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Preface to Revised First Edition

This edition of Bounded Analytic Functions is the same as the first edition except
for the corrections of several mathematical and typographical errors. I thank the
many colleagues and students who have pointed out errors in the first edition.
These include S. Axler, C. Bishop, A. Carbery, K. Dyakonov, J. Handy, V. Havin, H.
Hunziker, P. Koosis, D. Lubinsky, D. Marshall, R. Mortini, A. Nicolau, M. O’Neill,
W. Rudin, D. Sarason, D. Suárez, C. Sundberg, C. Thiele, S. Treil, I. Uriarte-Tuero,
J. Väisälä, N. Varopoulos, and L. Ward.

I had planned to prepare a second edition with an updated bibliography and an
appendix on results new in the field since 1981, but that work has been postponed for
too long. In the meantime several excellent related books have appeared, including
M. Andersson, Topics in Complex Analysis; G. David and S. Semmes, Singular
Integrals and Rectifiable Sets in �n and Analysis of and on Uniformly Rectifi-
able Sets; S. Fischer, Function theory on planar domains; P. Koosis, Introduction
to Hp spaces, Second edition; N. Nikolski, Operators, Functions, and Systems;
K. Seip, Interpolation and Sampling in Spaces of Analytic Functions; and B. Simon,
Orthogonal Polynomials on the Unit Circle.

Several problems posed in the first edition have been solved. I give references
only to Mathematical Reviews. The question page 167 on when E∞ contains a
Blaschke product was settled by A. Stray in MR 0940287. M. Papadimitrakis, MR
0947674, gave a counterexample to the conjecture in Problem 5 page 170. The late
T. Wolff, MR 1979771, had a counterexample to the Baernstein conjecture cited
on page 260. S. Treil resolved the g2 problem on page 319 in MR 1945294. A
constructive Fefferman-Stein decomposition of functions in BMO(�n) was given
by the late A. Uchiyama in MR 1007515, and C. Sundberg, MR 0660188, found
a constructive proof of the Chang-Marshall theorem. Problem 5.3 page 420 was
resolved by Garnett and Nicolau, MR 1394402, using work of Marshall and Stray
MR 1394401. Problem 5.4. on page 420 remains a puzzle, but Hjelle and Nicolau
(Pacific Journal of Mathematics, 2006) have an interesting result on approximation
of moduli. P. Jones, MR 0697611, gave a construction of the P. Beurling linear
operator of interpolation.

I thank Springer and F. W. Gehring for publishing this edition.

John Garnett
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I

Preliminaries

As a preparation, we discuss three topics from elementary real or complex
analysis which will be used throughout this book.

The first topic is the invariant form of Schwarz’s lemma. It gives rise to
the pseudohyperbolic metric, which is an appropriate metric for the study of
bounded analytic functions. To illustrate the power of the Schwarz lemma, we
prove Pick’s theorem on the finite interpolation problem

f (z j ) = w j , j = 1, 2, . . . , n,

with | f (z)| ≤ 1.
The second topic is from real analysis. It is the circle of ideas relating Poisson

integrals to maximal functions.
The chapter ends with a brief introduction to subharmonic functions and

harmonic majorants, our third topic.

1. Schwarz’s Lemma

Let D be the unit disc {z : |z| < 1} in the complex plane and let B denote
the set of analytic functions from D into D. Thus | f (z)| ≤ 1 if f ∈ B . The
simple but surprisingly powerful Schwarz lemma is this:

Lemma 1.1. If f (z) ∈ B , and if f (0) = 0, then

| f (z)| ≤ |z|, z �= 0,

| f ′(0)| ≤ 1 .
(1.1)

Equality holds in (1.1) at some point z if and only if f (z) = eiϕz, ϕ a real
constant.

The proof consists in observing that the analytic function g(z) = f (z)/z
satisfies |g| ≤ 1 by virtue of the maximum principle.

We shall use the invariant form of Schwarz’s lemma due to Pick. A
Möbius transformation is a conformal self-map of the unit disc. Every Möbius

1



2 preliminaries Chap. I

transformation can be written as

τ (z) = eiϕ z − z0

1 − z̄0z

with ϕ real and |z0| ≤ 1. With this notation we have displayed z0 = τ−1(0).

Lemma 1.2. If f (z) ∈ B , then

| f (z) − f (z0)|
|1 − f (z0) f (z)| ≤

∣
∣
∣
∣

z − z0

1 − z̄0z

∣
∣
∣
∣ , z �= z0,(1.2)

and

| f ′(z)|
1 − | f (z)|2 ≤ 1

1 − |z|2 .(1.3)

Equality holds at some point z if and only if f (z) is a Möbius transformation.

The proof is the same as the proof of Schwarz’s lemma if we regard τ (z) as
the independent variable and

f (z) − f (z0)

1 − f (z0) f (z)

as the analytic function. Letting z tend to z0 in (1.2) gives (1.3) at z = z0, an
arbitrary point of D.

The pseudohyperbolic distance on D is defined by

ρ(z, w) =
∣
∣
∣
∣

z − w

1 − w̄z

∣
∣
∣
∣ .

Lemma 1.2 says that analytic mappings from D to D are Lipschitz continuous
in the pseudohyperbolic distance:

ρ( f (z), f (w)) ≤ ρ(z, w).

The lemma also says that the distance ρ(z, w) is invariant under Möbius
transformations:

ρ(z, w) = ρ(τ (z), τ (w)).

We write K (z0, r ) for the noneuclidean disc

K (z0, r ) = {z : ρ(z, z0) < r}, 0 < r < 1.

Since the family B is invariant under the Möbius transformations, the study of
the restrictions to K (z0, r ) of functions in B is the same as the study of their
restrictions to K (0, r ) = {|w| < r}. In such a study, however, we must give
K (z0, r ) the coordinate function w = τ (z) = (z − z0)/(1 − z̄0z). For example,
the set of derivatives of functions in B do not form a conformally invariant
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family, but the expression

| f ′(z)|(1 − |z|2)(1.4)

is conformally invariant. The proof of this fact uses the important identity

1 −
∣
∣
∣
∣

z − z0

1 − z̄0z

∣
∣
∣
∣

2

= (1 − |z|2)(1 − |z̄0|2)

|1 − z̄0z|2 = (1 − |z|2)|τ ′(z)|,(1.5)

which is (1.3) with equality for f (z) = τ (z). Hence if f (z) = g(τ (z)) = g(w),
then

| f ′(z)|(1 − |z|2) = |g′(w)||τ ′(z)|(1 − |z|2) = |g′(w)|(1 − |w|2)

and this is what is meant by the invariance of (1.4).
The noneuclidean disc K (z0, r ), 0 < r < 1, is the inverse image of the disc

|w| < r under

w = τ (z) = z − z0

1 − z̄0z
.

Consequently K (z0, r ) is also a euclidean disc �(c, R) = {z : |z − c| < R},
and as such it has center

c = 1 − r2

1 − r2|z0|2 z0(1.6)

and radius

R = r
1 − |z0|2

1 − r2|z0|2 .(1.7)

These can be found by direct calculation, but we shall derive them geo-
metrically. The straight line through 0 and z0 is invariant under τ , so that
∂K (z0, r ) = τ−1(|w| = r ) is a circle orthogonal to this line. A diameter of
K (z0, r ) is therefore the inverse image of the segment [−r z0/|z0|, r z0/|z0|].
Since z = (w + z0)/(1 + z̄0w), this diameter is the segment

[α, β] =
[ |z0| − r

1 − r |z0|
z0

|z0| ,
|z0| + r

1 + r |z0|
z0

|z0|
]

.(1.8)

The endpoints of (1.8) are the points of ∂K (z0, r ) of largest and smallest
modulus. Thus c = (α + β)/2 and R = |β − α|/2 and (1.6) and (1.7) hold.
Note that if r is fixed and if |z0| → 1, then the euclidean radius of K (z0, r ) is
asymptotic to 1 − |z0|.
Corollary 1.3. If f (z) ∈ B , then

| f (z)| ≤ | f (0)| + |z|
1 + | f (0)||z| .(1.9)
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Proof. By Lemma 1.2, ρ( f (z), f (0)) ≤ |z|, so that f (z) ∈ K ( f (0), |z|). The
bound on | f (z)| then follows from (1.8). Equality can hold in (1.9) only if f is
a Möbius transformation and arg z = arg f (0) when f (0) �= 0.

The pseudohyperbolic distance is a metric on D. The triangle inequality for
ρ follows from

Lemma 1.4. For any three points z0, z1, z2 in D,

ρ(z0, z2) − ρ(z2, z1)

1 − ρ(z0, z2)ρ(z2, z1)
≤ ρ(z0, z1) ≤ ρ(z0, z2) + ρ(z2, z1)

1 + ρ(z0, z2)ρ(z2, z1)
.(1.10)

Proof. We can suppose z2 = 0 because ρ is invariant. Then (1.10) becomes

|z0| − |z1|
1 − |z0||z1| ≤

∣
∣
∣
∣

z1 − z0

1 − z̄0z1

∣
∣
∣
∣ ≤ |z0| + |z1|

1 + |z0||z1| .(1.11)

If |z1| = r , then z = (z1 − z0)/(1 − z̄0z1) lies on the boundary of the non-
euclidean disc K (−z0, r ), and hence |z| lies between the moduli of the end-
points of the segment (1.8). That proves (1.11). Of course (1.10) and especially
(1.11) are easy to verify directly.

Every Möbius transformation w(z) sending z0 to w0 can be written

w − w0

1 − w0w
= eiϕ z − z0

1 − z̄0z
.

Differentiation then gives

|w′(z0)| = 1 − |w0|2
|z0|2 .(1.12)

This identity we have already encountered as (1.3) with equality. By (1.12) the
expression

ds = 2|dz|
1 − |z|2(1.13)

is a conformal invariant of the disc. We can use (1.13) to define the hyperbolic
length of a rectifiable arc γ in D as

∫

γ

2|dz|
1 − |z|2 .

We can then define the Poincaré metric ψ(z1, z2) as the infimum of the hyper-
bolic lengths of the arcs in D joining z1 to z2. The distance ψ(z1, z2) is then
conformally invariant. If z1 = 0, z2 = r > 0, it is not difficult to see that

ψ(z1, z2) = 2

∫ r

0

dx

1 − |x |2 = log
1 + r

1 − r
.
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Since any pair of points z1 and z2 can be mapped to 0 and ρ(z1, z2) =
|(z2 − z1)/(1 − z̄1z2)|, respectively, by a Möbius transformation, we therefore
have

ψ(z1, z2) = log
1 + ρ(z1, z2)

1 − ρ(z1, z2)
.

A calculation then gives

ρ(z1, z2) = tanh

(
ψ(z1, z2)

2

)

Moreover, because the shortest path from 0 to r is the radius, the geodesics, or
paths of shortest distance, in the Poincaré metric consist of the images of the
diameter under all Möbius transformations. These are the diameters of D and
the circular arcs in D orthogonal to ∂D. If these arcs are called lines, we have
a model of the hyperbolic geometry of Lobachevsky.

In this book we shall work with the pseudohyperbolic metric ρ rather than
with ψ , although the geodesics are often lurking in our intuition.

Hyperbolic geometry is somewhat simpler in the upper half plane H =
{z = x + iy : y > 0} In H

ρ(z1, z2) =
∣
∣
∣
∣
z1 − z2

z1 − z̄2

∣
∣
∣
∣

and the element of hyperbolic arc length is

ds = |dz|
y

.

Geodesics are vertical lines and circles orthogonal to the real axis. The con-
formal self-maps of H that fix the point at ∞ have a very simple form:

τ (z) = az + x0, a > 0, x0 ∈ �.

Horizontal lines {y = y0} can be mapped to one another by these self-maps of
H . This is not the case in D with the circles {|z| = r}. In H any two squares

{x0 < x < x0 + h, h < y < 2h}
are congruent in the noneuclidean geometry. The corresponding congruent
figures in D are more complicated. For these and for other reasons, H is often
the more convenient domain for many problems.

2. Pick’s Theorem

A finite Blaschke product is a function of the form

B(z) = eiϕ
n∏

j=1

z − z j

1 − z̄ j z
, |z j | < 1.
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The function B has the properties

(i) B is continuous across ∂D,
(ii) |B| = 1 on ∂D, and

(iii) B has finitely many zeros in D.

These properties determine B up to a constant factor of modulus one. Indeed,
if an analytic function f (z) has (i)–(iii), and if B(z) is a finite Blaschke product
with the same zeros, then by the maximum principle, | f/B| ≤ 1 and |B/ f | ≤ 1,
on D, and so f/B is constant. The degree of B is its number of zeros. A Blaschke
product of degree 0 is a constant function of absolute value 1.

Theorem 2.1 (Carathéodory). If f (z) ∈ B , then there is a sequence {Bk} of
finite Blaschke products that converges to f (z) pointwise on D.

Proof. Write

f (z) = c0 + c1z + · · · .

By induction, we shall find a Blaschke product of degree at most n whose first
n coefficients match those of f ;

Bn = c0 + c1z + · · · + cn−1zn−1 + dnzn + · · · .

That will prove the theorem. Since |c0| ≤ 1, we can take

B0 = z + c0

1 + c̄0z
.

If |c0| = 1, then B0 = c0 is a Blaschke product of degree 0. Suppose that for
each g ∈ B we have constructed Bn−1(z). Set

g = 1

z

f − f (0)

1 − f (0) f

and let Bn−1 be a Blaschke product of degree at most n − 1 such that g − Bn−1

has n − 1 zeros at 0. Then zg − zBn−1 has n zeros at z = 0. Set

Bn(z) = zBn−1(z) + f (0)

1 + f (0)zBn−1(z)
.

Then Bn is a finite Blaschke product, degree(Bn) = degree(zBn−1) ≤ n, and

f (z) − Bn(z) = zg(z) + f (0)

1 + f (0)zg(z)
− zBn−1(z) + f (0)

1 + f (0)zBn−1(z)

= (1 − | f (0)|2)z(g(z) − Bn−1(z))

(1 + f (0)zg(z))(1 + f (0)zBn−1(z))
,

so that f − Bn has a zero of order n at z = 0.

The coefficient sequences {c0, c1, . . . .} of functions inB were characterized
by Schur [1917]. Instead of giving Schur’s theorem, we shall prove Pick’s
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theorem (from Pick [1916]). For {z1, . . . . , zn} a finite set of distinct points in
D, Pick determined those {w1, . . . , wn} for which the interpolation

f (z j ) = w j , j = 1, 2, . . . , n,(2.1)

has a solution f (z) ∈ B .

Theorem 2.2. There exists f ∈ B satisfying the interpolation (2.1) if and
only if the quadratic form

Qn(t1, . . . , tn) =
n∑

j,k=1

1 − w j w̄k

1 − z j z̄k
t j t̄k

is nonnegative, Qn ≥ 0. When Qn ≥ 0 there is a Blaschke product of degree
at most n which solves (2.1).

Pick’s theorem easily implies Carathéodory’s theorem, but its proof is more
difficult.

When n = 2 a necessary and sufficient condition for interpolation is given
by (1.2) in Lemma 1.2. It follows that Q2 ≥ 0 if and only if |w1| ≤ 1 and
(1.2) holds. This can of course be seen directly, since Q2 ≥ 0 if and only if
1 − |w1| ≥ 0 and the determinant of Q2 is nonnegative:

(1 − |w1|2)(1 − |w2|2)

|1 − w̄1w2|2 ≥ (1 − |z1|2)(1 − |z2|2)

|1 − z̄1z2| .

By the useful identity (1.5), this last inequality can be rewritten
∣
∣
∣
∣

w1 − w2

1 − w̄1w2

∣
∣
∣
∣ ≤

∣
∣
∣
∣

z1 − z2

1 − z̄1z2

∣
∣
∣
∣ ,

which is (1.2).

Proof. We use induction on n. The case n = 1 holds because the Möbius trans-
formations act transitively on D. Assume n > 1. Suppose (2.1) holds. Then
clearly |wn| ≤ 1, and if |wn| = 1, then the interpolating function is the con-
stant wn and w j = wn, 1 ≤ j ≤ n − 1. Suppose Qn ≥ 0. Setting tn = 1, t j =
0, j < n, we see |wn| ≤ 1; and if |wn| = 1, then setting t j = 0, j �= k, n, we
see by (1.2) as before that wk = wn . We can therefore take Bn = wn if |wn| = 1.
Thus the problem is trivial if |wn| = 1, and in any event, |wn| ≤ 1.

Now assume |wn| < 1. We move zn and wn to the origin. Let

z′
j = z j − zn

1 − z̄nz j
, 1 ≤ j ≤ n; w′

j = w j − wn

1 − w̄nw j
, 1 ≤ j ≤ n.

There is f ∈ B satisfying (2.1) if and only if

g =
(

f

(
z + zn

1 + z̄nz

)

− wn

) /(

1 − w̄n f

(
z + zn

1 + z̄nz

))

(2.2)
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is in B and solves

g(z′
j ) = w′

j , 1 ≤ j ≤ n.(2.3)

Also, f is a Blaschke product of degree at most n if and only if g is a Blaschke
product of degree at most n.

On the other hand, the quadratic form Q′
n corresponding to the points

{z′
1, . . . , z′

n−1, 0} and {w′
1, . . . , w

′
n−1, 0} is closely related to Qn . Since by

a computation

1 − z′
j z̄

′
k

1 − z j z̄k
= 1 − |zn|2

(1 − z̄nz j )(1 − zn z̄k)
= α j ᾱk

and

1 − w′
j w̄

′
k

1 − w j w̄k
= 1 − |wn|2

(1 − w̄nw j )(1 − wnw̄k)
= β j β̄k,

we have

1 − w′
j w̄

′
k

1 − z′
j z̄

′
k

t j t̄k = 1 − w j w̄k

1 − z j z̄k

(
β j

α j
t j

) (
βk

αk
tk

)

and

Q′
n(t1, . . . , tn) = Qn

(
β1

α1

t1, . . . ,
βn

αn
tn

)

.(2.4)

Thus Q′
n ≥ 0 if and only if Qn ≥ 0, and the problem has been reduced to the

case zn = wn = 0.
Let us therefore assume zn = wn = 0. There is f ∈ B such that f (0) = 0,

f (z j ) = w j , 1 ≤ j ≤ n − 1,

if and only if there is g(z) = f (z)/z ∈ B such that

g(z j ) = w j/z j , 1 ≤ j ≤ n − 1.(2.5)

Also, f is a Blaschke product of degree d if and only if g is a Blaschke product
of degree d − 1. Now by induction, (2.5) has a solution if and only if the
quadratic form

Q̃n−1(s1, . . . , sn−1) =
n−1∑

j,k=1

1 − (w j/z j )(wk/zk)

1 − z j z̄k
s j s̄k

is nonnegative. This means the theorem reduces to showing

Qn ≥ 0 ⇔ Q̃n−1 ≥ 0

under the assumption zn = wn = 0.
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Because zn = wn = 0, we have

Qn(t1, . . . , tn) = |tn|2 + 2 Re
n−1∑

j=1

t̄ j tn +
n−1∑

j,k=1

1 − w j w̄k

1 − z j z̄k
t j t̄k .

Completing the square relative to tn gives

Qn(t1, . . . , tn) =
∣
∣
∣
∣
∣
tn +

n−1∑

j=1

t j

∣
∣
∣
∣
∣

2

+
n−1∑

j,k=1

(
1 − w j w̄k

1 − z j z̄k
− 1

)

t j t̄k .

Now

1 − w j w̄k

1 − z j z̄k
− 1 = z j z̄k − w j w̄k

1 − z j z̄k
= 1 − (w j/z j )(wk/zk)

1 − z j z̄k
z j z̄k .

Hence

Qn(t1, . . . , tn) =
∣
∣
∣
∣
∣

n∑

j=1

t j

∣
∣
∣
∣
∣

2

+ Q̃n−1(z1t1, . . . , zn−1tn−1).(2.6)

Thus Q̃n−1 ≥ 0 implies Qn ≥ 0, and setting tn = − ∑n−1
1 t j , we see also that

Qn ≥ 0 implies Q̃n−1 ≥ 0.

Corollary 2.3. Suppose Qn ≥ 0. Then (2.1) has a unique solution f (z) ∈ B
if and only if det (Qn) = 0. If det(Qn) = 0 and m < n is the rank of Qn, then
the interpolating function is a Blaschke product of degree m. Conversely, if a
Blaschke product of degree m < n satisfies (2.1), then Qn has rank m.

Proof. If |wn| = 1 the whole thing is very trivial because then Qn = 0,
m = 0, and Bn = wn . So we may assume |wn| < 1. We may then suppose
zn = wn = 0, because by (2.4), Qn and Q′

n have the same rank, while by
(2.2), the original problem has a unique solution if and only if the adjusted
problem (2.3) has a unique solution. Also (2.3) can be solved with a Blaschke
product of degree m if and only if (2.1) can be also.

So we assume zn = wn = 0. Then (2.1) has a unique solution if and only if
(2.5) has a unique solution; and (2.1) can be solved with a Blaschke product of
degree m − 1. Consequently, by induction, all assertions of the corollary will
be proved when we show

rank(Qn) = 1 + rank(Q̃n−1).(2.7)

Writing Q̃n−1 = (a j,k), we have

Qn =

⎡

⎢
⎢
⎢
⎣

------------

1

1 + z j z̄ka j,k
...
1- - - - - - - - - - - - - - -

1 · · · 1 1

⎤

⎥
⎥
⎥
⎦

,
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which has the same rank as
⎡

⎢
⎢
⎢
⎣

------------

0

z j z̄ka j,k
...
0- - - - - - - - - -

1 · · · 1

⎤

⎥
⎥
⎥
⎦

,

and the rank of this matrix is 1 + rank(Q̃n−1).

Corollary 2.4. Suppose Qn ≥ 0 and det (Qn) > 0. Let z ∈ D, z �= z j , j =
1, 2, . . . , n. The set of values

W = { f (z) : f ∈ B , f (z j ) = w j , 1 ≤ j ≤ n}
is a nondegenerate closed disc contained in D. If f ∈ B , and if f satisfies (2.1),
then f (z) ∈ ∂W if and only if f is a Blaschke product of degree n. Moreover, if
w ∈ ∂W , there is a unique solution to (2.1) in B which also solves f (z) = w.

Proof. We may again suppose zn = wn = 0. Then det(Q̃n−1) > 0 by (2.7).
By induction,

W̃ = {g(z) : g ∈ B , g(z j ) = w j/z j , 1 ≤ j ≤ n − 1}
is a closed disc contained in D. But then W = {zζ : ζ ∈ W̃ } is also a closed
disc. Since w ∈ ∂W if and only if w/z ∈ ∂W̃ , the other assertions follow by
induction.

We shall return to this topic in Chapter IV.

3. Poisson Integrals

Let u(z) be a continuous function on the closed unit disc D̄. If u(z) is
harmonic on the open disc D, that is, if

�u = ∂ 2u

∂x2
+ ∂ 2u

∂y2
= 0,

then u(z) has the mean value property

u(0) = 1

2π

∫ 2π

0

u(eiθ ) dθ.

Let z0 = reiθ0 be a point in D. Then there is a similar representation formula
for u(z0), obtained by changing variables through a Möbius transformation.
Let τ (z) = (z − z0)/(1 − z̄0z). The unit circle ∂D is invariant under τ , and we
may write τ (eiθ ) = eiϕ . Differentiation now gives

dϕ

dθ
= 1 − |z0|2

|eiθ − z0|2 = 1 − r2

1 − 2r cos(θ − θ0) + r2
= Pz0

(θ ).(3.1)
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This function Pz0
(θ ) is called the Poisson kernel for the point z0 ∈ D. Since

u(τ−1(z)) is another function continuous on D̄ and harmonic on D, the change
of variables yields

u(z0) = u(τ−1(0)) = 1

2π

∫ 2π

0

u(eiθ )Pz0
(θ ) dθ.

This is the Poisson integral formula.
Notice that the Poisson kernel Pz(θ ) also has the form

Pz(θ ) = Re
eiθ + z

eiθ − z
,

so that for eiθ fixed, Pz(θ ) is a harmonic function of z ∈ D. Hence the function
defined by

u(z) = 1

2π

∫
Pz(θ ) f (θ ) dθ(3.2)

is harmonic on D whenever f (θ ) ∈ L1(∂D). Since Pz(θ ) is also a continuous
function of θ , we get a harmonic function from (3.2) if we replace f (θ ) dθ

by a finite measure dμ(θ ) on ∂D. The extreme right side of (3.1) shows that
the Poisson integral formula may be interpreted as a convolution. If z = reiθ0 ,
then

Pz(θ ) = Pr (θ0 − θ )

and (3.2) takes the form

u(z) = 1

2π

∫
Pr (θ0 − θ ) f (θ ) dθ = (Pr ∗ f )(θ0).

This reflects the fact that the space of harmonic functions on D is invariant
under rotations.

Map D to the upper half plane H by w → z(w) = i(1 − w)/(1 + w). Fix
w0 ∈ D and let z0 = z(w0) be its image in H . Our map sends ∂D to � ∪ {∞},
so that if w = eiθ ∈ ∂D, and w �= −1, then z(w) = t ∈ �. Differentiation now
gives

1

2π
Pw0

(θ )
dθ

dt
= 1

π

y0

(x0 − t)2 + y2
0

= Pz0
(t), z0 = x0 + iy0.

The right side of this equation is the Poisson kernel for the upper half plane,
Pz0

(t) = Py0
(x0 − t). (The notation is unambiguous because z0 ∈ H but

y0 �∈ H .) Pulling the Poisson integral formula for D over to H , we see
that

u(z) =
∫

Pz(t)u(t) dt =
∫

Py(x − t)u(t) dt(3.3)
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whenever the function u(z) is continuous on H ∪ {∞} and harmonic on H .
When t ∈ � is fixed, the Poisson kernel for the upper half plane is a harmonic
function of z, because

Pz(t) = 1

π
Im

(
1

t − z

)

.

From its defining formula we see that Pz(t) ≤ cz/(1 + t2), where cz is a con-
stant depending on z. Consequently, if 1 ≤ q ≤ ∞, then Pz(t) ∈ L2(�), and
the function

u(z) =
∫

Pz(t) f (t) dt(3.4)

is harmonic on H whenever f (t) ∈ L p(�), 1 ≤ p ≤ ∞. Moreover, since
Pz(t) is a continuous function of t, (3.4) will still produce a harmonic function
u(z) if f (t) dt is replaced by a finite measure dμ(t) or by a positive measure
dμ(t) such that

∫
1

1 + t2
dμ(t) < ∞

(so that
∫

Pz(t) dμ(t) converges).
Now let f (t) be the characteristic function of an interval (t1, t2). The resulting

harmonic function

ω(z) =
∫ t2

t1

Py(x − t) dt,

called the harmonic measure of the interval, can be explicitly calculated. We
get

ω(z) = 1

π
arg

(
z − t2
z − t1

)

= α

π
,

where α is the angle at z formed by t1 and t2. See Figure I.1. This angle α

is constant at points along the circular arc passing through t1, z, and t2, and
α is the angle between the real axis and the tangent of that circular arc. A
similar geometric interpretation of harmonic measure on the unit disc is given
in Exercise 3.

Figure I.1. A level curve of ω(z).
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The Poisson integral formula for the upper half plane can be written as a
convolution

u(z) =
∫

Py(x − t) f (t) dt = (Py ∗ f )(t).

This follows from the formula defining the Poisson kernel, and reflects the
fact that under the translations z → z + x0, x0 real, the space of harmonic
functions on H is invariant. The harmonic functions are also invariant under
the dilations z → az, a > 0, and accordingly we have

Py(t) = (1/y)P1(t/y),

which means Py is homogeneous of degree −1 in y. The Poisson kernel has
the following properties, illustrated in Figure I.2:

(i) Py(t) ≥ 0,
∫

Py(t) dt = 1.
(ii) Py is even, Py(−t) = Py(t).

(iii) Py is decreasing in t > 0.
(iv) Py(t) ≤ 1/πy.

For any δ > 0,

(v) sup|t |>δ Py(t) → 0 (y → 0).

(vi)
∫
|t |>δ

Py(t) dt → 0 (y → 0).

Moreover, {Py} is a semigroup.

(vii) Py1
∗ Py2

= Py1+y2
.

Figure I.2. The Poisson kernels P1/4 and P1/8.

The first six properties are obvious from the definition of Py(t), and properties
(iv)–(vi) also follow from the homogeneity in y. Property (vii) means that if
u(z) is a harmonic function given by (3.4), then u(z + iy1) can be computed
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from u(t + iy1), t ∈ �, by convolution with Py . To prove (vii), consider the
harmonic function u(x + iy) = Py1+y(x). This function extends continuously

to H ∪ {∞}. Consequently by (3.3),

Py1+y2
(x) =

∫
Py2

(x − t)u(t) dt = (Py1
∗ Py2

)(x).

An important tool for studying integrals like (3.4) is the Minkowski inequality
for integrals:

If μ and v are σ -finite measures, if 1 ≤ p < ∞, and if F(x, t) is ν × μ

measurable, then
∥
∥
∥
∥

∫
F(x, t)dν(x)

∥
∥
∥
∥

L p(μ)

≤
∫

‖F(x, t)‖L p(μ) dν(x).

This is formally the same as Minkowski’s inequality for sums of L p(μ) func-
tions and it has the same proof. The case p = 1 is just Fubini’s theorem. For
p > 1 we can suppose that F(x, t) ≥ 0 and that F(x, t) is a simple function,
so that both integrals converge. Set

G(t) =
(∫

F(x, t) dν(x)

)p−1

.

Then with q = p/(p − 1),

‖G‖Lq (μ) =
∥
∥
∥
∥

∫
F(x, t) dν(x)

∥
∥
∥
∥

p−1

L p(μ)

,

and by Fubini’s theorem and Hölder’s inequality,
∥
∥
∥
∥

∫
F(x, t) dν(x)

∥
∥
∥
∥

p

L p(μ)

=
∫

G(t)
∫

F(x, t) dν(x) dμ(t)

=
∫ ∫

G(t)F(x, t) dμ(t) dν(x)

≤
∫

‖G‖Lq (μ)‖F(x, t)‖L p(μ) dν(x)

= ‖G‖Lq (μ)

∫
‖F(x, t)‖L p(μ) dν(x).

Canceling ‖G‖Lq (μ) from each side now gives the Minkowski inequality.
Using Minkowski’s inequality we obtain

(∫
|u(x, y)|p dx

)1/p

≤ ‖ f ‖p, 1 ≤ p < ∞,(3.5)

if u(x, y) = Py ∗ f (x), f ∈ L p; and
∫

|u(x, y)| dx ≤
∫

| dμ|(3.6)
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if u(x, y) = Py ∗ μ = ∫
Py(x − t) dμ(t), where μ is a finite measure on �.

For p = ∞ the analog of (3.5), supx |u(x, y)| ≤ ‖ f ‖∞, is trivial from property
(i) of Py(t).

Theorem 3.1. (a) If 1 ≤ p < ∞ and if f (x) ∈ L p, then

‖Py ∗ f − f ‖p → 0 (y → 0).

(b) When f (x) ∈ L∞, Py ∗ f converges weak-star to f (x).
(c) If dμ is a finite measure on �, the measures (Py ∗ μ)(x) dx converge

weak-star to dμ.
(d) When f (x) is bounded and uniformly continuous on �, Py ∗ f (x) con-

verges uniformly to f (x).

Statement (b) means that for all g ∈ L1,
∫

g(x)(Py ∗ f )(x) dx →
∫

f (x)g(x) dx (y → 0).

Statement (c) has a similar meaning:
∫

g(x)(Py ∗ μ)(x) dx →
∫

g(x) dμ(x) (y → 0),

for all g ∈ C0(�), the continuous functions vanishing at ∞. It follows from
Theorem 3.1 that f ∈ L p is uniquely determined by the harmonic function
u(z) = Py ∗ f (x) and that a measure μ is determined by its Poisson integral
Py ∗ μ. Note also that by (a) or (b)

lim
y→0

‖Py ∗ f ‖p = ‖ f ‖p, 1 ≤ p ≤ ∞.

By (3.5) and property (vii), the function ‖Py ∗ f ‖p is monotone in y.
Besides Minkowski’s inequality, the main ingredient of the proof of the the-

orem is the continuity of translations on L p, 1 ≤ p < ∞: If fx (t) = f (t − x),
then ‖ fx − f ‖p → 0(x → 0). (To prove this approximate f in L p norm by a
function in C0(�).) The translations are not continuous on L∞ nor are they
on the space of finite measures; that is why we have weaker assertions in
(b) and (c). The translations are of course continuous on the space of uni-
formly continuous functions, and for this reason (d) holds.

Proof. Let f ∈ L p, 1 ≤ p ≤ ∞. When p = ∞ we suppose in addition that
f is uniformly continuous. Then

Py ∗ f (x) − f (x) =
∫

Py(t)( f (x − t) − f (x)) dt.

Minkowski’s inequality gives

‖Py ∗ f − f ‖p ≤
∫

Py(t)‖ ft − f ‖p dt,
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when p < ∞, because Py ≥ 0. The same inequality is trivial when p = ∞.
For δ > 0, we now have

‖Py ∗ f − f ‖p ≤
∫

|t |≤δ

Py(t)‖ ft − f ‖p dt +
∫

|t |>δ

Py(t)‖ ft − f ‖p dt.

Since
∫

Py(t) dt = 1, continuity of translations shows that
∫
|t |≤δ

is small pro-

vided δ is small. With δ fixed,
∫

|t |>δ

≤ 2‖ f ‖p

∫

|t |>δ

Py(t) dt → 0 (y → 0)

by property (vi) of the Poisson kernel. That proves (a) and (d). By Fubini’s
theorem, parts (b) and (c) follow from (a) and (d), respectively.

Corollary 3.2. Assume f (x) is bounded and uniformly continuous, and let

u(x, y) =
{

(Py ∗ f )(x), y > 0,

f (x), y = 0.

Then u(x, y) is harmonic on H and continuous on H .

This corollary follows from (d). We also need the local version of the
corollary.

Lemma 3.3. Assume f (x) ∈ L p, 1 ≤ p ≤ ∞, and assume f is continuous
at x0. Let u(x, y) = Py ∗ f (x). Then

lim
(x,y)→x0

u(x, y) = f (x0).

Proof. We have

|u(x, y) − f (x0)| ≤
∫

|t |<δ

Py(t)| f (x − t) − f (x0)| dt +
∫

|t |≥δ

.

With δ small and |x − x0| small,
∫
|t |<δ

is small. With δ fixed,
∫
|t |≥δ

tends to

zero with y.

Notice that the convergence is uniform on a subset E ⊂ � provided the
continuity of f is uniform over x0 ∈ E and provided | f (x0)| is bounded on E.

It is important that the Poisson integrals of L p functions and measures are
characterized by the norm inequalities like (3.5) and (3.6). The proof of this
in the upper half plane requires the following lemma.

Lemma 3.4. If u(z) is harmonic on H and bounded and continuous on
H then

u(z) =
∫

Py(x − t)u(t) dt.
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Proof. The lemma is not a trivial consequence of the definition of Pz(t),
because u(z) may not be continuous at ∞. But let

U (z) = u(z) −
∫

Py(x − t)u(t) dt.

Then U (z) is harmonic on H , and bounded and continuous on H , and U ≡ 0
on �, by Lemma 3.3. Set

V (z) =
{

U (z), y ≥ 0,

−U (z̄), y < 0.

Then V is a bounded harmonic function on the complex plane, because V
has the mean value property over small discs. By Liouville’s theorem, V is
constant; V (z) = V (0) = 0. Hence U (z) = 0 and the lemma is proved.

Theorem 3.5. Let u(z) be a harmonic function on the upper half plane H .
Then

(a) If 1 < p ≤ ∞, u is the Poisson integral of a function in L p if and only
if

sup
y

∫
‖u(x + y)‖L p(dx) < ∞.(3.7)

(b) u(z) is the Poisson integral of a finite measure on � and only if

sup
y

∫
|u(x + iy)| dx < ∞.(3.8)

(c) u(z) is positive if and only if

u(z) = cy +
∫

Py(x − t) dμ(t),

where

c ≥ 0, μ ≥ 0, and
∫

dμ(t)

1 + t2
< ∞.

Proof. We have already noted that (3.7) and (3.8) are necessary conditions
because of Minkowski’s inequality. Suppose u(z) satisfies (3.7) or (3.8). Then
we have the estimate

|u(z)| ≤
(

2

πy

)1/p

sup
η>0

‖u(x, η)‖L p(dx),(3.9)



18 preliminaries Chap. I

which we now prove: Write ζ = ξ + iη. Then by Hölder’s inequality,

|u(z)| = 1

πy2

∣
∣
∣

∫∫

�(z,y)

u(ζ ) dξ dη

∣
∣
∣

≤
(

1

πy2

∫∫

�(z,y)

|u(ζ )|p dξ dη

)1/p

≤
(

1

πy2

∫ 2y

0

∫ ∞

−∞
|u(ξ + iη)|p dξ dη

)1/p

≤
(

2

πy

)1/p

sup
η>0

(∫
|u(ξ + iη)|p dξ

)1/p

.

The estimate (3.9) tells us u(z) is bounded on y > yn > 0, and Lemma 3.4
then gives

u(z + iyn) =
∫

Py(x − t)u(t + iyn) dt.

Let yn decrease to 0. If 1 < p ≤ ∞, the sequence fn(t) = u(t + iyn) is
bounded in L p. By the Banach–Alaoglu theorem, which says the closed unit
ball of the dual of a Banach space is compact in the weak-star topology,
{ fn} has a weak-star accumulation point f ∈ L p. Since Poisson kernels are in
Lq , q = p/(p − 1), we have

u(z) = lim
n

u(z + iyn) = lim
n

∫
Py(x − t) fn(t) dt =

∫
Py(x − t) f (t) dt.

The proof of (b) is the same except that now the measures u(t + iyn) dt ,
which have bounded norms, converge weak-star to a finite measure on �.

The easiest proof of (c) involves mapping H back onto D, using the analog
of (b) for harmonic functions on the disc, and then returning to H . A harmonic
function u(z) on D is the Poisson integral of a finite measure ν on ∂D if and
only if supr

∫ |u(reiθ )| dθ < ∞. The measure ν is then a limit of the measures
u(reiθ )dθ/2π in the weak-star topology on measures on ∂D. If u(z) ≥ 0, then
the measures u(reiθ ) dθ are positive and bounded since

1

2π

∫
u(reiθ ) dθ = u(0),

and so the limit ν exists and ν is a positive measure. That proves the disc
version of (c). Now map D to H by w → z(w) = i(1 − w)/(1 + w). The
harmonic function u on H is positive if and only if the harmonic function
u(z(w)), which is positive, is the Poisson integral of a positive measure v on
∂D. Consider first the case when v is supported on the point w = −1, which
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corresponds to z = ∞. Then

u(z(w)) = ν({−1})Pw(−1) = ν({−1})1 − |w|2
|1 + w|2

= ν({−1}) Im z = ν({−1})y.

Now assumeν({−1}) = 0. The map z(w) movesν onto a finite positive measure
ν̃ on �, and for t = z(eiθ )

Pw(θ ) = π (1 + t2)Pz(t).

In this case we have

u(z) =
∫

Py(x − t) dμ(t),

where

μ = π (1 + t2)ν̃.

The general case is the sum of the two special cases already discussed.

Part c) of Theorem 3.5 is known as Herglotz’s theorem. The results in this
section also hold in D, where they are easier to prove, when we write

u(reiθ ) = 1

2π

∫
Pr (θ − ϕ) f (ϕ) dϕ,

Pr (θ − ϕ) = 1 − r2

1 − 2r cos(θ − ϕ) + r2
, z = reiθ .

Most of these results also hold if {Py(t)} is replaced by some other approxi-
mate identity. Suppose {ϕy(t)}y>0 is a family of integrable functions on � such
that

(a)
∫

ϕy(t) dt = 1,
(b) ‖ϕy‖1 ≤ M ,

and such that for any δ > 0,

(c) limy→0 sup|t |>δ |ϕy(t)| = 0,

(d) limy→0

∫
|t |>δ

|ϕy(t)| dt = 0.

Then the reader can easily verify that Theorem 3.1 and its corollary hold for
ϕy ∗ f in place of Py ∗ f .

4. Hardy–Littlewood Maximal Function

To each function f on � we associate two auxiliary functions that respectively
measure the size of f and the behavior of the Poisson integral of f. The first
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auxiliary function can be defined whenever f is a measurable function on any
measure space (X, μ). This is the distribution function

m(λ) = μ({x ∈ X : | f (x)| > λ}),
defined for λ > 0. The distribution function m(λ) is a decreasing function of λ,
and it determines the L p norms of f . If f ∈ L∞, then m(λ) = 0 for λ ≥ ‖ f ‖∞,
and m(λ) > 0 for λ < ‖ f ‖∞; and so we have

‖ f ‖∞ = sup{λ : m(λ) > 0}.
Lemma 4.1. If (X, μ) is a measure space, if f (x) is measurable, and if
0 < p < ∞, then

∫
| f |p dμ =

∫ ∞

0

pλp−1m(λ) dλ.(4.1)

Proof. We may assume f vanishes except on a set of σ -finite measure,
because otherwise both sides of (4.1) are infinite. Then Fubini’s theorem
shows that both sides of (4.1) equal the product measure of the ordinate set
{(x, λ) : 0 < λ < | f (x)|p}. That is,

∫
| f |p dμ =

∫∫ | f |

0

pλp−1 dλ dμ =
∫ ∞

0

pλp−1μ(| f | > λ) dλ

=
∫ ∞

0

pλp−1m(λ) dλ.

We shall also need a simple estimate of m(λ) known as Chebychev’s in-
equality. Let f ∈ L p, 0 < p < ∞ and let

Eλ = {x ∈ X : | f (x)| > λ},
so that μ(Eλ) = m(λ). Chebychev’s inequality is

m(λ) ≤ ‖ f ‖p
p/λ

p.

It follows from the observation that

λpμ(Eλ) ≤
∫

Eλ

| f |p dμ ≤ ‖ f ‖p
p.

A function f that satisfies

m(λ) ≤ A/λp

is called a weak L p function. Thus Chebychev’s inequality states that every
L p function is a weak L p function. The function |x log x |−1 on [0, 1] is not in
L1, but it satisfies m(λ) = o(1/λ) (λ → ∞), and so it is weak L1.
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The other auxiliary function we shall define only for functions on �. Recall
Lebesgue’s theorem that if f (x) is locally integrable on �, then

lim
h→0
k→0

1

h + k

∫ x+k

x−h
f (t) dt = f (x)(4.2)

for almost every x ∈ �. To make Lebesgue’s theorem quantitative we replace
the limit in (4.2) by the supremum, and we put the absolute value inside
the integral. Write |I | for the length of an interval I. The Hardy–Littlewood
maximal function of f is

M f (x) = sup
x∈I

1

|I |
∫

I
| f (t)| dt

for f locally integrable on �. Now if f ∈ L p, p ≥ 1, then M f (x) < ∞ almost
everywhere. This follows from Lebesgue’s theorem, but we shall soon see a
different proof in Theorem 4.3 below. The important thing about Mf is that it
majorizes many other functions associated with f.

Theorem 4.2. For α > 0 and t ∈ �, let �α(t) be the cone in H with vertex
t and angle 2 arctan α, as shown in Figure I.3,

�α(t) = {(x, y) : |x − t | < αy, 0 < y < ∞}.
Let f ∈ L1(dt/(1 + t2)) and let u(x, y) be the Poisson integral of f (t),

u(x, y) =
∫

Py(s) f (x − s) ds.

