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Preface

This book has been designed for a final year undergraduate course in stochastic
processes. It will also be suitable for mathematics undergraduates and others
with interest in probability and stochastic processes, who wish to study on their
own. _

The main prerequisite is probability theory: probability measures, random
variables, expectation, independence, conditional probability, and the laws of
large numbers. The only other prerequisite is calculus. This covers limits, series,
the notion of continuity, differentiation and the Riemann integral. Familiarity
with the Lebesgue integral would be a bonus. A certain level of fundamental
mathematical experience, such as elementary set theory, is assumed implicitly.

Throughout the book the exposition is interlaced with numerous exercises,
which form an integral part of the course. Complete solutions are provided at
the end of each chapter. Also, each exercise is accompanied by a hint to guide
the reader in an informal manner. This feature will be particularly useful for
self-study and may be of help in tutorials. It also presents a challenge for the
lecturer to involve the students as active participants in the course.

A brief introduction to probability is presented in the first chapter. This is
mainly to fix terminology and notation, and to provide a survey of the results
which will be required later on. However, conditional expectation is treated in
detail in the second chapter, including exercises designed to develop the nec-
essary skills and intuition. The reader is strongly encouraged to work through
them prior to embarking on the rest of this course. This is because conditional
expectation is a key tool for stochastic processes, which often presents some
difficulty to the beginner.

Chapter 3 is about martingales in discrete time. We study the basic prop-
erties, but also some more advanced ones llke stoppmg times and the Optional
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vii Preface

Doob’s inequalities and convergence results. Chapter 5 is devoted to time-
homogenous Markov chains with emphasis on their ergodic properties. Some
important results are presented without proof, but with a lot of applications.
However, Markov chains with a finite state space are treated in full detail.
Chapter 6 deals with stochastic processes in continuous time. Much emphasis
is put on two important examples, the Poisson and Wiener processes. Various
properties of these are presented, including the behaviour of sample paths and
the Doob maximal inequality. The last chapter is devoted to the Ito stochastic
integral. This is carefully introduced and explained. We prove a stochastic ver-
sion of the chain rule known as the It6 formula, and conclude with examples
and the theory of stochastic differential equations.

It is a pleasure to thank Andrew Carroll for his careful reading of the final
draft of this book. His many comments and suggestions have been invaluable
to us. We are also indebted to our students who took the Stochastic Analysis
course at the University of Hull. Their feedback was instrumental in our choice
of the topics covered and in adjusting the level of exercises to make them
challenging yet accessible enough to final year undergraduates.

As this book is going into its 3rd printing, we would like to thank our
students and readers for their support and feedback. In particular, we wish
to express our gratitude to Iaonnis Emmanouil of the University of Athens
and to Brett T. Reynolds and Chris N. Reynolds of the University of Wales
in Swansea for their extensive and meticulous lists of remarks and valuable
suggestions, which helped us to improve the current version of Basic Stochastic
Processes.

We would greatly appreciate further feedback from our readers, who are
invited to visit the Web Page http://www.hull.ac.uk/php/mastz/bsp.html
for more information and to check the latest corrections in the book.

Zdzislaw Brzezniak and Tomasz Zastawniak
Kingston upon Hull, June 2000
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1

Review of Probability

In this chapter we shall recall some basic notions and facts from probability
theory. Here is a short list of what needs to be reviewed:

1) Probability spaces, o-fields and measures;
2) Random variables and their distributions;
3) Expectation and variance;

4) The o-field generated by a random variable;
5) Independence, conditional probability.

The reader is advised to consult a book on probability for more information.

1.1 Events and Probability

Definition 1.1

Let 2 be a non-empty set. A o-field F on {2 is a family of subsets of {2 such
that

1) the empty set @ belongs to F;
2) if A belongs to F, then so does the complement {2 \ A;
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3) if Ay, Ao, ... is a sequence of sets in F, then their union A; U A, U--- also
belongs to F.

Example 1.1

Throughout this course R will denote the set of real numbers. The family of
Borel sets F = B(R) is a o-field on R. We recall that B(R) is the smallest

o-field containing all intervals in R.

Definition 1.2
Let F be a o-field on 2. A probability measure P is a function
P:F—]0,1]
such that
1) P(2) =1,

2) if Ay, As,... are pairwise disjoint sets (that is, 4; N A; = 0 for ¢ # j)
belonging to F, then

P(A1UAyU--) = P(A)) +P(A) +--- .

The triple (£2,F,P) is called a probability space. The sets belonging to F
are called events. An event A is said to occur almost surely (a.s.) whenever
P(A) = 1.

Example 1.2

We take the unit interval 2 = [0,1] with the o-field F = B([0, 1]) of Borel
sets B C [0,1], and Lebesgue measure P = Leb on [0, 1]. Then (£2,F,P) is a
probability space. Recall that Leb is the unique measure defined on Borel sets

such that
Lebla,b] =b—a

for any interval [a,b]. (In fact Leb can be extended to a larger o-field, but we

shall need Borel sets only.)

Exercise 1.1

Show that if Ay, Ao,... is an expanding sequence of events, that is,

Al C A C -
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then
P(AiUAU---) = lim P(4,).
n— oo
Similarly, if Ay, Ay, ... is a contracting sequence of events, that is,
A1 D) A2 D I
then
P(AiNnAyn--)= lim P(4,).
n—oo
Hint Write A; U A> U --- as the union of a sequence of disjoint events: start with

Ay, then add a disjoint set to obtain A; U A2, then add a disjoint set again to obtain
A1 U A2 U Az, and so on. Now that you have a sequence of disjoint sets, you can use
the definition of a probability measure. To deal with the product Ay N A2 N .- - write
it as a union of some events with the aid of De Morgan’s law.

Lemma 1.1 (Borel-Cantelli)

Let Ay, Ao, ... be a sequence of events such that P(A;) + P(A2) + -+ < o
and let B, = A,UAd,1U---.Then P(ByNByN---) =0.

Exercise 1.2

Prove the Borel-Cantelli lemma above.

Hint Bj, B,,...is a contracting sequence of events.

1.2 Random Variables

Definition 1.3
If 7 is a o-field on {2, then a function £ : 2 — R is said to be F-measurable if
{¢eB}eF

for every Borel set B € B(R). If ({2, F, P) is a probability space, then such a
function ¢ is called a random variable.

Remark 1.1

A short-hand notation for events such as {¢ € B} will be used to avoid clutter.
To be precise, we should write

{wenR:(w) e BY
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in place of {¢£ € B}. Incidentally, {¢£ € B} is just a convenient way of writing
the inverse image £~ (B) of a set.

Definition 1.4

The o-field o (§) generated by a random variable £ : {2 = R consists of all sets
of the form {£ € B}, where B is a Borel set in R.

Definition 1.5

The o-field o {{; : ¢ € I} generated by a family {; : ¢ € I'} of random variables
is defined to be the smallest o-field containing all events of the form {¢; € B},
where B is a Borel set in R and 7 € I.

Exercise 1.3

We call f: R = R a Borel function if the inverse image f~! (B) of any Borel
set B in R is a Borel set. Show that if f is a Borel function and ¢ is a random
variable, then the composition f (§) is o (§)-measurable.

Hint Consider the event {f (£) € B}, where B is an arbitrary Borel set. Can this
event be written as {¢ € A} for some Borel set A?

Lemma 1.2 (Doob-Dynkin)

Let £ be a random variable. Then each o (£)-measurable random variable 7 can
be written as

n=f(§)

for some Borel function f: R — R.

The proof of this highly non-trivial result will be omitted.

Definition 1.6
Every random variable £ : {2 — R gives rise to a probability measure
F¢(B) = P{¢ € B}

on R defined on the o-field of Borel sets B € B(R). We call P, the distribution
of £&. The function F¢ : R — [0, 1] defined by

Fe(z) =P{{ <z}
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Exercise 1.4

Show that the distribution function F; is non-decreasing, right-continuous, and

lim F¢(z)=0, lim F¢(z)=1

T——00 T—+00

Hint For example, to verify right-continuity show that Fe¢(zn) — Fe(z) for any de-
creasing sequence z, such that z, — z. You may find the results of Exercise 1.1
useful.

Definition 1.7
If there is a Borel function f; : R — R such that for any Borel set B C R
P {¢ € B} =/Bf€(:v) dz,

then ¢ is said to be a random variable with absolutely continuous distribution
and f¢ is called the density of . If there is a (finite or infinite) sequence of

pairwise distinct real numbers x;, x5, ... such that for any Borel set B C R
P{¢e B} =) P{{=uz},
z;€EB
then ¢ is said to have discrete distribution with values x1,z2,... and mass

P{f = .’II,} at z;.

Exercise 1.5
Suppose that ¢ has continuous distribution with density f;. Show that

d

—Fe(2) = fe (@)

if f¢ is continuous at z.

Hint Express F¢ (z) as an integral of f.

Exercise 1.6

Show that if £ has discrete distribution with values x1,z2,... , then F¢ is
constant on each interval (s,?] not containing any of the z;’s and has jumps of
size P {¢ = z;} at each z,.

Hint The increment Fy (t) — F¢ (s) is equal to the total mass of the z;’s that belong
to the interval [s,t).
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Definition 1.8

The joint distribution of several random variables &;,...,&, is a probability
¢, on R™ such that

P, . (B)=P{(&,..., &) € B}

or any Borel set B in R™. If there is a Borel function f¢,, ¢ . : R® - R such
hat

neasure P,

,,,,,

P{(fl,-n,fn) € B} :/Bffl,...,ﬁn (ml,'-wmn) dxy - -dxy

or any Borel set B in R™, then f¢, .. is called the joint density of &;,...,&,.

Definition 1.9
A random variable £ : 2 = R is said to be integrable if
/ €] dP < oo,
2
[hen
B(e) = [ ¢ap
2

ixists and is called the ezpectation of £. The family of integrable random vari-
ibles £ : 2 — R will be denoted by L! or, in case of possible ambiguity, by
L, F,P).

zxample 1.3

Che indicator function 14 of a set A is equal to 1 on A and 0 on the complement
2\ A of A. For any event A

E (14) :/ 14dP =P (A).
o)
Ne say that n: 2 — R is a step function if
n= ZﬂilAn
=1

vhere n1,...,n, are real numbers and A;,..., A, are pairwise disjoint events.

Chen N o
Ew:AmW=ZmLuw%§)mmw
i=1 1=1
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Exercise 1.7
Show that for any Borel function h : R — R such that h () is integrable

E(h(§)) = /Rh(:z) dP: (z) .

Hint First verify the equality for step functions h : R — R, then for non-negative ones
by approximating them by step functions, and finally for arbitrary Borel functions by
splitting them into positive and negative parts.

In particular, Exercise 1.7 implies that if £ has an absolutely continuous
distribution with density f¢, then

+ 00
E(h(€)) = / h(z) fe (@) do.

-0

If £ has a discrete distribution with (finitely or infinitely many) pairwise distinct
values r1,Z9,... , then

E(h(€) =Zh(w,~>P{£=zi}-

Definition 1.10

A random variable € : 2 — R is called square integrable if

/ 1€)? dP < 0.
0]

Then the vartance of £ can be defined by

var(e) = [ (€~ B(©)? dP.
o]
The family of square integrable random variables £ : 2 — R will be denoted

by L?(£2, F, P) or, if no ambiguity is possible, simply by L?.

Remark 1.2

The result in Exercise 1.8 below shows that we may write E(£) in the definition
of variance.

Exercise 1.8

Show that if £ is a square integrable random variable, then it is integrable.
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Hint Use the Schwarz inequality
[E&n)* < E(€7) E (n*) (1)

with an appropriately chosen 7.

Exercise 1.9

Show that if n : 2 — [0, 00) is a non-negative square integrable random vari-
able, then

E(n®) = 2/OootP(n > t) dt.

Hint Express F(n?) in terms of the distribution function F}(t) of n and then integrate
by parts.

1.3 Conditional Probability and Independence

Definition 1.11

For any events A, B € F such that P (B) # 0 the conditional probability of A

given B is defined by
P(ANB)

P(AIB) = —F 5

Exercise 1.10

Prove the total probability formula
P(A) = P(A|B1)P(B:1) + P(A|B2)P(B2) + - -

for any event A € F and any sequence of pairwise disjoint events By, By, ... € F
such that By UBy U .- = (2 and P(B,) # 0 for any n.

Hint A=(AﬂBl)U(AﬂB2)U-~-.

Definition 1.12
Two events A, B € F are called independent if
P(ANB) = P(A)P(B).
In general, we say that n events A,,..., A, € F are independent if

P(A;, nA,Nn---NA;)=P(A;,)P(A;,)--- P(A4;,)



1. Review of Probability 9

for any indices 1 <11 <12 < -+ < 1 < n.

Exercise 1.11

Let P(B) # 0. Show that A and B are independent events if and only if
P(A|B) =P (A).

Hint If P (B) # 0, then you can divide by it.

Definition 1.13

Two random variables ¢ and n are called independent if for any Borel sets
A, B € B(R) the two events

{¢€ A} and {n€ B}

are independent. We say that n random variables &, ..., &, are independent if
for any Borel sets By, ..., B, € B(R) the events

{€1€B1},---a{€n€Bn}

are independent. In general, a (finite or infinite) family of random variables
is said to be independent if any finite number of random variables from this
family are independent.

Proposition 1.1

If two integrable random variables &,7 : 2 — R are independent, then they are
uncorrelated, i.e.

E(n) = E(§)E(n),

provided that the product £n is also integrable. If &,...,&, : 2 = R are
independent integrable random variables, then

E(& &) =E(&)E(&) - E(),

provided that the product & & - - - €, is also integrable.

Definition 1.14

Two o-fields G and ‘H contained in F are called independent if any two events

AeG and BeH
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are independent. Similarly, any finite number of o-fields G, ..., G, contained
in F are independent if any n events

AL €G,..., A €0,

are independent. In general, a (finite or infinite) family of o-fields is said to be
independent if any finite number of them are independent.

Exercise 1.12

Show that two random variables £ and n are independent if and only if the
o-fields o (£) and o (n) generated by them are independent.

Hint The events in o (§) and o () are of the form {£ € A}, and {n € B}, where A
and B are Borel sets.

Sometimes it is convenient to talk of independence for a combination of
random variables and o-fields.

Definition 1.15
We say that a random variable £ is independent of a o-field G if the o-fields
o(f) and @

are independent. This can be extended to any (finite or infinite) family con-
sisting of random variables or g-fields or a combination of them both. Namely,
such a family is called independent if for any finite number of random variables
&1,...,€&n and o-fields Gy, ..., G, from this family the o-fields

0(1)s--0(m),G1,-.-,Gn

are independent.

1.4 Solutions

Solution 1.1
If Ay C Ay C ---, then

AlUAyU- = A U (A \ A) U(A3\ Ag)U--- |
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where the sets A;, Ay \ A1, A3\ A, ... are pairwise disjoint. Therefore, by the
definition of probability measure

P(AiUAU--) = P(A U(A2\ A1) U (43\A42)U )
= P(A1) +P(A2\ A1)+ P (A3 \ A2) + -
— lim P (An).

n—oo

The last equality holds because the partial sums in the series above are

P(A41)+P(A3\ A1)+ -+ P(An\ An_1) = P(A U---UA,)
= P(4,).

If A; D Ay D -+, then the equality
P(AiNnAyn--) = n1_i+rréoP(An)
follows by taking the complements of A, and applying De Morgan’s law
O\ (AiNdan-)=(2\A)U(2\A)U - .
Solution 1.2

Since B, is a contracting sequence of events, the results of Exercise 1.1 imply
that

P(BiNByn--) = lim P(B,)

= lim P(A4, UAp U--)
< nll)IIolo (P (An) +P(An+1) +)
= 0.

The last equality holds because the series > P (A,) is convergent. The
inequality above holds by the subadditivity property

P(AnUArH-lU"')SP(An)+P(An+1)+'-f .
It follows that P (BN BN ---) =0.

Solution 1.3

If B is a Borel set in R and f : R — R is a Borel function, then f~! (B) is also
a Borel set. Therefore

{f(©eBY={¢cef (B}
belongs to the o-field o (£) generated by £. It follows that the composition f (£)

i (S emeaanrahle
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Solution 1.4
If z <y, then {¢£ <z} C {{ <y}, s0
Fe(z) =P{{ <z} <P{{<y}=Fe(y).

This means that Fy is non-decreasing.
Next, we take any sequence x; > 2 > --- and put

lim z, = x.
n—00

Then the events
{§ <z} D{{ <Lz} D

form a contracting sequence with intersection
{E<a)={<m}n{E<m}n .
It follows by Exercise 1.1 that
Fe(z)=P{£{< T} = nll}ngop{f <zp}= nlglgoFﬁ (zn) -

This proves that Fy is right-continuous.

Since the events
{{<-1}o{§<-2}o-

form a contracting sequence with intersection @ and
{¢<1pc{é<2tc--

form an expanding sequence with union {2, it follows by Exercise 1.1 that

lim Fg(z) = nli_)ngo F: (—n) = nli_)n;oP {£<-n}=P(0) =0,

T——00
xli)rglo F (z) = nli’n;o Fe (n) = nll}n;oP {£<n}=P(NR) =1,
since F¢ is non-decreasing.

Solution 1.5

If ¢ has a density f,, then the distribution function F¢ can be written as

Fe(x>=P{ss:c}=/_x fe () dy.

Therefore, if f¢ is continuous at z, then F¢ is differentiable at z and

%F& (II)) = fe (:E) .
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Solution 1.6

If s < t are real numbers such that z; ¢ (s,t] for any ¢, then
Fe(t) — Fe(s) = P{¢ <t} - P{¢ < s} = P{{ € (5,t]} =0,

i.e. F¢(s) = F¢(t). Because F is non-decreasing, this means that F¢ is constant
on (s,t]. To show that Fy has a jump of size P{{ = z;} at each z;, we compute

Jm Fe(t) - Jim Fy(s) = lim P{¢ <t} - lim P{¢ < s}
= P{¢ <z} - P{{ <z} = P{{ ==}
Solution 1.7

If h is a step function,
n
h = Z hi]-A.- y
i=1

where hy,...,h, are real numbers and A;,..., A, are pairwise disjoint Borel
sets covering R, then

E (h(€)) ZhElA ZhP{geA}

ZthA)—Z/h ) dP; (z) = /h(:v dP; (z).

Next, any non-negative Borel function A can be approximated by a non-
decreasing sequence of step functions. For such an A the result follows by the
monotone convergence of integrals. Finally, this implies the desired equality
for all Borel functions h, since each can be split into its positive and negative
parts, h = h* — h~, where h*,h~ > 0.

Solution 1.8

By the Schwarz inequality (1.1) with = 1, if £ is square integrable, then
[E (D) = [E(LIEN) < E (1) E (€°) = E(€?) < oo,

i.e. £ is integrable.

Solution 1.9
Let F(t) = P {n <t} be the distribution function of n. Then

En?) = /0 ” t2dF(t).
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Since P(n > t) =1 — F(t), we need to show that

/Oo t*dF(t) = 2/00 t(1—F(t)) dt (1.2)
0 0

First, let us establish a version of (1.2) with oo replaced by a finite number a.
Integrating by parts, we obtain

/a t2dF(t) = / t2d(F(t) — 1)
= t3(F(t) - 1)|g - Q/Gt(F(t) —1)dt
= —a?(1 — F(a)) + 2 / t(1 — F(t))dt. (1.3)

We see that (1.2) follows from (1.3), provided that
a’(1 - F(a)) -0, asa— 00. (1.4)
But
0<a®(1~F(a)) =a’P(n >a) < (n+1)°P(n >n) < 4n’P(n > n),

where n is the integer part of a, and
oo
E(’?z) = z/ n?dP < co.
k=0 Y {k<n<k+1}
Hence,

nZP(UZn)S/ nzdP:Z/ n?dP — 0 (1.5)
{n>n} k= Y {k<n<k+1}

as n — oo, which proves (1.4).

Solution 1.10
Since By UBs U --- = {2,
A=AN(BiUB,U--)=(ANB)U(ANBy)U--- ,

where
(ANB)N(ANB;)=AN(B;:NB;)=AnD=0.
By countable additivity
P(A) = P(ANnB)U(ANBy)U---)
= P(ANB;)+P(ANBy)+---
= P(A|B,) P(B1)+ P(A|B2) P(By) +--- .
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Solution 1.11
If P(B) # 0, then A and B are independent if and only if

P(ANB)
P(B)

In turn, this equality holds if and only if P (A) = P (A|B).

P(A) =

Solution 1.12
The o-fields o (§) and o (1) consist, respectively, of events of the form
{¢ € A} and {n€ B},

where A and B are Borel sets in R. Therefore, o (£) and o (n) are independent
if and only if the events {{ € A}, and {n € B} are independent for any Borel
sets A and B, which in turn is equivalent to £ and n being independent.






2

Conditional Expectation

Conditional expectation is a crucial tool in the study of stochastic processes.
It is therefore important to develop the necessary intuition behind this notion,
the definition of which may appear somewhat abstract at first. This chapter is
designed to help the beginner by leading him or her step by step through several
special cases, which become increasingly involved, culminating at the general
definition of conditional expectation. Many varied examples and exercises are
provided to aid the reader’s understanding.

2.1 Conditioning on an Event

The first and simplest case to consider is that of the conditional expectation
E (¢|B) of a random variable £ given an event B.

Definition 2.1

For any integrable random variable £ and any event B € F such that P(B) # 0
the conditional expectation of € given B is defined by

E(¢|B) = -ﬁ%)— /B ¢ dP.
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Example 2.1

Three coins, 10p, 20p and 50p are tossed. The values of those coins that land
heads up are added to work out the total amount {. What is the expected total
amount £ given that two coins have landed heads up?

Let B denote the event that two coins have landed heads up. We want to
find E (¢|B). Clearly, B consists of three elements,

B = {HHT,HTH, THH},

each having the same probability § (Here H stands for heads and T for tails.)
The corresponding values of £ are

(&(HHT) = 10+ 20 = 30,

£(HTH) = 10+ 50 = 60,

&(THH) = 20+ 50 = 70.

Therefore
30

_ 1 _1/30 60 70\ _.q:
E(§|B)_ﬁ§5/B£dP_ ; (8 +gt 8>_533.
Exercise 2.1
Show that F (£|£2) = E(£).

Hint The definition of E (£) involves an integral and so does the definition of E (£]42).
How are these integrals related?
Exercise 2.2

Show that if
1 forwe A

1A(w)={ 0 forw¢gA
(the indicator function of A), then

E(14|B) = P(A|B),

where
P(AN B)
P(B)

is the conditional probability of A given B.

P(A|B) =

Hint Write [, 14 dP as P(AN B).
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2.2 Conditioning on a Discrete Random
Variable

The next step towards the general definition of conditional expectation involves
conditioning by a discrete random variable n with possible values y;,y2, ... such
that P {n = yn} # 0 for each n. Finding out the value of n amounts to finding
out which of the events {n = y,} has occurred or not. Conditioning by 7 should
therefore be the same as conditioning by the events {n = y,}. Because we do
not know in advance which of these events will occur, we need to consider all
possibilities, involving a sequence of conditional expectations

El{n=wu}),EE{n=yv2}),....

A convenient way of doing this is to construct a new discrete random variable
constant and equal to E (¢|{n = y,n}) on each of the sets {n = y,}. This leads
us to the next definition.

Definition 2.2

Let £ be an integrable random variable and let n be a discrete random variable
as above. Then the conditional expectation of £ given 7 is defined to be a random
variable E(£|n) such that

EEn)(w) = E¢[{n=yn}) if n(w)=yn

forany n=1,2,....

Example 2.2

Three coins, 10p, 20p and 50p are tossed as in Example 2.1. What is the
conditional expectation E (£|n) of the total amount £ shown by the three coins
given the total amount 1 shown by the 10p and 20p coins only?

Clearly, n is a discrete random variable with four possible values: 0, 10, 20
and 30. We find the four corresponding conditional expectations in a similar
way as in Example 2.1:

E({n=0})=25 = E({n=10}) = 35,
E(¢]{n=120}) =45,  E (& {n=30}) = 55.
Therefore
25 if nw) =0,
) 35 if n(w) = 10,
EEME =Y 45 ityw) =20,
55 if n(w) = 30.
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Example 2.3

Take §2 = [0, 1] with the o-field of Borel sets and P the Lebesgue measure on
[0,1]. We shall find E(£|n) for

Clearly, n is discrete with three possible values 1,2, 0. The corresponding events
are

{n=1} = [0,3],
{n=2} = (3,%),
{n=0} = (%,1].

For = € [0, 1]

3
B(eln) (=) = BEl0,3) = 1 | 2a%do = .
3 J0

For z € (3,3%)

B(eln)(a) = B€l(5,3) = 1 [ 2s%ds = 2
3 Y3

And for z € (%,1]

1 (! 38
Bleh(e) = BEG ) = [ 20t =

The graph of E(£|n) is shown in Figure 2.1 together with those of ¢ and 7.

Exercise 2.3

Show that if n is a constant function, then FE(£|n) is constant and equal to

E(¢).

Hint The event {n = c} must be @ or §2 for any c € R.

Exercise 2.4

Show that P(AIB) ‘f B
1w eE
E(14l1p)(w) = { P(A|?\B) ifwé¢B

for any B such that 1 # P(B) # 0.



2. Conditional Expectation 21

A€ A"? AE(§|TI)

21 21 — 21

1 11— 11

0 1z 0 1z 0 1 T

Figure 2.1. The graph of E (£|n) in Example 2.3

Hint How many different values does 1p take? What are the sets on which these
values are taken?

Exercise 2.5

Assuming that 7 is a discrete random variable, show that

E(E(¢m) = E(&)-

/B B(¢ln) dP = /B £dp

for any event B on which 7 is constant. The desired equality can be obtained by
covering {2 by countably many disjoint events of this kind.

Hint Observe that

Proposition 2.1

If £ is an integrable random variable and 7 is a discrete random variable, then

1) E (£|n) is o (n)-measurable;

2) For any A € o (1) ‘
/ E(&|n) dP = / ¢ dP. (2.1)
A A

Proof

Suppose that 1 has pairwise distinct values y;1,ys,... . Then the events

n=un},{n=yv},...
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are pairwise disjoint and cover {2. The o-field o (1) is generated by these events,
in fact every A € o (1) is a countable union of sets of the form {n = y,}. Because
E (&|n) is constant on each of these sets, it must be o (17)-measurable.

For each n we have

/ E(¢ln) dP = / E(€] {1 = yn}) dP
{n=yn} {n=yn}

= / £dP.
{n=yn}

Since each A € o(n) is a countable union of sets of the form {n = y,}, which
are pairwise disjoint, it follows that

| Bemap = A £dP,

as required. OJ

2.3 Conditioning on an Arbitrary Random
Variable

>roperties 1) and 2) in Proposition 2.1 provide the key to the definition of the
onditional expectation given an arbitrary random variable 7.

definition 2.3

.t £ be an integrable random variable and let  be an arbitrary random
ariable. Then the conditional expectation of £ given 7 is defined to be a random
ariable E(£|n) such that

1) E (&|n) is o (n)-measurable;
2) For any A € o (n)

/A E(¢ln) dP = /A £dP.

emark 2.1

/e can also define the conditional probability of an event A € F given 5 by

P (Aln) = E(1aln),

here 1,4 is the indicator function of A.
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Do the conditions of Definition 2.3 characterize E (¢|n) uniquely? The
lemma below implies that E (¢|n) is defined to within equality on a set of
full measure. Namely,

if€=¢ as., then E(¢n)=E (&'|n) as. (2.2)

The existence of E (£|n) will be discussed later in this chapter.

Lemma 2.1

Let (§2, F, P) be a probability space and let G be a o-field contained in F. If £
is a G-measurable random variable and for any B € §

/B,gdpzo,

then £ =0 a.s.

Proof

Observe that P {{ > ¢} = 0 for any £ > 0 because
0<eP{{>¢}= 5dP§/ £dP = 0.
{£2¢} {£2¢}

The last equality holds, since {¢ > €} € G. Similarly, P {{ < —€} = 0 for any
€ > 0. As a consequence, |

P{-e<é<e}=1

for any € > 0.
Let us put
An={-+<€<3}.

Then P(A,) =1 and
{¢=0} =) 4n.
n=1
Because the A, form a contracting sequence of events, it follows that
P{¢{=0}= lim P(4,) =1,
n—00

as required. O



24 Basic Stochastic Processes

One difficulty involved in Definition 2.3 is that no explicit formula for E (¢|n)
is given. If such a formula is known, then it is usually fairly easy to verify
conditions 1) and 2). But how do you find it in the first place? The examples
and exercises below are designed to show how to tackle this problem in concrete

cases.

Example 2.4

Take 2 = [0, 1] with the o-field of Borel sets and P the Lebesgue measure on
[0,1]. We shall find E(&|n) for

2 if £ €[0,3),
z if z € (3,1].

) =22, (o) = {

Here 7 is no longer discrete and the general Definition 2.3 should be used.
First we need to describe the o-field o(n). For any Borel set B C [,1] we

have
B={neB}eo(n

and

[0,5)UB={neB}u{n=2}ea(n).
In fact sets of these two kinds exhaust all elements of o (n). The inverse image
{n € C} of any Borel set C C R is of the first kind if 2 ¢ C and of the second

kind if 2 € C.
If E(&|n) is to be o (n)-measurable, it must be constant on [0, 1) because 7

is. If for any z € [0, %)

E(¢n)(z) = E(][0,3))

1
~ P([0,3)) Jo.p oy

1
1 [z
= / 212 dr
0

D = t\:]r—a|

then
/ E(€ln)(z) dz = / é(z) de,
(0,3) [0,4)

i.e. condition 2) of Definition 2.3 will be satisfied for 4 = [0, 7).
Moreover, if E(¢|n) = £ on [1,1], then of course

[ Bem@ a= [ e
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for any Borel set B C [1,1].
Therefore, we have found that

1 if x 0’l )
E(¢ln)(z) = { i ifaec é,i]).

Because every element of o(n) is of the form B or [0, %) U B, where B C [%, 1]
is a Borel set, it follows immediately that conditions 1) and 2) of Definition 2.3
are satisfied. The graph of E(¢|n) is presented in Figure 2.2 along with those
of £ and 7.

21 2-——— 27 5
1 11 11

> > IR
0 1 Z 0 1 7 0 1 7

Figure 2.2. The graph of E (¢|n) in Example 2.4

Exercise 2.6

Let 2 = [0, 1] with Lebesgue measure as in Example 2.4. Find the conditional
expectation E (€|n) if

£(z) = 222, n(z) =1-|2z - 1].

Hint First describe the o-field generated by 1. Observe that 7 is symmetric about %
What does it tell you about the sets in o (7)? What does it tell you about E (£[n) if it
is to be o (n)-measurable? Does it need to be symmetric as well? For any A in o ()

try to transform f 4 §dP to make the integrand symmetric.

Exercise 2.7

Let 2 be the unit square [0, 1] x [0, 1] with the o-field of Borel sets and P the
Lebesgue measure on [0, 1] x [0, 1]. Suppose that ¢ and n are random variables
on 2 with joint density

fen(z,y) =z +y



26 Basic Stochastic Processes

for any z,y € [0,1], and f¢ n(z,y) = 0 otherwise. Show that

2+ 3n
3+6n

E(&ln) =

Hint It suffices (why?) to show that for any Borel set B

/ 5dP=/ §+2’7dp.
{neB} {neB} + 07

Try to express each side of this equality as an integral over the square [0,1] x [0, 1]
using the joint density fe ,(z,y).

Exercise 2.8

Let 2 be the unit square [0, 1} x [0, 1] with Lebesgue measure as in Exercise 2.7.
Find E (¢|n) if £ and n are random variables on {2 with joint density

fenle,0) = 3 (5 + )

for any z,y € [0,1], and f¢ ,(z,y) = O otherwise.

Hint This is slightly harder than Exercise 2.7 because here we have to derive a formula
for the conditional expectation. Study the solution to Exercise 2.7 to find a way of
obtaining such a formula.

Exercise 2.9

Let 2 be the unit disc {(z,y) : 2? + y*> < 1} with the o-field of Borel sets and
P the Lebesgue measure on the disc normalized so that P (£2) = 1, i.e.

P(A):%//Ad:cdy

for any Borel set A C (2. Suppose that £ and 7 are the projections onto the x
and y axes,

£(y)=z, nz,y =y
for any (z,y) € £2. Find E (€2|n).

Hint What is the joint density of £ and 7?7 Use this density to transform the integral

/ g2 dP
{n€B}

for an arbitrary Borel set B so that the integrand becomes a function of 7. How is
this function of 7 related to E (£2|n)?
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2.4 Conditioning on a o-Field

We are now in a position to make the final step towards the general definition
of conditional expectation. It is based on the observation that E (£|n) depends
only on the o-field o () generated by 7, rather than on the actual values of 7.

Proposition 2.2
If o(n) = a(n'), then E(&|n) = E(€|n') a.s. (Compare this with (2.2).)

Proof
This is an immediate consequence of Lemma 2.1. [J
Because of Proposition 2.2 it is reasonable to talk of conditional expectation

given a o-field. The definition below differs from Definition 2.3 only by using an
arbitrary o-field G in place of a o-field o (1) generated by a random variable 7.

Definition 2.4

Let & be an integrable random variable on a probability space (£2, F, P), and
let G be a o-field contained in F. Then the conditional expectation of £ given
G is defined to be a random variable E (£|G) such that

1) E(£|G) is G-measurable;
2) Forany A€ g
/ E(€|G) dP = / ¢dP. (2.3)
A A

Remark 2.2

The conditional probability of an event A € F given a o-field G can be defined
by
P (A|G) = E(14]9),

where 1 4 is the indicator function of A.

The notion of conditional expectation with respect to a o-field extends
conditioning on a random variable 7 in the sense that

E(lo(n) = E(¢n),

where a(n) is the o-field generated by n.
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Proposition 2.3

E(£|G) exists and is unique in the sense that if £ = &' a.s., then E(£|G) =
E(¢'|G) as.

Proof

Existence and uniqueness follow, respectively, from Theorem 2.1 below and
Lemma 2.1. OJ

Theorem 2.1 (Radon—Nikodym)

Let (£2,F,P) be a probability space and let G be a o-field contained in F.
Then for any random variable £ there exists a G-measurable random variable

¢ such that
/,4€dP:/ACdP

The Radon-Nikodym theorem is important from a theoretical point of view.
However, in practice there are usually other ways of establishing the existence
of conditional expectation, for example, by finding an explicit formula, as in
the examples and exercises in the previous section. The proof of the Radon—
Nikodym theorem is beyond the scope of this course and is omitted.

for each A € G.

Exercise 2.10
Show that if G = {0, 2}, then E(£|G) = E(£) a.s.

Hint What random variables are G-measurable if G = {0, 2}?

Exercise 2.11

Show that if £ is G-measurable, then E(£|G) = £ a.s.

Hint The conditions of Definition 2.4 are trivially satisfied by £ if £ is G-measurable.
Exercise 2.12

Show that if B € G, then
E(E(£G)|B) = E(¢|B).

Hint The conditional expectation on either side of the equality involves an integral
over B. How are these inteerals related to one another?
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2.5 General Properties

Proposition 2.4

Conditional expectation has the following properties:

1) E(a€ +b¢|G) = aE(&|G) + bE(C|G) (linearity);

2) E(E(£9)) = E(&);

3) E(&C|G) = €E((|9) if € is G-measurable (taking out what is known);
)

4) E(&|G) = E(&) if € is independent of G (an independent condition drops

out);
5) E(E(&|G)|H) = E(E|H) if H C G (tower property);
6) If £ > 0, then E(£|G) > 0 (positivity).

Here a, b are arbitrary real numbers, £, ( are integrable random variables on a
probability space ({2, F, P) and G, H are o-fields on {2 contained in F. In 3) we
also assume that the product £( is integrable. All equalities and the inequalities
in 6) hold P-a.s.

Proof
1) For any B€ G

/ (aE(€G) + bE(C|G)) dP = a / E(£G)dP + b / E(¢|G) dP
B

- /gdP+b/ ¢dP

=/Ba§+b<>

By uniqueness this proves the desired equality.
2) This follows by putting A = (2 in (2.3). Also, 2) is a special case of 5)

when H = {0, 2}.
3) We first verify the result for £ = 14, where A € G. In this case

/ 14E(n|G) dP = / E(n|G) dP
B ANB

= / ndP
ANB

= / 1andP
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for any B € G, which implies that
14E(n|G) = E(1an|G)

by uniqueness. In a similar way we obtain the result if £ is a G-measurable step

m
= Zalej,
j=1

where A; € G for j = 1,...,m. Finally, the result in the general case follows
by approximating £ by G-measurable step functions.

4) Since ¢ is independent of G, the random variables £ and 1p are inde-
pendent for any B € G. It follows by Proposition 1.1 (independent random
variables are uncorrelated) that

function,

/B E(¢)dP = E(¢)E(1p)
= E(£1B)

= /BsdP,

which proves the assertion.
5) By Definition 2.4

| Béigyap= [ eap

/ E(€[H) dP = / ¢dP
B B
for every B € H. Because ‘H C G it follows that

/ E(¢[G) dP = / E(¢[H) dP
B B

for every B € G, and

for every B € H. Applying Definition 2.4 once again, we obtain
E(E(E|9)|H) = E(¢[H).

6) For any n we put

an={B@0) <-1}.

