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Our society is often designated as being an “infor-
mation society.” It could also be defined as an
“image society.” This is not only because image is a
powerful and widely used medium of communica-
tion, but also because it is an easy, compact, and
widespread way to represent the physical world. If
we think about it, it is indeed striking to realize just
how much images are omnipresent in our lives
through numerous applications such as medical and
satellite  imaging, videosurveillance, cinema,
robotics, etc.

Many approaches have been developed to process
these digital images, and it is difficult to say which
one is more natural than the other. Image processing
has a long history. Maybe the oldest methods come
from 1D signal processing techniques. They rely on
filter theory (linear or not), on spectral analysis, or
on some basic concepts of probability and statistics.
For an overview, we refer the interested reader to
the book by Gonzalez and Woods (1992).

In this article, some recent mathematical concepts
will be revisited and illustrated by the image
restoration problem, which is presented below. We
first discuss stochastic modeling which is widely
based on Markov random field theory and deals
directly with digital images. This is followed by a
discussion of wvariational approaches where the
general idea is to define some cost functions in a
continuous setting. Next we show how the scale
space theory is connected with partial differential
equations (PDEs). Finally, we present the wavelet
theory, which is inherited from signal processing
and relies on decomposition techniques.

Introduction

As in the real world, a digital image is composed of
a wide variety of structures. Figure 1 shows different

kinds of “textures,” progressive or sharp contours,
and fine objects. This gives an idea of the complex-
ity of finding an approach that allows to cope with
the different structures at the same time. It also
highlights the discrete nature of images which will
be handled differently depending on the chosen
mathematical tools. For instance, PDEs based
approaches are written in a continuous setting,
referring to analogous images, and once the exist-
ence and the uniqueness of the solution have been
proved, we need to discretize them in order to find a
numerical solution. On the contrary, stochastic
approaches will directly consider discrete images in
the modeling of the cost functions.

The Image Restoration Problem

It is well known that during formation, transmis-
sion, and recording processes images deteriorate.
Classically, this degradation is the result of two
phenomena. The first one is deterministic and is
related to the image acquisition modality, to possible
defects of the imaging system (e.g., blur created by
an incorrect lens adjustment or by motion). The
second phenomenon is random and corresponds to
the noise coming from any signal transmission. It
can also come from image quantization. It is
important to choose a degradation model as close
as possible to reality. The random noise is usually
modeled by a probabilistic distribution. In many
cases, a Gaussian distribution is assumed. However,
some applications require more specific ones, like
the gamma distribution for radar images (speckle
noise) or the Poisson distribution for tomography.
Unfortunately, it is usually impossible to identify the
kind of noise involved for a given real image.

A commonly used model is the following. Let
#:Q C R? = R be an original image describing a real
scene, and let f be the observed image of the same
scene (i.e., a degradation of u). We assume that

f=Au+y 1]

where 7 stands for a white additive Gaussian noise
and A is a linear operator representing the blur
(usually a convolution). Given f, the problem is
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Figure 1 Digital image example. ~ the close-ups show
examples of low resolution, low contrasts, graduated shadings,
sharp transitions, and fine elements. (a) low resolution, (b) low
contrasts, (c) graduated shadings, (d) sharp transitions, and
(e) fine elements.

then to reconstruct # knowing [1]. This problem
is ill-posed, and we are able to carry out only an
approximation of #. In this article, we will focus on
the simplified model of pure denoising:

f=u+n 2]

The Probabilistic Approach
The Bayesian Framework

In this section, we show how the problem of pure
denoising, that is, recovering # from the equation
f =u+ n knowing only some statistical information
on n can be solved by using a probabilistic
approach. In this context, f, #, and 7 are considered
as random variables. The general idea for recovering
u is to maximize some prior probability. Most
models involve two parts: a prior model of possible
restored images # and a data model expressing
consistency with the observed data.

® The prior model is given by a probability space
(Qu, p), where Q,, is the set of all values of u. The
model is specified by giving the probability p(u)
on all these values.

® The data model is a larger probability space
(¢, D), where Q, ¢ is the set of all possible values
of u and all possible values of the observed image
f. This model is completed by giving the condi-
tional probability p(f/u) of any image f given u,
resulting in the joint probabilities p(f,u)

p(f /u)p(u). Implicitly, we assume that the spaces

(Q ) and (€, ) are finite although huge.

The next step is to use a Bayesian approach
introduced in image processing by Besag (1974)
and Geman and Geman (1984). The probabilities
p(u) and p(f/u) are supposed to be known and,
given an observed image f, we seek the image
u which maximizes the conditional a posteriori

probability p(u/f) (MAP: Maximum A Posteriori).
Thanks to the Bayes’ rule, we have

_ p(f/u)p(u)
p(u/f) = o) [3]

Let us explain the meaning of the different terms

in [3]:

® The term p(f/u) expresses the probability, the
likelihood, that an image  is realized in f. It also
quantifies the lack of total precision of the model
and the presence of noise.

® The term p(u) expresses our incomplete a priori
information about the ideal image u (it is the
probability of the model, i.e., the propensity that
u be realized independently of the observation f).

® The term p(f) which is the probability to observe f
is a constant and does not play any role when
maximizing the conditional probability p(u/f)
with respect to u.

(u/f) is
log p(u).

to a minimization

Let us remark that the problem max,p
equivalent to min, E(u)=—logp(f/u) —
So Bayesian models lead
process.

Then the main question is how to assign these
probabilities? The easiest probability to determine is
p(f/u). If the images # and f consist in a set of values
u=(u;;),i,j=1,N and f=(fi;),i,j=1,N, we sup-
pose the conditional independence of (f; ;/u; ;) in any
pixel:

N

f/”’ :HP fi]/utf

=1

and if the restoration model is of the form f=u +17
where 7 is a white Gaussian noise with variance o2,

then

(fij — M:/)

exp —

1
p (/i) =~

202
and
1 (fij — ui, /)
U)=———— €x
P/ = o e Z 77

Therefore, at this stage, the MAP reduces to
minimize

E(u) = K, |[f — ul* = log p(u) [4]
where ||.|| stands for the Euclidean norm on RN and

K, 1s a constant. So, it remains now to assign a
probability law p(u). To do that, the most common
way is to use the theory of Markov random fields
(MRFs).
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The Theory of Markov Random Fields

In this approach, an image is described as a finite set
S of sites corresponding to the pixels. For each site,
we associate a descriptor representing the state of
the site, for example, its gray level. In order to take
into account local interaction between sites, one
needs to endow S with a system of neighborhoods V.

Definition 1 For each site s, we define its neighbor-
hood V(s) as:

V(s) = {t} such that s¢ V(s) and t € V(s) =se V(¢)

Then we associate to this neighborhood system the
notion of clique: a clique is either a singleton or a set
of sites which are all neighbors of each other.
Depending on the neighborhood system, the family
of cliques will be different and involve more and less
sites. We will denote by C the set of all the cliques
relative to a neighborhood system V (see Figure 2).

Before introducing the general framework of
MRFs, let us define some notations. For a site s,
X, will stand for a random variable taking its values
in some set £ (e.g., £=1{0,1,...,255}) and x, will be
a realization of X and x*=(x;),..; will denote an
image configuration where site s has been removed.
Finally, we will denote by X the random variable
X =(Xs, X,,...) with values in Q=¢&.

Definition 2 We say that X is an MREF if the local
conditional probability at a site s is only a function
of V(s), that is,

P(Xs =x/X° =x°) = p(Xs = x5/x1, 1 EV(S))

Therefore, the gray level at a site depends only on
gray levels of neighboring pixels. Now we give the
following fundamental theorem due to Hammersley—
Clifford (Besag 1974) which states the equivalence
between MRFs and Gibbs fields.

Theorem 1 Let us suppose that S is finite, £ is a
discrete set and for all xEQ:(’i"S‘,p(X:x) >0,
then X is an MRF relatively to a system of
neighborhoods V if and only if there exists a family
of potential  functions (V.).ce such  that
p(x) = (1/Z) exp(~ %, . Velx)).

The function V(x)=> ... Vc(x) is called the
energy potential or the Gibbs measure and Z is a
normalizing constant: Z = exp(—) .. V(x)).

o 1]
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Figure 2 Examples of neighborhood system and cliques.

If, for example, the collection of neighborhoods is
the set of 4-neighbors, then the theorem says that

Vix) = ZC:[S]GQ Velxs) + Zc:{(s,t)]ecz Ve(xs, ).

Application to the Denoising Problem

Now, given this theorem we can reformulate, thanks
to [4], the restoration problem (with the change of
notation #=x and #; =x;): find # minimizing the
global energy

E(u) = K,|If = ul* + V(u) (5]

The next step is now to precise the Gibbs
measure. In restoration, the potential V(u) is often
dedicated to impose local regularity constraints, for
example, by penalizing differences between neigh-
bors. This can be modeled using cliques of order 2 in
the following manner:

V)=p Y lus—u)

(S,t) eCy

where ¢ is a given real function. This term penalizes
the difference of intensities between neighbors which
may come from an edge or some noise. This discrete
cost function is very similar to the gradient penalty
terms in the continuous framework (see the next
section). The resulting final energy is (sometimes
E(u) is written E(u/f))

E(u) =K, Z(fs - ”5)2 +8 Z (us — uyz)

ses (s,t)eCy

where the constant (3 is a weighting parameter
which can be estimated.

The difficulty in choosing the strength of the
penalty term defined by ¢ is to be able to penalize
the noise while keeping the most salient features,
that is, edges. Historically, the function ¢ was first
chosen as ¢(z) = z? but this choice is not good since
the resulting regularization is too strong introducing
a blur in the image and loss of the edges. A better
choice is ¢(z)=]|z|] (Rudin et al. 1992) or a
regularized version of this function. Of course,
other choices are possible depending on the con-
sidered application and the desired degree of
smoothness.

In this section, it has been shown how to model
the restoration problem through MRFs and the
Bayesian framework. Numerically, two main types
of algorithms can be used to minimize the energy:
deterministic algorithms and stochastic algorithms.
The former are generally used when the global
energy is strictly convex (e.g., algorithms based on
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gradient descent). The latter are rather used when
E(u) is not convex. There are stochastic minimiza-
tion algorithms mainly based on simulated anneal-
ing. Their main interest is that they always converge
(almost surely) to a minimizer (this is not the case
for deterministic algorithms which give only local
minimizers) but they are often strongly time
consuming.

We refer the reader to Li (1995) for more details
about MRFs and Bayesian framework and
Kirkpatrick et al. (1983) for more information on
stochastic algorithms.

The Variational Approach

Minimizing a Cost Function over a
Functional Space

One important issue in the previous section was the
definition of p(u) which gives some a priori on the
solution. In the variational approach, this idea is
also present but the way to infer it is in fact to
define the more suitable functional space that
describes images and their geometrical properties.
The choice of a functional space sets a norm which
in turn will constrain the solution to a certain
smoothness.

We illustrate this idea in this section on the
denoising problem [2] which can be seen as a
decomposition one. This means that given the
observation f, we look for # and n such that
f=u+mn, where n incorporates all oscillations, that
is, noise, and also texture. Let us define a functional
to be minimized which takes into account the data f
and possibly some statistical informations about #:

r<r;1nr)1{¢(|u|5) such that ¢(|n|;) =0
with f=u+n}

This formulation means that we look, among all
decompositions f =u + 7, for the one which mini-
mizes ¢(|u|p) under the constraint (|n|;)=o0.

Lagrange multiplier, the formulation [6] can be
rewritten as:

min{o(|ule) + M(Inlg)if =u+n}  [7]

A similar writing consists in replacing n by f — u so
that [7] rewrites

min{((ul,) + Mo(If — ul)} 8]

which is the classical formulation in image restora-
tion. From a numerical point of view, the minimiza-
tion is usually carried out by solving the associated
Euler equations but this may be a difficult task. The
main concern is the search for E and G and their
norm (or seminorm). It is guided by the choice that
an image # is composed of various geometric
structures (homogeneous regions, edges) while
n=/ — u represents oscillations (noise and textures).

Examples of Functional Spaces

In this section, we revisit some possible choices of
functional spaces summarized in Table 1.

The first case (a) was inspired by the classical
Tikhonov regularization. The functional space
HY(Q)(Q c R?) is the space of functions in L2(f)
such that the distributional gradient Du is in L?().
Unfortunately, functions in H'(Q2) do not admit
discontinuities across curves and this is a major
problem with respect to image analysis since images
are made of smooth patches separated by sharp
variations.

Considering the problem reported in (a), Rudin et al.
(1992) proposed to work on BV(Q), the space of
bounded variations (BV) Ambrosio et al. (2000)
defined by

BV(Q) = {ueLl(Q);/Q|Du < oo}

with /|Du| = sup{/udiwp dx;
Q Q

Banach spaces E and G, and functions ¢ and % o = (o1, 02 on) € Cl(Q)N

will be discussed in the next subsection. Since a e 0 ’

minimization problem under constraints can be o] <1 [9]
: . . Plre@) =

expressed with an additional term weighted by a

Table 1 Examples of functional spaces and their norm (see model [8])

Model E and |ulg o(t) G and |u|g (1)

72

(a) HY Q) |ule = ( [, [Vuf® dx) I L2(Q) with its usual norm 2

(b) BV(Q), lulg = [, |Dul L2(Q) with its usual norm ?

(c) BV(Q), |ulg = [, |Dul t {b € L2(); b=dive, €l 1@y < 1,6 Nlyq =0} t
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It is equivalent to define BV(Q2) as the space of
L'(Q) functions whose distributional gradient Du is
a bounded measure and [9] is its total variation. The
space BV(Q) has some interesting properties:

1. lower semicontinuity of the total variation
Jo|Du| with respect to the L'(€2) topology,

2. if ueBV(Q), we can define, for H' almost
everywhere x €S, the complement of Lebesgue
points (i.e., the jump set of u), a normal 7,(x)
and two approximate “right” and “left” limits
ut(x) and » ™ (x), and

3. Du can be decomposed as a sum of a regular
measure, a jJump measure, and a Cantor measure:

Du = Vudx + (u" — u‘)nuH}Su +C,

where Vu is the approximate gradient and H' the
one-dimensional Hausdorff measure.

This ability to describe functions with disconti-
nuities across a hypersurface S, makes BV(f2) very
convenient to describe images with edges. In this
context, the image restoration problem is well
posed and suitable numerical tools can be proposed
(Chambolle and Lions 1997).

One criticism of the model (b) in Table 1 pointed
out by Meyer (2001) is that if f is a characteristic
function and if f is sufficiently small with respect to
a suitable norm, then the model (Rudin et al. 1992)
gives u=0 and n=/ contrary to what one should
expect (u=f and n=0). In fact, the main reason of
this phenomenon is that the L?-norm for the 7
component is not the right one since very oscillating
functions can have large L?>-norm (e.g.,
fa(x) = cos(nx)). To better describe such oscillating
functions, Meyer (2001) introduced the space of
functions which can be expressed as a divergence
of L>-fields. This work was developed in RN and
this framework was adapted to bounded 2D
domains by Aubert and Aujol (2005) (see (c¢) in
Table 1). An example of image decomposition is
shown in Figure 3.

In this section, we have shown how the choice of
the functional spaces is closely related to the
definition of a variational formulation. The

Original u n

Figure 3 Example of image decomposition (see Aubert and
Aujol (2005)).

functionals are written in a continuous setting and
they can usually be minimized by solving the
discretized Euler equations iteratively, until conver-
gence. These PDEs and the differential operators are
constrained by the energy definition but it is also
possible to work directly on the equations, forget-
ting the formal link with the energy. Such an
approach has also been much developed in the
computer vision community and it is illustrated in
the next section.

We refer the reader to Aubert and Kornprobst
(2002) for a general review of variational
approaches and PDEs as applied to image analysis.

Scale Spaces and PDEs

Another approach to perform nonlinear filtering
is to define a family of image smoothing operators
T,, depending on a scale parameter #. Given an
image f(x), we can define the image u(z, x) = (T,f)(x)
which corresponds to the image f analyzed at scale 7.
In this section, following Alvarez—Guichard-Lions—
Morel (Alvarez et al. 1993), we show that u(z,x)
is the solution of a PDE provided some suitable
assumptions on Tj.

Basic Principles of a Scale Space

This section describes some natural assumptions to
be fulfilled by scale spaces. We first assume that the
output at scale ¢ can be computed from the output at
a scale t — b for very small h. This is natural, since a
coarser scale view of the original picture is likely to
be deduced from a finer one. T; is obtained by
composition of transition filters, denoted by T, ;.
So the first axiom is

(A1) Tt+h = Tt+h,tTt To=1d

Another assumption is that operators act locally,
that is, (T, .f)(x) depends essentially upon the
values of f(y) with y in a small neighborhood of x.
Taking into account the fact that as the scale
increases, no new feature should be created by the
scale space, we have the local comparison principle:
if an image u is locally brighter than another image
v, then this order must be conserved by the analysis.
This is expressed by:

(A2) For all # and v such that u#(y) >v(y) in a
neighborhood of x and y # x, then for / small
enough, we have

(Tt+h,t”) (x) > (TtJrh,tv) (x)

The third assumption states that a very smooth
image must evolve in a smooth way with the scale
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space. Denoting the scalar product of two vectors of
RN by <x,y>, this assumption can be written as

(A3) Let u(y)=1/2(A(y —x),y —x) + (p,y —x) +¢
be a quadratic form of R? x fixed
(A=V?u(x)€S? the set of 2 x2 symmetric
matrices, p=Vu(x) a vector of R?, c=u(x) a
constant.). We shall say that a scale space is
regular if there exists a function F(¢,x,c,p, A),
continuous with respect to A, such that

(Tippout — u)(x) .

’ when h— 0

F(taxacapaA)

Scale Spaces are Governed by PDEs

In the following theorem, it is stated that the former
assumptions are sufficient to prove that scale spaces
are in fact governed by PDEs.

Theorem 2 Under assumptions Al, A2, A3, there
exists a continuous function F:[0,T]x QxR x
R?x 8? R satisfying F(t,x,c,p,A) > F(t,x,c,p,B)
for all peR?, A and B in S* with A > B such that

b¢(u)

T _
:%HHF(t,x,u,Vu,Vzu), h—0% [10]

uniformly for x € R?, uniformly for u.

In eqn [10], the left-hand side term can be
interpreted as the partial temporal derivative with
respect to ¢ so that the notion of PDEs arises. More
precisely, if f is continuous and uniformly bounded,
then it can be established that u(¢, x) = (T,f)(x) is the
viscosity solution(see Definition 3) of

% + H(t,x,u,Vu,V*u) = 0 (here H= —F)

u(0,x) = f(x)

[11]

The map H:[0,T] x 2 x R x R? xS? — R is called
a Hamiltonian and the decreasing property of H
with respect to S is called degenerate ellipticity.

The theory of viscosity solutions was introduced
in the 1980s by Crandall and P L Lions (Crandall
and Lions 1981, Crandall et al. 1992). When strong
solutions of [11] do not exist, this theory allows
to define solutions which are only continuous or
even discontinuous. The definition of viscosity
solutions is

Definition 3 Let H:Q x R x R* x $? — R be con-
tinuous and degenerate elliptic and let ue€ C°

([0, T] x Q). Then u is a viscosity solution of [11]
in [0, T] x © if and only if

(i) u is a subsolution, that is, V¢ € C>([0,T] x ),
Y(to,x0) a local strict maximum point of (# — @)
(t,x), we have

0
87(? (t0,x0) + H(to, x0 ,u(t0,%0), Vo(to, x0),

V2¢(to,x0)) < 0

(ii) u is a supersolution, that is, V¢ € C*([0, T] x Q),
Y(t0,x0) a local strict minimum point of (# — ¢)
(t,x), we have

0
87;? (t(), X()) + H(t()v X0 7M(t03 XO), v¢(t0a x0)7

V2(to,x0)) > 0

In this definition, it is noticeable that derivatives of
u are replaced by the derivatives of the test functions
¢. Obviously, it can be verified that this notion of
weak solutions coincides with classical solution
when # has enough regularity.

Diffusion Operators Coming from the Scale Space

A step further is to assume additional properties on
the scale spaces and estimate the corresponding
operator. Invariance properties include geometric
invariance axioms, contrast invariance, or scale
invariance. For example, if we assume the axioms
A1-A3, gray-level shift invariance:

(I1) T,(0)=0, Ty(xr + ¢) = Ts(u) + ¢ for all u and all
constant c.

and translation invariance:

(12) Ti(rp.u) =7.(Tout) for all b in R%, ¢ > 0, where
(1) (x) = u(x + h).

Then it can be established that F in [10] is
independent of (x,u), that is, u(t,x)=(T,f)(x) is
the unique viscosity solution of

5 = F(Vm, Vu)

u(0,x) = f(x)

With more precise assumptions, one can even
recover explicitly the operator F. As an example, if
we look for a linear scale space which verifies some
isometry assumption:

(I3) T;(R.u)(x)=R.(T,u)(x) for all orthogonal trans-
formation R on R%, where (R.u)(x) = u(Rx).
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Then it can be proved that the scale space is the
unique solution of the heat equation:
ou
——Au=0
o 12
u(0,x) = f(x)

Figure 4 is an example of [12] applied to a noisy
image at different scale, that is, at different time.
Note that noise is quickly removed but one has to
stop the evolution very early if we would like to
preserve some edges. In the nonlinear cases, several
operators have also been found based on curvature.
For instance, under suitable axioms (Alvarez et al.
1993), including contrast, scale, and affine invari-
ance, the associated scale space is

% — sign(r)(tr) 3| Vu| = 0

.. Vu 13
where k = div (|V’4|) [13]
u(0,%) = £(x)

This equation is called affine morphological scale
space (AMSS) and three restored images are shown
in Figure 5. Some qualitative differences are shown

in Figure 6.
“ “
[ \ b

90 iterations 150 iterations

Original image 40 iterations

Figure 4

lllustration of heat equation [12].

150 iterations

90 iterations

Original image 40 iterations

Figure 5 lllustration of the AMSS model [13].

Heat Heat

AMSS

Figure 6 Some close-ups of Figures 4 and 5 showing
qualitative differences after 40 iterations.

Remark Scale space theory has shown the formal
link between some operators and PDEs. It has to be
noticed that one may propose some PDEs which do
not directly come from the scale space framework.
Starting from [12] which performs isotropic smooth-
ing and smears edges, many nonlinear diffusion
models have been proposed to smooth images while
preserving edges (see e.g., Perona and Malik
(1990)). O

To know more on scale space and PDEs, we refer
the reader to Weickert (1998) and Aubert and
Kornprobst (2002).

The Wavelet Approach

Before the 1980s, the Fourier transform played a
major role for analyzing oscillating signals. The
interest of such a transform for real application
increased after the discovery of the fast Fourier
transform. However, the Fourier transform has
some limit. The Fourier transform extracts from
the signal details of the frequency content but loses
all information on the location of particular fre-
quency. Moreover, for computing the Fourier trans-
form Ff()\), we need to know £(t) for all the real
values of t. These difficulties can be overcome by
first windowing the signal, and then by taking its
Fourier transform:

FUr0 = [ f9s = e ds

where g is a window function. The parameter A\
plays the role of a frequency localized around the
abscissa t of the temporal signal and F¥"f(\, t) give
an information about what is happening around
s=t, for the frequency . The main drawback of
this method is that the window has a fixed length
which is a serious disadvantage when we want to
treat signals having variations of different orders of
magnitude. All these issues highlighted that a
mathematical theory of time—frequency representa-
tion was necessary. This was achieved with the
wavelet representation. In this section, we first recall
some elements of this theory (for 1D signal) and
then we show how it can be applied for restoring
noisy images.

The Wavelet Decomposition

The basic idea is to construct from a function 1),
called mother wavelet, an orthonormal basis {¢; .} of
L?*(R) deduced from 1 by translation and dilatation.
It is required that 1 be regular, oscillating (but not
too much), that ¢ and F+) are well localized and that
1) has some null moments. Once this function 1) is
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chosen, we set 1 x(x)= 2124p(2/t — k), j,k€Z. An
elegant and practical way for obtaining such a basis is
to construct a multiresolution analysis of L?(R)
(Mallat 1989).

Definition 4 A multiresolution analysis of LZ(R) is
a sequence V;, j € Z of subspaces of L*(R), with the
following properties:

(i) MV, =0},

(i) V, C Vi,

(111) U V;=L*(R),

(iv) f( )E V; if and only if f(2t) € Vj;1, and

v) There exists a regular function ¢ with compact
support such that the family ¢(¢ — k), k€7, is
an orthonormal basis of Vy for the scalar
product of L*(R). Such a function ¢ is called a
scaling function.

Then it is straightforward to check that the family
.k (t) defined by ¢; ,(t) =2//2¢(2/t — k) is an ortho-
normal basis of V;.

A basic example of multiresolution analysis of
L*(R) is to choose V as the set of piecewise
constant functions on R and take ¢ as the
characteristic function of the interval [0,1):
o(t) = x10,1)(£).

Let us now look at the link between wavelet basis
and multiresolution analysis. We just give main
ideas, all details can be found in the work of Mallat
(1989). Assume that we have a multiresolution
analysis, and let us define W, as the orthogonal
complement of Vy in V;. We build the mother
wavelet 1 by imposing that the family (¢t — k),
k €7, is an orthonormal basis of Wj. For example,
if &(t)=x0,1)(t), it can be shown that (t)=

X10,1/2)(t) = x11/2,1)(¢) (called the Haar wavelet). By
change of scale, one gets that the family
¢/,k(t):2//2w(27t— k),k€”Z, is an orthonormal
basis of W;, the orthogonal complement of V; in
V/+1, that is,

Vie W = Vi [14]

Since the V}’s are a multiresolution analysis, we have
V= 69] ! Wand L?*= o= +OOW/ It is then clear
that v ( ) is an orthonormal | ba51s of L2(R), that is,
for each function f<L*(R), we get the following
decomposition:

D=3 5" f )
0o  k

Let us see now how in practice a multiresolution
analysis can be interpreted. Let f be a function in
L*(R). We denote Ayf (resp. D,f) the operator
which approximates f (resp. gives the details of f) at

with fj,k =(f, 1/’/,k>L2

resolution 2/. More precisely, A, f (resp. Dyf) is the
projection of f on V; (resp. on Wj):

k=400

Ayf(t) = Z (f:d0) ik (t)

k=—0c0

A,if is characterized by the sequence of scalar
products A%f={{f,d i )lrcr. We call Adf the
discrete approximation of f at resolution 2/.

In the same way, we have

k=+0c0

Dyf(t) = Z (fs i) ¥ie(t)

k=—00

D,if is characterized by the sequence of scalar
products DYf = ((f, 45 1) .

We call Ddf the details of f at resolution 2/.
According to [14], approximation and detail are
linked by the relation

Aginf = Ayf + Dyf

This means that D,/ represents the details to be
added to obtain from one level of approximation to
the next level of approximation.

Finally, the decomposition of a signal / on a
wavelet basis is obtained as an accumulation of
details at scale 2/ from 0 to +oo:

j=+00 j=+00 k=+00
f: Z Dz;f: Z Z <f> wj,k>wj,k [15]
j=—00 j=—00 k=—00

Instead of considering the sum over all dyadic
levels 7, one can sum over j > J for a fixed J; in this
case, we have

k=+00 k=00
=Y (it + Y, (oo
k=—00 j>] k=—00

We conclude this section by showing how we can
construct a 2D wavelet basis from the 1D case. We
can simply use a tensor product. Scaling function
and mother wavelet are given, respectively, as
follows:

o(x,y) = o(x)p(y), ¥ = (', ")

with

P (x,y) = o(x)(y)
Y (x,y) = ()¥(x)
P (x,y) = Y(x)¥(y)

As for the 1D case, A,f denotes the projection of

f on V;,D}, the horizontal details, D3 the vertical
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Agif Dif ‘ ‘
D3+f | D3+f
Figure 7 lllustration on the wavelets methodology.

details, and D3, the other details (the indice / in DY,
is the same as in ¢). For a 2D image £, we then have
the following decomposition (see Figure 7):

k=+0c0
f= Z Z Z<f71/1j,k>1/1/,k
Pl €W k=—00 j>]
k=+00

+ Z (fs D100 01k

k=—00

Application to the Denoising Problem

We go back to the denoising problem. Our goal is to
solve this problem by using a variational approach
and wavelets. We recall that we have an ideal image
u that has been corrupted by a white Gaussian noise
7 resulting in an observation f with f =u +n. As it
has been seen in the section “The variational
approach,” this question can be tackled by solving
the variational problem

min{A(|ulg) + |f — ulg ) [16]

for suitable choices of E, G, and ¢. Here we propose to
choose G =L?(Q) (2 is the domain image) and for E
the Besov space B}(L!(Q)) and ¢=Identity. Besov
spaces Bg(LP (Q)) are used in many domains of
mathematics as harmonic analysis or approximation
theory. There exist different ways for defining them.
Roughly speaking, they consist of functions having «
derivatives in LT (€2); the third parameter g allows one
to make finer distinctions in smoothness. Here we are
only concerned with the Besov space Bl(L!(Q2)). One
important property needed here is that the norm of a
function in E = B}(L!(Q)) is equivalent to the /'-norm
of the wavelet coefficients, that is if {15} is an
orthonormal basis of L*(2) and if u; , ,, are the wavelet
coefficients of u € E, then [u[p =", [t 1,

Remark When one is concerned with a finite
domain, then some changes must be made with
respect to the construction given in [15] to obtain an

= _
Original noisy BV regularization Wavelet
image shrinkage
Figure 8 lllustration of two regularization methods.

orthonormal basis of L?*(Q). To avoid further
technical complications, we ignore this question.
O

Let us denote, respectively, by {u; 1 ,} and {f; 1 4}
the wavelet coefficients of # and f, then solving [16]
amounts to finding the minimizer of the functional

Fu) = XY Jujpol + Y 4 — frwsl”  [17]

jik jkeab

One notes immediately that minimizing problem
[17] reduces to finding the minimizer s, given ¢, of
E(s)=|s — t|* + AJs| and that the minimizer of E(s) is
given by s=z¢—(\/2) if t>X/2,s=0 if |¢t] <)\/2
and s=1+ (A\/2) if £ < —(N\/2).

Thus, we shrink the wavelet coefficients f; ,
toward zero by an amount of A\/2 to obtain the
minimizer. This is exactly the wavelet shrinkage
algorithm of Donoho and Johnstone (1994). It is
remarkable that the wavelet shrinkage algorithm,
which has been found by using statistical tools, can
also be explained via a variational approach
(Chambolle ez al. 1998). Figure 8 shows an example
of the result on a noisy image.

For more details, we refer the reader to Mallat
(1998).

Conclusion

Image processing is a challenging domain of applied
mathematics which has to deal with discrete and
continuous representations. In this article, we have
covered the core mathematical tools used in the
area. The example of gray-scale image restoration
allowed us to illustrate and compare the different
methodologies. Naturally, as mentioned in the
introduction, image processing refers to a wide
variety of applications and an intensive research
has been carried out on the different topics using the
methodologies described here. The reader will find
in the references (therein) several illustrations of
challenging problems.

See also: T'-Convergence and Homogenization; Convex
Analysis and Duality Methods; Elliptic Differential
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Equations: Linear Theory; Evolution Equations: Linear
and Nonlinear; Fluid Mechanics: Numerical Methods;
Fractal Dimensions in Dynamics; Free Interfaces and
Free Discontinuities: Variational Problems; Geometric
Measure Theory; Ginzburg—Landau Equation;
Inequalities in Sobolev Spaces; Minimax Principle in the
Calculus of Variations; Optimal Transportation; Partial
Differential Equations: Some Examples; Stochastic
Differential Equations; Variational Techniques for
Ginzburg-Landau Energies; Wavelets: Applications;
Wavelets: Mathematical Theory.
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Introduction

In this article we present comprehensive mathema-
tical results on the incompressible Euler equations.
Our presentation is focussed on the two aspects of
the equations. The first one is on the theories of
classical solutions and the problem of global in time
continuation/finite time blow-up of the local classi-
cal solutions. The second topic is concerned on the
weak solutions, mainly for the two-dimensional
(2D) Euler equations for existence and uniqueness
questions.

The motion of homogeneous incompressible ideal
fluid in a domain 2 C R” is described by the
following system of Euler equations:

v
ot (v-Vv=-Vp 1]
dive =0 2]
v(x,0) = vo(x) 3]

where v= (', 12,..., 0",V =v(x,t),j=1,2,...,n,

is the velocity of the fluid flows, p=p(x,?) is the
scalar pressure, and vy(x) is a given initial velocity
field satisfying divyy=0. Here we use the standard
notion of vector calculus, denoting
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Ox1'0xy " Ox,
. n o
_ k
(v- V) = ;U o
n k
divy = ZL
=1 9%k

Equation [1] represents the balance of momentum
for each portion of fluid, while eqn [2] represents
the conservation of mass of fluid during its motion,
combined with the homogeneity (constant density)
assumption on the fluid. Equations [1] and [2] are
first obtained by Euler in 1755. Although we could
consider, more generally, the inhomogeneous incom-
pressible Euler equations, in mathematical fluid
mechanics considerations the incompressible Euler
equations usually mean the above system [1]-[2].
For a bounded domain with fixed boundary 012, the
natural boundary condition is

v(x,t) - v(x) =0 V(x,t) € 9Q x [0,00)  [4]

where v(x) is the unit normal vector at the boundary
point x € 9. Several studies are concerned with the
Cauchy problem of the system [1]-[3], where we
consider the case

R”(whole domain of R"), or
=S w1 . 5]
R” /7" (periodic domain)
In this article for simplicity we suppose

Q=R",n=2,3 unless otherwise stated. We note
that the Euler equation is obtained formally by
setting the viscosity =0, or, equivalently, Reynolds
number =00 in the Navier-Stokes equations. Thus,
we may view the Euler equations as the one
describing  approximately the extremely high
Reynolds number turbulent flows. For detailed
mathematical studies on the finite Reynolds number
Navier-Stokes equations, see Temam (1984) and
Lions (1996). For much shorter and more compre-
hensive review see Constantin (1995). In the study of
the Euler equations the notion of vorticity, w = curl v,
plays a very important role. In particular, we can
reformulate the system in terms of vorticity fields
only as follows. We first suppose we are working in
three-dimensional (3D) space, and rewrite [1] as

ov B 10
5—vxcurlv-—V<p+z|v|) [6]

Taking curl of [6], and using elementary vector
identities we obtain the following vorticity formulation:

Ow
E-I—(wV)w:w-Vv [7]

dive =0, curlv =w 8]

w(x,0) = wo(x) kd

The linear elliptic system [8] for v can be solved
explicitly in terms of w to give the Biot-Savart law

V(1) = 417 A 3 &=y xwiyb) "Z )_Xy‘[;(y Dy 10

Substituting this v into [7] formally, we obtain a
integrodifferential system for w. The term in the
right-hand side of [7] is called the “vortex stretching
term,” and is regarded as the main source of
difficulties in the mathematical theory of the 3D
Euler equations. In the 2D case we take the vorticity
as the scalar, w=0v?/0x; —Ov'/0x;, and the
evolution equation of w becomes

Ow

combined with the 2D Biot-Savart law,

:i/ (=y2 +x2,91 — x1)
27 Jr lx =y

v(x, ) w(y,t)dy [12]
In many studies of the Euler equations it is
convenient to introduce the notion of “particle
trajectory mapping,” ®(-, ) defined by

0P (v, t)
T v(P(a,t),t) 3]
D(a,0) = a, ae

The mapping ®(-,t) transforms from the location of
the initial fluid particles to the location at time #,
and the parameter « is called the Lagrangian particle
marker. If we denote the Jacobian of the transfor-
mation, det(V,®(«,?))=](a,t), then we can show
easily that

o]

ot
which implies the fact that the velocity field v
satisfies the incompressibility, divy =0 if and only if
the mapping ®(-,7) is volume preserving. At this
moment, we note that, although the Euler equations
are originally derived by applying the mass con-
servation and the momentum balance principles, we
could also derive them by applying the principle of
least action to the action defined by

Here, ®(-,):Q2—Q is a parametrized family of
volume-preserving diffeomorphism. This variational
approach to the Euler equations implies that we can

= (divv)]

2
dx dt
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view solutions of the Euler equations as a geodesic
curve in the L?-metric on the infinite-dimensional
manifold of volume-preserving diffeomorphisms (see
for more details, e.g., Arnol’d and Khesin (1998)).
The 3D Euler equations have many conserved
quantities. We list some important ones below.

1. Energy

E(2) 2%/Q|v(x,t)|2dx [14]

2. Helicity

H() = /Qv(x,t) w(x, t) dx [15]

3. Circulation

e Z]{ v-dl [16]
)

where C(t) ={®(q, t)|a € C} is the curve moving
along with the fluid.
4. Impulse

5. Moment of impulse
M(t):%/xx(xxw)dx [18]
Q

The proof of conservations of the above quantities
can be carried out without difficulty by using
elementary vector calculus (for details see, e.g.,
Chorin and Marsden (1993), Majda and Bertozzi
(2002), Marchioro and Pulvirenti (1994)). The
helicity above, in particular, represents the degree
of knotedness of the vortex lines in the fluid, where
the vortex lines are the integral curves of the
vorticity fields. Arnol’d and Khesin (1998) discuss
in detail aspects of helicity and other geometric
aspects of the Euler equations. For the 2D Euler
equations there is no analog of helicity, while the
circulation conservation is replaced by the vorticity
flux integral,

/ wlx, 1) dx [19]
A(r)

where A(t)={®(a,t)la € A} is a planar region
moving along the fluid. The impulse and the
moment of impulse integrals are replace by

%/Q(xz,—xl)w dx [20a]

and

1
1 / P da 20b]
3 Ja
respectively.

In the 2D ideal incompressible fluids we have
extra conserved quantities; namely for any p €
[1, o] the integral

/ W, £)|Pdx 1]
Q

is conserved (as a matter of fact we can extend this
statement by replacing the integral by [, f(w(x, ))dx
for any continuous function f). There are many
known explicit solutions to the Euler equations (See
e.g., Lamb (1932) and Majda and Bertozzi (2002)).

Local Existence and the Blow-Up
Problem

The Classical Results

We first introduce some notations of function
spaces. The Lebesgue space L?(Q),p € [1, 00], is the
Banach space defined by the norm
1l =4 UalF@IPdx)"". peto0)
ess.sup,cq|f(x)|, p=o0
Let us set a:=(aj,qa,...,q,) € (Z, U{0})" with
|a|=a1+ a2+ -+ ay,. Then, D*:=D}'D5*--- D",
where D;=0/0x;,j=1,2,...,n. For given ke Z
and p €[1,00) the Sobolev space, Wk?(Q) is the
Banach space of functions consisting of functions
f € LP(Q) such that

hwssi= [ 107700 ) "

where the derivatives are in the sense of distribu-
tions. For p =oc we replace the L”-norm by the L>
norm. In order to cooperate with the fractional
derivatives of order s € R, we use the space Ly (€)
defined by the Banach spaces norm,

£l o= 11 = A Fllp,

where (1 — Ay f=F (1 + |€)*F(f)(&)] with
F(-) and F7!(-) denoting the Fourier transform
and its inverse. Below we outline the key ideas of
proving the local existence theorems for the Euler
equations. For more details we refer the reader to
Majda and Bertozzi (2002). For simplicity, we use
the function space H"™(R")=W"2(R"),n=2,3.
Taking derivatives D® on [1], and then taking its
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L? inner product with D®v, and summing over the
multi-indices o with || < 1, we obtain

ldi Z (DY(v-V)v—(v-V)D%,D"),,
2d: la|<m
~ 3" ((v-V)Dv, D),
la|<m
- > (D*Vp,D),,

la|<m

=[+10+1I

2
W/l = —

By integration by parts, we obtain
I =-Y" (D%, D"divv),, =0

la|<m

Integrating by parts again, and using the fact that
div =0, we have

_ 1 a2
II——EZ/RS(U-VND v|* dx

|a|<m

fl : a,, |2 _
_zszi div oD dx = 0

|| <m

We now use the so-called commutator type of
estimate,

> ID(fg) = D gll,.

la|<m
< CUIVT o gl + lF 1l )

and obtain

1< D V)= (v V)D V|2 ]|0]|
|a|<m

2
< ClI Vol [l

Summarizing the above estimates, I-III, we have
d 2
g Il < ClIVUlellolz [22]

Further estimate, using the Sobolev inequality, || Vv/||; ~
< C||v||gm for m > 5/2, gives

d 2 3
<1Vl < Clloln

Thanks to Gronwall’s lemma, we have the local-in-
time uniform estimate

120 ][
@l < 7= < 2lvollum

Ct||vol| gm
for all ¢ € [0,1/(2Cl|vo]|gyn)]. This is the key a priori
estimate for the construction of the local solutions.

The local-in-time solution of the Euler equations in
the Sobolev space H"(R") for m > n/2 +1,m € 7,

was obtained by Kato (1972). For the above-
constructed local-in-time solutions, one of the
most outstanding open problems in mathematical
fluid mechanics is whether the solution can be
continued to any future time up to infinity, or the
solution will lose regularity and blow up in finite
time. Even in terms of numerical experiments, the
answer is not yet settled down. In the direction of
solving this problem there is a celebrated results,
called the Beale-Kato—Majda criterion (1984),
which states

lim sup ||v(t)||;: = oo if and only if

t /T,
T,
/0 Jwo($)]] s = oo 23]

We outline the proof of this result below (for more
details see Majda and Bertozzi (2002)). We first
recall the Beale-Kato—Majda’s version of the loga-
rithmic Sobolev inequality,

Vol < Cllwll = (1 +log(1 + ||l g)) + Cllwll 2 [24]

for m>5/2. Now suppose fOT [lw ()]}~ dE < o0.
Taking L? inner product of [7] with w, then after
integration by part we obtain

1d
Sl = (@@ Vo)

where we used the identity ||Vv||;. =||wl;2. Apply-
ing the Gronwall lemma, we obtain

T.
lw@®)lL2 < llwoll 2 exp (/0 [lw(s)ll dS)
< C(wovT*) [25}

for all t € [0, T,]. Substituting [24] into [22], and
combining this with [25], we have

d
dt

2
Hm

i
< Cl1 + [[wll g [1 + log(1 + [[]| o)} [¥[ 7
Applying the Gronwall’s lemma, we obtain
@) < [[vollgm
X exp [C1 exp (cz / " ()l dT)]
< C(vo, T%) O

for all ¢t €[0,T,] and for some constants Cy, C;.
Thus, we proved the “necessity part” of [23], The
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“sufficiency part” is an easy consequence of the
Sobolev inequality,

T,
/Hmwwasnswuwmmx
0 0<t<T.

< CT. sup |[[v(8)]]pm

0<t<T.

for m > 5/2.

Other Related Results

The previous local existence result in H”(R"),m >
n/2 4+ 1, is basically due to T Kato in 1972. He and
G Ponce extended this existence result using the
fractional Sobolev space, L;(R”),s >n/2+1,s€R
in 1986. These results were further extended, using
the Besov and the Triebel-Lizorkin spaces, by the
present author in 2001.

For bounded domain 2 c R”, R Temam obtained
the local-existence result using the space W*?(€) in
1975. On the other hand, in the setting of the
Holder space, C»*(R") L Lichtenstein (1925) and
W Wolibner (1933) obtained local existence of
solutions of the Euler equations. More recently,
J-Y Chemin considered the Zygmund C*(R”), which
is identical to the Holder space Clhs~IS(R”) for
noninteger s, where [s] means the largest integer not
greater than s, but is different from CIhO(R”) for
integer s. He proved, in 1992, local existence of
solutions to the 3D Euler equations in this space in
1992. See Chemin (1998) for details of this proof.

The Beale-Kato-Majda criterion for the finite-
time blow-up of the classical solutions of the 3D
Euler equations has been refined recently by many
authors; replacing the L°-norm of vorticity w(x,#)
by the weaker BMO (the space of functions with
bounded mean oscillations) norm (H Kozono and
Y Taniuchi, 2000), and by the even weaker Besov
space or Triebel-Lizorkin space norms by the
present author in 2001 (see Triebel (1983) for
more details on those spaces). Here we just note
that these spaces are refinements of the usual
Sobolev spaces. For a bounded domain case, there
is a result by A Ferrari in 1993. The blow-up
problem is still open even in the case of axisym-
metric 3D Euler equations if there is a nonzero swirl
(angular velocity). In this case, the blow-up is
controlled only by the angular component of the
vorticity as shown by the present author (1996). In
the region off the axis, in particular, the axisym-
metric 3D Euler equation has the same form as the
2D Boussinesq equations.

Some researchers also tried to approach to
regularity/singularity problem of the 3D Euler
equations by investigating the geometric structure

of the vortex stretching term, and obtained a
geometric type of blow-up criterion (P Constantin,
C Fefferman, and A Majda, 1996). For more
detailed review of studies in this direction see
Constantin (199S5).

Since the blow-up problem of the 3D Euler
equation itself looks too difficult to solve, it has
also been studied on the simplified model problems.
In 1985, P Constantin, PD Lax, and A Majda
considered the following 1D model problem of the
3D Euler equations:

0, + (H(0)0), =0,

X

0(x,0) = Oy(x)

where H(-) is the Hilbert transform defined by

H(w) = %Pv/jo‘ ;Sy)y dy

They proved finite-time blow-up of this model
problem by explicitly obtaining the solution. There
is another, 2D model problem of the 3D Euler
equations, the quasigeostrophic equations,

0,4+ (u-V)h =0
0=—(-1)"*y [26]

where V' =(—0,,0;). Contrary to the above 1D
model equation, this 2D model has real physical
relevance in the atmospheric science, and 6(x,?#)
represents the temperature of the air. The resem-
blance of this equation to the 3D Euler equation
was first observed by P Constantin, A Majda, and
E Tabak in 1994, and they derived the finite blow-
up criterion of the equations. In spite of many
interesting partial results, including the work by
D Cordoba (1998), the blow-up problem of [26] is
still open.

The 2D Euler Equations and the
Weak Solutions

The Case of W' P Weak Solutions

In 2D Euler equations, the problem of global well-
posedness of the classical solutions is settled down.
This is an immediate consequence of the conserva-
tion of ||w(#)||;~ as stated in [21] combined with the
Beale-Kato—Majda criterion [23]. On the other
hand, the notion of weak solutions is not well
understood. A weak solution of the Euler equations
is a singular (nondifferentiable) solution of the
equations. More precisely, by a weak solution of
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[1]-[2] in Q% (0,T) we mean a vector field v e
C([0,T); Lloc(Q)) satisfying the integral identity:

o

- /3 v(x,0) - p(x,0)dx
R

p(x,t)
) S dxdt

—/T/ v(x,t)@uv(x,t) : Vo(x,t)dxdt =0 [274a]
0 Jr’

T
/ / v, ) - Vib(a, 1) dx dt = 0
0 Jr?

for every vector test function ¢ =Py, P2,...,Pn) €
Cy(Q x [0,T)) satistying div ¢ =0, and for every
scalar test function ¢ € CF(Q x [0,T)). Here we
used the notation (#®v);=wuw;, and A:B=
ZZ;‘:lAi/’Bi/ for nxn matrices A and B. We
observe that [27a] and [27b] are obtained by
multiplying ¢ and v to [1] and [2], respectively,
and integrating by parts. Thus, even the locally
square-integrable vector fields, which are not differ-
entiable in the classical sense, could be solutions of
the Euler equations. For the general 3D Euler
equations, we do not yet have the global existence
theorems for the weak solutions. Actually, it is even
suggested that we need more weaker notion of
solution (the so-called “measure-valued solutions”)
to describe generic global solutions for the 3D Euler
equations. For the 2D Euler equations, however, we
have global existence theorems for wy € L'(R*) N
LP(R?) for p € [1,00]. This better situation of 2D
Euler equations compared to the 3D case for the
weak solutions is mainly due to the conservation
law of L?-norm described in [21]. Here we present
briefly the existence proof of the weak solutions for
2D Euler equations in the simplest situation. We will
prove the global existence of Weak solutions for
wo € LP(R?), 1<p<oo Let p.(x)=(1/£*)p(x/e),
where p € C3(R?) is a standard molllfler satlsfying
p >0, supp pC {x € R?|x| < 1}, and fRz pdx=1.
Let vy be the velocity assoc1ated with the initial
vorticity wp, given by the Biot-Savart law [12].
Define the sequence of initial data vf(x)=p. *

(x) = [g2 pe(x — y)vo(y) dy. For each v we have
global-in-time smooth solutions v°(x,¢). Moreover,
thanks to [21], we have the following estimate of the
vorticity that is uniform in e:

lw®) Ml = Nl < llwollrs 28]

where we used the property of the mollifier in the
second inequality. If we take the (distributional)
derivative of the Biot-Savart law [12], we find
Vv=Kx*w+ Cw, where K(x) is a kernel function

[27b]

defining a singular integral operator of the convolu-
tion type, and C is a constant vector. The well-
known Calderon-Zygmund inequality implies that

VUl < Collwll, [29]
Combining [28] and [29] we have
sup [|[Vo-(#)], < Clwo),

0<t<T N

VT >0  [30]

namely the sequence {¢v} is uniformly bounded in
L>(0, T; Wh?(R?)). Next, we claim that {v°} satis-
fies the inequality

10°(t1) — 07 (2) sy < ClloolBlier — 2] (31

for all #1,t, with 0 <# <t, < T, where C is an
absolute constant. Here the negative-order Sobolev
space H™(Q),m > 0, is defined as the dual of
H{'(2), and can be identified with the space of
functions C3°(2) completed with metric in H™().
Indeed, let ¢ € COO(RZ) Taking L2(R?) inner pro-
duct of [1] with ¢ we have the estimates

/Rz%?t)~¢(x)dx‘

<¢~V)p€dx+‘/ 6w

’/ p°Vodx| + ‘/ V)ov* dx

< 1" @IVl + 17 (I 1V
< CUp" @)=+ 105172 161l [32]

where we used the Sobolev inequality [|[Vo||;~ <
Cllo|l;s and the energy equality in the last step.
Since [32] holds for all ¢ € COO(RZ) by taking the
closure of C¥(R?) in H*(R?) we obtain

dve(t)
dt
We now estimate ||p(t)||;;~. Taking the divergence
operation on [1], we have the Poisson equation

Ap® = —div(v® - Vo)
Let n € CSC(RZ), then

V)v© dx

H SO @l + ol 133
N

= div(v*
RZ

-\
[

[ @17 1A%~
< Cllvolliz Il [34]

- Voo )ndx

/2 Ap©(x,t)n(x) dx
R

v° - Vndx

V)Vn-v°dx

IN
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where we used the energy equality [14] and the
Sobolev inequality in the last step. Since [34] holds
for all n e CBQ(RZ), taking the closure of CSC(RZ) in
H*(R?), we obtain

|, 807 ynt) x| < Clool

vn € HY(R?) 35]
Thus,

180" ()llgr-« < Cliwollz> V2 €[0,T)
This provides us with
1"l < D" ()]l g+ < CIADT(B) ]| 1+
< Cllvollz

Combining [33] with [36], we obtain
dve(2)

< Cllvoll?
sup [0 <l
Thus, from
“dof(¢)
V(h) — v (t) = / d
n dt
we have
R dv(t
17 (1) — F @)l - < sup |2 11—y
0<t<T H2

< Clwolli: |t — 2

Thus, [31] is proved as claimed. Thanks to the
Aubin-Nitsche compactness lemma together with
[30] and [31] we have a subsequence, denoted by the
same notation, {v*} and v in L=(0, T; W?(IR?)) such
that

v° — v weakly — % in L®(0, T; WY (R?))  [36]
and
¥ —v in L3 (R*x (0,T)) 37]

as € — 0. We know that as a classical solution each
v° and v} satisfies

/ o(x, 0)vy(x)dx
]RZ
T
+/ /(¢t'UE+V¢:UE®U5)dxdt:O [38]
0 JR?
for all ¢ € CSQ(R2 x [0, T)) with div¢$=0 and
T
/ Vip-v°dxdt =0 [39]
0 JR?

for all ¢ € CgO(R2 x [0, T)). We can check easily that
the convergence [36] and [37] is enough to pass to the

limit € — 0 in [38] and [39] to obtain the correspond-
ing equations with v* and v{ replaced by v and v.
Thus, v is a weak solution of the Euler equations with
initial data vg. This completes the outline of the proof
of weak solutions to the 2D Euler equations.

Notes on Further Results

The study of weak solutions of the 2D Euler
equations was initiated by V Yudovich in 1963,
where he proved the existence of weak solutions for
initial data wo € L'(R?) N L>(R?). Subsequenthy,
theory of weak solutions has been developed by
studies of the vortex sheet problem due to DiPerna
and Majda in 1987. For the existence of weak
solutions to the vortex sheet initial data, namely
the existence problem for initial vorticity wy €
H'(R?*) n M(R?), where M(R?) is the space of
Radon measures on R?, is still an outstanding open
problem. The main physical motivation of this
problem is to understand the dynamics of vortex
sheets in the 3D turbulence. For this problem
JM Delort proved existence assuming single-
signedness of the initial vortex sheet in 1991. The
proof is simplified by A Majda in 1993, using the
conservation of moment of impulse. The result is
also reproved by L C Evans and S Miller in 1994,
using the weak compactness of the Hardy space.
Later in 2001, M C Lopes Filho, H] Nussenzveig
Lopes and Z Xin allowed the change of sign for
initial vortex sheet, but assumed special reflection
symmetry to prove existence of global weak solu-
tions. Related to this problem is the one of
characterizing the precise borderline function space
to which initial data belongs, and above which there
is no concentration phenomenon for weakly approx-
imating sequence of solutions; a recent analysis of
this problem was done by E Tadmor in 2001.

For the uniqueness problem of the weak solutions of
the 2D Euler equations, there are remarkable works by
V Scheffer (1993) and A Shnirelman (1997), where
they constructed explicitly an LIZOC(R2 x R) weak
solution starting from zero initial data. Also M Vishik
(1999) extended the uniqueness class of the weak
solutions of the 2D Euler equations, improving
previous work by V Yudovich (1995). The class
found by M Vishik, in particular, includes the BMO.
There is another problem closely related to the weak
solutions of the 2D Euler equations, called the vortex
patch problem. The main question was if there is any
singularity of the boundary of a patch
Q) ={X(a, t) | @ € Qo}, where X(a, ) is the particle
trajectory mapping generated by a weak solution
v(x,t), which is evolving from the initial data
wo(x) = xq,(x), the characteristic function of set Q
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with smooth boundary. The problem itself is well
defined, due to the work of V Yudovich (1963), and
there exists unique particle trajectories associated with
such weak solutions. The problem was settled by J-Y
Chemin in 1991. He proved the global-in-time
preservation of the C regularity of the boundary
08)(t), contrary to the previous numerical experiments.
The proof of this result was later simplified by A
Bertozzi and P Constantin in 1993.

Another interesting problem related to the weak
solutions of the Euler equations (2D or 3D) is
whether or not the energy is preserved for the weak
solutions, namely if there is any “intrinsic dissipa-
tion” to the singular solutions of the ideal fluids. In
1949, L Onsager conjectured that if the weak
solution of 3D Euler equations belongs to certain
Holder space, then the energy is conserved. This
conjecture, in the setting of Besov space, was
proved by P Constantin, W E and E S Titi in 1994.
This question of possibility of dissipation of energy
for weak solutions is further studied by J Duchon and
R Robert in 2000. Later, in 2003 the present author
considered the problem of helicity conservation for
the weak solutions of the 3D Euler flows, which is
related to the question of crossing/reconnections of
the vortex tubes for weak solutions, and showed that
for large class of weak solutions in certain Besov
spaces the helicity is preserved.

See also: Compressible Flows: Mathematical Theory;
Evolution Equations: Linear and Nonlinear; Fluid
Mechanics: Numerical Methods; Interfaces and
Multicomponent Fluids; Intermittency in Turbulence;
Inviscid Flows; Non-Newtonian Fluids; Partial Differential
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Introduction

If, in a problem of quantization, state spaces with
indefinite inner product are used instead of Hilbert
spaces, one speaks of quantization with indefinite
metric. The main domain of application is the
quantization of gauge fields, like the electromagnetic
vector potential A,(x) or Yang-Mills fields in quan-
tum chromodynamics (QCD) and the standard model.

The conceptual problem with the indefinite metric
is the occurrence of senseless negative probabilities
in the formalism. Such negative probabilities,
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however, only arise in expectation values of fields
that are not gauge invariant and hence do not
correspond to observable quantities. Equivalently,
the inner product of vectors generated by applica-
tion of such fields to the vacuum vector with itself
can be negative or null. In order to extract the
observable content of an indefinite-metric quantum
theory, a subsidiary condition is needed to single
out the physical subspace. Restricted to this subspace,
the inner product is positive semidefinite. This
subsidiary condition can be seen as the implementa-
tion of a gauge, as, for example, the Lorentz gauge
0,AMx)=0 in quantum electrodynamics (QED).
This procedure is also known under the name
Gupta—Bleuler formalism.

The use of indefinite metric in the quantization of
gauge theories like QED can be avoided entirely.
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This is called quantization in a physical gauge. The
problem with such gauges is that they are not
Lorentz invariant and that the vector potential A#(x)
is not a local field. An example is the Coulomb
gauge defined by Ag(x) =0 and &A;(x) =0 in QED.
Furthermore, Dirac spinor fields ¢(x) in such gauges
do not anticommute when localized in spacelike
separated regions. The Dirac fields therefore are also
nonlocal quantities. Although not in contrast with
special relativity, as Dirac spinors and the vector
potential are not gauge invariant and hence are
unobservable, this leads to severe technical problems
in the formulation of interacting theories. In
particular, the theory of renormalization heavily
uses both locality and invariance. Therefore, the
Gupta—Bleuler formalism generally is the preferred
quantization procedure for a gauge theory.

That a local and invariant quantization is not
possible using a (positive-metric) Hilbert space has
been proved by F Strocchi in a series of articles
published between 1967 and 1970. If one wants to
preserve locality and/or invariance of the quantized
field theory, it is thus strictly necessary to give up
the positivity of the state space.

A short digression into the early history of the
idea might be of interest. It dates back to 1941,
where the use of indefinite metric in the quantiza-
tion of relativistic equations was proposed by Paul
Dirac in a lecture at the London Royal Society. The
negative probabilities for the bosonic vector poten-
tial were thought to be connected with the problem
of negative-energy solutions of relativistic equations
as a type of surrogate of the “Dirac sea” in the
quantization of fermions. Furthermore, Dirac pro-
posed that negative-energy solutions and negative
probabilities would jointly lead to the cancellation of
divergences in QED. The latter idea was taken up by
W Heisenberg in his lectures on the theory of
elementary particles held in Munich in 1961, but the
generally accepted solution to the problem of ultra-
violet divergences was achieved without recourse to
Dirac’s original motivation. In 1950 the consistent
quantization of vector potential in the Lorentz gauge
was formulated by SN Gupta and K Bleuler
eliminating the use of negative-energy solutions.
Since then the indefinite metric has become a building
block of the standard theory of quantized gauge fields.

No-Go Theorems

The strict necessity of the Gupta—Bleuler procedure
for the local or covariant quantization of gauge
fields has been demonstrated by F Strocchi in
the form of no-go theorems for positive metric.
Here we review their content for the case of the

electromagnetic field. Related statements can be
obtained for nonabelian gauge theories. The main
problem lies in the fact that standard assumptions
on the quantization of relativistic fields are in
conflict with Maxwell equations that should hold
as operator identities in a positive-metric theory
containing no unobservable states. Let

Fyu(x) = 0,A,(x) — 0,A,(x) [1]

be the quantized electromagnetic field strength
tensor. Classically, the existence of A,(x) is guaran-
teed from the first set of Maxwell equations
eaﬁVﬂagFW(x) =0. Here (and henceforth) indices are
raised and lowered with respect to the Minkowski
metric go5 and €*# is the completely antisymmetric
tensor on RY. Furthermore, we apply Einstein’s
convention on summation over repeated upper and
lower indices. Standard assumptions from axiomatic
quantum field theory are:

1. The field strength tensor F,,(x) is an operator-
valued distribution acting on a (dense core of a)
Hilbert space H with scalar product (.,.) — in the
indefinite-metric case, (.,.) only needs to be an
inner product.

2. F,,(x) transforms covariantly, that is, there is a
strongly continuous unitary (with respect to (.,.))
representation U of the orthochronous, proper
Poincaré group on H such that for translation a €
R9 combined with a restricted Lorentz transfor-
mation A, one has

U(a, A)F,,(x)U(a, A) ™"
= (AT (ATN Fp(Ax + a) 2]

3. There exists a unique (up to multiplication with
C-numbers) translation invariant vector ) € H
(the “vacuum”), that is, U(a, 1)Q = QVa € RY.

4. The representation of the translations fulfills the
spectral condition

/ (®, U, 1)T)e da = 0 3]
R4

YU, d € H if p is not in the closed forward light
cone Vi={peR*p-p>0,p°>0). Here the
dot is the Minkowski inner product.
So far the assumptions concerned only observable
quantities. In the following, we also demand.

5. The vector potential A,(x) is realized as an
operator-valued distribution on H and trans-
forms covariantly under translations

U(a,1)A,(x)U(a,1)"" = A,(x + a) 4]
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The assumptions on the nature of the vector
potential so far are rather weak. Strocchi’s no-go
theorems show that one cannot add further desirable
properties as Lorentz covariance and/or locality
without getting into conflict with the Maxwell
equations:

Theorem 1 Suppose that the above assumptions
(1)=(3) and (5) hold. If Maxwell’s equations in the
absence of charges,

€1 9sF,,(x) =0, O"F,(x) =0 5]

are valid as 6 operator identities on H and the gauge
potential transforms covariantly

Ula, M)A, (x)U(a,A)"" = (A™)" A (Ax +a) [6]
the two-point function of the electromagnetic field
tensor vanishes identically:

(Q,F,u(x)F,(y)Q) =0 Vx,yecR* 7]

To gain a better understanding, where the difficul-
ties in the quantization of the Maxwell equations
arise from, here is a rough sketch of the proof:
Maxwell equations and covariance imply that
Frp(x = (0, A,(x)E,,(y)Q) fulfills  0Opfyu,(x)
=0 and hence its Fourier transform has support in
the union of the forward and backward light cone.
The Fourier transform thus can be split into a
positive- and a negative-frequency part, and
fuwp =1, + 1, accordingly. By the general analysis
of axiomatic field theory (see Axiomatic Quantum
Field Theory), the functions £,  are boundary values
of complex analytic functions on certain tubar
domains 77 transforming covariantly under a certain
representation of the complex Lorentz group. By a
theorem of Araki and Hepp giving a general
representation of such functions and using the
antisymmetry of the field tensor, the following
formula can be derived:

:;p(z) = (gupau - g;wap)fi (z) + ewpaaﬂhi (Z)
zeT* 8]

with f*,h* invariant under complex Lorentz trans-
formations. Taking boundary values in 7% one
obtains  f,, = (g0, — &uw0p )f + €upa0*h,  with
f=ft+f and h= h+ + b, where the bar stands
for the distributional boundary value. Maxwell’s
equatlons imply 9"f,, = (0"0,8p — 0,0,)f =0 and
€a paﬁf/u/p* a augau, aaau)b 0. The Only Lor-
entz-invariant solutions to these equations are
constant, which implies the statement of Theorem 1.

The second no-go theorem eliminates the assump-
tion that the vector potential A,(x) is covariant;

however, a local gauge is assumed. The result is the
same as in Theorem 1:

Theorem 2 Suppose that the above assumptions (1)—
(5) and Maxwell’s equations hold as operator iden-
tities on H. If, furthermore, the gauge is local, that is,

[Au(x),A,(y)] =0 if x — 1y is spacelike 9]

the two-point function of the field strength tensor
vanishes again as in Theorem 1.

Analyzing the interplay of the covariance proper-
ties of F,, (x) with the locality of A, (x), Strocchi was
able to show that the function f,,,(x —y) must have
the same covariance properties as in Theorem 1,
which implies the assertion of Theorem 2.

The first two no-go theorems deal with the free
electromagnetic field that is not coupled to charge-
carrying fields. This is, of course, already a real
obstruction also for an interacting theory, since, by
the LSZ formalism, one expects the asymptotic
incoming and outgoing fields Aif/ °”t(x),FL“V/ out(x) to
be free. In fact, it has been proved by D Buchholz
that, in the positive-metric case, such asymptotic
fields can always be constructed. If one assumes a
local and covariant gauge and positivity, the
vanishing of the two-point function would also
imply that the field F,, (x)=0 identically by the
Reeh-Schlieder theorem.

The next no-go theorem shows that the problems
connected to the quantization of the Maxwell
equations are not connected only to the free
electromagnetic fields. Let us assume that the second
set of Maxwell equations is given by

Fo(x) = ju(x) [10]

where j, is the leptonic current, that is,
7u(x) =e: 91 (x)y,1(x): in the case of QED, where 1 is
the quantized Dirac field associated with electrons and
positrons. Here : - : stands for Wick ordering and ~,
are the Dirac matrices, 1" = 1/*~°. The conservation of
the current 9”j,(x) =0 implies that the current charge

= hm//
R—o0

is a constant of motion, where a and x are
compactly supported infinitely differentiable func-
tions with [y a(x?)=1 and x(x)=1 for |x[ < 1.
Now, an alternative definition of charge, called
gauge charge (it generates the global U(1)-gauge
transformation), is given by

OcN=0, [Oc,Au(x)]=0 and
[Qa, ¥(x)] = —ey(x) [12]

x(x/R)jo(x°,x) dx dx [11]
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A third formulation of charge, the Maxwell charge
O, can also be given by replacing /°(x) in [11] by
0,F(x). Obviously, if Maxwell equations hold as
operator identities, Qc = Om. On observable states,
all charges Om, Oc, and Qg ought to coincide.
Strocchi’s third theorem shows that this cannot be
achieved within a local gauge:

Theorem 3 If the Maxwell equations 9] hold and
the Dirac field (x) is local with respect to the
electromagnetic field tensor F,,(x), that is,

[Fuu(x)ﬂb(y)] =0
then [QOwm, Y(x)] =0, hence Qc=0wm # Qc.

