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FOREWORD

I n bygone centuries, our physical world appeared to be filled to the brim with mysteries. Divine powers
could provide for genuine miracles; water and sunlight could turn arid land into fertile pastures, but the
same powers could lead to miseries and disasters. The force of life, the vis vitalis, was assumed to be the
special agent responsible for all living things. The heavens, whatever they were for, contained stars and other
heavenly bodies that were the exclusive domain of the Gods.

Mathematics did exist, of course. Indeed, there was one aspect of our physical world that was recognised to
be controlled by precise, mathematical logic: the geometric structure of space, elaborated to become a genuine
form of art by the ancient Greeks. From my perspective, the Greeks were the first practitioners of ‘mathematical
physics’, when they discovered that all geometric features of space could be reduced to a small number of
axioms. Today, these would be called ‘fundamental laws of physics’. The fact that the flow of time could be
addressed with similar exactitude, and that it could be handled geometrically together with space, was only
recognised much later. And, yes, there were a few crazy people who were interested in the magic of numbers,
but the real world around us seemed to contain so much more that was way beyond our capacities of analysis.

Gradually, all this changed. The Moon and the planets appeared to follow geometrical laws. Galilei and
Newton managed to identify their logical rules of motion, and by noting that the concept of mass could be
applied to things in the sky just like apples and cannon balls on Earth, they made the sky a little bit more
accessible to us. Electricity, magnetism, light and sound were also found to behave in complete accordance
with mathematical equations.

Yet all of this was just a beginning. The real changes came with the twentieth century. A completely new
way of thinking, by emphasizing mathematical, logical analysis rather than empirical evidence, was pioneered
by Albert Einstein. Applying advanced mathematical concepts, only known to a few pure mathematicians, to
notions as mundane as space and time, was new to the physicists of his time. Einstein himself had a hard
time struggling through the logic of connections and curvatures, notions that were totally new to him, but are
only too familiar to students of mathematical physics today. Indeed, there is no better testimony of Einstein’s
deep insights at that time, than the fact that we now teach these things regularly in our university classrooms.

Special and general relativity are only small corners of the realm of modern physics that is presently being
studied using advanced mathematical methods. We have notoriously complex subjects such as phase transitions in
condensed matter physics, superconductivity, Bose-Einstein condensation, the quantum Hall effect, particularly
the fractional quantum Hall effect, and numerous topics from elementary particle physics, ranging from fibre
bundles and renormalization groups to supergravity, algebraic topology, superstring theory, Calabi-Yau spaces
and what not, all of which require the utmost of our mental skills to comprehend them.

The most bewildering observation that we make today is that it seems that our entire physical world
appears to be controlled by mathematical equations, and these are not just sloppy and debatable models, but
precisely documented properties of materials, of systems, and of phenomena in all echelons of our universe.

Does this really apply to our entire world, or only to parts of it? Do features, notions, entities exist that are
emphatically 7ot mathematical? What about intuition, or dreams, and what about consciousness? What
about religion? Here, most of us would say, one should not even try to apply mathematical analysis, although
even here, some brave social scientists are making attempts at coordinating rational approaches.



No, there are clear and important differences between the physical world and the mathematical world.
Where the physical world stands out is the fact that it refers to ‘reality’, whatever ‘reality’ is. Mathematics is
the world of pure logic and pure reasoning. In physics, it is the experimental evidence that ultimately decides
whether a theory is acceptable or not. Also, the methodology in physics is different.

A beautiful example is the serendipitous discovery of superconductivity. In 1911, the Dutch physicist Heike
Kamerlingh Onnes was the first to achieve the liquefaction of helium, for which a temperature below 4.25 K
had to be realized. Heike decided to measure the specific conductivity of mercury, a metal that is frozen solid
at such low temperatures. But something appeared to go wrong during the measurements, since the volt
meter did not show any voltage at all. All experienced physicists in the team assumed that they were dealing
with a malfunction. It would not have been the first time for a short circuit to occur in the electrical
equipment, but, this time, in spite of several efforts, they failed to locate it. One of the assistants was
responsible for keeping the temperature of the sample well within that of liquid helium, a dull job, requiring
nothing else than continuously watching some dials. During one of the many tests, however, he dozed off.
The temperature rose, and suddenly the measurements showed the normal values again. It then occurred to
the investigators that the effect and its temperature dependence were completely reproducible. Below 4.19
degrees Kelvin the conductivity of mercury appeared to be strictly infinite. Above that temperature, it is
finite, and the transition is a very sudden one. Superconductivity was discovered (D. van Delft, “Heike
Kamerling Onnes”, Uitgeverij Bert Bakker, Amsterdam, 2005 (in Dutch)).

This is not the way mathematical discoveries are made. Theorems are not produced by assistants falling
asleep, even if examples do exist of incidents involving some miraculous fortune.

The hybrid science of mathematical physics is a very curious one. Some of the topics in this Encyclopedia
are undoubtedly physical. High T, superconductivity, breaking water waves, and magneto-hydrodynamics,
are definitely topics of physics where experimental data are considered more decisive than any high-brow
theory. Cohomology theory, Donaldson-Witten theory, and AdS/CFT correspondence, however, are examples
of purely mathematical exercises, even if these subjects, like all of the others in this compilation, are strongly
inspired by, and related to, questions posed in physics.

It is inevitable, in a compilation of a large number of short articles with many different authors, to see quite a
bit of variation in style and level. In this Encyclopedia, theoretical physicists as well as mathematicians together
made a huge effort to present in a concise and understandable manner their vision on numerous important
issues in advanced mathematical physics. All include references for further reading. We hope and expect that
these efforts will serve a good purpose.

Gerard ’t Hooft,
Spinoza Institute,

Utrecht University,
The Netherlands.



PREFACE

athematical Physics as a distinct discipline is relatively new. The International Association of

Mathematical Physics was founded only in 1976. The interaction between physics and mathematics
has, of course, existed since ancient times, but the recent decades, perhaps partly because we are living
through them, appear to have witnessed tremendous progress, yielding new results and insights at a dizzying
pace, so much so that an encyclopedia seems now needed to collate the gathered knowledge.

Mathematical Physics brings together the two great disciplines of Mathematics and Physics to the benefit of
both, the relationship between them being symbiotic. On the one hand, it uses mathematics as a tool to
organize physical ideas of increasing precision and complexity, and on the other it draws on the questions
that physicists pose as a source of inspiration to mathematicians. A classical example of this relationship
exists in Einstein’s theory of relativity, where differential geometry played an essential role in the formulation
of the physical theory while the problems raised by the ensuing physics have in turn boosted the development
of differential geometry. It is indeed a happy coincidence that we are writing now a preface to an
encyclopedia of mathematical physics in the centenary of Einstein’s annus mirabilis.

The project of putting together an encyclopedia of mathematical physics looked, and still looks, to us a
formidable enterprise. We would never have had the courage to undertake such a task if we did not believe,
first, that it is worthwhile and of benefit to the community, and second, that we would get the much-needed
support from our colleagues. And this support we did get, in the form of advice, encouragement, and
practical help too, from members of our Editorial Advisory Board, from our authors, and from others as well,
who have given unstintingly so much of their time to help us shape this Encyclopedia.

Mathematical Physics being a relatively new subject, it is not yet clearly delineated and could mean
different things to different people. In our choice of topics, we were guided in part by the programs of recent
International Congresses on Mathematical Physics, but mainly by the advice from our Editorial Advisory
Board and from our authors. The limitations of space and time, as well as our own limitations, necessitated
the omission of certain topics, but we have tried to include all that we believe to be core subjects and to cover
as much as possible the most active areas.

Our subject being interdisciplinary, we think it appropriate that the Encyclopedia should have certain
special features. Applications of the same mathematical theory, for instance, to different problems in physics
will have different emphasis and treatment. By the same token, the same problem in physics can draw upon
resources from different mathematical fields. This is why we divide the Encyclopedia into two broad sections:
physics subjects and related mathematical subjects. Articles in either section are deliberately allowed a fair
amount of overlap with one another and many articles will appear under more than one heading, but all are
linked together by elaborate cross referencing. We think this gives a better picture of the subject as a whole
and will serve better a community of researchers from widely scattered yet related fields.

The Encyclopedia is intended primarily for experienced researchers but should be of use also to beginning
graduate students. For the latter category of readers, we have included eight elementary introductory articles for easy
reference, with those on mathematics aimed at physics graduates and those on physics aimed at mathematics
graduates, so that these articles can serve as their first port of call to enable them to embark on any of the main
articles without the need to consult other material beforehand. In fact, we think these articles may even form the



foundation of advanced undergraduate courses, as we know that some authors have already made such use of them.

In addition to the printed version, an on-line version of the Encyclopedia is planned, which will allow both
the contents and the articles themselves to be updated if and when the occasion arises. This is probably a
necessary provision in such a rapidly advancing field.

This project was some four years in the making. Our foremost thanks at its completion go to the members
of our Editorial Advisory Board, who have advised, helped and encouraged us all along, and to all our
authors who have so generously devoted so much of their time to writing these articles and given us much
useful advice as well. We ourselves have learnt a lot from these colleagues, and made some wonderful
contacts with some among them. Special thanks are due also to Arthur Greenspoon whose technical expertise
was indispensable.

The project was started with Academic Press, which was later taken over by Elsevier. We thank warmly
members of their staff who have made this transition admirably seamless and gone on to assist us greatly in
our task: both Carey Chapman and Anne Guillaume, who were in charge of the whole project and have been
with us since the beginning, and Edward Taylor responsible for the copy-editing. And Martin Ruck, who
manages to keep an overwhelming amount of details constantly at his fingertips, and who is never known to
have lost a single email, deserves a very special mention.

As a postscript, we would like to express our gratitude to the very large number of authors who generously
agreed to donate their honorariums to support the Committee for Developing Countries of the European
Mathematical Society in their work to help our less fortunate colleagues in the developing world.

Jean-Pierre Frangoise
Gregory L. Naber
Tsou Sheung Tsun
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Introductory Articles

Introductory Article: Classical Mechanics

G Gallavotti, Universita di Roma “La Sapienza,”
Rome, ltaly

© 2006 G Gallavotti. Published by Elsevier Ltd.
All rights reserved.

General Principles

Classical mechanics is a theory of motions of point
particles. If X = (xy,...,x,) are the particle positions
in a Cartesian inertial system of coordinates, the
equations of motion are determined by their masses

(mi,...,my,), m; > 0, and by the potential energy of
interaction, V(xq,...,x,), as
mixi = =0y, V(x1,...,x,), i=1,...,n [1]

here x;=(x;1,...,x;4) are coordinates of the ith
particle and 0, is the gradient (0, ..., 0x,); d is the
space dimension (i.e., d =3, usually). The potential
energy function will be supposed “smooth,” that is,
analytic except, possibly, when two positions coin-
cide. The latter exception is necessary to include the
important cases of gravitational attraction or, when
dealing with electrically charged particles, of Cou-
lomb interaction. A basic result is that if V is
bounded below, eqn [1] admits, given initial data
Xo=X(0),Xo=X(0), a unique global solution
t—X(t), t € (—oo,00); otherwise a solution can fail
to be global if and only if, in a finite time, it reaches
infinity or a singularity point (i.e., a configuration in
which two or more particles occupy the same point:
an event called a collision).

In eqn [1], =0y, V(x1,...,x,) is the force acting on
the points. More general forces are often admitted.
For instance, velocity-dependent friction forces: they
are not considered here because of their phenomeno-
logical nature as models for microscopic phenomena
which should also, in principle, be explained in
terms of conservative forces (furthermore, even from
a macroscopic viewpoint, they are rather incomplete
models, as they should be considered together with
the important heat generation phenomena that
accompany them). Another interesting example of

forces not corresponding to a potential are certain
velocity-dependent forces like the Coriolis force
(which, however, appears only in noninertial frames
of reference) and the closely related Lorentz force
(in electromagnetism): they could be easily accom-
modated in the Hamiltonian formulation of
mechanics; see Appendix 2.

The action principle states that an equivalent
formulation of the eqns [1] is that a motion
t— Xo(t) satisfying [1] during a time interval
[t1,2,] and leading from X' =X, (#1) to X* =Xo(t2),
renders stationary the action

A(XY) / (szx

within the class ./\/lthtz(Xl,Xz) of smooth (i.e.,
analytic) “motions” ¢ — X(¢) defined for ¢ € [#1, 1]
and leading from X' to X?.

The function

V(X (t))> de 2]

= Z miy} = VEOEK(Y) - V(X),

Y= (yl""ayn)

is called the Lagrangian function and the action can

be written as
t .
/ L(X(),X(t))dt
t

The quantity K(X(t)) is called kinetic energy and
motions satisfying [1] conserve energy as time
t varies, that is,

K(X(2)) 4+ V(X(t)) = E = const. [3]

Hence the action principle can be intuitively thought
of as saying that motions proceed by keeping
constant the energy, sum of the kinetic and potential
energies, while trying to share as evenly as possible
their (average over time) contribution to the energy.

In the special case in which V'is translatlon invariant,
motions conserve linear momentum Q% Z mix;; it V
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is rotation invariant around the origin O, motions
conserve angular momentum M > imixi Nx;, where A
denotes the vector product in RY, that is, it is the tensor
(@aNnb);=ab; — biaj,i,j=1,...,d: if the dimension
d =3 the a A b will be naturally regarded as a vector.
More generally, to any continuous symmetry group of
the Lagrangian correspond conserved quantities: this is
formalized in the Noether theorem.

It is convenient to think that the scalar product
in R% is defined in terms of the ordinary scalar product
in R, a-b= Z;-jzl aib;, by (v,w)=>""_m; - w;:
so that kinetic energy and line element ds can be
written as K(X)=1(X,X) and ds?= Y7 | m;dx?,
respectively. Therefore, the metric generated by the
latter scalar product can be called kinetic energy
metric.

The interest of the kinetic metric appears from the
Maupertuis’ principle (equivalent to [1]): the princi-
ple allows us to identify the trajectory traced in R?
by a motion that leads from X' to X* moving with
energy E. Parametrizing such trajectories as
7— X(7) by a parameter 7 varying in [0, 1] so that
the line element is ds? = (9,X, 9,X) d72, the principle
states that the trajectory of a motion with energy E
which leads from X' to X? makes stationary, among
the analytic curves & € Mo 1(X',X?), the function

L&) = /‘f JE = VEs) ds 4]

so that the possible trajectories traced by the
solutions of [1] in R™ and with energy E can be
identified with the geodesics of the metric
dm? &(E - V(X)) - ds.

For more details, the reader is referred to Landau
and Lifshitz (1976) and Gallavotti (1983).

Constraints

Often particles are subject to constraints which force
the motion to take place on a surface M C R™, ie.,
X(t) is forced to be a point on the manifold
M. A typical example is provided by rigid systems
in which motions are subject to forces which keep
the mutual distances of the particles constant:
|x; — x| = pij, with p;; time-independent positive quan-
tities. In essentially all cases, the forces that imply
constraints, called constraint reactions, are velocity
dependent and, therefore, are not in the class of
conservative forces considered here, cf. [1]. Hence,
from a fundamental viewpoint admitting only conser-
vative forces, constrained systems should be regarded
as idealizations of systems subject to conservative
forces which approximately imply the constraints.

In general, the ¢-dimensional manifold M will not
admit a global system of coordinates: however, it
will be possible to describe points in the vicinity
of any X°eM by using N=nd coordinates
qd=(q1s--->qtsqe+15- - -»gN) varying in an open ball
Byxo: X=X(q1,---5q0: Q115 - -5 gN)-

The g-coordinates can be chosen well adapted to
the surface M and to the kinetic metric, i.e., so that
the points of M are identified by sy 1=---=gn=0
(which is the meaning of “adapted”); furthermore,
infinitesimal displacements (0,...,0,des.q,...,den)
out of a point X° € M are orthogonal to M (in the
kinetic metric) and have a length independent of the
position of X° on M (which is the meaning of “well
adapted” to the kinetic metric).

Motions constrained on M arise when the
potential V has the form

V(X) = Va(X) + AW(X) 5]

where W is a smooth function which reaches its
minimum value, say equal to 0, precisely on the
manifold M while V, is another smooth potential.
The factor A\ > 0 is a parameter called the rigidity of
the constraint.

A particularly interesting case arises when the level
surfaces of W also have the geometric property of
being “parallel” to the surface M: in the precise sense
that the matrix a{ W(X), i,j > £ is positive definite
and X—independent: for all XeM, in a system of
coordinates well adapted to the kinetic metric.

A potential W with the latter properties can be
called an approximately ideal constraint reaction. In
fact, it can be proved that, given an initial datum
X% € M with velocity X° tangent to M, i.e., given
an initial datum whose coordinates in a local system
of coordinates are (q,,0) and (g,,0) with g,=
(qo15---5q00) and go=(qo1,---,qor), the motion
generated by [1] with V given by [5] is a motion
t — X\ (#) which

1. as A — oo tends to a motion ¢ — X (t);

2. as long as X, (¢) stays in the vicinity of the initial
data, say for 0<¢<t;, so that it can be
described in the above local adapted coordinates,
its coordinates have the form #— (q(¢),0)=
(q1(8)y...,qe(2),0,...,0): that is, it is a motion
developing on the constraint surface M; and

3. the curve t — X (t), t € [0,#], as an element of
the space Moy, (X°, X (t1)) of analytic curves on
M connecting X° to X (¢1), renders the action

AX) = /0 (KX() — VaX@))de (6]

stationary.
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The latter property can be formulated “intrinsically,”
that is, referring only to M as a surface, via the
restriction of the metric ds?> to line elements ds=
(dg1,-..,dqge,0,...,0) tangent to M at the point
X =(qp,0,...,0) € M; we write ds*>= Zi’fgi,»(q)x
dgidg;. The £ x ¢ symmetric positive-definite matrix g
can be called the metric on M induced by the kinetic
energy. Then the action in [6] can be written as

t 1 1,0
Al = [ (22gi/<q<t»qz<t>q,<t>
ij

- Va(q(t))> de [7]

where V,(q) ¥ V,(X(q1, ...,4:,0, ..., 0)): the function

1.0
def 1 —
L(n,q)= 3 > " gi(@)nim; — Va(q)
i

= %g(q)n 11— Valq) 8]

is called the constrained Lagrangian of the system.
An important property is that the constrained motions
conserve the energy defined as E=3(g(q)4,9)+
V.(q); see next section.
The constrained motion X () of energy E satisfies
the Maupertuis’ principle in the sense that the curve
on M on which the motion develops renders

L&) = /5 VE — VaE(s) ds 9]

stationary among the (smooth) curves that develop
on M connecting two fixed values X; and X5. In the
particular case in which ¢ =7 this is again Mauper-
tuis’ principle for unconstrained motions under the
potential V(X). In general, ¢ is called the number of
degrees of freedom because a complete description
of the initial data requires 2/ coordinates g(0), g(0).

If W is minimal on M but the condition on W of
having level surfaces parallel to M is not satisfied, i.e.,
if W is not an approximate ideal constraint reaction,
it still remains true that the limit motion X (¢) takes
place on M. However, in general, it will not satisfy the
above variational principles. For this reason, motions
arising as limits (as A — oo) of motions developing
under the potential [5] with W having minimum on M
and level curves parallel (in the above sense) to M are
called ideally constrained motions or motions subject
by ideal constraints to the surface M.

As an example, suppose that W has the form
W(X)= Zi,iep w,—,-(|x,- - x,-|) with M/,](|§|) > 0 an ana-
lytic function vanishing only when |£| = p;; for 4, j in
some set of pairs P and for some given distances p;j (e.g.,
wi(§) = (fz — p%,-)zfy,fy > 0). Then W can be shown to

satisfy the mentioned conditions and therefore, the so
constrained motions X (¢) of the body satisfy the
variational principles mentioned in connection with [7]
and [9]: in other words, the above natural way of
realizing a rather general rigidity constraint is ideal.

The modern viewpoint on the physical meaning of
the constraint reactions is as follows: looking at
motions in an inertial Cartesian system, it will appear
that the system is subject to the applied forces with
potential V,(X) and to constraint forces which are
defined as the differences R; =m;%; + dx, V,(X). The
latter reflect the action of the forces with potential
AW(X) in the limit of infinite rigidity (A — oo).

In applications, sometimes the action of a constraint
can be regarded as ideal: the motion will then verify the
variational principles mentioned and R can be com-
puted as the differences between the #71;%; and the active
forces —dy, V,(X). In dynamics problems it is, however,
a very difficult and important matter, particularly in
engineering, to judge whether a system of particles can
be considered as subject to ideal constraints: this leads
to important decisions in the construction of machines.
It simplifies the calculations of the reactions and fatigue
of the materials but a misjudgment can have serious
consequences about stability and safety. For statics
problems, the difficulty is of lower order: usually
assuming that the constraint reaction is ideal leads to
an overestimate of the requirements for stability of
equilibria. Hence, employing the action principle to
statics problems, where it constitutes the principle of
virtual work, generally leads to economic problems
rather than to safety issues. Its discovery even predates
Newtonian mechanics.

We refer the reader to Arnol’d
Gallavotti (1983) for more details.

(1989) and

Lagrange and Hamilton Forms
of the Equations of Motion

The stationarity condition for the action A(g), cf.
[7], [8], is formulated in terms of the Lagrangian

L(n,§), see [8], by

& o,20a(0).q0)
= 3 L(a(0). (1)

which is a second-order differential equation called
the Lagrangian equation of motion. It can be cast in
“normal form”: for this purpose, adopting the
convention of “summation over repeated indices,”
introduce the “generalized momenta”

i=1,...,0  [10]

def
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Since g(q) > 0, the motions t — ¢q(t) and the corre-
sponding velocities # — g(t) can be described equiva-
lently by ¢ — (q(¢), p(¢)): and the equations of motion
[10] become the first-order equations

é]i = apiH(qu)> Pi = 78q,H(p7q) [12]

where the function H, called the Hamiltonian of the
system, is defined by
Hip.q) = Yela) 'p.p) + Vala)  [13]

Equations [12], regarded as equations of motion for
phase space points (p,q), are called Hamilton
equations. In general, g are local coordinates on M
and motions are specified by giving ¢, g or p, q.

Looking for a coordinate-free representation of
motions consider the pairs X, Y with X € M and Y a
vector Y € Tx tangent to M at the point X. The
collection of pairs (Y,X) is denoted T(M)= Uxem
(Tx x {X}) and a motion ¢ — (X(¢),X(¢)) € T(M) in
local coordinates is represented by (g(t),q(t)). The
space T(M) can be called the space of initial data for
Lagrange’s equations of motion: it has 2¢ dimen-
sions (also known as the “tangent bundle” of M).

Likewise, the space of initial data for the
Hamilton equations will be denoted T*(M) and it
consists of pairs X,P with X € M and P=g(X)Y
with Y a vector tangent to M at X. The space T*(M)
is called the phase space of the system: it has
2¢ dimensions (and it is occasionally called the
“cotangent bundle” of M).

Immediate consequence of [12] is

S (0, q(1) =0

and it means that H(p(¢),q(¢)) is constant along
the solutions of [12]. Noting that H(p,q)=
(1/2)(g(q) q,q) + Va(q) is the sum of the kinetic
and potential energies, it follows that the conservation
of ‘H along solutions means energy conservation in
presence of ideal constraints.

Let S; be the flow generated on the phase space
variables (p,q) by the solutions of the equations of
motion [12], that is, let z—S,(p,q) = (p(¢),4q(t))
denote a solution of [12] with initial data (p,q).
Then a (measurable) set A in phase space evolves in
time ¢ into a new set S;A with the same volume: this
is obvious because the Hamilton equations [12] have
manifestly zero divergence (“Liouville’s theorem”).

The Hamilton equations also satisfy a variational
principle, called the Hamilton action principle: that
iS, if Mtl,tz((pla ql): (Pz, qZ)’M) denotes the space of
the analytic functions @ :t — (7(¢), k(¢)) which in the
time interval [t1,%:] lead from (py,q,) to (p5,q>),
then the condition that @(t)=(p(z),q(t)) satisfies

[12] can be equivalently formulated by requiring
that the function

def [
Anlo) ™ [ (m(0) (o) — im0, x(0)) e (14
t

be stationary for ¢ =@,: in fact, eqns [12] are the
stationarity conditions for the Hamilton action
[14] on My, 4, ((P1,91)s (P2592); M). And, since the
derivatives of z(¢) do not appear in [14], statio-
narity is even achieved in the larger space
My, 1,441,925 M) of the motions @:t— (m(2), k(¢))
leading from g, to g, without any restriction on
the initial and final momenta p,,p, (which, there-
fore, cannot be prescribed a priori independently
of q,,q,). If the prescribed data p,q,,p,,q, are
not compatible with the equations of motion (e.g.,
H(p,,q,) # H(p,,q,)), then the action functional
has no stationary trajectory in M, ., ((p1,4q;)s
(p2d2); M).

For more details, the reader is referred to Landau
and Lifshitz (1976), Arnol’d (1989), and Gallavotti
(1983).

Canonical Transformations of Phase
Space Coordinates

The Hamiltonian form, [13], of the equations of
motion turns out to be quite useful in several
problems. It is, therefore, important to remark that
it is invariant under a special class of transformations
of coordinates, called canonical transformations.

Consider a local change of coordinates on phase
space, i.e., a smooth, smoothly invertible map
C(m,x)=(m',x’) between an open set U in the
phase space of a Hamiltonian system with
£ degrees of freedom, into an open set U’ in a
2/-dimensional space. The change of coordinates is
said to be canonical if for any solution
t— (m(t),k(¢)) of equations like [12], for any
Hamiltonian H(x,x) defined on U, the C-image
t— (7' (¢),x'(t)) =C(m(t),k(¢)) is a solution of [12]
with the “same” Hamiltonian, that 1is, with
Hamiltonian H'(#/, x') &H(C (', k"))

The condition that a transformation of coordi-
nates is canonical is obtained by wusing the
arbitrariness of the function H and is simply
expressed as a necessary and sufficient property of
the Jacobian L,

(c n)

L =

C D

Bii = 8Kf7r;-,
D,’/ = 8,;,/%2

A,’/ = aﬂfﬂ';, [15]
C,'/' = aﬂ.li/

iV
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{. Let

== (o)

denote the 2¢x 2¢ matrix formed by four £ x ¢
blocks, equal to the 0 matrix or, as indicated, to the
+ (identity matrix); then, if a superscript T denotes
matrix transposition, the condition that the map be
canonical is that

where 4,j=1,...,

T T

L' =ELET or L' = (_DcT e > [16]
which immediately implies that det L= +1. In fact,
it is possible to show that [16] implies det L=1.
Equation [16] is equivalent to the four relations ADT —
BCT=1, —ABT + BAT=0,CD" - DC"=0, and
—CBT + DAT 1. More explicitly, since the first and
the fourth relations coincide, these can be expressed as

{Trz’ /} 61/’ {ﬂ-ﬂ /}_O {K’t’ 7}_0 [17]

where, for any two functions F(z, k), G(«, k), the
Poisson bracket is

{F.G}(r,x) défz

k=1
— 0, F(1,K) 0, G(m,x))  [18]

The latter satisfies Jacobi’s identity: {{F, G}, Q}+
{{G, O}, F} + {{O, F}, G} =0, for any three functions
F,G,Q on the phase space. It is quite useful to
remark that if t— (p(t), q(¢)) = S:(p, q) is a solution
to Hamilton equations with Hamiltonian H then,
given any observable F(p,q), it “evolves” as
F(t) < F(p(t), q(t)) satisfying

OE(p(2), q(t)) ={H, F}(p(1), q(2))

Requiring the latter identity to hold for all observables
Fis equivalent to requiring that the t — (p(t), q(¢)) be a
solution of Hamilton’s equations for H.

Let C: U+— U’ be a smooth, smoothly invertible
transformation between two open 2/¢-dimensional
sets: C(, k) = (&', k'). Suppose that there is a function
®(7', k) defined on a suitable domain W such that

F(z,x)0.,G(m,x)

T =0,P(7' x)

Clm,x) = (”l”c/) - {KJ = Op® (7', x)

[19]

then C is canonical. This is because [19] implies that
if k,@’ are varied and if #,x', 7',k are related by

Cm,x)=(m',x’), then x -dx + k' -dn’'=d®(7',x),

which implies that

w-dx —H(m, x)dt = ' -dx’ — H(C ' (2, «’))dt
Ldo@ k) —d@ k) [20]

It means, that the Hamiltonians H(p,q) and
H (P, q)) H(C L (p',q')) have Hamilton actions
Ay and Ay differing by a constant, if evaluated
on corresponding motions  (p(¢),q(¢)) and
(0'(), (1) = Clp(t), q(t)).

The constant depends only on the initial and final
values (p(t1),q(t1)) and (p(t2),q(t2)) and, respec-
tively, (p/(1),q(1)) and (P'(t2),q(62)) so that if
(p(t),q(t)) makes Ay extreme, then (p'(t),q'(t))=
C(p(t), q(t)) also makes A;, extreme.

Hence, if t — (p(2), q(t)) solves the Hamilton equa-
tions with Hamiltonian H(p,q) then the motion
t—(p'(2),q'(t)) =C(p(¢),q(t)) solves the Hamilton
equations with Hamiltonian H'(p/, ¢') = H(C™' (p, q'))
no matter which it is: therefore, the transformation is
canonical. The function @ is called its generating
function.

Equation [19] provides a way to construct
canonical maps. Suppose that a function ®(7', k) is
given and defined on some domain W; then setting

T =0cP(7',x)
K = 0p®(n',K)

and inverting the first equation in the form
' =E(m,x) and substituting the value for #’ thus
obtained, in the second equation, a map
C(z,x)=(n',x’) is defined on some domain (where
the mentioned operations can be performed) and if
such domain is open and not empty then C is a
canonical map.

For similar reasons, if I'(x,x’) is a function
defined on some domain then setting 7 =9,
(k,x'), #' = -0 T(k,k’) and solving the first rela-
tion to express k' = A(m, k) and substituting in the
second relation a map (7', k') =C(x, k) is defined on
some domain (where the mentioned operations can
be performed) and if such domain is open and not
empty then C is a canonical map.

Likewise, canonical transformations can be con-
structed starting from a priori given functions
F(z,x') or G(z,7'). And the most general canonical
map can be generated locally (i.e., near a given point
in phase space) by a single one of the above four
ways, possibly composed with a few “trivial”
canonical maps in which one pair of coordinates
(i, ;) s transformed into (—;, 7;). The necessity of
also including the trivial maps can be traced to the
existence of homogeneous canonical maps, that is,
maps such that 7-dc=a"-dk’ (e.g., the identity
map, see below or [49] for nontrivial examples)
which are action preserving hence canonical, but
which evidently cannot be generated by a function
®(k, k') although they can be generated by a
function depending on 7', k.
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Simple examples of homogeneous canonical maps
are maps in which the coordinates g are changed
into ¢ =R(q) and, correspondingly, the p’s are
transformed as p’:(aqR(q))flTp, linearly: indeed,
this map is generated by the function F(p/,q)
P’ R(q).

For instance, consider the map “Cartesian—polar”
coordinates (g1,q2) < (p,0) with (p,6) the polar

coordinates of g (namely p=4/q% + q3,0= arctan
(q2/q1)) and let ndéfq/|q|:(n1,n2) and t=(—mny, ny).
Setting ppdéf[rn, pgdéfpp-t, the map (p1,p2,
q1,q2)— Py, Po, p,0) is homogeneous canonical
(because p-dg=p-ndp+p-tpdd=p,dp+psdb).

As a further example, any area-preserving map
(p,q) < (p',q') defined on an open region of the
plane R? is canonical: because in this case the
matrices A, B, C,D are just numbers, which satisfy
AD — BC=1 and, therefore, [16] holds.

For more details, the reader is referred to Landau
and Lifshitz (1976) and Gallavotti (1983).

Quadratures

The simplest mechanical systems are integrable by
quadratures. For instance, the Hamiltonian on R?,

Hip.q) =5 0"+ V() 21]

generates a motion t— ¢g(#) with initial data go, go
such that H(po,qo0)=E, i.e., %mq% + V(go) =E,

satisfying
a(t) = £/ 2 (E - V(g(0))

If the equation E=V(g) has only two solutions
q-(E) < q+(E) and |0,V(q+(E))| > 0, the motion is
periodic with period

q+(E) dx
T(E)=2 / [22]
a-(£) /(2/m)(E - V(x))
The special solution with initial data ¢o=

q-(E), go=0 will be denoted Q(t), and it is an
analytic function (by the general regularity theorem
on ordinary differential equations). For 0 < < T/2
or for T/2 <t < T it is given, respectively, by

o(t) dx
- 23
g /M V2/m)(E - V(x)) 23
T o(t) dx
_ 1 23b
=3 /,ME) V2/m)(E - V(x)) 230

def

The most general solution with energy E has the
form q(t)=Q(ty +1), where # is defined by
qo=0(t0), go = Ol2p), i.e., it is the time needed for
the “standard solution” Q(¢) to reach the initial data
for the new motion.

If the derivative of V vanishes in one of the
extremes or if at least one of the two solutions g (E)
does not exist, the motion is not periodic and it may
be unbounded: nevertheless, it is still expressible via
integrals of the type [22]. If the potential V is
periodic in g and the variable g is considered to be
varying on a circle then essentially all solutions are
periodic: exceptions can occur if the energy E has a
value such that V(q) =E admits a solution where V
has zero derivative.

Typical examples are the harmonic oscillator, the
pendulum, and the Kepler oscillator: whose Hamil-
tonians, if m, w, g, b, G, k are positive constants, are,
respectively,

2
1
;—m + Emwzqz
2
;—m—kmg(l — cos%) [24]
p2 GZ

2m gl T 2g?

the Kepler oscillator Hamiltonian has a potential
which is singular at g=0 but if G # 0 the energy
conservation forbids too close an approach to ¢g=0
and the singularity becomes irrelevant.

The integral in [23] is called a quadrature and the
systems in [21] are therefore integrable by quad-
ratures. Such systems, at least when the motion is
periodic, are best described in new coordinates in
which periodicity is more manifest. Namely when
V(q) = E has only two roots g+ (E) and FV'(g+(E)) > 0
the energy—time coordinates can be used by replac-
ing q,q or p,q by E,7, where 7 is the time needed
for the standard solution # — Q(t) to reach the given
data, that is, O(r)=¢,O(r)=¢. In such coordi-
nates, the motion is simply (E,7)— (E,7 +#) and,
of course, the variable 7 has to be regarded as
varying on a circle of radius T/2w. The E,7
variables are a kind of polar coordinates, as can
be checked by drawing the curves of constant E,
“energy levels,” in the plane p,q in the cases in
[24]; see Figure 1.

In the harmonic oscillator case, all trajectories are
periodic. In the pendulum case, all motions are
periodic except the ones which separate the oscilla-
tory motions (the closed curves in the second
drawing) from the rotatory motions (the apparently
open curves) which, in fact, are on closed curves as
well if the g coordinate, that is, the vertical
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Figure 1 The energy levels of the harmonic oscillator, the
pendulum, and the Kepler motion.

coordinate in Figure 1, is regarded as “periodic”
with period 27h. In the Kepler case, only the
negative-energy trajectories are periodic and a few
of them are drawn in Figure 1. The single dots
represent the equilibrium points in phase space.

The region of phase space where motions are
periodic is a set of points (p,q) with the
topological structure of U,cy({u} x C,), where u is
a coordinate varying in an open interval U (e.g.,
the set of values of the energy), and C, is a closed
curve whose points (p,q) are identified by a
coordinate (e.g., by the time necessary for an
arbitrarily fixed datum with the same energy to
evolve into (p,q)).

In the above cases, [24], if the “radial” coordinate
is chosen to be the energy the set U is the interval
(0, +00) for the harmonic oscillator, (0,2mg) or
(2mg, +0o0) for the pendulum, and (—1mk*/G?,0) in
the Kepler case. The fixed datum for the reference
motion can be taken, in all cases, to be of the form
(0, go) with the time coordinate ¢y given by [23].

It is remarkable that the energy—time coordinates
are canonical coordinates: for instance, in the vicinity
of (po,qo) and if py > 0, this can be seen by setting

_ / T ImE-Vde  [25]
q0

and checking that p=09,5(q,E), t=0gS(q,E) are
identities if (p,q) and (E,t) are coordinates for the
same point so that the criterion expressed by [20]
applies.

It is convenient to standardize the coordinates
by replacing the time variable by an angle a=
(2m/T(E))t; and instead of the energy any invertible
function of it can be used.

It is natural to look for a coordinate A= A(E)
such that the map (p,q)«— (A,«) is a canonical
map: this is easily done as the function

§a.4) = [ VIm(EA) — Vi) dx  [26]
q0

generates (locally) the correspondence between

p =+/2m(E(A) — V(q)) and

, a dx
(A)/o V2m1(E(A

Therefore, by the criterion [20], if

= V(x)

i.e., if A/(E)=T(E)/2m, the coordinates (A, «a) will
be canonical coordinates. Hence, by [22], A(E) can
be taken as

Ao / I E = V@) dg

=5 prda 27

where the last integral is extended to the closed curve
of energy E; see Figure 1. The action—angle coordi-
nates (A,a) are defined in open regions of phase
space covered by periodic motions: in action—angle
coordinates such regions have the form W =] x T of
a product of an open interval | and a one-
dimensional “torus” T'=[0,27] (i.e., a unit circle).
For details, the reader is again referred to Landau and
Lifshitz (1976), Arnol’d (1989), and Gallavotti (1983).

Quasiperiodicity and Integrability

A Hamiltonian is called integrable in an open region
W C T*(M) of phase space if

1. there is an analytic and nonsingular (i.e., with
nonzero Jacobian) change of coordinates (p, q) «—
(I, ) mapping W into a set of the form Z x T
with Z ¢ R’ (open); and furthermore

2. the flow #—S,(p,q) on phase space is trans-
formed into (I, @) — (I, @ + @(I)t) where @(I) is a
smooth function on Z.

This means that, in suitable coordinates, which
can be called “integrating coordinates,” the system
appears as a set of £ points with coordinates
@ =(p1,..., p¢) moving on a unit circle at angular
velocities @(I) = (w1 (I), ..., we(I)) depending on the
actions of the initial data.

A system integrable in a region W which, in
integrating coordinates I, @, has the form Z x T'* is
said to be anisochronous if det Ojw(I) # 0. It is said
to be isochronous if @(I) = @ is independent of I.
The motions of integrable systems are called
quasiperiodic with frequency spectrum @(I), or
with frequencies @(I)/2m, in the coordinates (I, @).

Clearly, an integrable system admits ¢ independent
constants of motion, the I = (I4,...,I;), and, for each
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choice of I, the other coordinates vary on a “standard”
¢-dimensional torus T'‘: hence, it is possible to say that
a phase space region of integrability is foliated into
(-dimensional invariant tori 7 (I) parametrized by the
values of the constants of motion I € 7.

If an integrable system is anisochronous then it is
canonically integrable: that is, it is possible to define
on W a canonical change of coordinates (p,q)=
C(A,&) mapping W onto ] x T* and such that
H(C(A a)) h(A) for a suitable h. Then, if

(A ) 8Ah( ), the equations of motion become

A=0, da=wA) 28]

Given a system (I, @) of coordinates integrating an
anisochronous system the construction of action—
angle coordinates can be performed, in principle, via

a classical procedure (under a few extra
assumptions).

Let 71, ..., be £ topologically independent circles
on T, for definiteness let v;(I)={@|p1=¢pr="--=
pi1=pir1=---=0, @; €0,27]}, and set

A;(I ! d 29
l( ) - on p-dq [ ]

i)

If the map I+— A(I) is analytically invertible as
I=1I(A), the function

~0 [ p-da 30)

is well defined if the integral is over any path A
joining the points (p(I(A),0), g(I(A),0)) and
(p(L(A), @), q(I(A), @) and lying on the torus para-
metrized by I(A).

The key remark in the proof that [30] really
defines a function of the only variables A, ¢ is that
anisochrony implies the vanishing of the Poisson
brackets (cf. [18]): {I;,I;}=0 (hence also {A;,Aj} =
> bk O Ai O, Ailly, [,)=0).  And  the property
{Ii,[;}=0 can be checked to be precisely the
integrability condition for the differential form p - dg
restricted to the surface obtained by varying g while p is
constrained so that (p,q) stays on the surface
I =constant, i.e., on the invariant torus of the points
with fixed L.

The latter property is necessary and sufficient in
order that the function S(A, @) be well defined (i.e.,
be independent on the integration path ) up to an
additive quantity of the form 3} ,27m;A; with
n=(ny,...,ny) integers.

Then the action—-angle variables are defined by the
canonical change of coordinates with S(A, @) as
generating function, i.e., by setting

a; = 0a,S(A, 9), I; = 0p.S(A, @) [31]

and, since the computation of S(A, @) is “reduced to
integrations” which can be regarded as a natural
extension of the quadratures discussed in the one-
dimensional cases, such systems are also called
integrable by quadratures. The just-described con-
struction is a version of the more general Arnol’d-
Liouville theorem.

In practice, however, the actual evaluation of the
integrals in [29], [30] can be difficult: its analysis in
various cases (even as “elementary” as the pendu-
lum) has in fact led to key progress in various
domains, for example, in the theory of special
functions and in group theory.

In general, any surface on phase space on which
the restriction of the differential form p - dgq is locally
integrable is called a Lagrangian manifold: hence the
invariant tori of an anisochronous integrable system
are Lagrangian manifolds.

If an integrable system is anisochronous, it cannot
admit more than ¢ independent constants of motion;
furthermore, it does not admit invariant tori of
dimension >/. Hence ¢-dimensional invariant tori
are called maximal.

Of course, invariant tori of dimension </ can also
exist: this happens when the variables I are such that
the frequencies @(I) admit nontrivial rational rela-
tions; i.e., there is an integer components vector
veZ , v=(n,...,uu) #0 such that

v=> wly=0 [32]

in this case, the invariant torus 7 (I) is called
resonant. If the system is anisochronous then
det Oj@(I) # 0 and, therefore, the resonant tori are
associated with values of the constants of motion
I which form a set of measure zero in the space
Z but which is not empty and dense.

Examples of isochronous systems are the systems of
harmonic oscillators, i.e., systems with Hamiltonian

14
Z ) Z Ciqig;

i—1
where the matrix v is a positive-definite matrix.
This is an isochronous system with frequencies
D= (Wiy...,wy) Whose squares are the eigenvalues of
the matrix 7, . cijm; ', It is integrable in the region
W of the data x = (p, ) € R* such that, setting

' 2
V3, iDi W v3,iqi
As = 2wd (Zﬁ> <21: m;1>

for all eigenvectors vg, 3=1,..., ¢, of the above
matrix, the vectors A have all components >0.
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Even though this system is isochronous, it never-
theless admits a system of canonical action-angle
coordinates in which the Hamiltonian takes the
simplest form

14
h(A)=> wiAs=w-A [33]
g=1
with
J4
vg.iDi
R
i=1
a3 = —arctan

A
>/ Miwsvs iqi
i=1

as conjugate angles.

An example of anisochronous system is the free
rotators or free wheels: i.e., £ noninteracting points
on a circle of radius R or ¢ noninteracting homo-
geneous coaxial wheels of radius R. If J; =,R? or,
respectively, J;=(1/2)m;R?* are the inertia moments
and if the positions are determined by ¢ angles @ =
(aq,...,a¢), the angular velocities are constants
related to the angular momenta A=(A4,...,Ay) by
w;=A;/];. The Hamiltonian and the spectrum are

&1, (L,
hA) =35 AL Wm‘(ﬁgithﬂ

For further details see Landau and Lifshitz (1976),
Gallavotti (1983), Arnol’d (1989), and Fasso (1998).

Multidimensional Quadratures:
Central Motion

Several important mechanical systems with more
than one degree of freedom are integrable by
canonical quadratures in vast regions of phase
space. This is checked by showing that there is a
foliation into invariant tori 7 (I) of dimension equal
to the number of degrees of freedom (¢) parame-
trized by ¢ constants of motion I in involution, i.e.,
such that {I;, I;} = 0. One then performs, if possible,
the construction of the action-angle variables by
the quadratures discussed in the previous section.

The above procedure is well illustrated by the
theory of the planar motion of a unit mass attracted
by a coplanar center of force: the Lagrangian is, in
polar coordinates (p, ),

m . .
L= +p0") = V(p)

The planarity of the motion is not a strong restriction
as central motion always takes place on a plane.

Hence, the equations of motion are

d 2'

i.e., mp’#=G is a constant of motion (it is the
angular momentum), and

p=—-0,V(p) + 0, ¥

2 p
GZ
- _a/)v(p) + 7
def
= _apVG(P)

Then the energy conservation vyields a second
constant of motion E,

mae 160 _
15, 1

The right-hand side (rhs) is the Hamiltonian for the
system, derived from L, if p,, pg denote conjugate
momenta of p, 0: p,=mp and pg=mp*d (note that
po=G).

Suppose p>V(p) 00 then the singularity at the
origin cannot be reached by any motion starting
with p > 0 if G > 0. Assume also that the function

def 1 G2
Ve(p) = 2mp? + V(p)

has only one minimum Ey(G), no maximum and no
horizontal inflection, and tends to a limit E.(G) < co
when p—oo. Then the system is integrable in the
domain W={(p,q)| Eo(G) < E < E(G), G # 0}.
This is checked by introducing a “standard” periodic
solution t— R(t) of mj=—0,Vs(p) with energy
Ey(G) < E < E5(G) and initial data p=pg_(G),
p=0 at time t=0, where pg +(G) are the two
solutions of V(p) = E, see the section “Quadratures™:
this is a periodic analytic function of ¢ with period

pE+(G) dx

fire =2 //)E.<G> V' (2/m)(E - V(x))

The function R(#) is given, for 0 <¢ < %T(E, G)
or for 1T(E, G) < t < T(E, G), by the quadratures

R(®) dx
— 36
A”@myw@—wm» 36
_T(EG) K0 dx 36b
= Ammwyw@—wu»[ |
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respectively. The analytic regularity of R(¢) follows
from the general existence, uniqueness, and regularity
theorems applied to the differential equation for f.

Given an initial datum py, po, 6o, 6o with energy E
and angular momentum G, define #( to be the time
such that R(ty) = po, R(to) = po: then p(t) = R(t + to)
and 6(¢) can be computed as

t G
0(t) = 0y +/ ——d
0 mR(¥ + 1)

a second quadrature. Therefore, we can use as
coordinates for the motion E, G, ty, which determine
£05 P05 6 and a fourth coordinate that determines 6,
which could be 6y itself but which is conveniently
determined, via the second quadrature, as follows.
The function Gm'R(¢)™ is periodic with period
T(E, G); hence it can be expressed in a Fourier series

2w
E>G + E,G X ltk
(B G+ 3 w(E G p(rieg ™)

the quadrature for 6(¢) can be performed by
integrating the series terms. Setting

def T(E, G) (E,G 2.
0(tg) = py ZXk 7 )exp<T(E ) 1t0k>
k£0 '

and ¢1(0) =0y — A(ty), the expression
t
G
0(t) =6 +/ ————dr
0 mR(t’ + to)
becomes

©1(t) = ¢1(0) + xo(E, G) t 37]
Hence the system is integrable and the spectrum is
a)(E7 G) = (WO(E7 G)a W1(E, G)) = (w()a W1) with
o def 27
" T(E,G)

while I=(E,G) are constants of motion and the
angles @ = (9, 1) can be taken as

and wld:eon(E G)

01 60 — 0(t0)

At E, G fixed, the motion takes place on a two-
dimensional torus 7 (E, G) with ¢g, 1 as angles.

In the anisochronous cases, 1i.e., when
det O, c@(E, G) # 0, canonical action-angle vari-
ables conjugated to (p,, p, pg, 0) can be constructed
via [29], [30] by using two cycles 1,7, on the torus
T(E,G). It is convenient to choose

def
po = wolo,

1. 7 as the cycle consisting of the points p=x,60=0
whose first half (where p, > 0) consists in the
set pr, (G) < x < pr, +(G)y pp = /2m(E — Vo ()
and df=0; and

2. 7, as the cycle p=const,d € [0,27] on which
dp=0 and py = G obtaining

pE,+(G

A v2m(E —
1= 271_ VG dx

() (38]
A =G

According to the general theory (cf. the previous
section) a generating function for the canonical
change of coordinates from (p,, p, ps, ) to action—
angle variables is (if, to fix ideas, p, > 0)

S(A1, Az, p,0) = GO +/p V2m(E — Vg (x))dx [39]

PE,—

In terms of the above wy, o the Jacobian matrix
O(E, G)/d(A1,A3) is computed from [38], [39] to be
“60 ><10> It follows that 9pS=t,06S =0 — 0(t) —
so that, see [31],

a1 det 0a,S = wot, (%) o Op,S=0—0(1) [40]

and (A1, aq), (A, a;) are the action—angle pairs.
For more details, see Landau and Lifshitz (1976)
and Gallavotti (1983).

Newtonian Potential and Kepler’s Laws

The anisochrony property, that is, detd(wo,x0)/
0(A1,A2) #0  or, equivalently, detd(wo,Xx0)/
O(E, G)#£0, is not satisfied in the important cases
of the harmonic potential and the Newtonian
potential. Anisochrony being only a sufficient con-
dition for canonical integrability it is still possible
(and true) that, nevertheless, in both cases the
canonical transformation generated by [39] inte-
grates the system. This is expected since the two
potentials are limiting cases of anisochronous ones
(e.g., lgI*™ and |g| ™ ¢ with ¢ —0).
The Newtonian potential

1—¢

1 , km
H(p.q) = P gl

is integrable in the region G #0, Eo(G)=
—k?m?/2G* < E <0, |G| < \/k2m3/(=2E).  Pro-
ceeding as in the last section, one finds integrating
coordinates and that the integrable motions develop
on ellipses with one focus on the center of attraction
S so that motions are periodic, hence not anisochro-
nous: nevertheless, the construction of the canonical
coordinates via [29]-[31] (hence [39]) works and
leads to canonical coordinates (L', N,G’,7). To
obtain action-angle variables with a simple
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Figure 2 Eccentric and true anomalies of P, which moves on a small circle E centered at a point ¢ moving on the circle D located
half-way between the two concentric circles containing the Keplerian ellipse: the anomaly of ¢ with respect to the axis OS'is £. The
circle D is eccentric with respect to S and therefore ¢ is, even today, called eccentric anomaly, whereas the circle D is, in ancient
terminology, the deferent circle (eccentric circles were introduced in astronomy by Ptolemy). The small circle E on which the point P
moves is, in ancient terminology, an epicycle. The deferent and the epicyclical motions are synchronous (i.e., they have the same
period); Kepler discovered that his key a priori hypothesis of inverse proportionality between angular velocity on the deferent and
distance between P and S (i.e., p¢ = constant) implied both synchrony and elliptical shape of the orbit, with focus in S. The latter law is
equivalent to 20 = constant (because of the identity a = pd). Small eccentricity ellipses can hardly be distinguished from circles.

interpretation, it is convenient to perform on the
variables (L', X', G’,+') (constructed by following the
procedure just indicated) a further trivial canonical
transformation by setting L=L'"+G,G=G,
A= XN, y=+ —X; then

1. X (average anomaly) is the time necessary for the
point P to move from the pericenter to its actual
position, in units of the period, times 2;

2. L (action) is essentially the energy E = —k?m3 /2L.%;

G (angular momentum);

4. ~ (axis longitude), is the angle between a fixed
axis and the major axis of the ellipse oriented
from the center of the ellipse O to the center of
attraction S.

(O8]

The eccentricity of the ellipse is e such that G =
+ILvV1 —e2. The ellipse equation is p=a(l —
e cos &), where ¢ is the eccentric anomaly (see
Figure 2), a=L1?/km? is the major semiaxis, and
p is the distance to the center of attraction S.

Finally, the relations between eccentric anomaly &,
average anomaly )\, true anomaly 6 (the latter is the
polar angle), and SP distance p are given by the
Kepler equations

A=¢—esiné
(1 —ecosé)(1+ecosh) =1— e
0 /
A:(l—e2)3/2/ A 4
0 (14 ecos®)
P 1—¢é?
a 1+ecost

and the relation between true anomaly and average
anomaly can be inverted in the form

§=A+2g
1—e? [42]

_ P T
O=A+h = a 1+ecos(A+fy)

where g\ =glesin\,ecos \), fo= f(esin \,ecos \),
and g(x,y),f(x,y) are suitable functions analytic
for |x|, |y] < 1. Furthermore, g(x,y)=x(1+y+---),
fx,y)=2x(1+3y+---) and the ellipses denote
terms of degree 2 or higher in x,y, containing only
even powers of x.

For more details, the reader is referred to Landau
and Lifshitz (1976) and Gallavotti (1983).

Rigid Body

Another fundamental integrable system is the rigid
body in the absence of gravity and with a fixed point
O. It can be naturally described in terms of the Euler
angles 6, 0,70 (see Figure 3) and their derivatives
o, ©o, Yo.

Let Iy, I, I3 be the three principal inertia moments
of the body along the three principal axes with unit
vectors iy,ip,43. The inertia moments and the
principal axes are the eigenvalues and the associated
unit eigenvectors of the 3 x 3 inertia matrix Z,
which is defined by Zj, =37 mi(x;),(xi), where
h,k=1,2,3 and x; is the position of the ith particle
in a reference frame with origin at O and in which

Figure 3 The Euler angles of the comoving frame iy, i», iz with
respect to a fixed frame x, y, z. The direction n is the “node line,
intersection between the planes x, y and iy, io.
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all particles are at rest: this comoving frame exists as
a consequence of the rigidity constraint. The
principal axes form a coordinate system which is
comoving as well: that is, in the frame (O;iy,4,,13)
as well, the particles are at rest.

The Lagrangian is simply the kinetic energy: we
imagine the rigidity constraint to be ideal (e.g., as
realized by internal central forces in the limit of
infinite rigidity, as mentioned in the section “Lagrange
and Hamilton forms of equations of motion”). The
angular velocity of the rigid motion is defined by

@ = Oon + Poz + ois [43]

expressing that a generic infinitesimal motion
must consist of a variation of the three Euler
angles and, therefore, it has to be a rotation of
speeds Go,goo,wo around the axes #n,z,i3 as shown
in Figure 3.

Let (w1, w>,ws) be the components of @ along the
principal axes #1,4,,43: for brevity, the latter axes
will often be called 1,2,3. Then the angular
momentum M, with respect to the pivot point O,
and the kinetic energy K can be checked to be

M =TLwiiy + Lwir + swsis
1 [44]
K==
5 (
and are constants of motion. From Figure 3 it follows
that  wy =0 costg + posinbysinibg, wr = — Oy sinthg +
posinfycostpy and w3z =ppcosby+1)g, so that the
Lagrangian, uninspiring at first, is

Ilw% + Izw% + Izwé)

of 1
£ 211 (90 €os g + o sin by sin wo)

1 - L
+ zlz(—eo sin gy + g sin Oy cos 1p0)2

1 . ;
—‘rilg(goo cos by +1/)0)2 [45]

Angular momentum conservation does not imply
that the components w; are constants because
11,142,143 also change with time according to

i,-:w/\i,-, 121,2,3

dr
Hence, M=0 becomes, by the first of [44] and
denoting I@ = (I w1, [ws, Isws), the Euler equations
I+ o N lw=0, or
Ildj1 = (12 — 13)w2w3
Lu, = (13 - Il)w3w1 [46]
13(.«:)3 = (Il — Iz)aqu)z

which can be considered together with the conserved
quantities [44].

Since angular momentum is conserved, it is con-
venient to introduce the laboratory frame (Oj;xo,
Yo, %0) with fixed axes x,v,20 and (see Figure 4):

1. (O;x,y,z2), the momentum frame with fixed axes,
but with z-axis oriented as M, and x-axis
coinciding with the node (i.e., the intersection)
of the xo—y, plane and the x—y plane (orthogonal
to M). Therefore, x, vy, z is determined by the two
Euler angles Ca’}/ of (O;x’ya Z) in (O5x0,y05 z0)5

2. (0;1,2,3), the comoving frame, that is, the
frame fixed with the body, and with unit vectors
i1,12,13 parallel to the principal axes of the body.
The frame is determined by three Euler angles
903 $05 ’(/}0;

3. the Euler angles of (O;1,2,3) with respect to
(O;x,v,z), which are denoted 0, ¢, v

4. G, the total angular momentum: G? = Z,‘ If-zwiz;

5. M3, the angular momentum along the zy axis;
M3 =Gcos(; and

6. L, the projection of M on the axis 3, L =G cos 6.

The quantities G, M3, L, p, 7,1 determine 6o, ©o,
1o and Ho,goo,z/Jo, or the pg,,pe,, Dy, variables
conjugated to 6y, o, 1o as shown by the following
comment.

Considering Figure 4, the angles (,y determine
location, in the fixed frame (O;xo,y,,20) of the
direction of M and the node line m, which are,
respectively, the z-axis and the x-axis of the fixed
frame associated with the angular momentum; the
angles 6, p,7 then determine the position of the
comoving frame with respect to the fixed frame
(O;x,v,z), hence its position with respect to

(O;x0,¥9,20), that is, (6o, 0,10). From this and
G, it is possible to determine @ because
I3u)g Izwz
cosf) =——, tany = ——
G v Liw [47]
wi =G - Buwl — 3W)

and, from [43], 6o, P, U0 are determined.

Figure 4 The laboratory frame, the angular momentum frame,
and the comoving frame (and the Deprit angles).
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The Lagrangian [45] gives immediately (after
expressing @, i.e., n,z,i3, in terms of the Euler
angles 6y, @o,10) an expression for the variables

p@o) ptpw pwo Conjugated to 009 ©0, 1;[}0:

Po, =M-ny, poy =M-20, py,=M-i3 [48]

and, in principle, we could proceed to compute the
Hamiltonian.

However, the computation can be avoided
because of the very remarkable property (DEpRrT),
which can be checked with some patience, making
use of [48] and of elementary spherical trigonometry
identities,

Msdy + Gdy + Ldy
= Py dpo + Py, dbo + pe, do [49]

which means that the map ((Ms,),(L,%),
(Ga QD)) — ((pﬁoa 90)9 (ptpoa @0), (pd)o) ¢0)) IS a canoni-
cal map. And in the new coordinates, the kinetic
energy, hence the Hamiltonian, takes the form

L? 5 o [sinfe cos?ep
T+ —L)< T+ )] 150

This again shows that G, M; are constants of
motion, and the L, variables are determined by a
quadrature, because the Hamilton equation for
combined with the energy conservation yields

2 2
qb:i(l—sm Y cos >

2F — G2 (Hpe 4 o)
X : [51]

1 sin® P

1
K=3

In the integrability region, this motion is periodic
with some period TL(E, G). Once () is determined,
the Hamilton equation for ¢ leads to the further
quadrature

. <sin21 ) cosZI W)) G 52]
1 2

which determines a second periodic motion with
period Tg(E,G). The 7, M3 are constants and,
therefore, the motion takes place on three-
dimensional invariant tori 7 g, G, m, in phase space,
each of which is “always” foliated into two-
dimensional invariant tori parametrized by the
angle v which is constant (by [50], because K is
M;3-independent): the latter are in turn foliated by
one-dimensional invariant tori, that is, by periodic
orbits, with E,G such that the value of
TL(E,G)/Tc(E,G) is rational.

Note that if Iy =1, =1, the above analysis is
extremely simplified. Furthermore, if gravity g acts
on the system the Hamiltonian will simply change by
the addition of a potential —mgz if z is the height of
the center of mass. Then (see Figure 4), if the center
of mass of the body is on the axis i3 and z = /b cos 6,
and b is the distance of the center of mass from O,
since cos 0y = cos 6 cos ¢ — sin # sin € cos p, the Hamil-
tonian will become H =K — mgh cos 6§y or

G? G2-12 M;L M2\ '?
"=a0 T—mg”<ﬁ‘( ‘@)

12\ /2
X (1 - @> cos <p> [53]

so that, again, the system is integrable by quadratures
(with the roles of 1 and ¢ “interchanged” with respect
to the previous case) in suitable regions of phase space.
This is called the Lagrange’s gyroscope.

A less elementary integrable case is when the
inertia moments are related as Iy =1, =213 and the
center of mass is in the #;—# plane (rather than on
the i3-axis) and only gravity acts, besides the
constraint force on the pivot point Oj this is called
Kowalevskaia’s gyroscope.

For more details, see Gallavotti (1983).

Other Quadratures

An interesting classical integrable motion is that of a
point mass attracted by two equal-mass centers of
gravitational attraction, or a point ideally constrained
to move on the surface of a general ellipsoid.

New integrable systems have been discovered
quite recently and have generated a wealth of new
developments ranging from group theory (as integ-
rable systems are closely related to symmetries) to
partial differential equations.

It is convenient to extend the notion of integ-
rability by stating that a system is integrable in a
region W of phase space if

1. there is a change of coordinates (p,q) €
W {A,a,Y,y} € (UxT" x (VxR™) where
U c RY, V c R”,with¢ + m > 1, areopensets; and

2. the A,Y are constants of motion while the other
coordinates vary “linearly”:

(@,y) = (@ +o(A,Y)t, y+v(A,Y)t) [54]

where @(A,Y),v(A,Y) are smooth functions.

In the new sense, the systems studied in the previous
sections are integrable in much wider regions (essen-
tially on the entire phase space with the exception of a
set of data which lie on lower-dimensional surfaces
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forming sets of zero volume). The notion is con-
venient also because it allows us to say that even the
systems of free particles are integrable.

Two very remarkable systems integrable in the
new sense are the Hamiltonian systems, respectively
called Toda lattice (KRUSKAL, ZABUSKY), and
Calogero lattice (CALOGERO, MOSER); if (p;, g;) € R?,
they are

1 & n—1 o
Hrp,q)=5- > pi+ Y ge "o
i=1 i=1

7L . 2 . 8

where m >0 and k,w,g > 0. They describe the
motion of 7 interacting particles on a line.

The integration method for the above systems is
again to find first the constants of motion and later
to look for quadratures, when appropriate. The
constants of motion can be found with the method
of the Lax pairs. One shows that there is a pair of
self-adjoint # x n matrices M(p, q), N(p, g) such that
the equations of motion become

& Mp.q) =iM(p. ) N(p.g)), i=V"T [56]

which imply that M(z) = U(z)M(0)U(¢) ", with U(z) a
unitary matrix. When the equations can be written in
the above form, it is clear that the 7 eigenvalues of the
matrix M(0)=M(p,,q,) are constants of motion.
When appropriate (e.g., in the Calogero lattice case
with w > 0), it is possible to proceed to find canonical
action—angle coordinates: a task that is quite difficult
due to the arbitrariness of 7, but which is possible.

The Lax pairs for the Calogero lattice (with
w=0,g=m=1) are

i 1 57

Ny =——5h#k 7]
(@» — qr)

while for the Toda lattice (with m=g=1x=1) the

nonzero matrix elements of M, N are

My, =pp,

M=
" ah — qe)

My, = py, (an—=an+1)

Nj pi1=—Npy1p =1€”

My, 1 =My p=¢"
(%*thl) [58}

which are checked by first trying the case n=2.
Another integrable system (SUTHERLAND) is

n

1 & g
Helpg) =—> p2+> —5 59
s(0,q) zm;m ;sinhz(qh ~ ) [59]

whose Lax pair is related to that of the Calogero
lattice.

By taking suitable limits as #— oo and as the
other parameters tend to 0 or oo at suitable rates,
integrability of a few differential equations, among
which the Korteweg—deVries equation or the non-
linear Schrodinger equation, can be derived.

As mentioned in the introductory section, sym-
metry properties under continuous groups imply
existence of constants of motion. Hence, it is natural
to think that integrability of a mechanical system
reflects enough symmetry to imply the existence of
as many constants of motion, independent and in
involution, as the number of degrees of freedom, 7.

This is in fact always true, and in some respects it
is a tautological statement in the anisochronous
cases. Integrability in a region W implies existence
of canonical action—angle coordinates (A, &) (see the
section “Quasiperiodicity and integrability”) and the
Hamiltonian depends solely on the A’s: therefore, its
restriction to W is invariant with respect to the
action of the continuous commutative group 7" of
the translations of the angle variables. The actions
can be seen as constants of motion whose existence
follows from Noether’s theorem, at least in the
anisochronous cases in which the Hamiltonian
formulation is equivalent to a Lagrangian one.

What is nontrivial is to recognize, prior to
realizing integrability, that a system admits this
kind of symmetry: in most of the interesting cases,
the systems either do not exhibit obvious symmetries
or they exhibit symmetries apparently unrelated to
the group 7", which nevertheless imply existence of
sufficiently many independent constants of motion
as required for integrability. Hence, nontrivial
integrable systems possess a “hidden” symmetry
under 7": the rigid body is an example.

However, very often the symmetries of a Hamiltonian
H which imply integrability also imply partial
isochrony, that is, they imply that the number of
independent frequencies is smaller than 7 (see the
section “Quasiperiodicity and integrability”). Even
in such cases, often a map exists from the original
coordinates (p,q) to the integrating variables (A, @)
in which A are constants of motion and the o are
uniformly rotating angles (some of which are also
constant) with spectrum @(A), which is the gradient
dah(A) for some function h(A) depending only on a
few of the A coordinates. However, the map might
fail to be canonical. The system is then said to be
bi-Hamiltonian: in the sense that one can represent
motions in two systems of canonical coordinates,
not related by a canonical transformation, and by
two Hamiltonian functions H and H =/ which
generate the same motions in the respective
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coordinates (the latter changes of variables are
sometimes called “canonical with respect to the
pair H, H'” while the transformations considered in
the section “Canonical transformations of phase
space  coordination” are called completely
canonical).

For more details, we refer the reader to Calogero
and Degasperis (1982).

Generic Nonintegrability

It is natural to try to prove that a system “close” to
an integrable one has motions with properties very
close to quasiperiodic. This is indeed the case, but in
a rather subtle way. That there is a problem is easily
seen in the case of a perturbation of an anisochro-
nous integrable system.

Assume that a system is integrable in a region W
of phase space which, in the integrating action-angle
variables (A, &), has the standard form U x T with
a Hamiltonian h(A) with gradient @(A) =0ah(A). If
the forces are perturbed by a potential which is
smooth then the new system will be described, in the
same coordinates, by a Hamiltonian like

H.(A, )= h(A) + ef (A, ) [60]

with b, f analytic in the variables A, .

If the system really behaved like the unperturbed
one, it ought to have ¢ constants of motion of the
form F.(A,a) analytic in ¢ near e=0 and uniform,
that is, single valued (which is the same as periodic)
in the variables &. However, the following theorem
(PorNcARE) shows that this is a somewhat unlikely
possibility.

Theorem 1 If the matrix o"iAh(A) has rank >2, the
Hamiltonian [60] “generically” (an intuitive notion
precised below) cannot be integrated by a canonical
transformation C.(A, &) which

(i) reduces to the identity as € — 0; and
(ii) is analytic in ¢ near ¢=0 and in (A,x) €
U x T, with U' c U open.

Furthermore, no uniform constants of motion F.(A, &),
defined for € near 0 and (A, @) in an open domain U' x
T, exist other than the functions of H. itself.

Integrability in the sense (i), (ii) can be called
analytic integrability and it is the strongest (and
most naive) sense that can be given to the attribute.

The first part of the theorem, that is, (i), (ii), holds
simply because, if integrability was assumed, a
generating function of the integrating map would
have the form A" o + ®.(A', @) with ® admitting a

power series expansion in € as &, = e®! + 2P 4 - .-
Hence, ®' would have to satisfy

0(A') -9, (A @) + (A ) = f(A)  [61]

where f(A') depends only on A’ (hence integrating
both sides with respect to @, it appears that f(A’)
must coincide with the average of f(A',&) over ).

This implies that the Fourier transform f,(A),
v € Z!, should satisfy

f(A) =0

which is equivalent to the existence of f,(A’) such that
fv(A)=w(A') - vf,(A) for v # 0. But since there is no
relation between @(A) and f(A,a), this property
“generically” will not hold in the sense that as close
as wished to an f which satisfies the property [62] there
will be another f which does not satisfy it essentially no
matter how “closeness” is defined, (e.g., with respect to
the metric ||f —g||=>", |fv(A) — g (A)|]). This is so
because the rank of c?f‘Ab(A) is higher than 1 and @(A)
varies at least on a two-dimensional surface, so that
@ -v=0 becomes certainly possible for some v # 0
while f,(A) in general will not vanish, so that ®!,
hence ®., does not exist.

This means that close to a function f there is a
function f’ which violates [62] for some v. Of course,
this depends on what is meant by “close”: however,
here essentially any topology introduced on the
space of the functions / will make the statement
correct. For instance, if the distance between two
functions is defined by >, supscy |fv(A) — gv(A)| or
by sup a,«|f (A, @) — g(A, )]

The idea behind the last statement of the theorem
is in essence the same: consider, for simplicity, the
anisochronous case in which the matrix z}’iAh(A)
has maximal rank ¢, that is, the determinant
det 3iA/o(A) does not vanish. Anisochrony implies
that @(A)-v # 0 for all v # 0 and A on a dense set,
and this property will be used repeatedly in the
following analysis.

Let B(e, A, &) be a “uniform” constant of motion,
meaning that it is single valued and analytic in the
non-simply-connected region U x T and, for & small,

B(e,A,a) =Bo(A,a@) + eB1(A, &)
+e?By(A, @) + - - [63]

ifwA)-v=0, v#0 [62]

The condition that B is a constant of motion can be
written order by order in its expansion in e: the first
two orders are
@(A) - 9pBo(A,x) =0
aAf(A7a) : aaBO(A7 a) - aaf(A7a) : aABO (Aa a) [64]
+w(A) - 9yB1(A,x) =0
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Then the above two relations and anisochrony imply
(1) that By must be a function of A only and (2) that
@(A) - v and 04Bo(A) - v vanish simultaneously for all
v. Hence, the gradient of By must be proportional to
@(A), that is, to the gradient of h(A):daBo(A)=
MA)dah(A). Therefore, generically (because of the
anisochrony) it must be that By depends on A
through h(A): Bo(A) = F(h(A)) for some F.

Looking again, with the new information, at the
second of [64] it follows that at fixed A the
o-derivative in the direction @w(A) of B; equals
F'(h(A)) times the a-derivative of f, that is,
Bi(A,@) = f(A,@)F (h(A)) + Ci(A).

Summarizing: the constant of motion B has been
written as B(A,a)=F(h(A)) + eF (h(A))f (A, ) +
eCi(A) +e*By+---  which is equivalent to
B(A,a)=F(H.) +¢e(By+¢eB} +---) and therefore
B, +¢eB| +--- is another analytic constant of
motion. Repeating the argument also Bj, + B} + - - -
must have the form Fi(H.)+e(Bj+eBj+---);
conclusion

B =F(M.) + cFy(H.) + e*Fo(Ho) + - -
+"F,(H.) + O(e™™) [65]

By analyticity, B=F.(H.(A,a)) for some F.: hence
generically all constants of motion are trivial.

Therefore, a system close to integrable cannot
behave as it would naively be expected. The
problem, however, was not manifest until PoiN-
CARE’s proof of the above results: because in most
applications the function f has only finitely many
Fourier components, or at least is replaced by an
approximation with this property, so that at least
[62] and even a few of the higher-order constraints
like [64] become possible in open regions of action
space. In fact, it may happen that the values of A of
interest are restricted so that @(A)-v =0 only for
“large” values of v for which f, =0. Nevertheless,
the property that f,(A)=(®(A)-Vv)f,(A) (or the
analogous higher-order conditions, e.g., [64]),
which we have seen to be necessary for analytic
integrability of the perturbed system, can be
checked to fail in important problems, if no
approximation is made on f. Hence a conceptual
problem arises.

For more details see Poincaré (1987).

Perturbing Functions

To check, in a given problem, the nonexistence of
nontrivial constants of motion along the lines
indicated in the previous section, it is necessary to
express the potential, usually given in Cartesian

coordinates as €V(x), in terms of the action-angle
variables of the unperturbed, integrable, system.

In particular, the problem arises when trying to
check nonexistence of nontrivial constants of
motion when the anisochrony assumption (cf. the
previous section) is not satisfied. Usually it
becomes satisfied “to second order” (or higher):
but to show this, a more detailed information on
the structure of the perturbing function expressed
in action—angle variables is needed. For instance,
this is often necessary even when the perturbation
is approximated by a trigonometric polynomial, as
it is essentially always the case in celestial
mechanics.

Finding explicit expressions for the action-angle
variables is in itself a rather nontrivial task which
leads to many problems of intrinsic interest even in
seemingly simple cases. For instance, in the case of
the planar gravitational central motion, the Kepler
equation A=¢—esin (see the first of [41]) must be
solved expressing ¢ in terms of A\ (see the first of
[42]). It is obvious that for small &, the variable ¢
can be expressed as an analytic function of e:
nevertheless, the actual construction of this expres-
sion leads to several problems. For small &, an
interesting algorithm is the following.

Let h(\) =& — ), so that the equation to solve (i.e.,
the first of [41]) is

h(A\) = esin(A+ h(N))
Jdc

=51 (A+h(N) [66]
where ¢()\) = cos \; the function A — h()\) should be
periodic in \, with period 27, and analytic in ¢, A for
e small and X real. If h(\)=ehV) +2h@) 4 ... the
Fourier transform of h¥)()\) satisfies the recursion
relation

=1 . .
bfp =— ;E k Z (ivp)cy, (ivo)?

©kytetkp=h—1
vty e trp=v

x [T, k>1 [67]

with ¢, the Fourier transform of the cosine (c41 = %,
c,=0 if v#41), and (of course) Al =—ivc,.
Equation [67] is obtained by expanding the RHS
of [66] in powers of b and then taking the Fourier
transform of both sides retaining only terms of order
kin e.

Iterating the above relation, imagine drawing all
trees 6 with k “branches,” or “lines,” distinguished
by a label taking k values, and k£ nodes and attach to
each node v a harmonic label v, = +1 as in Figure 5.
The trees will be assumed to start with a root line vr
linking a point 7 and the “first node” v (see Figure 3)



Introductory Article: Classical Mechanics 17

Yy

L4 vg

Vo Ve
124
Y
V3 <]
Yy
Y10
Figure 5 An example of a tree graph and its labels. It contains
only one simple node (3). Harmonics are indicated next to their
nodes. Labels distinguishing lines are not marked.

and then bifurcate arbitrarily (such trees are some-
times called “rooted trees”).

Imagine the tree oriented from the endpoints
towards the root r (not to be considered a node)
and given a node v call ¥/ the node immediately
following it. If v is the first node before the root 7,
let v/ =7 and v,» =1. For each such decorated tree
define its numerical value

Val(9)=;—'i T ) Jlen 168

" lines I=v'v nodes

and define a current v([) on a line /=v¢'v to be the
sum of the harmonics of the nodes preceding
Viv(l)=3,<, v Call v(0) the current flowing in
the root branch and call order of 6 the number of
nodes (or branches). Then

h) =" Val(9) [69]
0./0)=v
order(8)=k
provided trees are considered identical if they can be
overlapped (labels included) after suitably scaling
the lengths of their branches and pivoting them
around the nodes out of which they emerge (the root
is always imagined to be fixed at the origin).

If the trees are stripped of the harmonic labels,
their number is finite and it can be estimated to be
<k!4* (because the labels which distinguish the lines
can be attached to an unlabeled tree in many ways).
The harmonic labels (i.e., v, = £1) can be laid
down in 2% ways, and the value of each tree can be
bounded by (1/k!)27* (because c.1 = ).

Hence Y, |h®| < 4% which gives a (rough)
estimate of the radius of convergence of the
expansion of b in powers of &: namely 0.25 (easily
improvable to 0.3678 if 4%k! is replaced by k*!
using Cayley’s formula for the enumeration of
rooted trees). A simple expression for Ak (1)
(LAGRANGE) is

h®) () = E(’)k Usink o

(also readable from the tree representation): the
actual radius of convergence, first determined by
Laplace, of the series for b can also be determined
from the latter expression for b (RoucHE) or directly
from the tree representation: it is ~0.6627.

One can find better estimates or at least more
efficient methods for evaluating the sums in [69]:
in fact, in performing the sum in [69] important
cancellations occur. For instance, the harmonic
labels can be subject to the further strong constraint
that no line carries zero current because the
sum of the values of the trees of fixed order and
with at least one line carrying zero current
vanishes.

The above expansion can also be simplified by
partial resummations. For the purpose of an
example, let the nodes with one entering and one
exiting line (see Figure 5) be called as “simple”
nodes. Then all tree graphs which, on any line
between two nonsimple nodes, contain any number
of simple nodes can be eliminated. This is done by
replacing, in evaluating the (remaining) tree values,
the factors v, v, in [68] by vyv,/(1 —ecos)): then
the value of ¢ (denoted Val(),) for a tree becomes a
function of ¢ and ¢ and [69] is replaced by

h(y) = i Z ekelPval(0), [70]
k=1 6.v(0)=v

order(6)=k

where the * means that the trees are subject to the
further restriction of not containing any simple
node. It should be noted that the above graphical
representation of the solution of the Kepler equation
is strongly reminiscent of the representations of
quantities in terms of graphs that occur often in
quantum field theory. Here the trees correspond to
Feynman graphs, the factors associated with the
nodes are the couplings, the factors associated with
the lines are the propagators, and the resummations
are analogous to the self-energy resummations,
while the cancellations mentioned above can be
related to the class of identities called Ward
identities. Not only the analogy can be shown not
to be superficial, but it also turns out to be very
helpful in key mechanical problems: see Appendix 1.

The existence of a vast number of identities
relating the tree values is shown already by the
simple form of the Lagrange series and by the
even more remarkable resummation (LEvi-CiviTA)
leading to

= 5sm1/) 1 k
Z ! (1 - scoswaw) v 1]

k=1
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It is even possible to further collect the series
terms to express it as a series with much better
convergence properties; for instance, its terms can be
reorganized and collected (resummed) so that b is
expressed as a power series in the parameter

i
iV

with radius of convergence 1, which corresponds to
e=1 (via a simple argument by Levi-Civita). The
analyticity domain for the Lagrange series is || < 1.
This also determines the value of Laplace radius,
which is the point closest to the origin of the
complex curve |n(g)| = 1: it is imaginary so that it is
the root of the equation

eV /(14 /1 +2) =1

The analysis provides an example, in a simple
case of great interest in applications, of the kind of
computations actually necessary to represent the
perturbing function in terms of action—angle
variables. The property that the function ¢(\) in
[66] is the cosine has been used only to limit the
range of the label v to be 41; hence the same
method, with similar results, can be applied to
study the inversion of the relation between the
average anomaly A and the true anomaly 6 and to
efficiently obtain, for instance, the properties of
f, g in [42].

For more details, the reader is referred to Levi-
Civita (1956).

[72]

Lindstedt and Birkhoff Series:
Divergences

Nonexistence of constants of motion, rather than
being the end of the attempts to study motions close
to integrable ones by perturbation methods, marks
the beginning of renewed efforts to understand their
nature.

Let (A,a) € Ux T’ be action-angle variables
defined in the integrability region for an analytic
Hamiltonian and let h(A) be its value in the action—
angle coordinates. Suppose that h(Ag) is anisochro-
nous and let f(A,e) be an analytic perturbing
function. Consider, for ¢ small, the Hamiltonian
H&(A, a) =Ho(A) + Ef(Aa a)

Let @y =@ (Ag) = daHo(A) be the frequency spec-
trum (see the section “Quasiperiodicity and integ-
rability”) of one of the invariant tori of the
unperturbed system corresponding to an action Aj.
Short of integrability, the question to ask at this
point is whether the perturbed system admits an

analytic invariant torus on which the motion is
quasiperiodic and

1. has the same spectrum @y,

2. depends analytically on ¢ at least for ¢ small,

3. reduces to the “unperturbed torus” {Ao} x T as
e—0.

More concretely, the question is:

Are there functions H.(y), b.(y) analytic in y e T
and in € near 0, vanishing as ¢ — 0 and such that the
torus with parametric equations
A=A +H£(l/’)7 a:'//'i_hs(!y)v WGT( [73]
is invariant and, if a)od:ef(o(Ao), the motion on it is
simply ¥ — ¥ + @ot, i.e., it is quasiperiodic with
spectrum @g?

In this context, Poincaré’s theorem (in the section
“Generic nonintegrability”) had followed another
key result, earlier developed in particular cases and
completed by him, which provides a partial answer
to the question.

Suppose that @y = w(Ag) € R’ satisfies a Diophan-
tine property, namely suppose that there exist
constants C,7 > 0 such that

1
WV > ——
|20 |_C|V\T’

forall0£veZ'  [74]
which, for each 7>/¢—1 fixed, is a property
enjoyed by all @ € R but for a set of zero measure.
Then the motions on the unperturbed torus run over
trajectories that fill the torus densely because of the
“irrationality” of @y implied by [74]. Writing
Hamilton’s equations,

& = Ho(A) +eduf(A, @), A= —cd.f(A )

with A, ¢ given by [73] with y replaced by v + ¢,
and using the density of the unperturbed trajectories
implied by [74], the condition that [73] are
equations for an invariant torus on which the
motion is ¥ — W + @ot are

@o + (@0 - dy)h-(¥) =daHo(Ao + H-(y))
+edaf(Ao+ Ho (W), ¥ + b.(w)) (@0 - dy)H:(v)
= —cdaf (Ao +H.(y), ¥ +b-(¥)) [75]

The theorem referred to above (POINCARE) is that

Theorem 2 If the unperturbed system is anisochro-
nous and @y = ®(Ay) satisfies |74] for some C,7 > 0
there exist two well defined power series b.(y)=

S22, kb (y) and H.(w) =37, *H¥ (w) which
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solve [75] to all orders in €. The series for H. is
uniquely determined, and such is also the series for
b up to the addition of an arbitrary constant at each
order, so that it is unique if h. is required, as
henceforth done with no loss of generality, to have
zero average over Y.

The algorithm for the construction is illustrated in
a simple case in the next section (see eqns [83],
[84]). Convergence of the above series, called
Lindstedt series, even for small € has been a problem
for rather a long time. Poincaré proved the existence
of the formal solution; but his other result, discussed
in the section “Generic nonintegrability,” casts
doubts on convergence although it does not exclude
it, as was immediately stressed by several authors
(including Poincaré himself). The result in that
section shows the impossibility of solving [75] for
all @y’s near a given spectrum, analytically and
uniformly, but it does not exclude the possibility of
solving it for a single @,.

The theorem admits several extensions or analogs:
an interesting one is to the case of isochronous
unperturbed systems:

Given the Hamiltonian H.(A,a)=a A+ ¢f (A, a),
with @y satisfying [74] and [ analytic, there exist
power series C.(A’,e'), u.(A’) such that H.(C.(A, &) =
@o-A' +u(A') holds as an equality between formal
power series (i.e., order by order in &) and at the
same time the C., regarded as a map, satisfies order by
order the condition (i.e., (4.3)) that it is a canonical map.

This means that there is a generating function
A a+o.(A,a ) also defined by a formal power
series @ (A',) =Y}, (A a), that is, such
that if C. (A’ ) (A, a) then it is true, order by
order in powers of ¢, that A=A" +d,®.(A',&) and
o' =o +d,y®. (A, a). The series for ®.,u. are called
Birkhoff series.

In this isochronous case, if Birkhoff series were
convergent for small € and (A’, ) in a region of the
form U x T% with U c R open and bounded, it
would follow that, for small e,H. would be inte-
grable in a large region of phase space (i.e., where the
generating function can be used to build a canonical
map: this would essentially be U x T deprived of a
small layer of points near the boundary of U).
However, convergence for small ¢ is false (in general),
as shown by the simple two-dimensional example

H.(A,o) = -A+e(Ar+f(a))

(A, ) e R? x T2 7e]

with f(@) an arbitrary analytic function with all
Fourier coefficients f, positive for v # 0 and f, =0.
In the latter case, the solution is

u.(A') = eA;

. (A, a) =
28 > e (i) 7]
k=1 0pvez? i(worr1 + woara))H

The series does not converge: in fact, its convergence
would imply integrability and, consequently,
bounded trajectories in phase space: however, the
equations of motion for [76] can be easily solved
explicitly and in any open region near given initial
data there are other data which have unbounded
trajectories if wp1/(woz + €) is rational.

Nevertheless, even in this elementary case a
formal sum of the series yields

u(A') = eA)

fve? 78]

D (A a)=¢ e
( ) l(wo1V1 + (wZo + E)Vz)

04vez?

and the series in [78] (no longer a power series in €)
is really convergent if @ = (wo1,wo2 +¢) is a Dio-
phantine vector (by [74], because analyticity implies
exponential decay of |f,]). Remarkably, for such
values of ¢ the Hamiltonian H. is integrable and it is
integrated by the canonical map generated by [78],
in spite of the fact that [78] is obtained, from [77],
via the nonrigorous sum rule

o0 1
k _
E =1 for z # 1 [79]

k=0

(applied to cases with |z| > 1, which are certainly
realized for a dense set of €’s even if @ is Diophantine
because the z’s have values z=v, /@y - v). In other
words, the integration of the equations is elementary
and once performed it becomes apparent that, if @ is
diophantine, the solutions can be rigorously found
from [78]. Note that, for instance, this means that
relations like Y737, 2k = —1 are really used to obtain
[78] from [77].

Another extension of Lindstedt series arises in a
perturbation of an anisochronous system when
asking the question as to what happens to the
unperturbed invariant tori 74, on which the spec-
trum is resonant, that is, @o - V=0 for some v # 0,
v € Z'. The result is that even in such a case there is a
formal power series solution showing that at least
a few of the (infinitely many) invariant tori into
which T, is in turn foliated in the unperturbed case
can be formally continued at £ # 0 (see the section
“Resonances and their stability”).

For more details, we refer the reader to Poincaré
(1987).
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Quasiperiodicity and KAM Stability

To discuss more advanced results, it is convenient
to restrict attention to a special (nontrivial) para-
digmatic case

H-(A, @) = 1A% + cf () 80]

In this simple case (called Thirring model: represent-
ing ¢ particles on a circle interacting via a potential
ef (x)) the equations for the maximal tori [75]
reduce to equations for the only functions b.:

(@-9y)’h-(y) = —daf (W + b-(w)), weT' [81]

as the second of [75] simply becomes the definition
of H. because the RHS does not involve H..

The real problem is therefore whether the formal
series considered in the last section converge at least
for small e: and the example [76] on the Birkhoff
series shows that sometimes sum rules might be
needed in order to give a meaning to the series. In
fact, whenever a problem (of physical interest)
admits a formal power series solution which is not
convergent, or which is such that it is not known
whether it is convergent, then one should look for
sum rules for it.

The modern theory of perturbations starts with
the proof of the convergence for ¢ small enough of
the Lindstedt series (Kormocorov). The general
“KAM?” result is:

Theorem 3 (KAM) Consider the Hamiltonian
H.(A, &) =h(A) + ¢f (A, @), defined in U=V xT*
with V. C R" open and bounded and with f(A,«),
h(A) analytic in the closure V x T where b(A) is also
anisochronous; let @ d:efa)(Ao) =0ah(Ag) and assume
that @y satisfies |74]. Then

(i) there is ec,r > 0 such that the Lindstedt series
converges for |e| < ec,;

(i) its sum yields two function H.(y), b.(y) on T*
which  parametrize an  invariant  torus
TC,T<AO)€);

(iii) on T c,-(Ao,€) the motion is W — W + @ot, see
[73]; and

(iv) the set of data in U which belong to invariant
tori T (Ag,e) with @(Ay) satisfying |[74]
with prefixed C, T has complement with volume
<const C™? for a suitable a > 0 and with area
also <const C™? on each nontrivial surface of
constant energy H.=E.

In other words, for small ¢ the spectra of most
unperturbed quasiperiodic motions can still be found
as spectra of perturbed quasiperiodic motions devel-
oping on tori which are close to the corresponding
unperturbed ones (i.e., with the same spectrum).

This is a stability result: for instance, in systems
with two degrees of freedom the invariant tori of
dimension two which lie on a given three-dimensional
energy surface, will separate the points on the energy
surface into the set which is “inside” the torus and the
set which is “outside.” Hence, an initial datum
starting (say) inside cannot reach the outside. Like-
wise, a point starting between two tori has to stay in
between forever. Further, if the two tori are close, this
means that motion will stay very localized in action
space, with a trajectory accessing only points close to
the tori and coming close to all such points, within a
distance of the order of the distance between the
confining tori. The case of three or more degrees of
freedom is quite different (see sections “Diffusion in
phase space” and “The three-body problem”).

In the simple case of the rotators system [80] the
equations for the parametric representation of the
tori are given by [81]. The latter bear some analogy
with the easier problem in [66]: but [81] are ¢
equations instead of one and they are differential
equations rather than ordinary equations. Further-
more, the function f(er) which plays here the role of
c(A) in [66] has Fourier coefficient f, with no
restrictions on v, while the Fourier coefficients c,
for ¢ in [66] do not vanish only for v = =+1.

The above differences are, to some extent,
“minor” and the power series solution to [81] can
be constructed by the same algorithm as used in the
case of [66]: namely one forms trees as in Figure 5
with the harmonic labels v, € Z replaced by v, € Z*
(still to be thought of as possible harmonic indices in
the Fourier expansion of the perturbing function f).
All other labels affixed to the trees in the section
“Generic nonintegrability” will be the same. In
particular, the current flowing on a branch [=v'v
will be defined as the sum of the harmonics of the
nodes w < v preceding v:

v(NEY v, 82]

w<v

and we call v(0) the current flowing in the root
branch.

Here the value Val(0) of a tree has to be defined
differently because the equation to be solved ([81])
contains the differential operator (@ ~(3?,,,)2 which,
when Fourier transformed, becomes multiplication
of the Fourier component with harmonic v by
(iw - v)*.

The variation due to the presence of the operator
(@0 -8.,,)2 and the necessity of its inversion in the
evaluation of u - hﬁ,k), that is, of the component of
HP along an arbitrary unit vector u, is nevertheless

\%
quite simple: the value of a tree graph 6 of order k
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(i.e., with k nodes and k branches) has to be defined
by (cf. [68])

- k
Val(6 d*"“"1)< V”‘“’)
( ) k! lines I=v'v ((00 ’ V(l))z

x ( 11 fv,,> 83]

nodesv

where the v, appearing in the factor relative to the
root line rv from the first node v to the root r (see
Figure 5) is interpreted as a unit vector # (it was
interpreted as 1 in the one-dimensional case [66]).
Equation [83] makes sense only for trees in which
no line carries zero current. Then the component
along u (the harmonic label attached to the root of a
tree) of B* s given (see also [69]) by

ji: Val(0) [84]

0.v(0)=v
order(6)=k

u-hf,k>:

where the * means that the sum is only over trees in
which a nonzero current v(l) flows on the lines [ € 0.
The quantity # - hg“ will be defined to be 0 (see the
previous section).

In the case of [66] zero-current lines could appear:
but the contributions from tree graphs containing at
least one zero current line would cancel. In the
present case, the statement that the above algorithm
actually gives h by simply ignoring trees with lines
with zero current is nontrivial. It was Poincaré’s
contribution to the theory of Lindstedt series to show
that even in the general case (cf. [75]) the equations
for the invariant tori can be solved by a formal power
series. Equation [84] is proved by induction on k after
checking it for the first few orders.

The algorithm just described leading to [83] can
be extended to the case of the general Hamiltonian
considered in the KAM theorem.

The convergence proof is more delicate than the
(elementary) one for eqn [66]. In fact, the values of
trees of order k can give large contributions to h
because the “new” factors (@ - v(I))?, although not
zero, can be quite small and their small size can
overwhelm the smallness of the factors f, and . In
fact, even if f is a trigonometric polynomial (so that f,
vanishes identically for |v| large enough) the currents
flowing in the branches can be very large, of the
order of the number k of nodes in the tree; see [82].

This is called the small-divisors problem. The key
to its solution goes back to a related work (SIEGEL)
which shows that

Theorem 4 Consider the contribution to the sum
in |82] from graphs 0 in which no pairs of lines

which lie on the same path to the root carry the
same current and, furthermore, the node harmonics
are bounded by |v| <N for some N. Then the
number of lines ¢ in 0 with divisor @ - v, satisfying
27" < Clwg - vo| < 27" does not exceed 4Nk2"/7.

Hence, setting
def 2
F'= C maxpy<nlfv|

the corresponding Val(#) can be bounded by

L pepg2e 5 pan(aNk2/7) def 1 b
w NI “H

B:FNQE:&Qﬁﬁ

[85]

since the product is convergent. In the case in which
f is a trigonometric polynomial of degree N, the
above restricted contributions to u- h( ' would
generate a convergent series for ¢ small enough In
fact, the number of trees is bounded (as in the
section “Perturbing functlons”) by k!4%(2N + 1)* so
that the series ), ENrE h | would converge for
small ¢ (i.e., |e| < (B - 4(2N—|—1) ).

Given thls comment, the analysis of the “remain-
ing contributions” becomes the real problem, and it
requires new ideas because among the excluded trees
there are some simple kth order trees whose value
alone, if considered separately from the other
contributions, would generate a factorially divergent
power series in €.

However, the contributions of all large-valued
trees of order k can be shown to cancel: although
not exactly (unlike the case of the elementary
problem in the section “Perturbing functions,”
where the cancellation is not necessary for the
proof, in spite of its exact occurrence), but enough
so that in spite of the existence of exceedingly large
values of individual tree graphs their total sum can
still be bounded by a constant to the power k so that
the power series actually converges for ¢ small
enough. The idea is discussed in Appendix 1.

For more details, the reader is referred to Poincaré
(1987), Kolmogorov (1954), Moser (1962), and Arnol’d
(1989).

Resonances and their Stability

A quasiperiodic motion with r rationally indepen-
dent frequencies is called resonant if r is strictly less
than the number of degrees of freedom, ¢. The
difference s =/ — r is the degree of the resonance.

Of particular interest are the cases of a perturba-
tion of an integrable system in which resonant
motions take place.
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A typical example is the n-body problem which
studies the mutual perturbations of the motions of
n — 1 particles gravitating around a more massive
particle. If the particle masses can be considered to
be negligible, the system will consist of 7 — 1 central
Keplerian motions: it will therefore have £ =3(n — 1)
degrees of freedom. In general, only one frequency
per body occurs in the absence of the perturbations
(the period of the Keplerian orbit). Hence, r <n — 1
and s > 2(n — 1) (or in the planar case s > (n — 1))
with equality holding when the periods are ration-
ally independent.

Another example is the rigid body with a fixed
point perturbed by a conservative force: in this case,
the unperturbed system has three degrees of freedom
but, in general, only two frequencies (see the
discussion following [52]).

Furthermore, in the above examples there is the
possibility that the independent frequencies assume,
for special initial data, values which are rationally
related, giving rise to resonances of even higher
order (i.e., with smaller values of 7).

In an integrable anisochronous system, resonant
motions will be dense in phase space because the
frequencies @(A) will vary as much as the actions
and therefore resonances of any order (i.e., any
r < £) will be dense in phase space: in particular, the
periodic motions (i.e., the highest-order resonances)
will be dense.

Resonances, in integrable systems, can arise in
a priori stable integrable systems and in a priori
unstable systems: the former are systems whose
Hamiltonian admits canonical action-angle coordi-
nates (A, o) € U x T with U c R’ open, while the
latter are systems whose Hamiltonian has, in
suitable local canonical coordinates, the form

$1 1 $2 1
Ho(A)+ D3 (07 =N+ 2 (m + i) 36
i= =

)\,‘,/L/' >0

where (A,@)eUx T, UeR’, (p,q) eV C R*™,
(m,k)e V' C R* with V,V’ neighborhoods of the
origin and f=r+s;+s3,5>0,s1+s>0 and
+\/A, £ /@ are called Lyapunov coefficients of
the resonance. The perturbations considered are
supposed to have the form &f(A,a,p,q,7, k). The
denomination of a priori stable or unstable refers to
the properties of the “a priori given unperturbed
Hamiltonian.” The label “a priori unstable” is
certainly appropriate if s; > 0: here also s1=0 is
allowed for notational convenience implying that the
Lyapunov coefficients in a priori unstable cases are all
of order 1 (whether real )\; or imaginary i,/z;). In

other words, the a priori stable case, s;=s,=0 in
[86], is the only excluded case. Of course, the stability
properties of the motions when a perturbation acts
will depend on the perturbation in both cases.

The a priori stable systems usually have a great
variety of resonances (e.g., in the anisochronous
case, resonances of any dimension are dense). The
a priori unstable systems have (among possible other
resonances) some very special r-dimensional
resonances occurring when the unstable coordinates
(p,q) and (7, k) are zero and the frequencies of the »
action—angle coordinates are rationally independent.

In the first case (a priori stable), the general
question is whether the resonant motions, which
form invariant tori of dimension r arranged into
families that fill /-dimensional invariant tori, con-
tinue to exist, in presence of small enough perturba-
tions ef (A, &), on slightly deformed invariant tori.
Similar questions can be asked in the a priori
unstable cases. To examine the matter more closely
consider the formulation of the simplest problems.

A priori stable resonances: more precisely, suppose
Ho= %AZ and let {Aop} x T be the unperturbed
invariant torus 7,4, with spectrum @o=m(Ag)=
0aHo(Ap) with only 7 rationally independent compo-
nents. For simplicity, suppose that @o=(wi,...,
W, 0,...,0) d:ef(a), 0) with @ € R”. The more general
case in which @ has only 7 rationally independent
components can be reduced to the special case above
by a canonical linear change of coordinates at the price
of changing the H, to a new one, still quadratic in the
actions but containing mixed products A;B;: the proofs
of the results that are discussed here would not be
really affected by such more general form of H.

It is convenient to distinguish between the “fast”
angles aj,...,a, and the “resonant” angles
ity ...,y (also called “slow” or “secular”) and
call = (a,B) with &' € 1" and B € T°. Likewise,
we distinguish the fast actions A'=(A4,...,A,) and
the resonant ones A, q,...,A; and set A=(A’,B)
with A’ € R” and B € R®.

Therefore, the torus 7 4,, Ao = (A}, Bo), is in turn a
continuum of invariant tori T4, g with trivial
parametric equations: f fixed, &' =y, w € 1", and
A'=Aj,B=B). On each of them the motion is:
A',B,B constant and &' — @' + wt, with rationally
independent @ € R'.

Then the natural question is whether there exist
functions b, k., H,, K. smooth in € near e =0 and in
v € 1", vanishing for ¢ =0, and such that the torus
T 4,,p,,- With parametric equations

A=A +H.(y), od=y+h.(y),

B=B,+K.(y), B=PB,+k(v) el [87]
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is invariant for the motions with Hamiltonian

H.(A,@) =14 + 1B + of (&, B)

and the motions on it are ¥ — ¥ + @t. The above
property, when satisfied, is summarized by saying
that  the  unperturbed  resonant  motions
A= (A}, By), ¢=(a}, + @'t,B,) can be continued in
presence of perturbation ef, for small ¢, to quasiper-
iodic motions with the same spectrum and on a
slightly deformed torus Ty 4 ..

A priori unstable resonances: here the question is
whether the special invariant tori continue to exist
in presence of small enough perturbations, of
course slightly deformed. This means asking
whether, given Ag such that @(Ag) =daHo(Ao) has
rationally independent components, there are func-
tions  (H.(y), h.(w)), (P-(y), Q.(w)) and (L.(y),
K.(y)) smooth in ¢ near £ =0, vanishing for e =0,
analytic in ¥ € 1" and such that the r-dimensional
surface

A=A +H€(W)7 a:'//+hs('//)

p =P-(y), q=0.(y) y el [88
n=II.(y), k= K.(y)

is an invariant torus 74, on which the motion is
v — v+ w0(Ay)t. Again, the above property is

summarized by saying that the unperturbed special
resonant motions can be continued in presence of
perturbation ef for small ¢ to quasiperiodic motions
with the same spectrum and on a slightly deformed
torus 7 4, .

Some answers to the above questions are pre-
sented in the following section. For more details, the
reader is referred to Gallavotti et al. (2004).

Resonances and Lindstedt Series

We discuss eqns [87] in the paradigmatic case in
which the Hamiltonian Ho(A) is %Az (cf. [80]). It
will be @(A') = A’ so that Ag=w, By=0 and the
perturbation f(e) can be considered as a function
of = (a,): let (B) be defined as its average over
o/. The determination of the invariant torus of
dimension 7 which can be continued in the sense
discussed in the last section is easily understood in
this case.

A resonant invariant torus which, among the tori
T a,,p> has parametric equatlons that can be con-
tinued as a formal power series in ¢ is the torus
T 4,,8, With B, a stationarity point for f(B), that is,
an_equilibrium point for the average perturbation:
0pf(By) =0. In fact, the following theorem holds:

Theorem 5 If @€ R" satisfies a Diophantine
property and if B is a nondegenerate stationarity
point for the “fast angle average” f(B) (i.e., such
that det 82 f (By) #0), then the following equations

for the functzons hg,k

(@ 0y)’h-(y) = —c0uf (W +h-(y), By + k-(¥))

5 (89]
(@ 0y) k(W) = —e0pf (¥ + h-(¥) + k(¥))

can be formally solved in powers of «.

Given the simplicity of the Hamiltonian [80] that
we are considering, it is not necessary to discuss the
functions H.,K. because the equations that they
should obey reduce to their definitions as in the
section “Quasiperiodicity and KAM stability,” and
for the same reason.

In other words, also the resonant tori admit a
Lindstedt series representation. It is however very
unlikely that the series are, in general, convergent.

Physically, this new aspect is due to the fact that
the linearization of the motion near the torus 74, g,
introduces oscillatory motions around 74 g with
frequencies proportional to the square roots of the
posmve eigenvalues of the matrix 582 f (B,): there-
fore, it is naively expected that it has to be necessary
that a Diophantine property be required on the
vector (@, /efi1,...), where epu; are the positive
eigenvalues. Hence, some values of &, namely those
for which (@, \/epi1, .. .) is not a Diophantine vector
or is too close to a non-Diophantine vector, should
be excluded or at least should be expected to
generate difficulties. Note that the problem arises
irrespective of the :issumptions about the nonde-
generate matrix 82 f Bo) (since e can have either
sign), and no matter how small |e] is supposed to be.
But we can expect that if the matrix 8 f (Bo) is
(say) positive definite (i.e., B, is a mlnlmum point
for f(B)) then the problem should be easier fore < 0
and vice versa, if B, is a maximum, it should be
easier for € >0 (i.e., in the cases in which the
eigenvalues of 58p f(B,) are negative and their roots
do not have the interpretation of frequencies).

Technically, the sums of the formal series can be
given (so far) a meaning only via summation rules
involving divergent series: typically, one has to
identify in the formal expressions (denumerably
many) geometric series which, although divergent,
can be given a meaning by applying the rule [79].
Since the rule can only be applied if z # 1, this leads
to conditions on the parameter ¢, in order to exclude
that the various z that have to be considered are very
close to 1. Hence, this stability result turns out to be
rather different from the KAM result for the
maximal tori. Namely the series can be given a
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meaning via summation rules provided f and S,
satisfy certain additional conditions and provided
certain values of ¢ are excluded. An example of a
theorem is the following:

Theorem 6 Given the Hamiltonian [80] and a
resonant torus T g g with o =A, € R’ satisfying a
Diophantine property let B, be a nondegenerate
maximum point for the average potential f(f) %
(27)7" [ fled,B)d e . Consider the Lindstedt series
solution for eqns [89] of the perturbed resonant
torus with spectrum (®,0). It is possible to express
the single nth-order term of the series as a sum of
many terms and then rearrange the series thus
obtained so that the resummed series converges for
€ in a domain € which contains a segment [0,e0] and
also a subset of [—eo, 0] which, although with open
dense complement, is so large that it has 0 as a
Lebesgue density point. Furthermore, the resummed
series for b.,k. define an invariant r-dimensional
analytic torus with spectrum .