Then A, € G. If £ > 0 a.s., then

0< [ ear=[ B(EG) aP< 2P (4w,
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which means that P (A,) = 0. Because
{E(€l6) <0} = [ 4n
n=1

it follows that
P{E (£G) <0} =0,

completing the proof. O
The next theorem, which will be stated without proof, involves the notion
of a convex function, such as max (1, z) or e~*, for example. In this course the

theorem will be used mainly for |z|, which is also a convex function. In general,
we call a function ¢ : R — R conver if for any z,y € R and any A € [0, 1]

pAz+(1-Ny) <A@+ (1-ANe(y).

This condition means that the graph of ¢ lies below the cord connecting the
points with coordinates (z, ¢ (z)) and (y, ¢ (v)).

Theorem 2.2 (Jensen's Inequality)

Let ¢ : R — R be a convex function and let £ be an integrable random variable
on a probability space (12, F, P) such that ¢ (§) is also integrable. Then

P (E(£19) <E(p(§)1G) as.

for any o-field G on {2 contained in F.

2.6 Various Exercises on Conditional
Expectation

Exercise 2.13

Mrs. Jones has made a steak and kidney pie for her two sons. Eating more
than a half of it will give indigestion to anyone. While she is away having tea
with a neighbour, the older son helps himself to a piece of the pie. Then the
younger son comes and has a piece of what is left by his brother. We assume
that the size of each of the two pieces eaten by Mrs. Jones’ sons is random and
uniformly distributed over what is currently available. What is the expected
size of the remaining piece given that neither son gets indigestion?
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Hint All possible outcomes can be represented by pairs of numbers, the portions of
the pie consumed by the two sons. Therefore {2 can be chosen as a subset of the
plane. Observe that the older son is restricted only by the size of the pie, while the
younger one is restricted by what is left by his brother. This will determine the shape
of 2. Next introduce a probability measure on {2 consistent with the conditions of
the exercise. This can be done by means of a suitable density over 2. Now you are in
a position to compute the probability that neither son will get indigestion. What is
the corresponding subset of 27 Finally, define a random variable on §2 representing
the portion of the pie left by the sons and compute the conditional expectation.

Exercise 2.14

As a probability space take {2 = [0,1) with the o-field of Borel sets and the
Lebesgue measure on [0,1). Find E (¢|n) if

< 1
£ (z) = 222, n(m):{Z:n for0 <z < 3,

2c-1 for;<z<Ll

Hint What do events in o () look like? What do o (n)-measurable random variables
look like? If you devise a neat way of describing these, it will make the task of
finding E (€|n) much easier. You will need to transform the integrals in condition 2)
of Definition 2.3 to find a formula for the conditional expectation.

Exercise 2.15

Take 2 = [0, 1] with the o-field of Borel sets and P the Lebesgue measure on
[0,1]. Let
n(z) = z(1 - z)

for z € [0,1]. Show that

B(el)(x) = E L2

for any z € [0,1].
Hint Observe that 57 (z) = 5 (1 — z). What does it tell you about the o-field generated

by ? Is 1 (£ (z) + £ (1 — z)) measurable with respect to this o-field? If so, it remains
to verify condition 2) of Definition 2.3.

Exercise 2.16
Let &, n be integrable random variables with joint density fe ,(z,y). Show that

fmxfﬁ,n(x,ﬂ) dil?
fR fg’n(.’l?, 77) dx .

E(¢n) =

Hint Study the solutions to Exercises 2.7 and 2.8.
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Remark 2.3
If we put
_ ff,n(a;ay)
fen (zly) = AT
where

fn(y) = /Rfs,n(r,y) dr

is the density of n, then by the result in Exercise 2.16

E (€l) = /R % fen (2ln) ds.

We call fe, (z]y) the conditional density of £ given 7.

Exercise 2.17
Consider L? (F) = L? (12, F, P) as a Hilbert space with scalar product
L*(F) x L*(F) 3 (§,¢) = E(&¢) € R.

Show that if £ is a random variable in L? (F) and G is a o-field contained in
F, then E(£|G) is the orthogonal projection of £ onto the subspace L? (G) in
L? (F) consisting of G-measurable random variables.

Hint Observe that condition 2) of Definition 2.4 means that £ — E(£|G) is orthogonal
(in the sense of the scalar product above) to the indicator function 14 for any A € G.

2.7 Solutions

Solution 2.1
Since P (f2) =1 and [, £dP = E (§),

E(£)0) = ﬁ%ﬁj/ﬂfdp:E(E)-

Solution 2.2

By Definition 2.1

1

= ar

P/ R\
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_ P(ANB)
-~ T P(B)
= P(A|B).

Solution 2.3
Since 7 is constant, it has only one value ¢ € R, for which
{n=c}=10
Therefore E (£|n) is constant and equal to
E¢n(w)=E(¢/{n=-c}) = E(R) = E()
for each w € 2. The last equality has been verified in Exercise 2.1.

Solution 2.4

The indicator function 1g takes two values 1 and 0. The sets on which these
values are taken are

{1=1}=B, {lp=0}=0\B.

Thus, for w € B
E(14|1p)(w) = E(14|B) = P(A|B),

as in Exercise 2.2. Similarly, forw € 2\ B

E(1]15)(w) = E(14|2\ B) = P(4]2\ B).

Solution 2.5

First we observe that

/BE(le)dP:/B (%B)/éfdP) dP:/BgdP (2.4)

for any event B.

Since 7 is discrete, it has countably many values y;,y2,... . We can as-
sume that these values are pairwise distinct, i.e. y; # y; if ¢ # j. The sets
{n=w1},{n=y2},... are then pairwise disjoint and they cover the whole
space {2. Therefore, by (2.4)

mmm»=ﬂmmwp
= FE = yn})dP
;AHM(MnyD
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= dP
Zn: /{n:yn} ¢

:Mngj
= E(§).

Solution 2.6

First we need to describe the o-field o () generated by n. Observe that 7 is
symmetric about 3,

n(z) =n(l-z)
for any z € [0,1]. We claim that o () consists of all Borel sets A C [0,1]
symmetric about I, i.e. such that

A=1- A (2.5)
Indeed, if A is such a set, then A = {n € B}, where
B={2z:z€ AN0,3]}

is a Borel set, so A € g(n). On the other hand, if A € o (n), then there is a
Borel set B in R such that A = {n € B}. Then

zr€A & n(zx)€EB
& n(l-z)€B
& 1-z€A,

so A satisfies (2.5).
We are ready to find E (€|n). If it is to be o (n)-measurable, it must be

symmetric about 3, i.e.
E (&ln) (z) = E(¢ln) (1 - =)

for any z € [0,1]. For any A € o () we shall transform the integral below so
as to make the integrand symmetric about %:

/2:c2dz = /a:zdx-i-/xzdx
A A A
= /z2d:c+/ (1-2)%dz
A 1-A

= /szda:—}-/A(l—z)zdx
/A(z2+(1—a:)2) dz.
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RS A7 2 E(€ln)
21 21 21
1t 1t 1\/
> > >
0 1z 0 1 0 1 Z

Figure 2.3. The graph of E (£|n) in Exercise 2.6

It follows that
E(&n) (z) = 2> + (1 — z)°.

The graphs of £, n and E ({|n) are shown in Figure 2.3.
Solution 2.7

Since
{ne B} =[0,1] x B

for any Borel set B, we have
| eap = [ [sfintev)dy
{neB} B JR
= / (/ :c(:c+y)d:c) dy
B \J[0,1]
1 1
- [ Gra) @

2+ 3n / 2+ 3y
dP = 2oy y)dz d

2+3y/

= r+y)ds | d

/133+6y([0,1]( Y )y
11

- [, Gra) o

Because each event in o (n) is of the form {n € B} for some Borel set B, this

means that condition 2) of Definition 2.3 is satisfied. The random variable %%

and
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is o (n)-measurable, so condition 1) holds too. It follows that

24 3n
B (€)= 356,

Solution 2.8

We are looking for a Borel function F : R — R such that for any Borel set B

/ £dp = / F(n) dP. (2.6)
{n€B} {neB}

Then E (¢|n) = F (n) by Definition 2.3.

We shall transform both integrals above using the joint density f¢ ,(z,y)
in much the same way as in the solution to Exercise 2.7, except that here we
do not know the exact form of F (y). Namely,

-/{nEB}édP ://zfﬁﬂ(z y) dz dy
N 5 z(2? +y?) dz | dy
B \J[0,1]
- g/IB(iJr;yz) dy

| [ F ) feata)dady
- 2/BF(y) (/[0,1] (a? +9?) da:) dy
= g/BF(y) (%HP) dy.

Then, (2.6) will hold for any Borel set B if

and

/ F(n) dP
{neB}

$+3v7 3+6y°

F = = .
@) % +y? 4+ 12y?
It follows that 34 62
+
E(n) =F(n) = 2171773{2'

Solution 2.9

We are looking for a Borel function F : R — R such that for any Borel set

BCR
/ £2dP = / F (n) dP. (2.7)
{neB} {neB}
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Then, by Definition 2.3 we shall have E (£%|n) = F (n).

Let us transform both sides of (2.7). To do so we observe that the ran-
dom variables £ and n have uniform joint distribution over the unit disc
2 ={(z,y) : 2* +y* < 1}, with density

1
f{,n (may) - -

if z2 + y? <1, and f¢ , (z,y) = 0 otherwise. It follows that

/{neB}ézdP = / /‘”2 fe.q (z,y) dzdy
- // _z 2 dz dy

_ _ 2\3/2
- 371' B (1 ) dy

/{nEB}F(n) dP»:// ¥) fer (2,9) dz dy

1—y?
= | F / dz dy
[ Fw =

2

= —/ F(y) (1—3/2)1/2 dy.
B

i

and

If (2.7) is to be satisfied for all Borel sets B, then

F(y)=§(1—y2)-

This means that

E (&%n) (z,y) = F (n(z,y)) = F(y) = % (1-4°)
for any (z,y) in £2.
Solution 2.10

If G = {0, 2}, then any constant random variable is G-measurable. Since

|¢ap=5@)= [ BE©)aP

/0§dP=O=/0E(§) dP,

it fallaure that FYLION — F(£Y a e ag reanired

and
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Solution 2.11

Because the trivial identity

/AfszngdP

holds for any A € G and £ is G-measurable, it follows that E(£|G) = £ a.s.

Solution 2.12
By Definition 2.3

/ E(£[G) dP = / ¢dP,
B B
since B € G. It follows that

E(E(€l6)|B) = ;.715 /B E(¢[G) dP

1
= ——P(B)/Qfdp

Solution 2.13

The whole pie will be represented by the interval [0,1]. Let = € [0,1] be the
portion consumed by the older son. Then [0,1 — z] will be available to the
younger one, who takes a portion of size y € [0,1 — z]. The set of all possible
outcomes is

2 =A{(z,y): 2,y >0,z +y <1}.

The event that neither of Mrs. Jones’ sons will get indigestion is

1
A={(x,y)€!):z,y<—2-}.

These sets are shown in Figure 2.4. If z is uniformly distributed over [0, 1] and
y is uniformly distributed over [0,1 — z|, then the probability measure P over

2 with density .

will describe the joint distribution of outcomes (z,y), see Figure 2.5.
Now we are in a position to compute

P(A4) = /A f(z,y) dz dy

1 1
2 2 1
=/ / dz dy
o Jo 1-2
In 2
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$€ A7 $E@M)
24_ 2« 2
11 11 1\/
> > >
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Figure 2.3. The graph of E (£|n) in Exercise 2.6

It follows that
E(€n) (z) =2? + (1 - 2)°.

The graphs of ¢, n and E (€|n) are shown in Figure 2.3.
Solution 2.7

Since
{neB}=[0,1]x B

for any Borel set B, we have

/{nes}gdp = /B/Rmffyn(fﬂ,y) dz dy
- /B (/[0,1]:6(:5 2 dz) dy
- L (% + %y) dy

2+3n //2+3y
b = y)dzd
AWEB}3+GU B R3+6y fE,n(Z y) Iay
2+ 3y /
= z+y)dr | d
/33-*-63/([0,1]( ) ) y
1 1
= =+ zy) dy.
/3(3+2y) Y

Because each event in ¢ (1) is of the form {n € B} for some Borel set B, this
means that condition 2) of Definition 2.3 is satisfied. The random variable 237

and
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is o (n)-measurable, so condition 1) holds too. It follows that

2+ 37
3+ 6n

E(&ln) =

Solution 2.8

We are looking for a Borel function F' : R — R such that for any Borel set B

/ EdP = / F (n) dP. (2.6)
{neB} {neB}

Then E (€|n) = F (n) by Definition 2.3.
We shall transform both integrals above using the joint density f¢ ,(z,y)
in much the same way as in the solution to Exercise 2.7, except that here we

do not know the exact form of F'(y). Namely,

(y)
/ £EdP = / /:vfgy,,(a:,y) dr dy
{neB} B JR
:§/ (/ m(m2+y2)d1> dy
2/ \Jjp,
31 1,
SIAtS L

/{neB}F(n)dP:// ) fer(a.y) dedy
- 5/13F(y) (-/[0,1] (2" +v°) d‘”) dy
= g/BF(y) <%+y2> dy.

Then, (2.6) will hold for any Borel set B if

and

it+30°  3+6y

F = = )
) 12 44122
It follows that 34 62
+
E (¢ln) = F(n) = 4‘#

Solution 2.9

We are looking for a Borel function F : R — R such that for any Borel set
BCR

/ £2dpP = F (n) dP. (2.7)
{neB} {neB}
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Then, by Definition 2.3 we shall have E (¢%|n) = F ().

Let us transform both sides of (2.7). To do so we observe that the ran-
dom variables £ and 7 have uniform joint distribution over the unit disc
2 = {(z,y) : «* + y* < 1}, with density

1
fen(z,y) = -

if 22 +y? <1, and f¢,, (z,y) = 0 otherwise. It follows that

/ £2dP = / /:c2 fen (z,y) dzdy
{neB} B JR
1 Vi-y?
= ——// 22 dz dy
T B _‘/1_y2
2 3/2
— 1—y? d
37rB( y*)"" dy

and

/{nEB}F(T’) P = /B/RF(y) fen (z,y) dzdy
S rw [V we

™ 1—y2

=2 [ Fo) - an

T

If (2.7) is to be satisfied for all Borel sets B, then

Fly)=3(0-v).

This means that
E (&) (z,y) = F (n(z,y)) = F (y) =

for any (z,y) in £2.

(1-9%)

i =

Solution 2.10

If G = {0, 12}, then any constant random variable is G-measurable. Since

[eap=E©=[ Be)ap

/fdP:O:/E’(E) dP,
(] )]
it follows that FE(£1G) = FE(£) a.s.. as reauired.

and
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Solution 2.11

Because the trivial identity

/Agdpzngdp

holds for any A € G and € is G-measurable, it follows that E(£|G) = € a.s.

Solution 2.12
By Definition 2.3
/ E(£[G) dP = / ¢dP,
B B

since B € G. It follows that

E(E (€|6) |B) = 'P_(IBS /B E(¢0) dP

1
= P(B)fggdp
- E(¢B).

Solution 2.13

The whole pie will be represented by the interval [0,1]. Let z € [0, 1] be the
portion consumed by the older son. Then [0,1 — z] will be available to the
younger one, who takes a portion of size y € [0,1 — z]. The set of all possible
outcomes is

2 ={(z,y) :z,y >0,z +y < 1}.

The event that neither of Mrs. Jones’ sons will get indigestion is

1
A:{(m,y)EQ:m,y<§}.

These sets are shown in Figure 2.4. If z is uniformly distributed over [0, 1] and
y is uniformly distributed over [0,1 — z], then the probability measure P over

2 with density .

f@y) =1

will describe the joint distribution of outcomes (z,y), see Figure 2.5.
Now we are in a position to compute

P(4) = /A £(2,y) do dy

Iy
=/ / dz dy
0o Jo 1-2
2

= InV2.
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[N

)

=

—
3]

Figure 2.4. The sets {2 and A in Exer-
cise 2.13

[@w

Figure 2.5. The density f (z,y) in Exer-
cise 2.13

The random variable
§(z,y)=1-z—y

defined on 2 represents the size of the portion left by Mrs. Jones’ sons. Finally,
we find that

E(€l4) = 7.;(1-5 / (1-2—y) f(z,y) dody

_ 21—-3:—y
_ln\/—// -z 1o W

1-Inv2
lIn4

Solution 2.14

The o-field o () generated by n consists of sets of the form B U (B + %) for
some Borel set B C [0, 1). Thus, we are looking for a ¢ (n)-measurable random
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variable ¢ such that for each Borel set B C [0, 3)

/BU(B+%) €(x) do = /I3U(B+%) ((x) dz. (2.8)

Then F (€|n) = ¢ by Definition 2.3.
Transforming the integral on the left-hand side, we obtain

/ €(x)dz = / 2m2dm+/ 222 dz
BU(B+1%) B B+}
:/2x2d$+/2(z+%)2 dr
B B

= 2/ (m2 + (z+ %)2) dz.
B
For ¢ to be o (n)-measurable it must satisfy
((z)=((z+3) (2.9)

for each z € [0,3). Then

/BU(H%)C(z) dP = / ¢ (z) dz+/B+é((x) dz
/C dz+/(( 1) de
= /C(a: dz+/(
=2/BC(a:)d:z.

If (2.8) is to hold for any Borel set B C [0, ), then
(@) =2"+(z+})*

for each z € [0, 7). The values of ¢ (z) for z € [, 1) can be obtained from (2.9).
It follows that

) [ 2+ (@=+Y)? foro<z<l
E(ﬂn)(m)—((x)—{ (x-%)2+x2 for f <z <1

The graphs of &, n and E (§|n) are shown in Figure 2.6.
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AE(E!n)

>
0 0

0

Figure 2.6. The graph of E (¢|n) in Exercise 2.14

Solution 2.15

Since n(z) = n(1 — z), the o-field o(n) consists of Borel sets B C [0,1] such

that
B=1-8B,

where 1 — B = {1 — z : x € B}. For any such B

/Bf(:c)dm = l/ §(z)dz+1/§(z)dx

== / §(,7;)d:c+ {(1—.’1)) dz

= /E(a: ydz + - /5(1—:1:

/ £(z) +£(1—x .

Because £ (€ (z) + £ (1 — z)) is o ()-measurable, it follows that
(=) +£(1 —z)
; :

E(¢ln) (z) =

Solution 2.16
We are looking for a Borel function F' (y) such that

/ £dP = / F(n) dP
{neB} {neB}

for any Borel set B in R. Because F'(n) is o (n)-measurable and each event
in o (n) can be written as {n € B} for some Borel set B, this will mean that

I ol DU W Al SO
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Let us transform the two integrals above using the joint density of £ and 7:

/{néB}édP - /B/szﬁ,n (z,y) drdy

= /B(/Rmfgm(m,y) da:) dy

J oy FaP = [ [ F@) fon @) dody

:LF@WA&MamM)@

If these two integrals are to be equal for each Borel set B, then

_ mefﬁ,n (z,y) dz
fR fen(z,y) dz .

and

F(y)

It follows that
Jo® fen (z,n) dx

f]R f{,ﬂ (55,77) dr

El¢n) =F@) =

Solution 2.17

We denote by ( the orthogonal projection of ¢ onto the subspace L? (G) C
L? (F) consisting of G-measurable random variables. Thus, £ — ( is orthogonal
to L? (G), that is,

E[€-07]=0

for each v € L?(G). But for any A € G the indicator function 14 belongs to
L?(G), so
E[(€ - ()1a] = 0.

Therefore

| €aP=B(e1n) = BGLa) = [ ¢aP
A A
for any A € G. This means that { = E(£|G).
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Martingales in Discrete Time

3.1 Sequences of Random Variables

A sequence &1,&3, ... of random variables is typically used as a mathematical
model of the outcomes of a series of random phenomena, such as coin tosses
or the value of the FTSE All-Share Index at the London Stock Exchange on
consecutive business days. The random variables in such a sequence are indexed
by whole numbers, which are customarily referred to as discrete time. It is
important to understand that these whole numbers are not necessarily related
to the physical time when the events modelled by the sequence actually occur.
Discrete time is used to keep track of the order of events, which may or may
not be evenly spaced in physical time. For example, the share index is recorded
only on business days, but not on Saturdays, Sundays or any other holidays.
Rather than tossing a coin repeatedly, we may as well toss 100 coins at a time
and count the outcomes.

Definition 3.1

The sequence of numbers &; (w),& (w),... for any fixed w € §2 is called a
sample path.

A sample path for a sequence of coin tosses is presented in Figure 3.1 (+1
stands for heads and —1 for tails). Figure 3.2 shows the sample path of the
FTSE All-Share Index up to 1997. Strictly speaking the pictures should con-
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A
1
>
n
-1
Figure 3.1. Sample path for a sequence of coin tosses
180
140
100
; , ; >
1991 1993 1995 1997

Figure 3.2. Sample path representing the FTSE All-Share Index up to 1997

sist of dots, representing the values & (w),& (w),..., but it is customary to
connect them by a broken line for illustration purposes.

3.2 Filtrations

As the time n increases, so does our knowledge about what has happened in
the past. This can be modelled by a filtration as defined below.

Definition 3.2
A sequence of o-fields Fy,Fs,... on 2 such that

FiCFC---CF
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is called a filtration.

Here F, represents our knowledge at time n. It contains all events A such
that at time n it is possible to decide whether A has occurred or not. As n
increases, there will be more such events A, i.e. the family F,, representing our
knowledge will become larger. (The longer you live the wiser you become!)

Example 3.1
For a sequence &1, £, ... of coin tosses we take F,, to be the o-field generated
by fl,- "7£n7
Frn=0(&,...,&n).
Let

A = {the first 5 tosses produce at least 2 heads} .

At discrete time n = 5, i.e. once the coin has been tossed five times, it will be
possible to decide whether A has occurred or not. This means that A € F;.
However, at n = 4 it is not always possible to tell if A has occurred or not. If
the outcomes of the first four tosses are, say,

tails, tails, heads, tails,

then the event A remains undecided. We will have to toss the coin once more
to see what happens. Therefore A ¢ F,.

This example illustrates another relevant issue. Suppose that the outcomes
of the first four coin tosses are

tails, heads, tails, heads.

In this case it is possible to tell that A has occurred already at n = 4, whatever
the outcome of the fifth toss will be. It does not mean, however, that A belongs
to F4. The point is that for A to belong to F4 it must be possible to tell whether
A has occurred or not after the first four tosses, no matter what the first four
outcomes are. This is clearly not so in the example in hand.

Exercise 3.1

Let £1,&2,. .. be a sequence of coin tosses and let F, be the o-field generated
by £1,...,&xn. For each of the following events find the smallest n such that the
event belongs to Fp:

A = {the first occurrence of heads is preceeded by no more than 10 tails},

B = {there is at least 1 head in the sequence &, &2, .. .},

C = {the first 100 tosses produce the same outcome},

N — fthora ara na mnra than 9 hoade and 9 taile amnne tha firet & tneeocl
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Hint To find the smallest element in a set of numbers you need to make sure that
the set is non-empty in the first place.

Suppose that &;,&,,. .. is a sequence of random variables and Fi, Fa2, ... is
a filtration. A priori, they may have nothing in common. However, in practice
the filtration will usually contain the knowledge accumulated by observing the
outcomes of the random sequence, as in Example 3.1. The condition in the def-
inition below means that F, contains everything that can be learned from the
values of €1, ..., &,. In general, it may and often does contain more information.

Definition 3.3

We say that a sequence of random variables &, s, . .. is adapted to a filtration
Fi1,Fa,...if &, is Fp-measurable foreachn =1,2,....

Example 3.2

If 7, = o(&,...,&) is the o-field generated by &,...,&,, then &,&,, ... is
adapted to Fi1, Fa,... .

Exercise 3.2

Show that
Fn=0(&,...,&)

is the smallest filtration such that the sequence &;,&;,... is adapted to Fi,
Fa,.... That is to say, if G;,Gs,... is another filtration such that &;,&,, ... is
adapted to G;,Go,... , then F,, C G, for each n.

Hint For o(£1,...,€n) to be contained in G, you need to show that &;,...,&, are
Gn-measurable.

3.3 Martingales

The concept of a martingale has its origin in gambling, namely, it describes
a fair game of chance, which will be discussed in detail in the next section.
Similarly, the notions of submartingale and supermartingale defined below are
related to favourable and unfavourable games of chance. Some aspects of gam-
bling are inherent in the mathematics of finance, in particular, the theory of
financial derivatives such as options. Not surprisingly, martingales play a cru-
cial role there. In fact, martingales reach well beyond game theory and appear
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in various areas of modern probability and stochastic analysis, notably, in dif-
fusion theory. First of all, let us introduce the basic definitions and properties
in the case of discrete time.

Definition 3.4

A sequence &1, s, ... of random variables is called a martingale with respect to
a filtration Fi, Fo,... if

1) &, is integrable for each n =1,2,...;
2) &,&,. .. is adapted to Fi,Fo,... ;
3) E(&ns1|Fn) =&, as. foreachn =1,2,....

Example 3.3

Let n1,72,... be a sequence of independent integrable random variables such
that E(n,) =0foralln=1,2,.... We put

€n = M+ +0n,
Fn = (M, 7n)-
Then &, is adapted to the filtration F,,, and it is integrable because
E(al) = E(imi ++ -+ 1al)

E(lm|) + -+ E(|nnl)
0.

A A

Moreover,

E(¢ni1|Fn) = EMny1|Fn) + E(&nlFn)
= E(Mny1) +&n
= Ena
since 7,41 is independent of F, (‘and independent condition drops out’) and

€n is F,-measurable (‘taking out what is known’). This means that &, is a
martingale with respect to JF,.

Example 3.4

Let £ be an integrable random variable and let F;, F,,... be a filtration. We

put
En = E(f'fn)
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form=1,2,....
Then £, is F,-measurable,

1€n| = [E(E[Fn)| < E([€] |Fn),
which implies that

E(|¢n]) < E(E([¢] [Fa)) = E(|¢]) < o0,

and
E(§n+1|fn) = E(E(glfn+l)|fn) = E(ﬂfn) =&n,

since F,, C Fn41 (the tower property of conditional expectation). Therefore &,
is a martingale with respect to F,.

Exercise 3.3

Show that if &, is a martingale with respect to F,, then

E(6) =E(&) ="

Hint What is the expectation of E(&n+1|Fn)?

Exercise 3.4

Suppose that £, is a martingale with respect to a filtration F,,. Show that &,
is a martingale with respect to the filtration

Gn=0(&,. - &n)-

Hint Observe that G, C F, and use the tower property of conditional expectation.

Exercise 3.5

Let &, be a symmetric random walk, that is,

n=m+ -+,

where m1,72,... is a sequence of independent identically distributed random
variables such that

P{na=1) = Plm =1} =

(a sequence of coin tosses, for example). Show that &2 —n is a martingale with
respect to the filtration
Fa=0(m,...,nn)
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Hint You want to transform E (5,2,+1 —(n+1) |fn) to obtain &2 — n. Write
2
bnt1 = (&n +1nt1)
2 2
= Tn+1 + 27’n+1€n + gn
and observe that &, is F,-measurable, while 1,41 is independent of F,,. To transform
the conditional expectation you can ‘take out what is known’ and use the fact that
‘an independent condition drops out’. Do not forget to verify that £2 —n is integrable
and adapted to Fj.
Exercise 3.6

Let &, be a symmetric random walk and F,, the filtration defined in Exer-
cise 3.5. Show that
¢ = (—1)" cos(mén)

is a martingale with respect to F,.

Hint You want to transform E((—1)"1!cos(mén+1)|Fn) to obtain (—1)" cos(méy,).
Use a similar argument as in Exercise 3.5 to achieve this. But, first of all, make sure
that ¢, is integrable and adapted to F,.

Definition 3.5

We say that &,&s, ... is a supermartingale (submartingale) with respect to a
filtration Fy, Fo, ... if

1) &, is integrable for each n =1,2,...;
2) &1,&,. .. is adapted to Fy, Fa,... ;
3) E(én+1]Fn) <&, (respectively, E(€p41|Fn) > &n) a.s. foreachn =1,2,....

Exercise 3.7

Let &, be a sequence of square integrable random variables. Show that if &, is
a martingale with respect to a filtration JF,, then £2 is a submartingale with
respect to the same filtration.

Hint Use Jensen’s inequality with convex function ¢ (z) = z°.

3.4 Games of Chance

Suppose that you take part in a game such as the roulette, for example. Let
™.ms.... be a seauence of integrable random variables. where n. are vour
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winnings (or losses) per unit stake in game n. If your stake in each game is
one, then your total winnings after n games will be

En=m+ -+ Ny

We take the filtration
Fn=0(m,..,7n)
and also put & = 0 and Fo = {0, 2} for notational simplicity.
If n — 1 rounds of the game have been played so far, your accumulated
knowledge will be represented by the o-field F,,_;. The game is fair if

E(¢nlFn-1) = &n-1,

that is, you expect that your fortune at step n will on average be the same as
at step n — 1. The game will be favourable to you if

E(énlfn—lj Z 611-—17

and unfavourable to you if

E(fnlfn——l) S En—l

for n = 1,2,... . This corresponds to £, being, respectively, a martingale, a
submartingale, or a supermartingale with respect to F,,, see Definitions 3.4
and 3.5.

Suppose that you can vary the stake to be a, in game n. (In particular, a,
may be zero if you refrain from playing the nth game; it may even be negative if
you own the casino and can accept other people’s bets.) When the time comes
to decide your stake a,, you will know the outcomes of the first n — 1 games.
Therefore it is reasonable to assume that «,, is F,,_1-measurable, where F,,_1
represents your knowledge accumulated up to and including game n — 1. In
particular, since nothing is known before the first game, we take Fo = {0, 2}.

Definition 3.6

A gambling strategy ai,as,... (with respect to a filtration Fy,Fs,...) is a
sequence of random variables such that a, is F,,_i-measurable for each n =
1,2,..., where Fo = {0, £2}. (Outside the context of gambling such a sequence
of random variables a, is called previsible.)

If you follow a strategy ai,as,... , then your total winnings after n games
will be

Cn = a1+ -+ aphn
= X1 (E1 —fn)+"‘+an(£n_£n—1)-
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We also put (o = 0 for convenience.

The following proposition has important consequences for gamblers. It
means that a fair game will always turn into a fair one, no matter which gam-
bling strategy is used. If one is not in a position to wager negative sums of
money (e.g. to run a casino), it will be impossible to turn an unfavourable
game into a favourable one or vice versa. You cannot beat the system! The
boundedness of the sequence a, means that your available capital is bounded
and so is your credit limit.

Proposition 3.1
Let aj,as,... be a gambling strategy.

1) If oy, aq,... is a bounded sequence and &g, &1,&, ... is a martingale, then
Co0,C1,¢C2,... is a martingale (a fair game turns into a fair one no matter
what you do);

2) If a;, a9, ... is anon-negative bounded sequence and &y, &1, &2, . . . is a super-
martingale, then (o, (1, (2,... is a supermartingale (an unfavourable game
turns into an unfavourable one).

3) If aj,aq,... is a non-negative bounded sequence and &, &1, &2, . . . is a sub-
martingale, then (o, (1, (2,... is a submartingale (a favourable game turns
into a favourable one).

Proof

Because o, and (,_; are F,,_i-measurable, we can take them out of the ex-
pectation conditioned on F,,_; (‘taking out what is known’, Proposition 2.4).
Thus, we obtain

E (Cn,fn—l) = E(Cn—l + an (fn - fn-—l) |fn—1)
Cn—1+ an (E (&n|Fn-1) = €n-1) -

If &, is a martingale, then
an (E (&n|Fn-1) — €n-1) =0,

which proves assertion 1). If £, is a supermartingale and a,, > 0, then
an (E (&n|Fn-1) — €a1) <0,

proving assertion 2). Finally, assertion 3) follows because
an (E (&n|Fn-1) ~€n-1) >0

if ¢,, is a submartingale and a,, > 0. O
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3.5 Stopping Times

In roulette and many other games of chance one usually has the option to quit
at any time. The number of rounds played before quitting the game will be
denoted by 7. It can be fixed, say, to be 7 = 10 if one decides in advance
to stop playing after 10 rounds, no matter what happens. But in general the
decision whether to quit or not will be made after each round depending on
the knowledge accumulated so far. Therefore 7 is assumed to be a random
variable with values in the set {1,2,...}U{oo}. Infinity is included to cover the
theoretical possibility (and a dream scenario of some casinos) that the game
never stops. At each step n one should be able to decide whether to stop playing
or not, i.e. whether or not 7 = n. Therefore the event that = = n should be
in the o-field F,, representing our knowledge at time n. This gives rise to the
following definition.

Definition 3.7

A random variable 7 with values in the set {1,2,...}U {00} is called a stopping
time (with respect to a filtration F,) if for each n = 1,2,...

{r=n} € F,.

Exercise 3.8
Show that the following conditions are equivalent:
1) {r<n} e F,foreachn=12...;

2) {r=n}e F,foreachn=12....

Hint Can you express {r < n} in terms of the events {r = k}, where k = 1,...,n?
Can you express {7 = n} in terms of the events {r < k}, where k =1,...,n?

Example 3.5 (First hitting time)

Suppose that a coin is tossed repeatedly and you win or lose £1, depending
on which way it lands. Suppose that you start the game with, say, £5 in your
pocket and decide to play until you have £10 or you lose everything. If £, is
the amount you have at step n, then the time when you stop the game is

T =min{n : &, =10 or 0},

and is called the first hitting time (of 10 or 0 by the random sequence &,). It

S A Ml anmenn + +~n +tho Altratinn

~ ™S e
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Fn=0(&,...,&). This is because
{r=n}={0<& <10}N---N{0<&-1 <10} N {& =10 or 0}.

Now each of the sets on the right-hand side belongs to F,,, so their intersection
does too. This proves that
{T = 'n/} € fn

for each n, so T is a stopping time.

Exercise 3.9

Let £, be a sequence of random variables adapted to a filtration F, and let
B C R be a Borel set. Show that the time of first entry of &, into B,

7 =min {n : ¢, € B}
is a stopping time.

Hint Example 3.5 covers the case when B = (—00,0]U[10, 00). Extend the argument
to an arbitrary Borel set B.

Let &, be a sequence of random variables adapted to a filtration F,, and
let 7 be a stopping time (with respect to the same filtration). Suppose that
&, represents your winnings (or losses) after n rounds of a game. If you decide
to quit after 7 rounds, then your total winnings will be &,. In this case your
winnings after n rounds will in fact be &;1,. Here a A b denotes the smaller of

two numbers a and b,
a Ab=min(a,b).

Definition 3.8

We call &:an the sequence stopped at 7. It is often denoted by &. Thus, for

each w € ?
{;(w) = fr(w)/\n(w)‘

Exercise 3.10

Show that if £, is a sequence of random variables adapted to a filtration F,
then so is the sequence &, an.

Hint For any Borel set B express {{-an € B} in terms of the events {{x € B} and
{r =k}, where k =1,...,n.
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We already know that it is impossible to turn a fair game into an unfair
one, an unfavourable game into a favourable one, or vice versa using a gambling
strategy. The next proposition shows that this cannot be achieved using a
stopping time either (essentially, because stopping is also a gambling strategy).

Proposition 3.2
Let 7 be a stopping time.

1) If &, is a martingale, then so is &, an-
2) If &, is a supermartingale, then so is &ran-

3) If &, is a submartingale, then so is & an-

Proof

This is in fact a consequence of Proposition 3.1. Given a stopping time 7, we

put
1 if 7 >n,
Qn = .
0 if 7 < n.

We claim that a,, is a gambling strategy (that is, ., is F,,_;-measurable). This
is because the inverse image {a, € B} of any Borel set B C R is equal to

mefn-—l

if 0,1 ¢ B, or to
\Qefn—l

if 0,1 € B, or to

{an=1}={r>2n}={r>n-1} € F,;
ifle Band 0 ¢ B, or to

{on=0}={r<n}={r<n-1}€ Fr
if 1 ¢ B and 0 € B. For this gambling strategy

§ran =1 (&1 — &)+ +an (§n = &n-1).-

Therefore Proposition 3.1 implies assertions 1), 2) and 3) above. O
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Example 3.6

(You could try to beat the system if you had unlimited capital and unlimited
time.) The following gambling strategy is called ‘the martingale’. (Do not con-
fuse this with the general definition of a martingale earlier in this section.)
Suppose a coin is flipped repeatedly. Let us denote the outcomes by 71,72, .. .,
which can take values +1 (heads) or —1 (tails). You wager £1 on heads. If you
win, you quit. If you lose, you double the stake and play again. If you win this
time round, you quit. Otherwise you double the stake once more, and so on.
Thus, your gambling strategy is

o — n-1 ifg = =np_q = tails,
"1 0 otherwise.

Let us put
ao=m+2m+--+2"n,

and consider the stopping time
7 = min {n : ,, = heads} .

Then (;rn will be your winnings after n rounds. It is a martingale (check it!).

It can be shown that P {7 < co} = 1 (heads will eventualiy appear in the
sequence 71,1732, ... with probability one). Therefore it makes sense to consider
(r. This would be your total winnings if you were able to continue to play the
game no matter how long it takes for the first heads to appear. It would require
unlimited time and capital. If you could afford these, you would be bound to
win eventually because {; = 1 identically, since

—1-2—...=2"149n =

for any n.

Exercise 3.11

Show that if a gambler plays ‘the martingale’, his expected loss just before the
ultimate win is infinite, that is,

E(Cr—l) = —0Q.

Hint What is the probability that the game will terminate at step n, i.e. that 7 = n?
If 7 = n, what is (r_1 equal to? This will give you all possible values of {,_; and
their probabilities. Now compute the expectation of (,_;.
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3.6 Optional Stopping Theorem

If £, is a martingale, then, in particular,

E(&) = E(&)

for each n. Example 3.6 shows that E(&;) is not necessarily equal to E(¢;) for
a stopping time 7. However, if the equality

E(¢-) = E(&)

does hold, it can be very useful. The Optional Stopping Theorem provides
sufficient conditions for this to happen.