The proof is a simple consequence of the
observation that jo(x)=0"F,o(x)=0Fp(x) is a
three-divergence as Foo(x)=0 by antisymmetry of
F,,(x). Hence,

if x —y is spacelike [13]

Qv = fim | lin(s), vilaGOn(s/R) ds” dx

—— Jim [ [Fo), v0)la(:)0x (/)
x dx®dx =0 [14]
since, for R sufficiently large, the support

of a(x°)d;x(x/R) becomes spacelike separated
from y.

It should be noted that the proof of none of the
above theorems relies on the definiteness of the
inner product. The main clue of the indefinite-metric
formalism, therefore, is rather to give up Maxwell
equations as operator identities. In the usual
positive-metric formalism, where all states in H are
physical states, this would not be legitimate. But in
indefinite metrics, many states are unobservable — in
particular, those with negative “norm” (¥, V) < 0.
On such states we can neglect the Maxwell
equations.

Axiomatic Framework

The formalism of axiomatic quantum field theory
(see Axiomatic Quantum Field Theory) requires a
revision in order to cover the case of gauge fields.
The necessary adaptations have been elaborated by
G Morchio and F Strocchi, but also earlier work
of E Scheibe and J Yngvasson played a significant
role in this development.

Let ¢(x) be a V'-valued quantum field, where V
is a finite-dimensional C-vector space with involu-
tion *. The prime stands for the (topological) dual.
For the case of QED, V is eight dimensional,

containing four dimensions for the vector potential
A,(x) and another four for the Dirac spinors
P(x), ¢l (x).

Such a quantum field can be reconstructed from its
vacuum expectation values (Wightman functions) as
follows: let S;=S(R*, V) be the space of rapidly
decreasing functions f:R* — V endowed with the
Schwarz topology. Then the Borcher’s algebra S be
the free, unital, involutive tensor algebra over Sy, that
is, S=C1®,50 S;” with the multiplication induced
by the tensor product and involution (i ®---®
fa) =f;®@---@ff.Sis endowed with the direct-sum
topology. One can show that any linear, normalized,
continuous functional W:8 — C,W(1)=1, is
determined by its restrictions W, to S{”. By the
Schwarz kernel theorem, W, € &'(R*", V¥"). Con-
versely, any such sequence of Wightman distribu-
tions W,, determines a W.

Given a Hermitian Wightman functional W such
that W(f") = W(f),Vf € S,Lw={f € S: W(b" @ f)=
0Vh € S} forms a left ideal and the inner product
W(f" @ b) induces a nondegenerate inner product
(.,.) on Ho=S/Lw. Furthermore, Borchers’ algebra
S acts from the left on Ho. The quantum field ¢(x)
defined as the restriction of this canonical represen-
tation to the space §; C S according to ¢(f)=
“ [+ #°(x)fa(x)dx” where the index a runs over a
basis of V.

If the Wightman functional W has further proper-
ties from axiomatic QFT (see Axiomatic Quantum
Field Theory) like invariance with respect to a given
representation of the Lorentz group on V, translation
invariance, locality, and the spectral property, the
quantum field ¢(x) fulfills the related requirements in
analogy with the items (1)—(5) listed in the previous
section for the case of the vector potential A, (x). The
Wightman distributions W,, as in the positive-metric
case are related to the vacuum expectation values of
the theory by

o Xn) = (@, (x1) -+ 7 (%)) [15]

where ) is the equivalence class of 1 in Hy.

The state-space Hy produced by the Gelfand-
Naimark-Segal (GNS) construction for inner-
product spaces might be too small to contain all
states of physical interest. For example, in the QED
case, it does not contain charged states (cf. Theorem 3).
Depending on the physical problem, one might
also be interested in constructing coherent or
scattering states and translation-invariant states
apart from the vacuum. Such states appear in
problems related to symmetry breaking and confine-
ment (the so-called ©-vacua) or in some problems of
conformal QFT (see Boundary Conformal Field
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Theory) in two dimensions. It, therefore, has
become the standard point of view that one needs
to make a suitable closure of Hy such that this
closure includes the states of interest (for an
alternative point of view, see the last paragraph of
the following section).

Typically, larger closures are favorable, as they
contain more states. One therefore focuses on
maximal Hilbert closures of Hy. A Hilbert topology
7 is induced by an auxiliary scalar product (.,.) on
Ho. It is admissible, if it dominates the indefinite
inner product [{®, \Il>|2 < C(T, ) (P, D)V, D € Hy
for some C > 0. This guarantees that the inner
product extends to the Hilbert space closure H of
Ho with respect to 7. Furthermore, there exists a
self-adjoint contraction 1 on H such that (¥,n®)=
(U, n®)VP,¥ € H. A Hilbert topology 7 is maximal
if there is no admissible Hilbert topology 7’ that is
strictly weaker than Hy. The classification of
maximal admissible Hilbert topologies in terms of
the metric operator 7 is given by the following
theorem:

Theorem 4 A Hilbert topology T on Ho generated
by a scalar product (.,.) is maximal if and only if the
metric operator 1) has a continuous inverse 1=\ on the
Hilbert space closure H of Ho. In that case, one can
replace (.,) by the scalar product (U, ®); = (U, |n|P)
without changing the topology 7. The new metric
operator m then fulfills nt = 1y,.

For a proof of the first statement, see the original
work of Morchio and Strocchi (1980). One can
easily check that n; =n|n™'| which implies the
second assertion of the theorem. A Hilbert space
(H,(.,.)) with an indefinite inner product induced by
a metric operator 7 with n? =1y is called a Krein
space. For an extensive study of Krein spaces, see the
monograph by Azizov and Iokhvidov (1989).

Furthermore, one can show that given a nonmax-
imal admissible Hilbert space topology 7 induced by
some (., .), one obtains a maximal admissible Hilbert
topology as follows: given the metric operator 7, we
define a scalar product (¥, ®); =(¥,(1 — Po)®) on
‘H with Py the null space projector of 1. Obviously,
this scalar product is still admissible and it leads to a
new metric operator 7; and a new closure H; of Hj.
Furthermore, it is easy to show that the scalar
product (¥, ®), = (U, ||®); still induces an admis-
sible Hilbert topology which is also maximal, as
m=mlni'| clearly fulfills the Krein relation
7]% =1y,.

The question of the existence of a Krein space
closure of Hy, therefore, reduces to the question of
the existence of an admissible Hilbert topology on
Ho. The following condition on the Wightman

functions W, replaces the positivity axiom in the
case of indefinite-metric quantum fields:

Theorem 5  Given a Wightman functional W, there
exists an admissible Hilbert space topology T on
Ho=3S/Lw if and only if there exists a family of
Hilbert seminorms p, on S, such that |W,.,

(f @b)| < pulf)Dm(b),¥n, m € No,f € Sy, b € S

In some cases, covering also examples with
nontrivial scattering in arbitrary dimension, the
condition of Theorem 5 can be checked explicitly
(see Non-trivial Models of Quantum Fields with
Indefinite Metric).

It should be mentioned that different choices of the
Hilbert seminorms p, lead to potentially different
maximal Hilbert space closures (Hoffmann
1998, Constantinescu and Gheondea 2001). In fact,
often the topology is not even Poincaré invariant and
hence the states that can be approximated with local
states depend on a chosen inertial frame. This fact,
for the case of QED, has been interpreted in terms of
physical gauges.

Many results from axiomatic field theory (see
Axiomatic Quantum Field Theory) with positive
metric also hold in the case of QFT with indefinite
metric, like the PCT and the Reeh-Schlieder
theorem, the irreducibility of the field algebra (for
massive theories) and the Bisoniano—Wichmann
theorem (see Algebraic Approach to Quantum Field
Theory). Other classical results, like the Haag-
Ruelle scattering theory and the spin and statistics
theorem definitively do not hold, as has been proved
by counterexamples. This is, however, far from
being a disadvantage, as, for example, it permits the
introduction of various gauges in the scattering
theory of the vector potential A,(x) and fermionic
scalar “ghost” fields in the BRST quantization (see
BRST Quantization) formalism.

Gupta-Bleuler Gauge Procedure

Here the Gupta-Bleuler gauge procedure is pre-
sented in a slightly generalized form following
Steinmann’s monograph. Classically, the equations
of motion for the vector potential A, (x),

0" 0,A,(x) + M0, 0" A, (x) = ju(x) 16]

together ~ with  Lorentz  gauge  condition
B(x)=0,A"(x)=0 imply the Maxwell equations
[10]. Here, A€ R plays the role of a gauge
parameter. As seen above, both equations, the so-
called pseudo-Maxwell equations [16] and the
Lorentz gauge condition B(x) =0, cannot both hold
as operator identities. The idea for the quantization
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of the theory therefore is to give up the Lorentz
gauge condition as an operator identity on the entire
state space H.

Suppose one has constructed such a theory with
an indefinite inner state space H. Already for the
noninteracting theory, any invariant, spectral, local,
and covariant solution requires indefinite metric, cf.
the explicit formula [18] below. To complete the
Gupta-Bleuler program, one needs to find a sub-
space of (equivalence classes of) physical states H’ of
the inner-product space H’ such that the following
conditions hold:

1. the vacuum is a physical state, that is, Q € H/;

2. observable fields like j,(x) and F,,(x) map H' to
itself;

3. the inner product {(.,.) restricted to H’ is positive
semidefinite;

4. observable fields map H”, the set of null vectors
in H', to itself; and

5. the Maxwell equations hold on H' in the sense
(T, 0"F,,(x)®) = (U,j,(x)®), VU,deH [17]

Then one obtains HP" as the completion of the

quotient space H'/H". The physical Hilbert space

HP" contains the vacuum € (1), observable fields

act on ‘HP" (2) and (4), it is a Hilbert space (3)

and the Maxwell equations hold on it (5).

To see that such a construction is possible,
consider the noninteracting case j,(x)=0, that is,
the limit case of vanishing electrical charge e — 0,
first. By taking the divergence of [16], one obtains
(1 —-X)0"0,0"A,(x)=0. Excluding the Landau
gauge (A=1), this implies (97d,)*A,(x)=0. The
most general solution for the two-point vacuum
expectation values that is in agreement with [16]
and the requirements of locality, translation invar-
iance, the spectral condition, uniqueness of the
vacuum, and the Lorentz covariance of A*(x) is then

(€, Ay (x)A (7))
= (_g,m/ + pa#aV)D+(x - y)
A +

+m8payE (x - y) [18]
where D" and E* are the inverse Fourier
transforms of A(p°)6(p?) and O(p°)8'(p?) respectively,
p>=p - p, 0 being the Heavyside function, § the Dirac
measure on R of mass one in zero and ¢ its
derivative. p and X are gauge parameters, for
example, the Feynman gauge corresponds to
A=p=0. We have also omitted an overall factor
corresponding to a field strength normalization
(choice of numerical value of » — here 5 =1).

Using Wick’s theorem and the GNS construction
for inner-product spaces (cf. the preceding section),
it is possible to realize a representation of the vector
potential A,(x) as operator-valued distribution on
some indefinite-metric state space H with Fock
structure, for example, a Krein closure of the GNS
space with ©Q the GNS vacuum and D CH the
canonical domain of definition. In the case of
Feynman gauge, the metric operator 7 can be
obtained by a second quantization of the operator
fu— Z?_l gl on the one-particle space Si.

In particular, the field B(x) acts as an operator-
valued distribution on H and, by taking the
divergence of [16], it follows that 0”0,B(x)=0.
Thus, B(x) =B"(x) + B~ (x) can be decomposed into
a positive (“annihilation”) and a negative (“crea-
tion”) frequency part B¥(x). One obtains:

Theorem 6 The space H ={¥ € D:B"(x)¥ =0}
fulfills all requirements (1)—(5) of the Gupta—Bleuler
gauge procedure.

Condition (1) is obvious and (2) follows from the
fact that the fields F,,(x) and B(x) commute, which
can be checked on the level of two-point functions
[18]. In the same spirit, one can also use [18] to
check (3) and (4) by explicit calculations on the one-
particle space and showing that H’ is the Fock space
over the one-particle states annihilated by B*(x).
Finally, by Hermiticity of A#(x), B*(x)* =B~ (x) and
thus (U, B(x)®) = (¥, BT (x)®) + (B*(x)¥, ®) =0. As
the field B(x) stands for the obstruction to Maxwell
equations, this implies condition (5).

It should be noted that the physical state space
HPP does not depend on the gauge parameters A, p
and that it is spanned by repeated application of the
field tensor F,,(x) to the vacuum.

By current conservation, the divergence of [16]
still yields 979,B(x) =0 also in the interacting case
where e # 0. One can then choose the same gauge
condition as in Theorem 6 to define H'. One can
then try to prove that this space fulfills all the
requirements of the Gupta—Bleuler procedure, for
example, in the sense of perturbation theory. Using
more advanced formulations as, for example, BRST
quantization and Bogoliubov’s local S-matrix form-
alism, this program has been completed up to a
solution of the infrared problem (see Perturbative
Renormalization Theory and BRST).

A different procedure, motivated by the necessity of
coincidence of all charges Oc, Qg, and Oy on the
physical state space, has been elaborated by Steinmann.
It deviates from the standard procedure in the sense that
the physical space H’ is not included in H, but H"" is
directly obtained from the GNS procedure after taking
certain limits of Wightman functions restricted to



Index Theorems 23

certain gauge-invariant algebras constructed from the
Borchers algebra and a limiting procedure in a gauge
parameter. The Wightman functional on this gauge-
invariant algebras are positive (in the sense of perturba-
tion theory), the limiting procedure, however, implies
that the so-obtained physical states are singular (i.e.,
have diverging inner product) to states in H, hence
the so-defined state spaces corresponding to going to
a physical gauge after solving the problem of a
perturbative construction of an indefinite-metric solu-
tion, are not subspaces of H.

See also: Algebraic Approach to Quantum Field Theory;
Axiomatic Approach to Topological Quantum Field
Theory; Axiomatic Quantum Field Theory; Boundary
Conformal Field Theory; BRST Quantization;
Perturbative Renormalization Theory and BRST;
Quantum Fields with Indefinite Metric: Non-Trivial
Models.
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Let g be a Riemannian metric on a smooth compact
manifold M of dimension m. We assume for the
moment that the boundary of M is empty and
postpone until later a discussion of the more general
setting. If x=(x1,...,x,) is a local system of
coordinates on M, let

8ij = g(a,& 8/-")

give the components of the metric tensor. Let D be
an operator of Laplace type on a smooth vector
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and sum over repeated indices. Relative to a local
coordinate frame for V, D has the form

D = —{gdoroy + A*oy + B}

where A* and B are endomorphisms (i.e., matrices)
of V.

We assume that V is equipped with a positive-
definite inner product and that D is self-adjoint.
There is then a complete orthonormal basis {¢;} for
L%(V), where ¢; € C*°(V) and D¢; = \;#;. The collec-
tion {¢;, \;} is called a discrete spectral resolution of
D. For example, if D= —387 on the circle, then the
discrete spectral resolution is

{e\/—ma7 nz}
nez,

If we order the eigenvalues A\; < X\, < --- and repeat
each eigenvalue according to multiplicity, then there
is the following estimate due to Weyl:

2/m

Ay~ n as n— oo
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We now suppose given a pair of vector bundles V
and V, over M and a kth-order partial differential
elliptic operator

A COO(V1) - COO(Vz)

Locally, we decompose

A= Za[afc

[1|<k

where I = (i1,...,%,) is a multi-index and where
of = (7). ()"

The a; are linear maps from V; to V,. The leading
symbol of A is then defined by setting

oL(A)(x,6) == (V-1 >~ ar(x)¢!

M=k
where ¢/ = (&) ... (&)™, and
§: (fla"wfm)

are local fiber coordinates on the cotangent bundle.
The leading symbol is an invariantly defined map

oL : "M — El‘ld(V], Vz)

For example, if Vi =V, and if D is an operator of
Laplace type, then the leading symbol is given by the
metric tensor, that is,

oL(D) = gigg1d = |¢]71d

If d is exterior differentiation, then the leading
symbol is given by exterior multiplication, that is,

or(d)(w= V-1 Aw

The operator A is said to be elliptic if o (A) is an
isomorphism from V; to V; for any £ # 0. If A is an
elliptic partial differential operator, then

index(A) := dim ker(A) — dim coker(A)
= dim ker(A*A) — dim ker(AA™)

is well defined. As the index vanishes if 72 is odd, we
assume for the most part that #z is even.

If A. is a smooth one-parameter family of such
operators, then index (A.) is independent of €. The
index depends only on the homotopy class of the
leading symbol of A within the class of invertible
symbols; it does not depend on the underlying
metric of the manifold and it does not depend on
the fiber metrics chosen for V; and V,.

The Atiyah—Singer index theorem expresses the
index as the integral of suitably chosen polynomials
in the curvature tensor for the classical elliptic
complexes and, more generally, in terms of

cohomological information for general elliptic com-
plexes. Further details appear later in the article.

The primary focus here is on the complexes which
are of Dirac type, that is, complexes where A is a
first-order partial differential operator and where
the associated second operators Di:=A*A and
D,:=AA* are of Laplace type.

Here is a brief outline of this article. The classical
elliptic complexes (de Rham, signature, spin,
Dolbeault, Yang-Mills) are discussed first. Next
the characteristic classes are introduced, followed by
the relevant formula for the index of the classical
elliptic complexes, manifolds with boundary, and
the equivariant index. Index theory is an enormous
topic and here only classical features are emphasized
as a complete treatment is beyond the scope of a
short expository note such as this one. As some
guide to various applications in mathematical
physics, the reader is referred to the Further Reading
section.

The Classical Elliptic Complexes
The de Rham Complex

Let A’M be the bundle of smooth p forms over M
and let

d: C®(APM) — C*(AP*1M)
and
6 : C®(APM) — C® (AP~ M)

be the exterior derivative and dually the interior
derivative, respectively. We set

A:=(d+6)* on C*(AM)

and the decompose A= @, A’, where A? is an
operator of Laplace type on C>(A”M).

We have d>=0. The de Rham cohomology
groups are given by taking the quotient of the closed
forms by the exact forms:

~ ker(d : CX(APM) — C*(AP*1M))

HY(M;R) = im(d : C*(AP~IM) — C>(APM))

The Hodge-de Rham theorem identifies H?(M;R)
with the kernel of the Laplacian

ker(A?) = H?(M;R)

and with the topological cohomology groups.

If € is a cotangent vector, let e(£):w — £ Aw be
exterior multiplication. Let 1(¢) be the dual
operator, interior multiplication. If {e;} is a local
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ortho-normal frame for TM, let el =¢"' A--- Aelb,
where I={1 <i; <--- <i, <m}. Then we have

0 if =1

1\ I 1

cle )e =

() {el/\eI ifig >1
DAL ; if i1 =

‘i(el)el:{e A N e'r lfll 1
0 1f11>1

Define a Clifford module structure on AM by
A(&) == e(€) — i(©)
If {e;} is a local orthonormal basis for TM, then
A (&) + (&) (e) = —26,1d

so the usual Clifford commutation rules are satisfied.
Let V be the Levi-Civita connection on M. We may
then expand

d=e(e')V,, 6 = —i(e")V,,
d+6=~()V,
The de Rham complex is then defined by taking
AN = @AM, ACMM = @ APV
d+6: CC(AY"M) — C®(A°4M)

The Signature Complex

The signature complex arises from a different decom-
position of the exterior algebra. Let Clif M be the
Clifford algebra of T*Mj; this is the universal unital
algebra generated by T*M subject to the Clifford
commutation relations given above:

§x&+ 66 =-2g(6,8%) - 1d
We suppose M is orientable and let
ormn =eq x---*e, € Clif M

be the orientation class. The map £ — 7(£) extends
to a unital algebra homomorphism

v : Clif M — End(AM)

~v(orn) defines an endomorphism of AM which is,
modulo suitable sign conventions, the Hodge *
operator. If m =2k is even, then

(d+ 6)y(om) = —(omn)(d + 8)
Set
0= (\/—_1)k7(0rn)
As ©? =1d, we can decompose

AM@C=A"TM® A M

where ATM are the +1 eigenspaces of ©. The
signature complex is then given by

(d +68) : C(A*M) — C®(A~M)

Twisted Signature Complex

Let V be an auxiliary complex vector bundle over
M which is equipped with a unitary connection VV.
We use the connection VY on V and the Levi-Civita
connection on TM to covariantly differentiate
tensors of all types. The twisted signature complex
is defined by setting

(d+06)y
= (y(e)®Id)V,, : C*(ATM® V) — C*(A"M® V)

Yang-Mills complex

This complex in dimension 4 arises from yet another
decomposition of the exterior algebra. We use the
discussion in the previous section to decompose

A*M = A*"M & A* M
into the +1 eigenspaces of ©. Let
T A°M — A*"M

be orthogonal projection. The Yang-Mills complex
is the 3-term sequence

d: C*(A°M) — C*(A'M)
and
7d : C*(A'M) — C*(A*>~ M)

We can wrap up this sequence to obtain an
equivalent elliptic complex

(d + 6) . Coo(Aeven,fM) N Coo(AoddHrM)

As with the signature complex, this complex can
be twisted by taking coefficients in an auxiliary
vector bundle V. It is crucial to the study of four-
dimensional geometry using Yang—Mills theory.

Dolbeault Complex

Let z=(z1,...,2;) be a local system of holomorphic
coordinates on a complex manifold M, where
zi=x; + vV —1y;,. We define

de' == dx' + V—-1dy', dz' :=dx' — V—-1dy’
o =40 —TO)), 55 =107 + V)
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and decompose d =0 + 0, where
0 :=e(dz")97 and 0 :=e(dz)0?

on the complexified exterior algebra. Let §' be the
adjoint of 0 and ¢” be the adjoint of 0. Let

dz':=dz" Ao AdRr
A(O,even) = Span{dzl}m is even

A00dd) . Span{dzl}m is odd

The Dolbeault complex is then defined by
(5 + 5”) . Coo(A(O,even)M) _ COO(A(O’Odd)M)

This complex can be twisted by taking coefficients
in a holomorphic bundle V over M.

The Spin Complex

Let M be orientable. Let Psop be the principal SO
bundle of orthonormal frames for the tangent
bundle. A spin structure s on M is a principal
Spin bundle Ps, together with a double cover
p:Ps, — Pso which respects the usual double
cover p:Spin — SO of the structure groups.
Equivalently, a spin structure is a lifting of the
transition functions from SO to Spin which
preserves the cocycle condition. One says that M
is spin if it admits a spin structure.

A manifold is orientable if and only if the first
Stiefel-Whitney class of M vanishes; an orientable
manifold is spin if and only if the second Stiefel-
Whitney class of M vanishes as well; these are
7-valued cohomology classes. Inequivalent spin
structures are parametrized by the cohomology group
H'(M;7,) or, equivalently, by real-line bundles on M.

The spin representation S of Spin defines an
associated spin bundle SM=S8(M,s). There is a
natural Clifford action ¢ of TM on SM. The Levi-
Civita connection lifts to define the spin connec-
tion on S and the Dirac operator is defined by

A(s) == c(dxi)Vglx on C¥(SM)

Let m=2k and let ©:=(v/—1)*c(orn). Since
¢(©)* =1d, one can decompose

SM=S"M&eS M

as the direct sum of the half-spin bundles to obtain
the spin complex:

A(s) 1 C¥(STM) — C*(S™ M)

As with the signature complex, the spin complex can
be twisted by taking coefficients in an auxiliary vector
bundle V.

Relating the Classic Elliptic Complexes

One has natural isomorphisms of virtual representa-
tions of the spinor group:

AT—A =S -8)®(S"+8)
AT — A = (—1)(ST ST @ (8T - 8)

which show that the signature complex and de Rham
complexes are the spin complexes with coefficients in
the virtual bundles

S*tM+S8 M and (-1)"*(8"M -8 M)

respectively. If M is complex and spin, then the
Dolbeault complex is the spin complex with coeffi-
cients in the square root of the canonical bundle.
One can consider complex spinors to define the
group Spin‘(m). Any spin manifold admits a Spin®
structure with trivial associated complex line bun-
dle. Any complex manifold admits a Spin® structure
with associated complex line bundle given by the
canonical bundle. Thus, a complex manifold admits
a Spin® structure if and only if it is possible to take a
square root of the canonical line bundle; inequiva-
lent Spin structures are parametrized by inequivalent
square roots. If M is orientable, then M admits a
Spin® structure if and only if the second Stiefel-
Whitney class of M lifts from H?*(M;7Z,) to
H?*(M;7); in the complex setting, this lifting is
performed by the first Chern class. Inequivalent
Spin® structures are parametrized by H?*(M;7Z) or,
equivalently, by complex line bundles over M.

Characteristic Classes

The Euler Form

Let V be the Levi-Civita connection on M. Let
R(x,y) :=V,V, -V, V, — Vixa)

be the curvature operator. Let {eq,...,e,,} be a local
orthonormal frame for TM and let

Rjjrr = g(R(ei, €j)er, e;)

give the components of the curvature relative to a
local orthonormal frame. Let

eld ::g(e"1 Ao Aem et A A ei’”)

be the totally antisymmetric tensor; this is the sign
of the permutation which sends i, — j,. Let
m=2m. The Euler form is given by setting

LIR. . ..
€ Rtllzlllz -.-R

im—limim—lim
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Let pjj := Rjpj and 7:= p;; be the Ricci tensor and the
scalar curvature, respectively. Then,

1 1
52 Z%T and 54:327T2

{7 — 4o + IR}

The Pontrjagin Forms

Since R(x,y)= —R(y,x), we can regard R as a
2-form-valued endomorphism of the tangent bundle.
We define the Pontrjagin forms p; € C*(A*M) by
expanding

1
det<I+—R> =14pi+pr+--
27

These differential forms are closed and the corre-
sponding cohomology classes

P; = [p] € H¥(M;R)

in the de Rham cohomology are independent of
the particular Riemannian metric on M which was
chosen.

The A genus and the Hirzebruch L polynomial
are expressed in terms of these classes using the
splitting principle. Let A be a skew-symmetric
matrix. One sets

p(A) :i=det(I+A) =1+ p1(A) + p2(A) + -~

As A is skew symmetric, it decomposes as the direct
sum of 2 x 2 blocks of the form

0 X\
N 0

p(A) =J[{1+x}

v

We then have

SO
pl(A) = Si()\%, )\%, .. )

where s; is the ith symmetric function;
2 242
pr=2_A p2=) NN
- —

i<j
and so forth. Let

As L; and A; are even symmetric functions of X, one
can write L; = L;(p1(A), ..., pr(A)). For example,

L=1+pi+5Tp2—p3) +--
A=1-Lpi 4+ (707 —4p2) +- -
Substituting (1/27)R for A then permits one to

define the Hirzebruch polynomial L(R) and the A
genus A(R).

The Chern Forms

Let V be a k-dimensional complex vector bundle
over M. Let V be a Hermitian connection on V and
let ©Q be the associated curvature endomorphism.
The Chern forms ¢; € C*(A*M) are defined by
expanding

v—1
det<1+ > Q) =l+cat+eca+-
0

As with the Hirzebruch polynomial and the A genus,
the Chern character and Todd genus are expressed
in terms of the generating functions:

T4 = [T
and

h() = 3
One has

Td=1+Tdy +Tdy +---
:1+%Cl+11—2(6%+62)+--~

Ch =chg+chy +chy +---
=k+tci+3(d—2c)+ -

The Index Theorem
The Gauss-Bonnet Theorem

We return to the de Rham complex. Let

x(M) = (=1)" dim H'(M; R)
p

be the Euler-Poincaré characteristic; x(M) =0 if m1 is
odd. Let M have a simplicial structure with 7(k) cells
of degree k;n(0) is the number of vertices, 7(1) is the
number of edges, 72(2) is the number of triangles, etc.
Then

X(M) =3 (=1)*n(k)

k
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so the Euler—Poincaré characteristic is a combina-
torial invariant. By the Hodge—de Rham theorem,

index(d + §) = dim ker(A®¥")

= x(M)

— dim ker(A°dd)

The Chern—Gauss—Bonnet theorem expresses this
invariant in terms of curvature

M):/ E,, dx
M

where &, is the Euler form given above. If one twists
the de Rham complex to take coefficients in an
auxiliary vector bundle V, then no new information
results, since

index{d + 6}, = x(M) - dim(V)

The Hirzebruch Signature Theorem

Let sign (M) be the index of the signature complex
on a manifold of dimension 4k; the index vanishes
in dimensions 7 =2 mod 4. Let x be the Hodge
duality operator. As xA? == A"~P_x preserves the
eigenspaces of the Laplacian. In particular, x induces
an isomorphism

x: HP(M; R)
— Hm_p(M;R)

= ker(AP)
= ker(A"?)

which implements Poincaré duality. In dimension
2k, ¥* =1d. Decompose

H*(M;R) = H**(M; R) ® H**~ (M; R)

into the #1 eigenspaces of x; these may be identified
with ker(AZ*) acting on C™(A***M). As the
contributions to the signature away from the middle
dimension cancel,

sign(M) = dim H***(M;R) — dim H*~(M;R)

As with the de Rham complex, there is a
topological description of this invariant. If @ and 3
are closed 2k forms, one sets

<a,ﬁ>:=/MaAﬂ

One can use Stoke’s theorem to see that this
induces a symmetric bilinear form on the de
Rham cohomology groups H?*(M;R). Poincaré
duality then shows that this symmetric bilinear
form is nondegenerate, so this is a form of type

(p,q); sign(M) is the signature of this quadratic
form:

=q9-07
The Hirzebruch signature formula expresses sign

(M) in terms of curvature; if L is the Hirzebruch
polynomial described above and if # =4k, then

sign(M)

sign(M):/ML1e

Let V be an auxiliary coefficient bundle. Taking
coefficients in V then yields the formula

S 2// Li Achy(V)

4i+2j=m

signy (M

The Index of the Yang-Mills Complex

Let YMy be the Yang-Mills complex with coeffi-
cients in an auxiliary vector bundle V, then the
index can be evaluated using the formulas given

above as
index{YMy} =1{dim(V)x(M) —sign(M, V)}

:EfM{dlm V54 — dlm VL] —4Ch2(V)}

The Index of the Dolbeault Complex

If V is a holomorphic bundle over a complex
manifold M, then

index{(9+6")} = Y / Td,(M) A chy(V)

The index of the untwisted Dolbeault complex is
called the arithmetic genus and denoted by ag(M).

The Index of the Spin Complex

If M is a spin manifold and if Ay is the Dirac
operator with coefficients in an auxiliary coefficient

bundle, then
index{Ay} = Y / Ai(M) A ch;(M)
4i+2j=m /M

The index of the spin complex is called the A genus
and is denoted by A(M). If M is a Spin® manifold,
the appropriate formula becomes

index{Af, } /

41+2/+2k m

M) A ch;(M) A 6

where 6= 1c¢(L), L being the complex line bundle
associated with the Spin® structure.
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Properties

The classic elliptic complexes defined above are
multiplicative with respect to Cartesian product.
Suppose that M; and M, are Riemannian manifolds
with the appropriate structures. For the signature
complex, suppose My and M, are oriented; for the
Dolbeault complex, suppose M; and M, are holo-
morphic; for the spin complex, suppose M; and M,
are spin. By taking the twisting coefficient bundle to
be trivial in the interests of simplicity, one has

X(My x Mz) = x(M1)x (M)
sign(My x M;) = sign(Mj )sign(M,)
ag(My x My) = ag(M)ag(M>)
A(M; x My) = A(M1)A(M,)
These complexes behave well under finite coverings.
Let F — M, — Mj be a finite covering projection
with |F| sheets. Then

xX(Mz) = [F|x(M1)
sign(M;) = |F|sign(M1)

ag(M) = |Flag(M;)

A(M,) = [FJA(M))

The connected sum M #M, is defined by punching
out small disks about points P; in M; and then
joining along the spherical boundaries that remain.
It is necessary, of course, to smooth out the resulting
corners. Note that if M; and M, are complex
manifolds, then M;#M, is no longer a complex
manifold in general. Since

x(8") =2,

the following additivity results follow from the
integral formulas given above:

X(Mi#M) = x(M1) + x(M2) — 2
sign(My#M,) = sign(M1) + sign(M>)
AM#My) = A(My) + A(My)

sign(§”) =0, and A(§") =0

Examples and Applications

Let " be the standard sphere and let CIP/ be the
complex projective plane. One then has

x(8% =2, sign($H) =0
X($* x §*) =4, sign($* x §) =0
x(CP?) = 3, sign(CP?) =1

In dimension 4, the Riemann-Roch formula yields

ag(M*) = 3 {x(M) + sign(M)}

This would yield ag(S*) = 1; since 1 is not an integer,

this shows that $* does not admit a complex
structure; a similar argument shows that $” does
not admit a complex structure for 7 # 2,6, and it is
not known whether S$° admits a holomorphic
structure; it does admit an almost-complex
structure.

If we set M= CP*#CP?, then

agM)=1(3+3-2+1+1)=3

and thus CP*#CP? does not admit a complex
structure. These examples are typical of the use of
the index theorem to prove the nonexistence of
certain structures.

The General Index Theorem

Let S(T*M) be the sphere bundle of unit cotangent
vectors and let D(T*M) be the disk bundle of
cotangent vectors of length at most 1. Let

P : C*(Vy) — C*(Vy)

be an elliptic pseudodifferential operator. The
leading symbol p := o (P) induces a smooth map

p : S(T*M) — End(Vy, V).

We form X(M) by gluing two copies of D(M)
together along their common boundary S(M) and
we define a bundle X(p, V1, V3) over 3(M) by gluing
Vi to V, over S(M) using the clutching function p.
The Atiyah-Singer index theorem expresses the
index of P in terms of cohomological data involving
the Chern class of the symbol bundle and the
characteristic classes of the tangent bundle of M. If
(M) is given a suitable orientation, then

index(P) = 3 / chi(S(p, Vi, V2)) ATd (M)
2i+4j=2m 7 (M)

It specializes to the results given above for
the classical elliptic complexes. Conversely, by
using K-theoretic methods, the index theorem in
full generality can be derived from the special case
of the twisted signature complex.

Manifolds with Boundary

If the boundary of M is nonempty, we must impose
suitable boundary conditions.

Local Boundary Conditions

Choose local coordinates x = (x',...,x”) near the

boundary of M so that x™ is the geodesic distance to
the boundary. On the boundary, we can decompose
a differential form we C*(AM) in the form
w=uw1 + dx™ A w,, where wy and w, are tangential
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differential forms. Absolute and relative boundary
conditions are defined by setting
Bow :=wilgy and Bw:=wi|yy

Let (d+6), and (d + §), be the associated realiza-
tions. These operators preserve the grading of the
exterior algebra AM=A®"M @ A°4M and define
elliptic complexes

(d+6), : CO(A“"M) — C*(A°YM)
(d+6), : C(AY"M) — C*(A°4M)
We consider a collection
J={1<h < <jp<m}
of tangential indices and let
dx/ =dx/" Ao Ndx

The associated absolute boundary conditions for the
Laplacian are defined by

Bu(¢ydx! + ydx™ A dx')
= (Yylomdx’) ® (95,01 lom) '

If x is the Hodge operator, then one sets dually:
B,(w) = By (5w)

Let AL and A? be the associated realizations of the
Laplacian with these boundary conditions. The
Hodge—de Rham theorem extends to this setting to
yield isomorphisms

ker(A?) = HP(M; R)
and
ker(A?) = H?(M, OM;R)

The Hodge x operator intertwines AP and AP
and implements the Poincaré duality isomorphism
HP(M;R)=H""P?(M,OM;R). This also shows that

index(d + 6), = > _(—1)" dim H?(M; R) = x(M)
P

and

index(d + 6), =Y _(~1)" dim H”(M, OM;R)
p
= X(M,0M) = x(M) — x(0M)

Let &, be the Euler form if m is even. We set
E,, =0 if m is odd. Let L be the second fundamental

form. Let A=(ay,...,a,—1) and B=(by,...,b,,_1)
be collections of distinct indices ranging from 1 to
m — 1. Set

1
L1 = ;ﬁkSkk!(m — 1 —2k)Ivol(§m-1-2k)

A.B
X ev Ralazbzb1 ...R
x L

A 1a2kb2 bk

Arpy1bopsr * 0 La, b,

The Chern—Gauss—Bonnet theorem generalizes to
this setting to yield

X(M) = index(d +¢),

:/ E,dx + L—1dy
M oM

For example,

x(M?) :%{/ de+2/ Laady}
M2 om>

1
x(M?) = g/aNp{Rabba + LaaLpp — LapLap ydy

1
MY =355 [ 17 =4l + [RP

1
+ W/OM4{3TLM + 6Ramameb

=+ 6RacbcLab + ZLaaLbchc
- 6LabLachc + 4LabLbcLac}dy

The interior integral vanishes if 7 is odd. The
boundary integral can be nonzero in any dimen-
sions. Thus, in particular, the index of this elliptic
complex can be nonzero even if m is odd; x(D™)=1
for any m. The index of (d+6), is computed
similarly.

Spectral Boundary Conditions

In contrast to the de Rham complex, there do not
exist local boundary conditions for the signature,
spin, and Dolbeault complexes. To simplify the
discussion, we assume that the metric is the product
near the boundary; there are appropriate compen-
sating terms involving the second fundamental form
in the more general setting. Let A:C>®(Vy) —
C*(V;) denote either the twisted signature or the
twisted spin complexes; there are some additional
difficulties for the Dolbeault complex. Near the
boundary, we can express

A:a(&fn+AT)

where At is a self-adjoint tangential operator of
Dirac type on Vi|y, and o is a unitary bundle
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isomorphism from Vi |, to Va2, Let {¢;, Ai} be the
discrete spectral resolution of At. One defines

n(Ar,s) Z sgn(Ap)| x|
N0

as a measure of the spectral asymmetry of At. This
is well defined for Re(s) > 1 and has a meromorphic
extension to the complex plane C. It turns out that 0
is a regular value and one defines

n(Ar) := 3 {n(Ar, s) + dim ker(Ar)}|,

The spectral boundary conditions can now be
imposed. Let II. be orthogonal projection in
L?(Vy],y) on the span of the eigensections of At
corresponding to non-negative eigenvalues and let
A- be the associated realization defined by this
boundary condition.

One can use the Atiyah-Patodi-Singer index
theorem to generalize the relations given above to
this setting. Let f4 be the local integral given above
that involves the Hirzebruch L polynomial for the
signature complex or the A genus for the spin
complex. One then has

index(As) = n(Ar) + /MfA

There are suitable correction formulas involving
integrals of polynomials in the second fundamental
form and in the curvature tensor if the structures are
not product near the boundary.

Equivariant Problems
The Classical Lefschetz Formula

Let M be a compact Riemannian manifold without
boundary. Let T be a smooth map from M to M. Then
pullback T* induces an action on C*(A?M) which
commutes with the exterior derivative d and hence an
action on the de Rham cohomology groups H? (M; R).
The Lefschetz number of T is then given by

LT =3 (-

14

1)Ptr{T* on H?(M;RR)}

To illustrate the Lefschetz number, let M ="T2 be
the two-dimensional torus. Let e!:=dx!, let

=dx?, and let e'? :=dx' A dx?. Then,

H(T%R)=1-R
HY(T%R)=e!' - R+e*- R
H*(T*R) =¢% R

Let T(x1,x2) = (n11x1 + n12X2, 1211 + 122%). Then,

T(1) =

T*(el) =ne' +npe’

T*(ez) = mye' + nype?
T*(e'?) = (minp — nianar)e'?

and, consequently, the Lefschetz number becomes

L(T) = det(I - T")

=1— (n11 +n2) + (n11122 — n12121)

The classical Lefschetz fixed-point formula expresses
L in terms of data for the fixed-point set F(T) and is an
example of the equivariant index theorem. One
assumes that the fixed-point set of T consists of smooth
submanifolds Ni,...,N; and that the induced map
dT, on the normal bundles of these manifolds is
nondegenerate. This means that det (I — dT,) # 0, that
is, that there are no infinitesimal normal directions
which are left fixed. One then has

= Z sign(det(I —dT,))x(N;)

The Lefschetz Formula for the Other Classical
Elliptic Complexes

Let T be an orientation-preserving isometry of M.
When dealing with the spin complex, suppose that T
preserves the spin structure; when dealing with the
Dolbeault complex, suppose that T preserves the
holomorphic structure. If

A C(V) = C®(V,)

is one of the classical elliptic complexes, then by
assumption T* commutes with A and hence pre-
serves the eigenspaces of the associated Laplacians.
The Lefschetz number is defined by setting

La(T) :=tr(T" on ker(A*A))
—tr(T" on ker(AA™))

Setting T =1d, one recovers the standard index.

To simplify the discussion, we assume henceforth
that T is an orientation-preserving isometry of M
with only isolated fixed points. Let {61,...,6,,/2} be
the rotation angles of dT at a fixed point x of T. Set

Aj = cos(§;) + \/—_1$in(9,-)

We take the sum over the isolated fixed points x and
then the product over the rotation angles 1 <; <
m/2 to express
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LianlT) = ZH{_mt@}
corm - T1{ 1)
Eoun(T) = [0~ %)

In considering the spin complex, we assume T
preserves the spin structure. This permits us to lift dT
from SO(m) to Spin(m) and defines liftings of the
rotation angles 6; from [0, 27] to [0, 47] in such a way
that the formula given above for the spin complex is
well defined. In considering the Dolbeault complex,
we assume that T preserves a complex structure, so the
formula given above for the Dolbeault complex
involving the complex eigenvalues ); is well defined.
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Introduction

Given 1 < p < n, it was shown by Sobolev that there
exists a constant K> 0 such that, for any u €
Cy(R"), the space of smooth functions with
compact support in R”,

X 1/p* 1/p
(/ f? dx) §K</ |W|de) i
R” R
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where Vu is the gradient of u and p* =np/(n — p). It
is easily seen that p* in [1] is critical in the following
sense. Let || -], stand for the L?-norm. For u €
Cy(R"), and X > 0, let also u, be the function given
by u,(x) =u(Ax). For p and g two real numbers,

IVuall, = AV,

el = A~ ull,

Letting A — 0 and A — 400, it follows that an
inequality like [lu]|, < K||Vul|, holds true for all «
(in particular for the u#,’s) only when g=p*. To
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prove [1], the approach of Sobolev was based on the
straightforward representation formula

F(71/2)/ QLA
g s Oput(y)d
2712 o x y| k (y) y

where T' is the Gamma function, and on an
n-dimensional version of a theorem of Hardy-
Littlewood concerning fractional integrals that we
apply to the right-hand side of the above representa-
tion formula. More direct arguments were later
discovered in independent works by Gagliardo and
Nirenberg. In particular, the explicit inequality

Nl Y
ul"”" " Vdx Dyuldx
(e vax) ™ <3T( 1)

< E/Rn |Vu|dx 2]

was proved to hold, where D, is the partial
derivative Dj, =0/0xy. Inequality [2] is of the form
[1] when p=1, since 1*=n/(n—1). By geometric
measure theory, and the coarea formula, it can be
expressed as an isoperimetric type inequality.

There have been several symbols and several
definitions for Sobolev spaces. Before they became
generally associated with the name of Sobolev, they
were sometimes referred to by other names, for
instance, as “Beppo Levi spaces.” We often find two
definitions and two notations in the literature. For 2
a domain in R”,p > 1 real, and u of class C” in (,

u(x) = —

we let
1p
et —( > |D“M|§> [3]
0<|ar|<m
when the right-hand side makes sense, where || - ||, is

is a multi-indlzzx,
Do . We define

the LP-norm, a=(ay,...,q,)
la|=>"; @i, and D*=DY" - --
H"™?(Q)) = the completion of
{u e C"(Q) s.t. [ul,, < +oo}
with respect to the norm || - ||
={u e LP(Q) s.t. D"u € L?(Q)
for all 0 < || < m}

m,p
Wmr(Q)

where D% is the weak (or distributional) partial
derivative of u# with respect to the multi-index a. Both
H™?(Q) and W™ (Q) are Banach spaces (and even
Hilbert when p=2). It is easily seen that H™?(Q)) C
WmP(Q), but we had to wait for the work of Meyers
and Serrin to realize that H"?(Q2) = W™ ?(Q). The
spaces H™?((), also denoted W™ ?((Q), are referred to
as Sobolev spaces. The spaces Hy,""(Q2), also denoted
W(')"’p(Q), are defined as the closure of Cj(2) in

H™P(Q), where CF(Q) is the space of smooth
functions with compact support in .
Inequallty [1] states that the Sobolev space
’p (R™) is naturally embedded in the Lebesgue
space L (R"), a particular case of what we now
refer to as Sobolev embeddings.

Sobolev Inequalities and the Sobolev
Embedding Theorem in Its First Part

Let m be an integer and let p > 1 be real. The
Sobolev space H™?(R"), also denoted by W7 (R"),
is defined by in one of the two equivalent ways:

H"™?(R") =the completion of
{ue C"(R") s.t. ||u]l,,, < +oo}

with respect to the norm |- ||, ,

or

H™P(R") = {u € LP(R")s.t. D°u € LP(R")

for all 0 < |a| < m}

where D% is the weak (or distributional) partial
derivative of # with respect to the multi-index «, and
[| - ||m,p is as in [3]. The Sobolev space (H™?(R"),
| - II,,,,) is a Banach space, and even a Hilbert space
when p =2. The space is reflexive when p > 1, and
we also have that H™P(R") =H6"’p(R"), where
Hy"P(R") is defined as the closure of C¥(R”) in
H™P(R"). What we usually refer to as the first part
of Sobolev inequalities can be expressed as follows.

Sobolev embeddings (Part I). For p, g two real
numbers with 1 < g < p, and k, m two integers with
0<m<k,if 1/p=1/q—(k—m)/n, thenHkqC
H™P, and there exists K >0 such that [ju|,,
K||u||k for all u € H*4.

The Sobolev theorem in its first part states that
the above Sobolev embeddings (resp. inequalities)
hold true for the Euclidean space. A particular case
of interest is when k=1. In this case, we get, as in
the introduction, that for any 1 < p < n, H-P(R") C
L' (R") where p*=np/(n — p). The embedding for
the Euclidean space reduces to the Sobolev inequal-
ity [1]. An important remark is that there is a
hierarchy for Sobolev embeddings. In particular,
that if HY' ¢ L1 1*=n/(n — 1), then all the
other embeddings H®»7 ¢ H”>? hold true. Thanks to
this remark, the Sobolev embedding theorem for
Euclidean space easily follows from an inequality
like [2]. The hierarchy for Sobolev embeddings is an
easy consequence of Holder’s inequalities when
k=1, and of Holder’s inequalities together with
Kato’s inequality when k& > 1.
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There are several extensions of Sobolev inequal-
ities in the literature. Famous extensions were
discovered by Gagliardo and Nirenberg. The Nash
inequality, which reads as

(n+2)/n 4/n
(/ uzdx) SK(/ |udx>
R R"
x/ |Vu)* dx [4]
-

for all u€ H“?(R"), is one of the Gagliardo-
Nirenberg’s inequalities. The Nash inequality easily
follows from [1] when p=2 and Hoélder’s inequal-
ity. There are also extensions of Sobolev spaces, for
instance, spaces of BV-functions or Orlicz-Sobolev
spaces.

The Sobolev Embedding Theorem in Its
Second Part

For m integer, let C}(R") be the space of functions
of class C" in R” for which the norm

lllcr = D sup [Du(x)|

0<|a|<m xeR”

is finite. What we usually refer to as the second part
of Sobolev inequalities can be expressed as follows.

Sobolev embeddings (Part II). For g>1 a real
number, and k, m two integers with 0 <m < k, if
1/q —(k—m)/n <0, then H*9 C Cf, and there
exists. K> 0 such that [jul/c. < KlJul|,, for all
u e Hk4,

The Sobolev theorem in its second part states that
the above Sobolev embeddings (resp. inequalities)
hold true for the Euclidean space. Refinements were
then obtained by Morrey with embeddings in
Holder spaces. Let, for instance, C%»“(R"”) be the
Holder space of continuous functions in R” for
which the norm

u(y) — u(x)]

|| oo = sup |u(x)| + su
4]l co. P |u(x)| + sup b=

xeR’ xF#£y
is finite. For k=1,m =0, and ¢ > 1 such that 1/g —
1/n < 0, the embedding H%9(R") C C%(R”") can be
refined into an embedding like H9(R") ¢ C%>*(R"),
where « € (0, 1) is such that 1/g — (1 — a)/n < 0.

The Case of Domains and the Kondrakov
Theorem

The Sobolev embeddings in their first and second
parts extend to regular domains Q. A typical
condition is that Q satisfies a cone property. When

Q is bounded, and thus of finite volume, an
embedding like H“?(Q) C L”"(Q2) implies that we
also have that HY?(Q) c L9(Q) for all 1 < g < p*.
The Kondrakov theorem states that such embed-
dings are all compact, unless g = p*, in the sense that
bounded sequences of functions in H“? possess
converging subsequences in L.

For p > 1 real, the Sobolev embedding theorem in
its first part provides embeddings of H'? into
Lebesgue spaces when p < n, while the Sobolev
embedding theorem in its second part provides
embeddings of H? into Holder spaces when p > 7.
For p=mn, it is false that H"" can be embedded
into L>*. However, when € is bounded, we can
prove that exp (#) € L1(Q) when u € H)"(Q), and
that

/9 exp(u) dx < Kexp(ylul?,,)

where p, K > 0 are independent of #. We also have
that

/ exp(pulul V) dx < K
9]

for all u € H(l)’"(Q) such that ||Vu||, <1, where u,
K > 0 are independent of #. Such inequalities are often
referred to as Moser-Trudinger type inequalities.

The Case of Riemannian Manifolds

Riemannian manifolds are natural extensions of
Euclidean space. For (M, g) a Riemannian manifold,
m integer, and p > 1 real, we define the Sobolev
space H™?(M) by

H™"(M) = the completion of
{uc C"(M) s.t. |Jull,,, < +oo}

with respect to the norm || - [|,,, ,

where ull,, ,= 37" \|Viu||p,Viu is the ith covari-
ant derivative of u, and | -||, is the LP-norm
in (M, g). A notation like |[V'u|, stands for the
L?-norm of the pointwise norm |V’u| of V'u. Sobolev
spaces on manifolds are Banach spaces, even Hilbert
when p =2, and they are reflexive when p > 1. They
do not depend on the metric when M is compact.
For compact Riemannian manifolds, everything
works as for bounded domains. The Sobolev
embeddings in their first and second parts remain
valid. The Kondrakov theorem also remains valid.
However, since constant functions are in Sobolev
spaces when the manifold is compact, the L/-norm
of u in the H%?-norm of u should be added to the
right-hand side in inequalities like [1]. More
precisely, if (M,g) is a compact Riemannian
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manifold of dimension 7, and 1 <p < n, then the
inequality for the embedding H“?(M) c L¥"(M)
reads as: there exists K> 0 such that for any
u e H-P(M),

N
(/ ul? dug> gK(/ |W|Pdug+/ u|pd1/g) 5]
M M M

where dv, is the Riemannian volume element with
respect to g. When (M, g) is no longer compact, the
Sobolev embedding theorem might become false. A
nontrivial key observation is that a Sobolev inequal-
ity like [5] on a complete manifold (M, g) implies the
existence of a uniform (with respect to the center)
lower bound for the volume of balls of radius 1. It
follows that for any n > 2, there exist complete
Riemannian z-manifolds (M,g) for which, for any
p € [1,n),H"?(M) ¢ LP"(M). Possible examples are
warped products of the real line R and the
(n — 1)-sphere $”~'. When the Ricci curvature is
bounded from below, the condition that there is a
uniform (with respect to the center) lower bound for
the volume of balls of radius 1 is necessary and
sufficient in order to get that the Sobolev embed-
dings are valid.

Isoperimetric and Euclidean
Type Inequalities

Let (M,g) be a complete Riemannian 7z-manifold.
Euclidean type inequalities are said to hold on (M, g)
if there exists K > 0 such that for any 1 <p < n,
and any u € H“?(M),

. 1/p* 1/p
( / f? dz/g) gK( / Vu|pdvg> 6]
M M

where p*=np/n — p. As for the Euclidean space, if
the above inequality holds for some py, then it
holds, with distinct K, for all po<p<n In
particular, if the inequality holds for p =1, it holds
for all p’s. The inequality when p =1 was shown to
be true by Hoffman and Spruck when the manifold
is simply connected of nonpositive sectional curva-
ture. Such manifolds are referred to as Cartan—
Hadamard manifolds. The inequality when p=2 is
related to the nonparabolicity of the manifold,
namely the existence of a minimal Green’s function,
and to the behavior of the minimal Green’s function.

By geometric measure theory and the coarea
formula, [6] when p=1 is equivalent to the
isoperimetric inequality

Areay(992) > = Vol (©)"~ D/ [7]

al=

where C > 0,9 is a smooth bounded domain in
M, Area,(09) is the volume of 9 for the metric
induced by g, and Vol,(9) is the volume of © with
respect to g. Moreover, the constants C and K
(for p=1) are the same in the sense that if [6] for
p =1 holds with K, then [7] holds with C=K, and
if [7] holds with C, then [6] for p =1 holds with
K=C.

The sharp constant for the isoperimetric inequal-
ity [7] in Euclidean space is known. When n=2 its
value is C(2)=1/(4m) and the sharp isoperimetric
inequality is the well-known inequality L> > 47A,
where A is the volume of a smooth bounded domain
in R%, and L is the length of its boundary. For
arbitrary n, the sharp constant C(n) for the isoperi-
metric inequality is given by

ctn) =1 (2 )1/" 8

n \Wp—1

where w,,_1 is the volume of the unit (7 — 1)-sphere.
Moreover, still for the Euclidean space, equality
holds in the sharp isoperimetric inequality if and
only if Q is a ball. A famous conjecture concerning
sharp isoperimetric inequalities, often referred to as
the Cartan-Hadamard conjecture, is that the sharp
isoperimetric inequality holds on Cartan-Hadamard
manifolds. Thanks to works by Croke, Kleiner, and
Weil, the conjecture is known to be true in
dimensions 2, 3, and 4. From the Bishop—Gromov
comparison theorem, we also get that the only
complete manifold of non-negative Ricci curvature
for which the sharp isoperimetric inequality holds is
the Euclidean space itself.

The sharp constants K = K(#n, p) for [6] when p > 1
have been computed in Euclidean space by Aubin,
Rodemich, and Talenti. The extremal functions were
also computed, where, by definition, an extremal
function is a function which realizes the case of
equality in the inequality. We get that

oy — 1)\ - D/P
cen-2(52)

L(n+1) 1/n
. <r<n/p>r<n i n/P)wn1> )

where, as above, I' is the gamma function. More-
over, u is an extremal function for the sharp
inequality in Euclidean space if and only if, up to a
scale factor,

(n=p)/p

u(x) = K [10]
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for some p >0, and a€ R". When p=2, the
functions # in [10] are both the only extremal
functions for the sharp Sobolev inequality in Euclidean
space, and the only positive solutions of the equation
Au=u*"1in R", where A= —Y", D7 is the Laplace—
Beltrami operator (the usual Laplacian with a minus
sign in front of it). Sharp constants are also known for
several of the Gagliardo—Nirenberg inequalities in
Euclidean space. The sharp constant for the Nash
inequality in Euclidean space was computed by Carlen
and Loss. If the sharp isoperimetric inequality holds on
a complete Riemannian z-manifold, then the sharp
inequalities [6] hold for all 1 < p < n.

Sharp Inequalities on Compact
Riemannian Manifolds

The study of sharp Sobolev inequalities on compact
manifolds if often referred to as the AB program for
Sobolev inequalities. For (M, g) a compact Rieman-
nian z-manifold, and 1 < p < n, [5] can be rewritten
in two different forms:

N 1/p* 1/p
</ |u|? dvg) SA(/ |Vu|pdvg>
M M
1p
+ B(/ |u|Pdvg> [11]
M

X p/p*
(/ ||’ dug> SA// |VulP dv,
M M
+B'/ |u|P dv, [12]
M

where A, B, A’, B are positive constants independent
of u. An easy remark is that if [12] holds with
constants A’ and B, then [11] holds with A = (A")'/?
and B=(B)"?. The sharp first (resp. second)
constants in [11] and [12] are defined as the lowest
possible values for A and A’ (resp. for B and B’) in
[11] and [12]. The sharp first constants are
independent of the manifold and are given by
A'=AP =K(n,p)’, where K(n,p) is as in [9]. The
sharp second constants depend on the manifold
and are given by B'=BF = V;P/”, where V, is the
volume of (M,g). A typical question in the AB
program is to know whether or not we can take A
or B to be the sharp constants in [11] and, similarly,
whether or not we can take A’ or B’ to be the sharp
constants in [12]. Another typical question in the AB
program is whether or not there are nonzero

and

extremal functions for the saturated form of the
sharp inequalities when they are valid. Concerning
the B-part of the program, the sharp inequality [11]
with B= V" is true on any manifold, and constant
functions are extremal functions. On the other hand,
it can be proved that the stronger [12] with
B’:Vg_p/" is always false when p > 2, whatever
the manifold. Concerning the A-part of the
AB-program, Hebey and Vaugon proved that the
sharp inequality [12] with A’=K(n,2)* is true on
any manifold. In other words, for any compact
Riemannian manifold (M, g) of dimension 7n > 3,
there exists B’ > 0 such that, for any u € HL2(M),

RS
( / ] dug> <K(n,2)? / Va2,
M M
+B’/ |u|*d, [13]
M

We then get the saturated form of [13] by taking
B'=B'(g) to be the lowest possible B’ in [13]. In
general, when p # 2, we can prove that the sharp
inequality [11] with A=K(n,p) is true on any
manifold, and that there are nonzero extremal
functions for the saturated form of the sharp inequal-
ity. On the other hand, the stronger [12] with
A'=K(n,p)’ when p > 2 is false when the curvature
is positive, but true when the curvature is negative.
The p =2 case in the A-part of the AB program is of
importance for its connection with the Yamabe
problem. The p=1 case in the A-part of the AB
program is of importance for its connection with the
isoperimetric inequality. The AB program has also
been considered for Gagliardo-Nirenberg inequal-
ities, including the Nash inequality, and Sobolev-
Poincaré inequalities on compact manifolds.
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Introduction

Infinite-dimensional Hamiltonian systems arise in
many areas in pure and applied mathematics and in
mathematical physics. These are partial differential
equations (PDEs) which can be written as evolution
equations (dynamical systems) in the form

F={F H}

where H is the Hamiltonian (“energy”) and {.,.} is a
Poisson bracket on an infinite-dimensional phase space,
called Poisson manifold. Unlike finite-dimensional
Hamiltonian systems, which are ordinary differential
evolution equations on finite-dimensional phase spaces,
for which general existence and uniqueness theorems
for solutions exist, this is not the case for PDEs. There
are no general existence and uniqueness theorems for
solutions of infinite-dimensional Hamiltonian systems.
These have to be established case by case. This article
gives only a broad mathematical framework of infinite-
dimensional Hamiltonian systems. Precise definitions
are presented and the concept is illustrated through
physical examples.

Hamilton’s Equations on Poisson
Manifolds

A Poisson manifold is a manifold P (in general
infinite dimensional) equipped with a bilinear
operation {.,.}, called Poisson bracket, on the
space C*(P) of smooth functions on P such that:

1. (C>*(P),{.,.}) is a Lie algebra, that is, {.,.}: C®
(P) x C>®(P) — C>(P) is bilinear, skew-symmetric
and satisfies the Jacobi identity {{F, G}, H} +
{{H,F},G} + {{G,H},F}=0 for all F,G,He¢
C*(P) and

2. {.,.} satisfies the Leibniz rule, that is, {.,.}
is a derivation in each factor: {F- G,H}=F -
{G,H} + G - {F, H}, forall F, G, H € C>(P).

The notion of Poisson manifolds was rediscovered
many times under different names, starting with Lie,
Dirac, Pauli, and others. The name Poisson manifold
was coined by Lichnerowicz.

For any H € C*(P), the Hamiltonian vector field
Xy is defined by

Xu(F)={F, H}, FeC*(P)

It follows from (2) that, indeed, Xy defines a
derivation on C*(P), hence a vector field on P.
Hamilton’s equations of motion for a function F €
C>(P) with Hamiltonian H (energy function) are
then defined by the flow (integral curves) of the
vector field Xy, that is,

F = Xu(F) = {F, H} 1]

where the overdot implies differentiation with
respect to time. F is then called a Hamiltonian
system on P with energy (Hamiltonian function) H.

Examples of Poisson Manifolds and
Hamilton’s Equations

Finite-Dimensional Classical Mechanics

For finite-dimensional classical mechanics, we take
P=R* and coordinates (q,...,q", P1s..., Dn)
with the standard Poisson bracket for any two
functions F(q', p;), H(q', p;) given by

"\ OF OH OH OF
{Fa H} = An. i On A0 [2]
; Opi0q'  Opidq

Then the classical Hamilton’s equations are

Y ; OH
ql e {ql’ H} = 8 .
Di 3]
. OH
pi={p:, H} = ~og

i=1,...,n. This finite-dimensional Hamiltonian
system is a system of ordinary differential equations
for which there are well-known existence and
uniqueness theorems, that is, it has locally unique
smooth solutions, depending smoothly on the initial
conditions.

Example: harmonic oscillator As a concrete exam-
ple, consider the harmonic oscillator: here P =R? and
the Hamiltonian (energy) is H(q,p)= %(g* + p?).
Then Hamilton’s equations are

p=-q 4]

Infinite-Dimensional Classical Field Theory

Let V be a Banach space and V* its dual space
with respect to a pairing (.,.): V. x V* — R (i.e.,
(.,.) is a symmetric, bilinear, and nondegenerate
function). On P=V x V* the canonical Poisson
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bracket for F,H e C®(P), p€V, and we V* is
given by

where the functional derivatives §F /6w € V, 6F /6p € V*
are the “duals” under the pairing (.,.) of the partial
gradients D{F(w)€ V*,DyF(p) € V**~V. The corre-
sponding Hamilton’s equations are

b= {p Hy =21 .
6
#:{W,H}:—%

As a special case in finite dimensions, if V ~ R” so
V*~R" and P=V x V* ~ R?", and the pairing is
the standard inner product in R”, then the Poisson
bracket [5] and Hamilton’s equations [6] are
identical with [2] and [3], respectively.

Example: wave equations As a concrete example,
consider the wave equations. Let V=C>(R?) and
V*=Den(R?) (densities) and the L? pairing
(o, m) = [@(x)m(x)dx. Take the Hamiltonian to be

Hip. )= [ (37 + 1196 + Flp))dx

where F is some function on V. Then Hamilton’s
equations [6] become

p=m F=Vi-F(y) 7]
where the prime denotes differentiation with respect
to ¢, which imply the wave equation

82
S =V -F(p) 8]

Different choices of F give different wave equations,
for example, for F =0 we get the linear wave equation
Foalts
R v 2
ot? 7

for F=(1/2)mep, we get the Klein—-Gordon equation

So, these wave equations and the Klein-Gordon
equation are infinite-dimensional Hamiltonian sys-
tems on P = C*(R’) x Den (R?).

Cotangent Bundles

The finite-dimensional examples of Poissson brackets
[2] and Hamilton’s equations [3] and the infinite-
dimensional examples [5] and [6] are the local versions
of the general case where P=T*Q is the cotangent

bundle (phase space) of a manifold QO (configuration
space). If O in an #-dimensional manifold, then T*Q is
a 2n-Poisson manifold locally isomorphic to R*"
whose Poisson bracket is locally given by [2] and
Hamilton’s equations are locally given by [3]. If Q is
an infinite-dimensional Banach manifold, then T*Q is
a Poisson manifold locally isomorphic to V x V*
whose Poisson bracket is given by [5] and Hamilton’s
equations are locally given by [6].

Symplectic Manifolds

All the examples above are special cases of symplectic
manifolds (P, w). This means that P is equipped with
a symplectic structure w which is a closed (dw=0),
(weakly) nondegenerate 2-form on the manifold P.
Then, for any H € C>(P), the corresponding Hamil-
tonian vector field Xy is defined by dH =w(Xy, .)
and the canonical Poisson bracket is given by

(F.H} = w(Xy, Xy), F.HeC®(P)  [9]

For example, on R*" the canonical symplectic
structure w is given by w= Y"_,dp; Adg'=db,
where =", p;Adq'. The same formula for w
holds locally in T*Q for any finite-dimensional Q
(Darboux’s lemma). For the infinite-dimensional
example P=V x V*, the symplectic form w is given
by w((p1, 1), (2, ™)) = (1, m2) — (P2, ™). Again,
these two formulas for w are identical if V=R".

Remarks

(i) If P is a finite-dimensional symplectic manifold,
then P is even dimensional.

(ii) If the Poisson bracket {.,.} is nondegenerate,
then {.,.} comes form a symplectic form w, that
is, {.,.} is given by [9].

