for
unconstrained critical points. Letting

Aj ¼ fA � X : A is compact, invariant,

and G-indðAÞ 	 jg
cj ¼ inf

A2Aj

sup
A

f ðj ¼ 1; 2; . . .Þ

one shows as in classical Ljusternik–Schnirelman
theory that if c := cj = cjþ1 = � � � = cjþq for some j
and some q 	 0, then G-ind(Kc) 	 qþ 1. The proof
uses an equivariant deformation lemma.
Z2- and S1-Invariant Functionals

In the case of the Z2-action, the following multiplicity
result holds for possibly unbounded even f 2 C1(X, R)
satisfying the Palais–Smale condition and having the
mountain pass geometry: if Y \ {u 2 X : f (u) 	 0} is
bounded for each finite-dimensional subspace Y of X,
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f (0) = 0, and f (u) 	 a > 0 on @B(r), then f has
infinitely many couples of critical points. As an
application, the semilinear Dirichlet problem

�uþ �uþ jujp�1u ¼ 0 in �

u ¼ 0 on @�
½9�

has infinitely many solutions when � � RN is
bounded, 1 < p < (N þ 2)=(N � 2), and � < �1, the
smallest eigenvalue of �� with Dirichlet boundary
conditions. The corresponding energy functional,
defined on W1, 2

0 (�) by

f ðuÞ ¼
Z

�

kruðxÞk2

2
� � juðxÞj

2

2
� juðxÞj

pþ1

pþ 1

" #
dx

satisfies the Palais–Smale condition. This condition
fails in the critical case where p = (N þ 2)=(N � 2), at
least at some levels c, and this lack of compactness
creates both difficulties and interesting phenomena.
This situation, which occurs in many important
problems of geometry and physics (harmonic maps,
Yang–Mills connections, Yamabe problem, equations
of constant mean curvature, closed geodesics pro-
blems, etc.), reveals indeed, in physical terms, ‘‘phase
transitions’’ or ‘‘particle creations’’ at the levels where
the Palais–Smale condition fails. In the special case of
eqn [9] with p = (N þ 2)=(N � 2), if N 	 4, a positive
solution exists when � 2 [0,�1], and, if N = 3, the
same is true for � 2 [��,�1] and some �� 2 [0,�1],
with the optimal value ��=�1=4 when � is a ball. For
N 	 4, [9] has at least cat(�) nontrivial solutions
when � 2 [0,���] for some ��� < �1. Such a lack of
compactness, which can also occur for eqn [9] in RN

(nonlinear Schrödinger equation), is associated to the
invariance of f with respect to the action of some
noncompact group, coming, for example, from scale or
gauge invariance. P L Lions’ concentration–compact-
ness method is useful to analyze those problems.

The following multiplicity theorem holds for an
S1-invariant f 2 C1(X, R) satisfying Palais–Smale
condition. Let Fix(S1) = {0} and Z be a closed
invariant vector subspace of X of positive finite
dimension. If f is bounded from below, f (u) � c < 0
whenever u 2 Z and kuk= r, and f (0) 	 0 for u 2
Fix(S1) \ (f 0)�1(0), then f has at least dim Z=2
distinct S1-orbits of critical points of f with critical
values less or equal to c. This abstract theorem
provides multiplicity results for the periodic solu-
tions (closed orbits) of autonomous Hamiltonian
systems in R2n

Ju0 þ rHðuÞ ¼ 0 ½10�

where J is the symplectic matrix, H 2 C1(R2n, R),
and c 2 R is such rH(u) 6¼ 0 for u 2 H�1(c). If
H�1(c) bounds a strictly convex compact set C such
that B[r] � C � B[R] for some 0 < r < R <

ffiffiffi
2
p

r,
then [10] has at least n closed orbits on H�1(c). The
problem is reduced to finding the critical points of a
suitable dual action functional acting on some space
X of 2�-periodic functions having mean value zero.
The S1-action on X is defined by time translations
[� , u] 7! u� = u( � þ�) for all �= ei� 2 S1. One takes,
in the abstract result above, Z = {(cos t)eþ
(sin t) Je : e 2 R2n}, so that dim Z = 2n. The complete
proof is quite involved, and, although some
improvements of Ekeland–Lasry conditions have
been obtained, the problem remains open to know
if some pinching condition of the energy surface
between spheres or ellipsoids is necessary.
Some Extensions

When dealing with unbounded functionals, it may
be convenient to replace the Ljusternik–Schnirelman
category catX(A) by a relative category catX, Y(A)
with respect to a closed subset Y where, in the
covering of A occurring in the classical definition, a
set A0 � Y is added, which is continuously deform-
able in X into a subset of Y in such a way that
points of Y remain in Y during the deformation.
Clearly catX, ;(A) = catX(A). This allows us to prove,
under some restrictions on the coefficients and the
period, the existence of at least four periodic
solutions for the double pendulum with periodic
forcing of mean value zero. The classical Ljusternik–
Schnirelman category gives at least three periodic
solutions without restrictions, and the question of
their necessity to obtain four solutions is open.

The relative category also gives a simpler proof of
Conley–Zehnder’s version of the Arnol’d conjecture
(the existence of at least 2nþ 1 geometrically distinct
1-periodic solutions for the Hamiltonian system

Ju0 þ rHðt; uÞ ¼ 0

with H 1-periodic in each variable), under minimal
regularity assumptions upon H. The general con-
jecture, namely that the minimum number of fixed
points of all Hamiltonian symplectomorphisms of a
closed symplectic manifold M is larger than the
minimum number of critical points of smooth
functions f on M, remains open.

In another direction, a Ljusternik–Schnirelman
theory for functionals defined on closed convex sets
of a Banach space has been developed, which is
specially well suited for the study of the Plateau
problem for minimal surfaces, for surfaces of
constant mean curvature, as well as for variational
inequalities.
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See also: Bifurcations of Periodic Orbits; Compact
Groups and Their Representations; Floer Homology;
Ginzburg–Landau Equation; Inequalities in Sobolev Spaces;
Minimal Submanifolds; Minimax Principle in the Calculus
of Variations; Saddle Point Problems; Sine-Gordon
Equation; Spectral Theory for Linear Operators.
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Introduction

Discrete Schrödinger operators with quasiperiodic
potentials are operators acting on ‘2(Zd) and defined
by

H� ¼ �þ �V ½1�

where � is the lattice tight-binding Laplacian

�ðn;mÞ ¼ 1; dist ðn;mÞ ¼ 1
0; otherwise

�
and V(n, m) = Vn�(n, m) is a potential given by
Vn = f (Tn1

1 � � �T
nd

d �), � 2 Tb, where Ti�= �þ !i, and
! is an incommensurate vector. In certain cases �
may also be replaced by a long-range Laplacian
L(n, m) = L(n�m) with L(n)! 0 sufficiently fast.
The questions of interest in the study of quasiper-
iodic and other ergodic operators are the nature and
structure of the spectrum, behavior of the eigenfunc-
tions, and the quantum dynamics: properties of the
time evolution �t = eitH�0 of an initially localized
wave packet �0.

Of particular importance is the phenomenon of
Anderson localization which is usually referred to
the property of having pure point spectrum with
exponentially decaying eigenfunctions. A stronger
property of dynamical localization (see the section
‘‘Dynamical localization’’) indicates the insulator
behavior, while ballistic transport, which for d = 1
follows from the absolutely continuous spectrum,
indicates the metallic behavior.

Operators with ergodic potentials always have
spectra (and pure point spectra, understood as closures
of the set of eigenvalues) constant for a.c. realization of
the potential. The individual eigenvalues however
depend very sensitively on the phase. Moreover, the
pure point spectrum of operators with ergodic
potentials never contains isolated eigenvalues, so pure
point spectrum in such models is dense in a certain
closed set. An easy example of an operator with dense
pure point spectrum is H1 which is operator [1] with
��1 = 0, or pure diagonal. It has a complete set of
eigenfunctions, characteristic functions of lattice
points, with eigenvalues Vj. H� may be viewed as a
perturbation of H1 for small ��1. However, since Vj

are dense, small denominators (Vi � Vj)
�1 make any



perturbation theory difficult, for example, requiring
intricate KAM-type schemes.

Various methods developed for the Anderson
model (where Vn are i.i.d.r.v.’s) such as Fröhlich–
Spencer multiscale analysis and its enhancements, or
Aizenman–Molchanov method, do not work for
quasiperiodic potentials as, among other reasons,
quasiperiodicity does not allow for nice perturba-
tions. The situation here is more difficult and the
theory is far less developed than for the random
case. With a few exceptions, the results are confined
to the one-dimensional setting, and also the case of
one frequency (b = 1) has been much better under-
stood than that of higher frequencies.

One might expect that H� with � small can be
treated as a perturbation of H0 = �, and therefore
have absolutely continuous spectrum. It is not the
case though for random potentials in d = 1, where
Anderson localization holds for all �. The same is
expected for random potentials in d = 2 (but not
higher). Moreover, in one-dimensional case, there
is strong evidence (numerical, analytical, as well as
rigorous) that even models with very mild stochas-
ticity in the underlying dynamics (and sufficiently
nice sampling functions) have point spectrum for
all values of �, like in the random case (e.g.,
Vn =�f (n��þ �), for any �> 1). At the same time,
for quasiperiodic potentials, one can in many cases
show absolutely continuous spectrum for � small
as well as pure point spectrum for � large (see
below), and therefore there is a metal–insulator
transition in the coupling constant. It is an
interesting question whether quasiperiodic poten-
tials are the only ones with metal–insulator
transition in 1D.

Perturbative and Nonperturbative
Approaches

It is probably fair to say that much of the theory of
qusiperiodic operators has been first developed
around the almost-Mathieu operator, which is

H�;!;� ¼ �þ �f ð�þ n!Þ ½2�

acting on ‘2(Z), with f : T!T; f (�) = cos (2��).
Several KAM-type approaches, starting with the
pioneering work of Dinaburg–Sinai in 1975, were
developed, in 1980s and 1990s, for this or similar
models in both large and small coupling regimes. Of
those, the most robust and detailed is the reduci-
bility result of Eliasson (1998) that settled the case
of small couplings for sufficiently regular potentials.

The common feature of those perturbative
approaches is that, besides all of them being rather

intricate multistep procedures, they rely extensively
on eigenvalue and eigenfunction parametrization
and perturbation arguments.

The common feature of the perturbative results in
the quasiperiodic setting is that they typically provide
no explicit estimates on how large (or small) the
parameter � should be, and, more importantly, �
clearly depends on ! at least through the constants in
the Diophantine characterization of !.

In contrast, the nonperturbative results allow
effective (in many cases even optimal) and, most
importantly, independent of !, estimates on �. The
latter property (uniform in ! estimates on �) has been
often taken as a definition of a nonperturbative result.

Recently developed nonperturbative methods are
also quite different from the perturbative ones in that
they do not employ multiscale schemes: usually only
a few (from one to three) sufficiently large scales are
involved, do not use the eigenvalue parametrization,
and rely instead on direct estimates of the Green’s
function. They are also significantly less involved,
technically. One may think that in these latter
respects they resemble the Aizenman–Molchanov
method for random localization. It is, however, a
superficial similarity, as, on the technical side, they
are still closer to and do borrow certain ideas from
the multiscale analysis proofs of localization.

Lyapunov Exponents

Here for simplicity we consider the quasiperiodic
case, although the definition of the Lyapunov
exponents and some of the mentioned facts apply
more generally to the one-dimensional ergodic case.

Let d = 1. For an energy E 2 R the Lyapunov
exponent �(E) is defined as

�ðEÞ ¼ lim
n!1

R 1
0 ln kMkð�;EÞkd �

k
½3�

where

Mkð�;EÞ ¼
Y0

n¼k�1

E� �f ð!nþ �Þ �1
1 0

� �

is the k-step transfer matrix for the eigenvalue
equation H� = E�.

In physics literature, positivity of the Lyapunov
exponent is often taken as an implicit definition of
localization, as Lyapunov exponent is often called
the inverse localization length. Thus, we will be
interested in the regime when Lyapunov exponents
are positive for all energies in a certain interval
intersecting the spectrum. If this condition holds for
all E 2 R, there is no absolutely continuous
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component in the spectrum for all �. Positivity of
Lyapunov exponents, however, does not imply
localization or exponential decay of eigenfunctions
(in particular, neither for the Liouville ! nor for the
resonant � 2 Tb).

Nonperturbative methods, at least in their original
form, stem to a large extent from estimates invol-
ving the Lyapunov exponents and exploiting their
positivity.

The general theme of the results on positivity of
�(E), as suggested by perturbation arguments, is that
the Lyapunov exponents are positive for large �.
This subject has had a rich history. The strongest
result in this general context up to date is the
following theorem (Bourgain 2003):

Theorem 1 Let f be a nonconstant real-analytic
function on Tb, and H given by [1]. then, for
�>�(f ), we have �(E)> (1=2) ln� for all E and all
incommensurate vectors !.

Corollaries of Positive Lyapunov Exponents

The almost-Mathieu operator On one hand the
almost-Mathieu operator, while simple looking,
seems to represent most of the nontrivial properties
expected to be encountered in the more general case.
On the other hand it has a very special feature: the
duality (essentially a Fourier) transform maps H� to
H4=�; hence �= 2 is the self-dual point. Aubry and
Andre in 1980, conjectured that for this model, for
irrational ! a sharp metal–insulator transition in the
coupling constant � occurs at the critical value of
coupling �= 2: the spectrum is pure point for �> 2
and purely absolutely continuous for � < 2. This
conjecture was modified based on later discoveries
of singular-continuous spectrum in this context for
frequencies or phases with certain arithmetic proper-
ties. The modified conjecture stated pure point
spectrum for Diophantine ! and a.e. � for �> 2
and pure absolutely continuous spectrum for � < 2
for all !,�. The spectrum at �= 2 is singular
continuous for all ! and a.e. �(this follows from a
combination of works by Gordon, Jitomirskaya,
Last, Simon Avila, and Krikoryan).

As with the KAM methods, the almost-Mathieu
operator was the first model where the positivity of
Lyapunov exponents was effectively exploited
(Jitomirskaya 1999):

Theorem 2 Suppose! is Diophantine and �(E,!)> 0
for all E 2 [E1, E2]. Then the almost-Mathieu operator
has Anderson localization in [E1, E2] for a.e. �.

The condition on � can be made explicit (arithmetic)
and close to optimal. This, combined with the

mentioned results on the Lyapunov exponents,
critical value �= 2, and duality, gives the following
description in the Diophantine case:

Corollary 3 The almost-Mathieu operator H!, �, �

has

1� for �> 2, Diophantine ! 2 R and almost every
� 2 R, only pure point spectrum with exponen-
tially decaying eigenfunctions.

2� for �= 2, all ! 62 Q, and a.e. � 2 R purely
singular-continuous spectrum.

3� for � < 2, Diophantine ! 2 R and a.e. � 2 R,
purely absolutely continuous spectrum.

Precise arithmetic descriptions of !, � are available.
Thus, the Aubry–Andre conjecture is settled at
least for almost all !, �. One should mention,
however, that while 1� can be made optimal by
existing methods, both 2� and 3� are expected to
hold for all � and all ! 62 Q, and such extension
remains a challenging problem (see Simon (2000)).

The method in the above work, while so far the
only nonperturbative method available allowing
precise arithmetic conditions, uses some specific
properties of the cosine. It extends to certain other
situations, for example, quasiperiodic operators
arising from Bloch electrons in a perpendicular
magnetic field, where the lattice is triangular or
has next-nearest-neighbor interactions. However, it
does not extend easily to the multifrequency or even
general analytic potentials. A much more robust
method was developed by Bourgain–Goldstein
(2000), which allowed them to extend (a measure-
theoretic version of) the above localization result to
the general real analytic as well as the multi-
frequency case. Note that essentially no results
were previously available for the multifrequency
case, even perturbative.

Theorem 4 Let f be nonconstant real analytic on
Tb and H given by [2]. Suppose �(E,!)> 0 for
all E 2 [E1, E2] and a.e. ! 2 Tb. Then for any �,
H has Anderson localization in [E1, E2] for a.e. !.

Combining this with Theorem 1, Bourgain (2003)
obtained that for �>�(f ), H as above satisfies
Anderson localization for a.e. !. Those results were
recently extended by S Klein to potentials belonging
to certain Gevrey classes. One very important
ingredient of this method is the theory of semialge-
braic sets that allows one to obtain polynomial
algebraic complexity bounds for certain ‘‘excep-
tional’’ sets. Combined with measure estimates
coming from the large deviation analysis of
(1=n) ln kMn(�)k (using subharmonic function theory
and involving approximate Lyapunov exponents),
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this theory provides necessary information on the
geometric structure of those exceptional sets. Such
algebraic complexity bounds also exist for the
almost-Mathieu operator and are actually sharp
albeit trivial in this case due to the specific nature
of the cosine.

Further corollaries of positive Lyapunov expo-
nents for analytic sampling functions f and b = 1
include Hölder regularity of the integrated density
of states, zero-dimensionality of spectral measures
for all !, �, almost Lipshitz continuity of spectral
gaps, continuity of measure of the spectrum (in
frequency), and vanishing of lower transport
exponents for all !, �. Some weaker statements are
available for b> 1 or f belonging to certain Gevrey
classes.

Without Lyapunov Exponents

While having led to significant advances, Lyapunov
exponents have obvious limitations, as any method
based on them is restricted to one-dimensional
nearest-neighbor Laplacians. It turns out that the
above methods can be extended to obtain nonper-
turbative results in certain quasi-one-dimensional
situations where Lyapunov exponents do not exist.
For example, nonperturbative localization results
extend to the strip (of arbitrary dimension).

The following nonperturbative theorem deals with
the case of small coupling:

Theorem 5 Let H be an operator [2], where f is
real analytic on T and ! is Diophantine. then, for
� < �(f ), H has purely absolutely continuous spec-
trum for a.e. �.

We note that an analog of this theorem does not
hold in the multifrequency case (see next section).
The results of this type are obtained by a method
(developed by Bourgain and Jitomirskaya in
2000–02) that studies large deviations for the
quantities of the form (1=n) ln j det (H � E)�j and
path-determinant expansion for the matrix elements
of the resolvent. Those techniques apply also to
certain other situations with long-range Laplacians,
for example, the kicked-rotor model. Theorem 5 is a
result on nonperturbative localization in disguise as
it was obtained using duality from a localization
theorem for a dual model which has in general a
long-range Laplacian and a cosine potential, and
was in turn obtained by an extension of the method
of Jitomirskaya (1999). A certain measure-theoretic
version of it allowing nonlocal Laplacians but
leading only to continuous spectrum is also available
(see Bourgain (2004)).

Multidimensional Case: d > 1

As mentioned above, there are very few results in
the multidimensional lattice case (d> 1). Essentially,
the only result that existed before the recent
developments was a perturbative theorem – an
extension by Chulaevsky–Dinaburg of Sinai’s
method to the case of operator [1] on ‘2(Zd) with
Vn =�f (n � !),! 2 Rd, where f is a cos-type function
on T. This also holds nonperturbatively for any real-
analytic f (see Bourgain (2004)). Note that since
b = 1, this avoids most serious difficulties and is
therefore significantly simpler than the general
multidimensional case. We therefore have:

Theorem 6 For any 	> 0 there is �(f , 	), and, for
�>�(f ,	), �(�, f ) � Td with mes(�) < 	, so that for
!=2�, operator [1] with Vn as above has Anderson
localization.

This should be confronted with the following
theorem of Bourgain:

Theorem 7 Let d = 2 and f (�) = cos 2�� in H = H!

defined as above. Then for any � measure of ! s.t.
H! has some continuous spectrum is positive.

Therefore, for large � there will be both ! with
complete localization as well as those with at least
some continuous spectrum. This shows that non-
perturbative results do not hold in general in the
multidimensional case! Perturbative results, how-
ever, had been obtained, see next section.

A similar (in fact, dual) situation is observed for
one-dimensional multifrequency (d = 1; b> 1) case
at small disorder. One has, by duality:

Theorem 8 Let H be given by [2] with �,! 2 Tb

and f real analytic on Tb. Then for any 	> 0 there is
�(f , 	) s.t. for � < �(f , 	) there is �(�, f ) � Tb with
mes(�) < 	 so that for !=2�, H has purely abso-
lutely continuous spectrum.

And also

Theorem 9 Let d = 1, b = 2 and f be a trigonometric
polynomial on T2 with a nondegenerate maximum.
Then for any �, measure of ! s.t. H! has some point
spectrum, dense in a set of positive measure, is positive.

Therefore, unlike the b = 1 case (see Theorem 5),
nonperturbative results do not hold for absolutely
continuous spectrum at small disorder.

Perturbative Localization by
Nonperturbative Methods

While the above demonstrates the limitations of
the nonperturbative results, the nonperturbative
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methods have been applied to significantly simplify
the proofs and obtain new perturbative results that
previously had been completely beyond reach.

Many such applications, that are outside the scope of
this article, are described in Bourgain (2004). In
particular, new results on the construction of quasiper-
iodic solutions in Melnikov problems and nonlinear
PDEs, obtained by using certain ideas developed for
nonperturbative quasiperiodic localization (e.g., the
theory of semialgebraic sets), are presented there.
Other results in this group contain localization for the
skew-shift model by Bourgain–Goldstein–Schlag, almost
periodicity for the quantum kicked-rotor model by
Bourgain and Bourgain–Jitomirskaya, and localization
for potentials in higher Gevrey classes by S Klein.

The main goal in a nonperturbative method is to
obtain exponential off-diagonal decay for the matrix
elements of the Green’s function of box-restricted
operators along with subexponential bounds on the
distance from the spectrum of such box restrictions
to a given energy. From that result one can obtain
localization through elimination of energy via an
argument involving complexity bounds on semialge-
braic sets (see Bourgain (2004)).

A nonperturbative way to achieve the desired
Green’s function estimates uses Cramer’s rule to
represent the matrix elements of the resolvent. Then,
in the one-dimensional (in space) case it is often
possible to obtain the estimates from the positivity of
Lyapunov exponents: uniformly for the numerator,
and from large deviation bounds for the subharmonic
functions for the denominator. This is done in one
step for a sufficiently large scale (see the subsection
‘‘Corollaries of positive Lyapunov exponents’’)

A perturbative way consists of establishing the
desired estimates in a multiscale scheme: namely, the
estimates are proved outside a set of parameters of
(subexponentially) decaying (in the size of the box)
measure. Moreover, this set should be shown to have
a semialgebraic description, in order to make possible
sublinear upper bounds on the number of times a
trajectory of a given phase (under the underlying
rotation or other ergodic transformation of the torus)
hits the ‘‘forbidden’’ set. This, plus certain subhar-
monic function arguments, allows passage to a larger
scale through a repeated use of the resolvent identity.

An application that is most relevant to the current
article is localization for a ‘‘true’’ d> 1 situation.
The best currently available result is the following
very recent theorem (Bourgain 2005):

Theorem 10 Let d = b and let f be real analytic on
Td such that for all i = 1, . . . , d and (�1, . . . , �i�1,
�iþ1, . . . , �d) 2 Td�1, the map

�i 7! vð�1; . . . ; �i; . . . ; �dÞ

is a nonconstant function of �i 2 T. Then for any
	> 0 there is �(f , 	) s.t. for �>�(f , 	) there is
�(�, f ) � Td with mes(�) < 	 so that for !=2�
operator [1] with Vn =�f (n1!1, n2!2) has Anderson
(and dynamical) localization.

This result was obtained previously, for d = 2
only, by Bourgain, Goldstein, and Schlag. There
were some serious purely arithmetic difficulties that
prevented an extension of this result to higher
dimensions. In the previous results on localization
there were two major steps: estimations on the
Green’s function for fixed energy and elimination of
energy. The main difficulty in the multidimensional
case lies in establishing the sublinear bound
described above, that enters in the first step. It is
for this bound that an arithmetic condition on ! was
needed. The condition used was to guarantee that
the number of (n1, n2) 2 [1, N]2 such that (n1!1,
n2!2)(mod Z2) 2 S is bounded from above by N� for
some � < 1, uniformly for all semialgebraic sets S of
degree D, with D0=D = o(1=N) and with the
measure of all horizontal and vertical sections Sx

satisfying log mesSx = o( log 1=N). This condition
roughly means that too many points close to an
algebraic curve of a bounded degree would force it
to oscillate more than it should. Such a statement is
essentially two dimensional and not extendable to
d � 3. In Theorem 10, Bourgain circumvents it by
using from the beginning the theory of semialgebraic
sets to eliminate energy and the translation variable
to get conditions on ! (that depend on the potential)
already in the first step.

Dynamical Localization

Anderson localization does not in itself guarantee
absence of quantum transport, or nonspread of an
initially localized wave packet, as characterized, for
example, by boundedness in time of moments of the
position operator. This was first observed in del Rio
et al. (1996), where a rather artificial example of
coexistence of exponential localization and quantum
transport was constructed. However, such phenom-
ena also happen in models of interest to physicists
such as the random dimer model. Considering for
simplicity the second moment

hx2iT ¼
1

T

Z T

0

X
n

j�tðnÞj2n2 dt

we will say that H exhibits dynamical localization
if hx2iT < const. We will say that the family
{H�}�2Tb exhibits strong dynamical localization ifR

Tb d� supthx2it < const. We note that the results
mentioned below will hold with more restrictive
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definitions of dynamical localization (involving the
higher moments of the position operator) as well.
Dynamical localization implies pure point spectrum
by RAGE theorem so it is a strictly stronger notion.

It turns out that nonperturbative methods allow
for such dynamical upgrades as well. For the almost-
Mathieu operator, strong dynamical localization
holds throughout the regime of localization. It was
shown by Bourgain and Jitomirskaya that in
Theorems 4 and 6 as well as some other localization
results, dynamical localization also holds (see
Bourgain (2004)). However, methods that require
elimination of certain frequencies based on implicit
conditions currently do not provide sufficient infor-
mation to obtain strong (i.e., averaged) dynamical
localization, like what was done in the almost-
Mathieu case.

Quasiperiodic Localization and Cantor
Spectrum

A remarkable feature of quasiperiodic operators
with b = d = 1 is their tendency to have Cantor
spectrum. In particular, it was conjectured that all
almost-Mathieu operators (for all nonzero couplings
and all irrational frequencies) have Cantor spec-
trum. This conjecture became known as the Ten
Martini problem. In a significant recent develop-
ment (Puig 2004), it was shown that for Diophan-
tine frequencies Cantor structure of the spectrum
follows from localization for phase �= 0, with
corresponding eigenvalues being the boundaries of
noncollapsed gaps. The key idea here is that for
energies dual to eigenvalues of H0, corresponding to
localized eigenfunctions, the rotation number of the
transfer-matrix cocycle is of the form k!(modZ),
thus they are the ends of the gaps (possibly
collapsed). However, a collapsed gap in this case
would correspond to reducibility of the system to
the identity which can be shown to contradict the
simplicity of pure point spectrum for the dual
model. Since those energies form a dense subset of
the spectrum the result follows. The same idea
works, thus establishing Cantor spectrum, for
potentials that are generic in certain sense. Localiza-
tion also played an important role in the final proof

of the Ten Martini conjecture, for all irrationals
(Avila and Jitomirskaya 2005). It can be shown that
proving localization for a large set of phases allows
one to conclude reducibility of the transfer-matrix
cocycle for the dual model, for a large set of
energies, and this in turn can be shown to contradict
the presence of an interval in the spectrum.
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C Rovelli, Université de la Méditerranée et Centre de
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Introduction

Loop quantum gravity (LQG) is a mathematical
formalism that defines a tentative quantum theory
of spacetime. Equally, the formalism provides a
description of the gravitational field in regimes in
which its quantum properties cannot be neglected.
The distinctive feature of LQG is to be a quantum
field theory consistent with general relativity.

According to general relativity, the physical fields
that form the world do not live on a background
spacetime. Rather, these fields make up spacetime
themselves (‘‘background independence’’). Accord-
ingly, the quanta of a quantum field theory compatible
with this principle – the s-knots described below – do
not live on a background spacetime: rather, they
themselves form physical spacetime.

This physical idea is realized in the formalism by
the gauge invariance under active diffeomorphisms
of the manifold on which the fields are originally
defined (‘‘diffeomorphism invariance’’). Such gauge
invariance renders the localization of the field’s
excitations on the manifold physically irrelevant.

LQG implements these physical motivations by
merging two traditional lines of thinking in theoretical
physics. The first is the long-standing idea that gauge
fields are naturally understood in terms of variables
associated to lines (holonomies of the gauge connec-
tion, Wilson loops, Faraday lines, . . .). This idea can be
traced to Faraday’s initial intuition that gave birth to
modern field theory: physical fields are real entities
formed by lines. The second is the background-
independent canonical or covariant quantization of
general relativity developed by following the ideas of
Wheeler, DeWitt, and Hawking. Each of these two
lines of research has encountered serious obstructions,
but the two turn out to solve each others’ difficulties:
the formulation in terms of holonomies renders the old
ill-defined background-independent quantum gravity
well defined; conversely, background independence
cures the divergences associated to the Wilson loop
basis.

The formalism of LQG can be separated into two
parts. A kinematics, describing the quantum proper-
ties of space, and a dynamics, describing its
evolution. Here we outline the LQG kinematics,
and we give only the main result of the LQG
dynamics.
LQG can be extended to include standard matter
couplings such as fermions and Yang–Mills fields. It
finds numerous applications, for instance, in early
cosmology, astrophysics and black hole thermo-
dynamics (see Black Hole Mechanics, Quantum
Cosmology).

So far no empirical evidence supports the physical
correctness of this – nor of any other – tentative
theory of quantum gravity.
General Relativity in Canonical Form

Classical general relativity is the field theory
describing the gravitational field and the structure
of physical spacetime. It is a well-established
physical theory, strongly supported empirically.

In its Riemannian version, the theory can be
written in canonical form in terms of two fields on a
three-dimensional (3D) manifold � with coordinates
xa(a = 1, 2, 3): a 2-form E = Ea�abc dxa dxb, called the
‘‘triad field’’ and a 1-form A = Aa dxa, called the
‘‘gravitational connection’’ (�abc is the totally anti-
symmetric tensor density). Both take values in the
su(2) algebra, and they satisfy the three ‘‘constraint’’
equations

G ¼ DaEa ¼ 0 ½1�

Ca ¼ tr½FabEa� ¼ 0 ½2�

C ¼ tr½FabEaEb� ¼ 0 ½3�

Da is the SU(2) covariant derivative defined by the
connection A, Fab is the SU(2) curvature of A, and
the trace is on su(2).

E and A are canonically conjugate: their Poisson
brackets are {Ea(x), Ab(y)} = 8�Gc�3�a

b�
3(x, y); where

G is the Newton constant, c is the speed of light, �a
b is

the Kronecker delta, and �3(x, y) is the Dirac-delta on
�, which is a scalar density in x. The Poisson brackets
of G with the fields define their SU(2) gauge
transformations: E transforms in the adjoint repre-
sentation and A transforms as a connection. The
Poisson brackets of Ca (more precisely, of an
appropriate linear combination of Ca and G) with
the fields determine their transformation under a
diffeomorphism of �: E transforms as a 2-form and A
as a 1-form. The Poisson brackets of C with the fields
generate their coordinate time evolution. If the t
derivatives of the fields E(xa, t) and A(xa, t) are
given by their Poisson brackets with (the 3D integral
of) C, then (assuming that the determinant
E =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det tr[EaEb]

p
does not vanish) the metric field
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g00 = 1, ga0 = 0, gab = tr[EaEb]=E is a general solution
of the Riemannian Einstein equations in a fixed gauge.

The physical Lorentzian theory can be obtained in
this formalism in two ways. Either by adding an
appropriate term to eqn [3], or by taking A in
sl(2,C) and satisfying a suitable reality condition.
(For more details, see Canonical General Relativity.)
Spin Network and s-Knot States

LQG can be defined as a Schrödinger quantization
of the canonical formalism described above. The
space of the quantum states is defined as a Hilbert
space K of Schrödinger wave functionals �[A] of the
gravitational connection. The nontrivial aspect of
this construction is the definition of a scalar product
invariant under the two kinematical gauge invar-
iances of the theory: the local SU(2) and the
diffeomorphisms transformations generated by the
constraints [1] and [2]. The state space K is defined
as follows (see Quantum Geometry and its Applica-
tions for an essentially equivalent construction).

Given an su(2) connection A and an oriented path
� : s 2 [0, 1]! xa(s) 2 �, recall that the ‘‘holonomy’’
U[A, �] of A along � is the element of SU(2) defined by

d

ds
U½A; ��ðsÞ þ _�aðsÞAað�ðsÞÞU½A; ��ðsÞ ¼ 0 ½4�

U½A; ��ð0Þ ¼ 1; U½A; �� ¼ U½A; ��ð1Þ ½5�

where _�a(s) � dxa(s)=ds is the tangent to the path.
The solution of this equation is usually written in
the form

U½A; �� ¼ Pe

R
�

A ½6�

where the path ordered P is understood as acting on
the power series expansion of the exponential.

Let A be the space of the smooth connections A on
�. (For technical reasons, it is convenient to consider
smooth fields A defined everywhere in � except at
most at a finite number of points, and the group
Diff � of the ‘‘extended diffeomorphisms’’ defined by
the continuous invertible maps � : �! � that are
smooth everywhere in � except at most at a finite
number of points.) A graph � is an ordered collection
of smooth oriented paths, �l, denoted as links, with
l = 1, . . . , L, where the links overlap only at their
endpoints, called nodes. Given a graph � and a
smooth, Haar-integrable complex function f : U 2
(SU(2))L 7! f (U) 2 C, the couple (�, f ) defines the
(‘‘cylindrical’’) functional of A

��; f ½A� ¼ f ðU ½A;��Þ ½7�
U ½A;�� � ðU½A; �1�; . . . ;U½A; �L�Þ ½8�

Let L be the linear space of all functionals ��, f [A],
for all � and f. L is dense (in an appropriate sense) in
the space of all continuous functionals on A.

An SU(2) and Diff � invariant scalar product can
be defined in L as follows. If two functionals
��, f [A] and ��, g[A] are defined by the same graph
�, define

h��; f j��;gi �
Z

dU f ðUÞ gðUÞ ½9�

where dU is the Haar measure on (SU(2))L. The
extension to functionals defined on different graphs
is obtained by observing that (�, f ) and (�0, f 0) define
the same functional if � contains �0 and f is
independent of the variables in � but not in �0. It
follows that any two given functionals ��0, f 0 and
��00, g00 can be written as functionals ��, f and ��, g

with the same graph �, where � is obtained from the
union of �0 and �00. Using this, the scalar product [9]
is defined for any two functionals in L:

h��0; f 0 j��00;g00 i � h��;f j��;gi ½10�

Standard completion in the Hilbert norm defines the
kinematical Hilbert space K of LQG. L is dense in K
and defines the Gelfand triple L � K � L�. K carries
a natural unitary representation of the group of local
SU(2) representations and a natural unitary repre-
sentation U� of the group of the extended diffeo-
morphism of �. These two properties are nontrivial;
they represent the main physical motivation for the
definition of the scalar product. The SU(2)-invariant
subspace of K is a proper subspace K0.

An orthonormal basis in K0 can be defined using
the Peter–Weyl theorem. The basis states are labeled
by a graph �, by the assignment of a nonvanishing
spin j� to each link � 2 � and by the assignment of a
basis element in in the space of the intertwiners
(invariant tensors in the tensor product of the
representations space of the adjacent links) at each
node n of �. The triple S = (�, j�, in) is called an
imbedded spin network. The quantum state
�S[A] = hAjSi in K0 labeled by the spin network
S = (�, j�, in) is the cylindrical function obtained by
contracting the representation matrices of the
holonomies U(A, �), in the representations j�, with
the invariant tensors at the nodes.

The diffeomorphism-invariant state space Kdiff is
the SU(2) and diffeomorphism invariant subspace of
L�. It is the (closure of the) image of the map
Pdiff :L ! L� defined by

ðPdiff�Þð�0Þ ¼
X

�00¼U��

h�00;�0i 8�;�0 2 K ½11�



Loop Quantum Gravity 341
The sum is over all states �00 in L for which there
exists a diffeomorphism � such that �00= U��; this
is a finite sum. The scalar product on this image is
naturally defined by

hPdiff�S;Pdiff�S0 iKdiff
� ðPdiff�SÞð�S0 Þ ½12�

The space Kdiff obtained in this manner is separable.
The images jsi= PdiffjSi of the spin network states

are called s-knot states. They span Kdiff. They are
determined only by the diffeomorphism equivalence
class s of the spin network S. Namely, by an abstract
(non-imbedded) knotted graph, colored with spins
and intertwiners. These colored knots are called
s-knots or abstract spin networks. The s-knot states
have a straightforward physical interpretation as
quantum excitations of space, discussed below.
Operators and Quanta of Space

The state space defined above carries a quantum
representation of classical observables of general
relativity. The classical quantity U[A, �], a function
of the field variable A, acts naturally as a multi-
plicative operator on K. Thus, K provides a
Schrödinger functional representation �[A] of quan-
tum gravity, which diagonalizes the (holonomy of
the) gravitational connection. The two constraints
[1] and [2] generate SU(2) gauge and diffeomorph-
ism transformations on A. The corresponding
transformations on the Schrödinger functional states
�[A] are given by the unitary representations
mentioned above. The quantum implementation of
the two constraint equations [1] and [2], following
Dirac’s theory of constrained quantum systems, is
the requirement of invariance under these transfor-
mations. The space Kdiff is the solution to these
requirement.

The triad field operator E can be defined only if
suitably smeared. Since E is a 2-form, its geometri-
cally natural smearing is with a 2D surface. (The
1-form field A is smeared over a line in U[A, �].)
Given a finite 2D surface S :�= (�1,�2) 7! xa(�) 2 �,
the smeared field

E½S� ¼
Z
S

E ¼
Z

d2
� �abc

@xa

@�1

@xb

@�2
Ecðxð�ÞÞ ½13�

is quantized by the functional derivative operator

E½S� � �i�h
8�G

c3

Z
d2� �abc

@xa

@�1

@xb

@�2

�

�Acðxð�ÞÞ
½14�

This operator is well defined on K and the quantum
operators E[S] and U[A, �] define a linear represen-
tation of the Poisson algebra of the corresponding
classical quantities. Thus, they define a quantization
of the kinematics of general relativity. Notice that in
a general covariant quantum field theory field
operators can be well defined even if smeared on
low-dimensional regions, while in conventional
quantum field theory, these operators need to be
smeared over 3D or 4D regions.

A simple calculation shows that if S and �
intersect once,

Ev½S�U½A; �� ¼ �i�h
8�G

c3
U½A; �1�vU½A; �2� ½15�

where v 2 su(2), we have written Ev = tr[vE], �1, 2

are the two paths into which � is partitioned by the
surface, and the sign is determined by the relative
orientation of S and �. More generally, E[S]U[A, �]
is a sum of one such term per intersection between S
and �.

Composite operators can be constructed in terms
of these operators. In particular, using standard
formulas in classical general relativity, the area of
the surface S can be written as a Riemann sum

A½S� ¼ lim
N!1

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½EðSnÞEðSnÞ�

p
½16�

where Sn, n = 1, . . . , N, is a Riemann partition of
the surface. A straightforward calculation based on
eqn [15] shows that, if S cuts n links of a spin
network carrying spins ( j1 . . . jn) = j, then the spin
network state jSi is an eigenstate of A[S] with
eigenvalue

Aj ¼
8� �hG

c3

X
i¼1;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ

p
½17�

where ji = 1=2, 1, 3=2, 2, . . . These are therefore
discrete eigenvalues of the area. All eigenvalues of
the area operator A[S] are real and discrete and
A[S] is a self-adjoint operator. Similar results are
obtained for the volume operator. This gets a
discrete contribution for each node of a spin
network.

These spectral properties of the area and volume
operators determine the physical interpretation of
the spin network states: the nodes of the spin
network represent quanta of space with quantized
volume; the nodes are connected by links represent-
ing quanta of surface with quantized area. The
graph � determines the adjacency relations between
the individual quanta of space; the intertwiners in
are volume quantum numbers; the spins j� are area
quantum numbers.

The interpretation carries over to the s-nodes, which
represent the same quantum excitations of space, up to
its manifold coordinatization, which is physically
irrelevant because of the gauge invariance under



Figure 1 The graph of an s-knot, namely an abstract spinfoam,

and the set of quanta of space it represents. Each node n of the

graph defines a quantum of space. The associated intertwiner in is

the corresponding volume quantum number. Two quanta of space

are adjacent if the corresponding nodes are linked. A link � cuts

the elementary surface separating the two quanta and its spin j� is

the area quantum number of this surface.
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diffeomorphisms of �. An s-knot state jsi with N
nodes represents a quantum excitation of space with N
quanta of space adjacent to one another according to
the connectivity of � (see Figure 1).

Notice that the quantum states jsi do not
represent quantum excitations living in the physical
space: they represent quantum excitations of the
physical space. For instance, the state j0i defined by
the empty graph does not represent an ‘‘empty’’
physical space, but the absence of any physical
space. A generic quantum state of the physical space
is represented by a normalizable linear superposition
of these discrete quantized spacetimes (see Knot
Invariants and Quantum Gravity).

In a nongeneral covariant context, the kinematical
quantization predictions of quantum theory (such as
the quantization of the angular momentum) are
obtained from the spectral properties of operators
that represent measurements at a given time. In the
general covariant Hamiltonian formalism, the corre-
sponding kinematical quantization predictions are
given by spectral properties of ‘‘partial observables’’
operators, which in general are not gauge invariant in
the sense of Dirac. Area and volume are partial
observables of this kind. Their spectra are therefore
interpreted as physical predictions of LQG (up to an
overall numerical factor, called the Immirzi parameter,
which is obtained in certain variants of the theory).
Dynamics

The dynamics of the theory is obtained in terms of a
‘‘Hamiltonian constraint’’ operator C that quantizes
the constraint [3]. Different variants of the operator
C, and of its Lorentzian version, have been
constructed. The operator is defined via a suitable
regularization procedure. The description of these
constructions exceeds the scope of this article, and
we limit ourself here to mentioning the main result
and a few general comments.

The main result of the LQG dynamics is that C
turns out to be well defined and ultraviolet-finite
when restricted to Kdiff. Finiteness holds also when
standard matter couplings, such as Yang–Mills fields
and fermions, are added.

The reason for this finiteness can be understood as a
consequence of the discrete nature of space implied by
the spectral properties of the geometric operators
described above. The limit in which the ultraviolet
cutoff, introduced to regulate C, is removed turns
out to be trivial on the diffeomorphism-invariant states
in Kdiff. This is because this limit probes the short-
distance regime, but there is no physical (gauge-
invariant) short distance, in a theory in which
geometry turns out to be quantized at the Plank
scale. Since the physical states inKdiff define a physical
geometry only at scales larger than the Planck scale
�hGc�3, the ‘‘short-distance’’ modes in the coordinate
manifold � turn out to be pure gauge. This interplay
between quantum field-theoretical and general-
relativistic physics is the distinctive character of LQG.

Finally, we sketch the formal structure that
dynamics can take in the general covariant
Hamiltonian formalism of LQG. The operator C
defines a linear operator P � �(C), usually (impro-
perly) denoted the ‘‘projector,’’ which sends states in
Kdiff into the kernel of C, formed by the generalized
Kdiff vectors that solve the Wheeler–De Witt equa-
tion C� = 0 (see Wheeler–De Witt Theory). Matrix
elements of P are interpreted as transition ampli-
tudes between quantum states of space.

Physical predictions for processes that take place
in a finite spacetime region R can be obtained, in
principle, as follows. One considers a state j�i
representing the result of the measurement of partial
observables of the 3D boundary of a spacetime
region R. j�i codes the nonrelativistic notions of
initial, boundary and final conditions. Then h0jPj�i
can be interpreted as a relative probability ampli-
tude associated to this result. A formal expansion of
this amplitude in powers of C generates a spinfoam
sum (see Spin Foams) that can be understood as the
‘‘quantum gravity sum over histories’’ in R.

A systematic technique for computing physical
transition amplitudes from the background-
independent and nonperturbative formalism of
LQG has not yet been developed.
See also: BF Theories; Black Hole Mechanics; Canonical
General Relativity; Knot Invariants and Quantum Gravity;
Knot Theory and Physics; Quantum Cosmology; Quantum
Dynamics in Loop Quantum Gravity; Quantum Geometry
and its Applications; Spin Foams; Wheeler–De Witt Theory.
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Introduction

Einstein’s (1916) use of differential geometry as an
essential tool in his theory of general relativity has
long been a motivation for the study of Lorentzian
geometry. More recently, the influential mono-
graphs of R Penrose (1972) and of S Hawking and
G Ellis (1973), the latter still cited by some as the
Bible of general relativity, so fascinated differential
geometers that Lorentzian geometry took its place
alongside of global Riemannian geometry as a
worldwide research area.

Let M be a smooth n-dimensional manifold, n 	 2,
with a countable basis. A Lorentz metric g = < , >
on M is a symmetric nondegenerate (0, 2) tensor field
on M of index (�, þ , . . . , þ). The existence of such
a tensor field implies that M admits a (non-oriented)
line field; hence, some compact manifolds like S2 do
not admit such metrics. A nonzero tangent vector v in
TM is then timelike (resp., nonspacelike, null, space-
like) according to whether g(v, v) < 0 (resp.,

0, = 0, >0). A Lorentzian manifold (M, g) is a
pair consisting of a smooth manifold together with a
choice of Lorentz metric. In this article, we use the
convention that a spacetime (M, g) is a Lorentzian
manifold together with a choice of time orientation,
that is, a continuous timelike vector field X on M.
Then a tangent vector v based at p may be
consistently defined to be future (resp., past) directed
if g(X(p), v) < 0 (resp.,> 0). (Some authors also
require that (M, g) be space oriented.) If a Lorentzian
manifold happens not to be time orientable, then a
2-fold covering manifold with the induced pullback
metric will be time orientable. Also basic are the
notations p� q (resp., p 
 q) if there is a future-
directed timelike (resp., nonspacelike) curve from p
to q and the corresponding chronological (resp.,
causal) future of p given by Iþ(p) = {q 2M; p� q}
and Jþ(p) = {q 2M; p 
 q}.

For a Riemannian manifold (N, g0), the Riemannian
distance function

d0 : N �N ! ½0; þ1Þ ½1�

given by d0(p, q) = inf {L(c); c : [0, 1]! N is a piece-
wise smooth curve with c(0) = p and c(1) = q}. A
fundamental result in global Riemannian geometry
is the celebrated Hopf–Rinow theorem.

Hopf–Rinow Theorem For any Riemannian
manifold (N, g0), the following conditions are
equivalent:

(i) metric completeness: (N, d0) is a complete
metric space;

(ii) geodesic completeness: for any v in TN, the
geodesic cv(t) in N with initial condition
c0v(0) = v is defined for all values of an affine
parameter t;

(iii) for some point p in N, the exponential map
expp is defined on all of TpN;

(iv) finite compactness: every subset K of N that is
d0 bounded has compact closure.
Moreover, if any one of (i)–(iv) holds, then
(N, g0) also satisfies

(v) minimal geodesic connectedness: given any p, q
in N, there exists a smooth geodesic segment
c : [0, 1]! N with c(0) = p, c(1) = q and
L(c) = d0(p, q).

A Riemannian metric for a smooth manifold is
then said to be complete if it satisfies any of the
above properties (i) through (iv). The Heine–Borel
property of basic topology implies (via (iv)) that all
Riemannian metrics for a compact manifold are
automatically complete and many of the examples
studied in basic Riemannian geometry are complete.
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Also, if Riem(N) denotes the space of all Rieman-
nian metrics for a smooth manifold N, both geodesic
completeness (property (ii) above) and geodesic
incompleteness (the failure of property (ii) to hold
for all geodesics) are C0 stable properties on
Riem(N), that is, given a complete (resp., incom-
plete) metric g for N, there exists an open neighbor-
hood U(g) of g in Riem(N) in the Whitney C0 fine
topology such that all Riemannian metrics h in U(g)
are complete (resp., incomplete).

For spacetimes (M, g), however, many basic
examples furnished by general relativity fail to be
geodesically complete and compactness of the
underlying smooth manifold M does not imply that
the given Lorentz metric g (let alone all Lorentz
metrics for M) are complete. Also, the stability of
geodesic completeness and incompleteness is more
complicated than in the Riemannian case, necessi-
tating concepts like pseudoconvex geodesic systems
and disprisonment as studied by Beem and Parker.
To summarize, for spacetimes and their associated
Lorentzian distance functions, no naive analogs
for the Hopf–Rinow theorem are valid. Under
additional hypotheses, geodesic completeness may
be guaranteed. Marsden noted that a compact
spacetime with a homogenous Lorentz metric is
geodesically complete. Then Carriere showed that a
compact spacetime whose curvature tensor vanishes
is geodesically complete. Later Kamishima (assum-
ing constant curvature) and then Romero and
Sanchez more generally showed that a compact
Lorentzian manifold which admits a timelike Killing
field is geodesically complete.

At any point p in a given spacetime, emanating
from p are three families of geodesics: timelike,
spacelike, and null. It was hoped in the 1960s that
possibly continuity arguments could be obtained for
different types of geodesic completeness. However, a
series of examples showed by the mid-1970s that
timelike geodesic completeness, null geodesic com-
pleteness, and spacelike geodesic completeness are
logically inequivalent. (Here, a given geodesic is said
to be complete if it may be extended to be defined
for all values of an affine parameter.) Nomizu and
Ozeki for Riemannian manifolds showed that any
given Riemannian metric g0 for the smooth mani-
fold N could be made geodesically complete by
making a conformal change of metric �g0, where
� : N ! (0, þ1) is a smooth function. Especially in
general relativity, such conformal changes are
natural because the causal character of tangent
vectors and curves (and hence of the basic causality
conditions) are preserved. For spacetimes while
generally nonspacelike geodesic completeness could
not be produced by conformal changes, for some
subclasses of spacetimes, such as the strongly causal
ones, it was possible with a global conformal
change.

For a large class of spacetimes, the warped or
multiwarped products (originally inspired by several
cosmological models in general relativity and a basic
construction from Riemannian geometry), explicit
integral criterion involving the warping functions
have been given for timelike or null geodesic
completeness. Several early examples of this type
of result are discussed in Beem et al. (1996,
pp. 111–112).
Lorentz Distance and the Nonspacelike
Cutlocus

For an arbitrary, not necessarily complete, Riemannian
manifold (N, g0), the Riemannian distance function
given in eqn [1] is continuous, the metric topology
induced by d0 coincides with the given manifold
topology, and d0(p, q) is finite for all p, q in N.
Now, for an arbitrary spacetime (M, g), and p, q
in M, if there is no future-directed nonspacelike
curve from p to q, set d(p, q) = 0; if there is such a
curve, let

dðp; qÞ ¼ supfLðcÞ; c : ½0; 1� ! ðM; gÞ
is a piecewise smooth future-

directed nonspacelike curve

with cð0Þ ¼ p and cð1Þ ¼ qg ½2�

(Unlike the Riemannian case, [2] does not bound
d(p, q) from above by L(c) for any selected curve c
and hence the Lorentz distance may assume the
value þ1.)

This then defines what some authors term the
‘‘Lorentzian distance function’’

d ¼ dðgÞ :M�M! ½0; þ1� ½3�

and other authors term ‘‘proper time.’’ It is linked to
the causal structure of the given spacetime since

dðp; qÞ > 0 iff q is in IþðpÞ ½4�

and in place of the triangle inequality for the
Riemannian distance function, a reverse triangle
inequality holds:

if p � r � q; then dðp; qÞ � dðp; rÞ þ dðr; qÞ ½5�

Also in the context of eqn [2], a future-directed
nonspacelike curve c : [0, 1]!M from c(0) = p to
c(1) = q is defined to be maximal if L(c) = d(p, q).
Corresponding to the Riemannian theory, a max-
imal nonspacelike curve turns out to be a smooth
null or timelike geodesic segment.
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As mentioned earlier, geodesic completeness is
generally not a natural requirement to place on
a spacetime. But what emerges from [4] in place of
Riemannian completeness is an interplay between
the causal properties of the given spacetime and
the continuity (and other properties) of the
Lorentzian distance function (cf. Beem et al. (1996,
chapter 4)). At the extreme of totally vicious
spacetimes, the Lorentz distance is always þ1.
Less drastically, if (M, g) contains a closed timelike
curve passing through p, then d(p, q) =þ1 for all
q in Jþ(p). Also, certain cosmological models
contain pairs of points at infinite distance. In
general, Lorentzian distance is only lower semicon-
tinuous. Adding upper semicontinuity forces a
distinguishing spacetime to be causally continuous.
A spacetime is chronological iff d(p, p) = 0 for all p
in M. At the other extreme from totally vicious
spacetimes are globally hyperbolic spacetimes,
which share many properties somewhat analogous
to complete Riemannian manifolds. The Lorentzian
distance function of a globally hyperbolic spacetime
is both continuous and finite valued. (Indeed, a
strongly causal spacetime is globally hyperbolic iff
all Lorentz metrics g 0 in the conformal class
C(M, g) also have finite-valued distance functions
d(g 0).) Second, corresponding to property (v) of the
Hopf–Rinow Theorem, these spacetimes all satisfy
maximal nonspacelike geodesic connectability:
given any p, q in M with p � q, there exists a
future nonspacelike geodesic segment c : [0, 1]!M
with c(0) = p, c(1) = q and L(c) = d(p, q).

A basic concept from the calculus of variations is
that of a pair of conjugate points along a geodesic
segment c : [0, a]! (M, g). A smooth vector field
J(t) along c is said to be a ‘‘Jacobi field’’ if J satisfies
the Jacobi differential equation

J00 þ RðJ; c0Þc0 ¼ 0 ½6�

where R denotes the curvature tensor. Then
c(t), c(s) are said to be conjugate points along c if
there exists a nonzero Jacobi field J along c with
J(t) = J(s) = 0. Much of the basic comparison tech-
niques in global Riemannian geometry involving
lengths of geodesics in manifolds satisfying curva-
ture inequalities, such as the ‘‘Rauch comparison
theorems,’’ the ‘‘Toponogov triangle comparison
theorem,’’ and volume comparison theorems, were
first obtained through Jacobi field techniques
(cf. Petersen (1998) for a contemporary account).
Later, Riccati equation techniques became more
popular (cf. Karcher (1989)). For spacetimes, espe-
cially in the globally hyperbolic case, analogous
results have been obtained for nonspacelike geodesic
segments, with a key breakthrough in 1979 being
Harris’s version of the ‘‘Toponogov triangle com-
parison theorem’’ for timelike geodesic triangles in
globally hyperbolic spacetimes. The Raychaudhuri
equation used earlier in general relativity corre-
sponds for spacetimes to this passage in the
Riemannian setting from the Jacobi equation to the
Riccati equation. The basic conjugate point theory
and the Morse index theory for an arbitrary timelike
or null geodesic segment in a general spacetime are
reasonably close to the earlier Riemannian theory, if
vector fields of the form J(t) = f (t)�0(t) are accounted
for in the case of a null geodesic segment
� : [0, 1]! (M, g). But spacelike geodesics and
conjugate points are more problematic, as was first
established using symplectic techniques by Helfer in
1994. More recently, progress has been made in
applying important ideas of Gromov (1999) for
Riemannian manifolds to the spacetime context
(cf. Noldus (2004) for an example).

Inspired by fundamental concepts in global
Riemannian geometry, Beem and Ehrlich in 1979
introduced the concept of nonspacelike cut
point, again most tractable for globally hyperbolic
spacetimes. Let � : [0, a)! (M, g) be a future-
inextendible, future-directed nonspacelike geodesic
in an arbitrary spacetime. Define

t0 ¼ supft 2 ½0; aÞ; dð�ð0Þ; �ðtÞÞ ¼ Lð�j½0; t�Þg ½7�

(If there is a closed timelike curve through �(0),
then d(�(0), �(0)) = þ1 and t0 will not exist. If � is
a nonspacelike geodesic ray and hence
d(�(0), �(t)) = L(�j[0, t]) for all t, then t0 = a.) How-
ever, if 0 < t0 < a, then �(t0) is said to be the future
nonspacelike cut point of p = �(0) along �. For
general spacetimes, it may be shown that:

1. for 0 < s < t < t0, that �j[s, t] is the unique
maximal nonspacelike geodesic in all of (M, g)
between �(s) and �(t);

2. �j[0, t] is maximal for all t with 0 � t � t0; and
3. for all t with t0 < t < a, there is a longer

nonspacelike curve in (M, g) than �j[0, t] between
�(0) and �(t).

A nonspacelike cut point is a subtler concept than
a nonspacelike conjugate point since the existence of
a cut point is not necessarily captured by the
behavior of families of future nonspacelike curves
(or geodesics) close to the given geodesic segment �,
the basic viewpoint of the calculus of variations. But
since calculus of variations arguments shows that
past a nonspacelike conjugate point, longer ‘‘neigh-
boring curves’’ join �(0) to �(t), the future cut point
of p = �(0) along � comes no later than the first
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future conjugate point to p along � in either the
timelike or null geodesic case.

In a startling result which contradicted erroneous
arguments in all the standard textbooks, Margerin
in 1993 gave examples to show that even for
compact Riemannian manifolds, the first conjugate
locus of a point (i.e., the set of all first conjugate
points along all geodesics issuing from a given point)
need not be closed, even though elementary argu-
ments correctly show that the cut locus of any point
(i.e., the set of all cut points along all geodesics
issuing from the given point) is always closed. The
timelike first conjugate locus of a point in a
spacetime will generally not be closed, but because
a nonspacelike geodesic in a globally hyperbolic
spacetime must escape from any compact subset in
finite affine parameter, the future (or past) first
nonspacelike conjugate locus of any point in such a
spacetime is a closed subset. In a result analogous to
the Riemannian characterization, nonspacelike cut
points in globally hyperbolic spacetimes may be
characterized as follows: let q = �(t0) be the future
cut point of p = �(0) along the timelike (resp., null)
geodesic segment � from p to q. Then either one of
both of the following conditions hold: (1) q is the
first future conjugate point to p along �, or (2) there
exist at least two maximal timelike (resp., null)
geodesic segments from p to q.

Now given p in an arbitrary spacetime (M, g), the
future timelike (resp., null) cut locus of p is defined
to be the set of all timelike (resp., null) cut points
along all future timelike (resp., null) geodesics
issuing from p and the future nonspacelike cut
locus of p is defined as the union of the future
timelike and null cut loci. Employing alternatives
(1) and (2) in the preceeding paragraph, it may be
shown for globally hyperbolic spacetimes that the
null and nonspacelike cut loci are closed subsets
of M.

The null cut locus has a privileged status
by virtue of a phenomena not encountered for
Riemannian manifolds. Under a conformal change
of back-ground spacetime metric, null geodesics
remain null pregeodesics (i.e., may be reparame-
trized to be null geodesics in the deformed Lorentz
metric) while such deformations fail to preserve
timelike or spacelike geodesics, or to preserve
geodesics in the Riemannian case. Even though
null conjugate points along a null geodesic will not
remain invariant under conformal change of space-
time metric, it is remarkable that elementary
arguments involving the spacetime distance func-
tion show that global conformal diffeomorphisms
do preserve null cut points and hence the null cut
locus of any point.
Geodesic Incompleteness and the
Lorentzian Splitting Theorem

In global Riemannian geometry, an important concept
is that of a geodesic ray. In a complete Riemannian
manifold (N, g0), a unit geodesic c : [0,þ1)!
(N,g0) is said to be a (geodesic) ray if d0(c(0),
c(t))= t for all t � 0. By the triangle inequality, c(t) is
minimal between every pair of its points. By making a
limit construction, it may be shown that for each p in
N, there exists a geodesic ray c(t) with c(0)=p. An
allied concept is that of a (geodesic) line c : R!
(N,g0); here d0(c(t), c(s))= jt� sj for all t, s is required,
that is, c is minimal between every pair of its points.
The existence of a line is much stronger than the
existence of a ray. If (N,g0) has positive Ricci
curvature everywhere, then (N,g0) contains no lines
despite the fact that it contains a ray issuing from
each point. A helpful tool in this setting is the
compactness of sets of tangent vectors of the form

fw 2 TpN; g0ðw; wÞ ¼ 1g ½8�

for any p in N; hence, any infinite sequence of
tangent vectors based at p automatically has a
convergent subsequence.

For spacetimes, geodesic completeness cannot
generally be assumed. Yet a future nonspacelike
geodesic ray � : [0, b)! (M, g) may be defined to be
a future-directed, future-inextendible nonspacelike
geodesic with d(�(0), �(t)) = L(�j[0, t]) for all t in
[0, b). The reverse triangle inequality implies that �
is maximal between any pair of its points. Similarly,
a nonspacelike geodesic line � : (a, b)! (M, g) is a
past- and future-inextendible nonspacelike geodesic
with d(�(t), �(s)) = L(�j[t, s]) for all s, t. Hence, � is
maximal between any pair of its points. If nonspace-
like geodesic completeness is assumed, a =�1 and
b =þ1 above. Constructions here are more delicate
than in the Riemannian case because the sets

fv 2 TpM; gðv; vÞ ¼ �1g ½9�

of unit timelike tangent vectors, while closed in the
tangent space, are noncompact. Despite this techni-
cality, using the limit curve machinery of general
relativity in place of the compactness in [8], it has
been shown that a strongly causal spacetime admits
a past and future nonspacelike geodesic ray issuing
from every point (cf. Beem et al. (1996, chapter 8)).
(If the spacetime is not nonspacelike geodesically
complete, these rays will not necessarily be past or
future complete.) As in the Riemannian case, the
existence of a complete line is a stronger geometric
condition. For that reason, in 1977 Beem and
Ehrlich introduced the concept of a spacetime
causally disconnected by a compact set K and
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showed that a strongly causal spacetime which is
causally disconnected by a compact set contains a
nonspacelike geodesic line which intersects the
compact set. (Again, unless the spacetime is non-
spacelike geodesically complete, this line need not be
future or past complete.)

A pattern common to many results in global
Riemannian geometry especially since the 1950s is
the following: the existence of a complete Riemannian
metric on a smooth manifold which also satisfies a
global curvature inequality implies a topological or
geometric conclusion. A celebrated early example
from the 1950s and 1960s, obtained by separate
results of Rauch, Berger, and Klingenberg, is the
topological sphere theorem.

Topological Sphere Theorem Suppose (N, g0) is a
complete, simply connected Riemannian n-manifold
whose sectional curvatures satisfy 1=4 < K � 1.
Then N is homeomorphic to Sn.

By contrast, for spacetimes, the assumption of
geodesic completeness is generally unwarranted.
Here is an example of one of the celebrated
singularity theorems of general relativity, published
in 1970 as originally stated:

Hawking–Penrose Singularity Theorem No space-
time (M, g) of dimension n � 3 can satisfy all of the
following three requirements together:

(i) (M, g) contains no closed timelike curves;
(ii) Every inextendible nonspacelike geodesic in

(M, g) contains a pair of conjugate points; and
(iii) There exists a future- or past-trapped set S in

(M, g).

This theorem may be reinterpreted more akin to
the Riemannian pattern above as follows: suppose
(M, g) is a chronological spacetime of dimensions
n � 3 which satisfies the timelike convergence
condition (Ric(v, v) � 0 for all timelike tangent
vectors) and the generic condition (every inextend-
ible nonspacelike geodesic contains a point which
has some appropriate nonzero sectional curvature).
If (M, g) contains a future- or past-trapped set, then
(M, g) is nonspacelike geodesically incomplete.
Hence, this result models the pattern: global
curvature inequalities (reflecting the physical
assumptions that gravity is assumed to be attractive
and every inextendible nonspacelike geodesic experi-
ences tidal acceleration) and a further physical or
geometric assumption (the first and third conditions)
implies the existence of an incomplete timelike or
null geodesic.

An influential concept in global Riemannian
geometry formulated during the 1960s and 1970s
is that of curvature rigidity, which first became
widely known through the introduction to the text
Cheeger and Ebin (1975). The above statement of
the ‘‘sphere theorem’’ contains one hypothesis that
the sectional curvature is strictly greater than 1/4.
In curvature rigidity, the hypothesis of strict
inequality is relaxed to include the possibility of
equality as well, and then one tries to show that
either the old conclusion is still valid, or if it fails, it
fails in an isometric (hence ‘‘rigid’’) manner. Thus
in the example of the sphere theorem, if the
sectional curvature is now allowed to satisfy 1=4 �
K � 1, then either the given Riemannian manifold
remains homeomorphic to the n-sphere, or if not, it
is isometric to a Riemannian symmetric space of
rank 1.

Already in an article in 1970, Geroch had
expressed the opinion that most spacetimes should
be nonspacelike geodesically incomplete and also
that a spacetime should fail to be nonspacelike
geodesically incomplete only under special circum-
stances. Apparently by the early 1980s, S T Yau had
formulated the idea that timelike geodesic incom-
pleteness of spacetimes ought to display a curvature
rigidity. In the paragraph following the statement of
the Hawking–Penrose singularity theorem, there are
two curvature conditions mentioned – the timelike
convergence condition and the generic condition.
Now the timelike convergence condition already
allows for the case of equality (i.e., zero timelike
Ricci curvature) in its formulation; hence, curvature
rigidity here would imply dropping the generic
condition that each inextendible nonspacelike geo-
desic contains a point of nonzero sectional curva-
tures as a hypothesis. This notion seems first to have
been published by Yau’s Ph.D. student R Bartnik in
1988 as follows:

Conjecture Let (M, g) be a spacetime of dimension
�3 which

(i) contains a compact Cauchy surface and
(ii) satisfies the timelike convergence condition

Ric(v, v) � 0 for all timelike v.

Then either (M, g) is timelike geodesically incom-
plete, or (M, g) splits isometrically as a product
(jR � V,�dt2 þ h) where (H, h) is a compact
Riemannian manifold.

This conjecture has been proven in many cases
with the following proof scheme. From the physical
or geometric assumptions made, produce an
inextendible nonspacelike geodesic line. Further,
prove that the line happens to be timelike rather
than null. Then if the spacetime were timelike
geodesically complete, it would contain a complete
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timelike line. But then the desired splitting may be
obtained using the Lorentzian splitting theorem.

Lorentzian Splitting Theorem Let (M, g) be a
spacetime of dimension �3 which satisfies each of
the following conditions:

(i) (M, g) is either globally hyperbolic or timelike
geodesically complete;

(ii) (M, g) satisfies the timelike convergence condi-
tion; and

(iii) (M, g) contains a complete timelike line.

Then (M, g) splits isometrically as a product (R � V,
�dt2 þ h) where (H, h) is a complete Riemannian
manifold.

This result, which corresponds to obtaining the
spacetime analog of a celebrated splitting theorem of
Cheeger and Gromoll for lines in complete Riemannian
manifolds of non-negative Ricci curvature, published
in 1971, was posed as a problem by S T Yau in a
problem list stemming from the conference
Special Year in Differential Geometry held at the
Institute for Advanced Study in Princeton during the
1979–80 academic year. Early progress was made
using maximal hypersurface methods by Gerhardt in
1983, Bartnik in 1984, and Galloway in 1984. Then
in 1985, Beem, Ehrlich, Markvorsen, and Galloway
introduced the methodology of employing the
Busemann function of the complete timelike line,
motivated by techniques from Riemannian geome-
try, and succeeded in obtaining a splitting under the
hypothesis of global hyperbolicity and everywhere
nonpositive timelike sectional curvatures. In separate
publications, Eschenburg and Galloway extended
the result to the desired curvature hypothesis of
nonnegative timelike Ricci curvatures. Finally,
Newman in 1990 achieved the originally desired
goal of obtaining the splitting under the assumption
of timelike geodesic completeness, rather than global
hyperbolicity. This is a more delicate setting, since
timelike geodesic completeness does not imply
maximal nonspacelike geodesic connectability, a
fairly basic geometric tool in many standard
constructions. But the idea emerged with
Newman’s solution that the existence of a timelike
geodesic line or segment in a nonglobally hyper-
bolic spacetime implies an adequate level of control
in a tubular neighborhood of the given line to
enable the proof to work. Galloway and Horta in
1996 published a much simplified working out of
these concepts. A fuller exposition of these devel-
opments may be found in Beem et al. (1996,
chapter 14). In addition, in 2000, Galloway
published a version of the splitting theorem for a
null maximal geodesic line.
Two-Dimensional Spacetimes

Two-dimensional spacetimes, sometimes termed
Lorentz surfaces, are especially tractable because
given (M, g) with dim M = 2, then (M, �g) is also a
spacetime. Hence, it may be shown that any
Lorentzian 2-manifold (M, g) homeomorphic to R2

may be made geodesically complete (not just
nonspacelike geodesically complete) by a conformal
change of metric. Also, any simply connected two-
dimensional Lorentzian manifold is strongly causal.
In Weinstein (1996), an extensive study is made of
Lorentz surfaces generally and particularly, of a
conformal boundary for such surfaces first given by
Kulkarni in 1985.

One of the prettiest classical results linking the
geometry and topology of a Riemannian surface is
the Gauss–Bonnet theorem. Let (N, g0) be a
Riemannian manifold of dimension 2 and let P be a
polygonal subregion with piecewise smooth bound-
ing curves ci, 1 � i � k. Let K denote the Gauss
curvature of (N, g0) and � the geodesic curvature of
the smooth curves ci (which vanishes if ci happens to
be a geodesic). If �i denote the corresponding
interior angles between the successive boundary
curves ci and ciþ1, then the Gauss–Bonnet formula
over P is

Z
P

Z
K dAþ

Z
@P

� dsþ
X

i

ð�� �iÞ ¼ 2� ½10�

By considering a triangulation of N itself and
summing up the corresponding terms in [10], it
follows for a compact oriented Riemannian mani-
fold (N, g0) of dimension 2 that

Z
N

Z
K dA ¼ 2��ðNÞ ½11�

where �(N) denotes the Euler characteristic. Also
lurking in the background here is a formula for
computing the angle between unit tangent vectors v,
w as

cos � ¼ g0ðv; wÞ ½12�

In the spacetime setting, different versions of a
Gauss–Bonnet formula for subregions of a two-
dimensional spacetime (M, g) corresponding to [10]
have been given in 1974 by Helzer and in 1984 by
Birman and Nomizu. First, the angle computation is
a bit trickier for spacetimes than in the Riemannian
case; eqn [12] has to be replaced by techniques
which use the hyperbolic functions cosh u and
sinh u to define the angle u (sometimes called the
‘‘hyperbolic angle’’) between two unit vectors and
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then to allow for null vectors. Birman and Nomizu
obtained an analog of [10] assuming that the
boundary curves for P are successive smooth unit
timelike curves:Z

@P

� ds�
Z

P

Z
K dAþ

X
i

�i ¼ 0

Helzer in his formulation allows the different
boundary curves to be either unit timelike, unit
spacelike or null separately. Since the only compact,
orientable smooth surface which admits a spacetime
metric is the 2-torus, which has zero Euler char-
acteristic, the Riemannian formula [11] above
translates into the uniform constraint on the Gauss
curvature of the spacetime:Z

M

Z
K dA ¼ 0

See also: General Relativity: Overview; Geometric
Analysis and General Relativity; Pseudo-Riemannian
Nilpotent Lie Groups; Spacetime Topology, Causal
Structure and Singularities.
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Lyapunov Exponents

The Lyapunov exponents of a sequence {An, n� 1}
of square matrices of dimension d� 1 are the values
of

�ðvÞ ¼ lim sup
n!1

1

n
log kAn � vk ½1�

over all nonzero vectors v 2 Rd. For completeness,
set �(0) =�1. It is easy to see that �(cv) =�(v) and
�(vþ v0)� max{�(v),�(v0)} for any nonzero scalar c
and any vectors v, v0. It follows that, given any
constant a, the set of vectors satisfying �(v)� a is a
vector subspace. Consequently, there are at most d
Lyapunov exponents, henceforth denoted by
�1 < � � � <�k�1 <�k, and there exists a filtration
F1 < � � � < Fk�1 < Fk = Rd into vector subspaces,
such that

�ðvÞ ¼ �i for all v 2 FinFi�1

and every i = 1, . . . , k (write F0 = {0}). In particular,
the largest exponent is

�k ¼ lim sup
n!1

1

n
log kAnk ½2�

One calls dim Fi � dim Fi�1 the multiplicity of each
Lyapunov exponent �i.

There are corresponding notions for continuous
families of matrices At, t 2 (0,1), taking the limit as
t goes to 1 in the relations [1] and [2]. The theories
for the two types of families, discrete and contin-
uous, are analogous and so at each point in what
follows we refer to either one or the other.
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Lyapunov Stability

Consider the linear differential equation

_vðtÞ ¼ BðtÞ � vðtÞ ½3�

where B(t) is a bounded function with values in the
space of d � d matrices, defined for all t 2 R. The
theory of differential equations ensures that there
exists a fundamental matrix At, t 2 R, such that

vðtÞ ¼ At � v0

is the unique solution of [3] with initial condition
v(0) = v0.

If the Lyapunov exponents of the family At, t> 0,
are all negative then the trivial solution v(t) � 0 is
asymptotically stable, and even exponentially stable.
The stability theorem of Lyapunov asserts that,
under an additional regularity condition, stability is
still valid for nonlinear perturbations

wðtÞ ¼ BðtÞ �wþ Fðt;wÞ ½4�

with kF(t, w)k� const.kwk1þc, c> 0. That is, the
trivial solution w(t) � 0 is still exponentially asymp-
totically stable.

The regularity condition means, essentially, that
the limit in [1] does exist, even if one replaces
vectors v by elements v1 ^ � � � ^ vl of any lth exterior
power of Rd, 1� l� d. By definition, the norm of an
l-vector v1 ^ � � � ^ vl is the volume of the parallele-
piped determined by the vectors v1, . . . , vk. This
condition is usually tricky to check in specific
situations. However, the multiplicative ergodic
theorem of V I Oseledets asserts that, for very
general matrix-valued stationary random processes,
regularity is an almost sure property. This result sets
the foundation for the modern theory of Lyapunov
exponents. We are going to discuss the precise
statement of the theorem in the slightly broader setting
of linear cocycles, or vector bundle morphisms.
Linear Cocycles

Let � be a probability measure on some space M and
f : M!M be a measurable transformation that
preserves �. Let � : E!M be a finite-dimensional
vector bundle, endowed with a Riemannian metric
k � kx on each fiber Ex = ��1(x). Let A : E!E be a
linear cocycle over f. What we mean by this is that

� 	 A ¼ f 	 �

and the action A(x) : Ex!Ef (x) of A on each fiber is
a linear isomorphism. Notice that the action of the
nth iterate An is given by

AnðxÞ ¼ Aðf n�1ðxÞÞ � � �Aðf ðxÞÞ � AðxÞ
for every n� 1.
Assume the function logþ kA(x)kx is �-integrable:

logþ kAðxÞkx 2 L1ð�Þ ½5�

(we write logþ �= log max {�, 1}, for any �> 0).
It is clear that the sequence of functions
an(x) = log kAn(x)kx satisfies

amþnðxÞ � amðxÞ þ anðf mðxÞÞ

for every m, n, and x. It follows from J Kingman’s
subadditive ergodic theorem that the limit

lim
n!1

1

n
anðxÞ

exists for �-almost all x. In view of [2], this means
that the largest Lyapunov exponent �k(x) of the
sequence An(x), n� 1 is a limit, and not just a lim
sup, at almost every point.
Multiplicative Ergodic Theorem

The Oseledets theorem states that the same holds
for all Lyapunov exponents. Namely, for �-almost
every x 2M there exists k = k(x) 2 {1, . . . , d}, a
filtration

F1
x < � � � < Fk�1

x < Fk
x ¼ Ex

and numbers �1(x)< � � � <�k(x) such that

lim
n!1

1

n
log kAnðxÞkx ¼ �iðxÞ ½6�

for all v 2 Fi
xnFi�1

x and i 2 {1, . . . , k}.
The Lyapunov exponents �i(x), and their number

k(x), are measurable functions of x and they are
constant on orbits of the transformation f. In
particular, if the measure � is ergodic then k and
the �i are constant on a full �-measure set of
points. The subspaces Fi

x also depend measurably
on the point x and are invariant under the linear
cocycle:

AðxÞ � Fi
x ¼ Fi

f ðxÞ

It is in the nature of things that, usually, these
objects are not defined everywhere and they depend
discontinuously on the base point x.

When the transformation f is invertible, one
obtains a stronger conclusion, by applying the
previous kind of result also to the inverse of the
cocycle. Namely, assuming that logþ kA�1k is also
in L1(�), one gets that there exists a
decomposition

Ex ¼ E1
x 
 � � � 
 Ek

x
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defined at almost every point and such that
A(x) � Ei

x = Ei
f (x) and

lim
n!�1

1

n
log kAnðxÞkx ¼ �iðxÞ ½7�

for all v 2 Ei
x different from zero and all i 2

{1, . . . , k}. These Oseledets subspaces Ei
x are related

to the subspaces Fi
x through

Fj
x ¼

Mj

i¼1

Ei
x

Hence, dim Ei
x = dim Fi

x � dim Fi�1
x is the multipli-

city of the Lyapunov exponent �i(x).
The angles between any two Oseledets subspaces

decay subexponentially along orbits of f:

lim
n!�1

1

n
log angle Ei

f nðxÞ;E
j
f nðxÞ

� �
¼ 0

for every i 6¼ j and almost every point. These facts
imply the regularity condition mentioned previously
and, in particular,

lim
n!�1

1

n
log j det AnðxÞj ¼

Xk

i¼1

�iðxÞ dim Ei
x ½8�

Consequently, for cocycles with values in SL(d, R),
the sum of all Lyapunov exponents, counted with
multiplicity, is identically zero.

As we are dealing with almost certain properties,
we may generally restrict the vector bundle to some
full measure subset over which it is trivial. Then
each fiber Ex is identified with the space Rd, and we
may think of A(x) as a d � d matrix. Then
An(x) = A(f n(x)) is a stationary random process
relative to (f ,�). Thus, in this context it is no
serious restriction to view a linear cocycle as a
stationary random process with values in the linear
group GL(d, R) of invertible d � d matrices.

Furthermore, given any such random process
An, n� 0, one may consider its normalization
Bn = An=jdetAnj. The Lyapunov exponents of the
two random processes An, n� 0, and Bn, n� 0, differ
by the time average

lim
n!1

1

n

Xn�1

j¼0

log jdetAjðxÞj

of the determinant. The Birkhoff ergodic theorem
ensures that the time average is well defined almost
everywhere, as long as the function log j det Aj is in
L1(�); this is the case, for instance, if both
logþ kA�1k are integrable. This relates the general
case to random processes with values in the special
linear group SL(d, R) of d � d matrices with
determinant �1.
The Oseledets theorem was extended by D Ruelle
to certain linear cocycles in infinite dimensions. He
assumes that the A(x) are compact operators on a
Hilbert space H and logþ kAk is in L1(�). The
conclusion is the same as in finite dimensions,
except that the filtration

� � � < F i
x < � � � < F1

x ¼ H

may involve infinitely many subspaces, and the
Lyapunov exponents may be �1. There is also a
version for cocycles over invertible transforma-
tions, where one assumes each A(x) to be invertible
and the sum of a unitary operator with a compact
operator, such that both log kA�k are integrable.
The conclusion is that there exists an Oseledets
decomposition H = E1

x 
 � � � 
 Ei
x 
 � � � at almost

every point, with finitely or countably many
factors.
Random Matrices

Relation [8] implies that, for SL(d, R) cocycles, if
there is only one Lyapunov exponent (with full
multiplicity) then it must be zero. When this
happens, the theory contains no information on the
behavior of the iterates An(x) � v, apart from the fact
that there is no exponential growth nor decay of
their norms. Thus, the question naturally arises
under which conditions is there more than one
Lyapunov exponent or, equivalently, under which
conditions is the largest Lyapunov exponent strictly
positive.

This problem was first addressed by H Furstenberg
for products of independent random variables,
corresponding to the following class of linear
cocycles. Let � be a probability measure on the
group G = GL(d, R). Consider M = GN and �= �N

(or M = GZ and �= �Z), and let f : M!M be the
shift map

f
�
ð	jÞj

�
¼ ð	jþ1Þj

It is clear that � is invariant and also ergodic for the
transformation f. Consider the cocycle A : E!E
defined by E= M�Rd and

A
�
ð	jÞj

�
� v ¼ 	0 � v

Clearly,

An
�
ð	jÞj

�
� v ¼ 	n�1 � � �	1	0 � v

Corresponding to the hypothesis of the multiplicative
ergodic theorem, assume that logþ k	k (and
logþ k	�1k) are �-integrable functions of the matrix 	.

Furstenberg’s theorem states that if the closed
group G(�) generated by the support of � is
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noncompact and strongly irreducible in Rd then
the largest Lyapunov exponent of the cocycle A
is strictly positive. Strong irreducibility means
that there exists no finite union of subspaces of
Rd that is invariant under all elements of the
group. Improvements, extensions, and alternative
proofs have been obtained by several authors since
then.

Especially, Y Guivarc’h and A Raugi provided
conditions under which there are exactly d distinct
Lyapunov exponents or, in other words, the
multiplicity of every Lyapunov exponent is equal
to 1. A matrix semigroup has the contraction
property if there exists a sequence of elements hn

and a probability measure on the projective space
of Rd that gives zero weight to any projective
subspace, such that the images (hn)�m of m under
the hn converge to a Dirac mass in the projective
space. They proved that if the closed semigroup
H(�) generated by the support of the probability �
is strongly irreducible and has the contraction
property then the largest Lyapunov exponent has
multiplicity 1. Applying this to the exterior
powers of the cocycle, one obtains sufficient
conditions for simplicity of the other Lyapunov
exponents as well.

This statement has been improved by I Ya
Gol’dsheid and G A Margulis, who formulated the
hypotheses in terms of the algebraic closure ~G(�) of
the semigroup H(�). They assumed that ~G(�) has the
contraction property and the connected component
of the identity inside ~G(�) is irreducible in Rd,
meaning that its elements do not have any common
invariant subspace. Then the largest Lyapunov
exponent is simple.
Schrödinger Cocycles

The one-dimensional discrete Schrödinger equation
is the second-order difference equation

�ðunþ1 þ un�1Þ þ Vnun ¼ Eun ½9�

derived from the stationary Schrödinger equation in
dimension 1 by space discretization. Here the energy
E is a constant and Vn = V(f n(�)), where the
potential V(�) is a bounded scalar function and
f : M!M is a transformation preserving some
probability measure � on M. In what follows, we
take � to be ergodic. Equation [9] may be rewritten
as a first-order relation,

unþ1

vnþ1

� �
¼ Vn � E �1

1 0

� �
un

vn

� �
Hence, it may also be interpreted as a linear cocycle
A over f, where the vector bundle is E= M� R2 and

Að�Þ ¼ Vð�Þ � E �1
1 0

� �
½10�

takes values in SL(R, 2). By ergodicity, the Lyapu-
nov exponents are essentially independent of the
base point �. Let �(E) denote the largest exponent:
by the relation [8], the other one is ��(E).

The Lyapunov exponent �(E) is related to the
spectral theory of the linear operators L�,

ðL�uÞn ¼ �ðunþ1 þ un�1Þ þ Vnun

on the space ‘2(Z) of complex square-integrable
sequences un, n 2 Z. These are bounded Hermitian
operators and so the spectra are compact subsets of R.
Using the assumption that � is ergodic, one can prove
that the spectrum spec(L�) is constant almost every-
where. If the transformation f is minimal, the spectrum
is even independent of the point �. Moreover, for all
energies,

�ðEÞ � const: distðE; specðL�ÞÞ

In particular, �(E) is always positive on the comple-
ment of the spectrum.

A fundamental problem (Anderson localization) is
to decide when the spectrum is pure-point. This is
reasonably well understood for a few classes of base
dynamics only, for example, the very chaotic systems
such as Bernoulli and Markov processes (random
potentials) or uniformly hyperbolic maps and flows,
or the irrational rotations on the d-dimensional torus
(quasiperiodic potentials). In the latter case, the
results are more complete when there is only one
frequency (d = 1). It was shown by K Ishii and by L
Pastur that if �(E) is positive for almost all values of
E in some Borel set then the absolutely continuous
part of the spectrum is essentially disjoint from that
set. The converse is also true (due to S Kotani). Thus,
checking that �(E) is positive is an important step
towards proving localization.

A very general criterion for positivity of the
Lyapunov exponent was obtained by Kotani. Namely,
he proved that if the potential is not deterministic then
�(E) is positive for almost all E. In particular, for
nondeterministic potentials the absolutely continuous
spectrum is empty, almost surely. In simple terms, the
hypothesis means that from the values of the potential
for negative n one cannot determine the values for
positive n. More formally, one calls the potential
deterministic if every Vn, n� 0 is almost everywhere a
measurable function of {Vn: n� 0}. For instance,
quasiperiodic potentials are deterministic, whereas
Bernoulli potentials are not.
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Subharmonicity Method

Let Dm be the set of complex vectors (z1, . . . , xm) 2 Cm

such that jzjj � 1 for all j and let Tm be the subset
defined by jzjj= 1 for all j. Let f : Tm!Tm and
A : Tm! SL(d, R) be continuous maps that admit
holomorphic extensions to the interior of Dm with
f (0) = 0. Assume that f preserves the natural (Haar)
measure � on Tm. Let

�ðA; �Þ ¼
Z

Tm
�ðzÞd�

where �(z) denotes the largest Lyapunov exponent
for the cocycle defined by A over f. It also follows
from the subadditive ergodic theorem that

�ðA; �Þ ¼ lim
1

n

Z
Tm

log kAnðzÞkd�

M Herman observed that, since the function
log kAn(z)k is plurisubharmonic on Dm, one may
use the maximum principle to conclude that

1

n

Z
Tm

log kAnðzÞkd� � 1

n
log kAnð0Þk

Then, taking the limit when n!1 one obtains that

�ðA; �Þ � 
ðAÞ ½11�

where 
 (A) denotes the spectral radius of the matrix
A(0). Starting from this observation, he developed a
very effective method for bounding Lyapunov
exponents from below, that received several applica-
tions and extensions, in particular, to the theory of
Schrödinger cocycles with quasiperiodic potentials.

The best-known application is the following bound
for integrated Lyapunov exponents of two-dimen-
sional cocycles. Let f : M!M be a continuous
transformation on a compact metric space, preserving
some probability measure �, and A : M! SL(2, R) be
a continuous map. For each fixed �, let AR� be the
cocycle obtained by multiplying A(x), at every point
x, by the rotation of angle �. Herman proved that

1

2�

Z
�ðAR�; �Þd� �

Z
M

NðxÞ d�

(A Avila and J Bochi later showed that the equality
holds) where

NðxÞ ¼ log
kAðxÞk þ kAðxÞ�1k

2

Apart from the exceptional case when A acts by
rotation at every point in the support of �, the right-
hand side of the inequality is positive, and so the
Lyapunov exponent of the cocycle AR� is positive
for many values of �.
Nonuniform Hyperbolicity

The prototypical example of a linear cocycle is the
derivative of a smooth transformation on a mani-
fold. More precisely, let M be a finite-dimensional
manifold and f : M!M be a diffeomorphism, that
is, a bijective smooth map whose derivative Df (x)
depends continuously on x and is an isomorphism at
every point. Let E= TM be the tangent bundle to the
manifold and A= Df be the derivative. If M is
compact or, more generally, if the norms of both Df
and its inverse are bounded, then the hypothesis in
Oseledets theorem is automatically satisfied for any
f-invariant probability �. Lyapunov exponents yield
deep geometric information on the dynamics of the
diffeomorphism, especially when they do not vanish.
For most results that we mention in the sequel, one
needs the derivative Df to be Hölder continuous:

kDf ðxÞ �Df ðyÞk � const: dðx; yÞc

Let Es
x be the sum of the Oseledets subspaces

corresponding to negative Lyapunov exponents.
Pesin’s stable manifold theorem states that there
exists a family of embedded disks Ws

loc(x) tangent to
Es

x at almost every point and such that the orbit of
every y 2Ws

loc(x) is exponentially asymptotic to the
orbit of x. This lamination {Ws(x)} is invariant, in
the sense that

f ðWsðxÞÞ 
Wsðf ðxÞÞ

and has an ‘‘absolute continuity’’ property. There
are analogous results for the sum Eu

x of the Oseledets
subspaces corresponding to positive Lyapunov
exponents.

The entropy of a partition P of M is defined by

h�ðf ;PÞ ¼ lim
n!1

1

n
H�ðPnÞ

where Pn is the partition into sets of the form
P = P0 \ f�1(P1) \ � � � \ f�n(Pn) with Pj 2 P and

H�ðPnÞ ¼
X
P2Pn

��ðPÞ log�ðPÞ

The Kolmogorov–Sinai entropy h�(f ) of the system
is the supremum of h�(f ,P) over all partitions P
with finite entropy. The Ruelle–Margulis inequality
says that h�(f ) is bounded above by the average sum
of the positive Lyapunov exponents. A major result
of the theory, Pesin’s entropy formula, asserts that if
the invariant measure � is smooth (e.g., a volume
element) then the two invariants coincide:

h�ðf Þ ¼
Z Xk

j¼1

�þj

 !
d�
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A complete characterization of the invariant mea-
sures for which the entropy formula is true was
given by F Ledrappier and L S Young.

The invariant measure � is called hyperbolic if all
Lyapunov exponents are nonzero at almost every
point. Hyperbolic measures are exact dimensional:
the pointwise dimension

dðxÞ ¼ lim
r!0

log�ðBrðxÞÞ
log r

exists at almost every point, where Br(x) is the
neighborhood of radius r around x. This fact was
proved by L Barreira, Ya Pesin, and J Schmeling. Note
that it means that the measure �(Br(x)) of neighbor-
hoods scales as rd(x) when the radius r is small.

Another remarkable feature of hyperbolic mea-
sures, proved by A Katok, is that periodic motions
are dense in their supports. More than that,
assuming the measure is nonatomic, there exist
Smale horseshoes Hn with topological entropy
arbitrarily close to the entropy h�(f ) of the system.
In this context, the topological entropy h(f , Hn) may
be defined as the exponential rate of growth,

lim
k!1

1

k
log #fx 2 Hn: f kðxÞ ¼ xg

of the number of periodic points on Hn.
Generic Systems

Given any area-preserving diffeomorphism on any
surface M, one may find another whose first
derivative is arbitrarily close to the initial one and
which has Lyapunov exponents identically zero at
almost every point, or else is globally uniformly
hyperbolic (Anosov). This surprising fact was
discovered by R Mañé, and a complete proof was
given by J Bochi. Uniform hyperbolicity means that
the tangent bundle admits a Df-invariant splitting

TM ¼ Es 
 Eu

such that the line bundle Es is uniformly contracted
and Eu is uniformly expanded by the derivative. It is
well known that Anosov diffeomorphisms can only
occur if the surface is the torus T2.

In fact, the theorem of Mañé–Bochi is stronger:
for a residual subset (a countable intersection of
open dense sets) of all once-differentiable area-
preserving diffeomorphisms on any surface, either
the Lyapunov exponents vanish almost everywhere
or the diffeomorphism is Anosov. This shows that
zero Lyapunov exponents are actually quite com-
mon for surface diffeomorphisms that are only once-
differentiable. Moreover, this theorem has been
extended to diffeomorphisms on manifolds with
arbitrary dimension, in a suitable formulation, by
J Bochi and M Viana.

However, this phenomenon should be specific to
systems with low differentiability. Indeed, already
for Hölder-continuous linear cocycles over chaotic
transformations it is known that vanishing Lyapu-
nov exponents can only occur with infinite codimen-
sion. That is, unless the cocycle satisfies an infinite
number of independent constraints, there exists
some positive exponent. By ‘‘chaotic’’ we mean
here that the invariant probability � of the base
transformation is assumed to be hyperbolic and to
have local product structure: it is locally equivalent
to a product of two measures, respectively, along
stable and unstable sets.

Under additional assumptions, one can even prove
that all Lyapunov exponents have multiplicity 1
outside an infinite-codimension subset. This follows
from extensions of the Guivarc’h–Raugi criterion for
certain linear cocycles over chaotic transformations,
obtained by A Avila, C Bonatti, and M Viana.
Strange Attractors

This expression was coined by D Ruelle and
F Takens in their celebrated study on the nature of
fluid turbulence. E Hopf and also L D Landau and
E M Lifshitz had suggested that turbulent motion
arises from the existence in the phase space of
invariant tori carrying quasiperiodic flows with
large number of frequencies. Ruelle and Takens
observed that dissipative systems such as viscous
fluids do not generally have such quasiperiodic tori,
and concluded that turbulence must be credited to a
different mechanism: the presence of some ‘‘strange’’
attractor.

While they did not propose a precise definition,
two main features were mentioned:

1. Complex geometry: a strange attractor is not
reduced to an equilibrium point or a periodic
solution of the system and, generally, should
have a fractal structure.

2. Chaotic dynamics: solutions accumulating on the
attractor should be sensitive to their initial states.

As more examples were found, it became appar-
ent that the above two features do not always come
together. This led to two types of definitions in the
literature, depending on whether one emphasizes the
geometry or the dynamics. We adopt the second
point of view, and propose to define the strange
attractor as one carrying an invariant ergodic
physical measure which has some positive Lyapunov
exponent. The notion of physical measure will be



Lyapunov Exponents and Strange Attractors 355
defined near the end. The condition on the Lyapu-
nov exponent ensures that the dynamics near the
attractor is (exponentially) sensitive to the initial
states.
Lorenz-Like Attractors

The uniformly hyperbolic attractors introduced by
S Smale provided an interesting class of examples of
strange attractors, both chaotic and fractal. Perhaps
more striking, given that they originated from a
concrete problem in fluid dynamics, were the
strange attractors introduced by E N Lorenz. The
Lorenz system of differential equations,

_x ¼ ��xþ �y; � ¼ 10

_y ¼ rx� y� xz; r ¼ 28

_z ¼ xy� bz; b ¼ 8=3

½12�

was derived from Lord Rayleigh’s model for
thermal convection, by Fourier expansion of the
stream function and temperature, and truncation of
all but three modes. Lorenz observed that its
solutions depend sensitively on their initial states.
Consequently, predictions based on the numerical
integration of the equations may turn out to be
very inaccurate, given that the initial data obtained
from experimental measurements are never com-
pletely precise. This remarkable observation
brought the issue of predictability in deterministic
systems to a whole new light and motivated intense
investigation of this and many other chaotic
systems.

The dynamical behavior of the eqns [12] was first
interpreted through certain geometric models where
the presence of strange attractors, both chaotic and
fractal, could be proved rigorously. It was much
harder to prove that the original eqns [12] them-
selves have such an attractor. This was achieved just
a few years ago, by W Tucker, by means of a
computer-assisted rigorous argument. At about the
same time, a mathematical theory of Lorenz-like
attractors in three-dimensional space was developed
by C Morales, M J Pacifico, and E Pujals. In
particular, this theory shows that uniformly hyper-
bolic attractors and Lorenz-like attractors are the
only ones which are robust under all small mod-
ifications of the vector field.
Hénon-Like Attractors

Starting from the work of Lorenz, many models of
strange attractors have been found and described to
some extent, often related to concrete problems.
From a mathematical point of view, it is usually
hard to give even a rough description of the
dynamics in the chaotic regime. However, this was
especially successful for the family of strange
attractors introduced by M Hénon. He considered
a very simple nonlinear system, particularly suited
for numerical experimentation: the transformation

f ðx; yÞ ¼ ð1� ax2 þ by; xÞ ½13�

where a and b are constant parameters. In a
breakthrough, M Benedicks and L Carleson were
able to prove that, for a set of parameter values with
positive probability, this transformation has some
nonhyperbolic attractor such that the orbits accu-
mulating on it are sensitive to the starting point. The
system [13] is also a model for many other
situations, including the phenomenon of creation of
homoclinic motions as parameters unfold, and the
conclusions of Benedicks and Carleson have been
extended to such situations, starting from the work
of L Mora and M Viana.

Moreover, a detailed theory of Hénon-like attrac-
tors has been developed by M Benedicks, M Viana,
D Wang, L S Young, and other authors. It follows
from this theory that these attractors carry an
invariant ergodic probability measure � which
describes the statistical behavior of almost all
trajectories f j(x), j � 1, that accumulate the
attractor:

lim
n!1

1

n

Xn

j¼1

’ðf jðxÞÞ ¼
Z
’ d�

for any continuous function ’. This property
implies that, despite the fact that it is supported
on a zero-volume set, the measure � is, in some
sense, physically observable. For this reason, one
calls it a physical measure. In other words, time
averages along typical orbits in the domain of
attraction coincide with the space averages deter-
mined by the probability �. Another property with
physical relevance is that � is the zero-noise limit of
the stationary measures associated to the Markov
chains obtained by adding random noise to f. One
says that the system (f ,�) is stochastically stable.

See also: Chaos and Attractors; Dissipative Dynamical
Systems of Infinite Dimension; Ergodic Theory; Fractal
Dimensions in Dynamics; Generic Properties of
Dynamical Systems; Gravitational N-Body Problem
(Classical); Homoclinic Phenomena; Hyperbolic
Dynamical Systems; Lagrangian Dispersion (Passive
Scalar); Nonequilibrium Statistical Mechanics: Interaction
between Theory and Numerical Simulations; Random
Dynamical Systems; Synchronization of Chaos.
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Introduction

There is no theory so far of irreversible processes that
is of the same generality as equilibrium statistical
mechanics and presumably it may not exist. While in
equilibrium the Gibbs distribution provides all the
information and no equation of motion has to be
solved, the dynamics plays the major role in none-
quilibrium. The theory illustrated below refers to
stationary states that are not restricted to being close
to equilibrium, and for a wide class of models it can be
shown to be exact. In this case one begins to see the
appearance of some general principles.

In equilibrium statistical mechanics, there is a well-
defined relationship, established by Boltzmann,
between the probability of a state and its entropy.
This fact was exploited by Einstein to study thermo-
dynamic fluctuations. When we are out of equilibrium,
for example, in a stationary state of a system in contact
with two reservoirs, it is not completely clear how to
define thermodynamic quantities such as the entropy
or the free energy. One possibility is to use fluctuation
theory to define their nonequilibrium analogs. In fact
in this way, extensive quantities can be obtained,
although not necessarily simply additive due to the
presence of long-range correlations which seem to be a
rather generic feature of nonequilibrium. This possibil-
ity has been pursued in recent years leading to a
considerable number of interesting results. One can
recognize two main lines.

1. Exact calculations in simplified models. This is
well exemplified by the work of Derrida et al.
(2002).

2. A general treatment of a class of continuous time
Markov chains for which the simplified models
provide examples. This is the point of view
developed by Bertini et al. (2002, 2004).

Both approaches have been very effective and of course
give the same results when a comparison is possible.
The second approach seems to encompass a wide class
of systems and has the advantage of leading to
equations which apply to very different situations.
This is the point of view we shall adopt in the
following. The question whether there are alternative
more natural ways of defining nonequilibrium entro-
pies or free energies is, for the moment, open.
Boltzmann–Einstein Formula

The Boltzmann–Einstein theory of equilibrium ther-
modynamic fluctuations, as described for example in
the book Physique Statistique by Landau–Lifshitz,
states that the probability of a fluctuation from
equilibrium in a macroscopic region of fixed volume
V is proportional to exp{V�S=k}, where �S is the
variation of entropy density in the region calculated
along a reversible transformation creating the
fluctuation and k is the Boltzmann constant.

This formula was derived by Einstein simply by
inverting the Boltzmann relationship between entropy
and probability. He considered this relationship as a
phenomenological definition of the probability of a
state.

Einstein theory refers to fluctuations from an
equilibrium state, that is from a stationary state of a
system isolated or in contact with reservoirs character-
ized by the same chemical potentials so that there is no
flow of heat, electricity, chemical substances, etc.,
across the system. When in contact with reservoirs, �S
is the variation of the total entropy (system þ
reservoirs) which, for fluctuations of constant volume
and temperature, is equal to ��F=T, where �F is the
variation of the free energy of the system and T the
temperature. In the following, we refer to �F=T, our
main object of study, as the entropy and use the letter S
for it but no confusion should arise.

The important question we address is then: what
happens if the system is stationary but not in
equilibrium, that is, flows of physical quantities are
present due to external fields and/or different chemical
potentials at the boundaries? To start with it is not
always clear whether a closed macroscopic dynamical
description is possible. If the system admits such a
description of the kind provided by hydrodynamic
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equations, a fact which can be rigorously established in
simplified models, a reasonable goal is to find an
explicit connection between time-independent thermo-
dynamic quantities (e.g., the entropy) and dynamical
macroscopic properties (e.g., transport coefficients).
As we shall see, the study of large fluctuations provides
such a connection. It leads in fact to a dynamical
theory of the entropy which is shown to satisfy a
Hamilton–Jacobi equation (HJE) in infinitely many
variables requiring the transport coefficients as input.
Its solution is straightforward in the case of homo-
geneous equilibrium states and highly nontrivial in
stationary nonequilibrium states (SNSs). In the first
case we recover a well-known relationship widely used
in the physical and physico-chemical literature. There
are several one-dimensional models, where the HJE
reduces to a nonlinear ordinary differential equation
which, even if it cannot be solved explicitly, leads to
the important conclusion that the nonequilibrium
entropy is a nonlocal functional of the thermodynamic
variables. This implies that correlations over macro-
scopic scales are present. The existence of long-range
correlations is probably a generic feature of SNSs and
more generally of situations where the dynamics is not
time-reversal invariant. As a consequence if we divide
a system into two subsystems, the entropy is not
necessarily simply additive.

The first step toward the definition of a non-
equilibrium entropy is the study of fluctuations in
macroscopic evolutions described by hydrodynamic
equations. In a dynamical setting, a typical question
one may ask is the following: what is the most
probable trajectory followed by the system in the
spontaneous emergence of a fluctuation or in its
relaxation to an equilibrium or a stationary state? To
answer this question, one first derives a generalized
Boltzmann–Einstein formula from which the most
probable trajectory can be calculated by solving a
variational principle. The entropy is related to the
logarithm of the probability of such a trajectory and
satisfies the HJE associated to the variational principle.

For states near equilibrium, an answer to this type of
questions was given by Onsager and Machlup in 1953.
The Onsager–Machlup theory gives the following
result under the assumption of time reversibility of
the microscopic dynamics. In the situation of a linear
hydrodynamic equation and small fluctuations, that is,
close to equilibrium, the most probable creation and
relaxation trajectories of a fluctuation are time
reversals of one another. This conclusion holds also
in nonlinear hydrodynamic regimes and without the
assumption of small fluctuations. This follows from
the study of concrete models. In SNSs, on the other
hand, time-reversal invariance is broken and the
creation and relaxation trajectories of a fluctuation
are not time reversals of one another.
In the following we refer to boundary-driven
stationary nonequilibrium states, for example, a
thermodynamic system in contact with reservoirs
characterized by different temperatures and chemi-
cal potentials, but there is no difficulty in including
an external field acting in the bulk.
Microscopic and Macroscopic Dynamics

We consider many-body systems in the limit of
infinitely many degrees of freedom. The basic general
assumption of the theory is Markovian evolution.
Microscopically, we assume that the evolution is
described by a Markov process X� which represents
the state of the system at time � . This hypothesis
probably is not so restrictive, because the dynamics of
Hamiltonian systems interacting with thermostats
finally is also reduced to the analysis of a Markov
process. Several examples are discussed in the litera-
ture. To be more precise, X� represents the set of
variables necessary to specify the state of the micro-
scopic constituents interacting among themselves and
with the reservoirs. The SNS is described by a
stationary, that is, invariant with respect to time shifts,
probability distribution Pst over the trajectories of X� .

Macroscopically, the usual interpretation of
Markovian evolution is that the time derivatives
of thermodynamic variables _�i at a given instant of
time depend only on the �i’s and the affinities
(thermodynamic forces) @S=@�i at the same instant
of time. Our next assumption can then be
formulated as follows: the system admits a
macroscopic description in terms of density fields
which are the local thermodynamic variables. For
simplicity of notation, we assume that there is
only one thermodynamic variable (e.g., �, the
density). The evolution of the field �= �(t, u),
where t and u are the macroscopic time and
space coordinates (see below), is given by diffu-
sion-type hydrodynamic equations of the form

@t� ¼ 1
2r � Dð�Þr�ð Þ

¼ 1
2

X
1�i; j�d

@ui Di;jð�Þ@uj�
� �

¼ Dð�Þ ½1�

The interaction with the reservoirs appears as
boundary conditions to be imposed on solutions of
[1]. We assume that there exists a unique stationary
solution � of [1], that is, a profile �(u), which
satisfies the appropriate boundary conditions and is
such that D(�) = 0. This holds if the diffusion matrix
Di, j(�) in [1] is strictly elliptic, namely there exists a
constant c > 0 such that D(�) � c (in matrix sense).

These equations derive from the underlying
microscopic dynamics through an appropriate
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scaling limit in which the microscopic time and
space coordinates � , x are rescaled as follows:
t = �=N2, u = x=N, where N represents the linear
size of the system. For lattice systems, N is an
integer. The hydrodynamic equation [1] repre-
sents a law of large numbers with respect to the
probability measure Pst conditioned on an initial
state X0. The initial conditions for [1] are
determined by X0. Of course, many microscopic
configurations give rise to the same value of
�(0, u). In general, �= �(t, u) is an appropriate
limit of a local observable �N(X� ) as the number
N of degrees of freedom diverges.

The hypothesis of Markovian evolution is also the
basis of the 1931 Onsager’s theory of irreversible
processes near equilibrium. Onsager, however, did not
rely on any microscopic model and assumed, near the
equilibrium, linear hydrodynamic equations or regres-
sion equations as he called them. His equations,
ignoring space dependence, were of the form

_�i ¼ �
X

i

Dij�j ½2�

The diffusion matrix D is related to Onsager
transport matrix � and the entropy by the
relationship

D ¼ �s ½3�

where the elements of s are @2S=@�i@�j. The matrix
� is defined by the relationship between flows and
affinities

_�i ¼ �
X

j

�ij
@S

@�j
½4�

The indices ij here label different thermodynamic
variables. The matrix � is symmetric, a property
known as Onsager reciprocity. Equations [2] and [3]
follow by developing the entropy near an equilib-
rium state, that is, by taking a quadratic expression
as an approximation. The minus sign in eqn [4] is
due to our convention in which the entropy has the
same sign as the free energy.

Equation [3] permits to reconstruct the entropy
from the knowledge of the coefficients D and � and
has been widely used especially in physical chem-
istry. In SNSs, eqn [3] is replaced by a Hamilton–
Jacobi-type equation for the entropy.
Dynamical Boltzmann–Einstein Formula

The basic assumption is that the stationary ensemble
Pst admits a principle of large deviations describing
the fluctuations of the thermodynamic variables
appearing in the hydrodynamic equation. This
means the following. The probability that for large
N, the evolution of the random variable �N deviates
from the solution of the hydrodynamic equation and
is close to some trajectory �̂(t) is exponentially small
and of the form

Pst �NðXN 2tð Þ � �̂ðtÞ; t 2 t1; t2�½ Þ

� e�Nd ½Sð�̂ðt1ÞÞþJ½t1; t2 �ð�̂Þ�

¼ e�NdI½t1 ; t2 �ð�̂Þ ½5�

where d is the dimensionality of the system, J(�̂) is a
functional which vanishes if �̂(t) is a solution of [1]
and S(�̂(t1)) is the entropy cost to produce the initial
density profile �̂(t1). We normalize S so that
S(��) = 0. Therefore, J(�̂) represents the extra cost
necessary to follow the trajectory �̂(t). Finally,
�N(XN2t) � �̂(t) means closeness in some metric
and � denotes logarithmic equivalence as N ! 1.
Equation [5] is the dynamical generalization of the
Boltzmann–Einstein formula. Experience with many
models justifies this assumption.

To understand how [5] leads to a dynamical
theory of the entropy, we discuss its properties
under time reversal. Let us denote by � the time
inversion operator defined by �X� = X�� . The prob-
ability measure P	st describing the evolution of the
time-reversed process X	� is given by the composition
of Pst and ��1, that is,

P	st X	�
�
¼ �� ; � 2 ½�1; �2�Þ
¼ Pst X� ¼ ��� ; � 2 ��2;��1½ �ð Þ ½6�

Let L be the generator of the microscopic
dynamics. We remind that L induces the evolution
of observables (functions on the state space) accord-
ing to the equation @�EX0

[f (X� )] = EX0
[(Lf )(X� )],

where EX0
stands for the expectation with respect to

Pst conditioned on the initial state X0.
The time-reversed dynamics, that is, the dynamics

which inverts the direction of the fluxes through the
system, for example, heat flows under this dynamics
from lower to higher temperatures, is generated by
the adjoint L	 of L with respect to the invariant
measure �:

E�½ fLg� ¼ E�½ðL	f Þg� ½7�

The measure �, which is the same for both processes, is
a distribution over the configurations of the system
and formally satisfies �L = 0. The expectation with
respect to � is denoted by E� and f, g are observables.
We note that the probability Pst, and therefore P	st,
depends on the invariant measure �. The finite-
dimensional distributions of Pst are in fact given by

Pst X�1
¼ ��1

; . . . ;X�n
¼ ��n

ð Þ
¼ �ð��1

Þp�2��1
ð��1
! ��2

Þ � � � p�n��n�1
ð��n�1

! �t�n
Þ ½8�
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where p� (�1 ! �2) is the transition probability.
According to [6] the finite-dimensional distributions
of P	st are

P	st X	�1
¼ ��1

; . . . ;X	�n
¼ ��n

� �
¼ �ð��1

Þp	�2��1
ð��1
! ��2

Þ � � � p	�n��n�1
ð��n�1

! �t�nÞ
¼ �ð��n

Þp�n��n�1
ð��n
! ��n�1

Þ � � � p�2��1
ð��2
! ��1

Þ
½9�

In particular, the transition probabilities p� (�1!�2)
and p�

	(�1 ! �2) are related by

�ð�1Þ p� ð�1 ! �2Þ ¼ �ð�2Þ p� 	ð�2 ! �1Þ ½10�

This relationship reduces to the well-known detailed
balance condition if p� (�1!�2) = p�

	(�1!�2).
We require that also the evolution generated by

L	 admits a hydrodynamic description, that we call
the adjoint hydrodynamics, which, however, is not
necessarily of the same form as [1]. In fact, we
consider models in which the adjoint hydrodynamics
is nonlocal in space.

In order to avoid confusion, we emphasize that what
is usually called an equilibrium state for a reversible
dynamics, as distinguished from an SNS, corresponds
to the special case L	= L, that is, the detailed balance
principle holds. In such a case, Pst is invariant under
time reversal and the two hydrodynamics coincide.

We now derive a first consequence of our
assumptions, that is, the relationship between the
functionals I and I	 associated to the dynamics L
and L	 by [5]. From eqn [6], it follows that

I	½t1; t2�ð�̂Þ ¼ I½�t2;�t1�ð��̂Þ ½11�

with obvious notations. More explicitly, this equa-
tion reads

Sð�̂ðt1ÞÞ þ J	½t1; t2�ð�̂Þ ¼ Sð�̂ðt2ÞÞ þ J½�t2;�t1�ð��̂Þ ½12�

where �̂(t1), �̂(t2) are the initial and final points of
the trajectory and S(�̂(ti)) the entropies associated
with the creation of the fluctuations �̂(ti) starting
from the SNS. The functional J	 vanishes on the
solutions of the adjoint hydrodynamics. To compute
J	, it is necessary to know the entropy S.

We consider now the following physical situation.
The system is macroscopically in the stationary state
�� at t =�1, but at t = 0 we find it in the state �. We
want to determine the most probable trajectory
followed in the spontaneous creation of this fluctua-
tion. According to [5], this trajectory is the one that
minimizes J among all trajectories �̂(t) connecting ��
to � in the time interval [�1, 0]. From [12],
recalling that S(��) = 0, we have that

J½�1; 0�ð�̂Þ ¼ Sð�Þ þ J	½0;1�ð��̂Þ ½13�
The right-hand side is minimal if J	[0,1](��̂) = 0, that
is, if ��̂ is a solution of the adjoint hydrodynamics.
The existence of such a relaxation solution is due to
the fact that the stationary solution �� is attractive
also for the adjoint hydrodynamics. We have there-
fore the following consequences:

In a SNS the spontaneous emergence of a macroscopic
fluctuation takes place most likely following a trajec-
tory which is the time reversal of the relaxation path
according to the adjoint hydrodynamics.

This implies that the entropy is related to J by

Sð�Þ ¼ inf
�̂

J½�1; 0�ð�̂Þ ½14�

where the minimum is taken over all trajectories �̂(t)
connecting �� to �.

We note that the reversibility of the microscopic
process X� , which we call microscopic reversibility,
is not needed in order to deduce the Onsager–
Machlup result (i.e., that the trajectory which
creates the fluctuation is the time reversal of the
relaxation trajectory). In fact, Onsager–Machlup
result holds if and only if the hydrodynamics
coincides with the adjoint hydrodynamics, which
we call macroscopic reversibility. Indeed, it is
possible to construct microscopic nonreversible
models, L 6¼ L	, in which the hydrodynamics and
the adjoint hydrodynamics coincide.

Spontaneous fluctuations, including Onsager–
Machlup time-reversal symmetry, have been
observed in stochastically perturbed reversible elec-
tronic devices. In nonreversible systems, an asym-
metry between the emergence and the relaxation of
fluctuations has been observed. The above discus-
sion provides the explanation.
The Hamilton–Jacobi Equation and Its
Consequences

We assume that the functional J has a density (which
plays the role of a Lagrangian), that is,

J½t1; t2�ð�̂Þ ¼
Z t2

t1

dtL �̂ðtÞ; @t�̂ðtÞð Þ ½15�

Let us introduce the Hamiltonian H(�, H) as the
Legendre transform of L(�, @t�), that is,

Hð�;HÞ ¼ sup
�
h�;Hi � Lð�; �Þf g ½16�

where h� , �i denotes integration with respect to the
macroscopic space coordinates u.
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Noting that H(��, 0) = 0, the Hamilton–Jacobi
equation associated to [14] is

H �;
	S

	�

� �
¼ 0 ½17�

This is an equation for the functional derivative
C(�) = 	S=	�, but not all the solutions of the
equation H(�, C(�)) = 0 are the derivatives of some
functional. Of course, only those which are the
derivative of a functional are relevant for us.

We now specify the Hamilton–Jacobi equation
[17] for boundary-driven lattice gases. For models
with purely diffusive hydrodynamics [1], we expect
a quadratic large deviation functional of the form

J½t1;t2�ð�̂Þ ¼
1

2

Z t2

t1

dt r�1 @t�̂�Dð�Þð Þ;
�

�ð�̂Þ�1r�1 @t�̂�Dð�Þð Þi ½18�

where D(�) is the right-hand side of the hydrody-
namic equation [1], and by r�1f we mean a vector
field whose divergence equals f. The form [18], which
can be derived for several models, is expected to be
very general: the functional J(�̂) measures how much
�̂ differs from a solution of the hydrodynamics [1].
The matrix �(�) =�(�) with �(�) has the same role in
our more general context, as the Onsager matrix in
[4]. This form of J is also typical for diffusion
processes described by finite-dimensional Langevin
equations (Freidlin–Wentzell theory).

In this case, the Lagrangian L is quadratic in
@t�̂(t) and the associated Hamiltonian is given by

Hð�; HÞ ¼ 1
2 rH; �ð�ÞrHh i þ H;Dð�Þh i ½19�

so that the Hamilton–Jacobi equation [17] takes the
form

1

2
r 	S
	�
; �ð�Þr 	S

	�

	 

þ 	S

	�
;Dð�Þ

	 

¼ 0 ½20�

As is well known in mechanics, the Hamilton–Jacobi
equation has many solutions and we must give a
criterion to select the correct one. The criterion
which the correct solution has to satisfy is that it
must be a Lyapunov function with respect to the
unique stationary state.

It is a simple calculation to show that eqn [3] follows
from HJE, if we look for a solution which is a local
function of �. This is the right choice in equilibrium
where correlations over macroscopic distances are not
expected if the microscopic forces are short range.

Out of equilibrium, it has been shown by direct
calculation that for a special model, the symmetric
simple exclusion, the entropy is a nonlocal function
of the thermodynamic variables, that is, space
correlations extend to macroscopic distances. This
result can be derived in a simple way from HJE as
we will discuss later.

Lattice gases which do not conserve the number
of particles do not give rise in general to a purely
diffusive hydrodynamics but rather to a reaction
diffusion equation. In this case, the large deviation
functional will not have the quadratic form [18] and
also the HJE will not be quadratic. An example in
which particles can be created and destroyed is the
so-called Kawasaki–Glauber dynamics. In this case,
HJE has exponential nonlinearities.
Nonequilibrium Fluctuation Dissipation Relation

We now derive a twofold generalization of the
celebrated fluctuation dissipation relationship: it is
valid in nonequilibrium states and in nonlinear
regimes.

Such a relationship will hold provided the rate
function J	 of the time-reversed process is of the form
[18] withD replaced byD	, the adjoint hydrodynamics,

@t� ¼ D	ð�Þ ½21�

with the same boundary conditions as [1].
If J	 has the form

J	½t1;t2�ð�̂Þ ¼
1

2

Z t2

t1

dt ðr�1 @t�̂�D	ð�̂Þð Þ;
�

�ð�̂Þ�1r�1 @t�̂�D	ð�̂Þð Þi ½22�

by taking the variation of eqn [12], we get

Dð�Þ þ D	ð�Þ ¼ r � �ð�Þr 	S
	�

� �
½23�

This relation can be verified explicitly for the
nonequilibrium zero-range process which we discuss
later and holds for several other models. It is also
easy to check that the linearization of [23] around
the stationary profile �� yields a fluctuation dissipa-
tion relationship which reduces to the usual one in
equilibrium.

The fluctuation dissipation relation [23] can be used
to obtain the adjoint hydrodynamics from D(�) and
	S=	�; the first is usually known and the second can be
calculated from the Hamilton–Jacobi equation.
H Theorem

We show that the functional S is decreasing along
the solutions of both the hydrodynamic equation [1]
and the adjoint hydrodynamics

@t� ¼ D	ð�Þ ¼ r � �ð�Þr 	S
	�

� �
�Dð�Þ ½24�
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Let �(t) be a solution of [1] or [24]; by using the
Hamilton–Jacobi equation [20], we get

d

dt
Sð�ðtÞÞ ¼ 	S

	�
ð�ðtÞÞ; @t�ðtÞ

	 


¼� 1

2
r 	S
	�
ð�ðtÞÞ; �ð�ðtÞÞr 	S

	�
ð�ðtÞÞ

	 


� 0 ½25�

In particular, we have that (d=dt)S(�(t)) = 0 if and
only if (	S=	�)(�(t)) = 0.

We remark that the right-hand side of [25]
vanishes in the stationary state, that is, there is no
internal entropy production due to the evolution.
On the other hand, there is a steady entropy
production due to the differences in the chemical
potentials of the reservoirs. This is not discussed in
this article.

Decomposition of Hydrodynamics

There is a structural property of hydrodynamics
which follows from the HJE. The hydrodynamic
equation can be decomposed as the sum of a
gradient vector field and a vector field A orthogonal
to it in the metric induced by the operator K�1,
where Kf = �r � (�(�)rf ), namely

Dð�Þ ¼ 1

2
r � �ð�Þr 	S

	�

� �
þAð�Þ ½26�

with

K
	S

	�
;K�1Að�Þ

	 

¼ 	S

	�
;Að�Þ

	 

¼ 0

Similarly, using the fluctuation dissipation rela-
tionship [23] for the adjoint hydrodynamics, we
have

D	ð�Þ ¼ 1

2
r � �ð�Þr 	S

	�

� �
�Að�Þ ½27�

Since A is orthogonal to 	S=	�, it does not contribute
to the entropy production. The vector field A is odd
under time reversal like a magnetic force.

Both terms of the decomposition vanish in the
stationary state, that is, when �= ��. Whereas in
equilibrium the hydrodynamics is the gradient flow of
the entropy S, the term A(�) is characteristic of
nonequilibrium states. Note that, for small fluctuations
� � ��, small differences in the chemical potentials at
the boundaries, A(�) becomes a second-order quantity
and Onsager theory is a consistent approximation.

Equation [26] is interesting because it separates
the dissipative part of the hydrodynamic evolution
associated to the thermodynamic force 	S=	� and
provides therefore an important physical informa-
tion. Notice that the thermodynamic force 	S=	�
appears linearly in the hydrodynamic equation
even when this is nonlinear in the macroscopic
variables.

In general, the two terms of the decomposition
[26] are nonlocal in space even if D is a local
function of �. This is the case for the simple
exclusion process discussed later. Furthermore
while the form of the hydrodynamic equation does
not depend explicitly on the chemical potentials,
	S=	� and A do.

To understand how the decomposition [26] arises
microscopically, let us consider a stochastic lattice
gas. Let

L ¼ 1
2ðLþ L	Þ þ 1

2 ðL� L	Þ ½28�

be its Markov generator, where L	 is the adjoint of
L with respect to the invariant measure, namely the
generator of the time-reversed microscopic
dynamics. The term L� L	 behaves like a Liouville
operator, that is, it is anti-Hermitian and, in the
scaling limit, produces the term A in the hydro-
dynamic equation. This can be verified explicitly in
the boundary-driven zero-range model introduced in
the next section.

Since the adjoint generator can be written as
L	= (Lþ L	)=2� (L� L	)=2, the adjoint hydro-
dynamics must be of the form [27]. In particular, if
the microscopic generator is self-adjoint, we getA= 0
and thus D(�) =D	(�). On the other hand, it may
happen that microscopic nonreversible processes,
namely for which L 6¼ L	, can produce macroscopic
reversible hydrodynamics if L� L	 does not con-
tribute to the hydrodynamic limit.

The decompositions [26] and [27] remind of the
electrical conduction in the presence of a magnetic
field. Consider the motion of electrons in a
conductor: a simple model is given by the effective
equation

_p ¼ �e Eþ 1

mc
p ^H

� �
� 1

�
p ½29�

where p is the momentum, e the electron charge, E
the electric field, H the magnetic field, m the mass,
c the velocity of the light, and � the relaxation time.
The dissipative term p=� is orthogonal to the
Lorentz force p ^H. We define time reversal as the
transformation p 7! �p, H 7! �H. The adjoint evo-
lution is given by

_� ¼ e Eþ 1

mc
p ^H

� �
� 1

�
p ½30�
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where the signs of the dissipation and the electro-
magnetic force transform in analogy to [26] and
[27].

Let us consider in particular the Hall effect where
we have conduction along a rectangular plate
immersed in a perpendicular magnetic field H with
a potential difference across the longer side. The
magnetic field determines a potential difference
across the other side of the plate. In our setting on
the contrary, it is the difference in chemical
potentials at the boundaries that introduces in the
equations a ‘‘magnetic-like’’ term. There is therefore
a kind of equivalence between certain externally
applied fields and driving the system at the
boundaries.
Minimum Dissipation Principle

In 1931 Onsager formulated, within his near
equilibrium theory, a variational principle which
shows that the hydrodynamic evolution minimizes
at each instant of time a quadratic functional of �̇.
He called this the ‘‘minimum dissipation principle.’’
We now show that the decomposition of the
previous subsection leads to a natural exact general-
ization of this principle. We want to construct a
functional of the variables � and �̇ such that the
Euler equation associated to the vanishing of the
first variation under arbitrary changes of �̇ is the
hydrodynamic equation [1]. We define the ‘‘dissipa-
tion function’’

Fð�; _�Þ ¼ ð _��Að�ÞÞ;K�1ð _��Að�ÞÞ
� �

½31�

and the functional

�ð�; _�Þ ¼ _Sð�Þ þ Fð�; _�Þ

¼ 	S

	�
; _�

	 

þ ð _��Að�ÞÞ;h

K�1ð _��Að�ÞÞi ½32�

which generalize the corresponding Onsager’s defi-
nitions (Onsager 1931a, b). The operator K has been
defined in the previous subsection.

It is easy to verify that

	 _�� ¼ 0 ½33�

is equivalent to the hydrodynamic equation [1].
Furthermore, a simple calculation gives

Fj _�¼Dð�Þ ¼
1

4
r 	S
	�
; �ð�Þr 	S

	�

	 

½34�

that is, 2F on the hydrodynamic trajectories equals
the entropy production rate as in Onsager’s near
equilibrium approximation.
The dissipation function for the adjoint hydro-
dynamics is obtained by changing the sign of A
in [31].
Entropy and Optimal Control

There is an interesting interpretation of the entropy
as a minimal cost to produce a fluctuation by
externally acting on the system. The idea is to show
that there exists a cost function which on the optimal
control trajectory coincides with the entropy differ-
ence with respect to the stationary state.

We add an external perturbation v to the
hydrodynamic equation

@t� ¼ 1
2r � Dð�Þr�ð Þ þ v ¼ Dð�Þ þ v ½35�

We want to choose v so as to drive, with minimal
cost, the system from its stationary state �� to an
arbitrary state �. A simple cost function is

1

2

Z t2

t1

dshvðsÞ;K�1ð�ðsÞÞvðsÞi ½36�

where �(s) is the solution of [35] and we recall that
K(�)f =�r � (�(�)rf ). More precisely, given
�(t1) = ��, we want to drive the system to �(t2) = �
by an external field v which minimizes [36]. This is
a standard problem in control theory. Let

Vð�Þ ¼ inf
1

2

Z t2

t1

dshvðsÞ;K�1ð�ðsÞÞvðsÞi ½37�

where the infimum is taken with respect to all fields
v which drive the system to � in an arbitrary time
interval [t1, t2]. The optimal field v can be obtained
by solving the Bellman equation which reads

min
v

1

2
hv;K�1ð�Þvi � Dð�Þ þ v;

	V
	�

	 
� 

¼ 0 ½38�

It is easy to express the optimal v in terms of V; we
get

v ¼ K
	V
	�

½39�

Hence, [38] now becomes

1

2

	V
	�
;Kð�Þ 	V

	�

	 

þ Dð�Þ; 	V

	�

	 

¼ 0 ½40�

By identifying the cost functional V(�) with S(�), eqn
[40] coincides with the Hamilton–Jacobi equation [20].

By inserting the optimal v [39] in [35] and
identifying V with S, we get that the optimal
trajectory �(t) solves the time-reversed adjoint
hydrodynamics, namely

@t� ¼ �D	ð�Þ ½41�
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The trajectory of the spontaneous emergence of a
fluctuation coincides therefore with the trajectory of
minimal cost for the optimal control. The optimal
field v does not depend on the nondissipative part A
of the hydrodynamics.
Models

The general theory will now be illustrated by briefly
describing models where it has been successfully
applied. We consider examples of different nature in
order to emphasize the generality and flexibility of
the point of view developed in the previous section.

We have chosen three examples in which the
theory is used in different ways. The first one, the
zero-range process, can be solved in a simple way so
that the theory can be verified in detail. In the second
one, the symmetric simple exclusion, we derive from
the HJE a nonlinear ordinary differential equation
first obtained by Derrida, Lebowitz, and Speer
through a direct rather complex calculation. This
equation implies the nonlocality of the entropy in the
SNS of this model. The third model, the Kawasaki–
Glauber dynamics, provides the illustration of two
aspects. Nonlocality of the entropy, that is, long-
range correlations, can appear in isolated equilibrium
states if the microscopic dynamics is not time-reversal
invariant. This means that long-range correlations as
a signature of time-reversal violation are not
restricted to SNSs. The second aspect to be under-
lined is the effectiveness of the HJE in a more
complex case: in fact in this model, the number of
particles is not conserved which leads to a very
complicated structure of the HJE.

As a general comment, we emphasize that
dynamics microscopically different but leading to
the same macroscopic description, in particular the
same hydrodynamics and large deviation functional,
are indistinguishable for the theory which is purely
macroscopic.

Zero Range

We consider the so-called zero-range process
which models a nonlinear diffusion of a lattice
gas. The model is described by a positive integer
variable 
� (x) representing the number of particles
at site x and time � of a finite lattice which for
simplicity we assume one dimensional. The parti-
cles jump with rates g(
(x)) to one of the nearest-
neighbor sites xþ 1, x� 1 with probability 1/2.
The function g(k) is nondecreasing and g(0) = 0.
We assume that our system interacts with two
reservoirs of particles in positions N and �N with
rates pþ and p�, respectively. This model can be
solved exactly and the previous theory can be
checked in full detail.

Let us introduce the macroscopic coordinates,
time t = �=N2 and space u = x=N. To describe the
macroscopic dynamics, we introduce the empirical
density

�Nðt; uÞ ¼
1

N

XN
x¼�N


N2tðxÞ	ðu� x=NÞ ½42�

where 	(u� x=N) is the Dirac 	. One can prove that in
the limit N ! 1, the empirical density [42] tends in
probability to a continuous function �t(u), which
satisfies the following hydrodynamic equation:

@t� ¼ 1
2��ð�Þ ¼ Dð�Þ ½43�

where �(�) can be explicitly defined in terms of the
rates g(
). The boundary conditions for [43] are
�(�(t, 
1)) = p
.

The adjoint hydrodynamics is

@t� ¼
1

2
��ð�Þ � �r �ð�Þ

�ðuÞ

� 

¼ D 	ð�Þ ½44�

with

�ðuÞ ¼ pþ � p�
2

uþ pþ þ p�
2

and

� ¼ pþ � p�
2

The boundary conditions for [44] are the same as
for [43]. The second term on the right-hand side of
[44] is proportional to the difference of the chemical
potentials and produces an inversion of the particle
flux. The action functionals J(�̂) and J	(�̂) for this
model have been computed and have the form [18]
and [22], respectively, with �(�) =�(�). The entropy
S(�) can be easily computed directly from the
expression of the invariant measure which is of
product type and is known explicitly:

Sð�Þ ¼
Z 1

�1

du �ðuÞ log
�ð�ðuÞÞ
�ðuÞ

�

� log
Zð�ð�ðuÞÞÞ

Zð�ðuÞÞ

�
½45�

where

Zð�Þ ¼ 1þ
X1
k¼1

�k

gð1Þ � � � gðkÞ

It is easy to verify that it solves the HJE. Due to the
special zero-range character of the interaction in this
model, there are no long-range correlations in
nonequilibrium states.
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Simple Exclusion

The simple exclusion process is a model of a lattice
gas with an exclusion principle: a particle can move
to a neighboring site, with rate 1/2 for each side,
only if this is empty. We consider again a one-
dimensional case and we denote by 
x(�) 2 {0, 1} the
number of particles at the site x at (microscopic)
time � . The system is in contact with particle
reservoirs at the boundaries 
N where a particle is
created with rates p
 if the boundary site is empty
and is destroyed 1� p
 if it is occupied. In contrast
to the zero-range model, the invariant measure
carries long-range correlations making the entropy
nonlocal.

The hydrodynamic equation for the simple exclu-
sion process can be derived as for the zero-range
process; in fact, it is easier in this case because a
simple computation leads directly to a closed
equation for the empirical density which is defined
as in [42] except that the variable 
 now takes only
the values 0 or 1. We find that the limiting density
evolves according to the linear heat equation

@t�ðt; uÞ ¼ 1
2��ðt; uÞ ¼ Dð�Þ ½46�

with boundary conditions

�ðt;
1Þ ¼ p

1þ p


¼ �


In this case, the density of particles � takes values
in [0,1]. We use the HJE to calculate the entropy.
For this model, we have �(�) = �(1� �). We show
that the solution of the HJE for S(�) (which is a
functional derivative equation) can be reduced to the
solution of an ordinary differential equation.

The Hamilton–Jacobi equation for the simple
exclusion process is

r 	S
	�
; �ð1� �Þr 	S

	�

	 

þ 	S

	�
;��

	 

¼ 0 ½47�

We look for a solution of the form

	S

	�ðuÞ ¼ log
�ðuÞ

1� �ðuÞ � �ðu; �Þ ½48�

for some functional �(u; �) to be determined satisfy-
ing the boundary conditions

�ð
1Þ ¼ log
�


1� �


in the space variable. The first term on the right-
hand side is the derivative of the equilibrium
entropy, that is for boundary conditions ��= �þ.

Inserting [48] into [47], we get (note that
�� e�=(1þ e�) vanishes at the boundary)
0 ¼� r log
�

1� �� �
� �

; �ð1� �Þr�
	 


¼� r�;r�h i þ �ð1� �Þ; ðr�Þ2
D E

¼� r �� e�

1þ e�

� �
;r�

	 


� �� e�

1þ e�

� �
�� 1

1þ e�

� �
; ðr�Þ2

	 


¼ �� e�

1þ e�

� �
; ��þ ðr�Þ

2

1þ e�
� �ðr�Þ2

 !* +

We obtain a nontrivial solution of the Hamilton–
Jacobi if we solve the following ordinary differential
equation, corresponding to the vanishing of the right
side of the scalar product, which relates the
functional �(u) =�(u; �) to �:

��ðuÞ
½r�ðuÞ�2

þ 1

1þ e�ðuÞ
¼ �ðuÞ; u 2 ð�1; 1Þ

�ð
1Þ ¼ log
�


1� �


½49�

It is clear that � is a nonlocal functional of �. A
computation shows that the derivative of the
functional

Sð�Þ ¼
Z

du

�
� log �þ ð1� �Þ logð1� �Þ

þð1� �Þ�� logð1þ e�Þ þ log
r�
r��




is given by [48] when �(u; �) solves [49].
Kawasaki–Glauber Dynamics

The model consists of particles on a lattice evolving
according to two basic dynamical processes:

1. a particle can move to a neighboring site if this is
empty as in the simple exclusion and

2. a particle can disappear in an occupied site or be
created if this is empty, the rate depending on the
nearby configuration.

The first process is conservative while the second is
not.

As before the object of our study is the empirical
density [42]. It is possible to show that as N goes to
infinity, �(t, u) is a solution of

@t� ¼ 1
2��þ Bð�Þ �Dð�Þ ½50�

with

Bð�Þ ¼ E
�ðcð
Þð1� 
ð0ÞÞÞ ½51�

Dð�Þ ¼ E
�ðcð
Þ
ð0ÞÞ ½52�
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where 
� is the Bernoulli product distribution with
parameter �. Typically, B(�) and D(�) are poly-
nomials in �. For this model we consider equilibrium
states so that we can take periodic boundary
conditions. An equilibrium state corresponds to a
density �� which is the solution of the equation
B(�) = D(�) and gives a minimum of the potential
V(�) =

R �
[D(�0)� B(�0)]d�0. We admit potentials

with several minima. The Hamiltonian associated
to the large deviation functional for this model is not
quadratic:

Hð�;HÞ ¼
Z

du

�
1

2
H��þ 1

2
ðrHÞ2�ð1� �Þ

� Bð�Þð1� exp HÞ �Dð�Þ

� ð1� expð�HÞÞ



½53�

where H has the role of the conjugate momentum.
The Hamilton–Jacobi equation

H �;
	S

	�

� �
¼ 0 ½54�

is therefore very complicated but can be solved by
successive approximations using as an expansion
parameter �� ��, where �� is a solution of B(�) = D(�)
that is a stationary solution of hydrodynamics. For
�= ��, we have 	S=	�= 0. We are looking for an
approximate solution of [54] of the form

Sð�Þ ¼ 1

2

Z
du

Z
dvð�ðuÞ � ��Þkðu; vÞð�ðvÞ � ��Þ

þ oð�� ��Þ2 ½55�

The kernel k(u, v) is the inverse of the density
correlation function c(u, v).Z

cðu; yÞkðy; vÞ dy ¼ 	ðu� vÞ ½56�

By inserting [55] in [54], one can show that k(u, v)
satisfies the following equation:

1
2 ��ð1� ��Þ�ukðu; vÞ � b0kðu; vÞ
� 1

2�u	ðu� vÞ þ ðd1 � b1Þ	ðu� vÞ ¼ 0 ½57�

where

b1 ¼ B0ð�Þj�¼��; d1 ¼ D0ð�Þj�¼��

and
b0 ¼ Bð��Þ ¼ Dð��Þ ¼ d0 ½58�
If the entropy is a local functional of the density,
k(u, v) must be of the form k(u, v) = f (��)	(u� v)
which inserted in [57] gives

f ð��Þ ¼ ½��ð1� ��Þ��1 ½59�

and

b0½��ð1� ��Þ��1 � ðd1 � b1Þ ¼ 0 ½60�

Therefore if b0, b1, d1 do not satisfy the last
equation, the entropy cannot be a local functional
of the density. It can be shown that in this case time-
reversal invariance is violated and the adjoint
hydrodynamics is different from [50]. This calcula-
tion supports the conjecture that macroscopic
correlations are a generic feature of equilibrium
states of nonreversible lattice gases.

See also: Interacting Particle Systems and
Hydrodynamic Equations; Interacting Stochastic Particle
Systems; Nonequilibrium Statistical Mechanics
(Stationary): Overview; Quantum Central-Limit Theorems.
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Introduction

Nuclear magnetic resonance (NMR) is a subtle
quantum-mechanical phenomenon that, through
magnetic resonance imaging (MRI), has played a
major role in the revolution in medical imaging over
the last 30 years. Before being conceived for use in
imaging, NMR was employed by chemists to do
spectroscopy, and it remains a very important tech-
nique for determining the structure of complex
chemical compounds like proteins. In this article we
explain how NMR is used to create an image of a
three-dimensional object. Scant attention is paid to
both NMR spectroscopy, and the quantum descrip-
tion of NMR. Those seeking a more complete
introduction to these subjects should consult the
article Nuclear Magnetic Resonance in this Encyclo-
pedia, as well as the monographs of Abragam (1983)
or Ernst et al. (1987), for spectroscopy, and that of
Callaghan (1993) for imaging. All three books
consider the quantum-mechanical description of
these phenomena. Comprehensive discussions of
MRI can be found in Bernstein et al. (2004) and
Haacke et al. (1999), and a historical appreciation of
the development of MRI is given in Wehrli (1995).

The Bloch Equation

We begin with the Bloch phenomenological equa-
tion, which provides a model for the interactions
between applied magnetic fields and the nuclear
spins in the objects under consideration. This is a
macroscopic averaged model that describes the
interaction of aggregates of spins, called isochro-
mats, with applied magnetic fields. An isochromat is
a collection of ‘‘like’’ spins, which is spatially large
on the atomic scale, but very small on the scale of
the variations present in the applied magnetic fields.
Spins are alike if they belong to the same species and
are in the same chemical environment. There may be
several different classes of spins, but, in this article,
it is assumed that they are noninteracting and so it
suffices to consider each separately. Heretofore, we
suppose that there is a single class of like spins. The
distribution of isochromats for these spins is
described macroscopically by the spin density

function, which we denote by �(x, y, z). In most
medical applications, one is imaging the distribution
of spins arising from hydrogen protons in water
molecules.

The state of the isochromat at spatial location
(x, y, z) is given by a 3-vector:

Mðx; y; zÞ¼ ðm1ðx; y; zÞ;m2ðx; y; zÞ;m3ðx; y; zÞÞ

which is interpreted as the magnetic moment per
unit volume. It is an ensemble mean of the quantum
dipoles caused by the spins within the isochromat. In
most applications of NMR to imaging, the applied
magnetic field is described as the sum of a large,
time-independent field, B0(x, y, z), and smaller time-
dependent fields, B0(x, y, z; t). In the presence of a
static field, thermal fluctuations cause the nuclear
spins to slightly prefer an orientation aligned with
the field. Using the Boltzmann distribution, one
obtains that the nuclear paramagnetic susceptibility
of water protons is given by

�¼ �h2
�2

4kBT
½1�

here �h is Planck’s constant, kB the Boltzmann’s
constant, and T the absolute temperature, (see Levitt
(2001)). The constant � is called the gyromagnetic
(or magnetogyric) ratio. For a proton,

� � 2�� 42:5764� 106 rad s�1 T�1 ½2�

For water molecules at room temperature,
� � 3.6� 10�9.

If the sample is held stationary in the field B0 for a
sufficiently long time, then the spins become
polarized and a bulk magnetic moment appears;
this is called the equilibrium magnetization:

M0ðx; y; zÞ¼��ðx; y; zÞB0ðx; y; zÞ ½3�

The Bloch equation describes the evolution of M
under the influence of the applied field B = B0 þ B0:

dMðx; y; z; tÞ
dt

¼ �Mðx; y; z; tÞ � Bðx; y; z; tÞ

� 1

T2
M?ðx; y; z; tÞ þ 1

T1
ðM0ðx; y; zÞ

�Mkðx; y; z; tÞÞ ½4�

Here � is the vector cross-product, M?(x, y, z; t)
the component of M(x, y, z; t) perpendicular to
B0(x, y, z) (called the transverse component), and
Mk the component of M parallel to B0 (called the
longitudinal component). For hydrogen protons in
other molecules, the gyromagnetic ratio is expressed
in the form (1� �)�. The coefficient � is called the
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nuclear shielding; it is typically between �10�4 and
þ10�4. The difference in the nuclear shielding causes
a shift in the resonance frequency by ��.

The second and third terms in eqn [4] are
relaxation terms. They provide a phenomenologi-
cal model for the averaged interactions of the spins
with one another and their environment. The
coefficient 1=T1(x, y, z) is the spin lattice relaxation
rate; it describes the rate at which the magnetiza-
tion returns to equilibrium. The coefficient
1=T2(x, y, z) is the spin–spin relaxation rate; it
describes the rate at which the transverse compo-
nents of M decay. The physical processes causing
these relaxation phenomena are different and so
are the rates themselves, with T2 less than T1. The
relaxation rates largely depend on the localized
thermal fluctuations of the molecules and provide
a useful contrast mechanism in MR imaging.
Spin–spin relaxation occurs very rapidly in solids
(<1 ms) and, therefore, we usually assume that we
are imaging liquid-like materials such as water
protons in soft mammalian tissues. In this case, T2

takes values in the 40 ms to 4 s range. Notice that
this model does not include any explicit interac-
tion between isochromats at different spatial
locations. A variety of such interactions exist,
but, at least in liquid-like materials, they lead only
to small corrections in the Bloch equation model.
A derivation of the Bloch equation from the
Schrödinger equation can be found in Abragam
(1983) and Slichter (1990). For coupled systems,
the Bloch equation formalism breaks down and a
full quantum-mechanical treatment is necessary
(see Nuclear Magnetic Resonance and Ernst et al.
(1983)).

Much of the analysis in NMR imaging amounts to
understanding the behavior of solutions to eqn [4]
with different choices of B. We now consider some
important special cases. The simplest case occurs if
B has no time-dependent component; then this
equation predicts that the sample becomes polarized
with the transverse part of M decaying as e� t=T2 ,
and the longitudinal component approaching the
equilibrium magnetization, M0, as 1� e� t=T1 . To
simplify the subsequent discussion, we assume that
the field B0 is homogeneous with B0 = (0, 0, b0). If
B = B0 and we omit the relaxation terms (set
T1 = T2 =1 in [4]), then an initial magnetization
M(x, y, z; 0) simply precesses about B0 at angular
frequency !0 = �b0 : M(x, y, z; t) = U(t) M(x, y, z; 0),
with

UðtÞ ¼
cos!0t � sin!0t 0
sin!0t cos!0t 0

0 0 1

2
4

3
5 ½5�

The frequency !0 is called the Larmor frequency;
this precession of M about the axis of B0 is the
resonance phenomenon referred to as NMR. In
typical medical imaging systems, b0 is between 1
and 3 T and the corresponding resonance frequency
is between 40 and 120 MHz.

Typically, the field B takes the form

B ¼ B0 þ ~Gþ B1 ½6�

where ~G is a gradient field and B1 is a radio-
frequency (RF) field. Usually, the gradient fields are
‘‘piecewise time-independent’’ fields, small relative
to B0. By piecewise time-independent field, we
mean a collection of static fields that, in the course
of the experiment, are turned on and off. The B1

component is a time-dependent RF field, nominally
at right angles to B0. It is usually taken to be
spatially homogeneous, with time dependence of
the form

B1ðtÞ ¼ UðtÞ
�ðtÞ
�ðtÞ

0

0
@

1
A ½7�

The functions � and � define an envelope that
modulates the time-harmonic field, [ cos!0t,
sin!0t, 0]. They are supported in a finite interval
[t0, t1], that is, the B1 field is ‘‘turned on’’ for a finite
period of time. The change in the state of the
magnetization between t0 and t1 is called the RF
excitation. It may be spatially dependent.

In light of [5] it is convenient to introduce the
rotating reference frame. We replace M with m,
where m(x, y, z; t) = U(t)�1 M(x, y, z; t). It is a classi-
cal result of Larmor, that if M satisfies [4], then m
satisfies

dmðx; y; z; tÞ
dt

¼ �mðx; y; z; tÞ � Beffðx; y; z; tÞ

� 1

T2
m?ðx; y; z; tÞ þ 1

T1
ðM0ðx; y; zÞ

�mkðx; y; z; tÞÞ ½8�

where

Beff ¼UðtÞ�1B� 0; 0;
!0

�

� �

As ~G is much smaller than B and quasistatic, it turns
out that one can ignore the components of ~G
orthogonal to B0. Indeed, in imaging applications,
one usually assumes that the components of ~G
depend linearly on (x, y, z) with the ẑ-component
given by h(x, y, z), (g1, g2, g3)i. The constant vector
G = (g1, g2, g3) is called the gradient vector. With
B0 = (0, 0,b0) and B1 given by [7], we see that Beff

can be taken to equal (0, 0, h(x, y, z), Gi)þ (�,�, 0).
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In the remainder of this article, we assume that Beff

takes this form.
If G = 0 and � � 0, then the solution operator for

Bloch’s equation, without relaxation terms, is

VðtÞ ¼
1 0 0
0 cos 	ðtÞ sin 	ðtÞ
0 � sin 	ðtÞ cos 	ðtÞ

2
4

3
5 ½9�

where

	ðtÞ ¼
Z t

0

�ðsÞ ds ½10�

This is simply a rotation about the x-axis through
the angle 	(t). If B1 6¼ 0 for t 2 [0, 
], then the
magnetization is rotated through the angle 	(
).
Thus, RF excitation can be used to move the
magnetization out of its equilibrium state. As we
shall soon see, this is crucial for obtaining a
measurable signal. Note that the equilibrium mag-
netization is a tiny perturbation of the very large
field B0 and is, therefore, in practice not directly
measurable. Only the precessional motion of the
transverse components of M produces a measurable
signal. More general B1 fields, that is, with both �
and � nonzero, have more complicated effects on the
magnetization. In general, the angle between M and
M0 at the conclusion of the RF excitation is called
the flip angle.

If, on the other hand, B1 = 0 and Gl = (0, 0,
l(x, y, z)), where l(�) is a function, then V depends on
(x, y, z), and is given by

Vðx; y; z; tÞ

¼
cos �lðx; y; zÞt � sin �lðx; y; zÞt 0

sin �lðx; y; zÞt cos �lðx; y; zÞt 0

0 0 1

2
64

3
75 ½11�

This is precession about B0 at an angular
frequency that depends on the local field strength
b0 þ l(x, y, z). If both B1 and ~G are simultaneously
nonzero, then, starting from equilibrium, the
solution of the Bloch equation, at the conclusion
of the RF pulse, has a nontrivial spatial depen-
dence. In other words, the flip angle becomes a
function of the spatial variables. We return to this
in a later section.

A Basic Imaging Experiment

With these preliminaries, we can describe the basic
measurements in magnetic resonance imaging. When
exposed to B0, the sample becomes polarized at a
rate determined by T1. Once the sample is polarized,
a B1-field, of the form given in [7] (with � � 0), is

turned on for a finite time 
 . This is called an RF
excitation. For the purposes of this discussion, we
suppose that the time is chosen so that 	(
) = 90�, see
eqn [10]. As B0 and B1 are spatially homogeneous,
the magnetization vectors within the object remain
parallel throughout the RF excitation. At the conclu-
sion of the RF excitation, M is orthogonal to B0.

After the RF is turned off, the vector field
M(x, y, z; t) precesses about B0, in phase with the
angular velocity !0. The transverse component of M
decays exponentially. If we normalize the time so
that t = 0 corresponds to the conclusion of the RF
pulse, then, in the laboratory frame,

Mðx; y; z; tÞ¼ �!0�ðx; y; zÞ
�

e�t=T2 cos!0t;
h

e�t=T2 sin!0t; ð1� e�t=T1Þ
i

½12�

Recall Faraday’s law: a changing magnetic field
induces an electromotive force (EMF) in a loop of
wire according to the relation

EMFloop /
d�loop

dt
½13�

Here �loop denotes the flux of the field through the
loop of wire (see Introductory Articles: Electromag-
netism). The transverse components of M are a
rapidly varying magnetic field, which, according to
Faraday’s law, induce a current in a loop of wire. In
fact, by placing several such loops close to the sample
we can measure a signal of the form

S0ðtÞ¼
�!2

0ei!0t

�

Z
sample

�ðx; y; zÞe�t=T2ðx;y;zÞ

� b1recðx; y; zÞdx dy dz ½14�

Here b1rec(x, y, z) quantifies the sensitivity of the
detector to the precessing magnetization located at
(x, y, z). From S0(t) we easily obtain a measurement
of the integral of the function �b1rec. By using a
carefully designed detector, b1rec can be taken to be
a constant, and therefore we can determine the total
spin density within the object of interest. For the rest
of this article, we assume that b1rec is a constant.
Note that the size of the measured signal is
proportional to !2

0, which is, in turn, proportional
to kB0k2. This explains, in part, why it is so useful to
have a very strong B0-field. Though even with a
1.5 T magnet, the measured signal is only in the
microwatt range (see Hoult and Lauterbur (1979)
and Edelstein et al. (2004)).

Suppose that, at the end of the RF excitation, we
turn on the gradient ~G. As the magnetic field
B = B0 þ ~G now has a nontrivial spatial dependence,
the precessional frequency of the spins, which equals
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�kBk, also has a spatial dependence. In fact,
assuming that T2 is spatially independent, it follows
from [11] that the measured signal would now be
given by

SGðtÞ�
�b1rec!

2
0e�t=T2ei!0t

�

�
Z

sample

�ðx; y; zÞe2�ihðx;y;zÞ;ki dx dy dz ½15�

Up to a constant, e�i!0t e�t=T2SG(t) is simply the
Fourier transform of � at k = � t�G=2�. By sam-
pling in time and using a variety of different gradient
vectors, we can sample the three-dimensional Fourier
transform of � in a neighborhood of 0. This suffices
to reconstruct an approximation to �. In medical
applications, T2 is spatially dependent, which, as
described later in the section ‘‘Contrast and resolu-
tion,’’ provides a useful contrast mechanism.

Imagine that we collect samples of �̂(k) on a
rectangular grid�

ðjx�kx; jy�ky; jz�kzÞ:

�Nx

2
	 jx 	

Nx

2
;�Ny

2
	 jy 	

Ny

2
;

�Nz

2
	 jz 	

Nz

2

�

Since we are sampling in the Fourier domain, the
Nyquist sampling theorem implies that the sample
spacing determines the spatial field of view from which
we can reconstruct an artifact-free image: in order to
avoid aliasing artifacts, the support of � must lie in a
rectangular region with side lengths [�k�1

x , �k�1
y ,

�k�1
z ], see Haacke et al. (1999), Epstein (2003), and

Barrett and Myers (2004). In typical medical applica-
tions, the support of � is much larger in one dimension
than the others, and so it turns out to be impractical to
use the simple data collection technique described
above. Instead, the RF excitation takes place in the
presence of nontrivial gradient fields, which allows for
a spatially selective excitation: the magnetization in
one region of space obtains a transverse component,
while that in the complementary region is left in the
equilibrium state. In this way, we can collect data from
an essentially two-dimensional slice. This is described
in the next section.