Theorem 3.1 (Optional Stopping Theorem)

Let &, be a martingale and 7 a stopping time with respect to a filtration F,
such that the following conditions hold:

1) 7 < o0 as,
2) &, is integrable,
3) E(§n1{7>n}) —+0asn— oo.

Then
E(ér) = E(fl)

Proof

Because
& =&ran t+ (€T - gn) 1{T>n},

it follows that
E(E.,.) = E(Er/\n) + E(£T1{~r>n}) - E(€n1{7>n})-

Since &;an is a martingale by Proposition 3.2, the first term on the right-hand
side is equal to

E(f‘r/\n) = E(fl)

The last term tends to zero by assumption 3). The middle term

E(571{7>n}): Z E(gkl{'r:k})

k=n+1
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tends to zero as n — oo because the series
o0
E(&) =Y E(&l{=t))
k=1

is convergent by 2). It follows that E(¢;) = E(&), as required. O

Example 3.7 (Expectation of the first hitting time for a random walk)

Let &, be a symmetric random walk as in Exercise 3.5 and let K be a positive
integer. We define the first hitting time (of £K by &,) to be

7 =min{n: || = K}.

By Exercise 3.9 7 is a stopping time. By Exercise 3.5 we know that £2 —n is a
martingale. If the Optional Stopping Theorem can be applied, then

E@-1)=E(&-1)=0.
This allows us to find the expectation
E(1) = E(&) = K?,

since |¢,| = K.

Let us verify conditions 1)-3) of the Optional Stopping Theorem.

1) We shall show that P{r =00} = 0. To this end we shall estimate
P{r > 2Kn}. We can think of 2Kn tosses of a coin as n sequences of 2K
tosses. A necessary condition for 7 > 2Kn is that no one of these n sequences
contains heads only. Therefore

1 n

as n — oo. Because {7 > 2Kn} for n = 1,2,... is a contracting sequence of
sets (i.e. {7 > 2Kn} D {r > 2K (n+ 1)}), it follows that

P{r =00} = P(ﬁ {T>2Kn})

n=1

= lim P{r >2Kn} =0,
n—oo

completing the argument.
2) We need to show that

Bl -7)) < oo
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Indeed,

E(r) = ZnP {r=n}
n=1

oo 2K

= > > (2Kn+k)P{7r =2Kn+k}
n=0 k=1
oo 2K

> > 2K (n+1)P{r > 2Kn}

n=0 k=1

< 4K2i(n+1) (1—5517;)11

n=0

IA

< 00,

since the series ) .-, (n + 1) ¢" is convergent for any ¢ € (-1, 1). Here we have
recycled the estimate for P {7 > 2Kn} used in 2). Moreover, £2 = K2, so

E(|&-7]) < E(&)+E(7)
= K?>+ E(7)
< o0.
3) Since ¢2 < K? on {1 > n},
E (§31(r5>n)) S K*P{r>n} =0
as n — 00. Moreover,
E (n1{7>n}) <FE (Tl{r>n}) -0

as n — 0o. Convergence to 0 holds because E (1) < oo by 2) and {7 > n} is
a contracting sequence of sets with intersection {7 = oo} of measure zero. It
follows that

E((€ —n) 1{rsny) = 0,

as required.

Exercise 3.12

Let &, be a symmetric random walk and F,, the filtration defined in Exer-
cise 3.5. Denote by 7 the smallest n such that |{,| = K as in Example 3.7.
Verify that

¢n = (=1)"cos[r (§n + K]
is a martingale (see Exercise 3.6). Then show that (, and 7 satisfy the con-
ditions of the Optional Stopping Theorem and apply the theorem to find

-rs «\T1
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Hint The equality ¢, = (—1)" is a key to computing E [(—1)"] with the aid of the
Optimal Stopping Theorem. The first two conditions of this theorem are either obvious
in the case in hand or have been verified elsewhere in this chapter. To make sure that
condition 3) holds it may be helpful to show that

IE(Cnl{r>n})| S P{T > Tl}.

Use Jensen’s inequality with convex function ¢ (z) = |z| to estimate the left-hand
side. Do not forget to verify that (, is a martingale in the first place.

3.7 Solutions

Solution 3.1

A belongs to Fi1, but not to Fy9. The smallest n is 11.

B does not belong to F,, for any n. There is no smallest n such that B € F,,.
C belongs to Fioo, but not to Fgg. The smallest n is 100.

Since D = 0, it belongs to F,, for each n = 1,2,... . Here the smallest n is 1.

Solution 3.2

Because the sequence of random variables &1, &5, ... is adapted to the filtration
G1,Ga, ..., it follows that £, is G,-measurable for each n. But

GiCGC:--
so &1,...,&, are G,-measurable for each n. As a consequence,

Fn=0(&,...,&n) CGn
for each n.
Solution 3.3
Taking the expectation on both sides of the equality
€n = E(&n+1|Fn),

we obtain
E(&n) = E(E(6nv1|Fn)) = E(€nt1)

for each n. This proves the claim.

Solution 3.4

The random variables £, are integrable because &, is a martingale with respect
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to F,. Since G, is the o-field generated by &i,...,&,, it follows that &, is
adapted to G,. Finally, since G, C F,

§n = E(£n|Gn)
= E(E(§n+1|fn)lgn)
= E(€n+1|gn)

by the tower property of conditional expectation (Proposition 2.4). This proves
that &, is a martingale with respect to G,.

Solution 3.5

Because
e —n=(m++mm) —n

is a function of 7, ..., 7n,, it is measurable with respect to the o-field F,, gen-
erated by n1,...,m,, i.e. £2 —n is adapted to F,,. Since

l€nl =|m + -+ 0| < |m|+ - |na] =n,

it follows that
E(l& —n|) <E(E)+n<n*+n < oo,

so £2 — n is integrable for each n. Because
2 2
§n+1 = nn—{-l + 2"7n+1€n + 512;3

where &, and &2 are F,,-measurable and 7, is independent of F,,, we can use
Proposition 2.4 (‘taking out what is known’ and ‘independent condition drops
out’) to obtain

E(&211Fn) = EM2 411 Fn) + 2E(Mns1&nlFn) + E(E2|Fn)
= E(m241) + 26nE(Mny1) + €2
= 1+

This implies that
E(frzz-n -n—1|F) = 572; - n,

so £2 — n is a martingale.

Solution 3.6

Being a function of £,, the random variable (,, is F,,-measurable for each n,
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since &, is. Because [(,| < 1, it is clear that (, is integrable. Because 1,41 is
independent of F,, and &, is F,-measurable, it follows that

E(Cn+1|Fn) = E((=1)"* cos[m (& + nnt1)]| Fn)

= (=1)"*1E (cos (&) cos (Mnn+1) | Fn)
— (=)™ E (sin (7€) sin (70nt1) | Fn)

= (=1)"*" cos (&) E (cos (m7n+1))
~(=1)"*sin (n€,) E (sin (17n+1))

= (=1)"cos(7&,)

= (n,

using the formula

cos (a + ) = cosacos B — sin asin 3.

To compute E (cos (7mnn+1)) and E (sin (79,+1)) observe that n,+1 = 1 or —1
and

cosm = cos(—7) = -1,
sinTt = sin(—7) = 0.

It follows that (, is a martingale with respect to the filtration F,.

Solution 3.7

If &, is adapted to F,, then so is 2. Since &, = E (£n41]Fn) for each n and
¢ (z) = z? is a convex function, we can apply Jensen’s inequality (Theorem 2.2)

to obtain
£ = [E (1| Fn) < E (&2411Fn)

for each n. This means that £2 is a submartingale with respect to JF,,.
Solution 3.8
1)=2). If 7 has property 1), then

{r<n}eF,

and
{r<n-1}€ Fo_1 C Fp,

{r=n}={r<n}\{r<n-1}eF.

2)=1). If 7 has property 2), then
{r=kYe€eF. C F.
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for each k = 1,...,n. Therefore

{r<n}={r=1}U---U{r =n} € F,.

Solution 3.9

If
T =min{n :§, € B},

then for any n
{r=n}={&¢B}N---N{n1 ¢ B}N{& € B}.

Because B is a Borel set, each of the sets on the right-hand side belongs to the
o-field F,, = o (&,...,&,), and their intersection does too. This proves that
{r =n} € F, for each n, so 7 is a stopping time.

Solution 3.10
Let B C R be a Borel set. We can write

{&am€By={&eB,7>n}u | {& € B,r =k},

k=1

where

{¢o € B,r>n}={& € BYn{r>n}e F,

and foreach k=1,...,n
{ér € B,r=k}={& € B}n{r =k} € Fx C Fy.

It follows that for each n
{fr/\n € B} € fn,

as required.

Solution 3.11

The probability that ‘the martingale’ terminates at step n is
1
P {T = TL} = 2_11

(n — 1 tails followed by heads at step n). Therefore

E((G-1) = ZCn—lP{T=n}

n=1

o0 1
_ —_— — —-— e 0 m—— n_2 —
= n§=1:( 1-2 2"?) 5

— 2" —1
==
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Solution 3.12

The proof that (, is a martingale is almost the same as in Exercise 3.6. We
need to verify that ¢, and 7 satisfy conditions 1)-3) of the Optional Stopping

Theorem.
Condition 1) has in fact been verified in Example 3.7.

Condition 2) holds because |(;| < 1,50 E(|¢-]) <1 < oo.
To verify condition 3) observe that |(,,| < 1 for all n, so

|E(Cn1{r>n})| < E(Kﬂll{r>n})
< E(l{r>n})
= P{r > n}.

The family of events {7 > n}, n = 1,2,... is a contracting one with intersection
{T = o0}. It follows that

’E(Cnl{‘r>n})| < P{T > n} hV P{T = OO}

as n — o0o. But
P{r=00}=0

by 1), completing the proof.
The Optional Stopping Theorem implies that

E(¢) =E(G)
Because & = K or —K, we have
¢r = (=1)7 cos[m(K + &-)] = (-1)".
Let us compute
E(G) = —3 (coslm (14 K)] + coslr (~1 + K))
= cos(nK) = (-1)¥.

It follows that
E[(-1)7] = (-1)¥.
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Martingale Inequalities and Convergence

Results on the convergence of martingales provide an insight into their structure
and have a multitude of applications. They also provide an important inter-
pretation of martingales. Namely, it turns out that a large class of martingales
can be represented in the form

n = E (§|Fn), (4.1)

where £ = lim,, &, is an integrable random variable and F;, F3, ... is the filtra-
tion generated by &;,&3,. .., see Theorem 4.4 below. This makes it possible to
think of &,&,,... as the results of a series of imperfect observations of some
random quantity €. As n increases, the accumulated knowledge F,, about ¢
increases and &, becomes a better approximation, approaching the observed
quantity £ in the limit.

We shall begin with a few classical inequalities for martingales, known as
the Doob inequalities. They provide the tools we shall need to study the con-
vergence of martingales and, later on, the properties of stochastic integrals.
Then we shall present a classical result known as Doob’s Martingale Conver-
gence Theorem, which provides the limit lim, &, of a martingale. However,
Doob’s theorem has one inconvenient feature. It guarantees only that &, con-
verges a.s., even though the limit is known to be an integrable random variable.
However, to obtain (4.1) we need convergence in L', which gives rise to a condi-
tion called uniform integrability. This condition and its consequences, including
(4.3), will be studied in the second section. Finally, as an example of an appli-
cation reaching beyond the theory of martingales, we present an elegant proof
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4.1 Doob’s Martingale Inequalities

Proposition 4.1 (Doob’s maximal inequality)

Suppose that £,,n € N, is a non-negative submartingale (with respect to a
filtration F,). Then for any A > 0

AP (T;’ffk > /\) <FE (§n1(maxk$nskzx}) ’

where 14 is the characteristic function of a set A.

Proof

We put & = max & for brevity. For A > 0 let us define

T =min{k <n:& > A},

if there is a k£ < n such that £ > A, and 7 = n otherwise. Then 7 is a stopping
time such that 7 < n a.s. Since &, is a submartingale,

E(¢n) 2 E(&:).

But
E(&) = E (6 1{gzoa)) + E (6rlgez<ny) -

Observe that if £ > A, then & > A. Moreover, if £ < A, then 7 = n, and so
& = &n. Therefore

E(¢n) 2 E(&) 2 AP (6, 2 N + E (&nlgex<ny)
It follows that
AP (En 2 X)) S E(&) — E (bnlfecny) = E (bnlger>ay)

completing the proof. O

Theorem 4.1 (Doob's maximal L? inequality)
If {&,,n € N, is a non-negative square integrable submartingale (with respect
to a filtration F,), then

2
< 4E|Ea)*. (4.2)

E ’nggék
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Proof

Put & = maxg<n &. By Exercise 1.9, Proposition 4.1, the Fubini theorem and
finally the Cauchy-Schwarz inequality

Ele)? = 2/0 tP (¢8> 1) dt < 2/0 E (énlie:>) dt

-2 ( /{mt}gn@ =2/ s ( /j dt) i

=2 [ wear =286 s2(El6l”) (BiG)

e >* 2\1/2
Dividing by (E 1€ ) , we get (4.2). O

The proof of Doob’s Convergence Theorem in the next section hinges on an
inequality involving the number of upcrossings.

Definition 4.1

Given an adapted sequence of random variables &, &2, . .. and two real numbers
a < b, we define a gambling strategy a;, as, ... by putting

ay; = 0
and forn =1,2,...
1 if @, =0 and &, < a,
Opt1 = 1 if ap, =1 and &, <b,
0 otherwise.

It will be called the upcrossings strategy. Each k = 1,2, ... such that o =1
and ax41 = 0 will be called an upcrossing of the interval [a, b]. The upcrossings
form a (finite or infinite) increasing sequence

Uy <ug < --- .

The number of upcrossings made up to time n, that is, the largest k such that
ux < n will be denoted by Up|a,b] (we put Uyn[a,d] = 0 if no such k exists).

The meaning of the above definition is this. Initially, we refrain from playing
the game and wait until &, becomes less than a. As soon as this happens, we
start playing unit stakes at each round of the game and continue until &,
becomes greater than b. At this stage we refrain from playing again, wait until
&, becomes less than a, and so on. The strategy a, is defined in such a way
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that o, = 0 whenever we refrain from playing the nth game, and a, = 1
otherwise. During each run of consecutive games with a, = 1 the process &,
crosses the interval [a, b], starting below a and finishing above b. This is what
is meant by an upcrossing. Observe that each upcrossing will increase our total
winnings by at least b — a. For convenience, we identify each upcrossing with
its last step k, such that ay = 1 and axy; = 0. A typical sample path of the
upcrossings strategy is shown in Figure 4.1.

Exercise 4.1

Verify that the upcrossings strategy a, is indeed a gambling strategy.

Hint You want to prove that a, is F,_1-measurable for each n. Since the upcrossings
strategy is defined by induction, a proof by induction on n may be your best bet.

Lemma 4.1 (Upcrossings Inequality)
If &,&,, ... is a supermartingale and e < b, then
(b —a)E(Un[a, b)) < E((¢n —a)7).

By z~ we denote the negative part of a real number z, i.e. z~ = max {0, —z}.

Proof

Let
=1 (& — &)+ -+ an(n — &n1)

be the total winnings at step n = 1,2, ... if the upcrossings strategy is followed,

see Figure 4.1. It will be convenient to put {, = 0. By Proposition 3.1 (one

cannot beat the system using a gambling strategy) (, is a supermartingale.
Let us fix an n and put k = UpJa, b, so that

O<uyi<us<--- <up <n
Clearly, each upcrossing increases the total winnings by b — a,
Cui = Cuiey 2b—a
fori=1,...,k. (We put ug = 0 for simplicity.) Moreover,
Cn—Cue. 2 —(§n—a)” .

It follows that
Cn > (b a)Un[avb] ~(ln —a) .
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n A

—>

a b 01 0

Figure 4.1. Typical paths of £,, a, and (n; upcrossings are indicated by bold lines

taking the expectation on both sides, we get
E(Cn) 2 (b—a)E(Unla, b)) — E((én — a)7).
But ¢, is a supermartingale, so
0=E(G) 2 E (),

which proves the Upcrossings Inequality. O

4.2 Doob’s Martingale Convergence Theorem

Theorem 4.2 (Doob’s Martingale Convergence Theorem)

Suppose that &;,€&2,... is a supermartingale (with respect to a filtration

F1,F2,...) such that
SupE(IEnI) < 0.

Then there is an integrable random variable £ such that

lim & =¢§ as.
n—o0
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Remark 4.1

In particular, the theorem is valid for martingales because every martingale is a
supermartingale. It is also valid for submartingales, since &, is a submartingale
if and only if —§&,, is a supermartingale.

Remark 4.2

Observe that even though all the £, as well as the limit £ are integrable random
variables, it is claimed only that &, trends to € a.s. Note that no convergence
in L1 is asserted.

Proof (of Doob’s Martingale Convergence Theorem)
By the Upcrossings Inequality

- ((in__aa)_) <Mrld o

E (Un[a,b]) <

where
M =sup E (|&,]) < .
n

Since U,[a, b] is a non-decreasing sequence, it follows that

E ( lim Un[a,b]) = lim E (Un[a,b]) < M+ lal

n—00 b—a

< 0

This implies that
P{ lim Uyla,b] < oo} =1
n—o00

for any a < b. Since the set of all pairs of rational numbers a < b is countable,
the event
A= {nlggo Unla,b] < oo} (4.3)
a<b rational

has probability 1. (The intersection of countably many events has probability 1
if each of these events has probability 1.)
We claim that the sequence &, converges a.s. to a limit £. Consider the set

B = {liminf &, < limsup&,} C 2
n n

on which the sequence &, fails to converge. Then for any w € B there are
rational numbers a, b such that

limninf €n(w) < a < b < limsupé,(w),
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implying that lim,,_,., Up[a, b](w) = oco. This means that B and the event A in
(4.3) are disjoint, so P(B) = 0, since P(A) = 1, which proves the claim.

It remains to show that the limit £ is an integrable random variable. By
Fatou’s lemma

E(lgl) = E (timinf |¢.])

< liminf E (|¢,])

< sup E (|&n]) < oo.

This completes the proof. O

f Exercise 4.2

1
i

\ Show that if §, is a non-negative supermartingale, then it converges a.s. to an
\integrable random variable.

int To apply Doob’s Theorem all you need to verify is that the sequence &, is
bounded in L", i.e. the supremum of E (|£,]) is less than oo.

AN

4.3 Uniform Integrability and L' Convergence
of Martingales

The conditions of Doob’s theorem imply pointwise (a.s.) convergence of martin-
gales. In this section we shall study convergence in L. To this end we introduce
a stronger condition called uniform integrability. Proposition 4.2 shows that it
is a necessary condition for L! convergence. In Theorem 4.2 we prove that uni-
form integrability is in fact sufficient for a martingale to converge in L. This
enables us to show that each integrable martingale is of the form E (£|F,). As
an application we give a martingale proof of Kolmogorov’s 0-1 law.

Exercise 4.3

Show that a random variable £ is integrable if and only if for every € > 0 there
exists an M > 0 such that

/ €] dP < e.
{el>M)

Hint Split 2 into two sets: {|¢| > M} and {|¢| < M}. The integrals of |¢| over these
sets must add up to E (|£]). As M increases, one of the integrals increases, while the
other one decreases. Investigate their limits as M — co.
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Thus, for any sequence &, of integrable random variables and any € > 0
there is a sequence of numbers M, > 0 such that

/ |€n| AP < €.
{lén1>M.}

If the M, are independent of n, then we say that the sequence &,, is uniformly
integrable.

Definition 4.2

A sequence &,&2,... of random variables is called uniformly integrable if for
every € > 0 there exists an M > 0 such that

/ IEa] dP < e
{6n1>M)

foralln=1,2,....

Exercise 4.4

Let 2 = [0, 1] with the o-field of Borel sets and Lebesgue measure. Take
&n =nleo1)-

Show that the sequence &;, &2, ... is not uniformly integrable.

Hint What is the integral of £, over {{, > M} if n > M?

Proposition 4.2

Uniform integrability is a necessary condition for a sequence &;,&2, ... of inte-
grable random variables to converge in L!.

Lemma 4.2

If € is integrable, then for every € > 0 there is a 6 > 0 such that

P(A)<5=>/ €| dP < e.
A

Proof (of Lemma 4.2)
Let € > 0. Since £ is integrable, by Exercise 4.3 there is an M > 0 such that

/  ldP< .
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Now

/ € dP = / €] dP + / €| dP
A AN{[¢|<M} An{|¢|>M}

< /MdP+/ |&| dP
A {lg|>M}

< MP(A) +

N ™

Let § = fM.Then
P(A)<c5=:>/ |€|dP < e,
A

as required. (J

Exercise 4.5

Let ¢ be an integrable random variable and Fi, F2,... a filtration. Show that
E (&|F,) is a uniformly integrable martingale.

Hint Use Lemma 4.2.

Proof (of Proposition 4.2)
Suppose that &, = £ in L, ie. E|£, — €| = 0. We take any € > 0. There is an
integer N such that .

nZN=>E|§n“§I<2

By Lemma 4.2 there is a § > 0 such that

£

P(A)<5=>/|£|dP<2
A

Taking a smaller 4 > 0 if necessary, we also have
P(A) <<5=>/ |én| dP <& forn=1,...,N.
A

We claim that there is an M > 0 such that
P{l&n| > M} <6

for all n. Indeed, since

E() > [

[€n|dP > M P {|&a] > M},
{la>M}

it suffices to take 1
M = <supE (&)
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‘Because the sequence &, converges in L!, it is bounded in L, so the supremum

s < 00.)
Now, since P {|&,| > M} <4,

/ €, dP < 5dP+/ € — €] dP
{|€n|>M} {lé~|>M} {lén|>M}

< EldP + E (J&, — &)
En|>M

< =E.

2

/ |Eal dP < &
{lé~|>M}

or any n =1,..., N, completing the proof. O

“’“‘_\\,

or any n > N and

Sxercise 4.6

show that a uniformly integrable sequence of random variables is bounded in
L ie.
sup E ([&n]) < o0
n

Tint Write E (|€n|) as the sum of the integrals of |£,| over {|€.] > M} and {|¢.| < M}.

Exercise 4.6 implies that each uniformly integrable martingale satisfies the
onditions of Doob’s theorem. Therefore it converges a.s. to an integrable ran-
lom variable. We shall show that in fact it converges in L1.

[heorem 4.3

ivery uniformly integrable supermartingale (submartingale) £, convergesin L?.

>roof

3y Exercise 4.6 the sequence &, is bounded in L, so it satisfies the conditions
f Theorem 4.2 (Doob’s Martingale Convergence Theorem). Therefore, there is
n integrable random variable £ such that &, — £ a.s. We can assume without
yss of generality that £ = 0 (since &, — £ can be taken in place of &,). That is
0 say,
P {lim £ = 0} =
n
t follows that &, — 0 in probability, i.e. for any € > 0

Pl >t 3N
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as n — o0o. This is because by Fatou’s lemma
limsup P {|¢é,| > €} < P (limsup {I€n] > E})
n n

< p (2 fipé =0})
= 0.

Let € > 0. By uniform integrability there is an M > 0 such that

/ €l dP <
{l&€n|>M}

for all n. Since &, — 0 in probability, there is an integer N such that if n > N,
then

[VURRY)

Plled> 5} <5

We can assume without loss of generality that M > £. Then

E(|&.]) = n| dP n|dP
) /{mmlu + /{Mz|en|>§}|£|

n| dP
+/{%2|£n|} ol

+ MP {6l >} + 2P {5 2 6l

£
3 3
€

A

for all n > N. This proves that E (|¢,|) — 0, that is, &, — 0in L. O

Theorem 4.4
Let &, be a uniformly integrable martingale. Then
€n = E(§|Fn),

where ¢ = lim,, &, is the limit of £, in L! and F,, = 0 (&4, ..., &,) is the filtration
generated by &,.

Proof

For any m > n
E(fmlfn) = fna

/Afmsz/AfndP.

i.e. for any A € F,
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Let n be an arbitrary integer and let A € F,. For any m > n

[ -0 =|[ -0 dP'

Alfm —éldP
S E(lém _él)'—)o

/AfnszfAfdP

for any A € Fp, s0 &, = E(§|F,). O

IA

as m — oo. It follows that

Exercise 4.7

Show that if £, is a martingale and £, — a in L' for some a € R, then
&n = a as. for each n.

Hint Apply Theorem 4.4.

Theorem 4.5 (Kolmogorov's 0-1 Law)

Let 11,72,... be a sequence of independent random variables. We define the
tail o-field
T=T1nTN...,
where T, = 0 (Wn, P41, --). Then
P(A)=0orl
for any V \
Proof
Take any A € T and define
¢n = E(14|70),
where F,, = o (m1,...,1m,). By Exercise 4.5 £, is a uniformly integrable mar-

tingale, so £, — £ in L. By Theorem 4.4
E (€|Fn) = E(14|Fn)
for all n. Both £ = lim, &, and 14 are measurable with respect to the o-field

T — ~fl. m \
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The family G consisting of all sets B € F such that fB £dP = fB 14dP is a o-
field containing F; UF, U--- . As a result, G contains the o-field F., generated
by the family F; U, U--- . By Lemma 2.1 it follows that £ = 14 a.s.

Since 7, is a sequence of independent random variables, the o-fields F,
and 7,4+ are independent. Because 7 C 7,41, the o-fields F,, and T are
independent. Being 7 -measurable, 14 is therefore independent of F,, for any
n. This means that

§n = E(14|Fn) = E(14) = P(A) as.
Therefore the limit limn,, o &, = £ is also constant and equal to P(A) a.s. This

means that P(A) =14 ass.,,s0 P(A)=0or 1.0

Exercise 4.8
Show that if A, € o (£,) for each n, then the events

limsup 4,, = ﬂ U A;

J2162j

lim inf A, = U () A

j2lizj

and

belong to the tail o-field T.

Hint You need to write limsup,, A, and liminf, A, in terms of Ag, Ax+1,... for any
k, that is, to show that limsup,, A, and liminf, A, will not be affected if any finite
number of sets are removed from the sequence A4,, Ao, ... .

Exercise 4.9

Use Kolmogorov’s 0-1 law to show that in a sequence of coin tosses there are
a.s. infinitely many heads.

Hint Show that the event
{m,m2,... contains infinitely many heads}

belongs to the o-field 7. Can the probability of this event be 07 The probability of
the event

{tm,m2,... contains infinitely many tails}
should be the same. Can both probabilities be equal to 0?7 Can you simultaneously
have finitely many heads and finitely many tails in the sequence n1,72,... ?
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4.4 Solutions

Solution 4.1

Because a; = 0 is constant, it is Fo = {0, 2}-measurable. Suppose that ay, is
Fn—1-measurable for some n =1,2,.... Then

{a, =0,&, < a}U{a, =16, < b} e F,
because F,_1 C F, and &, is F,-measurable. This means that
Ont+1 = 1o, =06, <a}U{an=1,6.<b}

is Fn-measurable. By induction it follows that a,, is F,,_;-measurable for each
n=12,...,s80 aj,a,,...is a gambling strategy.

Solution 4.2

For a non-negative supermartingale

SlipE(’an = SlipE(En) SE(&)=E(l&]) < oo,

since

for each n = 1,2,... . Thus Doob’s Martingale Convergence Theorem implies
that £, converges a.s. to an integrable limit.

Solution 4.3
Necessity. Suppose that £ is integrable. It follows that
P {|¢] < o0} =1.

The sequence of random variables || 1{j¢|> s} indexed by M =1,2,. .. is mono-

tone and
!fl 1{|£|>M} NO as M -

on the set {|{| < 00}, i.e. a.s. By the monotone convergence theorem for inte-
grals

/ €| AP\, 0 as M — co.
{I¢>M)

It follows that for every € > 0 there exists an M > 0 such that

[ |€] dP < e.
{lgI>M}

R |
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Sufficiency. Take € = 1. There exists an M > 0 such that

/ [€| dP < 1.
{lgI>M}

Then
EMD=AWW

:/ mw+/ €| dP
{1¢I>M} {{¢I<M}

< 1+ MP {|¢| < M}
<14+M< .

Solution 4.4
For any M > 0 and any n > M we have

(0’;1;):{€n>M}’

/ £,dP = / ndP = 1.
{¢.>M} (0,%)

This means that there is no M > 0 such that for all n

1
(£2>M} 2

The sequence &, is not uniformly integrable.

SO

Solution 4.5

In Example 3.4 it was verified that &, = E(¢|F,) is a martingale. Let £ > 0.
By Lemma 4.2 there is a § > 0 such that

P(A) <6:>/ |€|dP < e.
A

By Jensen’s inequalit};/éd < E(|¢||Fn) as., so

mm7ﬁmuﬂ

If we take M > E([¢])/4, then
P{l&a| > M} < 4.
Since {|&n] > M} € Fy, it follows that

/ I&wps/" E(|€]|F») dP = 1€]dP <,
{|€n|>M} {lén|> M} {lén|>M}

provine that £. = E(¢|F..) is a uniformlyv integrable sequence.

} |énl dP 2 M P{|¢n] > M}.

niz
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Solution 4.6

Because &, is a uniformly integrable sequence, there is an M > 0 such that for

all n
/ |€n| dP < 1.
{l&n>M}

It follows that

E (&) = / €l dP + / €] AP
{lén|>M} {lén 1< M}
< 1+ MP{|&:] < M}

<1+M<x

for all n, proving that £, is a bounded sequence in L!.

Solution 4.7

By Theorem 4.4, &, = E (a|F,) a.s. But E (a|F,,) = a a.s., which proves that
&, = a as.

Solution 4.8

Observe that

limnsupAn = ﬂ U A;

j2kizj

for any k. Since
Aiea(&) C Ty

for every ¢ > k, it follows that

limsup 4, = ﬂ UAz' €T

n >k i>j

for every k. Therefore
supA, € T.
n

The argument for liminf,, A, is similar.

Solution 4.9

Let 11,72, ... be a sequence of coin tosses, i.e. independent random variables
with values +1, —1 (heads or tails) taken with probability 3 each. Consider the
following event:

A = {m,n2,... contains infinitely many heads} .
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This event belongs to the tail o-field 7 because

A = limsup A,

n

where
Ap = {1, = heads} € o (1,)

(see Exercise 4.8). Thus, by Kolmogorov’s 0-1 law P(A) = 0 or 1. However, it
cannot be 0 because the event

B = {m1, 12, ... contains infinitely many tails}

has the same probability by symmetry and 2 = AU B (there must be infinitely
many heads or infinitely many tails).






o

Markov Chains

This chapter is concerned with an interesting class of sequences of random
variables taking values in a finite or countable set, called the state space, and
satisfying the so-called Markov property. One of the simplest examples is pro-
vided by a symmetric random walk &,, with values in the set of integers Z. If £,
is equal to some ¢ € Z at time n, then in the next time instance n+1 it will jump
either to ¢ + 1, with probability 1, or to ¢ — 1, also with probability 3. What
makes this model interesting is that the value of £,4; at time n + 1 depends
on the past only through the value at time n. This is the Markov property
characterizing Markov chains. There are numerous examples of Markov chains,
with a multitude of applications.

From the mathematical point of view, Markov chains are both simple and
difficult. Their definition and basic properties do not involve any complicated
notions or sophisticated mathematics. Yet, any deeper understanding of Markov
chains requires quite advanced tools. For example, this is so for problems related
to the long-time behaviour of Markov processes. In this chapter we shall try
to maintain a balance between the accessibility of exposition and the depth of
mathematical results. Various concepts will be introduced. In particular, we
shall discuss the classification of states and its relevance to the asymptotic
behaviour of transition probabilities. This will turn out to be closely linked to
ergodicity and the existence and uniqueness of invariant measures.
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5.1 First Examples and Definitions

Example 5.1

In some homes the use of the telephone can become quite a sensitive issue.
Suppose that if the phone is free during some period of time, say the nth
minute, then with probability p, where 0 < p < 1, it will be busy during the
next minute. If the phone has been busy during the nth minute, it will become
free during the next minute with probability q, where 0 < g < 1. Assume that
the phone is free in the Oth minute. We would like to answer the following two

questions.

1) What is the probability z, that the telephone will be free in the nth
minute?

2) What is lim,,_, o Zn, if it exists?

Denote by A, the event that the phone is free during the nth minute and let
B, = 2\ A, be its complement, i.e. the event that the phone is busy during
the nth minute. The conditions of the example give us

P(Bnt1|4n) = p, (5.1)
P(An41]Ba) = g, (5.2)

We also assume that P(Ag) = 1, i.e. o = 1. Using this notation, we have
z, = P(A;). Then the total probability formula, see Exercise 1.10, together

with (5.1)-(5.2) imply that
Tn+1 = P(Ant1)
= P(An+1|An)P(An) + P(An+1|Bn)P(Bn)
= (1-pzn+ql—z,)=¢+(1—-p—q)Tn. (5.3)

It’s a bit tricky to find an explicit formula for z,,. To do so we suppose first
that the sequence {z,} is convergent, i.e.

lim z, = z. (5.4)
n—roo

The elementary properties of limits and equation (5.3), i.e. £p41 = q+(1—p—

q)Tn, yield
z=q+(1-p-q)z. (5.5)

The unique solution to the last equation is

q
= —-.: 5.6
pp (5.6)
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In particular,

q q
A —gt+(l-p-gq——. 5.7
s (1-p )q+p (5.7)
Subtracting (5.7) from (5.3), we infer that
q q ‘
n _ e = 1 - - - . 5.8
Tn+1 q+p ( p—q) (-Tn q+p> (5.8)

Thus, {z, — q—i;} is a geometric sequence and therefore, for all n € N,

q q
Tpn———=(1-p-— "(:1:0————).
nT T q) P

Hence, by taking into account the initial condition o = 1, we have

Tn = —q—+(wo——q—> (1-p—q)"

qg+p qg+p
qa P n

= + 1-p—-q)". 5.9
Tt (l-p-0) (59)

Let us point out that although we have used the assumption (5.4) to derive
(5.8), the proof of the latter is now complete. Indeed, having proven (5.9), we
can show that the assumption (5.4) is indeed satisfied. This is because the
conditions 0 < p,q < 1 imply that [1—p—¢| < 1l,andso (1 —-p—¢)" = 0 as
n — o0. Thus, (5.4) holds. This provides an answer to the second part of the
example, i.e. limy o0 T, = ;f_?.

The following exercise is a modification of the last example.

Exercise 5.1

In the framework of Example 5.1, let y, denote the probability that the tele-
phone is busy in the nth minute. Supposing that yo = 1, find an explicit formula
for y,, and, if it exists, lim,_, o Yn-

Hint This exercise can be solved directly by repeating the above argument, or indi-
rectly by using some of the results in Example 5.1.

Remark 5.1

The formulae (5.3) and (5.64) can be written collectively in a compact form by
using vector and matrix notation. First of all, since z, + y, = 1, we get

Tn+1 = (1 —p)CL'n + qYn,
Yn+1 = PTp + (1= q)yn.



88 Basic Stochastic Processes

Hence, the matrix version takes the form
[:cnﬂ}:[l—p q H:cn]
Yn+1 p l-g¢ Yn
The situation described in Example 5.1 is quite typical. Often the proba-
bility of a certain event at time n + 1 depends only on what happens at time

n, but not further into the past. Example 5.1 provides us with a simple case of
a Markov chain. See also the following definition and exercises.

Definition 5.1

Suppose that S is a finite or a countable set. Suppose also that a probability
space (£2, F, P) is given. An S-valued sequence of random variables &,, n € N,
is called an S-valued Markov chain or a Markov chain on S if for all n € N and
allse S

P($ny1 = sléo, ..., 6n) = P(€ny1 = slén). (5.10)
Here P({n4+1 = s|€y) is the conditional probability of the event {£,41 = s} with
respect to random variable &,,, or equivalently, with respect to the o-field o (&)
generated by &,. Similarly, P(§n+1 = s{o, - - ., &) is the conditional probability
of {én4+1 = s} with respect to the o-field o (&g, - - -, &,) generated by the random

variables &g, - - -, &n.
Property (5.10) will usually be referred to as the Markov property of the
Markov chain &,, n € N. The set S is called the state space and the elements

of S are called states.

Proposition 5.1

The model in Example 5.1 and Exercise 5.1 is a Markov chain.