The Lie-Poisson Bracket

Not all Poisson brackets are of the from given in the
above examples [2], [5], and [9], that is, not all
Poisson manifolds are symplectic manifolds. An
important class of Poisson bracket is the so-called
Lie-Poisson bracket. It is defined on the dual of any
Lie algebra. Let G be a Lie group with Lie algebra
a=T,G =~ {left-invariant vector fields on G} and let
[.,.] denote the Lie bracket (commutator) on g. Let
a* be the dual of a g with respect to a pairing
(.,.):a" x @ — R. Then, for any F, H € C*(g*) and
i € g%, the Lie-Poisson bracket is defined by

Em@==(ul5])  ho
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where 6F/6u,H/6p € ¢ are the “duals” of the
gradients DF(u), DH(u) € ¢** ~ @ under the pairing
(.,.). Note that the Lie-Poisson bracket is degen-
erate in general, for example, for G=S0(3) the
vector space * is three dimensional, so the Poisson
bracket [10] cannot come from a symplectic
structure. This Lie-Poisson bracket can also be
obtained in a different way by taking the canonical
Poisson bracket on T*G (locally given by [2] and [5]
and then restrict it to the fiber at the identity
TG =g". In this sense, the Lie—Poisson bracket [10]
is induced from the canonical Poisson bracket
on T*G. It is induced by the symmetry of left-
multiplication, as discussed in the next section.

Example: rigid body A concrete example of the
Lie-Poisson bracket is given by the rigid body. Here
G =S0(3) is the configuration space of a free rigid
body. Identifying the Lie algebra (30(3),][.,.]) with
(R?, x ), where x is the vector product on R® and
a* =80(3)" ~ R, the Lie—Poisson bracket translates
into

{F, H}(m) = —m - (VF x VH) [11]
For any F € C>*(30(3)"), we have

dF .

— —m - (VF x VH) = VF - (m x VH)

hence 7 =m x VH. With the Hamiltonian

1 /(m* md m?
H—-(™M_ " "3
2<1% MER?

we get Hamilton’s equation as

m_IZ_Im . _I3—I

1 LI; 2ma3, my L m3mniy
) L -1
m3 = LI myniy

These are Euler’s equations for the free rigid body.

Reduction by Symmetries

The examples discussed so far are all canonical
examples of Poisson brackets, defined either on a
symplectic manifold (P,w) or T*Q, or on the dual of
a Lie algebra g*. Different, noncanonical Poisson
brackets can arise from symmetries. Assume that a
Lie group G is acting in a Hamiltonian way on the
Poisson manifold (P, {..}). This means that we have
a smooth map ¢p:GxP — P:p(g,p)=g-p such
that the induced maps ¢;=¢(g,.):P — P are
canonical transformations, for each g € G. In terms

of Poisson manifolds, a canonical transformation is
a smooth map that preserves the Poisson bracket.
So, the action of G on P is a Hamiltonian action if
ol F, HY ={¢;F, ozH} for all F,H € C*(P), g€ G.
For any ¢ € g, the canonical transformations @exp(ze)
generate a Hamiltonian vector field & on P and a
momentum map J:P — g* given by J(x)(£)=F(x),
which is Ad" equivariant.

If a Hamiltonian system Xp is invariant under a
Lie group action, that is, H(p,(x)) = H(x), then we
obtain a reduced Hamiltonian system on a reduced
phace space (reduced Poisson manifold). We recall
the Marsden—Weinstein reduction theorem:

Reduction Theorem For a Hamiltonian action of
a Lie group G on a Poisson manifold (P,{.,.}),
there is an equivariant momentum map J:P — g*,
and for every regular p € q* the reduced phase
space P, =] (u)/G, carries an induced Poisson
structure {.,.},, (G, the isotropy group). Any
G-invariant Hamiltonian H on P defines a
Hamiltonian H, on the reduced phase space P,
and the integral curves of the vector field Xy
project onto integral curves of the induced vector
field )A(Hﬂ on the reduced space P,,.

Example: rigid body The rigid body discussed
above can be viewed as an example of this
reduction theorem. If P=T*G and G is acting on
T*G by the cotangent lift of the left-translation
le:G — G,lg(h)=gh, then the momentum map
J:T°G — g* is given by J(ag)=T;R,(c,) and the
reduced phase space (T*G),=]"'(u)/G, is iso-
morphic to the coadjoint orbit O, through p € g*.
Each coadjoint orbit O, carries a natural symplec-
tic structure w, and in this case, the reduced Lie-
Poisson bracket {.,.}, on the coadjoint orbit O, is
induced by the symplectic form w, on O, as in [9].
Furthermore, T*G/G ~ g*, and the induced Pois-
son bracket {.,.}, on O, is identical with the Lie-
Poisson bracket restricted to the coadjoint orbit
O, C g*. For the rigid body this construction is
applied to G=S0(3).

We now discuss some infinite-dimensional exam-
ples of reduced Hamiltonian systems.

Infinite-Dimensional Lie Groups

A general theory of infinite-dimensional Lie groups
is hardly developed. Even Bourbaki only develops a
theory of infinite-dimensional manifolds, but all of
the important theorems about Lie groups are stated
for finite-dimensional ones.
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An infinite-dimensional Lie group G is a group
and an infinite-dimensional manifold with smooth
group operations

m:ng_’gv m(g,h)zg-h, c* [12]

i:G—¢, i(g=g"' C° [13]

Such a Lie group G is locally diffeomorphic to an
infinite-dimensional vector space. This can be a
Banach space whose topology is given by a norm
II-]l, a Hilbert space whose topology is given by an
inner product (.,.), or a Frechet space whose
topology is given by a metric but not by a norm.
Depending on the choice of the topology on G, the
Banach, Hilbert, or Frechet Lie groups, respectively,
can be treated.

The Lie algebra g of G is defined as

= {left-invariant vector fields on G} ~ T,G, where
the isomorphism is given (as in finite dimensions) by

€ € TG X*(g) = TeLy(€) [14]

and the Lie bracket on g is induced by the Lie bracket
of left-invariant vector fields [&,n]=
&neEQ.

These definitions in infinite dimensions are iden-
tical with the definitions in finite dimensions. The
big difference although is that infinite-dimensional
manifolds, hence Lie groups, are not locally com-
pact. For Frechet Lie groups, one has the additional
nontrivial difficulty of defining the differentiability
of functions defined on a Frechet space. Hence, the
very definition of a Frechet manifold is not
canonical. This problem does not arise for Banach
and Hilbert Lie groups; the differential calculus
extends in a straightforward manner from R” to
Banach and Hilbert spaces, but not to Frechet
spaces.

Finite- versus Infinite-Dimensional
Lie Groups

The lack of local compactness of infinite-dimensional
Lie groups causes some deficiencies of the Lie theory
in infinite dimensions. Some classical results in finite
dimensions are summarized below, which are not
true in general in infinite dimensions:

1. The exponential map exp:q — G is defined as
follows: To each &£ € @ we assign the correspond-
ing left-invariant vector field X¢ defined by [14].
We take the flow ¢f(t) of X¢ and define
exp(€£) = *(1). The exponential map is a local
diffeomorphism from a neighborhood of zero in g
onto a neighborhood of the identity in G; hence,

[X%, X"](e),

exp defines canonical coordinates on the Lie
group G. This is not true in infinite dimensions.

2. If f1,/,:Gy — G, are smooth Lie group
homomorphisms (i.e., fi(g - b) =fi(g) - fi(h),i=1,2)
with T,f1 =T,f>, then locally f; = fz ThlS is not
true in infinite dimensions.

3. If H is a closed subgroup of G, then H is a Lie
subgroup of G. This is not true in infinite
dimensions.

4. For any finite-dimensional Lie algebra g, there
exists a connected Lie group G whose Lie algebra
is g, that is, such that ¢ ~ T,G. This is not true in
infinite dimensions.

Some classical finite-dimensional examples of Lie
groups are the matrix groups GL(#n), SL(n), O(n),
SO(n), U(n), SU(n), Sp(n) with smooth group
operations given by matrix multiplication and
matrix inversion.

Examples of Infinite-Dimensional
Lie Groups

Abelian Gauge Group G=(C*(M), +)

Let M be a finite-dimensional manifold and let
G=C>*(M). With group operation being addition,
that is, m(f,g)=f+g i(f)=—f,e=0. G is an
abelian C* Frechet Lie group with Lie algebra
q=T,C®M) ~ C*(M), with trivial bracket
[£,m] =0, and exp =id. If one completes these spaces
in the Ck-norm, k < oo then G* is a Banach Lie
group, and if the H*-Sobolev norm is used with s >
(1/2) dim M then G° is a Hilbert Lie group.

Application of G=(C®(M), +) to Maxwell’s equa-
tions Let E, B be the electric and magnetic fields
on R3; then Maxwell’s equations for a charge
density p are:

E = curl B, B = —curlE [15]

divB =0, divE=p [16]

Let A be the magnetic potential such that B = —curl A.
As configuration space, we take V =Vec(R?),
vector fields (potentials) on R?, so A€V, and as
phase space, we have P=T*V ~V x V* (A E)
with the standard L? pairing (A,E) = [ A(x

and canonical Poisson bracket given by [5 ], Wthh
becomes

e - [(GEE -G e 17
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As Hamiltonian, we take the total electromagnetic
energy

H(A, E)= %/(|Curl Al* + [EP) dx

Then Hamilton’s equations in the canonical vari-
ables A and E are

. §H .
A__éE =E = B= —curlE
and
. SH
E = ~SA= —curlcurl A = curl B

So the first two equations of Maxwell’s equations [15]
are Hamilton’s equations, the third one is obtained
automatically from the potential divB = —divcurl A
=0 and the fourth equation, divE=p, is obtained
through the following symmetry (gauge invar-
iance): the Lie group G=(C=(R%), +) acts on V
by ¢-A=A+Vep,peG, AcV. The lifted action
to VxV* becomes ¢-(AE)=(A+Vp,E), and
has the momentum map J:V x V* — g* ~{charge
densities}

J(AE) = divE (18]

With g=C>(R%*) and g*=Den(R?), we identify
the elements of g* with charge densities. The
Hamiltonian H is G invariant, that is, H(p-
(A,E))= H(A+ Vy,E)=H(A,E). Then the reduced
phase space for p € g* is

(Vx V), =] ()/G=I(E, B)|divE=p, divB=0)
and the reduced Hamiltonian is

Hy(E B) =5 [(EF+BP) dr 19

The reduced Poisson bracket becomes, for any
functions F, H on (V x V¥) ,

{F, H} (E, B)
= /<%~curl %—%‘curl %)dx [20]
and a straightforward computation shows that
F={F H,},
{ E = curl B, B.: —curl E 1]
divB=0, divE=p

So, Maxwell’s equations [15], [16] form an infinite-
dimensional Hamiltonian system on this reduced
phase space with respect to the reduced Poisson
bracket.

Abelian Gauge Group G=(C>*(M,R —{0}), -)

Let M be a finite-dimensional manifold and let
G=C>*(M,R —{0}), the group operation being the
multiplication, that is, m(f,g) =1 - g, i(f) =f"',e=1.
For k < oo, C*(M, R — {0}) is open in C*(M, R), and
if M is compact then CK(M, R — {0}) is a Banach Lie
group. If s>(1/2)dim M then H’(M,R —{0}) is
closed under multiplication, and if M is compact
then H*(M, R — {0}) is a Hilbert Lie group.

Nonabelian Gauge Groups G=(CX(M, G), -)

The abelian example can be generalized by replacing
R — {0} with any finite-dimensional (nonabelian) Lie
group G. Let G=CKM,G) with pointwise group
operations m(f, g)(x) =f(x) - g(x),x € M and i(f)(x) =
(f(x))", where and “(.)™"” are the operations
in G. If k<oo then C(M,G) is a Banach Lie
group. Let g denote the Lie algebra of G, then the
Lie algebra of G=CKM,G) is g=C*M,g), with
pointwise Lie bracket [£,n](x)=[&(x),n(x)],x € M,
the latter bracket being the Lie bracket in g.
The exponential map exp:g — G defines the
exponential map EXP:q=CKM,g) — G=CkM,G),
EXP(§)=expo&, which is a local diffeomorphism.
The same holds for H*(M, G) if s> (1/2)dim M.

Applications of these infinite-dimensional Lie
groups are in gauge theories and quantum field
theory, where they appear as groups of gauge
transformations.

@

Loop Groups G=CX(S', G)

As a special case of the example above, we take
M=S", the circle. Then G=CKS', G)=L*G) is
called a loop group and g = Ck(S!, g) = I*(g) its loop
algebra. They find applications in the theory of
affine Lie algebras, Kac-Moody Lie algebras (central
extensions), completely integrable systems, soliton
equations (Toda, Korteweg-de Vries (KdV),
Kadomtsev—Petviashvili (KP)), quantum field theory.
Central extensions of Loop algebras are examples of
infinite-dimensional Lie algebras which need not
have a corresponding Lie group.

Diffeomorphism Groups

Among the most important “classical” infinite-
dimensional Lie groups are the diffeomorphism
groups of manifolds. Their differential structure is
not the one of a Banch Lie group as defined above.
Nevertheless, they have important applications.

Let M be a compact manifold (the noncompact
case is technically much more complicated but
similar results are true) and let G=Diff(M) be
the group of all smooth diffeomorphisms on M,
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group operation being the composition, that is,
m(f,g)=fog, ilf)=f", e=idy. For C> diffeo-
morphisms, Diff>(M) is a Frechet manifold and
there are nontrivial problems with the notion
of smooth maps between Frechet spaces. There is
no canonical extension of the differential calculus
from Banach spaces (same as for R”) to Frechet
spaces. One possibility is to generalize the notion
of differentiability. For example, if we use the
so-called Cp differentiability, then G=Diff*(M)
becomes a C¥ Lie group with C differentiable
group operations. These notions of differentiability
are difficult to apply to concrete examples.
Another possibility is to complete Diff>*(M) in
the Banach C*-norm, 0 < k < oo, or in the Sobolev
Hs-norm, s> (1/2) dim M; Diff*(M) and Diff'(M)
become, in this case, Banach and Hilbert mani-
folds, respectively. Then we consider the inverse
limits of these Banach and Hilbert Lie groups,
respectively:

Diff>* (M) = lim Diff*(M) 22]

becomes the so-called inverse limit of Banach (ILB)
Lie group, or with the Sobolev topologies

Diff**(M) = lim Diff* (M) 23]

becomes the so-called inverse limit of Hilbert (ILH)
Lie group. Nevertheless, the group operations are
not smooth, but have the following differentiability
properties. If the diffeomorphism group is equipped
with the Sobolev Hf-topology, then Diff'(M)
becomes a C* Hilbert manifold if s> (1/2)dim M
and the group multiplication

m : Diff ** (M) x Diff'(M) — Diff (M)  [24]

is Ck differentiable; hence, for k=0, m is only
continuous on Diff’(M). The inversion

i : Diff** (M) — Diff (M) 25]

is Ck differentiable; hence, for k=0,i is only
continuous on Diff'(M). The same differentiability
properties of 72 and i hold in the C* topology. This
situation leads to the notion of nested Lie groups.

The Lie algebra of Diff*(M) is given by
q=T,Diff™(M) ~ Vec™(M), the space of smooth
vector fields on M. Note that the space Vec(M)
of all vector fields is a Lie algebra only for C*
vector fields, but not for Ck or H® vector fields if
k < 00, s < 0o, because one loses derivatives by
taking brackets.

The exponential map on the diffeomorphism
group is given as follows: for any vector field X €
Vec™(M) take its flow ¢; € Diff**(M), then define

EXP:Vec™®(M) — Diff*(M): X — ¢4, the flow at
time ¢ =1. The exponential map EXP is not a local
diffeomorphism; it is not even locally surjective.

Applications of Diff*(M) occur in general rela-
tivity, where the diffeomorphism group plays the
role of a symmetry group of coordinate transforma-
tions. Let (M, g) be a Lorentz 4-manifold. Then the
vacuum Einstein’s field equations are

Ric(g) =0

These are invariant under coordinate transfor-
mations, that is, under the action of Diff™(M).
Moreover, Einstein’s field equations form a
Hamiltonian system on the space P ={metrics
on M}/Diff*(M).

Subgroups of Diff* (M)

Several subgroups of Diff™(M) have important
applications.

Group of volume-preserving diffeomorphisms Let
p be a volume on M and G=Diff(M)={f €
Diff>(M) | f*=p} the group of volume-preserving
diffeomorphisms. Diff (M) is a closed subgroup of
Diff*(M) with Lie algebra g=Vec)’(M)={X €
Vec™ (M) | div,X =0} the space of divergence free
vector fields on M. Vec*(M) is a Lie subalgebra of
Vec™(M).

Remark: We can neither apply the finite-
dimensional theorem that if Vec)’(M) is Lie algebra
then there exists a Lie group whose Lie algebra it is;
nor that if Diff (M) C Diff(M) is a closed subgroup
then it is a Lie subgroup.

Applications of Diffff(M) occur, for example, in
fluid dynamics. Euler’s equations for an incompres-

sible fluid,

@—FM'VM:—VP,

oy divu =0 [26]

are equivalent to the equations of geodesics on

Diff’ (M).

Symplectomorphism group Let w be a symplectic
2-from on M and G=Diff(M)={f € Diff(M) |
f*w=w} the group of canonical transformations (or
symplectomorphisms). Diff;(M) is a closed sub-
group of Diff™(M) with Lie algebra g =Vec>(M)=
{X € Vec*(M) | Lxw=0} the space of locally
Hamiltonian vector fields on M. Vec ' (M) is a Lie
subalgebra of Vec™(M).

Applications of symplectomorphism groups occur,
for example, in plasma physics. Maxwell-Vlasov’s
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equations for a plasma density f(x, v, t) generating
the electric and magnetic fields E and B are

of of of

S+ et (E+vxB)2-=0

0B OE [27]
e —curl E, e curl B — J¢

divE = py, divB =0

where J; and p; are the current and charge densities,
respectively. This coupled nonlinear system of
evolution equations is an infinite-dimensional
Hamiltonian system of the form F={F, H}, on the
reduced phace space

MV = (T*Diff>*(R®) x T*V)/C>(R®) 28]

of

(V is the same space as in the example of Maxwell’s
equations) with respect to the following reduced
Poisson bracket, which is induced via gauge sym-
metry from the canonical Poisson bracket on
T*Diff>*(R®) x T*V:

{F. G}, (. E. B)

Ji(f e

+/ E-c rlE—E-c rlE dx dv
oE 5B T sE ""sB

§F Of 6G G Of 6F

06F 096G
and with Hamiltonian

H(f,E, B) = %/sz(x, v, t)dv
45 [P+ B [30)

More complicated plasma models are formulated
as Hamiltonian systems. For example, for the
two-fluid model the phase space is constituted by
coadjoint orbits of the semidirect product (x) of the
group G=Diff*(R®) x(C®(R®) x C*(R®)). For the
MHD model: G=Diff* (R°) x (C*(R®) x Q*(R?)).

The KdV Equation and Fourier Integral
Operators

There are many known examples of PDEs which are
infinite-dimensional Hamiltonian systems, such as the
Benjamin—Ono, Boussinesq, Harry Dym, KdV, and KP
equations and others. In many cases, the Poisson
structures and Hamiltonians are given ad hoc on a
formal level. This is illustrated here with the KdV

equation, where at least one of the three known
Hamiltonian structures is well understood.
The KdV equation

Uy + 6utty + thyyy = 0 [31]

is an infinite-dimensional Hamiltonian system with
the Lie group of invertible Fourier integral operators
being a symmetry group. Gardner found that with the
bracket

M 6F 0 6G
and Hamiltonian
2T
H(u) = / (1 + 113)dx 33]
0

u satisfies the KdV equation [31] if and only if
u={u, H}

An important question concerns the origin of the
Poisson bracket [32] and Hamiltonian [33]. It was
shown earlier that this bracket is the Lie-Poisson
bracket on a coadjoint orbit of Lie group G = FIO, the
group of invertible Fourier integral operators on the
circle S'. The latter is discussed briefly in the following.

A Fourier integral operator on a compact mani-
fold M is an operator

A: C®(M) — C*(M) [34]
locally given by

A(u)(x) = (2m) " / / 45 a(x, Eyu(y)dyde [35]

where ©(x,y,£) is a phase function with certain
properties and the symbol a(x, &) belongs to a certain
symbol class. A pseudodifferential operator is a
special kind of Fourier integral operators, locally of
the form

P)x) = @n) " [ [ p(x, uty)dyde (36

Denote by FIO and ¥DO the groups under composi-
tion (operator product) of invertible Fourier integral
operators and invertible pseudodifferential operators
on M, respectively. Then we have the following results.

Both groups YDO and FIO are smooth infinite-
dimensional ILH Lie groups. The smoothness
properties of the group operations (operator multi-
plication and inversion) are similar to the case of
diffeomorphism groups [24] and [25]. The Lie
algebra of both ILH Lie groups ¥DO and FIO is
the Lie algebra of all pseudodifferential operators
under the commutator bracket. Moreover, FIO is a
smooth infinite-dimensional principal fiber bundle
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over the diffeomorphism group of canonical trans-
formations Diff(T*M — {0}) with structure group
(gauge group) ¥DO.

For the KdV equation, we take the special case
where M =S'. Then the Gardner bracket [32] is the
Lie-Poisson bracket on the coadjoint orbit of FIO
through the Schrodinger operator P € ¥DO. Com-
plete integrability of the KdV equation follows from
the infinite system of conserved integrals in involu-
tion given by Hj =tr(P*); in particular, the Hamil-
tonian [33] equals H = H,.

See also: Bi-Hamiltonian Methods in Soliton Theory;
Functional Integration in Quantum Physics; Hamiltonian
Fluid Dynamics; Hamiltonian Systems: Obstructions to
Integrability; Korteweg—de Vries Equation and Other
Modulation Equations; Symmetries and Conservation Laws.
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Introduction

Let X be a closed (connected, compact without
boundary) smooth manifold of dimension 4, pro-
vided with a Riemannian metric denoted by g. Let
0f denote space of smooth p-forms on X, that is,
the sections of A’TX. The Hodge operator acting on
p-forms,

o4 4-p
* 0 Oy — Oy

satisfies *>=(—1)". In particular,  splits Q% into
two subspaces Qi’i with eigenvalues +1:

0% =05 90y 1]

Note also that this decomposition is an orthogonal
one, with respect to the inner product:

(w1, ws) :/wl A *w)
X

A 2-form w is said to be self-dual if *w=w and it
is said to be anti-self-dual if *w= —w. Any 2-form w
can be written as the sum

w=w"+w"

of its self-dual w and anti-self-dual w™ components.

Fourier Integral Operators, with Applications, MSRI Publica-
tions, vol. 4. New York: Springer.

Chernoff P and Marsden JE (1974) Properties of Infinite
Dimensional Hamiltonian Systems, Lecture Notes in Mathe-
matics, vol. 425. New York: Springer.

Marsden JE and Ratiu T (1994) Introduction to Mechanics and
Symmetry. New York: Springer.

Marsden JE, Ebin GD, and Fischer A (1972) Diffeomorphism
groups, hydrodynamics and relativity. In: Vanstone JR (ed.)
Proc. 13th Biennial Sem. Canadian Math. Congress, pp.
135-279. Montreal.

Marsden JE, Weinstein A, Ratiu T, Schmid R, and Spencer RG
(1983) Hamiltonian systems with symmetry, coadjoint orbits
and plasma physics. A#ti Accad. Sci. Torino 117(Suppl.):
289-340.

Olver PJ (1993) Applications of Lie Groups to Differential
Equations. New York: Springer.

Palais R (1968) Foundations of Global Nonlinear Analysis.
Reading, MA: Addison-Wesley.

Schmid R (1987) Infinite Dimensional Hamiltonian Systems.
Lecture Notes, vol. 3. Naples: Bibliopolis.

Temam R (1988) Infinite Dimensional Dynamical Systems in
Mechanics and Physics. New York: Springer.

Now let E be a complex vector bundle over X as
above, provided with a connection V, regarded as a
C-linear operator

V:I'(E)—T(E)® Q%
satisfying the Leibnitz rule:
V(fo)=fVo+oxdf

for all fe€ C®X) and o e€T(E). Its curvature
Fy =V oV is a 2-form with values in End(E), that
is, Fy € I(End(E)) ® Q%, satisfying the Bianchi
identity VFy =0.

The Yang-Mills equation is

V#«Fy =0 2]

It is a second-order nonlinear equation on the
connection V. It amounts to a nonabelian general-
ization of Maxwell equations, to which it reduces
when E is a line bundle; the four components of V
are interpreted as the electric and magnetic
potentials.

An instanton on E is a smooth connection V
whose curvature Fy is anti-self-dual as a 2-form,
that is, it satisfies:

F$ = 07 that iS, x* Fy = —Fy [3]

The instanton equation is still nonlinear (it is linear
only if E is a line bundle), but it is only first-order
on the connection.
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Note that if Fy is either self-dual or anti-self-dual
as a 2-form, then the Yang-Mills equation is
automatically satisfied:

xFy =+Fy = VxFy =4+VFy =0

by the Bianchi identity. In other words, instantons
are particular solutions of the Yang-Mills equation.
Furthermore, while the Yang-Mills equation [2]
makes sense over any Riemannian manifold, the
instanton equation [3] is well defined only in
dimension 4.

A gauge transformation is a bundle automorphism
g:E— E covering the identity. The set of all gauge
transformations of a given bundle E— X forms a
group through composition, called the gauge group
and denoted by G(E). The gauge group acts on the
set of all smooth connections on E by conjugation:

g-V=g'Vg

It is then easy to see that [3] is a gauge-invariant
condition, since F,v =g 'Fyg. The anti-self-duality
equation [3] is also conformally invariant: a con-
formal change in the metric does not change the
decomposition [1], so it preserves self-dual and
anti-self-dual 2-forms.

The topological charge k of the instanton V is
defined by the integral

1
k= —W/Xtr(Fv/\Fv)

= er(E) 3 (EY 4
where the second equality follows from Chern-Weil
theory.

If X is a smooth, noncompact, complete Rieman-
nian manifold, an instanton on X is an anti-self-dual
connection for which the integral [4] converges.
Note that, in this case, k& as above need not be an
integer; however, it is always expected to be
quantized, that is, always a multiple of some fixed
(rational) number which depends only on the base
manifold X.

Summary This note is organized as follows.
After revisiting the variational approach to the
anti-self-duality equation [3], we study instantons
over the simplest possible Riemannian 4-manifold,
R* with the flat Euclidean metric. In the subse-
quent sections, we present 't Hooft’s explicit
solutions, the ADHM construction, and its dimen-
sional reductions to R*, R? and R. We conclude by
explaining the construction of the central object of
study in gauge theory, the instanton moduli
spaces.

Variational Aspects of Yang-Mills
Equation

Given a fixed smooth vector bundle E — X, let A(E)
be the set of all (smooth) connections on E. The
Yang-Mills functional is defined by

YM : A(E)— R

YM(V) = HFvHiz :/ tI'(FV A\ *Fv) [5}
M

The Euler-Lagrange equation for this functional is
exactly the Yang-Mills equation [2]. In particular,
self-dual and anti-self-dual connections yield critical
points of the Yang-Mills functional.

Splitting the curvature into its self-dual and
anti-self-dual parts, we have

YM(V) = |FS 72 + |IFg Iz

It is then easy to see that every anti-self-dual
connection V is an absolute minimum for the
Yang-Mills functional, and that YM(V) coincides
with the topological charge [4] of the instanton V
times 87°.

One can construct, for various 4-manifolds but
most interestingly for X =S* solutions of the
Yang-Mills equations which are neither self-dual
nor anti-self-dual. Such solutions do not minimize
[5]. Indeed, at least for gauge group SU(2) or
SU(3), it can be shown that there are no other
local minima: any critical point which is neither
self-dual nor anti-self-dual is unstable and must be
a “saddle point” (Bourguignon and Lawson
Jr. 1981).

Instantons on Euclidean Space

Let X=R* with the flat Euclidean metric, and
consider a Hermitian vector bundle E—R*. Any
connection V on E is of the form d + A, where d
denotes the usual de Rham operator and A €
[(End(E)) ® Qp, is a 1-form with values in the
endomorphisms of E; this can be written as follows:

4
A= "Apdx*, A RY—>u(r)
k=1

In the Euclidean coordinates xi, x», x3, x4, the
anti-self-duality equation [3] is given by

Fip = F34, Fi3=—Fy, Fu4=0F3
where

g _0A; 0A
v ax,' 8x,~

+ [AhAi]
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The simplest explicit solution is the charge-1 SU(2)
instanton on R*. The connection 1-form is given by

=TT P Im(qdq) [6]
where g is the quaternion g =2x1 + x2¢ + x3j + x4k,
while Im denotes the imaginary part of the product
quaternion; we are regarding i, j, k as a basis of the
Lie algebra 511(2); from this, one can compute the
curvature:

2
1 _
Fa, = <1 n |x|2> -Im(dg A dg) [7]

We see that the action density function

1 2
Falf=|—
[Fao| <1+|x|2>

has a bell-shaped profile centered at the origin and
decays like 74.

Let t),:R* = R* be the isometry given by the
composition of a translation by ye R* with a
homothety by A € R*. The pullback connection
t3,,Ao is still anti-self-dual; more explicitly,

)\2

2 ?
Fao = [—2 ) Im(dgAdg
Any )\2+|x_y|2 ( q q)

Note that the action density function |F4|* has again
a bell-shaped profile centered at y and decays like
r~*; the parameter A\ measures the concentration of
the energy density function, and can be interpreted
as the “size” of the instanton A, ,.

Instantons of topological charge k can be obtained
by “superimposing” k basic instantons, via the so-

-Im(qdq)

called ’t Hooft ansatz. Consider the function
p:R4 — R given by
I
o) =143
=1 (x — y;’)z

where \; € R and y; € R*. Then the connection
1-form A=A, dx, with coefficients

4
e =i (o)) 8
v=1 v

is anti-self dual; here, 7, are the matrices given by
(/.t, v=1,2,3):
1 1

= [0—/1,3 O—u} 0_'/1,4 = i Opu

41

Ouy =

where o0, are the Pauli matrices.

The connection [8] correspond to k instantons
centered at points y; with size ). The basic
instanton [6] is exactly (modulo gauge transforma-
tion) what one obtains from [8] for the case k=1.
The ’t Hooft instantons form a Sk-parameter family
of anti-self-dual connections.

SU(2) instantons are also the building blocks for
instantons with general structure group (Bernard
etal. 1977). Let G be a compact semisimple Lie group,
with Lie algebra g. Let ¢: 31(2) — @ be any injective
Lie algebra homomorphism. If A is an anti-self-dual
SU(2) connection 1-form, then it is easy to see that
¢(A) is an anti-self-dual G-connection 1-form. Using
[8] as an example, we have that

A=Y 000) o (o), 19

v

is a G-instanton on R*.

While this guarantees the existence of G-instan-
tons on R*, note that the instanton [9] might be
reducible (e.g., ¢ can simply be the obvious
inclusion of 311(2) into 3ii(n) for any #) and that
its charge depends on the choice of representation ¢.
Furthermore, it is not clear whether every
G-instanton can be obtained in this way, as the
inclusion of a SU(2) instanton through some
representation ¢: s1(2) — g.

The ADHM Construction

All SU(#) instantons on R* can be obtained through
a remarkable construction due to Atiyah, Drinfeld,
Hitchin, and Manin. It starts by considering
Hermitian vector spaces V and W of dimension ¢
and 7, respectively, and the following data (the so-
called ADHM data):

Bi,B; € End(V), i € Hom(W, V)
j € Hom(V, W)

Assume, moreover, that (By,B,,i,j) satisfy the
ADHM equations:

[B1,By] +1j=0 [10]

[Bi,B] + [B2,BY] +ii —jlj=0 [11]
Now consider the following maps

a:VxR*= (Vo Ve W) xR?
B:(VaVaW)xR*-VxR*
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given as follows (1 denotes the appropriate identity

matrix):
B +z11
a(Z1, Zz) =| B, + 1 [12]

]

B(z1,22) = (—Ba —221 Bi+z11 i) [13]

where z1=x1 +ix; and z; =x3 +ix4 are complex
coordinates on R*. The maps [12] and [13] should
be understood as a family of linear maps parame-
trized by points in R?.

A straightforward calculation shows that the ADHM
equation [10] implies that Sa=0 for every (z1,22) €
R*. Therefore, the quotient E = ker 3/im o= ker 3N
ker af forms a complex vector bundle over R* or rank r
whenever (B1, By, 1,7) is such that « is injective and f3 is
surjective for every (z1,22) € R*.

To define a connection on E, note that E can be
regarded as a sub-bundle of the trivial bundle (V &
Ve W) xR Soleti:E— (V& Ve W) x R* be the
inclusion, and let P:(V® V@& W) x R* > E be the
orthogonal projection onto E. We can then define a
connection V on E through the projection formula

Vs = Pd.(s)

where d denotes the trivial connection on the trivial
bundle (V& V& W) x R*.

To see that this connection is anti-self-dual, note
that projection P can be written as follows:

P=1-Di="'D
where

D:(VaVa W) xR'*—= (Va V) xR

2= ()

and Z="DD'. Note that D is surjective, so that = is
indeed invertible. Moreover, it also follows from
[11] that 88" =ala, so that =21 = (381) 1.

The curvature Fy is given by

Fo :P(c_z’(l — D}E*lp)c_i) = P(dD'="1(dD))

=P((dD")="!(dD) + D'd(="' (dD))
=(dD")="'(dD)

for P(D'd(=(dD))) =0 on E = kerD. Since = is
diagonal, we conclude that Fy is proportional to
dD' A dD, as a 2-form.

It is then a straightforward calculation to show
that each entry of dD' A dD belongs to Q% .

The extraordinary accomplishment of Atiyah, Drin-
feld, Hitchin, and Manin was to show that every

instanton, up to gauge equivalence, can be obtained in
this way (see, e.g., Donaldson and Kronheimer 1990).
For instance, the basic SU(2) instanton [6] is associated
with the following data (c=1,7=2):

Bk =0. i=(p). i=(0 1)

Remark The ADHM data (By, B;,4,j) are said to
be stable if /3 is surjective for every (z1,2>) € R*, and
it is said to be costable if « is injective for every
(z1,22) € R*. (By, Ba, i, ) is regular if it is both stable
and costable. The quotient:

{regular solutions of (10) and (11)}/U(V)

coincides with the moduli space of instantons
of rank r=dim W and charge c=dim V on R* (see
below). It is also an example of a quiver variety (see
Finite Dimensional Algebras and Quivers), asso-
ciated to the quiver consisting of two vertices V and
W, two loop-edges on the vertex V and two edges
linking V to W, one in each direction.

Dimensional Reductions of the
Anti-Self-Dual Yang-Mills Equation

As pointed out above, a connection on a Hermitian
vector bundle E — R* of rank r can be regarded as
1-form

A:

Ak(xl,...,x4)dxk, Ak : R4—>ll(7’)

~
Il ~
—

Assuming that the connection components A, are
invariant under translation in one direction, say x4,
we can think of

3
A= ZAk(xlaxlvx3)dxk
k=1

as a connection on a Hermitian vector bundle over
R, with the fourth component ¢=A4 being
regarded as a bundle endomorphism ¢:E—E,
called a Higgs field. In this way, the anti-self-duality
equation [3] reduces to the so-called Bogomolny (or
monopole) equation:

Fy = xd¢ [14]
where x is the Euclidean Hodge star in dimension 3.
Now assume that the connection components Ay

are invariant under translation in two directions, say
x3 and x4. Consider

2
A= Ap(xr,xp)dx*
=
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as a connection on a Hermitian vector bundle over
R?, with the third and fourth components combined
into a complex bundle endomorphism:

= (A3 +1- A4)(dx1 —1- dxz)

taking values on 1-forms. The anti-self-duality
equation [3] is then reduced to the so-called
Hitchin’s equations:

Fy=[®,®, 0a®=0 [15]

Conformal invariance of the anti-self-duality equa-
tion means that Hitchin’s equations are well defined
over any Riemann surface.

Finally, assume that the connection components Ay
are invariant under translation in three directions, say
x2,x3, and x4. After gauging away the first compo-
nent Ay, the anti-self-duality equations [3] reduce to
the so-called Nahm’s equations:

dT
dx1 Z szl

where each T}, is regarded as a map R — u(r).

Readers who are interested in monopoles and
Nahm’s equations are referred to the survey
by Murray (2002) and references therein. The best
source for Hitchin’s equations still are Hitchin’s
(1987a, b) original papers. A beautiful duality,
known as Nahm transform, relates the various
reductions of the anti-self-duality equation to periodic
instantons; see the survey article by Jardim (2004).

It is also worth mentioning the book by Mason
and Woodhouse (1996), where other interesting
dimensional reductions of the anti-self-duality equa-
tion are discussed, providing a deep relation
between instantons and the general theory of
integrable systems.

Tl _0 ]7kvl:{253>4} [16]

The Instanton Moduli Space

Now fix a rank-r complex vector bundle E over a
four-dimensional Riemannian manifold X. Observe
that the difference between any two connections is a
linear operator:

(V-V')fo)=fVo+o-df —fVo—0o-df

=f(V-=V)o

In other words, any two connections on E differ by
an endomorphism-valued 1-form. Therefore, the set
of all smooth connections on E, denoted by A(E),
has the structure of an affine space over
['(End(E)) ® Q.

The gauge group G(E) acts on A(E) via
conjugation:
g-Vi=¢g'Vg
We can form the quotient set B(E) E)/G(E

which is the set of gauge equlvalence classes of
connections on E.

The set of gauge equivalence classes of anti-self-
dual connections on E is a subset of B(E), and it is
called the moduli space of instantons on E — X. The
subset of Mx(E) consisting of irreducible anti-self-
dual connections is denoted MY (E).

Since the choice of a particular vector bundle
within its topological class is immaterial, these sets
are usually labeled by the topological invariants
(Chern or Pontrjagyn classes) of the bundle E. For
instance, M(r,k) denotes the moduli space of
instantons on a rank-r complex vector bundle
E— X with ¢{(E)=0 and c¢(E)=%k > 0. It turns
out that Mx(E) can be given the structure of a
Hausdorff topological space. In general, Mx(E) will
be singular as a differentiable manifold, but M/(E)
can always be given the structure of a smooth
Riemannian manifold.

We start by explaining the notion of a LIZ7 vector
bundle. Recall that L;(R”) denotes the completion
of the space of smooth functions f:R” —C with
respect to the norm:

IF1E; = [ QFF + I+ -+ 147

In dimension 7=4 and for p > 2, by virtue of the
Sobolev embedding theorem, LIZ7 consists of continu-
ous functions, i.e., L;(R") C C*(R"). So we define
the notion of a L? vector bundle as a topological
vector bundle whose transition functions are in L2
where p > 2.

Now for a fixed LZZ7 vector bundle E over X, we can
consider the metric space A, (E) of all connections on
E which can be represented locally on an open subset
UcXasa L%(U) 1-form. In this topology, the subset
of irreducible connections A;(E) becomes an open
dense subset of A,(E). Since any topological vector
bundle admits a compatible smooth structure, we may
regard L2 connections as those that differ from a
smooth connectlon by a L2 1-form. In other words,
Ap(E) becomes an affine space modeled over the
Hilbert space of L2 1-forms with values in the
endomorphisms of E. The curvature of a connection
in A,(E) then becomes a L2 | 2-form with values in
the endomorphism bundle End(E).

Moreover, let G, 1(E) be defined as the topolo-
gical group of all L127+1 bundle automorphisms. By
virtue of the Sobolev multiplication theorem,
Gp+1(E) has the structure of an infinite-dimensional
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Lie group modeled on a Hilbert space; its Lie
algebra is the space of L;H sections of End(E).

The Sobolev multiplication theorem is once again
invoked to guarantee that the action G,i(E) X
Ay(E)— Ay(E) is a smooth map of Hilbert mani-
folds. The quotient space B,(E)=A,(E)/Gpi1(E)
inherits a topological structure; it is a metric (hence
Hausdorff) topological space. Therefore, the sub-
space Mx(E) of B,(E) is also a Hausdorff topolo-
gical space; moreover, one can show that the
topology of Mx(E) does not depend on p.

The quotient space B,(E) fails to be a Hilbert
manifold because in general the action of G, 1(E) on
Ap(E) is not free. Indeed, if A is a connection on a
rank-r complex vector bundle E over a connected
base manifold X, which is associated with a
principal G-bundle. Then the isotropy group of A
within the gauge group

F'r={g€Gy(E)lg(A) = A}

is isomorphic to the centralizer of the holonomy
group of A within G.

This means that the subspace of irreducible connec-
tions A, (E) can be equivalently defined as the open
dense subset of A, (E) consisting of those connections
whose isotropy group is minimal, that is,

AL (E) = {A € Ay(E)|T'a = center(G)}

Now G, 11(E) acts with constant isotropy on A, (E);
hence, the quotient B, (E)= A (E)/Gy+1(E) acquires
the structure of a smooth Hilbert manifold.

Remark The analysis of neighborhoods of points
in B,(E)\B,(E) is very relevant for applications of
the instanton moduli spaces to differential topology.
The simplest situation occurs when A is an SU(2)
connection on a rank-2 complex vector bundle E
which reduces to a pair of U(1) and such [A] occurs
as an isolated point in BP(E)\B;(E). Then a
neighborhood of [A] in B,(E) looks like a cone on
an infinite-dimensional complex projective space.

Alternatively, the instanton moduli space Mx(E)
can also be described by first taking the subset of all
anti-self-dual connections and then taking the
quotient under the action of the gauge group.
More precisely, consider the map

p: Ap(E)— L2(End(E) ® Qy")

[17]
p(A) = F;

Thus, p~1(0) is exactly the set of all anti-self-dual
connections. It is G,,1(E)-invariant, so we can take
the quotient to get

Mx(E) = p~(0)/Gp 1 (E)

It follows that the subspace MY(E)=DB,(E)N
Mx(E) has the structure of a smooth Hilbert
manifold. Index theory comes into play to show
that M (E) is finite dimensional. Recall that if D is
an elliptic operator on a vector bundle over a
compact manifold, then D is Fredholm (i.e., ker D
and coker D are finite dimensional) and its index

ind D = dimker D — dim coker D

can be computed in terms of topological invariants,
as prescribed by the Atiyah-Singer index theorem.
The goal here is to identify the tangent space of
M (E) with the kernel of an elliptic operator.

It is clear that, for each A € A,(E), the tangent
space Ty Ay(E) is just L%(End(E) ® Q%). We define
the pairing

(a, b) :/a/\*b 18]
X

and it is easy to see that this pairing defines a
Riemannian metric (the so-called L*-metric) on A, (E).

The derivative of the map p in [17] at the point A
is given by

d} - Ly (End(E) ® Q%) — L, (End(E) ® QF)
a— (dpa)”

so that for each A € p7'(0) we have

Tap~1(0) = {a € L2(End(E)) ® Q% |dja = 0}

Now for a gauge equivalence class [A] € B,(E), the
tangent space TiaB,(E) consists of those 1-forms
which are orthogonal to the fibers of the principal
Gp+1(E) bundle A (E) — B, (E). At a point A € A,(E),
the derivative of the action by some g € G,,1(E) is

—dya : L, (End(E)) — L;(End(E) ® Q)

Usual Hodge decomposition gives us that there is an
orthogonal decomposition:

L;(End(E) ® Q) = imd, & ker d;
which means that:
T B, (E) = {a € L2(End(E) ® Q) | dja = o}

Thus, the pairing [18] also defines a Riemannian
metric on B;(E). Putting these together, we conclude
that the space Tja MYy tangent to MY(E) at an
equivalence class [A] of anti-self-dual connections
can be described as follows:

Tio Mx(E)
- {a € L2(End(E) @ Q)| dya = dja = o} [19]
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It turns out that the so-called deformation operator
op= djg B dy:

64 : L;(End(E) @ Q)
— L, ,(End(E)) & L, ,(End(E) ® Q%)

is elliptic. Moreover, if A is anti-self-dual then coker
6a is empty, so that TjaMY(E)= kerbds. The
dimension of the tangent space Tja]MX(E) is then
simply given by the index of the deformation
operator §4. Using the Atiyah-Singer index theorem,
we have for SU(r) bundles with ¢, (E) = k:

dim M3(E) = 4rk — (* — 1)(1 — b1 (X) + b (X))

The dimension formula for arbitrary gauge group G
can be found in Atiyah ez al. (1978).

For example, the moduli space of SU(2) instantons
on R* of charge k is a smooth Riemannian manifold
of dimension 8k — 3. These parameters are inter-
preted as the 5k parameters describing the positions
and sizes of k separate instantons, plus 3(k — 1)
parameters describing their relative SU(2) phases.

The detailed construction of the instanton moduli
spaces can be found in Donaldson and Kronheimer
(1990). An alternative source is Morgan’s lecture
notes (Friedman and Morgan 1998). It is interesting
to note that M5 /(E) inherits many of the geometrical
properties of the original manifold X. Most notably,
if X is a Kéhler manifold, then MY(E) is also
Kihler; if X is a hyper-Kédhler manifold, then M (E)
is also hyper-Kahler. One expects that other
geometric structures on X can also be transferred
to the instanton moduli spaces MY (E).

See also: Characteristic Classes; Finite-Dimensional
Algebras and Quivers; Gauge Theoretic Invariants

of 4-Manifolds; Gauge Theory: Mathematical
Applications; Integrable Systems: Overview; Index
Theorems; Moduli Spaces: An Introduction; Solitons and
Other Extended Field Configurations; Twistor Theory:
Some Applications [in Integrable Systems, Complex
Geometry and String Theory].

Further Reading

Atiyah MF, Hitchin NJ, and Singer IM (1978) Self-duality in
four-dimensional Riemannian geometry. Proceedings of the
Royal Society of London 362: 425-461.

Bernard CW, Christ NH, Guth AH, and Weinberg EJ (1977)
Pseudoparticle parameters for arbitrary gauge groups. Physical
Review D 16: 2967-2977.

Bourguignon JP and Lawson HB Jr. (1981) Stability and isolation
phenomena for Yang-Mills fields. Communications in Math-
ematical Physics 79: 189-230.

Donaldson SK and Kronheimer PB (1990) Geometry of Four-
Manifolds. Oxford: Clarendon.

Friedman R and Morgan JW (eds.) (1998) Gauge Theory and the
Topology of Four-Manifolds. Providence, RI: American
Mathematical Society.

Hitchin N (1987a) The self-duality equations on a Riemann
surface. Proceedings of the London Mathematical Society 535:
59-126.

Hitchin N (1987b) Stable bundles and integrable systems. Duke
Mathematical Journal 54: 91-114.

Jardim M (2004) A survey on Nahm transform. Journal of
Geometry and Physics 52: 313-327.

Mason L] and Woodhouse NM] (1996) Integrability, Self-duality,
and Twistor Theory. New York, NY: Clarendon.

Murray M (2002) Monopoles. In: Bouwknegt P and Wu S (eds.)
Geometric Analysis and Applications to Quantum Field Theory,
Progr. Math. vol. 205, pp. 119-135. Boston, MA: Birkhauser.

Integrability and Quantum Field Theory

T J Hollowood, University of Wales Swansea,
Swansea, UK

© 2006 Elsevier Ltd. All rights reserved.

Introduction

The notion of integrability plays many different roles
in quantum field theory (QFT). In this article we
interpret it in a narrow sense and describe some QFTs
that are completely integrable, in the sense that there
are as many integrals of motion as degrees of freedom.
Necessarily this implies, since we are talking about
field theories, that there is an infinite number of
conserved quantities. The existence of such a tower of
conserved quantities of increasing Lorentz spin
implies, via the Coleman—-Mandula theorem, that the
theories are trivial in spacetime dimensions greater

than 2. On the other hand, in 1 4 1 dimensions there is
a rich menagerie of such integrable quantum field
theories (IQFTs). These theories are fascinating in their
own right as nontrivial QFTs for which data like the
S-matrix and spectrum can be determined exactly. We
will describe these exact S-matrices for a series of
seminal examples. In addition, we briefly describe the
applications of these theories to statistical systems in
two dimensions.

Classical Integrable Systems and
Field Theories

For a field theory to be integrable it must have an
infinite number of conserved charges. Necessarily
these must be spacetime symmetries which extend the
Poincaré symmetry in some way. It turns out that, due
to a theorem of Coleman and Mandula, such
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extensions are very restrictive: they are only possible in
1 4+ 1 dimensions (one dimension of space and one of
time) apart from noninteracting theories. Below we
describe some of the most important examples.

Affine Toda Theories

These theories describe the interactions of a set of
scalar fields which we write as a vector ¢. The action is

s- [ex(z07ve)

The potential has to be very specially chosen in
order that the resulting theory is integrable. The
resulting theories are classified by affine Lie alge-
bras. We shall describe only the theories related to a
simply laced Lie algebra g (so of ADE type). In this
case, for the affine version of the theory,

V() =03y et 2
ﬁZ a=0 !

where ¢ is an r-rank g vector and a,,a=1,...,r, are
a set of simple roots of g. The fact that we are
considering the affine version of the theory means
that we include the term involving the extended root
(the lowest root) &g = —Y ) _, n.&,, which defines
the integers 7,(n9p = 1). If this term is absent then the
potential does not have a minimum. Such nonaffine
theories are interesting in their own right since they
include the Liouville theory, but we shall not
describe them here.

One way to expose the infinite set of conserved
charges at the classical level is to write the equations
of motion in Lax form. This has the form of the
vanishing of the field strength, or zero-curvature
condition, of an auxiliary gauge connection in g
with components (A,, A;):

Ac=0-H+ 23 /%92(e, 1 f,)
Zﬂ a=0
o 3
J— . . 3 a'¢ 2 —
At—ax(b H+2ﬁzea /(ea fa)

a=0
Here, {e;,f;} are related to generators of g in a
Cartan—-Weyl basis, via
fa = zilE—aav
fO = zbE*do
where z is a auxiliary variable known as the spectral

parameter and b is the Coxeter number of g. Using
the following commutators of g,

[Eaaa Eah] = 04p %y -H
[Hv Ea] = aEa [5]
[Eazﬂ E—al;] =0

e, = zEq,, a=1,...,r n

~h
ep =23 an

it is straightforward to verify that the zero-curvature
condition

xt — axAt - atAx + [AxaAt] =0 [6]

is equivalent to the equations of motion which
follow from extremizing the action [1].

The fact that there exists a flat connection which
depends on an auxiliary parameter z is sufficient to
ensure integrability. In brief, the idea is that the
gauge connection can be “abelianized” by a gauge
transformation:

A, =Ud,U'+UA, U

Hence, 9,A, — 0,A, =0. This can be done in two
inequivalent ways, such that A , are polynomials in 2
and z7', respectively. The corresponding coefficients
are then conserved currents whose integrals give
conserved charges. It can be shown that for the
Toda theories these conserved charges have Lorentz
spin given by an exponent {s,} of g modulo its
Coxeter number b:

with [A,,A] =0 [7]

Ay h=n+1, {1,2,3,...n}

D,: h=2n-2, {1,3,5,...2n-3,n—1}

E¢: h=12,  {1,4,5,7,8,11} (8]
E;: h=18,  {1,5,7,9,11,13,17}

Es: h=30,  {1,7,11,13,17,19,23,29}

This spectrum of conserved quantities seems to be a
ubiquitous feature of IQFTs. These theories can be
generalized by replacing g, or rather its (untwisted
affinization) with any affine algebra.

The Sinh/Sine-Gordon Theory

These theories are the simplest of the Toda theories
described above, associated to the Lie algebra A;. In
this case there is a single field and the potential has
the form
2
m B —Bé
V(¢) = 23 (€ +e7) 9]
We have rescaled the field by 1/v/2 relative to the
normalization in [2]. This potential defines the “sinh-
Gordon theory.” However, we can also take 8 — i to
give the sine-Gordon theory with an action

5= / d2< 0u0)"+ ﬁfcosw)) [10]

The sine-Gordon theory is a useful paradigm for
IQFTs because it exhibits most of the features of
more complicated examples. To start with, it illus-
trates another important property of some integrable
systems; namely, the existence of solitons. In the sine-
Gordon case, the minima of the potential lie at
¢ =2nr/S, for an integer n, so there is a topological
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kink that separates a vacuum 7 on the left and 7 + 1
on the right, as well as an antikink. The explicit
solution for the kink moving with velocity v is

4
o(x,1) = Etan_1 exp(m(xcosh @ — tsinh 6 — &)) [11]
where ¢ is a constant and, since we are working in
1+ 1 dimensions, we have introduced the rapidity 6,
in terms of which the velocity is

v = tanh 6, —00 <6< 0 [12]

The antikink solution is simply the negative of the
above. The kinks have a mass
8m
M= 13]
The existence of topological solitons is not a
consequence of integrability, per se, for example, the
¢* theory in 141 dimensions also has kinks;
however, in the integrable setting, the solitons have
special properties that survive in the quantum theory.
The first property is that multisoliton solutions can be
found exactly using a variety of different techniques.
They are most easily written down using the tau
function, which is related to the field via

¢=— .llogl* [14]
T

The N-soliton solution can then be written com-
pactly as

- ¥

{1p}=0,1

N N
exp (Zup‘l)(” + Y upunW)) [15]
p=1

p.q=1

The sum is over the 2N possibilities for which 1, =0
or 1, for each p, and we have introduced

P — m(xCOsh 9[, — tsinh 0p - 5;7) i%r [16]

The rapidity of the pth soliton is 6, and the choice
of sign corresponds to the kink and antikink,
respectively. The “interaction coefficient” is

exp Y?9) — tanh? (% (0p — 94)) [17]

For example, the two-soliton solution is

)

=14 4 e®? pTHol el [18]

The multisoliton solutions have a natural physical
interpretation as the histories of a set of solitons
which scatter off each other. To make this more
precise, consider the two-soliton solution [18] in
more detail. Suppose that & < &,v1 > v;. Focus on
the solution in the vicinity of the first soliton, that is,

Mt

Figure 1 Classical scattering of a kink and an antikink. The
final velocities equal the initial velocities and the only effect is to
introduce a velocity-dependent time delay as shown.

x ~ vt +&. In the limit ¢t — —oo, the solution is
approximately

71 +e?” [19]

while, as t — oo, it is approximately
o e®? (1 + eT+¢<1>) [20]

In both the limits, the solution represents an isolated
soliton, the only difference is that the final “position
offset” has been displaced: &+—& —T. It is a
consequence of integrability that the solitons inter-
act in such a simple way. There were two solitons in
the initial configuration and two in the final
configuration traveling with the same velocities.
The only effect is to introduce a time delay of

_ T(0)
A= Snh(6/2) [21]
in the center-of-mass frame with 6= —6,=0/2,

which we illustrate in Figure 1. We shall see that this
kind of simple scattering is a characteristic feature of
integrable field theories which extends to the
quantum theory. It reflects the enormous restriction
that the existence of the infinite set of integrals of
motion puts on the dynamics.

Integrability at the Quantum Level

In this section we turn to the particular implications
of integrability for the field theories at the quantum
level. In discussing theories in 1 + 1 dimensions it is
convenient, as in [12], to use the rapidity. The
energy and momentum of a particle of mass m are
E=mcosh 0 and p =msinh 0, respectively.

The sinh- and sine-Gordon theory, and their affine
Toda generalizations, are scalar field theories with a
well-behaved potential and as such they can be
quantized in the conventional manner. It can be
shown that integrability survives quantization and we
now address its consequences. The key observation is
that having an infinite set of higher-spin conserved
quantities is very restrictive on the possible quantum
processes. Assuming that the theory has a mass gap,
the asymptotic states |a, §) are particles with rapidity
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0 and additional quantum numbers needed to specify
the state are indicated by the label a. These states are
eigenstates of the conserved charges,

Qqsla, 0) = qs(a)e59|a, 0) [22]

Here, s is the spin of the charge which ranges over
some infinite subset of the integers. Since the charges
must commute with the S-matrix, it follows imme-
diately that if an incoming state of 7 particles has a
set of rapidities {1,...,0,} then the outgoing state
must also have 7 particles with the same set
{01,...,0,): there is consequently no particle crea-
tion! For example, we have illustrated the scattering
of two particles in Figure 2. The two-particle
S-matrix element will be denoted as

S0 — 0,): |a,01;b,00)—|c,02;d,0,)  [23]

Note that masses of the incoming particles must match
the outgoing ones: m, =m, and my, =m.. We have
already seen this kind of behavior with the classical
scattering of solitons in the sine-Gordon theory. In
spite of the fact that the scattering is purely elastic, it
can be nontrivial for two reasons: if there are mass
degeneracies in the theory, the quantum numbers
{a1,...,a,} can change and, in addition, the S-matrix
element can depend nontrivially on the momenta.
The fact that the incoming and outgoing states
have the same set of momenta leads to the notion of
factorizability. To see what this means, consider the
case of three particles. Let us imagine that we
prepare the initial state to consist of three fairly
narrow wave packets in position space with
momenta smeared in accordance with the uncer-
tainty principle. The key to the following argument
is the fact that the infinite set of higher-spin
conserved charges (with commute with the S-matrix)
allow one to move the positions of the three
particles relative to each other in an arbitrary way.
In addition, the theory has a mass gap, so interac-
tions have a finite range. By using this freedom, we
can arrange for particles 1 and 2 to interact first,

»

a
b

Figure 2 The two particle S-matrix with particles a and b in the

initial state and ¢ and d in the final state. For consistency,

my=mgy and mp =me.

Figure 3 The scattering of three particles can factorize in two
distinct ways as illustrated, leading to a nontrivial condition: the
Yang—Baxter equation.

well before they come within interaction range of
the third. Subsequently, the first two particles
interact with the third as on the right-hand side of
Figure 3. This ability to move the wave packets
around using the symmetries means that the three-
particle S-matrix element must “factorize” into a
product of three two-particle elements:
Sl (61,6,,65)

abc

= 5" S5(61 — 6,)S].(61 — 63)8% (6, — 65)  [24]
ghi

However, we could also use the symmetries afforded
by the conserved charges to shift the positions of the
particles so that particle 2 and 3 interact first, as on
the left-hand side of Figure 3. Since the charges
commute with the S-matrix, the result must the
same; hence, there is a nontrivial consistency
condition:

> Si(62 — 02)S5 (61 — 05)S51 (62 — 65)
ghi

=" S9(01 — 02)S] (61 — 05)S% (0, — 03)  [25)
ghi

This is the celebrated Yang-Baxter equation. Notice
that it is only nontrivial if there are mass degen-
eracies, otherwise the particles on internal lines are
determined by the external particles.

The factorization of the S-matrix extends readily to
the case of more particles in an obvious way. An
n-body element factorizes into a two-body element
for each pair of particles. One might think that
considerations of the n-particle S-matrix would lead
to additional constraints; however, it can readily be
shown that this is not the case and that the Yang-
Baxter equation acts as a basic “move” which allows
one to reorder the n-particle S-matrix into an
arbitrary order. Further conditions on the S-matrix
come from the axioms of analytic S-matrix theory:

(1) Unitarity

378 (0)S (~0) = 8ucbpa 26]
ef
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(i1) Crossing symmetry Each particle a has an
antiparticle a and

SE(0) = Sy, (mi — 0) 27]

(iii) Amalyticity The S-matrix is a meromorphic
function of 6 on the physical strip, 0 <Im6 < 7.
Singularities in most instances occur along the
imaginary axis and the simple poles correspond to
direct or cross-channel resonances. In this case, if
SZZ(H) has a simple pole at §=iu, (necessarily a
nonphysical rapidity difference) in the direct channel
there exists a bound state of a and b of mass

m?2 = m> + mj, + 2mamy, cos Sy, (28]
The situation is illustrated in Figure 4. The new
particle must itself be included in the particle spectrum.
The S-matrix elements at the pole have the form

Zpab = Pgé +-o [29]

where P¢, can be thought of as a kind of projection
operator with

¢ pd __ ccd
Xb: P4, Pd =5 30]

Unitarity of the QFT requires that 7, is real and
positive, although there are also examples of
nonunitarity theories with exact S-matrices. If
ab — ¢ can occur then so can ac— b and bc —a.
From [28], we deduce the following identity:

ug, + MEZ + ”Zz =2r [31]

The data {u,} for any given scattering theory are
known as the fusing angles.

(iv) The Bootstrap equations These give a non-
linear relation between S-matrix elements. The basic
idea is that if particle ¢ appears as a resonance in the
scattering of a and b then the S-matrix element of ¢
with another state d can be deduced in terms of the
scattering of d with @ and b. This is illustrated in
Figure 5. Using [30], we can write the resulting
equation for the S-matrix element of ¢ and d directly:

=3P (0-

)0+ i), 3
ghi

a b

Figure 4 Near a direct channel pole, the scattering of a and b
is dominated by the bound state c.

Figure 5 The bootstrap equations result from considering the
interaction of a particle d with the bound state c of a and b in two
distinct ways as illustrated.

The bootstrap constraints are very powerful because
they allow one to extract the S-matrix elements of new
particles that appear as bound states. This leads to the
philosophy of the “bootstrap program” where one
attempts to build consistent S-matrices starting from
the S-matrix for a subset of particles which act as a
seed for the algorithm. The process is quite an art, but
at the end one has to be satisfied that the complete
analytic structure is consistent with all the axioms. The
key is to be able to account for all the poles in a
consistent way, either in terms of bound states, as
above, or in terms of the Coleman-Thun mechanism.
This allows some poles to be interpreted in ways other
than the existence of a bound state. The bootstrap
algorithm is very complicated in general and at the
present time a complete classification of solutions is
not known. However, there are a large number of
known solutions which appear to be intimately related
to Lie algebras and associated structures known as
Yangians and quantum groups. Below we describe
some of the simplest known solutions.

Minimal S-Matrices

These scattering theories are in some sense the
simplest. The particle spectrum is generally non-
degenerate and so the Yang-Baxter equation is
trivial. As is ubiquitous in the subject of IQFT, the
classification of the theories is related to Lie
algebras, although what seems to be important is
not so much the algebra in question but rather the
details of the associated root system. In this case the
appropriate algebras are the simply laced algebras of
ADE type. The number of particles is equal to the
rank 7 of the Lie algebra and the masses are given by
the r elements of one of the eigenvectors of the
Cartan matrix of the algebra g:

hz:; Capmy = (2 — 2cos g) my [33]

where b is the Coxeter number of g. The conserved
charges have spins corresponding to the exponents
of g modulo h. We briefly explain how the complete



Integrability and Quantum Field Theory 55

S-matrix can be written down in terms of properties
of the root system of g. Let ®@ be the set of roots of g,
and a,,a=1,...,r, a set of simple roots, as in the
last section. In terms of these, C,, =2, - @)/} Let
@,,a=1,...,r, be a corresponding set of funda-
mental weights, &, - @, = 6,,.

Key to defining the theories is the notation of the
Weyl group of g, the group generated by reflections
in the simple roots:

Ro@) = — 2% %ag, 34]

o;
The element w =R R, --- R, is known as a Coxeter
element of the Weyl group, and it has special
properties that are significant in the present context.
In particular, its eigenvalues are of the form
exp (2mis, /b), where b is the Coxeter number of g
and the integers s, are the exponents of the algebra
as in [8]. Note that there is always a pair with sy =1
and s,=h — 1. Clearly, w acts as a rotation in the
two-dimensional space spanned by the two corre-
sponding eigenvectors. We can define an antisym-
metric function #(e, f) on roots to be h/m times the
(signed) angle between the projections of @ and S
onto this two-dimensional eigenspace. In prepara-
tion for what follows, it is useful to also define the
roots

¢a =R,R;—1--- Ra+1(aa) [35]

We can now present P Dorey’s amazingly compact
formula for the complete S-matrix. For the scatter-
ing of particle a with particle b,

Sap(0) = [T {1 +u(8,.8)}*7 [36]
Bery,

In this formula T, is the set of positive roots of g
which lie in the orbit of ¢, under w. We have also

defined the building block
{x}=x+1)(x—-1)

inh Q—l-ﬂ

S 7 T 37]
(%) = 0 imx

N

son 1)

The fusing rules are also particularly elegant in
the language of root systems. There is a three-point
coupling between a;,i=1,2,3, if there exist three
roots a! €T, such that oV +a? +a=0.
Furthermore, the fusing occurs in the a1,a, channel
at rapidity difference

2 im
maiaz = Z“(au)va(z)) [38]

This is Dorey’s fusing rule.

For the case of A,_1, the S-matrices are particu-
larly simple. The mass spectrum is

a=1,...,n—1 [39]

. ma
m, = msin—,
n

and Dorey’s rule gives the possible fusings as
ab— (a+ b)mod n, which occur at the rapidity
values

a+b

i T at+b<n
n

0 = iy, = aih [40]
i@—

>7r a+b>n

The charge conjugation operator maps a—a=n—a
and the explicit form for the S-matrix elements is

Sw@)={a+b—-1}a+b-3}---{la—b|+1} [41]

The element S,,(6) has one direct channel pole at
0=iu,, corresponding to the exchange of the
particle a+b modn, and a cross-channel pole at
§=iu,; corresponding to the exchange of particle
a—b mod n.

Affine Toda Theories

The bootstrap program has been solved for all the
affine Toda theories. For the simply laced theories
described earlier, the result is directly related to
the minimal S-matrices constructed above. The
only difference is that there are additional factors
which depend on the coupling 3 of the Toda
theory but which do not introduce any additional
poles onto the physical strip. These CDD factors
are included by simply changing the basic building
block [37]:

B (x+1)(x—1)
{.X'} - {x}Toda - (x 1 +B)(x + 1— B) [42}
where
1 B2
“2r T+ /An 3]

The S-matrix structure for the Toda theories
based on the nonsimply laced algebras is a good
deal more complicated. Integrability is only main-
tained in the quantum theory if the ratios of the
physical masses of the particles depend on the
coupling constant 3 is some very special way.