More generally, if B, is only a nondegenerate
stationarity point for f( ), the domain of definition
of the resummed series is a set £ C [—&g,c9] which
on both sides of the origin has an open dense
complement although it has 0 as a Lebesgue density
point.

Theorem 6 can be naturally extended to the
general case in which the Hamiltonian is the most
general perturbation of an anisochronous integrable
system H.(A,a)=h(A) + cf (A, a) if 954P is a non-
singular matrix and the resonance arises from a
spectrum @(Ag) which has 7 independent compo-
nents (while the remaining are not necessarily zero).

We see that the convergence is a delicate problem
for the Lindstedt series for nearly integrable reso-
nant motions. They might even be divergent
(mathematically, a proof of divergence is an open
problem but it is a very reasonable conjecture in
view of the above physical interpretation); never-
theless, Theorem 6 shows that sum rules can be
given that sometimes (i.e., for ¢ in a large set near
¢=0) yield a true solution to the problem.

This is reminiscent of the phenomenon met in
discussing perturbations of isochronous systems in
[76], but it is a much more complex situation. It
leaves many open problems: foremost among them
is the question of uniqueness. The sum rules of
divergent series always contain some arbitrary
choices, which lead to doubts about the uniqueness
of the functions parametrizing the invariant tori
constructed in this way. It might even be that the
convergence set £ may depend upon the arbitrary
choices, and that considering several of them no ¢
with [e] < g¢ is left out.

The case of a priori unstable systems has also
been widely studied. In this case too resonances
with Diophantine r-dimensional spectrum @ are
considered. However, in the case s =0 (called a
priori unstable hyperbolic resonance) the Lindstedt
series can be shown to be convergent, while in the
case s1 =0 (called a priori unstable elliptic reso-
nance) or in the mixed cases si,s» >0 extra
conditions are needed. They involve @ and
H=(p1,. .., us,) (cf. [86]) and properties of the
perturbations as well. It is also possible to study a
slightly different problem: namely to look for
conditions on @,u,f which imply that, for small
g, invariant tori with spectrum e-dependent but
close, in a suitable sense, to @ exist.

The literature is vast, but it seems fair to say that,
given the above comments, particularly those con-
cerning uniqueness and analyticity, the situation is still
quite unsatisfactory. We refer the reader to Gallavotti
et al. (2004) for more details.

Diffusion in Phase Space

The KAM theorem implies that a perturbation of an
analytic anisochronous integrable system, i.e., with
an analytic Hamiltonian  H.(A, @) ="Hy(A) +
ef(A,a) and nondegenerate Hessian matrix
0%4h(A), generates large families of maximal invar-
iant tori. Such tori lie on the energy surfaces but do
not have codimension 1 on them, i.e., they do not
split the (2¢ — 1)-dimensional energy surfaces into
disconnected regions except, of course, in the case of
systems with two degrees of freedom (see the section
“Quasiperiodicity and KAM stability”).

The refore, there might exist trajectories with
initial data close to A" in action space which reach
phase space points close to A® # A’ in action space
for € #0, no matter how small. Such diffusion
phenomenon would occur in spite of the fact that
the corresponding trajectory has to move in a space
in which very close to each {A} x T there is an
invariant surface on which points move keeping
A constant within O(e), which for ¢ small can be
< |AF — Al

In a priori unstable systems (cf. the section
“Resonances and their stability”) with s =1,
s =0, it is not difficult to see that the correspond-
ing phenomenon can actually occur: the paradig-
matic example (ARNOL’D) is the a priori unstable
system

2 2
H. = %+Az+%+g(cosq— 1)
+ e(cosag +sinay)(cosqg — 1) [90]
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This is a system describing a motion of a “pendu-
lum” ((p, q) coordinates) interacting with a “rotat-
ing wheel” ((A1,a1) coordinates) and a “clock”
((A2,0a3) coordinates) a priori unstable near the
points p=0,9=0,27 (s1=1,5=0, \ =/g,
cf. [86]). It can be proved that on the energy surface
of energy E and for each £ # 0 small enough (no
matter how small) there are initial data with action
coordinates close to A' = (A}, A}) with (1/2)A + A}
close to E eventually evolving to a datum
A’ = (A, A}) with A] at a distance from Af smaller
than an arbitrarily prefixed distance (of course with
energy E). Furthermore, during the whole process
the pendulum energy stays close to zero within o(g)
(i.e., the pendulum swings following closely the
unperturbed separatrices).

In other words, [90] describes a machine (the
pendulum) which, working approximately in a
cycle, extracts energy from a reservoir (the clock)
to transfer it to a mechanical device (the wheel). The
statement that diffusion is possible means that the
machine can work as soon as e # 0, if the initial
actions and the initial phases (i.e., ai,az,p,q) are
suitably tuned (as functions of ).

The peculiarity of the system [90] is that the fixed
points P1 of the unperturbed pendulum (i.e., the
equilibria p =0, g =0, 27) remain unstable equilibria
even when € # 0 and this is an important simplify-
ing feature.

It is a peculiarity that permits bypassing the
obstacle, arising in the analysis of more general
cases, represented by the resonance surfaces consist-
ing of the A’s with Ay +1,=0: the latter
correspond to harmonics (vq,v;) present in the
perturbing function, i.e., the harmonics which
would lead to division by zero in an attempt to
construct (as necessary in studying [90] by Arnol’d’s
method) the parametric equations of the perturbed
invariant tori with action close to such A’s. In the
case of [90] the problem arises only on the
resonance marked in Figure 6 by a heavy line, i.e.,
A1 =0, corresponding to cosaq in [90].

If £=0, the points P_ with p=0, g=0 and the
point P, with p=0, =27 are both unstable
equilibria (and they are, of course, the same point,
if g is an angular variable). The unstable manifold
(it is a curve) of P, coincides with the stable
manifold of P_ and vice versa. So that the
unperturbed system admits nontrivial motions lead-
ing from P, to P_ and from P_ to P, both in a bi-
infinite time interval (—oo,00): the p,q variables
describe a pendulum and P. are its unstable
equilibria which are connected by the separatrices
(which constitute the zero-energy surfaces for the
pendulum).
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Figure 6 (a) The ¢ =0 geometry: the “partial energy” lines are
parabolas, (1/2)A2 + A;=const. The vertical lines are the
resonances A;=rational (i.e., v1A; +1v2.=0). The disks are
neighborhoods of the points A and A (the dots at their centers).
(b) £ # 0; an artist’s rendering of a trajectory in A space, driven
by the pendulum swings to accelerate the wheel from A} to A/ at
the expenses of the clock energy, sneaking through invariant tori
not represented and (approximately) located “away” from the
intersections between resonances and partial energy lines (a
dense set, however). The pendulum coordinates are not shown:
its energy stays close to zero, within a power of . Hence the
pendulum swings, staying close to the separatrix. The oscilla-
tions symbolize the wiggly behavior of the partial energy
(1/2)A2 + Az in the process of sneaking between invariant tori
which, because of their invariance, would be impossible without
the pendulum. The energy (1/2)A%2 of the wheel increases
slightly at each pendulum swing: accurate estimates yield an
increase of the wheel speed Ay of the order of </(log ') at
each swing of the pendulum implying a transition time of the
order of g /2" loge".

The latter property remains true for more general
a priori unstable Hamiltonians

H.=Ho(A) +Hu(p,q) +cf (A, a,p,q)

in (U x T x (R?) 1]

where H, is a one-dimensional Hamiltonian which
has two unstable equilibrium points P, and P_
linearly repulsive in one direction and linearly
attractive in another which are connected by two
heteroclinic trajectories which, as time tends to +oo,
approach P_ and P, and vice versa.

Actually, the points need not be different but, if
coinciding, the trajectories linking them must be
nontrivial: in the case [90] the variable g can be
considered an angle and then P, and P_ would
coincide (but are connected by nontrivial trajec-
tories, i.e., by trajectories that also visit points
different from P.). Such trajectories are called
heteroclinic if P, # P_ and homoclinic if P, =P_.

In the general case, besides the homoclinicity (or
heteroclinicity) condition, certain weak genericity
conditions, automatically satisfied in the example
[90], have to be imposed in order to show that,
given A' and A" with the same unperturbed energy
E, one can find, for all ¢ small enough but not equal
to zero, initial data (e-dependent) with actions
arbitrarily close to A' which evolve to data with
actions arbitrarily close to A’. This is a phenomenon
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called the Arnol’d diffusion. Simple sufficient con-
ditions for a transition from near A' to near A" are
expressed by the following result:

Theorem 7 Given the Hamiltonian [91] with H,
admitting two hyperbolic fixed points Py with
heteroclinic connections, t— (p4(t),q.(t)), a=1,2,
suppose that:

(i) On the unperturbed energy surface of energy
E=H(A") + Hu(P+) there is a regular curve
vis—A(s) joining Al to A such that the
unperturbed tori {A(s)} x T can be continued
at € # 0 into invariant tori T ai),. for a set of
values of s which fills the curve ~ leaving only
gaps of size of order ole).

(ii) The ¢ x £ matrix D;; of the second derivatives of
the integral of [ over the heteroclinic motions is
not degenerate, that is,

| det D|

= ‘det (/ dt One,f (A, + @(A)t,

palt)as(0) )| > >0 92)

for all A’s on the curve v and all a € T2,

Given arbitrary p >0, for € #0 small enough
there are initial data with action and energy closer
than p to A' and E, respectively, which after a long
enough time acquire an action closer than p to Al
(keeping the initial energy).

The above two conditions can be shown to hold
generically for many pairs A’ # A" (and many
choices of the curves 7 connecting them) if the
number of degrees of freedom is > 3. Thus, the result,
obtained by a simple extension of the argument
originally outlined by Arnol’d to discuss the para-
digmatic example [90], proves the existence of
diffusion in a priori unstable systems. The integral
in [92] is called Melnikov integral.

The real difficulty is to estimate the time needed
for the transition: it is a time that obviously has to
diverge as ¢ — 0. Assuming g fixed (i.e., € indepen-
dent) a naive approach easily leads to estimates
which can even be worse than O(exp (ac?)) with
some a,b > 0. It has finally been shown that in such
cases the minimum time can be, for rather general
perturbations  ¢f(a,q), estimated above by
O(e'loge™), which is the best that can be hoped
for under generic assumptions.

The reader is referred to Arnol’d (1989) and
Chierchia and Valdinoci (2000) for more details.

Long-Time Stability of Quasiperiodic
Motions

A more difficult problem is whether the same
phenomenon of migration in action space occurs in
a priori stable systems. The root of the difficulty is a
remarkable stability property of quasiperiodic
motions. Consider Hamiltonians H.(A, &) =h(A) +
ef (A, @) with Hy(A) =h(A) strictly convex, analytic,
and anisochronous on the closure U of an open
bounded region U C R’, and a perturbation ¢f (A, &)
analytic in U x T¢

Then a priori bounds are available on how long it
can possibly take to migrate from an action close to
A; to one close to A,: and the bound is of
“exponential type” as ¢ — 0 (i.e., it admits a lower
bound which behaves as the exponential of an
inverse power of ¢). The simplest theorem is
(NEKHOROSSEV):

Theorem 7 There are constants 0<a,b,d, g,
such that any initial datum (A, &) evolves so that A
will not change by more than ac® before a long time
bounded below by Texp (be~9).

Thus, this puts an exponential bound, i.e., a
bound exponential in an inverse power of ¢, to the
diffusion time: before a time 7exp (be~¢) actions can
only change by O(e8) so that their variation cannot
be large no matter how small € # 0 is chosen. This
places a (long) lower bound to the time of diffusion
in a priori stable systems.

The proof of the theorem provides, actually, an
interesting and detailed picture of the variations in
actions showing that some actions may vary more
slowly than others.

The theorem is constructive, i.e., all constants
0 <a,b,d,7 can be explicitly chosen and depend
on £, Ho,f although some of them can be fixed to
depend only on ¢ and on the minimum curvature of
the convex graph of Hy. Its proof can be adapted
to cover many cases which do not fall in the class of
systems with strictly convex unperturbed Hamilto-
nian, and even to cases with a resonant unperturbed
Hamiltonian.

However, in important problems (e.g., in the
three-body problems met in celestial mechanics)
there is empirical evidence that diffusion takes
place at a fast pace (i.e., not exponentially slow in
the above sense) while the above results would
forbid a rapid migration in phase space if they
applied: however, in such problems the assumptions
of the theorem are not satisfied, because the
unperturbed system is strongly resonant (as in the
celestial mechanics problems, where the number of
independent frequencies is a fraction of the number
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of degrees of freedom and h(A) is far from strictly
convex), leaving wide open the possibility of observ-
ing rapid diffusion.

Further, changing the assumptions can dramati-
cally change the results. For instance, rapid diffusion
can sometimes be proved even though it might be
feared that it should require exponentially long
times: an example that has been proposed is the
case of a three-timescales system, with Hamiltonian

2
w1A1 + wrAy +% + g(1+4cosq)

+5f(0¢1,042,p,q) [93]

with a)gdéf(wl,wz), where w; =25, w, =120

and @,w >0 constants. The three scales are
wi', Ve, wy'. In this case, there are many
(although by no means all) pairs A;,A; which can
be connected within a time that can be estimated to
be of order O(¢7'loge™).

This is a rapid-diffusion case in an a priori
unstable system in which condition [92] is not
satisfied: because the e-dependence of @(A) implies
that the lower bound ¢ in [92] must depend on e
(and be exponentially small with an inverse power
of e as e —0).

The unperturbed system in [93] is nonresonant in
the Hy part for £ > 0 outside a set of zero measure
(i.e., where the vector @. satisfies a suitable
Diophantine property) and, furthermore, it is
a priori unstable: cases met in applications can be
a priori stable and resonant (and often not aniso-
chronous) in the H part. In such a system, not only
the speed of diffusion is not understood but
proposals to prove its existence, if present (as
expected), have so far not given really satisfactory
results.

For more details, the
to Nekhorossev (1977).

reader in referred

The Three-Body Problem

Mechanics and the three-body problem can be
almost identified with each other, in the sense that
the motion of three gravitating masses has long been
a key astronomical problem and at the same time
the source of inspiration for many techniques:
foremost among them the theory of perturbations.
As an introduction, consider a special case. Let
three masses g =myg, my=my, my=m, interact
via gravity, that is, with interaction potential
—kmmj|x; — x;|": the simplest problem arises
when the third body has a neglegible mass compared
to the two others and the latter are supposed to be
on a circular orbit; furthermore, the mass »; is emg

with e small and the mass 71,1 moves in the plane of
the circular orbit. This will be called the “circular
restricted three-body problem.”

In a reference system with center S and rotating at
the angular speed of ] around § inertial forces
(centrifugal and Coriolis) act. Supposing that the
body J is located on the axis with unit vector i at
distance R from the origin S, the acceleration of the
point M is

@F+W3(91€fgi) — 2wy A O

if F is the force of attraction and @y A O = wod™
where @( is a vector with |@g|=wp and perpen-
dicular to the orbital plane and o*%(—p,,p1) if
0= (p1, p2). Here, taking into account that the origin
S rotates around the fixed center of mass, wj(o —
eR/(1 + ¢)i) is the centrifugal force while 2@ A ¢
is the Coriolis force. The equations of motion can
therefore be derived from a Lagrangian

1 1
L=20"—W+we' o+5uwio?
2 2

, €R

with

(.u(z)R3 = kmg(l +eé) défgo
kms kﬂ’ls&

W=t S
lo| lo—Ri

where k is the gravitational constant, R the distance
between S and ], and finally the last three terms in [94]
come from the Coriolis force (the first) and from the
centripetal force (the other two, taking into account that
the origin S rotates around the fixed center of mass).

Setting g=go/(1 + &) = kg, the Hamiltonian of
the system is

1
(b= w00")* =1~ 5 9%

g s

The first part can be expressed immediately in the
action—angle coordinates for the two-body problem
(cf. the section “Newtonian potential and Kepler’s
laws”). Calling such coordinates (L, Ao, Go, Y0) and
6y the polar angle of M with respect to the major axis
of the ellipse and )¢ the mean anomaly of M on its
ellipse, the Hamiltonian becomes, taking into account
that for e =0 the ellipse axis rotates at speed —wy,

2

YN

H =

2

__& - T B R
H ==z —wCo 5R<]R z‘ 2 z> [96]
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which is convenient if we study the interior problem,
e., |o| < R. This can be expressed in the action-
angle coordinates via [41], [42]:

90:)‘0+f)\07 90+’YO:)\0+70+]()\0
(1 GH" el GE 1 7]
LZ) 7 R gR1+ecos(Ao+fy,)

where (see [42]), o=

f(esin )\, ecos\) and

f(x,y) 2x<1 +%y+~~)

with the ellipsis denoting higher orders in x,y even
in x. The Hamiltonian takes the form, if w?>=gR>3,

g g
—Z—WGO“rEEF(GOaLO)AO?)\Od‘_PYO) [98]

M. =—

where the only important feature (for our purposes) is
that F(L,G,«,(3) is an analytic function of L,G,«, (3
near a datum with |G| <L (i.e., ¢>0) and |o| <R.
However, the domain of analyticity in G is rather
small as it is constrained by |G| <L excluding in
particular the circular orbit case G=+L.

Note that apparently the KAM theorem fails to be
applicable to [98] because the matrix of the second
derivatives of Ho(L,G) has vanishing determinant.
Nevertheless, the proof of the theorem also goes
through in this case, with minor changes. This can
be checked by studying the proof or, following a
remark by Poincaré, by 51mply noting that the

“squared” Hamiltonian H_. def( H.)? has the form

H/:< gz

2
! 2L2 wGo) +eF (Go,Lo, X0, Ao +70) [99]

with F’ still analytic. But this time

827'[6 _ 27 -4 2
detm = *6g LO woh 7é 0
if h=-g"Ly>—2wGy #0

Therefore, the KAM theorem applies to H. and
the key observation is that the orbits generated by
the Hamiltonian (H.)> are geometrically the same as
those generated by the Hamiltonian H.: they are
only run at a different speed because of the need of a
time rescaling by the constant factor 27H..

This shows that, given an unperturbed ellipse of
parameters (Lo, Gg) such that @= (gZ/LS, -
Gy > 0, with w; /w, Diophantine, then the perturbed
system admits a motion which is quasiperiodic with
spectrum proportional to @ and takes place on an orbit
which wraps around a torus remaining forever close to
the unperturbed torus (which can be visualized as
described by a point moving, according to the area law

on an ellipse rotating at a rate —wp) with actions
(Lo, Go), provided ¢ is small enough. Hence,

The KAM theorem answers, at least conceptually, the
classical question: can a solution of the three-body
problem remain close to an unperturbed one forever?
That is, is it possible that a solar system is stable
forever?

Assuming e, |o|/R < 1 and retaining only the lowest
orders in e and |g|/R<« 1 the Hamiltonian [98]
simplifies into

2 4

_ & g Gy
H=—35 ~wGo+8.(Go) — 7% 2R2(3c052()\0+70)
—ecos)\o—gecos(x\(ﬁ—zw)
+%ecos(3)\o+270)> [100]
where
4
_ 1/2 eg Gy
55(G0) ((1 +5) 1) 2R gZRZ

It is an interesting exercise to estimate, assuming
as model the Hamiltonian [100] and following the
proof of the KAM theorem, how small has ¢ to be if
a planet with the data of Mercury can be stable
forever on a (slowly precessing) orbit with actions
close to the present-day values under the influence
of a mass ¢ times the solar mass orbiting on a circle,
at a distance from the Sun equal to that of Jupiter. It
is possible to follow either the above reduction to
the ordinary KAM theorem or to apply directly to
[100] the Lindstedt series expansion, proceeding
along the lines of the section “Quasiperiodicity and
KAM stability.” The first approach is easy but the
second is more efficient: in both cases, unless the
estimates are done in a particularly careful manner,
the value found for emyg is not interesting from the
viewpoint of astronomy.

The reader is refered to Arnol’d (1989) for more
details.

Rationalization and Regularization of
Singularities

Often integrable systems have interesting data which
lie on the boundary of the integrability domain. For
instance, the central motion when L =G (circular
orbits) or the rigid body in a rotation around one of
the principal axes or the two-body problem when
G =0 (collisional data). In such cases, perturbation
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theory cannot be applied as discussed above.
Typically, the perturbation depends on quantities
like vL — G and is not analytic at L =G. Never-
theless, it is sometimes possible to enlarge phase space
and introduce new coordinates in the vicinity of the
data which in the initial phase space are singular.

A notable example is the failure of the analysis of
the circular restricted three-body problem: it appar-
ently fails when the orbit that we want to perturb is
circular.

It is convenient to
coordinates L, \ and G, ~:

introduce the canonical

L =1L, G=Ly-G
0 0 0 [101]
A= Ao + 70, Y=
so that e=v2GL1/1—G2L)™ and M=\+~

and 6y =\ + f\,, where f,\o is defined in [42] (see
also [97]). Hence,

_)‘+'7+fA+w 0o +70 = A+ fosy
°= ‘/Z—G\/ 2L [102]
lol _ L*(1—¢?
R gR 1 +e cos()\ + v+ frty)
and the Hamiltonian [100] takes the form
&
H: =— 512" wL 4+ wG
+a§ (L-G,L,A+7,2)  [103]

In the coordinates L,G of [101] the unperturbed
circular case corresponds to G=0 and [96], once
expressed in the action—angle variables G, L,~, A, is
analytic in a domain whose size is controlled by
V/G. Nevertheless, very often problems of perturba-
tion theory can be “regularized.”

This is done by “enlarging the integrability”
domain by adding to it points (one or more) around
the singularity (a boundary point of the domain of
the coordinates) and introducing new coordinates to
describe simultaneously the data close to the
singularity and the newly added points: in many
interesting cases, the equations of motion are no
longer singular (i.e., become analytic) in the new
coordinates and are therefore apt to describe the
motions that reach the singularity in a finite time.
One can say that the singularity was only apparent.

Perhaps this is best illustrated precisely in the
above circular restricted three-body problem, with
the singularity occurring where G =0, that is, at a
circular unperturbed orbit. If we describe the points
with G small in a new system of coordinates

obtained from the one in [101] by letting alone
L, )\ and setting

= V2Gcos~, =V2Gsinvy

then p, g vary in a neighborhood of the origin with
the origin itself excluded.

Adding the origin of the p—g plane then in a full
neighborhood of the origin, the Hamiltonian [96] is
analytic in L, \,p,q. This is because it is analytic
(cf. [96], [97]) as a function of L,\ and ecosf)
and of cos(M\g+ 6p). Since 6p=X\+~v+fir, and
0o + Ao =X+ frry by [97], the Hamiltonian [96] is
analytic in L, ecos(\+ 7+ friy), cOs (A —i—fpﬂ
for e small (i.e., for G small) and, by [42], fi,, is
analytic in esin (X + ) and ecos (A + 7). Hence the
trigonometric identities

[104]

esin(A + 1) = psm)\:/r_qcos)\ 1_2GL
e [105]
pcos A —gsin A
PP 452 1 - =
ecos(A+7) = Nis %3

together with G = (1/2)(p* + ¢*) imply that [103] is
analytic near p=¢g=0 and L >0, € [0,27]. The
Hamiltonian becomes analytic and the new coordi-
nates are suitable to describe motions crossing the
origin: for example, by setting

def 1 PP+a*N, in
¢= 2 < 4L L
[100] becomes

2
H:—%—wL+w%(p2+q2)
4
iy B LA )
X (3cos2A — ((—11cos A+ 3cos3\)p
— (7sin A+ 3sin3X)q)C) [106]

The KAM theorem does not apply in the form
discussed above to “Cartesian coordinates,” that is,
when, as in [106], the unperturbed system is not
assigned in action—angle variables. However, there
are versions of the theorem (actually its corollaries)
which do apply and therefore it becomes possible to
obtain some results even for the perturbations of
circular motions by the techniques that have been
illustrated here.

Likewise, the Hamiltonian of the rigid body with
a fixed point O and subject to analytic external
forces becomes singular, if expressed in the action—
angle coordinates of Deprit, when the body motion
nears a rotation around a principal axis or, more
generally, nears a configuration in which any two of
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the axes i3, 2, or 2o coincide (i.e., any two among the
principal axis, the angular momentum axis and the
inertial z-axis coincide; see the section “Rigid
body”). Nevertheless, by imitating the procedure
just described in the simpler cases of the circular
three-body problem, it is possible to enlarge the
phase space so that in the new coordinates the
Hamiltonian is analytic near the singular
configurations.

A regularization also arises when considering
collisional orbits in the unrestricted planar three-
body problem. In this respect, a very remarkable
result is the regularization of collisional orbits in the
planar three-body problem. After proving that if the
total angular momentum does not vanish, simulta-
neous collisions of the three masses cannot occur
within any finite time interval, the question is
reduced to the regularization of two-body collisions,
under the assumption that the total angular momen-
tum does not vanish.

The local change of coordinates, which changes the
relative position coordinates (x, y) of two colliding
bodies as (x,y) — (£, 1), with x + iy = (£ + in)?, is not
one to one, hence it has to be regarded as an
enlargement of the positions space, if points with
different (&, n) are considered different. However, the
equations of motion written in the variables &, 1 have
no singularity at &, 7= 0 (LEvI-CIviTA).

Another celebrated regularization is the regular-
ization of the Schwartzschild metric, i.e., of the
general relativity version of the two-body problem:
it is, however, somewhat out of the scope of this
review (SYNGE, KRUSKAL).

For more details, the reader is refered to Levi-
Civita (1956).

Appendix 1: KAM Resummation Scheme

The idea to control the “remaining contributions” is to
reduce the problem to the case in which there are no
pairs of lines that follow each other in the tree order
and which have the same current. Mark by a scale
label “0” the lines, see [74], [83], of a tree whose
divisors C/@g.v(l) are >1: these are lines which give
no problems in the estimates. Then mark by a scale
label “>1” the lines with current v(l) such that
l@o - v(l)| < 27"*! for n=1 (i.e., the remaining lines).

The lines labeled 0 are said to be on scale 0, while
those labeled >1 are said to be on scale >1. A cluster
of scale 0 will be a maximal collection of lines of
scale 0 forming a connected subgraph of a tree 6.

Consider only trees 6y € Oy of the family ©¢ of
trees containing no clusters of lines with scale label
0 which have only one line entering the cluster and
one exiting it with equal current.

It is useful to introduce the notion of a line ¢;
situated “between” two lines /,¢ with ¢ > ¢: this
will mean that ¢; precedes ¢ but not .

All trees 0 in which there are some pairs I’ > [ of
consecutive lines of scale label >1 which have equal
current and such that all lines between them bear
scale label 0 are obtained by “inserting” on the lines
of trees in ©y with label >1 any number of clusters
of lines and nodes, with lines of scale 0 and with the
property that the sum of the harmonics of the nodes
inserted vanishes.

Consider a line [y €6y € ¢ linking nodes v < v,
and labeled >1 and imagine inserting on it a cluster
~ of lines of scale 0 with sum of the node harmonics
vanishing and out of which emerges one line
connecting a node vy in v to v and into which
enters one line linking v; to a node v;, € 7. The
insertion of a k-lines, |y|=(k+ 1)-nodes, cluster
changes the tree value by replacing the line factor,
that will be briefly called “value of the cluster 7, as

Vl/1 : Vl/z (Vt/l : M(77 V(IO))VUZ) 1
5 — 5 5 [107]
V(lo) ao - V(l()) Qo - V(lo)
where M is an ¢ x ¢ matrix
EM vV, V,
rs(’% (IO)) Vout,rVin, s (_f ,,) —
kT E v gwo . V(l)2

if £=7'v denotes a line linking ¢/ and v. Therefore, if
all possible connected clusters are inserted and the
resulting values are added up, the result can be taken
into account by attrlbutlng to the orlgmal line Iy a
factor like [107] with MO (v(l0)) % Y2 M(v;v(lo))
replacing M(y;v(lp)).

If several connected clusters v are inserted on the
same line and their values are summed, the result is
a modification of the factor associated with the line
Iy into

> (v(lo)) 1
; ( v(ly)? ) Y2 0 - vllo)?

_ (vvl- ! vyz> 108]
a - V(lo) — M<0)(V(lo))

The series defining M%) involves, by construction, only
trees with lines of scale 0, hence with large divisors, so
that it converges to a matrix of small size of order ¢
(actually €%, more precisely) if ¢ is small enough.
Convergence can be established by simply remark-
ing that the series defining M" is built with lines
with values >(1/2) of the propagator, so that it
certainly converges for ¢ small enough (by the
estimates in the section “Perturbing functions,”
where the propagators were identically 1) and the
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sum is of order ¢ (actually £?), hence <1. However,
such an argument cannot be repeated when dealing
with lines with smaller propagators (which still have
to be discussed). Therefore, a method not relying on
so trivial a remark on the size of the propagators has
eventually to be used when considering lines of scale
higher than 1, as it will soon become necessary.

The advantage of the collection of terms achieved
with [108] is that we can represent b as a sum of
values of trees which are simpler because they
contain no pair of lines of scale >1 with in between
lines of scale 0 with total sum of the node harmonics
vanishing. The price is that the divisors are now more
involved and we even have a problem due to the fact
that we have not proved that the series in [108]
converges. In fact, it is a geometric series whose value
is the RHS of [108] obtained by the sum rule [79]
unless we can prove that the ratio of the geometric
series is <1. This is trivial in this case by the previous
remark: but it is better to note that there is another
reason for convergence, whose use is not really
necessary here but will become essential later.

The property that the ratio of the geometric series
is <1 can be regarded as due to the consequence of
the cancellation mentioned in the section “Quasi-
periodicity and KAM stability” which can be
shown to imply that the ratio is <1 because
MOv)=cX@y - v)?*mO(v) with C |mO(v)| <Dy
for some Dy > 0 and for all |¢| <&y for some &y.
Then for small e the divisor in [108] is essentially
still what it was before starting the resummation.

At this point, an induction can be started. Consider
trees evaluated with the new rule and place a scale
level “>2” on the lines with C | - v(I)| < 27! for
n=2: leave the label “0” on the lines already marked
so and label by “1” the other lines. The lines of scale
“1” will satisfy 27" < |@g - v(I)] < 27" for n=1.
The graphs will now possibly contain lines of scale 0,
1 or >2 while lines with label “>1” no longer can
appear, by construction.

A cluster of scale 1 will be a maximal collection of
lines of scales 0, 1 forming a connected subgraph of
a tree 0 and containing at least one line of scale 1.

The construction carried out by considering clusters
of scale 0 can be repeated by considering trees 6; € ©1,
with ©1 the collection of trees with lines marked 0, 1,
or >2 and in which no pairs of lines with equal
momentum appear to follow each other if between
them there are only lines marked 0 or 1.

Insertion of connected clusters 7 of such lines on a
line [y of #; leads to define a matrix MY formed by
summing tree values of clusters v with lines of scales
0 or 1 evaluated with the line factors defined in
[107] and with the restriction that in + there are no
pairs of lines £ < ¢ with the same current and which

follow each other while any line between them has
lower scale (i.e., 0), here “between” means “preced-
ing /' but not preceding ,” as above.

Therefore, a scale-independent method has to be
devised to check the convergence for M(!) and for the
matrices to be introduced later to deal with even
smaller propagators. This is achieved by the following
extension of Siegel’s theorem mentioned in the section
“Quasiperiodicity and KAM stability”:

Theorem 8 Let @y satisfy [74] and set @ = Cay.
Consider the contribution to the sum in [82] from
graphs 0 in which

(i) no pairs V' > ¢ of lines which lie on the same
path to the root carry the same current v if all
lines 01 between them have current v({1) such
that |@ - v(¢1)| > 2| - v|;

(ii) the node harmonics are bounded by |v| < N for
some N.

Then the number of lines ¢ in 0 with divisor @ - v,
satisfying 27" < |@-v,| <271 does not exceed
ANR2™"T n=1,2,....

This implies, by the same estimates in [85], that
the series defining M! converges. Again, it must be
checked that there are cancellations implying that
MY (v) =e(@g - v)*mV(v) with |mV(v)| < Dy for
the same Dy > 0 and the same <.

At this point, one deals with trees containing only
lines carrying labels 0,1, > 2, and the line factors for
the lines /=v'v of scale 0 are v, -v,/(@y-v(£)),
those of the lines £ =1'v of scale 1 have line factors
Vo - (@0 - v(0)? = MO(v(£)v,, and those of the
lines ¢ =v'v of scale > 2 have line factors

Vo - (@0 - v(0) = MO w(0) M,

Furthermore, no pair of lines of scale “1” or of scale
“>2” with the same momentum and with only lines
of lower scale (i.e., of scale “0” in the first case or of
scale “0”, “1” in the second) between them can
follow each other.

This procedure can be iterated until, after infi-
nitely many steps, the problem is reduced to the
evaluation of tree values in which each line carries a
scale label # and there are no pairs of lines which
follow each other and which have only lines of
lower scale in between. Then the Siegel argument
applies once more and the series so resumed is an
absolutely convergent series of functions analytic in
e: hence the original series is convergent.

Although at each step there is a lower bound on the
denominators, it would not be possible to avoid using
Siegel’s theorem. In fact, the lower bound would become
worse and worse as the scale increases. In order to check
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the estimates of the constants Dy, 9 which control the
scale independence of the convergence of the various
series, it is necessary to take advantage of the theorem,
and of the absence (at each step) of the necessity of
considering trees with pairs of consecutive lines with
equal momentum and intermediate lines of higher scale.

One could also perform the analysis by bounding
b order by order with no resummations (i.e.,
without changing the line factors) and exhibiting the
necessary cancellations. Alternatively, the paths that
Kolmogorov, Arnol’d and Moser used to prove
the first three (somewhat different) versions of the
theorem, by successive approximations of the
equations for the tori, can be followed.

The invariant tori are Lagrangian manifolds just
as the unperturbed ones (cf. comments after [31])
and, in the case of the Hamiltonian [80], the
generating function A-w+ ®(A,¥) can be
expressed in terms of their parametric equations

PAY)=Gy)ta-y+h(y) (A-w—Ab(y))
IyG(W) X — Ab(y) + h(w)dy Ab(y) —a

e d

2% / (—Ab(y) + h(W)dy Ab(y)) (21,% [109]
_ dy
= / h(y)dy Ab(y) 2

where A=(@-dy) and the invariant torus corre-
sponds to A'=@ in the map @ =y +da®(A, y) and
A'=A+9,PA,y). In fact, by [109] the latter
becomes A'=A — Ab and, from the second of [75]
written for f depending only on the angles e, it is
A=wm + Ab when A, « are on the invariant torus.

Note that if g exists it is necessarily determined by the
third relation in [109] but the check that the second
equation in [109] is soluble (i.e., that the RHS is an exact
gradient up to a constant) is nontrivial. The canonical
map generated by A - W+ ®@(A, y) is also defined for A’
close to @ and foliates the neighborhood of the invariant
torus with other tori: of course, for A’ # @ the tori
defined in this way are, in general, not invariant.

The reader is referred to Gallavotti et al. (2004)
for more details.

Appendix 2: Coriolis and Lorentz
Forces - Larmor Precession

Larmor precession refers to the motion of an
electrically charged particle in a magnetic field H
(in an inertial frame of reference). It is due to the
Lorentz force which, on a unit mass with unit
charge, produces an acceleration {=v A H if the
speed of light is c=1.

Therefore, if H= Hk is directed along the k-axis,
the acceleration it produces is the same that the
Coriolis force would impress on a unit mass located
in a reference frame which rotates with angular
velocity wok around the k-axis if H=2wyk.

The above remarks imply that a homogeneous
sphere electrically charged uniformly with a unit
charge and freely pivoting about its center in a
constant magnetic field H directed along the k-axis
undergoes the same motion as it would follow if not
subject to the magnetic field but seen in a
noninertial reference frame rotating at constant
angular velocity wy around the k-axis if H and wy
are related by H=2wy: in this frame, the Coriolis
force is interpreted as a magnetic field.

This holds, however, only if the centrifugal force
has zero moment with respect to the center: true in
the spherical symmetry case only. In spherically
nonsymmetric cases, the centrifugal forces have in
general nonzero moment, so the equivalence
between Coriolis force and the Lorentz force is
only approximate.

The Larmor theorem makes this more precise. It
gives a quantitative estimate of the difference between
the motion of a general system of particles of mass m
in a magnetic field and the motion of the same
particles in a rotating frame of reference but in the
absence of a magnetic field. The approximation is
estimated in terms of the size of the Larmor frequency
eH/2mec, which should be small compared to the
other characteristic frequencies of the motion of the
system: the physical meaning is that the centrifugal
force should be small compared to the other forces.

The vector potential A for a constant magnetic
field in the k-direction, H = 2wk, is A=2wok A @ =
2wpo™. Therefore, from the treatment of the Coriolis
force in the section “Three-body problem” (see
[95]), the motion of a charge e with mass m in a
magnetic field H with vector potential A and subject
to other forces with potential W can be described, in
an inertial frame and in generic units, in which the
speed of light is ¢, by a Hamiltonian

1
T 2m

e \2
H (p - ZA) +W (o) [110]
where p=mQ + (e/c)A and @ are canonically con-
jugate variables.
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Differential geometry is the study of differential
properties of geometric objects such as curves,
surfaces and higher-dimensional manifolds endowed
with additional structures such as metrics and
connections. One of the main ideas of differential
geometry is to apply the tools of analysis to
investigate geometric problems; in particular, it
studies their “infinitesimal parts,” thereby lineariz-
ing the problem. However, historically, geometric
concepts often anticipated the analytic tools
required to define them from a differential geometric
point of view; the notion of tangent to a curve, for
example, arose well before the notion of derivative.

In its barely more than two centuries of existence,
differential geometry has always had strong (often
two-way) interactions with physics. Just to name a
few examples, the theory of curves is used in
kinematics, symplectic manifolds arise in Hamilto-
nian mechanics, pseudo-Riemannian manifolds in
general relativity, spinors in quantum mechanics, Lie
groups and principal bundles in gauge theory, and
infinite-dimensional manifolds in the path-integral
approach to quantum field theory.

Curves and Surfaces

The study of differential properties of curves and
surfaces resulted from a combination of the coordi-
nate method (or analytic geometry) developed by
Descartes and Fermat during the first half of the
seventeenth century and infinitesimal calculus devel-
oped by Leibniz and Newton during the second half
of the seventeenth and beginning of the eighteenth
century.

Differential geometry appeared later in the eight-
eenth century with the works of Euler Recherches
sur la courbure des surfaces (1760) (Investigations
on the curvature of surfaces) and Monge Une
application de Panalyse a la géométrie (1795) (An
application of analysis to geometry). Until Gauss’
fundamental article Disquisitiones generales circa
superficies curvas (General investigations of curved
surfaces) published in Latin in 1827 (of which one
can find a partial translation to English in Spivak
(1979)), surfaces embedded in R® were either
described by an equation, W(x,y,z)=0, or by
expressing one variable in terms of the others.
Although Euler had already noticed that the
coordinates of a point on a surface could be
expressed as functions of two independent variables,
it was Gauss who first made a systematic use of such
a parametric representation, thereby initiating the
concept of “local chart” which underlies differential
geometry.

Differentiable Manifolds

The actual notion of z-manifold independent of a
particular embedding in a Euclidean space goes back
to a lecture Uber die Hypothesen, welche der
Geometrie zu Grunde liegen (On the hypotheses
which lie at the foundations of geometry) (of which
one can find a translation to English and comments
in Spivak (1979)) delivered by Riemann at Gottingen
University in 1854, in which he makes clear the
fact that #-manifolds are locally like #-dimensional
Euclidean space. In his work, Riemann mentions
the existence of infinite-dimensional manifolds,
such as function spaces, which today play an
important role since they naturally arise as config-
uration spaces in quantum field theories.

In modern language a differentiable manifold
modeled on a topological space V (which can be
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finite dimensional, Fréchet, Banach, or Hilbert for
example) is a topological space M equipped with a
family of local coordinate charts (Uj, ¢;);c; such that the
open subsets U; C M cover M and where ¢;: U; — V,
i € I, are homeomorphisms which give rise to smooth
transition maps ¢; o ¢7f1 :¢;(U; N Uj) — ¢:(U; N U;).
An n-dimensional differentiable manifold is a differ-
entiable manifold modeled on R"”. The sphere
S li={(x1,...,%,) € R",>°" | x? =1} is a differenti-
able manifold of dimension 7 — 1.

Simple differentiable curves in R” are one-
dimensional differentiable manifolds locally speci-
fied by coordinates x(#)=(x1(¢),...,x,(f)) € R",
where ¢+ x;(t) is of class C*. The tangent at point
x(tp) to such a curve, which is a straight line passing
through this point with direction given by the vector
x'(tp), generalizes to the concept of tangent space
T,,M at point m € M of a smooth manifold M
modeled on V which is a vector space isomorphic to
V spanned by tangent vectors at point 7 to curves
v(t) of class C! on M such that (¢y) = m.

In order to make this more precise, one needs the
notion of differentiable mapping. Given two differ-
entiable manifolds M and N, a mapping f: M — N
is differentiable at point m if, for every chart (U, ¢)
of M containing m and every chart (V, ) of N such
that £(U) C V, the mapping 1o f o ¢! : p(U) — (V)
is differentiable at point ¢(m). In particular, differenti-
able mappings /: M — R form the algebra C*(M,R)
of smooth real-valued functions on M. Differentiable
mappings 7 : [a, b] — M from an interval [a, b] C R to
a differentiable manifold M are called “differentiable
curves” on M. A differentiable mapping /: M — N
which is invertible and with differentiable inverse
f1:N — M is called a diffeomorphism.

The derivative of a function f € C*(M,R) along
a curve v:[a,b] — M at point ~(¢y) € M with ty €
[a, b] is given by

d
Xf = ar, font)

and the map f+— X[ is called the tangent vector to
the curve v at point v(¢y). Tangent vectors to some
curve v:[a,b] — M at a given point m € v([a, b))
form a vector space T,,M called the “tangent space”
to M at point .

A (smooth) map which, to a point m € M, assigns
a tangent vector X € T,,M is called a (smooth)
vector field. It can also be seen as a derivation
X:f—Xf on C*(M,R) defined by (Xf)(m):=
X(m)f for any m € M and the bracket of vector
fields is thereby defined from the operator bracket
[X,Y]:=XoY — YoX. The linear operations on
tangent vectors carry out to vector fields (X +
Y)(m):=X(m) + Y(m), (AX)(m):=AX(m) for any

méeM and for any X,Y e T, M,\€R so that
vector fields on M build a linear space.

One can generate tangent vectors to M via local
one-parameter groups of differentiable transforma-
tions of M, that is, mappings (t,m)— ¢;(m) from
]—6ef xU to U (with ¢e>0 and UCM an
open subset of M) such that ¢g=1d, ¢ s = ¢; 0 P
Vs,t € |—¢, ¢l with t +s € |—¢, e[ and m— ¢, (m) is a
diffeomorphism of U onto an open subset ¢;(U).
The tangent vector at =0 to the curve () = ¢,(m)
yields a tangent vector to M at point m=-(0).
Conversely, when M is finite dimensional, the
fundamental theorem for systems of ordinary
equations yields, for any vector field X on M, the
existence (around any point m e M) of a
local one-parameter group of local transformations
¢:]—¢€ ¢l x U— M (with U an open subset contain-
ing m) which induces the tangent vector
X(m) € T,,M.

A differentiable mapping ¢: M — N induces a map
¢i(m) : T,;yuM — TyyM  defined by ¢.Xf =X(f o ¢).
An “immersion” of a manifold M in a manifold N is a
differentiable mapping ¢: M — N such that the maps
¢«(m) are injective at any point 72 € M. Such a map is
an embedding if it is moreover injective in which case
®(M) C N is a submanifold of N. The unit sphere S"
is a submanifold of R""!. Whitney showed that every
smooth real #-dimensional manifold can be embedded
in R2n+1.

A differentiable manifold whose coordinate charts
take values in a complex vector space V and whose
transition maps are holomorphic is called a complex
manifold, which is complex 7-dimensional if V =C".
The complex projective space CP”, the union of
complex straight lines through 0 in C"™', is a
compact complex manifold of dimension 7. Similarly
to the notion of differentiable mapping between
differentiable manifolds, we have the notion of
holomorphic mapping between complex manifolds.

A smooth family #2+ J,, of endomorphisms of the
tangent spaces T,, M to a differentiable manifold M such
that J2 = —Id gives rise to an almost-complex manifold.
The prototype is the almost-complex structure on C”
defined by J(0y,)=0,,; J(0),) = —0y, with z=(x1+
1Y1,...,%, +1y,) € C” which can be transferred to a
complex manifold M by means of local charts. An
almost-complex structure | on a manifold M is called
complex if M is the underlying differentiable manifold
of a complex manifold which induces ] in this way.

Studying smooth functions on a differentiable
manifold can provide information on the topology
of the manifold: for example, the behavior of a
smooth function on a compact manifold as its
critical points strongly restricted by the topological
properties of the manifold. This leads to the Morse
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critical point theory which extends to infinite-
dimensional manifolds and, among other conse-
quences, leads to conclusions on extremals or closed
extremals of variational problems. Rather than
privileging points on a manifold, one can study
instead the geometry of manifolds from the point of
view of spaces of functions, which leads to an
algebraic approach to differential geometry. The
initial concept there is a commutative ring (which
becomes a possibly noncommutative algebra in the
framework of noncommutative geometry), namely
the ring of smooth functions on the manifold, while
the manifold itself is defined in terms of the ring as the
space of maximal ideals. In particular, this point of
view proves to be fruitful to understand supermani-
folds, a generalization of manifolds which is impor-
tant for supersymmetric field theories.

One can further consider the sheaf of smooth
functions on an open subset of the manifold; this
point of view leads to sheaf theory which provides a
unified approach to establishing connections between
local and global properties of topological spaces.

Metric Properties

Riemann focused on the metric properties of manifolds
but the first clear formulation of the concept of a
manifold equipped with a metric was given by Weyl in
Die Idee der Riemannsche Fliche. A Riemannian
metric on a differentiable manifold M is a positive-
definite scalar product g,, on T,,M for every point
m € M depending smoothly on the point 772. A manifold
equipped with a Riemannian metric is called a
Riemannian manifold. A Weyl transformation, which
is multiplying the metric by a smooth positive function,
yields a new Riemannian metric with the same angle
measurement as the original one, and hence leaves the
“conformal” structure on M unchanged.

Riemann also suggested considering metrics on
the tangent spaces that are not induced from scalar
products; metrics on the manifold built this way
were first systematically investigated by Finsler and
are therefore called Finsler metrics. Geodesics on a
Riemannian manifold M which correspond to
smooth curves ~v:[a,b] — M that minimize the
length functional

1 /b dvy dy

then generalize to curves which realize the shortest
distance between two points chosen sufficiently close.

Euclid’s axioms which naturally lead to Rieman-
nian geometry are also satisfied up to the axiom
of parallelism by a geometry developed by

Lobatchevsky in 1829 and Bolyai in 1832. Non-
Euclidean geometries actually played a major role in
the development of differential geometry and Loba-
chevsky’s work inspired Riemann and later Klein.

Dropping the positivity assumption for the
bilinear forms g, on T, M leads to Lorentzian
manifolds which are (7 + 1)-dimensional smooth
manifolds equipped with bilinear forms on the
tangent spaces with signature (1,7). These occur in
general relativity and tangent vectors with negative,
positive, or vanishing squared length are called
timelike, spacelike, and lightlike, respectively.

Just as complex vector spaces can be equipped with
positive-definite Hermitian products, a complex
manifold M can come equipped with a Hermitian
metric, namely a positive-definite Hermitian product
by on T,M for every point m € M depending
smoothly on the point m; every Hermitian metric
induces a Riemannian one given by its real part. The
complex projective space CP” comes naturally
equipped with the Fubini-Study Hermitian metric.

Transformation Groups

Metric properties can be seen from the point of view
of transformation groups. Poncelet in his Traité
projectif des figures (1822) had investigated classical
Euclidean geometry from a projective geometric
point of view, but it was not until Cayley (1858)
that metric properties were interpreted as those
stable under any “projective” transformation which
leaves “cyclic points” (points at infinity on the
imaginary axis of the complex plane) invariant.
Transformation groups were further investigated by
Lie, leading to the modern concept of Lie group, a
smooth manifold endowed with a group structure
such that the group operations are smooth.

A vector field X on a Lie group G is called left-
(resp. right-) invariant if it is invariant under left
translations Lg:h—gh (resp. right translations
Rg:h—bg) for every g € G, that is, if (L,), X(h)=
X(gh) V(g,h) € G* (resp. (Ry).X(h)=X(gh) V(g,h)
€ G?). The set of all left-invariant vector fields
equipped with the sum, scalar multiplication, and
the bracket operation on vector fields form an
algebra called the Lie algebra of G.

The group Gl,(R) (resp. Gl,(C)) of all real (resp.
complex) invertible 7 x 7 matrices is a Lie group
with Lie algebra, the algebra gl (R) (resp. gl,,(C)) of
all real (resp. complex) n x n matrices and the
bracket operation reads [A, B|= AB — BA.

The orthogonal (resp. unitary) group O,(R):=
{A € Gl,(R),A'*A =1}, where A" denotes the trans-
posed matrix (resp. U,(C):={A € Gl,(C), A*A=1},
where A*=A"), is a compact Lie group with Lie
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algebra 0,(R):={A € Gl,,(R),A* = — A} (resp. u,(C):=
(A €GlL,(C),A* = —A)).

A left-invariant vector field X on a finite-dimen-
sional Lie group G (or equivalently an element X of
the Lie algebra of G) generates a global one-
parameter group of transformations ¢x(z),t € R.
The mapping from the Lie algebra of G into G
defined by exp(X):=¢x(1) is called the exponential
mapping. The exponential mapping on Gl,(R) (resp.
Gl,(C)) is given by the series exp (A)= Y 72, A/il.

As symmetry groups of physical systems, Lie
groups play an important role in physics, in
particular in quantum mechanics and Yang-Mills
theory. Infinite-dimensional Lie groups arise as
symmetry groups, such as the group of diffeomorph-
isms of a manifold in general relativity, the group of
gauge transformations in Yang-Mills theory, and
the group of Weyl transformations of metrics on a
surface in string theory. The principle “the physics
should not depend on how it is described” translates
to an invariance under the action of the (possibly
infinite-dimensional group) of symmetries of the
theory. Anomalies arise when such an invariance
holds for the classical action of a physical theory but
“breaks” at the quantized level.

In his Erlangen program (1872), Klein puts the
concept of transformation group in the foreground
introducing a novel idea by which one should
consider a space endowed with some properties
as a set of objects invariant under a given group of
transformations. One thereby reaches a classifica-
tion of geometric results according to which group is
relevent in a particular problem as, for example, the
projective linear group for projective geometry,
the orthogonal group for Riemannian geometry, or
the symplectic group for “symplectic” geometry.

Fiber Bundles

Transformation groups give rise to principal fiber
bundles which play a major role in Yang-Mills
theory. The notion of fiber bundle first arose out of
questions posed in the 1930s on the topology and the
geometry of manifolds, and by 1950 the definition of
fiber bundle had been clearly formulated by Steenrod.

A smooth fiber bundle with typical fiber a
manifold F is a triple (E,, B), where E and B are
smooth manifolds called the total space and the base
space, and 7m:E — B is a smooth surjective map
called the projection of the bundle such that the
preimage 7' (b) of a point b € B called the fiber of
the bundle over b is isomorphic to F and any base
point b has a neighborhood U C B with preimage
7 1(U) diffeomorphic to U x F, where the diffeo-
mophisms commute with the projection on the base

space. Smooth sections of E are maps o: B — E such
that mo o =1I5.

When F is a vector space and when, given open
subsets U; C B that cover B with corresponding
coordinate charts (Uj, ¢;);c1, the local diffeomorph-
isms 7;: 7 (U;) ~ ¢;(U;) x F give rise to transition
maps T; 0 7'/471 :qﬁ,—(U,- n U/) x F—¢;(U;N U,) x F that
are linear in the fiber, the bundle is called a “vector
bundle.” The tangent bundle TM = J,,,.p; T:»M to a
differentiable manifold M modeled on a vector space
V is a vector bundle with typical fiber V and
transition maps Ti,-:(qbioqﬁj’l,d(qbioqﬁf’l)) expressed
in terms of the differentials of the transition maps on
the manifold M. So are the cotangent bundle, the
dual of the tangent bundle, and tensor products of
the tangent and cotangent vector bundles with
typical fiber the dual V* and tensor products of V
and V*. Vector fields defined previously are sections
of the tangent bundle, 1-forms on M are sections of
the cotangent bundle, and contravariant tensors,
resp. covariant tensors are sections of tensor
products of the tangent, resp. cotangent bundles. A
differentiable mapping ¢: M — N takes covariant
p-tensor fields on N to their pullbacks by ¢,
covariant p-tensors on M given by

(¢*T>(X1a s 7Xp) = T(¢*X1, R

for any vector fields X1,...,X, on M.

Differentiating a smooth function f on M gives
rise to a 1-form df on M. More generally, exterior p-
forms are antisymmetric smooth covariant p-tensors
so that w(Xo(1),.. s Xogp) = e(@)l(X1, ..., X,) for
any vector fields Xj,...,X, on M and any permuta-
tion o € ¥, with signature €(0).

Riemannian metrics are covariant 2-tensors and
the space of Riemannian metrics on a manifold M is
an infinite-dimensional manifold which arises as a
configuration space in string theory and general
relativity.

A principal bundle is a fiber bundle (P, 7, B) with
typical fiber a Lie group G acting freely and properly
on the total space P via a right action (p,g) €
Px G—pg=R,(p) € P and such that the local
diffeomorphisms 7 1(U) ~ U x G are G-equivariant.
Given a principal fiber bundle (P, 7, B) with structure
group a finite-dimensional Lie group G, the action of
G on P induces a homomorphism which to an
element X of the Lie algebra of G assigns a vector
field X* on P called the “fundamental vector field”
generated by X. It is defined at p € P by

) ¢*XP)

where exp is the exponential map on G.
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Given an action of G on a vector space V, one
builds from a principal bundle with typical fiber G an
associated vector bundle with typical fiber V.
Principal bundles are essential in gauge theory; U(1)-
principal bundles arise in electro-magnetism and
nonabelian structure groups arise in Yang-Mills
theory. There the fields are connections on the
principal bundle, and the action of gauge transforma-
tions on (irreducible) connections gives rise to an
infinite-dimensional principal bundle over the moduli
space with structure group given by gauge transfor-
mations. Infinite-dimensional bundles arise in other
field theories such as string theory where the moduli
space corresponds to inequivalent complex structures
on a Riemann surface and the infinite-dimensional
structure group is built up from Weyl transformations
of the metric and diffeomorphisms of the surface.

Connections

On a manifold there is no canonical method to
identify tangent spaces at different points. Such an
identification, which is needed in order to differenti-
ate vector fields, can be achieved on a Riemannian
manifold via “parallel transport” of the vector fields.
The basic concepts of the theory of covariant
differentiation on a Riemannian manifold were given
at the end of the nineteenth century by Ricci and, in a
more complete form, in 1901 in collaboration with
Levi-Civita in Méthodes de calcul différentiel absolu et
leurs applications; on a Riemannian manifold, it is
possible to define in a canonical manner a parallel
displacement of tangent vectors and thereby to
differentiate vector field covariantly using the since
then called Levi-Civita connection.

More generally, a (linear) connection (or equiva-
lently a covariant derivation) on a vector bundle E
over a manifold M provides a way to identify fibers
of the vector bundle at different points; it is a map V
taking sections o of E to E-valued 1-forms on M
which satisfies a Leibniz rule, V(fo)=dfo+ Vo,
for any smooth function f on M. When E is the
tangent bundle over M, curves v on the manifold
with covariantly constant velocity V+(¢) =0 give rise
to geodesics. Given an initial velocity ¥(0)=X €
T,,M and provided X has small enough norm, vx(1)
defines a point on the corresponding geodesic and
the map exp: X — yx(1) a diffeomorphism from a
neighborhood of 0 in T,,M to a neighborhood of
m € M called the “exponential map” of V.

The concept of connection extends to principal
bundles where it was developed by Ehresmann
building on the work of Cartan. A connection on a
principal bundle (P,w, B) with structure group G,
which is a smooth equivariant (under the action of

the group G) decomposition of the tangent space
T,P=H,P @& V,P at each point p into a horizontal
space H,P and the vertical space V,P=Kerdn,,
gives rise to a linear connection on the associated
vector bundle.

A connection on P gives rise to a 1-form w on P
with values in the Lie algebra of the structure group
G called the connection 1-form and defined as
follows. For each X € T,P,w(X) is the unique
element U of the Lie algebra of G such that the
corresponding fundamental vector field U*(p) at
point p coincides with the vertical component of X.
In particular, w(U*) = U for any element U of the Lie
algebra of G.

The space of connections which is an infinite-
dimensional manifold arises as a configuration space
in Yang-Mills theory and also comes into play in the
Seiberg—Witten theory.

Geometric Differential Operators

From connections one defines a number of differ-
ential operators on a Riemannian manifold, among
them second-order Laplacians. In particular, the
Laplace-Beltrami operator f+— —tr(VI*Mdf) on
smooth functions, where V7'M is the connection on
the cotangent bundle induced by the Levi-Civita
connection on M, generalizes the ordinary Laplace
operator on Euclidean space. This in turn generalizes
to second-order operators AF:= —tr(VT MOEGE)
acting on smooth sections of a vector bundle E over
a Riemannian manifold M, where V¥ is a connection
on E and VT'M®E the connection on T*M ® E
induced by V¥ and the Levi-Civita connection on M.

The Dirac operator on a spin Riemannian
manifold, a first-order differential operator whose
square coincides with the Laplace-Beltrami opera-
tor up to zeroth-order terms, can be best under-
stood going back to the initial idea of Dirac. A
first-order differential operator with constant
matrix coefficients >_"_,7,(0/0x;) has square
given by the Laplace operator —>."_, 9*/dx? on
R™ if and only if its coefficients satisfy the the
Clifford relations

V=-1 Yi=1,...,n
Y+ =0 ViFj

The resulting Clifford algebra, once complexified, is
isomorphic in even dimensions 7 =2k to the space
End(S,) (and End(S,) ® End(S,) in odd dimensions
n=2k + 1) of endomorphisms of the space S, = c*
of complex n-spinors. When instead of the canoni-
cal metric on R” one starts from the the metric on
the tangent bundle TM induced by the Riemannian
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metric on M and provided the corresponding spinor
spaces patch up to a “spinor bundle” over M, M is
called a spin manifold. The Dirac operator on a
spin Riemannian manifold M is a first-order
differential operator acting on spinors given by
Dy,= szl iV, where V is the connection
on spinors (sections of the spinor bundle S) induced
by the Levi-Civita connection and e,...,e, is
an orthonormal frame of the tangent bundle TM.
This is a particular case of more general twisted
Dirac operators DW on a twisted spinor bundle
S® W equipped Wlth the connection VW which
combines the connection V with a connection VW
on an auxilliary vector bundle W. Their square
(D;’V)2 relates to the Laplacian AS®WV built from this
twisted connection via the Lichnerowicz formula
which is useful for estimates on the spectrum of the
Dirac operator in terms of the underling geometric
data.

When there is no spin structure on M, one can still
hope for a Spin® structure and a Dirac D¢ operator
associated with a connection compatible with that
structure. In particular, every compact orientable
4-manifold can be equipped with a Spin® structure
and one can build invariants of the differentiable
manifold called Seiberg—Witten invariants from
solutions of a system of two partial differential
equations, one of which is the Dirac equation
D¢® =0 associated with a connection compatible
with the Spin® structure and the other a nonlinear
equation involving the curvature.

Curvature

bR

The concept of “curvature,” which is now under-
stood in terms of connections (the curvature of a
connection V is defined by Q=V?), historically
arose prior to that of connection. In its modern
form, the concept of curvature dates back to Gauss.
Using a spherical representation of surfaces — the
Gauss map v, which sends a point 7 of an oriented
surface ¥ C R? to the outward pointing unit normal
vector v, — Gauss defined what is since then called
the Gaussian curvature K, at point m € U C ¥ as
the limit when the area of U tends to zero of the
ratio area(v(U))/area(U). It measures the obstruc-
tion to finding a distance-preserving map from a
piece of the surface around 2 to a region in the
standard plane. Gauss’ Teorema Egregium says that
the Gaussian curvature of a smooth surface in R? is
defined in terms of the metric on the surface so that
it agrees for two isometric surfaces.

From the curvature © of a connection on a
Riemannian manifold (M,g), one builds the

Riemannian curvature tensor, a 4-tensor which in
local coordinates reads

0 0\ 0 0
Rijkl _g<9(5115/) a—kagl)

further taking a partial trace leads to the Ricci
curvature given by the 2-tensor Ricj= ), Rk,
the trace of which gives in turn the scalar cur-
vature R= ), Ricj;. Sectional curvature at a point
m in the direction of a two-dimensional plane
spanned by two vectors U and V corresponds to
K(U,V)=g(Q(U, V)V, U). A manifold has constant
sectional curvature whenever K(U, V)/|[UA V||* is a
constant K for all linearly independent vectors U,V.
A Riemannian manifold with constant sectional
curvature is said to be spherical, flat, or hyperbolic
type depending on whether K > 0,K=0, or K < 0,
respectively. One owes to Cartan the discovery of an
important class of Riemannian manifolds, symmetric
spaces, which contains the spheres, the Euclidean
spaces, the hyperbolic spaces, and compact Lie
groups. A connected Riemannian manifold M
equipped at every point m with an isometry o,
such that o, (m)=m and the tangent map T,,0,,
equals —Id on the tangent space (it therefore reverses
the geodesics through ) is called symmetric. CP”
equipped with the Fubini-Study metric is a symmetric
space with the isometry given by the reflection with
respect to a line in C"™!, A compact symmetric space
has non-negative sectional curvature K.

Constraints on the curvature can have topological
consequences. Spheres are the only simply connected
manifolds with constant positive sectional curvature;
if a simply connected complete Riemannian mani-
fold of dimension >1 has non-positive sectional
curvature along every plane, then it is homeo-
morphic to the Euclidean space.

A manifold with Ricci curvature tensor propor-
tional to the metric tensor is called an Einstein
manifold. Since Einstein, curvature is a cornerstone
of general relativity with gravitational force being
interpreted in terms of curvature. For example, the
vacuum Einstein equation reads Ricy = (1/2)R, g with
Ric, the Ricci curvature of a metric g and Ry its scalar
curvature. In addition, Kaluza-Klein supergravity is a
unified theory modeled on a direct product of the
Mikowski four-dimensional space and an Einstein
manifold with positive scalar curvature.

The Ricci flow dg(z)/dt= —2Ricyy, which is
related with the Einstein equation in general
relativity, was only fairly recently introduced in the
mathematical literature. Hopes are strong to get a
classification of closed 3-manifolds using the Ricci
flow as an essential ingredient.
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Cohomology

Differentiation of functions f+—df on a differenti-
able manifold M generalizes to exterior differentia-
tion a+— da of differential forms. A form « is closed
whenever it is in the kernel of d and it is exact
whenever it lies in the range of d. Since d*> =0, exact
forms are closed.

Cartan’s structure equations dw = —(1/2)[w,w] + Q
relate the exterior differential of the connection 1-form
w on a principal bundle to its curvature 2 given by
the exterior covariant derivative Dw:= dw o b, where
h:T,P — H,P is the projection onto the horizontal
space.

On a complex manifold, forms split into sums
of (p,q)-forms, those with p-holomorphic and
g-antiholomorphic components, and exterior differ-
entiation splits as d =3 + 0 into holomorphic and
antiholomorphic derivatives, with 92 =092 = 0.

Geometric data are often expressed in terms of
closedness conditions on certain differential forms.
For example, a “symplectic manifold” is a manifold
M equipped with a closed nondegenerate differential
2-form called the “symplectic form.” The theory of
J-holomorphic curves on a manifold equipped with
an almost-complex structure | has proved fruitful in
building invariants on symplectic manifolds. A
Kahler manifold is a complex manifold equipped
with a Hermitian metric » whose imaginary part
Im b vyields a closed (1,1)-form. The complex
projective space CP” is Kihler.

The exterior differentation d gives rise to de Rham
cohomology as Kerd/Imd, and de Rham’s theorem
establishes an isomorphism between de Rham coho-
mology and the real singular cohomology of a
manifold. Chern (or characteristic) classes are topo-
logical invariants associated to fiber bundles and play
a crucial role in index theory. Chern-Weil theory
builds representatives of these de Rham cohomology
classes from a connection V of the form tr(f(V?)),
where f is some analytic function.

When the manifold is Riemannian, the Laplace-
Beltrami operator on functions generalizes to differ-
ential forms in two different ways, namely to the
Bochner Laplacian AAT™M on forms (i.e., sections of
AT*M), where the contangent bundle T*M is
equipped with a connection induced by the Levi-Civita
connection and to the Laplace-Beltrami operator on
forms (d + d*)*> =d*d + d d*, where d* is the (formal)
adjoint of the exterior differential d. These are related
via Weitzenbock’s formula which in the particular case
of 1-forms states that the difference of those two
operators is measured by the Ricci curvature.

When the manifold is compact, Hodge’s theorem
asserts that the de Rham cohomology groups are

isomorphic to the space of harmonic (i.e., annihi-
lated by the Laplace-Beltrami operator) differential
forms. Thus, the dimension of the set of harmonic
k-forms equals the kth Betti numbers from which
one can define the Euler characteristic x(M) of the
manifold M taking their alternate sum. Hodge
theory plays an important role in mirror symmetry
which posits a duality between different manifolds
on the geometric side and between different field
theories via their correlation functions on the
physics side. Calabi-Yau manifolds, which are
Ricci-flat Kahler manifolds, are studied extensively
in the context of duality.

Index Theory

While the Gaussian curvature is the solution to a
local problem, it has strong influence on the global
topology of a surface. The Gauss—Bonnet formula
(1850) relates the Euler characteristic on a closed
surface to the Gaussian curvature by

1
=— [ K,dA,
271'/M d

where dA,, is the volume element on M. This is the
first result relating curvature to global properties
and can be seen as one of the starting points for
index theory. It generalizes to the Chern—Gauss—
Bonnet theorem (1944) on an even-dimensional
closed manifold and can be interpreted as an
example of the Atiyah-Singer index theorem (1963)

X(M)

ind(D)Y) = / A(Qg) e @)
M
where g denotes a Riemannian metric on a spin
manifold M, D¥ a Dirac operator acting on sections
of some twisted bundle S® W with S the spinor
bundle on M and W an auxiliary vector bundle over
M, ind(Dg,V) the “index” of the Dirac operator, and
Qg, QY respectively the curvatures of the Levi-Civita
connection and a connection on W, and A({) a
particular Chern form called the A-genus. Index
theorems are useful to compute anomalies in gauge
theories arising from functional quantisation of
classical actions.

Given an even-dimensional closed spin manifold
(M, g) and a Hermitian vector bundle W over M, the
index of the associated Dirac operator D;V yields the
so-called Atiyah map K°(M)— 7 defined by
WHind(D;V), where K°(M) is the group of formal
differences of stable homotopy classes of smooth
vector bundles over M. This is the starting point for
the noncommutative geometry approach to index
theory, in which the space of smooth functions on a
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manifold which arises here in a disguised from since
K9%(M) ~ Ko(C>®(M)) (which consists of formal
differences of smooth homotopy classes of idempo-
tents in the inductive limit of spaces of matrices
gl (C>*(M))) is generalized to any noncommutative
smooth algebra.

Further Reading

Bishop R and Crittenden R (2001) Geometry of Manifolds.
Providence, RI: AMS Chelsea Publishing.

Chern SS, Chen WH, and Lam KS (2000) Lectures on Differential
Geometry, Series on University Mathematics. Singapore: World
Scientific.

Choquet-Bruhat Y, de Witt-Morette C, and Dillard-Bleick M
(1982) Analysis, Manifolds and Physics, 2nd edn. Amsterdam—
New York: North Holland.

Gallot S, Hulin D, and Lafontaine J (1993) Riemannian Geometry,
Universitext. Berlin: Springer.

Helgason S (2001) Differential, Lie Groups and Symmetric Spaces.
Graduate Studies in Mathematics 36. AMS, Providence, RI.

Husemoller D (1994) Fibre Bundles, 3rd edn. Graduate Texts in
Mathematics 20. New York: Springer Verlag.

Jost J (1998) Riemannian Geometry and Geometric Analysis,
Universitext. Berlin: Springer.

Klingenberg W (1995) Riemannian Geometry, 2nd edn. Berlin: de
Gruyter.

Kobayashi S and Nomizou K (1996) Foundations of Differential
Geometry I, II. Wiley Classics Library, a Wiley-Interscience
Publication. New York: Wiley.

Lang S (1995) Differential and Riemannian Manifolds, 3rd edn.
Graduate Texts in Mathematics, 160. New York: Springer
Verlag.

Milnor ] (1997) Topology from the Differentiate Viewpoint.
Princeton Landmarks in Mathematics. Princeton, NJ: Princeton
University Press.

Nakahara M (2003) Geometry, Topology and Physics, 2nd edn.
Bristol: Institute of Physics.

Spivak M (1979) A Comprehensive Introduction to Differential
Geometry, vols. 1, 2 and 3. Publish or Perish Inc., Wilmington,
Delaware.

Sternberg S (1983) Lectures on Differential Geometry, 2nd edn.
New York: Chelsea Publishing Co.

Introductory Article: Electromagnetism

N M J Woodhouse, University of Oxford, Oxford, UK

© 2006 Springer-Verlag. Published by Elsevier Ltd.
All rights reserved.

This article is adapted from Chapters 2 and 3 of Special
Relativity, N M J Woodhouse, Springer-Verlag, 2002, by kind
permission of the publisher.

Introduction

The modern theory of electromagnetism is built on
the foundations of Maxwell’s equations:

divE=" 1]
€0
divB=10 2]
1 0E
CurlB—;EZMO] [3]
curl E + % =0 [4]

On the left-hand side are the electric and magnetic
fields, E and B, which are vector-valued functions
of position and time. On the right are the sources,
the charge density p, which is a scalar function of
position and time, and the current density J. The
source terms encode the distribution and velocities
of charges, and the equations, together with
boundary conditions at infinity, determine the fields

that they generate. From these equations, one can
derive the familiar predictions of electrostatics and
magnetostatics, as well as the dynamical behavior
of fields and charges, in particular, the generation
and propagation of electromagnetic waves — light
waves.

Maxwell would not have recognized the equations
in this compact vector notation — still less in the
tensorial form that they take in special relativity. It
is notable that although his contribution is univer-
sally acknowledged in the naming of the equations,
it is rare to see references to “Maxwell’s theory.”
This is for a good reason. In his early studies of
electromagnetism, Maxwell worked with elaborate
mechanical models, which he saw as analogies
rather than as literal descriptions of the underlying
physical reality. In his later work, the mechanical
models, in particular the mechanical properties of
the “lumiferous ether” through which light waves
propagate, were put forward more literally as
the foundations of his electromagnetic theory. The
equations survive in the modern theory, but the
mechanical models with which Maxwell, Faraday,
and others wrestled live on only in the survival of
archaic terminology, such as “lines of force” and
“magnetic flux.” The luminiferous ether evaporated
with the advent of special relativity.

Maxwell’s legacy is not his “theory,” but his
equations: a consistent system of partial differential
equations that describe the whole range of known
interactions of electric and magnetic fields with
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moving charges. They unify the treatment of
electricity and magnetism by revealing for the first
time the full duality between the electric and
magnetic fields. They have been verified over an
almost unimaginable variety of physical processes,
from the propagation of light over cosmological
distances, through the behavior of the magnetic
fields of stars and the everyday applications in
electrical engineering and laboratory experiments,
down — in their quantum version — to the exchange
of photons between individual electrons.

The history of Maxwell’s equations is convoluted,
with many false turns. Maxwell himself wrote down
an inconsistent form of the equations, with a
different sign for p in the first equation, in his
1865 work “A dynamical theory of the electromag-
netic field.” The consistent form appeared later in
his Treatise on Electricity and Magnetism (1873);
see Chalmers (1975).

In this article, we shall not follow the historical
route to the equations. Some of the complex story of
the development hinted at in the remarks above can
be found in the articles by Chalmers (1975), Siegel
(1985), and Roche (1998). Neither shall we follow
the traditional pedagogic route of many textbooks in
building up to the full dynamical equations through
the study of basic electrical and magnetic phenom-
ena. Instead, we shall follow a path to Maxwell’s
equations that is informed by knowledge of their
most critical feature, invariance under Lorentz
transformations. Maxwell, of course, knew nothing
of this.

We shall start with a summary of basic facts
about the behavior of charges in electric and
magnetic fields, and then establish the full dynami-
cal framework by considering this behavior as seen
from moving frames of reference. It is impossible, of
course, to do this consistently within the framework
of classical ideas of space and time since Maxwell’s
equations are inconsistent with Galilean relativity.
But it is at least possible to understand some of the
key features of the equations, in particular the need
for the term involving the time derivative of E, the
so-called “displacement current,” in the third of
Maxwell’s equations.

We shall begin with some remarks concerning the
role of relativity in classical dynamics.

Relativity in Newtonian Dynamics

Newton’s laws hold in all inertial frames. The
formalism of classical mechanics is invariant under
Galilean transformations and it is impossible to tell
by observing the dynamical behavior of particles
and other bodies whether a frame of reference is at

rest or in uniform motion. In the world of classical
mechanics, therefore:

Principle of Relativity There is no absolute stan-
dard of rest; only relative motion is observable.

In his “Dialogue concerning the two chief world
systems,” Galileo illustrated the principle by arguing
that the uniform motion of a ship on a calm sea does
not affect the behavior of fish, butterflies, and other
moving objects, as observed in a cabin below deck.

Relativity theory takes the principle as funda-
mental, as a statement about the nature of space and
time as much as about the properties of the
Newtonian equations of motion. But if it is to be
given such universal significance, then it must apply
to all of physics, and not just to Newtonian
dynamics. At first this seems unproblematic — it is
hard to imagine that it holds at such a basic level,
but not for more complex physical interactions.
Nonetheless, deep problems emerge when we try to
extend it to electromagnetism since Galilean invari-
ance conflicts with Maxwell’s equations.

All appears straightforward for systems involving
slow-moving charges and slowly varying electric and
magnetic fields. These are governed by laws that
appear to be invariant under transformations
between uniformly moving frames of reference.
One can imagine a modern version of Galileo’s
ship also carrying some magnets, batteries, semi-
conductors, and other electrical components. Salvia-
ti’s argument for relativity would seem just as
compelling.

The problem arises when we include rapidly
varying fields — in particular, when we consider the
propagation of light. As Einstein (1905) put it,
“Maxwell’s electrodynamics..., when applied to
moving bodies, leads to asymmetries which do not
appear to be inherent in the phenomena.” The
central difficulty is that Maxwell’s equations give
light, along with other electromagnetic waves, a
definite velocity: in empty space, it travels with the
same speed in every direction, independently of the
motion of the source — a fact that is incompatible
with Galilean invariance. Light traveling with speed
¢ in one frame should have speed ¢+ u in a frame
moving towards the source of the light with speed u.
Thus, it should be possible for light to travel with
any speed. Light that travels with speed ¢ in a frame
in which its source is at rest should have some other
speed in a moving frame; so Galilean invariance
would imply dependence of the velocity of light on
the motion of the source.

A full resolution of the conflict can only be
achieved within the special theory of relativity: here,
remarkably, Maxwell’s equations retain exactly
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their classical form, but the transformations between
the space and time coordinates of frames of
reference in relative motion do not. The difference
appears when the velocities involved are not insig-
nificant when compared with the velocity of light.
So long as one can ignore terms of order u?/c?,
Maxwell’s equations are compatible with the Gali-
lean principle of relativity.

Charges, Fields, and the
Lorentz-Force Law

The basic objects in the modern form of electro-
magnetic theory are

® charged particles; and

e the electric and magnetic fields E and B, which
are vector quantities that depend on position and
time.

The charge e of a particle, which can be positive
or negative, is an intrinsic quantity analogous
to gravitational mass. It determines the strength
of the particle’s interaction with the electric
and magnetic fields — as its mass determines
the strength of its interaction with gravitational
fields.

The interaction is in two directions. First, electric
and magnetic fields exert a force on a charged
particle which depends on the value of the charge,
the particle’s velocity, and the values of E and B at
the location of the particle. The force is given by the
Lorentz-force law

f=e(E+uAB) [5]

in which e is the charge and # is the velocity. It is
analogous to the gravitational force

f=mg (6]

on a particle of mass 7 in a gravitational field g. It is
through the force law that an observer can, in
principle, measure the electric and magnetic fields at
a point, by measuring the force on a standard charge
moving with known velocity.

Second, moving charges generate electric and
magnetic fields. We shall not yet consider in detail
the way in which they do this, beyond stating the
following basic principles.

EM1. The fields depend linearly on the charges.

This means that if we superimpose two distributions
of charge, then the resultant E and B fields are the
sums of the respective fields that the two distribu-
tions generate separately.

EM2. A stationary point charge e generates an electric
field, but no magnetic field. The electric field is
given by

E:k—ef
,\

[7]
where 7 is the position vector from the charge,
r=|r|, and k is a positive constant, analogous
to the gravitational constant.

By combining [7] and [5], we obtain an inverse-
square law electrostatic force

k /
el g

between two stationary charges; unlike gravity, it is
repulsive when the charges have the same sign.

EM3. A point charge moving with velocity v gen-
erates a magnetic field
kKevAr
B=——— 9
. g
where £’ is a second positive constant.

This is extrapolated from measurements of the
magnetic field generated by currents flowing in
electrical circuits.

The constants & and k& in EM2 and EM3
determine the strengths of electric and magnetic
interactions. They are usually denoted by

1 ;Mo
= — —_ 1
4rey’ k 4 [10]

Charge e is measured in coulombs, |B| in teslas, and
|E] in volts per meter. With other quantities in SI units,

=89x10""%  pp=13x10"° [11]

The charge of an electron is —1.6 x 1077 C; the
current through an electric fire is a flow
of 5-10Cs™'. The earth’s magnetic field is about
4 x 107 T; a bar magnet’s is about 1T; there is a
field of about 50T on the second floor of the
Clarendon Laboratory in Oxford; and the magnetic
field on the surface of a neutron star is about 108 T.

Although we are more aware of gravity in every-
day life, it is very much weaker than the electrostatic
force — the electrostatic repulsion between two
protons is a factor of 1.2 x 10%® greater than their
gravitational attraction (at any separation, both
forces obey the inverse-square law).

Our aim is to pass from EM1-EM3 to Maxwell’s
equations, by replacing [7] and [9] by partial
differential equations that relate the field strengths
to the charge and current densities p and J of a
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continuous distribution of charge. The densities are
defined as the limits

p=m(59). I-im(5) 02

where V is a small volume containing the point, e is
a charge within the volume, and v is its velocity; the
sums are over the charges in V and the limits are
taken as the volume is shrunk (although we shall not
worry too much about the precise details of the
limiting process).

Stationary Distributions of Charge

We begin the task of converting the basic principles
into partial differential equations by looking at the
electric field of a stationary distribution of charge,
where the passage to the continuous limit is made by
using the Gauss theorem to restate the inverse-
square law.

The Gauss theorem relates the integral of the
electric field over a closed surface to the total charge
contained within it. For a point charge, the electric
field is given by EM2:

er
" 4qeprd

Since divr =3 and gradr=r/r, we have

er e 3 3r-r
div(E) = di - (22"
iv(E) 1V<7T€07'3) 47 (r3 rs )

everywhere except at r=0. Therefore, by the
divergence theorem,

/ E-dS=0 [13]
ov

for any closed surface OV bounding a volume V that
does not contain the charge.

What if the volume does contain the charge?
Consider the region bounded by the sphere Sz of
radius R centered on the charge; Sg has outward
unit normal 7/r. Therefore,

e e
E-dS = 7/ dS =—
/SR 4nR%€) Js, €0

In particular, the value of the surface integral on the
left-hand side does not depend on R.

Now consider arbitrary finite volume bounded by
a closed surface S. If the charge is not inside
the volume, then the integral of E over S vanishes
by [13]. If it is, then we can apply [13] to the

volume V between S and a small sphere Sz to
deduce that

/E~dS—/ E~dS:/ E.dS=0
S Sk ov

and that the integrals of E over S and Sk are the
same. Therefore,

e/ey if the charge is in
/E -dS = { the volume bounded by S
S 0 otherwise

When we sum over a distribution of charges,
the integral on the left picks out the total charge
within S. Therefore, we have the Gauss theorem.

The Gauss theorem. For any closed surface 9V
bounding a volume V,

/OVE.dS:Q/eo

where E is the total electric field and Q is the total
charge within V.

Now we can pass to the continuous limit. Suppose
that E is generated by a distribution of charges with
density p (charge per unit volume). Then by the
Gauss theorem,

/ E.dszl/pdv
5A% € Jv

for any volume V. But then, by the divergence
theorem,

/(divE — pJe0)dV =0
\4

Since this holds for any volume V, it follows that
divE = p/ep [14]

By an argument in a similar spirit, we can also
show that the electric field of a stationary distribu-
tion of charge is conservative in the sense that the
total work done by the field when a charge is moved
around a closed loop vanishes; that is,

fE-ds:O

for any closed path. This is equivalent to
curlE=0 [15]

since, by Stokes’ theorem,

j{E~ds:/curlE-dS
S

where S is any surface spanning the path. This vanishes
for every path and for every S if and only if [15] holds.
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The field of a single stationary charge is con-
servative since

E=-gad¢, ¢=

e

Ameor

and therefore curl E=0 since the curl of a gradient
vanishes identically. For a continuous distribution,
E= —grad ¢, where

1 p(r')
or) = 47ep /r’GV lr — 7| av [16]

In the integral, 7 (the position of the point at which
¢ is evaluated) is fixed, and the integration is over
the positions # of the individual charges. In spite of
the singularity at » =7/, the integral is well defined.
So, [15] also holds for a continuous distribution of
stationary charge.

The Divergence of the Magnetic Field

We can apply the same argument that established
the Gauss theorem to the magnetic field of a slow-
moving charge. Here,

Hoev N\ r
B=———
47r3

where 7 is the vector from the charge to the point at
which the field is measured. Since 7/7* = —grad(1/7),
we have

. r 1
div (v A 7—3) = v Acurl (grad ;) =0

Therefore, div B=0 except at =0, as in the case of
the electric field. However, in the magnetic case, the
integral of the field over a surface surrounding the
charge also vanishes, since if Sk is a sphere of radius
R centered on the charge, then

/B.dS:“_Oe/”_g’.de:o
Sk 47T Sk r r

By the divergence theorem, the same is true for any
surface surrounding the charge. We deduce that if
magnetic fields are generated only by moving
charges, then

B-dS=0
av

for any volume V, and hence that
divB=0 [17]

Of course, if there were free “magnetic poles”
generating magnetic fields in the same way that
charges generate electric fields, then this would not
hold; there would be a “magnetic pole density” on

the right-hand side, by analogy with the charge
density in [14].

Inconsistency with Galilean Relativity

Our central concern is the compatibility of the laws
of electromagnetism with the principle of relativity.
As Einstein observed, simple electromagnetic inter-
actions do indeed depend only on relative motion;
the current induced in a conductor moving through
the field of a magnet is the same as that generated in
a stationary conductor when a magnet is moved past
it with the same relative velocity (Einstein 1905).
Unfortunately, this symmetry is not reflected in our
basic principles. We very quickly come up against
contradictions if we assume that they hold in every
inertial frame of reference.

One emerges as follows. An observer O can measure
the values of B and E at a point by measuring the force
on a particle of standard charge, which is related to the
velocity v of the charge by the Lorentz-force law,

f=e(E+vAB)

A second observer O’ moving relative to the first with
velocity v will see the same force, but now acting on a
particle at rest. He will therefore measure the electric
field to be E'=f/e. We conclude that an observer
moving with velocity v through a magnetic field B and
an electric field E should see an electric field

E=E+vAB [18]

By interchanging the roles of the two observers, we
should also have

E=E -vAB [19]

where B’ is the magnetic field measured by the
second observer. If both are to hold, then B — B
must be a scalar multiple of v.

But this is incompatible with EM3; if the fields are
those of a point charge at rest relative to the first
observer, then E is given by [7], and

B=0

On the other hand, the second observer sees the field
of a point charge moving with velocity —v. Therefore,

o€V N\ T
47p3

So B — B is orthogonal to v, not parallel to it.

This conspicuous paradox is resolved, in part, by
the realization that EM3 is not exact; it holds only
when the velocities are small enough for the
magnetic force between two particles to be negli-
gible in comparison with the electrostatic force. If v
is a typical velocity, then the condition is that 2

B =
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should be much less than 1/¢y. That is, the velocities
involved should be much less than

=3x108ms!

CcC =

NG

This, of course, is the velocity of light.

The Limits of Galilean Invariance

Our basic principles EM1-EM3 must now be seen to
be approximations — they describe the interactions of
particles and fields when the particles are moving
relative to each other at speeds much less than that of
light. To emphasize that we cannot expect, in
particular, EM3 to hold for particles moving at
speeds comparable with ¢, we must replace it by

EM3’. A charge moving with velocity v, where v < ¢,
generates a magnetic field

_ poev Ar

s 0/ [20]

The magnetic field of a system of charges in
general motion satisfies

divB =0 21]

In the second part, we have retained [21] as a
differential form of the statement that there are no
free magnetic poles; the magnetic field is generated
only by the motion of the charges. With this change,
the theory is consistent with the principle of
relativity, provided that we ignore terms of order
v?/c?. The substitution of EM3’ for EM3 resolves the
conspicuous paradox; the symmetry noted by Ein-
stein between the current generated by the motion of
the conductor in a magnetic field and by the motion
of a magnet past a conductor is explained, provided
that the velocities are much less than that of light.

The central problem remains however; the equa-
tions of electromagnetism are not invariant under
a Galilean transformation with velocity comparable
to ¢. The paradox is still there, but it is more subtle
than it appeared to be at first. There are three
possible ways out: (1) the noninvariance is real and
has observable effects (necessarily of order v?/c? or
smaller); (2) Maxwell’s theory is wrong; or (3) the
Galilean transformation is wrong. Disconcertingly,
it is the last path that physics has taken. But that is
to jump ahead in the story. Our task is to complete
the derivation of Maxwell’s equations.

Faraday’s Law of Induction

The magnetic field of a slow-moving charge will
always be small in relation to its electric field (even

when we replace B by ¢B to put it into the same
units as E). The magnetic fields generated by
currents in electrical circuits are not, however,
dominated by large electric fields. This is because
the currents are created by the flow, at slow
velocity, of electrons, while overall the matter in
the wire is roughly electrically neutral, with the
electric fields of the positively charged nuclei and
negatively charged electrons canceling.

This is the physical context to keep in mind in
the following deduction of Faraday’s law of
induction from Galilean invariance for velocities
much less than c. The law relates the electromotive
force or “voltage” around an electrical circuit
to the rate of change of the magnetic field B over
a surface spanning the circuit. In its differential
form, the law becomes one of Maxwell’s
equations.

Suppose first that the fields are generated by
charges all moving relative to a given inertial
frame of reference R with the same velocity v.
Then in a second frame R’ moving relative to R
with velocity v, there is a stationary distribution of
charge. If the velocity is much less than that of
light, then the electric field E' measured in R’ is
related to the electric and magnetic E and B
measured in R by

E=E+vAB

Since the field measured in R’ is that of a stationary
distribution of charge, we have

curlE =0

In R, the charges are all moving with velocity v, so
their configuration looks exactly the same from the
point 7 at time ¢ as it does from the point r + vT at
time ¢ + 7. Therefore,
B(r+vr,t+7) = B(r,1)
E(r+wvr,t+71)=E(r,t)
and hence by taking derivatives with respect to 7
at 7=0,

v-gradB+8—B=0
ot
22]
. radEJra—E:O
Ve ot

So we must have

0 =curl E
= curl E + curl(v A B)
=curlE4+vdivB—v-grad B
OB
=curlE4+— 23
curl E+ T [23]
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since divB=0. It follows that

OB
curl E + i 0 [24]

Equation [24] is linear in B and E; so by adding
the magnetic and electric fields of different streams
of charges moving relative to R with different
velocities, we deduce that it holds generally for the
electric and magnetic fields generated by moving
charges.

Equation [24] encodes Faraday’s law of electro-
magnetic induction, which describes how changing
magnetic fields can generate currents. In the static case

OB

ot
and the equation reduces to curlE=0 - the
condition that the electrostatic field should be
conservative; that is, it should do no net work
when a charge is moved around a closed loop.

More generally, consider a wire loop in the shape of

a closed curve . Let S be a fixed surface spanning -.
Then we can deduce from eqn [24] that

%E-ds:/curlE~dS
¥ S

0

OB
:_AE?“
—%Awda 25]

If the magnetic field is varying, so that the integral of B
over § is not constant, then the integral of E around the
loop will not be zero. There will be a nonzero electric
field along the wire, which will exert a force on the
electrons in the wire and cause a current to flow.

The quantity
j{ E-ds

which is measured in volts, is the work done by the
electric field when a unit charge makes one circuit
of the wire. It is called the electromotive force
around the circuit. The integral is the magnetic flux
linking the circuit. The relationship [25] between
electromotive force and rate of change of magnetic
flux is Faraday’s law.

The Field of Charges in Uniform Motion

We can extract another of Maxwell’s equations
from this argument. By EM3/, a single charge e with
velocity v generates an electric field E and a
magnetic field

B = W + O(U /C )
where 7 is the vector from the charge to the point at
which the field is measured. In the frame of reference

R’ in which the charge is at rest, its electric field is
g
4regr’

In the frame in which it is moving with velocity
v, E=E' + O(v/c). Therefore,
2
10 (?z)

By taking the curl of both sides, and dropping terms
of order v /c?,

curl(¢B) = curl (U " E)

Cc

_vAE  vAE
¢ ¢

cB

= %(vdivE —v-gradE)

But
divE = p/eo, v~gradE:_a£
ot
by [22]. Therefore,
10E 1
curl(¢B) — P a] = cuoJ

where J = pv. By summing over the separate particle
velocities, we conclude that
1 OE
CurlB — C—ZE = /JJ()]
holds for an arbitrary distribution of charges, provided
that their velocities are much less than that of light.

Maxwell’s Equations

The basic principles, together with the assumption of
Galilean invariance for velocities much less than that
of light, have allowed us to deduce that the electric and
magnetic fields generated by a continuous distribution
of moving charges in otherwise empty space satisfy

divE=" 26]
€0
divB=0 27]
1 OE
curlB—C—ZE:,uo] [28]
curl E + % =0 [29]
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where p is the charge density, J is the current
density, and ¢*=1/eoup. These are Maxwell’s
equations, the basis of modern electrodynamics.
Together with the Lorentz-force law, they describe
the dynamics of charges and electromagnetic fields.

We have arrived at them by considering how basic
electromagnetic processes appear in moving frames
of reference — an unsatisfactory route because we
have seen on the way that the principles on which
we based the derivation are incompatible with
Galilean invariance for velocities comparable with
that of light. Maxwell derived them by analyzing an
elaborate mechanical model of electric and magnetic
fields — as displacements in the luminiferous ether.
That is also unsatisfactory because the model has
long been abandoned. The reason that they are
accepted today as the basis of theoretical and
practical applications of electromagnetism has little
to do with either argument. It is first that they are
self-consistent, and second that they describe the
behavior of real fields with unreasonable accuracy.

The Continuity Equation

It is not immediately obvious that the equations are
self-consistent. Given p and J as functions of the
coordinates and time, Maxwell’s equations are two
scalar and two vector equations in the unknown
components of E and B. That is, a total of eight
equations for six unknowns — more equations than
unknowns. Therefore, it is possible that they are in
fact inconsistent.

If we take the divergence of eqn [29], then we
obtain

o, ,.
a(dlvB) =0

which is consistent with eqn [27]; so no problem
arises here. However, by taking the divergence of
eqn [28] and substituting from eqn [26], we get

0 = div curl B

10 . .
=3y (divE) + podiv]

B dp .
= U0 (E—f—dlv‘])

This gives a contradiction unless

dp .

o div] =0 [30]
So the choice of p and J is not unconstrained; they
must be related by the continuity equation [30]. This
holds for physically reasonable distributions of

charge; it is a differential form of the statement
that charges are neither created nor destroyed.

Conservation of Charge

To see the connection between the continuity
equation and charge conservation, let us look at
the total charge within a fixed V bounded by a
surface S. If charge is conserved, then any increase
or decrease in a short period of time must be
exactly balanced by an inflow or outflow of charge
across S.

Consider a small element dS of S with outward
unit normal and consider all the particles that have a
particular charge e and a particular velocity v at
time ¢. Suppose that there are o of these per unit
volume (o is a function of position). Those that cross
the surface element between t and ¢ + 67 are those
that at time ¢ lie in the region of volume

|v-ndS 6t

shown in Figure 1. They contribute eov - dSé¢ to the
outflow of charge through the surface element. But
the value of J at the surface element is the sum of
eov over all possible values of v and e. By summing
over v, e, and the elements of the surface, therefore,
and by passing to the limit of a continuous
distribution, the total rate of outflow is

/S]-dS

Charge conservation implies that the rate of
outflow should be equal to the rate of decrease in
the total charge within V. That is,

%/VpdVJr/SJdSO 31]

By differentiating the first term under the integral
sign and by applying the divergence theorem to the
second integral,

ap .
/V <a—f+dlv])dvo 32]

If this is to hold for any choice of V, then p and J
must satisfy the continuity equation. Conversely, the
continuity equation implies charge conservation.

n

0 as
vdtvdt

Figure 1 The outflow through a surface element.
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The Displacement Current

The third of Maxwell’s equations can be written as

curl B = pyo (] + € %—E) [33]

in which form it can be read as an equation
for an unknown magnetic field B in terms of
a known current distribution J and electric
field E. When E and J are independent of ¢, it
reduces to

curl B= puoJ

which determines the magnetic field of a steady
current, in a way that was already familiar
to Maxwell’s contemporaries. But his second
term on the right-hand side of [33] was new; it
adds to J the so-called vacuum displacement
current

@
¢

The name comes from an analogy with the
behavior of charges in an insulating material.
Here no steady current can flow, but the distribu-
tion of charges within the material is distorted
by an external electric field. When the field
changes, the distortion also changes, and the result
appears as a current — the displacement current —
which flows during the period of change. Max-
well’s central insight was that the same term
should be present even in empty space. The
consequence was profound; it allowed him to
explain the propagation of light as an electromag-
netic phenomenon.

The Source-Free Equations

In a region of empty space, away from the
charges generating the electric and magnetic fields,

we have p=0=]J, and Maxwell’s equations
reduce to
divE=0 [34]
divB=0 35]
1 0E
curlB — sza =0 [36]
OB
IE+—=0 37
curl E + % [37]

where ¢=1/,/eoug. By taking the curl of eqn [36]
and by substituting from eqns [35] and [37], we
obtain

0=grad (divB) — V’B — écurl (8E>

ot
10
—_\2p__ =
=—-V°B 29 (curl E)
1 6°B
— _\2 i
=-V°B+ 29 [38]

Therefore, the three components of B in empty space
satisfy the (scalar) wave equation

Ou=20
Here [ is the d’Alembertian operator, defined by
12 »
c? or?
By taking the curl of eqn [37], we also obtain
OE=0.

=

Monochromatic Plane Waves

The fact that E and B are vector-valued solutions of
the wave equation in empty space suggests that we
look for “plane wave” solutions of Maxwell’s
equations in which

E=0cosQ+fsinQ [39]

where o, are constant vectors and
w
D==(ct—r-e), ee=1 [40]
c

with w > 0, «, 8, and e constant; w is the frequency
and e is a unit vector that gives the direction of
propagation (adding 7 to ¢t and cre to r leaves u
unchanged). This satisfies the wave equation, but for
a general choice of the constants, it will not be
possible to find B such that eqns [34]—[37] also hold.
By taking the divergence of eqn [39], we obtain
w
—(

divE=—(e-asinQ) —e-fBcos) [41]

c
For eqn [34] to hold, therefore, we must choose
and B orthogonal to e. For eqn [37] to hold, we
must find B such that

w OB
c

curlE=—(eAasinQ—eABcos) = —— [42]

ot

A possible choice is

B:e/\E:%(e/\acosQ—ke/\,BsinQ) [43]

c

and it is not hard to see that E and B then satisfy
[35] and [36] as well.
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The solutions obtained in this way are called
“monochromatic electromagnetic plane waves.”

Note that such waves are transverse in the sense
that E and B are orthogonal to the direction of
propagation. The definition E can be written more
concisely in the form

E =Re[(a +iB)e ] [44]

It is an exercise in Fourier analysis to show every
solution in empty space is a combination of
monochromatic plane waves. A plane wave has
“plane” or “linear” polarization if & and B are
proportional. It has “circular” polarization if
a-a=p -B,a-p=0.

At the heart of Maxwell’s theory was the idea that
a light wave with definite frequency or color is
represented by a monochromatic plane solution of
his equations.

Potentials

For every solution of Maxwell’s equations in vacuo,
the components of E and B satisfy the three-
dimensional wave equation; but the converse is not
true. That is, it is not true in general that if

0B=0, OE=0

then E and B satisfy Maxwell’s equations. For this
to happen, the divergence of both fields must vanish,
and they must be related by [36] and [37]. These
additional constraints are somewhat simpler to
handle if we work not with the fields themselves,
but with auxiliary quantities called “potentials.”

The definition of the potentials depends on
standard integrability conditions from vector calcu-
lus. Suppose that v is a vector field, which may
depend on time. If curlv=0, then there exists a
function ¢ such that

v=grad¢ [45]
If dive =0, then there exists a second vector field a
such that

v=curla [46]

Neither ¢ nor a is uniquely determined by v. In the
first case, if [45] holds, then it also holds when ¢ is
replaced by ¢ =¢ + f, where f is a function of time
alone; in the second, if [46] holds, then it also holds
when a is replaced by

ad =a+gradu

for any scalar function # of position and time. It
should be kept in mind that the existence statements
are local. If v is defined on a region U with

nontrivial topology, then it may not be possible to
find a suitable ¢ or a throughout the whole of U.
Suppose now that we are given fields E and B
satisfying Maxwell’s equations [26]-[29] with
sources represented by the charge density p and the
current density J. Since div B= 0, there exists a time-
dependent vector field A (z, x,y, z) such that

B = curlA

If we substitute B=curl A into [29] and interchange
curl with the time derivative, then we obtain

curl (E + %) =0
ot

It follows that there exists a scalar ¢(z,x,y,z) such
that
0A
E=—grad¢ — — 47
grad 6 — 21 [47)
Such a vector field A is called a “magnetic vector
potential”; a function ¢ such that eqn [47] holds is
called an “electric scalar potential.”
Conversely, given scalar and vector functions ¢
and A of ¢, x, y, 2, we can define B and E by
0A
B = curl A, E=—grad¢ — 5 [48]
Then two of Maxwell’s equations hold automati-
cally, since

OB
ot
The remaining pair translate into conditions on A
and ¢. Equation [26] becomes

divB =0, curlE4+-—=0

. a .. P
— _\724 _ .
divE = -V*¢ 5 (divA) o

and eqn [28] becomes

1 0E 2 .
curl B — i —V~A + grad divA
10 0A
+C—2§ (grad¢+5>
= poJ
If we put
100 ..
« —szgﬁ-le (A)

then we can rewrite the equations for A and ¢ more
simply as

da p

D¢—§:5

OA +grad a = poJ
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Here we have four equations (one scalar, one vector)
in four unknowns (¢ and the components of A). Any
set of solutions ¢, A determines a solution of
Maxwell’s equations via [48].

Gauge Transformations

Given solutions E and B of Maxwell’s equations,
what freedom is there in the choice of A and ¢?
First, A is determined by curlA=B up to the
replacement of A by

A'=A+gradu

for some function u of position and time. The scalar
potential ¢’ corresponding to A’ must be chosen so
that

!
—grad ¢’ = E+aait

0A Oou
= E+8t+grad(8t>

= —grad( - %)

That is, ¢/ =¢ — Ou/0t + f(t), where f is a function
of t alone. We can absorb f into u by subtracting

/fdt

(this does not alter A). So the freedom in the choice
of A and ¢ is to make the transformation

ou

A—A =A+gradu, ¢+—>¢':¢75 [49]

for any u=u(t,x,y,z). The transformation [49] is
called a “gauge transformation.”
Under [49],

_10¢
c? ot
It is possible to show, under certain very mild

conditions on «, that the inhomogeneous wave
equation

+div(A) = a— Ou

a—

Ou =« [50]

has a solution u#=u(t, x,y,z). If we choose u so that
[50] holds, then the transformed potentials A" and ¢’
satisfy

10¢"
2ot
This is the “Lorenz gauge condition,” named after

L Lorenz (not the H A Lorentz of the “Lorentz
contraction”).

div(A") + 0

5

If we impose the Lorenz condition, then the only
remaining freedom in the choice of A and ¢ is to
make gauge transformations [49] in which # is a
solution of the wave equation [Ju=0. Under the
Lorenz condition, Maxwell’s equations take the
form

(¢ = p/eo, OA = uoJ [51]

Consistency with the Lorenz condition follows from
the continuity equation on ¢ and J.

In the absence of sources, therefore, Maxwell’s
equations for the potential in the Lorenz gauge
reduce to

¢ =0, OA=0 [52]
together with the constraint
199 _
cz ot
We can, for example, choose three arbitrary solu-

tions of the scalar wave equation for the compo-
nents of the vector potential, and then define ¢ by

b= / div Adt

divA + 0

Whatever choice we make, we shall get a solution of
Maxwell’s equations, and every solution of Max-
well’s equations (without sources) will arise from
some such choice.

Historical Note

At the end of the eighteenth century, four types of
electromagnetic phenomena were known, but not
the connections between them.

® Magnetism, the word derives from the Greek for
“stone from Magnesia.”

® Siatic electricity, produced by rubbing amber with
fur; the word “electricity” derives from the Greek
for “amber.”

® Light.

® Galvanism or “animal electricity” — the electricity
produced by batteries, discovered by Luigi
Galvani.

The construction of a unified theory was a slow
and painful business. It was hindered by attempts,
which seem bizarre in retrospect, to understand
electromagnetism in terms of underlying mechanical
models involving such inventions as “electric fluids”
and “magnetic vortices.” We can see the legacy of
this period, which ended with Einstein’s work in
19085, in the misleading and archaic terms that still
survive in modern terminology: “magnetic flux,”
“lines of force,” “electric displacement,” and so on.
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Maxwell’s contribution was decisive, although
much of what we now call “Maxwell’s theory” is
due to his successors (Lorentz, Hertz, Einstein, and
so on); and, as we shall see, a key element in
Maxwell’s own description of electromagnetism —
the “electromagnetic ether,” an all-pervasive
medium which was supposed to transmit electro-
magnetic waves — was thrown out by Einstein.

A rough chronology is as follows.

® 1800 Volta demonstrated the connection between
galvanism and static electricity.

® 1820 COersted showed that the current from a
battery generates a force on a magnet.

® 1822 Ampere suggested that light was a wave
motion in a “luminiferous ether” made up of two
types of electric fluid. In the same year, Galileo’s
“Dialogue concerning the two chief world sys-
tems” was removed from the index of prohibited
books.

e 1831 Faraday showed that moving magnets can
induce currents.

® 1846 Faraday suggested that light is a vibration
in magnetic lines of force.

® 1863 Maxwell published the equations that
describe the dynamics of electric and magnetic
fields.