Then

sup
�α(t)

|u(x, y)| ≤ Aα M f (t), t ∈ �,(4.3)

where Aα is a constant depending only on α.

Figure I.3. The cone �α(t), α = 2
3
.

The condition f ∈ L1(dt/(1 + t2)) merely guarantees that
∫

Py(s) f (x − s) ds
converges.
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Proof. We may assume t = 0. Let us first consider the points (0, y) on the
axis of the cone �α(0). Then

u(0, y) =
∫

Py(s) f (s) ds,

and the kernel Py(s) is a positive even function which is decreasing for positive
s. That means Py(s) is a convex combination of the box kernels (1/2h)χ(−h,h)(s)
that arise in the definition of Mf. Take step functions hn(s), which are also
nonnegative, even, and decreasing on s > 0, such that hn(s) increases with n
to Py(s). Then hn(s) has the form

N∑

j=1

a jχ(−x j ,x j )(s)

with a j ≥ 0, and
∫

hn ds = ∑
j 2x j a j ≤ 1. See Figure I.4. Hence

∣
∣
∣
∣

∫
hn(s) f (s) ds

∣
∣
∣
∣ ≤

∫
hn(s)| f (s)| ds ≤

N∑

j=1

2x j a j
1

2x j

∫ x j

−x j

| f (s)| ds ≤ M f (0).

Then by monotone convergence

|u(0, y)| ≤
∫

Py(s)| f (s)| ds ≤ M f (0).

Figure I.4. Py(s) and its approximation hn(s), which is a positive combination of box kernels
(1/2x j )χ(−x j ,x j )(s).

Now fix (x, y) ∈ �α(0). Then |x | < αy, and Py(x − s) is majorized by a pos-
itive even function ψ(s), which is decreasing on s > 0, such that

∫
ψ(s) ds ≤ Aα = 1 + 2α

π
.
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The function is ψ(s) = sup{Py(x − t) : |t | > s}. Approximating ψ(s) from
below by step functions hn(s) just as before, we have

∫
ψ(s)| f (s)| ds ≤ Aα M f (0)

and

|u(x, y)| ≤
∫

ψ(s)| f (s)| ds ≤ Aα M f (0),

which is (4.3).

Theorem 4.2 is, with the same proof, true for Poisson integrals of functions
on ∂D, where the cone is replaced by the region

�α(eiϕ) =
{

z :
|eiϕ − z|
1 − |z| < α, |z| < 1

}

, α > 1,

which is asymptotic, as z → eiϕ , to an angle with vertex eiϕ . The theorem is
quite general. The proof shows it is true with Py(x − s) replaced by any kernel
ϕy(x − s) which can be dominated by a positive, even function ψ(s), depending
on (x, y), provided that ψ is decreasing on s > 0 and that

∫
ψ(s) ds ≤ Aα

whenever (x, y) ∈ �α(t) (see Stein, [1970]).
The Hardy–Littlewood maximal theorem is this:

Theorem 4.3. If f ∈ L p(�), 1 ≤ p ≤ ∞, then M f (t) is finite almost every-
where.

(a) If f ∈ L1(�), then Mf is weak L1,

|{t ∈ � : M f (t) > λ}| ≤ (2/λ)‖ f ‖1, λ > 0.

(b) If f ∈ L p(�), with 1 < p ≤ ∞, then M f ∈ L p(�) and

‖M f ‖p ≤ Ap‖ f ‖p,

where Ap depends only on p.

In (a) we have used |E | to denote the Lebesgue measure of E ⊂ �. That
M f < ∞ almost everywhere follows from (a) or (b). Condition (a) says the
operator Mf is weak-type 1–1. The weak-type inequality in (a) is the best
possible result on Mf when f ∈ L1. Notice that if f ≡ 0, then Mf cannot
possibly be in L1, because for large x

M f (x) ≥ 1

|4x |
∫ 3x

−x
| f (t)| dt ≥ c

|x |
if ‖ f ‖1 �= 0. If f is supported on a finite interval I, then

∫
I M f (t)dt < ∞ if and

only if
∫

I | f | log+ | f | dt < ∞; we leave the proof as an exercise. By letting
f (t) = (1/h)χ(0,h)(t), and sending h → 0, one can see that the constant in
(a) cannot be improved upon.
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The proof of Theorem 4.3 will use two additional theorems: a covering
lemma of Vitali type for part (a) and the Marcinkiewicz interpolation theorem
for part (b).

Lemma 4.4. Let μ be a positive Borel measure on � and let {I1, . . . , In} be
a finite family of open intervals in �. There is a subfamily {J1, . . . , Jm} such
that the Ji are pairwise disjoint and such that

m∑

i=1

μ(Ji ) ≥ 1

2
μ

(
n⋃

j=1

I j

)

.

Proof. By induction {I1, . . . , In} can be replaced by a subfamily of intervals
such that no interval I j is contained in the union of the others and such that
the refined family has the same union as the original family. Write the I j in
the refined family as (α j , β j ) and index them so that

α1 ≤ α2 ≤ · · · αn.

Then β j+1 > β j since otherwise I j+1 ⊂ I j , and α j+1 > β j−1 since other-
wise I j ⊂ I j−1 ∪ I j+1. Therefore the even-numbered intervals and the odd-
numbered intervals comprise pairwise disjoint subfamilies. Then

∑

j even

μ(I j ) +
∑

j odd

μ(I j ) ≥ μ

(
n⋃

j=1

I j

)

,

and for {Ji } we take either the even-numbered intervals or the odd-numbered
intervals, which ever gives the larger sum.

Proof of Theorem 4.3(a). Assume f ∈ L1 and let λ > 0. Then the set
Eλ = {t : M f (t) > λ} is open, and therefore measurable. For each t ∈ Eλ we
have an open interval I containing t such that

1

|I |
∫

1

| f | ds > λ,

which is the same as

|I | <
1

λ

∫

t
| f | ds.(4.4)

Let K be a compact subset of Eλ and cover K by finitely many intervals
I1, . . . , In that satisfy (4.4). Applying the lemma to {I1, . . . , In} gives us
pairwise disjoint intervals J1, J2, . . . , Jm , that satisfy (4.4) such that

∣
∣
∣
∣
∣

n⋃

j=1

I j

∣
∣
∣
∣
∣
≤ 2

m∑

j=1

|Jj |.
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Then

|K | ≤
∣
∣
∣
∣
∣

n⋃

i=1

I j

∣
∣
∣
∣
∣
≤ 2

∑

j

1

λ

∫

J j

| f | ds ≤ 2

λ

∫
| f | ds.

Letting |K | increase to |Eλ| gives us part (a).

The proof of part (b) depends on the interpolation theorem of Marcinkiewicz.

Theorem 4.5. Let (X, μ) and (Y, ν) be measure spaces, and let 1 < p1 ≤ ∞.
Suppose T is a mapping from L1(X, μ) + L p1 (X, μ) to v-measurable functions
such that

(i) |T ( f + g)(y)| ≤ |T f (y)| + |T g(y)|;
(ii) ν({y : |T f (y)| > λ}) ≤ (A0/λ)‖ f ‖1, f ∈ L1;

(iii) ν({y : |T f (y)| > λ}) ≤ ((A1/λ)‖ f ‖p1
)p1, f ∈ L p1 ;

(when p1 = ∞ we assume instead that

‖T f ‖∞ ≤ A1‖ f ‖∞).

Then for 1 < p < p1,

‖T f ‖p ≤ Ap‖ f ‖p, f ∈ L p,

where Ap depends only on A0, A1, p, and p1.

The hypothesis that the domain of T is L1(X, μ) + L p1 (X, μ) is just a
device to make sure Tf is defined when f ∈ L p, 1 ≤ p ≤ p1. For f ∈ L p,
write f = f χ| f |>1 + f χ| f |≤1 = f0 + f1. Then | f0| ≤ | f |p ∈ L1 and | f1| ≤
| f |p/p1 ∈ L p1 . Before proving the theorem, let us use it to prove the remaining
part (b) of the Hardy–Littlewood maximal theorem.

Proof of Theorem 4.3(b). In this case the measure spaces are both (�, dx).
The operator M clearly satisfies the subadditivity condition (i). Condition
(ii) we proved as part (a) of the Hardy–Littlewood theorem. We take p1 = ∞
and condition (iii) holds with A1 = 1. The Marcinkiewicz theorem then tells
us

‖M f ‖p ≤ Ap‖ f ‖p, 1 < p ≤ ∞
which is the assertion in part (b) of Theorem 4.3. It of course follows that
M f < ∞ almost everywhere.

Proof of Theorem 4.5. Fix f ∈ L p, 1 < p < p1, and, λ > 0. Let

Eλ = {y : |T f (y)| > λ}.
We are going to get a tight grip on ν(Eλ) and then use Lemma 4.1 to estimate
‖T f ‖p. The clever Marcinkiewicz idea is to split f at λ/2A1. Write

f0 = f χ{x :| f (x)|>λ/2A1}, f1 = f χ{x :| f (x)|≤λ/2A1}.
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Then |T f (y)| ≤ |T f0(y)| + |T f1(y)|, and Eλ ⊂ Bλ ∪ Cλ, where

Bλ = {y : |T f0(y)| > λ/2}, Cλ = {y : |T f1(y)| > λ/2}.
Now by (ii) we have

ν(Bλ) ≤ 2
A0

λ
‖ f0‖1 ≤ 2

A0

λ

∫

| f |>λ/2A1

| f | dμ.

To estimate ν(Cλ) we consider two cases. If p1 = ∞, then ‖ f1‖∞ < λ/2A1

and by (iii) Cλ = ∅. (This explains the presence of A1 in the definitions of f0

and f1.) If p1 < ∞, we have by (iii)

ν(Cλ) ≤
(

2

λ
A1‖ f1‖p1

)p1

≤ (2A1)p1

λp1

∫

| f |≤λ/2A1

| f |p1 dμ.

We bound ν(Eλ) by ν(Bλ) + ν(Cλ) and use Lemma 4.1. The case p1 = ∞ is
easier:

‖T f ‖p
p =

∫ ∞

0

pλp−1ν(Eλ)dλ ≤
∫ ∞

0

pλp−1

(
2A0

λ

∫

| f |>λ/2A1

| f | dμ

)

dλ

≤ 2A0 p
∫

| f |
∫ 2A1| f |

0

λp−2dλ dμ = 2p A0 Ap−1
1 p

p − 1

∫
| f |p dμ,

because p − 2 > −1. Hence T f ∈ L p. If p1 < ∞, we have the same thing
plus an additional term bounding ν(Cλ):

‖T f ‖p
p ≤

∫ ∞

0

pλp−1

(
2A0

λ

∫

| f |>λ/2A1

| f | dμ

)

dλ

+
∫ ∞

0

pλp−1 (2A1)p1

λp1

∫

| f |≤λ/2A1

| f |p1 dμ dλ.

The first integral we just estimated in the proof for p1 = ∞. The second integral
is

(2A1)p1 p
∫

| f |p1

∫ ∞

2A1| f |
λp−p1−1 dλ dμ = (2A1)p p

p1 − p

∫
| f |p dμ

because p − p1 − 1 < −1. Altogether this gives

‖T f ‖p ≤ Ap‖ f ‖p

with

Ap
p ≤ 2p Ap−1

1

(
A0 p

p − 1
+ A1 p

p1 − p

)

,

which proves the theorem.
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It is interesting that as p → 1, Ap ≤ A/(p − 1) for some constant A, and if
p1 = ∞, then limp→∞ Ap ≤ A1. For the maximal function we obtain

Ap
p = p2p+1/(p − 1).

Other splittings of f = f0 + f1 give more accurate estimates of the dependen-
cies of Ap on A0 and A1 (see Zygmund [1968, Chapter XII]).

5. Nontangential Maximal Function and Fatou’s Theorem

Fix α > 0, and consider the cones

�α(t) = {z ∈ H : |x − t | < αy}, t ∈ �.

If u(z) is a harmonic function on H , the nontangential maximal function of u
at t ∈ � is

u∗(t) = sup
�α(t)

|u(z)|.

The value of u∗ depends on the parameter α, but since α has been fixed we
will ignore that distinction.

Theorem 5.1. Let u(z) be harmonic on H and let 1 ≤ p < ∞. Assume

sup
y

∫
|u(x + iy)|p dx < ∞.

If p > 1, then u∗(t) ∈ L p, and

‖u∗‖p
p ≤ Bp sup

y

∫
|u(x + iy|p dx .(5.1)

If p = 1, then u∗ is weak L1, and

|{t : u∗(t) > λ} ≤ B1

λ
sup

y

∫
|u(x + iy)| dx .(5.2)

The constants Bp depend only on p and α.

Proof. Let p > 1. Then u(z) is the Poisson integral of a function f (t) ∈
L p(�), and

‖ f ‖p ≤ sup
y

(∫
|u(x + iy)|p dx

)1/p

.

Theorem 4.2 says that u∗(t) ≤ Aα M f (t), and the Hardy–Littlewood theorem
then yields (5.1).
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If p = 1, we know only that u(z) is the Poisson integral of a finite measure
μ on � and

∫
|dμ| ≤ sup

y

∫
|u(x + iy)| dx,

because μ is a weak-star limit of the measures u(x + iy) dx, y → 0. Define

M(dμ)(t) = sup
t∈I

(|μ|(I )/|I |).

The proof of Theorem 4.2 shows that u∗(t) ≤ Aα M(dμ)(t). And the proof of
part (a) of Theorem 4.3 shows that M(dμ)(t) is weak L1 and

|{t : M(dμ)(t) > λ} ≤ 2

λ

∫
d|μ|.

Therefore (5.2) holds in the case p = 1.

The nontangential maximal function u∗ will be more important to us than
the Hardy–Littlewood maximal function Mf. The next corollary is stated to
emphasize the strength of Theorem 5.1.

Corollary 5.2. If u(z) is harmonic on H and if p > 1, then
∫

sup
y

|u(x + iy)|p dx ≤ Bp sup
y

∫
|u(x + iy)|p dx .

Note that Corollary 5.2 is false at p = 1. Take u(x, y) = Py ∗ f (x), f ∈
L1, f > 0. Then supy |u(x, y)| ≥ M f (x) and M f �∈ L1.

Theorem 5.3 (Fatou). Let u(z) be harmonic on H , let 1 ≤ p ≤ ∞ and
assume

sup
y

‖u(x + iy)‖L p(dx) < ∞.

Then for almost all t the nontangential limit

lim
�α(t)�z→t

u(z) = f (t)

exists.
If p > 1, u(z) is the Poisson integral of the boundary value function f (t),

and if 1 < p < ∞,

‖u(x + iy) − f (x)‖p → 0 (y → 0).

If p = 1, then u(z) is the Poisson integral of a finite measure μ on �, and μ

is related to the boundary value function f (t) by

dμ = f (t) dt + dν,

where dν is singular to Lebesgue measure.
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Proof. First, let 1 ≤ p < ∞ and assume u(z) is the Poisson integral of a
function f (t) ∈ L p. We will show u(z) has nontangential limit f (t) for almost
all t. We can assume f is real valued. Let

� f (t) = lim
z→t

u(z) − lim
z→t

u(z),

where z is constrained to �α(t). Then by the maximal theorem � f (t) ≤
2u∗(t) ≤ 2Aα M f (t), so that � f , as well as the limes superior and the limes
inferior, is finite almost everywhere. The function � f (t) represents the non-
tangential oscillation of u at t, and u has a nontangential limit at t if and only
if � f (t) = 0.

By Theorem 5.1, and by Chebychev’s inequality if p > 1, we have

|{t : � f (t) > ε}| ≤ Bp

(
2

ε
‖ f ‖p

)p

.(5.3)

Now if g ∈ L p and if in addition g ∈ C0(�), then by Theorem 3.1, �g = 0 for
all t, and so � f = � f +g. Take g ∈ C0(�) so that ‖ f + g‖p ≤ ε2. Then

|{t : � f (t) > ε}| = |{t : � f +g(t) > ε}| ≤ Bp

(
2

ε
‖ f + g‖p

)p

≤ cpε
p.

Consequently � f (t) = 0 almost everywhere and u has a nontangential limit
almost everywhere. The limit coincides with f (t) almost everywhere because
u(x, y) converges in L p norm to f (x). That proves the theorem in the case
1 < p < ∞ and, provided that u(z) is the Poisson integral of an L1 function,
in the case p = 1.

Let p = ∞, and let u(z) = (Py ∗ f )(x), with f (t) ∈ L∞. Let A > 0 and
write f (t) = f1(t) + f2(t) where f2 = 0 on (−A, A) and f1 ∈ L1. Then
u(z) = u1(z) + u2(z), where u j (z) = (Py ∗ f j )(x), j = 1, 2. It was proved
above that u1(z) has nontangential limit f1(t) almost everywhere, and by
Lemma 3.3 uz(z) has limit f2(t) = 0 everywhere on (−A, A). Hence u(z)
converges to f (t) nontangentially almost everywhere on (−A, A). Letting
A → ∞ we have the result for p = ∞.

Now let p = 1 and assume

sup
y

‖u(x + iy)‖L1(dx) < ∞.

Then u(z) is the Poisson integral of a finite measure μ on �. Write dμ =
f (t) dt + dν, where dν is singular to dx , and let u1(z) = (Py ∗ f )(x), u2(z) =
(Py ∗ ν)(x). Then u(z) = u1(z) + u2(z). It was shown above that u1(z) has
nontangential limit f (t) almost everywhere. Because ν is singular, the next
lemma shows u2(z) has nontangential limit zero almost everywhere, and that
concludes the proof.

Lemma 5.4. If ν is a finite singular measure on �, then (Py ∗ ν)(x) converges
nontangentially to zero almost everywhere.
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Proof. We may assume ν ≥ 0. Because ν is singular, we have

lim
h→0

ν((t − h, t + h))

2h
= 0(5.4)

for Lebesgue almost all t. Indeed, if (5.4) were not true, there would be a
compact set K such that |K | > 0, ν(K ) = 0, and

lim
h→0

ν((t − h, t + h))

2h
> a > 0, all t ∈ K .

Cover K by finitely many intervals I j such that ν(∪I j ) < ε and such that
ν(I j ) > a|I j |. By the covering lemma 4.4, pairwise disjoint intervals {Ji } can
be chosen from the {I j } such that

|K | ≤ 2
∑

|Ji | <
2

a

∑
ν(Ji ) <

2ε

a
,

a contradiction for ε sufficiently small.
Suppose (5.4) holds at t ∈ �. Let z ∈ �α(t) and suppose for simplicity that

Re z = t . Since ν ≥ 0, we have

(Py ∗ ν)(t) =
∫

|s−t |<Ay
Py(t − s) dν(s) +

∫

|s−t |≥Ay
Py(t − s)dν(s).

The second integral does not exceed (π A2 y)−1
∫

dν. If we approximate
Py(s)χ|s|<Ay(s) from below by even step functions, as in the proof of
Theorem 4.2, we see that

∫

|s−t |<Ay
Py(t − s)dν(s) ≤ sup

h<Ay

ν((t − h, t + h))

2h
.

Choosing A = A(y) so that Ay → 0 (y → 0) but A2 y → ∞ (y → 0), we
obtain Py ∗ ν(t) → 0(y → 0) if (5.4) holds at t. The estimates when |x − t | <

αy are quite similar and we leave them to the reader.

A positive measure σ on H is called a Carleson measure if there is a
constant N (σ ) such that

σ (Q) ≤ N (σ )h(5.5)

for all squares

Q = {x0 < x < x0 + h, 0 < y < h}.
The smallest such constant N (σ ) is the Carleson norm of σ .

Lemma 5.5. Let σ be a positive measure on H , and let α > 0 . Then σ is a
Carleson measure if and only if there exists A = A(α) such that

σ ({|u(z)| > λ}) ≤ A|{t : u∗(t) > λ}|, λ > 0,(5.6)
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for every harmonic function u(z) on H , where u∗(t) is the nontangential
maximal function of u(z) over the cone {|x − t | < αy}. If A is the least constant
such that (5.6) holds, then

c1(α)A ≤ N (σ ) ≤ c2(α)A.

Proof. We take α = 1. The proof for a different α is similar. Assume σ is
a Carleson measure. The open set {t : u∗(t) > λ} is the union of a disjoint
sequence of open intervals {I j }, with centers c(I j ). Let Tj be the tent

Tj = {z : |x − c(I j )| + y < |I j |/2},
an isosceles right triangle with hypotenuse I j . If |u(z)| > λ, then u∗(t) > λ on
the interval {|t − x | < y} and this interval is contained in some I j . See Figure
I.5. Consequently,

{z : |u(z)| > λ} ⊂
∞⋃

j=1

Tj .

By (5.5) we therefore have

σ ({z : |u(z)| > λ}) ≤
∑

j

σ (Tj ) ≤ N (σ )
∑

j

|I j | = N (σ )|{t : u∗(t) > λ}|,

and (5.6) holds.

Figure I.5.

Conversely, let I be an interval {x0 < t < x0 + h} and let u(z) = Py ∗ f (x)
with f (x) = 4λχI (x). Then u(z) > λ on the square Q with base I, so that by
(5.6) and the maximal theorem,

σ (Q) ≤ A|{t : u∗(t) > λ}| ≤ (AC/λ)‖ f ‖1 ≤ ACh,

and σ is a Carleson measure.

Theorem 5.6. (Carleson). Let f ∈ L p(�) and let u(z) denote the Poisson
integral of f. If σ is a positive measure on the upper half plane, then the
following are equivalent.

(a) σ is a Carleson measure.
(b) For 1 < p < ∞, and for all f ∈ L p(�), u(z) ∈ L p(σ ).
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(c) For 1 < p < ∞,
∫

|u(z)|pdσ ≤ C p

∫
| f |p dt, f ∈ L p.

(d) For all f ∈ L1(�), we have the distribution function inequality

σ ({z : |u(z)| > λ}) ≤ (c1/λ)

∫
| f (t)| dt, λ > 0.

If (b) or (c) holds for one value of p, 1 < p < ∞, then (a) holds.
The constants C p depend only on p and the constant N (σ ) in (5.5). In fact,

if (a) holds, we can take C p = N (σ )Bp where Bp is the constant in Theorem
5.1 with α = 1. If (c) or (d) holds then (5.5) holds with N (σ ) ≤ 4pC p.

Proof. If (a) holds, then by (5.6) and Theorem 5.1, (c) and (d) hold. Clearly,
(c) implies (b), and if (b) holds for some p, then the closed graph theorem for
Banach spaces shows that (c) holds for the same value of p.

Now suppose that (d) holds or that (c) holds for some p, 1 < p < ∞. As
in the proof of Lemma 5.5, take I = {x0 < t < x0 + h}, and set u(z) = Py ∗
f (x), f (t) = 4χI (t). Then ‖ f ‖p = 4h1/p, and u(z) > 1 on Q = I × (0, h).
Hence

σ (Q) ≤ σ ({|u(z)| > 1}) ≤ C p

∫
| f |p dt = 4pC ph,

and (5.5) holds.

6. Subharmonic Functions

Let � be an open set in the plane. A subharmonic function on � is a function
v : � → [−∞, ∞] such that

(a) v is upper semicontinous:

v(z0) ≥ lim
z→z0

v(z), z0 ∈ �,

(b) for each z0 ∈ � there is r (z0) > 0 such that the disc �(z0, r (z0)) = {z :
|z − z0| < r (z0)} is contained in � and such that for every r < r (z0),

v(z0) ≤ 1

πr2

∫∫

|z−z0|<r
v(z) dx dy.(6.1)

The semicontinuity guarantees that v is measurable and bounded above on
any compact subset of �. Therefore the integral in (6.1) either converges or
diverges to −∞.

Every harmonic function is subharmonic, but our primary example of a
subharmonic function is v(z) = log | f (z)|, where f (z) is an analytic function
on �. It is clear that v(z) is upper semicontinuous. Condition (6.1) is trivial



Sect. 6 subharmonic functions 33

at a point z0 for which f (z0) = 0. If f (z0) �= 0, then log f (z) has a single-
valued determination on some neighborhood of z0, and v(z) = Re(log f (z)) is
harmonic on this neighborhood. Hence (6.1) holds with equality if f (z0) �= 0.

Lemma 6.1. (Jensen’s Inequality). Let (X, μ) be a measure space such that
μ is a probability measure, μ(X ) = 1. Let v ∈ L1(μ) be a real function, and
let ϕ(t) be a convex function on �. Then

ϕ

(∫
v dμ

)

≤
∫

ϕ(v) dμ.

Proof. The convexity of ϕ means that ϕ(t) is the supremum of the linear
functions lying below ϕ:

ϕ(t0) = sup{at0 + b : at + b ≤ ϕ(t), t ∈ �}.
Whenever at + b ≤ ϕ(t), we have

a

(∫
v dμ

)

+ b =
∫

(av + b) dμ ≤
∫

ϕ(v) dμ,

and the supremum of the left sides of these inequalities is ϕ(
∫

v dμ).

Jensen’s inequality is also true if
∫

v dμ = −∞, provided that ϕ is defined
at t = −∞ and increasing on [−∞, ∞). The proof is trivial in that case.

Theorem 6.2. Let v(z) be a subharmonic function on �, and let ϕ(t) be an
increasing convex function on [−∞, ∞), continuous at t = −∞. Then ϕ ◦ v

is a subharmonic function on �.

Proof. Since every convex function is continuous on �, ϕ is continuous on
[−∞, ∞). It follows immediately that ϕ ◦ v is upper semicontinuous. If z0 ∈ �

and if r < r (z0), then because ϕ is increasing

ϕ(v(z0)) ≤ ϕ

⎛

⎝ 1

πr2

∫∫

�(z0,r )

v(z) dx dy

⎞

⎠ .

By Jensen’s inequality, then

ϕ(v(z0)) ≤ 1

πr2

∫∫

�(z0,r )

ϕ(v) dx dy,

which is (6.1) for ϕ(v).

For example, if f (z) is analytic on �, then | f (z)|p = exp(p log | f (z)|) is a
subharmonic function on � if 0 < p < ∞, and

log+ | f (z)| = max(log | f (z)|, 0)
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is also a subharmonic function on �. Notice the contrast with the situation
for harmonic functions, where we have |u|p subharmonic only for p ≥ 1 (by
Hölder’s inequality).

Theorem 6.3. Let v : � → [−∞, ∞] be an upper semicontinuous function.
Then v is subharmonic on � if and only if the following condition holds: If
u(z) is a harmonic function on a bounded open subset W of � and if

lim
W�z→ζ

(v(z) − u(z)) ≤ 0

for all ζ ∈ ∂W , then

v(z) ≤ u(z), z ∈ W.

Proof. Assume v(z) is subharmonic on �. Let u(z) and W be as in the above
statement. Then V (z) = v(z) − u(z) is subharmonic on W, and

lim
W�z→ζ

V (z) ≤ 0

for all ζ ∈ ∂W .
Using a standard maximum principle argument we now show V ≤ 0 in W.

We can assume W is connected. Let a = supW V (z) and suppose a > 0. Let
{zn} be a sequence in W such that V (zn) → a. Since a > 0, the zn cannot
accumulate on ∂W , and there is a limit point z ∈ W . By the semicontinuity,
V (z) = a, and the set

E = {z ∈ W : V (z) = a}
is not empty. The set E is closed because V is upper semicontinuous and has
maximum value a.

If z0 ∈ E , then because V (z) ≤ a on W, the mean value inequality (6.1)
shows V (z) = a almost everywhere on �(z0, r ), for some r > 0. Hence E
is dense in �(z0, r ). Because E is closed this means �(z0, r ) ⊂ E , and E is
open. Since W was assumed to be connected, we have a contradiction and we
conclude that a ≤ 0.

Conversely, let z0 ∈ � and let�(z0, r ) ⊂ �. Since v is upper semicontinuous
there are continuous functions un(z) decreasing to v(z) on ∂�(z0, r ) as n → ∞.
Let Un(z) be the harmonic function on �(z0, r ) with boundary values un(z).
After a suitable change of scale, Un is obtained from un by the Poisson integral
formula for the unit disc. From Section 3 we know that Un is continuous on
�(z0, r ). By hypothesis we have v(z0) ≤ Un(z0), and hence

v(z0) ≤ lim
n

1

2π

∫
un(z0 + reiθ ) dθ = 1

2π

∫
v(z0 + reiθ ) dθ

by monotone convergence. Averaging these inequalities against rdr then gives
(6.1), and so v(z) is subharmonic.
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The proof just given shows that if v(z) is subharmonic on �, then (6.1) holds
for any r > 0 such that �(z0, r ) ⊂ �. It also shows that we can replace area
means by circular means in (6.1). The condition

v(z0) ≤ 1

2π

∫
v(z0 + reiθ ) dθ,

0 < r < r (z0), is therefore equivalent to (6.1).

Corollary 6.4. If � is a connected open set and if v(z) is a subharmonic
function on � such that v(z) �≡ −∞, then whenever �(z0, r ) ⊂ �,

1

2π

∫
v(z0 + reiθ ) dθ = −∞.

Proof. Let un(z) be continuous functions decreasing to v(z) on ∂�(z0, r ), and
let Un(z) denote the harmonic extension of un to �(z0, r ). If

1

2π

∫
v(z0 + reiθ ) dθ = −∞,

then since v is bounded above and since Poisson kernels are bounded and
positive, we have

1

2π

∫
Pz(θ )v(z0 + reiθ ) dθ = −∞, |z| < 1.

Consequently Un(z) → −∞ for each z ∈ �(z0, r ), and by Theorem 6.3 v =
−∞ on �(z0, r ). The nonempty set

{z ∈ � : v(z) ≡ −∞ on a neighborhood of z}
is then open and closed, and we again have a contradiction.

Theorem 6.5. Let v(z) be a subharmonic function in the unit disc D. Assume
v(z) �≡ −∞. For 0 < r < 1, let

vr (z) =
⎧
⎨

⎩

v(z), |z| ≤ r,

1

2π

∫
Pz/r (θ )v(reiθ ) dθ, |z| < r.

Then vr (z) is a subharmonic function in D, vr (z) is harmonic on |z| <

r, vr (z) ≥ v(z), z ∈ D, and vr (z) is an increasing function of r.

Proof. By Corollary 6.4 and by Section 3 we know vr (z) is finite and harmonic
on �(0, r ) = {|z| < r}. To see that vr (z) is upper semicontinuous at a point
z0 ∈ ∂�(0, r ) we must show

v(z0) ≥ lim
z→z0|z|<r

vr (z).

This follows from the approximate identity properties of the Poisson kernel
and from the semicontinuity of v. Write z0 = reiθ0 . For ε > 0 there is δ > 0
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such that v(reiθ ) < v(z0) + ε if |θ − θ0| < δ. Then if |z| < r and if |z − z0| is
small,

vr (z) ≤ 1

2π

∫

|θ−θ0|≤δ

Pz/r (θ )(v(z0) + ε) dθ

+ 1

2π

(

sup
θ

v(reiθ )

) ∫

|θ−θ0|>δ

Pz/r (θ ) dθ

≤ v(z0) + 2ε.

Hence vr is upper semicontinuous.
If we again take continuous functions un(z) decreasing to v(z) on ∂�(0, r ),

then as in the proof of Corollary 6.4 we have

v(z) ≤ vr (z).

Because v is subharmonic, this inequality shows that vr (z) satisfies the mean
value inequality (6.1) at each point z0 with |z0| = r . Consequently vr (z) is a
subharmonic function on D.

If r > s, then vr = (vs)r , and since for any subharmonic function v, vr (z) ≥
v(z), the functions vr (z) increase with r.

Corollary 6.6. If v(z) is a subharmonic function on D, then

m(r ) = 1

2π

∫
v(reiθ ) dθ

is an increasing function of r.

The subharmonic function v(z) on � has a harmonic majorant if there
is a harmonic function U (z) such that v(z) ≤ U (z) throughout �. If � is
connected, if v(z) �≡ −∞ in �, and if v(z) has a harmonic majorant, then the
Perron process for solving the Dirichlet problem produces the least harmonic
majorant u(z), which is a harmonic function majorizing v(z) and satisfying
u(z) ≤ U (z) for every other harmonic majorant U (z) of v(z) (see Ahlfors
[1966] or Tsuji [1959]). Since we are interested only in simply connected
domains, we shall not need the beautiful Perron process to obtain harmonic
majorants. We can use the Poisson kernel instead.

Theorem 6.7. Let v(z) be a subharmonic function in the unit disc D. Then v
has a harmonic majorant if and only if

sup
r

1

2π

∫
v(reiθ ) dθ = sup

r
vr (0) < ∞.

The least harmonic majorant of v(z) is then

u(z) = lim
r→1

∫
Pz/r (θ )v(reiθ ) dθ/2π = lim

r→1
vr (z).
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Proof. If supr vr (0) is finite, then by Harnack’s theorem the functions vr (z)
increase to a finite harmonic function u(z) on D. Since v(z) ≤ vr (z), u(z) is
a harmonic majorant of v(z). Conversely, if U (z) is harmonic on D, and if
U (z) ≥ v(z) on D, then by Theorem 6.3, U (z) ≥ vr (z) for each r. Conse-
quently, supr vr (0) < ∞, and again u(z) = limr vr (z) is finite and harmonic.
Since vr (z) ≤ U (z), we have u(z) ≤ U (z), and so u(z) is the least harmonic
majorant.

Since by continuity u(z) = limr→1 u(r z), the least harmonic majorant of
v(z) can also be written

u(z) = lim
r→1

∫
Pz(θ )v(reiθ ) dθ/2π.

In particular, if v(z) ≥ 0 and if v(z) has a harmonic majorant, then its least
harmonic majorant is the Poisson integral of the weak-star limit of the bounded
positive measures v(reiθ ) dθ/2π .

Theorem 6.8. Let v(z) be a subharmonic function in the upper half plane
H . If

sup
y

∫
|v(x + iy)| dx = M < ∞,

then v(z) has a harmonic majorant in H of the form

u(z) =
∫

Py(x − t) dμ(t),

where μ is a finite signed measure on �.

Proof. The inequality

v(z) ≤ 2

πy
sup

η

∫
|v(ξ + iη)| dξ, z = x + iy, y > 0,(6.2)

is proved in the same way that the similar inequality (3.9) was proved to begin
the proof of Theorem 3.5.

Fix y0 > 0 and consider the harmonic function

u(z) = uy0
(z) =

∫
Py−y0

(x − t)v(t, y0) dt,

defined on the half plane {y > y0}. We claim v(z) ≤ u(z) on y > y0. To see this,
let ε > 0 and let A > 0 be large. Let un(t) be continuous functions decreasing
to v(t + iy0) on [−A, A], and let

Un(z) =
∫ A

−A
Py−y0

(x − t)un(t) dt, y > y0,
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be the Poisson integral of un . The function

V (z) = v(z) − ε log |z + i | − Un(z)

is subharmonic on y > y0. With ε fixed we have limz→∞ V (z) = −∞, by
(6.2), and if A is large we have

lim
z→(t,y0)

V (z) ≤ 0

for |t | ≥ A, again by (6.2). If |t | < A, then limz→(t,y0)V (z) ≤ v(t, y0)
−un(t, y0) ≤ 0. It follows from Theorem 6.3 and a conformal mapping that
V (z) ≤ 0 on y > y0. Sending n → ∞, then A → ∞, and then ε → 0, we
obtain v(z) ≤ u(z) on y > y0. The measures v(t, y0) dt remain bounded as
y0 → 0, and if dμ(t) is a weak-star cluster point, then

lim
y0→0

uy0
(z) =

∫
Py(x − t) dμ(t)

is a harmonic majorant of v(z).

The function u(z) is actually the least harmonic majorant of v(z), but we
shall not use this fact.

Notes

See the books of Ahlfors [1973] and Carathéodory [1954, Vol. II], and
Nevanlinna’s paper [1929] for further applications of Schwarz’s lemma.

Pick [1916], studied the finite interpolation problem (2.1) for functions map-
ping the upper half plane to itself. Theorem 2.2 follows easily from Pick’s work
via conformal mappings (see Nevanlinna [1919]). The proof in the text is from
Marshall [1976c], who had earlier [1974] published a slightly different proof.
See Sarason [1967], Sz.-Nagy and Korányi [1956] and Donoghue [1974] for
operator-theoretic approaches to that theorem.

The coefficient sequences for functions having positive real parts on D were
characterized by Carathéodory [1911] and by Toeplitz [1911]. Schur’s theorem
[1917], is that there exists f ∈ B with expansion

f (z) = c0 + c1z + · · · + cnzn + O(zn+1)

if and only if the matrix In − A∗
n An is nonnegative definite, where In is the

(n + 1) × (n + 1) identity matrix and

An =

⎡

⎢
⎢
⎣

c0 c1 . . . cn

0 c0 cn−1

...
...

0 0 c0

⎤

⎥
⎥
⎦ .



exercises and further results 39

A proof is outlined in Exercise 21 of Chapter IV. See Tsuji [1959], for a deriva-
tion of Schur’s theorem from the Carathéodory-Toeplitz result. Pick’s theorem
and Schur’s theorem are both contained in a recent result by Cantor [1981]
who found the matrix condition necessary and sufficient for interpolation by
finitely many derivatives of a function in B at finitely many points in D.

The maximal function was introduced by Hardy and Littlewood [1930], but
its importance was not widely recognized until much later. In their proof Hardy
and Littlewood used rearrangements of functions. Lemma 4.4 is from Garsia’s
book [1970], where it is credited to W. H. Young. Also see Stein [1970] for
another covering lemma, which is valid in �n , and for a more general discussion
of maximal functions and approximate identities.

The books by Zygmund [1968] and by Stein and Weiss [1971] contain more
information on the Marcinkiewicz theorem and other theorems on interpolation
of operators.

Fatou’s theorem is from his classic paper [1906], which was written not long
after the introduction of the Lebesgue integral. Theorem 5.6 is from Carleson
[1958, 1962a]. This proof of Lemma 5.5 is due to E. M. Stein.

We have barely touched the vast theory of subharmonic functions. Among
the numerous important references we mention Tsuji [1959] and Hayman and
Kennedy [1976] as guides to the literature.

Some authors call the inequality

log | f (0)| ≤ 1

2π

∫
log | f (eiθ )| dθ

and its relatives Jensen’s inequality, but we reserve the name for the inequality
of Lemma 6.1. Because the logarithm is concave, the two candidates for the
name “Jensen’s inequality” actually go in opposite directions.

Exercises and Further Results

1. Let f (z) ∈ B satisfy f (0) = 0, | f ′(0)| = δ > 0. If |z| < η < δ, then

| f (z)| ≥
(

δ − η

1 + ηδ

)

|z|,

and in the disc {|z| < η}, f (z) takes on each value w,

|w| <

(
δ − η

1 − ηδ

)

η

exactly one time. (Hint: If g(z) = f (z)/z, then ρ(g(z), f ′(0)) ≤ |z|.)
2. Suppose f (z) ∈ B .

(a) If f (z) has two distinct fixed points in D, then f (z) = z.
(b) Let ε > 0, and suppose ρ( f (z1), z1) < ε, and ρ( f (z2), z2) < ε for z1

and z2 distinct points of D. If z lies on the hyperbolic geodesic arc joining z1
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to z2, then

ρ( f (z), z) ≤ Cε1/2

with C an absolute constant. (Hint: We can assume that z = 0, z1 = −r <

0, z2 = s > 0, and that f (z1) = z1. Then f (0) ∈ K (z1, r ) ∩ K (z2, s + ε) and
the euclidean description of the discs K (z1, r ) and K (z2, s + ε) yield an upper
bound for | f (0)| = ρ( f (0), 0).)

(c) Let eiθ and eiϕ be distinct points of ∂D. Suppose {zn} and {wn} are
sequences in D such that zn → eiθ , wn → eiϕ and such that ρ( f (zn), zn) →
0, ρ( f (wn), wn) → 0. Then f fixes each point of the geodesic from eiθ to eiϕ ,
and hence f (z) = z.

This result will reappear in Chapter X, Exercise 9.

3. Let I = (θ1, θ2) be an arc on the unit circle ∂D. Then

ω(z) =
∫ θ2

θ1

Pz(θ ) dθ/2π, z ∈ D,

is the harmonic measure of I. Show

ω(z) = α/π − (θ2 − θ1)/2π,

where α = arg((eiθ2 − z)/(eiθ1 − z)), as shown in Figure I.6 (see Carathéodory
[1954] or Nevanlinna [1953]).

Figure I.6.

4. For z, w ∈ D define the Gleason distance as

d(z, w) = sup{| f (z) − f (w)| : f ∈ B }
and define the Harnack distance as

H (z, w) = sup log

{
u(z)

u(w)
: u harmonic on D, u > 0

}

.
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Then

(i) H (z, w) = log

(
1 + ρ(z, w)

1 − ρ(z, w)

)

,

(ii)
4d(z, w)

4 + d2(z, w)
= ρ(z, w),

where ρ(z, w) = |(z − w)/(1 − w̄z)|. To prove (i) compare Poisson kernels;
to prove (ii) consider ( f (z) − f (w))/(1 − f (w) f (z)), f ∈ B .

A related identity,

‖Pz − Pw‖1 = 1

2π

∫
|Pz(θ ) − Pw(θ )| dθ = 2 − 2

π
cos−1 ρ(z, w),

follows from Exercise 3 and conformal invariance. For (i) and (ii) see König
[1969] or Bear [1970].

5. If g(z) is bounded and analytic in the angle

� =
{

z ∈ D :
|1 − z|
1 − |z| < α

}

, α > 1,

and if limx→1 g(x) = a, then in any smaller angle �′,

lim
�′�z→1

g(z) = a.

(Hint: Normal families.)

6. (Julia’s lemma). The region

Wk =
{ |1 − z|2

1 − |z|2 < k

}

, k > 0,

is a disc in D tangent to ∂D at z = 1. It is called an orocycle. Let f ∈ B and
suppose there is a sequence {zn} in D such that zn → 1, f (zn) → 1, and

1 − | f (zn)|
1 − |zn| → A < ∞.

Then f (Wk) ⊂ WAk for all k > 0. Equivalently,

|1 − f (z)|2
1 − | f (z)|2 ≤ A

|1 − z|2
1 − |z|2 , z ∈ D.

In particular, A > 0. (Hint: Choose rn so that (1 − |zn|)/(1 − rn) → k. Then
the noneuclidean discs K (zn, rn) converge to Wk , while the noneuclidean
discs (K f (zn), rn) converge to WAk . But by Schwarz’s lemma, (K f (zn, rn)) ⊂
K ( f (zn), rn). See Julia [1920] and Carathéodory [1929].)
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�7. (The angular derivative). For f ∈ B set

B = sup
z∈D

|1 − f (z)|2
1 − | f (z)|2

/ |1 − z|2
1 − |z|2 .

(a) Suppose B = ∞. If zn → 1, then by Julia’s lemma

1 − | f (zn)|
1 − |zn| → ∞.

Consequently

lim
��z→1

1 − f (z)

1 − z
= ∞

within any angle

� =
{

z ∈ D :
|1 − z|
1 − |z| < α

}

, α > 1.

(b) Suppose B < ∞. Then B > 0 and by Julia’s lemma

lim
x→1

1 − | f (z)|
1 − |z| ≥ B.