The Sine-Gordon Theory

We have seen that the sine-Gordon theory has
solitons at the classical level. At the quantum level,
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Figure 6 Soliton scattering processes. s and s are the kink
and antikink, respectively, or vice versa.

we expect that these kinks become bona fide particle
states, in addition to the particle corresponding to
the quantum fluctuations of the field ¢. Focusing on
the solitons, we expect a degenerate doublet
corresponding to the kink and antikink. For the
scattering of two solitons, there are six allowed
processes illustrated in Figure 6. Unitarity [26] leads
to the constraints

S(0)S(=6) = 1
St(0)ST(—=0) + Sr(0)Sr(—0) =1 [44]
St(0)Sr(—0) + Sr(0)ST(—0) =

while crossing symmetry [27] (using the fact that the
soliton and antisoliton are antiparticles) gives

S(in — 0) = S1(6),

By themselves, these constraints are rather mild;
however, the complete soliton S-matrix must also
satisfy the Yang-Baxter equation [25]. The solu-
tion to all the constraints is not unique, however,
the Zamolodchikovs conjectured that the exact
answer Is

Su(im —0) = Se(6)  [45]

S(6) = Lsinh <87” (i — 9)> u(o)

St(0) = %sinh <87” 9) U9 [46]
Sr(6) = %sin (%) U(9)

with
=r ()01 2)e(s 518
Y Y 0 Y
= R,.(0)R(im — 0)
X .
,41:[1 #(0)Ry,(im)
F(Znﬁ—ki%) 47
Ra(0) = : 8 : 80 v
P((Zn—f— 1)—+1—)
<1 +2n E—H%)
% g Y
F(l—i—(ln—l)s—w—&-iﬁ)
Y Y
where v=(%(1 — 3?/87)~". The reason for confi-

dence in the conjecture is that from the soliton
S-matrix one can complete the bootstrap program
and account for all the poles in terms of particles in
the theory. In particular, there is a finite set of
bound states of the soliton and antisoliton, called
breathers, with masses

k 8
2Msm% k=1,2,... <77r (48]

Here, M is the soliton mass. The bootstrap
equations give the S-matrix for the scattering of a
soliton or antisoliton with the kth breather,

sinh@—«—icoslj—z
Su(t) = ————16
sinh@—icosﬁ
k-2 « .0
2 —_— —_— —
gl
=1 gin2 k=2 7Z719
32 17412

while, for the scattering of breather k with [,

sinh? 9+1sm<k16l >s1nh9+1sm<kl6l )

Sk (0) =

sinh? 6 — isin (%’y) sinh § — isin (%7)

N — 4
-1 SiIl2 (7'% ! /’)/

1§> cos? (71e i 2j7+ 19)
2 32 2 150]

i1 si
S 32

32
< ]I 2<k—1—z,'7

.0 S(kR+1-2 .0
12 cos 3 Yy 12
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where we assume, without loss of generality, that
k > 1. The remarkable thing is that the scattering of
the lowest-mass breather 72, with itself,

sinh @ + 1 sinZ

S11(0) = 7»% [51]

sinh 6 — ising
is precisely the Toda S-matrix for A; with §—i3/v/2
(the origin of the factor of v/2 is mentioned after eqn
[9]). This uniquely identifies the lowest-mass breather
as being the quantum of the ¢ field.

The quantum structure that we have described
above can be directly related to the classical
scattering of solitons. In order to implement the
classical limit, we can reintroduce % which is
achieved by replacing 3> by . In this limit, the
S-matrix elements have the form

9

S(6) = exp - (8(6) + O(h) [52]
The phase 6(0) is related via the WKB approxima-
tion to the time delay in the classical theory of
soliton scattering via

o
8(0) = const. +/ d®' M sinh(0/2)At(0) [53]
0

where At(f) is the time delay in the center of mass
(21). It is possible to verify [53] for the processes
S(6) and St(f). Note that the reflection process has
no classical analogue.

IQFT, Conformal Field Theories and
Statistical Systems

We have described some IQFTs and their factoriz-
able S-matrices in theories with a mass gap. We can
ask the question, “what happens at very high
energies compared with all the mass scales?” For a
generic QFT such a limit may not exist, however,
for a special class of theories the limit is a massless
scale-invariant theory corresponding to a fixed point
of the renormalization group. The massive theory
can be thought of as a deformation of the massless
theory by a particular relevant operator. At the fixed
point, the Poincaré symmetry is enhanced to the full
conformal group in the appropriate number of
dimensions and the resulting theory is known as a
conformal field theory (CFT). In 1+ 1 dimensions
the conformal group is infinite dimensional and so
many CFTs are themselves integrable, in the sense
that the complete spectrum of fields is known and
their correlation functions can be constructed.
Hence, an alternative way of thinking about many

IQFTs is as a perturbation of a CFT by a specific
relevant operator:

SiQrr = Scrr +g/ d*xO(x) [54]

We will suppose that the operator has conformal
dimensions (A, A). This description of the theory
can be turned around to ask the following question:
which relevant deformations of a given CFT lead to
IQFTs? Remarkably, since CFTs are so well under-
stood, the question can often be answered exactly.
The idea is that the conserved quantities of a CFT
are all (anti-)holomorphic with respect to a holo-
morphic coordinate z=x + it. Conserved quantities
include the stress tensor of spin 2 but include, in
addition, an infinite tower of currents of ever
increasing spin {T}. After perturbation, one has

T, = gRW 4 ... 4 g"R™ 4 ... [55]

The conformal dimensions of the R are (s — (1 — A),
1—n(1—A)). Since the conformal dimensions of
fields in a CFT are bounded below by zero, it follows
that the series on the right-hand side truncates. The
question of whether T, remains conserved away from
the CFT boils down to the question as to whether the
right-hand side has the form 0O, for some ©.
Zamolodchikov found an ingenious counting argu-
ment which showed in certain circumstances that the
right-hand side has precisely this form for some s > 2.
This is sufficient to establish that the perturbed theory
is an IQFT. In certain cases the spectrum of spins of
the conserved quantities that are established by the
counting argument is enough to make a connection
with a known factorizable S-matrix.

This way of viewing IQFT as perturbations of CFTs
is especially fruitful when we make the connection
of the Euclidean QFT with the classical statistical
mechanics of a two-dimensional system. In this
connection, the Feynman path integral is reinterpreted
as the sum over the configurations in the canonical
ensemble with the Euclidean action interpreted as the
energy. Usually, we consider statistical systems which
are discrete, so typically defined on a lattice. The
Euclidean QFTs are to be thought of as these statistical
systems in the continuum limit where the lattice spacing
is taken to zero keeping the long-range physics fixed.
CFTs which have no massive degrees of freedom are
identified with points of second-order phase transitions
in the statistical system where correlation lengths are
infinite. Perturbations of CFTs by relevant operators
correspond to taking the statistical system away from
criticality by changing some external parameter.

The prototypical example of such a statistical
system is the Ising model. In the lattice version of
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this model, there are a set spins {c;} at each lattice
site. which can take the discrete values +1. The
partition function of the theory is

Z(H,T)=> exp (_ T ;0,—0,- - HZ@ [56]

{oi}

The Ising model is the simplest model of a ferro-
magnet, where T is the temperature and H is the
external applied field. The theory has a second-order
phase transition for T =T,, the Curie temperature,
and H =0 when the competition between the energy,
which favors aligning the spins, and entropy, which
favors disorder, exactly balance. In the two-dimen-
sional neighborhood of the critical point, the lattice
theory admits a continuum limit which can be
described as the perturbation of a CFT, describing
the critical Ising model, by a pair of relevant operators
with couplings T — T, and H. In the case of the Ising
model, the CFT is simply the theory of a free massless
fermion in two-dimensional Euclidean space.

It turns out that in the two-dimensional space
of relevant perturbations, there are two directions
which lead to IQFTs. The most obvious is changing
the temperature away from T, while keeping H=0.
This leads to a particularly simple IQFT, that of a
free massive fermion. More unexpectedly, the direc-
tion for which H varies away from 0, but T =T,
also leads to an IQFT. In this case, Zamolodchikov’s
counting argument shows that there are higher-spin
conserved charges of spin including

s=1,7,11,13,17,19,... 57]

This is remarkable because, as we have described
previously, there is a minimal solution of the
bootstrap program that describes the scattering of
eight particles which has a spectrum of conserved
charges that includes these spins. It is the minimal
scattering theory related to the algebra Eg.

The fact that the scattering theory of the off-
critical Ising model in the magnetic field direction
has been identified is remarkable. From the S-matrix
one can proceed to investigate the off-critical corre-
lation functions using a technique known as the
“form factor programe.” Detailed simulation of the
original lattice model [56] has provided strong
support for the veracity of the Eg scattering theory.
For instance, the two lightest masses in the scatter-
ing theory determine the ratio of the two longest
correlation lengths #1, /m; = 2 cos (7/5).

In general, the identification of an IQFT and the CFT
at its ultraviolet limit can be more difficult to establish.
One way to proceed is to use the thermodynamic Bethe
ansatz. This technique involves considering the ther-
modynamics of a gas of the particles in a periodic box.
Since the scattering is purely elastic, thermodynamic

quantities can be calculated, albeit in terms of a set of
coupled nonlinear integral equations. If the box is small
enough, ultraviolet effects dominate and various
features of the CFT can be recovered.

Other IQFTs

There is a rich menagerie of other IQFTs that we
have no space to discuss in detail. One is sigma
models, whose fields take values in a Riemannian
target space 9t with an action

S= / d*xg,,0, X 9" X" (58]

where g,,dX*dX? is the metric of 90t. These theories
are integrable at the classical level if the target space
is either a group manifold of a compact simple
group G or a symmetric space coset G/H, where H
is a suitable subgroup of G. The former are known
as the “principal chiral models.” There are two
kinds of conserved quantities, both local and
nonlocal. At the quantum level, the conserved
currents which imply classical integrability can be
subject to quantum anomalies. An analysis of these
anomalies proves that the principal chiral models
are all integrable at the quantum level, while only
the subset of symmetric space coset models, namely

SO(n+1)/SO(n), SU(n) /SO (n)
SU(2n)/Sp(n), SO(21)/SO(n) x SO(n)  [59]
Sp(2n)/Sp(n) x Sp(n)

are quantum integrable. S-matrices have been proposed
for all these integrable sigma models. They have a more
complicated structure than most of the cases discussed
here, because the particles fall into representations of the
associated Lie groups and the Yang-Baxter equation,
such as for the sine-Gordon solitons, is now nontrivial.
Remarkably, gross features of the S-matrices, such as the
mass spectrum fusing rules, are identical to the Toda
theories or the minimal S-matrices.

Returning to IQFTs that are associsted with
deformations of CFTs, there are more general
classes which are associated with the renormaliza-
tion group trajectories between two nontrivial fixed
points. These theories have both massless and
massive degrees of freedom. Even more remarkable
are the staircase models of Zamolodchikov that
exhibit an infinite series of crossover behavior where
the renormalization group trajectory passes close to
an infinite series of fixed points in sequence.

For all of the theories described above, one might
have thought more generally that integrability is a
very rigid property of a theory. In general, for
example, the number of external coupling constants
is very limited and the mass ratios are all fixed. For
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example, in Toda theories there is only an overall
mass scale m and the coupling 3. If the form of the
potential is altered in any way then integrability is
lost. However, in certain circumstances, integrability
appears to be a looser constraint that allows more
flexibility. One class of such theories is known as
the homogeneous sine-Gordon theories. These are
integrable deformations of gauged WZW models
associated with the coset G/U(1)", where r is the
rank of a simple compact group G. In these theories
there is a rich spectrum of both stable and unstable
particles with masses and an S-matrix that depends
continuously on a set of 7 coupling constants.

See also: Algebraic Approach to Quantum Field Theory;
Bethe Ansatz; Constructive Quantum Field Theory; Eight
Vertex and Hard Hexagon Models; Functional Equations
and Integrable Systems; Integrable Systems: Overview;
Quantum Field Theory: A Brief Introduction; Quantum
Field Theory in Curved Spacetime; Sine-Gordon
Equation; Symmetries in Quantum Field Theory of Lower
Spacetime Dimensions; Two-Dimensional Models; Yang—
Baxter Equations.
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smooth functions from I to R or to C.

The system [1] is complemented by initial or
boundary conditions that make it into an “initial-
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uniqueness of the solution of the initial-value problem
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is guaranteed, but in most cases the solution can be
known only “approximately” either through perturba-
tion theory or just through numerical integration. This
is not the proper place to discuss finite-difference
schemes for systems of ODEs: what is relevant is that
such numerical schemes (think, e.g., of Euler or
Runge-Kutta schemes) “discretize” the continuous
independent variable ¢ by replacing it by an integer
variable # € Z: in the simplest case, the interval [a, b]
is replaced by a set of L equally spaced points #, =a +
nb—a)/L(n=1,...,L), the first derivative is
approximated by a (forward) difference, and the
system [1] is converted into a system of “difference”
equations of the form

x,-(n—l—l):x,-(n)+hF(n,x1(n),...,xN(n)) [2}

where b denotes the time step (b —a)/L.

The coupled system [2] is an example of a “discrete
dynamical system,” explicit (because the updated
variables only depend upon the values taken
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at previous discrete times), first order (only “nearest-
neighbor” discrete times, 7, 7+ 1 are involved), but
nonautonomous, as the RHS is allowed to depend
explicitly upon the independent variable 7, analo-
gously to its continuum counterpart.

In the following, “autonomous” but not necessa-
rily explicit discrete dynamical systems of a special
type will be considered: in fact, we will require them
to be equipped with a Hamiltonian structure, and
we will define the notion of complete integrability
(in the Arnol’d-Liouville sense) for such systems.

This article emphasizes on some aspects and
properties of integrable discrete systems, neglecting
others that could be equally important. In particular,
as no nonautonomous discrete systems will be
considered, discrete analogs of Painleve’ equations
will never be discussed in this article, and conse-
quently the intriguing issues concerning “singularity
confinement” in the discrete and “algebraic entropy”
will not be touched upon (see, e.g., Grammaticos
et al. (2004)). Similarly, neither the integrability for
discrete systems in multidimensional space nor
“quantum integrable mappings” will be discussed.

Lagrangian and Hamiltonian
Formulations

Following the historical path along which modern
classical mechanics has been developed, first the
concept of a Lagrangian map is introduced, and then
Hamiltonian (in fact, symplectic) maps are defined
through a proper discrete version of the Legendre
transformation.

Let xj(n) (j=1,...,N,n € Z) be N sequences of
real numbers and let £(x,y) be a smooth function
from RN x RN into the reals, x denoting the N-tuple
X1,...,xN. £ is regarded as a “discrete Lagrange
function”: corresponding to each discrete time 7, it
is assigned a certain value L£,:=L(x(n),x(n+ 1)).
The corresponding discrete action functional S[£] is
defined in a natural way:

N,
sl =Y £, 3]
n=N,

The actual “discrete trajectory” will be given by
the sequence x(n) that corresponds to a “critical
point” of the action [3] subject to the constraints
6x(N,) = 6x(Np) =0. Note that the values N, (N,)
may well possibly coincide with —oo (+00). Such
“critical points” are given by the solution of the
discrete Euler-Lagrange equations:

oL Lo =0 [4]

0% |y, n) a7 P p—

yj=xj(n+1)

It is worthwhile to remark the intrinsic nature of
eqns [4], whose form turns out to be independent of
the choice of a coordinate chart. In fact, by omitting
the explicit dependence on 7z and simply denoting
x(n)=x, x(n+1)=x, x(n — 1) =x, [4] can be cast
in the form

ViL(x,x) + V2 L(x,x) =0 [5]

which makes its “implicit” nature for the updated
variable X more transparent. Clearly, as a map from
the pair (x,x) to the pair (x,X), it is in general a
multivalued map, or a “correspondence”, as it is
called in the literature (Suris 2003, Veselov 1991).
In order that [5] be solvable for x, the Hessian
matrix Hj, = 9*L/9x;0y,, should be nondegenerate.

As will be noted shortly, the Lagrangian map [4]
(or [5]) is in fact a canonical, or better a symplectic
transformation on a suitably defined cotangent
bundle T*X to the configuration space X € RN,
Namely, one defines the conjugate momentum to x as

p = VaL(x,x) [6]
so that [5] can be rewritten as the following system:
p=—-Vil(x,%) 7]
p = Va2L(x,X) 8]

This system defines a correspondence (x,p) — (x,p),
which is indeed a “symplectic” one, as it preserves
the standard symplectic form wix,p)= 37" dp; A
dx;, and, of course, the associated Poisson brackets.
The simplest way to recognize this property is by
constructing the generating function of the corre-
sponding canonical transformation. To this end, let
us introduce

S(x,p) = —L+ Zﬁf(f/ — X)) 9]

The discrete Euler-Lagrange equation then takes the
form

- oS
x,‘ —x,» :8_13 [10]
]
. 08
bji —pj :aTc/ [11]

which is canonically generated by S + >~ x(j)p(j). A
strict analog of the Hamiltonian formulation for
continuous-time Lagrangian systems does not indeed
exist in the discrete-time case. One of the main
consequences, well known to the specialists but
worth emphasizing in the present context, is that
even a symplectic map in one degree of freedom
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(two-dimensional T*X) is generically not integrable:
the existence of an invariant function F(x,p)=
F(x,p) is not entailed by the symplectic structure,
so that, as discussed later, integrable maps of the
standard type are indeed exceptional. On the other
hand, note that invariant functions do exist when-
ever a Lagrangian has some additional symmetry:
this is the case when a Lie group acts on the
configuration space X and the Lagrange function is
invariant under its induced action on X x X, so that
a discrete version of the Noether theorem applies
(Suris 2003).

Complete Integrability

The definition of a “completely integrable” discrete-
time system is now in order. Let ® be a symplectic
map on the 2N-dimensional phase space
M:= (RN dp A dg), equipped with N smooth
invariant functions F;, such that

® Fy,...,Fy are functionally independent, that is,
their gradients VF; are linearly independent of M;
e Fy,...,Fy are in involution:

{FﬁF/e}:O, j,kzl,...7N

Let 7 be a connected component of the common
level set

{(x,p) € T: Fi(x,p) =cx, k=1,...,N}

Then 7 is diffeomorphic to T! x RN/, for some 0 <
I < N;if T is compact, then it is diffeomorphic to an
N-dimensional torus TV,

In the compact case, there exists an open ball 2 €
RN such that, in 7 x €, there exist new canonical
coordinates (I, ), k=1,...,N; I, € T, ¢, € Q, the
so-called action-angle coordinates, enjoying the
following properties:

e the actions I}, depend just on the F;’s
® in action-angle coordinates the map is a linear
shift on the N-dimensional torus:

Iy = () = I
O = O(Pr) = o +vr(I1, I, ..., IN)

Hence, in action-angle variables a completely integr-
able map is a canonical transformation from (I, ¢) to
(I(=1),¢), whose generating function W only
depends on the action variables. It takes the form

I —I;=0 [12]

= bk = 31 81kz/ dx; p;(I,x) [13]

Integrable Maps of the Standard Type

As the simplest integrable models, first consider
some highly nontrivial examples of “standard
maps,” that is, scalar discrete second-order differ-

ence equations of the following type (Suris 2003):

Xn+1 — 24-xn +Xp—1 = G(xn;h) [14}

with b a real parameter, which exhibit an invariant
function, say

J(Xn—1,%n) = J (X, %, + 1) [15]

Clearly, [14] can serve as a discretization of the
Newtonian equation:

% = f(x) [16]

if limy, _, o WG (x;b) exists and is equal to f(x)
All “standard maps” are Lagrangian,
stationary points of the discrete action:

S= Z( Xnt+1 —
nez
with G(x;h)=0V(x;b)/0x. A point in the phase
space is a pair Xx,,p,=x, —x,-1, and [14] is
symplectic for dp A dx, reading

= Pnt1 [18}
Pn— b1 = G(xn; b) [19]

The corresponding generating function is given by
S=V(x;h) + (1/2)p%,,. Integrability of [19] means
the existence of a function F from M into itself such that

F(xpi1,Pni1) = F(xn, Du) [20]

where [15] and [20] are equivalent provided
](x9-x - )’) :F<xay)

Suris has found three families of functions G that
ensure integrability: a rational family, a trigonometric
family, and a hyperbolic family. There is no room here
to display the relevant formulas, nor to explain why,
under natural analiticity assumptions both in / and x,
no other integrable family exists. However, it is worth
mentioning that they turn out to be integrable
discretizations of the scalar second-order differential
equations [16] for the following “force” functions £ (x)

frar(x)
ftrig (x)

being

2 4 V(g b)) 17]

Xnt1 — Xn

= A+ Bx + Cx* + DX? [21]

= Asin(wx) + B cos(wx) + Csin(w2x)
+ D cos(w2x) [22]

fryp(x) = Aexp(x) + Bexp(—x) + Cexp(2x)

+ Dexp(—2x) 23]

A curious fact is that those Newton forces that
one can “discretize” in order to get integrable maps
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are exactly the external forces that one can add to
the internal two-body interactions of the Calogero—
Moser or Calogero—Sutherland models to preserve
complete integrability.

Integrable Discrete Systems and
the Lax Approach

Since, in a seminal paper, Lax (1968) introduced it
for the Korteweg—de Vries (KdV) equation, the
search for a “Lax representation” played a crucial
role in the construction of integrable systems, both
finite and infinite dimensional. In particular, the
continuous time dynamical system [1] (assumed to
be autonomous) is said to be equipped with a Lax
representation if there exist two matrices L, M
whose entries depend upon the coordinates x;,
whenceforth upon the time #, such that the time
evolution [1] can be cast in the form

L(z) = [L(z), M(1)] [24]

Hence, the one-parameter family of matrices L(t)
undergoes the “isospectral” deformation:

L(r) = U@LO)(U(@) [25]

U(t) being the unique solution of the linear matrix
differential equation:

U(t) = M(2)U(z) 26]

with the initial condition U(0)=1I. Then, the
existence of a Lax representation in term of, say,
k x k matrices entails the existence of k integrals of
motion, given, for instance, by the eigenvalues of
L(2), or by the traces ;:=tr(L(z))".

Some remarks are in order:

e In the case of a Hamiltonian system, the matrices L,
M depend, of course, on the point in the phase space.
e No guarantee exists, a priori, that the eigenvalues
of L, or equivalently the traces t;, be “sufficiently
many” and in involution. Note, however, that in
many examples the Lax matrices L, M depend on
an extra scalar parameter \ (so that they are
elements of an affine or “loop” Lie algebra),
which might increase the number of integrals of
motion well beyond the dimension of the matrix.

The N-body systems of Calogero type and Toda
type are celebrated examples of integrable dynami-
cal systems equipped with a Lax representation.
How this description can be adapted to the
discrete-time case? The isospectral equation [25]
suggests the proper way. One has to look for two
matrices depending on the coordinates (or on the
phase-space variables) x (again, they can be called L,

M), such that the discrete-time evolution, modeled,
for instance, by [2], can be cast in the form of a
similarity transformation:

L=MLM™! [27]

where L=L(x), L=L(x), and M=M(x,x). As
usual, by denoting by 7 the discrete time (i.e., the
number of iterations), so that x =x(n),x =x(n + 1),

eqn [27] implies that a discrete version of [25]
holds:

L(n) = U(n)L(0)[U(n)] "} [28]

where U(n) :=M(n)M(n — 1) --- M(1).

As in the continuous case, the existence of a
discrete Lax representation entails the existence of
conserved quantities (invariants of the map or of the
correspondence) but by itself it does not say
anything about completeness and involutivity of
such invariants. There is, however, an approach that
incorporates the involutivity property in the very
construction of Lax equations, both discrete and
continuous, namely the “R-matrix approach.”
Indeed, from the experimental observation of a
number of examples, both finite and infinite dimen-
sional, one can assert that the matrix M taking part
in the “continuous” Lax representation [24] may be
presented in the form (Suris 2003)

M = R(f(L)) 29]

In [29], L, M are element of some matrix Lie algebra
g, R is a linear map from g into itself, and [ is a
conjugation-covariant function, namely

FIALA™) = Af(L)A™! 130]

A being an arbitrary element of the group G with
Lie algebra g.

Polynomials in the variable L with scalar coeffi-
cients are typical examples of conjugation-covariant
functions. Moreover, in a matrix Lie algebra, one
can identify g with its dual space g* through the
nondegenerate bilinear form provided by the trace:
(L1, Ly):=tr(L1L;). Then, the trace F of a conjuga-
tion-covariant function f will be a typical example of
a conjugation-invariant function, and, conversely,
the gradient of a conjugation-invariant function F,

defined as
(VE.X) = S HL 4+ )] g 31)

will be a typical example of a conjugation-covariant
function. In the above setting, one can define the
following Lie-Poisson bracket on g:

{F,G}(L) := (L,[VF,VG]) [32]



Integrable Discrete Systems 63

where F, G are arbitrary (i.e., not necessarily
invariant) functions from g into C, so that the
Hamilton equation

L={H L} [33]
takes the Lax form
L =I[L,VH| [34]

It is immediate to check that invariant functions of
L are Casimir functions of [32] so that they will not
generate any nontrivial flow.

Assume now that the linear mapping R, usually
called r-matrix, introduced in [29], is such that it
defines a new Lie bracket on g, through the formula

[L1, Lo]g = 3 ([L1, R(L2)] + [R(L1), La]) - [39]
and consequently a new Lie-Poisson bracket
Then the following theorem holds:

Let H be an invariant function on g. Then:

(i) The Hamilton equations on g generated by H with
respect to the Poisson bracket [36] have the Lax
form

L =[L,R(VH)] 37)

(ii) The invariants of g, that is, the Casimir function
of the standard Lie-Poisson bracket [32], are in
involution for [36] so that the corresponding
flows are mutually commuting.

A particular realization of such R operator, very
important for the application, arises in the so-called
Adler-Kostant-Symes (AKS) construction (Adler
1979, Kostant 1979, Symes 1980), where the Lie
algebra g admits a decomposition in two subalgebras,
g. and g_, so that, as linear spaces, it holds that

§=8,98_ (38]

Denoting by 7. the corresponding projections, the
linear mapping

R:=m—7_ [39]

defines a new Lie bracket on g, and the correspond-
ing Lax equations take the two equivalent forms:

L=[L,m(f(L)] = —[L,7(F(L)]  [40]

For the present purposes, it is of paramount
importance that the AKS construction has a discrete-
time version (Suris 2003).

In fact, let G be a Lie group with Lie algebra g, and let
G, G_ be its subgroups having g, ,g_ as Lie algebras.

Then, in a certain component of the identity element I,
any element g of G is uniquely factorizable as

g=1 (g (g), Hi(g) € G [41]

Moreover, let F:g — G be a conjugation-covariant
function. Consider now the map

L — L:=T"(F(L))- LTI, (F(L))
—IL(K(L)-L-TENEL)  [42)

and regard it as a difference equation, yielding
L=L(n+ 1) in terms of L = L(n). Then, the follow-
ing properties hold:

e For whatever function F, the map [42] commutes
with any continuous flow [40], mapping solutions
into solutions.

e It can be “explicitly integrated” with respect to
the discrete time 7, yielding

L(n) = ;' (F"(Lo)) - Lo - Iy (F"(Lo)) [43]

or the equivalent expression in terms of the
complementary projection II_.

e It is interpolated by the continuous flow [40] with
time step b if

exp(hf(L) = F(L) « f(L)=h"" log(F(L)) [44]

In other words, the discrete-time systems that one
derives through this approach are just a sequence
of pictures taken at equally spaced times of some
continuous flow pertaining to the hierarchy [40]:
so0, by construction they are Poisson maps with an
involutive family of integrals given by the con-
jugation-invariant functions of L (typically, tr L").
® As far as

F(L) = I+ hf(L) + o(h) [45]

the map [42] serves as an integrable exact
discretization of the flow [40], sharing both its
Poisson structure and its constants of the
motion.

An Integrable Discretization of the
Toda Lattice

Consider a simple but an illuminating example of
the above construction, showing an integrable
discretization of the “open-end Toda lattice,”
which is described (Suris 2003) by the Newtonian
equations of motion:

Xj = exp(xj41 — xj) — exp(xj — xj_1)
j=1,...,N [46]
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and can be cast into a Hamiltonian form by setting
pj=xj; qj=x;. If, according to H Flaschka (1974),
one introduces the variables
bj=x%;,  a =exp(xj11 — x;) [47]
eqn [46] takes the form
l.?/ =4 —aj-1,

aj = aj(bj1 — b;)  [48]

and enjoys the Lax representation [24] in terms of
the N x N matrices:

N N N
La,b) = aiEjjii+ Y biEj;+Y Ei;  [49]
k=1 k=1 k=1

M=

M(a7 b) =A:= al'E,"]‘+1 or

=
Il

[50]

1

N N

M(a, b) = —-B:= Z b,‘E,‘A’,' + ZEH'U
k=1 k=1

In the above formula, E, ; is the matrix having 1 in the
jk position and O elsewhere, so that, obviously,
Ennt1 =Ent1ny=0. An inspection to [49] and [50]
shows that A is just the strictly upper triangular part of
L(a,b), while B is its lower triangular part. The pair
(A, B) constitutes the so-called LU decomposition of
L(a, b). One is clearly in the AKS setting, the Lie algebra
g being just the algebra of N x N matrices, and the Lie
subalgebras g, being the strictly upper and lower
triangular matrices. The tridiagonal matrix L(a,b)
belongs to a Poisson submanifold of g, invariant under
the flows [40], and a complete family of commuting
integrals of motion is given, for instance, by I, = trL*.
Now, the elements of the group GLy;, realized as
the group of invertible N x N matrices, uniquely
factorize into a product of an invertible lower-
triangular matrix times an upper-triangular matrix
with units on the diagonal, and the Lie algebras of
those subgroups are just the aforementioned sub-
algebras g.. Then, one is naturally tempted to look
for an integrable discretization provided by a
conjugation-covariant function of the type [45],
starting with the simplest possible choice, namely

F(L) =1+ hf(L)
Setting
L(a,b) = L(a,b)
=T'(I+hL)-L-T.(I+hL)
=T_(I+hL)-L-TI_'(1+hL) [51]

it turns out that the matrix equation [51] is
equivalent to the map

(a,b) — (a,b)

described by the following equations:

by =b +h(“—k—M>
kT Be  Br-1

ap = ar(Brs1 — Be)

where 3, which are the “field variables” entering
into the LU factorization [51], are explicitly and
uniquely defined by the recurrent relation (amount-
ing to a finite continued fraction):

Bo=1+hby— P51 k=1, N [52]
Br-1
As ap =0, the initial condition is simply 31 =1 + hb;.
It follows from the general results of the previous
section that [51] is an integrable Poisson map, sharing
with the continuous Toda hierarchy both the Poisson
structure and the integrals of motion. Its initial-value
problem can be uniquely solved in terms of the LU
factorization of the group element (I + hLy)", the
initial condition Ly being any matrix pertaining to
the tridiagonal submanifold [49]. According to [44],
the interpolating Hamiltonian flow is provided by the
function f(L)=h"'log(1 +hL). To make contact
with the discussion in the section “Lagrangian and
Hamiltonian formulations,” we observe that, in terms
of the canonical variables x;, p;, the discrete Toda [51]
lattice becomes the following symplectic map:

1+ hpj = exp(%; — xj) + b exp(x; — %-1)  [53]
1+ bi), = exp(5c,- — x/) + h? exp(x,-+1 — 56,‘) [54]

It can evidently be written in the discrete Newtonian
form:

exp(¥X; — x;) — exp(x; — x7)

=h? exp(xjt1 — x;) — exp(x; — Xj-1) [55]

whose Lagrangian function is given by

N N
L= ;w(fck —xp)—h ;Cxp(xkﬂ — %) [56]

with

$(€) =h" (exp(§) —1-¢) [57]

The variables (3 acquire the following extremely
simple expression in the Lagrangian coordinates x;, X;:

B = exp(%; — x;)

For integrable Hamiltonian systems with long-
range two-body interaction, such as Calogero-
Moser type systems, and their so-called relativistic
version (Ruijsenaars systems), an exact integrable
discretization has also been found. However, at least
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in the more natural Lax representation, the related
R-matrix is dynamical (namely, it depends on the
phase-space coordinates), and the simple factoriza-
tion scheme holding for the Toda lattice system (and
for the related ones) is not available.

Further knowledge on the intriguing subject of
“discrete integrable systems” can be acquired by
looking at the monographs and papers listed in the
“Further Reading” section. In particular, the excellent
book by Y B Suris, which also provides an exhaustive
list of references (updated to 2003), is recommended.

See also: Billiards in Bounded Convex Domains;
Boundary Value Problems for Integrable Equations;
Calogero—Moser—Sutherland Systems of Nonrelativistic
and Relativistic Type; Integrable Systems and Discrete
Geometry; Integrable Systems and the Inverse
Scattering Method; Integrable Systems: Overview;
Painlevé Equations; Quantum Calogero—Moser Systems;
Toda Lattices; Yang—Baxter Equations.
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Historical Overview

The relevance of algebraic geometry in the theory of
dynamical systems has a long history. Three models
may serve as guiding threads from old to the current
state of the theory. Each time algebraic geometry is
used to integrate an evolution equation; this is
achieved by an underlying addition rule. The very
origin for this seems to be Fagnano’s addition
rule for the arc of a lemniscate (see Siegel (1969)).
In analogy to the addition of two arcs on a circle
x> +y> =1, or the duplication formula for

) T dr
arcsinr = | ——
0o V1—172

/7L_2/”diu
0o vV1—172 0o V1 —u?

if r=2uv1 — u? (a restatement of the trigonometric
identity 7= sin(2x)=2sinx cosx), Fagnano found,
and proved, by substitution, a geometric rule for
duplicating the arc of a lemniscate:

namely

X 2a2y? pyt = a2 g2

The length of the arc is now given by

/ Todr

s= | ——

0o V1—7*

and later Gauss designated the limit of integration
by 7=sinlemn(s). Fagnano was able to show that

/' dr _2/“ du
0o V1—r* 0o V1—ut

with the substitution
2 4u (1 — u*)
(1 +u*)?

which is remarkable not only because it doubles the
length, but also because it does so by rational
functions, and in fact shows that the arc of the
lemniscate can be halved by straightedge and compass.
Gauss showed that the constructible fractions of an arc
of a lemniscate are the same as the ones for the circle.

Thanks to subsequent work by Euler, and to the
theory of abelian functions due to Abel, Jacobi, and
others in the nineteenth century, we now realize that
Fagnano’s discovery revealed the algebraic group
structure of the singular quartic curve (or of a
smooth cubic, if preferred, an elliptic curve).

This is the key fact that provides the “integration
by quadratures” for the simple pendulum. We
follow McKean and Moll (1997) to sketch this
prototype example of a system which is algebraically
completely integrable (ACI), defined in the section
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“Hitchin systems.” Newton’s law gives the equation
of motion 6+ sin@=0, where 6 parametrizes the
position of the bob in terms of the angle the
pendulum makes with the vertical axis, as it rotates
about its pivot (the length has been normalized so as
to match the gravitational constant). The energy is a
first integral, [ = cosf — 1/292, and the substitution

N
X = 1-1 Sll’l2

linearizes the motion:

_/x 1 d
T Ao k)

with k*>=(1—-1)/2 between 0 and 1, precisely
because of Fagnano s and Euler’s addlthIl rule.

The second striking example of addition rule,
yielding solutions to a nonlinear partial differential
equation (PDE), together with this first will provide
the two themes of this article, and embed into an
infinite-dimensional family of conservation laws that
will accommodate the representation-theoretic
aspect of the symmetries. In their 1895 article,
Korteweg and de Vries (KdV) gave official status to
the (then controversial) representation of solitary
waves in shallow water:

Uy = OUU, — Usrx

(again up to normalization) is by now the well-known
KdV equation, where u represents the amplitude of the
wave and x the direction along a canal. It so happens
that by integrating twice the ordinary differential
equation (ODE) obtained by the one-wave ansatz,
z=x — ct (where c is the constant velocity), one sees
that the solution # and its derivative u, =u' satisfy
identically an algebraic equation:

—cu —6ur +u" =0

(—cu—3u* +u" +a)u' =0

"2 2
%2143—"-6%—61%4—17

u =2p + const. (up to a linear transformation)

() =40> — 20— g3 =4(p —e1)(p — e2)(p — e3)

In disguise, then, the PDE and the Hamiltonian
evolutions are the same; the motion becomes linear
(and quasiperiodic) on the torus C/A, where A is the
period lattice of the p function. It took considerably
greater effort to generalize this correspondence to
higher genus. This article is devoted to such a
correspondence as well as some of the surprising
connections between complete integrability and
other areas of mathematics such as: representation

theory (the corresponding geometric objects are
Grassmann manifolds as opposed to Jacobians);
differential algebras (Weyl algebras, commutative
rings of differential operators, and differential
Galois theory); and reduction in symplectic
geometry.

It is often helpful to highlight the relevant features
in the simplest example, even if it is of special kind.
The KdV equation and, as Hamiltonian counterpart,
Neumann’s system (see Neumann (1859)) will serve
best. The abelian sum identified by Fagnano cannot
be defined on points of a curve X of genus g > 0;
what one can add are points of the g-fold symmetric
product X@ up to linear equivalence, defining (up to
noncanonical isomorphism) an abelian variety, the
Jacobian Jac(X) = C8/A; analytically, the Jacobian is
described by abelian coordinates zi,...,%g: if
Qiy..., Og, B1,...,0 is a basis of 1-cycles on X
with standard intersection matrix and wi,..., wg Is
the dual ba51s of holomorphic d1fferent1als, then
=5, fP wj is defined in terms of a fixed base
point POGX and of (Pi,...,P,) € X® up to the
period lattice A. It is in these coordinates that the
Hamiltonian flows become linear. In canonical

coordinates qi,...,qg+1,P1,---5Pg+1, the harmonic
oscillator

qi = pi

pi = —eq

when constrained to the unit sphere l_lqz has

equations

qi = Di
pi = —eiqi + g 2:(3161’,‘2 - P?)
j

This system is completely integrable in the sense that
there exist enough involutory invariants, g gener-
ically (in the (g, p;) variables) independent functions
on the 2g-dimensional tangent bundle of the unit
sphere with canonical symplectic structure; in fact
the coefficients of the polynomial

g+l g+1 g+l Pi
f(/\)=g —e;) (( A_g/q)( A—ekJ’l)
2
_(g“ qkpk> )
kzl)\—ek

are invariant and the hyperelliptic Riemann sur-
face X whose model in the affine plane is given by
> =f(\) is called the spectral curve of the system.
Since the polynomial f(\) is monic of degree
2¢+1 and has generically simple roots, X has
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genus g. A change of variables permits integration
by quadratures,

I[n2i-1](0)9[n2i-1](z0 — A + 2v/—11U)
9[0](0)9[0](z0 — A + 2v/—1¢U)

qi(t) =

where 2y, U € C# are constant vectors, ¥ denotes the
Riemann theta function of X, n(k=1,...,2g) are
theta characteristics and A is the Riemann constant.
While these are technical objects of classical
Riemann function theory whose detailed definition
is best found in a textbook (see, e.g., Mumford
(1984)), the point here is that the motion is
linearized along the line with direction U, on the
hyperelliptic Jacobian Jac(X), which is a 2¢*1:1
cover of the phase space.

A yet deeper fact links the integrable Hamiltonian
motion and the (soliton) PDE, namely the statement
that Zfill (eiq? + p?)=u(t1,t3) solves the KdV
equation, where the variables are renamed as
x=t,t=t;3 to denote two of the g commuting
Hamiltonian flows.

The Neumann system as well allows us to uncover
another deep relation between dynamics and geo-
metry, namely the moduli aspect: on the one hand,
Mumford (1984) used the Neumann system to recover
the equation of the spectral curve from a vanishing
property of theta functions with characteristics,
thereby giving the first characterization of the moduli
subvariety of hyperelliptic curves in terms of thetanulls
(for any genus). On the other hand, Francoise (1987)
explored the relevance of the integrable system to the
Picard-Fuchs equations. The fundamental link is
provided by Arnol’d’s theory, according to which a
set of action-angle variables (g;,p;), i=1,...,n, fora
completely integrable Hamiltonian system can be
calculated in terms of a basis 7; of the first homology
of the fibers, which are #n-dimensional tori,
L : dgi=6;; hence, in the case of an algebraically
integrable system such as the Neumann example (or,
in Francoise’s paper, the Kowalevski top), in principle
one can express the (coefficients of the) differential
equations satisfied by the periods in terms of the
commuting Hamiltonians, despite the fact that
periods and Hamiltonians are transcendental func-
tions the ones of the others. A more general family of
period matrices is subject to the Gauss—Manin
connection, and the question of whether its general
abelian variety is Lagrangian with respect to a
holomorphic symplectic structure on the family yields
a cubic condition on the periods (Donagi and Mark-
man 1996).

These are two major applications of PDEs to
algebraic geometry: characterizing subvarieties of
moduli spaces (of curves) and expressing the

Gauss—Manin connection acting on sections of a
Hodge-theoretic bundle over the moduli space in
terms of the evolution equations of a completely
integrable system. In the former case, the flows of
the system act on the theta functions of a (fixed)
curve; in the latter, the Hamiltonians are related,
via the action variables, to computing the mono-
dromy over the branch points of the base of the
system. The generalization of specific (e.g., hyper-
elliptic) cases is very difficult to work out and
remains largely open 40 years after the field of
integrable equations started being actively
investigated.

Before concluding this historical overview, a
beautiful theory that escaped attention is worth
mentioning. In the late nineteenth century, for
example, Baker (1907) constructed the first genus-2
solutions of the KdV equation, although he was
apparently not aware of the equation itself; in the
process, he also defined what is known as the Hirota
bilinear operator, a device introduced by R Hirota
in the 1970s to capture an equivalent version of the
KdV, or the more general Kadomtsev—Petviashvili
(KP) equation,

(t4p — 6UBLy + Usrr), = Uy

Just as the Lax pair allows for a linearization of the
isospectral deformations, Hirota’s bilinear form
reveals the representation-theoretic (and algebro-
geometric) nature of the equations, via the vanishing
of a natural pairing on a pair of solutions, besides
providing a formula for exact solutions; the defini-
tion of the bilinear operation is the following: for
functions F and G,

0 0
Dy F-G = <8_t;1 - 8_1:,1> F&)G(t) |-
t=(t1,t2,...)

so that Hirota’s direct method gives the following
solution: set u = 2(9%/0x?)log F, then

KdV & (DyD; + D})F-F =0

(Di+3D2 ~4D.D,)F - F

2F2 =0

KP < D2

Baker was intent on generalizing the properties of
the Weierstrass p function. He focused on genus 2
(and obtained partial results for general genus), in
which case any curve is hyperelliptic,

fopr =28 1, M8+ 4 a

and used a suitable basis of holomorphic differen-
tials particular to the hyperelliptic case, whose
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integrals give abelian coordinates z; that happen to
be dual to the KdV flows,

dX AdA A8~ 1dA
— W)=, ., Wy =
2/1/7 2 Z,LL ’ ;) Wg 2M

w1 =

to characterize the genus-2 theta function by
differential equations (equivalent to the KdV hier-
archy), as well as give the quartic equation for the
Kummer surface in P?, namely the 2:1 image of the
Jacobian of the curve mapped by the divisor 20,
that is, by a basis of the space of theta functions
with second-order characteristics, simply as the
determinant of

—ag %dl 2p1 —2p12
%al —(a2 + 4p11) %aa +2p12 202
2011 3a3+2p1 —(a4+4pn) 2
—2p12 202 2 0
where
82
logo(z)

Pi(z) = = 02:0%;

and the o function, defined in analogy to the genus-1
case, is proportional to the Riemann theta function.

To summarize this introduction, the exchange
between algebraic geometry (the classification of
algebraic varieties) and dynamical systems has been
extremely fruitful in either direction: algebraic
geometry surprisingly provides exact solutions to
evolution equations that have special algebraic
symmetries (and arise in nature!), and conversely
those very evolutionary equations yield the structure
of particularly complicated varieties, by characteriz-
ing their (rational) functions.

Isospectral Deformations

The isospectral deformations in question have been
encoded by Lax-pair equations, which take their
name from Peter D Lax, who gave a version of the
KdV equation in such form.

Lax pairs enter in two essentially different ways in
the theory of integrable systems. The evolution
equations take the form: 0, L=[B,L], where
t1,t2,13,... is a sequence of commuting time flows,
L is an operator whose coefficients depend on time,
and B is another operator of the same kind; since
heuristically this is the infinitesimal version of the
equation L(¢)=U(t)"'L(0)U(t) (with B=U"8,U),
the spectrum of L is preserved and provides
conserved quantities; in fact, Moser (1980) specu-
lated that every completely integrable system might
have such a form.

In the form that immediately yields a hierarchy of
PDEs, the (hierarchy of) deformations pertain to a
ring of (formal) pseudodifferential operators, where
the variable x=1¢; is singled out and & denotes
differentiation with respect to x:

L(t)e D= {Z ui(x)0', u; analytic near x = 0}

=0

CcCP= {zn: u,-(x)a’}

—00

The multiplication rule that makes P into a ring (in
fact, a C-algebra) is composition:

Oou=ud+u
O lou=ud"' -2 +u"03— ..

We normalize L by an automorphism of D
(generated by a change of variable and conjugation
by a function)

L=0"+u, 2(x)0" >+ + up(x)

In P any (normalized) L has a unique nth root,
n=ordL, of the form L=9+u_(x)07"+
u_5(x)0% + ---. Finally, the deformation equations,

O, L= [(£"), £]

define the KP hierarchy, which takes its name from
the first nontrivial deformation equation, known as
the KP equation encountered above, if we set
x=t1,y=1,t=t3 (notice that this reduces to KdV,
up to rescaling, when the solution is independent
of y). The algebro-geometric solutions are those
with the property that only a finite number of time
evolutions are independent. This turned out to be
equivalent to a classical problem of elementary
differential algebra, known as the Burchnall-
Chaundy problem after the two co-authors who
solved it in the 1920s.

The Burchnall-Chaundy problem: which L(x)’s
have centralizer Cp(L) that is larger than a
polynomial ring C[Lq], L € D? The key to the
solution is the following fact (which clearly does
not hold for operators in more than one variable,
or finite-dimensional operators such as matrices):
if ord L >0 and A,B € D both commute with L,
then [A,B]=0; in particular, Cp(L) is commuta-
tive, hence every maximal-commutative subalgebra
of D is a centralizer. It was proved in the early
1900s by I Schur that Cp(L)={>N_ ¢/, ¢; € CIN
D. It follows that centralizers are rings of affine
curves: their transcendence degree over the field of
coefficients is 1, and SpecC(L) can be regarded as
an affine curve X, (with natural compactification
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X by a smooth point at infinity). Burchnall and
Chaundy proceeded to show that the rings of
operators whose orders are not all multiples of a
fixed integer >1, and having the same spectral
curve X (up to isomorphism), correspond to line
bundles over X (more precisely, rank-1 torsion-
free sheaves); thus, the hierarchy of evolutions
linearizes on Jac X, as indicated by the examples
treated above.

In this setting, it has been very challenging to
generalize the integrable flows, both to the higher-
rank and to the higher-dimensional case. When all
the operators in the commutative ring have order
divisible by an integer » > 1, their common kernel
defines a rank-r vector bundle over the spectral
curve, and although the theory in principle is
similar to the case of line bundles, there are no
explicit formulas for solution. On the other hand,
in order that the spectrum be a variety X of
dimension d > 1 rather than a curve, it is natural to
seek commutative rings of partial differential
operators in d variables; but again, while some
constructions work in principle, explicit formulas
are elusive.

The form in which Lax pairs occur for finite-
dimensional Hamiltonian systems is quite differ-
ent: here what is preserved is the spectrum of a
finite-dimensional linear operator, a matrix. The
first examples, from which the theory took off,
were inspired guesses. The Neumann system
described above fits in the following theory:
Moser (1980) showed that the Neumann system
together with other important classical examples
are special cases of rank-2 perturbations (since
(2=dim(p,q))) which preserve the spectrum of a
matrix

L=A+aq®@q+bqep+cpeq+dpop

where A is a fixed constant matrix which can be

normalized to a diagonal, diag(es,...,eg1),

a b
det[c d} #0

and # ® v denotes the matrix [#;v;]. The symplectic
structure is the standard w= Y dp; A dg; so that a
Hamiltonian H defines a flow

L -of . _oH
Qz—api; pi = aqz

and

OHOG 0GOH
~H.GY =) 550 opioa;

The Hamiltonian flow of

H :% <a<Bq, q) + (b +¢)(Bq,p) + d(Bp,p)

ad be~—~bi — b;
2 Ze,-

i#

(6] pj — qipi)2>

(where B=diag(b,...,bg.1) is any fixed diagonal
matrix) is equivalent to the Lax-pair equation
L=[M,L], where M is a suitable matrix:

1
M=3

(b — ¢)[bib;] + (ad — be) F’" —

€

b.

Haip; - %‘Pi)}
¢
The Weinstein—Aronszajn formula

det <I,, — i &® 771‘) = det(lr — (& 77/'”)

(where each of the &,....&,m,...,m, is a
(g + 1 =mn)-vector) gives for the spectral invariants

I(\)  det()—L)
e(N)  det(A—A)
=det(I — (A= A)"'q) ® (ag + bp)
— (A =A4)""p) @ (cq + dp))
= det(I, — Wx(q,p))
with
(A=A)'q,9) (A—A)"q.p)
Wi(q.p) =
) [«A —A)'g.p) (A -A4)"p,p)

a b
: [ d}
and det(I — Wy(q,p))=1—tr W) + det Wy =1—
odA(q,p), defining the rational function ¢,.

Moser also showed that the system is completely
integrable and linearizes on the (generalized) Jaco-
bian of the curve p? = e?(\)¢y(x,y). Letting a= — 1,
b=—c=1,d=0 gives the Neumann system.

The dilation gq— Ag gives a Lax pair with
a parameter, A—A+XNqgRqg+ANgRp—pR4q),
which makes the spectral curve look more natural.

Indeed,

Remark (Adler and van Moerbeke 1980). The
Neumann flow is equivalent to the Lax pair:
Ly=[Mi, L], where Ly =Ap* + u(q@p —p@q) +
qg®q and M1 =Apu+qgp—p R q. Moreover, the
Hamiltonians are of Adler-Kostant-Symes (AKS)
type, namely projections (with respect to an ad-
invariant inner product) of gradients of orbit-invariant
functions to half of the splitting of a Lie algebra.
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Specifically, {S-N_ A;i/|A; € gl(n,C)} =K @ N, with
K:{ZONA,»M} and N:{ZfOC Ajpi}; if the inner
product is (A,B)= >, trA;B;, the dual of N
can be identified with K= K", and the Hamiltonian
for the Neumann flow can be taken to be
H:<(1/2)(L1/f2)2, 1*Is1) under the Lie-Poisson
brackets and suitable reduction. The flows linearize
on the Jacobian of the (hyperelliptic) curve
det(Ly — ) =0.

It is possible to recover the link between the finite
and infinite integrable systems (Neumann and KdV)
mentioned in the introductory overview, if we notice
that squared eigenfunctions for the Lax operator
L=/?=8 +u become algebraic on the spectral
curve: Dubrovin et al. (2001) introduced the Baker
function, namely the unique function (x, P) with
the following properties:

(i) For |x| sufficiently small it is meromorphic on X \
{P}, with pole divisor bounded by § =P + - - - +
P,, independent of x, such that »°(6 — P,) =0,
and near P, t(x,P)e ™ =1+ O(z™") is holo-
morphic, with z chosen to be A'/? in our case.

(i) We let Q be the unique meromorphic differential
with zeros on 6 and a double pole of the
form (— A+ holomorphic)dz™ at P.. Note:
(1) that Riemann-Roch show that 2 is unique.
(2) We also get a characterization of the dual
Baker function, defined as 1)(x,:P) in the
hyperelliptic case where ¢ is the involution
(A, p) — (A, =), as meromorphic on X\ {P}
with poles bounded by & and behavior e (1 +
O(z™")) near P, where 6 + & are the 2g zeros of (.
(3) Furthermore, Q=d\/W(i), ¢), where W is
the Wronskian (with respect to the variable x).
Then, upon fixing a meromorphic function b,
normalized at P, h=\"1/2 +entire, with g+ 1
fixed poles distinct from 6, we have:

If pi = Rese b2, q; = \/pjb(x. ), pj = \/pid(x, &),
then 51 qF = 1, B qip; = 0, B (ejq7 +p}) =
u(x) and {q;,p;} satisfy the Neumann system.

Indeed, the constraints follow from the “residue
theorem” applied to the differential hQ¢ (it has
a residue of —1 at P.); the differential equations
gi=ejqj —uq; follow from the assumption
L=\

The function u= -2 Ziill (D1 e))qz, evolving
under suitable abelian flows, is a solution of the
KdV equation; the “times” of the KdV hierarchy are
linear combinations of the Neumann Hamiltonians;
more precisely, of the invariant vector fields deter-
mined by the tangent directions to the image of X in

JacX, with Abel map normalized at P., at some
point P: Dp= "% A(P)¥ "D
The other way around

McKean-van Moerbeke),

(Moser-Trubowitz,

If L=0>+4u(x) is a finite-gap operator and
e1,...,eqr1 are among the 2g+1 edges of the
gaps, there exist comstants pi,...,pg+1 SO that
the functions p;(x)= . /pjb(x,e;) satisfy Z‘f”
pl-z(x)z 1. Since Lipj=ej)j, the pj(x) solve the
Neumann system.

The squared eigenfunctions also provide a natural
interpretation for Moser’s Lax pair. If V) is the
kernel of L — A, then the Baker function (x, P) and
its dual ¢(x,P) give a basis of V) except at the
branch points (e;,0) where ¢ =¢. But then the
normalized basis of V) is related to 4, ¢ by a

constant matrix:
Yo =C ’(/J_
)=

o[3]-[5 5[0
¢ 0 —pjlo
if B is the differential operator of the Burchnall-

Chaundy ring corresponding to multiplication by p,
so that

while

T
—v ul' . [u 07,
[W V}MBC[O M}c

By evaluating at x =0, we find:

B i ¢l _w/
c=wl % V]
with W=1¢' — 1//¢. Finally, we calculate:
C{N 0 ]C—l _m {1/)¢/+W¢ 24/ ¢ }
0 —u W =299 —(d +¢'¢)

so that UN)=¢¢' + ¢/, V(X) = =24, W(A) =2¢/¢/
are polynomials like the entries of Wy(q,p)-e*()\),
and the fact that UW 4 V2 does not depend on x
expresses the fact that YW =constant.

An object that links the two distinct occurrences
of Lax pairs is Sato’s infinite-dimensional Grass-
mann manifold. One particular model will serve as
illustration, with more general settings covered by
Dickey (2003). Sato defined a one-to-one correspon-
dence between cyclic D-submodules Z of P, namely
of the type Z =DS (which turns out to be equivalent
to the property: P=7 @ P'"V), and subspaces of a
ring of formal power series, which make up an
infinite-dimensional Grassmann manifold, more
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precisely elements of Gr”, the “big cell.” This way,
KP can be viewed as deformation of D modules.

There are two ways to set up the Grassmannian:
(1) more direct as a limit of finite-dimensional
Grassmannians; (2) more intrinsic, using the rings
DCP.

1. Let dimV =m +n=N, Gr(m, V)= {m — frames
in V}/GL(m) — P( A" V) via 0. ¢m=1 s ¢0)
A g(mfl)_
If we fix a basis ep,...,en-1 of V, and
write a frame in coordinates, £V =& eq+---+
EN-1,ieN—1, then

EO A pglm) = Z &t

m—1 eéO /\ T /\ eém—l
0<ly<-<ly_1<N

with &y, ., =det(&, /)1; 0,

A point in the ambient P(A™ V) lies in the embedded
Gr(m, V)< its projective coordinates &, 4, ,(0<
£; < N) satisfy the Plicker relations (PRs):

m

Z(_ 1 )igkOwkm—Z(ié_f(]...é,n..(m =0

i=0

Therefore,

Gr(m, V) = (Gr(m, V)\{0})/GL(1)

where

Gr(m, V) ={(y)yca,, satisfying the PRs} is a line
bundle over Gr(m,V),Y is a Young diagram con-
sisting of rows

€m71 — (m — 1)

0 —1

so it is contained in the rectangle A,,n.
For the commutative diagram:

Gr(m',N') project Gr(m,N)
| identity | identity
&;}(1/}1/7 N/) emﬁed a;.(m’ N)

facts can be checked. Let

m' + "

the following
m<m',n<n',N =

(i) if (§y)yca,,,, satisfies PRs, so does its restric-
tion to Y’s within A,,n;

(ii) if (§v)yca,, satisfies PRs, so does (§y)yca .,
where £, =0 unless Y C A,,n.

_These facts make it possible to define: Gr=

Gr\ /GL k4 Where Gr= {(é-Y)Y all Young diagrams
satisfying all PRs}
Gr Pt Gr(m,N)

T dense i identity

a}ﬁn emied a(m’ N)
and

Grfin = ={(¢) € Gr : &y = 0 for almost all Y}
= U Gr(m,N)
m,N

The KP time deformations are defined as follows:
y(t):=_ xv,y(t)éy where xyy(2) :=det(py_ (t))

ally’
po(t)=

1,p.(2):= >

v +21n+3v3+-=n

0 (rinlll)

Write xy/p as xy, where xy(¢)=det(p,;(t)) are
the Schur functions.
To connect with the KP hierarchy, let

(L anm(ert)
wy(x,t) = (=1) BT

where x+t=(x+t1,2,...), and S:=1+4w(x,1)
O'+---. Then £L=59S7! satisfies the KP hierarchy,
namely 0, S=B,S—S0", where B,:=(50"S7!),,<=
[0~ By Oy, — Bl =040, L=[(L").,L].

Note The Plicker coordinate &y(t)= > .y xv(Z)
&y =7(&t) is a generating function for the Plucker
coordinates, &y(t) = xy(0)&(t), where

b (D10 10
t._ ot ’'20t,° 307

Now by reducing to Gr(m, N) and checking that
every &y(t) satisfies PRs, we have a dynamical
system on Gr.

Conclusion (Sato). Although any f(¢) € C[[t1, 22, ...]]
admits a formal expression of the form >y cyxy(?),
where the coefficients are

cy = xy(9)f (t)],—o

it represents the 7 function for some £ € Gr < its
coefficients satisfy the following PRs:

m 5 .
;(_ Xko m—1Li 2 X[O,..é“./ﬂ, _5 77=0

which is the KP hierarchy in Hirota bilinear form.
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2. Let

P
V: Pconst = {

:E:

Z al-ai, a; € C}

—00<i< <00

equipped with the induced filtration V¥ by order,
induced by

{5 aitcc)
—oo<k<i

and define

Gr = {vector subspaces W of V
s.t.dim(WnN V(O)) = dim V/(W + V(0)> < o0}

“same size” as the reference subspace {), _,c.e,:
¢, € C}=V0O, B

The correspondence between such a W and a
cyclic submodule of P is given as follows:

IT—-W=S5'WO={yeV:Tvc vV}
W—Z={AcP:AW c V"

Generic points of particular interest in construct-
ing KP solutions make up the “big cell”:

G' ¢ Gre=V=woVv0O

open dense
<= ¢ # 0 and a 7 function can
be defined as above

In standard basis of V,e;:= 0" 'mod Px, i € Z,
the action

xe; = (l+ 1)6,‘_;,.1
de; = ej_1 '

gives V a P-module structure. Let A be the shift
operator: Je; = e;_1; then

§(r) = e g
so0, this linearizes the flows!

This survey would not be complete without an
example of the formula that links the 7 and the
theta function; more general statements and groups of
symmetries can be found in Dickey (2003). A solution
of the KP hierarchy can be expressed in terms of the 7
function Ty associated with an element W of Gr(H), in
the model Gr(H), where H=L*S")\,H=H, ® H_
with  standard  basis H,=(1,z2,2%,...),H_ =
(z7!, 272, ...) and p. the projections, Ty (g) = det (pg ©
P 0 g1 0 (ply) '), where g=e*4%. The associated
Baker function ¥w(g, z) is a function of the form

—1
Yw(g,2) = g(z) (1 + Y a,-z")

1I=—00

with a; € Cl[ty, ta,...]] for each i, such that the map
2 +— 1wl(g, 2) is an element of g7'W. If ¢p=1+
S a2, then L=¢d¢™" is a solution of the KP

hierarchy.
1
(v 55))

Moreover,
Tw((ta))a

This is the analog of the expression for the Baker
function in terms of the theta function, when W
corresponds to an element of the Jacobian of the
spectral curve T via the Krichever map

P(x, P) =exp (x / n— xa)

9(Ux + A(P) — A(D) — A)J(A(D) + A)
9(A(P) — A(D) — A)9(Ux — A(D) — A)

g (g, ) =

where P € T, A(—) is the Abel map, A the Riemann
constant, U € C® a suitable vector, D a generic
divisor of points Py,...,P, € I',n a differential of
the second kind, and a a constant depending on the
curve. For the KdV solutions, the condition on W €
Gr” is that 22W C W and the solution is

uW(x, i, 1t3,.. ) = 2.810g’7'\)(/(.9€7 i, t3,.. )

In the Grassmannian formulation, the Hirota
bilinear operator mentioned in the introductory
overview makes its third and most general appear-
ance (we regard Baker’s and Hirota’s definitions as
the first two — the one based on a residue formula in
algebraic geometry, the other on the vanishing of a
differential form):

Definitions

(i) In P, it is possible to conjugate any
L=0+u_q(x)0" 4+ --- into 9 by a K=1+
v_1(x)07' +---, determined up to elements
of C[0]=Cp(d): K'LK=0.

(ii) We define a formal Baker function for £ as the
element of the module M (the free, rank-1
P-module = space of formal expressions f =e*f
where f = 21:100 fi(x)z/, with generator €) such
that £ = z1); so that 1) = Ke** for K as in (i).

(iii) We say that the formal adjoint A" of a (formal
pseudo) differential operator A = Z/N: (%)
is Af= Z;N: o (=0Vuj(x), and that the dual
Baker function 9’ to ¢=Ke>? is the Baker
function of (£); the operator which corresponds
to K in (i) is (K") 7, that is, (KT) 1 £TKT = —a.

Then, the KP hierarchy is equivalent to the
following formula:

Reszw(tlv Z>'¢)T(t> Z) =0
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Moreover, as proved in Dickey (2003), if 41 and 9,
are formal power series of the form
1 =Ke¥& Jopy =Je ™% | for K, J € 1+ P, satis-
fying the condition

Res, (8100 00p) 6 = 0

then there exists an operator £ satisfying the Lax
equations, whose wave function and adjoint wave
function are 11,1, respectively.

To conclude this overview of Lax equations, we
point out that they can be viewed as zero-curvature
condition for a (formal) connection (on the trivial
bundle over the formal deformation space whose
fiber is P), rephrasing the fact that the time flows
commute and hence define time deformations; such
formulation can be found in Mulase (1984).

Symplectic Reduction and r Matrices

While the Lax-pair presentation provides natural
spectral  invariants, the group/representation-
theoretic nature of integrability (sometimes referred
to as hidden symmetries) is best seen in the context
of Marsden—Weinstein reduction. We perform it in
the example of a generalization of Moser’s rank-2
perturbation; we extract the basic construction from
Adams et al. (1988). A more comprehensive treat-
ment can be found in Babelon et al. (2003).

Definition We let M, , denote the space of n x r
complex matrices, with # > r and give M=M,, , x
M,,,, the symplectic structure w(F, G) =tr(dF A dGT)
for F,G € M. A rank-r perturbation of a fixed 7 x n
matrix A is L=A + FGT.

Definition We split the formal
glin =gl(n" @ gl(r)” cor
matricial polynomials in A and gl(r)” of strictly
negative formal power series. Under the pairing
(X(N), Y(N) =tr(X(N)Y(A\))_ (where the subscript —
means the coefficient of A1), the dual of gl(r)"

identified with gl(r)",
Poisson structure.

loop algebra

where gl(r)* consists of 7 x r

which therefore admits a Lie—

In sketch, we consider _an action on M whose
moment map lands in gl(r)"; we check that the
AKS flows on gl(r)” correspond to isospectral
deformations of L=A+ FGT for flows on My;
finally, we perform a Marsden—Weinstein reduction
for an (equivariant) GL(r) action to obtain a
completely integrable system on a symplectic leaf,
whose flows are linear on the Jacobian of the
spectral curve. We recall very briefly the general
definitions.

Moment Map

1. A smooth group action of G on a symplectic
manifold (M, w) is said to be Hamiltonian if there
exists a “moment map” | : M — g* such that the
Hamiltonian vector field associated with | and a
fixed element & € g is the same as the infinitesi-
mal action associated with ¢ However, an
infinitesimal definition is given because in the
formal setup the group of a Lie algebra is often
delicate to define. We recall that:

2. The Lie-Poisson structure of g* is defined by

{0,V (1) =< p, [dop(p), dip(p)] >
for g, €C*(g"), neg

where d¢:g* — g** (which in our situation will
always be identified with g) is defined by

d
<dg(p),v>=olu+mw)
Now we say that | : M — g* is a moment map if
3. its linear dual j:g— C*(M) is a Lie-algebra
homomorphism; or if
4. it is a Poisson map with respect to the Lie-Poisson
structure: ¢, ¢ € C(g") = {J*¢, "} =J"{¢, ¥l
In case we do have a Hamlltoman G-action, then
the subspace C¢y (M) of G-invariant functions is a Lie
subalgebra of C*(M). If G acts freely and properly on
M, then M/G is a manifold with a Poisson structure
inherited from the one on M through the identifica-
tion C*(M/G) = C& (M). The symplectic leaves of
M/G have the form M, =] (u)/G,=]10,)/G,
where 11 € g*, G, is the isotropy group of 1 in G and
O, is the G-orbit through p. The reduced manifold
M,, has a natural symplectic structure w), such that
fw=m"w,, where i:](u) — M is inclusion and
m:J ) — M, is the natural projection taking
points to their G ,-orbits.

pveEg

This class of examples can be treated with the
technique of a (classical) -matrix, as follows. Given a
linear map R:g — g, the alternating bilinear form
[X, Y]gr = (172)([RX, Y] + [X, RY]) satisfies the Jacobi
identity < certain quadratic conditions on R are
satisfied. Assuming they are, for all pairs of invariant
functions I, | on g*, we have {I, J}g =0 (where {, }3
is the attendant (Lie-Poisson) structure). Indeed,

{L () = ([d1 (1), d] (10)]r> ) = (12)([RAI(p2),d] ()],
wy + (1/2)([ ( ), RdJ ()], 1), but, for example,
([RAI(p), dJ ()], 1) = (RAI(p1), ad"d] (1) (1)) = 0.