Proof

Let S = {0,1}, where 0 and 1 represent the states of the phone being free or
busy. First we need to construct an appropriate probability space. Let §2 be
the set of all sequences wp,ws, ... with values in S. Let uo be any probability
measure on S. For example, u = §p corresponds to the case when the phone
is free at time 0. We shall define P by induction. For any S-valued sequence
S0,81,... we put

P{w e 2: wy =s0}) = po({so}) (5.11)

and

DIf,ve ) evh. —a. 5—0 oo m4 1)) (5.12)

;
2
£
é,
:
!
s
{
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= p(sn+1|sn)P({w € 2 : Wi = Sy, 1= Oa e ,TL}),
where p(s|r) are the entries of the 2 x 2 matrix

[ p(0[0) p(0[1) J _ [ l1-p ¢ }
p(1]0) p(1[1) p 1-q]
It seems reasonable to expect P to be a probability measure (with respect to-
the trivial o-field of all subsets of (2). Take this for granted, check only that
P(2) =1

How would you define the process &, n € N? We shall do it in the standard

way, 1.e.
fn(w) =wn, we N (5.13)

First we shall show that the transition probabilities of &, are what they should
be, i.e.
P(éns1 = 1léx = 0) = p, (5.14)
P(fnt1 = 0 =1) = q. (5.15)

The definition of conditional probability yields

P(lny1=1, & = 0).
P(fn=0)

P(én+1 =16 =0) =
Next, the definition of P gives

P(én—%—l = 1) fn = 0)
= P({w € {: Wn = O,wn+1 = 1})
= Z PlweR:w; =s;,1=0,---,n—1, wp =0,wny1 = 1})

50, ,8n-1€S

= >  pPlwe:iwi=s;,i=0,-,n—1, wy, =0}
80,80 -1€S

= pP( n = O)a

by (5.12). We have proven (5.14). Moreover, (5.15) follows by the same argu-
ment. A similar line of reasoning shows that &, is indeed a Markov chain. For
this we need to verify that for any n € N and any sg,s1, -+, 8,41 € S
' P(£n+1 = Sn+1 lfO = S0, " ,fn = sn) = P(€n+1 = 3n+1|£n = Sn)-
We have
P(€0 = 80, agn = snaéTH-l = 3n+1)
= P({we 2 w; :si,z’=0,---,n+1})
= p(snt1lsn)P({w € 2 : w; = 8,1 =0,---,n})
= p(sn-f-l ’SH)P(&J =S80, ", én\ = Sn)
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which, in view of the definition of conditional probability, gives

P(fn—i—l - 3n+1,§0 = 8¢, aén = Sn) = p(3n+1|3n)-

On the other hand, by an easy generalization of (5.14) and (5.15)
P(&nt1 = sn11lén = sn) = p(Sn+1l8n),
which proves (5.10). O

In Example 5.1 the transition probabilities from state ¢ to state 7 do not
depend on the time n. This is an important class of Markov chains.

Definition 5.2

An S-valued Markov chain §,, n € N, is called time-homogeneous or homoge-
neous if for alln € Nand all 4,5 € S

P(ént1 = jlén = 1) = P(& = jléo = 9). (5.16)

The number P(& = j|éo = ) is denoted by p(j|i) and called the transition
probability from state i to state j. The matrix P = [p(j]i)]j’ies is called the
transition matriz of the chain &,.

Exercise 5.2

In the discussion so far we have seen an example of a transition matrix, P =

[ l1-p ¢
p 1-g¢g

to 1. Prove that this is true in general.

] . Obviously the sum of the entries in each column of P is equal

Hint Remember that P({2|A) = 1 for any event A.

Definition 5.3
A = [aji)i jes is called a stochastic matriz if

1) aj; >0, for all ¢,j € S;

2) the sum of the entries in each column is 1, i.e. } . ga;; = 1foranyi € S.

A is called a double stochastic matriz if both A and its transpose A? are stochas-
tic matrices.
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Proposition 5.2

Show that a stochastic matrix is doubly stochastic if and only if the sum of the
entries in each row is 1,i.e. ), ga;; =1forany j € S.

Proof

Put A' = [b;;]. Then, by the definition of the transposed matrix, b;; = aj;.
Therefore, A? is a stochastic matrix if and only if

S = o=,
completing the proof. (J

Exercise 5.3

Show that if P = [pj;];,ies is a stochastic matrix, then any natural power P™ of
P is a stochastic matrix. Is the corresponding result true for a double stochastic
matrix?

Hint Show that if A and B are two stochastic matrices, then so is BA. For the second
problem, recall that (BA)' = A'B*.

Exercise 5.4

LetP:{l_p 9 ].Showthat
p 1-gq
Pz=[1+p2—2p+pq 29— pg—¢°
2p—pg—-p* 1+4+¢*—2¢+pg

Hint This is just simple matrix multiplication.

We see that there is a problem with finding higher powers of the matrix P.
When multiplying P2 by P, P2, and so on, we obtain more and more compli-
cated expressions.

Definition 5.4

The n-step transition matriz of a Markov chain &, with transition probabilities
p(7]?), 7,1 € S is the matrix P, with entries

) /pn(jli) = P(&n = jléo = 19). (5.17)

/

/
/
/
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Exercise 5.5

Find an exact formula for P, for the matrix P from Exercise 5.4.

Hint Put z, = P(&, = 0|éo = 0) and yn = P(&, = 1|¢o = 1). Is it correct to suppose
that pn(0|0) = z, and pn(1]1) = yn? If yes, you may be able use Example 5.1 and
Exercise 5.1.

Exercise 5.6

You may suspect that P, equals P", the nth power of the matrix P. This holds
for n = 1. Check if it is true for n = 2. If this is the case, try to prove that
P, = P" for all n € N.

Hint Once again, this is an exercise in matrix multiplication.

The following is a generalization of Exercise 5.6.

Proposition 5.3 (Chapman—Kolmogorov equation)

Suppose that £,, n € N, is an S-valued Markov chain with n-step transition
probabilities p, (j|7). Then for all k,n € N

Prk(Gli) = Y pa(ils)pr(sli), 4,5 € S. (5.18)
seS

Exercise 5.7

Prove Proposition 5.3.

Hint pnix(j|i) are the entries of the matrix P,y = P"T*.

Proof (of Proposition 5.3)

Let P and P, be, respectively, the transition probability matrix and the n-step
transition probability matrix. Since p,(j|i) are the entries of P,,, we only need
to show that P, = P for all n € N. This can be done by induction. The
assertion is clearly true for n = 1. Suppose that P, = P". Then, for i,j € S,
by the total probability formula and the Markov property (5.10)

Pot1(31i) = Pléns1 = jlto =1)
= ZP(fnﬂ = jl& = 4,& = 8)P(&n = s|&o = 9)

s€S

= 3 Plénst = jlén = )P(n = sléo = )

NS
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= > p(ils)palsli),

SES

which proves that Py, = PP,. O

Exercise 5.8 (random walk)

Suppose that S = Z. Let n,,, n > 1 be a sequence of independent identically
distributed random variables with P(n; = 1) =pand P()1 = -1) =¢=1-p.
Define &, = Y1, m; for n > 1 and & = 0. Show that &, is a Markov chain
with transition probabilities

D, if j=i+1,
p(ld) =< ¢ if j=i-1,
0, otherwise.

&n, n > 0, is called a random walk starting at 0. Replacing & = 0 with & = 1,
we get a random walk starting at 3.

Hint £n41 = €n + Mn+1. Are &, and 7np4+1 independent?

Exercise 5.9

For the random walk ¢, defined in Exercise 5.8 prove that

P({n = ]|€0 = ’L) = (n+n_i)p_£_"+"iq"_2-+i (519)
2

if n+ 7 —1i is an even non-negative integer, and P (&, = j|éo = ¢) = 0 otherwise.

n+z‘——i
Hint Use induction. Note that (n+"§_i)p 2 equals 0if [ —i| >n+ 1.

Proposition 5.4

For all p € (0,1)
P&, =t =1) = 0, asn — oo, (5.20)

Proof
To begin with, we shall consider the case p # 3. When j = ¢, formula (5.19)

becomes %2_1%'
e o) mEet, if n=2k,
P&, =il& =1) { 0, £ 0 is odd. (5.21)
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Then, denoting a; = %?%(pq)k, we have

a1 (2k+1)(2k +2)
a P (k+1)2

Hence, ar — 0. Thus, P(& = i€ = i) — 0. The result follows, since
P(&2k+1 = t|§o = 1) =0 — 0.

This argument does not work for p = % because 4pg = 1. In this case we
shall need the Stirling formula'

— 4pg < 1.

k
k! ~ V2rmk (S) , as k — oo. (5.22)

Here we use the standard convention: a,, ~ b,, whenever P2 > lasn — oo
By (5.22)

k

U~ 2tk \ e

e
! -0, as k—
= — , 00.
vrk
Let us note that the second method works in the first case too. However, in the
first case there is no need for anything as sophisticated as the Stirling formula.

O

\/Zﬁ(zkyk(e)%

Proposition 5.5

The probability that the random walk &, ever returns to the starting point is

1-|p—gql|

Proof

Suppose that £ = 0 and denote by fo(n) the probability that the process
returns to 0 at time n for the first time, i.e.

fo(n) =P (=0, #0,i=1,---,n—1).

If also po(n) = P (&, = 0) for any n € N, then we can prove that

Y po(n) = po(n) Y fo(n). (5.23)
n=1 n=0 n=1

! See, for example, E.C. Titchmarsh, The Theory of Functions, Oxford University

Tanmn N LT 1070




5. Markov Chains 95

Since all the numbers involved are non-negative, in order to prove (5.23) we
need only to show that

n
po(n) = fo(k)po(n — k) for n > 1.
k=1
The total probability formula and the Markov property (5.10) yield

po(n) = D P =0, =0,&#0,i=1,---,k - 1)
k=1

= Y P& =06 #£0,i=1,---, k- 1)
k=1

XP(€n = 0l& = 0,6 #£0,i =1,k — 1)

=Y P& =0,&#0,i=1,-,k—1)P(& = 0§ = 0)
k=1

= Z fo(k)po(n — k).
k=1

Having proved (5.23). we are going to make use of it. First we notice that the
probability that the process will ever return to 0 equals Y .-, fo(n). Next, from
(5.23) we infer that

PEn>1:£,=0) = Y fo(n)
n=1 _ » _ »
=1- (Zpo(n)> =1- (Zpo(%))
n= k=0

Since po(2k) = %“)l}(pq)k and

= [2k _ 1

kz:% (k)xk =(1-4x)"Y? |z| < T (5.24)
it follows, that for p # 1/2

PEn>1:4,=0)=1-(1-4pg)'/* =1—-|p—gq), (5.25)

since, recalling that ¢ = 1 — p, we have 1 —4pq = 1 —4p +4p? = (1 - 2p)? =
(¢ —p)*

The case p = 1/2 is more delicate and we shall not pursue this topic here.
Let us only remark that the case p = 1/2 needs a special treatment as in
Proposition 5.4. O
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Exercise 5.10
Prove formula (5.24).

Hint Use the Taylor formula to expand the right-hand side of (5.24) into a power
series.

Exercise 5.11 (branching process)

On the island Elschenbieden there lives an almost extinct species called Vugiel.
Vugiel’s males can produce zero, one, two, --- male offspring with probability
Do, P1, P2, - - respectively, where p; > 0 and Yo, p; = 1. A challenging problem
would be to find the Vugiel’s chances of survival assuming that each individual
lives exactly one year. At this moment, we ask you only to rewrite the problem
in the language of Markov chains.

Hint The number of descendants of each male has the same distribution.

Exercise 5.12

Consider the following two cases:

1) In Exercise 5.11 suppose that

Pm = (ﬁ)pm(l —-p)N ™

for some p € (0,1) and N € N*, where N* = {1,2,3,--}. (Note that
Pm = 0if m > N.) Show that

p(ili) = (]‘f)p" (1 - p)Ni-i. (5.26)

Deduce that, in particular, p(j|i) = 0 if 7 > Ni.

2) Suppose that
/\m

Pm = ~*, meN,

—e
m!
for some A > 0. In other words, assume that each X; has the Poisson
distribution with mean A. Show that

BYAY .
(il = | j’,) e, ji>0. (5.27)

Hint If X, has the binomial distribution P(X; =m) = (¥)p™(1 - p)¥ ™™, m € N,
then there exists a finite sequence 77, --, 7% of independent identically distributed
random variables such that P(n! =1 =»p. P(n! =0 =1-pand X; =n + - +
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my = m. Hence, X1 + --- + X; = }:i Zs . 7Ms, i.e. the sum of Ni independent
identically dlstrlbuted random varlables w1th distribution as above. Hence we infer

(5.26).

Proposition 5.6

The probability of survival in Exercise 5.12, part 2) equals 0 if A < 1, and 1 —7*
if A > 1, where k is the initial Vugiel population and 7 € (0,1) is a solution to

r=elm DA, (5.28)

Proof

We denote by ¢(i), i € N the probability of dying out subject to the condition
& =i. Hence, if A = {£, = 0 for n € N}, then

¢(i) = P (Al§o = 1) (5.29)

Obviously, ¢(0) = 1 and the total probability formula together with the Markov
property (5.10) imply that for each i € N

o(i) = ZP Alfo =1i,6 = j) P (& = jlé = 1)

P (Al& = 3) P (& = jléo = 1)

I
M??Z

[
Il
(=]

¢(5)p(5i)-

)

<.
Il
]

Therefore, the sequence ¢(i), i € N is bounded (by 1 from above and by 0 from
below) and satisfies the following system of equations

$(i) = Y _ o()pili), ieN, (5.30)
7=0
$(0) = 1.

So far, we have not used any particular distribution of X;. From now on, we
shall assume that the X; have the Poisson distribution. Hence, by Exercise 5.12,
p(jli) = (M) e—iX Tt is not an easy problem to find a solution to (5.30), even in

q
this special case. ¢(7) is the probability that the population will die out, subject
to the condition that initially there were ¢ individuals. Since we assume that

reproduction of different individuals is independent, it is reasonable to make

the following Ansatz: '
i) = Ald(N1*. €N, (5.31)
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for some A > 0. Although it is possible to prove this Ansatz, we shall not
do so here. Note that the boundary condition ¢(0) = 1 implies that A = 1.
Substituting (5.31) (with A =1 and r := ¢(1)) into (5.30), we get

rt = Zr’ (z;\!) e

j=0

I | .
= e ¥ Z = (irA)? = e e,
i=0 7’

Hence, r should satisfy

r=elr"VA (5.32)
Since the function g(r) = elr=DX ¢ [0,1], is convex, there exist at most
two solutions to the equation (5.32). Obviously, one of them is 7 = 1. A bit of
analysis, not included here, shows the following:

1) If A < 1, then the only solution to (5.32) in [0,1] is r = 1.

2) If A > 1, then there exists a second solution # € (0,1) of the equation
(5.32).

In case 1) the situation is simple. We have ¢(i) = 1 for all 7, and thus the
probability of extinction is 1 for any initial number of individuals. Case 2) is
slightly more involved. The first question we need to address is which of the

two solutions of (5.32) gives the correct value of ¢(1)? Recall that p;, = ),‘c—';e"‘.
Define .
oo oo A
F(z) = Zpk:ck = Z E—e_’\mk =eMe ™, |z| < 1. (5.33)
k=0 k=0
Since P(§; = 0]|& = 1) = po and
P(&=0&=1) = > P(L=0&=9)P&=i6H=1)
i=0
= D _(r)'pi = F(po) = F(F(0)),
i=0
we guess that the following holds:
P(&, = 0[& = 1) = F(™(0), (5.34)

where F(™ is the n-fold composition of F. To prove (5.34) it is enough to prove
it for n, while assuming it holds for n — 1. We have

P(¢ =0l =1) = ) P(& =0/t =i)P(& =il&%=1)
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= 3 piP (Enr = Ol = i)

1=0

=Y pi[P(6n-1 =0l =1)]'

1=0

= ipi [F‘“‘”(O)]i = F(F™1(0)) = F™(0).

Since the event {&, = 0} is contained in events {{,4+; = 0} for all n € N, we
have

#(1) = P{& =0, for some n € N|§ = 1}
= lim P {6 =0l = 1)
by the Lebesgue monotone convergence theorem. Therefore, we infer that
$(1) = lim F™(0).
With F(© (z) = z we only need to show that
F™(0)<# neN (5.35)

Indeed, once the inequality (5.35) is proven, we infer that ¢(1) < 7 and thus
¢(1) = 7. We shall prove (5.35) by induction. It is obviously valid for n = 0, so
we need to study the inductive step. We have

F™(0) = F (F""(0)) < F(7) =7,

since F'is increasing. We conclude that in the case A > 1 the population will
become extinct with positive probability.

In the simplest example of the binomial distribution case, i.e. when N =1,
equations (5.30) become

o) =3 o) (' )P -p, ieN
)= 2000(;) |
Since ¢(0) = 1, ¢(1) satisfies

¢(1) =g +¢(1)p

with ¢ = 1 — p. Hence, trivially, ¢(1) = 1. Then, by induction, one proves that
#(i) = 1. Therefore, whatever the initial number of individuals, extinction of
the species is certain. J
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Remark 5.2

The method presented in the last solution works for any distribution of the
variables X;. It turns out that the mean value A of X; plays the same role as
above. One can show that if A < 1, then the population will become extinct
with probability 1, while for A > 1 the probability of extinction is larger than
0 and smaller than 1.

Exercise 5.13

On the, now familiar, island of Elschenbieden the question of survival of the
Vugiel is a hot political issue. The (human) population of the island is N. Those
who believe that action should be taken in order to help the animals preach
their conviction quite convincingly. For if a supporter discusses the issue with a
non-supporter, the latter will change his mind with probability one. However,
they do so only in face-to-face encounters. Suppose that the probability of an
encounter of exactly one pair of humans during one day is p and that with
probability g this pair is a supporter—-non-supporter one. Write down a Markov
chain model of this situation. Neglect the probability of two or more encounters
during one day.

Hint On each day the number of supporters can either increase by 1 or remain un-
changed. What is the probability of the former?

Exercise 5.14 (queuing model)

A car wash machine can serve at most one customer at a time. With probability
p, 0 < p < 1, the machine can finish serving a customer in a unit time. If this
happens, the next waiting car (if any) can be served at the beginning of the
next unit of time. During the time interval between the nth and (n + 1)st unit
of time the number of cars arriving has the Poisson distribution with parameter
A > 0. Let &, denote the number of cars being served or waiting to be served
at the beginning of unit n. Show that &,, n € N, is a Markov chain and find
its transition probabilities.

Hint Let Z,, n = 0,1,2,--- be a sequence of independent identically distributed
random variables, each having the Poisson distribution with parameter A\. Then &, 41—
&n — Zn equals —1 or 0.

Remark 5.3

In the last model we are interested in the behaviour of &, for large values of n.
In particular, it is interesting to determine whether the limit of €, or that of E&,
(as n = oo) exists. In Exercise 5.36 we shall find conditinne which onarantea
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the existence of a unique invariant measure and imply that the Markov chain
in question is ergodic.

5.2 Classification of States

In what follows we fix an S-valued Markov chain with transition matrix P =
[p(717)];,ics, where S is a non-empty and at most countable set.

Definition 5.5

A state ¢ is called recurrent if the process &, will eventually return to ¢ given
that it starts at ¢, i.e.

P&, =i for somen > 1§ =) = 1. (5.36)

If the condition (5.36) is not satisfied, then the state i is called transient.

Theorem 5.1

Show that for a random walk on Z with parameter p € (0,1), the state 0 is
recurrent if and only if p = 1/2. Show that the same holds if 0 is replaced by
any other state ¢ € Z.

Proof

We know from (5.25) that P(§, = i for some n > 1|§ = i) = 1 — |p — ¢| for
anyt € Z.0

Definition 5.6

We say that a state ¢ communicates with a state j if with positive probability
the chain will visit the state 7 having started at i, i.e.

P&, = j for some n > 0§ = i) > 0. (5.37)

If ¢+ communicates with j, then we shall write ¢ — j. We say that the state ¢
intercommunicates with a state j, and write ¢ ¢+ j,if i = j and j — 1.

Exercise 5.15
Show that 7 — j if and only if p(j|7) > O for some k > 1.
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Hint Recall that pi(jli) = P(ék = j|€o = 1).

Exercise 5.16

Show that

1) i &1,

2) if 2 +» j then 7 & 7 and

3) ifiej,7 4 kthent e k.

In other words, show that ¢ is an equivalence relation on S.

Hint 1) and 2) are obvious. For 3) use the Chapman-Kolmogorov equations.

Exercise 5.17
For |z| < 1 and j,i € S define

Pji(z) = Y _paljli)z™, (5.38)
n=0

Fj(z) = Y falili)z™, (5.39)
n=1

where f,(j|t) = P({n, = j,{k #5,k=1,---,n—1|§ = ¢). Show that the power
series in (5.38)—(5.39) are absolutely convergent for |z| < 1 and that

Pi(e) = Fy(2)Py;(a), if j #1, (5.40)
Pi(z) = 1+ Fii(z)P;i(x). (5.41)

Hint Note that |pn(j]i)| < 1, so the radius of convergence of the power series (5.38)
is > 1.

Exercise 5.18
Show that limg ~ Pjj(z) = 30" Pr(jl7) and limg x Fy(z) = 307 fa(dl7).

Hint Apply Abel’s lemma?: If a; > 0 for all k¥ > 0 and limsup,_, . ¥/|ax| <1, then
lim, E:"___O arz® = Z:’zo ax, no matter whether this sum is finite or infinite.

2 For example, see: W. Rudin, Principles of Mathematical Analysis, McGraw-Hill
Book Company, New York 1976.

S~
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Exercise 5.19

Show that a state j is recurrent if and only if ) pn(j|j) = oo. Deduce that
the state j is transient if and only if

> pa(ili) < oo. (5.42)

Show that if j is transient, then for each i € S

> palili) < co. (5.43)

Hint If j is recurrent, then Fj;j(z) — ) fa(jlj) = 1 as z A~ 1. Use (5.41) in
conjunction with Abel’s Lemma.

Exercise 5.20

: 1-
For a Markov chain §,, with transition matrix P = [ » P (i } show that
)

both states are recurrent.

Hint Use Exercise 5.19 and 5.5.

One may suspect that if the state space S is finite, then there must exist
at least one recurrent state. For otherwise, if all states were transient and
S ={1,2,---, N}, then with positive probability a chain starting from 1 would
visit 1 only a finite number of times. Thus, after visiting that state for the
last time, the chain would move to a different state, say is, in which it would
stay for a finite time only with positive probability. Thus, in finite time, with
positive probability, the chain will never return to states 1 and 3. By induction,
in finite time, with positive probability, the chain will never return to any of
the states. This is impossible. The following exercise will give precision to this
argument. ’

Exercise 5.21

Show that if &, is a Markov chain with finite state space .S, then there exists
at least one recurrent state i € S.

Hint Argue by contradiction and use (5.43).

The following result is quoted here for reference. The proof is surprisingly
difficult and falls beyond the scope of this book.
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Theorem 5.2

A state j € S is recurrent if and only if
P (&, = j for infinitely many n|& = j) =1,
and is transient if and only if

P(¢, = j for infinitely many n|éy = j) = 0.

Definition 5.7

For an S-valued Markov chain £,, n € N, a state ¢ € S is called null-recurrent
if it is recurrent and its mean recurrence time m; defined by

o0

mi =Y nfn(ili) (5.44)

n=0

equals co. A state ¢ € S is called posttive-recurrent if it is recurrent and its
mean recurrence time m; is finite.

Remark 5.4

One can show that a recurrent state 7 is null-recurrent if and only if p,, (¢]i) — 0.

We already know that for a random walk on Z the state 0 is recurrent if and
only if p = 1/2, i.e. if and only if the random walk is symmetric. In the following
problem we shall try to answer if 0 is a null-recurrent or positive-recurrent state
(when p = 1/2).

Exercise 5.22

Consider a symmetric random walk on Z. Show that 0 is a null-recurrent state.
Can you deduce whether other states are positive-recurrent or null-recurrent?

Hint State 0 is null-recurrent if and only if ) nf.(0]0) = co. As in Exercise 5.18,
>, nfn(0]0) = lim; ~ Foo(z), where Fyo is defined by (5.39). i

Exercise 5.23

For the Markov chain §, from Exercise 5.20 show that not only are all states
recurrent, but they are positive-recurrent.

Hint Calculate f,(0|0) directly.
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The last two exercises suggest that the type of a state ¢ € S, i.e. whether
it is transient, null-recurrent or positive-recurrent is invariant under the equiv-
alence «>. We shall investigate this question in more detail below, but even
before doing so we need one more notion: that of a periodic state.

Definition 5.8

Suppose that &,, n € N, is a Markov chain on a state space S. Let i € S. We
say that i is a periodic state if and only if the greatest common divisor (gecd)
of all n € N*, where N* = {1,2,3,---}, such that p,(¢]¢) > 0 is > 2. Otherwise,
the state 7 is called aperiodic. In both cases, the gecd is denoted by d(i) and is
called the period of the state i. Thus, 7 is periodic if and only if d(i) > 2. A
state ¢ which is positive recurrent and aperiodic is called ergodic.

Exercise 5.24

Is this claim that py(;)(il¢) > O true or not?

Hint Think of a Markov chain in which it is possible to return to the starting point
by two different routes. One route with four steps, the other one with six steps.

One of the by-products of the following exercise is another example of the
type asked for in Exercise 5.24.

Exercise 5.25

Consider a Markov chain on S = {1,2} with transition probability matrix

P = [ (1) 1;3 J . This chain can also be described by the graph in Figure 5.1.

Find d(1) and d(2).

1/2

Figure 5.1. Transition probabilities of the
Markov chain in Exercise 5.25

1/2

Hint Calculate P2 and P3. This can be done in two different ways: either algebraically
or, probabilistically.



106 Basic Stochastic Processes

Proposition 5.7
Suppose that ¢,j € S and ¢ < j. Show that

1) ¢ is transient if and only if j is;

2) 1 is recurrent if and only if j is;

3) i is null-recurrent if and only if j is;

4) i is positive-recurrent if and only if j is;

5) i is periodic if and only if j is, in which case d(i) = d(j);

6) ¢ is ergodic if and only if j is.

Proof

It is enough to show properties 1), 4) and 5). Since i +> j one can find n,m € N
such that p,,(j|t) > 0 and p,(ilj) > 0. Hence € := p,,(j|i)pn(i]j) is positive.
Let us take k € N. Then by the Chapman-Kolmogorov equations

Pmtkin(ili) = Y Pm(il8)Pe(sIr)pn(r]5) > Pm(ili)pe (ili)pa (il) = epx(ild).
r,s€S

By symmetry

Prtkam(ili) = D Palils)pr(slr)pm(rlé) 2 pa(ils)pr (i15)Pm (i18) = epr(i13)-
r,8€S

Hence, the series ), px(¢|¢) and ), pr(j|j) are simultaneously convergent or
divergent. Hence 1) follows in view of Exercise 5.19.
To prove 5) it is enough to show that

d(z) < d(j).
Using the first inequality derived above, we have

Pr+k+m (2]0) > epi(f]7)
for all £ € N. From this inequality we can draw two conclusions:
(a) d(2)|n + m, since by taking k& = 0 we get ppym (i]i) > 0;
(b) if pk(jl) > O, then pryrim(ilé) > 0.

From (a) and (b) we can see that d(i)|k provided that pi(j|j) > 0. This proves
what is required. O
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Exercise 5.26

Show that the following modification of 2) above is true: If 7 is recurrent and
i — J, then 7 — 7. Deduce that if 7 is recurrent and ¢ — j, then j is recurrent
and j & 1.

Hint Is it possible for a chain starting from ¢ to visit 7 and then never return to ¢?
Is such a situation possible when i is a recurrent state?

The following result describes how the state space S can be partitioned into
a countable sum of classes. One of these classes consists of all transient states.
Each of the other class consists of interconnecting recurrent states. If the chain
enters one of the classes of second type, it will never leave it. However, if the
chain enters the class of transient states, it will eventually leave it (and so never
return to it). We begin with a definition.

Definition 5.9

Suppose that &,, n € N, is a Markov chain on a countable state space S.

1) A set C C S is called closed if once the chain enters C' it will never leave
it, i.e.

P (& € S\ C for some k > nlé, € C) = 0. (5.45)

2) A set C C S is called irreducible if any two elements i, j of C' intercommu-
nicate, i.e. for all 7,7 € C there exists an n € N such that p,{j|i) > 0.

Theorem 5.3
Suppose that £,, n € N, is a Markov chain on a countable state space S. Then
N
S=TulJC;, (disjoint sum), (5.46)
j=1

where T is the set of all transient states in S and each Cj is a closed irreducible
set of recurrent states.

Exercise 5.27

Suppose that &,, n € N, is a Markov chain on a countable state space S. Show
that a set C C S is closed if and only if p(j]i) =0foralli € C and j € S\ C.

Hint One implication is trivial. For the other one use the countable additivity of the
measure P.
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Proof (of Theorem 5.3)

Let R = S\ T denote the set of all recurrent states. If ¢ +» j, then both ¢
and j belong either to T or to R. It follows that the interconnection relation
¢ restricted to R is an equivalence relation as well. Therefore, R = Ujvzl Cj,
C; = [s;], s; € R. Here N denotes the number of different equivalent classes.
Since by definition each C; is an irreducible set, we only need to show that it
is closed. But this follows from Exercise 5.26. Indeed, if i € Cy and ¢ — j, then

14 j,andsoj € Cy. O

5.3 Long-Time Behaviour of Markov Chains:
General Case

For convenience we shall denote the countable state space S by {1,2,3,---}
when S is an infinite set and by {1,2,---,n} when S is finite.

Proposition 5.8

Let P = [p(j|7)] be the transition matrix of a Markov chain with state space S.
Suppose that for all 7,57 € S

nll’ngopn(jlz) =:7;. (5.47)
(In particular, the limit is independent of i.) Then
1) Ej T < 15

2) X p(fle)mi = mj;
3) either . m; =1,orm; =0foraljeS.

Proof

To begin with, let us assume that S is finite with m elements. Using the
Chapman-Kolmogorov equations (5.18), we have

m m
domio=y m=y lim pa(jli)
j=1 j=1

JES

m
= Jm, 2 palil) = Jim 11,
J=
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since Z;’;l pn(j|t) = 1 for any n € N (see Exercise 5.2). This proves 1) and 3)
simultaneously. Moreover, it shows that the second alternative in 3) can never
occur. To prove 2) we argue in a similar way. Let us fix j € S and (an auxiliary)
k € S. Then,

Z;p(JIz)m B ;nh_{r;o p(jl)pn(ilk)

n—00 4

m
= lim » p(jli)pa(ilk) = lim pny1(ilk) = m;,
1=1

since Y ;v p(§9)pn(ilk) = Pn+1(jlk) by the Chapman—Kolmogorov equations.

When the set S is infinite, we cannot just repeat the above argument. The
reason is quite simple: in general the two operations lim and ) cannot be
interchanged. They can when the sum is finite, and we used this fact above.
But if S is infinite, then the situation is more subtle. One possible solution of
the difficulty is contained in the following version of the Fatou lemma.

Lemma 5.1 (Fatou)
Suppose that a;(n) > 0 for j,n € N. Then

Z hmnmf a;j(n) < hmnlnf E a;(n). (5.48)
j j
Moreover, if a;j(n) < b; for j,n € N and Zj b; < 0o, then

lim sup Z aj(n) < Z lim sup a;(n). (5.49)

Using the fact that for a convergent sequence lim and liminf coincide, by
the Fatou lemma we have

o0 (o]
dom=y = ani{gopn(jli)
j=1 ij=1

JES
oo
< lﬁglepn(ylz) = liminf1=1
]=

since, as before, Z;'il pn(jli) = 1 for any n € N. This proves 1). A similar
argument shows 2). Indeed, with j € S and k € S fixed, by the Chapman-—
Kolmogorov equations and the Fatou lemma we have

D_pGili)m = 37 lim p(jli)pa(ilk)
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< lgggf;p(alﬂpn(zlk) = liminf pp11(j|k) = 7;.
To complete the proof of 2) suppose that for some k € S
o0
> p(kli)mi < m.
=1

Then, since ZjeS T = Z#k 7j + Tk, by the part of 2) already proven we have

irr- > > (Zp le)m) +Zp kli)m;

=1 ik \
= > plili)m = ZZP(JMW:
J=1 1 i=1 J
S (Enn) - £
i=1 =1

We used the fact that Zjo p(j|i) = 1 together with (5.65). This contradiction
proves 2).
In order to verify 3) observe that by iterating 2) we obtain

an(jli)ﬂ'i = 7l‘j.
i
Hence,
m = lim 3 palilim
1
ani_)n;opn(jli)m = Zﬂjm = T; Zm.
1 1 1

Therefore, the product 7; (3, m; — 1) is equal to 0 for all j € S. As a result, 3)
follows. Indeed, if . 7; # 1, then 7; =0 for all j € S. O

Definition 5.10

A probability measure p := ) jes p;0; is an invariant measure of a Markov
chain &,, n € N, with transition probability matrix P = [p(j|¢)] if for all n € N
andallje S

> palili)p = .

i€S
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Exercise 5.28

Under the assumptions of Proposition 5.8 show that if ) jes™ = 1, then
1= ) jcsm;0; is the unique invariant measure of our Markov chain. Here 6,

is the Dirac delta measure at j.

Hint p is an invariant measure of a Markov chain £,, n € N, if and only if for each
n € N, the distribution of &, equals pu, provided the same holds for &o.

Exercise 5.29

Show that if 7; = 0 for all j € S, then there is no invariant measure.

Hint Look closely at the uniqueness part of the solution to Exercise 5.28.

The following exercise shows that a unique invariant measure may exist,
even though the condition (5.47) is not satisfied.

Exercise 5.30

Find all invariant measures for a Markov chain whose graph is given in Fig-
ure 5.2.

1 Figure 5.2. Transition probabilities of the
Markov chain in Exercise 5.30

Hint Find the transition probability matrix P and solve the vector equation Pr = 7
for m = (m1, m2), subject to the condition m; + mp = 1.

We shall study some general properties of invariant measures. Above we
have seen examples of Markov chains with a unique invariant measure. In what
follows we shall investigate the structure of the set of all invariant measures.

Exercise 5.31

Show that if x and v are invariant measures and 6 € [0, 1], then (1 — 8)u + 6v
is also an invariant measure.

Tr* A -1 U P [ ¢ IR U Y o R . I
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Exercise 5.32

Show that if p is an invariant measure of a Markov chain £,, n € N with state
space S, then supp u C S\T, where T denotes (as usual) the set of all transient

states.

Hint If j is a transient state, then p,(j|i) — 0 for all ¢ € S.

The above result shows that there is a close relationship between invariant
measures and recurrent states. Below we shall present without proof a couple
of results on the existence of such measures and their properties.

Theorem 5.4

Suppose that £,, n € N, is a Markov chain on a state space S =T U C, where
T is the set of all transient states and C is a closed irreducible set of recurrent
states.® Then there exists an invariant measure if and only if each element of C
is positive-recurrent. Moreover, if this is the case, then the invariant measure
is unique and it is given by p = ). u;6;, where

1

Hi = —
m;

with m; being the mean recurrence time of the state ¢, see (5.44).

Note, that by Exercise 5.32, the unique invariant measure in Theorem 5.4
is supported by C.

Remark 5.5

IfC = Uf;l Cj;, where each Cj is a closed irreducible set of recurrent states,
then the above result holds, except for the uniqueness part. In fact, if each
element of some C; is positive-recurrent, then there exists a invariant measure
5 supported by C;. Moreover, p; is the unique invariant measure with support
in C;. In the special case when each element of C is positive-recurrent, every
invariant measure p is a convex combination of the invariant measures p;,

je{l,...’N}_

Theorem 5.5

Suppose that &,, n € N, is a Markov chain with state space S. Let j € S be a
recurrent state.

3 Hence in the decomposition (5.46) the number N of different classes of recurrent

PV U P I |
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1) If j is aperiodic, then

. 1
pa(Jli) = —. (5.50)
m;
Moreover, for any 7 € S,
" F;;(1
Pa(jli) = L= ( ), (5.51)
m;

where Fj;(1) is the probability that the chain will ever visit state j if it
starts at i, see (5.39), and where m; is the mean recurrence time of state j,
see (5.44);

2) If j is a periodic state of period d > 2, then

e d
Pna(jlj) = —- (5.52)
m;

Exercise 5.33

Suppose that &,, n € N, is a Markov chain with state space S. Let j € S be a
transient state. Show that for any ¢ € S

pn(jli) = 0. (5.53)

Hint Use Exercise 5.19.

Definition 5.11

A Markov chain &,, n € N, with state space S is called ergodic if each i € S is
ergodic, i.e. each state i € S is positive, recurrent and aperiodic.

Exercise 5.34

Show that if &,, n € N, is an ergodic irreducible Markov chain with state
space S, then p,(j|i) = 7; as n — oo for any j,i € S, where 7 = ) . 7m;; is
the unique invariant measure.

Hint Use Theorem 5.5. You may assume as a known fact that if j is recurrent and
i ¢ j, then Fji(l) =1.

Exercise 5.35

Use the last result to investigate whether the random walk on Z has an invariant
measure.

Himt Tlee Rvarciea R Q
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Below we shall see that a converse result to Theorem 5.5 is also true.

Theorem 5.6

Suppose that &,, n € N, is an irreducible aperiodic Markov chain with state
space S. Then &,, n € N, is ergodic if and only if it has a unique invariant
measure.

Proof

The ‘if’ part is proved in Exercise 5.34. We shall deal with the ‘only if’ part.
Suppose that 7 = ). 7;d; is the unique invariant measure of the chain. Then
m; > 0 for some j € S. Recall that due to Theorem 5.5 and the Exercise 5.33,
lim, 00 Pn(j|7) exists for all 4,5 € S.

Since ), pn(jli)m; = 7;, by the Fatou lemma (inequality (5.49))

> Jim pnjli)m: > lim sup >_paili)mi = m;.
1 1

Hence, there exists an ¢ € S such that lim,_oo pn(j|t)m; > 0. Therefore
limp_ 00 Pn(J]t) > 0, which in view of Theorem 5.5 implies that m; < oo.
Thus, j is an ergodic state and, since the chain is irreducible, all states are
ergodic as well. O

Exercise 5.36

Prove that if there exists an invariant measure for the Markov chain in Exer-
cise 5.14, then X := Z;;’O jq; < 1. Assuming that the converse is also true,
conclude that the chain is ergodic if and only if A’ < 1. Show that if such an
invariant measure exists, then it is unique.