® 1905 Einstein’s paper “On the electrodynamics
of moving bodies.”
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Foundations: Atoms and Molecules

Classical statistical mechanics studies properties of
macroscopic aggregates of particles, atoms, and
molecules, based on the assumption that they are
point masses subject to the laws of classical
mechanics. Distinction between macroscopic and
microscopic systems is evanescent and in fact the
foundations of statistical mechanics have been laid
on properties, proved or assumed, of few-particle
systems.

Macroscopic systems are often considered in
stationary states, which means that their micro-
scopic configurations follow each other as time
evolves while looking the same macroscopically.
Observing time evolution is the same as sampling
(“not too closely” time-wise) independent copies of
the system prepared in the same way.

A basic distinction is necessary: a stationary state
may or may not be in equilibrium. The first case
arises when the particles are enclosed in a container
Q and are subject only to their mutual conservative

interactions and, possibly, to external conservative
forces: a typical example is a gas in a container
subject to forces due to the walls of £ and gravity,
besides the internal interactions. This is a very
restricted class of systems and states.

A more general case is when the system is in a
stationary state but it is also subject to nonconservative
forces: a typical example is a gas or fluid in which a
wheel rotates, as in the Joule experiment, with some
device acting to keep the temperature constant. The
device is called a thermostat and in statistical
mechanics it has to be modeled by forces, including
nonconservative ones, which prevent an indefinite
energy transfer from the external forcing to the system:
such a transfer would impede the occurrence of
stationary states. For instance, the thermostat could
simply be a constant friction force (as in stirred
incompressible liquids or as in electric wires in which
current circulates because of an electromotive force).

A more fundamental approach would be to
imagine that the thermostat device is not a phenom-
enologically introduced nonconservative force (e.g.,
a friction force) but is due to the interaction with an
external infinite system which is in “equilibrium at
infinity.”

In any event nonequilibrium stationary states are
intrinsically more complex than equilibrium states.
Here attention will be confined to equilibrium
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statistical mechanics of systems of N identical point
particles Q=(qy,-..,qy) enclosed in a cubic box Q,
with volume V and side L, normally assumed to
have perfectly reflecting walls.

Particles of mass m located at ¢q,q will be
supposed to interact via a pair potential ¢(g — ¢).
The microscopic motion follows the equations

N
mq; = _Z 9g.(q; — q;) + Z Wyan(q;)
=1 i

€ -0,%(Q) 1]
where the potential ¢ is assumed to be smooth
except, possibly, for |g — ¢'| < ro where it could be
+00, that is, the particles cannot come closer than
70, and at 7o [1] is interpreted by imagining that they
undergo elastic collisions; the potential W,,;; models
the container and it will be replaced, unless
explicitly stated, by an elastic collision rule.

The time evolution (Q, Q) — S;(Q, Q) will, there-
fore, be described on the position — velocity space,
F(N), of the N particles or, more conveniently, on
the phase space, i.e., by a time evolution S, on the
momentum — position (P,Q, with P=mQ) space,
F(N). The motion being conservative, the energy

. 1
[ def Zﬁp’z + Z@(ql. —q;) + Z Weail(4;)
i i<j i

EK(P) +2(Q)

will be a constant of motion; the last term in @ is
missing if walls are perfect. This makes it convenient to
regard the dynamics as associated with two dynamical
systems (F(N),S;) on the 6N-dimensional phase
space, and (Fy(N),S;) on the (6N — 1)-dimensional
surface of energy U. Since the dynamics [1] is
Hamiltonian on phase space, with Hamiltonian

HP.Q)™ 3o p2 4 9(Q) K +

it follows that the volume d*Pd*Q is conserved
(i.e., a region E has the same volume as S;E) and
also the area 6(H(P, Q) — U)dSNPd3NQ is conserved.

The above dynamical systems are well defined,
i.e., S; is a map on phase space globally defined for
all ¢ € (—oo0,00), when the interaction potential is
bounded below: this is implied by the a priori
bounds due to energy conservation. For gravita-
tional or Coulomb interactions, much more has to
be said, assumed, and done in order to even define
the key quantities needed for a statistical theory of
motion.

Although our world is three dimensional (or at
least was so believed to be until recent revolutionary

theories), it will be useful to consider also systems of
particles in dimension d # 3: in this case the above
6N and 3N become, respectively, 2dN and dN.
Systems with dimension d=1,2 are in fact some-
times very good models for thin filaments or thin
films. For the same reason, it is often useful to
imagine that space is discrete and particles can only
be located on a lattice, for example, on Z¢ (see the
section “Lattice models”).

The reader is referred to Gallavotti (1999) for
more details.

Pressure, Temperature, and Kinetic
Energy

The beginning was BErRNoULLI’s derivation of
the perfect gas law via the identification of
the pressure at numerical density p with the
average momentum transferred per unit time to
a surface element of area dS on the walls: that is,
the average of the observable 2muvpvdS, with v
the normal component of the velocity of
the particles that undergo collisions with dS.
If f(v)dv is the distribution of the normal compo-
nent of velocity and f(v)d3vEHif(vi)d3v, v=
(v1,v2,v3), is the total velocity distribution,
the average of the momentum transferred is pdS
given by

dS/v>02ﬂ’ZZ/2pf(U)dU = dS/mvzpf(v)dv
_ p%dS/%vzf(v)d% _ p% <§> a2

Furthermore (2/3)(K/N) was identified as pro-
portional to the absolute temperature (K/N) def
const (3/2)T which, with present-day notations, is
written as (2/3)(K/N)=kpT. The constant kp was
(later) called Boltzmann’s constant and it is the
same for at least all perfect gases. Its independence
on the particular nature of the gas is a conse-
quence of Avogadro’s law stating that equal
volumes of gases at the same conditions of
temperature and pressure contain equal number
of molecules.

Proportionality between average kinetic energy
and temperature via the universal constant kp
became in fact a fundamental assumption extending
to all aggregates of particles gaseous or not, never
challenged in all later works (until quantum
mechanics, where this is no longer true, see the
section “Quantum statistics”.

For more details, we refer the reader to Gallavotti
(1999).
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Heat and Entropy

After Clausius’ discovery of entropy, BoLTZMANN, in
order to explain it mechanically, introduced the heat
theorem, which he developed to full generality
between 1866 and 1884. Together with the men-
tioned identification of absolute temperature with
average kinetic energy, the heat theorem can also be
considered a founding element of statistical
mechanics.

The theorem makes precise the notion of time
average and then states in great generality that
given any mechanical system one can associate with
its dynamics four quantities U, V,p, T, defined as
time averages of suitable mechanical observables
(i.e., functions on phase space), so that when the
external conditions are infinitesimally varied and
the quantities U, V change by dU, dV, respectively,
the ratio (dU +pdV)/T is exact, i.e., there is a
function S(U,V) whose corresponding variation
equals the ratio. It will be better, for the purpose of
considering very large boxes (V — o0) to write this
relation in terms of intensive quantities # = def U/N and
v=V/N as

du+—Tpdv is exact 3]
i.e., the ratio equals the variation ds of
s(U/N,V/N) = (1/N)S(U, V).

The proof originally dealt with monocyclic
systems, i.e., systems in which all motions are
periodic. The assumption is clearly much too
restrictive and justification for it developed from
the early “nonperiodic motions can be regarded
as periodic with infinite period” (1866), to the
later ergodic hypothesis and finally to the
realization that, after all, the heat theorem
does not really depend on the ergodic hypothesis
(1884).

Although for a one-dimensional system the proof
of the heat theorem is a simple check, it was a real
breakthrough because it led to an answer to the
general question as to under which conditions one
could define mechanical quantities whose variations
were constrained to satisfy [3] and therefore could
be interpreted as a mechanical model of Clausius’
macroscopic thermodynamics. It is reproduced in
the following.

Consider a one-dimensional system subject to
forces with a confining potential ¢(x) such that
|/ (x)| >0 for |x|>0,¢"(0)>0 and ¢(x ),:504—00
All motions are periodic, so that the system is
monocyclic. Suppose that the potential p(x) depends
on a parameter V and define a state to be a motion with
given energy U and given V; let

U = total energy of the system = K + ®

T = time average of the kinetic energy K = (K)

V = the parameter on which ¢ [4]

is supposed to depend

p = —time average of dy,,, —(Jv,)

A state is thus parametrized by U, V. If such
parameters change by dU,dV, respectively, and
if dL——pdV dQ dU—|—pdV then [3] holds. In
fact, let x. (U, V) be the extremes of the oscillations of
the motion with given U, V and define S as

V)
V(U = ¢(x))dx

S= Zlog/x:;U‘;)
J(dU — 8y, (x)dV)(dx/VK)
[(dx/VR)K

Noting that dx/vK = /2/mdt, [3] follows because
time averages are given by 1ntegrat1ng with respect
to dx/+/K and dividing by the integral of 1/v/K.

For more details, the reader is referred to Boltzmann
(1968b) and Gallavotti (1999).

=dS =

(5]

Heat Theorem and Ergodic Hypothesis

Boltzmann tried to extend the result beyond the one-
dimensional systems (e.g., to Keplerian motions,
which are not monocyclic unless only motions with
a fixed eccentricity are considered). However, the
early statement that ‘“aperiodic motions can be
regarded as periodic with infinite period” is really
the heart of the application of the heat theorem
for monocyclic systems to the far more complex gas
in a box.

Imagine that the gas container Q is closed by a
piston of section A located to the right of the
origin at distance L and acting as a lid, so that the
volume is V=AL. The microscopic model for the
piston will be a potential B(L — &) if x = (&,m,() are
the coordinates of a particle. The function 3(r)
will vanish for r>ry, for some 7y < L, and
diverge to +oo at r=0. Thus, 7o is the width of
the layer near the piston where the force of the
wall is felt by the particles that happen to be
roaming there.

The contribution to the total potential energy
® due to the walls is W= ,%(L—¢) and
Ovp =A"10,p; assuming monocychaty, it is neces-
sary to evaluate the time average of O ®(x)=
0L Wyanl = —Zja’(L—f,«). As time evolves, the
particles x; with & in the layer within 7y of the
wall will feel the force exercised by the wall and
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bounce back. One particle in the layer will con-
tribute to the average of 9. ®(x) the amount

! - Z/ttl—a’(L — &)dt [6]

total time

if 7o is the first instant when the point j enters the
layer and #; is the instant when the &-component of
the velocity vanishes “against the wall.” Since
—@' (L —¢) is the &component of the force, the
integral is 2m|£,-| (by Newton’s law), provided, of
course, & > 0.

Suppose that no collisions between particles occur
while the particles travel within the range of the
potential of the wall, i.e., the mean free path is much
greater than the range of the potential ¥ defining the
wall. The contribution of collisions to the average
momentum transfer to the wall per unit time is
therefore given by, see [2],

| 2mvf@ipmavds
v>0

if pwan,f(v) are the average density near the wall
and, respectively, the average fraction of particles
with a velocity component normal to the wall
between v and v + dv. Here p, f are supposed to be
independent of the point on the wall: this should be
true up to corrections of size o(A).

Thus, writing the average kinetic energy per particle
and per velocity component, [ (m/2)v*f(v)dv, as
(1/2)87 (cf. [2]) it follows that

p= dﬁf <8V(I)> = pwa11571 [7]
has the physical interpretation of pressure. (1/2)37!
is the average kinetic energy per degree of freedom:
hence, it is proportional to the absolute temperature
T (cf. see the section “Pressure, temperature, and
kinetic energy”).

On the other hand, if motion on the energy
surface takes place on a single periodic orbit, the
quantity p in [7] is the right quantity that would
make the heat theorem work; see [4]. Hence,
regarding the trajectory on each energy surface as
periodic (i.e., the system as monocyclic) leads to the
heat theorem with p,U,V,T having the right
physical interpretation corresponding to their appel-
lations. This shows that monocyclic systems provide
natural models of thermodynamic behavior.

Assuming that a chaotic system like a gas in a
container of volume V will satisfy, for practical
purposes, the above property, a quantity p can be
defined such that dU + pdV admits the inverse of
the average kinetic energy (K) as an integrating
factor and, furthermore, p,U,V,(K) have the
physical interpretations of pressure, energy, volume,

and (up to a proportionality factor) absolute
temperature, respectively.

Boltzmann’s conception of space (and time) as
discrete allowed him to conceive the property that
the energy surface is constituted by “points” all of
which belong to a single trajectory: a property that
would be impossible if the phase space was really a
continuum. Regarding phase space as consisting of a
finite number of “cells” of finite volume AN, for
some b > 0 (rather than of a continuum of points),
allowed him to think, without logical contradiction,
that the energy surface consisted of a single
trajectory and, hence, that motion was a cyclic
permutation of its points (actually cells).

Furthermore, it implied that the time average of
an observable F(P, Q) had to be identified with its
average on the energy surface computed via the
Liouville distribution

c! / F(P,Q)6(H(P,Q)— U)dPdQ

C= / S(H(P,Q)—

(the appropriate normalization factor): a property
that was written symbolically

with

U)dPdQ

d¢r  dPdQ
T [dPdQ
or
Am T / (5:(P,Q))d
JE®, Q’)é(H(P’ Q’) U)dP'dQ’ )
[6(H U)dP'dQ’

The validity of [8] for all (piecewise smooth)
observables F and for all points of the energy
surface, with the exception of a set of zero area, is
called the ergodic hypothesis.

For more details, the reader is referred to
Boltzmann (1968) and Gallavotti (1999).

Ensembles

Eventually Boltzmann in 1884 realized that the
validity of the heat theorem for averages computed
via the right-hand side (rhs) of [8] held indepen-
dently of the ergodic hypothesis, that is, [8] was not
necessary because the heat theorem (i.e., [3]) could
also be derived under the only assumption that the
averages involved in its formulation were computed
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as averages over phase space with respect to the
probability distribution on the rhs of [8].
Furthermore, if T was identified with the average
kinetic energy, U with the average energy, and p
with the average force per unit surface on the walls
of the container Q with volume V, the relation [3]
held for a variety of families of probability distribu-
tions on phase space, besides [8]. Among these are:

1. The “microcanonical ensemble,” which is the
collection of probability distributions on the rhs
of [8] parametrized by u=U/N,v=V/N (energy
and volume per particle),

iy (dP dQ)
1 dPdoQ

= ZmoN v HEP Q- Uay P

where b is a constant with the dimensions of an
action which, in the discrete representation of
phase space mentioned in the previous section, can
be taken such that 9N equals the volume of the
cells and, therefore, the integrals with respect to [9]
can be interpreted as an (approximate) sum over
the cells conceived as microscopic configurations
of N indistinguishable particles (whence the N).

2. The “canonical ensemble,” which is the collec-
tion of probability distributions parametrized by
Byv= V/Ns

1 o dPdQ
NN

/L?},u(deQ) = m [10]

to which more ensembles can be added, such as
the grand canonical ensemble (Gibbs).

3. The “grand canonical ensemble” which is the
collection of probability distributions parameter-

ized by (,\ and defined over the space
fgc: U?\]OZO -F(N)7
15.,(dPdQ)
_ 1 oOAN-GH(P.Q) dPdQ 1]
Zee (BN, V) NIHN

Hence, there are several different models of thermo-
dynamics. The key tests for accepting them as real
microscopic descriptions of macroscopic thermo-
dynamics are as follows.

1. A correspondence between the macroscopic
states of thermodynamic equilibrium and the
elements of a collection of probability distribu-
tions on phase space can be established by
identifying, on the one hand, macroscopic
thermodynamic states with given values of the
thermodynamic functions and, on the other,

probability distributions attributing the same
average values to the corresponding microscopic
observables (i.e., whose averages have the inter-
pretation of thermodynamic functions).

2. Once the correct correspondence between the
elements of the different ensembles is established,
that is, once the pairs (u,v),(53,v),(3,)\) are so
related to produce the same values for the
averages U, V, kyT & B, pl0Q| of

1.0, V.2D fom(a) 2o 0P day 12

where (69a(q;) is a delta-function pinning g, to
the surface 09), then the averages of all physi-
cally interesting observables should coincide at
least in the thermodynamic limit, 2 — co. In this
way, the elements p of the considered collection
of probability distributions can be identified with
the states of macroscopic equilibrium of the
system. The u’s depend on parameters and there-
fore they form an ensemble: each of them
corresponds to a macroscopic equilibrium state
whose thermodynamic functions are appropriate
averages of microscopic observables and therefore
are functions of the parameters identifying .

Remark The word “ensemble” is often used to
indicate the individual probability distributions of
what has been called here an ensemble. The meaning
used here seems closer to the original sense in the
1884 paper of Boltzmann (in other words, often by
“ensemble” one means that collection of the phase
space points on which a given probability distribu-
tion is considered, and this does not seem to be the
original sense).

For instance, in the case of the microcanonical
distributions this means interpreting energy, volume,
temperature, and pressure of the equilibrium state
with specific energy # and specific volume v as
proportional, through appropriate universal propor-
tionality constants, to the integrals with respect to
i, (dPdQ) of the mechanical quantities in [12].
The averages of other thermodynamic observables in
the state with specific energy # and specific volume
v should be given by their integrals with respect
to 11,

Likewise, one can interpret energy, volume,
temperature, and pressure of the equilibrium state
with specific energy # and specific volume v as the
averages of the mechanical quantities [12] with
respect to the canonical distribution uf ,(dPdQ)
which has average specific energy precisely u. The
averages of other thermodynamic observables in the
state with specific energy and volume # and v are
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given by their integrals with respect to uf,. A
similar definition can be given for the description of
thermodynamic equilibria via the grand canonical
distributions.

For more details, see Gibbs (1981) and Gallavotti
(1999).

Equivalence of Ensembles

BortzmaNN proved that, computing averages via the
microcanonical or canonical distributions, the essen-
tial property [3] was satisfied when changes in their
parameters (i.e., u,v or f3,v, respectively) induced
changes du and dv on energy and volume, respec-
tively. He also proved that the function s, whose
existence is implied by [3], was the same function
once expressed as a function of u,v (or of any pair
of thermodynamic parameters, e.g., of T,v or p,u).
A close examination of Boltzmann’s proof shows
that the [3] holds exactly in the canonical ensemble
and up to corrections tending to 0 as {2 — oo in the
microcanonical ensemble. Identity of thermo-
dynamic functions evaluated in the two ensembles
holds, as a consequence, up to corrections of this
order. In addition, Gibbs added that the same held
for the grand canonical ensemble.

Of course, not every collection of stationary
probability distributions on phase space would
provide a model for thermodynamics: Boltzmann
called “orthodic” the collections of stationary
distributions which generated models of thermo-
dynamics through the above-mentioned identifica-
tion of its elements with macroscopic equilibrium
states. The microcanonical, canonical, and the later
grand canonical ensembles are the chief examples
of orthodic ensembles. Boltzmann and Gibbs
proved these ensembles to be not only orthodic
but to generate the same thermodynamic functions,
that is to generate the same thermodynamics.

This meant freedom from the analysis of the truth
of the doubtful ergodic hypothesis (still unproved in
any generality) or of the monocyclicity (manifestly
false if understood literally rather than regarding the
phase space as consisting of finitely many small,
discrete cells), and allowed Gibbs to formulate the
problem of statistical mechanics of equilibrium as
follows.

Problem Study the properties of the collection of
probability distributions constituting (any) one of
the above ensembles.

However, by no means the three ensembles just
introduced exhaust the class of orthodic ensembles
producing the same models of thermodynamics in
the limit of infinitely large systems. The wealth of

ensembles with the orthodicity property, hence
leading to equivalent mechanical models of thermo-
dynamics, can be naturally interpreted in connection
with the phenomenon of phase transition (see the
section “Phase transitions and boundary conditions™).

Clearly, the quoted results do not “prove”
that thermodynamic equilibria “are” described by
the microcanonical, canonical, or grand canonical
ensembles. However, they certainly show that,
for most systems, independently of the number of
degrees of freedom, one can define quite unambigu-
ously a mechanical model of thermodynamics estab-
lishing parameter-free, system-independent, physically
important relations between thermodynamic quanti-
ties (e.g., Ou(p(u,v)/ T(u,v)) = 9,(1/T(u,v)), from [3]).

The ergodic hypothesis Wthh was at the root
of the mechanical theorems on heat and entropy
cannot be taken as a justification of their validity.
Naively one would expect that the time scale
necessary to see an equilibrium attained, called
recurrence time scale, would have to be at least the
time that a phase space point takes to visit all
possible microscopic states of given energy: hence,
an explanation of why the necessarily enormous size
of the recurrence time is not a problem becomes
necessary.

In fact, the recurrence time can be estimated once
the phase space is regarded as discrete: for the
purpose of countering mounting criticism, Boltz-
mann assumed that momentum was discretized in
units of (2mkgT)"? (i.e., the average momentum
size) and space was discretized in units of p~!/3
(i.e., the average spacmg) implying a volume of
cells H3N with h% p’1/3(2kaT)1/2, then he calcu-
lated that, even with such a gross discretization, a
cell representing a microscopic state of 1cm? of
hydrogen at normal condition would require a time
(called “recurrence time”) of the order of ~101°”
times the age of the Universe (!) to visit the entire
energy surface. In fact, the phase space volume is
I =(p>NQ2mkgT)**)N = b®N and the number of
cells of volume AN is T'/(N!h3N) ~ e3N; and the
time to visit all will be e3N7y, with 79 a typical
atomic unit, e.g., 1072s — but N=10". In this
sense, the statement boldly made by young Boltz-
mann that “aperiodic motions can be regarded as
periodic with infinite period” was even made
quantitative.

The recurrence time is clearly so long to be
irrelevant for all purposes: nevertheless, the correct-
ness of the microscopic theory of thermodynamics
can still rely on the microscopic dynamics once it is
understood (as stressed by Boltzmann) that the
reason why we observe approach to equilibrium,
and equilibrium itself, over “human” timescales
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(which are far shorter than the recurrence times) is
due to the property that on most of the energy surface
the (very few) observables whose averages yield
macroscopic thermodynamic functions (namely pres-
sure, temperature, energy,...) assume the same value
even if N is only very moderately large (of the order of
103 rather than 10'). This implies that this value
coincides with the average and therefore satisfies the
heat theorem without any contradiction with the
length of the recurrence time. The latter rather
concerns the time needed to the generic observable to
thermalize, that is, to reach its time average: the
generic observable will indeed take a very long time to
“thermalize” but no one will ever notice, because the
generic observable (e.g., the position of a pre-identified
particle) is not relevant for thermodynamics.

The word “proof” is not used in the mathematical
sense so far in this article: the relevance of a
mathematically rigorous analysis was widely rea-
lized only around the 1960s at the same time when
the first numerical studies of the thermodynamic
functions became possible and rigorous results were
needed to check the correctness of various numerical
simulations.

For more details, the reader is referred to Boltzmann
(1968a, b) and Gallavotti (1999).

Thermodynamic Limit

Adopting Gibbs axiomatic point of view, it is
interesting to see the path to be followed to achieve
an equivalence proof of three ensembles introduced
in the section “Heat theorem and ergodic
hypothesis.”

A preliminary step is to consider, given a cubic
box Q of volume V=L%, the normalization factors
ZE(B, A, V), Z°(B,N, V), and Z™(U,N,V) in [9],
[10], and [11], respectively, and to check that the
following thermodynamic limits exist:

e (5.0 lim T log Z8(5, 1, V)

G 1,
(8,0 lim log Z*(B.N, V)
V—oog=p [13]
kglsmc(u,p)
def

M 1 mc

V—»oo,N/l\I/er, U/N=u N log Z™(U, N, V)

where the density p def 1 = N/V is used, instead of
v, for later reference. The normalization factors play
an important role because they have simple thermo-
dynamic interpretation (see the next section): they
are called grand canonical, canonical, and micro-
canonical partition functions, respectively.

Not surprisingly, assumptions on the interparticle
potential ©(q —q') are necessary to achieve an
existence proof of the limits in [13]. The assump-
tions on ¢ are not only quite general but also have a
clear physical meaning. They are

1. stability: that is, existence of a constant B > 0

such that Zf\iigo(qi —¢q;) > —BN for all N >0,
di,--->qn € R?, and

2. temperedness: that is, existence of constants g,
R > 0 such that |¢(qg — ¢')| < Blg — q’|’d’60 for

lg—4'| > R.

The assumptions are satisfied by essentially all
microscopic interactions with the notable exceptions
of the gravitational and Coulombic interactions,
which require a separate treatment (and lead to
somewhat different results on the thermodynamic
behavior).

For instance, assumptions (1), (2) are satisfied
if p(q) is +oo for |q| < 7y and smooth for |g| > 7,
for some 79 > 0, and furthermore (q) > B0|q\4”l+5°>
if 70 <|q| <R, while for |g| >R it is |¢(q)] <
Bl\q|7(d+€“), for some By, B1,c0 > 0, R > 7. Briefly,
¢ is fast diverging at contact and fast approaching 0
at large distance. This is called a (generalized)
Lennard-Jones potential. If 7y > 0, ¢ is called a
hard-core potential. If By =0, the potential is said
to have finite range. (See Appendix 1 for physical
implications of violations of the above stability and
temperedness properties.) However, in the following,
it will be necessary, both for simplicity and to contain
the length of the exposition, to restrict consideration
to the case B; =0, i.e., to

©(q) > Bolg|"'""), 1o < |g| <R,

lo(q) =0, |g] >R

unless explicitly stated.

Assuming stability and temperedness, the exis-
tence of the limits in [13] can be mathematically
proved: in Appendix 2, the proof of the first is
analyzed to provide the simplest example of the
technique. A remarkable property of the functions
BPge(By A), —Bpf(B, p), and psmc(u, p) is that they are
convex functions: hence, they are continuous in the
interior of their domains of definition and, at one
variable fixed, are differentiable with respect to the
other with at most countably many exceptions.

In the case of a potential without hard core
(Pmax = 0), —pf<(B3, p) can be checked to tend to 0
slower than p as p— 0, and to —oo faster than —p as
p — oo (essentially proportionally to —plog p in both
cases). Likewise, in the same case, spc(#, p) can be
shown to tend to 0 slower than # — uy, as u# — upin,
and to —oo faster than —u as u— oo. The latter

[14]
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asymptotic properties can be exploited to derive, from
the relations between the partition functions in [13],

o0

Z5(6,\, V) eMNZE(B,N, V)
0

N [15]
Z°(B,N,V) = [ e PUVZ™(U,N,V)dU

o]

and, from the above-mentioned convexity, the
consequences

Bpmc (8, A)
_ﬁfc(ﬂa U_l)

and that the maxima are attained in points, or
intervals, internal to the intervals of definition. Let
Vge, Ue be points where the maxima are, respectively,
attained in [16].

Note that the quantity eNZ¢(3,N, V)/Z8(3, )\, V)
has the interpretation of probability of a density

1 =N/V evaluated in the grand canonical distribu-
tion. It follows that, if the maximum in the first of
[16] is strict, that is, it is reached at a single point, the
values of v! in closed intervals not containing the
maximum point v, -1 have a probability behaving as
<e‘CV c>0, as Ve 00, compared to the probability
of v™"s in any interval containing v, . Hence, vy has
the interpretation of average value of v in the grand
canonical distribution, in the limit V — oo.

Likewise, the interpretation of

e "NZ™(uN, N, V)/Z%(3, N, V)

— Bv ' fe(B,v71)
= m’?x(—ﬁu + kg

= max(Biv!
’ [16]

1smc(u,v_l))

as probability in the canonical distribution of an
energy density # shows that, if the maximum in the
second of [16] is strict, the values of # in closed
intervals not containing the maximum point #. have
a probability behaving as <e=V,¢ > 0, as V — oo,
compared to the probability of #’s in any 1nterval
containing #.. Hence, in the limit Q — oo, the
average value of # in the canonical distribution is #..
If the maxima are strict, [16] also establishes a
relation between the grand canonical density, the
canonical free energy and the grand canonical para-
meter A, or between the canonical energy, the micro-
canonical entropy, and the canonical parameter 3:

SR8,

where convexity and strictness of the maxima imply
the derivatives existence.

A=0,1(v kg3 = OySme(te, U_l) [17]

Remark Therefore, in the equivalence between
canonical and microcanonical ensembles, the cano-
nical distribution with parameters (8,v) should
correspond with the microcanonical with para-
meters (#¢,v). The grand canonical distribution

with parameters (3, \) should correspond with the
canonical with parameters (3, vy).

For more details, the reader is referred to Ruelle
(1969) and Gallavotti (1999).

Physical Interpretation of
Thermodynamic Functions

The existence of the limits [13] implies several
properties of interest. The first is the possibility of
finding the physical meaning of the functions
Dege» fer Sme and of the parameters A, 3

Note first that, for all V the grand canonical average
(K)j s (d/2)37(N) , so that 87 is proportional to
the temperature Ty = T(f, A) in the grand canonical
distribution: 87 = kg T(3, ). Proceeding heuristically,
the physical meaning of p(3,\) and A can be found
through the following remarks.

Consider the microcanonical distribution 1}, and
denote by [* the integral over (P, Q) extended to the
domain of the (P, Q) such that H(P, Q)= U and, at
the same time, g, € dV, where dV is an infinitesimal
volume surrounding the region . Then, by the
microscopic definition of the pressure p (see the
introductory section), it is

B N * 2 pt dPdQ
PdV=Za NV *32mNN
2 dPdO
~3Z(U,N,V) / K qpan 18]
where 6 = §(H(P, Q) — U). The RHS of [18] can be
compared with
WZ(UN,V)dV N / dPdO
Z(U,N,V) _ Z(U,N,V)/ NN
to give
OvZdV pdv
~ N _— BpdV
z e

because (K)", which denotes the average [“K/[" 1,
should be essentially the same as the microcanonical
average (K)_ . (i.e., insensitive to the fact that one
particle is constrained to the volume dV) if N is
large. In the limit V—oo,V/N=v, the latter
remark together with the second of [17] yields

ky ! ysinc(1,071) = Bp(u,v),
k' Oysme(u,v) = 3 [19]

respectively. Note that p > 0 and it is not increasing
in v because spc(p) is concave as a function of
v=p' (in fact, by the remark following [14]
psSme(u, p) is convex in p and, in general, if pg(p) is
convex in p then g(v™') is always concave in v=p!).
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Hence, dsmc(u,v)=(du + pdv)/T, so that taking
into account the physical meaning of p, T (as
pressure and temperature, see the section “Pressure,
temperature, and kinetic energy”), sy is, in thermo-
dynamics, the entropy. Therefore (see the second
of [161), ~B(8, p) = — Bute + kg smelites p) becomes

fe(B; p) = tte — Tesme(ue, p),
dfe = —pdv — s dT [20]

and since #, has the interpretation (as mentioned in
the last section) of average energy in the canonical
distribution uj , it follows that f. has the thermo-
dynamic interpretation of free energy (once com-
pared with the definition of free energy, F=U — TS,
in thermodynamics).

By [17] and [20],

A=0,1 (Ugclfc(ﬂ, v;cl)) =t — Tesme + prge

and vy has the meaning of specific volume v. Hence,
after comparison with the definition of chemical
potential, \V=U — TS + pV, in thermodynamics, it
follows that the thermodynamic interpretation of A
is the chemical potential and (see [16], [17]), the
grand canonical relation

ﬂpgc(ﬂa )‘) = ﬂ)\l/écl - ,ngcl(—ﬁuc + kglsmc (”ca Uil))

shows that pg.(6,\) = p, implying that pe.(3, ) is
the pressure expressed, however, as a function of
temperature and chemical potential.

To go beyond the heuristic derivations above, it
should be remarked that convexity and the property
that the maxima in [16], [17] are reached in the
interior of the intervals of variability of v or u are
sufficient to turn the above arguments into rigorous
mathematical deductions: this means that given [19]
as definitions of p(u,v), B(u,v), the second of [20]
follows as well as pgc(8,\) Ep(uy,vgcl). But the
values vy and u. in [16] are not necessarily unique:
convex functions can contain horizontal segments
and therefore the general conclusion is that the
maxima may possibly be attained in intervals.
Hence, instead of a single vy, there might be a
whole interval [v_, v ], where the rhs of [16] reaches
the maximum and, instead of a single u., there
might be a whole interval [#_,u,] where the rhs of
[17] reaches the maximum.

Convexity implies that the values of X or 3
for which the maxima in [16] or [17] are attained
in intervals rather than in single points are rare
(i.e., at most denumerably many): the interpretation
is, in such cases, that the thermodynamic functions
show discontinuities, and the corresponding
phenomena are called phase transitions (see the
next section).

For more details the reader is referred to Ruelle
(1969) and Gallavotti (1999).

Phase Transitions and Boundary
Conditions

The analysis in the last two sections of the relations
between elements of ensembles of distributions
describing macroscopic equilibrium states not only
allows us to obtain mechanical models of thermo-
dynamics but also shows that the models, for a given
system, coincide at least as 2 — co. Furthermore, the
equivalence between the thermodynamic functions
computed via corresponding distributions in differ-
ent ensembles can be extended to a full equivalence
of the distributions.

If the maxima in [16] are attained at single points
vge or u. the equivalence should take place in the
sense that a correspondence between ,u%f NV Y L
can be established so that, given any local obser-
vable F(P,Q), defined as an observable depending
on (P, Q) only through the p;,q; with g; € A, where
A C Q is a finite region, has the same average with
respect to corresponding distributions in the limit
Q— 0.

The correspondence is established by considering
(A, B) = (B, vge) = (thne, V), Where vge is where the
maximum in [16] is attained, #y. = u. is where the
maximum in [17] is attained and vy = v, (cf. also
[19], [20]). This means that the limits

lim [ F(P,Q)pu*(dP dQ) = (F),
(a — independent), a = gc, ¢, mc [21]

coincide if the averages are evaluated by the
distributions g\, p§ , , s,

Exceptions to [21] are possible: and are certainly
likely to occur at values of #, v where the maxima in
[16] or [17] are attained in intervals rather than in
isolated points; but this does not exhaust, in general,
the cases in which [21] may not hold.

However, no case in which [21] fails has to be
regarded as an exception. It rather signals that an
interesting and important phenomenon occurs. To
understand it properly, it is necessary to realize that
the grand canonical, canonical, and microcanonical
families of probability distributions are by far not
the only ensembles of probability distributions
whose elements can be considered to generate
models of thermodynamics, that is, which are
orthodic in the sense of the discussion in the section
“Equivalence of ensembles.” More general families
of orthodic statistical ensembles of probability
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distributions can be very easily conceived. In
particular:

Definition Consider the grand canonical, canoni-
cal, and microcanonical distributions associated
with an energy function in which the potential
energy contains, besides the interaction ® between
particles located inside the container, also the
interaction energy i, o, between particles inside
the container and external particles, identical to the
ones in the container but not allowed to move and
fixed in positions such that in every unit cube A
external to ) there is a finite number of them
bounded independently of A. Such configurations of
external particles will be called “boundary condi-
tions of fixed external particles.”

The thermodynamic limit with such boundary
conditions is obtained by considering the grand
canonical, canonical, and microcanonical distribu-
tions constructed with potential energy function
@ + D, oy in containers Q of increasing size taking
care that, while the size increases, the fixed particles
that would become internal to € are eliminated. The
argument used in the section “Thermodynamic limit”
to show that the three models of thermodynamics,
considered there, did define the same thermodynamic
functions can be repeated to reach the conclusion that
also the (infinitely many) “new” models of thermo-
dynamics in fact give rise to the same thermodynamic
functions and averages of local observables. Further-
more, the values of the limits corresponding to [13]
can be computed using the new partition functions
and coincide with the ones in [13] (i.e., they are
independent of the boundary conditions).

However, it may happen, and in general it is
the case, for many models and for particular values
of the state parameters, that the limits in [21] do
not coincide with the analogous limits computed
in the new ensembles, that is, the averages of
some local observables are unstable with respect
to changes of boundary conditions with fixed
particles.

There is a very natural interpretation of such
apparent ambiguity of the various models of
thermodynamics: namely, at the values of the
parameters that are selected to describe the macro-
scopic states under consideration, there may corre-
spond different equilibrium states with the same
parameters. When the maximum in [16] is reached
on an interval of densities, one should not think of
any failure of the microscopic models for thermo-
dynamics: rather one has to think that there are
several states possible with the same (3, \ and that
they can be identified with the probability distribu-
tions obtained by forming the grand canonical,

canonical, or microcanonical distributions with
different kinds of boundary conditions.

For instance, a boundary condition with high
density may produce an equilibrium state with
parameters (3, A which also has high density, i.e., the
density v7' at the right extreme of the interval in
which the maximum in [16] is attained, while using a
low-density boundary condition the limit in [21] may
describe the averages taken in a state with density v~!
at the left extreme of the interval or, perhaps, with a
density intermediate between the two extremes.
Therefore, the following definition emerges.

Definition If the grand canonical distributions
with parameters (3,)\) and different choices of
fixed external particles boundary conditions gene-
rate for some local observable F average values
which are different by more than a quantity § > 0
for all large enough volumes Q then one says that
the system has a phase transition at (83, \). This
implies that the limits in [21], when existing, will
depend on the boundary condition and their values
will represent averages of the observables in
“different phases.” A corresponding definition is
given in the case of the canonical and microcano-
nical distributions when, given (8,v) or (u,v), the
limit in [21] depends on the boundary conditions
for some F.

Remarks

1. The idea is that by fixing one of the thermodynamic
ensembles and by varying the boundary conditions
one can realize all possible states of equilibrium of
the system that can exist with the given values of
the parameters determining the state in the chosen
ensemble (i.e., (3, \), (3,v), or (u,v) in the grand
canonical, canonical, or microcanonical cases,
respectively).

2. The impression that in order to define a phase
transition the thermodynamic limit is necessary
is incorrect: the definition does not require
considering the limit Q — oo. The phenomenon
that occurs is that by changing boundary condi-
tions the average of a local observable can
change at least by amounts independent of the
system size. Hence, occurrence of a phase
transition is perfectly observable in finite volume:
it suffices to check that by changing boundary
conditions the average of some observable
changes by an amount whose minimal size is
volume independent. It is a manifestation of an
instability of the averages with respect to changes
in boundary conditions: an instability which does
not fade away when the boundary recedes to
infinity, i.e., boundary perturbations produce
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bulk effects and at a phase transition the averages
of the local observable, if existing at all, will
exhibit a nontrivial dependence on the boundary
conditions. This is also called “long range order.”

3. Itis possible to show that when this happens then
some thermodynamic function whose value is
independent of the boundary condition (e.g., the
free energy in the canonical distributions) has
discontinuous derivatives in terms of the para-
meters of the ensemble. This is in fact one of the
frequently-used alternative definitions of phase
transitions: the latter two natural definitions of
first-order phase transition are equivalent. How-
ever, it is very difficult to prove that a given system
shows a phase transition. For instance, existence of
a liquid-gas phase transition is still an open
problem in systems of the type considered until
the section “Lattice models” below.

4. A remarkable unification of the theory of the
equilibrium ensembles emerges: all distributions of
any ensemble describe equilibrium states. If a
boundary condition is fixed once and for all, then
some equilibrium states might fail to be described
by an element of an ensemble. However, if all
boundary conditions are allowed then all equili-
brium states should be realizable in a given
ensemble by varying the boundary conditions.

5. The analysis leads us to consider as completely
equivalent without exceptions grand canonical,
canonical, or microcanonical ensembles enlarged
by adding to them the distributions with poten-
tial energy augmented by the interaction with
fixed external particles.

6. The above picture is really proved only for
special classes of models (typically in models
in which particles are constrained to occupy
points of a lattice and in systems with hard core
interactions, 79 > 0 in [14]) but it is believed to
be correct in general. At least it is consistent
with all that is known so far in classical
statistical mechanics. The difficulty is that,
conceivably, one might even need boundary
conditions more complicated than the fixed
particles boundary conditions (e.g., putting
different particles outside, interacting with
the system with an arbitrary potential, rather
than via ¢).

The discussion of the equivalence of the ensembles
and the question of the importance of boundary
conditions has already imposed the consideration
of several limits as  — oo. Occasionally, it will
again come up. For conciseness, it is useful to set up
a formal definition of equilibrium states of an
infinite-volume system: although infinite volume is

an idealization void of physical reality, it is never-
theless useful to define such states because certain
notions (e.g., that of pure state) can be sharply
defined, with few words and avoiding wide circum-
volutions, in terms of them. Therefore, let:

Definition An infinite-volume state with parameters
(B,v), (u,v) or (B, )) is a collection of average values
F— (F) obtained, respectively, as limits of finite-
volume averages (F)q, defined from canonical, micro-
canonical, or grand canonical distributions in §2,, with
fixed parameters (3, v), (u, v) or (3, \) and with general
boundary condition of fixed external particles, on
sequences (2, — oo for which such limits exist simul-
taneously for all local observables F.

Having set the definition of infinite-volume
state consider a local observable G(X) and let
7G(X)=G(X +€),£ € RY, with X + ¢ denoting the
configuration X in which all particles are trans-
lated by &: then an infinite-volume state is called
a pure state if for any pair of local observables
F,G it is

{FreG) = (F)(7:G) —0 22]
—0Q
which is called a cluster property of the pair F, G.

The result alluded to in remark (6) is that at least in
the case of hard-core systems (or of the simple lattice
systems discussed in the section “Lattice models”) the
infinite-volume equilibrium states in the above sense
exhaust at least the totality of the infinite-volume
pure states. Furthermore, the other states that can be
obtained in the same way are convex combinations of
the pure states, i.e., they are “statistical mixtures” of
pure phases. Note that (7:G) cannot be replaced, in
general, by (G) because not all infinite-volume states
are necessarily translation invariant and in simple
cases (e.g., crystals) it is even possible that no
translation-invariant state is a pure state.

Remarks

1. This means that, in the latter models, general-
izing the boundary conditions, for example
considering external particles to be not identical
to the ones inside the system, using periodic or
partially periodic boundary conditions, or the
widely used alternative of introducing a small
auxiliary potential and first taking the infinite-
volume states in presence of it and then letting
the potential vanish, does not enlarge further the
set of states (but may sometimes be useful: an
example of a study of a phase transition by using
the latter method of small fields will be given in
the section “Continuous symmetries: ‘no d=2
crystal’ theorem”).
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2. If  is the indicator function of a local event, it
will make sense to consider the probability of
occurrence of the event in an infinite-volume state
defining it as (x). In particular, the probability
density for finding p particles at x1,x2,...,%p,
called the p-point correlation function, will thus be
defined in an infinite-volume state. For instance,
if the state is obtained as a limit of canonical
states (-) with parameters 3, p,p=N,/V,, in a
sequence of containers (,,, then

N»
p(x) = 1i712n<z S(x — q,)>
=1 O
N, P
p(xX1,%2,...,%,) = IIVI’H<Z Hé(xj - ‘Iz;)>
I yeny 0

where the sum is over the ordered p-ples
(715---5jp). Thus, the pair correlation p(q,q’)
and its possible cluster property are

r(4,9')
def lime" exp(-0U(q,9,41,- - anFz)) dq; - qu,,—z
" (N, —2)1Z5(B,p, V)
p(q,(qd +&)) —p(a)p(d +&) P 0 23]
where

ze & / e UQ4Q

is the “configurational” partition function.

The reader is referred to Ruelle (1969), Dobrushin
(1968), Lanford and Ruelle (1969), and Gallavotti
(1999).

Virial Theorem and Atomic Dimensions

For a long time it has been doubted that “just
changing boundary conditions” could produce such
dramatic changes as macroscopically different states
(i.e., phase transitions in the sense of the definition in
the last section). The first evidence that by taking the
thermodynamic limit very regular analytic functions
like N log Z¢(3, N, V) (as a function of 3,v=V/N)
could develop, in the limit Q — oo, singularities like
discontinuous derivatives (corresponding to the max-
imum in [16] being reached on a plateau and to a
consequent existence of several pure phases) arose in
the van der Waals’ theory of liquid—gas transition.
Consider a real gas with N identical particles with
mass m in a container © with volume V. Let the
force acting on the ith particle be f;; multiplying

both sides of the equations of motion, mg; =f,, by
—(1/2)q; and summing over i, it follows that

1 . 1Y def 1
—zzqu"% = _zzqi'fi: ZC(‘D
i=1

i=1

and the quantity C(q) defines the virial of the forces
in the configuration g. Note that C(g) is not
translation invariant because of the presence of the
forces due to the walls.

Writing the force f; as a sum of the internal and
the external forces (due to the walls) the virial C can
be expressed naturally as sum of the virial Ci,; of the
internal forces (translation invariant) and of the
virial Cgy of the external forces.

By dividing both sides of the definition of the
virial by 7 and integrating over the time interval
[0, 7], one finds in the limit 7 — +o0, that is, up to
quantities relatively infinitesimal as 7 — oo, that

(K)=3C) and (Cox) = 3pV
where p is the pressure and V the volume. Hence
(K) =30V + 3(Cine)
or

1 o <Cint>
5PN
Equation [24] is Clausius’ virial theorem: in the case
of no internal forces, it yields Bpv =1, the ideal-gas
equation.

The internal virial C;,; can be written, if =

ji =
_6‘Ii<p(qi - q/); as

N
Cine = _ZZfﬁi'qz‘

im1 iz
== Z O5:0(q; — q;) - (q; — q;)

i<j

[24]

which shows that the contribution to the virial by
the internal repulsive forces is negative while that of
the attractive forces is positive. The average of Ciy,
can be computed by the canonical distribution,
which is convenient for the purpose. van der Waals
first used the virial theorem to perform an actual
computation of the corrections to the perfect-gas
laws. Simply neglect the third-order term in the
density and use the approximation p(q,,q,)=
pe #@1~2) for the pair correlation function, [23],
then

3 (o) = Vo P1(8) + VO(P)  [25]
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where

16)=5 [ - 1d'q
and the equation of state [24] becomes

I
pv+ —,(Bf) +O0@w?) =p"
For the purpose of illustration, the calculation of T
can be performed approximately at “high tempera-
ture” (3 small) in the case

B FoN12 /70N 6
s0“)—45((7) —(7))
(the classical Lennard-Jones potential), &,79 > 0.
The result is

I~ —(b— fa)

32 41 10\ 3
b = 4vy, a==3-evo, Vo —?(—)

Hence,

a b 1 1
w5+ Om)
a b\ 1 1 1 1
(p+zﬂ)uz(1+u)ﬁ:1—b/vﬁ+o<ﬁvl>
or
a _
(p+5)w-bp=1+0w2)  [26]

which gives the equation of state for 3¢ < 1. Equation
[26] can be compared with the well-known empirical
van der Waals equation of state:

B(p+5)w=b)=1
or
(p + An*/V})(V —uB) = nRT [27]

where, if Nj is Avogadro’s number, A=aN3,
B=bNx,R=kpNy,n=N/Nj. It shows the possi-
bility of accessing the microscopic parameters ¢ and
ro of the potential ¢ via measurements detecting
deviations from the Boyle—Mariotte law, Bpv=1,
of the rarefied gases: £=3a/8b=3A/8BNjy
ro=(3b/2m)'/® = (3B/27N,)'/3.

As a final comment, it is worth stressing that the
virial theorem gives in principle the exact correc-
tions to the equation of state, in a rather direct and
simple form, as time averages of the virial of the
internal forces. Since the virial of the internal forces
is easy to calculate from the positions of the
particles as a function of time, the theorem provides
a method for computing the equation of state in

numerical simulations. In fact, this idea has been
exploited in many numerical experiments, in which
[24] plays a key role.

For more details, the reader is referred to Gallavotti
(1999).

van der Waals Theory

Equation [27] is empirically used beyond its validity
region (small density and small 3) by regarding A, B as
phenomenological parameters to be experimentally
determined by measuring them near generic values of
p, V, T. The measured values of A, B do not “usually
vary too much” as functions of v, T and, apart from
this small variability, the predictions of [27] have
reasonably agreed with experience until, as experi-
mental precision increased over the years, serious
inadequacies eventually emerged.

Certain consequences of [27] are appealing: for
example, Figure 1 shows that it does not give a p
monotonic nonincreasing in v if the temperature is
small enough. A critical temperature can be defined
as the largest value, T, of the temperature below
which the graph of p as a function of v is not
monotonic decreasing; the critical volume V. is the
value of v at the horizontal inflection point
occurring for T = T..

For T < T, the van der Waals interpretation of the
equation of state is that the function p(v) may
describe metastable states while the actual equilibrium
states would follow an equation with a monotonic
dependence on v and p(v) becoming horizontal in the
coexistence region of specific volumes. The precise
value of p where to draw the plateau (see Figure 1)
would then be fixed by experiment or theoretically
predicted via the simple rule that the plateau
associated with the represented isotherm is drawn at
a height such that the area of the two cycles in the
resulting loop are equal.

This is Maxwell’s rule: obtained by assuming
that the isotherm curve joining the extreme points of
the plateau and the plateau itself define a cycle

v

Y Vg

v

Figure 1 The van der Waals equation of state at a temperature
T < T, where the pressure is not monotonic. The horizontal line
illustrates the “Maxwell rule.”
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(see Figure 1) representing a sequence of possible
macroscopic equilibrium states (the ones correspond-
ing to the plateau) or states with extremely long time
of stability (“metastable”) represented by the curved
part. This would be an isothermal Carnot cycle which,
therefore, could not produce work: since the work
produced in the cycle (i.e., §pdv) is the signed area
enclosed by the cycle the rule just means that the area is
zero. The argument is doubtful at least because it is not
clear that the intermediate states with p increasing
with v could be realized experimentally or could even
be theoretically possible.

A striking prediction of [27], taken literally, is
that the gas undergoes a gas-liquid phase transition
with a critical point at a temperature T, volume v,
and pressure p. that can be computed via [27] and
are given by RT.=8A/27B,V.=3B (n=1).

At the same time, the above prediction is interesting
as it shows that there are simple relations between the
critical parameters and the microscopic inter-
action constants, i.e., £ ~ kgT. and 7y ~ (V. /Ny ))/>:
or more precisely e =81kpT./64, r9= (VC/Z’/TNA)l/3
if a classical Lennard-Jones potential (i.e., p=4¢
((ro/|q|)12—(r0/|q|)6); see the last section) is used
for the interaction potential (.

However, [27] cannot be accepted acritically not
only because of the approximations (essentially the
neglecting of O(v!) in the equation of state), but
mainly because, as remarked above, for T < T, the
function p is no longer monotonic in v as it must be;
see comment following [19].

The van der Waals equation, refined and comple-
mented by Maxwell’s rule, predicts the following
behavior:

(p—p)x(v—0.)°, 6§=3, T=T.
(vg—v) o< (Te—T)°, B=1/2, for T-T- [28]

which are in sharp contrast with the experimental
data gathered in the twentieth century. For the
simplest substances, one finds instead 6 = 5, 3= 1/3.

Finally, blind faith in the equation of state [27] is
untenable, last but not least, also because nothing in
the analysis would change if the space dimension was
d=2 ord=1:butford=1,itis easily proved that the
system, if the interaction decays rapidly at infinity,
does not undergo phase transitions (see next section).

In fact, it is now understood that van der Waals’
equation represents rigorously only a limiting situa-
tion, in which particles have a hard-core interaction
(or a strongly repulsive one at close distance) and a
further smooth interaction ¢ with very long range.
More precisely, suppose that the part of the potential
outside a hard-core radius 7y >0 is attractive
(i.e., non-negative) and has the form 4% (y|g|) < 0

and call Py(v) the (3-independent) product of 3 times
the pressure of the hard-core system without any
attractive tail (Po(v) is not explicitly known except
if d=1, in which case it is Py(v)(v — b)=1,b=ry),
and let

1
=3[ leralda
lql>r0

If p(B,v;7) is the pressure when « > 0 then it can be
proved that

Bp(5.v) < lim Gp(5,v:7)

= [— % + Po(v)] [29]

Maxwell’s rule

where the subscript means that the graph of p(3,v)
as a function of v is obtained from the function in
square bracket by applying to it Maxwell’s rule,
described above in the case of the van der Waals
equation. Equation [29] reduces exactly to the
van der Waals equation for d=1, and for d > 1
it leads to an equation with identical critical
behavior (even though Py(v) cannot be explicitly
computed).

The reader is referred to Lebowitz and Penrose
(1979) and Gallavotti (1999) for more details.

Absence of Phase Transitions: d =1

One of the most quoted no-go theorems in statistical
mechanics is that one-dimensional systems of parti-
cles interacting via short-range forces do not exhibit
phase transitions (cf. the next section) unless the
somewhat unphysical situation of having zero
absolute temperature is considered. This is particu-
larly easy to check in the case of “nearest-neighbor
hard-core interactions.” Let the hard-core size be r,
so that the interaction potential o(7) = +o0 if 7 < 7,
and suppose also that ¢(r) =0 if f > 2ry. In this
case, the thermodynamic functions can be exactly
computed and checked to be analytic: hence the
equation of state cannot have any phase transition
plateau. This is a special case of van Hove’s theorem
establishing smoothness of the equation of state for
interactions extending beyond the nearest neighbor
and rapidly decreasing at infinity.

If the definition of phase transition based on the
sensitivity of the thermodynamic limit to variations
of boundary conditions is adopted then a more
general, conceptually simple, argument can be given
to show that in one-dimensional systems there
cannot be any phase transition if the potential
energy of mutual interaction between a
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configuration Q of particles to the left of a reference
particle (located at the origin O, say) and a
configuration Q' to the right of the particle (with
QUOUQ' compatible with the hard cores) is
uniformly bounded below. Then a mathematical
proof can be devised showing that the influence of
boundary conditions disappears as the boundaries
recede to infinity. One also says that no long-range
order can be established in a one-dimensional case,
in the sense that one loses any trace of the boundary
conditions imposed.

The analysis fails if the space dimension is >2: in
this case, even if the interaction is short-ranged, the
energy of interaction between two regions of space
separated by a boundary is of the order of the
boundary area. Hence, one cannot bound above and
below the probability of any two configurations in
two half-spaces by the product of the probabilities
of the two configurations, each computed as if the
other was not there. This is because such a bound
would be proportional to the exponential of the
surface of separation, which tends to co when the
surface grows large. This means that we cannot
consider, at least not in general, the configurations
in the two half-spaces as independently distributed.

Analytically, a condition on the potential suffi-
cient to imply that the energy between a configura-
tion to the left and one to the right of the origin is
bounded below, if d =1, is simply expressed by

o0
/ Ho(P)ldr < 400 for 7' > 1o
r/

Therefore, in order to have phase transitions in
d=1, a potential is needed that is “so long range”
that it has a divergent first moment. It can be
shown by counterexamples that if the latter condi-
tion fails there can be phase transitions even in
d=1 systems.

The results just quoted also apply to discrete
models like lattice gases or lattice spin models that
will be considered later in the article.

For more details, we refer the reader to Landau
and Lifschitz (1967), Dyson (1969), Gallavotti
(1999), and Gallavotti et al. (2004).

Continuous Symmetries: “No d=2
Crystal” Theorem

A second case in which it is possible to rule out
existence of phase transitions or at least of certain
kinds of transitions arises when the system under
analysis enjoys large symmetry. By symmetry is
meant a group of transformations acting on the
configurations and transforming each of them into a

configuration which, at least for one boundary
condition (e.g., periodic or open), has the same
energy.

A symmetry is said to be “continuous” if the
group of transformations is a continuous group. For
instance, continuous systems have translational
symmetry if considered in a container  with
periodic boundary conditions. Systems with “too
much symmetry” sometimes cannot show phase
transitions. For instance, the continuous translation
symmetry of a gas in a container Q with periodic
boundary conditions is sufficient to exclude the
possibility of crystallization in dimension d =2.

To discuss this, which is a prototype of a proof
which can be used to infer absence of many
transitions in systems with continuous symmetries,
consider the translational symmetry and a potential
satisfying, besides the usual [14] and with the
symbols used in [14], the further property that
|q|2|8§<p(q)| < Blg|"'*, with £y > 0, for some B
holds for 7y < |q| < R. This is a very mild extra
requirement (and it allows for a hard-core
interaction).

Consider an “ideal crystal” on a square lattice
(for simplicity) of spacing a, exactly fitting in its
container  of side L assumed with periodic
boundary conditions: so that N=(L/a)? is the
number of particles and a~¢ is the density, which is
supposed to be smaller than the close packing
density if the interaction ¢ has a hard core. The
probability distribution of the particles is rather
trivial:

7= 3 [T oy~ am) 2
p on )

the sum running over the permutations m — p(m) of
the sites m € Q,m € 74,0 < m; < La™'. The density
at q is

N
pla) =Y b8lqg—an)= <Z 6(q - q,-)>
n j=1

and its Fourier transform is proportional to

d_efl —ik-q; _2_7T d
p(k)—N<Ze >, k—Ln,nGZ

p(k) has value 1 for all k of the form K= (2r/a)n
and (1/N)O(max6:1,2|eik‘“— 1\72) otherwise. In
presence of interaction, it has to be expected that,
in a crystal state, p(k) has peaks near the values K:
but the value of p(k) can depend on the boundary
conditions.

Since the system is translation invariant a crystal
state defined as a state with a distribution “close” to 7,
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i.e., with p(q) with peaks at the ideal lattice points
g =mna, cannot be realized under periodic boundary
conditions, even when the system state is crystalline.
To realize such a state, a symmetry-breaking term is
needed in the interaction.

This can be done in several ways, for example, by
changing the boundary condition. Such a choice
implies a discussion of how much the boundary
conditions influence the positions of the peaks of
p(k): for instance, it is not obvious that a boundary
condition will not generate a state with a period
different from the one that a priori has been selected
for disproval (a possibility which would imply a
reciprocal lattice of K’s different from the one
considered to begin with). Therefore, here the choice
will be to imagine that an external weak force with
potential eW(q) acts forcing a symmetry breaking
that favors the occupation of regions around the
points of the ideal lattice (which would mark the
average positions of the particles in the crystal state
that is being sought). The proof (Mermin’s theorem)
that no equilibrium state with particles distribution
“close” to 7, i.e., with peaks in place of the delta
functions (see below), is essentially reproduced
below.

Take W(q) = >_,.cq x(g — na), where x(q) <0 is
smooth and zero everywhere except in a small
vicinity of the lattice points around which it
decreases to some negative minimum keeping a
rotation symmetry around them. The potential W is
invariant under translations by the lattice steps. By
the choice of the boundary condition and W, the
density p.(q) will be periodic with period a so that
p-(k) will, possibly, not have a vanishing limit as
N — oo only if k is a reciprocal vector K= (27/a)n.
If the potential is ¢ + eW and if there exists a crystal
state in which particles have higher probability of
being near the lattice points na, it should be
expected that for small £ >0 the system will be
found in a state with Fourier transform of the
density, p-(k), satisfying, for some vector K # 0 in
the reciprocal lattice,

lim lim |p-(K)[ =7 >0 [30]
that is, the requirement is that uniformly in ¢ —0
the Fourier transform of the density has a peak at
some K # 0. Note that if k is not in the reciprocal
lattice p.(k) —— 0, being bounded above by

1 ikja -2
NO(/_?E(e 1 —1|

because (1/N)p. is periodic and its integral over q is
equal to 1. Hence, excluding the existence of a

crystal will be identified with the impossibility of the
[30]. Other criteria can be imagined, for example,
considering crystals with a lattice different from
simple cubic, which lead to the same result by
following the same technique. Nevertheless, it is not
mathematically excluded (but unlikely) that, with
some weaker existence definition, a crystal state
could be possible even in two dimensions.

The following inequalities hold under the present
assumptions on the potential and in the canonical
distribution with periodic boundary conditions
and parameters (3,p), p=a~> in a box Q with side
multiple of a (so that N= (La~1)9) and potential of
interaction ¢ + e W. The further assumption that the
lattice na is not a close-packed lattice is (of course)
necessary when the interaction potential has a hard
core. Then, for suitable By, B, B1, B, > 0, indepen-
dent of N, and ¢ and for |x| < w/a and for all Q

(if K #0)
l < XN: efi(lc+K)<q,
N\| 4

R

where the averages are in the canonical distribu-
tion (4, p) with periodic boundary conditions and a
symmetry-breaking potential eW(q);v(k) > 0 is an
(arbitrary) smooth function vanishing for 2|x| > §
with § < 2m/a and By depends on . See Appendix
3 for a derivation of [31].

Multiplying both sides of the first equation in [31]
by N7'4(x) and summing over k, the crystallinity
condition in the form [30] implies

dx
Br > B 2 d/ ’7(’()
0=>bra x|<6 KZBl +eB;

2 > B (p(K) + p-(K + ZK))Z
- Bix% +¢B;

N

Z efi(K+K)-q/-

2
> <Byp<oo [31]
=1

For d=1,2 the integral diverges, as e /2 or loge™,
respectively, implying |p-(K)| —>7=0: the criterion
of crystallinity, [30] cannot be satisfied if d=1,2.
The above inequality is an example of a general
class of inequalities called infrared inequalities stem-
ming from another inequality called Bogoliubov’s
inequality (see Appendix 3), which lead to the proof
that certain kinds of ordered phases cannot exist if
the dimension of the ambient space is d =2 when a
finite volume, under suitable boundary conditions
(e.g., periodic), shows a continuous symmetry. The
excluded phenomenon is, more precisely, the non-
existence of equilibrium states exhibiting, in the
thermodynamic limit, a symmetry lower than
the continuous symmetry holding in a finite volume.
In general, existence of thermodynamic equili-
brium states with symmetry lower than the
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symmetry enjoyed by the system in finite volume
and under suitable boundary conditions is called a
“spontaneous symmetry breaking.” It is yet another
manifestation of instability with respect to changes
in boundary conditions, hence its occurrence reveals
a phase transition. There is a large class of systems
for which an infrared inequality implies absence of
spontaneous symmetry breaking: in most of the one-
or two-dimensional systems a continuous symmetry
cannot be spontaneously broken.

The limitation to dimension d <2 is a strong
limitation to the generality of the applicability of
infrared theorems to exclude phase transitions.
More precisely, systems can be divided into classes
each of which has a “critical dimension” below
which too much symmetry implies absence of
phase transitions (or of certain kinds of phase
transitions).

It should be stressed that, at the critical dimen-
sion, the symmetry breaking is usually so weakly
forbidden that one might need astronomically large
containers to destroy small effects (due to boundary
conditions or to very small fields) which break the
symmetry. For example, in the crystallization just
discussed, the Fourier transform peaks are only
bounded by O(1/4/loge1). Hence, from a practical
point of view, it might still be possible to have some
kind of order even in large containers.

The reader is referred to Mermin (1968), Hohen-
berg (1969), and Ruelle (1969).

High Temperature and Small Density

There is another class of systems in which no phase
transitions take place. These are the systems with
stable and tempered interactions ¢ (e.g., those
satisfying [14]) in the high-temperature and low-
density region. The property is obtained by showing
that the equation of state is analytic in the variables
(B, p) near the origin (0, 0).

A simple algorithm (Mayer’s series) yields the
coefficients of the virial series

Bp(B,p) = p+ Y _ c(B)p*
k=2

It has the drawback that the kth order coefficient c,(3)
is expressed as a sum of many terms (a number
growing more than exponentially fast in the order k)
and it is not so easy (but possible) to show
combinatorially that their sum is bounded exponen-
tially in & if G is small enough. A more efficient
approach leads quickly to the desired solution.

. def ;
Denoting  ®(qy,---,4,) = >, ¢(q; — q;), consider
the (“spatial or configurational”) correlation functions

defined, in the grand canonical distribution with
parameters (3, A (and empty boundary conditions), by

def 1 o b
pQ(q1’~.,’qn) - ch(ﬂ,)h V)mz:;)z
X/e—ﬂ¢)<41«,m,q,,,ylmym>M 32]
o) m'

This is the probability density for finding particles
with any momentum in the volume element dq ---dg,
(irrespective of where other particles are), and
z=eM(\/2rmBTh2)? accounts for the integration
over the momenta variables and is called the activity:
it has the dimension of a density (cf. [23]).

Assuming that the potential has a hard core (for
simplicity) of radius R, the interaction energy
®,.(q,,---,4q,) of a particle at g; with any number
of other particles at q,,...,q,, with |[q, —¢q;| > R is
bounded below by —B for some B > 0 (related but
not equal to the B in [14]). The functions pg will be
regarded as a sequence of functions “of one, two, ...
particle positions™: po={pa(qy,---,4,)},- vanish-
ing for q; ¢ . Then, one checks that

pa(qis---q,) = 20u1x0(qr) + Kpalqy,---,q,) [333]

with

def _ g
KpQ(qla cee 5qn) =€ dq)ql (@2 q")(pﬂ(qZV"vqn) 6n>l

>~ [dy,-dy. v, 5
+2/un(e*d‘ﬂ(‘h*3’k)_l)
P L L e |

XpQ(q27'--7qnay17"'7ys)) [33b]

where 6,1, 6,1 are Kronecker deltas and xq(q) is the
indicator function of Q. Equation [33] is called the
Kirkwood-Salzburg equation for the family of corre-
lation functions in Q. The kernel K of the equations is
independent of Q, but the domain of integration is (2.

Calling «n the sequence of functions

aol(qys---5q,) =0 if n#1 and aglq) =zxalq), a
recursive expansion arises, namely

po = zag + PKag + 2K a0 + 2 Kag + - - - [34]

It gives the correlation functions, provided the series
converges. The inequality

p
KPao(qy,....qn)| < e@BTP (/ e ¥la) — 1|dq>
2 () 135]

shows that the series [34], called Mayer’s series,
converges if |z] <e @B+Ur(3)7. Convergence is
uniform (as Q — o) and (KP)ag(qy,-..,q,) tends to
a limit as V — oo at fixed ¢y,...,q, and the limit is

simply (KPa)(qy,.--,4,), if a(qy,...,q,) =0 for n#1,
and «(q,)=1. This is because the kernel K contains
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the factors (e ?#@1=Y) — 1) which decay rapidly or, if
¢ has finite range, will eventually even vanish. It
is also clear that (KPa)(q1,...,9.) is translation
invariant.

Hence, if |z]e2?B1#(6)? <1, the limits, as Q — oo,
of the correlation functions exist and can be
computed by a convergent power series in z; the
correlation functions will be translation invariant (in
the thermodynamic limit).

In particular, the one-point correlation function
p=plq)is p=2z(1 + O(zr(B)*)), which, to lowest order
in z, just shows that activity and density essentially
coincide when they are small enough. Furthermore,
Bpa=(1/V)log Z8(8, \, V) is such that

1
0. 9pa=7; [ (@) dg

(from the definition of pq in [32]). Therefore,

Bp(3,z)

1
. ac
lim —log Z5 (8, \, V)

| ois.2) 36

and, since the density p is analytic in z as well and
p~z for z small, the grand canonical pressure is
analytic in the density and 8p = p(1 + O(p?)), at small
density. In other words, the equation of state is, to
lowest order, essentially the equation of a perfect gas.
All quantities that are conceivably of some interest
turn out to be analytic functions of temperature and
density. The system is essentially a free gas and it has
no phase transitions in the sense of a discontinuity or
of a singularity in the dependence of a thermodynamic
function in terms of others. Furthermore, the system
cannot show phase transitions in the sense of sensitive
dependence on boundary conditions of fixed external
particles. This also follows, with some extra work,
from the Kirkwood-Salzburg equations.

The reader is referred to Ruelle (1969) and
Gallavotti (1969) for more details.

Lattice Models

The problem of proving the existence of phase
transitions in models of homogeneous gases with
pair interactions is still open. Therefore, it makes
sense to study the problem of phase transitions
in simpler models, tractable to some extent but
nontrivial, and which are of practical interest in
their own right.

The simplest models are the so-called lattice
models in which particles are constrained to points
of a lattice: they cannot move in the ordinary sense
of the word (but, of course, they could jump) and

therefore their configurations do not contain
momentum variables.

The interaction energy is just the potential
energy, and ensembles are defined as collections of
probability distributions on the position coordinates
of the particle configurations. Usually, the potential
is a pair potential decaying fast at oo and, often,
with a hard-core forbidding double or higher
occupancy of the same lattice site. For instance,
the lattice gas with potential ¢, in a cubic box
with || = V = L% sites of a square lattice with mesh
a>0, is defined by the potential energy attributed
to the configuration X of occupied distinct sites,

i.e., subsets X C Q:

HX)=—- > ox—y) 37]

(xy)eX

where the sum is over pairs of distinct points in X.
The canonical ensemble and the grand canonical
ensemble are the collections of distributions, para-
metrized by (8,p),(p=N/V), or, respectively, by
(B, A\), attributing to X the probability

e~ BH(X)
Ps.p(X)= m%w 384
or
5o () ePAX| g—BH(X) 38b]

T ZE(B Q)

where the denominators are normalization factors
that can, respectively, be called, in analogy with the
theory of continuous systems, canonical and grand
canonical partition functions; the subscript p stands
for particles.

A lattice gas in which in each site there can be at
most one particle can be regarded as a model for the
distribution of a family of spins on a lattice. Such
models are quite common and useful (e.g., they arise
in studying systems with magnetic properties).
Simply identify an “occupied” site with a “spin
up” or + and an “empty” site with a “spin down”
or — (say). If 0 ={0y},cq is a spin configuration, the
energy of the configuration “for potential ¢ and
magnetic field »” will be

Ho)=— > olx=yoxoy—h> o [39]

(x,y)€2

with the sum running over pairs (x,y) € Q of distinct
sites. If p(x —y) = ]y > 0, the model is called a
ferromagnetic Ising model. As in the case of
continuous systems, it will be assumed to have a
finite range for (: that is, ¢(x) =0 for |x| > R, for
some R, unless explicitly stated otherwise.
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The canonical and grand canonical ensembles in the
box 2 with respective parameters (3, 72) or (3, h) will
be defined as the probability distributions on the spin
configurations & = {oy},cq with > _or=M=mV
or without constraint on M, respectively; hence,

exp (*ﬂ Dy P — y)axay)

Psm (0') =

Z(B. M, Q)
Ps5(0) [40]
_ CXp(—ﬁ/’) Z Ox — ﬁZ(x,y) Lp(x - y)UXJY)
; ZE(B,h, Q)

where the denominators are normalization factors
again called, respectively, the canonical and grand
canonical partition functions. As in the study of the
previous continuous systems, canonical and grand
canonical ensembles with “external fixed particle
configurations” can be defined together with the
corresponding ensembles with “external fixed spin
configurations”; the subscript s stands for spins.

For each configuration X C  of a lattice gas, let
{ny} be n, =1 if x € X and n, =0 if x € X. Then the
transformation o, =2n, — 1 establishes a correspon-
dence between lattice gas and spin distributions. In
the correspondence, the potential p(x —y) of the
lattice gas generates a potential (1/4)p(x — y) for the
corresponding spin system and the chemical potential
A for the lattice gas is associated with a magnetic field
h for the spin system with b= (1/2)(A +>_ _ »(x)).

The correspondence between boundary conditions
is natural: for instance, a boundary condition for the
lattice gas in which all external sites are occupied
becomes a boundary condition in which external
sites contain a spin +. The close relation between
lattice gas and spin systems permits switching from
one to the other with little discussion.

In the case of spin systems, empty boundary
conditions are often considered (no spins outside §2).
In lattice gases and spin systems (as well as in
continuum systems), often periodic and semiperiodic
boundary conditions are considered (i.e., periodic in
one or more directions and with empty or fixed
external particles or spins in the others).

Thermodynamic limits for the partition functions

—6f(B.v) = lim %logzm N, )

V/N=v
Bp(B.\) = lim —log ZE (5, 1,9)
QW‘{ [41]

M/V—m

1 .

can be shown to exist by a method similar to the
one discussed in Appendix 2. They have convexity
and continuity properties as in the cases of the
continuum systems. In the case of a lattice gas, the
f, p functions are still interpreted as free energy
and pressure, respectively. In the case of spin, f(3, /)
has the interpretation of magnetic free energy,
while g(3,m) does not have a special name in the
thermodynamics of magnetic systems. As in the
continuum systems, it is occasionally useful to define
infinite-volume equilibrium states:

Definition An infinite-volume state with para-
meters (3,h) or (B,m) is a collection of average
values F — (F) obtained, respectively, as limits of
finite-volume averages (F),, defined from canonical
or grand canonical distributions in €, with fixed
parameters (3, b) or (3,m), or (u,v) and with general
boundary condition of fixed external spins or empty
sites, on sequences (), — oo for which such limits
exist simultaneously for all local observables F.

This is taken verbatim from the definition in the
section “Phase transitions and boundary condi-
tions.” In this way, it makes sense to define the
spin correlation functions for X=(&,,...,&,) as
(ox) if ox = []jog. For instance, we shall call
p(fl,fz)déf@flcfgz} and a pure phase can be defined
as an infinite-volume state such that

(oxoy.g) — <UX><UY+§>§:;OO [42]

Again, for more details, we refer the reader to Ruelle
(1969) and Gallavotti (1969).

Thermodynamic Limits and Inequalities

An interesting property of lattice systems is that it is
possible to study delicate questions like the existence
of infinite-volume states in some (moderate) generality.
A typical tool is the use of inequalities. As the simplest
example of a vast class of inequalities, consider the
ferromagnetic Ising model with some finite (but
arbitrary) range interaction J,, > 0 in a field b, > 0:
J, b may even be not translationally invariant. Then
the average of oy def O Oxy " Oy X = (X150 Xn)s
in a state with “empty boundary conditions” (i.e., no
external spins) satisfies the inequalities

(ox), O, (0x), Olxy(ox) >0 X=(x1,..., x,)

More generally, let H(o) in [39] be replaced by
H(o)= —> "y Jxox with Jx >0 and X can be any
finite set; then, if Y=(y1,...,¥:), X=(x1,...,%4),
the following Griffiths inequalities hold:

(ox) >0, 9 {ox) = (oxay) — (ox){oy) 20 [43]



70 Introductory Article: Equilibrium Statistical Mechanics

The inequalities can be used to check, in ferromag-
netic Ising models, [39], existence of infinite-volume
states (cf. the sections “Phase transitions and boundary
conditions” and “Lattice models”) obtained by fixing
the boundary condition B to be either “all external
spins +” or “all external sites empty.” If (F)y g
denotes the grand canonical average with boundary
condition B and any fixed §,h > 0, this means that
for all local observables F(o,) (i.e., for all F depending
on the spin configuration in any fixed region A) all the
following limits exist:

AEEO<F>B,Q = <F>B [44]
The reason is that the inequalities [43] imply that all
averages (ox)p o are monotonic in Q for all fixed
X C Q: so the limit [44] exists for F(o) = ox. Hence,
it exists for all F’s depending only on finitely many
spins, because any local function F “measurable in A”
can be expressed (uniquely) as a linear combination
of functions ox with X C A.

Monotonicity with empty boundary conditions is
seen by considering the sites outside  and in a
region ¥ with side one unit larger than that of Q
and imagining that the couplings Jx with X C € but
X ¢ Q vanish. Then, (ox)y > (0x)q, because (ox)¢
is an average computed with a distribution corre-
sponding to an energy with the couplings Jx with
X ¢ Q, but X C ', changed from 0 to Jx > 0.

Likewise, if the boundary condition is +, then
enlarging the box from Q to Q' corresponds to
decreasing an external field » acting on the external
spins from +oco (which would force all external spins to
be +) to a finite value b > 0: so, increasing the box
causes (0x), q to decrease. Therefore, as €2 increases,
Ising ferromagnets spin correlations increase if the
boundary condition is empty and decrease if it is +.

The inequalities can be used in similar ways to prove
that the infinite-volume states obtained from + or
empty boundary conditions are translation invariant;
and that in zero external field, » =0, the + and —
boundary conditions generate pure states if the interac-
tion potential is only a pair ferromagnetic interaction.

There are many other important inequalities
which can be used to prove several existence
theorems along very simple paths. Unfortunately,
their use is mostly restricted to lattice systems and
requires very special assumptions on the energy
(e.g., ferromagnetic interactions in the above exam-
ple). The quoted examples were among the first
discovered and provide a way to exhibit nontrivial
thermodynamic limits and pure states.

For more details, see Ruelle (1969), Lebowitz
(1974), Gallavotti (1999), Lieb and Thirring (2001),
and Lieb (2002).

Symmetry-Breaking Phase Transitions

The simplest phase transitions (see the section
“Phase transitions and boundary conditions”) are
symmetry-breaking transitions in lattice systems:
they take place when the energy of the system in a
container  and with some special boundary
condition (e.g., periodic, antiperiodic, or empty) is
invariant with respect to the action of a group G on
phase space. This means that on the points x of
phase space acts a group of transformations G so
that with each v € G is associated a map x — xvy
which transforms x into x7 respecting the composi-
tion law in G, that is, (xy)y' = x(yy’). If F is an
observable, the action of the group on phase space
induces an action on the observable F changing F(x)
into F,(x) def F(xy™).

A symmetry-breaking transition occurs when, by
fixing suitable boundary conditions and taking the
thermodynamic limit, a state F — (F) is obtained in
which some local observable shows a nonsymmetric
average (F) # (F,) for some 7.

An example is provided by the “nearest-neighbor
ferromagnetic Ising model” on a d-dimensional lattice
with energy function given by [39] with h=0 and
©(x —y) =0 unless |x —y|=1, ie., unless x,y are
nearest neighbors, in which case ¢(x —y)=] > 0.
With periodic or empty boundary conditions, it
exhibits a discrete “up—down” symmetry ¢ ——0.

Instability with respect to boundary conditions
can be revealed by considering the two boundary
conditions, denoted + or —, in which the lattice
sites outside the container € are either occupied by
spins + or by spins —. Consider also, for later
reference, (1) the boundary conditions in which
the boundary spins in the upper half of the
boundary are + and the ones in the lower
part are —: call this the +-boundary condition
(see Figure 2); or (2) the boundary conditions in

P T S S S S S
+l- - -+ + + +|- —+|- -+
+|-1+ +|- - -|+ + +|- - -]+

Figure 2 The dashed line is the boundary of 2; the outer spins
correspond to the + boundary condition. The points A, B are
points where an open “line” A\ ends.
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which some of the opposite sides of Q are
identified while + or — conditions are assigned on
the remaining sides: call these “cylindrical or
semiperiodic boundary conditions.”

A new description of the spin configurations is
useful: given &, draw a unit segment perpendicular
to the center of each bond b having opposite spins at
its extremes. An example of this construction is
provided by Figure 2 for the boundary condition =+.

The set of segments can be grouped into lines
separating regions where the spins are positive from
regions where they are negative. If the boundary
condition is + or —, the lines form “closed polygons”,
whereas, if the condition is &, there is also a single
polygon \; which is not closed (as in Figure 2). If the
boundary condition is periodic or cylindrical, all
polygons are closed but some may “go around” .
The polygons are also called “contours” and the length
of a polygon ~ will be denoted |7].

The correspondence (v1,72, - - 5%, A1) < 0, for
the boundary condition £ or, for the boundary
condition + (or =), &< (Y1,...,7,) is one-to-one
and, if =0, the energy H(0) of a configuration is
higher than —Jx(number of bonds in Q) by an
amount 2J(|\1|+ >, |vil) or, respectively, 2] >, il
The grand canonical probability of each spin
configuration is therefore proportional, if »h=0,
respectively, to

MY D op o281, il [45]

and the “up-down” symmetry is clearly reflected
by [45].

The average (ox)q, of oy with + boundary
conditions is given by (ox)q . =1 —2Pg (—), where
Pq_(—) is the probability that the spin oy is—1. If the
site x is occupied by a negative spin then the point x is
inside some contour v associated with the spin
configuration ¢ under consideration. Hence, if p(v)
is the probability that a given contour belongs to
the set of contours describing a configuration o, it
is Poy(—) <> . p(y) where yox means that v
“surrounds” x.

If T'=(y1,...,7) is a spin configuration and if
the symbol T'compy means that the contour 7 is
“disjoint” from ~1,...,7, (i.e., {yUT} is a new spin
configuration), then

ZF; 6728] Zdr’ér 'l
— gl

p(7) ; ,
o o2 1l

2013, 1l
=201 2 reompy © -
S e 2D el
< e 20/ [46]

because the last ratio in [46] does not exceed 1.
Note that there are >3 different shapes of v with
perimeter p and at most p> congruent s containing
x; therefore, the probability that the spin at x is —
when the boundary condition is + satisfies the
inequality

e r

P52’+(7) < Zp23pe72d]pﬁ_>_o>oo

p=4

This probability can be made arbitrarily small so
that (oy)q , is estimated by a quantity which is as
close to 1 as desired provided 3 is large enough and
the closeness of (oy)g, to 1 is estimated by a
quantity which is both x and 2 independent.

A similar argument for the (—)-boundary condition,
or the remark that for h=0 it is (0x)q = —(0x)q 1>
leads to conclude that, at large 3, (ox)q_ # (0x)g
and the difference between the two quantities
is positive uniformly in €. This is the proof
(Peierls’ theorem) of the fact that there is, if 3 is
large, a strong instability, of the magnetization with
respect to the boundary conditions, i.e., the nearest-
neighbor Ising model in dimension 2 (or greater, by an
identical argument) has a phase transition. If the
dimension is 1, the argument clearly fails and no phase
transition occurs (see the section “Absence of phase
transitions: d =1”).

For more details, see Gallavotti (1999).

Finite-Volume Effects

The description in the last section of the phase
transition in the nearest-neighbor Ising model can be
made more precise both from physical and mathe-
matical points of view giving insights into the nature
of the phase transitions. Assume that the boundary
condition is the (+)-boundary condition and
describe a spin configuration ¢ by means of the
associated closed disjoint polygons (7vi,...,Yx)-
Attribute to 0=(71,...,7:) a probability propor-
tional to [45]. Then the following Minlos—Sinai’s
theorem holds:

Theorem If (3 is large enough there exist C > 0,
p(7) >0 with p(v) < e and such that a spin
configuration o randomly chosen out of the grand
canonical distribution with + boundary conditions
and h =0 will contain, with probability approaching
1 as Q — oo, a number K(,)(0) of contours con-
gruent to v such that

Kiy(0) = p()[Q]] < CV[Q e [47]

and this relation holds simultaneously for all ~’s.
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Thus, there are very few contours (and the larger
they are the smaller is, in absolute and relative
value, their number): a typical spin configuration in
the grand canonical ensemble with (+)-boundary
conditions is such that the large majority of the spins
is “positive” and, in the “sea” of positive spins, there
are a few negative spins distributed in small and
rare regions (their number, however, is still of order
of |92).

Another consequence of the analysis in the last
section concerns the the approximate equation of
state near the phase transition region at low
temperatures and finite Q. If Q is finite, the graph
of b versus mgq(B,h) will have a rather different
behavior depending on the possible boundary con-
ditions. For example, if the boundary condition is
(+) or (—), one gets, respectively, the results
depicted in Figure 3a and 3b, where m*(3) denotes
the spontaneous magnetization (i.e., *(3) def
limy,_o+ limg . m0(53, b)).

With periodic or empty boundary conditions, the
diagram changes as in Figure 4. The thermody-
namic limit (3, h) = limq_.o, mq(3, b) exists for all
bh #0 and the resulting graph is in Figure 4b,
which shows that at »=0 the limit is discontin-
uous. It can be proved, if § is large enough, that
oo > limy, _, o+ Oym(B,h)=x(B) > 0 (i.e., the angle
between the vertical part of the graph and the rest
is sharp).

Furthermore, it can be proved that m(8,h) is
analytic in b for h#0. If 3 is small enough,

mg(6, h)

(@)

analyticity holds at all 5. For 3 large, the function
f(B,h) has an essential singularity at h=0: a result
that can be interpreted as excluding a naive theory
of metastability as a description of states governed
by an equation of state obtained from an analytic
continuation to negative values of b of (3, h).

The above considerations and results further
clarify the meaning of a phase transition for a
finite system. For more details, we refer the
reader to Gallavotti (1999) and Friedli and Pfister
(2004).

Beyond Low Temperatures
(Ferromagnetic Ising Model)

A limitation of the results discussed above is the
condition of low temperature (“3 large enough”).
A natural problem is to go beyond the low-
temperature region and to describe fully the phe-
nomena in the region where boundary condition
instability takes place and first develops. A number
of interesting partial results are known, which
considerably improve the picture emerging from
the previous analysis. A striking list, but far from
exhaustive, of such results follows and focuses on
the properties of ferromagnetic Ising spin systems.
The reason for restricting to such cases is that they
are simple enough to allow a rather fine analysis,
which sheds considerable light on the structure of
statistical mechanics suggesting precise formulation

mq(, h)

v

(b)

Figure 3 The h vs mq(3, h) graphs for 2 finite and (a) + and (b) — conditions.

(a)
Figure 4 (a) The hvs mq(/3, h) graph for periodic or empty boundary conditions. (b) The discontinuity (at h = 0) of the thermodynamic limit.

>V

(b)
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the unit circle) in the z-plane. Then, if J' # 0,
they lie in a closed set N!,Q-independent and
contained in a neighborhood of N of width

of the problems that it would be desirable to
understand in more general systems.

1. Let z & e# and consider that the product of zV

(V is the number of sites |Q] of Q) times the
partition function with periodic or perfect-wall
boundary conditions and with finite-range
ferromagnetic interaction, not necessarily nearest-
neighbor; a polynomial in z (of degree 2V)
is thus obtained. Its zeros lie on the unit
circle |z|=1: this is Lee-Yang’s theorem. It
implies that the only singularities of f(3,5) in
the region 0 < 3 < oo,—00 <h <400 can be
found at h=0.

A singularity can appear only if the point z=1
is an accumulation point of the limiting distribu-
tion (as {2 — oo) of the zeros on the unit circle: if
the zeros are z1,...,2,v then

%log 2V Z(B, b, Q, periodic)

12
= 28]+ Bh + VZlog(z —z)
p

and if
V1 (number of zeros of the form
. dps(0
zi:ellgf79§ 97, < 9+d9)_> pﬁ—()
Q—o0 2T

it is
1 " i0
500 =28 +5 [ logle~ ") dpal6) (48

The existence of the measure dpg(6) follows from
the existence of the thermodynamic limit: but
dps(0) is not necessarily df-continuous, i.e., not
necessarily proportional to d6.

. It can be shown that, with not necessarily a
nearest-neighbor interaction, the zeros of the
partition function do not move too much under
small perturbations of the potential even if one
perturbs the energy (at perfect-wall or periodic
boundary conditions) into

Hj,(0) = Ho(0) + (8Ho)(0)
(8Ho)(0) = 3 J'(X) ox [49]

Xc

where J'(X) is very general and defined on
subsets X =(x1,...,x;) C Q such that the quan-
tity ||J'l|=supyeze D ex|J(X)] is small enough.
More precisely, with a ferromagnetic pair
potential | fixed, suppose that one knows that,
when J'=0, the partition function zeros in the
variable z=e" lie in a certain closed set N (of

shrinking to 0 when ||J'|| — 0. This allows to
establish various relations between analyticity
properties and boundary condition instability
as described in (3) below.

. In the ferromagnetic Ising model, with not necessa-

rily a nearest-neighbor interaction, one says that
there is a gap around 0 if dpg(6) =0 near §=0. It
can be shown that if 3 is small enough there is a gap
for all b of width uniform in b.

. Another question is whether the boundary

condition instability is always revealed by the
one-spin correlation function (i.e., by the magne-
tization) or whether it might be shown only
by some correlation functions of higher order. It
can be proved that no boundary condition
instability occurs for b # 0; at h =0 it is possible
only if

Jim m(8,h) # lim m(3,h) [50]

. A consequence of the Griffiths’ inequalities

(cf. the section “Thermodynamic limits and
inequalities”) is that if [50] is true for a given
Bo then it is true for all 8 > Sy. Therefore, item
(4) leads to a natural definition of the critical
temperature T, as the least upper bound of the
T’s such that [50] holds (kgT =571).

. If d=2 the free energy of the nearest-neighbor

ferromagnetic Ising model has a singularity
at B. and the value of (. is known exactly
from the exact solutions of the model:
m(B,0%) % 1w (8) = (1 — sinh® 28])/8. The loca-
tion and nature of the singularities of f(3,0) as a
function of 8 remains an open question for d = 3.
In particular, the question whether there is a
singularity of f(3,0) at 8= (. is open.

. For 3 < 3. there is instability with respect to

boundary conditions (see (6) above) and a
natural question is: how many “pure” phases
can exist in the ferromagnetic Ising model?
(cf. the section “Phase transitions and boundary
conditions,” eqn [22]). Intuition suggests
that there should be only two phases: the
positively magnetized and the negatively
magnetized ones.

One has to distinguish between translation-
invariant pure phases and non-translation-invariant
ones. It can be proved that, in the case of the
two-dimensional nearest-neighbor ferromagnetic
Ising models, all infinite-volume states (cf. the
section “Lattice models”) are translationally invar-
iant. Furthermore, they can be obtained by
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considering just the two boundary conditions +
and —: the latter states are also pure states for
models with non-nearest-neighbor ferromagnetic
interaction. The solution of this problem has led to
the introduction of many new ideas and techniques
in statistical mechanics and probability theory.

8. In any dimension d >2, for 3 large enough, it can
be proved that the nearest-neighbor Ising model
has only two translation-invariant phases. If the
dimension is >3 and (3 is large, the + and —
phases exhaust the set of translation-invariant
pure phases but there exist non-translation-
invariant phases. For 3 close to ., however, the
question is much more difficult.

For more details, see Onsager (1944), Lee and
Yang (1952), Ruelle (1971), Sinai (1991), Gallavotti
(1999), Aizenman (1980), Higuchi (1981), and
Friedli and Pfister (2004).

Geometry of Phase Coexistence

Intuition about the phenomena connected with the
classical phase transitions is usually based on the
properties of the liquid-gas phase transition; this
transition is usually experimentally investigated in
situations in which the total number of particles is
fixed (canonical ensemble) and in presence of an
external field (gravity).

The importance of such experimental conditions
is obvious; the external field produces a nontransla-
tionally invariant situation and the corresponding
separation of the two phases. The fact that the
number of particles is fixed determines, on the other
hand, the fraction of volume occupied by each of the
two phases.

Once more, consider the nearest-neighbor ferro-
magnetic Ising model: the results available for it can
be used to obtain a clear picture of the solution to
problems that one would like to solve but which in
most other models are intractable with present-day
techniques.

It will be convenient to discuss phase coexistence in
the canonical ensemble distributions on configurations
of fixed total magnetization M =mV (see the section
“Lattice models”; [40]). Let /3 be large enough to be in
the two-phase region and, for a fixed a € (0, 1), let

m=am*(B) + (1 —a) (—m*(B))
— (1-20)m"(B) [51]

that is, m is in the vertical part of the diagram
m=m(f,h) at 3 fixed (see Figure 4).

Fixing m as in [51] does not yet determine the
separation of the phases in two different regions; for
this effect, it will be necessary to introduce some

external cause favoring the occupation of a part of
the volume by a single phase. Such an asymmetry
can be obtained in at least two ways: through a
weak uniform external field (in complete analogy with
the gravitational field in the liquid-vapor transition) or
through an asymmetric field acting only on boundary
spins. The latter should have the same qualitative
effect as the former, because in a phase transition
region a boundary perturbation produces volume
effects (see sections “Phase transitions and inequal-
ities” and “Symmetry-breaking phase transitions”).
From a mathematical point of view, it is simpler to
use a boundary asymmetry to produce phase separa-
tions and the simplest geometry is obtained by
considering +-cylindrical or ++-cylindrical boundary
conditions: this means ++ or + boundary conditions
periodic in one direction (e.g., in Figure 2 imagine the
right and left boundary identified after removing the
boundary spins on them).

Spins adjacent to the bases of  act as symmetry-
breaking external fields. The ++-cylindrical bound-
ary condition should favor the formation inside 2
of the positively magnetized phase; therefore, it
will be natural to consider, in the canonical
distribution, this boundary condition only when
the total magnetization is fixed to be the sponta-
neous magnetization m*((3).

On the other hand, the +-boundary condition
favors the separation of phases (positively magnetized
phase near the top of Q and negatively magnetized
phase near the bottom). Therefore, it will be natural
to consider the latter boundary condition in the
case of a canonical distribution with magnetization
m= (1 —2a)m*(B) with 0 < o < 1 ([51]). In the latter
case, the positive phase can be expected to adhere to
the top of Q and to extend, in some sense to be
discussed, up to a distance O(L) from it; and then to
change into the negatively magnetized pure phase.

To make the phenomenological description
precise, consider the spin configurations ¢ through
the associated sets of disjoint polygons (cf. the
section “Symmetry-breaking phase transitions”). Fix
the boundary conditions to be ++ or +-cylindrical
boundary conditions and note that polygons asso-
ciated with a spin configuration o are all closed and
of two types: the ones of the first type, denoted
Y15 - - -5V are polygons which do not encircle Q; the
second type of polygons, denoted by the symbols \,,
are the ones which wind up, at least once, around ().

So, a spin configuration o will be described by a set
of polygons; the statistical weight of a configuration
o= (713 <o s Alsoes Ap) 1S (Cf [45]):

efzﬁ] (Zz hil+2, ‘/\fl) [52]
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The reason why the contours A that go around
the cylinder 2 are denoted by X (rather than by ~) is
that they “look like” open contours (see the section
“Symmetry-breaking phase transitions”) if one forgets
that the opposite sides of Q have to be identified. In the
case of the +-boundary conditions then the number of
polygons of A-type must be odd (hence #0), while for
the +--boundary condition the number of A-type
polygons must be even (hence it could be 0).

For more details, the reader is referred to Sinai
(1991) and Gallavotti (1999).

Separation and Coexistence of Phases

In the context of the geometric description of
the spin configuration in the last section, consider
the canonical distributions with ++-cylindrical or the
+-cylindrical boundary conditions and zero field: they
will be denoted briefly as p5 1+, pg, +, respectively.
The following theorem (Minlos=Sinai’s theorem)
provided the foundations of the microscopic theory
of coexistence: it is formulated in dimension d=2
but, modulo obvious changes, it holds for d > 2.

Theorem For 0<a<1 fixed, let m=(1-2a)
m*(B); then for B large enough a spin configuration
O=(V1s-- sVus My -+ Napy1) randomly chosen with
the distribution 5, 1 enjoys the properties (i)—(iv) below
with a pg, -probability approaching 1 as @ — oo:

(i) o contains only one contour of \-type and
[[Al = (1 +e(B))L] < o(L) 53]

where e(8) >0 is a suitable (a-independent)
function of [ tending to zero exponentially fast
as (3 — oo.

(i) If Qf, Q2 denote respectively, the regions above
and below N, and Q| = V,|Q1,|Q7| are,
respectively, the volumes of Q, Qt, Q™ then

195 — a V| < K(8) V3/*
Q] — (1 - a)V]| < r(B) V/* [54]

where k(B) ;= exponentially fast; the expo-

nent 3/4, here and below, is not optimal.
(iii) If M} = erQ; ox and M = erQ; Oy, then
M — am®(8) V| < &(B) V¥
My — (1 —a)m"(B) VI <s(B)VY*  [59]
(iv) If K?/,(O') denotes the number of contours con-

gruent to a given ~ and lying in Q then,
simultaneously for all the shapes of :

K)(0) = p(1)a V| < CeNIVI2 €50 [56]

where p(y)<e 2N is the same quantity as
already mentioned in the text of the theorem of
“Finite-volume effects”. A similar result holds for
the contours below ) (cf. the comments on [47]).

The above theorem not only provides a detailed and
rather satisfactory description of the phase separation
phenomenon, but it also furnishes a precise micro-
scopic definition of the line of separation between the
two phases, which should be naturally identified with
the (random) line A.

A similar result holds in the canonical distribution
Ws, ++, m+(3 where (i) is replaced by: no A-type
polygon is present, while (ii), (iii) become super-
fluous, and (iv) is modified in the obvious way. In
other words, a typical configuration for the distribu-
tion the g 41 (3 has the same appearance as a
typical configuration of the corresponding grand
canonical ensemble with (+)-boundary condition
(whose properties are described by the theorem
given in the section “Beyond low temperatures
(ferromagnetic Ising model”).

For more details, see Sinai (1991) and Gallavotti

(1999).

Phase Separation Line and Surface
Tension

Continuing to refer to the nearest-neighbor Ising
ferromagnet, the theorem of the last section means
that, if 3 is large enough, then the microscopic line )\,
separating the two phases, is almost straight (since
() is small). The deviations of A from a straight line
are more conveniently studied in the grand canonical
distributions ;0. with boundary condition set to +1 in
the upper half of 0, vertical sites included, and
to —1 in the lower half: this is illustrated in Figure 2
(see the section “Symmetry-breaking phase transi-
tions”). The results can be converted into very
similar results for grand canonical distributions with
+-cylindrical boundary conditions of the last section.

Define X to be rigid if the probability that X passes
through the center of the box Q (i.e., 0) does not
tend to 0 as Q — oo; otherwise, it is not rigid.

The notion of rigidity distinguishes between the
possibilities for the line A\ to be “straight.” The
“excess” length (8)L (see [53]) can be obtained in
two ways: either the line )\ is essentially straight (in
the geometric sense) with a few “bumps” distributed
with a density of order £(8) or, otherwise, it is only
locally straight and with an important part of the
excess length being gained through a small bending
on a large length scale. In three dimensions a similar
phenomenon is possible. Rigidity of A, or its failure,
can in principle be investigated by optical means;
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there can be interference of coherent light scattered
by macroscopically separated surface elements of A
only if X is rigid in the above sense.

It has been rigorously proved that, the line \ is not
rigid in dimension 2. And, at least at low tempera-
ture, the fluctuation of the middle point is of the
order O(VL). In dimension 3 however, it has been
shown that the surface \ is rigid at low enough
temperature.

A deeper analysis is needed to study the shape of
the separation surface under other conditions, for
example, with + boundary conditions in a canoni-
cal distribution with magnetization intermediate
between +m*(8). It involves, as a prerequisite, the
definition and many properties of the surface
tension between the two phases. Here only
the definition of surface tension in the case of
+-boundary conditions in the two-dimensional case
will be mentioned. If Z*(Q,m*(3)) and Z*~(Q, m)
are, respectively, the canonical partition functions
for the ++- and +-cylindrical boundary conditions
the tension 7(/3) is defined as

1 Z(Q,m)
Brp) = = Jim Flog 7o e o))

The limit can be shown to be a-independent for 3
large enough: the definition and its justification is
based on the microscopic geometric description in
the section “Geometry of phase co-existence.” The
definition can be naturally extended to higher
dimension (and to more general non-nearest-neighbor
models). If d=2, the tension 7 can be exactly
computed at all temperatures below criticality and
is B7(B8) =20] + logtanh f].

More remarkably, the definition can be extended to
define the surface tension 7(/3, #) in the “direction 7,”
that is, when the boundary conditions are such
that the line of separation is in the average
orthogonal to the unit vector n. In this way, if
d=2 and a € (0,1) is fixed, it can be proved that
at low enough temperature the canonical distribu-
tion with + boundary conditions and intermediate
magnetization m=(1—2a)m*(8) has typical
configurations containing a spin — region of area
~aV; furthermore, if the container is rescaled to
size L=1, the region will have a limiting shape
filling an area « bounded by a smooth curve
whose form is determined by the classical macro-
scopic Wulff’s theory of the shape of crystals in
terms of the surface tension 7(n).

An interesting question remains open in the three-
dimensional case: it is conceivable that the surface,
although rigid at low temperature, might become
“loose” at a temperature T, smaller than the critical

temperature T. (the latter being defined as the
highest temperature below which there are at least
two pure phases). The temperature T., whose
existence is rather well established in numerical
experiments, would be called the “roughening
transition” temperature. The rigidity of X is con-
nected with the existence of translationally non-
invariant equilibrium states. The latter exist in
dimension d =3, but not in dimension d =2, where
the discussed nonrigidity of A, established all the
way to T., provides the intuitive reason for the
absence of non-translation-invariant states. It has
been shown that in d=3 the roughening tempera-
ture T.(3) necessarily cannot be smaller than the
critical temperature of the two-dimensional Ising
model with the same coupling.

Note that existence of translationally noninvar-
iant equilibrium states is not necessary for the
description of coexistence phenomena. The theory
of the nearest-neighbor two-dimensional Ising model
is a clear proof of this statement.

The reader is referred to Onsager (1944), van
Beyeren (1975), Sinai (1991), Miracle-Solé (1995),
Pfister and Velenik (1999), and Gallavotti (1999) for
more details.

Critical Points

Correlation functions for a system with short-range
interactions and in an equilibrium state (which is
a pure phase) have cluster properties (see [22]):
their physical meaning is that in a pure phase there
is independence between fluctuations occurring in
widely separated regions. The simplest cluster
property concerns the “pair correlation function,”
that is, the probability density p(q,,q,) of finding
particles at points ¢,,q, independently of where
the other particles may happen to be (see [23]).
In the case of spin systems, the pair correlation
p(q1,9,) = (0q,04,) will be considered. The pair
correlation of a translation-invariant equilibrium
state has a cluster property ([22], [42]), if

lp(a1,q,) — P2| — 0 [57]

lq1—g5|—00

where p is the probability density for finding a
particle at g (i.e., the physical density of the state) or
p=(o4) is the average of the value of the spin at g
(i.e., the magnetization of the state).

A general definition of critical point is a point ¢ in
the space of the parameters characterizing equili-
brium states, for example, 3,\ in grand canonical
distributions, 3, v in canonical distributions, or 3, b
in the case of lattice spin systems in a grand canonical
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distribution. In systems with short-range interaction
(i.e., with ¢(r) vanishing for |r| large enough) the
point ¢ is a critical point if the pair correlation tends
to 0 (see [57]), slower than exponential (e.g., as a
power of the distance 7| =|q, — ¢,])-

A typical example is the two-dimensional Ising
model on a square lattice and with nearest-neighbor
ferromagnetic interaction of size J. It has a single
critical point at 8= (., h =0 with sinh25.] =1. The
cluster property is that (o.0y) — (0x)(0y) — 0 as

lx—y|—
—k(B)|x—y] —k(B)|x—y|

e €

A (B)—F— P
Vi]x =yl e =y
1

T 58]
|x —

for 3 < B, B> B, or B=[, respectively, where
AL (B), A, k(B) > 0. The properties [58] stem from
the exact solution of the model.

At the critical point, several interesting phenom-
ena occur: the lack of exponential decay indicates
lack of a length scale over which really distinct
phenomena can take place, and properties of the
system observed at different length scales are likely
to be simply related by suitable scaling transforma-
tions. Many efforts have been dedicated at finding
ways of understanding quantitatively the scaling
properties pertaining to different observables. The
result has been the development of the renormaliza-
tion group approach to critical phenomena (cf. the
section “Renormalization group”). The picture that
emerges is that the closer the critical point is the
larger becomes the maximal scale of length below
which scaling properties are observed. For instance,
in a lattice spin system in zero field the magnetiza-
tion M|A|™ in a box A C Q should have essentially
the same distribution for all A’s with side <Iy(3) and
lo(B) — oo as 8 — B, provided a is suitably chosen.
The number a is called a critical exponent.

There are several other “critical exponents” that
can be defined near a critical point. They can
be associated with singularities of the thermody-
namic function or with the behavior of
the correlation functions involving joint densities at
two or more than two points. As an example,
consider a lattice spin system: then the “2n—spins
correlation” (ogoy, ...0¢, ,). could behave propor-
tionally to x2,(0,&1,...,&,-1),n=1,2,3,..., for a
suitable family of homogeneous functions x,, of
some degree wy,, of the coordinates (&1,...,&,-1)
at east when the reciprocal distances are large but

<Ip(83) and

lo(8) = const.(8 — B.) " Pavie

This means that if & are regarded as points in R?
there are functions 3, such that

X2n <07§v~- : 752,;\_1> = N"x21(0,81,. .., §201)

0<AeR [59]

and <O’00’§1 . 0'52”71> o x2x(0, 51, c.. ,£2n71) if 1<
|xi — x| < lo(3). The numbers w,, define a sequence
of critical exponents.