Take zn = xn real, xn → 1. Then

|1 − f (xn)|2 ≤ B(1 − | f (xn)|2)
1 − xn

1 + xn
(E.1)

and f (xn) → 1. Moreover, the inequalities

1 − | f (xn)|
1 − xn

1 + xn

1 + | f (xn)| ≤ |1 − f (xn)|
1 + | f (xn)|

1 − | f (xn)|
1 − | f (xn)|

1 − x2
n

(1 − xn)2

≤ |1 − f (xn)|2
1 − | f (xn)|2

1 − x2
n

(1 − xn)2

show that

lim
1 − | f (xn)|

1 − xn
≤ B.

So when zn = xn , the hypotheses of Julia’s lemma hold with A = B. Further-
more,

B = lim
1 − | f (xn)|

1 − xn
≤ lim

|1 − f (xn)|
1 − xn

≤ lim
|1 − f (xn)|

1 − xn
≤ B1/2 lim

{
1 − | f (xn)|2

1 − x2
n

}1/2

= B,
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by (E.1), so that
∣
∣
∣
∣
1 − f (xn)

1 − xn

∣
∣
∣
∣ → B,

|1 − f (xn)|
1 − | f (xn)| → 1.

It follows that arg(1 − f (x)) → 0 as x → 1 and consequently that

lim
x↑1

1 − | f (x)|
1 − x

= lim
x↑1

|1 − f (x)|
1 − x

= lim
x↑1

1 − f (x)

1 − x
= B.

(c) Again suppose B < ∞. Then in any angle � = {|1 − z|/(1 − |z|) <

α},
∣
∣
∣
∣
1 − f (z)

1 − z

∣
∣
∣
∣ ≤ 2Bα.

Using Exercise 5, conclude that

lim
��z→1

1 − f (z)

1 − z
= B and lim

��z→1
f ′(z) = B,

for any angle �.
(d) There is another proof using the Poisson integral representation of

positive harmonic functions. Write F(z) = (1 + f (z))/(1 − f (z)). Then

Re F(z) = 1 − | f (z)|2
|1 − f (z)|2 > 0,

and there is μ > 0 such that

Re F(z) =
∫ π

−π

1 − |z|2
|eiθ − z|2 dμ(θ )

= μ({0})1 − |z|2
|1 − z|2 +

∫ π

−π

1 − |z|2
|eiθ − z|2 dμ0(θ ),

where μ0 has no mass at 0. Clearly B ≤ 1/(μ/{0}). Also

1 − | f (z)|2
|1 − f (z)|2

/
1 − |z|2
|1 − z|2 = μ({0}) +

∫ π

−π

|1 − z|2
|eiθ − z|2 dμ0(θ ),

and when z → 1 within an angle �, the integral has limit 0. Consequently
B = 1/μ({0}). Since

1 + f (z)

1 − f (z)
= 1 + z

1 − z
μ({0}) +

∫ π

−π

eiθ + z

eiθ − z
dμ0(θ ) + ic,

similar reasoning shows that

lim
��z→1

1 − z

1 − f (z)
= 1

2
lim

��z→1

(1 − z)(1 + f (z))

1 − f (z)
= μ({0}).
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8. Suppose f (z) is a function from D to D such that whenever z1, z2, z3

are distinct points of D there exists g ∈ B (depending on z1, z2, z3) such that

g(z j ) = f (z j ), j = 1, 2, 3.

Then f is analytic. (Either use Pick’s theorem or show directly that f (z) satisfies
the Cauchy–Riemann equations.)

9. Let u(z) be a real-valued harmonic function on the unit disc D. Show
u(z) is the difference of two positive harmonic functions if and only if

sup
r

∫
|u(reiθ )| dθ < ∞,

and if and only if u(z) is the Poisson integral of a finite signed measure on
∂D. Give an example of a harmonic function not the difference of two positive
harmonic functions.

10. Let E ⊂ � be compact, |E | = 0. Then there are harmonic functions
Vn(z) on H , n = 1, 2, . . . , such that

(i) Vn(z) ≥ 0,
(ii) limH �z→t Vn(z) = +∞, all t ∈ E ,

(iii) limn→∞ Vn(z) = 0, all z ∈ H .

11. (a) Write f ∈ L1
loc if f is measurable and if | f | is integrable over any

compact set. If f ∈ L1
loc(�), then almost everywhere

lim
h→0

1

2h

∫ x+h

x−h
| f (t) − f (x)| dt = 0.

The set of x for which this holds is called the Lebesgue set of f (x). (Hint: The
proof of Theorem 5.3 shows that

f (x) = lim
h→0

1

2h

∫ x+h

x−h
f (t) dt

almost everywhere. Replacing f by | f − c|, c rational, then yields the result.)
(b) Let ϕ(x) ∈ L1,

∫
ϕ(x)dx = 1. Let �(x) be the least even decreasing

majorant of |ϕ(x)|,
�(x) = sup

|t |≥|x |
|ϕ(t)|.

If ψ(x) ∈ L1, then the operator

Mϕ f (x) = sup
y>0

1

y

∫
ϕ

(
x − t

y

)

f (t) dt
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is weak-type 1–1,

|{x : Mϕ f (x) > λ}| ≤ C

λ
‖ f ‖|1,

and Mϕ is bounded on L p, 1 < P ≤ ∞,

‖Mϕ f ‖p ≤ C p‖ f ‖p, 1 < p ≤ ∞.

If f ∈ L p, 1 ≤ p ≤ ∞, then

f (x) = lim
y→0

1

y

∫
ϕ

(
x − t

y

)

f (t) dt(E.2)

almost everywhere. More precisely, (E.2) holds at every point of the Lebesgue
set of f , which is independent of ϕ.

(c) Formulate and prove a similar result about nontangential convergence
and nontangential maximal functions.

12. If f (x) has support a bounded interval I, then
∫

I M f dx < ∞ if and

only if
∫

I | f | log+ | f | dx < ∞ (Stein [1969]).

13. Let μ be a positive Borel measure on �, finite on compact sets, and
define

Mμ f (x) = sup
I�x

1

μ(I )

∫

I
| f | dμ.

Show

μ({Mμ f (x) > λ}) ≤ C

λ
| f | dμ

and
∫

|Mμ f |pdμ ≤ C p

∫
| f |pdμ, 1 < p < ∞.

Conclude that for μ-almost all x,

lim
h→0

1

μ(x − h, x + h)

∫ x+h

x−h
| f (t) − f (x)| dμ(t) = 0, f ∈ L1(μ).

14. If μ is a positive singular measure on �, then almost everywhere with
respect to μ,

lim
h→0

μ((x − h, x + h))

2h
= ∞.

15. Let v(z) be a positive subharmonic function on the unit disc and define

m(r ) = 1

2π

∫
v(reiθ ) dθ.
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Then m(r ) is an increasing convex function of log r. That is, if log r = t log r1 +
(1 − t) log r2, 0 < t < 1, then

m(r ) ≤ t m(r1) + (1 − t) m(r2).

16. If ϕ(z) is of class C2 on a neighborhood of the closed disc �(z0, R) =
{z : |z − z0| ≤ R}, then

ϕ(z0)= 1

2π

∫ 2π

0

ϕ(z0+Reiθ ) dθ− 1

2π

∫ ∫

�(z0,R)

log

∣
∣
∣
∣

R

z − z0

∣
∣
∣
∣ �ϕ(z) dx dy

by Green’s theorem.

�17. Let v(z) �= −∞ be upper semicontinuous on a plane domain �.
(a) If v ∈ C2 and if �v = ∂ 2v/∂x2 + ∂ 2v/∂y2 ≥ 0, then v is subharmonic

on �. (Use Exercise 16.)
(b) Let χ (z) ∈ C∞(�2) satisfy

χ ≥ 0, χ (z) = 0, |z| > 1,

∫
χ (z)dx dy = 1.

Assume χ is radial, χ (z) = χ (|z|). Set χε(z) = ε−2χ (z/ε). Then

v ∗ χε(z) =
∫

v(w)χε(z − w)dx dy

is C∞ on �ε = {z ∈ �: dist (z, ∂�) > ε} Prove v is subharmonic if and only
if

�(v ∗ χε) ≥ 0

on �ε, for all ε > 0. In that case v ∗ χε decreases to v(z) everywhere on �.
(c) Let C∞

0 (�) denote the space of infinitely differentiable functions having
compact support contained in �. If ϕ ∈ C∞

0 (�) and f ∈ C2(�), then

∫∫

�

f �ϕ dx dy =
∫∫

�

ϕ � f dx dy

(Green’s theorem again). If

∫∫

�

f � ϕ dx dy ≥ 0

when ϕ ≥ 0, ϕ ∈ C∞
0 (�), then f is subharmonic on � (take ϕ(z) =

χε(z0 − z)). The weak Laplacian of v ∈ L1
loc(�) is the functional

C∞
0 (�) � ϕ →

∫∫

�

v�ϕ dx dy.
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If v is upper semicontinuous and if its weak Laplacian is nonnegative, that is,
if

∫ ∫

�

v�ϕ dx dy ≥ 0

whenever ϕ ≥ 0, ϕ ∈ C∞
0 (�), then v ∗ χε is subharmonic for every ε > 0, so

that v is subharmonic. Therefore v(z) is subharmonic if and only if its weak
Laplacian is nonnegative.

(d) The weak Laplacian of log |z − z0|, z0 ∈ �, is a familiar measure. Find
the measure.

(e) If v(z) is subharmonic on �, then by the Riesz representation theorem,
the weak Laplacian is a positive Borel measure finite on compact subsets of
�. Denote this measure by �v. Then on �ε

v(z) = −1

2π

∫

�ε

log
1

|z − w|d�v(w) + hε(z)

where hε is harmonic on �ε. This is called the Riesz decomposition of the
subharmonic function v(z). (see F. Riesz [1926]).



II

H p Spaces

The classical theory of the Hardy spaces H p is a mixture of real and com-
plex analysis. This chapter is a short introduction to this theory, with special
emphasis put on the results and techniques we will need later.

The theory has three cornerstones:

(i) nontangential maximal functions;
(ii) the subharmonicity of | f |p and log | f | for an analytic function f (z);

(iii) the use of Blaschke products to reduce problems to the case of a non-
vanishing analytic function.

There are two H p theories, one for the disc and another for the upper half
plane. We introduce these twin theories simultaneously.

1. Definitions

Let 0 < p < ∞ and let f (z) be an analytic function on D. We say f ∈
H p = H p(D) if

sup
r

1

2π

∫
| f (reiθ )|p dθ = ‖ f ‖p

H p < ∞.

If p = ∞, we say f ∈ H∞ if f (z) is a bounded analytic function on D and
we write

‖ f ‖∞ = sup
z∈D

| f (z)|.

Thus the unit ball of H∞, { f ∈ H∞ : ‖ f ‖∞ ≤ 1} is the class B considered in
the first two sections of Chapter I. The remarks on subharmonic functions in
Chapter I show that f (z) ∈ H p if and only if the subharmonic function | f (z)|p

has a harmonic majorant, and that for p < ∞, ‖ f ‖p
H p is the value of the least

harmonic majorant at z = 0. This second definition of H p in terms of harmonic
majorants is conformally invariant. It is used to define H p functions on any
plane domain or Riemann surface.

48
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However, the H p spaces on the upper half plane H have a special definition
that is not conformally invariant. Let f (z) be an analytic function on H . For
0 < p < ∞, we say f (z) ∈ H p = H p(dt) if

sup
y

∫
| f (x + iy)|p dx = ‖ f ‖p

H p < ∞.

When p = ∞ we write H∞ for the bounded analytic functions on H , and we
give H∞ the norm ‖ f ‖∞ = supH | f (z)|. Note that the definition of H p(dt)
involves all y, 0 < y < ∞, instead of only small values of y, like, say, 0 <

y < 1. For example, if

g(z) = e−i z/p

(i + z)2/p
,

then
∫ |g(x + iy)|p dx = πey(1 + y)−1, but g(z) /∈ H p(dt).

Let z = τ (w) = i(1 − w)/(1 + w) be the conformal mapping of D onto
H . Clearly f ◦ τ ∈ H∞(D) if and only if f ∈ H∞(dt). However, for p <

∞, H p(D) and H p(dt) are unfortunately not transformed into each other. For
example, H p(D) contains nonzero constants, but H p(dt) does not. In order to
treat H p(D) and H p(dt) together, we prove two simple lemmas.

Lemma 1.1. If 0 < p < ∞ and if f (z) ∈ H p(dt), then the subharmonic
function | f (z)|p has a harmonic majorant u(z) in H and

u(i) ≤ (1/π )‖ f ‖p
H p .

Proof. This follows from Theorem 6.8 of Chapter I.

Lemma 1.1 shows that if f (z) ∈ H p(dt), then g(w) = f (τ (w)) ∈ H p(D)
and ‖g‖H p ≤ (1/π )‖ f ‖H p .

Lemma 1.2. If 0 < p < ∞ and if f (z) is an analytic function in the up-
per half plane such that the subharmonic function | f (z)|p has a harmonic
majorant, then

F(z) = π−1/p

(z + i)2/p
f (z)

is in H p(dt) and

‖F‖p
H p ≤ u(i)(1.1)

where u(z) is the least harmonic majorant of | f (z)|p.

Proof. Let u(z) be the least harmonic majorant of | f (z)|p. The positive har-
monic function u(z) has the form

u(z) = cy +
∫

Py(x − t) dμ(t),(1.2)
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where c ≥ 0 and where μ is a positive measure on � such that
∫

(1 + t2)−1 dμ(t) < ∞.

Consequently,

|F(z)|p = 1

π (x2 + (1 + y)2)
| f (z)|p,

so that by (1.2) and Fubini’s theorem,
∫

|F(x + iy)|pdx ≤ c + 1

π

∫
1

1 + x2

∫
Py(x − t) dμ(t)dx

= c +
∫

Py(t)
∫

P1(x − t)dμ(x)dt = c + (u(i) − c),

Therefore, F(z) ∈ H p(dt). The proof of Theorem I.6.8 shows that
∫

|F(x + iy)|pdx

is a decreasing function of y. Hence,

‖F‖p
H p = lim

y→0

∫
|F(x + iy)|pdx

and

‖F‖p
H p = −c + lim

y→0
u((1 + y)i) = 1

π

∫
dμ(t)

1 + t2
≤ u(i).

Lemma 1.2 shows that if g(w) ∈ H p(D), then

F(z) = π−1/p

(z + i)2/p
g(w(z)) ∈ H p(dt),

where w(z) = τ−1(z), and ‖F‖H p ≤ ‖g‖H p . We shall see in Section 3 that the
converse of Lemma 1.2 is true and that ‖F‖H p = ‖g‖H p . Notice that because
(z + i)−2/p has no zeros on H , the family of zero sets of H p functions is
invariant under z = τ (w).

For p ≥ 1, H p is a normed linear space. For p < 1, the inequality

|z1 + z2|p ≤ |z1|p + |z2|p

shows that H p is a metric space with metric

d( f, g) = ‖ f − g‖p
H p .

Theorem 1.3. For 0 < p ≤ ∞, H p is complete.
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Proof. We can assume p < ∞. We give the proof in the upper half plane; the
reasoning for the disc is very similar. The key inequality

| f (x + iy)| ≤ (2/πy)1/p‖ f ‖H p , y > 0,(1.3)

follows from (6.2) of Chapter I. It shows that any H p Cauchy sequence { fn}
converges pointwise on H to an analytic function f (z). Fatou’s lemma then
shows
∫

| f (x + iy) − fn(x + iy)|pdx ≤ lim
m→∞

∫
| fm(x + iy) − fn(x + iy)|pdx

≤ lim
m→∞

‖ fm − fn‖p
H p .

Hence ‖ f − fn‖p
H p ≤ limm→∞‖ fm − fn‖p

H p , and H p is complete.

2. Blaschke Products

We show that the zeros {zn} of a nonzero H p function on the disc satisfy
Blaschke’s condition

∑
(1 − |zn|) < ∞.(2.1)

It is noteworthy that (2.1) does not depend on p. When (2.1) holds, special
H∞ functions called Blaschke products will be constructed to have {zn} as
zeros. Blaschke products will play an expanding role in the later chapters of
this book.

Theorem 2.1. Let f (z) be an analytic function on the disc, f 	≡ 0, and let
{zn} be the zeros of f (z). If log | f (z)| has a harmonic majorant, then

∑
(1 − |zn|) < ∞.

If f (0) 	= 0 and if u(z) is the least harmonic majorant of log | f (z)|, then
∑

(1 − |zn|) ≤ u(0) − log | f (0)|.
Proof. Replacing f (z) by f (z)/zN if necessary, we can assume f (0) 	= 0.
Then by Theorem I.6.7,

sup
r

∫
log | f (reiθ )|dθ/2π = u(0),

where u is the least harmonic majorant of log | f (z)|. Fix r < 1 so that |zn| 	=
r for all n, and let z1, . . . , zn be those zeros with |z j | < r . Then f (r z) is
analytic on the closed disc and f (r z) has zeros z1/r , z2/r , . . . , zn/r . Let Br (z) =
�n

j=1(z − z j/r )/(1 − z̄ j z/r ), a finite Blaschke product with the same zeros as

f (r z), and let g(z) = f (r z)/Br (z). Then g is analytic and zero free on D̄,
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so that

log |g(0)| = 1

2π

∫
log |g(eiθ )|dθ.

Since |g(eiθ )| = | f (reiθ )|, this gives the familiar Jensen formula

log | f (0)| +
∑

|z j |<r

log
r

|z j | = 1

2π

∫
log | f (reiθ )|dθ.

Letting r tend to 1 then yields

∑
log

1

|z j | = lim
r→1

1

2π

∫
log | f (reiθ )|dθ − log | f (0)| = u(0) − log | f (0)|.

Since 1 − |z j | ≤ log(1/|z j |), the theorem is proved.

If f ∈ H p(D), then log | f | ≤ (1/p)| f |p, and log | f | has a harmonic ma-
jorant. Hence, if f ∈ H p(D), or by Lemma 1.1 if f (w) = F(z(w)) where
F ∈ H p(dt), then

∑
(1 − |zn|) < ∞.

Theorem 2.2. Let {zn} be a sequence of points in D such that
∑

(1 − |zn|) < ∞.

Let m be the number of zn equal to 0. Then the Blaschke product

B(z) = zm
∏

|zn |	=0

−z̄n

|zn|
z − zn

1 − z̄nz
(2.2)

converges on D. The function B(z) is in H∞(D) and the zeros of B(z) are
precisely the points zn, each zero having multiplicity equal to the number of
times it occurs in the sequence {zn}. Moreover |B(z)| ≤ 1 and

|B(eiθ )| = 1

almost everywhere.

By definition, a Blaschke product on D is a function of the form (2.2).

Proof. We can suppose |zn| > 0 for all n. Let

bn(z) = −z̄n

|zn|
z − zn

1 − z̄nz
.

Then the product
∏

bn converges on D to an analytic function having {zn} for
zeros if and only if

∑ |1 − bn(z)| converges uniformly on each compact subset
of D. But by a calculation,

|1 − bn(z)| = |zn + z|zn||
|zn||1 − z̄nz| (1 − |zn|) ≤ 1 + |z|

1 − |z| (1 − |zn|)

and the convergence follows from (2.1).
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Since |bn(z)| ≤ 1, it is clear that B(z) ∈ H∞ and |B(z)| ≤ 1. The bounded
harmonic function B(z) has nontangential limits |B(eiθ )| ≤ 1 almost every-
where. To see that |B(eiθ )| = 1 almost everywhere, set Bn(z) = ∏n

1 bk(z). Then
B/Bn is another Blaschke product and

∣
∣
∣
∣

B(0)

Bn(0)

∣
∣
∣
∣ ≤ 1

2π

∫ |B(eiθ )|
|Bn(eiθ )|dθ = 1

2π

∫
|B(eiθ )|dθ.

Letting n → ∞ now yields

1

2π

∫
|B(eiθ )|dθ = 1.

so that |B(eiθ )| = 1 almost everywhere.

The purpose of the convergence factors −z̄n/|zn| is to make
∑

arg bn(z)
converge. To remember the convergence factors, note that they are chosen so
that bn(0) > 0.

By Theorem 2.1 and Theorem 2.2, the analytic function f (z) has a factor-
ization

f (z) = B(z)g(z), z ∈ D,

where B(z) is a Blaschke product and where g(z) has no zeros on D, if and
only if the subharmonic function log | f (z)| has a harmonic majorant.

In the upper half plane condition (2.1) is replaced by

∑ yn

1 + |zn|2 < ∞, zn = xn + iyn,(2.3)

and the Blaschke product with zeros {zn} is

B(z) =
(

z − i

z + i

)m ∏

zn 	=i

|z2
n + 1|

z2
n + 1

z − zn

z − z̄n
.

If the moduli |zn| are bounded, (2.3) becomes
∑

yn < ∞, and the convergence
factors are not needed because

∏
((z − zn)/(z − z̄n)) already converges.

Theorem 2.3 (F. Riesz). Let 0 < p < ∞. Let f (z) ∈ H p(D), f 	≡ 0, let {zn}
be the zeros of f (z), and let B(z) be the Blaschke product with zeros {zn}. Then
g(z) = f (z)/B(z) is in H p(D) and

‖g‖H p = ‖ f ‖H p .

Proof. It was noted above that B(z) converges when f ∈ H p. Let Bn be
the finite Blaschke product with zeros z1, z2, . . . , zn , and let gn = f/Bn . Fix
r < 1. Then by Theorem I.6.6,

∫
|gn(reiθ )|p dθ

2π
≤ lim

R→1

∫ | f (Reiθ )|p

|Bn(Reiθ )|p

dθ

2π
.
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If 1 − R is small, then |Bn(Reiθ )| > 1 − ε, so that

∫
|gn(reiθ )|p dθ

2π
≤ lim

R→1

∫
| f (Reiθ )|p dθ

2π
= ‖ f ‖p

H p .

Since |gn| increases to |g|, and since |g| ≥ | f |, this gives‖g‖p
H p = ‖F‖p

H p .

Theorem 2.3 is also true for H p(dt), because the proof of Theorem I.6.8
shows that

sup
y

∫
| f (x + iy)|pdx = lim

y→0

∫
| f (x + iy)|pdx .

Blaschke products have a simple characterization in terms of harmonic ma-
jorants.

Theorem 2.4. Let f (z) ∈ H∞(D)‖ f ‖∞ ≤ 1. Then the following are equiv-
alent.

(a) f (z) = λB(z), where λ is constant, |λ| = 1, and B(z) is a Blaschke
product.

(b) limr→1

∫
log | f (reiθ )|dθ/2π = 0.

(c) The least harmonic majorant of log | f (z)|is 0.

Proof. Theorem I.6.7 shows that (b) and (c) are equivalent.
Suppose f (z) is the Blaschke product with zeros {zn}, and let ε > 0. We may

divide f (z) by a finite Blaschke product Bn(z) so that |( f/Bn)(0)| > 1 − ε.
Since Bn is continuous on D̄ and |Bn(eiθ )| = 1,

lim
r→1

∫
log | f (reiθ )|dθ = lim

r→1

∫
log

∣
∣
∣
∣

f

Bn
(reiθ )

∣
∣
∣
∣ dθ.

But since log | f/Bn| is subharmonic and negative,

log(1 − ε) ≤
∫

log

∣
∣
∣
∣

f

Bn
(reiθ )

∣
∣
∣
∣

dθ

2π
≤ 0.

Therefore (b) holds.
Suppose (c) holds. Let g(z) = f (z)/B(z), where B(z) is the Blaschke prod-

uct formed from the zeros of f (z). Then

log | f (z)| ≤ log |g(z)| ≤ 0

because ‖ f ‖∞ ≤ 1. Since log |g(z)| is a harmonic majorant of log | f (z)|, (c)
implies that log |g(z)| = 0. Hence g(z) = λ, where λ is a constant and |λ| = 1,
and so (a) holds.
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3. Maximal Functions and Boundary Values

Let f (z) ∈ H p(dt). If p > 1, we know from Chapter I that the nontangential
maximal function f ∗(t) is in L p, and that f (z) converges nontangentially to an
L p function f (t) almost everywhere. An important feature of the H p spaces
is that these results remain true for all p, 0 < p ≤ ∞.

Theorem 3.1. Let 0 < p < ∞ and let f (z) be a function in H p(dt). Then
for any α > 0, the nontangential maximal function

f ∗(t) = sup
z∈	α(t)

| f (z)|

is in L p(�) and

‖ f ∗‖p
p ≤ Aα‖ f ‖p

H p ,(3.1)

where the constant Aα depends only on α. Moreover, for almost all t ∈ �, f (z)
has a nontangential limit f (t) ∈ L p(�) satisfying

∫
| f (t)|pdt = ‖ f ‖p

p = ‖ f ‖p
H p(3.2)

and

lim
y→0

‖ f (t + iy) − f (t)‖p
p = 0.(3.3)

Proof. Except for the fact that the constant Aα in (3.1) does not depend on p,
the case p > 1 of the theorem is proved in Section 5 of Chapter I. To stretch p
below 1 we use Theorem 2.3 above. Suppose f ∈ H p, f 	≡ 0. Let B(z) be the
Blaschke product formed from the zeros of f (z) and let g(z) = f (z)/B(z).
Then ‖g‖H p = ‖ f ‖H p , and since | f (z)| ≤ |g(z)|, | f ∗(t)| ≤ |g∗(t)|. Let p1 >

1. Since g has no zeros and g ∈ H p, the analytic function g p/p1 is in H p1 .
Consequently (g∗)p/p1 = (g p/p1 )∗ is in L p1 , and hence by Theorem I.5.1,

‖g∗‖p
p = ‖(g p/p1 )∗‖p1

p1
≤ Bp1

‖g‖p
H p .

Taking p1 = 2 we see that (3.1) holds with a constant independent of p, because
f ∗ ≤ g∗.

Now G(z) = (g(z))p/p1 has a nontangential limit G(t) almost everywhere.
Taking p1/p to be a positive integer m, we see that g(z) = G(z)m also has
non-tangential limits. Since B(z) has boundary values almost everywhere we
conclude that f (z) has a nontangential limit almost everywhere. It now follows
from (3.1) and the dominated convergence theorem that f (t) ∈ L p(�) and that
(3.2) and (3.3) hold.

The equality (3.2) establishes an isometry between H p(dt) and a closed
subspace of L p(�). For p < 1, although L p is not a Banach space, it is, like H p,
a complete metric space under the metric d( f, g) = ‖ f − g‖p

p. When p ≥ 1,
this space of boundary values of H p functions has a simple characterization.
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Corollary 3.2. Let 1 ≤ p ≤ ∞ and let f (t) ∈ L p(�). Then f (t) is almost
everywhere the nontangential limit of an H p(dt) function if and only if its
Poisson integral

f (z) = Py ∗ f (x)

is analytic on H . The Poisson integral f (z) is then the corresponding H p

function.

Proof. If f ∈ L p(�) and if f (z) = Py ∗ f (x) is analytic, then by Chapter I,
f (z) ∈ H p(dt) and f (z) converges nontangentially to f (t).

Conversely, suppose f (z) is some H p function. If p > 1, then by
Theorem 5.3, Chapter I, f (z) has nontangential limit f (t) and f (z) = Py ∗
f (x). The case p = 1 requires Theorem 3.1. When f (z) ∈ H 1, (1.3) and
Lemma I.3.4 yield

f (z + iε) =
∫

Pz(t) f (t + iε)dt, ε > 0.

By (3.3), this means f (z) is the Poisson integral of its boundary function
f (t).

See Exercise 2 for some other characterizations of the boundary values of
H p functions. Because of (3.2), we often identify f (z) ∈ H p with its boundary
function f (t).† However, we prescribe no method of regaining f (z) from f (t)
when p < 1.

Theorem 3.1 is of course also true on the unit disc. Equality (3.2) for the
correspondence f (z) → f (eiθ ) then shows that H p(D) is isometric to a closed
subspace of the Lebesgue space L p(dθ/2π ). And if p ≥ 1, f (z) is the Poisson
integral of f (eiθ ). The analog of (3.3),

lim
r→1

∫
| f (reiθ ) − f (eiθ )|p dθ

2π
= 0,

coupled with the fact that f (r z), r < 1, is trivially the uniform sum of its
Taylor series, tells us this: For p < ∞, the space of boundary functions of
H p(D) coincides with the closure in L p(dθ/2π ) of the analytic polynomials.
Moreover, if a sequence pn(eiθ ) of polynomials converges to f (eiθ ) in L p, then
by (3.2) for the disc, ‖pn − f ‖p

H p → 0. Since H p(D) ⊂ H 1(D), p ≥ 1, we
see that for p ≥ 1, the boundary function of an H p(D) function has Fourier
series

f (eiθ )∼
∞∑

n=0

aneinθ

† And we often write ‖ f ‖p for the equal ‖ f ‖H p .
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supported on the nonnegative integers, and its Fourier coefficients

an = 1

2π

∫
f (eiθ )e−inθdθ = lim

r→1

1

2π i

∫

|z|=r

f (z)dz

zn+1

are the Taylor coefficients of the H p function f (z) = ∑
anzn . Thus H p theory

is a natural bridge between Fourier analysis and complex analysis.
In the upper half plane we see from (3.3) that the uniformly continuous

functions in H∞ ∩ H p are dense in H p, because for f ∈ H p,

| f (x + iy)| ≤
(

2

πy

)1/p

‖ f ‖H p , y > 0,

and

| f ′(x + iy)| ≤ 2

y

(
4

πy

)1/p

‖ f ‖H p ,

by the preceding inequality and by Schwarz’s lemma, scaled to the disc

(z, y/2). We will need some very smooth classes of analytic functions that
are dense in H p(dt) and that will play the role of the polynomials in the disc
case. Let N be a positive integer, and let AN be the family of H∞(dt) functions
satisfying

(i) f (z) is continuous on H and f (t) is infinitely differentiable, f ∈ C∞.

(ii) lim|z|→∞ |z|N | f (z)| = 0, z ∈ H .

Corollary 3.3. Let N be a positive integer. For 0 < p < ∞, the class AN is
dense in H p(dt). For f (z) ∈ H∞, there are functions fn(z) in AN such that
‖ fn‖∞ ≤ ‖ f ‖∞ and such that | fn(t)| ≤ | f (t)| almost everywhere.

Proof. Were it not for the decay condition (ii), we could approximate f by the
smooth functions f (z + i/n), which converge in H p norm to f (t) if p < ∞
and which converge boundedly pointwise almost everywhere to f (t) if p = ∞.
Now there are some special functions gk(z) such that

(a) gk(z) ∈ AN ,
(b) |gk(z)| ≤ 1, z ∈ H ,
(c) gk(z) → 1, z ∈ H .

Before we construct the functions gk , we note that the functions

fn(z) = gn(z) f (z + i/n)

in AN then give the desired approximation.
The heart of the proof, constructing the functions gk(z), will be done in

the unit disc, where w = −1 corresponds to z = ∞. Let αk < 1, αk → 1. The
function

hk(w) =
(

w + αk

1 + αkw

)N+1
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has an (N + 1)-fold zero at −αk . These hk(w) are bounded by 1, and with N
fixed they converge to 1 uniformly on compact subsets of D̄\{−1}. Then the
functions

gk(z) = hk(αk, w), w = i − z

i + z
,

satisfy (a)–(c).

Now we can clarify the relation between H p(D) and H p(dt).

Corollary 3.4. Let 0 < p < ∞, let f (z) be an analytic function in the upper
half plane and let

F(z) = π−1/p

(z + i)2/p
f (z).

Then | f (z)|p has a harmonic majorant if and only if F(z) ∈ H p. In that case

‖F‖p
H p = u(i),(3.4)

where u(z) is the least harmonic majorant of | f (z)|p.

Proof. Let g(w) = f (z), z = i(1 − w)/(1 + w). The corollary asserts that
g ∈ H p(D) if and only if F ∈ H p(dt), and that ‖g‖p = ‖F‖p. If N > 2/p
and if F ∈ AN , then the corresponding function g(w) is bounded on D and,
because dθ/2π corresponds to dt/π (1 + t2),

∫
|g(θ )|p dθ

2π
=

∫
|F(t)|pdt.

By the density of AN in H p, it follows from (3.2) that g ∈ H p(D) whenever
F ∈ H p(dt) and that

‖g‖Hp = ‖F‖Hp .

Since Lemma 1.2 shows F ∈ H p(dt) if g(w) ∈ H p(D), that concludes the
proof.

Incidentally, the fact that we have the equality (3.4) instead of the inequality
(1.1) means that in the formula (1.2) for the least harmonic majorant of | f (z)|p,
the constant term is c = 0. We shall see in Section 4 that the least harmonic
majorant is the Poisson integral of the L1 function | f (t)|p.

The next corollary is noteworthy because of the recent discovery, for p ≤ 1,
of its converse, which will be proved in Chapter III.

Corollary 3.5. Let 0 < p < ∞ and let u(z) be a real-valued harmonic func-
tion on the upper half plane H . If u(z) is the real part of a function f (z) ∈ H p,
then

u∗(t) = sup
	α(t)

|u(z)|

is in L p(�).
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The proof from Theorem 3.1 is trivial.
Let us reexamine the boundary values in the case p = 1. If the harmonic

function u(z) satisfies

sup
y

∫
|u(x + iy)|dx < ∞,

then u(z) need not be the Poisson integral of its nontangential limit u(t). All we
can say is that u(z) is the Poisson integral of a finite measure. However, if u(z)
is also an analytic function, then the measure is absolutely continuous, and its
density is the boundary value u(t). The reason is that the maximal function
u∗(t) is integrable.

Theorem 3.6. If f (z) ∈ H 1(dt), then f (z) is the Poisson integral of its bound-
ary values:

f (z) =
∫

Py(x − t) f (t)dt.(3.5)

Conversely, if μ is a finite complex measure on � such that the Poisson integral
f (z) = Py ∗ μ(x) is an analytic function onH , then μ is absolutely continuous
and

dμ = f (t) = dt,

where f (t) is the boundary function of the Poisson integral f (z) of μ.

Proof. If f (z) ∈ H 1, then (3.5) was already obtained in the proof of Corol-
lary 3.2. Conversely, if f (z) = Py, ∗μ(x) is an analytic function, then by
Minkowski’s integral inequality it is an H 1 function and hence it is the
Poisson integral of its boundary value f (t). The difference measure dv(t) =
dμ(t) − f (t)dt has Poisson integral zero, and so v = 0 by Theorem I.3.1.

Lemma 3.7. Let f (z) ∈ H 1. Then the Fourier transform

f̂ (s) =
∫ ∞

−∞
f (t)e−2π ist dt = 0

for all s ≤ 0.

Proof. By the continuity of f → f̂ , we may suppose
∫ ∈ AN . Then for

s ≤ 0, F(z) = f (z)e−2π isz is also inAN . The result now follows from Cauchy’s
theorem because

∫ π

0

|F(Reiθ )|R dθ → 0 (R → ∞).

Notice that

Pz(t) = 1

2π i

(
1

t − z
− 1

t − z̄

)

.(3.6)
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Also notice that for f ∈ H 1, Lemma 3.7 applied to (t − z̄)−1 f (t) yields

∫
f (t)

t − z̄
dt = 0, Im z > 0.

Theorem 3.8. Let dμ(t) be a finite complex measure on � such that either

∫
dμ(t)

t − z
= 0 on Im z < 0,(a)

or

μ̂(s) =
∫

e−2π ist dμ(t) = 0 on s < 0.(b)

Then dμ is absolutely continuous and dμ = f (t) dt, where f (t) ∈ H 1.

Proof. If (a) holds, then by (3.6) f (z) = Py ∗ μ(x) is analytic and the result
follows from Theorem 3.6.

Assume (b) holds. The Poisson kernel Py(t) has Fourier transform

∫
e−2π ist Py(t) dt = e−2π |s|y,

because P̂y(−s) = P̂y(s) since Py is real, and because if s ≤ 0, e−2π isz is the
bounded harmonic function with boundary values e−2π ist . Let fy(x) = Py ∗
μ(x). By Fubini’s theorem, fy has Fourier transform

f̂ y(s) =
{

e−2πxyμ̂(s), s ≥ 0,

0, s < 0.

Since f̂ y ∈ L1, Fourier inversion implies

fy(x) =
∫

e2π i xs f̂ y(s) ds =
∫ ∞

0

e2π i(x+iy)sμ̂(s) ds.

Differentiating under the integral sign then shows that f (z) = fy(x) is analytic,
and Theorem 3.6 now implies that f (z) ∈ H 1.

The disc version of Theorem 3.6, or equivalently Theorem 3.8, is one half
of the famous F. and M. Riesz theorem. The other half asserts that if f (z) ∈
H 1, f 	≡ 0, then | f (t)| > 0 almost everywhere. This is a consequence of a
stronger result proved in the next section.

The theorem on Carleson measures, Theorem I.5.6, also extends to the H p

spaces, 0 < p ≤ 1, because the key estimate in its proof was the maximal
theorem.
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Theorem 3.9 (Carleson). Let σ be a positive measure in the upper half plane.
Then the following are equivalent:

(a) σ is a Carleson measure: for some constant N (σ ),

σ (Q) ≤ N (σ )h

for all squares

Q = {x0 < x < x0 + h, 0 < y < h}.
(b) For 0 < p < ∞,

∫
| f |pdσ ≤ A‖ f ‖p

H p , f ∈ H p.

(c) For some p, 0 < p < ∞, f ∈ L p(σ ) for all f ∈ H p.

Proof. That (a) implies (b) follows from (3.1) and Lemma I.5.5 just as in the
proof of Theorem I.5.6.

Trivially, (b) implies (c). On the other hand, if (c) holds for some fixed
p < ∞, then (b) holds for the same value p. This follows from the closed graph
theorem, which is valid here even when p < 1 (see Dunford and Schwartz
[1958, p. 57]). One can also see directly that if there are { fn} in H p with
‖ fn‖p = 1 but

∫ | fn|pdσ → ∞, then the sum �αn fn , when the αn , are chosen
adroitly, will give an H p function for which (c) fails.

Now suppose (b) holds for some p > 0. Let Q be the square {x0 < x <

x0 + y0, 0 < y < y0} and let

f (z) =
(

1

π

y0

(z − z̄0)2

)1/p

,

where z0 = x0 + iy0. Then f ∈ H p and ‖ f ‖p
p = ∫

Pz0
(t)dt = 1. Since

| f (z)|p ≥ (5πy0)−1, z ∈ Q, we have

σ (Q) ≤ σ ({z : | f (z)| > (5πy0)−1/p}) ≤ 5π Ay0,

so that (a) holds.

4. (1/π)
∫

(log | f (t)|/(1 + t2)) dt > − ∞
A fundamental result of H p theory is that the condition of this section’s

title characterizes the moduli of H p functions | f (t)| among the positive L p

functions. In the disc, this result is due to Szegö for p = 2 and to F. Riesz for
the other p. For functions analytic across ∂D, the inequality (4.1) below was
first noticed by Jensen [1899] and for this reason the inequality is sometimes
called Jensen’s inequality. We prefer to use that name for the inequality about
averages and convex functions given in Theorem I.6.1.

In this section the important thing about an H p function will be the fact that
the subharmonic function

log | f (reiθ )| ≤ (1/p)| f (reiθ )|p
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is majorized by a positive L1 function of θ . It will be simpler to work at first
on the disc.

Theorem 4.1. If 0 < p ≤ ∞ and if f (z) ∈ H p(D), f 	≡ 0, then

1

2π

∫
log | f (eiθ )|dθ > −∞.

If f (0) 	≡ 0, then

log | f (0)| ≤ 1

2π

∫
log | f (eiθ )|dθ,(4.1)

and more generally, if f (z0) 	≡ 0

log | f (z0)| ≤ 1

2π

∫
log | f (eiθ )|Pz0

(θ )dθ.(4.2)

Proof. By Theorem I.6.7 and by the subharmonicity of log | f |,

log | f (z)| ≤ lim
r→1

1

2π

∫
log | f (reiθ )|Pz(θ )dθ.

Since log | f (reiθ )| → log | f (eiθ ) almost everywhere, and since these func-
tions are bounded above by the integrable function (1/p)| f ∗(θ )|p, where f ∗
is the maximal function, we have

∫
log+ | f (reiθ )|Pz0

(θ ) dθ →
∫

log+ | f (eiθ )|Pz0
(θ ) dθ.

Fatou’s lemma can now be applied to the negative parts to give us

lim
r→1

1

2π

∫
log | f (reiθ )|Pz0

(θ ) dθ ≤ 1

2π

∫
log | f (eiθ )|Pz0

(θ ) dθ.

This proves (4.2) and (4.1). The remaining inequality follows by removing any
zero at the origin.

Note that the same result in the upper half plane

log | f (z0)| ≤
∫

log | f (t)|Pz0
(t)dt, f ∈ H p,(4.3)

follows from Theorem 4.1 and from Lemma 1.1 upon a change of variables.

Corollary 4.2. If f (z) ∈ H p and if f (t) = 0 on a set of positive measure,
then f = 0.

Corollary 4.2 gives the other half of the F. and M. Riesz theorem. If dμ(t) is
a finite measure such that py ∗ μ(x) is analytic, then not only is dμ absolutely
continuous to dt, but also dt is absolutely continuous to dμ.

Corollary 4.3. Let 0 < p, r ≤ ∞. If f (z) ∈ H p and if the boundary function
f (t) ∈ Lr , then f (z) ∈ Hr .
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This corollary is often written

H p ∩ Lr ⊂ Hr .

Proof. Applying Jensen’s inequality, with the convex function ϕ(s) =
exp(rs) and with the probability measure Py(x − t)dt , to (4.3) gives

| f (z)|r ≤
∫

| f (t)|r Py(x − t) dt.

Integration in x then yields f ∈ Hr .

Theorem 4.4. Let h(t) be a nonzero nonnegative function in L p(�). Then
there is f (z) ∈ H p(dt) such that | f (t)| = h(t) almost everywhere if and only
if

∫
log h(t)

1 + t2
dt > − ∞.(4.4)

Proof. It has already been proved that (4.4) is a necessary condition. To show
(4.4) is sufficient, note that since log h ≤ (1/p)|h|p, (4.4) holds if and only if
log h ∈ L1(dt/(1 + t2)). Let u(z) be the Poisson integral of log h(t) and let v(z)
be any harmonic conjugate of u(z). (Since H is simply connected, there exists
a harmonic conjugate function v(z) such that u + iv is analytic. The conjugate
function v(z) is unique except for an additive constant.) The function we are
after is

f (z) = eu(z)+iv(z),

which is an analytic function on H . When p < ∞ Jensen’s inequality again
gives

| f (z)|p ≤
∫

Py(x − t)|h(t)|pdt

and therefore f ∈ H p. If p = ∞ then u is bounded above and so f ∈ H∞.

When p = ∞, (4.4) is especially important. Let h ≥ 0, h ∈ L∞, and sup-
pose 1/h ∈ L∞. Then f = eu+iv ∈ H∞ and also

1/ f = e−(u+iv) ∈ H∞.

In other words, f is an invertible function in H∞. We write f ∈ (H∞)−1. For
emphasis, we state this fact separately, writing g = log h, so that g ∈ L∞ if
h ∈ L∞ and 1/h ∈ L∞.

Theorem 4.5. Every real-valued function g(t) in L∞ has the form log | f (t)|,
where f ∈ (H∞)−1 is an invertible function in H∞.

In the language of uniform algebra theory, Theorem 4.5 asserts that H∞ is
a strongly logmodular subalgebra of L∞. It is also a logmodular subalgebra
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of L∞, which means that the set

log |(H∞)−1| = {log | f (t)| : f ∈ H∞, 1/ f ∈ H∞}
is dense in L∞

� , the space of real L∞ functions. The Banach algebra aspects
of H∞ will be discussed in some detail later; for the present we only want to
say that Theorem 4.4 is a powerful tool for constructing H p functions.