Hint Suppose that m = Z;io m;d; is an invariant measure. Write down an infinite

system of linear equations for 7;. If you don’t know how to follow, look at the solution.

5.4 Long-Time Behaviour of Markov Chains
with Finite State Space

As we have seen above, the existence of the 7; plays a very important role
in the study of invariant measures. In what follows we shall investigate this
question in the case when the state space S is finite.
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Theorem 5.7

Suppose that S is finite and the transition matrix P = [p(j|i)] of a Markov
chain on S satisfies the condition

Ing € N3e > 0:pn,(ji) > ¢, 6,5 €S. (5.54)

Then, the following limit exists for all 7,j € S and is independent of i:

nh_)n;opn(]h) = ;. (5.55)
The numbers 7; satisfy
m;>0,j€5 and » m =1 (5.56)
JES

Conversely, if a sequence of numbers 7;, j € S satisfies conditions (5.55)—(5.56),
then assumption (5.54) is also satisfied.

Proof

Denote the matrix P™ = [pp,(j|¢)] by @ = [¢(j|¢)]- Then the process nx = &kny,
k € N, is a Markov chain on S with transition probability matrix () satisfying
(5.54) with ng equal to 1. Note that pgn,(j|t) = gk (j|¢) due to the Chapman-
Kolmogorov equations. Suppose that the properties (5.55)—(5.56) hold true
for Q. In particular, limg_, o Pin, (j|¢) = 7; exists and is independent of i. We
claim that they are also true for the original matrix P. Obviously, one only
needs to check condition (5.55). The Chapman-Kolmogorov equations (and
the fact that S is finite) imply that for any r = 1,---,n9 — 1

Pno+r(718) = D Prno(l8)pr(sli) = Y mipr(slé)

seS seS

= ;) pr(sli) = ;.
sES
Therefore, by a simple result in calculus, according to which, if for a sequence
an, n € N, there exists a natural number ng such that for eachr € {0,1,---,no—
1} the limit limg— o0 Qgn,+r €xists and is r-independent, then the sequence a,
is convergent to the common limit of those subsequences, we infer that (5.55)

is satisfied.
In what follows we shall assume that (5.54) holds with ng = 1. Let us put

po(jli) =dj; and for j € S
mn(j) = minpa(jli)

My (j) = maxpa(jli)
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Observe that My(j) = 1 and mo(j) = O for all j € S. From the Chapman-
Kolmogorov equations it follows that the sequence M, (j), n € N, is decreasing,
while the sequence m,(j), n € N, is increasing. Indeed, since Y, p(k[i) =1

Pat1(ili) = D pa(ilk)p(kli)

keS

> minpn(jlk) ) p(kli)
keS

= min pa(jk) = ma(j).
Hence, by taking the minimum over all 1 € S, we arrive at
mn+1(j) = miinpn-i-l(j'i) > mn(])

Similarly,
pr1(ilé) = D pn(ilk)p(kli)
keS

< maxpa(jlk) Y p(kli)
keS

= mkaXpn(jIk) = My,(j).
Hence, by taking the maximum over all ¢ € S, we obtain
Mni1(j) = max pnt1(jli) < My, (j).

Since M, (j) > mn(j), the sequences M, (j) and m,(j) are bounded from below
and from above, respectively. As a consequence, they both have limits. To show
that the limits coincide we shall prove that

Jim_ (Mn(§) = ma(5)) = 0. (5.:57)
For n > 0 we have
Pot1(GlE) = D pnlils)p(sli) (5.58)
seS
= an (Jls) -—Epn(SIJ +5an .7'3 pn(sls)
seS
= an [p(sli) — epn(s|f)] + ep2n(il7)

by the Chapman-Kolmogorov equations. The expression in square brackets is
> 0. Indeed, by assumption (5.54), p(s|¢) > € and p,(s|j) < 1. Therefore,
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Prta(Gli) > minpa(ils) Y [p(sli) = epn(sls)] +epn(ili)  (5.59)
sES

= (1 - &)mn(j) + ep2n(Jl7)-
By taking the minimum over ¢ € S, we arrive at
Mnt1(f) 2 (1 —e)ma(j) + epan(ld)- (5.60)

Recycling the above argument, we obtain a similar inequality for the sequence
Mn(j):

Mni1(5) £ (1 = €)Mn(j) + €p2n(ild)- (5.61)
Thus, by subtracting (5.60) from (5.61) we get
Mni1(5) = mni1(4) < (1 - €) (Mn(4) — mn(4)) - (5.62)

Hence, by induction
Mn(3) —mn(J) <(1-¢)", neN

This proves (5.57). Denote by m; the common limit of M,(j) and m,(j). Then
(5.55) follows from (5.57). Indeed, if 7,5 € S, then

Mn(7) < pa(Jli) < Ma(j).

To prove that 7; > 0 let us recall that m,(j) is an increasing sequence and
m1(j) > € by (5.54). We infer that 7; > €. O

Exercise 5.37

Show that p,(j|i) = m; at an exponential rate.

Hint Recall that m,(j) < m; < M,(j) and use (5.62).

The above proves the following important result.

Theorem 5.8

Suppose that the transition matrix P = [p(j|i)] of a Markov chain &,, n € N,
satisfies assumption (5.54). Show that there exists a unique invariant measure
1. Moreover, for some A > 0, and o < 1

Ipa(jli) — ;] < Aa™, i,j € S,n €N (5.63)
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Proof (of the converse part of Theorem 5.7)

Put
4 1

€= —minmw;.
2 5

Since p,(j|i) = m; for all 4,5 € S, there is an ng € N, such that px(j|i) > € for
all for k > ng and (i,7) € S2. Putting k = ng proves that (5.54) is satisfied.

Let us observe that we have used only two facts: 7; > 0 for all j € S, and
pn(jli) & m; foralli,j € S. O

Exercise 5.38

Investigate the existence and uniqueness of an invariant measure for the Markov
chain in Proposition 5.1.

Hint Are the assumptions of Theorem 5.7 satisfied?

Remark 5.6

The solution to Exercise 5.38 allows us to find the unique invariant measure by
direct methods, i.e. by solving the linear equations (5.79)—(5.80).

Exercise 5.39 -

Find the invariant measure from Exercise 5.38 by calculating the limits (5.55).

Hint Refer to Solution 5.5.

Exercise 5.40

Ian plays a fair game of dice. After the nth roll of a die he writes down the
maximum outcome £, obtained so far. Show that &, is a Markov chain and find
its transition probabilities.

Hint £n41 = max{{n, Xn+1}, where X is the outcome of the kth roll.

Exercise 5.41

Analyse the Markov chain described in Exercise 5.40, but with fair die replaced
by a fair pyramid.

Hint A pyramid has four faces only.
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Exercise 5.42

Suppose that @ > 1 is a natural number. Consider a random walk on S =
{0,1,---,a} with absorbing barriers at 0 and a, and with probability p of
moving to the right and probability ¢ = 1 — p of moving to the left from any
of the states 1,...,a — 1. Hence, our random walk is a Markov chain with
transition probabilities

p if 1<i<a-1,j=i+1,

an ) g if 1<i<a-1,j=i-1,

PUR=91 4 iZj=0 ori=j=a
0 otherwise.

Find, (a) all invariant measures (there may be just one), (b) the probability of
hitting the right-hand barrier prior to hitting the left-hand one.

Hint For (a) recall Exercise 5.30 and for (b) Exercise 5.12.

5.5 Solutions

Solution 5.1 )

First we give a direct solution. With A,, and B,, being the events that the phone
is free or busy in the nth minute, we have y, = P(B,). The total probability
formula then yields, for n € N,

P(Bnt1) = P(Bn+1|An)P(An)q‘P(Bn+IIBn)P(Bn)
ie.
Ynt1 =P+ (1 =P — Q)yn. (5.64)

As before, assuming for the time being that y = lim, y, exists, we find that
y=p+(l—-p—q)y,andsoy = 5%. In particular, ;% =p+(1-p—q) 2%

pt+q°
Subtracting the last equality from (5.64), we see that {y, — ;-} is a geometric
sequence, so that y, — 55:—(1 = (yo - ;}5) (1-p—q)™. Since yo = 1, some simple

algebra leads to the formula

p q n

= + (I1-p-¢)" neN
ot bty

The last formula can be used to prove that the lim, y, exists and is equal to

2
rtq
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Another approach is to use the results of Example 5.1. Since zo = 1 — yo,
by (5.8) we have

q q n
- 1-z,=1-———=1{1-= - = 1—p—
Un n p+q ( Yo p+q)( p Q)
p q
= + 1-p-¢q)",
P+q p+q( q)

which agrees with the first method of solution.

Solution 5.2
We have to show that ;s p(j|i) = 1 for every ¢ € S. We have

> p(il) = D P& =jléo =)

j€ES JES
= P(Ujes{ = j}éo = i) = P(& € Sl6o = 1)

Solution 5.3

Suppose that A = [a;i]j,ies and B = [bj;]j ics are two stochastic matrices. If
C = BA, then cj; = ), bjraxi. Hence, for any i € S

J

= Z ijk aki=zaki=1,
J k

k

where the last two equalities hold because B and A are stochastic matrices.
We have used the well-known fact that

ZZaij = ZECLU, 565)
i 7 7 i

for any non-negative double sequence (a;;)75=; (see, for example, Ru:ﬁi‘f/’s book
cited in the hint to Exercise 5.18). The above argument implies that P? is a
stochastic matrix. The desired result follows by induction.

To prove that P™ is a double stochastic matrix whenever P is, it is enough
to observe that AB is a double stochastic matrix if A and B are. The latter
follows because (AB)! = BtA¢.
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Solution 5.4

Some simple algebra gives
p? [ (1-p(1-p)+ep (1-p)a+q(l-q) }
p(l-p)+(1—-gp pg+(1—-g)(1-4q)
:[1+p”—%+pq 2¢-pg—¢° ]
2p—-pg—-p*> 1+¢*>-2¢+pg
Solution 5.5

Put z, = P(&, = 0/é = 0) and y, = P(&, = 1/ = 1). We have calculated
the formulae for z, and y, in Example 5.1 and Exercise 5.1. Since also

p p
1-=, = - l-p-q)",
" oq+p q+p(
q q n
1—yn = - (1-p-q",
" gq+p ag+p

we arrive at the following formula for the n-step transition matrix:

P, = 9ir + q+p

G G ]
i ap TP 0" Gt as(l-p-9)

Solution 5.6

Simplifying, we have

p-| 0o q—iz—f_g(l—p—wj]
P _ —p — —p—
L g9+»p E-%p(l P—4) ?i—lo + Q+P(1 p q)

[ gp—2p+1+p? —(q—2+p)q}
—(g-2+pp ¢*-2q+qp+1 ]’

which, in view of the formula in Exercise 5.4, proves that P, = P2,

We shall use induction to prove that P, = P™ for all n € N. We already
know that the assertion true for n = 1 (and also for n = 2). Suppose that
P, = P". Then some simple, but tedious algebra gives

ptt = pp"
_[1-r g ][§+§(l_p-q)n s~k (-p-a”
— - — n _ _ n
p 1-ql| g -wl-r-9" FHHg50-p-9
[ —p—g)"tl L _ 4 (] —p_ g+
S A
n n
| o+p q+p(1_p—q) mr tapl-2—9)

- Pn+1-
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Solution 5.7

Recall that P"+k = PPk Since pn4(j|é) are the entries of the matrix Poix =
pntk = pr Pk we obtain (5.18) directly from the definition of the product of

two matrices.

Solution 5.8

Since the 7; are independent, &, and 7,41 are also independent. Therefore,

P(ény1 = sléo =50, ,&n = Sn)
= P(£n+77n+1:5|50:30,"',§n:3n)
= P(nn-i—l:5_5n|§O:307"'a€n=3n)

= P(’f)n+1 :S—'Sn).
Similarly,

P(§n+1 = s‘fn = Sn) = P(én + NMn+1 = Slfn = Sn)
= P(Nnt1 = 5 — snlén = sn)

= P(Nn+1 =S — Sn).

Solution 5.9

Step 1. For n = 1 the right-hand side of (5.19) is equal to 0 unless |j —i| <1
and 14 j — ¢ is even. This is only possible when j =i+ 1orj =i —1.In
the former case the right-hand side equals p, and in the latter it equals ¢. This

proves (5.19) for n = 1.
~__Step 2. Suppose that (5.19) is true for some n. We will use the following
version of the total probability formula. If H; € F, P(H; N H;) = 0 for i # j,
and P(|U, H:) =1, then

P(A|C) = P(A|C N H;)P(H;|C). (5.67)

Then the Markov property and (5.67) imply that

P(&ny1 = jléo = 1)

= P(lnt1 =Jléo =146 =7 — 1)P(§n = j — 1|&0 = 1)
+P(§nt1 = jléo = i,&n = + 1)P(&n = j + 1o = 1)

= P(én+1 =jlén =7 — 1)P(én = j — 1[&0 = 1)
+P(§n+1 :jifn =j+ 1P =7+ 1|€0 :i)

n ntjol-i n-—jtlti n ntj4l—i n—j—14
=Plntj-1-: )P % @ * Hqlppjp1-i P ¢ 7
2 2




5. Markov Chains 123

n n npldj—i ntl—ji
= n-1+j—i | T\ nt145-4 )| P % 4 2
2 2
n+1 n4l4j—i n4l—j4i
= nt+l4+g—1 p ? q 2 .
2

Solution 5.10
Denote the right-hand side of (5.24) by h(z). It follows by induction that

On the other hand, h is analytic and

k=0

Solution 5.11

We shall translate the problem into the Markov chain language. Denote by S
the set of all natural numbers N = {0,1,2,---}. Let &, denote the number of
males in the nth year (or generation), where the present year is called year 0. If
&, = 1, i.e. there are exactly 7 males in year n, then the probability that there
will be 7 males in the next year is given by

P (ény1 = jlén = i) = P(X1+ - Xi =), (5.68)

where (X)52, is a sequence of independent identically distributed random
variables with common distribution

P(Xy =m)=pm, meN.
Hence &,, n > 0 is a Markov chain on S with transition probabilities
p(jld) = P(X1 + - Xy = j). (5.69)

Notice that p(0[0) = 1, i.e. if £, = 0, then &, = 0 for all m > n. Dying out
means that eventually &, = 0, starting from some n € N. Once this happens,
&, will stay at 0 forever.

Solution 5.12

We shall only deal with part 2), as in part 1) there is nothing to show. Suppose
that £ = 4. Then & = X; + ---X;, where X; are independent identically
distributed Poisson random variables with parameter A. Since the sum of such
random variables has the Poisson distribution with parameter i}, (5.27) follows
readily.
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Solution 5.13

Let &, denote the number of supporters at the end of day n. Then £,41 — &5 is
equal to 1 or 0 and

pq, ifj=1+1,
p(li) =4 l-pg, ifj=1, (5.70)
0, otherwise.

Thus &, is a Markov chain on a state space S = N with transition probabilities
p(j]i) given by (5.70).

Solution 5.14

We shall use the notation introduced in the hint. Observe that &,11 — &, — Zn,
equals —1 or 0. The latter case occurs with probability p, i.e. when the car
served at the beginning of the nth time interval was finished by the end of the
nth time interval. The former case occurs with probability 1 — p. Therefore

M\ —itl 2\t
P n =1 n = ) = p——————— —A 1 — - —-A
fori > 1,5 > i — 1. On the other hand, if j > 0, then
: Mo
P(€n+1 = jlén =0) = j_'e A
Thus, &, is a Markov chain with transition probabilities
\
g5, if i=0,7¢€N,
() = ¢ @-ita ifi>1,7>:i-1, (5.71)
0, otherwise,
|
where ¢ = i\k—l;—e_’\ and
! pqr, if k= O)
= . 5.72
o { (1-pgels +pge, if k> 1. (5.72)

The transition probability matrix of our chain takes the form

[ ¢ 0 0 - ce ]

a1 q q O
@ ¢ q g O
P = ' ]

9 4
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Solution 5.15

If pr (j18) > 0, then P(é, = j for somen > Oéo = 6) > pi(jli) > 0. If pi (jli) =
for all £ > 1, then

P(&n = j for some n > 0lép =14) < > P(€x = jléo =) = Y_ paljli) =0
n=1 n=1

Solution 5.16

Since P(& = i|& = i) = 1, it follows that i <> i, which proves 1). Assertion 2) is
obvious. To prove 3) we proceed as follows. From the solution to Exercise 5.15
we can find n,m > 1 such that p,(j|t) > 0 and pn,(k|j) > 0. Hence, the
Chapman-Kolmogorov equations yield

Pmin(kl)) = D pm(kls)pn(sli) > pm(kli)pn(ild) > 0.
seS

Solution 5.17

Since |pn(7]?)| < 1 and |fn(j|i)| < 1 for all n € N, the radii of convergence of
both power series are > 1. To prove the equalities (5.40)—(5.41) we shall show
that for n > 1 and any ,j € S,

n

pn(ili) Z §18)P—r (j13)- (5.73)

— A

By total probability formula and the Markov property
pa(jlt) = P(én = jléo =1)

=Y Pln=5&=0a#5,1<I<k—1]§ =1)

k=1

3

3

P& =5,6 #5,1<1<k—-1|& =1)
XP(n=Jjlék =5, & #5,1<1<k-1)

Z Fe(GlD)P(&n = jl&k = J)

x~
Il
-

(jli)pn—k (]I])

Il
M: i

x
Il
A

Solution 5.18
Since 0 < pn(]lz) < 1and 0 < fa(j]7) < 1, the result follows readily from

AT _1Y_ 1
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Solution 5.19

Only the case of a recurrent state needs to be studied. Suppose that j is recur-
rent. Then >~ 7, fn(jlj) = 1. Hence, by Exercise 5.18, Fj;j(z) /' lasz /1.
Thus Pj;(z) = (1 — Fjj(z))~! = o0 as z 7 1, and so, again by Exercise 5.18,
3o 1 Pn(jli) = oo. Conversely, suppose that )~ | pn(j|j) = oo. Then, by
Exercise 5.18, P;j(z) =— oo as ¢ ' 1. Thus, Fj;(z) = 1 — (Pjj(z))™" = 1 as
x ~ 1. Hence, 3 oo, fn(j|j) = 1, which proves that j is recurrent.

To prove (5.43) we use (5.73) to get

> pa(if) =
n=0 J ~

oo n—1

Z Fa-k(il9)pr (517)

Z (516 (513)

M8 HM8 nM

P (il7) Z fm (55)
m=1

Eol
Il
o

<

pe(4l7)-

[\’]8

>
Il
=)

This implies (5.43) when j is transient.

Solution 5.20

We shall show that the state 0 is recurrent. The other case can be treated in
a similar way. From Exercise 5.8 we have pn(010) = ;% + -2-(1 —p — g)™.
Thus p,(0|0) - -+ -+ >0, and so > oo Pn(0]0) = o0, Wthh proves that 0 is a

recurrent state.

Solution 5.21

Suppose each j € S is transient. Then by (5.43) > pn(jli) < for all
i € S. Let us fix ¢ € S. Then we would have 3. 53 7", p(jfi) < oo,
since S is finite. However, this is impossible because ). ¢ 3 7 pn(jli) =

Sy YjesPalili) = Yoy 1 =00
Solution 5.22

Let us begin with a brief remark concerning the last part of the problem. Since
the random walk is ‘space homogenous’, i.e. p(j]¢) = p(j—¢|0), it should be quite
obvious, at least intuitively, that either all states are positive-recurrent or all
states are null-recurrent. One can prove this rigorously without any particular
difficulty. First, observe (and prove by induction) that p,(j|i) = pn(j — %|0).
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Second, observe that the same holds for f,, i.e. fn(j|t) = fn(j — ¢|0). Hence, in
particular, m; = my.
To show that 0 is null-recurrent let us recall some useful tools:

o0
Py(z) = an(0|0)x", -l1<z<1,
n=0

Foo(z) = ) fa(0[0)2", ~1<z <1,
n=1

Since, see Exercise 5.9,

2k\ 1
p2x(010) = (k)@’

oo = 5 (%) (2) - -

k=0

Then, using (5.41), we infer that Fog(z) = 1— (1 —x2)'/2. Since Fjy(z) oo as
¢ /1 and Fjy(z) = Y oo nfn(0]0)z™ by using Abel’s lemma (compare with
Exercise 5.18), we infer that Y > | nf,(0/0) = co. This shows that mg = oo
and thus 0 is null-recurrent.

Solution 5.23

We know that 0 is a recurrent state. From definition

fn(0]0) = p(0]1)p(1|1)"2p(1]|0) = pg(1 — g)" 2.

Since |1 — ¢| < 1, we infer that 3 - nfn,(0[0) = > o2 pg(l — ¢)"? < oo.
Hence mgy < oo and 0 is positive-recurrent. The same proof works for state 1.

Solution 5.24

Consider a Markov chainon S = {1,2,---,9} with transition probabilities given
by the graph in Figure 5.3. Then, obviously, p4(1|1) = 1/2 and pe(1|1) = 1/2,

Figure 5.3. Transition probabil-
ities of the Markov chain in Exer-
cise 5.24

but p(1]1) = 0if £ <6 and k ¢ {4,6}. Hence d(1) = 2, but py(1|1) = 0.
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Solution 5.25

We begin with finding P, = P? in an algebraic way, i.e. by multiplying the
matrix P by itself. We have

. [0 172770 1727 _
=[]0 8]

Alternatively, P, can be found by observing that the only way one can get from
1 to 1 in two steps is to move from 1 to 2 (with probability 1) and then from 2
to 1 (with probability 1/2). Hence, the probability p2(1|1) of going from 1 to 1
in two steps equals 1/2. Analogously, we calculate p2(1]2) by observing that in
order to move from 1 to 2 in two steps one needs first to move from 1 to 2 (with
probability 1) and then stay at 2 (with probability 1/2). Hence, p2(1]2) = 1/2.
The remaining two elements of the matrix P, can be found by repeating the
above argument, or, simply by adding the rows so that they equal 1. In the
latter method we use the fact that P, is a stochastic matrix, see Exercise 5.3.
The graph representing P, is shown in Figure 5.4.

[SIEg SIE
O =

1/2

1/2 3/4

Figure 5.4. Two-step transition
probabilities in Exercise 5.25

1/4

Using any of the methods presented above, we obtain

|

Therefore, p;(1|1) = 0, p2(1{1) = 1/2 and p3(1|1) = 1/4. Hence d(1) = 1
(although p; (1|1) = 0). Since p;(2]2) = 1/2 > 0, it follows that d(2) = 1.

|

PRI
oojenoo|eo

Solution 5.26

. Suppose that & = i. Denote by 7; the minimum positive time when the chain

AN

nters state k, i.e.
v = min{n > 1: &, = k}.

Then, P{r; < 73} =: ¢ > 0if i —» j and i # j. If j -» 4, then it would
be im\possible to return to ¢ with probability at least £ > 0. But this cannot
happen as i is a recurrent state. Indeed,
1 = P(r;<o0)=P(r; <oolrj <) P(1j < 75)
+P(r; <ool|rj 2 m) P(rj > 7).
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The second term on the right-hand side is < 1 — € < 1, while the first factor in
the first term is equal to O (since ¢ - 7). This is a contradiction. The second
part is obvious.

Solution 5.27

As observed in the hint, we only need to show that (5.45) holds when p(j|i) = 0
for i € C and j € S\ C. We begin with the following simple observation. If
(2, F, P) is a probability space and 4, € F, n € N, then P(|J,, A») = 0 if and
only if P(A,) = 0 for each n € N. Hence (5.45) holds if and only if for each
k>n
P(& e S\Cl¢, € C) =0. (5.74)

In fact, the above holds if and only if it holds for £ = n + 1. Indeed, suppose
that for each n € N

P(ny1 € S\Cl€, €C) = 0. (5.75)
Let us take n € N. We shall prove by induction on k¥ > n that (5.74) holds. This
is so for k = n and k¥ = n + 1. Suppose that (5.74) holds for some k > n + 1.
We shall verify that it holds for k + 1. By the total probability formula (5.67)
and the Markov property (5.10)

P (&k+1 € S\ Cl&, € C)
=P (&+1 € S\ Clén € C,& € C) P(& € Clé, € C)
+ P (&1 € S\ClE, € C & € S\C)P (&, € S\ C|&n € O)
=P ({+1 € S\ Clék € C) P(& € Clén € C)
+ P (41 € S\Clé € S\C)P(&, € S\ ClE, € O).

By the induction hypothesis P(§x € S\C|¢, € C) = 0 and by (5.75) (applied to
k rather than n) P (§k41 € S\ C|& € C) = 0. Thus, P ({41 € S\ Cl&, € C) =
0, which proves (5.74).

The time-homogeneity of the chain implies that (5.75) is equivalent to (5.74)
for n = 0. Since P is a countably additive measure and S is a countable set,
the latter holds if and only if p(j|¢) =0fori € C and j € S\ C.

Solution 5.28

Property 2) in Proposition 5.8 implies that 4 is an invariant measure. Therefore
it remains to prove uniqueness. Suppose that v = Z;; g;0; is an invariant
measure. It is sufficient then to show that m; = ¢g; for all j € S.

Since 0 < pn(jli)gs < ¢i for all i,j € S and ) ,qi = 1 < oo, Lebesgue’s
dominated convergence theorem yields

o0
g =Y _palil)a = D miqi = m;.
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It follows that p = v.

Solution 5.29

We shall argue as in the uniqueness part of Solution 5.28. If v = 372, ¢;; is
an invariant measure, then by Lebesgue’s dominated convergence theorem

o0
g = pn(ili)as & > _mjqi =0.
=1 1
Hence v = 0, which contradicts the assumption that v is a probability measure.

Solution 5.30

. 1 :
Obviously, P = [ (1] 0 } . Therefore equation Pm = 7 becomes

m = T2,

o = T1.

The only solution of this system subject to the condition 71 + 73 = 1is m; =
T = 1/2

Solution 5.31

Put p =3, gmidi and v =3, s vid;. Then, for any j € S and n € N

> Pl (1= 0)pi +6v3) = (1=6) D pa(Gli)ps + 6> _ pnlili)vs
i€S » i€S i€S
= (1=0)p; +0v; =[(1-0)u+0v];.
Solution 5.32

Put g =) ;s pid;. Then, for any j € T'

pi =Y pn(jli)ui =0
i€S

by the Lebesgue dominated convergence theorem. Indeed, by Exercise 5.19
Pn(jli) = O for all i € S, and p,(j|i) s < psi, where 3 p; < 00.

Solution 5.33

Since j is transient in viewof (5.43), from Exercise 5.19 we readily get (5.53).

Solution 5.34—
By Theorem 5.5 p,(j]i) — m% foralli,j € S. Put 7; = m%,, j € S. We need to
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1) 7= Z]. 7;6; is an invariant measure of the chain &,, n € N;
2) m is the unique invariant measure.
Part 1) will follow from Proposition 5.8 as soon as we can show that 7; > 0 for

at least one j € S. But if j € S, then j is positive-recurrent and thus m; < oo.
Part 2) follows from Exercise 5.28.

Solution 5.35

Let us fix i,j € Z. First suppose that j —¢ = 2a € 2Z. Then por41(j]i) = 0 for
all k € N, and also pax(j]i) = 0 if k < |a|. Moreover, if k > |a|, then

oo 2k ke k—a_ (PN 2k & &
pzk(JIz)—(k+a)p q —(q kta)P O

Since (,2F) < (%), it follows that

k+a
s p\* (2k\ & &
< | =
P2k (Jli) < (q) (k)Pq -0

by Proposition 5.4. We have therefore proven that 7; is well defined and that
n; = 0 for all j € Z. Hence, we infer that no invariant measure exists.

Solution 5.36

Suppose that m = 372 7;d; is an invariant measure of our Markov chain.
Then ), p(j|i)m; = w; for all j € S = N. Using the exact form of the transition
probability matrix in the solution to Exercise 5.14, we see that the sequence
of non-negative numbers (7;)$2, solves the following infinite system of linear
equations:

goTo + g1 = 7
T I7T I7I' = T
aroTam T dore : (5.76)
G20 + @om1 + @12 + g3 = T2
i.e.
k+1
qkTo + ZQ;C+1—j7rj =mr, KEN
Jj=1

Multiplying the kth equation in (5.76) by z*, k > 0, and summing all of them
up we obtain

moQ(x) + — f: = II(z), |z| <1, (5.77)
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where for |z| < 1,

II(z) = ij:r )
j=0

Q) = ) g7,
7=0

G(z) = ) _qia
7=0

Since Z;’il 729 = I (x) — mp, we see that IT, @ and G satisfy the functional

equation

G(z) — zQ(z)
G(z)—-z ’

Since all the coefficients 7; in the power series defining II are non-negative,

Abel’s lemma implies that

II(z) =mg |z| < 1. (5.78)

Z T = al:l/*ml II(x).
Jj=0

It is possible to use (5.78) to calculate this limit. However, there is still some
work be done. We have to use I’'Hospital’s rule. Since G(z) — = — 0, G(x) —
zQ(z) = 0, G'(z) =1 = X —1and (G(z) — zQ(z)) = X' — A —1 (all limits
are for x ' 1), we obtain (recall that A’ = lim, ~ G'(z))

1) if A' # 1, then IT(z) — mo 252,

2) if X' =1, then II(z) — oo.

In case 1) % > 1, since mg < 1. It follows that 1—_/\,\' >0, and so X' < 1.
Moreover, in this case

S 1-X
ST TN N
The above argument shows that if there exists an invariant measure, then it is

unique.

Now suppose that an invariant measure exists (and then it is unique). Since
our chain is irreducible and aperiodic (check this!), it follows from Theorem 5.6
that the Markov chain &, is ergodic. Therefore, by Theorem 5.5, for any j € N

pn(jly) = 1, asn — oo.
Since Fj;(1) = 1, it also follows that

pn(jlt) = mj, asn — oo.

/
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Solution 5.37

We begin with the case ng = 1. Then M,,(j) — mn(j) < (1 — ¢)" from (5.62).
It follows that

j < Mn(.?)’

pa(fli) < Mn(3),

and we infer that |p,(j|i) — 7;| < (1 —¢)™, n € N. Suppose that ng > 2. Then
foranyr=1,---,n0—1

IA A

g+ (1) = T3] = D Phno (i18)Pr (s8) = D _ w39, (sl)

sES SES

< > " Ipkno (§l8) — milpr(slé)
sES

< max [prn, (§18) — mj| D pr(sli) < (1 — &)™
sE€S ses

Solution 5.38

1—
The transition probability matrix P takes the form [ » p ] q ¢ ] Since

all four numbers p,q,1 — p,1 — q are strictly positive, the assumption (5.54)
is satisfied, and so the limits m; = lim, p,(j|¢) exist and are i-independent.
Hence, the unique invariant measure of the corresponding Markov chain is
equal to modo + m161. (Recall that S = {0, 1} in this example.) We need to find
the values 7;. One way of finding them is to use the definition. As in Hint 5.28,
the vector m = (g, 7 ) solves the following linear equation in matrix form:

w2 o
mo+m = 1. (5.80)

Some elementary algebra allows us to find the unique solution to the above

problem:

q p
o= —_ m=— 5.81
p+q¢ ' p+gq (5:81)

Hence, Ei—qdo + E_{—qd] is the unique invariant measure of the Markov chain.

Solution 5.39
From (5.66) we infer that

q + p
g+p gq+p q+p

pn(0]0) =
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p p p

110) = - 1-p—q)" = ——,

pn(1(0) s q+p( ) s
q q n q

pn(0]1) = - l-p-q)" » —,

n(0[1) P q+p( ) P
p q n p

pn(1l1) = + Q-p—q@)" » —.

al g+p gq+p q+p

Hence mg = ?#5 and 1 = ?4%' This is in agreement with the previous solution.

Solution 5.40

Suppose that &, = ¢. Then the value of {,, 1 depends entirely on the outcome of
the next roll of a die, say X, 11, and the value of §,. Since it depends on the past
only through the value of &, intuitively we can see that we are dealing with a
Markov chain. To define &, in a precise way consider a sequence of independent
identically distributed random variables X,, n = 1,2,3,:-- such that P(X; =
i) =1/6foralli =1,2,---,6. Then, putting £,+1 = max{&,, Xn+1}, we can see
immediately that P(£,41 = int1/o = t0, 1 &n = in) = P(&nt1 = tns1/én =
in) and

P(§n+1 = ]Ifﬂ =1) = P(§n+l = ]lfn = Z.7)(n+1 < i)P(Xn+l < 1)
+P(€nt1 = Jlén = 1, Xny1 > ) P(Xnq1 > 1)

i
i 0 1_7>z, 6—i [ £ if 7 > 1,
= -<¢ 1 ifj =14, + 5 0’ £ <
0 ifj<i Rz
% if j >,
=< i ifj=i,
0 ifj<i.
Thus,
: if § > 1,
p(Jli) =4 § ifj=4,
0 if 7 <.
It follows that i}
[L 0 0 0 00
2
EEEEE
=z =z = 0 0 0
p=| 6 6 &8
§ 5§ 55 00
1 1 1 1 5 g
A
EEEEERY

Solution 5.41

The oranh af the chain is given in Ficure 5.5. The transition matrix is
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1/4

Figure 5.5. Transition probabil-
ities of the Markov chain in Exer-

cise 5.41
Lo o0o
1 2
p=1 197
i i 31 0
11 1 9
4 4 4

Either from the graph or from the matrix we can see that ¢ — j if and only if
i < j. The state ¢ = 1 is transient. Indeed, p(1|1) = 1/4 and p,(1]1) = (1/4)"
by induction. Therefore, > pn(1|1) < oo and 1 is transient by Exercise 5.19.
The same argument shows that the states 2 and 3 are also transient. On the
other hand, p(4/4) = 1, and so 4 is a positive-recurrent state. (As we know,
that there should be at least one positive-recurrent state.)

We shall find invariant measures by solving the system of four linear equa-
tions Pr = =« for # = (m,m2,73,74), subject to the condition m; + 7y +
w3 + m4 = 1. Some elementary linear algebra shows that the only solution is
m = my = w3 = 0, w4 = 1. Thus, the unique invariant measure is 7 = d4.

The invariant measure can also be found by invoking Theorem 5.4. In our
case C' = {4}, and so there is exactly one class of recurrent sets. Moreover, as
we have seen before, 4 is positive-recurrent. Therefore, there exists a unique
invariant measure. Since its support is contained in C, we infer that = = d4.

Solution 5.42

The graph representing the Markov chain for a = 4 is presented in Figure 5.6.
o

Obviously, ¢ — j for ¢ € S\ {0,a} =: S and j € S. Moreover, 0 — j if and

only if j = 0 and a — j if and only if j = a. Since p(0[0) = p(ala) = 1,

both states 0 and a are positive-recurrent. All other states are transient. For

Q
if 7 € S were recurrent, ¢ would be intercommunicating with 0 because 1 — 0,
hv Fxercise 5.26. This is impossible. Therefore, bv Remark 5.5 there exist an
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Figure 5.6. Transition probabil-
ities of the Markov chain in Exer-
cise 5.42

infinite number of invariant measures: u = (1 — 8)do + 04,, where 6 € [0,1].
Indeed, 4, is the only probability measure with support in the singleton {a}.
It is possible to verify this with bare hands. Next, let ¢(¢) denote the probabil-
ity that the investigated Markov chain &, hits the right-hand barrier prior to
hitting the left-hand one. Once &, hits the left barrier it will never leave it, so
¢(7) is actually the probability that &, hits a. Put

A={3neN:§& =a}.

Then, by the total probability formula and the Markov property of £,,, we have
for1<i<a-1

$(i) = P(Al§o =i) =) P(Alé =i,& = j)P(&1 = jl&o = 1)
=0
= Y P(Al&1 = j)P(& = jléo = 1)
j=0

= Y b)) P& = jléo = i) = pp(i + 1) + ¢¢(i — 1).
j=0

Obviously,
¢(0) = 0,
¢(a) =1
Therefore, the sequence (¢());_, satisfies
#(t) = pp(i +1)+qp(i—1), 1<i<a-—-1, (5.82)
¢(0) = 0, ¢(a) = 1.

Since p + ¢ = 1, equations (5.82) can be rewritten as follows:

plop(i+1) = ¢())] = q[p(i) —@¢(i —1)], 1<i<a-1
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Hence, i
[$(i + 1) - 6()] = (%) z,

where z = ¢(1) — ¢(0) is to be determined. Using the boundary condition
#(a) = 1, we can easily find that

1=6a) = 3 (80 +1) - 4(3)
1=0
(2)° —1

9 _
> — 1

T.

Here we assume that p # g. The case p = ¢ = 1/2 can be treated in a similar
way. In fact the latter is easier. It follows that

41
p
(@1

T =

and therefore
i—1 (g_)i -1
o) =) (p(k+1) — (k) = -2

T
prt (3)e -1




= |
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Stochastic Processes in Continuous Time

6.1 General Notions

The following definitions are straightforward extensions of those introduced
earlier for sequences of random variables, the underlying idea being that of a
family of random variables depending on time.

Definition 6.1

A stochastic process is a family of random variables £(t) parametrized by t € T,
where ' C R. When T' = {1, 2,.. .}, we shall say that £(¢) is a stochastic process
in discrete time (i.e. a sequence of random variables). When T is an interval
in R (typically T' = [0,00)), we shall say that £(¢) is a stochastic process in
continuous time.

For every w € {2 the function

T3t &(t,w)
is called a path (or sample path) of £(t).