Selective Excitation

As remarked above, practical imaging techniques do
not excite all the spins in an object and directly
measure samples of the three-dimensional Fourier
transform. Rather, the spins lying in a slice are

excited and samples of the two-dimensional Fourier
transform are then measured. This process is called
selective excitation and may be accomplished by
applying the RF excitation with a gradient field
turned on. With this arrangement, the strength of
the static field, B0 þ ~G, varies with spatial position,
hence the response to the RF excitation does as
well. Suppose that ~G = (0, 0, h(x, y, z),Gi) and set
f = [2�]�1�h(x, y, z), Gi. This is called the offset
frequency, as it is the amount by which the local
resonance frequency differs from the resonance
frequency !0 of the B0-field. The result of a selective
RF excitation is described by a magnetization profile
mpr(f ), which is a unit 3-vector-valued function of
the offset frequency. A typical case would be

mprðf Þ¼
½0; 0; 1� for f =2 ½ f0; f1�
½sin 	; 0; cos 	� for f 2 ½ f0; f1�

�
½16�

The magnetization is flipped through an angle 	, in
regions of space where the offset frequency lies in
the interval [ f0, f1] and is left in the equilibrium state
otherwise.

Typically, the excitation step takes a few milli-
seconds and is much shorter than either T1 or T2;
therefore, one generally uses the Bloch equation,
without relaxation, in the discussion of selective
excitation. In the rotating reference frame, the Bloch
equation, without relaxation, takes the form

dmðf ; tÞ
dt

¼
0 2�f ���
�2�f 0 ��
�� ��� 0

2
4

3
5mðf ; tÞ ½17�

The problem of designing a selective pulse is
nonlinear. Indeed, the selective excitation problem
can be rephrased as a classical inverse-scattering
problem: one seeks a function �(t)þ i�(t) with
support in an interval [t0, t1] so that, if m(f ; t) is
the solution to (17) with m(f ; t0) = [0, 0, 1], then
m(f ; t1) = mpr(f ). If one restricts attention to flip
angles close to 0, then there is a simple linear model
that can be used to find approximate solutions.

If the flip angle is close to zero, then m3 � 1
throughout the excitation. Using this approxima-
tion, we derive the low-flip-angle approximation to
the Bloch equation, without relaxation:

dðm1 þ im2Þ
dt

¼�2�if ðm1 þ im2Þ þ i�ð�þ i�Þ ½18�

From this approximation, we see that

�ðtÞ þ i�ðtÞ� F ðmpr
1 þ impr

2 ÞðtÞ
�i

where F ðhÞðtÞ ¼
Z 1
�1

hðf Þe�2�ift df ½19�
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For an example such as in [16], 	 close to zero, and
f0 = �f1, we obtain

�þ i�� i sin 	 sin f1t

��t
½20�

A pulse of this sort is called a sinc-pulse. A
sinc-pulse is shown in Figure 1a, the result of
applying it in Figure 1b. A more accurate pulse can
be designed using the Shinnar–Le Roux algorithm
(see Pauly et al. (1991) and Shinnar and Leigh
(1989)), or the inverse scattering approach (see
Epstein (2004)). An inverse-scattering 90�-pulse is
shown in Figure 2a and the response in Figure 2b.

Spin-Warp Imaging

In an earlier section we showed how NMR
measurements could be used to measure the three-

dimensional Fourier transform of �. In this section,
we consider a more practical technique, that of
measuring the two-dimensional Fourier transform of
a ‘‘slice’’ of �. Applying a selective RF pulse, as
described in the previous section, we can flip the
magnetization in a region of space z0 ��z < z <
z0 þ�z, while leaving it in the equilibrium state
outside a slightly larger region. Observing that a
signal near the resonance frequency is only produced
by isochromats whose magnetization has a nonzero
transverse component, we can now measure samples
of the two-dimensional Fourier transform of the
function

��z0
ðx; yÞ ¼ 1

2�z

Z z0þ�z0

z0��z

�ðx; y; zÞ dz ½21�

If �z is sufficiently small then ��z0
(x, y) � �(x, y, z0).
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Figure 1 A selective 90� pulse and profile designed using the linear approximation. (a) Profile of a 90� sinc-pulse. (b) The

magnetization profile produced by the pulse in (a).
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Figure 2 A selective 90� pulse and profile designed using the inverse scattering approach. (a) Profile of a 90� inverse-scattering

pulse. (b) The magnetization profile produced by the pulse in (a).
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In order to be able to use the fast Fourier
transform (FFT) algorithm to do the reconstruction,
it is very useful to sample b��z0

on a uniform grid. To
that end, we use the gradient fields as follows: after
the RF excitation we apply a gradient field of the
form Gph = (0, 0,�g2yþ g1x) for a certain period of
time Tph. This is called a phase encoding gradient.
At the conclusion of the phase encoding gradient,
the transverse components of the magnetization
from the excited spins has the form

mkðx; yÞ / e�2�iðkyy�kxxÞ��z0
ðx; yÞ ½22�

where (kx, ky) = [2�]�1�Tph(�g1, g2). At time Tph,
we turn off the y-component of Gph and reverse the
polarity of the x-component. At this point, we begin
to measure the signal. We get samples of b��(k, ky)
where k varies from �kx max to kx max. By repeating
this process with the strength of the y-phase
encoding gradient being stepped through a sequence
of uniformly spaced values, g2 2 {n�gy}, and col-
lecting samples at a uniformly spaced set of times,
we collect the set of samples

�b��z0
ðm�kx; n�kyÞ:

�Nx

2
	 m 	 Nx

2
;�Ny

2
	 n 	 Ny

2

�
½23�

The gradient Gfr = (0, 0,�g1x), left ‘‘on’’ during
signal acquisition, is called a frequency encoding
gradient. While there is no difference, mathemati-
cally, between the phase encoding and frequency
encoding steps, there are significant practical differ-
ences. This approach to sampling is known as spin-
warp imaging; it was introduced in Edelstein et al.
(1980). The steps of this experiment are summarized
in a pulse sequence timing diagram, shown in
Figure 3. This graphical representation for the
steps followed in a magnetic resonance imaging
experiment is ubiquitous in the literature.

To avoid aliasing artifacts, the sample spacings
�kx and �ky must be chosen so that the excited
portion of the sample is contained in a region of size
�k�1

x ��k�1
y . This is called the field of view or

FOV. Since we can only collect the signal for a finite
period of time, the Fourier transform b��(kx, ky) is
sampled at frequencies lying in a rectangle with
vertices (
kx max, 
ky max), where

kx max¼
Nx�kx

2
; ky max¼

Ny�ky

2
½24�

The maximum frequencies sampled effectively deter-
mine the resolution available in the reconstructed

image. Heuristically, this resolution limit equals half
the shortest measured wavelength:

�x � 1

2kx max
¼ FOVx

Nx

�y � 1

2ky max
¼ FOVy

Ny

½25�

Whether one can actually resolve objects of this size in
the reconstructed image depends on other factors such
as the available contrast and the signal-to-noise ratio
(SNR). We consider these factors in the final sections.

Signal-to-Noise Ratio

At a given spatial resolution, image quality is largely
determined by SNR and the contrast between the
different materials making up the imaging object. SNR
in MRI is defined as the voxel signal amplitude divided
by the noise standard deviation. The noise in the NMR
signal, in general, is Gaussian distributed with zero
mean. Ignoring contributions from quantization, for
example, due to limitations of the analog-to-digital
converter, the noise voltage of the signal can be
ascribed to random thermal fluctuations in the receive
circuit (see Edelstein (1986)). The variance is given by

�2
thermal ¼ 4kBTR�� ½26�

where kB is Boltzmann’s constant, T the absolute
temperature, R the effective resistance (resulting from
both receive coil, Rc and object, Ro), and �� the
receive bandwidth. Both Rc and Ro are frequency
dependent, with Rc / !1=2, and Ro / !. Their relative
contributions to overall circuit resistance depend in
a complicated manner on coil geometry, and
the imaging object’s shape, size, and conductivity

RF

g3

g2

g1

ADC

TE

Slice selection gradient

Phase encoding gradient

Frequency encoding gradient

Signal acquisition

Δt

Figure 3 Pulse timing diagram for spin-warp imaging. During

the positive lobe of the frequency encoding gradient, the analog-

to-digital converter (ADC) collects samples of the signal

produced by the rotating transverse magnetization.
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(see Chen and Hoult (1989)). Hence, at high magnetic
field, and for large objects, as in most medical
applications, the resistance from the object dominates
and the noise scales linearly with frequency. Since the
signal is proportional to !2, in MRI, the SNR increases
in proportion to the field strength.

As the reconstructed image is complex valued, it is
customary to display the magnitude rather than the
real component. This, however, has some conse-
quences on the noise properties. In regions where the
signal is much larger than the noise, the Gaussian
approximation is valid. However, in regions where the
signal is low, rectification causes the noise to assume a
Raleigh distribution. Mean and standard deviation can
be calculated from the joint probability distribution:

PðNr;NiÞ¼
1

2��2
e�ðN

2
rþN2

i
Þ=2�2 ½27�

where Nr and Ni are the noise in the real and
imaginary channels, respectively. When the signal is
large compared to noise, one finds that the variance
�2

m = �2. In the other extreme of nearly zero signal,
one obtains for the mean:

bS¼ � ffiffiffiffiffiffiffiffi
�=2

p
ffi 1:253� ½28�

and, for the variance:

�2
m¼ 2�2ð1� �=4Þ ffi 0:655�2 ½29�

Of particular practical significance is the SNR
dependence on the imaging parameters. The voxel
noise variance is reduced by the total number of
samples collected during the data acquisition pro-
cess, that is,

�2
m¼ �2

thermal=N ½30�

where N = Nx Ny in a two-dimensional spin-warp
experiment. Incorporating the contributions to
thermal noise variance, other than bandwidth, into
a constant

u ¼ 4kBTR ½31�

we obtain for the noise variance:

�2
m¼

u��

NxNyNavg
½32�

Here Navg is the number of signal averages collected
at each phase encoding step. We obtain a simple
formula for SNR per voxel of volume �V:

SNR¼C~��V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NxNyNavg

u��

r

¼C~��x �y dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NxNyNavg

u��

r
½33�

where �x, �y are defined in [25], dz is the thickness
of the slab selected by the slice-selective RF pulse,
and ~� denotes the spin density weighted by effects
determined by the (spatially varying) relaxation
times T1 and T2 and the pulse sequence timing
parameters. Figure 4 shows two images of the
human brain obtained from the same anatomic
location but differing in SNR.

Contrast and Resolution

The single most distinctive feature of MRI is its
extraordinarily large innate contrast. For two soft
tissues, it can be on the order of several hundred
percent. By comparison, contrast in X-ray imaging is
a consequence of differences in the attenuation
coefficients for two adjacent structures and is
typically on the order of a few percent.

We have seen in the preceding sections that the
physical principles underlying MRI are radically
different from those of X-ray computed tomogra-
phy, in that the signal elicited is generated by the
spins themselves in response to an external pertur-
bation. The contrast between two regions, A and B,
with signals SA and SB, respectively, is defined as

CAB ¼
SA � SB

SA
½34�

If the only contrast mechanism were differences in
the proton spin density of various tissues, then
contrast would be on the order of 5–20%. In reality,
it can be several hundred percent. The reason for
this discrepancy is that the MR signal is acquired
under nonequilibrium conditions. At the time of
excitation, the spins have typically not recovered
from the effect of the previous cycle’s RF pulses, nor

(a) (b)

Figure 4 T1-weighted sagittal images through the midline of

the brain: Image (b) has twice the SNR of image (a), showing

improved conspicuity of small anatomic and low-contrast detail.

The two images were acquired at 1.5 T field strength using two-

dimensional spin-warp acquisition and identical scan para-

meters, except for Navg, which was 1 in (a) and 4 in (b).

Magnetic Resonance Imaging 373



is the signal usually detected immediately after its
creation.

Typically, in spin-warp imaging, a spin-echo is
detected as a means to alleviate spin coherence
losses from static field inhomogeneity. A spin-echo
is the result of applying an RF pulse that has the
effect of taking (m1, m2, m3) to (m1, �m2, �m3). As
such a pulse effects a 180� rotation of the ẑ-axis, it is
also called a �-pulse. If, after such a pulse, the spins
continue to evolve in the same environment then,
following a certain period of time, the transverse
components of the magnetization vectors through-
out the sample become aligned. Hence a pulse of
this type is also called a refocusing pulse. The time
when all the transverse components are rephased is
called the echo time, TE.

The spin-echo signal amplitude for an RF pulse
sequence �=2� 
 � �� 
 , repeated every TR sec-
onds, is approximately given by

Sðt ¼ 2
Þ � �ð1� e�TR=T1Þe�TE=T2 ½35�

This is a good approximation as long as TE << TR

and T2 << TR, in which case the transverse magne-
tization decays essentially to zero between successive
pulse sequence cycles. In eqn [35], � is voxel spin
density and the echo time TE = 2
 . Empirically, it
is known that tissues differ in at least one of
the intrinsic quantities, T1, T2, or �. It, therefore,
suffices to acquire images in such a manner that
contrast is sensitive to one particular parameter. For
example, a ‘‘T2-weighted’’ image would be acquired
with TE � T2 and TR >> T1 and, similarly, a
‘‘T1-weighted’’ image with TR < T1 and TE << T2,
with T1, T2 representing typical tissue proton relaxa-
tion times. Figure 5 shows two images obtained with
the same scan parameters except for TR and TE

illustrating the fundamentally different image con-
trasts that are achievable.

It is noteworthy that object visibility is not just
determined by the contrast between adjacent

structures but is also a function of the noise. It is,
therefore, useful to define the contrast-to-noise ratio as

CNRAB ¼
CAB

�eff

½36�

where �eff is the effective standard deviation of the
signal. Finally, it may be useful to reconstruct
parametric images in which the pixel signal values
represent any one of the intrinsic parameters. A
T2-image can be computed from eqn [35], for
example, either analytically from two image data
sets acquired with two different echo times, or from a
series of TE values, obtained from a Carr–Purcell spin-
echo train, using regression techniques (see Nuclear
Magnetic Resonance and Haacke et al. (1999)).

We have previously shown that the limiting
resolution is given by kmax, the largest spatial
frequency sampled, see [25]. In reality, however,
the actual resolution is always lower. For example,
spin–spin (T2) relaxation causes the signal to decay
during the acquisition. In spin-warp imaging, this
causes the high spatial frequencies to be further
attenuated.

A further consequence of finite sampling is a
ringing or Gibbs artifact that is most prominent at
sharp intensity discontinuities. In practice, these
artifacts are mitigated by applying an appropriate
apodizing filter to the data. Figure 6 shows a portion
of a brain image obtained at two different resolu-
tions. In Figure 6b, the total k-space area covered
was 16 times larger than for the acquisition of the
image in a). Artifacts from finite sampling and
blurring of fine detail such as cortical blood vessels
are clearly visible in the low-resolution image. SNR,
according to eqn [33], is reduced in the latter image
by a factor of 4.

(a) (b)

Figure 5 Dependence of image contrast on pulse sequence

timing parameters: (a) T1-weighted; (b) proton density-weighted.

(a) (b)

Figure 6 Effect of k-space coverage on spatial resolution in

axial image of the brain: the field of view in both images was

20 cm and all scan parameters were the same except that (a)

was acquired with Nx = Ny = 128 and (b) with Nx = Ny = 512.
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See also: Nuclear Magnetic Resonance; Stochastic
Resonance.
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The Basic Modeling

Magnetohydrodynamics (MHD) is the study of the
interaction of (electro-) magnetic fields and con-
ducting fluids. When a conducting fluid (e.g., a
liquid metal, a weakly ionized gas, or a plasma) is
placed within a magnetic field, two coupling
phenomena appear: the electric currents modify the
magnetic field, and the Lorentz forces due to the
magnetic field modify the motion of the fluid. At the
mathematical level, two sets of equations, very
different in nature, are involved. The usual descrip-
tion of the hydrodynamics phenomena is most often
that provided by the continuum mechanics for
fluids, while the description of electromagnetic
phenomena essentially proceeds from the Maxwell
equations.

Either category of equations can be declined in a
variety of models. The coupling between the two
categories might also be accounted for at different
levels of accuracy. For the sake of conciseness in
such an expository survey, it is neither desirable nor
doable to present all the possible set of equations
and their possible coupling. The difficulty stems

from the incredibly large spectrum of physical
phenomena where MHD plays a role. A list of
such phenomena includes


 astrophysical and geophysical applications (mod-
eling of stars in the galactic field, of pulsars, of
solar spots, of the flows in the earth’s core, . . .),

 advanced ‘‘terrestrial’’ applications such as the

magnetic confinement of plasmas in controlled
fusion, MHD propulsion engines for rockets, and

 industrial applications in the engineering world

(electromagnetic pumping, metal forming, alumi-
num electrolysis, and many other metallurgical
applications).

Due to this variety of physical situations, no
unified setting can be presented with a satisfactory
degree of details. We therefore mostly concentrate
throughout this article on the MHD of conducting
fluids that are homogeneous, incompressible, vis-
cous, and Newtonian. This is often the case of
liquid metals in many industrial processes. The
equations manipulated will first be given in their
most general form and then immediately adapted to
the above context. For other contexts, the modeling
follows the same pattern, but other variants of the
general equations must be employed. The biblio-
graphy of this article contains such general
information.
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The Hydrodynamics Description

The usual description for fluids follows from
continuum mechanics. In this setting, the governing
equation is the equation for the conservation of
momentum

@ð�uÞ
@t
þ divð�u�uÞ � div� ¼ f ½1�

where � denotes the density of the fluid, u its
velocity, � the stress tensor, and f the density of
volumic (or per unit volume) body forces applied to
the fluid. For incompressible viscous Newtonian
fluids, the stress/velocity relation reads

� ¼ �ðruþ ðruÞTÞ � pId ½2�

together with the constraint

div u¼ 0 ½3�

on the velocity. Here, � denotes the viscosity of the
fluid, p the pressure, and AT denotes the transpose
matrix of the matrix A. A third usual assumption is
that the incompressible fluid is in addition homo-
geneous, that is,

�¼ �¼ constant ½4�

Equations [1]–[4] lead to the equations for
conservation of momentum in the case of incom-
pressible homogeneous viscous Newtonian fluid,
that is, the incompressible Navier–Stokes equations

�
@u

@t
þ �u � ru� ��uþrp¼ f

div u¼ 0
½5�

These equations are supplied with initial and
boundary conditions on the velocity u. At initial
time, the velocity is assumed to be known
u(t = 0,� ) = u0 on the whole domain occupied by
the fluid �, a domain that is supposed here not to
vary in time (see , neverthel ess, the sect ion ‘‘The
indust rial pr oduction of alum inum’’ for a differe nt
setting). On the other hand, the boundary conditions
on the boundary @� of � can be of various forms.
For simplicity, the boundary is supposed regular, so
that its unitary outward normal n@� can be
unambiguously defined. The standard choice is to
set Dirichlet conditions on the velocity u = ugiven. In
the following, we will assume for simplicity that the
boundary condition is the homogeneous Dirichlet
boundary condition u = 0, as a superposition of the
nonpenetration condition u � n@� = 0 and the no-slip
boundary condition u�n@� = 0. One can also
impose alternative boundary conditions, for exam-
ple, involving the pressure.

The Electromagnetic Description

Classical electromagnetism is described by the
Maxwell equations. For the sake of consistency, we
recall here that these are:

The Maxwell–Ampère equation

� @D

@t
þ curl H ¼ j ½6�

The Maxwell–Coulomb equation

divD ¼ �c ½7�

The Maxwell–Faraday equation

@B

@t
þ curl E ¼ 0 ½8�

The Maxwell–Gauss equation

divB ¼ 0 ½9�

In the above equations, the three-dimensional vector
fields D, B, E, H denote the electric and magnetic
inductions, and the electric and magnetic fields,
respectively. On the other hand, the three-dimensional
vector field j denotes the current density, and the scalar
field �c denotes the charge density. Inside an elec-
trically conducting medium, the standard assumption
of perfect medium consists in assuming the following
relations:

D¼ "E

H¼ 1

�
B

½10�

often called ‘‘constitutive laws,’’ where " and �,
respectively, denote the (electric) permittivity and
the (magnetic) permeability of the medium. In the
simple isotropic homogeneous case, both these
parameters are scalar and constant. They are often
expressed as

"¼ "r"0

�¼�r�0

½11�

where "0,�0 are the permittivity and the perme-
ability of the vaccum (that satisfy "0�0 = 1=c2, with
c denoting the speed of light), and "r, �r are the
permittivity and the permeability relative to vaccum,
or relative permittivity and relative permeability.

When collecting [6]–[9], together with [10], [11],
one obtains the following general system of
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Maxwell equations in a continuum (dielectric)
medium:

� @ð"EÞ
@t
þ curl

1

�
B

� �
¼ j

divð"EÞ ¼ �c

@B

@t
þ curl E ¼ 0

div B ¼ 0

½12�

This system is supplied with initial conditions on the
fields B and E. On the other hand, boundary
conditions might be necessary when the equations
are restricted to a bounded domain. The latter
question, quite delicate, is postponed until next
section.

The MHD Coupling

For coupling systems [5] and [12], a threefold task is
in order.

On the one hand, the body force term in [5] needs
to be made precise, and this is completed by setting

f ¼ j�Bþ f ext ½13�

The first term in the right-hand side is the Lorentz
force, consequence of the electric current j running
within the magnetic field B, a force that influences
the motion, along the velocity field u, of the
particles of the conducting fluid. The second term
is due to possible external forces. A typical case for
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such forces is that of the gravity forces the need for an extension of Ohm’s law [15] outside
the fluid domain. Notice indeed that u appears in
f ext¼ � g ½14�

On the other hand, in order to be a mathemati-
cally closed system, the Maxwell system [12] needs
to be complemented by Ohm’s law, another type of
constitutive relation, like [10], that now relates the
current density j with the other fields. When dealing
with MHD phenomena, Ohm’s law most often
reads in the form

j¼ � Eþ u�Bð Þ ½15�

where � denotes the electric conductivity of the
fluid. The second term of [15] explicitly accounts for
the deviation of the lines of electric current by the
hydrodynamics flow. In some oversimplified situa-
tions, it can be neglected, leading to Ohm’s law in
the more usual form j = �E, that is also valid for
solid media. Most of the times the term u�B
contains crucial information, and thus is not
neglected.
System [5]–[12] now reads

�
@u

@t
þ �u � ru� ��uþrp ¼ j�Bþ f ext

div u ¼ 0

� @ð"EÞ
@t
þ curl

1

�
B

� �
¼ j

div E ¼ 1

"
�c

@B

@t
þ curl E ¼ 0

div B ¼ 0

j ¼ �ðEþ u�BÞ

½16�

A third task is then in order.
Apart from the constitutive laws [10] and Ohm’s

law [15], the specificity of the Maxwell equations for
conducting fluids, as opposed to the same equations
written, for example, in the vacuum, resides in the
possible need for supplying the system with ad hoc
boundary conditions. Indeed, in their most general
form, the Maxwell equations are valid in the whole
physical space R3. On the other hand, as the goal here
is to simulate an MHD fluid that most often occupies
only a bounded domain � in R3, there is the need to
adequately define the simulation domain.

A first possibility is to set the Maxwell equations
in the whole space, while solving the hydrodynamics
equation on the domain � occupied by the fluid.
Regarding only the Maxwell equations [12], this
seems to be the method of choice. But then there is

[15]. In addition to this, the fact that the physical
confinement device for the fluid is then embedded in
the domain where the Maxwell equations are set
may be the source of various difficulties, as such a
device is often delicate to model and treat. There-
fore, alternative tracks may be followed.

A second possibility is to restrict the Maxwell
equation to a bounded domain. In turn, this option
divides in two: taking as the domain for the Maxwell
equations that occupied by the fluid, or choosing a
domain larger than �. We cannot discuss this choice
without loss of generality, and refer the reader to the
literature (see e.g., Gerbeau et al. (2005)). In either
situation, boundary conditions are needed. We only
consider the former for the sake of brevity.

A standard choice for the boundary conditions for
[12] is the following:

E�n@� ¼ k�n@�

B � n@� ¼ q
½17�



where k and q, respectively, are given vector and
scalar functions on the boundary.

A fact that needs to be emphasized is that it is not
so easy to design accurate boundary conditions, that
is, evaluations of k or g, especially because accurate
experimental measures of magnetic quantities are
often delicate to obtain, especially in industrial
environments.

A Commonly Used Simplified MHD Coupling

For the terrestrial MHD applications that are the
focus of the present article, a commonly used
assumption is to neglect the first term @("E)=@t,
often called the displacement current, in the
Maxwell–Ampère equation [6], that is the first
equation of [12] or the third of [16] above.
Then system [16] can be reorganized, eliminating
E and j, and leaving aside the Maxwell–Faraday
equation [8], Ohm’s law [15], and the Maxwell–
Coulomb equation [7]. The latter equations
amount to defining, respectively, E from B, j
from E and B, and �c from E. One is left with
the following system with the triple of unknown
fields (u, p, B)

�
@u

@t
þ �u � ru� ��uþrp ¼ 1

�
curl B�Bþ f ext

div u ¼ 0 ½18�

@B

@t
þ curl

1

�
curl

1

�
B

� �
¼ curl u�Bð Þ

div B ¼ 0

Correspondingly, the initial conditions are now
only on the pair (u, B). Regarding the boundary
conditions on B, they can be derived from [17]
using, for example, a homogeneous Dirichlet bound-
ary condition on u:

curl B�n@� ¼ ~k�n@�

B � n@� ¼ q
½19�

Other simplifications of system [16] can be
adopted, such as steady-state approximations. In
particular, it is often considered that electromagnetic
phenomena have characteristic times that are so
short in comparison with the characteristic time
of hydrodynamics phenomena that the Maxwell
equations in their stationary form may be coupled to
the time-dependent hydrodynamics equations, such
as [5]. We refer to the ‘‘Furth er readi ng’’ section
for further information along these lines (see e.g.,
Gerbeau et al. (2005)).
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The Mathematical Nature of the
Equations

With a view to understand the mathematica
l
nature of systems [16] and [18], we first briefly
recall some mathematical facts concerning hydro-
dynamics, before focusing on the coupling with
electromagnetics.

Regarding the incompressible Navier–Stokes
equation, we recall that the state of the art of the
mathematical knowledge heavily depends on the
dimension of the ambient space. In dimension 2,
solutions are unique and regular (they are said to be
strong), for regular enough data of course. Unfortu-
nately, as the focus is here on MHD and electro-
magnetism is fundamentally a three-dimensional
phenomenon, only the three-dimensional case for
the Navier–Stokes equation is relevant. Now, in the
context of the Navier–Stokes equations alone, only
the existence of weak solutions for large times, and
the existence and uniqueness of strong solutions for
small times are known. Whether or not there exists a
unique strong solution for all time (of course again
for sufficiently regular data) is an open problem, of
outstanding difficulty, (see Temam 1995).

In the coupled setting examined here, there is no
reason to expect a better situation. At best, one may
hope for the same situation as that for the
uncoupled case (Navier–Stokes equations alone).
Regarding the existence and uniqueness of solutions,
a commonly used strategy is that of regularization:
the Cauchy problem is studied for regularized data,
and then one passes to the limit in the regulariza-
tion. In this latter step, the linear terms cause no
difficulty, since they pass to the limit only using
weak convergence. On the other hand, the main
concern is always the treatment of the nonlinear
terms, which require strong convergence. Here, for
the Navier–Stokes equation in the MHD setting, the
additional difficulty stems from the presence of
the nonlinear term j�B on the right-hand side. The
mathematical treatment of this nonlinear term calls
for a compactness argument, which in turn requires
obtaining some information on the fields j and B,
and their derivatives, from the Maxwell equations.
In this respect, the situation is radically different for
system [16] and for system [18]. Likewise, these
two systems behave differently regarding the other
nonlinear term of electromagnetic nature, namely
u�B in Ohm’s law, or curl(u�B) on the right-
hand side of the equation in B, respectively.

The Hyperbolic Variant

Due to the presence of the Maxwell equations [12]
in their general form, that is a hyperbolic form,



system [16] is indeed very difficult, from the
standpoint of mathematical analysis.

In order to realize this, it suffices to recall that the
first step in the proof of the existence of solution to
such a system of equations is to write down an
a priori energy estimate. It is a simple manipulation
on [16] to show that, formally, a solution to [16]
satisfies

1

2

d

dt

Z
�

�juj2 þ �
Z

�

jruj2 ¼
Z

�

ðj�BÞ � u ½20�

multiplying the Navier–Stokes equation by u and
integrating over the domain �, while, on the other
hand,

1

2

d

dt

Z
�

"jEj2 þ 1

2

d

dt

Z
�

1

�
jBj2 ¼ �

Z
�

j � E ½21�

multiplying the Maxwell–Ampère equation by �E,
the Maxwell–Faraday equation by (1=�)B, integrat-
ing over �, and summing up the two. Next, the
right-hand side of [21] can be modified, accounting
for Ohm’s law:

1

2

d

dt

Z
�

"jEj2 þ 1

2

d

dt

Z
�

1

�
jBj2

¼ �
Z

�

1

�
jjj2 �

Z
�

ðj�BÞ � u ½22�

Summing up [20] and [22] yields the energy
estimate:

1

2

d

dt

Z
�

�juj2 þ "jEj2 þ 1

�
jBj2

� �

þ
Z

�

1

�
jjj2 þ �

Z
�

jruj2 ¼ 0 ½23�

Notice that, in the above, we set the external forces
and all boundary conditions to zero, for the sake of
simplicity.

Estimate [23] clearly indicates that we dispose of
L1([0, T], L2(�)) bounds on the vector fields E and
B together with an L2([0, T]��) bound on the
current j, and with the (classical) L1([0, T],
L2(�))\L2([0, T], H1(�)) bounds on the velocity
u. In addition, div B and, when assuming �c

bounded, div E are bounded in L1([0, T]��).
Unfortunately, these bounds do not allow for
passing to the limit in the nonlinear term j�B on
the right-hand side of the Navier–Stokes equation.
In addition, there seems to be no way of deriving
further energy estimates on system [16] that would
provide with more a priori regularity on the fields
E, B, and j. To date, system [16] presents an
unsolved mathematical difficulty.
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stablish a priori estimates on the solution of [18],
ow lead to

1

2

d

dt

Z
�

�juj2 þ 1

�
jBj2

� �

þ
Z

�

1

�
curl

1

�
B

� �����
����
2

þ�
Z

�

jruj2 ¼ 0 ½24�

hich, together with the divergence-free constraint
n B, yields L1([0, T], L2(�))\L2([0, T], H1(�))
ounds on both the velocity u and the magnetic
ield B. These bounds now allow for passing to the
imit in the terms curl B�B and curl(u�B) on the
ight-hand side of the equations. This being estab-
ished, the rest of the mathematical analysis is
traightforward, and a theorem of existence and
niqueness of solutions can be proved. Like in the
ase of the Navier–Stokes equations alone, we have
in dimension 3) the existence of a global-in-time
eak solution (i.e., for any T, u and B both
1([0, T], L2(�))\L2([0, T], H1(�)) satisfying the
ivergence-free constraint). No uniqueness of this
eak solution is known. On the other hand, for

ufficiently regular data, we have the existence of a
ocal-in-time strong solution (i.e., for T sufficiently
mall, u and B both L1([0, T], H1(�))\L2([0, T],

2(�)), and uniqueness of this strong solution in
he class of weak solutions as long as it exists. We
efer to Sermange and Temam, (1983) and Gerbeau
t al. (2005).
At this stage, it is to be remarked that there is a

ormal similarity, at first sight at least, between
he parabolic form of the Maxwell equations,
amely

@B

@t
þ curl curl B ¼ curl h

div B ¼ 0
½25�

nd the incompressible Navier–Stokes equation [5].
ote that indeed the curl operator in the first

quation of [25] can be replaced by (minus) the
aplacian operator ��, since div B = 0. Actually,

his formal similarity cannot be translated into
athematical arguments, simply because there is

o pressure in [25]. In other terms, the divergence-
ree constraint div B = 0 simply propagates in time in
25] (note that the right-hand side curl h is also
The Parabolic Variant

On the other hand, system [18] is radically different
in mathematical nature, because the Maxwell
equations then reduce to a parabolic-type equation.
The same manipulations as above, in order to
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divergence-free by construction), while on the other
hand div u = 0 is enforced as a constraint in [5], the
pressure playing the role of a Lagrange multiplier
that adjusts itself in time in order to allow for u to
be divergence-free.

Of course, as in the purely hydrodynamics case,
much more can be said on the equations than simply
establishing the existence and uniqueness of solu-
tions. For instance, the long time limit of the
solutions can be studied, etc. . . . For this and other
issues, we refer to the ‘‘Furt her readin g’’ section
(Duvaut and Lions 1972a, b, Sermange and Temam
1983, Gerbeau et al. 2005).

Numerical Issues

We concentrate again on system [18]. It is illustra-
tive to mention that this system, when written in
nondimensional variables, reads

@u

@t
þ uru� 1

Re
�uþrp ¼ S curl B�Bþ f ext

div u ¼ 0

@B

@t
þ 1

Remag
curl ðcurl BÞ ¼ curlðu�BÞ

div B ¼ 0

where S is the coupling parameter, Re is the
(hydrodynamic) Reynolds number, and Remag

denotes the magnetic Reynolds number.
As expected, the numerical simulation of a system

such as [18] superposes the difficulties of the
hydrodynamics simulation of incompressible viscous
fluids, and those faced when simulating the para-
bolic form of the Maxwell equations. Therefore, the
goal is to efficiently combine the techniques
employed to overcome either of them.

For incompressible fluid mechanics, the method
of choice is the finite-element method for the
discretization of differential operators in space. A
typical discretization of eqn [5], called the ‘‘mixed’’
finite-element method, makes use of a pair of finite
elements, one for the velocity, and one for the
pressure. Other possibilities exist, that amount
more or less in eliminating one unknown in a
first stage and calculating the second one as a
postprocessing task. The mixed formulation in the
pair of unknowns (u, p) is however the most
employed method to date, at least in the present
setting. The finite-element space for the velocity is
taken richer than that for the pressure: a possibility
is, for example, to take the degree of the finite
element for the velocity equal to the degree of the
finite element for the pressure plus one. The
heuristics for this is the fact that the velocity is
derived twice in [5] while the pressure is only
derived once. Of course, a mathematical ground
for this is available, and a key issue is the ‘‘inf–
sup’’ condition (also compatibility condition, or
stability condition) that dictates the possible choice
for finite-elements pairs, so that problem [5] is well
posed at the discrete level. Typically, Q2 finite
elements for the velocity can be combined with
(continuous) Q1 finite elements for the pressure.
An alternative choice is to ignore the inf–sup
condition, adopting, for example, Q1 finite ele-
ments for both fields u and p, but this requires for
a so-called stabilized formulation of [5] at the
discrete level. The ‘‘Further reading’’ s ecti on
provides details on the broad variety of techniques
available in the field: Quarteroni and Valli (1997),
Gerbeau et al. (2005).

On the other hand, the parabolic equation on B in
[18] may be discretized with the same finite elements
as those used for the velocity. The enforcement of
the divergence constraint div B = 0 at the discrete
level deserves some attention. Recall indeed that
at the continuous level the divergence-free constraint
is spontaneously propagated by the equation. At
the discrete level, a crucial role in this respect is
played by the weak formulation of the parabolic
equation and an ad hoc account for the boundary
condition [17].

For the sake of completeness, let us mention that
an alternative strategy to the use of the finite
elements that have been mentioned above (and that
are called Lagrangian finite elements), is to use
‘‘edge elements.’’ In some sense, the use of such
elements simplifies the treatment of the boundary
conditions [17], since they are very well adapted to
their mathematical nature.

Note also that, in the vein of what is done for
purely hydrodynamics flow simulations, stabilized
finite-elements techniques have been developed for
the MHD system [18], that allow for a discretization
of the three unknown fields (u, p, B) over the same
finite elements, for example, Q1.

When coupling the two discrete formulations for
simulating the whole system [18], two main strate-
gies can be adopted: one can either treat each of the
two equations separately, independently describing
the propagation of u and B forward in time, or one
can address directly the coupled system of equa-
tions, describing the propagation of u and B in
parallel.

The first option aims in particular at obtaining in
the end small algebraic systems. An instance of such



a segregated algorithm reads, formally and setting
all constants to unity for simplicity,

unþ1 � un

�t
þ un � runþ1��unþ1 þrpnþ1

¼ curl Bn�Bn þ f ext

div unþ1 ¼0

Bnþ1 � Bn

�t
þ curl curlBnþ1

¼ curl un�Bnþ1
� �

divBnþ1 ¼ 0

½26�

At each time step, the two independent subsystems
are solved, providing with unþ1 and Bnþ1 for the
next time step. The difficulty is that it is not
possible, with such segregated algorithms, to repro-
duce the energy estimate [24] at the discrete level.
Note that, at the continuous level, the estimate [24]
is based upon a proper cancelation of the termR

� (j�B)� u present on the two right-hand sides.
Such a cancelation basically stems for a nonlinear
interplay that cannot be present in a segregated
iteration. Consequently, some spurious energy is
created in the system simply by an inadequate
iteration between the two equations. More precisely,
the scheme obtained is at best only conditionally
stable, that is, stable for small enough time steps, a
condition that might be prohibitive when it is
needed to simulate the MHD coupling over large
times.

On the other hand, the other option consists in
attacking the full system [18] directly:

unþ1 � un

�t
þ un � runþ1��unþ1 þrpnþ1

¼ curl Bnþ1�Bn þ f ext

div unþ1¼ 0

Bnþ1 � Bn

�t
þ curl curlBnþ1

¼ curl unþ1�Bn
� �

div Bnþ1¼ 0

½27�

Note that Bnþ1 is present in the equation yielding
unþ1, while conversely unþ1 is present in that
yielding Bnþ1. Then the coupled system admits at
the discrete level an energy estimate analogous to
the energy estimate [24], and the scheme is much
more stable than the previous one, and even
unconditionally stable. The price to pay is that the
system is, at the algebraic level, of very large size.
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n industrial cell indeed is the following. An electric
urrent of 105 A, or more, runs through two
orizontal layers of conducting fluids: a bath of
luminum oxide above, and a layer of liquid
luminum below. The aluminum is produced by
he reduction of the aluminum oxide, a reaction that
nly occurs at a temperature where aluminum is
iquid. The high magnetic field induced by such a
uge current produces in turn high Lorentz forces
hat influence the motion of either fluid. A key issue
n the modeling, as well as in the technological
ontrol of the cell, is to understand the motion of
he interface separating the two fluids. In a rough
icture, this interface may be seen as a mobile
Being sparse, it may however be treated, for
example, via a GMRES-type iterative solver.

Let us make a final remark on these numerical
issues. In the whole generality, the numerical
simulation of viscous fluids raises the question of
large Reynolds numbers, that is, the question of the
difficulties encountered in the numerical approxi-
mation for viscosities � small with respect to the
other dimensionalized parameters of the problem
(density, velocity, and dimension of the domain).
For such small viscosities, the flow becomes
turbulent rather than laminar, and the broad
range of length and energy scales in the flow turns
out to be too difficult to capture numerically. A
commonly used technique that is resorted to in
such difficult cases is the turbulence modeling.
Schematically, an averaged, or homogenized, model
is derived on the basis of the Navier–Stokes
equation, with the help of simplifying hypotheses,
for example, in the form of closure relations. The
quality of the simulation of the averaged model,
and its relation to the true flow, heavily depends on
these simplifying assumptions, which are in turn
based upon a very deep understanding on the
various physical phenomena at play. In the context
of MHD flows, the situation is not clear, regarding
such assumptions. It seems that there are no well-
established models for turbulent MHD to date, at
least from a rigorous viewpoint. In the absence of
those, only a direct simulation of the Navier–Stokes
equation seems possible.
The Industrial Production of Aluminium

A prototypical example of an application of MHD
to the industrial context is the production of
aluminum in electrolysis cells. The numerical simu-
lation of the process involves the simulation of the
evolution of two layers of nonmiscible incompres-
sible viscous fluids, separated by an interface, and
covered by a free surface. A schematic description of
a
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cathode, moving below a fixed anode. The equa-
tions describing the interior of the cell are basically
of the type [18], with an important modification
though: one needs to account for the presence of
two fluids. They read:

@ð�uÞ
@t
þ divð�u�uÞ�divð�ðruþ ðruÞTÞÞ

¼ � rpþ �g þ 1

�
curl B�B

divu¼ 0

@�

@t
þ divð�uÞ¼ 0

@B

@t
þ curl

1

��
curlB

� �
¼ curlðu�BÞ

divB¼ 0

½28�

where g denotes the gravity field, we recall, and are
supplied with the boundary conditions

u¼ 0

1

��
curlB�n@�¼ k�n@�

B:n@�¼ q

½29�

As opposed to [18], the density � in [28] is no longer
the constant �, but is only piecewise constant, that is,
constant in each (moving) subdomain occupied by
each fluid. Likewise, the viscosity �, and the con-
ductivity � are taken constant in each fluid, but with
different values from one fluid to the other. While the
density and the viscosity are only slightly different, the
conductivity varies from many orders of magnitude, a
discrepancy which ends up in some numerical stiffness
of the equations. On the other hand, the permeability
� can be considered as constant throughout the
domain, within a good level of approximation.

Mathematically, system [28] is an order of magni-
tude more difficult than [18]. We refer to Lions
(1996) and Gerbeau and LeBris (1997) for some
mathematical ingredients. A first major difficulty
stems from the fact that the domain occupied by the
fluids is no longer fixed. Notice that this difficulty
already arises when simulating the MHD of one
conducting fluid with a free surface. A second major
difficulty is the discontinuity of the physical para-
meters at the interface, which causes a loss of
regularity at the interface for the solution fields. The
best result known to date is the existence of a global-
in-time weak solution to [28]. Both mathematical
difficulties above of course have significant numerical
counterparts. A notable issue in such a simulation is
how to handle the motion of the free interface, while
ensuring that each fluid remains of constant mass (or
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volume) throughout the simulation. One of the most
efficient method in such a context, introduced three
decades ago, is the arbitrary-Lagrangian Eulerian
(ALE) method. We refer to Brackbill and Pracht
(1973) and Gerbeau et al. (2003a, b, 2005).

Apart from the direct numerical attack of system
[28], which carries significant analytical and geome-
trical nonlinearities, there is the possibility, in
particular in the industrial context, to derive a set
of linearized equations at the vicinity of some
equilibrium configuration of the system. This track
has been extensively followed in the past and
provides information that efficiently complement
those provided by the much more satisfactory, but
also more costly, nonlinear approach.

See also: Compressible Flows: Mathematical Theory;
Computational Methods in General Relativity: The Theory;
Fluid Mechanics: Numerical Methods; Newtonian Fluids
and Thermohydraulics; Partial Differential Equations:
Some Examples; Stability of Flows; Symmetric
Hyperbolic Systems and Shock Waves; Topological Kno
Theory and Macroscopic Physics.
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t

l
:

t

f

.

r
l

t

´

s

f

l

s

s

-
t

s

.



Lions PL (1996) Mathematical Topics in Fluid Mechanics:
Volume 1, Incompressible Models. New York: Oxford
University Press.

Moreau RJ (1991) Magnetohydrodynamics. Dordrecht: Kluwer

Academics Publishers.

Quarteroni A and Valli A (1997) Numerical Approximation of
Partial Differential Equations. Berlin: Springer.

Sele T (1977) Instabilities of the metal surface in electrolytic cells.

Malliavin Calculus 383
ermange M and Temam R (1983) Some mathematical questions

related to the MHD equations. Communications on Pure and
Applied Mathematics XXXVI: 635–664.

emam R (1984) Navier–Stokes equations. Theory and Numer-
ical Analysis, Studies in Mathematics and its Applications,

vol. 2. Amsterdam: North-Holland.
emam R (1995) Navier–Stokes Equations and Nonlinear

Functional Analysis. CBMS-NSF Regional Conference Series
in Applied Mathematics. Philadelphia: SIAM.
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Introduction

Malliavin calculus was initiated in 1976 with the
work by P Malliavin (1978) and is essentially an
infinite-dimensional differential calculus on the
Wiener space. Its initial goal was to give conditions
ensuring that the law of a random variable has a
density with respect to Lebesgue measure as well as
estimates for this density and its derivatives. When
the random variables are solutions of stochastic
differential equations (SDEs), these densities are heat
kernels and Malliavin used Hörmander-type
assumptions on the corresponding operators, thus
providing a probabilistic proof of a Hörmander-type
theorem for hypoelliptic operators.

The theory was much developed in the 1980s by
Stroock, Bismut, and Watanabe, among others (the
reader is referred to Nualart (1995) and Malliavin
(1997)). In recent years, Malliavin calculus had
great success in probabilistic numerical methods,
mainly in the field of stochastic finance (Malliavin
and Thalmaier 2005). However, the theory has also
been applied to other fields of mathematics and
physics, notably in statistical mechanics and statistical
hydrodynamics (see Stochastic Hydrodynamics). In
addition, one should remember that Wiener measure
can be viewed as an ‘‘imaginary time’’ (but well-
defined) counterpart of Feynman’s ‘‘measure’’ for
quantum systems. A stochastic calculus of variations
for Wiener functionals could not be irrelevant to the
path-integral approach to quantum theory.

Another field of application worth mentioning is
the study of representations of stochastic oscillatory
integrals with quadratic phase function and their
stationary phase estimation. For this, complexifica-
tion of the Wiener space must be properly defined
(Malliavin and Taniguchi (1997)).
c
differential operator in R of the form

A ¼ 1

2

X
i;j¼1

aij@2
i;j þ

X
i

bi@i

with smooth bounded coefficients and such that
the matrix a is symmetric and non-negative, admit-
ting a square root �. The corresponding Cauchy
value problem consists in finding a smooth solution
u(t, x) of

@u

@t
¼ Au; uð0; :Þ ¼ �ð:Þ ½1�

Then there exists a transition probability function
p(t, x, .) such that

uðt; xÞ ¼
Z

Rd
�ðyÞpðt; x; dyÞ

When p(t, x, dy) = p(t, x, y)dy, the function p is the
heat kernel associated to the operator A, and
from eqn [1] one may deduce Focker–Planck’s
equation for p.

Since Kolmogorov we know that it is possible to
associate with such a second-order operator a stochas-
tic family of curves like a deterministic flow is
associated with a vector field. This stochastic family
is a Markov process, �x(t), which is adapted to the
increasing family P� , � 2 [0, 1], of sigma-fields gener-
ated by the past events, that is, u(�) 2 P� for every � .

Itô calculus allows us to write the SDE
satisfied by �:

d�ðtÞ¼ �ð�xðtÞÞdWðtÞþbð�xðtÞÞdt; �xð0Þ¼ x ½2�

where W(t) stands for Rd-valued Brownian motion
(see Stochastic Differential Equations). Then p is the
image of the Wiener measure � (the law of
Brownian motion), namely p(t,x, .)=�� ��1

x (t)(.)
and we have the representation

uðt; xÞ ¼ E�ð�ð�xðtÞÞÞ
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The following criterion for absolute continuity of
measures in finite dimensions holds:

Lemma If � is a probability measure on Rd and,
for every f 2 C1b ,Z

@if d�

����
���� � cikfk1

where ci, i = 1, . . . , d, are constants, then � is abso-
lutely continuous with respect to Lebesgue measure.

Now one can think about Wiener measure as an
infinite (actually continuous) product of finite-
dimensional Gaussian measures. Considering the
toy model of the above-mentionned situation in
one dimension, we replace Wiener measure by
d�(x) = (1=

ffiffiffiffiffiffi
2�
p

)e�x2=2 dx and look at the process at
a fixed time as a function g on R. In order to apply
the lemma and study the law of g, one would writeZ

ðf 0 � gÞ d� ¼
Z ðf � gÞ0

g0
d�

and then integrate by parts to obtain
R

(f � g)	 d�. A
simple computation shows that 	(x) = (g00 þ xg0)=(g0)2,
and, in particular, that the nondegeneracy of the
derivative of g plays a role in the existence of the
density.

To work with functionals on the Wiener space,
one needs an infinite-dimensional calculus. Of
course, other (Gateaux, Fréchet) calculi on infinite-
dimensional settings are already available but the
typical functionals we are dealing with, solutions of
SDEs, are not continuous with respect to the
underlying topology, nor even defined at every
point, but only almost everywhere. Malliavin calcu-
lus, as a Sobolev differential calculus, requires very
little regularity, given that there is no Sobolev
imbedding theory in infinite dimensions.
Differential Calculus on the
Wiener Space

We restrict ourselves to the classical Wiener space,
although the theory may be developed in abstract
Wiener spaces, in the sense of Gross. For a
description of this theory as well as of Segal’s
model developed in the 1950s for the needs of
quantum field theory, the reader is referred to
Malliavin (1997).

Let H be the Cameron–Martin space,
H= {h : [0, 1]! Rd such that _h is square integrable
and h(t) =

R t
0

_h(�)d�}, which is a separable Hilbert
space with scalar product <h1, h2> =

R 1
0

_h1(�).
_h2(�)d� . The classical Wiener measure will be
denoted by �; it is realized on the Banach space X
of continuous paths on the time interval [0,1]
starting from zero at time zero, a space where H is
densely imbedded. In finite dimensions, Lebesgue
measure can be characterized by its invariance under
the group of translations. In infinite dimensions
there is no Lebesgue measure and this invariance
must be replaced by quasi-invariance for transla-
tions of Wiener measures (Cameron–Martin admis-
sible shifts). We recall that, if h 2 H, Cameron–
Martin theorem states that

E�ðFð!þ hÞÞ ¼E� Fð!Þ exp

Z 1

0

_hð�Þ d!ð�Þ
��

� 1

2

Z 1

0

j _hð�Þj2 d�

��

where d! denotes Itô integration.
For a cylindrical ‘‘test’’ functional F(!) =

f (!(�1), . . . ,!(�m)), where f 2 C1b (Rm) and 0 �
�1 � � � � � �m � 1, the derivative operator is
defined by

D�Fð!Þ ¼
Xm
k¼1

1�<�k
@kf ð!ð�1Þ; . . . ; !ð�mÞÞ ½3�

This operator is closed in W2, 1(X; R), the comple-
tion of the space of cylindrical functionals with
respect to the Sobolev norm

jjFjj2;1 ¼ E�jjFjj2 þ E�

Z 1

0

jD�Fj2 d�

Define F to be H-differentiable at ! 2 X when there
exists a linear operatorrF(!) such that, for all h 2 H,

Fð!þ hÞ � Fð!Þ ¼ hrFð!Þ; hi þ oðjjhjjHÞ
as jjhjj ! 0

Then D� disintegrates the derivative in the sense that

DhFð!Þ � hrFð!Þ; hi ¼
Z 1

0

D�Fð!Þ: _hð�Þ d� ½4�

Higher (r)-order derivatives, as r-linear functionals,
can be considered as well in suitable Sobolev spaces.

Denote by 
 the L2
� adjoint of the operator r, that

is, for a process u : X! H in the domain of 
, the
divergence 
(u) is characterized by

E�ðF
ðuÞÞ ¼ E�

Z 1

0

D�F: _uð�Þ d�
� �

½5�

For an elementary process u of the form
u(�) =

P
j Fj(� ^ �j), where the Fj are smooth ran-

dom variables and the sum is finite, the divergence is


ðuÞ ¼
X

j

Fj!ð�jÞ �
X

j

Z �j

0

D�Fj d�
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The characterization of the domain of 
 is delicate,
since both terms in this last expression are not
independently closable. It can be shown that
W1, 2(X; H) is in the domain of 
 and that the
following ‘‘energy’’ identity holds:

E�ð
ðuÞÞ2 ¼ E�jjujj2H þ E�

Z 1

0

Z 1

0

D� _u�:D� _u� d� d�

Notice that when u is adapted to P� , Cameron–
Martin–Girsanov theorem implies that the divergence
coincides with Itô stochastic integral

R 1
0

_u(�) d!(�)
and, in this adapted case, the last term of the energy
identity vanishes. We recover the well-known Itô
isometry which is at the foundation of the construction
of this integral. When the process is not adapted, the
divergence turns out to coincide with a generalization
of Itô integral, first defined by Skorohod.

The relation [5] is an integration-by-parts formula
with respect to the Wiener measure �, one of the
basic ingredients of Malliavin calculus. This formula
is easily generalized when the base measure is
absolutely continuous with respect to �.

Considering all functionals of the form
P(!) = Q(!(�1), . . . , !(�m)) with Q a polynomial on
Rd, the Wiener chaos of order n, Cn, is defined as
Cn =Pn

N
P?n�1, where Pn denote the polynomials

on X of degree �n. The Wiener-chaos decomposition
L2
�(X) =

L1
n = 0 Cn holds. Denoting by �n the ortho-

gonal projection onto the chaos of order n, we have

r
�Y

nþ1

F

�
;h

* +
¼
Y

n

ð rF; hh iÞ

The derivative Du corresponds to the annihilation
operator A(u) and the divergence 
(u) to the creation
operator Aþ(u) on bosonic Fock spaces.

An important result, known as the Clark–
Bismut–Ocone formula, states that any functional
F 2W1, 2(X; R) can be represented as

F ¼ E�ðFÞ þ
Z 1

0

E� ðD�FÞ d!ð�Þ

where E� denotes the conditional expectation with
respect to the events prior to time � (or, for short,
the past P� of �).

The Ornstein–Uhlenbeck generator (or minus
number operator) is defined by LF = �
rF. On
cylindrical functionals F(!) = f (!(�1), . . . , !(�m)), it
has the form

LFð!Þ ¼
X

i;j

�i ^ �j@
2
i;jf ð!ð�1Þ; . . . ; !ð�mÞÞ

�
X

j

!ð�jÞ@jf ð!ð�1Þ; . . . ; !ð�mÞÞ
where i,j denote multi-dimensional (d) indexes.
As a multiplicative operator on the Wiener-chaos

decomposition LF = �
P

n n�nF. It is the generator
of a positive �-self-adjoint semigroup, the Ornstein–
Uhlenbeck semigroup, formally given by
TtF =

P
n e�nt�nF. Another familiar representation

of this semigroup is Mehler formula,

TtFð!Þ ¼ E� F e�t!þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�2t

q
�

� �
d�ð�Þ

� �

Considering the map X! Rm,!! (!(�1), . . . ,
!(�m)), the image of this operator is the Ornstein–
Uhlenbeck generator (corresponding to the Langevin
equation) on Rm with Euclidean metric defined by
the matrix �i ^ �j.

The fundamental theorem concerning existence of
the density laws of Wiener functionals is the following:

Theorem Let F be an Rd-valued Wiener functional
such that Fi and LFi belong to L4

� for every
i = 1, . . . , d. If the covariance matrix

hrFi;rFjiH
is almost surely invertible, then the law of F is
absolutely continuous with respect to the Lebesgue
measure on Rd.

Under more regularity assumptions, smoothness
of the density is also derived. On the other hand, the
integrability assumptions on L can be replaced by
integrability of the second derivatives, due to Krée–
Meyer inequalities on the Wiener space.

We remark that, although equivalent, the initial
formulation (Malliavin 1978) of Malliavin calculus
was different, relying on the construction of the
two-parameter process associated to L and on its
properties. In the early 1980s, the theory was
elaborated, the main applications being the study
of heat kernels (cf., e.g., Stroock (1981), Ikeda and
Watanabe (1989), and Bismut (1984)). Starting from
an SDE [2], it is possible to apply these techniques to
obtain existence and smoothness of the transition
probability function p(t, x, y) if the vector fields
Zi =

P
j �

ij(@=@xj) together with their Lie brackets
generate the tangent space for ‘‘sufficientely many’’
(in terms of probability) paths. These results shed a
new light on Hörmander theorem for partial
differential equations.
Quasi-Sure Analysis

Quasi-sure analysis is a refinement of classical
probability theory and, generally speaking, replaces
the fact that, due to Sobolev imbedding theorems,
functions in finite dimensions belonging to Sobolev
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classes are in fact smooth. We work in classical
probability up to sets of probability zero; in quasi-
sure analysis negligible sets are smaller and are those
of capacity zero. This is the class of sets which are
not charged by any measure of finite energy.

Under a nondegenerate map, Wiener measure and
more general Gaussian measures may be disinte-
grated through a co-area formula. This principle,
developed by Malliavin and co-authors (cf.
Malliavin (1997) and references therein), implies
that a property which is true quasi-surely will also
hold true almost surely under conditioning by such
a map. One can use this principle to study
finer properties of SDEs. It was also used in
M P Malliavin and P Malliavin (1990) to transfer
properties from path to loop groups (see Measure on
Loop Spaces). A pinned Brownian motion, for
example, is well defined in quasi-sure analysis. It is
possible to treat anticipative problems using quasi-
sure analysis by solving the adapted problem after
restriction of the solution to the finite-codimensional
manifold which describes the anticipativity. These
methods have also been applied to the computation
of Lyapunov exponents of stochastic dynamical
systems (Imkeller 1998). With a geometry of finite-
codimensional manifolds of Wiener spaces well
established, it is reasonable to think about applica-
tions to cases where such submanifolds correspond to
level surfaces of invariant quantities for infinite-
dimensional dynamical systems (cf. Cipriano (1999)
for an example of such a situation in hydrodynamics).

The (p, r)-capacity of an open subset O of the
Wiener space is defined by

capp;rðOÞ ¼ inffk�kp
W2r
; � � 0; � � 1 �-a:s: on Og

and, for a general set B, capp, r(B) = inf {capp, r(O) :
B 	 O, O open}. A set is said to be slim if all its
(p, r)-capacities are zero. For � 2W1, the space of
functionals with every Malliavin derivative belong-
ing to all Lp

�, there exists a redefinition of �,
denoted by �
, which is smooth and defined on the
complement of a slim set.

Following Airault and Malliavin (1988), let G 2
W1(X; Rd) be of maximal rank and nondegenerate
in the sense that the inverse of

ðdet �Þ2ð!Þ ¼ detðhr�ið!Þ;r�jð!ÞiÞ

belongs to W1. Then for every functional G 2W1,
the measures � � ��1 and (G�) � ��1 are absolutely
continuous with respect to Lebesgue measure on Rd

and have C1 Radon–Nikodym derivatives. If

	ð�Þ ¼ d� � ��1

d�
and 	Gð�Þ ¼

dðG�Þ � ��1

d�
the function �! 	G(�)=	(�) will be smooth in the
open set O= {� : 	(�) > 0}.

For every � 2 O, it is possible to define (up to slim
sets) a submanifold of the Wiener space of codimen-
sion d, S� = (�
)�1(�), as well as a measure �S
satisfyingZ

S�
G
 d�Sð!Þ ¼ E�ð!Þ¼�ðGÞ ¼ 	Gð�Þ

	ð�Þ

for every G 2W1. This measure does not charge
slim sets.

The area measure @ on the submanifold S� is
defined byZ

F
 d@ ¼ 	ð�Þ
Z

F
ð!Þ detðhr�ið!Þ;

r�jð!ÞiÞ1=2 d�Sð!Þ

The following co-area formula on the Wiener
space Z

X

f ð�ð!ÞÞFð!Þðdet �Þð!Þ d�ð!Þ

¼
Z

Rd
f ð�Þ

Z
S�

F
ð!Þ d@ð!Þ d�

was proved in Airault and Malliavin (1988).
Calculus of Variations in a
Non-Euclidean Setting

Let M be a d-dimensional compact Riemannian
manifold with metric ds2 =

P
i, j gi,j dmi dmj. The

Laplace–Beltrami operator is expressed in the local
chart by

�M ¼ gi;j @2f

@mi@mj
� gi;j�k

i;j

@f

@mk

where �k
i, j are the Christoffel symbols associated

with the Levi-Civita connection. The corresponding
Brownian motion pw is locally expressed as a
solution of the SDE:

dpiðtÞ ¼ ai;jðpðtÞÞ dWjðtÞ � 1
2g

j;k�i
j;kðpðtÞÞ dt

with p(0) = m0 2M and where a =
ffiffiffi
g
p

. Its law on
the space of paths P(M) = {p : [0, 1]!M, p contin-
uous, p(0) = m0} will be denoted by 
.

How can we develop differential calculus and
geometry on the space P(M)? An infinite-dimensional
local chart approach is delicate, due to the difficulty
of finding an atlas in which the changes of charts
preserve the measures. A possibility, developed in
Cruzeiro and Malliavin (1996), consists in replacing
the local chart approach by the Cartan-like metho-
dology of moving frames. The canonical moving
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frame in this framework is provided by Itô stochastic
parallel transport. Nevertheless, a new difficulty
arises: the parallel transport will not be differentiable
in the Cameron–Martin sense described before.

Recall that a frame above m is a Euclidean
isometry r : Rd ! Tm(M) onto the tangent space.
O(M) denotes the collection of all frames above M
and �(r) = m the canonical projection. O(M) can be
viewed as a parallelized manifold for there exist
canonical differential forms (�,!) realizing for every r
an isomorphism between Tr(O(M)) and Rd � so(d).

If A�,�= 1, . . . , d, denote the horizontal vector
fields, which are defined by <�, A�>= "�, <!,
A�> = 0, where "� are the vectors of the canonical
basis of Rd, then the horizontal Laplacian in O(M)
is the operator

�OðMÞ ¼
Xd

�¼1

A2
�

and we have �O(M)(fo�) = (�Mf )o�. With the
Laplacians on M and on O(M) inducing two
probability measures, the canonical projection rea-
lizes an isomorphism between the corresponding
probability spaces.

The Stratonovich SDE

dr! ¼
X
�

A�ðr!Þo d!�; r!ð0Þ ¼ r0

with �(r0) = m0 defines the lifting to O(M) of the Itô
parallel transport along the Brownian curve and we
write t p

� 0r0 = r!(�). Itô map was defined by
Malliavin as the map I : X! P(M) given by

Ið!Þð�Þ ¼ �ðr!ð�ÞÞ

This map is a.s. bijective and we have 
=� � I�1;
therefore, it provides an isomorphism of measures
from the curved path space to the ‘‘flat’’ Wiener
space.

For a cylindrical functional F = f (p(�1), . . . , p(�m))
on P(M), the derivatives are defined by

D�;�FðpÞ ¼
Xm
k¼1

1�<�k
ðtp

0 �k
ð@kFÞj"�Þ

The derivative operator is closable in a suitable
Sobolev space.

It would be reasonable to think that the differ-
entiable structure considered in the Wiener space
would be conserved through the isomorphism I and
that the tangent space of P(M) would consist of
transported vectors from the tangent space to X,
namely Cameron–Martin vectors. Let us take a map
Zp(�) 2 Tp(�)(M) such that z(�) = tp

0 �Zp(�) belongs
to the Cameron–Martin space H.
In order to transfer derivatives to the Wiener
space, we need to differentiate the Itô map. We have
(Cruzeiro and Malliavin (1996)):

Theorem The Jacobian matrix of the flow r0 !
r!(�) is given by the linear map J!, � = (J1

!, � , J2
!, � ) 2

GL(Rd � so(d)) defined by the system of Stratonovich
SDE’s

d� J
1
!;� ¼

Xd

�¼1

J1
!;�

� �
�
o d!�ð�Þ

d� J
2
!;� ¼

Xd

�¼1

� J1
!;� ; "�

� �
o d!�ð�Þ

where � denotes the curvature tensor of the under-
lying manifold read on the frame bundle.

From this result we can deduce the behavior of the
derivatives transferred to the Wiener space, a result
whose origin is due to B Driver. We have, for a
‘‘vector field’’ Zp(�) on P(M) as above,

ðDZFÞoI ¼ D�ðFoIÞ

with � solving

d�ð�Þ ¼ _zð�Þ d� þ 	o d!ð�Þ
d	ð�Þ ¼ �ðo d!ð�Þ; zð�ÞÞ

The process � is no longer Cameron–Martin space
valued. Nevertheless, it satisfies an SDE with an
antisymmetric diffusion coefficient (given by the
curvature) and therefore, by Levy’s theorem, it still
corresponds to a transformation of the Wiener space
that leaves the measure quasi-invariant. We extend,
accordingly, the notion of tangent space in the
Wiener space to include processes of the form
d�� = a�� d!� þ c� d� , with a�� þ a�� = 0. These
were called ‘‘tangent processes’’ in Cruzeiro and
Malliavin (1996).

Another important consequence of the last theo-
rem is the integration-by-parts formula in the curved
setting, initially proved by Bismut (1984):

E
ðDZFÞ ¼ E� ðFoIÞ
Z 1

0

½ _zþ 1
2RicciðzÞ� d!ð�Þ

� �

where Ricci is the Ricci tensor of M read on the
frame bundle.
Some Applications

We already mentioned that Malliavin calculus has
been applied to various domains connected with
physics. We shall describe here some of its relations
with elementary quantum mechanics.
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Feynman gave a path space formulation of
quantum theory whose fundamental tool is the
concept of transition element of a functional F(!)
between any two L2-states  s and �u, for paths !
defined on a time interval [s, u]:

<F>S �<�jFj >S

¼
Z Z Z

�

 sðxÞ exp
i

�h
SLð!; u� sÞ

� �
� Fð!Þ ��uðzÞD!dx dz ½6�

This is a shorthand for the time discretization
version along broken paths ! interpolating
linearly between point xj =!(tj), tj = j(u� s)=N,
j = 0, 1, . . . , N. In [6] �h is Planck’s constant and
S = SL denotes the action functional with Lagran-
gian L of the underlying classical system. For a
particle with mass m in a scalar potential V on the
real line,

SLð!; u� sÞ ¼
Z u

s

m

2
_!2ð�Þ � Vð!ð�Þ

� �
d� ½7�

The ‘‘D!’’ of [6] is used as a Lebesgue measure,
although there is no such thing in infinite dimen-
sions. More generally, the construction of measures
or integrals on the various path spaces required for
general quantum systems is still nowadays a field of
investigation.

When F = 1 and ��u (the complex conjugate of �u)
reduces to a Dirac mass at z, [6] is the path-integral
representation of the solution  (x, u) of the initial-
value problem in L2:

i�h
@ 

@u
¼ H 

 ðx; sÞ ¼  sðxÞ
½8�

where H = �(�h2=2)�þ V and when SL is as in [7].
Feynman’s framework is time symmetric on I: when
 s = 
x (still for F = 1), [6] provides a path-integral
representation of the solution of the final-value
problem for ��(z, s).

According to Feynman, ‘‘it would be possible to
use the integration-by-parts formula


F


!ðsÞ

� 	
¼ � i

�h
F


S


!ðsÞ

� 	
½9�

as a starting point to define the laws of quantum
mechanics’’ (Feynman and Hibbs 1965, p. 173). The
functional derivative corresponds to variations of
the underlying paths in directions 
! and


F ¼
Z


F


!ðsÞ 
!ðsÞ ds

to an L2 analog of [4].
Its first consequence, when F = 1, is the path
space counterpart of Newton’s law, in the elemen-
tary case [7],

<m€!>SL
¼ � <rVð!Þ>SL

½10�

where the left-hand side involves a time discretiza-
tion of the second derivative. When F(!) =!(t),
Feynman obtains the path space version of
Heisenberg commutation relation between position
and momentum observables:

!ðtÞ!ðtÞ � !ðt � �Þ
�

� 	
SL

� !ðt þ �Þ � !ðtÞ
�

!ðtÞ
� 	

¼ i
�h

m
½11�

and from this the crucial fact that ‘‘quantum
mechanical paths are very irregular. However, these
irregularities average out over a reasonable length of
time to produce a reasonable drift or average
velocity’’ (Feynman and Hibbs 1965, p. 177).

A probabilistic interpretation (cf. Cruzeiro
and Zambrini (1991)) of Feynman’s calculus uses
(Bernstein) diffusion processes solving the SDE

dzðtÞ ¼ �h

m

� �1=2

dWðtÞ þ �h

m
r log �ðzðtÞ; tÞ dt ½12�

where the drift stems from a positive solution of the
Euclidean version of the above final-value problem
for �,

�h
@�

@t
¼ H�

�ðx; uÞ ¼ �uðxÞ
½13�

For any regular function f, we can make sense of
the ‘‘continuous limit’’

Df ðzðtÞ; tÞ ¼ lim
�!0

1

�
Et½f ðzðt þ �Þ; t þ �Þ

� f ðzðtÞ; tÞÞ� ½14�

where Et denotes conditional expectation with
respect to the past Pt and check, indeed, that

DzðtÞ ¼ �h

m
r log �ðzðtÞ; tÞ

is Feynman’s ‘‘reasonable drift.’’ Using Feynman–
Kac formula, one shows that the diffusions [12]
have laws which are absolutely continuous with
respect to the Wiener measure of parameter �h=m,
with Radon–Nikodym density given by

	ðzÞ ¼ �ðzðuÞ; uÞ
�ðzðsÞ; sÞ exp � 1

�h

Z 1

0

Vðzð�ÞÞ d�
� �
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We can, therefore, use Malliavin calculus on the
path space of these diffusions and the associated
integration-by-parts formula to make sense of [9]
and all its consequences.

The probabilistic counterpart of the time symme-
try of Feynman’s framework is interesting: Heisen-
berg’s original argument to deny the existence of
quantum trajectories (1927) was that any position
can be associated with two velocities. Feynman’s
interpretation [11] and the definition [14] suggest
that this has to do with a past or future conditioning
at time t. Indeed, there is another description of
diffusions z(t) with respect to a family of future
�-fields, using the Euclidean version of the initial-
value problem for  , underlying [6]. Another drift
built on the model of the drift in [12] results, and
Feynman’s commutation relation [11] becomes
rigorous (without, of course, the factor i).

We refer to Cruzeiro and Zambrini (1991) for a
development of this approach using Malliavin
calculus.

See also: Euclidean Field Theory; Functional Integration
in Quantum Physics; Measure on Loop Spaces;
Stochastic Differential Equations; Stochastic
Hydrodynamics.
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Introduction

Characteristic classes play an essential role in the
study of global properties of vector bundles.
Particularly important is the Euler class of real
orientable vector bundles. A de Rham representative
of the Euler class (for tangent bundles) first
appeared in Chern’s generalization of the Gauss–
Bonnet theorem to higher dimensions. The repre-
sentative is the Pfaffian of the curvature, whose
cohomology class does not depend on the choice of
connections. The Euler class of a vector bundle is
also the obstruction to the existence of a nowhere-
vanishing section. In fact, it is the Poincaré dual of
the zero set of any section which intersects the zero
section transversely. In the case of tangent bundles,
it counts (algebraically) the zeros of a vector field on
the manifold. That this is equal to the Euler
characteristic number is known as the Hopf theo-
rem. Also significant is the Thom class of a vector
bundle: it is the Poincaré dual of the zero section in
the total space. It induces, by a cup product, the
Thom isomorphism between the cohomology of the
base space and that of the total space with compact
vertical support. Thom isomorphism also exists and
plays an important role in K-theory.

Mathai and Quillen (1986) obtained a represen-
tative of the Thom class by a differential form on
the total space of a vector bundle. Instead of
having a compact support, the form has a nice
Gaussian peak near the zero section and exponen-
tially decays along the fiber directions. The pull-
back of Mathai–Quillen’s Thom form by any
section is a representative of the Euler class. By
scaling the section, one obtains an interpolation
between the Pfaffian of the curvature, which
distributes smoothly on the manifold, and the
Poincaré dual of the zero set, which localizes on
the latter. This elegant construction proves to be
extremely useful in many situations, from the
study of Morse theory, analytic torsion in mathe-
matics to the understanding of topological (coho-
mological) field theories in physics.

In this article, we begin with the construction of
Mathai–Quillen’s Thom form. We also consider the
case with group actions, with a review of equivar-
iant cohomology and then Mathai–Quillen’s con-
struction in this setting. Next, we show that much of
the above can be formulated as a ‘‘field theory’ on a
superspace of one fermionic dimension. Finally,
we present the interpretation of topological field
theories using the Mathai–Quillen formalism.
Mathai–Quillen’s Construction

Berezin Integral and Supertrace

Let V be an oriented real vector space of dimension n
with a volume element � 2 ^nV compatible with
the orientation. The ‘‘Berezin integral’’ of a form
! 2 ^�V� on V, denoted by

R B
!, is the pairing h�,!i.

Clearly, only the top degree component of !
contributes. For example, if � 2 ^2V� is a 2-form, then

Z B

e� ¼
�;
�^ðn=2Þ

ðn=2Þ!

� �
; if n is even

0; if n is odd

8><
>:

If V has a Euclidean metric (� , �), then � is chosen to
be of unit norm. If � 2 End(V) is skew-symmetric,
then (1=2)(� , � �) is a 2-form and, if n is even, the
Pfaffian of � is

Pfð�Þ ¼
Z B

exp
1

2
ð� ;� �Þ

� �

The Berezin integral can be defined on elements in
a graded tensor product ^�V� �̂A, where A is any
Z2-graded commutative algebra. For example, if we
consider the identity operator x = idV as a V-valued
function on V, then dx is a 1-form on V valued in V,
and (dx, �) is a 1-form valued in V�. Let {e1, . . . , en}
be an orthonormal basis of V and write x = xiei,
where xi are the coordinate functions on V. We let

uðxÞ¼ ð�1Þnðnþ1Þ=2

ð2�Þn=2
Z B

exp � 1

2
ðx; xÞ � ðdx; �Þ

� �

The integrand is in ��(V) �̂ ^� V�. The result is

uðxÞ¼ 1

ð2�Þn=2
exp � 1

2
ðx; xÞ

� �
dx1 ^ � � � ^ dxn ½1�

a Gaussian n-form whose (usual) integration on V is 1.
Let Cl(V) be the Clifford algebra of V. For any

orthonormal basis {ei}, let � i be the corresponding
generators of Cl(V) and let �= ei � � i 2 V � Cl(V).
For any ! 2 ^kV�, we have

!ð�; . . . ; �Þ¼ 1

k!
!i1���ik�

i1 � � � � ik 2 ClðVÞ

If n is even, the Clifford algebra has a unique
Z2-graded irreducible spinor representation S(V) =
Sþ(V)� S�(V). For any element a 2 Cl(V), the
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supertrace is str a = trSþ(V) a� trS�(V) a. If � 2 End(V)
is skew-symmetric, then

str exp

� ffiffiffiffiffiffiffi
�1
p

4
ð�;��Þ

�
¼ Âð�Þ�1=2Pfð�Þ

where

Âð�Þ¼ det
�=2

sinhð�=2Þ

� �

More generally, supertrace can be defined on
Cl(V) �̂A for any Z2-graded commutative algebra
A = Aþ � A�. If � is skew-symmetric and � 2 V� �
A�, then

str exp

� ffiffiffiffiffiffiffi
�1
p

4
ð�;��Þ þ

� ffiffiffiffiffiffiffi
�1
p

2

�1=2

�ð�Þ
�

¼ Âð�Þ�1=2

Z B

exp
1

2
ð� ;� �Þ þ �

� �
½2�
Representatives of the Euler and Thom Classes

Let M be a smooth manifold and let � : E ! M
be an oriented real vector bundle of rank r. Suppose
E has a Euclidean structure (� , �) and r is a
compatible connection. The curvature R 2 �2

(M, End (E)) is skew-symmetric, and hence (� , R �) 2
�2(M, ^2 E�). A de Rham representative of the Euler
class of E is

erðEÞ¼
1

ð2�Þr=2
Z B

exp
1

2
ð� ;R �Þ

� �
¼ Pf

R

2�

� �
½3�

Here, the Berezin integration is fiberwise in E: it is
the pairing between the integrand and the unit
section � of the trivial line bundle ^rE that is
consistent with the orientation of E. The de Rham
cohomology class of [3] is independent of the choice
of (� , �) or r.

Let s be a section of E. Following Berline et al.
(1992) and Zhang (2001), we consider

sr; s¼ 1
2 ðs; sÞ þ ðrs; �Þþ 1

2 ð�;R �Þ ½4�

a differential form on M valued in ^�E�. Mathai–
Quillen’s representative of the Euler class is

er; sðEÞ¼
ð�1Þrðrþ1Þ=2

ð2�Þr=2
Z B

e�r; s ½5�

One can show that er, s(E) is closed and that as
� varies, the cohomology class of er,�s(E) does not
change. By taking � ! 0, the de Rham class of
er, s(E) is equal to that of er(E) when r is even. The
form er, �s(E) provides a continuous interpolation
between [3] and the limit as � !1, when the form
is concentrated on the zero locus of the section s. In
fact, the Euler class is the Poincaré dual to the
homology class represented by s�1(0). Hence, if
n � m and if ! 2 �n�m(M) is closed, we haveZ

M

! ^ er;sðEÞ ¼
Z

s�1ð0Þ
! ½6�

when s intersects the zero section transversely.
To obtain Mathai–Quillen’s representative of the

Thom class, we consider the pullback of E to E itself.
The bundle ��E! E has a tautological section x.
Applying [5] to this setting, we get

�rðEÞ¼
ð�1Þrðrþ1Þ=2

ð2�Þr=2
Z B

exp � 1

2
ðx; xÞ

�

�ðrx; �Þ � 1

2
ð� ;R �Þ

�
½7�

where ( � , � ),r, and R are understood to be the
pullbacks to ��E. This is a closed form on the total
space of E. Moreover, its restriction to each fiber
is the Gaussian form [1]. The cohomology groups
of differential forms with exponential decay along
the fibers are isomorphic to those with compact
vertical support or the relative cohomology groups
H�(E, EnM). Here M is identified with its image
under the inclusion i : M! E by the zero section.
Under the above isomorphism, the cohomology
class represented by �r(E) coincides with the
Thom class �(E) = i�1 2 Hr(E, EnM) defined topo-
logically. For any section s 2 �(E), we have
er, s(E) = s��r(E).
Character Form of the Thom Class in K-Theory

Let E = Eþ � E� be a Z2-graded vector bundle over
M. The spaces ��(M, E), �(End(E)) and ��(M) �̂�
(End(E)) are also Z2-graded. The action of � �̂ T 2
��(M) �̂�(End(E)) on � � s 2 ��(M, E) is

� �̂T : � � s 7! ð�1ÞjTj j�jð� ^ �Þ � ðTsÞ

The supertrace of A 2 �(End(E)) is str A = trEþA�
trE�A; it extends ��(M)-linearly to str : ��(M) �̂�
(End(E))! ��(M). Let r be a connection on E
preserving the grading. r is an odd operator on
��(M, E). If L 2 �(End(E)�) is odd, then D =rþ L
is called a ‘‘superconnection’’ on E; the ‘‘curvature’’
D2 = RþrLþ L2 2 (��(M)� �(End(E)))þ is even.
With the superconnection, the Chern character of
the virtual vector bundle Eþ 	 E� can be repre-
sented by

chr;LðEþ; E�Þ¼ str exp

� ffiffiffiffiffiffiffi
�1
p

2�
D2

�
½8�
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It is a closed form on M and its de Rham
cohomology class is independent of the choice of
r or L. If L is invertible everywhere on M and the
eigenvalues of

ffiffiffiffiffiffi
�1
p

L2 are negative, then [8] is exact:

chr;LðEþ;E�Þ

¼ �
ffiffiffiffiffiffiffi
�1
p

2�
d

Z 1
1

str exp

ffiffiffiffiffiffiffi
�1
p

2�
ðr þ �LÞ2

 !
L

 !
d�

Now let E be an oriented real vector bundle of
rank r = 2m over M with a Euclidean structure (� , �).
Suppose further that E has a spin structure. The
associated spinor bundle S(E) = Sþ(E)� S�(E) is a
graded complex vector bundle over M. For any
section s 2 �(E), let c(s) 2 �(End(E)�) be the Clifford
multiplication on E. Then for any s, s0 2 �(E),
we have {c(s), c(s0)} =�2(s, s0). Given a connection r
on E preserving (� , �), the induced spinor connection
rS on S(E) preserves the grading. If R is the curvature
ofr, that ofrS is RS =�(1=4) (�, R�), where � is now
a section of E�Cl(E). For any s 2 �(E), consider the
superconnection

Ds ¼ rS þ �ffiffiffiffiffiffiffi
�1
p
� �1=2

cðsÞ

The Chern character form [8] of Sþ(E)	 S�(E) is,
using [2],

chr; sðSþðEÞ; S�ðEÞÞ ¼ ð�1ÞmÂ
R

2�

� ��1=2

er; sðEÞ ½9�

where er, s(E) is given by [5]. In cohomology groups,
[9] reduces to

chðSþðEÞÞ � chðS�ðEÞÞ ¼ ð�1ÞmÂðEÞ�1=2eðEÞ

If M is noncompact and the norm of s increases
rapidly away from s�1(0), then both sides of [9] are
differential forms that decay rapidly away from
s�1(0) and can represent cohomology classes of such.
As before, we take the pullback ��E with the
tautological section x. Then [9] becomes

chrð��SþðEÞ; ��S�ðEÞÞ

¼ ð�1Þm��Â R

2�

� ��1=2

�rðEÞ ½10�

where �r(E) is given by [7]. Both sides of [10] are
forms on E that decays exponentially in the fiber
directions; hence, it descends to an equality in
H�(E, EnM). In the relative K-group K(E, EnM),
the pair ��S
(E) with the isomorphism c(x) away
form the zero section is, up to a factor of (�1)m, the
K-theoretic Thom class i!1 2 K(E, EnM). Therefore,
[10] reduces to the well-known formula
chði!1Þ ¼ ��ÂðEÞ�1=2i�1

in cohomology groups H�(E, EnM). The refinement
[10] as an equality of differential forms is
due to Mathai and Quillen (1986). In fact, this is
how [7] was derived originally.
Equivariant Cohomology and Equivariant
Vector Bundles

Equivariant Cohomology

Let G be a compact Lie group with Lie algebra g.
Fixing a basis {ea} of g, the structure constants are
given by [ea, eb] = tc

abec. Let {#a} and {’a} be the dual
bases of g� generating the exterior algebra ^(g�) and
the symmetric algebra S(g�), respectively. The Weil
algebra is W(g) = ^ (g�) �̂ S(g�). We define a grading
on W(g) by specifying deg#a = 1, deg’a = 2. The
contraction 	a and the exterior derivative d are two
odd derivations on W(g) defined by

	a#
b¼ 
b

a ; 	a’
b ¼ 0

d#a ¼ �1
2t

a
bc#

b#c þ ’a; d’a ¼ �ta
bc#

b’c
½11�

The Lie derivative is La = {	a, d}. These operators
satisfy the usual (anti-)commutation relations

d2 ¼ 0; La ¼ f	a; dg; ½La; d� ¼ 0 ½12�

f	a; 	bg ¼ 0; ½La; 	b� ¼ tc
ab	c;

½La;Lb� ¼ tc
abLc

½13�

The cohomology of (W(g), d) is trivial.
If G acts smoothly on a manifold M on the left, let

Va be the vector field generated by the Lie algebra
element �ea 2 g. Then, [Va, Vb] = tc

abVc. Denote
	a = 	Va

and La = LVa
, acting on ��(M). In the Weil

model of equivariant cohomology, one considers the
graded tensor product W(g) �̂��(M), on which the
operators

~	a ¼ 	a �̂ 1þ 1 �̂ 	a
~d ¼ d �̂ 1þ 1 �̂ d

~La ¼ La �̂ 1þ 1 �̂La

act and satisfy the same relations [12] and [13].
An element ! 2W(g) �̂��(M) is ‘‘basic’’ if it
satisfies 	a!= 0, La!= 0 for all indices a. Let
��G(M) = (W(g) �̂��(M))bas be the set of such.
Elements of ��G(M) are equivariant differential
forms on M. The operator d̃ preserves ��G(M)
and its cohomology groups H�G(M) are the equiv-
ariant cohomology groups of M. They are
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isomorphic to the singular cohomology groups of
EG�G M with real coefficients.

The BRST model of Kalkman (1993) is obtained
by applying an isomorphism �= e#

a�	a of W(g) �̂
��(M). The operators become

� � ~	a � ��1 ¼ 	a �̂ 1

� � ~d � ��1 ¼ ~d � ’a �̂ 	a þ #a �̂La

� � ~La � ��1 ¼ ~La

The subspace of basic forms in the Weil model
becomes

�ð��GðMÞÞ ¼ ðSðg�Þ � ��ðMÞÞG

This is precisely the Cartan model of equivariant
cohomology, in which the exterior differential is

~d0 ¼ 1� d � ’a � 	a

If P is a principal G-bundle over a base space B,
we can form an associated bundle P�G M! B.
Choose a connection on P and let � = �aea 2
�1(P)� g, � = �aea 2 �2(P)� g be the connection
and curvature forms, respectively. The components
�a, �a satisfy the same relations [11]. Replacing
#a,’a by �a, �a, we have a homomorphism that
maps ! 2W(g)� ��(M) to !̂ 2 ��(P�M). If ! is
basic, then so is !̂, and the latter descends to a form
�! on P�G M. Furthermore, the operator ~d on ��G(M)
descends to d on ��(P�G M). Thus, we get the
Chern–Weil homomorphisms ��G(M)! ��(P�G M)
and H�G(M)! H�(P�G M). For example, the vector
space Rr has an obvious SO(r) action. The Gaussian
r-form [1] is invariant under SO(r) and can be
extended to an SO(r)-equivariant closed r-form,
called the ‘‘universal Thom form.’’ Let E be an
orientable real vector bundle E of rank r with a
Euclidean structure. E determines a principal SO(r)-
bundle P; the associated bundle P�SO(r) Rr is E itself.
By applying the Chern–Weil homomorphism to this
setting, we get a closed r-form on E. This is another
construction of the Thom form [7] by Mathai and
Quillen (1986). Further information of equivariant
cohomology can be found there, and in Berline et al.
(1992) and Guillemin and Sternberg (1999).

Equivariant Vector Bundles

Recall that a connection on a vector bundle E!M
determines, for any k � 0, a differential operator

r : �kðM;EÞ ! �kþ1ðM;EÞ

The curvature R =r2 2 �2(M, End(E)) satisfies the
Bianchi identity rR = 0. If the connection preserves a
Euclidean structure on E, then R is skew-symmetric.
If a Lie group G acts on M and the action can be
lifted to E, then G also acts on the spaces �(E) and
��(M, E). As before, the Lie derivatives La on these
spaces are the infinitesimal actions of �ea 2 g. We
choose a G-invariant connection on E. The
‘‘moment’’ of the connection r under the G-action
is �a = La �rVa

acting on �(E). In fact, �a is a
section of End(E), or � 2 �(End(E))� g�. If a
Euclidean structure on E is preserved by both the
connection and the G-action, then �a is skew-
symmetric. On ��(M, E), we have

La ¼ f	a;rg þ �a

	aR ¼ r�a; La�b ¼ tc
ab�c

½�a; �b� ¼ tc
ab�c þ Rab

where Rab = R(Va, Vb) 2 �(End(E)).
On the graded tensor product W(g) �̂��(M, E),

the contraction 	~a and the Lie derivative ~La act and
satisfy [13]. In the Weil model, equivariant differ-
ential forms on M with values in E are the basic
elements in W(g) �̂��(M, E), which form a subspace
��G(M, E) = (W(g) �̂��(M, E))bas. The ‘‘equivariant
covariant derivative’’ is

~r ¼ d �̂ 1þ 1 �̂r þ #a �̂�a ½14�

One checks that {	a, ~r} = ~La and hence ~r preserves
the basic subspace ��G(M, E). The equivariant curva-
ture ~R = ~r2

is

~R ¼ R� #ar�a þ ’a�a þ 1
2#

a#bRab ½15�

It satisfies the equivariant Bianchi identity ~r~R = 0.
Equivariant characteristic forms are invariant poly-
nomials of ~R. They are equivariantly closed and
their equivariant cohomology classes do not depend
on the choice of the G-invariant connection. Hence,
they represent the equivariant characteristic classes
of E in H�G(M).

For the BRST model, we use a similar isomorph-
ism �= e#

a � 	a on W(g) �̂��(M, E). The operators
become

� � ~	a � ��1 ¼ 	a �̂ 1

� � ~r � ��1 ¼ ~r� ’a �̂ 	a þ #a �̂La

� � ~La � ��1 ¼ ~La

and the basic subspace turns into

�ð��GðM;EÞÞ ¼ ðSðg�Þ � ��ðM;EÞÞG

This is the Cartan model, which can be found in
Berline et al. (1992). The equivariant covariant
derivative is

~r0 ¼ 1�r� ’a � 	a
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The equivariant curvature is ~R0= ( ~r0)2 = Rþ ’a�a

and the characteristic forms are defined similarly.
Let P! B be a principal G-bundle with a

connection �. Following [14], the bundle P� E!
P�M has a connection

r̂ ¼ d � 1þ 1�rþ�a � �a

It descends to a connection �r on the vector bundle
P�G E! P�G M. The map ~r 7! �r can be consid-
ered as the analog of the Chern–Weil homomorphism
for connections. There is also a homomorphism
��G(M, E)! ��(P�G M, P�G E), which commutes
with the covariant derivatives ~r, �r. The curvature
�R = �r2

is the image of the equivariant curvature ~R.
Consequently, the equivariant characteristic forms
descend to those of P�G E! P�G M by the usual
Chern–Weil homomorphism.

Now let E = Eþ � E� be a graded vector bundle
over M with a G-action preserving all the structures.
We have the ��G(M)-linear supertrace map str:
��G(M) �̂�(End(E))! ��G(M). If r is a G-invariant
connection on E preserving the grading and if
L 2 �(End(E)�)G is odd and G-invariant, then
~D = ~rþ L is an ‘‘equivariant superconnection.’’
The equivariant counterpart of [8] is

ch ~r;LðEþ;E�Þ ¼ str exp

� ffiffiffiffiffiffiffi
�1
p

2�
~D2

�
2 ��GðMÞ

representing the equivariant Chern character of
Eþ 	 E� in H�G(M).
Representatives of the Equivariant Euler
and Thom Classes

Consider an oriented real vector bundle E!M of
rank r with a Euclidean structure (� , �). Choose a
connection r on E preserving (� , �). We assume that
a Lie group G acts on M and that the action can be
lifted to E preserving all the structures on E. We
use the Weil model; the constructions in the Cartan
model are similar. For any � 2 �k

G(M, E) and
� 2 �l

G(M, E), we obtain (�, ^�) 2 �kþl
G (M) by

taking the wedge product of forms as well as the
pairing in E. The Berezin integral of ! 2 ��G(M, ^� E�)
along the fibers of E is

R B
! = h�,!i2 ��G(M). Here,

� is the unit section of the canonically trivial
determinant line bundle ^rE, compatible with the
orientation of E. The equivariant Euler form

e ~rðEÞ ¼
1

ð2�Þr=2
Z B

exp
1

2
ð� ; R̃ �Þ

� �
¼ Pf

R̃

2�

� �
½16�

is equivariantly closed. It represents the equivariant
Euler class eG(E) 2 H�G(M).
Given a G-invariant section s 2 �(E)G, the equiv-
ariant counterpart of [4] is

S ~r;s¼ 1
2 ðs; sÞ þ ð ~rs; �Þ þ 1

2 ð� ; ~R �Þ ½17�

and that of Mathai–Quillen’s Euler form [5] is

e ~r;sðEÞ ¼
ð�1Þrðrþ1Þ=2

ð2�Þr=2
Z B

e�S ~r;s ½18�

It is also equivariantly closed, and its equivariant
cohomology class is eG(E). The equivariant exten-
sion of Mathai–Quillen’s Thom form [7] is

� ~rðEÞ ¼
ð�1Þrðrþ1Þ=2

ð2�Þr=2
Z B

exp � 1

2
ðx; xÞ

�

�ð ~rx; �Þ � 1

2
ð� ; ~R �Þ

�
½19�

where x is the (G-invariant) tautological section of
��E! E.

Finally, G acts on the (graded) spinor bundle S(E).
Using the equivariant superconnection

~Ds ¼ ~rS þ �ffiffiffiffiffiffiffi
�1
p
� �1=2

cðsÞ

[9] generalizes to

ch ~r;sðSþðEÞ; S�ðEÞÞ ¼ ð�1ÞmÂ
~R

2�

 !�1=2

e ~r;sðEÞ

Now apply the construction to the bundle ��E! E
and its tautological section x. The pair ��S
(E) with
an odd bundle map c(x) determines, up to a factor
of (�1)m, the Thom class i!1G in the equivariant
K-group KG(E, EnM). The equivariant analog of
[10] descends to

chGði!1GÞ ¼ ��ÂGðEÞ�1=2i�1G

in equivariant cohomology.
Superspace Formulation

Mathai–Quillen Formalism and the
Superspace R0 j 1

Let R0 j 1 be the superspace with one fermionic
coordinate � but no bosonic coordinates. The
translation on R0 j1 is generated by D = @=@�,
which satisfies {D, D} = 0. We consider a sigma
model on R0 j 1 whose target space is an (ordinary)
smooth manifold M of dimension n. A map
X : R0 j 1 !M can be written as X(�) = xþ

ffiffiffiffiffiffi
�1
p

� .
Here, x = Xj�= 0 2M and  =�

ffiffiffiffiffiffi
�1
p

DXj�= 0 2 TxM;
the latter is fermionic. Under the translation
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� 7! �þ 
, x and  vary according to the super-
symmetry transformations


x ¼ 
DXj�¼0 ¼
ffiffiffiffiffiffiffi
�1
p


 


 ¼ 
DðDXÞj�¼0 ¼ 0
½20�

Clearly, 
2 = 0, which is also a consequence of D2 = 0.
For any p-form ! 2 �p(M), we have an observable

O!ðXÞ ¼
1

p!
X�!ðD; . . . ;DÞj�¼0

In local coordinates,

! ¼ 1

p!
!i1���ipðxÞ dxi1 ^ � � � ^ dxip

and

O!ðx;  Þ ¼
ffiffiffiffiffiffiffi
�1
p p

p!
!i1���ipðxÞ i1 � � � ip

Using C( � ) to denote the set of function(al)s on a
space, we can identify C(Map(R0 j1, M)) with ��(M).
Under [20], 
O!(X) = 
Od!(X). So, O!(X) is invar-
iant under supersymmetry if and only if ! is closed.
The cohomology of 
 is the de Rham cohomology of
M. Consider the measure [dX] = [dx][d ]. In local
coordinates, [dx] = dx1 � � � dxn is the standard (boso-
nic) measure and [d ] = d 1 � � � d n is a fermionic
measure such thatZ

½d �ð�1Þnðn�1Þ=2  1 � � � n ¼ 1

For any ! 2 �n(M), the superfield integralR
[dX]O!(X) is equal to the usual integral

R
M ! if

the latter exists.
Let E!M be a real vector bundle of rank r with

an inner product (� , �), and let r be a compatible
connection whose curvature is R. Consider a theory
whose fields are X 2Map(R0 j 1, M) and a fermionic
section � 2 �(X�E). Let D= (X�r)D be the covar-
iant derivative along D in the pullback bundle
X�E! R0 j 1. Then, �= �j�= 0 2 Ex is fermionic
and f =D�j�= 0 2 Ex is bosonic.

Given a fixed section s 2 �(E), we write a super-
space action

SMQ½X;�� ¼
Z

R0j1
d�ð�; 1

2D�þ
ffiffiffiffiffiffiffi
�1
p

s �XÞ

¼ 1
2 ðf ; f Þ þ

ffiffiffiffiffiffiffi
�1
p

ðf ; sÞ � ðr s; �Þ
þ 1

4 ð�;Rð ;  Þ�Þ ½21�

It is automatically supersymmetric. Performing the
Gaussian integral over f and replacing � by �

ffiffiffiffiffiffi
�1
p

�,
we get
Z
½d��e�SMQ½X;�� ¼

ffiffiffiffiffiffiffi
�1
p r

ð2�Þr=2
Z
½d�� e�SMQ½x; ;�� ½22�

where

SMQ½x;  ; ��
¼ 1

2 ðs; sÞ �
ffiffiffiffiffiffiffi
�1
p

ð�;r sÞ � 1
4 ð�;Rð ;  Þ�Þ ½23�

When r is even, [22] is equal to Oe(r, s)(E)(X), where
e(r, s)(E) is given by [5]. Furthermore, for any
closed form ! on M, the expectation value

hO!ðXÞi ¼
Z
½dX�½d��O!ðXÞ e�SMQ½X;�� ½24�

is equal to [6].

Equivariant Cohomology and Gauged Sigma
Model on R0 j1

Suppose G is a Lie group and P is a principal G-bundle
over R0 j 1. Since � is nilpotent, we can choose a
‘‘trivialization’’ of P such that the connection and
curvature are A 2 �1(R0 j 1)� g and F 2 �2(R0 j 1)�
g, respectively. (g is the Lie algebra of G.) In
components, c =

ffiffiffiffiffiffi
�1
p

	DA 2 g is fermionic and �=
�(

ffiffiffiffiffiffi
�1
p

=2)	2DF 2 g is bosonic. The space of connec-
tions A is the set of pairs (c,�). Under � 7! �þ 
,


c ¼ 
 �þ
ffiffiffiffiffiffiffi
�1
p

2
½c; c�

 !


� ¼
ffiffiffiffiffiffiffi
�1
p


½c; ��
½25�

Thus, the algebra C(A) is isomorphic to the Weil
algebra W(g) and 
 corresponds to the differential d
in [11]. This relation between gauge theory on a
fermionic space and the Weil algebra can be found
in Blau and Thompson (1997).

With a trivialization of P, the group of gauge
transformation G can be identified with
Map(R0 j 1, G). Any group element is of the form
ĝ=ge

ffiffiffiffiffi
�1
p

��, with g= ĝj�=0 2G and �=
ffiffiffiffiffiffi
�1
p

	Dĝ�$2 g
(fermionic), where $ is the Maurer–Cartan form on
G. The action of ĝ is A 7!A0=Adĝ(A� ĝ�$), or
c 7!c0=Adg(c� �) and � 7!�0=Adg�. By choosing
�=c, we obtained a new trivialization, called the
‘‘Wess–Zumino gauge,’’ in which c0=0. The residual
gauge redundancy is G, and A=G=g=AdG. The
Wess–Zumino gauge is not preserved by the transla-
tion on R0 j1 unless we define 
0 by composing 
 with
a suitable (infinitesimal) gauge transformation. If so,
then 
0�=0.

Suppose M is a manifold with a left G-action. As
before, let {ea} be a basis of g and let the vector field Va

be the infinitesimal action of �ea. In the gauged sigma
model, we include another field X 2 �(P�G M). With
a trivialization of P, we can identify X with a map
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X : R0 j 1 !M. The covariant derivative is given by
rX = dX� AaVa,DX =rDX. Let x = Xj�= 0 2M
and  =�

ffiffiffiffiffiffi
�1
p
DXj�= 0 2 TxM. Then the supersym-

metric transformations are


xi ¼
ffiffiffiffiffiffiffi
�1
p


  i � caVi
a

� �

 i ¼ �
 �aVi

a þ
ffiffiffiffiffiffiffi
�1
p

cjVi
a;j

	 
 ½26�

In the Wess–Zumino gauge, the transformations
simplify to 
0x =

ffiffiffiffiffiffi
�1
p


 , 
0 =�
�aVa.
The observables form the G-invariant part of the

space C(A�Map(R0 j 1, M)). For any ! 2 �p(M),
we have

O!ðX;AÞ ¼
1

p!
!ðDX; . . . ;DXÞj�¼0

¼
ffiffiffiffiffiffiffi
�1
p p

p!
!i1���ipðxÞ i1 � � � ip ½27�

O!(X, A) is gauge covariant: O!(X, A) 7!Og�!(X, A),
and the set of gauge-invariant observables is thus
identified with (S(g�)� ��(M))G. Moreover, since


O!ðX;AÞ¼ 
ðOd!ðX;AÞ �
ffiffiffiffiffiffiffi
�1
p

caOLa!ðX;AÞ
�

ffiffiffiffiffiffiffi
�1
p

�aO	a!ðX;AÞÞ


 corresponds to the differential ~d0 in BRST model.
Let E!M be an equivariant vector bundle and

let r be a G-invariant connection with curvature R
and moment �. Any s 2 �(E)G defines a section of
P�G E! P�G M, still denoted by s. Consider a
theory with superfields X 2 �(P�G M) and
� 2 �(X�(P�G E)) (fermionic). Let D be the covar-
iant derivative of the pullback connection. With a
trivialization of P, we put �= �j�= 0 2 Ex (fermio-
nic) and f =D�j�= 0 2 Ex (bosonic). The equivariant
extension of [21] is

SMQ½X;�;A� ¼
Z

R0j1
d�ð�; 1

2D�þ
ffiffiffiffiffiffiffi
�1
p

s �XÞ

Similar to [22], we get, in the Wess–Zumino gauge,Z
½d��e�SMQ½X;�;A� ¼

ffiffiffiffiffiffiffi
�1
p r

ð2�Þr=2
Z
½d��e�SMQ½x; ;�;�� ½28�

where

SMQ½x;  ; �; ��

¼ 1

2
ðs; sÞ �

ffiffiffiffiffiffiffi
�1
p

ð�;r sÞ

� 1

4
ð�;Rð ;  Þ�Þ �

ffiffiffiffiffiffiffi
�1
p

2
ð�; �a�a�Þ ½29�

When r is even, [28] is equal to O~e(r, s)(X, A), where
~e(r, s) is given by [18].
The Atiyah–Jeffrey Formula

Given the G-action on M, for any x 2M, there is a
linear map Cx : g! TxM defined by Cx(ea) = Va(x).
With an invariant inner product (� , �) on g and an
invariant Riemannian metric on M, the adjoint of
Cx is Cyx : TxM! g, that is, Cy 2 �1(M)� g. If G
acts on M freely, then Cx is injective and (CyC)x is
invertible for all x 2M. The projection M!
�M = M=G is a principal G-bundle. It has a connection
such that the horizontal subspace is the orthogonal
compliment of the G-orbits. The connection 1-form is
� = (CyC)�1Cy, whereas the curvature is � = (CyC)�1

dCy on horizontal vectors.
Let ! be an equivariant form on M. Suppose G

acts on M freely, then ! descends to a form ! on �M.
We look for a gauge-invariant, supersymmetric
quantity 	(X, A) such that

1

volðGÞ

Z
½dX�½dA�O!ðX;AÞ	ðX;AÞ

¼
Z
½d �X�O�!ð�XÞ ½30�

Mathematically, 	 corresponds to a closed equivar-
iant form � on M such that

1

volðGÞ

Z
�2g
½d��

Z
M

!ð�Þ ^ �ð�Þ ¼
Z

�M

�!

which is [30] in the Wess–Zumino gauge. In fact, � is
distribution valued in the sense of Kumar and Vergne
(1993) and can be understood as an equivariant
homology cycle, as in Austin and Braam (1995).

Let P be a G-bundle over R0 j 1 with a connection
and let Ad P = P�G g! R0 j 1 be the adjoint bundle.
Consider a (bosonic) superfield 
 2 �(AdP). Set �=

j�= 0 (bosonic) and �=�

ffiffiffiffiffiffi
�1
p
D
j�= 0 (fermionic).

Choosing a trivialization of P, � and � are both in g.
Under � 7! �þ 
, they transform as


� ¼
ffiffiffiffiffiffiffi
�1
p


ð� þ ½c; ��Þ

� ¼ 
ð½�; �� �

ffiffiffiffiffiffiffi
�1
p

½c; ��Þ
½31�

The superspace action

SCMR½X;
;A� ¼
ffiffiffiffiffiffiffi
�1
p Z

R0j1
d�ð
;CyDXÞ

is invariant under [25], [26], and [31] and, under the
Wess–Zumino gauge, it is

SCMR½x;  ; �; �; ��
¼ �

ffiffiffiffiffiffiffi
�1
p

ð�;Cy Þ �
ffiffiffiffiffiffiffi
�1
p

ð�; dCyð ;  ÞÞ
þ ð�;CyC�Þ ½32�
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If G acts on M freely, then

	ðX;AÞ ¼
Z
½d
�e�SCMR½X;
;A� ½33�

satisfies [30]. The factor 	(X, A) in [30] is called
‘‘projection’’ in Cordes et al. (1996).

Let E!M be a G-equivariant vector bundle with
a fixed G-invariant connection r, moment �, and
an invariant section s. Consider the superspace
action

SAJ½X;�;
;A� ¼ SMQ½X;�;A� þ SCMR½X;
;A�

In the Wess–Zumino gauge and after the Gaussian
integral over f, it becomes the Atiyah–Jeffrey action

SAJ½x;  ; �; �; �; ��
¼ SMQ½x;  ; �; �� þ SCMR½x;  ; �; �; �� ½34�

If s intersect the zero section transversely and G acts
on s�1(0) freely, then s�1(0)=G is smooth andZ

s�1ð0Þ=G
�! ¼

Z
½dx�½d �½d��½d��½d��½d��

� O!ðx;  ; �Þe�SAJ½x;�;�;�;�;�� ½35�

for any closed equivariant form ! on M. Equation
[35] is the formula of Atiyah and Jeffrey (1990) and
of Witten (1988a) in an infinite-dimensional setting.
When s�1(0)=G is not smooth, the right-hand side of
[35] can be regarded as a definition of the left-hand
side.

It is often convenient to add to SAJ another term

�S½X;
;A� ¼ � 1

4

Z
R0j1
ð½	2DF;
�;D
Þ

¼
ffiffiffiffiffiffiffi
�1
p

2
ð�; ½�; ��Þ þ 1

2
ð½�; ��; ½�; ��Þ ½36�

Since [36] is 
-exact and no new field is added, the
integral [35] does not change if �S is added to SAJ.
Applications to Cohomological
Field Theories

We now apply the Mathai–Quillen construction
formally to a number of cases in which both the
rank of the vector bundle and the dimension of the
base space are infinite. Thus, the (bosonic and
fermionic) integrals in [24] or [35] become path
integrals in quantum mechanics or quantum field
theory.

Supersymmetric Quantum Mechanics

Let (M, g) be a Riemannian manifold and LM =
Map(S1, M), the loop space. At each point u 2 LM,
which is a map u : S1 !M, the tangent space is
TuLM = �(u�TM). In particular, _u = du=dt, where t
is a parameter on S1, is a tangent vector at u and
u 7! _u is a vector field on LM. For any Morse
function h on M, s(u) = _uþ (grad h) � u is another
vector field on LM.

Vector fields on LM can be identified as sections of
the bundle ev�TM! S1 � LM, where ev : S1 �
LM!M is the evaluation map. The Levi-Civita
connection r on TM pulls back to a connection on
ev�TM and the covariant derivatives along LM define
a natural connection rLM on T(LM). For example,
for any tangent vector V 2 TuLM = �(u�TM), we
have rLM

V s(u) =ru
t V þ (rV grad h) � u, where ru is

the pullback connection on u�TM. The Riemann
curvature tensor R on M determines that on LM.

The (infinite-dimensional) analog of [22] isZ
½du�½d �½d�� exp �

Z
S1

dt L½u;  ; ��
� �

½37�

where  ,� 2 TuLM = �(u�TM) are fermionic and

L½u;  ; ��¼ 1
2 gð _uþ grad h; _uþ grad hÞ
�

ffiffiffiffiffiffiffi
�1
p

gð�;ru
t  þr grad hÞ

� 1
4 gð�;Rð ;  Þ�Þ ½38�

Here and below, factors of
ffiffiffiffiffiffi
�1
p

and 2� in [22] are
absorbed in the path-integral measure. [38] is, up to
a total derivative, the Lagrangian of the Euclidean
N = 2 supersymmetric quantum mechanics on M.
The partition function [37] is equal to Euler
characteristic number of LM or M, which can
be confirmed by an (exact) stationary-phase
calculation.
Topological Sigma Model

Let � be a Riemann surface with complex structure
" and let (M,!) be a symplectic manifold with a
compatible almost-complex structure J. Let E be a
vector bundle over Map(�, M) so that the fiber over
u is Eu = �(u�TM� T��). For any u 2Map(�, M),
du 2 Eu and u 7! du is a section of E. The pullback
of the Levi-Civita connection on TM, tensored with
a connection on T��, defines a connection on E.

The vector bundle to which we apply the Mathai–
Quillen formalism is the antiholomorphic part E01 of E.
The fiber over u 2Map(�, M) is E01

u = �((u�TM�
T��)01). The sub-bundle E01 has a connection r01 via
projection from E. E01 has a natural section
s : u 7! @Ju = (1=2)(duþ J � du � "). Solutions to the
equation �@Ju = 0 are pseudoholomorphic (or
J-holomorphic) curves; let M= s�1(0) be the space of
such curves. Its (virtual) dimension is

dim M¼ 1
2�ð�Þ dim Mþ 2c1ðu�TMÞ ½39�
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Along any V 2 TuMap(�, M) = �(u�TM), the covar-
iant derivative of s = �@J is calculated in Wu (1995):

r01
V ð �@JÞ ¼ 1

2 ðruV þ J � ruV � "Þ
þ 1

4rVJ � ðdu � "þ J � duÞ ½40�

where ru is the pullback connection on u�TM.
To write the Mathai–Quillen formalism for the

bundle E01 !Map(�, M), we let  2 �(u�TM) and
� 2 �((u�TM� T��)01) be fermionic fields. Equa-
tion [23] becomes the Lagrangian

L½u;  ; �� ¼ 1
2 kduk2þ 1

2ðdu; J � du � "Þ
�

ffiffiffiffiffiffiffi
�1
p

ð�;ru þ ðr JÞ � du � "Þ
� 1

8 ð�; ðRð ;  Þ� 1
2 ðr JÞ2Þ�Þ ½41�

It is precisely the Lagrangian of the topological
sigma model of Witten (1988b). Here, the pairing
(� , �) is induced by the Riemannian metric !(� , J �)
on M and a metric on � that is compatible with ".
The second term in [41], integrated over �, is equal
to
R

� u�!= h[!], u�[�]i.
For any differential form � 2 �p(M), let O�(u, )

be the observable obtained from ev�� 2 �p(��
Map(�, M)) by identifying ��(Map(�, M)) with
C(Map(R0 j 1, Map(�, M))). If � is closed and
� 2 Hq(�) is a homology cycle, then W�,�(u, ) =R
� O�(u, ) is identified with a closed (p� q)-form

on Map(�, M). For closed �i 2 �pi(M) and
�i 2 Hqi (�)(1 
 i 
 r), the expectation values

Yr

i¼1

W�i;�i

* +

¼
Z
½du�½d �½d��

Yr

i¼1

W�i;�i
ðu;  Þe�S½u; ;�� ½42�

are the Gromov–Witten invariants of (M,!). More-
over, [42] is nonzero only if

Pr
i = 1 (pi � qi) = dimM.

Topological Gauge Theory

Let M be a compact, oriented 4-manifold, G, a
compact, semisimple Lie group, and P!M, a
principal G-bundle. Denote by A the space of
connections on P and G, the group of gauge
transformations. The Lie algebra of G is Lie(G) =
�(ad P) = �0(M, ad P). At A 2 A, the tangent space is
TAA= �1(M, ad P). Both spaces have inner products
if we choose an invariant inner product (� , �) on the Lie
algebra g of G and a Riemannian metric g on M. The
infinitesimal action of G on A is C =rA :
Lie(G)! TAA.

With a Riemannian metric, any 2-form on M
decomposes into self-dual and anti-self-dual parts:
�2(M) = �2

þ(M)� �2
�(M). We consider a trivial

vector bundle E ! A whose fiber is �2
þ(M, ad P).
G acts on E and the bundle is G-equivariant. The
trivial connection on E is G-invariant; the moment is
given by � 2 �(ad P) :� 2 �2

þ(M, ad P) 7! [�,�]. The
bundle E has a natural section s : A 2 A 7! FþA , the
self-dual part of the curvature. Its derivative along
V 2 �1(M, ad P) = TAA is LVs = (rAV)þ. The sec-
tion s is G-invariant, the zero set s�1(0) is the space
of anti-self-dual connections, and the quotient
M= s�1(0)=G is the instanton moduli space. Its
(virtual) dimension is

dim M¼ 4�hðgÞkðPÞ� 1
2 dim Gð�ðMÞ þ �ðMÞÞ

where �h(g) is the dual Coxeter number of g and

kðPÞ ¼ � 1

4�hðgÞ
hp1ðAdPÞ; ½M�i 2 Z

is the instanton number of P.
We proceed with the Mathai–Quillen interpretation

of Atiyah and Jeffrey (1990). Let  2 �1 (M, ad P),
� 2 �2

þ(M, ad P), � 2 �(ad P) be fermionic fields and
�,� 2 �(ad P), bosonic fields. The combination of
[34] and [36] is given by the Lagrangian

L½A;  ; �; �; �; ��

¼ 1

2
kFþAk

2 þ ð�;ryArA�Þ

�
ffiffiffiffiffiffiffi
�1
p

ð�;rA Þ �
ffiffiffiffiffiffiffi
�1
p

ð�;rA Þ
�

ffiffiffiffiffiffiffi
�1
p

ð�; ½ ;  �Þ

þ
ffiffiffiffiffiffiffi
�1
p

2
ð�; ½�; �� þ ½�; ��Þ� 1

2
k½�; ��k2 ½43�

Here, (� , �) is the pairing induced by a Riemannian
metric on M and an invariant inner product on g.
With an additional topological term proportional to
(FA, ^ FA), [43] is the Lagrangian of topological
gauge theory of Witten (1988a).

There is a tautological connection on the
G-bundle A� P! A�M. It is invariant under the
G-action. Identifying ��(A) with C(Map(R0 j 1,A))
and using the Cartan model, the G-equivariant
curvature is F = FA þ

ffiffiffiffiffiffi
�1
p

 þ �. For any homology
cycle � 2 Hq(M),

W�ðA;  ; �Þ¼
1

4�hðgÞ

Z
�

ðF ;^FÞ ½44�

corresponds to a closed G-equivariant form on A.
For �i 2 Hqi(M)(1 
 i 
 r), the expectation values

Yr

i¼1

W�i

* +
¼ 1

volðGÞ

Z
½dA�½d �½d��½d��½d��½d��

�
Yr

i¼1

W�iðA;  ; �Þe�S½A; ;�;�;�;�� ½45�
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are, up to a factor of jZ(G)j, Donaldson invariants
of M. Moreover, [45] is nonzero only ifPr

i = 1 (4� qi) = dim M.
Other cohomological field theories can also be

understood or constructed by the Mathai–Quillen
formalism. Of such we mention only the topological
field theories of abelian and nonabelian monopoles
in Labastida and Mariño (1995), which are related
to the Seiberg–Witten invariants.

See also: Characteristic Classes; Donaldson–Witten
Theory; Equivariant Cohomology and the Cartan Model;
K-Theory; Topological Quantum Field Theory: Overview;
Topological Sigma Models.
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Fundamental Concepts of the
Topological Theory of Knots and Links

The first known discovery relating to knots as
mathematical objects was made by Gauss around
1833 in a note that refers to the knotting together of
closed curves. This investigation originated in his work
on electromagnetic theory that led him to compute
inductance in a system of two linked circular wires. In
this note he had given an analytic formula for the
linking number of a pair of knotted curves. This
number is a combinatorial topological invariant (it is
an integer number). Moreover, one can now show that
this number is invariant under Reidemeister moves
(discussed in a later section). The linking coefficient
can be generalized for the case of p- and q-dimensional
manifolds in Rpþqþ1. The formula for the parametrized
curves �1(t) and �2(t) with radius vectors r1(t), r2(t) is
given by the following formula:

lkð�1; �2Þ ¼
1

4�

Z
�1

Z
�2

ðr1 � r2; dr1; dr2Þ3

jr1 � r2j
½1�
The linking coefficient allows us to distinguish some
two component links. Another approach to the link
coefficient is that involving Seifert surfaces. (On this
subject, see the section ‘‘Isotopies, Reidemeister
moves, torus knots, and the linking number.’’)

A systematic study of knots in R3, however, was
only begun in the second half of the nineteenth
century by Tait and his followers. They were
motivated by Kelvin’s theory of atoms modeled on
knotted vortex tubes of ether. It was expected that
physical and chemical properties of various atoms
could be expressed in terms of properties of knots
such as the knot invariants. Even though Kelvin’s
theory did not work, the theory of knots grew as a
subfield of combinatorial and algebraic topology.
Recently, new invariants of knots have been
discovered and they have led to the solution of
long-standing problems in knot theory. Surprising
connections between the theory of knots and
statistical mechanics, quantum groups, and quantum
field theory are emerging. Moreover, knot theory
has been shown to be intimately connected with
many problems in physics, chemistry, and biology.

Tait classified the knots in terms of the crossing
number of a regular projection. A regular projection
of a knot on a plane is an orthogonal projection of
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the knot such that, at any crossing in the projection,
exactly two strands intersect transversely. He made
a number of observations about some general
properties of knots which have come to be known
as the ‘‘Tait conjectures.’’ In its simplest form, the
classification problem for knots can be stated as
follows. Given a projection of a knot, is it possible
to decide in finitely many steps if it is equivalent to
an unknot. This question was answered affirma-
tively by W Haken in 1961. (For details, see Burde
and Zieschang (1985)).
General Notions and Definitions

Let M be a closed orientable 3-manifold. A smooth
embedding of S1 in M is called a knot in M. A link
in M is a finite collection of disjoint knots. The
number of disjoint knots in a link is called the
number of components of the link. Thus, a knot can
be considered as a link with one component. Two
links L, L0 in M are said to be equivalent if there
exists a smooth orientation-preserving automorph-
ism f : M!M such that f (L) = L0. For links with
two or more components, we require f to preserve a
fixed given ordering of the components. Such a
function f is called an ambient isotopy and L and L0

are called ambient isotopic. Here, we shall take M to
be S3ffi R3 [ {1} and simply write ‘‘a link’’ instead
of ‘‘a link in S3.’’ The diagrams of links are drawn as
links in R3. A link diagram of L is a plane projection
with crossings marked as over or under. The
simplest combinatorial invariant of a knot K is the
crossing number c(K). It is defined as the minimum
number of crossings in any projection of the knot K.
The classification of knots up to crossing number 17
is now known. The crossing numbers of some
special families of knots are known; however, the
question of finding the crossing number of an
arbitrary knot is still unanswered. Another combi-
natorial invariant of a knot K that is easy to define is
the unknotting number u(K). It is defined as the
minimum number of crossing changes in any
projection of the knot K which makes it into a
projection of the unknot. Upper and lower bounds
for u(K) are known for any knot K. An explicit
formula for u(K) for a family of knots called torus
knots, conjectured by Milnor nearly 40 years ago,
has been proved recently by a number of different
methods. The 3-manifold S3nK is called the knot
complement of K. The fundamental group �1(S3nK)
of the knot complement is an invariant of the knot
K. It is called the fundamental group of the knot and
is denoted by �1(K). Equivalent knots have homeo-
morphic complements and conversely. However,
this result does not extend to links. (For details
and a proof, see Manturov (2004), chapter 4).
The Fundamental Group of Knots and
Its Role in Topology

For a better understanding of the above consider-
ations, we need to introduce briefly the important
concept of fundamental group in topology. The
fundamental group plays an essential role in
topology; it is involved in the entire technical
apparatus of the subject, and likewise in all
applications of topological methods. In fact, for
low-dimensional manifolds (i.e., of dimension 2 or
3) the fundamental group underlies all nontrivial
topological facts.

Classical knot theory is concerned with the space
S3nK = M, an open 3-manifold. There is a natural
embedding of the torus T2 in M, namely as the
boundary of small tubular neighborhood of the knot
K. Similarly, for a link we obtain a disjoint union of
2-tori in M. The principal topological invariant of a
knot K is the fundamental group �1(M) of the
complement M of K, with distinguished subgroup
the natural image of �1(T2), T 2M2, with the
obvious standard basis. The classical theorem of
Papakyriakopoulos of the 1950s asserts that a knot
is equivalent to the trivial one if and only if �1(M) is
abelian. It was known by Haken in the early 1960s
that there is an algorithm for deciding whether or
not any knot is equivalent to the trivial knot.
However, while it appears to have been established
(by Waldhausen and others in the 1960s and 1970s)
that two knots are topologically equivalent if and
only if the corresponding fundamental groups with
labeled abelian subgroups are isomorphic, the
existence of an appropriate algorithm for deciding
such equivalence remains an open question. The
complexity of the knot group �1(M) has led to the
search for more effectively computable invariants to
distinguish knots and links. (On this subject, see the
section ‘‘Polynomial invariants of knots and links.’’)

Starting with the oriented diagram of the knot or
link K on the plane, one calculates in the standard
manner (see Crowell and Fox (1963) and Neuwirth
(1965)) a presentation of the group �1(M) of the
knot (M = S3nK), obtaining one generator for the
edge of the diagram of a trefoil knot and a pair of
relations for each crossing. Since one relation of
each such pair simply equates the pair of generators
corresponding to the edges forming the upper
branch of the crossing, the presentation reduces
immediately to the standard one involving the same
number of generators and relations. The 2-complex
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L with exactly one 0-cell, and with 1-cells labeled by
generators and 2-cells labeled by the relations, is
then a deformation retract of M. Lifting to the
universal cover we obtain a boundary operator on a
complex of free Z[�1]-modules, which takes the form
of a square matrix with entries from this group ring,
and it is this matrix that is related to some
differentiation as follows. Denoting the generators by
ai and relators by rj, one defines the operator @ai by

@ai
ðajÞ ¼ �ij

@ai
ðbcÞ ¼ @ai

ðbÞ þ b@ai
ðcÞ

the matrix in question then has entries qij given by

qij ¼ @ai
ðrjÞ

Mapping each generator ai to t, we obtain a
complex of modules over the ring of integer Laurent
polynomials, with boundary operator the corre-
sponding square matrix now with Laurent poly-
nomials as entries. The determinant of this matrix
turns out to be zero, and the highest common factor
of its cofactors, after multiplication by a suitable
power of t, turns out to be just the Alexander
polynomials A(t).

Let us say a bit more using a little different
notation on this question. Let Aq(K) and Jq(K) be
the Alexander polynomial and the Jones polynomial,
respectively. One of the earliest problems in knot
theory was: to what extent does the topological type X
of the complementary space X = S3nK and/or the
isomorphism class G of its fundamental group
G(K) = �1(X, x0) suffice to classify knots? The trefoil
knot is the simplest example of nontrivial knot, so it
seems remarkable that, not long after the discovery
of the fundamental group of a topological space,
Max Dehn (1914) succeeded in proving that the
trefoil knot and its mirror image had isomorphic
groups, but their knot types were distinct. Dehn’s
(ingenious) proof was the beginning of a long story,
with many contributions which reduced repeatedly
the number of distinct knot types that could have
homeomorphic complements and/or isomorphic
groups, until it was finally proved, quite recently,
that (1) X determines K and (2) if K is prime, then G
determines K up to unoriented equivalence. Thus,
there are at most four distinct oriented prime knot
types which have the same knot group.

The knot group G is finitely presented; however,
it is infinite, torsion-free, and (if K is not the unknot)
nonabelian. Its isomorphism class is in general not
easily understood via a direct attack on the problem.
In such circumstances, the obvious thing to do is to
pass to the abelianized group, but unfortunately
G=[G, G] ffi H1(X; Z) is infinite cyclic for all knots,
so it is of no use in distinguishing knots. Passing to
the covering space X that belongs to [G, G], we note
that there is a natural action of the cyclic group
G=[G, G] on �X via covering translations. The
action makes the homology group H1(�X; Z) into a
Z[q, q�1]-module, where q is the generator of
G=[G, G]. This module turns out to be finitely
generated. It is the famous Alexander module. While
the ring Z[q, q�1] is not a principal ideal domain
(PID), relevant aspects of the theory of modules over
a PID apply to H1(�X; Z). In particular, it splits as a
direct sum of cyclic module, the first nontrivial one
being Z[q, q�1]=Aq(K). Thus, Aq(K) is the generator
of the ‘‘order ideal,’’ and the smallest nontrivial
torsion coefficient in the module H1(�X). In
particular, Aq(K) is very clearly an invariant of the
knot group.

We remark that when a knot is replaced by its
mirror image (i.e., the orientation on S3 is reversed),
the Alexander and Jones polynomials Aq(K) and
Jq(K) go over to Aq�1(K) and Jq�1(K), respectively.
As noted earlier, Aq(K) is invariant under such a
change, but from the simplest example, the trefoil
knot, we see that Jq(K) is not. Now recall that G
does not change under changes in the orientation of
S3. This simple argument shows that Jq(K) cannot be
a group invariant! Thus, it seems interesting indeed
to ask about the underlying topology behind the
Jones polynomial.
Isotopies, Reidemeister Moves, Torus
Knots, and the Linking Number

Because each knot is a smooth embedding of S1 in
R3, it can be arbitrarily closely approximated by an
embedding of a closed broken line in R3. Here we
mean a good approximation such that after a very
small smoothing (in the neighborhood of all ver-
tices) we obtain a knot from the same isotopy class.
However, generally this might not be the case.

Definition 1 An embedding of a disjoint union of
n closed broken lines in R3 is called a polygonal
n-component link. A polygonal knot is a polygonal
one-component link.

Definition 2 A link is called tame if it is isotopic to
a polygonal link and wild otherwise.

All C1-smooth knots are tame. In the sequel, all
knots are taken to be smooth, hence, tame.

Definition 3 Two polygonal links are isotopic if
one of them can be transformed to the other by
means of an iterated sequence of elementary
isotopies and reverse transformations. The



402 Mathematical Knot Theory
elementary isotopy, generally, is assumed to be a
replacement of an edge with two edges provided
that the triangle has no intersection points with
other edges of the link.

It can be proved that the isotopy of smooth links
corresponds to that of polygonal links; the proof is
technically complicated. Like smooth links, poly-
gonal links admit planar diagrams with overcross-
ings and undercrossings, having such a diagram one
can restore the link up to isotopy.

Definition 4 By a planar isotopy of a smooth-link
planar diagram we mean a diffeomorphism of the
plane onto itself not changing the combinatorial
structure of the diagram.

Obviously, planar isotopy is an isotopy, that is, it
does not change the link isotopy type in R3.

Theorem 1 (Reidemeister) Two diagrams D1 and
D2 of smooth links generate isotopic links if and
only if D1 can be transformed into D2 by using a
finite sequence of planar isotopy and the three
Reidemeister moves W1, W2, W3.

Theorem 2 Suppose that D and D0 are regular
diagrams of two knots (or links) K and K0,
respectively. Then K � K0 , D � D0.

We may conclude from the above theorems that
the problem of equivalence of knots, in essence, is
just a problem of the equivalence of regular
diagrams. Therefore, a knot (or link) invariant may
be thought of as a quantity that remains unchanged
when we apply any one of the Reidemeister moves
to a regular diagram.

Knots and links embedded in R3 can be consid-
ered as curves (families of curves) in 2-surfaces,
where the latter surfaces are standardly embedded in
R3. In this section we shall briefly show that all
knots and links can be obtained in this manner.

Consider a handle surface Sg standardly embedded
in R3 and a curve (knot) K in it. We can now ask the
following question: which knot isotopy classes can
appear for a fixed g? First, let us note that for g = 0
there exists only one knot embeddable in S2, namely
the unknot. The case g = 1 (torus, torus knots) gives
us some interesting information. Consider the torus
as a Cartesian product S1� S1 with coordinates
�,’ 2 [0, 2�], where 2� is identified with 0. In two
dimensions, the torus can be illustrated as a square
with opposite sides identified. Let us embed this torus
standardly in R3; more precisely,

ð�; ’Þ! ððRþ r cos’Þ cos�;

ðRþ r cos’Þ sin�; r sin’Þ ½2�
Here R is the outer radius of the torus, r the small
radius (r<R),� the longitude, and ’ the meridian.
For the classification of torus knots we shall need
the classification of isotopy classes of nonintersect-
ing curves in T2: obviously, two curves isotopic in
T2 are isotopic in R3. Without loss of generality, we
can assume the considered closed curve to pass
through the point (0, 0) = (2�, 2�). It can intersect
the edges of the square several times. In addition,
assume all these intersections to be transverse. Let us
calculate separately the algebraic number of inter-
sections with horizontal edges and those with
vertical edges. Here, passing through the right edge
or through the upper edge is said to be positive; that
through the left or the lower edge is negative. Thus,
for each curve of such type we obtain a pair of
integer numbers. So, each torus knot passes p times
the longitude of the torus, and q times its meridian,
where GCD(p, q) = 1. It is easy to see that for any
coprime p and q such a curve exists: one can just
take the geodesic line {q�� p’= 0 (mod 2�)}. Let us
denote the torus knot by T(p, q). So, in order to
classify torus knots, one should consider pairs of
coprime numbers p, q and see which of them can be
isotopic in the ambient space R3. The simplest case
is when either p or q equals 1. The next simplest
example of a pair of coprime numbers is p = 3, q = 2
(or p = 2, q = 3). In each of these cases we obtain the
trefoil knot. Let us state the following important
result.

Theorem 3 For any coprime integers p and q, the
tori (p, q) and (q, p) are isotopic.

Proof For a proof of this theorem, see Rolfsen
(1990). Note that the (p, q) torus knot in one full
torus is just the (q, p) torus knot in the other one.
Thus, mapping one full torus to the other one, we
obtain an isotopy of (p, q) and (q, p) torus knots.
This homotopy of full tori can be expressed as a
continuous process in S3. Indeed, torus knots of type
(p, q) can be represented by a series of planar
diagrams. Moreover, it is possible to demonstrate a
way of coding a knot (link) as a (p-strand) braid
closure.

Analogously to the case of torus knots, one can
define torus links which are links embedded into the
torus standardly embedded in R3. We know the
construction of torus knots. So, in order to draw a
torus link, one should take a torus knot K 	 T (one
can assume that it is represented by a straight linear
curve defined by the equation q�� p’= 0 (mod 2�)
and add to the torus T some closed nonintersecting
simple curves; each curve should be nonintersecting
and should not intersect K. Thus, these curves
should be embedded in TnK, that is, in the open
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cylinder. Each curve on the cylinder is either
contractible or passes the longitude of the cylinder
once. So, each curve in TnK is either contractible
inside TnK, or ‘‘parallel’’ to K inside T, that is,
isotopic to the curve given by the equation q��
p’= " (mod 2�) inside TnK. Thus, the following
theorem holds.

Theorem 4 Each torus knot is isotopic to the
disconnected sum of a trivial link and a link that is
represented by a set of parallel torus knots of the
same type (p, q).

As we already know, a link invariant is a function
defined on links that is invariant under isotopies. We
shall represent links by using their planar diagrams.
According to the Reidemeister theorem, in order to
prove the invariance of some function on links, it is
sufficient to check this invariance under the three
Reidemeister moves. First, let us consider the
simplest integer-valued invariant of two-component
links. Let L be a link consisting of two oriented
components A and B and let L0 be the planar
diagram of L. Consider those crossings of the
diagram L0 where the component A goes over the
component B. There are two possible types of such
crossings with respect to the orientation. For each
positive crossing we assign the number (þ1), for
each negative crossing we assign the number (�1).
Let us summarize these numbers along all crossings
where the component A goes over the component B.
Thus, we obtain some integer number and, in fact,
this number is invariant under Reidemeister moves.
The so-obtained link invariant is called linking
coefficient.
Polynomial Invariants of Knots and Links

By changing a link diagram at one crossing we can
obtain three diagrams corresponding to links
Lþ, L�, and L0 which are identical except for this
crossing. In the 1920s, Alexander gave an algorithm
for computing a polynomial invariant �K(t)
(a Laurent polynomial in t) of a knot K, called the
Alexander polynomial, by using its projection on a
plane. He also gave its topological interpretation as
an annihilator of a certain cohomology module
associated to the knot K. In the 1960s, Conway
defined his polynomial invariant and gave its
relation to the Alexander polynomial. This poly-
nomial is called the Alexander–Conway polynomial.
The Alexander–Conway polynomial of an oriented
link L is denoted by rL(z) or simply by r(z) when L
is fixed. We denote the corresponding polynomials
of Lþ, L�, and L0 by rþ, r�, and r0, respectively.
The Alexander–Conway polynomial is uniquely
determined by the following axioms.

Axiom 1 Let L and L0 be two oriented links which
are ambient isotopic. Then

rL0 ðzÞ ¼ rLðzÞ ½3�

Axiom 2 Let S0 be the standard unknotted circle
embedded in S3. It is usually referred to as the
unknot and is denoted by O. Then

rOðzÞ ¼ 1 ½4�

Axiom 3 The polynomial satisfies the following
skein relation:

rþðzÞ � r�ðzÞ ¼ zr0ðzÞ ½5�

We note that the original Alexander polynomial
�L is related to the Alexander–Conway polynomial
of an oriented link L by the relation

�LðtÞ ¼ rLðt1=2 � t�1=2Þ ½6�

In the 1980s, Jones discovered his polynomial
invariant VL(t), called the Jones polynomial, while
studying von Neumann algebras and gave its
interpretation in terms of statistical mechanics. A
state model for the Jones polynomial was then
given by Kauffman (1987) using his bracket
polynomial. These new polynomial invariants have
led to the proofs of most of the Tait conjectures.
The Jones polynomial VK(t) of K is a Laurent
polynomial in t, which is uniquely determined by a
simple set of properties similar to the axioms for
the Alexander–Conway polynomials. More gener-
ally, the Jones polynomial can be defined for any
oriented link L as a Laurent polynomial in t1=2, so
that reversing the orientation of all components of
L leaves VL unchanged. In particular, VK does not
depend on the orientation of the knot K. For a
fixed link, we denote the Jones polynomial simply
by V. Recall that there are three standard ways to
change a link diagram at a crossing point. The
Jones polynomial is characterized by the following
properties:

1. Let L and L0 be two oriented links which are
ambient isotopic. Then

VL0 ðtÞ ¼ VLðtÞ ½7�

2. Let O denote the unknot. Then

VOðtÞ ¼ 1 ½8�

3. The polynomial satisfies the following skein
relation:

t�1Vþ � tV� ¼ ðt1=2 � t�1=2ÞV0 ½9�
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An important property of the Jones polynomial that
is not shared by the Alexander–Conway polynomial
is its ability to distinguish between a knot and its
mirror image. More precisely, we have the following
result. Let Km be the mirror image of the knot K.
Then

VKmðtÞ ¼ VKðt � 1Þ ½10�

Since the Jones polynomial is not symmetric in t and
t�1, it follows that in general

VKm
ðtÞ 6¼ VKðtÞ ½11�

We note that a knot is called amphicheiral (achiral
in biochemistry) if it is equivalent to its mirror
image. We shall use the simpler biochemistry term.
So, a knot that is not equivalent to its mirror image
is called chiral. The condition expressed by [11] is
sufficient but not necessary for chirality of a knot.
The Jones polynomial did not resolve the following
conjecture by Tait concerning chirality: if the cross-
ing number of a knot is odd, then it is chiral.
However, it has been demonstrated recently that a
15-crossing knot provides a counterexample to the
chirality conjecture.
New Invariants and Their Applications
in Mathematical Physics

There was an interval of nearly 60 years between the
discovery of the Alexander polynomial and the Jones
polynomial. Since then a number of polynomials
and other invariants of knots and links have been
found. A particularly interesting one is the two-
variable polynomial generalizing V, called the
HOMFLY polynomial (name formed from the
initials of authors of the article (Freyd et al. 1985)
and denoted by P. The HOMFLY polynomial
P(�, z) satisfies the following skein relation:

��1Pþ � �P� ¼ zP0 ½12�

Both the Jones polynomial V and the Alexander–
Conway polynomial rL are special cases of the
HOMFLY polynomial. The precise relations are
given by the following theorem.

Theorem 5 Let L be an oriented link. Then the
polynomials PL, VL, and rL satisfy the following
relations:

VLðtÞ ¼ PLðt; t1=2� t�1=2Þ and rLðzÞ ¼ PLð1;zÞ ½13�

After defining his polynomial invariant, Jones also
established the relation of some knot invariants with
statistical mechanical models. Since then this has
become a very active area of research. By
constructing a typical statistical mechanics model –
the star–triangle relations of the Yang–Baxter
equations are an example of such model – one
obtains a state model for the Alexander or the Jones
polynomial of a knot, by associating to the knot a
statistical system, whose partition function

ZK :¼
X

EKðsÞ!ðsÞ ½14�

gives the corresponding polynomial. (For details, see
Jones (1989)). In the function above, != F(X, S)!R
is a weight function and the sum is taken over all
states s 2 F(X, S). The energy Ek of the system (X, S)
is a functional,

Ek :FðX; SÞ!R; k 2 K ½15�

where the subscript k 2 K indicates the dependence
of energy on the set K of auxiliary parameters, such
as temperature, pressure, etc.

However, these statistical models did not provide
a geometrical or topological interpretation of the
polynomial invariant. Such an interpretation was
provided by Witten (1989) by applying ideas from
quantum field theory to the Chern–Simons Lagran-
gian. In fact, Witten’s model allows us to consider
the knot and link invariants in any compact
3-manifold M.
Vassiliev Invariants and the Space
of All Knots: New Generalizations
of Knot Theory

An entirely new collection of knot invariants,
which arose out of techniques pioneered by Arnold
in singularity theory, has been introduced by V A
Vassiliev in the 1990s. The knot invariants, like
the Alexander polynomial, associate a knot with
some sort of mathematical quantity. A Vassiliev
invariant, on the other hand, is an invariant that
satisfies a set of conditions. In this sense, all the
invariants introduced above – the Jones polyno-
mial, the HOMFLY and the Kauffman polyno-
mial, the Conway polynomial, and the Alexander
polynomial – can all be shown to be Vassiliev
invariants. However, not all the knot invariants are
Vassiliev invariants, for instance, the signature of a
knot is not a Vassiliev invariant. The new Vassiliev
invariants have a solid basis in a very interesting
new topology, where one studies not a single knot,
but a space of all knots. Vassiliev’s knot invariants
are rational numbers. They lie in vector space Vi of
dimension di, i = 1, 2, 3, . . . , with invariants in Vi

having ‘‘order’’ i. These invariants are built from
different families of crossing changes.
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Considering that Vassiliev’s invariants require
introducing an important conceptual change, shift-
ing our attention from the knot K, which is the
image of S1 under an embedding � : S1! S3, to the
embedding � itself. A knot type K thus becomes an
equivalence class {�} of embeddings of S1 into S3.
The space of all such equivalence classes of embed-
dings is disconnected, with a component for each
smooth knot type. In this way, one passes from
embeddings to smooth maps, thereby admitting
maps which have various types of singularities. Let
�M be the space of all smooth maps from S1 to S3.
This space is connected and contains all knot types.
Our space will remain connected and will contain all
knot types if we place two mild restrictions on our
maps. Let M denote the collection of all � 2 �M
such that �(S1) passes through a fixed point � and is
tangent to a fixed direction at �. The space M has
some interesting properties, the main one being that
it can be approximated by certain affine spaces, and
these affine spaces contain representatives of all
knot types. The walls between distinct chambers in
M constitute the discriminant �, that is, � = {� 2
M j�} has a multiple point or a place where its
derivative vanishes or other singularities. The space
M� � is our space of all knots.

The additive properties of the Alexander and
Jones polynomials have a very attractive interpreta-
tion in terms of Vassiliev invariants. By a result of
Bar-Natan, all coefficients of the Alexander poly-
nomial are Vassiliev invariants (see Bar-Natan
(1995)). The same can be said of the Jones
polynomial, as proved by a theorem of Birman and
Lin (1993). There is an attractive formula due to
Kontsevich expressing all Vassiliev invariants ana-
lytically in terms of multiple integrals, assuming that
the knot or link diagram comes with some generic
Morse function (e.g., the projection of the planar
diagram on the y-axis). Moreover, from the work of
Kontsevich it follows that it is possible to give a
purely combinatorial characterization of all Vassi-
liev invariants (other than the one mentioned above)
by associating to an oriented knot K in R3 (given via
coordinates z = z(t)(= x(t)þ iy(t)), t) a chord diagram,
which is just a circle with 2k distinct points labeled
Pj, Qj, j = 1, 2, . . . , k, marked on it, and by imposing
certain relations on the free abelian group freely
generated by all chord diagrams.

Theorem 6 Let VK(t) be the Jones polynomial of a
knot K. Let VK(q) be the infinite series obtained
from VK(t) by substituting eq(= 1þ qþ q2=2!þ 
 
 
 =P1

n = 0 qn=n!) for t. So we may write

VKðqÞ ¼ b0 þ b1q þ b2q2 þ 
 
 

Then Jm(K) = bm is a Vassiliev invariant induced by
the Jones polynomial of order (at most) m.

The structure and significance of the HOMFLY and
Kauffman polynomials can be interpreted in the
language of Vassiliev invariants, which are invariants
of finite type. The notion of finite type is of
extraordinary significance in studying these invariants.
One reason for this is the following basic lemma:

Lemma 7 If a graph G (an embedded 4-valent
graph) has exactly k nodes, then the value of a
Vassiliev invariant vk of type k on G, vk(G), is
independent of the embedding of G.

Let us show briefly this important result. Suppose
V is any invariant of oriented links taking values in
some abelian group. This V can be extended to be
an invariant of singular links in the following way
(Kauffman 2001): a singular link is an immersion
of simple closed curves in S3 with finitely many
transverse double-points. These self-intersections are
required to remain transverse in any isotopy
demonstrating the equivalence of such singular
links. If the definition of V has been extended over
singular links with n� 1 double points, define it on
a singular link L� with n singularities by

VðL¥ Þ ¼ VðLþÞ � VðL�Þ

where V(L�), V(Lþ), and V(L�) are identical except
near a point where they form a node. Note that
V(Lþ) and V(L�) each has n� 1 double points.
Then V is called a Vassiliev invariant of order n, or
an invariant of finite type n, if V(L) = 0 for every
L with nþ 1 or more singularities. Recall the
Alexander–Conway polynomial invariant, rL(z) 2
Z[z], of oriented links defined by runknot(z) = 1 and

rLþðzÞ � rL�ðzÞ ¼ zrL0
ðzÞ

Extend this over singular links by the above method.
Then if L� is a link with r singularities, rL�(z) =
zrL0

(z), where L0 is a link with r� 1 singularities.
Thus, by induction on r, if L has r singularities then
rL(z) has a factor of z0. This implies at once that the
coefficient of zn in the Conway polynomial of a link
is a Vassiliev invariant of order n. Now suppose one
considers the HOMFLY polynomial and makes the
substitution (l, m) = (itN=2, i(t�1=2 � t1=2)). The char-
acterizing skein relation becomes

tN=2PðLþÞ � t�N=2PðL�Þ ¼ ðt1=2 � t�1=2ÞPðL0Þ

Note that this becomes the Jones polynomial when
N = 2. Now make the further substitution t = exp x.
Here exp x should be thought of as the classical
power series expansion. Of course, exp (x=2) and
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exp(�x=2) have power series expansions; the power
series can be multiplied and added to give another
power series. Thus, P(L) has a power series
expansion in powers of x. It follows immediately
that P(Lþ)�P(L�) = xS(x) for some power series
S(x). Hence, the proof used for the Conway
polynomial shows at once that the coefficient of xn

in the power series expansion of P(L) is a Vassiliev
invariant of order n.

All present studies of Vassiliev invariants clearly
indicate a major role of these invariants in the future
developments of knot theory and topological quan-
tum field theories. Many questions in knot theory
remain open, nevertheless, in future it will, very likely
be one of the most fruitful and beautiful subjects of
research in mathematics and in mathematical physics.
Knot theory also attracts attention from the fact that
it is revealing new astounding and profound links
between geometry, algebra, and topology.

See also: Finite-Type Invariants; The Jones Polynomial;
Knot Invariants and Quantum Gravity; Knot Theory and
Physics; Kontsevich Integral; String Topology: Homotopy
and Geometric Perspectives; Topological Knot Theory
and Macroscopic Physics; Topological Quantum Field
Theory: Overview.
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Introduction and Models

Rarely has a paper with a simple title as ‘‘A solvable
model of a spin glass’’ had such a tremendous impact
on both physics and mathematics as the seminal
paper of 1972 by Sherrington and Kirkpatrick,
which introduced what is now known as the
Sherrington–Kirkpatrick (SK) mean-field spin glass
model. As solvable as it might have appeared to the
authors, it was soon found that the heuristic
solution, based on the so-called replica method,
was physically unacceptable. The reason was a tacit
assumption, now known as replica symmetry, that
proved unfounded. Several years later, Giorgio
Parisi provided an ingenious way out through his
continuous replica symmetry-breaking scheme, that
presented a solution that, through its complexity
and intrinsic beauty, both stunned and fascinated
the community. Unraveling the mysteries involved in
this solution has presented a challenge and driving
force for the last three decades of mathematical
statistical mechanics, while the use of the method in
theoretical physics opened the path to solving a wide
variety of problems not only in the theory of
disordered magnets, but also in neural networks
and combinatorial optimization. In this article the
focus is on the mathematical results obtained in the
study of this and a number of related models.
Mean-Field Models

Mean-field models have played an important role in
statistical mechanics by providing simple, solvable
models in which some of the complex phenomena,
such as phase transitions, could be studied and under-
stood. For example, the Curie–Weiss model of a
ferromagnet describes N spin variables �i (taking values
�1) in interaction. The simplifying assumption com-
pared to more realistic models, such as the Ising model,
is to ignore the spatial structure of the model and allow
all spins to interact with each other with equal strength.
This yields to a Hamiltonian function of the form

HNð�Þ ¼ �
J

N

XN
i;j¼1

�i�j þ h
XN
i¼1

�i ½1�

where J is a coupling constant and h a magnetic
field. This from of the interaction implies that the
Hamiltonian is in fact just a function of the
empirical magnetization mN(�) = N�1

P
i = 1 �i, and

this allows one to use methods from the theory of
large deviations to analyze rather easily the corre-
sponding Gibbs measures

��;Nð�Þ �
e��HNð�Þ

Z�;N
½2�
The SK Model

This model was a straightforward attempt to
introduce a mean-field version of models with
randomly interacting spins. The interest in such
models arose from the discovery of certain alloys of
ferromagnets and conductors (e.g., AuFe and
CuMn) that had been found to exhibit very unusual
magnetic properties. Ruderman and co-workers had
proposed that in these models the magnetic ions
with magnetic moments Si and Sj located at the
points xi and xj would interact via an exchange
interaction of the form

cosðkf ðxi � xjÞÞ
jxi � xjj3

Si � Sj

Since the positions of the magnetic ions in the alloy
are random, the signs of their interaction would be
oscillatory. Anderson proposed a simplified model,
in the spirit of the Ising model, where spins taking
values �1 located on a regular lattice would interact
via nearest-neighbor couplings Jij modeled as i.i.d.
random variables uniformly distributed on an inter-
val [� J, J]. In the spirit of the Curie–Weiss model,
Sherrington and Kirkpatrick then proposed the
mean-field model where any two spins would
interact via i.i.d. Gaussian random variables Jij of
mean zero and variance one. The SK Hamiltonian is
thus given by

H
SK

N
ð�Þ � � Jffiffiffiffiffi

N
p

X
1�i<j�N

Jij�i�j þ h
XN
i¼1

�i ½3�

where the normalization is chosen to ensure that the
variance of HN is an extensive quantity. Although
the two Hamiltonians superficially look similar, the
main feature that allows one to solve the Curie–
Weiss model is absent in the SK model: there is no
way to write the Hamiltonian as a function of
macroscopic variable(s) such as the magnetization.
This implies that all methods known to solve the
Curie–Weiss model fail here. The approach used
systematically in the physics literature to overcome
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this difficulty is to try to compute the mean free
energy f�, N � � (1=�N), E ln Z�, N using the formal
identity ln x = limq # 0 q�1(xq � 1). For q 2 N, one
easily sees that (putting h = 0)

EZq
�;N ¼

X
�1;...;�q

exp
�2J2

2
N
Xq

a;b¼1

X
i<j

�a
i �

b
i �

a
j �

b
j

 !

This expression looks already more like the parti-
tion function of an ordinary mean-field model, and
the computation with standard methods seemed
feasible. However, passage to the limit q#0 remains
a highly risky enterprise, and it took the genius of
Parisi to develop an approach that provided at least
a physically meaningful and convincing answer.
The replica method being dealt with elsewhere in
this encyclopedia, this approach is not explained
any further here, although we will explain the
nature of the result in the light of recent rigorous
work later on.
Site Disordered Models

The difficulties encountered with the random-bond
interactions led readily to proposals of mean-field
models that were closer to the Curie–Weiss model –
from the point of view that they allowed the
Hamiltonian to be written as a function of macro-
scopic variables. The most important of these
models was introduced by Figotin and Pastur. Here
the disorder was introduced as an M-dimensional
vector �i for each site i. The components of this
vector are usually taken as i.i.d. random variables ��i
taking values �1 with equal probability. One can
then introduce M-dimensional vectors as macro-
scopic variables that generalize the magnetization
with components

m�
Nð�Þ � N�1

XN
i¼1

��i �i

The Hamiltonian can then be written as

HNð�Þ ¼ �N
XM
�¼1

m�
Nð�Þ

� �2

¼ � 1

N

XN
i;j¼1

�i�j

XM
�¼1

�
�
i �

�
j

These models were indeed found to be solvable with
tools similar to those used in the Curie–Weiss case;
however, they proved disappointing in that the
solution did not show the characteristic features
expected in a spin glass. In fact, it turns out the
these models behave very much like a mean-field
ferromagnet, except that as they display not just
two equilibrium states at low temperatures, but 2M
of them, concentrated on spin configurations � for
which mN(�) takes values close to one of the values
�m�(�)e�, where e� is the �-unit vector in RM and
m�(�) solves the equation m = tanh (�m) known
from the Curie–Weiss model. This model might
have been forgotten, had it not been rediscovered in
1982 by Hopfield in the context of neural net-
works. Hopfield realized that if �i are interpreted as
the activation states (‘‘firing’’ and ‘‘not firing’’) of
neurons in the brain, the form of the interaction in
this model is exactly the one proposed earlier by
Hebb for synaptic interaction between neurons
having ‘‘learned’’ the M ‘‘patterns’’ �� in the past.
He went on to interpret HN(�) as the Lyapounov
function of the retrieval algorithm by which the
brain would recognize the learned pattern. Natu-
rally, the fact the the configurations �� are minima
of HN then implies the functioning of the algorithm.
The important observation of Hopfield was that,
based on numerical experiments, the algorithm
failed when M became too large. In fact, he
observed a breakdown of the memory if M 	
0.14N. This meant that the interesting asymptotics
in this model required to consider M as an
increasing function of N. This regime was not
covered by large-deviation-type results and an
intensive program to investigate this model was
initiated. Again, the replica method could be
employed and yielded a very rich structure of the
model, including an explanation of the findings of
Hopfield. These models also turned out to be an
important starting point for the rigorous analysis.
Gaussian Processes and Derrida’s Models

While the models discussed so far were motivated
from the point of view of randomly interacting
spins, Derrida had the consequential idea to view
the Hamiltonian of such a model simply as a
random process indexed by the set of all spin
configuration. In the case of the SK model, this
process was, moreover, a Gaussian process and thus
characterized entirely by its mean and variance. For
h = 0 we see that

EHSK
N ð�ÞHSK

N ð�0Þ ¼
N

2
rN �; �0ð Þð Þ2� 1

2
rNð�; �0Þ

where rN(�,�0) � N�1�i�
0
i is usually called the

overlap. This opened the view to a much larger
class of models. In particular, the simplest model
from this perspective corresponds to taking HN(�) as
a process of i.i.d. random variables. Derrida called
this the random-energy model (REM). He also noted
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that it could be seen as the limit if a sequence of the
so-called p-spin SK models corresponding to the
covariance of the Hamiltonian being N(rN(�,�0))p.
On the other hand, Derrida observed that another
class of models could be defined that were easier to
analyze while exhibiting much of the complex
properties of the SK model. These are obtained by
choosing the covariance not as a function of the
overlap (resp. the Hamming distance), but of a
ultra-metric distance related to dN(�,�0) � N�1( inf
{i :�i 6¼ �0i}� 1). These models, called generalized
Random-Energy Models (GREM) were analyzed by
Derrida and Gardner in the 1980s and are now the
only models where the full predictions of the Parisi
theory can be rigorously justified. This is discussed
in some detail later.
Further Models and Applications

There is a wealth of problems that can be
interpreted in terms of disordered mean-field
models, and which may be analyzed using methods
developed here. Some of the most notable ones
that have received more attention lately include:
the perceptron, a feed-forward neural network
was analyzed first by Gardner using the replica
method. Very recently, Shcherbina and Tirozzi gave
a rigorous justification of this result. The
p-satisfiability problem is an important problem in
computer science that also can be analyzed with the
replica method. Rigorous results are still very
limited. The number partitioning problem can be
formulated as a random-energy model. Also, the
most famous problem in combinatorial optimiza-
tion, the traveling salesman problem, can be solved
heuristically with the replica method. Another
emerging field are applications to coding theory.
Formulation of the Problem

Given a model, that is, a Hamiltonian function
defined as a random process, the ultimate goal is
to describe the asymptotic properties of the
corresponding Gibbs measure, ideally identifying
a (random or deterministic) limiting measure, as a
function of the temperature, ��1, and other
parameters, such as the magnetic field h.