Let h(t) ≥ 0 satisfy
∫ | log h(t)|dt

1 + t2
< ∞.

The function

f (z) = eu(z)+iv(z),

where

u(z) = Py ∗ (log h)(x)(4.5)

and where v(z) is a harmonic conjugate function of u(z), is called an outer
function. The outer function f (z) is determined by h(t) except for the uni-
modular constant factor arising from the choice of the conjugate function v(z).
The function | f (z)| has boundary values h(t) almost everywhere, and Jensen’s
inequality with (4.5) shows that f (z) ∈ H p if and only if h(t) ∈ L p. Outer
functions in H p can be characterized in several ways.

Theorem 4.6. Let 0 < p ≤ ∞and let f (z) ∈ H p, f 	≡ 0. Then the following
are equivalent.

(a) f (z) is an outer function.
(b) For each z ∈ H , equality holds in (4.3); that is,

log | f (z)| =
∫

log | f (t)|Py(x − t)dt.(4.6)

(c) For some point z0 ∈ H , (4.6) holds.
(d) If g(z) ∈ H p and if |g(t) = | f (t)| almost everywhere, then

|g(z)| ≤ | f (z)|, z ∈ H .

(e) f (z) has no zeros in H and the harmonic function log | f (z)| is the
Poisson integral of a function k(t) such that

∫ |k(t)|dt

1 + t2
< ∞, ek(t) ∈ L p.

Proof. First, (e) is merely a rewording of the definition of an outer function in
H p, because any function f (z) without zeros is an exponential, f = eu+iv, u =
log | f |. Thus (a) and (e) are equivalent.

By definition, (a) implies (b). If (b) holds, then we see (d) holds by applying
(4.3) to the function g(z) in (d). Moreover, if (d) holds, and if g(z) is an
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outer function determined by log | f (z)|, then the analytic function f (z)/g(z)
satisfies

| f (z)/g(z)| = 1,

so that f = λg, |λ| = 1, and f is an outer function. Hence (a), (b), (d), and (e)
are equivalent.

Trivially, (b) implies (c). Now assume (c) and again let g(z) be an outer
function determined by log | f (t)|. Then | f (z)/g(z)| ≤ 1, and if (c) holds, the
maximum principle shows that | f/g| = 1, and so f (z) is an outer function.

The function S(z) = eiz has no zeros in the upper half plane, and S(z) ∈ H∞,
but S(z) is not an outer function, because log |S(z)| = −y is not a Poisson
integral.

Corollary 4.7. If f (z) ∈ H p and if for some r > 0, 1/ f (z) ∈ Hr , then f (z)
is an outer function.

This holds because f satisfies (4.6).

Corollary 4.8. Let f (z) ∈ H p. Either of the following two conditions imply
that f (z) is an outer function.

(a) Re f (z) ≥ 0, z ∈ H .
(b) There exists a C1 are 	 terminating at 0 such that

f (H ) ⊂ �\	.

Proof. If (a) holds then f + ε is an outer function for any ε > 0, because
( f + ε)−1 ∈ H∞. Now, since Re f ≤ 0,

∫
log | f (t) + ε|Py(x − t)dt →

∫
log | f (t)|Py(x − t)dt

as ε → 0, by dominated convergence on {t : | f (t)| ≥ 1
2
} and by monotone

convergence on {t : | f (t)| < 1
2
}. Hence (4.6) holds for f and f is an outer

function.
The above argument shows that f (z) is an outer function if Re f (z) > 0 on

the set {| f (z)| < 1}. Now assume (b). Replacing f (z) by λ f (z), |λ| = 1, we
can also assume that 	 has tangent vector (1, 0) at z = 0. This means that if δ

is sufficiently small, the analytic function

g(z) = ( f (z)/δ)1/5

satisfies Re g(z) > 0 if |g(z)| < 1. Hence g is an outer function, and f = δ5g5

is an outer function.



66 Hp
spaces Chap. II

5. The Nevanlinna Class

In this section we continue to use the fact that log | f (z)| has a harmonic
majorant if f (z) ∈ H p, but now the important thing will be that the least
harmonic majorant is a Poisson integral.

An analytic function f (z) on D or H is in the Nevanlinna class, f ∈ N , if
the subharmonic function log+ | f (z)| has a harmonic majorant. This definition
is conformally invariant and the Nevanlinna classes on D and H therefore
coincide, but it is easier to discuss N on the disc, where it is characterized by

sup
r

∫
log+ | f (reiθ )|dθ/2π < ∞.(5.1)

It is clear that H p ⊂ N for all p > 0, because log+ | f (z)| ≤ (1/p)| f (z)|p.

Theorem 5.1. Let f (z) be an analytic function on D, f 	≡ 0. Then f ∈ N
if and only if log | f (z)| has least harmonic majorant the Poisson integral of a
finite measure on ∂D.

Proof. If

log | f (z)| ≤
∫

Pz(θ )dμ(θ )

for some finite measure, then

log+ | f (z)| ≤
∫

Pz(θ )dμ+(θ ),

where μ+ is the positive part of μ, and hence log+ | f (z)| has a harmonic
majorant.

Conversely, if f ∈ N , then log+ | f (z)| is majorized by some positive har-
monic function U (z). Since log | f (z)| ≤ log+ | f (z)|, log | f (z)| has a least
harmonic majorant u(z), and clearly u(z) ≤ U (z). Thus

u(z) = U (z) − (U (z) − u(z))

is the difference of two positive harmonic functions, and consequently u(z) is
the Poisson integral of a finite measure.

The proof of Theorem 5.1 really shows that a subharmonic function v(z) is
majorized by a Poisson integral if and only if v+ = max(v, 0) has a harmonic
majorant, and that when this is the case, the least harmonic majorant of v(z)
is a Poisson integral.

Lemma 5.2. Let f (z) ∈ N , f 	≡ 0. Let B(z) be the Blaschke product formed
from the zeros of f (z). Then B(z) converges, and g(z) = f (z)/B(z) is in N.
Moreover, log |g(z)| is the least harmonic majorant of log | f (z)|.
Proof. Since log | f (z)| has a harmonic majorant, we know from Section 2
that B(z) converges. Let u(z) be the least harmonic majorant of log | f (z)|.
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Then since |B(z)| ≤ 1, it is clear that

u(z) ≤ log |g(z)|.
On the other hand

log |B(z)| = log | f (z)| − log |g(z)| ≤ u(z) − log |g(z)|.
By Theorem 2.4, this means that

0 ≤ u(z) − log |g(z)|
and hence u(z) = log |g(z)|. It of course follows that g(z) ∈ N .

Theorem 5.3. Let f (z) ∈ N , f 	≡ 0. Then f (z) has a nontangential limit
f (eiθ ) almost everywhere, and

log | f (eiθ )| ∈ L1(dθ ).(5.2)

The least harmonic majorant of log | f (z)| has the form
∫

Pz(θ )dμ(θ ), where

dμ(θ ) = log | f (θ )|dθ/2π + 2μs,(5.3)

with dμ, singular to dθ .

Proof. Let g(z) = f (z)/B(z), where B(z) is the Blaschke product with the
same zeros as f (z). We knew from Theorem 5.1 and Lemma 5.2 that

log |g(z)| =
∫

Pz(θ ) dμ(θ ).(5.4)

Write dμ = k(θ )(dθ/2π ) + dμs, where dμs, is singular to dθ . By (5.4) and by
Theorem I.5.3, log |g(z)| has nontangential limit k(θ ) almost everywhere. Since
|B(eiθ )| = 1 almost everywhere, it follows that log | f (z)| has nontangential
limit k(θ ) almost everywhere. Therefore (5.2) and (5.3) will be proved once
we show there exist nontangential limits for f (z).

By (5.4), log |g(z)| is the difference of two positive harmonic functions:
log |g| = u1 − u2, u j ≥ 0. Let v j (z) be a harmonic conjugate function of u j (z).
Because D is simply connected, v j (z) is well defined, and v j (z) is unique if
we set v j (0) = 0. Then

log g(z) = (u1 + iv1) − (u2 + iv2) + ic

with c a real constant, and hence

g(z) = eice(−u2+iv2)

e−(u1+iv1)
.

The bounded functions e−(u j +iv j ) have nontangential limits almost everywhere,
and these limits cannot vanish on a set of positive measure. Consequently g
and f = Bg have nontangential limits.
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If f (z) ∈ N , f 	≡ 0, then by (5.2)
∫

log | f (θ )|dθ > −∞.

However, the sharper inequality

log | f (z)| ≤
∫

log | f (θ )|Pz(θ )
dθ

2π
,(5.5)

which was proved for H p functions in Section 4, can fail for f (z) ∈ N . Con-
sider the function

g(z) = exp
1 + z

1 − z
.

Then log |g(z)| = (1 − |z|2)/(|1 − z|2) = Pz(1). The function g is in N, and
the measure determined by log |g(z)| is the unit charge at eiθ = 1. Since

log |g(0)| = 1 > 0 =
∫

log |g(θ )| dθ

2π
,

(5.5) fails for g(z).
This counterexample contains the only thing that can go wrong with (5.5)

for a function in N. The right side of (5.5) is a harmonic function; it ma-
jorizes log | f (z)| if and only if it is bigger than the least harmonic majorant
of log | f (z)|, which is the Poisson integral of the measure dμ, in (5.3). Com-
paring (5.3) with (5.5), we therefore see that (5.5) is true for f (z) ∈ N if and
only if the singular term dμ, in (5.3) is nonpositive.

The functions in N for which dμs, ≤ 0 form a subclass of N called N+. We
give the classical definition: Let f (z) ∈ N . We say f (z) ∈ N+ if

lim
r→1

∫
log+ | f (reiθ )|dθ =

∫
log+ | f (eiθ )|dθ.

Theorem 5.4. Let f (z) ∈ N , f 	≡ 0. Then the following are equivalent.

(a) f (z) ∈ N+
(b) The least harmonic majorant of log+ | f (θ )| is

∫
log+ | f (θ )|Pz(θ )

dθ

2π
.

(c) For all z ∈ D,

log | f (z)| ≤
∫

log | f (θ )|Pz(θ )
dθ

2π
.

(d) The least harmonic majorant of log | f (z)| is the Poisson integral of

dμ = log | f (θ )| dθ

2π
+ dμs,
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where dμs ⊥ dθ and

dμs ≤ 0.

Proof. We have already proved that (c) and (d) are equivalent.
If f (z) ∈ N , then log+ | f (z)| has least harmonic majorant

U (z) =
∫

Pz(θ )dν(θ ),

where the positive measure v is the weak-star limit of the measures

log+ | f (reiθ )|dθ/2π,

by Theorem I.6.7 and the remark thereafter. By Fatou’s lemma,
∫

log+ | f (θ )|Pz(θ )
dθ

2π
≤ lim

r→1

∫
log+ | f (reiθ )|Pz(θ )

dθ

2π
=

∫
Pz(θ )dν(θ ),

and hence

log+ | f (θ )| dθ

2π
≤ dν,(5.6)

because a measure is determined by its Poisson integral. By definition f (z) ∈
N+ if and only if the two sides of (5.6), which are positive, have the same
integral. Thus f ∈ N+ if and only if

log+ | f (θ )| dθ

2π
= dν

and (a) and (b) are equivalent.
Finally, a comparison of the least harmonic majorants of log | f (z)| and

of log+ | f (z)|, as in the proof of Theorem 5.1, shows that (b) and (d) are
equivalent.

It follows from (b) or (c) that

N ⊃ N+ ⊃ H p, p > 0.

It also follows that f (z) ∈ H p if and only f (z) ∈ N+ and f (eiθ ) ∈ L p. This
fact generalizes Corollary 4.3 and it has the same proof, using Jensen’s in-
equality with (c). This fact can be written

N+ ∩ L p = H p, p > 0.

The example given before Theorem 5.4 shows that N ∩ L p 	= H p.
We return to Theorem 5.3 and use formula (5.3) to obtain an important

factorization theorem for functions in N. Let f (z) ∈ N , f 	≡ 0. Let B(z) be
the Blaschke product formed from the zeros of f (z), and let g(z) = f (z)/B(z).
Then g(z) ∈ N , and log |g(z)| is the Poisson integral of the measure μ in (5.3).
By Theorem 5.4, f ∈ N+ if and only if g ∈ N+.
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It is not hard to recover g, and therefore also f = Bg, from the measure μ.
We actually did that in the proof of Theorem 5.3, but let us now do it again
more carefully. Write

dμ = log | f (θ )|dθ/2π − (dμ1 − dμ2),(5.7)

where dμ j ≥ 0 and dμ j ⊥ dθ . The function

F(z) = exp

(∫
eiθ + z

eiθ − z
log | f (eiθ )| dθ

2π

)

is an outer function on the disc, because

F(z) = eu(z)+iv(z),

where u(z) is the Poisson integral of log | f (eiθ )| and v(z) is a conjugate function
of u(z) normalized by v(0) = 0. Among the outer functions associated with
log | f (θ )|, F(z) is determined by the condition F(0) > 0.

Similarly, let

Sj (z) = exp

(

−
∫

eiθ + z

eiθ − z
dμ j (θ )

)

, j = 1, 2.(5.8)

Then Sj (z) is analytic on D, and Sj (z) has the following properties:

(i) Sj (z) has no zeros in D.
(ii) |Sj (z)| ≤ 1,

(iii) |Sj (eiθ )| = 1 almost everywhere, and
(iv) Sj (0) > 0.

Properties (i) and (iv) are immediate from (5.8). Since

log |Sj (z)| = −
∫

Pz(θ )dμ j (θ ),(5.9)

property (ii) holds because μ j ≥ 0 and property (iii) follows from Lemma
I.5.4 because dμ j ⊥ dθ . A function with properties (i)–(iv) is called a singular
function. Every singular function S(t) has the form (5.8) for some positive
singular measure. This measure is determined by (5.9).

We now have

log |g(z)| = log |F(z)| + log |S1(z)| − log |S2(z)|
by the decomposition (5.7) of μ. Since g(z) has no zeros on D, log g(z) is
single valued and hence

log g(z) = ic + log F(z) + log S1(z) − log S2(z),

c a real constant, so that

g(z) = eic F(z)S1(z)/S2(z).

We have now proved most of the Canonical Factorization theorem:
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Theorem 5.5. Let f (z) ∈ N , f 	≡ 0. Then

f (z) = C B(z)F(z)S1(z)/S2(z), |C | = 1,(5.10)

where B(z) is a Blaschke product, F(z) is an outer function, and S1(z) and
S2(z) are singular functions. Except for the choice of the constant C, |C | = 1,
the factorization (5.10) is unique. Every function of the form (5.10) is in N.

Proof. We have already derived the factorization (5.10). There can be no dif-
ficulties about the uniqueness of the factors because B(z) is determined by the
zeros of f (z), and as |B(eiθ )| = |S1(eiθ )| = |S2(eiθ )| = 1 almost everywhere,
F(z) is determined by log | f (eiθ )|. S1 and S2 are then determined by the least
harmonic majorant of log | f |. If f (z) is a function of the form (5.10), then

log | f (z)| ≤ log |F(z)| + log |S1(z)| − log |S2(z)|,
so that log | f (z)| is majorized by a Poisson integral. It now follows from
Theorem 5.1 that f (z) ∈ N .

Corollary 5.6. Let f (z) ∈ N , f 	≡ 0. Then in (5.10) the singular factor
S2 ≡ 1 if and only if f (z) ∈ N+.

Proof. S2(z) ≡ 1 if and only if

dμ = log | f (θ )|(dθ/2π ) − dμ1,

with dμ1 ≥ 0, and this holds if and only if f (z) ∈ N+.

For emphasis we state

Corollary 5.7. If f (z) ∈ H p, p > 0, then f (z) has a unique decomposition

f (z) = C B(z)S(z)F(z),

where |C | = 1, B(z) is a Blaschke product, S(z) is a singular function, and
F(z) is an outer function in H p.

Corollary 5.8. Let f (z) ∈ N+. Then f (z) ∈ H p if and only if the outer factor
F(z) is in H p.

The proofs of these corollaries are left to the reader.

6. Inner Functions

An inner function is a function f (z) ∈ H∞ such that | f (eiθ )| = 1 almost
everywhere. Every Blaschke product is an inner function, and so is every
singular function

S(z) = exp

(

−
∫

eiθ + z

eiθ − z
dμ(θ )

)

,
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where the measure dμ is positive and singular to dθ . By the Factorization
Theorem 5.5, every inner function has the form

f (z) = eic B(z)S(z),

where c is a real constant, B is a Blaschke product, and S is a singular func-
tion. If f (z) ∈ N+ and if | f (eiθ )| = 1 almost everywhere, then f is an inner
function, because N+ ∩ L∞ = H∞. However, if f (z) = 1/S(z), where S is
a nonconstant singular function, then f ∈ N and | f (eiθ )| = 1 almost every-
where, but f (z) is not an inner function. If it were, then for z ∈ D we would
have | f (z)| ≤ 1 and |1/ f (z)| ≤ 1, but this is impossible.

Theorem 6.1. Let B(z) be a Blaschke product with zeros {zn}, and let E ⊂ ∂D
be the set of accumulation points of {zn}. Then B(z) extends to be analytic on
the complement of

E ∪ {1/zn : n = 1, 2, . . . }
in the complex plane: In particular B(z) is analytic across each arc of (∂D)\E.
On the other hand, the function |B(z)| does not extend continuously from D to
any point of E.

Proof. Let {Bn(z)} be the finite Blaschke products converging to B(z). Then

Bn(1/z) = 1/Bn(z)

by reflection, and limn→∞ Bn(z) exists on {z : |z| > 1}\{1/zn : n = 1, 2, . . . }
and the limit is an analytic function on that region. If z0 ∈ ∂D\E and if δ > 0
is small, then each Bn is analytic on 
 = 
(z0, δ) and {Bn(z)} converges
boundedly on ∂
\∂D. By the Poisson integral formula for 
, for example,
this means {Bn(z)} converges on 
. Hence B(z) is analytic except on

E ∪ {1/zn : n = 1, 2, . . . }.
If z0 ∈ E , then

lim
D�z→z0

|B(z)| = 0,

while since |B(eiθ )| = 1 almost everywhere,

lim
D�z→z0

|B(z)| = 1.

Thus |B| does not extend continuously to z0.

Aside from the Blaschke products, the simplest inner function is the singular
function

S(z) = exp

(
z + 1

z − 1

)

,
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generated by the point mass at 1. A calculation shows that S and all its deriva-
tives have nontangential limit 0 at eiθ = 1. Under w = (1 + z)/(1 − z), the
disc D is conformally mapped to the right half plane {Re w > 0}, so that z = 1
corresponds to w = ∞, and so that ∂D\{1} corresponds to the imaginary axis.
Thus S(z) = e−w is analytic across ∂D\{1} and S(z) wraps ∂D\{1} around ∂D
infinitely often. The vertical line Re w = α, α > 0, comes from the orocycle

Cα =
{

1 − |z|2
|1 − z|2 = α

}

.

This is a circle, with center α/(1 + α) and radius 1/(1 + α), which is tangent to
∂D at 1. On this orocycle |S(z)| = e−α , and S wraps Cα\{1} around |ζ | = e−α

infinitely often. The function S(z) has no zeros in D, but for every ζ, 0, < |ζ | <

1, S(z) = ζ infinitely often in every neighborhood of z = 1.
Recall the notation

	α(eiθ ) =
{

z ∈ D :
|eiθ − z|
1 − |z| < α

}

, α > 1

for the conelike region in D with vertex eiθ .

Theorem 6.2. Let S(z) be the singular function determined by the measure
μ on ∂D, and let E ⊂ ∂D be the closed support of μ. Then S(z) extends
analytically to �\E. In particular S(z) is analytic across each arc of (∂D)\E.
On the other hand, |S(z)| does not extend continuously from D to any point of
E. For any α > 1 and for μ-almost all θ

lim
z→eiθ

S(z) = 0, z ∈ 	α(eiθ ).

If

lim
h→0

μ((θ − h, θ + h))

h log 1/h
= ∞,(6.1)

then every derivative S(n)(z) of S(z) satisfies

lim
z→eiθ

S(n)(z) = 0, z ∈ 	α(eiθ ).(6.2)

Proof. For any measure μ on ∂D, the function
∫

eiθ + z

eiθ − z
dμ(θ )

is analytic at all points not in the closed support E of μ. Hence S(z) is analytic
on �\E .

If μ is singular, then

lim
h→0

μ((θ − h, θ + h))

2h
= ∞(6.3)
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for μ-almost all θ . This follows from Lemma I.4.4 by repeating the proof of
Lemma I.5.4, with dx and dμ interchanged. For z ∈ 	α(eiθ ) and for |ϕ − θ | <

1 − |z|2 we have

Pz(ϕ) ≥ c2

1 − |z|2 .

Setting h = 1 − |z|2, we therefore obtain

− log |S(z)| ≥ c2

h
μ((θ − h, θ + h)) → ∞

as z → eiθ , z ∈ 	α(eiθ ), whenever (6.3) holds at θ . This shows |S| does not
extend continuously at any point of E.

If (6.1) holds at θ , then by similar reasoning

lim
	α(θ )�z→eiθ

(− log |S(z)| + n log(1 − |z|2) = ∞

for every n = 1, 2 . . . . Hence we have

lim
	α(θ )�z→eiθ

|S(z)|
(1 − |z|2)n

= 0.(6.4)

Now fix z in 	α(θ ) and consider two discs


1 = 
(z, a(1 − |z|2)), 
2 = 
(z, 1
2
a(1 − |z|2)).

If f (ζ ) is analytic on 
1, and if

sup

1

| f (ζ )|
(1 − |ζ |2)n

< ε,

then

sup

2

| f (n)(ζ )| < C(a, n)ε,

where C(a, n) depends only on a and n. This is an easy consequence of
Schwarz’s lemma on 
1, or of the Poisson integral formula for 
1. By (6.4)
we therefore have

S(n)(z) → 0

as z → eiθ , z ∈ 	α(θ ), whenever (6.1) holds at eiθ .

Theorem 6.3. Let f ∈ H p, p > 0, and let 	 be an open arc on ∂D. If f (z) is
analytic across 	, then its inner factor and its outer factor are analytic across
	. If f (z) is continuous across 	, then its outer factor is continuous across 	.

Proof. Write f = BSF, where B is a Blaschke product, S is a singular func-
tion, and F is an outer function. We may suppose f 	≡ 0. If f is analytic or
continuous across 	, then F is bounded on any compact subset of 	, because
|F | = | f | on 	.
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Suppose f is analytic across 	. If the zeros of B had an accumulation point
on 	, then f would have a zero of infinite order at some point of 	. This is
impossible and so B is analytic across 	. Let μ be the measure determining S.
If μ had a point charge at eiθ ∈ 	, then S, and hence also f, would have a zero
of infinite order at eiθ , by Theorem 6.2. Thus μ({eiθ }) = 0 for all θ ∈ 	. Now
if μ(K ) > 0 for some compact subset K of 	, then K is uncountable and by
Theorem 6.2, f (z) has infinitely many zeros on K. Therefore μ(K ) = 0 and S
is analytic across 	. Hence F = f/BS is analytic across 	.

Suppose f is continuous across 	. Let K = {θ ∈ 	 : f (eiθ ) = 0}. Then, as
a function on 	, F is continuous at each point of K, because |F | = | f | on 	

and |F | = 0 on K. On 	\K , | f | > 0, so that B and S cannot tend to zero at
any point of 	\K . Then B and S are analytic across 	\K and F is continuous
on 	. The Poisson integral representation now implies that F is continuous on
D ∪ 	.

A compact set K in the plane has positive logarithmic capacity if there is a
positive measure σ on K with σ 	= 0 such that the logarithmic potential

Uσ (z) =
∫

K
log

1

|ζ − z|dσ (ζ )

is bounded on some neighborhood of K. If K ⊂ D, then K has positive capacity
if and only if K supports a positive mass σ for which Green’s potential

Gσ (z) =
∫

K
log

∣
∣
∣
∣
1 − ζ̄ z

ζ − z

∣
∣
∣
∣ dσ (ζ )(6.5)

is bounded on D, because the term
∫

K log |1 − ζ̄ z|dσ (ζ ) is always bounded on
D. An arbitrary set E is said to have positive capacity if some compact subset
of E has positive capacity. Since log 1/|ζ | is locally integrable with respect to
area, any set of positive area has positive capacity. There are perfect sets of
capacity zero, but these sets are very thin. For example, the Cantor ternary set
on [0, 1] has positive capacity (see Tsuji [1959]).

The Green’s potential Gσ (z) in (6.5) clearly satisfies Gσ (z) ≥ 0, z ∈ D.
Since σ is finite and supported at a positive distance from ∂D, we have

Gσ is continuous and zero at each point of ∂D.(6.6)

Further information about logarithmic capacity and potentials can be found
in Tsuji’s book [1959], but we shall need only the facts cited above.

If B(z) is a Blaschke product, let us agree to also call

eic B(z)

a Blaschke product when c is a real constant.

Theorem 6.4 (Frostman). Let f (z) be a nonconstant inner function on the
unit disc. Then for all ζ, |ζ | < 1, except possibly for a set of capacity zero,
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the function

fζ (z) = f (z) − ζ

1 − ζ f (z)

is a Blaschke product.

Proof. Let K be a compact set of positive capacity and let σ be a positive
mass on K such that Gσ (z) is bounded on D. We shall show

σ ({ζ ∈ K : fζ is not a Blaschke product}) = 0

and that will prove the theorem. Let

F(z) = Gσ ( f (z)) =
∫

K
log

∣
∣
∣
∣
∣
1 − ζ f (z)

ζ − f (z)

∣
∣
∣
∣
∣
dσ (ζ ).

Then V ≥ 0 and V is bounded. Because f (z) is an inner function, (6.6) and
dominated convergence imply that

lim
r→1

∫
V (reiθ ) dθ = 0.

Hence, by Fatou’s lemma,
∫

K
lim
r→1

∫
log | fζ (r iθ )| dθ

2π
dσ (ζ ) = 0.

Because σ ≥ 0 and log | fζ | ≤ 0, this means

lim
r→1

∫
log | fζ (reiθ )| dθ

2π
= 0

for σ -almost every ζ . Theorem 2.4 then shows that fζ is a Blaschke product
for σ -almost all ζ .

Corollary 6.5. The set of Blaschke products is uniformly dense in the set of
inner functions.

Proof. If f (z) is an inner function and if |ζ | is small, then

‖ f − fζ‖∞ < ε.

By Frostman’s theorem fζ is a Blaschke product for many small ζ .

Corollary 6.5 should be compared to Carathéodory’s theorem I.2.1, in which
a weaker form of convergence, namely, pointwise bounded convergence, is
obtained, but in which it is assumed only that ‖ f ‖∞ ≤ 1.

Let f ∈ H∞(D) and let z0 ∈ ∂D. The cluster set of f at z0 is

Cl( f, z0) =
⋂

r>0

f (D ∩ 
(z0, r )).
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Thus ζ ∈ Cl( f, z0) if and only if there are points zn in D tending to z0 such
that f (zn) → ζ . The cluster set is a compact, nonempty, connected plane set.
It is a singleton if and only if f is continuous on D ∪ {z0}. The range set of f
at z0 is

R ( f, z0) =
⋂

r>0

f (D ∩ 
(z0, r )),

so ζ ∈ R ( f, z0) if and only if there are points zn in D tending to z0 such
that f (zn) = ζ, n = 1, 2, . . . In other words, the range set is the set of values
assumed infinitely often in each neighborhood of z0. The range set R ( f, z0)
is a Gδ set. Clearly R ( f, z0) ⊂ Cl( f, z0). If f (z) is analytic across z0, and not
constant, then Cl( f, z0) = f (z0), and R ( f, z0) = ∅.

Theorem 6.6. Let f (z) be an inner function on D, and let z0 ∈ ∂D be a
singularity of f (z) (that is, a point at which f (z) does not extend analytically).
Then

Cl( f, z0) = D̄

and

R ( f, z0) = D\L ,

where L is a set of logarithmic capacity zero.

Theorem 6.6 shows that, despite Fatou’s theorem, the boundary behavior of
an H∞ function can be rather wild. For example, if f (z) is a Blaschke product
whose zeros are dense on ∂D, or if f (z) is the singular function determined by a
singular measure with closed support ∂D, then the conclusion of Theorem 6.6
holds at every z0 ∈ ∂D, even though f (z) has nontangential limits almost
everywhere.

Proof. Since sets of capacity zero have no interior, the assertion about the
range sets implies the assertion about the cluster set.

We are assuming f (z) is not analytic across any arc containing z0. If f (z)
is a Blaschke product, then z0 is an accumulation point of the zeros of f (z).
Thus 0 ∈ R ( f, z0) if f is a Blaschke product. In general

fζ (z) = f (z) − ζ

1 − ζ̄ f (z)

is a Blaschke product when ζ 	∈ L , a set of capacity zero. Since fζ also has
a singularity at z0, we see that for ζ 	∈ L , z0 is an accumulation point of the
zeros of fζ , therefore z0 is an accumulation point of the ζ -points of f (z).

That proves Theorem 6.6, but by using Theorem 6.2 we can get more precise
information. Suppose f (z) is an inner function, suppose z0 is a singularity of
f (z) and suppose ζ ∈ D\R ( f, z0). Then the inner function fζ is not a Blaschke
product. Moreover, the proof above shows its Blaschke factor cannot have zeros
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accumulating at z0. Write fζ = Bζ Sζ . We have just showed that Bζ is analytic
across z0. Hence Sζ has a singularity at z0. Two cases now arise.

If z0 is an isolated singularity of Sζ on ∂D, then the singular measure μ giving
rise to Sζ contains an atom at z0. In this case Sζ and all its derivatives tend
nontangentially to 0 at z0. It follows readily that fζ (z) and all its derivatives
tend nontangentially to 0, so that nontangentially f (z) tends to ζ , while all
the derivatives of f (z) tend to 0. These conclusions also hold if μ satisfies
(6.1) at z0. It is quite clear that for fixed z0, there can be at most one point
ζ ∈ D\R ( f, z0) at which these conclusions can hold.

The alternative case is that μ({z0}) = 0. Then by Theorem 6.2, z0 is the
limit of a sequence of points {eiθn } at each of which Sζ has nontangential limit
0, and therefore at each of which f (z) has nontangential limit ζ . In this case
Theorem 6.2 tells us even more. Either μ is continuous on some neighborhood
of z0, or μ assigns positive mass to each point in a sequence eiθn tending to
z0. If μ is not continuous, there are eiθn → z0 such that at each point eiθn , f (z)
tends nontangentially to ζ , and each derivative f (k)(z) tends nontangentially to
0. If μ is continuous, then by Theorem 6.2 each neighborhood of z0 contains
uncountably many eiθ at which f (z) tends nontangentially to ζ .

The above reasoning can be summarized as follows:

Theorem 6.7. Let f (z) be an inner function on D and let z0 ∈ ∂D be a
singularity of f (z). For |ζ | < 1 at least one of the following holds.

(a) ζ is in the range set of f at z0.
(b) f (z) has nontangential limit ζ at z0, and each derivative f (n) has

nontangential limit 0 at z0.
(c) z0 is the limit of a sequence of points eiθn on ∂D, and (b) holds at each

eiθn .
(d) Each neighborhood of z0 on ∂D contains uncountably many points at

which f (z) has nontangential limit ζ .

Considerably more about cluster theory can be found in the interesting books
of Noshiro [1960] and of Collingwood and Lohwater [1966].

7. Beurling’s Theorem

Let H be a separable Hilbert space with basis {ξ0, ξ1, ξ2, . . . }. The shift
operator S on H is defined by

S(ξ j ) = ξ j+1

or, equivalently,

S
( ∑

a jξ j

)
=

∑
a jξ j+1.
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Beurling used inner functions to characterize the (closed) invariant subspaces
for S. If we identify H with H 2 by taking ξk = eikθ , then the operator S becomes
multiplication by z,

S( f ) = z f (z).

A subspace M of H 2 is invariant under S if zM ⊂ M , that is, if z f (z) ∈
M whenever f ∈ M . Equivalently, M is invariant if p(z)M ⊂ M for every
polynomial p(z). Since M is closed, this is the same as saying H∞M ⊂ M
where H∞M = {g f : g ∈ H∞, f ∈ M}, because by Exercise 4 each g ∈ H∞
is a pointwise bounded limit of a sequence of polynomials.

Theorem 7.1 (Beurling). Let M be a subspace of H 2 invariant under S. If
M 	= {0}, then there is an inner function G(z) such that

M = G H 2 = {G(z) f (z) : f ∈ H 2}.(7.1)

The inner function G is unique except for a constant factor. Every subspace of
the form (7.1) is an invariant subspace for S.

Proof. Every subspace of the form (7.1) is closed in L2, because |G| = 1.
Every such subspace is clearly invariant under multiplication by z. Moreover
if G1 and G2 are inner functions such that

G1 H 2 = G2 H 2,

then G1 = G2h, G2 = G1k, h, k ∈ H 2. This clearly means G1 = λG2,

|λ| = 1, because G1/G2 and G2/G1 are both inner functions in H∞.
Now let M be an invariant subspace, M 	= {0}. Then there is f ∈ M, f =

ak zk + ak+1zk+1 + . . . with ak 	= 0. Choose f ∈ M with the least such k and
write M = zk M1. Then M1 ⊂ H 2 is also invariant (and closed), and we might
as well assume M = M1. Thus we assume M contains a function f0 with
f0(0) 	= 0.

Let g0 be the orthogonal projection of 1 ∈ H 2 onto M. Then g0 ∈ M and
1 − g0 is orthogonal to M. Consequently

1

2π

∫
einθ g0(θ )(1 − g0(θ ))dθ = 0, n = 0, 1, 2, . . .

because zng0(z) ∈ M . Since for n ≥ 1, zng0(z) vanishes at z = 0, this gives

1

2π

∫
einθ |g0(θ )|2dθ = 1

2π

∫
einθ g0(θ ) dθ = 0,

n = 1, 2, . . . . Hence the Fourier coefficients of |g0|2 vanish except at n = 0
and |g0|2 is constant,

|g0|2 = c = 1

2π

∫
|g0|2dθ = ‖g0‖2

2.
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If g0 = 0, then 1 = 1 − g0 is orthogonal to M and all functions in M vanish at
z = 0, contrary to our assumption. Thus g0 	= 0, and

G = g0/‖g0‖2

is an inner function in M.
Clearly G H 2 ⊂ M , because M is invariant. Now suppose h ∈ M is orthog-

onal to G H 2. Then as g0 = ‖g0‖G ∈ G H 2,
∫

he−inθ g0(θ )
dθ

2π
= 0, n = 0, 1, 2, . . . .

But 1 − g0 is orthogonal to M, and znh ∈ M, n = 1, 2, . . . , so that

0 =
∫

heinθ (1 − g0(θ ))
dθ

2π
= −

∫
heinθ g0(θ )

dθ

2π
, n = 1, 2, . . . ,

since znh(z) vanishes at z = 0. Hence the L1 function hg0 has zero
Fourier series, and so hg0 = 0. As |g0| > 0, we see that h = 0 and hence
M = G H 2.

Let G1 and G2 be two inner functions and let M1 = G1 H 2, M2 = G2 H 2

be their invariant subspaces. Then M1 ⊂ M2 if and only if G1 ∈ M2. This
happens if and only if G2 divides G1, G1 = G2h, h ∈ H 2. When G2 divides
G1 the quotient G1/G2 is another inner function. Now let G be a nonempty
family of inner functions. There is a smallest invariant subspace M containing
G. It is simply the intersection of all invariant subspaces containing G. This
subspace M has the form M = G0 H 2 for some inner function G0, so that G0

divides every function in G. If G1 is another inner function which divides every
function in G, then M1 = G1 H 2 contains G, so that M ⊂ M1 and G1 divides
G0. Thus G has a greatest common divisor G0, which is unique except for a
constant factor. We have proved the following:

Corollary 7.2. Every nonempty family G of inner functions has a greatest
common divisor.

There is another way to prove Corollary 7.2 that gives us an idea of what
G0 looks like. Write G0 = B0S0 with B0 a Blaschke product and S0 a singular
function determined by the measure μ0. If G = BS is in G, then B0 divides B
and S0 divides S. This means on the one hand that the zeros of B include the zeros
of B0, and on the other hand that μ0 ≤ μ, where μ is the measure associated
with S. Hence B0 is the Blaschke product with zeros

⋂{G−1(0) : G ∈ G}.
And μ0 is the greatest lower bound of the set L of measures attached to the
functions in G. Any nonempty set L of positive Borel measures has a greatest
lower bound μ0. For any Borel set E, μ0(E) is defined by

μ0(E) = inf
N∑

j=1

μ j (E j ),
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where theμ j run throughL and where {E1, . . . , EN } runs through all partitions
of E into Borel sets.

Let P denote the set of polynomials in z.

Corollary 7.3. Let f (z) ∈ H 2. Then f (z) is an outer function if and only if
P f = {p(z) f (z) : p ∈ P } is dense in H 2.

Proof. Let M be the closure of P f in H 2. Then M is invariant under the
shift operator, so that M = G H 2 for some inner function G(z). Since f ∈ M ,
we have f = Gh, h ∈ H 2. So if f is an outer function, then G is constant and
M = H 2.

Now write f = Fh, with F an inner function and h an outer function. If F is
not constant, then F H 2 is a proper closed invariant subspace containing P f
and so P f is not dense in H 2.

Corollary 7.3 says that for any outer function f (z) ∈ H 2, there are polyno-
mials pn(z) such that

∫
|1 − pn f |2 dθ

2π
→ 0.(7.2)

A sharper version of (7.2) can be proved directly.

Theorem 7.4. Let f (z) be an outer function. Then there are functions { fn}
in H∞ such that

| fn(z) f (z)| ≤ 1,(7.3)

fn(θ ) f (θ ) → 1 almost everywhere.(7.4)

Proof. Let

un(θ ) = min(An, − log | f (θ )|),
where An is a large number to be determined later. Let fn be the outer func-
tion with log | fn| = un and with fn(0) f (0) > 0. Then | fn| ≤ eAn , and since
un(θ ) + log | f (θ )| ≤ 0, (7.3) holds. If An → ∞, then ‖un + log | f ‖1 → 0
and fn(0) f (0) → 1. Let An → ∞ so fast that

∑
(1 − fn(0) f (0)) < ∞.

Then
∑ ‖1 − fn f ‖2

2 = ∑{1 + ‖ fn f ‖2
2 − 2Refn(0) f (0)} ≤ 2

∑{1 − fn(0) f (0)} <

∞, which implies (7.4).

The invariant subspaces of H p, 0 < p < ∞, are described in Exercise 18.
An invariant subspace of H∞ is an ideal in the ring H∞. The weak-star topol-
ogy on H∞ is defined by the basic open sets

n⋂

j=1

{

f ∈ H∞ :

∣
∣
∣
∣

∫
f Fj dθ −

∫
f0 Fj dθ

∣
∣
∣
∣ < 1

}

,
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where F1, . . . , Fn ∈ L1 and f0 ∈ H∞. It is the weak-star topology of L∞
restricted to the subspace H∞.

Theorem 7.5. Let I be a nonzero ideal in H∞. If I is weak-star closed, then
there is an inner function G such that

I = G H∞(7.5)

The inner function G is unique except for a constant factor, and every set of
the form (7.5) is a weak-star closed ideal in H∞.

Proof. It is clear that G is essentially unique and that (7.5) defines a weak-star
closed ideal.

Now let I 	= {0} be a weak-star closed ideal. Let M be the closure of I in
H 2. We claim

M ∩ H∞ = I.(7.6)

Since M = G H 2 for an inner function G and M ∩ H∞ = G H∞, (7.6) implies
(7.5).

Clearly I ⊂ M ∩ H∞. Let g ∈ M ∩ H∞. Then there are gn in I such that

‖gn − g‖2 → 0.

We shall modify (a subsequence of) the gn by taking functions hn ∈ H∞ so
that

‖hngn‖∞ ≤ ‖g‖∞

and

hngn → g almost everywhere.

This implies hngn → g weak-star, and since gnhn ∈ I and I is weak-star closed,
it follows that g ∈ I . The modification resembles the proof of Theorem 7.4.
We may assume that ‖g‖∞ = 1 and that

‖gn − g‖2 ≤ 1/n2,

so that gn → g almost everywhere. Since log |x | ≤ |x | − 1, it follows that
∫

log+ |gn| dθ

2π
≤

∫

|gn |>1

(|gn| − 1)
dθ

2π
≤

∫
|gn − g| dθ

2π
≤ 1

n2
.

Let hn be the outer function with

log |hn| = − log+ |gn|, hn(0) > 0.

Then |hngn| ≤ 1 and

1 − hn(0) = 1 − exp
1

2π

∫
(− log+ |gn|)dθ ≤ 1 − e−1/n2 ≤ 1

n2
.
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Hence
∑ ‖1 − hn‖2

2 = ∑
(1 + ‖hn‖2

2 − 2Rehn(0)) ≤ 2
∑

(1 − hn(0)) < ∞
and hn → 1 almost everywhere.

The most interesting ideals of H∞ are the maximal (proper) ideals. Since
H∞ is a Banach algebra with unit, the maximal ideals are the kernels of the
homomorphisms m : H∞ → � (see Chapter V). If a weak-star closed ideal
G H∞ is maximal, then the inner function G has no proper divisors. Any
singular function S(z) has infinitely many divisors; for example, any power
St (z), 0 < t < 1, of S is a divisor of S. Hence G has no divisors if and only if

G(z) = λ
z − z0

1 − z̄0z
, |z0| < 1, |λ| = 1.

In that case G H∞ is the maximal ideal

{ f ∈ H∞ : f (z0) = 0}(7.7)

and the complex homomorphism is

m( f ) = f (z0).

These are the only weak-star closed maximal ideals.
H∞ has many other maximal ideals that are not weak-star closed. For ex-

ample, let S(z) be a nonconstant singular function. Then S(z) is not invertible
in the ring H∞, so that by Zorn’s lemma S(z) lies in some maximal ideal. But
because S(z) has no zero in D, this maximal ideal does not have the form (7.7).

The maximal ideals of H∞ will be studied in Chapters V and X below. Here
we only say that (7.7) does describe all the maximal ideals of H∞ which can
be obtained constructively. (The term constructive will remain undefined.)

Notes

See Parreau [1951] and Rudin [1955a] for discussions of the Hardy spaces
on general domains, where it is necessary to define H p in terms of harmonic
majorants.

Theorem 2.3 is due to F. Riesz [1923]. Blaschke products were introduced
by Blaschke [1915]. Theorem 2.4 was published by Frostman [1935].

Theorem 3.1 is from Hardy and Littlewood [1930]. The analogs of (3.2) and
(3.3) for the disc had already been proved earlier by F. Riesz [1923]. Theorem
3.6 is from the famous paper [1916] of F. and M. Riesz; the proof in the text
is apparently due to Bochner. Some applications of that fundamental result
are included among the exercises for this chapter. Theorem 3.9 will be very
important to us later.

On the circle, the integrability of log | f |, f ∈ H p, was first noticed by Szegö
[1921] for p = 2 and by F. Riesz [1923] for the other p. The Canonical Fac-
torization theorem is due to Smirnov [1929]. See F. Riesz [1930] for a parallel
result on subharmonic functions outlined in Exercise 20.
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Theorem 6.4 is from Frostman’s thesis [1935], an important paper link-
ing function theory to potential theory. See Seidel [1934] and the books of
Collingwood and Lohwater [1966], Noshiro [1960], and Tsuji [1959] for fur-
ther results on the boundary behavior of inner functions.