Other critical exponents can be associated with
approaching the critical point along other directions
(e.g.,along b — 0 at 3= 3.). In this case, the length up
to which there are scaling phenomena is ly(h) =£,h7".
Further, the magnetization m(h) tends to 0 as » — 0 at
fixed 3= 3. as m(h) =moh'/® for 6 > 0.

None of the feautres of critical exponents is known
rigorously, including their existence. An exception is the
case of the two—dimensional nearest-neighbor Ising
ferromagnet where some exponents are known exactly
(e.g., wa=1/4, wy, = nwy, or v=1, while 8, ¥ are not
rigorously known). Nevertheless, for Ising ferromag-
nets (not even nearest-neighbor but, as always here,
finite-range) in all dimensions, all of the exponents
mentioned are conjectured to be the same as those
of the nearest-neighbor Ising ferromagnet. A further
exception is the derivation of rigorous relations
between critical exponents and, in some cases, even
their values under the assumption that they exist.

Remark Naively it could be expected that in a pure
state in zero field with (o,)=0 the quantity
s=|A|T2 Y wen Ox, if A is a cubic box of side /4,
should have a probability distribution which is
Gaussian, with dispersion limy .o (s*). This is
“usually true,” but not always. Properties [58]
show that in the d=2 ferromagnetic nearest-
neighbor Ising model, (s*) diverges proportionally
to ¢27% so that the variable s cannot have the above
Gaussian distribution. The variable $=|A|7/%
> xen 0x Wwill have a finite dispersion: however,
there is no reason that it should be Gaussian. This
makes clear the great interest of a fluctuation theory
and its relevance for the critical point studies (see
the next two sections).

For more details, the reader is referred to Onsager
(1944), Domb and Green (1972), McCoy and Wu
(1973), and Aizenman (1982).

Fluctuations

As it appears from the discussion in the last section,
fluctuations of observables around their averages
have interesting properties particularly at critical
points. Of particular interest are observables that
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are averages, over large volumes A, of local functions
F(x) on phase space: this is so because macroscopic
observables often have this form. For instance, given
a region A inside the system container Q, A C Q,
consider a configuration x = (P, Q) and the number
of particles Ny =3" ., 1 in A, or the potential energy
@\=> ,er @ —q) or the kinetic energy
Ka=34en (1/2m)p?>. In the case of lattice spin
systems, consider a configuration o and, for instance,
the magnetization My = ),., 0; in A. Label the
above four examples by a=1,...,4.

Let p, be the probability distribution describing
the equilibrium state in which the quantltles X A are
considered; let xy=(Xx/[Al), ~and p (XA -
x4)/|A|. Then typical properties of fluctuations that
should be investigated are (a=1,...,4):

1. for all 6 > 0 it is limp o pa(|p| > 6)=0
large numbers);
2. there is D, > 0 such that

(law of

b dz 2
—22/2D,
w(p/ A € [a,b])A—;m/H 7 ae

(central limit law); and
3. there is an interval I, = (p}, _,p;, ;) and a concave
function F,(p), p € I, such that if [a,b] C I then

A |logu(p ¢ a,0]) — 52[3’5]1: a(P)

(large deviations law).

The law of large numbers provides the certainty
of the macroscopic values; the central limit law
controls the small fluctuations (of order /]A[) of X,
around its average; and the large deviations law
concerns the fluctuations of order |A|.

The relations (1)—(3) above are not always true:
they can be proved under further general assump-
tions if the potential ¢ satisfies [14] in the case of
particle systems or if > [p(q)| < oo in the case
of lattice spin systems. The function F,(p) is
defined in terms of the thermodynamic limits of
suitable thermodynamic functions associated with
the equilibrium state j,. The further assumption is,
essentially in all cases, that a suitable thermody-
namic function in terms of which F,(p) will be
expressed is smooth and has a nonvanishing second
derivative.

For the purpose of a simple concrete example,
consider a lattice spin system of Ising type with
energy —>_. \cq@(x —y)oxoy =) hoy and the fluc-
tuations of the magnetization My =3 ) ox, A C €,
in the grand canonical equilibrium states Loh, 3+

Let the free energy be Bf(8,h) (see [41]), let
m=m(h) < (MA/|A|> and let h(m) be the inverse

function of m(h). If p =M, /|A| the function F(p) is
given by

E(p) =B(f(8.h(0)) — 1 (B,h) = O (B,h)(b(p) = b))  [60]
then a quite general result is:

Theorem The relations (1)—(3) hold if the potential
satisfies ). |p(x)| < oo and if F(p) [60] is smooth
and F'(p) #0 in open intervals around those in
which p is considered, that is, around p =0 for the
law of large numbers and for the central limit law or
in an open interval containing a, b for the case of the
large deviations law.

In the cases envisaged, the theory of equivalence
of ensembles implies that the function F can also be
computed via thermodynamic functions naturally
associated with other equilibrium ensembles. For
instance, instead of the grand canonical (3, 5), one
could consider the canonical 8g(3,m) (see [41]), then

E(p) =—5(g(8,p) —g(B,m) — g (B,m)(p —m)) [61]

It has to be remarked that there should be a
strong relation between the central limit law and the
law of large deviations. Setting aside stating the
conditions for a precise mathematical theorem, the
statement can be efficiently illustrated in the case of
a ferromagnetic lattice spin system and with A = Q,
by showing that the law of large deviations in small
intervals, around the average m1(hy), at a value by of
the external field, is implied by the validity of the
central limit law for all values of b near by and vice
versa (here 3 is fixed). Taking by = 0 (for simplicity),
the heuristic reasons are the following. Let 11, be

the grand canonical distribution in external field 5.
Then:

1. The probability p,q(p € dp) is proportional,
by definition, to puoqo(p € dp)e™?¥. Hence,
if the central limit law holds for all » near
ho =0, there will exist two functions m(h) and
D(h) > 0, defined for b near hy=0, with
m(0)=0 and

po(p € dp)e "

= const.exp <_|Q|W

3D0h) +O(Q)>dp [62]
2. There is a function ((m) such that 9,,((m(h)) = b
and & ((m(b))=D(h)". (This is obtained by
noting that, given D(b), the differential equation
OmBh=D(h)™" with the initial value h(0)=0
determines the function h(m); therefore, ((m)
is determined by a second integration, from

OmC(m) = Bh(m).
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It then follows, heuristically, that the probability
of p in zero field has the form const. e dp so
that the probability that p € [a,b] will be const
exp (|2 maxpeqap) C(P))-

Conversely, the large deviations law for p at h=0
implies the validity of the central limit law for the
fluctuations of p in all small enough fields b: this
simply arises from the function F(p) having a
negative second derivative.

This means that there is a “duality” between central
limit law and large deviation law or that the law of
large deviations is a “global version” of the central
limit law, in the sense that:

1. if the central limit law holds for h in an interval
around by then the fluctuations of the magnetiza-
tion at field by satisfy a large deviation law in a
small enough interval | around m(hg); and

2. if a large deviation law is satisfied in an interval
around hq then the central limit law holds for the
fluctuations of magnetization around its average
in all fields h with b — by small enough.

Going beyond the heuristic level in establishing
the duality amounts to giving a precise meaning to
“small enough” and to discuss which properties of
m(h) and D(h), or F(p) are needed to derive
properties (1), (2).

For purposes of illustration consider the Ising
model with ferromagnetic short range interaction ¢:
then the central limit law holds for all / if 3 is small
enough and, under the same condition on f, the
large deviations law holds for all » and all intervals
la,b] C (—1,1). If 3 is not small then the condition
h # 0 has to be added. Hence, the conditions are
fairly weak and the apparent exceptions concern the
value »=0 and 3 not small where the statements
may become invalid because of possible phase
transitions.

In presence of phase transitions, the law of large
numbers, the central limit law, and law of large
deviations should be reformulated. Basically, one
has to add the requirement that fluctuations are
considered in pure phases and change, in a natural
way, the formulation of the laws. For instance,
the large fluctuations of magnetization in a pure
phase of the Ising model in zero field and large 3
(i.e., in a state obtained as limit of finite-volume
states with + or — boundary conditions) in
intervals [a,b] which do not contain the average
magnetization m* are not necessarily exponen-
tially small with the size of |Al: if [a,b] C
[—m*,m*] they are exponentially small but only
with the size of the surface of A (i.e., with
|A|(d71)/d)) while they are exponentially small with
the volume if [a,b] N[ —m*, m*] =0.

The discussion of the last section shows that at
the critical point the nature of the large fluctuations
is also expected to change: no central limit law is
expected to hold in general because of the example
of [58] with the divergence of the average of the
normal second moment of the magnetization in a
box as the side tends to oc.

For more details the reader is referred to Olla
(1987).

Renormalization Group

The theory of fluctuations just discussed concerns
only fluctuations of a single quantity. The problem
of joint fluctuations of several quantities is also
interesting and in fact led to really new develop-
ments in the 1970s. It is necessary to restrict
attention to rather special cases in order to illustrate
some ideas and the philosophy behind the approach.
Consider, therefore, the equilibrium distribution pyg
associated with one of the classical equilibrium
ensembles. To fix the ideas we consider the
equilibrium distribution of an Ising energy function
BHy, having included the temperature factor in the
energy: the inclusion is done because the discussion
will deal with the properties of pg as a function of 3.
It will also be assumed that the average of each spin
is zero (“no magnetic field,” see [39] with h=0).
Keeping in mind a concrete case, imagine that SH,
is the energy function of the nearest-neighbor Ising
ferromagnet in zero field.

Imagine that the volume Q of the container has
periodic boundary conditions and is very large,
ideally infinite. Define the family of blocks k&,
parametrized by &€ Z¢ and with k an integer,
consisting of the lattice sites x={k& < x; < (k+ 1)
&}, This is a lattice of cubic blocks with side size k
that will be called the “k-rescaled lattice.”

Given «, the quantities g =k ¢ D xekg Ox are
called the block spins and define the map
R (#0=py transforming the initial distribution on
the original spins into the distribution of the block
spins. Note that if the initial spins have only two
values o, = +1, the block spins take values between
—k/k and k9/k? at steps of size 2/k*¢. Further-
more, the map R} , makes sense independently of
how many values the initial spins can assume, and
even if they assume a continuum of values S, € R.

Taking a=1 means, for k large, looking at the
probability distribution of the joint large fluctuations
in the blocks k£. Taking a=1/2 corresponds to
studying a joint central limit property for the block
variables.

Considering a one-parameter family of initial
distributions iy parametrized by a parameter (3
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(that will be identified with the inverse temperature),
typically there will be a unique value «(3) of a such
that the joint fluctuations of the block variables
admit a limiting distribution,

proby (me € [ag, bg],0 € A)
{be}

= n((Se)gen) I T dSe [63]
oo Hag} Eel

for some distribution g, (z) on R™.

If a > a(B), the limit will then be [Tecn 0(Se) dSe,
or if a < a(fB) the limit will not exist (because the
block variables will be too large, with a dispersion
diverging as k — o).

It is convenient to choose as sequence of k — oo
the sequence k=2" with n=0,1,... because in this
way it is R}, =R and the limits K — oo along
the sequence k=2" can be regarded as limits on a
sequence of iterations of a map R}, ; acting on the
probability distributions of generic spins S, on the
lattice Z (the sequence 3” would be equally
suited).

It is even more convenient to consider probability
distributions that are expressed in terms of energy
functions H which generate, in the thermodynamic
limit, a distribution y: then R; ; defines an action
R, on the energy functions so that R.H=H’ if H
generates p, H' generates p' and R} ju=p'. Of
course, the energy function will be more general
than [39] and at least a form like U in [49] has to
be admitted.

In other words, R, gives the result of the action
of R} | expressed as a map acting on the energy
functions. Its iterates also define a semigroup
which is called the block spin renormalization
group.

While the map R ; is certainly well defined as a
map of probablhty distributions into probability
distributions, it is by no means clear that R, is well
defined as a map on the energy functions. Because, if
 is given by an energy function, it is not clear that
R} i is such.

A remarkable theorem can be (easily) proved
when R}, | and its iterates act on initial po’s which
are equilibrium states of a spin system with short-
range interactions and at high temperature (5 small).
In this case, if @ =1/2, the sequence of distributions
Ry 110(8) admits a limit which is given by
a product of independent Gaussians:

proby (mg € [ag, bg],0 € A)

{be} H ( ) H 64
— exp 6
k—o0 {ag} Een En \/ 27 D

Note that this theorem is stated without even
mentioning the renormalization maps Ri)p: it can
nevertheless be interpreted as stating that

Z 21) [65]

1/2ﬁ 0

but the interpretation is not rigorous because [64]
does not state require that R’l’/ZHO(ﬂ) makes sense
for n > 1. It states that at high temperature block
spins have normal independent fluctuations: it is
therefore an extension of the central limit law.

There are a few cases in which the map R, can be
rigorously shown to be well defined at least when
acting on special equilibrium states like the high-
temperature lattice spin systems: but these are
exceptional cases of relatively little interest.

Nevertheless, there is a vast literature dealing with
approximate representations of the map R,. The
reason is that, assuming not only its existence but
also that it has the properties that one would
normally expect to hold for a map acting on a finite
dimensional space, it follows that a number of
consequences can be drawn; quite nontrivial ones as
they led to the first theory of the critical point that
goes beyond the van der Waals theory discribed in
the section “van der Waals theory.”

The argument proceeds essentially as follows. At
the critical point, the fluctuations are expected to be
anomalous (cf. the last remark in the section “Critical
points”) in the sense that ((> ..\ 05/\/W)2> will
tend to oo, because aw=1/2 does not correspond to
the right fluctuation scale of >~ o¢, signaling that
R 1#0(5c) will not have a limit but, possibly, there
is ac > 1/2 such that R po(Bc) converges to a limit
in the sense of [63]. In the case of the critical nearest-
neighbor Ising ferromagnetic a.=7/8 (see ending
remark in the section “Critical points”). Therefore, if
the map R, is considered as acting on po(f), it will
happen that for all B < Bes RYp0(Be) will converge to
a trivial limit [ ]z, 6(S¢) dSg because the value ac is
greater than 1/2 while normal fluctuations are expected.

If the map R, can be considered as a map on the
energy functions, this says that J].., 6(Sg) dS¢ is a

“(trivial) fixed point of the renormalization group”
which “attracts” the energy functions BHj corre-
sponding to the high-temperature phases.

The existence of the critical 8. can be associated
with the existence of a nontrivial fixed point H* for
R,. which is hyperbolic with just one Lyapunov
exponent A > 1; hence, it has a stable manifold of
codimension 1. Call p* the probability distribution
corresponding to H*.

The migration towards the trivial fixed point for
B < B can be explained simply by the fact that for
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such values of 3 the initial energy function SHj is
outside the stable manifold of the nontrivial fixed
point and under application of the renormalization
transformation R’ , 3Hy migrates toward the trivial
fixed point, which is attractive in all directions.

By increasing [, it may happen that, for
B= 0., BHy crosses the stable manifold of the
nontrivial fixed point H* for R,. Then R}, B:Ho
will no longer tend to the trivial fixed point but it
will tend to H*: this means that the block spin
variables will exhibit a completely different fluctua-
tion behavior. If § is close to S, the iterations of R,
will bring R, BH, close to H*, only to be eventually
repelled along the unstable direction reaching a
distance from it increasing as \*|3 — 3|.

This means that up to a scale length O(2"?) lattice
units with \"?|3 — 3.|=1 (i.e., up to a scale O(|3—
ﬁc|7log2 *)), the fluctuations will be close to those of the
fixed point distribution p*, but beyond that scale they
will come close to those of the trivial fixed point: to see
them the block spins would have to be normalized
with index a=1/2 and they would appear as
uncorrelated Gaussian fluctuations (cf. [64], [65]).

The next question concerns finding the nontrivial
fixed points, which means finding the energy
functions H* and the corresponding . which are
fixed points of R, . If the above picture is correct,
the distributions p* corresponding to the H* would
describe the critical fluctuations and, if there was
only one choice, or a limited number of choices, of
o and H* this would open the way to a universality
theory of the critical point hinted already by the
“primitive” results of van der Waals’ theory.

The initial hope was, perhaps, that there would be a
very small number of critical values a. and H*
possible: but it rapidly faded away leaving, however,
the possibility that the critical fluctuations could be
classified into universality classes. Each class would
contain many energy functions which, upon iterated
actions of R,_, would evolve under the control of the
trivial fixed point (always existing) for 5 small while,
for 3= 0., they would be controlled, instead, by a
nontrivial fixed point H* for R,,, with the same «a, and
the same H*. For 3 < ., a “resolution” of the
approach to the trivial fixed point would be seen by
considering the map R;,, rather than R, whose
iterates would, however, lead to a Gaussian distribu-
tion like [64] (and to a limit energy function like [65]).

The picture is highly hypothetical: but it is
the first suggestion of a mechanism leading to
critical points with the character of universality
and with exponents different from those of the van
der Waals theory or, for ferromagnets on a lattice,
from those of its lattice version (the Curie—Weiss
theory). Furthermore, accepting the approximations

(e.g., the Wilson—Fisher e-expansion) that allow one
to pass from the well-defined R}, ; to the action of
R, on the energy functions, it is possible to obtain
quite unambiguously values for o, and expressions
for H* which are associated with the action of R,
on various classes of models.

For instance, it can lead to conclude that the
critical behavior of all ferromagnetic finite-range
lattice spin systems (with energy functions given by
[39]) have critical points controlled by the same a,
and the same nontrivial fixed point: this property is
far from being mathematically proved, but it is
considered a major success of the theory. One has to
compare it with van der Waals’ critical point theory:
for the first time, an approximation scheme has
led, even though under approximations not fully
controllable, to computable critical exponents which
are not equal to those of the van der Waals theory.

The renormalization group approach to critical
phenomena has many variants, depending on which
kind of fluctuations are considered and on the models
to which it is applied. In statistical mechanics, there
are a few mathematically complete applications:
certain results in higher dimensions, theory of dipole
gas in d =2, hierarchical models, some problems in
condensed matter and in statistical mechanics of
lattice spins, and a few others. Its main mathematical
successes have occured in various related fields where
not only the philosophy described above can be
applied but it leads to renormalization transforma-
tions that can be defined precisely and studied in
detail: for example, constructive field theory, KAM
theory of quasiperiodic motions, and various pro-
blems in dynamical systems.

However, the applications always concern special
cases and in each of them the general picture of the
trivial-nontrivial fixed point dichotomy appears
realized but without being accompanied, except in
rare cases (like the hierarchical models or the
universality theory of maps of the interval), by the
full description of stable manifold, unstable direction,
and action of the renormalization transformation on
objects other than the one of immediate interest (a
generality which looks often an intractable problem,
but which also turns out not to be necessary).

In the renormalization group context, mathema-
tical physics has played an important role also by
providing clear evidence that universality classes
could not be too few: this was shown by the
numerous exact solutions after Onsager’s solution
of the nearest-neighbor Ising ferromagnet: there are
in fact several lattice models in d=2 that exhibit
critical points with some critical exponents exactly
computable and that depend continuously on the
models parameters.
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For more details, we refer the reader to McCoy
and Wu (1973), Baxter (1982), Bleher and Sinai
(1975), Wilson and Fisher (1972), Gawedzky and
Kupiainen (1983, 1985), Benfatto and Gallavotti
(1995), and Mastropietro (2004).

Quantum Statistics

Statistical mechanics is extended to assemblies of
quantum particles rather straightforwardly. In the
case of N identical particles, the observables are
operators O on the Hilbert space

Hy = LN or Hy = (L2(Q) @ )N

where a=+, —, of the symmetric (o =+, bosonic
particles) or antisymmetric (o= —, fermionic parti-
cles) functions ¥(Q), O=(q,,.--,4qx), of the posi-
tion coordinates of the particles or of the position
and spin coordinates ¢(Q, o), 0 = (o1, ...,0N), NOI-
malized so that

[r@rde=1 o Y [w@orie=1

here only oj==+1 is considered. As in classical
mechanics, a state is defined by the average values
(O) that it attributes to the observables.

Microcanonical, canonical, and grand canonical
ensembles can be defined quite easily. For instance,
consider a system described by the Hamiltonian
(h =Planck’s constant)

ZAq,+Z%0

<

—q;) + Z w(q;)
def ’

YK+ @ [66]

where periodic boundary conditions are imagined
on Q and w(q) is periodic, smooth potential (the side
of Q is supposed to be a multiple of the periodic
potential period if w #0). Then a canonical
equilibrium state with inverse temperature [ and
specific volume v = V/N attributes to the observable
O the average value

def tre PANO

(0)=

Similar definitions can be given for the grand
canonical equilibrium states.

Remarkably, the ensembles are orthodic and a “heat
theorem” (see the section “Heat theorem and ergodic
hypothesis”) can be proved. However, “equipartition”
does not hold: that is, (K) # (d/2)NB7!, although 37
is still the integrating factor of dU + p dV in the heat
theorem; hence, 3~ continues to be proportional to
temperature.

e i 7]

Lack of equipartition is important, as it solves
paradoxes that arise in classical statistical mechanics
applied to systems with infinitely many degrees
of freedom, like crystals (modeled by lattices of
coupled oscillators) or fields (e.g., the electromagnetic
field important in the study of black body radiation).
However, although this has been the first surprise of
quantum statistics (and in fact responsible for the
very discovery of quanta), it is by no means the last.

At low temperatures, new unexpected (i.e.,
with no analogs in classical statistical mechanics)
phenomena occur: Bose-Einstein condensation
(superfluidity), Fermi surface instability (supercon-
ductivity), and appearance of off-diagonal long-
range order (ODLRO) will be selected to illustrate
the deeply different kinds of problems of quantum
statistical mechanics. Largely not yet understood,
such phenomena pose very interesting problems not
only from the physical point of view but also from
the mathematical point of view and may pose
challenges even at the level of a definition. However,
it should be kept in mind that in the interesting cases
(i.e., three-dimensional systems and even most two-
and one-dimensional systems) there is no proof that
the objects defined below really exist for the systems
like [66] (see, however, the final comment for an
important exception).

Bose-Einstein Condensation

In a canonical state with parameters 3,v, a defini-
tion of the occurrence of Bose condensation is in
terms of the eigenvalues 1j(Q,N) of the kernel
p(q,q') on L,(Q), called the one-particle reduced
density matrix, defined by

e—BE(AN)
— tre—ﬂHN /wn 94,91, 4n- 1)
X u(q gy, dn-1)dqy - dgn (68

where E,(Q2,N) are the eigenvalues of Hy and
¥a(qqs - - -, qy) are the corresponding eigenfunctions.
If v; are ordered by increasing value, the state with
parameters [3,v is said to contain a Bose-Einstein
condensate if v1(Q,N) > bN > 0 for all large Q at
v=V/N,[ fixed. This receives the interpretation
that there are more than bON particles with equal
momentum. The free Bose gas exhibits a Bose
condensation phenomenon at fixed density and
small temperature.

Fermi Surface

The wave functions ¥,,(q1, 71, - - -, gn> ON) = ¥Vn(Q, 0)
are now antisymmetric in the permutations of the
pairs (q;,0i). Let (Q,0;N,n) denote the nth
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eigenfunction of the N-particle energy Hy in [66] with

eigenvalue E(N,n) (labeled by »=0,1,... and non-
decreasingly ordered). Setting Q"=(q],...,q%_ p)
0" =(0Y,...,0%_,), introduce the kernels pg (0,0
Q',0') by
pP(Qv ,Qv
—BE(N.1)
def N—p ~1 ¢
() )/Zd 'Y
o

x1(Q,0:Q",6":N,n)iy(Q,0:,Q",6";N.n) [69]

which are called p-particle reduced density matrices
(extending the corresponding one- partlcle reduced
density matrix [68]). Denote p(q, — Z P1
(q1,0,q5,0). It is also useful to con81der spinless
fermionic systems: the corresponding definitions are
obtained simply by suppressing the spin labels and
will not be repeated.

Let 71 (k) be the Fourier transform of p(q — ¢'): the
Fermi surface can be defined as the locus of the k’s in
the neighborhood of which 97 (k) is unbounded as
Q — oo, 3 — oco. The limit as 8 — oo is important
because the notion of a Fermi surface is, possibly,
precise only at zero temperature, that is at 3= oo.

So far, existence of Fermi surface (i.e., the smooth-
ness of (k) except on a smooth surface in k-space)
has been proved in free Fermi systems (¢ =0) and

1. certain exactly soluble one-dimensional spinless
systems and

2. in rather general one-dimensional spinless systems
or systems with spin and repulsive pair interac-
tion, possibly in an external periodic potential.

The spinning case in a periodic potential and
dimension d > 2 is the most interesting case to study
for its relevance in the theory of conduction in
crystals. Essentially no mathematical results are
available as the above-mentioned ones do not
concern any case in dimension >1: this is a rather
deceiving aspect of the theory and a challenge.

In dimension 2 or higher, for fermionic systems
with Hamiltonian [66], not only there are no results
available, even without spin, but it is not even clear
that a Fermi surface can exist in presence of
interesting interactions.

Cooper Pairs

The superconductivity theory has been phenomeno-
logically related to the existence of Cooper pairs.
Consider the Hamiltonian [66] and define (cf. [69])

plx—y, 06—y, 0'ix—x)

def
= pz(x7 0,y, —0; xlv U/ay/7 _OJ)

The system is said to contain Cooper pairs with
spins 0,—0 (0 =+ or o= —) if there exist functions

g%(q,0) # 0 with

/?(q, 0)g"(q,0)dg =0 if a#d
such that

hm p(x_yvo-ax/ _y/aojax_x/)

H,ﬂzg x—y,0

In this case, g%(x — v, o) with largest L, norm can be
called, after normalize, the wave function of the paired
state of lowest energy: this is the analog of the plane
wave for a free particle (and, like it, it is manifestly not
normalizable, i.e., it is not square integrable as a
function of x,y). If the system contains Cooper pairs
and the nonleading terms in the limit [70] vanish
quickly enough the two-particle reduced density
matrix [70] regarded as a kernel operator has an
eigenvalue of order V as V — oo: that is, the state of
lowest energy is “macroscopically occupied,” quite
like the free Bose condensation in the ground state.
Cooper pairs instability might destroy the Fermi
surface in the sense that (k) becomes analytic in k;
but it is also possible that, even in the presence of
them, there remains a surface which is the locus of the
singularities of the function r{(k). In the first case,
there should remain a trace of it as a very steep
gradient of 71 (k) of the order of an exponential in the
inverse of the coupling strength; this is what happens
in the BCS model for superconductivity. The model is,
however, a mean-field model and this particular
regularity aspect might be one of its peculiarities. In
any event, a smooth singularity surface is very likely to
exist for some interesting density matrix (e.g., in the
BCS model with “gap parameter 7 the wave function

gx —y,0) = ! / ekl T g
(27r) (k)>0 (k)* + 42

g =) [70]

of the lowest energy level of the Cooper pairs is
singular on a surface coinciding with the Fermi
surface of the free system).

ODLRO

Consider the k-fermion reduced density matrix
pr(Q,0;0',0') as kernel operators O, on L;((£ x
). Suppose k is even, then if Oy, has a (generalized)
eigenvalue of order N*/2 as N — 0o, N/V =p, the
system is said to exhibit off-diagonal long-range order
of order k. For k odd, ODLRO is defined to exist if Oy,
has an eigenvalue of order N*~1/2 and k > 3 (if k=1
the largest eigenvalue of Oy is necessarily <1).
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For bosons, consider the reduced density matrix
pr(Q; Q') regarding it as a kernel operator O, on
LZ(Q)’i and define ODLRO of order & to be present
if O(k) has a (generalized) eigenvalue of order N¥ as
N — oo, N/V =p.

ODLRO can be regarded as a unification of the
notions of Bose condensation and of the existence of
Cooper pairs, because Bose condensation could be
said to correspond to the kernel operator p1(q; — q,)
in [68] having a (generalized) eigenvalue of order N,
and to be a case of ODLRO of order 1. If the state is
pure in the sense that it has a cluster property (see
the sections “Phase transitions and boundary condi-
tions” and “Lattice models”), then the existence of
ODLRO, Bose condensation, and Cooper pairs
implies that the system shows a spontaneously
broken symmetry: conservation of particle number
and clustering imply that the off-diagonal elements
of (all) reduced density matrices vanish at infinite
separation in states obtained as limits of states with
periodic boundary conditions and Hamiltonian [66],
and this is incompatible with ODLRO.

The free Fermi gas has no ODLRO, the BCS model
of superconductivity has Cooper pairs and ODLRO
with k=2, but no Fermi surface in the above sense
(possibly too strict). Fermionic systems cannot have
ODLRO of order 1 (because the reduced density
matrix of order 1 is bounded by 1).

The contribution of mathematical physics has
been particularly effective in providing exactly
soluble models: however, the soluble models deal
with one-dimensional systems and it can be shown
that in dimensions 1, 2 no ODLRO can take place.
A major advance is the recent proof of ODLRO and
Bose condensation in the case of a lattice version of
[66] at a special density value (and d > 3).

In no case, for the Hamiltonian [66] with ¢ # 0,
existence of Cooper pairs has been proved nor
existence of a Fermi surface for d > 1. Nevertheless,
both Bose condensation and Cooper pairs formation
can be proved to occur rigorously in certain limiting
situations. There are also a variety of phenomena
(e.g., simple spectral properties of the Hamiltonians)
which are believed to occur once some of the
above-mentioned ones do occur and several of
them can be proved to exist in concrete models.

If d=1,2, ODLRO can be proved to be impos-
sible at T >0 through the use of Bogoliubov’s
inequality (used in the “no d=2 crystal theorem,”
see the section “Continuous symmetries: ‘no d =2
crystal’ theorem”).

For more details, the reader is referred to Penrose
and Onsager (1956), Yang (1962), Ruelle (1969),
Hohenberg  (1967), Gallavotti  (1999), and
Aizenman et al. (2004).

Appendix 1: The Physical Meaning of the
Stability Conditions

It is useful to see what would happen if the
conditions of stability and temperedness (see [14])
are violated. The analysis also illustrates some of the
typical methods of statistical mechanics.

Coalescence Catastrophe due
to Short-Distance Attraction

The simplest violation of the first condition in [14]
occurs when the potential ¢ is smooth and negative
at the origin.

Let > 0 be so small that the potential at distances
<26 is <—b <0. Consider the canonical distribution
with parameters 8, N in a (cubic) box 2 of volume V.
The probability Pjaps that all the N particles are
located in a little sphere of radius § around the center
of the box (or around any prefixed point of the box) is
estimated from below by remarking that

so that

P collapse

dpda _—p(K(p)+@(q))

/ dpda _—p(K(p)+2(q))
NN

<4w\/ Zmﬁ13> T 8b(1/2)N(N - 1)

353 BN

' da__—pa(g)
h3NN!

> [71]

The phase space is extremely small: nevertheless,
such configurations are far more probable than the
configurations which “look macroscopically cor-
rect,” that is, configurations with particles more or
less spaced by the average particle distance expected
in a macroscopically homogeneous configuration,
namely (N/V)™/3=p"1/3, Their energy ®(q) is of
the order of uN for some u, so that their probability
will be bounded above by

/ dpdq _—B(K(p) + uN)
H3NNI

P['E ular S
B dpda (K (p) + 0(q))
NN
VNamB T guN
__ PN 72]

dg__—po(q)
h3NN!
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However, no matter how small ¢ is, the
ratio Pregular/Peollapse Will approach 0 as V — oo,
N/ V — v this occurs extremely rapidly because
eventually dominates over VN ~ eNlogN,
Thus, it is far more probable to find the system in a
microscopic volume of size & rather than in a
configuration in which the energy has some macro-
scopic value proportional to N. This catastrophe can
be called an ultraviolet catastrophe (as it is due to the
behavior at very short distances) and it causes the
collapse of the particles into configurations concen-
trated in regions as small as we please as V — oo.

Coalescence Catastrophe due
to Long-Range Attraction

It occurs when the potential is too attractive near oc.
For simplicity, suppose that the potential has a hard
core, i.e., it is +oo for r < ry, so that the above-
discussed coalescence cannot occur and the system
density bounded above by a certain quantity pe, < oo
(close-packing density).

The catastrophe occurs if (gq) ~ —glq| ™", g, > 0,
for |q| large. For instance, this is the case for matter
interacting gravitationally; if k is the gravitational
constant, 7 is the particle mass, then g = km? and e =

The probability Py, of “regular conﬁguratlons,
where particles are at distances of order p~'/3 from
their close neighbors, is compared with the probability
Peollapse Of “catastrophic configurations,” with the
particles at distances 7y from their close neighbors to
form a configuration of density pe,/(1 + 6)® almost in
close packing (so that 7y is equal to the hard-core
radius times 1 + 6). In the latter case, the system does
not fill the available volume and leaves empty a region
whose volume is a fraction ~((pep — p)/pep)V of V.
Further, it can be checked that the ratio P[egular / Pcollapse
tends to 0 at a rate O(exp (gZN(pcp(l +6)7 =)
if ¢ is small enough (and p < pep).

A system which is too attractive at infinity will not
occupy the available volume but will stay confined in a
close-packed configuration even in empty space.

This is important in the theory of stars: stars cannot
be expected to obey “regular thermodynamics” and in
particular will not “evaporate” because their particles
interact via the gravitational force at large distances.
Stars do not occupy the whole volume given to them
(i.e., the universe); they do not collapse to a point only
because the interaction has a strongly repulsive core
(even when they are burnt out and the radiation pressure
is no longer able to keep them at a reasonable size).

—3+¢

Evaporation Catastrophe

This is another infrared catastrophe, that is, a
catastrophe due to the long-range structure of the

interactions in the above subsection; it occurs when
the potential is too repulsive at oo, that is,

p(q) ~+2lgl > as
so that the temperedness
violated.

In addition, in this case, the system does not
occupy the whole volume: it will generate a layer of
particles sticking, in close-packed configuration, to
the walls of the container. Therefore, if the density is
lower than the close-packing density, p < pp, the
system will leave a region around the center of the
container €2 empty; and the volume of the empty
region will still be of the order of the total volume of
the box (i.e., its diameter will be a fraction of the
box side L). The proof is completely analogous to
the one of the previous case; except that now the
configuration with lowest energy will be the one
sticking to the wall and close packed there, rather
than the one close packed at the center.

Also this catastrophe is important as it is realized in
systems of charged particles bearing the same charge:
the charges adhere to the boundary in close-packing
configuration, and dispose themselves so that the
electrostatic potential energy is minimal. Therefore,
charges deposited on a metal will not occupy the whole
volume: they will rather form a surface layer minimiz-
ing the potential energy (i.e., so that the Coulomb
potential in the interior is constant). In general, charges
in excess of neutrality do not behave thermodynami-
cally: for instance, besides not occupying the whole
volume given to them, they will not contribute
normally to the specific heat.

Neutral systems of charges behave thermodyna-
mically if they have hard cores, so that the
ultraviolet catastrophe cannot occur or if they obey
quantum-mechanical laws and consist of fermionic
particles (plus possibly bosonic particles with
charges of only one sign).

For more details, we refer the reader to Lieb
and Lebowitz (1972) and Lieb and Thirring (2001).

q—

condition is again

Appendix 2: The Subadditivity Method

A simple consequence of the assumptions is that the
exponential in (5 2) can be bounded above by
BN exp(—+ Z,,le) so that

. d
1< Zg (BN V) < exp(Ve”’\eﬂB\/Zmﬁ—l )
PP\ amp T (73

Consider, for simplicity, the case of a hard-core
interaction with finite range (cf. [14]). Consider a

=0< —longC(ﬂ,/\ V) <
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sequence of boxes 2, with sides 2”1, where Ly > 0
is arbitrarily fixed to be >2R. The partition function
Zc(f3, 2) relative to the volume Q, is

> N
e /
Zy=> —/ dQe "*1Q
24N o,

because the integral over the P variables can be
explicitly performed and included in 2N if z is
defined as z= e‘”(Zmﬁ’l)d/z.

Then the box ,, contains 29 boxes ,,_1 for n > 1
and

1<z, <72, exp(ﬁBZd(Ln_1 /R)d‘lzld) [74]

because the corridor of width 2R around the
boundaries of the 2¢ cubes €, ; filling Q, has
volume 2RL, 129 and contains at most
(Ln,l/R)d_12d particles, each of which interacts
with at most 2¢ other particles. Therefore,

Bpn L 10g Z,,
<14 logZ, 1 + BBya2 " (Lo/R)*!

for some 74 > 0. Hence, 0 < 8p,, < Bpp_1 + 27"
for some I'y; > 0 and p,, is bounded above and below
uniformly in 7. So, the limit [13] exists on the sequence
L, =L2" and defines a function 8p.(/3, A).

A box of arbitrary size L can be filled with about
(L/La)¢ boxes of side L; with 7 so large that,
prefixed 6 > 0, [poo — pru| < 6 for all n > 7. L1kew1se
a box of size L, can be filled by about (L,/L)?
boxes of size L if 7 is large. The latter remarks lead
us to conclude, by standard inequalities, that the
limit in [13] exists and coincides with po..

The subadditivity method just demonstrated for
finite-range potentials with hard core can be extended
to the potentials satisfying just stability and tempered-
ness (cf. the section “Thermodynamic limit”).

For more details, the reader is referred to Ruelle
(1969) and Gallavotti (1999).

Appendix 3: An Infrared Inequality

The infrared inequalities stem from Bogoliubov’s
inequality. Consider as an example the problem of
crystallization discussed in the section “Continuous
symmetries: ‘no d=2 crystal’ theorem”. Let ()
denote average over a canonical equilibrium state
with Hamiltonian

N P2
H=) 510

with given temperature and density parameters
By pyp=a. Let {X,Y)= ¥, (9, X 9y, Y — 9, X 9, Y)

0)+eW(Q)

be the Poisson bracket. Integration by parts, with
periodic boundary conditions, yields

[A*{C,e~M}dPdQ
BZ:(B,p,N)
=—p'({A", C}) [75]

(A{C,H}) = -

as a general identity. The latter identity implies, for
A={C, H}, that

({H,C}'{H,C}) = ="' ({C,{H,C"}})  [76]

Hence, the Schwartz inequality (A*A){{H,C}"
(H,C}) > [({A*,C})]* combined with the two
relations in [75], [76] yields Bogoliubov’s inequality:

({A", chr°
{C.{C" H}))

Let g, h be arbitrary complex (differentiable)
functions and 9;=9,,

ef N def N
0= ) 2lg) C(P,Q)= ) phlg) (78]

j=1 j=1

(A*A) > g1 [77]

Q-

Then HZZ%P? +®(qy,...,qn), if

Z‘P 9, — 4y +€ZW‘1/

/757

q)(q17"-7qN

so that, via algebra,

{C,H} = Z(’?ﬁ/q’ —p;(; - 0)h))

with b h(g). If b is real valued, ({C,{C",H}))
becomes, again via algebra,

<Zhh ;- 6/<I>(Q)>

i’
+ <5 > b AW(g) + %Z(a,-h,-)2>

(integrals on p; just replace p by 237" and
((B)ilpy)i) =6~ 16, 7).  Therefore, the average
({C,{C*, H}}) becomes

(33

+e) hiAW(g) + 457! Z(a,-h,)2> [79]

)*Ap(lg; — ay))

Choose

glq) = e* K4 b(q)— cosq K and
bound (b, )2

— b,‘/)z by K (ql 5 ) by Kz and
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/ol2 by 1. Hence [79] is bounded above by ND(x)
with
2457143 (g, -

N

+5%2|Aw<qj>|> 80)

This can be used to estimate the denominator in
[77]. For the LHS remark that

N
<A*,A> — ‘Ze—iq'(lﬁ-K)lZ
=1

D(x) ‘1//)2|A<P(qj —q;)l

and

(A NP = (S g )

= [K + K‘ZNZ(pe(K) + p=(K + ZK))Z
hence [77] becomes, after multiplying both sides
by the auxiliary function (k) (assumed even and
vanishing for |x| > w/a) and summing over ,

7| el K+x <q,v‘ >
N'&

def 1

o KE (p-(K) + p(K + 2K))°
45 D(x)

To apply [77] the averages in [80], [81] have to be
bounded above: this is a technical point that is
discussed here, as it illustrates a general method of
using the results on the thermodynamic limits and
their convexity properties to obtain estimates.

Note that ((1/N) Y, v(k)d'k| SN e ®a ) s
identically  5(0)+ (2/N)(S,., 5(q; — 4))  with
Pla) <1 /N) Y o ().

Let  ic(g) = wlq) + A\q*|Ap(q) +1P(g)  and
let Fy(\n,O)%(1/N)log ZS(\,7,¢) with Z° the
partition function in the volume € computed
with energy U'= Z,‘// orclg—qy) +e Z/ Wig;) +
ne > |AW(g;)|. Then Fy(A,n,() is convex in \,n
and it is uniformly bounded above and below if
7], lel, I€] <1 (say) and |A| < Xo: here Ao > O exists
if 7?2|Ag(r)| satisfies the assumption set at the
beginning of the section “Continuous symmetries:
‘no d =2 crystal’ theorem” and the density is smaller
than a close packing (this is because the potential U’
will still satisfy conditions similar to [14] uniformly
in |el,|n| < 1 and |\| small enough).

Convexity and boundedness above and below
in an interval imply bounds on the derivatives in

[81]

the interior points, in this case on the derivatives of Fy
with respect to A, 7, ¢ at 0. The latter are identical to
the averages in [80], [81]. In this way, the constants
By, By, By such that D(x) < x?By + B, and By > D,
are found.

For more details, the reader is referred to Mermin

(1968).
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Introduction

Functional analysis is concerned with the study of
functions and function spaces, combining techniques
borrowed from classical analysis with algebraic
techniques. Modern functional analysis developed
around the problem of solving equations with
solutions given by functions. After the differential
and partial differential equations, which were
studied in the eighteenth century, came the integral
equations and other types of functional equations
investigated in the nineteenth century, at the end of
which arose the need to develop a new analysis,
with functions of an infinite number of variables
instead of the usual functions. In 1887, Volterra,
inspired by the calculus of variations, suggested a
new infinitesimal calculus where usual functions are
replaced by functionals, that is, by maps from a
function space to R or C, but he and his followers
were still missing some algebraic and topological
tools to be developed later. Modern analysis was
born with the development of an “algebra of the
infinite” closely related to classical linear algebra
which by 1890 had (up to the concept of duality,

which was developed later) settled on firm ground.
Strongly inspired by algebraic methods, Fredholm’s
work at the turn of the nineteenth century, in which
emerged the concept of kernel of an operator,
became a founding stone for the modern theory of
integral equations. Hilbert developed further Fred-
holm’s methods for symmetric kernels, exploiting
analogies with the theory of real quadratic forms
and thereby making clear the importance of the
notion of square-integrable functions. With Hilbert’s
Grundzige einer allgemeinen Theorie der Integral-
gleichung, a further step was made from the
“algebra of the infinite” to the “geometry of the
infinite.” The contribution of Fréchet, who intro-
duced the abstract notion of a space endowed with a
distance, made it possible to transfer Euclidean
geometry to the framework of what have since
then been called Hilbert spaces, a basic concept in
mathematics and quantum physics.

The usefulness of functional analysis in the study
of quantum systems became clear in the 1950s when
Kato proved the self-adjointness of atomic Hamilto-
nians, and Garding and Wightman formulated
axioms for quantum field theory. Ever since func-
tional analysis lies at the very heart of many
approaches to quantum field theory. Applications
of functional analysis stretch out to many branches
of mathematics, among which are numerical
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analysis, global analysis, the theory of pseudodiffer-
ential operators, differential geometry, operator
algebras, noncommutative geometry, etc.

Topological Vector Spaces

Most topological spaces one comes across in practice
are metric spaces. A metric on a topological space E
is a map d:E x E — [0, + oo[ which is symmetric,
such that d(u,v) =0 < u=v and which verifies the
triangle inequality d(u, w) < d(u,v) + d(v,w) for all
vectors u, v,w. A topological space E is metrizable if
there is a metric d on E compatible with the topology
on E, in which case the balls with radius 1/7 centered
at any point x € E form a local base at x — that is, a
collection of neighborhoods of x such that every
neighborhood of x contains a member of this
collection. A sequence (,) in E then converges to
u € E if and only if d(u,,u) converges to 0.

The Banach fixed-point theorem on a complete
metric space (E,d) is a useful tool in nonlinear
functional analysis: it states that a (strict) contrac-
tion on E, that is, a map T:E — E such that
d(Tu, Tv) < k(u,v) for all u#v € E and fixed 0 <
k<1, has a wunique fixed point Tuo=uy. In
particular, it provides local existence and uniqueness
of solutions of differential equations dy/dt=F(y, 1)
with initial condition y(0) =1y, where F is Lipschitz
continuous.

Linear functional analysis starts from topological
vector spaces, that is, vector spaces equipped with a
topology for which the operations are continuous. A
topological vector space equipped with a local base
whose members are convex is said to be locally
convex. Examples of locally convex spaces are
normed linear spaces, namely vector spaces
equipped with a norm, a concept that first arose in
the work of Fréchet. A seminorm on a vector space
Vis a map p:V — [0,00[ which obeys the triangle
identity p(u +v) < p(u) + p(v) for any vectors u,v
and such that p(Au)=|\|p(u) for any scalar A\ and
any vector u; if p(u) =0 = u=0, it is a norm, often
denoted by || - ||. A norm on a vector space E gives
rise to a translation-invariant distance function
d(u,v) = ||lu — v|| making it a metric space.

Historically, one of the first examples of normed
spaces is the space C([0, 1]) investigated by Riesz of
(real- or complex-valued) continuous functions on
the interval [0,1] equipped with the supremium
norm ||f]l,, := sup,cpo.1) [f(x)[- In the 1920s, the
general definition of Banach space arose in connec-
tion with the works of Hahn and Banach. A normed
linear space is a Banach space if it is complete as a
metric space for the induced metric, C([0, 1]) being a
prototype of a Banach space. More generally, for

any non-negative integer k, the space C*([0,1]) of
functions on [0,1] of class C* equipped with the
norm |[f|l,= S, [IF?|.. expressed in terms of a
finite number of seminorms /| = sup,cj
If(x)|,i=0,...,k, is also a Banach space.

The space C>([0,1]) of smooth functions on the
interval [0, 1] is not anymore a Banach space since
its topology is described by a countable family of
seminorms ||f||, with k varying in the positive
integers. The metric
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turns it into a Fréchet space, that is, a locally convex
complete metric space. The space S(R”) of rapidly
decreasing functions, which are smooth functions f
on R” for which

£llas = sup [x* DJf (x)|
xeR”

is finite for any multiindices o and £, is also a
Fréchet space with the topology given by the
seminorms || - ||, 5. Further examples of Fréchet
spaces are the space Cj°(K) of smooth functions
with support in a fixed compact subset K C R”
equipped with the countable family of seminorms

IDFlloc, i = sup[Df ()], o € N
xe

and the space C*(M,E) of smooth sections of a
vector bundle E over a closed manifold M equipped
with a similar countable family of seminorms. Given
an open subset Q= Upen K, with K,,p € N com-
pact subsets of R”, the space D(Q2) = Upeny CF(K))
equipped with the inductive limit topology — for
which a sequence (f,) in D(Q) converges to f € D()
if each f, has support in some fixed compact subset
K and (D°f,) converges uniformly to D%f on K for
each mutilindex « — is a locally convex space.
Among Banach spaces are Hilbert spaces which
have properties very similar to those of finite-
dimensional spaces and are historically the first
type of infinite-dimensional space to appear with the
works of Hilbert at the beginning of the twentieth
century. A Hilbert space is a Banach space equipped
with a norm ||-|| that derives from an inner product,
that is, ||ju||* = (u,u) with (-,-) a positive-definite
bilinear (or sesquilinear according to whether the
base space is real or complex) form. Hilbert spaces
are fundamental building blocks in quantum
mechanics; using (closed) tensor products, from a
Hilbert space H one builds the Fock space
F(H)=Y o®*H and from there the bosonic
Fock space F(H)= 3> ,®*H (where ®, stands
for the (closed) symmetrized tensor product) as well
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as the fermionic Fock space ]-'(H):ZEO:OAIQH
(where A* stands for the antisymmetrized (closed)
tensor product).

A prototype of Hilbert space is the space [;(Z) of
complex-valued sequences (#,),c» such that
Znez‘“ﬂz is finite, which is already implicit in
Hilbert’s Grundzugen. Shortly afterwords, Riesz and
Fischer, with the help of the integration tool
introduced by Lebesgue, showed that the space
L*(10,1[) (first introduced by Riesz) of square-
summable functions on the interval ]0, 1], that is,
functions f such that

Wh;=(AWﬂmV¢Q

is finite, provides an example of Hilbert space.
These were then further generalized to spaces
L?(]0,1[) of p-summable (1 <p < oco) functionals
on |0, 1[ (i.e., functions f such that

mm(ﬂﬁuwwfm

is finite), which are not Hilbert unless p =2 but which
provide further examples of Banach spaces, the space
L>(]0,1[) of functions on ]0,1[ bounded almost
everywhere with respect to the Lebesgue measure,
offering yet another example of Banach space.

In 1936, Sobolev gave a generalization of the
notion of function and their derivatives through
integration by parts, which led to the so-called
Sobolev spaces W*?(]0,1[) of functions f €
L?(]0,1[) with derivatives up to order k lying in
L?(]0,1]), obtained as the closure of C*(]0,1[) for
the norm

k 4 1/p
f= Ml llwes = (Z ||8’f||’£p>
=1

(for p=2,W*5P(]0,1[) is a Hilbert space often
denoted by H*(]0, 1[). They differ from the Sobolev
spaces Wg’P(]O, 1[), which correspond to the closure
of the set D(]0,1[) for the norm f|/f|yx,; for
example, an element u¢c Wh?(]0,1[) lies in
Wé’p(]O,l[) if and only if it vanishes at 0 and 1,
that is, if and only if it satisfies Dirichlet-type
boundary conditions on the boundary of the inter-
val.  Similarly, one defines Sobolev spaces
WP (R)= WhP(R) on R, Sobolev spaces W&P(9)
and Wé’p(Q) on open subsets Q C R” and using a
partition of unity on a closed manifold M, Sobolev
spaces HK(M, E) = W*2(M, E) of sections of vector
bundles E over M. Using the Fourier transform
(discussed later), one can drop the assumption that &
be an integer and extend the notion of Sobolev space
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to define W$?(Q)) and H*(M,E) with s any real
number.

Sobolev spaces arise in many areas of mathe-
matics; one central example in probability theory is
the Cameron—-Martin space H!([0,¢]) embedded in
the Wiener space C([0,¢]). This embedding is a
particular case of more general Sobolev embedding
theorems, which embed (possibly continuously,
sometimes even compactly (the notion of compact
operator is discussed in a later section)) WhP-
Sobolev spaces in L9-spaces with g > p such as the
continuous inclusion W*?(R") ¢ L4(R") with
1/q=1/p —k/n, or in Cl-spaces with [ <k such
as, for a bounded open and regular enough subset 2
of R” and for any s >[/+n/p with p >n, the
continuous inclusion W5?(Q) ¢ C/(Q) (the set of
functions in C/() such that D® can be continu-
ously extended to the closure Q for all |a| < ).
Sobolev embeddings have important applications for
the regularity of solutions of partial differential
equations, when showing that weak solutions one
constructs are in fact smooth. In particular, on an 7-
dimensional closed manifold M for s > [ 4+ /2, the
Sobolev space H(M,E) can be continuously
embedded in the space C/(M, E) of sections of E of
class C', which in particular implies that the
solutions of a hypoelliptic partial differential equa-
tion Au=v with v € L>(M,E) are smooth, as for
example in the case of solutions of the Seiberg—
Witten equations.

Duality

The concept of duality (in a topological sense) was
initiated at the beginning of the twentieth century by
Hadamard, who was looking for continuous linear
functionals on the Banach space C(I) of continuous
functions on a compact interval I equipped with a
uniform topology. It is implicit in Hilbert’s theory
and plays a central part in Riesz” work, who
managed to express such continuous functionals as
Stieltjes integrals, one of the starting points for the
modern theory of integration.

The topological dual of a topological vector space
E is the space E* of continuous linear forms on E
which, when E is a normed space, can be equipped
with the dual norm [|L|[g. = sup,eg, <1 |L()]-

Dual spaces often provide a receptacle for singular
objects; any of the functions f € L?(R")(p > 1) and
the delta-function at point x € R 8, : f +— f(x), all lie
in the space S'(R”) dual to S(R”) of tempered
distributions on R”, which is itself contained in the
space D'(R") of distributions dual to D(R").
Furthermore, the topological dual E* of a nuclear
space E contains the support of a probability
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measure with characteristic function (see the next
section) given by a continuous positive-definite
function on E. Among nuclear spaces are projective
limits E=Nyexy Hy (a sequence (u,) € E converges
to u € E whenever it converges to # in each Hy) of
countably many nested Hilbert spaces--- C H, C
H, 1 C---CHp such that the embedding H, C
H, 1 is a trace-class operator (see the section
“Operator algebras”). If H, is the closure of E for
the norm || - ||, the topological dual E’ of E for the
norm || -, is an inductive limit E'= Upen, H-p,
where H_, are the dual (with respect to | - ||,)
Hilbert spaces with norm || - ||_, (a sequence (u,) €
E' converges to u € E' whenever it lies in some H_,
and converges to u for the topology of H_;,) and we
have

Ec---CH,CHy,1C---CHp
=HycH,c---CH,cC---CF

As a result of the theory of elliptic operators on a
closed manifold, the Fréchet space C>*(M,E) of
smooth sections of a vector bundle over a closed
manifold M is nuclear as the inductive limit of
countably many Sobolev spaces HP(M,E) with
L?-dual given by the projective limit of countably
many Sobolev spaces H?(M, E).

The existence of nontrivial continuous linear
forms on a normed linear space E is ensured by the
Hahn-Banach theorem, which asserts that for any
closed linear subspace F of E, there is a nonvanish-
ing continuous linear form that vanishes on F. When
the space is a Hilbert space (H,(-,-)y), it follows
from the Riesz—Fréchet theorem that any continuous
linear form L on H is represented in a unique way
by a vector v € H such that L(u)=(v,u), for all
u € H, thus relating the dual pairing on the left with
the Hilbert inner product on the right and identify-
ing the topological dual H* with H.

The strong topology induced by the norm || - || on
a normed vector space E — that is, the topology in
which a sequence (#,) converges to u# whenever
|4, — u|| — O — is too refined to have compact sets
when E is infinite dimensional since the compactness
of the unit ball in E for the strong topology
characterizes finite-dimensional spaces. Since com-
pact sets are useful for existence theorems, one is
inclined to weaken the topology: the weak topology
on E — which coincides with the strong topology
when E is finite dimensional and for which a
sequence (u,) converges to u if and only if L(u,) —
L(u) VL € E* — has compact unit ball if and only if E
is reflexive or, in other words, if E can be canonically
identified with its double dual (E*)*. For 1 < p < oo,
given an open subset Q C R” the topological dual of

LP(Q) can be identified via the Riesz representation
with LP () with p* conjugate to p, that is, 1/p +
1/p* =1 and LP(Q) is reflexive, whereas the topolo-
gical duals of W*?(Q) and W;?(Q) both coincide
with W7 (Q) so that only Wol(Q) is reflexive.
Neither L'(€2) nor its topological dual L>(f) is
reflexive since L!() is strictly contained in the
topological dual of L>(Q2) for there are continuous
linear forms L on L*®(Q)) that are not of the form

L(u) :/Q uv Yu € L>®(Q)  with v € L'(Q)

Similarly, the topological dual E* of a normed
linear space E can be equipped with the topology
induced by the dual norm || - ||. and the the weak x*-
topology, namely the weakest one for which the
maps L L(u),u € E, are continuous, and the unit
ball in E* is indeed compact for this topology
(Banach—Alaoglu theorem).

Duality does not always preserve separability — a
topological vector space is separable if it has a
countable dense subspace — since L*°(Q2), which is
not separable, is the topological dual of L'(Q),
which is separable. However, as a consequence of
the Hahn-Banach theorem, if the topological dual of
a Banach space is separable then so is the original
space and one has equivalence when adding the
reflexivity assumption; a Banach space is reflexive
and separable whenever its topological dual is. For
1<p<oo,LP(Q) and W(s)’p(Q) are separable and
moreover reflexive if p # 1.

Fourier Transform

In the middle of the eighteenth century, oscillations
of a vibrating string were interpreted by Bernouilli
as a limit case for the oscillation of #-point masses
when 7 tends the infinity, and Bernouilli introduced
the novel idea of the superposition principle by
which the general oscillation of the string should
decompose in a superposition of “proper oscilla-
tions.” This point of view triggered off a discussion
as to whether or not an arbitrary function can be
expanded as a trigonometric series. Other examples
of expansions in “orthogonal functions” (this termi-
nology actually only appears with Hilbert) had been
found in the mean time in relation to oscillation
problems and investigations on heat theory, but it
was only in the nineteenth century, with the works
of Fourier and Dirichlet, that the superposition
problem was solved.

Separable Hilbert spaces can be equipped with a
countable orthonormal system {e,},c, ({€n,€m) =
Omn with (-, -}y the scalar product on H) which is
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complete, that is, any vector # € H can be expanded

in this system in a unique way u= 3, _ it,e, with
Fourier coefficients i, = (u,e,). The latter obey
Parseval’s relation ), ., lita|* = ||u|)* (where |- || is

the norm associated with (-,-)), and the Fourier
transform u+— (it(n)),c, gives rise to an isometric
isomorphism between the separable Hilbert space
H and the Hilbert space [?(7) of square-summable
sequences of complex numbers. In particular, the
space L*(S') of L2-functions on the unit circle
S'=R/Z with its usual Haar measure dt is separ-
able with complete orthonormal system ¢+ e,(f) =
e2™ 1 € 7, and the Fourier transform

1
U (t — it(n) :/ e 2™ty (1) dt)
0 nez

identifies it with the space [*(Z). Under this
identification, the Hilbert subspace I*(IN) obtained
as the range in [?(7Z) of the projection p. : (1), —
(t4),eny corresponds to the Hardy space H>(S!).

The Fourier transform extends to the space S(R”),
sending a function f € S(R”) to the map

61 (6) = e ()

T e

and maps S(R”) onto itself linearly and continuously
with continuous inverse f+— f(—¢). When n=1, the
Poisson formula relates f € S(R) with its Fourier
transform f by Y0 f(2mn)= 3220 __f(n).

Since Fourier transformation turns (up to a
constant multiplicative factor) differentiation Dg
for a multiindex o= (ay,...,q;,) into multiplication
by &¥=¢&1"---&, it can be used to define W*?-
Sobolev spaces with s a real number as the space of
LP-functions with finite Sobolev norms ||u||y., =

([1(1+ [€])a(€)[")"/? (which coincide with the ones
defined prev10usly when s=k is a non-negative
integer).

Fourier transforms are also used to describe a
linear pseudodifferential operator A (see next two
sections where the notions of bounded and
unbounded linear operator are discussed) of order
a acting on smooth functions on an open subset U
of R” in terms of its symbol o4 — a smooth map o
on U x R" with compact support in x such that for
any multi-indices «, 5 € N, there is a constant
Ca,g with

‘D?D?U(%f) < Cop(1+ |§|)a7\ﬁ|

for any £ € R” - by

(AN == [ e oalr.OF(©) de

Fourier transform maps a Gaussian function
xs e~ (/25 on R» where A is a nonzero scalar,
to another Gaussian function ¢ e (/22" (up to
a nonzero multiplicative factor), a starting point for
T-duality in string theory. More generally, the
characteristic function

Ae) = /H & (dx)

of a Gaussian probability measure ;1 with covariance
C on a Hilbert space H is the function
& e /206 COn  Such probability measures typically
arise in Euclidean quantum field theory; in axio-
matic quantum field theory, the analyticity proper-
ties of n-point functions can be derived from the
Wightman axioms using Fourier transforms. Thus,
Fourier transformation underlies many different
aspects of quantum field theory.

Fredholm operators

A complex-valued continuous function K on [0, 1] x
[0, 1] gives rise to an integral operator

1
A f - /0 K(x, ) (y) dy

on complex-valued continuous functions on [0, 1]
(equipped with the supremum norm || - || ) with the
following upper bound property:

1A flloo < Supjoayxjo, 1K M) I 1l

In other words, A is a bounded linear operator with
norm bounded from above by 5“P[0,1]x[0,1]|K(9f, s
a linear operator A:E — F from a normed linear
space (E,|| - ||) to a normed linear space (F,|| - ||) is
bounded (or continuous) if and only if its (operator)
norm |[|Al|[:= supy, <1 [[Au[|y is bounded.

An integral operator

1
Af— /0 K(x, y)f(y) dy

defined by a continuous kernel K is, moreover,
compact; a compact operator is a bounded operator
of normed spaces that maps bounded sets to a
precompact sets, that is, to sets whose closure is
compact. Other examples of compact operators on
normed spaces are finite-rank operators, operators
with finite-dimensional range. In fact, any compact
operator on a separable Hilbert space can be
approximated in the topology induced by the
operator norm ||| - ||| by a sequence of finite-rank
operators.

Inspired by the work of Volterra, who, in the case
of the integral operator defined above, produced
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continuous solutions ¢ = (I — A)'f of the equation
f=(I—-A)¢p for fe C(0,1]), Fredholm in 1900
(Sur une classe d’équations fonctionnelles) studied the
equation f = (I — AA)¢, introducing a complex para-
meter \. He proved what is since then called the
Fredholm alternative, which states that either the
equation [ = (I — AA)¢ has a unique solution for every
f € C([0, 1]) or the corresponding homogeneous equa-
tion (I — AA)¢ = 0 has nontrivial solutions. In modern
language, it means that the resolvent R(A, u)=(A —
uI) ™! of a compact linear operator A is surjective if and
only if it is injective. The Fredholm alternative is a
powerful tool to solve partial differential equations
among which the Dirichlet problem, the solutions of
which are harmonic functions u (i.e., Au=0, where
A=->"0%/0x?) on some domain 2 € R” with
Dirichlet boundary conditions #,, =f, where f is a
continuous function on the boundary 9. The Dirichlet
problem has geometric applications, in particular to the
nonlinear Plateau problem, which minimizes the area of
a surface in R? with given boundary curves and which
reduces to a (linear) Dirichlet problem.

The operator B=1— A built from the compact
operator A is a particular Fredholm operator, namely a
bounded linear operator B: E — F which is invertible
“up to compact operators,” that is, such that there is a
bounded linear operator C: F — E with both BC — I
and CB — Ig compact. A Fredholm operator B has a
finite-dimensional kernel Ker B and when (E,(-,-)f)
and (F,(-,-)p) are Hilbert spaces its cokernel Ker B*,
where B* is the adjoint of B defined by

(Bu,v)p = (u,Bv)y VucE,YvecF

is also finite dimensional, so that it has a well-
defined index ind(B)=dim(Ker B) — dim(Ker B*), a
starting point for index theory. Toplitz operators
T,, where ¢ is a continuous function on the unit
circle S', provide first examples of Fredholm
operators; they act on the Hardy space H*(S') by

Te—n <Z Am em) = Z Antn €m

m>0 m>0

under the identification H*(S') ~ [2(N) C 2(7Z),
with [?(7Z) equipped with the canonical complete
orthonormal basis (e,,n € Z). The Fredholm index
ind(T,_,) is exactly the integer # so that the index of
its adjoint is —, as a consequence of which the index
map from Fredholm operators to integers is onto.

One-Parameter (Semi) groups

Unlike in the finite-dimensional situation, a linear
operator A:E — F between two normed linear
spaces (E,|| - ||g) and (F,|| - ||) is not expected to be

bounded. Unbounded operators arise in partial
differential equations that involve differential opera-
tors such as the Laplacian A on an open subset 2 C
R”. The following equations provide fundamental
examples of partial differential equations which
arose over time from the study of various problems
in mathematical physics with the works of Poisson,
Fourier, and Cauchy:

Au =0 Laplace equation

0%t A :
2 + Au =0 wave equation
13} .
8—1: + Au =0 heat equation

and later the Schrédinger equation in quantum
mechanics:

.Ou
Yor =
where ¢ is a time parameter.

An unbounded linear operator on an infinite-
dimensional normed space is usually defined on a
domain D(A) which is strictly contained in E. The
Laplacian A is defined on the dense domain
D(A)=H?*R") in L?*(R"); it defines a bounded
operator from HZ?(R") to L*(R") but does not
extend to a bounded operator on L*(R”). Like this
operator, most unbounded operators A:E — F one
comes across have dense domain D(A) in E and are
closed, that is, their graph {(u,Au),u € D(A)} is
closed as a subset of the normed linear space E x F.
When not actually closed, they can be closable, that
is, they can have a closed extension called the
closure of the operator. By the closed-graph theo-
rem, when E and F are Banach spaces, a linear
operator A: E — F is continuous whenever its graph
is closed, as a consequence of which a closed linear
operator A:E — F defined on a dense domain is
bounded provided its domain coincides with the
whole space.

For a closed operator A:E — F with dense
domain D(A), when E and F are Hilbert spaces
equipped with inner products (-,-); and (-,-)g, the
adjoint A* of A is defined on its domain D(A*) by

Au

(Au,v)p = (u, A"v)  Y(u,v) € D(A) x D(A")

A self-adjoint operator A with domain D(A) is one
for which D(A)=D(A*) and A = A*; the Laplacian
A on R” is self-adjoint on the Sobolev space H?(R")
but it is only essentially self-adjoint on the dense
domain D(R”), the latter meaning that its closure is
self-adjoint.

Unbounded self-adjoint operators can arise as
generators of one-parameter semigroups of bounded
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operators. A one-parameter family of bounded
operators Ty, t > 0 (Ty, ¢t € R) on a Hilbert space H
is a semigroup (resp. group) if T,T, =T, s Vi, s > 0
(resp. Vt,s € R) and it is strongly continuous (or
simply continuous) if lim, _,;, Tyu =Ty, u at any ¢y > 0
(resp. tp € R) and for any u € H.

Stones’ theorem sets up a one-to-one correspon-
dence between continuous one-parameter unitary
(U;U,=U,U; =I) groups U;,t € R on a Hilbert
space such that Uy=Id and self-adjoint operators
A obtained as infinitesimal generators, that is, as the
strong limit

U —u
b)

Au = lim uecH

t—0
of U,teR, which in a compact form reads
U,=e"*. An important example in quantum
mechanics is U,=e'HUy,t € R with H a self-
adjoint Hamiltonian, which solves the Schrodinger
equation d/dtu=iHu. The Lie-Trotter formula,
which has important applications for Feynman
path integrals, expresses the unitary semigroup
generated by A+ B, where A, B, and A+ B are
self-adjoint on their respective domains as a strong
limit
B — lim (e%eiITB)n

t—00

On the other hand, positive operators on a
Hilbert space (H,(-,-)y) — that is, A self-adjoint
and such that (Au,u),; >0 Vu € D(A) — generate
one-parameter semigroups T;=e 4,z > 0. Hille
and Yosida proved that on a Hilbert space, strongly
continuous contraction (i.e., |||T||| <1 V&> 0)
semigroups such that Tp=Id are in one-to-one
correspondence with densely defined positive opera-
tors A: D(A) C H — H that are maximal (i.e., I + A
is onto), obtained as (minus the) infinitesimal
generators
T —u

—Au = lim
t—0

, ueH

of the corresponding semigroups. Similarly, a posi-
tive densely defined self-adjoint operator A on a
Hilbert space H gives rise to a densely defined closed
symmetric sesquilinear form (u,v) —(v/Au, VAv),
(see next section for a definition of v/A;(-, Yy is the
scalar product on H) and this map yields a one-
to-one correspondence between operators and
sesquilinear forms on H with the aforementioned
properties, one of the starting points for the theory
of Dirichlet forms. To a probability measure p on
a separable Banach space E, one can associate a
densely defined closed symmetric sesquilinear form
(it is in fact a Dirichlet form) on a Hilbert space H

such that E* C H*=H C E, which in the particular
case of the standard Wiener measure p on the
Wiener space E=C([0,¢]) and with Hilbert space
given by the Cameron-Martin space H = H'([0, ¢]),
is the bilinear form

(u,v) — /(?u, V) y

with V the (closed) gradient of Malliavin calculus.
The operator —A, where A is the Laplacian on R”,

generates the heat-operator semigroup e 2%,z > 0. It

has a smooth kernel K; € C*(R” x R”) defined by

(€400 = [ Ky ¥ e GFR)
g

and defines a smoothing operator, an operator that
maps Sobolev function to smooth function. In
general, a pseudodifferential operators A on an
open subset U of R” with symbol o4 only has a
distribution kernel

Katx,y) = [ e 9a(e)de

The kernel of the inverse Laplacian (A + m?2)7!
on R” (the non-negative real number ? stands
for the mass) called Green’s function on R”,
plays an essential role in the theory of Feynman
graphs.

Spectral Theory

Spectral theory is the study of the distribution of the
values of the complex parameter A for which, given
a linear operator A on a normed space E, the
operator A — M has an inverse and of the properties
of this inverse when it exists, the resolvent
R(A,\)=(A — XI)"! of A. The resolvent p(A) of A
is the set of complex numbers X\ for which A — AT is
invertible with densely defined bounded inverse. The
spectrum Sp(A) of A is the complement in C of the
resolvent; it consists of a union of three disjoint sets:
the set of all complex numbers A for which A — Al is
not injective, called the point spectrum — such a X is
an eigenvalue of A with associated eigenfunction
any u € D(A) such that Au= \u; the set of points A
for which A — AI has a densely defined unbounded
inverse R(A, \) called the continuous spectrum; and
the set of points A for which A — A\ has a well-
defined unbounded but not densely defined inverse
R(A, \) called the residual spectrum.

A bounded operator has bounded spectrum and a
self-adjoint operator A acting on a Hilbert space has
real spectrum and no residual spectrum since the
range of A — \I is dense. As a consequence of the
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Fredholm alternative, the spectrum of a compact
operator consists only of point spectrum; it is
countable with accumulation point at 0. A Hamilto-
nian of a quantum mechanichal system can have
both point and continuous spectra, but its point
spectrum is of special interest because the corre-
sponding eigenfunctions are stationary states of the
system. As was first pointed out by Kac (“Can you
hear the shape of a drum?”), the spectrum of an
operator acting on functions can reflect the geome-
try of the space these functions are defined on, a
starting point for many interesting and far-reaching
questions in differential geometry.

A self-adjoint linear operator on a Hilbert space
can be described in terms of a family of projections
E), A € R via the spectral representation

A= / AE,
Sp(A)

Given a Borel real-valued function f on IR, the operator

f) = [ fONEs
Sp(A)

yields another self-adjoint operator. A positive

operator A on a dense domain D(A) of some Hilbert

space (H,(-,-)y) has non-negative spectrum and for

any positive real number t, the map A+ e gives

the associated bounded heat-operator

e :/ e "AdE,
Sp(A)

while the map A—+/A gives rise to a positive

2
operator v/A such that VA" = A.

The resolvent can also be used to define new
operators

F(A) = 5 /C FOUR(A, A)dA

from a linear operator via a Cauchy-type integral
along a countour C around the spectrum; this way
one defines complex powers A% of (essentially self-
adjoint) positive elliptic pseudodiffferential opera-
tors which enter the definition of the zeta-function,
z+—((A,z), of the operator A. The (-function is a
useful tool to extend the ordinary determinant to
(-determinants of self-adjoint elliptic operators,
thereby providing an ansatz to give a meaning to
partition functions in the path integral approach to
quantum field theory.

Operator Algebras

Bounded linear operators on a Hilbert space H
form an algebra £(H) closed for the operator norm

with involution given by the adjoint operation
A A% it is a C*-algebra, that is, an algebra over
C with a norm || - || and an involution * such that A
is closed for this norm and such that ||ab|| < ||a||||b]]
and ||la*al|=|a||* for all a,bcA and by the
Gelfand—Naimark theorem, every C*-algebra is
isomorphic to a sub-C*-algebra of some L£(H). The
notion of spectrum extends from bounded opera-
tors to C*-algebras; the spectrum sp(a) of an
element @ in a C*-algebra A is a (compact) set of
complex numbers such that @ — X -1 is not inver-
tible. The notion of self-adjointness also extends
(a=a*), and just as a self-adjoint operator B €
L(H) is non-negative (in which case its spectrum
lies in R™) if and only if B=A*A for some bounded
operator A, an element b € A is said to be non-
negative if and only if b=a*a for some a € A, in
which case sp(a) C R{.

The algebra C(X) of continuous functions f: X —
C vanishing at infinity on some locally compact
Hausdorff space X equipped with the supremum
norm and the conjugation /[ is also a C*-algebra
and a prototype for abelian C*-algebras, since
Gelfand showed that every abelian C*-algebra is
isometrically isomorphic to C(X), with X compact if
the algebra is unital. To a C*-algebra A, one can
associate an abelian group K((A) which is dual to the
Grothendieck group K°(X) of isomorphism classes of
vector bundles over a compact Hausdorff space X.

Compact operators on a Hilbert space H form
the only proper two-sided ideal K(H) of the C*-
algebra £(H) which is closed for the operator norm
topology on L(H). The quotient L(H)/K(H) is
called the Calkin space, after Calkin, who classi-
fied all two-sided ideals in L(H) for a separable
Hilbert space H; one can set up a one-to-one
correspondence between such ideals and certain
sequence spaces. Corresponding to the Banach
space ['(7Z) of complex-valued sequences (x,) such
that >, . |#.] < 00, is the *-ideal Z;(H) of trace-
class operators. The trace tr(A)=3", ,(Aene.)y
of a negative operator A € L(H) lies in [0, +o0]
and is independent of the choice of the complete
orthonormal basis {e,,n € Z} of H equipped with
the inner product (-, ). Z1(H) is the Banach space
of bounded linear operators on H such that
|[A]l; =tr(JA]) is bounded. Given an (esssentially
self-adjoint) positive differential operator D of
order d acting on smooth functions on a closed
n-dimensional Riemannian manifold M, its
complex power D™ is a trace class on the space
of L2-functions on M provided Re(z) > 7/d and the
corresponding trace tr(D¥) extends to a mero-
morphic function on the whole plane, the
¢-function ¢(D,z) which is holomorphic at 0.
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More generally, Banach spaces ?(Z), 1 <p < oo,
of complex-valued sequences (u,),c, such that
> er |al? < oo relate to Schatten ideals Z,(H), 1 <
p < oo, where Z,,(H) is the Banach space of bounded
linear operators on H such that [|A]|, = (tr(|AP)) /P
is bounded. Just as all /’-sequences converge to 0,
the Schatten ideals Z,(H) all lie in K(H) and we
have --- CZ,,1(H) CZ,(H) C --- C K(H).

Compact operators and Schatten ideals are
useful to extend index theory to a noncommuta-
tive context; a Fredholm module (H, F) over an
involutive algebra A is given by an involutive
representation m of A in a Hilbert space H and
a self-adjoint bounded linear operator F on H
such that F>=Idy and the operator brackets
[F,m(a)] are compact for all ac€A. To a
p-summable Fredholm module (H, F), that is,
[F,m(a)] € Z,(H) for all a € A, one associates a
representative 7 of the Chern character ch*(H, F)
given by a cyclic cocycle on A, which pairs up with
K-theory to build an integer-valued index map 7
on K-theory.

Schatten ideals are also useful to investigate the
geometry of infinite-dimensional spaces such as loop
groups, for which the Hilbert-Schmidt operators
(operators in Z,(H) are also called Hilbert-Schmidt

operators) are particularly useful. A Holder-type
inequality shows that the product of two Hilbert—
Schmidt operators is trace-class. Moreover, for any
two Hilbert-Schmidt operators A and B, the
“cyclicity property” that tr(AB)=tr(BA) holds,
and the sesquilinear form (A, B)+ tr(A B*) makes
L>(H) a Hilbert space.
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Introduction

Minkowski spacetime is generally regarded as the
appropriate mathematical context within which to
formulate those laws of physics that do not refer
specifically to gravitational phenomena. Here we
shall describe this context in rigorous terms,
postulate what experience has shown to be its
correct physical interpretation, and illustrate by
means of examples its appropriateness for the
formulation of physical laws.

Minkowski Spacetime
and the Lorentz Group

Minkowski spacetime M is a four-dimensional real
vector space on which is defined a bilinear form
g: M x M — R that is symmetric (g(v, w) =g(w,v)
for all v,w € M) and nondegenerate (g(v,w)=0

for all w € M implies v=0). Further, g has index 1,
that is, there exists a basis {eq, e, 3, e4} for M with

1 ifa=b=1,2,3
g(@a,E}]) = Nab = -1 fa=b=4
0 ifa#b

g is called a Lorentz inner product for M and any
basis of the type just described is an orthonormal
basis for M. We shall often write v - w for the value
gv,w) of g on (v,w) € M x M. A vector v € M is
said to be spacelike, timelike, or null if v-v is
positive, negative, or zero, respectively, and the set
Cy of all null vectors is called the null cone in M. If
{e1,e2,e3,e4} is an orthonormal basis and if
we write v=v'e; + v2e; + v3e3 + vtey =1, (using
the Einstein summation convention, according to
which a repeated index, one subscript and one
superscript, is summed over its possible values) and
w=uwley, then
v-w=v'w' + v’ + 1w — vt

= Tab v wb
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Timelike
e

22— Null

Spacelike \\

Figure 1 Spacelike, timelike and null vectors.

In particular, v is null if and only if

(hence the name null “cone” for Cy). Timelike vectors
are “inside” the null cone and spacelike vectors are
“outside” (see Figure 1).

We select some orientation for the vector space M
and will henceforth consider only oriented, ortho-
normal bases for M. From the Schwartz inequality
for R, one can show (Naber 1992, theorem 1.3.1)
that, if v is timelike and w is either timelike or null
and nonzero, then v-w < 0 if and only if v*w* > 0
in any orthonormal basis. In particular, one can
define an equivalence relation on the set of all
timelike vectors by decreeing that two such, v and
w, are equivalent if and only if v-w < 0. For
reasons that will emerge shortly we then say that v
and w have the same time orientation. There are
precisely two equivalence classes, one of which we
select and designate future directed. Timelike vectors
in the other class are then called past directed. One
can show (Naber 1992, section 1.3 and corollary
1.4.5) that this classification can be extended to
nonzero null vectors as well (but not to spacelike
vectors). We will call an oriented, orthonormal basis
time oriented if its timelike vector es4 is future
directed and will consider only these in what
follows. An oriented, time-oriented, orthonormal
basis for M will be called an admissible basis. If
{e1,e2,e3,e4} and {éq,eé1,e3,e4} are two such bases
and if we write

ep = A'per + N2y + Apes + A2y
=A%e,, b=1,2,34 [1]
then the matrix A=(A%) (a=row index,

b =column index) can be shown to satisfy the
following three conditions (Naber 1992, section 1.3):

1. (orthogonality) ATnA =,
where T means transpose and

1 0 0 O
0 0 0
n:(nab): 00 1 0
0 0 0-1

2. (orientability) det A=1, and
3. (time orientability) A*; > 1.

We shall refer to any 4 x 4 matrix A = (A?,) satisfying
these three conditions as a Lorentz transformation
(although one often sees the adjectives “proper” and
“orthochronous” appended to emphasize conditions
(2) and (3), respectively). The set £ of all such matrices
forms a group under matrix multiplication that we call
simply the Lorentz group. It is a simple matter to show
(Naber 1992, lemma 1.3.4) from the orthogonality
condition (1) that, if A*4=1, then A must be of the
form

(R%)

0 0

=]

0 1

where (R%) is an element of SO(3), that is, a 3 x 3
orthogonal matrix with determinant 1. The set R of
all matrices of this form is a subgroup of £ called
the rotation subgroup. Although it will play no role
in what we do here, it should be pointed out that in
many applications (e.g., in particle physics) it is
necessary to consider the larger group of transfor-
mations of M generated by the Lorentz group and
spacetime translations (x? — x? + A?, for some con-
stants A%,a=1,2,3,4). This is called the inhomoge-
neous Lorentz group, or Poincaré group.

Physical Interpretation

For the purpose of describing how one is to think of
Minkowski spacetime and the Lorentz group physi-
cally it will be convenient to distinguish (intuitively
and terminologically, if not mathematically) between a
“vector” in M and a “point” in M (the “tip” of a
vector). The points in M are called events and are to be
thought of as actual physical occurrences, albeit
idealized as “point events” which have no spatial
extension and no duration. One might picture, for
example, an instantaneous collision, or explosion, or
an “instant” in the history of some point material
particle or photon (“particle of light”).

Events are observed and identified by the assign-
ment of coordinates. We will be interested in
coordinates assigned in a very particular way by a
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very particular type of observer. Specifically, our
admissible observers preside over three-dimensional,
right-handed, Cartesian spatial coordinate systems,
relative to which photons always move along
straight lines in any direction. With a single clock
located at the origin, such an observer can determine
the speed, c, of light in vacuo by the so-called Fizeau
procedure (emit a photon from the origin when the
clock there reads #;, bounce it back from a mirror
located at (x',x?,x3%), receive the photon at the
origin again when the clock there reads #, and set

6:2\/(x1)2 + (x2) + (x3)2/(t2 —11)). Now place an
identical clock at each spatial point and synchronize
them by emitting from the origin a spherical
electromagnetic wave (photons in all directions)

and setting the clock whose location is (x!,x2,x%)

to read \/(x1)2 + (x2)* 4 (x3)*/c at the instant the
wave arrives. An observer now assigns to an event
the three spatial coordinates of the location at which
it occurred in his coordinate system as well as the
time reading on the clock at that location at the
instant the event occurred. We shall assume also
that our admissible observers are inertial in the sense
of Newtonian mechanics (the trajectory of a particle
on which no forces act, when described in terms
of the coordinates just introduced, is a point or a
straight line traversed at constant speed). It is an
experimental fact (and quite a remarkable one) that
all of these admissible observers (whether or not they
are in relative motion) agree on the numerical value of
the speed of light in vacuo (¢ ~ 3.00 x 10'°cms™1).
We shall exploit this fact at the outset to have all of our
admissible observers measure time in units of distance
by simply multiplying their time coordinates ¢ by c.
The resulting time coordinate is denoted x* =ct. In
these units all speeds are dimensionless and the speed
of light in vacuo is 1.

In our mathematical model M of the world of
events, this very subtle and complex notion of an
admissible observer is fully identified with the
conceptually very simple notion of an admissible
basis {e1,er,e3,e4}. If x € M is an event and if we
write x = x7e,, then (x!,x%, x3) are the spatial and x*
is the time coordinate supplied for x by the
corresponding observer. If {é1,é;,e3,é4} is another
basis/observer related to {e1, ez, e3,e4} by [1] and if
we write x = x7%¢,, then

=Nt a=1,2,34 2]
Thus, Lorentz transformations relate the space and
time coordinates supplied for any given event by two
admissible observers. If (A?,) € R, then the two
observers differ only in the orientation of their spatial

coordinate axes. On the other hand, for any real
number 6 one can define an element L(6) of £ by

cosh® 0 O —sinh6
0 1 0 0
L(Q) = 0 0 1 0 [3]
—sinh 0 0 cosh 0

and, if two admissible bases are related by this Lorentz
transformation, then the coordinate transformation [2]
becomes

%! = (cosh §) x! — (sinh 6) x*
2_ 2
x

*>
I

4]

3 3

=
Il

x* = —(sinh #) x' + (cosh #) x*
Letting 8 = tanh 6 (so that —1 < 8 < 1) and suppressing

%% =x? and %° = x3, one obtains
1 g
o1 1 4
il = xl — x
Vice vies 5
5C4 _ ﬁ 1 1 4

Jieg i
This corresponds to two observers whose spatial
axes are oriented as shown in Figure 2 with the
hatted coordinate system moving along the common
x!-, &'-axis with speed ||, to the right if 3 > 0 and
to the left if 3 < 0.

We remark that, reverting to traditional time units,
B=v/c, where |v| is the relative speed of the two
coordinate systems, and [5] becomes what is gener-
ally referred to as a “Lorentz transformation” in
elementary expositions of special relativity, that is,

1

g X -u
N Ty ¢
i:t—(v/cz)xl 6]

— (“8> 0)

——m x| x

Figure 2 Observers in standard configuration.
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There is a sense in which, to understand the
kinematic effects of special relativity, it is enough
to restrict one’s attention to the so-called special
Lorentz transformations L(f). Specifically, one can
show (Naber 1992, theorem 1.3.5) that if A € £ is
any Lorentz transformation, then there exists a real
number 6 and two rotations R, R, € R such that
A=R{L(0)R,. Since Ry and R, involve no relative
motion, all of the kinematics is contained in L(6).
We shall explore these kinematic effects in more
detail shortly.

Now suppose that x and x( are two distinct events
in M and consider the displacement vector x — xg
from x( to x. If {e(,es,e3,e4) is an admissible basis
and if we write x =x%, and xo=x{e,;, then x —
x0 = (x* — x{)e; = Ax?e,. If x — x¢ is null, then

(Ax")?+(Ax?) 4 (Ax) = (Ax*)’
so the spatial separation of the two events is equal to
the distance light would travel during the time lapse
between the events. The same must be true in any
other admissible basis since Lorentz transformations
are the matrices of linear maps that preserve the
Lorentz inner product. Consequently, all admissible
observers agree that x¢p and x are “connectible by
a photon.” They even agree as to which of the two
events is to be regarded as the “emission” of the
photon and which is to be regarded as its “reception”
since one can show (Naber 1992, theorem 1.3.3)
that, when a vector is either timelike or null and
nonzero, the sign of its fourth coordinate is the same
in every admissible basis (because A*; > 1). Thus,
x* — x} is either positive for all admissible observers
(xo occurred before x) or negative for all admissible
observers (x¢ occurred after x). Since photons move
along straight lines in admissible coordinate systems
we adopt the following terminology. If xo,x € M are
such that x — x¢ is null, then the straight line in M
containing x¢ and x is called the world line of a
photon in M and is to be thought of as the set of all
events in the history of some particle of light that
“experiences” both xy and x.

Let us now suppose instead that x — x is timelike.
Then, in any admissible basis,

(Ax1)2+(Ax2)2+(Ax3)2< (Ax4)2

so the spatial separation of xg and x is less than the
distance light would travel during the time lapse
between the events. In this case, one can prove (Naber
1992, section 1.4) that there exists an admissible basis
{e1, e, 23,4} in which Ax! = Ax? = Ax? =0, that is,
there is an admissible observer for whom the two
events occur at the same spatial location, one after the
other. Thinking of this location as occupied by some

material object (e.g., the observer’s clock situated at
that point) we find that the events xo and x are both
“experienced” by this material particle and that,
moreover, +/|g(x — xo,x — xo)| is just the time lapse
between the events recorded by a clock carried along by
this material particle. To any other admissible observer
this material particle appears “free” (not subject to
forces) because it moves on a straight line with constant
speed. This leads us to the following definitions. If
x0,x € M are such that x — x is timelike, then the
straight line in M containing x( and x is called the
world line of a free material particle in M and
V1g(x — x0,x — x0)|, usually written 7(x —xo), or
simply AT, is the proper time separation of xy and x.
One can think of 7(x — x¢) as a sort of “length” for
x — xo measured, however, by a clock carried along by
a free material particle that experiences both xy and x.
It is an odd sort of length, however, since it satisfies
not the usual triangle inequality, but the following
“reversed” version.

Reversed triangle inequality (Naber 1992, theorem
1.4.2) Let xg, x and y be events in M for whichy — x
and x — xg are timelike with the same time orientation.
Theny — xo=(y — x) + (x — x0) is timelike and

m(y —x0) > 7(y — x) + 7(x — x0) (7]

with equality holding if and only if y — x and x — xo
are linearly dependent.

The sense of the inequality in [7] has interesting
consequences about which we will have more to say
shortly.

Finally, let us suppose that x —xo is spacelike.
Then, in any admissible basis

(Ax))? + (Ax2)” + (Ax)* > (Axt)?

so the spatial separation of xo and x is greater than the
distance light could travel during the time lapse that
separates them. There is clearly no admissible observer
for whom the events occur at the same location. No
free material particle (or even photon) can experience
both x( and x. However, one can show (Naber 1992,
section 1.5) that, given any real number T (positive,
negative, or zero), one can find an admissible basis
{é1,62,83,24) in which Ax*=T. Some admissible
observers will judge the events simultaneous, some
will assert that xo occurred before x, and others will
reverse the order. Temporal order, cause and effect,
have no meaning for such pairs of events. For those
admissible observers for whom the events are simulta-
neous (Ax*=0), the quantity \/g(x — x0,x — x¢) is
the distance between them and for this reason this
quantity is called the proper spatial separation of xg
and x (whenever x — xq is spacelike).
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For any two events xo,x € M, g(x — x0,x — x0) 1s
given in any admissible basis by (Ax')* + (Ax?)* +
(Ax3)? — (Ax*)* and is called the interval separating
xo and x. It is the closest analog in Minkowskian
geometry to the (squared) length in Euclidean
geometry. It can, however, assume any real value
depending on the physical relationship between
the events xo and x. Historically, of course, it was
the various physical interpretations of this interval
that we have just described which led Minkowski
(Einstein ef al. 1958) to the introduction of the
structure that bears his name.

Kinematic Effects

All of the well-known kinematic effects of special
relativity (the addition of velocities formula, the
relativity of simultaneity, time dilation, and length
contraction) follow easily from what we have done.
Because it eases visualization and because, as we
mentioned earlier, it suffices to do so, we will limit our
discussion to the special Lorentz transformations.

Let 01 and 0, be two real numbers and consider
the corresponding elements L(6;) and L(6,) of
L defined by [3]. Sum formulas for sinhf and
cosh @ imply that L(01)L(6)=L(6y + 0). Defining
B;=tanh0;,i=1,2, and 8= tanh (6 + 6,), the sum
formula for tanhé then gives

B1+ B
1+ 615

The physical interpretation is simple. One has three
admissible observers whose spatial axes are related
in the manner shown in Figure 2. If the speed of the
second relative to the first is 81 and the speed of the
third relative to the second is (3, then the speed of
the third relative to the first is not 81 + /3 as a
Newtonian predisposition would lead one to expect,
but rather 8, given by [8]. This is the relativistic
addition of velocities formula.

We have seen already that, when the interval
between xo and x is spacelike, the events will be
judged simultaneous by some admissible obser-
vers, but not by others. Indeed, if Ax*=0
and the observers are related by [5], then Ax*=
—(B//T— P)Ax! = — A%, which will not be
zero unless =0 and so there is no relative motion
(A%'! cannot be zero since then Ax*=0 for
a=1,2,3,4 and x=x(). This phenomenon is
called the relativity of simultaneity and we now
construct a simple geometrical representation of it.

Select two perpendicular lines in the plane to
represent the x'- and x*-axes (the Euclidean ortho-
gonality of the lines has no physical significance and

B= 8]

is unnecessary, but makes the pictures easier to
draw). The &x'-axis will be represented by the
straight line ¥*=0 which, from [5], is given by
x*=Bx' (in Figure 3 we have assumed that 3 > 0).
Similarly, the x*-axis is identified with the line
x*=(1/B)x'. Since Lorentz transformations leave
the Lorentz inner product invariant, the hyperbolas
(x!)* — (x*)* =k coincide with (%!)* — (¥*)*=k and
we calibrate the axes accordingly, for example, the
branch of (x!)*> — (x*)*=1 with x! > 0 intersects
the x!'-axis at the point (x!,x*) = (1, 0) and intersects
the x'-axis at the point (%',%*)=(1,0). This
necessitates a different scale on the hatted and
unhatted axes, but one can show (Naber 1992,
section 1.3) that, with this calibration, all coordi-
nates can be obtained geometrically by projecting
parallel to the opposite axis (e.g., the x*- and x*-
coordinates of an event result from projecting
parallel to the x!- and x!-axes, respectively).

Thus, a line of simultaneity in the hatted
(respectively, unhatted) coordinates is parallel to
the x'- (respectively, x!-) axis so that, in general, a
pair of events lying on one will not lie on the other
(note, however, that these lines are “really” three-
dimensional hyperplanes so what appears to be a
point of intersection is actually a two-dimensional
“plane of agreement”, any two events in which are
judged simultaneous by both observers).

For any two events whatsoever the relationship
between the time lapse Ax* in the hatted coordinates
and the time lapse Ax* in the unhatted coordinates is,
from [5],

. p 1 1 4
Azt = — Ax" + Ax
N VI—3
so the two are generally not equal. Consider, in

particular, two events on the world line of a point
at rest in the unhatted coordinate system, for

X /,(X1)2_(X4)2=1
Hatted line of simultaneity
Unhatted line of simultaneity
)?1
7 1 .
(x',%%)=(1,0)
1
h! X
L (' xh=(1,0)

Figure 3 Relativity of simultaneity.
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example, two readings on the clock at rest at the
origin in this system. Then Ax!=0 so

Azt = Ax* > Ax*

1- 3
This effect is entirely symmetrical since, if Ax' =0,
then [5] implies

Ax* = Az > Ax*

1
N
Each observer judges the other’s clocks to be
running slow. This phenomenon is called time
dilation and is clearly visible in the spacetime
diagram in Figure 4 (e.g., both observers agree
on the time reading “0” for the clock at the origin of
the unhatted system, but the line &*=1 intersects
the world line of the clock, i.e., the x*-axis, at a
point below (x!,x*)=(0,1)).

We should emphasize that this phenomenon is
quite “real” in the physical sense. For example,
certain types of elementary particles (mesons) found
in cosmic radiation are so short-lived (at rest) that,
even if they could travel at the speed of light, the
time required to traverse our atmosphere would be
some ten times their normal life span. They should
not be able to reach the earth, but they do. Time
dilation “keeps them young” in the sense that what
seems a normal life time to the meson appears much
longer to us.

Finally, since admissible observers generally
disagree on which events are simultaneous and
since the only way to measure the “length” of a
moving object (say, a measuring rod) is to locate its
end points “simultaneously,” it should come as no
surprise that length, like simultaneity, and time,
depends on the admissible observer measuring it.
Specifically, let us consider a measuring rod lying
at rest along the &!'-axis of the hatted coordinate

x* ()2 (x4)2 =1

Figure 4 Time dilation.

, (X1)2—(X4)2:1

L, x4 =(1,0)

Figure 5 Length contraction.

system. Its “length” in this coordinate system is Ax!.
The world lines of its end points are two straight
lines parallel to the *-axis. If the unhatted observer
locates two events on these world lines “simulta-
neously” their coordinates will satisfy Ax*=0 and,

by [5] Ax'=(1/y/1 - )Ax! so
Ax' = /1 - 3> Ax! < Ax!

and the moving measuring rod appears contracted in
its direction of motion by a factor of /1 — 3%. As
for time dilation, this phenomenon, known as length
contraction, is entirely symmetrical, quite real, and
clearly visible in a spacetime diagram (Figure 5).

The Relativity Principle

We have found that admissible observers can disagree
about some rather startling things (whether or not two
events are simultaneous, the time lapse between two
events even when no one thinks they are simultaneous,
and the length of a measuring rod). This would be
a matter of no concern at all, of course, if one could
determine, in any given situation, who was really
right. Surely, two events are either simultaneous or
they are not and we need only sort out which
admissible observer has the correct view of the
situation? Unfortunately (or fortunately, depending
on one’s point of view) this distinction between
the judgments made by different admissible observers
is precisely what physics forbids.

The relativity principle (Einstein et al. 1958). All
admissible observers are completely equivalent for
the formulation of the laws of physics.

We must be clear that this is not a mathematical
statement. It is rather a statement about the physical
world around us and how it should be described,
gleaned from observations, some of which are
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complex and subtle and some of which are common-
place (a passenger in a smooth, quiet airplane
traveling at constant groundspeed cannot “feel”
his motion relative to the earth). It is a powerful
guide for constructing the laws of relativistic
physics, but even more fundamentally it prohibits
us from regarding any particular admissible observer
as having a privileged view of the universe. In
particular, we are forbidden from attaching any
objective significance to such questions as, “were the
two supernovae simultaneous?”, “How long did the
meson survive?”, and “What is the distance between
the Crab Nebula and Alpha Centauri?” This is
severe, but one must deal with it.

Particles and 4-Momentum

IfI C Risaninterval,thenamapa:I — Misacurve
in M. Relative to any admissible basis we can write

a(§) = x"(£) eq

for each ¢ € I. We shall assume that « is smooth in
the sense that each x%(£),a=1,2,3,4, is infinitely
differentiable (C*>) on I and the velocity vector

is nonzero for every £ €1 (we adopt the usual
custom, in a vector space, of identifying the tangent
space at each point with the vector space itself). This
definition of smoothness clearly does not depend on
the choice of admissible basis for M. The curve « is
said to be spacelike, timelike, or null if

dx? dax?

0/(5) : a'(f) = Nab Tfo

is positive, negative, or zero, respectively, for each
¢ el A timelike curve a for which o/(€) is future
directed for each £ € [ is called a timelike world line
and its image is identified with the set of all events
in the history of some (not necessarily free) point
material particle. If 1=[&y,&] and «:[&,&] — M
is a timelike world line, then the proper time length
of « is defined by

&
L(a) = i VIg(e/(§), o'(€)) dg

B /51 dxe daxcb
o

~Nab d_f d_f
and interpreted as the time lapse between the events
a(&) and «(&;) as recorded by a clock carried along by
the particle whose world line is «v. This interpretation
is easily motivated by writing out a Riemann sum

approximation to the integral and appealing to our
interpretation of the proper time separation
AT =1+/—n, Ax9 Ax?. There are subtleties, however,
both mathematical and physical (Naber 1992, section
1.4). The mathematical ones are addressed by the
following result (which combines theorems 1.4.6
and 1.4.8 of Naber (1992)).

Theorem Let xg and x be two events in M. Then
x — xo is timelike and future directed if and only if
there exists a timelike world line o[£y, &1] — M in
M with a(&y) =x and o(&1) =x and, in this case,

L(a) < 7(x — x0) [9]

with equality bolding if and only if « is a parametriza-
tion of a timelike straight line.

The inequality [9] asserts that if two material
particles experience both xy and x, then the one
that is free (and so can be regarded as at rest in
some admissible coordinate system) has longer to
wait for the occurrence of the second event (moving
clocks run slow). For many vyears this basically
obvious fact was christened “The Twin Paradox.”

Just as a smooth curve in Euclidean space has an
arc length parametrization, so a timelike world line
has a proper time parametrization defined as
follows. For each & in [&,&1] let

3
= 1(0) = /5 gl Q). Q] d¢

(the proper time length of a from «(&) to a(f)).
Then 7= 7(£) has a smooth inverse £ =£(7) so a can
be reparametrized by 7. We will abuse our notation
slightly and write

a(r) = x(1)e,
The velocity vector with this parametrization is
denoted
e
dr
called the 4-velocity of the world line and is the unit
tangent vector field to a, that is,

U(r)-U(r) = -1 [10]

U=U(r) =

€aq

for each 7. An admissible observer is, of course,
more likely to parametrize a world line by his own
time coordinate x*. Then

gy dxt dx? dx’
« (x ) —d—x4€1 +d—x4€2 +d—x4€3+e4

SO

lg(/(x*), o/ ()] = 1= |[V|I*
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where

dx\*  /dx?\* [dx3\?
V= () () +(6)

is the usual magnitude of the particle’s velocity
vector

V=V(x*
dx! dx? dx3
T T2 T g
= Vie,'

in the given admissible coordinate system. One finds
then that

u=(1-1vIF) ey

We shall identify a material particle in M with a
pair (a, m), where « is a timelike world line and 2 is
a positive constant called the particle’s proper mass
(or rest mass). If each dx?/d¢ a=1,2,3,4, is
constant, then (o, m) is a free material particle with
proper mass m. The 4-momentum of (a,m) is

defined by P=mU. Thus,
P-P=—m? [12]

In any admissible basis we write

d a
P = P, = mU%, = miea

dr

~1/2
=m(1=VI*) " (V+es) [13]
The “spatial part” of P in these coordinates is
p—_ " vy
2
1=Vl

which, for ||V]|| <« 1, is approximately 7 V. Identify-
ing m with the inertial mass of Newtonian
mechanics (measured by an observer for whom the
particle’s speed is small), this is simply the classical
momentum of the particle. Somewhat more expli-
citly, if one expands 1/4/1 — ||V||* by the Binomial
Theorem one finds that

pP=—"_y

1 |v|?
1
2

which gives the components of the classical momen-
tum plus “relativistic corrections.” In order
to preserve a formal similarity with Newtonian

=mV +—mVI|V|* +---, i=1,23 [14]

mechanics one often sees #2/1/1— ||V||* referred

to as the “relativistic mass” of the particle, but we
shall avoid this terminology. The fourth component
of P is given by

P*=_P.e4
1
_ m 2:m+§m|m|2+... [15]
11—V

The appearance of the term (1/2)m|V]|* corre-
sponding to the Newtonian kinetic energy suggests
that P* be denoted E and called the total relativistic
energy measured by the given admissible observer
for the particle:

E=—P-e4 [16]

Now, one must understand that the concept of
“energy” in physics is a subtle one and simply
giving —P - e4 this name does not ensure that there
is any physical content. Whether or not the name
is appropriate can only be determined experimen-
tally. In particular, one should ask if the appear-
ance of the term m in [15] is consistent with
the view that P* represents the “energy” of the
particle. Observe that if [|[V||=0 (i.e., if the particle
is at rest relative to the given observer), then [15]
gives

E = m (= mc*, in standard units) [17]

which we interpret as saying that, even when the
particle is at rest, it still has energy. If this is really
“energy” in the physical sense, then it should be
possible to liberate and use it. That this is, indeed,
possible has, of course, been rather convincingly
demonstrated.

Next we observe that not only material particles,
but also photons possess “momentum” and
“energy” and therefore should have 4-momentum
(witness, e.g., the photoelectric effect in which
photons collide with and eject electrons from their
orbits in an atom). Unlike a material particle,
however, a photon’s characteristic feature is not
proper mass, but frequency v, or wavelength
A=1/v, related to its energy & by E=hv (h being
Planck’s constant) and these are highly observer
dependent (Doppler effect). There is, moreover, no
“proper frequency” analogous to “proper mass”
since there is no admissible observer for whom the
photon is at rest. In an attempt to model these
features we consider a point xo € M, a future
directed null vector N and an interval I C R. The
curve a: I — M defined by

a(§) = xo +EN [18]
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is a parametrization of the world line of a photon
through x(. Being null, N can be written in any
admissible basis as

N = (=N -e4)(d + e4) [19]
where

d:{(N«e1)2+(N~e2)2

71/2{

+ (N . 63)2} (N . 81)61

+ (N-ex)es + (N - 63)63} 20]

is the direction vector of the world line in the
corresponding spatial coordinate system. Now, by
analogy with [16], we define a photon in M to
be a curve in M of the form [18], take N to be its
4-momentum and define the energy £ of the photon
in the admissible basis {e1, €2, €3, e4} by

E=—-N- €4 [21]
Then, by [19],
N=E&(d+ey4) [22]

The corresponding frequency v and wavelength A
are then defined by »=&/h and A=1/v. In another
admissible basis, one has N=&(d + &4), where d
and € are defined by the hatted versions of [20] and
[21]. One can then show (Naber 1992, section 1.8)
that

6?7 v 1—[cosb
i
= (1 Beost) 43 (1~ feost) 4 [23

where 3 is the relative speed of the two spatial
coordinate systems and 6 is the angle (in the
unhatted spatial coordinate system) between the
direction d of the photon and the direction of
motion of the hatted spatial coordinate system.
Equation [23] is the formula for the relativistic
Doppler effect with the first term in the series being
the classical formula.