The first steps in this direction concerns global
properties:


 Does the ground-state energy density,

lim
N"1

max
�2SN

HNð�Þ

converge (in what sense?) and what is the limit?

 What is the limit of the free energy

f�;N �
�1

�N
ln Z�;N

It has been noted in the mid-1990s that such
quantities are usually self-averaging, for example,
in the sense that

lim
N"1

f�;N � Ef�;N
� �

¼ 0; a:s:

due to the concentration of measure phenomenon.
However, until very recently, the existence of the
limits was considered an open problem in most of
the models described above. Guerra and Toninelli
(2002) discovered that a clever use of comparison
inequalities for convex functions of Gaussian
processes allows one to prove a priori the existence
of limits at least in the case of models based on
Gaussian processes (SK, GREM). The main task is
the computation of the values of the limit.

If the free energy is known as a function of
sufficiently many parameters, one can frequently
compute a number of correlation functions that
characterize the limiting measure as well. What one
should compute is somewhat model dependent.
Geometry of Gibbs Measures
and Multi-Overlap Distributions

The problem of satisfactorly describing the asymp-
totic geometric properties of random Gibbs
measures on {� 1, 1} is rendered difficult as the
symmetries of the problem make the use of local
topologies seem unattractive. A reasonable way of
solving this problem is as follows. Let DN be a
distance on SN normalized so that max�, �2SN

DN(�, �) = 1. Then consider the mass distribution
around any fixed point �,

m�ðxÞ � ��; NðDNð�; �0Þ � xÞ

and construct the biased empirical average

K�;N �
X
�2SN

��; Nð�Þ�m�ð�Þ

The set of distributions of these random measures
is compact (with respect to the weak topology)
and thus we can expect to construct limits. The
law of K�, N is fully determined by the family of
averaged distributions of the distances between n
independent copies of � drawn from the Gibbs
measures,

E��n
�; NðDNð�1; �2Þ; . . . ;DNð�n�1; �nÞÞ
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In the SK models, one chooses

DNð�; �Þ ¼ 1� 1

N

X
i

�i�i

so that these quantities can be expressed as distribu-
tions of the overlaps (1=N)

P
i �i�i, between n

‘‘replica’’ spin variables. In the GREM models, it is
natural to chose as distance the lexicographic distance
used in the construction of the models. In this case, the
limits of K�, N can be constructed explicitly and it was
shown that they can be expressed in terms of the size-
biased empirical family size distribution of a certain
continuous state branching process via a model-
dependent time change. Since this plays a key rôle
not only in the GREMs but in other models as well, we
will go into some detail to elucidate this structure.
Neveu’s Process and Random
Genealogies

The random structure of the limiting Gibbs
measures of the GREM models (and presumably
also the SK models, even though this is not proven)
can be traced to a continuous-state branching
process introduced by Neveu, and an induced
associated random genealogy on the unit interval.
Let Zt be a time-homogeneous continuous-time
Markov process with state space Rþ characterized
by the Laplace transform of its transition kernel

Eðe��Zt jZ0 ¼ aÞ ¼ exp ð�a�e�tÞ

Based on this process, construct a two-parameter
process Z(t, a) with the property that, for any a, b >
0, the processes Z( � , a) and Z( � , aþ b)� Z( � , a)
are independent and have the same laws as Zt with
initial conditions a, resp. b. It follows that Z(t,�) is a
stable subordinator with exponent e�t. Now let
	t(a) � Z(t, a)=Z(t, 1), as a function on [0, 1], 	t

being a random probability distribution function (of
pure point type). Any such family �t of distributions
defines in a natural way a genealogical structure on
[0, 1]. Define the ancestor of 
 2 [0, 1] at time t < 1
to be at(
) � 	t(	

�1
1 (
)), where 	�1 is the right-

continuous inverse of the nondecreasing function 	.
We say that, for 
,
0 2 [0, 1], q(
,
0) = t if and

only if t = sup(s : as(
) = as(

0)). It is easy to see that

1� q defines an ultra-metric distance. We can
associate with this the distribution size of the offspring
of an ancestor at time t, m
(t) = j
0 : q(
,
0) � tj, and
its size-biased empirical distribution

K �
Z 1

0

d
 �m
ð�Þ
In the GREM models, it can be shown that the
quantity K�, N converges (weakly in law) to the
corresponding K obtained from a time change of
the family of measures 	t, namely

	
m�

t � 	ln mðtÞ�ln mð0Þ

where m is a nondecreasing function that can be
computed explicitly. Namely, if EX�X� =
A(dN(�, �)), and ā denotes the right-derivative
of the concave hull of A, then

mðxÞ ¼ min ��1
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

=
ffiffiffiffiffiffiffiffiffi
�aðxÞ

p
;1

� �
As explained below, similar results are expected in
the SK models.
Interpolation Methods and Guerra’s
Integral Representation

Among the very important tools for the analysis of
Gaussian models in particular have been the inter-
polation methods that allow one to compare
functions of processes with different covariance.
While these methods go back to early work on
Gaussian processes (Slepian, Kahane), they have
been employed with remarkable success in the
present context. Mostly, they consist in introducing
an interpolating Hamiltonian Ht(�) �

ffiffi
t
p

H(�)þffiffiffiffiffiffiffiffiffiffiffi
1� t
p

K(�), where K is a reference process that has
certain desired properties. Given any function F of
the process (e.g., the free energy of the model), one
then represents

FðHÞ ¼ FðKÞ þ
Z 1

0

dt
d

dt
FðHtÞ

Often the derivative on the right-hand side can be
controlled rather well, for example, because of some
obvious positivity properties.

Example 1 (Guerra and Toninelli). Choose

Kð�Þ ¼ 1ffiffiffiffiffi
M
p

XM
i<j¼1

J0ij�i�j þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N �M
p

XN
i<j¼Mþ1

J0ij�i�j

and consider the free energy F(Ht) = f t
�, N. Then, first

F(H0
N) = F(HM)þ F(HN�M). On the other hand,

d

dt
F Ht

N

� �
¼� 1

2N
�t
�;N

XN
i<j¼1

�i�jJij

tN
�
XM

i<j¼1

J0ij�i�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞM

p 

þ
XN

i<j¼Mþ1

J0ij�i�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞðN�MÞ

p !
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A key tool to be used at this stage is the so-called
Gaussian integration by parts formula, Egf (g)=
Ef 0(g). Applied here, this gives

d

dt
F Ht

N

� �
¼ �

4N2
�t;�2
�;N

XN
i¼1

�i�
0
i

 !2

�N

M

XM
i¼1

�i�
0
i

 !2
0@

� N

N �M

XN
i¼Mþ1

�i�
0
i

 !2
1A 	 0

This proves superadditivity of NEf�, N,

NEf�;N 	MEf�;M þ ðN �MÞEf�;N�M

which, in turn, implies convergence of Ef�, N to
a limit Ef�. Moreover, standard concentration
of measure estimates show then that f�, N also
converges almost surely.

Example 2 (Guerra, Aizenman–Sims–Starr). A
more complicated application of the interpolation
method allows one to relate the free energy to
Parisi’s solution. This was first found by Guerra
(2003), but a different, and in some sense more
intuitive formulation, was given later by Aizenman
et al. (2003). It is based on the following construc-
tion. We consider a centered Gaussian process HN(�)
on SN with covariance given by Ng(RN(�,�0)) for
some even convex function g : [� 1, 1] ! [0, 1]. Let
us take F(HN) = ln E� e�HN(�) (the a priori expecta-
tion E� need not be symmetric, but may incorporate
a magnetic field). Before using comparison, we now
want to go to a larger space. For this, introduce some set
A equipped with some positive-definite quadratic form
q, normalized such that q
,
 = 1, and jq
,
0 j � 1,
8
,
02A. Let P
 denote some probability measure
on A. Now introduce a centered Gaussian process
�
 on A, independent of HN, whose covariance is
given by E�
�
0 = r(q
,
0) � q
,
0g

0(q
,
0)� g(q
,
0 ).
Define

GðHN þ
ffiffiffiffiffi
N
p

�Þ ¼ ln E�E
 e��ðHNð�Þþ
ffiffiffi
N
p

�
Þ
� �

Obviously, G(HN,�) = F(HN)þ eF(�), where eF(�) =
ln(E
 e��

ffiffiffi
N
p

�
). The amazing idea is now to
compare the process (HN þ �) with another process
��,
 whose covariance is a linear function of RN(�)
(this is in some sense a Slepian’s process), and that
otherwise is smaller than the covariance of (HN þ
�); to wit

E�
;��
0;�0 ¼ RNð�; �0Þg0ðq
; 
0 Þ

By these choices of covariances, one has that for x 2
[� 1, 1], y 2 [0, 1], since g is even and convex,
gðxÞ þ yg0ðyÞ � gðyÞ 	 xg0ðyÞ

It is an immediate consequence of Kahane’s theo-
rem, respectively the same interpolation argument
given above, that

EGðHN þ �Þ � EGð�Þ

which translates into

EFðHNÞ � EGð�Þ � EeFð�Þ
It is clear that we can optimize this bound by
choosing A, q, and P
. Of course, the difficulty
would be to find such a minimum. A first
simplification of this optimization problem is to
consider instead of the deterministic structure of P
and q random-probability measures on the space of
probability measures and quadratic forms on A, to
average over the preceding equation with respect to
their laws, and then take the infimum over all such
random structures. This gives a (still incalculable)
bound that Aizenman et al. (2003) have shown to be
asymptotically sharp, that is, they showed that

lim
N"1

EFðHNÞ ¼ lim
N"1

inf
A; �

E�ðEGð�Þ � EeFð�ÞÞ
where � is short for all probability measures on the
space of (P
, q
,
0) on A (called ‘‘random overlap
structures’’(rosts) in Aizenman et al. (2003)). Guerra’s
bound consists in restricting the infimum to a class of
rosts where the bound is calculable ‘explicitly’.
Maybe unsurprisingly, this is exactly the class of
asymptotic models that have already arisen in the
GREMs. In fact, we set A= [0, 1],M� {m : [0, 1] !
[0, 1], non-decreasing}, let q be the random genealo-
gical distance associated to the family of measures 	m

t ,
and let P
 be the probability measure on A whose
distribution function is 	m

1 (
). Then Guerra’s bound
states that

lim
N"1

EFðHNÞ � lim
N"1

inf
m2M

EGð�Þ � EeFð�Þ
where the expectations relate to all random quan-
tities involved. By self-averaging, the same result
holds almost surely. The right-hand side of this
equation is known as (a particular formulation of)
the famous Parisi solution. In fact, define the
function f (q, y) as the solution of the nonlinear
partial differential equation

@qf þ 1

2
@2

y f þmðqÞð@yf Þ2
� �

¼ 0

with final conditions

f ð1; qÞ ¼ ln cosh �y
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These equations can be solved by elementary means
in the case when m is a step function. It turns out
that, for given m,

EGð�Þ � EeFð�ÞÞ ¼ f ð0; h;m; �Þ � �
2

2

Z 1

0

qmðqÞ drðqÞ

where h = ��1 cosh�1 (E��1). This solution was origi-
nally obtained using the replica method. The preceding
construction gives, at the least, a clear mathematical
meaning to the objects involved. In particular, the
notion of ‘‘ultra-metric zero-dimensional matrices,’’
appears now to be equivalent to ultra-metric structures
on the unit interval.

In a recent paper, Talagrand (2003) has proven
that converse inequality is also true in the preceding
equation, confirming that Parisi’s solution yields the
correct free energy in a large class of models of the
SK type.
Ghirlanda–Guerra Relations

The appearance of a universal probabilistic structure
in the asymptotics of these models may appear
surprising. A partial explanation can be found in a
set of remarkable identities between multi-overlap
distributions that has been discovered first by
Ghirlanda and Guerra (1998) in the context of SK
models. If ��n

�, N denotes the n-fold product Gibbs
measure, the Ghirlanda–Guerra relations assert a
recursion relation of the form

E��nþ1
�;N DNð�nþ1; �kÞ � tjBn

� �
¼ 1

n

X
‘ 6¼k

E��n
�;N DNð�‘; �kÞ � tjBn

� �

þ 1

n
E��2

�;N DNð�1; �2Þ � tjBn

� �
þ oð1Þ

These relations hold generically for Gaussian mean-
field models, with DN being the distance through
which the covariance is defined. The proof of these
relations is based on Gaussian integration-by-parts
formulas, and concentration of measure inequalities.
In the case of the GREM models, where DN is ultra-
metric, these recursions are sufficient to determine all
n-replica overlap distributions in terms of the 2-replica
distribution. On the other hand, the set of n-replica
overlap distributions determines the law of the process
K and thus the geometry of the Gibbs measure. In
particular, they leave time changes of Neveu’s process
as the only candidates for limit processes. In the case of
the SK models, the same does not hold a priori, since
the Hamming distance is not an ultra-metric. How-
ever, since the Parisi solution is correct, this suggests
very strongly that asymptotically the overlap distances
are almost surely (with respect to the Gibbs measure)
ultra-metric. Then, the Ghirlanda–Guerra identities
also imply that the geometry of the Gibbs measures is
described by the same structure.
From Mean-Field to Lattice Models

One of the widely discussed issues in the theory of spin
glasses is to what extent the results of mean-field
theory are relevant for lattice models. This issue has
been addressed elsewhere in this encyclopedia by
Newman and Stein. Here, we will only mention a
recent result of Franz and Toninelli (2004) that shows
that the free energy of the SK model can be represented
as the limit of the free energy of lattice models when
the range of the interaction tends to zero while their
strength tends to zero in an appropriate way (the so-
called Kac models). This still leaves open many finer
questions, but hints to the fact that mean-field theory
bears at least some relevance for realistic spin glasses.

See also: Short-Range Spin Glasses: The Metastate
Approach; Spin Glasses.
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Introduction

Loop spaces have been considered for their geo-
metric interest (Freed Daniel 1988) where the space
of based loops on a compact Lie group is endowed
with a Kählerian structure; see also the survey by
L Gross (1988). The harmonic analysis on loop
groups, developed by Pressley and Segal, is
reviewed by Hsu (1997). Loop groups have also
an impact in string theory (Bowick and Rajeev
1987). They are related to Yang–Mills theory (Levy
2003). A presentation of the history of measure on
infinite-dimensional spaces has been given by
P Malliavin (see Malliavin (1992) and references
therein). The main problem is the construction of
measures on the loop space which have quasi-
invariance property. This has implications in
representation theory (Neretin 1994, Jones 1995).
Here we mainly concentrate on the nonlinear
stochastic point of view and its interference with
geometry. The geometrical study of the space of
closed curves over a compact Riemannian manifold
M, that is, the loop space over M, was initiated by
Marston Morse in 1932. The loop space is itself a
manifold where one can define a Laplace–Beltrami
operator. A diffusion process can be considered on
this manifold. Wiener defined the Brownian loop
by the Fourier series

uð�Þ ¼
X
k�1

sin k��

k
Gk ½1�

where the Gk are independent normal variables.
The time evolution of the Wiener loop and the
extension of the theory to the case of a compact
Riemannian manifold of finite dimension has been
considered by Airault and Malliavin (1996, and
references therein). The Brownian loop evolutes in
the time parameter t as a Brownian sheet where
the independent random variables Gk are function
of t.

Starting from the zero loop, one obtains at time t,
a random loop, and the law of this loop gives a
measure on the loop space. A construction of this
measure with functional analysis on infinite-
dimensional manifold was done by Gaveau and
Mazet (1979). The tools of stochastic analysis are
important to the subject. The loop space of
continuous maps from the circle to the multi-
plicative group of complex numbers has a group
structure, hence the term ‘‘loop group.’’ On the loop
group, we consider the multiplicative Brownian
motion starting at one point of the circle and
conditioned to come back at this point at time s. It
defines a probability measure on the loop group.
One can also consider the set of continuous maps
from the circle to the set of complex numbers of
modulus equal to 1. The loop group is the space of
continuous closed paths on a Lie group. More
generally, on a Riemannian manifold M, the
Brownian motion on M defines a Wiener measure
on the loops over M. To go from the path space to
the loop space, an important tool is the quasisure
analysis in infinite dimension. The quasisure analysis
was developed by Airault and Malliavin (1996, and
references therein) to obtain disintegrations of the
Wiener measure and they have used this tool in
1992 to construct measures on the loop group. The
main problems are:

1. The construction of heat kernel measures and the
existence of a Brownian motion on the loop
space, the existence of pinned Wiener measures
obtained as the law of Brownian motions condi-
tioned on the loops.

2. The quasi-invariance of these transition prob-
ability measures under translation, or multi-
plication if we have a multiplicative structure, or
under the infinitesimal action of suitable vector
fields. For the path space over the n-dimensional
Euclidean space Rn, the Cameron–Martin theo-
rem (1944) ensures the existence of a density
which shows the quasi-invariance of the Wiener
measure under translations. For the quasi-
invariance, an important fact is the choice of
the metric on the Cameron–Martin space. In the
case of the Wiener measure, one considers the
paths of finite energy,

R 1
0 jh0(s)j

2ds < þ1. This
corresponds to the metric ‘‘1.’’ P Malliavin
(1989, and references therein) discussed the
case of metrics � with 1=2 < � < 1.

3. To define the ‘‘good’’ Cameron subspace, that is,
find the vector fields that yield integration-
by-parts formulas. The question occurs whether
the Cameron–Martin space depends on time. For
the loop space, it has been proved by Driver
(2003) that it is not the case. A time evolution of
the tangent Cameron–Martin space could appear
eventually.

4. The determination of the support of the measures
(e.g., the Wiener measure) is carried by the set of
Hölder functions of order 1=2� �.

5. The absolute continuity of the measures with
respect to each other.



414 Measure on Loop Spaces
The Construction of Heat Measures
on the Loop Space and Their
Quasi-Invariance

The construction of measures giving a solution to
the infinite-dimensional heat equation as well as the
study of the quasi-invariance of the Wiener measure
on the path space was started extensively in the
work by Bismut, followed by Gross (1998), then by
Aida and Elworthy (1995) where the loop group is a
suitable manifold to extend to infinite-dimensional
manifolds the log-Sobolev inequalities, by Malliavin
and Malliavin (1992, and references therein) where
the measures on the path space and the path group
have been studied. Consider a compact Lie group G
with unit e and let G be its Lie algebra. From the
G-valued Brownian motion, one can construct a
family of measures (�e

t )t�0 on the path space. These
measures �e

t are the images of the Wiener measure
on G through the Ito map

dgxð�Þ ¼
ffiffi
t
p

gxð�Þdxð�Þ with gxð0Þ ¼ e ½2�

The convolution of two measures �e
t and �e

t0 is equal
to �e

tþt0 . By choosing the initial value of the path
randomly distributed according to the Haar measure
on G, it defines a family of measures (�t)t� 0 on the
path space withZ

f ð�Þ�tðd�Þ ¼
Z

dg

Z
f ðg�Þ�e

t ðd�Þ

The Laplacian on the path group is defined by

ð�Pf ÞðgÞ ¼ lim
�!0

1

�

Z
f ðg�Þ��ðd�Þ � f ðgÞ

� �

The heat equation is valid for the measures (�t)t�0

on the paths,

@

@t

Z
f ðgÞ�tðdgÞ ¼

Z
ð�Pf ÞðgÞ�tðdgÞ

Moreover, there is a quasi-invariance density kg0
(g)

defined on the path group (g0 and g are paths with
values in G) such that

�tðg0AÞ ¼
Z

A

kg0
ðgÞ�tðdgÞ

where g0A is the translated on the left of the subset
A in the path space over G. This is a generalization
to the path space of the classical Cameron–Martin
theorem. Then, one can consider the loop space. The
free loop space is the set of continuous maps g from
[0, 1] to G such that g(0) = g(1), and the loop space
with a base point is the set of maps such that
g(0) = g(1) = m is fixed. One can define the pinned
Brownian motion on the group G to obtain the
pinned Wiener measures (�Le
t )t� 0 on the loop group

(Malliavin and Malliavin 1992, Driver and
Srimurthy 2001). Denote by pt(g) the solution of
the heat equation on the group G. Let g be a map
from [0, 1] to the finite-dimensional Lie group G. For
�1, �2, . . . , �n 2 [0, 1], consider the evaluations of the
map g, g�1

, g�2
, . . . , g�n

2 G, Let f be a real function
defined on G and denote by dg the Haar measure on
G. The measure �Le

t on the loop group is given byZ
f ðg�1

; g�2
; . . . ; g�n

Þ d�Le
t ðgÞ

¼
Z

f ðg1; g2; . . . ; gnÞpt�1
ðg1Þptð�2��1Þðg�1

1 g2Þ � � �

� ptð�n��n�1Þðg�1
n�1gnÞptð1��nÞðgnÞ dg1 � � � dgn

From �Le
t , one defines a measure �L

t on the free
loops by taking the mean over G asZ

f ð�Þ�L
t ðd�Þ ¼

Z
G

dg

Z
f ðg�Þ�Le

t ðd�Þ

The quasi-invariance property for the pinned Wiener
measure was proved by Malliavin and Malliavin
(1992).

When the measures (�L
t )t�0 are obtained by

conditioning and quasisure analysis, we have heat
kernel measures. The case of heat kernel measures
defined on the loop group has been studied by
Airault and Malliavin by disintegrating the measures
on the path space and using the quasisure analysis.
The Laplacian on the loop group is defined as it has
been for the Laplacian on the path space,

ð�L f ÞðgÞ ¼ lim
�!0

1

�

Z
f ðgg1Þ�L

� ðdg1Þ � f ðgÞ
� �

but now the heat equation has a Kac’s potential �t

defined on the loops. On the loop group, the heat
equation is

@

@t

Z
f ðlÞ�L

t ðdlÞ¼
Z
ð�Lf ÞðlÞþ�tðlÞf ðlÞ½ ��L

t ðdlÞ ½3�

where

�tðlÞ ¼
1

t2

Z 1

0

dlðsÞlðsÞ�1

����
����

2

G
�2

d

dt
log ptðeÞ

� 1

t
dimG

The case of the circle, G = R=2�Z, is interesting.
The law of the functionalZ 1

0

dlðsÞlðsÞ�1

is given in Airault and Malliavin (1996, and
references therein). Moreover, the study of the heat
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measures over the loop group of R=2�Z brings new
identities on the classical Jacobi theta function

ptð�Þ ¼ 1þ 2
X
n�1

cosðn�Þ e�n2t=2 at � ¼ 0

Let

ct ¼ �2
d

dt
log ptð0Þ �

1

t

The following system of differential equations is
given by Airault–Malliavin (1996, and references
therein):

ct ¼ �
1

t2

X
n2Z

anðtÞ

d

dt
anðtÞ ¼

1

2
ctanðtÞ þ

2�2n2

t2
anðtÞ

To pass from path space to loop space, it is
convenient to use the ‘‘tubular chart’’ introduced
by Gross and the quasisure analysis developed by
Airault–Malliavin. Let � : �! �(1)�(0)�1 from the
path space to the group G; then the free loop
space over G is ��1(e). There exists a neighbor-
hood V of the neutral of G such that ��1(V) is
diffeomorphic to V � L(G), the product of V with
the loop space over G. With this diffeomorphism,
one can disintegrate the measures on the path
space and obtain the measures on the loop space.
The Cameron–Martin formula on the path space
of the group G is obtained from the Cameron–
Martin formula for the Wiener space and the Ito’s
map. Let � be a differentiable path with finite
energy on G, that is,

Z 1

0

�ðsÞ�1 d

ds
�ðsÞ

����
����

2

G
< þ1

it holds Z
f ð�gÞ�tðdgÞ ¼

Z
f ðgÞk�ðgÞ�tðdgÞ

Let us denote by (j)G the Euclidean scalar product on
the Lie algebra G; then the density is given by

k�ðgÞ ¼ exp
1

t

Z 1

0

�ðsÞ�1 d

ds
�ðsÞjdgðsÞgðsÞ�1

� �
G

"

� 1

2t

Z 1

0

�ðsÞ�1 d

ds
�ðsÞ

����
����

2

G
ds

#

The previous approach relies on the heat equation
on the loop space. Thus, the metric on the
Cameron–Martin loop or path space is important.
The problem of quasi-invariance for metrics � with
1=2 < � < 1 relates to the random series

u�ð�Þ ¼
X
k�1

sin k��

k�
Gk ½4�

where the Gk are independent normal variables.
Driver (2003) solved the problem for 1=2 < � < 1
by Riemannian geometry in infinite dimension.
The Ricci curvature appears in the integration-by-
parts formulas on the loop space. The case of the
metric 1=2 is out of reach. Fang (1999) calculated
the Ricci curvature of the loop manifold for
metrics � > 1=2 and showed that when �! 1=2,
these Ricci curvatures tend to a limit. Another
presentation of the problem is that of Pickrell
(1987), where he obtains a family of quasi-
invariant measures on Grassmannians.

Given a family of measures (�t)t� 0 on the path
space of a Riemannian manifold, one defines a heat
operator as a family (Lt)t�0 of operators depending
upon t 2 [0, þ1[ such that

Z
LtF d�t ¼

d

dt

Z
F d�t ½5�

where F is a function defined on the path space. The
heat equation with a potential as [3] gives an
example of a heat operator. Heat operators have
been constructed for the path space over Rn by
Airault–Malliavin, obtaining, after an integration by
parts on the path space, a heat operator of first
order. This introduces the notion of dilatation vector
fields on the path space. In the case of the flat
Wiener space, to each point x in the path space is
associated the dilatation vector field Y such that
(Yf )(x) = (xj(grad f )(x)). This gives a rescaling of the
Wiener measure under dilatations. This idea has
been exploited by Mancino (1999), who extended
the method to free loop groups.
Integration-by-Parts Formulas

The Cameron–Martin space plays the role of the
tangent space to the Wiener space. The integration-
by-parts formulas are an infinitesimal version of the
Cameron–Martin quasi-invariance property. Let G
be a compact Lie group or any product of Rn by a
compact Lie group. For a vector field z, the
differentiation on the right @ right

z and differentiation
on the left @left

z are given by

@left
z FðpÞ ¼ lim

�!0

Fðexpð�zÞpÞ � FðpÞ
�
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and

@right
z FðpÞ ¼ lim

�!0

Fðp expð�zÞÞ � FðpÞ
�

The operator @right
z commutes with the translation on

the left, for a translation � left
h , then @right

z (F o � left
h ) =

(@right
z F)o� left

h and vice versa for @left
z .

For the measures on the path space or loop space,
the problem is to prove the integration-by-parts
formulas. On the path spaces on G, let �Pe be the
Wiener measure on the set of paths starting from e,
there exists a density kz such that E[ exp (ckz)] is
finite andZ

PeðGÞ
@left

z FðgÞ d�Pe
ðgÞ ¼

Z
PeðGÞ

FðgÞkz d�Pe
ðgÞ

The density kz is defined on the path space by

kzðgÞ ¼
Z 1

0

<gðtÞz0ðtÞgðtÞ�1; d!ðtÞ>

This was proved by a number of authors (see, e.g.,
Pickrell (1987) and, in a geometrical context,
Cruzeiro and Malliavin (1996)).

The existence of a density for the differentiation
on the left is valid for any Lie group. This is not true
for the differentiation on the right. If G is
noncompact or is not the product of Rn by a
compact Lie group, the existence of kz is not proved
on the right. This comes from the fact that the map
Ad defined on the path group as a parallel transport
does not preserve the Cameron–Martin subspace. In
the case where G is not a product of a flat space by
a compact Lie group, the Cameron space, which is a
kind of ‘‘tangent space’’ to the infinite-dimensional
loop manifold, is not closed under the Lie bracket of
vector fields.

The integration-by-parts formulas are obtained
with the stochastic calculus of variation. On a group
G, consider Y1, Y2, . . . , Yp, p independent left-
invariant vector fields. Let G be the Lie algebra of
G. The second-order differential operator 4=Pp

j = 1 Y2
j defines a left-invariant diffusion g!(t) on

the group G with the stochastic equation
dg!(t) = g!(t)

P
k (Yk)eo d!k

� 	
where (!k) are inde-

pendent Brownian motions on the Euclidean space
G. In the work by Malliavin and Malliavin (1992,
and references therein), the stochastic calculus of
variation is done with the right-invariant connection
on the Lie group by setting

	right ¼ d

d� j �¼0
ðg!þ�hÞog�1

!

where h is a differentiable function of t with
values in the Lie algebra G, with finite energy
R 1
0 jh0(s)j

2 ds < þ1. By taking the derivative with
respect to � in the Stratonovitch equation

g�ðtÞ�1o dg�ðtÞ ¼ d!ðtÞ þ �h0ðtÞ dt

and letting �= 0, it turns out that 	right is a differenti-
able function of t and its derivative is given by

d

dt
	rightðtÞ ¼ g!ðtÞh0ðtÞg!ðtÞ�1

The situation is not the same for

	left ¼ d

d�j�¼0
g�1
! oðg!þ�hÞ

where d	left(t) is a stochastic differential. This
generalizes to an arbitrary Riemannian manifold
using a coupling of connections (see Airault and
Malliavin (1996), and references therein). The
construction of the appropriate Cameron subspace,
that is, the choice of the infinitesimal action of
vector fields on the measure, is of importance. In the
commutative case of the path space over Rn, the
classical Cameron–Martin subspace of paths h such
that

R 1
0 jh0(s)j

2 ds < þ1 is time invariant. To define
the vector fields acting on the path (or loop) space
over M, it is necessary to consider the geometry of
the manifold M. The infinitesimal transformations
which preserve the Riemannian metric are called
Riemannian connections. In the case where M is a
group, the natural connections are those defined by
the parallelism on the group. For a Riemannian
manifold, Driver proved the existence of integration-
by-parts formulas for the measures on the path
space of M when M is endowed with a torsion skew-
symmetric connection. The Levi-Civita connection,
since it is torsionless, is of course a Driver (2003)
connection. If the connection is not skew-symmetric,
then two coupled connections permit study of the
�-variation or ‘‘reduced variation’’ of a path, and one
obtains a Cameron–Martin formula on the path and
on the loop space of the Riemannian manifold M
(Fang 1999). The method of reduced variation can be
used to obtain the integration-by-parts formulas over
path and loop spaces. Another approach to the quasi-
invariance problem, using two-parameter processes,
has been provided by Norris (1995).
The Support of the Measures and
Absolute Continuity with Respect
to Each Other

Given a Riemannian manifold M, let (�t)t be the heat
kernel measures on the path space of M and let (
t)t

be heat kernel measures on the loop space of M; the
question arises whether 
t is absolutely continuous
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with respect to �t. For a connected compact Lie
group G, consider the path and loop groups on G.
The pinned Wiener measure on the loop group is
defined as the law of a G-valued Brownian motion
starting at e and conditioned to end at e, and the heat
kernel measure is the endpoint distribution of
Brownian motion on the loop group.

It has been shown (Driver and Srimurthy 2001)
that the heat kernel measure is absolutely continuous
with respect to the pinned Wiener measure, and that
the Radon–Nikodym derivative is bounded. This
proof relies on the heat formula with a potential
[3], which is satisfied by the heat kernel measure.
They give a new proof of this heat formula. When the
group G is simply connected, Aida and Driver (2000)
prove that the heat kernel measure over a based loop
group, constructed by using the Brownian motion is
equivalent to the Brownian bridge measure over a
based loop group. When G is the circle, the Radon–
Nikodym derivative of the heat kernel measure with
respect to the pinned Wiener measure can be
calculated in terms of the Jacobi theta function
(Driver and Srimurthy 2001). On the loop space of
Rn, at time t, the two measures, ‘‘heat kernel’’ and
‘‘pinned Wiener’’ are the same.

See also: Abelian and Nonabelian Gauge Theories Using
Differential Forms; Lie Groups: General Theory; Malliavin
Calculus; Path Integrals in Noncommutative Geometry.
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Bourbaki, vol. 1997–1998, Astérisque No 252, Exp. No. 846,
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Introduction

The theory of metastability studies the states of
the matter which ‘‘should not be there,’’ but which
still can be observed, albeit for only a short time.
One example is water, cooled below the zero
temperature. This supercool water can stay liquid,
but not for a long time, and it then freezes abruptly.
Such states are called metastable. They are not
equilibrium states; at negative temperatures the only
equilibrium state of water is ice. Physically, these
metastable states are produced from the equilibrium
states by slowly changing the external parameters,
such as the temperature (or magnetic field): one
takes, for example, water (extremely purified) at low
positive temperature, T > 0, and then lowers the
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temperature slowly to negative values T < 0. Thus,
the family of metastable states, sT , T < 0, should
be thought as a continuation of the family sT , T > 0
of equilibrium states through the point of phase
transition Tc = 0, at which critical temperature these
states cease to exist as equilibrium states.

Below we will present rigorous results, which
validate the above picture for the case of the 2D
Ising model. They are contained in Schonmann and
Shlosman (1998). The relevant external parameter
in this case will be the magnetic field, h.

It turns out that the lifetime of metastable states is
determined by the quantities given by the Wulff
construction.
Equilibrium States and Dynamics

Let us denote the set {�1,þ1}Z2

of the Ising model
configurations � by �. Two configurations are
specially relevant, the one with all spins �1 and the
one with all spins þ1. We will use the simple
notation � and þ to denote them.

Observables are just functions on �. Local observ-
ables are those which depend only on the values of
finitely many spins.

We will consider the formal Hamiltonian

Hhð�Þ ¼ �
X

x;y n:n:

�ðxÞ�ðyÞ � h
X

x

�ðxÞ ½1�

where h 2 R1 is the external field and� 2 � is a generic
configuration. We define, for each set � �� Z2 and
each boundary condition � 2 �,

H�;�;hð�Þ ¼ �
X
x;y n:n:
x;y2�

�ðxÞ�ðyÞ �
X
x;y n:n:

x2�;y 62�

�ðxÞ�ðyÞ

� h
X
x2�

�ðxÞ

The ‘‘grand canonical Gibbs measure’’ in � with
boundary condition � under external field h and at
temperature T is defined on �� as

��; �;T; hð�Þ ¼ Z�1
�; �;T; h expð��H�; �; hð�ÞÞ

where �= T�1, and the partition function Z�, �, T, h is
a normalization, chosen such that ��, �, T, h(��) = 1.
The equilibrium states are obtained by taking the
thermodynamic limit lim�!Z2 ��, �, T, h. We will be
interested in the states

��;T; h ¼ lim
�!Z2

��;�;T;h

corresponding to (�)-boundary conditions. If h 6¼ 0,
then ��, T, h =�þ, T, h, so it will be denoted simply by
�T, h. If h = 0, the same is true if the temperature
is larger than or equal to a critical value Tc = Tc, and
is false for T < Tc, in which case one says that there is
phase coexistence. The measure �þ, T, 0 � �þ, T is
called the (þ)-phase, and ��, T� the (�)-phase.

For an observable f we will denote by hf i� its
expected value in the state ��, that is, the integralR

fd��. In particular, the spontaneous magnetization
m�(T) equals by definition to h�(0)iþ, T .

Next, we need to supply the Ising model with the
time evolution. For this we will use the Glauber
dynamics. It is a Markov process on �, whose
generator, L, acts on a generic local observable f as

ðLf Þð�Þ ¼
X
x2Z2

cðx; �Þðf ð�xÞ � f ð�ÞÞ

where �x is the configuration obtained from � by
flipping the spin at the site x to the opposite value,
and c(x,�) is the rate of the flip of the spin at the site
x when the system is in the state �. In words, one
can say that the dynamics proceeds as follows: at
every site x the spin �(x) is flipped randomly,
independently of all others, with the rate c(x,�),
where � is the current configuration. Common
examples are ‘‘metropolis dynamics’’:

chðx; �Þ ¼ expð��ð�xHhð�ÞÞþÞ

or ‘‘heat bath dynamics’’:

chðx; �Þ ¼ 1þ expð��xHhð�ÞÞ½ ��1

Here (a)þ= max {a, 0}, and �xHh(�) = Hh(�x)�
Hh(�). The spin flip system thus obtained will be
denoted by (��T, h; t)t�0, where � is the initial con-
figuration at time t = 0. If this initial configuration
is selected at random according to a probability
measure �, then the resulting process is denoted by
(��T, h; t)t�0. It is known that the Gibbs measures are
invariant with respect to the stochastic Ising models.
Moreover,

��T;h;t ! ��;T;h; �
þ
T;h;t ! �þ;T;h; as t!1

We will be interested in the case when h is
positive, though small. Then there is only one
invariant state, �þ, T, h, so the state ��, T, h is equal
to �þ, T, h, and ��T, h; t ! �þ, T, h, as t ! 1. (One
should intuitively think about the state ��T, h; t for
t small as the supercooled but liquid water,
thinking about the state �þ, T, h to be ice.) We
want to control the convergence of the temporal
state ��T, h; t to the equilibrium, �þ, T, h, and to see, if
possible, that during some (long) initial time the
state ��T, h; t looks very similar to the (�)-phase
��, T , while after some time threshold it changes
suddenly and looks quite similar to the state
�þ, T, h. It turns out that all the above features
can indeed be established rigorously.
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If one starts to simulate the above dynamics
on a computer, then the picture observed would
be the following: one would see that droplets of
the (þ)-phase are created in the midst of (�)-phase
droplets, which are there for a while, and then
disappear. That process goes on for a while, until
a big enough (þ)-droplet is born; this one then
starts to grow and eventually fills up all the
display.
The Life Span of Metastable States

Let us define the ‘‘critical time exponent’’ �c =�c(T) by

�c ¼
w�

12m�ðTÞT ½2�

where w� = w�T
is the value of the surface energy

of the Wulff curve of our 2D Ising model at the
temperature T:

w� ¼ W� W �ð Þ

Suppose now that T < Tc, h > 0. Let � be either the
(�)-phase ��, T or 	{�=�}. (In fact, any � ‘‘between’’
these two states would go.) Then the following
happens.

1. If 0 < � < �c, then for each n 2 {1, 2, . . . } and for
each local observable f,

E f ��T;h;t¼ expf�=hg

� �� �

¼
Xn�1

j¼0

bjðf Þhj þO hnð Þ ½3�

where

bjðf Þ ¼ lim
h!0�

djhf i�;T;h
dhj

(We stress that in the last relation we are using
the Gibbs states corresponding to the negative
values of the magnetic field.) In particular,

E ��T;h;t¼ exp f�=hg 0ð Þ
� �

¼ �m�ðTÞ þO hð Þ ½4�

2. If � > �c, then for any finite positive C there is a
finite positive C1 such that for every local
observable f,

E f ��T;h;t¼ expf�=hg

� �� �
� hf iT;h

��� ���
	 C1kfk exp �C

h

� �
½5�
The relation [3] implies that the family of
nonequilibrium states 
h i�T, h;�, h > 0, defined for
every local observable f by

fh i�T;h;�¼E f ��T;h;t¼ expf�=hg

� �� �

is a C1-continuation of the curve {h
i�, T, h, h 	 0} of
equilibrium states. This is true for every 0 < � < �c

and every � as above. The states 
h i�T, h;� are the
‘‘metastable states’’ we are looking for. The relations
[3] and [4] should be interpreted in the sense that
before the time exp{�c=h} our temporal state is still
‘‘liquid,’’ while [5] means that after the time
exp{�c=h} freezing happens. So one can think about
the quantity exp{�c=h} as being the life span of the
metastable state.

This theorem was obtained in Schonmann and
Shlosman (1998). Let us explain the heuristics
behind it. It has two ingredients. The first one is
that the transition to the equilibrium is going via
creation of droplets of the (þ)-phase. The second
one is that once such a droplet is created by a
thermal fluctuation, with the size exceeding a certain
critical value, it does not die out, but grows further,
with a speed v of the order of h. (This second belief
can be expected to be correct only in dimension 2.)
Let us see how these two hypotheses can give us the
right answer. To get to the equilibrium we have to
overcome the energy barrier, by creating a large
droplet of the (þ)-phase. Subcritical droplets
are constantly created by thermal fluctuations in the
metastable phase, but they tend to shrink. On the
other hand, once a supercritical droplet is created
due to a larger fluctuation, it will grow and drive the
system to the stable phase. Indeed, the energy �(m )
of an m -shaped droplet of the (þ)-phase in the sea of
(�)-phase equals W� (m )� 2m�(T)h vol(m ). For
small m the functional �(m ) decreases as m shrinks,
while for large m the functional �(m ) decreases as m

grows. Its saddle point m sdl is precisely the Wulff
shape. Since the minimal height of the barrier is
�(m sdl), one predicts the rate of creation of a critical
droplet with center at a given place to be

exp �� m sdlð Þ
T

� �
¼ exp � w�

4m�ðTÞT

� �

Comparing with [2], we see that we miss the
correct answer

exp � w�

12m�ðTÞT

� �

by a factor of 1/3. The reason for that is the
following. Note that we are concerned with an
infinite system, and we are observing it through a
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local function f, which depends on the spins in a
finite set supp (f ). For us, the system will have
relaxed to equilibrium once supp (f ) is covered by
a big droplet of the (þ)-phase, which appeared
spontaneously somewhere and then grew, as
discussed above. We want to estimate how long
we have to wait for the probability of such an
event to be close to 1. If we suppose that the
radius of the supercritical droplet grows with a
speed v, then we can see that the region in
spacetime, where a droplet which covers supp (f )
at time t could have appeared, is, roughly speak-
ing, a cone with vertex in supp (f ) and which has
as base the set of points which have time
coordinate 0 and are at most at distance tv from
supp (f ). The volume of such a cone is of the order
of (vt)2t. The order of magnitude of the relaxation
time, trel, at which the region supp (f ) starts to be
covered by a large droplet can now be obtained by
solving the equation

ðvtrelÞ2trel exp �� m sdlð Þ
T

� �
� 1

This gives us what we want:

trel � v�2=3 exp
1

3

� m sdlð Þ
T

� �

See also: Dynamical Systems in Mathematical Physics:
An Illustration from Water Waves; Large Deviations in
Equilibrium Statistical Mechanics; Wulff Droplets.
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Introduction

Soap films, soap bubbles, and surface tension were
extensively studied by the Belgian physicist and
inventor (the inventor of the stroboscope) Joseph
Plateau in the first half of the nineteenth century. At
least since his studies, it has been known that the
right mathematical model for soap films are minimal
surfaces – the soap film is in a state of minimum
energy when it is covering the least possible amount
of area. Minimal surfaces and equations like the
minimal surface equation have served as mathemat-
ical models for many physical problems.

The field of minimal surfaces dates back to the
publication in 1762 of Lagrange’s famous memoir
‘‘Essai d’une nouvelle méthode pour déterminer les
maxima et les minima des formules intégrales
indéfinies.’’ Euler had already, in a paper published
in 1744, discussed minimizing properties of the
surface now known as the catenoid, but he only
considered variations within a certain class of
surfaces. In the almost one-quarter of a millennium
that has past since Lagrange’s memoir, the subject of
minimal surfaces has remained a vibrant area of
research and there are many reasons why. The study
of minimal surfaces was the birthplace of regularity
theory. It lies on the intersection of nonlinear elliptic
PDE, geometry, topology, and general relativity.
In what follows we give a quick tour through
many of the classical results in the field of minimal
submanifolds, starting at the definition.

The field of minimal surfaces remains extremely
active and has very recently seen major develop-
ments that have solved many longstanding open
problems and conjectures; for more on this, see the
expanded version of this survey (Colding and
Minicozzi II, 2005). See also the recent surveys
(Meeks III and Perez 2004, Perez 2005), and the
expository article (Colding and Minicozzi II 2003).

Throughout this survey, we refer to Colding and
Minicozzi II (1999) for references unless otherwise
noted.
Part 1. Classical and Almost
Classical Results

Let � � Rn be a smooth k-dimensional submanifold
(possibly with boundary) and C10 (N�) the space of
all infinitely differentiable, compactly supported,
normal vector fields on �. Given � in C10 (N�),
consider the one-parameter variation

�t;� ¼ fxþ t �ðxÞjx 2 �g ½1�

The so-called first variation formula of volume is the
equation (integration is with respect to d(vol)

d

dt

����
t¼0

Volð�t;�Þ ¼
Z

�

h�;Hi ½2�

where H is the mean curvature (vector) of �. (When
� is noncompact, then �t, � in [2] is replaced by



�t, �, where � is any compact set containing the
support of �.) The submanifold � is said to be a
‘‘minimal’’ submanifold (or just minimal) if

d

dt

����
t¼0

Volð�t;�Þ ¼ 0 for all � 2 C10 ðN�Þ ½3�

or, equivalently by [2], if the mean curvature H is
identically zero. Thus, � is minimal if and only if it
is a critical point for the volume functional. (Since a
critical point is not necessarily a minimum, the term
‘‘minimal’’ is misleading, but it is time honored. The
equation for a critical point is also sometimes called
the Euler–Lagrange equation.)

Suppose now, for simplicity, that � is an oriented
hypersurface with unit normal n�. We can then
write a normal vector field � 2 C10 (N�) as � =�n�,
where function � is in the space C10 (�) of infinitely
differentiable, compactly supported functions on �.
Using this, a computation shows that if � is
minimal, then

d2

dt2

�����
t¼0

Volð�t;�n�
Þ ¼ �

Z
�

�L�� ½4�

where

L�� ¼ ���þ jAj2� ½5�

is the second variational (or Jacobi) operator. Here,
�� is the Laplacian on � and A is the second
fundamental form. So jAj2 =�2

1 þ �2
2 þ � � � þ �2

n�1,
where �1, . . . ,�n�1 are the principal curvatures of
� and H = (�1 þ � � � þ �n�1) n�. A minimal submani-
fold � is said to be stable if

d2

dt2

�����
t¼0

Volð�t;�Þ � 0 for all � 2 C10 ðN�Þ ½6�

Integrating by parts in [4], we see that stability is
equivalent to the so-called stability inequalityZ

jAj2 �2 �
Z
jr�j2 ½7�

More generally, the ‘‘Morse index’’ of a minimal
submanifold is defined to be the number of negative
eigenvalues of the operator L. Thus, a stable
submanifold has Morse index zero.

The Gauss Map

Let �2 � R3 be a surface (not necessarily mini-
mal). The Gauss map is a continuous choice of a
unit normal n: �! S2 � R3. Observe that there
are two choices of such a map n and �n
corresponding to a choice of orientation of �. If
� is minimal, then the Gauss map is an (anti)
conformal map since the eigenvalues of the

Weingarten map are �1 and �2 =��1. Moreover,
for a minimal surface

jAj2 ¼ �2
1 þ �2

2 ¼ �2�1 �2 ¼ �2 K� ½8�

where K� is the Gauss curvature. It follows that the
area of the Gauss map is a multiple of the total
curvature.

Minimal Graphs

Suppose that u : � � R2!R is a C2 function. The
graph of u

Graphu ¼ fðx; y; uðx; yÞÞ j ðx; yÞ 2 �g ½9�

has area

AreaðGraphuÞ ¼
Z

�

jð1; 0; uxÞ 	 ð0; 1; uyÞj

¼
Z

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x þ u2
y

q

¼
Z

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q
½10�

and the (upward pointing) unit normal is

n ¼ ð1; 0;uxÞ 	 ð0; 1; uyÞ
jð1; 0;uxÞ 	 ð0; 1; uyÞj

¼ ð�ux;�uy; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q ½11�

Therefore, for the graphs Graphuþt� where �j@� = 0,
we get that

AreaðGraphuþt�Þ ¼
Z

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruþ tr�j2

q
½12�

Hence

d

dtt¼0
AreaðGraphuþt�Þ

¼
Z

�

hru;r�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjruj2

q ¼�
Z

�

�div
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þjruj2
q

0
B@

1
CA ½13�

It follows that the graph of u is a critical point for
the area functional if and only if u satisfies the
divergence form equation

div
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jruj2
q

0
B@

1
CA¼ 0 ½14�

Next we want to show that the graph of a
function on � satisfying the minimal surface
equation, that is, satisfying [14], is not just a critical
point for the area functional but is actually
area minimizing amongst surfaces in the cylinder
�	 R � R3. To show this, extend first the unit
normal n of the graph in [11] to a vector field, still
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denoted by n, on the entire cylinder �	 R. Let ! be
the 2-form on �	 R given that for X, Y 2 R3

!ðX;YÞ ¼ detðX;Y;nÞ ½15�

An easy calculation shows that

d! ¼ @

@x

�uxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q
0
B@

1
CA

þ @

@y

�uyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q
0
B@

1
CA¼ 0 ½16�

since u satisfies the minimal surface equation. In
sum, the form ! is closed and, given any X and Y at
a point (x, y, z),

j!ðX;YÞj � jX	 Yj ½17�

where equality holds if and only if

X;Y � Tðx;y;uðx;yÞÞGraphu ½18�

Such a form ! is called a ‘‘calibration.’’ From this,
we have that if � � �	 R is any other surface with
@� = @Graphu, then by Stokes’ theorem since ! is
closed,

AreaðGraphuÞ ¼
Z

Graphu

! ¼
Z

�

! � Areað�Þ ½19�

This shows that Graphu is area minimizing among
all surfaces in the cylinder and with the same
boundary. If the domain � is convex, the minimal
graph is absolutely area minimizing. To see this,
observe first that if � is convex, then so is �	 R and
hence the nearest point projection P : R3!�	 R is
a distance nonincreasing Lipschitz map that is equal
to the identity on �	 R. If � � R3 is any other
surface with @� = @Graphu, then �0= P(�) has
Area(�0) � Area(�). Applying [19] to �0, we see
that Area(Graphu) � Area(�0) and the claim
follows.

If � � R2 contains a ball of radius r, then, since
@Br \Graphu divides @Br into two components at
least one of which has area at most equal to
(Area(S2)=2)r2, we get from [19] the crude estimate

AreaðBr \GraphuÞ �
AreaðS2Þ

2
r2 ½20�

When the domain � is convex, it is not hard to see
that the minimal graph is absolutely area minimizing.

Very similar calculations to the ones above show
that if � � Rn�1 and u : �!R is a C2 function, then
the graph of u is a critical point for the area
functional if and only if u satisfies [14]. Moreover,
as in [19], the graph of u is actually area

minimizing. Consequently, as in [20], if � contains
a ball of radius r, then

VolðBr \GraphuÞ �
VolðSn�1Þ

2
rn�1 ½21�

The Maximum Principle

The first variation formula, [2], showed that a smooth
submanifold is a critical point for area if and only if
the mean curvature vanishes. We will next derive the
weak form of the first variation formula which is the
basic tool for working with ‘‘weak solutions’’ (typi-
cally, stationary varifolds). Let X be a vector field on
Rn. We can write the divergence div �X of X on � as

div � X ¼ div � XT þ div � XN

¼ div � XT þ hX;Hi ½22�

where XT and XN are the tangential and normal
projections of X. In particular, we get that, for a
minimal submanifold,

div � X ¼ div� XT ½23�

Moreover, from [22] and Stokes’ theorem, we see that
� is minimal if and only if for all vector fields X with
compact support and vanishing on the boundary of �,Z

�

div� X ¼ 0 ½24�

The key point is that [24] makes sense as long as we
can define the divergence on �. As a consequence of
[24], we will show the following proposition:

Proposition 1 �k � Rn is minimal if and only if the
restrictions of the coordinate functions of Rn to �
are harmonic functions.

Proof Let � be a smooth function on � with
compact support and �j@� = 0, thenZ

�

hr��;r�xii ¼
Z

�

hr��; eii

¼
Z

�

div �ð�eiÞ ½25�

From this, the claim follows easily. h

Recall that if � � Rn is a compact subset, then the
smallest convex set containing � (the convex hull,
Conv(�)) is the intersection of all half-spaces
containing �. The maximum principle forces a
compact minimal submanifold to lie in the convex
hull of its boundary (this is the ‘‘convex hull
property’’):

Proposition 2 If �k � Rn is a compact minimal
submanifold, then � � Conv(@�).
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Proof A half-space H � Rn can be written as

H ¼ fx 2 Rnjhx; ei � ag ½26�

for a vector e 2 Sn�1 and constant a 2 R. By
Proposition 1, the function u(x) = he, xi is harmonic
on � and hence attains its maximum on @� by the
maximum principle. h

Another application of [23], with a different
choice of vector field X, gives that for a
k-dimensional minimal submanifold �

��jx� x0j2 ¼ 2 div �ðx� x0Þ ¼ 2k ½27�

Later, we will see that this formula plays a crucial
role in the monotonicity formula for minimal
submanifolds.

The argument in the proof of the convex hull
property can be rephrased as saying that as we
translate a hyperplane towards a minimal surface,
the first point of contact must be on the boundary.
When � is a hypersurface, this is a special case of
the strong maximum principle for minimal surfaces:

Lemma 1 Let � � Rn�1 be an open connected
neighborhood of the origin. If u1, u2 : �!R are
solutions of the minimal surface equation with u1 � u2

and u1(0) = u2(0), then u1 
 u2.

Since any smooth hypersurface is locally a graph
over a hyperplane, Lemma 1 gives a maximum
principle for smooth minimal hypersurfaces.

Thus far, the examples of minimal submanifolds
have all been smooth. The simplest nonsmooth
example is given by a pair of planes intersecting
transversely along a line. To get an example that is
not even immersed, one can take three half-planes
meeting along a line with an angle of 2�=3 between
each adjacent pair.

Monotonicity and the Mean-Value
Inequality

Monotonicity formulas and mean-value inequalities
play a fundamental role in many areas of geometric
analysis.

Proposition 3 Suppose that �k � Rn is a minimal
submanifold and x0 2 Rn; then for all 0 < s < t,

t�k VolðBtðx0Þ \ �Þ � s�k VolðBsðx0Þ \ �Þ

¼
Z
ðBtðx0ÞnBsðx0ÞÞ\�

jðx� x0ÞNj2

jx� x0jkþ2
½28�

Notice that (x� x0)N vanishes precisely when � is
conical about x0, that is, when � is invariant under

dilations about x0. As a corollary, we get the
following:

Corollary 1 Suppose that �k � Rn is a minimal
submanifold and x0 2 Rn; then the function

�x0
ðsÞ ¼ VolðBsðx0Þ \ �Þ

VolðBs � RkÞ
½29�

is a nondecreasing function of s. Moreover,
�x0

(s) is constant in s if and only if � is conical
about x0.

Of course, if x0 is a smooth point of �, then
lims! 0 �x0

(s) = 1. We will later see that the converse
is also true; this will be a consequence of the Allard
regularity theorem.

The monotonicity of area is a very useful tool in
the regularity theory for minimal surfaces – at least
when there is some a priori area bound. For
instance, this monotonicity and a compactness
argument allow one to reduce many regularity
questions to questions about minimal cones (this
was a key observation of W Fleming in his work on
the Bernstein problem; see the s ection ‘‘The
theorems of Bernst ein and Be rs’’ ).

Arguing as in Proposition 3, we get a weighted
monotonicity:

Proposition 4 If �k � Rn is a minimal submani-
fold, x0 2 Rn, and f is a function on �, then

t�k

Z
Btðx0Þ\�

f � s�k

Z
Bsðx0Þ\�

f

¼
Z
ðBtðx0ÞnBsðx0ÞÞ\�

f
jðx� x0ÞNj2

jx� x0jkþ2
þ 1

2

Z t

s

��k�1

	
Z

B� ðx0Þ\�

ð�2 � jx� x0j2Þ��fd� ½30�

We get immediately the following mean-value
inequality for the special case of non-negative
subharmonic functions:

Corollary 2 Suppose that �k � Rn is a minimal
submanifold, x0 2 Rn, and f is a non-negative
subharmonic function on �; then

s�k

Z
Bsðx0Þ\�

f ½31�

is a nondecreasing function of s. In particular, if
x0 2 �, then for all s > 0,

f ðx0Þ �
R

Bsðx0Þ\� f

VolðBs � RkÞ
½32�
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Rado’s Theorem

One of the most basic questions is what does the
boundary @� tell us about a compact minimal
submanifold �? We have already seen that � must
lie in the convex hull of @�, but there are many
other theorems of this nature. One of the first
theorems is a beautiful result of Rado which says
that if @� is a graph over the boundary of a convex
set in R2, then � is also graph (and hence
embedded). The proof of this uses basic properties
of nodal lines for harmonic functions.

Theorem 1 Suppose that � � R2 is a convex subset
and � � R3 is a simple closed curve which is
graphical over @�. Then any minimal disk � � R3

with @� = � must be graphical over � and hence
unique by the maximum principle.

Proof (Sketch). The proof is by contradiction, so
suppose that � is such a minimal disk and x 2 � is a
point where the tangent plane to � is vertical.
Consequently, there exists (a, b) 6¼ (0, 0) such that

r�ðax1 þ bx2ÞðxÞ ¼ 0 ½33�

By Proposition 1, ax1 þ bx2 is harmonic on � (since
it is a linear combination of coordinate functions).
The local structure of nodal sets of harmonic
functions (see, e.g., Colding and Minicozzi II
(1999)) then gives that the level set

fy 2 �jax1 þ bx2ðyÞ ¼ ax1 þ bx2ðxÞg ½34�

has a singularity at x where at least four different
curves meet. If two of these nodal curves were to
meet again, then there would be a closed nodal
curve which must bound a disk (since � is a disk).
By the maximum principle, ax1 þ bx2 would have
to be constant on this disk and hence constant on �
by unique continuation. This would imply that
�= @� is contained in the plane given by [34].
Since this is impossible, we conclude that all of
these curves go to the boundary without intersect-
ing again.

In other words, the plane in R3 given by [34]
intersects � in at least four points. However, since
� � R2 is convex, @� intersects the line given by
[34] in exactly two points. Finally, since � is
graphical over @�, � intersects the plane in R3

given by [34] in exactly two points, which gives
the desired contradiction. h

The Theorems of Bernstein and Bers

A classical theorem of S Bernstein from 1916 says
that entire (i.e., defined over all of R2) minimal

graphs are planes. This remarkable theorem of
Bernstein was one of the first illustrations of the
fact that the solutions to a nonlinear PDE, like the
minimal surface equation, can behave quite differ-
ently from solutions to a linear equation.

Theorem 2 If u : R2!R is an entire solution to the
minimal surface equation, then u is an affine
function.

Proof (Sketch). We will show that the curvature of
the graph vanishes identically; this implies that the
unit normal is constant and, hence, the graph must
be a plane. The proof follows by combining two
facts. First, the area estimate for graphs [20] gives

AreaðBr \GraphuÞ � 2�r2 ½35�

This quadratic area growth allows one to construct
a sequence of non-negative logarithmic cutoff func-
tions �j defined on the graph with �j! 1 every-
where and

lim
j!1

Z
Graphu

jr�jj2 ¼ 0 ½36�

Moreover, since graphs are area minimizing, they
must be stable. We can therefore use �j in the
stability inequality [7] to get

Z
Graphu

�2
j jAj

2 �
Z

Graphu

jr�jj2 ½37�

Combining these gives that jAj2 is zero, as
desired. h

Rather surprisingly, this result very much
depended on the dimension. The combined efforts
of E De Giorgi, F J Almgren Jr., and J Simons finally
gave:

Theorem 3 If u : Rn�1!R is an entire solution to
the minimal surface equation and n � 8, then u is an
affine function.

However, in 1969, E Bombieri, De Giorgi, and
E Giusti constructed entire nonaffine solutions to
the minimal surface equation on R8 and an area-
minimizing singular cone in R8. In fact, they showed
that for m � 4, the cones

Cm ¼ fðx1 ; . . . ; x2mÞ j x2
1 þ � � � þ x2

m

¼ x2
mþ1 þ � � � þ x2

2mg � R2m ½38�

are area minimizing (and obviously singular at the
origin).

In contrast to the entire case, exterior solutions
of the minimal graph equation, that is, solutions
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on R2nB1, are much more plentiful. In this case, L
Bers proved that ru actually has an asymptotic
limit:

Theorem 4 If u is a C2 solution to the minimal
surface equation on R2nB1, then ru has a limit at
infinity (i.e., there is an asymptotic tangent plane).

Bers’ theorem was extended to higher dimensions
by L Simon:

Theorem 5 If u is a C2 solution to the minimal
surface equation on RnnB1, then either

(i) jruj is bounded and ru has a limit at infinity or
(ii) all tangent cones at infinity are of the form �	 R

where � is singular.

Bernstein’s theorem has had many other interest-
ing generalizations, some of which will be discussed
later.

Simons Inequality

In this section, we recall a very useful differential
inequality for the Laplacian of the norm squared of
the second fundamental form of a minimal hypersur-
face � in Rn and illustrate its role in a priori
estimates. This inequality, originally due to J
Simons, is:

Lemma 2 If �n�1 � Rn is a minimal hypersurface,
then

��jAj2 ¼ �2jAj4 þ 2jr�Aj2 � �2jAj4 ½39�

An inequality of the type [39] on its own does not
lead to pointwise bounds on jAj2 because of the
nonlinearity. However, it does lead to estimates if a
‘‘scale-invariant energy’’ is small. For example,
H Choi and Schoen used [39] to prove:

Theorem 6 There exists � > 0 so that if 0 2 � �
Br(0) with @� � @Br(0) is a minimal surface withZ

jAj2 � � ½40�

then

jAj2ð0Þ � r�2 ½41�

Heinz’s Curvature Estimate for Graphs

One of the key themes in minimal surface theory is
the usefulness of a priori estimates. A basic example
is the curvature estimate of E Heinz for graphs.
Heinz’s estimate gives an effective version of the
Bernstein’s theorem; namely, letting the radius r0 go
to infinity in [42] implies that jAj vanishes, thus
giving Bernstein’s theorem.

Theorem 7 If Dr0
� R2 and u : Dr0

! R satisfies
the minimal surface equation, then for � = Graphu

and 0 < � � r0

�2 sup
Dr0��

jAj2 � C ½42�

Proof (Sketch). Observe first that it suffices to
prove the estimate for �= r0, that is, to show that

jAj2ð0; uð0ÞÞ � Cr�2
0 ½43�

Recall that minimal graphs are automatically stable.
As in the proof of Theorem 2, the area estimate for
graphs [20] allows us to use a logarithmic cutoff
function in the stability inequality [7] to get thatZ

Br1
\Graphu

jAj2 � C

logðr0=r1Þ
½44�

Taking r0=r1 sufficiently large, we can then apply
Theorem 6 to get [43]. h

Embedded Minimal Disks
with Area Bounds

In the early 1980s, Schoen and Simon extended the
theorem of Bernstein to complete simply connected
embedded minimal surfaces in R3 with quadratic
area growth. A surface � is said to have quadratic
area growth if for all r > 0, the intersection of the
surface with the ball in R3 of radius r and center at
the origin is bounded by Cr2 for a fixed constant C
independent of r.

Theorem 8 Let 0 2 �2 � Br0
= Br0

(x) � R3 be an
embedded simply connected minimal surface with
@� � @Br0

. If 	 > 0 and either

Areað�Þ � 	r2
0 or

Z
�

jAj2 � 	 ½45�

then for the connected component �0 of Br0=2(x0) \ �
with 0 2 �0 we have

sup
�0
jAj2 � Cr�2

0 ½46�

for some C = C(	).

The result of Schoen–Simon was generalized by
Colding–Minicozzi to quadratic area growth for
intrinsic balls (this generalization played an impor-
tant role in analyzing the local structure of
embedded minimal surfaces):

Theorem 9 Given a constant CI, there exists CP so
that if B2r0

� � � R3 is an embedded minimal disk
satisfying either

AreaðB2r0
Þ � CIr

2
0 or

Z
B2r0

jAj2 � CI ½47�
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then

sup
Bs

jAj2 � CPs�2 ½48�

As an immediate consequence, letting r0!1
gives Bernstein-type theorems for embedded simply
connected minimal surfaces with either bounded
density or finite total curvature. Note that Enneper’s
surface is simply connected but neither flat nor
embedded; this shows that embeddedness is essential
for these estimates. Similarly, the catenoid shows
that the surface being simply connected is essential.
The catenoid is the minimal surface in R3 given by

fðcosh s cos t; cosh s sin t; sÞjs; t 2 Rg ½49�

Stable Minimal Surfaces

It turns out that stable minimal surfaces have a
priori estimates. Since minimal graphs are stable, the
estimates for stable surfaces can be thought of as
generalizations of the earlier estimates for graphs.
These estimates have been widely applied and are
particularly useful when combined with existence
results for stable surfaces (such as the solution of the
Plateau problem). The starting point for these
estimates is that, as we saw in [4], stable minimal
surfaces satisfy the stability inequalityZ

jAj2�2 �
Z
jr�j2 ½50�

We will mention two such estimates. The first is
R Schoen’s curvature estimate for stable surfaces:

Theorem 10 There exists a constant C so that if
� � R3 is an immersed stable minimal surface with
trivial normal bundle and Br0

� �n@�, then

sup
Br0��

jAj2 � C��2 ½51�

The second is an estimate for the area and total
curvature of a stable surface is due to Colding–
Minicozzi; for simplicity, we will state only the area
estimate:

Theorem 11 If � � R3 is an immersed stable
minimal surface with trivial normal bundle and
Br0
� �n@�, then

AreaðBr0
Þ � 4�r2

0=3 ½52�

As mentioned, we can use [52] to bound the
energy of a cutoff function in the stability inequality
and, thus, bound the total curvature of sub-balls.
Combining this with the curvature estimate of
Theorem 6 gives Theorem 10. Note that the bound

[53] is surprisingly sharp; even when � is a plane,
the area is �r2

0.

Regularity Theory

In this section, we survey some of the key ideas in
classical regularity theory, such as the role of
monotonicity, scaling, �-regularity theorems (such
as Allard’s theorem) and tangent cone analysis (such
as Almgren’s refinement of Federer’s dimension
reducing). We refer to the book by Morgan (1995)
for a more detailed overview and a general
introduction to geometric measure theory.

The starting point for all of this is the mono-
tonicity of volume for a minimal k-dimensional
submanifold �. Namely, Corollary [1] gives that the
density

�x0
ðsÞ ¼ VolðBsðx0Þ \ �Þ

VolðBs � RkÞ
½53�

is a monotone nondecreasing function of s. Conse-
quently, we can define the density �x0

at the point
x0 to be the limit as s! 0 of �x0

(s). It also follows
easily from monotonicity that the density is semi-
continuous as a function of x0.

�-Regularity and the Singular Set

An �-regularity theorem is a theorem giving that a
weak (or generalized) solution is actually smooth at
a point if a scale-invariant energy is small enough
there. The standard example is the Allard regularity
theorem:

Theorem 12 There exists 
(k, n) > 0 such that if
� � Rn is a k-rectifiable stationary varifold (with
density at least one a.e.), x0 2 �, and

�x0
¼ lim

r!0

VolðBrðx0Þ \ �Þ
VolðBr � RkÞ

< 1þ 
 ½54�

then � is smooth in a neighborhood of x0.

Similarly, the small total curvature estimate of
Theorem 6 may be thought of as an �-regularity
theorem; in this case, the scale-invariant energy isR
jAj2.
As an application of the �-regularity theorem,

Theorem [12], we can define the singular set S of � by

S ¼ fx 2 �j�x � 1þ 
g ½55�

It follows immediately from the semicontinuity of
the density that S is closed. In order to bound the
size of the singular set (e.g., the Hausdorff measure),
one combines the �-regularity with simple covering
arguments.
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This preliminary analysis of the singular set can
be refined by doing a so-called tangent cone
analysis.

Tangent Cone Analysis

It is not hard to see that scaling preserves the space
of minimal submanifolds of Rn. Namely, if � is
minimal, then so is

�y;� ¼ fyþ ��1ðx� yÞjx 2 �g ½56�

(To see this, simply note that this scaling multi-
plies the principal curvatures by �.) Suppose now
that we fix the point y and take a sequence �j! 0.
The monotonicity formula bounds the density of
the rescaled solution, allowing us to extract a
convergent subsequence and limit. This limit,
which is called a ‘‘tangent cone’’ at y, achieves
equality in the monotonicity formula and, hence,
must be homogeneous (i.e., invariant under dila-
tions about y).

The usefulness of tangent cone analysis in
regularity theory is based on two key facts. For
simplicity, we illustrate these when � � Rn is an
area-minimizing hypersurface. First, if any tangent
cone at y is a hyperplane Rn�1, then � is smooth in a
neighborhood of y. This follows easily from the
Allard regularity theorem since the density at y of
the tangent cone is the same as the density at y of �.
The second key fact, known as ‘‘dimension redu-
cing,’’ is due to Almgren and is a refinement of an
argument of Federer. To state this, we first stratify
the singular set S of � into subsets

S0 � S1 � � � � � Sn�2 ½57�

where we define Si to be the set of points y 2 S so
that any linear space contained in any tangent cone
at y has dimension at most i. (Note that Sn�1 = ; by
Allard’s theorem.) The dimension reducing argu-
ment then gives that

dimðSiÞ � i ½58�

where dimension means the Hausdorff dimension.
In particular, the solution of the Bernstein problem
then gives codimension-7 regularity of �, that is,
dim (S) � n� 8.

Part 2. Constructing Minimal Surfaces

Thus far, we have mainly dealt with regularity and
a priori estimates but have ignored questions of
existence. In this part, we survey some of the most
useful existence results for minimal surfaces. The

following section gives an overview of the classical
Plateau problem. Next, we recall the classical
Weierstrass representation, including a few modern
applications, and the Kapouleas desingularization
method. Then we deal with producing area-mini-
mizing surfaces and questions of embeddedness.
Finally, we recall the min–max construction for
producing unstable minimal surfaces and, in parti-
cular, doing so while controlling the topology and
guaranteeing embeddedness.

The Plateau Problem

The following fundamental existence problem for
minimal surfaces is known as the Plateau problem:
given a closed curve �, find a minimal surface with
boundary �. There are various solutions to this
problem depending on the exact definition of a
surface (parametrized disk, integral current, Z2

current, or rectifiable varifold). We shall consider
the version of the Plateau problem for parametrized
disks; this was solved independently by J Douglas
and T Rado. The generalization to Riemannian
manifolds is due to C B Morrey.

Theorem 13 Let � � R3 be a piecewise C1 closed
Jordan curve. Then there exists a piecewise C1 map
u from D � R2 to R3 with u(@D) � � such that the
image minimizes area among all disks with bound-
ary �.

The solution u to the Plateau problem above can
easily be seen to be a branched conformal immer-
sion. R Osserman proved that u does not have true
interior branch points; subsequently, R Gulliver and
W Alt showed that u cannot have false branch
points either.

Furthermore, the solution u is as smooth as the
boundary curve, even up to the boundary. A very
general version of this boundary regularity was
proved by S Hildebrandt; for the case of surfaces
in R3, recall the following result of J C C Nitsche:

Theorem 14 If � is a regular Jordan curve of class
Ck,� where k � 1 and 0 < � < 1, then a solution u
of the Plateau problem is Ck,� on all of 	D.

The Weierstrass Representation

The classical Weierstrass representation (see Osserman
(1986)) takes holomorphic data (a Riemann surface, a
meromorphic function, and a holomorphic 1-form)
and associates a minimal surface in R3. To be precise,
given a Riemann surface �, a meromorphic function g
on �, and a holomorphic 1-form � on �, then we
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get a (branched) conformal minimal immersion
F : �!R3 by

FðzÞ ¼ Re

Z

2�z0 ;z

1

2
ðg�1ð
Þ � gð
ÞÞ;

�

i

2
ðg�1ð
Þ þ gð
ÞÞ; 1

�
�ð
Þ ½59�

Here, z0 2 � is a fixed base point and the integra-
tion is along a path �z0, z from z0 to z. The choice of
z0 changes F by adding a constant. In general, the
map F may depend on the choice of path (and hence
may not be well defined); this is known as ‘‘the
period problem.’’ However, when g has no zeros or
poles and � is simply connected, then F(z) does not
depend on the choice of path �z0, z.

Two standard constructions of minimal surfaces
from Weierstrass data are

gðzÞ ¼ z; �ðzÞ ¼ dz=z; � ¼ Cnf0g
giving a catenoid ½60�

gðzÞ ¼ eiz; �ðzÞ ¼ dz; � ¼ C giving a helicoid ½61�

The Weierstrass representation is particularly
useful for constructing immersed minimal surfaces.
Typically, it is rather difficult to prove that the
resulting immersion is an embedding (i.e., is 1–1),
although there are some interesting cases where this
can be done. For the first modern example,
D Hoffman and Meeks proved that the surface
constructed by Costa was embedded; this was
the first new complete finite topology properly
embedded minimal surface discovered since the
classical catenoid, helicoid, and plane. This led
to the discovery of many more such surfaces
(see Rosenberg (1992) for more discussion).

Area-Minimizing Surfaces

Perhaps the most natural way to construct minimal
surfaces is to look for ones which minimize area, for
example, with fixed boundary, or in a homotopy
class, etc. This has the advantage that often it is
possible to show that the resulting surface is
embedded. We mention a few results along these
lines.

The first embeddedness result, due to Meeks and
Yau, shows that if the boundary curve is embedded
and lies on the boundary of a smooth mean convex
set (and it is null-homotopic in this set), then it
bounds an embedded least area disk.

Theorem 15 (Meeks III and Yau 1982). Let M3 be
a compact Riemannian 3-manifold whose boundary
is mean convex and let � be a simple closed curve in

@M which is null-homotopic in M; then � is
bounded by a least area disk and any such least
area disk is properly embedded.

Note that some restriction on the boundary curve
� is certainly necessary. For instance, if the
boundary curve was knotted (e.g., the trefoil), then
it could not be spanned by any embedded disk
(minimal or otherwise). Prior to the work of Meeks
and Yau, embeddedness was known for extremal
boundary curves in R3 with small total curvature by
the work of R Gulliver and J Spruck.

If we instead fix a homotopy class of maps, then
the two fundamental existence results are due to
Sacks–Uhlenbeck and Schoen–Yau (with embed-
dedness proved by Meeks–Yau and Freedman–
Hass–Scott, respectively):

Theorem 16 Given M3, there exist conformal
(stable) minimal immersions u1, . . . , um : S2!M
which generate �2(M) as a Z[�1(M)] module.
Furthermore,

(i) if u : S2!M and [u]�2
6¼ 0, then Area(u) �

mini Area(ui),
(ii) each ui is either an embedding or a 2–1 map

onto an embedded two-sided RP2.

Theorem 17 If �2 is a closed surface with genus
g > 0 and i0 : �!M3 is an embedding which
induces an injective map on �1, then there is a
least area embedding with the same action on �1.

The Min–Max Construction
of Minimal Surfaces

Variational arguments can also be used to construct
higher index (i.e., nonminimizing) minimal surfaces
using the topology of the space of surfaces. There
are two basic approaches:

1. Applying Morse theory to the energy functional
on the space of maps from a fixed surface � to M.

2. Doing a min–max argument over families of
(topologically nontrivial) sweep-outs of M.

The first approach has the advantage that the
topological type of the minimal surface is easily
fixed; however, the second approach has been more
successful at producing embedded minimal surfaces.
We will highlight a few key results below but refer
to Colding and De Lellis (2003) for a thorough
treatment.

Unfortunately, one cannot directly apply Morse
theory to the energy functional on the space of maps
from a fixed surface because of a lack of compact-
ness (the Palais–Smale condition C does not hold).
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To get around this difficulty, Sacks–Uhlenbeck
introduce a family of perturbed energy functionals
which do satisfy condition C and then obtain
minimal surfaces as limits of critical points for the
perturbed problems:

Theorem 18 If �k(M) 6¼ 0 for some k > 1, then
there exists a branched immersed minimal 2-sphere
in M (for any metric).

The basic idea of constructing minimal surfaces
via min–max arguments and sweep-outs goes back
to Birkhoff, who developed it to construct simple
closed geodesics on spheres. In particular, when M is
a topological 2-sphere, we can find a one-parameter
family of curves starting and ending at point curves
so that the induced map F : S2! S2 (see Figure 1)
has nonzero degree. The min–max argument pro-
duces a nontrivial closed geodesic of length less than
or equal to the longest curve in the initial one-
parameter family. A curve-shortening argument
gives that the geodesic obtained in this way is
simple.

J Pitts applied a similar argument and geometric
measure theory to get that every closed Riemannian
3-manifold has an embedded minimal surface (his
argument was for dimensions up to seven), but he
did not estimate the genus of the resulting surface.
Finally, F Smith (under the direction of L Simon)
proved (see Colding and De Lellis (2003)):

Theorem 19 Every metric on a topological
3-sphere M admits an embedded minimal 2-sphere.

The main new contribution of Smith was to
control the topological type of the resulting minimal
surface while keeping it embedded.

Part 3. Some Applications of Minimal
Surfaces

In this part, we discuss very briefly a few applica-
tions of minimal surfaces. As mentioned in the
introduction, there are many to choose from and we
have selected just a few.

The Positive-Mass Theorem

The (Riemannian version of the) positive-mass
theorem states that an asymptotically flat
3-manifold M with non-negative scalar curvature
must have positive mass. The Riemannian manifold
M here arises as a maximal spacelike slice in a
(3þ 1)-dimensional spacetime solution of Einstein’s
equations.

The asymptotic flatness of M arises because the
spacetime models an isolated gravitational system
and hence is a perturbation of the vacuum solution
outside a large compact set. To make this precise,
suppose for simplicity that M has only one end; M
is then said to be asymptotically flat if there is a
compact set � �M so that Mn� is diffeomorphic
to R3nBR(0) and the metric on Mn� can be
written as

gij ¼ 1þ M
2jxj

� �4


ij þ pij ½62�

where

jxj2jpijj þ jxj3jDpijj þ jxj4jD2pijj � C ½63�

The constantM is the so-called mass of M. Observe
that the metric gij is a perturbation of the metric on
a constant-time slice in the Schwarzschild spacetime
of mass M; that is to say, the Schwarzschild metric
has pij 
 0.

A tensor h is said to be O(jxj�p) if jxjpjhj þ
jxjpþ1jDhj � C. For example, an easy calculation
shows that

gij ¼ 1þ 2M=jxjð Þ 
ij þOðjxj�2Þ
ffiffiffi
g
p 


ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

q
¼ 1þ 3Mjxj�1 þOðjxj�2Þ

½64�

The positive-mass theorem states that the massM
of such an M must be non-negative:

Theorem 20 (Schoen and Yau 1979). With M as
above, M� 0.

There is a rigidity theorem as well which states that
the mass vanishes only when M is isometric to R3:

Theorem 21 (Schoen and Yau 1979). If jr3pijj=
O(jxj�5) and M= 0 in Theorem 20, then M is
isometric to R3.

We will give a very brief overview of the proof of
Theorem 20, showing in the process where minimal
surfaces appear.

Proof (Sketch). The argument will be by contra-
diction, so suppose that the mass is negative. It is
not hard to prove that the slab between two parallel

Figure 1 A one-parameter family of curves on a 2-sphere

which induces a map F : S2!S2 of degree 1. First published in

Surveys in Differential Geometry, volume IX, in 2004, published

by International Press.
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planes is mean convex. That is, we have the
following:

Lemma 3 If M < 0 and M is asymptotically flat,
then there exist R0, h > 0 so that for r > R0 the sets

Cr ¼ fjxj2 � r2;�h � x3 � hg ½65�

have strictly mean-convex boundary.

Since the compact set Cr is mean convex, we can
solve the Plateau problem to get an area-minimizing
(and hence stable) surface �r � Cr with boundary

@�r ¼ fjxj2 ¼ r2; x3 ¼ hg ½66�

Using the disk {jxj2 � r2, x3 = h} as a comparison
surface, we get uniform local area bounds for any
such �r. Combining these local area bounds with the
a priori curvature estimates for minimizing surfaces,
we can take a sequence of r’s going to infinity and
find a subsequence of �r’s that converge to a
complete area-minimizing surface

� � f�h � x3 � hg ½67�

Since � is pinched between the planes {x3 = �h}, the
estimates for minimizing surfaces implies that (out-
side a large compact set) � is a graph over the plane
{x3 = 0} and hence has quadratic area growth and
finite total curvature. Moreover, using the form of
the metric gij, we see that jruj decays like jxj�1 andZ

�s

kg ¼ ð2�sþOð1ÞÞðs�1 þOðs�2ÞÞ

¼ 2�þOðs�1Þ ½68�

where �s = {x2
1 þ x2

2 = s2} \ � and kg is the geodesic
curvature of �s (as a curve in �).

To get the contradiction, one combines stability of
� with the positive scalar curvature of M to see that
no such � could have existed. (M was assumed only
to have non-negative scalar curvature. However, a
‘‘rounding off’’ argument shows that the metric on
M can be perturbed to have positive scalar curvature
outside of a compact set and still have negative
mass.) Namely, substituting the Gauss equation into
the stability inequality (this is the stability inequality
in a general 3-manifold; see Colding and Minicozzi II
(1999)) givesZ

�

ðjAj2=2þ ScalM � K�Þ�2 �
Z

�

jr�j2 ½69�

Since � has quadratic area growth, we can choose a
sequence of (logarithmic) cutoff functions in [69] to
get

0 <

Z
�

ðjAj2=2þ ScalMÞ �
Z

�

K� <1 ½70�

since K� may not be positive, we also used that �
has finite total curvature. Moreover, we used that
ScalM is positive outside a compact set to see that
the first integral in [70] was positive. Finally,
substituting [70] into the Gauss–Bonnet formula
gives that

R
�s

kg is strictly less than 2� for s large,
contradicting [68].

Black holes

Another way that minimal surfaces enter into
relativity is through black holes. Suppose that we
have a three-dimensional time slice M in a (3þ 1)-
dimensional spacetime. For simplicity, assume that M
is totally geodesic and hence has non-negative scalar
curvature. A closed surface � in M is said to be
trapped if its mean curvature is everywhere negative
with respect to its outward normal. Physically, this
means that the surface emits an outward shell of light
whose surface area is decreasing everywhere on the
surface. The existence of a closed trapped surface
implies the existence of a black hole in the spacetime.

Given a trapped surface, we can look for the
outermost trapped surface containing it; this outer-
most surface is called an apparent horizon. It is not
hard to see that an apparent horizon must be a
minimal surface and, moreover, a barrier argument
shows that it must be stable. Since M has non-
negative scalar curvature, stability in turn implies
that it must be diffeomorphic to a sphere. See, for
instance, Bray (2002) for references to some results
on black holes, horizons, etc.

Constant Mean Curvature Surfaces

At least since the time of Plateau, minimal surfaces
have been used to model soap films. This is because
the mean curvature of the surface models the surface
tension and this is essentially the only force acting
on a soap film. Soap bubbles, on other hand, enclose
a volume and thus the pressure gives a second
counterbalancing force. It follows easily that these
two forces are in equilibrium when the surface has
constant mean curvature (cmc).

For the same reason, cmc surfaces arise in the
isoperimetric problem. Namely, a surface that mini-
mizes surface area while enclosing a fixed volume must
have cmc. It is not hard to see that such an
isoperimetric surface in Rn must be a round sphere.
There are two interesting partial converses to this.
First, by a theorem of Hopf, any cmc 2-sphere in R3

must be round. Second, using the maximum principle
(‘‘the method of moving planes’’), Alexandrov showed
that any closed embedded cmc hypersurface in Rn

must be a round sphere. It turned out, however, that
not every closed immersed cmc surface is round. The
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first examples were immersed cmc tori constructed by
H Wente. Kapouleas constructed many new examples,
including closed higher-genus cmc surfaces.

Many of the techniques developed for studying
minimal surfaces generalize to general cmc surfaces.

Finite Extinction for Ricci Flow

We close this article by indicating how minimal
surfaces can be used to show that on a homotopy
3-sphere the Ricci flow becomes extinct in finite
time (see Colding and Minicozzi II (2005) and
Perelman (2003) for details).

Let M3 be a smooth closed orientable 3-manifold
and let g(t) be a one-parameter family of metrics on
M evolving by the Ricci flow, so

@tg ¼ �2RicMt
½71�

In an earlier section, we saw that there is a natural
way of constructing minimal surfaces on many
3-manifolds and that comes from the min–max
argument where the minimal of all maximal slices of
sweep-outs is a minimal surface. The idea is then to
look at how the area of this min–max surface changes
under the flow. Geometrically, the area measures a
kind of width of the 3-manifold and as we will see for
certain 3-manifolds (those, like the 3-sphere, whose
prime decomposition contains no aspherical factors),
the area becomes zero in finite time corresponding to
the solution becoming extinct in finite time.

Fix a continuous map � : [0, 1]!C0 \ L2
1(S2, M)

where �(0) and �(1) are constant maps so that � is
in the nontrivial homotopy class [�] (such � exists
when M is a homotopy 3-sphere). We define the
width W = W(g, [�]) by

WðgÞ ¼ min
�2½��

max
s2½0;1�

Energyð�ðsÞÞ ½72�

The next theorem gives an upper bound for the
derivative of W(g(t)) under the Ricci flow which forces
the solution g(t) to become extinct in finite time.

Theorem 22 Let M3 be a homotopy 3-sphere
equipped with a Riemannian metric g = g(0).
Under the Ricci flow, the width W(g(t)) satisfies

d

dt
WðgðtÞÞ� � 4�þ 3

4ðt þ CÞWðgðtÞÞ ½73�

in the sense of the limsup of forward difference
quotients. Hence, g(t) must become extinct in finite
time.

The 4� in [73] comes from the Gauss–Bonnet
theorem and the 3/4 comes from the bound on the
minimum of the scalar curvature that the evolution
equation implies. Both of these constants matter
whereas the constant C depends on the initial metric
and the actual value is not important.

To see that [73] implies finite extinction time,
rewrite [73] as

d

dt
WðgðtÞÞðt þ CÞ�3=4
� 	

� �4�ðt þ CÞ�3=4 ½74�

and integrate to get

ðT þ CÞ�3=4WðgðTÞÞ �C�3=4Wðgð0ÞÞ

� 16� ðT þ CÞ1=4 � C1=4
h i

½75�

Since W � 0 by definition and the right-hand side of
[75] would become negative for T sufficiently large,
we get the claim.

As a corollary of this theorem we get finite
extinction time for the Ricci flow.

Corollary 3 Let M3 be a homotopy 3-sphere
equipped with a Riemannian metric g = g(0). Under
the Ricci flow g(t) must become extinct in finite time.
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Introduction

When studying a functional f on an infinite-
dimensional function space X, one is often interested
in finding critical points which are not local minima.
A simple yet powerful method to detect those
critical points is the minimax method. The idea
consists in detecting some complexity in the topol-
ogy of X, or in the structure of the sublevels of f, to
find a class � of subsets of X which somehow
reveals such a topological complexity, and to show
that the number

c :¼ inf
�2�

sup
x2�

f ðxÞ

is finite (even if the functional may be unbounded
above and below). If the class � is positively
invariant under the action of the negative-gradient
flow of f, and if a suitable compactness assumption
known as the Palais–Smale condition holds, c is
proved to be a critical value of f. Quite remarkably,
the minimax method also works when no topologi-
cal complexity is present, but the negative-gradient
flow of f exhibits some kind of rigidity.

In this article we shall describe these ideas,
starting from the simplest minimax result, the
‘‘mountain-pass theorem.’’ We will show how to

apply the minimax method by discussing the
existence question of solutions of a nonlinear elliptic
boundary value problem, of closed geodesics on
compact manifolds, and of closed characteristics on
compact energy hypersurfaces.

The Mountain-Pass Theorem

Let us start by considering the following familiar
fact. Let f : Rn ! R be a smooth coercive function
(i.e., its sublevels have compact closure). If a sublevel
{f < a} is not connected – say {f < a} = A [ B, with
A, B disjoint open sets – then f has a critical point x at
level

f ðxÞ ¼ c :¼ inf
�2�

max
u2�

f ðuÞ � a

where � is the class of all continuous curves in Rn

with one end point in A and the other in B. More
figuratively: if there are two valleys, then there
must be a mountain pass. Let us examine a possible
proof.

First notice that any curve in the class � will have
to cross the level {f = a}, so c � a. If by contradiction
c is not a critical value of f, by the compactness of the
sublevels there is some � > 0 such that jrf j � � on
{c� � � f � cþ �}. Then the negative-gradient flow
of f, that is, the solution of

@t�ðt; uÞ ¼ �rf ð�ðt; uÞÞ; �ð0; uÞ ¼ u
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pulls the sublevel {f � cþ �} down into the sublevel
{f � c� �} in finite time 2=�. Indeed, if �([0, t], u) �
{c� � � f � cþ �}, then the inequalities

2� � f ðuÞ � f ð�ðt; uÞÞ

¼ �
Z t

0

d

ds
f ð�ðs; uÞÞ ds

¼
Z t

0

jrf ð�ðs; uÞÞj2 ds � �2t

imply that t � 2=�. By definition of c, we can find a
continuous curve � 2 � which is contained in {f �
cþ �}. But then the curve �0:=�(2=�, �) still has one
end point in A, the other one in B, and lies in {f �
c� �}, contradicting the definition of c.

If we try to generalize this result to functions
defined on an infinite-dimensional real Hilbert space
H, we encounter difficulties due to lack of compact-
ness. Indeed, a continuous function on an infinite-
dimensional Hilbert space can never have compact
sublevels (with respect to the norm topology). If we
look back at the proof, we see that we have used
coercivity to guarantee that if the level set {f = c}
contains no critical points, then rf is bounded away
from zero on the strip {c� � � f � cþ �}, for some
small � > 0. A natural idea is then to replace the
coercivity assumption by a condition implying the
latter fact.

Definition Let f : H ! R be a continuously differ-
entiable function on a real Hilbert space H.
A sequence (uh) � H is said a Palais–Smale sequence
if f (uh) is bounded and Df (uh) tends to zero. The
function f is said to satisfy the Palais–Smale
condition if every Palais–Smale sequence has a
converging subsequence.

The Palais–Smale condition readily implies the
statement above. Assuming also that f is twice
continuously differentiable, the negative-gradient
flow of f (a well-defined local flow because rf is
continuously differentiable) pulls the sublevel {f �
cþ �} down into {f � c� �} in finite time. These
observations lead to the following:

Theorem (Mountain pass). Let f be a twice con-
tinuously differentiable function on a real Hilbert
space H, satisfying the Palais–Smale condition.
Assume that a sublevel {f < a} is not connected,
and let A, B be two disjoint open sets such that
A[B = {f < a}. Then f has a critical point x at level

f ðxÞ ¼ c :¼ inf
�2�

max
u2�

f ðuÞ � a

where � is the class of all continuous curves in H
with one end point in A and the other one in B.
If we are even more ambitious, and we wish to
consider functions defined on a real Banach space E,
we also encounter the problem of not having a
gradient vector field. Indeed, the differential of f at x,
Df (x), is an element of the dual space E�, but in this
case we have no inner product on E by which we can
represent Df (x) as the product by some vector of E.
This problem can be overcome by the notion of a
pseudogradient vector field. In fact, it can be proved
that if f is continuously differentiable on E, then there
exists a locally Lipschitz vector field V defined on the
complement of the critical points of f, such that

kVðuÞk < minfkDf ðuÞk; 1g
Df ðuÞ½VðuÞ� > 1

2 minfkDf ðuÞk; 1gkDf ðuÞk

In other words, even if there is no direction of
steepest increase for f, we do have directions along
which the increase of f is steep enough, and these
directions can be selected in a locally Lipschitz way.
Notice that pseudogradients are useful also in the
case of a continuously differentiable function on a
Hilbert space: in this case the gradient of f is just
continuous, so it does not generate a flow. The
Palais–Smale condition, as stated above, makes
perfect sense on the Banach space E (with the only
difference that now Df (uh) tends to zero in the dual
norm of E�), and the mountain-pass theorem holds
for functions of class C1 on a Banach space.

Actually, the fact that the domain of f has a vector
structure is not relevant in this statement, and the
mountain-pass theorem holds also for functions
defined on connected infinite-dimensional mani-
folds. Since the essential feature is to dispose of a
pseudogradient vector field, the right level of
generality is to consider a Banach manifold M (i.e., a
manifold modeled on a Banach space) endowed with a
complete Finsler structure (i.e., a Banach norm on
each tangent space of M, varying in a suitably regular
way, inducing a complete distance on M).
A Nonlinear Elliptic Boundary-Value
Problem

Let us consider a typical application of the mountain-
pass theorem to a semilinear elliptic boundary-value
problem. Let � be a smooth bounded domain in Rn,
and for � 2 R, p > 2, consider the problem

��u ¼ �uþ ujujp�2 in �

u ¼ 0 on @�
½1�

Let 0 < �1 < �2 � �3 � � � � be the eigenvalues of the
Laplace operator ��, with domain H2 \H1

0(�), the
Sobolev space of L2-functions on � with weak first
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two derivatives in L2, vanishing on @�. We claim that,
if n = 2, or if n � 3 and 2 < p < 2�:= 2n=(n� 2), then
problem [1] with � < �1 has a nontrivial solution.

By elliptic regularity, the solutions of [1] are
precisely the critical points of the functional

EðuÞ¼ 1

2

Z
�

jruðxÞj2 � �uðxÞ2
� �

dx

� 1

p

Z
�

juðxÞjp dx

We recall that H1
0(�) continuously embeds into

Lp(�), for every p < þ1 if n = 2, for every p � 2� if
n � 3. So the functional E is well defined, and
actually continuously differentiable, on H1

0(�), a
Hilbert space with the inner product

hu; viH1
0
ð�Þ ¼

Z
�

ruðxÞ � rvðxÞ dx

Since p > 2, near zero the quadratic part of
the functional E dominates over the part with the
Lp-norm. By the Rayleigh characterization of the
first eigenvalue of the Laplacian,

�1 ¼ min
u2H1

0
ð�Þnf0g

R
� jruðxÞj2 dxR

� uðxÞ2 dx

the assumption � < �1 implies that the quadratic
part of E is positive definite. So we can find a small
� > 0 such that

a :¼ inf
kuk

H1
0
ð�Þ¼�
EðuÞ > 0

On the other hand, the fact that p > 2 implies that

lim
�!þ1

Eð�uÞ ¼ �1

for every u 6¼ 0. Therefore, the sublevel {E < a}
is not connected, and if we can prove the
Palais–Smale condition, the mountain-pass theorem
will imply the existence of a critical point u with
E(u) � a > 0, i.e., a nontrivial solution of [1].

In order to prove the Palais–Smale condition,
notice that the expression for the differential of E,

DEðuÞ½v� ¼
Z

�

ruðxÞ � rvðxÞ dx

�
Z

�

�uðxÞ þ juðxÞjp�2uðxÞ
� �

vðxÞ dx

and the compactness of the embedding of H1
0(�)

into Lp(�) for p < 2� imply that the gradient of
E has the form

rEðuÞ ¼ uþ KðuÞ ½2�

where K : H1
0(�)! H1

0(�) is a compact map, that is,
it maps bounded sets into precompact ones. It is
readily seen that when rE has such a form, bounded
Palais–Smale sequences are compact. Thus, it is
enough to show that every Palais–Smale sequence is
bounded. But this follows from the identity

pEðuÞ �DEðuÞ½u�

¼ p

2
� 1

� �Z
�

jruðxÞj2 � �uðxÞ2
� �

dx

together with the fact that the right-hand side term
defines an equivalent norm on H1

0(�), because p > 2
and � < �1. This concludes the proof.

Actually, using the maximum principle one could
show that under the same assumptions, problem [1]
has a solution which is positive in �.

When n � 3 and p = 2�= 2n=(n� 2), the func-
tional f still exhibits a mountain-pass geometry, but
the Palais–Smale condition fails. In fact, the embed-
ding of H1

0(�) into L2�(�) is not compact, so the
map K appearing in [2] is not compact, and
bounded Palais–Smale sequences need not have a
converging subsequence. We recall that the non-
compactness of the embedding of H1

0(�) into L2� (�)
is due to the fact that the quotient

SðuÞ ¼
R

� jruðxÞj2 dxR
� juðxÞj

2�dx
� �2=2�

is invariant under rescaling u 7! u�(x) = u(�x).
When �= 0, the Pohožaev identity – an integral

formula obtained by multiplying the equation by
x � ru(x) – can be used to prove that problem [1]
has no nontrivial solutions, when � is a star-shaped
domain other than the whole Rn.

When � 6¼ 0, the presence in the functional of an
L2-norm – which rescales differently – breaks the
symmetry, and the existence of nontrivial solutions
is again possible. Indeed, Brezis and Nirenberg have
shown that problem [1] with p = 2� has a nontrivial
solution provided that n � 4 and 0 < � < �1, or
n = 3 and �� < � < �1, for some �� 2 [0,�1] depend-
ing on the domain �.

The proof is based on the fact that there is a
certain threshold s > 0, related to the best Sobolev
constant obtained by taking the infimum of S(u)
over all u 2 H1

0 (the domain is irrelevant here),
below which the Palais–Smale condition holds. That
is, every sequence (uh) such that E(uh) converges to
some b less than s, and DE(uh) tends to zero, is
compact. The proof of the mountain-pass theorem
shows that the Palais–Smale condition is needed
only at the minimax level c. In order to conclude, it
is then enough to show that c < s. The value of
c can be estimated by using the fact that the
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infimum of the quotient S over functions on the
whole Rn is attained at the family of functions

u�ðxÞ ¼ �2nðn� 2Þ
ð�2 þ jxj2Þ2

 !ðn�2Þ=4

which are then solutions of [1] with p = 2�,�= 0,
and � = Rn.

Another way to break the symmetry is to keep
�= 0 but to consider domains with a rich topology.
For instance, Bahri and Coron have shown that if �
is a domain with some nonzero singular homology
group Hk(�; Z2), k � 1, then problem [1] with
p = 2� and �= 0 has a positive solution.

Elliptic equations having nonlinearities with the
critical exponent 2� arise naturally in some geo-
metric problems. Consider a manifold M of dimen-
sion n � 3, with a metric g having scalar curvature k.
The Yamabe problem calls for finding a metric g0,
conformally equivalent to g, having constant scalar
curvature. If g0 = u4=(n�2)g, where the positive func-
tion u gives the conformal factor, one finds that
u must solve the equation

� 4ðn� 1Þ
n� 2

�gu ¼ �kuþ k0ujuj2
��2

where �g is the Laplace–Beltrami operator associated
with the metric g, and the constant k0 is the scalar
curvature of g0. Again, the corresponding functional
satisfies the Palais–Smale condition only below a
certain threshold (actually, the same number s as seen
earlier; this because the lack of compactness is due to
local concentration phenomena, and the metric
structure of the whole ambient becomes irrelevant).
The task is then to show that the minimax level is
below that threshold or, equivalently, that a certain
best Sobolev constant for (M, g) is less than the
corresponding constant for Rn with the flat metric
(the latter constant is again the infimum of S(u)). This
fact was proved by Aubin in the case n � 6 or (M, g)
not locally conformally flat. Schoen has then treated
the remaining case, by means of the positive-mass
theorem, a deep result in differential geometry.
A General Minimax Principle

Let us consider again a twice continuously differ-
entiable function f on a real Hilbert space H. The
vector field

VðuÞ ¼ rf ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ krf ðuÞk2

q
has the same nice properties of the gradient vector
field of f, but in addition it is bounded. The
advantage is that the flow of �V is globally defined.
When talking about the negative-gradient flow of
f, we will actually refer to such a flow. It will also be
useful to dispose of a negative-gradient flow
truncated below level b. This is the flow of the
vector field �Vb, where

VbðuÞ ¼ ’ðf ðuÞÞVðuÞ

with ’ a smooth function on R which is identically
zero on [�1, b], then increases up to reaching the
value 1, and afterwards remains constantly equal to
1. This truncated negative-gradient flow keeps the
points in the sublevel {f � b} fixed, and behaves
as the negative-gradient flow above b (except the
fact that trajectories slow down as the value of
f approaches b).

After these preliminaries, let us consider again the
characterization of the critical level c appearing in the
mountain-pass theorem. This critical level was
obtained as the infimum over a certain class � of
sets � – the curves with end points in different
components of {f < a} – of the maximum of f over �.
But if we look back at the proof, we realize that the
fact that these sets were curves was not essential. The
important feature was that the negative-gradient flow
�(t, � ) mapped a set of the class � into a set still
belonging to the class �, for t � 0. This observation
leads to the following general minimax theorem, due
to Palais:

Theorem (General minimax). Let f be a twice
continuously differentiable function on a real
Hilbert space H, satisfying the Palais–Smale condi-
tion. Let � be a class of subsets of H which is
positively invariant under the action of the negative-
gradient flow � of f (possibly truncated below level
b): that is, if the set � belongs to �, then the set �(t, �)
belongs to � for all t � 0. Then, if the number

c :¼ inf
�2�

sup
u2�

f ðuÞ

is finite (and larger than b), then c is a critical
value of f.

The proof goes along the same lines of the proof of
the mountain-pass theorem: if c is not a critical value
of f, the (possibly truncated) negative-gradient flow
�(t0, � ) pulls a sublevel {f � cþ �} down into the
sublevel {f � c� �} (with c� � > b), for some large
t0, by the Palais–Smale condition. Then we achieve a
contradiction choosing a set � 2 � on which f does
not exceed cþ �, and noticing that �(t0, �) is a set
which still belongs to the class �, by positive
invariance, and on which f does not exceed c� �.

As we shall see in the last section, the possibility
of working with a truncated negative-gradient flow
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(assuming in this case that c > b) makes the applica-
tion of this theorem easier. Again, an analogous
result holds for continuously differentiable functions
on Banach spaces, or more generally on Banach
manifolds with a complete Finsler structure.

Trivial classes � are the class of all points in H,
and the class consisting of the single set H, yielding
to the infimum and the supremum of f, respectively.
More interesting classes are constructed by fixing a
topological space X and considering the images of
all continuous maps h : X! H belonging to a
certain relative homotopy class.
Closed Geodesics on Compact Manifolds

A typical application of the general minimax
theorem is Birkhoff proof of the existence of a
closed geodesic on the sphere S2, endowed with an
arbitrary metric g. Closed geodesics are precisely the
critical points of the energy functional

SðxÞ ¼ 1

2

Z 1

0

gð _xðtÞ; _xðtÞÞ dt

on the Hilbert manifold H1(T, S2) consisting of all
one-periodic loops on S2 of Sobolev regularity H1

(here T = R=Z denotes the circle parametrized by
[0, 1]). This functional satisfies the Palais–Smale
condition and it is bounded below, but its minima
are just the trivial constant loops, on which S= 0.

Let us use angle coordinates (�,’) on S2, �	=2 �
� � 	=2, 0 � ’ � 2	 (� is the latitude, ’ the longi-
tude). A (suitably regular) map h : S2 ! S2 induces a
curve in H1(T, S2) parametrized by �: the value of
this curve at � 2 [�	=2,	=2] is the loop
t 7! h(�, 2	t). It is a curve that joins two constant
loops. Let � be the set of curves in H1(T, S2) which
are obtained by maps h : S2 ! S2 of topological
degree 1. This class is clearly positively invariant
under the action of the negative-gradient flow of
S (as of every homotopy fixing the constant loops).

If we can show that the minimax level

c :¼ inf
�2�

sup
u2�
SðxÞ

is positive, we will get a positive critical value of S by
the general minimax theorem, hence a nontrivial
closed geodesic. By considering the fact that loops
with small energy also have a small diameter, it
is easy to construct a homotopy on {S < a}, for
some small a > 0, which shrinks every loop to a
point. If h : S2! S2 determines a curve � with
maxx2� S(x) < a, composition with this homotopy
yields to a homotopy of h to a map whose image is
a curve in S2. A further homotopy then shows that
the map h is homotopic to a constant, which
is impossible if h has degree 1. This shows that
c� a> 0, concluding the proof.

Actually, Ljusternik and Fet have proved that
every compact manifold M has a nontrivial closed
geodesic. Indeed, if M has nonzero fundamental
group, it is enough to minimize S on some nontrivial
homotopy class of loops. Otherwise, the fact that
M is a compact manifold implies that some homo-
topy group 	kþ1(M), 1 � k < dim M, does not van-
ish. A construction similar to the one described
above then allows to associate with every noncon-
tractible map h : Skþ1 !M a map u : (Bk, @Bk)!
(H1(T, M), {S= 0}) which is not homotopically
trivial (here Bk denotes the closed unit ball in Rk,
and the notation means that u maps the boundary
of the ball Bk into the set of constant loops). Taking
a minimax over the set of images of the maps
u associated with every noncontractible map
h : Skþ1 !M yields to the desired critical point of
S with positive energy.

It is conjectured that every compact manifold has
infinitely many closed geodesics. Morse theory
allows to prove this fact for the vast majority of
manifolds, but not for the spheres. Bangert and
Franks have established the existence of infinitely
many geodesics on S2 by proving that every area-
preserving homeomorphism of the open disk with
two fixed points must have infinitely many periodic
points. Proving the existence of infinitely many
closed geodesics on higher-dimensional spheres is a
challenging open problem.
A Rigidity Property of a Certain
Class of Maps

It is important that the class � in the general
minimax theorem is only required to be invariant
under the action of the negative-gradient flow, and
not, say, under the action of any continuous
homotopy on which the function f is nonincreasing.
Indeed, too many undesirable things can be done on
an infinite-dimensional Hilbert space by arbitrary
continuous maps, whereas the maps arising from
our negative-gradient flow might show some rigid-
ity, forcing them to behave as maps on finite-
dimensional spaces.

Let us clarify this point by considering the follow-
ing example, due to Benci and Rabinowitz. It may
sound a bit artificial at this moment (simpler
examples could be built), but we will find it useful
in the next section. Assume that our Hilbert space is
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Figure 1 The sets S, Q, @Q:
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endowed with an orthogonal splitting H = H� 	Hþ,
fix a unit vector uþ in Hþ, and consider the sets

S ¼fu 2 Hþj kuk ¼ �g
Q ¼fuþ �uþ j u 2 H�; kuk � 
; 0 � � � �g
@Q ¼fuþ �uþ 2 Q j� 2 f0; �g or kuk ¼ 
g

for some positive numbers �,
, � such that � > �.
The latter inequality implies that the intersection
Q \ S is not empty (see Figure 1).

If the linear subspace H� is finite dimensional, a
simple argument involving the topological degree
shows the following fact: the image of any contin-
uous map h : Q! H which is the identity on @Q has
nonempty intersection with S.

When H� is infinite dimensional, this fact is
not true anymore. Indeed, it is not difficult to see
that the set Q is homeomorphic to an infinite-
dimensional closed ball B, by a homeomorphism  
mapping @Q onto the infinite-dimensional sphere
@B. If B is the closed ball of an infinite-dimensional
Hilbert space, for instance, the space ‘2 of all
square-summable sequences (xh) endowed with the
norm jxj2 = (

P1
h = 0jxhj2)1=2, the continuous map

gðx0; x1; x2; . . .Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jxj22

q
; x0; x1; x2; . . .

� �

maps B into @B and is a shift operator on @B.
In particular, it is a continuous map on B without
fixed points, and it can be used to define a map
h : B! @B which is the identity on @B, by setting

hðxÞ ¼ �ðxÞxþ ð1� �ðxÞÞgðxÞ
with �ðxÞ � 1 such that jhðxÞj2 ¼ 1

Conjugation by the homeomorphism  produces
a continuous map from Q to @Q, which is the
identity on @Q, providing us with the desired
counterexample.

In other terms, when H� is infinite dimensional,
the sets @Q and S can be unlinked by means of a
continuous map. The situation changes if we restrict
the class of maps h : Q! H to those of the form

hðuÞ ¼ uþ KðuÞ ½3�

where K is a continuous compact map. In this case,
indeed, the argument for a finite-dimensional H�

can be applied, by replacing the topological degree
by the Leray–Schauder degree (which is invariant
precisely with respect to homotopies of the form
above), and one proves that @Q and S cannot be
unlinked by means of continuous maps of this form.
Closed Characteristics on Compact
Energy Hypersurfaces

Consider R2n with coordinates (p1, . . . , pn, q1, . . . , qn),
endowed with the standard symplectic form

! :¼ dp ^ dq ¼
Xn

j¼1

dpj ^ dqj

Let � be a compact connected hypersurface in R2n.
The restriction of ! to the tangent space Tx� has a
one-dimensional kernel, which varies smoothly with x.
In other words, there is a smooth line bundle

L� :¼ fðx; uÞ 2T� j!ðu; vÞ ¼ 0 8v 2 Tx�g

over �. We wish to discuss the classical problem
of finding a closed characteristic for L�, that is,
a closed curve everywhere tangent to L�.

This geometric problem has a dynamical inter-
pretation. Indeed, let H be a smooth real function on
R2n such that � is the inverse image of the regular
value 1. The function H – the Hamiltonian –
generates a vector field XH on R2n by the formula

!ðXHðxÞ;uÞ ¼ �DHðxÞ½u�; 8u 2 R2n

or, equivalently,

XHðxÞ ¼ JrHðxÞ; with J ¼ 0 �I
I 0

� �

The Hamiltonian vector field XH is tangent to � and
belongs to L�. Therefore, the hypersurface � is
invariant for the flow of XH, and the flow orbits are
precisely the characteristics. So finding a closed
characteristic on � is equivalent to finding a
periodic orbit of XH with energy H = 1.

Up to changing the Hamiltonian, we may assume
that all the values in an interval ]1� �0, 1þ �0[ are
regular for H, and that the corresponding level sets
�
 := {H = 
} are all connected (hence diffeomorphic
to � = �1). We would like to sketch Hofer and
Zehnder’s proof of the fact that there is a dense set
of values 
 2 ]1� �0, 1þ �0[ for which �
 admits a
closed characteristic.
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This proof is based on the fact that the one-
periodic orbits of XH are critical points of the action
functional

AHðxÞ ¼
Z

T

x�ðp dq�H dtÞ

¼ 1

2

Z 1

0

_xðtÞ � JxðtÞ dt �
Z 1

0

HðxðtÞÞ dt

on the space of loops x : T! R2n.
Clearly, it is enough to show that for every � > 0

there is a closed characteristic on some �
 with
j
 � 1j < �. We can take advantage of the fact that
we are free to change the Hamiltonian, as long as
it has the level sets �
, j
 � 1j < �. Denoting by B
the bounded component of the complement of
{1� � � H� 1þ �}, we may assume that B con-
tains the origin. We can modify H in such a way
that H vanishes identically on B, then it grows,
parametrizing all the hypersurfaces �
, j
 � 1j < �,
in a strictly increasing way, then it remains
constant in a large ball, and finally it smoothly
switches to the quadratic form (3=2)	jxj2. By
choosing H in this way, one can ensure that all
the constant orbits and all the one-periodic orbits
which do not lie on �
 for some j
 � 1j < � have
non-positive action. So it is enough to prove that
the functional AH has a positive critical value.

Using the Fourier series decomposition

xðtÞ ¼
X
k2Z

e2	ktJx̂k; x̂k 2 R2n

one sees that the quadratic part of the action
functional has the formZ 1

0

_xðtÞ � JxðtÞ dt ¼ 2	
X
k2Z

kjx̂kj2 ½4�

so it is positive on an infinite-dimensional linear
space, negative on an infinite-dimensional linear
space, and null on the 2n-dimensional space spanned
by the constant loops. The specific form of [4]
suggests to choose as domain of the action func-
tional the Sobolev space H1=2(T, R2n), the space of
square-integrable one-periodic curves x in R2n with

kxk2
H1=2 :¼ jx̂0j2 þ 2	

X
k2Z

jkjjx̂kj2 < þ1

This is indeed a Hilbert norm on H1=2(T, R2n). The
functional AH is smooth on this space, and its
gradient takes the form

rAHðxÞ ¼ Lxþ KðxÞ ½5�

where L is the self-adjoint Fredholm operator
representing the quadratic form [4] with respect to
the H1=2-Hilbert product, and K is a compact map.
A gradient of the form [5] again implies that
bounded Palais–Smale sequences are compact. The
Palais–Smale condition then follows from the fact
that the Hamiltonian H is quadratic outside a large
ball, and has no one-periodic orbits there (the large
orbits are all periodic, but their period is 2/3).

Consider the splitting H1=2(T, R2n) = H� 	Hþ,
with

H� ¼ fx j x̂k ¼ 0 for k > 0g
Hþ ¼ fx j x̂k ¼ 0 for k � 0g

Let S, Q, and @Q be the sets defined in the previous
section, with

uþðtÞ ¼ 1ffiffiffiffiffiffi
2	
p e2	tJu0; u0 2 R2n; ju0j ¼ 1

and constants �,
, � to be determined. Since the
quadratic form [4] is positive on Hþ and the
Hamiltonian H vanishes near the origin, we can
find a small � > 0 such that

inf
x2S
AHðxÞ> 0

The fact that the quadratic form [4] is seminegative
on H� and the behavior of H(x) for large jxj imply
that if 
 and � are suitably large (in particular
� > �), then

sup
x2@Q

AHðxÞ� 0

Let � be the set of all images of maps

h : Q! H1=2ðT;R2nÞ

which are the identity on @Q and are of the form

hðxÞ ¼ e�ðxÞLðxþ KðxÞÞ ½6�

with � a continuous real-valued function, and K a
continuous compact map. This class of maps is more
general than the one considered in the previous
section, but the fact that e�L commutes with the
projections onto H� and Hþ ensures that @Q and
S cannot be unlinked even inside this class. There-
fore, any � 2 � has nonempty intersection with S, so

c :¼ inf
�2�

sup
x2�
AHðxÞ � inf

x2S
AHðxÞ> 0

We would like to apply the general minimax
theorem, and conclude that c is the desired positive
critical value.

The number c being clearly finite, it is enough to
show that � is positively invariant under the action
of the negative-gradient flow � of AH, truncated
below level 0. Let �= h(Q) 2 � and t � 0. Then
�(t, �) is the image of Q by the map �(t, h(�)). This
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map is the identity on @Q because @Q lies in
{AH � 0} and � is truncated below level 0. It is of
the form [6] because by [5] the truncated negative-
gradient flow of AH has the form

�ðt; xÞ ¼ e��ðt;xÞLðxþ Kðt; xÞÞ

for some continuous function 0 � �(t, x) � t and for
some continuous compact map K. This concludes
the proof.

This result was refined by Struwe, who proved the
existence of a closed characteristic on �
 for almost
every 
, in the sense of the Lebesgue measure. We
could try to use the abundance of closed characteristics
on energy levels near � to get the existence of one on
� by taking a limit. But this process produces a closed
characteristic on � only if we can bound the periods of
the approximating closed orbits, otherwise a more
general invariant set results. Actually, Ginzburg, Her-
man, and Gürel have produced examples of compact
hypersurfaces without any closed characteristic.

As conjectured by Weinstein and proved by
Viterbo, closed characteristics always exist on
contact-type compact hypersurfaces (i.e., hypersur-
faces � on which the restriction of ! is the
differential of a 1-form � such that � ^ d� ^ � � � ^
d� is a volume form). In this case, one should even
expect a multiplicity result. For hypersurfaces which
bound a strictly convex set in R2n, for instance, the
existence of n closed characteristics is conjectured.
The best result so far is due to Long, who could
prove the existence of [n=2]þ 1 of them. Hofer,
Wysocki, and Zehnder have proved that, when n = 2,
there are either two or infinitely many closed
characteristics (for a generic contact-type hypersur-
face diffeomorphic to S3), by using the already
mentioned theorem by Franks on periodic points of
area-preserving homeomorphisms of the disk. Prov-
ing an analogous result for n � 3 is an intriguing
open problem.

See also: Contact Manifolds; Floer Homology;
Hamilton–Jacobi Equations and Dynamical Systems:
Variational Aspects; Image Processing: Mathematics;
Inequalities in Sobolev Spaces; Leray–Schauder Theory
and Mapping Degree; Ljusternik–Schnirelman Theory;
Saddle Point Problems.
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Introduction

Mirror symmetry was discovered in the late 1980s
by physicists studying superconformal field theories
(SCFTs). One way to produce SCFTs is from closed
string theory; in the Riemannian (rather than
Lorentzian) theory the string’s world line gives a
map of a Riemannian 2-manifold into the target
with an action which is conformally invariant, so
the 2-manifold can be thought of as a Riemann
surface with a complex structure. Making sense of
the infinities in the quantum theory (supersymmetry
and anomaly cancelation) forces the target to be
10-dimensional – Minkowski space times by a
6-manifold X – and X to be (to first order) Ricci
flat and so to have holonomy in SU(3). That is X is a
Calabi–Yau 3-fold (X, �,!). So SCFTs come from 
-
models (mapping Riemann surfaces into Calabi–Yau
3-folds) but, it turns out, in two different ways – the
A-model and the B-model. Deformations of the SCFT
and either 
-model are isomorphic, so over an open set
the two coincide. Thus, it was natural to conjecture
that almost all of the relevant SCFTs came from
geometry – from an A or B 
-model. In particular,



the A-model of a Calabi–Yau X should, therefore,
give the same SCFT as the B-model on another
Calabi–Yau X̌. It turns out then that the A-model
on X̌ should also be isomorphic to the B-model on
X; thus, mirror symmetry should give an involution
on a Calabi–Yau 3-folds. (The full picture is
slightly more complicated – it involves large
complex structure limits, multiple mirrors and
flops.) By studying the SCFTs, Greene and Plesser
predicted the mirror of the simplest Calabi–Yau
3-fold, the quintic in P4, and mirror symmetry
was born.

Topological observables, that is, certain path
integrals over the space of all maps, can be
calculated by the semiclassical approximation as
integrals over the space of classical minima – (anti)
holomorphic curves in the Calabi–Yau (these mini-
mize volume in a fixed homology class). From the
zero homology class we get the constant maps –
points in X – and so integrals over X. In some cases,
by Poincaré duality, these can be thought of as
intersections of cycles; we think of the string world
sheet lying at a point of intersection. When the
world sheet has a nontrivial homology class, it
allows more general ‘‘intersections’’ where the cycles
need not intersect but are connected by a
holomorphic curve, giving a perturbation of the
usual intersection product on cohomology called
quantum cohomology. Namely, there is a contri-
bution (a.�)(b.�)(c.�)e

R
�
! to the quantum triple

product a.b.c of three 4-cycles a, b, c 2 H1, 1 ffi H2 ffi
H4 from each holomorphic curve � (of genus 0, in
the 0-loop approximation to the physics) in X of
area

R
� ! (where ! is the Kähler form). The

A-model correlation functions can be determined
from these data; the B-model computation involves
no such quantum correction and can be computed
purely in terms of integrals over cycles (‘‘periods’’)
and their derivatives (discussed in the next section).
So it is in some sense easier and, in a historic tour-
de-force, was calculated by Candelas et al. (1991)
for the Greene–Plesser mirror of the quintic.
Comparing with the A-model computation on
the quintic gave remarkable predictions about the
number of holomorphic rational curves on the
quintic. These were way beyond mathematical
capabilities at the time, and sparked enormous
mathematical interest. The predictions (and more)
have now been proved to be true by Givental and
Lian–Liu–Yau, while mirror symmetry has begun to
be understood geometrically. But, in some sense,
the mathematical reason for the relationship
between the Yukawa couplings and the quantum
cohomology of the mirror is still a little mysterious;
it is the hardest part of mirror symmetry to see in the

geometry, yet for the physics it was the easiest and the
first prediction.

We survey, nonchronologically, some of the
geometry of mirror symmetry as it is now under-
stood, mainly in dimension n = 3. For the many
topics omitted, the reader should consult the Further
Reading section.

The Geometric Setup

A Calabi-Yau 3-fold (X, �,!) is a Kähler manifold
(X,!) with a holomorphic trivialization � of its
canonical bundle

KX ¼ �3
CT�X

(i.e., a nowhere-vanishing holomorphic volume form,
locally dz1 ^ dz2 ^ dz3), and b1(X) = 0. It follows that
the Hodge numbers h0, 2, h0, 1 vanish, and so
H2(X, C) = H1, 1 and H3(X, R) ffi H2, 1þH3, 0. By
Yau’s theorem the Kähler metric can be changed
within its H2(X, R) cohomology class to a unique
Ricci-flat Kähler metric; equivalently, � is parallel, so
the induced metric on KX is flat. Roughly speaking,
mirror symmetry swaps the symplectic or Kähler
structure ! on X with the complex structure (encoded
in �, up to scaling by C�) on the (conjectural) mirror
X̌. Kähler deformations are unobstructed, forming an
open set KX in H2(X, R). Its closure KX is sometimes
extended by adding the Kähler cones of all birational
models of X to give Kawamata’s movable cone. This is
because the work of Aspinwall, Greene, Morrison, and
Witten suggested that all birational models of X are
indistinguishable in string theory and so are all mirrors
of X̌, corresponding to a different choice of (1, 1)-form
!which is a Kähler form on one model only.KX is also
complexified by including in the A-model data any
‘‘B-field’’ B 2 H2(X, R=Z), and divided by holo-
morphic automorphisms of X, to give a moduli space
of complex dimension h1, 1(X). Deformations of
complex structure are also unobstructed by the
nontrivial Bogomolov–Tian–Todorov theorem; thus,
they form a smooth space with tangent space

H1ðT �XÞ�!y �

’
H1ð�2T� �XÞ ¼ H2;1ð�XÞ

(Given a deformation of complex structure, the
above isomorphism takes the H2, 1-component of the
derivative of the (3, 0)-form �.) So, for the moduli
spaces to match up, we get the first and simplest
prediction of mirror symmetry:

h1;1ðXÞ ¼ h2;1ð�XÞ and h2;1ðXÞ ¼ h1;1ð�XÞ ½1�

This is where mirror symmetry gets its name, the
above relation making the Hodge diamonds of X
and X̌ mirror images of each other.
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As the complexified Kähler cone is a tube
domain, it has natural partial complex compactifi-
cations (due to Looijenga, and suggested in the
context of mirror symmetry by Morrison (1993)).
The simplest case is where we ignore the movable
cone and automorphisms and assume that there is
an integral basis e1, . . . ,en of both KX and
H2(X, Z)=torsion. The complexified Kahler moduli
space is then

KC
X :¼ H2ðX;RÞ=H2ðX;ZÞ þ iKX ¼ fBþ i!g

with natural coordinates xi, yi � 0 pulled back from
the first and second factors, respectively, induced by
the ei. xi is multivalued with integer periods, so

zi ¼ expð2�iðxi þ iyiÞÞ ½2�

is a well-defined holomorphic coordinate, giving an
isomorphism to the product of n punctured unit
disks in C:

KC
X ffi ð��Þ

n ¼ fðziÞ : 0 < jzij � 1g 	 ðC�Þn

The compactification �n comes from adding in the
origins in the disks, which we reach by going to
infinity (in various directions) in KC

X. We call the
point (0, . . . ,0) 2 �n the large Kahler limit point
(LKLP) in this case. Moving along the ray generated
by

P
kiei 2 KX, ki � 0, complexifies in the holo-

morphic structure [2] to give the analytic curve

z
kj

i ¼ zki

j ; 8i; j ½3�

in KC
X. For ki 2 Q 8i, this extends to a complete

curve in the compactification. Without loss of
generality, we can assume that ki are integers with
no common factor; then the link of the curve winds
around the LKLP (0, . . . ,0) 2 �n with winding
number

ðk1; . . . ; knÞ 2 �1ðH2ðX;RÞ=H2ðX;ZÞ þ iKXÞ
¼ H2ðX;ZÞ ¼ Z:e1 
 � � � 
Z:en

This is because multiplying the ray R.�kiei 2 KX

by i gives the direction R.�kiei in the space
H2(X, R)=H2(X, Z) of B-fields, with the given
winding number. For ki not rational we get an
analytic mess; the direction in the space of B-fields
does not close up to give a circle.

There is no obvious mirror to these rays since we
consider � only up to scale. So, mirror symmetry
predicts an isomorphism between KC

X and the
moduli space MX̌ of complex structures on X̌, and
a distinguished limit in MX̌, the large complex
structure limit point (LCLP), the mirror of the LKLP
(0, . . . ,0) 2 �n above. Morrison has given a rigorous
definition of LCLPs and the canonical coordinates

on MX̌ dual to the zi on KC
X; see the section

Monodromy around the LCLP. The holomorphic
curves in (�)n described above, corresponding to
rational rays of Kähler forms, give degenerations of
(the complex structure on) X̌ to the LCLP whose
monodromy is discussed in this article (see ‘‘Lagran-
gian Torus Fibrations’’).

LCLPs play a vital role in mirror symmetry; in
fact, mirror symmetry is really a statement about
LCLPs and families of Calabi–Yau manifolds near
LCLPs. Most predictions only really hold near or at
the LCLP, and the complex structure moduli space
only looks like �n near the LCLP. For instance,
manifolds can have many LCLPs and accordingly
many mirrors. This also explains one obvious
paradox – that rigid Calabi–Yau manifolds, those
with no complex structure deformations, h2, 1 = 0,
and so no LCLP, can have no mirror, since a Kähler
(or symplectic) manifold has h2 = h1, 1 6¼ 0.

The first predicted refinement of [1] is, as
discussed in the introduction, that the variation of
Hodge structure (VHS) on X̌ should be describable
in terms of Gromov–Witten invariants of X. Here
VHS is governed by how the ray C.�t = H3, 0(X̌t)
sits inside H3(X̌t, C) as the complex structure on X̌t

varies, parametrized by t 2 MX̌. By Poincaré
duality, it is sufficient to know how �t pairs with
H3(X̌), that is, to compute the period integralsZ

Ai

�t; i ¼ 1; . . . ; 2k ¼ 2h2;1 þ 2

where Ai form a basis of H3(X̌, Z). (In fact we can
choose the Ai to be a symplectic basis, Ai.Aj = 	iþk, j,
and then knowledge of only the periods of the first k
Ai suffices, locally in moduli space.) These periods
determine �t and so the Yukawa coupling

H1ðT �XtÞ�3![ H3ð�3T �XtÞ �!
y ��2

t
H3ðK�Xt

Þ ffi C ½4�

On X, we get the cubic form on H2(X) described
earlier in terms of numbers of rational curves in X.
These numbers are in fact independent of the
almost-complex structure on X (as long as it is
compatible with the symplectic form !), and, there-
fore, give the symplectic invariants of Gromov
and Witten. The cubic form depends on !=!t

as it moves in KXt
(or in KC

Xt
, replacing !t by

�i(Bt þ i!t)). Under the predicted local isomorphism
KC

X ffiMX̌ near the LKLP and LCLP, the equality of
these cubic forms gives the predictions of number of
rational curves in X mentioned in the introduction.
This has been carried out, and the predictions
checked rigorously, in quite some generality, for
instance for mirror pairs produced by Batyrev’s toric
methods.
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There is, of course, a flat connection, the Gauss–
Manin connection on the bundle over MX̌ with
fiber H3(X̌t, C) over t 2MX̌, given by the local
system H3(X̌t, Z) 	 H3(X̌t, C). As mirror to this,
Dubrovin has shown how to put a flat connection
on the bundles with fibers H2(Xt) and Hev(Xt) using
Gromov–Witten invariants.

Homological Mirror Symmetry

Building on the work of Witten, Kontsevich (1995)
proposed a remarkable conjecture that purported to
explain mirror symmetry, all the more surprising
because it appeared to have little to do with what
was thought to be mirror symmetry at the time. The
conjecture is now reasonably well understood, while
the link to Gromov–Witten invariants and Yukawa
couplings is more mysterious, although it is known
how both data should be encoded in the conjecture.

Kontsevich proposed that mirror symmetry should
be explained by a (noncanonical) equivalence of
triangulated categories between the derived Fukaya
category DF (X) of (X,!) and the bounded derived
category of coherent sheaves Db(X̌) on its mirror X̌.
This second category consists of chain complexes of
holomorphic bundles, with quasi-isomorphisms
(maps of chain complexes which induce isomorph-
isms on cohomology) formally inverted, that
is, decreed to be isomorphisms. For zero B-field
the first category should be constructed from
Lagrangian submanifolds L 	 X carrying flat uni-
tary connections A. That is, L is middle- (three-)
dimensional, and

!jL � 0; FA ¼ 0

For B 6¼ 0, this needs modifying to FA þ 2�iB.id = 0
(so, in particular, we require that L satisfies
[BjL] = 0 2 H2(L, R=Z)). There are also various
technical conditions such as the choice of a relative
spin structure, the Maslov class of L must vanish
(i.e., the map (�jL=volL) : L ! C� has winding
number zero) and we pick a grading on L
(a choice of logarithm of this map). Morphisms are
defined by Floer cohomology HF� of Lagrangian
submanifolds; roughly speaking, this assigns a vector
space to each intersection point (the homomorph-
isms between the fibers of the two unitary bundles
carried by the Lagrangians at this point), made into
a chain complex by a certain counting of holo-
morphic disks between intersection points. In-depth
work by Fukaya–Oh–Ohta–Ono shows that this
gives the structure of an A1-category which can
then be ‘‘derived’’ into a triangulated category in a
formal way by taking ‘‘twisted cochains.’’ The

construction is still very technical and difficult to
calculate with, but the key points are that we get a
category depending only on the symplectic structure,
that certain ‘‘unobstructed’’ Lagrangian submani-
folds give objects of this category, and that
Hamiltonian isotopic unobstructed Lagrangian sub-
manifolds give isomorphic objects.

Since the introduction of D-branes there is a
physical interpretation of this conjecture in terms of
open string theory; the objects of the two categories
are boundary conditions for open strings, and
morphisms correspond to strings beginning on one
object and ending on the other. So, for instance,
intersections of Lagrangians give morphisms corre-
sponding to constant strings at the intersection
point, while the Floer differential gives instanton
tunneling corrections.

One paradox this formulation immediately sheds
light on concerns automorphisms on both sides of
mirror symmetry. While symplectomorphisms of
(X,!) are abundant, there are few holomorphic
automorphisms of a Calabi–Yau X̌. The former
induce autoequivalences of DF (X); Kontsevich’s
suggestion is that as a mirror to this there should
be an autoequivalence of Db(X̌); this need not be
induced by an automorphism of X̌. Motivated by
this, groups of autoequivalences of derived cate-
gories of sheaves of Calabi–Yau manifolds have
now been found that were predicted by mirror
symmetry; a few are mentioned below. Thus,
homological mirror symmetry suggests that an
SCFT is equivalent to a triangulated category,
and the ambiguities in geometrizing an SCFT
(finding a Calabi–Yau of which it is a �-model)
are seen in the category – not all automorphisms
come from an automorphism of a Calabi–Yau
(e.g., Calabi–Yau manifolds X̌ with equivalent
derived categories give multiple mirrors to X),
and not all appropriate categories need even come
from a Calabi–Yau. Supporting this suggestion,
Bondal–Orlov and Bridgeland have shown that
indeed birational Calabi–Yau manifolds X̌ have
equivalent derived categories.

Finally, Kontsevich explained how deformation
theory of the categories should involve derived
morphisms on the product from the diagonal
(thought of as a Lagrangian in the A-model, its
structure sheaf as a coherent sheaf in the B-model)
to itself, giving quantum cohomology in the
A-model and Hodge structure in the B-model. For
instance, the holomorphic disks used to compute the
Floer cohomology of the diagonal on the product
X
X give holomorphic rational curves on X. So,
one should be able to see some parts of ‘‘classical’’
mirror symmetry.
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Below, as we describe more of the geometry of
mirror symmetry that has emerged since Kontse-
vich’s conjecture, we will mention at each stage how
his conjecture fits in with it.

The Strominger–Yau–Zaslow Conjecture

To recover more geometry from Kontsevich’s con-
jecture, there are some obvious objects of Db(X̌)
that reflect the geometry of X̌ – the structure sheaves
Op of points p 2 X̌. Calculating their self-Homs,
Ext�(Op,Op) ffi ��TpX̌ ffi ��C3 ffi H�(T3, C), shows
that if they are mirror to Lagrangians L in X (with
flat connections A on them) then we must have

HF�ððL;AÞ; ðL;AÞÞ ffi H�ðT3;CÞ

as graded vector spaces. Since the left-hand side is,
modulo instanton corrections, H�(L, C)
r, where r is
the rank of the bundle carried by L, this suggests
that the mirror should be L ffi T3 with a flat U(1)
connection A over it. There are reasons why the
Floer cohomology of such an object should not be
quantum corrected, and so be isomorphic to
Ext�(Op,Op).

For any Lagrangian L, the symplectic form gives
an isomorphism between T�L and its normal bundle
NL; thus, Lagrangian tori have trivial normal
bundles, and locally one can fiber X by them.
Thus, one might hope that X is fibered by
Lagrangian tori, and the mirror X̌ is (at least over
the locus of smooth tori) the dual fibration. This is
because the set of flat U(1) connections on a torus is
naturally the dual torus.

This is the kind of philosophy that led to
the Strominger–Yau–Zaslow (SYZ) conjecture
(Strominger et al. 1996), although Strominger et al.
were working with physical D-branes, and not
Kontsevich’s conjecture. Therefore, their D-branes
are not the ‘‘topological D-branes’’ of Kontsevich,
but those minimizing some action. That is, instead
of holomorphic bundles in the B-model, we deal
with bundles with a compatible connection
satisfying an elliptic partial differential equation
(PDE) (e.g., the Hermitian–Yang–Mills equations
(HYM), or some perturbation thereof); instead of
Lagrangian submanifolds up to Hamiltonian isotopy
in the A-model, we consider special Lagrangians
(sLags) (see eqn [5]). The SYZ conjecture is that a
Calabi–Yau X should admit a sLag torus fibration,
and that the mirror X̌ should admit a fibration
which is dual, in some sense.

A sLag is a Lagrangian submanifold of a Calabi–
Yau manifold X satisfying the further equation that
the unit norm complex function (phase)

�jL
volL

¼ ei� ¼ constant ½5�

(So, sLags have Maslov class zero, in particular.)
This equation uses the complex structure on X as
well as the symplectic structure, and the resulting
Ricci-flat metric of Yau, to define a metric on L and
so its Riemannian volume form volL. SLags are
calibrated by Re(e�i��) and so minimize volume in
their homology class. This is similar to the HYM
equations on the mirror X̌, which are defined on
holomorphic bundles on the complex manifold X̌
via a Kähler form !, and minimize the Yang–Mills
action. The Donaldson–Uhlenbeck–Yau theorem
states that for holomorphic bundles that are
polystable (defined using [!], this is true for the
generic bundle), there is a unique compatible
HYM connection. Thus, modulo stability, HYM
connections are in one-to-one correspondence with
holomorphic bundles. A similar correspondence is
conjectured, and proved in some special cases, by
Thomas and Yau, for (special) Lagrangians: that
modulo issues of stability (which can be formulated
precisely), sLags are in one-to-one correspondence
with Lagrangian submanifolds up to Hamiltonian
isotopy. That is, there should be a unique sLag in
the Hamiltonian isotopy class of a Lagrangian if and
only if it is stable. Currently, only the uniqueness
part of this conjecture has been worked out, but, in
principle at least, we do not lose much by consider-
ing only Lagrangian torus fibrations.

The SYZ conjecture is thought to hold only near
the LCLPs and LKLPs of X and X̌; away from these,
the sLag fibers may start to cross. According to Joyce,
the discriminant locus of the fibration on X is
expected to be a codimension one ribbon graph in a
base S3 near the limit points, while the discriminant
locus of the dual fibration X̌ may be different – that
is, the smooth parts of the fibration and its dual are
compactified in different ways. In the limit of moving
to the limit points, however, both discriminant loci
shrink onto the same codimension-two graph. In this
limit, the fibers shrink to zero size, so that X (with its
Ricci-flat metric) tends, in the Gromov–Hausdorff
sense, to its base S3 (with a singular metric). This
formal picture has been made precise in two
dimensions, for K3-surfaces, by Gross and Wilson.
The limiting picture suggests that if we are only
interested in topological or Lagrangian torus fibra-
tions then we might hope for codimension-two
discriminant loci, and such fibrations might make
sense well away from limit points. Gross and Ruan
carry this out in examples such as the quintic and its
mirror, and makes sense of dualizing the fibration by
dualizing monodromy around the discriminant locus
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and specifying a canonical compactification over the
discriminant locus. This gives the correct topology for
toric varieties and their mirrors, and flips the Hodge
numbers [1], for instance. Approaching the LCLP in
a different way (in the example of eqn [3] this
corresponds to altering the rational numbers ki) can
give a different graph and different fibration on X;
the dual fibration can then be a topologically
different manifold, giving a different birational
model of the mirror X̌.

We focus only on Lagrangian fibrations, as they
are better behaved and understood. We can expect
them to be C1 fibrations with codimension-two
discriminant loci, for instance. Below we see how
to put a complex structure on the smooth part
of the fibration, but extending this over the
compactification is much harder and will involve
‘‘instanton corrections’’ coming from holomorphic
disks. Fukaya (2005) has beautiful conjectures about
this that will explain a great deal more of mirror
symmetry, but they will not be discussed here.

Lagrangian Torus Fibrations

If (X2n,!)
�! Bn is a smooth Lagrangian fibration

with compact fibers, then the fibration is naturally
an affine bundle of torus groups (i.e., a bundle of
groups once we pick a Lagrangian 0-section – an
identity in each fiber), and the base B inherits a
natural integral affine structure: it looks like a
vector space V with an integral structure V ffi ��Z

R up to translation by elements of V. This is the
classical theory of action-angle variables. T�bB acts
on the fiber Xb = ��1(b): by pullback and contrac-
tion with the symplectic form, � 2 T�bB gives a
vector field � tangent to Xb, and the time-one flow
along � gives the action. By compactness and
smoothness of Xb the kernel is a full-rank lattice
�b 	 T�bB, giving the isomorphism

Xb ffi T�bB=�b

We define the integral affine structure on B by
specifying the integral affine functions f (up to
translation) to be those whose time-one flow along
df is the identity (i.e., on the universal cover the time-
one flow is to a section of the bundle of lattices �).

The situation that concerns us is where B is a
3-manifold �B (usually S3) minus a graph; then the
monodromy around the graph preserves the integral
affine structure:

�1ðBÞ ! R3
o GLð3;ZÞ ½6�

A great deal of mirror symmetry can be seen from
just this knowledge of the smooth locus of the

fibration; in particular, Gross (1998) has shown
how mild assumptions about the compactification
(with singular fibers over �BnB) are enough to
determine much of the topology of X. The dual
fibration �̌ should have the monodromy dual to [6],
and he shows how this implies the switching of the
Hodge numbers [1] by the Leray spectral sequence;
the rough idea being the obvious isomorphism

Ri��R ffi �iTB ffi �3�iT�B ffi R3�i ���R

induced by a trivialization of �3TB. That is, morally
speaking, the flipping of Betti numbers arises by
representing cycles by those with linear intersection
with the fibers, and replacing this linear space by its
annihilator in the dual torus. This also agrees with
the equivalence taking Lagrangians to coherent
sheaves described in the next section.

The dual fibration �̌ has a natural complex
structure; here the affine structure is essential, as in
general a tangent bundle TB only has a natural
almost complex structure along its 0-section. Since,
up to translation, locally B ffi V is a vector space,
TB ffi V 
 V ffi V �R C has a natural complex
structure which descends to

�� : �X ¼ TB=�� ! B ½7�

Gross suggests that the B-field on X should lie in the
piece

H1ðR1��R=ZÞ ¼ H1ðTB=��Þ

of the Leray spectral sequence converging to
H2( X, R=Z). That is, it is represented by a Čech
cocycle e on overlaps of an open cover of B with
values in the dual bundle of groups TB=��. Using
this to twist [7] and re-glue it via transition
functions translated by e, we get a new complex
manifold (e is locally constant, so translation by e is
holomorphic) which we consider as mirror to X
with complexified form Bþ i!. In this way, Gross
manages to match up complexified symplectic
deformations of X with complex structures on X̌.

The 2-Torus

Mirror symmetry is nontrivial even for the simplest
Calabi–Yau – the 2-torus. This can be written as an
SYZ fibration T2 �!B = S1, and write B as R=a Z
with its standard integral affine structure induced by
Z 	 R. This trivializes T�B = B
 R and the lattice �
in it as B
Z 	 B
 R. So as a symplectic manifold,

T2 ¼ T�S1

�
¼ ½0; a� 
 ½0; 1�
ð0; pÞ � ða; pÞ; ðq; 0Þ � ðq; 1Þ ½8�
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with symplectic coordinates (q, p) in which the
symplectic form is != dp ^ dq (so

R
T2 != a). Again,

the B-field, b 2 H1(R1��R=Z) = H2(T2, R=Z), is in
H1 of the locally constant sections of the dual
fibration.

In our trivialization B ffi R=aZ, �� 	 TB is also
standard: B
Z 	 B
 R, so the mirror has the
same description as in [8] in which the complex
structure is standard: J@p = @q. That is, pþ iq gives a
local holomorphic coordinate.

For nonzero B-field b 6¼ 0, twisting the dual
fibration by b gives

T2 ¼ T�S1

�
¼ ½0; a� 
 ½0; 1�
ð0; pÞ � ða; bþ pÞ; ðq; 0Þ � ðq; 1Þ ½9�

again with holomorphic structure given by pþ iq and
SYZ fibration �̌ being projection onto q. So, as a
complex manifold the mirror is C divided by the lattice

� ¼ h1;bþ iai

Changing b to bþ 1 does not alter this lattice,
so the construction is well defined for b 2 R=Z ffi
H1(R1��R=Z), and we have the standard description
of an elliptic curve via its period point 
 = bþ ia in
the upper half plane (as a > 0). Mirror symmetry
has indeed swapped the complexified symplectic
parameter bþ ia =

R
T2 (bþ i!) for the complex

structure modulus 
 = bþ ia. SL(2, Z) acts on both
sides (in the standard way on 
 , and as symplecto-
morphisms modulo those isotopic to the identity on
the A-side) permuting the choices of SYZ fibration.
We note that in this case the fibrations are special
Lagrangians in the flat metric, with no singular
fibers.

Polishchuk and Zaslow have worked out in detail
how Kontsevich’s conjecture works in this case.
The general picture for any torus fibration is an
extension of the fiberwise duality that led to SYZ.
Namely, Lagrangian multisections L of the
fibration, of degree r over the base, give r points
on each fiber, and so r flat U(1) connections on the
dual fiber. The resulting U(1)
r connections can be
glued together and twisted by the flat connection on
L, to give a rank-r vector bundle with connection on
the mirror. Arinkin and Polishchuk show that
in general the Lagrangian condition implies the
integrability condition F0, 2 = 0 of the resulting
connection, giving a holomorphic structure on the
bundle. Leung–Yau–Zaslow show that the special
Lagrangian condition gives a perturbation of the
HYM equations on the connection. Branching of
sections has been dealt with by Fukaya, and requires
instanton corrections from holomorphic disks.
Other Lagrangians with linear intersection with the

fibers can be dealt with similarly. T2 is simpler
because all Lagrangians with vanishing Maslov class
can be isotoped into straight lines (i.e., sLags in the
flat metric) with no branching. The upshot is that
the slope of the sLag over the base corresponds to
the slope (

R
T2 c1=rank) 2 [�1,1] of the mirror

sheaf.

The Large Complex Structure Limit

The LKLP for T2 is clearly lim a!1. On the
mirror then, the LCLP is at 
 = bþ ia ! bþ i1,
the nodal torus compactifying the moduli of elliptic
curves. Metrically, however, in the (Ricci-) flat
metric, things look different; if we rescale to have
fixed diameter, the torus collapses to the base of its
SYZ fibration, and all of its fibers contract. This is
an important general feature of the difference
between complex and metric descriptions of
LCLPs; see the description of the quintic in the
next section.

We note that, as in the compactifications
discussed in an earlier section, the monodromy
around this LCLP is given by rotating the B-field:
b 7! bþ 1. This gives back the same elliptic curve,
but after a monodromy diffeomorphism T, which,
from [9], is seen to be

T : q 7! q; p 7! pþ q=a

On H1(T2) = Z[fiber] 
Z[section] this acts as

T� ¼
1 1
0 1

� �
½10�

This is called a Dehn twist. Picking the 0-section
O = {p = 0} in the mirror [9] when b = 0, this is
taken to the section

TðOÞ ¼ fp ¼ q=ag

and T is in fact the translation by this section T(O)
on T2, using the group structure on the fibers (now
we have chosen a 0-section). Again, Gross (1998)
has shown that this is a general feature of LCLPs.

If we pick a Kähler structure on this family of
complex tori, T turns out to be a symplectomorph-
ism. Importantly, its mirror is not a holomorphic
automorphism, but an equivalence of the derived
category of coherent sheaves. As above, the section
T(O) corresponds to a slope-one line bundle L
on the mirror, and the monodromy action
corresponds to

�L : Db ! Db ½11�

on the derived category. Again, this is a more
general feature of these LCLPs, with L such that
c1(L) equals the symplectic form which generated
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the ray along which the original LKLP was reached.
In general, the SYZ fiber is the invariant cycle under
T� [10], and, on the mirror, structure sheaves of
points are invariant under �L. On the cohomology
of T2, cupping with ch(L) = ec1(L) = 1þ c1(L) has the
same action [10] on Hev = Z(c1(L))
Z(1).

Notice we have used the choices of fibration and
0-section to produce the equivalence of triangulated
categories and to equate the monodromy actions.
Kontsevich’s conjectural equivalence is not canonical,
but is fixed by a choice of fibration and 0-section. In
turn, a fibration should be fixed by a choice of LCLP
or LKLP from the resulting collapse (in the Ricci-flat
metric) onto a half-dimensional Sn base. The choice of
0-section is then rather arbitrary (as monodromy
about the LCLP changes it) but determines the
equivalence of categories. Different choices of section
give different equivalences, differing, for instance, by
the monodromy transformation �L [11].

Another point of view is that a Lagrangian
fibration and 0-section determine a group structure
on the fibers and so on the Fukaya category
(translating Lagrangian multisections by multiplica-
tion on each fiber). This corresponds to a choice of
tensor product on the derived category of the
mirror; the identity for this product is then the
structure sheaf OX mirror to the 0-section, and an
ample line bundle is given by the action of the
monodromy transformation L = T(OX); T then
acts as �T(OX) [11]. Since X is determined by the
graded ringM

j�0

H0
XðLjÞ ¼

M
j�0

Hom�ðOX;T
jðOXÞÞ

one might also try to construct X purely from the
0-section O and LCLP monodromy on X̌, as

X ¼ Proj
M
j�0

HF�ðO;TjðOÞÞ

A problem is to show that 
j�0HF0(O, Tj(O)) is
finitely generated; a related problem is to show that, for
j� 0, the above Floer homologies vanish except
for �= 0.

We now turn to the quintic 3-folds, where we will
see how to identify the (homology classes of the)
0-section and fiber in general using Hodge theory.

The Quintic 3-Fold

The simplest Calabi–Yau 3-fold is given by the zeros
Q of a homogeneous quintic polynomial on P4, that
is, an anticanonical divisor of P4. By adjunction, this
has trivial canonical bundle, and so is Calabi–Yau.
By the Lefschetz hyperplane theorem, it has h1, 1 = 1,

so computing its Euler number to be e =�200, we
find that h2, 1 = 101 gives its number of complex
deformations. Alternatively, this can be seen by
showing that all such deformations are themselves
quintics, then dividing the 126-dimensional space of
quintic polynomials by the 25-dimensional GL
(5, C). Thus, its mirror has one complex structure
deformation and 101 Kähler classes.

Greene and Plesser prescribed the following
mirror. Take the special one-dimensional family of
Fermat quintics

Q� ¼
X4

i¼0

x5
i � �

Y4

i¼0

xi ¼ 0

( )
	 P4 ½12�

with the action of {(�0, . . . ,�4) 2 (Z=5)5 :Q
i �i = 1} ffi (Z=5)4 given by rescaling the xi by

fifth roots of unity. Dividing by the diagonal Z=5
projective stabilizer, we get a free (Z=5)3 action; the
mirror of the quintic is any crepant (K =O)
resolution of the quotient:

�Q� ¼
cQ�

ðZ=5Þ3

Different resolutions give different Kähler
cones whose union is the moveable cone; its complex-
ification is locally isomorphic to the complex
structure moduli space of Q. h1, 1(Q̌�) = 101 for any
crepant resolution, and h2, 1(Q̌�) = 1 corresponds
locally to the one complex structure deformation
[12]. In fact, for �5 = 1, multiplying x0 by � shows
that Q̌� ffi Q̌��, and �5 parametrizes the complex
structure moduli.

The LCLP is at �=1, that is, it is the quotient of
the union of hyperplanes

Q1 ¼
Y4

i¼0

xi ¼ 0

( )
¼ fx0 ¼ 0g [ � � � [ fx4 ¼ 0g ½13�

This is a union of toric varieties, each with a T3 action
inherited from the toric T4 action on P4. Much more
generally, Batyrev’s construction considers the
anticanonical divisors (and even more generally,
complete intersections) in toric varieties fibered over
the boundary of the moment polytope, and takes as
mirror the anticanonical divisor of the toric variety
associated to the dual polytope. However, most of the
geometry is visible in this quintic example.

Equation [13] is the analog of the nodal torus of
the last section, and we emphasize again that
metrically it looks nothing like this; the Ricci-flat
metric collapses the T3 toric fibers to the base S3 (with
a singular metric). General LCLPs look rather similar,
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with such ‘‘as bad as possible’’ normal crossing
singularities. Smoothing a local model (in x0 = 1)Q4

i = 1 xi = 0, we can see the tori in f
Q4

i = 1 xi = �g:

T3 ¼
�
jx1j ¼ 	1; jx2j ¼ 	2;

jx3j ¼ 	3; x4 ¼
�

x1x2x3

�
½14�

These are even Lagrangian in the standard symplec-
tic form on the local model, and fiber the smoothing
over the base {(	1, 	2, 	3)}. It turns out that,
metrically, these tori (which vanish into the normal
crossings singularity at the LCLP) actually form a
large part of the smooth Calabi–Yau. This
enlightens the apparent paradox between the SYZ
conjecture and the Batyrev construction, that is, why
a vertex of the original moment polytope (corre-
sponding to the deepest type of singularity
(0, 0, 0, 0) 2 {

Q4
i = 1 xi = 0}) can be replaced by the

dual three-dimensional face in the dual polytope.
This was first suggested by Leung and Vafa.

Gross and Siebert (2003) exploit this to extend SYZ
and Batyrev’s construction to nontoric LCLP Calabi-
Yau manifolds; it is only the local toric nature of the
normal crossing singularities of the LCLP that they
use. It seems possible that their construction will give
the mirrors of all Calabi–Yau manifolds with LCLPs.
Much of mirror symmetry should soon be reduced to
graphs (the discriminant locus of a Lagrangian torus
fibration) in spheres, and further graphs over which D-
branes (such as holomorphic curves) fiber, as in recent
conjectures of Kontsevich and Soibelman and Fukaya
(2005). It may soon be possible to write down a
triangulated category in terms of such data. The full
geometric story (involving Joyce’s description of sLag
fibrations, for instance) is still some way off, however;
we cannot even write down an explicit Ricci-flat
metric on a compact Calabi–Yau.