Beurling’s theorem is from his famous paper [1948]. The books of Helson
[1964] and Hoffman [1962a] give more thorough discussions of invariant
subspaces.

Different approaches to Hardy space theory are presented in the books of
Duren [1970], Hoffman [1962a], Privalov [1956], and Zygmund [1968].

Exercises and Further Results

1. Suppose f ∈ H p. Then

f = gh

with g, h ∈ H 2p and ‖g‖2p = ‖h‖2p = ‖ f ‖1/2
p . Also,

f = f1 + f2

with f j ∈ H p an outer function and ‖ f j‖p ≤ ‖ f ‖p. (Factor out the Blaschke
product. If f is an inner function take f1 = ( f + 1)/2, f2 = ( f − 1)/2.)

2. (a) Let f (t) ∈ L p(�), 1 ≤ p ≤ ∞. Then f is the nontangential
limit of an H p(dt) function if and only if one (and hence all) of the following
conditions hold:

(i) The Poisson integral of f (t) is analytic on H .
(ii) When p < ∞,

∫
f (t)

t − z
dt = 0, Im z < 0,

and when p = ∞,
∫

f (t)

(
1

t − z
− 1

t − z0

)

dt = 0, Im z < 0,

where z0 is any fixed point in the lower half plane.
(iii) For all g ∈ Hq , q = p/(p − 1),

∫
fg dt = 0.

(iv) For 1 ≤ p ≤ 2 (so that the Fourier transform is defined on L p by
Plancherel’s theorem)

f̂ (s) = lim
N→∞

∫ N

−N
f (t)e−2π ist dt = 0

almost everywhere on s < 0.
Part (iv) is one form of the Paley–Wiener theorem.
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(b) Now let f ∈ L p(∂D), 1 ≤ p ≤ ∞. Then f is the nontangential limit
of an H p function if and only if one of the following holds:

1. The Poisson integral of f is analytic on D.
2.

∫
einθ f (eiθ )dθ = 0, n = 1, 2, . . . .

3. If

Hq
0 =

{

g ∈ Hq : g(0) = 1

2π

∫
g(eiθ )dθ = 0

}

,

with q = p/(p − 1), then
∫

fg dθ = 0

for all g ∈ Hq
0 .

4. On |z| > 1,

1

2π i

∫
f (ζ )dζ

ζ − z
= 0.

If f ∈ H p, p ≥ 1, then

f (z) = 1

2π i

∫

|ζ |=1

f (ζ )dζ

ζ − z
, |z| < 1.

3. (The jump theorem). Let f ∈ L1(∂D). Then on |z| < 1

1

2π i

∫
f (ζ )dζ

ζ − z
− 1

2π i

∫
f (ζ )dζ

ζ − 1/z̄
= 1

2π

∫
f (eiθ )Pz(θ )dθ.

Consequently,

lim
r↑1

(
1

2π i

∫
f (ζ )dζ

ζ − reiθ
− 1

2π i

∫
f (ζ )dζ

ζ − eiθ /r

)

= f (eiθ )

almost everywhere. This result is more transparent on the upper half plane.
See Exercise III.10 below for further information.

4. Let f (eiθ ) ∈ L∞(∂D). Then f is the nontangential limit of an H∞
function if and only if there exists a uniformly bounded sequence of analytic
polynomials pn(z) such that pn(eiθ ) → f (eiθ ) almost everywhere. If f ∈ H∞
then pn(z) → f (z), z ∈ D, and Pn(z) may be chosen so that ‖pn‖∞ ≤ ‖ f ‖∞.
(Hint: Use Cesáro means, or approximate f (r z), r < 1, by λp(z) where p(z)
is a Taylor polynomial for f (r z) and λ = ‖ f ‖∞/‖p‖∞.)

5. (a) If f (z) ∈ H p(D), then

| f (z)| ≤
(

1

1 − |z|2
)1/p

‖ f ‖H p
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and the derivatives f (n)(z) satisfy

| f (n)(z)| ≤ Cn,p
1

(1 − |z|)n+(1/p)
‖ f ‖H p .

These estimates are sharp for every p (except for constant factors); for example,
take f (z) = ((1 − |z0|2)/(1 − z0z)2)1/p.

(b) If f ∈ H 2, then by Fourier series or by Green’s theorem,

J2 =
∫

(1 − |z|)| f ′(z)|2dx dy ≤ c‖ f ‖2
2.

More generally, if q ≥ 2, then

Jq =
∫ 1

0

(1 − r )2−2/q

(∫
| f ′(reiθ )|qdθ

)2/q

dr ≤ Cq‖ f ‖2
2.

Hint: Let ρ = (1 + r )/2. Then

| f ′(reiθ )|q−2 ≤ C

(1 − r )(q−2)/2

(∫
| f ′(ρeiϕ)|2dϕ

)(q−2)/2

.

(c) If f ∈ H 2 and if q > 2, then

Iq =
∫ 1

0

(1 − r )−2/q

[∫
| f (reiθ )|qdθ

]2/q

dr

satisfies

Iq ≤ C ′
q (| f (0)|2 + Jq ).

(Hint: Integrate by parts, using
∣
∣
∣
∣

∂

∂r
| f (reiθ )|q

∣
∣
∣
∣ ≤ cq | f (reiθ )|q−1| f ′(reiθ )|.

Then apply Hölder’s inequality and the Cauchy–Schwarz inequality.)
(d) If 0 < p < 1 and if f ∈ H p, then by part (a),

∫
| f (reiθ )|dθ ≤ cp‖ f ‖p

H p

{
1

(1 − r )1/p
‖ f ‖H p

}1−p

,

so that
∫

| f (reiθ )|dθ ≤ c′
p‖ f ‖1−p

H p (1 − r )−
(p−1)2

p

(∫
| f (reiθ )|dθ

)p

.

Consequently

∫ 1

0

(1 − r )(1/p)−2

∫
| f (reiθ )|dθ dr≤C p‖ f ‖1−p

H p

∫
(1 − r )−p

(∫
| f (reiθ )|dθ

)p

dr.
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If f has the form g2/p, g ∈ H 2, then the integral on the right is I2/p, and hence

∫ 1

0

(1 − r )(1/p)−2

∫
| f (reiθ )|dθ dr ≤ C ′

p‖ f ‖H p

for all f ∈ H p, 0 < p < 1.
See Hardy and Littlewood [1932a] or Duren [1970] for further details.

6. When 1 ≤ p < ∞ it follows from Exercise 2 that the dual space
of H p(D) is Lq/Hq

0 , q = p/(p − 1). When 0 < p < 1, H p has a dual space
which can be identified with a space of Lipschitz continuous analytic functions.
We outline the proof in the case 1

2
< p < 1. For 0 < α < 1, let Aα be the space

of analytic functions ϕ(z) on D satisfying the Lipschitz condition

|ϕ(z1) − ϕ(z2)| ≤ K |z1 − z2|α.

(a) If ϕ(z) is analytic on D, then ϕ ∈ Aα if and only if

|ϕ′(z)| ≤ c(1 − |z|)α−1.

If ϕ ∈ Aα , the estimate above follows from Cauchy’s theorem for the circle
|ζ − z| = 1 − |z|. For the converse, integrate ϕ′ along the contour pictured in
Figure II.1.

Figure II.1.

(b) Let 1
2

< p < 1 and set α = 1/p − 1. If f ∈ H p and ϕ ∈ Aα , then by
Green’s Theorem

1

2π i

∫

|z|=r
f (z)ϕ(z)

dz

z
= f (0)ϕ(0) + 1

π

∫ ∫

|z|<r
f (z)ϕ′(z) dx dy.

By part (a) and by 5(d),
∫ ∫

|z|<1

| f (z)| |ϕ′(z)| dx dy ≤ C‖ f ‖H p ,

Hence the limit

Lϕ( f ) = lim
r→1

1

2π i

∫

|z|=r
f (z)ϕ(z)

dz

z
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exists and defines a bounded linear functional on H p. If ϕ(z) = ∑
anzn , then

Lϕ(zn) = ān.

(c) Conversely, suppose L is a linear functional on H p, 1
2

< p < 1, such
that |L( f )| ≤ B‖ f ‖H p , f ∈ H p. For |w| < 1, set

fw(z) = 1

1 − w̄z
=

∞∑

n=0

w̄nzn.

The series converges in H p norm (it converges uniformly) and fw ∈ H p.
Define

ϕ(w) = L( fw) =
∞∑

n=0

L(zn)wn.

Then

|ϕ′(w)| ≤ B‖z/(1 − w̄z)
2‖H p ,

and the easy estimate
∫

1

|eiθ − w|2p
dθ ≤ C p(1 − |w|)1−2p,

valid for 2p > 1, yields

|ϕ′(w)| ≤ cB(1 − |w|) 1
p −2 = cB(1 − |w|)α−1.

Hence ϕ ∈ Aα . By the series expansions above, Lϕ(zn) = L(zn), n =
0, 1, 2, . . . , and so L = Lϕ because the polynomials are dense in H p.

See Duren, Romberg, and Shields [1969] for the full story, 0 < p < 1.
On the other hand, the spaces L p, 0 < p < 1, have no nonzero bounded linear
functionals.

7. (Lindelöf[1915]). Let f (z) ∈ H∞.
(a) If

m = ess lim
θ→0

| f (eiθ )| = lim
δ→0

‖ f (eiθ )χ(−δ,δ)(θ )‖∞,

then

lim
D�z→1

| f (z)| ≤ m.

(Use the subharmonicity of log | f (z)|.)
(b) If

lim
θ↓0

f (eiθ ) = α,
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then

lim
�+

δ �z→1
f (z) = α,

where �+
δ = {z ∈ D : arg(1 − z) < π/2 − δ}, δ > 0. (Consider log | f (z) −

α|.)
(c) If

lim
θ↓0

f (eiθ ) = α, lim
θ↑0

f (eiθ ) = β,

then α = β and

lim
D�z→1

f (z) = α.

(d) Boundedness is not essential for these results. It is enough to assume
that for some η > 0, f ∈ H p (D ∩ {|z − 1| < η}), that is, that | f |p has a har-
monic majorant on D ∩ {|z − 1| < η}.

8. (a) (Hardy’s inequality). If f = ∑∞
n=0 anzn ∈ H 1, then

∞∑

n=0

|an|
n + 1

≤ π‖ f ‖1.

(Write f = gh, ‖g‖2
2 = ‖h‖2

2 = ‖ f ‖1, g, h ∈ H 2. If g = ∑
bnzn, h =∑

cnzn , set G = ∑ |bn|zn, H = ∑ |cn|zn , and F = G H . Then

∞∑

n=0

|an|
n + 1

≤
∞∑

n=0

1

n + 1

n∑

k=0

|bk‖Cn−k | = 1

2π

∫
F(eiθ )ϕ(eiθ )dθ,

where ϕ ∈ L∞, ‖ϕ‖∞ = π .)
(b) Let f = ∑

anzn ∈ H 1. Then f (eiθ ) is equal almost every-
where to a function of bounded variation if and only if f ′ ∈ H 1. In that case
f (eiθ ) is absolutely continuous, f (z) is continuous on |z| ≤ 1, and

∑
|an| < ∞.

When f ′ ∈ H 1,

ieiθ lim
r→1

f ′(reiθ ) = d

dθ
f (eiθ )

almost everywhere (Hardy and Littlewood [1927], and Smirnov [1933]).

�9. Let � be a simply connected open set bounded by a Jordan curve
	, and let f : D → � be a conformal mapping. By a famous theorem of
Carathéodory (see Ahlfors [1973] or Tsuji [1959]) the mapping f (z) has a
one-to-one continuous extension from D̄ onto �̄.

(a) The curve 	 is rectifiable if and only if f ′ ∈ H 1.
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(b) If 	 is rectifiable and if E ⊂ 	 is a closed set, then

length(E) =
∫

f −1(E)

| f ′(eiθ )|dθ.

Thus E has length zero if and only if f −1(E) has length zero.
(c) Moreover, if 	 is rectifiable, then the mapping f (z) is conformal (angle

preserving) at almost every eiθ . More precisely, if f ′ has nontangential limit
at eiθ , and if γ is a curve in D terminating at eiθ such that the angle

α = lim
γ�z→eiθ

arg(1 − e−iθ z)

exists and α 	= ± π/2, then the curve f (y) meets the normal line to 	 at f (eiθ )
in the same angle α.

Parts (a) and (b) are due to F. and M. Riesz [1916]; see also Smirnov [1933].

�10. (The local Fatou theorem). Let u(z) be a harmonic function on D. We
say that u(z) is nontangentially bounded at eiθ ∈ T = ∂D if u(z) is bounded
on some cone

	α(eiθ ) =
{

z ∈ D :
|z − eiθ |
1 − |z| < α

}

, α > 1.

If E is a measurable subset of T and if u(z) is nontangentially bounded at
each point of E, then u(z) has a nontangential limit at almost every point of E.
By elementary measure theory there is a compact set F ⊂ E, |E\F | < ε, and
there are M > 0 and α > 1 such that |u(z)| ≤ M on

� =
⋃

eiθ∈F

	α(eiθ ).

The domain � is simply connected (it is a union of rays from the origin) and ∂�

is a rectifiable curve (∂� consists of F and a union of tentlike curves over the
components of T \F , and the tent over an arc I ⊂ T has length not exceeding
c(α � |I |). By Exercise 9, u(z) has a nontangential limit, from within �, at
almost every point of F. Nontangential convergence from within all of D now
follows easily: If eiθ is a point of density of F, that is, if

lim
δ→0

|F ∩ [θ − δ, θ + δ]|
2δ

= 1

and if β > α, then for some r < 1,

{|z| > r} ∩ 	β(eiθ ) ⊂ �.

Consequently,

lim
	β (eiθ )�z→eiθ

u(z)

exists for all β > 1 for almost all eiθ ∈ F .
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The same conclusion holds if it is merely assumed that u(z) is bounded
below on some 	α(eiθ ) for each eiθ ∈ E . It also holds when the harmonic
function is replaced by a meromorphic function. It follows from the above
reasoning that a meromorphic function having zero nontangential limit on a set
of positive measure must vanish identically on D. The corresponding assertion
for radial limits is false (see Privalov [1956] or Bagemihl and Seidel [1954]).

The original source for this theorem is Privalov [1919]; see also Zyg-
mund [1968, Vol. II]. A different elementary proof will be given in Chapter
IX.

11. (Plessner’s theorem). Let f (z) be meromorphic in D. A point eiθ ∈
T is a Plessner point for f (z) if the angular cluster set of f (z) at eiθ is the full
Riemann sphere S2. In other words, for all α > 1 and for all r < 1,

f (	α(eiθ ) ∩ {|z| > r})
is dense on S2. The circle T splits into three disjoint Borel sets, T = N ∪ P ∪
G, such that

(i) |N | = 0,
(ii) Every point of P is a Plessner point for f (z), and

(iii) f (z) has finite nontangential limit at each point of G.

(For rational w ∈ �, let Ew = {eiθ : ( f − w)−1 is nontangentially bounded at
eiθ }. Then P = T \ ∪ Ew is the set of Plessner points for f (z), and ( f − w)−1

has nonzero nontangential limit at almost every eiθ ∈ Ew. See Plessner [1927]
or Tsuji [1959].)

12. (Morera’s theorem). Suppose that g(z) ∈ H 1(|z| > 1) that is, that
g(1/z) ∈ H 1(D). Also suppose that f (z) ∈ H 1(D) and that f (eiθ ) = g(eiθ )
almost everywhere on an arc I ⊂ T . Set

F(z) =
{

f (z), |z| < 1,

g(z), |z| > 1.

Then for z0 ∈ I and for δ > 0 small,

1

2π i

∫

|ζ−z0|=δ

F(ζ )

ζ − z
dζ = F(z), z ∈ 
(z0, δ)\T,

so that F(z) has an analytic extension across I ∩ {|z − z0| < δ}. Thus F(z)
extends analytically across I.

13. Let f (z) be analytic on D.
(a) If Re f (z) ≥ 0, then f ∈ H p for all p < 1. (Write f = eϕ, |Im ϕ| ≤

π/2. Then | f (z)|p = epReϕ(z) ≤ (cos p(π/2))−1 Re ( f p(z)), so that | f (z)|p has
a harmonic majorant.)

(b) If f ∈ H 1 and if f (eiθ ) is real, then f is constant. This result is sharp,
because [(1 + z)/(1 − z)] ∈ H p for all p < 1, by part (a).
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(c) If f ∈ H 1/2 and if f (eiθ ) is real and positive almost everywhere, then
f is constant.

(d) There are local versions of (b) and (c). Let I be an arc on T. If f ∈ H 1

and if f (eiθ ) is real almost everywhere on I, then f has an analytic exten-
sion across I. This follows from Morera’s theorem. If h(z) = f (1/z̄) then
h ∈ H 1(|z| > 1) and f = h almost everywhere on I.

Similarly, if f ∈ H 1/2 and if f (eiθ ) ≥ 0 almost everywhere on I, then f ex-
tends analytically across I. Write f = Bg2, where g ∈ H 1 and B is a Blaschke
product. Then g(1/z̄) ∈ H 1(|z| > 1) and on I

B(z)g2(z) = g(z)g(1/z̄),

so that by Morera’s theorem and reflection both B(z)g(z) and g(z) extend
across I.

The H 1/2 results have another proof using maximal functions and sub-
harmonicity instead of Riesz factorization. Let v(z) = Im( f 1/2(z)), with the
root chosen so that v(z) ≥ 0. Then v(z) is well-defined and subharmonic on D
and 0 ≤ v(z) ≤ | f (z)|1/2, so that by the maximal theorem and Theorem I.6.7,
v has least harmonic majorant

u(z) =
∫

Pz(θ )v(eiθ )dθ/2π.

If f (eiθ ) ≥ 0 almost everywhere, then v(z) = 0 and f (z) is constant. If
f (eiθ ) ≥ 0 almost everywhere on an arc I, then for each z0 ∈ I there is δ > 0
such that 0 ≤ u(z) ≤ 1 on V = D ∩ {|z − z0| < δ}. Then 0 ≤ v(z) ≤ 1 on V,
so that |Im(1 + f (z))| ≤ 2 Re(1 + f (z)), z ∈ V . Hence 1 + f ∈ H 1(V ). Us-
ing a conformal map from V onto D, we see that 1 + f is analytic across
T ∩ ∂V . This proof is due to Lennart Carleson.

Part (c) is due to Helson and Sarason [1967] and, independently, Neuwirth
and Newman [1967]. The H 1/2 result in part (d) is from Koosis [1973].

14. (a) The local version of Corollary 4.8(a) is valid when p ≥ 1. Sup-
pose f ∈ H 1(D). If Re f ≥ 0 almost everywhere on an arc I ⊂ T , then the
inner factor of f (z) is analytic across I.

The case p > 1, which we shall use in Chapter IV, is easier. Let u(z)
be the Poisson integral of χ1(θ ) arg f (eiθ ) and let v(z) be the harmonic
conjugate of u(z). By Exercise 13(a) e−i(u+iv) ∈ H p for all p < 1, so that
F = f e−i(u+iv) ∈ H 1/2. Since F ≥ 0 on I, the inner factor is analytic across I.

The following proof for p = 1 is due to P. Koosis. Replacing I by a
subarc we can suppose that f has nontangential limits at the endpoints θ1, θ2

of I and that Re f (eiθ j ) > 0, j = 1, 2. Let 	 be a circular arc in D joining
eiθ1 to eiθ2 . Varying 	, we may assume inf	 | f (z)| > 0. Let U be the domain
bounded by 	 ∪ I , and let τ be a conformal mapping from D onto U. We are
going to show that F = f ◦ τ is an outer function. Because τ can be computed
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explicitly, it will follow easily that

lim
r→1

∫

J
log | f (reiθ )|dθ =

∫

J
log | f (eiθ )|dθ

for any compact subarc J of I, which means that the inner factor of f (z) has
no singularities on I.

Let 	1 be a compact subarc of 	 such that Re f ≥ 0 on 	\	1 and
let γ = τ−1(	1). Then Re F ≥ 0 almost everywhere on T \γ , while F(eiθ )
is C∞ and nowhere zero on γ . Let u ∈ C∞(T ) satisfy u = 0 on T \γ , and
|u − arg F | < π/2 on γ , and let g(z) = u(z) + iv(z) where u(z) is the Poisson
integral of u(eiθ ) and v(z) is its conjugate function. In the next chapter we
shall see that g(z) ∈ H∞. Then since Re Fe−ig ≥ 0 almost everywhere and
Fe−ig ∈ H 1, Corollary 4.8 shows that Fe−ig is an outer function.

(b) When p < 1 the result of part (a) above fails. Let {zk} be a Blaschke
sequence and let Bn(z) be the finite Blaschke product with zeros zk, 1 ≤ k ≤ n,
normalized so that Bn(0) > 0. Let vn ∈ L∞, vn(eiθ ) = ±π/2, be such that

|vn(eiθ ) − arg Bn(eiθ )| ≤ π/2

modulo 2π . Let vn(z) be the Poisson integral of vn(eiθ ) and let un(z) be its
conjugate function, un(0) = 0. Then Re (eun−ivn ) ≥ 0, so that

Gn = Bneun−ivn ∈ H p

for any p < 1, and Re Gn(eiθ ) ≥ 0 almost everywhere.
Now for fixed p < 1 and for {z1, z2, . . . , zn} already selected, we can

choose zn+1 with 1 − |zn+1| so small that we have

‖Gn+1 − Gn‖p
p < 2−n.

Then Gn converges almost everywhere and in H p to a limit G and Re G(eiθ ) ≥
0. Now G(zn) = 0, n = 1, 2, . . . , but G 	≡ 0, because |G(0)| = limn Bn(0).
No constraints have been made on arg(zn) and we can arrange that {zn} is
dense on T. Then the inner factor of G does not extend across any arc of T.

15. Suppose f (z) ∈ N , the Nevanlinna class. For any α > 1, the non-
tangential maximal function

f ∗(θ ) = sup
	α(θ )

|F(z)|

satisfies

|{θ : f ∗(θ ) > λ}| ≤ Aα

log λ
sup
r<1

∫
log+ | f (reiθ )| dθ

2π
, λ > 1,
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where Aα depends only on α. From this estimate it follows that f (z) has
nontangential limit f (eiθ ) almost everywhere and that

∫
log+ | f (eiθ )|dθ ≤ sup

r<1

∫
log+ | f (reiθ )|dθ/2π.

16. Let f (z) be analytic on D. Then f (z) ∈ N if and only if f = f1/ f2,
where f j ∈ H∞, j = 1, 2, and f2 is nowhere zero. The denominator f2 can
be taken to be an outer function if and only if f ∈ N+ (F. and R. Nevanlinna
[1922]).

17. Let P be the set of polynomials in z, and let f ∈ H 2(D). Then

P f = G H 2, where G is the inner factor of f.

18. (a) Let 0 < p < ∞. If M is a closed subspace of H p invariant under
multiplication by z, then M = G H p for some inner function G. (See the proof
of Theorem 7.5.)

(b) Now let M be a closed subspace of L p, 0 < p ≤ ∞ (if p = ∞ as-
sume M is weak-star closed). Suppose zM ⊂ M . If zM = M , so that z̄M = M ,
then M = χE L p, for some Borel set E. If zM � M , then M = U H p for some
U ∈ L∞ such that |U | = 1 almost everywhere.

��19. (Littlewood’s theorem on subharmonic functions). Let μ be a pos-
itive measure on D satisfying

∫
log

1

|ζ |dμ(ζ ) < ∞.(E.1)

The Green’s potential

Uμ(z) =
∫

log

∣
∣
∣
∣
1 − ζ̄z

ζ − z

∣
∣
∣
∣ dμ(ζ )

is superharmonic on D (−Uμ is subharmonic). If μ is discrete with unit masses,
μ = ∑

δzn , z 	= 0, then the hypothesis (E.1) is equivalent to the Blaschke
condition

∑
(1 − |zn|) < ∞, and Uμ(z) = − log |B(z)|, where B(z) is the

Blaschke product with zeros {zn}. Littlewood proved [1929]

(i) limr→1

∫
Uμ(reiθ )dθ = 0

and

(ii) limx→1 Uμ(reiθ ) = 0

almost everywhere. These generalize the corresponding results about Blaschke
products from Section 2.

After a calculation, the identity

1

2π

∫
log

∣
∣
∣
∣

reiθ − z

1 − re−iθ z

∣
∣
∣
∣ dθ =

{
log |z|, r < |z| ≤ 1,

log r, |z| ≤ r,
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follows from the mean value property of harmonic functions. Then Fubini’s
Theorem yields (i).

We prove (ii) in the upper half plane for vertical convergence. Because the
problem is local, we assume μ has support the unit cube Q = [0, 1] × (0, 1].

The hypothesis (E.1) transforms into
∫

Q
y dμ(x, y) < ∞,

and the potential now has the form

Uμ(z) =
∫

Q
log

∣
∣
∣
∣
z − ζ̄

z − ζ

∣
∣
∣
∣ dμ(ζ ).

We must show limy→0 Uμ(x + iy) = 0 almost everywhere on [0,1]. Let μn be
the restriction of μ to the strip

An = Q ∩ {2−n < Imζ < 2−n−1},
and let νn be the vertical projection of 2−nμn onto [0, 1], νn(E) = 2−nμ(E ×
(2−n, 2−n+1]). By hypothesis, we have

∞∑

n=1

‖vn‖ < ∞.

Write

Uμ(z) = U1(z) + U2(z),

where

U1(z) =
∫

|ζ−z|≥y/4

log

∣
∣
∣
∣

z − z̄

z − ζ

∣
∣
∣
∣ dμ(ζ ),

and

U2(z) =
∫

|ζ−z|<y/4

log

∣
∣
∣
∣
z − ζ̄

z − ζ

∣
∣
∣
∣ dμ(ζ ),

y = Im z. We discuss U1 and U2 separately.
When |ζ − z| > y/4, we have

log

∣
∣
∣
∣
z − ζ̄

z − ζ

∣
∣
∣
∣ ≤ c

yη

(x − ζ̄ )2 + (y + η)2
, ζ = ξ + iη.

Hence

U1(z) ≤ c
∞∑

n=1

∫
yη

(x − ξ )2 + (y + η)2
dμn(ξ )

≤ c
∞∑

n=1

∫
yη

(x − ξ )2 + (y + η)2
dμn(ξ ) + cM

( ∞∑

n=N+1

dvn

)

(x),
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where M(dv) denotes the Hardy–Littlewood maximal function of the measure
v. For any fixed N,

lim
y→0

N∑

1

yη

(x − ξ )2 + (y + η)2
dμn(ξ ) = 0,

so that by the weak type estimate for M(dν),

∣
∣
∣
∣

{

x : lim
y→0

U1(x + iy) > ε

}∣
∣
∣
∣ ≤ lim

N→∞
c

ε

∞∑

n=N+1

‖νn‖ = 0.

To treat U2(z) we suppose z ∈ An . Then

U2(z) ≤ c2n
n+1∑

k=n−1

∫

|ξ−x |<2−n

log

∣
∣
∣
∣

2−n

x − ξ

∣
∣
∣
∣ dνk(ξ ),

because {|ζ − z| < y/4} meets only An−1, An , and An+1. Since the integrand
is positive and even, we have

∫

|ξ−x |<2−n

log

∣
∣
∣
∣

2−n

x − ξ

∣
∣
∣
∣ dνk(ξ ) ≤ C M(dνk)(x)

∫ 2−n

0

log

∣
∣
∣
∣
2−n

t

∣
∣
∣
∣ dt

≤ C2−n M(dνk)(x).

Hence

U1(x + iy) ≤
n+1∑

k=n−1

M(dνk)(x)

and U1(x + iy) → 0 (y → 0) almost everywhere.
The analog of (ii) is false for nontangential convergence. Let μ be a

finite discrete measure with point masses on a set nontangentially sense or ∂D.
(W. Rudin).

�20. The Canonical Factorization theorem has a generalization to subhar-
monic functions. The proof uses the Riesz decomposition theorem (Chapter I,
Exercise 17) and Littlewood’s theorem (Exercise 19).

(a) Let v(z) be a subharmonic function on D, v 	≡ −∞, and let μ ≥ 0 be
its weak Laplacian. Then for |z| < r < 1,

v(z) = ur (z) − 1

2π

∫

|ζ |<r
log

∣
∣
∣
∣
1 − ζ̄ z

ζ − z

∣
∣
∣
∣ dμ(ζ )

where ur (z) is harmonic on |z| < r .
(b) If v(z) has a harmonic majorant then its least harmonic majorant is

v(z) = limr→1 ur (z), and we have

v(z) = u(z) − (1/2π )Uμ(z).
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In particular, the potential converges wherever v(z) > −∞, and Littlewood’s
theorem applies to Uμ(z)

(c) If

sup
r

∫
v+(reiθ )dθ/2π < ∞

then the least harmonic majorant u(z) is the Poisson integral of a finite measure
k dθ/2π + dθ , where σ is singular, so that by part (ii) of Littlewood’s theorem,
v(z) has notangential limit k(eiθ ) almost everywhere.

(d) In the special case v(z) = log | f (z)|, f ∈ N , f (0) 	= 0, we obtain The-
orem 5.5 as a corollary of the results in (b) and (c).

See F. Riesz [1930].



III

Conjugate Functions

After some preliminaries, which identify the conjugate operator with the
Hilbert transform, we prove the famous Marcel Riesz theorem and some of its
variants. Then we discuss the more recent, but also most basic, theorem that
the conjugate function and the nontangential maximal function belong to the
same L p classes.

1. Preliminaries

Let f (θ ) ∈ L1(T ), T denoting the unit circle ∂D. Supposing for a moment
that f (θ ) is real valued, we let u(z) be the Poisson integral of f (θ ) and let ũ(z)
denote the harmonic conjugate function of u(z), normalized so that ũ(0) = 0.
Since

Pz(ϕ) = Re
eiϕ + z

eiϕ − z
,

we have

(u + i ũ)(z) = 1

2π

∫
eiϕ + z

eiϕ − z
f (ϕ) dϕ

and

ũ(z) = −1

2π

∫
Qz(ϕ) f (ϕ) dϕ,

where

−Qz(ϕ) = Im

(
eiϕ + z

eiϕ − z

)

= 2r sin(θ − ϕ)

1 − 2r cos(θ − ϕ) + r2
, z = reiθ .

These formulae define the conjugate function ũ(z) even when f (θ ) is complex
valued.

98
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The kernel −Qz(ϕ) = Qr (θ − ϕ) is the conjugate Poisson kernel.† The ker-
nels Qr do not behave at all like an approximate identity, because Qr (θ ) is an
odd function and because ‖Qr‖1 ∼ log 1(1 − r ). Nevertheless, the conjugate
function ũ(z) has nontangential limits almost everywhere on T.

Lemma 1.1. If f ∈ L1(T ), then ũ(z) has nontangential limit f̃ (θ ) almost
everywhere on T.

Proof. We may suppose f (θ ) ≥ 0. The analytic function g(z) = u(z) + i ũ(z)
then has nonnegative real part, and G(z) = g(z)/(1 + g(z)) is bounded. The
function G(z) has nontangential limit G(θ ) almost everywhere, and G(θ ) = 1
on at most a set of measure zero. Consequently g = G/(1 − G) has a finite
nontangential limit almost everywhere, and so does its imaginary part ũ(z).

The linear mapping

f (θ ) → f̃ (θ )

is called the conjugation operator. The conjugate function f̃ can also be cal-
culated using a principal value integral.

Lemma 1.2. Let f (θ ) ∈ L1(T ). For almost every θ

f̃ (θ ) = lim
ε→0

1

2π

∫

|θ−ϕ|>ε

cot

(
θ − ϕ

2

)

f (ϕ) dϕ.(1.1)

In particular, the limit in (1.1) exists almost everywhere. Moreover,
∣
∣
∣
∣ũ(reiθ ) − 1

2π

∫

|θ−ϕ|>1−r
cot

(
θ − ϕ

2

)

f (ϕ) dϕ

∣
∣
∣
∣ ≤ C M f (θ ),(1.2)

where C is an absolute constant and where Mf is the Hardy–Littlewood maximal
function of f.

Proof. Notice that for θ �= 0,

lim
r→1

Qr (θ ) = lim
r→1

2r sin θ

1 − 2r cos θ + r2
= sin θ

1 − cos θ
= cot

θ

2
= Q1(θ ),

which is the kernel in (1.1). Set ε = 1 − r . For ε < θ < π , we have

Q1(θ ) − Qr (θ ) = (1 − r )2 sin θ

(1 − cos θ )(1 − 2r cos θ + r2)

= 1 − r

1 + r
Q1(θ )Pr (θ ) ≤ 1 − r

1 + r
Q1(1 − r )Pr (θ ).

† The minus sign in −Qz(ϕ) is to ensure that Qz(ϕ) = Qr (ϕ) when z = r . With this notation,
Pz − i Qz . is analytic in |z| < 1 and eiθ → Pr (θ ) + i Qr (θ ) extends to be analytic in |z| < 1.
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Since (1 − r )Q1(1 − r ) ≤ 2, this gives

|Q1(θ ) − Qr (θ )| ≤ 2

1 + r
Pr (θ )(1.3)

for ε < |θ | < π , On the other hand, for |θ | ≤ ε = 1 − r , we have

|Qr (θ )| ≤ 2/ε.(1.4)

Now
∣
∣
∣
∣ũ(reiθ ) − 1

2π

∫

|θ−ϕ|>ε

cot

(
θ − ϕ

2

)

f (ϕ) dϕ

∣
∣
∣
∣

≤ 1

2π

∫

|ϕ|≤ε

|Qr (ϕ)|| f (θ − ϕ)| dϕ

+ 1

2π

∫

|ϕ|>ε

|Q1(ϕ) − Qr (ϕ)|| f (θ − ϕ)| dϕ.

By (1.3), (1.4), and Theorem I.4.2, the last two integrals are dominated by
CM f (θ ) and (1.2) is proved.

To prove (1.1) we use the fact that the odd functions Qr (θ ) and Q1(θ )χ|θ |>ε

are orthogonal to constants. Thus

ũ(reiθ ) − 1

2π

∫

ε<|ϕ|<π

cot
(ϕ

2

)
f (θ − ϕ) dϕ

= 1

2π

∫

|ϕ|≤ε

Qr (ϕ)( f (θ − ϕ) − f (θ )) dϕ

+ 1

2π

∫

ε<|ϕ|<π

1 − r

1 + r
Q1(ϕ)Pr (ϕ)( f (θ − ϕ) − f (θ )) dϕ,

and so by (1.3) and (1.4),
∣
∣
∣
∣ũ(reiθ ) − 1

2π

∫

ε<|ϕ|<π

cot
(ϕ

2

)
f (θ − ϕ) dϕ

∣
∣
∣
∣

≤ 1

πε

∫

|ϕ|≤ε

| f (θ − ϕ) − f (θ )| dϕ

+ 1

2π

∫
2

1 + r
Pr (ϕ)| f (θ − ϕ) − f (θ )| dϕ.

By Chapter I, Exercise 11, the last two integrals tend to zero on the Lebesgue
set of f.

It is not difficult to prove the nontangential analog of (1.2),
∣
∣
∣
∣ũ(z) − 1

2π

∫

|θ−ϕ|>ε

cot

(
θ − ϕ

2

)

f (ϕ) dϕ

∣
∣
∣
∣ ≤ Cα M f (θ )

when z ∈ 	α(θ ) and ε = 1 − |z|. The details are left to the reader.
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The inequality
∣
∣
∣
∣
2

θ
− cot

θ

2

∣
∣
∣
∣ ≤ 2

π

shows that the principal value in (1.1) has the same behavior as the Hilbert
transform,

Hf (θ ) = lim
ε→0

1

π

∫

ε<|ϕ−θ |<π

f (ϕ)

θ − ϕ
dϕ = lim

ε→0
Hε f (θ ).(1.5)

Although Hf (θ ) �= f̃ (θ ), the difference arises by convolving f with the
bounded function (2/θ − cot θ/2), so that H f (θ ) exists almost everywhere and

| f̃ (θ ) − H f (θ )| ≤ (2/π )‖ f ‖1.(1.6)

There exist continuous f (θ ) for which f̃ (θ ) is not even bounded. For exam-
ple, let F = u + i ũ be the conformal mapping of D onto {z : |x | < 1/(1 + y2)}
with F(0) = 0, F ′(0) > 0. Then Carathéodory’s theorem on the continuity of
conformal mappings implies that u(θ ) = limr→1 u(reiθ ) is continous and that
ũ(θ ) is unbounded. A more elementary example can be given using (1.5). Let
f (θ ) be an odd function, so that no cancellation can occur in (1.5) at θ = 0.
Then limr→1 ũ(r ) behaves like

lim
ε→0

2

π

∫ π

ε

f (θ )

θ
dθ,

and this integral can diverge even though f is continuous.
When f (θ ) is a continuous function on T, we write

ω(δ) = ω f (δ) = sup
|θ−ϕ|<δ

| f (θ ) − f (ϕ)|

for the modulus of continuity of f. The modulus of continuity is a nondecreasing
function satisfying

lim
δ→0

ω(δ) = 0 and ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2).

A function is called Dini continuous if
∫ a

0

ω(t)

t
dt < ∞

for some a > 0.

Theorem 1.3. If f (θ ) is a Dini continuous function on T, then f̃ exists at
every point of T, f̃ is a continuous function, and

ω f̃ (δ) ≤ C

(∫ δ

0

ω(t)

t
dt + δ

∫ π

δ

ω(t)

t2
dt

)

,(1.7)

where C is a constant not depending on f or ω.
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Observe that if δ0 is small and if 0 < δ < δ0, then

δ

∫ π

δ

ω(t)

t2
dt ≤

∫ δ0

δ

ω(t)

t
dt + δ

δ0

∫ π

δ0

ω(t)

t
dt,

so that when f is Dini continuous the continuity of f̃ follows from (1.7). For
0 < α < 1, we say f ∈ �α if ω(δ) = O(δα). Then (1.7) shows that conjugation
preserves the Lipschitz classes �α .

Proof. If b(θ ) is a bounded function, then the convolution

b ∗ f (θ ) = 1

2π

∫
b(ϕ) f (θ − ϕ) dϕ

satisfies

ωb∗ f (δ) ≤ ‖b‖∞ω f (δ) ≤ C‖b‖∞δ

∫ π

δ

ω(t)

t2
dt.

It is therefore enough to show that H f (θ ) exists almost everywhere and that
H f has continuity (1.7).

Since

Hf (θ ) = lim
ε→0

1

π

∫

|ϕ−θ |>ε

f (ϕ) − f (θ )

θ − ϕ
dϕ,

the Dini continuity ensures that H f exists at every point.
Let |θ1 − θ2| = δ and take θ3 = (θ1 + θ2)/2. Because a constant function

has Hilbert transform zero we can assume f (θ3) = 0. We assume θ1 < θ2.
Then

|Hf (θ1) − Hf (θ2)| ≤ 1

π

∫ θ1+δ

θ1−δ

| f (ϕ) − f (θ1)|
|ϕ − θ1| dϕ

+ 1

π

∫ θ2+δ

θ2−δ

| f (ϕ) − f (θ2)|
|ϕ − θ2| dϕ

+ 1

π

∫ θ1

θ1−δ

| f (ϕ)|
|ϕ − θ2| dϕ + 1

π

∫ θ2+δ

θ2

| f (ϕ)|
|ϕ − θ1| dϕ

+ 1

π

∫

3δ/2<|ϕ−θ3|<π

| f (ϕ)|
∣
∣
∣
∣

1

θ1 − ϕ
− 1

θ2 − ϕ

∣
∣
∣
∣ dϕ.

The first two integrals are dominated by C
∫ δ

0
(ω(t)/t) dt . Since f (θ3) = 0, the

second two integrals are each bounded by

ω

(
3δ

2

) ∫ 2δ

δ

dt

t
≤ Cω(δ) ≤ c

∫ δ

δ/2

ω(t)

t
dt.
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Again using f (θ3) = 0, we can bound the fifth integral by

C |θ2 − θ1|
∫ π

3δ/2

ω(t)

t2
dt ≤ Cδ

∫ π

δ

ω(t)

t2
dt.

Together, these estimates give us (1.7).

Corollary 1.4. Let I be an open arc on T. Let f (θ ) ∈ L1 and assume f is Dini
continuous on the arc I. Then f̃ (θ ) is continuous at each point of I.

Proof. First note that if f (θ ) = 0 on I, then by (1.1), f̃ is real analytic on I.
If J is any compact subarc of I, there is a function g(θ ) Dini continuous on T
such that g = f on a neighborhood of J. By Theorem 1.3 and the preceding
remark,

f̃ = g̃ + ( f − g)∼

is continuous on J.

There is a close connection between conjugate functions and partial sums
of Fourier series. Let f (θ ) ∈ L1 have Fourier series

∞∑

−∞
aneinθ .

Suppose for convenience that f (θ ) is real, so that a−n = an . Since

Pr (θ ) + i Qr (θ ) = 1 + reiθ

1 − reiθ
= 1 + 2

∞∑

n=1

rneinθ

and since Pr and Qr are real, we have

Pr (θ ) =
∞∑

−∞
r |n|einθ ,

Qr (θ ) =
∑

n �=0

(−i) sgn(n)r |n|einθ .

Hence

u(reiθ ) = Pr ∗ f (θ ) =
∞∑

−∞
anr |n|einθ

and

ũ(reiθ ) = Qr ∗ f (θ ) = −i
∑

n �=0

sgn(n) anr |n|einθ .
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In particular, if f (θ ) is a trigonometric polynomial
∑N

−N aneinθ , then f̃ (θ ) is
a trigonometric polynomial of the same degree

f̃ (θ ) =
N∑

−N

m(n)aneinθ ,(1.8)

where

m(n) =
⎧
⎨

⎩

−i, n > 0,

0, n = 0,

i, n < 0,

is the Fourier multiplier associated with the conjugation operator. Parseval’s
theorem now gives

Theorem 1.5. If f ∈ L2, then f̃ ∈ L2 and

‖ f̃ ‖2
2 = ‖ f ‖2

2 − |a0|2,
where a0 = (1/2π )

∫
f (θ ) dθ .

Now consider the operator

P( f ) = 1
2
( f + i f̃ ) + 1

2
a0,

which sends
∑∞

−∞ aneinθ into
∑∞

0 aneinθ . The operator P discards the an for

n < 0, and so P is the orthogonal projection of L2 onto H 2. In any norm
under which the linear functional f → a0( f ) is continuous, the operator P is
bounded if and only if the conjugation operator is bounded.

The operator f → e−inθ P(einθ f ) discards the coefficients ak for k < −n
and leaves the other coefficients unchanged. The operator f → ei(n+1)θ

P(e−i(n+1)θ f ) similarly removes ak for k < n + 1. Consequently

e−inθ P(einθ f ) − ei(n+1)θ P(e−i(n+1)θ f ) = Sn( f ),

the nth partial sum
∑n

−n akeikθ of the Fourier series. Similar reasoning shows
that

P( f ) = lim
n→∞ einθ Sn(e−inθ f )

for f ∈ L2. This means that the famous Marcel Riesz theorem

‖ f̃ ‖p ≤ Ap‖ f ‖p, 1 < p < ∞,

is equivalent to either of the inequalities

‖P f ‖p ≤ Bp‖ f ‖p, 1 < p < ∞
or

sup
n

‖Sn f ‖p ≤ C p‖ f ‖p, 1 < p < ∞.
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It is not hard to see that the last inequality holds if and only if

‖Sn f − f ‖p → 0 (n → ∞), 1 < p < ∞.