Remark As is clear from the proof above, our
definition of invariant need only be infinitesimal,
that is, f e I(g") iff <p,[df(u),X]>=0Vue g,
X € g. Of course, when we have a corresponding Lie
group the invariants are the functions which are
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invariant under the natural action, such as the
symmetric functions of the eigenvalues of a matrix.

AKS Flows

For a splitting g=K® N, as given above, with
g*=N* @ K*, an example of r-matrix is given by
R(X)=X, — X_ (where +,— denote projection to
K, N): the Jacobi identity is straightforward to
check. As a consequence, invariants on g* are in
involution with respect to {,}z and these are called
AKS flows, after Work done mdependently by AKS:
=[df(X +,X] [df (X , given here for the
sPecnal case in Wthh we can 1dentify K with K* and
X is the element in K* that corresponds to X € K.
We now proceed to the appropriate moment maps.
We generalize the constant matrix A introduced
above (isospectral deformations) by allowing multiple
eigenvalues «; of multiplicities n; < 7,1 +--- +
np=n, so that det(A — \l)= Hle (o; — A)™. Let
a(\) =[*_, (@i — \). We split an 7 x r matrix F
into k blocks F; accordingly.

Definition/statement

(i) JHF, G)(x1, ...y x0) = => 1 tr(FX;G) is the
moment map of the action [(g1,.-.,8x)
(F,G)|;=(Figi', Gigl), where g € GL(r) so

that under standard identifications J(F, G)=
—(GTFy,...,GLF,) and restricting the action to
the diagonal subgroup {(g,...,g)}, J;(F,G)=
G'E.

For X(\) € gl(r)" we define a(X()\)) =
X(c;)) and obtain the exact sequence

0— a(Ngl(n'* 5 gl(r)

By dualizing, and identifying g7 to its dual by
using the trace componentwise, we get

k
Ot(Y1,... ; —a,

and finally check that J,=a*oJ” is a moment
map. By combining (i) and (ii), we get a
moment map

(ii

—

(X(Oﬂ )a LR

i>g’r1—>0

“'—I

M»

GT'(A-\'F

which becomes injective on M /H, where M is
a suitable open submanifold of M and
H=GL(ny) x --- x GL(n;) acts blockwise by
(hiF;, b1 G;).

(iii) We also notice that the “Moser space” My =
{A + FGT|F, G € M} of rank-r perturbations can
be identified with the orbit space M/G,,G, =

GL(r) acting as in (i).

__To finish, we turn on the obvious AKS flows on
gl(r)": the key observation is that they are isospec-
tral for the rank-r perturbation A + FGT: we see that
the Poisson-commutative ring F, of projected
invariants defines, by composition with J,, a
Poisson-commutative ring F of isospectral flows on
Mn,r X Mn,r-

Hitchin Systems

The Hitchin system, introduced in the late 1980s,
20 years later still encompasses the most general class
of “algebraically completely integrable” systems, which
we now discuss. In its most basic form, the concept of
“algebraic completely integrable” (ACI) Hamiltonian
system, is an extra condition on the integrability of
classical mechanics, in the following sense.

A Hamiltonian system with 7z degrees of freedom,
that is, defined on a symplectic manifold M of (real)
dimension 27z is (Arnol’d-Liouville) completely
integrable if it admits z functions in involution
whose differentials are linearly independent (possi-
bly, generically on M). When M is a component of
the set of real points of an algebraic variety M¢ and
the symplectic form w and Hamiltonian function H
are rational without poles on M, the concept of
algebraic complete integrability can be introduced.
For this condition to hold, we require that the vector
fields corresponding to the Hamiltonians in involu-
tion still have no poles on a compactification of the
fibers on Mc.

Nonexample (Mumford 1984, §4).
M=R?,

Consider

w=dxAdy, H=ux*+y

Here a compactification of the fiber, the affine
curve x*+y*=¢, is the projective curve X*+
Y*=cZ* which is smooth (provided ¢ # 0) and
has four points at infinity. The vector field Xp
defined by H, Xy Jw= —dH, is tangent to the fiber
in the affine plane, but has a pole at infinity as can
be checked by a change of coordinates; 4 is the
lowest exponent for which this simple nonexample
works!

Note In the algebraically completely integrable
situation, the fibers are abelian varieties or exten-
sions of such by C** for some power k. This gives
rise to the issues of variations of periods over the
base mentioned in the introductory overview.

The Neumann system is ACI, with integral tori
given by the Jacobians of the spectral curves:

2g+1

[[Tr—e)=

1

D =g\ = UwW + V?
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where
qipi v;
A — e; Z A — e;
2
qi iDi
1 _4i _dibi
+ Z A — e; Z A — e;
g+1

L =[]0

1

U:

(S

(A=Xi),  (M,...,Ag) ““elliptical spherical

I

Il
—_

coordinates”

Y= (1, %) eigenvector: L = ui
1

g
divisor: » (A, V(N))
i=1

Hitchin (1982) devised a geometrical model of the
spectral curve, a compact algebraic curve contained in
the surface 7" P!, and its line bundles. He also provided
subsequently (1987) a dramatic generalization.

Hitchin’s construction, in the Neumann-system
example, highlights the following objects:

e L c H (P End(E)® O(g+1)), E rank (r=)2
bundle over P';

e T =rtotal space of the line bundle O(g + 1) over P*;
® ;1= tautological section: P! — T, where L — il €
H°(T,End(E) ® O(g + 1)) (tildes denote pullback);
I': det (L — al) =0. The line bundle 1 (eigenvec-
tors) is defined as the kernel of L — jil; and

the moduli space of spectral curves is a linear
system on the surface T. Fixing {ei,...,e41} In
the above example gives constraints that define it
as subsystem of a complete linear system, as well
as providing a Poisson structure on the whole
((2g — 1) + g)-dimensional ~ manifold (base =
curves, fiber = Jacobians) which reduces to the
standard > dp; A dg;. Equivalent to choosing a
section s € HO(PL,0(g — 1) ® K1),

r $<—>(€],...,€g+1)
l7:1 E—E®Oum(g+1)«L
p! (A:1)eP!

Generalizations

e P! — Riemann surface X of genus g > 1;

e E stable rank-r vector bundle over X. To give
a concrete example, we will take r=2 and fix
det E = Ox.

Hitchin’s Abelianization Program

Fact (Hitchin). Every such bundle E over X can be
realized as the direct image of a line bundle over a
spectral curve T X.

We introduce the moduli space M=
SUx(2,O0x) = S-equivalence classes of E’s, E semi-
stable rank-2 bundle over X, detE=0yx. The
dimension of M is 3g — 3.

Hitchin (1987) proved that 7°M is ACI (gener-
ically, there exist 3g — 3 regular functions in involu-
tion with respect to the standard symplectic
structure, with invariant manifolds isomorphic to
Prym T, where T' = spectral curve).

To recognize the analog of the features high-
lighted above, we recall that Kodaira—Spencer
deformation theory gives the following description
of the cotangent bundle: since a rank-r vector bundle
over X is determined by a 1-cocycle with values in
GL(r, Ox), a first-order deformation of E is given by
a 1-cocycle with values in the associated bundle of
Lie algebras, hence by a class in H'(X, End(E)), so
the cotangent bundle has Serre-dual fiber
HX,E ® E* ® K).

Hitchin map (E, ¢) € 7*M (Higgs field, trace zero,
¢ € H(X,Endy(E) @ K)):

H:¢pr+ det¢ (more generally for any
tr A g e HOX,K®)) i=2,...,7;

p— —u defines Prym T, pu? = det¢ € H(X, K®?)
defines T'.

r>2,

Explicit Hamiltonians for the Hitchin System

The cases in which X is genus 0 and 1 were solved
explicitly by Nekrasov (1996) using explicit parame-
trizations of the moduli spaces; this includes the case of
insertions (singular curves), yielding (elliptic) Gaudin
models. We report the solution for the genus-2 case
(van Geemen and Previato 1996).

Remark The map H projectivizes,

H : PH°(X,Endy(E) ® K) — PH’(X, K*?)
det(c¢) = ¢* det ¢

Coordinates on 7*M can be given as follows:
O C Pic® !X = canonical theta divisor

A- M _ |2®| _ Jng_l
EDp = {£ € Pic” 'X : iN(E® €) > 0}

X hyperelliptic = A is 2:1 except for g=2 (every
point of M is fixed under the hyperelliptic
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involution), where M = P3. For a vector space V
the Euler sequence gives

PT'PV=I={(x,h) e PVXx PV :x €h}
In our case,
PV x PV* = 120] x |20y]

Define six polynomial functions H; on P? x P3*
by the requirement: for generic g € P3,(H;=0)N
PT,P? = £; U £, the six pairs of bitangents to KN
PT;P3, where K is the Kummer surface (the
remaining 16 bitangents are cut out by the tropes.)

Recall that the Grassmannian of lines in
P3,Gr(2,4), is defined by an equation 3¢ X2=0
in Klein’s coordinates

(X1:...:Xg) e P’
X1 =po1 + p2s, Xa = i(por — p23)
X5 =i(po2 —p13), X4 =po2+ P13
Xs = pos + P12, X6 =i(po3 — P12)

where p;j=2Z;W; — W;Z; are Pliucker’s coordinates
on the line

(Zo:...:Z3)(Wo:...: W3)) C P>

Using coordinates on the incidence variety I given
by the sections ®; of the bundle projection PT*P? —
P, ¢;: P - PT'P’ =1 C P’ x P¥,q —(q,ei(q)) =
(g, Xilg, —)), explicitly given, for g=(x:y:z:¢), by

eg=(y:—x:t:—-2), e=(y:—x:-t:2)
G=(x:t:—x:-y), e@=(2:—t:—x:Y)
es=(t:z:—y:—x), €= (:—2:y:—x)

Fact For a point g€ P?,p e PT;P3,p & €i(q), the
ith Klein coordinate of the line {(¢;(q),p) is zero and

x/2 0
NN

peliUl < Hip,q) =)

with x; = X;((¢i(q),p)).

Conclusion In an affine patch C* x C** 5 (g,p) =
((x:y:z: 1), (u:v:w: —(xu+ yv + zw)))

Xi(ei(q),p)*

H(p.q) = >~ T

j#i
give six Hitchin Hamiltonians, any three of which
are generically independent. The H? have degree < 4
in x,y,z and are homogeneous of degree 2 in
u, v, w; they Poisson-commute with respect to
dx Adu+dy Adv+ dz A dw.

Example An example is constituted by

=N =1 =4 (N -9)
(x:y:z:1),(u:v:w:—(xu+yv+zw)))
€A’ x A*

Hy =uv(—70xy — 32x%y — 18xy> — 10z — 32x%2
+18y%2) + 17 (=9 — 30y* — 16x%y? — 9y* — 32xy?
—162%) + u*(—16 — 40x* — 16x* — 9x2y* + 18xyz
—92%) + vw(—18x 4 10xy*> + 10yz — 32x%yz
—18y’z — 32x2%) + uw(32y + 10x*y — 10xz2
—32x%z — 18xy*2 + 18y2%) + w?* (—9x* — 16y*
+ 10xyz — 16x%2% — 9y*2?)

The concept of reduction and r-matrix have been
generalized to Hitchin systems. Notably, Hitchin later
showed that the Hamiltonians of the system appear as
symbols of a heat operator that corresponds to a
projectively flat connection, the quantization of the
moduli space of bundles, obtained by changing the
complex structure of the Riemann surface X.

Other Aspects
Special Functions

Special functions have also been traditionally signifi-
cant in both algebraic geometry and integrable
systems. Within the examples presented, elliptic
functions gave rise to surprisingly sophisticated the-
ories. The 1-wave solution encountered in the intro-
duction, # = 2p + const. in the limit when one or both
periods of the Weierstrass function go to zero,
becomes exponential or rational, respectively. The
higher-genus analogs give rise to solitons, or rational
solutions. On the other hand, the KP solutions which
are doubly periodic in the x variable (“elliptic
solitons”) were classified by Krichever (cf. Dubrovin
et al. (2001)), as forming an ACI Hamiltonian system
(“elliptic Calogero-Moser”), which, 25 years later, is
still generating important work, with Hamiltonian

" 1
HoS 0+ 15 ot a)

i-1 i
(where @ is the Weierstrass function of a lattice L
with associated elliptic curve X=C/L, g € X the
origin) and u=23""_, p(x — x(t2,13,...)) is a solu-
tion of the KP hierarchy for suitable time flows ¢; of
the system (#; =x) and KP Baker function
ola—x
Plx;a) = o =)

_ola=%)  (ca)w)
o(a) — o(x)

The associated spectral curves have been classified in
moduli by Treibich and Verdier (cf. Treibich
(2001)); Krichever produced a two-field model as
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well as a universal Poisson structure for the system;
Donagi and Markman (1996) realized it as a
generalized Hitchin system.

More classically, elliptic potentials were the subject
of much study, in particular by Lamé and Hermite in
the nineteenth century and Ince in the twentieth; a
sample result due to Ince makes one feel like Alice in
Wonderland, who “knelt down and looked along the
passage into the loveliest garden you ever saw”: the
Lamé operator L= —3* +a(a+ 1)p(x — x9) with
real, smooth potential is finite gap (namely, almost
all the periodic eigenvalues are double) iff a € Z (if a
is positive the number of gaps is a). A generalization
to several variables (due to Chalykh and Veselov),

L=-A+ Z ga@«a’x))

acRy

where R, is the set of positive roots for a simple complex
Lie algebra of rank 7, (—, —) is some scalar product in
R”, invariant under the action of the Weyl group, and
8o =my(my + 1){a, a) for some m,, € 7, provides one
of the few known examples of quantum completely
integrable rings of differential operators in several
variables. Roughly speaking, this means that the
centralizer of L contains 7 operators with functionally
independent symbols, where 7 is the number of variables.

What is more, Chalykh er al. (2003) combine
differential Galois theory and elliptic function
theory to characterize (under some mild assump-
tions) the generalized Lamé operators that are
algebraically completely integrable: the differential
Galois group of the solutions is abelian.

Duality, Fourier-Mukai Transform, and Bispectrality

Duality is a concept imported from mathematical
physics; as a mathematical phenomenon, it has not
reached theoretical maturity. First observed in exam-
ples, as in Fock et al. (2000), where different definitions
of dual ACI Hamiltonian systems were given (action-
angle, action—action, and quantum), it resurfaced for
the Hitchin system, in more than one guise, whether it
be an interchange of position and momentum variables
(Gawedzki and Tran-Ngoc-Bich 1998) or a duality
between the Lagrangian tori that fiber two such
systems, coming from a Fourier-Mukai transform,
namely a twist by the (universal) Picard line bundle:

P

l
Jac(X) x (H°(X,K) = T*Jac(X))

Notably, the Picard bundle was used by Nakayashiki
to give a spectacular generalization of the Burchnall-
Chaundy result for a genus-2 curve X (more generally,
Jac(X) is replaced by a generic abelian variety in the
statement): the coordinate ring of Jac(X) — Oy is the

common spectrum of a ring of commuting (g! x g!)
matrix partial differential operators in g variables. The
Fourier transform allowed him to extend Sato’s corre-
spondence ™' « zand give F a unique (free, rank-g!)
Djae(x)-module structure, where F is a suitable coherent
sheaf over Jac(X) generalizing the Baker function.

In this model, the interchange of the x and z
variables is known as bispectrality (cf. Grinbaum
(2001)): a somewhat narrower question is a char-
acterization of the differential operators L in x for
which there exists a differential operator B in k and
a common eigenfunction:

Lp(x, k) = f (k)3 (x, k)
Bip(x, k) = 0(x)1(x k)

for some functions f,0, typically polynomial. This
question proved to be related with the KP hierarchy
and isomonodromy deformations. When to a hier-
archy there is associated an ACI Hamiltonian system
(as in the Neumann case shown above), bispectrality
may produce a dual system, in a sense related to the
ones discussed, but somewhat mysteriously so.

Conclusion

Many important mathematical topics and individual
contributions regrettably have to go unmentioned in
an article of this length. The aim was to illustrate
by simplest examples the geometric nature of
integrable systems and equations, in the areas of
spectral curves, moduli of vector bundles over them,
Grassmann manifolds, special functions, Poisson
geometry, representation theory, as well as mention
constructions that are not yet complete, such as
spectral varieties of higher dimension, dualities
sweeping vaster moduli spaces, and quantization.

See also: Billiards in bounded convex domains;
0-Approach to Integrable Systems; Functional Equations
and Integrable Systems; Integrable Systems and
Discrete Geometry; Integrable Systems and Recursion
Operators on Symplectic and Jacobi Manifolds;
Integrable Systems and the Inverse Scattering Method;
Integrable Systems in Random Matrix Theory; Integrable
Systems: Overview; Multi-Hamiltonian Systems;
Recursion Operators in Classical Mechanics; Riemann—
Hilbert Methods in Integrable Systems; Solitons and Kac—
Moody Lie Algebras.
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Introduction

Although the main subject of this article is the
connection between integrable discrete systems and
geometry, we feel obliged to begin with the
differential part of the relation.

Classical Differential Geometry
and Integrable Systems

The oldest (1840) integrable nonlinear partial
differential equation recorded in literature is the
Lamé system

O*H; 1 0H;0H; 1 0H,0H;
Ou;Ou,  H; Ou, Ou;  Hy Ouj Ouy,
i,j,k distinct 1]
o (10H\ 0 (10H,\ 1 0H;0H,
Sy (il ) I et ) =0 2
duy (Hk 6uk> o, (H,— au,-> T 0w o, 2]

describing orthogonal coordinates in the three-
dimensional Euclidean space B (indices i,7, k range
from 1 to 3). Already in 1869, it was found by
Ribaucour that the nonlinear Lamé system possesses a
discrete symmetry enabling to construct, in a linear
way, new solutions of the system from the old ones. He
gave also a geometric interpretation of this symmetry
in terms of certain spheres tangent to the coordinate
surfaces of the triply orthogonal system. In 1918,
Bianchi showed that the result of superposition of the
Ribaucour transformations is, in a certain sense,
independent of the order of their composition.

Such properties of a nonlinear equation are
hallmarks of its integrability, and indeed, the Lamé
system was solved using soliton techniques in
1997-98. The above example illustrates the close
connection between the modern theory of integrable
partial differential equations and the differential
geometry of the turn of the nineteenth and twentieth
centuries. A remarkable property of certain para-
metrized submanifolds (and then of the correspond-
ing equations) studied that time is that they allow
for transformations which exhibit the so-called
“Bianchi permutability property.” Such transforma-
tions called, depending on the context, the Darboux,
Calapso, Christoffel, Bianchi, Backlund, Laplace,
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Koenigs, Moutard, Combescure, Lévy, Goursat,
Ribaucour, or the fundamental transformation of
Jonas, can be geometrically described in terms of
certain families of lines called line congruences.

In the connection between integrable systems and
differential geometry, a distinguished role is played
by the multidimensional conjugate nets, described by
the Darboux system, which is just the first part [1] of
the Lamé system with indices ranging form 1 to N >
3. On the level of integrable systems, this dominant
role has the following explanation: the Darboux
system, together with equations describing isoconju-
gate deformations of the net, forms the multicompo-
nent Kadomtsev—Petviashvilii (KP) hierarchy, which
is viewed as a master system of equations in soliton
theory. In fact, in appropriate variables, the whole
multicomponent KP hierarchy can be rewritten as an
infinite system of the Darboux equations.

Transition to the Discrete Domain

The recent progress in studying discrete integrable
systems showed that, in many respects, they should be
considered as more fundamental than their differential
counterparts. Consequently, the natural problem of
extending the geometric interpretation of integrable
partial differential equations to the discrete domain
arose, leading not only to the transition to the discrete
domain of many results on the connection between the
differential geometry and integrable systems, but also —
and this seems to be even more important — to the
description of integrability in a very elementary and
purely geometric way.

At the level of integrable equations, the transition
“from differential to discrete” often makes formulas
more complicated and longer. On the contrary, at the
geometric level, in such a transition the properties of
discrete submanifolds, relevant to their integrability,
become simpler and more transparent. Indeed, the
mathematics necessary to understand the basic ideas of
the integrable discrete geometry does not exceed the
“ruler and compass constructions,” and many proofs
can be performed using elementary incidence geometry.

We will concentrate our attention on the multi-
dimensional lattice made from planar quadrilaterals,
which is the discrete analog of a conjugate net. Together
with the discussion of its properties, which are the core
of the geometric integrability, we briefly present the
analytic methods of construction of these lattices and
we also describe some basic multidimensional integr-
able reductions of them. Then we discuss integrable
discrete surfaces; some of them have been found in the
early period of the “case-by-case” studies. We shall
however try to present them, from a unifying perspec-
tive, as reductions of the quadrilateral lattice (QL).

Multidimensional Integrable Lattices
The Quadrilateral Lattice

An N-dimensional lattice x:ZN —RM is a lattice
made from planar quadrilaterals, or a quadrilateral
lattice (QL) in short, if its elementary quadrilaterals
{x, Tix, Tix, T;T;x} are planar; that is, iff the follow-
ing system of discrete Laplace equations is satisfied:

AjAjix = (T;Aj;) Aix + (TiAj) Ajx,
i#j ij=1,...,N (3]

where A,-,-:ZN—>R are functions of the discrete
variable; here T; is the translation operator in the ith
direction, and A;=T;—1 is the corresponding
difference operator. For simplicity, we work here
in the affine setting neglecting projective geometric
aspects of the theory.

The geometric integrability scheme In the case
N =2 the definition [3] allows one to uniquely
construct, given two discrete curves intersecting in a
common vertex and two functions A2, As1: 72 — R,
a quadrilateral surface. For N > 2 the planarity
constraints [3] are instead compatible if and only if
the geometric data A;; satisfy the nonlinear system

ApAj + (TrAi)Aj
= (TjAp)Aij + (TrArj) Air
i,j,k distinct (4]

This constraint has a very simple interpretation: in
building the elementary cube (see Figure 1), the
seven points  x, Tix, Tjx, Typx, T;Tix, T;Tyx, and
T;Tyx (i,j, k are distinct) determine the eighth point
TiT;iTyx as the unique intersection of three planes in
the three-dimensional space.

The connection of this elementary geometric point
of view with the classical theory of integrable
systems is transparent: the planarity constraint
corresponds to the set of linear spectral problems
[3] and the resulting QL is characterized by the
nonlinear equations [4], arising as the compatibility
conditions for such spectral problems. Since the QL
equations [4] are a master system in the theory of
integrable equations, planarity can be viewed as the
elementary geometric root of integrability. The idea

Figure 1 The geometric integrability scheme.
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that integrability be associated with the consistency
of a geometric (and/or algebraic) property when
increasing the dimensionality of the system is
recurrent in the theory of integrable systems.

Other forms of the Darboux system The i < j
symmetry of the RHS of eqns [4] implies the
existence of the potentials H;:ZN — R (the Lamé
coefficients) such that

AGH;
H; ’

Ajj = i#] [5]

and then eqns [4] take the form

ApH;
ARAH; — (T,— k ’) AH;
i
AH
- (Tk 171 k) ARH; =0, i,k distinct [6]
k

which is the discrete version of the first part [1] of
the Lamé system.

The Lamé coefficients allow to define the suitably
normalized tangent vectors X; : ZN — RM by equations

Ajx = (T;H;)X; (7]

and the functions Qi,-:ZN —R,i+#7, (the rotation
coefficients) by equations

AH; = (TiH) Q. i#] [8]
Then eqns [3] and [6] can be rewritten in the first-
order form

AX; = (T;0§)X;, i#] 9]

ArQjj = (TrQir) Qi

The discrete Darboux system [10] implies the
existence of other potentials p; defined by the
compatible equations

Tipi
# =1 (T:Q;)(T;Qy),
1
The i < j symmetry of the RHS of eqns [11] implies
the existence of yet another potential 7:7ZN — R,
T,'T

pi=— [12]

i,j,k distinct [10]

1] [11]

which is called the T-function of the QL. In terms of
the 7-function, and of the functions

T =7Qij, iF] [13]
whose geometric interpretation will be given in a

later section, the discrete Darboux equations take

the following Hirota-type form:
(TiTyr)r = (i) Ty — (Tim) Ty, 177 [14]

(Tymij)T = (Tyr) 75 + (Toemit )85, 1, j, k distinct  [15]

Analytic Methods

We will show how one can construct large classes of
solutions of the discrete Darboux equations and the
corresponding QLs wusing two basic analytical
methods of the soliton theory: the O-dressing
method and the algebro-geometric techniques.

The O-dressing method Consider the nonlocal
O-problem

Ox(2) + (Rx)(2) = dv(z)
lim (x(z) —¥(z)) =0

[z]—00

[16]

where d=0/0z, R is the integral operator

(Rx)(z) :AR(z, )x(Z)dZ A dZ

and v(z) is a given rational function of z.

Let OFf € C,i=1,...,N be pairs of distinct points
of the complex plane, which define the dependence
of the kernel R on the discrete variable n € ZN:

R(z,2's7) =ﬁl(§ - g)
x Ro(z,7) ﬁ(i : gi)n

i=1 i

We consider only kernels Ry(z,z') such that the
nonlocal d-problem is uniquely solvable. If x(z;7) is
the unique solution with the canonical normal-
ization v =1, then the function

s =tz [[(22)

i=1 i

satisfies the system of the Laplace equations [3] with
the Lamé coefficients given by

Hin) = lim. ( (%) e n))

By construction, the system of such Laplace equa-
tions is compatible, therefore the Lamé coefficients
satisfy eqns [6]. To various n-independent measures
dp, on C there correspond coordinates

X (n) = / (s m)dpa(2)

of a QL x, having H;(n) as the Lamé coefficients. To
have real lattices, the kernel Ry, the points OF, and
the measures du, should satisfy certain additional
conditions.

One can find a similar interpretation of the
normalized tangent vectors X; and of the rotation
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coefficients Q;. If xi(z; n) are the unique solutions of
the nonlocal 0-problem [16] with the normalizations

S o Q;F*Q; N Q+ Qk
uiezn = z—gy>kllﬁ<gf Qk>

then the functions ;(z;7), defined by
N =\
2 -0,
Vi(zin) = ——1 | Xxilzn
SR (= R
satisfy the direct analog of the linear problem [9],

Api(zin) = (T;Qi(n))Yi(zin), i #] [17]

where
o (==oN\"
= leg ( (Z — Q;) eilz; n))

Again, by construction, eqns [17] are compatible
and the functions Qj;(n) satisfy the discrete Darboux
equations [10]. The functions

=/wxmme
C

are coordinates of the normalized tangent vectors X;
of the QL x constructed above.

Qji(n)

The algebro-geometric techniques Given a compact
Riemann surface R of genus g, consider a nonspecial
divisor D= "% _| P,. Choose N pairs of points Qj €
R and the normalization point Q... Given n € ZN
there exists a unique Baker—Akhiezer function (n),
defined as a meromorphic function on R, with the
following analytical properties: (1) as a function of P €
R\ UN ,OF, ¢(n) may have as singularities only
simple poles in the points of the divisor D; (2) in the
points O function v)(n) has poles of the order +;; and
(3) in the point Q. function () is normalized to 1.
When zi(P) is a local coordinate on R centered at
i, then condition (2) implies that the function ¢ (n)
in a neighborhood of the point OF is of the form

w(Pin) = (2 (P) ™" (i & (n) (ZT(P)Y) 18]
s=0

The Baker—Akhiezer function, as a function of the
discrete variable 7 € ZN, satisfies the system of
Laplace equations [3] with the Lamé coefficients
Hiln) =€) (n).

Again, by construction, the Lamé coefficients
satisfy eqns [6]. To various n-independent measures
dp, on R there correspond coordinates

“mzéwnmmmn

of a QL x.

We present the expression of the Baker—Akhiezer
function and of the 7-function of the QL in terms of
the Riemann theta functions. Let us choose on R the
canonical basis of cycles {a1,...,4a4,b1,...,bs} and
the dual basis {wi,...,ws} of holomorphic differen-
tials on R, that is, f wy, = 6. Then the matrix B of
b-periods defined as' sz_ fb wp is symmetric and
has positively defined imaginary part. Denote by
wpo the unique differential holomorphic in
R\{P, O} with poles of the first order in P,Q and
residues, correspondingly, 1 and -1, which is
normalized by conditions f wpo =0. The Riemann
function 6(z;B),z € C%, is defined by its Fourier
expansion

0(z;B) = Z exp{mi(m, Bm) + 2mi(m,z)}

me7Z8

where (-, -) denotes the standard bilinear form in C8.
Fmally, the Abel map A is given by A(P)=
fPo Wi, .. fp wy), where Py € R, and the Riemann
constants vector K is given by

K== (f s

ki
j=1,....g

The explicit form of the vacuum Baker—Akhiezer
function 1 can be written down with the help of the
theta functions as follows:

0(AP) + 30 me(A(Q;) — A(Q))) +2)
Q(A(QDO) + N (A(Q;Q) - A(QZ)) + Z)

50) z

9(A(P
where Z= -Y7% 1A(P,)—K.
iz
Denote by rk and sk the constants in the
decomposition of the abelian integrals near the

point Q7

: P—QF + + +
| woror = Fylosg (P) + 1+ O(27(P))

0

77[}(”71)) =

F P-0F + + +
[ wo.op = —bbislogg; (P) + s, + O (27 (P))

0

Then the expression of the 7-function of the QL within
the subclass of algebro-geometric solutions reads

7(n)
=0 <Z ﬂk
« H )\”k”/ H/”L

kj=1

_A(0}) +A<Qm>+z)
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where

.
rk- — 7’1(
Akj = exp (%) = ik

1 0(A(QF) +2) -
e = A_/&W exp (Sge — Sz

Finally, we remark that the geometric integrability
scheme and the algebro-geometric methods work
also in the finite fields setting, giving solutions of the
corresponding integrable cellular automata.

The Darboux-Type Transformations

We present the basic ideas and results of the theory
of the Darboux-type transformations of the multi-
dimensional QL.

Line congruences and the fundamental transformation
To define the transformations we need to define
first N-dimensional line congruences (or, simply,
congruences), which are families of lines in RM
labeled by points of ZN with the property that any
two neighboring lines [ and Til[,i=1,...,N, are
coplanar and therefore (eventually in the projective
extension PM of RM) intersect.

The QL F(x) is a fundamental transform of the QL
x if the lines connecting the corresponding points of
the lattices form a congruence. The superposition of a
number of fundamental transformations can be
compactly formulated in the vectorial fundamental
transformation. The data of the vectorial fundamental
transformation are: (1) the solution Y;: ZN =V, V
being a linear space, of the linear system [9]; (2) the
solution Y7 : ZN — W* V* being the dual of V, of the
linear system [8]. These allow to construct the linear
operator-valued  potential  Q(Y,Y*):ZN — L(V),
defined by the following analog of eqn [7]:

AQY,Y) =Y, @ (TY!), i=1,....,N [19]

Similarly, one defines Q(X,Y*):ZN — L(V,RM) and
Q(Y,H):ZN— V. The transforms of the lattice x
and other related functions are given by

(x) = x — QX, Y)QUY,Y) 'Q(Y,H)

F(H;) = H, - Y;Q(Y,Y") 'Q(Y,H),

K,;,

1
FX) =X —QX, Y)Y, Y)Y,
i=1,...,N

) =0 - Y;QY, Y)Y,
j=1,...,N, i#]

Figure 2 The fundamental transformation as the binary
transformation.

Notice that, by the coplanarity of any two neighbor-
ing lines of the congruence, also the quadrilaterals
{x, Tix, F(x), F(Tix)} are planar (see Figure 2). Then
the construction of the transformed lattice mimics
the geometric integrability scheme. In consequence,
any quadrilateral

fe, Fi(x), Falx), F1(Fax)) = Fa(F1(x)))

is planar as well. Therefore, on the discrete level,
there is no difference between the lattice coordinate
directions and the fundamental transformation direc-
tions. The distinction becomes visible in the limit
from the QL to the conjugate net. Therefore, the
vectorial description of the superposition of the
fundamental transformations not only implies their
permutability but also provides the explanation of the
validity of the practical rule of “integrable discretiza-
tion by Darboux transformations.”

The Lévy and Combescure transformations It is
easy to see that the family {; of lines passing through
the points x and T;x of a QL forms a congruence,
called the ith tangent congruence of the lattice.
When the congruence of the transformation is the
ith tangent congruence of the lattice x, then the
corresponding reduction of the fundamental trans-
formation is called the “Lévy transformation” L;.

It turns out that, for a generic congruence [, the lattice
made from intersection points of the lines [and T; '[isa
QL, called the ith focal lattice of the congruence. When
the fundamental transform of the lattice x is the ith focal
lattice of the transformation congruence, then the
corresponding reduction of the fundamental transfor-
mation is called the “adjoint Lévy transformation” L;.

Both Lévy transformations use only a half of the
fundamental transformation data, and the corre-
sponding reduction formulas (in the scalar case) for
the lattice points read as follows:

Li(x) =x—X;(Y))'Q(Y,H)
Li(x) =x—QX, Y (Y) 'H;
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Notice that the composition of the Lévy and the
adjoint Lévy transformations gives (see Figure 2) the
fundamental transformation, also called, for this
reason, the binary transformation.

Another reduction of the fundamental transforma-
tion, important from a technical point of view, is the
“Combescure transformation,” in which the tangent
lines of the transformed lattice C(x) are parallel to those
of the lattice x. The transformation formula reads

Clx) =x—Q(X,Y")

where only the solution Y* of the adjoint linear
system [8], necessary to build the transformation
congruence, is needed.

The Laplace transformations and the geometric
meaning of the Hirota equation The Laplace
transform L;j(x),i # j, of the QL x is the jth focal
lattice of its ith tangent congruence (see Figure 3). It
is uniquely determined once the lattice x is given.
The transformation formulas of the lattice points
and of the 7-function read as follows:

1

L',,»/(x) =X — A_/,'Aix [20]
Lij(1) = 7ij = 7Qjj 21]
The superpositions of Laplace transformations

satisfy the following identities

E,‘/‘ o Eji == ld
Li o Lij = L
‘C'ki [©] ,C,,/ = Eki

which allow to identify them with the Schlesinger
transformations of the monodromy theory.

In the simplest case N=2 one obtains the
so-called Laplace sequence of two-dimensional QLs

xo=Ly(x), =L
L) =Ly, (€7
Equations [14] and [21] imply that the 7-functions

of the Laplace sequence satisfy the celebrated Hirota
equation (the fully discrete Toda system)

TgT1T2Tg = (T1T(g)(T27‘g) — (T1T5_1)(T27'(+1)

—1
zj

Figure 3 The Laplace transformation ;.

Distinguished Integrable Reductions

We will present here basic reductions of the multi-
dimensional QL. The geometric criterion for their
integrability is the compatibility with the geometric
integrability scheme.

The circular lattices and the Ribaucour congruences
QLs ZN —EM for which each quadrilateral is
inscribed in a circle are called “circular” lattices.
They are the integrable discrete analogs of submani-
folds parametrized by curvature coordinates (e.g.,
the orthogonal coordinate systems described by the
Laméequations [1]-[2]).

The integrability of circular lattices is the consequence
of the fact that if the three “initial” quadrilaterals
{x, Tix, Tix, T; Tix}, {x, Tix, Tpx, T; Tpx}, {x, Tjx, Tix,
T;Tyx) are circular, then also the three new quadri-
laterals constructed by adding the vertex T;T;Tpx
are circular as well (see Figure 4). In fact, all the
eight vertices belong to a sphere, and, in consequence,
all the vertices of any K-dimensional, K=2,..., N,
elementary cell belong to a (K — 1)-dimensional sphere.

There are various equivalent algebraic descrip-
tions of the circular lattices:

1. the normalized tangent vectors X; satisfy the

constraint
Xi-T,'X,'—FX,"T/X,':O, 17

2. the scalar function x-x:ZN —R satisfies the
Laplace equations [3] of the lattice x;

3. the functions X§ = (x + Tix) - X;: 7N R satisfy
the same linear system [9] as the normalized
tangent vectors X;; and

4. the functions X;-X;:ZN — R satisfy eqns [11]
and thus can serve as the potentials p;.

The Ribaucour transformation R is the restriction
of the fundamental transformation to the class of
circular lattices such that also the “side” quadrilat-
erals {x, Tix, R(x), R(T;x)} are circular. Again there
is no geometric difference between the lattice
directions and the Ribaucour transformation direc-
tion. Moreover, the quadrilaterals {x, R{(x),

Figure 4 The geometric integrability of circular lattices.
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Ra(x), R1(Ra(x)) = Ra(Ri(x))} are circular as well.
In consequence, the vertices of the elementary K-cells,
K=2,...,N, of the circular lattice and the correspond-
ing vertices of its Ribaucour transform are contained in
a K-dimensional sphere. Finally, for K= N, one obtains
a special ZN family of N-dimensional spheres, called
the Ribaucour congruence of spheres.

Algebraically, the Ribaucour transformation
needs only a half of the data (necessary to build
the congruence) of the fundamental transformation.
The data of the vectorial Ribaucour transformation
consists of the solution Y} :7ZN — V*  of the linear
system [8]. Then, because of the circularity con-
straint, Y;: ZN —V given by

Y = (QX,Y") + TQX,Y))'X;
is a solution of the linear system [9], and the constraints
QY. H) +Q(X°, Y =2Q(X,Y")"x
Q(Y,Y) +Q(Y, V) =2Q(X,Y")'Q(X,Y")

are admissible.

We remark that the above constraints have a simple
geometric meaning when one considers the circular
lattices in EM as the stereographic projections of QLs
in the Mobius sphere SM; that is, as a special case of
QLs subjected to quadratic constraints.

The symmetric lattice Given a QL x with rotation
coefficients Q;; and potentials p; given by [11], then
the functions Qj;, defined by equation

piTiQii = piTiQji, ]

and called, because of their geometric interpretation,
the backward rotation coefficients, satisfy the
Darboux system [10] as well. A QL is called
symmetric if its forward rotation coefficients Qj
are also its backward rotation coefficients. Again the
constraint is compatible with the geometric integr-
ability scheme, that is, it propagates in the construc-
tion of the lattice. One can show that a QL is
symmetric if and only if its rotation coefficients
satisfy the following trilinear constraint:

(T: Qi) (T Qi) (Tr Qi) = (T; Qi) (Ti Qi) (T Oj1.)

i,j,k distinct

To obtain the corresponding reduction of the
fundamental transformation we again need only half
of the data. Given a solution Y;:7ZN —V*, of the
linear system [8], then, because of the symmetric
constraint, Y;: ZN —V, defined by

Yi=p(TY")!

is the solution of the linear system [9]; notice that,
equivalently, we could start from Y;. The constraint

QYY) =Q(Y,Y*)"

is then admissible and gives a new symmetric lattice.

There are other multidimensional reductions of
the QL like, for example, the D-invariant and
Egorov lattices or discrete versions of immersions
of spaces of constant negative curvature. We remark
that the transformations and reductions discussed
above have also a clear interpretation on the level of
the analytic methods.

Integrable Discrete Surfaces

In this section we present some distinguished examples
of discrete integrable surfaces. Notice that, although
the geometric integrability scheme is meaningless for
N =2, it can be applied indirectly, by considering the
discrete surfaces, together with their transformations,
as sublattices of multidimensional lattices.

We remark also that one can consider integrable
evolutions of discrete curves, which give equations
of the Ablowitz—Ladik hierarchy, and the corre-
sponding integrable spin chains.

Discrete Isothermic Nets

An isothermic lattice is a two-dimensional circular
lattice x:7> —EM with harmonic quadrilaterals;
that is, given x, T1x and T»x, then the point Ty T>x
is the intersection of the circle (passing through
x, T1x and Thx) and the line passing through x and
the meeting point of the tangents to the circle at Tyx
and Tx (see Figure 5). Therefore, given two discrete
curves intersecting in the common vertex xg, the
unique isothermic lattice can be found using the
above “ruler and compass” construction.
Algebraically the reduction looks as follows. Any
oriented plane in EM can be identified with the
complex plane C. Given any four complex points
21,22, 23, and z4, their complex cross-ratio is defined by

(21 —22)(23 — 24)
(22 —23)(24 — z1)

q(z1,22,23 ,24) =

Figure 5 Elementary quadrilaterals of the isothermic lattice.
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One can show that the cross-ratio is real if and only
if the four points are cocircular or collinear. In
particular, a harmonic quadrilateral with vertices
numbered anticlockwise has cross-ratio equal to —1.
Therefore, abusing the notation (it can be forma-
lized using Clifford algebras), the isothermic lattice
is defined by the condition

q(x, Ti1x, T1Tox, Tox) = —1

We remark that the definition of isothermic lattices
can be slightly generalized allowing for the above
cross-ratio to be a ratio of two real functions of
single discrete variables.

The restriction of the Ribaucour transformation
to the class of isothermic lattices, named after
Darboux who constructed it for isothermic surfaces,
has as its data a real parameter A and the starting
point D(xp), and can be described as follows. Given
the elementary quadrilateral ({x, Tyx, Tox, T Thrx}
of the isothermic lattice, and given the point D(x),
then the points D(T1x) and D(T,x) belong to the
corresponding planes and are constructed from
equations

q(x,D(x), D(T1x), Tix) = A
CI(x, D(x)v D(sz)a sz) =-A

It turns out that the point D(TT,x), constructed by
the application of the geometric integrability
scheme, is such that the quadrilateral {D(x),
D(T1x),D(T2x), D(T1T>x)} is harmonic. Moreover,
the construction of the Darboux transformation is
compatible; that is, the new side quadrilaterals have
the correct cross-ratios A and —\.

There are various integrable reductions of the
isothermic lattice, for example, the constant mean
curvature lattice and the minimal lattice.

Asymptotic Lattices and Their Reductions

An asymptotic lattice is a mapping x: Z* — R> such
that any point x of the lattice is coplanar with its
four nearest neighbors Tix, Tox, Ti'x, Tylx (see
Figure 6). Such a plane is called the tangent plane
of the asymptotic lattice in the point x.

It can be shown that any asymptotic lattice x can
be recovered from its suitably rescaled normal (to

T'x

T5'x

Figure 6 Asymptotic lattices.

the tangent plane) field N : Z* — R> via the discrete
analog of the Lelieuvre formulas

Ajx = (T]N) X N, Apx =N X (TzN) [22}

By the compatibility of the Lelieuvre formulas, the
normal field N satisfies the discrete Moutard
equation

TiToN + N = F(T\N + T>N) 23]

for some potential F: 7> —R.
Given a scalar solution 6 of the Moutard equation

[23], a new solution M(N) of the Moutard
equation, with the new potential
_ (Tho)(120)
M(F) = (T1T>0)0

can be found via the Moutard transformation

equations

M(T{N) £N = % (M(N) FTIN)  [24]

0

(M(N) £ TNy [25)
Now, via the Lelieuvre formulas [22], one can
construct a new asymptotic lattice M(x)=x =+
M(N) x N. The lines connecting corresponding points
of the asymptotic lattices x and M(x) are tangent to
both lattices. Such a Z*-family of lines in R? is called
Weingarten (or W for short) congruence. Notice that
this is not a congruence as considered earlier.

Various integrable reductions of asymptotic lat-
tices are known in the literature: pseudospherical
lattices, asymptotic Bianchi lattices and isothermally
asymptotic (or Fubini-Ragazzi) lattices, and discrete
(proper and improper) affine spheres.

Formally, the Moutard transformation is a reduc-
tion of the (projective version of the) fundamental
transformation for the Moutard reduction of the
Laplace equation. However, the geometric relation
between asymptotic lattices and QLs is more subtle
and the geometric scenery of this connection is the line
geometry of Pliicker. Straight lines in R® ¢ P? are
considered there as points of the so-called Plucker
quadric Qp  P°. A discrete asymptotic net in P,
viewed as the envelope of its tangent planes, corre-
sponds to a congruence of isotropic lines in Qp, whose
focal lattices represent the asymptotic directions. The
discrete W-congruences are represented by two-
dimensional QLs in the Plicker quadric.

The Koenigs Lattice

A two-dimensional QL x:7>—PM is called a
Koenigs lattice if, for every point x of the lattice,
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Figure 7 The Koenigs lattice.

the six points x4, Tixa, T?xu,i=1,2, of its
Laplace transforms belong to a conic (see Figure 7).
The nonlinear constraint in definition of the Koenigs
lattice can be linearized, with the help of the Pascal
“mystic hexagon” theorem, to the form that the line
passing through x and T;T,x, the line passing
through x; and T?x_q, and the line passing through
x_; and T22x1 intersect in a point.

Algebraically, the geometric Koenigs lattice con-
dition means that the Laplace equation of the lattice
in homogeneous coordinates x:7* —RM* can be
gauged into the form

T\ Thx+x=T, (Fx) + Tz(Fx) [26]

It turns out that, if N is a solution of the Moutard
equation [23], then x=T;N + T,N satisfies the
Koenigs lattice equation. Therefore, the algebraic
theory of the discrete Koenigs lattice equation [26],
its (Koenigs) transformation, and the permutability
of the superpositions of such transformations is
based on the corresponding theory for the Moutard
equation [23].

Geometrically, the Koenigs lattices are selected
from the QLs as follows. Given a two-dimensional
QL x:7? —PM and given a congruence [ with lines
passing through the corresponding points of the
lattice. Denote by y,=T; '[N [,i=1,2, points of the
focal lattices of the congruence. For every line [,
denote by 2 the unique projective involution exchan-
ging y, with T;y,. If, for every congruence [, the
lattice K(x):7*—PM, with points K(x)=1(x), is a
QL, then the lattice x is a Koenigs lattice. The above
construction gives also the corresponding reduction
of the fundamental transformation.

A distinguished reduction of the Koenigs lattice is
the quadrilateral Bianchi lattice. The natural con-
tinuous limit of the corresponding equation is
equivalent to the Bianchi (or hyperbolic Ernst)
system describing the interaction of planar gravita-
tional waves.

Discrete Two-Dimensional Schrédinger Equation

In the previous sections we have discussed examples
of integrable discrete geometries described by
equations of hyperbolic type. Below we present
some results associated with the elliptic case; it is
remarkable that the QL provides a way to connect
these two subjects.

Consider a solution N : Z> — R? of the general self-
adjoint five-point scheme on the star of the 7 lattice

aTiN + T;'(aN) + bToN + T; ' (bN) — <N =0 [27]

then the lattice x:7%>—R>
Lelieuvre type formulas

obtained by the

Ax =—(T,'6)N x T; 'N

28
Apx =(T'a)N x T{'N 28]

is a QL having N as normal (to the planes of
elementary quadrilaterals) vector field.

The following gauge-equivalent form of eqn 27,
namely

r (T r
Tt (wf’) o Y

T
+ T, (ﬁw) —qp=0 29]

an integrable discretization of the Schrodinger
equation

o+ 0*
Ox3 * Ox3 Qu=0
is also the Lax operator associated with an integrable
generalization of the Toda law to the square lattice.
The five-point scheme [27] is also a distinguished
illustrative example of the sublattice theory. Indeed,
it can be obtained restricting to the even sublattice
72 the discrete Cauchy-Riemann equations

Th'T2¢ — ¢=iG(T1¢ — T29) [30]

Because of the equivalence (on the discrete level!)
between eqn [30] and the discrete Moutard equation
[23], the five-point scheme [27] inherits integrability
properties (Darboux-type transformations, superpo-
sition formulas, analytic methods of solution) from
the corresponding (and simpler) integrability proper-
ties of the discrete Moutard equation.

See also: Backlund Transformations; d-Approach to
Integrable Systems; Integrable Discrete Systems;
Integrable Systems and Algebraic Geometry; Integrable
Systems and the Inverse Scattering Method; Integrable
Systems: Overview; Nonlinear Schrddinger Equations;
Sine-Gordon Equation; Stability Theory and KAM; Toda
Lattices.
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Introduction

Let (M,w) be a symplectic manifold of dimension
2n. We denote by # the natural isomorphism
between T*M and TM, defined by the equation
pw=—-a acT'M [1]
We say that ‘df is the Hamiltonian vector field
defined by the Hamiltonian f: M — R.
Associated with the nondegenerated closed 2-form w

there is also a Poisson bracket on C*°(M), the space of
real differentiable functions on M, defined by

(), C(M) x C2(M) — C*(M)
(f,g) —{f, g}, = w(df . *dg)

We say that two smooth functions F,G: M — R
are in involution if

{F.G}, =0 2]

Suppose we have 7 independent smooth functions
in involution Hy,...,H,, such that the associated
Hamiltonian vector fields Xy, ..., X, are complete
on the level manifold

Ma:{XGM:H/(x):d/‘,j:1,...,71} [3]
The classical theorem of Arnol’d-Liouville states that

1. the submanifold M, is invariant with respect to
each one of the Hamiltonian commuting flows
generated by Hy, ..., H,;

2. every connected component of M, is diffeo-
morphic to a product of a Euclidean space by a
torus, R" % x T*;

3. there exist coordinates fi, ..., u_k> P1s---> @k IN
M, such that the Hamiltonian systems in M,,
associated with the Hamiltonians H;, have the form

f = pm =w! (w=wl(a), c=const) [4]
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4. if M, is compact then it is diffeomorphic to 1"
and there exists a neighborhood of M, on M,
symplectically diffeomorphic to B” x T".

A completely integrable Hamiltonian system is a
Hamiltonian vector field X, that admits 7 integrals
Hiy,...,H, satisfying the hypothesis of Arnol’d-
Liouville theorem.

It may happen that a system has more than n
independent integrals of motion. In this case it is
called superintegrable and not all the integrals are in
involution. Supposing that

M,={xeM:Hj(x)=aj,j=1,....,.n+k}

is compact and connected and that Hy,...,H,
commute with all the 7 + k integrals, then M, is
diffeomorphic to the torus T”~*. In particular, if the
system is maximally superintegrable, that is,
k =n — 1,M, is diffeomorphic to T = S! and all
the trajectories are closed.

To prove that a system is completely integrable, we
have to find a sufficient number of integrals of the
system in involution. The Lax pair is an extremely
powerful tool in this task, although it does not
guarantee the involution of the integrals found.

A Lax pair of a vector field X on a smooth
manifold M is a pair of operators (L, M) such that

[ =ML =ML-LM 5]
This equation is equivalent to
U 'LU =L, 6]

where U is the solution operator of the Cauchy
problem

U=MU, U@0)=I 7]

So, the eigenvalues of L are integrals of X. Notice
that all the pairs (L*, M), k € N, are Lax pairs of the
system and we may conclude that the functions
tr Lk, k € N, are integrals of X.

The first goal of this article is to relate
integrable Hamiltonian systems and recursion
operators, where some of the most important
properties of the latter are exhibited. Very natu-
rally, the Poisson—-Nijenhuis manifolds appear in
this context and the Toda lattice is the example
chosen in order to show the whole theory working
in practice. Also, we see how recursion operators
can help in the construction of quadratic algebras
of integrals of motion and, in the last section, we
present the generalization to Jacobi manifolds of
the Nijenhuis structures defined for Poisson
manifolds.

Integrable Systems on Poisson-Nijenhuis
Manifolds

Let X be a vector field on a smooth manifold M.
A recursion operator of X is a (1,1)-tensor R
invariant of X:

LxR =0 8]

The (1, 1)-tensors, and in particular the recursion
operators, may be regarded as fiber endomorphisms
of TM. So, given a (1,1)-tensor R, we denote by
'R:T*M — T*M the transpose of R:TM — TM,
that is,

('R(a),X) = (a,R(X)), aeT'M, XeTM [9]

where (.,.) denotes the canonical pairing between
T*M and TM.

Recursion operators also generate symmetries. If R
is a recursion operator and Y is a symmetry of X, that
is, [X, Y] = 0, then RY is also a symmetry of X. So,
given a recursion operator R of X, we may construct a
sequence of symmetries of X, R*Y, k € .

The Nijenhuis torsion of a (1,1)-tensor R is the
(1,2)-tensor 7 (R) defined by

T(R)(X,Y) =[RX, RY] — R([X, RY] + [RX, Y]
—R[X,Y]), X,Ye€X(M) [10]

A Nijenhuis operator is a (1,1)-tensor, R, with
vanishing Nijenhuis torsion, that is,

LrxR = RLxR [11]

These operators can generate sequences of closed
1-forms. If R is a Nijenhuis operator and a is a
closed 1-form such that d'R(a) =0, then
d’R¥(a) = 0,k € N. In the particular case of «
being exact, that is, & = df and the first cohomol-
ogy group being trivial, then we have a sequence of
local integrals of motion df, = ‘R*(df).

A Nijenhuis recursion operator R and a symmetry
Y of a vector field X lead to a sequence of
commuting symmetries R*Y, k € N,

[R'Y,R'Y] =0, ijeN [12]

To define the integrability in terms of a (1,1)-
tensor is of special relevance when we try to extend
everything to the infinite-dimensional case.

Notice that in coordinates (g1, ..., q,), the condi-
tion [8] is equivalent to

R =AR] [13]
where A is the 7 X 7 matrix defined by

ox/
A=l
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and X' =X(q)) =¢q;,j=1,...,n. So, the pair
(R,A) is a local Lax pair of the system and the
eigenvalues of R are integrals of X.

If a recursion operator R of a vector field X on a
manifold M has vanishing Nijenhuis torsion and »
doubly degenerated eigenvalues );, with nowhere-
vanishing differentials, (d)\;), # 0, then X defines a
completely integrable Hamiltonian system.

Now suppose X defines a completely integrable
Hamiltonian system with Hamiltonian H on a
symplectic manifold (M,w). Let (I1,...,L, o1,
...,pn) be the action-angle variables in a neighbor-
hood of an invariant torus. Two cases may happen:

1. The Hamiltonian H is separable in the action
variable, that is,

H =" H(I) [14]
k
In this case, the (1, 1)-tensor
R=>"N(ly)(dlx ® 94 dpp ® o [15]
A (9Ik &pk

where A, are functions with nowhere-vanishing
differentials, is a recursion operator of X, and has
vanishing Nijenhuis torsion and doubly degener-
ated eigenvalues.

2. The Hamiltonian has nonvanishing Hessian

O*H

In this case we may define new coordinates

OH

ailk, k:1,...,n [17]

Vp =
and a new symplectic structure
O*H
= = ——dI - 1
w1 Zk: dv, A dey, ; 8Ik81, dI, A d(p, [18]

The vector field X is Hamiltonian with respect to
w1, with Hamiltonian

1 2
H= sz: v [19]
and the (1, 1)-tensor
R=> "N ()| du ®i+d¥’k & 20]
Z vy, Ipr

is a recursion operator of X.

Nijenhuis operators also allow the construction of
master symmetries from conformal ones.

A conformal symmetry of a tensor field T is a
vector field Z such that

L7;T = )T, for some constant \

A master symmetry of a vector field X is a vector
field Y such that

[X,[X,Y]] =0, but[X,Y]#0

Let R be a recursion operator of Xy and Z; be a
conformal symmetry of Xy and R such that

£ZUX() = )\Xo and ﬁZ(JR =R [21}

for some constants \, j.

If R is also a Nijenhuis operator, then defining the
sequences of commuting symmetries X = RkX,
and of conformal symmetries Z, = RXZy,k € N,
we have, for all k,j € Ny,

Lz,R = puR*1 [22]
(Zie, Zj) = u(G — R)Zj i1 (23]
(Zi, Xj] = (A + 1) X (24]

A bi-Hamiltonian manifold is a smooth manifold
M endowed with two linearly independent Poisson
tensors Ao, A;, compatible in the sense that their
Schouten bracket vanishes, [Ag, A1] = 0.

A vector field is said to be bi-Hamiltonian if it is
Hamiltonian with respect to both Poisson structures.
The equation that rules the flow of this vector field
is said to be a bi-Hamiltonian system.

When one of the Poisson structures is obtained
from the other by means of a Nijenhuis operator, we
obtain a Poisson-Nijenhuis manifold. Hence, a
Poisson—Nijenhuis manifold is a differentiable mani-
fold M endowed with a Poisson tensor A and a
(1,1)-tensor R such that

RA* = A*'R, [RA,A] =0 and [RA,RA] =0

A classical example is the one of a bi-Hamiltonian
manifold (M, Ay, A1) where A¢ is nondegenerated. In
this case we may define the Nijenhuis operator
R = A’iAéﬁl and the manifold M is a Poisson—
Nijenhuis one.

The characteristics of the Poisson—Nijenhuis
manifold guarantee that all the bivectors A, = RKA
are compatible Poisson tensors and the manifold is
not just bi-Hamiltonian but multi-Hamiltonian.

From what we saw, a Hamiltonian system is
completely integrable if and only if it is bi-Hamiltonian
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in a neighborhood of an invariant torus with the
eigenvalues of the existing recursion operator provid-
ing its complete integrability. These Poisson—Nijenhuis
manifolds appear quite frequently in dynamics and
allow us to obtain some interesting properties easily.
We finish this section with the Toda lattice. This
system is a good illustration of what has been said until
now.

Consider R?*"™' with coordinates (a1, ...,d, 1,
bi,...,b,) equipped with the following compatible
Poisson tensors:

B %21 <a?a %ﬂ) 23]

= a )
Z ab,+1 ab 4Z " Oa;

i=1

0 0 1o}
N (a,—H adhq + 2b,+1 (9[9,'+1 — 217, 8—bl> [26]

Not only these two Poisson tensors are degener-
ated but also there is no Nijenhuis operator that
transforms Ag into A;. This can be seen considering
the 1-form "7 ,db;. This 1-form belongs to the
kernel of Ay but not to the kernel of Ay. So, the bi-
Hamiltonian manifold (R*', A¢,A;) is not a
Poisson—Nijenhuis one.

2Thle Toda lattice is the bi-Hamiltonian system in
R4

X, = Aj(dHy) = A% (dHp) [27]
defined by the Hamiltonians
=2) b
- 28]

:4§a,~2+22ﬂ:bf
=1 =1

that is,
ai = aj(biy1 — b;), f1<i<n-1
151 :251%
bi=2(a?—a?,), if2<i<n—1
b, = —-2a%

Since we do not have a Nijenhuis operator in this
setting, we are going to consider a new system in
R?" that reduces to the Toda lattice, derive a
hierarchy of Hamiltonians, symmetries, Poisson
tensors, conformal symmetries and the associated
relations and then transport everything to R**~! by
reduction.

Consider the Flaschka transformation

_ RZn N Rlnfl

(qlv'”vqruplw'->pn)’_>(alv-"uan71>b17~'-7bn)

where
_1 qi — gi+1 .
a=zeo(t5) b= 3
i=1,....n—1, j=1,....n [29]

This application is a Poisson morphism between
(R®", Ao, A1) and (RZH,AO,Al), where

Ao = Z opi 6611 130}

n—1
~ 0 0
A = E edi—gi+1 A
! i=1 api+1 apl

u 0 0 0 0
T S )y S Ay B 1
; ( aq;  Opi ; g, 341‘)

The Poisson tensor A is nondegenerated and we
may define the Nijenhuis operator R =Aj AIj ! So,
(R*", Ao,Al) is a Poisson—Nijenhuis mamfold and
the bivectors of the sequence (A, =Rk Ao) ke N,
are compatible Poisson tensors.

The Toda lattice is the reduced bi-Hamiltonian
system, by means of the Flaschka transformation, of
the bi-Hamiltonian system

X, = A} (dHy) = A (dHp) [32]
where
Hy = ZP:‘
= 33]

_ n pz n—1
I—I1 — Z ?’ + Z edi—4qi+1
i=1 i=1

We may define the sequence of commuting
vector fields X, = R X1,k € N, and the sequence
of Hamiltonians dH, = ‘Rk(dHO) k € N, first inte-
grals of all the vector fields X; and in involution
with respect to all the Poisson structures A;.

_ Moreover, considering the conformal symmetry of

Ao, Ay, and Hj defined by

= & 0 0
ZO:;( +1—2z%+2p,ap’ 34]

we have the following relations on R*":

Ly R =R"! [35]
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Zn, Zi) = (k — 1) Zgsm [36]
Zie, Xomi1] = mXpimin [37]
Ly A= (m—k —1) A, 38]
ZwHy, = (m+n+1)H, 39]

Although we do not have a Nijenhuis operator on
(R?"~1, Ao, A1), the deformation relations [35]-[39],
obtained for the Poisson-Nijenhuis manifold
(R?", Ay, A1), may be reduced to the bi-Hamiltonian
manifold (R~ Ay, A1) by means of the Flaschka
transformation .

Recursion Operators and Algebras
of Integrals of Motion

A master integral of a vector field X is a differenti-
able function g such that

LxLxg=0 and Lxg # 0 [40]

So, a master integral g generates an integral of
motion Lxg of the system X. It is worth noticing that
if f and g are master integrals, then not only Lxf and
Lxg are integrals but also (Lxf)g—f(Lxg) is an
integral of the system. This means that several master
integrals may lead to extra integrals of motion. This
procedure often leads to the construction of the
integrals which provide the superintegrability of the
system in consideration. This is the case of, for
instance, the generalized rational Calogero—-Moser
system or the geodesic flow on the sphere.

Recursion operators are often used to construct
sequences of master symmetries of vector fields. The
obvious connection between master symmetries and
master integrals carries the recursion operators to
this level. In many cases, the integrals of motion
generated by the master integrals constructed on the
basis of the existence of a recursion operator close in
a quadratic algebra with respect to the Poisson
structure we are considering (by quadratic algebra
we mean that the brackets between the generators
are polynomials of degree 2 in the generators).

Let X be a vector field on a manifold M, R a
Nijenhuis operator which is also a recursion
operator of X, and P a (1, 1)-tensor such that

LxP =a(R)
and

LpxR = b(R)

where a and b are polynomials with constant
coefficients. The sequences X; = R’X,Y; = R'(PX),
1€ No,X,l =Y ;=0 Satisfy

[Xi, Xj] =0 [41]
[X,‘, YI] = a(R)XH,» - l.b(R)X,‘ﬂ;] [42}
[Yi, Yj] = (G = ))b(R)Yiyja [43]

If (M,A) is a nondegenerated Poisson manifold
with trivial first cohomology group, RA is a bivector
and X and Y are Hamiltonian vector fields with
respect to A and RA, that is, there exist functions
Hy, Hy, Gg, and G satisfying

X = A¥(dH;) = RA*(dHy)
Y = A*(dGy) = RA*(dGy)

then the sequences of exact differentials
tRi(dHl) = dH, and tRi(dGl) = dG,

may be constructed. In this case, the functions G; are
master integrals of all the vector fields X; and the
integrals X,(G,) and Lzl = X,‘(Gk)G/ — X,’(G,‘)Gk,
i,k € Ny, close in a quadratic algebra with respect
to the Poisson bracket associated with A.

If M is not a Poisson manifold but we can find a
master integral G of all the vector fields X; of the
sequence, then the functions G; = Y;(G) are also
master integrals of the same vector fields and the
functions X,‘(G/) and LZ’/ = Xi(Gk)G,‘ — X,‘(G,‘)Gk
are integrals of X;.

Now let us consider the completely integrable
bi-Hamiltonian system case. In a neighborhood of
an invariant torus, a completely integrable
bi-Hamiltonian system may be written in the form

H(yt,...,¥n) =y1+ -+ n (44]

with

N~ 9 0
A = i=— N
;y dyi 0
the compatible Poisson tensors that provide the
complete integrability of the bi-Hamiltonian system.
In this case, we may define the recursion operator

" d d
R=Zyi(@®dyi+%®d¢i>

i
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for which A; = RAo, and the bi-Hamiltonian vector
field

X = Al(dH) _Ml (Zln yﬂ

1)-tensor
0
P=3(ogg 0 do+ 5o dv)

satisfies LyP =1d and LpxR = 0. So, the vector fields

The (1,

& 0
Y, = Rk(PX) = ZJ’:?@—.
= 0
and the function G = Y°7_, y,¢; help defining the
functions G; = Y;(G),i € Ny.
The integrals of X,

Xi(Gj) and Ll}f, = Xi(Gi)Gj — GiXk(G))  [45]

happen to close in a quadratic algebra with respect
to the bracket defined by Ay.

Recursion Operators on Jacobi
Manifolds

In this section we extend the notion of Poisson—
Nijenhuis manifold to the Jacobi setting.

Let M be a smooth manifold with a bivector field
A and a vector field E. We equip the space C*(M)
with the bracket

{f.g} = A(df,dg) +E(g) — gE(f)

which is bilinear and skew-symmetric, and satisfies
the Jacobi identity if and only if

[A,A] = —2EAA and [E,A] =0  [46]

When these conditions are satisfied, (M,A,E) is
called a Jacobi manifold with Jacobi bracket {, .
The pair (C®(M),{,}) is a local Lie algebra in the
sense of Kirillov. If the vector field E identically
vanishes on M, eqns [46] reduce to [A,A]=0 and
(M, A) is just a Poisson manifold. But there are other
examples of Jacobi manifolds that are not Poisson,
for example, contact manifolds.