We conclude this section by examining a few
simple interactions between particles of the sort
modeled by our definitions, assuming only that
4-momentum is conserved in the interaction. For
convenience, we will use the term free particle to
refer to either a free material particle or a photon.
If A is a finite set of free particles, then each
element of A has a unique 4-momentum which is a
future-directed timelike or null vector. The sum of
any such collection of vectors is timelike and future
directed, except when all of the vectors are null and

parallel, in which case the sum is null and future
directed (Naber 1992, lemma 1.4.3). We call this
sum the total 4-momentum of A. Now we formulate
a definition which is intended to model a finite set
of free particles colliding at some event with a
(perhaps new) set of free particles emerging from the
collision (e.g., an electron and proton collide, with a
neutron and neutrino emerging from the collision).
A contact interaction in M is a triple (A, x,.A),
where A and A are two finite sets of free particles,
neither of which contains a pair of particles with
linearly dependent 4-momenta (which would pre-
sumably be physically indistinguishable) and x € M
is an event such that

1. x is the terminal point of all of the particles in A
(i.e., for each world line a:[&),&] — M of a
particle in A, a(&1) =x); 3

2. x is the initial point of all the particles in A, and

3. the total 4-momentum of A equals the total
4-momentum of A.

Properly (3) is called the conservation of 4-momentum.
If A consists of a single free particle, then (A, x, A) is
called a decay (e.g., a neutron decays into a proton, an
electron and an antineutrino). R

Consider, for example, an interaction (A,x,.A)
for which A consists of a single photon. The total
4-momentum of A is null so the same must be true of
A. Since the 4-momenta of the individual particles in
A are timelike or null and future directed their sum
can be null only if they are, in fact, all null and
parallel. Since A cannot contain distinct photons with
parallel 4-momenta, it must consist of a single photon
which, by (3), must have the same 4-momentum as
the photon in A. In essence, “nothing happened at
x.” We conclude that no nontrivial interaction of the
type modeled by our definition can result in a single
photon and nothing else. Reversing the roles of A
and A shows that, if 4-momentum is to be conserved,
a photon cannot decay.

Next let us consider the decay of a single material
particle into two material particles, for example, the
spontaneous disintegration of an atom through
a-emission. Thus, we consider a contact interaction
(A, x, A) in which A consists of a single free material
particle of proper mass 7y and A consists of two
free material particles with proper masses m; and
my. Let Py,Py, and P, be the 4-momenta of the
particles of proper mass myg, my, and m1;, respec-
tively. Then Po=P;+ P,. Appealing to the
“reversed triangle inequality,” the fact that Py and
P, are linearly independent and future directed, and
[12] we conclude that

moy > my + my [23]
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The excess mass mgy — (m1 +my) of the initial
particle is regarded, via [17], as a measure of the
amount of energy required to split m into two
pieces. Stated somewhat differently, when the two
particles in A were held together to form the single
particle in A, the “binding energy” contributed to
the mass of this latter particle. .

Reversing the roles of A and A in the last
example gives a contact interaction modelling an
inelastic collision (two free material particles with
masses 717 and m, collide and coalesce to form a
third of mass 7). The inequality [23] remains true,
of course, and a somewhat more detailed analysis
(Naber 1992, section 1.8) yields an approximate
formula for mgy — (my +m;) which can be com-
pared (favorably) with the Newtonian formula for
the loss in kinetic energy that results from the
collision (energy which, classically, is viewed as
taking the form of heat in the combined particle).
An analysis of the interaction in which both A and
A consist of an electron and a photon yields (Naber
1992, section 1.8) a formula for the so-called
Compton effect. Many more such examples of this
sort are treated in great detail in Synge (1972,
chapter VI, § 14).

Charged Particles and Electromagnetic
Fields

A charged particle in M is a triple («,m, q), where
(a,m) is a material particle and g is a nonzero real
number called the charge of the particle. Charged
particles do two things of interest to us. By their
very presence they create electromagnetic fields and
they also respond to the electromagnetic fields
created by other charges.

Charged particles “respond” to an electromag-
netic field by experiencing changes in 4-momentum.
The quantitative nature of this response, that is, the
equation of motion, is generally taken to be the
so-called Lorentz 4-force law which expresses
the proper time rate of change of the particle’s
4-momentum at each point of the world line as a
linear function of the 4-velocity. Thus, at each point
o(7) of the world line

= qF.(U(7)) [24]

where F,(;:M — M is a linear transformation
determined, in each admissible coordinate system,
by the classical electric E and magnetic B fields (here
we are assuming that the contribution of g to the
ambient electromagnetic field is negligible, that is,

(a,m,q) is a “test charge”). Let us write [24] more
simply as

) 40

FU) =" [25]

Dotting both sides of [25] with U gives

~ ~ mdU m d

m d

Since any future-directed timelike unit vector u is
the 4-velocity of some charged particle, we find
that I:"(u); u=0 for any such vector. Linearity then
implies F(v)-v=0 for any timelike vector. Now,
if # and v are timelike and future directed, then u + v
is timelike so O0=Fu+v)-(u+v)=Fu) v+
u-F() and therefore F(u)-v= —u-F(v). But M
has a basis of future-directed timelike vectors so

F(x)-y=—x-F(y) [26]

for all x,y € M. Thus, at each point, the linear
transformation F must be skew-symmetric with
respect to the Lorentz inner product. One could
therefore model an electromagnetic field on M by
an assignment to each point of a skew-symmetric
linear transformation whose job it is to assign to the
4-velocity of a charged particle whose world line
passes through that point the change in 4-momen-
tum that the particle should expect to experience
because of the presence of the field. However, a
slightly different perspective has proved more con-
venient. Notice that a skew-symmetric linear trans-
formation F:M — M and the Lorentz inner
product together determine a bilinear form F: M x
M — R given by

F(xay) :F(x)y

which is also skew-symmetric (F(y,x)= F(y) Cx=
—F(x,y)) and that, conversely, a skew-symmetric
bilinear form uniquely determines a skew-symmetric
linear transformation. Now, an assignment of a
skew-symmetric bilinear form to each point of M is
nothing other than a 2-form on M and it is in the
language of forms that we choose to phrase classical
electromagnetic theory (a concise introduction to
this language is available, for example, in Spivak
(19635, chapter 4).

Nature imposes a certain restriction on which
2-forms can reasonably represent an electromagnetic
field on M (“Maxwell’s equations”). To formulate
these we introduce a source 1-form | as follows: If
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xb, a2, x3, xt

M, then

is any admissible coordinate system on

J =Jdx" + Jodx* + J3dx® — pdx* 27]

where p: M — R is a charge density function and
J=J1e1 + Jres + Jzes is a current density vector field
(these are to be regarded as the usual “smoothed
out,” pointwise versions of ‘“charge per unit
volume” and “charge flow per unit area per unit
time” as measured by the corresponding admissible
observer). Now, our formal definition is as follows:
The electromagnetic field on M determined by the
source 1-form J on M is a 2-form F on M that
satisfies Maxwell’s equation

dF=0 [28]
and
*d*F=] [29]

A few comments are in order here. We have chosen
units in which not only the speed of light, but also
various other constants that one often finds in
Maxwell’s equations (the dielectric constant ¢y and
magnetic permeability 1) are 1 and a factor of 47 in
[29] is “normalized out.” The * in [29] is the Hodge
star operator determined by the Lorentz inner
product and the chosen orientation of M. This is a
natural isomorphism

LOPM) - QP(M), p=0,1,2,3,4

of the p-forms on M to the (4 — p)-forms on M and is
most simply defined as follows: let x!, x2, x3, x* be any
admissible coordinate system on M. If 1 € Q°(M)

is the constant function (0-form) on M whose value
is 1 € R, then

*1 = dx' Adx? Adx? Adx?
is the volume form on M. If 1 <ij < -+ <, <4,
then *(dx™ A --- A dx’) is uniquely determined by
(doe Ao Ada®) A (dx Ao A dx)
= —dx! Adx? Adx® Adx?

Thus, for example, *dx* =dx! A dx® A dx?, *(dx' A
dx?)= —dx? Adx?, *(dx' Adx? Adxd Adxt) = —1,
etc. It follows that, if u is a p-form on M, then

= (=1 30]

(a more thorough discussion is available in Choquet-
Bruhat et al. (1977, chapter V A3)). In particular,
[29] is equivalent to

dF="] 31]

On regions in which there are no charges, so that
J=0,[28] and [31] become the source free Maxwell
equations

dF =0 32]

and
d'F=0 33]

that is, both F and *F are closed 2-forms.

Any 2-form F on M can be written in any admissible
coordinate system as F=(1/2)F,,dx* A dx? (summa-
tion convention!), where (F,;,) is the skew-symmetric
matrix of components of F. In order to make contact
with the notation generally employed in physics, we
introduce the following names for these components:

0 B> —-B*> E!
k= |5 S BB py
~E' -2 -F 0
Thus,
F = E'dx! Adx* 4 E*dx?® A dx?
+ E3dx® A dat + B3dx! A dx?
+ B*dx® Adx! + B'dx? A dx? [35]
Computing *F,dF,d"F and *d*F and writing

E=E'e; + E?e; + E3e3 and B=Ble; + B%e; + Ble;
one finds that dF =0 is equivalent to

divB =0 [36]
and
curlE—i—%: 0 [37]
while *d"F =] is equivalent to
divE=p [38]
and
curl B— % =] [39]

Equations [36]-[39] are the more traditional render-
ings of Maxwell’s equations.

In another admissible coordinate system
x',%%,%3,%% on M (related to the first by [2]) the
2-form F would be written F=(1/2)F,,dx* A d&’.
Setting  X°=A%x* and xP=APyx’  gives
F=(1/2)(A%,Ab3E,;)dx™ A dx?, so

Faﬁ = AaOAbﬁﬁaba CV,B = 1?27374 [40]

Now, suppose that we wish to describe the electro-
magnetic field of a uniformly moving charge.
According to the relativity principle, it does not
matter at all whether we view the charge as moving
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relative to a “fixed” admissible observer, or the
observer as moving relative to a “stationary” charge.
Thus, we shall write out the field due to a charge
fixed at the origin of the hatted coordinate system
(“Coulomb’s law”) and transform, by [40], to an
unhatted coordinate system moving relative to it.
Relative to x!, %%, %%, %%, the familiar inverse square
law for a fixed point charge g located at the spatial
origin gives B=0 and E=(q/#)#, where #=%'¢; +
X% +x%; and 7= ((&") + (&%) + (#%)1)"* (note
that E is defined only on M — Span{é4}). Thus,

1

0 0 0 x

. gl 0o 0o 0 &
(Fab) - 7@3 0 0 0 56'3 [41]

-&l -3 & 0

It is a simple matter to verify that, on its domain, (F,,)
satisfies the source free Maxwell equations. Taking A to
be the special Lorentz transformation corresponding to

[5] and writing out [40] with (F,,) given by [41] yields

We wish to express these in terms of measurements
made by the unhatted observer at the instant the
charge passes through his spatial origin. Setting
x*=0 in [5] gives

5(:1: 1 xl7 .,)2/.2:.%.27 5(:3:x3
V-7
and so
1
2 142 2\2 332
r _1——f}2(x) +(x7)" + (x7)

which, for convenience, we write r?,. Making these
substitutions in [42] gives

E——9 <l> (x'eq + x2e; + x363)

VI=E\A
__4q (1
_Wc’%)r [43]

and

B= \/1#752 (%) (Oe1 — Bx’er + Bx’es)
- I&)
1

q
iR <%> ((Bex) x 7) [44]
for the field of a charge moving uniformly with
velocity ey at the instant the charge passes through
the origin. Observe that when 5 < 1,75 ~ r, so [43]
says that the electric field of a slowly moving charge
is approximately the Coulomb field. When 8 <« 1,
[44] reduces to the Biot-Savart law.

Let us consider one other simple application, that
is, the response of a charged particle (a,m,g) to an
electromagnetic field which, for some admissible
observer, is constant and purely magnetic. For
simplicity, we assume that, for this observer E=0
and B=be;, where b is a nonzero constant. The
corresponding 2-form F has components

0 b 00

-b 0 0 O

(Fab) = 0 0 0 0
0 0 0 O

(from [34]). The corresponding linear transforma-
tion F has the same matrix relative to this basis so,
with o(7)=x%(1)e, and U(7)= U%7)e,, the Lorentz
4-force law [25] reduces to the system of linear
differential equations

d_UlngZ, d_UZZ_@Ul
dr m dr m
du’ dU#

& 0 & 0

The system is easily solved and the results easily
integrated to give

a(t) =x0 + asin(%+ d)) e1
m

bgt
+ acos (L + ¢ |ex
m
272 2
a*b
+cres + (1 + 227 c2> Tes  [49]
m
where xo =x{e, € M is constant and a, ¢, and ¢ are
real constants with @ > 0 (we have used U- U= —1
to eliminate one other arbitrary real constant). Note
that, at each point on a, (x' — x})* + (x? — x3)* =a?.

Thus, if ¢ # 0 the spatial trajectory in this coordi-
nate system is a helix along the e;3-direction
(i.e., along the magnetic field lines). If ¢=0, the
trajectory is a circle in the x'—x? plane. This case
is of some practical significance since one can
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introduce constant magnetic fields in a bubble
chamber so as to induce a particle of interest to
follow a circular path. We show now how to
measure the charge-to-mass ratio for such a particle.
Taking ¢=0 in [45] and computing U(7), then using
[11] to solve for the coordinate velocity vector V of
the particle gives

1= [v? "

+ sin <@ + ¢) ez)
m

From this one computes

2 -1
2 m
Vif= 14+ ——
vl ( a2b2q2>

(note that this is a constant). Solving this last equation
for q/m (and assuming g > 0 for convenience) one
arrives at

L vl

q9_ >
m
L |v|?

alb|

Since a, b, and ||V|| are measurable, one obtains the
desired charge-to-mass ratio.

To conclude we wish to briefly consider the
existence and use of “potentials” for electromagnetic
fields. Suppose F is an electromagnetic field defined
on some connected, open region X in M. Then F is
a 2-form on X which, by [28], is closed. Suppose
also that the second de Rham cohomology H?(X ; R)
of X is trivial (since M is topologically R* this will
be the case, for example, when X is all of M, or an
open ball in M, or, more generally, an open “star-
shaped” region in M). Then, by definition, every
closed 2-form on X is exact so, in particular, there
exists a 1-form A on X satisfying

F=dA [46]

In particular, such a 1-form A always exists locally
on a neighborhood of any point in X for any F. Such
an A is not uniquely determined, however, because,
if A satisfies [46], then so does A +df for any
smooth real-valued function (0-form) f on X (d*=0
implies d(A + df) =dA + d*’f =dA =F). Any 1-form
A satisfying [46] is called a (gauge) potential for F.
The replacement A — A + df for some f is called a
gauge transformation of the potential and the
freedom to make such a replacement without
altering [46] is called gauge freedom.

One can show that, given F, it is always possible
to locally solve dA =F for A subject to an arbitrary
specification of the 0-form *d*A. More precisely, if F

is any 2-form satisfying dF =0 and g is an arbitrary
0-form, then locally, on a neighborhood of any
point, there exists a 1-form A satisfying

dA=F and "d'A=g¢ [47]

(a more general result is proved in Parrott (1987,
appendix 2) and a still more general one in section
2.9 of this same source). The usefulness of the
second condition in [47] can be illustrated as
follows. Suppose we are given some (physical)
configuration of charges and currents (i.e., some
source 1-form J) and we wish to find the corre-
sponding electromagnetic field F. We must solve
Maxwell’s equations dF=0 and *d*F=] (subject to
whatever boundary conditions are appropriate).
Locally, at least, we may seek instead a correspond-
ing potential A (so that F=dA). Then the first of
Maxwell’s equations is automatically satisfied
(dF=d(dA)=0) and we need only solve
*d*(dA) =]. To simplify the notation let us tempora-
rily write 6=*d* and consider the operator A=
doé+ 6dod on forms (variously called the Laplace—
Beltrami operator, Laplace-de Rham operator, or
Hodge Laplacian on Minkowski spacetime). Then

AA = d(6A) + 8(dA) = d(*d*A) + *d*(dA)  [48]

According to the result quoted above, we may
narrow down our search by imposing the condition
*d*A =0, that is

SA =0 [49]

(this is generally referred to as imposing the Lorentz
gauge). With this, [48] becomes AA=*d*(dA) and
to satisfy the second Maxwell equation we must
solve

AA =] [50]

Thus, we see that the problem of (locally) solving
Maxwell’s equations for a given source | reduces
to that of solving [49] and [50] for the potential A.
To understand how this simplifies the problem, we
note that a calculation in admissible coordinates
shows that the operator A reduces to the compo-
nentwise d’Alembertian O, defined on real-valued
functions by

0 0 0 0?

(x2)>? * a3 Axt)?

O(x)? *

Thus, eqn [50] decouples into four scalar equations
DAa = ]av

each of which is the well-studied inhomogeneous
wave equation.

a=1,2,34 51]



Introductory Article: Quantum Mechanics 109

Further Reading

Choquet-Bruhat Y, De Witt-Morette C, and Dillard-Bleick M
(1977) Analysis, Manifolds and Physics. Amsterdam: North-
Holland.

Einstein A et al. (1958) The Principle of Relativity. New York:
Dover.

Naber GL (1992) The Geometry of Minkowski Spacetime. Berlin:
Springer.

Parrott S (1987) Relativistic Electrodynamics and Differential
Geometry. Berlin: Springer.

Spivak M (1965) Calculus on Manifolds. New York: W A Benjamin.

Synge JL (1972) Relativity: The Special Theory. Amsterdam:
North-Holland.

Introductory Article: Quantum Mechanics

G F dell’Antonio, Universita di Roma “La Sapienza,”
Rome, ltaly

© 2006 Elsevier Ltd. All rights reserved.

Historical Background

In this section we shall briefly recall the basic
empirical facts and the first theoretical attempts
from which the theory and the formalism of present-
day quantum mechanics (QM) has grown. In the
next sections we shall give the mathematical and
computational structure of QM, mention the physi-
cal problems that QM has solved with much
success, and describe the serious conceptual consis-
tency problems which are posed by QM (and which
remain unsolved up to now).

Empirical rules of discretization were observed
already, starting from the 1850s, in the absorption
and in the emission of light. Fraunhofer noticed
that the dark lines in the absorption spectrum of
the light of the sun coincide with the bright lines in
the emission lines of all elements. G Kirchhoff and
R Bunsen reached the conclusion that the relative
intensities of the emission and absorption of light
implied that the ratio between energy emitted and
absorbed is independent of the atom considered.
This was the starting point of the analysis by
Planck.

On the other hand, by the end of the eighteenth
century, the spatial structure of the atom had been
investigated; the most successful model was that of
Rutherford, in which the atom appeared as a small
nucleus of charge Z surrounded by Z electrons
attracted by the nucleus according to Coulomb’s
law. This model represents, for distances of the
order of the size of an atom, a complete departure
from Newton’s laws combined with the laws of
classical electrodynamics; indeed, according to these
laws, the atom would be unstable against collapse,
and would certainly not exhibit a discrete energy
spectrum. We must conclude that the classical laws

are inadequate for the description of emission and
absorption of light, in which the internal structure of
the atom plays a major role.

The birth of the old quantum theory is placed
traditionally at the date of M Planck’s discussion of
the blackbody radiation in 1900.

Planck put forward the postulate that light is
emitted and absorbed by matter in discrete energy
quanta through “resonators” that have an energy
proportional to their frequency. This assumption
led, through the use of Gibb’s rules of Statistical
Mechanics applied to a gas of resonators, to a law
(Planck’s law) which reproduces the empirical
findings on the radiation from a blackbody. It led
Einstein to ascribe to light (which had, since the
times of Maxwell, a successful description in terms
of waves) a discrete, particle-like nature. Nine years
later A Einstein gave further support to Planck’s
postulate by showing that it can reproduce correctly
the energy fluctuations in blackbody radiation and
even clarifies the properties of specific heat. Soon
afterwards, Einstein (1924, 1925) proved that the
putative particle of light satisfied the relativistic laws
(relation between energy and momentum) of a
particle with zero mass.

This dual nature of light received further support
from the experiments on the Compton effect and
from description, by Einstein, of the photoelectric
effect (Einstein 1905). It should be emphasized
that while Planck considered with light in interaction
with matter v as composed of bits of energy hv (h ~
6,6 x 10?7 ergs), FEinstein’s analysis went much
further in assigning to the quantum of light properties
of a particle-like (localized) object. This marks a
complete departure from the laws of classical electro-
magnetism. Therefore, quoting Einstein,

It is conceivable that the wave theory of light, which
retains its effectiveness for the representation of purely
optical phenomena and is based on continuous functions
over space, will lead to contradiction with the experiments
when applied to phenomena in which there is creation or
conversion of light; indeed these phenomena can be better
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described on the assumption that light is distributed
discontinuously in space and described by a finite number
of quanta which move without being divided and which
must be absorbed or emitted as a whole.

Notice that, for wavelength of 8><103A, a 30W
lamp emits roughly 102° photons s7!; for macro-
scopic objects the discrete nature of light has no
appreciable consequence.

Planck’s postulate and energy conservation imply
that in emitting and absorbing light the atoms of the
various elements can lose or gain energy only by
discrete amounts. Therefore, atoms as producers or
absorbers of radiation are better described by a
theory that assigns to each atom a (possible infinite)
discrete set of states which have a definite energy.

The old quantum theory of matter addresses
precisely this question. Its main proponent is
N Bohr (Bohr 1913, 1918). The new theory is
entirely phenomenological (as is Planck’s theory)
and based on Rutherford’s model and on three
more postulates (Born 1924):

(i) The states of the atom are stable periodic
orbits, as given by Newton’s laws, of energy
E,.,ne€ Z", given by E,=hv,[f(n), where b is
Plank’s constant, v, is the frequency of the
electron on that orbit, and f(#) is for each atom
a function approximately linear in Z at least for
small values of Z.

(ii) When radiation is emitted or absorbed, the
atom makes a transition to a different state.
The frequency of the radiation emitted or
absorbed when making a transition is
Vnom =h Y E, — Epl.

(iii) For large values of # and 7 and small values of
(n—m)/(n+m) the prediction of the theory
should agree with those of the classical theory
of the interaction of matter with radiation.

Later, A Sommerfeld gave a different version of the
first postulate, by requiring that the allowed orbits
be those for which the classical action is an integer
multiple of Planck’s constant.

The old quantum theory met success when
applied to simple systems (atoms with Z < §) but
it soon appeared evident that a new, radically
different point of view was needed and a fresh
start; the new theory was to contain few free
parameters, and the role of postulate (iii) was now
to fix the value of these parameters.

There were two (successful) attempts to construct
a consistent theory; both required a more sharply
defined mathematical formalism. The first one was
sparked by W Heisenberg, and further important
ideas and mathematical support came from M Born,

P Jordan, W Pauli, P Dirac and, on the mathema-
tical side, also by J von Neumann and A Weyl. This
formulation maintains that one should only consider
relations between observable quantities, described
by elements that depend only on the initial and final
states of the system; each state has an internal
energy. By energy conservation, the difference
between the energies must be proportional (with a
universal constant) to the frequency of the radiation
absorbed or emitted. This is enough to define the
energy of the state of a single atom modulo an
additive constant. The theory must also take into
account the probability of transitions under the
influence of an external electromagnetic field.

We shall give some details later on, which will
help to follow the basis of this approach.

The other attempt was originated by L de Broglie
following early remarks by HW Bragg and
M Brillouin. Instead of emphasizing the discrete
nature of light, he stressed the possible wave nature
of particles, using as a guide the Hamilton—Jacobi
formulation of classical mechanics. This attempt
was soon supported by the experiments of Davisson
and Germer (1927) of scattering of a beam of ions
from a crystal. These experiments showed that,
while electrons are recorded as “point particles,”
their distribution follows the law of the intensity for
the diffraction of a (dispersive) wave. Moreover, the
relation between momentum and frequency was,
within experimental errors, the same as that
obtained by Einstein for photons.

The theory started by de Broglie was soon placed
in almost definitive form by E Schrodinger. In this
approach one is naturally led to formulate and solve
partial differential equations and the full develop-
ment of the theory requires regularity results from
the theory of functions.

Schrodinger soon realized that the relations which
were found in the approach of Heisenberg could be
easily (modulo technical details which we shall
discuss later) obtained within the formalism he was
advocating and indeed he gave a proof that the two
formalisms were equivalent. This proof was later
refined, from the mathematical point of view, by
J von Neumann and G Mackey.

In fact, Schrédinger’s approach has proved much
more useful in the solution of most physical
problems in the nonrelativistic domain, because it
can rely on the developments and practical use of
the theory of functions and of partial differential
equations. Heisenberg’s “algebraic” approach has
therefore a lesser role in solving concrete problems
in (nonrelativistic) QM.

If one considers processes in which the number of
particles may change in time, one is forced to
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introduce a Hilbert space that accommodates states
with an arbitrarily large number of particles, as is
the case of the theory of relativistic quantized field
or in quantum statistical mechanics; it is then more
difficult to follow the line of Schrodinger, due to
difficulties in handling spaces of functions of
infinitely many variables. The approach of Heisen-
berg, based on the algebra of matrices, has a rather
natural extension to suitable algebras of operators;
the approach of Schrodinger, based on the descrip-
tion of a state as a (wave) function, encounters more
difficulties since one must introduce functionals over
spaces of functions and the description of dynamics
does not have a simple form.

From this point of view, the generalization of
Heisenberg’s approach has led to much progress in
the understanding of the structure of the resulting
theory. Still some relevant results have been
obtained in a Schrodinger representation. We shall
not elaborate further on this point.

We shall end this introductory section with a
short description of the emergence of the structure
of QM in Heisenberg’s and Schrodinger’s
approaches; this will provide a motivation for the
axiom of QM which we shall introduce in the
following section. For an extended analysis, see, for
example, Jammer (1979).

The specific form that was postulated by
de Broglie (1923) for the wave nature of a particle
relies on the relation of geometrical optics with
wave propagation and on the formulation of
Hamiltonian mechanics as a sort of “wave front
propagation” through the solution of the Hamilton—
Jacobi equation and the introduction of group
velocity.

By the analogy with electromagnetic wave, it is
natural to associate with a free nonrelativistic
particle of momentum p and mass 7 the plane wave

2
LI

1) = i(px—Et)/h
¢[7(x7 ) € ) 2 2m

Schrodinger obtained the equation for a quantum
particle in a field of conservative forces with
potential V(x) by considering an analogy with the
propagation of an electromagnetic wave in a
medium with refraction index #n(x,w) that varies
slowly on the scale of the wavelength. Indeed, in this
case the “wave” follows the laws of geometrical
optics, and has therefore a “particle-like” behavior.
If one denotes by #(x,w) the Fourier transom (with
respect to time) of a generic component of the
electric field and one assumes that the field be
essentially monochromatic (so that the support of
i(x,w) as a function of w is in a very small

neighborhood of wy), one finds that #(x,w) is an
approximate solution of the equation

W2
—An(x,w) = C—gnz(x,w)ﬁ(x,w) 1]

Writing — u#(x,w) = A(x,w) e@/OV®w)  the  phase
W(x,w) satisfies, in the high-frequency limit, the
eikonal equation |VW(x,w)|* =#%(x,w). One can
define for the solution a phase velocity v¢ and it
turns out that vy =c¢/|VW(x,w)|.

On the other hand, classical mechanics can also be
described by propagation of surfaces of constant value
for the solution W(x, ) of the Hamilton—Jacobi
equation H(x,VW)=E, with H=p?>/2m + V(x).
Recall that high-frequency (the realm of geometric
optics) corresponds to small distances. This analogy
led Schrodinger (1926) to postulate that the dynamics
satisfied by the waves associated with the particles was
given by the (Schrodinger) equation

L O(x,t b

25D P i)+ Vet 2]
This wave was to describe the particle and its motion,
but, being complex valued, it could not represent any
measurable property. It is a mathematical property of
the solutions of [2] that the quantity [ |¢(x, t)|2 d’x is
preserved in time. Furthermore, if one sets

p(x,t) = |1/)(x>t)|2
1) = i [, 0V, 1) — i, V)] )

one easily verifies the local conservation law

@-i- div j(x,2) =0 (4]
ot

These mathematical properties led to the statis-
tical interpretation given by Max Born: in those
experiments in which the position of the particles is
measured, the integral of |i(x, 2,‘)|2 over a region 2 of
space gives the probability that at time ¢ the particle
is localized in the region . Moreover, the current
associated with a charged particle is given locally by
j(x,t) defined above.

Let us now briefly review Heisenberg’s approach.
At the heart of this approach are: empirical formulas
for the intensities of emission and absorption of
radiation (dispersion relations), Sommerfeld’s quan-
tum condition for the action and the vague
statement “the analogue of the derivative for the
discrete action variable is the corresponding finite
difference quotient.” And, most important, the
remark that the correct description of atomic
physics was through quantities associated with
pairs of states, that is, (infinite) matrices and the
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empirical fact that the frequency (or rather the wave
number) wy, ; of the radiation (emitted or absorbed)
in the transition between the atomic levels k& and
j (k #j) satisfies the Ritz combination principle
Wpn,j + Wj p =Wy, k- It easy to see that any doubly
indexed family satisfying this relation must have the
form w,, , =E,, — E}, for suitable constant E;.

It was empirically verified by Kramers that the
dipole moment of an atom in an external monochro-
matic external field with frequency v was proportional
to the field with a coefficient (of polarization)

e? ; F;
P—4WZ[2f SR g

7 Vi—l/ Vi_l/

where e, m are the charge and the mass of the
electron and f;,F; are the probabilities that the
frequency v is emitted or absorbed.

A detailed analysis of the phenomenon of polarization
in classical mechanics, with the clearly stated aim “of
presenting the results in a way that may give hints for the
construction of a New Mechanics” was made by Max
Born (1924). He makes use of action-angle variables
{]i,0;} assuming that the atom can be considered as a
collection of harmonic oscillators with frequency v;
coupled linearly to the electric field of frequency .

In the dipole approximation one obtains the
following result for the polarization P (linear
response in energy to the electric field):

AP m)
P=- 2(m-Vj) ——5— 6
> 2me )l

(v-m)>0

where v, = OH /9], H is the interaction Hamiltonian),
and A(]J) is a suitable matrix. In order to derive the
new dynamics, having as a guide the correspondence
principle, one has to compare this result with the
Kramers dispersion relation, which we write (to make
the comparison easier) in the form

2

e fmn fnm
P= * :
47rmz:1/2 — — u?

2 2
n,m n.m Iu’ Vn,m M

E, >E, [7]

Bohr’s rule implies that v(n+7,n)=(E(n+ 7—
E(n)) /.

Born and Heisenberg noticed that, for n suffi-
ciently large and k small, one can approximate the
differential operator in [6] with the corresponding
difference operator, with an error of the order of k/n.
Therefore, [6] could be substituted by

|An+m,n‘2

P=—pt Y |l
v(n+m)” — p*

myp>0
|An7m.,n|2
v(n —m)* — 12

The conclusion Born and Heisenberg drew is that
the matrix A that takes the place of the momentum
in the classical theory must be such that
|Avimn|-=e*bm 1 (n+m,n). In the same vein,
considering the polarization in a static electric
field, it is possible to find an expression for the
matrix that takes the place of the coordinate x in
classical Hamiltonian theory.

In general, the new approach (matrix mechanics)
associates matrices with some relevant classical
observables (such as functions of position or
momentum) with a time dependence that is derived
from the empirical dispersion relations of Kramers,
the correspondence principle, Bohr’s rule, Sommer-
feld action principle and first- (and second-) order
perturbation theory for the interaction of an atom
with an external electromagnetic field. It was soon
clear to Born and Jordan (1925) that this dynamics
took the form ihA=AH — HA for a matrix H that
for the case of the hydrogen atom is obtained for the
classical Hamiltonian with the prescription given for
the coordinates x and p. It was also seen as plausible
the relation [X,, p;] =il among the matrices X}, and
pr corresponding to position and momentum. One
year later P Dirac (1926) pointed out the structural
identity of this relation with the Poisson bracket of
Hamiltonian dynamics, developed a “quantum alge-
bra” and a “quantum differentiation” and proved
that any *-derivation 6 (derivation which preserves
the adjoint) of the algebra By of N x N matrices is
inner, that is, is given by &(a)=ila,h] for a
Hermitian matrix . Much later this theorem was
extended (with some assumptions) to the algebra of
all bounded operators on a separable Hilbert space.
Since the derivations are generators of a one-
parameter continuous group of automorphisms,
that is, of a dynamics, this result led further strength
to the ideas of Born and Heisenberg.

The algebraic structure introduced by Born,
Jordan, and Heisenberg (1926) was used by Pauli
(1927) to give a purely group-theoretical derivation
of the spectrum of the hydrogen atom, following the
lines of the derivation in symplectic mechanics of the
SO(4) symmetry of the Coulomb system. This
remarkable success gave much strength to the
Heisenberg formulation of QM, which was soon
recognized as an efficient instrument in the study of
the atomic world.

The algebraic formulation was also instrumental
in the description given by Pauli (1928) of the
“spin” (a property of electrons empirically postu-
lated by Goudsmidt and Uhlenbeck to account for a
hyperfine splitting of some emission lines) as
“internal” degree of freedom without reference to
spatial coordinates and still connected with the

2
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properties of the the system under the group of
spatial rotations. This description through matrices
has a major role also in the formulation by Pauli of
the exclusion principle (and its relation with Fermi—
Dirac statistics), which gave further credit to the
Heisenberg’s theory by helping in reproducing
correctly the classification of the atoms.

These features may explain why the “standard”
formulation of the axioms of QM given in the next
section shows the influence of Heisenberg’s
approach. On the other hand, comparison with
experiments is usually set in the framework in
Schrodinger’s approach. Posing the problems in
terms of properties of the solution of the Schrodinger
equation, one is led to a pragmatic use of the
formalism, leaving aside difficulties of interpreta-
tion. This separation of “the axioms” from the
“practical use” may be one of the reasons why a
serious analysis of the axioms and of the problems
that arise from them is apparently not a concern for
most of the research in QM, even from the point of
view of mathematical physics.

One should stress that both the approach of Born
and Heisenberg and that of de Broglie and Schro-
dinger are rooted in a mixture of attention to the
experimental data, deep understanding of the pre-
vious theory, bold analogies and approximations,
and deep concern for the consistency of the “new
mechanics.”

There is an essential difference between the
starting points of the two approaches. In Heisen-
berg’s approach, the atom has a priori no spatial
structure; the description is entirely in terms of its
properties under emission and absorption of light,
and therefore its observable quantities are repre-
sented by matrices. Dynamics enters through the
study of the interaction with the electromagnetic
field, and some analogies with the classical theory of
electrodynamics in an asymptotic regime (correspon-
dence principle). In this way, as we have briefly
indicated, the special role of some matrices, which
have a mutual relation similar to the relation of
position and momentum in Hamiltonian theory.
Following this analogy, it is possible to extend the
theory beyond its original scope and consider
phenomena in which the electrons are not bound
to an atom.

In the approach of Schrodinger, on the other
hand, particles and collections of particles are
represented by spatial structures (waves). Spatial
coordinates are therefore introduced a priori, and
the position of a particle is related to the intensity of
the corresponding wave (this was stressed by Born).
Position and momentum are both basic measurable
quantities as in classical mechanics. Physical

interpretation forces the particle wave to be square
integrable, and mathematics provides a limitation on
the simultaneous localization in momentum and
position leading to Heisenberg’s uncertainty princi-
ple. Dynamics is obtained from a particle-wave
duality and an analogy with the relativistic wave
equation in the low-energy regime. The presence of
bound states with quantized energies is seen as a
consequence of the well-known fact that waves
confined to a bounded spatial region have their
wave number (and therefore energy) quantized.

Formal Structure

In this section we describe the formal mathematical
structure that is commonly associated with QM. It
constitutes a coherent mathematical theory, but the
interpretation axiom it contains leads to conceptual
difficulties.

We state the axioms in the form in which they
were codified by J von Neumann (1966); they
constitute a mathematically precise rendering of the
formalism of Born, Heisenberg, and Jordan. The
formalism of Schrodinger per se does not require
general statements about the category of
observables.

Axiom I

(i) Observables are represented by self-adjoint opera-
tors in a complex separable Hilbert space H.
(ii) Every such operator represents an observable.

Remark Axiom I (ii) is introduced only for mathe-
matical simplicity. There is no physical justification
for part (ii). In principle, an observable must be
connected to a procedure of measurement (observa-
tion) and for most of the self-adjoint operators on H
(e.g., in the Schrodinger representation for
ix(0/0xp,)x;) such procedure has not yet been given).

Axiom II

(i) Pure states of the systems are represented by
normalized vectors in H.

(i1) If a measurement of the observable A is made on
a system in the state represented by the element
¢ € H, the average of the numerical values one
obtains is < ¢, A¢ >, a real number because A is
self-adjoint (we have denoted by <¢,1> the
scalar product in H).

Remark Notice that Axiom II makes no statement
about the outcome of a single measurement.

Using the natural complex structure of B(H), pure
states can be extended as linear real functionals on
B(H).
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One defines a state as any linear real positive
functional on B(H) (all bounded operators on the
separable Hilbert space H) and says that a state is
normal if it is continuous in the strong topology.
It can be proved that a normal state can be
decomposed into a convex combination of at most
a denumerable set of pure states. With these
definitions a state is pure iff it has no nontrivial
decomposition. It is worth stressing that this state-
ment is true only if the operators that correspond to
observable quantities generate all of B(H); one refers
to this condition by stating that there are no
superselection rules.

By general results in the theory of the algebra
B(H), a normal state p is represented by a positive
operator of trace class o through the formula
p(A)=Tr(cA). Since a positive trace-class operator
(usually referred to as density matrix in analogy
with its classical counterpart) has eigenvalues A
that are positive and sum up to 1, the decomposition
of the normal state p takes the form o= )", \II,,
where II, is the projection operator onto the kth
eigenstate (counting multiplicity).

It is also convenient to know that if a sequence of
normal states o, on B(H) converges weakly (i.e., for
each A € B(H) the sequence o,(A) converges) then
the limit state is normal. This useful result is false in
general for closed subalgebras of B(H), for example,
for algebras that contain no minimal projections.

Note that no pure state is dispersion free with
respect to all the observables (contrary to what
happens in classical mechanics). Recall that the
dispersion of the state p, with respect to the
observable A is defined as A,(A) = o(A2) — (0(A))>.

The connection of the state with the outcome of a
single measurement of an observable associated with
an operator A is given by the following axiom, which
we shall formulate only for the case when the self-
adjoint operator A has only discrete spectrum. The
generalization to the other case is straightforward but
requires the use of the spectral projections of A.

Axiom III

(i) If A has only discrete spectrum, the possible
outcomes of a measurement of A are its
eigenvalues {a;}.

(ii) If the state of the system immediately before the
measurement is represented by the vector ¢ € H,
the probability that the outcome be a; is ", | <),
qbf; > |, where (;Sﬁ;k are a complete orthonormal
set in the Hilbert space spanned by the eigenvec-
tors of A to the eigenvalue a,.

(iii) If a system is in the pure state ¢ and one
performs a measurement of the observable
A with outcome a; € (b—6,b+6) for some

b,6 € R then immediately after the measure-
ment the system can be in any (not necessarily
pure) state which lies in the convex hull of the
pure states which are in the spectral subspace of
the operator A in the interval A, =
(b—06,b+6).

Note Statements (ii) and (iii) can be extended
without modification to the case in which the initial
state is not a pure state, and is represented by a
density matrix o.

Remark 1 Axiom III makes sure that if one
performs, immediately after the first, a further
measurement of the same observable A the outcome
will still lie in the interval Ay 5. This is needed to
give some objectivity to the statement made about
the outcome; notice that one must place the
condition “immediately after” because the evolution
may not leave invariant the spectral subspaces of A.
If the operator A has, in the interval A, s, only
discrete (pure point) spectrum, one can express
Axiom III in the following way: the outcome can
be any state that can be represented by a convex
affine superposition of the eigenstates of A with
eigenvalues contained in Ay, .

In the very special case when A has only one
eigenvalue in Ay, and this eigenvalue is not
degenerate, one can state Axiom III in the following
form (commonly referred to as “reduction of the
wave packet”): the system after the measurement is
pure and is represented by an eigenstate of the
operator A.

Remark 2 Notice that the third axiom makes a
statement about the state of the system after the
measurement is completed.

It follows from Axiom III that one can measure
“simultaneously” only observables which are repre-
sented by self-adjoint operators that commute with
each other (i.e., their spectral projections mutually
commute). It follows from the spectral representa-
tion of the self-adjoint operators that a family {A;}
of commuting operators can be considered (i.e.,
there is a representation in which they are) functions
Over a COmmon measure space.

Axioms I-III give a mathematically consistent
formulation of QM and allow a statistical descrip-
tion (and statistical prediction) of the outcome of
the measurement of any observable. It is worth
remarking that while the predictions will have only
a statistical nature, the dynamical evolution of the
observables (and by duality of the states) will be
described by deterministic laws. The intrinsically
statistical aspect of the predictions comes only from
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the third postulate, which connects the mathemati-
cal content of the theory with the measurement
process.

The third axiom, while crucial for the connection
of the mathematical formalism with the experimen-
tal data, contains the seed of the conceptual
difficulties which plague QM and have not been
cured so far.

Indeed, the third axiom indicates that the process
of measurement is described by laws that are
intrinsically different from the laws that rule the
evolution without measurement. This privileged role
of the changing by effect of a measurement leads to
serious conceptual difficulties since the changing is
independent of whether or not the result is recorded
by some observer; one should therefore have a way
to distinguish between measurements and generic
interactions with the environment.

A related problem that is originated by Axiom III
is that the formulation of this axiom refers implicitly
to the presence of a classical observer that certifies
the outcomes of measurements and is allowed to
make use of classical probability theory. This
observer is not subjected therefore to the laws
of QM.

These two aspects of the conceptual difficulties
have their common origin in the separation of the
measuring device and of the measured systems into
disjoint entities satisfying different laws. The diffi-
culties in the theory of measurement have not yet
received a satisfactory answer, but various attempts
have been made, with various degree of success, and
some of them are described briefly in the section
“Interpretation problems.” It appears therefore that
QM in its present formulation is a refined and
successful instrument for the description of the
nonrelativistic phenomena at the Planck scale, but
its internal consistency is still standing on shaky
ground.

Returning to the axioms, it is worth remarking
explicitly that according to Axiom II a state is a
linear functional over the observables, but it is
represented by a sesquilinear function on the
complex Hilbert space H. Since Axiom II states
that any normalized element of H represents a state
(and elements that differ only by a phase represent
the same state) together with ¢,v also & =a¢ +
bi, |a|* + |b[* =1 represent a state superposition of
¢ and 1) (superposition principle).

But for an observable A, one has in general
pe(A) # |a|2p®(A) + \b|2pw(A), due to the cross-terms
in the scalar product. The superposition principle is
one of the characteristic features of QM. The
superposition of the two pure states ¢ and ¢ has
properties completely different from those of a

statistical mixture of the same two states, defined
by the density matrix o = |a|*II, 4 |b|*IL,, where we
have denoted by II; the orthogonal projection onto
the normalized vector ¢. Therefore, the search for
these interference terms is one of the means to verify
the predictions of QM, and their smallness under
given conditions is a sign of quasiclassical behavior
of the system under study.

Strictly connected to superposition are entangle-
ment and the partial trace operation. Suppose that
one has two systems which when considered
separately are described by vectors in two Hilbert
spaces H;,i=1,2, and which have observables A; €
B(H;). When we want to study their mutual
interaction, it is natural to describe both of them in
the Hilbert space H; ® H, and to consider the
observables A1 ® I and I ® A,.

When the systems interact, the interaction will not
in general commute with the projection operator Iy
onto H;. Therefore, even if the initial state is of the
form ¢1 ® ¢y, ¢; € H;, the final state (after the
interaction) is a vector £ € Hq ® H, which cannot
be written as £=(; ® ( with (€ H;. It can be
shown, however, that there always exist two
orthonormal family vectors ¢, € H; and ¢, € Ha
such that &= > ¢,¢, ® v, for suitable ¢, € C,
S |eal* =1 (this decomposition is not unique in
general).

Recalling that pgey (A1 @ I) = ps(A1), one can write

pelAr @ 1) =Y leul*pe, (A1) = po(A1)

0= Z ‘Cn‘znw

n

The map T':p:— ps, is called reduction or also
conditioning) with respect to Ha; it is also called
“partial trace” with respect to H,. The first notation
reflects the analogy with conditioning in classical
probability theory.

The map I'; can be extended by linearity to a map
from normal states (density matrices) on B(H; ® H>)
to normal states on B(H;) and gives rise to a
positivity-preserving and trace-preserving map.

One can in fact prove (Takesaki 1971) that any
conditioning for normal states of a von Neumann
algebra M is completely positive in the sense that it
remains positive after tensorization of M with B(K),
where K is an arbitrary Hilbert space.

It can also be proved that a partial converse is
true, that is, that every completely positive trace-
preserving map ® on normal states of a von
Neumann algebra A C B(H) can be written, for a
suitable choice of a larger Hilbert space K and
partial isometries Vj, in the form (Kraus form)
P(a)=>", ViaVy.



116 Introductory Article: Quantum Mechanics

But it must be remarked that, if U(t) is a one-
parameter group of unitary operators on Hi ® H>
and o is a density matrix, the one-parameter family
of maps T'(¢) =0 —T,(U(¢)oU*(¢)) does not, in
general, have the semigroup property T'(f+s)=
I'(¢) -T'(s) s,¢ > 0 and therefore there is in general
no generator (of a reduced dynamics) associated
with it. Only in special cases and under very strong
hypothesis and approximations is there a reduced
dynamics given by a semigroup (Markov property).

Since entanglement and (nontrivial) conditioning are
marks of QM, and on the other side the Markov
property described above is typical of conditioning in
classical mechanics, it is natural to search for condi-
tions and approximations under which the Markov
property is recovered, and more generally under which
the coherence properties characteristic of QM are
suppressed (decoherence). We shall discuss briefly this
problem in the section “Interpretation problems,”
devoted to the attempts to overcome the serious
conceptual difficulties that descend from Axiom III.

It is seen from the remarks and definitions above
that normal states (density matrices) play the role
that in classical mechanics is attributed to measures
over phase space, with the exception that pure states
in QM do not correspond to Dirac measures (later
on we shall discuss the possibility of describing a
quantum-mechanical states with a function (Wigner
function) on phase space).

In this correspondence, evaluation of an observa-
ble (a measurable function over phase space) over a
state (a normalized, positive measure) is related to
finding the (Hilbert space) trace of the product of an
operator in B(H) with a density matrix. Notice that
the trace operation shares some of the properties of
the integral, in particular tr AB=trBA if A is in
trace class and B € B(H) (cf. g€ L' and f € L)
and trAB > 0 if A is a density matrix and B is a
positive operator. This suggests to define functions
over the density matrices that correspond to quan-
tities which are important in the theory of dynami-
cal systems, in particular the entropy.

This is readily done if the Hilbert space is finite
dimensional, and in the infinite-dimensional case if
one takes as observables all Hermitian bounded
operators. In quantum statistical mechanics one is
led to consider an infinite collection of subsystems,
each one described with a Hilbert space (finite or
infinite dimensional) H;,i=1,2,..., the space of
representation is a subspace K of H1 @ Ho ® -+,
and the observables are a (weakly closed) subalgebra
A of B(K) (typically constructed as an inductive
limit of elements of the form I®I - @A, ®1I---).
In this context one also considers normal states on A
and defines a trace operation, with the properties

described above for a trace. Most of the definitions
(e.g., of entropy) can be given in this enlarged
context, but differences may occur, since in general
A does not contain finite-dimensional projections,
and therefore the trace function is not the trace
commonly defined in a Hilbert space. We shall not
describe further this very interesting and much
developed theory, of major relevance in quantum
statistical mechanics. For a thorough presentation
see Ohya and Petz (1993).

The simplest and most-studied example is the
case when each Hilbert space H; is a complex
two-dimensional space. The resulting system is
constructed in analogy with the Ising model of
classical statistical mechanics, but in contrast to that
system it possesses, for each value of the index i,
infinitely many pure states. The corresponding
algebra of observables is a closed subalgebra of
(C? x C*)®% and generically does not contain any
finite-dimensional projection.

This model, restricted to the case (C2 x C*)K, K a
finite integer, has become popular in the study of
quantum information and quantum computation, in
which case a normalized element of H; is called a g-bit
(in analogy with the bits of information in classical
information theory). It is clear that the unit sphere in
(C? x C?) contains many more than four points, and
this gives much more freedom for operations on the
system. This is the basis of quantum computation and
quantum information, a very interesting field which
has received much attention in recent years.

Quantization and Dynamics

The evolution in nonrelativistic QM is described by
the Schrodinger equation in the representation in
which for an N-particle system the Hilbert space is
L*(R3N® C*, where C* is a finite-dimensional space
which accounts for the fact that some of the
particles may have a spin content.

Apart from (often) inessential parameters, the
Schrodinger equation for spin-0 particles can be
written typically as

L0
N
H= ka(lbvk + Ak)z
k=1
N N
+) Vil + Y Vielxi—x) 9]
k=1 i1

where # is Planck’s constant, A, are vector-valued
functions (vector potentials), and V, and V; are
scalar-valued function (scalar potentials) on R3.
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If some particles have of spin 1/2, the correspond-
ing kinetic energy term should read — (ibo - V)?,
where 04, k=1, 2, 3, are the Pauli matrices and one
must add a term W(x) which is a matrix field with
values in Cf® C* and takes into account the
coupling between the spin degrees of freedom.
Notice that the local operator ioc-V is a “square
root” of the Laplacian.

A relativistic extension of the Schrodinger equa-
tion for a free particle of mass 7 > 0 in dimension
3 was obtained by Dirac in a space of spinor-
valued functions 9 (x,#),k=0,1,2, 3, which carries
an irreducible representation of the Lorentz group.
In analogy with the electromagnetic field, for which
a linear partial differential equation (PDE) can be
written using a four-dimensional representation of
the Lorentz group, the relativistic Dirac equation is
the linear PDE

3
. 0
lgowa—xk?ﬁ:md& xo = ct

where the ~y, generate the algebra of a representation
of the Lorentz group. The operator »_ (9/0x;)v; is a
local square root of the relativistically invariant
d’Alembert operator —0%/9x3 + A —m - I.

When one tries to introduce (relativistically
invariant) local interactions, one faces the same
problem as in the classical mechanics, namely one
must introduce relativistically covariant fields (e.g.,
the electromagnetic field), that is, systems with an
infinite number of degrees of freedom. If this field is
considered as external, one faces technical problems,
which can be overcome in favorable cases. But if one
tries to obtain a fully quantized theory (by also
quantizing the field) the obstacles become unsur-
mountable, due also to the nonuniqueness of the
representation of the canonical commutation rela-
tions if these are taken as the basis of quantization,
as in the finite-dimensional case.

In a favorable case (e.g., the interaction of a
quantum particle with the quantized electromagnetic
field) one can set up a perturbation scheme in a
parameter « (the physical value of « in natural units
is roughly 1/137). We shall come back later to
perturbation schemes in the context of the Schro-
dinger operator; in the present case one has been
able to find procedures (renormalization) by which
the series in « that describe relevant physical
quantities are well defined term by term. But even
in this favorable case, where the sum of the first few
terms of the series is in excellent agreement with the
experimental data, one has reasons to believe that
the series is not convergent, and one does not even
know whether the series is asymptotic.

One is led to wonder whether the structure of
fields (operator-valued elements in the dual of
compactly supported smooth functions on classical
spacetime), taken over in a simple way from the
field structure of classical electromagnetism, is a
valid instrument in the description of phenomena
that take place at a scale incomparably smaller than
the scale (atomic scale) at which we have reasons to
believe that the formalisms of Schrodinger and
Heisenberg provide a suitable model for the descrip-
tion of natural phenomena.

The phenomena which are related to the interac-
tion of a quantum nonrelativistic particle interacting
with the quantized electromagnetic field take place
at the atomic scale. These phenomena have been the
subject of very intense research in theoretical
physics, mostly within perturbation theory, and the
analysis to the first few orders has led to very
spectacular results (although there is at present no
proof that the perturbation series are at least
asymptotic).

In this field rigorous results are scarce, but
recently some progress has been made, establishing,
among other things, the existence of the ground
state (a nontrivial result, because there is no gap
separating the ground-state energy from the con-
tinuous part of the spectrum) and paving the way
for the description of scattering phenomena; the
latter result is again nontrivial because the photon
field may lead to an anomalous infrared (long-
range) behavior, much in the same way that the
long-range Coulomb interaction requires a special
treatment in nonrelativistic scattering theory.

This contribution to the Encyclopedia is meant to
be an introduction to QM and therefore we shall
limit ourselves to the basic structure of nonrelativis-
tic theory, which deals with systems of a finite
number of particles interacting among themselves
and with external (classical) potential fields, leaving
for more specialized contributions a discussion of
more advanced items in QM and of the successes
and failures of a relativistically invariant theory of
interaction between quantum particles and quan-
tized fields.

We shall return therefore to basics.

One may begin a section on dynamics in QM by
discussing some properties of the solutions of the
Schrodinger equation, in particular dispersive effects
and the related scattering theory, the problem of
bound states and resonances, the case of time-
dependent perturbation and the ionization effect,
the binding of atoms and molecules, the Rayleigh
scattering, the Hall effect and other effects in
nanophysics, the various multiscale and adiabatic
limits, and in general all the physical problems that
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have been successfully solved by Schrodinger’s QM
(as well as the very many interesting and unsolved
problems).

We will consider briefly these issues and the
approximation schemes that have been developed in
order to derive explicit estimates for quantities of
physical interest. Since there are very many excellent
reviews of present-day research in QM (e.g., Araki
and Ezawa (2004), Blanchard and Dell’Antonio
(2004), Cycon et al. (1986), Islop and Sigal (1996),
Lieb (1990), Le Bris (2005), Simon (2002), and
Schlag (2004)) we refer the reader to the more
specialized contributions to this Encyclopedia for a
detailed analysis and precise statements about the
results.

We prefer to come back first to the foundations of
the theory; we shall take the point of view of
Heisenberg and start discussing the mapping proper-
ties of the algebra of observables and of the states.
Since transition probabilities play an important role,
we consider only transformations a which are such
that, for any pair of pure states ¢; and ¢,, one has
<a(Pr),al(dn)> = <¢1,¢02>. We call these maps
Wigner automorphisms.

A result of Wigner (see Weyl (1931)) states that if
a is a Wigner automorphism then there exists a
unique operator U,, either unitary or antiunitary,
such that «(P) = U/ PU, for all projection operators.
If there is a one-parameter group of such auto-
morphisms, the corresponding operators are all
unitary (but they need not form a group).

A generalization of this result is due to Kadison.
Denoting by I; . the set of density matrices, a
Kadison automorphism £ is, by definition, such that
for all 01,05 € I1,+ and all 0 <s <1 one has f(so1 +
(1 —s)oz) =sB(01) + (1 — s)B(03). For Kadison auto-
morphisms the same result holds as for Wigner’s.

A similar result holds for automorphisms of the
observables. Notice that the product of two Hermi-
tian operators is not Hermitian in general, but
Hermiticity is preserved under Jordan’s product
defined as A x B = (1/2)[AB + BAJ.

A Segal automorphism is, by definition, an
automorphism of the Hermitian operators that
preserves the Jordan product structure. A theorem
of Segal states that 7 is a Segal automorphism if and
only if there exist an orthogonal projector E, a
unitary operator U in EH, and an antiunitary
operator V in (I — EYH such that v(A)=W AW*,
where W=Uq® V.

We can study now in more detail the description
of the dynamics in terms of automorphism of
Wigner or Kadison type when it refers to states
and of Segal type when it refers to observables. We
require that the evolution be continuous in suitable

topologies. The strongest result refers to Wigner’s
case. One can prove that if a one-parameter group
of Wigner automorphism «; is measurable in the
weak topology (i.e., a,0(A) is measurable in ¢ for
every choice of A and o) then it is possible to choose
the U(t) provided by Wigner’s theorem in such a
way that they form a group which is continuous in
the strong topology. Similar results are obtained for
the cases of Kadison and Segal automorphism, but
in both cases one has to assume continuity of «; in a
stronger topology (the strong operator topology in
the Segal case, the norm topology in Kadison’s).
Weak continuity is sufficient if the operator product
is preserved (in this case one speaks of automorph-
isms of the algebra of bounded operators). The
existence of the continuous group U(#) defines a
Hamiltonian evolution. One has indeed:

Theorem 1 (Stone). The map t— U(t),t €R is a
weakly continuous representation of R in the set of
unitary operators in a Hilbert space H if and only if
there exists a self-adjoint operator H on (a dense set
of) H such that U(t) =& and therefore

¢€D(H)—>i%¢:HU(t)¢ [10]

The operator H is called generator of the dynamics

described by U(t).

Note In Schrodinger’s approach the operator
described in Stone’s theorem is called Hamiltonian,
in analogy with the classical case. In the case of one
particle of mass m in R3 subject to a conservative
force with potential energy V(x) it has the following
form, in units in which #=1:

2
o,

2
Ox;,

He— b A+ V), A=Y 1]
k

2m

If the potential V depends on time, Stone’s theorem
is not directly applicable but still the spectral
properties of the self-adjoint operators H; and of
the Kernel of the group 7— e are essential to
solve the (time-dependent) Schrodinger equation.

The semigroup t— e "0 is usually a positivity-
preserving semigroup of contractions and defines a
Markov process; in favorable cases, the same is true
of t — e ™M (Feynmann-Kac formula).

There is an analogous situation in the general
theory of dynamical systems on a von Neumann
algebra; in analogy with the case of elliptic
operators, one defines as “dissipation” a map A on
a von Neumann algebra M which satisfies A(a*a) >
a*A(a) + A(a*)a for all a € M. The positive dissipa-
tion A is called completely positive if it remains
positive after tensorization with B(K) for any



Introductory Article: Quantum Mechanics 119

Hilbert space K. Notice that according to this
definition every *-derivation is a completely positive
dissipation. For dissipations there is an analog of the
theorem of Stinespring, and often bounded dissipa-
tion can be written as

1
Ala)=ilb,al+>  ViaVi - <§> > ViV, a)
fora e M

(the symbols {.,.} denote the anticommutator).

In general terms, by quantization is meant the
construction of a theory by deforming a commutative
algebra of functions on a classical phase X in such a
way that the dynamics of the quantum system can be
derived from the prescription of deformation, usually
by deforming the Poisson brackets if X is a cotangent
bundle T*M (Halbut 2002, Landsman 2002). We
shall discuss only the Weyl quantization (Weyl 1931)
that has its roots in Heisenberg’s formulation of QM
and refers to the case in which the configuration space
is RN, or, with some variant (Floquet-Zak) the
N-dimensional torus. We shall add a few remarks
on the Wick (anti-Weyl) quantization. More general
formulations are needed when one tries to quantize a
classical system defined on the cotangent bundle of
a generic variety and even more so if it defined on a
generic symplectic manifold.

The Weyl quantization is a mathematically accu-
rate rendering of the essential content of the
procedure adopted by Born and Heisenberg to
construct dynamics by finding operators which
play the role of symplectic coordinates.

Consider a system with one degree of freedom.
The first naive attempt would be to find operators
q, p that satisfy the relation

[g,p] C il [12]

and to construct the Hamiltonian in analogy with
the classical case. To play a similar role, the
operators g and p must be self-adjoint and satisfy
[12] at least in a weak sense. If both are bounded,
[12] implies e ?ge=it» = 4 + bl (the exponential is
defined through a convergent series) and therefore
the spectrum of g is the entire real line, a contra-
diction. Therefore, that inclusion sign in [12] is strict
and we face domain problems, and as a consequence
[12] has many inequivalent solutions (“equivalence”
here means “unitary equivalence”).

Apart from “pathological” ones, defined on
L?-spaces over multiple coverings of R, there are
inequivalent solutions of [12] which are effectively
used in QM.

The most common solution is on the Hilbert space
L*(R) (with Lebesgue measure), with % defined as

the essentially self-adjoint operator that acts on the
smooth functions with compact support as multi-
plication by the coordinate x and p is defined
similarly in Fourier space. This representation can
be trivially generalized to construct operators g, and
by in L2(RN).

Another frequently used representation of [12] is
on L?*(S') (and when generalized to N degrees of
freedom, on TN). In this representation, the operator
p is defined by c¢,—kc, on functions f(0)=
Zi\lsz cpe®?2m 0 > M,N < co. In this case the
operator ¢ is defined as multiplication by the angle
coordinate 6. It is easy to check that this representa-
tion is inequivalent to the previous one and that [12]
is satisfied (as an identity) on the (dense) set of
vectors which are in the domain both of pg and
of gp. But notice that the domain of essential self-
adjointness of p is not left invariant by the action of
q (0f(9) is a function on S! only if f(27)=0).

We shall denote p in this representation by the
symbol 0/00p; and refer to it as the Bloch
representation. It can be modified by setting the
action of p as ¢, —nc, +a,0 < a < 2w, and this
gives rise to the various Bloch-Zak and magnetic
representations.

The Bloch representation can be extended to
periodic functions on R! noticing that L?(R)=
L*(S") ® *(N); similarly, the Bloch-Zak and the
magnetic representation can be extended to L?(RN).

The difference between the representations can be
seen more clearly if one considers the one-parameter
groups of unitary operators generated by the
“canonical operators” ¢ and p. In the Schrédinger
representation on L?(R), these groups satisfy

U(a)V(b) =V (b)U(a)
U(a)=e', V(b) = e

and therefore, setting z=a+ib and W(z) =
e /2V(b)U(a) one has

W()W(Z) = e &2 W(z +2)

(13]
zeC,

w(z,2)=Im(z,2)

The unitary operators W(z) are therefore projective
representations of the additive group C. This
generalizes immediately to the case of N degrees
of freedom; the representation is now of the
additive group CN and w is the standard symplectic
form on CN.

In the Bloch representation, the unitaries
U(a)V(b)U*(a)V*(b) are not multiples of the iden-
tity, and have no particularly simple form. The map
CN 5 z— W(z) with the structure [13] is called Weyl
system; it plays a major role in QM. The following
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theorem has therefore a major importance in the
mathematical theory of QM.

Theorem 2 (von Neumann 1965). There exists
only one, modulo unitary equivalence, irreducible
representation of the Weil system.

The proof of this theorem follows a general
pattern in the theory of group representations. One
introduces an algebra W) of operators

W= [fowEd feLl(cy)

called Weyl algebra.

It easy to see that |W;|=|f|, and that f — W, is a
linear isomorphism of algebras if one considers W)
with its natural product structure and L' as a
noncommutative algebra with product structure

fxg E/dz’f(z —2)g(?) GXP%W(% ) [14]

So far the algebra WN) is a concrete algebra of
bounded operators on L?(R?). But it can also be
considered an abstract C*-algebra which we still
denote by W),

It is easy to see that, according to [14], if fy is
chosen to be a suitable Gaussian, then Wy is a
projection operator which commutes with all the
W’s. Moreover, WW,= ¢ W, for a suitable
phase factor ¢. Considering the Gelfand—Neumark-
Segal construction for the C*-algebra W), one
finds that these properties lead to a decomposition
of any representation in cyclic irreducible equivalent
ones, completing the proof of the theorem.

The Weyl system has a representation (equivalent
to the Schrodinger one) in the space L*(RN,g),
where g is Gauss’s measure. This allows an exten-
sion in which CN is replaced by an infinite-
dimensional Banach space equipped with a Gauss
measure (weak distribution (Segal 1965, Gross
1972, Wiener 1938)). Uniqueness fails in this more
general setting (uniqueness is strictly connected with
the compactness of the unit ball in CN). Notice that
in the Schrodinger representation (and, therefore, in
any other representation) the Hamiltonian for the
harmonic oscillator defines a positive self-adjoint
operator

N=» N Ny=—— -1

21: ko k axkz + 80
The spectrum of each of the commuting operators
N, consists of the positive integers (including 0) and
is therefore called number operator for the kth
degree of freedom. The operator N, can be written
as Ny = ajay, where a; = (1/v/2)(x + 9/0xy) and aj,

is the formal adjoint of g, in L?>(R). One has
lap(Ng +1)72|<1. In the domain of N these
operators satisfy the following relations (canonical
commutation relations)

[ar, a;] = Orp, lap,ar] =0

15
[Ng,ap] = —apop ks [13]

Ny, a;] = apopp
In view of the last two relations, the operator a, is
called the annihilation operator (relative to the kth
degree of freedom) and its formal adjoint is called
the creation operator. The operators a, have as
spectrum the entire complex plane, the operators aj,
have empty spectrum; the eigenvectors of Ny are the
Hermite polynomials in the wvariable x;. The
eigenvectors of a; (i.e., the solutions in L?(R) of
the equation a,¢\ = Aoy, A € C) are called coherent
states; they have a major role in the Bargmann-
Fock-Segal quantization and in general in the
semiclassical limit.

The operators {N,} generate a maximal abelian
system and therefore the space L?(RN) has a natural
representation as the symmetrized subspace of
EB,Q(CN)/Q (Fock representation). In this representa-
tion, a natural basis is given by the common
eigenvectors ¢}, k=1,...,N, of the operators Nj.
A generic vector can be written as

2
V=Y cybimys D lcmy |t <oo
{n.} {n}

and therefore can be represented by the sequence c(,,).

Notice that the creation operators do not create
particles in RN but rather act as a shift in the basis
of the Hermite polynomials.

It is traditional to denote by v(L?(RN)) the Fock
representation (also called second quantization
because for each degree of freedom the wave
function is written in the quantized basis of the
harmonic oscillator) and to denote by T'(A) the lift
of a matrix A € B(CN). These notations are espe-
cially used if CN is substituted with a Banach space
X. This terminology was introduced by Segal in his
work on quantization of the wave equation; it is
used ever since, mostly in a perturbative context.

In the theory of quantized fields, the space CN is
substituted with a Banach space, X, of functions.
In this setting, “second quantization” (Segal 1965,
Nelson 1974) considers the state ¢y, as represent-
ing a configuration of the system in which there are
precisely 7, particles in the kth physical state (this
presupposes having chosen a basis in the space of
distribution on R3). There is no problem in doing
this (Gross 1972) and one can choose for X a
suitable Sobolev space (which one depends on the
Gaussian measure given in X) if one wants that the
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generalization of the commutation relations [15] be
of the form [a*(f),a(g)]=<f,g> with a suitable
scalar product <-,-> in X. The problem with
quantization of relativistic fields is that, in order to
ensure locality, one is forced to use a Sobolev space
of negative index (depending on the dimension of
physical space), and this gives rise to difficulties in
the definition of the dynamics for nonlinear vector
fields.

One should notice that in the work of Segal
(1965), and then in Constructive field theory
(Nelson 1974), the Fock representation is placed in
a Schrodinger context exhibiting the relevant opera-
tors as acting on a space L*(X,g), where X is a
subspace of the space of Schwartz distributions on
the physical space of the particles one wants to
describe and g is a suitably defined Gauss measure
on X.

The Fock representation is related to the Bargmann—
Fock—Segal representation (Bargmann 1967), a repre-
sentation in a space of holomorhic functions on CN
square integrable with respect to a Gaussian measure.
For its development, this representation relies on the
properties of Toeplitz operators and on Tauberian
estimates. It is much used in the study of the
semiclassical limit and in the formulation of QM in
systems for which the classical version has, for phase
space, a manifold which is not a cotangent bundle
(e.g., the 2-sphere).

Remark The Fock representation associated with
the Weyl system in the infinite-dimensional context
can describe only particles obeying Bose-Einstein
statistics; indeed, the states are qualified by their
particle content for each element of the basis chosen
and there is no possibility of identifying each
particle in an N-particle state. This is obvious in
the finite-dimensional case: the Hermite polynomial
of order 2 cannot be seen as “composed” of two
polynomials of order 1.

In the infinite-dimensional context, if one wants
to treat particles which obey Fermi-Dirac statistics,
one must rely on the Pauli exclusion principle (Pauli
1928), which states that two such particles cannot
be in the same configuration; to ensure this, the
wave function must be antisymmetric under permu-
tation of the particle symbols. It is a matter of fact
(and a theorem in relativistic quantum field theory
which follows in that theory from covariance,
locality and positivity of the energy (Streater and
Wightman 1964) that particles with half-integer spin
obey the Fermi-Dirac statistics. Therefore, to quan-
tize such systems, one must introduce (commuta-
tion) relations different from those of Weyl. Since it
must now be that (4*)> =0, due to antisymmetry, it

is reasonable to introduce the following relations
(canonical anticommutation relations:

{ap,ar} =0
{A,B) = AB — BA

{ap,a,} = oy,

16
[Ng,ap] = —apop ke, 16l

The Hilbert space is now ®NH,, where H, is a
two-dimensional complex Hilbert space. Notice that
H carries an irreducible two-dimensional represen-
tation of sU(2) = o(3) (spin representation) so that
this  quantization associates spin 1/2  and
antisymmetry.

The operators in [16] are all bounded (in fact
bounded by 1 in norm). The Fock representation is
constructed as in the case of Weyl (see Araki
(1988)), with n, equal 0 or 1 for each index k.
The infinite-dimensional case is defined in the same
way, and leads to inequivalent irreducible represen-
tations (Araki 1988); only in one of them is the
number operator defined and bounded below. Some
of these representations can be given a Schrodinger-
like form, with the introduction of a gauge and an
integration formalism based on a trace (Gross
1972). This system is much used in quantum
statistical mechanics because it deals with bounded
operators and can take advantage of strong results
in the theory of C*-algebras. In the finite-dimensional
case (and occasionally also in the general case) it is
used in quantum information (the space H; is the
space of a quantum bit).

Returning to the Weyl system, we now introduce
the strictly related Wigner function which plays an
important role in the analysis of the semiclassical
limit and in the discussion of some scaling limits, in
particular the hydrodynamical limit and the Bose-
Einstein condensation when N — oc.

The Wigner function W, for a pure state ¢ is a
real-valued function on the phase space of the
classical system which represents the state faithfully.
It is defined as

W6 = @n) " [ e ©p(x+3)a(x-3) dy

The Wigner function is not positive in general (the
only exceptions are those Gaussian states that satisfy
A(x) - A(p) > b). But is has the interesting property
that its marginals reproduce correctly the Born rule.
In fact, one has [ W(x,¢) dx:|q§(§)\2. If the func-
tion ¢(t, x) x € R" is a solution of the free Schrodinger
equation ih0¢/0t = —h*A then its Wigner function
satisfies the Liouville (transport) equation dW, /0t +
&-VW=0.

The Wigner function is strictly linked with the
Weyl quantization. This quantization associates
with every function o(p,x) in a given regularity
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class an operator o(D,x) (the Weyl symbol of the
function o) defined by

(o(D.f.8) = [ &AW, )6 3) b
= e L

It can be verified that the action of F preserves the
Schwartz classes S and 8 and is unitary in L>(R?N),
Moreover, one has o(D, x)" =a(D, x).

The relation between Weyl’s quantization and
Wigner functions can be readily seen from the
natural duality between bounded operators and
pure states:

(A p) = / a(p.q)p(p, q) dp dq
p(p,q) = / e p(q',q)dq

We give now a brief discussion of the general
structure of a quantization, and apply it to the
Weyl quantization. By quantization of a Hamilto-
nian system we mean a correspondence, parame-
trized by a small parameter %, between classical
observables (real functions on a phase space F) and
quantum observables (self-adjoint operators on a
Hilbert space H) with the property that the
corresponding structures coincide in the limit # — 0
and the difference for 5##0 can be estimated in a
suitable topology.

This last requirement is important for the applica-
tions and, from this point of view, Weyl’s quantiza-
tion gives stronger results than the other formalisms
of quantization.

We limit our analysis to the case F = T*X, with
X = RN, and we make use of the realization of H as
L2(RN),

Let {x;} be Cartesian coordinates in RN and
consider a correspondence A — A that satisfies the
following requirements:

1. A< A is linear;

2. xp <> X where X, is multiplication by x;

3. Pr < —iha/axk;

4. if f is a continuous function in RN, one has
f(x) < f(x) and f(p) = (Ff)(x), where F denotes a
Fourier transform;

5. Le>Ley¢ = (o, B),,3€ RN, where L; is the
generator of the translations in phase space in
the direction ¢ and LC is the generator of the one-
parameter group ¢ — W(#¢) associated with ¢ by
the Weyl system.

Note that (1) and (4) imply (2) and (3) through a
limit procedure.

Under the correspondence A <> A, linear symplec-
tic maps correspond to unitary transformations.
This is not in general the case for nonlinear maps.

One can prove that conditions (1)—(5) give
a complete characterization of the map A« A.
Moreover, the correspondence cannot be extended
to other functions in phase space. Indeed, one has:

Theorem 3 (van Hove). Let G be the class of
functions C* on R?N which are generators of global
symplectic flows. For ge G let ®g4(t) be the
corresponding group. There cannot exist for every
g a correspondence g« g, with g self-adjoint, such
that g(x,p) =g(x,p).

We described the Weyl quantization as a corre-
spondence between functions in the Schwartz class S
and a class of bounded operators. Weyl’s quantiza-
tion can be extended to a much wider class of
functions. Operators that can be so constructed are
called Fourier integral operators. One uses the
notation ¢ = o(D, x).

We have the following useful theorems (Robert
1987):

Theorem 4 Let Iy,...,Ix be linear functions on RN
such that {lil,} =0. Let P be a polynomial and let
U(gsx) = P[l1(f,x), lK(f: x)]- Then

(i) o(D,x) maps S in L*>(RN) and self-adjoint,
(i) if g is continuous, then (g(o)(D,x) =g(a(D, x)).

One proves that o(D, x) extends to a continuous
map §'(X) — §(X) and, moreover,

Theorem 5 (Calderon—Vaillancourt). If o=
Y alts<ans1 |IDEDYa| < oo the norm of the opera-
tor o(D, x) is bounded by oy.

Any operator obtained from a suitable class of
functions through Weyl’s quantization is called a
pseudodifferential operator. If o(q,p)=P(p), where
P is a polynomial, &(p, q) is a differential operator.

Moreover, if o(p,x) € L?> then o(D,x) is a
Hilbert-Schmidt operator and

lo(D, x)|ys = (2h) /> [/ QP dz] 1/2

Pseudodifferential operators turn out to be very
important in particular in the quantum theory of
molecules (Le Bris 2003), where adiabatic analysis
and Peierls substitution rules force the use of
pseudodifferential operators.

The next important problem in the theory of
quantization is related to dynamics.

Let 8 be a quantization procedure and let H(p, q)
be a classical Hamiltonian on phase space. Let A, be
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the evolution of a classical observable A under the
flow defined by H and assume that 3(A;) is well
defined or all z.

Is there a self-adjoint operator H such that
B(A;) =eHB(A)e ™2 If so, can one estimate
|H — B(H)|? Conversely, if the generator of the
quantized flow is, by definition, H (as is usually
assumed), is it possible to give an estimate of the
difference |3(A;) — (B(A)),|¢ for a dense set of ¢ €
H, where A, = e Ae™ ™, or to estimate |A, — A,
where A, is defined by 3(A;) = (8(A)),. Is it possible
to write an asymptotic series in % for the differences?

For the Weyl quantization some quantitative
results have been obtained if one makes use of the
semiclassical observables (Robert 1987). We shall
not elaborate further on this point.

For completeness, we briefly mention another
quantization procedure which is often used in
mathematical physics.

Wick Quantization

This quantization assigns positive operators to
positive functions, but does not preserve polynomial
relations. It is strictly related to the Bargmann-
Fock-Segal representation.

Call coherent state centered in the point (y,n) of
phase space the normalized solution of (ip + X —
in 4 x) ¢y, »(x) = 0.

Wick’s quantization of the classical observable A
is by definition the map A — Op¥(A), where

Op¥ (A)y = (215) ™" / Alys 1) (8, Gy by dy

One can prove, either directly or going through
Weyl’s representation, that

1. if A >0 then Op)’ (A) > 0;
2. the Weyl symbol of the operator Op, (A) is

(wh) " | [ Aly.meH 0 dy dy

3. for every A'e O(0) one has ||Op)(A)— Al =
O(h).

Wick’s quantization associates with every vector
¢ € H a positive Radon measure p4 in phase space,
called Husimi measure. It is defined by [Adu,=
(Op;,W(A)w <), A € S(z). Wick’s quantization is less
adapted to the treatment of nonrelativistic particles,
in particular Eherenfest’s rule does not apply, and
the semiclassical propagation theorem has a more
complicated formulation. It is very much used for
the analysis in Fock space in the theory of quantized
relativistic fields, where a special role is assigned to
Wick ordering, according to which the polynomials
in &, and pj, are reordered in terms of creation and

annihilation operators by placing all creation opera-
tors to the left.

We now come back to Schrodinger’s equation and
notice that it can be derived within Heisenberg’s
formalism and Weyl’s quantization scheme from the
Hamiltonian of an N-particle system in Hamiltonian
mechanics (at least if one neglects spin, which has
no classical analog).

Apart from (often) inessential parameters, the
Schrodinger equation for N scalar particles in R3
can be written as

N
29 _

. 2 _
5= ;(lwk +A) ¢+ Vo=Hop 17
¢ € L*(RN)

where A, are vector-valued functions (vector poten-
tials) and V=Vj(x,)+ V p(xi —x;) are scalar-
valued function (scalar potentials) on R3.

Typical problems in Schrodinger’s
mechanics are:

quantum

1. Self-adjointness of H, existence of bound states
(discrete spectrum of the operator), their number
and distribution, and, in general, the properties
of the spectrum.

2. Existence, completeness, and continuity proper-
ties of the wave operators

W. = s — lim el e7itH [18]
Foo
and the ensuing existence and properties of the
S-matrix and of the scattering cross sections. In
[18] Hy is a suitable reference operator, usually
—A (with periodic boundary conditions if the
potentials are periodic in space), for which
Schrodinger’s equation can be somewhat analy-
tically controlled.
3. Existence and property of a semiclassical limit.

In [17] and [18] we have implicitly assumed that H
is time independent; very interesting problems arise
when H depends on time, in particular if it is
periodic or quasiperiodic in time, giving rise to
ionization phenomena. In the periodic case, one is
helped by Floquet’s theory, but even in this case
many interesting problems are still unsolved.

If the potentials are sufficiently regular, the
spectrum of H consists of an absolutely continuous
part (made up of several bands in the space-periodic
case) and a discrete part, with few accumulation
points.

On the contrary, if V(x,w) is a measurable
function on some probability space 2, with a
suitable distribution (e.g., Gaussian), the spectrum
may have totally different properties almost surely.
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For example, in the case N=1 (so that the terms V; ;
are absent) in one and two spatial dimensions the
spectrum is pure point and dense, with eigenfunctions
which decrease at infinity exponentially fast (although
not uniformly); as a consequence, the evolution group
does not give rise to a dispersive motion. The same is
true in three dimensions if the potential is sufficiently
strong and the kinetic energy content of the initial state
is sufficiently limited. This very interesting behavior is
due roughly to the randomness of the “barriers”
generated by the potential and is also present, to a
large extent, for potentials quasiperiodic in space
(Pastur and Figotin 1992).

In these as well as in most problems related
to Schrodinger’s equation, a crucial role is taken
by the resolvent operator (H — M), where X is
any complex number outside the spectrum of H;
many of the results are obtained when the difference
(H=X)"'—(Hy—=X)""isa compact operator.

Problems of type (1) and (2) are of great physical
interest, and are of course common with theoretical
physics and quantum chemistry (Le Bris 2003),
although the instruments of investigation are some-
what different in mathematical physics. The semi-
classical limit is often more of theoretical interest,
but its analysis has relevance in quantum chemistry
and its methods are very useful whenever it is
convenient to use multiscale methods, as in the
study of molecular spectra.

We start with a brief description of point (3); it
provides a valid instrument in the description of
quantum-mechanical systems at a scale where it is
convenient to use units in which the physical
constant » has a very small value (b~ 1077 in
CGS units). From Heisenberg’s commutation rela-
tions, [%,p] C kI, it follows that the product of the
dispersion (uncertainty) of the position and momen-
tum variables is proportional to # and therefore at
least one of these two quantities must have very
large values (compared to ). One considers usually
the case in which these dispersions have comparable
values, which is therefore very small, of the order of
magnitude 5'/* (but very large as compared with 5).
In order to make connection with the Hamilton—
Jacobi formalism of classical mechanics one can also
consider the case in which the dispersion in
momentum is of the order / (the WKB method).

The semiclassical limit takes advantage mathema-
tically from the fact that the parameter % is very
small in natural units, and performs an asymptotic
analysis, in which the terms of “lowest order” are
exactly described and the difference is estimated.
The problem one faces is that the Schrodinger
equation becomes, in the “mathematical limit”

h— 0, a very singular PDE (the coefficients of the
differential terms go to zero in this limit).

Dividing each term of the equation by # (because
we do not want to change the scale of time) leads, in
the case of one quantum particle in R? in potential
field V(x) (we treat, for simplicity, only this case), to
the equation

i% = —bAG(x, 1) + b V(x)p(x,1)  [19]
It is convenient therefore to “rescale” the spatial
variables by a factor h'/? (i.e., choose different
units) setting x = v/4X and look for solutions of [19]
which remain regular in the limit # — 0 as functions
of the rescaled variable X. One searches therefore
for solutions that on the “physical scale” have
support that becomes “vanishingly small” in the
limit. It is therefore not surprising that, in the limit,
these solutions may describe point particles; the
main result of semiclassical analysis is that he
coordinates of these particles obey Hamilton’s laws
of classical mechanics.

This can be roughly seen as follows (accurate
estimates are needed to make this empirical analysis
precise). Using multiscale analysis, one may write the
solution in the form ¢(X,x,#) and seek solutions
which are smooth in X and x. Both terms on the right-
hand side of [19] contain contributions of order —2
and —1 in v/ and in order to have regular solutions
one must have cancellations between equally singular
contributions. For this, one must perform an expan-
sion to the second order of the potential (assumed at
least twice differentiable) around a suitable trajectory
q(t), g € R3, and choose this trajectory in such a way
that the cancellations take place.

A formal analysis shows that this is achieved only
if the trajectory chosen is precisely a solution of the
classical Lagrange equations. Of course, a more
refined analysis and good estimates are needed to
make this argument precise, and to estimate the
error that is made when one neglects in the resulting
equation terms of order v/A; in favorable cases, for
each chosen T the error in the solution for most
initial conditions of the type described is of order
Vb for |t| < T.

This semiclassical result is most easily visualized
using the formalism of Wigner functions (the
technical details, needed to to make into a proof
the formal arguments, take advantage of regularity
estimates in the theory of functions).

In natural units, one defines

iV ¢
Wh,p(x7€7 t) = (ﬂ) Wp <x7ﬁvt>
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In terms of the Wigner function W), , the Schrodin-
ger equation [19] takes the form
of’

——+ & Vi  + Ky k=0

ot 20]

where

g o 8) ()

It can be proved (Robert 1987) that if the potential
is sufficiently regular and if the initial datum
converges in a suitable topology to a positive
measure fo, then, for all times, W), ,(x,?) converges
to a (weak) solution of the Liouville equation

of

ot
This leads to the semiclassical limit if, for example,
one considers a sequence of initial data p,, where ¢,
is a sequence of functions centered at xo with
Fourier transform centered at po and dispersion of
order 5'/? both in position and in momentum. In
this case, the limit measure is a Dirac measure
centered on the classical paths.

In the course of the proof of the semiclassical limit
theorem, one becomes aware of the special status of
the Hamiltonians that are at most quadratic in X and
p. Indeed, it is easy to verify that for these
Hamiltonians the expectation values of % and p
obey the classical equation of motion (P Ehrenfest
rule).

From the point of view of Heisenberg, this can be
understood as a consequence of the fact that
operators at most bilinear in @ and 4* form an
algebra D under commutation and, moreover, the
homogeneous part of order 2 is a closed subalgebra
such that its action on D (by commutation) has the
same structure as the algebra of generators of the
Hamiltonian flow and its tangent flow. Apart from
(important) technicalities, the proof of the semiclas-
sical limit theorem reduces to the proof that one can
estimate the contribution of the terms of order
higher than 2 in the expansion of the quantum
Hamiltonian at the classical trajectory as being of
order 5% in a suitable topology (Hepp 1974).

We end this overview by giving a brief analysis of
problems (1) and (2), which refer to the description
of phenomena that are directly accessible to com-
parison with experimental data, and therefore have
been extensively studied in theoretical physics and
quantum chemistry (Mc Weeny 1992); some of
them have been analyzed with the instruments of
mathematical physics, often with considerable

FEVuf —VV(x) Vef =0

success. We give here a very naive introduction to
these problems and refer the reader to the more
specialized contributions to this Encyclopedia for a
rigorous analysis and exact statements.

Of course, most of the problems of physical
interest are not “exactly solvable,” in the sense that
rarely the final result is given explicitly in terms of
simple functions. As a consequence, exact numerical
results, to be compared with experimental data, are
rarely obtained in physically relevant problems, and
most often one has to rely on approximation
schemes with (in favorable cases) precise estimates
on the error.

Formal perturbation theory is the easiest of such
schemes, but it seldom gives reliable results to
physically interesting problems. One writes

H,=H+eV 21]

where € is a small real parameter, and sets a formal
scheme in case (1) by writing

o0 [o¢]
Hepe=Ece, Ec=) By, 6.=) oy
0 0
and, in case (2), iterating Duhamel’s formula
t
e*ltH( — e*ltH(] + 16/ efl(I*S)H( VeﬂngdS [22}
0

Very seldom the perturbation series converges, and
one has to resort to more refined procedures.

In some cases, it turns out to be convenient to
consider the formal primitive E. of E. (as a
differentiable function of ¢) and prove that it is
differentiable in € for 0 < € < ¢y (but not for e=0).

In favorable cases, this procedure may lead to

N
_ k ; _
E .= EO:G Ep, + Rn(e), z\?g;o |Rn|(€) = 400

with explicit estimates of |[Rn(e)| for 0 < e < ¢.

Re-summation techniques of the formal power
series may be of help in some cases.

The estimate of the lowest eigenvalues of an
operator bounded below is often done by variational
analysis, making use of min—max techniques applied
to the quadratic form Q(¢) = (¢, Hp).

Semiclassical analysis can be useful to search for
the distribution of eigenvalues and in the study of
the dynamics of states whose dispersions both in
position and in momentum are very large in units in
which h=1.

A case of particular interest in molecular and
atomic physics occurs when the physical parameters
which appear in H, (typically the masses of the
particles involved in the process) are such that one
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can a priori guess the presence of coordinates which
have a rapid dependence on time (fast variables) and
a complementary set of coordinates whose depen-
dence on time is slow. This suggests that one can try
an asymptotic analysis, often in connection with
adiabatic techniques. Seldom one deals with cases in
which the hypotheses of elementary adiabatic
theorems are satisfied, and one has to refine the
analysis, mostly through subtle estimates which
ensure the existence of quasi invariant subspaces.

Asymptotic techniques and refined estimates are
also needed to study the effective description of a
system of N interacting identical particles when N
becomes very large; for example, in statistical
mechanics, one searches for results which are valid
when N — oo.

The most spectacular results in this direction are
the proof of stability of matter by E Lieb and
collaborators, and the study of the phenomenon of
Bose-Einstein condensation and the related Gross—
Pitaevskii (nonlinear Schrodinger) equation. The
experimental discovery of the state of matter
corresponding to a Bose-Einstein condensate is a
clear evidence of the nonclassical behavior of matter
even at a comparatively macroscopic size. From the
point of view of mathematical physics, the ongoing
research in this direction is very challenging.

One should also recognize the increasing role that
research in QM is taking in applications, also in
connection with the increasing success of nanotech-
nology. In this respect, from the point of view of
mathematical physics, the study of nanostructure
(quantum-mechanical systems constrained to very
small regions of space or to lower-dimensional
manifolds, such as sheets or graphs) is still in its
infancy and will require refined mathematical
techniques and most likely entirely new ideas.

Finally, one should stress the important role
played by numerical analysis (Le Bris 2003) and
especially computer simulations. In problems involv-
ing very many particles, present-day analytical
techniques provide at most qualitative estimates
and in favorable cases bounds on the value of the
quantities of interest. Approximation schemes are
not always applicable and often are not reliable.

Hints for a progress in the mathematical treatment
of some relevant physical phenomena of interest in
QM (mostly in condensed matter physics) may come
from the ab initio analysis made by simulations on
large computers; this may provide a qualitative and,
to a certain extent, quantitative behavior of the
solutions of Schrodinger’s equation corresponding to
“typical” initial conditions. In recent times the
availability of more efficient computing tools has
made computer simulation more reliable and more

apt to concur with mathematical investigation to a
fuller comprehension of QM.

Interpretation Problems

In this section we describe some of the conceptual
problems that plague present-day QM and some of
the attempts that have been made to cure these
problems, either within its formalism or with an
altogether different approach.

Approaches within the QM Formalism

We begin with the approaches “from within.” We
have pointed out that the main obstacle in the
measurement problem is the description of what
occurs during an act of measurement. Axiom III
claims that it must be seen as a “destruction” act,
and the outcome is to some extent random. The
final state of the system is one of the eigenstates of
the observable, and the dependence on the initial
state is only through an a priori probability assign-
ment; the act of measurement is therefore not a
causal one, contrary to the (continuous) causal
reversible description of the interaction with the
environment. One should be able to distinguish
a priori the acts of measurement from a generic
interaction.

There is a further difficulty. Due to the super-
position principle, if a system S on which we want
to make a measurement of the property associated
with the operator A “interacts” with an instrument
T described by the operator S, the final state ¢ of the
combined system will be a coherent superposition of
tensor product of (normalized) eigenstates of the
two systems

6 = Z Cn,mqsﬁ & ¢fn7 Z |Cn,m|2 =1 [23]

n,m

Measurement as described by Axiom II of QM
claims that once the measurement is over, the
measured system is, with probability " |Cu.m|?, in
the state ¢2 and the instrument is in a state which
carries the information about the final state of the
system (after all, what one reads at the end is an
indicator of the final state of the instrument).
It is therefore convenient to write £ in the form

= dutn @G, Y ldul* =1 [24]
(this defines ¢, if the spectrum of A is pure point and
nondegenerate). It is seen from [24] that, due to the
reduction postulate, we know that the the measured
system is in the state gzﬁ;?o if a measurement of an
observable T with nondegenerate spectrum,
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eigenvectors {(,}, and eigenvalues ({z,} gives the
results 2,,.

Along these lines, one does not solve the measure-
ment problem (the outcome is still probabilistic) but
at least one can find the reason why the measuring
apparatus may be considered “classical.”

It is more convenient to go back to [23] and to
assume that one is able to construct the measuring
apparatus in such a way that one divides (roughly)
its pure (microscopic) states in sets ®, (each
corresponding to a “macroscopic” state) which are
(roughly) in one-to-one correspondence to the
eigenstates of A. The sets ®, contain a very large
number, Ng,, of elements, so that the sets ®, need
not be given with extreme precision. And the sets @,
must be in a sense “stable” under small external
perturbations.

It is clear from this rough description that the
apparatus should contain a large number of small
components and still its interaction with the “small”
system A should lead to a more or less sudden
change of the sets ®,,.

A concrete model of this mechanism has been
proposed by K Hepp (1972) for the case when A is a
2 x 2 matrix, and the measuring apparatus is made
of a chain of N spins, N— oo; the analysis was
recently completed by Sewell (2005) with an
estimate on the error which is made if N is finite
but large. This is a dynamical model, in which the
observable A (a spin) interacts with a chain of spins
(“moves over the spins”) leaving the trace of its
passage. It is this trace (final macroscopic state of
the apparatus) which is measured and associated
with the final state of A. The interaction is not
“instantaneous” but may require a very short time,
depending on the parameters used to describe the
apparatus and the interaction.

We call “decoherence” the weakening of the
superposition principle due to the interaction with
the environment.

Two different models of decoherence have been
analyzed in some detail; we shall denote them
thermal-bath model and scattering model; both are
dynamical models and both point to a solution, to
various extents, of the problem of the reduction to a
final density matrix which commutes with the
operator A (and therefore to the suppression of the
interference terms).

The thermal-bath model makes wuse of the
Heisenberg representation and relies on results of
the theory of C*-algebras. This approach is closely
linked with (quantum) statistical mechanics; its aim
is to prove, after conditioning with respect to the
degrees of freedom of the bath, that a special role
emerges for a commuting set of operators of the

measured system, and these are the observables that
specify the outcome of the measurement in prob-
abilistic terms.

The scattering approach relies on the Schrodinger
approach to QM, and on results from the theory of
scattering. This approach describes the interaction of
the system S (typically a heavy particle) with an
environment made of a large number of light particles
and seeks to describe the state of S after the
interaction when one does not have any information
on the final state of the light particle. One seeks to
prove that the reduced density matrix is (almost)
diagonal in a given representation (typically the one
given by the spatial coordinates). This defines the
observable (typically, position) that can be measured
and the probability of each outcome.

Both approaches rely on the loss of information in
the process to cancel the effect of the superposition
principle and to bring the measurement problem
within the realm of classical probability theory.
None of them provides a causal dependence of the
result of the measurement on the initial state of the
system.

We describe only very briefly these attempts.

In its more basic form, the “scattering approach”
has as starting point the Schrodinger equation for a
system of two particles, one of which has mass very
much smaller than the other one. The heavy particle
may be seen as representing the system on which a
measurement is being made. The outline of the
method of analysis (which in favorable cases can be
made rigorous) (Joos and Zeh 1985, Tegmark 1993)
is the following. One chooses units in which the
mass of the heavy particle is 1, and one denotes by ¢
the mass of the light particle. If x is the coordinate
of the heavy particle and y that of the light one, and
if the initial state of the system is denoted by
®y(x,y), the solution of the equation for the system
is (apart from inessential factors)

P, = exp{i(—Ax — € 'Ay + W(x) + V(x — )t} 0o

Making use of center-of-mass and relative coordi-
nates, one sees that when ¢ is very small one should
be able to describe the system on two timescales,
one fast (for the light particle) and one slow (for the
heavy one) and, therefore, place oneself in a setting
which may allow the use of adiabatic techniques. In
this setting, for the measure of the heavy particle
(e.g., its position) one may be allowed to consider
the light particle in a scattering regime, and use the
wave operator corresponding to a potential
Vily) = V(y — x).

Taking the partial trace with respect to the
degrees of freedom of the light particle (this
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corresponds to no information of its final state) one
finds, at least heuristically, that the state of the
heavy particle is now described (due to the trace
operation) by a density matrix o for which in the
coordinate representation the off-diagonal terms
ox,w are slightly suppressed by a factor & v=1—
(W, 9, W) where 1) represents the initial state of
the light particle and W is the wave operator for
the motion of the light particle in the potential €V,.
One must assume that function ¢ which represents
the initial state of the heavy particle is sufficiently
localized so that &, v <1 for every x’' #x in its
support.

If the environment is made of very many
particles (their number N(e) must be such that
lim. 9 eN(e)=0c0) and the heavy particle can be
supposed to have separate interactions with all of
them, the off-diagonal elements of the density
matrix tend to 0 as e — 0 and the resulting density
matrix tends to have the form ®(x,x')=68(x — x')
p(x), p(x) >0, [p(x)dx=1. If it can be supposed
that all interactions take place within a time T(¢) < €%,
a > 0 one has p(x) = |w(x)|2.

If the interactions are not independent, the
analysis becomes much more involved since it has
to be treated by many-body scattering theory; this
suggests that the scattering approach can be hardly
used in the context of the “thermal-bath model.” In
any case, the selection of a “preferred basis” (the
coordinate representation) depends on the fact that
one is dealing with a scattering phenomenon. A few
steps have been made for a rigorous analysis (Teta
2004) but we are very far from a mathematically
satisfactory answer.

The thermal-bath approach has been studied
within the algebraic formulation of QM and stands
on good mathematical ground (Alicki 2002,
Blanchard et al. 2003, Sewell 2005). Its drawback
is that it is difficult to associate the formal scheme
with actual physical situations and it is difficult to
give a realistic estimate on the decoherence time.

The thermal-bath approach attributes the deco-
herence effect to the practical impossibility of
distinguishing between a vast majority of the pure
states of the systems and the corresponding statis-
tical mixtures. In this approach, the observables are
represented by self-adjoint elements of a weakly
closed subalgebra M of all bounded operators B(H)
on a Hilbert space H. This subalgebra may depend
on the measuring apparatus (i.e, not all the
apparatuses are fit to measure a set of observables).
A “classical” observable by definition commutes
with all other observables and therefore must belong
to the center of A which is isomorphic to a
collection of functions on a probability space M.

So the appearance of classical properties of a
quantum system corresponds to the “emergence” of
an algebra with nontrivial center. Since automorphic
evolutions of an algebra preserve its center, this
program can be achieved only if we admit the loss of
quantum coherence, and this requires that the
quantum systems we describe are open and interact
with the environment, and moreover that the
commutative algebra which emerges be stable for
time evolution.

It may be shown that one must consider quantum
environment in the thermodynamic limit, that is,
consider the interaction of the system to be
measured with a thermal bath. A discussion of the
possible emergence of classical observables and of
the corresponding dynamics is given by Gell-Mann
(1993). In all these approaches, the commutative
subalgebra is selected by the specific form of the
interaction; therefore, the measuring apparatus
determines the algebra of classical observables.

On the experimental side, a number of very
interesting results have been obtained, using very
refined techniques; these experiments usually also
determine the “decoherence time.” The experimental
results, both for the collision model (Hornberger
et al. 2003) and for the thermal-bath model
(Hackermueller et al. 2004), are done mostly with
fullerene (a molecule which is heavy enough and is
not deflected too much after a collision with a
particle of the gas). They show a reasonable
accordance with the (rough) theoretical conclusions.

The most refined experiments about decoherence
are those connected with quantum optics (circularly
polarized atoms in superconducting cavities). These
are not related to the wave nature of the particles
but in a sense to the “wave nature” of a photon as a
single unit. The electromagnetic field is now
regarded as an incoherent superposition of states
with an arbitrarily large number of photons.
Polarized photons can be produced one by one,
and they retain their individuality and their polar-
ization until each of them interacts with “the
environment” (e.g., the boundary of the cavity or a
particle of the gas). In a sense, these experimental
results refer to a “decoherence by collision” theory.

The experiments by Haroche (2003) prove that
coherence may persist for a measurable interval of
time and are the most controlled experiments on
coherence so far.

Other Approaches

We end this section with a brief discussion of the
problem of “hidden variables” and a presentation of
an entirely different approach to QM, originated by
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D Bohm (1952) and put recently on firm mathema-
tical grounds by Duerr ez al. (1999). The approach is
radically different from the traditional one and it is
not clear at present whether it can give a solution to
the measurement problem and a description of all
the phenomena which traditional QM accounts for.
But it is very interesting from the point of view of
the mathematics involved.

We have remarked that the formulation of QM
that is summarized in the three axioms given earlier
has many unsatisfactory aspects, mainly connected
with the superposition principle (described in its
extremal form by the Schrodinger’s cat “paradox™)
and with the problem of measurement which
reveals, for example, through the Einstein—Rosen—
Podolski “paradox,” an intrinsic nonlocality if one
maintains that their “objective” properties can be
attributed to systems which are far apart. From the
very beginning of QM, attempts have been made to
attribute these features to the presence of “hidden
variables”; the statistical nature of the predictions
of QM is, from this point of view, due to the
incompleteness of the parameters used to describe
the systems. The impossibility of matching the
statistical prediction of QM (confirmed by experi-
mental findings) with a local theory based on hidden
variables and classical probability theory has been
known for sometime (Kochen and Specker 1967),
also through the use of “Bell inequalities” (Bell
1964) among correlations of outcomes of separate
measurements performed on entangled system
(mainly two photons or two spin-1/2 particles
created in a suitable entangled state).

A proof of the intrinsic nonlocality of QM (in the
above sense) was given by L Hardy (see Haroche
(2003)).

While experimental results prove that one
cannot substitute QM with a “naive” theory of
hidden variables, more refined attempts may have
success. We shall only discuss the approach of Bohm
(following a previous attempt by de Broglie) as
presented in Duerr et al. (1999). It is a dynamical
theory in which representative points follow “classical
paths” and their motion is governed by a time-
dependent vector “velocity” field (in this sense, it is
not Newtonian). In a sense, Bohmian mechanics is a
minimal completion of QM if one wants to keep the
position as primitive observable. To these primitive
objects, Bohm’s theory adds a complex-valued func-
tion ¢ (the “guiding wave” in Bohm’s terminology)
defined on the configuration space Q of the particles.
In the case of particles with spin, the function ¢ is
spinor-valued. Dynamics is given by two equations:
one for the coordinates of the particles and one for
the guiding wave. If x = x1,...,xn describes the

configuration of the points, the dynamics in a
potential field V(x) is described in the following
way: for the wave ¢ by a nonrelativistic Schrodinger
equation with potential V and for the coordinates by
the ordinary differential equation (ODE)

¢V
¢*¢

o= (o)t | T4 (), RO

where m1;, is the mass of the mth particle.

Notice that the vector field is singular at the zeros
of the wave function, therefore global existence and
uniqueness must be proved. To see why Bohmian
mechanics is empirically equivalent to QM, at least
for measurement of position, notice that the
equation for the points coincides with the continuity
equation in QM. It follows that if one has at time
zero a collection of points distributed with density
|¢0|2, the density at time ¢ will be \(zb(t)|2 where ¢(¢)
is the solution of the Schrodinger equation with
initial datum ¢.

Bohm (1952) formulated the theory as a modi-
fication of Newton’s laws (and in this form it has
been widely used) through the introduction of a
“quantum potential” Vq. This was achieved by
writing the wave function in its polar form
¢=Re"/" and writing the continuity equation as a
modified Hamilton—Jacobi equation. The version of
Bohm’s theory discussed in Duerr et al. (1999)
introduces only the guiding wave function and the
coordinates of the points, and puts the theory on
firm mathematical grounds. Through an impressive
series of mathematical results, these authors and
their collaborators deal with the completeness of
the velocity vector field, the asymptotic behavior of
the points trajectories (both for the scattering regime
and for the trapped trajectories, which are shown to
correspond to bound states in QM), with a rigorous
analysis of the theorem on the flux across a surface
(a cornerstone in scattering theory) and the detailed
analysis of the “two-slit” experiment through a
study of the interaction with the measuring appara-
tus. The theory is completely causal, both for the
trajectories of the points and for the time develop-
ment of the pilot wave, and can also accommodate
points with spin. It leads to a mathematically precise
formulation of the semiclassical limit, and it may
also resolve the measurement problem by relating
the pilot wave of the entire system to its approximate
decomposition in incoherent superposition of pilot
wave associated with the particle and to the measur-
ing apparatus (this would be the way to see the
“collapse of the wave function” in QM). A weak
point of this approach is the relation of the
representative points with observable quantities.
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Introduction

This will be an elementary introduction to general
topology. We shall not even touch upon algebraic
topology, which will be dealt with in Cohomology
Theories, although in some mathematics departments
it is introduced in an advanced undergraduate course.

We believe such an elementary article is useful for
the encyclopaedia, purely for quick reference. Most
of the concepts will be familiar to physicists, but
usually in a general rather vague sense. This article
will provide the rigorous definitions and results
whenever they are needed when consulting other
articles in the work. To make sure that this is the
case, we have in fact experimentally tested the
article on physicists for usefulness.

Topology is very often described as “rubber-sheet
geometry,” that is, one is allowed to deform objects
without actually breaking them. This is the all-
important concept of continuity, which underlies
most of what we shall study here.

We shall give full definitions, state theorems
rigorously, but shall not give any detailed proofs.
On the other hand, we shall cite many examples,
with a view to applications to mathematical physics,
taking for granted that familiar more advanced
concepts there need not be defined. By the same
token, the choice of topics will also be so dictated.