(For one implication use the uniform boundedness principle; for the other use
the L p density of the trigonometric polynomials.)

In the upper half plane let u(z) be the Poisson integral of f (t) ∈ L p, 1 ≤
p < ∞. The conjugate function ũ(z) is now defined by

ũ(z) = 1

π

∫
x − t

(x − t)2 + y2
f (t) dt = Qy ∗ f (x), z = x + iy,

where

Qy(t) = 1

π

t

t2 + y2

is the conjugate kernel for the upper half plane. The integral defining ũ(z)
converges because Qy ∈ Lq for all q > 1. Since

Py(x − t) + i Qy(x − t) = 1

π i

1

t − z
,

the function u + i ũ is analytic in the upper half plane. This choice of ũ involves
a normalization different from the one used in the disc. Instead of ũ(i) = 0
we require limy→∞ ũ(x + iy) = 0, because only with this normalization is it
possible for ũ(z) to be the Poisson integral of an L p function, p < ∞. Because
Qy /∈ L1, for p = ∞ we revert to the normalization used on the disc and write

ũ(z) =
∫ (

Qy(x − t) + 1

π

t

1 + t2

)

f (t) dt.

Then ũ(i) = 0 and the integral is absolutely convergent when f ∈ L∞.
The results obtained above for conjugate functions on the disc can be proved

in a similar way for the upper half plane, and we shall not carry out the detailed
arguments. We shall, however, point out some minor differences between the
two cases.

When p < ∞, the limit of the conjugate kernels Qy(t), as y → 0, coincides
with the Hilbert transform kernel 1/π t . Thus

∣
∣
∣
∣ũ(x + iy) − 1

π

∫

|x−t |>y

f (t)

x − t
dt

∣
∣
∣
∣ ≤ CMf (x),

and as y → 0 both quantities in this expression converge almost everywhere
to the same function f̃ (x) = Hf (x).

The Hilbert transform of f ∈ L∞ is defined almost everywhere by

Hf (x) = lim
y→0

ũ(x + iy) = lim
ε→0

1

π

∫

|x−t |>ε

(
1

x − t
+ t

1 + t2

)

f (t) dt.
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The normalization ũ(i) = 0 conveniently makes these integrals converge for
large t.

When y > 0 is fixed, the function Ky = Py + i Qy = −1/π i(t + iy) is in
L2, and its Fourier transform

K̂ y(s) = lim
N→∞

−1

π i

∫ N

−N

e−2π ist

t + iy
dt

can be evaluated by Cauchy’s theorem,

K̂ y(s) =
{

2e−2πsy, s > 0,

0, s < 0.

Since P̂y(s) = e−2π |s|y , this gives

Q̂y(s) =
{−ie−2π |s|y, s > 0,

ie−2π |s|y, s < 0.

It now follows from Plancherel’s theorem that Qy ∗ f converges in L2 norm
as y → 0. Since Qy ∗ f → Hf almost everywhere, we see that Hf ∈ L2 and
‖Qy ∗ f − H f ‖2 → 0, and we have the identities

Ĥf (s) = ( f̃ )ˆ(s) = −i
s

|s| f̂ (s),(1.9)

‖Hf ‖2 = ‖ f̃ ‖2 = ‖ f ‖2.(1.10)

2. The L p Theorems

Fix α > 1. The maximal conjugate function of f ∈ L1(T ) is

( f̃ )∗(θ ) = sup
	α(θ )

|ũ(z)|,

where ũ is the conjugate Poisson integral of f (θ ), and where 	α(θ ) is the cone
{ |eiθ − z|

1 − |z| < α, |z| < 1

}

.

Theorem 2.1. There is a constant Aα depending only on α such that

|{θ : ( f̃ )∗(θ ) > λ}| ≤ (Aα/λ)‖ f ‖1(2.1)

if f ∈ L1(T ).

Proof. If we can prove (2.1) for all positive f ∈ L1 with a constant Cα , then
(2.1) holds in general with Aα = 8Cα . So we assume f ≥ 0. Then F(z) =
(Pr + i Qr ) ∗ f (θ ), z = reiθ , is an analytic function on D with

F(0) =
∫

f (θ )
dθ

2π
= ‖ f ‖1,
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and Re F(z) > 0. With respect to the right half plane, the subset of the imagi-
nary axis {is : |s| > λ} has harmonic measure

h(w) = 1

π

∫

|s|>λ

u

(v − s)2 + u2
ds, w = u + iv.

Clearly h(w) ≥ 0 and h(w) ≥ 1
2

if Im w ≥ λ. On the positive real axis

h(u) = 2

π

∫ ∞

λ

u

s2 + u2
ds ≤ 2u

πλ
.

The composition g(z) = h(F(z)) is a positive harmonic function on D. It is the
Poisson integral of a positive measure with mass

g(0) = h

(∫
f (θ )

dθ

2π

)

= h(‖ f ‖1).

If |Im F(z)| > λ, then g(z) > 1
2
, so that

{θ : ( f̃ )∗(θ ) > λ} ⊂ {θ : g∗(θ ) > 1
2
}.

By the weak-type estimate for the nontangential maximal function, valid for
Poisson integrals of positive measures (Theorem I.5.1), we have

|{θ : ( f̃ )∗(θ ) > λ}| ≤ 2Bαg(0) = 2Bαh(‖ f ‖1) ≤ (4Bα/πλ)‖ f ‖1,

where the constant Bα depends only on α. Thus (2.1) holds for any f ∈ L1

with Aα = 32Bα/π .

The proof of (2.1) for the upper half plane differs from the above argument
in one detail.

Lemma 2.2. If μ is a finite measure on � with Poisson integral u(z), then
∫

dμ = lim
y→∞

∫
y2

t2 + y2
dμ(t) = lim

y→∞ πyu(iy).

The lemma is elementary.
To prove (2.1) for the upper half plane, let f ∈ L1(�), f ≥ 0. Then

F(z) = (u + i ũ)(z) = (Py + i Qy) ∗ f (x), z = x + iy, is analytic on H and
Re f (z) > 0. Then g(z) = h(F(z)) is a positive harmonic function on H .
Moreover, since 0 ≤ g(z) ≤ 1, g(z) is the Poisson integral of its boundary
values g(t). Again we have

{t : ( f̃ )∗(t) > λ} ⊂ {t : g∗(t) > 1
2
},

where ( f̃ )∗(t) = sup	α(t) |ũ(z)| is the half-plane maximal conjugate function.
Consequently

|{t : ( f̃ )∗(t) > λ}| ≤ 2Bα

∫

R
g(t) dt.
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But by the lemma,
∫

g(t)dt = lim
y→∞ πyh(F(iy)) = lim

y→∞ y
∫

|s|>λ

u(iy) ds

(u(iy))2 + (ũ(iy) − s)2
.

Since limy→∞ ũ(iy) = 0, another use of the lemma yields
∫

g(t)dt = 1

π

∫
f (t) dt

∫

|s|>λ

ds

s2
= 2‖ f ‖1

πλ
.

Therefore we have

|{t : ( f̃ )∗(t) > λ}| ≤ (4Bα/πλ)‖ f ‖1

when f ∈ L1(�) and f ≥ 0.
Theorem 2.1 shows that the conjugation operator is weak type 1–1 on L1(T )

or on L1(�). We saw in Section 1 that it is also a bounded operator on L2, and
so the Marcinkiewicz theorem gives

‖ f̃ ‖p ≤ Ap‖ f ‖p, 1 < p ≤ 2.(2.2)

For 2 < p < ∞, (2.2) now follows by a duality argument. From (1.8) or (1.10)
and polarization we have

∫
f̃g dt = −

∫
f g̃ dt

when f, g ∈ L2(�) or L2(T ). Let us consider L p(�) only. If p > 2 and if
f ∈ L2(�) ∩ L p(�), then with q = p/(p − 1),

‖ f̃ ‖p = sup

{∣
∣
∣
∣

∫
f̃g dt

∣
∣
∣
∣ : g ∈ L2(�) ∩ Lq (�), ‖g‖q ≤ 1

}

,

whether ‖ f̃ ‖p is finite or not. But then since q < 2,

‖ f̃ ‖p = sup

{∣
∣
∣
∣

∫
f̃g dt

∣
∣
∣
∣ : g ∈ L2(�) ∩ Lq (�), ‖g‖q ≤ 1

}

≤ Aq‖ f ‖p.

Since L2 ∩ L p is dense in L p, (2.2) therefore holds for p > 2 with constant
Ap = Aq . We have proved the following theorem, due to Marcel Riesz.

Theorem 2.3. If 1 < p < ∞, there is a constant Ap such that

‖ f̃ ‖p ≤ Ap‖ f ‖p

if f ∈ L p(�) or f ∈ L p(T ).

From the interpolation we see that

Ap ∼ A/(p − 1), p → 1,(2.3)

Ap ∼ Ap, p → ∞.(2.4)
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These estimates are sharp, except for the choice of the constant A. By duality,
(2.3) is sharp if (2.4) is sharp. Let f (t) = χ(0,1)(t) Then ‖ f ‖p = 1 for all p,
and

f̃ (t) = 1

π
(log |t | − log |t − 1|),

so that

‖ f̃ ‖p ≥ 1

π

(∫ 1

0

| log t |pdt

)1/p

= 1

π

(∫ ∞

0

x pe−x dx

)1/p

= 1

π
(	(p + 1))1/p.

Stirling’s formula then shows

lim
p→∞

1

p
‖ f̃ ‖p ≥ e/π.

Together, Riesz’s theorem and the maximal theorem give

‖( f̃ )∗‖p ≤ Bp‖ f ‖p, 1 < p < ∞,

where

Bp ∼ C/(p − 1)2, p → 1.

This estimate on Bp can be improved to

Bp ∼ B/(p − 1), p → 1,

by interpolating directly between (2.1) and the L2 estimate. At the other end
we have Bp ∼ Bp (p → ∞), because the constants in the maximal theorem
are bounded as p → ∞.

Notice the fundamental difference between Theorem 2.3 and Theorem 1.3. In
Theorem 1.3 the essential ingredient is the smoothness of f (θ ); while Theorem
2.3 depends on the cancellation of the kernel.

Theorem 2.4. Let F(z) be an analytic function on the disc D. If Re F(z) > 0,
then F ∈ H p for all p < 1, and ‖F‖H p ≤ C p|F(0)|.
This result can be proved from Theorem 2.1 because Re F is the Poisson
integral of a finite measure and because any weak L1 function on T is in L p

for all p < 1. However, Theorem 2.4 also has a simple direct proof.

Proof. Write F = |F |eiϕ where |ϕ| < π/2. Then F p is analytic on D and

F p = |F |p(cos pϕ + i sin pϕ).

Since p < 1, this means

|F |p ≤ C pRe(F p),
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where C p = (cos pπ/2)−1. Hence

1

2π

∫
|F(reiθ )|p dθ ≤ C p

1

2π

∫
Re(F p(reiθ ))dθ = C pRe(F p(0))

≤ C p|F(0)|p,

as desired.

Corollary 2.5. If F(z) is analytic on D and if |arg F(z)| ≤ λ ≤ π , then F ∈
H p for all p < π/2λ

Proof. Use Theorem 2.4 on Fπ/2λ

Corollary 2.6. If f (θ ) ∈ L∞(T ) and if ‖ f ‖∞ ≤ 1, then for p < π/2

1

2π

∫
ep| f̃ | dθ < C p.

If f (θ ) is continuous on T, then

1

2π

∫
ep| f̃ | dθ < ∞

for all p < ∞.

Proof. If f ∈ L∞, ‖ f ‖∞ ≤ 1, then

F = exp(± 1
2
π i( f + i f̃ ))

maps the disc into the right half plane. Hence F ∈ H p for all p < 1. If f (θ )
is continuous, there is a trigonometric polynomial g such that ‖ f − g‖∞ < ε.
Then g̃ is bounded because g̃ is another trigonometric polynomial. Hence

exp p| f̃ | ≤ exp(p| f̃ − g̃|) exp p|g̃|
and the last function is integrable if p < π/2ε.

Theorem 2.7. Let E ⊂ T be a measurable set with measure |E | and let
f = χE . Then the distribution function

|{θ : | f̃ (θ )| > λ}|
depends only on |E |.
Proof. Let F(z) = (Pr + i Qr ) ∗ f (θ ), z = reiθ . Then 0 < Re F(z) <

1, Re F(eiθ ) = χE (θ ) almost everywhere, and F(0) = |E |/2π . Let h(w) be
the harmonic function on the strip 0 < Re w < 1 with boundary values
χ{w:|Im w|>λ}. Then the bounded harmonic function h(F(z)) has nontangential
limit almost everywhere equal to the characteristic function of {θ : | f̃ (θ )| > λ}.
Hence

|{θ : | f̃ (θ )| > λ}| = 2πh(F(0)) = 2πh(|E |/2π ).

which proves Theorem 2.7.
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3. Conjugate Functions and Maximal Functions

The Riesz theorem fails when p = 1 and when p = ∞. A counterexample
for the case p = ∞ was given in Section 1, and a duality argument then shows
that the theorem fails for p = 1.

However, there is a related inequality valid for all finite p that implies the
Riesz theorem for 1 < p < ∞. Let u(z) be harmonic on the upper half plane
H . Using the cones

	(t) = {z ∈ H : |x − t | < y}, t ∈ �,

define the nontangential maximal function

u∗(t) = sup
	(t)

|u(z)|.

Theorem 3.1. If 0 < p < ∞ and if u(z) is a real-valued harmonic function
on H such that u∗ ∈ L p, then there is a harmonic conjugate function v(z) for
u(z) such that

sup
y>0

∫
|v(x + iy)|pdx ≤ C p

∫
|u∗(t)|p dt.(3.1)

On the unit disc we have the same inequality:

sup
y<1

∫
|ũ(reiθ )|p dθ ≤ cp

∫
|u∗(θ )|pdθ, 0 < p < ∞,(3.2)

where ũ is the usual conjugate function normalized by ũ(0) = 0 and where

u∗(θ ) = sup

{

|u(z)| :
|eiθ − z|
1 − |z| < 2

}

.(3.3)

Of course it is not crucial for Theorem 3.1 that the cones 	(t) have aperture
π/2. From Theorem 3.6 below it will follow that (3.1) remains true for cones
of any angle.

For p > 1, Theorem 3.1 follows from the Riesz theorem, so we are saying
something new only for p ≤ 1. Aided by the Hardy–Littlewood maximal the-
orem, Theorem 3.1 itself implies the Riesz theorem. This theorem was first
proved by Burkholder, Gundy, and Silverstein [1971] using Brownian motion.
The elementary proof given below was recently discovered by Paul Koosis. We
restrict ourselves to the case p < 2, and we first give the proof on the line. After
concluding the proof there we indicate how to adapt the argument to the circle.

Lemma 3.2. If F(z) = u(z) + iv(z) is of class H 2, if

m(λ) = |{t : u∗(t) > λ}|,
and if

μ(λ) = |{t : |v(t)| > λ}|,
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then

μ(λ) ≤ 2m(λ) + 2

λ2

∫ λ

0

sm(s) ds.(3.4)

Proof. Let

Uλ = {t : u∗(t) > λ},
so that m(λ) = |Uλ|, and let Eλ = �\Uλ. Form the region R = ⋃

t∈Eλ
	(t).

The boundary ∂R consists of two subsets,

Eλ = � ∩ ∂R and 	 = {y > 0} ∩ ∂R .

The set 	 is the union of some tents whose bases are the component intervals
of the open set Uλ, as shown in Figure III.1.

Figure III.1. On R , |u(z)| ≤ λ.

Since F(z) ∈ H 2, Cauchy’s theorem and the density of AN in H 1 yields
∫

∂R
F2(z)dz = 0.

Expanding out the real part of the integral gives
∫

Eλ

(u2 − v2)dx +
∫

	

(u2 − v2)dx −
∫

	

2uv dy = 0.

On 	, |dy| = dx and −2uv ≤ u2 + v2, so that

−
∫

	

2uv dy ≤
∫

	

(u2 + v2) dx .

Hence we have

0 ≤
∫

Eλ

(u2 − v2) dx + 2

∫

	

u2 dx

and
∫

Eλ

v2 dx ≤
∫

Eλ

u2dx + 2

∫

	

u2 dx .(3.5)

Along 	, we have |u(z)| ≤ λ, so that
∫

	

u2dx ≤ λ2

∫

	

dx = λ2|Uλ| = λ2m(λ).
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To estimate the other term on the right side of (3.5), write
∫

Eλ

u2dx ≤
∫

Eλ

(u∗)2dx =
∫∫

u∗≤λ

0<s<u∗

2s ds dx

=
∫ λ

0

∫

{s<u∗<λ}
dx 2s ds =

∫ λ

0

(m(s) − m(λ))2s ds

=
∫ λ

0

2sm(s)ds − λ2m(λ).

With Chebychev’s inequality, (3.5) now yields

|{t ∈ Eλ : |v(t)| > λ}| ≤ (1/λ2)

∫ λ

0

2sm(s)ds − m(λ) + 2m(λ).

Then since

μ(λ) ≤ |Uλ| + |{t ∈ Eλ : |v(t)| > λ}|,
(3.4) is proved.

Inequality (3.4) is the main step in the proof of Theorem 3.1. The rest of the
proof is more routine.

Lemma 3.3. If 0 < p ≤ 2, and if u∗ ∈ L p, then
(∫

|u(x + iy)|2dx

)1/2

≤ 2y1/2−1/p

(∫
|u∗|p dt

)1/p

, y > 0.

Proof. Fix y > 0. Then

|u(x + iy)|p ≤ inf
|t−x |<y

|u∗(t)|p ≤ (1/2y)

∫ x+y

x−y
|u∗(t)|p dt,

and so

sup
x

|u(x + iy)| ≤ (2y)−1/p‖u∗‖p.

Since p ≤ 2, this yields

(∫
|u(x + iy)|2dx

)1/2

≤
{

(2y)(p−2)/p‖u∗‖2−p
p

∫
|u(x + iy)|pdx

}1/2

≤ (2y)1/2−1/p

(∫
|u∗|pdt

)1/p

,

as asserted.

To prove Theorem 3.1 for the line and for 0 < p < 2, assume u∗ ∈ L p and
fix y0 > 0. By Lemma 3.3 there is a conjugate function v(z) defined on y > y0
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such that f = u + iv satisfies

sup
y>y0

∫
| f (x + iy)|2dx < ∞.

For every y0 > 0 there is only one such v, and hence v does not depend on y0.
Let

μ(λ) = |{x : |v(x + iy0)| > λ}|.

Since u0(z) = u(z + iy0) has u∗
0 ≤ u∗, Lemma 3.2 implies that

μ(λ) ≤ 2m(λ) + 2

λ2

∫ λ

0

sm(s) ds,

where m(λ) = |{t : u∗(t) > λ}|. Integrating this inequality against pλp−1 dλ

now gives

∫
|v(x + iy0)|pdx =

∫ ∞

0

pλp−1μ(λ)dλ

≤ 2

∫ ∞

0

pλp−1m(λ)dλ + 2

∫ ∞

0

psm(s)

∫ ∞

s
λp−3 dλ ds

= 2‖u∗‖p
p + 2

2 − p

∫ ∞

0

ps p−1m(s) ds

= 2

(

1 + 1

2 − p

)

‖u∗‖p
p.

The right side is independent of y0 and we have (3.1) with constant

cp = 2

(

1 + 1

2 − p

)

, p < 2.

It does not matter that this constant blows up as p → 2 because the Riesz
theorem gives another proof of (3.1) for p > 1.

The case p ≥ 2 of Theorem 3.1 can of course be proved without recourse to
the Riesz theorem. The case p > 2 follows from the case p < 2 by a duality,
and an interpolation then gives the remaining case p = 2.

On the unit disc the same reasoning can be used once we establish an inequal-
ity like (3.4). Let f = u + i ũ ∈ H 2, where ũ(0) = 0. Let Uλ = {θ : u∗(θ ) >

λ}, where u∗ is defined by (3.3), let Eλ = T \Uλ, and let m(λ) = |Uλ|. Also let
μ(λ) = |{θ : |ũ(θ )| > λ}|. If m(λ) is not small we automatically have

μ(λ) ≤ Cm(λ) + 1

λ2

∫ λ

0

sm(s) ds,(3.6)
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which is the inequality we are after, and so we assume m(λ) is small. As before,
form

R =
⋃

θ∈Eλ

{

z :
|eiθ − z|
1 − |z| < 2

}

.

Now ∂R = Eλ ∪ 	, where 	 is a union of tentlike curves, one over each
component of Uλ. By Cauchy’s theorem

(u(0))2 = 1

2π i

∫

∂R
f 2(z)dz/z.

On Eλ,

1

2π i

dz

z
= dθ

2π
,

while on 	,

1

2π i

dz

z
= dθ

2π
± dr

2π ir
.

If m(λ) = |Uλ| is small enough, then 1 − r is small on 	, and a calculation
then shows that

∣
∣
∣
∣

dr

rdθ

∣
∣
∣
∣ < 1

almost everywhere on 	. Taking the real part of the integral above then gives

0 ≤ 1

2π

∫

Eλ

(u2 − (ũ)2) dθ + 1

2π

∫

	

(u2 − (ũ)2) dθ + 1

2π

∫

	

2uũ
dr

r
.

We have the estimate
∫

	

2|uṽ|
∣
∣
∣
∣
dr

r

∣
∣
∣
∣ ≤

∫

	

(u2 + (ũ)2) dθ,

so that we obtain
∫

Eλ

(ũ)2 dθ ≤
∫

Eλ

u2 dθ + 2

∫

	

u2 dθ

when m(λ) is small. This inequality implies (3.6) just as in the proof of Lemma
3.2 and consequently (3.6) is true for all values of m(λ). The remainder of the
proof of Theorem 3.1 now shows that (3.2) holds for 0 < p < 2, and the Riesz
theorem gives (3.2) for 2 ≤ p < ∞.

Corollary 3.4. If 0 < p < ∞ and if u(z) is a real-valued harmonic function,
then u(z) = Re f (z), f ∈ H p, if and only if u∗ ∈ L p. There are constants c1

and c2, depending only on p, such that

c1‖u∗‖p ≤ ‖ f ‖p ≤ c2‖u∗‖p.
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Proof. The inequality c1‖u∗‖p ≤ ‖ f ‖p was proved in Chapter II. The other
inequality is immediate from the theorem.

Corollary 3.4, which is of course equivalent to the theorem, is very important
because it enables the H P spaces, p < ∞, to be defined without any reference
to analytic functions. The H P spaces can further be characterized without
recourse to harmonic functions (see Fefferman and Stein [1972]).

Corollary 3.5. If 0 < p < ∞ and if u(z) is a harmonic function such that
u∗ ∈ L p, then there is a conjugate function v such that v∗ ∈ L P and

‖v∗‖p
p ≤ C p‖u∗‖p

p.

Proof. By Corollary 3.4, f = u + iv is in H p with ‖ f ‖p
p ≤ cp

2 ‖u∗‖p
p. The

maximal theorem then shows that f ∗ ∈ L p with ‖ f ∗‖p
p ≤ Acp

2 ‖u∗‖p
p. Since

trivially v∗ ≤ f ∗, we conclude that ‖v∗‖p
p ≤ C p‖u∗‖p

p.

There is another inequality even stronger than (3.1) in which the nontangen-
tial maximal function is replaced by the vertical maximal function. Again let
u(z) be a harmonic function on H , and write

u+(t) = sup
y>0

|u(t + iy)|, t ∈ �.

Obviously u+(t) ≤ u∗(t). Conversely, we have

Theorem 3.6. If 0 < p < ∞ and if u(z) is harmonic on H , then
∫

|u∗|p dt ≤ cp

∫
|u+|p dt,

where cp is a constant depending only on p.

As a corollary, we see that a harmonic function u(z) is the real part of an H P

function if and only if u+ ∈ L p, and consequently that (3.1) holds for cones
of any angle.

The proof of Theorem 3.6 rests on a remarkable inequality due to Hardy and
Littlewood.

Lemma 3.7. If u(z) is harmonic on the disc �(z0, R) and if 0 < p < ∞,
then

|u(z0)| ≤ K p

⎛

⎝ 1

π R2

∫∫

�(z0,R)

|u(z)|pdx dy

⎞

⎠

1/p

,(3.7)

where K P depends only on p.

When p ≥ 1, this lemma is a trivial application of Hölder’s inequality and the
mean value property. When p < 1 the inequality is rather surprising, because
|u(z)|p is not always subharmonic.
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Proof. We only have to treat the case p < 1. We may change variables and
assume z0 = 0, R = 1. Write

mq (r ) =
(

1

2π

∫ 2π

0

|u(reiθ )|q dθ

)1/q

.

We can assume that

2

∫ 1

0

m p(r )pr dr = 1

π

∫∫

�(0,1)

|u(z)|pdx dy = 1

and then that m∞(r ) = sup{|u(z)| : |z| = r} > 1 for 0 < r < 1, because oth-
erwise (3.7) is true with K P = 1.

Since p < 1 we have

m1(r ) ≤ 1

2π

∫
|u(reiθ )|pdθm∞(r )1−p = m p(r )pm∞(r )1−p.

Also, estimating the supremum of the Poisson kernel gives

m∞(ρ) ≤ 2m1(r )

1 − ρ/r
, 0 < ρ < r < 1.

Set ρ = rα , where α > 1 will be determined later. Then

∫ 1

1/2

log m∞(rα)
dr

r
≤

∫ 1

1/2

log

(
2

1 − ρ/r

)
dr

r
+ p

∫ 1

1/2

log m p(r )
dr

r

+(1 − ρ)

∫ 1

1/2

log m∞(r )
dr

r
.

The first integral converges with value Cα , and the second integral is bounded
by

∫ 1

1/2

m p
p(r )

dr

r
≤ 4

∫ 1

0

m p
p(r )r dr ≤ 2

by our assumption, and so we have

∫ 1

1/2

log m∞(rα)
dr

r
≤ (Cα + 2) + (1 − p)

∫ 1

1/2

log m∞(r )
dr

r
.

Since we have assumed log m∞(r ) ≥ 0, a change of variables gives

∫ 1

1/2

log m∞(r )
dr

r
≤

∫ 1

(1/2)α
log m∞(r )

dr

r
= α

∫ 1

1/2

log m∞(rα)
dr

r

≤ α(Cα + 2) + α(1 − p)

∫ 1

1/2

log m∞(r )
dr

r
.
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Taking α(1 − p) < 1 now yields

inf
1/2<r<1

log m∞(r ) <
α(Cα + 2)

1 − α(1 − p)

1

log 2
= log K p,

and (3.7) follows from the maximum principle.

Lemma 3.7 provides an alternate proof of Lemma 3.3 but with a different
constant.

Proof of Theorem 3.6. Fix q with 0 < q < p. Let z = x + iy ∈ 	(t) =
{|x − t | < y}. Then u is harmonic on �(z, y/2), and Lemma 3.7 gives

|u(z)|q ≤ 4K q
q

πy2

∫∫

�(z,y/2)

|u(ξ + iη)|qdξ dη ≤ Cq

y

∫

|ξ−x |<y/2

|u+(ξ )|qdξ

≤ Cq

y

∫

|ξ−t |<3y/2

|u+(ξ )|qdξ,

since |x − t | < y. The last integral is dominated by C ′
q Mg(t) where g = (u+)q

and where Mg is the Hardy–Littlewood maximal function of g. We have proved
that

|u∗(t)|p ≤ C ′′
q (Mg(t))p/q .

Since p/q > 1 and g ∈ L p/q , the maximal theorem gives us
∫

|u∗(t)|p dt ≤ C
∫

|Mg(t)|p/q dt ≤ C
∫

|u+(t)|p dt,

and Theorem 3.6 is proved.

Notes

For the classes �α , Theorem 1.3 dates back to Privalov [1916]. The weak-
type estimate

|{θ : | f̃ (θ )| > λ}| ≤ (A/λ)‖ f ‖,(N.1)

and its corollary

‖ f̃ ‖p ≤ Ap‖ f ‖1, 0 < p < 1,(N.2)

which of course follow from Theorem 2.1, are due to Kolmogoroff [1925].
The weak-type estimate for the Hilbert transform had been published earlier
by Besicovitch [1923]. M. Riesz announced his theorem in [1924], but he
delayed publishing the proof until [1927]. Corollary 2.6 is due to Zygmund
[1929] and Theorem 2.7 is from Stein and Weiss [1959].
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There are numerous proofs of the Riesz theorem. The one in the text was
chosen because it is short and because it stresses harmonic estimates. The
proof of Theorem 2.1 copies the Carleson proof of Kolmogoroff’s inequality
in Katznelson [1968]. I learned this proof of Theorem 2.7 from Brian Cole,
while driving in Los Angeles.

The real-variables proofs of the Riesz theorem, which are more amenable
to higher-dimensional generalizations, lead to the theory of singular in-
tegrals (see Calderón and Zygmund [1952], and Stein [1970]). The
Calderón-Zygmund approach to Theorem 2.1 is outlined in Exercise 11, and
some of its ideas will appear at the end of Chapter VI. Another real vari-
ables proof, relying on a beautiful lemma due to Loomis [1946], is elegantly
presented in Garsia [1970].

Three other proofs deserve mention: the original proof in Riesz [1927] or
in Zygmund [1955]; Calderón’s refinement in Calderón [1950a] or Zygmund
[1968]; and the Green’s theorem proof, due to P. Stein [1933], which is given
in Duren [1970] and also in Zygmund [1968].

The best possible constants Ap in Theorem 2.3 were determined by
Pichorides [1972] and independently by B. Cole (unpublished). Using
Brownian motion, B. Davis [1974, 1976] found the sharp constants
in Kolmogoroff’s inequalities (N.1) and (N.2). Later Baernstein [1979] gave
a classical proof of the Davis results. The idea is to reduce norm inequalities
about conjugate functions to a problem about subharmonic functions on the
entire plane. By starting with nonnegative functions, we could work with har-
monic functions on a half plane instead. The cost is higher constants and some
loss in generality. Gamelin’s recent monograph [1979] gives a nice exposi-
tion of Cole’s beautiful theory of conjugate functions in uniform algebras and
derives the sharp constants for several theorems.

The Burkholder–Gundy–Silverstein theorem, Theorem 3.1, is now a funda-
mental result. On the one hand it explains why conjugate functions obey the
same inequalities that maximal functions do. On the other hand, the case p ≤ 1
of the theorem shows that the nontangential maximal function is more pow-
erful than the Hardy–Littlewood maximal function. It is not the harmonicity
but the smoothness of the Poisson kernel that is decisive here. For example, let
ϕ(t) be a positive, Dini continuous, compactly supported function on �. Let
f ∈ L1(�) be real valued, and, in analogy with the Poisson formula, define

U (x, y) = 1

y

∫
ϕ

(
x − t

y

)

f (t) dt, y > 0.

Then for 0 < p ≤ 1, f = ReF, F ∈ H p, if and only if

sup
y>0

|U (x, y)| ∈ L p(�).

This theorem, and another proof of Theorem 3.1 for �n , are in Fefferman and
Stein [1972]. Incidentally, the exact necessary and sufficient conditions for a
kernel ϕ to characterize H p remains an unsolved problem (see Weiss [1979]).
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Another route to Theorem 3.1 is through the atomic theory of H p spaces.
See Coifman [1974] for the case of �1, Latter [1978] for the generalization to
�n , and Garnett and Latter [1978] for the case of the ball of �n . The theory of
atoms is briefly discussed in Exercise 11 of Chapter VI.

The elementary proof of Theorem 3.1 given in the text is from Koosis [1978].
It makes this book 10 pages shorter.

Exercises and Further Results

1. (Peak sets for the disc algebra). Let E ⊂ T be a compact set of
measure zero.

(a) (Fatou [1906]) There exists u ∈ L1(T ) such that u : T → [−∞, 0]
continuously, u−1(−∞) = E , and u is C1 on T \E . Then

g = u + i ũ

is continuous on D\E and g has range in the left half plane. The function

f0 = eg

is in the disc algebra Ao = H∞ ∩ C(T ) and f0(z) = 0 if and only if z ∈ E .
Thus any closed set of measure zero is a zero set for Ao. Conversely, if E ⊂ T
is the zero set of some nonzero f ∈ Ao, then |E | = 0.(

∫
log | f |dθ > − ∞.)

(b) (F. and M. Riesz [1916]) Let g be the function from part (a) and let

f1 = g/(g − 1).

Then f1 ∈ Ao, f1 ≡ 1 on E, and | f1(z)| < 1, z ∈ D\E . This means E is a peak
set for Ao. Conversely, any peak set for Ao has measure zero. (If E is a peak
set and if f ≡ 1 on E, | f | < 1 on D\E, then 1 − f has zero set E.)

(c) Use part (b) to prove the F. and M. Riesz theorem on the disc: If μ is a
finite complex Borel measure on T such that

∫
einθdμ(θ ) = 0, n = 1, 2, . . . ,

then μ is absolutely continuous. (If not, there is compact E, |E | = 0 such that
fE eiθdμ �= 0. But

lim
n→∞

∫
f n
1 eiθdμ = 0.)

This is the original proof of the theorem.
(d) (Rudin [1956], Carleson [1957]) If E ⊂ T is a compact set of measure

zero, then E is a peak interpolation set for Ao : Given h ∈ C(E) there exists
g ∈ Ao such that the restriction to E is h and such that

‖g‖∞ = ‖h‖ = sup
E

|h(z)|.

By Runge’s theorem there are gn ∈ Ao such that gn → h uniformly on E. Take
n j so that |gn j+1

− gn j | < 2− j on some open neighborhood Vj of E, and take
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k j so that

|gn j+1
− gn j ‖ f

k j

1 | < 2− j

on T \Vj , where f1 is the function from part (b). Then

g = gn1
+

∞∑

j=1

f
k j

1 (gn j+1
− gn j )

is in Ao and g = h on E. By being a little more careful, one can also obtain
‖g‖∞ = ‖h‖.

(e) The result in (d) can also be derived using a duality. The restriction map
S : Ao → C(E) has adjoint S∗ : M(E) → M(T )/A⊥

o , where M(E) = C(E)∗
is the space of finite complex Borel measures on E and where A⊥

o ⊂ M(T ) is
the subspace of measures orthogonal to Ao. The F. and M. Riesz theorem from
Chapter II shows that S∗ is an isometry. If I is the ideal { f ∈ Ao : S( f ) = 0},
then by a theorem in functional analysis the induced map S̃ : Ao/I → C(E) is
also an isometry and S̃ maps onto C(E). Thus if h ∈ C(E) and if ε > 0, there
exists g ∈ Ao such that g = h on E and ‖g‖∞ ≤ (1 + ε)‖h‖. With mk chosen
correctly,

g0 =
∑

2−k f mk
1 g

then satisfies ‖g0‖ = ‖h‖ and S(g0) = h (see Bishop [1962] and Glicksberg
[1962]).

�(f) (Gamelin [1964]) Let p(z) be any positive continuous function on
D. If h ∈ C(E) and if |h(z)| ≤ p(z), z ∈ E, then there exists g ∈ Ao such that
g = h on E and |g(z)| ≤ p(z), z ∈ D.

2. We shall later make use of the following application of 1(b) and 1(c)
above. Let μ be a finite complex Borel measure on T. Assume dμ is singular
to dθ . Then there are analytic polynomials pn(z) such that

(i) |pn| ≤ 1, |z| ≤ 1,

(ii) pndμ → ‖μ‖, and
(iii) pn → 0 almost everywhere dθ .

Condition (iii) can also be replaced by pn → −1 almost everywhere dθ . (Hint:
There are En compact, En ⊂ En+1, |En| = 0 such that μ is supported on⋃

En. Let hn ∈ C(En), ‖hn‖ < 1,
∫

En
hndμ → ‖μ‖; let gn ∈ Ao interpolate

hn, ‖gn‖ < 1; and let pn be a polynomial approximation of gn .)

��3. Let Am denote the algebra of functions f such that f and its first m
derivatives belong to Ao, and let A∞ = ∩Am . Let Aα, 0 < α ≤ 1 be the space
of functions f ∈ Ao such that

| f (z) − f (w)| ≤ K |z − w|α.
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(a) Let E be a closed subset of the unit circle having measure zero, and let
{l j } be the lengths of the arcs complementary to E. Necessary and sufficient for
E to be the zero set of a function in A∞ or Aα is the condition � j l j log(1/ l j ) <

∞ (see Carleson [1952]).
(b) On the other hand, there is f ∈ Am such that f (z) = 1, z ∈ E, and

| f (z)| < 1, z ∈ D\E, if and only if E is a finite set (see Taylor and Williams
[1970]; the papers of Alexander, Taylor, and Williams [1971] and Taylor and
Williams [1971] have further information on related questions).

4. Theorem 1.3 is sharp in the following sense. Let ω(δ) be increasing
and continuous on [0, 2π ], ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2), ω(0) = 0. Suppose

∫ 1

0

ω(δ)

δ
dδ = ∞.

(a) There exists f ∈ C(T ), f real, such that

ω f (δ) ≤ ω(δ), δ < δ0,

but such that f is not continuous. (Let f (t) = ω(t), 0 < t < δ0, f (t) =
0, −1 < t < 0.)

(b) There is g ∈ C(T ), g real, such that

ωg(δ) ≥ ω(δ)

but such that g̃ is continuous. Here, in outline, is one approach. If K is the
Cantor ternary set, then {x − y, x ∈ K , y ∈ k} = [−1, 1]. (Try drawing a pic-
ture of K × K .) Let h ∈ C(K ) be real, ωh(δ) ≥ ω(δ), and find g ∈ H∞ with
continuous boundary values such that g = h on {eiθ : θ ∈ K }.

5. If f ∈ C(T ) is Dini continuous, then Sn f → f uniformly. There
is a sharper result: Sn f → f uniformly if ω(δ) log(1/δ) → 0(δ → 0) (see
Zygmund [1968]).

6. If 1 < p < ∞, and if f ∈ L p, then

‖Sn f − f ‖p → 0.

7. Let f ∈ L1(T ). If
∫ | f | log(2 + | f |) dθ < ∞, then f̃ ∈ L1. If f ≥ 0

and f̃ ∈ L1, then
∫

| f | log(2 + | f |) dθ < ∞.

The first assertion is due to Zygmund [1929], the second is due to M. Riesz;
see Zygmund [1968].

8. Prove the two Kolmogoroff estimates

|{| f̃ | > λ}| ≤ (A/λ)‖ f ‖1 and ‖ f̃ ‖p ≤ Ap‖ f ‖1, 0 < p < 1.

The first is valid on both the line and the circle, the second on the circle.
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9. Let E be a subset of � of finite measure and define

HχE (x) = lim
ε→0

1

π

∫

|x−t |>ε

χE (t)

x − t
dt.

Then the distribution of HχE depends only on |E |. More precisely,

|{|HχE (x)| > λ}| = 2|E |
sinh πλ

(see Stein and Weiss [1959]).

10. (More jump theorem). Let f ∈ L1(T ) and define

F(z) = 1

2π i

∫

|ζ |=1

f (ζ )dζ

ζ − z
, |z| �= 1.

From inside D, F(z) has nontangential limit called f1(ζ ) at almost every ζ ∈ T ,
and from |z| > 1, F(z) has nontangential limit f2(ζ ) at almost every ζ ∈ T .
Moreover,

f1(ζ ) − f2(ζ ) = f (ζ )

almost everywhere.

�11. Let f ∈ L p(�), 1 ≤ p < ∞. Write

Hε f (x) = 1

π

∫

|x−t |>ε

f (t)

x − t
dt, ε > 0.

and

H∗ f (x) = sup
ε>0

|Hε f (x)|.

H∗ f is the maximal Hilbert transform.
(a) Show

H∗ f ≤ c1 M(H f ) + c2 M f,

where M is the maximal function, and H f = limε→0 Hε f . Then conclude by
means of (1.10) that ‖H∗ f ‖2 ≤ c‖ f ‖2.

(b) Assuming that H∗ is weak-type 1–1, show by interpolation that
‖H∗ f ‖p ≤ cp‖ f ‖p, 1 < p < 2.

(c) With f fixed, there is a measurable function ε(x), 0 < ε(x) < ∞, such
that

|Hε(x) f (x)| ≥ 1
2

H∗ f (x).



124 conjugate functions Chap. III

(This process is called linearization.) Suppose ε(x) is a simple function∑N
j=1 ε jχE j , E j ∩ E� = ∅, then for f ∈ L p, g ∈ Lq , 2 < p < ∞,

∣
∣
∣
∣

∫
Hε(x) f (x)g(x)d(x)

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫
g(x)

∑

j

χE j (x)

∫

|t−x |≥ε j

f (t)

x − t
dtdx

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∑

j

∫
f (t)

∫

|t−x |≥ε j

χE j (x)g(x)

t − x
dxdt

∣
∣
∣
∣
∣

≤ ‖ f ‖p‖
∑

j

H∗(χE j g)‖q .

(d) From (b) and (c) it is almost trivial that H f = limε→0 Hε f satisfies

‖H f ‖p ≤ C p‖ f ‖p.

(e) We turn to the weak-type estimate

|{x : H∗ f (x) > 3λ}| ≤ (C/λ)‖ f ‖1.(E.1)

Let � = {x : M f (x) > λ} and let F = �\�. Write � = ⋃∞
j=1 I j where the

closed intervals I j satisfy

dist (F, I j ) = |I j | (see Figure III.2).

Figure III.2. The decomposition � = ⋃
I j .

Notice that

1

|I j |
∫

I j

| f (t)| dt ≤ 2λ

because I j is contained in an interval twice as large that touches F. Let

g(x) = f (x)χF (x) +
∑

j

(
1

|I j |
∫

I j

f (t) dt

)

χI j (x)

and

b(x) = f (x) − g(x) =
∑

j

(

f (x) − 1

|I j |
∫

I j

f (t) dt

)

χI j (x).
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Real analysts call g(x) the good function, b(x) the bad function. The reason
g(x) is good is that ‖g‖2 is not too large,

‖g‖2
2 =

∫

F
| f |2dx +

∑

j

(
1

|I j |
∫

I j

f (t) dt

)2

|I j |

≤ λ

∫

F
| f |dx + 2λ

∑

j

∫

I j

| f (t)| dt ≤ 2λ‖ f ‖1.

Therefore the L2 estimate from part (a) yields

|{x : H∗g(x) > λ}| ≤ C

λ2
‖g‖2

2 ≤ 2C

λ
‖ f ‖1

and (E.1) will follow if we can show

|{x : H∗b(x) > 2λ}| ≤ C

λ
‖ f ‖1.

By the maximal theorem, |�| ≤ (C/λ)‖ f ‖1, so that we only have to prove

|{x ∈ F : H∗b(x) > 2λ}| ≤ C

λ
‖ f ‖1.(E.2)

Write the bad function b(x) as
∑

b j (x), where

b j (x) =
(

f (x) − 1

|I j |
∫

I j

f (t) dt

)

χI j (x),

and note that b j (x) has the good cancellation property
∫

b j (x) dx = 0. Fix
x ∈ F and let ε. Then

Hεb(x) =
∑

j

∫

|x−t |>ε

b j (t)

x − t
dt

=
∑

dist(x,I j )>ε

∫

I j

b j (t)

x − t
dt +

∑

dist(x,I j )≤ε

∫

|x−t |>ε

b j (t)

x − t
dt.