Definition 6.2

A family F; of o-fields on {2 parametrized by t € T', where T C R, is called a
filtration.if

FsCF CF

far anv e + &VT cnrch that ¢ < #
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Definition 6.3

A stochastic process £(t) parametrized by t € T is called a martingale (sub-
martingale, supermartingale) with respect to a filtration F; if

1) £(t) is integrable for each t € T}

2) £(t) is Fi-measurable for each t € T (in which case we say that &(t) is
adapted to F);

3) £(s) = E (&(t)|Fs) (respectively, < or >) for every s,t € T such that s < ¢.

In earlier chapters we have seen various stochastic processes, in particular,
nartingales in discrete time such as the symmetric random walk, for example.
n what follows we shall study in some detail two processes in continuous time,
1amely, the Poisson process and Brownian motion.

3.2 Poisson Process

3.2.1 Exponential Distribution and Lack of Memory

definition 6.4

Ne say that a random variable n has the exponential distribution of rate A > 0
f
P{n>t}=eM

or allt > 0.

For example, the emissions of particles by a sample of radioactive material
or calls made at a telephone exchange) occur at random times. The probability
hat no particle is emitted (no call is made) up to time ¢ is known to decay
xponentially as ¢ increases. t is to say, the time 71 of the first emission has
he exponential distribution, P {n >t} =e~

-xercise 6.1

Vhat is the distribution function of a random variable n with exponential
istribution? Does it have a density? If so, find the density.

[int What is the probability that n > 0?7 What is the probability that n > t for any
iven t < 07 Can you express the distribution function in terms of P {n > t}? Is the
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Exercise 6.2
Compute the expectation and variance of a random variable having the expo-

nential distribution.

Hint Use the density found in Exercise 6.1.

Exercise 6.3

Show that a random variable n with exponential distribution satisfies
P{n>t+s}=P{n>t}P{n> s} (6.1)
for any s,t > 0.

Hint When the probabilities are replaced by exponents, the equality should become
obvious.

Exercise 6.4

Show that the equality in Exercise 6.3 is equivalent to
P{n>t+sln>s}=P{n>t} (6.2)
for any s,t > 0.

Hint Recall how to compute conditional probability. Observe that 7 > s + t implies
n>s.

The equality (6.2) (or, equivalently, (6.1)) is known as the lack of memory
property. The odds that no particle will be emitted (no call will be made) in
the next time interval of length ¢ are not affected by the length of time s it has
already taken to wait, given that no emission (no call) has occurred yet.

Exercise 6.5

Show that the exponential distribution is the only probability distribution sat-
isfying the lack of memory property.

Hint The lack of memory property means that g(t) = P {n > t} satisfies the func-
tional equation

g(t+s) =g(t)g(s)
for any s,t > 0. Find all non-negative non-increasing solutions of this functional
equation.
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6.2.2 Construction of the Poisson Process

Let 71,72, . . . be a sequence of independent random variables, each having the
same exponential distribution of rate A. For example, the times between the
emissions of radioactive particles (or between calls made at a telephone ex-
change) have this property. We put

€n=n1+"'+7’n,

which can be thought of as the time of the nth emission (the nth call). We also
put & = 0 for convenience. The number of emissions (calls) up to time ¢ > 0 is
an n such that &, > t > &,. In other words, the number of emissions (calls)
up to time ¢t > 0 is equal to max{n :t > &,}.

Definition 6.5

We say that N(t), where t > 0, is a Poisson process if

N(t) =max{n:t>&}.

Thus, N(t) can be regarded as the number of particles emitted (calls made)
up to time t. It is an example of a stochastic process in continuous time. A
typical path of N(t) is shown in Figure 6.1. It begins at the origin, N(0) = 0
(no particles emitted at time 0), and is right-continuous, non-decreasing and
piecewise constant with jumps of size 1 at the times &,.

A N®)

61 -—
5| —

41 *—0

11 —o

1 '
! '
! 1
! !
1

21 . é

———+ }
L& & & & & & t

Figure 6.1. A typical path of N(t) and the jump times &,
|
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What is the distribution of N(¢)? To answer this question we need to recall
the definition of the Poisson distribution.

Definition 6.6
A random variable v has the Poisson distribution with parameter a > 0 if
—a@"
P{vr=n}=e o

for any n =0,1,2,....

The probabilities P {v = n} for various values of a are shown in Figure 6.2.

A A A
0.6 1 0.6 1 0.6 1
041 0471 041
0.21 0.2 1 021

0123 n 012345 n 0123456789 n
a=1/3 a=1 a=3

Figure 6.2. Poisson distribution with parameter «

Proposition 6.1

N(t) has the Poisson distribution with parameter At,

P{N@®t) =n} = e—At(—Ani!):

Proof

First of all, observe that

{N(@) <n}={& >t}
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It suffices to compute the probability of this event for any n because
P{N({t)=n} = P{N(t) <n+1} - P{N(t) <n}
= P{&n+1 >t} = P{& > t}. (6.3)
We shall prove by induction on n that
At
P{¢& >t} = -“Z( )* . (6.4)
Forn=1
P{fl > t} = P{m > t} =e M.

Next, suppose that (6.4) holds for some n. Then, expressing £,+1 as the sum
of the independent random variables &, and 7,41, we compute

P {1 >t} = P{&n + ny1 > t}
= P{nns1 >t} + P{& >t = nny1,t > ny1 > 0}

t
= e +/ P{& >t —s} fy.,..(s)ds
VI / —A(t—s) Z (A (t e ds

n- 1Al¢:+l
=eM+te ')‘t / (t—s)*ds
k 0

_ At ()\t)
=€ Z I
k=0

where f;, ., (s) is the density of 7,+1. By induction, (6.4) holds for any n. Now
apply (6.3) to complete the proof. O

Exercise 6.6

What is the expectation of N(t)?

Hint What are the possible values of N(¢)? What are the corresponding probabilities?
Can you compute the expectation from these? To simplify the result use the Taylor
expansion of e”.

Exercise 6.7
Compute P{N(s) =1,N(t) =2} forany 0 < s < t.

Hint Express {N(s)=1,N(t) =2} as {m <s<m+n<t<mn +n+n3}. You
can compute the probability of the latter, since 1, 2, 773 are exponentially distributed
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6.2.3 Poisson Process Starts from Scratch at Time ¢

Imagine that you are to take part in an experiment to count the emissions of
a radioactive particle. Unfortunately, in the excitement of proving the lack of
memory property you forget about the engagement and arrive late to find that
the experiment has already been running for time ¢ and you have missed the
first NV (t) emissions. Determined to make the best of it, you start counting right
away, so at time ¢t + s you will have registered N(t+ s) — N (t) emissions. It will
now be necessary to discuss N(t + s) — N(t) instead of N(s) in your report.

What are the properties of N(t+s)—N(t)? Perhaps you can guess something
from the physical picture? After all, a sample of radioactive material will keep
emitting particles no matter whether anyone cares to count them or not. So
the moment when someone starts counting does not seem important. You can
expect N(t + s) — N(t) to behave in a similar way as N(s). And because
radioactive emissions have no memory of the past, N(¢ + s) — N(t) should be
independent of N(t).

To study this conjecture recall the construction of a Poisson process N(t)
based on a sequence of independent random variables 1,72, ..., all having the
same exponential distribution. We shall try to represent N (¢ + s) — N(t) in a
similar way.

Let us put

nti=Enw+r — 6 L = N4 =23,
see Figure 6.3. These are the times between the jumps of N(t+s) — N(t). Then
we define

& =M+ +
~ N'(s) = max{n: ¢ <s}.

N "IN, +1 Mtz TINg+s
moomom

s o~ A = o

! | ! |
| | { t
| | | f
I | ! !
| | | |
| | i |
4 L i

.__.g< _____ Nl _____________ N-—N ______ )4.._-
|
|
|
|
|
|
|
|
|
|
I
|
I

€Nt—-1 €, t €Nt+1 €Nt+2 €Nt+3

Figure 6.3. The random variables n%,n%, 7%, ...
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Exercise 6.8

Show that
Ni(s) = N(t+s) — N(t).

Hint First show that &, = En(t)4n — t.

If we can show that nt,nt, ... are independent random variables having the
same exponential distribution as 11,79, ..., it will mean that N(t + s) — N(t)
is a Poisson process with the same probability distribution as N(s). Moreover,
if the n!, turn out to be independent of N(¢), it will imply that N(t+ s) — N(t)
is also independent of N (t).

Before setting about this task beware of one common mistake. It is some-
times claimed that the times nt,n%, 7%, ... between the jumps of N(t+s) — N(t)
are equal to £n41 — t.Pnt2,Mn+3, .. . for some n. Hence nt,ni, nk, ... are inde-
pendent because the random variables &,+1, 7n+2, Mn+3, - - - are. The flaw in this
is that, in fact, nt, i, ni, ... are equal to £,41 — ¢, Jnt2, Pn3, . . . only on the set
{N(t) = n}. However, the argument can be saved by conditioning with respect
to N(t). Our task becomes an exercise in computing conditional probabilities.

Exercise 6.9

Show that
P{n; > s|N(t)} = P{m > s}.

Hint It suffices (why?) to verify that
P{n} > s,N(t) =n} = P {m > s} P{N(t) = n}
for any n. To this end, write the sets {N(¢) = n} and {n} > s, N(t) = n} in terms of

&» and 7n+41, which are independent random variables, and use the lack of memory
property for n,41.

Exercise 6.10
Show that
P{n; > s1,...,mp > sg[N(@#)} = P{m > s1} -~ P{me > sx}.

Hint Verify that
P{’?i > 31)7]5 > 32,--~»771tc >Sk,N(t) =n} :P{WI > 31}"'P{77k >Sk}P{N(t) :TL}

for any n. This is done in Exercise 6.9 for k = 1.
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Exercise 6.11

From the formula in Exercise 6.10 deduce that the random variables 7% and
N (t) are independent, and the 7!, have the same probability distribution as n,,
i.e. exponential with parameter ).

Hint What do you get if you take the expectation on both sides of the equality in
Exerc1se 6.10? Can you deduce the probability distribution of 7;,? Can you see that
the n! are mdependent7

To prove that the ), are independent of N(t) you need to be a little more careful
and integrate over {NN(t) = n} instead of taking the expectation.

Because N(t + s) — N(t) can be defined in terms of n{,n%,... in the same
way the original Poisson process N(t) is defined in terms of n1,72,... , the
result in Exercise 6.11 proves the theorem below.

Theorem 6.1
For any fixed t > 0
Ni(s) =N(t+s)—N({), s>0

is a Poisson process independent of N (¢) with the same probability law as N (s).

That is to say, for any s,t > 0 the increment N (t+s) — N(t) is independent
of N(t) and has the same probability distribution as N (s). The assertion can be
generalized to several increments, resulting in the following important theorem.

Theorem 6.2 \‘
For any 0 < t; <ty <--- < t, the increments
N(t1),N(t4) — N(t1),N(t3) = N(t2),...,N(tn) — N(tn-1)

have the same probability distribution as

are independent a;

(t1). N(ta —t1),N(tzs —t2),..., N(tn — th-1).

Proof
From Theorem 6.1 it follows immediately that each increment N (¢;) — N(t;—1)
has the same distribution as N(t; —t;—;) fori =1,...,n.

It remains to prove independence. This can be done by induction. The case
when n = 2 is covered by Theorem 6.1. Now suppose that independence holds
for n increments of a Poisson process for some n > 2. Take any sequence

N<ti: <ta < .o <+ <+ ..
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By the induction hypothesis
N(tat1) = N(ta),..., N(t2) — N(t1)
are independent, since they can be regarded as increments of
N'(s) = N(t; +s) — N(t),

which is a Poisson process by Theorem 6.1. By the same theorem these incre-
ments are independent of N(¢;). It follows that the n + 1 random variables

N(trH-l) - N(tn)a""N(tZ) - N(tl)’N(tl)

are independent, completing the proof. O

Definition 6.7

We say that a stochastic process £(t), where t € T, has independent increments
if

§(t1) — &(to), - - -, &(tn) — €(tn—1)

are independent for any ty < t; < --- < t, such that tg,t;,...,t, € T.

Definition 6.8

A stochastic process £(t), where t € T, is said to have stationary increments if
for any s,t € T the probability distribution of £(t + h) — €(s + h) is the same
for each h such that s +h,t + h e T.

Theorem 6.2 implies that the Poisson process has stationary independent
increments. The result in the next exercise is also a consequence of Theorem 6.2.

Exercise 6.12

Show that N(t) — At is a martingale with respect to the filtration F; generated
by the family of random variables {N(s) : s € [0,¢]}.

Hint Observe that N(t) — N(s) is independent of F, by Theorem 6.2.

6.2.4 Various Exercises on the Poisson Process

Exercise 6.13

Show that § < & < & < -+ as.
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Hint What is the probability of the event {{n—1 < €x} = {n. > 0}? What is the
probability of the intersection of all such events?

Exercise 6.14

Show that lim,_, £, = 00 a.s.

Hint If lim, 4o €n < 00, then the sequence 71,72, ... of independent random vari-
ables, all having the same exponential distribution, must be bounded. What is the
probability that such a sequence is bounded? Begin with computing the probability
P{m <m,...,nn < m} for any fixed m > 0.

Although it is instructive to estimate P {limn o €n < 00} in this way, there is a
more elegant argument based on the strong law of large numbers. What does the law
of large numbers tell us about the limit of 5,{'- as n — oo?

Exercise 6.15

Show that £, has absolutely continuous distribution with density

_ag (A"

fn (t) = e m

with parameters n and A. The density f,(t) of the gamma distribution is shown
in Figure 6.4 forn = 2,4 and A = 1.

0.4

0.2

igure 6.4. Density fr(¢) of the
0 1 p ¢ mma distribution with parame-
tersn=2A=landn=4A=1

|

Hint Use the formula for P {€, > t} in the proof of Proposition 6.1 to find the dis-
tribution function of &,. Is this function differentiable? What is the derivative?

Exercise 6.16

Prove that
lim N(t) =00 aus.
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Hint What is the limit of P{N(k) > n} as k = co? Can you express {lim¢_ oo N(t)
= oo} in terms of the sets {N(k) > n}?

Exercise 6.17
Verify that

P{N(t) is odd} = e **sinh(\t),
P{N(t) is even} = e~ cosh(\t).

Hint What is the probability that N(¢) = 2n + 1? Compare this to the n-th term of
the Taylor expansion of sinh At.

Exercise 6.18

Show that N
lim ———(Q =) a.s.
t—soo ¢

if N(t) is a Poisson process with parameter A.

Hint N(n) is the sum of independent identically distributed random variables N (1),
N(2)—-N(1),...,N(n) — N(n—1), so the strong law of large numbers can be applied
to obtain the limit of N(n)/n as n — oo. Because N(t) is non-decreasing, the limit
will not be affected if n is replaced by a continuous parameter ¢ > 0.

6.3 Brownian Motion

Imagine a cloud of smoke in completely still air. In time, the cloud will spread
over a large volume, the concentration of smoke varying in a smooth manner.
However, if a single smoke particle is observed, its path turns out to be ex-
tremely rough due to frequent collisions with other particles. This exemplifies
two aspects of the same phenomenon called diffusion: erratic particle trajec-
tories at the microscopic level, giving rise to a very smooth behaviour of the
density of the whole ensemble of particles. The Wiener process W (t) defined
below is a mathematical device designed as a model of the motion of individual
diffusing particles. In particular, its paths exhibit similar erratic behaviour to
the trajectories of real smoke particles. Meanwhile, the density fw () of the
random variable W{t) is very smooth, given by the exponential function

fwe(z) = \./Zivr—t ~%

e =,
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which is a solution of the diffusion equation

of 10%*f
At~ 20z?
and can be interpreted as the density at time t of a cloud of smoke issuing form
single point source at time 0. The Wiener process W (t) is also associated with
the name of the British botanist Robert Brown, who around 1827 observed
the random movement of pollen particles in water. We shall study mainly the
one-dimensional Wiener process, which can be thought of as the projection of
the position of a smoke particle onto one of the axes of a coordinate system.
Apart from describing tpe motion of diffusing particles, the Wiener process
is widely applied in mathematical models involving various noisy systems, for
example, the behaviour of asset prices at the stock exchange. If the noise in the
system is due to a multitude of independent random changes, then the Central
Limit Theorem predicts that the net result will have the normal distribution, a
property shared by the increments W (t) — W (s) of the Wiener process. This is
one of the main reasons of the widespread use of W (t) in mathematical models.

6.3.1 Definition and Basic Properties

Definition 6.9

The Wiener process (or Brownian motion) is a stochastic process W (t) with
values in R defined for t € [0, 00) such that

1) W(0)=0a.s,;

2) the sample paths t — W (t) are a.s. continuous;

3) for any finite sequence of times 0 < ¢; < --- < t, and Borel sets
Al, e vy An C R

P{I’V(tl) € Aq,.. .,W(tn) € An}
= / / p(tl,o,xl)p(tz-t1,$1,$2)"'
Ay An

" 'p(tn - tn-—l:wn—laxn) dry - -dzy,

where 2

1 (==
p(tz,y) = e” % (6.5)

V2nt

defined for any z,y € R and ¢ > 0 is called the transition density.

A tuvnircal camnle nath af the Wiener nrocess is shown in Fieure 6.5.
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A W(1)

O_AA'V(AV\W/ t

Exercise 6.19
Show that

Figure 6.5. A typical path of
W (t)

1 22
fW(t) (17) = \/2—7?26 !

is the probability density of W (t) and find the expectation and variance of W ().

5

[

Hint The density of W (¢) can be obtained from condition 3) of Definition 6.9 written
for a single time ¢ and a single Borel set. You will need the formula

+o00 12
/ e 2dx=V2r

to compute the integrals in the expressions for the expectation and variance.

Remark 6.1

The results of Exercise 6.19 mean that W (¢) has the normal distribution with
mean 0 and variance ¢.
Exercise 6.20

Show that
E (W (s)W(t)) = min {s, t}.

Hint The joint density of W(s) and W (t) will be needed. It can be found from
condition 3) of Definition 6.9 written for two times s and ¢ and two Borel sets.

Exercise 6.21

Show that
E (IW(t) _ W(s)|2) —t—s|.
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Hint Expand the square and use the formula in Exercise 6.20.

Exercise 6.22
Compute the characteristic function E (exp (iAW (t))) for any X € R.

Hint Use the density of W (t) found in Exercise 6.19.

Exercise 6.23
Find E (W ()*).

Hint This can be done, for example, by expressing the expectation in terms of the
density of W (t) and computing the resulting integral, or by computing the fourth
derivative of the characteristic function of W(t) at 0. The second method is more
efficient.

Definition 6.10

We call W(t) = (W'(t),...,W"(t)) an n-dimensional Wiener process if
W(t),...,W"(t) are independent R-valued Wiener processes.

Exercise 6.24

For a two-dimensional Wiener process W (t) = (W*(t), W2(t)) find the prob-
ability that |W(t)] < R, where R > 0 and |z| is the Euclidean norm of

z = (z1,2?) in B, ie. |z|® = (3:1)2 + (:1:2)2.

Hint Express the probability in terms of the joint density of W(t) and W2(t). In-
dependence means that the joint density of W(t) and W?(¢) is the product of their
respective densities, which are known from Exercise 6.19. It is convenient to use polar
coordinates to compute the resulting integral over a disc.

6.3.2 Increments of Brownian Motion

Proposition 6.2

For any 0 < s < t the increment W (t) — W (s) has the normal distribution with
mean 0 and variance t — s.
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Proof
By condition 3) of Definition 6.9 the joint density of W (s), W (¢) is

fwisywe (@,y) =p(s,0,z)p(t —s,2,y).

Hence, for any Borel set A

P{W() - / (s,0,2)p(t —s,z,y) dx dy
{(z,y):y— IGA}

+o0
/ p(s,0,z) (/ p(t—s,z,y) dy) dx
o0 {y:y—z€A}
+o00
/ p(s,0,x) (/p(t~s,x,x+u)du) dr
A
/ p(s,0,z) (/p(t—s,O,u) du) dz
00 A

+00
= /p(t—s,O,u) du/ p(s,0,z) dx
A

= /p(t—s,O,u) du.
A

But f (u) = p(t — s,0,u) is the density of the normal distribution with mean
0 and variance t — s, which proves the claim. O

Coroliary 6.1

Proposition 6.2 implies that W (t) has stationary increments.

Proposition 6.3
For any 0 =ty <t; <..-<t, the increments

W(t1) = W(to),..., W(tn) = W(tn-1)

are independent.

Proof

From Proposition 6.2 we know that the increments of W (¢) have the normal
distribution. Because normally distributed random variables are independent
if and only if they are uncorrelated, it suffices to verify that

E (W (u) — W(t)) (W(s) - W(r))] = 0
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for any 0 <7 < s <t < u. But this follows immediately from Exercise 6.20:

E[(W(u) = W(®)) (W(s) - W(r)] = E(W(u)W(s)) - E(W(w)W(r))
—EW@W(s)) + E(W (W (r))
=8§—-T—=8+r
= 0,

as required. UJ

Corollary 6.2
For any 0 < s < t the increment W (t) — W(s) is independent of the o-field

Fs=c{W(r):0<r<s}.

Proof

By Proposition 6.3 the random variables W (t)—W (s) and W (r)-W (0) = W (r)
are independent if 0 < r < s < t. Because the o-field F; is generated by such
W (r), it follows that W (t) — W(s) is independent of F. O

Exercise 6.25
Show that W (t) is a martingale with respect to the filtration ;.

Hint Take advantage of the fact that W(t) — W (s) is independent of F; if s < t.

Exercise 6.26
Show that lW(t)]2 — ¢ is a martingale with respect to the filtration F;.
Hint Once again, use the fact that W(t) — W(s) is independent of F, if s < ¢.

Let us state without proof the following useful characterization of the
Wiener process in terms of its increments.

Theorem 6.3

A stochastic process W(t),t > 0, is a Wiener process if and only if the following
conditions hold:

1) W(0) =0 as,;

2) the sample paths ¢t — W (t) are continuous a.s.;
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3) W (t) has stationary independent increments;

4) the increment W (t) — W (s) has the normal distribution with mean 0 and
variance t — s for any 0 < s < t.

Exercise 6.27
Show that for any 7' > 0

Vit)y=W(it+T)-W(T)
is a Wiener process if W (t) is.

Hint Are the increments of V' (t) independent? What is their distribution? Does V (¢)
have continuous paths? Is it true that V' (0) = 0?7

The Wiener process can also be characterized by its martingale properties.
The following theorem is also given without proof.

Theorem 6.4 (Lévy's martingale characterization)

Let W(t),t > 0, be a stochastic process and let F; = o(W,,s < t) be the
filtration generated by it. Then W (t) is a Wiener process if and only if the
following conditions hold:

1) W(0) =0 a.s.;
2) the sample paths ¢t — W(t) are continuous a.s.;
3) W(t) is a martingale with respect to the filtration JF;

4) IW(15)|2 — t is a martingale with respect to F;.

Exercise 6.28
Let ¢ > 0. Show that V(¢) = LW (c?t) is a Wiener process if W (t) is.

Hint Is V(t) a martingale? With respect to which filtration? Is [V (¢)|* — ¢ a martin-
gale? Are the paths of V'(t) continuous? Is it true that V(0) = 07

6.3.3 Sample Paths

Let
0=ty <ty <--- <ty =T,
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- where )
o 1T

1 b

n
be a partition of the interval [0, 7] into n equal parts. We denote by

AW = W(th,) - W(t)

the corresponding increments of the Wiener process W (t).

Exercise 6.29

Show that .
. n 2 _ . 2
nll)n;o 'E—O (APW)* =T in L°.

Hint You need to show that
ne1 2
: n 2 _
lim B ([ZO (APW) T] ) =0.

Use the independence of increments to simplify the expectation. What are the expec-
tations of ATW, (APW)? and (ArW)*?

The next theorem on the variation of the paths of W (t) is a consequence of
the result in Exercise 6.29. First, let us recall that the variation of a function

is defined as follows.

Definition 6.11
The variation of a function f : [0,7] — R is defined to be

n—1
limsup | f(tiy1) — f(t:)],
At—0 i—0
where t = (to,t1,...,tn) is a partition of [0,T],i.e. 0 =tg < t; <- - <tp, =T,

and where
At = max . Iti+1 — .

1=0,...,n—

Theorem 6.5

The variation of the paths of W () is infinite a.s.



158 Basic Stochastic Processes

Proof
Consider the sequence of partitions t* = (tf,tf,...,t3) of [0,T] into n equal
parts. Then

n—1 o

; AW < <i=or.r.1%-1 ‘A?WO ; |ATW].

Since the paths of W (t) are a.s. continuous on [0, T,

lim ( max 1|A§‘W1) =0 as.

n— o0 =0,...,n—
By Exercise 6.29 there is a subsequence t™* = (tg*,t7*,...,tn*) of partitions
such that
ng—1
lim AW =T as.
k—o00 ; I ¢ l

This is because every sequence of random variables convergent in L? has a
subsequence convergent a.s. It follows that

nx—1
lim E |AW| =00 as,
k—o0 4
1=0
while

T
lim At™ = lim — =0,
k—o0 k—oco Mg

which proves the theorem. [J

Theorem 6.5 has important consequences for the theory of stochastic inte-
grals presented in the next chapter. This is because an integral of the form

T
/0 £(t) dw (t)

N

cannot be defined pathwise (that is, separately for each w € §2) as the Riemann-—
Stieltjes integral if the paths have infinite variation. It turns out that an intrinsi-
cally stochastic approach will be needed to tackle such integrals, see Chapter 7.

Exercise 6.30
Show that W(t) is a.s. non-differentiable at t = 0.
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- Hint By Exercise 6.28 V.(t) = %W(c2t) is a Wiener process for any ¢ > 0. Deduce
that the probability

P {0l eM for some t € [0, ]}

is the same for each ¢ > 0. What is the probability that the limit of M exists as
t \, 0, then?

Exercise 6.31
Show that for any ¢t > 0 the Wiener process W (t) is a.s. non-differentiable at ¢.

Hint Vi(s) = W(s+t) — W(t) is a Wiener process for any t > 0.

A weak point in the assertion in Exercise 6.31 is that for each t the event of
measure 1 in which W (t) is non-differentiable at ¢ may turn out to be different
for each t > 0. The theorem below, which is presented without proof, shows
that in fact the same event of measure 1 can be chosen for each ¢t > 0. This is
not a trivial conclusion because the set of t > 0 is uncountable.

Theorem 6.6
With probability 1 the Wiener process W (t) is non-differentiable at any ¢t > 0.

6.3.4 Doob’s Maximal L? Inequality for Brownian Motion

The inequality proved in this section is necessary to study the properties of
stochastic integrals in the next chapter. It can be viewed as an extension of
Doob’s maximal L? inequality in Theorem 4.1 to the case of continuous time.
In fact, in the result below the Wiener process can be replaced by any square
integrable martingale £(t), ¢ > 0 with a.s. continuous paths.

Theorem 6.7 (Doob’s maximal L? inequality)

For any t > 0
EG@NW@W)S4MW@P. (6.6)

Proof

For t > 0 and n € N we define

L 0<k<2m (6.7)
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Then, by Jensen’s inequality, M,k = 0,---,2", is a non-negative square in-
tegrable submartingale with respect to the filtration 7' = F kt, SO by Theo-

rem 4.1
B (s IME1?) < 4EIME P = 4B W (o)

Since W(t) has a.s. continuous paths,

lim max |M}|?> = max|W(s)]* a.s.
n—oo k<2n s<t

Moreover, since MJ* = M}, the sequence supy<yn [M|?, n € N, is increasing.
Hence by the Lebesgue monotone convergence theorem max,<¢ |W(s)|? is an
integrable function and

n|2 < 2
m & (max ME1) < 4EW P,

= li
n—oo

B (maxiw )P )

completing the proof. (J

6.3.5 Various Exercises on Brownian Motion

Exercise 6.32
Verify that the transition density p(t, z,y) satisfies the diffusion equation

o _10%
ot~ 20y

Hint Simply differentiate the expression (6.5) for the transition density.

Exercise 6.33
Show that Z(t) = —W(t) is a Wiener process if W (¢) is.

Hint Are the increments of Z(t) independent? How are they distributed? Are the
paths of Z(t) continuous? Is it true that Z(0) = 07

Exercise 6.34
Show that for any 0 < s < ¢

P{W(t) € AW (s)} = /A p(t—s,W(s),y) dy.



6. Stochastic Processes in Continuous Time 161

-Hint Write the conditional probability as the conditional expectation of 14 (W (t))
given W(s). Compute the conditional expectation by transforming the integral of
14(W(t)) over any event in the o-field generated by W (s). This can be done using
the joint density of W(s) and W (t). Refer to the chapter on conditional expectation
if necessary.

Exercise 6.35

Show that e (e~ % is a martingale. (It is called the ezponential martingale.)

Hint What is the expectation of " ¥)=W() for s < t? By independence it is equal
to the conditional expectation of e *)=W () given F,. This will give the martingale
condition.

Exercise 6.36
Compute E (W (s)|W(t)) for 0 < s < t.

Hint You want to find a Borel function F such that E (W (s)|W(t)) = F (W(t)), i.e.

/ W(s)dP:/ F(W(t)) dP.
{W(t)eAa} ' {W(t)eA}

Either side of this equality can be transformed using the joint density of W (¢) and
W (s).

6.4 Solutions

Solution 6.1

Suppose that 7 is a random variable with exponential distribution of rate A.
The distribution function of 7 is

F(t)=P{nSt}=1‘P{”>t}={ L-e™ ift2>0.

Therefore n has density

d 0 ift <o,
ft) = ZF® = { de=™ ift>0.

The distribution function F(t) and density f(t) are shown in Figure 6.6.

Solution 6.2

Tleina tha doncitv £f(#) = Ae—A faund in Fxercise 6.1 and inteeratine bv parts.
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-
»

-2 0 2 t -2 0 2 t

A -
»

Figure 6.6. The distribution function F(t) and density f(t) of a random variable
with exponential distribution of rate A = 2

we obtain

g = [ ywa= [ oetas - [T ikera

- —te‘“’oo + /oo e Mdt=0—- le—-kt\w = l.
0 0 A 0 A

In a similar way we compute

E(n*) =/ tzf(t)dt=/0 ter"‘tdtz—/ tZ%e“’\tdt
. i

= —tZe M 42 A dt = —f——2 f(t)dt = —
— - t — .
e lo /0 e t=20 /\/0 tf(t)dt 2

It follows that the variance is equal to
2
var(n) = E (772) - (B (77))2 BBVIEESVERDVE

Solution 6.3

By the definition of a random variable with exponential distribution

P{n>s+t}=e Mot —g= o2 = Py 5 5} P{n>t).

Solution 6.4
By the definition of conditional probability

~ P{n>t+s,n>s
P{n>t+sln>s} = {nP{n>£ )

_ P{n>t+s}
~ P{np>s}’

since {n >t+s,n>s)={n >t+s} (because > s + t implies that n > s).

L USRI N PUTRS IR -2 [ WD S Tant ¢~ (2 DN
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- Solution 6.5

The exponential distribution is the only probability distribution satisfying the
lack of memory property because the only non-negative non-increasing solutions
of the functional equation

g(t+s) =g(t)g(s)

are of the form g(t) = a® for some 0 < a < 1.
To verify this observe that [g(m/n)]™ = g(m) = [g(1)]™ for any integers m
and n # 0. Let a := g(1). It follows that

g(q) =a? for any q € Q.

Since g is non-increasing, 0 < a <1 and

o' = inf g(q) > g(t) > sup g(g) =,
t>q€eQ t<q€eQ

so indeed
g(t)=a' foranyteR

As aresult, P{n > t} = a’ for some 0 < a < 1. But the distribution function
of a random variable cannot be constant, so 0 # a # 1. Hence a = e~ for some
A > 0, completing the argument.

Solution 6.6

Since N (t) has the Poisson distribution with parameter At we have E (N (t)) =
At. Indeed

- - (At)"

E(N(@t) = Z nP{N(t)=n}= Z ne~ M-

n.

o0 n 1
—At (A" —At At
Ate E (Tl = 1)| Ate = At.

Solution 6.7
Using the fact that 7;,72,... are independent and exponentially distributed,

we obtain
P{N(s)=1,N(t) =2} = P{&; <s<& <t<&)
=P{m<s<m+mn<t<n+n+ns}

)
/ Pl{s<u+mn <t<u+mn+n}re  du
0

s t—u
= / ( P{t<u+v+mns} /\e“’\”dv) e Ay
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s t—u
= / </ e—’\(t_“_”)/\e"\”dv) e Mduy
0 s—u

= NeMs(t-3s).

Solution 6.8

Since
&, = ni 4475
= &N+l —tHIN@+2 T FIN@E)
= €nt)+n — L
it follows that

Ni(s) = max{n:¢& <s}
= max{n: én()4n <t + 8}

= max{n:§& <t+s}— N(t)
= N(t+s)— N(t).
Solution 6.9
It is easily verified that
{N@t) =n} = {1 >t —E&n,t 2 &}
{ﬂf > 'SaN(t) :n} = {"7n+1 >s+t—§€n,t2> fn}

Since &,,Mn+1 are independent and 7,41 satisfies the lack of memory property
from Exercise 6.3,

P{nt > s,N(t)=n} = P{pp1 > s+t —&n,t > &}

t
= / P{np41 > s+t —u} P, (du)

—0Q0

t
= Pltan >s} [ Pl > t—u} Py, (@

= P{nnt1 > s} P{nn+1 >t — &t 2 &n}
= P {41 > s} P{N(t) =n}
= P{m > s} P{N(t) =n}.
The last equality holds because 7,41 has the same distribution as 7;. Now

divide both sides by P{N(t) = n} to get
P{n; > s|N(t) =n} = P{m > s}
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for any n = 0,1,2,.... As a result,
P{ni > s|N(t)} = P{m > s}

because N (t) is a discrete random variable with values 0,1,2,... .

Solution 6.10
As in Solution 6.9,
{N(@t) =n} = {Ms1 >t =&, t > &},
{nl >s1,N(t) =n} = {nps1 > 81+t =&, t > &}
and, more generally,
{nt > s1,m% > sq,...,mL > sk, N(t) = n}
= {1 >s1+t =&t 2 &} N {Nny2 > 82} N N Nk > Sk}

Since &,,Mn+1,...,Mn+k are independent and 7py2,...,Mn+x have the same
distribution as 72, ..., N, using Exercise 6.9 we find that

P{nt > s1,m5 > s9,...,0% > s, N(t) = n}
= P{n41 > 51+t —&n, &n S t}P{nny2 > s2} -+ P{nnts > sk}
= P{n{ > s1,N(t) = n}P{nz > s3} - - P{m > s}
= P{n} > s1|N(t) = n}P{ny > s2} --- P{mx > sx }P{N(t) = n}
= P{m > s1}P{n2 > s2} -+ P{mx > sk} P{N(¢t) = n}.

As in Solution 6.9, this implies the desired equality.

Solution 6.11

Take the expectation on both sides of the equality in Exercise 6.10 to find that
P{nt > s1,...,nk > sk} = P{m > s1}--- P{nx > si}.
If all the numbers s,, except perhaps one are zero, it follows that
P{nl, > sa} = P{nn > sn}, n=1,...,k,

so the random variables 5!, have the same distribution as 7,. Inserting this
back into the first equality, we obtain

P{n} > s1,...,m% > sk} = P{n{ > s1}--- P{n} > si},

so the 7!, are independent.
To prove that the 7!, are independent of N(t) integrate the formula in
Exercise 6.10 over {N(t) = n} and multiply by P{N(t) = n} to get

P{T}i > Sl,...,?ﬁC > Sk,N(t) = n} = P{771 > 31} -"P{T]k > sk}P{N(t) = n}
But P{nt > s.} = P{n. > s, }, hence N(t) and the 5!, are independent.
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Solution 6.12

We need to verify conditions 1), 2), 3) of Definition 6.3. Clearly, N(t) — At is
Fi-measurable. By Exercise 6.6

E(IN(@®)]) = E(N(t)) = At < oo,

which means that N (t) is integrable, and so is N(t) —
Theorem 6.2 implies that N (¢t)— N (s) is independent of F; for any 0 < s < ¢,

s0
E(N(t) - N(s)|F,) = E(N(t) = N(s)) = E(N(t)) = E(N(s)) = At — As.
It follows that
E(N(t) = At|F,) = E (N(s) — As|F,) = N(s) -
completing the proof.

Solution 6.13
Since 7, = &, — €n—1 and P{n, >0} = ° =1,

o
Pl& <& <& <} =P<ﬂ{nn >0}) = 1.
n=1
Here we have used the property that if P(A,) = 1foralln = 1,2,..., then
P(No_, An) =1
Solution 6.14

Since
hm &n = Z Nn,
it follows that

{ lim ¢, < oo} C {m,n2,... is a bounded sequence}
n—00
x> (.0}
= U n {nn <m}.
m=1n=1 —

Let us compute the probability of this event. Because n,l:;l{ﬂn <m}, N =
1,2,... is a contracting sequence of events,

o0 N
P (ﬂ{nn Sm}> = lim P (ﬂ{nn Sm})

n=1
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N
= Nh_r)noogp{nn <m}

— : _ —am\N
= o, (=)

= 0.
It follows that

m=1n=1
oo

< ZP<ﬂ{nnSm}

m=1

= 0,

P(nli_}rr;ofn<oo) < P(G ﬁ{nnﬁm})

completing the proof.
While it is instructive to work through the above estimates, there exists a
much more elegant argument. By the strong law of large numbers

1
lim bn = - as.
n—oo M A
Here % is the expectation of each of the independent identically distributed

random variables n, (see Exercise 6.2). It follows that

lim &, =00 a.s.,
n—oo

as required.