".1,5,1,0,0pc,0pc,0pc,0pc>Essential
Concepts
Definition 1 Let X be a set. A collection 7 of

subsets of X is called a fopology if the following are
satisfied:
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(i) 0,XeT.
(ii) Let Z be an index set. then

AaeT,aeIzUadAaeT

(i) A, € T,i=1,...,n = (Y, A €T.

Definition 2 A member of the topology 7 is called
an open set (of X with topology 7).

Remark The last two properties are more easily
put as arbitrary unions of open sets are open, and
finite intersections of open sets are open. One can
easily see the significance of this: if we take the
“usual topology” (which will be defined in due
course) of the real line, then the intersection of all
open intervals (—1/n,1/n),n a positive integer, is
just the single point {0}, which is manifestly not
open in the usual sense.

Example If we postulate that (}, and the entire set
X, are the only open subsets, we get what is called
the indiscrete or coarsest topology. At the other
extreme, if we postulate that all subsets are open,
then we get the discrete or finest topology. Both
seem quite unnatural if we think in terms of the
real line or plane, but in fact it would be more
unnatural to explicitly exclude them from the
definition. They prove to be quite useful in certain
respects.

Definition 3 A subset of X
complement in X is open.

is closed if its

Remarks

(i) One could easily build a topology using closed
sets instead of open sets, because of the simple
relation that the complement of a union is the
intersection of the complements.

(ii) From the definitions, there is nothing to prevent
a set being both open and closed, or neither
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Definition 4 A set equipped with a topology is
called a topological space (with respect to the given
topology). Elements of a topological space are
sometimes called points.

Definition 5 Let x € X. A neighborhood of x is a
subset of X containing an open set which contains x.

Remark This seems a clumsy definition, but turns
out to be more useful in the general case than
restricting to open neighborhoods, which is often done.

Definition 6 A subcollection of open sets BC T is
called a basis for the topology 7T if every open set is
a union of sets of B.

Definition 7 A subcollection of open sets S C 7 is
called a sub-basis for the topology 7 if every open
set is a union of finite intersections of sets of S.

Definition 8 The closure A of a subset A of X is
the smallest closed set containing A.

Definition 9 The interior A of a subset A of X is
the largest open set contained in A.

Remark It is sometimes yseful to defige the
boundary of A as the set AANA={x € A,x ¢ A}.

Definition 10 Let A be a subset of a topological
space X. A point x € X is called a limit point of A if
every open set containing x contains some point of
A other than x.

Definition 11 A subset A of X is said to be dense in
Xif A=X.

Definition 12 A topological space X is called a
Hausdorff space if for any two distinct points x,y € X,
there exist an open neighborhood of A of x and an
open neighborhood B of y such that A and B are
disjoint (that is, A N B=0).

Remark and Examples

(i) This is looking more like what we expect.
However, certain mildly non-Hausdorff spaces
turn out to be quite useful, for example, in twistor
theory. A “pocket” furnishes such an example.
Explicitly, consider X to be the subset of the real
plane consisting of the interval [—1,1] on the x-
axis, together with the interval [0, 1] on the line
y=1, where the following pairs of points are
identified: (x, 0) 2 (x,1),0 < x < 1. Then the two
points (0, 0) and (0,1) do not have any disjoint
neighborhoods. Strictly speaking, one needs the
notion of a quotient topology, introduced below.

(ii) For a more “truly” non-Hausdorff topology,
consider the space of positive integers N =
{1,2,3,...}, and take as open sets the following:
(0, N, and the sets {1,2,...,n} for each n € N.

This space is neither Hausdorff nor compact (see
later for definition of compactness).

Definition 13 Let X and Y be two topological
spaces and let f: X — Y be a map from X to Y. We
say that f is continuous if f'(A) is open (in X)
whenever A is open (in Y).

Remark Continuity is the single most important
concept here. In this general setting, it looks a little
different from the “c—6 definition, but this latter works
only for metric spaces, which we shall come to shortly.

Definition 14 A map f: X — Y is a homeomorph-
ism if it is a continuous bijective map such that its
inverse f~! is also continuous.

Remark Homeomorphisms are the natural maps
for topological spaces, in the sense that two home-
omorphic spaces are “indistinguishable” from the
point of view of topology. Topological invariants
are properties of topological spaces which are
preserved under homeomorphisms.

Definition 15 Let B C A. Then one can define the
relative topology of B by saying that a subset C C B
is open if and only if there exists an open set D of A
such that C=D N B.

Definition 16 A subset B C A equipped with the
relative topology is called a subspace of the
topological space A.

Remark Thus, if for subsets of the real line, we
consider A =10, 3],B=10,2], then C=(1,2] is open
in B, in the relative topology induced by the usual
topology of R.

Definition 17 Given two topological spaces X and Y,
we can define a product topological space Z=X x Y,
where the set is the Cartesian product of the two sets X
and Y, and sets of the form A x B, where A is open in
X and B is open in Y, form a basis for the topology.

Remark Note that the open sets of X x Y are not
always of this product form (A x B).

Definition 18 Suppose there is a partition of X into
disjoint subsets A,,« € Z, for some index set Z, or
equivalently, there is defined on X an equivalence
relation ~. Then one can define the quotient
topology on the set of equivalence classes {A,,a €
T}, usually denoted as the quotient space X/ ~ =Y,
as follows. Consider the map 7: X — Y, called the
canonical projection, which maps the element x € X
to its equivalence class [x]. Then a subset U C Y is
open if and only if 771(U) is open.

Proposition 1 Let T be the quotient topology on
the quotient space Y. Suppose T' is another
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topology on Y such that the canonical projection is
continuous, then T' C T.

Definition 19  An (open) cover {U,: « € T} for X isa
collection of open sets U, C X such that their union
equals X. A subcover of this cover is then a subset of
the collection which is itself a cover for X.

Definition 20 A topological space X is said to be
compact if every cover contains a finite subcover.

Remark So for a compact space, however one
chooses to cover it, it is always sufficient to use a
finite number of open subsets. This is one of the
essential differences between an open interval (not
compact) and a closed interval (compact). The former
is in fact homeomorphic to the entire real line.

Definition 21 A topological space X is said to be
connected if it cannot be written as the union of two
nonempty disjoint open sets.

Remark A useful equivalent definition is that any
continuous map from X to the two-point set {0, 1},
equipped with the discrete topology, cannot be
surjective.

Definition 22 Given two points x, y in a topolo-
gical space X, a path from x to y is a continuous
map f:[0,1] = X such that f(0)=x,f(1)=y. We
also say that such a path joins x and y.

Definition 23 A topological space X is path-
connected if every two points in X can be joined
by a path lying entirely in X.

Proposition 2 A path-connected space is connected.

Proposition 3 A connected open subspace of R" is
path-connected.

Definition 24 Given a topological space X, define
an equivalence relation by saying that x ~ y if and
only if x and y belong to the same connected
subspace of X. Then the equivalence classes are
called (connected) components of X.

Examples

(i) The Lie group O(3) of 3 x 3 orthogonal matrices
has two connected components. The identity
connected component is SO(3) and is a subgroup.

(ii) The proper orthochronous Lorentz transformations
of Minkowski space form the identity component
of the group of Lorentz transformations.

Metric Spaces

A special class of topological spaces plays an
important role: metric spaces.

Definition 25 A metric space is a set X together
with a function d: X x X — R satisfying

(i) d(x,y) >0,
(i) d(x,y)=0 < x=y,
(i) d(x,2) < d(x,y)+ d(y,z) (“triangle inequality”).

Remarks

(i) The function d is called the metric, or distance
function, between the two points.

(ii) This concept of metric is what is generally
known as “Euclidean” metric in mathematical
physics. The distinguishing feature is the posi-
tive definiteness (and the triangle inequality).
One can, and does, introduce indefinite metrics
(for example, the Minkowski metric) with
various signatures. But these metrics are not
usually used to induce topologies in the spaces
concerned.

Definition 26 Given a metric space X and a point
x € X, we define the open ball centred at x with
radius 7 (a positive real number) as

B,(x) ={ye X:d(x,y) <r}

Given a metric space X, we can immediately
define a topology on it by taking all the open balls in
X as a basis. We say that this is the topology
induced by the given metric. Then we can recover
our usual “e—6” definition of continuity.

Proposition 4 Letf : X — Y be a map from the metric
space X to the metric space Y. Then [ is continuous
(with respect to the corresponding induced topologies)
at x € X if and only if given any e > 0,36 > 0 such that
d(x,x") < & implies d(f(x, ), f(x')) <e.

Note that we do not bother to give two different
symbols to the two metrics, as it is clear which
spaces are involved. The proof is easily seen by
taking the relevant balls as neighborhoods. Equally
easy is the following:

Proposition 5 A metric space is Hausdorff.

Definition 27 A map f: X — Y of metric spaces is
uniformly continuous if given any € > 0 there exists
6>0 such that for any xi1,x; € X,d(x1,x2) <6
implies d(f(x1),f(x2)) <e.

Remark Note the difference between continuity

and uniform continuity: the latter is stronger and
requires the same ¢ for the whole space.

Definition 28 Two metrics d; and d, defined on X
are equivalent if there exist positive constants a and
b such that for any two points x,y € X we have

adi(x,y) < da(x,y) < bdy(x,y)
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Remark This is clearly an equivalence relation.
Two equivalent metrics induce the same topology.

Examples

(1) Given a set X, we can define the discrete metric
as follows: dy(x,y)=1 whenever x # y. This
induces the discrete topology on X. This is quite
a convenient way of describing the discrete
topology.

(ii) In R, the usual metric is d(x,y)=|x —y|, and
the usual topology is the one induced by this.

(iii) More generally, in R”, we can define a metric
for every p >1 by

" 1/p
dp(x,y) = {Z|xk _yk|p}
p

Where ‘x: (‘xl,xz" A ,xn)’y: (yl’yz, A '3y71)' In
particular, for p=2 we have the usual Eucli-
dean metric, but the other cases are also useful.
To continue the series, one can define

doo = max {|x; — v}
1<k<n

All these metrics induce the same topology on R”.
(iv) In a vector space V, say over the real or the

complex field, a function || - || : V—R" is called

a norm if it satisfies the following axioms:

(a) ||x||=0 if and only if x =0,

(b) [lawx|| = |e |||, and

(©) [lx+yll < llxll + [lyll-

Then it is easy to see that a metric can be defined
using the norm

dx,y) = [lx —yll

In many cases, for example, the metrics defined in
example (iii) above, one can define the norm of a
vector as just the distance of it from the origin. One
obvious exception is the discrete metric.

A slightly more general concept is found to be
useful for spaces of functions and operators: that of
seminorms. A seminorm is one which satisfies the
last two of the conditions, but not necessarily the
first, for a norm, as listed above.

Definition 29 Given a metric space X, a sequence
of points {x1,x;,...} is called a Cauchy sequence if,
given any € > 0, there exists a positive integer N
such that for any k,¢ > N we have d(x;,x/) < e.

Definition 30 Given a sequence of points
{x1,x2,...} in a metric space X, a point x € X is
called a limit of the sequence if given any e > 0,
there exists a positive integer N such that for any
n>N we have d(x,x,) <e. We say that the
sequence converges to x.

Definition 31 A metric space X is complete if every
Cauchy sequence in X converges to a limit in it.

Examples

(i) The closed interval [0,1] on the real line is
complete, whereas the open interval (0,1) is
not. For example, the Cauchy sequence
{1/n,n=2,3,...} has no limit in this open
interval. (Considered as a sequence on the real
line, it has of course the limit point 0.)

(ii) The spaces R” are complete.

(iii) The Hilbert space ¢> consisting of all
sequences of real numbers {x1,x2,...} such
that 31" x7 converges is complete with respect
to the obvious metric which is a generalization
to infinite dimension of d, above. For arbi-
trary p > 1, one can similarly define £?, which
are also complete and are hence Banach
spaces.

Remarks Completeness is not a topological invar-
iant. For example, the open interval (—1,1) and the
whole real line are homeomorphic (with respect to
the usual topologies) but the former is not complete
while the latter is. The homeomorphism can
conveniently be given in terms of the trigonometric
function tangent.

Definition 32 A subset B of the metric space X is
bounded if there exists a ball of radius R (R > 0)
which contains it entirely.

Theorem 1 (Heine-Borel) Any closed bounded
subset of R" is compact.

Remark The converse is also true. We have thus a
nice characterization of compact subsets of R” as
being closed and bounded.

Proposition 6 Any bounded sequence in R" has a
convergent subsequence.

Definition 33 Consider a sequence {f,} of real-
valued functions on a subset A (usually an interval)
of R. We say that {f,} converges pointwise in A if
the sequence of real numbers {f,(x)} converges for
every x € A. We can then define a function f: A— R
by f(x)= lim, . fx(x), and write f, — f.

Definition 34 A sequence of functions f,:A—
R, A C R is said to converge uniformly to a function
f:A— R if given any e > 0, there exists a positive
integer N such that, for all x, |f,(x)—7f(x)|<e
whenever 7> N.

Theorem 2 Let f,:(a,b) >R be a sequence of
functions continuous at the point c € (a,b), and
suppose f,, converges uniformly to f on (a,b). Then [
is continuous at c.
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Remark and Example The pointwise limit of
continuous functions need not be continuous, as
can be shown by the following example:
fulx)=x",x € [0,1]. We see that the limit function
f is not continuous:

feo={) *71

x=1

Definition 35 Let X be a metric space. A map
f:X— X is a contraction if there exists ¢ < 1 such
that d(f(x),f(y)) <cd(x,y) for all x,y € X.

Theorem 3 (Banach) If X is a complete metric
space and f is a contraction in X, then [ has a unique
fixed point x € X, that is, f(x) = x.

Some Function and Operator Spaces

The spaces of functions and operators can be
equipped with different topologies, given by various
concepts of convergence and of norms (or sometimes
seminorms), very often with different such concepts
for the same space. As we saw earlier, a norm in a
vector space gives rise to a metric, and hence to a
topology. Similarly with the concept of convergence
for sequences of functions and operators, as one
then knows what the limit points, and hence closed
sets, are.

But before we do that, let us introduce, in a
slightly different context, a topology which is in
some sense the natural one for the space of
continuous maps from one space to another.

Definition 36 Consider a family F of maps from a
topological space X to a topological space Y, and
define W(K,U)={f:f € F,f(K) C U}. Then the
family of all sets of the form W(K,U) with K
compact (in X) and U open (in Y) form a sub-basis
for the compact open topology for F.

Consider a topological space X and sequences of
functions (f,,) on it. Let D C X. We can then define
pointwise convergence and uniform convergence
exactly as for functions on subsets of the real line.

Definition 37 Let X, D and (f,) as above.

(i) The functions f,, converge pointwise on D to a
function f if the sequence of numbers
falx) = f(x),Vx € D.

(ii) The functions f,, converge uniformly on D to a
function f if given € > 0, there exists N such that
for all # > N we have |f,(x) — f(x)| < ¢, Vx € D.

Next we consider the Lebesgue spaces L?, that
is, functions [ defined on subsets of R”, such
that |f(x)]” is Lebesgue integrable, for real
numbers p > 1. To define these spaces, we tacitly

take equivalence classes of functions which are equal
almost everywhere (that is, up to a null set), but very
often we can take representatives of these classes
and just deal with genuine functions instead. Note
that of all L?, only L? is a Hilbert space.

Definition 38 In the space L?, we define its norm by

=/ |f<x>|"dx)l/p

Now we turn to general normed spaces, and
operators on them.

Definition 39 Convergence in the norm is also
called strong convergence. In other words, a
sequence (x,) in a normed space X is said to
converge strongly to x if

lim ||x, —x|| =0
n—oo

Definition 40 A sequence (x,) in a normed space X
is said to converge weakly to x if

lim £(x,) = £(x)

for all bounded linear functionals £.
Consider the space B(X,Y) of bounded linear

operators T from X to Y. We can make this into a
normed space by defining the following norm:

[T = sup
xeX, |x]|=1

[ITx]|

Then we can define three different concepts of
convergence on B(X,Y). There are in fact more in
current use in functional analysis.

Definition 41 Let X and Y be normed spaces and
let (T,) be a sequence of operators T, € B(X,Y).

(i) (T,) is uniformly convergent if it converges in
the norm.
(ii) (T,) is strongly convergent if (T,x) converges
strongly for every x € X.
(ii) (T,) is weakly convergent if (T,x) converges
weakly for every x € X.

Remark Clearly we have: uniform convergence =
strong convergence =—> weak convergence, and the
limits are the same in all three cases. However, the
converses are in general not true.

Homotopy Groups

The most elementary and obvious property of a
topological space X is the number of connected
components it has. The next such property, in a
certain sense, is the number of holes X has. There
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are higher analogues of these, called the homotopy
groups, which are topological invariants, that is,
they are invariant under homeomorphisms. They
play important roles in many topological considera-
tions in field theory and other topics of mathema-
tical physics. The articles Topological Defects
and Their Homotopy Classification and Electric-
Magnetic Duality contain some examples.

Definition 42 Given a topological space X, the
zeroth homotopy set, denoted my(X), is the set of
connected components of X. One sometimes writes
mo(X) =0 if X is connected.

To define the fundamental group of X, or 7 (X),
we shall need the concept of closed loops, which we
shall find useful in other ways too. For simplicity,
we shall consider based loops (that is, loops passing
through a fixed point in X). It seems that in most
applications, these are the relevant ones. One could
consider loops of various smoothness (when X is a
manifold), but in view of applications to quantum
field theory, we shall consider continuous loops,
which are also the ones relevant for topology.

Definition 43 Given a topological space X and a
point xg € X, a (closed) (based) loop is a continuous
function of the parametrized circle to X:

£:10,27] = X
satisfying £(0) = &(27) = xo.

Definition 44 Given a connected topological space
X and a point x¢ € X, the space of all closed based
loops is called the (parametrized based) loop space
of X, denoted QX.

Remarks

(i) The loop space X inherits the relative compact—
open topology from the space of continuous maps
from the closed interval [0, 27] to X. It also has a
natural base point: the constant function mapping
all of [0,27] to xo. Hence it is easy to iterate the
construction and define QX k > 1.

(ii) Here we have chosen to parametrize the circle
by [0,27], as is more natural if we think in
terms of the phase angle. We could easily have
chosen the unit interval [0,1] instead. This
would perhaps harmonize better with our pre-
vious definition of paths and the definitions of
homotopies below.

Proposition 7 The fundamental group of a topo-
logical space X, denoted 7 (X), consists of classes of
closed loops in X which cannot be continuously
deformed into one another while preserving the base
point.

Definition 45 A space X is called simply connected
if m(X) is trivial.

To define the higher homotopy groups, let us go
into a little detail about homotopy.

Definition 46  Given two topological spaces X and
Y, and maps

p,g: X—=Y
we say that b is a homotopy between the maps p, q if
h:XxI—Y

is a continuous map such that h(x,0)=p(x),
h(x,1)=q(x), where I is the unit interval [0,1]. In
this case, we write p ~ g.

Definition 47 A map f:X—Y is a homotopy
equivalence if there exists a map g:Y— X such
that gof ~idx and f o g ~ idy.

Remark This is an equivalence relation.

Definition 48 For a topological space X with base
point xp, we define m,(X),7 >0 as the set of
homotopy equivalence classes of based maps from
the n-sphere §” to X.

Remark This coincides with the previous defini-
tions for my and 7.

There is a very nice relation between homotopy
classes and loop spaces.

Proposition 8 7,(X)=m, 1(QX)= - =7 (Q"X).

Remarks

(1) When we consider the gauge group G in a Yang—
Mills theory, its fundamental group classifies the
monopoles that can occur in the theory.

(ii) For n > 1,7m,(X) is a group, the group action
coming from the joining of two loops together
to form a new loop. On the other hand, 7y(X)
in general is not a group. However, when X is a
Lie group, then mo(X) inherits a group structure
from X, because it can be identified with the
quotient group of X by its identity-connected
component. For example, the two components
of O(3) can be identified with the two elements
of the group 7Z,, the component where the
determinant equals 1 corresponding to 0 in 7,
and the component where the determinant
equals —1 corresponding to 1 in 7.

(iii) For n > 2, the group 7,(X) is always abelian.

(iv) Examples of nonabelian 7 are the fundamental
groups of some Riemann surfaces.

(v) Since 71 is not necessarily abelian, much of the
direct-sum notation we use for the homotopy
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groups should more correctly be written multi-
plicatively. However, in most literature in
mathematical physics, the additive notation
seems to be preferred.

Examples

(1) Ta(X X Y)=m(X) + mu(Y), n > 1.
(ii) For the spheres, we have the following results:

ri(S") = { 0 ?fi >n
7, ifi=n

mi(S') = ifi > 1
Tur1(8") = Zz ifn >3
Tus2(S") =7y ifn>2

71'6(5 ) = Z12

(iii) From the theory of sphere bundles, we can

deduce:

mi(S?) = w1 (SY) + m(S?) ifi>2
7T,‘(S4) = i1 (SS) —|—7T,'(S7) ifi>2
mi(S%) = w1 (87) + m(SY) if i >2

and the first of these relations give the follow-
ing more succinct result:

mi(S3) = m(S?) ifi>3

(iv) A result of Serre says that all the homotopy
groups of spheres are in fact finite except m,(S”)
and m4,_1(S¥"),n > 1.

Definition 49 Given a connected space X, a map
m: B — Xis called a covering if (i) m(B) = X, and (ii) for
each x € X, there exists an open connected neighbor-
hood V of x such that each component of 77! (V) is open
in B, and 7 restricted to each component is a home-
omorphism. The space B is called a covering space.

Examples

(i) The real line R is a covering of the group U(1).

(i) The group SU(2) is a double cover of the group
SO(3).

(iii) The group SL(2, C) is a double cover of the
Lorentz group SO(1, 3).

(iv) The group SU(2,2) is a 4-fold cover of the
conformal group in four dimensions. This local
isomorphism is of great importance in twistor
theory.

Remarks

(i) By considering closed loops in X and their
coverings in B it is easily seen that the
fundamental group m(X) acts on the coverings
of X. If we further assume that the action is

transitive, then we have the following nice
result: coverings of X are in 1-1 correspon-
dence with normal subgroups of 7 (X).

(ii) Given a connected space X, there always exists a
unique connected simply connected covering space
X, called the universal covering space. Further-
more, X covers all the other covering spaces of X.

For the higher homotopy groups, one has

Tn(X) = m0(X), n>2

One very important class of homotopy groups are
those of Lie groups. To simplify matters, we shall
consider only connected groups, that is, 7o(G)=0.
Also we shall deal mainly with the classical groups,
and in particular, the orthogonal and unitary groups.

Proposition 9 Suppose that G is a connected Lie
group.

i) If G is compact and semi-simple, then w(G) is
finite. This implies that G is still compact.
(ii) m(G)=0.
(ii1) For G compact,
m3(G) ="Z.
(iv) For G compact, simply connected, and simple,
7T4(G) =0 or Zz.

simple, and nonabelian,

Examples

(1) m(SU(n))=0.

(i) 71(SO(n)) = Zs.

(iii) Since the unitary groups U(n) are topologically
the product of SU(n) with a circle S', their
homotopy groups are easily computed using the
product formula. We remind ourselves that
U(1) is topologically a circle and SU(2) topolo-

gically $3.
(iv) For i > 2, we have:
m(SO(3)) = m(SU(2))
m(SO(5)) = m(Sp(2))

m(SO(6)) = m(SU(4))
Just for interest, and to show the richness of the
subject, some isomorphisms for homotopy groups

are shown in Table 1 and some homotopy groups
for low SU(n) and SO(n) are listed in Table 2

Table 1 Some isomorphisms for homotopy groups
Isomorphism Range
mi(SO(n)) = 7;(SO(m)) nm>i+2

mi(SU(n)) = m;(SU(m))
mi(Sp(n)) = 7;(Sp(m))
7i(Gz) = m(SO(7))
wi(Fa) = 71(SO(9))
m;(SO(9)) = 7(SO(7))

n,m>3(i+1)
nm>1(/—1)
2<i<5
2<i<6
i<13
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Table 2 Some homotopy groups for low SU(n) and SO(n)

T4 5 6 7 s} 9 T10

SuU(2) Zo Zo /12 Zo Zio 73 Zas
SU(3) 0 7 Ze 0 72 Za 730
SuU4) 0 V4 0 7 Zoa Zo Zago + 22
SU(5) 0 7 0 7 0 7 720
SuU(6) 0 7 0 7 0 7 73
SO(5) Zo Zo 0 7 0 0 720
SO(6) 0 Z 0 Z Zo4 Zn Za2o + Zo
SO(7) 0 0 0 7 Zo+ 7o Zo+ 7o Zio4
SO(@®) 0 0 0 Z+7Z Zo+"7o+ 7o Lo+ 7o+ 70 Ziog + 74
SO(9) 0 0 0 7 T+ 7o Zo+ 7o o

Appendix: A Mathematician’s
Basic Toolkit

The following is a drastically condensed list, most
of which is what a mathematics undergraduate
learns in the first few weeks. The rest is included
for easy reference. These notations and concepts
are used universally in mathematical writing. We
have not endeavored to arrange the material in a
logical order. Furthermore, given structures such as
sets, groups, etc., one can usually define “substruc-
tures” such as subsets, subgroups, etc., in a
straightforward manner. We shall therefore not
spell this out.

Sets
AUB={x:x€Aorxe€ B} union
ANB={x:x € Aandx € B} intersection
A\B={x:x€ A and x ¢ B} complement

AxB={(x,y):x €A,y € B} Cartesian product

Maps

1. A map or mapping f: A — B is an assignment of
an element f(x) of B for every x € A.

2. A map [f:A—B is injective if f(x)=f(y)
= x=1y. This is sometimes called a 1-1 map, a
term to be avoided.

3. A map f:A— B is surjective if for every y € B
there exists an x € A such that y=/f(x). This is
sometimes called an “onto” map.

4. A map [ : A — B is bijective if it is both surjective
and injective. This is also sometimes called a 1-1
map, a term to be equally avoided.

5. For any map f: A — B and any subset C C B, the
inverse image f ' (C) = {x: f(x) € C} C A is always
defined, although, of course, it can be empty. On

the other hand, the map /' is defined if and only
if f is bijective.

6. A map from a set to either the real or complex
numbers is usually called a function.

7. A map between vector spaces, and more particu-
larly normed spaces (including Hilbert spaces), is
called an operator. Most often, one considers
linear operators.

8. An operator from a vector space to its field of
scalars is called a functional. Again, one con-
siders almost exclusively linear functionals.

Relations

1. A relation ~ on a set A is a subset R C A x A.
We say that x ~ y if (x,y) € R.

2. We shall only be interested in equivalence relations.
An equivalence relation ~ is one satisfying, for all
x, 9,2 € A:
(a) x ~ x (“reflexive”),
(b) x ~y=y ~ x (“symmetric”),
() x ~y,y ~z=x ~ g (“transitive”).

3. If ~ is an equivalence relation in A, then for each
x € A, we can define its equivalence class:

x| ={y€A:y ~x}

It can be shown that equivalence classes are
nonempty, any two equivalence classes are either
equal or disjoint, and they together partition the set
A. Subgroup equivalence classes are called cosets.

4. An element of an equivalence class is called a
representative.

Groups

A group is a set G with a map, called multiplication
or group law

GxG—G
(x,y) —xy

satisfying
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1. (xy)z=x(yz), Vx,v,2 € G (“associative”);

2. there exists a neutral element (or identity) 1 such
that Ix=x1=x,Vx € G; and

3. every element x € G has an inverse x~!, that is,

xx T=xTlx=1.

A map such as the multiplication in the definition
is an example of a binary operation. Note that we
have denoted the group law as multiplication here.
It is usual to denote it additively if the group is
abelian, that is, if xy =yx,Vx,y € G. In this case, we
may write the condition as x +y=7vy +x, and call
the identity element 0.

Rings

A ring is a set R equipped with two binary
operations, x +7vy called addition, and xy called
multiplication, such that

1. R is an abelian group under addition;

2. the multiplication is associative; and

3. (x +y)z=xz+yz,x(y + z) =xy + x2,Vx,y,2 € R
(“distributive”).

If the multiplication is commutative (xy = yx) then
the ring is said to be commutative. A ring may
contain a multiplicative identity, in which case it is
called a ring with unit element.

An ideal I of R is a subring of R, satisfying in
addition

reRael = raclarel

One can define in an obvious fashion a left-ideal and
a right- ideal. The above definition will then be for a
two-sided ideal.

Modules

Given a ring R, an R-module is an abelian group M,
together with an operation, M x R — M, denoted
multiplicatively, satisfying, for x,y € M,r,s € R,

(x +y)r=xr+yr,
x(r + s) =xr + xs,
x(rs) = (xr)s, and
xl=x

B

The term right R-module is sometimes used, to
distinguish it from obviously defined left R-modules.

Fields

A field F is a commutative ring in which every
nonzero element is invertible.

The additive identity O is never invertible, unless
0=1, so it is usual to assume that a field has at least
two elements, 0 and 1.

The most common fields we come across are, of
course, the number fields: the rationals, the reals,
and the complex numbers.

Vector Spaces

A vector space, or sometimes linear space, V, over a
field F, is an abelian group, written additively, with
a map F x V—V such that, for x,y € V,, 5 € F,

1. alx +vy)=ax + ay (“linearity”),
2. (a+ B)x =ax + [Bx,

3. (aB)x = a(fx), and

4. Ix=x.

A vector space is then a right (or left) F-module.
The elements of V are called vectors, and those of F
scalars.

Algebras

An algebra A over a field F is a ring which is a
vector space over F, such that

a(ab) = (aa)b = a(ab),

Note that in some older literature, particularly the
Russian school, an algebra of operators is called a
ring of operators.

acF, abeA
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Introduction

Quantum electrodynamics is the theory of the
electromagnetic interactions of photons and elec-
trons. When attempting to generalize this theory to
other interactions it turns out to be necessary to
identify its essential components. The essential
properties of electrodynamics are contained in its
formulation as an “abelian gauge theory.” The
generalization to include other interactions is then
reduced to incorporating the structure of nonabelian
groups. This becomes particularly clear when we
formulate the theory in the language of differential
forms.

Here we first present the formulation of electro-
dynamics using differential forms. The electromag-
netic fields are introduced via the Lorentz force
equation. They are recognized as the components of
a differential 2-form. This form fulfills two differ-
ential conditions, which are equivalent to Maxwell’s
equations. These are expressed with the help of a
differential operator and its Hermitian conjugate,
the codifferential operator. We consider the effects
of charge conservation and introduce electromag-
netic potentials, which are defined up to gauge
transformations. We finally consider Weyl’s argu-
ment for the existence of the electromagnetic
interaction as a consequence of the local phase
invariance of the electron wave function.

We then go on to present the nonabelian general-
ization. The gauge bosons appear in a theory with
fermions by requiring invariance of the theory with
respect to local gauge transformations. When the
fermions group into symmetry multiplets this gives
rise to a gauge group SU(N) involving N>—1 gauge
bosons mediating the interaction, where N is the
dimension of the Lie algebra. The interaction arises
through the necessity of replacing the usual deriva-
tives by covariant derivatives, which transform in a
natural way in order to preserve the gauge

invariance. The covariant derivatives involve the
gauge potentials, whose transformation properties
are dictated by those of the covariant derivative.
Whereas for an abelian gauge theory such as
electromagnetism scalar-valued p-forms are suffi-
cient (actually only p=1,2), a nonabelian gauge
theory involves the use of Lie-algebra-valued
p-forms. These are introduced and used to construct
the Yang-Mills action, which involves the field
strength tensor which is determined from the gauge
potentials. This action leads to the Yang-Mills
equations for the gauge potentials, which are the
nonabelian generalizations of the Maxwell equations.

Relativistic Kinematics

The trajectory of a mass point is described as x#(7),
where 7 is the invariant proper time interval:

dr? = di* —dx-dx = di*(1 — 1) 1]

with v = dx/dt. With the abbreviation v = (1 — v2)71/?
this yields dr = (1/v)ds.

The 4-velocity of a point is defined as w' =
dxt/dT =~(dx"/dt). The quantity

W = g’ = - 2]

is a relativistic invariant. Here

1 0 0 0

0 -1 0 0
&v=lo 0 -1 0 13
0 0 0 -1

is the metric of Minkowski space.
The 4-momentum of a particle is p" =mou' =
(movy, moyv), and prp, =m3. The 4-force is

dpr __dpt __(dp°
[ — —
f - dT =7 dt _fy(dt’f> [4]

with the 3-force

_ d(moyv)
= Ame) g
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Differentiate p? = m3 with respect to 7, this yields

0
2'f=2m? (G- Fro) =0 6
dt
or
dpo_f _f dx 7
=g 7

This says that
dp® = f-dx=dW 8]

where W is the work done and p° is the energy.
For a charged particle, the Lorentz force is

f=q(E+vxB) 9]

where g is the charge of the particle, E is the electric,
and B the magnetic field strength. Since f-v=gE - v,
we have the four-dimensional form of the Lorentz
force:

f"’ — q'y(E-U,E+UXB) [10]

The Lorentz Force Equation with
Differential Forms

We write the Lorentz force equation as an equation
for a differential form f =f,dx", With fu=guwt". The
velocity-dependent Lorentz force is

f = —gisF 11]

with

o o .0
(O Dy 00 12
“ 7(8:” ox TV 8y+U8z> 12}

the 4-velocity and F the electromagnetic field
strength:

F=ENdt+B [13]
where £ is a 1-form in three dimensions,
& =E.dx+ E,dy + E.dz [14]
and B is a 2-form in three dimensions,
B = B.dy Ndz + Bydz AN dx + B.dx N dy [15]

The symbol i, indicates a contraction of a 2-form
with a vector, which is defined as

i,F(v) = F(u,v) [16]

for an arbitrary vector v. The contraction of a
2-form with a vector yields a 1-form.

It is easily seen that a 2-form can be expressed in
terms of a polar vector and an axial vector: if it is to
be invariant with respect to parity transformations
with

t—t, X — —x, y— -, z——z [17]
the fields in eqn [13] must transform as
E—~_-E, BB 18]
Now we check the validity of eqn [11]. We have
f=—qi.F
=qvy(v-E)dt — gv[(E* + (v x B)")dx

+ (B + (v x B )dy + (E* + (vx B)')dz] (19

in agreement with eqn [10]. We remember to change
the signs in E, = —E*, B, = —B%, etc.

The Codifferential Operator

The space of p-forms on an #n-dimensional manifold

(Z>:<nfp):(n+;,)gp! 20]

dimensional vector space. The space of p-forms is
thus isomorphic to the space of (n — p)-forms. The
Hodge dual operator maps the p-forms into the
(n — p)-forms, and is defined by

anxB=(a,B)dx' A--- Ndx" [21]
Here (, 3) is the scalar product of two p-forms:
(a, B) =atj, ..;, 3" 22]
where a;, .., are the coefficients of the form a,
a = q; ...,‘ﬁdx"1 A~ Adx'r [23]
B;, ., are the coefficients of the form g,
B =B .jydx A- Adx [24]
and
e — gt g 25)

The indices satisfy i1 <--- <1, and j1<--- <.
The basis elements are orthogonal with respect to
this scalar product, and

(dx"" A~ Ndx dx" A - A dx)
= 8irir* " 8iyiy 26]
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The Hodge dual has the property that
* (dxﬁ(l) A-e- /\dxa(ﬂ))
= 8o(1)o(1) " * &o(p)a(p) (SigN T)
X (dxa(p”) A ~~/\dx”(”)) 27

where o is a permutation of the indices (1,...,n),

o(l)<---<ap),and o(p + 1) < o(n). We also
have
“ (dxo(pH) A /\dx”(”>>
= Golpi olpi1) *** otmotm 1) (sign o)
x (dx"m Ao A dx"<”>) 28]

We therefore find that the application of the
Hodge dual to a p-form twice yields

* % (dx JARR /\dx )
= Go(1)o(1)* Eolp)op) (51BN T) (dxo<p+1) A ./\dxom))

= Zo(1)o(1) " Zoln)o(n) (—1)p(””’)dx"(1> A Adx®®) [29]
or
sk = (—1)PP) (- 1)Indegg [30]

where Ind g is the number of times (—1) occurs along
the diagonal of g.

Now let a be a (p —1)-form, and 8 a p-form.
Then d * 3 is an (n — p + 1)-form, and

d(an ) 1 'and«p
)(P—l)(_l)(n—PH)(P—T)

=dah*[+(—
=daN*[3+ (-1
x (—1)MEq A () d x 3
—daA* B+ (—1)"C"D(—1)nde
X a *(xd* [3) [31]
We then have

(do, B) — (a,d*B) /da/\*ﬁ 32]

with
d* = —(1)" P~V q)nde g 33]

We are here using the scalar product of two p-forms

(0, )= /M (aA+p) 34]

With the help of Stokes’ theorem the last integral in
eqn [32] may be turned into a surface term at
infinity, which vanishes for o and 3 with compact
support. d* is the adjoint operator to d with respect

to the scalar product (,). Whereas the differential
operator d maps p-forms into (p + 1)-forms, the
codifferential operator d* maps p-forms into (p — 1)-
forms.

The relation d? =0 leads to

(d)* o (xd)(xdx) o +d>x = 0 [35]

This fact plays an essential role in connection with
the conservation laws.

Finally, we want to obtain a coordinate expres-
sion for d*3. Indeed d*3= —Div 3 for

857
Ox
where K is the multi-index of the coeffecients in
B=BkdxX, and K indicates that K= (k1, ..., k,) is in
the order k;<---<k,. We will show that
(o, d*B) = (o, —Div) for an arbitrary (p — 1)-form
a. It is a fact that

(Divf)g = [36]

(o, dB) = (de, B) :/(da)lﬂl x 1 [37]
Now we have the coordinate expressions
da = (dap) Adx" [38]

and (dx!)g = 6k. It follows that

(da), = (dag ndx"), = 5 aao‘f st [39]
or
(da), = 6O 40
Here we use
(aAB); = b1 axbr (41]
where
1 if (KL) is an even
permutation of I
55" =< -1 if (KL) is an odd [42]

permutation of I

0 otherwise

Use of the Leibnitz rule yields

/da *1—/67K8aK

] axB) :
_/ Ox/ *

/ K8 gﬁ/ 1 43]
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The first term corresponds to a surface integration
and we can neglect it. We then have 5’IKﬂI = 3K from
the antisymmetry of 3, so that )

iK
(o, d'f) = — / ax 585; ~+1=(a,-Divs) (44

The Maxwell Equations

The Maxwell equations become remarkably concise
when expressed in terms of differential forms, namely

dF=0, d'F=—j [45]

where F is the field strength and j is the current
density. We wish to demonstrate this. We use a
(3 + 1)-separation of the exterior derivative into a
timelike and a spacelike part:

0
d=d+dtN — 46
+dt N T [46]
We then get
dF:(dé’—l—%—ltg)/\dt—&-dB:O [47]
By comparing coefficients, we arrive at
oB
" 48
In vector notation
curl E = —@, divB=0 [49]
ot
the usual form of the homogeneous Maxwell

equations.
By direct application of the formula [27], one finds

«F = —xBAdt +*E [50]

where x means the Hodge dual in three space
dimensions. One finds

d»ﬁdmf(d*B%) ndt [51]

Therefore,

dxF=—(divE)dx Ndy Ndz

+ ((curl B)* — %) dy Ndz \dt

y
dr
OF*?
dt

+ ((curlB)y _9OF )dz/\dx/\dt

+((curlB)z >dx/\dy/\dt [52]

We apply again the Hodge dual:

*d x F = —(divE)dt + ((curl B)* — 8811; )dx

OFY
y_ =
+ <(curlB) 5 >dy
. OE*
+ ((curlB) =5 >dz [53]

In Minkowski space the expression xdx equals the
codifferential. Therefore, the equation d*F= xd
F=—j holds, with j given by j*=(p,J), which is
equivalent to

curl B — % =] [54]

the inhomogeneous Maxwell equations.

divE = p,

Current Conservation
The electromagnetic 4-current is
i = pou" = (po, poyv) = (p.J) [55]

where p is the charge density and J the current
density. This corresponds to a 1-form

j = pdt — Jidx — Pdy — Jdz [56]

The Hodge dual is #j = 0> — j2 Adt, with the 3-form
o3 = pdx A dy N dz, and the 2-form

= —Fdyndz—P'dzndx — Fdxndy  [57]

From the Maxwell equation d*F= —j, it follows
that

(dVF=-d'j=0 (58]
that is
xd(xf) = *d(0® — * Ndt) = +(do”® — dj* N dt)

= x (%—i—div])dt/\dx/\dy/\dz

Z%-&-divjzo [59]
This is the “continuity equation.”
The total charge inside a volume Vis Q= [}, pdV,
therefore

do d B

where OV is the surface which encloses the
volume V, dS is the surface element, and # is the normal
vector to this surface. This is current conservation.
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The Gauge Potential

The “Poincaré lemma” tells us that dF=0 implies
F=dA, with the 4-potential A:

A=¢dt+A [61]
and the vector potential A=A,dx + A,dy + A.dz.

From

F=EANdt+ B = (d+th§t)A

:dqﬁ/\dt-i-dA-i-dt/\%—? [62]
it follows by comparing coefficients that
0A
— _— = A
E=d¢ o B=d [63]
In vector notation this is
E = grad¢ — %—?, B = curlA [64]

The 4-potential is determined up to a gauge function A:
A=A +dA [65]

This gauge freedom has no influence on the
observable quantities E and B:

F=dA'=dA+d*A=dA=F [66]

The Laplace operator is A= (d*+d)* =dd* +
d*d, so when the 4-potential A fulfills the condition
d*A=0, we have

AA =d'dA = d'F = —j 67]

the “classical wave equation.” The condition
d*A=0 is called the “Lorentz gauge condition.”
This condition can always be fulfilled by using the
gauge freedom: d*(A+ dA)=0 is fulfilled when
d*dA=AAN= —d*A, where we have used the fact
that d*A =0 for functions. That is to say, d*A=0 is
fulfilled when A is a solution of the inhomogeneous
wave equation.

Gauge Invariance

In quantum mechanics, the electron is described by a
wave function which is determined up to a free
phase. Indeed, at every point in space this phase can
be chosen arbitrarily:

() — 1/ (x) = exp{ia(x)}(x)
h(x) =1/ (x) = P(x) exp{—ia(x)}

with the only condition being that a(x) is a
continuous function. The gauge transformation is

[68]

of the form g = exp {ia(x)}, with g an element of the
abelian gauge group G =U(1). The free action is

So = / Lod*x [69]
with

Lo = P(iy"0, — m) [70]

the “Lagrange density.” This action is not invariant
under gauge transformations:

Lo— Ly = (i7" — m) — (Dua)py'y  [71]

The undesired term can be compensated by the
introduction of a gauge potential w in a covariant
derivative of v,

D = (d +w)¥ 72]

which has the desired transformation property
D1 — exp {ia}D1) when besides the transformation
P(x) — exp {ia(x)}1(x) of the matter field the gauge
potential simultaneously transforms according to the
gauge transformation w — w — ida. The new Lagrange
density is

L =4(in"Dy — m)ip = Lo +iw,p(x)y"¢(x)  [73]

The substitution d,, — D, is known to physicists;
with w= —igA it is the ansatz of minimal coupling
for taking into account electromagnetic effects:
0, — 0, —igA,. The Lagrange density becomes in
this notation £=Ly — A,J", where J*= —qiyy").

The Lagrange density must now be completed by
a kinetic term for the gauge potential and we get the
complete electromagnetic Lagrange density

L=Ly— A" —LE, Fv [74]

with F,, =0,A, —9,A,. In the action this corre-
sponds to

1
S=Sy— / A, Jrvol* — = / E, Fvol*  [75]
M 4 M

We get the field equations for the potential A by
demanding that the variation of the action vanishes:

1
SS[A] = — / §A,J"vol* — =& / Fu Fvol*  [76]
M 4 M
We write now

/ §A,J'vol* = (54, ) 7]
M
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and

§ / E, Fvol®
M

:%6/MF/\ *F:%rS(F,F)
= (8dA,F) = (d6A,F) = (6A,d°F)  [78]

I

where we have exchanged the action of ¢ and d.
Since this holds for arbitrary variations 6A we find

dF=—j 79]

the inhomogeneous Maxwell equation.

Nonabelian Gauge Theories

In SU(N) gauge theory the elementary particles are
taken to be members of symmetry multiplets. For
example, in electroweak theory the left-handed
electron and the neutrino are members of an SU(2)

doublet:
o= () 80

8(x) = exp {A(x)} [82]

where g(x) is an element of the Lie group SU(2) and
A is an element of the Lie algebra su(2). The Lie
algebra is a vector space, and its elements may be
expanded in terms of a basis:

A(x) = A (x)T, [83]

For su(2) the basis elements are traceless and anti-
Hermitian (see below), they are conventionally
expressed in terms of the Pauli matrices,

Oa
T, =2 [84]
with
(0 1) <0 —i)
o1 = ; 02 = .
1 0 1 0 185]

(1 0)
= o0 -1

They are conventionally normalized according to

tr(TTp) =— 164 [86]

The Dirac Lagrangian is not invariant with
respect to local gauge transformations:

Lo = (i, — m)p— L}

= Lo + iy (g0,8 ") 87]
We introduce the gauge potential
wy(x) = WZ(x)Ta [88]

with a gauge transformation
wp— ), =g \wg+8 08 [89]

The Lagrange density is modified through a covar-
iant derivative:

=Dy =0, +w, [90]
The covariant derivative D, transforms according to
D,—D,/=g"'D,g [91]

and thus the modified Lagrange density
L =iy Dy —m)tp = Lo+ ipy'w, i [92]

is invariant with respect to local gauge transformations.
The extra term in the Langrange density is
conventionally written

—Ja AL 93]

with
AL =—iguf, [94]

and
Ji =" Tatp [95]

In mathematical terminology w is called a connec-
tion. The quantity A is the physicist’s gauge
potential. The connection is anti-Hermitian and the
gauge potential Hermitian. The gauge potential also
includes the coupling constant g. We will refer to
both w and A as the gauge potential, where the
relation between them is given by eqn [94].

We can write the gauge potential as A = Ajdx"T,
or, in the SU(2) case, as

A=A T+ AT, + AT [96]

where we see explicitly that it involves three vector
fields, which couple to the electroweak currents [95]
with the single coupling constant g, and which will
become after symmetry breaking the three vector
bosons W., W_, Z, of the electroweak gauge theory.
Actually, a mix of the neutral gauge boson and the
photon will combine to yield the Zy boson, while the
orthogonal mixture gives rise to the electromagnetic
interaction, in an SU(2) x U(1) theory. At this stage,
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the gauge bosons are all massless, their masses are
generated by the “Higgs’ mechanism.”

Lie-Algebra-Valued p-Forms

To describe nonabelian fields, we need Lie-algebra-
valued p-forms:

(b = Ta¢a [97]

where T, is a generator of the Lie algebra, the index
a runs over the number of generators of the Lie
algebra, and the ¢* are the usual scalar-valued
p-forms. The composition in a Lie algebra is a Lie
bracket, which is defined for two Lie-algebra-valued
p-forms by

(641 = [T, Tylg A9 [98]
The Lie bracket in the algebra is
[T, Ty = fa Te 99]

where f; are the structure constants. It follows from
this that
[, 9] = [T, TyJu* A¢* = ~[Tp, Talu# A¢”  [100]

or

[, 6] = (=1)P [, 9]

when ¢ is a p-form and ¢ is a g-form. In the special
case that T, is a matrix, also the product T,T) is
defined, and from this the product of two Lie-
algebra-valued p-forms

[101]

SAY =Tad" ATy = TuTpé" AP [102]
Now the Lie bracket is a commutator:
[Taa Tb} =T,T, - T}, T, [103]
and
(6, ¢] = [Ta, Ty¢" A1)
= Ta" ATyl — (1P Ty A Tu0"
=oAp— (—1)"Yp A [104]

From this relation it follows that for ¢ and %) odd
p-forms

(6, U] =dAY+ YA [105]
For ¢ an odd p-form
(0. 0] =dNd+ NP =2(pN0) [106]

The Gauge Potential and the
Field Strength

The generalization of the abelian relationship
between the gauge potential and the field strength,
F=dA, is

0=dw+iww=di+wrw [107]
where because w is a 1-form we can use eqn [106].

The mathematician refers to 6 as the curvature. The
physicist writes, in analogy to eqn [94],

F=—igh= %Fﬁydx“ ANdx"T, [108]
One obtains for the components
F, = 0,A% — 0,A% —igfg. AbAS (109

A generalization of the gauge transformation of
A, that is, A=A + dA, is eqn [89]:

W =g lwg+ g dg [110]
A quantity ¢ with the transformation property
¢ =g 'og

is called a “tensorial” quantity. The gauge potential
w is according to this definition nontensorial.
Nevertheless the field strength is tensorial. Indeed

[111]

0 = d(g'wg) + (dg™') Ndg
+3lgwg+gdg, g \wg + g7 dg]
= (dg V) Awg + g ldwg — g 'wAdg + (dg™ ') Ndg
+38 ' w,wlg+3[g 7 wg, g dg]
+3lg'dg g7 we] + 3¢ dg, g dg]
=g '0g+(dg ") rwg—g lwndg+ (dg ') Ndg
+g'wadg+g 'dgng lwg+ g 'dgng dg

=g '0g [112]

where we have used the derivation of the relation
g'g=1d to get

dg™' = —g'dgg™" [113]

In the abelian case, we had dF=0. The non-

abelian analog is

df=dwhw—wANhdw
=0 —wAhw)Aw—wA (0 —wAw)

=0 Aw—-—wAb [114]

or

do+wAO—0Aw=0 [115]
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the Bianchi identity. It can also be written as

do+wNl—0ANw=d0+ w0 =0 [116]
because from eqn [104]
WA+ (1) 10N w = [w, 6] [117]
The covariant derivative D is defined as
D¢:=d¢ + [w, ¢] [118]

for ¢ a tensorial quantity. The covariant derivative
takes tensorial p-forms into tensorial (p + 1)-forms:

D'¢/ =d(g'¢g) + g 'wg + g 'dg, g " ¢g]
=dg ' Npg+g ' dog+ (—1)'g o ndg
+ (g 'wg, g gl + [g7 ' dg, g o]
=g 'Dog+dg ' Npg+ (—1)Pg ' ndg
+g 'dgg Apg — (—1)'g o A dg
=g 'Dgg

We have thereby verified the transformation prop-
erty of eqn [91].

[119]

The Gauge Group

From the gauge transformation ¢/ =g the require-
ment [¢/|* =||* leads to glg=1. That means that g
belongs to the unitary Lie group G = U(n), whose
elements fulfill gf =g" =g~'. For elements of the Lie
algebra G=u(n) this implies

(eX)T: X =X [120]

or

X =X'=-X [121]
where X is complex conjugation and X' means
transposition.

For elements of the Lie algebra we can define a
scalar product (the Killing metric)

(X,Y) :=—tr (XY) =—X3X", [122]
The scalar product is real:
(X, Y)=— XY = =X*3X", = (X,Y) [123]
symmetric:
(X, Y)=—tr(X,Y)= —tr(Y,X) = (Y, X) [124]
and positive definite:
(X, X) = —XT5XP, = XTX 5 = X0 [125]

The scalar product is invariant under the action of
GonG:forgeG

(gXg ', gYg ") = —tr(gXYg ")

— —t(X,Y)=(X,Y) [126]

or for X,Y,ZegG
(eXYe X X Ze X)= (Y, Z) [127]

We take the derivative of this equation with respect

to ¢ at the value =0 and get:
(X,Y],Z) +(Y,[X,Z]) =0 [128]

We define an action of the algebra G on itself:
ad(X):G — G
ad(X)Y = [X, Y] [129]

We can then formulate our conclusion as follows:
the action of G on itself is anti-Hermitian:

(@d(X)Y,Z)= — (Y,ad(X)Z) [130]

lad(X)]" = —ad(X) [131]

From g'g=1 we have |det (g)|* = 1. For the gauge
group G =SU(N) we require in addition det (g) =1.
Since

det(g) =det(exp(X)) =exp(tr(X)) [132]

the elements X € su(N) must be traceless. A basis of
the vector space of traceless, anti-Hermitian (2 x 2)
matrices is given by the Pauli matrices, eqn [85].

The Yang-Mills Action

The SU(2) Yang-Mills action is, in analogy to the
abelian case,

1 4 4
— a papy _ ny
S e /M F F"vol 7, tr(F,, F*)vol
1

We have included the trace in our definition of the
scalar product:

(qs,zp)::—/Mtr<¢n/;I>vol”:—/Mtr(qu*1/;) [134]

We then write eqn [133] as

Sl = 1(0.6) [135]

taking into account the relation between 6 and the
field strength F, and indicating the dependence on
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the gauge potential. Since 6 is tensorial the action is
invariant.

Now we calculate the variation von S[w] with
respect to a variation of the gauge potential:

88 = & S0l = 56(6,0

E ((66,0) + (0,00))

80,0) = (6(dw+%[w,w]),9)

2

(66,6

6d +1[6 ]+1[ bwl, 0
w 5 w, W zw,w,

= (dbw + w, éw], 0) [136]

where we have exchanged the order of ¢ and d. We

remark that although w is not a tensorial section, dw is:

for | =g lwig + g 'dg and W), =g luwng + g dg is
bw=w, —uh =g Yw —w)g [137]

The quantity 6 is in any case tensorial. Therefore,
the covariant derivative is defined, and we have

Déw = dbw + |w, bw] [138]
and
DO = do + [w, 0] [139]

In general, the action of the covariant derivative on
tensorial quantities can be written as D =d + ad(w),
where ad(X) is the representation of the Lie algebra on
itself introduced in the previous section. We now have

8S[w] = (Déw, 0) = (6w, D*0) = 0 (140

for an arbitrary variation éw. Therefore, D*0=0.
We have obtained

D=0 [141]
the “Yang-Mills equations,” and
DO =0 [142)

the “Bianchi identites.” These are the generalizations
of the Maxwell equations d*F=0 and dF=0 in the
absence of external sources. For the general case of
interacting fermions, we write out the full action, in
analogy to eqn [74], and obtain, in analogy to eqns
[79] and [58],

D9=—J], DJ=0 [143]

We shall now derive, again for the pure gauge
sector, coordinate expressions for the Yang-Mills
equations. Consider the expression

6S[w] = (Déw, 0) = (6w, D*0)

= (dbw + [w, 6], 0) [144]

The first term in the last expression is
(dbw, 0) = (bw,d*0) = —tr / Sw {d 6} vol* [145)]
M

The second term can be computed using

[w, bw],, = {wAéw+ dwAw}(y, 0y)

= wybw, — w,bw, + dwuw, — dw,w, [146]
and hence
w, éw] ,, 0" = 2wy, bw, | [147]
because 6 is antisymmetric, 0" = —§"". Thus,
(10:60),6) = = [ ex(lrdi] 1 50)
M
1/ 4
=—= [ tr([w,bw], 0" )vol
5 [ w801, 0%)
= —/ tr([w,,, 6w, |0 )vol*
M
- / ([wp, 6wy), 0" )vol® [148]
M

where (,) is the scalar product in G. From eqn [128]
this equals

_ / (66001 [y, 6" pvol*
M

= / tr(bw, [wy,, 9‘“’])v014 [149]
M

Combining this with eqn [144] gives

(60, D"0) = — / (8w {(d°6)” — [y, 6]} vol’
M
= (6w, {(d"0)" = [wu, 0""1}) [150]
We can now insert the coordinate expression for

(d6)” = —0,0" [151]

Finally, the coordinate expressions of the Yang—
Mills equations D*0 =0 are

(D*6)" = —{8,6" + [0, 0"} =0 [152)

The Analogy with Electromagnetism

The Yang—Mills equation and the Bianchi identity in
the absence of external sources are

8,F" — ig[A,, F™] = 0 153]
and
8,F,r + 0,F,, + 0,F., — iq{[A,., F,)
+[Ar, Ful +[A,, Fr]} = 0 [154]
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We shall write these equations in terms of the fields

FO=F i=1,2.3 [155]

FlZ _ B3, F31 _ BZ7 FlZ _ B3 [156]

where the E and B vectors may be thought of as

“electric” and “magnetic” fields, even though they have

Lie-algebra indices, F© = (F%)"°T,, etc. In the context of

the SU(3) theory, they are referred to as the “chromo-

electric” and “chromomagnetic” fields, respectively.
The Yang-Mills equations with ;=0 are

OF° —ig[A;, F°] =0 [157]

with 7=1,2,3 a spatial index. In vector notation
this is

divE = ig(A-E —E-A) 158

This is the analog of Gauss’s equation. Even though
we started out without external sources, ig(A-E —
E-A) plays the role of a “charge density.” The
Yang-Mills field E and the potential A combine to
act as a source for the Yang-Mills field. This is an
essential feature of nonabelian gauge theories in
which they differ from the abelian case, due to the
fact that the commutator [A, E| is nonvanishing.

Now consider the Yang-Mills equations with a
spatial index p=1:

QF° + OF —ig[Ao, F°] —ig[A;F' =0  [159]
In vector notation this is
curl B :% —ig(AoE — EAo)
+ig(AxB+BxA) 160

replacing the Ampere-Maxwell law. Note that there
are two extra contributions to the “current” other
than the displacement current.

The analogs of the laws of Faraday and of the
absence of magnetic monopoles are derived similarly
from the Bianchi identities. The results are

curl E+ 28 — ig{(Ax E+ExA) + (AoB — BAo)}

o [161]

and

divB =ig(A-B— B-A) [162]

Further Remarks

The foundations of the mathematics of differential
forms were laid down by Poincaré (1953). They
were applied to the description of electrodynamics

already by Cartan (1923). A modern presentation of
differential forms and the manifolds on which they
are defined is given in Abraham ez al. (1983). A
recent treatment of electrodynamics in this approach
is Hehl and Obukhov (2003). Weyl’s argument is in
his paper of 1929.

Nonabelian gauge theories today explain the
electromagnetic, the strong and weak nuclear
interactions. The original paper is that of Yang
and Mills (1954). Glashow, Salam, and Weinberg
(1980) saw the way to apply it to the weak
interactions by using spontaneous symmetry
breaking to generate the masses through the use
of the Higgs’ (1964) mechanism. t’Hooft and
Veltman (1972) showed that the resulting quan-
tum field theory was renormalizable. The strong
interactions were recognized as the nonabelian
gauge theory with gauge group SU(3) by Gell-
Mann (1972). For a modern treatment which puts
nonabelian gauge theories in the context of
differential geometry, see Frankel (1987).

See also: Dirac Fields in Gravitation and Nonabelian
Gauge Theory; Electroweak Theory; Measure on Loop
Spaces; Nonperturbative and Topological Aspects of
Gauge Theory; Quantum Electrodynamics and its
Precision Tests.

Further Reading

Abraham A, Marsden ], and Ratiu T (1983) Manifolds, Tensor
Analysis, and Applications. MA: Addison-Wesley.

Cartan E (1923) On manifolds with an Affine Connection and the
Theory of General Relativity. English translation of the French
original 1923/1924 (Bibliopolis, Napoli 1986).

Frankel T (1987) The Geometry of Physics, An Introduction.
Cambridge University Press.

Gell-Mann M (1972) Quarks: developments in the quark theory
of hadrons. Acta Physica Austriaca Suppl. IV: 733.

Glashow SL (1980) Towards a unified theory: threads in a
tapestry. Reviews of Modern Physics 52: 539.

Hehl FW and Obukhov YN (2003) Foundations of Classical
Electrodynamics. Boston: Birkhauser.

Higgs PW (1964) Broken symmetries and the masses of gauge
bosons. Physical Review Letters 13: 508.

t’Hooft G and Veltman M (1972) Regularization and renorma-
lization of gauge fields. Nuclear Physics B 44: 189.

Poincaré H (1953) Oeuvre. Paris: Gauthier-Villars.

Salam A (1980) Gauge unification of fundamental forces. Reviews
of Modern Physics 52: 525.

Weinberg SM (1980) Conceptual foundations of the unified
theory of weak and electromagnetic interactions. Reviews of
Modern Physics 52: 515.

Weyl H (1929) Elektron und gravitation. Zeitschrift fuer Physik
56: 330.

Yang CN and Mills RL (1954) Construction of isotopic spin and
isotopic gauge invariance. Physical Review 96: 191.



Abelian Higgs Vortices 151

Abelian Higgs Vortices

J M Speight, University of Leeds, Leeds, UK
© 2006 Elsevier Ltd. All rights reserved.

Introduction

For the purpose of this article, vortices are topological
solitons arising in field theories in (2 + 1)-dimensional
spacetime when a complex-valued field ¢ is allowed to
acquire winding at infinity, meaning that the phase of
¢(t, x), as x traverses a large circle in the spatial plane,
changes by 277, where 7 is a nonzero integer. Such
winding cannot be removed by any continuous
deformation of ¢ (hence “topological”) and traps a
considerable amount of energy which tends to coalesce
into smooth, stable lumps with highly particle-like
characteristics (hence “solitons”). Clearly, the universe
is (3+ 1) dimensional. Nonetheless, planar field
theories are of physical interest for two main reasons.
First, the theory may arise by dimensional reduction of
a (3 + 1)-dimensional model under the assumption of
translation invariance in one direction. Vortices are
then transverse slices through straight tube-like objects
variously interpreted as magnetic flux tubes in a
superconductor or cosmic strings. Second, a crucial
ingredient of the standard model of particle physics is
spontaneous breaking of gauge symmetry by a Higgs
field. As well as endowing the fundamental gauge
bosons and chiral fermions with mass, this mechanism
can potentially generate various types of topological
solitons (monopoles, strings, and domain walls) whose
structure and interactions one would like to under-
stand. Vortices in (2 4 1) dimensions are interesting in
this regard because they arise in the simplest field
theory exhibiting the Higgs mechanism, the abelian
Higgs model (AHM). They are thus a useful theoret-
ical laboratory in which to test ideas which may
ultimately find application in more realistic theories.
This article describes the properties of abelian Higgs
vortices and explains how, using a mixture of
numerical and analytical techniques, a good under-
standing of their dynamical interactions has been
obtained.

The Abelian Higgs Model

Throughout this article spacetime will be R**!
endowed with the Minkowski metric with signature
(+, —, —), and Cartesian coordinates x*,u=
0,1,2, with x°=¢ (the speed of light c=1). A
spacetime point will be denoted x, its spatial part by
x = (x',x?). Latin indices j, k, . .. range over 1, 2, and
repeated indices (Latin or Greek) are summed over.

We sometimes use polar coordinates in the spatial
plane, x =7(cos6, sinf), and sometimes a complex
coordinate z=x!+ix?=re’. Occasionally, it is
convenient to think of R**! as a subspace of R¥*™!
and denote by k the unit vector in the (fictitious)
third spatial direction. The complex scalar Higgs
field is denoted ¢, and the electromagnetic gauge
potential A, best thought of as the components of a
1-form A=A, dx". F,,=0,A, —0,A, is the field
strength tensor which, in R**!, has only three
independent components, identified with the mag-
netic field B=F;; and electric field (E{,E;)=
(Fo1, Fo2). The gauge-covariant derivative is D, ¢ =
0,9 — ieA, ¢, e being the electric charge of the Higgs.
Under a U(1) gauge transformation,

e, Ay A, +e 9N 1]

A:R*' — R being any smooth function, F,, and
|¢| remain invariant, while D,¢— e*D,¢. Only
gauge-invariant quantities are physically observable
(classically).

With these conventions, the AHM has Lagrangian
density

J T W T A (R P L)

4 2" 8

which is manifestly gauge invariant. By rescaling
¢,A,,x and the unit of action, we can (and
henceforth will) assume that e=v=a=1. The
only parameter which cannot be scaled away is A > 0.
Its value greatly influences the model’s behavior.

The field equations, obtained by demanding that
é(x),Au(x) be a local extremal of the action
S= [Ld’x, are

A
D,D"¢ +5(1 - |6]*)p =0

3]
O"F +5 (6D, — 6D,9) = 0
This is a coupled set of nonlinear second-order PDEs.
Of particular interest are solutions which have finite
total energy. Energy is not a Lorentz-invariant
quantity. To define it we must choose an inertial
frame and, having broken Lorentz invariance, it is
convenient to work in a temporal gauge, for which
Ao = 0 (which may be obtained by a gauge transfor-
mation with A(f, x) = fé Ao, x) dt’, after which only
time-independent gauge transformations are per-
mitted). The potential energy of a field is then

1 2 BT N 22 ) gl 4u2
E§/<B + DD+ (1 |¢|>)dxdx

= Emag + Egrad + Egelt [4}
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while its kinetic energy is
_1 2 27 1.19.2
Eyin = 5 (\80A| + 60¢80q§) dx'dx 5]

If ¢, A satisfy the field equations then the total
energy Ei=FEy, +E is independent of t. By
Derrick’s theorem, static solutions have En.g =
E¢ (Manton and Sutcliffe 2004, pp. 82-87).

Configurations with finite energy have quantized
total magnetic flux. To see this, note that E finite
implies |¢| — 1 as 7 — o0, s0 ¢ ~ eX»? at large r for
some real (in general, multivalued) function y. The
winding number of ¢ is its winding around a circle of
large radius R, that is, the integer n = (x(R,2w) —
X(R, 0))/27. Although the phase of ¢ is clearly gauge
dependent, # is not, because to change this, a gauge
transformation e :R? — U(1) would itself need
nonzero winding around the circle, contradicting
smoothness of e*. The model is invariant under
spatial reflexions, under which 7— —n, so we will
assume (unless noted otherwise) that # > 0. Finite-
ness of E also implies that D¢p=d¢ —iA¢p — 0, so
A~ —id¢/¢p ~ dx asr — oo (note ¢ # 0 for large 7).
Hence, the total magnetic flux is

2
/ Bd’x=1lim ¢ A=lim [ @ydo=2mn |6
R2 R—0o0 Jgp R—o0 Jo

where Sg={x:|x|=R} and we have used Stokes’s
theorem. The above argument uses only generic
properties of E, namely that finite E; requires |Q|
to assume a nonzero constant value as r — co. So
flux quantization is a robust feature of this type of
model. As presented, the argument is somewhat
formal, but it can be made mathematically rigorous
at the cost of gauge-fixing technicalities (Manton
and Sutcliffe 2004, pp. 164-166). Note that if 72 £ 0
then, by continuity, ¢(x) must vanish at some x €
R?, and one expects a lump of energy density to be
associated with each such x since ¢ =0 maximizes
the integrand of E.

Radially Symmetric Vortices

The model supports static solutions within the
radially symmetric ansatz ¢ =o(r)e”’, A =a(r)do,
which reduces the field equations to a coupled pair
of nonlinear ODEs:

d’oc 1do 1
a2
d’a 1da
dr? rdr
Finite energy requires lim, .. o(r) =1, lim, ., a(r) =n
while smoothness requires o(r) ~ consty#”, a(r) ~

A
—a)Yo+Z(1-0*)o=0
? 7]

+(n—a)® =0

consty7? as r — 0. It is known that solutions to this
system, which we shall call n-vortices, exist for all
n,\, though no explicit formulas for them are
known. They may be found numerically, and are
depicted in Figure 1. Note that o and a always rise
monotonically to their vacuum values, and B always
falls monotonically to 0, as 7 increases. These
solutions have their magnetic flux concentrated in a
single, symmetric lump, a flux tube in the R
picture. In contrast, the total energy density (inte-
grand of E in [4]) is nonmonotonic for 7z > 2, being
peaked on a ring whose radius grows with 7. This is
a common feature of planar solitons.

The large r asymptotics of n-vortices are well
understood. For A\ < 4 one may linearize [7] about
oc=1,a=n, yielding

o(r) ~ 1+ ;I—:TKO(\/Xr) 8]
a(r) ~n+ Zl—;rKl(r) 9]

where ¢,,m, are unknown constants and K,
denotes the modified Bessel’s function. For A > 4
linearization is no longer well justified, and the
asymptotic behaviour of o (though not a) is quite
different (Manton and Sutcliffe 2004, pp. 174-175).
We shall not consider this rather extreme regime
further. Note that

K, (r) ~ ,/2176” asr — oo [10]

for all a, so both ¢ and a approach their vacuum
values exponentially fast, but with different decay
lengths: 1/v/A for o, 1 for a. This can be seen in
Figure 1a. The constants g,, and m,, depend on \ and
must be inferred by comparing the numerical
solutions with [8], [9]; g=¢q1 and m=m; will
receive a physical interpretation shortly.

The 1-vortex (henceforth just “vortex”) is stable for
all A\, but n-vortices with #z > 2 are unstable to break
up into 7 separate vortices if A > 1. We shall say that
the AHM is type T if A <1, type I if A > 1, and
critically coupled if A =1, based on this distinction. Let
E, denote the energy of an n-vortex. Figure 2 shows
the energy per vortex E,/n plotted against n for
A=0.5,1, and 2. It decreases with n for A=0.5,
indicating that it is energetically favorable for isolated
vortices to coalesce into higher winding lumps. For
A=2, by contrast, E,/n increases with 7 indicating
that it is energetically favorable for n-vortices to fission
into their constituent vortex parts. The case A=1
balances between these behaviors: E,, /n is independent
of n. In fact, the energy of a collection of vortices is
independent of their positions in this case.
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Figure 1 Static, radially symmetric n-vortices: (a) the 1-vortex profile functions o(r) (solid curve) and a(r) (dashed curve) for A\=2,1,
and 1/2, left to right; (b) the magnetic field B; and (c) the energy density of n-vortices, n=1 to 5, left to right, for A=1.
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Figure 2 The energy per unit winding
symmetric n-vortices for A\=1/2,1, and 2.

E,/n of radially

Interaction Energy

A precise understanding of the type I/Il dichotomy
can be obtained using the 2-vortex interaction
energy Eiy(s) introduced by Jacobs and Rebbi. This
is defined to be the minimum of E over all n=2
configurations for which ¢(x)=0 at some pair of
points x1,x, distance s apart. One interprets x1, x>
as the vortex positions. E;,, can only depend on their
separation s = |x; — x2|, by translation and rotation
invariance. Figure 3 presents graphs of Eiy(s)
generated by a lattice minimization algorithm. For
A < 1, vortices uniformly attract one another, so a
vortex pair has least energy when coincident. For
A > 1, vortices uniformly repel, always lowering
their energy by moving further apart. The graph for
A=1 would be a horizontal line, E; (s) = 2.
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(a)
Figure 3 The 2-vortex interaction energy Ei(s) as a function
form EX(s) (dashed curve) for (a) A=1/2 and (b) A\=2.

int

The large s behavior of Ejy(s) is known, and can
be understood in two ways (Manton and Sutcliffe
2004, pp. 177-181). Speight, adapting ideas of
Manton on asymptotic monopole interactions,
observed that, in the real ¢ gauge (¢p— e Ve,
A A — df), the difference between the vortex and
the vacuum ¢=1,A =0 at large 7,

=61~ LKo(VA1) 11]

(Ao, A) ~ 0.k x VKo(r))  [12]

is identical to the solution of a linear Klein—
Gordon-Proca theory,

(20" + N =k, (90" + DA, =j,  [13]

in the presence of a composite point source,

k=q6(x),  (jo,j) =m(0,kxVé(x))  [14]
located at the vortex position. Viewed from afar,
therefore, a vortex looks like a point particle
carrying both a scalar monopole charge g and a
magnetic dipole moment m, a “point vortex,”
inducing a real scalar field of mass v/A (the Higgs
particle) and a vector boson field of mass 1 (the
“photon”). If physics is to be model independent,
therefore, the interaction energy of a pair of well-
separated vortices should approach that of the
corresponding pair of point vortices as the separa-
tion grows. Computing the latter is an easy exercise
in classical linear field theory, yielding

2.42

2.38

Eint

2.34 ¢

2.3 .
0

(b)

of vortex separation (solid curve), in comparison with its asymptotic

2
Einc(s) ~ Egils) =2E1 = - Ko(VAs)

)
~—Ko(s) [15]

+27r

Bettencourt and Rivers obtained the same formula
by a more direct superposition ansatz approach,
though they did not give the constants g, m a
physical interpretation.

The force between a well-separated vortex pair,
—E;.//(s), consists of the mutual attraction of
identical scalar monopoles, of range 1/v/\, and the
mutual repulsion of identical magnetic dipoles, of
range 1. If A <1, scalar attraction dominates at
large s so vortices attract. If A > 1, magnetic
repulsion dominates and they repel. If A=1 then
q = m, as we shall see, so the forces cancel exactly.
Figure 3 shows both Ej,; and E, for A\=0.5,2. The
agreement is good for s large, but breaks down for
s <4, as one expects. Vortices are not point
particles, as in the linear model, and when they lie
close together the overlap of their cores produces
significant effects.

The same method predicts the interaction energy
between an n;-vortex and an m-vortex at large
separation. We just replace 2E; by E,, + E,,, ¢* by
Gnqn» and m? by my,m,,. In particular, an
antivortex ((—1)-vortex) has E 1 =Eq,q41=q1=4q,
and m_y = —my = —m, so the interaction energy for
a vortex—antivortex pair is

EY

nt

qz mz
(s) ~2E; — Z—WKO(\/Xr) — Z—WKo(r) [16]
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which is uniformly attractive. It would be pleasing if
qn,m, could be deduced easily from g, m. One
might guess gq,=|n|q,m,=nm, in analogy with
monopoles. Unfortunately, this is false: gq,,m,
grow approximately exponentially with |n|.

Vortex Scattering

The AHM being Lorentz invariant, one can obtain
time-dependent solutions wherein a single 7-vortex
travels at constant velocity, with speed 0 <v < 1
and Egc=(1 —v?)?E,, by Lorentz boosting the
static solutions described above. Of more dynamical
interest are solutions in which two or more vortices
undergo relative motion. The simplest problem is
vortex scattering. Two vortices, initially well sepa-
rated, are propelled towards one another. In the
center-of-mass (COM) frame they have, as t — —oo,
equal speed v, and approach one another along
parallel lines distance b (the impact parameter)
apart, see Figure 4. If b=0, they approach head-
on. Assuming they do not capture one another, they
interact and, as ¢ — oo, recede along parallel straight
lines having been deflected through an angle © (the
scattering angle). If scattering is elastic, the exit lines
also lie b apart and each vortex travels at speed v as
t — co. The dependence of © on v, b, and A has
been studied through lattice simulations by several
authors, perhaps most comprehensively by Myers,
Rebbi, and Strilka (1992). We shall now describe
their results.

Note first that vortex scattering is actually
inelastic: vortices recede with speed < v because
some of their initial kinetic energy is dispersed by
the collision as small-amplitude traveling waves
(“radiation”). This energy loss can be as high as
80% in very fast collisions at small b. At small v the
energy loss is tiny, but can still have important
consequences for type I vortices: if v is very small,
they start with only just enough energy to escape
their mutual attraction. In undergoing a small b
collision they can lose enough of this energy to
become trapped in an oscillating bound state. In this
case they do not truly scatter and © is ill-defined.
Myers et al. find that v > 0.2 suffices to avoid

67— -
$ b

Figure 4 The geometry of vortex scattering.

capture when A=1/2. Since type I vortices attract,
one might expect © to be always negative, indicating
that the vortices deflect towards one another. In
fact, as Figure 5a shows, this happens only for small
v and large b. Another naive expectation is that
©=0 or ©=180° when b=0 (either vortices pass
through one another or ricochet backwards in a
head-on collision). In fact ©® =90°, the only other
possibility allowed by reflexion symmetry of the
initial data. Figure 6 depicts snapshots of such a
scattering process at modest v. The vortices deform
each other as they get close until, at the moment of
coincidence, they are close to the static 2-vortex
ring. They then break apart along a line perpendi-
cular to their line of approach. One may consider
them to have exchanged half-vortices, so that each
emergent vortex is a mixture of the incoming
vortices. This rather surprising phenomenon was
actually predicted by Ruback in advance of any
numerical simulations and turns out to be a generic
feature of planar topological solitons.

Consider now the type II case (A =2, Figure 5b).
Here, © > 0 for all v, b as one expects of particles
that repel each other. Head-on scattering is more
interesting now since two regimes emerge: for v >
Verie & 0.3, one has the surprising 90° scattering
already described, while for v < v the vortices
bounce backwards, ©=180°. This is easily
explained. In order to undergo 90° head-on scatter-
ing, the vortices must become coincident (otherwise
reflexion symmetry is violated), hence must have
initial energy at least E;. For v < vy, where

2Eq
V 1- Vcritz

they have too little energy, so come to a halt before
coincidence, then recede from one another. The
solution v, of [17] depends on X and is plotted in
Figure 7. For v slightly above v, we see that, in
contrast to the type I case, ©(b) is not monotonic:
maximum deflection occurs at nonzero b.

The point vortex formalism yields a simple model
of type II vortex scattering which is remarkably
successful at small v. One writes down the Lagrangian
for two identical (nonrelativistic) point particles of
mass E; moving along trajectories x1(¢), x2(#) under

the influence of the repulsive potential EZ,

=k (17]

L=1E (a1 + [%2*) — Eg(xs —xf)  [18]

Energy and angular momentum conservation reduce
O(v, b) to an integral over one variable (s = |x; — x3])
which is easily computed numerically. To illustrate,
Figure 5b shows the result for A=2,v=0.1
in comparison with the lattice simulations of
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Figure 5 The 2-vortex scattering angle © as a function of impact parameter b for v=0.1(vy),v=0.2(A),

v=0.3($),v=0.4 (x), v=0.5 (x), and v=0.9 (+), as computed by Myers et al. (1992): (a) A\=1/2; (b) A=2; (c) A=1. The
dotted curves are merely guides to the eye. The solid curves in (b), (c) were computed using the point vortex model. Note that Myers
et al. use different normalizations, so b= \/2byrs and A= \yrs/2.

Myers et al. The agreement is almost perfect. For
large v the approximation breaks down not only
because relativistic corrections become significant,
but also because small b collisions then probe the small
|x1— x| region where vortex core overlap effects
become important. For the same reason, the point
vortex model is less useful for type I scattering.
Here there is no repulsion to keep the vortices well
separated, so its validity is restricted to the small v,
large b regime.

Critical coupling is theoretically the most inter-
esting regime, where most analytic progress has been
made. Since Ej, = EX. = 0, one might expect vortex
scattering to be trivial (©(v, b) = 0), but this is quite
wrong, as shown in Figure S5c. In particular,

O(v,0)=90° for all v, just as in the large v type I
and type II cases. The point is that scalar attraction
and magnetic repulsion of vortices are mediated by
fields with different Lorentz transformation proper-
ties. While they cancel for static vortices, there is no
reason to expect them to cancel for vortices in
relative motion.

Critical Coupling

The AHM with A =1 has many remarkable proper-
ties, at which we have so far only hinted. These all
stem from Bogomol’nyi’s crucial observation
(Manton and Sutcliffe 2004, pp. 197-202) that the
potential energy in this case can be rewritten as
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Figure 6 Snapshots of the energy density during a head-on
collision of vortices. This 90° scattering phenomenon is a
generic feature of planar topological soliton dynamics.

Uerit

Figure 7 The critical velocity for 90° head-on scattering of type
Il vortices vt as a function of A, as predicted by equation [17]
(solid curve), in comparison with the results of Myers et al.
(1992), (crosses).

1 1 2\’
=y [{(B-30-10P)
+|D1¢+iDz¢|2+B}d2x—i/ d(¢Dg¢) [19]
RZ

The last integral vanishes by Stokes’s theorem, so
E > 7 by flux quantization [6], and E=m# if and
only if

(D1 +1iD2)¢ =0 [20]
Mi-1¢) =B (21]

Note that system [20], [21] is first order, in contrast
to the second-order field equations [3]. No explicit
solutions of [20], [21] are known. However, Taubes
has proved that for each wunordered list
[z1,22,---52,] of m points in C, not necessarily
distinct, there exists a solution of [20], [21], unique
up to gauge transformations, with ¢(z1)=d(z2) =
-+ =¢(z,)=0 and ¢ nonvanishing elsewhere, the
zero at z, having the same multiplicity as z, has in
the list. Note that the list is unordered: a solution is
uniquely determined by the positions and multi-
plicities of the zeroes of ¢, but the order in which we
label these is irrelevant. The solution minimizes E
within the class C,, of winding 7 configurations, so is
automatically a stable static solution of the model.
Equation [20] applied to the symmetric n-vortex,
d=o(r)e"™ A=a(r)df implies a(r) =n — ro'(r)/o(r).
Comparing with [8], [9], it follows that g,=m,
when A=1 as previously claimed, since K; = —Kj,.
Tong has conjectured, based on a string duality
argument, that g; = —278'/4. This is consistent with
current numerics but has no direct derivation so far.
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Taubes’s theorem shows that this n-vortex is just
one point, corresponding to the list [0,0,...,0], in a
2n-dimensional space of static multivortex solutions
called the moduli space M,. This space may be
visualized as the flat, finite-dimensional valley
bottom in C, on which E attains its minimum
value, 772. Points in M, are in one-to-one correspon-
dence with distinct unordered lists [z1,22,...,2x],
which are themselves in one-to-one correspondence
with points in C", as follows. To each list, we assign
the unique monic polynomial whose roots are z,,

p(R)=(z—z1)(z—22) (2 —24)
=ao+az+--+a,d "+ [22]

This polynomial is uniquely determined by its
coefficients (ag,ai,...,a,-1) € C", which give good
global coordinates on M, = C”. The zeros z, of ¢
may be used as local coordinates on M,,, away from
A, the subset of M,, on which two or more of the
zeros z, coincide, but are not good global
coordinates.

Let (¢,A), denote the static solution correspond-
ing to a € C". If the zeros z, are all at least s apart,
Taubes showed the solution is just a linear super-
position of 1-vortices located at z,, up to corrections
exponentially small in s. Imagine these constituent
vortices are pushed with small initial velocities.
Then (¢(¢),A(#)) must remain close to the valley
bottom M, since departing from it costs kinetic
energy, of which there is little. Manton has
suggested, therefore, that the dynamics is well
approximated by the constrained variational problem
wherein (¢(t),A(t)) = (¢, A) 4, €M,, for all t. Since
the action S= fﬁd3x: J (Exin — E) dt, and E=mn,
constant, on M,,, this constrained problem amounts
to Lagrangian mechanics on configuration space M,
with Lagrangian L=FEyy|y . Now E, is real,
positive, and quadratic in time derivatives of ¢, A, so

L =1y (@)aa 23]

~,s forming the entries of a positive-definite 7 x n
Hermitian matrix (v, = 7%,5). Since (¢,A), is not
known explicitly, neither are 7,s(a). Observe, how-
ever, that L is the Lagrangian for geodesic motion in
M, with respect to the Riemannian metric

Y= ’Yrs(a)dardas [24]

Manton originally proposed this geodesic approx-
imation for monopoles, but it is now standard for all
topological solitons of Bogomol’nyi type (where one
has a moduli space of static multisolitons saturating
a topological lower bound on E). Note that
geodesics are independent of initial speed, which
agrees with Myers et al: Figure 5¢ shows that (v, b)

is approximately independent of v for v <0.5.
Further, Stuart (1994) has proved that, for initial
speeds of order €, small, the fields stay (pointwise) €2
close to their geodesic approximant for times of
order 1.

On symmetry grounds, two vortex dynamics in
the COM frame reduces to geodesic motion in M) =
C, the subspace of centered 2-vortices (a1 =0, so
21 = —2»), with induced metric

70 = G(|ao|)ddodé_lo [25]

G being some positive function. Note that a9 =212,
so the intervortex distance |21 — 22| = 2|z1| = 2[ao|"/*.
The line ap = € R, traversed with 3 increasing, say,
is geodesic in M. The vortex positions (roots of
22 +ag) are +/|6| for # <0 and +i\/3 for 5> 0.
This describes perfectly the 90° scattering phenom-
enon: two vortices approach head-on along the x!
axis, coincide to form a 2-vortex ring, then break
apart along the x? axis, as in Figure 6. This behavior
occurs because a9 =z12», rather than z; — 25, is the
correct global coordinate on MY, since vortices are
classically indistinguishable.

Samols found a useful formula (Manton and
Sutcliffe 2004, pp. 205-215) for v in terms of the
behavior of |¢,| close to its zeros, using which he
devised an efficient numerical scheme to evaluate
G(lao|), and computed O(b) in detail, finding
excellent agreement with lattice simulations at low
speeds. He also studied the quantum scattering of
vortices, approximating the quantum state by a
wave function ¥ on M, evolving according to the
natural Schrodinger equation for quantum geodesic
motion,

ilaaa—‘f = 1A [26]
where A, is the Laplace-Beltrami operator on
(M,.,v). This technique, introduced for monopoles
by Gibbons and Manton, is now standard for
solitons of Bogomol’nyi type.

By analyzing the forces between moving point
vortices at A=1, Manton and Speight (2003)
showed that, as the vortex separations become
uniformly large, the metric on M,, approaches

2
00 - 4
Y :WZ [dzrdzr - E;KO(‘zr —2l)
x (dz, — dzs)(dz, — dzs)] [27]
This formula can also be obtained by a method of

matched asymptotic expansions. We can use [27] to
study 2-vortex scattering for large b, when the
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vortices remain well separated. (Note that v is not
positive definite if any |z, — 25| becomes too small.)
The results are good, provided v < 0.5 and b > 3
(see Figure 5c).

Other Developments

The (critically coupled) AHM on a compact physical
space ¥ is of considerable theoretical and physical
interest. Bradlow showed that M, (X) is empty unless
V = Area(X) > 4nn, so there is a limit to how many
vortices a space of finite area can accommodate
(Manton and Sutcliffe 2004, pp. 227-230). Manton
has analyzed the thermodynamics of a gas of
vortices by studying the statistical mechanics of
geodesic flow on M,(X). In this context, spatial
compactness is a technical device to allow nonzero
vortex density 7n/V for finite n, without confining
the fields to a finite box, which would destroy the
Bogomol’nyi properties. In the limit of interest,
n,V— oo with n/V fixed, the thermodynamical
properties turn out to depend on X only through
V, so ¥ =5 and ¥ = T? give equivalent results, for
example. The equation of state of the gas is
(P = pressure, T =temperature)

nT

P:V—47m

28]
which is similar, at low density 7/V, to that of a gas
of hard disks of area 27. The crucial step in deriving
[28] is to find the volume of M, (%) which, despite
there being no formula for 7, may be computed
exactly by remarkable indirect arguments (Manton
and Sutcliffe 2004, pp. 231-234).

The static AHM coincides with the Ginzburg-
Landau model of superconductivity, which has
precisely the same type I/II classification. Here the
“Higgs” field represents the wave function of a
condensate of Cooper pairs, usually (but not always)
electrons. There has been a parallel development of
the static model by condensed matter theorists,
therefore; see Fossheim and Sudbo (2004), for
example. In fact the vortex was actually first
discovered by Abrikosov in the condensed matter
context. One important difference is that type I
superconductors do not support vortex solutions in
an external magnetic field By because the critical
|Bext| required to create a single vortex is greater
than the critical |Bex| required to destroy the
condensate completely (¢ =0). Type II supercon-
ductors do support vortices, and there are such
superconductors with A=~ 1, but the vortex
dynamics we have described is not relevant to these
systems. In this context there is an obvious preferred

reference frame (the rest frame of the superconduc-
tor) so it is unsurprising that the Lorentz-invariant
AHM is inappropriate. Insofar as vortices move at
all, they seem to obey a first-order (in time)
dynamical system, in contrast to the second-order
AHM. Manton has devised a first-order system
which may have relevance to superconductivity, by
replacing Ey;, with a Chern-Simons—Schrodinger func-
tional (Manton and Sutcliffe 2004, pp. 193-197).
Rather than attracting or repelling, vortices now
tend to orbit one another at constant separation.
There is again a moduli space approximation to
slow vortex dynamics for A~ 1, but it has a
Hamiltonian-mechanical rather than Riemannian-
geometric flavor.

Finally, an interesting simplification of the AHM,
which arises, for example, as a phenomenological
model of liquid helium-4, is obtained if we discard the
gauge field A, or equivalently set the electric charge of
¢ to e =0. There is now no type I/Il classification, since
A may be absorbed by rescaling. The resulting model,
which has only global U(1) phase symmetry, supports
n-vortices ¢=o(r)e" for all n, but these are not
exponentially spatially localized,
n* n?(8+n?)

o(r)=1-—

_ -6
2 A +O(r™°) [29]

and cannot have finite E by Derrick’s theorem. They
are unstable for |#| > 1, and 1-vortices uniformly
repel one another. They can be given an interesting
first-order dynamics (the Gross—Pitaevski equation).

Abbreviations

A, electromagnetic gauge potential
b impact parameter

D, gauge-covariant derivative

E potential energy

Ein kinetic energy

F. electromagnetic field strength tensor
L Lagrangian

L Lagrangian density

S action

1) Higgs field

() scattering angle

See also: Fractional Quantum Hall Effect;
Ginzburg—Landau Equation; High T, Superconductor
Theory; Integrable Systems: Overview; Nonperturbative
and Topological Aspects of Gauge Theory; Quantum
Fields with Topological Defects; Solitons and Other
Extended Field Configurations; Symmetry Breaking in
Field Theory; Topological Defects and Their Homotopy
Classification; Variational Techniques for
Ginzburg-Landau Energies.
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Introduction
Macroscopic Problem

The “adiabatic piston” is an old problem of
thermodynamics which has had a long and con-
troversial history. It is the simplest example con-
cerning the time evolution of an adiabatic wall, that
is, a wall which does not conduct heat. The system
consists of a gas in a cylinder divided by an
adiabatic wall (the piston). Initially, the piston is
held fixed by a clamp and the two gases are in
thermal equilibrium characterized by (p*, T+, N*),
where the index —/+ refers to the gas on the left/right
side of the piston and (p, T, N) denote the pressure,
the temperature, and the number of particles
(Figure 1). Since the piston is adiabatic, the whole
system remains in equilibrium even if T~ # T*. At
time ¢ =0, the clamp is removed and the piston is let
free to move without any friction in the cylinder. The

N- N+
p~ p* A
T T+

1 | |

0 X L

Figure 1 The adiabatic piston problem.
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question is to find the final state, that is, the final
position X of the piston and the parameters (pf, T{")
of the gases.

In the late 1950s, using the two laws of
equilibrium thermodynamics (i.e., thermostatics),
Landau and Lifshitz concluded that the adiabatic
piston will evolve toward a final state where
p~ /T =p"/T". Later, Callen (1963) and others
realized that the maximum entropy condition
implies that the system will reach mechanical
equilibrium where the pressures are equal p; =p{;
however, nothing could be said concerning the final
position X; or the final temperatures T which
should depend explicitly on the viscosity of the
fluids. It thus became a controversial problem since
one was forced to accept that the two laws of
thermostatics are not sufficient to predict the final
state as soon as adiabatic movable walls are
involved (see early references in Gruber (1999)).

Experimentally, the adiabatic piston was used
already before 1924 to measure the ratio ¢,/c, of
the specific heats of gases. In 2000, new measure-
ments have shown that one has to distinguish
between two regimes, corresponding to weak damp-
ing or strong damping, with very different proper-
ties, for example, for weak damping the frequency
of oscillations corresponds to adiabatic oscillations,
whereas for strong damping it corresponds to
isothermal oscillations.

Microscopic Problem

The “adiabatic piston” was first considered from a
microscopic point of view by Lebowitz who intro-
duced in 1959 a simple model to study heat
conduction. In this model, the gas consists of point
particles of mass m making purely elastic collisions
on the wall of the cylinder and on the piston.
Furthermore, the gas is very dilute so that the
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equation of state p=nkpT is satisfied at equili-
brium, where 7 is the density of particles in the gas
and kg the Boltzmann constant. The adiabatic piston
is taken as a heavy particle of mass M > m without
any internal degree of freedom. Using this same
model Feynman (1965) gave a qualitative analysis in
Lectures in Physics. He argued intuitively but
correctly that the system should converge first
toward a state of mechanical equilibrium where
p~=p" and then very slowly toward thermal
equilibrium. This approach toward thermal equili-
brium is associated with the “wiggles” of the piston
induced by the random collisions with the atoms of
the gas. Of course, this stochastic behavior is not
part of thermodynamics and the evolution beyond
the mechanical equilibrium cannot appear in the
macroscopical framework assuming that the piston
does not conduct heat.

From a microscopical point of view, one is
confronted with two different problems: the
approach toward mechanical equilibrium in the
absence of any a priori friction (where the entropy
of both gases should increase) and, on a different
timescale, the approach toward thermal equilibrium
(where the entropy of one gas should decrease but
the total entropy increase).

The conceptual difficulties of the problem beyond
mechanical equilibrium come from the following
intuitive reasoning. When the piston moves toward
the hotter gas, the atoms of the hotter gas gain
energy, whereas those of the cooler gas lose energy.
When the piston moves toward the cooler side, it is
the opposite. Since on an average the hotter side
should cool down and the cold side should warm
up, we are led to conclude that on an average the
piston should move toward the colder side. On the
other hand, from p =nkgT, the piston should move
toward the warmer side to maintain pressure
balance.

In 1996, Crosignani, Di Porto, and Segev intro-
duced a kinetic model to obtain equations describing
the adiabatic approach toward mechanical equili-
brium. Starting with the microscopical model
introduced by Lebowitz, Gruber, Piasecki, and
Frachebourg, later joined by Lesne and Pache,
initiated in 1998 a systematic investigation of the
adiabatic piston within the framework of statistical
mechanics, together with a large number of numer-
ical simulations. This analysis was based on the fact
that m/M is a very small parameter to investigate
expansions in powers of m/M (see Gruber and
Piasecki (1999) and Gruber et al. (2003) and
reference therein). An approach using dynamical
system methods was then developed by Lebowitz
et al. (2000) and Chernov et al. (2002). An

extension to hard-disk particles was analyzed at
the same time by Kestemont et al. (2000). Recently,
several other authors have contributed to this
subject.

The general picture which emerges from all the
investigations is the following. For an infinite
cylinder, starting with mechanical equilibrium
p~=pT=p, the piston evolves to a stationary
stochastic state with nonzero velocity toward the
warmer side

(V)= T VT vo(M)

M

with relaxation time

Wl e

where M/A is the mass per unit area of the piston.

In this state the piston has a temperature
Tp=+T+T- and there is a heat flux

. Skg m

jo = (/T v 1 [T, oy

- =p"=p) 3]

For a finite cylinder and p* # p~, the evolution
proceeds in four different stages. The first two are
deterministic and adiabatic. They correspond to the
thermodynamic evolution of the (macroscopic)
adiabatic piston. The last two stages, which go
beyond thermodynamics, are stochastic with heat
transfer across the piston. More precisely:

1. In the first stage whose duration is the time
needed for the shock wave to bounce back on the
piston, the evolution corresponds to the case of
the infinite cylinder (with p~=#p™). If
R=Nm/M > 10, the piston will be able to
reach and maintain a constant velocity

k VT-T+ m
Ve (p— —pt),/TRB oz
= My +p T ( )
for p~—ptik1 (4]
2. In the second stage the evolution toward

mechanical equilibrium is either weakly or
strongly damped depending on R. If R < 1, the
evolution is very weakly damped, the dynamics
takes place on a timescale ' = v/Rt, and the effect
of the collisions on the piston is to introduce an
external potential ¢(X)=c1/X? + c2/(L — X)*
On the other hand, if R >4, the evolution is
strongly damped (with two oscillations only) and
depends neither on M nor on R.
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3. After mechanical equilibrium has been reached,
the third stage is a stochastic approach toward
thermal equilibrium associated with heat transfer
across the piston. This evolution is very slow and
exhibits a scaling property with respect to
¥ =mt/M.

4. After thermal equilibrium has been reached
(T-=T",p =p"), in a fourth stage the gas
will evolve very slowly toward a state with
Maxwellian distribution of velocities, induced
by the collision with the stochastic piston.

The general conclusion is thus that a wall which is
adiabatic when fixed will become a heat conductor
under a stochastic motion. However, it should be
stressed that the time required to reach thermal
equilibrium will be several orders of magnitude larger
than the age of the universe for a macroscopical piston
and such a wall could not reasonably be called a heat
conductor. However, for mesoscopic systems, the effect
of stochasticity may lead to very interesting properties,
as shown by Van den Broeck et al. (2004) in their
investigations of Brownian (or biological) motors.

Microscopical Model

The system consists of two fluids separated by an
“adiabatic” piston inside a cylinder with x-axis,
length L, and area A. The fluids are made of N*
identical light particles of mass 7. The piston is a
heavy flat disk, without any internal degree of
freedom, of mass M > m, orthogonal to the
x-axis, and velocity parallel to this x-axis. If the
piston is fixed at some position Xy, and if the two
fluids are in thermal equilibrium characterized by
(p5, T5, N*), then they will remain in equilibrium
forever even if Tj #T: it is thus an “adiabatic
piston” in the sense of thermodynamics. At a certain
time #=0, the piston is let free to move and the
problem is to study the time evolution. To define the
dynamics, we consider that the system is purely
Hamiltonian, that is, the particles and the piston
move without any friction according to the laws of
mechanics. In particular, the collisions between the
particles and the walls of the cylinder, or the piston,
are purely elastic and the total energy of the system
is conserved. In most studies, one considers that the
particles are point particles making purely elastic
collisions. Since the piston is bound to move only in
the x-direction, the velocity components of the
particles in the transverse directions play no role in
this problem. Moreover, since there is no coupling
between the components in the x- and transverse
directions, one can simplify the model further by
assuming that all probability distributions are

independent of the transverse coordinates. We are
thus led to a formally one-dimensional problem
(except for normalizations). Therefore, in this
review, we consider that the particles are noninter-
acting and all velocities are parallel to the x-axis.
From the collision law, if v and V denote the
velocities of a particle and the piston before a
collision, then under the collision on the piston:

v—v' =2V—-v+alv-V)

5
V-V =V+4+alw-V) 15
where
2m
aiiM—i—m [6]

Similarly, under a collision of a particle with the
boundary at x=0 or x=1L:

v—v =—v [7]

Let us mention that more general models have also
been considered, for example, the case where the
two fluids are made of point particles with different
masses m*, or two-dimensional models where the
particles are hard disks. However, no significant
differences appear in these more general models and
we restrict this article to the simplest case.

One can study different situations: L=o0, L
finite, and L — oco. Furthermore, taking first M and
A finite, one can investigate several limits.

1. Thermodynamic limit for the piston only. In
this limit, L is fixed (finite or infinite) and
A — 00, M — 00, keeping constant the initial

densities n* of the fluid and the parameter
2mA A
Lyl m o [8]

If L is finite, this means that N* — oo while
keeping constant the parameters

mN* M
RTt="" = B8 9
M M 9]

2. Thermodynamic limit for the whole system,
where L—o00 and A~ L?, N* ~ L3 In this
limit, space and time variables are rescaled
according to x'=x/L and t’=t¢/L. This limit
can be considered as a limiting case of (1) where
R* ~ VA — o (and time is scaled).

3. Continuum limit where L and M are fixed and
N* — o00,m— 0 keeping M, constant, that is,
R* = cte.

The case L infinite and the limit (1) have been
investigated using statistical mechanics (Liouville or
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Boltzmann’s equations). On the other hand, the
limit (2) has been studied using dynamical system
methods, reducing first the system to a billiard in an
(NT + N~ + 1)-dimensional polyhedron. The limit
(3) has been introduced to derive hydrodynamical
equations for the fluids.

In this article, we present the approach based on
statistical mechanics. Although not as rigorous as (2)
on a mathematical level, it yields more informations
on the approach toward mechanical and thermal
equilibrium. Moreover, it indicates what are the
open problems which should be mathematically
solved. In all investigations, advantage is taken of
the fact that m/M is very small and one introduces
the small parameter

e=m/M< 1 10]

Let us note that e measures the ratio of thermal
velocities for the piston and a fluid particle, whereas
a ~ €2 measures the ratio of velocity changes during

a collision.

Starting Point: Exact Equations

Using the statistical point of view, the time evolution
is given by Liouville’s equation for the probability
distribution on the whole phase space for (Nt +
N~ +1) particles, with L,A,N*, and M finite.
Initially (# < 0), the piston is fixed at (Xo, Vo=0)
and the fluids are in thermal equilibrium with
homogeneous densities 77, velocity distributions
o5 (v) =g (—v), and temperatures

Ty = m/ dvng o (v)v* [11]

Integrating out the irrelevant degrees of freedom,
the Liouville’s equation yields the equations for
the distribution p*(x,v;¢) of the right and left
particles:

OpE(x,v5t) + vOepT(x,v;t) = [F(x,v;t)  [12]

The collision term I*(x,v;t) is a functional of
p+,p(X,v; X, Vs t), the two-point correlation func-
tion for a right (resp. left) particle at (x = X,v) and
the piston at (X, V). Similarly, one obtains for the
velocity distribution of the piston:

0P(V;t) :A/

—00

+0(v — V) pyu(v; Vi) dv

— A [T =00l = V)5 Vst

o0

+0(V —v)pl ((v; V;t)|dv [13]

oo

(V= 0)[0(V = 0)pgu(v'; V'32)

where (v’, V') are given by eqn [5] and
pene(v3 Vi) = / dXp. p(X,v;X,Vit)  [14]

We thus have to solve eqns [12]-[13] with initial
conditions
p~(x,v;t =0) = nyp, (v)8(x)0(Xo — x)
pr(x,v5t =0) =nieg (v)0(L —x)0(x — Xo) [15]
O(Vit=0)=6(V)

Using the fact that a=2m/(M +m) < 1, we can
rewrite eqn [13] as a formal series in powers of a:

00 (_qykg k- k_
da(vin) =y U (%) Fea(Vit) (16

Ee (Vi) :/oo(u — V)*p (v Vi t)do
_ / Yo Vot (v Vitde (17

from which one obtains the equations for the
moments of the piston velocity:

1d(v7)
~ dr
n - 7l 00 b
=3 ot 14/('(71_/()'/ AV Vi E (Vid) (18]
2 Rk

However, we do not know the two-point correlation
functions.

If the length of the cylinder is infinite, the
condition M > m implies that the probability for
a particle to make more than one collision on the
piston is negligible. Alternatively, one could choose
initial distributions ¢7 (v) which are zero for |v]| <
Umin, Where v, is taken such that the probability
of a recollision is strictly zero. Therefore, if L = oo,
one can consider that before a collision on the
piston the particles are distributed with ¢ (v) for
all ¢z, and the two-point correlation functions
factorize, that is,

Peurt (V3 Vit) = poos(v5 1) @( V5 2),
poWs Vit) = pl (v 0)®( V1),

where for L=o0, p& ((v;t)=n5¢(v) and thus the
conditions to obtain eqn [18] are satisfied.

If L is finite, one can show that the factorization
property (eqn [19]) is an exact relation in the
thermodynamic limit for the piston (A — oo,
M/A = cte). For finite L and finite A, we introduce

ifv>V

. [19]
fov<V
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Assumption 1 (Factorization condition). Before a
collision the two-point correlation functions have the
factorization property (eqn [19]) to first order in a.