Monodromy around the LCLP

As well as the SYZ torus fiber [14] we can also see a
Lagrangian 0-section on the quintic and its mirror as a
component of the real locus of [12] for � > 5.
Remarkably, like the torus [14], this cycle was already
described and used by Candelas et al. (1991), long
before the relevance of torus fibrations was suspected.

Gross and Ruan have been able to describe the
quintic and its mirror (at least topologically or
symplectically) very explicitly as a simple torus
fibration over this S3 with a natural integral affine
structure and codimension-two graph discriminant
locus (see, e.g., Gross et al. (2003)).

Under monodromy about �=1, the 0-section is
moved to another section T(O), and T is given by

translation by T(O) using the group structure on the
fibers. This is the analog of the Dehn twist [10], and
one can choose a basis of H3(Q̌) (with first element
the invariant cycle, the T3-fiber, second element
a cycle fibered over a curve in S3, third fibered over
a surface, and last the 0-section itself) such that

T� ¼

1 1 � �
0 1 � �
0 0 1 �
0 0 0 1

0BB@
1CCA ½15�

Like the Dehn twist [10], it turns out that T� is
maximally unipotent; that is, we have in n-dimensions,

ðT� � 1Þnþ1 ¼ 0 but ðT� � 1Þn 6¼ 0

Again, this is a general feature of LCLPs as formulated
by Morrison (1993) as part of the definition.

This should be compared with the Lefschetz
operator L = [ ! on the cohomology of the mirror,
which also satisfies Ln 6¼ 0, Lnþ1 = 0 (or, more
relevantly, exp (L), which satisfies (eL � 1)n 6¼ 0,
(eL � 1)nþ1 = 0). Their similarity was noticed by the
Griffiths school working on VHS in the late 1960s!
Now we know that for Calabi–Yau manifolds at an
LCLP dual to an LKLP along a ray != c1(L) on the
mirror, they should be considered mirror operators
(up to some factors of the Todd class of the
underlying Calabi–Yau, to do with the relationship
between the Chern character e! of the line bundle L
(see [11]) and the Riemann–Roch formula).

Both, by linear algebra of the nilpotent operator
N = log T�=

Pn
k = 1 (T� � 1)k, induce a natural

filtration W� : 0 �W0 � � � � �W2n = H on the coho-
mology on which they operate (which is H = Hn for
N = log T� and H = Hev for N = L = [ !):

0 � imðNnÞ � imðNn�1Þ \ kerðNÞ � � � �
� kerðNn�1Þ þ imðNÞ � kerðNnÞ � H

½16�

For a discussion of the construction of this mono-
dromy weight filtration, the reader is referred to the
further reading section. It plays a key role in studying
degenerations of varieties and Hodge structures, in this
case as we approach the LCLP. It is a beautiful result of
Gross that this filtration coincides with the Leray
filtration on Hn induced by the fibration. That is,
under Poincaré duality, the weight filtration on cycles
is by the minimal dimension (over all homologous
cycles) of the image in the base over which the cycle is
fibered. So, the first graded piece is spanned by the
invariant cycle, the T3 fiber, supported over a point,
and the last by the 0-section; cf. [15]. (Similarly on the
mirror, the filtration for the Lefschetz operator [e!

has first piece spanned by the cohomology class of a
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point, which is invariant under the monodromy action
�L of [11], etc.)

Letting 
0 be the class of a fiber and 
1 span
W2=W0 (which is one-dimensional) over the inte-
gers, then T�
1 = 
1 þ 
0. It follows that

q ¼ exp 2�i

R

1

�R

0

�

 !
is invariant under monodromy. This is the higher-
dimensional analog of the coordinate exp (2�i
) on
the moduli space of elliptic curves, where 
 is the
period point. It is this coordinate q that is mirror to
the coordinate Z

line

!

on the Kähler moduli space on the mirror quintic,
which allows one to compute the correspondence
between VHS and Gromov–Witten invariants men-
tioned in the introduction.

More generally, following Morrison (1993), one
can make a rigorous definition of an LCLP using
features noted above extended to the case of h2, 1 > 0
(see, e.g., Cox and Katz (1999). Roughly, the
upshot is that MX̌ (of dimension s = h2, 1(X̌)) should
be compactified with s divisors (Di)

s
i = 1 (parametriz-

ing singular varieties) forming a normal crossings
divisor meeting at the LCLP, with monodromies Ti

about them. There should be a unique (up to
multiples) integral cycle 
0 (our torus fiber) invariant
under all Ti, and cycles (
i)

s
i = 1 such that


i ¼
R

i

�R

0

�

is logarithmic at Di; that is 
i = (1=(2�i)) log (zi),
where zi is a local parameter for Di = {zi = 0}.

So, zi = exp (2�i
i) form local coordinates for
moduli space, mirror to the polydisk coordinates [2]
on KC

X. The direction of approach to the LKLP in that
section corresponds to the holomorphic curve z

kj

i = zki

j

[3] we take through the LCLP (zi = 0 8i), and the
monodromy

P
NiTi varies accordingly, but the

corresponding weight filtration W� remains constant
if ki 6¼ 08i, by a theorem of Cattani and Kaplan.

Morrison then requires that the (
i)
s
i = 0 should

form an integral basis for W2 = W3 (with 
0 a basis
of W0 = W1). Finally, part definition and part
conjecture, we should be able to make a choice
such that they satisfy the condition log Ti(
j) = 	ij
0.

Of course, as has been emphasized, Morrison’s
definition of an LCLP is really where the mathematics
and geometry of mirror symmetry begin, and should
have been the starting point of this article. But that
would have required appreciable knowledge of
abstract VHS that are best understood, in this context,
through the new geometry of Lagrangian torus
fibrations that mirror symmetry has inspired.

See also: AdS/CFT Correspondence; Calibrated
Geometry and Special Lagrangian Submanifolds;
Derived Categories; Fourier–Mukai Transform in String
Theory; Geometric Analysis and General Relativity;
Geometric Flows and the Penrose Inequality; Geometric
Measure Theory; Geometric Phases; Number Theory in
Physics; Riemann Surfaces; Several Complex Variables:
Compact Manifolds; Topological Gravity, Two-
Dimensional; Topological Sigma Models; WDVV
Equations and Frobenius Manifolds.
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The concept of a moduli space has been used by
mathematicians for nearly 150 years, although it was
not until the 1960s that Mumford (1965) gave precise
definitions of moduli spaces and methods for con-
structing them. The use of the word ‘‘moduli’’ in this
context goes back to Riemann in a paper of 1857, in
which he observed that an isomorphism class of
compact Riemann surfaces of genus g ‘‘hängt . . .
von 3g� 3 stetig veränderlichen Grössen ab, welche
die Moduln dieser Klasse genannt werden sollen.’’
The idea of moduli as parameters in some sense
measuring or describing the variation of geometric
objects has been of fundamental importance in
geometry ever since.

Moduli spaces arise naturally in classification
problems in geometry, particularly in algebraic
geometry (Mumford 1965, Newstead 1978, Popp
1977, Seshadri 1975, Sundaramanan 1980, Viehweg
1995). Algebraic geometry is, roughly speaking, the
study of solutions of systems of polynomial equa-
tions in many variables; the solutions to such a
system form an algebraic variety. A simple example
of an algebraic variety is a hypersurface, consisting
of the solutions to a single polynomial equation in
some number of variables. We can try to classify
hypersurfaces by their degree and their dimension;
these are ‘‘discrete invariants’’ for the classification
problem, but of course they do not determine
hypersurfaces completely, even if we regard two
hypersurfaces as equivalent when one is obtained
from the other after making a change of coordinates.
It is typical of classification problems in algebraic
geometry (and other areas of geometry) that there
are not enough discrete invariants to classify objects
sufficiently finely, and this is where the concept of a
moduli space arises.

In complex algebraic geometry, discrete invariants
often come from topology. For example, a non-
singular complex curve (i.e., a complex algebraic
variety which is a connected complex manifold of
dimension 1, in other words a Riemann surface)
which is projective (i.e., points have been added at
infinity to make it compact) is topologically just a
sphere with a number of handles attached to it; the
number of handles is called the genus of the curve
and is a discrete invariant. Nonsingular complex
projective curves (or equivalently compact Riemann
surfaces) are not classified completely by their genus
g; they are determined by g when regarded simply as
topological surfaces, but the genus does not deter-
mine their complex structure when g > 0.

A classification problem such as this one (the
classification of nonsingular complex projective
curves up to isomorphism, or, equivalently, compact
Riemann surfaces up to biholomorphism), can be
resolved into two basic steps.

Step 1 is to find as many discrete invariants as possible
(in the case of nonsingular complex projective
curves the only discrete invariant is the genus).

Step 2 is to fix the values of all the discrete invariants
and try to construct a ‘‘moduli space’’; that is, a
complex manifold (or an algebraic variety) whose
points correspond in a natural way to the
equivalence classes of the objects to be classified.

What is meant by ‘‘natural’’ here can be made
precise (as we shall see shortly) given suitable notions
of families of objects parametrized by base spaces and
of equivalence of families. A ‘‘fine moduli space’’ is
then a base space for a universal family of the objects
to be classified (any family is equivalent to the
pullback of the universal family along a unique map
into the moduli space). If no universal family exists
there may still be a ‘‘coarse moduli space’’ satisfying
slightly weaker conditions, which are nonetheless
strong enough to ensure that if a moduli space exists it
will be unique up to canonical isomorphism.

It is often the case that not even a coarse moduli
space will exist. Typically, particularly ‘‘bad’’ objects
must be left out of the classification in order for a
moduli space to exist. For example, a coarse moduli
space of nonsingular complex projective curves exists
(although to have a fine moduli space we must give the
curves some extra structure, such as a level structure),
but if we want to include singular curves (which is
often important so that we can understand how
nonsingular curves can degenerate to singular ones)
we must leave out the so-called ‘‘unstable curves’’ to
get a moduli space. However all nonsingular curves
are stable, so the moduli space of stable curves of genus
g is then a compactification of the moduli space of
nonsingular projective curves of genus g.

Moduli spaces are often constructed and studied as
orbit spaces for group actions (using Mumford’s
geometric invariant theory or more recently ideas due
to Kollár (1997) and Keel and Mori (1997); geometric
invariant theoretic quotients can also often be described
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naturally as symplectic reductions, and it is in this guise
that many moduli spaces in physics appear. Another
technique involves period maps, Torelli theorems and
variations of Hodge structures, initiated by Griffiths
(1984) and others. In the special case of moduli spaces
of compact Riemann surfaces, Teichmüller theory can
also be used (see e.g., Lehto (1987)).

Remark 1 Recall that a compact Riemann surface
(i.e., a compact complex manifold of complex dimen-
sion 1) can be thought of as a nonsingular complex
projective curve, in the sense that every compact
Riemann surface can be embedded in some
complex projective space

Pn¼ Cnþ1 � f0g=ðmultiplication by nonzero

complex scalars)

as the solution space of a set of homogeneous
polynomial equations. Moreover, two nonsingular
complex projective curves are biholomorphic if and
only if they are algebraically isomorphic. So, there is
a natural identification between the moduli space of
compact Riemann surfaces of genus g up to
biholomorphism and the moduli space of nonsingu-
lar complex projective curves up to isomorphism.

There are other situations where an ‘‘algebraic’’
moduli space can be naturally identified with the
corresponding ‘‘complex analytic’’ moduli space, but
this is not always the case. For example, if we
consider K3 surfaces (compact complex manifolds
of complex dimension 2 with first Betti number and
first Chern class both zero), we find that the moduli
space of all K3 surfaces has complex dimension 20,
whereas the moduli spaces of algebraic K3 surfaces
(which have one more discrete invariant, the degree,
to be fixed) are 19-dimensional.

This problem of algebraic moduli spaces versus
nonalgebraic ones is one reason why the question of
classifying n-folds (i.e., compact complex manifolds –
or, in the algebraic category, nonsingular projective
varieties – of dimension n) becomes much harder
when n > 1 than in the case n = 1 (which is the case of
compact Riemann surfaces or nonsingular projective
curves). Another difficulty is that families of n-folds
can be ‘‘blown up’’ along families of subvarieties to
produce ever more complicated families.

Remark 2 Recall that we blow up a complex
manifold X along a closed complex submanifold Y
by removing the submanifold Y from X and glueing
in the projective normal bundle of Y in its place. We
get a complex manifold ~X with a holomorphic
surjection � : ~X! X such that � is an isomorphism
over X� Y and if y 2 Y then ��1(y) is the complex
projective space associated to the normal space
TyX=TyY to Y in X at y. If X = Cnþ1 and Y = {0}
and we identify Pn with the set of one-dimensional
linear subspaces of Cnþ1, then

~X ¼ fðv;wÞ 2 Cnþ1 � Pn : v 2 wg

with �(v, w) = v.

Again this problem does not arise when n = 1,
because blowing up a 1-fold makes no difference unless
the 1-fold has singularities (in which case blowing up
may help to ‘‘resolve’’ the singularities; for example,
when we blow up the origin {0} in C2, then the singular
curve C in C2 defined by y2 = x3 þ x2 is tranformed
into a nonsingular curve ~C with the origin in C replaced
by two points, corresponding to the two complex
‘‘tangent directions’’ in C at 0).

Thus, the classification of n-folds when n > 1
requires a preliminary step before there is any hope
of carrying out the two steps described above.

Step 0 (the ‘‘minimal model programme’’ of Mori
(1987) and others): Instead of all the objects to be
classified, consider only specially ‘‘good’’ objects,
such that every object is obtained from one of these
specially good objects by a sequence of blow-ups
(or similar carefully prescribed operations).

How to carry out Mori’s minimal model program
is well understood for algebraic surfaces and 3-folds,
but in higher dimensions is incomplete as yet (Kollár
and Mori 1998). We shall ignore both step 0 and
step 1 from now on, and concentrate on step 2, the
construction of moduli spaces.
Ingredients of a Moduli Problem

Formally before posing a moduli problem, we need
to fix the category in which we are working; that is,
we need to specify what we mean by ‘‘space’’ and
‘‘map’’ in the description below. If, for example, we
are working in complex analytic geometry then we
might take ‘‘space’’ to mean a complex manifold (or
more generally we might allow singularities) and
take ‘‘map’’ to mean a complex analytic map,
whereas in algebraic geometry ‘‘space’’ might mean
an algebraic variety, or a scheme, or even a stack,
with ‘‘map’’ interpreted as a morphism of algebraic
varieties (or schemes, or stacks).

Once this is fixed, the ingredients of a moduli
problem are:

1. a set A of objects to be classified,
2. an equivalence relation � on A,
3. the concept of a family of objects in A with base

space S (or parametrized by S), and sometimes
4. the concept of equivalence of families.
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These ingredients must satisfy:

1. a family parametrized by a single point {p} is just
an object in A (and equivalence of objects is
equivalence of families over {p}) and

2. given a family X parametrized by a space S and a
map � : ~S! S, there is a family ��X parametrized
by ~S (the ‘‘pullback of X along �’’), with
pullback being functorial and preserving
equivalence.

In particular, for any family X parametrized by S
and any s 2 S, there is an object Xs given by pulling
back X along the inclusion of {s} in S. We think of
Xs as the object in the family X whose parameter is
the point s in the base space S.

Example 1 A family of compact Riemann surfaces
parametrized by a complex manifold S is a surjective
holomorphic map

� : T ! S

from a complex manifold T of (complex) dimen-
sion dim (T) = dim (S)þ 1 to S, such that � is
proper (i.e., the inverse image ��1(C) of any
compact subset C of S under � is compact) and
has maximal rank (i.e., its derivative is everywhere
surjective). Then ��1(s) is a compact Riemann
surface for each s 2 S, and is the object in the
family with parameter s.

The family defined by � is an algebraic family if
� is a morphism of nonsingular complex projective
varieties.

Example 2 A family of nonsingular complex
projective varieties parametrized by a nonsingular
complex variety S is a proper surjective morphism

� : T ! S

with T nonsingular and � having maximal rank. We
can also allow T and S to be singular, but then we
require an extra technical condition (that � must be
flat with reduced fibers).

In the above example, equivalence of families
�1 : T1 ! S1 and �2 : T2 ! S2 is given by isomorph-
isms f : T1 ! T2 and g : S1 ! S2 such that g � �1 =
�2 � f . Equivalence of families in the first example is
similar.

Definition 1 A ‘‘deformation’’ of a nonsingular
projective variety or compact complex manifold M
is given by a family � : T ! S together with an
isomorphism

��1ðs0Þ ffiM

for some s0 2 S.
Strictly speaking, the deformation is the germ at
s0 of such a �; that is, the restriction of � over any
open neighborhood of s0 in S determines the same
deformation of M as � does.

A study of deformations leads to information
about the local structure of moduli spaces. Let
� : X! S be a deformation of a compact complex
manifold M = ��1(s0) where s0 2 S. We can cover M
(thought of as a subset of X) with open subsets Wi

of X such that there exist isomorphisms

hi : Wi ! Ui � Vi

where Vi = �(Wi) is open in S and Ui = M \Wi is
open in M = ��1(s0) and the projection of hi onto Vi

is just � : Wi ! Vi. For each i 6¼ j, we then get a
holomorphic vector field �ij on Ui \Uj by differ-
entiating hi � h�1

j in the direction of any tangent
vector v 2 Ts0

S. These holomorphic vector fields
define a 1-cocycle in the tangent sheaf � of M. This
gives us the ‘‘Kodaira–Spencer map’’

�� : Ts0
S! H1ðM;�Þ

Theorem 1 (Kuranishi). If M is a compact com-
plex manifold, then it has a deformation � : X! S
with ��1(s0) = M such that

(i) the Kodaira–Spencer map �� : Ts0
S! H1(M, �)

is an isomorphism,
(ii) � has the local universal property for deforma-

tions (i.e., any deformation of M is locally the
pullback of � along a map f into S),

(iii) if H0(M, �) = 0, then the map f in (ii) is unique,
and

(iv) if H2(M, �) = 0, then S is nonsingular at s0 and
so dim S = dim H1(M, �).

This deformation � is called the ‘‘Kuranishi
deformation’’ of M (its germ at s0 is unique up to
isomorphism), and S is called the ‘‘Kuranishi space’’
of M.

Example 3 A family of holomorphic (or algebraic)
vector bundles over a compact Riemann surface (or
nonsingular complex projective curve) � is a vector
bundle over �� S where S is the base space (see e.g.,
Verdier and Le Potier (1985)). A deformation of a
vector bundle E0 over � is then given by a vector
bundle E over a product �� S together with an
isomorphism

Ej��fs0g ffi E0

for some s0 2 S (strictly speaking it is the germ at s0

of such a family of vector bundles).
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Fine and Coarse Moduli Spaces

For definiteness, except when it is specified other-
wise, let us consider moduli problems in algebraic
geometry with ‘‘space’’ meaning algebraic variety
(over some fixed field k which is usually C) and
‘‘map’’ meaning morphism of algebraic varieties.

Definition 2 A ‘‘fine moduli space’’ for a given
(algebro-geometric) moduli problem is an algebraic
variety M with a family U parametrized by M
having the following (universal) property: for every
family X parametrized by a base space S, there exists
a unique map � : S!M such that

X � ��U

U is then called a ‘‘universal family’’ for the given
moduli problem.

Many moduli problems have no fine moduli
space, but nonetheless there may be a moduli space
satisfying slightly weaker conditions, called a coarse
moduli space. If a fine moduli space does exist, it
will automatically satisfy the conditions to be a
coarse moduli space. Both fine and coarse moduli
spaces, when they exist, are unique up to canonical
isomorphism.

Definition 3 A ‘‘coarse moduli space’’ for a given
moduli problem is an algebraic variety M with a
bijection

	 : A=�!M

(where as before A is the set of objects to be
classified up to the equivalence relation �) from the
set A=� of equivalence classes in A to M such that:

(i) For every family X with base space S, the
composition of the given bijection 	 : A=�!M
with the function


X : S! A=�

which sends s 2 S to the equivalence class [Xs]
of the object Xs with parameter s in the family
X, is a morphism.

(ii) When N is any other variety with � : A=�!N
such that for each family X parametrized by a
base space S the composition � � 
X : S! N is a
morphism, then

� � 	�1 : M! N

is a morphism.

Remark 3 For some moduli problems, a family X
with base space S which is connected and of
dimension strictly greater than zero may exist such
that for some s0 2 S we have

(i) Xs � Xt for all s, t 2 S� {s0} and
(ii) Xs 6� Xs0

for all s 2 S� {s0}.

This is the ‘‘jump phenomenon,’’ and when it
occurs we cannot construct a moduli space including
the equivalence class of the object Xs0

. Typically, to
construct a moduli space, some objects (often called
‘‘unstable’’) must be left out because of the jump
phenomenon and we only get a moduli space of
‘‘stable’’ objects. This happens, for example, in the
construction of moduli spaces of complex projective
curves, if we want to include singular curves, or
moduli spaces of vector bundles.

Example 4 The Jacobian J(�) of a compact Rie-
mann surface � is a fine moduli space for holo-
morphic line bundles (i.e., vector bundles of rank 1)
of fixed degree over � up to isomorphism. As a
complex manifold

Jð�Þ ffi Cg=�

where g is the genus of � and � is a lattice of maximal
rank in Cg (in other words J(�) is a complex torus).
Since J(�) is also a complex projective variety, it is an
‘‘abelian variety.’’

More precisely, J(�) is the quotient of the
complex vector space H0(�, K�) of dimension g by
the lattice H1(�, Z) ffi Z2g. Here K� is the complex
cotangent bundle of � and H0(�, K�) is the space of
its holomorphic sections, that is, the space of
holomorphic differentials on �. If we choose a
basis !1, . . . ,!g of holomorphic differentials and a
standard basis �1, . . . , �2g for H1(�, Z) such that

�i:�iþg ¼ 1 ¼ ��iþg:�i

when 1 
 i 
 g and all other intersection pairings
�i.�j are zero, then we can associate to � the g� 2g
‘‘period matrix’’ P(�) given by integrating the
holomorphic differentials !i around the 1-cycles �j.
The Jacobian J(�) can then be identified with the
quotient of Cg by the lattice spanned by the columns
of this period matrix.

We can in fact always choose the basis !1, . . . ,!g

of holomorphic differentials so that the period
matrix P(�) is of the form

ðIg ZÞ

where Ig is the g� g identity matrix. This period
matrix is called a ‘‘normalized period matrix.’’ The
Riemann bilinear relations tell us that Z is sym-
metric and its imaginary part is positive definite.
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Example 5 The moduli space Ag of all abelian
varieties of dimension g was one of the first moduli
spaces to be constructed. We have

Ag ffi Hg=Spð2g; ZÞ

where Hg is Siegel’s upper half space, which consists
of the symmetric g� g complex matrices with
positive-definite imaginary part.

Example 6 One way to construct and study the
moduli space Mg of compact Riemann surfaces of
genus g is via the ‘‘Torelli map’’

� :Mg ! Ag

given by

� 7! Jð�Þ

Torelli’s theorem tells us that � is injective (cf.
Griffiths (1984)). Describing the image of Mg in Ag

is known as the Schottky problem.

We can calculate the dimension of the moduli
space Mg using Kuranishi theory as in the previous
section: we get

dimMg ¼ dim H1ð�;�Þ ¼ 3g� 3

for any compact Riemann surface � of genus g � 2.
In fact, if M is any compact complex manifold and
there exists a fine moduli space of complex mani-
folds diffeomorphic to M, then the moduli space is
locally isomorphic near [M] to the Kuranishi space
near s0. More often, there is only a coarse moduli
space (as in the case of Mg), and then the moduli
space is locally isomorphic near [M] to the quotient
of the Kuranishi space by the action of the group of
automorphisms of M.

For the Teichmüller approach to Mg (cf. Lehto
(1987)), we consider the space of all pairs consisting
of a compact Riemann surface of genus g and a basis
�1, . . . , �2g for H1(�, Z) as above such that

�i:�iþg ¼ 1 ¼ ��iþg:�i

if 1 
 i 
 g and all other intersection pairings �i.�j

are zero. If g � 2, this space (called Teichmüller
space) is naturally homeomorphic to an open ball in
C3g�3 (by a theorem of Bers). The mapping class
group �g (which consists of the diffeomorphisms of
the surface modulo isotopy) acts discretely on
Teichmüller space, and the quotient can be identi-
fied with the moduli space Mg. This gives us a
description of Mg as a complex analytic space, but
not as an algebraic variety.

To construct the moduli spaceMg as an algebraic
variety, we can use the fact that every compact
Riemann surface of genus g can be embedded
canonically as a curve of degree 6(g� 1) in a
projective space of dimension 5g� 6. The use of
the word ‘‘canonical’’ here is a rather poor pun; it
refers both to the canonical line bundle (or
cotangent bundle) of the Riemann surface, although
here ‘‘tricanonical’’ would be more accurate, and
also to the fact that no choices are involved, except
that a choice of basis is needed to identify the
projective space with the standard one P5g�6. This
enables us to identify Mg with the quotient of an
algebraic variety by the group PGL(nþ 1; C). How-
ever, here we do not have a discrete group action,
and to construct the quotient we must use Mum-
ford’s geometric invariant theory (see below), which
was developed in the 1960s in order to provide
algebraic constructions of this moduli space and
others.

In fact, geometric invariant theory also provides a
beautiful compactification of Mg known as the
Deligne–Mumford (1969) compactification �Mg.
This compactification is itself a moduli space: it is
the moduli space of (Deligne–Mumford) stable
curves, which are complex projective curves with
only nodal singularities and at most finitely many
automorphisms. �Mg is singular but in a relatively
mild way; it is the quotient of a nonsingular variety
by a finite group action.

The moduli space Mg, n of nonsingular complex
projective curves of genus g with n marked points
has a similar compactification �Mg, n which is the
moduli space of complex projective curves with n
marked nonsingular points and with only nodal
singularities and finitely many automorphisms.
Finiteness of the automorphism group of such a
curve � is equivalent to the requirement that any
irreducible component of genus 0 (respectively 1)
has at least 3 (respectively 1) special points, where
‘‘special’’ means either marked or singular in �.

The construction of Mg using the period matrices
of curves and the Torelli theorem leads to a different
compactification ~Mg of Mg known as the Satake
(or Satake–Baily–Borel) compactification. Like the
Deligne–Mumford compactification, ~Mg is a com-
plex projective variety, but the boundary of Mg in
~Mg has (complex) codimension 2 for g � 3 whereas

the boundary � of Mg in �Mg has codimension 1.
Each of the irreducible components �0, . . . , �[g=2] of
� is the closure of a locus of curves with exactly one
node (irreducible curves with one node in the case of
�0, and in the case of any other �i the union of two
nonsingular curves of genus i and g� i meeting at a
single point). The divisors �i meet transversely in
�Mg, and their intersections define a natural decom-

position of � into connected strata which parame-
trize stable curves of a fixed topological type.
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For a recent guide to many different aspects of the
moduli spacesMg, see Harris and Morrison (1998).

Example 7 Given any nonsingular complex pro-
jective variety X, we can study the moduli spaces of
maps from curves to X considered by Kontsevich.
Intersection theory on these moduli spaces leads to
Gromov–Witten theory and the quantum cohomol-
ogy of X, with many applications, for example, to
enumerative geometry (cf. Cox and Katz (1999),
Fulton and Pandharipande (1997), Dijkgraaf et al.
(1995)).

More precisely, if 2g� 2þ n > 0 then for any
� 2 H2(X; Z) there is a moduli space Mg, n(X,�) of
n-pointed nonsingular complex projective curves �
of genus g equipped with maps f : �! X satisfying
f�[�] = �. This moduli space has a compactification
�Mg, n(X,�) which classifies ‘‘stable maps’’ of type �

from n-pointed curves of genus g into X (Fulton
and Pandharipande 1997). Here, a map f : �! X
from an n-pointed complex projective curve �
satisfying f�[�] = � is called stable if � has only
nodal singularities and f : �! X has only finitely
many automorphisms, or equivalently every irre-
ducible component of � of genus 0 (respectively
genus 1) which is mapped to a single point in X by
f contains at least three (respectively 1) special
points. The forgetful map from Mg, n(X,�) to Mg, n

which sends [�, p1, . . . ,pn, f :�!X] to [�,p1, . . . ,pn]
extends to a forgetful map � : �Mg,n(X,�)! �Mg,n

which collapses components of � with genus 0 and
at most two special points.

Of course, when X is itself a single point,
Mg, n(X,�) and �Mg, n(X,�) are simply the moduli
spaces Mg, n and �Mg, n. In general �Mg, n(X,�) has
more serious singularities than �Mg, n and may indeed
have many different irreducible components with
different dimensions. In spite of this, �Mg, n(X,�) has
a ‘‘virtual fundamental class’’ [ �Mg, n(X,�)]vir lying in
the expected dimension

3g� 3þ nþ ð1� gÞ dim Xþ
Z
�

c1ðTXÞ

of �Mg, n(X,�). Gromov–Witten invariants (origin-
ally developed mainly in the case g = 0 when
�Mg, n(X,�) is more tractable, but now also studied

when g > 0) are obtained by evaluating cohomology
classes on �Mg, n(X,�) against this virtual funda-
mental class.
Moduli Spaces as Orbit Spaces
Example 8 As a simple example, let us consider the
moduli space of ‘‘hyperelliptic’’ curves of genus g.
By a hyperelliptic curve of genus g, we mean a
nonsingular complex projective curve C with a
double cover f : C! P1 branched over 2gþ 2 points
in the complex projective line P1.

Let S be the set of unordered sequences of 2gþ 2
distinct points in P1, which we can identify with an
open subset of the complex projective space P2gþ2 by
associating to an unordered sequence a1, . . . , a2gþ2 of
points in P1 the coefficients of the polynomial whose
roots are a1, . . . , a2gþ2. Then, it is not hard to
construct a family X of hyperelliptic curves of genus
g with base space S such that the curve parametrized
by a1, . . . , a2gþ2 is a double cover of P1 branched
over a1, . . . , a2gþ2. This family is not quite a universal
family, but it does have the following two properties.

(i) The hyperelliptic curves X s and X t parametrized
by elements s and t of the base space S are
isomorphic if and only if s and t lie in the same
orbit of the natural action of G = SL(2; C) on S.

(ii) (Local universal property) Any family of hyper-
elliptic curves of genus g is locally equivalent to
the pullback of X along a morphism to S.

These properties (i) and (ii) imply that a (coarse)
moduli space M exists if and only if there is an
‘‘orbit space’’ for the action of G on S (Newstead
1978). Here, by an orbit space we mean a
G-invariant morphism � : S!M such that every
other G-invariant morphism  : S!M factors
uniquely through �, and moreover ��1(m) is a single
G-orbit for each m 2M. (We can think of an orbit
space as the set of G-orbits endowed in a natural
way with the structure of an algebraic variety.)

This sort of situation arises quite often in moduli
problems, and the construction of a moduli space is
then reduced to the construction of an orbit space.
Unfortunately, such orbit spaces do not in general
exist. The main problem (which is closely related to
the jump phenomenon discussed above) is that there
may be orbits contained in the closures of other
orbits, which means that the natural topology on the
set of all orbits is not Hausdorff, so this set cannot
be endowed naturally with the structure of a variety.
This is the situation the geometric invariant theory
of Mumford (1965) attempts to deal with, telling us
how to throw out certain ‘‘unstable’’ orbits in order
to be able to construct an orbit space. For more
general constructions of orbit spaces which can be
used for moduli problems where geometric invariant
theory may not be of use, see Keel and Mori (1997)
and Kollár (1997).

Example 9 Let G = SL(2; C) act on (P1)4 via
Möbius transformations on the Riemann sphere

P1 ¼ C [ f1g
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Then,

fðx1; x2; x3; x4Þ 2 ðP1Þ4 : x1 ¼ x2 ¼ x3 ¼ x4g

is a single orbit which is contained in the closure of
every other orbit. On the other hand, the open subset

fðx1; x2; x3; x4Þ 2 ðP1Þ4 : x1; x2; x3; x4 distinctg

of (P1)4 has an orbit space which can be identified
with

P1 � f0; 1;1g

via the cross ratio.

In order to describe Mumford’s geometric invar-
iant theory, let X be a complex projective variety
(i.e., a subset of a complex projective space defined
by the vanishing of homogeneous polynomial
equations), and let G be a complex reductive group
acting on X. We also require a ‘‘linearization’’ of the
action; that is, an ample line bundle L on X and a
lift of the action of G to L. We lose very little
generality in assuming that for some projective
embedding X � Pn the action of G on X extends
to an action on Pn given by a representation

� : G! GLðnþ 1Þ

and taking for L the hyperplane line bundle on Pn.
Algebraic geometry associates to X � Pn its homo-
geneous coordinate ring

AðXÞ ¼
M
k�0

H0ðX;L�kÞ ¼ C½x0; . . . ; xn
=IX

which is the quotient of the polynomial ring
C[x0, . . . , xn] in nþ 1 variables by the ideal IX

generated by the homogeneous polynomials vanish-
ing on X. Since the action of G on X is given by a
representation � : G! GL(nþ 1), we get an induced
action of G on C[x0, . . . , xn] and on A(X), and we
can therefore consider the subring A(X)G of A(X)
consisting of the elements of A(X) left invariant by
G. This subring A(X)G is a graded complex algebra,
and because G is reductive it is finitely generated
(Mumford 1965). To any finitely generated graded
complex algebra we can associate a complex
projective variety, and so we can define X==G to
be the variety associated to the ring of invariants
A(X)G. The inclusion of A(X)G in A(X) defines a
‘‘rational’’ map � from X to X==G, but because
there may be points of X � Pn where every
G-invariant polynomial vanishes, this map will not
in general be well defined everywhere on X (i.e., it
will not be a morphism).

We define the set Xss of ‘‘semistable’’ points in X
to be the set of those x 2 X for which there exists
some f 2 A(X)G not vanishing at x. Then, the
rational map � restricts to a surjective G-invariant
morphism from the open subset Xss of X to the
quotient variety X==G. However, � : Xss ! X==G is
still not in general an orbit space: when x and y are
semistable points of X, we have �(x) =�(y) if and
only if the closures OG(x) and OG(y) of the G-orbits
of x and y meet in Xss. Topologically, X==G is the
quotient of Xss by the equivalence relation for which
x and y in Xss are equivalent if and only if OG(x)
and OG(y) meet in Xss.

We define a ‘‘stable’’ point of X to be a point x of
Xss with a neighbourhood in Xss such that every
G-orbit meeting this neighborhood is closed in Xss,
and is of maximal dimension equal to the dimension
of G. If U is any G-invariant open subset of the set
Xs of stable points of X, then �(U) is an open subset
of X==G and the restriction �jU : U ! �(U) of � to U
is an orbit space for the action of G on U in the sense
described above, so that it makes sense to write U=G
for �(U). In particular, there is an orbit space Xs=G
for the action of G on Xs, and X==G can be thought
of as a compactification of this orbit space.

Xs � Xss � X

open open

# #

Xs=G � Xss= � ¼ X==G
open

Example 10 Let us return to hyperelliptic curves
of genus g. We have seen that the construction of a
moduli space reduces to the construction of an
orbit space for the action of G = SL(2; C) on an
open subset S of P2gþ2. If we identify P2gþ2 with the
space of unordered sequences of 2gþ 2 points in
P1, then S is the subset consisting of unordered
sequences of distinct points. When the action of G
on P2gþ2 is linearized in the obvious way, then an
unordered sequence of 2gþ 2 points in P1 is
semistable if and only if at most gþ 1 of the points
coincide anywhere on P1, and is stable if and only
if at most g of the points coincide anywhere on P1

(cf. Kirwan (1985), chapter 16). Thus, S is an open
subset of Ps

2gþ2, so an orbit space S=G exists with
compactification the projective variety P2gþ2==G.
This orbit space is then the moduli space of
hyperelliptic curves of genus g.

Other moduli spaces (such as moduli spaces of
curves and of vector bundles; see e.g., Donaldson
(1984), Gieseker (1983), Mumford (1965, 1977),
and Newstead (1978)) can be constructed as orbit
spaces via geometric invariant theory in a similar
way.
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Symplectic Reduction and Moduli Spaces
of Vector Bundles

Geometric invariant theoretic quotients are closely
related to the process of reduction in symplectic
geometry, and thus many moduli spaces can be
described as symplectic reductions.

Suppose that a compact, connected Lie group K
with Lie algebra k acts smoothly on a symplectic
manifold X and preserves the symplectic form !. Let
us denote the vector field on X defined by the
infinitesimal action of a 2 k by

x 7! ax

By a moment map for the action of K on X we mean
a smooth map

� : X! k�

which satisfies

d�ðxÞð
Þ:a ¼ !xð
; axÞ

for all x 2 X, 
 2 TxX and a 2 k. In other words, if
�a : X! R denotes the component of � along a 2 k
defined for all x 2 X by the pairing

�aðxÞ ¼ �ðxÞ:a

between �(x) 2 k� and a 2 k, then �a is a Hamiltonian
function for the vector field on X induced by a. We
shall assume that all our moment maps are equivariant
moment maps; that is, � : X ! k� is K-equivariant
with respect to the given action of K on X and the
co-adjoint action of K on k�.

It follows directly from the definition of a
moment map � : X! k� that if the stabilizer K� of
any � 2 k� acts freely on ��1(�), then ��1(�) is a
submanifold of X and the symplectic form ! induces
a symplectic structure on the quotient ��1(�)=K�.
With this symplectic structure, the quotient
��1(�)=K� is called the Marsden–Weinstein reduc-
tion, or symplectic quotient, at � of the action of K
on X. We can also consider the quotient ��1(�)=K�

when the action of K� on ��1(�) is not free, but in
this case it is likely to have singularities.

Example 11 Consider the cotangent bundle T�Y of
any n-dimensional manifold Y with its canonical
symplectic form ! which is given by the standard
symplectic form

! ¼
Xn

j¼1

dpj ^ dqj ½1


with respect to any local coordinates (q1, . . . , qn) on
Y and the induced coordinates (p1, . . . , pn) on its
cotangent spaces. If Y is the configuration space of a
classical mechanical system, then T�Y is the phase
space of the system and the coordinates p =
(p1, . . . , pn) 2 T �q Y are traditionally called the
momenta of the system.

If Y is acted on by a Lie group K, the induced
action on T�Y preserves ! and there is a moment
map � : T�Y ! k� whose components �a along a 2
k are given by pairing the moment coordinates p
with the vector fields on X induced by the
infinitesimal action of K; that is,

�aðp; qÞ ¼ p:aq

for all q 2 Y and p 2 TqY. When K = SO(3) acts by
rotations on Y = R3, then � is the angular momen-
tum, or moment of momentum, about the origin.

The connection with geometric invariant theory
arises as follows. Let X be a nonsingular complex
projective variety embedded in complex projective
space Pn, and let G be a complex Lie group acting
on X via a complex linear representation � : G!
GL(nþ 1; C). A necessary and sufficient condition
for G to be reductive is that it is the complex-
ification of a maximal compact subgroup K (e.g.,
G = GL(m; C) is the complexification of the unitary
group U(m)). By an appropriate choice of coordi-
nates on Pn, we may assume that � maps K into the
unitary group U(nþ 1). Then, the action of K
preserves the Fubini–Study form ! on Pn, which
restricts to a symplectic form on X. There is a
moment map � : X! k� defined (up to multiplica-
tion by a constant scalar factor depending on
differences in convention on the normalization of
the Fubini–Study form) by

�ðxÞ:a ¼ x̂
t
��ðaÞx̂

2�ijjx̂jj2
½2


for all a 2 k, where x̂ 2 Cnþ1 � {0} is a representa-
tive vector for x 2 Pn and the representation � : K!
U(nþ 1) induces �� : k! u(nþ 1) and dually
�� : u(nþ 1)� ! k�.

In this situation, we have two possible quotient
constructions, giving us the geometric invariant
theory quotient X==G if we want to work in
algebraic geometry and the symplectic reduction
��1(0)=K if we want to work in symplectic geome-
try. In fact, these give us the same quotient space, at
least up to homeomorphism (and diffeomorphism
away from the singularities). More precisely, any
x 2 X is semistable if and only if the closure of its
G-orbit meets ��1(0), and the inclusion of ��1(0)
into Xss induces a homeomorphism

��1ð0Þ=K! X==G

There are other quotient constructions closely related
to symplectic reduction and geometric invariant
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theory, which are useful when working with Kähler
or hyper-Kähler manifolds.

In physics, moduli spaces are often described as
symplectic reductions of infinite-dimensional sym-
plectic manifolds by infinite-dimensional groups
(although the moduli spaces themselves are usually
finite-dimensional). One example is given by moduli
spaces of holomorphic vector bundles, which
can also be described using Yang–Mills theory
(cf. Atiyah and Bott (1982)).

The Yang–Mills equations arose in physics as
generalizations of Maxwell’s equations. They have
become important in differential and algebraic
geometry formulated over arbitrary compact oriented
Riemannian manifolds, and in particular over com-
pact Riemann surfaces and higher dimensional Kähler
manifolds. The fundamental theorem of Donaldson,
Uhlenbeck, and Yau that a holomorphic bundle over
a compact Kähler manifold admits an irreducible
Hermitian Yang–Mills connection if and only if it is
stable can be thought of as an infinite-dimensional
illustration of the link between symplectic reduction
and geometric invariant theory.

Let M be a compact oriented Riemannian mani-
fold and let E be a fixed complex vector bundle over
M with a Hermitian metric. Recall that a connection
A on E (or equivalently on its frame bundle) can be
defined by a covariant derivative dA : �p

M(E)!
�pþ1

M (E), where �p
M(E) denotes the space of

C1-sections of
Vp T�M� E (i.e., the space of

p-forms on M with values in E). This covariant
derivative satisfies the extended Leibniz rule

dAð	 ^ �Þ ¼ ðdA	Þ ^ � þ ð�1Þp	 ^ dA�

for 	 2 �p
M(E),� 2 �q

M(E), and therefore is deter-
mined by its restriction dA : �0

M(E)! �1
M(E). The

Leibniz rule implies that the difference of two
connections is given by an E� E�-valued 1-form
on M, and hence that the space of all connections on
E is an infinite-dimensional affine space A based on
the vector space �1

M(E� E�). Similarly, the space of
all unitary connections on E (i.e., connections
compatible with the Hermitian metric on E) is an
infinite-dimensional affine space based on the space
of 1-forms with values in the bundle gE of skew-
adjoint endomorphisms of E. The Leibniz rule also
implies that the composition dA � dA : �0

M(E)!
�2

M(E) commutes with multiplication by smooth
functions, and thus we have

dA � dAðsÞ ¼ FAs

for all C1 sections s of E, where FA 2 �2
M(gE) is

defined to be the curvature of the unitary connection
A. The Yang–Mills functional on the space A of all
unitary connections on E is defined as the L2-norm
square of the curvature, given by the integral over M
of the product of the function kFAk2 and the volume
form on M defined by the Riemannian metric and the
orientation. The Yang–Mills equations are the Euler–
Lagrange equations for this functional, given by

dA � FA ¼ 0

where dA has been extended in a natural way to
��M(gE). The gauge group G, that is, the group of
unitary automorphisms of E, preserves the Yang–
Mills functional and the Yang–Mills equations.

If M is a complex manifold, we can identify the
space A(1, 1) of unitary connections on E with
curvature of type (1,1) with the space of holomorphic
structures on E, by associating to a holomorphic
structure E the unitary connection whose (0, 1)-
component is given by the �@-operator defined by E.
This space A(1, 1) is an infinite-dimensional complex
subvariety of the infinite-dimensional complex affine
space A, acted on by the complexified gauge group
Gc (the group of complex C1 automorphisms of E),
and two holomorphic structures are isomorphic if
and only if they lie in the same Gc-orbit.

When (M,!) is a compact Kähler manifold, there
is a G-invariant Kähler form � on A defined by

�ð	; �Þ ¼ 1

8�2

Z
M

trð	 ^ �Þ ^ !n�1

where n is the complex dimension of M. The Lie
algebra of G is the space �0

M(gE) of sections of gE,
and there is a moment map � :A ! (�0

M(gE))� for
the action of G on A given by the composition of

A 7! 1

8�2
FA ^ !n�1 2 �2n

M ðgEÞ

with integration over M. On A(1, 1) the norm square
of this moment map agrees up to a constant factor
with the Yang–Mills functional, which is minimized
by the Hermitian Yang–Mills connections.

As in the finite-dimensional situation, for a suitable
definition of stability, the moduli space of stable
holomorphic bundles of topological type E over M
(which plays the role of the geometric invariant
theory quotient) can be identified with the moduli
space of (irreducible) Hermitian Yang–Mills connec-
tions on E (which plays the rôle of the symplectic
reduction). This was proved in general for vector
bundles over compact Kähler manifolds Uhlenbeck
and Yau with a different proof for nonsingular
complex projective varieties given by Donaldson.

Over a compact Riemann surface M the situation is
relatively simple, as all connections on E have
curvature of type (1, 1) and so the infinite-dimensional
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complex affine space A can be identified with the
space C of holomorphic structures on E. A moment
map for the action of the gauge group onA is given by
assigning to a connection A 2 A its curvature FA 2
�2

M(gE), and, after a suitable central constant has been
added, the Hermitian Yang–Mills connections are
exactly the zeros of the moment map.

A holomorphic bundle E over a Riemann surface
M is stable (respectively semistable) if �(F ) < �(E)
(respectively �(F ) 
 �(E)) for every proper sub-
bundle F of E, where

�ðFÞ ¼ degðFÞ=rankðFÞ

When the theory of stability of holomorphic vector
bundles was first introduced, Narasimhan and
Seshadri proved that a holomorphic vector bundle
over M is stable if and only if it arises from an
irreducible representation of a certain central exten-
sion of the fundamental group �1(M). Atiyah and
Bott (1982) translated this in terms of connections to
show that a holomorphic vector bundle over M is
stable if and only if it admits a unitary connection
with constant central curvature. They deduced from
this the existence of a homeomorphism between the
moduli spaceM(n, d) of stable bundles of rank n and
degree d over M and the moduli space of irreducible
connections with constant central curvature on a
fixed C1 bundle E of rank n and degree d over M.

See also: BF Theories; Calibrated Geometry and Special
Lagrangian Submanifolds; Cohomology Theories; Floer
Homology; Gauge Theoretic Invariants of 4-Manifolds;
Gauge Theory: Mathematical Applications; Geometric
Measure Theory; Geometric Phases; Hamiltonian Group
Actions; Instantons: Topological Aspects; Intersection
Theory; Riemann Surfaces; Several Complex Variables:
Basic Geometric Theory; Several Complex Variables:
Compact Manifolds; Topological Gravity, Two-
Dimensional; WDVV Equations and Frobenius Manifolds.
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Introduction

Since the late 1970s, a particular attention in the
theory of integrability has been payed to systems
admitting more than one Hamiltonian representa-
tion. The first examples belonged to the class of
infinite-dimensional systems (i.e., partial differen-
tial equations), like the Korteweg–de Vries (KdV)
equation, the Ablowitz–Kaup–Newell–Segur
system, and many other soliton equations (see
Bi-Hamiltonian Methods in Soliton Theory). It
was realized soon that finite-dimensional integr-
able systems are also likely to possess a
bi-Hamiltonian representation. Moreover, a geo-
metric setting for the study of bi-Hamiltonian
systems was established, with the introduction of
the so-called bi-Hamiltonian manifolds. They are
Poisson manifolds with an additional Poisson
structure, fulfilling a suitable compatibility con-
dition with the initial Poisson bracket. An
important program for the study and the classi-
fication of (finite-dimensional) bi-Hamiltonian
manifolds was started in the 1990s by Gelfand
and Zakharevich. They pointed out that the
geometry of such manifolds is extremely rich
and complicated.

In this article we present the basic facts
concerning the bi-Hamiltonian geometry and its
relations with the theory of integrable systems,
referring to Recursion Operators in Classical
Mechanics in this encyclopedia for the connections
with separable systems of Jacobi. In the first
section we give the definitions of bi-Hamiltonian
manifold and bi-Hamiltonian system, and we
present some properties of the former. The next
section contains three concrete examples (the Euler
top, the open Toda lattice, and a stationary KdV
flow) and two important classes of bi-Hamiltonian
manifolds, both related to Lie algebras. This is
followed by a discussion of the iterative construc-
tion of first integrals in involution for a given
bi-Hamiltonian system. This procedure is particu-
larly efficient in the case of Poisson–Nijenhuis
manifolds, that is, those bi-Hamiltonian manifolds
whose second Poisson structure can be obtained by
composing the first one with a suitable recursion
operator.
Bi-Hamiltonian Systems

First of all, we recall some fundamental definitions
from the theory of Poisson manifolds, which are the
natural setting for the study of Hamiltonian systems.
Let M be a finite-dimensional C1-differentiable
manifold and let C1(M) be the space of C1-
functions from M to R. A Poisson bracket on M is
a skew-symmetric R-bilinear map

f� ; �g :C1ðMÞ � C1ðMÞ ! C1ðMÞ

fulfilling the Jacobi identity

ffF;Gg;Hg þ ffH;Fg;Gg þ ffG;Hg; Fg ¼ 0

and the Leibniz rule

fFG;Hg ¼ FfG;Hg þ fF;HgG

A Poisson manifold is a differentiable manifold
endowed with a Poisson bracket. Starting from a
Poisson bracket, one can introduce a tensor field P
of type (2, 0), which we consider as a map from
T�M to TM, defined by

hdG;P dFi ¼ fF;Gg

or, using coordinates on M, by Pij = {xi, xj}. This
tensor field is called the Poisson tensor associated
with {� , �}. It is skew-symmetric, and its components
satisfy the cyclic condition

Pil @Pjk

@xl
þ P jl @Pki

@ x l
þ Pkl @Pij

@x l
¼ 0

meaning that the Schouten bracket [P, P] vanishes.
On a Poisson manifold, the vector field

XH = {H, �} = P dH is called the Hamiltonian
vector field associated with H. In coordinates,
Xj

H = Pij@H=@xi. The Jacobi identity is equivalent
to the statement that the map H 7! XH, assigning
to a function H its Hamiltonian vector field XH, is
a Lie algebra homomorphism:

XfF;Gg¼ ½XF;XG� ½1�

A Casimir function is a function H such that
XH = 0, that is, a function which is in involution
with any other function on M. In terms of the
Poisson tensor, a Casimir is a function whose
differential belongs to the kernel of P.

The most famous class of Poisson manifolds is
certainly that of symplectic manifolds. They can be
seen as nondegenerate Poisson manifolds. Indeed, if
a Poisson tensor P is invertible, then its inverse
defines a closed nondegenerate 2-form (i.e., a
symplectic form). Moreover, any Poisson manifold
turns out to be foliated in symplectic leaves.
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Let us introduce now the bi-Hamiltonian manifolds,
which can be considered as a geometric setting for the
study of integrable Hamiltonian systems. A manifold
M endowed with two Poisson brackets, {� , �} and {� , �}0,
is said to be bi-Hamiltonian if the brackets are
compatible, that is, if any linear combination (with
constant coefficients) of them is still a Poisson bracket.
Such a linear combination automatically satisfies all
properties of a Poisson bracket except the Jacobi
identity. This is fulfilled if and only if the following
compatibility condition holds:

fF; fG;Hgg0 þ fH; fF;Ggg0 þ fG; fH; Fgg0

þ fF; fG;Hg0g þ fH; fF;Gg0g
þ fG; fH; Fg0g ¼ 0 ½2�

for any triple (F, G, H) of functions on M. This
amounts to saying that the sum of the two Poisson
brackets is also a Poisson bracket. In this case the
two (compatible) Poisson brackets are said to form a
Poisson pair.

There are some interesting equivalent forms of the
compatibility condition [2]. First of all, in terms of
the components of the Poisson tensors P and P0, it
reads

Pil @ðP0Þ
jk

@xl
þ Pjl @ðP0Þ

ki

@xl
þ Pkl @ðP0Þ

ij

@xl

þ ðP0Þil @Pjk

@xl
þ ðP0Þjl @Pki

@xl
þ ðP0Þkl @Pij

@xl
¼ 0

that is, the Schouten bracket [P, P0] vanishes. More-
over, if XF = P dF is the Hamiltonian vector field
associated with F 2 C1(M) by means of P and
YF = P0 dF is the one obtained by P0, the compat-
ibility condition takes the form

½XF;YG� þ ½YF;XG� ¼ XfF;Gg0 þ YfF;Gg

8 F;G 2 C1ðMÞ ½3�

to be compared with [1]. Moreover, in terms of Lie
derivatives we have the equivalent condition

LXF
P0 þ LYF

P ¼ 0 8F 2 C1ðMÞ ½4�

Now we turn our attention to special vector fields
that can be selected on a bi-Hamiltonian manifold
M. Let P and P0 be the Poisson tensors associated
with the (compatible) Poisson brackets of M. A
vector field X on M is said to be bi-Hamiltonian if it
is Hamiltonian with respect to both Poisson struc-
tures, that is, if there exist two functions H0 and H1

such that

X ¼ P dH1 ¼ P0 dH0 ½5�

We will see in the following that such vector fields
are likely to have a number of first integrals in
involution, and thus they are good candidates for a
geometric description of integrable systems. The next
section is devoted to examples of bi-Hamiltonian
(and multi-Hamiltonian) systems.
Examples

The first example is the Euler top, that is, free
motions of a rigid body with a fixed point. The
equations of motion are

_�1 ¼
I2 � I3

I2I3
�2�3

and its cyclic permutations. They define a vector
field in R3, which is well known to be Hamiltonian
with respect to the Lie–Poisson structure on the
(dual of the) Lie algebra of 3� 3 skew-symmetric
matrices. This means that

_�j ¼ fH;�jg; j ¼ 1; 2; 3

where

H ¼ 1

2

�1
2

I1
þ �2

2

I2
þ �3

2

I3

� �

is the kinetic energy and the bracket {� , �} is defined
by {�1, �2} = �3 and its cyclic permutations. Another
Hamiltonian representation is given by

_�j ¼ fK;�jg0; j ¼ 1; 2; 3

where

K ¼ 1
2 �1

2 þ �2
2 þ �3

2
� �

and the new bracket {� , �}0 is defined by {�1, �2}0=
��3=I3 and its cyclic permutations.Any linear
combination of the two brackets has the form of
the second one, and it is very easy to show that the
Jacobi identity is satisfied for such a bracket.
Therefore, the Euler top is a bi-Hamiltonian system.
Let us also notice that

fK;�jg ¼ fH;�jg0 ¼ 0; j ¼ 1; 2; 3

that is, K is a Casimir function for the Lie–Poisson
bracket and H is a Casimir function for the new
Poisson bracket. Hence, we have the following
(recursion) relations:

fK;�jg ¼ 0

fH;�jg ¼ fK;�jg0

0 ¼ fH;�jg0
½6�

From a geometrical point of view, the situation is as
follows. The symplectic leaves of {� , �} are the level
surfaces of K, that is, spheres, while the symplectic
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leaves of {� , �}0 are the ellipsoids H = constant. Their
intersections are Lagrangian submanifolds for both
symplectic leaves (in the compact case they are the
Arnol’d–Liouville tori of the integrable systems, that
in this case coincide with the trajectories).

Let us consider now the (three-particle) open
Toda lattice. It consists in three particles (with
masses equal to 1) moving on the line under a
nearest-neighbor interaction of exponential type.
The Hamiltonian is given by

H¼ 1
2 p1

2þ p2
2þ p3

2
� �

þ expðq1�q2Þþ expðq2�q3Þ

and the system is of course Hamiltonian with
respect to the canonical Poisson structure of R6,

P ¼

0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0
BBBBBB@

1
CCCCCCA

But the Toda vector field can also be written as
P0 dK, where K = p1 þ p2 þ p3 is the total momen-
tum and

P0 ¼

0 1 1 �p1 0 0
�1 0 1 0 �p2 0
�1 �1 0 0 0 �p3

p1 0 0 0 eðq1�q2Þ 0
0 p2 0 �eðq1�q2Þ 0 eðq2�q3Þ

0 0 p3 0 �eðq2�q3Þ 0

0
BBBBBB@

1
CCCCCCA

is a Poisson tensor, which turns out to be compatible
with P. The generalization to an arbitrary number of
particles is straightforward. Hence, the open Toda
lattice is a bi-Hamiltonian system. In the next section
we will show that this property can be used to
construct a maximal set of integrals of motion for the
Toda lattice, which are automatically in involution.

The third example – a stationary reduction of the
KdV equation – comes from the field of soliton
equations. Let us recall that the first members of the
KdV hierarchy are

@u

@t1
¼ ux

@u

@t3
¼ 1

4ðuxxx � 6uuxÞ ðKdV equationÞ

@u

@t5
¼ 1

16 uxxxxx � 10uuxxxð

�20uxuxx þ 30u2ux

�

½7�

It is well known how to find finite-dimensional
reductions for the KdV equation, giving rise to explicit
solutions. Indeed, the set of singular points of a given
vector field of the hierarchy is a finite-dimensional
manifold which is invariant under the flows of the
other vector fields, due to the fact that the flows
commute. The (finite-dimensional) systems obtained
by restricting the KdV hierarchy to such invariant
manifolds are called the stationary reductions of KdV.
Let us consider explicitly the reduction corresponding
to the third vector field of the hierarchy. The set of its
critical points is given by

uxxxxx � 10uuxxx � 20uxuxx þ 30u2ux ¼ 0 ½8�

and its dimension is 5, since we can use the values of
u, ux, uxx, uxxx, and uxxxx at a fixed point x0 (i.e., the
Cauchy data) as global coordinates. For the sake of
simplicity, we set

u0 ¼ uðx0Þ; u1 ¼ uxðx0Þ; u2 ¼ uxxðx0Þ
u3 ¼ uxxxðx0Þ; u4 ¼ uxxxxðx0Þ

In order to compute the reduced equations of the
first flow of [7], we have to take its x-derivative and
to use the constraint [8] and its differential
consequences to eliminate all the derivatives of
order higher than 4. We obtain the equations

@u0

@t1
¼ u1;

@u1

@t1
¼ u2;

@u2

@t1
¼ u3;

@u3

@t1
¼ u4

@u4

@t1
¼ 10u0u3 þ 20u1u2 � 30u0

2u1

½9�

In the same way, for the KdV equation we get

@u0

@t3
¼ 1

4ðu3 � 6u0u1Þ

@u1

@t3
¼ 1

4 u4 � 6u0u2 � 6u1
2

� �

@u2

@t3
¼ 1

4 4u0u3 þ 2u1u2 � 30u0
2u1

� �

@u3

@t3
¼ 1

4 4u0u4 þ 6u1u3 þ 2u2
2

�

�30u0
2u2 � 60u0u1

2
�

@u4

@t3
¼ 1

4 10u1u4 þ 10u0
2u3 þ 10u2u3

�

�100u0u1u2 � 60u1
3 � 120u0

3u1

�

½10�

There are two compatible Poisson structures giving
a bi-Hamiltonian formulation of both systems. The
corresponding Poisson tensors are

P¼

0 0 0 2 0
0 0 �2 0 �20u0

0 2 0 20u0 20u1

�2 0 �20u0 0 �140u0
2�20u2

0 20u0 �20u1 140u0
2þ20u2 0

2
66664

3
77775
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and
P0 ¼

0 1
2 0 3u0 6u1

� 1
2 0 �3u0 �3u1 �4u2 � 15u0

2

0 3u0 0 u2 þ 15u0
2 u3 þ 30u0u1

�3u0 3u1 �u2 � 15u0
2 0

u4 � 40u0u2þ
30u1

2 � 60u0
3

�6u1 4u2 þ 15u0
2 �u3 � 30u0u1

�u4 þ 40u0u2�
30u1

2 þ 60u0
3

0

2
66666666664

3
77777777775
In fact, if we call X1 and X3 the vector fields given
by [9] and [10], then the following recursion
relations hold:

P dH0 ¼ 0

X1 ¼ P dH1 ¼P0 dH0

X3 ¼ P dH2 ¼P0 dH1

0 ¼P0 dH2

½11�

where

H0¼� u4 þ 10u0u2 þ 5u1
2 � 10u0

3

H1¼ 1
4 2u0u4 � 2u1u3 þ u2

2 � 20u0
2u2 þ 15u0

4
� �

H2¼ 1
16 2u2u4 � 6u0

2u4 � u3
2 þ 12u0u1u3

�
�16u0u2

2 � 12u1
2u2 þ 60u0

3u2 � 36u0
5
�

Therefore, the vector fields X1 and X3 are
bi-Hamiltonian. The geometry of this bi-Hamiltonian
manifold is similar to the one of the first example. The
symplectic leaves of both Poisson structures
have dimension 4, and the Lagrangian foliation
(given by the level submanifolds of H0, H1, and H2)
is contained in the intersections of such leaves. This
Lagrangian foliation is called by Gelfand and Zakhar-
evich the ‘‘axis’’ of the bi-Hamiltonian manifold.

We also notice that the relations [11] can be
collected in the statement that the function
H(�) = H0�

2 þH1�þH2 is a Casimir of the Poisson
pencil P� = P0 � �P, that is,

P� dHð�Þ ¼ 0

The importance of the stationary reductions of
the KdV hierarchy lies in the fact that (as noticed
in the early works on the subject) the reduced
equations can be solved by means of the classical
method of separation of variables. We mention
that the separability of these systems is a par-
ticular instance of a general result, which is
valid for quite a wide class of bi-Hamiltonian
manifolds.
Next we present an important class of
bi-Hamiltonian manifolds. We recall that the
dual g� of a finite-dimensional Lie algebra g
possesses a canonical Poisson structure, called the
Lie–Poisson structure. It is defined as

fF;GgðXÞ ¼ hX; ½dFðXÞ; dGðXÞ�i ½12�

where F, G 2 C1(g�) and their differentials at X 2 g�

are seen as elements of g. If X0 is a fixed element in
g�, the constant Poisson bracket

fF;Gg0ðXÞ ¼ hX0; ½dFðXÞ; dGðXÞ�i ½13�

is compatible with the Lie–Poisson bracket. In fact, the
Poisson pencil {� , �}� = {� , �}� �{� , �}0 is obtained from
{� , �} by applying the translation X 7! Xþ �X0;
hence, it is a Poisson bracket for every value of the
constant �. The method of translation of the argument,
due to Manakov, provides a lot of bi-Hamiltonian
vector fields for this bi-Hamiltonian manifold. One has
to consider an Ad�-invariant function on g�, that is, a
function H 2 C1(g�) such that

hX; ½dHðXÞ; x�i ¼ 0 8 x 2 g; X 2 g�

It is clearly a Casimir function for the Lie–Poisson
bracket, and this implies that the function
X 7!H(X� �X0) is a Casimir of the Poisson pencil.
If this function can be developed as a Laurent series
in �, its coefficients Hj fulfill the recursion relations

Hjþ1; �
� �

¼ fHj; �g0 ½14�

and thus give rise to a sequence of bi-Hamiltonian
vector fields.

The last example is a generalization of the
previous one. For the sake of simplicity, we consider
a Lie algebra g of matrices such that the trace of the
product is nondegenerate, and the space M = g2 =
g� g. If F 2 C1(M), its differential at a point
(x0, x1) can be identified with the element (@F=@x0,
@F=@x1) of M given by

d

dtj�¼0
Fðx0 þ �v0; x1 þ �v1Þ ¼ tr

@F

@x0
v0 þ

@F

@x1
v1

� �
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for all v0, v1 2 g. The manifold M has a three-
dimensional family of pairwise compatible Poisson
brackets:

fF;Gg0ðx0; x1Þ ¼ �tr x0
@F

@x1
;
@G

@x1

� 	� �

fF;Gg1 x0; x1ð Þ ¼ tr x1
@F

@x1
;
@G

@x1

� 	� �

fF;Gg2ðx0; x1Þ ¼ tr x0
@F

@x0
;
@G

@x0

� 	�

þ x1
@F

@x1
;
@G

@x0

� 	
þ @F

@x0
;
@G

@x1

� 	� ��

Notice that the first two brackets restrict to the
submanifolds x0 = constant and give rise to the
bi-Hamiltonian structure presented in the previous
example (via the identification between g and g�

given by the trace of the product). This example can
be generalized to an arbitrary number n of copies of
g. In this case there is an (nþ 1)-dimensional family
of pairwise compatible Poisson brackets, which can
be shown to be Lie–Poisson brackets with respect to
suitable Lie algebra structures on gn. According to
Reyman and Semenov–Tian–Shansky, these brackets
can also be casted in the R-matrix formalism.

Also in this case, the Ad-invariant functions on g
give rise to functions in involution on our multi-
Hamiltonian manifold. For example, if H(�)

k denotes
the �k-coefficient of tr(x1�þ x0)�, then the recur-
sion relations

fHð�Þk ; �g l ¼ fHð�Þkþ1; �glþ 1; k � 0; l ¼ 0; 1

hold, and they imply the existence of tri-Hamiltonian
vector fields on M.

Finally, we mention that the bi-Hamiltonian
structure of the stationary flow of KdV – discussed
above – can be obtained as a suitable reduction of
the multi-Hamiltonian structure on g3, where
g = sl(2, R). A similar statement holds for the other
stationary flows of the Gelfand–Dickey hierarchies.
Iterative Properties and Integrability

In this section we show how to use the bi-
Hamiltonian formulation of a given system to explain
its integrability. In the cases similar to the open Toda
lattice, where one of the Poisson structures is
nondegenerate, one can introduce a recursion opera-
tor and employ its powers in order to generate a
chain of integrals of motion in involution. In the
other examples, where the bi-Hamiltonian structure
is degenerate, the conserved quantities turn out to be
the coefficients of Casimir functions of the Poisson
pencil.
If (M, {� , �}, {� , �}0) is a bi-Hamiltonian manifold,
we call bi-Hamiltonian hierarchy a sequence {Hk}k�0

of functions on M fulfilling the recursion relations

f�;Hkþ1g ¼ f�;Hkg0; k � 0 ½15�

In terms of Poisson tensors we have that
P dHkþ1 = P0 dHk. A bi-Hamiltonian hierarchy clearly
gives rise to an infinite sequence of bi-Hamiltonian
vector fields,

Xk ¼ P dHk ¼ P0 dHk�1; k � 1 ½16�

The functions Hk are in involution with respect to
both Poisson brackets. Indeed, for k > j, one has

fHj;Hkg ¼ fHj;Hk�1g0 ¼ fHjþ1;Hk�1g ¼ � � �
¼ fHk;Hjg

so that {Hj, Hk} = 0 for all j, k � 0, and therefore
{Hj, Hk}0= 0 for all j, k � 0. If {Hi}i�0 and {Ki}i�0 are
two bi-Hamiltonian hierarchies, then all functions
are in (bi-)involution provided that one of the two
hierarchies starts from a Casimir of {� , �}. In fact,
suppose that H0 is such a Casimir. Then

fHi;Kjg ¼ fHi�1;Kjg0 ¼ fHi�1;Kjþ1g ¼ � � �
¼ fH0;Kjþig ¼ 0

and

fHi;Kjg0 ¼ fHiþ1;Kjg ¼ 0

We observe that these proofs of the involutivity do
not use the compatibility condition [2] between the
Poisson structures. The point is that this condition is
important for the existence of bi-Hamiltonian hier-
archies. Indeed, the problem of the existence and the
construction of bi-Hamiltonian hierarchies is quite
delicate. We tackle it first in the case of a particular
class of bi-Hamiltonian manifolds, the so-called
Poisson–Nijenhuis manifolds. In turn, they are a
generalization of nondegenerate bi-Hamiltonian
manifolds.

Let (M, P, P0) be a bi-Hamiltonian manifold such
that P is invertible. Then we can introduce the
tensor field N = P0P�1, which is of type (1, 1) and
will always be dealt with as an endomorphism of the
tangent bundle TM. This tensor field possesses some
remarkable properties. First of all, its Nijenhuis
torsion T(N) vanishes; this means that

TðNÞðX;YÞ ¼ ½NX;NY� �N½X;Y�N ¼ 0

for any pair (X, Y) of vector fields on M, where

½X;Y�N ¼ ½NX;Y� þ ½X;NY� �N½X;Y�
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Sometimes a tensor field with vanishing Nijenhuis
torsion is called a recursion operator. Since P defines
a symplectic structure on M, such a bi-Hamiltonian
manifold is called an !N manifold.

The tensor field N satisfies two compatibility
conditions with P. The first one is simply the
skew-symmetry of P0 and reads NP = PN�, while
the second one is a restatement of [3],

½XF;XG�N ¼ XfF;GgNP
8F;G 2 C1ðMÞ

A manifold is said to be a Poisson–Nijenhuis manifold
(briefly, a PN manifold) if it is endowed with a Poisson
tensor P and a torsionless (1, 1) tensor field N which
are compatible, in the sense that the two above-
mentioned conditions hold. We have just seen that
every nondegenerate bi-Hamiltonian manifold (i.e.,
such that one of the two Poisson tensors is invertible) is
a PN manifold. On the other hand, if (M, P, N) is a
PN manifold, then it can be shown that P0= NP is
a Poisson tensor, which is compatible with P. In
other words, PN manifolds are particular examples of
bi-Hamiltonian manifolds. Moreover, one has that
P(j) = NjP and P(k) = NkP are, for every j, k � 0,
compatible Poisson tensors.

Let us consider now a function H0, on a PN
manifold (M, P, N), such that N� dH0 = dH1 is
exact, where N� : T�M! T�M is the adjoint of the
recursion operator N. This implies that

X ¼ P dH1 ¼ PN� dH0 ¼ P0 dH0 ½17�

is a bi-Hamiltonian vector field. By means of N� we can
define the 1-forms �j = (N�)j dH0, which can be shown
to be all closed. If they are exact, that is, �k = dHk, then
the functions Hk form a bi-Hamiltonian hierarchy and
thus are in involution. This shows that on a (simply
connected) PN manifold every bi-Hamiltonian vector
field of the form [17], with N� dH0 = dH1, belongs to a
bi-Hamiltonian hierarchy and that its first integrals (in
involution) can be iteratively constructed with the
recursion operator. (The integrability of this vector
field clearly depends on the number of independent
integrals of motion.) Moreover, the vector field
Xk = P dHk =P0 dHk�1 of the hierarchy is Hamiltonian
with respect to all Poisson structures P(j) with j � k,
because Xk = P(j) dHk�j.

The example of the Toda lattice presented earlier
can be casted in the PN (more precisely, !N)
framework. One can introduce the recursion opera-
tor N and, in the three-particle case, one can define
the third integral of motion as dJ = N� dH. Since K,
H, and J belong to a bi-Hamiltonian hierarchy, they
are in involution, and this (along with their
functional independency) proves the integrability of
the Toda lattice.
In this example something more happens: the
integrals of motion are (up to multiplicative con-
stants) the traces of the powers of the recursion
operator N. This is a general fact, since the
vanishing of the torsion of N implies that N� dIk =
dIkþ1, where Ik = (1=k)tr Nk.

Next we deal with the case where the
bi-Hamiltonian manifold (M, P, P0) is not of the
Poisson–Nijenhuis type, that is, both P and P0 are
degenerate. Let us suppose that their symplectic
leaves have codimension 1. We also want to discuss
in this case an iteration problem, namely the
problem of constructing a bi-Hamiltonian hierarchy
starting from a Casimir H0 of P. Let us consider the
Hamiltonian vector field X1 = P0 dH0 = YH0

(using
the notations introduced earlier). Thanks to the
form [4] of the compatibility condition between P
and P0, we have that

LX1
P ¼ LYH0

P ¼ �LXH0
P0 ¼ 0

meaning that X1 is an infinitesimal symmetry of P.
Moreover, X1 is tangent to the symplectic leaves of P,
since hdH0, X1i= hdH0, P0 dH0i= 0. Under some sui-
table topological assumptions, we can conclude that
there exists a function H1 such that X1 = P dH1, that
is, X1 is a bi-Hamiltonian vector field. Now the
procedure can be iterated, that is, in the same way one
can show that, if X2 = P0 dH1 = YH1

, then there exists
a function H2 such that X2 = P dH2, and so on. Thus,
one obtains a bi-Hamiltonian hierarchy {Hk}k�0,
which can either be infinite or end with a Casimir of
P0. In any case, the function H(�) =

P
k�0 Hk�

�k is a
Casimir of the Poisson pencil P� = P0 � �P. As seen
earlier, the typical situation is that the chain terminates
with a Casimir Hn of P0, where dim M = 2nþ 1. In
other words, there is a Casimir of the Poisson pencil
which is a polynomial of degree n in the parameter �.

As a general procedure for constructing
bi-Hamiltonian hierarchies, one can look for the
Casimir functions H(�) of the Poisson pencil which
are deformations of Casimir functions of P, but it is
not clear when such a deformation does exist in the
case where the corank of the bi-Hamiltonian structure
is greater than 2. Nevertheless, suppose that H(�) =P

k�0 Hk�
�k is a Casimir of P�, that is, that {Hk}k�0 is

a bi-Hamiltonian hierarchy. Then, for all �, the
bi-Hamiltonian vector fields Xkþ1 =PdHkþ1 =P0 dHk

are Hamiltonian with respect to P�, with Hamiltonian
function H(k)(�)=

Pk
j=0 Hj�

k�j,

Xkþ1 ¼ P�dHðkÞð�Þ

Therefore, the vector fields Xk are not only
bi-Hamiltonian, but they are Hamiltonian with
respect to any Poisson bracket of the pencil.
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In this article we have described some basic
properties of bi-Hamiltonian systems, defined on
manifolds possessing a Poisson pair. There are other
important vector fields on these manifolds (more
precisely, on !N manifolds). They are called cyclic
systems of Levi-Civita, and they give an intrinsic
description of the separable systems of Jacobi. We
refer to the article Recursion Operators in Classical
Mechanics in this encyclopedia for these topics.

See also: Bi-Hamiltonian Methods in Soliton Theory;
Classical r-Matrices, Lie Bialgebras, and Poisson Lie
Groups; Integrable Systems and Algebraic Geometry;
Integrable Systems and Recursion Operators on
Symplectic and Jacobi Manifolds; Integrable Systems:
Overview; Recursion Operators in Classical Mechanics;
Separation of Variables for Differential Equations;
Solitons and Kac–Moody Lie Algebras; Toda Lattices.
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Introduction: Multiple-Scale
and Multiscale Approaches

Multiscale, or more precisely multiple-scale,
method is a technique of perturbation theory
based on the introduction of additional rescaled
variables, say time variables, formally considered as
independent variables and describing each a differ-
ent timescale (for the sake of simplicity, we will
mainly consider a dynamic framework and time-
scales; all can be transposed to spatial dependences
and scales). It was first developed to handle
singular situations in which dynamic regimes of
different characteristic scales coexist and intermin-
gle in such a way that straightforward perturbation
expansions are not uniformly convergent in time
(hence of limited relevance and use) due to the
so-called secular terms growing unbounded with
time; the freedom introduced together with the
extra variables indeed allows to impose conditions
preventing these secular divergences and improving
the convergence of the perturbation series. It yields
a global perturbation solution describing jointly the
behavior at small and large scales. This technique
belongs to the far more wide-ranging class of
multiscale approaches; these can be divided into
four main subclasses:

1. Mean-field techniques exploiting scale separation
between fast and slow components of the
dynamics. The influence of the slow variables
onto the fast dynamics, if any, is treated in a
decoupled way within a parametric approxima-
tion, allowing an adiabatic elimination of fast
variables (see the section ‘‘Slow/fast variables’’).

2. Singular perturbations, in which individual fast
components ultimately give rise to slow trends
and influence the large-scale features. Scale
separation here breaks down at long times and
multiple-scale method is then a method of choice
(see the next section).

3. Matched expansions when regimes of different
scales succeed (boundary-layer singularity; see
the section ‘‘Boundary layers and matched
expansions’’).
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4. Renormalization techniques, in systems exhibiting
some kind of universality in the relations between
their behaviors at different scales, for example,
scale invariance (see the section ‘‘Renormalization:
an iterated multiscale approach’’).

We will first present the principles of multiple-
scale method, detail its technical implementation on
simple abstract examples and cite some typical
applications. Then we will articulate this technique
with more general multiscale methods in a brief
overview (see the section ‘‘A brief overview of
multiscale approaches’’). The range of multiscale
approaches and technical tools will then be illus-
trated and compared in the context of diffusion,
Brownian motion, and transport phenomena (see the
section ‘‘Summary: the exemplary case of
diffusion’’).
Multiple-Scale Method: Principles

Context: Singular Perturbations and Secular
Divergences

Multiple-scale methods have been developed to
handle situations in which the dynamics involves a
small parameter � (e.g., the ratio of the masses of
different subsystems, the strength of an additional
interaction, the amplitude of an applied field)
directly controlling the separation between the
different characteristic timescales of the evolution
and, specifically, such that the behavior for �= 0 is
qualitatively different from the behavior for � small
(�� 1 but finite); in other words, when a weak
influence, of strength controlled by �� 1, does not
have only weak consequences. Typically, this occurs
when � represents the strength of a weak coupling
between otherwise independent subsystems or when
a vanishing value �= 0 changes a characteristic time,
the sign of a friction coefficient, the order of the
highest time derivative in case of ordinary differ-
ential equations (turning points), or the type of
partial differential equations in case of spatially
extended systems. Accordingly, a naive perturbative
approach with respect to �, that is, an expansion
taking as a basic approximation the behavior for
�= 0, cannot bridge the qualitative gap with
behaviors observed for � > 0. It thus fails to give a
full account of the system evolution at all times: one
speaks of singular perturbation.

A historical example arose in celestial mechanics,
in the celebrated nonintegrable three-body problem,
involving the Sun, a big planet and a smaller one, of
respective masses m1, m2 < m1 and m3 � m2. The
straightforward approach would be to consider the
presence of the small planet as a small perturbation
of the integrable two-body problem for the masses
m1 and m2. But when one tries to determine the
solution as a series in powers of the mass ratio
�= m3=m2, unbounded terms appear, the so-called
secular terms, increasing without bounds as fast as t,
hence of ill-defined order and impairing the very
consistency of the perturbation approach at long
times t > 1=�. Accordingly, the perturbation expan-
sion is not uniformly convergent in time, preventing
from using it to investigate asymptotics and deter-
mine the fate of the three-body system: the influence
of the small planet on the motion of the bigger one,
although seemingly a weak perturbation, might
ultimately modify its trajectory around the Sun, at
least in some resonant cases.

The origin of secular terms lies in a phenomenon
of resonance, which is best explained on an
example: the Duffing oscillator €xþ x =��x3 with
�� 1. When looking for a solution in the form
x(t) =

P
�nxn(t), each component xn(t) has to be

bounded in order to get a consistent perturbation
expansion, in which the hierarchy of terms of
different orders remains valid forever: �xnþ1(t)�
xn(t). These components should satisfy the following
sequence of equations:

€x0 þ x0 ¼ 0; €x1 þ x1 ¼ �x3
0; . . .

ðlinearized operator Lx � €xþ xÞ ½1�

It gives x0(t) = aeit þ c.c., from which follows a
secular contribution (3i=2)ajaj2t eit in x1(t). In
general, solving perturbatively _z = f (z, �) for an
expansion z(�, t) =

P
n �

nzn(t) yields a hierarchical
sequence of equations of the form _zn = Lzn þ ’n

(z0, z1, . . . , zn�1) for n � 1, where L = Df (z0, �= 0)
comes from the linearization in z0 of the unperturbed
evolution law. A secular divergence arises in zn as
soon as ’n contains an additive contribution which is
an eigenvector of L (part of a mathematical result
known as the Fredholm alternative). The appearance
of secular terms reflects a singular feature of the
dynamics: the fact that the limits as �! 0 and t!1
do not commute. As a rule, such noninversion is
associated with generalized secular divergences: the
fast, short-term dynamics finally contributes to the
slow, long-term behavior. This feature is a clue
towards using multiple-scale method.

Technical Principles

The first step is to perform rescalings leading to
dimensionless variables and functions, which evidence
a small control parameter �, related to scale separation
and providing a natural parameter for a perturbation
approach. The basic principle of multiple-scale
method is to introduce additional independent time
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variables t1, t2, . . . , tn such that the physical situation
corresponds in this extended time-variable space to
the line

t0 ¼ t; t1 ¼ �t; t2 ¼ �2t; . . .

d

dt
¼ @

@t0
þ � @

@t1
þ �2 @

@t2
þ � � �

½2�

It thus amounts to a perturbation expansion of the
time-derivative operator. This method can be traced
back to the Lindstedt–Poincaré technique, where the
time variable t is expanded according to t = s(1þ
�!1 þ �2!2 þ � � � ) and the evolution described in
terms of the new variable s and unknown frequencies
(!i)i�1 to be determined self-consistently (Nayfeh
1973). By contrast, the multiple-scale approach puts
on a par t0 = t and the additional variables (ti)i�1.
The perturbation approach is then carried out as
usual, plugging eqn [2] for d/dt and the expansion
z(�, t) =

P
n�0 �

n zn(t0, t1, t2, . . . ) into the evolution
equation and identifying term-wise the coefficients
of the successive powers of �. The additional freedom
thus introduced when considering (ti)i�0 as indepen-
dent variables will be compensated in the course of
the computation, by imposing ‘‘solubility conditions’’
ensuring the vanishing of secular terms and the
consistency of the perturbation method. In particular,
it is possible to freely choose boundary conditions
outside the physical line t1 = �t0, . . . , tn = �nt0. The
resulting set of equations contains exactly the same
information as the original one, only expressed in a
different way: by construction, terms depending, say,
on t0, describe a fast component with no emerging
slow trends that would intermix with the t1-
dependence; fast variables contribute only to fast
modes. At the end, one restricts to the physical line,
thus turning back to the single ‘‘real’’ variable t. The
benefit of the method is to provide a joint access to
dependences at different scales, now expressing as
dependences onto the different time variables
t0, t1, . . . , tn. One introduces as many new variables
as necessary to circumvent secular divergences. We
have implicitly supposed above that the behavior at
timescale �t =O(1) corresponds to the fastest
timescale of the evolution. If it were not the case,
the rescaled time variables would be t0 = �n0t,
t1 = �n0þ1t, . . . if the fastest timescale is �t =O (�n0 ).
More general time-derivative expansion, associated
with rescaled variables tn = ��n t might be considered
to better account for the hierarchy of characteristic
timescales of the dynamics.

Multiple-Scale Method: Abstract Examples

Let us first consider the simplest possible example
_x = a(1þ �)x, for which the exact solution is trivially
known, allowing to appreciate the validity of the
multiscale approach compared to the straightforward
perturbation expansion. In the latter case, one looks
for a solution x(t) = x0(t)þ �x1(t)þO(�2) and identi-
fies term-wise the powers of �. At order 0, _x0 = ax0

yields x0(t) = c0eat. At order 1, _x1 � ax1 = x0(t) leads
to a secular divergence: x1(t) = c0

1eat þ c0teat. Carry-
ing on the perturbation analysis yields the following
expansion:

xðtÞ ¼ c eatð1þ �t þ �2t2=2þ � � �Þ ½3�

which is not uniformly convergent: for t =O(1=�), all
terms are of the same magnitude. Using this recursive
method to obtain a finite-order approximate solution
(e.g., stopping, as here, after two steps of the
perturbation method) is only relevant at short times
t� 1=�. The straightforward perturbation analysis
captures the behavior of the exact solution only if all
terms are computed and taken into account (in less
trivial examples, the straightforward perturbation
series might even be divergent). In the multiple-scale
approach, one introduces two rescaled variables t0 = t
and t1 = �t and looks for a solution of the form x(t) �
x0(t0, t1, . . .)þ �x1(t0, t1, . . .)þO(�2). At order 0,
@t0

x0 = ax0 yields x0(t0, t1, . . .) = c0(t1, . . .)eat0 . At
order 1, we get @t0

x1 þ @t1
x0 = x0 þ ax1. The solubil-

ity condition writes ac0 � @t1
c0 = 0, which allows as

to avoid secular divergence and suppresses the
artificial freedom introduced with the additional
time variable t1, yielding c0 = ceat1 . The equation
(@t0
� a)x1 = 0 is here superfluous, but in less simple

situations, it remains at this stage a nontrivial
equation for x1. One thus directly gets the solution,
uniformly valid at all times:

xðtÞ ¼ c eat1 eat0 ¼ c eað1þ�Þt ½4�

As a rule in singular perturbation method, the
difficulty here originates in the noncommuting limits
� ! 0 and t ! 1; indeed, denoting y�(t) = x�(t)e

�at,
one has limt!1 lim�! 0þ y�(t) = c, whereas lim�! 0þ

limt!1 y�(t) =1.
Other training examples are the weakly damped

linear oscillator €xþ x =�2� _x, solved with multiple
scales t0 = t, t1 = �t, t1 = �2t, or with the more spe-
cific variables �=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

t, � = �t; the Duffing oscil-
lator €xþ x =��x3 introduced above, whose
multiple-scale resolution requires three variables
t0 = t, t1 = �t, t1 = �2t; and the Van der Pol oscillator
€xþ x = �(1� x2) _x.
An Illustration: Classical Lorentz Electron Gas
in a Weak Field

As a less abstract, hence more convincing, illustra-
tion of the strength of multiple-scale method, let us
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consider the dynamics of a classical Lorentz electron
gas acted upon an external electric field (associated
acceleration a). This model considers the electrons
as charged hard spheres whose motion results from
the superimposition of a driven classical motion in
the field and elastic collision on immobile scatterers
(the atoms). It is implemented within a kinetic-
theoretic framework, based upon a Boltzmann-like
equation for the electron velocity distribution:

@

@t
þ a:

@

@v

� �
f ðv; tÞ ¼ � v

�
Qf ðv; tÞ ½5�

where v = jvj, and � is the mean free path of the
electrons. Qf = f � fsph is a projector accounting for
the effect of collisions through the deviation of the
distribution f from spherical symmetry, namely
through the discrepancy between f and its isotropic
counterpart fsph(v) = (1=4�)

R
f (v, t)dv̂ obtained as

an average over the velocity directions v̂. The
relevant small parameter is �= ma�=kT, measuring
the ratio of the work ma� done by the field over the
mean free path to the thermal energy kT in the
initial state. The condition �� 1 ensures
the separation of the characteristic timescales of
the two mechanisms experienced by an electron: the
thermal motion and the field-induced deterministic
motion. Denoting by vth =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=m

p
the thermal

velocity of the electrons, we have indeed
�= (tth=tacc)

2, where tth =�vth is the mean time
between two successive collisions with the scatterers
and tacc =

ffiffiffiffiffiffiffiffi
�=a

p
is the acceleration time required for

the field to move the electron over the mean free
path � starting from rest. The result of the plain
weak-field expansion is to evidence its own failure:
it shows that the perturbation is singular insofar as
the asymptotic state will be fully dominated by the
field, with no memory of the initial temperature.
Multiple-scale method is here implemented with
respect to the time variable, introducing new
independent variables (�i)i>0 such that the physical
situation corresponds to the line

�0 ¼ tvth=�; �1 ¼ ��0; �2 ¼ �2�0; . . . ; �n ¼ �n�0; . . .

ð� ¼ ma�=kTÞ ½6�

The time-derivative expansion [2] is supplemented
with an expansion of the velocity distribution:

f ðv; tÞ ¼
X
i�0

� i FðiÞðv; �0; �1; . . . ; �n; . . .Þ ½7�

The procedure is conducted as exposed in the
general case. Identifying term-wise the coefficients
of the expansion yields a hierarchy of equations for
the (F(i))i�1, each supplemented with a solubility
condition preventing the appearance of secular
divergences. A detailed presentation can be found
in Piasecki (1993). The benefit of the multiple-scale
method is to yield jointly the different stages of the
gas evolution, starting from thermal equilibrium and
switching on the field at t = 0:

� at times � =O(1), an initial transient with a drift
velocity hvzi(t) = at � C1at2vth=�þ � � � in the
direction of the applied field (denoting C1 some
numerical constant);
� at times � =O(1=�), a linear-response regime with

a steady drift velocity hvzi 	 a�=vth; and
� at times � =O(1=�2), a long-time field-dominated

heating of the gas, where the velocity distribution
is no longer Maxwellian, and the kinetic energy of
the electrons grows without bounds as t2=3,
whereas the drift velocity slowly vanishes asymp-
totically: hvzi 	 (�2a=t)1=3.

Domains of Application of the Multiple-Scale
Method

The multiple-scale method was first developed in
nonlinear mechanics. It is fruitful and is even
required in any instance where plain perturbation
expansion is not uniformly convergent, more gen-
erally when it is necessary to account jointly for
variations at different timescales: resonant wave
interactions, for example, in plasmas, or in the case
of oscillations with slowly varying coefficients.
Multiple-timescale method was applied, around
1960, to get kinetic equations (closed equations for
the one-particle distribution) from molecular
dynamics (Liouville equation) for dilute gases,
plasmas, or to establish a microscopic theory of
Brownian motion from molecular dynamics of a
hard-sphere system (see the section ‘‘Microscopic
theory of Brownian motion’’). In the same spirit, it
allows to relate constructively different mesoscopic
descriptions, for example, in the case of Brownian
motion, to relate the Kramers equation for the
distribution P(r, v, t) to the Smoluchowski equation
for P(r, t) (see the section ‘‘Mesoscopic theory of
Brownian motion’’). Other examples are the deter-
mination of transport coefficients (friction, viscosity)
from kinetic description or, at macroscopic scale,
the determination of eddy viscosity and eddy
diffusivity (see the section ‘‘Effective diffusivity for
a passively advected scalar’’). A last domain of
application concerns systems where relaxation pro-
cesses at different scales superimpose, requiring to
handle jointly different time dependences. Multiple-
scale method then displays the physics of the
relaxation process and its associated hierarchical
structure (e.g., the application to the adiabatic
piston problem discussed in this Encyclopedia by
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Gruber and Lesne – see Adiabatic Piston; see also
the section ‘‘Some typical applications’’).
A Brief Overview of Multiscale
Approaches

Different Scales and Regimes

Common to all multiscale approaches is the focus on
the very existence of different scales, exploited
through the use of rescaled variables, which makes
explicit the presence of a small parameter � control-
ling the dynamics, responsible for the existence of
different timescales and related to the scale separa-
tion. Technically, the first, very simple but essential,
step is to replace the variables, fields, and param-
eters by their dimensionless counterparts. So doing,
small parameters reflecting scale separation (in time,
space, energies, amplitudes, . . .) will naturally
appear. Although it is thus possible to estimate the
order of the different terms, it is to be underlined
that it gives no clue on their actual contribution to
the long-term behavior: in singular situations, pre-
cisely those where multiscale approaches have to be
developed, small terms can have a noticeable
influence at all scales. As illustrated in the following
sections, different rescalings of variables and func-
tions allow us to discriminate features at different
scales and to capture different regimes. More
specifically, the techniques to manage with the
joint contributions of several regimes at different
timescales depend on the way these regimes inter-
mix. They can be:

� superimposed regimes, when fast and slow depen-
dences intermingle in the evolution of the same
variable. It is the framework of multiple-scale
analysis. The solution writes typically x(t, �t,
�2t, . . .); or
� coexisting regimes, namely a coexistence of fast

and slow evolutions. One might focus either on
the fast evolution and use a quasistatic approx-
imation (or parametric approximation) for the
slow evolution, either on the slow evolution and
use a quasistationary approximation or an aver-
aging of the fast evolution. The solution writes
typically [xfast(t), xslow(�t)] (or [xfast(�=�), xslow(�)]
if the observation takes place at long timescales,
with a relevant time variable � = �t); or
� successive regimes, when initial conditions, bulk

behavior and asymptotics are not of the same
order with respect to �; this is a boundary-layer-
like issue, and the solution writes typically
xlayer(t=�) for 0 
 t 
 t0, then xbulk(t) for t � t0,
with t0 =O(1).
Applications are innumerable; the most typical
and investigated ones are the climate (from ‘‘hours’’
for the observed weather to ‘‘thousands of years’’ for
eras), population dynamics, coasts and sand dunes
(from ‘‘grains’’ to ‘‘country’’ scales), protein folding
(the vibration of covalent bonds occurs at scale of
femtoseconds, while the whole folding may require
up to a few seconds), or trading markets (from
seconds to years). Let us finally give two typical
examples for the parameter �:

� The weak-damping and high-friction limits, best
explained on an example. The damped oscillator
m€xþ � _xþ V 0(x) = 0 appears as an Hamiltonian
dynamics m€xþ V 0(x) = 0 as soon as the damping
can be neglected, when the characteristic time
�= [m=V 00(0)]1=2 of the undamped oscillator is far
smaller than the damping time � = m=�. The
weak-damping limit is thus defined as �! 0,
where �= �=� = [�2=mV 00(0)]1=2. It leads to a
singular behavior when investigating the asymp-
totics, as in the Duffing oscillator and weakly
damped oscillator mentioned in the last section.
On the contrary, the evolution appears as a
dissipative gradient dynamics _x =�V 0(x)=�= 0
as soon as � � �. This leads to the high-friction
limit: �=�= [mV 00(0)=�2]1=2 ! 0. This example
somehow reconciles conservative and dissipative
dynamics, showing that they might coexist in the
same system.
� The hydrodynamic limit involved in the deriva-

tion of hydrodynamics equations (namely incom-
pressible Navier–Stokes equations) from kinetic
Boltzmann equation. It writes �=�=L! 0, where
� is the so-called Knudsen number, defined as the
ratio of the mean free path � (the average distance
traveled by a fluid molecule between two succes-
sive collisions) to a characteristic spatial scale L of
the system (e.g., the size of an obstacle).

Bridging the Scales: Mean-Field, Singular
and Scaling Approaches

The aim of multiscale approaches is to bridge
different scales, through the determination of the
large-scale behavior of the solution, or by establish-
ing a constructive relation between the initial model
and an effective model at higher scale. We have
mentioned in the introduction a first classification of
multiscale systems and associated approaches: they
might exhibit (1) scale decoupling, (2) some singu-
larity in the relation between the different scales, or
(3) scale invariance.

Mean-field approaches In case of scale decoupling,
mean-field approaches apply. Let us briefly recall,
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within its usual spatial formulation, that a mean-
field approach amounts to identifying the local
environment, which is a priori fluctuating and
spatially inhomogeneous (e.g., the local magnetic
field generated by neighboring spins in a spin lattice
model) with the average one, expressed as a function
of the average order parameter (spatial average or
equivalently a statistical average in the limit as the
system size tends to infinity). Mean-field approaches
can be implemented either in time (averaging), in
real space (homogenization, coarse-graining), or in
phase space (aggregation and projection techniques).

In the present context, the best example of a mean-
field approach is provided by homogenization proce-
dures. They can be traced back to the method of
Lagrange to solve the three-body problem. The issue is
to describe the motion of a light body B2 experiencing
the gravitational attraction of the Sun and a heavier
body B1. The mass of B2 is supposed to be small
enough to neglect its influence on the Sun and B1 (the
so-called restricted three-body problem); B1 will thus
obey the Keplerian laws of motion. The method of
Lagrange applies when B2 is far more distant from the
Sun than B1(r2 � r1), which implies (due to the third
law of Kepler: !2r3 = const.) that the angular velocity
!1 of B1 is far larger than !2: the large body B1 moves
faster than B2 around the Sun. In first approximation,
Lagrange replaced the rapidly oscillating influence of
B1 on the motion of B2 by the influence of a constant
distribution of mass, obtained by spreading the mass
m1 of B1 all over its orbit. The Gauss theorem thus
states that this influence can be accounted for by
simply adding the total mass of this distribution to the
mass of the Sun. The stability of the system would
follow: B2 will remain trapped in the neighborhood of
the pair composed with the Sun and B1.
Singular perturbations A typical instance of singu-
lar multiscale behavior is associated with asymptotic
expansions

xðtÞ ¼
Xn�1

r¼0

�rxr þ Rnð�; tÞ ½8�

which are not convergent: limn!1 Rn(�, t) 6¼ 0 at
� fixed, but lim�!0 �

�nRn(�, t) = 0 at fixed n and t.
Asymptotic expansions are ubiquitous in multiscale
approaches: the coexistence of different timescales,
superimposed and nontrivially coupled to get rise to
the observed phenomenon, prevents from obtaining
uniformly convergent perturbative expansions; it
is only in this latter regular case that the above-
mentioned mean-field approaches and homogeniza-
tion techniques apply.
Scale invariance, scaling theories and renormalization
Self-similarity and associated criticality prevent scale
decoupling, but allow us to develop scaling theories
and renormalization methods. In contrast to scale-
separation arguments, the guiding principle is now
to focus on the links relating one scale to the others
(scaling transformations, renormalization transfor-
mations). The problem complexity is thus reduced in
a some ‘‘transverse way,’’ by retaining only scale-
invariant features. We shall expose in the section
‘‘Renormalization: an iterated multiscale approach’’
further links between multiscale approaches and
renormalization methods, beyond the restricted
scope of scale-invariant systems: in many instances,
renormalization can be seen as an iterated multiscale
approach.
Scaling Limits

Let us mention a specific instance of multiscale
approach, which is associated with scaling limits.
Scaling limit refers to a joint limiting procedure, in
which several independent variables jointly converge
towards given limits, with prescribed relative beha-
viors; this latter condition is a key point in the
frequent case when the different limits do not
commute, and we shall see later that it is an
essential ingredient of renormalization methods.
Let us cite two acknowledged examples:

� The thermodynamic limit for a system of N particles
in a volume V; it amounts to let N !1, V !1,
while N=V = n = const. (constant average number
density). It is a prerequisite to derive standard
thermodynamic behavior from the statistical–
mechanical description; it supports the use of
asymptotic results given by the law of large numbers
and the central-limit theorem provided the correla-
tions between the particles remain short-range.
� The Boltzmann–Grad limit for a system of n hard

spheres of radius � per unit volume. In dimension
d, it writes �! 0, n!1 (thus differing from the
thermodynamic limit) while n�d�1 = z remains
constant. This limit is involved in kinetic theory
as a limiting instance where the Boltzmann ansatz
applies (identifying the two-particle distribution
function with the product of the corresponding
one-particle distributions). Indeed, the occupied
volume fraction n�d tends to 0 so that recollisions
and ensuing long-term correlations can be
neglected (rarefied gas). On the other hand, the
mean free path of a particle remains finite, so that
numerous collisions and associated molecular
chaos further support the Boltzmann decorrela-
tion ansatz.
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Stochastic Multiscale Approaches

Multiscale approaches are far less developed for
stochastic processes. Let us mention the case of a
Markov process. Scale separation reflects in a
spectral gap in the transition matrix generating the
dynamics. Identification of fast and slow modes is
then straightforward: slow modes are associated
with quasidegenerated eigenvalues (� � 0 in a time-
continuous setting), whereas fast dynamics is asso-
ciated with damped modes and negative eigenvalues
(� < 0, j�j � 1) (Gaveau et al. 1999). A basic
difficulty in extending methods developed in a
deterministic context is the fact that the reduction
(or projection) of a Markov process is a priori no
longer Markovian. Closure relations and approx-
imations should be introduced to circumvent mem-
ory effects, for example, supported by arguments
of decorrelation and ensuing fast temporal self-
averaging of the fast dynamics.

It is to note that the behavior upon rescaling of a
stochastic process differs from the transformation of
a deterministic evolution. The basic relation is the
scaling upon a time rescaling �= �t of the white
noise involved in stochastic differential equations
and defined from the Wiener process W(t) through
the relation dW(t) = 	(t)dt. It follows from the
definition fW(�) = W(t) that dfW(�) =

ffiffi
�
p

dW(t). At
this point, it is important to notice the difference
with respect to the behavior of a plain deterministic
function ef (�) = f (t) for which def (�) = � df (t). Using
the fact that 
(t) = �
(�) and the definition
dfW(�) = e	(�)d�, we obtain that e	(�) is a white noise
with respect to the rescaled time �, that is, a
stationary Gaussian process defined by its first two
moments

he	ð�Þi ¼ 0; he	ð�Þe	ð�0Þi ¼ 
ð�� �0Þ ½9�
Slow/Fast Variables

Slow/Fast Decomposition

Dynamics of systems made of many interacting
elements, for example, chemical reactions, or popu-
lation dynamics, typically involves far too many
degrees of freedom to be handled at the level of
individual units, and requires a drastic reduction to
make sense of it. A natural way of reduction is based
upon the phenomenology, taking as relevant degrees
of freedom those describing the slow evolution
observed at macroscopic scales. Scale separation
between microscopic and macroscopic worlds has to
be turned into a constructive and quantitative
argument to achieve this reduction.
Solving this typical multiscale issue first requires
to identify and construct explicitly the slow vari-
ables, for example, collective variables obtained
through aggregation or coarse-grainings. The second
step is to eliminate or rather integrate the fast
dynamics into a closed system of effective equations
describing the large-scale evolution. The closure
requirement generically involves an approximation,
neglecting the remaining dynamic coupling between
fast and slow variables. It is precisely here that scale-
separation arguments and the very choice of the
slow variables are crucial, ensuring that the influ-
ence of fast dynamics is essentially accounted for in
its effective or average contribution to the slow
dynamics; remaining fluctuating influences can be
either neglected or included in a noise term, required
to be fully determined as a function of the slow
variable only (otherwise the whole procedure would
neither be consistent nor useful). In the following
subsections, we shall briefly present the main
techniques allowing to achieve this program, con-
sidering the simple abstract system:

dX

dt
¼ f ðX;YÞ; dY

dt
¼ � gðX;YÞ; ð�� 1Þ ½10�

Although involving only two variables for simpli-
city, it exhibits the typical multiscale structure:
whereas X varies on scales O(1), Y appears as a
slow variable of characteristic timescale O(1=�).

Parametric Approximation

The preliminary step of the reduction is to get some
knowledge on the fast dynamics, at least to choose
the proper multiscale technique. A plain but never-
theless fruitful remark is that a parameter p can
always be seen as a variable that does not evolve:
dp=dt = 0 in a deterministic setting, or Wp!q =

(p� q) in a stochastic one (transition probability
W). Conversely, a slow variable can be transiently
treated as a mere parameter in the fast dynamics.
Supported by timescale separation, this parametric
approximation (or quasistatic approximation)
decouples the fast dynamics from the slow variable
evolution, investigating the fast dynamics asympto-
tics (t !1) while considering that the slow variable
remains constant Y(t) � y. In the following, we shall
distinguish two cases: (1) the fast dynamics oscillates
with a period T � 1=�, and (2) the fast dynamics
relaxes to a stable equilibrium point X
(y) slaved to
the slow variable.

Amplitude Equations

A ubiquitous technique to account for slowly
modulated oscillations has been introduced first by
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Fresnel for light propagation and optical phenom-
ena. The basic idea is to take benefit from the scale
separation between the fundamental oscillation
(frequency !, wavelength �= 2�=k) and a super-
imposed slow variation of the wave amplitude

Aðr; tÞ ¼ Aðr; tÞeiðk:r�!tÞ

K � jrA=Aj � k; � � j@tA=Aj � !
½11�

The evolution can be rewritten in terms of the
slowly varying amplitude A; by construction, it is
ruled by terms involving the small parameter � 	
K=k 	 �=!� 1, but the resulting equation is now
devoid of small or large parameter. Such technique
has been successfully applied and further developed,
for example, in various situations involving electro-
magnetic waves (e.g., diffraction of Hertzian waves),
in plasma physics (resonant interaction between
electromagnetic waves and acoustic modes) and in
quantum mechanics, to investigate the deformation
of a wave packet in a potential.

Averaging

Let us discuss further, in a general setting, the case
when the fast dynamics is an oscillation of period T
(either linear modes as in the last subsection or a
stable limit cycle). It is a context where averaging
techniques apply. We refer to the associated entry in
this Encyclopedia by Neishtatdt (see the article
Averaging Methods) and only mention here the
main principle: to exploit scale separation and self-
averaging property of the fast dynamics to replace
X(t) by an average value

XavðtÞ ¼ ð1=TÞ
Z Tþt

t

XðsÞds

The underlying idea is that averaging cancels out
most of the fast variations so that Xav(t) is now
slowly varying. In case when the fast dynamics is
influenced by the slow variable Y, its value is kept
constant in the averaging (see the section ‘‘Para-
metric approximation’’). The resulting average
behavior Xav[Y(t), t] is reinjected in the evolution
of the slow component, leading to a closed equation,

dY

dt
¼ � g Xav½YðtÞ; t�;Yð Þ

or rather

deY
d�
¼ g eXav½eYð�Þ; � �; eY� � ½12�

in terms of the more relevant rescaled time variable
� = �t and eY(�) � Y(t). Denoting �Y(�) the solution
of this approximate equation, the validity of the
averaging procedure is assessed by theorems
giving conditions ensuring that lim�!0
eY�(�) = �Y(�).

Note that such theorems (quite unusually) state
the convergence, for a vanishing value of the
perturbation parameter �, of the exact solutions
towards the approximate one (solution of the
average equations).

To conclude, let us notice that one speaks of
averaging in temporal context and homogenization
in spatial or spatio-temporal contexts, when aver-
aging is performed over space; as discussed in the
section ‘‘Bridging the scales: mean-field, scalar, and
scaling approaches,’’ averaging and homogenization
belongs to the general class of mean-field
approximations.
Quasistationary Approximation

Let us now consider the case when the fast dynamics
converges at fixed Y towards a stable fixed point
X
(Y). Focusing on the slow dynamics, the relevant
time variable is � = �t, which turns the evolution
[10] into

�
dX

dt
¼ f ðX;YÞ; dY

dt
¼ gðX;YÞ ½13�

(for the sake of simplicity, we use the same notation
X for both X(t) and eX(�)). It is solved in two steps, by
noticing that at lowest order in �, the fast dynamics
reduces to the asymptotic regime f (X, Y) = 0, slaved to
the slow variable Y. The corresponding stable state
X
(Y) is then plugged into the slow dynamics to get a
closed equation for Y(�):

dY

d�
¼ g½X
ðYÞ;Y� � GðYÞ ½14�

This achieves the desired dimensional reduction. It
works equally well when X is a string of variables
X = (x1, . . . , xN).

There is seemingly a paradox here, ubiquitous in
many multiscale approaches: in order to determine
the evolution of the slow variable Y, it is considered
a constant! The solution lies in scale separation: the
trick is to consider the ensuing approximate decou-
pling as an exact one (what it would be in the limit
�! 0). In other words, the constancy of Y is
considered over a time length which is long at the
level of fast dynamics (�t� 1), long enough for X
to reach its equilibrium state X
(Y), but short at
the macroscopic level (��t = �� � 1). As in the
so-called ‘‘quasistatic evolutions’’ encountered in
thermodynamics, the large-scale evolution will be
composed of a continued succession of local
equilibrium states: at each time � , X takes its
instantaneous equilibrium value, slaved to Y(�).
Here one speaks equivalently of quasistationary
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approximation, quasisteady-state approximation, or
adiabatic elimination of fast variables.
Slow Invariant Manifolds

In the previous subsections, the decomposition
between fast variables X and slow variables Y was
given. But in practice, only the whole dynamics of
the system is known and a main part of the issue is
to find and construct explicitly the slow variables.

A geometrical viewpoint on the dynamics
appears to be fruitful: if the system evolution is
to be reducible to the evolution of a few degrees
of freedom, it means that the flow essentially lives
in a low-dimensional region of the phase space,
which can be parametrized by these degrees of
freedom up to some fuzziness of order O(�).
Mathematical investigations have been conducted
to assess this point, leading to the concept of
invariant slow manifold: a manifold M of the
phase space, invariant upon the dynamics and
describing the slow dynamics once the system has
reached it (Gorban et al. 2004). Starting from an
arbitrary point z0, the trajectory first exhibits a
fast transient bringing the system state close to M,
up to some tolerance of order O(�), then sticks to
M. Its evolution on M is ruled by a reduced
dynamics, far slower than the fast relaxation to
M as soon as the system actually exhibits a
timescale separation. This latter self-consistent
assertion should be considered as a working
hypothesis, to be validated by the explicit deter-
mination of M and associated reduced dynamics.
This can be done numerically, by exploiting the
presumed convergence property of any trajectory
reaching M after some intrinsic transients. In
other words, if the dynamics possesses a slow
invariant manifold, an operational way to find M
is to let the system evolve, starting from a sample
of initial conditions, and to observe its stabiliza-
tion on M.

This framework obviously embeds the quasista-
tionary approximation presented in the last subsec-
tion: in this case, the slow invariant manifold is
M={z=(x,y), f (z)=0}={(x
(y),y)} and the dynamics
restricted to M is the slow dynamics dy=d� =
G[y(�)], x(�) = x
[y(�)]. Here the manifold is invar-
iant upon the approximate dynamics (for all
t, f [z(t)] = 0, hence z(t) 2 M) but not upon the
original one: some rigorous mathematical work has
to be done to show that the actual dynamics keeps
the trajectory in a proper neighborhood of M of
width O(�). In other words, one has to control the
discrepancy between the exact trajectory and the
trajectory slaved on M.
Central Manifold

The notion of slow invariant manifold generalizes
older results about central manifolds, exploited to
reduce the dynamics near a bifurcation point. Let us
consider a dynamical system _x = f (x,�) near a
bifurcation point: in �=�c, the fixed point x0,
stable for � < �c, loses its stability. This reflects on
the largest eigenvalue(s) of the stability matrix
Df (x0,�), namely �1(�) < 0 for � < �c,�1(�) > 0
for � > �c, and �1(�c) = 0. The small parameter is
then �=�1. A main result was to show that, near the
bifurcation point, slow modes coincide with
unstable directions and fast modes with stable
directions (Haken 1996). The decomposition into
slow and fast variables is ruled by the central
manifold theorem: the solutions can be expressed
in terms of the amplitudes along the eigenvectors of
the null space of the dynamics at �= 0; these
amplitudes appear as the relevant order parameters
near the bifurcation. This is referred to as the slaving
principle. Compared to the setting presented in the
subsection ‘‘Slow invariant manifolds,’’ the slow
invariant manifold M is given here by the central
manifold.

Projection Techniques

The methods presented in the previous subsections
to eliminate fast variables and construct a reduced
slow dynamics can be unified into a common
framework: Mori–Zwanzig projection techniques.
The full state (x, y) of the system is projected onto
the slow variable y and the functions w(x, y) are
projected onto their conditional expectation

PwðyÞ �
Z

wðx; yÞ�ðxjyÞdx ½15�

The core of the method lies in the choice of
conditional distribution �(x j y), for instance,
�(x j y) = 
(x� x
(y)) in case when there is an
invariant manifold x = x
(y), or �(x j y) = 1=2� in
case of averaging over a rapidly varying phase x. We
refer to Givon et al. (2004) for a review.

Aggregation Techniques and Coarse-Grainings

An intuitive guideline in the analysis of a multiscale
dynamics is that collective variables or coherent
states coincide with slow modes. The rationale is
that numerous fast fluctuations at the level of agent
dynamics self-average, so that only a slow trend is
perceptible at large scale. Aggregation methods have
been developed in this spirit to build reduced models
governing the slow dynamics. Nevertheless, in
generic situations, aggregation does not lead to
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closed equations for the collective variables and
some level of approximation has to be introduced.

Let us now consider a system of N coupled
degrees of freedom, [xi(t)]I = 1...N (e.g., a system of N
interacting agents) evolving deterministically accord-
ing to a two-scale dynamics (Auger and Bravo de la
Parra 2000):

�
dxi

dt
¼ fiðx1; . . . ; xnÞ þ �giðx1; . . . ; xnÞ ½16�

where f describes a fast evolution due to the
coupling between species and gi a slow evolution
due to internal mechanisms. A natural choice for the
slow variable is Y(x1, . . . , xn) =

P
i xi, but we shall

write below the general case. The self-consistent
requirement of the method is that this variable Y
reflect a global and slow behavior. Considering t as
a fast time variable, this condition amounts to
require a quasistatic behavior for Y at this timescale.
In other words, the consistency condition requires
that there exists a manifold F y such thatXN

i¼1

@Y

@xi
ðx1; . . . ; xNÞfiðx1; . . . ; xNÞ ¼ 0

on F y ¼ fYðx1; . . . ; xNÞ ¼ yg ½17�

We, moreover, assume that the fast dynamics on this
manifold F y leads to a stable equilibrium
(x
1(y), . . . , x
N(y)). We are then in a position to
describe the slow evolution of the manifold itself,
that is, the slow dynamics ruling the evolution of the
aggregated variable y for � small enough:

dy

dt
¼
X

i

@Y

@xi
x
1ðyÞ; . . . ; x
NðyÞ
� �

� gi x
1ðyÞ; . . . ; x
NðyÞ
� �

þOð�Þ ½18�

Internal support of the procedure is to check the
structural stability of this resulting aggregated
dynamics. Compared to the quasistationary approx-
imation and slaving principle presented earlier, here
the slow variable is not given independently but
constructed as a function of the fast variables
(aggregated variable). The same principles can also
be implemented for discrete-time models.

Coarse-graining can be seen as the spatial analog
of aggregation techniques developed in the phase
space: the real space is split into cells considered as
elementary units at macroscopic scale, and all the
small-scale physics is averaged over each cell,
yielding the apparent state of each unit (described
by a few ‘‘coarse-grained’’ variables) and the
effective interactions between them.

Let us cite two hydrodynamic examples. Eddy
viscosity refers to an effective viscosity involved in
coarse-grained hydrodynamics equations; the con-
tribution of small-scale turbulent structures is
accounted for in an integrated way in this para-
meter, hence its name. It is typically lower than bare
viscosity, even possibly reaching negative values at
large enough Reynolds number, that is, at low
enough bare viscosities. Cellular flows are space-
periodic flows, thus exhibiting a natural spatial
scale: the coarse-graining amounts to an intrinsic
homogenization over each cell of the flow.

Let us finally mention that coarse-grainings are
involved in renormalization-group transformations
once supplemented with the adequate rescalings (see
the section ‘‘Renormalization: an iterated multiscale
approach’’).

In conclusion, it is to note that all these various
multiscale approaches are closely related and can all
be expressed as a specific projection technique in the
extended phase space containing both fast and slow
variables. For instance, aggregation techniques
replacing the fast variables (x1, . . . , xn) by the slow
collective variable y = Y(x1, . . . , xn) amount to the
projection technique involving the slow invariant
manifold M= {(x1, . . . , xn, y) j y = Y(x1, . . . , xn)}.

Numerical Aspects

In the community of applied mathematics, multi-
scale methods refer specifically to numerical homo-
genization, involving multigrid algorithms as, for
instance, multiscale finite-element method, multigrid
Monte Carlo, multigrid optimization, or annealing.
Basically, the idea of numerical homogenization is
to avoid the numerical cost of using a mesh of size
h < �, where � is the scale of the smallest-scale
features of the dynamics, and to use jointly:

� a fine mesh, to compute local quantities indepen-
dently (hence with a parallelized program); and
� a coarse mesh, to compute global behavior using

effective parameters and homogenized quantities
determined in the prior fine-mesh computation.

We refer to Gorban et al. (2004) for a review.
Boundary Layers and Matched
Expansions

Purposes and Principles

Multiscale approach to handle boundary layers was
introduced in 1905 by Prandtl in fluid mechanics for
situations where the solution of hydrodynamics
equations far from the boundaries (‘‘bulk’’ solution)
does not match the conditions at the surface of the
walls or obstacles. This typically originates in the
presence of a multiplicative small factor � in front of
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the highest-order derivative; accordingly, the flow
exhibits two different scales in space: a thin
boundary layer of width controlled by � and the
bulk domain. The idea is to perform two different
perturbation methods in the layer and in the bulk,
involving a different rescaling in order to focus on
and give the ruling place to either the boundary
conditions or the bulk dynamics (one also speaks of
inner and outer expansions). Then these parallel
perturbation expansions have to be bridged into a
single global continuous solution. The matching
principle is to identify the asymptotic behavior on
the boundary side with the boundary condition of
the bulk behavior (Nayfeh 1973):

lim
r!0

XbulkðrÞ ¼ lim
�!1

Xlayerð�Þ with � ¼ r=� ½19�

Boundary layers of hydrodynamics have numer-
ous analogs: initial layers in chemical kinetics, skin
layers in electrodynamics and edge layers in solid-
state physics (Nayfeh 1973). Adaptation of this
technique is to be developed to determine the
complete dynamics in the slow-invariant-manifold
approach, matching the fast relaxation towards the
manifold with the slow motion onto the manifold.
Let us finally note that the matched-expansion
approach can benefit in each region of all the
above-mentioned multiscale techniques.
Time Analog: Implementation for Initial Layers

We shall now work out the time analog of a
boundary-layer problem on the abstract example
encountered in [10], in the case when X rapidly
evolves to a slaved equilibrium state X
(Y) but with
initial conditions Y(0) = y0 and X(0) = x0 6¼ X
(y0).
Obviously, the quasistationary approximation fails
to describe the initial regime and its applicability
has to be reconsidered. The general principle of
boundary-layer analysis, namely the recourse to two
different perturbation approaches, is implemented as
follows:

� For the initial regime, one solves the fast
dynamics with initial conditions X(0) = x0 while
keeping Y(t) � y0; this yields an approximate
solution [Xlayer(t), Ylayer(t)], satisfying the initial
conditions and valid at short times, as long as Y
has not evolved.
� At longer times, the relevant variable is the

rescaled time � = �t and the quasistationary
approximation described in the last section
applies.

The consistency of the two perturbative
approaches is ensured by the matching conditions
lim
�!0

Xbulkð�Þ ¼ lim
t!1

XlayerðtÞ

lim
�!0

Ybulkð�Þ ¼ lim
t!1

YlayerðtÞ � y0

½20�

These conditions are actually satisfied since Xbulk(�) �
X
[Ybulk(�)], hence lim�! 0 Xbulk(�) = X
(y0) and, by
definition of X
 (at fixed Y(t) � y0), limt!1
Xlayer(t) = X
(y0).

Some Typical Applications

Enzymatic catalysis A matched singular perturba-
tion approach is currently encountered in chemical
systems, for instance, in the derivation of the
Michaelis–Menten kinetics for a single enzyme and
the Hille cooperative kinetics for an allosteric
enzyme (Murray 2002). Denoting by E the enzyme,
by S the substrate, by ES the active complex, and by
P the product, the single-enzyme catalytic transfor-
mation of S into P is described by the following
scheme:

Sþ EÐ
k

k0
ES�!kcal

Pþ E

½S� � s; ½E� � e; ½ES� � c

½21�

where, as is well known, the enzyme is released at
the end. Introducing dimensionless quantities

~t � ke0t; ~s � s

s0
; ~c � c

e0

Km�
k0 þ kcat

k
; eKm ¼

Km

s0

� � kcat

ks0
; � ¼ e0

s0

½22�

the corresponding chemical kinetic equations can be
written as

d~s

d~t
¼�~sþ ~cð~sþ eKm � �Þ

�
~c

d~t
¼ gð~s;~cÞ � ~s� ~cð~sþ eKmÞ

½23�

Noticing that �� 1 (the enzyme is present in
infinitesimal quantities compared to the substrate),
a quasistationary approximation applies for the
variable ~c: it means that the intermediary species
ES rapidly reaches a local equilibrium state ~c = ~c
(~s).
This yields the substrate evolution

d~s

d~t
¼ �~s

~sþ eKm

½24�

The initial condition is set only on the substrate:
s(0) = s0, that is, ~s(0) = 1. It yields the well-known
expression of the velocity V � (ds=dt)jt = 0 as a
function of the initial substrate concentration:
V(s0) = e0kcats0=(s0 þ Km) (with a maximal value
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Vmax = e0kcat). The quasistationary value for the
complex (dimensionless) concentration ~c
(~s = 1) =
1=(1þ eKm) at t = 0 obviously differs from the actual
initial condition ~c(0) = 0: besides, it is quite foresee-
able that the transients leading the complex ES to its
stationary value cannot be described using a
quasistationary approximation. At short times, the
relevant time variable is the fast rescaled time
�=~t=�, leading to the equation describing the initial
regime when supplemented with the actual initial
condition ~c(0) = 0,~s(0) = 1. The analysis is straight-
forwardly carried over, exactly as in the general
abstract case, with a matching condition lim�!1
~c(�) = ~c(t = 0) = 1=(1þ eKm).

Kinetic theory Time-matched expansions have
been developed in kinetic theory, for instance, to
describe the fate of a tagged particle within a gas. In
a first, short stage (kinetic stage) following the
injection of the particle in the thermally equilibrated
gas, the velocity distribution of the particle rapidly
evolves due to collisions with gas molecules and
associated momentum transfer. This stage lasts a
few mean-free-times and it ends when the tagged-
particle distribution is almost Maxwellian. Then, in
a second stage (hydrodynamic stage), the distribu-
tion slowly relaxes towards a spatially uniform
distribution, ultimately equal to the equilibrium
Maxwell–Boltzmann distribution; at each time, the
velocity distribution is almost Maxwellian. The
particle dynamics is described at the level of its
distribution function by the Boltzmann equation,
and the resolution (the so-called Chapman–Enskog
method) is based on the above general principles.

The adiabatic-piston problem A matched two-
timescale perturbation approach has been developed
for the adiabatic piston problem: an isolated cylinder
filled with an ideal gas (noninteracting light particles
of mass m) is separated in two compartments by a
moving piston, of mass M, adiabatic in the sense that
it has no internal degrees of freedom and does not
conduct heat when fixed. The small parameter is the
mass ratio �= 2m=(Mþm). It quantifies the effi-
ciency of energy transfer between the gas particles
and the piston upon elastic collisions, and the
strength of the indirect coupling of the two gas
compartments through the collisions of their particles
with one and the same piston. The matched
perturbation approach gives access both to a fast
deterministic relaxation towards mechanical equili-
brium, at timescales O(1), with no heat transfer
between the compartments, and a slow fluctuation-
driven evolution towards thermal equilibrium, where
the heat transfer is achieved by the collision-induced
coupling between the gas and the piston fluctuating
motion, thus occurring at timescales O(M=m) (see
Adiabatic Piston).
Renormalization: An Iterated
Multiscale Approach

It is not the place to expose or even summarize the
implementation of renormalization techniques, for
which we refer to the associated entries in this
Encyclopedia. Here we will only stress the natural
relations between renormalization group (RG) and
multiscale approaches. The RG approach indeed
shares many steps and guiding principles: joint
rescalings, coarse-grainings and local averaging,
effective parameters and effective terms, relevant
and irrelevant contributions, with a focus on large-
scale behavior. Moreover, far beyond the scope of
the study of critical phenomena, RG has been
extended into an iterated multiscale approach
allowing to determine in a systematic and construc-
tive way the effective equation describing the
universal large-scale features and asymptotics of a
multiscale system (see, e.g., Chen et al. (1996) and
Mazzino et al. (2004).

It is first to be underlined that different meanings
are associated with the term ‘‘renormalization,’’
corresponding to very different statuses for the
associated renormalization procedures.

A renormalized quantity can be plainly a rescaled
quantity (normalized, dimensionless or put to the
scale of the considered sample): here arises a first
connection with multiscale approaches, both involv-
ing rescalings as an essential preliminary step.

A renormalized quantity can be an effective
quantity accounting in an integrated way of com-
plicated underlying mechanisms (e.g., the renorma-
lized mass of a body moving in a fluid, accounting
for hydrodynamic effects); here arises another
central notion of multiscale approaches: effective
parameters or effective equations (following, e.g.,
from averaging or homogenization).

Renormalization is also a mathematical technique
developed first in celestial mechanics, and then
mainly in quantum electrodynamics to regularize
divergent expansions and perturbation series. It
might proceed by means of resummation; the idea,
implemented by Rayleigh in 1917, is to sum up
correlations and interactions into a redefinition of
the parameters. It might either rely on the introduc-
tion of a cutoff in the space, time, and energy scales,
then accounting in an effective way of the host
of contributions at smaller space and time scales
�x 
 �, �t 
 � (or, equivalently, larger momentum
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and frequency scales: k � 2�=�,! � 2�=�) so as to
take advantage of the physical cancellation of
mathematical divergences. In any case, it turns the
bare parameters of the original singular expansion
into renormalized parameters and yields a renorma-
lized regular expansion. Writing that the resulting
large-scale behavior does not depend on the chosen
cutoff (�, �) yields renormalization equations,
expressing quantitatively the very consistency of
the procedure (‘‘renormalizability’’ of the expan-
sion). Renormalization provides alternative technical
tools in instances treated above with the multiple-
scale method. Its main advantage is its recursive
structure: introducing a sequence (�n, �n)n of cutoffs
(what is called momentum-shell RG), the whole
procedure can be iterated to integrate recursively the
influence of small-scale features on the asymptotic
behavior, allowing as to handle situations exhibiting
a hierarchy or even a continuum of scales.

Renormalization also refers to an asymptotic
analysis allowing as to classify critical behaviors, to
determine quantitatively the critical exponents and to
handle the associated divergences. Indeed, the above-
mentioned multiscale approaches fail near bifurcation
points or critical points. In this case, scale separation is
replaced by scale invariance. The key idea, underlying
RG techniques is to shift the focus on the scaling
procedure itself. The basic point is to construct a
renormalization transformation, consisting in joint
coarse-grainings and rescalings, thus relating the two
models describing the same phenomenon at different
scales (Lesne 1998); it puts forward their self-similar
properties and associated scaling laws, while eliminat-
ing specific small-scale details having no consequences
on the asymptotic, large-scale behavior. The set of
renormalization transformations has a semigroup
structure with respect to the rescaling factor (or plainly
with respect to iteration) justifying to speak of RG. It
generates a flow in the space of models, whose fixed
points correspond either to trivial or to critical
situations according to their stability. It can be shown
that the linear analysis of the renormalization trans-
formation around a critical fixed point gives access to
the critical exponents. Moreover, this analysis allows
us to split the space of models into universality classes,
each associated to the basin of attraction of a critical
fixed point. Let us emphasize that scale invariance
leads to a deep change in the modeling and investiga-
tions, shifting from a ‘‘physics focusing on the
prediction of amplitudes’’ to a ‘‘physics of the
exponents,’’ focusing on less specific, but more
universal and above all, more intrinsic features.

Far more generally, RG is associated with a
qualitative change in the questioning, since the
study takes place in a space of models. Generalized
renormalization transformation can be designed to
extract not only self-similarity properties but any
large-scale feature from a more microscopic model.
In particular, RG can be specially designed to
discriminate between essential and inessential terms
in a model: the latter do not modify the asymptotics
of the RG flow, meaning that they are of no
consequence at large scales. In other words, generic
properties of the renormalization flow in this space of
models yield universal large-scale scaling properties.
RG is thus essentially a multiscale approach, insofar
as it only retains the relations between the different
levels of descriptions, somehow ignoring the details at
each given scale. It is actually designed to capture
universal features of the multiscale organization.
Summary: The Exemplary Case
of Diffusion

Bridging the Scales

Our aim in this section is to present the whole range
of multiscale approaches in use, allowing both to
bridge models devised at different scales and to
predict the large-scale features of the phenomenon
they account for. We choose the context of diffu-
sion, Brownian motion, and transport phenomena,
where such a bridge is essential and has been much
investigated. Indeed, transport coefficients are
defined through phenomenological equations; it is
thus necessary to relate such macroscopic equations
with smaller-scale theories, so as to get an expres-
sion of the coefficients in terms of the microscopic
ingredients and to justify the validity of the
phenomenological description.

The exposition in the various subsections below,
following increasing scales, will mark out the path-
way from reversible molecular dynamics to macro-
scopic diffusion equations. We shall thus come
across the multiple-scale analysis of the Liouville
equation describing at microscopic scales a Brown-
ian grain suspended in a thermal bath of water
molecules (see the next subsection) leading to the
mesoscopic Kramers equation for the grain distribu-
tion function P(r, v, t). Next, involving higher but
still mesoscopic scales, we see that another multiple-
scale analysis leads to the reduced Smoluchowski
equation for its spatial distribution P(r, t). Random
walks offer alternative mesoscopic models, involving
effective diffusion coefficients in order to take into
account underlying features like persistence length
or other short-range correlations. Scaling limits or
more systematic renormalization methods in real
space allow to bridge discrete random-walk models
with continuous descriptions. Another RG, based on



478 Multiscale Approaches
a path-integral formulation in the framework of
field theory, allows to handle the case of self-
avoiding walks with infinite memory. Homogeni-
zation is illustrated on the case of diffusion in a
regular porous medium, whereas diffusion pro-
cesses in fractal substrates provide a counterexam-
ple, singular enough to exhibit anomalous scaling
behavior. The issue of reducing the dynamics of the
diffusion process to a simpler effective one is
encountered in many other macroscopic instances,
among which we shall mention diffusion in a
periodic medium, lending to space averaging, and
advection of a passive scalar field in a two-scale
velocity field, where a multiple-scale analysis yields
the effective diffusivity at large scale. We shall give
further technical guidelines for constructing these
steps climbing from molecular up to large macro-
scopic scales, thus providing additional illustrations
of the multiscale approaches introduced in the
previous sections on more general and abstract
grounds.
Microscopic Theory of Brownian Motion

The first theoretical account of Brownian motion,
namely the erratic movement of a micron-sized
pollen grain suspended in a thermal bath, for
example, water, dates back to 1905 and the famous
paper by Einstein. It took almost 60 years before a
microscopic theory was achieved; this theory has
been further worked out using multiple-scale
techniques (Cukier and Deutsch 1969). The chal-
lenge is to start from the complete deterministic
reversible dynamics of the system, described within
a probabilistic framework by the Liouville equation
@p=@t = Lp for the distribution of probability p in
the whole phase space (position and velocities of
the grain, of mass M, and all water molecules, of
mass m�M). The small parameter is the mass
ratio �=

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
measuring the efficiency of the

energy transfer upon collisions between the grain
and the bath particles, assuming a binary interac-
tion potential U =

P
i u(jr i � rj). The Liouville

operator is decomposed into L = L0 þ �L1, and
one introduces rescaled time variables �n = �n t,
where �0 = t is the timescale of the fluid particle
dynamics. Multiple-scale method is carried out
according to the general scheme, leading to the
so-called Kramers equation,

@

@t
þ v:

@

@r

� �
Pðr; v; tÞ

¼ � @
@v

vþ kT

M

@

@v

	 

Pðr; v; tÞ ½25�
where the friction coefficient is explicitly given as

� ¼ 1

3MkT

Z 1
0

hFt:F0i dt

where Ft ¼ eiL0tF0 and F0 ¼ �rrU ½26�

We refer to the original, although very pedagogical,
paper by Cukier and Deutsch (1969) for a thorough
exposition and discussion of this derivation.
Mesoscopic Theory of Brownian Motion

Multiple-scale method is also of relevance to
determine the high-friction limit of the above
Kramers equation. Standard perturbation technique
with respect to the inverse of friction, 1=�, fails to
describe the asymptotic regime: there is not enough
freedom to fulfill all the solubility conditions
required to avoid the appearance of secular diver-
gences (Bocquet 1997). By contrast, multiple-scale
technique yields a uniform expansion of the evolu-
tion equation still valid at long times, thus allowing
to bridge two mesoscopic levels of description,
namely the Kramers equation and the Smoluchowski
equation for the spatial density �(r, t) of the
Brownian particle:

@

@t
�ðr; tÞ ¼ 1

M�

@

@r
kT

@

@r

� �
�ðr; tÞ ½27�

Introducing dimensionless variables � = tvth=l, R =
r=l, V = v=vth, where l is the size and vth =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=M

p
the thermal velocity of the grain, the relevant small
parameter appears to be the dimensionless inverse of
the friction coefficient, �= vth=l�; hence,

�
@

@�
þ V :

@

@R

� �
PðR;V ; �Þ

¼ @

@V
V þ @

@V

	 

PðR;V ; �Þ ½28�

If the friction is high (i.e., �� 1), the velocity
relaxes very rapidly towards the equilibrium Max-
well distribution, and it is then enough to describe
the (slow) evolution of the spatial distribution
�(r, t). Nevertheless, the relaxation stage is essential
and accordingly the �-dependence is singular, as a
rule when the small perturbation parameter multi-
plies the time derivative.

According to the general procedure exposed in the
section ‘‘Multiple-scale method: principles,’’ we intro-
duce rescaled variables �0 = � , �1 = �� , �2 = �2� , . . .
considered as independent variables and look for a
solution of the Kramers equation of the form
P = P(0) þ �P(1) þ �2P(2) þ � � � , where the arguments
of all the components P(i) are (R, V , �0, �1, �2, . . . ).
Identifying term-wise the successive powers of � yields
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a hierarchy of equations. At order 0, we obtain
P(0) = �(R, �0, �1, �2, . . . )e�V2=2. The following equa-
tions, for the [P(i)]i�1, involve the linearized operator
L= @V (V þ @V ). For each of them, there appears a
solubility condition, requiring that none of the additive
contributions in the equation is an eigenvector of L;
involving the components P(j) with j < i, it prevents the
appearance of a secular divergence in P(i). At order1,
the solubility condition is @�=@�0 = 0, thus determin-
ing the (trivial) �0-dependence of P(0). In a similar way,
the solubility condition at order 2 allows to determine
the �1-dependence of P(0). This bridges the Kramers
and Smoluchowski equations in the high-friction limit,
when retaining only the first-order term in �. We refer
to Bocquet (1997) for a pedagogical account of the
derivation and discussion of its relation with the time-
derivative expansion involved in the so-called Chap-
man–Enskog solution of the Boltzmann equation.
Random-Walk Model and Weakly
Correlated Diffusion

Random walks are discrete-time mesoscopic models,
accounting for the diffusing motion of a particle
through the statistical properties of its successive
steps, when observed at a given timescale � . The
basic model (ideal random walk) assumes isotropic,
independent and identically distributed steps of var-
iance a2. Central-limit theorem straightforwardly
gives the time dependence of the mean-square dis-
placement R2(t) � hjr(t)� r(0)j2i= a2t=� , showing
that the motion is a normal diffusion, with diffusion
coefficient D = a2=2d� in dimension d. It is to note (see
also the next subsection) that D depends � and a, but in
a joint manner. Actually, the diffusion coefficient
associated with a diffusive motion observed at scale a
and modeled by a random walk on a lattice of
parameter a can be written as D =�a2, where the rate
� depends on a (effective rate at spatial resolution a):
this is a sort of renormalization that accounts for the
rate �(a) of all microsteps backward and forward of
length far smaller than a.

In case of short-range correlations between the
successive steps (namely if

P1
�1 jC(t)j <1, where

C(t) is the statistical correlation function between
elementary steps separated by a time length t), direct
computations support a time-average-like result:
the asymptotic behavior is still described by a
normal diffusion law R2(t) 	 2dDefft, with Deff =
D
P1
�1 C(t). When C(t) = e�t=�

Deff ¼
Dð1þ e�1=�Þ

1� e�1=�

hence Deff � 2�D if � � 1.
Renormalization Analysis in Case
of Markovian Diffusion

Trying to bridge lattice random walks with a
continuous description brings out the following
difficulty: as the step size a goes to 0, one has to
obviously decrease the duration � accordingly, but
by what amount is not so obvious, since the walker
velocity is ill-defined (it depends on the observation
scale). Determination of the proper joint rescaling
can be guessed from the knowledge obtained by
another mean about the system; rather, it can also
be obtained in a systematic way, thanks to RG
methods. Let us explain the basic principle.

Let us denote by Pa, � (x, y, t) the transition prob-
ability governing the random walk, namely the
density of probability to jump from x to y in time
t, where x, y are restricted to the lattice (aZ)d and
time to �N. The renormalization transformation
�k,� should express the consequence for Pa, � of a
joint rescaling of space (by a factor of k) and time
(by a factor of k�). Taking into account the Markov
character of the walks, we are thus led to define

½�k;�Pa;� �ðx; y; tÞ� kdPa;�ðkx; ky; k�tÞ
in dimension d ½29�

The proper value of � is to be determined self-
consistently in order that the limit limk!1 �k,� Pa, �

exists (it is then a continuous transition probability
P
�(x, y, t) defined on Rd � Rd � R). The root-
mean-square displacement

RðP; tÞ �
X
x; y

x� yj j2Pðx; y; tÞ
" #1=2

is transformed according to

Rð�k;�Pa;� ; tÞ ¼ k�1RðPa;� ; k
�tÞ ½30�

Accordingly, it yields the diffusion law associated
with the fixed point P
�:

for any k; RðP
�; tÞ ¼ k�1RðP
�; k�tÞ;
hence RðP
�; tÞ 	 t1=� ½31�

It is anomalous except if �= 2. In the case of ideal
random walks, the proper exponent leading to a
nontrivial limit is �= 2; this limit P
2 is the transition
probability of a Wiener process:

WDðx; y; tÞ ¼ ½4�dDt��d=2e�ðx�yÞ2=4dDt

with D ¼ a2=2d� ½32�

This shows that all ideal lattice random walks
belong to the same universality class, that of the
Wiener process. This approach has been fruitfully



480 Multiscale Approaches
applied to diffusion in disordered systems, the issue
being to determine whether or not the disorder,
accounted for as a noise term in the transition
probabilities, modifies the normal diffusion law
obtained in the unperturbed situation. Similar
reasoning can also be implemented for self-similar
anomalous diffusion processes, like fractional Brow-
nian motions and Levy flights (Lesne 1998).

Renormalization Analysis for Self-Avoiding Walks

Let us only mention, for the sake of completeness, the
renormalization techniques developed for determining
the conformational statistics of linear polymer chains,
whose three-dimensional shape can be represented as
the trajectory of a self-avoiding random walk. These
techniques belong to the RG corpus developed in
statistical mechanics for critical phase transitions,
within a field-theoretic framework. A formal but
exact analogy can actually be worked out between
self-avoiding walks and a spin lattice system with
n! 0, where n is the number of spin components.

The multiscale nature of the system is so marked
here that it should rather be qualified as an absence of
characteristic scale. In this respect, standard RG
methods developed for critical phenomena lie at the
very boundary of multiscale approaches. Scale decoup-
ling is replaced by scale invariance, which is somehow
the conjugate situation: homogeneity in real space is
replaced by homogeneity in the conjugate space (space
of characteristic scales). Scale invariance here reflects
in the self-similar property, R(N) 	 N
, relating the
end-to-end distance R of the chain to the number N of
elementary steps (the monomers), with an anomalous
exponent 
 (the Flory exponent 
 � 3=5 in dimension
d = 3) originating from the infinite memory of the
nonoverlapping chain. We refer to Lesne (1998) and
references therein for a more detailed exposition of the
concepts and techniques only alluded here.

Effective Diffusion in a Porous Medium
(Homogenization)

Describing the diffusion in a porous medium appears
as a formidable task at the pore level: it would
require us to account for all the boundary conditions
at the border of the hollow domain V 2 V0 actually
accessible to diffusion. When the pores have a finite
characteristic size a, a homogenization approach can
be developed at scales far larger than a. It allows to
account for the slowing down of the motion due to
obstacles in an effective diffusion coefficient (in plain
words, the black and white medium made of matter
and holes of size a appears as a grey homogeneous
medium at larger scales). More specifically, a diffus-
ing tracer of random trajectory r(t) experiences a
varying coefficient D[r(t)] (it equals D inside the
pores, whereas it vanishes in the nonaccessible region
V0 � V). The idea is to replace this fluctuating
realization of the transport coefficient by its spatial
average (independent of the trajectory), in what
concerns macroscopic properties:

Deff ¼
Z
V0

D n0ðrÞ dd
r ¼

Z
V

D½r� dd
r

ðwhere n0ðrÞ ¼ 1 iff r 2 VÞ ½33�

Rigorous mathematical theorems ensure that the
large-scale motion can actually be described by a
Fick law and associated plain diffusion equation
(Bensoussan et al. 1978).

Anomalous Diffusion in a Fractal Medium

The above homogenization for diffusion in a porous
medium works well only if the pores have a finite
characteristic size; by contrast, diffusion in a fractal
substrate (e.g., a porous medium with pores of all
sizes) generically leads to anomalous diffusion, asso-
ciated with a time dependence of the mean-square
displacement R2(t) 	 t� with � < 1. In a fractal
substrate, the existence of obstacles and pores of all
sizes introduces spatial fluctuations at all scales and
long-range correlations in the spatial dependence of D.
This case corresponds to a critical situation and
homogenization fails to give a relevant description of
the macroscopic behavior, in the same way as mean-
field methods fail to account for critical phase transi-
tions. It reflects in the anomalous exponent � < 1 of the
diffusion law, that can be related to the fractal
characteristics of the substrate (�= ds=df, where ds is
the spectral dimension and df the fractal dimension).

Effective Diffusion in a Periodic Potential
(Averaging Method)

In case of a periodic medium, where D[r(t)] oscillates
with a small spatial period, an averaging procedure
can be developed as in the subsection ‘‘Effective
diffusion in a porous medium (homogenization),’’ to
determine an effective diffusion equation accounting
for the large-scale motion. Explicit computations
within a multiple-scale approach yield

Deff ¼
1

hDi ½34�

where hDi denotes a space average over the
elementary cell (Givon et al. 2004).

Let us rather detail the case of diffusion of a
Brownian particle in a periodic potential U, with
U(xþ L) = U(x) for any x (restricting to dimension
1 for simplicity), at equilibrium at temperature T.
Let D be the coefficient of this particle in the
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absence of the potential. At large scales dx� L,
the substrate appears to be spatially uniform. The
influence of the periodic bias exerted by the
potential on the diffusive motion (superimposition
of a modulated deterministic drift) can be described
in an average way. The result is a normal diffusion
with a reduced effective diffusion coefficient

DeffðUÞ ¼ D inf
f2C1ðLS1Þ

Z L

0

j1� f 0ðxÞj2 dmUðxÞ

with dmUðxÞ ¼
e�UðxÞ=kT dxR L

0 e�Uðx0Þ=kT dx0
½35�

where the infimum is taken over the set of smooth
periodic functions of period L and the average involves
the equilibrium distribution mU of the particle in the
potential landscape U( . ). So doing, one sees in
particular that no oriented motion can arise at
equilibrium, even if U is asymmetric. The procedure
extends to dimension d with only technical differences.
Effective Diffusivity for a Passively
Advected Scalar

Still another fruitful implementation of multiple-
scale method is encountered in the context of
diffusion and transport phenomena, in the study of
the advection by a given incompressible velocity
field v (r, t) of a passive scalar field �(r, t), for
example, the density of small inert ‘‘tracer’’ particles
advected by the fluid flow without modifying it
back. We consider the case when the fluid motion
can be decomposed into a large-scale, slowly varying
component and a small-scale, rapidly varying fluc-
tuation: v(r, t) = U(r, t)þ �u(r, t). The parameter �
controls the relative strength of these components.
Another small parameter � is involved in this
problem: the ratio �= l=L� 1 of the typical length
scales L and l of U and u, respectively. Here the
issue is to bridge two macroscopic descriptions: the
full hydrodynamic equation describing the evolution
of the scalar field �(r, t)

@

@t
�ðr; tÞ þ vðr; tÞ:r�ðr; tÞ ¼ D��ðr; tÞ ½36�

and a large-scale effective transport equation for an
average scalar field �L(r, t),

@

@t
�Lðr; tÞ þ Uðr; tÞ:r�Lðr; tÞ

¼ @

@ri
Deff

ij

@

@rj
ðr; tÞ�Lðr; tÞ

	 

½37�

This procedure, amounting to account in an average
way for the small-scale contributions to the
complete hydrodynamic description, relies on a
spatio-temporal generalization of the multiple-scale
method: it involves rescaled space and time vari-
ables, X = � x, � = � t, T = �2 t The different charac-
teristic scales of the velocity components are directly
reflected in their arguments: u(x, t) and U(X , T). The
passive scalar field now expresses �(x, t, X , � , T) and
it is expanded as �= �0 þ � �1 þ �2 �2. The standard
multiple-scale procedure leads to introduce an
auxiliary field �:

@t�j þ ½ðuþ �UÞ:@��j �D @2�j ¼ �uj ½38�

yielding the effective diffusivity tensor (where h i is a
space average)

DE
ij �

Deff
ij �Deff

ji

2
¼ D

X
p

h@p�i@p�ji ½39�

Advection enhances transport, and eddy diffusivity
is larger than molecular diffusivity. In realistic cases,
there is a continuum of scales u =

PN
n = 0 un, where

un has a characteristic scale ln 	 2�nl0. Multiple-
scale method is to be iterated into an RG analysis,
achieving a recursive integration of the small and
fast scales into DE starting from the smallest and
fastest ones.
Conclusions

Multiscale approaches allow to predict large-scale
behavior generated by a given model; even more,
they offer constructive tools to bridge models at
different scales for the same phenomenon. They
provide systematic and mathematically well-
controlled tools to turn faithful but intractable
models into effective reduced ones, thus lying at
the core of statistical mechanics, many-body dyna-
mical systems, and, more generally, at all issues of
the still-in-progress complex systems science. Indeed,
in a complex system (that might be their very
definition), levels are so interrelated that it is
essential to investigate jointly all the scales, from
elementary units up to the whole system, and its
emergent properties; neither theoretical nor numer-
ical approaches can alone consider all the levels
together, showing the relevance, if not the necessity,
of multiscale approaches.

Basic preliminary issues are to determine the
proper elementary level, the proper collective vari-
ables, and the relevant small parameters. Let us
remark that the implementation of a multiscale
technique rapidly faces the fundamental issue of
defining a macroscopic variable; it offers some clues,
indicating that a macroscopic variable might be a
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phenomenological quantity observable at our scale,
a slow mode, or collective variable.

Multiscale approaches take benefit of the separa-
tion of scales involved in the different mechanisms
at work in the phenomenon under consideration.
The basic idea, seen above at work in various
instances and different ways, is to somehow decou-
ple the different scales and to solve several simpler
single-scale problems. Any multiscale implementa-
tion actually involves, at some stage and more or
less explicitly, a limiting process in which the scale
separation ratio 1=� tends to1: this limiting process
has to be carefully controlled in order that the
method can be applied to real situation. Finally, to
be successful, multiscale approaches should achieve
a trade-off between:

� accuracy (minimizing the loss of information
involved in the reduction or projection technique),
� efficiency and tractability (this is, e.g., one of the

major successes of hydrodynamics)
� robustness of the resulting reduced model (to be

checked a posteriori),
� flexibility (extending to heterogeneous systems

involving different components), and
� scope (bridging many different levels in order to

capture the whole hierarchical structure).

Let us conclude by emphasizing a much fruitful
benefit of multiscale approaches: they allow to
investigate structural stability of a model, in parti-
cular to evidence relevant parameters and essential
mechanisms controlling large-scale features. In this
respect, they lead beyond the (necessarily restricted)
scope of a specific model and give an explicit account
of the observer biased view, related to its scale of
observation. They hence contribute to capture a more
complete and controlled understanding of the real
physical systems.

Finally, a note on bibliographic guide to multi-
scale approaches may be useful. Technical details
and several applications of multiscale perturba-
tive expansions, in particular multiple-timescale
method, with references to the original papers,
can be found in Nayfeh (1973). Applications of
multiple-scale method, fully worked out in a very
pedagogical way, can be found in the work of
Cukier and Deutsch (1969), Piasecki (1993),
Bocquet (1997), and Mazzino et al. (2004). An
acknowledged reference on homogenization tech-
niques and multiscale analysis in periodic media
is Bensoussan et al. (1978); see also the mono-
graphs by Lochak and Meunier (1988) and
Berdichersky et al. (1999). Two recent review
papers on multiscale approaches and reduction
techniques are Givon et al. (2004) and Gorban et al.
(2004). Basic principles and technical aspects of
scaling theories and RG approaches from a multiscale
viewpoint can be found in Lesne (1998).

See also: Adiabatic Piston; Averaging Methods;
Bifurcations in Fluid Dynamics; Boltzmann Equation
(Classical and Quantum); Central Manifolds, Normal
Forms; Interacting Particle Systems and Hydrodynamic
Equations; Korteweg–de Vries Equation and Other
Modulation Equations; Localization for Quasiperiodic
Potentials; Singularity and Bifurcation Theory; Stability
Problems in Celestial Mechanics; Stationary Phase
Approximation; Universality and Renormalization.
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Introduction

The concept of negative refraction has caused a
revolution in classical optics and electromagnetic
theory in the past few years (Pendry 2004,
Ramakrishna 2005). If a material has negative
dielectric permittivity (") and negative magnetic
permeability (�) simultaneously at a given frequency
!, then it can be said to have a negative refractive
index defined as

n ¼ � ffiffiffiffiffiffi
"�
p ½1�

Several peculiar consequences of Maxwell’s equations
for the propagation of radiation in such a material
were originally pointed out by Veselago (1968). But
the lack of such natural materials failed to create much
enthusiasm until recently when composite structured
photonic materials have been shown to have negative
refractive index (Smith et al. 2000, Shelby et al. 2001).

The question then boils down to what constitutes
materials with negative " and �? Where the structure
varies spatially on a scale much less than the
wavelength of the incident radiation, composite
electromagnetic materials can be regarded effectively
as homogeneous media. A set of effective response
functions: the effective permittivity, "eff, and the
effective permeability, �eff, can then be ascribed to
these materials. To develop a homogeneous view of
the electromagnetic properties of a medium com-
posed of discrete atoms and molecules was the
motivation for defining a permittivity " and permea-
bility �. The simplicity provided by such a descrip-
tion cannot be understated. Provided the radiation
cannot resolve the underlying structure, replicating
the atoms of a material with structure on a larger
scale therefore represents a straightforward exten-
sion of the original concept.
If we consider arrays of structures defined by a
unit cell of dimensions, d, then our effective
description of the response of the medium to
electromagnetic radiation of angular frequency !
will be valid provided that

d� � ¼ 2�c=! ½2�

This restriction ensures that the underlying structure
of the medium will merely refract and not scatter the
incident radiation, in which case an effective
permittivity and permeability for the medium
become valid. The above inequality defines
the long wavelength or effective medium limit
(Garland and Tanner 1978). Maxwell’s equations,
written in the absence of free charges and external
currents,

� �D ¼ 0; �� E ¼ � @B

@t
½3�

� � B ¼ 0; ��H ¼ @D

@t
½4�

together with the constitutive relations:

Bð!Þ ¼ �0�effð!ÞHð!Þ ½5�

Dð!Þ ¼ "0"effð!ÞEð!Þ ½6�

then provide us with a complete description of the
electromagnetic properties of the material over the
frequency range of interest. Note that the effective-
medium parameters are a function of the frequency
as the material polarization response depends on the
time history of the applied fields (Landau et al.
1984). These effective parameters were then general-
ized to analytic complex functions to account for
absorption, and to second-ranked tensors to describe
anisotropic responses.

The real parts of these effective material para-
meters can always be negative; there is nothing
fundamentally wrong about that. Provided that they
are dispersive, that is, they vary as a function of
frequency, and dissipative as a consequence of the
famous Kramers–Kronig relations (Landau et al.
1984), such materials are causally possible. Simulta-
neously negative values of "eff and �eff change the
nature of electromagnetic radiation in these media.
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Figure 1 A periodic structure composed of infinite conducting

wires arranged in a simple cubic lattice. Provided the factor a /d
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For example, the wave vector in such isotropic
media points opposite to the Poynting vector and
gives rise to many new interesting effects such as
modified refraction, negative Doppler shifts, etc.
Such materials can support a variety of surface
electromagnetic modes, which can have dramatic
effects such as the possibility of a perfect lens which
has unlimited image resolution (Pendry 2000) and is
not subject to the traditional diffraction limit.