We denote by (A,E)*:T*M xR — TM x R the
vector bundle map associated with (A, E), that is, for
all «, 8 sections of T*M and f € C>*(M),

(A E)*(a,f) = (A*(a) + fE, —iEa)
Let R:X(M) x C*(M) — X(M) x C*(M) be a
C>®(M)-linear map defined by

where N is a tensor field of type (1,1) on M,Y €
X(M),y € Q' (M) and g € C*(M). Let us denote by
7T (R) the Nijenhuis torsion of R with respect to the
Lie bracket on X(M) x C>*(M) given by

[(X;1); (Z, b)) = (IX, 2], X(h) = Z(f)) [48]

As in the case of Poisson manifolds, if R has a
vanishing Nijenhuis torsion, we call R a Nijenhuis
operator.

Suppose now that M is equipped with a Jacobi
structure (Ao, Eg) and a Nijenhuis operator R. Then,
we may define a bivector field A; and a vector field
E; on M, by setting

(A1, E)* = Ro (Ao, Eo)*

If one looks for the conditions that imply that the
pair (A, E1) defines a new Jacobi structure on M
compatible with (Ao, Eg), in the sense that (A +
A,Eo+ Eq) is again a Jacobi structure, one
finds that A; is skew-symmetric if and only if
R o (Ao, Eo)” = (Ao, Eo)” o'R. When A; is skew-
symmetric, (A1, E;) defines a Jacobi structure on
M if and only if, for all (o,f),(B,h) €
QY (M) x C*(M),

T(R) (Ao, Eo)* (0 f), (Ro, Eo)* (5,h) )
= R0 (Ao, Eo)*(C((Ao, Eo). R) (e /), (8,h)))

where C((Ag,Eo),R) is the Magri concomitant of
(Ao, Ep) and R. In the case where (A, E1) is a Jacobi
structure, it is compatible with (Ao, Eo) if and only
if, for all (a, £),(8,h) € QL(M) x C*(M),

(Ao, Eo)* (C((Ro, Eo), R) (e, ), (B, h))) = 0

A Jacobi-Nijenhuis manifold (M, (Ag, Eg), R) is a
Jacobi manifold (M, Ay, Eg) with a Nijenhuis opera-
tor R such that: (1) R o (Ao, Eo)* = (Ao, Eo)" o R
and (2) the map (Ao, Eo)" o C((Ao, Eo),R) identically
vanishes. R is called the recursion operator of
(Ma (A()a EO): R)

A recursion operator on a Jacobi—Nijenhuis mani-
fold displays a hierarchy of Jacobi-Nijenhuis structures
on the manifold. In fact, if ((Ag, Eg), R) is a Jacobi—
Nijenhuis structure on M, there exists a hierarchy
((Ag, Eg), k € N) of Jacobi structures on M, which are
pairwise compatible. For all k € N, (A, E) is the
Jacobi structure associated with the vector bundle map
(Ag, Eg) given by (Ag, E)* = R* o (Ao, Eo)*. More-
over, for all k,] € N, the pair ((Ag, Eg), R') defines a
Jacobi-Nijenhuis structure on M.

See also: Bi-Hamiltonian Methods in Soliton Theory;
Classical r-Matrices, Lie Bialgebras, and Poisson Lie
Groups; Contact Manifolds; Integrable Systems and
Algebraic Geometry; Integrable Systems: Overview;
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Multi-Hamiltonian Systems; Recursion Operators in
Classical Mechanics.
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Introduction

A British experimentalist, J S Russell, first observed
a soliton in 1834 while riding on horseback beside a
narrow barge channel. He challenged the theoreti-
cians of the day “to predict the discovery after it
happened, that is to give an a priori demonstration
a posterori.” This work created a controversy
which, in fact, lasted almost 50 years, and which
involved such distinguished scientists as Stokes and
Airy. It was resolved by Korteweg and deVries in
1895, who derived the KdV equation as an
approximation to water waves,

q—+7:0 (1]

This equation is a nonlinear partial differential
equation (PDE) of the evolution type, where # and
x are related to time and space respectively, and
q(x,t) is related to the height of the wave above the
mean water level. Korteweg and de Vries were able
to show that equation [1] supports a particular
solution that exhibits the behavior described by
Russell. This solution, which was later called
1-soliton solution, is given by

p*/2 2]

2
NI R (U 2px— ) + 0

where p, ¢ are constants. The location of this soliton
at time ¢, that is, its maximum position, is given by
p* —2c/p, its velocity is given by p?, and its
amplitude by p?/2. Thus, faster solitons are higher
and narrower. It should be noted that g is a
traveling-wave solution, that is, g; depends only on
the variable X = x — p?¢, thus in this case the PDE [1]
reduces (after integration) to the second-order
ordinary differential equation (ODE)

2
Pa(x) 1380 + S0 x) = 0

Under the assumption that g and dg/dX tend to
zero as |X| — oo, this ODE yields the 1-soliton
solution [2].

The problem of finding a solution describing the
interaction of two 1-soliton solutions is much more
difficult and was not addressed by Korteweg and
deVries. This question was studied by M Kruskal
and N Zabusky in 1965. Studying numerically the
interaction of two solutions of the form [2] (i.e., two
solutions corresponding to two different py and p»),
Kruskal and Zabusky discovered the defining prop-
erty of solitons: after interaction, these waves
regained exactly the shapes they had before. This
posed a new challenge to mathematicians, namely to
explain analytically the interaction properties of
such coherent waves. In order to resolve this
challenge one needs to develop a larger class of
solutions than the 1-soliton solution. We note that
eqn [1] is nonlinear and no effective method to solve
such nonlinear equations existed at that time.

Gardner et al. (1967) not only derived an explicit
solution describing the interaction of an arbitrary
number of solitons, but also discovered what was to
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evolve into a new method of mathematical physics.
The 2-soliton solution is given by

2(pie™ + p3e™) +4e" R (pr = p2)’
124, (P%sz o p%e771+2712)
(1+em +em + Apentnm)?

q92 (x7 t) =
where

2
b ptbafi=12 Ap=ZP)
(01 +p2)
and pj, 77/(-) are constants. A snapshot of this solution
with p; =1,p, =2 is given in Figure 1. After some
time the taller soliton will overtake the shorter one
and the only effect of the interaction will be a “phase
shift,” that is, a change in the position the two
solitons would have reached without interaction.
Regarding the general method introduced in
Gardner et al. (1967), we note that if eqn [1] is
formulated on the infinite line, then the most interest-
ing problem is the solution of the initial-value
problem: given initial data g(x,0)=go(x) which
decay as |x| — oo, find g(x,?). If qo is small and gg,

1.5 1
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-100 -80 -60 -40 -20 0 20 40 60 80 100
X

Figure 1 A snapshot of the 2-soliton solution of the KdV equation.

can be neglected, then eqn [1] becomes linear and
q(x,t) can be found using the Fourier transform,

1 s
e B L

where

qolk) = [ e qu) d 4b]
The remarkable discovery of Gardner et al. (1967)
is that for eqn [1] there exists a “nonlinear analog” of
the Fourier transform capable of solving the initial-
value problem even if qg is not small. Although this
nonlinear Fourier transform cannot in general be
written in closed form, g(x,t) can be expressed
through the solution of a linear integral equation, or
more precisely through the solution of a linear 2 x 2
matrix Riemann-Hilbert (RH) problem (see the
section “A nonlinear Fourier transform”). This linear
integral equation is uniquely specified in terms of
qo(x). For particular initial data, g(x, ¢) can be written
explicitly. For example, if qo(x) = g1(x), where g1 (x) is
obtained by evaluating eqn [2] at #=0, then
q(x,t)=qi(x — p*t). Similarly, if go(x)= ¢a(x,0),
where g;(x,0) is obtained by evaluating eqn [3] at
t =0, then g(x,t) = q2(x, ).

The most important question, both physically and
mathematically, is the description of the long-time
behavior of the solution of the initial-value problem
mentioned above. If the nonlinear term of eqn [1] can
be neglected, one finds a linear dispersive equation. In
this case different waves travel with different wave
speeds, these waves cancel each other out and the
solution decays to zero as t— oo. Indeed, using
the stationary-phase method to compute the large
t behavior of the integral appearing in eqn [4a],
it can be shown that g(x,t) decays like 0(1/v/%)
as t — oo, x/t=0(1). The situation with the KdV
equation is more interesting: dispersion is balanced by
nonlinearity and g(x, #) has a “nontrivial” asymptotic
behavior as ¢ — co. Indeed, using a nonlinear analog
of the steepest descent method discovered by Deift and
Zhou (1993) to analyze the RH problem mentioned
earlier, it can be shown that g(x,t) asymptotes to
gn(x,t), where gn(x, t) is the exact N-soliton solution.
This underlines the physical and mathematical sig-
nificance of solitons: they are the coherent structures
emerging from any initial data as ¢ — oo. This
implies that if a nonlinear phenomenon is modeled
by the KdV equation on the infinite line, then one
can immediately predict the structure of the solution
as t — oo, x/t=0(1): it will consist of N ordered
single solitons, where the highest soliton occurs to
the right; the number N and the parameters p; and 7770
depend on the particular initial data go(x). It should
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be noted that this result can be obtained only using
the machinery of the theory of integrability, and
until now cannot be obtained using standard PDE
techniques.

So far we have concentrated on the KdV equation.
However, there exist numerous other equations
which exhibit similar behavior. Such equations are
called “integrable” and the method of solving their
initial-value problem is called the “inverse-scattering”
or “inverse-spectral” method.

The following section presents a brief historical
review of some of the important developments of
soliton theory. Next, typical solitons, lumps, and
dromions are given. The inverse-spectral method is
discussed in the penultimate section. Finally, the
extension of this method to boundary-value prob-
lems is briefly discussed.

Important Analytical Developments in
Soliton Theory

Lax (1968) introduced the so-called Lax pair
formulation of the KdV. In an example, he showed
that eqn [1] can be written as the compatibility
condition of the following pair of linear eigenvalue
equations for the eigenfunction v (x, z, k):

Y + (g + K2 =0 [Sa]

Yo+ (29 — 42 x — (g +v)p =0, keC [5b]

where v is an arbitrary constant. The nonlinear
Fourier transform mentioned earlier can be obtained
by performing the spectral analysis of eqn [5a]. The
time evolution of the associated nonlinear Fourier
data, which are now called spectral data, is linear
and can be determined using eqn [5b]. Following
Lax’s formulation, Zakharov and Shabat (1972)
solved the nonlinear Schrodinger (NLS) equation

i+ g —2Mq’g =0, A =+1 [6]

which has ubiquitous physical applications including
nonlinear optics. Soon thereafter the sine-Gordon
equation

Qxx — qu = Sinq [7]
and the modified KdV equation

gt +64°qx + Gxxx = 0 (8]

were solved. Since then, numerous nonlinear equations
have been solved. Thus, the mathematical technique
introduced by Gardner e al. (1967) for the solution
of a particular physical equation gave rise to a new
method in mathematical physics, the so-called inverse-
scattering (spectral) method. Among the most

important equations solved by this method are a
particular two-dimensional reduction of Einstein’s
equation and the self-dual Yang-Mills equations.

The next important development in the analysis of
integrable equations was the study of the KdV with
space-periodic initial data. This occurred in the
mid-1970s in the USA and in the USSR. This method
involves algebraic-geometric techniques; in particular
there exists a periodic analog of the N-soliton
solution which can be expressed in terms of a certain
Riemann-theta function of genus N.

In the mid-1970s, it was also realized that there
exist integrable ODEs. For example, a stationary
reduction of some of the equations introduced in
connection with the space-periodic problem men-
tioned above led to the integration of some classical
tops. Furthermore, the similarity reduction of some
of the integrable PDEs led to the classical Painlevé
equations. For example, letting g=t"13u(¢),
¢=xt"13 in the modified KdV equation [8], and
integrating we find

2

;52+2u3;§u+a0 9]
where « is a constant. This is Painlevé II, that is, the
second equation in the list of six classical ODEs
introduced by Painlevé and is his school around 1900.
These equations are nonlinear analogs of the linear
special functions such as Airy, Bessel, etc. The connec-
tion between integrable PDEs and ODEs of the Painlevé
type was established by Ablowitz and Segur (1977).
Their work marked a new era in the theory of these
equations. Indeed, soon thereafter Flaschka and Newell
(1980) introduced an extension of the inverse-spectral
method, the so-called isomonodromy method, capable
of integrating these equations. The most remarkable
achievement of this new development is the construction
of nonlinear analogs of the classical connection formulas
that exist for the linear special functions. These
formulas, although rather complicated, are as explicit
as the corresponding linear ones (Fokas ez al. 2005).

It was mentioned earlier that the inverse-spectral
method gives rise to a matrix RH problem. An RH
problem involves the determination of a function
analytic in given sectors of the complex plane, from
the knowledge of the jumps of this function across the
boundaries of these sectors. The algebraic-geometric
method for solving the space-periodic initial-value
problem can be interpreted as formulating an RH
problem which can be analyzed using functions defined
on a Riemann surface. Also, it was noted by Fokas and
Ablowitz (1983a) and later rigorously established by
Fokas and Zhou (1992) that the isomonodromy
method also gives rise to a novel RH problem. This



96 Integrable Systems and the Inverse Scattering Method

implies the following interesting unification: Self-
similar, decaying, and periodic initial-value problems
for integrable evolution equations in one space variable
lead to the study of the same mathematical object,
namely to the RH problem.

Every integrable nonlinear evolution equation in
one spatial dimension has several integrable versions in
two spatial dimensions. Two such integrable physical
generalizations of the Korteweg—deVries equation are
the so-called Kadomtsev—Petviashvili I (KPI) and II
(KPII) equations. In the context of water waves, they
arise in the weakly nonlinear, weakly dispersive, weakly
two-dimensional limit, and in the case of KPI when
the surface tension is dominant. The NLS equation also
has two physical integrable versions known as the
Davey-Stewartson I (DSI), and IT (DSII) equations. They
can be derived from the classical water-wave problem in
the shallow-water limit and govern the time evolution of
the free surface envelope in the weakly nonlinear,
weakly two-dimensional, nearly monochromatic limit.
The KP and DS equations have several other physical
applications.

A method for solving the Cauchy problem for
decaying initial data for integrable evolution equations
in two spatial dimensions emerged in the early 1980s.
This method is sometimes referred to as the 9 (d-bar)
method. We recall that the inverse-spectral method
for solving nonlinear evolution equations on the line
is based on a matrix RH problem. This problem
expresses the fact that there exist solutions of the
associated x-part of the Lax pair which are sectionally
analytic. Analyticity survives in some multidimen-
sional problems: it was shown formally by Fokas and
Ablowitz (1983b) that KPI gives rise to a nonlocal RH
problem. However, for other multidimensional pro-
blems, such as the KPII, the underlying eigenfunctions
are nowhere analytic and the RH problem must be
replaced by the 0 problem. Actually, a  problem had
already appeared in the work of Beals and Coifman
(1982) where the RH problem appearing in the analysis
of one-dimensional systems was considered as a special
case of a @ problem. Soon thereafter, it was shown in
Ablowitz et al. (1983) that KPII required the essential
use of the 0 problem. The situation for the DS equations
is analogous to that of the KP equations.

Multidimensional integral PDEs can support
localized solutions. Actually there exist two types
of localized coherent structures associated with
integrable evolution equations in two spatial vari-
ables: the “lumps” and the “dromions.” The spectral
meaning, and therefore the genericity of these
solutions was established by Fokas and Ablowitz
(1983b) and Fokas and Santini (1990).

The analysis of integrable singular integro-differential
equations and of integrable discrete equations, although

conceptually similar to the analysis reviewed above, has
certain novel features.

The fact that integrable nonlinear equations
appear in a wide range of physical applications is
not an accident but a consequence of the fact that
these equations express a certain physical coherence
which is natural, at least asymptotically, to a variety
of nonlinear phenomena. Indeed, Calogero (1991)
has emphasized that large classes of nonlinear
evolution PDEs, characterized by a dispersive linear
part and a largely arbitrary nonlinear part, after
rescaling yield asymptotically equations (for the
amplitude modulation) having a universal character.
These “universal” equations are, therefore, likely to
appear in many physical applications. Many integr-
able equations are precisely these “universal” models.

Solitons, Lumps, and Dromions

Solitons, lumps, and dromions, are important not
because they are exact solutions, but because they
characterize the long-time behavior of integrable
evolution equations in one and two space dimen-
sions. The question of solving the initial-value
problem of a given integrable PDE, and then
extracting the long-time behavior of the solution is
quite complicated. It involves spectral analysis, the
formulation of either an RH problem or of a 0
problem, and rigorous asymptotic techniques. On
the other hand, having established the importance of
solitons, lumps, and dromions, it is natural to
develop methods for obtaining these particular
solutions directly, avoiding the difficult approaches
of spectral theory. There exist several such direct
methods, including the so-called Biacklund transfor-
mations, the dressing method of Zakharov-Shabat,
the direct linearizing method of Fokas—Ablowitz,
and the bilinear approach of Hirota.

Solitons

Using the bilinear approach, multisoliton solutions
for a large class of integrable nonlinear PDEs in
one space dimension are given in Hietarinta
(2002). Here we only note that the 1-soliton
solution of the NLS [6], of the sine-Gordon [7],
and of the modified KdV equation [8] are given,
respectively, by

prei Pt (p3—p2)t+n)

q(x,1) = cosh([pr(x — 2pt) + 7] [10]

q(px + gt) =4 arctan[eP T pr =14 4> [11]
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2 +p
qlx =Pt = cosh[px — p?t + 1 [12]

where pr, p1, 1, P, q are real constants.

Lumps

The KPI equation is

ax[qt + 6499y + qxxx} = 3qyy [13]

The 1-lump solution of this equation is given by
2 2 1
q(x, Y, t) = Zax In |L(x’ Vs t)| +-=31>
4N
L=x-2\y+ 12Xt +a
)\:)\R-i-i)\], Ar>0

[14]

where \ and a are complex constants.
The focusing DSII equation is

iq: + 4z + 0z — 2 (07 al? +0;lgl?) =0 [15]

where z=x + iy, and the operator 9. is defined by

(0:f) @ 2)= 5 [ 14

C2infgr (—2 den dg

The 1-lump solution of this equation is given by

(P2 +p?)t+pz—pz
z pe 16]

q(z,2,t)= :
2+ a + 2ipt]* + |8

where «, 8, p are complex constants. A typical
1-lump solution is depicted in Figure 2.

abs u

l‘=—3_§.___

y 20720

Figure 2 A typical 1-lump solution.

Dromions

The DSI equation is
iq, + (@% +8§)q+qu =0
ey = 2(02+ 02 laP

The 1-dromion solution of this equation is given by

[17]

X-Y
pe
q(x,y,0) = —= Y-V o X XYY
aeX X + fFe + yett +6
e e 18
X=px+ipt, Y=qy+iqt

o|* = 4prar(af — 79)

where p, g are complex constants and «, 3,7, are
positive constants.

A Nonlinear Fourier Transform

The solution of the initial-value problem of an
integrable nonlinear evolution equation on the
infinite line is based on the spectral analysis of the
x-part of the Lax pair. Thus, for the KdV equation
one must analyze eqn [Sa]. This equation is the
famous time-independent Schrodinger equation. We
now give a physical interpretation of the relevant
spectral analysis. Let KdV describe the propagation
of a water wave and suppose that this wave is frozen
at a given instant of time. By bombarding this water
wave with quantum particles, one can reconstruct its
shape from knowledge of how these particles
scatter. In other words, the scattering data provide
an alternative description of the wave at fixed time.

abs u
t=-0:35
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The mathematical expression of this description
takes the form of a linear integral equation found
by Faddeev (the so-called Gel’fand-Levitan—-March-
enko equation) or equivalently the form of a 2 x 2
matrix RH problem uniquely specified by the
scattering data. This alternative description of the
shape of the wave will be useful if the evolution of
the scattering data is simple. This is indeed the case,
namely using eqn [Sb], it can be shown that the
scattering data evolve linearly. Thus, this highly
nontrivial change of variables from the physical to
scattering space provides a linearization of the KdV
equation.

In what follows we will describe some of the
relevant  mathematical formulas. We  first
“assume” that there exists a real solution g(x,t)
of the initial-value problem which has sufficient
smoothness and which decays for all ¢ as |x| — oc.
We then discuss how this assumption can be
eliminated.

As it was mentioned earlier most of the analysis
of the inverse-scattering transform is carried out
on the x-part of the Lax pair, that is, on eqn [5a].
Hence, we first concentrate on eqn [5a] and for
convenience of notation we suppress the time
dependence.

The Direct Problem

As |x| — 00,9 — 0, thus there exist solutions of eqn
[Sa] which tend to exp[+ikx] as [x| — oco. Let
P(k,x) and (k,x) denote solutions of eqn [5a]
with the following asymptotic property:

) — e ) e kY keR [19]

as x — 00,

Under the transformation k — —k, eqn [5a] remains
invariant and the boundary condition for ¢ is mapped
to the boundary condition for 1. Hence

1/1(/%96) = w(fkvx) [20]

We denote by ¢(k,x) the solution of eqn [5a] which
tends to exp[—ikx] as x — —o0,

¢ —e®  asx — —oo, keR [21]

It is more convenient to work with eigenfunctions
(i.e., solutions of [5a]) normalized to unity as x — oo,
thus we introduce M(k,x) and N(k, x) as follows:
M= ¢Cikx, N = wefikx [22]
The functions M and N can be expressed in terms of

g through the solution of linear Volterra integral
equations. Indeed, M satisfies

M, — 2ikM, = —gM,
M—1,

keR
X — —00 [23]

The homogeneous version of [23] has solutions 1
and e2**, Thus,

M = ¢1 + ek 4 M, [24]
where ¢, ¢, are constants and M, is given by
M, = u(x) +up (x)em" [25]

The functions #uy,u; satisfy

2ikx 1 07

uy + ey = 2ike*kuly = —gM

Thus,

) =5 [ deg @Mk
- 26

1 * ;
uy(x) = -5 / dée 2 q(E)M(k, &)

Substituting [25] and [26] into [24] and using the
boundary condition [23], we find

M(k, x)

1t / de(~1 + ) g(e)M(k,€)  [27)
Similarly, one may establish that N satisfied
N(k,x)

—14 ﬁ/ de(—1+ e HE9)g(EN(k, &) (28]

The kernel of eqn [27], as a function of k, is
bounded and analytic for Imk > 0. Thus, if g €
Li,M(k,x) as a function of k is holomorphic for
Imk > 0. Similarly, N(k,x) as a function of k is
holomorphic for Imk > 0.

Thus, we have found particular solutions of eqn
[Sa] which are holomorphic for Imk > 0. Further-
more, these solutions are simply related for & real.
Indeed, the linear independence of solutions of the
second-order ODE [5a] implies

¢(k,x) = a(k)ip(k,x) + b(k)(k, x),

Using [20] and replacing ¢ and 1) in terms of M and
N, we find

ke R

% = N(—k,x) + p(k)e”*N(k, x)
p(/g):%, keR [29]
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The functions a(k) and b(k) are given by

zﬂﬁﬂ—ﬁ/wwmm@@7keR

Zk/ déq (&)

Indeed as x — co, N — 1, thus, eqn [29] implies

[30]

M(k,&)e 2% keR

M — a(k) + b(k)e*** as x — oo [31]

On the other hand, eqn [27] implies that

Mo 1o [ deo1+ @ 9g0Mk,0)

X — 00 [32]

Comparing eqns [31] and [32], we find eqns [30].
The expression for a(k) implies that this function
is also holomorphic for Imk > 0.
In summary, in the “direct problem,” we have
found particular solutions of eqn [5a] which are
sectionally holomorphic:

M(k,x) M(—k,x)
(N(k,x)) and (N(k,x)
are holomorphic for Imk > 0 and Imk < 0, respec-
tively. These solutions, which are characterized in

terms of g by eqns [27] and [28], are simply related
by eqn [29].

The Inverse Problem

Equation [28] expresses N in terms of g. Is it possible
to find an alternative expression for N in terms of
some appropriate “spectral data”? The answer is
positive and is a direct consequence of the fact that
eqn [29] defines the “jump condition” of an RH
problem. Indeed, it can be shown that a(k) may have
simple zeros ki,...,k, in the positive imaginary axis
of the k-complex plane. Hence, in general, M/a can
be expressed in the form

_ ~ Aj(x) A
2l —M(Ie,x)+/;k_ip/ p;i>0

where M(k,x) as a function of k is holomorphic for

Imk > 0. It can also be shown that Aj(x)=C;
expl—2p;, x]N(k;, x). Hence eqn [29] becomes
M(k,x) — N(—k,x)
—2pix N .
= Z Ce—lplp,,)+ p(k)e* ™ N(k,x), keR
j

Taking the (—) projection of this equation, and
using the fact that both M and N tend to 1 as k — oo,
we find

1 [ dlp(l)e*™ N(l, x)
N@”“*Ljﬁﬂxﬁ—

N(ipj, x) [33]

In summary, this equation expressed N(k,x) in
terms of the scattering data (p(k), {C;, p;}7).

Since both eqns [28] and [33] are associated with
the same g, these equations can be used to obtain
the following expression for g:

_ 1 Y i * 2ilx
a=-22 |5 1 dlp()e N )

—i Z Cie 2P*N(ip;, x)] 34]

j=1

Indeed, eqn [28] implies

lim N(k,x) 7172/«/ déq(€)

k—o00

Comparing this expression with the large-k behavior
of eqn [33], we find [34].

Time Dependence of the Scattering Data

We now use eqn [5b] to compute the time
dependence of the scattering data by evaluating
eqn [5b] as x ——oo we find v=4ik3. Then,
evaluating it as x — oo and using

d)Naefikx_Fbeikx’ x — 400

we find
a; =0, b, = 8ik3b

Hence,

a(t,k) = a(0,k),  p(t.k) = p(0,k)eSE*  [35]

Thus,

pi(t) =p;(0),  Ci1) = Ci(0)e™"  [36]

The above formal results motivate the follow-
ing definitions (for simplicity, we assume that a(k)
has no zeros). Given a decaying real function
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qo(x), x € R, define My(k,x) as the solution of the
linear Volterra integral equation

Mo(kox) = 145 [ de(=1+ 499 Mo k.))
Imk >0

Given My(k,x), define ag(k) and by(k) by

Mo(k,x) — ag(k) + bo(k)e***, x — o0, keR
Given gy and by, define N(k, x,¢) by the solution of

the linear integral equation

L bo(D) i NULx,t)
Nik 1) ﬂ/m dlao(l)e [+k+i0

A theorem of Gohberg and Krein implies that this
equation has a unique global solution. Given
ao, bo, N, define g(x,t) by

_ _12 - bO(k) 8ik3t+2ikx
qlx,t) = Wax/,ocdk—do(k)e N(k,x,t)

Then it can be shown that g(x,¢) satisfies the KdV
equation and g(x, 0) = go(x).

A Unification

After the emergence of a method for solving the
initial-value problem for nonlinear integrable evolu-
tion equations in one and two space variables, the
most outstanding open problem in the analysis of
these equations became the solution of initial
boundary-value problems. A general approach for
solving such problems for evolution equations in one
space dimension was provided by Fokas (1997).
This approach has already been used for the study of
nonlinear integrable evolution PDEs on the half-line
(Fokas 2002, 2005), on the interval, and in a time-
dependent domain. An important advantage of this
new method is that it yields the formulation of a
matrix RH problem (or a d problem in the case of a
convex time-dependent domain), which although has
more complicated jump matrices than the analogous
problem on the infinite line, it still has an explicit
exponential (x, #) dependence. This fact allows one to
describe effectively the asymptotic properties of the
solution, using the powerful Deift-Zhou method
(Deift and Zhou 1993). For example, the long-time
asymptotics of boundary-value problems on the half
line are discussed in Fokas and Its (1996).

It is remarkable that the above results have
motivated the discovery of a new method for solving

boundary-value problems, not only for linear evolu-
tion PDEs, but also for linear elliptic PDEs in two
dimensions. This includes the Laplace, the biharmonic
and the Helmholtz equations in a convex polygon
(Dassios and Fokas 2005). In a most recent develop-
ment, this method has also been applied to certain
classes of linear PDEs with variable coefficients. This
highly unexpected development unifies and extends
several classical branches of mathematics. In particu-
lar, it unifies the classical transform methods for
simple linear PDEs as well as the method of images,
the treatment of linear PDEs via certain ingenious
techniques such as the Wiener—-Hopf technique, the
formulation of Ehrenpreis type integral representa-
tions, and the solution of integrable nonlinear PDEs
via the inverse-scattering transform. Furthermore, it
extends these results to arbitrary domains and to
certain classes of PDEs with variable coefficients.

Regarding linear equations we note the following:

Almost as soon as linear two-dimensional PDEs
made their appearance, d’Alembert and Euler discov-
ered a general approach for constructing large classes
of their solutions. This approach involved separating
variables and superimposing solutions of the resulting
ODEs. The method of separation of variables natu-
rally led to the solution of PDEs by a transform pair.
The prototypical such pair is the direct and the inverse
Fourier transforms; variations of this fundamental
transform include the Laplace, Mellin, sine, cosine
transforms, and their discrete analogs.

The proper transform for a given boundary-value
problem is specified by the PDE, by the domain, and
by the given boundary conditions. For some simple
boundary-value problems, there exists an algorithmic
procedure for deriving the associated transform. This
procedure involves constructing the Green’s function
of a single eigenvalue equation, and integrating this
Green’s function in the k-complex plane, where
k denotes the eigenvalue.

The transform method has been enormously
successful for solving a great variety of initial- and
boundary-value problems. However, for sufficiently
complicated problems the classical transform method
fails. For example, there does not exist a proper analog
of the sine transform for solving a third-order evolution
equation on the half-line. Similarly, there do not exist
proper transforms for solving boundary-value pro-
blems for elliptic equations even of second order and in
simple domains. The failure of the transform method
led to the development of several ingenious but
ad hoc techniques, which include: conformal mappings
for the Laplace and the biharmonic equations; the
Jones method and the formulation of the Wiener—Hopf
factorization problem; the use of some integral
representation, such as that of Sommerfeld; the
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formulation of a difference equation, such as the
Malyuzhinet’s equation. The use of these techniques
has led to the solution of several classical problems in
acoustics,  diffraction, electromagnetism,  fluid
mechanics, etc. The Wiener—-Hopf technique played a
central role in the solution of many of these problems.

A crucial role in the new method is played by the
global equation satisfied by the boundary values of g
and of its derivatives. For evolution equations and for
elliptic equations with simple boundary conditions, this
involves the solution of a system of algebraic equations,
while for elliptic equations with arbitrary boundary
conditions, it involves the solution of an RH problem.
For simple polygons, this RH problem is formulated on
the infinite line, thus it is equivalent to a Wiener-Hopf
problem. This explains the central role played by the
Wiener-Hopf technique in many earlier works.

For linear PDEs, the explicit x1, x, dependence of
q(x1,x) is consistent with the Ehrenpreis formulation
of the solution. Thus, this method provides the
concrete implementation as well as the generalization
to concave domains of this fundamental principle. For
nonlinear equations, it provides the extension of the
Ehrenpreis principle to integrable nonlinear PDEs.

See also: Boundary value Problems for Integrable
Equations; d-Approach to Integrable Systems; Integrable
Systems and Algebraic Geometry; Integrable Discrete
Systems; Integrable Systems and Discrete Geometry;
Integrable Systems in Random Matrix Theory; Integrable
Systems: Overview; Korteweg—de Vries Equation and
Other Modulation Equations; Partial Differential
Equations: Some Examples; Riemann—Hilbert Methods in
Integrable Systems; Sine-Gordon Equation; Toda
lattices; Twistor Theory: Some Applications [in Integrable
Systems, Complex Geometry and String Theory].
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Random Matrix Models

A random matrix model is a probability space
(Q,P,F) where the sample space Q is a set of
matrices. There are three classic finite N random
matrix models (see, e.g., Mehta (1991)):

1. Gaussian orthogonal ensemble (3=1):

(a) =N x N real symmetric matrices;

(b) P = “unique” measure that is invariant under
orthogonal transformations and the matrix
elements are i.i.d. random variables; expli-
citly, the density is

cn exp(—tr(A?)) dA [1]

where c¢n is a normalization constant and

dA = [];dA; ]],.;dAj, the product Lebesgue

measure on the independent matrix elements.
2. Gaussian unitary ensemble (3=2):

(a) =N x N Hermitian matrices;

(b) P= ‘“unique” measure that is invariant
under unitary transformations and the (inde-
pendent) real and imaginary matrix elements
are i.i.d. random variables; and

3. Gaussian symplectic ensemble (3=4) (see Mehta

(1991) for a definition).

Generally speaking, the interest lies in the
N — oo limit of these models. Here we concentrate
on one aspect of this limit. In all three models the
eigenvalues, which are random variables, are real
and with probability 1 they are distinct. If A\pax(A)
denotes the largest eigenvalue of the random
matrix A, then for each of the three Gaussian
ensembles we introduce the corresponding distri-
bution function

Fnp(t) == Ps(Amax < t), B=1,2,4

The basic limit laws (see Tracy and Widom
(1996) and references therein) state that

Fa(s) i= Jim Fns(20VN+000), 6=1,2,4 2]

exist and are given explicitly by

Fz(S) = det(I — KAiry)

—exp(~ [T 9 )

Ai(x)AL(y) — AT (x)Ai(y)
xX—=y
acting on L?(s, 00)(Airy kernel)

where

KAiry =

and g is the unique solution to the Painlevé II
equation

q'=sq+24°
satisfying the condition

q(s) ~ Ais)

o in eqn [2] is the standard deviation of the
Gaussian distribution on the off-diagonal matrix
elements. For the normalization we have chosen
o =1/+/2; however, for subsequent comparisons, the
normalization o =+/N is perhaps more natural.

The orthogonal and symplectic distribution func-
tions are

as s — o0

Fi(s) = exp (— %/SOO q(x) dx> (Fa(s))'/?
F4(s/V2) = cosh <%/SOO q(x) dx) (Fa(s))?

Graphs of the densities dFg/ds are in the adjacent
figure and some statistics of Fz can be found in
Figure 1.

The Airy kernel is an example of an integrable
integral operator and a general theory is developed in
Tracy and Widom (1994). A vertex operator approach
to these distributions (and many other closely related
distribution functions in random matrix theory) was
initiated by Adler, Shiota, and van Moerbeke (see the
review article var Moerbeke (2001) for further
developments of this latter approach).

Historically, the discovery of the connection
between Painlevé functions (P in this case) and
Toeplitz/Fredholm determinants appears in work
of Wu et al. (1976) on the spin-spin correlation
functions of the two-dimensional Ising model. Painlevé
functions first appear in random matrix theory in
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1 —1.20653 1.2680 0.293 0.165
2 —-1.77109 0.9018 0.224 0.093
4 —2.30688 0.7195 0.166 0.050
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Figure 1 The mean (u3), standard deviation (o3), skewness
(Sg), and kurtosis (Kj) of Fjs.

Jimbo et al. (1980) where they prove that the Fredholm
determinant of the sine kernel is expressible in terms of
Py. Gaudin (using Mehta’s then newly invented
method of orthogonal polynomials (Porter 1965))
was the first to discover the connection between
random matrix theory and Fredholm determinants.

Universality Theorems

A natural question is to ask whether the above limit
laws depend upon the underlying Gaussian assump-
tion on the probability measure. To investigate this for
unitarily invariant measures (3 = 2), one replaces in [1]

exp(—tr(Az)) — exp(—tr(V(A)))
Bleher and Its (1999) choose

V(A) =gA* — A?, ¢>0

and subsequently a large class of potentials V was
analyzed by Deift er al. (1999). These analyses
require proving new Plancherel-Rotach type formu-
las for nonclassical orthogonal polynomials. The
proofs use Riemann—Hilbert methods. It was shown
that the generic behavior is GUE; hence, the limit
law for the largest eigenvalue is F,. However, by
finely tuning the potential new universality classes
will emerge at the edge of the spectrum. For 3=1,4
a universality theorem was proved by Stojanovic
(2000) for the quartic potential.

In the case of noninvariant measures, Soshnikov
(1999) proved that for real symmetric Wigner matrices

(complex Hermitian Wigner matrices), the limiting
distribution of the largest eigenvalue is F; (respectively,
F>). (A symmetric Wigner matrix is a random matrix
whose entries on and above the main diagonal are
independent and identically distributed random vari-
ables with distribution function F. Soshnikov assumes
that F is even and all moments are finite.) The
significance of this result is that non-Gaussian Wigner
measures lie outside the “integrable class” (e.g., there
are no Fredholm determinant representations for the
distribution functions) yet the limit laws are the same as
in the integrable cases.

Appearance of F; in Limit Theorems

In this section we briefly survey the appearances of
the limit laws Fj in widely differing areas.

Combinatorics

A major breakthrough occurred with the work of
Baik, Deift, and Johansson (see Baik et al. (2000) and
references therein) when they proved that the limiting
distribution of the length of the longest increasing
subsequence in a random permutation is F,. Precisely,
if In(o) is the length of the longest increasing
subsequence in the permutation o € Sy, then

P(%ﬁ < ) ~ B

as N —oo. Here the probability measure on the
permutation group Sy is the uniform measure.
Further discussion of this result can be found in
Johansson (2000b).

Baik and Rains (2001) showed by restricting the set
of permutations (and these restrictions have natural
symmetry interpretations) that F; and F4 also appear.
Even the distributions F? and F3 (Tracy and Widom
1999) arise. By the Robinson-Schensted—Knuth corre-
spondence, the Baik-Deift-Johansson result is equiva-
lent to the limiting distribution on the number of boxes
in the first row of random standard Young tableaux.
(The measure is the push-forward of the uniform
measure on Sy.) These same authors conjectured that
the limiting distributions of the number of boxes in the
second, third, etc., rows were the same as the limiting
distributions of the next-largest, next-next-largest,
etc., eigenvalues in GUE. Since these eigenvalue
distributions were also found in Tracy and Widom
(1996), they were able to compare the then unpub-
lished numerical work of Odlyzko and Rains (2000)
with the predicted results of random matrix theory.
Subsequently, Baik et al. (2000) proved the conjecture
for the second row. The full conjecture was proved by
Okounkov (2000) using topological methods and by,
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among others, Johansson (2001) using analytical
methods. For an interpretation of the Baik-Deift—
Johansson result in terms of the card game patience
sorting, see the very readable review paper by Aldous
and Diaconis (1999).

Growth Processes

Growth processes have an extensive history both in
the probability literature and the physics literature
(see, e.g., Meakin (1998) and references therein), but
it was only recently that Johansson (2002b) proved
that the fluctuations about the limiting shape in a
certain growth model (“corner growth model”) are
F,. Johansson further pointed out that certain
symmetry constraints (inspired from the Baik and
Rains (2001) work) lead to F; fluctuations (see
Growth Processes in Random Matrix Theory).

Subsequently, Baik and Rains (2000) and Gravner
et al. (2002) have shown the same distribution
functions appearing in closely related lattice growth
models. Prihofer and Spohn (2000) reinterpreted the
work of Baik ef al. in terms of the physicists’ poly-
nuclear growth (PNG) model thereby clarifying the role
of the symmetry parameter (3. For example, §=2
describes growth from a single droplet, whereas 5 =1
describes growth from a flat substrate. They also
related the distribution functions Fj to fluctuations of
the height function in the KPZ equation (Kardar et al.
1986, Meakin 1998). (The connection with the KPZ
equation is heuristic.) Thus, one expects on physical
grounds that the fluctuations of any growth process
falling into the 1+ 1KPZ universality class will be
described by the distribution functions Fj or one of the
generalizations by Baik and Rains (2000). Such a
physical conjecture can be tested experimentally. Ear-
lier Myllys et al. established experimentally that a slow,
flameless burning process in a random medium (paper!)
is in the 1 + 1KPZ universality class. This sequence of
events is a rare instance in which new results in
mathematics inspire new experiments in physics.

In the context of the PNG model, Prihofer and
Spohn have given a process interpretation, the Airy
process, of F,.

There is an extension of the growth model in
Gravner et al. (2002) to growth in a random
environment. In Gravner et al. (2002) the following
model of interface growth in two dimensions is
considered by introducing a height function on the
sites of a one-dimensional integer lattice with the
following update rule: the height above the site x
increases to the height above x — 1, if the latter
height is larger; otherwise, the height above x
increases by 1 with probability p,. It is assumed
that the p, are chosen independently at random with

a common distribution function F, and that the initial
state is such that the origin is far above the other sites.
In the pure regime, Gravner-Tracy-Widom identify
an asymptotic shape and prove that the fluctuations
about that shape, normalized by the square root of
the time, are asymptotically normal. This contrasts
with the quenched version: conditioned on the
environment and normalized by the cube root of
time, the fluctuations almost surely approach the
distribution function F,. We mention that these same
authors find, under some conditions on F at the right
edge, a composite regime where now the interface
fluctuations are governed by the extremal statistics of
px in the annealed case while the fluctuations are
asymptotically normal in the quenched case.

Random Tilings

The Aztec diamond of order 7 is a tiling by dominoes of
the lattice squares [m,m + 1] x [(,£+ 1],m,n € Z,
that lie inside the region {(x,y):|x| + |y| <n+1}. A
domino is a closed 1 x 2 or 2 x 1 rectangle in R? with
corners in 7. A typical tiling is shown in Figure 2. One
observes that near the center the tiling appears random,
called the temperate zone, whereas near the edges the
tiling is frozen, called the polar zones. As 7 — oo the
boundary between the temperate zone and the polar
zones (appropriately scaled) converges to a circle
(“arctic circle theorem”). Johansson (2002a) proved
that the fluctuations about this limiting circle are F;.

Statistics

Johnstone (2001) considers the largest principal
component of the covariance matrix X’X where X
is an 7 x p data matrix all of whose entries are
independent standard Gaussian variables and proves
that for appropriate centering and scaling, the
limiting distribution equals F; in the limit 7, p — 0o
with n/p—~ € R". Soshnikov has removed the
Gaussian assumption but requires that n—p=
O(p'/3). Thus, we can anticipate applications of
the distributions Fs (and particularly F;) to the
statistical analysis of large data sets.

Figure 2 Random tilings.
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Queuing Theory

Glynn and Whitt (1991) consider a series of 7 single-
server queues each with unlimited waiting space
with a first-in and first-out service. Service times are
i.i.d. with mean one and variance o with distribu-
tion V. The quantity of interest is D(k,n), the
departure time of customer k (the last customer to
be served) from the last queue 7. For a fixed number
of customers, k, they prove that

D(k,n) —n
ov/n

converges in distribution to a certain functional Dy,
of k-dimensional Brownian motion. They show that
Dy, is independent of the service time distribution V.
It was shown in, for example, Gravner et al. (2002)
that D, is equal in distribution to the largest
eigenvalue of a k x k GUE random matrix. This
fascinating connection has been greatly clarified in
recent work of O’Connell and Yor (2002).

From Johansson (2002), it follows for V Poisson that

P D(|xn|,n) —cin
PV

< S) — Fa(s)

as n— oo for some explicitly known constants ¢
and ¢, (depending upon x).

Superconductors

Vavilov et al. (2001) have conjectured (based upon
certain physical assumptions supported by numer-
ical work) that the fluctuation of the excitation gap
in a metal grain or quantum dot induced by the
proximity to a superconductor is described by F; for
zero magnetic field and by F, for nonzero magnetic
field. They conclude their paper with the remark:

The universality of our prediction should offer ample
opportunities for experimental observation.
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Introduction

This section introduces some elementary notions
and sets the (mathematically low brow) tone of this
presentation.

A dynamical system is characterized by an evolu-
tion equation the general structure of which reads

Qt =F [1]

Here O = O(x,t) is the dependent variable, and it
might be a scalar, a vector, a matrix, you name it.
The focus of interest is on its evolution as function
of the (real, scalar) “time” variable . The a priori
unknown quantity Q might moreover depend on
another independent “space” variable (scalar or
vector) x, Q = O(x,#). The appended variable ¢ in
the left-hand side of the above equation denotes
partial differentiation, and this notation will be used
throughout, although when 7 is the only independent
variable differentiation with respect to it might be
instead denoted by a superimposed dot:

0,=22%0 o,

00(x,2) -~ _
Ox Q= dt

The quantity in the right-hand side of the evolution
equation (1), which has of course the same (scalar,
vector, matrix) character as Q, is an assigned
function of ¢, x and Q, F = (x, ¢, Q) (more generally,
its dependence on O might be functional, see
below). A typical example of the dynamical systems
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random permutations. In: Blcher P and Its A (eds.) Random
Matrix Models and Their Applications, Math. Sci. Res. Inst.
Publications vol. 40, pp. 321-406. Cambridge: Cambridge
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Vavilov MG, Brouwer PW, Ambegaokar V, and Beenakker CW]
(2001) Universal gap fluctuations in the superconductor
proximity effect. Physical Review Letters 86: 874-877.

Wu TT, McCoy BM, Tracy CA, and Barouch E (1976) Spin-spin
correlation functions of the two-dimensional Ising model:
exact theory in the scaling region. Physical Review B 13:
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we shall consider is the N-body problem character-
ized by the Newtonian equations of motion

dn =— wzqn

N
+28% > @u—qm) in=1,2,..N [2]

m=1,m#n

where the dependent variable is the N-vector g =
(q1,--.gn), the components of which are the “particle
coordinates” g, = g,(t). Note however that these
equations of motion are of second-order in time
(contrary to (1)); but they can of course be reformulated
as first-order ODEs indeed their Hamiltonian version,
derived in the standard manner from the Hamiltonian

1 > 2 2 2
H :i;(pn tw qn)
N
Y g Ba
m,n=1;m#n
reads
qn = Dn [3b]
[)n = *qun
N
+2¢ Y (@n—gm) Pim=1,2,...N [3]
m=1,m#n

Other typical examples are the (“Korteweg-de
Vries”, “Burgers”, “Nonlinear Schrodinger”, “sine
Gordon”) PDEs satisfied by the scalar dependent
variable g = q(x, t),

Gt =—Guer +24x9 = (—Gxx + ), [4]
G =—qxx +20x9 = (—qx + %), [5]
g =i aw +slalq), s =+ [6]
q: — gx = S, + Sy = sing [7]
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as well as the integrodifferential (“Benjamin—-Ono”)
equation

o [T an()
qtfP[mdyx_y+qxq (8]

and the (“Kadomtsev—Petviashvili”’) PDE satisfied by
the scalar dependent variable q = q(x, y, ),

qix = (_qxxx + qxq)x+ quy, s==4 [9]

This last equation should of course be reformulated
as an integrodifferential equation to fit with (1).
These are all examples of integrable systems (see
below). In this presentation we restrict attention to
dynamical systems of these general types, without
considering evolutions in which the space variable,
and/or the time variable, and/or the dependent
variable, only take discrete values, forsaking thereby
the discussion of discrete evolution equations,
cellular automata and functional equations, see
other entries of this Encyclopedia. We shall consider
mainly the “initial-value problem” in which the
solution is assigned at the initial time, say at =0,

O(x,0) = Qo(x)

and the subsequent evolution of the dependent
variable, namely the values taken by Q(x,¢) for t >
0, is the focus of attention. Note however that,
except when there is no dependence at all on the
space variable x (see for instance (2)), the functional
class to which Q(x,t) belongs as regards its
x-dependence should be specified (and the assigned
initial-value Qg(x) should of course belong to this
functional class). A typical class of functions are
those vanishing (adequately fast) at (spatial) infinity;
another typical class are those characterized by
periodicity properties as functions of x; and still
another class are those restricted to a finite spatial
domain (for instance, the positive x-axis, x > 0, or a
finite interval, @ < x < b), in which cases the initial-
value problem must be supplemented by assigning
boundary conditions. These latter class of problems,
called initial/boundary-value problems, are generally
more difficult; even the identification of which
boundary conditions are adequate to identify
uniquely the solution may be a nontrivial task. In
the following we will always focus on the simpler
class of problems characterized by solutions defined
in the entire space region and vanishing (sufficiently
fast) asymptotically (far away).

Thus, in the spirit of the initial-value problem, a
dynamical system is generally characterized by
assigning its evolution equation, the functional
class to which its solutions are required to belong,
and possibly in addition some (additional) restric-
tion on the set of initial data.

Let us finally mention that, aside from considering
the initial-value problem, the study of dynamical
systems may focus on the identification of special
(classes of) solutions, for instance those obtained by
using symmetry properties of the evolution equation
under consideration (yielding, say, “similarity solu-
tions”), and, in the integrable case, “solitonic” and
“multisolitonic” solutions (see below).

Integrable dynamical systems

The solution of a dynamical system, however simple
the equation that defines its time evolution, see (1), may
be extremely complicated, indeed its time-dependence
might feature one or more of the characteristics of
deterministic chaos, such as a sensitive dependence on
the initial data. But there are “exceptional” dynamical
systems, the behavior of which is instead, in some
sense, simple. Such systems are termed — in the least
technical sense of the word — “integrable”.

This characterization can be made precise for
Hamiltonian systems with a finite number N of degrees
of freedom, the equations of motion of which read

OH (p,q) OH (p.q)

-~ Opa qn
Such a system is integrable if there exist, in addition
to the Hamiltonian H(p,q) = HV(p,q) itself,
N — 1 other (nontrivial and functionally indepen-
dent) constants of motion H" (p,§) in involution,
namely such that their Poisson brackets vanish:

{ H, H<m>}

N [aHW (p.4) 9H" (p, §)

n=1,...N

n yMn T

=1 8q/’ 817 v

OH" (p,q) OH™ (p,q)
_ -0,
0q¢ Ope

nm=1,...,N

Let us however emphasize the crucial role of the words
“there exist”, as used just above. For definiteness let us
require that the constants of motion H™(p,q) be
analytic functions of their 2N arguments, and nof
excessively multivalued: they might feature some
branch points, but not so many to vanify their
effectiveness in constraining the time evolution of the
dynamical variables g,(t),p,(¢) sufficiently to avoid
their behavior from being too complicated. On the
other hand it is of course not necessary that these
functions H" (p, 4) be explicitly known.

When these conditions hold it is in principle
possible  (“Liouville theorem”) to identify a
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canonical transformation from the canonical coor-
dinates and momenta g, and p, to action-angle
variables 0, and I,, such that

I, = H" (p,4) [10]
Then these action variables evolve trivially,
L,(t) = 1,(0),0,(¢t) = 0,(0) + [,(0)t,n=1,...N

Note that, once these new canonical variables are
identified, the solution of the initial-value problem for
the original Hamiltonian problem is provided directly
by the expressions of the action-angle variables 6, and
I, in terms of the original variables g, and p,,, as well
as the expressions of the latter in terms of the former.
The second step of this procedure requires inverting
the expressions (10), and the corresponding expres-
sions of the angle variables 6,, in terms of the original
variables g,, and p,,; a necessary condition in order that
this step allow to identify uniquely, at least in
principle, the original canonical variables g, and p,
in terms of the action-angle variables I,, and 6,, — hence
imply a simple time-evolution of these original vari-
ables — is the requirement, as mentioned above, that
the expressions of the constants of the motion
H™ (p,§) in terms of their arguments g, and p, not
be excessively multivalued.

The statements outlined above can be rigorously
formulated for finite-dimensional Hamiltonian sys-
tems, and they can be heuristically extended to all
analogous dynamical systems with a finite number of
degrees of freedom, even if they are not Hamiltonian.

A system with N degrees of freedom might possess
more than N constants of motion. Such a system
that possesses 2N — 1 (nontrivial and functionally
independent) constants of motion (the maximal
number, to avoid the evolution being frozen) is
called superintegrable, and its evolution is in some
sense analogous to that of a system with a single
degree of freedom, in particular all its confined and
nonsingular motions are then completely periodic,

qn<t+ T) = qn(t)7pn(t+ T) = pn(t)an =1,....,N

The period T depends generally on the initial data. If it
does not, at least for an open set of such data having
full dimensionality in phase space, the system is called
isochronous: all its motions in that phase space region
are then completely periodic with the same period.

A dynamical system might be integrable in a region
of its “natural” phase space, and nonintegrable in
another region. Sometimes such systems are referred to
as partially integrable. There even are systems which
are isochronous (hence superintegrable) in a region of
their phase space, and behave instead chaotically in
another region. These regions are generally separated
by boundaries where the evolution of the system runs

into singularities, and the constants of motion asso-
ciated with the integrable behavior become excessively
multivalued in the regions where the behavior is
chaotic. (see Isochronous Systems).

Dynamical systems featuring an additional space
variable x (see Section 1) can be interpreted as infinite-
dimensional dynamical systems (by considering the
variable x as a continuous label for the dependent
variable Q). Accordingly, a necessary condition in
order that such systems be considered integrable is the
requirement that they possess an infinite number of
constants of the motion. But — even for such systems
that allow a Hamiltonian formulation — this condition
cannot be considered sufficient (due to the inherent
ambiguities in the counting of infinities), and in fact a
completely cogent, universally accepted definition of
integrability for infinite-dimensional dynamical sys-
tems is still lacking (various definitions can of course
be given in special contexts). It is nevertheless rather
well understood by practitioners what is meant by
such a term at least for integrable equations such as
those indicated at the end of the previous section,
which generally give rise to the solitonic phenomenol-
ogy — as explained below.

The study of integrable systems has an illustrious
history, to which many eminent mathematicians and
mathematical physicists contributed after the
Newtonian revolution: Euler, Jacobi, Poincaré, Pain-
levé, Kowalewskaya, Kolmogorov, Moser ... Below
we report — most tersely — on the bloom that this topic
has witnessed over the last 3—4 decades, without being
generally able, due to space constraints, to attribute
the appropriate credit to the many colleagues, most of
them still living, who contributed to this endeavor. For
more detailed treatments of the topics outlined below,
of related developments not mentioned here, and of
such credits, the interested reader is referred to the
bibliography given below, including the additional
references traceable from there.

Integrable many-body problems

An important class of integrable dynamical systems
is provided by N-body problems characterized by
Hamiltonians such as

N
H(p.d) =5 > 0+ V@) 1]
n=1

with a potential energy V(g) that includes “exter-
nal” and “two-body” forces,

N N
. 1
V@) = VW) +5 D> VPah—am)
V(2 2)

n=1 m,n=1;m#n

'(—q) = VP (q) [12]
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The corresponding Hamiltonian and Newtonian
equations of motion read

. . avW(q,) N
dn = VnsPn = —a—qn— Z

OV (gy — qm)
0q,

. avV(q,) N
"

The Lax pair and the constants of motion Suppose
that two N®N matrices L=L(p,§) and M=
M(p,q) could be found such that the matrix “Lax
equation”

L =[L,M] [14]
be equivalent to the Hamiltonian equations of
motion (13). Here and throughout the notation
[A, B] denotes the commutator:

[A,B|=AB—-BA

Because this matrix equation clearly entails that
the N traces

T, =trace[L"],n=1,...,N

are constants of the motion,

T,=0,n=1,...,N

the possibility to write the Hamiltonian equations
(13) in the Lax form (14) yields as a bonus N
constants of the motion, namely it entails that the
Hamiltonian system under consideration is integr-
able. (One must moreover show that these constants
of motion are in involution; this is usually the case).

Hence a route to identify integrable N-body pro-
blems is via the search of Lax pairs L, M of matrices
such that (14) correspond to (13), with an appropriate
assignment of the potential energy (12). For N > 2 this
is a nontrivial task, because (13) is a system of 2N
ODEs in 2N unknowns, while the matrix Lax
equation (14) amounts to a system of N> ODEs.

Functional equations and the identification of
integrable many-body problems A convenient
ansatz to identify a Lax pair suitable for the purpose
outlined above reads as follows:

Ly =pnforn=m,L,,, = a(q, — qm) for m#n,
N

M, = Z 6(qn *q() forn= m,
(=1 0n
M, = ’Y(qn - qm), for m 7& n

where «(q),3(q) and ~(gq) are 3 functions to be
determined. It is then easily seen that these functions

may be assigned so that the corresponding Lax
equation (14) be equivalent to the Hamiltonian
equations (13) with

vi(g) =0 [15a]

V®(q) = a(g)a(—q) [15b]

provided the function «(x) satisfies the functional
equation

a(x)d(y) —ay)o'(x) . _a(_
2=V (a) — 30, () = Bl
The general solution of this functional equation
yields via [15b] the two-body potential

V@(q) = g d*plaglw,/) [16]

where g and a are two arbitrary constants and
p(x|w,u’) is the Weierstrass elliptic function (with
semiperiods w and «', as well arbitrary). One
concludes therefore that the N-body problem char-
acterized by the Hamiltonian (11) with (12), (15a)
and (16) is integrable.

This Hamiltonian system has played, since the mid-
seventies, a seminal role in the developments of finite-
dimensional integrable systems that occurred over the
last few decades. However, since the Weierstrass
function is doubly-periodic, from a “physical” point
of view this N-body problem is rather unrealistic, or
perhaps rather suited for the study of crystalline
configurations, including their statistical mechanics.
But there are two special cases, obtained by assigning
an infinite value to one or both of the semiperiods of
the Weierstrass function in (16), that qualify V(?)(q) as
a physical two-body potential:

2 2
V() = _ &4 17
@ sinhz(aq) [172]

2
Ve =5 [17b)

(Of course the second of these two-body potentials,
(17b), is merely the special case of the first, (17b),
corresponding to a=0). These Hamiltonian models
are then naturally interpretable as one-dimensional
many-body problems with repulsive two-body forces
singular at zero separation and vanishing at large
distances. Actually the fact that these systems are
integrable is far from remarkable, since it is
generally true that any many-body problem char-
acterized by repulsive forces vanishing at large
distances (hence causing wunconfined motions) is
integrable: indeed in such models the particles
eventually separate and move freely, so that their
trajectories cannot display the extreme complication
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characterizing a chaotic (i.e., nonintegrable) beha-
vior. But these models are in fact superintegrable
and they (as well as various integrable extensions of
them) feature many (physically and mathematically)
interesting properties. For instance the asymptotic
behavior of their trajectories,

9n(t) = P71+ ) + o(1), pult) = pi) + 0(1)
ast — f+oo,nm=1,...,N [18]

is characterized by the simple rules

log [ 1+ (ga/p)’]
2a

The formula (19) indicates that the shift q£,+) - q,(f>
among the asymptotic positions of the particles (see
(18)) is merely a sum of fwo-body shifts A (which
incidentally vanish altogether if a =0, namely in the
(17b) case), and it only depends on the velocities
pﬁ,_) of the particles in the remote past (nzot on the
corresponding asymptotic positions qfﬂ, in spite of
their relevance in determining the order in which the
different particles approach each other through the
motion).

A generalization of the above model in the (17b)
case — nontrivial inasmuch as it yields confined
motions — is characterized by the additional presence
in the potential (12) of the one-body potential

v(q) =1 u?g? 20]

A(p;g,a) = sign(p)

yielding the Hamiltonian (3a). This model is integr-
able, indeed superintegrable, indeed isochronous, all
its (real) solutions being completely periodic with
period
T= 2 [21]
w
A neat way to understand this result is by noting
that, if g(¢) is a (possibly complex) solution of the
model discussed above (in this subsection, with the
two-body potential (17b) and no one-body poten-
tial, see (15a)), then
_ s _exp(iwt) — 1
qn(t) = exp(—iwt)qu(T), T = 2
provides a (possibly real) solution of the Newtonian
equations of motion (2), namely of the same model

but with the additional one-body potential (20).
Remarkably this model was solved firstly in the
quantal case (at the beginning of the seventies), and
only a few years later in the classical case considered
here (by J. Moser, who, for the w=0 -case,
introduced the special version of the Lax matrix
appropriate for this case).

Another class of many-body problems, introduced
in the mid-sixties by M. Toda, played a seminal role
in the study of integrable dynamical systems, indeed
the first application (independently by H. Flaschka
and S. Manakov) of the Lax approach to integrable
many-body problems occurred in that context. This
model is often referred to as the Toda lattice,
because its (two-body) interaction (of exponential
type) is only assumed to act among “nearest
neighbors”.

A particularly interesting, and just as integrable,
generalization of this class of Hamiltonian many-
body problems features an extra parameter, say c,
which might be considered to play the role of “speed
of light”. These models reduce to those considered
above for ¢ =00, and for finite ¢ they are invariant
under the Poincaré group of coordinate transforma-
tions (while of course the many-body problems
described above are invariant under the Galilei
group). They are sometimes termed RS models, to
recognize those who first introduced them
(S. Ruijsenaars and H. Schneider) as well as the
possibility to interpret them in some sense as
“relativistic” generalizations of the “nonrelativistic”
models described above.

Reduction of the solution to algebraic opera-
tions The solution of the models described above
can actually be reduced to purely algebraic opera-
tions. For instance for the model characterized by
the Newtonian equations of motion (2) such a
solution of the initial-value problem is provided by
the following prescription: the particle coordinates
qx(t) coincide with the N eigenvalues of the N ® N
matrix:

Oum(t) = q,(0) cos(wt) + 4,(0) sin(wt)

ig sin(wt)

Qo) = 572(0) = g (0)

Many-body problems related to the motion of the
zeros of linear PDEs Another convenient approach
to manufacture and investigate integrable many-
body problems is by identifying the motion of the
particles with that of the zeros of (polynomial)
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solutions of linear (hence solvable) evolution PDEs.
Assume for instance that the monic polynomial

N

N
Pz, 1) = xN + Z Cm(£)xNT" = H[z —za(2)]  [22]
m=1

n=1

satisfies the (compatible) linear PDE

[Ao+A1z+Ar 2+ A32°|tee
+ [Bo+B1z—2(N—1)A32*]¢,
+ Cy +[E— (N — 1) D2 29y
+ [Do + D12+ Dy 2%y
—[N(N—=1)(Ay —A32) + NB ]y =0 [23]
where the letters Ag,A1,A»,As,Bo,B1,C,Do, D1,

D5, E denote 11 arbitrary constants. Then the zeros
2,(2) evolve according to the system of ODEs

Cz, + Ez, =Bo + B1z, — 2(N — 1)As2?
N

m=1,m#n
% [2Cnim — (2 + 2m) (Do + D12)

- D2zn(inzm + zmzn)
+2(A0 + A1z + Arz + Aszy)| 24

interpretable as the Newtonian equations of motion
of an N-body problem with one- and two-body
(velocity-dependent) forces. This problem is integr-
able, indeed its solution can be reduced to the
algebraic problem of finding the zeros of the
polynomial (z,t), see (22), whose time evolution
can be ascertained by solving the linear PDE (23),
itself a purely algebraic problem as it amounts to
solving the system of (constant coefficients, linear)
ODE:s implied via (22) by this PDE (23) for the N
coefficients ¢, (#).

This class of many-body problems is rather rich,
thanks to the arbitrariness of the 11 constants it
features. Several subcases, characterized by special
choices of these constants, are suitable to display a
gamut of different phenomenological behaviors:
confined and nonconfined motions, periodic and
nonperiodic evolutions, limit cycles, Hamiltonian
cases, .. ..

Solvable many-body problems in the plane The
many-body problems considered above were all
essentially one-dimensional. But via a simple trick
it is possible to obtain from some of them many-
body problems in the plane (which should of course
be rotation-invariant to be certified as such).
Consider for instance the special case of the above

model, (24), with C=1 and with A=A =A3=
Bo=Dy=D; =0 so that its equations of motion,

N
271 + Ein :Blzn + Z (zn - le)_1

m=1,m#n

are invariant under rescaling of the dependent
variables (z,=>cz,). Let us then assume to work
in the complex rather than the real, and let us set

E=~+iw, Ay =a+ia, By =p3+i8,
Dy =6+ib

where the Greek letter indicate now real constants,
and let us moreover relate the N complex coordi-
nates z, to N two-vectors 7, in the horizontal plane
via the self-evident positions

T =Xy + iyn77n = (xn,YmO);/é = (0a07 1) [26}

It is then easily seen that the integrable equations of
motion (25) become the following rotation-invariant
Newtonian equations of motion identifying a (no
less integrable) N-body problem in the plane:

7t (v + w/?m) 7,

Here and below we use the short-hand notation
Pum =Ty — P entailing 72, =72+ 12, — 27, 7,, the
symbol A denotes the three-dimensional vector pro-
duct so that k A 7, = (—y,, x4, 0) (see (26)), and the rest
of the notation is self-evident. Note that these rotation-
invariant Newtonian equations of motion are also

translation-invariant if 6=03=06= 6=a=a=0.

The “goldfish” model The attribute of “goldfish”
has been attributed to the special case of the above
model with all “coupling constants” vanishing,
thanks to the neatness of its equations of motion,
which in their complex version read

N ..

.. ZnZ

=2 ) M _on=1,...,N
zn_Zm

m=1,m#n




112 Integrable Systems: Overview

and in their real (“physical”) version as Newtonian
equations of motion of an N-body problem in the
horizontal plane read

N 7n<7m'7nm)+7m(rn'rnm)_7’nm<7n'rm)
2 >
2
rn

7, =
m=1,m#n

n=1,....N

(This name has also been attributed to some
extensions of this model, see the entry Isochronous
Systems in this Encyclopedia). This model is
invariant under time rescaling (¢=-ct), in its
physical version it is tranmslation- and rotation-
invariant, it only features two-body forces and in
spite of their velocity-dependence it is Hamiltonian
(it is in fact a simple instance of the RS models
mentioned above). The solution of its initial-value
problem (in its complex version) is given by a
remarkably neat rule: the N coordinates z,(¢) are the
N roots of the following algebraic equations in z:

N .
Zz zn(o) — % [28]

The phenomenology of its generic solution is also
remarkable, corresponding to the “game of musical
chairs”: in the remote past all particles but one are
almost at rest in N — 1 positions (“sitting in N — 1
chairs”) and one particle comes in from infinity,
moving initially as a free particle; as it approaches,
all the particles begin to move around (“dancing”);
in the remote future one particle goes away (moving
eventually with the same speed as the incoming
particle), and all the others settle down in the same
N — 1 positions (“of the N — 1 chairs”), but with
the possibility that the outgoing particle be different
from the incoming one, and that the other particles
have reshuffled their “seating”.