Solution 6.15

In the proof of Proposition 6.1 it was shown that

P{gn > t} = -—/\t Z (’\t)

for t > 0, see (6.4). Therefore the dlstrlbutlon functlon
Fo.(t) = P{fngt}zl—P{£n>t}_e“”Z(/\t)

of &, is differentiable, the density f, of &, being

ult) = jtF ®

= e M Z ()\t) 4 e~ i ((2{)}6;'
k=n ’

—At (/\t)" !

=T
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for t > 0, and clearly f,(t) =0 for ¢t <O0.

Solution 6.16

Because N(t) has non-decreasing trajectories

{nm N(t) = oo} - ﬁ G{N(k) > n}.

t—o00
n=1 k=1

Also, {N(k) > n}, k =1,2,... is an expanding sequence of events and

P{N(k) >n} = e i Qk)*

n—1
A
=1 ""‘Z;(i];)al as k = oo
[t follows that -
P{U{N(k) > n}} =1,
k=1
30 o o
P{tlggoN(t) = oo} = P{ﬂ U{NG) > n}} = 1.
n=1 k=1
Solution 6.17
Since
et — e~ % 0 x2n+1
sinh(z) 2 > Cn+ 1)V
n=0
et + e~ ¢ 0 xzn
cosh(z) = = Z ;
2 — (2n)!
ve have

P{N(t) is odd} = iP{N(t) =2n+1)}

n=0

f: e—)*t (/\t)2n+1
= (2n +1)!

= e *sinh(\t),
P{N(t) is even} = i P{N(t) = 2n}
n=0 .

owurd (2n)!

= e * cosh(\t).

_ i Y (At)?n
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Solution 6.18

We can write
N(n)=N(1)+(N(2)-N(1)) +---+(N(n) - N(n-1)),
where N(1),N(2) — N(1),N(3) — N(2),... is a sequence of independent iden-
tically distributed random variables with expectation
E(N(1) = E(N(@2) - N1)) = E(N3) - N(2) =--- = A
By the strong law of large numbers

lim N
n—o0 N
Now, if n <t <n+1, then N(n) < N(t) < N(n+1) and
N(n) < N(t) < N(n+1)‘
n+1~ ¢t — n

=X as. (6.8)

By (6.8) both sides tend to A as n — oo, implying that
lim w =\

t—oo t

a.s.

Solution 6.19
Condition 3) of Definition 6.9 implies that

fw) () =p(t,0,7)

is the density of W(t). Therefore, integrating by parts, we can compute the
expectation

+00
E(W(t) = / p(t,0,3) dz
—00
1 too £
= re 2 dr

V27l't [oo

t +o00 d _ﬁ d
- [— 2t
V 2wt [oo dx ¢ *
t 22 |10

e 2 =0
V2t

—00
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nd variance

E ((W(t))z) - /m 22p(t,0,z) dz

— 00
1 +00 ) .2
= e 2 dx
Vart J_s
t too d o g2
= —— e 2 dx
V21t J_o dz
t 2 [+00 t oo 2
= — ;l;e_zzz + / e 2t dx
t too .2
=04+ — e Zdu=t
Vot /-

Ve have used the substitution u = % and the formula stated in the hint.

olution 6.20

uppose that s < t. Condition 3) of Definition 6.9 implies that the joint density
f W(s) and W(t) is

fweywe (,y) =p(s,0,z)p(t - s5,2,y).

. follows that

+0o0 +o00
E(W(s)W(t)) = [_ /— zy p(s,0,z)p(t —s,z,y) dedy

= /+ooxp(s,0,z) (/+ooyp(t—s,x,y) dy) dz

—00 —00
+o00
= / z%p(s,0,z) dr = s.
— 00
his is because by the results of Exercise 6.19
(~+oo +00
yp(t—-s,z,y) dy = / (z+u)p(t—s,z,z+u)du
—00 )
+o00
= / (z+u)p(t—s,0,u) du
— 00
+00 +00
= :c/ p(t—s,0,u) du+/ up(t—s,0,u) du
=z+0=2
id

+o00
/ z?p(s,0,z) dz = s.
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It follows that for arbitrary s,z > 0

E (W(s)W(t)) = min {s,t} .

Solution 6.21
Suppose that s < t. Then by Exercise 6.20
E (yW(t) - W(s)}z) = E(W(t)?) = 2E (W(s)W(t)) + E (W (s)?)
=t—25+s=1-—s.
In general, for arbitrary s,t > 0

E (W) - W(s)|2) —t—s|.

Solution 6.22
Using the density fiw ) () = p(t,0,z) of W(t), we compute

+oo
E (exp (iAW (1)) = / X (4,0, 7) do
—00
+oo .
= \/%_t/ e"\“’e"%dx
Tl J—o0
1 a2 /+°° _(c—ikt)zd
ez e” =z dx
V2t o0

2%
= e 7 .

Solution 6.23

Using the formula for the characteristic function of W (¢) found in Exercise 6.22,
we compute

4 d4
E(W(t) ) = E:\-Z
d4 |
dX4 [x=0

= 3t2.

E (exp (iAW (t)))
A=0

2
e~ XNt

Solution 6.24

Since W1(t), W?2(t) are independent, their joint density is the product of the
densities of W1(t) and W?2(t). Therefore

P{W(t)| <R} = /” |<mp(t,0,:»:)1fJ(t,0,y) dz dy
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1 22442
= — e~ 2 drdy
21t J{z)<R}

1 R 2n .2
= — —% d
27rt/(; /0 re pdr
R 4 .

- — e F
/0 dre dr

=1- e"%tl.
'e have used the polar coordinates R, ¢ to compute the integral.

olution 6.25
rany 0 <s <t
E(W(t)|Fs) = E(W(t) — W(s)|Fs) + E(W(s)|Fs)
= E(W(t) —W(s)) + W(s)
= W(s),

nce W (t)—W ((s) is independent of F; by Corollary 6.2, W (s) is Fs-measurable
d E(W(t) = E(W(s)) =0.

olution 6.26

yany 0<s<t
E (W(8)*|Fs)

E(IW(t) - W) |F,) + EQW (W (s)|F,)

—E (W(s)*| %)

= B(IW(t) - W(s)]*) + 2W (s) B (W (2)| )
—W (s)?

= t—s+2W(s)? — W(s)?

= t—s+ W(s)?,

nce W(t) — W(s) is independent of F, and has the normal distribution with
ean 0 and variance t — s, W(s) is Fs-measurable, and W (t) is a martingale.

follows that
E(W(t)? —t|F,) =W(s)® —s,

s required.
olution 6.27

orany 0 <ty <t; < - <ty the increments

R . p— N -
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‘of V(t) are independent, since the increments
W(tn+T) = W(tna+T), - W1 +T)-W(to+T)

of W (t) are independent. For any 0 < s < t the increment V(¢) — V(s) has the
normal distribution with mean zero and variance t—s, since W (t+T)-W (s+T)
does. Moreover, the paths t —= V(t) = W(t + T) — W(T) are continuous and

V() =W(T)-W(T)=0.
By Theorem 6.3 V(t) is a Wiener process.

Solution 6.28

It is clear that V(0) = 1W(0) = 0 a.s. and the paths t - V(t) = 1W(c?t) are
a.s. continuous. We shall verify that V (t) and |V (t)]* — t are martingales with
respect to the filtration

G = o{V(s):0<s<t}
= g {W(c®s):0<s<t}
= o {W(s):0< s <t}
= Fez.

Indeed, if s < t, then ¢?s < c2t, so
E(IG) = E(SW(@nl7a)
= B (W()|Fa,)
- %W(c%) =V (s)
and
E(|V(t)|2—t|g,,) = (2 W (c?t)|” —tl]—':)
= B (W@ - i)
= S (W@ - )
V) -

since W (t) and |W (t)|> — t are martingales with respect to the filtration ;. It
follows by Levy’s martingale characterization that V(t) is a Wiener process.
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Solution 6.29
Since the increments AW are independent and

Barw) =0, E(aw?) =L E(@amw)) =L

it follows that
2 1 2
=E|( > (arw)’ - I
i=0 l n

E ( ni (AMW)? - T
= ZE[((A"W Z;)z

1i=0

= nz_:l £ (tapw)t) - EE((A" w)*) + ?3}

=0 *

— =0
n

_ ”2‘:1 372 272 T2] 272

; n? n2 n?
=0 *

as n — oQ.

Solution 6.30

We claim that, with probability 1, for any positive integer n thereisa t € [0, ;};]
such that J—VZZ@J > n. This condition implies that W (t) is not differentiable at
t=0.
Let us put
A, = {thl > n for some t € [0, ;1;]}

By Exercise 6.28 .
_ 4

is a Brownian motion for any n. Therefore

P(4,) > P{ L >n}
4
:p{K%%ﬂ>n}
= P{{W(1)|> %} =1 asn— oo.

Since A1, A2, ... is a contracting sequence of events,

(e o}
P (Dl An) = lim P(4,) =1,

which proves the claim.
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- Solution 6.31

By Exercise 6.27 V;(s) = W(s + t) — W(t) is a Wiener process for any ¢ > 0.
Therefore, by Exercise 6.30 V;(s) is a.s. non-differentiable at s = 0. But this
implies that W (t) is a.s. non-differentiable at t.

Solution 6.32

Differentiating ,
plt2,y) = oo F
™
we obtain
0 y? —2yr 4+ 22 — ¢
ézp(t,mv y) = 242 p(taxay)9
0 T—y
8_yp(t’ z, y) = —E——p(t’ T, y)a
o? y? —2yr+2% -t
3_y2'p(t’mvy) = +2 p(t,z,y),
S0
op _ 10
ot  20y*’
as required.

Solution 6.33

Clearly, Z(t) = —W(t) has a.s. continuous trajectories and Z(0) = —W(0) =
0 a.s. If W(t) has stationary independent increments, then so does Z(t) =
—W(t). Finally,

Z(t) - Z(s) == (W(t) - W(s))

has the same distribution as W (t) — W (s), i.e. normal with mean 0 and variance
t — s. By Theorem 6.3 Z(t) is a Wiener process.

Solution 6.34
Let 0 < s < t. Then

/ 1LA(W () dP = P{W(s) € B,W() € A)
{W(s)eB}

= / /p(s,O,w)p(t—s,x,y)dxdy
BJA

= /B(/Ap(t—s,a:,y)dy)p(s,O,:v)d:c

. [,,, (/,p(t -5, W(s),y) dy) dP



76 Basic Stochastic Processes

or any Borel set B C R. It follows that

P{W(t) € AW(s)} = E (1a(W(£)|W(s)) = /A p(t — 5, W(s),y) dy.

solution 6.35

Ve shall prove that eW®e=3 is a martingale with respect to the filtration F;.
Jlearly, it is adapted to the filtration F;, since W (¢) is. Let 0 < s < t. Because
V(t) — W(s) is independent of F, and W(s) is F,-measurable,

E (ew(t)lfs) = E (ew(t)’w(’)ew(’”fs)
— VO E (ewu)—wu)| fs)
— VR (ewu)—wm) _
Che increment W (t) — W (s) has the normal distribution with mean 0 and

rariance t — s, so the expectation of e ®)=W(s) is equal to
+o00

E (eV0-We) :/ e"p(t - 5,0,z) dz
—0o0
t—a +oo
ZCT/ p(t — 5,0,z —t)dzx
—00
= et;’.

t follows that
E (ew(t)e_%l}',) = eV 3,

t also follows that " (Y)e~% is integrable. Therefore e (Ye~% is a martingale.

Solution 6.36

set 0 < s < t. We are looking for a Borel function F such that E (W (s)|W(t)) =
F(W(t)), ie.

/ W (s)dP = / F(W(t)) dP
(W()ea) {(W(t)eA}

or any Borel set A in R The integral on the right-hand side can be written as
[ Fwe)ar= [ F@ptoudy
{W(t)eA} A
ind the integral on the left-hand side as

/ W(s)dP = / (/+oozp(s,0,x)p(t—s,:v,y) d:z:) dy
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- using the expression for the joint density of W (s) and W (t) in Solution 6.20.
Let us compute the inner integral:

+00 o0 t__
/ zp(s,0,z)p(t — s,z,y)dr = p(t,O,y)/ wp(s( ; 8),§y,w) dzr

—00 —00

S

(To see that the first equality holds, just use formula (6.5) for p(t, xz,y).) There-

fore
S
[ wedr= [ jupoyd.
{W(t)eA} A

It follows that F'(y) = %y, i.e.

E(W(s)[W (1) = W (2).
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Ité Stochastic Calculus

One of the first applications of the Wiener process was proposed by Bachelier,
who around 1900 wrote a ground-breaking paper on the modelling of asset
prices at the Paris Stock Exchange. Of course Bachelier could not have called
it the Wiener process, but he used what in modern terminology amounts to
W (t) as a description of the market fluctuations affecting the price X(¢) of
an asset. Namely, he assumed that infinitesimal price increments dX (t) are
proportional to the increments dW (t) of the Wiener process,

dX(t) = o dW (2),

where o is a positive constant. As a result, an asset with initial price X(0) = z

would be worth
X(@t)=z+cW(t)

at time t. This approach was ahead of Bachelier’s time, but it suffered from
one serious flaw: for any t > 0 the price X (¢) can be negative with non-zero
probability. Nevertheless, for short times it works well enough, since the prob-
ability is negligible. But as ¢ increases, so does the probability that X (¢) < 0,
and the model departs from reality.

To remedy the flaw it was observed that investors work in terms of their
potential gain or loss dX (t) in proportion to the invested sum X (¢). Therefore,
it is in fact the relative price dX (t)/X (t) of an asset that reacts to the market
fluctuations, i.e. should be proportional to dW (t),

dX(t) = o X (t) dW (t). (7.1)
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What is the precise mathematical meaning of this equality? Formally, it resem-
bles a differential equation, but this immediately leads to a difficulty because
the paths of W (t) are nowhere differentiable. A way around the obstacle was
found by Ité in the 1940s. In his hugely successful theory of stochastic integrals
and stochastic differential equations It0 gave a rigorous meaning to equations
such as (7.1) by writing them as integral equations involving a new kind of
integral. In particular, (7.1) can be written as

t
X(t)=1z +0‘/ X (t)dW (t),
0

where the integral with respect to W (t) on the right-hand side is called the It
stochastic integral and will be defined in the next section. While at first sight
one would expect the solution to this equation to be ze(®) | in fact it turns
out to be
X(t) = zeW e~ 3,

which is the exponential martingale introduced in Exercise 6.35. The intrigu-
ing additional factor e~ 3 is due to the non-differentiability of the paths of the
Wiener process. Clearly, if £ > 0, then X (¢) > 0 for all ¢ > 0, as required in
the model of asset prices. In the following sections we shall learn how to trans-
form and compute stochastic integrals and how to solve stochastic differential
equations.

Throughout this chapter W(t) will denote a Wiener process adapted to a
filtration F; and L? will be the space of square integrable random variables.

7.1 Itd Stochastic Integral: Definition

We shall follow a construction resembling that of the Riemann integral. First,
the integral will be defined for a class of piecewise constant processes called
random step processes. Then it will be extended to a larger class by approxi-
mation. |

There are, however, at least two major differences between the Riemann
and It6 integrals. One is the type of convergence. The approximations of the
Riemann integral converge in R, while the It6 integral will be approximated by
sequences of random variables converging in L?. The other difference is this.
The Riemann sums approximating the integral of a function f : [0,7] — R are
of the form

n—1
> Fs) (i — 1),
i=0
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~where 0 =tg < t; < -+ < tp, =T and s; is an arbitrary point in [t;,t;41] for
each j. The value of the Riemann integral does not depend on the choice of the
points s; € [tj,tj+1). In the stochastic case the approximating sums will have
the form

n—1
Y fs5) (W(tjzn) = W(t;) -
=0

It turns out that the limit of such approximations does depend on the choice of
the intermediate points s; in [¢;,¢;41]. In the next exercise we take f(t) = W(t)
and consider two different choices of intermediate points.

Exercise 7.1

Let 0 =tg <t} <--- <it3 =T, where t} = %, be a partition of the interval
[0,T] into n equal parts. Find the following limits in L?:

n—o00

n—1
lim Z W(t7) (W (t},) - W(t]))
i—0

and
n—1

: n n _ n
lim ZO W (th,) (W(th,) — W) -
Hint Apply Exercise 6.29. You will need to transform the sums to make this possible.
The identities
a(b—a) = (bz—az)—%(a—b)z,

b(b—a) =

N =N =

(b2 - a2) + % (a —b)?
may be of help.

The ambiguity resulting from different choices of the intermediate points s;
in each subinterval [¢;,t;4+1] can be removed by insisting that the approxima-
tions of the integrand should consist only of processes adapted to the underlying
filtration J;. This amounts to taking s; = t; for each j. The choice is motivated
by the interpretation of F;: the value of the approximation at ¢ may depend
only on what has happened up to time ¢, but not on any future events.

Definition 7.1

We shall call f(¢t),t > 0 a random step process if there is a finite sequence
of numbers 0 = tg < t; < ... < t, and square integrable random variables
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0,71, --,Mn—1 such that

n—1
F@&) = il 5, (), (7.2)
j=0

where 7; is Fy;-measurable for j = 0,1,...,n — 1. The set of random step
processes will be denoted by M3,

Observe that the assumption that the n; are to be F;;-measurable ensures
that f(t) is adapted to the filtration F;. The assumption that the n; are square
integrable ensures that f(t) is square integrable for each t. Also, M2, is a
vector space, that is, af + bg € M3, for any f,g € M3, and a,b € R

Definition 7.2

The stochastic integral of a random step process f € M2, of the form (7.2) is
defined by

n—1
I(f) = n (W(tjz1) - W(t;) . (7.3)
j=0

Proposition 7.1

For any random step process f € M, step the stochastic integral I(f) is a square
integrable random variable, i.e. I(f) € L?, such that

E(I(f)) =E (/Ooo 1F@®) dt) .

Proof

Let us denote the increment W(t;41) — W(t;) by A4;W and t;4; —t; by At
for brevity. Then

E(A]W) =0 and F (A?W) = Ajt.

First, we shall compute the expectation of

n—1n-1
II(f)l - Z Zﬂﬂlké\ WAkW Z 2A?W+2Zf]j77kAjWAkW
j=0 k=0 k<j

Since 7; and A;W are independent,

E (n?A*W) = E (n?) E (A?2W) = E (n?) Ajt
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Ifk < j, then nyne Ay W and A;W are independent, so
F (njnkAjWAkW) =F (njnkAkW) E (A]W) = 0.

Therefore »
E(II(HIP) = Y E () 45t
7=0

It follows that I(f) € L?, since 1o, n1,...,Mn-1 € L2.
On the other hand,

n—1n-1

If(t)l Z Z ankl[t,, tit1) (t)]‘[tk tk+1)(t) - Z m; l[tu ti+1)

3j=0 k=0

implying that

E(/O £ ()] dt) ZE n7)
E(rnr) =5 ([ ok ).

This means that

as required. (J

Exercise 7.2

Verify that for any random step processes f,g € M, step
BUNI@) =B ([ fta)d).

Hint Try to adapt the proof of Proposition 7.1. Use a common partition 0 = to <
t1 < --- < tp in which to represent both f and g in the form (7.2).

Exercise 7.3

Show that I : MZ., — L? is a linear map, i.e. for any f,g € MZ,, and any
a,feR
I(af + Bg) = aI(f) + BI(g).

Hint As in Exercise 7.2, use a common partition 0 = o < t; < --- < t, in which to
represent both f and g in the form (7.2).
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The stochastic integral I(f) has been defined for any random step process
f € Msztep. The next stage is to extend I to a larger class of processes by
approximation. This larger class can be defined as follows.

Definition 7.3
We denote by M? the class of stochastic processes f(t),t > 0 such that

E(/Ooo|f(t)|2dt) < 00

and there is a sequence f, f2,... € Msztep of random step processes such that

o0
lim E ( / £(t) — fn(t)|2dt> = 0. (7.4)
1n—00 0
In this case we shall say that the sequence of random step processes fi, fa,...

approzimates f in M=,

Definition 7.4
We call I(f) € L? the Ité stochastic integral (from 0 to oo) of f € M2 if

Jim B (|1(f) = 1(fa)*) =0 (7.5)

for any sequence f1, fa,... € Mftep of random step processes that approximates
f in M2, i.e. such that (7.4) is satisfied. We shall also write

/0 " 5 aw (1)

in place of I(f).

Proposition 7.2

For any f € M? the stochastic integral I(f) € L? exists, is unique (as an
element of L?, i.e. to within equality a.s.) and satisfies

() = ([ o). (7.9

Proof

It will be convenient to write

IIfIIMz:\/E( [T1rord) and Il = VEGD)
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- for any f € M? and 1 € L?. These are norms' in M? and L?, respectively.
Let fi, fa,... € MSZtep be a sequence of random step processes approximat-
ing f € M?, i.e. satisfying (7.4), which can be written as

Tim [[f = fallpgz = 0.

We claim that I(f1), I(f2),...is a Cauchy sequence in L%. Indeed, for any € > 0
there is an N such that ||f — fal[5;2 < § for all n > N. By Proposition 7.1

”I(fm) - I(fn)”L2 = ”I(fm - fn)“L2

”fm - fn||M2

”f - fm”M2 + “f - fn“M2
E €

5 + 5 =£

for any m,n > N, which proves the claim.

Because L? with the norm ||-||;. is a complete space (in fact a Hilbert
space), every Cauchy sequence in L? has a limit. It follows that I(f;), I(f2),...
has a limit in L? for any sequence f, fa, ... of random step processes approxi-
mating f. It remains to show that the limit is the same for all such sequences.
Suppose that f;, f2,... and g¢1,92,... are two sequences of random step pro-
cesses approximating f. Then the interlaced sequence fi, g1, f2, 92, ... approxi-
mates f too, so the sequence I(f1),1(g1),I(f2),1(g2),- .. has a limit in L2. But
then all subsequences of the latter sequence, in particular, I(f1), I(f2),... and
I(g1),1(g2),-.. have the same limit, which we denote by I(f). We have shown
that

VAN

A

Tim [1(f) = I(fa)llz =0,

i.e. (7.5) holds for any sequence fy, f2,... of random step processes approxi-
mating f.
Finally, by Proposition 7.1

I (fadllLa = (1 fnll a2

for each n, since the f,, are random step processes. By taking the limit as
n — oo we obtain

(g2 =11 fllpgz -
But this is equality (7.6). O

1 To be grecise, the norms are defined on classes of functions, respectively, from M?
and L*® determined by the relation of equality a.s. However, we shall follow the
custom of identifying such classes with any of their members.
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Exercise 7.4
Show that for any f,g € M?

EUUH@D=E(Awf®ﬂﬂ&)-

Hint Write the left-hand side in terms of (|I(f) + I(g)|2) and E (]I(f) - I(g)|2),
the right-hand side in terms of E (fO°° |F(t) + g(t))? dt) and F (f0°° [f(t) — g(t)|? dt)
and then use (7.6).

Having defined the It6 stochastic integral from 0 to oo, we are now in a
position to consider stochastic integrals over any finite time interval [0, T'].

Definition 7.5

For any T > 0 we shall denote by M2 the space of all stochastic processes
f(t),t > 0 such that

l[o‘T)f € M?
The Itd stochastic integral (from 0 to T') of f € M2 is defined by
Ir(f) =1 (1,1 f) - (7.7)
We shall also write T
| rwawe

in place of IT(f).

Exercise 7.5

Show that each random step process f € M3, belongs to M? for any ¢t > 0
and

t
L) = [ fe)aws
sa martingale.

Hint The stochastic integral of a random step process f is given by the sum (7.3).
What is the conditional expectation of the jth term of this sum given F, if s < ¢;?
What is it when s > ¢;7

The processes for which the stochastic integral exists have been defined
1s those that can be approximated by random step processes. However, it is
10t always easy to check whether or not such an approximation exists. For
sractical purposes it is important to have a straightforward sufficient condition
‘ar a nracess tn have a stochastic inteeral. In calculus there is a well-known
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result of this kind: the Riemann integral exists for any continuous function.
Here is a theorem of this kind for the It6 integral.

Theorem 7.1

Let f(t),t > 0 be a stochastic process with a.s. continuous paths adapted to
the filtration F;. Then

1) f € M2, i.e. the Ito integral I(f) exists, whenever

E ( / Tk dt) < o0; (7.8)

()

2) f € M2, i.e. the Ito integral IT(f) exists, whenever

T 2
E (/0 1£(8)] dt) < . (7.9)

Proof

1) Suppose that f(t),t > 0 is an adapted process with a.s. continuous paths. If
(7.8) holds, then

k
0 k< k41 _ 2
() { nfk,fl f(s)ds s <t< 2 fork=1,2,...,n° -1, (7.10)

otherwise,

is a sequence of random step processes in Mftep. Observe that for any k& =

1,2,...
N 2
AL

by Jensen’s inequality. We claim that

o0

lim If(t) = fa®))?dt =0 as.

n—o00 0

This will imply that

k

< /k " fOPd as (7.11)

k1

/_k_ " fa®)Pdt=n

im £ ([ 170 - a0 at) =0

n—00

by the dominated convergence theorem and condition (7.8) because

/0 1£(t) — fa(®)* dt < 2/Ooo (If(t)|2+|fn(t)|2) dt
<af 1rwPa
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The last inequality follows, since

/oolfn(t)|2dt5/°°|f(t)|2 dt as.

0 0

for any n, by taking the sum from k& = 0 to oo in (7.11).
To verify the claim observe that

0 N Io°0)
/'um—nmfﬁ:/‘mwammmmj'um~nmﬁw
0 0 N
N Ie')
_ 2 2 2
< [ U= suoP a2 [ (15OF +150007) de

N 00
< / 1£(t) — fa(®)) dt + 4/ 17> dt  as.
0 N-1
The last inequality holds because

o0 o0 o0
[ omoras [ soras [ igord s
N N-1 N-1
for any n and N, by taking the sum from &k = nN to oo in (7.11). The claim

follows because ~

lim If®))Pdt =0 aus.
N—>oo N—1
by (7.8) and
N
lim If) — fr@®))*dt =0 aus.

for any fixed N by the continuity of paths of f.

The above means that the sequence f;, fao,... € Mftep approximates f in
the sense of Definition 7.3, so f € M?2.

2) If f satisfies (7.9) for some T' > 0, then 1jo 1) f satisfies (7.8). Since f is
adapted and has a.s. continuous paths, 1o 1) f is also adapted and its paths are
a.s. continuous, except perhaps at T'. But the lack of continuity at the single
point T' does not affect the argument in 1), so 1jo.7)f € M?. This in turn
implies that f € M%, completing the proof. O

Exercise 7.6

Show that the Wiener process W (t) belongs to M2 for each T > 0.

Hint Apply part 2) of Theorem 7.1.

Exercise 7.7

OV alas TXT(N2 W Alaveca 44 AL2 fAar anrh TN N
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- Hint Once again, apply part 2) of Theorem 7.1.

The next theorem. which we shall state without proof, provides a character-
ization of M? and M7, i.e. a necessary and sufficient condition for a stochastic
process f to belong to M? or M2. It involves the notion of a progressively
measurable process.

Definition 7.6

A stochastic process f(t),t > 0 is called progressively measurable if for any
t>0
(s,w) = f(s,w)

is a measurable function from [0,t] x 2 with the o-field B[0,t]xF to R. Here
B[0,t]xF is the product o-field on [0,¢] x £2, that is, the smallest o-field con-
taining all sets of the form A x B, where A C [0,¢] is a Borel set and B € F.

Theorem 7.2

1) The space M? consists of all progressively measurable stochastic processes

f(t),t > 0 such that
E 2d) 0.

2) The space M2 consists of all progressively measurable stochastic processes

f(t),t > 0 such that
2dt| < o0
E .

7.2 Examples

According to Exercise 7.6, the Wiener process W (t) belongs to MZ for any
T > 0. Therefore the stochastic integral in the next exercise exists.

Exercise 7.8
Verify the equality

T 1 1
/0 W(t) dW (t) = 5W(T)2 - 5T
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by computing the stochastic integral from the definition, that is, by approxi-
mating the integrand by random step functions.

Hint It is convenient to use a partition of the interval [0, T) into n equal parts. The
limit of the sums approximating the integral has been found in Exercise 7.1.
Exercise 7.9

Verify the equality

T T
/ tdw (t) = TW(T) - / W (t) dt,
0 0

by computing the stochastic integral from the definition. (The integral on the
right-hand side is understood as a Riemann integral defined pathwise, i.e. sep-
arately for each w € £2.)

Hint You may want to use the same partition of [0,7] into n equal parts as in
Solution 7.8. The sums approximating the stochastic integral can be transformed
with the aid of the identity

cb—a)=(db—ca)—-b(d—c).

Exercise 7.10
Show that W (¢)? belongs to M2 for each T > 0 and verify the equality

T T
1
/ W)W (1) = sW(T)° - / W(t) dt,
0 0
where the integral on the right-hand side is a Riemann integral.

Hint As in the exercises above, it is convenient to use the partition of [0, T] into n
equal parts. The identity

a"’(b—a)z%(zf’—aa)-a(b-a)z-%(b-—a)3

can be applied to transform the sums approximating the stochastic integral. You may
also need the following identity:

(a2 =) = (a—~b)' +4(a—b)*b+4(a—b)*b.

7.3 Properties of the Stochastic Integral

The basic properties of the It6 integral are summarized in the theorem below.
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Theorem 7.3

The following properties hold for any f,g € M?, any o, € R, and any 0 <
s<t:

1) linearity

t t t
/ (af(r) + 8g(r)) dW(r) = a / fr)dW(r) + 8 / o(r) dW (r);
0 0 0

E( 2) =5 ([ era);

3) martingale property

E (/Otf(r) dW(r)

2) isometry

/0 fr) dw(r)

.7:3> = /08 f(r)dW(r).

Proof

1) If f and g belong to M7, then lio,s) f and 1pp ¢)g belong to M?, 50 there are
sequences fy, f2,...and g1,92,...in Mftep approximating ljg ;) f and 1jg 4 g. It
follows that 1jo ;) (af + Bg) can be approximated by afi + Bg1,afs + 892, .
By Exercise 7.3

I(afn+ Bgn) = al(fr) + B1(gn)
for each n. Taking the L? limit on both sides of this equality as n — oo, we
obtain
I (o) (af + B9)) = al(lp) f) + BI(1j0,4)9),
which proves 1).

2) This follows by approximating ljo,s)f by random step processes in Msz’tep
and using Proposition 7.1.

3) If f belongs to M?2, then ljo,¢) f belongs to M?2. Let fi, fa,... be a se-

quence of processes in Mftep approximating ljo ) f. By Exercise 7.5

E (I (lo,eyfn) 1Fs) = I (Lj0,6) fn) (7.12)

for each n. By taking the L? limit of both sides of this equality as n — oo, we
shall show that

E(I (1,6 f)17:) =1 (1,0 f),
which is what needs to be proved. Indeed, observe that 1jo ) f1,1[0,5) f2, ... is a

sequence in Msr‘;ep approximating 1o s)f, so

I(1,6)fn) = I (1jp,5f) in L? as n — 0.
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similarly, 1jo.4) f1, 1{0,1) f2, - - - is also a sequence in Mftep approximating 1o ¢)f,
vhich implies that

I (l[O,t)fn) -1 (l[O,t)f) in L2 as n — 00.
Che lemma below implies that
E(I(lp4fa)|Fs) > E(I (1o f) |Fs) in L* asn — oo,

ompleting the proof. O

.,emma 7.1

f € and &,&, ... are square integrable random variables such that &, — £ in
"2 as n — oo, then

E (£,]G) = E(€|G) in L?* asn — oo

or any o-field G on (2 contained in F.

’roof

3y Jensen’s inequality, see Theorem 2.2,
IE(619) ~ EEIO)” = |E (6~ €19)° < E (16— &I°| ),
vhich implies that
B (IB(&l9) - B@E9)1) < B(E (16— €|9))
= B(jen—¢) >0
s — oo. U

In the next theorem we consider the stochastic integral fot f(s)dW(s) as a
unction of the upper integration limit ¢. Similarly as for the Riemann integral,
t is natural to ask if this is a continuous function of ¢. The answer to this
{uestion involves the notion of a modification of a stochastic process.

Jefinition 7.7

et £(t) and ((t) be stochastic processes defined for t € T, where T C R. We
ay that the processes are modifications (or versions) of one another if

PIeitN\ =/ \VV =1 farallte T (7 12)
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Remark 7.1
If T C R is a countable set, then (7.13) is equivalent to the condition
P{&(t) =((t)forallte T} =1.

However, this is not necessarily so if T" is uncountable.

The following result is stated without proof.

Theorem 7.4
Let f(s) be a process belonging to M? and let

€m=Af@ﬂWﬂ

for every t > 0. Then there exists an adapted modification ((t) of £(¢) with a.s.
continuous paths. This modification is unique up to equality a.s.

From now on we shall always identify fot f(s) dW (s) with the adapted mod-
ification having a.s. continuous paths. This convention works beautifully to-
gether with Theorem 7.1 whenever there is a need to show that a stochastic
integral can be used as the integrand of another stochastic integral, i.e. belongs
to M% for T > 0. This is illustrated by the next exercise.

Exercise 7.11

Show that

t
)= [ W) aw(s)
0
belongs to- M2 for any T > 0.

Hint By Theorem 7.4 £(t) can be identified with an adapted modification having a.s.
continuous trajectories. Because of this, it suffices to verify that £(t) satisfies condition
(7.9) of Theorem 7.1.

7.4 Stochastic Differential and 1t6 Formula

Any continuously differentiable function z(t) such that z(0) = 0 satisfies the
formulae

T
o(T)? = 2 A 2(t) dz(t),
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#(T) = 3 /0 " o) datt),

where dz(t) can simply be understood as a shorthand notation for z'(t) dt, the
integrals on the right-hand side being Riemann integrals. Similar formulae have
been obtained in Exercises 7.8 and 7.10 for the Wiener process:

W(T)? = /OTdt+2/OT W (t) dW (t),

T T
3 _ 2
W(T)? = 3/0 W (t) dt+3/0 W (t)2dW ().

Here the stochastic integrals resemble the corresponding expressions for a
smooth function z(t), but there are also the intriguing terms fOT dt and

3 fOT W (t) dt. The formulae for W(T')? and W(T')? are examples of the much
more general Ité formula, a crucial tool for transforming and computing
stochastic integrals. Terms such as fOT dt and 3 fOT W (t) dt, which have no ana-
logues in the classical calculus of smooth functions, are a feature inherent in
the Ito formula and referred to as the Ité correction. The class of processes
appearing in the It6 formula is defined as follows.

Definition 7.8

A stochastic process £(t),t > 0 is called an Ité process if it has a.s. continuous
baths and can be represented as

£(T) = £(0) + / "y de + / Cb0 dw () as, (7.14)
0 0

vhere b(t) is a process belonging to M% for all T > 0 and a(t) is a process
vdapted to the filtration F; such that

/T la(t)|dt < o0 a.s. (7.15)
0

or all T' > 0. The class of all adapted processes a(t) satisfying (7.15) for some
' > 0 will be denoted by L}
For an It process € it is customary to write (7.14) as
dé(t) = a(t) dt + b(t) dW (t) (7.16)

ind to call d€(t) the stochastic differential of £(t). This is known as the It
lifferential notation. It should be emphasized that the stochastic differential

1ae nn wall_definad mathamatiral moanino An ite Aumn and chanld alurarve ha
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understood in the context of the rigorous equation (7.14). The It6 differential
notation is an efficient way of writing this equation, rather than an attempt to
give a precise mathematical meaning to the stochastic differential.

Example 7.1
The Wiener process W (t) satisfies

W(T) = /OT dW (2).

(The right-hand side is the stochastic integral I(f) of the random step process
f =1jo,1).) This is an equation of the form (7.14) with a(t) = 0 and b(t) = 1,
which belong, respectively, to £} and M2 for any T > 0. It follows that the
Wiener process is an [td process.

Example 7.2

Every process of the form

T
£(T) = £(0) + / a(t) dt,

where a(t) is a process belonging to L. for any T > 0, is an Itd process. In
particular, every deterministic process of this form, where a(t) is a deterministic
integrable function, is an It6 process.

Example 7.3

Since a(t) = 1 and b(t) = 2W(t) belong, respectively, to the classes £} and
M2 for each T > 0,

W(T)? = /OT dt + 2/0T W (t) dW (t)

is an Ito process; see Exercise 7.8. The last equation can also be written as
d(W(t)?) =dt +2W(t)dW(t),

providing a formula for the stochastic differential d (W (¢)?) of W (t)2.

Exercise 7.12

Show that W (t)3 is an Itd process and find a formula for the stochastic differ-
ential d (W (t)3).
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Hint Refer to Exercise 7.10.

Exercise 7.13

Show that tW (t) is an It process and find a formula for the stochastic differ-
ential d (tW (t)).

Hint Use Exercise 7.9.

The above examples and exercises are particular cases of an extremely im-
portant general formula for transforming stochastic differentials established by
It6. To begin with, we shall state and prove a simplified version of the formula,
followed by the general theorem. The proof of the simplified version captures
the essential ingredients of the somewhat tedious general argument, which will
be omitted. In fact, many of the essential ingredients of the proof are already
present in the examples and exercises considered above.