New artificial electromagnetic composite struc-
tures, often referred to as ‘‘meta-materials,’’ allow
us to access values of these material parameters
which are not found in naturally occurring materi-
als. We will show here how to obtain negative
values of "eff and �eff in meta-materials using a
variety of resonance phenomena. Then we will
look at the problem of imaging with subdiffraction
resolution using negative refractive index
materials.
is small enough, the structure responds to incident electromag-

netic waves as a plasma of very heavy charged particles.
Artificial Plasmas

From the electromagnetic viewpoint, a plasma can
be represented as a medium with dielectric permit-
tivity whose real part is negative. The Coulomb
force and the finite mass of the electrons combine to
give an ideal plasma a dispersion in the relative
permittivity, "̃(!), given by

~"ð!Þ ¼ 1�
!2

p

!2
½7�

where the plasma frequency is defined by !2
p =

(�e2)=("0me), � is the number density of electrons,
e is the electronic charge, and me is the electron
mass. The permittivity of the plasma is negative at
frequencies below the plasma frequency.

A plasma-like behavior characterizes the electron
gas in the noble and alkali metals, with a plasma
frequency typically at ultraviolet frequencies.
Because of the presence of dissipation, at lower
frequencies resistive effects dominate and the plas-
mons cannot be excited. To obtain materials with
negative dielectric permittivity at low frequencies, a
lower plasma frequency is required corresponding to
more massive particles and a lower particle density
�. A structure consisting of a three-dimensional
lattice of very thin wires simulates a low-density
plasma of very heavy charged particles and is shown
in Figure 1 (Pendry et al. 1998). A simple model
allows us to describe the desired reduction in !p in
such a structure.

First consider a displacement of the electrons in
the wires along one of the cubic axes. Only the wires
directed along that axis are active and thus provide a
lowered effective density of electrons, �eff, given by
the area occupied by the active wires. Thus,

�eff ¼ �
�a2

d2
½8�

An even more profound effect of constraining the
electrons to run along thin wires is a result of the
induced magnetic field which wraps the wires as
the electrons are in motion. Suppose a current I
flows in the wires. The magnetic field is

HðrÞ ¼ I

2�R
¼ �a

2ve

2R
½9�

where R is the distance from the wire center, v is the
electron drift velocity, and �e is the charge density in
the wire. In terms of the magnetic vector potential,
the magnetic field is

HðRÞ ¼ ��1
0 �� AðRÞ ½10�

where

AðRÞ ¼ �0a2�ve

2
lnðd=aÞ ½11�

and d is the lattice spacing. The importance of the
divergence of the magnetic field with the wire radius
as seen in eqn [9] is the contribution to the canonical
electronic momentum given by eA. If we neglect the
variation of the fields with distance from the wire
center, we can view this contribution as defining a
new effective mass for the electrons given by

meff ¼
�0e2�

2�
lnðd=aÞ ½12�



g

F
re

qu
en

cy

Wavevector

ωmp
ω0

d

(a)

R
w

(b)

Figure 2 (a) The split-ring resonator structure. The structure is

planar with an internal radius R. The metal rings are of width w

and are separated by a spacing g. (b) Generic dispersion

relationship, ! vs. k, for a resonant structure with an isotropic

effective permeability as in eqn [15].
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Now the effective plasma frequency for the system

!2
p ¼

�effe
2

"0meff
¼ 2�c2

0

d2 lnðd=aÞ ½13�

is seen to be much reduced. As an example, the
plasma frequency of 1 mm aluminum wires paced
by 10 mm is about 2 GHz, and the corresponding
electronic effective mass is almost 15 times that of
a proton! The factors of effective mass and charge
density cancel leaving an expression comprising
only the macroscopic system parameters. This is to
be expected as a circuit analysis in terms of a
capacitance and inductance can also be used to
formulate the problem. However, such an
approach can obscure the true nature of the
problem which is encapsulated as a low-frequency
plasma oscillation. Inclusion of the finite resistivity
of the metal yields a finite lifetime for the plasmon
excitation. Experiments have shown that a reduc-
tion in the plasma frequency of six orders of
magnitude from the ultraviolet to the microwave
region can be achieved in these thin-wire compo-
sites (Pendry et al. 1998).
Artificial Magnetism

Although the Maxwell equations [2]–[4] are sym-
metric in the electric and magnetic fields, we are yet
to discover a free magnetic pole. The magnetism we
find in natural materials is limited to spin systems
and restricts the values of �eff. Up to microwave
frequencies, magnetic activity is common and
certain insulating ferromagnets and antiferro-
magnetic compounds such as MgF2 and FeF2 can
even exhibit a negative permeability at some
frequencies. However, large losses can accompany
the magnetic activity in these materials.

Recently, it has become clear that a wide variety
of composite structures comprising resonant inclu-
sions can display magnetic activity in the effective
medium limit (Pendry et al. 1999). Efficient screen-
ing of AC magnetic fields can be achieved using a
thin cylindrical shell of metal or superconductor. In
order to obtain a large magnetic response such that
the modulus of the magnetic susceptibility, j�mj>1,
what we require is a resonant over-screening
material response. A collection of subwavelength-
sized structures that exhibits such an over-screening
response can constitute a negative �eff material.
One such resonant subwavelength structure is the
so-called split-ring resonator (SRR), which can be
scaled to form magnetic meta-materials from
microwave to optical frequencies (Pendry et al.
1999, O’Brien and Pendry 2002b). An SRR
structure which has been demonstrated experimen-
tally to have a resonant magnetic response at
microwave and THz frequencies is depicted in
Figure 2a (Smith et al.). It comprises of two planar
rings of metal on an insulating backing. The rings
couple inductively to the magnetic field normal to
the plane of the rings. Because of the large
capacitance between the rings, the structure reso-
nates at some frequency. Driven by the back
electromotive force (emf), a large response is
expected in the vicinity of the resonance frequency
which is also antiphased in a small frequency range
above the resonant frequency. If the SRRs are much
smaller than the free-space wavelength, a collection
of such SRRs would behave as a negative �eff

material at these frequencies.
Theoretical calculations (Pendry et al. 1999)

assuming a nondispersive metal show that a periodic
lattice of such structures is characterized by a
magnetic permeability given by

~�eff ¼ 1� f!2

!2 � !2
0 þ i�!

½14�

where f = �R2=d2 is the filling factor,

!0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lc2

�R3 ln 2w=g

s
½15�

is the resonant frequency, and the damping of the
resonance is determined by the factor

� ¼ 2l

�0�R
½16�

Here d is the lattice spacing, R is the inner radius of
the ring, w is the width of the rings, l is the distance
between adjacent planes of SRRs, and � is the
conductance per unit length of the rings measured
along the circumference. Orientation of planar SRRs
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along all three Cartesian axes allows for the creation
of an isotropic material. Figure 3 shows the generic
dispersion of the �(!) given by eqn [14]. A higher
resistivity for the material of the SRR would
broaden the resonance and the frequency region
with Re(�) < 0 might vanish altogether for large
resistivity.

For isotropic homogeneous materials with a
resonant effective permeability as in eqn [14] we
can illustrate a generic dispersion relationship, ! vs.
k, shown in Figure 2b. The solid lines represent
twofold degenerate transverse modes and the
dispersionless longitudinal magnetic plasmon
mode at the magnetic plasmon frequency (!mp).
The dashed lines are a band of propagating states
with a linear dispersion determined by the
polarizability of the SRRs and a flat band of
resonant states at the magnetic resonance fre-
quency !0. The gap in the dispersion can be
regarded as arising from the hybridization and
avoided crossing of these bands. The important
points to note are:

1. Wherever �eff is negative there is a gap in the
dispersion relationship. This is the case for !0 <
! < !mp, the frequency where �eff = 0. Only
evanescent modes with imaginary wave vector
exist in this region.

2. A longitudinal magnetic plasma mode, which
shows no dispersion, appears at !=!mp.

An alternative approach to obtaining a nonzero
magnetic susceptibility in composite media is pro-
vided by the zeroth-order transverse electric (TE)
Mie resonance in dielectric particles. Ferroelectric
and phonon polaritonic materials are promising
candidates for providing the necessary large dielec-
tric constants up to infrared frequencies (O’Brien
and Pendry 2002a).
The high-frequency scaling properties of the SRR
offer an interesting insight. The plasma-like dielec-
tric permittivity of noble metals

~"ð!Þ ¼ ð"1; "2Þ ¼ "1 �
!2

p

!ð!þ i�Þ ½17�

is essentially a large negative real number for !p �
!� �. For a 2D array of simplified SRRs consisting
of a single conducting ring with symmetrically
placed small capacitive gaps, the quasistatic effective
magnetic permeability for a magnetic field applied
normal to the plane of the SRR is (O’Brien and
Pendry 2002b)

~�eff ¼ 1� f 0!2

!2 � !0
2 þ i�!

½18�

where f 0=Lgf � (LgþLi)
�1, �=Li� � (LgþLi)

�1, and
!0

2 = (LgþLi)
�1C�1. In the above expressions,

Lg =�0�R2 is the geometrical inductance per unit
length of the structure and C="0~"s	=ncdc is the
capacitance per unit length of the structure for series
connection. Here it has been assumed that the
thickness of the SRR (	) is small compared to the
skin depth 
’ c0=!p.

An additional inductive impedance in the struc-
ture, the kinetic or inertial inductance, Li =
2�R="0!

2
p	 = 2�0�R
2=	 , determines the effective

filling fraction and damping of the resonance through
the ratio of the two contributions to the total
inductance. This contribution to the inductance arises
from the finite electron mass and implies that simply
decreasing the size of the resonators indefinitely will
not result in our being able to realize a strong
magnetic response at near-infrared or optical fre-
quencies. As the dimensions of the structure are
reduced that fraction of the energy of the displace-
ment current associated with the inertial mass of the
electrons increases. A finite � then means that
dissipative losses increase. Thus, strong damping of
the resonance will be avoided if the quantity R	=2
2

is large. We note here that with 
 equal to the
London penetration depth, this ratio also determines
the screening efficiency of low-frequency magnetic
fields by a thin layer of superconductor. This result
points to a broader similarity between the low-
frequency electromagnetic properties of the super-
conducting condensate and those of a perfect plasma.

Other nanocomposites in addition to the SRR
have been proposed which may lead to a magnetic
response at optical frequencies. These include pairs
of nanometer-sized metallic sticks where simulta-
neous electric and magnetic dipole resonances lead
to a strongly dispersive effective permittivity and
permeability.
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Negative Refractive Index Media

Interleaving the structures for a negative "eff and �eff

can create a composite with "eff < 0 and �eff < 0 at a
common frequency (!) (Smith et al., Shelby et al.
2001), which as predicted by Veselago (1968) should
give rise to a material with negative refractive index.
Although this appears intuitively correct, it is actually
nontrivial that the electromagnetic fields of the two
composites do not interfere with each other’s function
(Pokrovsky and Efros 2002) and this could depend
crucially on the relative placement of the two
structures (Marques and Smith 2004). However,
there is now overwhelming experimental and numer-
ical evidence that such composite structures possess
negative refractive index (see Ramakrishna (2005,
section 6)). Now consider a medium with predomi-
nantly real " and �. For " > 0 and � > 0, we have
our usual optical materials. Only one of " or � lesser
than zero with the other positive would imply a
medium which cannot support any propagating
modes. This is a consequence of Maxwell’s equations:

k � k ¼ "ð!Þ�ð!Þ!
2

c2
0

½19�

which implies that only evanescently decaying waves
with an imaginary component of k are possible.
Common examples are ordinary metals with " < 0
and � > 0. Now consider a medium with both " < 0
and � < 0, or a negative refractive index medium.
The Maxwell’s equations for a plane time-harmonic
wave exp[i (k � r � !t)] are:

k� E ¼ !
c
�ð!ÞH ½20�

k�H ¼ �!
c
"ð!ÞE ½21�

The ‘‘left-handedness’’ of the triad (E, H, k) is clear
from these equations for "(!), �(!) < 0. A real
refractive index means that waves propagate with the
direction of energy flow given by the Poynting vector,

S ¼ E�H ½22�

opposite to the direction of the wave vector. Since
the group velocity is in the direction of the energy
flow, we conclude that in these left-handed materials
(LHMs) the group velocity and the phase velocity
are oppositely directed. The phase accumulated in
propagating a distance x is ��=� ffiffiffiffiffiffi

"�
p

!=c0x. Thus,
the refractive index can be taken to be n =� ffiffiffiffiffiffi

"�
p

,
that is, a negative quantity. Mathematically, it is
more reasonable to ask for the sign of the square-
root to determine the wave vector given by eqn [19].
It can be shown by arguments of analytic continuity
in the complex plane that the negative sign has to be
chosen for propagating waves when Re(") < 0 and
Re(�) < 0 (Ramakrishna 2005).

The negative refractive index has real effects on
the behavior of radiation even in basic processes
such as refraction. Consider an interface between
vacuum and a negative refractive index medium
with n < 0 shown in Figure 4. Continuity conditions
on the electromagnetic fields at the interface require
for a plane wave incident from the vacuum side at
an oblique angle that the parallel wave vector kk is
conserved for the transmitted and reflected wave.
This is the origin of Snell’s law:

sinð�iÞ ¼ sinð�rÞ ¼ n� sinð�tÞ ½23�

where �i, �r and �t are the angles of incidence,
reflection, and transmission, respectively. The flow
of energy across the interface determines the direc-
tion of the group velocity in the material medium as
being away from the interface. Therefore, the
component of the phase velocity vector normal to
the interface must change sign as we pass from
vacuum into the material medium. We are then
forced to conclude that the ray is bent toward the
same side of the surface normal as the incident
wave. This picture is consistent with Snell’s law with
the interpretation that n<0) �t<0. Figure 4 illus-
trates this point which has been experimentally
verified by several groups (Shelby et al. 2001,
Parazzoli et al. 2003, Eleftheriades et al. 2002).

As a direct consequence of this, it is seen that a
flat slab of negative refractive medium can act as a
lens as shown in Figure 5. Provided that the slab is
of sufficient thickness, the refracted rays from a
point source come to a focus inside the slab and
upon exiting the slab the rays are redirected again
such that they come to a focus on the opposite side
of the slab (Veselago 1968). Veselago also predicted
a negative Doppler shift in such media and an
obtuse angle cone for Cerenkov radiation.
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Perfect Lens: Subwavelength Imaging

A wave analysis of the Veselago lens revealed an
extremely novel aspect: it did not suffer from the
diffraction limit and the image resolution could be
infinite (Pendry 2000), if the negative index
material were perfectly nondispersive and nonab-
sorbing. Before we analyze this, let us first briefly
review the problem of imaging and the diffraction
limit.

Any object is visible because it emits or scatters
light. The problem of imaging is then concerned
with reproducing the electromagnetic field distribu-
tion on a 2D object plane in the 2D image plane. If
E(x, y, 0) be the electric field on the object (z = 0)
plane, the fields in free space can be decomposed
into the Fourier components kx and ky, and
polarization defined by �:

Eðx; y; z; tÞ ¼
X
�;kx;ky

E� kx; ky

� �
� exp i kxxþ kyyþ kzz� !t

� �� �
½24�

where

E�ðkx; kyÞ ¼
Z

x;y

E�ðx; y; 0Þ e�iðkxxþkyyÞ dx dy ½25�

In the above expression, the source is assumed to be
monochromatic of frequency !, k2

x þ k2
y þ k2

z =
!2=c2

0, c0 is the speed of light in free space, and
z is the optical axis. A conventional lens acts by
applying a phase correction to each of the propaga-
ting components so that they reassemble to a focus
at a point beyond the lens. For these components kz

is real, thus a phase change is all that is required to
form an image containing these components. The
higher spatial details in an object, however, are
described by the nonpropagating near-field compo-
nents with an imaginary kz where k2

x þ k2
y > !2=c2.

A conventional lens cannot restore these
components in the image plane as they decay
exponentially in amplitude as one moves away
from the source. Hence the resolution, �, provided
by a conventional lens is limited to those compo-
nents with

k2
x þ k2

y < !2=c2 ) � � 2�c

!
¼ � ½26�

Now consider the slab of medium with "=�1
and �=�1 and of thickness ds. It can be shown
(Pendry 2000) that the transmission and reflection
coefficients are

lim
"!�1
�!�1

~t ¼ exp �ikzds½ � ½27�

lim
"!�1
�!�1

~r ¼ 0 ½28�

respectively, where kz is the component of the wave
vector normal to the interface. Thus, the slab
reverses the phase advance for the propagating
waves as revealed by the ray picture. Analytic
continuation to imaginary wave vectors kz = i
z

implies that the transmittance ~t! exp(þ
zd), that
is, the slab also increases the amplitude of the
evanescent waves in transmission at exactly the
same rate as the rate of the decay in free space
outside. Thus, each wave, propagating or evanes-
cent, arrives at the image plane with its phase or
amplitude restored exactly to the values at the object
plane so as to perfectly reconstruct the image. The
lens is also perfectly impedance matched and has
zero reflection. These incredible properties have led
the phenomenon to be called ‘‘perfect lensing.’’

Note that there is no energy flux associated with
purely evanescent waves, and hence the amplifica-
tion obtained in the steady state corresponds to local
field enhancements which would imply the presence
of localized resonances. In fact, the entire mechan-
ism of the focusing of the near-field components is
due to surface modes that reside on the surfaces of
these negative index materials (Ramakrishna 2005).
"=�1 and �=�1 are precisely the conditions for
these surface modes of electric and magnetic nature,
respectively. These surface plasmon resonances
which are excited resonantly by the evanescent
modes and the secret to the perfect lens is that all
the surface modes are completely degenerate.

Although the conditions for realizing a perfect lens
are easy to specify, in practice these are very difficult to
meet. The requirement of negative values for " and �
implies that these quantities must disperse necessarily
with frequency and be dissipative. Thus, the perfect-
lens condition can only be met approximately at a
single frequency. Any deviation from the ideal
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conditions can then result in the excitation of slab
polariton resonances which can swamp the image. The
effects of absorption, which are always present, can
also seriously degrade the lens performance by damp-
ing out the surface plasmon resonances (Ramakrishna
2005). Consider the transmission for the P-polarized
radiation through a negative index slab:

~tðkxÞ ¼
4ðkz1="þÞðkz2="�Þ eikz2ds

D ½29�

where

D ¼ ðkz1="þ þ kz2="�Þ2 � ðkz1="þ � kz2="�Þ2e2ikz2ds

Under the perfect-lens conditions, the first term in
the denominator goes to zero for evanescent waves
and the exponential in the second term decays faster
than the exponential in the numerator. However, if
there was a mismatch in the conditions, ("þ= 1 and
"�=�1þ 
, say) then the first term in the denomi-
nator no longer vanishes. In the large wave vector
limit (kx � !=c0), the two terms in the denominator
become approximately equal when

kx ¼ �
1

ds
ln

���� 
2
���� ½30�

thus yielding a criterion for the largest wave vector
for which there is effective amplification. The
dependence through the logarithm on the deviations
(whether real or imaginary) from the resonant
conditions underlines the fact that the perfect lens
effect is indeed very sensitive. In practice, the
periodicity, d, of the strucuture of the meta-
materials comprising the negative index slab itself
imposes an upper wave vector cutoff kc = 2�=d. The
material will become spatially dispersive for wave
vectors k! kc, and for k>kc the very description as
a homogeneous material will break down.

An important simplification of the perfect-lens
conditions results when we consider a situation in
which all length scales in the problem are much less
than the wavelength of the light (the quasistatic
approximation). Under these conditions, the electric
and magnetic fields effectively decouple. If we
consider the case of P-polarized fields, it can be
shown (Pendry 2000) that in the quasistatic limit
only the value of the permittivity is important, and
there are essentially no conditions on the value of
the permeability. This brings metals such as silver
into the picture as the permittivity of silver becomes
equal to �1 in the optical region of the spectrum
and with relatively small losses (Pendry 2000). To
overcome the losses, a series of refinements of the
simple thin-slab picture have been proposed includ-
ing dividing the lens into a series of layers and using
optical amplification to act against the deleterious
effects of absorption (Ramakrishna 2005).
The Generalized Perfect-Lens Theorem

The negative refractive slab can be considered as
‘‘optical antimatter’’ in the sense that it cancels out the
effects on radiation of the traversal through an equal
amount of positive refractive index medium. This
cancelation is applicable to the phase changes for the
propagating modes and the amplitude changes to the
evanescent modes. In fact, the focussing action can
happen for more general situations where the require-
ment of homogeneity of the slab material can be
relaxed. Now consider the more general situation
where the dielectric permittivity and the magnetic
permeability are arbitrary functions of the spatial
coordinates:

"þ ¼ "ðx; yÞ; �þ ¼ �ðx; yÞ ½31�

"� ¼ �"ðx; yÞ; �� ¼ ��ðx; yÞ ½32�

corresponding to the Figure 6. We will consider the
imaging axis to be the z-axis. Thus, we see that the
system is antisymmetric with respect to the z = d
plane. It turns out (Pendry and Ramakrishna 2003)
that such a system also transfers the image of a
source placed at the z = 0 to the z = 2d plane in the
same exact sense that it includes both the propagat-
ing and evanescent components. In general, the rays
in spatially varying media will not be straight lines
as shown in Figure 6, but the effect of propagating
through the positive medium is nullified by the
negative medium. Thus, to an observer on the right-
hand side, it would appear as if the region between
z = 0 and z = 2d did not exist. We will call such
media with the same sense of transverse spatial
variation but with opposite signs as optical com-
plementary media, and the effect of any such pairs
of complementary media on radiation is null.
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The most general conditions on the permittivity
and permeability tensors for such complementary
behavior are:

~"þ ¼
"xx "xy "xz

"yx "yy "yz

"zx "zy "zz

0
B@

1
CA

~�þ ¼
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

0
B@

1
CA

½33�

and

~"� ¼
�"xx �"xy þ"xz

�"yx �"yy þ"yz

þ"zx þ"zy �"zz

0
B@

1
CA

~�� ¼
��xx ��xy þ�xz

��yx ��yy þ�yz

þ�zx þ�zy ��zz

0
B@

1
CA

½34�

and a perfect focus results whenever the two slabs of
positive and negative media have such a behavior (see
Pendry and Ramakrishna (2003) and Ramakrishna
(2005) for the proof). This theorem clearly shows that
the dependence along the x- and y-directions trans-
verse to the imaging axis z is completely irrelevant as
long as the two slabs are optically complementary. As
an extension, it can be shown that any system of
optically complementary media will also have a
perfect focus as long as the system has a plane of
antisymmetry normal to the optical axis. The above
effects have also been numerically verified for several
such spatially varying complementary media (Pendry
and Ramakrishna 2003).
Perfect Lens in Other Geometries

The above generalized perfect-lens theorem along with
a method of coordinate transformations can enable us
to now generate a variety of superlenses in different
geometries. In general, if we can find a geometric
transformation that maps a given configuration into
the geometry for the generalized slab lens, then we
would have generated one more arrangement that will
exhibit the property of transferring images of sources
in a perfect sense. If we define the new coordinates
q1(x, y, z), q2(x, y, z), and q3(x, y, z) (assumed ortho-
gonal), then in the new frame, the material parameters
and fields are given by (Ward and Pendry 1996)

~"i ¼ "i
Q1Q2Q3

Q2
i

; ~�i ¼ �i
Q1Q2Q3

Q2
i

½35�

~Ei ¼ QiEi; ~Hi ¼ QiHi ½36�
where

Q2
i ¼

@x

@qi

� 	2

þ @y

@qi

� 	2

þ @z

@qi

� 	2

½37�

Note that a distortion of space results in the change
of " and � tensors in general. Thus, in many cases,
the transformed geometry would involve spatially
varying (inhomogeneous) and anisotropic medium
parameters.

The change in geometry can also make it possible
for us to realize lenses with curved surfaces. The
original slab lens maps every point on the object plane
to another point on the image plane. But the size of
the image is identical to that of the source. This is due
to the invariance in the transverse direction and the
transverse wave vector (kx, ky) is preserved. In
general, to change the size of the images, the
translational symmetry would have to be broken and
curved surfaces will necessarily be needed. The
focussing action for the evanescent waves is crucially
dependent on the near degeneracy of the surface
plasmons in the case of the slab, and curved surfaces,
in general, have a completely different dispersion for
the surface plasmons. Thus, one should expect that
inhomogeneous materials will be required for such
curved lenses of negative refractive index. It can be
shown (Ramakrishna 2005) that mapping the slab
lens into cylindrical coordinates

x ¼ r0e‘=‘0 cos�; y ¼ r0e‘=‘0 sin�; z ¼ Z ½38�

where ‘0 is some scale factor(= 1) generates a
cylindrical annulus of inner and outer radii a1

and a2, respectively, with the material parameters
given by

"r ¼ �r ¼ �1

"� ¼ �� ¼ �1

"z ¼ �z ¼ �1=r2

½39�

for the annular region. The positive material outside
the annular region should vary as

"r ¼ �r ¼ þ1

"� ¼ �� ¼ þ1

"z ¼ �z ¼ þ1=r2

½40�

where r = r0 exp(‘=‘0). This system transfers images
in and out of the cylindrical annulus and the image
of a source inside at r = a0 will be formed on the
surface a3 = a0(a2=a1)2. Thus, there will be a
magnification of the image by the factor

M¼ a2

a1

� 	2

½41�



Negative Refraction and Subdiffraction Imaging 491
Note that these cylindrical lenses are also short-
sighted in the same manner as the slab lens. They
can only focus sources from inside to the outside
only when a2

1=a2 < r < a1, and the other way
around from outside to the inner world when the
source is located in a2 < r < a2

2=a1.
Similarly the transformation into spherical coor-

dinates (r = r0e‘=‘0 , �,�) can be used to generate a
spherical perfect lens wherein a spherical shell of
negative refractive material with "(r) � �1=r and
�(r) � �1=r with arbitrary dependence along � and �
(which could be constant too!) have the property of
perfectly transferring images of sources in and out of
the shell (Pendry and Ramakrishna 2003). This
spherical lens also has exactly the same magnifica-
tion factor given by eqn [41]. In fact, the solutions in
these two cases of a cylinder and sphere can also be
obtained by a more conventional electromagnetic
calculation in terms of the scattering modes
(Ramakrishna 2005). One can obtain even more
esoteric configurations such as one or two intersect-
ing corners of negative refracting materials that
behave as perfect lenses (Pendry and Ramakrishna
2003).
Other Approaches to Negative Refraction

There is also an approach to negative refractive
materials based on loaded transmission lines
(Eleftheriades et al. 2002), which has been imple-
mented at radio- and microwave frequencies using
lumped circuit elements. These show all the hall-
marks of a negative refractive material within an
effective medium approach.

Effects which can be interpreted as negative
refraction have been observed in certain periodic
photonic crystals (PCs) (Luo et al. 2003). An
incident propagating plane wave from vacuum
appears to undergo negative refraction inside the
PC, and a slab of the PC can even work as a
Veselago lens. The negative refraction in this case is
a result of the curvature of the equifrequency surface
and is present in spite of the right-handed nature of
the propagation. In these instances, an effective
permittivity and permeability cannot be easily
ascribed to the crystal as the long wavelength
condition is not met. It is difficult to homogenize
the PC in the sense of meta-materials, and the
energy transport in these PCs is very sensitive to the
periodicity and the structural arrangements. Thus, it
would be an over-simplification to characterize these
effects in PC as merely due to an effective refractive
index.
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Introduction

Thermohydraulics is based on the hypothesis of
continuous medium. This hypothesis is easily satis-
fied since, for instance, a one-thousandth of 1 mm3

of a perfect gas at normal temperature and pressure
conditions (300 K, 1 atm) contains about 2.5� 1013

molecules. Instantaneous balances are made inside a
control volume fixed in the system of axes and
crossed by the flows. The limit where this volume
vanishes leads to the local formulation of the laws
governing the flows. The flow is described by
velocity ~v (~r, t), pressure p(~r, t), temperature T(~r, t),
and other fields, ~r being the position vector of a
point M, and t the time. The material derivative of
q(~r, t) is

Dq

Dt
� @

@t
þ ð~v : ~�Þ

� �
q

Let Q (~Q) be one of the scalar (vectorial) extensive
quantities whose balance participates in the flow
dynamics. It can be a quantity of matter, heat,
impulse, or something else. Let �Q be the amount of
Q contained in the volume �V localized around M,
and q(~r, t) its local representative defined by

�ð~r; tÞqð~r; tÞ ¼ lim
�V!0

�Q

�V �
dQ

dV ½1�

where � is the density, similarly defined considering
the case where [Q] is taken as the mass m:

�ð~r; tÞ ¼ dm

dV ½2�

Table 1 gives examples of q quantities.
The instantaneous local balance of Q reads

@

@t
ð�qÞ þ ~� � ~jQ þ �q~v

� �
¼ SQ ½3�

where SQ stands for any possible local source of Q,
and ~jQ is the Q conduction flux density. Figure 1

illustrates how these quantities allow us to evaluate the
flux d�Q =~jQ . d~S of Q that instantaneously crosses
a surface d~S. Table 2 gathers the physical dimension
of these notions for various Q’s.

For ~Q, the flux densities are second-order tensors,
since d~F~Q = j

)
~Q � d~S is vectorial (Figure 1). Its

balance reads

@

@t
ð�~qÞ þ ~� � j

)t

~Q þ �~v�~q
� �

¼~S~Q ½4�

where t indicates the transposition and � a dyadic
product.~jQ and j

)
~Q

are given later.
The governing equations of thermohydraulics are

like [3] and [4]. They are completed by compatible
initial and boundary conditions. The most general
linear expression of the latter ones is of mixed type,
for a scalar field,

�qþ � ~� � n̂
� �

q ¼ � on the boundary ½5�

�,�, and � being prescribed data, and n̂ the outward
normal to the boundary. For a vectorial field, ~q and
~�, respectively, replace q and �. The simplest cases
are Dirichlet and Neumann boundary conditions
with, respectively, �= 0 or �= 0.

Governing Equations

We consider nonisothermal flows of fluids in thermo-
dynamic conditions far from the critical point where
acoustic effects are involved. The fluid is possibly a
binary mixture, the simplest non-pure-fluid case where
modeling does not raise conceptual difficulties. The

Table 1 Some quantities q. T is the absolute temperature, Cp

the specific heat at constant pressure, and C the solute mass

fraction

Mass Impulse Kinetic energy Heat Mass fraction

1 ~v ~v
2

2 CpT 0 < C < 1

M

jQ

dS
dΦQ M

dΦQ

dS

Figure 1 Q flux density and ~Q flux.

Table 2 Physical dimension of fluxes, flux densities, and
~=� (flux density) for some q quantities

Q q Flux Flux density ~=� (flux density)

Volume undefined m3s�1 [velocity] s�1

Mass 1 kgs�1 kgs�1 m�2 kgs�1 m�3

Energy,

heat

[velocity]2 W Wm�2 Wm�3

Electrical

charge

Coulomb kg�1 A Am�2 Am�3

Impulse [velocity] [force] [pressure] [pressure] m�1
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local composition is described by the solute (say) mass
fraction,

CðM; tÞ ¼ lim
�V!0

�msolute

�m
¼ �solute

�

with 0 � C � 1. Only thermodiffusion is treated,
and the influence the solutal gradient has on the heat
flux is not considered, being negligible in liquid
mixtures. The coupling between the heat and species
molecular transports then comes only in the solutal
flux density relation

~jsolute ¼ ���CðT;CÞ ~�Cþ Cð1� CÞST
~�T

h i
½6�

with �C > 0, and ST(T, C), the solute Soret
coefficient, which is positive or negative. The
order of magnitude of the Soret coefficient in the
molecular solutions does not exceed few 10�2 K�1,
while for colloidal solutions (ferrofluids) jST j can
be in the range 0.03–0.5 K�1. Even if small, the
induced mass fraction separation, �C ’ ST�T,
generates a solutal buoyancy of significant dyna-
mical influence.

Equation of State for the Density

One must first describe the sensitivity of the density,
� (p, T, C), upon pressure, temperature, and mass
fraction in static conditions. The pressure and
temperature effective ranges, �p and �T, are
assumed small enough compared to their respective
mean values, p0 and T0, for the local (at
�0 � �(p0, T0, C0)) tangent to �(p, T, C) to be a
good approximation in most cases,

�� �0

�0
¼ �ðp� p0Þ � �TðT � T0Þ þ �CðC� C0Þ ½7�

where

� ¼ 1

�0

@�

@p

� �����
0

and

�T ¼ �
1

�0

@�

@T

� �����
0

; �C ¼
1

�0

@�

@C

� �����
0

are the compressibility, thermal, and solutal
expansion positive coefficients, and C0 is the solute
mean mass fraction. Thermodynamic properties of
some fluids are given in Table 3. Equation [7] is
valid if ��p, �T�T, and �Cj�Cj are 	1. More-
over, in laboratory experiments and industrial
processes, one generally has �p=p0 	 �T=T0. The
pressure term in [7] can thus be neglected in
thermohydraulics.

Notice that water density exhibits a maximum
around 4
C. A quadratic term in T must then be
added to [7].

The Boussinesq Approximations

The parameter �T�T 	 1 is the primary source of
thermohydraulics. Therefore, the~v, p, T and C fields
can be expanded in series of terms of increasing
power in �T�T. The leading term of each series
contains an important part of the interesting
dynamics. The forthcoming equations are given in
the corresponding approximation framework. They
contain many simplifications, due to Boussinesq. For
instance, the conductivities and diffusivities are
taken as constant, as well as C(1� C)ST in eqn [6].
The next approximation step, the low-Mach model,
keeps the leading compressibility and expansion
effects, while discarding the associated acoustic
waves. This gives access to thermo-soluto-acoustic
phenomena. Expansion oscillations are indeed able
to trigger, and sustain, acoustic waves provided
phase agreements are fulfilled. This second-order
model is not presented here.

The compliance with the criteria �T�T 	1 and
�C j� Cj 	1 must be checke d case by case. The
section ‘‘Steady paral lel-flow model’’ brie fly illus-
trates this point with an example of thermally driven
flow. Furthermore, the T- and C-sensitivity of ST is
an experimental fact that requires a generic
approach of the problem. The C-sensitivity of the
physical properties is generally more pronounced,
nonmonotonic, for instance, over C 2 [0, 1], than
their T-sensitivity.

Boussinesq Local Balances

Mass It reads @�=@t þ ~� � (�~v) = 0, or equivalently
(1=�)(D�=Dt) =�~� �~v. The fluid particle density
varies along its trajectory by compressibility and
thermo-solutal expansion. At the leading order in
�T�T and �Cj�Cj, the latter is negligible, whereas
the former is associated with acoustics effects, also
negligible when the fluid velocity is much smaller

Table 3 Some values of density, thermal expansion and

compressibility coefficients, specific heat at constant pressure,

and sound speed at p = 1 atm and T = 293 K; in SI units

Fluid � �T �p Cp c

Air 1.205 1 1 1005 344

Helium 0.167 1 1 5227 1010

CO2 1.841 1 1 832 269

Water 1000 0.0607 4:91� 10�5 4182 1461

Glycerol 1250 0.148 2:2� 10�6 2333 2044

Mercury 13579 0.0533 3:76� 10�6 1391 1409
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than the sound speed. The mass balance equation
then reduces to

~� �~v ¼ 0 ½8�

Only transverse velocity waves (or shear waves) are
allowed by this equation, ~v ’ ei(~k�~rþ!t) with ~k �~v = 0,
since acoustics contributions are discarded.

Impulse The impulse molecular flux density is

j
)
�~v ¼ p 1

)
� �~v ~��~vþ ð~��~vÞt

h i
where �~v is the impulse conductivity and 1

)
the

Kronecker tensor. A Newtonian fluid is defined as
having �~v constant with respect to the rate-of-
strain tensor ~��~v. The impulse balance then
reads

@

@t
ð�~vÞ þ ~� � ð�~v�~vÞ þ ~� � j

)
�~v ¼ �~G

In the source term �~G, ~G =~g for gravity-driven
buoyant flows.

With the aforementioned approximations, the
impulse balance becomes

D~v

Dt
¼ � 1

�0

~�Pþ �� �0

�0
~g þ 	~�

2
~v ½9�

with

�� �0

�0
¼ ��TðT � T0Þ þ �CðC� C0Þ

	 ¼ �~v
�0

the impulse diffusivity, and the pressure P = p� p0, h,
p0, h satisfying the hydrostatic relation

~�p0;h¼ �0~g

In the rotating frame of vector ~W(t),

�� �0

�0

~W ^ ð~W ^~rÞ þ 2~W ^~vþ d~W
dt
^~r

must be subtracted from the right-hand side of [9]
and p0, h redefined by

~�p0;h ¼ �0 ~g � ~W ^ ð~W ^~rÞ
� �

On a free surface, a particular velocity boundary
condition is to be established. Let d~S = dS n̂ be a

surface element located around M. The tangential
component (̂t � n̂ = 0) of the impulse flux across d~S,

t̂ � d~f ¼ t̂ � j
)
�~v � d~S ¼ ��~vt̂ � ~��~vþ ð~��~vÞt

h i
� d~S

must be continuous. Surface tension 
(T, C) inho-
mogeneities make the free surface a source of
impulse which diffuses in the fluid core. A flow
occurs even with ~G = 0. For the fluid located where
d~S points to, the velocity boundary condition on the
free surface then reads

��~vt̂ � ~��~vþ ð~��~vÞt
h i

� n̂ ¼ ð~� � t̂Þ
 ½10�

with

ð~� � t̂Þ
 ¼ @


@T
ð~� � t̂ÞT þ @


@C
ð~� � t̂ÞC

For most fluids, @
=@T < 0. In the Boussinesq
framework @
=@T and @
=@C are constant. Equa-
tion [10] couples the impulse balance with the heat
and composition ones.

Heat Local thermodynamic equilibrium is
assumed. The molecular heat flux density is
~jheat =��T

~�T, with �T the thermal conductivity.
The approximate heat balance reads

DT

Dt
¼ �T

~�
2

T þ Sheat ½11�

where �T =�T=(�0Cp) is the heat diffusivity and
Sheat a possible local (Joule, radioactive, . . .) heat
source. Thermohydraulics can simply be driven by
nonuniform thermal conditions imposed along the
fluid boundary, and in this article we henceforth
take Sheat = 0.

Mass fraction Approximating [6] yields the mass
fraction balance,

DC

Dt
¼ �C

~�
2

Cþ C0ð1� C0ÞST
~�

2
T ½12�

where �C and ST are evaluated at T0 and C0. The
normal flux condition

~�C � n̂
� �

¼ �C0ð1� C0ÞST
~�T � n̂
� �

is imposed on impervious boundaries.

The Hydrostatic State

Knowing whether the fluid can be in static state
with respect to its presupposed rigid container helps
for a first understanding of thermohydraulic
dynamics. This raises two problems: (1) the exis-
tence of this state and (2) its stability, discussed
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later. Point (1) requires the fulfilment of three
relations,

~�p ¼ �ðp;T;CÞ~G ½13�

@T

@t
¼ �T

~�
2

T

@C

@t
¼ �C

~�
2
Cþ C0ð1� C0ÞST

~�
2
T

½14�

The curl of [13] yields

~��ðp;T;CÞ ^~G þ �ðp;T;CÞ~� ^~G ¼ 0

which has no reason to be generically satisfied since
�(p, T, C) and ~G are totally uncorrelated. The
hydrostatic state cannot exist if ~G does not derive
from a scalar potential, as with

~G ¼~g � ~W ^ ð~W ^~rÞ � d~W
dt
^~r if

d~W
dt
6¼ 0

The Earth’s rotation axis is known to precess with a
period of about 26 000 years. This generates a
component of 26 000 years timescale in the atmo-
spheric, oceanic, and internal flows.

Considering now that

~G ¼ �~� 

the existence of a hydrostatic state only depends on
the simultaneous verification of [14] and

~��ðp;T;CÞ ^ ~� ¼ 0 ½15�

Iso- surfaces must therefore coincide with iso-
pycnal, isobaric, iso-T, and iso-C surfaces since the
p, T, and C sensitivities of � are uncorrelated. The
compatibility of this condition with [14] is the key
for concluding about the existence of the hydro-
static state. Considering again our planet as an
example (forgetting about precession), the iso- 
surfaces are almost ellipsoidal. Such T and C
distributions cannot satisfy [14]. Thus, the atmo-
spheric and oceanic dynamics, and thermohydrau-
lics as well, are due to a nonvanishing thermal
torque, ~�T ^ ~� .

A free surface in hydrostatic state is isothermal
and isocompositional, by eqn [10], whatever ~G.

Dimensionless Local Balances

In buoyancy-driven thermohydraulics, we consider
four velocity scales – three of molecular origin, and
the fourth is the free-fall velocity in the buoyancy,

V1 ¼
�T

L
; V2 ¼

�C

L
; V3 ¼

	

L

V4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T�TgL

p
L being a fluid container size scale. Thence come the
Rayleigh, Prandtl and Lewis numbers,

Ra ¼ V2
4

V1V3
¼ �T�T

gL3

	�T

Pr ¼ V3

V1
¼ 	

�T
; Le ¼ V2

V1
¼ �C

�T

Ra being the experimental control parameter, and
Le	 1. Table 4 gives Pr orders of magnitude for
usual fluids. Let V be the fluid velocity amplitude.
The importance of the thermal, solutal, and impulse
convections with respect to the corresponding
diffusions is, respectively, estimated by the thermal,
compositional Péclet and Reynolds numbers,

PeT ¼
V

V1
¼ VL

�T
; PeC ¼

V

V2
¼ VL

�C

Re ¼ V

V3
¼ VL

	

with

Pr ¼ PeT

Re
; Le ¼ PeC

Re
; Ra ¼ ðPeTReÞjV¼V4

Capillary thermohydraulics introduces one velo-
city scale and the Marangoni number,

V5 ¼
j�
j
�~v

; Ma ¼ V5

V1
¼ PeT

with �
= (d
=dT)�T in pure fluid. A small
capillary number, Ca = j�
j=
, indicates a weak
influence of the dynamics upon the free-surface
curvature.

Let V1, � = �0V2
1 , � = L=V1, �T and

�C ¼ �C0ð1� C0ÞST�T

be the velocity, pressure, time, temperature, and
mass fraction scales, with

� ¼ T � T0

�T
and C ¼ C� C0

�C

the reduced temperature and mass fraction, respec-
tively. The other quantities, coordinates included,
are similarly reduced and noted identically.

Table 4 Orders of magnitude of the Prandtl number for the

usual fluids. Air and water are in normal conditions

Liquid metals Gases Water Oils

Several 10�3 – 10�2 ’1, 0.7 for air 6.7 >10
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Equation [8] does not change and [9], [11] and [12]
become, respectively,

D~v

Dt
¼ �~�Pþ Pr Rað�þ�BCÞêz þ ~�

2
~v

h i
½16�

D�

Dt
¼ ~�

2
� ½17�

DC
Dt
¼ Le~�

2
C � ~�

2
� ½18�

where

�B ¼ �
�C�C

�T�T

is the buoyancy separation ratio and êz = �~g=j~gj.
A �B < 0 (>0) corresponds to opposite (coopera-
tive) thermal and solutal buoyancies. The reduced
mass fraction boundary condition on impervious
walls is

~�C � n̂
� �

¼ ~�� � n̂
� �

½19�

In rotating frame, scaling ~W(t) by �0, ~�W(t) =~W(t)=�0,

Ra Fr ð�þ�BCÞ~�W ^ ð~�W ^~rÞ

� 1

Ek
2~�W ^~vþ d~�W

dt
^~r

 !
must be added inside the square-bracket term of
[16]. The Froude and Ekman numbers appear as

Fr ¼ �2
0L

g
; Ek ¼ 	

�0L2

The dimensionless capillarity stress condition [10]
reads

t̂ � ~��~vþ ð~��~vÞt
h i

� n̂

¼ �Ma ð~� � t̂Þ�þ�Cð~� � t̂Þ C
� �

½20�

with
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�C ¼
@
=@C

@
=@T

�C

�T

the capillarity separation ratio, and

Ma ¼
���� @
@T

�T

�~vV1

����
These equations show that, in the Boussinesq

framework, the flow physics does not depend on
p0, T0, and C0, except through the material proper-
ties which enter the numbers.
Linear Stability

Given a base state S= (~v, �, C), a solution of [8],
[16]–[18], how does it behave in presence of an
infinitesimal disturbance (�~v, ��, �C)? Applying [8],
[16]–[18] to (~vþ �~v, �þ ��, C þ �C) and discarding
the quadratic terms in perturbation provide the
disturbance temporal evolution,

~� : ð�~vÞ ¼ 0 ½21�

@

@t

�~v
��
�C

0@ 1A¼ F þ �~v � ~�
� � ~v

�
C

0@ 1AþA �~v
��
�C

0@ 1A ½22�

where F = (�~�(�P), 0, 0)t, and

A ¼
BPr Ra Pr êz Ra Pr �B êz

0 B1 0

0 �~�
2

BLe

0@ 1A ½23�

with Ba =�(~v � ~�)þ a~�
2
. The perturbations (�~v, ��,

�C) have the (~v, �, C) boundary conditions, but
homogeneous. On a free surface, the perturbation
capillary stress condition is

t̂ � ~�� �~vþ ð~�� �~vÞt
h i

� n̂

¼ �Ma ð~� � t̂Þ��þ�Cð~� � t̂Þ�C
� �

½24�

Recasting [21]–[23] provides

@

@t

�~v
��
�C

0@ 1A ¼ LðSÞ �~v
��
�C

0@ 1A ½25�

whose solution is

�~vðtÞ
��ðtÞ
�CðtÞ

0@ 1A ¼ eLðSÞt
�~vðt ¼ 0Þ
��ðt ¼ 0Þ
�Cðt ¼ 0Þ

0@ 1A ½26�

Direct System

L(S) is made of ~� acting on the initial perturbation.
Conclusions about S stability depend on the sign of

max, the real part of the leading eigenvalue of L
found with all the possible perturbations. There is
stability if 
max < 0. At 
max = 0, the marginal
stability, the bifurcation threshold is located at
Ra (Pr, Le, �B, �C, X) = Rac, Rac-being the critical
value of the control parameter, X containing all
the other parameters of the problem (container
aspect ratios, etc.). The nonlinear-stability analysis
in the vicinity of Rac supplies � in 
max /
(Ra� Rac)

�, which is characteristic of the
bifurcation.



Adjoint System

The leading left eigenmode complex conjugate
supplies the response field of the base state to the
most destabilizing punctual disturbances.

The S state and L eigenspace analytical determi-
nations are often impossible. One must resort to
specifically designed numerical tools. A numerical
adjoint eigenvector is presented in Figure 2 for a
(Ma = 106, Pr = 10�2) side-heated cylindrical liquid
bridge, with a free surface on the right and the axis
on the left.
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Figure 2 Leading axisymmetric thermal adjoint eigenvector

(Courtesy of O Bouizi and C Delcarte).
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unbounded volume. Transverse wave (by [21])
solutions are the potentially destabilizing perturba-
tions, with wave vector ~k and complex frequency !.
N

When 
max > 0, the associated disturbance exponen-
tially grows with time, until nonlinearities become
essential. The flow progressively evolves from S
towards a new state, S0, which is a solution of [8],
[16]–[18]. How can one proceed analytically to
know how the nonlinearities control the bifurca-
tion? A large number of S!S0 bifurcations exist,
with either both S,S0, steady or unsteady but with
different flow structure, or one is steady and the
other is not. Bifurcations can also be reversible or
hysteretic, with respect to Ra. The symmetries of S
play an important role and non-Boussinesq effects
change the thresholds and the nature of bifurcation.

Landau’s works have opened up the way to the
theory of nonlinear hydrodynamic stability. The
ruling equations are reduced, using an appropriate
expansion method, to a set of ordinary differential
equations describing the temporal evolution of
amplitudes, Ai, i = 1, 2, . . . , I, characterizing the per-
turbation eigenmodes,

dAi

dt
¼ 
iAi þNiðAjÞ for i; j ¼ 1; 2; . . . ; I ½27�

where N accounts for the nonlinear action of the I
modes on Ai, and the 
i’s are the temporal growth
rates coming from the linear theory. The stability of
the steady solutions, dAi=dt = 0, is determined by
local analysis. With one destabilizing mode, the
simplest model is dA=dt =
A� �AjAj, with � > 0,
constant, specific of the bifurcation. Symmetry con-
siderations (some of them directly originate from the
Boussinesq framework) may impose �= 0, whereby
the simplest model becomes dA=dt =
Aþ �A3, with
� another constant.

When the flow is weakly confined in one or two
space directions, boundary effects can play a subtle
dynamical role, allowing, for instance, the existence
of multiple solutions, each one made of many
interacting modes. A large variety of flow regimes
is then observed, as steady/traveling, extended/
localized wave packets, particularly in binary mix-
tures. Spacetime models, close to [27], such as the
Ginzburg–Landau equation,

@A

@t
¼ 
Aþ �@

2A

@x2
þ �jAj2A

are derived for describing the dynamics of the wave
packet envelop (of complex amplitude A).
Hydrostatic State Stability

The static-state stability is analytically tractable in

The system [22]–[23] gets simplified, and L becomes
algebraic upon substituting (i~k, i!) for (~�, @=@t).
Intuitively, the quiescent state loses its stability when
~��(p, T, C) � ~� exceeds a threshold value (positive,
by the dissipative effects). This analysis supplies it,
together with the data of the oscillatory motions
emerging at onset from the rest-state instability.

In reality, the fluid is confined to three dimen-
sions, possibly with free surfaces, and wave solu-
tions are no longer usable. The first approach
consists in defining a simplified model confined to
one dimension. The perturbations must satisfy
homogeneous boundary conditions, and/or [24],
and they are waves in both other space directions.
The resulting problem may be analytically tractable.
The stability of many quiescent-state configurations
was studied, for fluid layers of infinite or very large
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extension, of pure-fluid/mixtures, with/without free
surface. Nonetheless, many other configurations are
not yet analyzed. Two- and three-dimensional cases
must be numerically treated.

Gravitational Buoyancy Convection

Among the numberless thermal situations to ana-
lyze, research mainly favored the case where the
fluid is confined in simple geometries and submitted
L    H

Figure 3 Sketch of the cross section of a slender vertical

container.
to two distinct heating directions, ~�T being either
aligned or normal to ~G, that is vertical or horizontal
in the gravity field. Each case leads to specific
thermohydraulics. The rest-state stability is the first
analysis step of the former case, the first to be
experimentally studied by Bénard in 1900, with a
horizontal liquid layer. The latter is of more recent
interest, with Batchelor’s theoretical work on the
parallel convective regimes of pure fluid confined in
tall slot. Since then, a large amount of work has
been published on those cases, tackling various
confinement geometries, and involving high Ra
values. This problem became the paradigm of the
rich spatiotemporal behaviors arising in nonlinear
systems driven away from equilibrium. In binary
mixtures the complexity of the dynamics increases
considerably. The literature is so far practically
devoid of any three-dimensional results in mixtures.
Ternary mixtures have so far been only scarcely
considered.

Steady Parallel-Flow Model

This analytical approach comes from an interesting
Batchelor’s remark made about the vorticity but
here applied to the velocity of a confined flow. ‘‘A
number of flow fields are characterized by values of
the magnitude of the’’ velocity ‘‘in the neighborhood
of a certain line in the fluid which are much larger
than those elsewhere,’’ and (by ~� �~v = 0) ‘‘this line
of necessity’’ is parallel to ~v and to the container
walls.

Buoyant forces may contradict this assertion,
particularly in Rayleigh–Bénard configuration with
imposed temperatures. There, no parallel solution
exists. Nevertheless, steady parallel flows do exist in
containers. The thermally active walls (whatever
they be – the largest or smallest) are either
maintained at constant temperatures, or subjected
to a constant heat flux. Figure 3 sketches a cross
section (hereafter referred to as the vertical mid-
plane) of such a configuration, with active (uniform
heating q) vertical walls. The other sides are
adiabatic. No rest state is allowed here. Although
intrinsically three dimensional, the steady regime in
this cavity can be fairly well approximated as
two dimensional (in the vertical midplane), and
moreover mainly parallel to the active walls, in an
Ra range which increases with the aspect ratio, H/L.
The influence of the horizontal sides is of limited
range compared to the flow extension, H. The
parallel flow is then the one-dimensional approx-
imation of what occurs in the major part of the
cavity. This configuration is taken with a binary
mixture for illustrating an approach applicable with
minor variations in other situations.

The problem becomes linear. Indeed, ~v = w(x)êz

by ~� �~v = 0. Taking �T = qL=�T as temperature
scale, [16]–[18] imply

�ðx; zÞ ¼ GTzþ �̂ðxÞ; Cðx; zÞ ¼ GCzþ ĈðxÞ

with GT , GC as constants. The impulse balance is

d2w

dx2
¼ �Ra �̂ðxÞ þ�BĈðxÞ

h i
½28�

and the ruling equations

d4w

dx4
¼ �Ra GT þ

�B

Le
GT þGCð Þ

� 	
w

wGT ¼
d2�̂

dx2
; w GT þGCð Þ ¼ Le

d2Ĉ
dx2

½29�

An internal length scale is predicted, of thickness

Ra GT þ
�B

Le
GT þGCð Þ

� �� 	�1=4

By [28] and [19], the thermal flux condition yields

d3w

dx3

����
x¼�1=2

¼ �Ra 1þ�Bð Þ



A last operation allows to determine GT and GC.
The overall heat and mass fraction balances are
performed in the cavity part (V), which is bounded
by an horizontal plane located within the parallel-
flow region. Since the walls are impervious, the
solute is transported only across the lower boundary
of (V), through which the net vertical convective
supply must be balanced, in steady regime, by
vertical diffusion. The heat balance works similarly,
since the walls are adiabatic or submitted to equal
fluxes. Whence the relations,Z 1=2

�1=2

wðxÞ�̂ðxÞ dx ¼GTZ 1=2

�1=2

wðxÞĈðxÞ dx ¼GT þGC

The steady parallel flow is determined. Its stability
can be an alyzed as indi cated in the section ‘‘Linear
stability .’’

Some caution must be taken for the Boussinesq
approximations to be valid here, with the tempera-
ture and mass fraction increasing constantly (by
GT , GC) along the direction of largest cavity exten-
sion. These gradients are at the origin of the
‘‘thermogravitational column’’ separation power, a
device designed for the isotope separation. Extre-
mely long columns can provide almost complete
separations, with �Cj�Cj no longer 	1, and then
the non-Boussinesq effects occur.

As an illustration of aforementioned notions, let
us consider the (Pr = 1, Le = 0.1) Rayleigh–Bénard–
Soret (RBS) problem where horizontal solid plates of
infinite extension are uniformly heated from above
(Ra < 0) or below (Ra > 0). This configuration is
simply obtained by rotating the cavity in Figure 3 by
��=2 with respect to ~g and to (êx, êz). The steady
parallel-flow model can lead to the right-hand side
of an equation like [27] governing the time evolu-
tion of A, the parallel-flow amplitude,

dA

dt
/A Le�2 A4 þ � 1þ 1� r

Le2

� �
A2

�
þ �2 1� r

rc

� �	
½30�

where

� ¼ 315

218
; r ¼ Ra

720
; rc ¼ 1þ�Bð1þ Le�1Þ


 ��1

Here rc is the critical value or r where the rest state
loses its stability towards a steady parallel flow. The
roots of dA=dt = 0 are A = A0 = 0, A = Ak(r, Le, �B),
for the quiescent, convective states. Figure 4 shows
that A0 = 0 and the curves Ak(r) for several

�B(Le), ’1 =�(1þ Le�1)�1 being the rc pole. The
solid (dotted) parts correspond to the stable
(unstable) steady states, emerging from direct (back-
ward) pitchfork bifurcations of the rest state at rc.
Saddle–node bifurcations from unstable to stable
steady states are also predicted, on the dashed curve
of the equation

cAkðrÞ ¼ � ffiffiffiffi
�

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 1þ Le2ð Þ

q

Fully Nonlinear Problem

Numerical tools are required for solving the system
[8], [16]–[18] and analyzing the stability of the
flows obtained.

The RBS Case Let us illustrate how the rest-state
loss of stability occurs in the two-dimensional RBS
case, with a (Pr = 1, Le = 0.1, �B =�0.2) mixture.
The flow lies in the meridian plane of an axisym-
metric container with the radius/height ratio equal
to 2. No-slip conditions are imposed on impervious
walls; the temperature on the bottom plate is higher
than on top, and the peripheral wall is adiabatic. At
t = 0, the quiescent state is given a small random
perturbation. The system evolves (Figure 5) towards
a stable periodic solution via a transient regime of
exponentially amplified amplitude (eqn [26]). One
speaks of a Hopf bifurcation for a steady (here
quiescent) state destabilization by oscillatory
disturbances.

The ‘‘instantaneous’’ frequency (from the time
running between two successive identical passes of
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the signal) evolves with time (Figure 6) from its
threshold value to its nonlinearly saturated one.

Accurate determination the thresholds and identi-
fication of the associated bifurcation is possible by
fitting the argument � of 
max(Ra) from the
exponential growth of Figure 5, in the Rac vicinity.
Figure 7 shows (solid dots) 
(Ra) measurements,
and the solid line (in Figure 8 also) is the linear law
given by the two points closest to the vanishing
growth rate. The local law announced in the
subsec tion ‘‘Direct syst em’’ is con firmed , with

an exponent �= 1 for the Hopf bifurcation, and
�= 1=2 for saddle–node (Figure 8) and pitchfork
bifurcations.

The Thermally Driven Cubic Cavity All flows are
obviously three dimensional. When do they possess
a two-dimensional approximation? How to qualify
it? Clearly, the flow that develops in the container of
Figure 3 might enjoy (in a given parameter domain,
D) the mirror-reflection symmetry property about
the vertical midplane. Is there a two-dimensional

–2

–1

0

1

2

0 20 40 60 80 100 120 140

u

t

Figure 5 Time evolution of a radial velocity nodal value for Ra = 2600: Reproduced from Millour, Labrosse, and Tric (2003) Physics

of Fluids 15(10): 2791–2802, with permission from American Institute of Physics.
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Figure 6 Instantaneous angular frequency !n corresponding to Figure 5. Reproduced from Millour, Labrosse, and Tric (2003)

Physics of Fluids 15(10): 2791–2802, with permission from American Institute of Physics.
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approximation of the flow in this midplane? Is it
able to give a correct estimate of the two-dimen-
sional flow stability within D, and to predict the D
frontiers, where the mirror-reflection symmetry
property ceases to be valid? Only partial answers
are available so far, coming from the thermally
driven cubic cavity (Figure 9).

Filled with a pure fluid, its left and right vertical
plates have fixed temperatures, T0 (� = 0 at x = 0)
and T0 þ�T (� = 1 at x = 1), while the others are
adiabatic. Any �T 6¼ 0 generates a flow, possibly
mirror-symmetric about the vertical (hatched)
midplane, and also centrosymmetric about êy. The
two-dimensional approximation was extensively ana-
lyzed, numerically, with air as a fluid. A steady flow
is obtained for Ra < Ra2D, c = (1.82� 0.01)� 108,

where an oscillatory regime appears. The numerical
three-dimensional flow is steady until Ra3D, c =
3.2� 107, where it hysteretically bifurcates towards
an oscillatory regime breaking the mirror symmetry
about the midplane. Let us assess the validity of the
two-dimensional approximate solutions. We define
dimensionless heat fluxes (Nusselt numbers) which
penetrate in one of the active walls,

NuðyÞ ¼
Z 1

0

@�3D

@x

����
x¼0

dz

Three fluxes are interesting to compare: (1) in the
midplane, Nump = Nu(y = 1=2), (2) globally Nu3D,W =R 1

0 Nu(y) dy, and (3) the two-dimensional
approximation

Nu2D;W ¼
Z 1

0

@�2D

@x

����
x¼0

dz

Figure 10 shows how they compare themselves,
as a function of Ra. Quantitatively, the two-
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dimensional approximation is not too bad, but not
qualitatively, with a nonmonotonic evolution of the
discrepancies. These latter become quite negligible
when the three-dimensional flow gets unsteady and
paradoxically loses the symmetry property on
which its two-dimensional approximation is
founded.

Thermocapillary Convection

Two immiscible liquids, or a liquid and a gas, are
separated by a free surface, a region of small
thickness (some ten molecular sizes). From a
macroscopic viewpoint, it is considered as a singular
entity. Its location and geometry are part of the
solutions of the governing equations, themselves
supposed to satisfy [20] on the free surface. As a
first iteration, the free-surface shape can be imposed,
fixed, and straight often.

Numerous industrial processes involve thermoca-
pillarity wherein thermohydraulics involves complex
phenomena, such as phase-change kinetics. A rele-
vant modeling of these situations is a research
subject by itself. For thermohydraulics, some aca-
demic configurations (Figure 11) have retained the
attention of the scientific community.

Any thermohydraulic flow transfers heat
between hot and cold solid boundaries wherein
heat penetrates by conduction. Consequently, the

term (�
!
� t̂)� of [20] never cancels at the solid

boundary/free surface junction, as in Figure 12.
A nonzero vorticity is thus generated by thermo-

capillarity on the free surface until the wall, while
flow adherence on the wall gives vorticity values of
opposite sign. The problem presents therefore a
vorticity singularity at the triple point. This is a deep
physical and modeling problem.

See also: Bifurcations in Fluid Dynamics; Capillary
Surfaces; Compressible Flows: Mathematical Theory;
Dynamical Systems and Thermodynamics; Dynamical
Systems in Mathematical Physics: An Illustration from
Water Waves; Fluid Mechanics: Numerical Methods;
Magnetohydrodynamics; Non-Newtonian Fluids; Partial
Differential Equations: Some Examples; Stability of
Flows; Vortex Dynamics.
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Introduction

The general theory of relativity (GRT) unifies special
relativity theory (SRT) and Newton’s theory of
gravitation (NGT). SRT and NGT describe success-
fully large domains of physical phenomena; there-
fore, one would like to understand how they survive
as approximations in GRT.

In GRT, spacetime is idealized as a four-dimen-
sional Lorentz manifold whose curvature is related
to the distribution of energy and momentum. In
such a spacetime, the existence of the exponential
map implies that the metric near any event (space-
time point) x deviates from a flat metric only by
terms given by the curvature there. Thus, if the
gravitational tidal field, represented by the curvature
tensor, is small near x, one may approximate the GR
metric there by a flat Minkowski metric. This
explains that SRT is a general local approximation
to GRT. Apart from a remark at the end of the
subsec tion ‘‘Local laws’’ the relation GRT ! SRT
will not be discussed further.

In its traditional formulation, Newton’s theory
differs drastically from Einstein’s theory both in its
spacetime structure and in its description of gravita-
tion. The main purpose of this report is to show
how NGT can nevertheless be understood as a kind
of ‘‘limit’’ of GRT. More precisely, the structure of
NGT can be viewed as a degenerate version of that
of GRT, in parallel to the fact that the Galilei group
can be obtained by contracting the Lorentz group.

In the next section we state the laws of GRT.
We then reformulate these laws with slightly
different field variables such that, besides the
gravitational constant k, the speed of light appears
via �= c�2. The resulting laws remain meaningful
if � and/or k are replaced by zero. They turn out
to give a common basis for GRT, SRT, and
NGT. The possibility of such a framework was
indicated independently by Cartan (1923, 1924) and
Friedrichs (1927) and extended by several authors;
the complete formulation reviewed here was given
by Ehlers (1981).

The section ‘‘Newton’s theory in spacetime form’’
shows that the laws of NGT and SRT are obtained,
with some additional restrictions, from the rescaled
laws of GRT by putting, respectively, �= 0 or k = 0.
It is emphasized that Newton’s theory proper is a

theory only of isolated systems. Its intrinsic, four-
dimensional formulation explains how the distinc-
tion between a vectorial gravitational field and
inertial forces, as well as the existence of inertial
frames, emerge as consequences of asymptotic
flatness. These structures are lost in the so-called
‘‘Newtonian’’ cosmology whose dynamics is due to
symmetry assumptions, whereas GR cosmology is a
proper part of GRT.

The penultimate section is concerned with rela-
tions between solutions of GRT and NGT, and in
the final section some results related to solutions are
reported. They illustrate that the limit relation
GRT ! NGT may sometimes be inverted to get
exact or approximate GR results from NGT.
Approximations are related to uniform convergence
in �, as is indicated at the end of the final section.

The limit relations described here may be con-
sidered as a model for other theory relations in
physics such as quantization or dequantization.

Notation Indices will be considered in general as
‘‘abstract’’ ones, characterizing the kind of objects
independent of coordinate systems. Greek indices
refer to spacetime, Latin ones to 3-space. Fields on
spacetime will generally be taken to be smooth.

Basic Concepts and Laws of GRT

According to GRT, spacetime is a four-dimensional
manifold M endowed with a Lorentzian metric g��,
here taken to have signature (þ þ þ �). Any kind
of matter including nongravitational fields is sup-
posed to determine an energy tensor T��. Metric
and matter are interrelated by Einstein’s gravita-
tional field equation

R�� ¼
8�k

c4
T�� �

1

2
g��T

� �
½1�

In this equation, T := T�
� denotes the trace of the

energy tensor, k and c stand for Newton’s constant
of gravity and the speed of light, respectively, and
the Ricci tensor R�� is obtained from Riemann’s
curvature tensor by contraction

R�� :¼ R�
���

The curvature tensor is constructed from the
symmetric, linear connection ��

�
� determined by

the metric.
Equation [1] implies the vanishing of the covar-

iant divergence of the energy tensor

T��
;� ¼ 0 ½2�
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the GRT analog of the laws of local conservation of
energy and momentum.

The energy tensor depends on the kind of matter
to be taken into account. In this article, only
vacuum fields (T�� = 0) and perfect fluids will be
considered. For such a fluid,

T�� ¼ ð�þ c�2pÞU�U� þ pg�� ½3a�

� and p denote the mass density and the pressure,
respectively, and the 4-velocity U� is a timelike
vector obeying

g��U�U� ¼ �c2 ½3b�

If thermodynamical relations are added to specify
the kind of fluid – the simplest cases are barotropic
equations p = f (�) – then eqns [1]–[3] admit a
well-posed initial value problem for the fields
g��, U�, �.

Different matter models which could be treated in
the context of this report are elastic bodies and ideal
gases, but not point particles. Point particles fit into
GRT even less than into electrodynamics.

The Cartan–Friedrichs Formalism

To obtain a spacetime formulation of NGT and a
limit relation ART ! NGT, we recall that the
metric structure of Newton’s spacetime consists of a
scalar t, absolute time, which foliates M into
instantaneous 3-spaces St, and Euclidean metrics
�ab(t) on these spaces. If the inverses �ab(t) are
pushed forward onto M via the embeddings St!M,
a field s�� on M results which is assumed to be
smooth. By construction,

s��t;� ¼ 0 ½4�

The pair (t, s��) defines the ‘‘metric,’’ that is, times
and distances, in NGT.

Such a structure can arise from a Lorentzian
metric, for example, the Minkowski metric ���, by
taking, component-wise, the limits

�c�2��� dx� dx�

� dt2 � c�2 dx2 �!
c!1

dt2; ��� �!
c!1

s�� ½5�

which can be interpreted geometrically as ‘‘opening
up the light cones’’ until they degenerate into
doubly covered, spacelike hyperplanes, the New-
tonian St’s.

The relations [5] suggest to write the GRT laws in
terms of the rescaled temporal metric (� � c�2)

t�� :¼ ��g�� ½6�

and to write – presently only as a change of
notation – s�� instead of g��. Then the fields
t��, s��, ��

�
�, T��, �, p, U�, called the basic fields

below, and constants k > 0,� > 0 satisfy the
following laws:

t��s
�� ¼ ��	�� ½7a�

t��;� ¼ 0; s�� ;� ¼ 0 ½7b�

R�
�
�
	 ¼ R�

	
�
� ½7c�

R�� ¼ 8�k t��t�	 �
1

2
t��t�	

� �
T�	 ½7d�

T��
;� ¼ 0 ½7e�

T�� ¼ ð�þ �pÞU�U� þ ps�� ½7f�

t��U�U� ¼ 1 ½7g�

The Lorentz signature of g�� can be reexpressed
thus: at each event (ffi spacetime point), there exists
a ‘‘timelike’’ vector V�, that is,

t��V�V� > 0 ½7h�

and V�X� = 0 for X� 6¼ 0 implies s��X�X� > 0.
The indices in eqn [7c] are raised, here and later,

by s��.
Given a set of basic fields on M as listed below

eqn [6], the laws [7] remain meaningful for all � � 0
and k � 0. If �= 0, the ‘‘metrics’’ t�� and s��

degenerate (and the pair (t��, s��) is then called a
Galilei metric). Nevertheless, the definition of ‘‘time-
like’’ will also be used in that case. Also, X� will be
said to be ‘‘spacelike’’ if and only if it can be written
X� = s��
� with s��
�
� > 0. While for � > 0, some
of the relations [7] are redundant, this is not so for
�= 0. For example, if �= 0, the two eqns [7b] are
independent and do not determine the connection
��

�
� uniquely, in contrast to the case � > 0. The

connection will always be assumed to be symmetric.
As will be discussed below, these formulas define

a framework which serves to relate GRT to NGT
and special relativity (SRT). First steps to formulate
such a framework have been taken independently by
E Cartan and KO Friedrichs. Therefore we call the
structure defined by [7] the Cartan–Friedrichs
formalism (CFF). We call it a ‘‘formalism’’ and not
a ‘‘theory’’ since it is of interest solely as a tool to
study relations between theories.

Equations [7] remain unchanged if the basic fields
and constants are rescaled according to a change of
units for time, length, and mass. Here, two sets of
basic fields related by such a rescaling will be
considered as physically equivalent; they provide the
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same relations between observables. Thus, � and k
have no physical meanings, but only their signs:

� > 0; k > 0 : GRT

� ¼ 0; k > 0 : NGT

� > 0; k ¼ 0 : SRT

(The last two lines are not sufficient to specify the
theories within CFF; in connection with eqn [9] and
in Theorem 2 they will be completed.) For discuss-
ing limit relations between theories, it is nevertheless
useful to represent physical models in different
scales.

The physical interpretation of t��, s�� in terms of
time and distance and that of ��

�
� through its

geodesics as world lines of freely falling test
particles, respectively, is the same in the three
theories and can be stated in terms of the common
framework CFF.

For an obvious reason, � may be called causality
constant. Note that � and k each occur in only one of
the general laws of the theory, apart from the � in [7f].

The laws [7] are invariant under diffeomorphisms
of the spacetime manifold. Those diffeomorphisms
which map the basic fields of a solution into
themselves form the symmetry group of that solution.
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ectors are spacelike iff they are tangent to St,
therwise they are timelike. Moreover, the slices
re locally geodesic with respect to the connection

�
�
�, and the induced connection on the slices is the

lat connection associated naturally to �ab. In
ddition, in the coordinate chart given by (xa, t),
he connection components vanish except �0

a
0 and

0
b

a( = ��0
a

b). Therefore, t is an affine parameter
n timelike geodesics. Further, U0 = 1, and Ua = va

the 3-velocity of the fluid. If one writes

��0
a

0 ¼: ga; ��0
a

b ¼: !a
b ½8a�
Newton’s Theory in Spacetime Form

Local Laws

Remarkably, for �= 0 and k > 0 the formulas [7]
reproduce almost all the laws on which Newton’s
theory of spacetime coupled to Euler’s fluid theory is
based. This is summarized in the following:

Theorem 1 Let eqn [7] hold on M with �= 0.
Then there exists, for any event of M, a neighbor-
hood U with coordinates (xa, t) such that, on U, t
coincides with the absolute time, t�� = t,�t,�, and on
the local slices U \ St, s�� defines Euclidean metrics
�ab with orthonormal coordinates xa, �ab = 	ab.
V
o
a
�
f
a
t
�
o
is
and uses 3-vector notation with (ga) = g,
(!23,!31,!12) = w, the timelike geodesics of ��

�
�

are given by

€x ¼ g þ 2 _x�w ½8b�

g and w satisfy

� �w ¼ 0; �� g þ 2 _w ¼ 0 ½8c�

��w ¼ 0; � � g � 2w2 ¼ �4�k� ½8d�

and the fluid’s equations of motion are

_�þ � � ð�vÞ ¼ 0 ½8e�

�ð _vþ v ��v� g � 2v�wÞ þ �p ¼ 0 ½8f�

A solution (g, w, �, p, v) of eqns [8] on a local
chart (xa, t) with t�� = diag(0, 0, 0, 1) and s�� =
diag(1, 1, 1, 0) provides, via eqn [8a], the general
local solution to eqns [7] for �= 0.

The proof consists of many, mostly elementary
steps which can be gathered from Künzle (1972) and
Ehlers (1981).

Given a solution to eqns (7) with �= 0 and k > 0,
the coordinates x� = (xa, t) referred to in the theorem
are determined by the basic fields up to time-
dependent Euclidean motions, time translations, and
time reflections. Such a coordinate system corresponds
to a rigid reference frame. As the equation of motion
for freely falling particles, eqn [8b], shows, g and w
are to be interpreted as the acceleration and rotation
fields which determine, relative to a rigid frame, the
combined influence of inertia and gravity on particles
encoded in the spacetime connection ��

�
�. (This role

of a connection in NGT was recognized by E Cartan.)
This interpretation is supported by the (generalized)
Euler equation [8f].

As claimed above already, eqns [7] almost
reproduce the local laws of the Newton–Euler
theory. Indeed, eqns [8] are those of the Newton–
Euler theory, provided w depends on time only.
Then and only then can the coordinate freedom be
used to get nonrotating rigid coordinates with
respect to which w = 0. The existence of such
coordinates is indispensable for NGT since only
with respect to them �g is the gradient of a
potential U which obeys Poisson’s equation, as
shown by eqns [8c] and [8d].

The preceding argument shows that the CFF,
specialized to �= 0, has to be restricted by a
condition which implies w = w(t) in order to give
the local laws of NGT. One such condition is

R��
�	 ¼ 0 ½9�



as can be verified by computing the curvature tensor
via eqn [8a].

Equation [9] for �= 0 expresses that parallel
transport of spacelike vectors along arbitrary spacetime
curves is integrable, which corresponds to the behavior
of free gyroscopes in NGT (in contrast to GRT).

Of course, eqn [9] cannot be added to the CFF since it
is incompatible with GRT. If, however, the CFF with
� > 0, k = 0 is restricted by the condition [9], the
spacetime and hydrodynamics of special relativity result.
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t¼const:

(� will always be used for this solution of eqn [10]).

�� � is asymptotically flat since the �-term falls of
as jxj�2.
Global Laws for Isolated Systems

The laws [8] and [9] do not determine the time
evolution of the basic fields. Using nonrotating
coordinates we put g =��U and replace eqns [8c],
[8d] by Poisson’s equation

�U ¼ 4�k� ½10�

In Newtonian dynamics, the potential only serves
to compute forces depending instantaneously on the
mass distribution. Traditionally, this is achieved by
assuming � to have spatially compact support at
each time and to solve eqn [10] by

�ðx; tÞ ¼ �k

Z
�ðxþ y; tÞ
jyj d3y ½11�

which implies the fall-off

lim
jxj!1;

�ðx; tÞ ¼ 0 ½12�

To relate the foregoing isolation assumptions
to corresponding assumptions in GRT as far as
presently possible, it seems necessary to go back
to the laws [7] restricted to �= 0 or the equivalent
(3þ 1) version [8] without the restriction [9].

If some global assumptions are added to eqns [8],
eqns [10]–[12] can be deduced from the four-
dimensional formulation. One first introduces the
following two assumptions:

(1) The hypersurfaces St of M (which, for �= 0, are
the only spacelike hypersurfaces) are simply
connected, complete Euclidean spaces.

(2) On each St, the support of � is compact.

Using coordinates (xa, t) as in the last subsection,
with xa now ranging on R3, eqns [8a] imply

R�
��	R

�
�
�
� ¼ �2

X
a;b

ð!a;bÞ2t	� ½13�

Hence the sum is a 4-scalar, and since t�� is
covariantly constant, it is possible to require

R�
��	R

�
�
�
�! 0 at spatial infinity ½14�
which expresses covariantly that !a, b! 0. Since w is
harmonic on St (by eqns [8c], [8d]), this in turn
implies !a, b = 0; thus, w depends on t only; the
asymptotic condition [14] and the local laws imply
eqn [9].

We may therefore employ rigid, nonrotating
coordinates, w = 0. Then, by eqns [8a], [8c], [8d]
the connection coefficients take the form

��
�
� ¼ t;�t;�s

�	U;	 ½15�

and

R�
�
�R


��	 ¼ t;�t;�t;�t;	
X
a;b

X
a;b

ðU;abÞ2 ½16�

As before, we require

R�
�
�R


��	! 0 ½17�

and conclude U, ab! 0. Since the Newtonian poten-
tial � of � also has this fall-off and U � � is
harmonic on St ffi R3, the following conclusion can
be obtained:

Lemma 1 The laws [8] and the global conditions
(1)–(2), [14], [17] imply: in rigid, nonrotating
coordinates, the connection

��
�
� � t;�t;�s

�	�;	 ¼ �
	
�
� ½18�

is flat (� according to eqn [11] is a scalar, and the
�-term in eqn [18] is a tensor). In other words,

�

Because of this lemma, one can further restrict the
coordinates (xa, t) by demanding �

	
�
�
� = 0. In physi-

cal terms this means: by switching to a new,
‘‘unaccelerated’’ frame of reference, one removes
from the equations of motion a spatially homo-
geneous gravitational field which, in contrast to the
�-term in eqn [16], is not due to matter.

The resulting coordinates are defined, up to
Galilean transformations,

t0¼ 
 t þ c00

xa0¼Da0
bxb þ ua0t þ ca0

where ca0 , ua0 are constants and D is a constant
orthogonal 3� 3 matrix. These coordinates are
called inertial ones; with respect to them the usual
laws of Newtonian mechanics hold; see [8] with
w = 0 and U =�[�].

Theorem 2 (Ehlers 1981). The laws [7] of the
CFF restricted to �= 0 and augmented by the global
and asymptotic conditions (1)–(2), [14], [17],
provide a generally covariant, four-dimensional
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ormulation for the Newtonian theory of space,
ime, gravitation, and hydrodynamics.

The possibility to split the connection � into a flat
art which is independent of matter and a tensorial
art depending on matter and given by the vector
ield g� = s���,� (with � from eqn [11]), arises only
rom supplementing the local laws [7] by the global,
esp. asymptotic, conditions (1)–(2), [14], [17]
tated above. The introduction of inertial coordi-
ates is then convenient, but not necessary. In

oninertial, rigid frames of reference, �

	
�
�
� gives

ise to inertial forces.
It should be possible to define spatial asymptotic

latness in the CFF, but that has not been done.
Remarks on Newtonian Cosmology

In cosmology, the conditions (2) and [17] of the
last subsection are not appropriate. Instead one
keeps the laws [7] and adds to them eqn [9], so
that with respect to nonrotating coordinates the
laws [8] with w = 0 and eqn [10] remain valid.
Then, there are no longer inertial coordinate
systems, and the potential U is not a 4-scalar.
For a slightly different approach, see Rüede and
Straumann (1997).

For the purpose of this article, the term
‘‘cosmological model’’ will be applied to those
solutions of the laws [7] and [9] which satisfy � > 0
and which have a symmetry group which acts
transitively on the set of world lines representing
the motion of the fluid. This strong symmetry
assumption determines the time-evolution even in
the ‘‘Newtonian’’ case �= 0 in spite of the absence
of an evolution equation for the gravitational
field g.
Newtonian Limits of Families
of GR Solutions

The disc ussion in the sections ‘‘The Car tan–
Fried richs form alism’’ an d ‘‘N ewton’s theory in
spacetime form’’ suggests the following:

Definition 1 Let a family F (�) = (t��(�), . . .) of
basic fields parametrized by �, obeying the laws [7]
of the CFF, be given for 0 � � < a. We assume the
underlying manifolds M(�) to be open submanifolds
of a fixed manifold M such that M(�1) �M(�2) if
�1 < �2 and

S
� M(�) = M. Then we write

lim
�!0
Fð�Þ ¼ Fð0Þ ½19�

if the fields of F (�) and their first derivatives
converge pointwise to those of F (0).
F (0) is then said to be a CF limit of the sequence of
(�-rescaled) solutions F (�) of GRT. If the fields of a
�-family of GR solutions (� > 0) and their first
derivatives converge for � ! 0 locally uniformly,
then the limit fields satisfy eqns [7]. If F (0) has the
additional property [9], the limit is locally Newtonian.

On the basis of the section ‘‘The Car tan–
Fried richs formalism ’’ one may con jecture that if
eqn [19] holds and the F (�) for � > 0 are spatially
asymptotically flat, F (0) will represent an asympto-
tically flat Newtonian spacetime. Examples such as
Example 1 below are in agreement with this
conjecture, but a general proof is not known.

Example 1 The interior solution for a static,
spherically symmetric fluid ball of constant energy
density (Schwarzschild 1916) is given by

ds2¼ dr2

a2
þ r2ðd#2 þ sin2 # d’2Þ

� 1

4
ð3a0 � aÞ2c2 dt2

� ¼ const: > 0; p ¼ �c2 a� a0

3a0 � a

U¼ 2

3a0 � a
@t; aðrÞ ¼ 1� 8�

3
kc�2r2�

� �1=2

a0¼ aðr0Þ

Inserting into these expressions the parameter
�= c�2 and treating � and r0 as �-independent
constants results in a �-family with 0 � � <
((8�=3)kr3

0�)
�1. The limit solution represents a

Newtonian fluid ball of constant mass density �.
The Schwarzschild vacuum fields belonging to these
fluid balls also have the appropriate Newtonian
limits. The resulting complete spacetimes are asymp-
totically flat. A dimensionless small parameter
which could be used instead of � to measure the
deviation of the GR solution from its Newtonian
limit is the ratio of Schwarzschild radius and the
geometric radius:

2kM

c2r0
¼ 8�

3

k�r2
0

c2

Example 2 A Friedmann–Lemaitre cosmological
model of GR containing dust and radiation is given by

ds2 ¼ R2ðtÞ 	abd
ad
b

1� ð1=4ÞðE=c2Þ	ab
a
bð Þ2
� c2dt2

where R(t) obeys

_R2 � 8�

3
k

M

R
þ S

c2R2

� �
¼ E



M is a mass constant, �= M=R3 is the mass density
of ‘‘dust,’’ S is an entropy constant, �= S=R4 the
energy density and p = (1=3)� the pressure of
radiation; and E is a constant of dimension
(speed)2. The world lines of the fluid elements
are given by 
a = const. (Lagrangian comoving
coordinates).

Taking E, M, S constant and �= c�2 as a parameter
provides a �-family of GR models with Newtonian
limit. In the limit, t is the Newtonian time, and the
spatial metric R2	abd
ad
b describes an expanding
Euclidian space R3 (if E � 0) or an open ball of
radius 2R(t) in it (if E > 0). In the coordinates (
a, t)
the connection does not have the ‘‘Newtonian’’
components [8a], instead its nonvanishing compo-
nents are �0

a
b = ( _R=R)	a

b. In local inertial coordinates
xa = R
a centered on the particle with 
a = 0 (which
could be any particle because of the homogeneity of
the model), the spatial metric is dx2, and the
connection components are Newtonian, with
U = (2�=3)k�x2 and �U = 4�k�. In the limit, the
radiation no longer influences the expansion; one gets
the Newtonian dust models (eqn [9] is satisfied). The
connection is, of course, not asymptotically flat. The
curvature tensor R�

�
�
	 = (4�=3)k�t�	s

�� exhibits
homogeneity and isotropy. The Gaussian sectional
curvature of the 3-space at time t is K =��E=R2. As
a dimensionless smallness parameter one can take
E=c2. In the ‘‘open’’ models, with E � 0, the
coordinates 
a cover the whole 3-manifold of fluid
particles, while in the ‘‘closed’’ case, E < 0, one
particle, the antipode of 
a = 0 on the 3-sphere, is not
covered. That particle is missing in the Newtonian
limit model. In the Newtonian case the expanding
Euclidian space R3 can be replaced by a torus; in the
GR cases this is possible only for E = 0.

Many examples of GR families with Newtonian
limits are known (see, e.g., Ehlers (1997) and
references therein). An example of a �-family
which has an almost Newtonian limit which does
not satisfy eqn [9] is provided by NUT spacetimes
(see Ehlers 1997), interpreted as due to a
gravitomagnetic monopole (Lynden-Bell and
Nouri-Zonez 1998).

Applications and Problems

Can one construct, for a given Newtonian solution
N, a �-family of GR solutions which converges to
N? Some answers are known and listed below.

U Heilig (1995) has shown: given a solution to
the Euler–Poisson equations representing a station-
ary, rigidly rotating, self-gravitating fluid body
with its surrounding gravitational field, there exists

a �-family of corresponding solutions to the
Einstein–Euler system having the given solutions
as its limit.

The proof is based on the fact that one can
reformulate eqns [1], [2] in terms of harmonic
coordinates and new dependent gravitational vari-
ables instead of g�� such that the new equations
given in Lottermoser (1992) are analytic in � and
reduce, for �= 0, to the Euler–Poisson system. In the
stationary case these equations are elliptic for � � 0.
Using appropriate function spaces, Heilig shows, via
the implicit function theorem, that a solution for
�= 0 can be extended to small, positive values of �.
Since L Lichtenstein has constructed solutions as
assumed in the theorem, the existence of GR
solutions follows.

The gravitational part of the system of equations
referred to above is hyperbolic for � > 0, but
becomes elliptic for �= 0, whereas the fluid equa-
tions remain hyperbolic. In spite of this difficulty
Rendall (1994) has shown that �-families of time-
dependent, asymptotically flat solutions to the
Einstein–Vlasov system representing gravitating
systems of collisionless particles have Poisson–
Vlasov limits, and that any Poisson–Vlasov solution
can be so obtained.

Lottermoser (1992) succeeded in proving the exis-
tence of�-families of solutions to the Einstein constraint
equations which have Newtonian initial data as limits.
Nothing seems to be known about solutions evolving
from such data. Lottermoser has given an interesting
discussion concerning possible extension of his work
which apparently has gone unnoticed.

Rendall (1992) has defined and analyzed post-
Newtonian expansions to Einstein’s equations and
their solvability, assuming �-families whose t��, s��

are a few times differentiable in �=
ffiffiffi
�
p

at �= 0. He
found that for low orders the equations have
asymptotically flat solutions, but that at order �8

divergences occur for general Newtonian seed
solutions. Modifications of the method to overcome
these difficulties have been considered by Rendall
and others; the problem is open.

In cosmology, one uses homogeneous back-
ground models and studies their perturbations.
The latter are frequently based on Newtonian
equations. This can perhaps be justified as follows.
According to Example 2 the fields of Friedmann–
Lemaitre models differ from their Newtonian limits
by arbitrarily small amounts uniformly in
spacetime regions where the terms involving � are
small, that is,

S

Mc2

 RðtÞ;

ffiffiffiffiffiffi
jEj

p
c
jxj 
 RðtÞ

508 Newtonian Limit of General Relativity



Additional conditions will be needed to ensure that
Newtonian perturbations approximate relativistic
ones and that gravitational wave perturbations can
be neglected.

See also: Cosmology: Mathematical Aspects; Einstein
Equations: Exact Solutions; General Relativity: Overview;
Gravitational Lensing; Shock Wave Refinement of the
Friedman–Robertson–Walker Metric.
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Introduction

The aim of this contribution is to explain how
Connes derives the standard model of electromag-
netic, weak, and strong forces from noncommuta-
tive geometry. The reader is supposed to be aware of
two other derivations in fundamental physics: the
derivation of the Balmer–Rydberg formula for the
spectrum of the hydrogen atom from quantum
mechanics and Einstein’s derivation of gravity from
Riemannian geometry.

At the end of the nineteenth century, new physics
was discovered in atoms, namely their discrete
spectra. Balmer and Rydberg succeeded to put
order into the fast-growing set of experimental
results with the help of a phenomenological ansatz
for the frequencies � of the spectral rays of, for
example, the hydrogen atom,

� ¼ gðnq
2 � nq

1Þ; nj 2 N; q 2 Z; g 2 R ½1�

The integer variables n1 and n2 reflect the
discreteness of the spectrum. On the other hand,
the discrete parameter q and the continuous
parameter g were fitted by experiment: q =�2

and g = 3.289� 1015 Hz, the famous Rydberg
constant. Later quantum mechanics was discov-
ered and allowed to derive the Balmer–Rydberg
ansatz and to constrain its parameters:

q ¼ 2 and g ¼ me

4��h3

e4

ð4��0Þ2
½2�

in beautiful agreement with the anterior experi-
mental fit.

The Standard Model

We propose to introduce the standard model (see
Standard Model of Particle Physics) in analogy with
the Balmer–Rydberg formula (Table 1).

Table 1 An analogy between atomic and particle physics elements

Atomic physics Particle physics

New physics Discrete spectra Forces mediated by

gauge bosons

Ansatz �= g(nq
2 � nq

1 ) Yang–Mills–Higgs

models

Experimental

fit

q =�2, g = 3.289� 1015 Hz Standard model

Underlying

theory

Quantum mechanics Noncommutative

geometry
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The Yang–Mills–Higgs Ansatz

The variables of this Lagrangian ansatz are spin-1
particles A, spin-(1/2) particles decomposed into left-
and right-handed components  = ( L, R) and spin-
0 particles ’. There are four discrete parameters, a
compact real Lie group G, the ‘‘gauge group,’’ and
three unitary representations on complex Hilbert
spacesHL,HR, andHS. The spin-1 particles come in a
multiplet living in the complexified of the Lie algebra
of G, A 2 Lie(G)C. The left- and right-handed spinors
come in multiplets living in the Hilbert spaces,  L 2
HL, R 2 HR, respectively. The (Higgs) scalar is
another multiplet, ’ 2 HS. The Yang–Mills–Higgs
Lagrangian, together with its Feynman diagrams, is
spelled out in Table 2.

There are several continuous parameters: the
gauge coupling g 2 Rþ, the Higgs self-couplings
�,� 2 Rþ, and several Yukawa couplings gY 2 C.
Table 2 The Yang–Mills–Higgs Lagrangian and its Feynman

diagrams

L[A;  ; ’] = 1
2 tr(@�A�@

�A� � @�A�@
�A�)

þg tr(@�A�[A
�;A�])

þg2 tr([A�;A�][A
�;A�])

þ � 6@ 

þig � (�̃L � �̃R)(A�)	� 

þ1
2 @�’

�@�’

þ1
2 gf(�̃S(A�)’)�@�’þ @�’��̃S(A�)’g

þ1
2 g2(�̃S(A�)’)��̃S(A�)’

þ�’�’’�’

�1
2�

2’�’

þgY
� ’ þ �gY

� ’� 
Let us choose G = U(1) 3 ei�. Its irreducible unitary
representations are all one-dimensional, H= C 3  
characterized by the charge q 2 Z: �(ei�) = eiq� .
Then with qL = qR and HS = {0}, we get Maxwell’s
theory with the photon (or gauge boson or 4-potential)
A coupled to the Dirac theory of a massless spinor of
electric charge qL whose (relativistic) wave function is
 . The gauge coupling is given by g = e=

ffiffiffiffi
�0
p

. Gauge
invariance of the Yang–Mills–Higgs Lagrangian
implies, via Noether’s theorem, electric charge con-
servation in this case (see Symmetries and Conserva-
tion Laws).

Yang–Mills models are therefore simply nonabelian
generalizations of electromagnetism where the abelian
gauge group U(1) is replaced by any compact real Lie
group. We insist on a compact group because all
irreducible unitary representations of compact groups
are finite dimensional. Finally, the Higgs scalar is
added to give masses to spinors and gauge bosons via
spontaneous symmetry breaking (see Symmetry
Breaking in Field Theory).

We use compact groups and unitary representations
as (discrete) parameters. One motivation is Noether’s
theorem and conserved quantities. The other comes
from Wigner’s theorem: the irreducible unitary
representations of the Poincaré group are classified
by mass and spin. Its orthonormal basis vectors
are classified by energy–momentum and by the
z-component of angular momentum. This theorem
leads to the widely accepted definition of a particle as
an orthonormal basis vector in a Hilbert space
H carrying a unitary representation � of a group G.

A precious property of the Yang–Mills–Higgs
ansatz is its perturbative renormalizability necessary
for fine-structure calculations like the anomalous
magnetic moment of the muon.

The Experimental Fit

Physicists have spent some 30 years and some 109 Swiss
Francs to distill the fit (Particle Data Group 2004):

G ¼ SUð2Þ � Uð1Þ � SUð3Þ=ðZ2 �Z3Þ ½3�

HL ¼
M

1

ð2; 1
6; 3Þ � ð2;�1

2; 1Þ
� �

½4�

HR ¼
M3

1

ð1; 2
3; 3Þ � ð1;�1

3; 3Þ � ð1;�1; 1Þ
� �

½5�

HS ¼ ð2;�1
2;1Þ ½6�

Here (n2, y, n3) denotes the tensor product of an
n2-dimensional representation of SU(2), ‘‘(weak) iso-
spin,’’ an n3-dimensional representation of SU(3),
‘‘color,’’ and the one-dimensional representation of



Table 3 Four nested analytic geometries

Geometry Force Time

Euclidean E =
R
~F � d~x Absolute

Minkowskian ~E , �0 ) ~B,�0 = ��1
0 c�2 Universal

Riemannian Coriolis $ gravity Proper, 


Noncommutative Gravity ) YMH, �= 1
3 g2

2 �
 	 10�40 s
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U(1) with ‘‘hyper charge’’ y. For historical reasons, the
hypercharge is an integer multiple of 1/6. This is
irrelevant: in the abelian case, only the product of the
hypercharge with its gauge coupling is measurable, and
we do not need multivalued representations, which are
characterized by noninteger, rational hypercharges. In
the direct sum, we recognize the three generations of
fermions, the quarks, ‘‘up, down, charm, strange, top,
bottom,’’ are SU(3) triplets, the leptons, ‘‘electron,
�, 
 ’’ and their neutrinos, are color singlets. The basis
of the fermion representation space is

u

d

� �
L

;
c

s

� �
L

;
t

b

� �
L

�e

e

� �
L

;
��

�

� �
L

;
�





� �
L

uR; cR; tR; eR; �R; 
R

dR; sR; bR;

The parentheses indicate isospin doublets.
The eight gauge bosons associated with su(3) are

called gluons. Warning: the U(1) is not the one of electric
charge; it is called hypercharge, the electric charge is a
linear combination of hypercharge and weak isospin.
This mixing is necessary to give electric charges to the W
bosons. The Wþ and W� are pure isospin states, while
the Z0 and the photon are (orthogonal) mixtures of the
third isospin generator and hypercharge.

As the group G contains three simple factors,
there are three gauge couplings,

g2 ¼ 0:6518� 0:0003

g1 ¼ 0:3574� 0:0001

g3 ¼ 1:218� 0:01

½7�

The Higgs couplings are usually expressed in terms
of the W and Higgs masses:

mW ¼ 1
2g2 v ¼ 80:419� 0:056 GeV ½8�

m’ ¼ 2
ffiffiffi
2
p ffiffiffi

�
p

v > 98 GeV ½9�

with the vacuum expectation value v := (1=2)�=
ffiffiffi
�
p

.
Because of the high degree of reducibility of the spin-
(1/2) representations there are 27 complex Yukawa
couplings. They constitute the fermionic mass matrix
which contains the fermion masses and mixings:

me ¼ 0:510998902� 0:000000021 MeV

mu ¼ 3� 2 MeV; md ¼ 6� 3 MeV

m� ¼ 0:105658357� 0:000000005 GeV

mc ¼ 1:25� 0:1 GeV; ms ¼ 0:125� 0:05 GeV

m
 ¼ 1:77703� 0:00003 GeV

mt ¼ 174:3� 5:1 GeV; mb ¼ 4:2� 0:2 GeV
For simplicity, we have taken massless neutrinos.
Then mixing only occurs for quarks and is given by
a unitary matrix, the Cabibbo–Kobayashi–Maskawa
matrix

CKM :¼
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0
@

1
A ½10�

whose matrix elements in terms of absolute values are:

0:9750�0:0008 0:223�0:004 0:004�0:002
0:222�0:003 0:9742�0:0008 0:040�0:003
0:009�0:005 0:039�0:004 0:9992�0:0003

0
@

1
A

½11�

Mathematically, the Cabibbo–Kobayashi–Maskawa
matrix comes from a polar decomposition of the
mass matrix. The physical meaning of the quark
mixings is the following: when a sufficiently
energetic Wþ decays into a u quark, this u quark
is produced together with a �d quark with prob-
ability jVudj2, an �s quark with probability jVusj2,
and a �b quark with probability jVubj2.

The phenomenological success of the standard
model is phenomenal: with only a handful of
parameters, it reproduces correctly some millions
of experimental numbers: cross sections, lifetimes,
branching ratios.
Noncommutative Geometry

Noncommutative geometry is an analytic geometry
generalizing three other geometries that also had
important impact on our understanding of forces
and time. Let us start by briefly recalling the three
forerunners (Table 3). Euclidean geometry underlies
Newton’s mechanics as a geometry in the space of
positions. Forces are described by vectors living in
the same space and the Euclidean scalar product is
needed to define work and potential energy. Time
is not part of geometry – it is absolute. This point
of view is abandoned in special relativity unifying
space and time into Minkowskian geometry. This
new point of view allows to derive the magnetic
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Figure 1 The first example of noncommutative geometry.
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field from the electric field as a pseudoforce
associated with a Lorentz boost. Although time
becomes relative, one can still imagine a grid of
synchronized clocks, that is, a universal time. The
next generalization is ‘‘Riemannian geome-
try = curved spacetime.’’ Here gravity can be
viewed as the pseudoforce associated with a
uniformly accelerated coordinate transformation.
At the same time, universal time loses all meaning
and we must content ourselves with proper time.
With today’s precision in time measurement, this
complication of life becomes a bare necessity, for
example, the global positioning system (GPS).

Our last generalization is ‘‘noncommutative
geometry = curved space(time) with an uncertainty
principle.’’ As in quantum mechanics, this uncertainty
principle is introduced via noncommutativity.
Quantum Mechanics

Consider the classical harmonic oscillator. Its phase
space is R2 with points labeled by position x and
momentum p. A classical observable is a differenti-
able function on phase space such as the total energy
p2=(2m)þ kx2. Observables can be added and multi-
plied, and they form the algebra C1(R2), which is
associative and commutative. To pass to quantum
mechanics, this algebra is rendered noncommutative
by means of a noncommutation relation for the
generators x and p: [x, p] = i�h1. Let us call A the
resulting algebra ‘‘of quantum observables.’’ It is still
associative, and has an involution �� (the adjoint or
Hermitian conjugation) and a unit 1.

Of course, there is no space anymore of which A is
the algebra of functions. Nevertheless, we talk about
such a ‘‘quantum phase space’’ as a space that has no
points or a space with an uncertainty relation. Indeed,
the noncommutation relation implies Heisenberg’s
uncertainty relation �x�p 
 �h=2 and tells us that
points in phase space lose all meaning; we can only
resolve cells in phase space of volume �h=2, see Figure 1.
To define the uncertainty �a for an observable a 2 A,
we need a faithful representation of the algebra on a
Hilbert space, that is, an injective homomorphism �
from A into the algebra of operators on H. For the
harmonic oscillator, this Hilbert space is H=L2(R).
Its elements are the wave functions  (x), square-
integrable functions on configuration space. Finally,
the dynamics is defined by the Hamiltonian, a self-
adjoint observable H = H� 2 A via Schrödinger’s
equation (i�h@=@t � �(H)) (t, x) = 0. Here time is an
external parameter; in particular, time is not an
observable. This is different in the special-relativistic
setting, where Schrödinger’s equation is replaced by
Dirac’s equation 6@ = 0. Now the wave function  is
the four-component spinor consisting of left- and right-
handed, particle and antiparticle wave functions.
Unlike the Hamiltonian, the Dirac operator does not
lie in A, but it is still an operator on H. In Euclidean
spacetime, the Dirac operator is also self-adjoint,
6@�= 6@.

Spectral Triples

Noncommutative geometry (Connes 1994, 1995)
does to a compact Riemannian spin manifold M
what quantum mechanics does to phase space. A
noncommutative geometry is defined by the three
purely algebraic items (A,H, 6@), called a spectral
triple. A is a real, associative, and possibly non-
commutative involution algebra with unit, faithfully
represented on a complex Hilbert space H, and 6@ is
a self-adjoint operator on H. As the spectral triple,
also the axioms linking its three items are motivated
by relativistic quantum mechanics.

When A= C1(M), the functions on a Riemannian
spin manifold M, represented on spinors  , and 6@ is
the gravitational Dirac operator, one has a spectral
triple. The converse is also true when A is a
suitable commutative algebra (Connes 1996), but
the axioms make sense even when A is not
commutative. As for quantum phase space, Connes
defines a noncommutative geometry by a spectral
triple whose algebra is allowed to be noncommu-
tative and he shows how important properties like
dimensions, distances, differentiation, integration,
general coordinate transformations, and direct
products generalize to the noncommutative setting.
As a bonus, the algebraic axioms of a spectral
triple, commutative or not, include discrete, that is,
zero-dimensional spaces that now are naturally
equipped with a differential calculus. These spaces
have finite-dimensional algebras and Hilbert
spaces, meaning that their algebras are just matrix
algebras.

An ‘‘almost commutative geometry’’ is defined as a
direct product of a four-dimensional commutative
geometry, ‘‘ordinary spacetime,’’ by a zero-dimensional
noncommutative geometry, the ‘‘internal space.’’ If the
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latter is also commutative, for example, the ordinary
two-point space, then the direct product describes a
two-sheeted universe or a Kaluza–Klein space whose
fifth dimension is discrete, (Madone 1995). In general,
the axioms of spectral triples imply that the Dirac
operator of the internal space is precisely the fermionic
mass matrix.

As a generic example, here is the internal spectral
triple underlying the standard model with one
generation of quarks and leptons. The algebra
A= H�C�M3(C) 3 (a, b, c) contains quaternions,
that is, 2� 2 matrices of the form

a ¼ x ��y
y �x

� �
; x; y 2 C

complex numbers b and complex 3� 3 matrices c.
The Hilbert space is 30-dimensional, where we
count particles and antiparticles ( �c ) separately:
H=HL �HR �Hc

L �Hc
R = C8 �C7 �C8 �C7. The

representation is block-diagonal, with the four
blocks

�LðaÞ :¼
a� 13 0

0 a

 !

�RðbÞ :¼

b13 0 0

0 �b13 0

0 0 �b

0
BBB@

1
CCCA

½12�

�c
Lðb; cÞ :¼

12 � c 0

0 �b12

� �

�c
Rðb; cÞ :¼

c 0 0

0 c 0

0 0 �b

0
B@

1
CA

½13�

The internal Dirac operator (= fermionic mass
matrix) contains two quark masses mu, md and one
lepton mass me, and no mixing:

D ¼

0 M 0 0

M� 0 0 0

0 0 0 �M
0 0 �M� 0

0
BBB@

1
CCCA

M¼

mu 0

0 md

� �
� 13 0

0
0

me

� �
0
BBB@

1
CCCA

½14�
These matrices look rather ad hoc; they are not.
They define an irreducible spectral triple and, for a
given algebra, there is only a finite number of such
triples.
The Spectral Action

Chamseddine and Connes (1997) generalize general
relativity to noncommutative spacetimes in two
strokes, kinematics and dynamics. They explicitly
compute this generalization for almost commutative
geometries.

Kinematics In noncommutative geometry, gen-
eral coordinate transformations are algebra auto-
morphisms lifted to the Hilbert space of spinors.
For almost commutative geometries, these transfor-
mations are precisely general coordinate trans-
formations of ordinary spacetime and gauge
transformations. Now remember how Einstein uses
the equivalence principle to produce ‘‘gravity =
curvature’’ starting from the flat metric, which in
Connes’ language is the ordinary flat Dirac opera-
tor. When applied to an almost commutative
geometry (Connes 1996), the equivalence principle
produces again a curved metric via the ordinary
coordinate transformations on M, while the gauge
transformations applied to the fermionic mass
matrix produce a new field, the Higgs scalar ’. For
the example above, this field is precisely the isospin
doublet, color singlet with hypercharge �1=2 of eqn
[6]. Gauge transformations also apply to the
ordinary Dirac operator, thereby producing the
gauge fields A.

Dynamics The group of generalized coordinate
transformations allowed us to construct the con-
figuration space. In the almost commutative case it
consists of Riemannian metrics, gauge fields, and
Higgs scalars. We now want a dynamics on this
configuration space. Of course, we want this
dynamics to be invariant under the group of
generalized coordinate transformations. Note that
the spectrum of the Dirac operator is invariant
under this group and Chamseddine and Connes
(1997) define the spectral action as a regularized
partition function of these eigenvalues.

On almost commutative geometries, the spectral
action is equal to the Einstein–Hilbert action plus
the Yang–Mills–Higgs ansatz (Figure 2). In other
words, almost commutative geometry explains the
forces mediated by gauge bosons and Higgs scalars
as pseudoforces accompanying the gravitational
force in the same way that Minkowskian geometry
(i.e., special relativity) explains the magnetic force as
a pseudoforce accompanying the electric force.
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There are constraints on the discrete and contin-
uous parameters in the Yang–Mills–Higgs ansatz
deriving from the spectral action Figure 3.

In particular, if we consider only irreducible spectral
triples and among them only those which produce
nondegenerate fermion masses compatible with renor-
malization, then we only get the standard model with
one generation of quarks and leptons, with a massless
neutrino and with an arbitrary number of colors, and a
few submodels thereof. More than one generation and
neutrino masses are possible but imply reducible
triples. However, in at least one generation, the
neutrino must remain purely left and massless.

For the standard model with N generations
and Nc colors, we have the constraints
g2

Nc
= g2

2 = (9=N)� on the continuous parameters. If
we put N = Nc = 3 and if we believe in the popular
‘‘big desert’’ then these constraints yield a ‘‘unifica-
tion scale’’ � = 1017 GeV at which the uncertainty
relation in spacetime should become manifest,
�
 = �h=�, and a Higgs mass of m’ = 171.6�
5 GeV for mt = 174.3� 5.1 GeV (see Figure 4).

It is clear that almost commutative geometries
only scratch the surface of a gold mine. May we
hope that a genuinely noncommutative geometry
will solve our present problems with quantum field
theory and quantum gravity?
See also: Compact Groups and Their Representations;
Dirac Fields in Gravitation and Nonabelian Gauge
Theory; Effective Field Theories; General Relativity:
Overview; Hopf Algebras and q-Deformation Quantum
Groups; Positive Maps on C�-Algebras; Quantum Hall
Effect; Standard Model of Particle Physics; Symmetries
and Conservation Laws; Symmetry Breaking in Field
Theory; von Neumann Algebras: Introduction, Modular
Theory, and Classification Theory.
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Noncommutative Geometry from
String Theory

The first use of noncommutative geometry in string
theory appears in the work of Witten on open-string
field theory where the noncommutativity is asso-
ciated with the product of open-string fields.
Noncommutative geometry appears in the recent
development of string theory in the seminal work of
Connes, Douglas, and Schwarz where they con-
structed and identified the compactification of
Matrix theory on a noncommutative torus.

Matrix Theory Compactification and
Noncommutative Geometry

The matrix theory (M-theory) is an 11-dimensional
quantum theory of gravity which is believed to
underlie all superstring theories. Banks, Fischler,
Shenker, and Susskind proposed that the large N
limit of the supersymmetric matrix quantum
mechanics of N D0-branes should describe the
M-theory compactified on a lightlike circle.
Compactification of the M-theory on a torus can be
easily achieved by considering the torus as the quotient
space Rd=Zd with the quotient conditions

U�1
i XjUi ¼ Xj þ �j

i2�Ri; i ¼ 1; . . . ; d ½1�

Here Ri are the radii of the torus. The unitary
translation generators Ui generate the torus. They
satisfy UiUj = UjUi. T-dualizing the D0 brane
system, eqn [1] leads to the dual description as a
(d þ 1)-dimensional supersymmetric gauge theory
on the dual toroidal D-brane. A noncommutative
torus Td

� is defined by the modified relations

UiUj ¼ ei�ijUjUi ½2�

where �ij specify the noncommutativity. Compacti-
fication on a noncommutative torus can be easily
accommodated and leads to noncommutative gauge
theory on the dual D-brane. The parameters �ij can
be identified with the components C�ij of the 3-form
potential in M-theory.

Since M-theory compactified on a circle leads to
IIA string theory, the components C�ij correspond to
the Neveu–Schwarz (NS) B-field Bij in IIA string
theory. The physics of the D0 brane system in the
presence of an NS B-field can also be studied from
the viewpoint of IIA string theory. This led Douglas
and Hull to obtain the same result that a non-
commutative field theory lives on the D-brane.
Toroidally compactified IIA string theory has a
T-duality group SO(d, d; Z). The T-duality symmetry
gets translated into an equivalence relation between
gauge theories on the noncommutative torus: a gauge
theory on the noncommutative torus Td

� is equivalent
to that on the noncommutative torus Td

�0 if their
noncommutativity parameters and metrics are related
by a T-duality transformation. For example,

�0 ¼ ðA�þ BÞðC�þDÞ�1;

A B

C D

� �
2 SOðd; d; ZÞ ½3�

It is remarkable that the T-duality acts within the
field theory level, rather than mixing up the field
theory modes with the string winding states and
other stringy excitations. Mathematically, eqn [3] is
precisely the condition for the noncommutative tori
Td
� and Td

�0 to be Morita equivalent.

Open-String in B-Field

It was soon realized that the D-brane does not
necessarily need to be toroidal in order to be
noncommutative. A direct canonical quantization
of the open-string system shows that a constant
B-field on a D-brane leads to noncommutative
geometry on the D-brane world volume. Consider
an open string moving in a flat space with metric gij

and a constant NS B-field. In the presence of a Dp
brane, the components of the B-field not along the
brane can be gauged away; thus, the B-field can
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have effects only in the longitudinal directions along
the brane. The world-sheet (bosonic) action for this
part is

S ¼ 1

4��0

Z
�

d2�

� gij@axi@axj � 2��0Bij�
ab@ax

i@bxj
� �

½4�

where i, j = 0, 1, . . . , p is along the brane. It is easy
to see that the boundary condition gij@�x

j þ
2�i�0Bij@�x

j = 0 at �= 0,� is not compatible with
the standard canonical quantization [xi(� ,�),
xj(� ,�0)] = 0 at the boundary. Taking the boundary
condition as constraints and performing canonical
quantization, one obtains the commutation
relations

½ai
m; a

j
n� ¼ mGij�mþn; ½xi

0; p
j
0� ¼ iGij;

½xi
0; x

j
0� ¼ i�ij ½5�

Here, the open-string mode expansion is

xið�; �Þ ¼ xi
0 þ 2�0ðpi

0� � 2��0ðg�1BÞijp
j
0�Þ

þ
ffiffiffiffiffiffiffi
2�0
p X

n 6¼0

e�in�

n

� iai
n cos n�� 2��0ðg�1BÞijaj

n sin n�
� �

Gij and �ij are the symmetric and antisymmetric
parts of the matrix (gþ 2��0B)�1ij:

Gij ¼ 1

gþ 2��0B
g

1

g� 2��0B

� �ij

�ij ¼ �ð2��0Þ2 1

gþ 2��0B
B

1

g� 2��0B

� �ij
½6�

It follows from [5] that the boundary coordinates
xi � xi(� , 0) obey the commutation relation

½xi; xj� ¼ i�ij ½7�

Relation [7] implies that the D-brane world volume,
where the open-string endpoints live, is a noncom-
mutative manifold. One may also start with the
closed-string Green function and let its arguments to
approach the boundary to obtain the open-string
Green function

hxið�Þxjð� 0Þi ¼ ��0Gij lnð� � � 0Þ2 þ i

2
�ij�ð� � � 0Þ ½8�

where �(�) is the sign of � . From [8], one can
again extract the commutator [7]. Gij = gij � (2��0)2

(Bg�1B)ij is called the open-string metric since it controls
the short-distance behavior of open strings. In contrast,
the short-distance behavior for closed strings is con-
trolled by the closed-string metric gij. One may also treat
the boundary B-term in [4] as a perturbation to the
open-string conformal field theory and from which one
may extract [8] from the modified operator product
expansion of the open-string vertex operators.

D-branes in the Wess–Zumino–Witten model
provide another example of noncommutative geo-
metry. In this case, the background is not flat since
there is a nonzero H = dB � k�1=2, where k is the
level. Examining the vertex operator algebra, one
obtains that D-branes are described by nonassocia-
tive deformations of fuzzy spheres with nonassocia-
tivity controlled by 1=k.
String Amplitudes and Effective Action

The effect of the B-field on the open-string ampli-
tudes is simple to determine since only the xi

0

commutation relation is affected nontrivially. For
example, the noncommutative gauge theory can be
obtained from the tree-level string amplitudes read-
ily. For tree and one loop, the vertex operator
formalism can be used. Generally, the vertex
operator can be inserted at either the �= 0 or �= �
boundary, where the string has zero mode parts xi

0

and yi
0 � xi

0 � (2��0)2(g�1B)i
jp

j
0, respectively. The

commutation relations are

½xi
0; x

j
0� ¼ i�ij; ½xi

0; y
j
0� ¼ 0;

½yi
0; y

j
0� ¼ �i�ij ½9�

The difference in the commutation relation for x0

and y0 implies that the two boundaries of the open
string have opposite commutativity. This fact is not
so important for tree-level calculations since one can
always choose to put all the interactions at, for
example, the �= 0 boundary. Collecting all these
zero mode parts of the vertex operators, one obtains
a phase factor

eip1x0eip2x0 � eipNx0 ¼ ei
P

pax0e
�ði=2Þ

PN

I<J
pI�pJ

½10�

where the external momenta pa are ordered cycli-
cally on the circle, and momentum conservation has
been used. The computation of the oscillator part of
the amplitude is the same as in the B = 0 case, except
that the metric G is employed in the contractions.
As a result, the effect of the B-field on the tree-level
string amplitude is simply to multiply the amplitude
at B = 0 by the phase factor and to replace the
metric by the metric G. A generic term in the tree-
level effective action simply becomesZ

dpþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det g

p
tr @n1�1 � � � @nk �k

!
Z

dpþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det G
p

tr @n1�1 � � � � � @nk�k ½11�



Noncommutative Geometry from Strings 517
Here the star product, also called the Moyal
product, is defined by

ðf � gÞðxÞ

¼ exp i
�	


2

@

@x	1

@

@x
2

� �
f ðx1Þgðx2Þjx1¼x2

½12�

The star product is associative and noncommutative,
and satisfies f � g = ḡ � f̄ under complex conjugation.
Also, for functions that vanish rapidly enough at
infinity, there holdsZ

f � g ¼
Z

g � f ¼
Z

fg ½13�

An interesting consequence of the nonlocality
as expressed by the noncommutative geometry [7]
is the existence of a dipole excitation whose extent is
proportional to its momentum, �x = k�. This rela-
tion is at the heart of the ‘‘IR/UV mixing phenom-
enon’’ (see below) of noncommutative field theory.

At one- (and higher-) loop level, the different
noncommutativities for the opposite boundaries of
the open string become essential and give rise to new
effects. In this case nonplanar diagrams require one
to put vertex operators at the two different
boundaries �= 0,�. A more complicated phase
factor, which involves internal as well as external
momentum, results. This leads to IR/UV mixing in
the noncommutative quantum field theory. The
different noncommutativity for the opposite bound-
aries of the open string [9] is the basic reason for the
IR/UV mixing in the noncommutative quantum field
theory. The commutation relations [5] are valid at all
loops; therefore, one can use them to construct the
higher-loop string amplitudes from first principles.
The effect of the B-field on the string interaction can
easily be implemented into the Reggeon vertex and
the complete higher loop amplitudes in the presence
of the B-field have been constructed.
Low-Energy Limit – The Seiberg–Witten Limit
and the NCOS Limit

The full open-string system is still quite complicated.
One may try to decouple the infinite number of
massive string modes to obtain a low-energy field-
theoretic description by taking the limit �0 ! 0.
Since open strings are sensitive to G and �, one
should take the limit such that G and � are fixed.
For the magnetic case B0i = 0, Seiberg and Witten
showed that this can be achieved with the following
double scaling limit:

�0 � �1=2; gij � �! 0 ½14�
with Bij and everything else kept fixed. Assuming B
is of rank r, then [6] becomes

Gij ¼ �ð2��0Þ2ðBg�1BÞij; �ij ¼ ðB�1Þij;
for i; j ¼ 1; . . . ; r ½15�

Otherwise Gij = gij, �
ij = 0. One may also argue that

the closed string decouples in this limit. As a result,
in the low-energy limit a greatly simplified non-
commutative Yang–Mills action F � F is obtained
(see below for more discussion of this field theory).

For the case of a constant electric field back-
ground, say B01 6¼ 0, there is a critical electric field
beyond which the open string becomes unstable and
the theory does not make sense. Due to the presence
of this upper bound of the electric field, one can
show that there is no decoupling limit where one
can reduce the string theory to a field theory on a
noncommutative spacetime. However, one can con-
sider a different scaling limit where one takes the
closed-string metric scale to infinity appropriately as
the electric field approaches the critical value. In this
limit, all closed-string modes decouple. One obtains
a novel noncritical string theory living on a
noncommutative spacetime known as the noncom-
mutative open string (NCOS).
Noncommutative Quantum Field Theory

Field theories on noncommutative spacetime are
defined by using the star product instead of the
ordinary product of the fields. To illustrate the
general ideas, let us consider a single real scalar field
theory with the action

S ¼
Z

dDx
1

2
@	� � @	��

m2

2
� � �� Vð�Þ

� �

Vð�Þ ¼ g

4!
��4 ½16�

Due to the property [13], free noncommutative field
theory is the same as an ordinary field theory.
Treating the interaction term as a perturbation, one
can perform the usual quantization and obtain the
Feynman rules: the propagator is unchanged and the
interaction vertex in the momentum space is given
by g times the phase factor

exp � i

2

X
1	a<b	4

pa � pb

 !
½17�

Here p� q � p	�
	
q
. The theory is nonlocal due to

the infinite order of derivatives that appear in the
interaction.
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Planar and Nonplanar Diagrams

The factor [17] is cyclically symmetric but not
permutation symmetric. This is analogous to the
situation of an M-field theory. Using the same
double-line notation as introduced by ’t Hooft, one
can similarly classify the Feynman diagrams of
noncommutative field theory according to its
genus. In particular, the total phase factor of a
planar diagram behaves quite differently from that
of a nonplanar diagram. It is easy to show that a
planar diagram will have the phase factor

Vpðp1; . . . ; pnÞ ¼ exp � i

2

X
1	a<b	n

pa � pb

 !
½18�

where p1, . . . , pn are the (cyclically ordered) external
momenta of the graph. Note that the phase factor
[18] is independent of the internal momenta. This is
not the case for a nonplanar diagram. One can easily
show that a nonplanar diagram carries an additional
phase factor

Vnp ¼ Vp exp � i

2

X
1	a<b	n

Cabpa � pb

 !
½19�

where Cab is the signed intersection matrix of the
graph, whose ab matrix element counts the number
of times the ath (internal or external) line crosses the
bth line. The matrix Cab is not uniquely determined
by the diagram as different ways of drawing the
graph could lead to different intersections. However,
the phase factor [19] is unique due to momentum
conservation.

The different behaviors of the planar and non-
planar phase factors have important consequences.

1. Since the phase factor [18] is independent of the
internal momenta, the divergences and renorma-
lizability of the planar diagrams will be (simply)
the same as in the commutative theory and can
be handled with standard renormalization tech-
niques. This is sharply different for the nonplanar
diagrams. In fact, due to the extra oscillatory
internal-momenta-dependent phase factor, one
can expect the nonplanar diagrams to have an
improved ultraviolet (UV) behavior. It turns out
that planar and nonplanar diagrams also differ
sharply in their infrared (IR) behavior due to the
‘‘IR/UV mixing effect’’ (see below).

2. Moreover, at high energies one can expect that
noncommutative field theory will generically
become planar since the nonplanar diagrams will
be suppressed due to the oscillatory phase factor.

3. In the limit �!1, the nonplanar sector will be
totally suppressed since the rapidly oscillating
phase factor will cause the nonplanar diagram to
vanish upon integrating out the momenta. Thus,
generically the large � limit is analogous to the
large-N limit where only the planar diagrams
contribute. However, these expectations do not
apply for noncommutative gauge theory since
one needs to include ‘‘open Wilson lines’’ (see
below) in the construction of gauge invariant
observables, and the open Wilson line grows in
extent with energy and �.
IR/UV Mixing

Due to the nonlocal nature of noncommutative field
theory, there is generally a mixing of the UV and
IR scales. The reason is roughly the following.
Nonplanar diagrams generally have phase factors
like exp (ik�p) with k a loop momentum, p an
external momentum. Consider a nonplanar diagram
which is UV divergent when �= 0; one can expect
that for very high loop momenta the phase factor
will oscillate rapidly and render the integral finite.
However, this is only valid for a nonvanishing
external momentum �p; the infinity will come back
as �p! 0. However, this time it appears as an IR
singularity. Thus, an IR divergence arises whose
origin is from the UV region of the momentum
integration and this is known as the IR/UV mixing
phenomenon.

To be more specific, consider the �4 scalar theory
in D = 4 dimensions. The one-loop self-energy has a
nonplanar contribution given by

�np ¼
g

6ð2�Þ4
Z

d4k

k2 þm2
eik�p� g

3ð4�2Þ2

�ð�2
eff þ � � �Þ ½20�

where �2
eff = (1=�2 þ (�p)2)�1. One can see clearly

the IR/UV mixing: �np is UV finite as long as �p 6¼ 0;
when �p = 0, the quadratic UV divergence is
recovered, �np � �2. For supersymmetric theory,
one has at most logarithmic IR singularities from
IR/UV mixing.

IR/UV mixing has a number of interesting
consequences.

1. Due to the IR/UV mixing, noncommutative
theory does not appear to have a consistent
Wilsonian description since it requires that
correlation functions computed at finite � differ
from their limiting values by terms of order 1=�
for all values of momenta. However, this is not
true for theory with IR/UV mixing. For example,
the two-point function [20] at finite value of �
differs from its value at � =1 by the amount
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��
np � �� =1

np / 1=(�p)2, for the range of momenta
(�p)2 
 1=�2. It has been argued that the IR
singularity may be associated with missing light
degrees of freedom in the theory. With new
degrees of freedom appropriately added, one may
recover a conventional Wilsonian description.
Moreover, it has been suggested to identify
these degrees of freedom with the closed-string
modes. However, the precise nature and origin of
these degrees of freedom is not known.

2. The renormalization of the planar diagrams is
straightforward; however, the situation is more
subtle for the nonplanar diagrams since the IR/
UV-mixed IR singularities may mix with other
divergences at higher loops and render the proof
of renormalizability much more difficult. IR/UV
mixing renders certain large N noncommutative
field theory nonrenormalizable. However, for
theories with a fixed set of degrees of freedom
to start with, it is believed that one can have
sufficiently good control of the IR divergences
and prove renormalizability. An example of
renormalizable noncommutative quantum field
theory is the noncommutative Wess–Zumino
model where IR/UV mixing is absent. However,
a general proof is still lacking.

3. One can show that IR/UV mixing in timelike
noncommutative theory (�0i 6¼ 0) leads to break-
down of perturbative unitarity. For a theory
without IR/UV mixing, unitarity will be respected
even if the theory has a timelike noncommuta-
tivity. Theory with lightlike noncommutativity is
unitary.
Noncommutative Gauge Theory

Gauge theory on noncommutative space is defined
by the action

S ¼ � 1

4g2

Z
dx tr FijðxÞ � FijðxÞ

	 

½21�

where the gauge fields Ai are N �N Hermitian
matrices, Fij is the noncommutative field strength
Fij = @iAj � @jAi � i[Ai, Aj]�, and tr is the ordinary
trace over N �N matrices. The theory is invariant
under the star-gauge transformation

Ai ! g � Ai � gy � ig � @ig
y ½22�

where the N �N matrix function g(x) is unitary
with respect to the star product g � gy= gy� g = I.
The solution is g = ei�

� , where � is Hermitian. In
infinitesimal form, ��Ai = @i�þ i[�, Ai]�. The non-
commutative gauge theory has N2 Hermitian gauge
fields. Because of the star product, the U(1) sector of
the theory is not free and does not decouple from
the SU(N) factor as in the commutative case. Note
that this way of defining noncommutative gauge
theory does not work for other Lie groups since the
star commutator generally involves the commutator
as well as the anticommutator of the Lie algebra;
hence, the expressions above generally involve the
enveloping algebra of the underlying Lie group.
With the help of the ‘‘Seiberg–Witten map’’ (see
below), one can construct an enveloping-algebra-
valued gauge theory which has the same number of
independent gauge fields and gauge parameters as
the ordinary Lie-algebra-valued gauge theory. How-
ever, the quantum properties of these theories are
much less understood. One may also introduce
certain automorphisms in the noncommutative
U(N) theory to restrict the dependence of the
noncommutative space coordinates of the field
configurations and obtain a notion of noncommu-
tative theory with orthogonal and symplectic star-
gauge group. However, the theory does not reduce
to the standard gauge theory in the commutative
limit �! 0.
Open Wilson Line and Gauge-Invariant
Observables

One remarkable feature of noncommutative gauge
theory is the mixing of noncommutative gauge
transformations and spacetime translations, as can
be seen from the following identity:

eikx � f ðxÞ � e�ikx ¼ f ðxþ k�Þ ½23�

for any function f. This is analogous to the situation
in general relativity where translations are also
equivalent to gauge transformations (general coor-
dinate transformations). Thus, as in general relativ-
ity, there are no local gauge-invariant observables in
noncommutative gauge theory. The unification of
spacetime and gauge fields in noncommutative
gauge theory can also be seen from the fact
that derivatives can be realized as commutators,
@if ! �i[��1

ij xj, f ], and get absorbed into the vector
potential in the covariant derivative

Di ¼ @i þ iAi ! �i��1
ij xj þ iAi ½24�

Equation [24] clearly demonstrates the unification
of spacetime and gauge fields. Note that the field
strength takes the form Fij = i[Di, Dj]þ ��1

ij .
The Wilson line operator for a path C running

from x1 to x2 is defined by

WðCÞ ¼ P� exp i

Z
C

A

� �
½25�
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P� denotes the path ordering with respect to the star
product, with A(x2) at the right. It transforms as

WðCÞ ! gðx1Þ �WðCÞ � gðx2Þy ½26�

In commutative gauge theory, the Wilson line
operator for closed loop (or its Fourier transform)
is gauge invariant. In noncommutative gauge
theory, the closed Wilson loops are no longer
gauge invariant. Noncommutative generalization
of the gauge invariant Wilson loop operator can
be constructed most readily by deforming the
Fourier transform of the Wilson loop operator. It
turns out that the closed loop has to open in a
specific way to form an open Wilson line in order
to be gauge invariant. To see this, let us consider a
path C connecting points x and xþ l. Using [23], it
is easy to see that the operator

~WðkÞ �
Z

dx tr WðCÞ � eikx; with lj ¼ ki�
ij ½27�

is gauge invariant. Just like Wilson loops in ordinary
gauge theory, these operators also constitute an
overcomplete set of gauge-invariant operators para-
metrized by the set of curves C. When �= 0, C
becomes a closed loop and we reobtain the (Fourier
transformed) usual closed Wilson loop in commu-
tative gauge theory. Noncommutative version of the
loop equation for closed Wilson loop has been
constructed and involves open Wilson line. The
open Wilson line is instrumental in the construction
of gauge-invariant observables. An important appli-
cation is in the construction of various couplings of
the noncommutative D-brane to the bulk super-
gravity fields. The equivalence of the commutative
and noncommutative couplings to the RR fields
leads to the exact expression for the Seiberg–Witten
map. It is remarkable that the one-loop nonplanar
effective action for noncommutative scalar theory,
gauge theory, as well as the two-loop effective
action for scalar can be written compactly in terms
of open Wilson line. Based on this result, the
physical origin of the IR/UV mixing has been
elucidated. One may identify the open Wilson line
with the dipole excitation generically presents in
noncommutative field theory and hence explain the
presence of the IR/UV mixing. IR/UV mixing may
also be identified with the instability associated with
the closed-string exchange of the noncommutative
D-branes.

The Seiberg–Witten Map

The open string is coupled to the 1-form Ai living on
the D-brane through the coupling

R
@� A. For slowly

varying fields, the effective action for this gauge
potential can be determined from the S-matrix and
is given by the Dirac–Born–Infeld (DBI) action. In
the presence of a B-field, the discussion above (see
eqn [11]) leads to the noncommutative DBI
Lagrangian

LNCDBIðF̂Þ ¼ G�1
s 	p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðGþ 2��0F̂Þ

q
½28�

where 	p = (2�)�p(�0)�(pþ1)=2 is the D-brane tension
and F̂ is the noncommutative field strength.
However, one may also exploit the tensor gauge
invariance on the D-brane (i.e., the string sigma
model is invariant under A! A� �, B! Bþ d�)
and consider the combination F þ B as a whole. In
this case, it is like having the open string coupled
to the boundary gauge field strength F þ B and
there is no B field. One has the usual DBI
Lagrangian

LDBIðFÞ ¼ g�1
s 	p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðGþ 2��0ðF þ BÞÞ

q
½29�

In [28] and [29], Gs and gs are the effective open-
string couplings in the noncommutative and com-
mutative descriptions. Although they look quite
different, Seiberg and Witten showed that the
commutative and noncommutative DBI actions
are indeed equivalent if the open-string couplings
are related by gs = Gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det (gþ 2��0B)= det G

p
and

there is a field redefinition that relates the
commutative and noncommutative gauge fields.
The map Â = Â(A) is called the Seiberg–Witten
map. Moreover, the noncommutative gauge sym-
metry is equivalent to the ordinary gauge symme-
try in the sense that they have the same set of
orbits under gauge transformation:

ÂðAÞ þ �̂�̂ÂðAÞ ¼ ÂðAþ ��AÞ ½30�

Here Âi and �̂ are, respectively, the noncommu-
tative gauge field and noncommutative gauge
transformation parameter, and Ai and � are,
respectively, the ordinary gauge field and ordinary
transformation parameter. The map between Âi

and Ai is called the Seiberg–Witten map. Equation
[30] can be solved only if the transformation
parameter �̂= �̂(�, A) is field dependent. The
Seiberg–Witten map is characterized by the Seiberg–
Witten differential equation

�Âið�Þ¼ 1
4 ��

kl Âk � ð@lÂi þ F̂liÞ
h

þð@lÂi þ F̂liÞ � Âk

i
½31�

An exact solution for the Seiberg–Witten map can
be written down with the help of the open Wilson
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line. For the case of U(1) with constant F, we have
the exact solution F̂ = (1þ F�)�1F.

That there is a field redefinition that allows one to
write the effective action in terms of different fields
with different gauge symmetries may seem puzzling
at first sight. However, it has a clear physical origin
in terms of the string world sheet. In fact, there are
different possible schemes to regularize the short-
distance divergence on the world sheet. One can
show that the Pauli–Villars regularization gives the
commutative description, while the point-splitting
regularization gives the noncommutative descrip-
tion. Since theories defined by different regulariza-
tion schemes are related by a coupling-constant
redefinition, this implies that the commutative and
noncommutative descriptions are related by a field
redefinition, because the couplings on the world
sheet are just the spacetime fields.

Despite this formal equivalence, the physics of the
noncommutative theories is generally quite different
from the commutative case. First, it is clear that
generally the Seiberg–Witten map may take non-
singular configurations to singular configurations.
Second, the observables one is interested in are also
generally different. Moreover, the two descriptions
are generally good for different regimes: the con-
ventional gauge theory description is simpler for
small B and the noncommutative description is
simpler for large B.
Perturbative Gauge Theory Dynamics

The noncommutative gauge symmetry [22] can be
fixed as usual by employing the Faddeev–Popov
procedure, resulting in Feynman rules that are
similar to the conventional gauge theory. The
important difference is that now the structure
constants in the phase factors [18] and [19] should
be amended. It turns out that the nonplanar U(N)
diagrams contribute (only) to the U(1) part of the
theory. As a result, unlike the commutative case, the
U(1) part of the theory is no longer decoupled and
free. Noncommutative gauge theory is one-loop
renormalizable. The 
-function is determined solely
by the planar diagrams and, at one loop, is given by


ðgÞ ¼ � 22

3

Ng3

16�2
for N � 1 ½32�

Note that the 
-function is independent of �; the
noncommutative U(1) is asymptotically free and
does not reduce to the commutative theory when
�! 0. Noncommutative theory beyond the tree
level is generally not smooth in the limit �! 0.
Discontinuity of this kind was also noted for the
Chern–Simon system.
Gauge anomalies can be similarly discussed and
satisfy the noncommutative generalizations of the
Wess–Zumino consistency conditions. In d = 2n
dimensions, the anomaly involves the combination
tr(Ta1Ta2 � � �Tanþ1 ) rather than the usual symme-
trized trace, since the phase factor is not permutation
symmetric. As a result, the usual cancellation of the
anomaly does not work and is the main obstacle to
the construction of noncommutative chiral gauge
theory.

There are a number of interesting features to
mention for the IR/UV mixing in noncommutative
gauge theory.

1. IR/UV mixing generically yields pole-like IR
singularities. Despite the appearance of IR
poles, gauge invariance of the theory is not
endangered.

2. One can show that only the U(1) sector is
affected by IR/UV mixing.

3. As a result of IR/UV mixing, noncommutative
U(1) photons polarized in the noncommutative
plane will have different dispersion relations
from those which are not. Strange as it is, this
is consistent with gauge invariance.
Noncommutative Solitons, Instantons
and D-Branes

Solitons and instantons play important roles in the
nonperturbative aspects of field theory. The non-
locality of the star product gives noncommutative
field theory a stringy nature. It is remarkable that
this applies to the nonperturbative sector as well.
Solitons and instantons in the noncommutative
gauge theory amazingly reproduce the properties of
D-branes in the string.

GMS Solitons

Derrick’s theorem says that commutative scalar field
theories in two or higher dimensions do not admit
any finite-energy classical solution. This follows
from a simple scaling argument, which will fail
when the theory becomes noncommutative since
noncommutativity introduces a fixed length scaleffiffiffi
�
p

. Noncommutative solitons in pure scalar theory
can be easily constructed in the limit �=1. For
example, consider a (2þ 1)-dimensional single sca-
lar theory with a potential V and noncommutativity
�12 = �. In the limit �=1, the potential term
dominates and the noncommutative solitons are
determined by the equation

@V=@� ¼ 0 ½33�
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Equation [33] can be easily solved in terms of
projectors. Assuming V has no linear term, the
general soliton (up to unitary equivalence) is

� ¼
X

�iPi ½34�

where �i are the roots of V 0(�) = 0 and Pi is a set of
orthogonal projectors. For real scalar field theory,
the sum is restricted to real roots only. These
solutions are known as the Gopakumar–Minwalla–
Strominger (GMS) solitons. A simple example of a
projector is given by P = j0ih0j, which corresponds
to a Gaussian profile in the x1, x2 plane with widthffiffiffi
�
p

. The soliton continues to exist until � decreases
below a certain critical �c.

New solutions can be generated from known ones
using the so-called solution-generating technique. If
� is a solution of [33], then

�0 ¼ Ty�T ½35�

is also a solution provided that TTy= 1. In an
infinite-dimensional Hilbert space, T is not necessa-
rily unitary, that is, TyT 6¼ 1. In this case, T is said
to be a partial isometry. The new solution �0 is
different from � since they are not related by a
global transformation of basis.

Tachyon Condensation and D-Branes

A beautiful application of the noncommutative
soliton is in the construction of D-branes as solitons
of the tachyon field in noncommutative open-string
theory. For the bosonic string theory, one may
consider it to be a space-filling D25 brane. Integrat-
ing out the massive-string modes leads to an
effective action for the tachyon and the massless
gauge field A	. It should be remarked that, contrary
to the pure scalar case, noncommutative solitons can
be constructed exactly for finite � in a system with
gauge and scalar fields. Although the detailed form
of the effective action is unknown, one has enough
confidence to say what the true vacuum configura-
tion is according to the Sen conjecture. One can then
apply the solution-generating technique to generate
new soliton solutions. In this manner, with a B-field
of rank 2k, one can construct solutions which are
localized in R2k and represent a D(25 – 2k) brane.
This is supported by the matching of the tension
and the spectrum of fluctuations around the
soliton configuration. Similar ideas can also be
applied to construct D-branes in type II string
theory. Again the starting point is an unstable
brane configuration with tachyon field(s). There
are two types of unstable D-branes: non-BPS Dp
branes (p odd in IIA theory and p even in IIB
theory) and BPS branes–antibranes Dp–Dp
systems. A similar analysis allows one to identify
the noncommutative soliton with the lower-
dimensional BPS D-branes which arises from
tachyon condensation.

One main motivation for studying tachyon
condensation in open-string theory is the hope
that open-string theory may provide a fundamental
nonperturbative formulation of string theory. It
may not be too surprising that D-branes can be
obtained in terms of open-string fields. However,
to describe closed strings and NS branes in terms
of open-string degrees of freedom remains an
obstacle.
Noncommutative Instanton and Monopoles

Instantons on noncommutative R4
� can be readily

constructed using the Atiyah–Drinfeld–Hitchin–
Manin (ADHM) formalism by modifying the
ADHM constraints with a constant additive
term. The result is that the self-dual (resp. anti-
self-dual) instanton moduli space depends only on
the anti-self-dual (resp. self-dual) part. The con-
struction goes through even in the U(1) case.
Consider a self-dual �; the ADHM constraints for
the self-dual instanton are the same as in the
commutative case, and there is no nonsingular
solution. On the other hand, the ADHM con-
straints for the anti-self-dual instanton get mod-
ified and admit nontrivial solutions. This
noncommutative instanton solution is nonsingular
with size

ffiffiffi
�
p

. The noncommutative instanton
represents a D(p–4) brane within a Dp brane.
The ADHM constraints are just the D-flatness
condition for the D-brane world-volume gauge
theory. The additive constant to the ADHM
constraints also has a simple interpretation as a
Fayet–Iliopolous parameter which appears in the
presence of a B-field. Although the ADHM
method does not give a self-dual instanton, a
direct construction can be applied to obtain non-
ADHM self-dual instantons. Recall that the gauge
field strength can be written as Fij = i[Di, Dj]þ ��1

ij ,
where Di is given by the function on the right-
hand side of [24]. Thus, a simple self-dual solution
can be constructed with

Di ¼ i��1
ij TyxjT ½36�

where T is a partial isometry which satisfies
TTy= 1, but TyT = 1� P is not necessarily the
identity. It is clear that P is a projector. The field
strength

Fij ¼ ��1
ij P ½37�
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is self-dual and has instanton number n where n is
the rank of the projector.

On noncommutative R3 (say �12 = �), BPS mono-
poles satisfy the Bogomolny equation:

ri� ¼ �Bi; i ¼ 1; 2; 3 ½38�

and can be obtained by solving the Nahm
equation

@zTi ¼ �ijkTjTk þ �i3� ½39�

Ti are k� k Hermitian matrices depending on an
auxiliary variable z and k gives the charge of the
monopole. Noncommutativity modifies the Nahm
equation with a constant term, which can be
absorbed by a constant shift of the generators.
Therefore, unlike the case of instanton, the mono-
pole moduli space is not modified by noncommuta-
tive deformation. The Nahm construction has a
clear physical meaning in string theory. The mono-
pole (electric charge) can be interpreted as a D-string
(fundamental string) ending on a D3 brane. One can
also suspend k D-string between a collection of N
parallel D3 braness; this would correspond to a
charge k monopole in a Higgsed U(N) gauge theory.
The matrices Xi correspond to the matrix transverse
coordinates of the D-strings which lie within the D3
branes.
Further Topics

Finally, in the following some further topics of
interest are discussed briefly.

1. The noncommutative geometry discussed here is
of canonical type. Other deformations exist, for
example, kappa-deformation and fuzzy sphere
which are of the Lie-algebra type, and quantum
group deformation which is a quadratic-type
deformation: xixj = q�1R̂

ij

klx
kxl, whose consis-

tency is guaranteed by the Yang–Baxter equation.
It is interesting to see whether these noncommu-
tative geometries arise from string theory.
Another natural generalization is to consider
noncommutative geometry of superspace. A
simple example is to consider the fermionic
coordinates to be deformed with the nonvanish-
ing relation

f��; �
g ¼ C�
 ½40�

where C�
 are constants. It has been shown that
[40] arises in certain Calabi–Yau compactification
of type IIB string theory in the presence of RR
background. The deformation [40] reduces the
number of supersymmetries by half. Therefore,
it is called N = 1=2 supersymmetry. The
noncommutativity [40] can be implemented on
the superspace (yi, ��, ��

�̇
) as a star product for the

��’s. Unlike the bosonic deformation which
involves an infinite number of higher derivatives,
the star product for [40] stops at order C2 due to
the Grassmannian nature of the fermionic coordi-
nates. Field theory with N = 1=2 supersymmetry
is local and differs from the ordinary N = 1 theory
by only a small number of supersymmetry break-
ing terms. The N = 1=2 Wess–Zumino model is
renormalizable if extra F and F3 terms are added
to the original Lagrangian, where F is the auxiliary
field. The N = 1=2 gauge theory is also
renormalizable.

2. Integrability of a theory provides valuable infor-
mation beyond the perturbative level. An integr-
able field theory is characterized by an infinite
number of conserved charges in involution. It is
natural to ask whether integrability is preserved
by noncommutative deformation. Noncommuta-
tive integrable field theories have been con-
structed. In the commutative case, Ward has
conjectured that all (1þ 1)- and (2þ 1)-dimen-
sional integrable systems can be obtained from
the four-dimensional self-dual Yang–Mills equa-
tion by reduction. Validity of the noncommuta-
tive version of the Ward conjecture has been
confirmed so far. It will be interesting to see
whether it is true in general.

3. Locality and Lorentz symmetry form the corner-
stones of quantum field theory and standard
model physics of particles. Noncommutative field
theory provides a theoretical framework where
one can discuss effects of nonlocality and Lorentz
symmetry violation. Possible phenomenological
signals have been investigated (mostly at the tree
level) and a bound has been placed on the extent
of noncommutativity. A proper understanding
and better control of the IR/UV mixing remains
the crux of the problem. Noncommutative
geometry may also be relevant for cosmology
and inflation.

4. Like the standard AdS/CFT correspondence, the
noncommutative gauge theory should also have
a gravity-dual description. The supergravity
background can be determined by considering
the decoupling limit of D-branes with an NS
B-field background. However, since the non-
commutative gauge theory does not permit any
conventional local gauge-invariant observable,
the usual AdS/CFT correspondence that relates
field theory correlators with bulk interaction
does not seem to apply. It has been argued that
generic properties such as the relation between
length and momentum for open Wilson lines
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can be seen from the gravity side. A more precise
understanding of the duality map is called for.

See also: Brane Construction of Gauge Theories;
Deformation Quantization; Gauge Theories from Strings;
Noncommutative Tori, Yang–Mills, and String Theory;
Positive Maps on C�-Algebras; Solitons and Other
Extended Field Configurations; String Field Theory;
Superstring Theories.
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Introduction

Noncommutative tori are historically among the
oldest and by now the most developed examples
of noncommutative spaces. Noncommutative
Yang–Mills theory can be obtained from string
theory. This connection led to a cross-fertilization
of research in physics and mathematics on Yang–
Mills theory on noncommutative tori. One
important result stemming from that work is the
link between T-duality in string theory and
Morita equivalence of associative algebras. In
this article, we give an overview of the basic
results in the differential geometry of noncommu-
tative tori. Yang–Mills theory on noncommuta-
tive tori, the duality induced by Morita
equivalence and its link with T-duality are
discussed. The noncommutative Nahm transform
for instantons is introduced.
Noncommutative Tori

The Algebra of Functions

The basic notions of noncommutative differential
geometry were introduced and illustrated on the
example of a two-dimensional noncommutative
torus by Connes (1980). To define an algebra of
functions on a d-dimensional noncommutative
torus, consider a set of linear generators Un labeled
by n2Zd – a d-dimensional vector with integral
entries. The multiplication is defined by the
formula

UnUm¼ e�inj�
jkmkUnþm ½1�

where �jk is an antisymmetric d� d matrix, and
summation over repeated indices is assumed. We
further extend the multiplication from finite linear
combinations to formal infinite series

P
n C(n)Un

where the coefficients C(n) tend to zero faster than
any power of knk. The resulting algebra constitutes
the algebra of smooth functions on a noncommuta-
tive torus and will be denoted by Td

� . Sometimes for
brevity we will omit the dimension label d in the
notation of the algebra. We introduce an involution
� in Td

� by the rule U�n = U�n. The elements Un are
assumed to be unitary with respect to this involu-
tion, that is, U�nUn = U�nUn = 1�U0. One can
further introduce a norm and take an appropriate
completion of the involutive algebra Td

� to obtain
the C�-algebra of functions on a noncommutative
torus. For our purposes, the norm structure will not
be important. A canonically normalized trace on Td

�

is introduced by specifying

tr Un¼ �n;0 ½2�

Projective Modules

According to the general approach to noncommuta-
tive geometry, finitely generated projective modules



Noncommutative Tori, Yang–Mills, and String Theory 525
over the algebra of functions are natural analogs of
vector bundles. Throughout this article, when speak-
ing of a projective module, we will assume a finitely
generated left projective module.

A free module (Td
� )N is equipped with a Td

� -valued
Hermitian inner product h. , .iT�

defined by the
formula

hða1; . . . ; aNÞ; ðb1; . . . ; bNÞiT�
¼
XN
i¼1

a�i bi ½3�

A projective module E is by definition a direct
summand of a free module. Thus, it inherits the
inner product h. , .iT�

. Consider the endomorphisms
of the module E, that is, linear mappings E!E
commuting with the action of Td

� . These endo-
morphisms form an associative unital algebra
denoted EndT�

E. A decomposition (Td
� )N = E�E0

determines an endomorphism P : (Td
� )N! (Td

� )N that
projects (Td

� )N onto E. The algebra EndT�
E can then

be identified with a subalgebra of MatN(Td
��) – the

endomorphisms of the free module (Td
� )N. The latter

has a canonical trace that is the composition of the
matrix trace with the trace specified in [2]. By
restriction, it gives rise to a canonical trace tr on
EndT�

E. The same embedding also provides a
canonical involution on EndT�

E by a composition of
the matrix transposition and the involution � on Td

� .
A large class of examples of projective modules

over noncommutative tori are furnished by the
so-called Heisenberg modules. They are constructed
as follows. Let G be the direct sum of Rp and an
abelian finitely generated group, and let G� be its
dual group. In the most general situation
G = Rp�Zq� F where F is a finite group. Then
G� ffiRp�Tq� F�.

Consider the linear space S(G) of functions on G
decreasing at infinity faster than any power. We
define operators U(�, �̃) :S(G)!S(G) labeled by a
pair (�, �̃)2G�G� acting as follows:

ðUð�;~�Þf ÞðxÞ ¼ ~�ðxÞf ðxþ �Þ ½4�

One can check that the operators U(�, �̃) satisfy the
commutation relations

Uð�;~�ÞUð�;~�Þ ¼ ~�ð�Þ~��1ð�ÞUð�;~�ÞUð�;~�Þ ½5�

If (�, �̃) run over a d-dimensional discrete subgroup
�	G�G�, �ffiZd, then formula [4] defines a
module over a d-dimensional noncommutative
torus Td

� with

expð2�i�ijÞ¼ ~�ið�jÞ~��1
j ð�iÞ ½6�

for a given basis (�i, ~�i) of the lattice �. This module is
projective if � is such that G�G�=� is compact.
If that is the case, then the projective Td
� -module at

hand is called a Heisenberg module and denoted
by E�.

Heisenberg modules play a special role. If the
matrix �ij is irrational in the sense that at least one
of its entries is irrational, then any projective
module over Td

� can be represented as a direct sum
of Heisenberg modules. In that sense, Heisenberg
modules can be used as building blocks to construct
an arbitrary module.
Connections

Next we would like to define connections on a
projective module over Td

� . To this end, let us first
define a Lie algebra of shifts L� acting on Td

� by
specifying a basis consisting of derivations
�j : Td

� !Td
� , j = 1, . . . , d satisfying

�jðUnÞ¼ 2�injUn ½7�

These derivations span a d-dimensional abelian Lie
algebra that we denote by L�.

A connection on a module E over Td
� is a set of

operators rX : E!E, X2L�, depending linearly on
X and satisfying

½rX;Un� ¼ �XðUnÞ ½8�

where Un are operators E!E representing the
corresponding generators of Td

� . In the standard
basis [7], this relation reads as

½rj;Un� ¼ 2�injUn ½9�

The curvature of the connection rX defined as the
commutator FXY = [rX,rY] is an exterior 2-form
on the adjoint vector space L�� with values in
EndTd

�
E.

K-Theory: Chern Character

The K-groups of a noncommutative torus coincide
with those for commutative tori:

K0ðTd
� ÞffiZ2d�1 ffiK1 Td

�

� �
The Chern character of a projective module E

over a noncommutative torus Td
� can be defined as

chðEÞ ¼ tr exp
F

2�i

� �
2�even L��

� �
½10�

where F is the curvature form of a connection on
E, �even(L��) is the even part of the exterior algebra
of L�� and tr is the canonical trace on EndTd

�
E. This
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mapping gives rise to a noncommutative Chern
character

ch : K0 Td
�

� �
!�even L��

� �
½11�

The component ch0(E) = tr 1 � dim(E) is called the
dimension of the module E.

A distinctive feature of the noncommutative
Chern character [11] is that its image does not
consist of integral elements, that is, there is no
lattice in L�� that generates the image of the Chern
character. However, there is a different integrality
statement that replaces the commutative one. Con-
sider a basis in L�� in which the derivations
corresponding to basis elements satisfy [7]. Denote
the exterior forms corresponding to the basis
elements by �1, . . . ,�d. Then an arbitrary element
of �(L��) can be represented as a polynomial in the
anticommuting variables �i. Next let us consider the
subset �even(Zd)	�even(L��) that consists of poly-
nomials in �j having integer coefficients. It was
proved by Elliott that the Chern character is
injective and its range on K0(Td

� ) is given by the
image of �even(Zd) under the action of the operator

exp � 1

2

@

@�j
�jk @

@�k

� �

This fact implies that the K-group K0(Td
� ) can be

identified with the additive group �even(Zd).
The K-theory class �(E)2�even(Zd) of a module E

can be computed from its Chern character by the
formula

�ðEÞ ¼ exp
1

2

@

@�j
�jk @

@�k

� �
chðEÞ ½12�

Note that the anticommuting variables �i and the
derivatives @=@�j satisfy the anticommutation rela-
tion {�i, @=@�j} = �i

j.
The coefficients of �(E) standing in front of

monomials in �i are integers to which we will
refer as the topological numbers of the module E.
These numbers can also be interpreted as numbers
of D-branes of a definite kind although in non-
commutative geometry it is difficult to talk about
branes as geometrical objects wrapped on torus
cycles.