Another remarkable version (also translation- and
rotation-invariant, as well as Hamiltonian) of the
N-body model in the plane (27) obtains if all the
“coupling constants” vanish except w. Then all its
nonsingular solutions — which are given by the same
prescription indicated just above, except for the
replacement of 1 with aption—1 in the right-hand side
of (28) — are completely periodic with periods which
are an integer multiple — no larger than a number
depending on N, generally (much) smaller than N! -
of T (see (21)), the domains of phase space that give
rise to solutions with different periodicity being
separated from each other by boundaries character-
ized by lower-dimensional sets of initial data
yielding trajectories that run into singularities
corresponding to particle collisions (note that when

two or more particles collide their individuality gets
lost, and their velocities diverge).

Integrable many-body problems in spaces with
arbitrary dimensions Integrable, or even solvable,
many-body problems in spaces with more than two
dimensions — with rotation-invariant equations of
motion of Newtonian type — can be manufactured
by starting from an appropriate integrable, or
solvable, second-order matrix evolution equation,
and by then parametrizing the evolving matrix in
terms of multidimensional vectors so as to transform
the matrix evolution equation into a covariant —
hence rotation-invariant — system of evolution
equations for these vectors, interpretable as New-
tonian equations of motion of a many-body problem
in multidimensional space.
For instance the matrix equation

M = AM + MA + M?

is integrable. Here M = M(¢) is a square matrix of
arbitrary order and A is an arbitrary constant
matrix. By parametrizing appropriately these two
matrices one concludes that either one of the
following two Newtonian systems of ODEs is
integrable:

. N M N
Yam = § QU Tym + § § e TV;L : rl/m)
v=1

n=1v=1
n=1,....Nom=1,....M,
M N
rnm—Zanurum+zz7u;t(7uu'7nm)
=1 =1
n=1,.... Nm=1,... M.

Here N and M are arbitrary positive integers, the
NM constants «,,, are also arbitrary, the NM
“particle coordinates” 7,,, = 7,,,(t) are S-vectors,
with S an arbitrary positive integer, and the dots
sandwiched among these S-vectors denote the
standard scalar product in S-dimensional space.

Let us emphasize the physical relevance of this
class of many-body problems, characterized by
linear and cubic forces. This is reinforced by the
fact that these models are Hamiltonian.

Nonlinear harmonic oscillators Two classes of
integrable systems obtain from the classes written
above by first setting to zero all the constants ay,,
and by then performing the change of variables

exp(iwt) — 1

Wm () = exp(iwt) P, (1), 7 = [29]

1w
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with w > 0. The corresponding Newtonian equa-
tions of motion read

. . M N
Whm — Wl — 205y, = § E Wy, (wyu ' wl/m)
n=1rv=1
n=1 Nm=1,....M

These equations of motion cause the N M evolving
S-vectors Wy, = tW,,(t) to be complex (see the
second term in their left-hand sides), but a real
system (with double the number of dependent
variables) can be easily obtained by setting

Wyum = Upm + Wy

Remarkably (but clearly suggested by (29)), all the
nonsingular solutions of each of these two many-
body problems are completely periodic, with a
period which is an integer multiple of the period T,
see (21). This justifies the title given to this
subsection. It also shows that these are isochronous
systems (see Isochronous Systems).

Integrable nonlinear PDEs

As indicated in Section 1 another class of integrable
systems are nonlinear evolution PDEs. In this
section we outline (some of) their properties,
focussing mainly on the Korteweg-de Vries PDE
(4), the solution of which by C. S. Gardner,
J. M. Greene, M. D. Kruskal and R. M. Miura in
the mid-sixties was the opening shot of a major
scientific development which is still blooming.
Other important early steps of this development
were, in the late sixties, the introduction by P. D.
Lax of what is now called the Lax pair technique,
and at the beginning of the seventies the solution by
V. E. Zakharov and A. B. Shabat of the Nonlinear
Schrodinger equation (6) — an evolution PDE of
great applicative importance. Subsequently many
researchers developed various techniques to iden-
tify, classify and investigate integrable nonlinear
PDEs, a continuing activity for an overall appraisal
of which the interested reader is referred to the
bibliography reported below.

Here we outline one of the approaches to
obtaining these results; other approaches are tersely
mentioned below.

Identification and investigation of integrable
PDEs via the inverse spectral transform
technique

The class of linear dispersive evolution PDEs reads
. .0
us(x,t) = —lw(—za)u(x, t),—oc0o <x <oo [30]

where the “dispersion function” w(z) is, say, a (real)
polynomial (which must be odd to guarantee that
this PDE be real). The solution of this PDE is
achieved via the introduction of the Fourier trans-
form 7(k,t),

w(x,t) = (2m)"! /_oodk expli kx)il(k,t)  [31a]

(k1) = /fodxexp(—ikx)u(x,t) [31b]

whose evolution corresponding to (30) is then given
by the simple linear ODE

i (k,t) = —iw(k)ir(k,t), —co < k < o0 [32a]
which can be immediately integrated:
u(k,t) = it(k,0) exp[—iw(k)t] [32b]

Thus the solution of the initial-value problem of (30)
is achieved via three steps: (i) at the initial time one
obtains the initial value of the Fourier transform,
#1(k, 0), from the initial datum u(x, 0) (via (31b)); (ii)
one then obtains 7i(k, ) (via (32b)); (iii) one finally
obtains u(x,#) (via (31a)). From these formulas the
main features of the resulting phenomenology are
easily evinced (even when the above integrals cannot
be explicitly performed).

A class of integrable nonlinear evolution PDEs
reads

u(x, 1) = a(R)uy(x, 1) [33]

where the assigned function a(z) is again, say, a
(real) polynomial, while R is now the integrodiffer-
ential “recursion operator” defined by the following
formula that specifies its action on a generic
function f(x,¢) (vanishing asymptotically so as to
allow all integrations to converge):

Rf(x,t) =fex(ox,t) — 4u(x, t)f (x, 1)
vanten) [ i) B4

Note that the presence of the time variable ¢ plays
no relevant role (it is merely parametric). A
remarkable property of this operator — which
depends on u(x,#) — is that any power of it acting
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on u,(x,t) yields a nonlinear combination of u(x, ?)
and its x-derivatives — without any left-over integra-
tion, in fact yielding a result which is itself an exact
x-derivative, ready for exact integration in case of a
further application of R, see the last term in the
right-hand side of (34). For instance

Ruy = thyyy — 6U u = (uxx - 3142)

R? U,y

x7
= Uxxxxx — 10uxxx u — 2'Ouxx Uy + 30149; 142

10ty u — Sui + 1Ou3)x

= (Mxxxx -

and so on. Hence the simplest nonlinear evolution
equation contained in the class (33) is the Korteweg-
de Vries (KdV) equation

Uy + Ugxx = 6l U [35]

(corresponding to «(z) = —z; and note the identity
with (4), via the trivial rescaling g(x,t) =3 u(x,1)).
Note that, if one neglects all nonlinear contribu-
tions, the class (33) reduces to (30) with

w(z) = —za(-z?)

The solution of this class of nonlinear PDEs, (33),
is given by a somewhat analogous procedure to that
described above for the class of linear dispersive
PDEs (30).

Firstly, one introduces the spectral transform, a
nonlinear generalization of the Fourier transform
which indeed reduces to it if nonlinear effects are
altogether neglected. That relevant for the class of
PDEs (33) is based on the spectral problem
associated with the linear Schrodinger operator

9\2
L= —(a) +u(x,t), —00 < x < 00 [36]

Via it, the spectral transform

S[u(xvt) = {R(kvt), —00 < k< Ooépn,Pn(t),
n=1,...,N} [37]

is introduced. Here the function R(k,?) is the
“reflection coefficient” associated to the eigenvalue
k* of the continuous spectrum of L, while the
nonnegative number N gives the number of discrete
eigenvalues of L, and the positive quantities p,, and
pu(t) are associated to these discrete eigenvalues,
specifically —p2 are the “binding energies”, and
pu(t) the “normalization coefficients”, associated to
the “bound states” possessed by the “potential”
u(x,t). (All this terminology comes from the inter-
pretation of the above spectral problem in quantum-
mechanical terms). And it can be shown not only
that there is a one-to-one correspondence among a
function u(x, ¢) and its spectral transform S[u(x, t)],

but moreover that both the direct spectral problem
to compute Slu(x,t)] from wu(x,#) (arbitrarily
assigned within an appropriate class), and the
inverse spectral problem to compute u(x,f) from
S[u(x, t)] (arbitrarily assigned within an appropriate
class), only entail solving linear equations (an ODE
in the former case, a Fredholm integral equation in
the latter case).

Note that, in the above definition of the spectral
transform, the time variable ¢ plays merely a
parametric role. But the usefulness of this spectral
transform to solve the PDE (33) resides in the fact
that, if u(x, t) evolves in time according to this PDE,
the corresponding evolution of the spectral trans-
form is quite simple: the number N and the positive
numbers p, are time-independent (as already
implied by our notation), while the time evolution
of the reflection coefficient R(k,z) and of the
normalization coefficients p,(¢) is given by the
simple linear ODEs

R;(k,t) = 2ika(—4k*)R(k,1), —00 < k < 00 [38a]

pu(t) = =2pua(4p2)pu(t),n=1,....N  [38b]
which can be readily integrated:

R(k,t) = R(k,0) exp[2ika(—4k*)t] [39a]

pu(t) = pa(0) exp [—ana(4pi)t] [39b]

Hence the solution of the initial-value problem for
the class of nonlinear PDEs (33) can now be
achieved via the following three steps: (i) at the
initial time, via the solution of the direct spectral
problem, the spectral transform S[u(x,0)] (see (37))
is obtained (from u(x, 0), arbitrarily assigned within
an appropriate class); (ii) the spectral transform at
time ¢ is then obtained via (39); (iii) by solving the
inverse spectral problem, u(x,t) is obtained from
Slu(x, t)] (see (37)).

The analogy of this procedure to that outlined
above for the class of linear dispersive PDEs (30) is
clear, and the fact that in this manner the solution
of the initial-value problem for the nonlinear PDEs
(33) can be achieved via a sequence of steps
involving only the solution of linear problems is
an indication of the integrable character of this
class of nonlinear evolution PDEs. And it allows to
gain thereby a lot of insight on the behavior of
these solutions, and also to construct classes of
explicit solutions of these equations, as we now
indicate.



Integrable Systems: Overview 115

Solitons

The integrable nonlinear PDE (33) possesses the
single-soliton solution

u(x,t) = _ZPZ 40a
0= oo —coy

() = (2p) log [%ﬂ — £(0) + o,
v=—a(4p?) [40b]

to which corresponds the simple spectral transform

S[M(x7t)] = {R(k’t) =0;p1=p,
pi(t) = p(t) = p(0) exp[-2pa(4p®)t|;N =1}  [41]

This solution, (40), describes a localized wave of
constant shape moving with the constant speed v:
the “soliton”. It is characterized by two (real)
parameters, £(0) and p. The first identifies the
initial location of the soliton; its arbitrariness
corresponds to the translation invariant character
of (33). The second, p, the spectral significance of
which is clear from (41), determines the shape of
the soliton (both its “height” 2p* and its “widch” J)
as well as its speed v (see (40b)); note that the
shape is identical for all the nonlinear evolution
PDEs of the class (33), while the speed depends on
the function a(z), see (40b), namely it depends on
which specific equation of the class (33) one is
considering. For instance for the KdV equation
(35), corresponding to «(z) = —z, the speed of the
soliton is

v =4p* [42]

thus all solitons of the KdV equation move from left
to right, and taller and thinner solitons move faster
than less tall and more fat ones.

More generally, every PDE of the class (33)
possesses the N-soliton solution

2
u(x,t) = -2 (%) log det[I + C(x, t)] [43a]
Here 1 is the N ® N unit matrix and C(¢) is the
N @ N matrix

[~ (D +Pn)x]
P+ Dn

where the time-evolution of the p,(¢)’s is given by
(39b). Indeed the spectral transform of this solution
is given by (37) with R(k,2)=0 and p,(¢) given by
(39b). To discuss the multisolitonic phenomenology,
let us focus on the KdV equation, so that the speed
of each soliton is given by the simple formula (42)

Comn(,2) = [p(1) pu(1)] /2 2 [43b]

and let us order the N positive numbers p, in
increasing order,

p1<p2<---<DN

so that the corresponding soliton velocities,
v, =4p2, are as well ordered in increasing order:

v <vy <---<UN

The N-soliton solution (43) is not so transparent,
especially if N is large, but it becomes quite simple
in the remote past and future:

N

N ~2p;,
ux,t) ~ ;coshz{Pn[x = &)} 7

E(t) =€) vt — +oo

with the 2N (real) constants fﬁli) related to one
another (see below). It is thus seen that, both in the
remote past and future, the N-soliton solution (43)
splits into the sum of N separated solitons. In the
remote past the solitons are ranged, from left to
right, in order of decreasing amplitude, and they
move to the right with speeds ordered in decreasing
magnitude; then the taller and faster solitons
gradually catch up and eventually “overtake” the
fatter and slower ones (the quotation marks under-
score the fact that whenever two, or possibly more,
solitons get together, their individuality is in fact
lost: for a while the solution might have just one
peak, or instead the “overtaking” of two solitons
may rather appear as an “exchange of identity”,
with the taller soliton becoming fatter and the fatter
becoming taller as they get close together until they
separate again because the one in front, having
become taller, speeds up while the one behind,
having become fatter, slows down). The final out-
come is of course that the order of the solitons gets
altogether reversed, with the taller and faster head-
ing the escape to the right. The most remarkable
aspect of this phenomenology is that precisely the
same solitons that existed in the remote past are
found in the remote future, the only effect of their
“interaction” having been to shift the position of the
n-th soliton, relative to what it would have been if it
had been moving in isolation, by the amount

Ap=g7 =g

These N shifts are moreover determined (while
either the N quantities fﬁf) or the N quantities f,(f)
can be arbitrarily assigned), being given by the
simple rule

—_

n— N

1 m=n+1

[44a]

3
Il
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[44D)

1 nt Pm
A(pnapm) = p_log (u>

|00 — Dol

Of course in (44a) a sum vanishes if its lower limit
exceeds its upper limit.

This formula (44), has a simple phenomenological
significance. From the two-soliton case (N=2) it is
seen that in a #fwo-body encounter the taller and
faster soliton gets advanced by the amount
A(pa2,p1), while the slower and fatter one gets
delayed by the amount A(p1,p2). Hence the overall
shift (44) experienced by the n-th soliton in the
N-soliton case is the sum of the 7 — 1 positive shifts
derived from its “overtaking” n — 1 slower solitons
and the N — 7 negative shifts derived from its being
“overtaken” by N — n faster solitons. This outcome
is obvious when each two-soliton encounter occurs
separately, but is quite nontrivial in the general case
when, at some intermediate time, several solitons
might all encounter simultaneously.

This soliton phenomenology strongly suggest
ascribing to each soliton an individuality, even
though in configuration space it only shows up as
a separate entity in the remote past and future. The
separated identity of each soliton is instead quite
clear in the spectral transform context, since each of
them corresponds to a (time-independent) discrete
eigenvalue of the spectral problem. Indeed in the
spectral context this identity is clear also for the
generic solution of the class of integrable nonlinear
PDEs (33) which, in contrast to the purely solitonic
solution (43), is not characterized by a vanishing
reflection coefficient R(k,t). And indeed, even in
configuration space, the soliton phenomenology
described above is still featured by a generic solution
(each of which is characterized, via its spectral
transform (37), by the number N of its solitons), up
to the additional presence of a “background”
component of this solution (corresponding to the
nonvanishing reflection coefficient R(k,t)), which
however behaves in a manner analogous to the
solution of the linear, dispersive part of the PDE
under consideration, becoming eventually locally
small due to its dispersive character.

Kinks, breathers, boomerons and trappons,
dromions The solitonic phenomenology described
above for the class of integrable PDEs (33), and in
particular for the KdV equation (35), is more or less
common to all integrable nonlinear evolution PDEs —
of which many other classes exist besides (33). But
there also are some significant differences, some of
which we now review tersely.

For certain integrable PDEs the typical shape of
the soliton is not localized, but it rather has the form

of a “kink”. Some integrable PDEs also feature
additional kinds of localized “solitons” which, in
isolation, move overall with constant speed as
ordinary solitons, but feature in addition a time-
dependent amplitude modulation and are therefore
called “breathers”. For integrable matrix nonlinear
evolution PDEs — or, equivalently, for integrable
systems of coupled PDEs — the new phenomenology
may emerge of solitons that, even in isolation, move
with a variable speed, the change of which over
time is correlated with the variable interplay of
the amplitudes of the different components of the
solution: typically such solitons come in from one
side in the remote past and boomerang back to that
side in the remote future (“boomerons”), or they
may be trapped to oscillate around some fixed
position (“trappons”); and there are integrable
evolution equations in which both these types of
solitons are simultaneously present in a generic
solution. All these phenomenologies refer to the
simpler class of integrable evolution PDEs in 1+ 1
(one space and one time) variables, with asympto-
tically vanishing boundary conditions (at large space
distances; or perhaps asymptotically constant, as in
the case of kinks). There also exist integrable
evolution PDEs in 2+ 1 dimensions (such as the
KP equation (9)) the generic solution of which may
feature localized soliton-like components, although
in this case appropriate boundary conditions play a
crucial role (for this reason such solitons have been
called “dromions”, hinting at their being to some
extent driven by the boundary conditions, as objects
moving in a stadium).

While there are quite many (classes of) integrable
PDEs in 1+ 1 dimensions, there are only a few in
2 + 1 dimensions, and there is a widespread belief
that no integrable PDEs exist in D + 1 dimensions
with D > 2. But already in the early days of soliton
theory it was pointed out that there do exist quite
many (classes of) integrable PDEs in 1+ D dimen-
sions (namely, one space and D time variables) and
that it is quite possible via a different formulation of
the initial-value problem to interpret such equations
as (no less integrable) PDEs in D + 1 dimensions (D
space and one time variables); and integrable PDEs
in D + 1 dimensions have also been identified and
investigated in the context of (the simpler class of)
C-integrable PDEs (see below).

Other properties of integrable PDEs

For the linear evolution equations (30) the main
message implied by their solvability via the Fourier
transform is, that the time-evolution is much simpler
in Fourier space (see (32)) than in configuration
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space. This has a profound impact on the under-
standing of all phenomena describable by such
equations, to the extent of determining the kind of
experimental tools better suited to understand the
underlining physics (for instance, the use of mono-
chromatic beams of light, the use of high-energy
particle accelerators, and so on). The same kind of
message is as well relevant for the class of integrable
nonlinear PDEs solvable via the spectral transform
technique — even more so inasmuch as the time-
evolution is in this case so much simpler in the
spectral space (being actually linear there, see (38)
and (39)) than in configuration space (where the
evolution is nonlinear, see (33)). It is indeed the
basis for the possession by the class of integrable
nonlinear PDEs (33) of several other remarkable
properties as outlined tersely in the following
subsections.

Backlund transformations A Backlund transforma-
tion is a formula relating two functions, say #(%)(x, t)
and #(V(x,t), so that, if one of them satisfies a
(generally nonlinear) PDE, the other one satisfies the
same PDE. In the context of the class (33) of
integrable PDEs, such a (class of) Backlund trans-
formations is provided by the formula

(A [ (x,8) — uV(x, t)} YhAT1=0 [45]

where g(z) and h(z) are two (a priori arbitrary)
entire functions (say, two polynomials), while A and
" are two integrodifferential operators the effect of
which on a function f(x,¢) (such that all relevant
integrations are convergent) reads

Tf (x,2) = [ (e, ) + ) (1) | (1)

+ [u(o) (x,t) — u(l)(x,t)]

< [ a0 -0 ft) (46l

Af(,8) = fele, ) = 2 [ (e, 1) + D (1) | 1)

+F/ dyf (v, t) [46D)
X

Note that here the variable ¢ plays no relevant role
(its presence is merely parametric), and that T and A
depend (in a symmetrical way) on u#(®)(x,t) and
uV(x,t), whose presence causes the Bicklund
transformation (45) to be nonlinear in these
functions. Also important is the observation that,
for 4 (x,t) =uV(x,t) =u(x,t), the operator A
becomes the recursion operator R, see (34).

The reason why the formulas (45) constitute a
class of Biacklund transformations is because — as a
property of the spectral transform based on the
linear Schrodinger operator L, see (36) — if two
“potentials” #(%(x,t) and u"(x,t) are related by
(45), the corresponding “reflection coefficients”
RO (k,t) and R (k,t) are related algebraically, as
follows:

g(—4k)[RO) (k1) = RV (k. )]

+ 2ikh(—4k?) [R<°>(/e, £) + RO (k, t)} —0 [47a
entailing
AB2 Ll AL2
ROk, 1) — ROk, ) SCH) + 2042

g(—4k2) — 2ikh(—4k2)

Clearly this formula entails that, if R(®)(k,) satisfies
(38a), so does R(M(k,t). Hence, as the fact that
R©)(k,t) satisfies (38a) is a consequence of the fact
that 4% (x,t) satisfies (33), likewise the fact that
RM(k,t) satisfies (38a) provides the basis for
concluding that 2™ (x,¢) also satisfies (33).

The simpler version of the Biacklund transforma-
tion (45) obtains by setting g(z) = —2ph(z) with p
an arbitrary constant, hence it reads

wfco> (x,t) + wil)(x, t)
=2p [w(o) (x,2) — wD(x, t)}

SO e

Here and below we use fqr convenience the
functions w()(x, t) related to u)(x,t) as follows:

W (x, 1) = / dyud)(y,1),

w0 (x,1) = —u (x,1)

[49]

A convenient application of Backlund transfor-
mations is to yield new solutions of (33) from
known solutions; for instance from the trivial
solution 29 (x,t) =w®(x,t)=0 the single-soliton
solution (40) can be readily obtained via (48) and
(49) (of course an appropriate time-dependence
must be attributed to the x-independent “integra-
tion constant” that obtains from the integration
of (48), which is an ODE in the independent
variable x).

Another important property of Bicklund trans-
formations is their commutativity. Consider two sets
of two polynomials, g (z) and ") (z),m=1,2, and
the two Backlund transformations (45) they gener-
ate, say BT1 and BT2. Take as starting point some
function #(%(x) and associate to it two functions,
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uV) (x) respectively #(?) (x), obtained from #(% (x) via
these two Backlund transformations, BT1 respec-
tively BT2. Then obtain a new function, say «('?)(x),
from uV(x) via BT2; and likewise obtain #!)(x)
from ) (x) via BT1. The property of commutativ-
ity entails that, provided an appropriate choice is
made of integration constants (see (45)),

w2 (x) = u?D (x) [50]

This property is highly nontrivial when viewed, as
we just did, in configuration space; it is instead
rather obvious in the spectral space, indeed the
corresponding property for the “reflection coeffi-
cients” reads (in self-evident notation, see (47b))

R (k) = R®V (k) = RO (k) BV (k) B¥ (k)  [51a]
g (=4 k2) — 2ikh) (—4 k2)’
m=1,2 [S1b]

hence it corresponds simply to the commutativity of
the ordinary product.

Nonlinear superposition principle Another
remarkable property of the class of evolution
equations (33) is a straightforward consequence of
the commutativity property, (50), of Backlund
transformations. It reads (hereafter with a slight
abuse of language we refer to “solutions” w!) even
though the actual solutions are the functions u()
related to the w') by (49))

2(p1+p2) (W —1w?)
2(p1—p2) +wV) —w@

w12 — 10 — ,(0) _ 52]

where w(®=w)(x,t) is an arbitrary solution of
(33), wW=wW(x,t) respectively w?=w?(x,t)
are likewise the solutions of the same PDE related
to w® by the Bicklund transformation (48) with
p=p1 respectively p=p,, and w1 (x,1)=w?V (x,1)
is another solution of the same PDE. Note that this
formula, for which the title of this subsection seems
appropriate, provides a completely explicit, rational
expression of a new solution of (33) in terms of
three other solutions of the same equation: an
arbitrary solution (), and the two solutions (!
and w® related to it by a simple Bicklund
transformation, see (48).

Soliton ladder A simple application of the preced-
ing formula is to start from the trivial solution

V=0 53]

so that (see (48))
w0, 1) = 251~ tan{p;[x —x + a(4p’)e] ||
i—12 [54a]

where, in order that this function be real, either

Im [xo } =0 [54b)]
or
0] - ™
Im [xo } =3, [54c]
Via (49), the expression (54a) with (54b) yields, for

each value of j, a version of the single-soliton
solution (40). Insertion of (53) and (54a) in (52)
yields, via (49), the two-soliton solution of (33),
provided 0 < py < p, and x0> satisfies (54b) while
xgz) satisfies (54c) (otherwise the solution produced
by (52) is complex or singular).

Having thus obtained the two-soliton solution,
one can apply the nonlinear superposition formula
(52) to get the three-soliton solutions, by inserting in
place of w® the single-soliton expression (54a)
(with parameter, say, p1) and in place of w" and

2) the two-soliton expression (with parameters pq
and p, respectively p1 and p3); and the process can
be continued, as suggested by the title of this
subsection. In this manner the multisolitonic solu-
tion can be constructed by a sequence of purely
algebraic operations: and simple rules can be given,
detailing the restrictions on the soliton parameter D
and the reality properties of the constants xf) ((54b)
or (54c¢)) to insure that the solution so arrived at be
real and nonsingular, and thus coincide with (43).

Conservation laws As mentioned above, integrable
evolution PDEs are interpretable as infinite-
dimensional dynamical systems. It is therefore
natural that they possess an infinite number of
conserved quantities. For instance every PDE of the
class [33] possesses the following infinite sequence
of conserved quantities:

n

2n—|— 1/ dx R [xuy(x,t) + 2u(x, t)],
n=0,1,2,..., [55a]

where R is the recursion operator (34). An alter-
native definition for this sequence is

e,
n—2n+1[mde u(x,t),

n=012,..., [55b]
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where the integrodifferential operator R is in some
sense the adjoint of R, being defined by the
formula

Rf(x,8) = frx(x,8) — 4u(x, t)f (x, 1)

12 / Cdyuly. 0t (55

that specifies its action on a generic function f(x, #)
(such that the integration converge). The first 3 of
these conserved quantities read as follows:

Coz/ dxu(x,t),
Cy :/ dx u*(x,t),

C = /oo dx [20° (x,t) + uk(x,1)]

oo

These constants of the motion (55) are functionally
independent and, in the context of a Hamiltonian
formulation characterized by the Poisson bracket

o 6A O 6B
{A,B}:/_ocdx Su(x) Ox du(x)

(where A and B are functionals of u(x) and 6/ u(x)
denotes the functional derivative), they are in
involution,

{C,,C} =0
Note that, in this context, the KdV PDE (35)

coincides with the Hamiltonian equation
9] OH
= H'=(— ) —
ur(x,t) = {u(x,t), H} (8x) Su(e D)

with

H:%Cz :%/ dx 207 (x, 1) + ul(x, )]

o0

Several alternative sequences of constants of
motion also exist. For instance another infinite
sequence is provided by the two equivalent formulas

= (—1)”/ xR 1 [56a]

6 = (—1)"[0 dx A u(x, ) [56b]

with the integrodifferential operators R and A
defined by the formulas

Rf(t) = fiet) — [ " dyuly.t)f0.1).
A0f<x’t) :fxx(x>t) - 2M<x’t) f(x’t)
) [ dyfonn

+u(x,t) / S dyu(y, 1) / T deflat)
x y

Note that the integrodifferential operator Ag is just
A, see (46), with (9 (x,t) =0 and V) (x, ) =u(x, t).
The constants ¢, are also all independent of each
other, but there is a relationship between the
constants of the two sequences, (55) and (56),

Z Cn z2n+1 — sin Z Cn Z2n+1
n=0 n=0

which is to be understood by expanding the right-
hand side in powers of z and then equating the
coefficients of equal powers of z:

CO:C07
1
=0 —EC?),

0=C-1CCi+C

and so on.

Of course all these conservation laws are applic-
able to the class of solutions of (33) defined for all
(real) values of x and vanishing asymptotically (as
x — #00). But they can also be reformulated as local
“continuity equations”. And — rather remarkably —
all these results hold as well for the explicitly time-
dependent class of PDEs that obtains if one allows
the polynomial a(z) in the right-hand side of (33) to
feature an arbitrary time-dependence, say

M

alz,t) = Z an(1)2" [57]

m=0

Finally let us note that there is an additional
conserved quantity for this (generalized) class of
PDESs,

C= /:: dx {xu(x, t) + /Otdt'a(f{, u(x,t)

with R defined by (55¢). This implies that, for the
generic solution of this (generalized) class of PDEs
the center of mass

[ dxxu(x,t)

X() = 7 dxu(x,t)
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moves according to the formula

_ m+1 %
X(t)onJr’;)( "2 +1)(CO
t
/ ’ o C
X | dtam(t),Xo_C—o

Hence for all the autonomous evolution PDEs of the
class (33) (with a(z,t) = a(z), am(t) = am, see (57))
the center of mass of the generic solution moves
uniformly,

X()=Xo+ V2

with the (constant) speed

V= i(l)mH(Zm 4 1)<@>am

m=0 CO

Other techniques to identify, classify
and investigate integrable PDEs

The spectral transform approach on which we
focussed above is just one of the various techniques
used to identify and investigate integrable nonlinear
evolution PDEs. (Incidentally; because the less
standard aspect of this approach is the inverse
transformation to reconstruct, in the framework of
the spectral problem, the “potential” u(x) from its
spectral transform, this approach is often called the
Inverse Spectral, or Scattering, Transform method —
abbreviated as IST). In this subsection we tersely
mention some other approaches, referring to the
literature indicated below for more adequate
treatments.

An approach starts from a trivially integrable
PDE - say, linear and autonomous, see for instance
(30) — and performs a nonlinear change of
dependent, and possibly as well of independent,
variables. The PDE thus obtained is generally
integrable, indeed the term C-integrable is used to
denote such equations (to distinguish them from
the S-integrable equations solvable via IST: the
letter C refers to the Change of variables, the letter
S to the Spectral, or Scattering, transform). A
simple instance of C-integrable equations is the
Burgers equation (5), which is linearized via the
change of dependent variable

35, 1) =4 (x, ) exp [— | dvac tﬂ

q(x,t)
1— [ dya(y,1)

Q(x7t) =

entailing the linear PDE
‘N]t + []xx =0
A second example is the “Liouville equation”

uy = exp(u) [58a]

or equivalently, in “light-cone coordinates” ({ =x + ¢,
T=—x+1)
[58b]

Uy — tee = exp(u)

the general solution of which reads
ux.t) =) ~ gl0) - 2log {a | ¥ expif ()]
t
+(2a)”" / dr exp[—g(t’)]}
to

with f(x) and g(¢) arbitrary functions and xo, ¢y, a
arbitrary constants. And a third example is the
Eckhaus equation

g = i{qu+[2(1a) +la|a}  [59)
which is linearized by the transformation
itx.t) =atxtyexo| [ dlaty.o?]
a(x,1)
Vi+2 [ dylat.op

entailing the linear PDE

q(x’ t) =

glt = iéxx

Thanks to the simplicity of the technique to
solve them, C-integrable PDEs provide a conveni-
ent tool to investigate the phenomenology asso-
ciated with nonlinear PDEs. For instance the
Burgers equation (5), which possesses kink-like
solitons, is a simple nonlinear generalization of the
heat equation; and the “relativistic invariance” of
the Liouville equation, see (58b), makes it a
convenient “toy model” in the context of relati-
vistic field theory. The Eckhaus equation, (59),
provides an interesting theoretical tool because of
its similarity with the phenomenologically impor-
tant NLS equation (6), as well as the fact that,
thanks to its C-integrability, the structure of its
solutions — which feature a remarkable solitonic
zoology, including the possibility of “anelastic”
solitonic reactions — can be studied in considerable
detail, entailing an understanding of why such
anelastic reactions are unlikely to be featured by
solutions obtained in the context of the initial-
value problem.
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C-integrable PDEs are generally as well S-integrable,
being generally associable with a spectral problem that
can be explicitly solved; the converse, instead, is not
generally true. Hence C-integrability represents a
higher level of integrability than S-integrability; a
ranking that is quite useful in spite of its lack of strict
cogency caused by the possibility to consider also the
transformation from a function to its spectral trans-
form as a change of (dependent) variable.

The Lax approach, described in some detail above
in the context of finite-dimensional integrable
dynamical systems, was in fact originally invented
in the context of integrable PDEs. For instance the
KdV equation (35) corresponds to the (operator)
Lax equation (to be compared with the matrix Lax
equation (14))

L = [LvM]

where now the Schrodinger operator L is defined by
(36) (so that L;=u(x,t)) and the operator M is
defined as follows:

M= 4<a>3+ 6u(x t)2 + 30ty (x, 1)
0x " ox o
Closely connected with this approach is the AKNS
method (due to M. ]J. Ablowitz, D. J. Kaup, A. C.
Newell and H. Segur), based on the observation that
the KdV equation (35) coincides with the integr-
ability condition

wxxt = wtxx [60]

for the following pair of linear PDEs (the first of
which is just the eigenvalue equation for the
Schrodinger operator L, see (36)) satisfied by the
function (x, k, 1) :

Vux = [u(x, 1) — ]2 [61a]
P = [—ux(x,2) + 4ik°]
+2 [u(x,2) + 2 k%] s [61b]

and, more generally, that every equation of the
class (33) coincides with the integrability condition
(60) for the eigenvalue equation (61a) and the
equation

1/11 = a(x, ka t) 1/1 + b('xa kvt) wx

with an appropriate choice of the two functions
a(x,k,t) and b(x,k,t). Indeed this ansatz, (61c),
with a(x, k,t) and b(x,k,t) low-order polynomials
in k, provides a quite straightforward technique to
identify the simpler equations of the class (33); ditto

[61c]

for the extension of this approach based on more
general eigenvalue problems than (61a).

Another powerful approach suitable to identify
and investigate integrable PDEs is the so-called
“dressing method” (introduced by V. E. Zakharov
and A. B. Shabat and pursued by many others), in
which one starts again (as in the approach leading to
C-integrable equations) from an easily solvable
evolution equation and then performs transforma-
tions (less elementary than just a change of
variables) that modify (“dress”) the original equa-
tion, obtaining thereby new (nontrivial and interest-
ing) evolution equations, the integrability of which
hinges on the control one has on the (dressing)
transformation relating (both ways) the solutions of
the new equations with those of the original
equation. Of course many specific techniques are
accommodated within this (admittedly vague)
description; we must confine our remarks here to
noting the crucial role that the Riemann-Hilbert
problem generally plays in this context (indeed the
Riemann-Hilbert problem also lies at the core of the
solvability of the inverse spectral problem, although
techniques not explicitly relying on it are also
available).

Algorithmic approaches, particularly suitable to
manufacture multisolitonic solutions and to identify
nonlinear PDEs that are integrable inasmuch as they
feature such solutions, were developed already at the
beginning of the 70’s. The pioneer of this approach
was R. Hirota; less than a decade later a
more sophisticated and general development — the
so-called “tau-function” method — was invented
by M. Sato and his pupils/collaborators.

Finally let us mention that many remarkable
connections exist among integrable PDEs and
integrable finite-dimensional dynamical systems
such as those discussed above; for instance the
time-evolution (taking generally place in the com-
plex plane) of the poles of rational solutions of
certain integrable PDEs obey the equations of
motion of integrable dynamical systems interpreta-
ble as many-body problems.

Why are certain nonlinear PDEs both integrable
and widely applicable?

Several integrable PDEs play a key role in various
applicative contexts, justifying the question figuring
as title of this subsection. A metamathematical but
enlightening, and heuristically quite useful, reply to
this question reads as follows.

Consider as starting point a large class of non-
linear PDEs, and associate to it via some kind of
asymptotic limit procedure a single nonlinear
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PDE - to which it is then justified to attribute a
certain universal character. If this procedure corre-
sponds to a physically (or, more generally, applica-
tively) significant limit, it stands to reason that this
universal PDE play a role in several applicative
contexts (because the original class of PDEs, being
large, certainly contains several equations of appli-
cative relevance). And if the limit procedure is in
some sense asymptotically exact, and it therefore
preserves the property of integrability, it is also
likely that this universal PDE be integrable, because
for this it is sufficient that the original, large class of
PDEs contain just one integrable PDE.

For instance most phenomena characterized by a
dominant dispersive plane wave in a weakly non-
linear context can be shown, via an asymptotically
exact multiscale expansion, to be modeled by the
Nonlinear Schroedinger equation (6), the solution of
which provides then the evolution, in appropriately
rescaled “slow” and “coarse-grained” time and
space variables, of the amplitude modulation of the
dominant dispersive wave. This explains why this
nonlinear PDE plays a key role in so many, disparate
applicative contexts, and it also implies, in the light
of the above argument, its integrability.

The reasoning outlined above is quite robust,
and it allows to infer that, if instead the universal
limit equation is not integrable, then the large class
of PDEs from which it originates cannot contain
any integrable equation, providing thereby the
point of departure to obtain (quite useful) neces-
sary conditions for integrability. Indeed these
conditions are adequate to distinguish among
different levels of integrability, for instance among
C-integrability and  S-integrability; with the
Eckhaus equation (59) playing in this context a
somewhat analogous role for C-integrable PDEs to
that played by the Nonlinear Schrodinger equation
(6) for S-integrable PDEs.

Outlook

Many more important developments than could be
covered in this overview have occurred in the last
few decades; for these we refer to the books listed
below (and there are many more), and to the
literature cited there.

Let us end this entry by emphasizing that both the
study of integrable systems, and its application to
phenomenologically interesting situation — including
technological innovations, for instance in nonlinear
optics and telecommunications — are still in the
forefront of current research; although perhaps the
“heroic era” of this field of study is over.
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Introduction

We present the theory of hydrodynamic behavior of
interacting particle systems in the context of exclu-
sion processes, in which no more than one particle
per site is allowed.

Denote by Ty =7/NZ the discrete torus with N
points and let Tﬁi\[ =(Tx)? The state space Ex=
{0, 1}11“‘,3 consists of all configurations obtained by
distributing particles on the discrete torus T¢; respect-
ing the exclusion rule which prevents more than one
particle per site. The configurations are denoted by the
Greek letter 1 so that n(x) is equal to 0 or 1 if site
x € T, is vacant or occupled for the configuration 7.

Denote by {r: x € Z} the group of translations
in En: (1xn)(z) =n(x + z) for each x, z in Z%. Here
and below summations are performed modulo N. A
function £:{0,1}”" — R with finite support is called
a cylinder function.

Fix a family of non-negative cylinder functions
¢i, 1 <j < d. Let ¢y, x1e,(n) = cj(1xn) and consider the
Markov process {n;: ¢t > 0} on €y with generator Ly
given by

(Lnf)(n

§ § Cx, x+e,

=1 xe[”,(,

fle™™ m)=fm)] 1]

Here, {e1,...,e,) stands for the canonical basis of R?
and o7 for the configuration obtained from 7 by
exchanging the occupation variables n(x) and 7(y):

niz) ifz#xy
(c™M)(z) = ¢ n(y) ifz=x 2]
n(x) ifz=y

In this dynamics at each bond {x,x +¢;} the
occupation variables 7(x),n(x +¢;) are exchanged
at rate cx,xt¢(n). This happens simultaneously and
independently at each bond.

Moser ] (1981) Integrable Hamiltonian Systems and Spectral
Theory. Pisa: Scuola Normale Superiore.

Perelomov AM (1990) Integrable Systems of Classical Mechanics
and Lie Algebras. Basel: Birkhauser.

Toda M (1981) Theory of Nonlinear Lattices. Heidelberg: Springer.

van Diejen JF and Vinet L (eds.) (2000) Calogero-Moser-Suther-
land Models. Heidelberg: Springer.

Zakharov VE (ed.) (1991), What is Integrability?. Heidelberg:
Springer.

Hydrodynamic Equations

Notice that the total number of particles is
conserved by the dynamics since only exchanges are
allowed. Denote by Yn k(0 < K < |[T%]|) the hyper-
plane of all configurations 7 of £y with K particles.
Assume that the rates ¢; are nondegenerate for 7, to
be an irreducible Markov process on each Yy k.

For 0 <a <1, denote by vN the Bernoulli
product measure of parameter a on €. Under N
the variables {n(x), x ETN} are independent, w1th
marginals given by

vi{n(x) =1} = a =1 -v{n(x) = 0}

Assume that the measures v,0 < a < 1 are station-
ary for the Markov process 7,. An elementary
computation shows that this is the case if each function
¢; does not depend on 7(0), n(e;), in which case the
process is in fact reversible with respect to v/

Let M. (T% be the space of flnlte positive
measures on the torus T¢ endowed with the
weak topology. For each configuration 7, let
7N =7N(n,du) be the positive measure on T
obtained by assigning mass N~ to each particle:

N .= dz

x€’] [‘I

x/N du [3}

where 6, stands for the Dirac measure on u. The
measure 7 is called the empirical measure asso-
ciated to the configuration 7. The integral of a
continuous function G:T¢ — R with respect to ¥

is denoted by

<7TN —d Z

xETN

(x/N)n

Fix a density profile pyo:T¢ — [0,1]. A sequence
of probability measures N on €y is said to be
associated to po if 7N converges in probability to

po(u)du under pN:
> 5} =0

lim pN
dim {

(7N, G) = | Gu)p

Td

o(u) du
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for all continuous functions G : T¢ — R and all 6 > 0.
For a continuous profile py consider, for instance, the
product measure I//I)\g (y on &N whose marginals are
given by

V%(.){ﬂ(x) =1} = po(x/N)

It is easy to check that the sequence of probability
measures Vf)\i 8 is associated to po.

Denote by W, ... the instantaneous current of
particles from x to x + e;. This is the rate at which a
particle jumps from x to x + ¢; minus the rate at
which a particle jumps from x + ¢; to x:

Wx,x+e, - {’I](X) - TI(x + ei)}cx.,x+e,(77)

Suppose that the mean value of the current vanishes
under all stationary states vN. This denotes that the
average displacement of each particle vanishes in the
mean. In particular, in view of the central limit
theorem, to observe an evolution of the density in
the macroscopic scale, a diffusive rescaling of time is
needed. On the other hand, if there is a net flux of
particles, the evolution has to be examined in the
Euler scale #N.

Denote by §(N) the time rescaling: N? if the mean
displacement of particles vanishes and N otherwise.
For each probability measure N on &y, let P,x be
the probability measure on the path space
D(R.,&N) induced by pN and the Markov process
n: speeded up by 6(N). Expectation with respect to
P~ is denoted by [ .

Denote by 7N(du)=7N(ngn),du) the empirical
measure at time ¢. Fix a density profile pg 2T — [0, 1]
and a sequence of probability measures pN on
En associated to pg. The goal of the theory of
hydrodynamic limit of interacting particle systems is to
show that for each ¢ > 0, 7N converges, as N T oo, to
a deterministic path (¢, du) = p(¢, u)du whose density
p is the solution of some partial differential equation,
called the hydrodynamic equation.

The main tools available are entropy production
and Dirichlet forms. Denote by Hy(uN[vN) the
entropy of a probability measure uN on £y with
respect to a reference probability measure vN:

Hy (N[N = sup{ fduN — log/ edeN}
f gN gN

where the supremum is carried over all functions
][:51\[ — R.

It follows from the general theory of Markov
processes that the entropy of the state of the process
with respect to an invariant state decreases in time.
The rate at which the entropy production decreases
can be estimated by the Dirichlet form: let SN be the

semigroup associated to the generator Ly defined in
[1] speeded up by #(N). An elementary computation
gives that

t
H (NS + 200N) [ dsIY (4SY)
0
< Hn(pNWY)

Here, IN(uN) is the convex and lower semiconti-
nuous functional given by

INGN) = (2, Inf %),

where f stands for the Radon-Nikodym derivative
duN/dvN and (-,),v for the scalar product in
L2(WN). ’

Therefore, if the initial state uN has entropy with
respect to a reference measure v\ bounded by CoN¢,
by convexity of IY,

NdeN(,uNSMVi\])

t
+ 200(N)N-41N (ﬂ / dsuNssN) <Gy [
0

for all #>0. This elementary estimate plays a
fundamental role in the following sections.

The Entropy Method

Consider an exclusion process with generator given
by [1]. Fix T > 0, a density profile po:T¢ — [0,1]
and a sequence of probability measures pN asso-
ciated to po. Let Q,n be the measure on the path
space D(|0, T], M, (T9)) induced by the process 7N
and the initial state pN.

To prove that 7N converges to p(t,u)du in
probability, we first show that the sequence Q,x
converges to the probability measure Q* concen-
trated on the deterministic trajectory p(¢,u)du,
whose density is the solution of some partial
differential equation with initial condition py. It
follows from this result and general arguments that
7N converges to p(¢,u)du for each 0 <t < T.

To prove that Q,~ converges to Q7, assume that
we are able to prove tightness of the sequence Q.
Since there is at most one particle per site, all limit
points Q" of the sequence Q,~ are concentrated on
trajectories 7(t, du) = p(t, u)du, which are absolutely
continuous with respect to Lebesgue.

To characterize the limit points Q7 fix a smooth
function G:T¢ — R and consider the martingale

M= (Y, G) = (m', G)

— / t O(N)Ln(mY,G) ds N
0
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An elementary computation of its quadratic variation
shows that MY vanishes in L*(P,n) as N 1 oc.

Denote by Cp the space of cylinder functions
which have zero mean with respect to all invariant
states . Assume that the currents Wy, g 1 <j<d,
belong to Co so that a diffusive scaling G(N) N2 is
in force. Notice that

d

ZWX e,x

j=1

Lan(x W ,xte;

In particular, after a summation by parts, the
integral term on the right-hand side of [5] can be
written as

[ I3 S (NH) /N e ()ds 16

=1 xeT,

where  (VJYH)(x/N)=N{H(x + ¢;/N) — H(x/N)}.
Notice that this sum is in prmc1ple of order N.

To illustrate the entropy method, consider the
symmetric simple exclusion process obtained by
taking ¢j=1/2 in [1] and observe that the current
Wo,., = (1/2){n(0) —n(e;)}. A second summation by
parts permits to rewrite the martingale [5] as

t
(nN.G) = (', G) =3 [ (nN,AnG) ds
0

where Ay is the discrete Laplacian.

Since the martingale MY vanishes in L2(P,n),
as N 7 oo, all limit points Q" are concentrated on
weak solutions of the linear heat equation. It remains
to recall that there is a unique weak solution of the
Cauchy problem for the heat equation to conclude
that the sequence Q. converges to QF, the
measure concentrated on the deterministic path
m(du) = p(¢, u)du whose density p is the solution of
the heat equation with initial condition py.

The symmetric simple exclusion process has the
very special property that the martingale MY can
be written as a function of the empirical measure.
This is not the case for all the other models, for
which a further argument is needed to close eqn [5]
in terms of the empirical measure.

To present the additional arguments needed,

assume that c¢j(n)=1+[n(—e;) +n(2¢)]. In this
case, the current Wy ,, is equal to
{n(0) —nle;)} + {n(0)n(—e;) — nle;)n(2e;)}

+{n(0)n(2e;) — n(—ej)nle)}

A second summation by parts in [6] permits to
rewrite it as

/N dZZ (02 H) (/N b (x2) ds + on(1) [7]

1 xery,

where  h(n) =n(0) + 2n(0)n(—e;) — n(0)n(2e;). The
remainder on(1) appears because we replaced dis-
crete space derivatives by continuous ones.

In contrast with the symmetric simple exclusion
process, the martingale M*N defined in [5] is not a
function of the empirical measure and an argument
is needed to close the equation.

For each positive integer ¢ and d-dimensional
integer x, denote by 7(x) the empirical density of
particles in a box of length 2¢ + 1 centered at x:

Clx)— 1
UNEY) (zz+1)d‘y§gn(y)

For a cylinder function h:En — R, let h(a) be the
expected value of b with respect to the invariant
state v\ :h(ow) = E,x[h(n)]. For £>1 and a cylinder
function b, let

‘z£+1dz

ly|<¢

Vi) = f(O))\

Theorem 1 Consider a sequence of probability
measures mN on En such that IN(mN) < CoN?-2 for
some 0 < a < 1 and some finite constant Cy. Then,

lim sup lim sup E N~ Z xVen(n) | =0
e—0 N—oo Td
x€TY

This statement, due to Guo et al. (1988), permits
the replacement of a local function 4 by a function
of the density of particles over a macroscopic cube.
It is the main step in the proof of the hydrodynamic
behavior of gradient systems, defined below, and its
proof can be found in Kipnis and Landim (1999,
chapter 5).

Assume that the sequence pN has entropy with
respect to a reference invariant state ¥ bounded by
CoN? for some finite constant Co. It follows from
[4] that the sequence of measures T fOT dspNSN
satisfies the assumptions of Theorem 1. Therefore,
due to the presence of the time integral, we may
replace the cylinder function b in [7] by h(n*N(x)).
Since 7°N(0) can be written as (7V,..), where
e = (2¢)"1{[~¢,¢]%), we now have expressed the
martingale [5] in terms of the empirical measure.

Repeating the arguments presented for the sym-
metric simple exclusion process, we may conclude
that all limit points Q" of the sequence Q,~ are
concentrated on paths m/(du)=p(t,u)du, whose
density p is a weak solution of the parabolic
equation

op=A(p+ pz)
p(0,-) = po(-)
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because h(a)=a + o for h(n) =n(0) + 2n(0)n(—e;)—
n(0)n(2e;). It remains to show the uniqueness of
weak solutions of this differential equation to
conclude.

The second integration by parts in [6] was possible
because the currents could be written as the difference
of local functions and their translations, a very special
property not shared by most interacting particle
systems. Processes with this attribute are called
gradient systems.

Nongradient Models

Consider an exclusion process with rates ¢j(n) =1+
n(—e;j), in which case the current is given by

Wo,e; = {n(0) = n(e;)} + {n(0) — ne;) yn(—e;)

a cylinder function in Cj.

Fix T > 0, a density profile po:T¢ — [0,1] and a
sequence of probability measures pN associated to
po and having entropy with respect to a reference
invariant state  bounded by CoN? for some finite
constant Cy. Recall the definition of the sequence of
measures (Q,x, assumed to be tight.

To characterize the limit points of Q,~, fix a
smooth function G:T¢ - R and examine the
martingale MZN introduced in [5]. After an
integration by parts, the integral term of the
martingale becomes [6]. While a second integration
by parts is possible for the first part of the current
n(0) — n(e;), the second piece remains

/0 NS S (OVH) (/N (g s (8

=1 xE[d

where w;={n(0) —n(e;)}n(—e;). Notice the extra
factor N multiplying the sum and that w; belongs
to Cy. The next result and Theorem 4 are due to
Varadhan (1994).

Theorem 2 Consider a sequence of probability
measures mN on En such that HN(mN|V(I;I) < CoN“
for some 0 < o < 1 and some finite constant Cy. Fix a
smooth function G: T — R and a cylinder function
U in Cy. There exists a seminorm ||-||,, such that

limsup{ 2 H/ N4 S G /N (e ]}2

N—oo xe l‘d

<CoT|Gll; sup V] 9]
0<a<l

The explicit form of the seminorm ||-||, can be
found in Kipnis and Landim (1999, chapter 7). The
proof of Theorem 2 requires a sharp estimate on the
spectral gap of the generator Ly. Denote by A,

the cube {—¢,...,0% and by Ly, the restriction of
the generator Ly to the cube Ay, obtained by
suppressing all jumps from A, (resp. Af) to Af
(resp. A¢). For 0 < K < |Ay|, let vy, k be the umform
measure on the configurations of {0,1}" with K
particles. The following estimate is needed in the
proof of Theorem 2:

Theorem 3 There exists a finite constant Cy such
that

(£, < Co* (. (=La)f)s,

forall £ > 1,0 < K < |A¢| and zero-mean function f
in L2 (VA K)-

This result is due to Quastel (1992) for symmetric
simple exclusion processes. Yau developed a general
method to prove sharp estimates for the spectral gap
of the generator for conservative dynamics (see Lu
and Yau (1993) and Yau (1997)).

Since the parallelogram identity is easy to check,
by polarization we can define a semi-inner product
<+, >, from the seminorm ||-||,,. Denote by H,, the
Hilbert space induced by Cp and the semi-inner
product <-,->>, .

Denote by L the generator [1] extended to 78,
Notice that Lf belongs to Cp for any cylinder
function f, and that the gradients n(e;) — 7(0), and
the currents wj, 1 <j <d, also belong to Cy. The
next result states that all functions in H, can be
written as a linear combination of gradients and
cylinder functions in the image of the generator.

Theorem 4 Denote by LCy the space {Lg:g € Co}.
For each 0 < a < 1,

Ha =LCo ® {n(ej) —n(0): 1 <j<d}

In particular, there exists a matrix {D;j(ca):1 <
iyj <d} and a sequence of functions ({f; (c,-) €
Co:k>1},1 <i<d, for which

w,JrZD,,

vanishes in ‘H, as k ] co. For reversible systems (and
more generally for generators satisfying a sector
condition), it can be shown that the sequence of
local functions f; (e, 1)) can be taken independent of
a: firlo,n) =f; r(n). Moreover, with a little extra
effort, one obtains a bound uniform in a:

w,—!—ZD,,

This estimate together with some algebraic relations
in H, give a variational formula for the matrix D; ;:

)Hn(es) =n(0)} — Lfi k(e )

inf sup
f€Coo<a<1

n(0)} - Lf [10]

{n( e/

«
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for every vector v in R9,

-D = f
v (a)y 1 — Oé flgCo

Zv,w, Lf
It can also be shown that the matrix D is continuous
and strictly elliptic.

We may now complete the proof of the hydro-
dynamic behavior. Recall that the main difficulty
was to express formula [8] in terms of the empirical
measure. Fix 1 <i<d and consider a sequence of
cylinder functions {f;  : k > 1} satisfying [10] asymp-
totically as k1 oo. Adding and subtracting the
expression S 1cked Dy ENO) N () — 7N (0)) —
Lf; 1, [8] becomes the sum of three terms.

The f1rst one is just the expression which appears
inside the expectation in [9] with G = (VMN/_H) and ¥
given by

[11]

d
wi+ > D e (0){rN () = n™(0)} — L
k=1
Since the sequence of measure pN satisfies the
assumptions of Theorem 2, a modification of the
proof of this theorem, to take into account
the dependence of ¥ on N and &, shows that the limit
of the expectation of the absolute value of the first
term in the decomposition, as N 7 oo and thene | 0,

is bounded by
2 2
Co T||0;HI[; sup [|9j all
0<a<1

where

,,y—w,+ZD

By [10], the penultimate expression vanishes as k | oco.
The second term in the decomposition is

t d
/0 dN'! 5™ ST (UNH) (o/N) L (mne)

b= d
jik=1xerd,

a){n(e;) =n(0)} — Lfj.x

The presence of the generator L and the diffusive
rescaling of time permit to show that the expecta-
tion of the absolute value of this expression is of
order N7! for each fixed k.

Finally, the third term is equal to

_/tdsN1_d zd: Z (VLIZH)(x/N)D,‘,k
0

k=1 xeT,
N
x (e () { R (x + ex) — 1102 (%) }
A second integration by parts is now possible and
one obtains that the previous expression is equal to

t
JRESD AT

jik=1xeTd,

+—ON(1)

x/N) i k(nsNz( ))

where di, =D; ;. We have already seen in the
derivation of the hydrodynamic equation for gradi-
ent systems that this sum can be expressed as a
function of the empirical measure. Since all limit
points are concentrated on paths 7,(du) which are
absolutely continuous, this integral converges to

d t
Z/ ds [ du(;
j k=170 ™

Since the martingale [5] vanishes, all limit points
are concentrated on trajectories m,(du) = p(t, u)du
which are weak solutions of

H)(u) d; (p(s,u))

d
0p =" uf[8.k + Dik(p)]Oucp}

k=1

where D is the strictly elliptic and continuous matrix
given by the variational formula [11]. Here, the
identity matrix 6; , comes from the first piece of the
current which permitted a second integration by
parts. A uniqueness result of weak solutions of the
Cauchy problem with initial condition py concludes
the proof of the hydrodynamic behavior of this
nongradient system.

Hyperbolic Equations

Consider the asymmetric simple exclusion process
obtained by setting ¢;(n) =n(0)[1 — n(e;)] in formula
[1]. Notice that the current Wy ,=n(0)[1 — n(e;)]
has mean (1 — «) with respect to the invariant state
VN, suggesting the Euler rescaling of time §(N)=N.

Let < be the partial order on €y defined by n < ¢
if n(x) < &(x) for every x in Tﬁ,. The asymmetric
exclusion process is attractive: there exists a
stochastic evolution on £y x En with the following
two properties: (1) it preserves the order, in the
sense that 7, < & forall # > 0 if ny < & and (2) each
coordinate evolves according to the original asym-
metric exclusion dynamics. This coupling, which
may be constructed by letting particles jump
together as much as possible, is the main tool in
the derivation of the hydrodynamic equation of
asymmetric processes.

Fix a smooth function G:T¢ - R and recall
definition [5] of the martingale M®N. An elemen-
tary computation shows that the quadratic variation
of this martingale vanishes as N 7 co. On the other
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hand, after an integration by parts, the integral term
of the martingale becomes

t d
LN S () /N )

=1 xeTd,
X 1= oy (x + ¢)] ds

Assume that the state of the process at any
macroscopic time s is close to a product measure
associated to some profile p(s,-). Since the martin-
gale vanishes asymptotically, taking expectations in
[5], we obtain that the density profile should be a

weak solution of the quasilinear hyperbolic
equation
d
0+ Y _ 0 F(p) =0 [12]
=1

where F(a)=a(1 — a).

It is well known that solutions of this equation
may develop shocks even if the initial profile py( - ) is
smooth and that there is no uniqueness of weak
solutions. Several criteria have been introduced to
select the relevant solution among the weak solu-
tions. Kruzkov (1970), for instance, in the case
where density profile po:T? — R is bounded,
proved that there exists a unique measurable
function p which satisfies the entropy condition

d
Ao — ol + 3 0ulF(p) ~ F0)| <0 [13]
i=1

in the sense of distributions on (0,00) x T¢, for
every ¢ € R, and which converges to the initial
condition in L'(T%) as ¢] 0:lim, .o ||p; — poll; = 0.

Fix T> 0 and a density profile py:T¢—[0,1].
To couple the original process with another one
starting from a different initial sate, we need to
impose the initial distribution to be of product form.
Consider, therefore, a sequence of “product” prob-
ability measures N associated to py and recall the
definition of the sequence of measures Q,x given in
the section “The entropy method,” assumed to be
tight.

We have to prove that all limit points are
concentrated on entropy solutions of [12]. Coupling
the original process 7; with another one, denoted by
&, starting from the Bernoulli product measure with
density «, and examining the time evolution of
Z%Tﬁ [mn(x) — En(x)|, we derive an entropy
inequality at the microscopic level: let N be a
sequence of probability measures on the product
space En x Ex whose first coordinate is puN.
Denote by Pg’N the measure on the path space
D([0, T],En x En) induced by N and the coupling

informally described at the beginning of this section.
Rezakhanlou (1991) proved the following theorem:

Theorem 5 For every smooth positive function H
with compact support in (0,0) x T and every
e >0,

lim lim PN,
f—ocoN—oo H

/O.wdtN’d > {0H(tx/N) | (x) = € ()|

xETii

i=1

d
+ (0 H)(t,/N)|F(n; (x)) = F(€(x)) |} z 5} =1

If we now assume that the second coordinate &; is
initially distributed according to the stationary state
VN, it is not difficult to replace & in the above
formula by «, obtaining a microscopic version of the
entropy inequality.

In the one-dimensional nearest-neighbor case, by
coupling arguments, we may replace the average
n'(0) over a large microscopic box by an average
n*N(0) over a small macroscopic box, deriving the
entropy inequality [13]. To conclude the proof it
remains to show, by means of coupling argument
again, that the density profile at time ¢ converges in
LY(T% to the initial condition as ¢ | 0.

In higher dimensions or in the one-dimensional
non-nearest-neighbor case, it has not been proved
that replacement of 7‘(0) by 7°N(0) is allowed. One
is thus forced to consider measure-valued solutions
of eqn [12]. Details can be found in Kipnis and
Landim (1999, chapter 8).

Relative Entropy Method

The relative entropy method, due to Yau (1991), is
based on the analysis of the time evolution of the
entropy of the state of the process with respect to
the product measure associated to the solution of the
hydrodynamic equation.

While the entropy method requires uniqueness of
weak solutions and proves the existence of weak
solutions, the relative entropy method requires the
existence of a smooth solution and proves the
uniqueness of such smooth solutions.

Consider the exclusion process with rates ¢j(n) =
1+ [n( —ej) + n(2¢j)]. We have seen that the hydro-
dynamic equation of this model is given by the
nonlinear parabolic equation

By = AMp+p*} [14]

Fix a profile pg :T¢ — [0, 1] bounded away from
0 and 1: 0 <6 < po(u) <1 —06. Let p(t,u) be the
solution of the hydrodynamic equation [14] with
initial condition py and denote by I//I)\(It") the product
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measure with slowly varying parameter associated
to the profile p(z, -):

VN {mn(x) =1} = p(t,x/N), for x € T§

Theorem 6 Let {{N:N > 1} be a sequence of
probability measures on Ex whose entropy with
respect to v, | is of order o(N“):

Hx (MNl%») — o(N%)

Then, the relative entropy of the state of the process
at the macroscopic time t with respect to 1//% ) 1S
also of order o(N9):

Hy (ILLNS?I‘V%L_)> = o(Nd) for every t > 0

It is not difficult to deduce from this result a
strong version of the hydrodynamic limit behavior
of the interacting particle system:

Corollary 1 Under the assumptions of the theorem,
for every cylinder function ¥ and every continuous
function H:T? >R,

N 3" Hx/N)re(n)

xeTY
| -0

The relative entropy method can be extended to
nongradient systems and to asymmetric processes,
whose macroscopic evolution is described by quasi-
linear hyperbolic equations, up to the first shock.

The hydrodynamic behavior of an interacting
particle system corresponds to a law of large
numbers for the empirical measure. The central
limit theorem is well understood in equilibrium, but
remains to this date an important open question in
nonequilibrium. The large deviations for diffusive
systems have also been investigated, as well as the
hydrodynamic behavior of systems in contact with
reservoirs. The Navier-Stokes equations have been
derived as a correction of the hydrodynamic
equation of asymmetric particle systems. We refer
to Kipnis and Landim (1999) for further details.

lim E ngn
N—oco HNS;

- /W H(u) ¥ (p(t,u)) du

See also: Boltzmann Equation (Classical and Quantum);
Bose-Einstein Condensates; Breaking Water Waves;
Fourier Law; Interacting Stochastic Particle Systems;
Macroscopic Fluctuations and Thermodynamic
Functionals; Multi-Scale Approaches.
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Introduction

According to the basic principles of mechanics, the
motion of atoms and molecules is governed, in the
semiclassical approximation, by the deterministic
Hamiltonian equations of motion. While all evi-
dence points in this direction, for many problems
this Hamiltonian approach is so complicated that it
hardly yields any useful results. A simple example
are many (10°) polystyrene balls (size 1um)
immersed in water. The Hamiltonian description
would have to deal with the degrees of freedom of
all the fluid molecules and all the polystyrene balls.
Clearly, a more useful approach is to collect the
incessant bombardment of a polystyrene ball by
water molecules into a stochastic force acting on the
ball with postulated statistical properties. For
example, following FEinstein, one could regard
successive collisions as independent and occurring
after an exponentially distributed waiting time. In
addition to such stochastic forces, the polystyrene
balls are charged and interact with each other
through the screened Coulomb force.

On the one-particle level, stochastic models have a
long tradition within statistical physics. Considerable
part of the classical theory of Markov processes is the
mathematical response to such type of description.
The aspect of interaction is more recent. Its origin can
be traced back to the Metropolis algorithm in early
computer simulations (21953). It was recognized
that the Hamiltonian dynamics is a rather slow tool
to statistically sample the Gibbs equilibrium distribu-
tion Z~! exp[~H/kgT]. A more efficient route is to
devise a stochastic algorithm which has as its unique
stationary measure the Gibbs distribution. Such
schemes are now known as Markov Chain Monte
Carlo and of extremely wide use, not only in
statistical physics but also in quantum chromody-
namics (QCD) and other quantum field theories. The
time appearing in the stochastic algorithm has no
physical significance; it merely counts how often a
certain operation is performed.

The second clearly identifiable push toward the
use of interacting stochastic particle systems came
from the study of critical dynamics. Close to a point
of second-order phase transition, the equilibrium
properties are very effectively handled by means of
statistical field theories. Thus, it was natural to

search for an extension into the time domain, which
then led to time-dependent Ginzburg-Landau the-
ories, where now time refers to physical time. These
are interacting stochastic models, where one keeps
only a few basic fields, together with their behavior
under time reversal, their vector character, and
whether they are dynamically conserved or not.