Under the factorization condition, we have
F (V1) = F(Vit)®(V; 1) [20]
with
F V t / dU Uf ) psurf(v t)

/ dy U - surf<y t>
= Fy (Vi) — EL(V;0) [21]
and from eqn [18]
(%) %(V) = Ma(F2(V;t))g [22]

(%) 50

Introducing V=(V), then from eqns [12] and [20],
it follows that the (kinetic) energies satisfy

5 (5) == Ma[(E (vien, v
UV = VFE(ViD),

+ 5 (FE(Vit))a) 24

=Ma[(VE2(Vit))g +a(F3(V3t)g] [23]

which implies conservation of energy.
From the first law of thermodynamics,

()t s

where P§;"* and PP ~* denote the work- and
heat-power transmitted by the piston to the fluid,
we conclude from eqns [22] and [25] that the heat
flux is

lpgﬂi =+ Ma{((v - V)E (V;it))g

A
+5 (B (Vit))a 26]

Since o< 1, it is interesting to introduce the
irreducible moments

A =(V=V))e 27]
and the expansion around V= (V),,
o0 1 _
FX(V;1) Z;F“i -V) 28]

=

from which one obtains equations for dA,/dz. In
particular, using the identities

F(37+1 +) 3F 7, :l: F§r+2,:t) _ ZF(()r.:t) [29]
n [22] and [24], we have
(B (Vi1)y=F5 (V1)

2 r,+
T P
;(24—1’)!

)A2+r [3 0]

d <<E:>> = iMa[<F§(V; 1))V

dr
+2F3(Vt 2; (2r — 30)
x F b5 (VA ] 31]

Depending on the questions or approximations one
wants to study, either the distribution ®(V;¢) or the
moments (V”), will be the interesting objects.
Finally, with the condition [19], one can take
eqn [12] for x # X, and impose the boundary
conditions at x = X,:

p (Xp,vit)=p (X,,v'5t), fv<V, 32)
ot (X, vit) = pt (X, v'st), ifv>V,
and similarly for x=0 and x =L with v'= —v.

Let us note that this factorization condition is of
the same nature as the molecular chaos assumption
introduced in kinetic theory, and with this condition
eqn [13] yields the Boltzmann equation for this
model.

In the following, to obtain explicit results as a
function of the initial temperatures Ty, we take
Maxwellian distributions ¢ (v) and initial condi-
tions (pg, Ta, ni) such that the velocity of the piston
remains small (i.e., [(V),| < [(v5)])-

Distribution ®(V;t) for the Infinite
Cylinder (L=0)

To lowest order in e=+/m/M, and assuming
[T —p*/p~] is of order €, one obtains from eqn [16]

the usual Fokker-Planck equation whose solution
gives

o2
Do(V31) = %Al(t) exp — (%) 33]
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Vo= - py B ] e

SCEars

A2 kB /1% P VT +p VT —2nt
A= VT +p- \/F( —=

where we have dropped the index “zero” on the
variable T*,#* and used the equation of state
pi =ntkyT*.

In conclusion, in the thermodynamic limit for the
piston (M — oo, M/A fixed), eqn [33] shows that
the evolution is deterministic, that is, ®(V;t)=
8(V — V(t), where the velocity V(¢) of the piston
tends exponentially fast toward stationary value
Viear = V(00) with relaxation time 7=\"".

Let us note that for p* =p~, we have V(t) =0
and the evolution [33] is identical to the
Ornstein—Uhlenbeck process of thermalization of
the Brownian particle starting with zero velocity
and friction coefficient A. The analysis of [16] to
first order in ¢ yields then

1+eZak (1)*

where ay(t) can be explicitly calculated and ay(z) =

Do(V;2)  [35]

—A2(t)ay(t) because of the normalization condition.
Moreover, ax(t) ~ (p~ —p*), that is, ax(¢)=0 if
p~ =p". From [35], one obtains
V), = /7rk VT-T+
TV 8mp T+ p /T
x {<p —p)(1—e)
- 2 (pTTT —ptTT)

+@p —p")

8 (ptVT=+pVTT)

x (1= 2xte ™™ — e 2M)
m 1

S — 7T+_ +T7
myr» T

pVTT +p~ VT~ e
<p+r+p m>( ’} b

and

(V2 — V)3 = 201+ \/%ZAZ(t)az(t)] 37)

From eqn [36], we now conclude that for equal
pressures p~ =p*, the piston will evolve stochasti-
cally to a stationary state with nonzero velocity
toward the warmer side

7rk
(Vstae = (V -VT~)
M s ifp-=p" [38]
2 _ =
<V >stat - <V>stat - M T

Let us remark that we have established eqn [35]
under the condition that |1 —p*/p~|=0Ol(e), but as
we see in the next section, the stationary Value Vitat
obtained from eqn | remains valid whenever

36]
(1—=p*/p )1 - /TH/T7)| < 1.

Moments (V")
for the Piston

+» Thermodynamic Limit

General Equations: Adiabatic Evolution
In the thermodynamic limit M — oo, a — 0, y=aA
is fixed and eqn [16] reduces to

00 (V;t) = 2 (V1) [39]

0=

Tovi
Integrating [39] with initial condition ®(V;z=0)=
5(V) yields

O(V,t)=6(V—-V(t)), thatis, (V"),=(V)! [40]
where
v =anen. ve=0=0 @1
Moreover,
Fy(Vit) = B(V;1)®(V;1) [42]
and

pep(X,v; X, Vi) =p*(x,v; 1)o6(X — X(¢t))

x 6(V — V(1)) [43]

where dX(t)/ds=V(t), X(t =0) = Xp.

In conclusion, as already mentioned, in this limit
the factorization condition (eqn [19]) is an exact
relation. Let us note that pZ ((v5t) = pZ ((2V — vs1) if
v > V(t) (on the right) or v < V(t) (on the left). Let
us also remark that 2mF5(V(t);t) represents the
effective pressure from the right/left exerted on the
piston. Moreover, since for any distribution
pE¢(v3t), the functions F; (V;¢) and —F5 (V;t) are
monotonically decreasing, we can introduce the
decomposition

i =2 (Vi) = p* & ()N (Vv a4

where the static pressure at the surface is
pE(t)=pZ (V=0;¢) and the friction coefficients
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AE(V;t) are strictly positive. The evolution [41] is
thus of the form

(b~ =p") =AWV [43]

It involves the difference of static pressure and the
friction coefficient A(V)=A"(V) + At (V). Finally,
from eqn [12], we obtain the evolution of the
(kinetic) energy per unit area for the fluids in the left
and right compartments:

i <E*>
dt A

Therefore, from [40] and [46], and the first law of
thermodynamics, we recover the conclusions
obtained in the previous section, that is, in the
thermodynamic limit for the piston, the evolution
(eqns [41], [12], and [35]) is deterministic and
adiabatic (i.e., in [46] only work and no heat is
involved).

) = £ 2mFE(Vit)V [46]

Infinite Cylinder (L= oco, M =)

As already discussed, for L =00 we can neglect the
recollisions. Therefore, in F5 the distribution p*(v; #)
can be replaced by nf ¢ (v) and F5(V) is indepen-
dent of #. In this case, the evolution of the piston is
simply given by the ordinary differential equation

d A
"=

where F,(V) is a strictly decreasing function of V. If
py =g, then V(¢) =0, that is, the piston remains at
rest and the two fluids remain in their original
thermal equilibrium. If p§ # py, that is, njksT #
ny kg Ty , the piston will evolve monotonically to a
stationary state with constant velocity V. solution
of F>(Vga) =0. From [34], it follows that Vg, is a
function of nj /ny, Ty, T; but does not depend on
the value M/A. Moreover, the approach to this
stationary state is exponentially fast with relaxation
time 790 =1/A(V =0). For Maxwellian distributions
05 (v), Viar is a solution of

18k
kg (naTa — nO+T0+) Vitat B (”0 /Ty —ng \/TJ“)

+ Vearn (ng —no)+0(Vim) =0 [48]

2mEy(V), V(=0)=0  [47]

Moreover,

_ A [8kgm /([ _ -
' =1\ (noq/TO—an\/Tar) [49]

which implies that the relaxation time will be very
small either if M/A < 1, or if nf =&ny with €> 1.
In this case, the piston acquires almost immediately

its final velocity V., and one can solve eqn [12] to
obtain the evolution of the fluids.

Finite Cylinder (L < co, M=)

For finite L, introducing the average temperature in

the fluids

L 2{EF),
Tav - kBNi [50]
we have to solve [41] and [46], that is,
S0 = LamlE (vir) - E (v20)
t 1 A 51]
de = +4m NiFZ(V HV

where F5(V;1) is a functional of pZ (v;t) which we
decompose as

FX(Vit) = it (ks T (2) £ @f) ME(V:)V o [52)]
with
- / dvpis(v:2)
° 53]
_ / dvpt (v:1)
and
Pty T = p* [54]

For a time interval 71 = Ly/m/kgT which is the time
for the shock wave to bounce back, the piston will
evolve as already discussed. In particular, if R* is
sufficiently large, then after a time 7o = O((R*)™") the
piston will reach the velocity V given by F,(V,t)=0
(eqn [47]). For t > 11, F5(V;t) depends explicitly on
time. For R* sufficiently large, we can expect that for
all ¢ the velocity V(z) will be a functional of pirf(v; t)
given by F,[V(2); pZ 4(.38)] =0, and thus the problem
is to solve eqn [12] with the boundary condition (eqn
[32]). Since V(#) so defined is independent of M/A,
the evolution will be independent of M/A if R* is
sufficiently large. This conclusion, which we cannot
prove rigorously, will be confirmed by numerical
simulations.

To give a qualitative discussion of the evolution
for arbitrary values of R*, we shall use the following
assumption already introduced in the experimental
measurement of ¢, /c,.

Assumption 2 (Average assumption). The surface
coefficients 72%(t) and T*(t) (eqns [52]-[53]) coin-
cide to order 1 in o with the average value of the
density and temperature in the fluids, that is,
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N . Nt
AX() " T AL —X(1)
T =Ty(1) [55]

We still need an expression for the friction
coefficients. From

=pE(t) — 4mVFE(V = 0;1)
+m Vit (t) + O(V?) [56]

Fy (Vi)

then, assuming that to first order in o, Ff (V=0;1) is
the same function of T*(¢) as for Maxwelllan
distributions, we have

/\i(V)<;\4/I>mn [\/Si‘;r + V| +0(V?) [57]

Therefore, choosing initial condition such that V(z)
is small for all time, eqn [51] yields

VT-X-VT+HL-X)
— =Ty Xo—\/T{(L-X0)  [59)

We thus obtain the equilibrium point for the
adiabatic evolution (M=o00):

N~ - ZEO Xf
(7) T; =20 % (59]
N*\.., 2 X;
(7) T =S (1 _ T> 160]
where
2E0 . N~ » + T
Ay <A>TO+(A)TO [61]
and

(e e

Solving [58]-[62] gives the equilibrium state (X, T7),
which is a state of mechanical equilibrium p; =p/,
but not thermal equilibrium Ty~ # T;". Moreover, this
equilibrium state does not depend on M. Having
obtained the equilibrium point, we can then investi-
gate the evolution close to the equilibrium point.
Linearizing eqn [51] around (X, T7) yields

d N\ T; X?
qV ke [(ﬁ) X3

_(1\% szgi_;){;)z} AV =0V [63]

In other words, the effect of collisions on the piston
is to 1nduce an external potential of the form
[c1]X| ™ + c2(L — X)™] and a friction force. It is a
damped harmonic oscillator with

i Eo 1
Xi(L — X;)

“WW; o]

(recall that R* =mN=*/M). For the case N~ =N" to
be considered in the simulations, eqn [64] implies
that the motion is weakly damped if

A
T wo VR — Riax

and strongly damped if R > R,.y, in agreement with
experimental observations.

37
max — A

R <R

with period

[66]

Moments (V"),:

Equation to First Order in «=2m/(M + m)

Piston with Finite Mass

If the mass of the piston is finite with M >> m, then
the irreducible moments A, are of the order al+1)/2]
where [(r+1)/2] is the integral part of (r+1)/2.
If the factorization condition [19] is satisfied, to first
order in o we have

v, = v+ v (67
where V(t)=(V), and Ay(t)=(V?), — (V)7 are
solutions of

1d
e V(t) =F, + Ay Fo

1d

,aAZ( ) =—4A,F; + aF; [68]

1d

;d—<Ei =+ {M[F; + A F |V

+(M/2)[40:Fy — aF5]}

and A, =kpTp/M defines the temperature of the
piston.

Infinite Cylinder: Heat Transfer

For the infinite cylinder, the factorization assump-
tion is an exact relation and in this case the
functions Fj,(V;t) are independent of . The solution
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of the autonomous system [68] with F,=F.(V)
shows that the piston evolves to a stationary state
with velocity V given by

o, aF5(V)Fo(V)
FE(V)+—-————-"=0 69
(1 + 52 69
The temperature of the piston is
< kBTP OzF3(V)
A 70
*TTM T 4EF (V) 70}
and the heat flux from the piston to the fluid is
1op. _m? [F{F —FF]
ale’ =y [ F—F 71
If we choose initial conditions such that |V (#)] < 1

for all ¢, and Maxwellian distributions ¢*(v), the
solutions V/(t), A,(¢t) coincide with the solutions
previously obtained (eqns [36] and [37]) and

1op. -
ZP’é =(T"-T)x

SkB

M
ppt

T+ p VT

In conclusion, to first order in 72/M, there is a heat
flux from the warm side to the cold one propor-
tional to (Tt —T7), induced by the stochastic
motion of the piston.

[72]

Finite Cylinder (L < oo, M < )

Singular character of the perturbation approach
Whereas the leading order is actually the “thermo-
dynamic behavior” M = oo in the first two stages of
the evolution (fast relaxation toward mechanical
equilibrium), the fluctuations of order O(«) rule the
slow relaxation toward thermal equilibrium. It is
thus obvious that a naive perturbation approach
cannot give access to “both” regimes. This difficulty
is reminiscent of the boundary-layer problems
encountered in hydrodynamics, and the perturbation
method to be used here is the exact temporal analog
of the matched perturbative expansion method
developed for these boundary layers. The idea is to
implement two different perturbation approaches:

1. one at short times, with time variable # describing
the fast dynamics ruling the fast relaxation
toward mechanical equilibrium; and

2. one for longer times, with a rescaled time
variable 7= az.

The second perturbation approach above is supple-
mented with a “slaving principle,” expressing that at
each time of the slow evolution, that is, at fixed T,
the still present fast dynamics has reached a local
asymptotic state, slaved to the values of the slow

observables. The initial conditions are set on the
first-stage solution. The initial conditions of the
second regime match the asymptotic behavior of the
first-stage solution (“matching condition™).

The slaving principle is implemented by interpret-
ing an evolution equation of the form

% = a% = A(r,a),

as follows: it indicates that a is in fact a fast quantity
relaxing at short times (< 7) toward a stationary
state deq(7) slaved to the slow evolution and
determined by the condition

AlT,a.4(T)] =0 [74]

A=0(1) 73]

(at lowest order in «, actually A[7,a.q(7)]=0O(c)
which prescribes the leading order of a.q(7)); the
following-order terms can be arbitrarily fixed as
long as only the first order of perturbation is
implemented. Physically, such a condition arises to
express that an instantaneous mechanical equili-
brium takes place at each time 7 of the slow
relaxation to thermal equilibrium.

Equations for the fluctuation-induced evolution of
the system Following this procedure, we arrive at
explicit expressions for the rescaled quantities (of order
O)V=V/a, Ay=2s/a,and 1= (p~ — p*) /o

AL\ (F;Ff — FJF;
Ve 3 (Eo) ( Fy +0e)

I 2m (AL) -
= (FyF{ — F{Fy)
F3F1
IE + O(«)
~ F;
Ay =—
2 =3p 7O

We then introduce a (dimensionless) rescaled posi-
tion for the piston

which satisfies

de FrFf
T -3 7

To discuss eqn [77], a third assumption has to be
introduced.

Assumption 3 (Maxwellian Identities). In the
regime when V=0(a), the relations between the
functionals Fi,F,, and F3 are the same at lowest
order in « as if the distributions pZ ((v; V;t) were
Maxwellian in v:
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kaT®

F{(V) ~ Fp* ZBW
78
2k T 78]

B~ (PLE) W) - VW)

Using these identities and the (dimensionless)
rescaled time

S_T_\/E\/ 2(N"Ty +N ) 791

where N=NT -+ N~, we obtain a deterministic
equation describing the piston motion (Gruber et al.
2003):

& [ [N N
amzé—ﬁf

where X,q is the piston position at the end of the
adiabatic regime (i.e., X, eqn [62]). The meaningful
observables straightforwardly follow from the solu-

tion &(s):
1
L (E - 5(S)>

Tﬂﬂ=ui%@(

X(s) =
81]

N-T; + N*T§
2N+

The first-order perturbation analysis using a single

rescaled time #; =atfy is valid in the regime when

V =0(a) and it gives access to the relaxation toward

.r:-‘,._g—r-ﬁ'

0 500 1000 1500 2000 2500 3000

t

(a)

thermal equilibrium up to a temperature difference
T* — T~ =0O(«). For the sake of technical complete-
ness (rather that physical relevance, since the above
first-order analysis is enough to get the observable,
meaningful behavior), let us mention that the pertur-
bation analysis can be carried over at higher orders;
using further rescaled times t, = a’ty, ..., 1, = o'ty, it
would allow us to control the evolution up to a
temperature difference [Tt — T~ |=0O(a"); however,
one could expect that the factorization condition does
not hold at higher orders.

Numerical Simulations

As we have seen, the results were established under
the condition that #/M is a small parameter. More-
over for finite systems (L < oo, M < oo), it was
assumed that before collisions and to first order in
m/M, the factorization and the average assumptions
are satisfied. The numerical simulations are thus
essential to check the validity of these assumptions, to
determine the range of acceptable values 7#/M for the
perturbation expansion, to investigate the thermo-
dynamic limit, and to guide the intuition.

In all simulation, we have taken kgp=1,m=1,
T~ =1 and usually Tt =10. For L finite, we have
taken L =60, Xo=10,A=10°,and N* =N~ =N/2,
that is, p~=R(M/A)(1/10) and p*=2p~. The
number of particles N was varied from a few hundreds
to one or several millions; the mass M of the piston
from 1 to 10°. We give below some of the results
which have been obtained for L = co (Figures 2 and 3)

(b)

Figure 2 Evolution of the piston for L=o0c, and p~ =p™ =1 as observed in simulations (stochastic line in (a), dots in (b)) compared

with prediction: (a) position X(t) for T™=10; and (b) stationary velocity for T+ =

function of M.

10 (continuous line) and T+ =100 (dotted line), as a
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Figure 3 Evolution of the piston for L=00, M=10% and p* # p~ as observed in simulations (continuous line) compared with
predictions (dotted line): (a) p~=1,p"=p~ + Ap, from top to bottom Ap/p~=0.05,0.1,0.2,1,2,3; and (b) p~=¢(, p"=2¢,
Ap/p~ =1, X'=(X,t'=(t, (=10"°,10?,10",1,10,10%,10°, 10%.
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(a) (b)
Figure 4 “Deterministic” evolution toward mechanical equilibrium for L < co, M=10°: (a) position X(#); one finds XS = 8.3 whereas
X" =8.42 and (b) velocity W(f); one finds VS™= —0.343 whereas V"= —0.3433. From top to bottom: R=12: strong damping,
independent of R and Mfor R > 4 and M > 10%. R =2: critical damping. R =0.1: weak damping; damping coefficient increases with R
and wo ~ VR for R < 1 but is independent of M for M > 103.
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Figure 5 Same conditions as Figure 4, R=12: (a) average pressure and temperature in the fluid: pZ(t)= 2E*n*/N*,
T4 =E*/N*ks and (b) pressure and temperature at the surface of the piston. Prediction: T, =1.54, T, =9.46, p,, =pl, =2.2.

Simulations: T,q=1.52, T, =9.48, py =p/y =2.2.

and for L < oo approach to mechanical equilibrium
(Figures 4-6) and to thermal equilibrium (Figures 7
and 8).

Conclusions and Open Problems

In this article, the adiabatic piston has been
investigated to first order in the small parameter
m/M, but no attempt has been made to control the
remainder terms. For an infinite cylinder, no other
assumptions were necessary and the numerical
simulations (Figures 2 and 3) are in perfect agree-
ment with the theoretical prediction in particular for
the stationary velocity Vi, the friction coefficient
A(V), and the relaxation time 7.

For a finite cylinder (L < oc) and in the thermo-
dynamic limit (M = o0), we were forced to introduce
the average assumption to obtain a set of autono-
mous equations. As we have seen when initially p~
# p™T, this limiting case also describes the evolution
to lowest order during the first two stages character-
ized by a time of the order ¢y = L+/m/kp T, where the
evolution is adiabatic and deterministic. In the first
stage, that is, before the shock wave bounces back on
the piston, the simulations confirm the theoretical

predictions. In particular, they show that if R > 4,
the piston will be able to reach and maintain for
some time the velocity V., whereas this will not be
the case for R < 1 (Figure 4b). In the second stage of
the evolution, the simulations (Figure 4) exhibit
damped oscillations toward mechanical equilibrium
which are in very good agreement with the predic-
tions for the final state (X,q,T5), the frequency of
oscillations and the existence of weak and strong
damping depending on R < 1 or R > 4. Moreover,
the general behavior of the evolution observed in the
simulations as a function of the parameters was as
predicted. However, the damping coefficient of these
oscillations is wrong by one or several orders of
magnitude. To understand this discrepancy, we note
that using the average assumption we have related
the damping to the friction coefficient. However, the
simulations clearly show that those two dissipative
effects have totally different origins. Indeed, as one
can see with L =00, friction is associated with the
fact that the density of the gas in front and in the
back of the piston is not the same as in the bulk, and
this generates a shock wave that propagates in the
fluid. For finite L, when R >4, the stationary
velocity Vi is reached and the effect of friction is
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Figure 6 Velocity distribution in the left compartment. Same conditions as Figure 4, R =12. Dotted line corresponds to Maxwellian
with T—=1.52: (a) t=12,24, 36,48, 60,92, 144, 240 from top to bottom and (b) t =276 —460.

to transfer in this first stage more and more energy to
the fluid on one side and vice versa on the other side.
However, to stop the piston and reverse its motion,
only a certain amount of the transferred energy is
necessary and the rest remains as dissipated energy in
the fluid leading to a strong damping. On the other
hand, for R < 1, the value V. is never reached and
all the energy transferred is necessary to revert the
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motion. In this case very little dissipation is involved
and the damping will be very small. This indicates
that the mechanism responsible for damping is
associated with shock waves bouncing back and
forth and the average assumption, which corresponds
to a homogeneity condition throughout the gas,
cannot describe the situation. In fact, the simulations
(Figure 5b) indicate that the average assumption does
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Figure 7 Approach to thermal equilibrium, N* =3 x 10*. The smooth curves correspond to the predictions, the stochastic curves to
simulations: (a) position X(7), 7= at, no visible difference for M =100, 200, 1000 and (b) average temperatures T=(7), 7= at, M =200.



Adiabatic Piston 173
0.4r 0.2
0.35¢|
0.3} 0.15 | .
't 025¢
o £
iT02f = otf 1
IQ
0.151
0.1r 0.05 1
0.05
0 ;
%% 10 15 10 15

v

(a)

(b)

Figure 8 Approach to thermal equilibrium from T, =1.54 (dotted line in(a)) to T, =5.5 (heavy line in (b)). Velocity distribution
function on the left for M =200, N* =5 x 10%. (a) T=a t=2,4, 14, 48,92, 144 and (b) approach to Maxwellian distribution for 7 > 445,

not hold in this second stage. In conclusion, one is
forced to admit that to describe correctly the
adiabatic evolution, it is necessary to study the
coupling between the motion of the piston and the
hydrodynamic equations of the gas. Preliminary
investigations have been initiated, but this is still
one of the major open problems. Another problem
would be to study the evolution in the case of
interacting particles. However, investigations with
hard disks suggest that no new effects should appear.
To investigate adiabatic evolution, a simpler version
of the adiabatic piston problem, without any con-
troversy, has been introduced: this is the model of a
standard piston with a constant force acting on it.

In the third stage, that is, the very slow
approach to thermal equilibrium, another assump-
tion was necessary, namely the factorization
condition. The simulations (Figure 7) show a very
good agreement with the prediction, and in
particular the scaling property with #=¢/M is
perfectly verified. It appears that the small dis-
crepancy between simulations and theoretical
predictions could be due to the fact that, to
compute explicitly the coefficients in the equations
of motion, we have taken Maxwellian relations for
the velocities of the gas particles, which is clearly
not the case (Figure 8a).

The fourth stage of the evolution, that is, the
approach to Maxwellian distributions (Figure 8b), is
still another major open problem. Some preliminary
studies have been conducted, where one investigates
the stability and the evolution of the system when
initially the two gases are in the same equilibrium
state, but characterized by a distribution function
which is not Maxwellian.

Finally, let us mention that the relation between the
piston problem and the second law of thermodynamics
is one more major problem. The question of entropy
production out of equilibrium, and the validity of the
second law, are still highly controversial. Again,
preliminary results can be found in the literature.
Among other things, this question has led to a model of
heat conductivity gases, which reproduces the correct
behavior (Gruber and Lesne 2005).

See also: Billiards in Bounded Convex Domains;
Boltzmann Equation (Classical and Quantum);
Hamiltonian Fluid Dynamics; Multiscale Approaches;
Nonequilibrium Statistical Mechanics (Stationary):
Overview; Nonequilibrium Statistical Mechanics:
Dynamical Systems Approach.
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Introduction

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence is a conjectured equivalence
between a quantum field theory in d spacetime
dimensions with conformal scaling symmetry and a
quantum theory of gravity in (d + 1)-dimensional
anti-de  Sitter space. The most promising
approaches to quantizing gravity involve super-
string theories, which are most easily defined in
10 spacetime dimensions, or M-theory which is
defined in 11 spacetime dimensions. Hence, the
AdS/CFT correspondences based on superstrings
typically involve backgrounds of the form AdS,.; x
Yo_4 while those based on M-theory involve back-
grounds of the form AdSy,; x Yio_g4, where Y are
compact spaces.

The examples of the AdS/CFT correspondence
discussed in this article are dualities between
(super)conformal nonabelian gauge theories and
superstrings on AdSs x Y5, where Ys is a five-
dimensional Einstein space (i.e., a space whose
Ricci  tensor is proportional to the metric,
Rjj=4g;). In particular, the most basic (and maxi-
mally  supersymmetric) such duality relates
N =4SU(N) super Yang-Mills (SYM) and type IIB
superstring in the curved background AdSs x §°.

There exist special limits where this duality is
more tractable than in the general case. If we take
the large-N limit while keeping the ‘t Hooft coupling
A=giuN fixed (gyy is the Yang-Mills coupling
strength), then each Feynman graph of the gauge
theory carries a topological factor NX, where x is
the Euler characteristic of the graph. The graphs of
spherical topology (often called “planar”), to be
identified with string tree diagrams, are weighted by
NZ; the graphs of toroidal topology, to be identified

Ball Systems and the Lorentz Gas, Encyclopedia of
Mathematical Sciences Series, vol. 101, pp. 217-227. Berlin:
Springer.

Van den Broeck C, Meurs P, and Kawai R (2004) From
Maxwell demon to Brownian motor. New Journal of Physics
7: 10.

with string one-loop diagrams, by N°, etc. This
counting corresponds to the closed-string coupling
constant of order N7!'. Thus, in the large-N limit
the gauge theory becomes “planar,” and the dual
string theory becomes classical. For small g,,N,
the gauge theory can be studied perturbatively; in
this regime the dual string theory has not been very
useful because the background becomes highly
curved. The real power of the AdS/CFT duality,
which already has made it a very useful tool, lies in
the fact that, when the gauge theory becomes
strongly coupled, the curvature in the dual descrip-
tion becomes small; therefore, classical supergravity
provides a systematic starting point for approximat-
ing the string theory.

There is a strong motivation for an improved
understanding of dualities of this type. In one
direction, generalizations of this duality provide the
tantalizing hope of a better understanding of
quantum chromodynamics (QCD); QCD is a non-
abelian gauge theory that describes the strong
interactions of mesons, baryons, and glueballs, and
has a conformal symmetry which is broken by
quantum effects. In the other direction, AdS/CFT
suggests that quantum gravity may be understand-
able as a gauge theory. Understanding the confine-
ment of quarks and gluons that takes place in
low-energy QCD and quantizing gravity are well
acknowledged to be two of the most important
outstanding problems of theoretical physics.

Some Geometrical Preliminaries

The d-dimensional sphere of radius L, $¢, may be
defined by a constraint

d+1

SO = 12 1]

i=1
on d + 1 real coordinates X'. It is a positively curved
maximally symmetric space with symmetry group
SO(d + 1). We will denote the round metric on 8¢ of
unit radius by d©?,.
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The d-dimensional anti-de Sitter space, AdS,, may
be defined by a constraint

&.

+(X9)? - > (X)? =1 2]

7

(X%

I\
—

This constraint shows that the symmetry group of
AdS; is SO(2,d —1). AdS,; is a negatively curved
maximally symmetric space, that is, its curvature
tensor is related to the metric by

1
Roped = =73 (8ac&bd — 8ad8bc] 3]

Its metric may be written as

2
s = 12~ 1+ 2yt )
y*+1

where the radial coordinate y € [0,00), and ¢ is
defined on a circle of length 27 This space has
closed timelike curves; to eliminate them, we will
work with the universal covering space where
t € (—oo,00). The boundary of AdS,;, which plays
an important role in the AdS/CFT correspondence, is
located at infinite y. There exists a subspace of AdS,
called the Poincaré wedge, with the metric

ds? = = (dz — (dx?) +Z ) [5]
i=1

where z € [0, 00).

A Euclidean continuation of AdS; is the
Lobachevsky space (hyperboloid), L. It is obtained
by reversing the sign of (X%)?,d#2, and (dx°)* in [2],
[4], and [5], respectively. After this Euclidean
continuation, the metrics [4] and [5] become
equivalent; both of them cover the entire L.
Another equivalent way of writing the metric is

dsf = 12(dp? + sinh’ pde2}_, ) 6]

which shows that the boundary at infinite p has the
topology of $¢'. In terms of the Euclideanized
metric [5], the boundary consists of the R4 at
z=0, and a single point at z=o00

The Geometry of Dirichlet Branes

Our path toward formulating the AdSs/CFT4
correspondence requires introduction of Dirichlet
branes, or D-branes for short. They are soliton-like
“membranes” of various internal dimensionalities
contained in type II superstring theories. A Dirichlet
p-brane (or Dp brane) is a (p + 1)-dimensional
hyperplane in (9 + 1)-dimensional spacetime where
strings are allowed to end. A D-brane is much like a

topological defect: upon touching a D-brane, a
closed string can open up and turn into an open
string whose ends are free to move along the
D-brane. For the endpoints of such a string the p + 1
longitudinal coordinates satisfy the conventional free
(Neumann) boundary conditions, while the 9 —p
coordinates transverse to the Dp brane have the fixed
(Dirichlet) boundary conditions, hence the origin of
the term “Dirichlet brane.” The Dp brane preserves
half of the bulk supersymmetries and carries an
elementary unit of charge with respect to the (p + 1)-
form gauge potential from the Ramond-Ramond
(RR) sector of type II superstring.

For this article, the most important property of
D-branes is that they realize gauge theories on their
world volume. The massless spectrum of open
strings living on a Dp brane is that of a maximally
supersymmetric U(1) gauge theory in p + 1 dimen-
sions. The 9 — p massless scalar fields present in this
supermultiplet are the expected Goldstone modes
associated with the transverse oscillations of the Dp
brane, while the photons and fermions provide the
unique supersymmetric completion. If we consider
N parallel D-branes, then there are N? different
species of open strings because they can begin and
end on any of the D-branes. N? is the dimension of
the adjoint representation of U(N), and indeed we
find the maximally supersymmetric U(N) gauge
theory in this setting.

The relative separations of the Dp branes in the
9 —p transverse dimensions are determined by
the expectation values of the scalar fields. We will
be interested in the case where all scalar expectation
values vanish, so that the N Dp branes are stacked
on top of each other. If N is large, then this stack is
a heavy object embedded into a theory of closed
strings which contains gravity. Naturally, this
macroscopic object will curve space: it may be
described by some classical metric and other back-
ground fields including the RR (p + 2)-form field
strength. Thus, we have two very different descrip-
tions of the stack of Dp branes: one in terms of the
U(N) supersymmetric gauge theory on its world
volume, and the other in terms of the classical RR
charged p-brane background of the type II closed
superstring theory. The relation between these two
descriptions is at the heart of the connections
between gauge fields and strings that are the subject
of this article.

Coincident D3 Branes

Gauge theories in 3 + 1 dimensions play an impor-
tant role in physics, and as explained above, parallel
D3 branes realize a (3 + 1)-dimensional U(N) SYM
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theory. Let us compare a stack of D3 branes with
the RR-charged black 3-brane classical solution
where the metric assumes the form

ds? = H™V2(r) [ ~f(r)(dx")” + (dx')?]
+ H'Y2(r) [f*l(r)drz P cmﬂ 7]
where i=1, 2, 3 and

L4 1’04
H(r):1+r—4, f(r):1—7

The solution also contains an RR self-dual 5-form
field strength

F=dx’ Adx' Adx?* Adx® Ad(HT)
+4L*vol(S°) 8]

so that the Einstein equation of type IIB super-
gravity, R, = Fq5,6F,*7°/96, is satisfied.

In the extremal limit 7y — 0, the 3-brane metric
becomes

ds* = (1 + %) o (—(dxo)2 + (dxi)z)

L* i 2 .2902
+ <1+r—4> (dr* + > d%3) 9]

Just like the stack of parallel, ground-state D3
branes, the extremal solution preserves 16 of the
32 supersymmetries present in the type IIB theory.
Introducing z=L?/r, one notes that the limiting
form of [9] as r — 0 factorizes into the direct
product of two smooth spaces, the Poincaré wedge
[5] of AdSs, and §°, with equal radii of curvature L.
The 3-brane geometry may thus be viewed as a
semi-infinite throat of radius L which, for »>> L,
opens up into flat (9 + 1)-dimensional space. Thus,
for L much larger than the string length scale, v/o/,
the entire 3-brane geometry has small curvatures
everywhere and is appropriately described by the
supergravity approximation to type IIB string
theory.

The relation between L and v/’ may be found by
equating the gravitational tension of the extremal
3-brane classical solution to N times the tension of a
single D3 brane:

24 5 VT
where vol(§°) =7 is the volume of a unit 5-sphere,

and k=+v8nG is the ten-dimensional gravitational
constant. It follows that

L* = 27rL5/2N = g Na'2 [11]

where we used the standard relations x = 877/2gya/?
and g%\, =4mgy [10]. Thus, the size of the throat in
string units is A4, This remarkable emergence
of the ‘t Hooft coupling from gravitational con-
siderations is at the heart of the success of the AdS/
CFT correspondence. Moreover, the requirement
L > /o' translates into \>> 1: the gravitational
approach is valid when the ‘t Hooft coupling is very
strong and the perturbative field-theoretic methods
are not applicable.

Example: Thermal Gauge Theory from
Near-Extremal D3 Branes

An important black hole observable is the Bekenstein—
Hawking (BH) entropy, which is proportional to the
area of the event horizon. For the 3-brane solution
[7], the horizon is located at r=r. For ry > 0 the
3-brane carries some excess energy E above its
extremal value, and the BH entropy is also non-
vanishing. The Hawking temperature is then defined
by T71 = 8SBH/8E.

Setting 7o < L in [9], we obtain a near-extremal
3-brane geometry, whose Hawking temperature is
found to be T=ry/(rL?). The eight-dimensional
“area” of the horizon is

Ay, = (ro/L)* V3L vol(8°) = #°LT? Vs [12]

where Vj is the spatial volume of the D3 brane (i.e.,
the volume of the x', x2, x* coordinates). Therefore,

the BH entropy is
2 3
Spy = =—N"V;T 13
BH ) 5 3 [13]

This gravitational entropy of a near-extremal
3-brane of Hawking temperature T is to be
identified with the entropy of N =4 supersym-
metric U(N) gauge theory (which lives on N
coincident D3 branes) heated up to the same
temperature.

The entropy of a free U(N) N =4 supermultiplet —
which consists of the gauge field, 6N? massless
scalars, and 4N? Weyl fermions — can be calculated
using the standard statistical mechanics of a
massless gas (the blackbody problem), and the
answer 1is

2

So = Z%szgﬂ [14]
It is remarkable that the 3-brane geometry captures
the T3 scaling characteristic of a conformal field
theory (CFT) (in a CFT this scaling is guaranteed by
the extensivity of the entropy and the absence of
dimensionful parameters). Also, the N? scaling
indicates the presence of O(N?) unconfined degrees
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of freedom, which is exactly what we expect in the
N =4 supersymmetric U(N) gauge theory. But what
is the explanation of the relative factor of 3/4
between Spy and Sp? In fact, this factor is not a
contradiction but rather a prediction about the
strongly coupled N'=4 SYM theory at finite
temperature. As we argued above, the supergravity
calculation of the BH entropy, [13], is relevant to
the A — oo limit of the N'=4 SU(N) gauge theory,
while the free-field calculation, [14], applies to the
A — 0 limit. Thus, the relative factor of 3/4 is not a
discrepancy: it relates two different limits of the
theory. Indeed, on general field-theoretic grounds,
we expect that in the ‘t Hooft large-N limit, the
entropy is given by
2

S = 2%sz)vg,ﬁ [15]
The function f is certainly not constant:
perturbative calculations valid for small \=g%,,N
give

[16]

Thus, the BH entropy in supergravity, [13], is
translated into the prediction that

lim £(\) = [17]

A—00 4

The Essentials of the AdS/CFT
Correspondence

The AdS/CFT correspondence asserts a detailed map
between the physics of type IIB string theory in the
throat of the classical 3-brane geometry, that is, the
region » < L, and the gauge theory living on a stack
of D3 branes. As already noted, in this limit r < L,
the extremal D3 brane geometry factors into a direct
product of AdSs x §°. Moreover, the gauge theory
on this stack of D3 branes is the maximally
supersymmetric N'=4 SYM.

Since the horizon of the near-extremal 3-brane lies
in the region r < L, the entropy calculation could
have been carried out directly in the throat limit,
where H(r) is replaced by L*/7*. Another way to
motivate the identification of the gauge theory with
the throat is to think about the absorption of
massless particles. In the D-brane description, a
particle incident from asymptotic infinity is con-
verted into an excitation of the stack of D-branes,
that is, into an excitation of the gauge theory on the
world volume. In the supergravity description, a

particle incident from the asymptotic (large 7) region
tunnels into the r < L region and produces an
excitation of the throat. The fact that the two
different descriptions of the absorption process give
identical cross sections supports the identification of
excitations of AdSs x §° with the excited states of
the N'=4 SYM theory.

Maldacena (1998) motivated this correspondence
by thinking about the low-energy (o/ — 0) limit of
the string theory. On the D3 brane side, in this low-
energy limit, the interaction between the D3 branes
and the closed strings propagating in the bulk
vanishes, leaving a pure A'=4 SYM theory on the
D3 branes decoupled from type IIB superstrings in
flat space. Around the classical 3-brane solutions,
there are two types of low-energy excitations. The
first type propagate in the bulk region, » > L, and
have a cross section for absorption by the throat
which vanishes as the cube of their energy. The
second type are localized in the throat, » < L, and
find it harder to tunnel into the asymptotically flat
region as their energy is taken smaller. Thus, both
the D3 branes and the classical 3-brane solution
have two decoupled components in the low-energy
limit, and in both cases, one of these components is
type IIB superstrings in flat space. Maldacena
conjectured an equivalence between the other two
components.

Immediate support for this identification comes
from symmetry considerations. The isometry group
of AdSs is SO(2,4), and this is also the conformal
group in 3 + 1 dimensions. In addition, we have the
isometries of §° which form SU(4) ~ SO(6). This
group is identical to the R-symmetry of the N’ =4
SYM theory. After including the fermionic genera-
tors required by supersymmetry, the full isometry
supergroup of the AdSs xS’ background is
SU(2,2|4), which is identical to the N =4 super-
conformal symmetry. We will see that, in theories
with reduced supersymmetry, the §° factor is
replaced by other compact Einstein spaces Ys, but
AdSs is the “universal” factor present in the dual
description of any large-N CFT and makes the
SO(2,4) conformal symmetry a geometric one.

The correspondence extends beyond the super-
gravity limit, and we must think of AdSs x Y5 as a
background of string theory. Indeed, type IIB strings
are dual to the electric flux lines in the gauge theory,
providing a string-theoretic setup for calculating
correlation functions of Wilson loops. Furthermore,
if N — oo while g3,;N is held fixed and finite, then
there are string scale corrections to the supergravity
limit (Maldacena 1998, Gubser et al. 1998, Witten
1998)  which  proceed in  powers  of
oL = (g N)72. For finite N, there are also
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string loop corrections in powers of x2/L% ~ N2,
As expected, with N — oo we can take the classical
limit of the string theory on AdSs x Ys. However, in
order to understand the large-N gauge theory with
finite ‘t Hooft coupling, we should think of AdSs x
Ys as the target space of a two-dimensional sigma
model describing the classical string physics.

Correlation Functions and the Bulk/Boundary
Correspondence

A basic premise of the AdS/CFT correspondence is
the existence of a one-to-one map between gauge-
invariant operators in the CFT and fields (or
extended objects) in AdS. Gubser er al. (1998) and
Witten (1998) formulated precise methods for
calculating correlation functions of various opera-
tors in a CFT using its dual formulation. A physical
motivation for these methods comes from earlier
calculations of absorption by 3-branes. When a
wave is absorbed, it tunnels from asymptotic infinity
into the throat region, and then continues to
propagate toward smaller 7. Let us separate the
3-brane geometry into two regions: # > L and r < L.
For » <L the metric is approximately that of
AdSs x §°, while for 7 > L it becomes very different
and eventually approaches the flat metric. Signals
coming in from large r (small z=L1?/r) may be
considered as disturbing the “boundary” of AdSs at
r ~ L, and then propagating into the bulk of AdSs.
Discarding the r > L part of the 3-brane metric, the
gauge theory correlation functions are related to the
response of the string theory to boundary conditions
at r~ L. It is therefore natural to identify the
generating functional of correlation functions in the
gauge theory with the string theory path integral
subject to the boundary conditions that
o(x,2) =¢o(x) at z=L (at z=oc all fluctuations
are required to vanish). In calculating correlation
functions in a CFT, we will carry out the standard
Euclidean continuation; then on the string theory
side, we will work with Ls, which is the Euclidean
version of AdSs.

More explicitly, we identify a gauge theory
quantity W with a string-theory quantity Zing:

W(po(x)] = Zsuing[¢0(%)] [18]

W generates the connected Euclidean Green’s func-
tions of a gauge-theory operator O,

Wigo(x)] = <exp [dmo) o

Zgring 1s the string theory path integral calculated as
a functional of ¢o, the boundary condition on the
field ¢ related to O by the AdS/CFT duality. In the

large-N limit, the string theory becomes classical
which implies

Zstring ~ eil[éo () [20]

where I[¢g(x)] is the extremum of the classical string
action calculated as a functional of ¢,. If we are
further interested in correlation functions at very
large ‘t Hooft coupling, then the problem of
extremizing the classical string action reduces to
solving the equations of motion in type IIB super-
gravity whose form is known explicitly. A simple
example of such a calculation is presented in the
next subsection.

Our reasoning suggests that from the point of
view of the metric [5], the boundary conditions are
imposed not quite at z=0, which is the true
boundary of Ls, but at some finite value z=¢€. It
does not matter which value it is since the metric [5]
is unchanged by an overall rescaling of the coordi-
nates (z,x); thus, such a rescaling can take z =L into
z=-¢ for any €. The physical meaning of this cutoff is
that it acts as a UV regulator in the gauge theory.
Indeed, the radial coordinate z is to be considered as
the effective energy scale of the gauge theory, and
decreasing z corresponds to increasing the energy. A
safe method for performing calculations of correla-
tion functions, therefore, is to keep the cutoff on the
z-coordinate at intermediate stages and remove it
only at the end.

Two-Point Functions and Operator Dimensions

In the following, we present a brief discussion of
two-point functions of scalar operators in CFTj,.
The corresponding field in Ly, is a scalar field of
mass 7 whose Euclidean action is proportional to

a=1

1 d 2L2
3 / dx dzz =4+ [(azas)z +) (00)* + ’”zz ¢
21]

In calculating correlation functions of vertex
operators from the AdS/CFT correspondence, the
first problem is to reconstruct an on-shell field in
Ly, from its boundary behavior. The near-bound-
ary, that is, small z, behavior of the classical
solution is

$(z,x) =2/ [¢o(x) + O(2%)]
+2°%[A(x) + O(=%)] [22]

where A is one of the roots of

A(A —d) = m?1? 23]
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¢o(x) is regarded as a “source” in [19] that couples
to the dual gauge-invariant operator O of dimension
A, while A(x) is related to the expectation value,

Alx) = 55— (O) 24

It is possible to regularize the Euclidean action to
obtain the following value as a functional of the
source:

I'(a)
T(A

Igo(x)] = = (A = (d/2))m ’d/zm
)

Jesfaes

Varying twice with respect to ¢g, we find that the
two-point function of the corresponding operator is

2A — d)D(A) 1

OO = anr @~ ) s 2
Which of the two roots, A, or A_, of [23]
d d2
_a 212
AL =3 + 4 L 27

should we choose for the operator dimension? For
positive m%, A, is certainly the right choice: here the
other root, A_, is negative. However, it turns out
that for
2 2

—dZ<m2L2<—d¢+1 28]
both roots of [23] may be chosen. Thus, there are
two possible CFTs corresponding to the same
classical AdS action: in one of them the correspond-
ing operator has dimension Ay, while in the other
the dimension is A_. We note that A_ is bounded
from below by (d —2)/2, which is precisely the
unitarity bound on dimensions of scalar operators in
d-dimensional field theory! Thus, the ability to
choose dimension A_ is crucial for consistency of
the AdS/CFT duality.

Whether string theory on AdSs x Ys contains
fields with 7% in the range [28] depends on Ys.
The example discussed in the next section,
Ys=T"%"', turns out to contain such fields, and the
possibility of having dimension A_, [27], is crucial
for consistency of the AdS/CFT duality in that case.
However, for Ys =S8, which is dual to the N =4
large-N SYM theory, there are no such fields and all
scalar dimensions are given by [27].

The operators in the N'=4 large-N SYM theory
naturally break up into two classes: those that
correspond to the Kaluza—Klein states of super-
gravity and those that correspond to massive string

states. Since the radius of the §° is L, the masses of
the Kaluza—Klein states are proportional to 1/L.
Thus, the dimensions of the corresponding operators
are independent of L and therefore also of A. On the
gauge-theory side, this independence is explained by
the fact that the supersymmetry protects the dimen-
sions of certain operators from being renormalized:
they are completely determined by the representa-
tion under the superconformal symmetry. All
families of the Kaluza—Klein states, which corre-
spond to such protected operators, were classified
long ago. Correlation functions of such operators in
the strong ‘t Hooft coupling limit may be obtained
from the dependence of the supergravity action on
the boundary values of corresponding Kaluza—Klein
fields, as in [19]. A variety of explicit calculations
have been performed for two-, three-, and even four-
point functions. The four-point functions are parti-
cularly interesting because their dependence on
operator positions is not determined by the con-
formal invariance.

On the other hand, the masses of string excita-
tions are m* =4n/a’, where 7 is an integer. For the
corresponding operators the formula [27] predicts
that the dimensions do depend on the ‘t Hooft
coupling and, in fact, blow up for large A= g%,,N as

2\V4 /n.

Calculation of Wilson Loops

The Wilson loop operator of a nonabelian gauge

theory
W(C) = tr [P exp (i jé A)} 9]

involves the path-ordered integral of the gauge
connection A along a contour C. For N'=4 SYM,
one typically uses a generalization of this loop
operator which incorporates other fields in the
N =4 multiplet, the adjoint scalars and fermions.
Using a rectangular contour, we can calculate the
quark-antiquark potential from the expectation
value (W(C)). One thinks of the quarks located a
distance L apart for a time T, yielding

(W) ~ e TV [30]

where V(L) is the potential.

According to Maldacena, and Rey and Yee, the
AdS/CFT correspondence relates the Wilson loop
expectation value to a sum over string world sheets
ending on the boundary of Ls(z=0) along the
contour C:

W)~ [ 31
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where § is the action functional of the string world
sheet. In the large ‘t Hooft coupling limit A — oo,
this path integral may be evaluated using a saddle-
point approximation. The leading answer is ~e™,
where Sy is the action for the classical solution,
which is proportional to the minimal area of the
string world sheet in Ls subject to the boundary
conditions. The area as currently defined is
actually divergent, and to regularize it one must
position the contour at z=¢ (this is the same type
of regulator as used in the definition of correlation
functions).

Consider a circular Wilson loop of radius a. The
action of the corresponding classical string world
sheet is

sovio)

Subtracting the linearly divergent term, which is
proportional to the length of the contour, one finds

In(W) = VA + O(In ) 33]

a result which has been duplicated in field theory by
summing certain classes of rainbow Feynman dia-
grams in A =4 SYM. From these sums, one finds

2

<W>rainbow = ﬁ I (\/X) [34]
where I; is a Bessel function. This formula is one of
the few available proposals for extrapolation of an
observable from small to large coupling. At large A,

2 eV
<W>rainbow ~ \/;W [35]

in agreement with the geometric prediction.

The quark—antiquark potential is extracted from a
rectangular Wilson loop of width L and length T.
After regularizing the divergent contribution to the
energy, one finds the attractive potential

472/ \

Y = v

36]
The Coulombic 1/L dependence is required by the
conformal invariance of the theory. The fact that the
potential scales as the square root of the ‘t Hooft
coupling indicates some screening of the charges at
large coupling.

Conformal Field Theories and Einstein
Manifolds

Interesting generalizations of the duality between
AdSs x §° and N'=4 SYM with less supersymmetry
and more complicated gauge groups can be

2
>

Figure 1 D3 branes placed at the tip of a Ricci-flat cone X.

produced by placing D3 branes at the tip of a
Ricci-flat six-dimensional cone X (see Figure 1). The
cone metric may be cast in the form

dSX2 = drz + 7’2 dSy2 [37]

where Y is the level surface of X. In particular, Y is a
positively curved Einstein manifold, that is, one for
which R;=4g;. In order to preserve the N =1
supersymmetry, X must be a Calabi-Yau space; then
Y is defined to be Sasaki-Einstein.

The D3 branes appear as a point in X and span the
transverse Minkowski space R>'. The ten-dimen-
sional metric they produce assumes the form [9], but
with the sphere metric dQ5> replaced by the metric on
Y, ds%. The equality of tensions [10] now requires that

3
4 VmeN :471'gSNo/2 il [38]

~ 2vol(Y) vol(Y)

In the near-horizon limit, » — 0, the geometry factors
into AdSs x Y. Because the D3 branes are located at a
singularity, the gauge theory becomes much more
complicated, typically involving a product of several
SU(N) factors coupled to matter in bifundamental
representations, often described using a quiver dia-
gram (see Figure 2 for an example).

z

Figure 2 The quiver for Y43, Each node corresponds to an
SU(N) gauge group and each arrow to a bifundamental chiral
superfield.
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The simplest examples of X are orbifolds C*/T,
where T' is a discrete subgroup of SO(6). Indeed, if
I' c SU(3), then N'=1 supersymmetry is preserved.
The level surface of such an X is Y=S5"/I. In this
case, the product structure of the gauge theory can
be motivated by thinking about image stacks of D3
branes from the action of T'.

The next simplest example of a Calabi-Yau cone
X is the conifold which may be described by the
following equation in four complex variables:

izf =0 [39]

a=1

Since this equation is symmetric under an overall
rescaling of the coordinates, this space is a cone. The
level surface Y of the conifold is a coset manifold
TH1=(SU(2) x SU(2))/U(1). This space has the
SO(4) ~ SU(2) x SU(2) symmetry which rotates the
2’s, and also the U(1) R-symmetry under z, — €’z,.
The metric on Th! is known explicitly; it assumes
the form of an S' bundle over $* x §2.

The supersymmetric field theory on the D3 branes
probing the conifold singularity is SU(N) x SU(N)
gauge theory coupled to two chiral superfields, A,
in the (N, N) representation and two chiral super-
fields, B;, in the (N, N) representation. The A’s
transform as a doublet under one of the global
SU(2)’s, while the B’s transform as a doublet under
the other SU(2). Cancelation of the anomaly in the
U(1) R-symmetry requires that the A’s and the B’s
each have R-charge 1/2. For consistency of the
duality, it is necessary that we add an exactly
marginal superpotential which preserves the SU(2) x
SU(2) x U(1)g symmetry of the theory. Since a
marginal superpotential has R-charge equal to 2 it
must be quartic, and the symmetries fix it uniquely
up to overall normalization:

W = Eiiekl tr A,’BkA/'Bl [40]

There are in fact infinite families of Calabi-Yau
cones X, but there are two problems one faces in
studying these generalized AdS/CFT correspon-
dences. The first is geometric: the cones X are not
all well understood and only for relatively few do
we have explicit metrics. However, it is often
possible to calculate important quantities such as
the vol(Y) without knowing the metric. The second
problem is gauge theoretic: although many techni-
ques exist, there is no completely general procedure
for constructing the gauge theory on a stack of D-
branes at an arbitrary singularity.

Let us mention two important classes of Calabi-
Yau cones X. The first class consists of cones over
the so-called Y?”»9 Sasaki-Einstein spaces. Here, p

and g are integers with p > g. Gauntlett et al. (2004)
discovered metrics on all the Y9, and the quiver
gauge theories that live on the D-branes probing the
singularity are now known. Making contact with
the simpler examples discussed above, the Y”? are
orbifolds of T™! while the Y”? are orbifolds of S°.

In the second class of cones X, a del Pezzo surface
shrinks to zero size at the tip of the cone. A
del Pezzo surface is an algebraic surface of complex
dimension 2 with positive first Chern class. One
simple del Pezzo surface is a complex projective
space of dimension 2, P?, which gives rise to the
N =1 preserving §°/Z;3 orbifold. Another simple
case is P! x P!, which leads to T%'/Z,. The
remaining del Pezzos surfaces By are P> blown up
at k points, 1 < k < 8. The cone where By shrinks to
zero size has level surface Y>!. Gauge theories for
all the del Pezzos have been constructed. Except for
the three del Pezzos just discussed, and possibly also
for Bg, metrics on the cones over these del Pezzos
are not known. Nevertheless, it is known that for
3 < k <8, the volume of the Sasaki—Einstein mani-
fold Y associated with By, is (9 — k)/27.

The Central Charge

The central charge provides one of the most
amazing ways to check the generalized AdS/CFT
correspondences. The central charge ¢ and confor-
mal anomaly a can be defined as coefficients of
certain curvature invariants in the trace of the stress
energy tensor of the conformal gauge theory:

(T®) = —aFE4 — cly [41]

(The curvature invariants E4 and I4 are quadratic in

the Riemann tensor and vanish for Minkowski

space.) As discussed above, correlators such as (T),,)

can be calculated from supergravity, and one finds
N2

a:c:m [42]

On the gauge-theory side of the correspondence,
anomalies completely determine a and c:

a=3 3t R —trR)
c=+5 (9t R —5trR) [43]

The trace notation implies a sum over the R-charges
of all of the fermions in the gauge theory. (From the
geometric knowledge that a=c¢, we can conclude
that trR=0.)

The R-charges can be determined using the
principle of a-maximization. For a superconformal
gauge theory, the R-charges of the fermions
maximize a subject to the constraints that the
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Novikov-Shifman—Vainshtein—-Zakharov (NSVZ)
beta function of each gauge group vanishes and
the R-charge of each superpotential term is 2.

For the Y?9 spaces mentioned above, one finds
that

q> (2[) +\/4p? — 3q2)
302 (3¢~ 20% + /AP~ 347)

[44]

3

vol(YP9) =

The gauge theory consists of p — g fields Z, p + g
fields Y, 2p fields U, and 24 fields V. These fields all
transform in the bifundamental representation of a
pair of SU(N) gauge groups (the quiver diagram for
Y*3 is given in Figure 2). The NSVZ beta function
and superpotential constraints determine the
R-charges up to two free parameters x and y. Let x
be the R-charge of Z and y the R-charge of Y. Then
the U have R-charge 1—(1/2)(x +y) and the V
have R-charge 1+ (1/2)(x — y).

The technique of @ maximization leads to the result

1

¥=3p (—4p* + 209 + 34> + (20 — 9)V/4* = 37°)
1

Y =3 (—4p* — 20 + 34> + 2p + a)V/4p> — 34°)

Thus, as calculated by Benvenuti et al. (2004) and
Bertolini et al. (2004)

N2

a(YP) = 4vol(YPa)

[45]
in remarkable agreement with the prediction [42] of
the AdS/CFT duality.

A Path to a Confining Theory

There exists an interesting way of breaking the
conformal invariance for spaces Y whose topology
includes an §* factor (examples of such spaces
include T™! and Y?9, which are topologically
$? x 8§%). At the tip of the cone over Y, one may
add M wrapped D35 branes to the N D3 branes. The
gauge theory on such a combined stack is no longer
conformal; it exhibits a novel pattern of quasiperiodic
renormalization group flow, called a duality cascade.

To date, the most extensive study of a theory of this
type has been carried out for the conifold, where one
finds an A/ =1 supersymmetric SU(N) x SU(N + M)
theory coupled to chiral superfields Ay, A, in the
(N, N+ M) representation, and Bj, B, in the
(N, N + M) representation. DS branes source RR
3-form flux; hence, the supergravity dual of this
theory has to include M units of this flux. Klebanov
and Strassler (2000) found an exact nonsingular
supergravity solution incorporating the 3-form and

the 5-form RR field strengths, and their back-reaction
on the geometry. This back-reaction creates a “geo-
metric transition” to the deformed conifold

4

Y am=¢é [46)
a=1

and introduces a “warp factor” so that the full ten-
dimensional geometry has the form

dsio” = b2 (7)(—(dx)?
+ (dx')) + b2 (1) ds6” [47]

where d3¢? is the Calabi—Yau metric of the deformed
conifold, which is known explicitly.

The field-theoretic interpretation of this solution is
unconventional. After a finite amount of RG flow, the
SU(N + M) group undergoes a Seiberg duality trans-
formation.  After  this  transformation, and
an interchange of the two gauge groups, the new
gauge theory is SU(N) x SU(N + M) with the same
matter and superpotential, and with N=N — M. The
self-similar structure of the gauge theory under the
Seiberg duality is the crucial fact that allows this
pattern to repeat many times. If N = (k + 1)M, where
k is an integer, then the duality cascade stops after k
steps, and we find SU(M) x SU(2M) gauge theory.
This IR gauge theory exhibits a multitude of interesting
effects visible in the dual supergravity background.
One of them is confinement, which follows from the
fact that the warp factor 4 is finite and nonvanishing at
the smallest radial coordinate, 7=0. The methods
presented in the section “Calculation of Wilson loops,”
then imply that the quark-antiquark potential grows
linearly at large distances. Other notable IR effects
are chiral symmetry breaking and the Goldstone
mechanism. Particularly interesting is the appearance
of an entire “baryonic branch” of the moduli space in
the gauge theory, whose existence has been demon-
strated also in the dual supergravity language.

Conclusions

This article tries to present a logical path from
studying gravitational properties of D-branes to the
formulation of an exact duality between conformal
field theories and string theory in anti-de Sitter
backgrounds, and also sketches some methods for
breaking the conformal symmetry. Due to space
limitations, many aspects and applications of the
AdS/CFT correspondence have been omitted. At
the moment, practical applications of this duality
are limited mainly to very strongly coupled, large-N
gauge theories, where the dual string description is
well approximated by classical supergravity. To
understand the implications of the duality for more
general parameters, it is necessary to find better



Affine Quantum Groups 183

methods for attacking the world sheet approach to
string theories in anti-de Sitter backgrounds with RR
background fields turned on. When such methods are
found, it is likely that the material presented here will
have turned out to be just a tiny tip of a monumental
iceberg of dualities between fields and strings.
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One can distinguish three classes of affine quantum
groups, each leading to a different dependence of the
R-matrices on the spectral parameter #: Yangians
lead to rational R-matrices, quantum affine algebras
lead to trigonometric R-matrices, and elliptic quan-
tum groups lead to elliptic R-matrices. We will mostly
concentrate on the quantum affine algebras but many
results hold similarly for the other classes.

After giving mathematical details about quantum
affine algebras and Yangians in the first two sections,
we describe how these algebras arise in different
areas of mathematical physics in the three following
sections. We end with a description of boundary
quantum groups which extend the formalism to the
boundary Yang-Baxter (reflection) equation.
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Quantum Affine Algebras
Definition

A quantum affine algebra U,(g) is a quantization of
the enveloping algebra U(Q) of an affine Lie algebra
(Kac—Moody algebra) . So we start by introducing
affine Lie algebras and their enveloping algebras
before proceeding to give their quantizations.

Let g be a semisimple finite-dimensional Lie algebra
over C of rank 7 with Cartan matrix (a;);;_1
symmetrizable via positive integers d;, so that dia;; is
symmetric. In terms of the simple roots «;, we have

o]
2

and di =

We can introduce an a9 = Y ._, njy; in such a way
that the extended Cartan matrix (a;);;_, , is of
affine type — that is, it is positive semidefinite of
rank 7. The integers 7; are referred to as Kac indices.
Choosing «q to be the highest root of g leads to an
untwisted affine Kac-Moody algebra while choosing
o to be the highest short root of g leads to a twisted
affine Kac—-Moody algebra.

One defines the affine Lie algebra § corresponding
to this affine Cartan matrix as the Lie algebra
(over C) with generators H;, E for i=0,1,...,r
and D with relations

[H“Eﬂ ta;E5: [Hy H] =0
[Ej, /‘} = 6;H; 2]
[D,H] =0,  [D,Ef] = +6Ef

ST ) ) T =0, i

The EF are referred to as Chevalley generators and
the last set of relations are known as Serre relations.
The generator D is known as the canonical deriva-
tion. We will denote the algebra obtained by
dropping the generator D by &'.

In applications to physics, the affine Lie algebra g
often occurs in an isomorphic form as the loop Lie
algebra glz,27']@ C-¢ with Lie product (for
untwisted §)

X2k, Y2'] = [X, Y& + 6 i(X, Y)e,
for X,Yegq, klecZ 3]

and ¢ being the central element.

The universal enveloping algebra U(g) of § is the
unital algebra over C with generators H,,Ei for
i=0,1,...,r and D and with relations given by [2]
where now [, ] stands for the commutator instead of
the Lie product.

To define the quantization of U(d), one can either
define U,(q) (Drinfeld 1985) as an algebra over the
ring C[[h]] of formal power series over an indeter-
minate » or one can define Uy(g) (Jimbo 1985) as an
algebra over the field Q(g) of rational functions of g
with coefficients in Q. We will present U, (g) first.

The quantum affine algebra U,(g§) is the unital
algebra over C[[h]] topologically generated by
H,,Ef fori=0,1,...,r and D with relations

Hi EF| = %ayEf5 [HiH) =0

[E7 B ] =6 a’—a " [4]
qi—q;"

[D.H] =0,  [D.Ef]=+80E;

1—4,’,

1—ay; —ay— ..
S0 ] e 0 iz
= ql

where g;=q% and g=e”. The g-binomial coeffi-
cients are defined by
9 -q"
n|, = N
], = [5]
[n]q' = [n]q [ﬂ - 1]q [Z]q[l]q [6]
n|, [nll[m—n!

The quantum affine algebra U,(G) is a Hopf
algebra with coproduct

AD)=D®1+1®D
AH)=H;®1+1®H, (8]
AEF) =Ef 04, + 4" 0 Ef

antipode
S(D)=-D,  S(H;)=-H; 9
S(Ei) q:FlEi
and co-unit
e(D) =¢(H,) = e(Eli) =0 [10]

It is easy to see that the classical enveloping
algebra U(Q) can be obtained from the above by
setting b =0, or more formally,

Un(9)/hU,(a) = U(9)

We can also define the quantum affine algebra
U,(q) as the algebra over (Q(g) with generators
K,,Ef,D for i=0,1,...,r and relations that are
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obtained from the ones given above for U,(d) by
setting

g =K, i=0,...r [11]

One can go further to an algebraic formulation over
C in which g is a complex number (with some points
including g =0 not allowed). This has the advantage
that it becomes possible to specialize, for example, to
q a root of unity, where special phenomena occur.

Representations

For applications in physics, the finite-dimensional
representations of Uj(q’) are the most interesting. As
will be explained in later sections, these occur, for
example, as particle multiplets in 2D quantum field
theory or as spin Hilbert spaces in quantum spin
chains. In the next subsection, we will use them to
derive matrix solutions to the Yang-Baxter equation.

While for a nonaffine quantum algebra U(g)
the ring of representations is isomorphic to that of
the classical enveloping algebra U(gq) (because in fact
the algebras are isomorphic, as Drinfeld has pointed
out), the corresponding fact is no longer true for affine
quantum groups, except in the case § =a'l) =sl,,, 1.

For the classical enveloping algebras U(Q’), any
finite-dimensional representation of U(g) also carries
a finite-dimensional representation of U(J’). In the
quantum case, however, in general, an irreducible
representation of Uy,(Q’) reduces to a sum of
representations of Uy(g).

To classify the finite-dimensional representations
of U,(d'), it is necessary to use a different realization
of U,(q) that looks more like a quantization of the
loop algebra realization [3] than the realization in
terms of Chevalley generators. In terms of the
generators in this alternative realization, which we
do not give here because of its complexity, the
finite-dimensional representations can be viewed as
pseudo-highest-weight representations. There is a set
of r “fundamental” representations V4, a=1,...r,
each containing the corresponding Uy (g) fundamen-
tal representation as a component, from the tensor
products of which all the other finite-dimensional
representations may be constructed. The details can
be found in Chari and Pressley (1994).

Given some representation p:U,(q") — End(V),
we can introduce a parameter A with the help of
the automorphism 7, of U,(q’) generated by D and
given by

+ +s; o+
n(E) =NEER L o, 12]
m(H;) = H;

Different choices for the s; correspond to different
gradations. Commonly used are the “homogeneous

gradation,” sp=1,s1=--- =s,=0, and the “prin-
cipal gradation,” sp=s;=---=s,=1. We shall
also need the “spin gradation” s;=d;'. The
representations

PXx = POTy

play an important role in applications to integrable
models where ) is referred to as the (multiplicative)
spectral parameter. In applications to particle scatter-
ing introduced in a later section, it is related to the
rapidity of the particle. The generator D can be
realized as an infinitesimal scaling operator on A and
thus plays the role of the Lorentz boost generator.

The tensor product representations pj ® pz are
irreducible generically but become reducible for
certain values of A/, a fact which again is important
in applications (fusion procedure, particle-bound
states).

R-Matrices

A Hopf algebra A is said to be “almost cocommu-
tative” if there exists an invertible element R € A @ A
such that

RA(x) = (0o A(x))R, forallxe A [13]

where 0:x ® y— vy ® x exchanges the two factors in
the coproduct. In a quasitriangular Hopf algebra,
this element R satisfies

(A ® id) ('R) =Ri13Ry3

(id ® A)(R) = Ri3Riz 14

and is known as the “universal R-matrix” (see Hopf
Algebras and g-Deformation Quantum Groups). As
a consequence of [13] and [14], it automatically
satisfies the Yang—Baxter equation

R12R13R23 = RazRi3R12 [15]

For technical reasons, to do with the infinite number
of root vectors of (, the quantum affine algebra U, (Q)
does not possess a universal R-matrix that is an
element of Uy,(d) ® U,(G). However, as pointed out
by Drinfeld (1985), it possesses a pseudouniversal
R-matrix R(X) € (Up(d') @ Up(d'))((A). The X is
related to the automorphism 7, defined in [12].
When using the homogeneous gradation, R(\) is a
formal power series in \.

When the pseudouniversal R-matrix is evaluated
in the tensor product of any two indecomposable
finite-dimensional representations p; and p,, one
obtains a numerical R-matrix

R™Z(\) = (p' @ P )R(N) [16]
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The entries of these numerical R-matrices are
rational functions of the multiplicative spectral
parameter A but when written in terms of the
additive spectral parameter #= log()\) they are
trigonometric functions of # and satisfy the Yang-
Baxter equation in the form given in [1]. The matrix

R2(\) = 6o R2()\)

satisfies the intertwining relation
R2(\/n) - (0} @ 02) (A())

= (P2 en))AE)-R20w  [17]

for any x € U, (d'). It follows from the irreducibility
of the tensor product representations that these
R-matrices satisfy the Yang—Baxter equations

(id @ R* (u/v))(RP (A/v) @ id)(id ® R'*(\/p))
= (R?(\/p) ®id)(id ® RP(\/v))
x (R* (u/v) ®id) [18]
or, graphically,

Vi ® V2eV] Vigvz: @ Vi

Vi ® Vv2eVs viegvz ® V3
Explicit formulas for the pseudouniversal
R-matrices were found by Khoroshkin and Tolstoy.
However, these are difficult to evaluate explicitly in
specific representations so that in practice it is easiest
to find the numerical R-matrices R?(\) by solving the
intertwining relation [17]. It should be stressed that
solving the intertwining relation, which is a linear
equation for the R-matrix, is much easier than directly

solving the Yang-Baxter equation, a cubic equation.

Yangians

As remarked by Drinfeld (1986), for untwisted g the
quantum affine algebra U,(§') degenerates as b — 0
into another quasipseudotriangular Hopf algebra,
the “Yangian” Y(g) (Drinfeld 1985). It is associated
with R-matrices which are rational functions of the
additive spectral parameter u. Its representation ring
coincides with that of U,(g').

Consider a general presentation of a Lie algebra g,
with generators [, and structure constants fg.,
so that

[Iavlb} = fabcICa A(Ia) =L1+1x1,

(with summation over repeated indices). The Yan-
gian Y(g) is the algebra generated by these and a
second set of generators |, satisfying

[Im]b} :fabc]c
A(]a) :]a ®1+1 ®]a +%fabclc ® Ib

The requirement that A be a homomorphism
imposes further relations:

Ua, s L]l = [Lay o, Jel] = Qabedegar Les I}
and
(UasJols Ui Jnl] + (U1 Sl Has o]
= (Cabedeglime + Cimedeglabe) {1a:1es ¢ }
where

Nabedeg = %fad:’fbejfcgkfi/k» {x17x27x3} = Z XiXjXp,
ik

When g=sl, the first of these is trivial, while for
g # sl, the first implies the second. The co-unit is
e(I;) =€(J,) =0; the antipode is s(I,)= —1I,, s(J,) =
—J.+ (1/2)fspcl 1. The Yangian may be obtained
from U,(g') by expanding in powers of h. For
the precise relationship, see Drinfeld (1985) and
MacKay (2005). In the spin gradation, the auto-
morphism [12] generated by D descends to Y(g) as
Ly— 1, Jo— ], +ul,.

There are two other realizations of Y(gq). The first
(see, for example, Molev 2003) defines Y(al,)
directly from

R(u—v)T1(u)T2(v) = Ta(v)T1(u)R(u — v)
where Ty () =T(u) ® id, T>(v)=id ® T(v), and

T(u) =) ti(n) @ ey
=1

t,','(u) = 5,‘,‘ + I,','M71 +]j/'1/172 + -

where ¢;; are the standard matrix units for gl,. The
rational R-matrix for the n-dimensional representa-
tion of gl is

P
u—v

n
. where P = E e @ eji
ij=1

Rlu—v)y=1-

is the transposition operator. Y(gl,) is then defined
to be the algebra generated by Ij;, J;;, and must be
quotiented by the “quantum determinant” at its
center to define Y(sl,). The coproduct takes a
particularly simple form,

Alt) = 3 1) ® 1)
k=1
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Here we do not give explicitly the third realization,
namely Drinfeld’s “new” realization of Y(g) (Drinfeld
1988), but we remark that it was in this presentation
that Drinfeld found a correspondence between certain
sets of polynomials and finite-dimensional irreducible
representations of Y(g), thus classifying these (although
not thereby deducing their dimension or constructing
the action of Y(g)). As remarked earlier, the structure is
as in the earlier section: Y(g) representations are in
general g-reducible, and there is a set of 7 fundamental
Y(g)-representations, containing the fundamental
g-representations as components, from which all
other representations can be constructed.

Origins in the Quantum
Inverse-Scattering Method

Quantum affine algebras for general § first appear in
Drinfeld (1985, 1986) and Jimbo (1985, 1986), but
they have their origin in the “quantum inverse-
scattering method” (QISM) of the St. Petersburg
school, and the essential features of U,(sl;) first
appear in Kulish and Reshetikhin (1983). In this
section, we explain how the quantization of the Lax-
pair description of affine Toda theory led to the
discovery of the U,(g) coproduct, commutation
relations, and R-matrix. We use the normalizations
of Jimbo (1986), in which the H; are rescaled so that
the Cartan matrix a;; = a;-q; is symmetric.
We begin with the affine Toda field equations

2 r
010, =— 5 g (eﬁ"”@f — n,'e/@““'“’@’)
P

an integrable model in R'™! of 7 real scalar fields
¢i(x,t) with a mass parameter m and coupling
constant (3. Equivalently, we may write

[0y + Ly, & + L] =0 for the Lax pair
=55 i e )
=1 ” !
N %/zr; (B/2)avjg; ()\Ear + %E0>
i ; e/t (EF _ Er)

e(8/2)ao;d; (}\Ear _ 1E0>

Ly(x,2) = gz H;0. i +
P

T

+

NE

=1 A

with arbitrary A € C. The classical integrability of the
system is seen in the existence of 7(\, \') such that

{TN) @T(N)} = [r(AN), T(N) @ T(X)]

where  T(\)=T(—o00,00;\) and T(x,y;\)=
Pexp(fgL(f;)\) d¢). Taking the trace of this relation
gives an infinity of charges in involution.

Quantization is problematic, owing to divergences
in T. The QISM regularizes these by putting the
model on a lattice of spacing A, defining the lattice
Lax operator to be

Lo\ =T((n— 1/2)A, (n+ 1/2)A; \)

(n+(1/2))A
~pep( | L(&N) de
(n—(1/2))A

The lattice monodromy matrix is then T(\)=
limj_ o oo T  where T/"=L,Ly-1...Lyq,
and its trace again yields an infinity of commuting
charges, provided that there exists a quantum
R-matrix R(\q, \) such that

R(A1, 22) L, (M) Ly(%)
= Ly(A)L,(AM)R(A1, Aa) (19]
where Li\)=L,(\) ®@id, L2(X) =id ® L,(\2).
That R solves the Yang-Baxter equation follows
from the equivalence of the two ways of intertwining
Ly(M) ® Lu(A2) @ Lu(A3)  with  Ly(A3) @ Lu(A2) @
To compute L,(\), one uses the canonical, equal-

time commutation relations for the ¢; and ¢;. In
terms of the lattice fields

(n+(1/2))A

pi,n:/
(n—(1/2))A
(n+(1/2))A Z B/
(n—(1/2))A

the only nontrivial relation is
(ih/2)6iiqj,», and one finds

L,(\) =exp (g Z Hipi,n> + exp (g z/: Hin7n>
< [Santer 4 )
+qu (AE* - 1E0)
X exp GZH,;;,-,,,) +0(A?)

i

the expression used by the St Petersburg school and
by Jimbo. We now make the replacement
Ef s g M EFGM/4 ) where q= exp(ih?/2), and
compute the O(A) terms in [19], which reduce to

éi(x) dx

[pi,m q/,n] -
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R)(Hi®1+1®H,)
= (H;®1+1®H)R(z)

R(z) (Eti ©q Hi2 4 g2 g E,i)

- (q‘H,/z QEF+Ef® qH,/z)R(z>
K18 g g )

= (q_Ho/Z ® EF + zﬂEOi ® qH°/2>R(z)

where z=X1/X\;. We recognize in these the U,(Q)
coproduct and thus the intertwining relations, in the
homogeneous gradation. These equations were
solved for R in defining representations of
nonexceptional g by Jimbo (1986).

For g=sl,, it was Kulish and Reshetikhin (1983)
who first discovered that the requirement that the
coproduct must be an algebra homomorphism forces
the replacement of the commutation relations of
U(sl,) by those of U, (sl;); more generally it requires
the replacement of U(g) by U,(§).

Affine Quantum Group Symmetry
and the Exact S-Matrix

In the last section, we saw the origins of U, () in the
“auxiliary” algebra introduced in the Lax pair.
However, the quantum affine algebras also play a
second role, as a symmetry algebra. An imaginary-
coupled affine Toda field theory based on the affine
algebra §" possesses the quantum affine algebra
U,(g) as a symmetry algebra, where §" is the
Langland dual to g (the algebra obtained by
replacing roots by coroots).

The solitonic particle states in affine Toda theories
form multiplets which transform in the fundamental
representations of the quantum affine algebra. Multi-
particle states transform in tensor product representa-
tions V¢ ® V?. The scattering of two solitons of type
a and b with relative rapidity 6 is described by the
S-matrix  $7°(0): V* @ VP — Vb @ V4, graphically
represented in Figure 1a. It then follows from the
symmetry that the two-particle scattering matrix

b a b a
>< C

0 ab
a b b b

(a) (b)
Figure 1 (a) Graphical representation of a two-particle
scattering process described by the S-matrix Szp(0). (b) At
special values ¢S, of the relative spectral parameter, the two
particles of types a and b form a bound state of type c.

(S-matrix) for solitons must be proportional to the
intertwiner for these tensor product representa-
tions, the R matrix:

S (0) = [ (0)R* (0

with 6 proportional to u, the additive spectral
parameter. The scalar prefactor f%°(6) is not deter-
mined by the symmetry but is fixed by other
requirements like unitarity, crossing symmetry, and
the bootstrap principle.

It turns out that the axiomatic properties of the
R-matrices are in perfect agreement with the
axiomatic properties of the analytic S-matrix. For
example, crossing symmetry of the S-matrix, gra-
phically represented by

b a b a b a
= = 20]
[ iT—6 ir—6
a b a b a b

is a consequence of the property of the universal
R-matrix with respect to the action of the antipode S,

SR =R"!

An S-matrix will have poles at certain imaginary
rapidities 6% corresponding to the formation of
virtual bound states. This is graphically represented
in Figure 1b. The location of the pole is determined
by the masses of the three particles involved,

2

m* = m> + mj + 2mamy, cos(iH‘Zb)

At the bound state pole, the S-matrix will project
onto the multiplet V¢. Thus, the R matrix has to have
this projection property as well and indeed, this turns
out to be the case. The bootstrap principle, whereby
the S-matrix for a bound state is obtained from the
S-matrices of the constituent particles,

c d c
= [21]

a b d a b

is a consequence of the property [14] of the universal
R-matrix with respect to the coproduct.

There is a famous no-go theorem due to Coleman
and Mandula which states the “impossibility of
combining space-time and internal symmetries in
any but a trivial way.” Affine quantum group
symmetry circumvents this no-go theorem. In fact,
the derivation D is the infinitesimal two-dimensional
Lorentz boost generator and the other symmetry
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charges transform nontrivially under these Lorentz
transformations, see [2].

The noncocommutative coproduct [8] means
that a Uj,(q) symmetry generator, when acting on a
2-soliton state, acts differently on the left soliton
than on the right soliton. This is only possible
because the generator is a nonlocal symmetry charge
— that is, a charge which is obtained as the space
integral of the time component of a current which
itself is a nonlocal expression in terms of the fields
of the theory.

Similarly, many nonlinear sigma models possess
nonlocal charges which form Y(g), and the con-
struction proceeds similarly, now utilizing rational
R-matrices, and with particle multiplets forming
fundamental representations of Y(g). In each case,
the three-point couplings corresponding to the
formation of bound states, and thus the analogs for
U,(g) and Y(g) of the Clebsch—-Gordan couplings,
obey a rather beautiful geometric rule originally
deduced in simpler, purely elastic scattering models
(Chari and Pressley 1996).

More details about this topic can be found in
Delius (1995) and MacKay (2005).

Integrable Quantum Spin Chains

Affine quantum groups provide an unlimited supply
of integrable quantum spin chains. From any
R-matrix R(f) for any tensor product of finite-
dimensional representations W ® V, one can pro-
duce an integrable quantum system on the Hilbert
space V®". This Hilbert space can then be inter-
preted as the space of # interacting spins. The space
W is an auxiliary space required in the construction
but not playing a role in the physics.

Given an arbitrary R-matrix R(6), one defines the
monodromy matrix T(6) € End(W & V®") by

T(0) = Ro1(0 — 01)Rp2(0 — 02) - - - Ron (0 — 0,,)

where, as usual, Rj; is the R-matrix acting on the
ith and jth component of the tensor product space.
The 0; can be chosen arbitrarily for convenience.
Graphically the monodromy matrix can be repre-
sented as

v
Vi Vo V3 o Vo Y,
As a consequence of the Yang-Baxter equation

satisfied by the R-matrices the monodromy matrix
satisfies

RTT = TTR 22]

or, graphically,

w
w

V1 V2 - Vn V1 V2 - Vn

One defines the transfer matrix
7(0) = trwT(0)

which is now an operator on V", the Hilbert space
of the quantum spin chain. Due to [22], two transfer
matrices commute,

[r(6), 7(6")] = 0

and thus the 7(f) can be seen as a generating
function of an infinite number of commuting
charges, one of which will be chosen as the
Hamiltonian. This Hamiltonian can then be diag-
onalized using the algebraic Bethe ansatz.

One is usually interested in the thermodynamic
limit where the number of spins goes to infinity. In
this limit, it has been conjectured, the Hilbert space
of the spin chain carries a certain infinite-dimensional
representation of the quantum affine algebra and this
has been used to solve the model algebraically, using
vertex operators (Jimbo and Miwa 1995).

Boundary Quantum Groups

In applications to physical systems that have a
boundary, the Yang-Baxter equation [1] appears in
conjunction with the boundary Yang-Baxter equa-
tion, also known as the reflection equation,

Ry (u — v)Ky ()R (u + v)Ka (v)
= Ky(v)Riz(u + v)Ky ()R (u —v) (23]

The matrices K are known as reflection matrices. This
equation was originally introduced by Cherednik to
describe the reflection of particles from a boundary in
an integrable scattering theory and was used by
Sklyanin to construct integrable spin chains and
quantum field theories with boundaries.

Boundary quantum groups are certain co-ideal
subalgebras of affine quantum groups. They provide
the algebraic structures underlying the solutions of the
boundary Yang-Baxter equation in the same way in
which affine quantum groups underlie the solutions of
the ordinary Yang-Baxter equation. Both allow one
to find solutions of the respective Yang-Baxter
equation by solving a linear intertwining relation. In
the case without spectral parameters these algebras
appear in the theory of braided groups (see Hopf
Algebras and g-Deformation Quantum Groups and
Braided and Modular Tensor Categories).
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For example, the subalgebra B.(g) of U,(g)
generated by

Oi=q/"*(Ef +E;) +elgl — 1),
i=0,...,r [24]

is a boundary quantum group for certain choices of
the parameters ¢; € C[[h]]. It is a left co-ideal
subalgebra of U,(§') because

AQ)=Qi®l+q"® Qe Uy§)@B(3) [25]

Intertwiners K(A):V,y—V, )\ for some constant 7
satisfying

K(N)pin(Q) = pya(Q)K(A),  forall Q € B.(g)  [26]

provide solutions of the reflection equation in the
form

(id @ K2(1) R () (id @ K ()R (A /)
= R2(\/p)(id © K' (V)
x R () (id © K2 (1)) 27]

This can be extended to the case where the
boundary itself carries a representation W of B.(g).
The boundary Yang-Baxter equation can be repre-
sented graphically as

2 2
V1/# V1/u

1
Vin

vi

ve VW Vi W
Another example is provided by twisted Yangians
where, when the I, and ], are constructed as
nonlocal charges in sigma models, it is found that
a boundary condition which preserves integrability
leaves only the subset

jp :]p +%fpiq(lilq + Iqli)

conserved, where i labels the b-indices and p, g the
t-indices of a symmetric splitting g=bh+ ¢ The

I; and

algebra Y(g,h) generated by the Ii,]p is, like B.(g),
a co-ideal subalgebra, A(Y(g,h)) C Y(g) @ Y(g,h),
and again yields an intertwining relation for
K-matrices. For g=sl, and f=so0, or sp,,, Y(g,h)
is the “twisted Yangian” described in Molev (2003).

All the constructions in earlier sections of this
review have analogs in the boundary setting. For
more details see Delius and MacKay (2003) and
MacKay (2005).

See also: Bethe Ansatz; Boundary Conformal Field
Theory; Classical r-Matrices, Lie Bialgebras, and Poisson
Lie Groups; Hopf Algebras and g-Deformation Quantum
Groups; Riemann-Hilbert Problem; Solitons and
Kac—Moody Lie Algebras; Yang—Baxter Equations.
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Introduction

In classical electrodynamics, the interaction of charged
particles with the electromagnetic field is local,
through the pointlike coupling of the electric charge
of the particles with the electric and magnetic fields, E
and B, respectively. This is mathematically expressed
by the Lorentz-force law. The scalar and vector
potentials, ¢ and A, which are the time and space
components of the relativistic 4-potential A,, are
considered auxiliary quantities in terms of which
the field strengths E and B, the observables, are
expressed in a gauge-invariant manner. The homo-
geneous or first pair of Maxwell equations are a direct
consequence of the definition of the field strengths in
terms of A, The inhomogeneous or second pair of
Maxwell equations, which involve the charges and
currents present in the problem, are also usually
written in terms of E and B; however when writing
them in terms of A, the number of degrees of freedom
of the electromagnetic field is explicitly reduced from
six to four; and finally, with two additional gauge
transformations, one ends with the two physical
degrees of freedom of the electromagnetic field.

In quantum mechanics, however, both the
Schrodinger equation and the path-integral approaches
for scalar and unpolarized charged particles in the
presence of electromagnetic fields, are written in
terms of the potential and not of the field strengths.
Even in the case of the Schrodinger—Pauli equation
for spin 1/2 electrons with magnetic moment u
interacting with a magnetic field B, one knows that
the coupling —u - B is the nonrelativistic limit of the
Dirac equation, which depends on A, but not on E and
B Since gauge invariance also holds in the quantum
domain, it was thought that A and ¢ were mere
auxiliary quantities, like in the classical case.

Aharonov and Bohm, in 1959, predicted a quan-
tum interference effect due to the motion of charged
particles in regions where B(E) vanishes, but not
A(p), leading to a nonlocal gauge-invariant effect
depending on the flux of the magnetic field in the
inaccessible region, in the magnetic case, and on the
difference of the integrals over time of time-varying
potentials, in the electric case. (The magnetic effect
was already noticed 10years before by Ehrenberg
and Siday in a paper on the refractive index of
electrons.)

In the context of the Schrodinger equation, one
can show that due to gauge invariance, if 1o is a
solution to the equation in the absence of an
electromagnetic potential, then the product of
o(x) times the integral of A, over a path joining
an arbitrary reference point x9 to x is also a
solution, if the integral is path independent. How-
ever, it is the path integral of Feynman which in the
formulas for propagators of charged particles in the
presence of electromagnetic fields clearly shows that
the action of these fields on charged particles is
nonlocal, and it is given by the celebrated non-
integrable (path-dependent) phase factor of Wu and
Yang (1975). Moreover, this fact provides an
additional proof of the nonlocal character of
quantum mechanics: to surround fluxes, or to
develop a potential difference, the particle has to
travel simultaneously at least through two paths.

Thus, the fact that the Aharonov-Bohm (A-B)
effect was verified experimentally, by Chambers and
others, demonstrates the necessity of introducing the
(gauge-dependent) potential A, in describing the
electromagnetic interactions of the quantum parti-
cle. This is widely regarded as the single most
important piece of evidence for electromagnetism
being a gauge theory. Moreover, it shows, to
paraphrase Yang, that the field underdescribes the
physical theory, while the potential overdescribes it,
and it is the phase factor which describes it exactly.

The content of this article is essentially twofold.
The first four sections are mainly physical, where we
describe the magnetic A-B effect using the
Schrodinger equation and the Feynman path inte-
gral. The fifth section is geometrical and is the long-
est of the article. We describe the effect in the
context of fiber bundles and connections, namely
as a result of the coupling of the wave function
(section of an associated bundle) to a nontrivial
flat connection (non-pure gauge vector potential
with zero magnetic field) in a trivial bundle (the
A-B bundle) with topologically nontrivial (non-
simply-connected) base space. We discuss the mod-
uli space of flat connections and the holonomy
groups giving the phase shifts of the interference
patterns. Finally, in the last section, we briefly
comment on the nonabelian A-B effect.

Electromagnetic Fields in Classical Physics

In classical physics, the motion of charged particles
in the presence of electromagnetic fields is governed
by the equation
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%p:q(E—s—%xB) 1]
where
- muv
b= (12/c2)

is the mechanical momentum of the particle with
electric charge g, mass m, and velocity v = x (c is
the velocity of light in vacuum, and for |v| < ¢ the
left-hand side (LHS) of [1] is approximately mwv); the
right-hand side (RHS) is the Lorentz force, where E
and B are, respectively, the electric and magnetic
fields at the spacetime point (¢, x) where the particle
is located. Equation [1] is easily derived from the
Euler-Lagrange equation

d /0L oL
a@%)ﬁﬁzo 2]

with the Lagrangian L given by the sum of the free
Lagrangian for the particle,

L 2 1o 3
0= —mc 2 3]
and the Lagrangian describing the particle—field
interaction,

Line = %A v —qyp 4]

In [4], A and ¢ are, respectively, the vector potential
and the scalar potential, which together form the
4-potential A, = (Ag, —A) = (p, —A"), i=1,2,3,
in terms of which the electric and magnetic field
strengths are given by

10
B=VxA [5b]

The classical action corresponding to a given path of
the particle is

%) ty
S= / dtL = / dt(Lo + Lin)
t]tz t b
= / dt LO + / dt Lint = SO + Sint [6]
1 t

E, B, and S are invariant under the gauge
transformation

A—A =A-VA [7a]
, 10
—_— f ——A
po =t oo [7b]

where A is a real-valued differentiable scalar
function (at least of class C?) on spacetime. That
is, if E', B, and §!  are defined in terms of A" and
¢ as E, B, and S;,; are defined in terms of A and
¢, then E' =E, B'=B, and S = Sip.. This fact
leads to the concept that, classically, the observa-
bles E and B are the physical quantities, while A,
is only an auxiliary quantity. Also, and most
important in the present context, eqn [1] states
that the motion of the particles is determined by
the values or state of the field strengths in an
infinitesimal neighborhood of the particles, that is,
classically, E and B act locally. If one defines the
differential 1-form A = A,dx* (with dx® = cdt),
then the components of the differential 2-form
F=dA = (1/2)(0,A, — 8,A,)dx* A dx” = (1/2)E,,
dx” A dx” are precisely the electric and magnetic

fields:
0 E! E? E3
—E?! 0 —B3> B?

~E* -B2 B' 0
At the level of A,
dF =d*’A =0 9]

is an identity, but at the level of E and B, [9]
amounts to the homogeneous (or first pair of)
Maxwell equations obeyed by the field strengths:

V-B=0 [10a]

1
VxE+;gB:O [10b]

ot
Therefore, these equations have a geometrical
origin. The second pair of Maxwell equations is
dynamical, and is obtained from the field action (in
the Heaviside system of units)

1 7
i = . [ X P 1]
which leads to V-E =4mp [12a]
VB t0p 41 [12b]
cot c

where (p, —j) = (;°, —j) is the 4-current satisfying, as a
consequence of [12a] and [12b], the conservation law

o' =0 [13]

For a pointlike particle, p(z,x) = q&°(x — x(¢)) and
j = pv.
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Electromagnetic Fields in Quantum
Physics

In quantum physics, the motion of charged particles in
external electromagnetic fields is governed by the
Schrodinger equation or, equivalently, by the Feynman
path integral. In both cases, however, it is the
4-potential A, which appears in the equations, and
not the field strengths. For simplicity, we consider here
scalar (spinless) charged particles or unpolarized
electrons (spin-(1/2)particles), both of which, in the
nonrelativistic approximation, can be described quan-
tum mechanically by a complex wave function (¢, x).

To derive the Schrodinger equation, one starts
from the classical Hamiltonian

1 2
H:P-v—L—m52:§<P—%A> +qp  [14]

where
9 q
P=21=p+27
ov P c

is the canonical momentum of the particle, and we
have subtracted its rest energy. The replacements
P — —ihV and H — ih9/0¢ lead to

1 2
1p <m<hv+ A) +q<p>1/1

2
=<—E—V2+ ' A2

2m 2mc?

Liha g A+1hqA v+q¢)w [15]
2mc

The gauge transformation [7a] and [7b] is a
symmetry of this equation, if simultaneously to the

change of the 4-potential, the wave function trans-
forms as follows:

D(t.x) = ¢/ (t,x) = e PN Y(rx) (7]

So, A" and ¢/ obey [15]. At each (¢,x),
belongs to U(1), the unit circle in the complex plane.

In the path-integral approach, the kernel
K(¢,x';t,x), which gives the probability amplitude
for the propagation of the particle from the spacetime
point (¢,x) to the spacetime point (¢,x') (t < t'), is
given by

K(t,x/';t,x)
x(t')=x
_ / Dx(r)exp (E (So + s,m))
x(t)=x
x(t')=x' ( i t q 1 5
= Dx(7)ex —/ T(—mx
/x(t)x ( ) P h t 2
+ %A ‘v — qu))

e—(ig/hc)A

x(t')=x' : t
/ Dx(T)eXp<;/ dT;mx2>
x(t)=x t
[ 4 e o ds?
xexp(hc/t (A-dx — pdx ))
x(t')=x' : 4
/( : Dx(7)exp (% dT%mX‘Z)
x(t)=x t
. t
X exp<;—i/ dx"’Au> [16]
t

where the integral [ Dx(7)... is over all continuous
spacetime paths (7, x(7)) which join (¢, x) with (¢, x’).
If one knows the wave function at (z,x), then the
wave function at (¢, x’) is given by

W, o) = / dx K¢, o8, 0)0(t,%)  [17]

An important point is the natural appearance in the
integrand of the functional integral of the factor

Qlia/ho) JA

for each path v joining (¢, x) with (¢, x’).

A Solution to the Schrédinger Equation

In what follows, we shall restrict ourselves to static
magnetic fields; then in the previous formulas, we
set ¢ =0 and A(t,x) = A(x). It is then easy to
show that if xg is an arbitrary reference point and
the integral f -dx’ is independent of the
integration path from xo to x, that is, it is a well-
defined function f of x, and if vy is a solution of
the free Schrodinger equation, that is,

) b?
1/‘9&1/10 ——vzwo [18]

then

P(t,x) = exp <115qc /x:A(x')

5]. In fact, replacing [19] in [15],

dx'> o (t, x) [19]

is a solution of [1
the LHS gives

i L0
exp (gﬂx))w&wo

while for the RHS one has

o (2100 (-2 ) 7w
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The cancelation of the exponential factors shows
that, under the condition of path independence,
there is no effect of the potential on the charged
particles. Another way to see this is by making a
gauge transformation [7a]-[7c] with A(x) = f(x),
which changes ¢ —1y and A—A' =A-V
JEAW) - dY = A—A = 0.

The condition of path independence amounts,
however, to the condition that no magnetic field is
present since, if fw A depends on ~, then for some
pair of paths v and +' from (£,x) to (¢,x'), 0 # f7
A—[,A=[A+[ A=§, A= [,do-(VxA),
where in the last equality we applied Stokes theorem
(X is any surface with boundary yU(—+)), which
shows that B=V x A must not vanish everywhere
and has a nonzero flux ® through X given by

d):/zd0'~B 20]

The conclusion of this section is that the ansatz [19] for
solving [15] can only be applied in simply connected
regions with no magnetic field strength present.

Aharonov-Bohm Proposal

In 1959, Aharonov and Bohm proposed an experi-
ment to test, in quantum mechanics, the coupling of
electric charges to electromagnetic field strengths
through a local interaction with the electromagnetic
potential A,, but not with the field strengths
themselves. However, as we saw before, no physical
effect exists, that is, A, can be gauged away, unless
magnetic and/or electric fields exist somewhere,
although not necessarily overlapping the wave func-
tion of the particles.

Consider the usual two-slit experiment as depicted
in Figure 1, with the additional presence, behind the
slits, of a long and narrow solenoid enclosing a
nonvanishing magnetic flux ® due to a constant and
homogeneous magnetic field B normal to the plane

Figure 1 Magnetic Aharonov—Bohm effect.

of the figure (in direction z); outside of the solenoid,
the magnetic field is zero. If the radius of the
solenoid is R, a vector potential A that produces
such field strength is given by

Alx) = { (|B|1’/2):€,7 r<R

r >R [21]

(P/277)
where ® = 7R?|B| and ¢ is a unit vector in the
azimuthal direction. In fact,

IBlz, r<R

0, r>R [22]

B=VxAx)= {
Notice that at r = R, A is continuous but not
continuously differentiable. Also, the ideal limit of
an infinitely long solenoid makes the problem two-
dimensional, that is, in the x—y plane.

The probability amplitude for an electron emitted
at the source S to arrive at the point P on the screen
II, is given by the sum of two probability ampli-
tudes, namely those corresponding to passing
through the slits 1 and 2. The solenoid is assumed
to be impenetrable to the electrons; mathematically,
this corresponds to a motion in a non-simply-
connected region. In the approximation for the
path integral [16], in which one considers the
contribution of only two classes of paths, that is,
the class {7} represented by path I, and the class
{7’} represented by path II, if the wave function at
the source is )5, then the wave function at P is
given by

dp = (/ e(i/h)sm)e—(i\e\/hc)f,,,A
{7}

+/ C(i/0)S0() g ~lel/o) [, 4 s
{r}

— Clel/me) JLA [ /S

{r

o (lel/be) f A eli/P)30()y,
'}

_ ~tielpe) fa (w8<1)
" e—(i\é’\/’”) ( fuu(—l) A) 1/13 (H)>

_ e*(i\e\/hc)f[ A (1/)%(1) + 627ri(<1>/<1>o)¢1(3(n))

S

23]

where, in the second line, we used the path
independence of the integral of A within each class
of paths;

i/h So(y
W) = /{}e(/ My 000 5
,
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and
W) = / S0/PS00) e
{}

and, in the last equality, we applied the extended
version of Stokes theorem (by Craven), to allow for
noncontinuously differentiable vector potentials;
and the quantum of magnetic flux associated with
the charge |e| is defined by

dy = 27r|h—c| ~ 4135 x 107/ G cm? [24]
e

(=2n/le] = /m/a =2 /1377 in the natural system
of units (n.s.u.) # =c = 1; « is the fine structure
constant). Then the probability of finding the
electron at P is proportional to

el = [ + [¢I(ID)
+ 2Re (g0 My (1)) 25]

which exhibits an interference pattern shifted with
respect to that without the magnetic field: as B and
therefore ® change, dark and bright interference
fringes alternate periodically at the screen II, with
period ®y. This is the magnetic A-B effect, which has
been quantitatively verified in many experiments, the
first one in 1960 by Chambers. The effect is:

1. gauge invariant, since B and therefore ® are
gauge invariant;

2. nonlocal, since it depends on the magnetic field
inside the solenoid, where the electrons never
enter;

3. quantum mechanical, since classically the charges
do not feel any force and therefore no effect
would be expected in this limit; and

4. topological, since the electrons necessarily move
in a non-simply-connected space.

But perhaps the most important implication of the
A-B effect is a dramatic additional confirmation of
the nonlocal character of quantum mechanics: the
electron has to “travel” along the two paths (I and
II) simultaneously; on the contrary, no flux would
be surrounded and then no shift of the (then
nonexistent) interference fringes would be observed
at the screen II.

Calculations in the path-integral approach includ-
ing the whole set of homotopy classes of paths
around the solenoid, indexed by an integer 1, have
been performed by several authors, leading to a
formula of the type

G =3 e iim) 26

m

with

)
0 =2mg- [27]

(Schulman 1971, Kobe 1979). As in [23],
d)p(@ + k(I)Q) = 1/)1)((1)), ke [28}

There is a close relation between the A-B effect
and the Dirac quantization condition (DQC) in the
presence of electric and magnetic charges: according
to [25] (or [26]) the A-B effect disappears when the
flux ® equals n®y = 27n(hc/le|), n €7, that is,
when the condition

le|]® = nbhc [29]

holds. But this is the DQC (Dirac 1931) when @ is
the flux associated with a magnetic charge g:
O(g) = (g/4nr?) x 4nr* = g, leading to |e|lg = nhc
(27m in the n.s.u.). This is precisely the condition for
the Dirac string to be unobservable in quantum
mechanics: to give no A-B effect.

Geometry of the A-B Effect

In this section we study the space of gauge classes of
flat potentials outside the solenoid, which determine
the A-B effect; the topological structure of the A-B
bundle; and the holonomy groups of the connec-
tions, which precisely give the phase shifts of the
wave functions. We use the n.s.u. system; in parti-
cular, if [L] is the unit of length, then [A,] = L],
[le]] = [L]°, and ® = 27/|e| = /7 /v =2 /1377, where
« is the fine structure constant.

To synthesize, one can say that the abelian A-B
effect is a nonlocal gauge-invariant quantum effect
due to the coupling of the wave function (section of
an associated bundle) to a nontrivial (non-exact) flat
(closed) connection in a trivial principal bundle with
a non-simply-connected base space. In the following
subsections, we will give a detailed explanation of
these statements.

The A-B Bundle

The gauge group of electromagnetism is the abelian
Lie group U(1) with Lie algebra (the tangent space at
the identity) #(1) = iR. In the limit of an infinitely
long and infinitesimally thin solenoid carrying the
magnetic flux @, the space available to the electrons
is the plane minus a point, that is, R*>*, which is of
the same homotopy type as the circle S'. Then the
set of isomorphism classes of U(1) bundles over R**
is in one-to-one correspondence with the set of
homotopy classes of maps from $° to S' (Steenrod
1951), which consists of only one point: if f,g:
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SO — S are given by f(1) =¥, f(—1)=e"¥2,
g(1) = e, and g(—1) = €2, then H: S x [0,1] —
St given by H(1,t) = el(1=#1+01) and H(-1,t) =
el1=822+10:) i 3 homotopy between f and g. Then,
up to equivalence, the relevant bundle for the A-B
effect is the product bundle

éap :U(1) = R* x U(1) —» R* [30a]
Since R** is homeomorphic to an open disk minus a
point (D3)*, then the total space of the bundle is
homeomorphic to an open solid 2-torus minus a
circle, since (T3)" = (D3)* x S!. Then the A-B
bundle has the topological structure

éap: St — (T5)" — (Dg)” 30D

The Gauge Group and the Moduli Space of Flat
Connections

The gauge group of the bundle £, g is the set of
smooth functions from the base space to the
structure group, that is, G = C*°(R**,U(1)). Since
G C C°(R*,U(1)) = {continuous functions R** — U
(1)} and [R**,U(1)] = {homotopy classes of contin-
uous functions R* — U(1)} 2 [S',S"] = 7y (S") =
7, given f € G there exists a unique n € 7 such
that f is homotopic to f,(f ~ f,), where f, : R>* —
U(1) is given by f£,(rel?) = "%, o € [0, 27).