One can show that for noncommutative tori Td
�

with irrational matrix �ij the set of elements of
K0(Td

� ) that represent a projective module (i.e., the
positive cone) consist exactly of the elements of
positive dimension. Moreover, if �ij is irrational, any
two projective modules which represent the same
element of K0(Td

� ) are isomorphic; that is, the
projective modules are essentially specified in this
case by their topological numbers.
The complex differential geometry of noncommu-
tative tori and its relation with mirror symmetry is
discussed in Polishchuk and Schwarz (2003).
Yang–Mills Theory on Noncommutative
Tori

Let E be a projective module over Td
� . We call a

Yang–Mills field on E a connection rX-compatible
with the Hermitian structure, that is, a connection
satisfying

rX�; 	h iT�
þ �;rX	h iT�

¼ �Xð �; 	h iT�
Þ ½13�

for any two elements �, 	2E. Given a positive-
definite metric on the Lie algebra L�, we can define
a Yang–Mills functional

SYMðriÞ¼
V

4g2
YM

gikgjltrðFijFklÞ ½14�

Here gij stands for the metric tensor in the canonical
basis [7], V =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
, gYM is the Yang–Mills

coupling constant, tr stands for the canonical trace
on EndT�

E discussed above, and summation over
repeated indices is assumed. Compatibility with the
Hermitian structure [13] can be shown to imply
the positive definiteness of the functional SYM. The
extrema of this functional are given by the solutions
to the Yang–Mills equations

gki½rk; Fij� ¼ 0 ½15�

A gauge transformation in the noncommutative
Yang–Mills theory is specified by a unitary endo-
morphism Z2EndT�

E, that is, an endomorphism
satisfying ZZ�= Z�Z = 1. The corresponding gauge
transformation acts on a Yang–Mills field as

rj 7!ZrjZ
� ½16�

The Yang–Mills functional [14] and the Yang–
Mills equations [15] are invariant under these
transformations.

It is easy to see that Yang–Mills fields whose
curvature is a scalar operator, that is, [ri,rj] =

ij 
 1 with 
ij a real-number-valued tensor, solve the
Yang–Mills equations [15]. A characterization of
modules admitting a constant curvature connection
and a description of the moduli spaces of constant
curvature connections (i.e., the space of such
connections modulo gauge transformations)
is reviewed in Konechny and Schwarz (2002).
Another interesting class of solutions to the Yang–
Mills equations is instantons (see below).

As in the ordinary field theory, one can construct
various extensions of the noncommutative Yang–
Mills theory [14] by adding other fields. To obtain a
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supersymmetric extension of [14], one needs to
add a number of endomorphisms XI 2EndT�

E
that play the role of bosonic scalar fields in the
adjoint representation of the gauge group and a
number of odd Grassmann parity endomorphisms
 �i 2�EndT�

E endowed with an SO(d)-spinor
index �. The latter ones are analogs of the usual
fermionic fields.

In string theory, one considers a maximally
supersymmetric extension of the Yang–Mills theory
[14]. In this case, the supersymmetric action depends
on 10� d bosonic scalars XI, I = d, . . . , 9, and the
fermionic fields can be collected into an SO(9, 1)
Majorana–Weyl spinor multiplet  �,�= 1, . . . , 16.
The maximally supersymmetric Yang–Mills action
takes the form

SSYM¼
V

4g2
tr
�

F��F
�� þ ½r�;XI�½r�;XI�

þ ½XI;XJ�½XI;XJ� � 2 �
���½r�;  
��

� 2 �
I
��½XI;  

��
�

½17�

Here the curvature indices F��,�, �= 0, . . . , d � 1,
are assumed to be contracted with a Minkowski
signature metric, and 
A

�� are blocks of the ten-
dimensional 32� 32 gamma-matrices

�A¼
0 
��A

ð
AÞ�� 0

 !
; A ¼ 0; . . . ;9

This action is invariant under two kinds of super-
symmetry transformations denoted by �
, ~�
 and
defined as

�
 ¼ 1
2ð


jkFjk
þ 
 jI½rj;XI�
þ 
 IJ½XI;XJ�
Þ
�
rj ¼ 

j ; �
XJ ¼ 

J 

~�
 ¼ 
; ~�
rj ¼ 0; ~�
XJ ¼ 0

½18�

where 
 is a constant 16-component Majorana–Weyl
spinor. Of particular interest for string theory
applications are solutions to the equations of motion
corresponding to [17] that are invariant under some
of the above supersymmetry transformations.
Further discussion can be found in Konechny and
Schwarz (2002).
Morita Equivalence

The role of Morita equivalence as a duality
transformation in noncommutative Yang–Mills
theory was elucidated by Schwarz (1998). We will
adopt a definition of Morita equivalence for
noncommutative tori which can be shown to be
essentially equivalent to the standard definition of
strong Morita equivalence. We will say that two
noncommutative tori Td
� and Td

�̂
are Morita equiva-

lent if there exists a (Td
� , Td

�̂
)-bimodule Q and a

(Td
�̂
, Td

� )-bimodule P such that

Q�T�̂
PffiT�; P�T�

QffiT�̂ ½19�

where T� on the right-hand side is considered as a
(T�, T�)-bimodule and analogously for T�̂. (It is
assumed that the isomorphisms are canonical.)
Given a T�-module E one obtains a T�̂-module
Ê as

Ê¼P�T�
E ½20�

One can show that this mapping is functorial.
Moreover, the bimodule Q provides us with an
inverse mapping Q�T

�̂
ÊffiE.

We further introduce a notion of gauge Morita
equivalence (originally called ‘‘complete Morita
equivalence’’) that allows one to transport
connections along with the mapping of modules
[20]. Let L be a d-dimensional commutative Lie
algebra. We say that the (Td

�̂
, Td

� ) Morita equiva-
lence bimodule P establishes a gauge Morita
equivalence if it is endowed with operators
rP

X, X2L that determine a constant curvature
connection simultaneously with respect to Td

� and
Td
�̂
, that is, satisfy

rP
XðeaÞ¼ rP

Xe
� �

aþ eð�XaÞ
rP

XðâeÞ¼ â rP
Xe

� �
þð�̂XâÞe

rP
X;rP

Y

	 

¼ 2�i
XY 
 1

½21�

Here �X and �̂X are standard derivations on T� and
T�̂, respectively. In other words, we have two Lie
algebra homomorphisms

� : L!L�; �̂ : L!L�̂ ½22�

If a pair (P,rP
X) specifies a gauge (T�, T

�̂
)-

equivalence bimodule, then there exists a correspon-
dence between connections on E and connections on
Ê. The connection r̂X on Ê corresponding to a
given connection rX on E is defined as

rX 7! r̂X¼ 1�rXþrP
X� 1 ½23�

More precisely, an operator 1�rX þrP
X� 1 on

P�C E descends to a connection r̂X on Ê = P�T�
E.

It is straightforward to check that under this
mapping gauge equivalent connections go to gauge
equivalent ones,

ZyrXZ ¼ Ẑyr̂XẐ

where Ẑ = 1�Z is the endomorphism of Ê = P�T�
E

corresponding to Z2EndTd
�
E.
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The curvatures of r̂X and rX are connected by
the formula

FrXY ¼ F̂rXY þ 1
XY ½24�

which in particular shows that constant curvature
connections go to constant curvature ones.

Since noncommutative tori are labeled by an
antisymmetric d� d matrix �, gauge Morita equiva-
lence establishes an equivalence relation on the set
of such matrices. To describe this equivalence
relation, consider the action � 7! h�= �̂ of
SO(d, djZ) on the space of antisymmetric d� d
matrices by the formula

�̂¼ðM�þNÞðR�þ SÞ�1 ½25�

where the d� d matrices M, N, R, S are such that
the matrix

h¼ M N
R S

� �
½26�

belongs to the group SO(d, djZ). The above action is
defined whenever the matrix A�R�þ S is inverti-
ble. One can prove that two noncommutative tori
Td
� and T

�̂
are gauge Morita equivalent if and only if

the matrices � and �̂ belong to the same orbit of the
SO(d, djZ) action [25].

The duality group SO(d, djZ) also acts on the
topological numbers of moduli �2�even(Zd). This
action can be shown to be given by a spinor
representation constructed as follows. First note
that the operators ai =�i, bi = @=@�i act on �(Rd)
and give a representation of the Clifford algebra
specified by the metric with signature (d, d). The
group O(d, djC) can thus be regarded as a group of
automorphisms acting on the Clifford algebra
generated by ai, bj. Denote the latter action by Wh

for h2O(d, djC). One defines a projective action Vh

of O(d, djC) on �(Rd) according to

VhaiV�1
h ¼Wh�1ðaiÞ; VhbjV

�1
h ¼Wh�1ðbjÞ

This projective action can be restricted to yield a
double-valued spinor representation of SO(d, djC)
on �(Rd) by choosing a suitable bilinear form on
�(Rd). The restriction of this representation to the
subgroup SO(d, djZ) acting on �even(Zd) gives the
action of Morita equivalence on the topological
numbers of moduli.

The mapping [23] preserves the Yang–Mills
equations of motion [15]. Moreover, one can define
a modification of the Yang–Mills action functional
[14] in such a way that the values of the functionals
on rX and r̂X coincide up to an appropriate
rescaling of coupling constants. The modified action
functional has the form
SYM ¼
V

4g2
trðFjk þ �jk 
 1ÞðFjk þ �jk 
 1Þ ½27�

where �jk is a scalar-valued tensor that can be
thought of as some background field. Adding this
term will allow us to compensate for the curvature
shift by adopting the transformation rule

�XY 7!�XY � 
XY

Note that the new action functional [27] has the
same equations of motion [15] as the original one.

To show that the functional [27] is invariant
under gauge Morita equivalence, one has to take
into account two more effects. Firstly, the values of
trace change by a factor c = dim (Ê)( dim(E))�1 as
t̂r X̂ = ctr X. Secondly, the identification of L� and
L�̂ is established by means of some linear transfor-
mation Ak

j , the determinant of which will rescale the
volume V. Both effects can be absorbed into an
appropriate rescaling of the coupling constant.

One can show that the curvature tensor, the
metric tensor, the background field �ij, and the
volume element V transform according to

Fr̂ij ¼Ak
i FrklA

l
jþ 
ij

ĝij¼Ak
i gklA

l
j

�̂ij¼Ak
i �klA

l
j� 
ij

V̂¼Vjdet Aj

½28�

where A = R�þ S and 
=�RAt. The action func-
tional [27] is invariant under the gauge Morita
equivalence if the coupling constant transforms
according to

ĝ2
YM¼ g2

YMj det Aj1=2 ½29�

Supersymmetric extensions of Yang–Mills theory
on noncommutative tori were shown to arise within
string theory essentially in two situations. In the first
case, one considers compactifications of the (BFSS
or IKKT) matrix model of M-theory (Connes et al.
1998). A discussion regarding the connection
between T-duality and Morita equivalence in this
case can be found in Seiberg and Witten (1999,
section 7). Noncommutative gauge theories on tori
can also be obtained by taking the so-called Seiberg–
Witten zero slope limit in the presence of a Neveu–
Schwarz B-field background (Seiberg and Witten
1999). The emergence of noncommutative geometry
in this limit is discussed in this article. Below we give
some details on the relation between T-duality and
Morita equivalence in this approach. Consider a
number of Dp-branes wrapped on Tp parametrized by
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coordinates xi� xi þ 2�r with a closed-string metric
Gij and a B-field Bij. The SO(p, pjZ) T-duality group
is represented by the matrices

T ¼ a b
c d

� �
½30�

that act on the matrix

E¼ r2

�0
ðGþ 2��0BÞ

by a fractional transformation

T : E 7!E0 ¼ ðaEþ bÞðcEþ dÞ�1 ½31�

The transformed metric and B-field are obtained by
taking, respectively, the symmetric and antisym-
metric parts of E0. The string coupling constant is
transformed as

T : gs 7! g0s ¼
gs

ðdetðcEþ dÞÞ1=2
½32�

The zero slope limit of Seiberg and Witten is
obtained by taking

�0 �
ffiffi


p
! 0; Gij � 
! 0 ½33�

Sending the closed-string metric to zero implies that
the B-field dominates in the open-string boundary
conditions. In the limit [33], the compactification is
parametrized in terms of open-string moduli

gij ¼ �ð2��0Þ2ðBG�1BÞij

�ij ¼ 1

2�r2
ðB�1Þij ½34�

which remain finite. One can demonstrate that �ij is
a noncommutativity parameter for the torus and the
low-energy effective theory living on the Dp-brane is
a noncommutative maximally supersymmetric gauge
theory with a coupling constant

Gs ¼ gs
det g

det G

� �1=4

½35�

From the transformation law [31], it is not hard to
derive the transformation rules for the moduli [34]
in the limit [33],

T : g 7! g0 ¼ ðaþ b�Þgðaþ b�Þt

T : � 7! �0 ¼ ðcþ d�Þðaþ b�Þt
½36�

Furthermore, the effective gauge theory becomes a
noncommutative Yang–Mills theory [17] with a
coupling constant

ðgYMÞ�2 ¼ ð�
0Þð3�pÞ=2

ð2�Þp�2Gs
which goes to a finite limit under [33] provided one
simultaneously scales gs with 
 as

gs � 
ð3�pþkÞ=4

where k is the rank of Bij. The limiting coupling constant
gYM transforms under the T-duality [31], [32] as

T : gYM 7! g0YM ¼ gYMðdetðaþ b�ÞÞ1=4 ½37�

We see that the transformation laws [31] and [37]
have the same form as the corresponding transfor-
mations in [25], [28], [29] provided one identifies
matrix [26] with matrix [30] conjugated by

T ¼ 0 1
1 0

� �

The need for conjugation reflects the fact that in the
BFSS M(atrix) model in the framework of which
the Morita equivalence was originally considered, the
natural degrees of freedom are D0 branes versus Dp
branes considered in the above discussion of T-duality.

One can further check that the gauge field transfor-
mations following from gauge Morita equivalence
match with those induced by the T-duality. It is worth
stressing that in the absence of a B-field background
the effective action based on the square of the gauge
field curvature is not invariant under T-duality.
Instantons on Noncommutative T 4
�

Consider a Yang–Mills field rX on a projective
module E over a noncommutative 4-torus T4

� .
Assume that the Lie algebra of shifts L� is equipped
with the standard Euclidean metric such that the
metric tensor in the basis [7] is given by the identity
matrix. The Yang–Mills field ri is called an instanton
if the self-dual part of the corresponding curvature
tensor is proportional to the identity operator,

Fþjk � 1
2 Fjk þ 1

2
jkmnFmn
� �

¼ i!jk 
 1 ½38�

where !jk is a constant matrix with real entries. An
anti-instanton is defined the same way by replacing
the self-dual part with the anti-self-dual one.

One can define a noncommutative analog of
Nahm transform for instantons (Astashkevich et al.
2000) that has properties very similar to those of the
ordinary (commutative) one. To that end, consider a
triple (P,ri, r̂i) consisting of a (finite projective)
(T4

� , T4
�̂
)-bimodule P, T4

� -connection ri and T4
�̂
-

connection r̂i that satisfy the following properties.
The connection ri commutes with the T�̂-action on
P and the connection r̂i with that of T�. The
commutators [ri,rj], [r̂i, r̂j], [ri, r̂j] are propor-
tional to the identity operator
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½ri;rj� ¼ !ij 
 1
½r̂i; r̂j� ¼ !̂ij 
 1
½ri; r̂j� ¼ 
ij 
 1

½39�

The above conditions mean that P is a T8
�� (��̂)-

module and ri�r̂i is a constant curvature connec-
tion on it. In addition, we assume that the tensor 
ij

is nondegenerate.
For a connection rE on a right T4

� -module E, we
define a Dirac operator D = �i(rE

i þri) acting on
the tensor product

ðE�T�
PÞ � S

where S is the SO(4) spinor representation space and
�i are four-dimensional Dirac gamma-matrices. The
space S is Z2-graded: S = Sþ � S� and D is an odd
operator so that we can consider

Dþ : ðE�T�
PÞ � Sþ!ðE�T�

PÞ � S�

D� : ðE�T�
PÞ � S�!ðE�T�

PÞ � Sþ

A connection rE
i on a T4

� -module E is called
P-irreducible if there exists a bounded inverse to the
Laplacian

� ¼
X

i

rE
i þri

� �
rE

i þri

� �
One can show that if rE is a P-irreducible instanton,
then ker Dþ= 0 and D�Dþ= �. Denote by Ê the
closure of the kernel of D�. Since D� commutes with
the T4

�̂
-action on (E�T�

P)� S� the space Ê is a right
T4
�̂
-module. One can prove that this module is finite

projective. Let P : (E�T�
P)� S�! Ê be a Hermitian

projector. Denote byrÊ the composition P 
 r̂. One
can show that rÊ is a Yang–Mills field on Ê.

The noncommutative Nahm transform of a
P-irreducible instanton connection rE on E is
defined to be the pair (Ê,rÊ). One can further
show that rÊ is an instanton.
See also: Electroweak Theory; Hopf Algebras and
q-Deformation Quantum Groups; Noncommutative
Geometry from Strings; Quantum Group Differentials,
Bundles and Gauge Theory; Quantum Hall Effect; String
Field Theory; von Neumann Algebras: Introduction,
Modular Theory, and Classification Theory.
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Nonequilibrium

Systems in stationary nonequilibrium are mechanical
systems subject to nonconservative external forces
and to thermostat forces which forbid indefinite
increase of the energy and allow reaching statisti-
cally stationary states. A system � is described by
the positions and velocities of its n particles X , _X,
with the particle positions confined to a finite
volume container C0.

If X = (x1, . . . , xn) are the particle positions in
a Cartesian inertial system of coordinates, the
equations of motion are determined by their masses
mi > 0, i = 1, . . . , n, by the potential energy of



interaction V(x1, . . . , xn) 	 V(X), by the external
nonconservative forces Fi(X , F), and by the thermo-
stat forces �Ji as

mi€xi¼�@xi
VðXÞþFiðX ;FÞ�Ji; i¼ 1; . . . ;n ½1�

where F= (’1, . . . ,’q) are strength parameters on
which the external forces depend. All forces and
potentials will be supposed smooth, that is, analytic,
in their variables aside from possible impulsive elastic
forces describing shocks, and with the property
F(X ;0)=0. The impulsive forces are allowed here to
model possible shocks with the walls of the container
C0 or between hard core particles.

A thermostat is a ‘‘reservoir’’ which may consist
of one or more infinite systems which are asympto-
tically in thermal equilibrium and are separated by
boundary surfaces from each other as well as from
the system: with the latter, they interact through
short-range conservative forces, see Figure 1.

The reservoirs occupy infinite regions of the space
outside C0, for example, sectors Ca 
 R3, a = 1, 2 . . . ,
in space and their particles are in a configuration
which is typical of an equilibrium state at temperature
Ta. This means that the empirical probability of
configurations in each Ca is Gibbsian with some
temperature Ta. In other words, the frequency with
which a configuration ( _Y , Y þ r) occurs in a region
�þ r 
 Ca while a configuration ( _W , W þ r) occurs
outside �þ r (with Y 
 �, W \ � = ;) averaged over
the translations �þ r of � by r (with the restriction
that �þ r 
 Ca) is

average
rþ�
Ca

ðf�þr ½ð _Y ;Y þ rÞ; _W ;W þ r�Þ

¼ e��a ð1=2maÞj _Y j2þVaðY jWÞð Þ
normalization

½2�

Here ma is the mass of the particles in the ath
reservoir and Va(Y jW ) is the energy of the short-
range potential between pairs of particles in Y 
 Ca

or with one point in Y and one in W . Since the
configurations in the system and in the thermostats
are not random, [2] should be considered as an
‘‘empirical’’ probability in the sense that it is the

frequency density of the events {( _Y , Y þ r); W þ r}:
in other words, the configurations wa in the
reservoirs should be ‘‘typical’’ in the sense of
probability theory of distributions which are asymp-
totically Gibbsian.

The property of being ‘‘thermostats’’ means that
[2] remains true for all times, if initially satisfied.

Mathematically, there is a problem at this point:
the latter property is either true or false, but a
proof of its validity seems out of reach of the
present techniques except in very simple cases.
Therefore, here we follow an intuitive approach
and assume that such thermostats exist and,
actually, that any configuration which is typical of
a stationary state of an infinite size system of
interacting particles in the Ca’s, with physically
reasonable microscopic interactions, satisfies the
property [2].

The above thermostats are examples of ‘‘determi-
nistic thermostats’’ because, together with the
system, they form a deterministic dynamical system.
They are called ‘‘Hamiltonian thermostats’’ and are
often considered as the most appropriate models of
‘‘physical thermostats.’’

A closely related thermostat model is obtained by
assuming that the particles outside the system are
not in a given configuration but they have a
probability distribution whose conditional distribu-
tions satisfy [2] initially. Also in this case, it is
necessary to assume that [2] remains true for all
times, if initially satisfied. Such thermostats are
examples of ‘‘stochastic thermostats’’ because their
action on the system depends on random variables
wa which are the initial configurations of the
particles belonging to the thermostats.

Other kinds of stochastic thermostats are ‘‘colli-
sion rules’’ with the container boundary @C0 of �:
every time a particle collides with @C0 it is reflected
with a momentum p in d3p that has a probability
distribution proportional to e��a(1=2m)p2

d3p where
�a, a = 1, 2 , . . . depends on which boundary portion
(labeled by a = 1, 2, . . .) the collision takes place and
Ta = (kB�a)

�1 and its ‘‘temperature’’ if kB is Boltz-
mann’s constant. Which p is actually chosen after
each collision is determined by a random variable
w = (w1, w2, . . .).

The distinction between stochastic and deter-
ministic thermostats ultimately rests on what we
call ‘‘system.’’ If reservoirs or the randomness
generators are included in the system, then the
system becomes deterministic (possibly infinite);
and finite deterministic thermostats can also be
regarded as simplified models for infinite reservoirs,
see the section ‘‘Heat, temperat ure, an d entropy
produ ction.’’

T1
T2

T3

Σ

Figure 1 A symbolic drawing of the container C0 for the

system � and of the surrounding regions containing the particles

acting as thermostats at temperatures T1, T2, . . . .
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It is also possible, and convenient, to consider
‘‘finite deterministic thermostats.’’ In the latter case,
J is a force only depending upon the configuration
of the n particles v of � in their finite container C0.

Examples of finite deterministic reservoirs are forces
obtained by imposing a nonholonomic constraint via
some ad hoc principle like the Gauss principle. For
instance, if a system of particles driven by a force
Gi =

def�@xi
V(X)þ Fi(X) is enclosed in a box C0 and J

is a thermostat enforcing an anholonomic constraint
 ( _X , X) 	 0 via Gauss’ principle, then

Jið _X ;XÞ

¼
"P

j _xj � @xj
 ð _X ;XÞ þ ð1=mÞGj � @ _xj

 ð _X;XÞP
j

1
m ð@ _xj

 ð _X;XÞÞ2

#

� @ _xi
 ð _X;XÞ ½3�

Gauss’ principle says that the force which needs to
be added to the other forces Gi acting on the system
minimizes

X
i

ðGi �miaiÞ2

mi

given _X , X , among all accelerations ai which are
compatible with the constraint  .

It should be kept in mind that the only known
examples of mathematically treatable thermostats
modeled by infinite reservoirs are cases in which the
thermostat particles are either noninteracting parti-
cles or linear (i.e., noninteracting) oscillators. For
simplicity stochastic or infinite thermostats will not
be considered here and we restrict attention to finite
deterministic systems.

In general, in order that a force J can be
considered a deterministic ‘‘thermostat force’’ a
further property is necessary: namely that the system
evolves according to [1] towards a stationary state.
This means that for all initial particle configurations
( _X, X), except possibly for a set of zero phase-space
volume, any smooth function f ( _X , X) evolves in time
so that, if St( _X , X) denotes the configuration into
which the initial data evolve in time t according to
[1], then the limit

lim
T!1

1

T

Z T

0

f ðStð _X ;XÞÞ dt ¼
Z

f ðzÞ�ðdzÞ ½4�

exists and is independent of ( _X , X). The probability
distribution � is then called the SRB distribution for
the system. The maps St will have the group
property St � St0 = Stþt0 and the SRB distribution �
will be invariant under time evolution.

It is important to stress that the requirement that
the exceptional configurations form just a set of zero

phase volume (rather than a set of zero probability
with respect to another distribution, singular with
respect to the phase volume) is a strong assumption
and it should be considered an axiom of the theory:
it corresponds to the assumption that the initial
configuration is prepared as a typical configuration
of an equilibrium state, which, by the classical
equidistribution axiom of equilibrium statistical
mechanics, is a typical configuration with respect
to the phase volume.

For this reason, the SRB distribution is said to
describe a ‘‘stationary nonequilibrium state’’ of
the system. The SRB distribution depends on the
parameters on which the forces acting on the
system depend, for example, jC0j (volume), F
(strength of the forcings), {��1

a } (temperatures), etc.
The collection of SRB distributions obtained by
letting the parameters vary defines a ‘‘nonequilibrium
ensemble.’’

In the stochastic case, the distribution � is
required to be invariant in the sense that it can be
regarded as a marginal distribution of an invariant
distribution for the larger (deterministic) system
formed by the thermostats and the system itself.

For more details, the reader is referred to Evans
and Morriss (1990), Ruelle (1999), and Eckmann
et al. (1999).

Nonequilibrium Thermodynamics

The key problem of nonequilibrium statistical
mechanics is to derive a macroscopic ‘‘nonequili-
brium thermodynamics’’ in a way similar to the
derivation of equilibrium thermodynamics from
equilibrium statistical mechanics.

The first difficulty is that nonequilibrium thermo-
dynamics is not well understood. For instance, there
is no (agreed upon) definition of entropy of a
nonequilibrium stationary state, while it should be
kept in mind that the effort to find the microscopic
interpretation of equilibrium entropy, as defined by
Clausius, was a driving factor in the foundations of
equilibrium statistical mechanics.

The importance of entropy in classical equilibrium
thermodynamics rests on the implication of univer-
sal, parameter-free relations which follow from its
existence (e.g., @V(1=T) 	 @U(p=T) if U is the
internal energy, T the absolute temperature, and p
the pressure of a simple homogeneous material).

Are there universal relations among averages of
observables with respect to SRB distributions?

The question has to be posed for systems ‘‘really’’
out of equilibrium, that is, for F 6¼ 0 (see [1]): in
fact, there is a well-developed theory of the
derivatives with respect to F of averages of
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observables evaluated at F = 0. The latter theory is
often called, and here we shall do so as well,
‘‘classical nonequilibrium thermodynamics’’ or
‘‘near-equilibrium thermodynamics’’ and it has
been quite successfully developed on the basis of
the notions of equilibrium thermodynamics, paying
particular attention to the macroscopic evolution of
systems described by macroscopic continuum equa-
tions of motion.

‘‘Stationary nonequilibrium statistical mechanics’’
will indicate a theory of the relations between
averages of observables with respect to SRB dis-
tributions. Systems so large that their volume
elements can be regarded as being in locally
stationary nonequilibrium states could also be
considered. This would extend the familiar ‘‘local
equilibrium states’’ of classical nonequilibrium ther-
modynamics: however, they are not considered here.
This means that we shall not attempt to find the
macroscopic equations regulating the time evolution
of continua locally in nonequilibrium stationary
states but we shall only try to determine the
properties of their ‘‘volume elements’’ assuming
that the timescale for the evolution of large
assemblies of volume elements is slow compared to
the timescales necessary to reach local stationarity.

For more details, the reader is referred to
de Groot and Mazur (1984), Lebowitz (1993),
Ruelle (1999, 2000), Gallavotti (1998, 2004), and
Goldstein and Lebowitz (2004).

Chaotic Hypothesis

In equilibrium statistical mechanics, the ergodic
hypothesis plays an important conceptual role as it
implies that the motions of ergodic systems have an
SRB statistics and that the latter coincides with the
Liouville distribution on the energy surface.

An analogous role has been proposed for the
‘‘chaotic hypothesis,’’ which states that the

motion of a chaotic system, developing on its attracting
set, can be regarded as an Anosov flow.

This means that the attracting sets of chaotic
systems, physically defined as systems with at least
one positive Lyapunov exponent, can be regarded as
smooth surfaces on which motion is highly unstable:

1. Around every point, a curvilinear coordinate
system can be established which has three planes,
varying continuously with x, which are covariant
(i.e., they are coordinate planes at a point x
which are mapped, by the evolution St, into the
corresponding coordinate planes around Stx).

2. The planes are of three types, ‘‘stable,’’ ‘‘unstable,’’
and ‘‘marginal,’’ with respective positive dimen-
sions ds, du, and 1: infinitesimal lengths on the
stable plane and on the unstable plane of any
point contract at exponential rate as time
proceeds towards the future or towards the past.
The length along the marginal direction neither
contracts nor expands (i.e., it varies around the
initial value staying bounded away from 0 and
1): its tangent vector is parallel to the flow. In
cases in which time evolution is discrete, and
determined by a map S, the marginal direction is
missing.

3. The contraction over a time t, positive for lines
on the stable plane and negative for those on the
unstable plane, is exponential, i.e. lengths are
contracted by a factor uniformly bounded by
Ce��jtj with C,� > 0.

4. There is a dense trajectory.

It has to be stressed that the chaotic hypothesis
concerns physical systems: mathematically, it is
very easy to find dynamical systems for which it
does not hold, at least as easy as it is to find
systems in which the ergodic hypothesis does not
hold (e.g., harmonic lattices or blackbody radia-
tion). However, if suitably interpreted, the ergodic
hypothesis leads, even for these systems, to physi-
cally correct results (the specific heats at high
temperature, the Raleigh–Jeans distribution at low
frequencies). Moreover, the failures of the ergodic
hypothesis in physically important systems have led
to new scientific paradigms (like quantum
mechanics from the specific heats at low tempera-
ture and Planck’s law).

Since physical systems are almost always not
Anosov systems, it is very likely that probing
motions in extreme regimes will make visible the
features that distinguish Anosov systems from non-
Anosov systems, much as it happens with the
ergodic hypothesis.

The interest of the hypothesis is to provide a
framework in which properties like the existence of
an SRB distribution is a priori guaranteed, together
with an expression for it which can be used to work
with formal expressions of the averages of the
observables: the role of Anosov systems in chaotic
dynamics is similar to the role of harmonic oscillators
in the theory of regular motions. They are the
paradigm of chaotic systems, as the harmonic
oscillators are the paradigm of order. Of course, the
hypothesis is only a beginning and one has to learn
how to extract information from it, as it was the case
with the use of the Liouville distribution, once the
ergodic hypothesis guaranteed that it was the
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appropriate distribution for the study of the statistics
of motions in equilibrium situations.

For more details, the reader is referred to Ruelle
(1976), Gallavotti and Cohen (1995), Ruelle (1999),
Gallavotti (1998), and Gallavotti et al. (2004).

Heat, Temperature, and Entropy
Production

The amount of heat _Q that a system produces while in
a stationary state is naturally identified with the work
that the thermostat forces J perform per unit time

_Q ¼
X

i

Ji � _xi ½5�

A system may be in contact with several reservoirs:
in models, this will be reflected by a decomposition

J ¼
X

JðaÞð _X ;XÞ ½6�

where J(a) is the force due to the ath thermostat and
depends on the coordinates of the particles which
are in a region �a � C0 of a decomposition
[m

a = 1�a = C0 of the container C0 occupied by the
system (�a \ �a0 = ; if a 6¼ a0).

From several studies based on simulations of finite
thermostatted systems of particles arose the proposal
to consider the average of the phase-space contrac-
tion �(a)( _X , X) due to the ath thermostat

�ðaÞð _X ;XÞ ¼def
X

j

@ _xj
� JðaÞj ð _X ;XÞ ½7�

and to identify it with the rate of entropy creation in
the ath thermostat.

Another key notion in thermodynamics is the
temperature of a reservoir; in the infinite determi-
nistic thermost at case, of the sect ion ‘‘Noneq uili-
brium ,’’ it is defi ned as ( kB�a)�1 but in the finite
deterministic thermostats considered here it needs to
be defined. If there are m reservoirs with which the
system is in contact, one sets

�
ðaÞ
þ ¼

def h�ðaÞð _X ;XÞi 	
Z
�ðaÞð _X ;XÞ�ðd _X dXÞ

_Qa ¼def
X

i

JðaÞi � _xi

½8�

where � is the SRB distribution describing the
stationary state. It is natural to define the absolute
temperature of the ath thermostat to be

Ta ¼
h _Qai
kB�

ðaÞ
þ

½9�

It is not clear that Ta > 0: this happens in a rather
general class of models and it would be desirable, for

the interpretation that is proposed here, that it could
be considered a property to be added to the require-
ments that the forces JðaÞ be thermostat models.

An important class of thermostats for which the
property Ta > 0 holds can be described as follows.
Imagine N particles in a container C0 interacting via
a potential V0 =

P
i<j ’(qi � qj)þ

P
j V 0(qj) (where

V 0 models external conservative forces like obsta-
cles, walls, gravity, . . .) and, furthermore, interacting
with M other systems �a, of Na particles of mass
ma, in containers Ca contiguous to C0. The latter
will model M parts of the system in contact with
thermostats at temperatures Ta, a = 1, . . . , M.

The coordinates of the particles in the ath system
�a will be denoted xa

j , j = 1, . . . , Na, and they will
interact with each other via a potential Va =PNa

i, j ’a(xa
i � xa

j ). Furthermore, there will be an
interaction between the particles of each thermostat
and those of the system via potentials Wa =PN

i = 1

PNa

j = 1 wa(qi � xa
j ), a = 1, . . . , M.

The potentials will be assumed to be either hard
core or nonsingular potentials and the external V 0 is
supposed to be at least such that it forbids the
existence of obvious constants of motion.

The temperature of each �a will be defined by
the total kinetic energy of its particles, that
is, by Ka =

PNa

j = 1 (1=2)ma( _xa
j )2¼def (3=2)NakBTa: the

particles of the ath thermostat will be kept at
constant temperature by further forces Ja

j . The latter
are defined by imposing via a Gaussian constraint
that Ka is a constant of motion (see [3] with  	 Ka).
This means that the equations of motion are

m€qj ¼ �@qj
V0ðQÞ þ

XNa

a¼1

WaðQ; xaÞ
 !

ma€xa
j ¼ �@xa

j
VaðxaÞ þWaðQ; xaÞð Þ � Ja

j

½10�

and an application of Gauss’ principle yields

Ja
j ¼

La � _Va

3NakBTa
_xa

j ¼
def
�a _xa

j

where La is the work per unit time done by the
particles in C0 on the particles of �a and Va is their
potential energy.

In this case, the partial divergence �a	ð3Na�1Þ�a

is, up to a constant factor ð1� ð1=3NaÞÞ;

�a¼ La

kBTa
�

_Va

kBTa

and it will make [9] identically satisfied with Ta > 0
because La can be naturally interpreted as heat Qa

ceded, per unit time, by the particles in C0 to the
subsystem �a (hence to the ath thermostat because
the temperature of �a is constant), while the
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derivative of Va will not contribute to the value of
�a
þ. The phase-space contraction rate is, neglecting

the total derivative terms (and OðN�1
a ÞÞ,

�trueð _X;XÞ ¼
XNa

a¼1

_Qa

kBTa
½11�

where the subscript ‘‘true’’ is to remind that an
additive total derivative term distinguishes it from
the complete phase-space contraction.

Remarks

(i) The above formula provides the motivation of the
name ‘‘entropy creation rate’’ attributed to the
phase-space contraction �. Note that in this way
the definition of entropy creation is ‘‘reduced’’ to
the equilibrium notion because what is being
defined is the entropy increase of the thermostats
which have to be considered in equilibrium. No
attempt is made here to define neither the entropy
of the stationary state nor the notion of tempera-
ture of the nonequilibrium system in C0 (the Ta

are temperatures of the �a, not of the particles in
C0). This is an important point as it leaves open
the possibility of envisaging the notion of ‘‘local
equilibrium’’ which becomes necessary in the
approximation (not considered here) in which
the system is regarded as a continuum.

(ii) In the above model, another viewpoint is
possible: that is, to consider the system to
consist of only the N particles in C0 and the M
systems �a to be thermostats. From this point of
view, it can be considered a model of a system
subject to thermostats. The Gibbs distribution
characterizing the infinite thermostats of the
sect ion ‘‘N onequilibr ium’’ becomes in this case
the constraint that the kinetic energies Ka are
constants, enforced by the Gaussian forces. In
the new viewpoint, the appropriate definition
should be simply the right-hand side (RHS) of
[11], i.e. the work per unit time done by the
forces of the system on the thermostats divided
by the temperature of the thermostats. This
suggests a different and general definition of
entropy creation rate, applying also to thermo-
stats that are often considered ‘‘more physical’’
and that needs to be further investigated. In the
example [10] the new definition differs from the
phase space contraction rate by a total time
derivative, i.e. rather trivially for the purposes of
the following.

For more details, the reader is referred to Evans
and Morriss (1990), Gallavotti and Cohen (1995),
Ruelle (1996, 1997), and Gallavotti (2004).

Thermodynamic Fluxes and Forces

Nonequilibrium stationary states depend upon
external parameters ’j like the temperatures Ta of
the thermostats or the size of the force parameters
F = (’1, . . . ,’q), see [1]. Nonequilibrium thermo-
dynamics is well developed at ‘‘low forcing’’: strictly
speaking, this means that it is widely believed that
we understand the properties of the derivatives of
the averages of observables with respect to the
external parameters if evaluated at ’j = 0. Important
notions are the notions of thermodynamic fluxes Ji

and of thermodynamic forces ’i; hence, it seems
important to extend such notions to nonequilibrium
systems (i.e., F 6¼ 0).

A possible extension could be to define the
thermodynamic flux Ji associated with a force ’i as
Ji = h@’i

�iSRB where �(X, _X ; F) is the volume
contraction per unit time. This definition seems
appropriate in several concrete cases that have been
studied and it is appealing for its generality.

An interesting example is provided by the model
of thermostatted system in [10]: if the container of
the system is a box with periodic boundary condi-
tions, one can imagine to add an extra constant
force E acting on the particles in the container.
Imagining the particles to be charged by a charge e
and regarding such force as an electric field, the first
equation in [10] is modified by the addition of a
term eE.

The constraints on the thermostat temperatures imply
that � depends also on E: in fact, if J = e

P
j

_qj is the
electric current, energy balance implies _Utot = E � J�P

a (La � _Va) if Utot is the sum of all kinetic and
potential energies. Then, the phase-space contraction

X
a

La � _Va

Ta

can be written, to first order in the temperature
variations �Ta with respect to a common value
Ta = T, as

�
X

a

La � _Va

T

�Ta

T
þ E � J � _Utot

T

hence �true, see [11], is

�true ¼
E � J
kBT
�
X

a

_Qa

kBT

�Ta

T
½12�

The definition and extension of the conjugacy
between thermodynamic forces and fluxes is com-
patible with the key results of classical nonequili-
brium thermodynamics, at least as far as Onsager
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reciprocity and Green–Kubo’s formulas are con-
cerned. It can be checked that if the equilibrium
system is reversible, that is, if there is an isometry I
on phase space which anticommutes with the
evolution (ISt = S�tI in the case of continuous-time
dynamics t! St or IS = S�1I in the case of discrete-
time dynamics S), then, shortening ( _X , X) into x,

Lij ¼def
@�i

JjjF¼0¼ @�i
h@�j

�ðx;FÞiSRBjF¼0¼ @�j
JijF¼0

¼Lji¼
1

2

Z 1
�1
h@�j

�ðStx;FÞ@�i
�ðx;FÞiSRBjF¼0 dt ½13�

The �(x;F) plays the role of ‘‘Lagrangian’’ generat-
ing the duality between forces and fluxes. The
extension of the duality just considered might be of
interest in situations in which F 6¼ 0.

For more details, the reader is referred to de Groot
and Mazur (1984), Gallavotti (1996), and Gallavotti
and Ruelle (1997).

Fluctuations

As in equilibrium, large statistical fluctuations of
observables are of great interest and already there is,
at the moment, a rather large set of experiments
dedicated to the analysis of large fluctuations in
stationary states out of equilibrium.

If one defines the dimensionless phase-space
contraction

pðxÞ ¼ 1

	

Z 	

0

�ðStxÞ
�þ

dt ½14�

(see also [11]), then there exists p� 
 1 such that the
probability P	 of the event p 2 [a, b] with [a, b] 

(�p�, p�) has the form

P	 ðp 2 ½a; b�Þ ¼ const: e	 maxp2½a;b� 
ðpÞþOð1Þ ½15�

with 
(p) analytic in (�p�, p�). The function 
(p) can
be conveniently normalized to have value 0 at p = 1
(i.e., at the average value of p).

Then, in Anosov systems which are reversible and
dissipative (see the previous section), a general
symmetry property, called the ‘‘fluctuation theorem’’
and reflecting the reversibility symmetry, yields the
parameterless relation


ð�pÞ ¼ 
ðpÞ � p�þ p 2 ð�p�; p�Þ ½16�

This relation is interesting because it has no free
parameters; in other words, it is universal for
reversible dissipative Anosov systems. In connection
with the flux–force duality in the previous section, it
can be checked to reduce to the Green–Kubo
formula and to Onsager reciprocity, see [13], in the
case in which the evolution depends on several fields
F and F! 0 (of course the relation becomes trivial

as F! 0 because �þ! 0 and to obtain the result
one has first to divide both sides by suitable powers
of the fields F).

A more informal (but imprecise) way of writing
[15] and [16] is

P	 ðpÞ
P	 ð�pÞ ¼ e	p�þþOð1Þ; for all p 2 ð�p�; p�Þ ½17�

where P	 (p) is the probability density of p. An
obvious but interesting consequence of [17] is that

he�	p�þiSRB = 1

in the sense that (1=	) loghe�	p�þiSRB�!	!1 0.
Occasionally, systems with singularities have to be

considered. In such cases, the relation [16] may
change in the sense that the function 
(p) may not be
analytic: in such cases, one expects that the relation
holds in the largest analyticity interval symmetric
around the origin. In Anasov systems and also
various cases considered in the literature, such
interval appears to contain the interval (�1, 1).

Note that in the theory of fluctuations of the time
averages p we can replace � by any other bounded
quantity which is a total time derivative: hence, in the
example discussed above, it can be replaced by �true,
see [12], which has a natural physical meaning.

It is important to remark that the above fluctua-
tion relation is the first representative of several
consequences of the reversibility and chaotic
hypotheses. For instance, given F1, . . . , Fn arbitrary
observables which are (say) odd under time reversal
I (i.e., F(Ix) =�F(x)) and given n functions t 2
[�	=2, 	=2]!’j(t), j = 1, . . . , n, one can ask which
is the probability that Fj(St x) ‘‘closely follows’’ the
‘‘pattern’’ ’j(t) and at the same time

1

	

Z 	

0

�ðS�xÞ
�þ

d�

has value p. Then calling P	 (F1 � ’1, . . . , Fn � ’n, p)
the probability of this event, which we write in the
imprecise form corresponding to [17] for simplicity,
and defining I’j(t) =def�’j(�t), it is

P	 ðF1 � ’1; . . . ; Fn � ’n; pÞ
P	 ðF1 � I’1; . . . ; Fn � I’n;�pÞ ¼ e	�þp

p 2 ð�p�; p�Þ ½18�

which is remarkable because it is parameterless and
at the same time surprisingly independent of the
choice of the observables Fj. The relation [18] has
far-reaching consequences: for instance, if n = 1 and
F1 = @�i

�(x; F) the relation [18] has been used to
derive the mentioned Onsager reciprocity and
Green–Kubo’s formulas at F = 0.
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Equation [18] can be read as follows: the
probability that the observables Fj follow given
evolution patterns ’j conditioned to entropy crea-
tion rate p�þ is the same that they follow the time-
reversed patterns if conditioned to entropy creation
rate �p�þ. In other words, to change the sign of
time, it is just sufficient to reverse the sign of
entropy creation rate, no ‘‘extra effort’’ is needed.

For more details, the reader is referred to Sinai
(1972, 1994), Evans et al. (1993), Gallavotti and
Cohen (1995), Gallavotti (1996, 1999), Gallavotti
and Ruelle (1997), Gallavotti et al. (2004), and
Bonetto et al. (2005).

Fractal Attractors, Pairing,
and Time Reversal

Attracting sets (i.e., sets which are the closure of
attractors) are fractal in most dissipative systems.
However, the chaotic hypothesis assumes that
fractality can be neglected. Apart from the very
interesting cases of systems close to equilibrium, in
which the closure of an attractor is the whole phase
space (under the chaotic hypothes is, i.e., if the
system is Anosov), hence not fractal, serious
problems arise in preserving validity of the fluctua-
tion theorem.

The reason is very simple: if the attractor closure
is smaller than phase space, then it is to be expected
that time reversal will change the attractor into a
repeller disjoint from it. Thus, even if the chaotic
hypothesis is assumed, so that the attracting set
A can be considered a smooth surface, the motion
on the attractor will not be time-reversal symmetric
(as its time-reversal image will develop on the
repeller). One can say that an attracting set with
dimension lower than that of phase space in a time-
reversible system corresponds to a spontaneous
breakdown of time-reversal symmetry.

It has been noted however that there are classes
of systems, forming a large set in the space of
evolutions depending on a parameter �, in which
geometric reasons imply that if beyond a critical
value �c the attracting set becomes smaller than
phase space, then a map IP is generated mapping the
attractor A into the repeller R, and vice versa, such
that I2

P is the identity on A [R and IP commutes
with the evolution: therefore, the composition I � IP

is a time-reversal symmetry (i.e., it anticommutes
with evolution) for the motions on the attracting set
A (as well as on the repeller R).

In other words, the time-reversal symmetry in
such systems ‘‘cannot be broken’’: if spontaneous
breakdown occurs (i.e., A is not mapped into itself

under time reversal I), a new symmetry IP is
spawned and I � IP is a new time-reversal symmetry
(an analogy with the spontaneous violation of time
reversal in quantum theory, where time reversal T is
violated but TCP is still a symmetry: so T plays the
role of I and CP that of IP).

Thus, a fluctuation relation will hold for the
phase-space contraction of the motions taking place
on the attracting set for the class of systems with the
geometric property mentioned above (technically,
the latter is called ‘‘axiom C’’ property).

This is interesting but it still is quite far from
being checkable even in numerical experiments.
There are nevertheless systems in which a ‘‘pairing
property’’ also holds: this means that, considering
the case of discrete-time maps S, the Jacobian matrix
@xS(x) has 2N eigenvalues that can be labeled,
in decreasing order, �N(x), . . . ,�(1=2)N(x), . . . ,�1(x),
with the remarkable property that (1=2)(�N�j(x)þ
�j(x)) =def�(x) is j-independent. In such systems, a
relation can be established between phase-space
contractions in the full phase space and on the
surface of the attracting set: the fluctuation theorem
for the motion on the attracting set can therefore
be related to the properties of the fluctuations of
the total phase-space contraction measured on the
attracting set (which includes the contraction trans-
versal to the attracting set) and if 2M is the
attracting set dimension and 2N is the total
dimension of phase space it is, in the analyticity
interval (�p�, p�) of the function 
(p),


ð�pÞ ¼ 
ðpÞ � p
M

N
�þ ½19�

which is an interesting relation. It is however very
difficult to test in mechanical systems because in
such systems it seems very difficult to make the field
so high to see an attracting set thinner than the
whole phase space and still observe large
fluctuations.

For more details, the reader is referred to Dettman
and Morriss (1996) and Gallavotti (1999).

Nonequilibrium Ensembles
and Their Equivalence

Given a chaotic system, the collection of the SRB
distributions associated with the various control
parameters (volume, density, external forces, . . .)
forms an ‘‘ensemble’’ describing the possible sta-
tionary states of the system and their statistical
properties.

As in equilibrium, one can imagine that the
system can be described equivalently in several
ways at least when the system is large (‘‘in the
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thermodynamic’’ or ‘‘macroscopic limit’’). In none-
quilibrium, equivalence can be quite different and
more structured than in equilibrium because one can
imagine to change not only the control parameters
but also the thermostatting mechanism.

It is intuitive that a system may behave in the
same way under the influence of different thermo-
stats: the important phenomenon being the extrac-
tion of heat and not the way in which it is extracted
from the system. Therefore, one should ask when
two systems are ‘‘physically equivalent,’’ that is,
when the SRB distributions associated with them
give the same statistical properties for the same
observables, at least for the very few observables
which are macroscopically relevant. The latter may
be a few more than the usual ones in equilibrium
(temperature, pressure, density, etc.) and include
currents, conducibilities, viscosities, etc., but they
will always be very few compared to the (infinite)
number of functions on phase space.

As an example, consider a system of N interacting
particles (say hard spheres) of mass m moving in a
periodic box C0 of side L containing a regular array
of spherical scatterers (a basic model for electrons in
a crystal) which reflect particles elastically and are
arranged so that no straight line exists in C0 which
avoids the obstacles (to eliminate obvious constants
of motion). An external field Eu acts also along the
u-direction: hence, the equations of motion are

m€xi ¼ f i þ Eu� Ji ½20�

where f i are the interparticle forces and those
between scatterers and particles, and Ji are the
thermostatting forces. The following thermostat
models have been considered:

1. Ji = � _xi (viscosity thermostat),
2. immediately after elastic collision with an obsta-

cle the velocity is rescaled to a prefixed valueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBTm�1

p
for some T (Drude’s thermostat),

3. Ji = (E �
P

_xi)=
P

i _x2
i (Gauss’ thermostat).

The first two are not reversible. At least not
manifestly such, because the natural time reversal,
that is, change of velocity sign, is not a symmetry
(there might be however more hidden, hitherto
unknown, symmetries which anticommute with
time evolution). The third is reversible and time
reversal is just the change of the velocity sign. The
third thermostat model generates a time evolution in
which the total kinetic energy K is constant.

Let �0�,�
00
T ,�000K be the SRB distributions for the

system in a container C0 with volume jC0j= L3 and
density 
= N=L3 fixed. Imagine to tune the values
of the control parameters �, T, K in such a way that

hkinetic energyi� = E, with the same E for �=�0�,
�00T ,�000K and consider a local observable F( _X , X) > 0
depending only on the coordinates of the particles
located in a region � 
 C0. Then a reasonable
conjecture is that

lim
L!1

N=L3¼


hFi�0�
hFi�00

T

¼ lim
L!1

N=L3¼


hFi�0�
hFi�000

T

¼ 1 ½21�

if the limits are taken at fixed F (hence at fixed �
while L!!1). The conjecture is an open
problem: it illustrates, however, the kind of ques-
tions arising in nonequilibrium statistical mechanics.

For more details, the reader is referred to Evans
and Sarman (1993), Gallavotti (1999), and Ruelle
(2000).

Outlook

The subject is (clearly) at a very early stage of
development.

1. The theory can be extended to stochastic thermo-
stats quite satisfactorily, at least as far as the
fluctuation theorem is concerned.

2. Remarkable works have appeared on the theory
of systems which are purely Hamiltonian and
(therefore) with thermostats that are infinite:
unfortunately, the infinite thermostats can be
treated, so far, only if their particles are ‘‘free’’ at
infinity (either free gases or harmonic lattices).

3. The notion of entropy turns out to be extremely
difficult to extend to stationary states and there
are even doubts that it could be actually
extended. Conceptually, this is certainly a major
open problem.

4. The statistical properties of stationary states out of
equilibrium are still quite mysterious and surpris-
ing: some exactly solvable models have appeared
recently, and attempts have been made at unveil-
ing the deep reasons for their solubility and at
deriving from them general guiding principles.

5. Numerical simulations have given a strong
impulse to the subject; in fact, one can even say
that they created it: introducing the model of
thermostat as an extra microscopic force acting on
the particles and providing the first reliable results
on the properties of systems out of equilibrium.
Simulations continue to be an essential part of the
effort of research on the field.

6. Approach to stationarity leads to many impor-
tant questions: is there a Lyapunov function
measuring the distance between an evolving
state and the stationary state towards which it
evolves? In other words, can one define an
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analogous of Boltzmann’s H-function? About this
question there have been proposals and the answer
seems affirmative, but it does not seem that it is
possible to find a universal, system-independent,
such function (search for it is related to the problem
of defining an entropy function for stationary
states: its existence is at least controversial, see the
sections ‘‘Nonequilibrium thermodynamics’’ and
‘‘Chaotic hypothesis’’).

7. Studyin g nonstationary evolution is much harder.
The problem arises when the control parameters
(force, volume, . . . ) change with time and the
system ‘‘undergoes a process.’’ As an example one
can ask the question of how irreversible is a given
irreversible process in which the initial state �0 is a
stationary state at time t = 0, and the external
parameters F0 start changing into functions F( t )
of t and tend to a limit F1 as t!1. In this case,
the stationary distribution �0 starts changing and
becomes a function �t of t which is not stationary
but approaches another stationary distribution �1
as t!1. The process is, in general, irreversible
and the question is how to measure its ‘‘degree of
irreversibility’’: for simplicity we restrict attention
to very special processes in which the only
phenomenon is heat production because the
container does not change volume and the energy
also remains constants, so that the motion can be
described at all times as taking place on a fixed
energy surface. A natural quantity I associated
with the evolution from an initial stationary state
to a final stationary state through a change in the
control parameters can be defined as follows.
Consider the distribution �t into which �0 evolves
in time t, and consider also the SRB distribution
�F(t) corresponding to the control parameters
‘‘frozen’’ at the value at time t, that is, F(t). Let
the phase-space contraction, when the forces are
‘‘frozen’’ at the value F(t), be �t(x) = �(x; F(t)). In
general �t 6¼ �F(t). Then,

IðfFðtÞg;�0;�1Þ ¼def
Z 1

0

ð�tð�tÞ

��FðtÞð�tÞÞ2 dt ½22�

can be called the degree of irreversibility of the
process: it has the property that in the limit of
infinitely slow evolution of F(t), for example, if
F(t)=F0þ (1�e���t)D (a quasistatic evolution
on timescale ��1��1 from F0 to F1=F0þD),
the irreversibility degree I��!�!0

0 if (as in the case
of Anosov evolutions, hence under the chaotic
hypothesis) the approach to a stationary state is
exponentially fast at fixed external forces F. The
quantity I is a time scale which could be 

inte rpreted as the time needed for the process to
exhibit its irreversible nature.

The entire subject is dominated by the initial
insights of Onsager on classical nonequilibrium
thermodynamics, which concern the properties of
the infinitesimal deviations from equilibrium (i.e.,
averages of observables differentiated with respect
to the control parameters F and evaluated at F = 0).
The present efforts are devoted to studying proper-
ties at F 6¼ 0. In this direction, the classical theory
provides certainly firm constraints (like Onsager
reciprocity or Green–Kubo relations or fluctuation–
dissipation theorem) but at a technical level, it gives
little help to enter the terra incognita of none-
quilibrium thermodynamics of stationary states.

For more details, the reader is referred to
Kurchan (1998), Lebowitz and Spohn (1999),
Maes (1999), Eckmann et al. (1999), Bonetto
et al. (2000, 2005), Eckmann and Young (2005),
Derrida et al. (2001), Bertini et al. (2001), Evans
and Morriss (1990), Evans et al. (1993), Goldstein
and Lebowitz (2004), and Gallavotti (2004).

See also: Adiabatic Piston; Chaos and Attractors;
Ergodic Theory; Lie, Symplectic, and Poisson Groupoids
and Their Lie Algebroids; Macroscopic Fluctuations and
Thermodynamic Functionals; Nonequilibrium Statistical
Mechanics: Dynamical Systems Approach; Quantum
Dynamical Semigroups; Random Dynamical Systems.
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Time Evolution of Infinite-Particle
Systems

A preliminary problem in the rigorous study of
nonequilibrium statistical mechanics is to give a
precise sense to the time evolution of infinitely
extended systems. In fact, statistical mechanics deals
with systems composed by a very large number of
bodies (of the order of 1023) and studies the
properties of such systems which are related to
their large number of degrees of freedom. Mathe-
matically, this aspect is stressed by introducing the
so-called ‘‘thermodynamical limit,’’ that is, by
defining and analyzing systems with infinite degrees
of freedom. For particle systems, the problem can be
formulated in the following way. A phase point of
the system is an infinite sequence {(xi, vi)}i2N of the
positions and velocities of the particles, and its time
evolution is characterized by the solutions of the
Newton equations:

m€xiðtÞ ¼
X

j2N:j 6¼i

F xiðtÞ � xjðtÞ
� �

; i 2 N ½1�

where m is the mass of each particle, F(x) = �r�(x),
and � is a two-body potential. Equation [1] must be

completed by the initial data {(xi(0), vi(0))}i2N. The
time evolution of a phase point implies in a natural
way the time evolution of functions on the phase
space, which are the observables to be compared with
experiments.

The existence of a solution to eqn [1] is not
obvious, because the classical theorem of existence
and uniqueness for the Cauchy problem of the
Newton equations depends on the number of
degrees of freedom of the system. The main
difficulty is that a priori the time evolution can
bring infinitely many particles in a bounded region
within a finite time, so that the right-hand side of
eqn [1] becomes meaningless. Without any hypoth-
esis on the initial conditions, this can happen, as
shown by the following simple example. Consider a
system of free (noninteracting) particles moving
on the real line with initial conditions xi = i, vi =�i,
i 2 N. It is clear that at time t = 1 all the particles
are at the origin. To forbid this ‘‘collapse,’’ we must
restrict the allowed initial conditions, but we cannot
be too drastic. For instance, we could surely avoid
these pathologies by choosing the initial velocities
uniformly bounded and the initial distribution of
particles locally finite. But the set of such data is
exceptional with respect to the Gibbs state (as it can be
easily shown using that, at equilibrium, the velocities are
independent identically distributed Gaussian variables).
In conclusion, we must construct the dynamics for initial
conditions which are chosen in a set sufficiently large to
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be the support of states of interest from a thermo-
dynamical point of view.

The difficulty of the problem increases with the
spatial dimension d, as it is shown by the following
example. Let the potential � be smooth enough and
short range and assume that, initially, the velocities
and the density are bounded, that is,

sup
i
jvij <1; sup

�2Rd ;R>1

NðX;�;RÞ
Rd

<1 ½2�

where X = {(xi, vi)}i2N is the particle configuration and
N(X;�, R) is the number of particles in the ball of radius
R, centered at �. If V(t) denotes the modulus of the
maximal velocity carried by the particle during the time
[0, t] and X(t) the evolved configuration, the conserva-
tion of the particles number yields

NðXðtÞ;�;R0Þ � NðXð0Þ;�;RðtÞÞ � const:RðtÞd

½3�

where

RðtÞ ¼ R0 þ
Z t

0

dsVðsÞ ½4�

On the other hand, V(s) is controlled by the force,
which turns out to be bounded by sup� N(X(s);�, r),
where r > 0 is the range of the potential. By virtue of
eqns [3] and [4], we arrive at the integral inequality:

RðtÞ � R0 þ const: t þ const:

Z t

0

dsRðsÞd ½5�

which is solvable globally in time only if d = 1.
In the case of interest, from a thermodynamical

point of view, we also need to allow fluctuations of
the density and velocities, which add further
difficulties. The existence, uniqueness, and locality
of the motion has been solved in dimension d = 1 for
almost all relevant interactions (Lanford 1968,
Dobrushin and Fritz 1977), and in dimension d = 2
for interactions not too singular at the origin (Fritz
and Dobrushin 1977). (This does not cover, for
instance, the hard-core interactions, where it is still
an open problem to investigate whether the
dynamics evolves toward a close-packing situation.)
Finally, in dimension d = 3, the result has recently
been proved only for bounded, non-negative, finite-
range interactions (Caglioti et al. 2000).

We state the result for the three-dimensional case.
Let the interaction � depend only on the mutual
distance, be twice differentiable, positive in the
origin and, for the moment, also non-negative and
compactly supported. We assume that the initial
data have bounded local energies and densities, with
at most logarithmic divergences in velocities and
densities. More precisely, we define

QðX;�;RÞ ¼
X
i2N

�ðjxi � �j � RÞ

� mv 2
i

2
þ 1

2

X
j:j6¼i

� xi � xj

� �
þ 1

" #
½6�

where �(A) denotes the characteristic function of the
set A so that eqn [6] gives the energy and density
contained in a ball centered at � with radius R.
Define

Q�ðXÞ ¼ sup
�

sup
R:R>��ð�Þ

QðX;�;RÞ
R3

½7�

where � > 0 and

��ðxÞ¼
:

log�ðeþ jxjÞ; x 2 R3 ½8�

We denote by X� the set of the phase points X such
that Q�(X) <1. It is possible to prove that for any
� � 1/3,X� has full measure with respect to any
Gibbs measure.

We define the partial dynamics t 7!X(n)(t) as the
solutions to eqn [1] obtained by neglecting all the
particles which are initially outside the ball of radius
n and centered at the origin.

Theorem If X 2 X� there exists a unique flow
X ! X(t) 2 Xð3/2Þ� satisfying eqn [1] with X(0) = X.
Moreover, the partial dynamics locally converges to
X(t) as n ! 1.

The result has been extended to bounded super-
stable long-range interactions. The (nontrivial) proof
is based on several steps: we introduce a mollified
version on the local energy and study its evolution in
time under the partial dynamics. The energy
conservation allows us to prove that the local energy
grows at most as the cube of the maximal velocity.
On the other hand, a suitable time average allows us
to control the maximal velocity via the local energy
in an appropriate way. The result is achieved by
letting n ! 1.
Long-Time Behavior

Existence and locality of the dynamics is only a first,
preliminary, step. The next and much more subtle
question concerns the asymptotic (in time) and the
statistical properties of the motion. Here, the main
problem is the absence of simple but nontrivial
models. Let us explain this point by a comparison
with the situation in equilibrium statistical
mechanics. In this case, even the simpler model,
the free-particle system, exhibits all the relevant
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thermodynamical properties of real systems away
from the critical regime. In fact, the effort is
often reduced to rigorously proving that the real
systems away from the critical region behave as a
free-particle system. The presence of the interaction
is instead essential to describe phase transitions.

In the case of nonequilibrium statistical mechanics
there are very few solvable models (free particles,
chain of oscillators, hard-core system in one dimen-
sion), and typically they do not catch the essential
properties of the real systems. For example, let us
consider a system which is close to equilibrium and
ask whether it converges to the corresponding Gibbs
state. Two possible mechanisms usually come together:
the dispersive properties of the matter (by which
perturbations ‘‘escape’’ to infinity) and the mixing
properties (by which perturbations are ‘‘spread’’ and
disappear). The former is present also in the free-particle
system, being responsible of its ergodic properties. The
latter requires a deep analysis of the dynamics of
interacting-particle systems and it is too difficult to be
analyzed except in rare cases.

We just mention the case of systems with
instantaneous interaction, which are simple enough
to be studied but nevertheless exhibit a nontrivial
long-time behavior. We recall in particular the
famous Sinai’s billiard: a particle moving freely in
a two-dimensional torus except for elastic collisions
with the boundary of a convex obstacle. As proved
by Sinai (1970), this system has strong ergodic
properties. Sinai’s billiard can be proved to be
equivalent to the ‘‘Lorentz gas’’ in which the
obstacles are dislocated in a periodic way.
Bunimovich and Sinai (1981) proved that when
the obstacles are close enough to each other, the
diffusive (weak) limit of the particle motion is the
Wiener process. This remarkable result gives a
rigorous derivation of Brownian motion from a
Hamiltonian system.

More recently, similar questions have been inves-
tigated in the case of a charged particle subject to a
constant electric field and interacting with a medium
described by a particle system. Several rigorous
results have been obtained on this subject. We only
recall those by Boldrighini and Soloveitchik (1995,
1997). In the context of a simplified model, the
asymptotic motion of the charged particle is
described as a drift plus a Brownian motion, and
the Einstein relation between the drift and the
diffusion constant is established.
Mean-Field Limit

The validity of any model is related to some
approximation limit. In statistical mechanics, we
encounter one of the most important ones, the
‘‘thermodynamical limit,’’ used to stress the effect of
large number of particles. Here we briefly discuss the
‘‘mean-field limit.’’ For the kinetic, Boltzmann–Grad
limit, see Boltzmann Equation (Classical and Quan-
tum) and Kinetic Equations.

We consider N particles of mass m mutually
interacting via the force F. The equations of motion are

m€xiðtÞ ¼
P

j¼1;...;N:j6¼i

FðxiðtÞ � xjðtÞÞ

ðxið0Þ; _xið0ÞÞ ¼ ðxi; viÞ

8<
:

i ¼ 1; . . . ;N

½9�

We consider a system with N very large, the mass m
of each particle very small, and the interaction very
weak. An interesting situation arises when the
quantities N, m, and F are linked by the relations

m ¼M

N
; F ¼ G

N2
½10�

for some function G. Of course, M is the total mass
of the system.

We are interested in investigating the limit N ! 1.
We assume that the initial data are chosen in a way
that the empirical measure N�1

P
i �xi�vi weakly

converges (as N!1) to the absolutely continuous
measure f0(x, v) dx dv with some smooth density
f0(x, v). We ask whether at some positive time t > 0
the empirical measure N�1

P
i �xi(t)�vi(t) weakly con-

verges to f (x, v, t) dx dv with a density f (x, v, t)
satisfying some limiting evolution equation.

Formally, it is easy to find this equation: by the
Liouville theorem, a continuous medium in which
each point moves under the action of an acceleration
field behaves as an incompressible fluid. The
continuity equation becomes

@tf ðx;v; tÞþ v �rxf ðx;v; tÞþE �rvf ðx;v; tÞ ¼ 0

f ðx;v;0Þ ¼ f0ðx;vÞ
½11�

where

Eðx; tÞ ¼
Z

R3
dy Gðx� yÞ�ðy; tÞ ½12�

�ðx; tÞ ¼
Z

R3
dv f ðx; v; tÞ ½13�

This equation can be studied by following the
characteristics, for which it suffices to look at the
pair of functions

ðx; vÞ 7! ðXðx; v; tÞ;Vðx; v; tÞÞ; f0ðx; vÞ 7! f ðx; v; tÞ
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where (x, v) 2 R3 �R3 and t 2 R, solutions of

_Xðx; v; tÞ ¼ Vðx; v; tÞ; _Vðx; v; tÞ ¼ Eðx; tÞ
Xðx; v; 0Þ ¼ x; Vðx; v; 0Þ ¼ v

f ðXðx; v; tÞ;Vðx; v; tÞ; tÞ ¼ f0ðx; vÞ
½14�

This is a weak formulation of eqn [11], in the sense
that any smooth solution to eqn [11] satisfies eqn
[14], but this last equation in meaningful also for
nonsmooth functions. This is a weak version of the
Vlasov equation and its measure solutions will play
an important role in the sequel.

Equations [11]–[14] are called Vlasov equations,
after Vlasov, who first introduced them in plasma
physics. They have a Hamiltonian structure and
conserve several quantities: the total mass, the total
energy, the Liouville measure dx dv, and in general
each moment of this measure.

The existence and uniqueness of the solutions
has been studied in many papers. Two cases have
to be considered, depending on whether the total
mass

M ¼
Z

R6
dx dv f0ðx; vÞ ½15�

is finite or not. We start with the first case. If the
interaction G is bounded, the analysis is easy. On
the other hand, in plasma physics one deals with
the Coulomb interaction, which is singular at the
origin. In this case (where eqn [11] is usually
called the Vlasov–Poisson equation), existence and
uniqueness can still be proved, but it is not
straightforward, especially in dimension d = 3.
The case with the complete Lorentz force, also
taking into account the relativistic effect, is much
more difficult.

For infinite total mass, the problem has been
solved recently in three (or lower) dimensions for
bounded, non-negative, finite-range interactions,
and in two dimensions for singular Helmholtz
interactions.

Another way to relate the Vlasov equation with
the particle systems is to consider the usual
transition from microscopic to macroscopic evolu-
tions based on a separation between microscopic
and macroscopic scales. Moreover, the force
between the particles is due to a long-range pair
interaction of the Kac type, in which the range
parameter tends to infinity as the ratio "�1

between the macro and the micro spatial scale:
F(xi � xj) = "2dþ1G("xi � "xj). Finally, the mass of
the particles is proportional to "d: m = "d. After
rescaling space and time by a factor ", in the
macroscopic variables (� , r) = ("t, "x), the equa-
tions of motion (eqn [9]) become
dr i

d�2
¼
X
j:j 6¼i

"dGðr i � r jÞ ½16�

Then eqn [14] is the limiting equation as " ! 0.
Other Models

We mention another model of larger interest. We
introduce it in the simplest formulation, leaving
possible generalizations to the reader.

We consider an infinite chain of anharmonic
oscillators, with Hamiltonian H given by

Hðq; pÞ

¼
X
i2Z

p2
i

2m
þ aq4

i þ b
X

j:ji�jj¼1

ðqi � qjÞ2 þ cq2
i þ d

2
4

3
5
½17�

where qi, pi 2 R, a � 0, b, c, d > 0.
When a = 0, it reduces to the well-known chain of

harmonic oscillators, which is integrable and widely
studied in the literature.

The time evolution defined by the Hamiltonian in
eqn [17] exists and it is unique for initial data
chosen in a set large enough to be the support of
any reasonable thermodynamic (equilibrium or
nonequilibrium) state. This can be achieved by
proving integral inequalities for the ‘‘Lyapunov
function’’

Lðq; pÞ ¼ sup
i2Z

p2
i

2m
þ aq4

i þ d

� �
1

jij þ 1

It is interesting to note that uniqueness holds only in
a class of data such that the position of the ith
oscillator does not increase too much as jij!1.
For example, besides the stationary solution
qi(t) = 0, i 2 Z, we can construct a different solution
corresponding to the same initial conditions
qi(0) = 0, pi(0) = 0, i 2 Z. In fact, by imposing
q0(t) = t2 and qi(t) = q�i(t), we can solve recursively
the equations of motion and obtain a nonzero
solution qi(t), which however increases superexpo-
nentially as jij ! 1.

The Hamiltonian dynamical systems (classical or
quantum) are surely quite faithful descriptions of
real systems, but they are too difficult to study.
Mainly it is not known how to prove good
dynamical mixing for deterministic evolutions with
many degrees of freedom. Therefore, stochastic
evolutions have been introduced to model the real
systems. More precisely, one renounces a full
description of the microscopic dynamics, introdu-
cing simplified models where the effects of the
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‘‘hidden degrees of freedom’’ are taken into account
by adding suitable stochastic forces. Many useful
results have been obtained, which show that these
stochastic model systems exhibit a macroscopic
behavior much closer to that observed in nature.
The main criticism concerns the role of stochasticity,
which in these models is introduced ab initio. In
other words, if one believes that the statistical
properties of the deterministic motion on the small
scale determine the collective behavior of systems
with many degrees of freedom, then these properties
do have to be proved for a true understanding of
nonequilibrium phenomena.

See also: Adiabatic Piston; Boltzmann Equation
(Classical and Quantum); Fourier Law; Kinetic Equations;
Nonequilibrium Statistical Mechanics (Stationary):
Overview; Nonequilibrium Statistical Mechanics:
Interaction between Theory and Numerical Simulations.
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Introduction

Nonequilibrium statistical mechanics concerns a
wide range of fundamental problems and applica-
tions. Perturbative methods are quite effective for
approaching weakly nonlinear problems, usually
relying upon effective coarse-grained equations.
The attempt of obtaining a microscopic description
of genuine nonlinear problems demands the com-
bined use of theoretical methods and numerical
simulations. The proprotypic case is the numerical
experiment performed by Fermi, Pasta, and Ulam
in 1955. As we discuss in the following section, the
main questions, which had inspired this experi-
ment, remained without an answer for a long time,
while new puzzling problems emerged. Despite its
apparent failure, the Fermi–Pasta–Ulam (FPU)
experiment represents a remarkable example in
the history of science of how a good guess may be
the source of many fruitful achievements. Part of
them are discussed in the section on energy
relaxation in nonlinear chains, where we summar-
ize the present understanding of the very slow
relaxation mechanism, characterizing the dynamics
of nonlinear chains of oscillators, like the FPU
model, at low energies. Next, we report one further
success of the interplay between theory and
numerics, that is, the formulation of a generalized
fluctuation–dissipation relation for stationary pro-
cesses. Finally, we survey the main achievements
concerning the study of anomalous transport
properties in low-dimensional systems. In particu-
lar, we focus our attention on the heat conduction
in nonlinear lattices. Lacking a general hydrody-
namic theory, also in this case computer simula-
tions and theoretical arguments have greatly



contributed to clarify the general scenario, unveil-
ing surprising aspects, which, up to a few years
ago, were completely unexpected.

The Numerical Experiment by Fermi,
Pasta, and Ulam

The impressive progress of electronic technology
during World War II made possible the design of the
first digital computers. The equally impressive
budgets for their production and maintenance
could only be justified by their employment in
classified military research. Nonetheless, some of
the outstanding scientists involved in these
researches, like E Fermi, immediately realized the
great potential of these new machines for tackling
also some fundamental problems in basic science.

Fermi had in his mind a crucial and still open
physical problem. In 1914 the Dutch physicist
P Debye had suggested that the finiteness of thermal
conductivity in crystals should be due to the
nonlinear forces acting among the constituent
atoms. Forty years later a microscopic theory of
transport processes, including nonlinear effects, was
still lacking. Actually, technical difficulties pre-
vented a theoretical approach based on analytic
methods. Numerical integration of the equations of
motion by a digital machine appeared to Fermi as
an effective way for tackling this problem. In
collaboration with the mathematician S Ulam and the
physicist J Pasta, Fermi used MANIAC 1 (a proto-
type digital computer installed at Los Alamos National
Laboratories, USA) for integrating the dynamical
equations of the simplest mathematical model of
an anharmonic crystal: a chain of N harmonic oscilla-
tors, coupled by nonlinear forces. Its Hamiltonian
reads

H ¼
XN
i¼1

p2
i

2m
þ !

2

2
ðqiþ1 � qiÞ2

þ �
3
ðqiþ1 � qiÞ3þ

�

4
ðqiþ1 � qiÞ4 ½1�

where ! is the harmonic frequency, while � and �
are the positive coupling constants of the nonlinear
terms. The integer space index i labels the oscillators
along the chain, while qi and pi are the displacement
from the equilibrium position and the momentum of
the ith oscillator, respectively. The potential energy
is the general form taken by any nonlinear interac-
tion potential, when expanded, up to fourth order,
around its equilibrium position. This choice guaran-
tees the boundedness of trajectories for any finite
energy.

Accordingly, the model contains the minimal
basic ingredients, needed for testing the conjecture
about the finiteness of thermal conductivity.

The equations of motion

_qi ¼
@H

@pi
; _pi ¼ �

@H

@qi
½2�

were integrated numerically by an algorithm, where
space and time derivatives were approximated by
proper finite-difference expressions.

The choice of the initial conditions was motivated
by a further basic question concerning Fermi and his
collaborators. In fact, they aimed at verifying also a
common belief that had never been proved rigor-
ously: in an isolated mechanical system with many
degrees of freedom (i.e., made of a large number of
oscillators), a generic nonlinear interaction among
them should eventually yield equilibrium through
‘‘thermalization’’ of the energy. On the basis of
physical intuition, nobody would object to this
expectation if the mechanical system would start
its evolution from an initial state very close to
thermodynamic equilibrium. Nonetheless, the same
should be observed by considering an initial state,
where energy is supplied to a small subset of
oscillatory modes of the crystal. At variance with a
finite system of linear oscillators, where each
initially excited mode keeps its energy constant,
nonlinear terms should make the energy flow
towards all oscillatory modes, until thermal equili-
brium is eventually reached. Thermalization corre-
sponds to energy equipartition among all the modes.
This statement has to be interpreted in a statistical
sense: the time averages of the energies contained in
the modes converge to the same constant value. But
if this was the case, one further fundamental aspect
concerning the evolution towards thermodynamic
equilibrium could be checked. In the formulation of
his transport equation, L Boltzmann had conjec-
tured that thermodynamic irreversibility can emerge
from microscopic reversible dynamics (which is
the case of eqns [2]). The paradoxical implication
of Boltzmann’s conjecture was pointed out by
H Poincaré, who had proved that any isolated
Hamiltonian system necessarily evolves towards an
almost-recurrent dynamics. This is manifestly
incompatible with the second law of thermody-
namics, which implies that thermodynamic systems,
in the absence of a supplied energy flux, have to
evolve irreversibly towards their equilibrium state.
In this perspective, the FPU numerical experiment
was intended to test also if and how equilibrium is
approached by a relatively large number of non-
linearly coupled oscillators, obeying the classical
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laws of Newtonian mechanics. Furthermore, the
measurement of the time interval needed for
approaching the equilibrium state, that is, the
‘‘relaxation time’’ of the chain of oscillators, would
have provided an indirect determination of thermal
conductivity. In fact, according to elementary kinetic
theory, the relaxation time, �r, represents an
estimate of the timescale of energy exchanges inside
the crystal: Debye’s argument predicts that thermal
conductivity � is proportional to the specific heat at
constant volume of the crystal, Cv, and inversely
proportional to �r, in formulas � / Cv=�r.

Fermi, Pasta, and Ulam considered relatively short
chains, up to 64 oscillators – a size that already
challenged the limits of the computational power of
MANIAC 1. They imposed fixed boundary condi-
tions (i.e., the particles at the chain boundaries
interact with infinite mass walls) and the energy was
initially stored just in one of the long-wavelength
oscillatory modes.

A very surprising and unexpected scenario
showed up. Contrary to any intuition, the energy
did not flow to the higher modes, but was
exchanged only among a small number of long-
wavelength modes, before flowing back almost
exactly to the initial state, thus yielding a recurrent
behavior.

Although nonlinearities were at work, neither a
tendency towards thermalization, nor a mixing rate
of the energy could be identified. The dynamics
exhibited regular features very close to those of an
integrable system.

Fermi guessed that they were facing a very
important result, but he was also quite disappointed
by the difficulties in finding a convincing explana-
tion. This lacking, he had decided not to publish the
results in a scientific review, which remained
confined into a Los Alamos report for almost one
decade. In fact, he died in 1955, the same year of
publication of the report.

The results were finally published in 1965, in a
volume containing his collected papers (Fermi et al.
1965), and they immediately raised a renewed
interest in the scientific community. Despite the
failure in answering all the questions that had been
raised, the FPU numerical experiment represents a
crucial scientific achievement, which determined
many subsequent scientific progresses. The implica-
tions about nonequilibrium will be widely dis-
cussed in the following sections. Here, we want to
conclude by mentioning the important develop-
ments, inspired by the FPU experiment, that led to
the discovery of solitons by Zabusky and Kruskal
in 1965.

Slow and Fast Energy Relaxation
in Nonlinear Chains

The results of the FPU numerical experiment
indicate that the energy initially supplied to long-
wavelength oscillatory (Fourier) modes remains
localized for a very long time in a small subset of
long-wavelength modes. This time can be exceed-
ingly larger than any typical timescale of the model
(e.g., !�1, i.e., the inverse of the harmonic frequency
in [1]). An explanation of this apparently bizarre
scenario has been tackled by combining theoretical
approaches with numerical studies. A complete
account of the many contributions in this direction
being beyond the scope of this text, we shall
summarize the two main lines along which this
problem has been considered.

The Resonance-Overlap Criterion

The almost-recurrent behavior of single-mode exci-
tations studied in the FPU experiment can be
explained by the resonance-overlap criterion, intro-
duced in 1959 by the Russian scientist B Chirikov.
Moreover, this criterion provides a quantitative
estimate of the value of the energy density, above
which the regular motion observed in the FPU
experiment should be definitely lost.

In order to provide the reader with an illustration
of this criterion, we have to introduce a few simple
mathematical ingredients.

The Hamiltonian [1] can be rewritten in terms of
linear normal Fourier coordinates, (Qk(t), Pk(t)), as
follows:

H ¼ 1

2

X
k

P2
k þ !2

kQ2
k

� �
þ �V3ðfQkgÞ

þ �V4ðfQkgÞ ½3�

Here, we have used the shorthand notation Vn({Qk})
for the lengthy explicit expressions, in the new set of
coordinates, of the nonlinear potentials of [1].

Without prejudice of generality, we can impose
periodic boundary conditions to the FPU chain: the
frequency of the kth normal mode is given by the
expression !k = 2 sin(�k=N). The coupling constants
� and � control the energy exchange among the
normal modes, due to nonlinear interactions.

For the sake of space, we give here a brief sketch
of Chirikov’s criterion for the FPU �-model (this
model amounts to take �= 0 in [3], i.e., to exclude
the cubic part of the nonlinear potential).

By making reference to the initial conditions of
the FPU experiment, we can consider a single
excited mode, so that the Hamiltonian [3] can be
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approximated by the expression in action-angle
variables

H ¼ H0 þ �H1 � !kJk þ
�

2N
ð!kJkÞ2 ½4�

Here, Jk =!kQ2
k is the action variable. In practice,

this amounts to approximate the original Hamilto-
nian by the sum of the harmonic and nonlinear self-
energy of the initially excited mode. In this frame-
work, H0 and H1 are the unperturbed (integrable)
Hamiltonian and the perturbation, respectively.
Indeed, if the energy is initially attributed to mode
k, the following relations hold: !kJk � H0 � E. By
the approximated Hamiltonian [4], one can com-
pute the nonlinear correction to the linear frequency
!k, giving the renormalized frequency !r

k:

!r
k ¼

@H

@Jk
¼ !k þ

�

N
!2

kJk ¼ !k þ �k ½5�

For N � k one has

�k �
�H0k

N2
½6�

The distance between two primary resonances, in
the harmonic limit, is given by the expression

�!k ¼ !kþ1 � !k � N�1 ½7�

Consistently with [6], the last approximation is valid
only for small wave number (k� N), that is, long-
wavelength modes.

The ‘‘resonance overlap’’ criterion amounts to
compare this distance with the frequency shift. In
formulas:

�k � �!k ½8�

This equation allows to obtain also an estimate of
the ‘‘critical’’ energy density, �c, above which size-
able chaotic regions develop and a fast diffusion
takes place in phase space:

�c ¼
H0

N

� �
c

� 1

�k
½9�

with k = O(1)� N. Below �c, primary resonances
are weakly coupled and determine a slow-relaxation
process to energy equipartition. Above �c, due to
‘‘primary resonance’’ overlap, fast relaxation to
equipartition sets in (Izrailev and Chirikov 1966).

This prediction was verified numerically later by
Chirikov et al. (1973). The presence of a critical
energy density can be tested by measuring the
evolution of the finite time-averaged quantity
�Ek(t) = t�1

R t
0 Ek(�)d� , where Ek = (P2

k þ !2
kQ2

k)=2 is
the harmonic energy of the kth mode. For energy
densities much smaller than �c, �Ek(t) exhibits an

extremely slow relaxation towards the equipartition
condition, �Ek = constant. Conversely, for � > �c such
a condition is rapidly approached on a relatively
short timescale. The slow relaxation below �c can be
traced back to the overlap of higher-order reso-
nances: its typical timescale has been found to be
inversely proportional to a power of the energy
density (Shepelyansky 1997).

Energy-Equipartition Thresholds

The first paper reporting evidence of the existence of
an energy threshold in chains of coupled anharmo-
nic oscillators had already been published in 1970
by Bocchieri et al. (1970). This pioneering numerical
experiment concerned a chain of oscillators coupled
through a Lennard-Jones interatomic potential. The
Italian group observed an energy threshold, separat-
ing a high-energy thermalized regime from a regular
dynamics regime at low energies (like the one
observed by Fermi, Pasta, and Ulam). The main
point raised by this experiment concerns the
consequences on ergodic theory: the ordered motion
observed in the low-energy regime seems to violate
ergodicity, although the model is known to be
chaotic at any energy.

This is quite a delicate and widely debated issue
for its statistical implications. Actually, as we have
mentioned in the previous section, also Fermi, Pasta,
and Ulam expected that a nonlinear dynamical
system, made of a large number of degrees of
freedom, should naturally evolve towards equili-
brium. Further confirmations to the seminal paper
by Bocchieri and co-workers came from more
refined numerical experiments, showing that, for
sufficiently high energies, regular behaviors disap-
pear, while equipartition among the Fourier modes
sets in rapidly. Later on, the presence of the energy
threshold was characterized by introducing an
appropriate entropy, S =�

P
k pk ln pk with pk =

hEk(t)=Ei, which counts the number of effective
Fourier modes involved in the dynamics: at equi-
partition, this entropy is maximal (Livi et al. 1985).

Nowadays, we know that the approach to
equipartition below and above the energy threshold
is a matter of timescales, which turn out to be very
different in the two regimes. For instance, the
analytic estimate of the maximum Lyapunov expo-
nent � of the FPU �-model (Casetti et al. 1995) has
definitely pointed out that there is a threshold value
of the energy density, �T, at which its dependence on
� changes drastically:

�ð�Þ � �1=4 if �� �T;

�2 if �� �T:

�
½10�
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This implies that the typical relaxation time, that is
��1, may become exceedingly large for very small
values of � below �T. It is worth stressing that this
result holds in the thermodynamic limit, thus indicat-
ing that the presence of �T is statistically relevant.

A more controversial scenario emerges from the
studies of the relaxation dynamics for specific
classes of initial conditions. When a few long-
wavelength modes are initially excited, regular
motion may persist over times much longer than
��1 (De Luca et al. 1995). The excitation of small-
wavelength modes yields an even more complex
scenario: solitary wave dynamics is observed, fol-
lowed by slow relaxation to equipartition. It is also
worth mentioning that some regular features of the
dynamics persist even at high energies. As we shall
discu ss in the section ‘‘Heat trans port,’’ such
regularities still play a crucial role in determining
energy transport mechanisms, although they do not
affect significantly the equilibrium statistical proper-
ties of the FPU model at high energies.

The Generalized Fluctuation–Dissipation
Theorem

Another fundamental problem of nonequilibrium
statistical mechanics concerns the possibility of
establishing a fluctuation–dissipation theorem, gen-
eralizing the relation valid for equilibrium condi-
tions. In fact, on this basis one might develop a
large-deviation formalism, aiming at the identifica-
tion of an explicit nonequilibrium statistical mea-
sure, analogous to the equilibrium Boltzmann–Gibbs
measure. Recently, some relevant progresses in this
direction have been made.

A crucial numerical experiment, which attracted
the attention on the problem of formulating a
generalized fluctuation–dissipation relation for sta-
tionary flows, was performed at the beginning of the
1990s (Evans et al. 1993). Stationary conditions for
momentum transport were obtained in the shear
flow of a fluid contained between moving walls. The
reversibility of the microscopic dynamics yields the
heuristic fluctuation relation:

1

t
ln

Prð�Rt ¼ AÞ
Prð�Rt ¼ �AÞ

¼ �A ½11�

where Pr(�Rt = A) is the probability that the average
entropy production rate, �Rt, along a trajectory
segment of duration t, takes the value A. For
sufficiently large values of t, this relation was
confirmed by numerical analysis.

Gallavotti and Cohen (1995a,b) proved a theo-
rem meant to put on a rigorous mathematical

basis eqn [11], that is, the proposed extension to
nonequilibrium steady states of the equilibrium
fluctuation–dissipation theorem. This theorem
concerns the phase-space contraction rate of the
dynamics, which equals the entropy production
rate in the case of particle systems, whose internal
energy is a constant of the motion. The proof of
the theorem is based on restrictive hypotheses,
which include the existence of an average non-
vanishing phase-space contraction rate, the time-
reversal invariance of the dynamics and a strong
form of chaos (the dynamics is assumed to be of
the Anosov type, that is, smooth and uniformly
hyperbolic). Nonetheless, the prediction of the
theorem, that is,

1

t
ln

�tðpÞ
�tð�pÞ ¼ Dh	ip ½12�

is expected to hold much more generally. Here �tðpÞ
is the probability that a fluctuation variable takes
the value p. The theorem proved by Gallavotti and
Cohen states that �tðpÞ has to satisfy the large
deviation relation [12], where 	 is the average
phase-space contraction rate over a trajectory seg-
ment of duration t and D is a suitable constant. It
must be pointed out that the rigorous derivation of
this relation provided strong motivations for inves-
tigating its validity and generality in many other
contexts. The first numerical experiment, where
almost all the constituent hypotheses of the Gallavotti–
Cohen theorem were satisfied, was performed by
Bonetto et al. (1997). They studied a Lorentz gas
(massive pointlike noninteracting particles bouncing
elastically on circular scatterers displaced on a
regular lattice without free horizon) of charged
particles moving in an uniform external electric
field. Numerical simulations were found to be in
very good agreement with [11] and [12] (which, in
this case, refer to the same quantity). One further test
of the fluctuation–dissipation relation was later
performed for a different setup (Lepri et al. 1998).
The FPU �-model is put in contact at its boundaries
with thermal heat baths of different temperatures Tþ
and T�(Tþ > T�). Numerical simulations have been
performed for sufficiently large applied thermal
gradients, which guarantee sizeable effects of fluc-
tuations, suitable for verifying a relation like [11]. It
is worth noticing that many of the constituent
hypotheses of the Gallavotti–Cohen theorem are
not valid for this setup, but eqn [12] is still expected
to hold, although in this case it does not refer to the
entropy production rate. Nonetheless, the extension
[11] of the fluctuation–dissipation theorem can be
tested, thanks to the following useful relation,
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between the heat flux j and the entropy production
rates, 
�, at the chain boundaries:

h
þi þ h
�i ¼ j
1

T�
� 1

Tþ

� �
½13�

This can be interpreted as a balance relation for the
global entropy production. In fact, according to the
principles of irreversible thermodynamics, the local
rate of entropy production 	 in the bulk is given by

	ðxÞ ¼ j
d

dx

1

TðxÞ

� �
½14�

By integrating this equation, one straightforwardly
obtains the previous one, which then applies to the
entropy production from the heat baths. Careful
numerical simulations show that stationary condi-
tions are found to hold over a wide range of
temperatures and gradients. Equation [13] indicates
that the heat flux is equivalent to the entropy
production rate, apart from a multiplicative con-
stant which depends on the amplitude of the applied
field.

Let us define the finite-time average of the global
heat flux

Jt ¼
1

N

XN
i¼1

1

t

Z t

0

d� jið�Þ ½15�

The normalization of this quantity can be obtained
by computing the asymptotic average value

J1 ¼ lim
t!1

Jt ½16�

The quantity of statistical interest is the normalized
finite-time average global heat flux

z ¼ J�
J1

½17�

Accordingly, the fluctuation–dissipation relation in
this case takes the form:

ln
P� ðzÞ

P� ð�zÞ ¼ �zj
1

T�
� 1

Tþ

� �
½18�

The conjecture that such a relation might be valid in
this case has been confirmed by numerical analysis.
It is worth stressing that, in this out-of-equilibrium
setup, the probability distribution, P� (z), is not
Gaussian and exhibits a peculiar asymmetric shape.
Nonetheless, for increasing values of � , the asym-
metry progressively reduces, while P� (z) approaches
a Gaussian shape. This observation indicates that, in
this case, large fluctuations deviate from the typical
statistics of independent events.

It should be mentioned that generalized fluctuation–
dissipation relations, like those discussed in this

section, have been successfully checked in many other
situations, where the hypotheses of the Gallavotti–
Cohen theorem did not apply. The ‘‘robustness’’ of
relations such as [11] and [12] indicates that a more
general theory may be possible.

Heat Transport

The validity of Debye’s conjecture about the
necessity of nonlinear forces for obtaining a finite
heat conductivity in crystals still remained an open
problem after the unsuccessful FPU numerical
experiment. The setup, described in the previous
section for testing the generalized fluctuation–
dissipation relation in the FPU chain, can be used
also for tackling the verification of this conjecture.
Actually, the thermal conductivity, �, of a chain of
oscillators can be measured from the Fourier’s law

JQ ¼ ��rTðxÞ ½19�

where JQ is the heat current and rT(x) is the
temperature gradient.

This problem was solved analytically for a chain
of N harmonic oscillators (Rieder et al. 1967). The
bulk of the chain is found to reach thermal
equilibrium conditions at the average temperature
T = (Tþ þ T�)=2, corresponding to a constant tem-
perature profile. Only at the chain boundaries the
harmonic chain exhibits a steep temperature gra-
dient. This implies that the heat current is propor-
tional to the temperature difference, rather than to
the temperature gradient, thus violating Fourier’s
law. Accordingly, a harmonic chain, made of N
oscillators, in contact with two heat reservoirs at
different temperatures, exhibits anomalous trans-
port properties and the effective thermal conduc-
tivity is found to diverge in the infinite-chain limit
as � � N. This peculiar behavior is a consequence
of the integrability of the harmonic chain
dynamics. Actually, the Fourier modes propagate
with finite velocity through the harmonic chain, so
that any energy injected from the hot reservoir
flows ballistically to the cold one, rather than
diffusing, as required for the validity of [19]. It is
worth stressing that any integrable system should
exhibit a similar scenario. This is the case of the
equal-mass hard sphere gas in one dimension and
of the Toda chain, where the harmonic potential
(!2=2)(qiþ1 � qi)

2 is replaced by the nonlinear
expression

a exp½�bðqiþ1 � qiÞ�

In the former case, integrability and ballistic
propagation are straightforward consequences of
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the conservation laws, inherent elastic collisions
between hard spheres. In the latter model, the
normal nonlinear modes, called ‘‘Toda solitons,’’
are responsible for such anomalous behavior.

Debye’s conjecture should be modified accord-
ingly: nonintegrability of the equations of motion
has to be invoked as a necessary property for
explaining heat transport in real solids. Let us
observe that the FPU model is known not to be
integrable and it is expected to be a good candidate
for confirming Debye’s conjecture, at least in its
fully chaotic regime. Careful and extended numer-
ical simulations have shown that the FPU chain
maintains anomalous properties (Lepri et al. 1997).
In particular, the thermal conductivity, �, is found
to diverge in the infinite chain limit as

� � N� ½20�

with � � 2=5. This value agrees with independent
analytic estimates (e.g., see Lepri et al. (2003)),
although renormalization arguments indicate that
one should rather find �= 1=3 (Narayan and
Ramaswamy 2002). This discrepancy could be due
to the peculiar features associated with the presence
of a quartic nonlinearity in the FPU problem and
also to the fact that in the FPU chain heat can be
transported only through longitudinal oscillations.
Anyway, this is still an open problem, which
requires further theoretical advances to be solved.

In a more general perspective, the main outcome
of these numerical studies indicates that a power-
law divergence like [20] is found in all one-
dimensional nonintegrable models. This general
feature must be attributed to the combined effect
of low-space dimensionality, with energy and
momentum conservation. In such a situation,
fluctuations are strongly constrained, so that the
evolution of long-wavelength hydrodynamic modes
is not sufficiently damped, to be ruled by diffusion
(which is a necessary ingredient for the validity of
[19]). It must be stressed that these numerical
investigations have strongly revived the interest for
this problem. In particular, they have also stimu-
lated new theoretical efforts for explaining the
power-law divergence of transport coefficients in
d = 1. One of the main achievements of these
theoretical approaches is that the power-law
divergence turns to a logarithmic one in d = 2,
while the divergence should disappear in d 	 3.
Despite the difficulty of performing the necessary
large-scale simulations for such systems in d > 1, it
seems that numerics essentially agree with such
predictions.

One can find normal transport properties even
in d = 1, if suitable models are considered. For

instance, momentum conservation can be broken
by adding to the Hamiltonian [1] a local interac-
tion potential, U(qi), which breaks translation
invariance, thus restoring finite heat conductivity
(e.g., see Casati et al. 1984). The exception to this
case is the harmonic chain with the addition of a
local harmonic potential: in this case the dynamics
is still integrable and there are as many conserved
quantities as degrees of freedom. A further pecu-
liar case is represented by the rotator model in
d = 1, which is known to be nonintegrable. Its
Hamiltonian contains the interaction potential
�[1� cos(qiþ1 � qi)], replacing the algebraic poten-
tials of the FPU chain. Anyway, such a Hamilto-
nian still guarantees momentum conservation,
since the nearest-neighbor form of the interaction
is maintained. Notice that, for small oscillations
around the equilibrium position, also the rotator
potential admits a Taylor-series expansion, whose
first three terms correspond to quadratic, cubic,
and quartic contributions, as in the FPU chain.
Nonetheless, at variance with the FPU problem,
the potential of the rotator model is bounded also
from above. Numerical investigations (Giardina
et al. 2000) have shown that for any finite energy
density and for a sufficiently long finite time,
some previously oscillating rotators start to rotate,
due to local energy fluctuations, that allow to
overtake the potential barrier. These dynamical
configurations typically appear in the form of
spatially localized, synchronous rotating clusters.
Their time evolution is characterized by an
intermittent behavior: they are eventually reab-
sorbed by lattice fluctuations and may reappear
afterwards at other lattice positions. In this way
they play the role of scattering centers for
hydrodynamic modes. It must be pointed out that
such a qualitative argument is not sufficient for
explaining the onset of a genuine diffusive beha-
vior, compatible with the validity of Fourier’s law.
A hydrodynamic theory, still to be developed,
could provide a more convincing insight on these
results.

It is worth concluding this section by mentioning
that the overall scenario described above is con-
firmed by numerical studies, relying upon a different
approach, based on equilibrium measurements.
Actually, the linear response theory by Green and
Kubo (see Kubo (1985)) provides an alternative, but
essentially equivalent, definition of the thermal
conductivity, according to the expression

� ¼ 1

KBT2
lim
t!1

lim
N!1

1

N

Z t

0

d�hJð�ÞJð0Þi ½21�
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The crucial quantity to be computed numerically is
the heat-flux time-correlation function CJ(�) =
h J(�)J(0)i, where h i represents the thermodynamic
equilibrium average. In practice, numerical simula-
tions can be performed for a chain of N oscillators
in contact with boundary heat reservoirs at the same
temperature T = Tþ= T�. The presence of anom-
alous transport coefficients can be singled out by
analyzing the long-time behavior of CJ(�). It has to
decay at least as ��(1þ"), with " > 0 to yield a finite
heat conductivity. In one-dimensional models exhi-
biting the power-law divergence [20] one rather
finds

CJð�Þ � ��1þ� ½22�

where the positive exponent � is the same appear-
ing in [20]. This relation between space and time
exponents can be easily explained, by considering
that space and time variables depend linearly on
each other through a proportionality constant,
which is the velocity of sound in the lattice. Since
0 < � < 1, the anomalous behavior observed in
out-of-equilibrium conditions is recovered.

One major problem in performing proper numer-
ical studies concerns the control over finite-size
effects, which demands a consistent increase of the
integration time with the system size. This may
yield very extended and expensive computations,
mainly when very slow relaxation processes set in.
This is the case of the low-energy regime originally
studied by FPU in their pioneering computer
simulations. Numerical analysis indicates that in
this regime the expected behavior of CJ(�), reported
in eqn [22], sets in after a crossover time tc, which
increases, for decreasing energy density �, as tc � ��2.
This seems to be compatible with the studies
described earlier.

We conclude this section by pointing out that this
result also contributes significantly to clarify one of
the basic questions raised by the FPU numerical
experiment.

See also: Dynamical Systems and Thermodynamics;
Ergodic Theory; Fourier Law; Gravitational N-Body
Problem (Classical); Lyapunov Exponents and Strange
Attractors; Nonequilibrium Statistical Mechanics:
Dynamical Systems Approach.
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Historical Background

Ginzburg–Landau Equations

Nonlinear Schrödinger (NLS) equations have
become one of the most important nonlinear systems
studied in mathematics and physics. Actually, one
can find the essence of NLS equations in the early
work of Ginzburg and Landau (1950) and Ginzburg
(1956) in their study of the macroscopic theory of
superconductivity, and also of Ginzburg and Pitaevskii
(1958), who subsequently investigated the theory of
superfluidity.

By minimizing the free energy of a superconductor
near the superconducting transition, Ginzburg and
Landau arrived at what are now called the
Ginzburg–Landau equations:

1

2m
�i�hr� e

c
A

� �2
 þ � þ �j j2 ¼ 0 ½1�

J ¼ � ie�h

mc
 �r �  r �½ � � e2

mc
j j2A ½2�

where �,� are phenomenological parameters, A the
electromagnetic vector potential, and  � denotes
complex conjugate of  . The first equation deter-
mines the field  based on the applied magnetic
field. The second equation provides the supercon-
ducting current J.

The equation describing the behavior of super-
fluid helium near the transition point in the
stationary case derived in Ginzburg and Pitaevskii
(1958) is completely analogous to eqn [1] in the
phenomenological theory of superconductivity.

Equation [1] contains all the ingredients of the
NLS equations which are discussed below. How-
ever, it was not until the 1960s that the wide
physical importance of NLS equation became
evident. The next section discusses how the NLS
equation historically first appeared in the context of
nonlinear optics.

Nonlinear Optics: Self-Focusing of Optical Beams
in Nonlinear Media

In the mid-1960s, Chiao et al. (1964) and Talanov
(1964) investigated the conditions under which an
electromagnetic beam can produce its own dielectric
waveguide and propagate without spreading. This is
a reflection of the phenomenon of self-focusing. In
fact, self-focusing of optical beams may occur in
materials whose dielectric constant increases with
field intensity. In the general situation, a beam of
uniform intensity in a dielectric broadens due to
diffraction. However, the refractive index of many
physically important materials (the so-called Kerr
materials, such as silica) depends on the field
intensity as follows:

n ¼ n0 þ n2jEj2 þ � � �

If the term n2jEj2 is large enough, the critical angle
for total internal reflection at the beam’s boundary
can be greater than the angular divergence due to
diffraction; thus, spreading does not occur as a
result of diffraction. As a consequence, a beam
above a certain critical power level is trapped and
does not spread.

In a remarkable contribution, Kelley (1965)
observed, using computational methods (years
before computational methods became easy to
implement and, consequently, so popular) that
when the self-focusing effect due to the increase in
the nonlinear index is not compensated by diffrac-
tion, there is a buildup in intensity of part of the
beam as a function of the distance in the direction
of propagation. Consequently, the intensity of the
self-focused regions tended to become ‘‘anoma-
lously large,’’ that is, a singularity appeared to
develop.

Consider as starting equation the electromagnetic
wave equation in the presence of nonlinearities
derived earlier by Chiao et al. (1964):

r2E� �0
c2
@ 2

t E� �2
c2
@ 2

t ðE2EÞ ¼ 0 ½3�

where �2jEj2 � 1. One assumes a linearly polarized
wave of frequency !, propagating along the z-axis,
so that

E ¼ 1
2ðEe

iðkz�!tÞ þ c:c:Þbe
where c.c. denotes complex conjugation, k = �

1=2
0 !=c,

the factor exp(ikz� !t) represents the propagating
part, that is, the ‘‘carrier,’’ of the wave, and E is the
slowly varying part. Substituting the above expres-
sion for E into eqn [3], neglecting the third-harmonic
term and the term @2

z E from r2E (assuming it to be
small), yields

2ik@zE þ @2
x þ @2

y

� �
E þ 3

4
k2 �2
�0
jEj2E ¼ 0 ½4�
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or, with a suitable rescaling of the dependent and
independent variables (E !  =((3=4)k2�2=�0)1=2,
z! 2kz),

i@z þr2
? þ 2j j2 ¼ 0 ½5�

which is the NLS equation in standard nondimen-
sional form.

It should be remarked here that the name NLS
equation for equations of the form of [5] is natural
due to the formal analogy with the Schrödinger
equation in quantum mechanics:

i@t þr2 þ V ¼ 0 ½6�

If one sets V = 2j j2 in eqn [6], the result is the NLS
equation. In the context of quantum mechanics, a
nonlinear potential arises in the ‘‘mean-field’’
description of interacting particles.

Modifications of [6] also arise as mean-field
descriptions of Bose–Einstein condensates which is
of keen interest in physics (see Pethick and Smith
(2002) and references therein). The normalized
equation is

i@t �r2 þ Vðx; yÞ þ 2j j2
� �

 ¼ 0 ½7�

where V is an external potential. This is generally
referred to as the Gross–Pitaevskii equation.

Talanov (1965) (see also Zakharov et al. (1971))
investigated the behavior of stationary light beams
in a self-focusing nonlinear medium and found that
for a purely cubic nonlinearity, ‘‘collapse’’ of the
beam can take place. The proof that there is a
singularity in eqn [5] is remarkably straightforward.
This is discussed in the section ‘‘Wave collapse.’’ In
order to avoid wave collapse, other physical effects
(e.g., saturable nonlinearity or dissipation) are
required.
Universal Character of the NLS Equation

It turns out that almost any dispersive, energy-
preserving system gives rise, in an appropriate limit,
to the NLS equation. For instance, one can derive
the NLS from other physically significant equations
such as the Klein–Gordon equation

utt � uxx þ uþ ku3 ¼ 0

and the Korteweg–de Vries (KdV) equation

ut þ 6uux þ uxxx ¼ 0

Actually, the NLS equation provides a ‘‘canonical’’
description for the envelope dynamics of a quasi-
monochromatic plane wave (the carrier wave)
propagating in a weakly nonlinear dispersive med-
ium when dissipative processes are negligible.
Indeed, consider a scalar nonlinear wave equation
written symbolically as

L @t;rð ÞuþGðuÞ ¼ 0

where L is a linear differential operator with
constant coefficients and G a nonlinear function
of u and its derivatives. For a real, small-
amplitude solution of magnitude �� 1, the non-
linear effects can first be neglected, and the
equation admits approximate monochromatic
wave solutions

u ¼ � eiðk�x�!tÞ þ c.c. ½8�

with small amplitude �j j. Substituting [8] into the
linear equation, one can find that the frequency !
and the wave vector k are related by the dispersion
relation

Lð�i!; ikÞ ¼ 0

Let

! ¼ !ðkÞ

be one of the solutions of the previous equation.
Suppose one is interested in a solution  which is
not constant, but slowly varying in space and time.
This has the interpretation of k having a ‘‘sideband’’
wave vector and ! a ‘‘sideband’’ frequency. More
precisely, restricting discussion, for simplicity, to the
(1þ 1)-dimensional case, the slowly varying ampli-
tude assumption corresponds to letting

 ðx; tÞ ¼  ðX;TÞ ¼  0eiðKx��tÞ

where X = �x and T = �t. Note that K = �k and
� = �! are sometimes referred to as the sideband
wave number and frequency, respectively, because
they correspond to a deviation from the central
wave number k and central frequency !. Looking at
these deviations from the point of view of operators,
whereby !! i@t, k! �i@x and �! i@T , K!�i@X,
one has

!tot � !þ �� ¼ !þ i�@T

ktot � kþ �K ¼ k� i�@X

Then !(k) can be expanded in a Taylor series
around the central wave number as

! k� i�@Xð Þ � !ðkÞ � i�!0@X � �2
!00

2
@2

X þ � � �

Therefore,

!totðkÞ � !ðkÞ þ i�@T½ � 

� !ðkÞ � i�!0@X � �2
!00

2
@2

X

� �
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which shows that, to the leading order,

i�
@ 

@T
þ !0 @ 

@X

� �
þ �2 !

00

2

@2 

@X2
¼ 0 ½9�

In the moving frame �= X� !0(k)T, � = �T � �2t,
eqn [9] transforms to

�2 i � þ
!00

2
 ��

� �
¼ 0

which is the linear Schrödinger equation with the
canonical !00(k)=2 coefficient. On the other hand, if
one considers rather general conservative nonlinear
wave problems with leading quadratic or cubic
nonlinearity, asymptotic analysis (e.g., multiple
scale analysis which yields the so-called Stokes–
Poincaré frequency shift) shows that a wave solution
of the form

uðx; tÞ ¼ � ð�Þeiðkx�!tÞ þ c:c:

with � = �2t has  (�) satisfying

i
@ 

@�
þ nj j2 ¼ 0 ½10�

where the constant coefficient n depends on the
particular equation under study. It should be
remarked here that cubic nonlinearity yields an
O(�3) contribution, which is balanced by a slow
timescale of order �2. Putting the linear and non-
linear effects together (i.e., eqns [9] and [10]) implies
that an NLS equation of the form

i
@ 

@t
þ !

00

2

@2 

@�2
þ nj j2 ¼ 0

naturally arises. The NLS equation is viewed as a
‘‘universal’’ equation as it generically governs the
slowly varying envelope of a monochromatic wave
train (see also Benney and Newell (1969)).
Physical Applications

The nonlinear propagation of wave packets is
governed by NLS-type systems in several different
branches of scientific and technological applications,
beyond what has been mentioned earlier. Some of
these applications are discussed below.

NLS equation in Water Waves

The NLS equation in the context of small-amplitude
water waves was derived by Zakharov (1968)
(infinite depth) and Benney and Roskes (1969)
(finite depth). The procedure for deriving the NLS
equation from the Euler–Bernoulli equations of fluid
dynamics in one horizontal direction will now be
discussed, under the assumption of small-amplitude
waves and deep water. The interested reader can
also find the details of the derivation in Ablowitz
and Clarkson (2006). The relevant equations are

�xxþ �zz ¼ 0; �1< z< ��ðx; tÞ ½11�

�z ¼ 0; z! �1 ½12�

�t þ
�

2
�2

x þ �2
z

� �
þ g� ¼ 0; z ¼ �� ½13�

�t þ ��x�x ¼ �z; z ¼ �� ½14�

where � is the velocity potential of an ideal
(i.e., incompressible, irrotational, and inviscid)
fluid, �(x, t) is the free surface of the fluid, which
is to be found, in addition to �(x, z; t).

Equation [11] expresses the ideal nature of the
fluid; the condition [12] expresses the requirement
that there is no vertical flow at infinity; and eqn [13]
is the Bernoulli equation of energy conservation.
Finally, eqn [14] is a kinematic condition stating
that no flow occurs transverse to the free surface.

At the free boundary, for small amplitudes, one
can expand �=�(t, x, ��) for �� 1 as

� ¼ �ðt; x; 0Þ þ ���zðt; x; 0Þ þ
ð��Þ2

2
�zzðt; x; 0Þ þ � � �

and similarly for the derivatives. Second, one
introduces slow temporal and spatial scales (one
expects the slowly varying envelope of the wave to
depend on slow variables X = �x, Z = �z, T = �t).
Finally, because of the quadratic nonlinearity one
expects second harmonics to be generated; hence,

� ¼ Aei�þjkjz þ c:c:
� �

þ � A2e2i�þ2jkjz þ c:c:þ ��
� �

� ¼ Bei� þ c:c:
� �

þ � B2e2i� þ c:c:þ ��
� �

where A, A2, �� depend on X, Z, T and B, B2, ��
depend on X, T ( �� and �� are mean contributions,
which are real) and � = kx� !t with the dispersion
relation !2 = gjkj. Substituting this ansatz into the
equations, one obtains from the order-�2 terms

2i!A� �
v2

g

2!
A�� þ

2k4

!
Aj j2A

 !
¼ 0 ½15�

where vg =!0(k) = g=2! is the group velocity and the
new variables � = �T, �= X� vgT.

Equation [15] is the typical formulation of the
(1 þ 1)-dimensional NLS equation found in water
wave theory for large depth.

In the section ‘‘NLS in nonlinear optics,’’ a
special solution to (a rescaled version of) eqn [15],
namely a soliton solution, is discussed in the
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context of nonlinear optics. It should be
remarked here that the coefficients of both terms
A�� and jAj2A have the same sign. This is necessary
for a decaying soliton solution to exist (see, e.g.,
Lighthill (1965)).
NLS in Nonlinear Optics

The NLS equation also describes self-compression
and self-modulation of electromagnetic wave pack-
ets in weakly nonlinear media. Hasegawa and
Tappert (1973a, b) first derived the NLS equation
in the context of fiber optics. Light-wave propaga-
tion in a fiber is mainly affected by: (1) group
velocity dispersion (GVD), that is, the frequency
dependence of the group velocity originating from
the refractive index of the fiber and (2) fiber
nonlinearity (the so-called Kerr effect), originating
from the dependence of the refractive index on the
intensity of the optical pulse. In the presence of
GVD and Kerr nonlinearity, the refractive index is
expressed as

nð!;EÞ ¼ n0ð!Þ þ n2jEj2 ½16�

where ! and E represent the frequency and
electric field of the light wave, respectively, n0(!)
is the frequency-dependent linear refractive index,
and the constant n2, referred to as the Kerr
coefficient, is ‘‘small’’ but can have significant
impact since the nonlinear effects accumulate over
long distances. Normally, the electric field is
modulated into a slowly varying amplitude of a
carrier wave:

Eðz; tÞ ¼ Eðz; tÞeiðk0z�!0tÞ þ c:c: ½17�

where z denotes the distance along the fiber, t the
time, k0 = k0(!0) the wave number, !0 the fre-
quency, and E(z, t) the envelope of the electromag-
netic field.

A Taylor series expansion of the dispersion
relation (see also the section ‘‘Universal character
of the NLS equation’’)

kð!;EÞ ¼ !
c
ðn0ð!Þ þ n2jEj2Þ

around the carrier frequency !=!0 yields

k� k0 ¼ k0ð!0Þð!� !0Þ þ
k00ð!0Þ

2
ð!� !0Þ2

þ !0n2

c
jEj2 ½18�

where the prime represents derivative with respect to
! and k0 = k(!0). Replacing k� k0 and !� !0 by
their Fourier operator equivalents, i@z and i@t resp.,
using k� k0 = (!=c)n0(!) and letting eqn [18]
operate on E yields

i
@E
@z
þ k00ð!0Þ

@E
@t

� �
� k000ð!0Þ

2

@2E
@t2
þ 	jEj2E ¼ 0 ½19�

where 	=!0n2=cAeff, with Aeff being the effective
cross-section area of the fiber (the factor 1=Aeff

comes from a more detailed derivation which takes
into account the finite size of the fiber; the factor
1=Aeff is needed in order to account for the variation
of field intensity in the cross section of the fiber).
Note that k00(!0) = 1=vg, where vg represents the
group velocity of the wave train. Introducing dimen-
sionless variables t0= tret=t�, z0= z=z�, q = E=

ffiffiffiffiffi
P�
p

yields the NLS equation

i
@q

@z0
þ sgnð�k000ð!0ÞÞ

2

@2q

@t02
þ jqj2q ¼ 0 ½20�

where t�, P� are the characteristic time and power,
respectively, and tret = t � k00(!0)z = t � z=vg, z�=
1=	P�, with the constraint that the ‘‘nonlinear
length’’ is balanced by the linear dispersion time,
that is, t�= ðz�j � k00(!0)jÞ1=2.

There are two cases of physical interest depending
on the sign of k000. The so-called focusing case occurs
when k000 < 0; this is called ‘‘anomalous’’ dispersion.
The defocusing case obtains when the dispersion is
‘‘normal’’: k000 > 0.

Now write eqn [20] in the form

iqt þ qxx 	 2jqj2q ¼ 0 ½21�

with 	 corresponding to the focusing (þ) and
defocusing (�) case, respectively. The focusing NLS
equation admits special solutions called ‘‘bright’’
solitons (solutions that are traveling localized
‘‘humps’’). A pure one-soliton solution in the
focusing (þ) case has the form

q x; tð Þ ¼ � sech � xþ 2�t � x0ð Þ½ � e�i� ½22�

where � = �xþ (�2 � �2)t þ�0. The parameters �
and � are such that 
= �=2þ i�=2 is an eigenvalue
from the inverse scattering transform analysis.

The defocusing (�) NLS equation does not admit
solitons that decay at infinity. However, it does admit
soliton solutions which have a nontrivial background
intensity (called ‘‘dark’’ and ‘‘gray’’ solitons). A dark-
soliton solution has the form

qðx; tÞ ¼ � tanh �xð Þ e�2i�2t ½23�

Note that q ! 	� as x ! 	1. A gray-soliton
solution is

qðx; tÞ ¼ � 1� B2 sech2 �B x� x0ð Þð Þ
h i1=2

ei� x;tð Þ ½24�
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with

� x; tð Þ ¼ � �2 2� B2
� �

t þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p

x

þ tan�1 B tanh �Bxð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2
p

� �
þ �0

and Bj j < 1. Note that as B! 1�, the gray soliton
becomes a dark soliton, taking �0 = ��=2.

Recall that the solutions [23] and [24] can be
allowed to travel uniformly by making a Galilean
transformation, that is, taking into account that if
q1(x, t) is a solution of [21], then so is

q2ðx; tÞ ¼ q1ðx� vt; tÞ ei kx�!tð Þ

with k = �v and != �k2=2.
It should also be remarked that Ablowitz et al.

(1997) have shown that, in quadratically nonlinear
optical materials, more complicated NLS-type equa-
tions arise. These equations are analogous to the
finite-depth multidimensional nonlocal NLS-type
systems derived in the context of water waves by
Benney and Roskes (1967) and later by Davey and
Stewartson (1974).
Optical Communications

Hasegawa and Tappert (1973) first suggested using
solitons as the ‘‘bit’’ format for transmission of
information in optical fiber systems. Motivated by
this, in 1980, scientists at Bell Laboratories observed
solitons (described by the NLS equation) in optical
fibers (Mollenauer et al. 1980). The development of
optical amplifiers (erbium-doped amplifiers) in the
mid-1980s provided a mechanism to compensate
fiber loss, and this permitted the transmission of
information entirely optically over long distances.
With damping and amplification included (see, e.g.,
Hasegawa and Kodama (1995)), the NLS equation
[20] takes the form

i
@q

@z
þ sgnð�k000ð!0ÞÞ

2

@2q

@t2
þ gðzÞjqj2q ¼ 0 ½25�

where g(z) = a2
0 exp(�2�z=za), 0 < z < za, and peri-

odically extended thereafter, and a2
0 is determined by

< g >¼ 1

za

Z za

0

gðz=zaÞdz ¼ 1

with za = la=z�, la being the amplifier length.
Remarkably, asymptotic analysis (za � 1) shows
that, to leading order, q(z, t) still satisfies the NLS
equation [20].

Amplifiers, however, introduce small amounts of
noise to the system, which causes the temporal
position of the soliton to fluctuate (cf. Gordon and
Haus (1986)) and thus limits the distance signals can
be reliably transmitted to. Soliton control mechan-
isms were introduced in the early 1990s in order to
deal with these difficulties (cf. Mecozzi et al. (1991)
and Kodama and Hasegawa (1992)).

By the mid-1990s, the development of all optical
transmission systems began to take great advantage
of wavelength-division-multiplexing (WDM), that
is, the simultaneous transmission of multiple
signals in different frequency (or equivalently
wavelength) ‘‘channels’’ (Hasegawa 2000). How-
ever, it was found that a serious problem affected
WDM systems. Namely, the interactions of soli-
tons traveling at different velocities cause resonant
amplifier-induced instabilities in adjacent fre-
quency channels (four-wave mixing (Mamyshev
and Mollenauer 1996, Ablowitz et al. 1996)). In
order to avoid these instabilities, researchers
developed and analyzed dispersion-managed (DM)
transmission systems (cf. Hasegawa (2000)). In a
DM transmission system, the fiber is composed of
alternating sections of positive (normal) and
negative (anomalous) dispersion fibers. The
(dimensionless) NLS equation that governs this
phenomenon is

i
@q

@z
þ dðzÞ

2

@2q

@t2
þ gðzÞjqj2q ¼ 0 ½26�

where d(z) is usually taken to be a periodic, large,
rapidly varying function of the form d(z) = �a þ
�(z), with j�(z)j 
 1 and having zero average in
the period za (generally the same as that of the
amplifier). In fact, asymptotic analysis of [26]
yields a nonlocal NLS-type equation (Gabitov and
Turitsyn 1996, Ablowitz and Biondini 1998). It has
also been shown that eqn [26] admits various types
of optical pulses, such as DM solitons (Ablowitz
and Biondini 1998), and quasilinear modes (Ablowitz
et al. 2001).

NLS Equation in Other Settings

Many other interesting applications of the NLS
equations exist in such different areas of physics as
magnetic spin waves (see, e.g., the work by Zvezdin
and Popkov (1983) and also by Kalinikos et al.
(1997)), plasma physics (cf. the work by Zakharov
(1972) on collapse of Langmuir waves), other areas
of fluid dynamics, etc. (the interested reader can
find an overview in the monograph by Ablowitz
(1981)).
Mathematical Framework

Mathematically, the NLS equation had attained
broad significance since it is integrable via
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inverse-scattering transform (IST), admits multisoliton
solutions, has an infinite number of conserved
quantities, and possesses many other interesting
properties. Some of these are discussed below.

The Inverse-Scattering Transform

The IST method allows one to linearize a large class
of nonlinear evolution equations and can be con-
sidered as a nonlinear version of the Fourier trans-
form. An essential prerequisite of IST method is the
association of the nonlinear evolution equation with
a pair of linear problems (Lax pair), a linear
eigenvalue problem, and a second associated linear
problem, such that the given equation results as a
compatibility condition between them. A key
research breakthrough on NLS systems appeared in
1972, in the papers of Zakharov and Shabat (1972,
1973), who first analyzed the scalar NLS equation
in the form

iqt ¼ qxx 	 2 qj j2q ½27�

(	 correspond to the focusing/defocusing case,
respectively) and found the associated Lax pair

vx ¼
�ik q
�q� ik

� �
v ½28�

vt ¼ 2ik2 � ijqj2 �2kq� iqx

	2kq� � iq�x �2ik2 	 ijqj2
� �

v ½29�

where v(x, t) is a two-component vector. The
compatibility of [28] and [29] yields eqn [27],
assuming that the eigenvalue parameter k is
constant in time (so that [27] is often said to be
isospectral).

The solution of the initial-value problem of a
nonlinear evolution equation by IST proceeds in
three steps, as follows:

1. the forward problem – the transformation of the
initial data from the original ‘‘physical’’ variables
to the transformed ‘‘scattering’’ variables;

2. time dependence – the evolution of the trans-
formed data according to simple, explicitly
solvable evolution equations; and

3. the inverse problem – the recovery of the evolved
solution in the original variables from the
evolved solution in the transformed variables.

The implementation of steps 1–3 described above is
more concretely carried out as follows. The initial
(Cauchy) datum q(x, 0) for eqn [27] is mapped into
scattering data S(k, 0) (comprising, in general, discrete
eigenvalues and associated normalization constants,
and reflection coefficients) by means of eqn [28]. The
data S(k, 0) are evolved via eqn [29] to get S(k, t) at an
arbitrary time t > 0. Finally, by employing the
methods of inverse scattering, eqn [28] allows one to
reconstruct the evolved solution q(x, t) from S(k, t).

One can easily note the ‘‘formal’’ resemblance to
the well-known method of Fourier transform for
linear differential equations.

There is considerable literature on the subject and
the interested reader is encouraged to consult, for
instance, some of the following references: Ablowitz
and Segur (1981), Calogero and Degasperis (1982),
Novikov et al. (1984), Ablowitz and Clarkson
(1991), Ablowitz et al. (2004).
Linear Stability Analysis

Consider a special solution of eqn [27] in the
focusing (þsign) case: q = a exp(�2ia2t). If this
solution is perturbed as

qðx; tÞ ¼ ae2ia2tð1þ �ðx; tÞÞ

where j�j � 1, it is found that � satisfies the
condition

i�t ¼ �xx þ 2a2ð�þ ��Þ

On the periodic spatial domain 0 < x < L, � has the
Fourier expansion

�ðx; tÞ ¼
X1
�1

�̂nðtÞei
nx

where


n ¼
2�n

L
½30�

Assuming a solution of the form

�̂n

�̂��n

� �
¼

�

�

� �
ei�nt

one finds that �n satisfies

�2
n ¼ 
2

n 
2
n � 4a2

� �
½31�

It then turns out that when aL=� < n the system is
unstable. Note that there are only a finite number of
unstable modes (i.e., for fixed a, L, sufficiently high
mode numbers n will not satisfy the above inequal-
ity). In the context of water waves, this corresponds
to the famous experimental and theoretical result by
Benjamin and Feir that the Stoke’s water wave is
unstable. Later, Benney and Roskes (1969) showed
that all periodic wave solutions of the generalized
nonlocal NLS equation resulting from water waves
in (2þ 1)-dimensions are unstable. Also, in (2þ 1)-
dimensions soliton solutions are unstable to weak
transverse modulations.
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Wave Collapse

The equation

i t þ� þ j j2 ¼ 0; x � ðx; yÞ 2 R2 ½32�

has the following conserved quantities:

P ¼
Z

 j j2 dx

M ¼
Z
 r dx

H ¼
Z
r j j2� 1

2
 j j4

	 

dx

that is, mass (power), momentum, and energy
(Hamiltonian) are conserved. Remarkably, Talanov
(1965) showed that eqn [32] satisfies the following
equation:

@2V

@t2
¼ 8H ½33�

where

V ¼
Z
ðx2 þ y2Þj j2 dx dy

Equation [33] is also known as the ‘‘virial’’ theorem.
Hence, it follows that

V ¼ 4Ht2 þ c1t þ c2

and if H < 0 initially, then a singularity in eqn [32]
results since V must be positive. Actually, one can
further show (see, e.g., C Sulem and P L Sulem
(1999), and references therein) that there exists a
time t� such that Z

r j j2 dx

becomes infinite as t ! t�, which in turn implies
that  also becomes infinite as t ! t� (blowup in
finite time).

Note also that for the more general equation

i t þ�d þ  j j2� ¼ 0; x 2 Rd

where �d is the d-dimensional Laplacian, one has
the following types of solutions:

� Supercritical (�d > 2): the solution blows up.
� Critical (�d = 2): blowup can occur or global

solution can exist.
� Subcritical (�d < 2): global solutions exist.

Vector NLS Systems

In many applications vector NLS (VNLS) systems are
the key governing equations. Physically, the VNLS
arise under conditions similar to those described by
NLS with the additional proviso that there are
multiple wave trains moving nearly with the same
group velocities (Roskes 1976). Importantly, VNLS
also models systems where the field has more than
one component. For example, in optical fibers and
waveguides, the propagating electric field has two
components transverse to the direction of propaga-
tion. The nondimensional system

iqð1Þz ¼ qð1Þxx þ 2 jqð1Þj2 þ jqð2Þj2
� �

qð1Þ ½34a�

iqð2Þz ¼ qð2Þxx þ 2 jqð1Þj2 þ jqð2Þj2
� �

qð2Þ ½34b�

is an asymptotic model which governs the propaga-
tion of the electric field in a waveguide, where z is
the normalized distance along the waveguide and x
a transversal spatial coordinate. It was first exam-
ined by Manakov (1974) (see also Anastassiou et al.
(1999) and Solja�cić et al. (2003)). Subsequently, this
system was derived as a key model for light-wave
propagation in optical fibers. More precisely, in
optical fibers with constant birefringence
(i.e., constant phase and group velocities as a
function of distance) Menyuk (1987) has shown
that the two polarization components of the
electromagnetic field E= (u, v)T which are orthogo-
nal to the direction of propagation, z, along the fiber
asymptotically satisfy the following nondimensional
equations (assuming anomalous dispersion):

iðuz þ �utÞ þ 1
2 utt þ ðjuj2 þ �jvj2Þu ¼ 0 ½35a�

iðvz � �vtÞ þ 1
2 vtt þ ð�juj2 þ jvj2Þu ¼ 0 ½35b�

where � represents the group velocity ‘‘mismatch’’
between the u, v components of the electromagnetic
field, � is a constant that depends on the polarization
properties of the fiber, z the distance along the fiber, and
t a retarded temporal frame. In deriving eqn [35], it is
assumed that the electromagnetic field is slowly varying
(as in the scalar problem); certain nonlinear (four-wave
mixing) terms are neglected in the derivation of eqn
[35], because the light wave is rapidly varying due to
large, but constant, linear birefringence. In this context,
birefringence means that the phase and group velocities
of the electromagnetic wave in each polarization
component are different. In a communications environ-
ment, due to the distances involved (hundreds to
thousands of kilometers), the polarization properties
evolve rapidly and randomly as the light wave evolves
along the propagation distance, z. Not only does the
birefringence evolve, but it does so randomly, and on a
scale much faster than the distances required for



Nonlinear Schrödinger Equations 559
communication transmission (birefringence polariza-
tion changes on a scale of 10–100 m). In this case, the
relevant nonlinear equation is eqn [35] above, but with
�= 0 and �= 1. Indeed, this is the integrable VNLS
equation first derived by Manakov (1974).

It should be remarked that the VNLS equation
[34] and its generalization to an arbitrary number of
components,

iqt ¼ qxx 	 2 qk k2q ½36�

where q is an N-component vector and �k k is the
Euclidean norm, are integrable by the IST. One has
to suitably extend the analysis discussed earlier in
this article (cf. e.g., Ablowitz et al. (2004)).

Discrete NLS Systems

Both the NLS and the VNLS equations discussed
above admit integrable discretizations which,
besides being used as the basis for constructing
numerical schemes for the continuous counterparts,
also have physical applications as discrete systems.

A natural discretization of NLS [27] is the
following:

i
d

dt
qn ¼

1

h2
qnþ1 � 2qn þ qn�1ð Þ

	 qnj j2 qnþ1 þ qn�1ð Þ ½37�

which is referred to as the integrable discrete NLS
(IDNLS). It is an O(h2) finite-difference approxima-
tion of [27] which is integrable via the IST and has
soliton solutions on the infinite lattice (Ablowitz and
Ladik 1975, 1976). Note that if the nonlinear term in
[37] is changed to 2 qnj j2qn, the equation, which is
often called the discrete NLS (DNLS) equation, is
apparently no longer integrable. It should be
remarked that the (apparently nonintegrable) DNLS
equation arises in many important physical contexts.

Correspondingly, one can consider the discretiza-
tion of VNLS given by the following system:

i
d

dt
qn ¼

1

h2
qnþ1 � 2qn þ qn�1

� �
	 kqnk

2 qnþ1 þ qn�1

� �
½38�

where qn is an N-component vector. Equation [38]
for qn = q(nh) in the limit h! 0, nh = x gives VNLS
[36]. The discrete vector NLS system [38] is also
integrable (Ablowitz et al. 1999, Tsuchida et al.
1999). The interested reader can find further details
in Ablowitz et al. (2004).

See also: Boundary-Value Problems for Integrable
Equations; Dynamical Systems in Mathematical Physics:
An Illustration from Water Waves; Evolution Equations:
Linear and Nonlinear; Ginzburg–Landau Equation;
Integrable Systems and Discrete Geometry; Integrable
Systems: Overview; Partial Differential Equations: Some
Examples; Riemann–Hilbert Methods in Integrable
Systems; Schrödinger Operators.
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Introduction

The flow of a fluid, liquid or gas, is described by
three conservation laws, the conserved physical
quantities being the mass, the linear momentum,
and the energy, and by constitutive equations. The
constitutive equations are specific to each fluid, and
link deformations to stresses.
A fluid is said to be Newtonian if it satisfies the
simplest constitutive equation, which gives the stress
tensor � as a linear function of the rate of
deformation tensor D = (1=2)(ruþruT), namely

� ¼ ð
 tr D� pÞI þ 2�D ½1�

where u is the fluid velocity, p is the hydrostatic
pressure (p 
 0), and 
 and � are the Lamé viscosity
coefficients of the fluid, satisfying � 
 0 and 
þ
2�=3
 0. The superscript T designates the transpose
operation, the abbreviation ‘‘tr’’ the trace operator
of a tensor, and I the unit tensor. Water and glycerin
are examples of Newtonian liquids.
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Non-Newtonian fluids are fluids for which the
behavior is not described by eqn [1]. Silicone oils,
polymers (melted or in solution), egg yolks, and
blood are examples of non-Newtonian liquids.
Other examples include liquid crystals, rubbers,
suspensions, paints, etc.

In the following we shall first describe flows
which show Newtonian or non-Newtonian
behaviors. Then we shall describe the requirements
a constitutive equation needs to satisfy to be
considered, introducing the notions of continuum
mechanics we need. After giving the most commonly
used constitutive equations, we will give a few ideas
about the mathematical study of the set of equa-
tions, and their numerical study, in the particular
case of viscoelastic fluids.

Numerous kinds of materials are already known
to exist, and more might exist in the future. This
report, however, will be limited to the most
commonly materials used nowadays, which are
polymers, liquid crystals and polymeric liquids
crystals, and paints. Moreover, we shall only
consider isothermal flows, even though temperature
might be an important parameter in experiments
or in industry, because in particular most theoretical
or numerical studies concern isothermal problems.

Non-Newtonian fluids will always be liquids, and
we shall use the terms liquid or fluid indifferently.
Non-Newtonian Behaviors

We describe a few experiments to show how
differently both types of fluids, Newtonian or non-
Newtonian, might react in some experimental
situations. We also give some mechanical explana-
tion when possible.

Shear Thinning or Shear Thickening

In a Poiseuille experiment, where a fluid flows in
a tube under the action of a pressure drop, the
volumetric flow rate of a Newtonian fluid is
inversely proportional to the constant fluid viscosity.
Under the same pressure-drop condition, a polymer
melt flows much faster out of the tube, which means
that there is a decreasing apparent viscosity with
increasing shear rate: this is referred to as shear
thinning effect. Other fluids might exhibit the
opposite behavior and flow out of the tube more
slowly: this is called the shear thickening effect.

Rod Climbing

When a rotating rod is inserted in a beaker filled with
a Newtonian fluid, it is observed that the liquid near
the rotating rod is pushed outwards by centrifugal
force and that a dip on the surface of the liquid near
the rod results. On the contrary, if we make the same
experiment with a polymer, the fluid climbs along the
rod. Moreover, for comparable rotation speed, the
difference in behaviors might be quantitatively con-
siderable. This is explained by totally different
pressure repartitions in both fluids, Newtonian or
non-Newtonian: in particular, the pressure in the
polymer along the rod is much larger than that along
the beaker, so that this pressure difference fights the
centrifugal force; this is in contrast with the situation
in a Newtonian fluid.

Extrudate Swell

If a fluid is forced to flow from a large reservoir out
of a circular tube of small diameter, the swell at the
exit is much larger for a polymer solution than for a
Newtonian fluid. A polymer flowing out of a die
might also show a delayed die well, which means
that the swell is not at the exit but on the jet at a
certain distance of the exit. The explanation of this
phenomenon is not unique: it is due partly to
memory effects (the fluid remembers its former
shape, the one in the reservoir), partly to the release
of normal stresses, to interfacial forces, compressi-
bility, viscous heating, and the complicated flow
near the die exit.

Difference in Normal Stresses

In a shearing flow of a Newtonian fluid, the two
normal stress differences are both zero, whereas for
a polymer the first normal stress difference might be
very large, the second one being nearly zero. These
differences in stresses in shearing flow might be a
partial answer to the extrudate swell and to rod
climbing experienced by polymers.

Presence of a Yield Stress

Some materials, when subjected to shear stress,
flow only after a critical value is attained. Such
fluids are referred to as Bingham fluids: some
cements, slurries, paints, and biological fluids
might exhibit such a behavior. It is actually a
well-known property of paints: if put in large
quantities on a vertical wall, the paint will flow,
whereas if put as a very thin film on the same wall,
the paint will not flow, but stay in place, and dry to
form a nice colored covering.

Preferred Orientation of the Particles of Fluid

Fluids with properties as above, Newtonian or
non-Newtonian, are isotropic in nature, even though
they are constituted of atoms, or of long chains of
material. They are the same everywhere, optically,



562 Non-Newtonian Fluids
magnetically, or electrically. Some fluids, liquid
crystals, or polymeric liquid crystals in particular,
have remarkable properties of nonanisotropy, being
able to orient themselves, on average, along a
particular direction: this is the nematic phase, which
is used in many devices (screens for clocks, hand
calculators, and cell phones), because the average
orientation may be changed by applying an electric
field. Other phases of liquid crystals include smectic
A, C, and C� phases, where one sees a preferred
orientation (tilted for C phases) of the fluid, and also
a layer-like structure. As an example, let us mention
discotic nematic liquid crystals, which are precursors
for carbon-based materials, such as fibers, compo-
sites, and films, which possess excellent mechanical
and thermal properties. Sails for race sailing boats are
made of Kevlar, which is one of these new materials
with remarkable properties.
Modeling

The flowing fluid will be described by its (Euler-
ian) velocity at time t and position x, say u(x, t),
for x belonging to the domain of the flow � and
the time t to Rþ, by its mass density �(x, t), its
pressure p(x, t) (p > 0 defined up to an additive
constant), and its stress �(x, t) – which is a
symmetric tensor.

The partial differential equations describing the
flow are satisfied in the domain of the flow and read
as follows:

@�

@t
þ divð�uÞ ¼ 0

�
@u

@t
þ ðu � rÞu

� �
¼ div �þ f

½2�

where f denotes some external forces applied to the
fluid. These equations describe the conservation of
mass and the conservation of linear momentum. To
close the system, we need a constitutive equation for
the stress � as well as initial conditions and
boundary conditions.

Moreover, most non-Newtonian fluids are practi-
cally incompressible in most regions of the flow, so
that we shall only consider this case: the first
equation in [2] is replaced by condition div u = 0 in
the domain of the flow.

Notions of Continuum Mechanics

At time t, a body S occupies a region �t of the
Euclidean space E3, called the configuration at time t,
of the body. Points p of S are called material points
or particles of fluids. The configuration �t

is assumed to be regular in the following sense: �t
is closed, its interior is connected and dense
everywhere, its boundary is piecewise regular, C0 at
least.

A mapping � : �0�!�t is a deformation if � is a
bijection from �0 onto �t and is a C1–diffeomorph-
ism from the interior of �0 onto the interior of �t,
with positive Jacobian.

The motion of a body S is given by a set of
deformations �(t, t0) : �t �!�t0 , satisfying

�ðt; tÞ ¼ Id; �ðt00; tÞ ¼ �ðt00; t0Þ ��ðt0; tÞ

The trajectory of the material point which is in X at
t0 is the set

�ðt; t0ÞðXÞ; t � t0f g

A body is said to be rigid if the deformation �(t, t0)
is an isometry for all times t and t0. A material point
p is said to be attached to the rigid body S if the
body p [ S is rigid.

The motion of a fluid might be described in terms
of the Lagrangian coordinates X 2 �0 of each
particle of fluid: �0 is called the reference config-
uration and is the fixed configuration occupied by
the body of fluid at the time of reference, say t0. The
motion of the fluid might also by described in terms
of the Eulerian coordinates x =�(X, t), which
represent the position of a particle at time t which
has position X at t0. The Lagrangian and Eulerian
coordinates of the same particle of fluid are linked
by the differential equation

_�ðX; tÞ ¼ uððX; tÞ; tÞ; for t � t0

�ðX; t0Þ ¼ X

For defining the constitutive equations, we shall
use a few tensors that we define now. The defor-
mation gradient is defined by F(X, t) = @�
(X, t)=@X, and the right Cauchy–Green tensor by
C = FTF (also called Cauchy strain). To define
relative tensors, we denote by �=�t(x, s) the
position at time s � t of the material point, which
is at x at time t. The relative tensors are defined in
the following way:

	 the relative deformation gradient Ft(s) =r�t(x, s),
	 the relative right Cauchy–Green tensor Ct(s) = FT

t (s)
Ft(s), and
	 the relative Finger tensor Ct(s)

�1.

Note that the rate of deformation tensor is obtained
as the time derivative of the relative Cauchy strain
tensor:

D¼ 1

2

@CtðsÞ
@s

js¼t
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Principle of Objectivity and Frame Invariance

A frame of reference is defined in the spacetime
E3 
R attached to the observer by giving a
chronology and a system of reference. The chron-
ology is a timescale, which will be assumed to be
the same for all observers. The system of reference
is a set of at least four points attached to a rigid
body (this is the observer), which are not
coplanar.

The constitutive equation needs to satisfy the
principle of frame invariance and of frame indiffer-
ence (or objectivity), which means that the equation
does not depend on rigid motions of the observer. In
the mathematical framework, it means that the
equation has to be invariant under a change of
orthonormal frame of reference x�= Q(t)x, where
Q(t) is an orthogonal tensor: the transformed
equation has to have the same expression, and also
to be frame indifferent. We define a scalar quantity
’, a vector field u, or a tensor field � , as being frame
indifferent if, under the change of variables
x�= Q(t)x, they satisfy the relations ’(x, t) =
’�(x, t), u(x, t) = Q(t)Tu�(x�, t), and �(x, t) = Q(t)T��

(x�, t)Q(t), respectively.
The velocity gradient ru is not frame indifferent,

but its symmetric part is. The vorticity, which is the
antisymmetric part W = (ru�ruT)=2 of the velo-
city gradient, satisfies the equation _W = QTW�Q�
QT _Q, where the dot denotes the convective deriva-
tive d=dt = @=@t þ (u � r).

Note that the convective derivative of a
scalar function ’ is frame indifferent, which
means that

@’

@t
þ ðu � rÞ’ ¼ @’

�

@t
þ ðu� � r�Þ’�

but the convective derivative of a vector or a tensor
is not frame indifferent.

It can be easily checked that the derivative

D0�

Dt
¼ d�

dt
þ �W �W� ½3�

of a (frame-indifferent) tensor � is frame indifferent,
which means that

D0�

Dt
¼ QTD�0��

Dt
Q

To obtain another frame-indifferent derivative of a
tensor � , we need to start with the expression [3], to
which we may add other terms containing frame-
indifferent quantities, for example, combinations of
� and D. A derivative which is often considered is
the Oldroyd derivative, as introduced by Oldroyd in
1958:
Da�

Dt
¼ d�

dt
þ �W �W� � aðD� þ �DÞ ½4�

where a is a real parameter, chosen in the interval
[�1, 1]. (This restriction on a is necessary for
viscometric reasons, and obtained when simple
flows, such as Couette or Poiseuille flows, are
studied.)

The case a = 1 corresponds to the upper convected
derivative, and the case a =�1 to the lower
convected derivative. The case a = 0 refers to the
corotational or Jaumann derivative. Derivatives
corresponding to cases a =�1, 0, or 1 might
actually be obtained by derivating � in a frame
fixed locally to the body of fluid, and which rotates
and/or deforms with the body. Moreover, we shall
see that the derivatives corresponding to a = 1 or �1
have very simple integral expressions.

Constitutive Equations

The constitutive equation of a non-Newtonian fluid
is a nonlinear relationship between the stress tensor
and objective variables depending on the flow, such
as the pressure, the rate of deformation, frame-
indifferent derivatives of such quantities, etc.

Analogously to the constitutive equation for an
incompressible Newtonian fluid, we may also write
the stress tensor in the form �=�pI þ � . The extra
stress tensor � could be either a function of objective
variables, which characterize the flow, or defined by
a differential equation or by an integral equation.
The point here is to model the fact that the fluid
might have some elasticity or some memory, or
might experience, for example, yield stress or
orientational properties.
Shear dependent viscosity fluids A very simple
generalization of the incompressible Newtonian
fluid consists in making the viscosity dependent on
the rate of deformation tensor, �= �(D). This
generalization has been introduced by O A Ladyz-
henskaya in 1970 and, if the function is chosen
properly, this model reproduces the behavior of
existing fluids, at least in certain parts of their flow.
For power-law fluids, the viscosity depends on the
second invariant ID = (1=2)tr D2 of the symmetric
tensor D (the first invariant tr D is zero because of
incompressibility), and reads as

�ðDÞ ¼ �0 þmIn�1
D ½5�

where �0 � 0, m > 0, and n � 0. If n = 1, we recover
the Newtonian case, whereas for n < 1 this equation
describes a shear thinning fluid, and for n > 1 a shear
thickening fluid. The power law is not valid for ID
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close to 0, so that the Carreau–Yasuda law is
preferred:

� � �1
�0 � �1

¼ 1þ ð�IDÞ2�
� �ðn�1Þ=ð2�Þ

½6�

where �0 is the zero-shear rate viscosity, �1 is the
infinite-shear rate viscosity, � a time constant, n a
dimensionless power-law index, n � 0, and � > 0 a
parameter (generally equal to 1 for a monomolecu-
lar polymer).

Oldroyd models and related models Oldroyd mod-
els are differential models built with one of the
Oldroyd derivatives, and are very commonly used
for polymer solutions or melts. The stress tensor is
given as a solution of a differential equation in the
following way:

� þ �1
Da�

Dt
þ gð�;DÞ ¼ 2� Dþ �2

DaD

Dt

� �
½7�

where �1 > 0 is a relaxation time, �2 is a retardation
time, 0 � �2 < �1, and g(� , D) is a tensor-valued
function, constrained to certain restrictions due to
objectivity, and which is at least quadratic.

The Johnson–Segalman model has g = 0, and �1 �
a � 1. Other models of differential type often
suppose the parameter a to be 1, because it has
been noticed that with a close to 1 the model is able
to reproduce some experimental behavior, whereas
for a =� 1 or close to �1, the model does not work
at all. Among the models with a = 1, the following
ones are fairly popular: the model of Phan-Thien and
Tanner has g(� , D) =�� tr � , where � is a constant;
this model can be generalized by defining g(� , D) =
��2 þ 	� ,� and 	 being functions of the trace of �
and of its determinant; the model of Giesekus is the
particular case where � is a constant and 	= 0. The
Oldroyd eight-constant model is given by

gð�;DÞ ¼ 
0ðtr �ÞDþ �1 trð�DÞ I
þ 
2D2 þ �2 trðD2Þ I

where 
0, �1,
2, and �2 are constants.
In [7], the limit case �2 = 0 corresponds to

Maxwell’s type models, where there is no New-
tonian viscosity, while the case �2 > 0 corresponds
to the Jeffreys’ type models. The cases where a = 1
and g = 0, are often considered in mathematical or
numerical studies: this is the upper convected
Maxwell (UCM) model for �2 = 0, and the Oldroyd
B model for �2 > 0.

The parameters �1,�2, and � might also depend
on ID: such a model where the upper convected
derivative (a = 1) is chosen is referred to as the
White–Metzner model, and reads as follows:
� þ �I
D1�

Dt
¼ 2 �IDþ �1 Dþ �I

D1D

Dt

� �� �

where �1 is also the Newtonian viscosity.

Integral equations Other constitutive equations for
viscoelastic fluids include integral equations. Actu-
ally, some differential equations have integral
counterparts: this is the case for the differential
equations associated with the upper or lower
convected frame-indifferent derivatives. For the
upper convected derivative (a = 1), the extra stress
is given by the integral expression

�ðx; tÞ ¼ 2�
�2

�1
Dðx; tÞ þ 2�

�1 � �2

�2
1



Z t

�1
e�ðt�sÞ=�1ðrXxÞDðX; sÞðrXxÞT ds

where X is the position, at time s, of the point which
is at x at time t. A similar expression might be
obtained for the lower convected derivative.

A very common integral equation is the K–BKZ
equation (introduced independently by Kaye and
Bernstein, Kearsley, and Zapas in 1962–63). In a
simplified form, the extra-stress tensor is given as
the integral of a combination of the relative Cauchy
strain tensor Ct and its inverse:

�ðx; tÞ ¼ 2

Z t

�1
Gðt � sÞ @WðI1; I2Þ

@I1
C�1

t ðsÞ
�

� @WðI1; I2Þ
@I2

CtðsÞ
�
ds

where I1 = tr C�1
t (s) and I2 = tr Ct(s). The function G

is a given kernel, and W a given scalar potential.
The upper convected Maxwell model is obtained
from the K–BKZ model by setting W(I1, I2) = I1 and
G(s) = (�1�2=2) e��1s.

Models issued from kinetic theories or micro–macro
models Polymeric fluids could also be modeled by
coupling a macroscopic viewpoint – the one of
continuum mechanics, as described above – and
a microscopic viewpoint. A polymer is, in general,
made of long chains of molecules. Rather than trying to
represent the polymer behavior by a sophisticated
constitutive equation, one describes the mean behavior
of the molecules by using their microscopic description.

To take an example, we consider a dilute solution
of polymer, where each chain of polymer is modeled
as a collection of dumbbells, each of them consisting
of two beads connected by a spring. The configura-
tion of the spring, namely its length and orientation,
is described by a random vector field Q 2 R3. The
dumbbells are convected and stretched by the flow.
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The probability  (x, Q, t) dQ of finding a dumbbell
with a configuration Q at (x, t) is governed by a
Fokker–Planck equation:

d 

dt
þ divQððruÞQ Þ

¼ 2

�
divQððrQWÞ Þ þ

2kT

�
�Q 

where � is the friction coefficient of the dumbbell
beads, T the temperature, and k the Planck constant,
and W the spring potential. The extra stress is given
by the constitutive equation

� ¼ �
Z
ðrQW �QÞ ðx;Q; tÞ dQ

The simplest potential is the linear one (also called
Hookean potential) W(Q) = HjQj2, where jQj is
the length of Q, and H the elasticity constant.
In fact, in the case of the Hookean potential, this
set of equations is equivalent to the Oldroyd B
model. Another potential corresponds to finitely
extendable nonlinear elastic (FENE) chain of
dumbbells,

WðQÞ ¼ �HQ2
0

2
log 1� jQj

2

Q2
0

 !

for jQj � Q0, and gives the FENE model, for which
there is no macroscopic constitutive equation known.

We have only made here a short incursion in these
micro–macro models: research is in progress, both
analytical and numerical (Öttinger 1996, Suen et al.
2002, Keunings 2004).
Liquid crystals and polymeric liquid crystals As an
example, we present the constitutive equations for a
uniaxial nematic liquid crystal.

In the theory of Leslie and Ericksen, established in
the 1960s and the 1970s, the stress tensor is given as
a function of the orientation unit vector n, through
the Oseen–Frank elastic energy,

2Wðn;rnÞ ¼
1ðdivnÞ2 þ 
2ðn � curl nÞ2

þ 
3jn
 curl nj2

where 
1 > 0,
2 > 0, and 
3 > 0 are the three basic
modes (splay, twist, and bend, respectively). The extra
stress tensor is precisely given by the relation

� ¼� ðrnÞT @W
@rn

þ �1ðn �DnÞn� n

þ �2N � nþ �3n�N

þ �4Dþ �5Dn� nþ �6n �
where N = _n�Wn is the corotational derivative of
the director, and �i, i = 1, . . . , 6, the six Leslie
viscosity coefficients.

The director satisfies a differential equation
derived from continuum mechanics,

�1€n ¼ Gþ gþ div�

where �1 is the moment of inertia per unit volume,
G the external director body force (torque per unit
volume), � the director stress tensor, and g the
intrinsic director body force. Precisely,

g ¼ �n� ðrnÞ	 � @W
@n
� �1N � �2Dn

� ¼ n� 	 þ @W
@rn

where 	 is a Lagrange multiplier vector, and �=
��2=�1 is the reactive parameter, with �1 =�3 � �2

the rotational viscosity, and �2 =�6 � �5 =�3 þ �2

the irrotational torque coefficient.
Polymeric liquid crystals might have other variables

entering in the modeling, such as order parameters,
order tensors, etc.

Because of the complexity of modeling, most
studies concern either very simple flows, such as
Couette or Poiseuille flows, or steady flows, or
flows for which the coefficients satisfy specific
relationships.

Reports about earlier studies, theoretical as well
as numerical, can be found in Coron et al. (1991),
and references therein. The study of polymeric liquid
crystals, or of the smectic phase of liquid crystals is
at its very early stage and one could look into it in
specialized journals, such as the Journal of Non-
Newtonian Fluid Mechanics, or see Liquid Crystals.
Yield stress fluids Bingham materials have the
property of flowing only when the stress magnitude
is greater than a critical value, and being a solid
otherwise. Precisely, in the simplest and the most
widely used model, the Bingham model, the extra
stress tensor � is given by the relations

� ¼ 2�Dþ ��
D

ID
if ID 6¼ 0

j� j � �� if ID¼ 0

½8�

where �� > 0 is the yield limit. The Bingham model
is generalized in taking the viscosity � to be a
function of the shear stress: � is given by the
relation

� ¼ 1þ 2
��
ID

� �1=2
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for the Casson law, and by the power law [5] for the
Herschel–Bulkley model.