In probability theory, interacting stochastic particle
systems date back to the seminal papers by M Kac in
1956 and independently by R L Dobrushin and by
F Spitzer in 1970. Spitzer was motivated by spin-flip
and spin-exchange dynamics, while Dobrushin had
the vision of many locally interacting components. In
the early days, one of the prime goals was the
construction of the stochastic process in infinite
volume, an enterprise which had important mathe-
matical spin-off, for example, the theory of Dirichlet
forms on function spaces. Physical models offer a rich
menu to the probabilist, but there is also considerable
input from other areas. To give just one example: in
queueing theory one considers queues in series, that
is, a customer served at one counter immediately
moves on to the next one. If one regards as field the
number of customers at each counter, one has an
interacting stochastic particle system, the interaction
being mediated through the servers.

This article is split into two sections. In the first
one, we list and explain a few prototypical interact-
ing stochastic particle systems. Of course, the list is
hardly exhaustive and we restrict ourselves from the
outset to models from statistical physics. In the
second part, we summarize prominent lines of recent
research. Again the wealth of material is over-
whelming and we draw the line according to the
rules of mathematical physics.

Model Systems

Our list is determined by the intrinsic mathematical
properties of the stochastic particle system. Alter-
natively, a classification is possible according to the
physical system, which would, however, be less
transparent for our purposes. We restrict ourselves
to models with only position-like degrees of free-
dom, but if needed velocity-like fields may be
included. The most basic distinction is the behavior
under time reversal. A model is called (statistically)
“time reversible” if a particular history and its time-
reversed image have the same probability. Techni-
cally, one imposes this through the condition of
detailed balance. Nonreversible systems are much
less explored, but currently a very active area of
research.
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Reversible Models

1. Spin-flip, Glauber dynamics. One considers
spins attached to the sites of a regular lattice,
which for symplicity we take as the hypercubic
lattice Z%. The spin at site x € Z¢ is denoted by
ox==x1 and the whole spin configuration is
denoted by o. Thus, the state space of the Markov
processs is 1,1} =q. Spin  configurations
evolve in time through random spin flips, that is,
through a change from o, to —o, according to
configuration-dependent rates cy(c). cx(o) is local,
in the sense that it depends only on the spins close
to x, and is translation invariant, that is, if 7, is
the shift by y, then c..y(7,0) =cx(0). If the current
spin configuration is o(¢), then after a short
time dz

with probability 1 —¢

7 ox (1)
ox(t+dt)= { with probability ¢, (o(2)) dt

—0x(t)

The update is performed independently at each
lattice site. Technically, it is more concise to specify
the generator, L, of the Markov process. It acts on
local functions f:Q — R and is given by

Lf(0) = Y ex(o)(f(0™) = f(0) 1]

xeZd

where o* denotes the configuration ¢ with the spin
at site x reversed. The transition probability from
the configuration o to the configuration ¢’ in time
t >0 is given by the matrix element (e'?), . of the
Markov semigroup el

To impose time reversibility, one needs an energy
function H(o) constructed according to the rules of
equilibrium statistical mechanics. The condition of
detailed balance then reads

cx(0) = cx(o)e MM 2]

with §=1/kpT the inverse temperature. Note that
on the right only energy differences appear, which
are always well defined. In finite volume the
unique invariant measure is the Gibbs measure
Z e PH,

2. Spin-exchange, Kawasaki dynamics, stochastic
lattice gases. We model particles hopping on the
lattice Z¢ and switch to the occupation variables 1,
where 7, =0 stands for site x empty and 7, =1
stands for site x occupied. The state space is
Q=1{0,1}*". Since the number of particles is con-
served, the basic dynamical process is a random
jump of a particle from x to a nearby site vy,
provided 7, = 0. Therefore, we specify the exchange

«(0(2)) dt

rates cxy(n) between x and y. They are local,
translation invariant and symmetric, that is,
Cxy(n) = ¢yx(n). The generator now reads

=3 3 e ™) o) B

xAyEZd

where 77 is the configuration 7 with the occupan-
cies at sites x and y exchanged.

The condition of detailed balance refers to the
exchange and reads

Cey(N) = Cay (7)™ BH(r)—=H(n)) [4]
In [4] we can freely add to H the chemical potential
— Y. nx. Thus for stochastic lattice gases there is a
one-parameter family of invariant measures, labeled
by the chemical potential p.

3. Interacting Brownian motions. These motions
model, for example, suspensions as mentioned in the
“Introduction”. One considers a box A ¢ R? con-
taining N Brownian particles. The jth Brownian
particle has position x; € A. Thus, the state space of
the Markov process is AN. We assume that the
Brownian particles interact through a (sufficiently
local) even pair potential U. Then the total potential
energy 1s

ZU xi—xj), x=(x1,...,xn) [5]

The dynamics of the Brownian particles is given
through the stochastic differential equations

—x(t)) d

ji=1,...,N [6

dox;(t) Z VU (x;(t
i=1,i#f

+ v/ ZDodW/(t)

Wi(t),j=1,...,N, are a collection of independent
Brownian motions and Dy is the diffusion coeffi-
cient of a single Brownian particle. Equation [6] has
to be supplemented with suitable boundary condi-
tions at the surface OA. Since the forces in [6] are the
gradient of a potential, time reversibility is auto-
matically satisfied with the invariant measure being
ZNl exp /D() dX1 de.

4. szburg—Landau models. Ginzburg-Landau
models should be viewed as discretized versions of
stochastic partial differential equations. At every
lattice site x € Z9, there is a real-valued field
oy €R, a field conflguratlon being denoted by ¢.
Formally, the state space is R”". Since the single-site
space is noncompact, some growth condition at
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infinity must be imposed. Next we give ourselves an
energy, H(¢), one standard example being

H@)= Y (x—0)"+ > V(e [7)
x,yeZ? x—y|=1 xeZ?

The on-site potential increases sufficiently rapidly, so as
to make large field values unlikely. The ¢-field evolves
according to the set of stochastic differential equations

OH (s(e))dt + v/2]BAW, (1),

dd)x(t) = 78¢)x [8]

xez74

where {W,(2),x € 79} is a collection of independent
Brownian motions. If V(¢y)=¢2, then ¢(t) is
a Gaussian field theory. To have an Ising-type phase
transition, one would have to choose V() = A2 + ¢2.

It is rather simple to modify [8] as to incorporate
a conservation law. To each directed bond (x,y),
|x —y|=1, one associates the current jyy = —jy. If

e is a unit vector, |e| =1, then
d¢x(t) + Z ixx+e(t)dt =0, x¢€ 74 [9]
e le|]=1

The current has both a deterministic part, given
through the gradient of a chemical potential, and a
random part:

OH OH
ey (2)dE = — - t))de + dW,, (),
L et - [COI T LA
e —yl=1
where W, (t) = —W,,() is a collection of indepen-

dent Brownian motions labeled by nearest-neighbor
bonds. The conserved quantity is ) ¢.. Again, the
dynamics has a one-parameter family of stationary
measures labeled by the “magnetic field”. Since in
[8] and [10] the drift is the gradient of a potential,
Ginzburg-Landau models are reversible.

5. Interface dynamics. The scalar field ¢ describes
the location of an interface. The energy of an
interface does not depend on its absolute displace-
ments. Thus, interface models are special Ginzburg—
Landau models, which have an energy H(¢)
invariant under the global shift ¢, — ¢, + a for all
x € 7% An example is

Hig)= >

x,yeZf [x—y|=1

V(gx = ¢y) [11]

with even V. Note that in order to have a normal-
izable equilibrium measure, the interface must be
pinned somewhere.

6. Several components. For lattice gases, there may
be several components. In a Ginzburg-Landau theory

instead of a scalar, Ising-like field, one could consider a
vector-valued, Heisenberg-like, field and require the
energy to be invariant under global rotations of the field
variables. The construction is as before and we do not
have to repeat it.

7. Constrained, glassy dynamics. The constraint is
enforced by setting some of the rates equal to zero.
For example, in the case of standard Glauber
dynamics, one could allow for a spin-flip only if at
least two neighboring spins have the opposite sign.
The Gibbs measure is still invariant, but the approach
to equilibrium will be slowed down due to the
constraint. It may even happen that the configuration
space splits into several invariant subsets.

After this long and still incomplete list, let us turn
to the nonreversible models.

Nonreversible Models

Mathematically, one merely has to drop the condition
of detailed balance. To have a more concrete example,
let L; be the generator for the Glauber dynamics
satisfying detailed balance with inverse temperature
Bi,i=1,2.Then L =L, + L, generates a nonreversible
dynamics provided 31 # (3;. Physically, it corresponds
to coupling the spins to two bulk thermal reservoirs of
different temperatures. Our example leads to a general
point which should be noted: While reversible models
have a wide range of physical applicability, for
nonreversible models nonequilibrium conditions have
to be maintained over sufficiently long time spans,
which poses considerable difficulties experimentally.
Thus on a theoretical level, the efforts go into exploring
properties of, say, semirealistic models.

Very roughly there are two broad classes of
nonreversible models.

Boundary-driven models We consider a finite
volume A. Inside A the dynamics is reversible as
explained before. At the boundary OA the system is
coupled to particle, resp. energy, reservoirs. In case the
boundary chemical potential, resp. temperature, is not
uniform, the dynamics is nonreversible. To be more
concrete let us reconsider the lattice gas discussed in
item (2) (see the discussion following eqn [2]). Inside
A the generator L, is given by [3] and satisfies
detailed balance [4]. The boundary generator is

Loaf(m) = ) ex(m)(f (") — £ () [12]

x€0A

where the notation is as in [1] with {-1,1}
substituted by {0,1}. c.(n) satisfies [2] with the
same (3 as in the bulk, but a chemical potential p,
depending on x € JA. p, controls the injection/
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absorption of particles at x. The generator for the
nonreversible dynamics is then

L=1L)+ Ly [13]

Bulk-driven models A prototype is the two-
temperature model mentioned above. More widely
studied is a nonconservative force acting globally.
Here the standard example are particles moving in A
with periodic boundary conditions and subject to an
additional uniform force field of strength F, which
clearly cannot be written as the gradient of a
potential. In the case of Brownian particles, by
changing to a comoving frame of reference, one
would be back to the reversible case F=0. For
lattice gases the lattice provides a fixed frame and
the driven model has properties very different from
the undriven one. This leads us to:

8. Driven lattice gases. The generator L is still
given by [3]. Formally, we insert in [4] instead of H
the Hamiltonian H(n) — > (F - x)n,. The exchange
rates then satisfy the condition of “local” detailed
balance as

Cay (1) = oy (1) € BHIP)=H )

w e OF-(x=y))(nx—ny) [14]

This means, particles preferentially jump in the
direction of F. On the infinite lattice the dynamics
admits two classes of stationary measures. First,
there is the Gibbs measure with particles piling up
along F and formally given by

g1 T Fm) 15
With respect to this measure the dynamics is
reversible. Second, there are translation invariant
measures with nonzero steady-state current. This
cannot happen for reversible models. A very widely
studied particular case is the asymmetric simple
exclusion process for which d=1,H(n)=0, and
jumps are only to nearest-neighbor sites.

Items of Interest

As there are thousands of research papers in
mathematical physics alone, it is literally impossible
to provide any sort of summary. On the other hand,
the type of questions investigated are generic. Thus,
we just explain what one would like to understand
without paying much attention to the fractal
boundary between “proven” and “unproven.” For
the construction of the stochastic processes listed
above, there is a well-developed probabilistic theory
available. Thus, the main focus is on “qualitative
properties” of the stochastic particle system. As in

the previous section, we distinguish between rever-
sible and nonreversible models.

Reversible Models

1. Equilibrium state. The most basic question
concerns the classification of invariant measures in
infinite volume. By construction, they are the Gibbs
measures for the Hamiltonian appearing in the condi-
tion of detailed balance. In principle there could be
more, which so far has been excluded only in dimension
1 or 2. Properties of the invariant measure belong to the
domain of equilibrium statistical mechanics.

Thus we can turn directly to:

2. Spectral analysis of the generator L. We fix
some extreme Gibbs measure stationary for L.
By detailed balance, e is a symmetric Markov
semigroup in L*(f2, uz). Hence, L is self-adjoint and
L < 0. Furthermore, it has a nondegenerate eigen-
value 0. The rate of approach to equilibrium is
determined by the spectral gap of L. Related are log-
Sobolev inequalities which serve as a stronger
notion. For models with a conservation law, there
is no spectral gap. Thus, the more appropriate
question is to study how fast the gap vanishes as
the volume A increases. In the case of independent
components, the spectral subspaces for L are
organized as single excitation, double excitation
etc. Such a structure persists as the interaction is
turned on which, on a mathematical level, is similar
to the particle spectrum of a quantum field theory.

Physically more directly relevant are:

3. Spacetime correlations. To be concrete, let us
consider a Ginzburg-Landau field theory ¢,(¢)
starting with a translation invariant Gibbs measure
1. Then ¢, (¢) is a spacetime stationary process. The
two-point correlation function is the covariance

(dx(£)$0(0)) — ($0(0))* [16]

Its Fourier transform is directly linked to energy-
momentum resolved scattering intensity from a probe
which is modeled by the respective Ginzburg-Landau
theory. For t=0, the expression [16] is the static
correlation, again belonging to the domain of equili-
brium statistical mechanics. The time decay depends
on whether the field is dynamically conserved or not.
Correlation functions do not always capture the
physics of the system well. This is certainly true for:
4. Dynamics at low temperatures. Let us consider
the Glauber dynamics for the ferromagnetic Ising
model in the finite but large volume A. Then there is
a very high free energy barrier between configura-
tions typical for the + phase and those typical for the —
phase. If one starts the spin system in the + phase, one
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may study through which configurations the system
moves to the — phase and how much time such a
process will take. If the two phases are symmetric with
the external magnetic field » =0, the spin system
tunnels, while for » < 0 and small the + phase is
metastable. Another widely studied situation, also
experimentally, is the quenching from high to low
temperatures. In our context this means that the initial
measure is Bernoulli, while the Glauber dynamics runs
at low temperatures. Then spin clusters coarsen as time
proceeds developing well-defined interfaces which are
governed through motion by mean curvature.

Close to a point of second-order phase transition,
one has to deal with:

5. Critical dynamics. The usual Glauber dynamics
becomes very slow at the critical point and reliable
equilibrium is hard to achieve. It is thus a challenge
to design faster algorithms. One proposal is the
Swendsen—Wang algorithm which is based on the
Fortuin—Kasteleyn representation and flips a whole
cluster of spins simultaneously.

So far we concentrated on statistical properties.
Researchers have been fascinated by the observation
that for stochastic particle systems, the transition to a
deterministic macroscopic evolution can be handled
with full rigor. Such a program has been baptized:

6. Hydrodynamic limit, which is meaningful only
for particle systems with one or several conservation
laws. Let us discuss then a reversible lattice gas with
Hamiltonian H. We start the dynamics with a state
of local equlibrium which is Gibbs with a slowly
varying chemical potential, that is,

Z lexp [—ﬂ <H(n) - Zu(sx)nx>1 , ek 1 [17]

Such a measure is almost time invariant. For small ¢,
at least approximately, such a structure should
persist in the course of time at the expense of
properly regulating the chemical potential. For our
example, the correct timescale is €2¢ in microscopic
units, and the evolution equation for the density,
related thermodynamically to the chemical poten-
tial, is a nonlinear diffusion equation of the form

B
5Pt =V D) Vpr 18]

We turn to the nonreversible models.

Nonreversible Models

While for reversible models the study of the
stationary Gibbs measure is its own field of inquiry,
here the first entry must be:

7. Nonequilibrium steady state. This steady state is
determined through the dynamics, since the stationary
measure p has to satisfy u(Lf)=0 for a sufficiently
large class of functions f. As in equilibrium, phase
transitions may occur. In the nonconservative case it
would mean that the infinitely extended system has
several extreme stationary measures. In the conserva-
tive case, say with the density as locally conserved field,
it would mean that there is an interval of densities for
which there is no extreme stationary measure. Given
the nonequilibrium steady state, one may wonder
about its typical fluctuations and large deviations. In
contrast to thermal equilibrium, weak long-range
correlations are the rule.

8. Spacetime correlations in the steady state.
Through the bulk drive the power-law decay of time
correlations may change. For example for the sym-
metric and asymmetric exclusion process, the steady
states are Bernoulli with density p, denoted by (-),. For
the on-site density—density correlation, one ﬁnc{;, for
large ¢,

1 172

(mo(£)n0(0))1, — 4 o { 23 for F=0

for F#£0 [19]

9. Hydrodynamic limit. The concept of slowly
varying conserved fields remains valid; only local
equilibrium must be replaced by local stationarity.
Generically, there are nonzero currents in the steady
state. Therefore, the macroscopic fields change on
the timescale ¢7'# (cf. item (5)) and are governed by
a hyperbolic conservation law of the form

9] o
o +divj(p:) =0 20]

in the case of a single conservation law. Here, j(p) is
the average steady state in the stationary measure at
density p. Several conservation laws have an intri-
guing rich variety of solutions. Even on the level of
continuum partial differential equations, such sys-
tems of hyperbolic conservation laws still pose
unresolved basic problems.

See also: Ginzburg—Landau Equation; Glassy Disordered
Systems: Dynamical Evolution; Interacting Particle
Systems and Hydrodynamic Equations; Macroscopic
Fluctuations and Thermodynamic Functionals; Stochastic
Differential Equations.

Further Reading

Binder K and Heermann D (2002) Monte Carlo Simulations in
Statistical Physics. Berlin: Springer.

Kac M (1959) Probability and Related Topics in the Physical
Sciences. London: Interscience.

Kipnis C and Landim C (1999) Scaling Limits of Interacting
Particle Systems. Grundlehren, vol. 320. Berlin: Springer.



Interfaces and Multicomponent Fluids 135

Liggett TM (1985) Interacting Particle Systems. Berlin: Springer.

Liggett TM (1999) Stochastic Interacting Systems: Contact, Voter
and Exclusion Processes. Grundlebren, vol. 324. Berlin: Springer.

Marro J and Dickmann R (1999) Nonequilibrium Phase Transitions
in Lattice Models. Cambridge: Cambridge University Press.

Martinelli F (1999) Lecture on Glauber Dynamics for Discrete
Spin Models. Lecture Notes in Mathematics, vol. 1717. Berlin:
Springer.

Schmittmann B and Zia RKP (1995) In: Domb C and Lebowitz JL
(eds.) Statistical Mechanics of Driven Diffusive Systems,
Phase Transitions and Critical Phenomena, vol. 17, London:
Academic Press.

Spitzer F (1970) Interaction of Markov processes. Advances in
Mathematics 5: 246-290.

Spohn H (1991) Large Scale Dynamics of Interacting Particles.
Texts and Monographs in Physics. Heidelberg: Springer.

Interfaces and Multicomponent Fluids

J Kim and J Lowengrub, University of California at
Irvine, Irvine, USA

© 2006 Elsevier Ltd. All rights reserved.

Introduction

Many important industrial problems involve flows
with multiple constitutive components. Examples
include extractors, separators, reactors, sprays, poly-
mer blends, and microfluidic applications such as DNA
analysis, and protein crystallization. Due to inherent
nonlinearities, topological changes, and the complexity
of dealing with unknown, active, and moving surfaces,
multiphase flows are challenging. Much effort has been
put into studying such flows through analysis, asymp-
totics, and numerical simulation. Here, we focus on
review on studies of multicomponent fluids using
continuum numerical methods.

There are many ways to characterize moving
interfaces. The two main approaches to simulating
multiphase and multicomponent flows are interface
tracking and interface capturing. In interface-tracking
methods  (examples include boundary-integral,
volume-of-fluid, front-tracking, immersed-boundary,
and immersed-interface methods), Lagrangian (or
semi-Lagrangian) particles are used to track the
interfaces. In (BIMs), the flow equations are mapped
from the immiscible fluid domains to the sharp
interfaces separating them thus reducing the dimen-
sionality of the problem (the computational mesh
discretizes only the interface). In interface-capturing
methods such as level-set and phase-field methods,
the interface is implicitly captured by a contour of a
particular scalar function.

The equations governing the motion of an
unsteady, viscous, incompressible, immiscible two-
fluid system are the Navier-Stokes equations (the
subscript i denotes the ith flow component):

ou; .
p,‘(a—l:—‘y-ui'vuj):V'O'i"‘pig; 12172 [1]

o; = —pil + 2n,D; 2]

where p; is the density, #; is the fluid velocity, p; is
the pressure, 7; is the viscosity, and g is the
gravitational acceleration vector. In eqn [2], o; is
the stress tensor, I is the identity matrix, and D; is
the rate of deformation tensor and defined as
D;=(1/2)(Vu; + VuiT). The velocity field is subject
to the incompressibility constraint,

V-ui:O [3}

We let T’ denote the fluid interface. The effect of
surface tension is to balance the jump of the normal
stress along the fluid interface. This gives rise to a
Laplace-Young condition for the discontinuity of
the normal stress across I':

[on) = Tkn [4]

where [o]; denotes the jump o, — oy across T, s is
the curvature of T' (positive for a spherical interface),
7 is the surface tension coefficient which is assumed
to be constant, and # is the unit normal vector along
I' directed toward fluid 2. The fluid velocity is
continuous across .

In order to circumvent the problems associated
with implementing the Laplace-Young calculation
at the exact interface boundary, Brackbill and
collaborators developed a method referred to as
the continuum surface force (CSF) method. See the
review by Scardovelli and Zaleski (1999). In this
method, the surface tension jump condition is
converted into an equivalent singular volume force
that is added to the Navier-Stokes equations.
Typically, the singular force is smoothed and acts
only in a finite transition region across the interface.
The system of equations [1]-[2] and the boundary
condition, eqn [4] can be combined into the
following distribution formulation that holds in
both phases:

p(uy +u-Vu)=—Vp+V - (2nD) + pg + Fiing,
V-u=0 N

where the subscript i is dropped (i.e., it is under-
stood that # =u; in fluid 4, etc.,) and Fgy, is singular
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surface tension force that is given by Fgng = —7r6rn,

where ér is the surface delta-function.

Numerical Methods for Multicomponent
Fluid Flows

Interface-Tracking Methods

Boundary-integral methods (BIMs) BIMs can be
highly accurate for modeling free surface flows
with relatively regular interface topologies. The
BIM was apparently first used by Rosenhead in
1932 to study vortex sheet roll-up. In this
approach, the interface is explicitly tracked, but
the flow solution in the entire domain is deduced
solely from information possessed by discrete
points along the interface.

BIMs have been used for both inviscid and Stokes
flows. For a review of Stokes flow computations, see
Pozrikidis (2001), and for a review of computations
of inviscid flows, see Hou et al. (2001). For flows
with both inertia and viscosity, volume integrals
must be incorporated into the formulation.

When inertial forces are negligible (left-hand side
term of eqn [1] is dropped), the velocity #(x() at a
given point x on the interface can be obtained by
means of the boundary-integral formulation,

(A Du(xo) = 2uo(x0) /f G(xg,x
n(x) ds(x) [6]
- /\4;1 /r u(x) - T(xo,x) - n(x) ds(x) [7]

where A is the viscosity ratio, #., is an imposed
velocity prevailing in the absence of the interfaces, and
f(x) is the capillary force function f = k. The tensors
G and T are the Stokeslet and stresslet, respectively:

I i
G(xp,x) 7+¥
r ATAA [8]
6XXX
T(x07 ) - ]

where x = x — x9, 7= |x| 9]

The boundary conditions at the interface, that is, the
stress balance equation [4] and continuity of the
velocity across the interface, are automatically
satisfied by the boundary-integral formulation.

The normal velocity of the interface T'(x,t) is
given by

T n(x) = u(x,t) - n(x) [10]

The shape of the interface does not depend on the
tangential velocity and there are many possible
choices that can be taken, see Hou et al. (2001).

The principal advantages gained by using BIMs
are the reduction of the flow problem by one
dimension since the formulation involves quantities
defined on the interface only and the potential for
highly accurate solutions if the flow has topologi-
cally regular interfaces. In addition, highly efficient
adaptive surface mesh refinement algorithms have
recently been developed to improve the performance
and accuracy of the methods (Cristini et al. 2001).
The main disadvantages are the development of
accurate quadratures of integrals with singular
kernels (particularly in 3D) and the need for local
surgery of the interface in the event of topological
changes.

BIMs have been successfully used for simulations
of complex multiphase flows: drop deformation and
breakup; jets; capillary waves; mixing; drop-to-drop
interaction; suspension of liquid drops in viscous
flow (e.g., see Cristini et al. (2001), Hou et al.
(2001), and Pozrikidis (2001) and the references
therein).

Volume-of-fluid (VOF) method In the VOF
method (see Scardovelli and Zaleski (1999) for a
recent review), the location of the interface is
determined by the volume fraction ¢;; of fluid 1 in
the computational cell, ©;. In cells containing the
interface 0 < ¢;j < 1, ¢;j=1 in cells containing fluid 1,
and ¢; =0 in cells containing fluid 2 as shown in
Figure 1b.

A VOF algorithm is divided into two parts: a
reconstruction step and a propagation step. A
typical interface reconstruction is shown in
Figure 1c. In the piecewise linear interface construc-
tion (PLIC) method, the true interface, as shown in
Figure 1a, is approximated by a straight line
perpendicular to an interface normal vector #; in
each cell Q;. The normal vector n; is determined
from the volume fraction gradient using data from
neighboring cells. With given a volume fraction c¢;

Fluid 2 0 0 0

E2
C:

)

)cﬁ”’\ 01 | 05 | 0.4

)

Fluid 1 0.9 1 1

(a) (b) (c)
Figure 1 VOF representation of an interface: (a) actual
interface, (b) volume fraction, and (c) an approximation to the
interface is produced using an interface reconstruction method
such as piecewise linear approximation as shown.
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and a normal vector #n;;, the interface is given by the
straight line with normal #;; such that area beneath
the line in cell ©Q; is equal to ¢;. More recently,
parabolic reconstructions of the interface have been
used to gain higher-order accuracy for the surface
tension force (e.g., the “parabolic reconstruction of
surface tension” or PROST algorithm).

Once the interface has been reconstructed, its
motion by the underlying flow field must be
modeled by a suitable advection algorithm. The
key here is that the explicit interface reconstruction
enables fluxes to be developed that exactly conserve
mass and do not diffuse the interface.

Capillary effects may be represented by the
continuous surface stress (Scardovelli and Zaleski
1999),

T=—-1I-n®n)|Ve|, Fgg=-V-T [11]

where ¢ is a smoothed version of the volume
fraction. For the flows in which the capillary force
is the dominant physical mechanism, the PROST
algorithm discussed above can be used to signifi-
cantly reduce spurious currents due to inaccurate
representation of surface tension terms and asso-
ciated pressure jump in normal stress.

The distribution form of the fluid equations [5] is
typically solved using a variant of the projection
method for incompressible single phase flows.

VOF methods are popular and have been used in
commercial multiphase flow codes, in models of
inkjet printers, flows with surfactants and in many
other applications (e.g., see Scardovelli and Zaleski
(1999) and James and Lowengrub (2004) and the
references therein). The principal advantage of VOF
methods is their inherent volume-conserving prop-
erty. Nevertheless, spurious bubbles and drops may
be created. The reconstruction of the interface from
the volume fractions and the computation of
geometric quantities such as curvature are typically
less accurate than other methods discussed here

Fluid 2

LA
/

(a) (b)

Fluid 1

Figure 2

since the curvature and normal vectors are obtained
by differentiating a nearly discontinuous function
(volume fraction).

Front-tracking methods The basic idea behind the
original front-tracking method is the use of two
grids as illustrated in Figure 2. One is a standard,
Eulerian finite difference mesh that is used to solve
the fluid equations. The other is a discretized
interface mesh that is used to explicitly track the
interface and compute surface tension force which is
then transferred to the finite difference mesh via a
discrete delta-function. Front tracking was first
proposed by Richtmyer and Morton and further
developed by Glimm and co-workers.

A similar approach was taken by Unverdi and
Tryggvason (see Tryggvason et al. (2001) and Peskin
(2002) for recent reviews), who combined a moving
grid description of the interface with flow computa-
tions on a fixed grid. In this immersed-boundary
approach, all the fluid phases are treated together by
solving a single set of governing equations. This
method has its roots in the original marker-and-cell
(MAC) method, where marker particles are used to
identify each fluid and the immersed-boundary
method of Peskin and McQueen, that was designed
to track moving elastic boundaries in homogeneous
fluids.

The interface is represented discretely by Lagran-
gian markers that are connected to form a front
which lies within and moves through a stationary
Eulerian mesh.

In Tryggvason’s original implementation, the
basic structural unit is a line segment. Since the
interface moves and deforms during the computa-
tion, interface elements must occasionally be added
or deleted to maintain regularity and stability. In the
event of merging/breakup, elements must be relinked
to effect a change in topology.

The interface is represented using an ordered list
of marker particles xp=((x1)p,(x2),),1 <k <N.

u; .
Ui_4 B js1 i+1/2,j+1

Vijsir2

Pij
u; .
i-f1/2,j i-1/2,j

Vij-1i2

()

(a) The basic idea in the front-tracking method is to use two grids — a stationary finite difference mesh and a moving

Lagrangian mesh, which is used to track the interface. (b). Blow-up of the subgrid control volume in (a). (c) Control volume for the

Eulerian mesh, ©; j(1/2).
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The first step in this algorithm is the advection of the
marker particles. A simple bilinear interpolation is
used to find the velocity inside each grid cell (indicated
in Figure 2¢). The marker particles are then advected in
a Lagrangian manner. Once the points have been
advected, a list of connected polynomials (p7(s), p)(s))
is constructed using the marker particles. This gives a
parametric representation of the interface, with s
typically an approximation of the arclength. Both
lists are ordered and thus identify the topology of the
interface. In later works, higher-order polynomials
have been used (e.g., cubic splines) and semi-Lagran-
gian evolutions have been implemented where other
tangential velocities have been used.

As the interface evolves, the markers drift along
the interface following tangential velocities and
more markers may be needed if the interface is
stretched by the flow. Typically, the markers are
redistributed along the interface to maintain an
accurate interface representation.

Next, we compute the surface tension force,

Fong (%, ) = /F T (ds (12

where the subscript f means values evaluated at the
interface T'(¢) and s is arclength. The discrete
numerical implementation of this distribution onto
the fixed grid is in the form of a sum over interface
elements, xy :

x) =Y f10(x — xp4) Asy [13]
R

where As, is the average of the straight line
distances from the point xy ; to the two neighboring
points x¢ ;.1 and xf ;_; as indicated by the subgrid
control volume shown in Figures 2a and 2b. The
delta-function is typically taken to be Peskin’s
discrete Dirac delta-function:

6(x—xfk)
z 1 7[x; '_(xf.i)k]) -
1+c057' flx—xp| <2h
_{znﬂh( 2 )
0 otherwise [14]

Other higher-order alternative forms of the regular-
ized delta-function using the product formula have
recently been proposed.

Using the Frenet relation, the surface tension force
on a short segment of the front is given by

fk:/ mfnfds_/ T—de—TtB—th [19]

where A and B are the segment endpoints that lie
on the boundary of the subgrid control volume

(Figures 2a and 2b), and #; is a tangent vector
computed by fitting a polynomial to the endpoints
of each element.

In the case of flows with varying density and/or
viscosity between the fluid components, there is a
need to calculate the phase indicator function I(x, #)
(defined by interface geometry and position), which
has the value O in fluid 1 and 1 in fluid 2. The
indication function can be determined via the
solution of the equation

Al(x,t) = V- /F b (s, )ds (16

This equation is discretized on the Eulerian mesh
and a discrete delta-function (e.g., eqn [14]) is used.
The fluid properties such as density and viscosity are
determined via the indicator function, that is,
plx,t) = p1 + (p2 — p1)l(x, 1), etc.

As in the volume of ﬂuld algorithm, the distribu-
tion form of the Navier-Stokes equations [5] are
typically solved using a version of Chorin’s projec-
tion method.

An alternative flow solver that can be used to
integrate the flow equations in the presence of an
interface is the immersed-interface method (IIM).
The IIM was developed by Leveque and Li (see the
review Li 2003), and can be used together with
front-tracking as well as level-set methods.

The IIM directly incorporates jump conditions for
the normal stress into the finite difference stencil. The
key idea of this method is to use the jump conditions
in Taylor series expansions of pressure and velocity
near interfaces to derive difference equations that
achieve pointwise second-order accuracy.

The principal advantage of front-tracking algo-
rithms is their inherent accuracy, due in part to the
ability to use a large number of grid points on the
interface. Front-tracking methods can be compli-
cated to implement, particularly in 3D, but give the
precise location and geometry of the interface. In
addition, explicit front tracking permits more than
one interface to be present in a single computational
cell without coalescence, which can be important in
dense bubbly flows, emulsions, etc. One of major
handicaps of front-tracking methods is the difficulty
in modeling topological changes of the interface
such as breakup and coalescence without ad hoc cut-
and-connect and reconnecting parameterized inter-
face (particularly, difficulties in 3D).

Interface-Capturing Methods

Level-set method Level-set methods, introduced by
Osher and Sethian (see the recent review papers
(Osher and Fedkiw 2001, Sethian and Smereka
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Figure 3 (a) Zero contour of ¢ representing the interface I
(b) Surface of ¢ with zero contour.

2003) and the recent texts (Osher and Fedkiw
2002, Sethian 1999)), are popular computational
techniques for tracking moving interfaces. These
methods rely on an implicit representation of the
interface as the zero set of an auxiliary function
(level-set function). The application of these meth-
ods to incompressible, multiphase flows started with
the work of Osher, Merriman, Sussman, Smereka,
Hou, and their collaborators.

In the level-set method, the level-set function
@(x, t) is defined as follows (see Figure 3):

>0 ifxefluidl
¢(x,2)q =0 if x € ' (the interface between fluids)
<0 ifxefluid2

and the evolution of ¢ is given by
¢ +u-Vo=0 (17]

which means that the interface moves with fluid.

To keep the interface geometry well resolved, the
level-set function ¢ should be a distance function near
the interface. However, under the evolution [17] it
will not necessarily remain as such. We note that
special velocity extensions v off the interface (i.e.,
v=wu at the interface, v # u away from interface)
have been recently developed to better maintain ¢ as
a distance function (e.g., Sethian and Smereka (2003)
and Macklin and Lowengrub (2005)). Typically, a
reinitialization step (solving a Hamilton—Jacobi type
equation, eqn [18]) below, is performed to keep ¢ as
a distance function near the interface while keeping
original zero-level set unchanged. More specifically,
given a level-set function, ¢, at time t, the contours
are redistributed according to the steady-state solu-
tion of the equation

0~ S0~ |Vd), dix0)=o() (18]

where S, is the smoothed sign function defined as

0 19

Se(p) = \/ﬁ

where ¢ is usually is one or two grid lengths. After
solving eqn [18] to steady state ¢(x,t) is then
replaced by d(x, Tyeady). Note that d(x, Tycady) 1s
typically a good approximation of the signed
distance function.

The density and viscosity are defined as

p(®) = p2+ (p1 — p2)He(9)

and
n(p) =m + (m — m)He(p) 20]

where H (¢) is the smoothed Heaviside function
given by

0 if ¢ <—¢
Ho(¢) = 11+ 2+ Lsin(ng/e)] if || <e
if p>¢

1
The mollified delta-function is 6.(¢) =dH,/d¢. The

surface tension force is given as

v (Ve V¢

The fluid equations [5] are solved using projection
methods, the IIM or the ghost-fluid (GF) method
(e.g., Osher and Fedkiw (2001, 2002) and Fedkiw
et al. (2003)). The GF method is similar to the [IM
in that jump discontinuities are incorporated in the
finite difference stencil. In the GF algorithm, subcell
resolution is used to mark the interface position and
the values of discontinuous quantities are artificially
extended to grid points neighboring the interface via
extrapolation. A fully second order accurate GF
method for moving interfaces has recently been
developed (Macklin and Lowengrub 2005).

Applications of the level-set method include
multiphase flows, viscoelastic fluid flows and fluid-
structure interactions (e.g., see the reviews Osher and
Fedkiw (2001, 2002), Sethian (1999), and Sethian
and Smereka (2003)).

Advantages of the level-set algorithm include the
simplicity with which it can be implemented, the
ability to capture merging and breakup of interfaces
automatically, and the ease with which the interface
geometry can be described using the level-set
function. A disadvantage of the level-set method is
that mass is not conserved.

Accurate numerical simulations of multiphase
flow and topology transitions require the computa-
tional mesh to resolve both the macroscales (e.g.,
droplet size, flow geometry) and the microscales to
accurately capture local interface geometries near
contact region, van der Waals forces, surfactant
distribution, and Marangoni stresses. Adaptive mesh
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Figure 4 Each of the first three figures has a boxed region that is magnified in the next figure. The rates of magnification are 5, 10,
40/3, respectively. The meshes in the figure are used to simulate the drop-impacting interface problem. Source: Zheng X, Anderson A,

Lowengrub JS, and Cristini V (unpublished).

algorithms have recently been used greatly to
increase accuracy and computational efficiency in
level-set methods. Typically, the methods involve
Cartesian adaptive mesh refinement. Problems
tackled using this approach include droplet forma-
tion in inkjet printers and wake development behind
a ship. Another approach, recently developed, is to
use adaptive unstructured mesh refinement (Zheng
et al. 2005), as shown in Figure 4, in which the
impact of a drop onto a fluid interface is captured.

Hybrid Methods

More recently, a number of hybrid methods, which
combine good features of each algorithm, have been
developed. These include coupled level-set volume-
of-fluid (CLSVOF) algorithms, particle level-set
methods, marker-VOF methods and level-contour
front-tracking methods.

Level-set and VOF methods have recently been
combined. The volume fraction is used to maintain
volume conservation, while the level-set function is
used to describe the interface geometry. After every
time step, the volume-fraction function and level-set
function are made compatible. The coupling
between the level-set function ¢ and the VOF
function ¢ occurs through the normal of the
reconstructed interface and through the fact that
the level-set function is reset to the exact signed
normal distance to the reconstructed interface
(where the area below the reconstructed interface is
given by the volume-fraction function).

In the particle level-set method, Lagrangian
disconnected marker particles are randomly posi-
tioned near the interface and are passively advected
by the flow in order to rebuild the level-set function
in under-resolved zones, such as high-curvature
regions and near filaments. In these regions, the
standard nonadaptive level-set method regularizes
excessively the interface structure and mass is lost.
The use of marker particles significantly ameliorates
these difficulties.

Recently, a hybrid method has been developed,
which uses both marker particles, to reconstruct and
move the interface, and the volume-fraction function
to conserve volume. In this approach, a smooth
motion of the interface, typical of marker methods is
obtained together with volume conservation, as in
standard VOF methods. This work improves both
the accuracy of interface tracking, when compared
to standard VOF methods, and the conservation of
mass, with respect to the original marker method.

Finally, a hybrid method that combines a level
contour reconstruction technique with front-tracking
methods has recently been developed to auto-
matically model the merging and breakup of inter-
faces in three-dimensional flows.

Phase-Field Method

Phase-field, or diffuse-interface, models are an
increasingly popular choice for modeling the motion
of multiphase fluids (see Anderson et al. (1998) for a
recent review). In the phase-field model, sharp fluid
interfaces are replaced by thin but nonzero thickness
transition regions where the interfacial forces are
smoothly distributed. The basic idea is to introduce
a conserved order parameter (e.g., mass concentra-
tion) that varies continuously over thin interfacial
layers and is mostly uniform in the bulk phases (see
Figure 5).

For density-matched binary liquids (let p=1
for simplicity), the coupling of the convective
Cahn-Hilliard equation for the mass concentration
with a modified momentum equation that includes a
phase-field-dependent surface force is known as
Model H (Hohenberg and Halperin 1977). In the
case of fluids with different densities a phase-field
model has been proposed by Lowengrub and
Truskinovsky. Complex flow morphologies and
topological transitions such as coalescence and
interface breakup can be captured naturally and in
a mass-conservative and energy-dissipative fashion
since there is an associated free energy functional.
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Figure 5 A concentration prome across an interface with
interface thickness, ¢.

The phase field is governed by the following
advective Cahn-Hilliard equation:

o fu-Ve=V- (M(c)Vh) [22]

p=F(c)—&Ac [23]

where M(c)=c(1 —¢) is the mobility, F(c)=
(1/4)c2(1 — ¢)* is a Helmholtz free energy that
describe the coexistence of immiscible phases, and
€ is a measure of interface thickness and € ~ £ (see
Figure 5). It can be shown that in the sharp interface
limit €— 0, the classical Navier-Stokes system
equations and jump conditions are recovered.

The singular surface tension force is Fe=
—6V27eV - (Ve ® V), where 7 is the surface ten-
sion coefficient. An alternative surface tension force
formulation based on the CSF is Fyng= —6V27¢V-
(Ve/|Ve|)| Vel Ve.

Recently, very efficient nonlinear multigrid meth-
ods have been developed to solve implicit discretiza-
tions of the Cahn-Hilliard equation (e.g., Kim et al.
(2004)). These schemes have been combined with
projection methods to solve the Navier-Stokes
equations to perform simulations of multiphase
flows.

An example of simulation of liquid thread breakup
using a phase-field method is shown in Figure 6.
A long cylindrical thread of a viscous fluid 1 is in an
infinite mass of another viscous fluid 2. If the thread
becomes varicose with wavelength ), the equilibrium
of the column is unstable, provided A\ exceeds the
circumference of the cylinder. This is the Rayleigh
capillary instability that results in surface-tension-
driven breakup of the thread.

An advantage of the phase-field approach is that it
is straightforward to include more complex physical
effects. For example, the binary model can be

>-—<
>-¢
>-—< D¢

Figure 6 Time evolution leading to multiple pinch-offs. The
evolution is from top to bottom and left to right. The domain is
axisymmetric, the initial velocities are zero everywhere, and the
concentration field is given by c(r,z)=0.5(1 —tanh((r — 0.5—
0.05co0s (2))/(2v2¢))) on Q=(0,7) x (0,27). Densities are
matched and viscosity ratio is 0.5.

\

straightforwardly extended to describe three-
component flows as follows.

Consider a ternary mixture and denote the
composition of components 1, 2, and 3, expressed
as mass fractions, by ci,c2, and c3, respectively.

Therefore,

3
ch‘zl,

i=1

0<c¢<1 [24]

The composition of a ternary mixture (A, B, and C)
can be mapped onto an equilateral triangle (the
Gibbs triangle (Porter and Easterling 1993)) whose
corners represent 100% concentration of A, B, or C
as shown in Figure 7a. Mixtures with components
lying on lines parallel to BC contain the same
percentage of A, those with lines parallel to AC have
the same percentage of B concentration, and
analogously for the C concentration. In Figure 7a,
the mixture at the position marked ‘o’ contains 60% A,
10% B, and 30% C. Because the concentrations sum
to unity, only two of them need to be determined,
say c1,C2.

The evolution of ¢; and ¢, is governed by the
following advective ternary Cahn-Hilliard equation:

861

5 +u-Vey =V - (M(ct,c2)Vi) 25]

C G,

(a) (b)

Figure 7 (a) Gibbs triangle. (b) Contour plot of the free energy
F(c1, c2) on the Gibbs triangle.
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Jdc
b u Ve =V (Me,e)Vi) 6]
F
n1 = % — EzAcl — O.SGZACZ [2’7]
1
F
B2 = %262) —0.56€Act — Acy 28]

where M(cq,c) = Zii cicj is the mobility and
F(c1,¢2) is the Helmholtz free energy that can be
used to model the miscibility of the components. An
example of a free energy (used in the simulation
shown in Figure 8 below) for which fluids 1 and 3

are immiscible and fluid 2 is preferentially miscible
with fluid 3 is:

=221 —c1 — ) +(c1 +0.2)(c; — 0.2)*
+ (1.2 =¢1 —c2)(ca — 0.4)?

F(C1, 62)

The contours of F on the Gibbs triangle are shown
in Figure 7b.

The smgular surface tension force is Fiing =
—6/2¢ Z, 17V - (Ve ® V¢;), where the physical
surface tension coefficients 7; between two fluids
and j are decomposed into the phase-specific surface
tensions 7; such that 7;; =7; + 7;.

As a demonstration of the evolution possible in
partially miscible liquid systems, we present an
example in which there is a gravity-driven
(Rayleigh-Taylor) instability that enhances the
transfer of a preferentially miscible contaminant
from one immiscible fluid to another in 2D. In this
system, the ternary Cahn-Hilliard system is solved
using nonlinear multigrid methods and a projection
method (Kim and Lowengrub (in press)) is used to
solve the flow equations [5].

In Figure 8 (first column), the top half of the domain
initially consists of a mixture of fluids 1 and 2,
and the bottom half consists of fluid 3, which is
immiscible with fluid 1. The contours of ¢, ¢;, and ¢3
are visualized in gray-scale where darker regions
denote larger values of cq,c;, and c3, respectively.
In the top row, the contours of fluid 1 are shown, the
middle and bottom rows correspond to fluids 2 and 3,
respectively.

Fluid 2 is preferentially miscible with fluid 3.
Fluid 1 is assumed to be the lightest and fluid 2 the
heaviest. The density of the 1/2 mixture is heavier
than that of fluid 3, so the density gradient induces
the Rayleigh-Taylor instability.

The evolution of the three phases is shown in
Figure 8. As the simulation begins, the 1/2 mixture
falls and fluid 2 diffuses into fluid 3. A characteristic
Rayleigh-Taylor (inverted) mushroom forms, the
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Figure 8 Evolution of concentration of fluid 1 (top row), 2 (middle row), and 3 (bottom row). The contours of cq, ¢, and c; are
visualized in gray-scale where darker regions denote larger values of ¢y, ¢z, and cs, respectively.
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surface area of the 1/3 interface increases, and
vorticity is generated and shed into the bulk.
As fluid 2 is diffused from fluid 1, the pure fluid
1 rises to the top as shown in Figure 8. Imagining
that fluid 2 is a contaminant in fluid 1, this
configuration provides an efficient means of cleans-
ing fluid 1 since the buoyancy-driven flow enhances
the diffusional transfer of fluid 2 from fluid 1 to
fluid 3.

The advantages of the phase-field method are:
(1) topology changes are automatically described;
(2) the composition field ¢ has a physical meaning
not only near interface but also in the bulk phases;
(3) complex physics can easily be incorporated into
the framework, the methods can be straightforwardly
extended to multicomponent systems, and miscible,
immiscible, partially miscible, and lamellar phases
can be modeled.

Associated with diffuse interfaces is a small scale
€, proportional to the width of the interface. In real
physical systems describing immiscible fluids, € can
be vanishingly small. However, for numerical
accuracy ¢ must be at least a few grid lengths in
size. This can make computations expensive. One
way of ameliorating this problem is to adaptively
refine the grid only near the transition layer. Such
methods are under development by various research
groups.

Phase-field methods have been used to model
viscoelastic flow, thermocapillary flow, spinodal
decomposition, the mixing and interfacial stretch-
ing, in a shear flow, droplet breakup process,
wave-breaking and sloshing, the fluid motion near
a moving contact line, and the nucleation and
annihilation of an equilibrium droplet (see the
references in the review paper Anderson et al.
(1998)).

Conclusions and Future Directions

In this paper we have reviewed the basic ideas of
interface-tracking and interface-capturing methods
that are critical in simulating the motion of inter-
faces in multicomponent fluid flows. The differences
between these various formulations lie in the
representation and the reconstruction of interfaces.
The advantages and disadvantages of the algorithms
have been discussed. While there has been much
progress on the development of robust multifluid
solvers, there is much more work to be done.
Promising future directions for research include the
incorporation of adaptive mesh refinement into the
algorithms and the development of efficient hybrid

schemes that combine the best features of individual
methods.

See also: Breaking Water Waves; Capillary Surfaces;
Fluid Mechanics: Numerical Methods; Incompressible
Euler Equations: Mathematical Theory; Inviscid
Flows; Non-Newtonian Fluids; Partial Differential
Equations: Some Examples; Viscous Incompressible
Fluids: Mathematical Theory; Vortex Dynamics.
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Introduction

Intermittency has several meanings in turbulence.
The oldest one, now most often labeled “external”
or “large-scale” intermittency, refers to the coex-
istence of turbulent and laminar regions in inho-
mogeneous turbulent flows, such as in boundary
layers or in free shear layers. In those cases, the
interface between laminar irrotational flow and
turbulent vortical fluid is typically sharp and
corrugated. An observer sitting near the edge of
the layer is immersed in turbulent fluid only part of
the time.

The intermittency coefficient v measures the
fraction of turbulent fluid over the sampling
universe over which the statistics are taken. For
example, in a boundary layer such as that in
Figure 1, the intermittency coefficient as a function
of wall distance measures the fraction of turbulent
fluid at a given distance from the wall. External
intermittency is important in any attempt to model
realistic turbulent flows, which are almost always
inhomogeneous. Consider, for example, the classical
homogeneous relation in eqn [1] between the mean
kinetic energy K of the turbulent fluctuations and
the energy dissipation rate ¢:

3/2
€= cKT 1]

C—>Flo
y 2 v
v e -

0 1

Figure 1 Sketch of a turbulent boundary layer, and of the
associated intermittency factor. An observer such as A, at a
distance y from the wall, only sees turbulent flow for a fraction ~
of the time.

Zheng X, Lowengrub ], Anderson A, and Cristini V (2005)
Adaptive unstructured volume remeshing II. Application to
two- and three-dimensional level-set simulations of multiphase
flow. Journal of Computational Physics 208: 626—650.

where L is the length scale of the largest eddies, and
C~ 0.1 is an experimentally determined constant.
Such relations are often implicit in turbulent models,
and they have to be modified to account for
intermittency. Equation [1] only holds within the
turbulent regions where the energy and the dissipa-
tion rates are Kt and er, while the overall mean
values used in the modeling conservation equations
are K=~Kt and € =~er. The true overall relation
should therefore be

i K3/2
L

which may differ substantially from eqn [1],
especially near the edge of the layer. Experimental
values and rough theoretical estimates for the
distribution of the intermittency coefficient are
available for most practical turbulent flows.

e=Cy 2]

Internal Intermittency

While the external intermittency just described is
probably the most important one from the point of
view of applications, it is not the most interesting
from the theoretical point of view. Turbulence is a
multiscale phenomenon which is inhomogeneous
at all length scales, from the largest ones to the
inner viscous cutoff (see Turbulence Theories).
Moreover, this inhomogeneity goes beyond what
could be expected just from the statistics of a
random process. Consider, for example, the velo-
city difference Au between two points separated
by a distance 7. The original Kolmogorov formula-
tion of the energy cascade assumes that the
probability density function (PDF), p(Au), is a
universal function in the inertial range of scales,
whose only parameter is a velocity scale depending
on 7. It then follows from Kolmogorov’s analysis
that

p(Au) = F[Au/ ('] 3]

where & is the average energy transfer rate across
scales per unit mass, and the average () is taken
either over the whole flow or over a suitably designed

ensemble of experiments. In an equilibrium system,
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global energy conservation implies that £ is equal to
the average viscous dissipation per unit mass:

g =v|Vul 4]

In eqn [4], the kinematic viscosity of the fluid is v, and
|Vu| is the Ly-norm of the velocity gradient tensor.
Equation [3] is valid as long as the separation 7 is
much larger than the Kolmogorov viscous cutoff
n=(3/2)"* and much smaller than the integral
scale of the largest eddies L. =u'3 /2, where #' is the
root-mean-square value of the fluctuations of one
velocity component. The extent of this inertial range
is a function of the Reynolds number Rey =#'L. /v:

L./n=Re) 5]

The strict similarity hypothesis in eqn [3] is not well
satisfied by experiments. While the velocity distribu-
tion at a given point is approximately Gaussian,
Figure 2a shows that the velocity increments become
increasingly non-Gaussian as the spatial separation
is made much smaller than L.. It was also soon
noted that the dependence of eqn [3] on a single
parameter such as & was theoretically suspect, since
it is difficult to see how the PDFs of a whole set of
local properties, such as the Awu for different
intervals, could depend only on a single global
property. Kolmogorov himself sought to bypass that
difficulty by substituting eqn [3] by a “refined
similarity” hypothesis,

p(Au) = F[Au/()'"?] 6]

where ¢, is no longer a global average, but the mean
value of the dissipation over a ball of radius of order
r centered at the midpoint of the interval. This
refined similarity is better satisfied by experiments

(a)

(see Figure 2b), although, from the practical point of
view, it just transfers the problem of characterizing
Au to that of characterizing the statistics of ¢,.

It has become customary to measure the behavior
of p(Au) in terms of its structure functions,

S(n) :/700 Au"p(Au)dAu [7]

which can be normalized as generalized flatness
factors,

o(n)=S(n)/S(2)"? 8]
It follows from the strict similarity hypothesis [3] that
S(n)~ "3 [9]

and that all the o(n) should be independent of the
separation.

For example, the fourth-order flatness of a
Gaussian distribution is o(4)=3. Figure 3 shows
that this is not true. The flatness increases as the
separation decreases, and it only levels off at lengths
of the order of the Kolmogorov viscous scale. For
separations in that viscous range the flow is smooth,
Au ~ (Oyu)r, and

_ 2;1/2

o(n) ~ (Oxu)" [ (Osu) [10]

It follows from eqn [10] and from Figure 3 that the
velocity gradients become increasingly non-Gaussian
as L. and 7 separate at high Reynolds numbers. The
velocity differences across intervals which are large
with respect to 7 also become very non-Gaussian
when 7 < L..

Because the velocity difference between two
points which are not too close to each other can be
expressed as the sum of velocity differences over
subintervals, a loose application of the central limit

107"

1072

PDF

1073

4
10 10

(b)

Figure 2 PDFs of the differences of the velocity component in the direction of the separation (for separations in the inertial range of
scales). r/L.=0.02—0.36, increasing by factors of 2; equivalent to r/n=180—-3000. Nominally isotropic turbulence at Reynolds
number Re; =10°.. (a) Au is normalized with the global energy dissipation rate z; distributions are wider as the separation decreases.
(b) Au is scaled with the locally averaged dissipation over the separation interval. Data courtesy of H Willaime and P Tabeling.
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Figure 3 Fourth-order flatness of the differences of the
velocity component in the direction of the separation, for
separations in the inertial range of scales, r/L.=05 to
r/m=2.. The Reynolds numbers of the different flows range
from Re, =1800 to 10°.. Data in part courtesy of H Willaime,
P Tabeling, and R A Antonia.

theorem would suggest that its PDF should be
roughly Gaussian. The key conditions for that to
happen are that the summands should be mutually
independent, that their magnitudes should be com-
parable, and that each of them has a probability
distribution with a finite variance. The first of those
three conditions is probably a good approximation
if the separation is much longer than the viscous
cutoff, but the second one depends on the structure
of the flow. The experimental non-Gaussian beha-
vior suggests the existence of occasional very strong
velocity jumps. In the viscous range of scales, those
structures have been identified both experimentally
and numerically as very strong linear vortices, in
whose neighborhoods the strongest gradients are
generated. An example of a tangle of such structures
is shown in Figure 4.

In another example, the vorticity in decaying
two-dimensional turbulence concentrates very
quickly into relatively few strong compact vortices,
which are stable except when they interact with
each other. The velocity field is dominated by them,
and the flatness of the velocity increments reaches
values of the order of o(4)~50-100, even at
moderate Reynolds numbers. That case is interest-
ing because something can be said about the
probability distribution of the velocity gradients.
We have noted that the PDF of a sum of mutually
comparable independent random variables with
finite variances tends to Gaussian when the number
of summands is large. This well-known theorem is a
particular case of a more general result about sums
of random variables whose incomplete second
moments diverge as

,uz(s):/ x2p(x)dx ~ s>~ when s—oo  [11]

S

Figure 4 Intense vortex tangle in the logarithmic layer of a
turbulent channel. The vortex diameters are of the order of 10,
and the size of the bounding box is of the order of the channel
width. Reproduced with permission of J C del Alamo.

When 0 < o < 2, the sums of such variables tend
to a family of “stable” distributions parametrized by
a. The Gaussian case is the limit of that family when
a=2. In the case of two-dimensional vortices with
very small cores, the velocity gradients at a distance
R from the center of the vortex behave as 1/R?. If
we take s in eqn [11] to be one of those velocity
derivatives, its probability distribution is propor-
tional to the area covered by gradients with a given
magnitude, and

1/2

p2(s) ~ / R*27RdR ~s7! [12]
0

The velocity derivatives at any point, which are
the sums of the velocity derivatives induced by all
the randomly distributed neighboring vortices,
should therefore be distributed according to the
stable distribution with o =1, which is Cauchy’s

p(s)

Cc

R o

This distribution has no moments for n >1. Its
tails decay as s, and the distribution of the
gradients essentially reflects the properties of the
closest vortex. In real two-dimensional turbulent
flows, the distribution [13] is followed fairly well,
but its extreme tails only reach to the maximum
values of the velocity gradient found within the
viscous vortex cores, which are not exactly point
vortices.
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Other similar general results can be derived that
link the behavior of the structure functions with the
properties of the stable distributions corresponding
to the type of flow singularities expected in the limit
of infinite Reynolds number.

The common feature of the two cases just
described is the presence of strong structures that
live for long times because viscosity stabilizes
them. They are therefore more common than
what could be expected on purely statistical
grounds. They are responsible for the tails of the
probability distributions of the velocity derivatives,
but they are not the only intermittent features of
turbulent flows. The increase of the flatness in
Figure 3 below r ~50n is clearly connected with
the presence of the coherent vortices, but even for
larger separations there is a smooth evolution of
o(4) that suggests that the formation of intense
structures is a gradual process that takes place
across the inertial range. Much less is known
about those hypothetical inertial structures than
about the viscous ones.

We can now recast the problem of intermittency
in Navier-Stokes turbulence into geometric terms.
The defining empirical observation for that system is
that the energy dissipation given by eqn [4] does not
vanish even in the infinite Reynolds number limit in
which v —0. This means that the flow has to
become singular as |Vu|L /v NRei/z. The strict
similarity approximation assumes that those singu-
larities are uniformly distributed across the flow, but
the experimental evidence just discussed shows that
this is not true. The singularities are distributed
inhomogeneously, and the inhomogeneity develops
across the inertial cascade. The problem of inter-
mittency is to characterize the geometry of the
support of the flow singularities in the limit of
infinite Reynolds number.

In the absence of detailed physical mechanisms
for the dynamics of the inertial range, most
intermittency models are based on plausible pro-
cesses compatible with the invariances of the
inviscid Euler equations. The precise power law
given in eqn [9] for the structure functions depends
on the strict similarity hypothesis [3], but the fact
that it is a power law only depends on the scaling
invariances of the equations of motion. The
energies and sizes of the eddies in the inertial
range are too small for the integral scales of the
flow to be relevant, and too large for the viscosity
to be important. They therefore have no intrinsic
velocity or length scales. Under those conditions,
any function of the velocity which depends on
a length has to be a power. Consider a quantity
with dimensions of velocity, such as u(r) =S(n)'/",

which is a function of a distance such as r.
On dimensional grounds we should be able to
write it as

u(r) = UE(p) [14]

where p=7/L, and L and U(L) are arbitrary length
and velocity scales. The value of u(r) should not
depend on the choice of units, and we can
differentiate eqn [14] with respect to L to give

Oru =(dU/dL)F(p) — UpL~Y(dF/dp)=0  [15]
which can only be satisfied if

dF
dp

and ¢(=L(dU/dL)/U is constant. This suggests
generalizing eqn [9] to

= (F=F~ g [16]

S(n) ~r¢™ [17]

where the exponents are empirically adjusted. Only
¢(3)=1 can be derived directly from the Navier—
Stokes equations. Equation [17] implies that o(#n)
satisfies a power law with exponent ((n)— n((2)/2.
In Figure 3, for example, the flatness follows a
reasonably good power law outside the viscous
range, consistent with ((4) —2¢(2)~ —0.12. The
anomalous behavior near the viscous limit, and
similar limitations at the largest scales, mean that
only very high Reynolds number flows can be used
to measure the scaling exponents, and that the range
over which they are measured is never very large.
Moreover, the integrand of the higher-order struc-
ture functions peaks at the extreme tails of the
probability distributions of the velocity differences,
which implies that very long experimental samples
have to be used to accumulate enough statistics to
measure the high-order exponents. For these and for
other reasons, the scaling exponents above 7> 8—10
are poorly known. This is unfortunate because we
will see later that some of the most interesting
intermittency properties of the velocity field, such as
the nature of the flow singularities in the infinite
Reynolds number limit, depend on the behavior of
the ((n) for large n.

Experimental values for the scaling exponents are
given in Table 1. They are generally smaller than the
ones predicted by the strict similarity approxima-
tion, implying that the moments of the velocity
differences decrease with the separation more slowly
than they would if they were self-similar, and
suggesting that new stronger structures become
important as the scale decreases.

Note that we have included in the table values for
odd-order powers. Up to now we have not specified



148 Intermittency in Turbulence

Table 1 Longitudinal scaling exponents

Order Experimental Strict similarity
2 0..70 £+ ..01 0.667

3 1.00 1

4 1..30 £..038 1.333

5 1..56 £+ ..04 1.667

6 1.79+£..03 2.000

7 1..99 £+ ..10 2.333

8 2.22+..05 2.667

The values on the second column are averages from different
experiments, and the standard deviations reflect scatter among
experiments. The third column is the value from the strict
similarity equation [9].

which velocity component is being analyzed, but
most experiments refer to the one in the direction
of the separation. That is the easiest case to
measure, specially if time is used as a surrogate
for distance, and those PDFs are not symmetric
even in isotropic turbulence. Negative increments
are more common than positive ones because of the
extra energy required to stretch a vortex, and the
effect is clearly visible in the distributions in
Figure 2. Those longitudinal odd-order structure
functions do not vanish, and their scaling expo-
nents are the ones given in the table. The transverse
structure functions are those in which the velocity
component is normal to the separation, and their
odd-order moments vanish by symmetry in iso-
tropic turbulence. There has been a lot of discus-
sion about whether the longitudinal scaling
exponents of even orders differ from the transverse
ones. Early results suggested that the latter are
lower than the former, undermining the case for
intermittency theories based on similarity argu-
ments, and suggesting that a more mechanistic
approach was needed. The present consensus
seems to be that both sets of exponents are
equal, but that there are residual effects of low
Reynolds numbers and of flow anisotropy that are
difficult to avoid experimentally. The question is
still open.

Multiplicative Models

The most successful phenomenological models for
the geometry of intermittency are based on the
concept of a multiplicative cascade. Consider some
flow property v, such as the locally averaged
energy transfer rate by eddies of size r,, which
cascades into smaller eddies of size 7, which is
some fraction of 7,. Denote by pu(v.) the

probability distribution of the value of v at the
step k of the cascade.

Assume that the cascade is Markovian in the sense
that the probability distribution of v;, depends only
on its value in the previous step,

P (vps1) = / pr(wenlve Rpeve) dog (18]

This is in contrast to some more complicated
functional dependence, such as on the values of v,
in some extended spatial neighborhood, or on
several previous cascade stages. This assumption
intuitively implies that v, evolves faster, or on a
smaller scale, than v, and that it is in some kind of
equilibrium with its precursor. If the cascade is
deterministic in that sense, v, can be represented as
a product

Vp/V0 = Qrqp-1- - - q1 [19]

in which the factors g, =v,/v,_1 are statistically
independent of each other.

If the underlying process is invariant to scaling
transformations, the transition probability density
function has to have the form

pr(Vpstlve) = Ulzlw(%ﬂ; k) [20]

The multiplicative model works most naturally
for positive variables, and we will assume that
to be the case in the following, but most results
can be generalized to arbitrary distributions. We
will also assume for simplicity that all the
cascade steps are equivalent, so that the distribu-
tion w(q) of the multiplicative factors is indepen-
dent of k, and depends only on our choice for
Tkt / Tk

Local deterministic self-similar cascades lead
naturally to intermittent distributions, in the sense
that the high-order flatness factors for v, become
arbitrarily large as k increases. It follows from eqns
[18]-[20] that the nth order moment for p, can be
written as

Si(m) = / Epe() de=So(mSu(n)  [21]

where S, (n) is the nth order moment of the
multiplicative factor g, and # is any real number
for which the integral exists. If we define flatness
factors as in eqn [7], we can rewrite eqn [21] as

ok(m) =00(n)u(m)* [22]
It follows from Chebichev’s inequality that

S(n)>S(n—2)8(2)> S(n—4)SQ2)*...  [23]
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from where
1<0(4) <o(6)... [24]

which is true for any distribution of positive
numbers. Equality only holds for trivial distributions
concentrated on a single value. The product in eqn
[22] therefore increases without bound with the
number of cascade steps, and the flatness factors
diverge.

It is tempting to substitute k& in [21] by a
continuous variable, in which case the PDFs form
a continuous semigroup generated by infinitesimal
scaling steps. This leads to beautiful theoretical
developments, but it is not necessarily a good idea
from the physical point of view. For example, while
it might be reasonable to assume that the properties
of an eddy of size r depend only on those of the
eddy of size 2r from which it derives, the same
argument is weaker when applied to eddies of
almost equal sizes. We will restrict ourselves here
to the discrete case.

Limiting Distributions

The multiplicative process just described can be
summarized as a family of distributions p,(v;) such
that the probability density for the product of two
variables is

P(Vk,Vky) = Pkykes (Vg k) [25]

and it is natural to ask whether there is a limiting
distribution for large k. We know that, in the case of
sums, rather than products, such distributions tend
to be Gaussian under fairly general conditions, and
the first attempt to analyze [25] was to reduce it to a
sum by defining

z = k™" log(vi/vo) [26]

The argument was that z would tend to a Gaussian
distri