= Aε(x) + Bε(x).

Let t j be the center of I j . When dist (x, I j ) > ε, we have

∫

I j

b j (t)

x − t
dt =

∫

I j

b j (t)

(
1

x − t
− 1

x − t j

)

dt

=
∫

I j

b j (t)(t − t j )

(x − t)(x − t j )
dt
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since
∫

b j (t) dt = 0. For x ∈ F and t ∈ I j , |x − t |/|x − t j | is bounded above
and below, so that

∣
∣
∣
∣
∣

∫

I j

b j (t)

x − t
dt

∣
∣
∣
∣
∣
≤ c|I j |

∫

I j

|b j (t)|
|x − t |2 dt.

Therefore

sup
ε>0

|Aε(x)| ≤ A(x) =
∑

j

c|I j |
∫

I j

|b j (t)|
|x − t |2 dt.

The trick here was to use the cancellation of b j (t) to replace the first-order
singularity by a second-order singularity. Now we have

∫

F
A(x)dx ≤ C

∑

j

c|I j |
∫

I j

|b j (t)|
∫ ∞

|I j |

ds

s2
dt

≤ C
∑

‖b j‖1 ≤ 2C‖ f ‖1

and

|{x ∈ F : sup |Aε(x)| > λ}| ≤ C

λ
‖ f ‖1.

When dist (x, I j ) ≤ ε, we have |I j | = dist(F, I j ) ≤ ε, so that

|Bε(x)| ≤ c

ε

∫

ε<|x−1|<2ε

|
∑

b j (t)| dt ≤ cMb(x).

Since ‖b‖1 ≤ 2‖ f ‖1, this yields

|{x ∈ F : sup
ε>0

|Bε(x)| > λ}| ≤ C

λ
‖ f ‖1.

Now (E.2) follows from the weak-type estimates we have established for
supε |Aε(x)| and supε |Bε(x)| (see Calderón and Zygmund [1952] and Stein
[1970]).
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Some Extremal Problems

We begin with the basic duality relation,

inf
g∈H p

‖ f − g‖p = sup

{∣
∣
∣
∣

∫
Ff

dθ

2π

∣
∣
∣
∣ : F ∈ Hq

0 , ‖F‖q = 1

}

.(0.1)

This relation is derived from the Hahn–Banach theorem in Section 1. Then,
rather than continuing with a general theory, we use (0.1) to study three im-
portant and nontrivial problems.

1. Determining when a continuous function on the circle T has continuous
best approximation in H∞. This problem is discussed in Section 2.

2. Characterizing the positive measures μ on T for which

∫
| p̃|2 dμ ≤ K

∫
|p|2 dμ

for all trigonometric polynomials p(θ ). This topic will reappear in Chapter VI,
where the main result of Section 3 of this chapter will yield information about
the real parts of H∞ functions.

3. Solving the interpolation problem

f (z j ) = w j , j = 1, 2, . . . ,(0.2)

f ∈ H∞, with the additional restriction that | f (eiθ )| be constant or that ‖ f ‖∞
be as small as possible. This problem is treated in some detail, because Theorem
4.1 below will have important and striking applications later and because the
rather precise results on this topic require ideas somewhat deeper than the
duality relation (0.1).

To compare the duality approach to a more classical method, we conclude
the chapter with Nevanlinna’s beautiful solution of (0.2).

127
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1. Dual Extremal Problems

Let X be a Banach space with dual space X∗ and let Y be a closed subspace
of X. Then

Y ⊥ = {x∗ ∈ X∗ : 〈y, x∗〉 = 0 for all y ∈ Y }
is a closed subspace of X∗. The Hahn–Banach theorem gives us the isometric
isomorphisms

Y ∗ ∼= X∗/Y ⊥,(1.1)

(X/Y )∗ ∼= Y ⊥.(1.2)

These isometries can be rewritten as two equalities.

Lemma 1.1. If x∗ ∈ X∗, then

sup{|〈x∗, y〉| : y ∈ Y, ‖y‖ ≤ 1} = inf{‖x∗ − k‖ : k ∈ Y ⊥}.(1.1′)

I f x ∈ X, then

inf{‖x − y‖ : y ∈ Y } = sup{|〈x, k〉| : k ∈ Y ⊥, ‖k‖ ≤ 1}.(1.2′)

Proof. The left side of (1.1′) is the norm of the restriction of x∗ to the subspace
Y and the right-hand side of (1.1′) is the norm of the coset x∗ + Y ⊥ in X∗/Y ⊥.
By (1.1) these quantities are equal. In the same way (1.2) implies (1.2′).

On the circle T we have the Banach spaces C ⊂ L∞ ⊂ L p ⊂ L1, where
C = C(T ) is the space of continuous functions on T and where the L p spaces
are with respect to dθ/2π . We are interested in the subspaces Ao ⊂ H∞ ⊂
H p ⊂ H 1, where Ao is the disc algebra Ao = C ∩ H∞. We then have the
accompanying table, in which q = p/(p − 1). In the table Hq

0 denotes {g ∈
Hq : g(0) = 0}, M(T ) is the space of complex Borel measures on T with
total variation norm, and H 1

0 identified with the closed subspace of M(T )
consisting of those absolutely continuous measures Fdθ/2π having density F
in H 1

0 . The two blanks in the L∞ row will be filled in Chapter V, but the spaces
filling the blanks will not be too useful for our purposes. To obtain the last
column of the table observe that if F ∈ Lq , q > 1, and if

∫
einθ F(θ ) dθ = 0

for n = 0, 1, 2, . . . , then F ∈ Hq
0 . The characterization of A⊥

o as H 1
0 is the disc

version of the F. and M. Riesz theorem (Theorem II.3.8).

X Y X∗ Y ⊥

C Ao M(T ) H 1
0

L∞ H∞ — —
L p, p < ∞ H p Lq Hq

0

L1 H 1
0 L∞ H∞
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Theorem 1.2. Let 1 ≤ p < ∞, and let f ∈ L p, /∈ H p. Then the distance
from f to H p is

dist( f, H p) = inf
g∈H p

‖ f − g‖p

(1.3)

= sup

{∣
∣
∣
∣

∫
f F

dθ

2π

∣
∣
∣
∣ : F ∈ Hq

0 , ‖F‖q ≤ 1

}

.

There exists unique g ∈ H p such that dist( f, H p) = ‖ f − g‖p and there exists
unique F ∈ Hq

0 , ‖F‖q = 1 such that
∫

f F
dθ

2π
= dist( f, H p).(1.4)

Proof. The identity (1.3) follows from (1.2′). Let gn ∈ H p be such that ‖ f −
gn‖p → dist( f, H p). The Poisson integrals of f − gn are bounded on any
compact subset of the disc, so by normal families there is an analytic function
g on D such that gn(z) → g(z), z ∈ D, if we replace {gn} by a subsequence.
Taking means over circles of radius r < 1, we see that g ∈ H p and that ‖ f −
g‖p ≤ lim ‖ f − gn‖p. Thus ‖ f − g‖p = dist( f, H p) and there exists at least
one best approximation g ∈ H p.

Let Fn ∈ Hq
0 , ‖Fn‖q ≤ 1, be such that

∫
f Fndθ/2π → dist( f, H p). Since

1 < q ≤ ∞, the Banach–Alaoglu theorem can be used to obtain a weak-
star limit point F of {Fn}. Then ‖F‖q ≤ 1, F ∈ Hq

0 , and
∫

f Fdθ/2π =
dist( f, H p). Since

∫
gF dθ = 0, we have

dist( f, H p) =
∫

( f − g)F dθ/2π ≤ ‖ f − g‖p‖F‖q ≤ ‖ f − g‖p.(1.5)

Equality must hold throughout this chain of inequalities. This means‖F‖q = 1,
and there exists a dual extremal function F for which (1.4) holds.

Now let g ∈ H p be any best approximation of f and let F ∈ Hq
0 be any dual

extremal function. Because equality holds in (1.5), the conditions for equality
in Hölder’s inequality give us

f − g

‖ f − g‖p
= F̄ |F |q−2 and F = ( f − g)

| f − g|p−2

‖ f − g‖p−1
p

when p > 1. When p = 1 we get

( f − g)F = | f − g|
instead.

Let p > 1. Since |F | > 0 almost everywhere, the first equation shows that
g is unique. Since F ∈ Hq

0 is determined by its values on any set of positive
measure, the second equation shows that F is unique.

Similarly, when p = 1, the third equation shows that F is unique. The third
equation then shows that Im(gF) is unique. Since gF ∈ H 1

0 , this determines
gF uniquely, and then g is determined almost everywhere because |F | > 0
almost everywhere.
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Note that the best approximation g ∈ H p and the dual extremal function
F ∈ Hq

0 , ‖F‖q = 1, are characterized by the relation
∫

( f − g)F
dθ

2π
= ‖ f − g‖p‖F‖q = ‖ f − g‖p,(1.6)

which is (1.5) with equality. Sometimes it is possible to compute dist( f, H p)
by finding solutions F and g of (1.6) (see Exercise 3).

When p = ∞ some of the conclusions of the theorem can be rescued if we
use the bottom row of the table instead of the second row, and use (1.1′) instead
of (1.2′).

Theorem 1.3. If f ∈ L∞, then the distance from f to H∞ is

dist( f, H∞) = inf
g∈H∞

‖ f − g‖∞ = sup

{∣
∣
∣
∣

∫
f F

dθ

2π

∣
∣
∣
∣ : F ∈ H 1

0 , ‖F‖1 ≤ 1

}

.

There exists g ∈ H∞ such that ‖ f − g‖∞ = dist( f, H∞). If there exists F ∈
H 1

0 , ‖F‖1 ≤ 1, such that

dist( f, H∞) =
∫

f F
dθ

2π
,

then the best approximation g ∈ H∞ is unique and

| f − g| = dist( f, H∞)

almost everywhere.

Proof. The dual expression for the distance follows from (1.1′). Just as in
the proof of Theorem 1.2, a normal families argument shows there is a best
approximating function g ∈ H∞. If a dual extremal function F ∈ H 1

0 exists,
then

dist( f, H∞) =
∫

( f − g)F
dθ

2π
= ‖ f − g‖∞‖F‖1,

so that

( f − g)

dist( f, H∞)
= ( f − g)

‖ f − g‖∞
= F̄

|F |(1.7)

almost everywhere, and there is a unique best approximation g.

If a dual extremal function F exists, (1.7) does not imply that F is unique.
But it does, of course, imply that the argument of F is unique.

Example 1.4. Let f (0) = e−2iθ . Taking F0(θ ) = e2iθ we see that

1

2π

∫
f F0dθ = 1.
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Hence dist( f, H∞) = 1 and F0 is a dual extremal function. However

Fα(z) = z(z + α)(1 + ᾱz)

1 + |α|2 , |α| < 1,

is another dual extremal function. In this problem the best approximating
function is g = 0.

Example 1.5. Let

f (θ ) =
⎧
⎨

⎩

1, 0 < θ < π/2,

0, π/2 < θ ≤ 3π/2,

−1, 3π/2 < θ ≤ 2π.

If there were g ∈ H∞ such that ‖ f − g‖∞ < 1, then Re g > δ > 0 on (0, π/2)
and Re g < −δ < 0 on (−π/2, 0). Hence

lim
ε→0

1

π

∫

|θ |>ε

Re g(θ )

θ
dθ = +∞.

Except for bounded error terms, this integral represents − limr→1 Im g(r ).
Thus there is no such bounded g, and so dist( f, H∞) = 1 and g = 0 is one
best approximation. Now let g be the conformal mapping of D onto the half
disc D ∩ {Im z > 0}. We can arrange that g(1) = 0, g(i) = 1, and g(−i) = −1.
Then by checking the values of g along the three arcs on which f is constant,
we see that ‖ f − g‖∞ = 1. Hence there is not a unique best approximation to
f ∈ H∞. By Theorem 1.3 there is no dual extremal function F ∈ H 1

0 .

It is interesting to notice where the proof of Theorem 1.2 breaks down in
Example 1.5. By the bottom row of the table there are Fn ∈ H 1

0 , ‖Fn‖1 ≤ 1,
such that

∫
f Fndθ/2π → 1. As linear functionals on L∞, the Fn have some

weak-star limit point σ ∈ (L∞)∗, and σ is orthogonal to H∞. In Chapter V
we shall see that σ is a complex measure on a compact Hausdorff space, the
maximal ideal space of L∞. However, σ is not weakly continuous on L∞; that
is, σ cannot be represented as σ (h) = ∫

hFdθ with F ∈ L1. Otherwise we
could conclude that |F | = 1 almost everywhere. In fact, in a sense to be made
precise in Chapter V, σ is singular to dθ , which means, in classical language,
that Fn(z) → 0, z ∈ D. The absence of a dual extremal function F ∈ H 1

0 is
often the central difficulty with an H∞ extremal problem. We confront this
difficulty again in Section 4.

If the function f ∈ L∞ is continuous, there is a dual extremal function F
and the best approximation g is unique.

Lemma 1.6. If f ∈ C, then

dist( f, H∞) = dist( f, Ao) = inf
g∈Ao

‖ f − g‖∞.

Proof. There exists g ∈ H∞ such that ‖ f − g‖∞ = dist( f, H∞). Let fr =
f ∗ Pr be the Poisson integral of f and let gr = g ∗ Pr . Since ‖Pr‖1 = 1 we
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have

‖ fr − gr‖∞ = ‖( f − g) ∗ Pr‖∞ ≤ ‖ f − g‖∞.

But gr ∈ Ao, and ‖ f − fr‖∞ < ε if 1 − r is small. Thus

dist( f, Ao) ≤ lim
r

‖ f − gr‖∞ ≤ ‖ f − g‖∞ = dist( f, H∞).

The reverse inequality is clear since H∞ ⊃ Ao.

We write H∞ + C for the set of functions g + h, g ∈ H∞, h ∈ C .

Theorem 1.7. If f ∈ H∞ + C, then there exists F ∈ H 1
0 , ‖F‖1 = 1, such

that

1

2π

∫
f F dθ = dist( f, H∞),(1.8)

and there exists unique g ∈ H∞ such that ‖ f − g‖∞ = dist( f, H∞).

Proof. Write f = g + h, g ∈ H∞, h ∈ C . Then dist( f, H∞) = dist(h, H∞)
and we can assume that f is continuous. By Theorem 1.3 there are Fn ∈
H 1

0 , ‖Fn‖1 ≤ 1, such that

1

2π

∫
f Fndθ → dist( f, H∞).

Taking a subsequence we can assume Fn(z) → F(z), z ∈ D, where F ∈
H 1

0 , ‖F‖1 ≤ 1. This gives convergence of the Fourier coefficients, so that for
all trigonometric polynomials p(θ ),

∫
Fn p

dθ

2π
→

∫
Fp

dθ

2π
.

Taking ‖ f − p‖∞ small we see that

dist( f, H∞) =
∫

F f
dθ

2π
.

Hence (1.8) holds and Theorem 1.3 now implies that f has a unique best
approximation in H∞.

As an application we reprove some results from Chapter I, Section 2.

Corollary 1.8. Let z1, z2, . . . , zn be distinct points in D, and let
w1, w2, . . . , wn be complex numbers. Among all f ∈ H∞ such that

f (z j ) = w j , 1 ≤ j ≤ n,(1.9)

there is a unique function f of minimal norm. This function has the form cB(z)
where B(z) is a Blaschke product of degree at most n − 1.
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Corollary 1.9. Let zn+1 ∈ D be distinct from z1, z2, . . . , zn. Assume (1.9)
has a solution f ∈ H∞ with ‖ f ‖∞ ≤ 1. Among such solutions let f0 he one
for which | f (zn+1)| is largest. Then f0 is uniquely determined by its value
f0(zn+1) and f0 is a Blaschke product of degree at most n.

Corollary 1.9 is a simple consequence of Corollary 1.8. By normal families
there exists an extremal function f0, ‖ f0‖∞ ≤ 1. Let wn+1 = f0(zn+1). If f ∈
H∞ interpolates (1.9) and if also

f (zn+1) = wn+1,

then ‖ f ‖∞ ≥ 1, because otherwise for some λ, |λ| small,

g = f + λ

n∏

j=1

z − z j

1 − z̄ j z

is a function satisfying (1.9) such that ‖g‖ ≤ 1 and |g(zn+1)| > | f0(zn+1)|.
Hence f0 has minimal norm among the functions interpolating w1, . . . , wn+1

at z1, . . . , zn+1.

Proof of Corollary 1.8. Let B0 be the Blaschke product with zeros z1, . . . zn ,
and let f0 be a polynomial that does the interpolation (1.9). The minimal norm
of the functions in H∞ satisfying (1.9) is

inf
g∈H∞

‖ f0 − B0g‖∞ = inf
g∈H∞

‖B̄0 f0 − g‖∞.

Since B̄0 f0 ∈ C , there is a unique interpolating function f ∈ H∞ of minimal
norm and there is F ∈ H 1

0 , ‖F‖1 = 1, such that
∫

f B̄0 F
dθ

2π
= ‖ f ‖∞.

Hence | f | = | f B̄0| = ‖ f ‖∞ almost everywhere, and

f F/B0 ≥ 0(1.10)

almost everywhere.

Lemma 1.10. If G ∈ H 1 is real almost everywhere on an arc I ⊂ T , then G
extends analytically across I.

Proof. On |z| > 1 define G(z) = G(1/z). This is an H 1 function on |z| > 1
with nontangential limits G(θ ) at almost every point of I . Let ζ ∈ I and center
at ζ a disc 
 so small that 
 ∩ T ⊂ I . Let V = 
 ∩ D, W = 
 ∩ {|z| > 1}.
Since we are dealing with H 1 functions, we have for w ∈ 
\T ,

1

2π i

∫

∂


G(z)

z − w
dz = 1

2π i

∫

∂V

G(z)

z − w
dz + 1

2π i

∫

∂W

G(z)

z − w
dz = G(w).

This shows that G can be continued across I.
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To complete the proof of Corollary 1.8, notice that G = f F/B0 is an H 1

function on the annulus r < |z| < 1 if r > |z j |. Using (1.10) and using the
lemma locally, we see that G is analytic across T, and that G is in fact a
rational function. Since B0G is analytic across T, and since f/‖ f ‖∞ is an
inner function, Theorem II.6.3 shows that f is analytic across T. Consequently
f/‖ f ‖∞ is a Blaschke product of finite degree, and F is a rational function.
Now B0 has n zeros in D and F has a zero at z = 0. By (1.10) and the argument
principle, it follows that f has at most n − 1 zeros.

In Corollary 1.8 the extremal function f (z) = cB(z) can have fewer than n −
1 zeros. For example, suppose g is the function of minimum norm interpolating

g(z j ) = w j , 1 ≤ j ≤ n − 1,

and take wn = g(zn). Then f = g has at most n − 2 zeros. Similarly, the ex-
tremal function in Corollary 1.9 can have fewer than n zeros. However, if the in-
terpolation (1.9) has two distinct solutions f1, f2 with ‖ f1‖∞ ≤ 1, ‖ f2‖∞ ≤ 1,
then the extremal function f0 in Corollary 1.9 is a Blaschke product of degree
n. For the proof, notice that (1.9) then has a solution f with ‖ f ‖∞ < 1, by the
uniqueness asserted in Corollary 1.8. Then by Rouché’s theorem, f0 and f0 − f
have the same number of zeros in |z| < 1. Since f0(z j ) = f (z j ), 1 ≤ j ≤ n,
it follows that f0 has at least n zeros in |z| < 1.

Corollary 2.4 Chapter I, contains more information than we have obtained
here, but the duality methods of this section apply to a wider range of problems.

2. The Carleson–Jacobs Theorem

Let f (θ ) ∈ C . From Theorem 1.7 we know there is a unique function g ∈
H∞ such that

‖ f − g‖∞ = dist( f, H∞).

We want to know when the best approximation g(θ ) is continuous on T. Al-
though necessary and sufficient conditions on f (θ ) are not known, there is
a sharp result parallel to Theorem 1.3 of Chapter III about the continuity of
conjugate functions. Recall that the modulus of continuity of f (θ ) is

ω(δ) = ω f(δ) = sup{| f (θ ) − f (ϕ)| : |θ − ϕ| < δ}.
Theorem 2.1. If f (θ ) is Dini continuous, that is, if, for some ε > 0

∫ t

0

ω(t)

t
dt < ∞,

then the best approximation g ∈ H∞ to f is continuous on T.

Theorem 2.2. Let ω(t) be a continuous nondecreasing function such that
ω(0) = 0 and ω(t1 + t2) ≤ ω(t1) + ω(t2). If

∫
0
ω(t)/t dt = ∞, then there is
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f (θ ) ∈ C such that ω f (δ) ≤ ω(δ) but such that the best approximation to f in
H∞ is not continuous.

We prove Theorem 2.1 first. In doing so we can assume

‖ f − g‖∞ = dist( f, H∞) = 1.

By Theorem 1.7, there is F ∈ H 1
0 , ‖F‖1 = 1, such that

( f − g)F = |F | a.e(2.1)

All information used in the proof will follow from (2.1) and the continuity of
f. We need two lemmas.

Lemma 2.3. Let G = u + iv ∈ H 1 and let I be an arc on T such that almost
everywhere on I

u > 0, |v| ≤ αu,

where α > 0. Let J be a relatively compact subarc of I and let V be the domain
{reiθ : r0 < r < 1, 0 ∈ J }. Then G ∈ H p(V ) if

arctan α < π/2p.

The statement G ∈ H p(V ) means that |G|p has a harmonic majorant in V.

Proof. Recall from Corollary 2.5 in Chapter III that an H 1 function whose
boundary values lie in the sector S = {x > 0, |y| < αx} is in H p if arctan
α < π/2p. Enlarging J, we may assume G has a finite radial limit at the end-
points of J. Then M = sup{|G(z)| : z ∈ ∂V, |z| < 1} is finite, and

g = M(1 + 1/α) + G

has, at almost every point of ∂V , boundary value in the cone S (see Figure IV.1).

Figure IV.1. S = {|y| < αx, x > 0}. On ∂V, g has values in the union of the disc and the shaded
cone.
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Because g ∈ H 1(V ), the Poisson integral formula (applied after conformally
mapping V onto the unit disc) shows that g(V ) ⊂ S. By Corollary III.2.5 and
the conformal invariance of the definition of H p(V ), we see that g ∈ H p(V )
and hence that G ∈ H p(V ).

Lemma 2.4. Let f (θ ) ∈ C, let g(θ ) ∈ H∞ and let F(θ ) ∈ H 1
0 be functions

such that (2.1) holds. Then

(a) F ∈ H p for all p < ∞, and
(b) if τ ∈ [0, 2π ] and if

fτ = f − f (τ ), gτ = g − f (τ ),

then there is δ > 0 and r0 > 0 such that |gr (z)| ≥ 1
2

on

Wτ = {reiθ : |θ − τ | < δ/2, r0 < r < 1}.
Proof. To prove (a) let p < ∞ and let ε > 0 satisfy arctan(ε/(1 − ε)) <

π/2p. Choose δ so that | f (θ ) − f (τ )| < ε when |θ − τ | < δ. Then on Iτ =
{θ : |θ − τ | < δ}, we have by (2.1)

−gτ F = ( f − g)F − fτ F = |F | − fτ F.

Consequently, Re(−gτ F) > 0 and |Im gτ F | < ε/(1 − ε) Re(−gτ F) almost
everywhere on Iτ . By Lemma 2.3 we have gτ F ∈ H p(Wτ ). If we replace Wτ

by the intersection of two discs whose boundaries cross inside Iτ , a simple
conformal mapping can be used to show

∫

|θ−τ |<δ/2

|gτ F |pdθ < ∞.

Since |gτ | ≥ ‖ f − g‖∞ − ω(δ) ≥ 1 − ε on Iτ , this means
∫
|θ−τ |<δ/2

|F |pdθ <

∞, so that F ∈ L p. Hence F ∈ H p by Corollary 11.4.3.
To prove (b) first take ε so small that on Iτ

−gτ F = exp(u + iv),

where ‖v‖∞ < π/4. then

h = exp(−ivχIτ + ṽχIτ )

is in H 2 by Corollary III.2.6. The H 1 function gτ Fh is real on Iτ . By Lemma
1.10 and Theorem II.6.3, the inner factor of gτ Fh is analytic across It . Conse-
quently, the inner factor of gτ is analytic across Iτ . The representation for-
mula for outer functions then shows |gτ (z)| ≥ 3

4
in a region {r0(τ ) < r <

1, |θ − τ | < δ/2}. Since gσ (z) = gτ (z) − ( f (σ ) − f (τ )), we have |gσ (z)| > 1
2

on the same region if |σ − τ | < δ. This means we may choose r0(τ ) indepen-
dent of τ , and thus (b) is proved.
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Proof of Theorem 2.1. By Lemma 2.4(b), gτ (z) has a single-valued loga-
rithm on Wτ , and the logarithm is defined by

log gτ (z) = 1

2π

∫

|θ−τ |<δ

log |gτ (θ )|eiθ + z

eiθ − z
dθ + Rτ (z),(2.2)

where Rτ (z) is the same integral over |θ − τ | ≥ δ plus the logarithm of the
inner factor of gτ (z). Since |gτ (z)| ≥ 1

2
on Wτ , the inner factor is bounded

below on Wτ and it is analytic across {eiθ : |θ − τ | < δ/2}. Hence there is
r1 > 0 such that Rτ (z) is bounded and analytic on 
τ = {|z − eiτ | < r1}. The
radius r1 and the bound sup {|Rτ (z)| : z ∈ 
τ } are independent of τ .

Because | fτ − gτ | = 1, we have

1 − |gτ |2 = | fτ |2 − 2 Re fτ ḡτ ≤ Aω(|θ − τ |),
so that

| log |gτ (θ )‖ ≤ cω(|θ − τ |).
Let �(τ ) be the truncated cone

�(τ ) =
{

z :
|z − eiτ |
1 − |z| ≤ 2, r2 < |z| < 1

}

,

where r2 > 0 is such that �(τ ) ⊂ 
τ . For z ∈ �τ ,

∣
∣
∣
∣
eiθ + z

eiθ − z

∣
∣
∣
∣ ≤ C

|θ − τ | ,

so that (2.2) yields

| log gτ (z) − Rτ (z)| ≤ C
∫ δ

0

ω(t)

t
dt, z ∈ �(τ ).

By Schwarz’s lemma and the uniform bound on Rτ (z), |Rτ (z) − Rτ (w)| ≤
c|z − w|, z, w ∈ �(τ ). Therefore

|gτ (z) − gτ (w)| ≤ C |z − w| + η(δ),

z, w ∈ �τ , where η(δ) → 0(δ → 0).
Now let τ and σ be so close together that there is a point z ∈ �(τ ) ∩ �(σ ).

Taking nontangential limits, we then obtain (when 1 − |z| is small)

|g(eiτ ) − g(eiσ )| ≤ |g(eiτ ) − g(z)| + |g(z) − g(eiσ )|
≤ |gτ (eiτ ) − gτ (z)| + |gσ (z) − gσ (eiσ )|
≤ 2η(δ) + |eiτ − z| + |eiσ − z|
≤ 2η(δ) + C |σ − τ |.
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Fixing δ > 0 with 2η(δ) < ε, we conclude that

lim
σ→τ

|g(eiσ ) − g(eiτ )| < ε,

which means that g is continuous.

Now let ω(t) satisfy the hypotheses of Theorem 2.2.

Lemma 2.5. Let δ > 0. Let

f (eit ) =
{

ω(t), 0 ≤ t ≤ δ,

0, −δ ≤ t < 0.

Extend f (eit ) to be smooth on δ < |t | < π and continuous on [−π, π] with
f (−π ) = f (π ). Let g ∈ H∞ be the best approximation of f. If g is continuous,
then

g(1) = ± i‖ f − g‖∞.

Proof. Since f is real, f /∈ H∞ and ‖ f − g‖∞ > 0. We may suppose
‖ f − g‖∞ = 1, so that | f − g| = 1 on T. We must prove Re g(1) = 0. Since
| f − g| = 1, log |g(t)| = 0 on −δ < t < 0. Suppose Re g(1) > 0. Then for
0 < t < δ,

log |g| = − log

∣
∣
∣
∣
g − f

g

∣
∣
∣
∣ ≤ − log

(

1 − f Re g

|g|2
)

≤ −Cω(t).

Similarly, if Re g(1) < 0, then on 0 < t < δ, log |g| ≥ Cω(t). Moreover, g has
a continuous logarithm on {|z − 1| < δ, |z| ≤ 1}, again because | f − g| = 1.
However, if Re g(1) �= 0, then by Lemma III.1.2,

lim
r→1

| arg g(r )| =
∣
∣
∣
∣c + lim

ε→0

1

π

∫

|t |>ε

log |g(t)|
t

dt

∣
∣
∣
∣

≤ c + C lim
ε→0

1

π

∫

|t |>ε

ω(t)

t
dt = +∞.

This contradiction shows g(1) = ±i .

To prove Theorem 2.2 let δn = 2−n , and let

ωn(t) = ω

(
δn

2
−

∣
∣
∣
∣
δn + δn−1

2
− t

∣
∣
∣
∣

)

on [δn, δn−1], ωn(t) = 0 off [δn, δn−1]. Let

f (eit ) =
∞∑

k=1

1

2
ω4k+1(t) + i

∞∑

k=1

1

2
ω4k+3(t).
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Then f 2 is real, so that f /∈ H∞. It is not hard to verify that ω f (δ) ≤ ω(δ). If
g is the best approximation of f, then Lemma 2.5 says that

g(eiδ4k+1 ) = ±i‖ f − g‖∞, g(eiδ4k+3 ) = ±‖ f − g‖∞.

Thus g(eit ) is not continuous at t = 0.

3. The Helson–Szegö Theorem

Let p(θ ) be a trigonometric polynomial on the circle T and let p̃(θ ) be its
conjugate function. Then p̃ is another trigonometric polynomial, normalized
to have mean zero. In this section we give the Helson–Szegö characterization
of those positive measures μ on T for which

∫
| p̃(θ )|2 dμ(θ ) ≤ K

∫
|p(θ )|2 dμ(θ )

for every trigonometric polynomial p(θ ). This of course means that conjugation
extends to a bounded operator on L2(μ). In Chapter VI a completely different
characterization of such measures μ will be given, and these two results will
be merged to provide a description of the uniform closure in L∞ of the space
of real parts of H∞ functions.

First we need the famous and beautiful theorem of Szegö. Let F be the set
of polynomials in z vanishing at z = 0. Restricted to the circle, F coincides
with the set of trigonometric polynomials of the form

∑
n>0 aneinθ .

Theorem 3.1 (Szegö). Let dμ be a finite positive measure on the circle. Write

dμ = w dθ/2π + dμs,

where dμs is singular to dθ . Then

inf
f ∈F

∫
|1 − f |2dμ = exp

1

2π

∫
log w dθ.(3.1)

Notice that if the infimum in (3.1) is zero, then F is dense in L2(μ), because
by induction e−iθ , e−2iθ , . . . also then lie in the closure of F .

Proof. We first dispense with the singular part μs . By Exercise 2, Chapter
III, there are polynomials pn in F such that ‖pn‖∞ ≤ 1, pn → 1 a.e. dμs and
pn → 0 a.e. dθ . For any f0 ∈ F we have f0 + pn(1 − f0) ∈ F , so that

inf
F

∫
|1 − f |2dμ ≤ lim

n

∫
|1 − ( f0 + pn(1 − f0))|2dμ

= lim
n

∫
|1 − f0|2|1 − pn|2dμ

=
∫

|1 − f0|2w dθ

2π
.
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Since dμ ≥ w dθ/2π , the reverse inequality is trivial, so that

inf
F

∫
|1 − f |2dμ = inf

F

∫
|1 − f |2w dθ

2π
,

and we can assume μ is absolutely continuous.
Write ϕ = log w. Assume for the moment that

∫
ϕ dθ > −∞. Let ψ = ϕ̃

be the conjugate function and let

G = exp
1

2
(ϕ + iψ).

Then G is an outer function in H 2, |G|2 = w almost everywhere, and

G2(0) = exp

∫
ϕ

dθ

2π

is the right side of (3.1). For f ∈ F have

1

2π

∫
|1 − f |2w dθ = 1

2π

∫
|(1 − f )2G2| dθ

≥ |(1 − f (0))2G2(0)| = exp
1

2π

∫
ϕ dθ.

because (1 − f )2G2 is in H1.
Now G is an outer function, and so by Beurling’s theorem there are polynomi-

als pn(z) such that pnG converges to the constant function G(0) in H 2. Then
pn(0)G(0) → G(0) �= 0, so that pn(0) → 1 and we can assume pn(0) = 1.
Thus we can take pn = 1 − fn, fn ∈ F . But then

lim
n

1

2π

∫
|1 − fn|2w dθ = lim

n

1

2π

∫
|pnG|2 dθ

= 1

2π

∫
|G(0)|2 dθ = exp

1

2π

∫
ϕ dθ.

Therefore (3.1) is proved when log w ∈ L1.
Now assume

∫
log w dθ = −∞. For ε > 0, log(w + ε) is integrable, and

so by the preceding

inf
f ∈F

1

2π

∫
|1 − f |2w dθ ≤ inf

f ∈F
1

2π

∫
|1 − f |2(w + ε) dθ

= exp
1

2π

∫
log(w + ε) dθ.

The last expression tends to zero with ε and we have

inf
f ∈F

1

2π

∫
|1 − f |2w dθ = 0

if
∫

log w dθ = −∞.
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Turning to the work of Helson and Szegö, we again let

dμ = w dθ/2π + dμs

be a finite positive measure on T. Let G be the space of conjugate analytic
trigonometric polynomials

g = b0 + b1e−iθ + b2e−2iθ + . . . ,

and let

ρ = sup

∣
∣
∣
∣

∫
f ḡ dμ

∣
∣
∣
∣,

where f and g range overF andG respectively but where f and g are constrained
by

∫
| f |2 dμ ≤ 1,

∫
|g|2 dμ ≤ 1.

It is clear that 0 ≤ ρ ≤ 1. The spaces F and G are orthogonal in L2(μ) if and

only if ρ = 0. If there is a nonzero vector in both the L2(μ) closures F and G,

then ρ = 1. If ρ < 1 the closed subspaces F and G of L2(μ) are said to be at
positive angle, and the angle between the subspaces is cos−1 ρ. When F and

G are at positive angle, F + G is closed in L2(μ) and

‖ f ‖2 + ‖g‖2 ≤ (1 − ρ)−1‖ f + g‖2,

f ∈ F , g ∈ G, so that F + G is the Banach space direct sum of F and G.
Examples exist of closed subspaces F and G such that F ∩ G = {0} but such
that ρ = 1 and F + G is not closed. (See Exercise 9.)

Theorem 3.2 (Helson–Szegö). The subspaces F and G are at positive angle
if and only if

μs = 0,(3.2)

and

log w = u + ṽ.(3.3)

where u ∈ L∞, v ∈ L∞ and ‖v‖∞ < π/2.

Proof. First let us show that (3.2) is necessary. Suppose dμs > 0. By Exercise
2, Chapter III, there are pn ∈ F such that |pn| ≤ 1, pn → 1 almost everywhere
dμs, and pn → 0 almost everywhere dθ . Then gn = p̄n ∈ G, and

∫
pnḡndμ →

∫
dμs,

while ∫
|pn|2 dμ =

∫
|gn|2dμ →

∫
dμs.

Scaling pn and gn to have unit norm in L2(μ), we see that ρ = 1.
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We can now assume μ is absolutely continuous, μ = w dθ/2π . We can also
assume that

∫
log w

dθ

2π
> −∞,

because otherwise F is dense in L2(μ) by Szegö’s theorem, so that G ⊂ F
and ρ = 1, while on the other hand, (3.3) obviously fails.

Let ϕ = log w, let ψ = ϕ̃ and let G = exp 1
2
(ϕ + iψ) be as in the proof of

Theorem 3.1. Let H = G2. Then G ∈ H 2, H ∈ H 1, G and H are outer, and

|G|2 = |H | = w.

Then we have

ρ = sup

∣
∣
∣
∣

1

2π

∫
( f G)(ḡG)e−iψdθ

∣
∣
∣
∣,

where the supremum is taken over all f ∈ F and g ∈ G such that

1

2π

∫
| f G|2dθ = 1

2π

∫
|ḡG|2 dθ = 1.

By Beurling’s theorem the set { f G : f ∈ F } is dense in H 2
0 and the set {ḡG :

g ∈ G} is dense in H 2. Since every F ∈ H 1
0 can be factored as F = F1 F2,

where F1 ∈ H 2
0 , F2 ∈ H 2, and

‖F1‖2 = ‖F2‖2 = ‖F‖1,

we have

ρ = sup

{∣
∣
∣
∣

∫
Fe−iψ dθ

2π

∣
∣
∣
∣ : F ∈ H 1

0 , ‖F‖1 ≤ 1

}

.

By duality this means

ρ = inf
g∈H∞

‖e−iψ − g‖∞.

Lemma 3.3. If ψ is a real measurable function, then

inf
g∈H∞

‖e−iψ − g‖ < 1

if and only if there are ε > 0 and h ∈ H∞ such that

|h| ≥ ε a.e.(3.4)

|ψ + arg h| ≤ π/2 − ε (modulo 2π ).(3.5)

Proof. Notice that if g ∈ H∞ and ‖e−iψ − g‖∞ < 1 then g satisfies (3.4)
and (3.5). On the other hand, if (3.4) and (3.5) hold for h, then for a small
λ > 0, ‖e−iψ − λh‖∞ < 1. (The proof is illustrated in Figure IV.2.)



Sect. 3 the helson–szegö theorem 143

Figure IV.2. The proof of Lemma 3.3. The values of h lie in the cone |ψ + arg z| < π/2 − ε,
and in |z| > ε. The shaded region includes all values λh and is contained in |z − eiψ | < d < 1.

Now assume ρ < 1. Then there is h ∈ H∞ with (3.4) and (3.5). Since arg
H = ψ we have

| arg(h H )| <
π

2
− ε,

and the H 1 function hH has a well-defined logarithm. Letting v = − arg(h H ),
we have ‖v‖∞ < π/2 − ε and

log |h H | = ṽ.

By (3.4) u = − log |h| is bounded. Hence

log w = log |H | = log |h H | − log |h| = u + ṽ,

and (3.3) holds.
Conversely, suppose that μ is absolutely continuous and that log w has the

form (3.3). We can then assume u = 0, because the property ρ = 1 is not
changed by multiplying w by a positive bounded function bounded away from
zero. (See Exercise 10.) Then in the above discussion

ψ = ϕ̃ = −v.

Since ‖v‖∞ < π/2, the constant function g = cos(‖v‖∞) has

‖e−iψ − g‖∞ < 1,

so that ρ < ‖e−iψ − g‖ < 1.
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Theorem 3.4. Let μ be a positive finite measure on the circle. Then there is
a constant K such that

∫
| p̃|2dμ ≤ K 2

∫
|p2|dμ(3.6)

for all trigonometric polynomials if and only if μ is absolutely continuous,
dμ = w dθ/2π , and

log w = u + ṽ,

where u ∈ L∞, v ∈ L∞, and ‖v‖∞ < π/2.

Proof. We show the conjugation operator is bounded in L2(μ) if and only if

the subspaces F and G are at positive angle in L2(μ). With Theorem 3.2 that
will prove the result.

Let T be the operator defined on trigonometric polynomials by

T (p) = 1

2
{(p − a0) + i p̃},

where a0 = a0(p) = ∫
p dθ/2π . Thus

T (
∑

aneinθ ) =
∑

n>0

aneinθ .

Since (p − a0(p)) = (− p̃)∼, we see that T is bounded with respect to the L2(μ)
norm whenever (3.6) holds. Conversely if

∫
|T (p)|2dμ ≤ C2

∫
|p|2 dμ,(3.7)

then (3.6) is true for real trigonometric polynomials, and therefore for all
trigonometric polynomials. Thus (3.7) is equivalent to (3.6).

Every trigonometric polynomial p(θ ) has the form p = f − g, where f ∈
F , g ∈ G, and

T (p) = T ( f − g) = f.

Hence if T is bounded and if
∫ | f |2dμ = ∫ |g|2dμ = 1, then by (3.7) we have

C−2 ≤
∫

| f − g|2dμ = 2 − 2 Re

∫
f g̃ dμ.

Letting
∫

f g̃ dμ approach ρ, we calculate that ρ < 1 − 1/2C2.
On the other hand, if ρ < 1 and if f ∈ F , g ∈ G, then

∫
| f − g|2dμ ≥

∫
| f |2dμ +

∫
|g|2dμ − 2ρ

(∫
| f |2 dμ

)1/2 (∫
|g|2 dμ

)1/2

≥ (1 − ρ)

(∫
| f |2 dμ +

∫
|g|2 dμ

)
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and
∫

| f |2 dμ =
∫

|T ( f − g)|2 dμ ≤ (1 − ρ)−1

∫
| f − g|2 dμ.

Hence T is bounded if ρ < 1.

4. Interpolating Functions of Constant Modulus

Let {z j } be a sequence of distinct points in D, and let {w j } be a sequence of
complex numbers. Assume there is f0 ∈ H∞ solving the interpolation problem

f (z j ) = w j , j = 1, 2, . . . .(4.1)

If there are finitely many points z j then by Pick’s theorem or by Corollary 1.8
the interpolation (4.1) can be solved with f = cB where B is a finite Blaschke
product and where c is the minimum norm of all interpolating functions. In
this section we consider the case in which there are infinitely many z j . We
assume

∑
(1 − |z j |) < ∞,

a condition necessary and sufficient for (4.1) to have more than one solution
in H∞.

Theorem 4.1. (Nevanlinna). If there are two distinct functions of unit norm
in H∞ that do the interpolation (4.1), then there is an inner function that also
satisfies (4.1).

If f0 fulfills (4.1) and if ‖ f0‖ < 1, then the two function hypothesis is
trivially satisfied. Indeed, let B(z) be the Blaschke product with zeros {z j }.
Then for some s > 0 and for some t < 0, f0 + s B and f0 + t B are two distinct
interpolating functions of norm 1. If there is exactly one function of unit norm
satisfying (4.1), then this reasoning (and the theorem) show that interpolation
is always possible with a function of constant modulus 1 + ε, for any ε > 0.
Before proving the theorem, we mention an example indicating that there may
not be an inner function solving (4.1) when it is merely assumed that there
exists one interpolating function of norm 1.

Example 4.2. Let lim z j = 1. Let I be an open are on T containing z = 1.
Let f ∈ (H∞)−1 have ‖ f ‖ = 1, | f | = 1 on I but | f | �≡ 1. Let w j = f (z j ).
Then every other interpolating function for this problem has the form f −
Bg, g ∈ H∞, where B is the Blaschke product with zeros z j . We claim g = 0
if ‖ f − Bg‖ ≤ 1. This means there is only one interpolating function of unit
norm, namely f, and that function is not an inner function.

So assume g ∈ H∞ and ‖ f − Gg‖ ≤ 1. Then

|1 − Bg/ f | ≤ 1
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almost everywhere on I, so that

Re Bg/ f ≥ 0

almost everywhere on I. By Exercise 14, Chapter II, the inner factor of Bg/ f
is analytic across I. If g �≡ 0, this inner factor is a multiple of B, which is not
analytic across I. So g ≡ 0.