G acts on the space of flat connections on &5 _p
given by the closed u(1)-valued differential 1-forms
on R**:

Co = {A e Q' (R*;u(1)),dA = 0} 31]
through
Co x G — Co, (,A,f)—mA—f—f*ldf [32]

where f~1(x,y) = (f(x,y))"!. The moduli space

C .
Mo=2= {gauge equivalence classes

g

of flat connections on £s_p}

={[Al={A+f'df, feGl AeCo} [33]

is isomorphic to the circle S! with length 1. This can
be seen as follows: the de Rham cohomology of R**
with coefficients in iR in dimension 1 is

Hll)R(Rz*5 iR) = {A[Ao]pr, A € R}
>~ HpR(S;iR) = R [34]

where

Ay = i% € Co 35]
is the connection that, once multiplied by —|e| ™" (see
below) generates the flux —®; and therefore no
A-B effect: Ay is closed (dAy =0) but not
exact ((xdy—ydx)/(x* +y*) =dyp only for ¢€
(0,27), ¢ = 0 is excluded); [Aylpr = Ao + d3 with
B € Q°(R*; iR). 3 gives an element of G through the
composite exp o 3 : R** — U(1), (x,y) — e7*) The
A-B effect with flux ® = — A®( is produced by the
connection A = AAy. To determine M, one finds
the smallest 0 € R such that (A + )4y ~ A\Ay, that s,
(A +0)Ag € [Np], which means, from [33], that
(A +0)Ay = Mo +f~1df or 0 Ag = f'df. For ¢ #
0, Ap =idy and f;'dfi =idp, then o =1, and
therefore (A + 1).Ap ~ A Ay, in particular Ay ~ 0.

A remark concerning the gauge group G is the
following. In classical electrodynamics, according to
[7a] and [7b], the symmetry group could be taken to
be the additive group (R, +) instead of the multi-
plicative group U(1). Since R is contractible, then
the gauge group would be G4 = C*(R*,R) with
[R*,R] = 0, so that the homomorphism ¥ : G, — G,
U(f) (x) = e™ would not exhaust G since U(f) € [1]
for any feGy: in fact, H:R* x[0,1] — U(1)
given by H(x,t) = ¢!=9/® is a homotopy between
U(f) and 1. However, the quantization of electric
charges implies that in fact the gauge group is U(1)
and not R. This is equivalent mathematically to the
possible existence of magnetic monopoles which
require nontrivial bundles for their description.

Covariant Derivative, Parallel Transport,
and Holonomy

Let G be a matrix Lie group with Lie algebra g, B a
differentiable manifold, ¢:G — P=B a principal
bundle, V a vector space, G x V — V an action,
and &y:V — P xg VX B the corresponding asso-
ciated vector bundle (£y is trivial if £ is trivial). Call
I'(¢y) the sections of &y, T'(TB)(I'(TP)) the sections
of the tangent bundle of B(P), and I'¢(P, V) the set
of functions v:P — V satisfying ~v(pg) = g~ 'v(p)
(equivariant functions from P to V). seT(&y)
induces s € Teq(P, V) with ~(p) =v, where
s(m(p)) = [p,v] and v € T'eq(P, V) induces s, € T'({y)
with s, (b) = [p,v(p)], where p € 7~ 1({b}). If H is a
connection on &, that is, a smooth assignment of a
(horizontal) vector subspace H, of T,P at each p of
P, algebraically determined by a smooth g-valued
1-form w on P through H, = ker(w,), s € I'(¢v),
X € I'(TB), and X' € I'(TP) the horizontal lifting of
X by w, then XI(y) € I'q(P,V), and covariant
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derivative of s with respect to w in the direction of X is

defined by

V%s:= sxq(v) [36a]
If : 71 (U) — U x G is a local trivialization of £,
xt, u=1,...,dim B are local coordinates on U, and

ei,i=1,...,dim V is a basis of the local sections in
71 (U), then the local expression of [36a] is

. o )
Voo (s'€i) = X" (‘SZWJ’A’ )s’e,- [36b]

where

Ayl = A dxt = (0" wy))

! ” [36(]
is the geometrical gauge potential in U, given by the
pullback of wy, the restriction of w to 7~ !(U), by the
local section o:U — 7~ 1(U), o(b) = ¢~ (b, 1). (.AL,
is defined through V“‘S;’ax“e, Al .e;.) The operator

/11

D, =2 4,

i L Oxch i

36d]

is the usual local covariant derivative. In an over-
lapping trivialization, [36b] is replaced by

Wyt 7 a
VXZB/axl (s / /) X" (‘%aﬂ + A/ZI) i

with ¢/ = gfe; and s" = g7!is' on UN U/, then the
local potential transforms as

Ay = g Aug '+ (0ug)8 '

which for G abelian has the form [32].

For each smooth path ¢:[0,1] — B joining the
points b and &', and each p € P, = 7 1({b}), there
exists a unique path ¢! in P through p with ¢/(¢) €
H, for all t € [0,1]. ¢! is the horizontal lifting of ¢
by w through p. Thus, for each connection and path
there exists a diffeomorphism P¥:P, — P, called
parallel transport. If ¢ is a loop at b, then P¥ e
Diff(P,) is called the holonomy of w at b along c. To
the loop space of B at b, Q(B;b), corresponds a
subgroup Hol; of Diff(P;) called the holonomy of w
at b. If ¢ € Q(B;b) and S is a lifting of ¢ through ¢ €
P,, then there exists a unique path g:[0,1] — G
such that ¢'(t) = B(t)g(t) with c!(0) = gg(0) = p; g
satisfies the differential equation

[36€]

< g(0) + wn (8(0) = 0 37

whose solution is the time-ordered exponential

X/OW dmeg(Tm)(B(Tm» (38]

If g =p then g(0) = 1. For each p € P, the set of
elements g € G such that c/(1) = pg for c¢c
Q(B;m(p)) is a subgroup of G, Hol;‘;, called the
holonomy of w at p. (For each p, there exists a
group isomorphism Hol;’ — Hol,, and if p and p’
are connected by a horizontal curve, then
Hol; = Holy; if all p's in P are horizontally con-
nected, then Hol; = G for all p € P.) If (U,¢) is a
local trivialization of &, ¢ C U, and 3(t) = o(c(t)), then
one has the local formula

c(t)
() = ¢ '(c(t), 1) (TeXp<— /C(O) Au>>g(0)

[39]

In particular, if £ is a product bundle, then ¢ is the
identity, and choosing g(0) =1 gives

c(t)
CT = C ex —
(1) ((M p< /C@ A)) [40]

In our case, V = C, £ is a product bundle, s = 1,
the wave function, is a global section of the
associated bundle

{c:C — R* x C IR [41]
G = U(1) with g = iR and an action U(1) x C — C,

(el¥,z) —€'¥z; therefore, A, = Ay, =ia, with a,
real valued, and the covariant derivative is

o .
AL"/} ( xp + lau> 1/1

If 4 carries the electric charge g, we define the
physical gauge potential A, through

ay = qA, [42]

[36f]

and, for the covariant derivative, after multiplying
by i, we obtain the operator appearing in eqn [15],
iD ) = (i(0/0x") — gA, )¢ in fact, for the spatial
part the coupling is (iV+gA)iy, and for the
temporal part one has (i0/0t — qp)i. For the
electron, g = —|e| and a, = —|e|A, = —(27/P¢)A,
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For ¢ e Q(R*;(x0,y0)), which turns 7z times
around the solenoid at (0,0), eqn [40] gives

cl = ((xo7yo)7e_”f(A) — ((xo,yo),e_i"ﬁ“)
= ((xoﬂ’o%e*ile\nch-dx) _ ((x()’yo)’efZﬂinq)/Cb())
and therefore, for ®/®; = X € [0,1) we have the
holonomy groups

w(®)
Hol («

X0,0),

y = {e2mm)
_[Zq X=p/a,p.a€Z, (p,q) =1
Z,
w(P)

AgQ

In the second case, Hol((xo,yo)’ 1) is dense in U(1): in fact,
suppose that for 11,1y € 7, ny # ny, ™A = e2mmA,
then e?™im =™ = 1 and so (n; — n3)\ = m for some
m € 7 therefore, A € Q, which is a contradiction.

Finally, we should mention that the A-B effect
can be understood as a geometric phase a la Berry,
though not necessarily through an adiabatic change
of the parameters on which the Hamiltonian
depends. The Berry potential ap turns out to be
proportional to the real magnetic vector potential A:
in the n.s.u., and for electrons,

ap = —|e|A [44]

[43]

Nonabelian and Gravitational A-B Effects

Since the fundamental group II;(R**, (x0,y0)) & Z,
eqn [43] shows that there is a homomorphism ¢(w):
I (R™, (x0,%0)) — U(1),  @lw)(n) = e 2™, with
o(w) (Hl(RZ*)):Holﬁfzzyo)’l), which characterizes
the A-B effect in that case. In general, an A-B
effect in a G-bundle with a connection w is
characterized by a group homomorphism from the
fundamental group of the base space B onto the
holonomy group of the connection, which is a
subgroup of the structure group. The A-B effect is
nonabelian if the holonomy group is nonabelian,
which requires both G and TII;(B,x) to be

nonabelian. Examples with Yang-Mills and grav-
itational fields are considered in the literature.
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Introduction

Quantum field theory may be understood as the
incorporation of the principle of locality, which is at
the basis of classical field theory, into quantum

physics. There are, however, severe obstacles against
a straightforward translation of concepts of classical
field theory into quantum theory, among them the
notorious divergences of quantum field theory and
the intrinsic nonlocality of quantum physics. There-
fore, the concept of locality is somewhat obscured in
the formalism of quantum field theory as it is
typically exposed in textbooks. Nonlocal concepts
such as the vacuum, the notion of particles or the S-
matrix play a fundamental role, and neither the
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relation to classical field theory nor the influence of
background fields can be properly treated.

Algebraic quantum field theory (AQFT; synony-
mously, local quantum physics), on the contrary,
aims at emphasizing the concept of locality at every
instance. As the nonlocal features of quantum
physics occur at the level of states (“entangle-
ment”), not at the level of observables, it is better
not to base the theory on the Hilbert space of states
but on the algebra of observables. Subsystems of a
given system then simply correspond to subalgebras
of a given algebra. The locality concept is abstractly
encoded in a notion of independence of subsystems;
two subsystems are independent if the algebra of
observables which they generate is isomorphic
to the tensor product of the algebras of the
subsystems.

Spacetime can then — in the spirit of Leibniz — be
considered as an ordering device for systems. So, one
associates with regions of spacetime the algebras of
observables which can be measured in the pertinent
region, with the condition that the algebras of
subregions of a given region can be identified with
subalgebras of the algebra of the region.

Problems arise if one aims at a generally covariant
approach in the spirit of general relativity. Then, in
order to avoid pitfalls like in the “hole problem,”
systems corresponding to isometric regions must be
isomorphic. Since isomorphic regions may be
embedded into different spacetimes, this amounts
to a simultaneous treatment of all spacetimes of a
suitable class. We will see that category theory
furnishes such a description, where the objects are
the systems and the morphisms the embeddings of a
system as a subsystem of other systems.

States arise as secondary objects via Hilbert space
representations, or directly as linear functionals on
the algebras of observables which can be interpreted
as expectation values and are, therefore, positive
and normalized. It is crucial that inequivalent
representations (“sectors”) can occur, and the
analysis of the structure of the sectors is one of
the big successes of AQFT. One can also study the
particle interpretation of certain states as well as
(equilibrium and nonequilibrium) thermodynamical
properties.

The mathematical methods in AQFT are mainly
taken from the theory of operator algebras, a field of
mathematics which developed in close contact to
mathematical physics, in particular to AQFT.
Unfortunately, the most important field theories,
from the point of view of elementary particle
physics, as quantum electrodynamics or the standard
model could not yet be constructed beyond formal
perturbation theory with the annoying consequence
that it seemed that the concepts of AQFT could not

be applied to them. However, it has recently been
shown that formal perturbation theory can be
reshaped in the spirit of AQFT such that the algebras
of observables of these models can be constructed as
algebras of formal power series of Hilbert space
operators. The price to pay is that the deep
mathematics of operator algebras cannot be applied,
but the crucial features of the algebraic approach can
be used.

AQFT was originally proposed by Haag as a
concept by which scattering of particles can be
understood as a consequence of the principle of
locality. It was then put into a mathematically
precise form by Araki, Haag, and Kastler. After the
analysis of particle scattering by Haag and Ruelle
and the clarification of the relation to the Lehmann-
Symanzik-Zimmermann (LSZ) formalism by Hepp,
the structure of superselection sectors was studied
first by Borchers and then in a fundamental series of
papers by Doplicher, Haag, and Roberts (DHR)
(see, e.g., Doplicher et al. (1971, 1974)) (soon after
Buchholz and Fredenhagen established the relation
to particles), and finally Doplicher and Roberts
uncovered the structure of superselection sectors as
the dual of a compact group thereby generalizing the
Tannaka—-Krein theorem of characterization of
group duals.

With the advent of two-dimensional conformal
field theory, new models were constructed and it was
shown that the DHR analysis can be generalized to
these models. Directly related to conformal theories is
the algebraic approach to holography in anti-de Sitter
(AdS) spacetime by Rehren.

The general framework of AQFT may be described
as a covariant functor between two categories. The
first one contains the information on local relations
and is crucial for the interpretation. Its objects are
topological spaces with additional structures (typi-
cally globally hyperbolic Lorentzian spaces, possibly
spin bundles with connections, etc.), its morphisms
being the structure-preserving embeddings. In the
case of globally hyperbolic Lorentzian spacetimes,
one requires that the embeddings are isometric and
preserve the causal structure. The second category
describes the algebraic structure of observables. In
quantum physics the standard assumption is that one
deals with the category of C*-algebras where the
morphisms are unital embeddings. In classical phys-
ics, one looks instead at Poisson algebras, and in
perturbative quantum field theory one admits alge-
bras which possess nontrivial representations as
formal power series of Hilbert space operators. It is
the leading principle of AQFT that the functor .o/
contains all physical information. In particular, two
theories are equivalent if the corresponding functors
are naturally equivalent.
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In the analysis of the functor .7, a crucial role is
played by natural transformations from other
functors on the locality category. For instance, a
field A may be defined as a natural transformation
from the category of test function spaces to the
category of observable algebras via their functors
related to the locality category.

Quantum Field Theories as Covariant
Functors

The rigorous implementation of the generally covariant
locality principle uses the language of category theory.
The following two categories are used:

Loc: The class of objects obj(Loc) is formed by all
(smooth) d-dimensional (d >2 is held fixed),
globally hyperbolic Lorentzian spacetimes M
which are oriented and time oriented. Given any
two such objects M; and M;, the morphisms ¢ €
homypo. (M1, M,) are taken to be the isometric
embeddings v : My — M, of My into M, but with
the following constraints:

(i) if ~:la,b] — M, is any causal curve and
~v(a),v(b) € 1»(My) then the whole curve must
be in the image (M), that is, v(¢) € ¢¥(My) for
all ¢ € [a,b];

(ii) any morphism preserves orientation and
time orientation of the embedded spacetime.
The composition is defined as the composition
of maps, the unit element in hompo.(M, M) is
given by the identical embedding idy : M +— M
for any M € obj(Loc).

Obs: The class of objects obj(Obs) is formed by all
C*-algebras possessing unit elements, and the
morphisms are faithful (injective) unit-preserving
x-homomorphisms. The composition is again
defined as the composition of maps, the unit
element in homgy(A, A) is for any A € obj(Obs)
given by the identical map id4:A— A, A € A.

The categories are chosen for definitiveness. One
may envisage changes according to particular needs,
as, for instance, in perturbation theory where instead
of C*-algebras general topological x-algebras are
better suited. Or one may use von Neumann
algebras, in case particular states are selected. On
the other hand, one might consider for Loc bundles
over spacetimes, or (in conformally invariant the-
ories) admit conformal embeddings as morphisms. In
case one is interested in spacetimes which are not
globally hyperbolic, one could look at the globally
hyperbolic subregions (where one needs to be careful
about the causal convexity condition (i) above).

The concept of locally covariant quantum field
theory is defined as follows.

Definition 1

(i) A locally covariant quantum field theory is a
covariant functor .o from Loc to Obs and (writing
ay, for o/ (1)) with the covariance properties

Qyyt O Qlyy = Qlypl oy Qidy = ld,V/(M)

for all morphisms 1 € hompe.(Mi, M;), all
morphisms ¢ € hompo.(M2, M3), and all
M € obj(Loc).

(i) A locally covariant quantum field theory
described by a covariant functor .7 is called
“causal” if the following holds: whenever there
are morphisms ¢ € hompo(Mj, M),j=1,2,
so that the sets 11 (M) and ), (M;) are causally
separated in M, then one has

[Oéu)l (JZ{(Ml)), Qg (Q/(Mz))] = {O}

where the element-wise commutation makes
sense in .o/ (M).

(iii) One says that a locally covariant quantum field
theory given by the functor .o/ obeys the “time-
slice axiom” if

ay(/ (M) = o/ (M)

holds for all ¥ € homyo.(M, M) such that (M)
contains a Cauchy surface for M'.

Thus, a quantum field theory is an assignment of
C*-algebras to (all) globally hyperbolic spacetimes
so that the algebras are identifiable when the
spacetimes are isometric, in the indicated way. This
is a precise description of the generally covariant
locality principle.

The Traditional Approach

The traditional framework of AQFT, in the Araki-
Haag—Kastler sense, on a fixed globally hyperbolic
spacetime can be recovered from a locally covariant
quantum field theory, that is, from a covariant
functor ./ with the properties listed above.

Indeed, let M be an object in obj(Loc). (M)
denotes the set of all open subsets in M which are
relatively compact and also contain, with each pair
of points x and 1y, all g-causal curves in M
connecting x and y (cf. condition (i) in the definition
of Loc). O € K(M), endowed with the metric of M
restricted to O and with the induced orientation and
time orientation, is a member of obj(Loc), and the
injection map ty,0: 0O — M, that is, the identical
map restricted to O, is an element in homp,.(O, M).
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With this notation, it is easy to prove the following
assertion:

Theorem 1 Let o/ be a covariant functor with
the above-stated properties, and define a map
K(M) > Ow— A(O) C /(M) by setting

A(O) := ay, o (#(0))
Then the following statements hold:
(i) The map fulfills isotony, that is,

01 C 02 = A(O]) C .A(Oz)
for all 01,0, € K(M)

(ii) If there exists a group G of isometric diffeo-
morphisms k: M — M (so that k x g=g) preser-
ving orientation and time orientation, then there
is a representation G 3 k—d, of G by C*-
algebra  automorphisms G, :.of/ (M) — o/ (M)
such that

a.(A(0)) = A(k(0)), O eK(M)
(iii) If the theory given by </ is additionally causal,
then it holds that

[A(O1), A(O2)] = {0}

for all O, 0, € K(M) with O1 causally sepa-
rated from O;.

These properties are just the basic assumptions of
the Araki-Haag-Kastler framework.

The Achievements of the Traditional
Approach

In the Araki-Haag-Kastler approach in Minkowski
spacetime M, many results have been obtained in
the last 40 years, some of them also becoming a
source of inspiration to mathematics. A description
of the achievements can be organized in terms of a
length-scale basis, from the small to the large. We
assume in this section that the algebra .oZ(M) is
faithfully and irreducibly represented on a Hilbert
space H, that the Poincaré transformations are
unitarily implemented with positive energy, and
that the subspace of Poincaré invariant vectors is
one dimensional (uniqueness of the vacuum).
Moreover, algebras correponding to regions which
are spacelike to a nonempty open region are
assumed to be weakly closed (i.e., von Neumann
algebras on H), and the condition of weak
additivity is fulfilled, that is, for all O € K(M)
the algebra generated from the algebras
A(O + x),x € M is weakly dense in .o7(M).

Ultraviolet Structure and Ildealized Localizations

This section deals with the problem of inspecting the
theory at very small scales. In the limiting case, one
is interested in idealized localizations, eventually the
points of spacetimes. But the observable algebras are
trivial at any point x € M, namely

[ AO)=C1, O eKk()
Osx

Hence, pointlike localized observables are neces-
sarily singular. Actually, the Wightman formulation
of quantum field theory is based on the use of
distributions on spacetime with values in the algebra
of observables (as a topological x-algebra). In spite
of technical complications whose physical signifi-
cance is unclear, this formalism is well suited for a
discussion of the connection with the Euclidean
theory, which allows, in fortunate cases, a treatment
by path integrals; it is more directly related to
models and admits, via the operator-product expan-
sion, a study of the short-distance behavior. It is,
therefore, an important question how the algebraic
approach is related to the Wightman formalism. The
reader is referred to the literature for exploring the
results on this relation.

Whereas these results point to an essential equiva-
lence of both formalisms, one needs in addition a
criterion for the existence of sufficiently many Wight-
man fields associated with a given local net. Such a
criterion can be given in terms of a compactness
condition to be discussed in the next subsection. As a
benefit, one derives an operator-product expansion
which has to be assumed in the Wightman approach.

In the purely algebraic approach, the ultraviolet
structure has been investigated by Buchholz and
Verch. Small-scale properties of theories are studied
with the help of the so-called scaling algebras whose
elements can be described as orbits of observables
under all possible renormalization group motions.
There results a classification of theories in the scaling
limit which can be grouped into three broad classes:
theories for which the scaling limit is purely classical
(commutative algebras), those for which the limit is
essentially unique (stable ultraviolet fixed point) and
not classical, and those for which this is not the case
(unstable ultraviolet fixed point). This classification
does not rely on perturbation expansions. It allows
an intrinsic definition of confinement in terms of the
so-called ultraparticles, that is, particles which are
visible only in the scaling limit.

Phase-Space Analysis

As far as finite distances are concerned, there are
two apparently competing principles, those of
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nuclearity and modularity. The first one suggests
that locally, after a cutoff in energy, one has a
situation similar to that of old quantum mechanics,
namely a finite number of states in a finite volume
of phase space. Aiming at a precise formulation,
Haag and Swieca introduced their notion of com-
pactness, which Buchholz and Wichmann sharpened
into that of nuclearity. The latter authors proposed
that the set generated from the vacuum vector 2,

{e MAQ|A € A(O),]|A] < 1}

H denoting the generator of time translations
(Hamiltonian), is nuclear for any g > 0, roughly
stating that it is contained in the image of the unit
ball under a trace class operator. The nuclear size
Z(B3,0) of the set plays the role of the partition
function of the model and has to satisfy certain
bounds in the parameter 3. The consequence of this
constraint is the existence of product states, namely
those normal states for which observables localized in
two given spacelike separated regions are uncorre-
lated. A further consequence is the existence of
thermal equilibrium states (KMS states) for all 8 > 0.

The second principle concerns the fact that, even
locally, quantum field theory has infinitely many
degrees of freedom. This becomes visible in the
Reeh—Schlieder theorem, which states that every
vector ® which is in the range of e for some
B> 0 (in particular, the vacuum ) is cyclic and
separating for the algebras A(O), O € K(M), that is,
A(O)® is dense in H (® is cyclic) and AP=0,A €
A(O) implies A=0 (® is separating). The pair
(A(O),Q) is then a von Neumann algebra in the
so-called standard form. On such a pair, the
Tomita-Takesaki theory can be applied, namely
the densely defined operator

SAQ =A"Q, A€ AO)

is closable, and the polar decomposition of its
closure S=JA'/? delivers an antiunitary involution
J (the modular conjugation) and a positive self-
adjoint operator A (the modular operator) asso-
ciated with the standard pair (A(O),Q). These
operators have the properties

JA(O)] = A(OY
where the prime denotes the commutant, and

ATA(O)A™" = A(O), teR

The importance of this structure is based on the
fact disclosed by Bisognano and Wichmann using
Poincaré-covariant Wightman fields and local alge-
bras generated by them, that for specific regions in
Minkowski spacetime the modular operators have a

geometrical meaning. Indeed, these authors showed
for the pair (A(W),2), where W denotes the wedge
region W ={x € M|[x%| < x!}, that the associated
modular unitary A is the Lorentz boost with velocity
tanh(27t) in the direction 1 and that the modular
conjugation J is the CPyT symmetry operator with
parity Py the reflection with respect to the x!'=0
plane. Later, Borchers discovered that already on the
purely algebraic level a corresponding structure exists.
He proved that, given any standard pair (A, ®) and a
one-parameter group of unitaries 7 — U(T) acting on
the Hilbert space H with a positive generator and
such that @ is invariant and U(7)AU(7)" C A,7 > 0,
then the associated modular operators A and J fulfill
the commutation relations

AitU(T)Afit = U(efzmT)
JU(r)] = U(-7)

which are just the commutation relations between
boosts and lightlike translations.

Surprisingly, there is a direct connection between
the two concepts of nuclearity and modularity.
Indeed, in the nuclearity condition, it is possible to
replace the Hamiltonian operator by a specific
function of the modular operator associated with a
slightly larger region. Furthermore, under mild
conditions, nuclearity and modularity together
determine the structure of local algebras completely;
they are isomorphic to the unique hyperfinite type
III; von Neumann algebra.

Sectors, Symmetries, Statistics, and Particles

Large scales are appropriate for discussing global
issues like superselection sectors, statistics and
symmetries as far as large spacelike distances are
concerned, and scattering theory, with the resulting
notions of particles and infraparticles, as far as large
timelike distances are concerned.

In purely massive theories, where the vacuum
sector has a mass gap and the mass shell of the
particles are isolated, a very satisfactory description
of the multiparticle structure at large times can be
given. Using the concept of almost local particle
generators,

U =A(t)Q

where U is a single-particle state (i.e., an eigenstate
of the mass operator), A(z) is a family of almost
local operators essentially localized in the kinema-
tical region accessible from a given point by a
motion with the velocities contained in the spectrum
of ¥, one obtains the multiparticle states as limits of
products Aq(t)---A,(t)Q2 for disjoint velocity sup-
ports. The corresponding closed subspaces are
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invariant under Poincaré transformations and are
unitarily equivalent to the Fock spaces of noninter-
acting particles.

For massless particles, no almost-local particle
generators can be expected to exist. In even
dimensions, however, one can exploit Huygens
principle to construct asymptotic particle generators
which are in the commutant of the algebra of the
forward or backward lightcone, respectively. Again,
their products can be determined and multiparticle
states obtained.

Much less well understood is the case of massive
particles in a theory which also possesses massless
particles. Here, in general, the corresponding states
are not eigenstates of the mass operator. Since
quantum electrodynamics (QED) as well as the
standard model of elementary particles have this
problem, the correct treatment of scattering in these
models is still under discussion. One attempt to a
correct treatment is based on the concept of the so-
called particle weights, that is, unbounded positive
functionals on a suitable algebra. This algebra is
generated by positive almost-local operators annihi-
lating the vacuum and interpreted as counters.

The structure at large spacelike scales may be
analyzed by the theory of superselection sectors. The
best-understood case is that of locally generated
sectors which are the objects of the DHR theory.
Starting from a distinguished representation g
(vacuum representation) which is assumed to fulfill
the Haag duality,

70 (A(0)) = mo(A(O"))’

for all double cones O, one may look at all
representations which are equivalent to the vacuum
representation if restricted to the observables loca-
lized in double cones in the spacelike complement of
a given double cone. Such representations give rise
to endomorphisms of the algebra of observables,
and the product of endomorphisms can be inter-
preted as a product of sectors (“fusion”). In general,
these representations violate the Haag duality, but
there is a subclass of the so-called finite statistics
sectors where the violation of Haag duality is small,
in the sense that the nontrivial inclusion

m(A(0)) € w(AO"))

has a finite Jones index. These sectors form (in at least
three spacetime dimensions) a symmetric tensor
category with some further properties which can be
identified, in a generalization of the Tannaka—Krein
theorem, as the dual of a unique compact group. This
group plays the role of a global gauge group. The
symmetry of the category is expressed in terms of a

representation of the symmetric group. One may then
enlarge the algebra of observables and obtain an
algebra of operators which transform covariantly
under the global gauge group and satisfy Bose or
Fermi commutation relations for spacelike separation.

In two spacetime dimensions, one obtains instead
braided tensor categories. They have been classified
under additional conditions (conformal symmetry,
central charge ¢ < 1) in a remarkable work by
Kawahigashi and Longo. Moreover, in their paper,
one finds that by using completely new methods (O-
systems) a new model is unveiled, apparently
inaccessible by methods used by others. To some
extent, these categories can be interpreted as duals
of generalized quantum groups.

The question arises whether all representations
describing elementary particles are, in the massive
case, DHR representations. One can show that in the
case of a representation with an isolated mass shell
there is an associated vacuum representation which
becomes equivalent to the particle representation after
restriction to observables localized spacelike to a given
infinitely extended spacelike cone. This property is
weaker than the DHR condition but allows, in four
spacetime dimensions, the same construction of a
global gauge group and of covariant fields with Bose
and Fermi commutation relations, respectively, as the
DHR condition. In three space dimensions, however,
one finds a braided tensor category, which has similar
properties as those known from topological field
theories in three dimensions.

The sector structure in massless theories is not
well understood, due to the infrared problem. This is
in particular true for QED.

Fields as Natural Transformations

In order to be able to interpret the theory in terms of
measurements, one has to be able to compare
observables associated with different regions of
spacetime, or, even different spacetimes. In the
absence of nontrivial isometries, such a comparison
can be made in terms of locally covariant fields. By
definition, these are natural transformations from
the functor of quantum field theory to another
functor on the category of spacetimes Loc.

The standard case is the functor which associates
with every spacetime M its space D(M) of smooth
compactly supported test functions. There, the
morphisms are the pushforwards Dy = ),.

Definition 2 A locally covariant quantum field ® is
a natural transformation between the functors &
and .o7, that is, for any object M in obj(Loc) there
exists a morphism ®y;: D(M) — .o/ (M) such that for
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any pair of objects My and M, and any morphism
between them, the following diagram commutes:

DMy 20 AM)
() l%
D(M,) o A(M;)

The commutativity of the diagram means, expli-
citly, that

o 0 Py = Py, 0 s

which is the requirement sought for the covariance
of fields. It contains, in particular, the standard
covariance condition for spacetime isometries.

Fields in the above sense are not necessarily linear.
Examples for fields which are also linear are the scalar
massive free Klein—-Gordon fields on all globally
hyperbolic spacetimes and its locally covariant Wick
polynomials. In particular, the energy-momentum
tensors can be constructed as locally covariant fields,
and they provide a crucial tool for discussing the back-
reaction problem for matter fields.

An example for the more general notion of a field
are the local S-matrices in the Stiickelberg-Bogolubov—
Epstein—Glaser sense. These are unitaries Sy()\) with
M € obj(Loc) and X € D(M) which satisfy the
conditions

Sp(0) =1
SN+ 4+ v) =Sm(A + )Sw (1)~ Sm(p +v)

for A\, u, v € D(M) such that the supports of A and v
can be separated by a Cauchy surface of M with
supp A in the future of the surface.

The importance of these S-matrices relies on the
fact that they can be used to define a new quantum
field theory. The new theory is locally covariant if the
original theory is and if the local S-matrices satisfy
the condition of the locally covariant field above. A
perturbative construction of interacting quantum
field theory on globally hyperbolic spacetimes was
completed in this way by Hollands and Wald, based
on previous work by Brunetti and Fredenhagen.
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Synopsis

Anomalies are the breaking of classical symmetries by
quantum mechanical radiative corrections, which arise
when the regularizations needed to evaluate small
fermion loop Feynman diagrams conflict with a
classical symmetry of the theory. They have important
implications for a wide range of issues in quantum
field theory, mathematical physics, and string theory.

Chiral Anomalies, Abelian
and Nonabelian

Consider quantum electrodynamics, with the fer-
mionic Lagrangian density

L= 1/_)(i’y“3,,, —eyy'B, — mo )y [1a]

where 1) =170, eg and myg are the bare charge and
mass, and B, is the electromagnetic gauge potential.
(We reserve the notation A for axial-vector quan-
tities.) Under a chiral transformation

P — ey [1b]

with constant )\, the kinetic term in eqn [la] is
invariant (because 75 commutes with 7%9#), whereas
the mass term is not invariant. Therefore, naive
application of Noether’s theorem would lead one to
expect that the axial-vector current

//51 = 1;7//75'(/J [1C]

obtained from the Lagrangian density by applying a
chiral transformation with spatially varying A, should
have a divergence given by the change under chiral
transformation of the mass term in eqn [la]. Up to
tree approximation, this is indeed true, but when one
computes the AVV Feynman diagram with one axial-
vector and two vector vertices (see Figure 1), and
insists on conservation of the vector current
ju =171, one finds that to order €3, the classical
Noether theorem is modified to read

2
. . e o T,
0'70) = Zimof” () + 165 F P W)egony 2]

v v

Figure 1 The AVVtriangle diagram responsible for the abelian
chiral anomaly.

with F&(x) = 0°B¢(x) — 0°B’(x) the electromagnetic
field strength tensor. The second term in eqn [2],
which would be unexpected from the application of
the classical Noether theorem, is the abelian axial-
vector anomaly (often called the Adler—Bell-Jackiw
(or ABJ) anomaly after the seminal papers on the
subject). Since vector current conservation, together
with the axial-vector current anomaly, implies that
the left- and right-handed chiral currents j, + ji are
also anomalous, the axial-vector anomaly is fre-
quently called the “chiral anomaly,” and we shall
use the terms interchangeably in this article.

There are a number of different ways to understand
why the extra term in eqn [2] appears. (1) Working
through the formal Feynman diagrammatic Ward
identity proof of the Noether theorem, one finds that
there is a step where the closed fermion loop contribu-
tions are eliminated by a shift of the loop-integration
variable. For Feynman diagrams that are convergent,
this is not a problem, but the AVV diagram is linearly
divergent. The linear divergence vanishes under sym-
metric integration, but the shift then produces a finite
residue, which gives the anomaly. (2) If one defines the
AVV diagram by Pauli-Villars regularization with
regulator mass My that is allowed to approach infinity
at the end of the calculation, one finds a classical
Noether theorem in the regulated theory,

oy = O Folrty = 20m07° |,y — 2iMof’ |y, [3a]

mo

with the subscripts 79 and My indicating that
fermion loops are to be calculated with fermion
mass my and My, respectively. Taking the vacuum
to two-photon matrix element of eqn [3a], one finds
that the matrix element (0]°|y, [y), which is
unambiguously computable after imposing vector-
current conservation, falls off only as My' as the
regulator mass approaches infinity. Thus, the
product of 2iMy with this matrix element has a
finite limit, which gives the anomaly. (3) If the
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gauge-invariant axial-vector current is defined by
point-splitting

%) = h(x + €/2) 759 (x — €/2)e P [3b]

with ¢ — 0 at the end of the calculation, one
observes that the divergence of eqn [3b] contains
an extra term with a factor of e. On careful
evaluation, one finds that the coefficient of this
factor is an expression that behaves as ¢!, which
gives the anomaly in the limit of vanishing €. (4)
Finally, if the field theory is defined by a functional
integral over the classical action, the standard
Noether analysis shows that the classical action is
invariant under the chiral transformation of eqn
[1b], apart from the contribution of the mass term,
which gives the naive axial-vector divergence. How-
ever, as pointed out by Fujikawa, the chiral
transformation must also be applied to the func-
tional integration measure, and since the measure is
an infinite product, it must be regularized to be well
defined. Careful calculation shows that the regular-
ized measure is not chiral invariant, but contributes
an extra term to the axial-vector Ward identity that
is precisely the chiral anomaly.

A key feature of the anomaly is that it is
irreducible: a local polynomial counter term cannot
be added to the AVV diagram that preserves
vector-current conservation and eliminates the
anomaly. More generally, one can show that there
is no way of modifying quantum electrodynamics
so as to eliminate the chiral anomaly, without
spoiling either vector-current conservation (i.e.,
electromagnetic gauge invariance), renormalizabil-
ity, or unitarity. Thus, the chiral anomaly is a new
physical effect in renormalizable quantum field
theory, which is not present in the prequantization
classical theory.

The abelian chiral anomaly is the simplest case of
the anomaly phenomenon. It was extended to
nonabelian gauge theories by Bardeen using a
point-splitting method to compute the divergence,
followed by adding polynomial counter terms to
remove as many of the residual terms as possible.
The resulting irreducible divergence is the nonabe-
lian chiral anomaly, which in terms of Yang-Mills
field strengths for vector and axial-vector gauge
potentials V* and A*,

Fy'(x) = 0" V"(x) = 0"V"(x) —i[V¥(x), V" (x)]
—i[A%(x), A"(x)]

Fy'(x) = 0"A"(x) — 0" A" (x) —i[V"(x), A" (x)]
—i[A%(x), V¥ (x)]

[4a]

is given by

9"f5,(x) = normal divergence term
+ (1/47% ) €uortrXa [(1/4) B (x) S (x)
+ (1/12)Fy" (x) Fy (x)
+ (2/3)1A% (x) A" (x) Fy/ (x)
+ (2/3)iF; (x) A% (x)AT (x)
+(2/3)iA" (%) Fy (x) AT (x)
— (8/3)Al(x)A"(x)A7(x)AT(x)]  [4b]

In eqn [4b], “tr” denotes a trace over internal
degrees of freedom, and A\ is the internal symmetry
matrix associated with the axial-vector external
field. In the abelian case, where there is no internal
symmetry structure, the terms involving two or four
factors of A”,A”,... vanish by antisymmetry of
€uwor, and one recovers the AVV triangle anomaly,
as well as a kinematically related anomaly in the
AAA triangle diagram. In the nonabelian case, with
nontrivial internal symmetry structure, there are also
box- and pentagon-diagram anomalies.

In addition to coupling to spin-1 gauge fields,
fermions can also couple to spin-2 gauge fields,
associated with the graviton. When the coupling of
fermions to gravitation is taken into account, the
axial-vector current ¢ T7,vs%, with T an internal
symmetry matrix, has an additional anomalous
contribution to its divergence proportional to

tr TecyryRE*R™ o5 [4¢]

where R¢,r, is the Riemann curvature tensor of the
gravitational field.

Chiral Anomaly Nonrenormalization

A salient feature of the chiral anomaly is the fact
that it is not renormalized by higher-order radia-
tive corrections. In other words, the one-loop
expressions of eqns [2] and [4b] give the exact
anomaly coefficient without modification in higher
orders of perturbation theory. In gauge theories
such as quantum electrodynamics and quantum
chromodynamics, this result (the Adler—Bardeen
theorem) can be understood heuristically as fol-
lows. Write down a modified Lagrangian, in
which regulators are included for all gauge-boson
fields. Since the gauge-boson regulators do not
influence the chiral-symmetry properties of the
theory, the divergences of the chiral currents are
not affected by their inclusion, and so the only
sources of anomalies in the regularized theory are
small single-fermion loops, giving the anomaly
expressions of eqns [2] and [4b]. Since the
renormalized theory is obtained as the limit of
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the regularized theory as the regulator masses
approach infinity, this result applies to the
renormalized theory as well.

The above argument can be made precise, and
extends to nongauge theories such as the o-model as
well. For both gauge theories and the o-model,
cancellation of radiative corrections to the anomaly
coefficient has been explicitly demonstrated in
fourth-order calculations. Nonperturbative demon-
strations of anomaly renormalization have also been
given using the Callan-Symanzik equations. For
example, in quantum electrodynamics, Zee, and
Lowenstein and Schroer, showed that a factor f
that gives the ratio of the true anomaly to its one-
loop value obeys the differential equation

(30 ) ) =0 5

Since f is dimensionless, it can have no dependence
on the mass 1, and since 3(«) is nonzero this implies
0f /0a=0. Thus, f has no dependence on «, and so

f=1.

Applications of Chiral Anomalies

Chiral anomalies have numerous applications in the
standard model of particle physics and its exten-
sions, and we describe here a few of the most
important ones.

Neutral Pion Decay 7° — yy

As a result of the abelian chiral anomaly, the
partially conserved axial-vector current (PCAC)
equation relevant to neutral pion decay is modified
to read

o*F § i (x)
= (Fb2/V2) 6n(x) + STE T (F " ()ecrr,  [60]

with p, the pion mass, f; ~ 131 MeV the charged-
pion decay constant, and S a constant determined
by the constituent fermion charges and axial-vector
couplings. Taking the matrix element of eqn [6a]
between the vacuum state and a two-photon state,
and using the fact that the left-hand side has a
kinematic zero (the Sutherland-Veltman theorem),
one sees that the 7° — ~v amplitude F is comple-
tely determined by the anomaly term, giving the
formula

E=—(a/m)25V2/fs [6b]

For a single set of fractionally charged quarks, the
amplitude F is a factor of three too small to agree
with experiment; for three fractionally charged

quarks (or an equivalent Han—-Nambu triplet), eqn
[6b] gives the correct neutral pion decay rate. This
calculation was one of the first pieces of evidence for
the color degree of freedom of quarks.

Anomaly Cancellation in Gauge Theories

In quantum electrodynamics, the gauge particle (the
photon) couples to the vector current, and so the
anomalous conservation properties of the axial-
vector current have no effect. The same statement
holds for the gauge gluons in quantum chromody-
namics, when treated in isolation from the other
interactions. However, in the electroweak theory
that embeds quantum electrodynamics in a theory of
the weak force, the gauge particles (the W* and Z
intermediate bosons) couple to chiral currents,
which are left- or right-handed linear combinations
of the vector and axial-vector currents. In this case,
the chiral anomaly leads to problems with the
renormalizability of the theory, unless the anomalies
cancel between different fermion species. Writing all
fermions as left-handed, the condition for anomaly
cancellation is

tr{T,, T} T, = tr(T,Ts + T5T,)T, =0
for all «, 8,~ [7]

with T, the coupling matrices of gauge bosons to
left-handed fermions. These conditions are obeyed
in the standard model, by virtue of three nontrivial
sum rules on the fermion gauge couplings being
satisfied (four sum rules, if one includes the
gravitational contribution to the chiral anomaly
given in eqn [4c], which also cancels in the standard
model). Note that anomaly cancellation in the
locally gauged currents of the standard model does
not imply anomaly cancellation in global-flavor
currents. Thus, the flavor axial-vector current
anomaly that gives the 7 — ~y matrix element
remains anomalous in the full electroweak theory.
Anomaly cancellation imposes important constraints
on the construction of grand unified models that
combine the electroweak theory with quantum
chromodynamics. For instance, in SU(5) the fer-
mions are put into a 5 and 10 representation, which
together, but not individually, are anomaly free. The
larger unification groups SO(10) and Eg4 satisfy eqn
[7] for all representations, and so are automatically
anomaly free.

Instanton Physics and the Theta Vacuum

The theory of anomalies is intimately tied to the
physics associated with instanton classical Yang—
Mills theory solutions. Since the instanton field
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strength is self-dual, the nonvanishing instanton
Euclidean action

1
Sp = / d“xZFWFW = 872 [8a]

implies that the integral of the pseudoscalar density
F,,F\,¢""* over the instanton is also nonzero,

/ d*xF,, Fr e = 647> [8b)

Referring back to eqn [4b], this means that the
integral of the nonabelian chiral anomaly for
fermions in the background field of an instanton is
an integer, which in the Minkowski space continua-
tion has the interpretation of a topological winding
number change produced by the instanton tunneling
solution. This fact has a number of profound
consequences. Since a vacuum with a definite wind-
ing number |v) is unstable under instanton tunnel-
ing, careful analysis shows that the nonabelian
vacuum that has correct clustering properties is a
Fourier superposition

DEDICY [8¢]

giving rise to the #-vacuum of quantum chromody-
namics, and a host of issues associated with (the lack
of) strong CP violation, the Peccei-Quinn mecha-
nism, and axion physics. Also, the fact that the
integral of eqn [8b] is nonzero means that the U(1)
chiral symmetry of quantum chromodynamics is
broken by instantons, which as shown by ’t Hooft
resolves the longstanding “U(1) problem” of strong
interactions, that of explaining why the flavor
singlet pseudoscalar meson 7/ is not light, unlike its
flavor octet partners.

Anomaly Matching Conditions

The anomaly structure of a theory, as shown by ’t
Hooft, leads to important constraints on the forma-
tion of massless composite bound states. Consider a
theory with a set of left-handed fermions ¢/, with i a
“color” index acted on by a nonabelian gauge force,
and f an ungauged family or “flavor” index. Suppose
that the family multiplet structure is such that the
global chiral symmetries associated with the flavor
index have nonvanishing anomalies tr{T,, T5}T,.
Then the ’t Hooft condition asserts that if the color
forces result in the formation of composite massless
bound states of the original completely confined
fermions, and if there is no spontaneous breaking of
the original global flavor symmetries, then these
bound states must contain left-handed spin-1/2
composites with a representation structure S that

has the same anomaly coefficient as that in the
underlying theory. In other words, we must have

{80, 55}S, = tr{ T, T5} T, 9]

To prove this, one adjoins to the theory a set of
right-handed spectator fermions ¢/ with the same
flavor structure as the original set, but which are not
acted on by the color force. These right-handed
fermions cancel the original anomaly, making the
underlying theory anomaly free at zero color
coupling; since dynamics cannot spontaneously
generate anomalies, the theory, when the color
dynamics is turned on, must also have no global
chiral anomalies. This implies that the bound-state
spectrum must conspire to cancel the anomalies
associated with the right-handed spectators; in other
words, the bound-state anomaly structure must
match that of the original fermions. This anomaly
matching condition has found applications in the
study of the possible compositeness of quarks and
leptons. It has also been applied to the derivation of
nonperturbative dynamical results in whole classes
of supersymmetric theories, where the combined
tools of holomorphicity, instanton physics, and
anomaly matching have given incisive results.

Global Structure of Anomalies

We noted earlier that chiral anomalies are irreduci-
ble, in that they cannot be eliminated by adding a
local polynomial counter-term to the action. How-
ever, anomalies can be described by a nonlocal
effective action, obtained by integrating out the
fermion field dynamics, and this point of view proves
very useful in the nonabelian case. Starting with the
abelian case for orientation, we note that if A* is an
external axial-vector field, and we write an effective
action T'[A], then the axial-vector current ;> asso-
ciated with A is given (up to an overall constant) by
the variational derivative expression

STIA]

li(x) = 6An(x) [10a]

and the abelian anomaly appears as the fact that the
expression

6
s — = T —
9", =XI'[A]=G#0, X=20 5An(x)

[10D)
is nonvanishing even when the theory is classically
chiral invariant. Turning now to the nonabelian
case, the variational derivative appearing in eqns
[10a] and [10b] must be replaced by an appropriate
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covariant derivative. In terms of the internal-
symmetry component fields A7 and Vi of the
Yang-Mills potentials of eqn [4a], one introduces
operators

1

—X(x) =0" 6A“( )+fabc ”6AC( )
o
+fabc H(SVC( ) [11a]
Y=Lt ’
Vi) Vi)
o
+fabc /'(‘5AC( )

with f,,. the antisymmetric nonabelian group struc-
ture constants. The operators X? and Y? are easily
seen to obey the commutation relations

[X(x), X (0)] = fabeb(x = y) Ye(x)
[X(x), YO (9)] = faped(x — y) X () [11b]
[Y4(x), YO (9)] = faped(x — y) Ye(x)

Let I'[V, A] be the effective action as a functional of
the fields V*#, A*, constructed so that the vector
currents are covariantly conserved, as expressed
formally by

“T[V,A] =0 [12a]

Then the nonabelian axial-vector current anomaly is
given by

PV, A] = G [12b]

From eqns [12a] and [12b] and the first line of
eqn [11b], we have
XGl =

XPG — (XPX® — X*XP)T[V, A]

& fur YT[V,A] = 0 [12¢]

which is the Wess—Zumino consistency condition on
the structure of the anomaly G“. It can be shown
that this condition uniquely fixes the form of the
nonabelian anomaly to be that of eqn [4b], up to an
overall constant, which can be determined by
comparison with the simplest anomalous AVV
triangle graph. A physical consequence of the
consistency condition is that the 7° — v decay
amplitude determines uniquely certain other anom-
alous amplitudes, such as 2y — 37,7 — 37, and a
five pseudoscalar vertex.

Although the action T'[V,A] is necessarily non-
local, Wess and Zumino were able to write down a
local action, involving an auxiliary pseudoscalar
field, that obeys the anomalous Ward identities and

the consistency conditions. Subsequently, Witten
gave a new construction of this local action, in
terms of the integral of a fifth-rank antisymmetric
tensor over a five-dimensional disk which has a
four-dimensional space as its boundary. He also
showed that requiring e to be independent of the
choice of the spanning disk requires, in analogy with
Dirac’s quantization condition for monopole charge,
the condition that the overall coefficient in the
nonabelian anomaly be quantized in integer multi-
ples. Comparison with the lowest-order triangle
diagram shows that in the case of SU(N.) gauge
theory, this integer is just the number of colors N..
Thus, global considerations tightly constrain the
nonabelian chiral anomaly structure, and dictate
that up to an integer-proportionality constant, it
must have the form given in eqns [4a] and [4b].

Trace Anomalies

The discovery of chiral anomalies inspired the search
for other examples of anomalous behavior. First
indications of a perturbative trace anomaly obtained
in a study of broken scale invariance by Coleman and
Jackiw were shown by Crewther, and by Chanowitz
and Ellis, to correspond to an anomaly in the three-
point function 67V,V,, where 0 is the energy-
momentum tensor. Letting A, (p) be the momentum
space expression for this three-point function, and IT,,,,
the corresponding V,,V, two-point function, the trace
anomaly equation in quantum electrodynamics reads

0

a_p) I, (p)

R
- m (p;tpu -

A;w(p) = (2 — Do

WWPZ) [13a]

with the first term on the right-hand side the naive
divergence, and the second term the trace anomaly,
with anomaly coefficient R given by

R=>" 0Ol + ZQ

ispind l ,spin 0

[13b]

The fact that there should be a trace anomaly can
readily be inferred from a trace analog of the Pauli-
Villars regulator argument for the chiral anomaly
given in eqn [3a]. Letting j=41 be the scalar
current in abelian electrodynamics, one has

Hﬁ my emMU = m0i|m0 - M0i|M(, [13c]

Taking the vacuum to two-photon matrix element
of this equation, and imposing vector-current con-
servation, one finds that the matrix element
. . . | 5\
(O[f[p,[7y) is proportional to My (O|Fx\F*7|y7) y,
for a large regulator mass, and so makes a
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nonvanishing contribution to the right-hand side of
eqn [13c], giving the lowest-order trace anomaly.
Unlike the chiral anomaly, the trace anomaly is
renormalized in higher orders of perturbation
theory; heuristically, the reason is that whereas
boson field regulators do not affect the chiral
symmetry properties of a gauge theory (which are
determined just by the fermionic terms in the
Lagrangian), they do alter the energy-momentum
tensor, since gravitation couples to all fields, includ-
ing regulator fields. An analysis using the Callan—
Symanzik equations shows, however, that the trace
anomaly is computable to all orders in terms of
various renormalization group functions of the
coupling. For example, in abelian electrodynamics,
defining B(a) and §(«) by B(a) = (m/a)da/Om and
1+ 8(a) = (m/my)Omg/Om, the trace of the energy—
momentum tensor is given to all orders by

0 = [+ 8(a)]motp + § B(@)N[F\F] + -+ [14]

with N[ | specifying conditions that make the division
into two terms in eqn [14] unique, and with the
ellipsis --- indicating terms that vanish by the equa-
tions of motion. A similar relation holds in the
nonabelian case, again with the 3 function appearing
as the coefficient of the anomalous tr N[F,,F\?] term.

Just as in the chiral anomaly case, when spin-0,
spin-1/2, or spin-1 fields propagate on a background
spacetime, there are curvature-dependent contribu-
tions to the trace anomaly, in other words, gravita-
tional anomalies. These typically take the form of
complicated linear combinations of terms of the
form R, R, R", R, R, R, with coefficients
depending on the matter fields involved.

In supersymmetric theories, the axial-vector current
and the energy-momentum tensor are both
components of the supercurrent, and so their anoma-
lies imply the existence of corresponding supercurrent
anomalies. The issue of how the nonrenormalization
of chiral anomalies (which have a supercurrent
generalization given by the Konishi anomaly), and
the renormalization of trace anomalies, can coexist in
supersymmetric theories originally engendered con-
siderable confusion. This apparent puzzle is now
understood in the context of a perturbatively exact
expression for the 3 function in supersymmetric field
theories (the so-called NSVZ, for Novikov, Shifman,
Vainshtein, and Zakharov, 3 function). Supersymme-
try anomalies can be used to infer the structure of
effective actions in supersymmetric theories, and these
in turn have important implications for possibilities
for dynamical supersymmetry breaking. Anomalies
may also play a role, through anomaly mediation, in
communicating supersymmetry breaking in “hidden

sectors” of a theory, which do not contain the physical
fields that we directly observe, to the “physical sector”
containing the observed fields.

Further Anomaly Topics

The above discussion has focused on some of the
principal features and applications of anomalies.
There are further topics of interest in the physics and
mathematics of anomalies that are discussed in
detail in the references cited in the “Further reading”
section. We briefly describe a few of them here.

Anomalies in Other Spacetime Dimensions
and in String Theory

The focus above has been on anomalies in four-
dimensional spacetime, but anomalies of various
types occur both in lower-dimensional quantum
field theories (such as theories in two- and three-
dimensional spacetimes) and in quantum field the-
ories in higher-dimensional spacetimes (such as N=1
supergravity in ten-dimensional spacetime). Anoma-
lies also play an important role in the formulation
and consistency of string theory. The bosonic string is
consistent only in 26-dimensional spacetime, and the
analogous supersymmetric string only in ten-dimen-
sional spacetime, because in other dimensions both
these theories violate Lorentz invariance after quanti-
zation. In the Polyakov path-integral formulation of
these string theories, these special dimensions are
associated with the cancellation of the Weyl anomaly,
which is the relevant form of the trace anomaly
discussed above. Yang-Mills, gravitational, and
mixed Yang-Mills gravitational anomalies make an
appearance both in N=1 ten-dimensional super-
gravity and in superstring theory, and again special
dimensions play a role. In these theories, only when
the associated internal symmetry groups are either
SO(32) or Eg x Eg is elimination of all anomalies
possible, by cancellation of hexagon-diagram anoma-
lies with anomalous tree diagrams involving
exchange of a massless antisymmetric two-form
field. This mechanism, due to Green and Schwarz,
requires the factorization of a sixth-order trace
invariant that appears in the hexagon anomaly in
terms of lower-order invariants, as well as two
numerical conditions on the adjoint representation
generator structure, restricting the allowed gauge
groups to the two noted above.

Covariant versus Consistent Anomalies;
Descent Equations

The nonabelian anomaly of eqns [4a] and [4b] is
called the “consistent anomaly,” because it obeys the
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Wess—Zumino consistency conditions of eqn [12c].
This anomaly, however, is not gauge covariant, as can
be seen from the fact that it involves not only the
Yang-Mills field strengths Fj,, but the potentials
Vi, A* as well. It turns out to be possible, by adding
appropriate polynomials to the currents, to transform
the consistent anomaly to a form, called the “covariant
anomaly,” which is gauge covariant under gauge
transformations of the potentials V#, A*. This anom-
aly, however, does not obey the Wess—Zumino
consistency conditions, and cannot be obtained from
variation of an effective action functional.

The consistent anomalies (but not the covariant
anomalies) obey a remarkable set of relations, called
the Stora—Zumino descent equations, which relate
the abelian anomaly in 2% + 2 spacetime dimensions
to the nonabelian anomaly in 27 spacetime dimen-
sions. This set of equations has been interpreted
physically by Callan and Harvey as reflecting the
fact that the Dirac equation has chiral zero modes in
the presence of strings in 27 + 2 dimensions and of
domain walls in 27 + 1 dimensions.

Anomalies and Fermion Doubling in Lattice
Gauge Theories

A longstanding problem in lattice formulations of
gauge field theories is that when fermions are
introduced on the lattice, the process of discretization
introduces an undesirable doubling of the fermion
particle modes. In particular, when an attempt is made
to put chiral gauge theories, such as the electroweak
theory, on the lattice, one finds that the doublers
eliminate the chiral anomalies, by cancellation between
modes with positive and negative axial-vector charge.
Thus, for a long time, it appeared doubtful whether
chiral gauge theories could be simulated on the lattice.
However, recent work has led to formulations of lattice
fermions that use a mathematical analog of a domain
wall to successfully incorporate chiral fermions and the
chiral anomaly into lattice gauge theory calculations.

Relation of Anomalies to the Atiyah-Singer
Index Theorem

The singlet (A% =1) anomaly of eqn [4b] is closely
related to the Atiyah-Singer index theorem. Specifi-
cally, the Euclidean spacetime integral of the singlet
anomaly constructed from a gauge field can be
shown to give the index of the related Dirac
operator for a fermion moving in that background
gauge field, where the index is defined as the
difference between the numbers of right- and left-
handed zero-eigenvalue normalizable solutions of
the Dirac equation. Since the index is a topological
invariant, this again implies that the Euclidean

spacetime integral of the anomaly is a topological
invariant, as noted above in our discussion of
instanton-related applications of anomalies.

Retrospect

The wide range of implications of anomalies has
surprised — even astonished — the founders of the
subject. New anomaly applications have appeared
within the last few years, and very likely the future
will see continued growth of the area of quantum
field theory concerned with the physics and mathe-
matics of anomalies.
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Introduction

The central objective in the study of quantum chaos
is to characterize universal properties of quantum
systems that reflect the regular or chaotic features of
the underlying classical dynamics. Most develop-
ments of the past 25 years have been influenced by
the pioneering models on statistical properties of
eigenstates (Berry 1977) and energy levels (Berry
and Tabor 1977, Bohigas et al. 1984). Arithmetic
quantum chaos (AQC) refers to the investigation of
quantum systems with additional arithmetic struc-
tures that allow a significantly more extensive
analysis than is generally possible. On the other
hand, the special number-theoretic features also
render these systems nongeneric, and thus some of
the expected universal phenomena fail to emerge.
Important examples of such systems include the
modular surface and linear automorphisms of tori
(“cat maps”) which will be described below.

The geodesic motion of a point particle on a
compact Riemannian surface M of constant nega-
tive curvature is the prime example of an Anosov
flow, one of the strongest characterizations of
dynamical chaos. The corresponding quantum
eigenstates ¢; and energy levels ); are given by the
solution of the eigenvalue problem for the Laplace—
Beltrami operator A (or Laplacian for short)

(A+Ne=0,  el2m =1 1]
where the eigenvalues
MN=0<M << > 2]
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form a discrete spectrum with an asymptotic density
governed by Weyl’s law

iy <ap~ AL L
47
We rescale the sequence by setting
Area(I'\IH)
Xi=—7 A [4]

which yields a sequence of asymptotic density 1.
One of the central conjectures in AQC says that, if
M is an arithmetic hyperbolic surface (see the next
section for examples of this very special class of
surfaces of constant negative curvature), the eigen-
values of the Laplacian have the same local
statistical properties as independent random vari-
ables from a Poisson process (see, e.g., the surveys by
Sarnak (1995) and Bogomolny et al. (1997)). This
means that the probability of finding k eigenvalues X;
in randomly shifted interval [X,X + L] of fixed
length L is distributed according to the Poisson law
LkeL/k!. The gaps between eigenvalues have an
exponential distribution,

1 b
NN X=X elab)— [ evds 5

as N — oo, and thus eigenvalues are likely to appear
in clusters. This is in contrast to the general
expectation that the energy level statistics of generic
chaotic systems follow the distributions of random
matrix ensembles; Poisson statistics are usually
associated with quantized integrable systems.
Although we are at present far from a proof of [5],
the deviation from random matrix theory is well
understood (see the section “Eigenvalue statistics
and Selberg trace formula”).

Highly excited quantum eigenstates ;j(j — 00)
(cf. Figure 1) of chaotic systems are conjectured to
behave locally like random wave solutions of [1],
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Figure 1 Image of the absolute-value-squared of an eigenfunc-
tion ¢;(z) for a nonarithmetic surface of genus 2. The surface is
obtained by identifying opposite sides of the fundamental region.
Reproduced from Aurich and Steiner (1993) Statistical properties of
highly excited quantum eigenstates of a strongly chaotic system.
Physica D 64(1-3): 185-214, with permission from R Aurich.

where boundary conditions are ignored. This
hypothesis was put forward by Berry in 1977 and
tested numerically, for example, in the case of
certain arithmetic and nonarithmetic surfaces of
constant negative curvature (Hejhal and Rackner
1992, Aurich and Steiner 1993). One of the
implications is that eigenstates should have uniform
mass on the surface M, that is, for any bounded
continuous function g: M — R

/wgdAa/gdA, im0 6]
M M

where dA is the Riemannian area element on M.
This phenomenon, referred to as quantum unique
ergodicity (QUE), is expected to hold for general
surfaces of negative curvature, according to a
conjecture by Rudnick and Sarnak (1994). In the
case of arithmetic hyperbolic surfaces, there has
been substantial progress on this conjecture in the
works of Lindenstrauss, Watson, and Luo-Sarnak
(discussed later in this article; see also the review by
Sarnak (2003)). For general manifolds with ergodic
geodesic flow, the convergence in [6] is so far
established only for subsequences of eigenfunctions
of density 1 (Schnirelman—Zelditch—Colin de Verdiere
theorem, see Quantum Ergodicity and Mixing of
Eigenfunctions), and it cannot be ruled out that
exceptional subsequences of eigenfunctions have
singular limit, for example, localized on closed
geodesics. Such “scarring” of eigenfunctions, at least
in some weak form, has been suggested by numerical
experiments in Euclidean domains, and the existence
of singular quantum limits is a matter of controversy

in the current physics and mathematics literature. A
first rigorous proof of the existence of scarred
eigenstates has recently been established in the case
of quantized toral automorphisms. Remarkably,
these quantum cat maps may also exhibit QUE. A
more detailed account of results for these maps is
given in the section “Quantum eigenstates of cat
maps”; see also Rudnick (2001) and De Bievre (to
appear).

There have been a number of other fruitful
interactions between quantum chaos and number
theory, in particular the connections of spectral
statistics of integrable quantum systems with the
value distribution properties of quadratic forms, and
analogies in the statistical behavior of energy levels
of chaotic systems and the zeros of the Riemann zeta
function. We refer the reader to Marklof (2006) and
Berry and Keating (1999), respectively, for informa-
tion on these topics.

Hyperbolic Surfaces

Let us begin with some basic notions of hyperbolic
geometry. The hyperbolic plane H may be abstractly
defined as the simply connected two-dimensional
Riemannian manifold with Gaussian curvature —1.
A convenient parametrization of H is provided by
the complex upper-half plane, $H={x+iy:x €

R,y >0}, with Riemannian line and volume
elements
2 2
g = STy, dxdy 7]
y y

respectively. The group of orientation-preserving
isometries of H is given by fractional linear
transformations

. az+b
—
cz+d

(‘: Z) € SL(2,R)

where SL(2,R) is the group of 2 x 2 matrices with
unit determinant. Since the matrices 1 and -1
represent the same transformation, the group of
orientation-preserving isometries can be identified
with PSL(2,R):=SL(2,R)/{£1}. A finite-volume
hyperbolic surface may now be represented as the
quotient T\H, where T" C PSL(2,IR) is a Fuchsian
group of the first kind. An arithmetic hyperbolic
surface (such as the modular surface) is obtained, if T
has, loosely speaking, some representation in 7 x n
matrices with integer coefficients, for some suitable 7.

‘ﬁ_)‘67

8]
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This is evident in the case of the modular surface,
where the fundamental group is the modular group

' =PSL(2,7)

{(:

N ¢

A fundamental domain for the action of the
modular group PSL(2,7) on & is the set

Z) € PSL(2,R): a,b,c,d € Z}/{il}

fPSL(Z,Z):{Zeﬁ:|z‘>1,—%<Rez<%} (9]

(see Figure 2). The modular group is generated by

the translation
UL
0 1 R

and the inversion

<(1) _é):z'—>—1/z

These generators identify sections of the boundary
of Fpsi2,7). By gluing the fundamental domain
along identified edges, we obtain a realization of the
modular surface, a noncompact surface with one
cusp at z— oo, and two conic singularities at z=1
and z=1/2 +iV3/2.

An interesting example of a compact arithmetic
surface is the “regular octagon,” a hyperbolic
surface of genus 2. Its fundamental domain is
shown in Figure 3 as a subset of the Poincaré disc
D={z € C:|z| <1}, which yields an alternative
parametrization of the hyperbolic plane H. In these
coordinates, the Riemannian line and volume
element read

4(dx? + dy? 4dx d
g2 = £ dy) - y2)27 dA=—"" (1]
(1—x%—9y%) (1 —x*—9v%)
y
T
-1 0 1 X

Figure 2 Fundamental domain of the modular group PSL(2, Z)
in the complex upper-half plane.

Figure 3 Fundamental domain of the regular octagon in the
Poincaré disk.

The group of orientation-preserving isometries is
now represented by PSU(1,1)=SU(1,1)/{%1},
where

SU(l,l):{(% g):a,ﬁec,|a|2—|ﬁ|2=1} [11]

acting on ® as above via fractional linear transfor-
mations. The fundamental group of the regular
octagon surface is the subgroup of all elements in
PSU(1,1) with coefficients of the form

a=k+IV2, B=m+nV2\/1+V2 [12]

where k,Il,m,n € 7][i], that is, Gaussian integers of
the form ki +iky,k1,kr, € Z. Note that not all
choices of k,l,m,n € Z[i] satisfy the condition
la)* = |8*=1. Since all elements v#1 of T' act
fix-point free on H, the surface T\H is smooth
without conic singularities.

In the following, we will restrict our attention to a
representative case, the modular surface with
' =PSL(2,7).

Eigenvalue Statistics and Selberg
Trace Formula

The statistical properties of the rescaled eigenvalues
X;j (cf. [4]) of the Laplacian can be characterized by
their distribution in small intervals

N, L)y:=#{j:x <X;<x+L} [13]

where x is uniformly distributed, say, in the
interval [X, 2X], X large. Numerical experiments
by Bogomolny, Georgeot, Giannoni, and Schmit,
as well as Bolte, Steil, and Steiner (see references in
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Bogomolny (1997)) suggest that the X; are asymp-
totically Poisson distributed:

Conjecture 1  For any bounded function g: Z~o — C
we have

1 2X
X/x gN

as T — oco.

o0 ka
(x,L)) dx—>2g —_— [14]

One may also consider larger intervals, where
L — o0 as X— 0. In this case, the assumption on
the independence of the X; predicts a central-limit
theorem. Weyl’s law [3] implies that the expectation
value is asymptotically, for T — oo,

2X

X /i N(x,L)dx ~ L [15]

This asymptotics holds for any sequence of L
bounded away from zero (e.g., L constant, or
L — o0).

Define the variance by

»2(X,L) = %/XZX(J\/'(x,L) —L)*dx  [16]

In view of the above conjecture, one expects
Y2 (X,L) ~ L in the limit X —o00,L/vX —0 (the
variance exhibits a less universal behavior in the
range L > /X (the notation A < B means there is a
constant ¢ > 0 such that A < ¢B), cf. Sarnak (1995),
and a central-limit theorem for the fluctuations
around the mean:

Conjecture 2 For any bounded function g: R —C

we have
2X L
X/ ( EZ V22(x, L) ) dx
— El g(t) e

as X, L —o00,L < X.

(1/2)2* 4y [17]

The main tool in the attempts to prove the above
conjectures has been the Selberg trace formula. It
relates sums over eigenvalues of the Laplacians to
sums over lengths of closed geodesics on the
hyperbolic surface. The trace formula is in its
simplest form in the case of compact hyperbolic
surfaces; we have

o0

> bl =

j=0

Area

/ h(p) tanh(mp)pdp

0, g(nt,)
- Z ZZsmh nk /2 [18]

YeEH, n=

where H, is the set of all primitive oriented closed
geodesics 7, and ¢, their lengths. The quantity p; is
related to the eigenvalue )\; by the equation \j = p,-2 +
1/4. The trace formula [18] holds for a large class of
even test functions h. For example, it is sufficient to
assume that 4 is infinitely differentiable, and that the

Fourier transform of b,

- /R h(p) e dp 19

has compact support. The trace formula for non-
compact surfaces has additional terms from the
parabolic elements in the corresponding group, and
includes also sums over the resonances of the
continuous part of the spectrum. The noncompact
modular surface behaves in many ways like a
compact surface. In particular, Selberg showed that
the number of eigenvalues embedded in the con-
tinuous spectrum satisfies the same Weyl law as in
the compact case (Sarnak 2003).
Setting

o) = xixe) (M50 (243)) 20

where x(x,x+1; is the characteristic function of the
interval [X,X + L], we may thus view AV(X,L) as
the left-hand side of the trace formula. The above
test function b is, however, not admissible, and
requires appropriate smoothing. Luo and Sarnak (cf.
Sarnak (2003)) developed an argument of this type
to obtain a lower bound on the average number
variance,

L

1/ $2(X, L) dL >>£2 21]
L Jo (log X)

in the regime vX/logX < L < VX, which is
consistent with the Poisson conjecture (X, L) ~ L.
Bogomolny, Levyraz, and Schmit suggested a remark-
able limiting formula for the two-point correlation
function for the modular surface (cf. Bogomolny
et al. (1997) and Bogomolny (2006)), based on an
analysis of the correlations between multiplicities of
lengths of closed geodesics. A rigorous analysis of the
fluctuations of multiplicities is given by Peter (cf.
Bogomolny (2006)). Rudnick (2005) has recently
established a smoothed version of Conjecture 2 in the
regime

vX - vX
—_ =
' Llog X

) 22]

where the characteristic function in [20] is replaced
by a certain class of smooth test functions.

All of the above approaches use the Selberg trace
formula, exploiting the particular properties of the
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distribution of lengths of closed geodesics in
arithmetic hyperbolic surfaces. These will be dis-
cussed in more detail in the next section, following
the work of Bogomolny, Georgeot, Giannoni and
Schmit, Bolte, and Luo and Sarnak (see Bogomolny
et al. (1997) and Sarnak (1995) for references).

Distribution of Lengths of Closed
Geodesics

The classical prime geodesic theorem asserts that the
number N(£) of primitive closed geodesics of length
less than ¢ is asymptotically

el

N(O) ~ = 23]

One of the significant geometrical characteristics of
arithmetic hyperbolic surfaces is that the number of
closed geodesics with the same length ¢ grows
exponentially with ¢. This phenomenon is most
easily explained in the case of the modular surface,
where the set of lengths ¢ appearing in the lengths
spectrum is characterized by the condition

2cosh(€/2) = |tr | [24]

where ~ runs over all elements in SL(2, Z) with
[try| >2. It is not hard to see that any integer 7 > 2
appears in the set {|tr y]:y € SL(2, Z)}, and hence
the set of distinct lengths of closed geodesics is

L ={2 arcosh(n/2): n =3,4,5,...} [25]

Therefore, the number of distinct lengths less than ¢
is asymptotically (for large /)

N'(6) = #(£N[0,4) ~ e [26]

Equations [26] and [23] say that on average the
number of geodesics with the same lengths is at least
xe[/z/f.

The prime geodesic theorem [23] holds equally for
all hyperbolic surfaces with finite area, while [26] is
specific to the modular surface. For general arith-
metic surfaces, we have the upper bound

N'(¢) < ce'’? 27]

for some constant ¢ > 0 that may depend on the
surface. Although one expects N'(¢) to be asympto-
tic to (1/2)N(f) for generic surfaces (since most
geodesics have a time-reversal partner which thus
has the same length, and otherwise all lengths are
distinct), there are examples of nonarithmetic Hecke
triangles where numerical and heuristic arguments
suggest N'(£) ~ c1e! /¢ for suitable constants ¢; > 0
and 0<c;<1/2 (cf. Bogomolny (2006)). Hence

exponential degeneracy in the length spectrum seems
to occur in a weaker form also for nonarithmetic
surfaces.

A further useful property of the length spectrum
of arithmetic surfaces is the bounded clustering
property: there is a constant C (again surface
dependent) such that

#(LN[ee+1)<C 28]

for all ¢. This fact is evident in the case of the

modular surface; the general case is proved by Luo
and Sarnak (cf. Sarnak (1995)).

Quantum Unique Ergodicity

The unit tangent bundle of a hyperbolic surface T'\IH
describes the physical phase space on which the
classical dynamics takes place. A convenient para-
metrization of the unit tangent bundle is given by
the quotient I'\PSL(2, R — this may be seen be means
of the Iwasawa decomposition for an element
g € PSL(2, R),

B 1 x yl/2 0
£ o 1)\ oy

x( co.59/2 sin9/2> 29)
—sinf/2 cosf/2

where x +iy € §) represents the position of the
particle in T\H in half-plane coordinates, and 6 €
[0,27) the direction of its velocity. Multiplying the
matrix [29] from the left by (¢%) and writing the
result again in the Iwasawa form [29], one obtains
the action

b
(z,8) (Z’; I 50— 2arg(cz + d)) [30]
which represents precisely the geometric action of
isometries on the unit tangent bundle.

The geodesic flow ®' on T'\PSL(2, R) is repre-
sented by the right translation

t/2 0
fl)t:I‘g>—>Fg<eO et/2> [31]

The Haar measure p on PSL(2, R) is thus trivially
invariant under the geodesic flow. It is well known
that g is not the only invariant measure, that is, ®* is
not uniquely ergodic, and that there is in fact an
abundance of invariant measures. The simplest
examples are those with uniform mass on one, or a
countable collection of, closed geodesics.

To test the distribution of an eigenfunction
¢; in phase space, one associates with a function
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a € C(I'\PSL(2, R)) the quantum observable
Op(a), a zeroth order pseudodifferential operator
with principal symbol a. Using semiclassical tech-
niques based on Friedrich’s symmetrization, one
can show that the matrix element

vi(a) = (Op(a)g;, ;) 32]

is asymptotic (as j— oo) to a positive functional
that  defines a  probability measure on
I'\PSL(2, R). Therefore, if M is compact, any
weak limit of v; represents a probability measure
on I'\PSL(2, R). Egorov’s theorem (see Quantum
Ergodicity and Mixing of Eigenfunctions) in turn
implies that any such limit must be invariant
under the geodesic flow, and the main challenge
in proving QUE is to rule out all invariant
measures apart from Haar.

Conjecture 3 (Rudnick and Sarnak (1994); see
Sarnak (1995, 2003)). For every compact hyperbolic
surface I'\IH, the sequence v; converges weakly to p.

Lindenstrauss has proved this conjecture for
compact arithmetic hyperbolic surfaces of congru-
ence type (such as the second example in the section
“Hyperbolic surfaces”) for special bases of eigen-
functions, using ergodic-theoretic methods. These
will be discussed in more detail in the next section.
His results extend to the noncompact case, that is, to
the modular surface where I'=PSL(2, Z). Here he
shows that any weak limit of subsequences of v; is
of the form cu, where c is a constant with values in
[0,1]. One believes that ¢=1, but with present
techniques it cannot be ruled out that a proportion
of the mass of the eigenfunction escapes into the
noncompact cusp of the surface. For the modular
surface, c =1 can be proved under the assumption of
the generalized Riemann hypothesis (see the section
“Figenfunctions and L-functions” and Sarnak
(2003)). QUE also holds for the continuous part of
the spectrum, which is furnished by the Eisenstein
series E(z,s), where s=1/2+ir is the spectral
parameter. Note that the measures associated with
the matrix elements

v,(a) = (Op(a)E(,1/2 +ir), E(-,1/2 +ir))  [33]

are not probability measures but only Radon
measures, since E(z,s) is not square-integrable. Luo
and Sarnak, and Jakobson have shown that

) )
Hv(B) () 134

for suitable test functions a,b € C*(T'\PSL(2,R))
(cf. Sarnak (2003)).

Hecke Operators, Entropy
and Measure Rigidity

For compact surfaces, the sequence of probability
measures approaching the matrix elements v; is
relatively compact. That is, every infinite sequence
contains a convergent subsequence. Lindenstrauss’
central idea in the proof of QUE is to exploit the
presence of Hecke operators to understand the
invariance properties of possible quantum limits.
We will sketch his argument in the case of the
modular surface (ignoring issues related to the non-
compactness of the surface), where it is most
transparent.

For every positive integer 7, the Hecke operator
T, acting on continuous functions on I'\H with
I'=SL(2,7) is defined by

1 L laz+ b
Tnf(z)_\/—ﬁa;; ( = ) 35]
ad=n

The set M,, of matrices with integer coefficients and
determinant 7 can be expressed as the disjoint union

M, = U Ur(g Z) 36]

and hence the sum in [35] can be viewed as a sum
over the cosets in this decomposition. We note the
product formula

Tm Tn = Z Tmn/dz [37}
d|ged(m,n)

The Hecke operators are normal, form a com-
muting family, and in addition they commute with
the Laplacian A. In the following, we consider an
orthonormal basis of eigenfunctions ¢; of A that
are simultaneously eigenfunctions of all Hecke
operators. We will refer to such eigenfunctions as
Hecke eigenfunctions. The above assumption is
automatically satisfied, if the spectrum of A is
simple (i.e., no eigenvalues coincide), a property
conjectured by Cartier and supported by numerical
computations. Lindenstrauss’ work is based on the
following two observations. Firstly, all quantum
limits of Hecke eigenfunctions are geodesic-flow
invariant measures of positive entropy, and sec-
ondly, the only such measure of positive entropy
that is recurrent under Hecke correspondences is
the Lebesgue measure.

The first property is proved by Bourgain and
Lindenstrauss (2003) and refines arguments of
Rudnick and Sarnak (1994) and Wolpert (2001) on
the distribution of Hecke points (see Sarnak (2003) for
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references to these papers). For a given point z € H
the set of Hecke points is defined as

Tu(z) == M,z [38]

For most primes, the set T,k (z) comprises (p+ 1)
pk=! distinct points on T'\H. For each z, the Hecke
operator T, may now be interpreted as the
adjacency matrix for a finite graph embedded in
I'\H, whose vertices are the Hecke points T,(z).
Hecke eigenfunctions ¢; with

Tupj = Aj(n)g; 39]

give rise to eigenfunctions of the adjacency matrix.
Exploiting this fact, Bourgain and Lindenstrauss
show that for a large set of integers n

PR < D lpiw)? [40]

weT,(z)

that is, pointwise values of |g0,-|2 cannot be substan-
tially larger than its sum over Hecke points. This,
and the observation that Hecke points for a large set
of integers n are sufficiently uniformly distributed
on I'\H as n— oo, yields the estimate of positive
entropy with a quantitative lower bound.
Lindenstrauss’ proof of the second property,
which shows that Lebesgue measure is the only
quantum limit of Hecke eigenfunctions, is a result of
a currently very active branch of ergodic theory:
measure rigidity. Invariance under the geodesic flow
alone is not sufficient to rule out other possible limit
measures. In fact, there are uncountably many
measures with this property. As limits of Hecke
eigenfunctions, all quantum limits possess an addi-
tional property, namely recurrence under Hecke
correspondences. Since the explanation of these is
rather involved, let us recall an analogous result in a
simpler setup. The map x2:x+— 2xmod 1 defines a
hyperbolic dynamical system on the unit circle with
a wealth of invariant measures, similar to the case of
the geodesic flow on a surface of negative curvature.
Furstenberg conjectured that, up to trivial invariant
measures that are localized on finitely many rational
points, Lebesgue measure is the only x2-invariant
measure that is also invariant under action of
x3:x—3xmod1. This fundamental problem is
still unsolved and one of the central conjectures in
measure rigidity. Rudolph, however, showed that
Furstenberg’s conjecture is true if one restricts the
statement to x2-invariant measures of positive
entropy (cf. Lindenstrauss (to appear)). In Linden-
strauss’ work, x2 plays the role of the geodesic
flow, and x 3 the role of the Hecke correspondences.
Although here it might also be interesting to ask
whether an analog of Furstenberg’s conjecture

holds, it is inessential for the proof of QUE due to
the positive entropy of quantum limits discussed in
the previous paragraph.

Eigenfunctions and L-Functions

An even eigenfunction ¢;j(z) for I'=SL(2,7) has the
Fourier expansion

Z 1/2K1,, (27ny) cos(2mnx)  [41]
n=1
We associate with ¢;j(z) the Dirichlet series

o0

= aimn* [42]

n=1

L(S,(p/')

which converges for Re s large enough. These series
have an analytic continuation to the entire complex
plane C and satisfy a functional equation,

Als, ) = A(1 = s, ;) [43]

where
e[S +ip; s—1ip;
A(s,p) =7 r( zp’)r( 2p7>L(s,<pj) [44]

If ¢j(z) is in addition an eigenfunction of all Hecke
operators, then the Fourier coefficients in fact
coincide (up to a normalization constant) with the
eigenvalues of the Hecke operators

aj(m) = \(m)a;(1) [45]

If we normalize aj(1) =1, the Hecke relations [37]
result in an Euler product formula for the
L-function,

[T @ —a@p—+p"%)"  [4¢]

p prime

L(S750/) -

These L-functions behave in many other ways like
the Riemann zeta or classical Dirichlet L-functions.
In particular, they are expected to satisfy a Riemann
hypothesis, that is, all nontrivial zeros are con-
strained to the critical line Ims=1/2.

Questions on the distribution of Hecke eigenfunc-
tions, such as QUE or value distribution properties,
can now be translated to analytic properties of
L-functions. We will discuss two examples.

The asymptotics in [6] can be established
by proving [6] for the choices g=¢p, k=1,2,...,
that is,

/ oiPordA —0 47]
M
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Watson discovered the remarkable relation (Sarnak

2003)

l/ P PP dA
M

— 7T4A(%7(pil X QO/Z X @/3) [48]
A(L Syngoil )A(la Symchfz)A(L Syngofs)

2

The L-functions A(s,g) in Watson’s formula are
more advanced cousins of those introduced earlier
(see Sarnak (2003) for details). The Riemann
hypothesis for such L-functions then implies, via
[48], a precise rate of convergence to QUE for the
modular surface,

/M i gdA = /M gdA+ OV 9]

for any ¢ > 0, where the implied constant depends

on € and g.
A second example on the connection between
statistical properties of the matrix elements

vi(a) = (Opl(a)y;j, ¢j) (for fixed a and random /) and
values L-functions has appeared in the work of Luo
and Sarnak (cf. Sarnak (2003)). Define the variance

Vi(a) = ﬁgw(d) - M(ﬂ)|2 [50]

with N(X) =#{j: \; < A}; cf. [3]. Following a conjec-
ture by Feingold-Peres and Eckhardt et al. (see Sarnak
(2003) for references) for “generic” quantum chaotic
systems, one expects a central-limit theorem for the
statistical fluctuations of the v;(a), where the normal-
ized variance N(\)'*V,(a) is asymptotic to the
classical autocorrelation function C(a), see eqn [54].

Conjecture 4 For any bounded function g: R —C

we have
1 y(a) - pua)
N<A>§g< Va(a) )
B % / (e dy [51]
as A — oo.

Luo and Sarnak prove that in the case of the
modular surface the variance has the asymptotics

lim N()\)"*V,(a) = (Ba, a) [52]

A—00

where B is a non-negative self-adjoint operator
which commutes with the Laplacian A and all
Hecke operators T,,. In particular, we have

By =1L, ¢;)Clp))p; (53]

where

Cla) = /R / i @ @) de (54

is the classical autocorrelation function for the
geodesic flow with respect to the observable a
(Sarnak 2003). Up to the arithmetic factor
(1/2)L(1/2,¢;j), eqn [53] is consistent with the
Feingold-Peres prediction for the variance of generic
chaotic systems. Furthermore, recent estimates of
moments by Rudnick and Soundararajan (2005)
indicate that Conjecture 4 is not valid in the case of
the modular surface.

Quantum Eigenstates of Cat Maps

Cat maps are probably the simplest area-preserving
maps on a compact surface that are highly chaotic.
They are defined as linear automorphisms on the
torus T? =R? /72,

Dy T2 -T2 [55]

where a point & € R*(modZ?*) is mapped to
A¢(modZ?); A is a fixed matrix in GL(2,7) with
eigenvalues off the unit circle (this guarantees
hyperbolicity). We view the torus T2 as a symplectic
manifold, the phase space of the dynamical system.
Since T? is compact, the Hilbert space of quantum
states is an N-dimensional vector space Hy, N
integer. The semiclassical limit, or limit of small
wavelengths, corresponds here to N — co.

It is convenient to identify Hy with L*(Z/NZ),
with the inner product

(Y1, 42) :%

S 0(QE(0) 56

QO mod N

For any smooth function f e C*(T?), define a
quantum observable

Opx(f) = Y F(m)Tn(n)
ne%z

where f(n) are the Fourier coefficients of f, and
Tn(n) are translation operators

Tn(n) = emmm/Ngn g [57]

11¢](Q) = ¥(Q + 1)
[19](Q) = e/Ny(Q)

The operators Opy(a) are the analogs of the
pseudodifferential operators discussed in the section
“Quantum unique ergodicity.”

(58]
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A quantization of ®, is a unitary operator Un(A)
on L*(7/NZ) satisfying the equation
Un(A) ™ Opn(f)Un(A) = Opy(fo@4)  [59]

for all f € C*(T?). There are explicit formulas for
Un(A) when A is in the group

r:{(‘c‘ Z)eSL(Z,Z):abEchOmodZ} [60]

These may be viewed as analogs of the Shale-Weil
or metaplectic representation for SL(2). for example,
the quantization of

A<§ ;) 61]

yields
UN(AW(Q) =N S exp | (2
O'mod N
00+ Qﬂ)} HQ) 62]

In analogy with [1], we are interested in the
statistical features of the eigenvalues and eigenfunc-
tions of Un(A), that is, the solutions to

Un(A)p = Ap, ||<P||L2(Z/NZ) =1 [63]

Unlike typical quantum-chaotic maps, the statistics
of the N eigenvalues

ANT: AN2s - - -5 AN € S [64]

do not follow the distributions of unitary random
matrices in the limit N — oo, but are rather singular
(Keating 1991). In analogy with the Selberg trace
formula for hyperbolic surfaces [18], there is an
exact trace formula relating sums over eigenvalues
of Un(A) with sums over fixed points of the classical
map (Keating 1991).

As in the case of arithmetic surfaces, the eigenfunc-
tions of cat maps appear to behave more generically.
The analog of the Schnirelman—Zelditch—Colin de
Verdiére theorem states that, for any orthonormal
basis of eigenfunctions {gaN,-}IN: ; we have, for all

f e Cx(T?),

Op(fionon) = [ FOd [65)

as N — oo, for all j in an index set [y of full density,
that is, #Jn ~ N. Kurlberg and Rudnick (see
Rudnick (2001)) have characterized special bases of
eigenfunctions {SON/‘},N:1 (termed Hecke eigenbases,
in analogy with arithmetic surfaces) for which QUE
holds, generalizing earlier work of Degli Esposti,

Graffi, and Isola (1995). That is, [65] holds for all
j=1,...,N. Rudnick and Kurlberg, and more
recently Gurevich and Hadani, have established
results on the rate of convergence analogous to
[49]. These results are unconditional. Gurevich and
Hadani use methods from algebraic geometry based
on those developed by Deligne in his proof of the
Weil conjectures (an analog of the Riemann hypoth-
esis for finite fields).

In the case of quantum-cat maps, there are values
of N for which the number of coinciding eigenvalues
can be large, a major difference to what is expected
for the modular surface. Linear combinations of
eigenstates with the same eigenvalue are as well
eigenstates, and may lead to different quantum
limits. Indeed, Faure, Nonnenmacher, and De Bievre
(see De Bievre (to appear)) have shown that there
are subsequences of values of N, so that, for all

f e C¥(T?),
Op(fhonyon) = 5 | Fd+5£0) 6]

that is, half of the mass of the quantum limit
localizes on the hyperbolic fixed point of the map.
This is the first, and to date the only, rigorous result
concerning the existence of scarred eigenfunctions in
systems with chaotic classical limit.
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Introduction

A major motivation for studying the asymptotic
structure of spacetimes has been the need for a
rigorous description of what should be understood by
an “isolated system” in Einstein’s theory of gravity.
As an example, consider a gravitating system some-
where in our universe (e.g., a galaxy, a cluster of
galaxies, a binary system, or a star) evolving accord-
ing to its own gravitational interaction, and possibly
reacting to gravitational radiation impinging on it
from the outside. Thereby it will emit gravitational
radiation. We are interested in describing these waves
because they provide us with important information
about the physics governing the system.

To adequately describe this situation, we need to
idealize the real situation in an appropriate way, since
it is hopeless to try to analyze the behavior of the
system in its interaction with the rest of the universe.
We are mainly interested in the behavior of the
system, and not so much in other processes taking
place at large distances from the system. Since we
would like to ignore those regions, we need a way to
isolate the system from their influence.

The notion of an isolated system allows us to
select individual subsystems of the universe and
describe their properties regardless of the rest of the
universe so that we can assign to each subsystem
such physical attributes as its energy—-momentum,
angular momentum, or its emitted radiation field.
Without this notion, we would always have to take
into account the interaction of the system with its
environment in full detail.

In general relativity (GR) it turns out to be a rather
difficult task to describe an isolated system and the
reason is — as always in Einstein’s theory — the fact
that the metric acts both as the physical field and as

the background. In other theories, like electrody-
namics, the physical field, such as the Maxwell field,
is very different from the background field, the flat
metric of Minkowski space. The fact that the metric
in GR plays a dual role makes it difficult to extract
physical meaning from the metric because there is no
nondynamical reference point.

Imagine a system alone in the universe. As we
recede from the system we would expect its influence
to decrease. So we expect that the spacetime which
models this situation mathematically will resemble
the flat Minkowski spacetime and it will approximate
it even better the farther away we go. This implies
that one needs to impose fall-off conditions for the
curvature and that the manifold will be asymptoti-
cally flat in an appropriate sense. However, there is
the problem that fall-off conditions necessarily imply
the use of coordinates and it is awkward to decide
which coordinates should be “good ones.” Thus, it is
not clear whether the notion of an asymptotically flat
spacetime is an invariant concept.

What is needed, therefore, is an invariant defini-
tion of asymptotically flat spacetimes. The key
observation in this context is that “infinity” is far
away with respect to the spacetime metric. This
means that geodesics heading away from the system
should be able to “run forever,” that is, be defined
for arbitrary values of their affine parameter s.
“Infinity” will be reached for s— oc. However,
suppose we do not use the spacetime metric g but a
metric & which is scaled down with respect to g, that
is, in such a way that §=0?g for some function .
Then it might be possible to arrange €2 in such a way
that geodesics for the metric g cover the same events
(strictly speaking, this holds only for null geodesics,
but this is irrelevant for the present plausibility
argument) as those for the metric g yet that their
affine parameter s (which is also scaled down with
respect to s) approaches a finite value $y for s — oo.
Then we could attach a boundary to the spacetime
manifold consisting of all the limit points corre-
sponding to the events with $ =3y on the g-geodesics.
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This boundary would have to be interpreted as
“infinity” for the spacetime because it takes infinitely
long for the g-geodesics to get there.

We arrived at this idea of attaching a boundary by
considering the metric structure only “up to arbi-
trary scaling,” that is, by looking at metrics which
differ only by a factor. This is the conformal
structure of the spacetime manifold in question. By
considering the spacetime only from the point of
view of its conformal structure we obtain a picture
of the spacetime which is essentially finite but which
leaves its causal properties unchanged, and hence in
particular the properties of wave propagation. This
is exactly what is needed for a rigorous treatment of
radiation emitted by the system.

Infinity for Minkowski Spacetime

The above discussion suggests that we should consider
the spacetime metric only up to scale, that is,
to focus on the conformal structure of the spacetime
in question. Since we are interested in systems which
approach Minkowski spacetime at large distances
from the source, it is illuminating to study Minkowski
spacetime as a preliminary example. So consider the
manifold M =R* equipped with the flat metric

g=dt* —dr* — r*do? 1]

where 7 is the standard radial coordinate defined by
?=x*+y*+2* and

do? = d6? + sin® d¢?
is the standard metric on the unit sphere $%. We now
introduce retarded and advanced time coordinates,

which are adapted to the null cone and hence to the
conformal structure of g by the definition

u=t-—r, v=t+r

and obtain the metric in the form
g=dudv—L(v—u)do?

The coordinates # and v both take arbitrary real values
but they are restricted by the relation v — u=2r > 0.
In order to see what happens “at infinity,” we introduce
the coordinates U and V by the relations

u = tan U, v=tan V

Then U and V both take values in the open interval
(=7/2,7/2) with V> U and the metric is trans-
formed to

1

- - _inl (VY _
g= 4COSZUCOSZV[4dUdV sin®(V — U)do?| [2]

Clearly, the metric is undefined at events with
cosU=0 or cos V=0. These would correspond to
events with # = +00 or v= +o0 which do not lie in
M. However, by defining the function

Q=2cosUcosV
we find that the metric g =0?g with
g =4dUdV —sin*(V — U)do? 3]

is conformally equivalent to g and is regular for all
values of U and V (keeping V > U). In fact, by
defining the coordinates

T=V+U, R=V-U
this metric takes the form
g =dT? — dR? —sin* Rdo? 4]

the metric of the static Einstein universe E. Thus, we
may regard the Minkowski spacetime as the part of
the Einstein cylinder defined by restricting the
coordinates T and R to the region |T|+ R < 7 as
illustrated in Figure 1. Although M can be considered
as being diffeomorphic to the shaded part in Figure 1,
these two manifolds are not isometric. This is obvious
from considering the properties of the events lying on

Figure 1 The embedding of Minkowski spacetime into the
Einstein cylinder.
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the boundary OM of M in E. Fix a point P inside M
and follow a null geodesic with respect to the metric g
from P toward the future. It will intersect OM after a
finite amount of its affine parameter has elapsed.
When we follow a null geodesic with respect to g
from P in the same direction, we find that it does not
reach OM for any value of its affine parameter. Thus,
the boundary is at infinity for the metric g but at a
finite location with respect to the metric g. When we
consider all possible kinds of geodesics for the metric g
we find that OM consists of five qualitatively different
pieces. The future pointing timelike geodesics all
approach the point it given by (T, R)=(mx,0), while
the past-pointing geodesics approach i~ with coordi-
nates (—m, 0). All spacelike geodesics come arbitrarily
close to a point i with coordinates (0, 7) (located on
the front of the cylinder in Figure 1). Null geodesics,
however, are different. For any point (T, 7 — |T|) with
T #0, 7 on OM there are g-null-geodesics which
come arbitrarily close.

In this sense, we may regard OM as consisting of
limit points obtained by tracing-geodesics for infi-
nite values of their affine parameters. According to
the causal character of the geodesics the set of their
respective limit points is called future/past timelike
infinity i, spacelike infinity i° or future/past null-
infinity, denoted by .»*. These two parts of null-
infinity are three-dimensional regular submanifolds
of the embedding manifold IE, while the points i*, i
are regular points in E in the sense that the metric g
is regular there. This is not automatic, considering
the fact that infinitely many geodesics converge to a
single point. However, the flatness of Minkowski
spacetime guarantees that the geodesics approach at
just the appropriate rate for the limit points to be
regular.

This example shows that the structure of the
boundary is determined entirely by the metric g of
Minkowski spacetime. If we had chosen a different
function ' =wQ with w >0 then we would not
have obtained the Einstein cylinder but some
different Lorentzian manifold (M’,g’). Yet, the
boundary of M in M’ would have had the same
properties.

Asymptotically Flat Spacetimes

The physical idea of an isolated system is captured
mathematically by an asymptotically flat space-
time. Since such a spacetime M is expected to
approach Minkowski spacetime asymptotically,
the asymptotic structure of M is also expected to
be similar to that of M. This expectation is
expressed in

Definition 1 A spacetime (M, g,;,) is called “asymp-
totically simple” if there exists a manifold-with-
boundary M with metric g,, and scalar field 2 on
M and boundary Z=0M such that the following
conditions hold:

1. M is the interior of M: M =int M;

2. G :ngah on M;

3. Q and g,, are smooth on all of M;

4. Q>0o0on M;Q=0,V,Q # 0 on .7; and

5. each null geodesic acquires both future and past
endpoints on .7,

This definition formalizes the construction which
was explicitly performed above, by which one
attaches a regular (nonempty) boundary to a space-
time after suitably rescaling its metric. Asymptoti-
cally simple spacetimes are exactly those for which
this process of conformal compactification is possi-
ble. The purpose of condition 5 is to exclude
pathological cases. There are spacetimes which do
not satisfy this condition (e.g., the Schwarzschild
spacetime, where some of the null geodesics enter
the event horizon and cannot escape to infinity).
Yet, one would like to include them as being
asymptotically simple in a sense, because they
clearly describe isolated systems. For these cases,
there exists the notion of weakly asymptotically
simple spacetimes.

In order to arrive at asymptotically flat space-
times, one needs to make certain assumptions about
the behavior of the curvature near the boundary,
thus:

Definition 2 An asymptotically simple spacetime is
called “asymptotically flat” if its Ricci tensor Ric|g]
vanishes in a neighborhood of ..

Note that this definition imposes a rather strong
restriction on the Ricci curvature; less restrictive
assumptions are possible. This condition applies
only near .. Thus, it is possible to consider
spacetimes which contain matter fields as long as
these fields do not extend to infinity.

Other asymptotically simple spacetimes which are
not asymptotically flat are the de Sitter and anti-de
Sitter spacetimes which are solutions of the Einstein
equations with nonvanishing cosmological constant \.
It is a simple consequence of the definition that
the boundary  is a regular three-dimensional
hypersurface of the embedding spacetime M which
is timelike, spacelike, or null depending on the sign
of A. In particular, for the Minkowski spacetime
(A=0) the boundary is necessarily a null hypersur-
face, as noted above.

The requirement that the
equations hold near .» has

vacuum Einstein
several important
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consequences. First, .» is a null hypersurface with
the special property of being shear-free. This means
that any cross section of a bundle of its null
generators does not suffer any distortions when
moved along the generators. Only expansion or
contraction can occur. The global structure of .~
is the same as the one from the example above.
Null infinity consists of two connected components,
%, each of which is diffeomorphic to $? x R. Thus,
topologically, .»* are cylinders. The cone-like
appearance as seen in Figure 1 is artificial. It
depends on the particular conformal factor 2 chosen
for the conformal compactification. Furthermore, it
is only in very exceptional cases that the metric g is
regular at ¥ or i*.

The most important consequence, however, con-
cerns the conformal Weyl tensor C%,.,. This is the
part of the full Riemann curvature tensor R?;.; which
is trace-free. It is invariant under conformal rescal-
ings of the metric. Thus, on M, C%,.; = C%,.y. When
the vanishing of the Ricci tensor near .7 is assumed
then it turns out that the Weyl tensor necessarily
vanishes on .7. This is the ultimate justification for
calling such manifolds asymptotically flat because the
entire curvature vanishes on 7.

Some Consequences

There are several consequences of the existence of
the conformal boundary .7. They all can be traced
back to the fact that this boundary can be used to
separate the geometric fields into a universal back-
ground field and dynamical fields which propagate
on it. The background is given by the boundary
points attached to an asymptotically flat spacetime
which always form a three-dimensional null hyper-
surface . with two connected components (in the
sequel, we restrict our attention to .» " only; v~ is
treated similarly), each with the topology of a
cylinder. And in each case, .7 is shear-free.

The BMS Group

Since the structure of null-infinity is universal over
all asymptotically flat spacetimes, it is obvious that
its symmetry group should also possess a universal
meaning. This group, the so-called Bondi-Metzner—
Sachs (BMS) group is in many respects similar to the
Poincaré group, the symmetry group of M. It is the
semidirect product of the Lorentz group with an
abelian group which, however, is not the four-
dimensional translation group but an infinite-dimen-
sional group of supertranslations. This group is a
normal subgroup, so the factor group is isomorphic
to the Lorentz group.

In physical terms, the supertranslations arise
because there are infinitely many directions from
which observers at infinity (whose world lines coincide
with the null generators of .# in a certain limit) can
observe the system and because each observer is free to
choose its own origin of proper time #. The observers
surrounding the system are not synchronized, because
under the assumptions made there is no natural way to
fix a unique common origin. Hence, a supertranslation
is a shift of the parameter along each null generator of
7+ corresponding to a change of origin for each
individual observer. It can be given as a map $* — R.
A choice of origin on each null generator of ./ is
referred to as a “cut” of .»*. It is a two-dimensional
surface of spherical topology which intersects each null
generator exactly once. It is an open question whether
one can always synchronize the observers by imposing
canonical conditions at i or i*, thereby reducing the
BMS group to the smaller Poincaré group.

The supertranslations contain a unique four-
dimensional normal subgroup. In M these special
supertranslations are the ones which are induced by
the translations of Minkowski spacetime in the
following way. Take the future light cone of some
event P and follow it out to .» 7, where its intersection
defines an origin for each observer located there.
Now consider the light cone of another event Q
obtained from P by a translation in a spatial
direction. Then the light emitted from Q will arrive
at .»T earlier than that from P for observers in the
direction of the translation, while it will be delayed
for observers in the opposite direction. This change
in arrival time defines a specific supertranslation.
Similarly, for a translation in a temporal direction,
the light from O will arrive later than that from P
for all observers. Thus, every translation in M
defines a particular supertranslation on .»*. These
can be characterized in a different way, which is
intrinsic to .» " and which can be used in the general
case even though there will be no Killing vectors
present in a general asymptotically flat spacetime. In
an appropriate coordinate system, the asymptotic
translations are given as linear combinations of the
first four spherical harmonics Yoo, Y10, Yi+1. The
space of asymptotic translations T is in a natural
way isometric to M.

The Peeling Property

Now consider the Weyl tensor C%,.; on M. Since it
vanishes on . where =0 we may form the
quotient

—1
K =0 Clheq
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which can be shown to be smooth on .*. The
physical interpretation of this tensor field is based
on the following properties. In source-free regions
the field satisfies the spin-2 zero-rest-mass equation

ﬁaKabcd =0

which is very similar to the Maxwell equations for
the electromagnetic (spin-1) Faraday tensor. Thus,
K%,.4 is interpreted as the gravitational field, which
describes the gravitational waves contained inside
the system. The zero-rest-mass equation for K%,
and the fact that the field is smooth on .7 implies that
the Weyl tensor satisfies the “peeling” property. This
is a characteristic conspiracy between the fall-off
behavior of certain components of the Weyl tensor
along outgoing g-null-geodesics approaching ' in
M with respect to an affine parameter s for s — oo
and their algebraic type. Symbolically, the Weyl
tensor has the following behavior as s — oo along
the null geodesic:

C::%?+liﬂ+_P1H_%u11u

s2 s3 st

+0(s7)  [5]

where the numerator of each component indicates
its Petrov type. The repeated principal null direction
(PND) in the first three components and one of the
PNDs in the fourth component are aligned with the
tangent vector of the geodesic. This implies that
the farthest reaching component of the Weyl tensor,
which is O(1/s), has the Petrov type of a radiation
field. It is customary to combine the components
which are O(1/s’) into one complex function and
denote it by 1s_;. When expressed in terms of the
field K?,.; on M, this fall-off behavior implies that
of all components of K%, only 14 does not
necessarily vanish on ..

In special cases like the Minkowski, Schwarzs-
child, Kerr, and more generally in all asymptotically
flat stationary spacetimes, even 14 vanishes on .» 7.
For these reasons, 14 is called the radiation field of
the system, that is, that part of the gravitational field
which can be registered by the observers at infinity.
It describes the outgoing radiation which is being
emitted by the system during its evolution.

The Bondi-Sachs Mass-Loss Formula

Gravitational waves carry away energy from the
system. This is a consequence of the Bondi-Sachs
mass-loss formula. The Bondi-Sachs energy—
momentum is related to a weighted integral over a
cut C,

&Wb—ﬁaémw+@¥s 6]

The quantity in brackets, the mass aspect, is a
combination of the scalar ¢, which in a sense
measures the strength of the Coulomb-like part of
the gravitational field on »* and the complex
quantity o. In a so-called Bondi coordinate system,
this quantity is related to the radiation field 14 by
the relation

Y4 = —0

the dot indicating differentiation with respect to the
affine parameter along the null generators. Thus, o
is essentially the second time integral of the
radiation field. The mass aspect is integrated against
a function W which is an asymptotic translation,
that is, a linear combination of the first four
spherical harmonics. Thus, one can view the
expression [6] as defining a linear map T — R.
Since T" and M are isometric this defines a covector
P, on M, which can always be shown to be timelike,
P,P* > 0. This positivity property together with the
fact that in the special cases of Schwarzschild and
Kerr spacetimes the integral yields the mass para-
meters when evaluated for a time translation
(W=1) motivates th