Theorem 7.5 (Itd formula, simplified version)

Suppose that F(t,z) is a real-valued function with continuous partial deriva-
tives F}(t,z), F,(t,z) and F, (t,z) for all ¢t > 0 and z € R. We also assume

T

that the process F,(t, W(t)) belongs to M% for all T > 0. Then F(t,W(t)) is
an It process such that

T
Faw)-Fowo) = [ (Fewe) + 5raewo) ) a
+/T Fl(t,W(t))dW(t) as. (7.17)
0

In differential notation this formula can be written as

dF(t, W (t)) = (Ft’(t,W(t)) + %F;;(t, W(t))) dt + F.(t, W(t)) dW (). (7.18)

Remark 7.2
Compare the latter with the chain rule
dF(t,z(t)) = F/(t,z(t)) dt + F, (¢, z(t)) dz(t).

for a smooth function z(t), where dz(t) is understood as a shorthand notation
for z'(t) dt. The additional term LF.. (t,W(t))dt in (7.18) is called the Ité

correction.

S S ———
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Proof

First we shall prove the Itd formula under the assumption that F' and the
partial derivatives F, and F,’ are bounded by some C > 0.

Consider a partition 0 = tf < t} < .-+ <t} = T, where t} = %, of
[0,T] into n equal parts. We shall denote the increments W (t} ;) — W(t})
by AW and t},, —t} by AP't. We shall also write W instead of W (t}) for
brevity. According to the Taylor formula, there is a point Wi" in each interval
[W(¢7), W(t?,,)] and a point {? in each interval [t7,¢?, ;] such that

n—1
F(T,W(T)) = F(0,W(0)) = Y (F(t}1, Wh1) — F(¢7, W)
1=0
n—1
= Z (F(t?—i-h W:}H) - F(& Wﬁn Z 1+1 F(t?vwin))
1=0 1=0
n—1 n—1 .
= Y F/(f}, WE A + > Fy(tp, W AW + ZF” (tr, W) (AW
1=0 1=0 1_0
n-—-1 n—1
= Y F(r, Wi ANt + 5 ZF” (2, WA+ Y Fy(t7, W ATW
=0 1=0

Z F (e, W) ((Apw)? - ar)

1=0

+5 Z [P (e, W) = Fr (e, W) (A2W)?.
1=0
We shall deal separately with each sum in the last expression, splitting the

proof into several steps.
Step 1. We claim that

n—1 T
li_)m ZF’ (&2, W) AM _/ F/(t, W(t))dt a.s.

This is because the paths of W (t) are a.s. continuous, and F}(t, z) is continuous
as a function of two variables by assumption. Indeed, every continuous path
of the Wiener process is bounded on [0,T], i.e. there is an M > 0, which may
depend on the path, such that

W) <M foralltel[0,T].

As a continuous function, F}(t,z) is uniformly continuous on the compact set
[0,T] x [-M, M] and W is uniformly continuous on [0, 7. It follows that

lim sup [F} (£}, Wl,) - F{(t,W ()| =0 as.,
n—oo 4 ¢
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where the supremum is taken over all ¢ =0,...,n—1 and t € [t?, t? 1]. By the
definition of the Riemann integral this proves the claim.
Step 2. This is very similar to Step 1. By continuity

lim sup |F;o (87, W) — Fo, (t, W(t)) | =0 as,,
1,t

n—oo ;
)

where the supremum is taken over all i =0,...,n—~1and t € [t},t}, ;]. By the

definition of the Riemann integral
lim ZF” tn, W) A”t_./ F!' (t, W(t))dt as.
n—oo 0
Step 3. We shall verify that
n— T
nlergoZF;(t?,Wi")A?W :/0 Fl(t,W(t))dW(t) in L2
i=0

If F/(t,z) is bounded by C' > 0, then f(t) = F.(t,W(t)) belongs to M2 by
Theorem 7.1, and the sequence of random step processes

Jn= Z F:z,:(t?vwin)l[t}‘,t;‘+l) € Msztep
approximates f. Indeed, by continuity
lim |fn(t) — f@®)> =0 foranyte€[0,T], as.
n— 00

Because |fn(t) — f (t)]* < 4C?, it follows that
T
lim / fult) = FO)Pdt=0 as.
n—oo 0

by Lebesgue’s dominated convergence theorem. But fOTI fa(t) = FO)Pdt <

4TC?, so
T
lim E (/ 1Fa(t) —f(t)lzdt) —0

again by Lebesgue’s dominated convergence theorem. This shows that f, ap-
proximates f, which in turn implies that I(f,) tends to I(f) in L?, concluding
Step 3.

Step 4. If F,' is bounded by C > 0, then

n—1
lim S F (87, WP) ((A;‘W)Z - A?t) =0 inL?
1=0
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since
2

Z FI(tr, W) ((A;‘W)2 - A?t)

n—1
_ZE
n—1

" ny (2 n 2 n 2
= Y EIFL @, W) B|(a1W) - At
=0

Fo (e, W) ((apw)? - are) |2

n—1 n—1
<C*M E I(A;"‘W)2 — A Y > (Ar)’

=0 1=0

n—1 2
:20223; ~--2(3’2T -0 asn — oo.
1=0

The first equality above holds because for any i < j
[F" (tr, W) ((A?W)z - A?t) Fl (£, W) ((A;.‘W)z - A;‘t)]
= E [Fo, (7, W) ((AgW) - are) B, W) B [(a3w)? - 7]
=0.

This is because the expressions in the last two square brackets are independent
and the last expectation is equal to zero.
Step 5. By a similar continuity argument as in Steps 1 and 2

FI(tr, W) — FL(t*, Wh) | =0 as.,

n— 00
where the supremum is taken over all¢ = 0,1,...,n—1. Since Ez—O (ArW)?
T in L? as n — o0, there is a subsequence n; < ny < ... such that

ne—1
> (APW) 5T as.

1=0

as k — oo. It follows that

ng—1
S (Rt W) — B, W) (AP W)’
i=0
nk—-l
T WIS = Fa (87, W) | ) (AMW)? 50 as.
1=0

as k — oo.
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In those steps above where L? convergence was obtained, we also have
convergence a.s. by taking a subsequence. This proves the It6 formula (7.17)
under the assumption that the partial derivatives F,(t,z) and F,,(t,z) are
bounded. To complete the proof we need to remove this assumption. Let F(t, x)
be an arbitrary function satisfying the conditions of Theorem 7.5. For each
positive integer n take a smooth function ¢, from R to [0, 1] such that p,(z) =
1 for any z € [—n,n] and ¢,(z) =0 for any = ¢ [-n — 1,n + 1]. Then

Fo(t,z) = pn(z)F(t, 2)
also satisfies the conditions of Theorem 7.5 and has bounded partial derivatives
(F,),(t,z) and (Fy)} ., (t, z) for each n. Therefore, by the first part of the proof

Fn(T’ W(T)) - Fn(o’ W(O))
oy Loy Ty
= [ (Eewan + jEnewe ) a+ [ ELewo)avo,

Consider the expanding sequence of events
A, = { sup [W(t)| < n} :
telo,T]

Since F(t,z) = Fn(t.z) for every t € [0,T] and =z € [-n,n], it follows that
(7.17) holds on A,. It remains to show that

nan;o P(A,) =1

to prove that (7.17) holds a.s. But the latter is true because of Doob’s maximal
L? inequality, Theorem 6.7, which implies that

n?(1 - P(4,)) = n2P{ sup |W(t)| > n}
tel0,T]

< E( sup IW(t)l)

te0,T)
< 4E|W(T)|* = 4T,

completing the proof. (J

Example 7.4

For F(t,z) = 2 we have F(t,z) =0, F.(t,x) = 2z and F/,(t,x) = 2. The It
‘ormula gives
d (W (t)?) = dt + 2W (t) dW (¢),

which is the same eaualitv as in Exercise 7.8.
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Example 7.5

For F(t,z) = z® we have F/(t,z) = 0, F.(t,z) = 3z* and F,,(t,z) = 6z. By
the It6 formula we obtain the same equality

d (W (t)*) = 3W(t) dt + 3W (t)* dW(¢)

as in Exercise 7.10.

Exercise 7.14 (exponential martingale)

Show that the exponential martingale X (t) = " (®e~% is an It6 process and
verify that it satisfies the equation

dX(t) = X (t) dW(¢).

Hint Use the It6 formula with F(t,z) = e%e %,

As compared with the simplified version just proved, in the general Itd
formula below W (t) will be replaced by an arbitrary Ité process £(t) such that

dE(t) = a(t) dt + b(t) dW (), (7.19)

where a belongs to £} and b to M? for all ¢t > 0. In the general case the proof
will be omitted.

Theorem 7.6 (Itd formula, general case)

Let £(t) be an It6 process as above. Suppose that F(¢,z) is a real-valued func-
tion with continuous partial derivatives F}(t,z), F,(t,z) and F}, (t,z) for all
t > 0 and z € R. We also assume that the process b(t)Fy(t,£(t)) belongs to
M2 for all T > 0. Then F(t,£(t)) is an Itd process such that

dF (1,€()) = (F;(t,s(t)) + FL(t,6()) a(t) + 5 Fl (1,£(1) b<t>2) dt
+ F(t,£(t)) b(t) dW (¢). (7.20)

A convenient way to remember the Itd formula is to write down the Taylor
expansion for F(t,z) up to the terms with partial derivatives of order two,
substituting £(t) for « and the expression on the right-hand side of (7.19) for
d{(t), and using the so-called Ité multiplication table

dtdt =0, dt dW (t) = 0,
AW (t)dt =0,  dW(t)dW(t) = dt.
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his informal procedure gives

1 1
IF = F/dt+ F,d¢ + 5Ft'; dtdt + Fy, dt d€ + §F;’z d¢ d¢
= F/dt + F] (adt + bdW)

+%Ft’t' dtdt + Fy, dt (adt + bdW) + %F;’z (adt +bdW) (adt + bdW)

= F/dt+ F. (adt +bdW) + —;-F_,;;bQ dt

1
(F; FFla+t 514;;1)2) dt + Flb aw,

I

hich is the expression in (7.20). Here we have omitted the arguments (¢, £(t))
1d, respectively, (t) in all functions for brevity.

xercise 7.15
pplying the Ité formula to F'(¢t,z) = z™, show that

?(L_—I)W(t)"‘2 dt + nW ()"~ dW () (7.21)

AW ()" = ==

int This is a direct application of the It6 formula, but be careful with the assump-
ons, in particular make sure that nW (t)"~* belongs to M3 for all T > 0.

xercise 7.16 (Ornstein—-Uhlenbeck process)

uppose that a > 0 and o € R are fixed. Define Y (¢),¢t > 0 to be an adapted
odification of the It6 integral

Y(t) = ae”o‘t/o e** dW (s)

ith a.s. continuous paths. Show that Y'(¢) satisfies

dY (t) = —aY (t) dt + o dW ()

int Y (t) = F(t,£(t) with £(t) = o [ e**dW(s) and F(t,z) = e *'z.

".5 Stochastic Differential Equations

'his section will be devoted to stochastic differential equations of the form

dé(t) = F(E(2)) dt + g(£(2)) AW (2).
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Solutions will be sought in the class of It6 processes £(t) with a.s. continuous
paths. As in the theory of ordinary differential equations, we need to specify
an initial condition

£(0) = &o.

Here &, can be a fixed real number or, in general, a random variable. Being an
It6 process, £(t) must be adapted to the filtration F; of W(t), so & must be
Fo-measurable.

Example 7.6
The stochastic differential equation
dX(t) = X(t)dW(t) (7.22)

was used as a motivation for developing It6 stochastic calculus at the beginning
of the present chapter. In Exercise 7.14 it was verified that the exponential
martingale

[

X(t) =e"We~

satisfies (7.22). It also satisfies the initial condition X (0) = 1. This is an ex-
ample of a linear stochastic differential equation. For the solution of a general
equation of this type with an arbitrary initial condition, see Exercise 7.20.

Example 7.7

In Exercise 7.16 it was shown that the Ornstein—Uhlenbeck process
t
Y(t)= Ue_at/ e** dW (s)
0
satisfies the stochastic differential equation

dY (t) = —aY (t) dt + o dW (t)

with initial condition Y (0) = 0. This is an example of an inhomogeneous lin-
ear stochastic differential equation. See Exercise 7.17 for a solution with an
arbitrary initial condition.

Definition 7.9

An It6 process £(t), t > 0 is called a solution of the initial value problem

dé(t) = f(£(t)) dt + g(£(2)) W (2),
£(0) = &
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if & is an Fp-measurable random variable, the processes f(£(t)) and g(&(t))
belong, respectively, to £}. and MZ, and

T T
E§T) = 6o + /0 Fle@) dt + /0 dE®)dW () as.  (1.23)

for all T > 0.

Remark 7.3

In view of this definition, the notion of a stochastic differential equation is
a fiction. In fact, only stochastic integral equations of the form (7.23) have a
rigorous mathematical meaning. However, it proves convenient to use stochastic
differentials informally and talk of stochastic differential equations to draw on
the analogy with ordinary differential equations. This analogy will be employed
to solve some stochastic differential equations later on in this section.

The existence and uniqueness theorem below resembles that in the theory
of ordinary differential equations, where it is also crucial for the right-hand side
of the equation to be Lipschitz continuous as a function of the solution.

Theorem 7.7

Suppose that f and g are Lipschitz continuous functions from R to R, i.e. there
is a constant C' > 0 such that for any z,y € R

|f(z) — f(y)] < Clz -y,
lg(z) —g(y)| < Clz—yl.

Moreover, let £ be an Fy-measurable square integrable random variable. Then
the initial value problem

d§(t) = f(&(2)) dt + g(£(8)) dW (2), (7.24)
£00) = & (7.25)

has a solution &(t),t > 0 in the class of Itd processes. The solution is unique in
the sense that if n(t),t > 0 is another Ité process satisfying (7.24) and (7.25),
then the two processes are identical a.s., that is,

P {€(t) = n(¢) for all t > 0} = 1.
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Proof (outline)
Let us fix T > 0. We are looking for a process £ € M% such that

€(s) = 6o + /0 CHe@)dt+ / Cg(e) dW (1) as. (7.26)

for all s € [0,T]. Once we have shown that such a £ € M% exists, to obtain
a solution to the stochastic differential equation (7.24) with initial condition
(7.25) it suffices to take a modification of £ with a.s. continuous paths, which
exists by Theorem 7.4.

To show that a solution to the stochastic integral equation (7.26) exists we
shall employ the Banach fixed point theorem in M2 with the norm

T
l€l% = B /0 MWD dt, (7.27)

which turns M2 into a complete normed vector space. The number A > 0
should be chosen large enough, see below. To apply the fixed point theorem
define & : M2 — M2 by
S 8
#)) = b0+ [ fE@)de+ [ o) aw o (7.28)
0
for any £ € M2 and s € [0,T). We claim that & is a strict contraction, i.e.

18(€) — S(OlIx < all€ — I (7.29)

for some @ < 1 and all ¢,( € M2. Then, by the Banach theorem, ¢ has a
unique fixed point & = (). This is the desired solution to (7.26).

It remains to verify that & is indeed a strict contraction. It suffices to show
that the two maps ¢, and &, where

81(6)(s) = / FE®)dt,  Bae)(s) = /0 " g(e) dw (2),

are strict contractions with contracting constants a; and a; such that a; +as <
1. For &, this follows from the Lipschitz continuity of f. For ¢, we need to use
the Lipschitz continuity of g and the isometry property of the It6 integral. Let
us mention just one essential step in the latter case. For any &,( € M2

2
ds

T s
182(6) - B2(QI12 = E /0 e /0 9(6®) — 9(C®)] AW (2)
T 8
_ e—As _ 2 s
- E /0 /0 9(6®) — 9B ded

T s
C’E / e / l€(t) = C(t)|? dtds

IN
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T T
— 2 —As At — At _ 2 4
C E/O (/t e e ds) e &) — C(@)|° dt

C? T 2, C? 2
< SB[ e - o = Slie- .

ince ftT e~ *eMds = 1(1 - e MT=%) < 1. Here C is the Lipschitz constant
fg.If A > C?/e, then &, is a strict contraction with contracting constant < e.

There remain some technical points to be settled, but the main idea of the
roof is shown above. O

:xercise 7.17
‘ind a solution of the stochastic differential equation
dX(t) = —aX(t)dt + o dW (t)

7ith initial condition X (0) = zg, where zy is an arbitrary real number. Show
hat the solution is unique.

lint Use the substitution Y'(¢) = e** X (¢).
A linear stochastic differential equation has the general form
dX(t) =aX(t)dt + bX(t) dW(2), (7.30)

rhere a and b are real numbers. In particular, for a = 0 and b = 1 we obtain the
tochastic differential equation dX (t) = X (t) dW (t) in Example 7.6. The solu-
ton to the initial value problem for any linear stochastic differential equation
an be found by exploiting the analogy with ordinary differential equations, as
resented in the exercises below.

-xercise 7.18

uppose that w(t), t > 0 is a deterministic real-valued function of class C* such
hat w(0) = 0. Solve the ordinary differential equation

dz(t) = az(t) dt + bzr(t) dw(t), (7.31)
rith initial condition z(0) = zo to find that
z(t) = zoedt Tt (7.32)

We write dw(t) in place of w'(t) dt to emphasize the analogy with stochastic
ifferential equations.)
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Hint The variables can be separated:

dz(t)
z(t)

(a + bw'(t)) dt.

By analogy with the deterministic solution (7.32), let us consider a process

defined by
X(t) = XgedtttW®) (7.33)

for any t > 0, where W (t) is a Wiener process.

Exercise 7.19

Show that X (¢) defined by (7.33) is a solution of the linear stochastic differential
equation

2
dX(t) = (a + %—) X(t)dt + bX(t)dW (¢), (7.34)
with initial condition X (0) = Xp.

Hint Use the It6 formula with F(t,z) = e®*+°=,

Exercise 7.20

Show that the linear stochastic differential equation
dX(t) = aX(t)dt +bX (t)dW(t)
with initial condition X (0) = X, has a unique solution given by
X(t) = Xoe(a—%)t-f-bW(t).
Hint Apply the result of Exercise 7.19 with suitably redefined constants.

Having solved the general linear stochastic differential equation (7.30), let
us consider an example of a non-linear stochastic differential equation. Once
again, we begin with a deterministic problem.

Exercise 7.21

Suppose that w(t), t > 0 is a deterministic real-valued function of class C! such
that w(0) = 0. Solve the ordinary differential equation

dz(t) = 1+ z(t)2dt + /1 + z(¢)? dw(t)

with initial condition z(0) = zo.

Hint The variables in this differential equation can be separated.
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ercise 7.22

ow that the process defined by
X (t) = sinh(C + t + W (t)),

.ere W (t) is a Wiener process and C' = sinh™! Xj, is a solution of the stochas-
differential equation

dX () = (\/1 T X2+ %X(t)) dt + (\/1 T X(t)2> dw (¢)
th initial condition X (0) = Xp.

nt Use the It6 formula with F(t,z) = sinh(t + ).

We shall conclude this chapter with an example of a stochastic differen-
1 equation which does not satisfy the assumptions of Theorem 7.7. It turns
t that the solution may fail to exist for all times ¢ > 0. This is a familiar
enomenon in ordinary differential equations. However, stochastic differential
uations add a new effect, which does not even make sense in the deterministic
se: the maximum time of existence of the solution, called the explosion time
1y be a (non-constant) random variable, in fact a stopping time.

tample 7.8
msider the stochastic differential equation
dX(t) = X(t)%dt + X (t)2dW (¢).

1en 1
X0 = 1—wm

a solution, which can be verified, at least formally, by using the It6 formula
th F(t,z) = 2. The solution X (t) exists only up to the first hitting time

T=inf{t >0: W(t) =1}
1is is the explosion time of X (t). Observe that
th/r‘ri X(t) = oo.
rictly speaking, the It6 formula stated in Theorem 7.6 does not cover this
se, since F(t,z) = ;= has a singularity at z = 1. Definition 7.9 does not
iply either, as it requires the solution X (t) to be defined for all ¢ > 0. Suitable
tensions of the Itd formula and the definition of a solution are required to

udy stochastic differential equations involving explosions. However, to prevent
1 explosion of this book, we have to refer the interested reader to a further

R SR AP SO .
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7.6 Solutions

Solution 7.1
Using the first identity in the hint we obtain

3
!
-

(W(t3)® - W(t5)*)

<
Il
(=]

.“[1'1“

ZW(t" W(t3+1) W(t?)) =

|
—

n

(W(t2,1) - WD)

|
B | =
.
1l
(=}

= —W(T Z (W(t3,) - W(Em)®.

By Exercise 6.29 the limit is

lim Z W (7 (W(th,) - WD) = %W(T)Z _ir

n—oo 2

Similarly, the second identity in the hint enables us to write

2
|
—

.“E',J'“

ZW(t]-}-l (tfa) = W(t7)) = (W(t7)* - W (t])?)

J=0 7=0
n—1
+% (W(340) = W(t7))°
j=0
1 , 1 n—1 2
= 5W(T) +§Z(W(t1+1) W(t?)) :
j=0

It follows that

JL“;OZW(%) W(tha) = W) = sW(T) + 5T,

Solution 7.2

For any random step processes f,g € M3, there is a partition 0 = ¢y < t; <
-« < t, such that for any t > 0

n—1 n—1
&)=Y il @ and g(t) =D Gl e (@),
j=0 j=0

where 7); and (; are square integrable J;,-measurable random variables for each
i—nNn1 n — 1. (Tf the two partitions in the formulae for f and ¢ happen to
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e different, then it is always possible to find a common refinement of the two

artitions.)
As in the proof of Proposition 7.1, we denote the increment W (t;4,)—W (t;)

y A;W and tj41 —tj by Ajt. Then

n—1n-1
I(N)I(g) = DY mGAWAW
7=0 k=0
n—1
= angj |AJW|2 + anCkAjWAkW + ZCjnkAjWAkW,
=0 i<k i<k

7here, by independence,
E (njCj |A,~W|2) =E ;) E (IAJW|2) = E(n;(;) 4t
nd
EniGA;WAW) = E(njGA;W)E(AW) =0
E({(GmAWAW) = E((GmA;W)E(AW) =0
or any 7 < k. It follows that

n-—1
E(I(f)I(g)) = Y_ En;¢) Ajt.

=0

Cherefore, it suffices to show that

E (/Ooo f()g(?) dt) = T;V—_:,IE(W;'CJ') Ajt,
iz

wut this is true because

3
1
ooy
3
|
—

f(t)g(t) = : njgkl[tj,tj+1)(t)l[tkytk+l)(t)

<
Il
- O
a
I
[~=]

3
I

= njle[t,-,t,-.,.l)(t)'

<.
]
(o]

solution 7.3

Ne shall use a partition 0 = t5 < t; < --- < t, such that

n—1 n—1
f= Z Mi1it; t540) and g = Z Cilitstinn)
=0

J J=0
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where n; and (; are square integrable F;,-measurable random variables for each
j=0,1,...,n — 1. (If the two partitions in the formulae for f and g happen
to be different, then it is always possible to find a common refinement of the
two partitions.) The increments W (t;41) — W (t;) will be denoted by A;W for
brevity. Then

af +8g = nil (amj + BG) 1t 540
and o
I(af +Bg) = nil(aﬂj + B¢) AW
T
= aznjAjW +ﬁZ<jAjW
= afj(_;) + B1(g). B

Solution 7.4

Consider the following scalar products in M? and L?:

<f,g>M2=E( / oof(t)g(t)dt) and (1,02 = E (1)

for any f,g € M? and n,{ € L% They can be expressed in terms of the
corresponding norms defined in the proof of Proposition 7.2,

1
(o9 = 1+l = 5 11F = ol
(.0ps = lln+ Gl = 31l = 3.

Therefore Proposition 7.2 implies that

(I(f)v‘[(g»L? = (f»g)M2 )

which is the same as the equality to be proved.

Solution 7.5

If f € M2, is a random step process, then so is 1j 4 f € M3, C M? for any
t > 0. This in turn implies that f € M2 for any t > 0.

We shall verify that I;(f) is a martingale with respect to the filtration ;.
Let 0 < s < t and suppose that f € Mftep can be written in the form (7.2),

where

N=th <t < <t =8§<trr1 < <ty =t <tpy1 < - < typ.
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ch a partition to,...,¢, can always be obtained by adding the points s and
f necessary. We shall denote the increment W (t;1) — W(t;) by 4;W as in
2 proof of Proposition 7.1. Then

m-—1
Lo,y f = Z M5 L[t ,t544]
=0

m—1
a(f) =I(pgf) = Y 0 AW,
=0
ich is adapted to F; and square integrable, and so integrable. It remains to
npute

m—1

E(L(f)|Fs) = E(I(lpgf)|Fs) = Y E(mj A;W|F,).

j=0
j < k, then n; and A;W are F,-measurable and
E (n; A;W|F,) = 0 A;W. |
j > k, then 7y C F;; and
E(njA;W|Fs) = E (E (UjAjWIth) Ifs)
= E(n;E (Q;W|Fy;) | Fs)
= E(n;|Fs) E(4;W) =0,
ce n; is Fy;-measurable and A;W is independent of F;,. It follows that

k-1

E(L(HIFs) = Y_n AW = I(Lj0,4f) = I,(f).
7=0

lution 7.6
definition, W (t) is adapted to the filtration F; and has a.s. continuous paths.

yreover,
E (/OT|W(t)|2 dt) = /OTE(|W(t)|2) dt

T
=/ tdt < oo.
0

Theorem 7.1 it follows that the Wiener process W belongs to M2.
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Solution 7.7
Since W (t) is adapted to the filtration F, so is W (t)2. Moreover,

E(/OTIW(t)|4 dt) = /OTE(IW(t)|4) dt
= /T3t2dt<oo.
0

Theorem 7.1 implies that W (t)? belongs to M2.

Solution 7.8
We fix T > 0 and put

f@) = 1p ) ®)W(QR).
Then f € M? and
/ W (t) dW (¢ / £(1)dW (2).

Take 0 = t§ < i < --- <t =T, where t = %, to be a partition of [0, T]
into n equal parts, and put

n—1
fo= D WE e ar,,)-
=0

Then the sequence fi, fo,.. Mftep approximates f, since
([ 1)~ fn(t)lzdt> -5 [T e (we - wenr) a
=0 t

71
=Z/ (t —t7)dt
tr
1 n n\2
= §Z(ti+1—tz’)

=0

177
= -—— =20 asn— .

2 n

By Exercise 7.1

I(f2) = ZW(t") W(tg) - W) = 3WT) - 5T
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. L? as n — 0o. We have found, therefore, that
T 1 , 1
W) dW () = =W (T)? — =T.
; > )

olution 7.9

et f(t) = t. Then 1 77f belongs to MZ2. We shall use the same partition of
, T into n equal parts as in Solution 7.8. The sequence

fa= Z i e en, ) € MZep
—~

proximates 1o 71f, since

B( [ loms - o ) = & ( / U IR0 - 10 dt)

n—1 t?+1
> / It — 7% dt
i=1 V]
1 n—1
§ il
T3
= — =20 asn — oo.

3n?
7ith the aid of the identity in the hint, we can write the stochastic integral of
) as

I(fa) = Zt" (tF1) — WD)

n—1

= Y (W (th,) - W) - ZW(EH (t1 —t7)

1=0

= Z W (th) (t — 7).

follows that T
I(f,) > TW(T) - / W(t)dt

- L? as n — oc0. Indeed, by the classical inequality IZ o all <nYr el

)

1d by the Cauchy-Schwartz inequality

«(8

ZW(tf+1) (7, —t7) /Wt)dt

1=0
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2)
2)

41
/t (W) =W (1)) dt)

n
i

5

tiha
| ) - wie)

n—1 ti 9
<n) (th,-t")E /t |W (t3,) = W()|" dt
=0 i
n—1 3 n—1
(t7 — 17) 7
= nZ———i————:nZﬁzﬁﬁo as n — oo.
1= 1=0

This proves the equality in the exercise.

Solution 7.10

Using the same partition of [0,7] into n equal parts as in Solution 7.8 and
putting

n—1
fa= D WEN Tgn ),
=0

we obtain a sequence fi, fa,... € Mftep of random step processes which ap-
proximates f = 1y 7yWW?. Indeed,

([ 110~ o) - S [ (wer - wee)a
i=0 Yt

0
n-1 ath,
-y /t (3¢~ 1) + 40 — )27 dt

i=0

Lt IV AN T\%iT
-S1(E) () 2
1=0 n n n
T3
= — =0 asn— .
n

The expectation above is computed with the aid of the following formula valid
for any 0 < s <'t:

E ((Wf - Wf)2> - E ((Wt - Ws)4) +4E ((Wt —W,)? Ws)
+4E ((Wt —W,)? Wf)

= 3(t—s)>+4(t - s)s
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'sing the identity in the hint, we can write

I(f) = ZW P (WEk) - W)

o
= 32 (V) - W)

- (v - W) - § 3 v - W)’
- Lwry - Z W) (£, - 87)

_ Zo W) [(W(EE) - WED)" - (¢, = )]

——Z (thy) - WD)’

=0

he L2 limits of the last three sums are

n—1 T
lim ZW(t") th, —th) = / W(t) dt
=0 0

n—o0
n—1 2
lim Z;W t7) [(W(tm - W(t7)) —(?+1-t?)] =0
n—1
. n 3 —
,};ngog (W(tE) - WD) =0

ideed, the first limit is correct because

(E

ZW(t”) (2, - / W () dt

)

=0
- (Z [ (W) - W(2)) dt )
1=0

n-1 14
= Za i (W -wer)

n-l aer,
= (¢ - ¢7) dt

T2
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)

n—1 9 2
= Z E (W(t?)2 l(W(t?+1) -W(t?)" ~ (t —t7) )
i=0

To the second limit can be verified as follows:

n—1
E ( Z W(t}) [ W(ti,) — W(t?))2 — (th, - t?)]

1=0

= Z E (WM (I(W(tﬂ-l) W(t?))z — (th, —t7) 2)
= 22 t? 1+1
1=0
(n—1)

= 5 T> 50 asn — oo.
n

Finally, for the third limit we have

= ZE( W(th) - We)°)

1=0

n-—1
=6 Z (t?-l—l - t?)a

i=

n—1

3 (Witr,) - W)

=0

=62 —)0 as n — 00.
1=0

It follows that T
I(f) = gW@° - [ W,
0

which proves the formula in the exercise.

Solution 7.11
We shall use part 2) of Theorem 7.1 to verify that

£(t) = /0 W (s) dW (s)

belongs to M% for any T > 0. By Theorem 7.4 £(t) can be identified with an
adapted modification having a.s. continuous trajectories. It suffices to verify
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1at £(t) satisfies condition (7.9). Since the stochastic integral is an isometry,

2 t t t2
:E/ |W(s)|2ds=/ sds = —.
0 0 2

2 T 42 3
t T
dt:/ —dt = — < o0,
0o 2

E

/0 W (s) dW (s)

follows that

E/OT|§<t>|2dt=E/OT

2. £(t) satisfies (7.9). As a result, £(¢) belongs to MZ.

6

t
/0 W (s) dW (s)

olution 7.12

‘e shall use the equality proved in Exercise 7.10:
T T
W(T)? = 3/ W (t) dt+3/ W (t)*dW (t).
0 0

he process 3W (t) belongs to L. for any T' > 0 because it is adapted and
as a.s. continuous paths, so the integral fOT|3W(t)|dt exists and is finite.
y Exercise 7.7 the process 3W (t)? belongs to M2 for any T > 0. It follows
1at W (t)? is an Itd process. Moreover, the above equation can be written in

ifferential form as
dW (t)® = 3W(t)dt + 3W ()% dW (t),
hich gives a formula for the stochastic differential dW (t)3.

olution 7.13

. has been shown in Exercise 7.9 that
T T
TW(T) = / W(t) dt +/ LW (£).
0 0

ince the Wiener process W(t) is adapted and has continuous paths, it belongs
» £}, while the deterministic process f(t) = t belongs to M2 for any T > 0.
. follows that tW (t) is an It6 process with stochastic differential

d(tW () = W(t) dt + t dW ().

olution 7.14

or F(t,z) = e®e~% the partial derivatives are F}(t,z) = —ze"e"1, Fi(t,z) =
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e®e™% and F},(t,z) = e®e™%. Since X (t) = " (Ve %, the Itd formula implies
that

dX(t) = dF(t,W(t))

= (Pt WO) + FFLEW) ) de+ FL0W(0) W (0
- (—%X(t) + %X(t)) dt + X (t) dW (1)

= X(¢)dW(2).

Because of this, to show that X (¢) is an It process we need to verify that
X(t) = e"®We~3 belongs to M2 for any T > 0. Clearly, it is an adapted
process. It was computed in Solution 6.35 that Ee(®) = e?, 50

T T . T
E/ IX(t)Idt:/ Eew(‘)e_idtz/ dt =T < o0,
0 0 0

which proves that X (t) belongs to M2.

Solution 7.15

Take F(t,z) = z™. Then F/(t,z) =0, F.(t,z) = nz""! and F/ (t,z) = n(n -
1)z™~2. The derivatives of F(t,z) are obviously continuous, so we only need
to verify that F!(t,W(t)) = nW(¢)"~! belongs to M2 for T > 0. Clearly, it is
adapted and has a.s. continuous paths. Moreover,

T T T
E/ InW ()" 1|* dt = n2/ E\W@®)|" 2 dt _—./ Agn_ot™ 1 dt < 00,
0 0 (¢}

where ay = 2%2771/2[ (1) and I'(z) = [;°t*~'e~!dt is the Euler gamma
function. It follows by part 2) of Theorem 7.1 that F.(t,W(t)) = nW(t)"!
belongs to M. Therefore we can apply the It6 formula to get

(n-1)

dw@)r) =2 S W) 2dt +nW ()" dW (2),

as required.

Solution 7.16

Some elementary calculus shows that F(t,z) = e~*'z has continuous partial
derivatives such that F(t,z) = —ae™*z, F.(t,z) = e™* and F},(t,z) = 0.
Clearly, &£(t) =0 f; e** dW (s) is an It process with

dé(t) = oe®tdW (t).
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ce the function ge*' F(t,z) is bounded on each set of the form [0,T] x R,
ollows immediately that ge* F.(t,£(t)) belongs to M2 for any T > 0. As a
isequence, we can use the It formula (the general case in Theorem 7.6) to

dY (1) = d(e(t))
= —ae ¢(t) dt + e ge™t dW (t)
= —aY (t)dt + o dW(t),

ich proves that Y (t) satisfies the equality
dY (t) = —aY (t)dt + o dW (2).
lution 7.17

e F(t,z) = e“*z and consider the process
Y(t) = F(t, X(t)).
an Y (0) = zo and
dY (t) = dF(t, X ()
= (Ft’(t,X( )) —aX (t)FL(t, X (t)) + azF" (t,X(t))) dt

+aFL(t, X(8) dW (1)
= (ae®™X(t) — ae®* X (t)) dt + g™ dW (t)
= oe* dW(t).

the Itd formula. It follows that

Y(t) =xzo + O’/t e*® dW (s)
0

X(t) = e Y (1)
= e *zo + ge /Ot e*® dW (s).
queness follows directly from the above argument, but Theorem 7.7 can
» be used. Namely, the stochastic differential equation
dX(t) = —aX(t)dt + o dW(t)

f the form (7.24) with f{z) = —az and g(z) = o, which are Lipschitz
tinuous functions. Therefore, the solution to the initial value problem must

ter thn Alann AP TEA snAannoono s ith A o nAantininne nathe

e
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Solution 7.18

According to the theory of ordinary differential equations, (7.31) with initial
condition z(0) = zo has a unique solution. If zo = 0, then z(t) = 0 is the
solution. If zg # 0, then

z(t)

ln—-m—o— = at+w(t)

by integrating the equation in the hint, which implies that

.’L‘(t) — zoeat+bw(t) )

Solution 7.19

By the It6 formula (verify the assumptions!)

dX(t) = d(Xoeat+bW(t))

— (aXoeat+bW(t) + b_2xoeat+bW(t)) dt + bXOeat-HJW(t)dw(t)
2

b2
— (a + 5) X (t)dt + bX (¢) dW (t).

This proves that X (t) satisfies the stochastic differential equation (7.34). As
regards the initial condition, we have

X(0) = Xoet W =X,

t=0
Solution 7.20
The stochastic differential equation

dX(t) = aX(t)dt + bX (t) dW (t)

can be written as

b2
dX(t) = (c + -2-) X(t)dt + bX (t) dW (t),

where ¢ = a — %3. By Exercise 7.19 the solution this stochastic differential
equation with initial condition X (0) = Xj is
X(t) — XoecH-bW(t)

= Xoe (a— 923)t+bW(t) .

The uniqueness of this solution follows immediately from Theorem 7.7.
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lution 7.21

e can write the ordinary differential equation to be solved in the form

dz(t)
1+ z(t)?

= (1+w'(2)) dt,
iich implies that
sinh™! z(t) — sinh ™' 2o = t + w(¢).
ymposing the last formula with sinh, we obtain
z(t) = sinh(c + t + w(t)), (7.35)
rere ¢ = sinh ™! zg.
dlution 7.22
nce F(t,z) = sinh(t + z) satisfies the assumptions of the It6 formula,
dX(t) = dF(t,C + W(t))
= (Ft’(t, C+W(t)+ %F;’z(t, C+ W(t))) dt
+ F(t,C + W(t)) dW(t)
= (cosh(C +t+W()) + -;— sinh(C +t + W(t))) dt
+ cosh(C +t+ W(t)) dW(t)

(\/1 +sinh?(C +t+ W(t)) + % sinh(C +t + W(t))) dt

+y/1+sinh?(C + ¢ + W (2)) dW (2)
- (\/1 FX(0)? + %X(t)) dt + (\/1 ¥ X(t)2) dW (2).

he initial condition X(0) = sinh C = Xy is also satisfied.
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