The mathematical study was started by Duvaut
and Lions (1976), and regained interest recently
(Malek and Rajagopal 2005), especially in relation
with other recent studies in polymeric liquids.
Theoretical and Numerical Problems
for Viscoelastic Flows

The mathematical study of viscoelastic fluid flows
amounts to studying systems of partial differential
equations, which all include either the incompres-
sible Euler equation or the incompressible Navier–
Stokes equation as particular cases. In particular, it
means that the results obtained from such a study
are similar to the ones obtained for Euler or Navier–
Stokes equations, and, because of the complexity of
the system, the results are expected to be qualita-
tively as good, actually more often less good, than
for these equations. For example, the existence of
weak three-dimensional solutions to the Navier–
Stokes system is known, while for non-Newtonian
flows, this result will be true only in very specific
cases. Moreoever, when a result is not known for
the Navier–Stokes problem, such as the uniqueness
of solution for all data in a three-dimensional
problem, there is no hope something similar could
be proved for non-Newtonian fluid flows.

As an example, we consider the case of Johnson–
Segalman fluids, which are described by constitutive
equation [7] with g = 0. Recall that the limit case
�2 = 0 corresponds to the purely elastic case, and
�2 =�1 to the purely Newtonian case. Equation [7]
is coupled with the equations of motion:

�
du

dt
þrp ¼ div � þ f

div u ¼ 0

½9�

Equations [7] and [9] have to be solved in the
domain of the flow, which might be the whole
space R3 (or R or R2 in case of symmetries), or a
domain �, bounded or not, in Rn, n = 1, 2, or 3.
These equations are supplemented by appropriate
boundary conditions and initial conditions for the
velocity u and the extra stress � (no boundary
condition on � is needed if the homogeneous
nonslip boundary condition u = 0 is chosen).

We first make explicit the Newtonian contribu-
tion to the stress by setting � = � s þ �p and
� s = 2�sD. The differential equation for �p is then

�p þ �1
Da�

p

Dt
¼ 2�pD
where �p = (1� �2=�1)� is the so-called polymeric
viscosity, �s = (�2=�1)� the so-called Newtonian
viscosity (or solvent viscosity).

We then use nondimensional variables, so as to
make explicit the characteristic parameters, which
the flow depends on. The non-Newtonian fluid
considered in this model will always be homoge-
neous: its density � is a constant independent of x
and t. The dimensional variables are now asterisked.
We define quantities which are characteristic of the
flow: a length L, a velocity magnitude U, a stress
magnitude T, a force magnitude F, and a pressure P.
We operate the change of variables and functions
x = x�=L, u = u�=U, t = Ut�=L, and also introduce the
nondimensional functions

� ¼ �
�

T
; p ¼ p�

P
; f ¼ f �

F

After choosing the parameters T, P, and F in
an appropriate way, namely T = P = �U=L, and
F = �U=L2, we obtain the following system

Re
du

dt
þrp ¼ ð1� !Þ�uþ div � þ f

div u ¼ 0

We
Da�

Dt
þ � ¼ 2!D

½10�

Here the three nondimensional parameters which
the flow depends on are the usual Reynolds number
Re = �0UL=� and two other numbers: the Weissen-
berg number We =�U=L measures the elasticity per
unit time (sometimes also called the Deborah
number), and the parameter != �p=� is the ratio of
elastic viscosity to total viscosity (!= 0 corresponds
to the Newtonian case, while != 1 corresponds to
the purely elastic case).

System [10] couples a transport equation (the
equation for the stress �), and either a Navier–
Stokes type equation when ! < 1, or a Euler type
equation when != 1 (for the velocity u). This
system is not hyperbolic, parabolic, or elliptic.

Maxwell’s type models (!= 1) display two striking
phenomena. First, the Cauchy problem (with initial
data) can present Hadamard instabilities, that is,
instabilities to short waves. It means, in particular, that
the Cauchy problem is not well posed in any good class
but analytic. Moreover, the partial differential system
for Maxwell’s type steady flows may experience a
change of type, analogous to the situation in gas
dynamics, if the ‘‘Mach number’’ Re We is larger than 1.

Jeffreys’ type models (! < 1), because of the
presence of a Newtonian viscosity, do not exhibit
such phenomenon, but their study does not enter in
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the theory of parabolic equations either, the type of
the system being composite.

Problems of interest for rheologists, as well as for
mathematicians, include in particular the high
Weissenberg asymptotics, the high Weissenberg
boundary layers, the singularity of flows near a
reentrant corner, and the stability of flows.

We give a few details about stability questions.
Instabilities are seen in experimental extrusion of
melted polymers from a pipe: melt fracture designates
different phenomena appearing at different stages of
the experiment, when the speed of the extrusion is
increased, such as sharkskin instability, slight distor-
tions of the extrudate, large distortions and wavyness
of the extrudate. One may distinguish two kinds of
instabilities. First, constitutive instabilities are asso-
ciated with nonmonotonicity of constitutive functions
and loss of evolutionary property of the equations of
motion. Other kinds of instabilities are close to
classical hydrodynamic instabilities at increasing Re.
Note that in viscoelastic flows the Re is usually very
small, and might even be set to zero in some studies.

Other mathematical questions for system [10]
include existence of weak solutions (for the very
special case of Oldroyd model with the Jaumann
derivative where (a = 0) in [5]), existence of regular
solutions defined on some time interval, depending
on the magnitude of the data, and existence of
regular solutions for all times. Other studies concern
the existence, uniqueness, and stability of steady
solutions. Another field of study is the numerical
simulation of such flows.

In summary, there have been numerous computa-
tions made in the field of steady or unsteady viscoelastic
fluids, and especially models using continuum
mechanics. Standard test problems include the cavity-
driven flow, flows inside a 4 : 1 contraction, extrusion
flows, flows between eccentric cylinders, and flows in
‘‘wiggly’’ pipes. As mentioned already, the type of the
sytem of partial differential equations is composite,
neither elliptic nor hyperbolic. The numerical codes
have to take into account the precise nature of the set of
partial differential equations, so as to be able to obtain
noncatastrophic results. One of the main challenges has
been to deal with the high-We problem: with increasing
We, the results would become totally incoherent, and
the numerical algorithms would diverge.

Nowadays, with the power of computers increasing,
molecular simulations of flows are proposed, using the
macro–micro modeling mentioned above. Also, simula-
tions of flows of colloidal suspensions and reacting
flows have been undertaken with success.
See also: Compressible Flows: Mathematical Theory;
Fluid Mechanics: Numerical Methods; Incompressible
Euler Equations: Mathematical Theory; Interfaces and
Multicomponent Fluids; Inviscid Flows; Liquid Crystals;
Newtonian Fluids and Thermohydraulics; Partial
Differential Equations: Some Examples; Stability of
Flows; Stochastic Hydrodynamics; Viscous
Incompressible Fluids: Mathematical Theory.
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Introduction

Classical fields that enter a classical field theory
provide a mapping from the ‘‘base’’ manifold on
which they are defined (space or spacetime) to a
‘‘target’’ space over which they range. The base and
target spaces, as well as the map, may possess
nontrivial topological features, which affect the
fixed-time description and the temporal evolution of
the fields, thereby influencing the physical reality that
these fields describe. Quantum fields of a quantum
field theory are operator-valued distributions whose
relevant topological properties are obscure. Never-
theless, topological features of the corresponding
classical fields are important in the quantum theory
for a variety of reasons: (1) Quantized fields can
undergo local (spacetime-dependent) transformations
(gauge transformations, coordinate diffeomorphisms)
that involve classical functions whose topological
properties determine the allowed quantum field
theoretic structures. (2) One formulation of the
quantum field theory uses a functional integral over
classical fields, and classical topological features
become relevant. (3) Semiclassical (WKB) approxi-
mations to the quantum theory rely on classical
dynamics, and again classical topology plays a role in
the analysis.

Topological effects of gauge fields in quantum
theory were first appreciated by Dirac in his study of
the quantum mechanics for (hypothetical) magnetic
point monopoles. Although here one is not dealing
with a field theory, the consequences of his analysis
contain many features that were later encountered in
field theory models.

The Lorentz equations of motion for a charged (e)
massive (M) particle in a monopole magnetic field
(B = mr=r3) are unexceptional,

_r ¼ p

M
½1a�

_p ¼ e

M
p� B ðc ¼ 1Þ ½1b�

and completely determine classical dynamics. But
knowledge of the Lagrangian L and of the action
I – the time integral of L: I =

R
dt L – is further

needed for quantum mechanics, either in its func-
tional integral formulation or in its Hamiltonian
formulation, which requires the canonical momen-
tum p � @L=@ _r. The Lorentz-force action
is expressed in terms of the vector potential
A, B = �� A: ILorentz = e

R
dt _r � A = e

R
dr � A. The

magnetic monopole vector potential is necessarily
singular because � � B = 4�m�3(r) 6¼ 0. The singular-
ity (Dirac string) can be moved, but not removed, by
gauge transformations, which also are singular, and
do not leave the Lorentz action invariant. Noninvar-
iance of the action can be tolerated provided its
change is an integral multiple of 2�, since the
functional integrand involves exp (iI) (with �h = 1).
The quantal requirement, which is not seen in the
equations of motion, is met when

eg ¼ N=2 ½2�

The topological background to this (Dirac) quanti-
zation condition is the fact that �1 (U(1)) is the
group of integers, that is, the map of the unit circle
into the gauge group, here U(1), is classified by
integers.

Further analysis shows that only point magnetic
sources can be incorporated in particle quantum
mechanics, which is governed by the particle
Hamiltonian H = p2=2M (magnetic fields do no
work and are not seen in H). Quantum Lorentz
equations are regained by commutation with
H: _r = i[H, r], _p = i[H, p], provided

i½ri; rj� ¼ 0 ½3a�

i½pi; rj� ¼ �ij ½3b�

i½pi; pj� ¼ �e"ijkBk ½3c�

But [3c] implies that the Jacobi identity is obstructed
by magnetic sources � � B 6¼ 0.

1
2"

ijk½pi; ½pj; pk�� ¼ e � � B ½4�

This obstruction is better understood by examin-
ing the unitary operator U(a) � exp (ia � p), which
according to [3b] implements finite translations
of r by a. The commutator algebra [3] and
the failure of the Jacobi identity [4] imply
that these operators do not associate. Rather one
finds

Uða1ÞðUða2ÞUða3ÞÞ ¼ ei�ðUða1ÞUða2ÞÞUða3Þ ½5�

where � = e
R

d3x � �B is the total flux emerging
from the tetrahedron formed from the three vectors
ai with vertex at r (see Figure 1). But quantum
mechanics realized by linear operators acting on a
Hilbert space requires that operator multiplication
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Figure 1 Tetrahedron pierced by magnetic flux that obstructs

associativity.
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be associative. This can be achieved, in spite of [5],
provided � is an integral multiple of 2�, hence
invisible in the exponent. This then needs that (1)
� �B be localized at points, so that the volume
integral of � �B retain integrality for arbitrary ai

and (2) the strengths of the localized poles obey
Dirac quantization. The points at which � �B is
localized can now be removed from the manifold
and the Jacobi identity is regained. The above
argument, which rederives Dirac’s quantization,
makes no reference to gauge variance of magnetic
potentials.

In the remainder we shall discuss related phenom-
ena for selected gauge field theories in four, three,
and two dimensions that describe actual physical
events occurring in nature. We shall encounter in
generalized form, analogs to the above quantum
mechanical system.

Some definitions and notational conventions:
Nonabelian gauge potentials Aa

� carry a spacetime
index (�) (metric tensor g�� = diag(1,�1, . . . )) and
an adjoint group index (a). When contracted with
anti-Hermitian matrices Ta that represent the
group’s Lie algebra (structure constants fab

c)

½Ta;Tb� ¼ fab
cTc ½6�

they become Lie algebra-valued.

A� � Aa
�Ta ½7�

Gauge transformations transform A� by group
elements U:

A� ! AU
� � U�1A�U þU�1@�U ½8a�

For infinitesimal gauge transformations, U � I þ �,
� � �aTa; this leads to the covariant derivative D�:
A� ! A� þ @��þ ½A�; �� � A� þD��

Aa
� ! Aa

� þ @��a þ fbc
a Ab

� �
c � Aa

� þ ðD��Þa
½8b�

(In a quantum field theory, A� becomes an operator
but the gauge transformations U,� remain c-number
functions.) The field strength F�� given by

F�� ¼ @� A� � @� A� þ ½A�;A�� ½9a�

is also given by

½D�;D�� . . . ¼ ½F��; . . .� ½9b�

(coupling strength g has been scaled to unity). The
definition [9] implies the Bianchi identity

D�F�! þD!F�� þD� F!� ¼ 0 ½10�

Here F�� is gauge covariant

F�� ! F��
U ¼ U�1 F�� U ½11a�

or, infinitesimally,

F�� ! F�� þ ½F��; �� ½11b�

In the gauge invariant Yang–Mills action IYM, the
Yang–Mills Lagrange density LYM is integrated over
the base space,

LYM ¼ 1
2 tr F�� F��

IYM ¼
Z
LYM ¼

1

2

Z
tr F��F��

½12�

The trace is evaluated with the convention

tr Ta Tb ¼ �1
2 �ab ½13�

and henceforth there is no distinction between upper
and lower group indices. The Euler–Lagrange condition
for stationarizing IYM gives the Yang–Mills equation

D� F�� ¼ 0 ½14a�

Should sources J� be present, [14a] becomes

D� F�� ¼ J� ½14b�

and J� must be covariantly conserved:

D�J
�¼D�D�F�� ¼ �1

2½D�;D��F��

¼� 1
2½F��; F

�� � ¼ 0 ½15�

All this is a nonabelian generalization of familiar
Maxwell electrodynamics.
Gauge Theories in Four Dimensions

Gauge theories in four-dimensional spacetime are at
the heart of the standard particle physics model.
Their topological features have physical conse-
quences and merit careful study.
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Yang–Mills Theory

In four dimensions, we define nonabelian electric Ea

and magnetic Ba fields,

Eia ¼ F a
0i; Bia ¼ �1

2 "
ijkFa

jk ½16�

Canonical analysis and quantization is carried out in
the Weyl gauge (Aa

0 = 0), where the Lagrangian and
Hamiltonian (energy) densities read

LYM ¼ 1
2ðE

a � Ea � Ba � BaÞ ½17�

HYM ¼ 1
2ðE

a � Ea þ Ba � BaÞ ½18�

The first term is kinetic, with Ea =�@tA
a also

functioning as the (negative) canonical momentum
pa, conjugate to the canonical variable Aa; the
second magnetic term gives the potential. In the
Weyl gauge, the theory remains invariant against
time-independent gauge transformations. The time
component of equation [14] (Gauss law) is absent
(because there is no Aa

0 to vary); rather it is imposed
as a fixed-time constraint on the canonical variables
Ea and Aa. This regains the Gauss law:

ðD � EÞa ¼ 0 ðin the absence of sourcesÞ ½19a�

In the quantum theory D � E annihilates ‘‘physical’’
states. Explicitly, in a functional Schrödinger repre-
sentation, where states are functionals of the canonical
fixed-time variable Aj�i!�(A), [19a] requires

D � �
�A

� �a

�ðAÞ ¼ 0 ½19b�

that is, physical states must be invariant against
infinitesimal gauge transformation, or equivalently,
against gauge transformations that are homotopic
(continuously deformable) to the identity (the so-called
‘‘small’’ gauge transformations)

�ðAþD�Þ ¼ �ðAÞ ½20�

But homotopically nontrivial gauge transformation
functions that cannot be deformed to the identity
(the so-called ‘‘large’’ gauge transformations) may
be present. Their effect is not controlled by Gauss’
law, and must be discussed separately.

Fixed-time gauge transformation functions
depend on the spatial variable r : U(r). For a
topological classification, we require that U tend to
a constant at large r. Equivalently, we compactify
the base space R3 to S3. Thus, the gauge functions
provide a mapping from S3 into the relevant gauge
group G, and for nonabelian compact gauge groups
such mappings fall into disjoint homotopy classes
labeled by an integer winding number
n: �3(G) = Z. Gauge functions Un belonging to
different classes cannot be deformed into each
other; only those in the ‘‘zero’’ class are deformable
to the identity. An analytic expression for the
winding number !(U) is

!ðUÞ

¼ 1

24�2

Z
d3x "ijktrðU�1@iUU�1@jUU�1@kUÞ ½21�

This is a most important topological entity for
gauge theories in four-dimensional spacetime, that is,
in 3-space, and we shall meet it again in a description
of gauge theories in three-dimensional spacetime,
that is, on a plane. Various features of ! expose its
topological character: (1) ! (U) does not involve a
metric tensor, yet it is diffeomorphism invariant.
(2) !(U) does not change under local variations of U:

�!ðUÞ ¼ 1

8�2

Z
d3x@i"

ijktrðU�1�UU�1@jUU�1@kUÞ

¼ 1

8�2

Z
dSi "ijktrðU�1�UU�1@jUU�1@kUÞ

¼0 ½22�

The last integral is over the surface (at infinity)
bounding the base space and vanishes for localized
variations �U. In fact, the entire ! (U), not only its
variation, can be presented as a surface integral, but
this requires parametrizing the group element U on
R3. For example, for SU(2),

U ¼ exp �; � ¼ �a�a=2i ðs � Pauli matricesÞ

! ðUÞ ¼ 1

16�2

Z
dSi "ijk"abc�̂

a@j�̂
b@k�̂

cðsin j�j � j�jÞ

j�j �
ffiffiffiffiffiffiffiffiffiffi
�a�a
p

; �̂a � �a=j�j ½23�

Specifically, with j�j �!
r!1 2�n (so that U�!

r!1 �I),
!(U) =� n. As befits a topological entity, !(U) is
determined by global (here large distance) properties
of U.

Since all gauge transformations, small and large,
are symmetry operations for the theory, [20] should
be generalized to

�ðAUnÞ ¼ ein��ðAÞ ½24�

where � is an universal constant. Thus, Yang–Mills
quantum states behave as Bloch waves in a periodic
lattice, with large gauge transformations playing the
role of lattice translations and the Yang–Mills vacuum
angle � playing the role of the Bloch momentum. This
is further understood by noting that the profile of the
potential energy density, 1

2 Ba � Ba possesses a periodic
structure symbolically depicted in Figure 2.
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Figure 2 Schematic for energy periodicity of Yang–Mills fields.
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Thanks to Gauss’ law, potentials A that differ by
small gauge transformations are identified, while
those differing by large gauge transformations give
rise to the periodicity. Zero energy troughs corre-
spond to pure gauge vector potentials in different
homotopy classes n: A =�U�1

n �Un.
The � angle (Bloch momentum) arises from

quantum tunneling in A space. Usually, in field
theory tunneling is suppressed by infinite energy
barriers. (This gives rise to spontaneous symmetry
breaking.) However, in Yang–Mills theory there are
paths in field space that avoid such barriers.
Quantum tunneling paths are exhibited in a semi-
classical approximation by identifying classical
motion in imaginary time (Euclidean space) that
interpolates between classically degenerate vacua
and possesses finite action.

In Yang–Mills theory, continuation to imaginary
time, x0! ix4, places a factor of i on Ea. Zero
(Euclidean) energy is maintained when Ea =�Ba, or
with covariant notation in Euclidean space,

1
2 "

��	
F	
 � 	F�� ¼ �F�� ½25�

Euclidean finite action field configurations that
satisfy [25] are called self-dual or anti-self-dual
instantons. By virtue of the Bianchi identity [10],
instantons also solve the field equation [14a] in
Euclidean space. Since the Euclidean action may also
be written as

IYM ¼
1

4

Z
d4x trðF�� � 	F��ÞðF�� � 	F��Þ


 1

2

Z
d4x tr	F��F�� ½26�

and the first term vanishes for instantons, we see
that instantons are characterized by the last term,
the Chern–Pontryagin index,
P � � 1

16�2

Z
d4x trð	F�� F��Þ

¼ � 1

32�2

Z
d4x "��	
 trðF	
F��Þ ½27�

This again is an important topological entity:

1. The diffeomorphism invariant P does not involve
the metric tensor.

2. P is insensitive to local variations of A�,

�P ¼ � 1

8�2

Z
d4x trð	F���F��Þ

¼ � 1

4�2

Z
d4x trð	F��D��A�Þ

¼ 1

4�2

Z
d4x trðD�

	F���A�Þ ¼ 0 ½28�

3. P may be presented as a surface integral owing to
the formula

1
4 tr	F��F�� ¼ @�K� ½29�

K� � "��	
 tr 1
2A	@
A� þ 1

3A	A
A�

� �
½30�

where K� is the Chern–Simons current,

P ¼ � 1

4�2

Z
dS�K� ½31�

The integral [31] is over the base space boundary,
S3. The Chern–Pontryagin index of any gauge field
configuration with finite (Euclidean) action (not
only instantons) is quantized. This is because finite
action requires F�� to vanish at large distances;
equivalently, A�!U�1@�U. Using this in [30]
renders [31] as

P ¼ 1

24�2

Z
dS�"

�	
�

� trðU�1@	UU�1@
UU�1@�UÞ ½32�

which is the same as [20] and, for the same reason,
is given by an integer [�3(G) = Z]. Alternatively, for
instantons in the (Euclidean) Weyl gauge (A4 = 0),
which interpolate as x4 passes from �1 to þ1
between degenerate, classical vacua Ai = 0 and
Ai =�U�1riU, P becomes

P ¼ 1

4�2

Z
dx4 d3x ð@4K4 þ � �KÞ

¼ 1

4�2

Z
d3x K4 jx4¼1

¼ 1

24�2

Z
d3x "ijk trðU�1@iUU�1@jUU�1@UÞ

¼ !ðUÞ ½33�
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We have assumed that the potentials decrease at
large arguments sufficiently rapidly so that the
gradient term in the first integrand does not
contribute. This rederivation of [32] relies on the
‘‘motion’’ of an instanton between vacuum config-
urations of different winding numbers.

An explicit 1-instanton SU(2) solution (P= 1) is

A� ¼
�2i

ðx� �Þ2 þ 
2
���x

� ½34�

(Upon reinserting the coupling constant g, which
has been scaled to unity, the field profiles acquire
the factor g�1.) In [34], ��� � (1/4i)(�y��� �
�y���),�� � (�i�, I). � is the ‘‘location’’ of the
instanton, 
 is its ‘‘size,’’ and there are three more
implicit parameters fixing the gauge, for a total of
eight parameters that are needed to specify a single
SU(2) instanton. One can show that there exist N
instanton/anti-instanton solutions (P= N=�N) and
in SU(2) they depend on 8N parameters. From [26]
we see that at fixed N, instantons minimize the
(Euclidean) action. Explicit formulas exist for the
most general N = 2 solution, while for N � 3
explicit formulas exhibit only 5N þ 7 parameters.
But algorithms have been found that construct
the most general 8N-parameter instantons. The
1-instanton solution is unchanged by SO(5)
rotations, the maximal compact subgroup of the
SO(5, 1) conformal invariance group for the
Euclidean 4-space Yang–Mills equation [14a].

The Chern–Pontryagin index also appears in the
Yang–Mills quantum action, for the following
reason. Since all physical states respond to gauge
transformations Un with the universal phase n�
[24], physical states may be presented in factorized
form,

�ðAÞ ¼ ei�WðAÞ��ðAÞ ½35�

where �(A) is invariant against all gauge transfor-
mations, small and large, while the phase response is
carried by W(A),

WðAUnÞ ¼WðAÞ þ n ½36�

An explicit expression for W(A) is given by
�(1/4�2)

R
d3x K0, where K0 is the time (fourth)

component of K�, with dependence on the fourth
variable suppressed, that is, K0 is defined on 3-space,

WðAÞ ¼ � 1

4�2

Z
d3x"ijk tr 1

2Ai@jAkþ 1
3AiAjAk

� �
½37�
The gauge transformation properties of W(A) are

WðAUÞ

¼WðAÞ þ 1

8�2

Z
d3x "ijk@i trð@jUU�1AkÞ

þ 1

24�2

Z
d3x "ijktrðU�1@iU U�1@jU U�1@kUÞ

½38�

The middle surface term does not contribute for
well-behaved A; the last term is again !(U), the
winding number of the gauge transformation U.
Thus, [36] is verified.

The universal gauge-varying phase ei�W(A), which
multiplies all gauge-invariant functional states, may
be removed at the expense of subtracting from the
action

�

Z
d4x @tWðAÞ ¼ �

�

4�2

Z
d4x @tK

0 ¼ �P

(as in [33]). Thus, the Yang–Mills quantum action
extends [12] to

IYM
quantum ¼

Z
d4x tr

1

2
F��F�� þ

�

16�2
	F��F��

� �
½39�

The additional Chern–Pontryagin term in [35]
does not contribute to equations of motion, but it is
needed to render all physical states invariant against
all gauge transformations, large and small. With this
transformation, one sees that the �-angle is a
Lorentz invariant, but CP noninvariant effect.
Evidently, specifying a classical gauge theory
requires fixing a group; a quantized gauge theory is
specified by a group and a �-angle, which arises
from topological properties of the gauge theory. The
energy eigenvalues depend on �, and distinct �’s
correspond to distinct theories.

Note that the reasoning leading to [24] and [39]
relies on exact quantum-mechanical arguments,
while the instanton-based tunneling discussion is
semiclassical.

Adding Fermions

When fermions couple to the gauge fields, the
previously described topological effects are modified
by action of the chiral anomaly. Dirac fields, either
noninteracting but quantized, or unquantized but
interacting with a gauge potential through a
covariantly conserved current J�a , LI =�J�a Aa

�, also
possess a chiral current j�5 = � ���5 , which satisfies

@� j�5 ¼ 2m i � �5  ½40�
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Here m is the mass, if any, of the fermions. j�5 is
conserved for massless fermions, which therefore
enjoy a chiral symmetry:  ! ei	�5 . However,
when the interacting fermions are quantized, there
arises correction to [40]; this is the chiral anomaly:

@� j�5
� �

A
¼ 2imh � �5 iA þ C 	F�� aFa

�� ½41�

C is determined by the fermion quantum numbers
and coupling strengths. (For a single charged (e)
fermion and a U(1) gauge potential, C = e2=8�2.)
h j iA signifies the fermionic vacuum matrix element
in the presence of A�. The modified equation [41]
indicates that even in the massless limit chiral
symmetry remains broken due to the anomaly,
which arises with quantized fermions.

j�5
� �

A
may also be presented as

j�5
� �

A
¼ tr �5�

�h � iA ½42�

In Euclidean space h � iA is the coincident-point
limit of the resolvent R(x, y;�) for the Dirac
equation,

Rðx; y;�Þ ¼
X
�

 �ðxÞ y�ðyÞ
�þ i�

½43�

Here  � is an eigenfunction of the massless,
Euclidean Dirac operator in the presence of the
gauge field A�,

i �� ð@� þ A�Þ � ¼ � � ½44�

The coincident-point limit is singular, so R must be
regulated: R! R� RReg (we do not specify the
regularization procedure). It then follows that

@�hj�5i¼ 2i�
X
�

 y�ðxÞ�5  �ðxÞ
�þ i�

� tr �5 �
�@�RReg

¼ 2i�
X
�

 y�ðxÞ�5 � ðxÞ
�þ i�

þ C 	F�� aFa
�� ½45�

The first term on the right-hand side is the (Euclidean
space) analog of the mass term in [40] or [41], while
the second survives even after the regulators are
removed, giving the anomaly tr 	F��F��.

The anomaly formula [41], or more explicitly
[45], is also the local form of the Atiyah–Singer
index theorem, which follows after [45] is integrated
over all space: The left-hand side integrates to zero.
The integral of the first term on the right-hand side,R

dx 	� �5 �, vanishes for � 6¼ 0 by orthogonality,
because �5 � is an eigenfunction of [44] with
eigenvalue ��. Only zero modes contribute to the �
sum since these can be chosen to be eigenfunctions
of �5, n� of them satisfying  0 =��5 0. For a single
multiplet, the normalizations work out so that
nþ � n� ¼
1

16�2

Z
d4x tr 	F��F�� ½46�

The result that the (signed) number of zero modes is the
Chern–Pontryagin index is an instance of the Atiyah–
Singer theorem. (In specific applications, one can
frequently show that nþ or n� vanishes.) It, therefore,
follows that in the background field of instantons, the
Euclidean Dirac equation possesses zero modes.

Another viewpoint on the chiral anomaly arises
within the functional integral formulation, where the
exponentiated action is constructed from unquantized
fields, over which the functional integration is
performed. Here the classical action retains chiral
symmetry  ! ei	�5 , but the Grassmann fermion
measure d d � , once it is properly regularized, looses
chiral invariance and acquires the anomaly,

d d � ! d d � exp iC

Z
d4x	tr 	F��F�� ½47�

Evidently, the chiral anomaly involves the gauge-
theoretic topological entity, the Chern–Pontryagin
density. Not unexpectantly, the anomaly phenom-
enon affects significantly the topological properties
of the gauge theory that are connected to P and
were described previously.

When there is (at least) one massless fermion
coupling to the Yang–Mills fields, the Yang–Mills
�-angle looses physical relevance. This is because a
chiral transformation that redefines the massless
Dirac field does not modify the classical action, but
owing to the chiral noninvariance of the functional
measure, [47], an anomaly term is induced in the
(effective) quantum action. The strength of this
induced term can be fixed so that it cancels the
�-term in [39]. Since field redefinition cannot affect
physics, the elimination of the �-term indicates that it
had no physical relevance in the first place. In
particular, energy eigenvalues no longer depend on �.

An alternate argument for the same conclusion is
based on the functional determinant that arises
when the functional integral is performed over the
massless Dirac field: det [��(@� þ A�)]. The semi-
classical tunneling analysis of the �-angle is based on
instantons, but in the presence of instantons the
Dirac equation has a zero mode [46]. Consequently
the determinant vanishes, tunneling is suppressed
and so is the �-angle.

However, in the standard model for particle
physics, there are no massless fermions, so the
presence of the �-angle entails the following physical
consequences. The tunneling amplitude � in leading
semiclassical approximation is determined by the
Euclidean action, namely the continuation of iIYM in
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[39] to imaginary time. This results in the same
expression except that the topological �-term
acquires a factor of i. Only the 1-instanton and
anti-instanton give the dominant contribution,

� / cos � e�8�2=g2 ½48�

where the coupling constraint g has been reinserted;
the proportionality constant has not been computed,
owing to infrared divergences. (Higher-instanton-
number configurations contribute at an exponen-
tially subdominant order and have thus far played
no role in physics.) The tunneling leads to baryon
decay, but fortunately at an exponentially small
rate. More useful is the fact that instanton tunneling
gives semiclassical evidence for the removal of an
unwanted chiral U(1) Goldstone symmetry, which
would be present in the standard model if the chiral
anomaly did not interfere. Furthermore, the chiral
anomaly facilitates the decay of the neutral pion to
two photons; a process forbidden by other apparent
chiral symmetries of the standard model, which in
fact are modified by the chiral anomaly. Gauge
fields in four dimensions must interact with anomaly
free currents. This necessitates a precise adjustment
of fermion content and charges so that the anomaly
coefficients (analogs of ‘‘C’’ in [41]) vanish for
currents coupled to gauge fields. Finally, �
provides a tantalizing source of CP violation in the
strong-interaction sector of the standard model. But
no experimental signal (e.g., neutron electric dipole
moment) for this effect has been seen. At present, we
do not know what mechanism is responsible for
keeping � vanishingly small.

These are the physical consequences of topologi-
cal effects in four-dimensional gauge theories.
Although they have provided experimentalists with
only a few numbers to measure (e.g., �0! 2� decay
amplitude, prediction of anomaly-free arrangements
of quarks and leptons in families), they have added
enormously to our appreciation of the complexities
of quantized gauge theories.

That chiral anomalies are an obstruction to
consistent gauge interactions can be established
within perturbation theory. A similar, but nonper-
turbative effect is seen in an SU(2) gauge theory with
N Weyl fermion (�5 =� ) SU(2) doublets, which
lead upon functional integration to det [��(@� þ
A�)]N=2. But because �4(SU(2)) = Z2, there exists a
single homotopy class of gauge transformations
which are not deformable to the identity. One
shows that the determinant changes sign when
such a gauge transformation is performed. Thus,
the theory is ill-defined for odd N. Consistent SU(2)
gauge theories must possess an even number of Weyl
fermion doublets, but such models have not found a
place in physical theory.
Adding Bosons

Instantons are finite-action solutions to classical
equations continued to imaginary time; they provide
a semiclassical description of quantum-mechanical
tunneling. A field theory may also possess finite-
energy, time-independent (static) solutions to the
real-time equations of motion. When these solutions
are stable for topological reasons, they are called
‘‘solitons.’’ Solitons give semiclassical evidence for
the existence in the quantum field theory of a
particle sector disjoint from the particles obtained
by quantizing field fluctuations around the vacuum
state. The soliton particles are heavy for weak
coupling g. (Their energy is O(1=g2); the field
profiles are O(1=g).) They do not decay owing to
the conservation of ‘‘charges’’ that do not arise from
Noether’s theorem but are topological.

Yang–Mills theory does not possess soliton solu-
tions (except in five-dimensional spacetime, where
the static solitons are just the four-dimensional
instantons discussed previously). However, when a
gauge theory, based on a simple group is coupled to
a scalar field that undergoes symmetry breaking to
U(1), soliton solutions exist. These are the ‘t Hooft–
Polyakov magnetic monopoles, found in a SU(2)
gauge theory with scalar fields in the adjoint
representation, as well as various generalizations.
The topological consideration that arises here con-
cerns finite energy of the static, scalar field multiplet
’, which in the Weyl gauge is

Eð’Þ ¼
Z

d3x jðD’Þa � ðD’Þaj2 þ Vð’Þ
	 


½49�

V is non-negative and possesses non trivial symmetry
breaking zeroes. On the sphere S2 at spatial infinity,
’ must tend to such a zero. Thus, the fields belong
to G=H, where G is the gauge group and H the
unbroken subgroup. For the ‘t Hooft–Polyakov
monopole these are SU(2) and U(1), respectively,
and the scalar field provides a mapping of the sphere
at infinity S2 to S2 � SU(2)=U(1).

One now considers �2(S2) = �2(SU(2)=U(1)) =
�1(U(1)) = Z, and one shows that the magnetic
flux is determined by the winding number. Hence,
the magnetic charge is quantized. Explicitly, the
electromagnetic U(1) gauge field is given by

f��� ’̂a 	Fa
�� � "abc’̂

aðD�’̂ÞbðD�’̂Þc

¼ @�a� � @�a�
a� � ’̂aAa

� � cos	@�


½50�
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where ’̂a is the unit isovector, parametrized as
’̂a = ( sin	 cos 
, sin	 sin 
, cos	). The manifestly
conserved magnetic current

j�m ¼ @�	f �� ½51a�

is rearranged to read

j�m ¼ �1
2"
�	
�"abc@	’̂

a@
’̂
b@�’̂

c ½51b�

and is nonvanishing because ’a possesses zeroes,
where @	’̂

a acquires localized singularities. The
magnetic charge

m ¼ � 1

4�

Z
d3x j0m ¼

1

4�

Z
d3x � � b ½52�

(bi = U(1) magnetic field: � 1
2 "

ijkfjk = 	f i0) is given by
the topological entity (Kronecker index of the
mapping)

m ¼ 1

8�

Z
d3x "ijk"abc@i’̂

a@j’̂
b@k’̂

c

¼ 1

8�

Z
dSi "ijk"abc’̂

a@j’̂
b@k’̂

c

¼� 1

4�

Z
dSi "ijk@j cos	@k
 ½53�

which readily evaluates the integer winding number.
The theory also supports charged magnetic mono-

pole solutions called ‘‘dyons.’’ Here the profiles
involve time-periodic gauge potentials, where the
time variation is just a gauge transformation
@tA� = D��. (Gauge-equivalent, static expressions
have slow large-distance fall-off, which is removed
by the time-dependent gauge function.) For dyons,
the integer valued Chern–Pontryagin index, with the
integration taken over all space and in time over the
dyon period, reproduces the magnetic monopole
strength.

Regrettably, these fascinating structures are not
found in nature. Nor do they arise in the standard
model, whose structure group is not simple,
although speculative grand unified models, with
simple G and H = SU(3)� U(1), would support
magnetic monopoles and dyons. While challenged
physically, the magnetic monopole phenomena have
produced extensive and interesting mathematical
analysis.
Gauge Theories in Two Dimensions

Two-dimensional gauge theories have only a few
physical applications; edge states of the planar
quantum Hall effect can be described by excitations
moving on a line. However, the abelian model with
fermions is useful in that it provides a very accurate
reflection of topological behavior in the physically
important four-dimensional theory.
Abelian Gauge Theory

Take the spatial interval to be [�L, L]. Homotopi-
cally nontrivial gauge transformations satisfy �(L)�
�(�L) = 2�n (�1Uð1Þ= Z). States �(A) of the free
gauge theory that satisfy Gauss’ law and respond
with a �-angle are

�ðAÞ ¼ exp
i�

2�

Z
dx A

�ðAþ @�Þ ¼ ein��ðAÞ
½54�

In this model, � has the interpretation of a constant
background electric field E= ��=2�,

E�ðAÞ¼ E�ðAÞ; E � F01

i
�

�A
�ðAÞ¼ � �

2�
�ðAÞ

½55�

This also gives the energy eigenvalue:

1

2

Z
dx E2�ðAÞ ¼ 1

2

Z
dx E2�ðAÞ ½56�

The phase may be removed by adding to the
Lagrangian �(�=2�)

R
dx @tA; equivalently, the

action becomes

Iquantum
EM ¼

Z
d2x � 1

4
F��F�� þ

�

4�
"��F��

� �
½57a�

which apart from a constant is also given by a
formula with the background field:

Iquantum
EM ¼ 1

2

Z
dxðEþ EÞ2 ½57b�

Because of gauge invariance, there is only one state,
annihilated by E and carrying energy 1

2

R
dx E2.

Distinct � (different E) correspond to distinct
theories.

We recognize in [57a] the two-dimensional
Chern–Pontryagin density, contributing a total
derivative to the action,

P ¼ 1

4�

Z
d2x "��F�� ½58�

the Chern–Simons current, whose divergence is P,

K� ¼ 1

2�
"��A� ½59�

and the Chern–Simons term, which carries the phase
of � Z

dx K0 ¼ 1

2�

Z
dx A ½60�
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For Euclidean-space gauge potentials, which are
given at large distance by the pure gauge
2�n tan�1 y=x, P= n. All this is just as in the four-
dimensional theory, except there are no instantons
and no tunneling.

Adding Fermions

The addition of massless fermions to the U(1) gauge
theory results in the Schwinger model of massless
quantum electrodynamics in two-dimensional space-
time. The equation of motion becomes

@�F�� ¼ J� ½61�

with the vector current constructed from the Dirac
fields as J� = � �� . This current remains conserved
in the quantized version because it couples to the
gauge field. But the axial vector current j�5 = � ���5 
acquires an anomaly that involves the Chern–
Pontryagin density in [58],

@�j�5 ¼
1

2�
"��F�� ½62�

The model is readily solved, and shows no �-angle
(background field) dependence in physical quanti-
ties. The solution is directly obtained by combining
[61] with [62] into a second-order differential
equation and using the matrix identity of two-
dimensional Dirac (= Pauli) matrices: "�����5 = ��.
It follows that

&þ 1

�

� �
E ¼ 0 ½63�

So the theory describes a free massive photon (mass
squared = 1=� in units of �h and the coupling
constant, which have been scaled to unity), with no
sign of a �-angle (background field).

However, in parallel with four-dimensional beha-
vior, the model with massive fermions regains a �
dependence in the particles’ energy spectrum; a
result that is established perturbatively, because a
complete solution is not available.

Note that in the Schwinger model, the gauge
particle (‘‘photon’’) acquires a mass, even though
local gauge invariance is preserved. This happens
essentially for topological/anomaly reasons. Such
topological mass generation is met again in three
dimensions.

Adding Bosons

Scalar electrodynamics with a negative mass squared
term in (3þ 1)-dimensional spacetime leads to the
Higgs mechanism and short-range interactions due
to the massive photons. In (1þ 1) spacetime dimen-
sions, the model possesses instantons – scalar and
gauge field profiles that solve the imaginary-time
equations of motion – labeled by �1(U(1)) = Z.
These disorder the Higgs condensate so that the
force between charged particles remains long-range,
like in the positive mass-squared case. This is a vivid
example of how excitations arising from nontrivial
topological issues significantly effect physical
content.
Gauge Theories in Three Dimensions

Gauge theories on three-dimensional spacetime, that
is, evolving on a plane, have physical application to
planar phenomena, like the quantum Hall effect.
Also, the high-temperature limit of four-dimensional
field theories is governed by the corresponding field
theory in three Euclidean dimensions.

In three (more generally, odd) dimensions, there
are no Chern–Pontryagin quantities, no Chern–
Simon currents, no axial vector currents or anoma-
lies (there is no �5 matrix). These are replaced by
odd-dimensional entities that can modify Yang–
Mills dynamics.

Yang–Mills and Other Gauge Theories

Using the three-index Levi-Civita tensor, one can
construct a gauge-covariant, covariantly conserved
vector, which can be added to the Yang–Mills
equation. Thus, [14] can be modified to

D�F�� þm

2
"�	
F	
 ¼ J� ½64a�

or, equivalently, in terms of the dual-field strength
	F� � 1

2 "
�	
F	
,

"��	D�
	F	 þm	F� ¼ J� ½64b�

For dimensional balance, m carries dimension of
mass. Indeed, in the source-free case [64] implies

ðD	D	 þm2Þ	F� ¼ "�	
½	F	; 	F
� ½65�

This shows that excitations are massive, even
though local gauge invariance is preserved. Other-
wise, as in the Dirac monopole case, the equations
of motion are unexceptional.

However, for the quantum theory we need the
action, whose variation produces the mass term in
[64]. This is just the Chern–Simons term W(A) in
[37], multiplied by �8�2m and now defined on
(2þ 1)-dimensional spacetime:

ICS ¼ 2m

Z
d3x "	
�tr 1

2A	@
A� þ 1
3A	A
A�

� �
½66�

Everything holds also in the abelian theory; the last
term in [66] is then absent.
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In this model, the mass is generated by a
topological mechanism since ICS possesses the usual
attributes for a topological entity: it is diffeomor-
phisms invariant without a metric tensor; when
the potentials are appropriately parametrized, it is
given by a surface term. (In the abelian case,
the appropriate parametrization is in terms of
Clebsch decomposition, A� = @��þ 	@�
.) Most
importantly, in the nonabelian theory [66] changes
by 8�2mn with three-dimensional gauge transforma-
tions carrying winding number n. Hence, for
consistency of the nonabelian quantum theory, m
must be quantized as n=4� (in units of �h and the
coupling constant, which have been scaled to unity).
All this is a clear field-theoretic analog to the
quantum mechanics of the Dirac monopole, and
just as for the magnetic monopole, a Hamiltonian
argument for quantizing m can be constructed, as an
alternative to the above action-based derivation.

The time component of [64] relates the electric
and magnetic fields to the charge density:

D � E�mB ¼ 
 ½67�

In the abelian case, the first term involves a total
derivative and its spatial integral vanishes, leaving a
formula that identifies magnetic flux with a total
charge. At low energy, the mass term dominates the
conventional kinetic term in [64], and the flux–
charge relation becomes a local field-current
identity,

m	F� � J� ½68�

These formulas have made Chern–Simons-modified
gauge theories relevant to issues in condensed matter
physics, for example, the quantum Hall effect. In the
abelian case, m need not be quantized.
Adding Fermions

Three-dimensional Dirac matrices are minimally rea-
lized by 2� 2 Pauli matrices. As a consequence, a mass
term is not parity invariant; also, there is no �5 matrix,
since the product of the three Dirac (= Pauli) matrices
is proportional to I. While there are no chiral
anomalies, there is the so-called parity anomaly:
integrating a single doublet of massless SU(2) fermions
one obtains �(A) � det[��(i@� þ A�)], which should
preserve parity and gauge invariance.

Since there are no anomalies in current divergences,
�(A) is certainly invariant against infinitesimal gauge
transformations. But for finite gauge transformations
(categorized by �3(SU(2) = Z) one finds that �(A) is
not invariant: when the gauge transformation belongs
to an odd-numbered homotopy class, �(A) changes
sign. To regain gauge invariance, one must either work
with an even number of fermion doublets or, if only
one doublet (more generally, odd number) is to be
used, one must add to the gauge Lagrangian a parity-
violating Chern–Simons term with half the correctly
quantized coefficient, to neutralize the gauge non-
invariance of �(A).

Alternatively, �(A) can be regularized in a
gauge-invariant manner. But this requires massive,
Pauli–Villars regulator fields, which produce a parity-
violating expression for �(A). One cannot avoid the
parity anomaly.

Adding Bosons

There are a variety of bosonic field models that one
may consider: Abelian or nonabelian; with conven-
tional kinetic term or supplemented by the Chern–
Simons topological mass; or, for low energy, no kinetic
term but only the Chern–Simons term, as in [68].
Abelian charged Bose fields in a Maxwell theory lead
to vortex solitons, based on �1(U(1)) = Z. These are
just the instantons of the (1þ 1)-dimensional bosonic
gauge theory discussed previously. With Maxwell
kinematics there are no charged vortices, but these
appear when the Chen–Simons mass is added; see [67].
Pure Chern–Simons kinematics, with no Maxwell
term, can produce completely integrable soliton
equations (Liouville, Toda) when the Bose field
dynamics is appropriately chosen.
Conclusion

Topological effects in field theory are associated with
the infinities and regularization that beset quantum
field theories. These give rise to the chiral anomaly,
parity anomaly (and scale symmetry anomalies, not
discussed here). Yet the anomalies themselves are finite
quantities that have topological significance (Atiyah–
Singer, Chern–Pontryagin, Chern–Simons). This para-
doxical pairing has not been understood. Nor can we
explain why the anomalies interfere in a topological
manner with symmetries associated with masslessness.

Although the range of topological effects in gauge
theory is large, and even larger in non-gauge theories
(sigma models, Skyrme models) the relevance to actual
fundamental physics is confined to the �-angle phe-
nomenon, which is analyzed accurately and abstractly
by reference to �3(G) and to the interplay with
fermions through the chiral anomaly. Instantons are
relevant only to an approximate, semiclassical discus-
sion. Although after much mathematical work, general
instanton configurations are well understood, only the
1-instanton solution enjoys physical significance.

Other topological entities that fascinate are either
nonexistent in fundamental physics or are relevant to
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condensed matter physics (vortices, Chern–Simons
effects). But here too, we note that the funda-
mental equation of condensed matter physics – the
many-body Schrödinger equation – carries no evident
topological structure. Only the phenomenological
equations, which replace the fundamental one, give
rise to topological intricacies.
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Introduction

Quantum mechanics was born at the beginning of the
twentieth century with the quantization rules for the
harmonic oscillator and for the hydrogen atom. Such
rules were almost immediately extended to more
general systems by the so-called Bohr–Sommerfeld
quantization rule: ‘‘the actions of the classical system
can assume only those values which are integer
multiples of �h.’’ However, the actions are defined
only in some special situations and, moreover, at the
present time the Schrödinger equation is the paradigm
of quantum mechanics. A question naturally arises: is
there any relation between the eigenvalues of the
Schrödinger operator and the numbers obtained by
Bohr–Sommerfeld quantization rule (when available)?

According to common wisdom, the ‘‘Bohr–
Sommerfeld numbers’’ are a first approximation to the
eigenvalues of the Schrödinger operator in the so-called
semiclassical limit. However, precise mathematical
results on the subject were obtained only in the 1980s
and a good understanding of the problem has been
achieved only recently. In particular it is now clear how
to compute higher-order corrections to the eigenvalues:
this is done through suitable normal form procedures.

In the present article we will discuss the above
questions for the case of perturbed harmonic
oscillators, a case which, on the one hand, is
physically relevant and, on the other, is well under-
stood. We will only briefly discuss the quantization
of perturbations of integrable systems.
A Statement

On L2(Rn), consider the Schrödinger operator

Ĥ ¼ � �h2

2
�þ V ½1�

where � is the n-dimensional Laplacian and V is a
smooth real potential having an absolute nonde-
generate minimum at the origin. We are interested in
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the eigenvalues of [1] close to zero. Introduce
coordinates adapted to the normal modes, namely
such that

VðxÞ ¼
Xn

i¼1

!2
i x2

i

2
þOðkxk3Þ

Assume

(H1) Nonresonance: There exist � > 0 and � 2 R
such that, for any k 2 Zn � {0} one has

j! � kj � �

jkj� ½2�

(H2) V(x) > 0 for x 6¼ 0, and

lim inf
jxj!1

VðxÞ > 0

(H3) V 2 C1(Rn) and for any r � 0 there exists Cr

such that

@j�jV

@x�
ðxÞ

���� ���� � Cj�jhxim; 8� 2 Nn

where we used the notation hxi := ð1þ kxk2Þ1=2.

Theorem 1 Assume that (H1)–(H3) hold. Then, for
any positive N, M there exist positive constants
hN, M, �N, M, C1

N, M, C2
N, M, and a smooth function

ZN;MðI1; . . . ; In; �hÞ

such that, 80 < � � �N, M and 0 < �h � �hN, M�, the
eigenvalues of [1] in [0, �) have the representation

�k ¼ kþ 1
2

� �
� !�hþ ZN;M kþ 1

2

� �
�h; �h

� �
þ RNMðk; �hÞ; k 2 Nn; kj � 1 ½3�

where

jRNMðk; �hÞj � C1
N;M�

N þ C2
N;M

�h

�

� �M

More precisely, for any k 2 Nn such that

kþ 1
2

� �
� !�hþZN;M kþ 1

2

� �
�h; �h

� �
2 ½0; �Þ ½4�

there exists an eigenvalue �k 2 [0, �) for which [3]
holds, and vice versa, for any eigenvalue in [0, �)
there exists a k satisfying [3] and [4]. The function
ZN, M(I1, . . . , In; 0) coincides with the classical
Birkhoff normal form of the system computed up
to order N.

The proof of the theorem is constructive, in the
sense that it provides an algorithm allowing to
construct explicitly, by elementary operations, the
function ZN, M. One could choose �= �(�h) = �h� with
some positive � < 1, obtaining a simpler statement
valid for the eigenvalues in [0, �h�). It is also possible
to weaken the nonresonance condition (H1) to the
condition ! � k 6¼ 0 for k 2 Zn � {0}.

A theorem very close to [1] was proved by
Sjöstrand (1992) by a method different from the
one that will be presented here (see also Graffi and
Paul (1987)). In the analytic or Gevrey case (recall
that a C1 function f(x) is Gevrey in some domain if
there exist constants C,� such that, for all multi-
indexes � 2 Nn one has

@j�jf

@x�

���� ���� � Cj�jð�!Þ�

in the whole domain), the error can be reduced to be
exponentially small with the parameters (Bambusi
et al. 1999). Previous results dealing with compact
perturbations of the harmonic oscillator were
obtained by Bellissard and Vittot (1990). It is
possible to deal also with the resonant case in
which (H1) is violated. In this case the spectrum of
the complete system is qualitatively different from
the spectrum of the harmonic one. As discussed
later, the normal form allows one to compute the
main qualitative differences.
Birkhoff Normal Form

In this section we recall the procedure leading to
classical Birkhoff normal form, whose quantization
leads to the proof of Theorem 5.
Birkhoff’s Theorem

The operator [1] is the quantization of the classical
Hamiltonian Xn

i¼1

	2
i

2
þ VðxÞ ½5�

Denote

H0ð	; xÞ :¼
Xn

j¼1

!jIj; Ij :¼
	2

j þ !2
j x2

j

2!j
½6�

then we have

Theorem 2 For any positive integer N � 2 there
exist a neighborhood UN of the origin and a
canonical transformation T N : R2n � UN ! R2n

which puts the system [5] in Birkhoff normal form
up to order N, namely such that

H � T N ¼ H0 þ ZN þ RN ½7�



580 Normal Forms and Semiclassical Approximation
where ZN Poisson-commutes with H0, namely
{H0; ZN} 	 0 and RN is small, that is,

jRNð	; xÞj � CNkð	; xÞkNþ1 ½8�

Moreover, if the frequencies are nonresonant, namely

! � k 6¼ 0; 8k 2 Znnf0g ½9�

the function ZN depends on the actions Ij only. We
recall that the Poisson bracket of two functions f
and g is defined by

ff ; gg :¼
Xn

j¼1

@f

@	j

@g

@xj
� @f

@xj

@g

@	j

� �
¼ �fg; fg

and coincides with the Lie derivative of g with
respect to the Hamiltonian vector field of f.

Remark 1 In the case where the frequencies fulfill
(H1) and the potential V is analytic (or of Gevrey
class) the remainder can be reduced to be exponen-
tially small with k(	, x)k.
Scheme of the Proof

Make the rescaling 	= �	0, x = �x0. In terms of the
primed variables, the Hamiltonian of the system [5]
takes the form

H�ð	0; x0Þ ¼ H0ð	0; x0Þ þ �Wðx0Þ ½10�

with

Wðx0Þ :¼
Vð�x0Þ � �2

Pn
j¼1 !

2
j ðx0jÞ

2=2

�3

¼W3ðx0Þ þ �W4ðx0Þ þ � � � ½11�

and Wl is the Taylor polynomial of order l of V. In
what follows we will omit primes from the scaled
variables.

Given an auxiliary Hamiltonian 
3, denote by �3
t

the flow of the corresponding Hamiltonian vector
field. We construct 
3 so that H� � �3

� is in normal
form up to order �2.

Remark 2 Given a C1 function g one has g � �3
� 
P1

l = 0 �
lgl, with

g0 :¼ g; gl ¼
1

l
f
3; gl�1g; l � 1 ½12�

where 
 denotes the fact that the left-hand side is
asymptotic to the right-hand side (a precise defini-
tion appears later in the article). If both g and 
3 are
analytic then the series of g � �3

� can be shown to
converge in a neighborhood of the origin. Using [12]
to compute H� � �3

� , we get

H� � �3
� ¼ H0 þ �½W3 þ f
3; H0g� þOð�2Þ
So H� � �3
� is in normal form up to O(�2) provided


3 fulfills the so-called homological equation:

W3 þ f
3; H0g ¼ Z3 ½13�

where the unknown function Z3 has to be in normal
form. Note that, since the operator


 7! f
; H0g

maps linearly polynomials of degree l into poly-
nomials of degree l, eqn [13] can be interpreted
as a linear equation in the finite-dimensional space
of polynomials of degree 3 in the phase-space
variables.

Lemma 1 The homological equation [13] admits a
solution (
3, Z3).

Proof Introduce the canonical coordinates (�, �) by

�j :¼ 1ffiffiffi
2
p 	jffiffiffiffiffi

!j
p þ ixj

ffiffiffiffiffi
!j
p

 !

�j :¼ 1

i
ffiffiffi
2
p 	jffiffiffiffiffi

!j
p � ixj

ffiffiffiffiffi
!j
p

 ! ½14�

In these variables the unperturbed Hamiltonian H0

reads H0 =
P

j�1 i!j�j�j and W3 is transformed in a
different polynomial, again of third order.
The important fact is that in these coordinates the
eigenvectors of the linear operator {H0; .} are the
monomials

�k�l 	 �k1

1 � � � �
kn
n �

l1
1 � � � �

ln
n

Indeed, one has {H0; �k�l} = i! � (k� l)�k�l. As a
consequence, writing

W3ð�; �Þ ¼
X
k; l

Ck; l�
k�l

one can define the resonant set

R :¼ fðk; lÞ : ! � ðk� lÞ ¼ 0g

and

Z3ð�; �Þ :¼
X

k; l2R
Ck;l�

k�l


3ð�; �Þ :¼
X

k; l 62R

Ck;l

i! � ðk� lÞ �
k�l

½15�

Going back to the original variables, one has the
solution of the homological equation. &

Definition 1 The function Z3 solving [13] will be
called the resonant part of W3 and will be denoted
by hW3i.
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Using the function 
3, one can transform the
Hamiltonian to the form

H0 þ �Z3 þ �2R3

Remark 3 Equation [12] allows to construct
directly the Taylor expansion of R3 in terms of the
Taylor expansion of W and of its Poisson brackets
with 
3.

Iterating the construction (which however slightly
changes due to the presence of Z3), one gets the
proof of Theorem 2.

Remark 4 In the nonresonant case ! � (k� l) = 0
implies that k = l; therefore, the resonant part of a
polynomial is the sum of monomials of the form

�k�k ¼ Ik1

1 � � � I
kn
n

that is, it is a function of the actions only. Moreover,
in this case one has Z3 = 0, while in general Z4 6¼ 0.
Some Symbolic Calculus

To understand how to quantize the procedure of
Birkhoff normal form, we consider the classical–
quantum correspondence. It is well known that
there are different procedures in order to associate
an operator with a classical observable. Here we
concentrate on the Weyl quantization rule.

To a function f 2 S(R2n) (Schwartz class), we
associate an operator f̂ acting on functions  2
S(Rn), which is defined by

½f̂ �ðxÞ :¼ 1

ð2
�hÞn
Z

Rn�Rn
f

xþ y

2
; 	

� �
� e

iðx�yÞ�	
�h  ðyÞ dy d	 ½16�

Definition 2 The operator [16] is called the Weyl
quantization of f and in turn f is called the symbol of f̂.

Using the method of oscillatory integrals, the
Weyl quantization rule can be extended to much
more general observables f. We recall that, roughly
speaking, the method of oscillatory integrals consists
in giving meaning to a formal expression of the form
[16] by using successive integration by parts (see,
e.g., Martinez (2001)).

Definition 3 A function f 2 C1(R2n) will be called
a smooth symbol of class S(hzim) if, for any r � 0,
there exists Cr such that

@j�jf

@z�
ðzÞ

���� ���� � Cj�jhzim; 8� 2 N2n

Where hzi is as defined earlier.
It is useful to extend such a definition to functions
explicitly depending also on �h. This can be done in a
straightforward way by asking the constants Cr to
be independent of �h in a neighborhood of the origin.
Different classes of symbols can also be defined, but
for our purpose this class is enough.

Theorem 3 Let f 2 S(hzim), m 2 R, and  2 S(Rn);
then the formal expression [16] is a well-defined
oscillatory integral.

Example 1 Under Weyl quantization rule, one has

	̂j ¼ i�h@xj ; x̂j ¼ xj ðmultiplication operatorÞd	jxj ¼ 1
2 ð	̂jx̂j þ x̂j	̂jÞ

Definition 4 A sequence (fj)j�0 with fj 2 S(hzim)
will be called the asymptotic expansion of f 2
S(hzim) if, for any integer N, there exist two positive
constants CN, �hN such that

f ¼
XN
j¼0

�hjfj þ RN

with jRN(z, �h)j � CN�hNþ1hzim, and �h 2 (0, �hN).

The key point for the quantization of the normal
form procedure is the following.

Theorem 4 Let f 2 S(hzim1 ) and g 2 S(hzim2 ); then
there exists a unique F 2 S(hzim1þm2 ) such that

F̂ ¼ f̂ ĝ ðoperator product!Þ

moreover, one has

F ¼ exp
i�h

2
ð@x � @� � @y � @	Þ

� �
� ðf ðx; 	Þgðy; �ÞÞjy¼x; �¼	 ½17�

Finally, F admits an asymptotic expansion in �h
which coincides with the formal expansion of [17].

The proof is obtained by using eqn [16] to
write down an expression for f̂ĝ and obtain a
formula for F. Then, one shows that the formula
is well defined and therefore the result is not
formal.

Definition 5 In the above context, the symbol G of

i

�h
f̂ ; ĝ
h i

¼: Ĝ

will be called the ‘‘Moyal bracket’’ of f and g and
will be denoted by {f ; g}M.

By formula [17], one has in particular

ff ; ggM ¼ ff ; gg þ �h2�1ðf ; gÞ þOð�h4Þ ½18�
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where

�1ðf ; gÞ ¼ �
1

24

@3f

@	3

@3g

@x3
� 3

@3f

@	2@x

@3g

@x2@	

�
þ 3

@3f

@	@x2

@3g

@x@	2
� @

3f

@x3

@3g

@	3

�
where we used a vector notation for the derivatives.
If either f or g are polynomials of degree �2, then

ff ; ggM ¼ ff ; gg ½19�

Given a self-adjoint operator A and a smooth
function G : R ! R, it is well known how to
define by spectral theorem the operator G(A).
Suppose now that A = f̂ for some symbol f. In
general, one has G(f̂) 6¼ dG � f . However, by sym-
bolic calculus (i.e., using eqn [17]), one has:

Lemma 2 Denote Ij(x, 	) = (!2
j x2

j þ 	2
j )=2!j. Then,

for any positive integer k there exists a function
Fk(Ij, �h) such that

dðIjÞk ¼ FkðÎj; �hÞ

where the right-hand side is defined by spectral
calculus. Moreover, Fk can be computed explicitly
by the recursion formula Fkþ1 = IjFkþ
Fk�1�h2(k2 � kþ 1)=4.

As a consequence of this fact and of the fact that
[Îj, Îl] = 0, one has that the Weyl quantization of a
polynomial function of the actions is a function of
the action operators.
Semiclassical Normal Form

Let 
 be a smooth symbol such that 
̂ is self-adjoint,
and consider the group of unitary operators
X� : = exp ((i�=�h)
̂). Let g be a smooth symbol;
apply the unitary transformation X� to ĝ, namely
compute X�ĝX�1

� . Noting that (on a suitable domain)

d

d�
ðX�ĝX�1

� Þ ¼ X�
i

�h
½
̂; ĝ�X�1

�

one has (formally!) the expansion of X�ĝX�1
� in �:

X�ĝX�1
� ¼

X
l�0

�ldgq; l

where

dgq; 0 :¼ ĝ; dgq; l ¼
1

l

i

�h
½
̂; dgq; l�1�; l � 1 ½20�

(Such a series can be interpreted as an asymptotic
expansion provided one restricts the domain at each
step of the approximation.) Equivalently, the symbol
of X�ĝX�1

� is formally given by
P

l �lgq, l with

gq; 0 :¼ g; gq; l :¼ 1

l
f
; gq; l�1gM; l � 1 ½21�

from which one sees a remarkable similitude with
the classical equation. Moreover, [21] converges to
[12] when �h! 0.

Applying the unitary transformation generated by

̂ to the Hamiltonian operator Ĥ� (cf. eqn [10]), one
has X�Ĥ�X

�1
� = cH1

q with

H1
q ¼ H0 þ �½W3 þ f
; H0gM� þOð�2Þ ½22�

	 H0 þ �½W3 þ f
; H0g� þOð�2Þ ½23�

where we used the fact that H0 is a quadratic
polynomial, so that [19] holds. It is thus clear that
Lemma 1 allows to solve also the quantum homo-
logical equation appearing in this context and to
determine the symbol of the operator generating the
unitary transformation putting the Hamiltonian opera-
tor in normal form up to corrections of order �2.
Moreover, one can compute in terms of Moyal
brackets (of polynomials!) the expansion of the symbol
of the new remainder and of the normal form. Iterating
the construction, one generates a well-defined semi-
classical normal form of the quantum system.

Example 2 Denote by Zq, l, l = 1, 2 . . . , the term
added to the semiclassical normal form at the lth
step of the iterative construction. Explicitly, the first
terms are given by

Zq;1 ¼ W3h i ¼ Z3 ½24�

Zq;2 ¼ W4h i þ 1
2 f
3; W3gM

� 	
þ 1

2 f
3; Z3gM

� 	
½25�

Zq; 3 ¼ W5h i þ f
4; Z3gM

� 	
þ 1

3 f
3; H2gM

� 	
þ 1

2 f
3; W3;1gM

� 	
þ f
3; W4gM

� 	
½26�

where, according to Definition 1, h . i is the resonant
part of its argument, 
j is (formally) the symbol of
the operator generating the jth unitary transforma-
tion, and

H2 :¼ 1
2f
3; Z3 �W3gM; W3;1 :¼ f
3; W3gM

Note that all the Moyal brackets involved contain
polynomials of degree at most 4, so that they can be
computed exactly using formula [18] which in this
case does not contain corrections of order �h4.

The problem in making previous construction
rigorous is that all the series involved are in general
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divergent. Moreover, it is not possible to show that
the remainders appearing when truncating such
series are small in a reasonable sense. Nevertheless,
it is possible, using the tools of microlocal analysis,
to show that the semiclassical normal form contains
essentially all the information on the part of the
spectrum close to zero.

The precise relation between the spectrum of
the original Hamiltonian and the spectrum of the
semiclassical normal form is captured by the
following definition.

Let H1(�, �h), H2(�, �h) be two families of self-adjoint
operators; set Spec�(H1, 2) := Spec(H1, 2) \ [0, �).

Definition 6 We say that

Spec�ðH1Þ ¼ Spec�ðH2Þmodð�1 þ ð�h=�Þ1Þ

if for any N, M > 0 there exist C1
N, M and C2

N, M such
that for any �1 2 Spec�(H1) there exists �2 2
Spec�(H2) such that �1 =�2 þ RN, M with

jRNj � C1
N;M�

N þ C2
N;Mð�h=�Þ

M ½27�

and conversely. Equation [27] has to hold for any
couple (�h, �) with � and (�h=�) small enough.

Theorem 5 Assume (H2) and (H3); assume also:
(H10) There exist � > 0 and � 2 R such that, for any
k 2 Zn, one has

either ! � k ¼ 0 or j! � kj � �

jkj� ½28�

Then there exists a polynomial function Zq such
that one has

Spec�ðĤÞ

¼ Spec�ðĤ0 þ cZqÞmod �1 þ �h

�

� �1� �
½29�

The polynomial Zq coincides with the semiclassical
normal form defined at the beginning of the
section.

Scheme of the proof It consists of six steps.
(1) Make the unitary transformation (U )(x) :=
�n=4 (�1=2x) which transforms the Hamiltonian
operator [1] into the Weyl quantized of
�H� := �(H0 þ �1=2W), but a Weyl quantization
where �h is substituted by �h0 := �h=�. (2) Make a cutoff
of H�, namely, fix R and consider a smooth function
t such that t(s) 	 1 for jsj � R, t(s) 	 0 for jsj � 2R,
define a(x, 	) := W(x)t(k(	, x)k). (3) Compare the
spectrum of the Hamiltonian Ĥ� with the spectrum
of Ht := H0 þ �a. By microlocal analysis, one has
that, in any fixed bounded interval such spectra
coincide modulo �h1 (see, e.g., Martinez (2001)).
(4) Rescale back the variables, namely apply the
transformation U�1

� to Ht. (5) Apply the normal
form algorithm to the so-obtained Hamiltonian
showing that all the series involved are convergent
in suitable norms. (6) Use again microlocal analysis to
show that the spectrum of the semiclassical normal
form coincides with the spectrum of the normalized
operator with compactly supported symbol. &

Remark 5 Fix an arbitrary 1 > � > 0 and link � to
�h by � := �h�. Then one obtains a simplified statement
according to which the spectrum of [1] in [0, �h�]
coincides modulo �h1 with the spectrum of Ĥ0 þ bZq

in the same interval.

Remark 6 In the case where the frequencies are
nonresonant one has that the symbol of the normal
form depends on the actions only. By Lemma 2 one
has that also the quantization of the normal form is
a function of the action operators only (explicitly
computable), and therefore the spectrum of the
normal form is given by a quantization formula as
claimed in Theorem 1.
The Resonant Case

In the case where the frequencies are nonresonant,
due to the particular structure of the normal form,
one obtains a very precise information on the
spectrum. In the case where there are some
resonances, the situation is more difficult. In order
to illustrate what happens we concentrate on the
completely resonant case, that is, the case where all
the frequencies are integer multiples of a single
fundamental frequency �.

In this case, the eigenvalues of Ĥ0 form a subset of
N�h� þ 1=2ð Þj!j�h and are degenerate. One expects the
nonlinear part to break such a degeneracy and to
transform each eigenvalue in a small band. One can use
the normal form to study the structure of the so-
obtained band. To this end, the most relevant contribu-
tion is due to the first nonvanishing term of the normal
form. For the sake of definiteness, we assume that this is
the term of order 4, namely Z4. Denote

N :¼ Z4

��
H�1

0
ð1Þ; BðEÞ 	 E� 1

3��h;Eþ 1
3��h


 �
Theorem 6 Fix 1 > �1 > 1=2, then, provided �h is
small enough, one has

SpecðĤÞ \ ð�h; �h�1Þ �
[

E2SpecðĤ0Þ

BðEÞ ½30�

Moreover, denote by

Eþ �1ðE; �hÞ � � � � � Eþ �mðE; �hÞ ½31�
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the eigenvalues of Ĥ in B(E) counted with multi-
plicity, then

�1ðE; �hÞ ¼ E2Min N þ E2ðOð�h=EÞ þOðE1=2ÞÞ ½32�

and similarly

E2�mðE; �hÞ ¼Max NþE2ðOð�h=EÞ þOðE1=2ÞÞ ½33�

This statement is due to Bambusi, Charles, and
Tagliaferro (see Bambusi 2004); for previous results,
see Vũ Ngo

_
c (1998).

Equation [30] shows that the spectrum has a band
structure, while eqns [32] and [33] allow one to
compute the minimum and the maximum of each band.

The idea of the proof is as follows. First forget high-
order terms of the normal form, whose effect is included
in the error terms. Then, due to the commutation
property of the normal form with Ĥ0, one has that Z4

restricts to an operator acting on the eigenspaces of Ĥ0.
On the classical side, one has that by Marsden–
Weinstein procedureZ4 defines a classical Hamiltonian
system on the manifold obtained by symplectic reduc-
tion of the original phase space. By the methods of
geometric quantization, it turns out that the quantum
operator acting on an eigenspace of Ĥ0 is a Toeplitz
operator whose principal symbol is exactly the above
reduced classical Hamiltonian. Then, the proof follows
by classical properties of Toeplitz operators.

We point out that results of this kind are useful in
the computation of the molecular spectra (Michel
and Zhilinskii 2001, Zhilinskii 2001).
Quantization of KAM Tori

In this section we present a result on the quantiza-
tion of KAM tori. It allows one to construct part of
the spectrum of a close-to-integrable system.

We recall that a classical Hamiltonian system with n
degrees of freedom is said to be integrable if it has n
integrals of motion independent and in involution. If the
energy surface is compact, then, by Arnol’d–Liouville
theorem there exists a canonical transformation T 0 :
Rn � Tn � D� Tn ! R2n introducing action-angle
variables, namely such that, denoting by K0 the original
integrable Hamiltonian, K0 � T 0 is independent of the
angles � 2 Tn. Here, D is an open bounded domain.

Consider now a close-to-integrable analytic
Hamiltonian system, namely a Hamiltonian system
with Hamiltonian

K ¼ K0 þ �K1

where � is a small parameter. We assume that,
denoting again by T 0 the canonical transformation
introducing action-angle variables for the system K0,
one has that both K0 � T 0 and K1 � T 0 are real
analytic on D� Tn. Then, the KAM theory applies.
To state the corresponding result, denote by D0 � D
a domain whose closure is contained in D.

Theorem 7 Assume that 8I 2 D one has

det
@2ðK0 � T 0Þ

@I2

� �
6¼ 0 ½34�

then there exists a positive constant �
 and, for any �
with j�j < �
, there exists a Gevrey canonical
transformation T � : D0 � Tn ! R2n and a Cantor
set D� � D0 with the following properties:

K � T � ¼ ZðIÞ þ RðI; �; �Þ ½35�

where R(I,�, �) vanishes at infinite order on D�, that is,
for any multi-index � there exists Cj�j such that one has

@j�jR

@ðI; �Þ� ðI; �; �Þ
���� ���� � Cj�j exp � c

jI �D�j�
� �

½36�

with a suitable � > 0 and jI �D�j denoting the
distance from D�. Moreover, as � tends to zero, the
measure of D� tends to the measure of D0.

A particular consequence is that the set D� is
foliated in invariant tori. From the proof, it also
turns out that the motion on each torus is
quasiperiodic with frequencies fulfilling the assump-
tion (H1) stated earlier. Moreover, the tori are
linearly stable and even more: they are stable in an
exponential sense (namely, a solution starting O(�)
close to a torus takes at least a time O( exp (c=��)) to
double its distance from the torus).

Quantizing the normalizing transformation T � by
using the theory of Fourier integral operators, one
can also put the quantum Hamiltonian in a suitable
normal form which allows to deduce some spectral
information on the system.

To fix ideas we restrict to the case where K is a
natural system, namely it has the form (3.1), and is
close to integrable in the above sense. Fix two
parameters E1 < E2; assume (1) that K�1([�1, E2 þ
�]) is compact for some positive � and (2) that the
domain D0 can be constructed in such a way that
T 0 : D0 � Tn ! K�1

0 ([E0, E1]) is a bijection and,
moreover, the KAM condition [34] holds. Denote
by � 2 Zn the Maslov class of the tori of K0 (see,
e.g., Lazutkin (1993)) and, having fixed some 0 <
� < 1, define the set of indexes

I :¼ k 2 Zn : jD� � �hðkþ �=4Þj � �h�f g ½37�

Theorem 8 There exist positive constants �h
, c, C,
and � < 1, and a function Kq : D0 � (0, �h
)! R
with the following property: for any k 2 I there
exists at least one eigenvalue of K̂ in the interval
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Zqð�hðkþ�=4Þ; �hÞ�Ce�c=�h� ;
h

Zqð�hðkþ�=4Þ; �hÞþCe�c=�h�
i

½38�

One can also show that a large part of the
spectrum is constructed in this way. This is obtained
by comparing the semiclassical estimate of the
number of eigenvalues in [E1, E2] to the number of
eigenvalues thus constructed.

Theorem 8 is due to Popov (2000); the quantiza-
tion of KAM tori was initiated by Lazutkin and
widely developed by Colin de Verdière, who obtained
a result similar to Theorem 8 for the case where K is
C1 and describes the geodesic flow on a compact
Riemannian manifold (Colin de Verdière 1977).

See also: Central Manifolds, Normal Forms;
h-Pseudodifferential Operators and Applications; Optical
Caustics; Quantum Mechanics: Foundations;
Schrödinger Operators; Stationary Phase Approximation.
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Bambusi D, Graffi S, and Paul T (1999) Normal forms and

quantization formulae. Communications in Mathematical
Physics 207: 173–195.

Bellissard J and Vittot M (1990) Heisenberg’s picture and

noncommutative geometry of the semiclassical limit in

quantum mechanics. Annales de l’Institut Henri Poincaré.
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Introduction

The present article relies heavily on Quantum
Mechanical Scattering Theory in this Encyclopedia
and can be considered as its continuation. We use
here freely the notation and results discussed in this
article.

An important problem of scattering theory con-
cerns the Schrödinger H operator of N, N � 3,
interacting particles. Since the potential energy of
pair interactions between particles depends on their
relative positions only, it does not tend to zero at
infinity in the configuration space of a system, even
if the center-of-mass motion is removed. This is
qualitatively different from the two-particle case.
It turns out that asymptotically (for large times
t!þ1 or t!�1) an N-particle system splits up
into clusters,

C1 [ � � � [ Cn ¼ f1; . . . ;Ng; Ck \ Cl ¼ ; if k 6¼ l ½1�
Particles from the same cluster Ck, k = 1, . . . , n, form
a bound state, and different clusters do not interact
with each other. In particular, if n = 1 and
C1 = {1, 2, . . . , N}, then we have a bound state of
the system. In another extreme case n = N, all
particles are free. The asymptotic evolution deter-
mined by clusters C1, . . . , Cn where n � 2, and bound
states of all these clusters is called a scattering
channel. Physically it is natural to expect that the list
of all such channels is exhaustive, that is, no other
scattering process is possible. This statement
is called asymptotic completeness.

We emphasize that an N-particle system may be in
different scattering states as t!þ1 and t!�1 and
different rearrangement processes are possible. For
example, a three-particle system may asymptotically
consist of free particles or a pair of particles may be in
a bound state, whereas the third particle may be
asymptotically free. If particles are free at both �1
and þ1, then one speaks about elastic scattering; we
have a capture if particles free at �1 form a bound
state of a couple after the interaction; an opposite
process, when a bound state at �1 gives three free
particles, is known as a breakup. It is also possible that
a bound state of one couple yields a bound state of
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another pair (a rearrangement) or a bound state of a
couple transforms into another bound state of the
same couple (an excitation). All these processes are
described by the scattering operator. On the contrary,
if the whole system forms a bound state at �1 (i.e.,
n = 1), then it remains in the same state for all t.

As far as monographic literature on N-particle
scattering is concerned, we mention Dereziński and
Gérard (1997), Faddeev (1965), Reed and Simon
(1979), and Yafaev (2000).
Setting the Scattering Problem

Let us recall the definition of the N-particle
Schrödinger operator (Hamiltonian)

H ¼ H0 þ V ½2�

If the configuration space of each particle is Rd, then
the operator H acts in the space L2(RdN). The operator
of kinetic energy (the ‘‘unperturbed’’ Hamiltonian) is

H0 ¼ �
XN
j¼1

ð2mjÞ�1�xj
½3�

where xj and mj are the position and mass of the
particle labeled by j. The operator of potential energy
of pair interactions of particles (the perturbation) V is
the operator of multiplication by the function

VðxÞ ¼
X
i<j

Vijðxj � xiÞ; i; j ¼ 1; . . . ;N ½4�

Set �= (ij), x� = xj � xi. It is assumed that the
functions V�(x�) tend to zero sufficiently rapidly as
jx�j!1 in Rd. However, the function V(x) 6! 0
as jxj!1 in RdN if at least one of the distances
jxi � xjj between particles remains bounded. This
difficulty is manifest even for two particles (N = 2),
but in this case it disappears if the motion of the
center of mass of the system is removed.

This means the following. Let the subspace Xcm of
RdN be distinguished by the condition

XN
j¼1

mjxj ¼ 0 ½5�

and let Xcm be the orthogonal complement to Xcm in
the space RdN endowed with the scalar product

hx; yi ¼ 2
XN
j¼1

mjhxj; yjiRd ½6�

Then

L2ðRdNÞ ¼ L2ðXcmÞ � L2ðXcmÞ
Denote by xcm, xcm the orthogonal projections of
x 2 RdN on the subspaces Xcm, Xcm, respectively, so
that x = (xcm, xcm). Clearly, the vector xcm has
components

xcm ¼M�1
XN
j¼1

mjxj; M ¼
XN
j¼1

mj

Let T(p), (T(p)f )(x1, . . . , xN) = f (x1 þ p, . . . , xN þ p),
be the operator of common translations of particles.
The operator H commutes with T(p), that is,
T(p)H = HT(p), for all p 2 Rd. It follows that

H ¼ K� I þ I �H; K ¼�ð2MÞ�1�xcm
½7�

where K is the kinetic energy operator of the center-
of-mass motion.

The operator

H ¼ H0 þ V ½8�

acts in the space H= L2(Xcm). Here V is again the
operator of multiplication by function [4]. The
precise form of the differential operator H0 depends
on the choice of coordinates in Xcm. For example, if
N = 2 and x = x2 � x1, then H0 =�(2m)�1�x where
m = m1m2(m1 þm2)�1. In the case N = 3, a natural
choice of coordinates in Xcm is given by one of the
three sets of Jacobi variables:

x12 ¼ x2 � x1

x12 ¼ x3 � ðm1 þm2Þ�1ðm1x1 þm2x2Þ

and similarly for x13, x13 and x23, x23. In coordinates
x�, x� the operator of kinetic energy is determined
by the formula

H0 ¼ �ð2m�Þ�1�x� � ð2m�Þ�1�x�

where, for example,

ðm12Þ�1 ¼ m�1
1 þm�1

2 ; m�1
12 ¼ ðm1 þm2Þ�1 þm�1

3

If N = 2, then V(x)! 0 as jxj!1, x 2 Xcm, but this
is no longer true for N � 3. According to eqn [7] the
spectral and scattering theories for the operator H
reduce to those for the operator H. However, for
N � 3, this reduction is not really helpful.

Let us now consider a breakup a = {C1, . . . , Cn}
of an N-particle system into clusters C1, . . . , Cn,
1 � n =: #(a) � N satisfying conditions [1]. If
interactions between different clusters are neglected,
we obtain the operator

Ha ¼ H0 þ Va; Va ¼
Xn

l¼1

X
�2Cl

V� ½9�

In particular, Ha = H0 if #(a) = N and Ha = H if
#(a) = 1. Let the operator of common translations
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of particles from the same cluster be defined by the
equation

ðTaðp1; . . . ; pnÞf Þðx1; . . . ; xNÞ ¼ f ðx01; . . . ; x0NÞ

where x0j = xj þ pl if j 2 Cl. The operator Ha com-
mutes with the operators Ta(p1, . . . , pn) for all
vectors p1, . . . , pn 2 Rd. Let the subspace Xa be
determined by the conditionX

j2Cl

mjxj ¼ 0; l ¼ 1; . . . ; n

and let Xa be the orthogonal complement to Xa in
Xcm with respect to scalar product [6]. Clearly,
dim Xa = (N �#(a))d, dim Xa = (#(a)� 1)d. Then
the space H splits into the tensor product

L2ðXcmÞ ¼ L2ðXaÞ � L2ðXaÞ ½10�

In what follows, xa and xa are the orthogonal
projections of x 2 Xcm on the subspaces Xa and
Xa, respectively. The ‘‘external’’ variable xa =
(x1, x2, . . . , xn), where

xl ¼M�1
l

X
j2Cl

mjxj; Ml ¼
X
j2Cl

mj

describes positions of centers of masses of the clusters.
The ‘‘internal’’ variable xa is the set of numbers xj � xl

for all j 2 Cl and all l = 1, . . . , n. Of course, for each l
only jClj � 1 (jClj is the number of particles in a cluster
Cl) of variables xj � xl are independent. Set

Ka ¼ ��xa ¼ �
Xn

l¼1

ð2MlÞ�1�xl

and

Ha ¼ ��xa þ Va

Then

Ha ¼ Ka � I þ I �Ha

Note that eigenvalues �a, n of the operator Ha are
sums over l = 1, . . . , n of eigenvalues of the operators

HðClÞ ¼ H0ðClÞ þ
X
�2Cl

V�

describing each cluster. Similarly, eigenfunctions  a, n of
Ha are products of eigenfunctions of these operators.
We usually write a instead of a couple {a, n}. In the
following, the index a labels all cluster decompositions
with #(a) � 2. The eigenvalues �a of the operators Ha

(�a = 0 if #(a) = N) are called thresholds of the
Schrödinger operator [8]. If all functions V�(x�)! 0
as jx�j!1, then the essential spectrum of the operator
H consists of the interval [�0,1), where

�0 ¼ min
a
�a
(the Hunziker–Van Winter–Zhislin theorem). More-
over, the eigenvalues of the operator H may
accumulate at its thresholds only.

The fundamental result of scattering theory for
the N-particle Schrödinger operator can be formu-
lated as follows. Let Pa be the orthogonal projection
in L2(Xa) on the subspace H(p)

a spanned by all
eigenvectors  a, n of Ha, and let Pa = I � Pa, where
the tensor product is defined by eqn [10]. Then Pa

commutes with the operator Ha. Set also K0 = H0,
P0 = I. Suppose that for all �

jV�ðx�Þj � Cð1þ jx�jÞ��; � > 1 ½11�

(the short-range assumption). Then, for all a, the
wave operators

W�
a ¼W�ðH;Ha; PaÞ ¼ s-lim

t!�1
eiHte�iHatPa

exist and are isometric on the ranges Ran Pa of
projections Pa. The subspaces Ran W�

a are mutually
orthogonal, and scattering is asymptotically complete:M

a

Ran W�
a ¼ HðacÞ

The singular continuous spectrum of H is empty, so
the absolutely continuous subspace H(ac) of the
operator H can be replaced by H	H(p), where
H(p) is spanned by all eigenvectors of H.

These results can be reformulated in terms
of scattering theory in a couple of spaces.
Suppose that, for every a, eigenvectors  a, n are
normalized and orthogonal if the corresponding
eigenvalues �a, n coincide. Let us introduce an
auxiliary space

Ĥ ¼
M

a

Ha; Ha ¼ Ha ¼ L2ðXaÞ ½12�

and an auxiliary operator

Ĥ ¼
M

a

Ka; Ka ¼ Ka þ �a ½13�

in this space. Here and below, the sums are taken
over all a. We define an identification Ĵ : Ĥ!H by
the relations

Ĵ ¼
X

a

Ja; Jafa ¼ fa �  a ½14�

where the tensor product is the same as in [10]. In
particular, J0 = I. Since HaJa = JaKa, the wave
operators W�(H, Ĥ; Ĵ) exist and are isometric and
complete, that is,

Ran W�ðH; Ĥ; ĴÞ ¼ HðacÞ

Thus, for states orthogonal to eigenvectors of
H, evolution of an N-particle system decomposes
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asymptotically into a sum of evolutions which
are ‘‘free’’ in external variables xa and are
determined by eigenvalues and eigenfunctions of
the Hamiltonians Ha in internal variables xa. To be
more precise, we have that, for all f 2 H(ac) and
t!�1,

expð�iHtÞf ¼
X

a

expð�iKatÞf�a �  a þ oð1Þ ½15�

where

f�a ¼W�ðH;Ka; JaÞ
f

and the term o(1) tends to zero in H. The wave
operator W�(H, Ka; Ja) describes the scattering
channel where a system of N interacting particles
splits up asymptotically (for t!�1) into non-
interacting clusters C1, . . . , Cn, n � 2, and particles
from the same cluster Cl are in the bound state (if
there are more than one particle in Cl) given by the
function  a(xa). Somewhat loosely speaking, this
implies that the continuous spectrum of the
operator H consists of branches starting from all
its thresholds.

Note that the scattering problem can equivalently
be formulated without the separation of center-
of-mass motion. In this case, a trivial decomposition
with #(a) = 1 should be added, and the set of
thresholds of the operator H includes eigenvalues of
the operator H.

The existence of the wave operators and their
isometricity can be obtained by the Cook method.
Only the asymptotic completeness is a difficult
mathematical problem. It can be solved within the
framework of the smooth method, which requires a
study of boundary values of resolvents as the
spectral parameter z approaches the continuous
spectrum or, equivalently, a study of a large-time
behavior of evolution operators.

The scattering operator

S ¼WþðH; Ĥ; ĴÞ
W�ðH; Ĥ; ĴÞ

is unitary on the space Ĥ and commutes with the
operator Ĥ. Its component Sab :Hb!Ha describes
a process where a system in a state b as t!�1
goes over in a state a as t!þ1. Diagonalizing
the operator Ĥ by a unitary operator
F̂, (F̂ Ĥ f )(�) = �(F̂ f )(�),� > �0, we obtain the
scattering matrix S(�) defined by the equation
(F̂Sf )(�) = S(�)(F̂ f )(�). In its turn, the scattering
matrix is also a matrix operator with components
Sab(�). For N � 3, the structure of the scattering
matrix is essentially more complicated than for
N = 2. This is discussed in some detail in the next
section.
Resolvent Equations for Three-Particle
Systems

Let the Hamiltonian H be defined by eqns [2]–[4],
where N = 3, and let the configuration space of each
particle be Rd, d � 3. The operator H acts in the
space H= L2(Xcm), where the subspace Xcm � R3d

is distinguished by condition [5]. Let R0(z) =
(H0 � z)�1, R(z) = (H � z)�1. Since V(x) does not
tend to 0 as jxj!1, x 2 Xcm, in the three-particle
case, the resolvent equation

RðzÞ ¼ R0ðzÞ � R0ðzÞVRðzÞ ½16�

is not Fredholm even for Im z 6¼ 0.
To overcome this difficulty, Faddeev (1965)

derived a system of equations for components of
the resolvent. The entries of this system are
constructed in terms of three Hamiltonians

H� ¼ H0 þ V�

�= (12), (13), (23), containing only one pair inter-
action each, and their resolvents R�(z) = (H� � z)�1.
Let us write down the resolvent equation for each
pair H�, H

RðzÞ ¼ R�ðzÞ � R�ðzÞ
X
� 6¼�

V�RðzÞ

We multiply it by jV�j1=2 and set

r0
�ðzÞ ¼ jV�j1=2R�ðzÞ; r�ðzÞ ¼ jV�j1=2RðzÞ

t�;�ðzÞ ¼ 0; t�;�ðzÞ ¼ jV�j1=2R�ðzÞðV�Þ1=2

where (V�)1=2 = V�jV�j�1=2. This yields a system of
equations

r�ðzÞ ¼ r0
�ðzÞ �

X
� 6¼�

t�;�ðzÞr�ðzÞ ½17�

for the operators r�(z). Note that the resolvent R(z)
can be recovered from its components r�(z) by the
formula

RðzÞ ¼ R0ðzÞ � R0ðzÞ
X
�

ðV�Þ1=2r�ðzÞ

It is convenient to rewrite eqn [17] in the matrix
notation

rðzÞ ¼ r0ðzÞ � tðzÞrðzÞ ½18�

where r0(z) = {r0
�(z)}, r(z) = {r�(z)} are the ‘‘vector’’

operators in the three-component space L(3)
2 (Xcm) and

t(z) = {t�,�(z)} is the ‘‘matrix’’ operator in this space.
The advantage of eqn [17] compared to [16] is

that the operators t�,�(z) are compact for Im z 6¼ 0.
This can be deduced from the fact that the product
V�(x�)V�(x�), where � 6¼ � tends to 0 as
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jxj!1, x 2 Xcm, provided that V�(x�)! 0 as
jx�j!1 for all �. Moreover, the homogeneous
equation [17] has only a trivial solution. Indeed, if
for some z with Im z 6¼ 0

f� ¼ �
X
� 6¼�

t�;�ðzÞf� ½19�

then the function

u ¼
X
�

ðV�Þ1=2f�

satisfies the equation u =�R0(z)Vu. Since the
operator H is self-adjoint, this implies that u = 0
and hence f� = 0 for all �. According to the
Fredholm alternative, eqns [17] for r�(z) or [18]
for r(z) can be solved if Im z 6¼ 0, that is,

rðzÞ ¼ ðI þ tðzÞÞ�1r0ðzÞ ½20�

This equation allows one to deduce the existence of
necessary boundary values of the ‘‘sandwiched’’
resolvent R(z) from similar results for the resolvents
R�(z) of the ‘‘two-particle’’ operators H�. In its
turn, R�(z) can be expressed in terms of the resolvent
R�(z) of the operator H� acting in the space L2(Rd).
Indeed, in the ‘‘mixed’’ representation (��, x�), where
the Fourier transform in the variable x� is performed
and the variable �� is dual to x�, we have

ðR�ðzÞf Þð��; x�Þ ¼ ðR�ðz� ð2m�Þ�1j��j2Þf Þ
� ð��; x�Þ ½21�

The passage to the limit Im z! 0 requires that
assumption [11] be satisfied for � > 2. Moreover,
we have to suppose that the operators H� do not
have the so-called zero-energy resonances as well as
eigenvalues embedded in the continuous spectrum.
Then the operator functions hx�i�lR�(z)hx�i�l, l > 1,
hx�i= (1þ jx�j2)1=2, are analytic in the complex
plane cut along [0,1), they have poles only at the
points ��, n, and are continuous up to the cut, the
point z = 0 included. In particular, it follows from
eqn [21] that, if the operators H� do not have
negative eigenvalues, then the operator functions
hx�i�lR�(z)hx�i�l, l > 1, are also analytic in the
complex plane cut along [0,1) and are continuous
up to the cut.

The next result is of genuinely three-particle nature
and is crucial for the study of the operator t(z). The
operator functions hx�i�lR0(z)hx�i�l,� 6¼ �, l > 1,
are continuous in norm up to the cut along [0,1).

Now it follows from eqn [20] that the operator-
valued functions r�(z)jV�j1=2 are continuous up to
the cut (0,1) except points � 2 (0,1), where the
homogeneous equation [19] for z =�� i0 has a
nontrivial solution. The set N =Nþ [ N� of such
points � 2 (0,1) is closed and has Lebesgue measure
zero. In particular, the operators hx�i�l, l > 1,
are H-smooth on any compact subinterval of
� = (0,1)nN . Therefore, the smooth method of
scattering theory can be directly applied. It yields
the existence and completeness of the wave
operators W�(H, H0). In this case, three-particles
are necessarily asymptotically free.

‘‘Two-particle’’ channels of scattering arise if the
operators H� have negative eigenvalues. To simplify
notation, we assume that every H� has exactly one
eigenvalue �� < 0. Moreover, it is supposed that the
corresponding eigenfunction  �(x�) tends to zero
sufficiently rapidly as jx�j!1. Analytically, the
appearance of new channels is due to new singula-
rities of the resolvents. Indeed, in this case

R�ðzÞ ¼ ð�� � zÞ�1P� þ R̂�ðzÞ

where the function R̂�(z) is analytic and continuous
up to the cut in the complex plane cut along [0,1).
It follows from eqn [21] that in this case the
resolvent R�(z) contains the additional term

ðð2m�Þ�1j��j2 þ �� � zÞ�1 � P�

which is analytic only in the complex plane cut
along [��,1). To take these terms into account,
system [17] should be further rearranged. This yields
the following result. Let us set

G�0 ¼ hx�i�lðI�P�Þ; G�1 ¼ hx�ilðJ�Þ

X
� 6¼�

V� ½22�

Then, for all �,�, i, j=0,1, a suitable l> 1 and
�0 = min{��}, the operator functions G�iR(z)G
�j are
norm continuous as z approaches the cut (�0,1) at
the points of �= (�0,1)nN , where N is again a
closed set of measure zero. In particular,
the operators G�0 and G�1 are H-smooth on any
compact subinterval of �.

In the multichannel case, to fit scattering for the
Hamiltonian H into the framework of smooth
theory, it is convenient to reformulate the result in
terms of scattering theory in a couple of spaces. Let
the space Ĥ, the operator Ĥ, and the identification Ĵ
be defined by eqns [12], [13], and [14], respectively,
where the index a takes four values a = 0,� and
�= (12), (13), (23). One, further, needs to introduce
auxiliary identifications

J0 ¼ I �
X
�

P�

and

Ĵ ¼ J0 

M
�

J�
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The H- (and Ĥ-) smoothness of operators [22] imply
that the wave operators

W�ðH; Ĥ; ĴÞ and W�ðĤ;H; Ĵ
Þ

exist.
The operators W�(H, Ĥ; Ĵ) are isometric because

s-lim
jtj!1

P� expð�iH0tÞ ¼ 0 ½23�

and the operators P�P� are compact for � 6¼ �.
Using that the operator

Ĵ Ĵ
 � I ¼
X
�6¼�

P�P�

is compact (whereas ĴĴ
 � I is not), we see that the
operators W�(Ĥ, H; Ĵ
) are also isometric. Finally,
we remark that, by eqn [23],

W�ðH; Ĥ; ĴÞ ¼W�ðH; Ĥ; ĴÞ

This implies the asymptotic completeness.
Let us discuss properties of the scattering matrix

in the one-channel case where the pair operators H�

do not have negative eigenvalues. The scattering
matrix S(�) : L2(S2d�1)!L2(S2d�1), � > 0, is of
course a unitary operator, but in contrast to the
two-particle case the operator S(�)� I is not
compact because its kernel contains the Dirac
functions �(�� � �0�). Nevertheless, the structure of
its singularities can be explicitly described. Actually,
let S�(�) be the ‘‘two-particle’’ scattering matrix for
the pair H0, H�. Then

Sð�Þ ¼ S12ð�ÞS23ð�ÞS13ð�Þ~Sð�Þ

where the operator ~S(�)� I is compact.
The approach described briefly in this section

relies on a kind of an advanced perturbation theory
where the free problem is determined by the set of
all sub-Hamiltonians. Its generalization to the case
of an arbitrary number of particles meets with
numerous difficulties. A different, nonperturbative,
approach which works well for any number of
particles will be discussed in the next section.

A purely time-dependent method in three-particle
scattering is exposed in Enss (1983).
Nonperturbative Approach

Now N and d are arbitrary. In the nonperturbative
approach (see Graf (1990), Sigal and Soffer (1989),
and Yafaev (1993)) the operators H and H0 as well
as the Hamiltonians of all subsystems are treated on
an equal basis. It is supposed that all pair potentials
satisfy condition [11]. No assumptions on subsys-
tems are required.
The starting point of this approach is the limiting-
absorption principle, which claims that the operator
hxi�l, x 2 Xcm, for l > 1=2 is H-smooth on any
compact interval � not containing the thresholds and
eigenvalues of H. Its proof relies on the Mourre
commutator method (see Cycon et al. (1987)). To be
more precise, it is deduced from the following estimate:

ið½H;A�f ; f Þ � ckfk2; c ¼ cð�Þ > 0

f 2 Eð��ÞH ½24�

for the commutator of H with the generator of
translations

A ¼ �i
X

j

ðxj@j þ @jxjÞ

Here xj are coordinates of x 2 Xcm in some orthonor-
mal (with respect to scalar product [6]) basis in Xcm,�
is neither a threshold nor an eigenvalue of the operator
H and �� is a sufficiently small interval. Very roughly
speaking, the Mourre estimate [24] means that,
similarly to the two-particle case, the observable

ðAe�iHtf ; e�iHtf Þ

is a strictly increasing function of t for all f 2 H(ac).
The limiting-absorption principle implies that the

singular continuous spectrum of the operator H is
empty, but it is not sufficient for scattering theory. If
the limiting-absorption principle were true for the
critical value l = 1=2, then it would imply asymptotic
completeness. Unfortunately, the operator hxi�1=2 is
definitely not smooth even with respect to the free
operator H0. However, by introducing an auxiliary
differential operator we can fix this problem. This
leads to the radiation estimates. These estimates look
differently in different regions of the configuration
space. Choose any cluster decomposition a =
(C1, . . . , Cn). The radiation estimate morally implies
that the motion of a system is asymptotically free in
the variable xa (describing the relative motion of
clusters) in the region where particles from each
cluster Cl, l = 1, . . . , n, are close to each other
compared to distances between different clusters.
On the contrary, this motion is very complicated in
the variable xa pertaining to bound states of different
clusters. In particular, the radiation estimate is the
same as for the two-particle case in the ‘‘free’’ region
where all particles are far from each other.

To be more precise, let ra =rxa
be the gradient

in the variable xa and let r?a ,

r?a u
� �

ðxÞ ¼ ðrauÞðxÞ � jxaj�2hðrauÞðxÞ; xaixa

be its orthogonal projection in Xa on the subspace
orthogonal to the vector xa. Let 	a be the
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characteristic function of a closed cone Ya � Xcm

satisfying the condition Ya \Xb = ; for all b such
that Xa 6� Xb. Then the operator

Ga ¼ 	ahxi�1=2r?a

is H-smooth on �.
A proof of the radiation estimates is based on

the consideration of the commutator of H with
some differential operator M =�i

P
(m(j)@j þ @jm

(j)),
where m(j) = @m=@xj. Here m (it depends on a) is a
specially constructed function satisfying the follow-
ing properties:

1. m(x) is homogeneous (for jxj � 1) of order 1;
2. for any b it does not depend on xb in some

conical neighborhood of the subspace Xb;
3. m(x) is convex; and
4. m(x) =
ajxaj,
a � 1, on support of the function	a.

Note that we can set m(x) = jxj in the case of the
operator H0.

Due to properties (1) and (2) the commutator
[V, M] is a short-range function (estimated by
hxi�1�" for " > 0). Due to properties (3) and (4)
the commutator [H0, M] � cG
aGa, c > 0, up to
short-range terms. The estimate

½H;M� � cG
aGa � c1hxi�1�"

implies that the operator Ga is H-smooth on �.
The main difficulty in the N-particle problem is

that pair potentials V�(x�) do not tend to zero as
jxj!1. The idea of the proof of asymptotic
completeness is to introduce auxiliary wave opera-
tors such that ‘‘effective’’ perturbations are decaying
functions. This requires a suitable smooth partition
of unity. Moreover, it is convenient to choose
auxiliary identifications as first-order differential
operators rather than operators of multiplication.
Unfortunately, although such identifications allow
one to ‘‘kill’’ directions where the potentials V�(x�)
do not tend to zero, their commutators with the
operator H0 have coefficients decaying at infinity
only as jxj�1.

Thus, we introduce differential operators

Ma ¼ �i
X

mðjÞa @j þ @jm
ðjÞ
a

� �

with coefficients m(j)
a = @ma=@xj. The functions ma

satisfy properties (1), (2) formulated above and

5. ma(x) = 0 in some conical neighborhoods of the
subspaces Xb such that Xa 6� Xb. To put it
differently, ma(x) = 0 in some conical neighbor-
hood of the subspace where xi = xj for some i, j
belonging to different clusters C1, . . . , Cn.
Let the operator Ha be defined by eqn [9]. Given
the limiting-absorption principle and the radiation
estimates, we first check the existence of auxiliary
wave operators

W�ðH;Ha; MaEað�ÞÞ

and

W�ðHa;H; MaEð�ÞÞ ½25�

Here we use that according to (5) coefficients of the
differential operator (V � Va)Ma are, under assump-
tion [11], short-range (in the configuration space
Xcm). By property (2), the function [Va, Ma] is also
short-range. Thus, the operator VMa �MaV

a can be
taken into account by the limiting-absorption
principle. The commutator [H0, Ma] factorizes into
a product of Ha- and H-smooth operators according
to the radiation estimates.

Similar arguments show that, for
P

a ma = m and
M =

P
a Ma (the sums here are taken over all

possible breakups of the N-particle system), the
wave operator (observable)

W�ðH;H;�MEð�ÞÞ ½26�

also exists. Moreover, it can be easily achieved
that m(x) � 1. Then it follows from the Mourre
estimate that operator [26] is positive definite
on the subspace E(�)H and hence its range
coincides with this subspace. It means that for
all f 2 E(�)H

lim
t!�1

k expð�iHtÞf �M expð�iHtÞg�k ¼ 0 ½27�

if f = W�(H, H; ME(�))g�.
The existence of wave operators [25] implies that

for any g�= E(�)g� and g�a = W�(Ha, H; MaE(�))g�

lim
t!�1

kM expð�iHtÞg�

�
X

a

expð�iHatÞg�a k ¼ 0 ½28�

Combining eqns [27] and [28], we see that
exp (�iHt)f decomposes asymptotically into sim-
pler evolutions exp (�iHat)g

�
a . This is one of the

equivalent formulations of asymptotic complete-
ness and leads to eqn [15].

Finally, we note that eqn [15] can be rewritten as

expð�iHtÞf ¼
X

a

expði�aðxa; tÞÞð2itÞ�da=2

� f̂�a ðxa=ð2tÞÞ aðxaÞ þ oð1Þ ½29�
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where t!�1, da = dim Xa, f̂�a is the Fourier trans-
form of f�a and

�aðxa; tÞ ¼ x2
að4tÞ�1 � �at ½30�
Long-Range Interactions: New Channels

The multiparticle problem acquires a long-range
character if pair potentials decay as Coulomb
potentials or slower. Similarly to the two-particle
problem, for long-range potentials the definition of
wave operators should be naturally modified. As in
the short-range case, only the asymptotic complete-
ness is a really difficult mathematical problem.
Assume that pair potentials satisfy condition

jð@�V�Þðx�Þj � Cð1þ jx�jÞ���j�j; � >
ffiffiffi
3
p
� 1

for all j�j � �0 and sufficiently large �0. Then only
phase factors in eqn [29] should be modified.
Actually, instead of eqn [30] we should set

�aðxa; tÞ ¼ x2
að4tÞ�1 � �at � t

Z 1

0

Vaðsxa; 0Þ ds

where Va(x) = V(x)� Va(x) and as usual x = (xa, xa).
As shown in Dereziński (1993), with this definition of
wave operators, the asymptotic completeness holds.

On the contrary, if pair potentials decay slower
than jxj�1=2, then the traditional picture of scatter-
ing breaks down (see Yafaev (1996)). Actually, a
three-particle system might have additional scatter-
ing channels intermediary between the channel
where three particles are asymptotically free and
the channels where a couple of particles form a
bound state. In these additional channels, the
bound state of a couple of particles depends on a
position of the third particle, and it is destroyed
asymptotically.

See also: Quantum Mechanical Scattering Theory;
Schrödinger Operators.
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Dereziński J (1993) Asymptotic completeness of long-range

quantum systems. Annals of Mathematics 138: 427–473.
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Introduction

The existence of nuclear spin and its associated
magnetism was first suggested by Wolfgang Pauli in
1924, a conjecture based on the fine details of
atomic spectra, the so-called hyperfine structure.
The interaction of this nuclear magnetism with an
external magnetic field was predicted to result in a
finite number of discrete energy levels known as the
Zeeman structure. However, the first direct
excitation of transitions between nuclear Zeeman
levels was by Isador Rabi in 1933, using radio-
frequency (RF) waves in an atomic beam apparatus.
In 1945, Felix Bloch and co-workers at Stanford,
and Edward Purcell and co-workers at MIT,
performed the first nuclear magnetic resonance
(NMR) experiments in condensed matter, with the
RF response of the hydrogen nucleus (proton) being
directly detected.

The early prospects for this new technique were
limited to precise measurements of magnetic fields
and nuclear magnetic moments. However, three
transformational discoveries intervened to set
NMR on a course that would result in initially
unimaginable contributions to physics, chemistry,



Nuclear Magnetic Resonance 593
engineering, medicine, geology, food science, and
biochemistry. In 1950, it was found that atomic
nuclei at different sites of a molecular orbital had
slightly different resonant frequencies, a phenom-
enon known as ‘‘chemical shift.’’ In the a same year,
Erwin Hahn discovered the spin echo, thus opening
the possibility that multiple RF pulse trains could be
used to remove unwanted nuclear spin interactions
while being used to manipulate spin coherences with
exquisite resolution. In addition, in 1951, using this
spin echo, Herbert Gutowsky and Charles Slichter
revealed a hitherto unobserved scalar spin–spin
interaction between nuclei, mediated by the mole-
cular orbital electrons.

The discovery of the chemical shift and the scalar
coupling would immediately revolutionize chemis-
try. Further discoveries of nuclear quadrupole
interactions and through-space dipolar interactions
would add to the capacity of NMR to provide
insight regarding structure and order in the solid and
liquid crystalline state. But the spin echo would
provide a platform for new advances in science in
every one of the six decades following the discovery
of NMR in 1945. These were successively diffusion
and flow NMR, multidimensional NMR, magnetic
resonance imaging, protein structure NMR, ex situ
NMR, and quantum computing NMR.
Resonant Excitation and Detection

In quantum-mechanical language, the Zeeman
Hamiltonian H for a nuclear spin experiencing a
magnetic field B0 along the laboratory z-axis may be
written as

H ¼��B0Iz ½1�

� being the (nuclear) gyromagnetic ratio while Iz is the
operator for the z-component of angular momentum,
with eigenvalues m�h, m lying in the range �I,�I þ
1, . . . , I. I is the angular momentum quantum
number, being either integer or half-integer. From the
Schrödinger equation, it can be seen that the eigenkets
of H precess about the z-axis at a rate �B0, the
frequency corresponding to the energy difference
between the 2I þ 1 Zeeman levels. For convenience,
we shall take the eigenvalues of Iz to be simply m,
dropping the factor �h, and leading to a Hamiltonian
expressed in frequency rather than in energy units.

Resonant excitation between the Zeeman levels is
achieved by the application of an RF (!) magnetic
field of amplitude 2B1 linearly polarized normal to
B0 such that the total Hamiltonian becomes

H ¼ ��B0Iz � 2�B1 cos !tIx ½2�
This excitation is easily applied by means of a
transversely oriented antenna coil, the same coil
generally being used to detect the nuclear spin
response. In the frame of reference rotating about
B0 at !, the Hamiltonian transforms to

H ¼� � B0 �
!

�

� �
Iz � �B1Ix

� �B1 expði2!tIzÞIx expð�i2!tIzÞ ½3�

At resonance, !=!0 = �B0. The last term in eqn [3]
averages to zero and may be neglected (the
Heisenberg condition) provided !� �B1, that is,
B0 � B1. Given B0 of the order of tesla and B1 of
the order of millitesla, this condition is easily
satisfied. Hence, from the perspective of the
rotating frame, the spins at resonance see only the
static magnetic interaction �B1Ix, so that applica-
tion of this resonant RF field causes spins to nutate
about the rotating frame x-axis at a rate �B1. Thus,
by application of RF pulses of different duration,
and phases, one may produce arbitrary reorienta-
tion of the spins about various axes in the rotating
frame.

With the spin system disturbed from equilibrium,
the NMR ‘‘signal’’ is detected via the subsequent
free precession, and usually via the same antenna
coil used for resonant excitation, Semiclassically, the
phenomenon may be pictured as follows. RF
excitation nutates an initial z-magnetization into
the transverse plane of the rotating frame. Such
transverse magnetization corresponds the laboratory
frame to a magnetization precessing at the Larmor
frequency, thus inducing an oscillating emf in the
receiver coil. In the next section, we see how to
describe this phenomenon in the language of
quantum mechanics.

Typically, NMR is performed using the nuclei of
common atoms in organic molecules, (1H, 2H, 13C,
15N, 19F, 31P) although for inorganic matter a wider
class of nuclei are available. Of all these, the
proton is most abundant and most sensitive,
having the highest gyromagnetic ratio, �, of all
stable nuclei.
The Quantum Statistics of the
Spin Ensemble

The nuclear Zeeman energy in typically available
laboratory magnetic fields, �B0�h, is many orders of
magnitude smaller than the Boltzmann energy, kBT,
except at millikelvin temperatures. At room tem-
perature in thermal equilibrium, the fractional
difference in populations between the Zeeman levels
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is normally very small, for example, for protons,
about 10�5. Of course, the total number of spins
available may be very large, for example, on the
order of 1020.

The signal in magnetic resonance is detected as a
collective effect of the large ensemble of nuclear
spins. The natural language of quantum statistics is
that of the density matrix, �; the time-dependent
expectation value for any observable represented
by an operator O is then, tr(O�(t)), the diagonal
sum of the product of O and �. The time evolution
of the density matrix is given by the Liouville
equation

i
@�

@t
¼ H; �½ � ½4�

where [ , ] is a commutator. For a constant Hamilto-
nian, this equation gives

�ðtÞ ¼ expðiHtÞ�ð0Þ expð�iHtÞ ½5�

Physical solutions to the density matrix (Liouville
space) are (2I þ 1)2 (square) matrices formed in
the (2I þ 1)-dimensional angular momentum
eigenbasis. Generally, we may write the density
matrix in a representation of irreducible tensor
operators. One very convenient representation is
the set formed by taking products of spin
operators. For example, in the case of spin-1/2
where Liouville space is 22-dimensional, we may
write

�ðtÞ ¼ 1
2 I þ axIx þ ayIy þ azIz ½6�

where I is the identity operator. The operators Ix

and Iy provide the off-diagonal elements of � and
define the degree of phase coherence in the
ensemble, while the operator Iz defines the degree
to which the diagonal elements differ, thus defining
the polarization. ax and ay give the amount of ‘‘one-
quantum coherence’’ in the ensemble while az gives
the polarization. In thermal equilibrium ax = ay = 0,
and the spin ensemble exists in a state of
pure longitudinal polarization given, in the high-
temperature approximation, �B0�h <<kBT, by

�eqbmð0Þ�
1

ð2I þ 1Þ I þ
��hB0

ð2I þ 1ÞkBT
Iz ½7�

This is the starting point for all NMR experiments
(Figure 1).

Consider then the detection of precession via the
Faraday induction. The size of the signal observed
will be proportional to the size of the transverse
magnetization M = tr[(Ix þ iIy)�(t)] present in the
rotating frame, this magnetization producing an
induced emf with real and imaginary components
because of the capacity of heterodyne receivers to
detect quadrature phase. In the laboratory frame,
the detected signal has a prefactor of �B0 reflecting the
Faraday induction, which, taken together with the
dependence of the initial equilibrium magnetization on
�B0, gives an overall NMR sensitivity (�B0)2, helping
to explain in part why high magnetic fields are
advantageous. Take the simple example for I = 1=2,
where a single 90� resonant RF pulse is applied to the
spin system, subsequent free precession occurring
under the Zeeman Hamiltonian. The density matrix
at detection is

�ðtÞ ¼ expði!0tIzÞ exp i
�

2
Ix

� �
�eqbmð0Þ

	 exp �i
�

2
Ix

� �
expð�i!0tIzÞ

¼ expði!0tIzÞ exp i
�

2
Ix

� �
aeqbmIz

	 exp �i
�

2
Ix

� �
expð�i!0tIzÞ

¼ expði!0tIzÞaeqbmIy expð�i!0tIzÞ
¼ aeqbmIy cosð!0tÞ þ aeqbmIx sinð!0tÞ ½8�

Noting tr(I2
x) = tr(I2

y ) = tr(I2
z ) = (1=3)(2I þ 1)I(I þ 1)

and tr(I�I�) = 0, the signal may easily be calculated
as S(t) : aeqbm exp(i!0t), corresponding, upon Fourier
transformation, to a unique frequency at !0. Note
that a basis consisting of products of angular
momentum operators are easy to handle since all
evolution properties follow from the usual angular
momentum commutation algebra.

The spin echo pulse scheme of Figure 2 is one of
the most important in NMR. It allows one to
refocus dephasing effects caused by inhomoge-
neous broadening, for example, due to the hetero-
geneity of the magnetic field across the sample.
Rewriting the density matrix equation in the
rotating frame, replacing the Zeeman precession
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Figure 2 Spin echo pulse scheme showing the evolution of the density matrix.
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by its residual offset, and accounting for both RF
pulses,

�rotð2	Þ ¼ expði�!0	IzÞ expði�IyÞ expði�!0	IzÞ

	 exp i
�

2
Ix

� �
�eqbmð0Þ exp �i

�

2
Ix

� �

	 expð�i�!0	IzÞ expð�i�IyÞ
	 expð�i�!0	IzÞ
¼ aeqbmIy ½9�

Details of the density matrix evolution are given in
Figure 2. The inversion pulse has the effect of
completely reversing all the phase shifts that occur
during the first interval, resulting in an echo signal
when the two time periods are equal. Note the use
of nested operators representing the successive
influences of RF pulses (assumed to be ideal
rotations) and Hamiltonian evolutions. The overall
influence of the RF pulses is to render the effective
Hamiltonian zero in this case.

This echo sequence (and its equivalent multiple RF
train, the Carr–Purcell–Meiboom–Gill sequence) allows
one to remove the effect of magnetic field inhomo-
geneities so as to investigate the underlying homoge-
neous broadening and associated signal damping.
Spin Relaxation

The free precession of nuclear spins does not
continue indefinitely. Ultimately the off-diagonal
elements of the density matrix lose phase coherence
while the diagonal elements gradually return to their
thermal equilibrium state, two processes known,
respectively, as T2 (spin–spin) and T1 (spin–lattice)
relaxation. The rate of relaxation depends on
interactions between the spins themselves and
between the spins and their thermal environment.
The process of T1 relaxation requires fluctuations
that induce transitions between the Zeeman levels.
Clearly the relevant quantum-mechanical opera-
tors must possess a nonzero matrix element
coupling the Zeeman levels, and the frequency of
those fluctuations must match the energy gap
spacing. Predominant in causing such relaxation
in diamagnetic environments are the internuclear
dipolar interactions, while in paramagnetic envir-
onments, dipolar interactions between nuclear and
electronic spins are effective. One simple way of
representing these processes is by the spectral
density function, the Fourier power transform of
their fluctuations, dipolar interactions causing
spin–lattice relaxation due to fluctuations at !0

and 2!0. For a fluctuating interaction with correla-
tion time, 	c, that spectral density may approx-
imate a Lorentzian of the form

Jð!Þ= 	c

1þ !2	2
c

½10�

Thus, as the rate of molecular motions varies, due to
the influence of temperature on 	c, the T1 relaxation
rate will be a maximum when !0	c = 1. Both solids
(!0	c � 1) and liquids (!0	c 
 1) have long T1

relaxation times while soft solids or complex liquids
may have faster relaxation. T1 relaxation manifests
as an exponential return to equilibrium values of
longitudinal magnetization. Typical vales range
from hundreds of milliseconds to hours, and the
need to re-establish equilibrium between repetitions
of the experiment can severely limit signal averaging
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and hence available signal-to-noise ratios. Note that
T1 relaxation occurs by stimulated emission.
Spontaneous emission is effectively absent from
nuclear spin systems owing to the long-radiation
wavelength.

The case of T2 (spin–spin) relaxation is inherently
more complex. First, the definition of ‘‘loss of phase
coherence’’ depends on the particular RF pulse
sequence employed. Second, the simple perturbation
theory description applied to T1 relaxation only
works in the fast motion limit, where the T2

relaxation rate may be shown to depend on spectral
density terms not only at !0 and 2!0 but also != 0.
In consequence, T2 
 T1. T2 relaxation is sensitive
to static components. These static components may
dominate in soft solids and solids. Indeed, any term
in the Hamiltonian which spreads spin phases, and
which cannot be recovered by means of a judicious
RF pulse train, will contribute to T2 relaxation.
Suppose the effective frequency distribution causing
dephasing is described by an ensemble second
moment <�!2>, and exhibits fluctuations about a
mean of zero with correlation time, 	c. Then we may
identify two limiting cases: in the slow motion limit
<�!2>1=2 	c � 1, the decay of the detected magne-
tization is Gaussian, and given by a factor
exp(�1=2 <�!2> t2). In solids, the proton T2

relaxation may take place in a few tens of micro-
seconds. In the fast motion limit <�!2>1=2 	c 
 1,
the decay of the detected magnetization is exponential,
and given by a factor exp(�<�!2>	ct). Liquid state
T2 values approach T1 under extreme narrowing
conditions.
The Details of the Nuclear
Spin Hamiltonian

Atomic nuclei interact with their environment, with
surrounding electrons, and with other nuclear spins.
It is precisely this feature that provides such a
sensitive probe of material structure and dynamics.
For a material immersed in a steady magnetic field
B0 along the laboratory z-axis, the Hamiltonian for
the ith nuclear spin can be written

H ¼��B0Iiz � I i:S¼:B0 þ
X

j

J I i:I j

þ
X

j

I i:D¼ :I j þ I i:Q¼
:I i ½11�

It is the variety of the terms in the nuclear spin
Hamiltonian that imparts power to NMR. The
first is the nuclear Zeeman interaction with the
applied magnetic field. In modern laboratory
superconducting magnets, this interaction can be
as large as 1000 MHz, although in earth field
applications it can be as small as 2.5 kHz. Given that
the sensitivity and resolution of NMR generally
improve with increasing magnetic field, the range of
100–1000 MHz is typically the operating regime of
choice. All other terms in the nuclear spin Hamiltonian
are smaller and thus act as first-order perturbations
only, projecting their quantum operators into the
zeroth-order Zeeman eigenbasis, the quantum frame
of the operator Iz. Because several of the terms in
H depend on the orientation of the local nuclear
environment (e.g., the molecular orbital) with respect
to the magnetic field, these terms will fluctuate in the
presence of reorientational motions. By the Heisenberg
uncertainty principle, fluctuations faster in frequency
than the size of the Hamiltonian contribution,
expressed in frequency units, will result in an averaging
to the mean, a phenomenon known as ‘‘motional
averaging.’’

The term �I i.S¼ .B0 is the chemical shift that occurs
for nuclei in molecular atoms, or the knight shift for
nuclei in metals. It is typically a few ppm to several
100 ppm (i.e., 100’s Hz to 10 kHz), depending
on the nucleus. S¼ = �
¼ is a tensor whose principal
axes (1, 2, 3) are associated with the local symmetry
axis of the molecular orbital (bond) in the vicinity
of the nucleus. For a liquid state molecule tumbling
rapidly and isotropically, only the averaged trace
of 
¼ ,
i = (1=3)(
11 þ 
22 þ 
33) survives under
motional averaging, giving a fixed frequency shift
�
i�B0Iiz. However, in a solid-state environment,
the remaining terms also contribute to the aniso-
tropic chemical shift

HCS ¼ �
i�B0Iiz � 1
2 ð3 cos2 � � 1Þ

	ð
33 � 
iÞ�B0Iiz ½12�

where � is the polar angle between the magnetic
field and the principal axis (the axis ‘‘3’’).

The scalar coupling term,
P

j JI i.I j causes each
(ith spin) energy level to be sensitive to the quantum
states of the neighboring j-spins, the coupling
constant J being typically tens to hundreds of hertz
for nearby spins, but reducing rapidly with greater
distance in the molecular orbital. Note that the
operator

P
j JI i.I j is nondiagonal in the zeroth-order

representation, but provided that the chemical shift
between the I and j spins is larger than the coupling
frequency (known in chemistry as an AX spin
system), the operator reduces to

P
j JIizIjz the effect

being to split the i-spin resonance in to a multiplet,
depending on the state of the nearby j-spin. For m
identical nearby j-spins, the multiplet bears a simple
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binomial relationship to m, allowing one to ‘‘read’’
this number directly. The combination of chemical
shift and scalar coupling information is of profound
importance in identifying molecular structure in
chemistry.

The terms
P

j I i.D¼ .I j and I i.Q¼
.I i are, respectively,

the through-space dipolar interaction, HD, and the
nuclear quadrupole interaction, HQ, the latter being
nonzero only for nuclear spin quantum numbers I �
1=2, for example, 2H. These interactions, projected
into the zeroth-order Zeeman frame, for the dipole–
dipole interaction, are

HD ¼
�0�h

4�

X
j>i

�i�j

r3
ij

1

2
1� 3 cos2 �ij

� �

	 3IizIjz � I i:I j

� �
½13�

where rij is the internuclear distance and �ij is the
angle made by the internuclear vector with the
magnetic field direction; while, for the quadrupole
interaction

HQ ¼
3eVZZQ

4Ið2I � 1Þh
1

2
1� 3 cos �ZZð Þ

	 3I2
z � IðI þ 1Þ

� �
½14�

where Q is the nuclear quadrupole moment, VZZ is
the electric field gradient (assuming axial symmetry)
and �ZZ is the angle made by the principal axis of
that gradient with the magnetic field direction. For
protons in organic matter, the internuclear dipole
interaction strength is on the order of 100 kHz, a
similar strength being found for the quadrupole
interaction of deuterons. However, in the liquid
state, these orientation-dependent interactions fluc-
tuate so rapidly that they are typically motionally
averaged to zero. Nonetheless, their fluctuations do
contribute to the relaxation process.

Liquid-state NMR can result in exceptionally
high-resolution (sub-Hz) spectra, if care is taken to
adjust the magnetic field harmonics (shims) to
produce a highly uniform Zeeman field across the
sample. The last contribution of residual inhomo-
geneities to line broadening can often be removed by
gently spinning the sample about its axis at a rate of
a few tens of hertz.
The Evolution Domain, Multiple RF
Pulses, and Multidimensional NMR

Having seen the complexity of the spin Hamilto-
nian, one may envisage experiments where the spin
coherences evolve in a much more complicated
manner. To this end, consider the case of a
molecular liquid two-spin (AX) system coupled via
the scalar spin–spin interaction. In first-order per-
turbation theory, we may represent the simple two-
spin Hamiltonian (in the rotating frame of the
averaged Larmor frequency) as

Hrot ¼ �
1�B0I1z � 
2�B0I2z þ J I1zI2z

¼ �!1I1z � !2I2z þ J I1zI2z ½15�

We now write down the density matrix in
the rotating frame following a single 90�x RF
pulse (Ix),

�ðtÞ¼ expði!1tI1zþ i!2tI2zþ iJ I1zI2ztÞ

	exp i
�

2
Ix

� �
aeqbmðI1zþ I2zÞexp �i

�

2
Ix

� �

	expð�i!1tI1z� i!2tI2z� iJ I1zI2ztÞ
¼ expði!1tI1zþ i!2tI2zþ iJ I1zI2ztÞaeqbmðI1yþ I2yÞ
	expð�i!1tI1z� i!2tI2z� iJ I1zI2ztÞ
¼ expði!1tI1zþ i!2tI2zÞaeqbm

	 I1yþ I2y

� �
cos 1

2Jt
� �

þ2 I1zI2xþ I1xI2zð Þ
�
	sin 1

2Jt
� ��

expð�i!1tI1z� i!2tI2zÞ

¼ aeqbm

�
I1y cos!1tþ I2y cos!2t

þ I1x sin!1tþ I2x sin!2t
�
cos 1

2Jt
� �

þ2 I1zI2x cos!2t� I1zI2y sin!2t
�

þ I1xI2z cos!1t� I1yI2z sin!1tÞ

	 sin 1
2Jt
� �

0
BBBBBBBBB@

1
CCCCCCCCCA
½16�

Detection in the rotating frame with Ixþ iIy gives a
signal

SðtÞ � aeqbmðexpði!1tÞ þ expði!2tÞÞ cos 1
2 Jt
� �

½17�

Fourier transformation with respect to t yields a
spectrum corresponding to two spectral lines at !1

and !2, each split into a doublet of two sidebands
separated by J.

Notice that it is easier to follow the evolution of
the density matrix by simply writing down a time
sequence of behaviors under the influence of the
successive Hamiltonians. Where simultaneous terms
in the Hamiltonians commute, the order of their
operation may be set at will. Thus, the above
example becomes

I1zþ I2z�!
�
2Ix

I1yþ I2y�!
JI1zI2zt

I1yþ I2y

� �
cos 1

2Jt
� �

þ2 I1zI2xþ I1xI2zð Þsin 1
2Jt
� �

�!!1tI1zþ!2tI2z
I1y cos!1tþ I2y cos!2t
�

þ iI1x sin!1tþ iI2x sin!2tÞcos 1
2Jt
� �

þ2 I1zI2x cos!2t� iI1zI2y sin!2t
�

þI1xI2z cos!1t� iI1yI2z sin!1t
�
sin 1

2Jt
� �

½18�
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diamagnetic shielding

ppm 3.7 3.6 3.0
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Figure 3 The proton NMR spectrum of ethanol showing three major peaks, separated by chemical shift, each split into multiplets

arising from nearby protons via the scalar coupling.
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Now consider a two RF pulse scheme as shown in
Figure 4, each RF pulse being 90�x. The evolution is

I1z þ I2z�!
�
2Ix

I1y þ I2y

^!1t1I1zþ!2t1I2z�JI1zI2zt1

I1y cos!1t1 þ I2y cos!2t1

�
þ I1x sin!1t1

þ I2x sin!2t1Þ cos 1
2 Jt1

� �
þ 2 I1zI2x cos!2t1ð

�I1zI2y sin!2t1 þ I1xI2z cos!1t1

�I1yI2z sin!1t1

�
sin 1

2 Jt1

� �

�!
�
2Ix �I1z cos!1t1 � I2z cos!2t1 þ I1x sin!1t1ð
þ I2x sin!2t1Þ cos 1

2 Jt1

� �
þ 2 I1yI2x cos!2t1 þ I1yI2z sin!2t1

�
þ I1xI2y cos!1t1 þ I1zI2y sin!1t1

�
sin 1

2 Jt1

� �

^

Keeping only observable magnetization

!1t2I1zþ!2t2I2zþJI1zI2zt2

ðI1x sin!1t1 cos!1t2 þ I2x sin!2t1 cos!2t2Þ
	 cos 1

2 Jt1

� �
cos 1

2 Jt2

� �
þ ðI1x sin!2t1 sin!1t2

þ I2x sin!1t1 sin!2t2Þ 	 sin 1
2 Jt1

� �
sin 1

2 Jt2

� �
½19�

If the idealized experiment is performed with two
independent time dimensions t1 and t2, then detec-
tion in the rotating frame over the t2 period with
Ix þ iIy gives a signal (restricting our attention to the
quadrant of positive frequencies)

Sðt1; t2Þ� aeqbmðexpði!1t1Þ expði!1t2Þ þ expði!2t1Þ
	 expði!2t2ÞÞ cos 1

2 Jt1

� �
cos 1

2 Jt2

� �
þ aeqbmðexpði!2t1Þ expði!1t2Þ
þ expði!1t1Þ expði!2t2ÞÞ
	 sin 1

2 Jt1

� �
sin 1

2 Jt2

� �
½20�

When Fourier transformed in two dimensions with
respect to t1 and t2, the pattern shown in Figure 5
results. Remarkably, while the diagonal spectrum
is the same pair of doublets seen in the figure,
this two-dimensional spectrum contains off-diagonal
antiphase peaks for scalar-coupled sites where magnet-
ization transfer has occurred.

The idea of performing NMR in two or more
dimensions was first proposed by Jean Jeener in
1971. The example outlined above, correlation
spectroscopy (COSY), is just one of an array of
coherence transfer experiments using multiple RF
pulse trains and time domain evolution of the spin
ensemble. Notice that in the COSY experiment, t1 is
an evolution dimension during which no detection of
NMR signal occurs, while t2 is the detection domain.



90°x90°x

= – ω1I1z – ω2I2z + JI1zI2zrot 

t1 t2

Figure 4 RF pulse scheme used for COSY experiment.

Figure 5 Schematic COSY (modulus) spectrum for an AX spin

system. Not that the (antiphase) off-diagonal peaks indicate

J-couplings between chemical-shift-separated spins.
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The effect of the evolution is indelibly imprinted in
the spin system density matrix allowing later recall of
vital information concerning the interactions present
in the spin Hamiltonian. The COSY experiment
allows one to determine which spins are coupled via
their molecular orbital electrons. Other multidimen-
sional methods that rely on dipole–dipole relaxation
effects, such as NOESY, determine which spin sites
have ‘‘through-space’’ proximity.

The use of two- and higher-dimensional methods
has allowed the NMR spectra of biological macro-
molecules to be unraveled, with COSY methods used
for spectral assignment of amino acid units, and
NOESY methods used to determine any close proxi-
mities of amino acids otherwise well separated in the
sequence. Such distance information has allowed the
reconstruction of protein conformations by NMR.

The second RF pulse of Figure 4 also generates a
state of the density matrix, I1yI2x known as a double
quantum coherence, and, in the simple COSY
experiment, lost to observable magnetization. Other
RF pulse schemes can take advantage of this state,
converting it via suitable ‘‘coherence pathways’’ into
an observable. For a detailed summary of these
various NMR phenomena, readers are referred to the
book by Ernst et al. (1987).
Solid-State NMR

As with J couplings, dipolar interactions and
quadrupole interactions (I > 1=2) are bilinear in
the spin operators and can be used to generate
various higher-order coherence pathways in NMR
experiments. Unlike the simple spin–spin coupling,
they have an angular dependence. In solids, these
interactions may broaden the NMR resonance line
by tens to hundreds of kilohertz. In the case where a
probe nucleus is located at a known site in the
material (often achieved by deuteron labeling), these
Hamiltonian terms may contribute important infor-
mation about structure, and especially orientational
anisotropy. For example, the quadrupole interaction
for the spin-1 deuteron (see eqns [11] and [14])
depends as P2( cos �ZZ) = (1=2)(3 cos �ZZ � 1) on the
angle between the external magnetic field and
the electric field gradient (generally associated with
the local molecular orbital or bond direction, and taken
here to be axially symmetric). Note that the first-order
contribution of the quadrupole interaction leads to an
unequal separation of the m = 1, 0,�1 Zeeman
energy levels, resulting in a doublet NMR spectrum,
for any particular orientation, �ZZ. Such a unique
orientation might be found in a single crystal, or in a
nematic liquid crystalline state. For a polycrystalline
material, however, the NMR spectrum has a con-
tribution from all orientations, leading to a character-
istic powder pattern. The details of 2H spectral
distributions may be used to characterize the degree
of orientational order in solids and soft, anisotropic
matter.

For 1H, 13C, and other spin-1/2 nuclei, dipolar
interactions (with a wide distribution of spin
spacings and internuclear vector orientation) may
severely broaden the NMR spectrum in the solid
state (see eqns [11] and [13]). Such interactions,
along with quadrupole interactions for nuclei with
I >1=2, may be significantly reduced by modulating
the effective dipolar Hamiltonian at a rate faster
than its strength in frequency units. Two methods
are available, one (magic angle spinning or MAS)
relying on the angular terms in eqns [13] and [14],
and the other (multiple pulse line narrowing) on the
spin terms. The MAS technique relies on spinning
the sample rapidly about at angle oriented at 54.4�

to the magnetic field, such that the average value of
P2(cos �ij) becomes its projection along this spinning
axis, while the projection of the spinning axis
residual is P2(cos 54.4�) � 0. Multiple pulse meth-
ods rely on a successive reorientation of the spin
system such that the effective dipolar Hamiltonian
that results from the application of the nested
evolution operators is rendered close to zero.
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In practice, MAS techniques work best with 13C
NMR where the moderate 1H–13C dipolar interactions
may be removed with achievable spinning speeds (a
few tens of kilohertz). Furthermore, the larger proton
magnetization (�1H=�13C � 4) can be transferred to the
13C nuclei via Hartman–Hahn cross-polarization thus
significantly enhancing sensitivity. Such methodology
is referred to as CPMAS NMR.

The real art of solid-state NMR is in removing the
unwanted dipolar or quadrupolar interactions, but
leaving specific interactions of interest. This may be
achieved by including in the MAS experiment,
specific combinations of pulses which recouple
selected spins. Some of the most sophisticated
experiments in modern NMR are to be found in
this domain of application.
Conclusion

NMR provides exceptional structural information
concerning molecules, biomolecules as well as
molecular assemblies, liquid crystals, soft solids,
and solids. In addition, the method provides unique
information concerning molecular dynamics,
through both relaxation methods and the direct
measurement of diffusion or flow. One spectacular
application of NMR concerns its use in imaging,
achieved by giving the Larmor frequency a spatial
tag through the use of deliberately inhomogeneous
magnetic fields. This topic is covered in the article
on Magnetic Resonance Imaging.

See also: Magnetic Resonance Imaging.
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Several fields of mathematics have closely been
associated to physics: this has always been the case
for the theory of differential equations. In the early
twentieth century, with the advent of general
relativity and quantum mechanics, topics such as
differential and Riemannian geometry, operator
algebras, and functional analysis, or group theory
also developed a close relation to physics. In the
1990s, mostly through the influence of string theory,
algebraic geometry also began to play a major role
in this interaction. Recent years have seen an
increasing number of results suggesting that number
theory also is beginning to play an essential part on
the scene of contemporary theoretical and mathe-
matical physics. Conversely, ideas from physics,
mostly from quantum field theory and string theory,
have started to influence work in number theory.

In describing significant occurrences of number
theory in physics, we will, on the one hand, restrict
our attention to quantum physics, while, on the other,
we will assume a somewhat extensive definition of
number theory that will allow us to include arithmetic
algebraic geometry. The territory is vast and an
extensive treatment would go beyond the size limits
imposed by the encyclopedia. The choice of topics
represented here inevitably reflects the limited knowl-
edge, particular interests, and bias of the author. Very
useful references, collecting a lot of material on number
theory and physics, are the proceedings of the Les
Houches conference in 2003 (Beilinson and Manin
1986), as well as the two volumes of a previous Les
Houches conference on number theory and physics,
which took place in 1989, published by Springer in
1990 and 1992. A number theory and physics database
is presently maintained online by M R Watkins.
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In the following, we have organized the material
by topics in number theory that have so far made an
appearance in physics, and for each we briefly
describe the relevant context and results. This
singles out many themes. We first discuss a class of
functions that occur in physics and their special
values that are of great number-theoretic impor-
tance. This includes the dilogarithm, the polyloga-
rithms and multiple polylogarithms, and the
multiple zeta values. We also discuss the most
important symmetry groups of number theory, the
Galois groups, and occurrences in physics of some
forms of Galois theory. We then discuss how
techniques from the arithmetic geometry of alge-
braic varieties, especially Arakelov geometry, play a
role in string theory. Finally, we discuss briefly the
theory of motives and outline its possible relation to
quantum physics. From the physics point of view, it
seems that the most promising directions in which
number-theoretic tools have come to play a crucial
role are to be found mostly in the realm of rational
conformal field theories and of noncommutative
geometry, as well as in certain aspects of string
theory.

Among the topics that are very relevant to this
theme, but that will not be touched upon in this
article, there are important subjects such as the
theory of ‘‘arithmetic quantum chaos,’’ the use of
methods of random matrix theory applied to the
study of zeros of zeta functions, or mirror symmetry
and its connection to modular forms. The interested
reader can find such topics treated in other articles
of this encyclopedia and in the references mentioned
above (see Quantum Ergodicity and Mixing of
Eigenfunctions; Random Matrix Theory in Physics;
Mirror Symmetry: a Geometric Survey).
Dilogarithm, Multiple Polylogarithms,
Multiple Zeta Values

The dilogarithm is defined as

Li2ðzÞ ¼
Z 0

z

logð1� tÞ
t

dt ¼
X1
n¼1

zn

n2

It satisfies the functional equation Li2(z)þ Li2(1� z) =
Li2(1)� log (z) log (1� z), where Li2(1) = �(2), for �(s)
the Riemann zeta function. A variant is given by
the Rogers dilogarithm L(x) = Li2(x)þ (1=2) log (x)
log (1� x). For more details, see Zagier’s paper
(Julia et al. 2005, vol. II).

The polylogarithms are similarly defined by the
series Lik(z) =

P
n�1 zn=nk. In quantum electrody-

namics, there are corrections to the value of the
gyromagnetic ratio, in powers of the fine structure
constant. The correction terms that are known
exactly involve special values of the zeta function
such as �(3), �(5) and values of polylogarithms such
as Li4(1=2). The series defining the polylogarithm
function Lis(z) =

P
n�1 zn=ns converges absolutely

for all s 2 C and jzj < 1 and has analytic continua-
tion to z 2 C n [1,1). The Fermi–Dirac and
Bose–Einstein distributions are expressed in terms
of the polylogarithm function asZ 1

0

xs

ex�� � 1
dx ¼ ��ðsþ 1ÞLi1þsð� e�Þ

The multiple polylogarithms are functions defined
by the expressions

Lis1;...;sr
ðz1; z2; . . . ; zrÞ

¼
X

n1>n2>���>nr>0

zn1

1 zn2

2 � � � znr
r

ns1

1 ns2

2 � � � n
sr
r

½1�

By analytic continuation, the functions
Lis1,..., sr

(z1, z2, . . . , zr) are defined for all complex si

and for zi in the complement of the cut [1,1) in the
complex plane. Multiple zeta values of weight k and
depth r are given by the expressions

�ðk1; . . . ; krÞ ¼
X

n1>n2>���>nr>0

1

nk1

1 � � � n
kr
r

½2�

with ki 2 N and k1 � 2. These satisfy many combi-
natorial identities and nontrivial relations over Q.
For an informative overview on the subject, see
Cartier (2002). Notice that, for the sums in [1] and
[2], a different summation convention can also be
found in the literature.

Conformal Field Theories and the Dilogarithm

There is a relation between the torsion elements in
the algebraic K-theory group K3(C) and rational
conformally invariant quantum field theories in two
dimensions (see Nahm (2005)). There is, in fact, a
map, given by the dilogarithm, from torsion
elements in the Bloch group (closely related to the
algebraic K-theory) to the central charges and
scaling dimensions of the conformal field theories.

This correspondence arises by considering sums of
the form

X
m2Nr

qQðmÞ

ðqÞm
½3�

where (q)m = (q)m1
� � � (q)mr

, (q)mi
= (1� q)(1� q2) � � �

(1� qmi) and Q(m) = mtAm=2þ bmþ h has rational
coefficients. Such sums are naturally obtained from
considerations involving the partition function of a
bosonic rational conformal field theory (CFT). In



602 Number Theory in Physics
particular, [3] can define a modular function only if all
the solutions of the equationX

j

Aij logðxjÞ ¼ logð1� xiÞ ½4�

determine elements of finite order in an extension
B̂(C) of the Bloch group, which accounts for the fact
that the logarithm is multivalued. The Rogers
dilogarithm gives a natural group homomorphism
(2�i)2L : B̂(C)! C=Z, which takes values in Q=Z
on the torsion elements. These values give the
conformal dimensions of the fields in the theory.

Feynman Graphs

Multiple zeta values appear in perturbative quantum
field theory. D Kreimer (2000) developed a connec-
tion between knot theory and a class of transcen-
dental numbers, such as multiple zeta values,
obtained by quantum field-theoretic calculations as
counterterms generated by corresponding Feynman
graphs. Broadhurst and Kreimer (1997) identified
Feynman diagrams with up to nine loops whose
corresponding counterterms give multiple zeta
values up to weight 15. Recently, Kreimer showed
some deep analogies between residues of quantum
fields and variations of mixed Hodge–Tate struc-
tures associated to polylogarithms.

Testing predictions about the standard model of
elementary particles, in the hope of detecting new
physics, requires developing effective computational
methods handling the huge number of terms involved
in any such calculation, that is, efficient algorithms for
the expansion of higher transcendental functions to a
very high order. The interesting fact is that abstract
number-theoretic objects, such as multiple zeta values
and multiple polylogarithms, appear naturally in this
context (cf., e.g., Moch et al. (2002)). The explicit
recursive algorithms are based on Hopf algebras and
produce expansions of nested finite or infinite sums
involving ratios of gamma functions and Z-sums
(Euler–Zagier sums), which naturally generalize multi-
ple polylogarithms and multiple zeta values. Such
sums typically arise in the calculation of multiscale
multiloop integrals. The algorithms are designed to
recursively reduce the Z-sums involved to simpler ones
with lower weight or depth.
Galois Theory

Given a number field K, which is an algebraic
extension of Q of some degree [K : Q] = n, there is
an associated fundamental symmetry group, given
by the absolute Galois group Gal( �K=K), where �K is
an algebraic closure of K. Even in the case of Q, the
absolute Galois group Gal( �Q=Q) is a very compli-
cated object, far from being fully understood.

One can consider an easier symmetry group,
which is the abelianization of the absolute Galois
group. This corresponds to considering the field Kab,
the ‘‘maximal abelian extension’’ of K, which has
the property that

GalðKab=KÞ ¼ Galð�K=KÞab

The Kronecker–Weber theorem shows that for
K = Q the maximal abelian extension can be
identified with the cyclotomic field (generated by
all roots of unity), Qab = Qcycl, and the Galois
group is identified with Gal(Qab=Q) ffi Ẑ	, where
Ẑ	= A	f =Q	þ. In general, for other number fields,
one has the ‘‘class field theory isomorphism’’

� : GalðKab=KÞ!’ CK=DK

where CK = A	K=K	 is the group of idele classes and
DK the connected component of the identity in CK. In
general, however, one does not have an explicit
description of the generators of the maximal abelian
extension Kab and the action of the Galois group. This
is the content of the explicit class field theory problem,
Hilbert’s 12th problem. In addition to the Kronecker–
Weber case, a complete answer is known in the case of
imaginary quadratic fields K = Q(

ffiffiffiffiffiffiffi
�d
p

), with d > 1 a
positive integer. In this case generators are obtained by
evaluating modular functions at a point � in the
upper-half plane such that K = Q(�) and the Galois
action is described explicitly through the group of
automorphisms of the modular field, through Shimura
reciprocity. For a survey of the explicit class field
theory problem and the case of imaginary quadratic
fields, see Stevenhagen (2001).

As we mentioned above, understanding the
structure of the absolute Galois group Gal( �Q=Q) is
a fundamental question in number theory. Grothen-
dieck described, in his famous proposal ‘‘Esquisse
d’un programme,’’ how to obtain an action of
Gal( �Q=Q) on an essentially combinatorial object,
the set of ‘‘dessins d’enfants.’’ These are connected
graphs (on a surface) such that the complement of
the graph is a union of open cells and the vertices
have two different markings, with the properties
that adjacent vertices have opposite markings. Such
objects arise by considering the projective line P1

minus three points. Any finite cover of P1 branched
only over {0, 1,1} gives an algebraic curve defined
over �Q. The dessin is the inverse image under the
covering map of the segment [0, 1] in P1. The
absolute Galois group Gal( �Q=Q) acts on the data of
the curve and the covering map, hence on the set of
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dessins. A theorem of Bielyi shows that, in fact, all
algebraic curves defined over �Q are obtained as
coverings of the projective line ramified only over
the points {0, 1, 1}. This has the effect of realizing
the absolute Galois group as a subgroup of outer
automorphisms of the profinite fundamental group
of the projective line minus three points. For a
general reference on the subject, see Schneps (1994).

A different type of Galois symmetry of great
arithmetic significance is ‘‘motivic’’ Galois theory.
This will be discussed later in the section dedicated
to motives, where we discuss a surprising occurrence
in the context of perturbative quantum field theory
and renormalization.

Quantum Statistical Mechanics and Class
Field Theory

In quantum statistical mechanics, one considers an
algebra of observables, which is a unital C	-algebra
A with a time evolution �t. States are given by linear
functionals ’ :A ! C satisfying ’(1) = 1 and posi-
tivity ’(x	x) � 0. Equilibrium states ’ at inverse
temperature 	 satisfy the Kubo–Martin–Schwinger
(KMS) condition, namely, for all x, y 2 A there
exists a bounded holomorphic function Fx, y(z) on
the strip 0 < =(z) < 	, which extends continuously
to the boundary, such that for all t 2 R

Fx;yðtÞ ¼ ’ðx�tðyÞÞ

and

Fx;yðt þ i	Þ ¼ ’ð�tðyÞxÞ ½5�

Cases of number-theoretic interest arise when one
considers the noncommutative space of commensur-
ability classes of Q-lattices up to scaling as algebra of
observables, with a natural time evolution determined
by the covolume, as shown in the paper Quantum
Statistical Mechanics of Q-Lattices of Connes–Marcolli
(Julia et al. 2005, vol. I). A Q-lattice in Rn consists of a
pair (�,
) of a lattice � 
 Rn together with a
homomorphism of abelian groups 
 : Qn=Zn�!
Q�=�. Two Q-lattices are commensurable, (�1,
1) �
(�2,
2), iff Q�1 = Q�2 and 
1 = 
2 mod �1 þ �2.

The Bost–Connes system The quantum statistical
mechanical system considered by Bost and Connes
(1995) corresponds to the case of one-dimensional
Q-lattices. The partition function of the system is
the Riemann zeta function �(	). The system has
spontaneous symmetry breaking at 	 = 1, with a
single KMS state for all 0 < 	 � 1. For 	 > 1, the
extremal equilibrium states are parametrized by the
embeddings of Qcycl in C with a free transitive
action of the idele class group CQ=DQ = Ẑ	. At zero
temperature, the evaluation of KMS1 states on
elements of a rational subalgebra intertwines the
action of Ẑ	 by automorphisms of (A,�t) with the
action of Gal(Qab=Q) on the values of the states.
This recovers the explicit class field theory of Q
from a physical perspective.

Noncommutative space of adele classes The algebra
A of the Bost–Connes system is the noncommutative
algebra of functions f (r, �), for � 2 Ẑ and r 2 Q	

such that r� 2 Ẑ, with the convolution product

f1 	 f2ðr; �Þ ¼
X

s2Q	:s�2Ẑ

f1ðrs�1; s�Þf2ðs; �Þ ½6�

and the adjoint f 	(r, �) = f (r�1, r�). According to the
general philosophy of Connes style noncommutative
geometry, it is the algebra of coordinates of the
noncommutative space defined by the ‘‘bad quoti-
ent’’ GL1(Q) n (Af 
 {�1}) – a noncommutative
version of the zero-dimensional Shimura variety
Sh(GL1,{�1})=GL1(Q)n (GL1(Af )
 {�1}). Its ‘‘dual
system’’ (in the sense of Connes’s duality of type III
and type II factors) is obtained by taking the crossed
product by the time evolution. It gives the algebra of
coordinates of the noncommutative space defined by
the quotient A=Q	. This is the noncommutative
space of ‘‘adele classes’’ used by Connes in his
spectral realization of the zeros of the Riemann zeta
function.

The GL2-system A generalization of the Bost–
Connes system was introduced by Connes and
Marcolli in the paper Quantum Statistical
Mechanics of Q-Lattices (Julia et al. 2005). This
corresponds to the case of two-dimensional
Q-lattices. The partition function is the product
�(	)�(	 � 1). The system in this case has two phase
transitions, with no KMS states for 	 � 1. For 	 > 2,
the extremal KMS states are parametrized by the
invertible Q-lattices, namely, those for which 
 is an
isomorphism. The algebra A has an arithmetic
structure given by a rational algebra of unbounded
multipliers. This rational algebra contains modular
functions and Hecke operators. At zero temperature,
extremal KMS states can be evaluated on these
multipliers. Symmetries of (A,�t) are realized in part
by endomorphisms (as in the theory of superselec-
tion sectors) and the symmetry group acting on
low-temperature KMS states is the group of auto-
morphisms of the modular field GL2(Af )=Q	. For a
generic set of extremal KMS1 states, evaluation at
the rational algebra intertwines this action with the
action on the values of an embedding of the modular
field as a subfield of C.
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The complex multiplication system In the case of an
imaginary quadratic field K = Q(�), an analogous
construction is possible. A one-dimensional K-lattice is
a pair (�,
) of a finitely generated O-submodule � of
C, with �K = K, and a homomorphism of O-modules

 : K=O ! K�=�. Two K-lattices are commensurable
iff K�1 = K�2 and 
1 =
2 mod �1 þ �2. Connes et al.
(Preprint 2005) constructed a quantum statistical
mechanical system describing the noncommutative
space of commensurability classes of one-dimensional
K-lattices up to scale. The partition function is the
Dedekind zeta function �K(	). The system has a phase
transition at 	 = 1 with a unique KMS state for higher
temperatures and extremal KMS states parametrized by
the invertible K-lattices at lower temperatures. There is
a rational subalgebra induced by the rational structure
of the GL2-system (one-dimensional K-lattices are also
two-dimensional Q-lattices with compatible notions of
commensurability). The symmetries of the system are
given by the idele class group A	K, f=K	. The action is
partly realized by endomorphisms corresponding to the
possible presence of a nontrivial class group (for class
number >1). The values of extremal KMS1 states on
the rational subalgebra intertwine the action of the idele
class group with the Galois action on the values. This
fully recovers the explicit class field theory for
imaginary quadratic fields.
Conformal Field Theory and the Absolute
Galois Group

Moore and Seiberg considered data associated to any
rational conformal field theory, consisting of matrices,
obtained as monodromies of some holomorphic multi-
valued functions on the relevant moduli spaces,
satisfying polynomial equations. Under reasonable
hypotheses, the coefficients of the Moore–Seiberg
matrices are algebraic numbers. This allows for the
presence of interesting arithmetic phenomena. Through
the Chern–Simons/Wess–Zumino–Witten correspon-
dence, it is possible to construct three-dimensional
topological field theories from solutions to the Moore–
Seiberg equations.

On the arithmetic side, Grothendieck proposed in
his ‘‘Esquisse d’un programme’’ the existence of a
Teichmüller tower given by the moduli spaces Mg, n

of Riemann surfaces of arbitrary genus g and number
of marked points n, with maps defined by operations
such as cutting and pasting of surfaces and forgetting
marked points, all encoded in a family of funda-
mental groupoids. He conjectured that the whole
tower can be reconstructed from the first two levels,
providing, respectively, generators and relations. He
called this a ‘‘game of Lego–Teichmüller.’’ He also
conjectured that the absolute Galois group acts by
outer automorphisms on the profinite completion of
the tower. The basic building blocks of the tower are
provided by ‘‘pairs of pants,’’ that is, by projective
lines minus three points.

This leads to a conjectural relation between the
Moore–Seiberg equations and this Grothendieck–
Teichmüller setting (cf. Degiovanni 1994) according
to which solutions of the Moore–Seiberg equations
provide projective representations of the Teichmüller
tower, and the action of the absolute Galois group
Gal( �Q=Q) corresponds to the action on the coeffi-
cients of the Moore–Seiberg matrices.

Rational conformal field theories are, in general,
one of the most promising sources of interactions
between number theory and physics, involving
interesting Galois actions, modular forms, Brauer
groups, and complex multiplication. Some funda-
mental work in this direction was done by, for
example, Borcherds and Gannon.
Arithmetic Algebraic Geometry

In this section we describe occurrences in physics of
various aspects of the arithmetic geometry of
algebraic varieties.
Arithmetic Calabi–Yau

In the context of type II string theory, compactified
on Calabi–Yau 3-folds, Greg Moore considered
certain black hole solutions and a resulting dynami-
cal system given by a differential equation in the
corresponding moduli. The fixed points of these
equations determine certain ‘‘black hole attractor
varieties.’’ In the case of varieties obtained from a
product of elliptic curves or of a K3 surface and an
elliptic curve, the attractor equation singles out
an arithmetic property: the elliptic curves have
complex multiplication. The class number of the
corresponding imaginary quadratic field counts
U-duality classes of black holes with the same area.
Other results point to a relation between the
arithmetic properties of Calabi–Yau 3-folds and
conformal field theory. For instance, it was shown
by Schimmrigk that, in certain cases, the algebraic
number field defined via the fusion rules of a
conformal field theory as the field defined by the
eigenvalues of the integer-valued fusion matrices


i 	 
j ¼ ðNiÞkj 
k

can be recovered from the Hasse–Weil L-function of
the Calabi–Yau. An interesting case is provided by
the Gepner model associated with the Fermat
quintic Calabi–Yau 3-fold.
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Arakelov Geometry

For K a number field and OK its ring of integers, a
smooth proper algebraic curve X over K determines
a smooth minimal model XOK

, which defines an
arithmetic surface XOK

over Spec(OK). The closed
fiber X} of XOK

over a prime } 2 OK is given by the
reduction mod }.

When Spec(OK) is ‘‘compactified’’ by adding the
Archimedean primes, one can correspondingly
enlarge the group of divisors on the arithmetic
surface by adding formal real linear combinations of
irreducible ‘‘closed vertical fibers at infinity.’’ Such
fibers are only treated as formal objects. The main
idea of Arakelov geometry is that it is sufficient to
work with ‘‘infinitesimal neighborhood’’ X�(C) of
these fibers, given by the Riemann surfaces obtained
from the equation defining X over K under the
embeddings � : K ,!C that constitute the Archime-
dean primes. Arakelov developed a consistent inter-
section theory on arithmetic surfaces, by computing
the contribution of the Archimedean primes to the
intersection indices using Hermitian metrics on these
Riemann surfaces and the Green function of the
Laplacian.

A general introduction to the subject of Arakelov
geometry can be found in Lang (1988). Manin
(1991) showed that these Green functions can be
computed in terms of geodesics in a hyperbolic
3-manifold that has the Riemann surface X�(C) as
its conformal boundary at infinity.
The Polyakov measure A first application to
physics of methods of Arakelov geometry was an
explicit formula obtained by Beilinson and Manin
(1986) for the Polyakov bosonic string measure in
terms of Faltings’s height function at algebraic
points of the moduli space of curves.

The partition function for the closed bosonic
string has a perturbative expansion Z =

P
g�0 Zg,

with

Zg ¼ e	ð2�2gÞ
Z

�

e�Sðx;�ÞDxD� ½7�

written in terms of a compact Riemann surface � of
genus g, maps x : � ! Rd, and metrics � on �. The
classical action is of the form

Sðx; �Þ ¼
Z

�

d2z
ffiffiffiffiffiffi
j�j

p
�ab@ax�@bx� ½8�

Using the invariance of the classical action with
respect to the semidirect product of diffeomorphisms
of � and the conformal group, the integral is reduced
(in the critical dimension d = 26 where the con-
formal anomaly cancels) to a zeta regularized
determinant of the Laplacian for the metric on �
and an integration over the moduli space Mg of genus
g algebraic curves. Beilinson and Manin gave an
explicit formula for the resulting Polyakov measure
on Mg using results of Faltings on Arakelov geometry
of arithmetic surfaces. In particular, their argument
uses essentially the properties of the Faltings metrics
on the invertible sheaves d(L) given by the ‘‘multi-
plicative Euler characteristics’’ of sheaves L of
relative 1-forms. For a suitable choice of bases {
j}
and {wj} of differentials and quadratic differentials,
the formula for the Polyakov measure is then of the
form (up to a multiplicative constant)

d�g ¼ jdet Bj�18ðdet =�Þ�13W1 ^ �W1 ^ � � � ^
W3g�3 ^ �W3g�3 ½9�

with � in the Siegel upper-half space, Bij =
R

ai

j,

and the Wj given by the images of the basis wj under
the Kodaira–Spencer isomorphism.

Holography In the case of the elliptic curve
Xq(C) = C	=qZ, a formula of Alvarez-Gaume,
Moore, and Vafa gives the operator product expan-
sion of the path integral for bosonic field theory as

gðz; 1Þ ¼ log

 
jqjB2ðlog jzj= log jqjÞ=2j1� zj



Y1
n¼1

j1� qnzj j1� qnz�1j
!

½10�

where B2 is the second Bernoulli polynomial.
Expression [8] is in fact the Arakelov Green function
on Xq(C) (cf. Lang (1988)).

Using this and analogous results for higher genus
Riemann surfaces, Manin and Marcolli (2001)
showed that the result of Manin (1991) on Arakelov
and hyperbolic geometry can be rephrased in terms
of the AdS/CFT correspondence, or holography
principle. Expression [8] can then be written as a
combination of terms involving geodesic lengths in
the Euclidean BTZ black hole.

In the case of higher genus curves, the Arakelov
Green function on a compact Riemann surface,
which is related to the two-point correlation func-
tion for bosonic field theory, can be expressed in
terms of the semiclassical limit of gravity (the
geodesic propagator) on the bulk space of Euclidean
versions of asymptotically AdS2þ1 black holes
introduced by K Krasnov.
Motives

There are several cohomology theories for algebraic
varieties: de Rham, Betti, étale cohomology. de Rham
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and Betti are related by the period isomorphism, and
comparison isomorphisms relate Étale and Betti
cohomology. In the smooth projective case, they
have the expected properties of Poincaré duality,
Künneth isomorphisms, etc. Moreover, Étale coho-
mology provides interesting ‘-adic representations of
Gal(�k=k). In order to understand what type of
information, such as maps or operations can be
transferred from one to another cohomology,
Grothendieck introduced the idea of the existence of
a ‘‘universal cohomology theory’’ with realization
functors to all the known cohomology theories for
algebraic varieties. He called this the theory of
‘‘motives.’’ Properties that can be transferred between
different cohomology theories are those that exist at
the motivic level. A short introduction to motives can
be found in Serre (1992).

The first constructions of a category of motives
proposed by Grothendieck covers the case of smooth
projective varieties. The corresponding motives form
a Q-linear abelian category of ‘‘pure motives.’’
Roughly, objects are varieties and morphisms are
‘‘correspondences’’ given by algebraic cycles in the
product, modulo a suitable equivalence relation. The
category also contains Tate objects generated by
Q(1), which is the inverse of the pure motive
H2(P1). Grothendieck’s standard conjectures imply
that the category of pure motives is equivalent to the
category of representations RepG of a ‘‘motivic
Galois group,’’ which in the case of pure motives is
proreductive. The subcategory of pure Tate motives
has as motivic Galois group the multiplicative group
Gm. The situation is more complicated for ‘‘mixed
motives,’’ for which constructions were only very
recently proposed (e.g., in the work of Voevodsky).
These provide a universal cohomology theory for
more general classes of algebraic varieties. Mixed
Tate motives are the subcategory generated by the
Tate objects. There is again a motivic Galois group.
For mixed motives it is an extension of a proreduc-
tive group by a prounipotent group, with the
proreductive part coming from pure motives and
the prounipotent part from the presence of a weight
filtration on mixed motives. The multiple zeta values
appear as periods of mixed Tate motives.
Renormalization and Motivic Galois Theory

A manifestation of motivic Galois groups in physics
arises in the context of the Connes–Kreimer theory of
perturbative renormalization (for an introduction to
this topic, see Hopf Algebra Structure of Renormaliz-
able Quantum Field Theory). In fact, according to the
Connes–Kreimer theory, the Bogoliubov–Parasiuk–
Hepp–Zimmerman (BPHZ) renormalization scheme
with dimensional regularization and minimal subtrac-
tion can be formulated mathematically in terms of the
Birkhoff factorization

�ðzÞ ¼ ��ðzÞ�1�þðzÞ ½11�

of loops in a prounipotent Lie group G, which is the
group of characters of the Hopf algebra of Feynman
graphs. Here, the loop � is defined on a small
punctured disk around the critical dimension D, �þ
is holomorphic in a neighborhood of D, and �� is
holomorphic in the complement of D in P1(C). The
renormalized value is given by �þ(D) and the
counterterms by ��(z).

The paper of Connes and Marcolli Renormaliza-
tion, the Riemann–Hilbert Correspondence, and
Motivic Galois Theory in volume II of Julia et al.
(2005) shows that the data of the Birkhoff factor-
ization are equivalently described in terms of
solutions to a certain class of differential systems
with irregular singularities. This is obtained by
writing the terms in the Birkhoff factorization as
time-ordered exponentials, and then using the fact
that

Te
R b

a
�ðtÞ dt

:¼ 1þ
X1
n¼1

Z
a�s1�����sn�b

�ðs1Þ � � ��ðsnÞ ds1 � � � dsn

is the value g(b) at b of the unique solution g(t) 2 G
with value g(a) = 1 of the differential equation
dg(t) = g(t)�(t) dt.

The singularity types are specified by physical
conditions, such as the independence of the counter-
terms on the mass scale. These conditions are
expressed geometrically through the notion of
G-valued ‘‘equisingular connections’’ on a principal
C	-bundle B over a disk �, where G is the
prounipotent Lie group of characters of the
Connes–Kreimer Hopf algebra of Feynman graphs.
The ‘‘equisingularity’’ condition is the property that
such a connection ! is C	-invariant and that its
restrictions to sections of the principal bundle that
agree at 0 2 � are mutually equivalent, in the sense
that they are related by a gauge transformation by a
G-valued C	-invariant map regular in B; hence, they
have the same type of (irregular) singularity at the
origin.

The classification of equivalence classes of these
differential systems via the Riemann–Hilbert corre-
spondence and differential Galois theory yields a
Galois group U	= Uo Gm, where U is prounipotent,
with Lie algebra the free graded Lie algebra with
one generator e�n in each degree n 2 N. The group
U	 is identified with the motivic Galois group of
mixed Tate motives over the cyclotomic ring
Z[e2�i=N], for N = 3 or N = 4, localized at N.
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Speculations on Arithmetical Physics

In a lecture written for the 25th Arbeitstagung in
Bonn, Y Manin presented intriguing connections
between arithmetic geometry (especially Arakelov
geometry) and physics. The theme is also discussed
in Manin (1989). These considerations are based on a
philosophical viewpoint according to which funda-
mental physics might, like adeles, have Archimedean
(real or complex) as well as non-Archimedean
(p-adic) manifestations. Since adelic objects are
more fundamental and often simpler than their
Archimedean components, one can hope to use this
point of view in order to carry over some computa-
tion of physical relevance to the non-Archimedean
side where one can employ number-theoretic methods.

Adelic physics? Some of the results mentioned in
the previous sections seem to lend themselves well to
this adelic interpretation. The quantum statistical
mechanics of Q-lattices relies fundamentally on
adeles and it admits generalizations to systems
associated to other algebraic varieties (Shimura
varieties) that have an adelic description and adelic
groups of symmetries. The result on the Polyakov
measure also has an adelic flavor, as it uses
essentially the Archimedean component of the
Faltings height function. The latter is in fact a
product of contributions from all the Archimedean
and non-Archimedean places of the field of defini-
tion of algebraic points in the moduli space, so that
one can expect that there would be an adelic
Polyakov measure, of which one normally sees the
Archimedean side only. The Freund–Witten adelic
product formula for the Veneziano string amplitude
fits in the same context, with p-adic amplitudes

Bpð�; 	Þ ¼
Z

Qp

jxj��1
p j1� xj	�1

p dx

and B1(�,	)�1 =
Q

p Bp(�,	) (cf. Varadarajan
(2004)).

Adelic physics and motives A similar adelic philo-
sophy was taken up by other authors, who proposed
ways of introducing non-Archimedean and adelic
geometries in quantum physics. A recent survey is
given in Varadarajan (2004). For instance, Volovich
(1995) proposed spacetime models based on
cohomological realizations of motives, with étale
topology ‘‘interpolating’’ between a proposed non-
Archimedean geometry at the Planck scale and
Euclidean geometry at the macroscopic scale. In
this viewpoint, motivic L-functions appear as parti-
tion functions and actions of motivic Galois groups
govern the dynamics.
See also: Hopf Algebra Structure of Renormalizable
Quantum Field Theory; Mirror Symmetry: A Geometric
Survey; Quantum Ergodicity and Mixing of
Eigenfunctions; Random Matrix Theory in Physics;
Regularization for Dynamical Zeta Functions.
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Introduction

An operad is an abstraction of a family of composable
functions of n variables for various n, useful for the
‘‘bookkeeping’’ and applications of such families.
Operads are particularly important and useful in
categories with a good notion of ‘‘homotopy,’’ where
they play a key role in organizing hierarchies of higher
homotopies, reflecting their original use as a tool in
homotopy theory, especially for studying (iterated)
loop spaces. For several years now, operads have
become increasingly important in mathematical
physics, especially in string field theory, where they
organize the terms of higher order in perturbed
actions, and in deformation quantization.

The major focus of this article will be on operads as
they are relevant to mathematical physics, but will also
include some background material from homotopy
theory, where they originated. A borderland where
homotopy theory and cohomological physics overlap is
the world of differential graded vector spaces, including
those of differential forms, ghosts, anti-ghosts, etc.,
sometimes lumped together as BRST theory. Here, as
elsewhere in contemporary mathematical physics, the
flow has been in both directions – sometimes physicists
have discovered or reinvented known mathematics but
finding new applications, at other times physics has
suggested new concepts for mathematicians to develop
further. In the case of operads, they have provided
general structure for varieties of algebras, some of
which are novel types contributed by physicists.

For a reasonably up-to-date introduction and
survey, consider Markl et al. (2002), although there
have been many developments since then. Two
particularly important original works are Boardman
and Vogt (1973) and May (1972).
Definitions and Examples

The term ‘‘operad’’ is due to May, building on work
of Stasheff and of Boardman–Vogt. The most
fundamental example of an operad is the endo-
morphism operad EndX:= {Map(Xn, X)}n�1 where,
for a set or topological space X, {Map(Xn, X)}
means the set or space of functions or continuous
functions from the n-fold product of X with itself to
X, together with the operations

�i : MapðXn;XÞ �MapðXm;XÞ�!MapðXnþm�1;XÞ

given, for 1 � i � n, by

ðf �i gÞðx1; . . . ; xmþn�1Þ
¼ f ðx1; . . . ; xi�1; gðxi; . . . ; xiþm�1Þ; xiþm; . . .Þ

In the endomorphism operad EndX, there are
easily discovered relations involving iterated �i-
operations and the symmetric group �n actions on
the Xns. For example,

ðf �i gÞ �j h ¼ f �j ðg �j�iþ1 hÞ
for i � j � iþm� 1

if g is a function of m variables, since only the name
of the position for the insertion is changed.

An operad (O, �i ) consists of a collection
{O(n)}n�1 of objects and maps �i :O(n)�O(m)!
O(nþm� 1) for m, n � 1 and i � n satisfying the
relations manifest in the example EndX.

May’s original definition corresponds to simulta-
neous insertions into all possible positions of inputs
into f 2Map(Xn, X). In most examples, the struc-
tures are ‘‘manifest’’ without appeal to the technical
definitions.

It helps to see graphic examples of operads,
particularly ones relevant for physics. Two kinds
that are particularly important are the tree operads
and the little disks (or cubes) operads.

Let T (n) be the set of planar trees with one root
and n leaves labeled (arbitrarily) 1 through n. The
collection T = {T (n)}n�1 of sets of trees forms an
operad by grafting the root of g to the leaf of f
labeled i, as in Figure 1, where the leaves are
assumed labeled in order from left to right. Figure 1
can be interpreted as portraying the �4 result of
inserting a 3-linear operation into a 5-linear one.

The little n-disks operad Dn = {Dn(j)}j�1 where
Dn(j) consists of an ordered collection of j n-disks
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Figure 1 Grafting with the leaves numbered from left to right.
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Figure 2 The little 2-disks operad.

(ab)(cd )

((ab)c)d 

(a(bc))da((bc)d )

a(b(cd ))

Figure 3 The associahedron K4:
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embedded in the standard n-dimensional unit disk
Dn with disjoint interiors, the embedding being of
the form azþ b with 0 < a 2 R. The operations are
given as indicated in Figure 2.

Just as group theory without representations is
rather sterile, so are operads best appreciated by
their representations known as (varieties of) alge-
bras, especially algebras with higher homotopies.

An algebra A over an operad P ‘‘is’’ a map of
operad P !EndA. This is just a compact way
of saying that an algebra A has a coherent system
of maps P (n)� An!A. Much of this article will
speak in terms of such algebras with the correspond-
ing operad being understood.
Figure 4 K4 with vertices labeled by trees.

Figure 5 The associahedron K5:
Operads in Homotopy Theory

A major motivation for the development of operads
was the desire to have a homotopy-invariant char-
acterization of based loop spaces and iterated loop
spaces. Precisely such coherent systems of higher
homotopies provided the answers. For based loop
spaces, the operad in question K= {Kn}n�1 consists of
the polytopes known as ‘‘associahedra.’’ The usual
product of based loops is only homotopy associative.

If we fix a specific associating homotopy and
consider the five ways of parenthesizing the product
of four loops, there results a pentagon whose edges
correspond to a path of loops (Figure 3).

From the leftmost vertex to the rightmost, consider
the two paths of loops across the top or around the
bottom. By further adjustment of parameters, the
pentagon can be filled in by a family of such paths.

The associahedron Kn can be described as a
convex polytope with one vertex for each way of
associating n ordered variables, that is, ways of
inserting parentheses in a meaningful way in a word
of n letters. The edges correspond to a single
application of an associating homotopy. More
generally, the cellular structure of the associahedra
is well described by planar rooted trees, the vertices
corresponding to binary trees and so forth (see
Figure 4).

For K5, see Figure 5 or a rotatable image available at
http://igd.univ-lyon1.fr/� chapoton/stasheff.html. The
facets are all products of two associahedra of lower
dimension and specific imbeddings can be given to play
the role of the �i operations as in an operad.

An A1-space is a space Y which admits a coherent
family of maps

mn : Kn � Yn ! Y

so that they make Y an algebra over the operad
(without �n-actions) K= {Kn}n�1.

The main result by Stasheff is: A connected space
Y (of the homotopy type of a CW-complex) has the
homotopy type of a based loop space �X for some
X if and only if Y is an A1-space.

Homotopy characterization of iterated loop
spaces �nXn for some space Xn required the full
power of the theory of operads with the symmetries.
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An early motivation for the invention of a theory
of operads was the consideration of infinite loop
spaces, that is, a sequence of spaces Xn such that
each Xn is homotopy equivalent to �Xnþ1.

Although introduced originally in the category of
topological spaces, operads were available almost
immediately for differential graded (dg) vector
spaces, also known as chain complexes. In physics,
the differential is often called a BRST operator, a
term that should be reserved for a special kind of dg
algebra, see below.
Operads in Algebra

The �i notation first appeared in Gerstenhaber’s study
of the algebraic structure of the Hochschild cohomol-
ogy of an associative algebra, about the same time as
the construction of the associahedra where the opera-
tions were given in a less convenient notation. Recall
the Hochschild cohomology of an associative algebra
A is the homology of the complex Hom(A�n, A) with
the coboundary given as follows (all signs below are
indicated as 	, any of the standard references will
specify conventions and signs): for f 2 Hom(A�n, A)
and g 2 Hom(A�m, A) let

f � g ¼ �n
1 	 f �i g ½1


Gerstenhaber then defines his bracket as [f , g] = f � g
	 g � f . With hindsight, he realized that the
Hochschild coboundary can be written as

�h ¼ ½m; h
 ½2


where m : A� A!A is the multiplication. More-
over, the associativity of m is equivalent to

½m;m
 ¼ 0 ½3

A1-Algebras

In the setting of graded vector spaces V = �r2Z Vr,
there are two conventions for defining A1-algebras,
which differ by a shift in grading. We adopt the
physics convention so that A here is the suspension
of that considered in the original papers. The
cellular chains of the associahedra form the A1-
operad, providing the following definition.

Definition 1 A1-algebra (Strong homotopy asso-
ciative algebra). Let A be a Z-graded vector space
A =�r2Z Ar and suppose that there exists a collec-
tion of degree 1 multilinear maps

m :¼ fmk : A�k!Agk�1
(A, m ) is called an A1-algebra when the multilinear
maps mk satisfy the following relations:

X

pþq¼nþ1

Xp

i¼1

	mp �i mq ¼ 0 ½4


with an appropriate set of signs for n � 1.

A weak A1-algebra consists of a collection of
degree 1 multilinear maps

m :¼ fmk : A�k ! Agk�0

satisfying the above relations, but for n � 0 and in
particular with k, l � 0.

Remark 1 The ‘‘weak’’ version is fairly new,
inspired by physics, where m0: C!A, regarded as
an element m0(1) 2 A, is related to what physicists
refer to as a ‘‘background.’’ The augmented relation
then implies that m0(1) is a cycle, but m1m1 need no
longer be 0, rather

m1m1 ¼ 	 m2ðm0 � 1Þ 	 m2ð1�m0Þ ½5


Just as associativity was captured by the equation
[m, m] = 0, so the defining relations of the definition
of an A1-algebra are captured by

½m ; m 
 ¼ 0 ½6


Decades later it was realized that considering
TcA = �A�n as a coalgebra with

�ða1 � � � � � anÞ ¼ �pþq 	 ða1 � � � � � apÞ
� ðapþ1 � � � � � anÞ

we then have an isomorphism

�HomðA�n;AÞ ’ CoderðTcAÞ

Here Coder is the space of all coderivations of TcA.
The Gerstenhaber bracket is indeed the ‘‘intrinsic’’
commutator bracket of coderivations via the above
isomorphism. As such, it satisfies a graded version of
the Jacobi identity; after a shift in grading from the
original one of Hochschild, the Hochschild cochain
complex forms a dg Lie algebra.

L1-Algebras

Since an ordinary Lie algebra g is regarded as
ungraded, the defining bracket is regarded as skew-
symmetric. For dg Lie algebras and L1-algebras, we
need graded symmetry, which refers to symmetry with
signs determined by the grading. The basic operation is

� : x� y 7! ð�1Þjxjjyjy� x ½7


Also we adopt the convention that tensor products
of graded functions or operators have the signs built
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in; for example, (f � g)(x� y) = (�1)jgjjxjf (x)� g(y).
By decomposing each permutation as a product of
transpositions, there is then defined the sign of a
permutation of n graded elements, for example, for
any ci 2 V, 1 � i � n, and any � 2 S n, the permuta-
tion of n graded elements is defined by

�ðc1; . . . ; cnÞ ¼ ð�1Þ�ð�Þðc�ð1Þ; . . . ; c�ðnÞÞ ½8


The sign (�1)�(�) is often referred to as the Koszul
sign of the permutation.

Definition 2 (Graded symmetry). A graded sym-
metric multilinear map of a graded vector space V to
itself is a linear map f : V�n!V such that for any
ci 2 V, 1 � i � n, and any � 2 S n (the permutation
group of n elements), the relation

f ðc1; . . . ; cnÞ ¼ ð�1Þ�ð�Þf ðc�ð1Þ; . . . ; c�ðnÞÞ ½9


holds.

Definition 3 By a (k, l)-unshuffle of c1, . . . , cn with
n = kþ l is meant a permutation � such that for i <
j � k, we have �(i) < �(j) and similarly for k < i <
j � kþ l. We denote the subset of (k, l)-unshuffles in
S kþl by S k, l and by S kþl = n, the union of the subsets
S k, l with kþ l = n. Similarly, a (k1, . . . , ki)-unshuffle
means a permutation � 2 S n with n = k1 þ � � � þ ki

such that the order is preserved within each block of
length k1, . . . , ki. The subset of S n consisting of all
such unshuffles we denote by S k1,..., ki

.

Definition 4 L1-algebra (Strong homotopy Lie
algebra). Let L be a graded vector space and suppose
that a collection of degree 1 graded symmetric linear
maps l := {lk : L�k!L}k�1 is given. (L, l) is called an
L1-algebra iff the maps satisfy the following relations:

X

�2S kþl¼n

ð�1Þ�ð�Þl1þlðlkðc�ð1Þ; . . . ; c�ðkÞÞ;

½c�ðkþ1Þ; . . . ; c�ðnÞÞ ¼ 0 ½10


for n � 1.

A weak L1-algebra consists of a collection of
degree 1 graded symmetric linear maps
l:= {lk : L�k!L}l�0 satisfying the above relations,
but for n � 0 and with k, l � 0.

Remark 2 The alternate definition in which the
summation is over all permutations, rather than just
unshuffles, requires the inclusion of appropriate
coefficients involving factorials.

Just as an A1-algebra can be described as a
coderivation of TcA, similarly an L1-algebra L can
be described as a coderivation on ScL, the symmetric
subcoalgebra of TcA.
The operad of Lie algebras was defined rather
late, although it was earlier implicit in the work of
Fred Cohen. It is defined as the homology
Hn�1(Config(R2, n)) for n � 1, where Config(R2, n)
denotes the configuration space of ordered n-tuples
of distinct points in R2. Equivalently, the configura-
tions can be thought of as the centers of the little
2-disks. The open disks being contractible to their
centers, this is a suboperad of the full homology
H
(D2).

Just as a Lie algebra is obtained from an
associative algebra using the commutator as bracket
and, inversely, a Lie algebra gives rise to its
universal enveloping associative algebra, an
L1-algebra can be obtained from an A1-algebra
by n-variable analogs of commutators and there
is a universal enveloping A1-algebra of a given
L1-algebra.

Open–Closed Homotopy Algebras

Open–closed string field theory suggests interaction
between an L1-algebra Hc and an A1-algebra Ho

including a strong homotopy representation of Hc

on Ho by strong homotopy derivations. Here is the
formal definition:

Definition 5 Let H=Ho �Hc be a graded vector
space and (Hc, l) be a weak L1-algebra. Consider a
collection of multilinear maps

n :¼ fnk;l : ðHoÞ�k � ðHcÞ�l!Hogk;l�0

each of which is graded symmetric on (Hc)
�l. We

denote the collection also by n . We call (H, n , l) a
(partial) open-closed homotopy algebra (OCHA)
when n satisfies the following relations (up to some
factorial coefficients):

0 ¼
X

k;l�0

Xm�k

p¼0

X

�2S n

	 nmþ1�k;n�lðo1; . . . ; op;

nk;lðopþ1; . . . ; opþk; c�ð1Þ; . . . ; c�ðlÞÞ;
opþkþ1; . . . ; om; c�ðlþ1Þ; . . . ; c�ðnÞÞ

þ
X

�2S n

Xn

l¼1

	 nm;nþ1�lðo1; . . . ; om;

llðc�ð1Þ; . . . ; c�ðlÞÞ; c�ðlþ1Þ; . . . ; c�ðnÞÞ ½11


Other Algebras of Interest

The Hochschild complex also has a graded product
(without invoking the shift) known as the cup
product. Except for the signs and the grading, the
bracket and the product satisfy the Leibniz rule of a
Poisson algebra on the cohomology; the result is
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axiomatized as a ‘‘Gerstenhaber algebra.’’ However,
on the cochain complex, the Lie bracket and the
associative product are compatible only up to
homotopy.

This naturally raises the issue of an operad for
strong homotopy Gerstenhaber algebras. The operad
G for Gerstenhaber algebras is the homology of the
little disks operad, H
(D2). But now we have
choices: in addition to relaxing the Leibniz rule up
to homotopy, the bracket could be relaxed to be
part of an L1-algebra and/or the product could be
relaxed to be part of an A1-algebra. The choice
which is now known as the G1-operad is defined in
terms of a procedure which works for what are
known as quadratic operads, indicating they have
generators in O(2) and relations in O(3): the
corresponding O1 has ‘‘dual’’ relations. For exam-
ple, this gives the classical Koszul duality between
Lie and commutative associative algebras. The G1-
operad can also be described as the ‘‘minimal
model’’ of G in the sense of Markl.

Another alternative is to consider just the ‘‘brace’’
operations, originally introduced by Kadeishvili and
later independently by Getzler, but described in the
Hochschild complex setting by Gerstenhaber–
Voronov. Together with the cup product, these
determine an operad denoted HG which acts on the
Hochschild complex; there is an operad map from
G1 to HG, hence G1 also acts on the Hochschild
complex. Finally, Tamarkin showed that G1 is
quasi-isomorphic to the dg operad of singular chains
on the little disks operad, thus providing one of
several proofs of what had been a conjecture by
Deligne.

Algebras with invariant inner products <�,�>
are of considerable importance in mathematics and
especially in mathematical physics; invariance means
<a, bc> = <ab, c> or <a, [b, c]> = < [a, b], c> in,
respectively, the associative or the Lie case (with
appropriate signs in the graded case). Using the
inner product, n-ary operations A�n!A can be
converted to operations A�nþ1!C of which we can
require cyclic symmetry. To handle such algebras,
there is a notion of ‘‘cyclic operad.’’ In terms of
trees, the transition is to take a rooted tree and then
regard the root edge as just another leaf. This point
of view corresponds to an essential symmetry for
particle interactions.
Figure 6 Bubble tree for circle configurations.
Operads in Mathematical Physics

One reason for the explosive development of operad
theory in the 1990s was the introduction of operadic
structures in field theories, for example, conformal
field theories (CFTs) and string field theories (SFTs).
These operadic structures were directly related to
the moduli spaces of Riemann surfaces with punc-
tures or boundaries (or other decorations) in these
physical theories.

Two special ‘‘higher-homotopy algebras’’ have
been emphasized because they are particularly
important in mathematical physics: A1 for open-
string field theory and L1 for closed-string field
theory and for deformation quantization. Open–
closed string field theory combines A1-algebra and
L1-algebra in a particular way known as an OCHA.

The operad for L1-algebras is given a very nice
and physically relevant geometric interpretation in
terms of a real compactification of the moduli space
of Riemann spheres with punctures, while for
OCHAs, there is a real compactification of the
moduli space of Riemann disks with punctures on
the boundary or in the interior (bulk). Thus, this
operad can be regarded as obtained from a moduli
space of configurations of points (punctures) in the
disk by compactifying the moduli spaces by adding
boundary strata where two (or more) points
(punctures) collide. Points on the boundary strata
can be visualized as ‘‘bubble trees’’ of disks and/or
spheres, see Figure 6. Alternatively, the little disks
operad can be regarded as being obtained by
‘‘decorating’’ the points with little disks, while for
OCHAs there is also a basic half-disk decorated
with little disks in the bulk and little half-disks for
the boundary points. The corresponding colored
operad is Voronov’s ‘‘Swiss-cheese operad.’’
‘‘Colored’’ refers to the fact that disks can be
inserted into half-disks but not vice versa. Compare
trees with two ‘‘colors’’ of edges with grafts
restricted to ones which match colors.

On-Shell versus Off-Shell

In cohomological physics, the ‘‘on-shell’’ states or
observables are usually given by the cohomology
with respect to an internal differential, which in
physics is called the BRST differential or BRST operator,
though originally this meant the Chevalley–Eilenberg
differential associated to the action of the Lie algebra of
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gauge symmetries of a physical theory. The generators
of the Chevalley–Eilenberg cochain complex are known
as ‘‘ghosts’’. On-shell subspaces of algebras which are
not closed under the product of the larger ‘‘off-shell’’
algebra are called ‘‘open’’ algebras by physicists. Quite
generally, this situation gives rise to an algebra over an
appropriate operad. A special case involves a differential
graded algebra A and a linear imbedding H(A) � A.
The (co)homology is in turn a graded algebra (with 0 as
differential), but inherits a higher-homotopy structure
so that cohomology and original algebra are equivalent.

In the associative case, the inheritance is a result
of Kadeishvili:

Let (A, d) be a differential graded associative or
A1-algebra, then the homology H(A) inherits the
structure of an A1-algebra.

Even if the original algebra A is strictly associa-
tive, the inherited A1-structure generally has non-
trivial operations mi.

Analogous results hold for L1-algebras and
others. It is the L1-version that is relevant for
closed-string field theory (CSFT). Zwiebach showed
the quantum theory of covariant closed strings has
an action defined in terms of an infinite chain of
string field products. The genus-0 (tree level) string
field algebra is an L1-algebra inherited from the off-
shell state space modeled by the Batalin–Vilkovisky
(BV) construction. The higher-order brackets pro-
vide higher-order correlation or n-point functions
which play a crucial role in the extended Lagrangian
of the theory.
Batalin–Fradkin–Vilkovisky and Batalin–Vilkovisky
Constructions

The constructions of Batalin–Fradkin–Vilkovisky
(BFV) for constrained Hamiltonian systems and of
Batalin–Vilkovisky (BV) for Lagrangians with sym-
metries are important examples of L1-structures
derived from ‘‘open’’ algebra settings, though the
L1-structures were recognized quite a while after
the constructions.

The BFV setting is that of a symplectic manifold
W with a family of constraints, that is, a family of
functions �� 2 C1(W). The constraints are called
‘‘first class’’ if the ideal they generate is closed under
the Poisson bracket. The vector space spanned by
the constraints will in general be an open algebra;
the structure of the bracket is given by structure
functions, rather than structure constants. The zero
locus of all the constraints forms the constraint
surface V. In the first-class case, the constraints are
in involution and determine a foliation F of V. If the
space of leaves V=F is a manifold, it would be
considered the true physical space and the physical
observables would be functions in C1(V=F ). BFV
construct a differential graded Poisson algebra such
that the cohomology in degree 0 agrees with
C1(V=F ) when that makes sense and, in the regular
case, the rest of the cohomology is that of the
differential forms along the leaves of the foliation.
The BFV differential is a deformation of the
Chevalley–Eilenberg/BRST differential and can be
constructed most efficiently by the same techniques
used in proving Kadeishivili’s inheritance theorem.
Crucially, it is an inner derivation with respect to
the Poisson bracket. After the fact, an L1-structure
can be observed in the extended algebra.

For a Lagrangian with symmetries, BV develop a
similar construction, the main difference being that
there is no Poisson bracket initially, but one is
constructed by adjoining ‘‘anti-fields’’ as conjugate to
the fields but of ghost degree�1 and the differential of
an anti-field being the Euler–Lagrange expression for
the corresponding field. Then, as in the Hamiltonian
case, ghosts and anti-ghosts, etc. are adjoined and the
construction proceeds in a parallel fashion.
Deformation Quantization

Once algebras over an operad P are considered, it is
natural to consider also morphisms of such algebras
over a fixed P .

From a homotopy point of view, the appropriate
maps need not respect the operad structure strictly
but only up to higher homotopy; indeed, there is a
related operad to define such maps. For L1-
algebras, such L1-maps play a key role in deforma-
tion quantization. That refers to deformation of the
commutative multiplication of a Poisson algebra in
the direction of the Poisson bracket; that is, to first
order, the deformation is given by the bracket.

More generally, for any associative algebra A with
multiplication m, one considers formal deformations

a ? b ¼ mða; bÞ þ tm1ða; bÞ þ t 2m2ða; bÞ þ � � � ½12


where each mi 2 Hom(A� A, A). The associativity
of ? provides a sequence of constraints on the mi. In
particular, m1 must be a Hochschild cocycle and the
obstruction to the existence of m2 is a class in the
Hochschild cohomology of degree 3. In fact, the
primary obstruction is represented by [m1, m1]. If it
is cohomologous to zero, that fact identifies candi-
dates for m2, that is,

½m1;m1
 ¼ 	2½m;m2
 ½13


or, using the notation d = [m,],

dm2 � 1=2½m1;m1
 ¼ 0 ½14




Operads 615
once known as the integrability equation but now,
more frequently, as a Maurer–Cartan equation. For
a Poisson algebra, the Poisson bracket is a Hochs-
child cocycle but in general a full deformation need
not exist. However, for the algebra A of smooth
functions on a Poisson (e.g., symplectic) manifold
M, Kontsevich showed that such a full formal
deformation does exist.

The guiding philosophy is that deformations are
controlled by a dg Lie or L1-algebra L, unique up to
L1-homotopy equivalence. Therefore, the obstruc-
tions can be computed in any of the equivalent dg Lie
algebras. Moreover, the structure of the obstructions
is known sufficiently so that if there is an equivalent
dg Lie algebra with d in fact zero, then all the
obstructions to deformation quantization vanish. The
key to Kontsevich’s proof was the construction of an
L1-map, inducing an isomorphism in cohomology,
from the Lie algebra of polyvector fields on Rd with
the Schouten bracket and d = 0 to the Lie algebra of
multidifferential operators on A = C1(Rd) regarded as
a subalgebra of the Hochschild cochain complex for A
with the Gerstenhaber bracket.
Figure 7 Angles determined by edges with leaves extended to

the semicircle.
BV Algebras

In addition to their construction of a differential
graded Gerstenhaber algebra (a differential graded
commutative algebra with a compatible Poisson
bracket of degree 1), BV introduced a new mathe-
matical structure, adding a second-order differential
operator � relating the commutative product and
the bracket. The operator � is a derivation of the
bracket and of square zero. Moreover,

½a; b
 ¼ �ðabÞ ��ðaÞb	 a�ðbÞ ½15


so that the failure of � to be a derivation of the
product is given by the bracket.

The definition of a BV algebra is then a Gerstenhaber
algebra with such an operator, though alternative
definitions exist in which � and the product are
primary and the bracket is defined by the above
equation. From the operadic/higher-homotopy point
of view, one can then go on to consider BV1 algebras.

Recall that A1-algebras and L1-algebras (among
others) can be characterized by an ‘‘inner’’ coderiva-
tion d = [m, ] of square zero on an appropriate
‘‘standard’’ construction. In the context of BV
algebras, where the bracket is more commonly
written as {,}, the classical action is an element S0

such that {S0, S0} = 0 or, equivalently, d = {S0, } is of
square zero. The quantum analog S is a perturbation
of S0 and satisfies instead

fS; Sg ¼ �S ½16

This was originally called the ‘‘master equation,’’
but now is increasingly referred to as a ‘‘Maurer–
Cartan’’ equation.

Insertion Operads

There is another class of operads illustrated by trees
(and more generally graphs) with a very different
sort of ‘‘composition,’’ namely insertion of one
graph into another. The most directly relevant to
physics is the kind of insertion used by Connes and
Kreimer in their Hopf algebra constructed for
renormalization of Feynman diagrams. For example,
consider all finite graphs with exactly two external
edges and internal numbered edges. Given two
graphs �1, �2, define �1 �i �2 by cutting edge i of
�1 and identifying the dangling edges with the two
external edges of �2.

For planar trees, yet another insertion operad is
obtained by Chapoton, isolating a part of a structure
due to Kontsevich, in which a small neighborhood
of a vertex of the second planar tree is removed and
the dangling edges are attached to a vertex of the
first tree by entering through the angles between the
edges at that vertex (Figure 7).

Inside the HG-operad is the operad Brace for an
abstract brace algebra (forgetting the cup product),
first described as such by Chapoton using the
insertion operations of Kontsevich and Soibelman.

A1-Categories

Also of importance for applications to mathematical
physics is the notion of an A1-category, first made
explicit by Fukaya and now playing a major role in
string D-brane theory and homological mirror
symmetry. The D-branes are the objects of the A1-
category and the open strings with boundaries on
two (possibly equal) D-branes B1, B2 are the
morphisms from B1 to B2. The operations mi are
defined only on tuples (a1, . . . , ai) of ‘‘composable’’
morphisms (e.g., strings).

PROPs

While an operad is an abstraction of a family of
composable functions of n variables for various n, a
PROP is an abstraction of a family of functions in
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Hom(A�p, A�q) for all p and q. Now the relevant
images are graphs with p input legs and q output
legs with composition being defined by grafting
output legs of one graph to inputs of another.
Feynman diagrams are the obvious example in
physics or, in conformal field theory, tubular
neighborhoods of such graphs, which is to say,
Riemann surfaces with boundary circles: p as
inputs and q as outputs.

See also: Algebraic Approach to Quantum Field Theory;
Batalin–Vilkovisky Quantization; Constrained Systems;
Deformations of the Poisson Bracket on a Symplectic
Manifold; Deformation Quantization; Deformation Theory;
Hopf Algebra Structure of Renormalizable Quantum Field
Theory; String Field Theory.
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Getzler E and Jones JDS (1993) n-algebras and Batalin–
Vilkovisky algebras. Preprint.

Getzler E and Jones JDS (1994) Operads, homotopy algebra and

iterated integrals for double loop spaces. Preprint, Department

of Mathematics, MIT; Department of Mathematics North-
western University, March 1994, hep-th/9403055.

Getzler E and Kapranov M (1994) Modular operads. Compositio
Mathematica 110: 65–126 (dg-ga/9408003).

Hinich V and Schechtman V (1993) Homotopy Lie algebras.
Advanced Studies in Soviet Mathematics 16: 1–18.

Lada T and Markl M (1995) Strongly homotopy Lie algebras.

Communications in Algebra 2147–2161 (hep-th/9406095).

Lada T and Stasheff JD (1993) Introduction to sh Lie algebras for
physicists. International Journal of Theoretical Physics 32:

1087–1103.

Markl M, Shnider S, and Stasheff J (2002) Operads in Algebra,
Topology and Physics, Mathematical Surveys and Mono-

graphs, vol. 96, MR 2003f: 18011. Providence, RI: American

Mathematical Society.

May JP (1972) The Geometry of Iterated Loop Spaces, Lecture
Notes in Mathematics, vol. 271. Springer.

Stasheff J (1963) Homotopy associativity of H-spaces, I, II.

Transactions of the American Mathematical Society 108:

293–312, 313–327.
Voronov AA (1999) The Swiss Cheese Operad, Contemp. Math.

vol. 239, pp. 365–373. Providence, RI: American Mathema-

tical Society.
Zwiebach B (1993) Closed string field theory: quantum action

and the Batalin–Vilkovisky master equation. Nuclear Physics
B 390: 33–152.

Zwiebach B (1998) Oriented open–closed string theory revisited.
Annals of Physics 267: 193–248 (hep-th/9705241).
Operator Product Expansion in Quantum Field Theory

H Osborn, University of Cambridge, Cambridge, UK

ª 2006 Elsevier Ltd. All rights reserved.
Introduction

The operator product expansion (OPE) provides an
algebraic structure in quantum field theory. In a
sense it supercedes or rather transcends the equal-
time commutation relations, which provide the
traditional starting point for the canonical quantiza-
tion of any quantum field theory. The essential idea
is that for any two local operator quantum fields at
spacetime points x1, x2 their product may be
expressed in terms of a series of other local quantum
fields at a point x, which may be identified with x1
or x2, times c-number coefficient functions which
depend on x1 � x2. The set of operators which may
appear depends on the particular quantum field
theory and must of course be in accord with any
requirements of conserved quantum numbers. The
coefficient functions depend on x1 � x2 in a fashion
which depends on the dimensions of the various
operators involved, at least up to renormalization
group corrections. The most singular contributions
are those for the operators appearing in the OPE
with lowest scale dimension. From a phenomenolo-
gical point of view, only the first few terms in the
OPE are of relevance. However, theoretically,
especially for conformal field theories, it is desirable
to know the full expansion to all orders in powers of
x1 � x2 in such a way that the operator product may
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be replaced by the full expansion in appropriate
correlation functions. We first discuss the OPE for
free theories and then the interacting case.
Free Field Theory

The OPE is most straightforward in free field theory
when it almost reduces to a Taylor series expansion.
For a simple free massless scalar field �(x) then in
four dimensions we may write

�ðxÞ�ð0Þ ¼ C

x2
þ :�ðxÞ�ð0Þ: ½1�

where : : denotes normal ordering (moving all
annihilation operators to the right of creation
operators) and C is just a normalization numerical
constant (for canonical normalization C = 1=4�2).
The 1=x2 term proportional to the identity operator
reflects the leading singular behavior at short
distances of �(x)�(0), the power being determined
by � having dimension 1. For the normal-ordered
term we may expand in terms of an infinite set of
local operators by using the Taylor expansion

:�ðxÞ�ð0Þ:¼
X1
n¼0

1

n!
x�1 � � �x�n :@�1

� � �@�n
�ð0Þ�ð0Þ: ½2�

where the operator appearing in the nth term has
dimension nþ 2. Manifestly at short distances only the
leading terms are relevant. Equation [1] also provides a
point splitting definition of the local composite
operator :�2(0): in terms of limit of �(x)�(0) as x!0
after subtraction of the singular C=x2 term.

The OPE can be easily generalized to composite
operators defined by normal ordering. For :�2: we
have, by applying Wick’s theorem,

:�2ðxÞ::�2ð0Þ:¼ 2C2

x4
þ 4C

x2
:�ðxÞ�ð0Þ:

þ :�2ðxÞ�2ð0Þ: ½3�

where Taylor series expansion may be applied to both
:�(x)�(0): and also :�2(x)�2(0): to give an infinite
sequence of local operators of increasing dimensions.

The expansion in terms of local operators may be
reordered. For instance, from [1] we may write,
using @2�= 0,

�ðxÞ�ð0Þ ¼ C

x2

þ 1þ 1
2 x�@� þ 1

4 x�x�@�@� þ 1
16 x2@2

� �
:�2ð0Þ:

� 1
2 x�x� T�� þOðx3Þ ½4�

where

T�� ¼ :@��@�� : �1
4 ��� :@� � @� : ½5�
is the energy–momentum tensor. In [4], and also in a
similar context subsequently, we define @ :�2(0): =
@y :�2(y): jy = 0. The expansion [4] provides a point
splitting definition of T�� and also demonstrates that
many operators appearing in the OPE are expres-
sible in terms of overall derivatives of lower-
dimension operators. We may also note that without
further input there is an ambiguity in the definition
of T�� of the form

T�� � T�� þ að@�@� � 1
4 ���@

2Þ :�2 : ½6�

In a conformal theory, however, we require
a =�1=6.
Interacting Theories

The OPE becomes an essential tool in the context
of interacting quantum field theories. For renorma-
lizable quantum field theories various results can be
proved to all orders in the standard perturbative
expansion and are naturally assumed to be proper-
ties of the complete theory. In interacting theories
we may no longer use normal ordering to define
composite operators which, in general, have anom-
alous dimensions. The coefficient functions appear-
ing in the OPE also gain perturbative corrections but
these are constrained by renormalization group
(RG) Callan–Symanzik equations.

Again if we consider the simplest case of a massless
scalar theory as above but now with a renormalized
coupling constant g the leading terms in the expan-
sion of �(x)�(0) are of the form (here we assume a Z2

symmetry under �!��, otherwise the operator �
would be expected to appear in the OPE)

�ðxÞ�ð0Þ ¼ Cðg; �2x2Þ
x2

þDðg; �2x2Þ�2ð0Þ þ � � � ½7�

where � is an arbitrary renormalization scale. This
arbitrariness is reflected in the RG equation

�
@

@�
þ �ðgÞ @

@g
þ 2��ðgÞ

� �
Cðg; �2x2Þ ¼ 0 ½8�

At a fixed point �(g�) = 0 this equation may be
solved with an arbitrary choice of normalization to
give C(g�,�

2x2) = (�2x2)���(g�), which corresponds
to the fields � having a modified scale dimension
1þ ��(g�). In a similar fashion the coefficient
D(g,�2x2) in [7] satisfies

�
@

@�
þ �ðgÞ @

@g
þ 2��ðgÞ � ��2ðgÞ

� �
�Dðg; �2x2Þ ¼ 0 ½9�

where it is necessary to introduce a new anomalous
dimension function ��2 (g) related to the composite
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operator �2. Although it is natural to label the
operator as �2 its definition in terms of the
elementary field � is essentially only as given in
terms of the OPE [9]. At a fixed point again
D(g�,�

2x2) = k(�2x2)���(g�)þ(1=2)�
�2 (g�), where the

coefficient k is determined by the scale of the
three-point function h�(x)�(y)�2(0)i. In asymptoti-
cally free theories the RG equations show that at
short distances the coefficient functions tend to
those of free field theory but with calculable
logarithmic corrections. More generally, for a set
of operators {Oi} the OPE has the form

OiðxÞOjð0Þ �
1

ðx2Þp
X

k

Cijkðg; �2x2ÞOkð0Þ ½10�

where p is determined by the free scale dimensions
of the Oi and

�
@

@�
þ �ðgÞ @

@g

� �
Cijkðg; �2x2Þ

¼
X

n

�knðgÞCijnðg; �2x2Þ � �inðgÞCnjkðg; �2x2Þ
�
� �jnðgÞCinkðg; �2x2Þ

�
½11�

with �in(g) the anomalous dimension matrix arising
from the mixing of composite operators.

An important aspect of the OPE is that the
coefficient functions may be calculated perturbatively,
essentially by applying the OPE in some suitable
correlation function. Essentially the OPE provides a
factorization between short-distance UV singularities
and nonperturbative effects. In a Feynman graph the
short distances in an operator product correspond to
the large-momentum behavior and power-counting
theorems allow a factorization up to calculable
logarithmic corrections. A detailed analysis depends
on the detailed technicalities of the proofs of renorma-
lization to all orders of perturbation theory.

The coefficient functions in the OPE should be
independent of any infrared or nonperturbative long-
distance effects (such as confinement in QCD).
However, the operators which appear in the OPE,
such as �2 above, may have nonzero expectation
values which are absent to all orders in perturbation
theory.
Perturbative Example

The general considerations can be illustrated by
considering a scalar field theory to lowest order in a
perturbative expansion. We consider a four dimen-
sional theory with a single scalar field and a
potential V(�) = 1

2 m2�2 þ 1
24 g�4. Using dimensional

regularization m2, as well as g, is treated as a
coupling with an associated �-function ��2 (g)m2.
With a mass term the operator �2 mixes with the
identity operator so that

ðD þ ��2ðgÞÞh�2ð0Þi ¼ ���2IðgÞm2

D ¼ � @

@�
þ �ðgÞ @

@g
þ ��2ðgÞm2 @

@m2

½12�

where ��2I reflects the mixing. At one loop order we
have

�ðgÞ¼ 3g2

16�2
; ��2ðgÞ¼ g

16�2
; ��2IðgÞ¼

1

8�2
½13�

and we may also set ��(g)=0. In this case in the
operator product expansion (7) the coefficient C
also depends on m2x2 and the RG equations [8] and
[9] are now modified to include the effects of mixing

DCðg;m2x2; �2x2Þ ¼ m2x2��2IðgÞDðg; �2x2Þ
D � ��2ðgÞ
� �

Dðg; �2x2Þ ¼ 0
½14�

From lowest order perturbation theory with [13],
and using [14] to include all orders in g ln�2x2, we
have in this approximation

Cðg;m2x2; �2x2Þ

¼ 1

4�2
� 2m2x2

g
1þ 3g

32�2
ln�2x2

� �2=3

� 1þ 3g

32�2
ln�2x2

� ��1=3

�1

 !

Dðg; �2x2Þ ¼ 1þ 3g

32�2
ln�2x2

� �1=3

½15�

The operator product expansion then reproduces the
small x behavior of the two point function h�(x)�(0)i at
one loop, expanding C, D to first order in g, if we take

h�2ð0Þi ¼ � m2

8�2
ln
�

m
þOðgÞ ½16�

which is in accord with [12]. If m2 < 0 the symmetry
�$ �� is broken and it is necessary to shift the field
�= � þ f , with �2 =�6m2=g and the field f has a
mass mf with m2

f =�2m2. The operator product
expansion [7] with the same coefficient functions as in
[15] remains valid. The two point function h�(x)�(0)i,
which includes a nonperturbative term �2, is again
reproduced for small x at one loop now if

h�2ð0Þi ¼ � 6m2

g
� m2

2�2
ln

�

mf
þOðgÞ ½17�

but in this case it is necessary to expand D(g,�2x2)
to O(g2) as a consequence of the leading 1=g term in
[17]. Note that both [16] and [17] contain the
nonperturbative dependance on ln m and ln mf

which is present in the two point function.
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Conformal Field Theories

When the �-function vanishes and a quantum field
theory enjoys conformal invariance the operator
product expansion is a potentially convergent
expansion. It is natural to restrict to conformal
quasiprimary operators which do not mix with
lower scale dimensions under conformal transforma-
tions. If we consider, for instance, two scalar
operators � with scale dimension �� then the OPE
has the generic form

�ðxÞ�ð0Þ¼ 1

x2��
þ
X

I

C��OI

1

ðx2Þ1=2ð2�� ��I þ ‘Þ
� C

ð‘Þ
�Iðx; @Þ�1;...;�‘OI

�1;...;�‘
ð0Þ ½18�

where there is a sum over quasiprimary operators
OI
�1,...,�‘

with scale dimension �I and spin ‘, so they
are symmetric traceless tensors of rank ‘. In the first
term in [18] the coefficient is chosen to be 1 by a
choice of normalization. The coefficients C��OI ,
with a standard normalization for OI, are then
determined by the coefficients of the corresponding
three-point functions involving �� and OI. In [18]
C(‘)

�I are differential operators which sum up the
contributions of all derivatives or descendants of the
quasiprimary operator OI. They can be explicitly
given in terms of an integral representation, for any
spacetime dimension, where the scale is fixed by
requiring for the leading term C(‘)

�I (x, 0)�1,...,�‘ =
x�1 � � � x�‘ – traces. The spectrum of operators
which appear is obviously a property of the
particular conformal field theory.
Ward Identities

If the theory has a symmetry with corresponding
conserved currents then there are Ward identities
which constrain the OPE of fields with the con-
served current. For a current J�a then we have, in
d dimensions, the singular contribution in the OPE
is given by

J�aðxÞOð0Þ � �
1

Sd

x�

ðx2Þð1=2Þd
taOð0Þ ½19�

where ta are a set of matrix generators correspond-
ing to the symmetry acting on the fields O and Sd is
the volume of the unit (d � 1)-dimensional sphere,
S4 = 2�2. For a conserved current there are no
anomalous dimensions and the coefficient in [19],
which depends on the normalization for the current
J�a, is chosen so that [Qa, O(0)] =�taO(0) with Qa

the charge formed from J�a. For the energy–
momentum tensor the operator there is an analo-
gous result. We consider the simpler case of a
conformal theory when the energy–momentum
tensor is both conserved and traceless and

T��ðxÞOð0Þ �A��ðxÞOð0Þ
þ B��	ðxÞ@	Oð0Þ þ � � � ½20�

where A��(x) = O(x�d) and B��	(x) = O(x�dþ1). As a
distribution A��(x) is ambiguous up to terms
proportional to 
d(x). If � is the scale dimension
of O and s�� are the Lorentz spin generators acting
on O the Ward identities then give

@�A��ðxÞ¼
�

d
��	 þ C�	 þ 1

2 s�	

� �
@	
dðxÞ

A��ðxÞ¼C��

dðxÞ

@�B��	ðxÞ¼ � ��	
dðxÞ
½21�

where C�� is a constant tensor reflecting the
arbitrariness in A�� , it is immaterial as far as Ward
identities are concerned. We may choose

�

d
��	 þ C�	 ¼ 0 ½22�

(If desired, we might also take A0��(x) = A��(x)þ
(1=2)s��


d(x) in which case @�A0��(x) = 0, A0[��](x) =
(1=2)s��


d(x) but such an antisymmetric piece seems
unnatural). In general there is no unique form for
A��(x), as a consequence of the freedom of choice
for C�	 in [21]. However, for a scalar field O we
must have, for x 6¼ 0,

A��ðxÞ ¼
�

d � 1

1

Sd
��� � d

x�x�
x2

� � 1

ðx2Þð1=2Þd

¼ � �

ðd � 1Þðd � 2Þ
1

Sd
@�@�

1

ðx2Þð1=2Þd�1
½23�

with the overall scale determined by [21].

For the operator product of the current J�a with
itself there is an additional term proportional to the
identity operator of the form

J�aðxÞJ�bð0Þ� CJ
ab ��� � 2
x�x�
x2

� � 1

x2ðd�1Þ ½24�

where the coefficient CJ, which determines the scale
of the two-point function for J�a, is well defined
since the normalization of the current is determined
through the Ward identity. A similar result also
holds for the operator product of the energy–
momentum tensor with itself, with an overall
coefficient CT . In general, we may also write for
the operator product of two scalar fields O:

OðxÞOð0Þ� CO
1

x2�
� CO

CTSd

d�

d � 1

1

ðx2Þ��ð1=2Þdþ1

� x�x�T��ð0Þ ½25�
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neglecting other contributions. The contribution of
the energy–momentum tensor does not therefore
introduce any new coefficient.
Two Dimensions

In two dimensions the OPE plays an essential role in
the discussion of conformal field theories. For a
Euclidean metric it is natural to use complex
variables z and �z. The energy–momentum tensor in
this case reduces to a chiral field T(z) and its
conjugate �T(�z). For the operator product with a
chiral field �(z) with scale dimension �,

TðzÞ�ð0Þ � �

z2
�ð0Þ þ 1

z
�0ð0Þ ½26�

and, for the operator product of T with itself,

TðzÞTð0Þ � c

2z4
þ 2

z2
Tð0Þ þ 1

z
T 0ð0Þ ½27�

Here c is the Virasoro central charge, which plays a
critical role in the discussion of two-dimensional
conformal field theories, it is given by the two-point
function which follows from [27], hT(z)T(0)i=
(1=2)cz�4.

In simple rational conformal field theories the
operators are organized into conformal blocks by
the infinite-dimensional extended conformal sym-
metry in two dimensions. This allows the full
spectrum of operators and their dimensions to be
determined and in consequence complete results for
the OPE to be found in many cases.
Further Remarks

The OPE reflects the locality properties of quantum
field theories and can be extended without difficulty
to curved space backgrounds. For a product
�(x)�(0), the separation x2 may be replaced by a
biscalar at x and 0 but it is necessary to include in
the OPE contributions involving the background
Riemann tensor as well as the operator fields present
in flat space. There is also a generalization of the
OPE for superfields on superspace.

At a fundamental level although the OPE can be
derived to all orders in perturbation theory the
contribution of nonperturbative effects such as
instantons to the coefficients is not entirely clear.
Issues of associativity have yet to be fully analyzed.

There are also important applications to the
phemenonological analysis of QCD when assump-
tions about the OPE and saturation of sum rules can
lead to results for the vacuum expectation value of
gauge-invariant operators such as F��F��.

See also: Boundary Conformal Field Theory; Effective
Field Theories; Quantum Chromodynamics;
Renormalization: General Theory; Renormalization:
Statistical Mechanics and Condensed Matter;
Two-Dimensional Models.
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Introduction

Optical caustics are the bright forms created by the
focalization, natural or artificial, of light (Figure 1).
Special caustic points, called focuses, are produced
by stigmatic optical systems in order to visualize
objects. However, there are no special conditions for
producing usual caustics. Every congruence of rays
always generates a caustic, more or less intricate.

Caustics have been observed and described since a
long time, tracing back to antiquity. The name itself
was coined after the Greek root ‘‘kausticos’’ mean-
ing burning and expressing that a high energy
density is produced by ray focalization at a caustic
point. Conceptually, they appeared in the literature
as ‘‘evolutes,’’ ‘‘envelopes,’’ ‘‘centers of curvature,’’
‘‘focals,’’ etc. However, these different approaches,
often too restricted, were unable to clarify the



Figure 1 Optical caustics may be produced by reflection (on window glasses) or by refraction (through the wavy surface of a

swimming pool). Here the light source, the Sun, has some angular extension and the caustic appears somewhat blurred.
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general properties of caustics, for instance, their
classification in generic types. This difficult question
was solved only recently in the framework of the
singularity theory which appeared in the second half
of the twentieth century (Whitney 1955, Thom
1956). Caustics are now understood as physical
realizations of Lagrangian singularities, and they
are often called optical singularities or optical
catastrophes.

The aim of this introductory article is to show in
which sense caustics can be understood as singula-
rities, and to present their main properties.
The Physical Phenomenon

Caustics are usually observed by interposing a screen
on the ray trajectories and their trace in the screen
forms a set of bright curves called ‘‘fold’’ (A2).
Across the fold, the number of rays passing through
a given point jumps by �2. Two fold curves may
join at some point forming there a tip called cusp
(A3). A simple example is provided by the nephroid
that one sees in a cup of coffee when the light is
reflected off the cylindrical sides. In the three-
dimensional (3D) space, the folds form surfaces
and the cusps form curves (Figure 2). For particular
ElliSwallow tail A4Cusp A3

Fold A2

Figure 2 The five generic types of caustics of the 3D space.
positions of the screen, three other types of caustics
may be observed: the swallowtail (A4), the meeting
point of two cusp lines; the elliptic umbilic (D�4 ), the
meeting point of three cusp lines; and the hyperbolic
umbilic (Dþ4 ) where a cusp line tangentially meets a
fold surface (Figure 2). These five caustic types are
generic in the sense that any other type of caustic
point is unstable and decomposes into these generic
caustic points under small perturbations. The perfect
focus is an example of a nongeneric caustic point,
obtained by imposing a special symmetry. The
natural focusing of light, as in gravitational optics,
produces only generic caustics. A caustic point is
then a generalized focus. The caustic surface is a
complex surface in the 3D physical space, generally
self-intersecting and possessing singular lines A3

ending at singular points A4, D�4 , or Dþ4 .
At the scale of the wavelength of the light, the

caustics have a more complex structure. Instead of
well-defined surfaces, lines and points, one observes
a system of interference fringes concentrated in
the vicinity of the geometrical caustic. Each type of
caustic point has its own diffraction pattern (also
called diffraction catastrophe) (Figure 3). These
interference systems are easily produced, for
instance, by focusing a coherent laser beam by a
_
ptic umbilic D4

+Hyperbolic umbilic D4



A2 A3 A4

D4
+

D4
–

Figure 3 Interference fringes produced by the five generic

caustics of the 3D space (numerical simulation).
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corrugated glass or by a water droplet. An impor-
tant feature is revealed by Gouy’s experiment, in
which bright and dark fringes are inverted when the
rays are forced to pass through a focus (Guillemin
and Sternberg 1977). The experiment shows that the
wave undergoes a phase shift of �=2 when the
associated ray passes through a caustic point.

So, caustics are fundamental objects of both the
geometrical optics and the wave optics.
Modeling Caustics

Because of the presence of a caustic, a congruence of
rays generally presents intersecting rays. At the
points of intersection, the coordinates q1, q2, q3 of
the physical space R3 are unable to distinguish the
various intersecting rays and they do not constitute a
convenient system of coordinates. It is then interest-
ing to construct an abstract space in which the rays
are represented by nonintersecting curves. The initial
congruence is recovered by projecting the abstract
space into the physical one. All the models use this
type of construction in which the properties of the
caustics are deduced from those of the projection.

Caustics as Envelopes of Rays

In this geometrical modeling, each ray is labeled by
two parameters r1, r2, for instance, the coordinates on
the initial wave front W. A third coordinate r3

specifies the points along the ray, for instance,
by assigning their distance to W. Taken together,
these three coordinates represent the congruence of
rays, and define a 3D space, the source space
M = {r1, r2, r3}. By construction, the rays in M do
not intersect. The coordinates (q1, q2, q3) of the
current point P 2 R3 along each ray depend
differentiably on the coordinates (r1, r2, r3) and define
a ‘‘projection’’ f : (r1, r2, r3) 7! (q1, q2, q3) from the
source space M into the physical space R3.

The caustic points correspond to the envelope of
the rays. At a caustic point P, the energy density
flowing along the rays becomes infinite, since the
small volume delimited by neighboring rays is
shrunk into a small surface at P. This behavior
may be simply expressed with the help of the
projection f: the rank rk of the derivative Df is
equal to 2 at the point representing P in M. This
motivates the following definition. Given a map
f : M! N, a point x 2M is said to be critical (or
singular) if the rank of the derivative Df is less than
the maximal possible value min(dim M, dim N).
Here, dim M = dim N = 3, and a critical point is a
point where rk < 3. The set � � M of the critical
points is called the singular set. The caustic C is the
image of the singular set: C = f (�). One also says
that the caustic points are the critical values of f.

In practice, the derivative Df is expressed by the
Jacobian matrix J = @(q1, q2, q3)=@(r1, r2, r3) and the
singular set � is defined by solving the equation

detðJÞ ¼ 0 ½1�

If this equation permits one to express explicitly one
coordinate, say r3, as a function of the other two,
the caustic surface C is found in parametric form:
q1 = q1(r1, r2, r3(r1, r2)), etc. For a homogeneous
medium, equation [1] is of second degree in r3 and
the caustic is composed of two sheets which meet at
the umbilic points D4.

Equation [1] gives all caustic points independently
of their nature, that is, it does not distinguish
between A2, A3, A4, D�4 , and Dþ4 . A refinement
allows one to recognize different types of caustic
points. One defines the Thom–Boardman class �i as
the points in M where Df has a kernel of dimension
i. Then one defines inductively the class �i, ..., j, k as
the class �k of the restriction of f to �i, ... , j. Thus, �0

represents the regular points (noncaustic points),
�1,0 the fold points A2, �1,1,0 the cusp points
A3, �1,1,1,0 the swallow-tail points A4, and �2,0 the
umbilics D4 (hyperbolic or elliptic). Altogether, the
classes �I, I 6¼ 0, form the singular set �.

The Thom–Boardman classes constitute a simple
and powerful tool for computing the structure of a
caustic. Each class is obtained by canceling some
functional determinants associated with the map f or
with its restriction to some class. However, the
method presents the weakness of ignoring the
special nature of a set of rays: its Lagrangian
character. As a consequence, it is unable, for
instance, to distinguish between D�4 and Dþ4 .
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Caustics as Lagrangian Singularities

As for mechanics, the natural framework for geomet-
rical optics is a phase space: the cotangent space
T�R3 = {pi, qi} of the configuration space R3 = {qi}.
The phase space is characterized by its symplectic
structure, that is, the differential 2-form !=

P
i dpi ^

dqi, which is nondegenerate and closed (d!= 0).
A set of rays in the phase space is defined by

specifying the wave vector (or momentum) p at
each point q of the congruence. In the simple case
where only one ray passes through each point, one
has p =rS, where S is the optical length

R
n ds and

n the refractive index. In other words, p is the
differential of the optical length. The wave vector
p is tangent to the ray and orthogonal to the
(geometrical) wave front S = const. The eikonal
equation shows that its modulus is n. As a direct
consequence of the relation p =rS, the symplectic
form annihilates identically for these p. However,
in general, because of the presence of the caustics,
one must not expect to have p =rS for some
function S. Nevertheless, it is possible to keep
the more general property to annihilate !. This
motivates the definition of a Lagrangian submani-
fold: a submanifold L � T�R3 of dimension 3
(that is, half of the dimension of the phase space)
on which the symplectic form vanishes: !jL = 0.
Every congruence of rays is described by a
Lagrangian submanifold. The Lagrangian subma-
nifold plays the same role as the source space in
the preceding section. The role of the projection f
is played by the natural projection � from the
phase space into the configuration space
�(p, q) = q, or more precisely to its restriction to
L: f = �jL. It is called a Lagrangian map (or
Lagrangian projection) and it is again a map
between two spaces of the same dimension (here
3). When L is given by an embedding � : L! T�R3,
one has f = � � �. A caustic is then defined as the
set of critical values of a Lagrangian map.

There exist two remarkable results showing that a
Lagrangian submanifold may be described in terms
of functions or of families of functions. As a
conseque nce, caustics are not dire ctly related to the
singularities of maps but, more particularly, to the
singularities of functions.
",1,5 ,3,0,0pc,0 pc,0pc,0pc>G enerat ing funct ion of a
Lagrangian submanifold The 3D Lagrangian sub-
manifold L � {pi, qi} is locally defined by three
coordinates p�(� 2 A) and q�(� 2 B) depending on
the three other ones p� and
q�: p� = p�(q�, p�), q� = q�(q�, p�). One can show
that this may be done in such a way that each
conjugate pair (qi, pi) gives exactly one independent
variable and one dependent variable. Formally:
A [ B = {1, 2, 3}, A \ B = ;.

In fact, introducing the function S(q�, p�) =R
hp, dqi � hq�, p�i(h,i denotes the scalar product),

the local equation for L takes a more simple form:

q� ¼ �
@S

@p�
; p� ¼

@S

@q�
½2�

The function S is well defined, since, by the
definition of a Lagrangian submanifold

R
h p, dqi is

locally path independent: it depends only on its end
points. S is called a (local) generating function.

Formula [2] generalizes p =rS, to which it
reduces when B = ;, that is, for nonintersecting rays.

",1,5,3,0,0pc,0pc,0pc,0pc>Generating family and
optical catastrophes Formula [2] may be rewritten
in an interesting way. Taking the jBj variables p� as
internal parameters x and q = (q�, q�) as external
parameters, we construct a function F of x para-
metrized by q: F(x, q) = S(q�, x)þ hq�, x i. Now the
Lagrangian submanifold L is defined by

L ¼ ðq; pÞ : 9x :
@F

@x
¼ 0; p ¼ @F

@q

� �

F is called the generating family. The first equation
@F=@x = 0 determines the rays passing through the
fixed external parameter q 2 R3. The second one
distinguishes these rays according to their wave
vector p. Each ray corresponds to a critical point
(i.e., an extremum) of F considered as a function of
x. At a caustic point, two infinitely close rays are
converging and F then presents a degenerate critical
point. So the generating-family technique links the
caustics to the theory of singularities of functions
depending on some parameters, that is, to the
catastrophe theory (Thom 1969). Caustics are also
called optical catastrophes.

The generating families are not uniquely defined,
even locally. In optics, one may always take for F
the equivalent family ‘‘optical length’’ d, considered
as a function defined on the initial wave front W
(this is discussed in the following).

Caustics as the Locus of Wave Front Singularities

There exists a remarkable duality linking rays and
wave fronts. As a consequence, the caustic points
(i.e., Lagrangian singularities) are related to singula-
rities of wave fronts (i.e., Legendrian singularities). A
typical wave front W may possess only two types of
singularities: cuspidal curves and swallow-tail points.
During the motion of W, governed by the eikonal
equation, the cuspidal curves generate surfaces, and
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swallow tails generate curves. These surfaces are
exactly the fold surfaces of the caustic C and the
curves are the cusp lines of C. The point singularities
of the caustic, that is, the swallow tails and the
umbilics, correspond to bifurcations of the instanta-
neous wave front, at certain moments of its motion.
Caustics as Short Wave Asymptotic

The fine observation of the optical caustics shows
that they never appear as the well-defined surfaces
given by the geometrical optics, but rather as
diffraction patterns concentrated around these sur-
faces. So wave optics is the natural framework
to account for this fundamental feature. One
exploits the fact that the wave number k = 2�=	
(	: wavelength of the light) is a large parameter.
This short-wave approximation permits the use of
powerful expansion techniques and clarifies the
relation with the geometrical optics viewpoint,
formally obtained for k tending to infinity.
The stationary phase In the most simple model,
the Huygens–Fresnel principle, the amplitude U(P)
of the optical field may be evaluated by adding the
secondary disturbances emitted from the points Q of
some initial wave front W:

UðPÞ ¼ c

ZZ
W

eikd

d
G ds ½3�

where d is the distance QP. G is the inclination factor,
a smooth function defined on W and c some
prefactor. For simplicity, G and n (the refractive
index) are assumed to be constant. Defining
a = cG=d, formula [3] appears as an integral of the
form

R
a(y)eik�(y)dy. This type of integral may be

evaluated for large k by the method of stationary
phase. The principal contributions are due to points
where the phase � is stationary: r�= 0. For wave
optics, � is the length PQ, considered as a function of
Q and parametrized by P. The stationary condition
means that PQ is normal to W, that is, it represents a
ray of geometrical optics. The function PQ is a
generating family in the sense of the discussion earlier.

If no stationary points exist, that is, if P is in the
shadow, the integral is O(k�N) for any N. Other-
wise, and if the critical points are not degenerate,
the phase stationary method gives (Guillemin and
Sternberg 1977):

UðPÞ ¼ 2�

k

X
rays PQ

eð1�]Þ�i=2

	 aðQÞeikd

jð1� �1dÞð1� �2dÞj1=2
þOðk�2Þ ½4�
where ��1
1 and ��1

2 are the two principal radii of
curvature at Q 2W, and ] the number of caustic
points (also called focal points) along the ray PQ.

In the stationary-phase approach, the caustic C,
locus of centers of curvature of W, appears as an
obstacle in constructing asymptotics, since formula [4]
diverges when d�i ! 1, that is, when P tends to C.
It is, nevertheless, remarkable that C also appears
explicitly when [4] is valid, via the �i’s and ]. In
particular, the term e�]i�=2, applied in the case of a
focus (]= 2), accounts for the phase shift of � observed
in Gouy’s experiment.
Asymptotics on caustics Uniform asymptotic for-
mulas, valid also on the caustic, need a more complex
theoretical framework, for instance, Maslov’s theory,
presented here in a necessarily simplified version (see
Maslov and Fedoriuk (1981) for more detail).

The starting point is the equation of wave optics,
that is, the Helmholtz equation

ð�þ k2n2ÞU ¼ 0 ½5�

where the refractive index n generally varies from
point to point. For k!1, one looks for an
asymptotic solution in the (tentatively) form:

UðPÞ ¼ eikSðq1;q2;q3Þ
X1
j¼0

ðikÞ�j’jðq1;q2;q3Þ ½6�

Inserting this form in eqn [5] one obtains the eikonal
equation (or characteristic equation) for the phase S:

ðrSÞ2 ¼ n2

and an infinite series of equations for the amplitudes
’j, called the transport equations. One knows that
the Cauchy problem for the eikonal equation may be
reduced to the integration of the corresponding
Cauchy problem for the Hamilton system (or
bicharacteristic system):

dq

dt
¼ @H

@p
¼ 2p;

dp

dt
¼ � @H

@q
¼ rn2

where H = h p, p i � n2. Its solutions, the bicharac-
teristics q(t, 
), p(t, 
) are parametrized by the
‘‘time’’ t and the 2D parameter 
 parametrizing the
points on the initial wave front W. The bicharacter-
istics form a 3D Lagrangian submanifold L in the
phase space {pi, qi} and one recovers the preceding
situation. Assuming L to be simply connected, one
defines a global phase function S on L by formula
S(t, 
) =

R
h p, dqi.

In a domain �j � L not containing the singular set
and in which the coordinates t, 
 are in a one-to-one
correspondence with the physical coordinates, S
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becomes a function of qi. Using the transport equation,
one finds the leading term of the asymptotic solution
(with accuracy to k�1) in the following form:

UðPÞ ¼ ðKð�jÞ’ÞðqÞ

¼

ffiffiffiffiffiffiffiffiffiffi
d�

dqi

����
����

s
eikSðq1;q2;q3Þ’ðq1; q2; q3Þ ½7�

where d� and dqi, respectively, represent the
measures on the Lagrangian submanifold and on
the physical space. The amplitude ’ depends on the
initial conditions. Formula [7] defines a precanoni-
cal operator K(�j). It has the same form as [4], with
the same drawback to diverge near the singular set
�, where dqi = 0.

In a domain �j containing the singular set, L is
locally parametrized by mixed coordinates q�, p�.
The basic idea is then, roughly speaking, to carry
out a Fourier transform Fk with respect to these p�
(in fact, a variant of the usual Fourier transform, in
which the parameter k appears in the prefactor and
in the phase term). This leads one to consider,
instead of L= �þ k2n2, the operator L̂= FkLF�1

k ,
and instead of U, the unknown function V = FkU. In
this Fourier space, V may be found in the same way
as U was found in the preceding case, with S
replaced here by the local generating function
Sj(q�, p�) = S� hq�, p�i. Coming back to the real
space by F�1

k , one obtains (with the same accuracy):

UðPÞ ¼ ðKð�jÞ’ÞðqÞ

¼ F�1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�

dp�dq�

����
����

s
eikSjðq�;p�Þ’ðq�; p�Þ

" #
½8�

There is no divergence in this local solution. So local
short-wave asymptotics may be found everywhere,
even on the caustic where they have a more complex
form than the form [6] or [7].
Global asymptotics and Maslov’s index The global
asymptotic solution is obtained by formally gluing
the local solutions by a partition of unity �ej = 1
subordinate to a covering {�j} of L. However there
is a difficulty. The representations of the same
precanonical operator in different local coordinates
q�, p�, even not containing the singular set, agree
only up to a constant multiplier ei�m=2, where the
integer m is the number of negative eigenvalues of
some matrix. One is led to multiply every precano-
nical operator by a convenient phase factor e�i��=2,
where � 2 Z4 is called Maslov’s index. The coher-
ency of the phase factor in different domains is
realized by using the important property of � to be
co-oriented. Thus, � counts the number of passages
of an oriented path on L from the negative side of �
to its positive side, minus the number of passages in
the opposite sense. Maslov’s index is locally con-
stant and jumps by �1 only across the singular set
�. The global canonical operator is now formally
defined as K = �je

�i��j=2K(�j)ej.
Finally, the canonical operator K is well defined

only if it is independent of the {�j} and ej used for its
definition. This possibility is expressed (in the case of a
simply connected L) by the following property,
intrinsically attached to L: the Maslov index cancels
on every closed loop. So the only obstruction for global
asymptotics is the nontriviality of the characteristic
class defined by Maslov’s index and not the caustic.

The central object of the caustic modeling is then
the projection of the submanifold representing the
rays (M or L) into the physical space. The possibility
to reduce this projection to some normal form is the
key result for the local classification of caustics.
Local Classification of Caustics

Equivalence, Stability, and Genericity

In order to distinguish different types of singula-
rities, one has to define an equivalence relation. Two
Lagrangian maps fi : T�Mi 
 Li !Mi (i = 1, 2), are
said to be Lagrange equivalent if there is a
diffeomorphism h : T�M1 ! T�M2 preserving both
the symplectic and the fiber structures, and sending
L1 to L2. In fact, only the local problem of
classification makes sense, and one considers,
instead of Lagrangian maps, germs of Lagrangian
maps. A map germ is a map locally defined, that is,
defined in an infinitely small neighborhood around a
point (depending on the germ). The notion of
Lagrange equivalence is extended to the germs. A
Lagrangian singularity is then the Lagrange equiva-
lence class of a germ at a critical point. Each
equivalence class represents a type of Lagrangian
singularity, that is, a type of caustic point.

The example of the perfect focus point shows that
there exist singularities which are totally unstable. In
this sense, they correspond to idealized situations not
physically realizable, and they have to be disregarded.
Conversely, stable singularities resist under the action
of small perturbations. They correspond to Lagrangian
germs for which all neighboring germs are Lagrange
equivalent (not necessarily at the same point, but near
the point considered).

Now the important question is: do the stable germs
represent the generality? In the best case, stable germs
form a dense open set. This means that every germ may
be approximated by stable germs. In this case, one says
that the stable germs are generic.
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Stability and genericity are disctinct notions. It
turns out that they coincide for low values of the
dimension n of the ‘‘physical space’’ (n < 6), but
they may disagree at higher dimensions.

Classification of Stable Caustics

The fundamental result of the theory is the local
classification of Lagrangian singularities (Arnol’d
1972). With the help of the generating families, the
study of Lagrangian singularities is reduced to the
study of singularities of families of functions. More
precisely, at a singular point, every stable Lagragian
map is equivalent to one of the following maps,
given by their generating function S and by their
generating family F:

A2 : S ¼ p3
1

F ¼ x3 þ q1x

A3 : S ¼ �p4
1 þ q2p2

1

F ¼ �x4 þ q1x2 þ q2x

A4 : S ¼ p5
1 þ q2p3

1 þ q3p2
1

F ¼ x5 þ q1x3 þ q2x2 þ q3x

D�4 : S ¼ p3
1 � p1p2

2 þ q3p2
1

F ¼ x2
1x2 � x3

2 þ q1x2
2 þ q2x2 þ q3x1

These polynomial functions are called normal forms.
The stable singularities are generic. In other words,
every other type of singularity is destroyed by
infinitely small perturbations and gives a set of
singularities belonging to the list. The five generic
caustics have been observed and experimentally
studied in detail (Berry and Upstill 1980, Nye 1999).

By inserting the normal forms S in a short-wave
asymptotic, one obtains the diffraction patterns
associated with the five caustic types (Figure 3).
They generalize the Airy function which corresponds
to the fold singularity.

The normal forms describe at once the geometry
of the caustics and the interference systems around
them.

Codimension, Corank, Multiplicity, and Index

Lagrangian singularities are also characterized by
some numbers. They have a codimension c equal
to the difference between the dimension of the
physical space and their dimension: c(A2) = 1,
c(A3) = 2, c(A4) = c(D�4 ) = 3. They have a corank ck,
equal to the difference between the dimension of the
space and the rank of the Lagrangian map:
ck(A2) = ck(A3) = ck(A4) = 1, ck(D�4 ) = 2. The corank
is the number of internal parameters of the generating
family F. They also have a multiplicity �, which is the
number of nondegenerate critical points of F, that is,
the number of rays coinciding at the singularity. In
the 3D space, one has �= cþ 1: �(A2) = 2, �(A3) = 3,
�(A4) =�(D�4 ) = 4.

Short-wave asymptotics near the caustic present
remarkable scaling properties (Berry and Upstill
1980). In particular, the amplitude jU(P)j increases
like k
 as k!1. The number 
 depends only on the
type of the singularity and it is called the singularity
index. The more ‘‘degenerate’’ the singularities, the
larger the index, and then the brighter the caustic
point: 
(A2) = 1=6 < 
(A3) = 1=4 < 
(A4) = 3=10 <

(D�4 ) = 1=3.
Global Organization of Caustics

The global properties of caustics are less under-
stood than the local ones. There is, nevertheless,
an interesting result concerning specifically the
caustics in the 3D space (Chekanov 1986). Given
a Lagrangian map f : L! R3, the Euler character-
istic �(�) of the singular set � � L and the number
]D4(�1=2) of umbilics of index �1=2 are related
by the formula

�ð�Þ þ 2]D4ð�1=2Þ ¼ 0 ½9�

At an umbilic point T, � is locally a cone with
vertex at T. The index is defined according to the
relative positions of the following elements: the 2D
plane � = ker f , the cusp lines A3 � � passing
through T, and the characteristic line l which
represents the ray at T. If l and A3 are separated
by �, the index is equal to þ1=2, and to �1=2 in the
other case. The index of an elliptic umbilic is always
equal to �1=2.

The validity of Chekanov’s formula [9] requires
that L lies on a hypersurface E of the phase space,
convex with respect to the wave vectors. The
characteristics are the orthocomplements of E. In
this framework, the singularities are called optical
singularities, because such an E is always defined in
geometrical optics by the eikonal equation. All
Lagrangian singularities can be realized as optical
singularities. Chekanov’s formula has been experi-
mentally checked (Joets and Ribotta 1996).

The Chekanov relation has an important conse-
quence on the caustic bifurcations (also called
metamorphoses or perestroikas), that is, the generic
transformations modifying the topology of a caustic
depending on one parameter. Among the 11 possible
caustic bifurcations, considered as bifurcations of
general Lagrangian singularities, four of them cannot
be realized as bifurcations of optical Lagrangian
singularities. So Chekanov’s relation reduces the
number of optical metamorphoses to seven.
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Caustics in Spaces of Higher Dimension

The local classification of Lagrangian singularities
has been extended in spaces of higher dimension.
For n = 4, in addition to the preceding ones, two
new singularities appear: the butterfly A5 and the
parabolic umbilic D5. For n = 5, in addition to A6

and D�6 , one has a new type of umbilic: E6.
However, in higher dimensions, the classification
becomes more complex. In addition to stable
singularities, like those of the series Ai, Di, Ei, one
encounters unstable generic singularities which
depend on arbitrary parameters (moduli). Despite
this difficulty, there exists a classification of generic
Lagrangian singularities up to the dimension n = 10.

The Maslov index has been extended in spaces of
higher dimension and has led to the discovery of
invariants associated with particular types of singu-
larities (Vassilyev 1988). These invariants control
the number of some types of singularities. For
instance, in dimension n = 4, the number of A5

(taking account of sign) is equal to zero.

Symmetrical Caustics

Another extension consists in imposing some
constraint, for instance, a symmetry (Janeczko and
Roberts 1993). Symmetrical caustics are not merely
the symmetrized usual caustics. Many of them result
from the stabilization of unstable singularities of
higher codimension by the symmetry. For example,
in the 3D space, the butterfly A5 is unstable, but the
symmetrical butterfly is a generic singularity in the
class of Lagrangian singularities having the mirror
symmetry.

Nonoptical Caustics

Caustics, as locus of focalization, are not restricted
to the usual optics. They are also observed in
electronic optics or in gravitational optics and the
preceding results apply to these waves. They also
appear in nonelectromagnetic waves, for instance,
acoustic waves, seismic waves, etc. Propagation
always generates caustics.

Optical caustics are now understood as Lagran-
gian singularities and, as singularities, their interest
is not restricted to optics. They became indispen-
sable for understanding other domains of mathema-
tical physics, for instance, the variational calculus,
the classical mechanics, the Hamilton–Jacobi equa-
tions, the control theory, the field theory, etc.

See also: Billiards in Bounded Convex Domains; Normal
Forms and Semiclassical Approximation; Stationary
Phase Approximation; Singularity and Bifurcation Theory.
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Introduction

According to the well-known ‘‘no-cloning theorem’’
(Wootters and Zurek 1982) perfect copying of
quantum information is impossible, that is, there is
no machine which takes a quantum system in an
unknown state as input and produces two systems of
the same kind, such that none of them is distinguish-
able from the input by a statistical experiment. In
this qualitative form, however, the theorem is not
very useful, because in the presence of noise classical
information cannot be copied perfectly as well.
Therefore, the crucial point is that even under ideal
conditions the errors produced in the clones cannot
be made arbitrarily small. The best we can hope for
is to find an optimal cloning device which makes
these errors as small as possible.

More generally, we can consider cloning devices,
which take as input a certain number, N, of
identically prepared systems, and produce a larger
number, M, of systems as output. Again, the
cloning task is to make the output state resemble
as much as possible a state of M systems all
prepared in the same state as the inputs. This
variant of the problem is of interest as a ‘‘quantum
amplifier.’’ It also has a better chance of reasonable
success than a cloning device operating on single-
input systems: in the limit of many-input systems,
the device can make a good statistical estimate of
the input density matrix and hence produce
arbitrarily good clones.

Figures of Merit

To get a precise mathematical description of the
problem, let us consider a one-particle Hilbert
space H (which is assumed to be finite dimen-
sional, H= Cd, if nothing else is explicitly stated)
and the algebras B(H�N),B(H�M) of (bounded)
operators on the N-fold, respectively M-fold,
tensor product of H. A quantum operation which
takes N particles as input and produces M output
particles is then described, in the Heisenberg
picture, by a completely positive, unital map (a
completely positive, unital and normal map if H is
infinite dimensional):

T : BðH�MÞ ! BðH�NÞ ½1�

while the Schrödinger picture representation is given
in terms of the (pre-)dual of T, that is,

T� : B�ðH�NÞ ! B�ðH�MÞ ½2�

where B�( � ) denotes the space of trace-class
operators. Hence, if T operates on input systems in
the (joint) state ��N, the output systems (i.e., the
‘‘clones’’) are in the state T�(�

�N). We will call each
such T a cloning map.

Now our aim is to find an operation T such that
the output state T�(�

�N) approximates the product
state ��M as well as possible. The quality of the
approximation is measured by a distance function �
on the convex set S(H�M) � B�(H�M) of density
operators on H�M and, since it is impossible to
minimize �(T�(�

�N), ��M) for all � simultaneously,
we are looking only for the worst case. Hence, the
quality of a cloning map T is measured by a figure
of merit of the form

�X;�ðTÞ ¼ sup
�2X

� T�ð��NÞ; ��M
� �

½3�

Here X � S(H) is a set of ‘‘preferred’’ density
operators whose role will be explained in the next
section. An optimal cloning device is described by a
cloning map T̂ which minimizes �X, �, that is,

�X;�ðT̂Þ � �X;�ðTÞ ½4�

should hold for each cloning map T.

The Preferred Set of States

The set X � S(H) of density operators introduced in
the last equation describe a priori knowledge about
the one-particle input state �; for example, if we
want to clone only signal states �1, . . . , �k used to
transmit classical information through a quantum
channel, the choice for X is {�1, . . . , �k}. Other
possibilities include: X = S(H) if nothing is known
about �, the set of pure states, the states in the
‘‘equatorial plane’’ of the Bloch sphere, or Gaussian
states if H is infinite dimensional. Each different
choice for X leads to a different variant of the
cloning problem, and we will summarize the most
relevant cases treated in the literature in the section
‘‘Examples.’’

A different kind of a priori knowledge is a priori
measures, that is, instead of knowing that all
possible input states lie in a special set X, we know
for each measurable set X � S(H) the probability
�(X) for � 2 X. Such a situation typically arises
when we are trying to clone states of systems which
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originate from a source with known characteristics.
In this case, we can use mean errors,

���;�ðTÞ ¼
Z
SðHÞ

� T�ð��NÞ; ��M
� �

�ðd�Þ ½5�

as a figure of merit. Sometimes these are easier to
compute than maximal errors as in eqn [3]. Often,
however, � leads to stronger results than ��,
therefore we will concentrate our discussion on
maximal rather than mean errors.

The Distance Measure

The remaining freedom in eqn [3] is the distance
measure � and there are mainly two physically
different choices: we can either check the quality of
each clone separately or we can test, in addition, the
correlations between output systems. The most
common choice for a figure of merit for the first
type is given by (where t̂rj denotes partial trace over
all but the jth tensor factor)

�1ðTÞ ¼ sup
�2X;j

1� F t̂rjT�ð��NÞ; �
� ��� �� ½6�

Here F (�,�) denotes the (quadratic) fidelity of � and
�, that is,

Fð�; �Þ ¼ tr �1=2��1=2
� �1=2
� �2

½7�

and the supremum is taken over all � 2 X and
j = 1, . . . , N. �1 measures the worst one-particle
error of the output state T�(��N), and we will refer
to it in the following as the local error. If we are
interested in correlations too, we have to choose

�allðTÞ ¼ sup
�2X

1�F T�ð��NÞ; ��M
� ��� �� ½8�

�all measures again a ‘‘worst-case’’ error, but now
of the full output with respect to M uncorrelated
copies of the input �. We will call it the global error.
Alternative figures of merit arise if we replace the
fidelity in eqns [6] and [8] by other distance
measures like the trace norm, the Hilbert–Schmidt
norm, or the relative entropy. If X consists only of
pure states, the operations T which minimize �1 or
�all are usually not altered by such different choices.
If X is a set of mixed states, however, the correct
choice is unclear and might depend on the precise
physical context (there is, in particular, no reason to
prefer fidelities).

General Properties

Before we consider more special examples in the
next section, let us discuss some general properties

of the figure of merit �X, � from eqn [3] and the
corresponding optimization problem.

Existence of Solutions

If the distance measure � is continuous in the first
argument, the optimization problem [4] has a
solution, that is, optimal cloning machines exist:
the set T of cloning maps [1] is compact and the
quantity �X, � is – as a supremum over continuous
functions – lower-semicontinuous. Hence, the
statement follows from the fact that a lower-
semicontinuous function on a compact set always
admits a minimizer.

This argument can be generalized to the infinite-
dimensional case, if we choose the set T of allowed
cloning maps more carefully (the restriction to
normal channels proposed above is most probably
not sufficient for this purpose) and if we equip it
with an appropriate topology. The latter should be
weak enough for T to be compact, and strong
enough for �X, � to be lower-semicontinuous. A
typical choice is the weak�-topology arising from an
embedding of T into the dual of a Banach space
(such that we can apply the Banach–Alaoglu
Theorem). Detailed studies in this direction are,
however, not yet available.

Covariant Cloning Maps

To solve the optimization problem [4] is a difficult
and, in many cases, impossible task. However, it can
be simplified significantly if X and � admit a
nontrivial symmetry group. Hence, consider again
a distance � which is continuous and convex in its
first argument and a closed subgroup G of the group
U(d) of unitary operators on H= Cd, such that

UXU� � X; � U�M�U�M�;U�M�U�M�� �
¼ �ð�; �Þ ½9�

hold for all U 2 G and �,� 2 S(H�M). Then �X, � is
invariant under the induced G action on the set T of
cloning maps, that is,

�X;�ð�UTÞ ¼ �X;�ðTÞ
with ð�UTÞðAÞ ¼ U�NTðU�M�AU�MÞU�N� ½10�

holds for all U 2 G and all T 2 T . Convexity of
�X, � in T implies (with the Haar measure �H on G)

�X;�ð�TÞ � �X;�ðTÞ;

with �T ¼
Z

G

�UðTÞ�HðdUÞ ½11�

for all T. Hence, we can replace each cloning map
by its group average �T without sacrificing the
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quality of the clones. This implies that �T is optimal
if T is, and, since �T is G-covariant,

�Uð�TÞ ¼ �T 8U 2 G ½12�

we can conclude, together with the arguments from the
last section, that the optimization problem [4] always
admits covariant solutions. Similarly, we can show that
permutation invariant (sometimes called ‘‘symmetric’’)
solutions exist, that is, cloners which do not prefer a
particular clone or a particular input system.

This is a very useful result, because the set of
covariant and permutation-invariant T is much
smaller than the set of all cloning maps, and it can
be parametrized in terms of irreducible representa-
tions of G and the permutation group. In particular,
the case G = U(d) (such a T is often called
‘‘universal’’ because it does not prefer any direction
in the Hilbert space H) leads to quite general
solutions.

Relationships with Quantum State Estimation

If a procedure to estimate the input state � from a
measurement on the N-fold system in the joint state
��N is given, there is a simple way to produce a
cloning machine: we just have to take the estimate
�̂ for the density matrix � and prepare M > N
systems in the state �̂�M. If X is finite and
estimation (which in this case is called hypothesis
testing) is done in terms of a positive operator
valued measure (E�)�2X, E� 2 B(H�N), the prob-
ability to get the estimate � 2 X when the input is
in the state ��N is given by tr(E��

�N). Hence, the
cloning map derived from this estimation scheme is
given by

~E�ð��NÞ ¼
X
�2X

tr E��
�N

� �
��M ½13�

A generalization to arbitrary X is straightforward,
but requires the use of measure theory. It is easy to
see that the cloning map ~E from eqn [13] is in
general not optimal, in particular if M is only
slightly bigger than N. However, ~E has the interest-
ing feature that �X, �(~E) depends only on the number
of input systems, N, but not on the number of
clones, M, we want to produce. This observation
leads immediately to the conjecture that ~E becomes
optimal in the limit M ! 1. A general proof is
currently not available, in those cases, however,
where optimal cloner and estimater can be explicitly
calculated for all N and M (i.e., the cases treated in
the sections ‘‘Universal pure-state cloning’’ and
‘‘Phase-covariant pure-state cloning’’) the conjecture
is true. A more detailed discussion of this problem
together with information about its current status

can be found on the web at http://www.imaph.
tu-bs.de/qi/problems/problems-html.

Examples

In this section, we will discuss concrete examples
that arise from different choices of the distance
measure � and the set X of preferred states.

Universal Pure-State Cloning

The most frequently discussed case arises if X is the
set of pure states, that is, the input states are pure,
but otherwise unknown. Under this condition, it is
sufficient to consider the symmetric part H�N

þ of the
tensor product H�N, and only cloning maps
T :B(H�M) ! B(H�N

þ ), because only this part
affects the local or the global error. A complete
solution for arbitrary N, M and all finite-
dimensional Hilbert spaces is available for �all in
Werner (1998) and for �1 in Keyl and Werner
(1999). Both cases admit the same (surprisingly
simple) unique solution

T̂�ð�Þ ¼
d½N�
d½M� SM �� 1�ðM�NÞ

� �
SM ½14�

where SM is the projection onto the symmetric
tensor product H�M

þ and d[M] denotes the dimen-
sion of H�M

þ . To derive these results, the group-
theoretic methods sketched in the section ‘‘Covar-
iant cloning maps’’ are used. The fact that global
and local figures of merit are minimized by the same
cloning map is surprising and a special feature of
pure-state cloning. It implies that correlations and
entanglement between the clones does not matter
at all.

Phase-Covariant Pure-State Cloning

Consider a fixed basis jji, j = 0, . . . , d � 1, in H and
let X be the set of states given by

 ¼ j0i þ
Xd�1

j¼1

ei�j jji ½15�

where the �j denote arbitrary phases. Obviously,
this set is invariant under the set of all unitaries
which are diagonal in the given basis (i.e., a
maximal torus in U(d)). Using the methods outlined
in the section ‘‘Covariant cloning maps,’’ the
corresponding cloning problem is (almost) comple-
tely solved in Buscemi et al. (2005). For arbitrary
d = dimH, N and all M = N þ dk, with k 2 N a
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cloning map which minimizes global as well as
local errors is given in terms of the unitary

Û : H�N
þ ! H�M

þ ; Ûjn0; . . . ; ndi
¼ jn0 þ k; . . . ; nd þ ki ½16�

where jn1, . . . , ndi, nj 2 N, denotes the number
basis of H�N associated with the distinguished
basis jji of H.

Cloning Finitely Many States

If X is a finite set of pure states, a general solution
is not available, but there are several important
partial results. The easiest situation arises if the
elements of X are mutually orthogonal pure states.
In this case, ideal cloning is possible in terms of an
appropriately chosen unitary. If the states are
linearly independent but nonorthogonal, ideal
cloning is possible as well if we consider probabil-
istic cloning machines (Duan and Guo 1998); that
is, there is a nonvanishing probability that the
machine fails and does not produce any clones at
all (this means T is not unital). Optimal cloning
(with deterministic operations) of two nonorthog-
onal qubit states �j = j jih jj, j = 1, 2, is considered
for all N, M in (Bruß et al. (1998) and Chefles and
Barnett (1999)) (using averaged global fidelity as
the figure of merit). The crucial observation in this
case is that the optimal clones are pure, that is,
T�(�

�N
j ) = j�jih�jj and that the �j lie in the

subspace spanned by the (unattainable) ideal
clones  �M

j .

Universal Mixed-State Cloning

X =S(H) means that absolutely nothing is known a
priori about the input state �. If the distance
measure � is U(d) and permutation invariant
(which is the case for all possible choices discussed
in the section ‘‘The distance measure’’) the analysis
from the section ‘‘Covariant cloning maps’’ shows
that a universal and symmetric minimizer exists. An
explicit solution, however, is not known, and even
the physically most appropriate choice for � is
unclear. In contrast to the pure-state case, this is a
serious question, because the set of optimal cloners
is, in this case, much more sensitive to changes in �.
In particular, correlations among the clones become
crucial, and it is very likely that local and global
figures of merit lead to very different solutions. To
emphasize this difference, an operation which
minimizes only local errors is sometimes called
‘‘broadcasting,’’ rather than cloning. A related
problem with (at least) partial solutions (‘‘purifica-
tion’’) will be discussed in the section ‘‘Purification.’’

Cloning of Gaussian States

If the Hilbert space is infinite dimensional, the restric-
tion to a reasonable small set X of preferred states is
crucial, because otherwise the search for minimizers
becomes hopeless. A physically relevant class with nice
mathematical properties are Gaussian states and in
particular coherent states. Cloning of the latter has been
studied in Cerf et al. (2005) for the case N = 1 (and M
arbitrary). As in the section ‘‘Covariant cloning maps,’’
it can be shown that the search for optimal cloners can
be restricted to those which are covariant with respect
to phase space translations. This simplifies the problem
significantly and leads to the result that the global error
is minimized by Gaussian cloning maps, while in the
local case the best cloner is non-Gaussian.

Asymmetric Cloning

In all examples discussed up to now, we have
considered symmetric cloners, that is, the quality of
all clones is measured with equal weight. Alternatively,
we can look for asymmetric cloners which produce
clones with different quality and ask for the trade-off
between them. This problem was first discussed in Cerf
(2000) and later in Iblisdir et al. (2005). It can be
regarded as a constraint optimization problem, where
the error of the first M0 < M clones should be
minimized under the constraint that the error of the
rest is bounded by a fixed value. In Iblisdir et al. (2005),
it is conjectured that for pure input states and local
errors the optimal solution to this problem is given by

T�ð�Þ ¼ V� � � 1�ðM�NÞ
� �

V ½17�

where V is a linear combination of projections in the
commutant of {U�N jU 2 U(H)}. This conjecture is
true (at least) for qubits in the case 1! nþ 1 and
1! 1þ n.

Related Problems

Instead of cloning, we can also try to approximate
other impossible machines by channels which
operate on multiple inputs. To this end, we only
have to replace the figure of merit [6] by

�1;�ðTÞ ¼ sup
�2X;j

1� F t̂rjT�ð��NÞ; �ð�Þ
� ��� �� ½18�

where � :S(H) ! S(H) is a (possibly nonlinear)
functional which describes the task we want to
approximate. The generalization �all, � of �all can be
given similarly. If � has the appropriate continuity
and symmetry properties, the discussion in the
section ‘‘General properties’’ applies completely,
that is, we can assume covariance and permutation
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invariance, and we can consider operations which
use state estimation in an intermediate step.

Purification

Consider N quantum systems, all originally prepared in
the same pure state �, and then subsequently exposed
to the same (known) decoherence process, described by
a depolarizing channel R. The task of purification is to
produce M output systems which approximate the
original pure input state as well as possible. Hence,
the corresponding figure of merit arises with X =
{R(�) j� pure} and �(�) = R�1(�). This problem is
discussed for qubits in Cirac et al. (1999), Keyl and
Werner (2001) and D’Ariano et al. (2005). The
optimal purifier can be given explicitly for all N, M in
terms of irreducible SU(2) representations. Surpris-
ingly, it turns out that the output purity can be
improved even if the number of outputs, M, is larger
than the number of available input systems, N
(although N should be large enough). If we measure
purity in terms of local errors, it can be shown that, in
the limit N ! 1, perfectly purified qubits can be
produced at an infinite rate (i.e., the number of output
systems per input system can become infinite). How-
ever, we have to pay for this result with extremely large
correlations between the output systems. Therefore, the
global error does not disappear asymptotically, if we
insist on a nonvanishing rate.

Universal Not

‘‘Universal not’’ (UNOT) is an operation which
sends each pure state � to its orthocomplement. This
is a positive but not a completely positive operation.
Hence, it cannot be performed by any physical
device. However, we can try to approximate it by a
cloning map T operating on N input systems. The
corresponding figure of merit [18] arises if X is the
set of pure states and �(�) = 1� �. In Bužek et al.
(1999), it is shown that the optimal solution to this
problem (for all N and M) is to estimate and

reprepare as described in the section ‘‘Relationships
with quantum state estimation.’’ Approximating
UNOT is, therefore, significantly more difficult
than (pure-state) cloning, where the optimal solution
is always (for finite M) better than estimation.

See also: Channels in Quantum Information Theory;
Compact Groups and Their Representations; Positive
Maps on C*-algebras.
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The purpose of this article is to introduce some of the
main ideas of optimal transportation theory. A lot
more can be found in Villani’s book (Villani 2003), in
a somewhat similar spirit. Supplementary information
is also available in Ambrosio et al. (2005), Evans and
Gangbo (1999), and Rüschendorf and Rachev (1990).

Transportation Maps

Let us start by a rather abstract definition:

Definition 1 Let X and Y be two topological
spaces with Borel probability measures 	 and �,
respectively. We say that a Borel map T : X! Y is a
transportation map between (X,	) and (Y,�) if, for
each Borel subset A of Y,

Z
TðxÞ2A

	ðdxÞ ¼
Z

y2A

�ðdyÞ
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It is customary to say that T pushes forward � to
�, or to say that � is the image of � by T. An abstract
measure-theoretic result asserts that there is always
such a transportation map T, as soon as � has no
atom (i.e., the � measure of any point x 2 X is zero).

A more concrete situation is when X = ��0, Y = ��1,
where �0 and �1 are two smooth bounded open
subsets of the d-dimensional Euclidean space Rd. In
such a case, a classical result, due to Moser and
improved by Dacorogna and Moser (1990), reads:

Theorem 1 Let �0 and �1 be two smooth bounded
open sets in Rd. Let �0 > 0 and �1 > 0 be two
smooth functions on Rd such thatZ

�0

�0ðxÞdx ¼
Z

�1

�1ðxÞdx ¼ 1

Then there is a smooth transportation map T
between (��0, �0(x)dx) and (��1, �0(y)dy). Further-
more, T is an orientation-preserving diffeomorphism
and solves the Jacobian equation:

�1ðTðxÞÞ detðDTðxÞÞ ¼ �0ðxÞ; 8x 2 �0 ½1�
Transportation Maps with Convex
Potentials

An important property of Moser’s construction,
which we did not state, is the possibility of
prescribing the restriction of T along the boundary
@�0. If one does not care about this latter property,
one can improve Theorem 1 as follows (Caffarelli
1992):

Theorem 2 Assume further that �1 is a uniformly
strictly convex set. Then, there is a transportation
map T with a smooth convex potential, namely

TðxÞ ¼ D�ðxÞ; 8x 2 �0

for some smooth convex function � defined on
Rd and strictly convex on �0. In addition, among
all Borel maps T transporting (��0, �0(x)dx) to
(��1, �1(y)dy), D� is the unique map that minimizes

inf
T

Z
Rd
jTðxÞ � xj2�0ðxÞdx ½2�

where j � j denotes the Euclidean norm on Rd.

Because of its characterization, T = D� is often
called the ‘‘optimal transportation map’’ with respect
to the ‘‘transportation cost’’ [2]. Notice that, because
of the Jacobian equation [1], � automatically is a
classical solution to the Monge–Ampère equation:

�1ðD�ðxÞÞ detðD2�ðxÞÞ ¼ �0ðxÞ; 8x 2 �0 ½3�
(The Monge–Ampère equation is a famous geo-
metric PDE, related to the seeking of hypersurfaces
with prescribed Gaussian curvature.) The main gain
with respect to Moser’s construction is the property
that the optimal map T has, at each x 2 �0, a
Jacobian matrix DT(x) = D2�(x) which is a positive-
definite symmetric matrix. This property has been
first exploited by McCann (1997) and later by many
authors (see Villani (2003), for many references)
to prove a large series of geometric and functional
inequalities. A very fine example can be found in
Barthe (1998). Let us just consider, as an elementary
illustration, a short and sharp proof of the isoperi-
metric inequality using the optimal transportation
map.
A Proof of the Isoperimetric Inequality
Using Optimal Transportation Maps

Let us recall the isoperimetric inequality:

Theorem 3 Let � be a smooth bounded open
subset in Rd. Then

j@�j � djB1j1=dj�j1�1=d

holds true where B1 is the unit ball in Rd, j�j and
j@�j, respectively, denote the d-dimensional volume
of � and the (d � 1)-dimensional Hausdorff measure
of the boundary @�. In addition, the inequality
becomes an equality if and only if � is a ball.

To prove this result, let us define densities:

�0ðxÞ ¼
1

j�j ; x 2 �

�1ðyÞ ¼
1

jB1j
; y 2 B1

and consider the associated optimal transportation
map D� from (��0, �0(x)dx) to (��1, �0(y)dy). From
the Monge–Ampère equation,

�1ðD�ðxÞÞ detðD2�ðxÞÞ ¼ �0ðxÞ

we get:

detðD2�ðxÞÞ ¼ jB1j
j�j ; x 2 � ½4�

Since the range of D� on � is the unit ball B1, we
have

I ¼
Z
@�

D�ðxÞ � nðxÞd�ðxÞ �
Z
@�

d�ðxÞ ¼ j@�j

where n(x) and d�(x) respectively, denote the out-
ward unit normal and the (d � 1)-dimensional
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Hausdorff measure along @�. Using the divergence
theorem, we also have:

I ¼
Z

�

��ðxÞdx

where ��(x) = trace(D2�(x)) is the Laplacian of �.
From the geometric mean inequality, we know that,
for any symmetric matrix A � 0,

ðdet AÞ1=d � 1=d trace ðAÞ

holds true, with equality if and only if A is equal to
the identity matrix multiplied by a non-negative
scalar factor. Thus,

I � d

Z
�

ðdetðD2�ðxÞÞ1=ddx

¼ dj�j1�1=djB1j1=d

(because of [4]). So, we have obtained the isoperi-
metric inequality:

j@�j � djB1j1=dj�j1�1=d

Let us now consider the case when this inequality
becomes an equality. Then, necessarily, for each x 2
�, A = D2�(x) satisfies det A = (trace(A)=d)d and,
therefore, must be the identity matrix multiplied by a
scalar factor � > 0, possibly depending on x. Because
of [4], the determinant of D2�(x) is constant over �.
Thus, � > 0 must be constant. It follows that
D�(x) =�(x� a), for some point a in Rd. Therefore,
� must be the ball centered at a of radius 1=�.
Monge’s Optimal Transportation Problem

Theorem 2 is one of the numerous avatars of the so-
called optimal transportation theory that goes back to
Monge’s mass transfer problem which addressed in
1781 the ‘mémoire sur la théorie des déblais et des
remblais’ and was completely renewed by Kantorovich
in the 1940s (see e.g., Rüschendorf and Rachev (1990)
for instance). Let us quote a typical result, similar to
Theorem 2, but without regularity assumptions on the
data (see Brenier and Caffarelli (1992)):

Theorem 4 Let �0 be a non-negative Lebesgue
integrable function on Rd, such thatZ

Rd
�0ðxÞdx ¼ 1

Then for any Borel probability measure �1(dy) with
compact support on Rd, there is a unique map T
transporting �0(x)dx to �1(dy), which minimizesZ

Rd
jTðxÞ � xj2�0ðxÞdx
where j � j denotes the Euclidean norm on Rd. In
addition, there is a Lipschitz continuous convex
function � defined on Rd such that T(x) = D�(x)
for �0 almost every x 2 Rd, which implies:Z

Rd
f ðD�ðxÞÞ�0ðxÞdx ¼

Z
Rd

f ðyÞ�1ðdyÞ

for all continuous functions f on Rd.

Theorem 2, which can be interpreted as a
regularity result with respect to Theorem 4, is the
main output of Caffarelli’s regularity theory for
transportation maps with convex potentials
(Caffarelli 1992). Caffarelli’s analysis starts by a
proof that � actually is a weak solution of the
Monge–Ampère equation [3] in the sense of Alex-
androv and is strictly convex. Then, Caffarelli shows
that D2� is Hölder continuous, as soon as �0 and �1

are Hölder continuous.
Notice that the convexity assumption for �1 is

crucial to insure the regularity of the convex
potential. Caffarelli provided counter-examples
when �1 is made of two separate balls attached
together by a sufficiently thin pipe.

Surprisingly enough, results such as Theorem 4
are related to concrete applications in, for example,
astrophysics, image processing, etc. (Frisch et al.
2002, Haker and Tannenbaum 2003).
The Kantorovich Optimal Transportation
Problem

The Monge optimal transportation problem can
be solved using the Kantorovich duality method,
based on the key concept of ‘‘generalized transpor-
tation maps,’’ also called ‘‘transportation plans’’ or
‘‘doubly stochastic measures.’’ The abstract defini-
tion is:

Definition 2 Let X and Y be two topological
spaces with Borel probability measures � and �,
respectively. We say that a Borel probability
measure � on X� Y is a generalized transportation
map, or a transportation plan, if its marginals are,
respectively, � and �, namelyZ

x2A;y2Y

�ðdx; dyÞ ¼
Z

x2A

�ðdxÞ
Z

x2X;y2B

�ðdx; dyÞ ¼
Z

y2B

�ðdyÞ
½5�

for all Borel subsets A and B of X and Y,
respectively.

The Monge–Kantorovich (MK) optimal transpor-
tation problem amounts, given a ‘‘transportation
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cost,’’ that is, a continuous function c : X� Y ! R,
to find a minimizer for

IMK ¼ inf
�

Z
cðx; yÞ�ðdx; dyÞ ½6�

where � is subject to be a transportation plan
between (X,�) and (Y,�). Notice that this problem
is convex (and can be seen as an infinite-dimensional
linear program) and its dual problem can be easily
computed (using, e.g., Rockafellar’s theorem in
convex analysis and assuming, for simplicity, that
both X and Y are compact).

Theorem 5 We have

IMK ¼ sup
a;b

Z
aðxÞ�ðdxÞ þ

Z
bðyÞ�ðdyÞ

� �
½7�

where (a, b) is any pair of continuous functions,
defined on X and Y, respectively, and subject to:

aðxÞ þ bðyÞ � cðx; yÞ; 8x 2 X; 8y 2 Y

Of course, each transportation map T, in the sense
of Definition 1, can be seen as a transportation plan
� in the Kantorovich framework, just by setting

�ðdx; dyÞ ¼ �ðy� TðxÞÞ�ðdxÞ

which meansZ
x2A; y2B

�ðdx; dyÞ ¼
Z

x2A;TðxÞ2B

�ðdxÞ

for all Borel subsets A and B of X and Y,
respectively. Then, we have

Z
cðx; yÞ�ðdx; dyÞ ¼

Z
cðx;TðxÞÞ�ðdxÞ

So, the MK problem can be seen as a ‘‘relaxed’’
version of the ‘‘classical’’ optimal transportation
problem à la Monge:

IM ¼ inf
T

Z
cðx;TðxÞÞ�ðdxÞ ½8�

where T is subject to be a transportation map
between (X,�) and (Y,�). Indeed, we have IMK �
IM. It turns out that, in many important situations,
there is no gap between these two values, which
makes the MK problem a perfectly convenient
convex substitute for the original, nonconvex,
Monge transportation problem. This is, in particu-
lar, the case of the situation considered in Theorem
4, when the cost function is just

cðx; yÞ ¼ jx� yj2
or, more generally, c(x, y) = k(x� y), where k is a
uniformly strictly convex function. A typical result is:

Theorem 5 Let �0 be a non-negative Lebesgue
integrable function on Rd, with unit integral, and
�1(dy) be a Borel probability measure with compact
support on Rd. Let k be a uniformly strictly convex
function on Rd. Then the MK problem

IMK ¼ inf
�

Z
kðy� xÞ�ðdx; dyÞ

where � is subject to be a transportation plan
between �0(x)dx and �1(dy) on Rd, has a unique
solution of form

�ðdx; dyÞ ¼ �ðy� TðxÞÞ�ðdxÞ

where T is the unique minimizer of the Monge
problem:

IM ¼ inf
T

Z
kðTðxÞ � xÞ�0ðxÞdx

among all transportation maps T between �0(x)dx
and �1(dy) on Rd. In addition IMK = IM.

Proof for Theorem 5 (Sketch) For simplicity, we
assume that �0 and �1 are both compactly supported
in a ball B in Rd and we limit ourselves to the
simplest cost function k(x) = jxj2=2. We first denote
by M the set of all Borel regular probability
measures 	 on B� B having �0(x)dx and �1(dy) as
marginals, which meansZ

B�B

f ðxÞ	ðdx; dyÞ ¼
Z

B

f ðxÞ�0ðxÞdx

Z
B�B

f ðyÞ	ðdx; dyÞ ¼
Z

B

f ðyÞ�1ðdyÞ

for all continuous functions f on Rd. From Theorem 7,
we deduce:

max
	2M

Z
B�B

x � y	ðdx; dyÞ

¼ inf

Z
B

½�ðxÞ�0ðxÞ þ�ðxÞ�1ðxÞ�dx

where the infimum is taken over all pairs (�, �) of
continuous functions on B satisfying

�ðxÞ þ�ðyÞ � x � y; 8x 2 B;8y 2 B

Then, it can be established that the infimum is attained
by a pair (�, �) such that � is the restriction of a
Lipschitz continuous convex function defined on Rd,
and for �0(x)dx almost every point of Rd, � coincides
with the Legendre–Fenchel transform of �,

LFð�ÞðyÞ ¼ sup
x2Rd

ðx � y� �ðxÞÞ
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Moreover, if 	= 	opt 2M maximizes
R

B�B x � y	
(dx, dy), then

�ðxÞ þ�ðyÞ ¼ x � y

holds for 	opt-almost every (x, y) 2 Rd � Rd. Using
well-known properties of the Legendre–Fenchel
transform in convex analysis, one deduces that 	opt

is necessarily of the form

	optðdx; dyÞ ¼ �ðy�D�ðxÞÞ�0ðxÞ dx

which implies

Z
Rd�Rd

f ðyÞ	optðdx; dyÞ ¼
Z

Rd
f ðD�ðxÞÞ�0ðxÞ dx

for all continuous functions f on Rd and achieves the
proof since the second marginal of 	opt is �1(dy).
The Wasserstein Distance

Optimal transportation theory is strongly related to
the geometric analysis of probability measures. For
simplicity, let us just consider the space Prob(B) of
all Borel probability measures � supported by some
fixed ball B in Rd. This space is compact for the
weak topology of measures. An equivalent definition
of this topology is provided by the distance d,
naturally attached to the MK problem:

dð�0; �1Þ ¼ inf
	

Z
B�B

jx� yj2�ðdx; dyÞ
� �1=2

½9�

where � is subject to be a transportation plan
between �0 and �1 on B. (Of course, more general
convex functions k can be used to define the cost
function.) It has become popular to call this distance
as Wasserstein distance (or its generalizations for
various k). It turns out that Prob(B) equipped with
this distance has a formal Riemannian structure
(Otto 2001, Ambrosio et al. 2005). For instance,
given two probability measures �0(x)dx and �1(x)dx,
we can define a ‘‘shortest path’’ t! �(t, � ) 2
Prob(B) such that �(0) = �0, �(1) = �1, just by setting:

�ðt; dxÞ ¼
Z

B

�ðaþ ðD�ðaÞ � aÞt � xÞ�0ðaÞda;

8t 2 ½0; 1�
where D� is the optimal transportation map
between �0 and �1 on B. This idea, which is
somewhat related to the geometric analysis of
hydrodynamics and various concepts of generalized
flows Arnol’d and Khesin 1998, Brenier, was
successfully used by McCann (1997) and Otto
(2001). In particular, the concept of convexity
along these geodesic paths on Prob(B) has been
pointed out by McCann (1997) to be a crucial tool
for new proofs of geometric and functional inequal-
ities. Otto, and other contributors (see Ambrosio
et al. (2005) for a comprehensive discussion), observed
that many important parabolic or dissipative evolu-
tion PDEs can be described as ‘‘gradient flows’’ (or
‘‘steepest descent’’) of such functionals, with respect
to the Wasserstein metric.
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Introduction

The exponential function, the logarithm, the trigo-
nometric functions, and various other functions are
often used in mathematics and physics. They are
transcendental functions in the sense that they
cannot be obtained by a finite number of operations
as a solution of an algebraic (polynomial) equation.
Typically, they are obtained by a Taylor series
expansion. Many other higher transcendental func-
tions arise in mathematical physics, often as solu-
tions of differential equations. A precise knowledge
of the behavior of such functions, their relation with
other functions, addition, multiplication and com-
position properties, representations as an infinite
series, or as an integral, often shed a lot of light onto
the problem in which they arise. If they are
sufficiently useful to a large audience, then they
usually get a name and they will be called special
functions. In what follows, we describe a few of
these special functions of one variable, but clearly
this is just a tip of the iceberg. Many other special
functions exist and we refer to the classical tables of
Abramowitz and Stegun (1964) and the Bateman
manuscript project (Erdélyi et al. 1953–55) for more
special functions. Nowadays, there have been
numerous q-extensions of special functions (see
q-Special Functions).
Gamma and Beta Function

The gamma function is defined by

�ðzÞ ¼
Z 1

0

tz�1e�t dt; <z > 0: ½1�

It satisfies the functional equation �(zþ 1) = z�(z)
and since �(1) = 1 we have �(nþ 1) = n! for n 2 N.
The gamma function therefore extends the factorial
function for integers to complex numbers. The
functional equation

�ðzÞ�ð1� zÞ ¼ �

sin �z
½2�

allows to continue the gamma function analytically
to <z < 0 and the gamma function becomes an
analytic function in the complex plane, with a
simple pole at 0 and at all the negative integers.
The residue of �(z) at z =�n is equal to (�1)n=n!.
Legendre’s duplication formula is

�ð2zÞ ¼ 22z�1ffiffiffi
�
p �ðzÞ�ðzþ 1=2Þ ½3�

from which one can obtain the special value
�(1=2) =

ffiffiffi
�
p

. Finally, two useful infinite product
representations are

�ðzÞ ¼ lim
n!1

n!nz

zðzþ 1Þ � � � ðzþ nÞ

and

1

�ðzÞ ¼ ze�z
Y1
n¼1

ð1þ z=nÞe�z=n
� �

where � is Euler’s constant:

� ¼ lim
n!1

Xn

k¼1

1

k
� log n

 !
¼ 0:577 215 664 9 . . . ½4�

The beta function is a function of two variables
given by

Bðx; yÞ ¼
Z 1

0

tx�1ð1� tÞy�1 dt

<x > 0;<y > 0 ½5�

Clearly it satisfies B(x, y) = B(y, x) and it is related to
the gamma function by

Bðx; yÞ ¼ �ðxÞ�ðyÞ
�ðxþ yÞ ½6�

The gamma and beta function are quite useful in
probability theory. One of the most common
probability distributions on the positive real line is
the gamma distribution

PrðX � xÞ ¼ 1

���ð�Þ

Z x

0

e�t=�t��1 dt; x � 0

The case �= 3=2 is the Maxwell–Boltzmann dis-
tribution. The most common probability distribu-
tion on the interval [0, 1] is the beta distribution

PrðY � xÞ ¼ 1

Bð�; �Þ

Z x

0

t��1ð1� tÞ��1dt

where 0 � x � 1.
The psi function is the logarithmic derivative of

the gamma function

 ðzÞ ¼ �0ðzÞ
�ðzÞ ½7�
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It is meromorphic with simple poles at 0 and at the
negative integers. Special values are  (1) =�� and

 ðnþ 1Þ ¼
Xn

k¼1

1

k
� �

where � is Euler’s constant. These can be obtained
from the functional equation

 ðzÞ ¼  ðzþ 1Þ � 1

z

Bessel Functions

Bessel’s differential equation is

x2y00 þ xy0 þ ðx2 � �2Þy ¼ 0 ½8�

where derivatives are with respect to x and � is a
complex number. This differential equation has a
regular singularity at x = 0 and an irregular singu-
larity at x =1. The standard method of finding a
solution in the neighborhood of a regular singularity
gives the solution

J�ðxÞ ¼ ðx=2Þ�
X1
k¼0

ð�x2=4Þk

k!�ðkþ � þ 1Þ

and J��(x) is another solution (if � 6¼ 0). The
function J� is called the ‘‘Bessel function of the first
kind’’ and � is the ‘‘order’’ of the Bessel function.
The series x��J�(x) is an entire function of the
variable x. The function

Y�ðxÞ ¼
J�ðxÞ cosð��Þ � J��ðxÞ

sinð��Þ

is also a solution of Bessel’s differential equation
and is known as the ‘‘Bessel function of the second
kind of order �.’’ Two other solutions that are often
used are

Hð1Þ� ðxÞ ¼ J�ðxÞ þ iY�ðxÞ
Hð2Þ� ðxÞ ¼ J�ðxÞ � iY�ðxÞ

which are the first and second ‘‘Hankel functions.’’
Bessel functions appear if one solves the wave

equation in cylindrical or spherical coordinates, using
separation of variables. The Helmholtz equation
r2F þ k2F = 0 in cylindrical coordinates �,�, z is

@2F

@�2
þ 1

�

@F

@�
þ 1

�2

@2F

@�2
þ @

2F

@z2
þ k2 F ¼ 0
and if we look for a solution of the form
f (�)g(�)h(z), then this leads to a differential equation
for f of the form

d2f

d�2
þ 1

�

df

d�
þ ½k2 � a2 � ð�=�Þ2�f ¼ 0

where a and � are separation constants. The general
solution is f (�) = Z�(�(k

2 � a2)), where Z� is any of
the Bessel functions given higher or linear combina-
tions of them. In spherical coordinates r, 	, � the
Helmholtz equation is

@2F

@r2
þ 2

r

@F

@r
þ 1

r2

@2F

@	2
þ cot 	

r2

@F

@	

þ 1

r2 sin2 �

@2F

@�2
þ k2 F ¼ 0

and for a solution of the form f (r)g(	)h(�) one
obtains a differential equation for f of the form

1

r

d2ðrf Þ
dr2

þ ½k2 � �ð� þ 1Þ=r2�f ¼ 0

with general solution f (r) = Z�þ(1=2)(kr)=
ffiffi
r
p

.
Bessel functions have very simple differentiation

formulas:

½z�J�ðzÞ�0 ¼ z�J��1ðzÞ
½z��J�ðzÞ�0 ¼ �z��J�þ1ðzÞ

The first formula can be seen as a lowering
operation, the second as a raising operation. Some
integral representations are

J�ðzÞ ¼
ðz=2Þ�ffiffiffi

�
p

�ð� þ 1=2Þ

Z �

0

sin2� 	 cosðz cos 	Þd	

or

J�ðzÞ ¼
ðz=2Þ�ffiffiffi

�
p

�ð� þ 1=2Þ

Z 1

�1

ð1� x2Þ��1=2 cos zx dx

which hold for <� > �1=2. For real � the Bessel
function J� has infinitely many real zeros, and when
� > �1, then all the zeros are real. All the zeros are
simple (except possibly at the origin). Each of
the functions J�(z), Y�(z), H(1)

� (z), or H(2)
� (z) satisfies

the recurrence relation

za��1ðzÞ þ za�þ1ðzÞ ¼ 2�a�ðzÞ

and the differential–recurrence relation

a��1ðzÞ � a��1ðzÞ ¼ 2a0�ðzÞ
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Modified Bessel Functions

The modified Bessel equation is

x2y00 þ xy0 � ðx2 þ �2Þy ¼ 0 ½9�

Clearly J�(ix) is a solution of this equation. The
‘‘modified Bessel function of the first kind’’ is
defined as

I�ðxÞ ¼ e�� �i=2J�ðxe�i=2Þ; �� < arg x � �=2 ½10�

so that

I�ðxÞ ¼ ðx=2Þ�
X1
k¼0

ðx=2Þ2k

k!�ð� þ kþ 1Þ

If � is not an integer, then I�(x) and I��(x) are two
linearly independent solutions of [9], and when �= n
is an integer one has In(x) = I�n(x). The ‘‘modified
Bessel function of the second kind’’ is defined by

K�ðxÞ ¼
�

2 sin ��
½I��ðxÞ � I�ðxÞ�

Some special cases of modified Bessel functions are

I1=2ðxÞ ¼
ffiffiffiffiffiffi
2

�x

r
sinh x

I�1=2ðxÞ ¼
ffiffiffiffiffiffi
2

�x

r
cosh x

and

K1=2ðxÞ ¼
ffiffiffiffiffiffi
�

2x

r
e�x

One has the integral representation

K�ðzÞ ¼
Z 1

0

e�z cosh x cosh �x dx

and

I�ðzÞ ¼
ðz=2Þ�ffiffiffi

�
p

�ð� þ 1=2Þ

Z 1

�1

ð1� x2Þ��1=2e�zx dx

whenever <� > �1=2. The ‘‘Airy functions’’ are
given by

AiðzÞ ¼
ffiffiffi
z
p

3

�
I�1=3ð
Þ � I1=3ð
Þ

�
¼

ffiffiffiffiffiffiffiffi
z=3

p
�

K1=3ð
Þ

BiðzÞ ¼
ffiffiffiffiffiffiffiffi
z=3

p
I�1=3ð
Þ þ I1=3ð
Þ
� �

where 
= 2z2=3=3. They are both a solution of Airy’s
differential equation

y00ðzÞ � zyðzÞ ¼ 0
Hypergeometric Series

A power series
P1

n = 0 cnzn is said to be hypergeo-
metric when the ratio cnþ1=cn is a rational function
of the index n. Most series that one finds in calculus
textbooks are hypergeometric series and some of
them define important special functions. When

cnþ1

cn
¼ ðnþ a1Þðnþ a2Þ � � � ðnþ apÞ
ðnþ b1Þðnþ b2Þ � � � ðnþ bqÞðnþ 1Þ

then we write the corresponding series as

pFq

a1; a2; . . . ; ap

b1; b2; . . . ; bq

����z
� 	

¼
X1
n¼0

ða1Þnða2Þn � � � ðapÞn
ðb1Þnðb2Þn � � � ðbqÞn

zn

n!
½11�

where (a)n = a(aþ 1)(aþ 2) � � � (aþ n� 1), with
(a)0 = 1, is the rising factorial or Pochhammer
symbol. When p and q are small, one also uses the
notation pFq(a1, . . . , ap; b1, . . . , bq; z) where a semi-
colon (;) is used to separate the parameters in the
numerator from the parameters in the denominator
and also to separate the parameters from the
variable z. Some special cases are:

� the exponential series

0F0ð�;�; zÞ ¼
X1
n¼0

zn

n!
¼ expðzÞ

� the geometric series

1F0ð1;�; zÞ ¼
X1
n¼0

zn ¼ 1

1� z

� the binomial series

1F0ð��;�;�zÞ ¼
X1
n¼0

�
n

� 	
zn ¼ ð1þ zÞ�

� the logarithmic function

2F1ð1; 1; 2; zÞ ¼
X1
n¼0

zn

nþ 1
¼ � 1

z
logð1� zÞ

� the Bessel function

ðz=2Þ�0F1ð�; � þ 1;�z2=4Þ ¼ �ð� þ 1ÞJ�ðzÞ

For generic values of the parameters, we see that the
hypergeometric series converges everywhere in the
complex plane when q � p, it converges for jzj < 1
when p = qþ 1, and for p > qþ 1 it is only defined at
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z = 0. When one of the numerator parameters is a
negative integer, say a1 =�m, then the series is
terminating and defines a polynomial of degree m.
None of the denominator parameters is allowed to
be a negative integer �m, unless there is a
numerator parameter which is a negative integer
�k with k < m. For q � p, the hypergeometric
series therefore defines an entire function which is
the corresponding hypergeometric function. For
p = qþ 1, the hypergeometric series only converges
in the open unit disk, but sometimes it can be
continued analytically to a larger domain in the
complex plane. The analytic continuation of the
hypergeometric series is then called the hypergeo-
metric function. Take for example the geometric
series, then it is clear that the hypergeometric
series converges in the open unit disk, but the
corresponding hypergeometric function is defined
in the whole complex plane with a simple pole at
z = 1. The logarithmic function �log (1� z) has a
hypergeometric series in the open unit disk, but it
can be continued analytically to the complex plane
with a cut along [1,1) and a branch point
at z = 1.
Gauss Hypergeometric Function

The most famous hypergeometric function is the
Gauss hypergeometric function defined for jzj < 1
by the hypergeometric series

2F1ða; b; c; zÞ ¼
X1
n¼0

ðaÞnðbÞn
ðcÞnn!

zn ½12�

which is often denoted by F(a, b; c; z). It is a solution
of the hypergeometric equation

zð1� zÞy00ðzÞ þ ½c� ðaþ bþ 1Þz�y0ðzÞ
� abyðzÞ ¼ 0 ½13�

and this solution is regular at z = 0. Obviously,

2F1(a, b; c; z) = 2F1(b, a; c; z). The six functions

2F1(a� 1, b; c; z), 2F1(a, b� 1; c; z), and 2F1(a, b; c�
1; z) are called contiguous to 2F1(a, b; c; z) and there
are 15 linear relations (with coefficients which are
linear functions of z) between 2F1(a, b; c; z) and any
two contiguous functions. Two of these relations are

ð2a� c� azþ bzÞFða;b; c; zÞ þ ðc� aÞFða� 1;b; c; zÞ
þ aðz� 1ÞFðaþ 1; v; c; zÞ ¼ 0

and

cða� ðc� bÞzÞFða; b; c; zÞ � acð1� zÞFðaþ 1; b; c; zÞ
þ ðc� aÞðc� bÞzFða; b; cþ 1; zÞ ¼ 0
Euler gave the integral representation

2F1ða; b; c; zÞ

¼ �ðcÞ
�ðbÞ�ðc� bÞ

Z 1

0

xb�1ð1� xÞc�b�1

ð1� zxÞa dx ½14�

for <c > 0 and <b > 0. This allows to find the
analytic continuation from the open unit disk to the
complex plane. A useful result is the Gauss summa-
tion formula

2F1ða; b; c; 1Þ ¼ �ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞ

<ðc� a� bÞ > 0

The special case for a terminating series is known as
the Chu–Vandermonde sum

2F1ð�n; a; c; 1Þ ¼ ðc� aÞn
ðcÞn

Pfaff’s transformation is

2F1ða; b; c; zÞ ¼ ð1� zÞ�a
2F1 a; c� b; c;

z

z� 1

� 	

and Euler’s transformation is

2F1ða; b; c; zÞ ¼ ð1� zÞc�a�b
2F1ðc� a; c� b; c; zÞ
Confluent Hypergeometric Function

The hypergeometric series 1F1(a; c; z) defines an
entire function in the complex plane and satisfies
the differential equation

zy00ðzÞ þ ðc� zÞy0ðzÞ � ayðzÞ ¼ 0 ½15�

This hypergeometric series (and the differential equa-
tion) are formally obtained from 2F1(a, b; c; z=b) by
letting b!1, which gives a confluence of two of the
singularities at z =1. This is the reason why the
differential equation [15] is known as the confluent
hypergeometric equation. The solution

�ða; c; zÞ ¼ 1F1ða; c; zÞ ½16�

is called a confluent hypergeometric function, and a
second linearly independent solution of [15] is
z1�c�(c� aþ 1, 2� c; z). The function

�ða;c;zÞ ¼ �ð1� cÞ
�ða� cþ 1Þ�ða;c;zÞ

þ�ðc� 1Þ
�ðaÞ z1�c�ða� cþ 1;2� c; zÞ ½17�
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is therefore also a solution of eqn [15]. The
following integral representations hold:

�ða; c; zÞ ¼ �ðcÞ
�ðaÞ�ðc� aÞ

Z 1

0

ezxxa�1ð1� xÞc�a�1dx

whenever <c > <a > 0, and

�ða; c; zÞ ¼ 1

�ðaÞ

Z 1
0

e�zxxa�1ð1þ xÞc�a�1dx

whenever <a > 0.
The ‘‘Whittaker functions’’ are defined as

M�;�ðzÞ ¼ e�z=2zc=2�ða; c; zÞ
W�;�ðzÞ ¼ e�z=2zc=2�ða; c; zÞ

with �=�aþ c=2 and �= (c� 1)=2. They are a
solution of the Whittaker equation

y00ðzÞ þ � 1

4
þ �

z
þ 1� 4�2

4z2

� 	
yðzÞ ¼ 0

The ‘‘parabolic cylinder functions’’ are also con-
fluent hypergeometric functions. They are given by

D�ðzÞ ¼ 2�=2e�z2=4�ð��=2; 1=2; z2=2Þ
¼ 2ð��1Þ=2e�z2=4z�ðð1� �Þ=2; 3=2; z2=2Þ

When � is a non-negative integer, one finds Hermite
polynomials

HnðzÞ ¼ 2n=2ez2=2Dnð
ffiffiffi
2
p

zÞ
Classical Orthogonal Polynomials

A family of polynomials {pn(x), n 2 N}, where pn

has degree n, is orthogonal on the real line if there is
a positive measure � on the real line for which

Z
R

pnðxÞpmðxÞd�ðxÞ ¼ hn
m;n ½18�

Usually the measure � is absolutely continuous, in
which case d�(x) = w(x) dx with w a non-negative
density function on the real line, or � is discrete and
supported on a finite or at most countable set. Any
family of orthogonal polynomials satisfies a ‘‘three-
term recurrence relation’’

xpnðxÞ ¼ Anpnþ1ðxÞ þ BnpnðxÞ þ Cnpn�1ðxÞ ½19�
with CnAn�1 > 0 for every n � 1. For the
monic polynomials Pn(x) = pn(x)=kn, with kn =
1=(A0A1A2 � � �An�1) this relation becomes

Pnþ1ðxÞ ¼ ðx� bnÞPnðxÞ � a2
nPn�1ðxÞ

with bn = Bn and a2
n = An�1Cn. This recurrence

relation gives rise to a tridiagonal matrix

J ¼

b0 a1 0 0 0 0
a1 b1 a2 0 0 0
0 a2 b2 a3 0 0
0 0 a3 b3 a4 0

0 0 0 a4
. .

. . .
.

0 0 0 0 . .
.

0
BBBBBBB@

1
CCCCCCCA

which is formally symmetric and which is called the
‘‘Jacobi matrix.’’ The spectral measure of this opera-
tor, acting on ‘2(N), is equal to the orthogonality
measure � whenever this symmetric operator can be
extended to a self-adjoint operator. If this is not
possible in a unique way – a situation which can occur
for unbounded operators only – then every self-adjoint
extension of J gives rise to a spectral measure which
can be used for the orthogonality conditions [18]. In
this case, there are infinitely many positive measures
which can be used in the orthogonality relations and
all these measures have the same moments

mn ¼
Z

R

xn d�ðxÞ

Some families of orthogonal polynomials have
additional properties which are quite useful in
many practical and physical applications, such as
the following:

� The derivatives p0n are again a family of orthogo-
nal polynomials (Hahn property).
� The polynomials pn satisfy a second-order linear

differential equation of the form

�ðxÞy00ðxÞ þ �y0ðxÞ ¼ �nyðxÞ

where � is a polynomial of degree at most 2, � is a
polynomial of degree 1, both independent of n,
and �n is a real number (Bochner property).
� The polynomials can be obtained by a Rodrigues

formula

wðxÞpnðxÞ ¼ Cn
dn

dxn
wðxÞ�nðxÞð Þ

where w is a non-negative function and � a
polynomial of degree at most 2 (Hildebrand
property).

There are three families of orthogonal polynomials
on the real line which have these three properties, and
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each of these three properties characterizes these
families. These are the Hermite polynomials, the
Laguerre polynomials, and the Jacobi polynomials. In
a more general situation when the orthogonality
relation is described by a linear functional and the
functional is not required to be positive, one has an
additional family of Bessel polynomials. The densities
w(x) for these families all satisfy a first-order differ-
ential equation [�(x)w(x)]0= �(x)w(x), where � is a
polynomial of degree at most 2 and � a polynomial of
degree 1. This equation is known as the ‘‘Pearson
equation.’’
Hermite Polynomials

Hermite polynomials Hn(x) are orthogonal with
respect to the normal density w(x) = e�x2

:Z 1
�1

HnðxÞHmðxÞe�x2

dx ¼ 2nn!
n;m

Observe that the density satisfies w0=�2xw so that
�= 1 and �(x) =�2x. The recurrence relation is

Hnþ1ðxÞ ¼ 2xHnðxÞ � 2nHn�1ðxÞ

and the polynomials satisfy the second-order differ-
ential equation

y00ðxÞ � 2xy0ðxÞ þ 2nyðxÞ ¼ 0

The functions hn(x) = e�x2=2Hn(x) satisfy the differ-
ential equation

h00nðxÞ þ ð2nþ 1� x2ÞhnðxÞ ¼ 0

The derivatives satisfy H0n(x) = 2nHn�1(x) (lowering

operation) and one also has [e�x2
Hn(x)]0=�e�x2

Hnþ1(x) (raising operation). The Rodrigues formula is

e�x2

HnðxÞ ¼ ð�1Þn dn

dxn
e�x2

The polynomials can be written as a hypergeometric
series

HnðxÞ ¼ ð2xÞn2F0ð�n=2;�ðn� 1Þ=2;�;�1=x2Þ

or alternatively as

HnðxÞ ¼ n!
Xbn=2c
k¼0

ð�1Þkð2xÞn�2k

k!ðn� 2kÞ!

Their generating function is

X1
n¼0

HnðxÞ
tn

n!
¼ expð2xt � t2Þ
Hermite polynomials are relevant for the analysis of
the quantum harmonic oscillator, and the lowering
and raising operators there correspond to creation
and annihilation.
Laguerre Polynomials

Laguerre polynomials L�
n (x) are for � > �1 orthogo-

nal with respect to the gamma density w(x) = x�e�x

on [0,1):

Z 1
0

L�
nðxÞL�

mðxÞx�e�x dx ¼ �ðnþ �Þ
n!


m;n

The Pearson equation is [xw]0= (�þ 1� x)w so that
�(x) = x and �(x) =�þ 1� x. The recurrence rela-
tion is

ðnþ 1ÞL�
nþ1ðxÞ

¼ ð2nþ �þ 1� xÞL�
nðxÞ � ðnþ �ÞL�

n�1ðxÞ

and the differential equation is

xy00ðxÞ þ ð�þ 1� xÞy0ðxÞ þ nyðxÞ ¼ 0

The functions ‘n(x) = x�=2e�x=2L�
n (x) satisfy

ðx‘0nÞ
0 þ nþ �þ 1

2
� x

4
� �

2

4x

� 	
‘n ¼ 0

Differentiation has the effect that

L�
nðxÞ

� �0¼ �L�þ1
n�1ðxÞ

and

x�e�xL�
nðxÞ

� �0¼ ðnþ 1Þx��1e�xL��1
nþ1ðxÞ

The Rodrigues formula is

x�e�xL�
nðxÞ ¼

1

n!

dn

dxn
½xnþ� e�x�

The hypergeometric expression is

n!L�
nðxÞ ¼ ð�þ 1Þn1F1ð�n;�þ 1; xÞ

and the generating function is

X1
n¼0

L�
nðxÞtn ¼ ð1� tÞ���1 exp

xt

t � 1

� �

Laguerre polynomials occur as eigenfunctions of the
hydrogen atom.
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Jacobi Polynomials

Jacobi polynomials P(�,�)
n (x) are orthogonal for the

beta density w(x) = (1� x)�(1þ x)� on [�1, 1]
whenever � >�1 and � >�1:

Z 1

�1

Pð�;�Þn ðxÞPð�;�Þm ðxÞð1� xÞ�ð1þ xÞ� dx

¼ 2�þ�þ1

2nþ �þ � þ 1

�ðnþ �þ 1Þ�ðnþ � þ 1Þ
�ðnþ �þ � þ 1Þ 
n;m

The Pearson equation is [(1� x2)w]0= [� � ��
(�þ � þ 2)x]w and the differential equation is

ð1� x2Þy00ðxÞ þ ½� � �� ð�þ � þ 2Þx�y0ðxÞ
þ nðnþ �þ � þ 1ÞyðxÞ ¼ 0

Differentiation has the effect

Pð�;�Þn ðxÞ
h i0

¼ ðnþ �þ � þ 1Þ=2P
ð�þ1;�þ1Þ
n�1 ðxÞ

and

ð1� xÞ�ð1þ xÞ�Pð�;�Þn ðxÞ
h i0
¼ �2ðnþ 1Þð1� xÞ��1ð1þ xÞ��1P

ð��1;��1Þ
nþ1 ðxÞ

The Rodrigues formula is

ð1� xÞ�ð1þ xÞ�Pð�;�Þn ðxÞ

¼ ð�1Þn

2nn!

dn

dxn
ð1� xÞnþ�ð1þ xÞnþ�
h i

In terms of hypergeometric series, one has

Pð�;�Þn ðxÞ ¼ ð�þ 1Þn
n!

	 2F1

�n; nþ �þ � þ 1

�þ 1

���� 1� x

2

� 	

Observe that one has P(�,�)
n (� x) = (�1)nP(�,�)

n (x).
Special cases of the Jacobi polynomials are as

follows:

� The ‘‘Legendre polynomials’’ Pn(x) = P(0, 0)
n (x).

They appear when the Laplacian is separated in
spherical coordinates as functions of the polar
angle 	, for which x = cos 	.
� The ‘‘Chebyshev polynomials’’ of the first kind

TnðxÞ ¼ Pð�1=2;�1=2Þ
n ðxÞ=Pð�1=2;�1=2Þ

n ð1Þ

and of the second kind

UnðxÞ ¼ ðnþ 1ÞPð1=2;1=2Þn ðxÞ=Pð1=2;1=2Þn ð1Þ
These functions are more easily written by using the
change of variable x = cos 	 and then Tn( cos 	) =
cos n	 and Un( cos 	) = sin (nþ 1)	= sin 	.
� The ‘‘Gegenbauer polynomials’’ or ultraspherical

polynomials are Jacobi polynomials with equal
parameters:

C�
nðxÞ ¼ ð2�Þn=ð�þ 1=2ÞnPð��1=2;��1=2Þ

n ðxÞ

Gegenbauer polynomials are involved in the
angular or spatial part of the wave function of
physical systems in a central potential in both
position and momentum space, and in the spatial
part of the wave function of hydrogenic systems in
momentum space, as well as in the eigenfunctions of
several quantum-mechanical potentials, such as the
relativistic harmonic oscillator.
Other Classical Orthogonal Polynomials

Instead of restricting attention to the differential
operator D = d=dx, one can also use the (forward)
difference operator � for which �f (x) = f (xþ 1)�
f (x), the divided difference operator �� for which
��f (x) = �f (�(x))=��(x) with a quadratic function
�, or certain q-difference operators and look for
orthogonal polynomials that satisfy difference equa-
tions in the variable x. Together with the three-term
recurrence relation (in the degree n), one then has
families of polynomials satisfying a bispectral
problem. For the difference operator and the divided
difference operator, this gives several important
families of orthogonal polynomials which all have
a hypergeometric representation. These hypergeo-
metric polynomials are usually listed in a table, and
each level indicates the number of parameters and/or
the order of the hypergeometric function. This table
is known as Askey’s table and is given in Figure 1.
The extension with q-difference operators involves
basic hypergeometric series and q-extensions of
classical orthogonal polynomials.

‘‘Charlier polynomials’’ Cn(x; a) are orthogonal
with respect to the Poisson distribution

X1
k¼0

Cnðk; aÞCmðk; aÞ a
k

k!
¼ ea=an
n;m

The recurrence relation is

aCnþ1ðx; aÞ þ ðx� n� aÞCnðx; aÞ
þ nCn�1ðx; aÞ ¼ 0

and the second-order difference equation is

ayðxþ 1Þ þ ðn� x� aÞyðxÞ þ xyðx� 1Þ ¼ 0



Hermite

Laguerre Charlier

Meixner-
Pollaczek Jacobi Meixner Krawtchouk

Continuous
dual Hahn

Continuous
Hahn Hahn Dual Hahn

Wilson Racah

Figure 1 Askey’s table.
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The forward difference operator has the effect
�Cn(x; a) =�n=aCn�1(x; a) and the backward differ-
ence operator rf (x) = f (x)� f (x� 1) has the effect
r[ax=x!Cn(x;a)] = ax=x!Cnþ1(x; a). The hypergeo-
metric representation is Cn(x; a) = 2F0(�n� x; �;
�1=a). Observe that the variable x appears as a
parameter of the hypergeometric series.

‘‘Krawtchouk polynomials’’ Kn(x; p, N) are ortho-
gonal with respect to the binomial distribution:

XN
k¼0

Knðk; p;NÞKmðk; p;NÞ N

k

� 	
pkð1� pÞN�k

¼ ð�1Þnn!

ð�NÞn
p�nð1� pÞn
n;m

where N is a positive integer and 0 < p < 1. They
are given by Kn(x; p, N) = 2F1(�n, �x; �N; 1=p)
and correspond to Meixner polynomials for which
the parameter � is a negative integer.

‘‘Meixner polynomials’’ mn(x;�, c) are orthogonal
with respect to the negative binomial distribution
(Pascal distribution)

X1
k¼0

mnðk;�; cÞmjðk;�; cÞ ð�Þkck

k!
¼ n!

cnð�Þnð1� cÞ�

n;j

where � > 0 and 0 < c < 1. They are given by
mn(x;�, c) = 2F1(�n, �x;�; 1� 1=c).

‘‘Meixner–Pollaczek polynomials’’ P�n(x;�) are
orthogonal on (�1,1):Z 1

�1
P�mðx;�ÞP�nðx;�Þeð2���Þxj�ð�þ ixÞj2 dx

¼ 2��ðnþ 2�Þ
ð2 sin�Þ2�n!


m;n

where � > 0 and 0 < � < �. The appropriate differ-
ence operator 
 has an imaginary shift 
f (x) =
f (xþ i=2)� f (x� i=2) and one has 
P�n(x;�) =
2 sin�P

�þ1=2
n�1 (x;�). They are given by

P�nðx;�Þ ¼ ð2�Þn
n!

ein�
2F1

�n; �þ ix
2�

����1� e�2i�

� 	

‘‘Hahn and dual Hahn polynomials’’ are orthogo-
nal on a finite set of points. Hahn polynomials are
given by

Qnðx;�; �;NÞ ¼ 3F2
�n; nþ �þ � þ 1;�x

�þ 1;�N

����1
� 	

and their orthogonality is with respect to a
hypergeometric distribution on {0, 1, . . . , N}. The
appropriate difference operator is the (forward)
difference operator �. They are related to the 3� j
symbols or Wigner coefficients that arise when
considering angular momenta in two quantum
systems. Dual Hahn polynomials are given by

Rnð�ðxÞ; �; 
;NÞ ¼ 3F2
�n;�x; xþ � þ 
 þ 1

� þ 1;�N

����1
� 	

where �(x) = x(xþ � þ 
 þ 1). They are obtained
from the Hahn polynomials by interchanging the
roles of n and x. They are orthogonal on the set
{�(0),�(1), . . . ,�(N)}. The appropriate difference
operator is the divided difference operator which
acts on f as �f (�(x))=��(x).

‘‘Continuous Hahn and dual Hahn polynomials’’
are orthogonal on the real line. The continuous
Hahn polynomials are

pnðx; a; b; c; dÞ

¼ in
ðaþ cÞnðaþ dÞn

n!

	 3F2

�n; nþ aþ bþ cþ d � 1; aþ ix

aþ c; aþ d

����1
� 	

and the appropriate difference operator is the
difference operator 
 with imaginary shift. The
continuous dual Hahn polynomials are

Snðx2; a; b; cÞ ¼ ðaþ bÞnðaþ cÞn

	 3F2

�n; aþ ix; a� ix

aþ b; aþ c

����1
� 	

and the appropriate difference operator is the divided
difference operator which acts on f as 
f (x2)=
x2.

‘‘Wilson polynomials’’ are the most general system
of hypergeometric polynomials satisfying a bispec-
tral problem. All the other classical orthogonal
polynomials can be obtained from them by taking
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appropriate parameters or as limiting cases. They are
given by

Wnðx2; a;b; c;dÞ
ðaþ bÞnðaþ cÞnðaþ dÞn

¼ 4F3

�n;nþ aþ bþ cþ d� 1;aþ ix;a� ix

aþ b;aþ c;aþ d

����1
� 	

and for R(a, b, c, d) > 0 (with nonreal parts appear-
ing in conjugate pairs) they are orthogonal on the
positive real line with respect to the weight function

wðxÞ ¼ �ðaþ ixÞ�ðbþ ixÞ�ðcþ ixÞ�ðd þ ixÞ
�ð2ixÞ

����
����

‘‘Racah polynomials’’ can be obtained from
Wilson polynomials when the parameters are such
that one of aþ b, aþ c, or aþ d is a negative
integer �N. They are given by

Rnð�ðxÞ;�; �; �; 
Þ

¼ 4F1

�n; nþ �þ � þ 1;�x; xþ � þ 
 þ 1

�þ 1; � þ 
 þ 1; � þ 1

����1
� 	

where�þ 1 =�N or� þ 
 þ 1 =�N or � þ 1 =�N,
and N is a non-negative integer. They are orthogonal on
the finite set {�(0),�(1), . . . ,�(N)}, where �(x) = x(xþ
� þ 
 þ 1). They arise as 6� j symbols in the coupling
of three angular momenta.

See also: Combinatorics: Overview; Compact Groups
and their Representations; Integrable Systems:
Overview; Painlevé Equations; q-Special Functions;
Random Matrix Theory in Physics; Separation of
Variables for Differential Equations.
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