Theorem 4.1 is a consequence of the following theorem due to Adamyan,
Arov, and Krein [1968].

Theorem 4.3. Let h0 ∈ L∞. If the coset h0 + H∞ of L∞/H∞ contains two
functions of unit norm, then it contains a function h ∈ L∞ such that |h| = 1
almost everywhere.

To derive Nevanlinna’s theorem from Theorem 4.3, let h0 = B̄ f0, where B
is the Blaschke product with zeros {z j }. If h ∈ B̄ f0 + H∞ and if |h| = 1, then
Bh is an inner function such that (Bh)(z j ) = f0(z j ), j = 1, 2, . . . .

The proof of Theorem 4.3 will be divided into two cases, although the first
case can be subsumed under the more difficult second case. The strategy for
the proof has already been suggested by Corollary 1.9. To obtain a unimodular
function we maximize a linear functional over

K = {h ∈ h0 + H∞ : ‖h‖ = 1}.
Write

‖h0 + H∞‖ = inf{‖h0 − g‖ : g ∈ H∞}
for the norm of our coset in L∞/H∞.

Case 1. ‖h0 + H∞‖ < 1. Consider the extremal problem

a = sup

{∣
∣
∣
∣

1

2π

∫
h dθ

∣
∣
∣
∣ : h ∈ K

}

.(4.2)

By a normal family argument there is an extremal function h ∈ K such that
|(1/2π )

∫
h dθ | = a. We claim |h| = 1 almost everywhere.

Notice that

dist(h, H∞
0 ) = inf{‖h − g‖ : g ∈ H∞, g(0) = 0} = 1,(4.3)

since otherwise h − g + ε
∫

h dθ/2π, g ∈ H∞
0 , ε > 0, would be a function in

K with a larger mean. On the other hand, by hypothesis we have

dist(h, H∞) = ‖h0 + H∞‖ < 1.(4.4)

Since(H 1)⊥ = H∞
0 ,(4.3) gives

sup

{∣
∣
∣
∣

∫
hF

dθ

2π

∣
∣
∣
∣ : F ∈ H 1, ‖F‖1 ≤ 1

}

= 1,(4.3′)
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while (4.4) gives

sup

{∣
∣
∣
∣

∫
hF

dθ

2π

∣
∣
∣
∣ : F ∈ H 1

0 , ‖F‖1 ≤ 1

}

< 1.(4.4′)

By (4.3′) there are Fn ∈ H 1, ‖Fn‖1 ≤ 1 such that
∫

hFn
dθ

2π
→ 1.(4.5)

This means

lim
n

|Fn(0)| > 0,(4.6)

because otherwise we would have a subsequence for which
∫

h
Fn − Fn(0)

‖Fn − Fn(0)‖1

dθ

2π
→ 1,

and this contradicts (4.4′).
Now suppose there were a measurable set E of positive measure such that

|h| < λ < 1 on E. As ‖Fn‖1 ≤ 1,(4.5) then yields
∫

E
|Fn| dθ

2π
→ 0.

Since the logarithm is concave, Jensen’s inequality now gives
∫

E
log |Fn| dθ

2π
→ −∞.

and as

log |Fn(0)| ≤
∫

E
log |Fn| dθ

2π
+

∫

T/E
|Fn| dθ

2π
,

we obtain log |Fn(0)| → −∞, in contradiction to (4.6).
Before turning to Case 2 we digress somewhat in order to obtain further

information when ‖h0 + H∞‖ < 1.

Theorem 4.4. If ‖h0 + H∞‖ < 1, there is h ∈ h0 + H∞ and there is F ∈
H 1, F �= 0 such that

h = F̄/|F |(4.7)

almost everywhere.

Proof. Let h and {Fn} be as in the above discussion. We claim the sequence
{Fn} has a subsequence converging weakly in L1. If F is any weak limit point,
then by (4.5)

∫
hF dθ/2π = 1. Since ‖h‖ ≤ 1, this implies (4.7).
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If the sequence {Fn} has no weakly convergent subsequence, then there are
measurable sets Ek ⊂ T such that

|Ek | → 0

but such that
∣
∣
∣
∣

∫

Ek

Fk
dθ

2π

∣
∣
∣
∣ ≥ β > 0,(4.8)

where {Fk} denotes a subsequence of the Fn (see Dunford and Schwartz [1958,
p. 292]).

Lemma 4.5. If {Ek} is a sequence of measurable subsets of T such that
|Ek | → 0, then there is a sequence {gk} of functions in H∞ such that

(i) supEk
|gk | → 0,

(ii) gk(0) → 1, and
(iii) |gk | + |1 − gk | ≤ 1 + εk ,

where limk εk = 0.

Let us assume the lemma for the moment and finish proving Theorem 4.4
Let

Gk = gk Fk

1 + εk
, Hk = (1 − gk)Fk

1 + εk
.

Then Gk, Hk ∈ H 1. Since εk → 0, (4.5) gives us

‖Gk‖1

∫
hGk

‖Gk‖1

dθ

2π
+ ‖Hk‖1

∫
h Hk

‖Hk‖1

dθ

2π
→ 1.(4.9)

Now for k sufficiently large, ‖Hk‖1 ≥ β/2 by (4.8) and condition (i). By con-
dition (iii) ‖Gk‖1 + ‖Hk‖1 ≤ 1, and (4.9) then yields

∫
h Hk

‖Hk‖1

dθ

2π
→ 1.

However, condition (ii) implies that lim Hk(0) = 0, and we again have a con-
tradiction to (4.4′).

Proof of Lemma 4.5. Choose Ak → ∞ so slowly that Ak |Ek | → 0. Let fk

be the Poisson integral of

AkχEk + i Ak χ̃Ek .

Then fk is an analytic function in D and fk takes values only in the right half
plane. Also fk(0) = Ak |Ek | and Re fk = Ak almost everywhere on Ek . Let
hk = (1 + fk)−1. Then hk maps D into the disc

|w − 1
2
| < 1

2
,(4.10)
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and hk(0) → 1 while supEk |hk | → 0. The disc defined by (4.10) is compressed
into the ellipse defined by (iii) under the mapping w → wδ , if δ > 0 is small.

We can choose δk → 0 so slowly that gk = hδk
k then satisfies conditions (i)–

(iii).

We return to the proof of Theorem 4.3.

Case 2. ‖h0 + H∞‖ = 1. By the hypothesis, there are two distinct functions
h1 and h2 in the coset h0 + H∞ such that ‖h1‖ = ‖h2‖ = 1. Since h1 �= h2

there is a point z ∈ D such that
∫

h1 Pz
dθ

2π
�=

∫
h2 Pz

dθ

2π
.

Using a Möbius transformation, we can suppose z = 0, and rotating h0 we can
assume

Re

∫
h1

dθ

2π
�= Re

∫
h2

dθ

2π
.(4.11)

As in Case 1, the function h ∈ h0 + H∞ with |h| = 1 almost everywhere will
be found by maximizing

Re

∫
h

dθ

2π

over K = {h ∈ h0 + H∞, ‖h‖ ≤ 1}. However, this time we must use the proof
of the Hahn–Banach theorem instead of that theorem itself.

Since L∞/H∞ is the dual space of H 1
0 , the elements h ∈ h0 + H∞ with

‖h‖ = 1 correspond naturally to the norm-preserving extensions to L1 of the
linear functional

H 1
0 � F →

∫
h0 F

dθ

2π
.

Now (4.11) says that this functional has two norm-preserving extensions whose
real parts disagree at the constant function 1 ∈ L1/H 1

0 . The proof of the Hahn–
Banach theorem therefore gives us

sup
F∈H 1

0

{

−‖1 + F‖ − Re

∫
h0 F

dθ

2π

}

= m,

inf
F∈H 1

0

{

‖1 + F‖ − Re

∫
h0 F

dθ

2π

}

= M,

and

m < M.

We may take h ∈ h0 + H∞, ‖h‖ = 1, so that Re
∫

h dθ/2π = M . It will turn
out that |h| = 1 almost everywhere. The last two displayed identities can now
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be rewritten as

inf
F∈H 1

0

{

‖1 + F‖ + Re

∫
h(1 + F)

dθ

2π

}

= M − m > 0(4.12)

and

inf
F∈H 1

0

{

‖1 + F‖ − Re

∫
h(1 + F)

dθ

2π

}

= 0.(4.13)

The left sides of (4.12) and (4.13) differ only in a change of sign in one place.
By (4.13) there are Fn ∈ H 1

0 such that

1

2π

∫
|1 + Fn|

{

1 − Re

(

h
(1 + Fn)

|1 + Fn|
)}

dθ

2π
→ 0.(4.14)

Suppose there is a measurable set E ⊂ T with |E | > 0 such that |h| < λ < 1
on E. Then by (4.14)

1

2π

∫

E
|1 + Fn|dθ → 0.(4.15)

Lemma 4.6. If E ⊂ T is a set of positive measure, then there is g ∈ H∞
such that g(0) = 1 and such that g is real and negative on T \E.

Accepting the lemma temporarily, write 1 + Gn = g(1 + Fn). Then Gn ∈
H 1

0 , and by (4.15)

1

2π

∫

E
|1 + Gn|

{

1 + Re

(

h
(1 + Gn)

|1 + Gn|
)}

dθ

2π
→ 0.

On the other hand,

Re

(

h
(1 + Gn)

|1 + Gn|
)

= −Re

(

h
(1 + Fn)

|1 + Fn|
)

on T \E , so by (4.14)

1

2π

∫

T \E
|1 + Gn|

{

1 + Re

(

h
(1 + Gn)

|1 + Gn|
)}

dθ → 0.

Hence
∫

{|1 + Gn| + Re(h(1 + Gn))} dθ

2π
→ 0,

and this contradicts (4.12)

Proof of Lemma 4.6. Let G be the outer function such that |G| = e on
E, |G| = 1 on T \E . Then G(0) = exp |E | > 1 and G has values in the an-
nulus {1 < |w| < e}. The function

ϕ(w) = w + (1/w) − 2
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maps this annulus into the domain bounded by the slit [−4, 0] and an ellipse,
and the circle |w| = 1 is mapped onto the slit [−4, 0]. Also ϕ(G(0)) > 0.
Therefore

g = ϕ ◦ G

ϕ ◦ G(0)

has g(0) = 1 and g is real and negative almost everywhere on T \E .

5. Parametrization of K

We continue our discussion of a coset h0 + H∞ ∈ L∞/H∞, under the as-
sumption that K = {h ∈ h0 + H∞ : ‖h‖ ≤ 1} contains at least two functions.
Our objective is a beautiful formula describing all functions in K, due to
Adamyan, Arov, and Krein [1968]. Before beginning we need two results
of deLeeuw and Rudin [1958] concerning the geometry of the unit ball of H 1.

A point x in a convex set K is an extreme point of K if x cannot be written
as a proper convex combination

x = t x1 + (1 − t)x2, 0 < t < 1,

with x1, x2 ∈ K and x1 �= x2.

Theorem 5.1. A function F is an extreme point of the closed unit ball of H 1

if and only if F is an outer function and ‖F‖1 = 1. If F ∈ H 1, ‖F‖1 = 1 and
if F is not an outer function, then

F = F1 + F2

2
,(5.1)

where F1 and F2 are outer functions, and ‖F1‖1 = ‖F2‖1 = 1.

Proof. Suppose F ∈ H 1, ‖F‖1 ≤ 1. If ‖F‖1 < 1, then with t = ‖F‖1,

F = t(F/‖F‖1) + (1 − t)0

and F is no extreme point of ball(H 1). For the rest of this proof we take
‖F‖1 = 1.

Assume F is not outer and write F = uG, with u inner and G outer. Choose
λ, |λ| = 1, so that

1

2π

∫
|F |Re(λu)dθ = 0,(5.2)

and put u0 = λu. Since u0 is inner,

2 Re u0 = u0 + u0 = u0 + 1

u0

= 1 + u2
0

u0

.
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Consequently

J (eiθ ) = F(eiθ )Re(u0(eiθ )) = {
1
2
λ̄G(eiθ )u0(eiθ )}{2 Re u0(eiθ )

}
(5.3)

= 1
2
λ̄G(eiθ )(1 + u2

0(eiθ )),

and J ∈ H 1. Almost everywhere we have

|F ± J | = |F |(1 ± Re u0),

so that (5.2) gives

‖F + J‖1 = ‖F − J‖1 = ‖F‖1 = 1.

Since F is not outer, u0 is not constant, and J �= 0. Then

F = F + J

2
+ F − J

2

and F is not an extreme point. Furthermore,

J ± F = 1
2
λ̄G(1 ± 2u0 + u2

0) = 1
2
λ̄G(1 ± u0)2

is an outer function, because 1 ± u0 is outer, and hence (5.1) holds.
Now assume F is an outer function, ‖F‖1 = 1. If F = t F1 + (1 −

t)F2, F1, F2 ∈ ball(H 1), 0 < t < 1, then

1 = ‖F‖1 = t
∫

F̄

|F | F1

dθ

2π
+ (1 − t)

∫
F̄

|F | F2

dθ

2π

≤ t‖F1‖1 + (1 − t)‖F2‖1 ≤ 1,

and equality must hold throughout these inequalities. Hence ‖F1‖1 = ‖F2‖1 =
1, and

∫
F̄

|F | Fj
dθ

2π
= ‖Fj‖1, j = 1, 2.

Since |F | > 0 almost everywhere, that means Fj = k j F , where k j > 0 and
tk1 + (1 − t)k2 = 1. But then by the subharmonicity of log |Fj |,

|Fj (0)| ≤ |F(0)| exp

(∫
log k j

dθ

2π

)

,

because F is outer. Since |F(0)| ≤ t |F1(0)| + (1 − t)|F2(0)|, Jensen’s inequal-
ity now yields

1 ≤ t exp

(∫
log k1

dθ

2π

)

+ (1 − t) exp

(∫
log k2

dθ

2π

)

≤ t
∫

k1

dθ

2π
+ (1 − t)

∫
k2

dθ

2π
= 1.
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Because the exponential is strictly convex we conclude that k j is constant and
k j = ‖Fj‖1/‖F‖1 = 1. Hence F1 = F2 = F and F is an extreme point.

It is unfortunately the case that an H 1 function F of unit norm is not de-
termined by its argument (which is defined modulo 2π almost everywhere,
because |F | > 0 almost everywhere). For example, if F is not outer, then the
two outer functions in (5.1) have the same argument as F (and as each other).
That follows from the construction of F1 and F2 or from the observation that
by (5.1),

∫
F̄

|F | Fj
dθ

2π
= 1 = ‖Fj‖1, j = 1, 2,

which means (F̄/|F |)Fj = |Fj | almost everywhere. (See Example 1.4 above
for another counterexample.) When h ∈ L∞ and |h| = 1 almost everywhere,
we define

S h = {F ∈ H 1 : ‖F‖1 = 1, F/|F | = h a.e}.
Geometrically, S h is the intersection of ball(H 1) and the hyperplane

{

F :

∫
h̄F

dθ

2π
= 1

}

,(5.4)

and so S h is a convex set. Of course, sometimes S h is empty, but we are
interested in the case S h �= ∅. When S h contains exactly one function F, the
hyperplane (5.4) touches ball(H 1) only at F, which means F is an exposed
point of ball(H 1). There is no good characterization of the exposed points
of ball(H 1), or equivalently of those F ∈ ball(H 1) such that S F/|F| = {F}.
However, if S h contains two functions, then S h is very large.

Theorem 5.2. Let h ∈ L∞, |h| = 1 almost everywhere, and assume S h con-
tains at least two distinct functions. Let z0 ∈ D. Then {F(z0) : F ∈ S h} con-
tains a disc centered at the origin.

Proof. When |z0| ≤ 1, |z1| ≤ 1,

(z − z1)(1 − z̄1z)

(z − z0)(1 − z̄0z)
= (z − z1)z(z̄ − z̄1)

(z − z0)z(z̄ − z̄0)

is real and nonnegative on T. If there exists F ∈ S h having a zero of order k
at z0, then

Fz1
(z) =

(
(z − z1)(1 − z̄1z)

(z − z0)(1 − z̄0z)

)k

F(z)

is in S h and the values Fz1
(z0) fill a disc about 0.

It remains to show there is F ∈ S h with F(z0) = 0. If the convex set S h
contains two functions, then by Theorem 5.1 it contains a function F = uG
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with nonconstant inner factor u(z). Let J (z) be the function defined in (5.3).
Then for 0 < t < 1,

F + t J = F(1 + t Re u0)

satisfies ‖F + t J‖1 = 1, because of (5.2), and F + t J ∈ S h . By (5.3) we also
have

F + t J = 1
2
λ̄tG

(

1 + 2u0

t
+ u2

0

)

.

When 0 < t < 1, the equation

ζ 2 + 2ζ

t
+ 1 = 0

has a root ζ (t), |ζ (t)| < 1, and these roots fill the segment (−1, 0). If F + t J
has no zero in D for each t ∈ [0, 1), then the range of u0 is disjoint from the
segment (−1, 0]. But then by Corollary 4.8, Chapter II, u0 is both an inner
function and an outer function, so that u0 is constant. Thus there exists t such
that F + t J has a zero at some point z1 ∈ D. Then

(z − z0)(1 − z̄0z)

(z − z1)(1 − z̄1z)
(F + t J )

is a function in S h having a zero at z0.

Returning to the topic of the previous section, we fix a coset h0 + H∞ of
L∞/H∞ and we assume

K = {h ∈ h0 + H∞ : ‖h‖ ≤ 1}
contains more than one function. By Theorem 4.3, K then contains a function,
which we call h0, such that |h0| = 1 almost everywhere. We will need to recall
that after a change of coordinates h0 is an extremal function:

Re

∫
h0

dθ

2π
= sup

h∈K
Re

∫
h

dθ

2π
.(5.5)

(See the proof of Theorem 4.3.) The Adamyan, Arov, and Krein parametriza-
tion of K which we have been seeking is (5.7) below.

Theorem 5.3. There exists a unique outer function F ∈ H 1, ‖F‖1 = 1, such
that

h0 = F/|F |.(5.6)

Define χ ∈ H∞ by

1 + χ (z)

1 − χ (z)
= 1

2π

∫
eiθ + z

eiθ − z
|F(eiθ )|dθ.
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Then

K =
{

h0 − F(1 − χ )(1 − w)

1 − χw
: w(z) ∈ H∞, ‖w‖∞ ≤ 1

}

.(5.7)

As a consequence of the parametrization (5.7) we see that, for z ∈ D,

{∫
h Pz

dθ

2π
: h ∈ K

}

is a nondegenerate closed disc. Another corollary of (5.7) is the description
by Nevanlinna [1929] of all solutions f ∈ H∞, ‖ f ‖ ≤ 1, of the interpolation
problem

f (z j ) = w j , j = 1, 2, . . .

(see Section 6 below).
Condition (5.6) may seem to contradict Theorem 4.4, because when ‖h0 +

H∞‖ < 1, we have claimed that the extremal function h0 has the two forms

h0 = F̄1/|F1|, h0 = F2/|F2|
with F1, F2 ∈ H 1, ‖Fj‖1 = 1. However, if F1 ∈ H 1 and g ∈ H∞, and if

∥
∥
∥
∥

F̄1

|F1| − g

∥
∥
∥
∥

∞
= α < 1,

then |arg(gF1)| ≤ sin−1(1 − α) < π/2, and Corollary III.2.5 shows that
(gF1)−1 ∈ H 1. Hence F−1

1 = g(gF1)−1 ∈ H 1 and (5.6) holds with F2 =
F−1

1 /‖F−1
1 ‖1.

The proof of Theorem 5.3 requires three lemmas; the first uses an idea from
Koosis [1973].

Lemma 5.4. There exists an outer function F ∈ H 1, ‖F‖1 = 1, such that

h0 = F/|F |
almost everywhere.

Proof. We know |h0| = 1 almost everywhere and we know there is g ∈
H∞, g �≡ 0, such that ‖h0 − g‖∞ ≤ 1. Then |1 − h̄0g| ≤ 1 almost every-
where. Let α = arg h̄0g. Then |α| ≤ π/2 and

|g| = |h̄0g| ≤ 2 cos α

as shown in Figure IV.3. Let ϕ = eα̃−iα . Then ϕ ∈ H p, p < 1, by Theorem
III.2.4. However, we also have gϕ ∈ H 1, because

|ϕ(eiθ )g(eiθ )| ≤ 2|ϕ(eiθ ) cos α(eiθ )| = 2 Re ϕ(eiθ ),(5.8)
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Figure IV.3. Why |g| ≤ 2 cos α.

and since Re ϕ ≥ 0,

1

2π

∫
Re ϕ dθ ≤ lim

r→1

∫
Re ϕ (reiθ )

dθ

2π
≤ Re ϕ(0).

Hence ϕg ∈ H p ∩ L1 = H 1. Then F0 = ϕg/‖ϕg‖1 is in ball(H 1) and h̄0 F0 ≥
0, which means that

h0 = F0/|F0|.
Finally, by the remarks following Theorem 5.1 there is an outer function F ∈
ball(H 1) such that (5.6) holds.

Lemma 5.5. Suppose F(z) is any H 1 function, F �≡ 0. Define χ ∈ H∞ by

1 + χ (z)

1 − χ (z)
= 1

2π

∫
eiθ + z

eiθ − z
|F(eiθ )|dθ.(5.9)

If w(z) ∈ H∞, ‖w‖∞ ≤ 1, then

g(z) = F(z)(1 − χ (z))(1 − w(z))

1 − χ (z)w(z)
(5.10)

is in H∞ and
∥
∥
∥
∥

F

|F | − g

∥
∥
∥
∥

∞
≤ 1.(5.11)
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Proof. Note that

Re
1 + χ (z)

1 − χ (z)
=

∫
Pz(θ )|F(θ )| dθ

2π
> 0.

Let |w(z)| < 1 and set

ϕ(z) = 1 + χ (z)

1 − χ (z)
+ 1 + w(z)

1 − w(z)
= 2(1 − χ (z)w(z))

(1 − χ (z))(1 − w(z))
.(5.12)

Then ϕ is holomorphic and since

Re
1 + w(z)

1 − w(z)
≥ 0,

we have

Re ϕ(z) ≥
∫

Pz(θ )|F(θ )| dθ

2π
≥ |F(z)| ≥ 0.(5.13)

A simple calculation from (5.10) and (5.12) gives

g(z) = 2F(z)/ϕ(z),

so that g ∈ H∞. When w �≡ 1, g = 0, and when w �≡ 1, ϕ has nontangential
limits almost everywhere satisfying

|ϕ(eiθ )| ≥ |F(eiθ )|.
Notice that

∣
∣
∣
∣

F(eiθ )

|F(eiθ )| − g(eiθ )

∣
∣
∣
∣ ≤ 1

if and only if
∣
∣
∣
∣

1

|F(eiθ )| − g(eiθ )

F(eiθ )

∣
∣
∣
∣ ≤ 1

|F(eiθ )| .(5.14)

The transformation ζ → 2/ζ maps the half plane Re ζ ≥ |F(eiθ )| onto the disc
‖F(eiθ )|−1 − w| ≤ |F(eiθ )|−1. By (5.13), Re (2F/g) = Re ϕ ≥ |F | almost
everywhere, so that we have (5.14) and consequently (5.11).

Lemma 5.6. The function F ∈ H 1, ‖F‖1 = 1, such that

h0 = F/|F |
is unique.

Proof. Lemma 5.4 shows there exists at least one such F. What we must show
is that S h0

does not contain two functions. But if S h0
contains two functions,

then by Theorem 5.2, there is F1 ∈ S h0
with Re F1(0) < 0. Since ‖F1‖1 = 1,

the function χ associated with F1 by (5.9) satisfies χ (0) = 0. Taking w ≡ −1



158 some extremal problems Chap. IV

in (5.10), we obtain g ∈ H∞ such that Re g(0) < 0, and by (5.11), h0 − g ∈ K .
Then

Re

∫
(h0 − g)

dθ

2π
> Re

∫
h0

dθ

2π
,

contradicting (5.5).

Conclusion of the proof of Theorem 5.3. By Lemmas 5.4 and 5.6, there is a
unique outer function F ∈ H 1, ‖F‖1 = 1, such that (5.6) holds. By Lemma 5.5
every function of the form

h0 − F(1 − χ )(1 − w)

1 − χw
,(5.15)

w ∈ H∞, ‖w‖∞ ≤ 1, lies in K. Now let g ∈ H∞, g �≡ 0, be such that ‖h0 −
g‖ ≤ 1. We must show h0 − g has the form (5.15) for w ∈ ball(H∞). The idea
is in the proof of Lemma 5.4. Setting α = arg h̄0g, and ϕ = eα̃−iα , we have
ϕg ∈ H 1 and, by its uniqueness,

F = ϕg

‖ϕg‖1

.

Now Re ϕ(z) > 0 and by (5.8)

Re 2ϕ(eiθ )

‖ϕg‖1

≥ |ϕ(eiθ )g(eiθ )|
‖ϕg‖1

= |F(eiθ )|.

The positive harmonic function Re 2ϕ(z)/‖ϕg‖1 is the Poisson integral of a
positive measure with absolutely continuous part exceeding |F(eiθ )|. Conse-
quently

2ϕ(z)

‖ϕg‖1

− 1 + χ (z)

1 − χ (z)
= k(z)

has Re k(z) > 0, so that

k(z) = 1 + w(z)

1 − w(z)
,

w ∈ H∞, ‖w‖∞ ≤ 1. A calculation then gives

g = ‖ϕg‖1 F

ϕ
= 2F

(
2ϕ

|ϕg|1

)−1

= 2F
(

1 + χ

1 − χ

1 + w

1 − w

)

= F
(1 − χ )(1 − w)

1 − χw
,

and (5.15) holds.
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6. Nevanlinna’s Proof

In the special case h = B̄ f , where f ∈ B = ball(H∞) and B is a Blaschke
product with distinct zeros {z j }, formula (5.7) describes all f ∈ B such that

f (z j ) = w j , j = 1, 2, . . . ,(6.1)

(provided it is assumed that (6.1) has two distinct solutions in B ). Already
in [1929], Nevalinna had a similar formula for the solutions of (6.1), and his
original proof of Theorem 4.1 in the same paper came as an application of his
formula. Having used so much theory in the two preceding sections, we should
include Nevanlinna’s elementary approach to these results.

The idea is to carefully iterate the invariant form of Schwarz’s lemma. Sup-
pose B = ball(H∞) contains two solutions f1 and f2 of (6.1). There is a point
z0 ∈ D such that f1(z0) �= f2(z0). After a Möbius transformation, we can take
z0 = 0. Write

En = { f ∈ B : f (z j ) = w j , 1 ≤ j ≤ n}.
We are seeking a parameterization of

E∞ =
⋂

n

En,

and we want to use that parametrization to show E∞ contains inner functions.
Fix c1, |c1| < 1, to be determined later. If f ∈ E1, then

f − w1

1 − w̄1 f
= f1 + c1

1 + c̄1 f1

z − z1

1 − z̄1z
(6.2)

for some f1 ∈ B . Conversely, whenever f1 ∈ B , (6.2) defines a function f in
E1. We rewrite (6.2):

f (z) = A1(z) + B1(z) f1(z)

C1(z) + D1(z) f1(z)
(6.3)

in which, by a calculation,

A1(z) = w1(1 − z̄1z) + c1(z − z1),

B1(z) = c̄1w1(1 − z̄1z) + (z − z1),

C1(z) = (1 − z̄1z) + c1w̄1(z − z1),

D1(z) = c̄1(1 − z̄1z) + w̄1(z − z1).

Then (6.3) is the parametrization we seek for the simple interpolation problem
f (z1) = w1, f ∈ B .

Now suppose further that f ∈ En for n ≥ 2. Then (6.2) determines f1(z j )
for 2 ≤ j ≤ n. Solving (6.2), we obtain

f1(z j ) = w
(1)
j , 2 ≤ j ≤ n.(6.4)



160 some extremal problems Chap. IV

Clearly |w(1)
j | ≤ 1, because f1 ∈ B . Moreover, the case |w(1)

j | = 1 for some

j, 2 ≤ j ≤ n, is not possible, because then f1(z) ≡ w
(1)
j , |z| < 1, and by (6.2)

En contains exactly one function. Thus we have

|w(1)
j | < 1, j = 2, 3, . . . .

Something has been gained, however, because (6.2) allows us to disregard the
value f1(z1), and En is now described by the n − 1 equations (6.4), instead of
by the original n equations.

Repeating the above reasoning, we fix c2, |c2| < 1, and write

f1 − w
(1)
2

1 − w
(1)
2 f1

= f2 + c2

1 + c̄2 f2

z − z2

1 − z̄2z
.(6.5)

Now f (z) ∈ E2 if and only if f1(z2) = w
(1)
2 , and that happens if and only if

(6.5) holds for some f2 ∈ B . Furthermore, when n > 2, f ∈ En if and only if

f2(z j ) = w
(2)
j , 3 ≤ j ≤ n,

where w
(2)
j is determined by (6.5). We also have |w(2)

j | < 1, for the same reason

that we had |w(1)
j | < 1.

Continue by induction, always assumingEn contains more than one function.
For k ≤ n, f ∈ En if and only if there are

f0, f1, . . . , fk

in B such that f0 = f , such that

fk(z j ) = w
(k)
j , k + 1 ≤ j ≤ n,

where |w(k)
j | < 1, and w

(0)
j = w j , and such that

fk−1 − w
(k−1)
k

1 − w
(k−1)
k fk−1

= fk + ck

1 + c̄k fk

z − zk

1 − z̄k z
,(6.6)

where |ck | < 1, ck to be determined. (The explicit values of the w
(k)
j are not

important here.)
We now iterate (6.6) and obtain a one-to-one mapping of B onto En .

Rewrite (6.6)

fk−1(z) = αk(z) + βk(z) fk(z)

γk(z) + δk(z) fk(z)
,(6.7)



Sect. 6 nevanlinna’sproof 161

in which

αk(z) = w
(k−1)
k (1 − z̄k z) + ck(z − zk),

βk(z) = c̄kw
(k−1)
k (1 − z̄k z) + (z − zk),

γk(z) = (1 − z̄k z) + ckw
(k−1)
k (z − zk),

δk(z) = c̄k(1 − z̄k z) + w
(k−1)
k (z − zk).

(6.8)

By induction, (6.3) and (6.7) yield

f (z) = An(z) + Bn(z) fn(z)

Cn(z) + Dn(z) fn(z)
,(6.9)

in which

An = γn An−1 + αn Bn−1,

Bn = δn An−1 + βn Bn−1,

Cn = γnCn−1 + αn Dn−1,

Dn = δnCn−1 + βn Dn−1

(6.10)

are polynomials of degree at most n in z. Then we have proved

Lemma 6.1. Suppose the polynomials An(z), Bn(z), Cn(z), Dn(z) are defined
by (6.8) and (6.10). Then f (z) ∈ En if and only if f (z) satisfies (6.9) for some
fn(z) ∈ B .

The polynomials An, Bn, Cn , and Dn depend on the parameters

c1, c2, . . . , cn . Now fix ck = z̄kw
(k−1)
k . This makes

δn(0) = Dn(0) = 0

in (6.8) and (6.10), which will facilitate the convergence argument below.
When |z| < 1, (6.9) shows that { f (z) : f ∈ En} is a closed disc 
n(z) con-

tained in D̄ and defined by
{

An(z) + Bn(z)ζ

Cn(z) + Dn(z)ζ
: |ζ | ≤ 1

}

.(6.11)

When |z| = 1, this formula for 
n(z) makes sense, although some f ∈ En are
not defined at z. Take 
n(z) = { f (z) : f ∈ Ao ∩ En}, Ao the disc algebra. The
disc 
n(z) degenerates into a point if and only if the determinant

An(z)Dn(z) − Bn(z)Cn(z) = 0.

By (6.10) and induction

(6.12)

An Dn − BnCn = (γnβn − αnδn)(An−1 Dn−1 − Bn−1Cn−1)

=
n∏

k=1

(1 − |zk |2|w(k−1)
k |2)(1 − |w(k−1)

k |2)(z − zk)(1 − z̄k z),



162 some extremal problems Chap. IV

where w
(0)
k = wk . Thus 
n(z) reduces to a point if and only if z = z j , 1 ≤ j ≤

n. An elementary computation with (6.11) shows that 
n(z) has radius

ρn(z) = |An Dn − BnCn|
|Cn|2 − |Dn|2 .

Lemma 6.2. If En �= ∅, then when |z| = 1, 
n(z) = D̄, ρn(z) = 1, and

|Bn(z)| = |Cn(z)|,
|An(z)| = |Dn(z)|,

An(z)/Cn(z) = (Dn(z)/Bn(z)) = λn(z),

(6.13)

with |λn(z)| < 1.

Proof. The conditions (6.13) follow from the assertion that 
n(z) = D̄, by
the well-known characterization of the coefficients of the linear fractional
transformations

ζ → A + Bζ

C + Dζ

that map D̄ onto itself. That 
n(z) = D̄, |z| = 1, is proved by induction. Fix
z = eiθ and ζ ∈ D̄. For n = 1 there exists a constant f1 ∈ B such that

f1(eiθ ) + c1

1 + c̄1 f1(eiθ )
=

(
ζ − w1

1 − w1ζ

) / (
eiθ − z1

1 − z̄1eiθ

)

(6.14)

and (6.2) then produces f ∈ E1 such that f (eiθ ) = ζ . For n > 1 the set

{ f1 ∈ B : f1(z j ) = w
(1)
j , j = 2, . . . , n}

is nonempty, because En �= ∅, and by induction this set contains a function
f1 satisfying (6.14). As before, (6.2) then gives us f ∈ En such that f (eiθ ) =
ζ .

Lemma 6.3. Cn(z) has no zeros in |z| ≤ 1.

Proof. If Cn(z) = 0, then by taking ζ = 0 in (6.11), we see that An(z) = 0.
Then

An(z)Dn(z) − Bn(z)Cn(z) = 0

and by (6.12), z = z j for some j = 1, 2, . . . , n. Because by (6.12) the deter-
minant An Dn − BnCn has only simple zeros, we also have

A′
n(z j )Dn(z j ) − Bn(z j )C

′
n(z j ) �= 0,

when Cn(z j ) = An(z j ) = 0. Still taking ζ = 0 in (6.11), we then obtain

w j = lim
z→z j

An(z)/Cn(z) = lim
z→z j

A′
n(z)/C ′

n(Z ).
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If C ′
n(z j ) = 0, this means that A′

n(z j ) = 0, while if C ′
n(z j ) �= 0, it means that

A′
n(z j )/C ′

n(z j ) = w j . Thus we have

A′
n(z j ) = w j C

′
n(z j ).

On the other hand, taking ζ = 1 in (6.11) gives

Bn(z j ) = w j Dn(z j ).

Therefore

A′
n(z j )Dn(z j ) − Bn(z j )C

′
n(z j ) = 0,

a contradiction.

It will be convenient to renormalize (6.9). Let

ψn(z) =
(

n∏

k=1

|zk |
−z̄k

(1 − |zk |2|w(k−1)
k |2)(1 − |w(k−1)

k |2)(1 − z̄k z)2

)1/2

.

Since ψn(z) has no zeros in D̄,

Pn = An

ψn
, Qn = Bn

ψn
, Rn = Cn

ψn
, and Sn = Dn

ψn

are rational functions analytic in |z| ≤ 1. From (6.9) we obtain

f (z) = Pn(z) + Qn(z) fn(z)

Rn(z) + Sn(z) fn(z)
, fn ∈ B ,(6.15)

as our new parametrization of En . The advantage of this normalization is that
by (6.12) the determinant is now

Pn(z)Sn(z) − Qn(z)Rn(z) = �n(z) =
n∏

k=1

(−z̄k)

|zk |
z − zk

1 − z̄k z
,

the Blaschke product having zeros {z1, z2, . . . , zn} and normalized by �n(0) >

0. We also have

ρn(z) = |�n(z)|
|Rn(z)|2 − |Sn(z)|2 ,

so that by Lemma 6.2,

|Rn(z)|2 − |Sn(z)|2 = 1, |z| = 1.(6.16)

Now by Lemma 6.3, Rn has no zeros in |z| ≤ 1, and (6.16) gives

1

|Rn(z)| ≤ 1, |z| ≤ 1.
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Then (6.13) and the maximum principle yield

|Pn(z)| ≤ |Rn(z)|,
|Qn(z)| ≤ |Rn(z)|,
|Sn(z)| ≤ |Rn(z)|

(6.17)

on |z| ≤ 1.

Theorem 6.4. Assume E∞ = ⋂
En contains two functions with different val-

ues at z = 0. Then there are n j → ∞ such that the limits

P(z) = lim
j

Pn j (z),

Q(z) = lim
j

Qn j (z),

R(z) = lim
j

Rn j (z),

S(z) = lim
j

Sn j (z)

all exist. The limits do not all vanish identically; in fact,

P(z)S(z) − Q(z)R(z) = �(z),

the Blaschke product with zeros {zn}. If f (z) ∈ B , then f ∈ E∞ if and only if

f (z) = P(z) + Q(z) f∞(z)

R(z) + S(z) f∞(z)
, |z| < 1,(6.18)

for some f∞ ∈ B .

Proof. The hypothesis that
⋂
En contains two functions with different values

at z = 0 implies that

lim
n

ρn(0) > 0.

(This limit exists because ρn+1 ≤ ρn since En+1 ⊂ En .) Since Dn(0) = 0, by
the choice of the constants cn in (6.6), we have

|Rn(0)|2 = |�n(0)|/ρn(0)

and hence

lim
n→∞ |Rn(0)| < ∞.(6.19)

Choose n j so that the bounded sequence {1/Rn j (z)} converges on D. Because
1/Rn(z) has no zeros in |z| < 1, the limit function either vanishes identically
on D or it has no zeros on D. By (6.19) the limit does not vanish at z = 0, and
so the limit is zero free on D. Consequently Rn j (z) converges uniformly on
compact subsets of |z| < 1 to an analytic function R(z), which has no zeros
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on |z| < 1. By (6.17) we can take a finer subsequence {n j } so that

lim
j

Pn j (z) = P(z),

lim
j

Qn j (z) = Q(z),

and

lim
j

Sn j (z) = S(z)

also all exist. Then

P(z)S(z) − Q(z)R(z) = lim
j

�n j (z) = �(z),

and so the limit functions are not all identically zero.
If f ∈ ⋂

En , then by Lemma 6.1 there is fn ∈ B such that

f = Pn + Qn fn

Rn + Sn fn
.

Refine the subsequence {n j } so that fn j (z) → f∞(z), |z| < 1, with f∞ ∈ B .
Then (6.18) follows. Conversely, if f∞ ∈ B , then

f (n) = Pn + Qn f∞
Rn + Sn f∞

.

is in En , and f (n j ) has limit f ∈ E∞.

It turns out that P, Q, R, and S do not depend on the subsequence {n j }.
They are uniquely determined by the original interpolation problem (6.1) and
by the choice of the constants cn in (6.6). We shall not make use of this fact,
however.

Before turning to Nevanlinna’s proof that E∞ contains inner functions,
we mention a simple consequence of (6.18). Because En+1 ⊂ En , the discs

n(z), |z| < 1, decrease to a limit disc 
∞(z) = { f (z) : f ∈ E∞}. By (6.18),


∞(z) =
{

P(z) + Q(z)ζ

R(z) + S(z)ζ
: |ζ | < 1

}

.

Since the determinant of the coefficients for this mapping is P(z)S(z) −
Q(z)R(z) = �(z), 
∞(z) is nontrivial whenever z �∈ {z j }. The radius of
∞(z)
is

ρ∞(z) = lim
n

ρn(z) = �(z)

|R(z)2| − |S(z)|2 .

Returning to 
n(z0), |z0| < 1, and to its parametrization (6.11), we see that
f ∈ En solves the extremal problem f (z0) ∈ ∂
n(z0) if and only if

f (z) = An(z) + Bn(z)eiϕ

Cn(z) + Dn(z)eiϕ
= Pn(z) + Qn(z)eiϕ

Rn(z) + Sn(z)eiϕ
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for some unimodular constant eiϕ . Thus f (z) is a rational function of degree
at most n. On two other occasions (Corollary 1.9 of this chapter and Corol-
lary 2.4, Chapter I), we have seen that the extremal function f (z) is a finite
Blaschke product. This fact also follows from the reasoning in this section,
because by Lemma 6.2, | f (z)| = 1 for |z| = 1. Further analysis of the poly-
nomials An(z), Bn(z), Cn(z), and Dn(z) shows that the Blaschke product f (z)
has degree n. (See Exercise 20.)

The preceding discussion suggests that we might find an inner function
in E∞ by setting f∞ = eiϕ in (6.18). That is how Nevanlinna first proved
Theorem 4.1. The proof above of Theorem 4.4 was based on the same idea: The
unimodular function h0 ∈ K was obtained by maximizing the linear functional
Re

∫
h dθ/2π, h ∈ K .

We return to Theorem 4.1, which we restate as follows.

Theorem 6.5. If E∞ contains two distinct functions, and if eiϕ is any uni-
modular constant, then

f (z) = P(z) + Q(z)eiϕ

R(z) + S(z)eiϕ
(6.20)

is an inner function in E∞.

Proof. By Theorem 6.4, f ∈ E∞, and in particular ‖ f ‖∞ ≤ 1. We suppose
there exists E ⊂ T, |E | ≡ ∫

χE (θ )dθ/2π > 0, such that

| f (eiθ )| ≤ α < 1, θ ∈ E,(6.21)

and we argue toward a contradiction.
Reindex so that Rn(z) → R(z), Pn(z) → P(z), Qn(z) → Q(z), and

Sn(z) → S(z). Fix M > |R(0)|. Since by Lemma 6.3 Rn(z) has no zeros on
D̄, we have

log M > log |Rn(0)| = 1

2π

∫
log |Rn(eiθ )|dθ

for large n, say n > n0. By (6.16), log |Rn(eiθ )| ≥ 0, and hence

|{θ : log |Rn(eiθ )| > 2 log M/|E |}| ≤ |E |/2,

n > n0. Therefore

En = {θ ∈ E : |Rn(eiθ )| ≤ M2/|E |}
satisfies

|En| ≥ |E |/2, n > n0.

By (6.16) and (6.13), we also have

∣
∣
∣
∣

Pn(eiθ )

Rn(eiθ )

∣
∣
∣
∣

2

= 1 − 1

|Rn(eiθ )|2 ,
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which gives
∣
∣
∣
∣

Pn(eiθ )

Rn(eiθ )

∣
∣
∣
∣ ≤ {1 − M−4/|E |}1/2 = β < 1,(6.22)

for θ ∈ En, n > n0.
Because f ∈ En there exists fn ∈ B such that

f (z) = Pn(z) + Qn(z) fn(z)

Rn(z) + Sn(z) fn(z)
.

Since the rational functions Pn, Qn, Rn , and Sn are continuous on D̄ and since
|Pn Sn − Qn Rn| = 1 on T, fn(z) has radial limit fn(eiθ ) whenever f (z) has
radial limit f (eiθ ). Thus at eiθ ∈ E, fk(eiθ ) exists and

f (eiθ ) = Pn(eiθ ) + Qn(eiθ ) fn(eiθ )

Rn(eiθ ) + Sn(eiθ ) fn(eiθ )
.

By Lemma 6.2, the mapping

ζ → Pn(eiθ ) + Qn(eiθ )ζ

Rn(eiθ ) + Sn(eiθ )ζ
,

which is an automorphism of D, preserves the pseudohyperbolic distance.
Hence

| fn(eiθ )| = ρ( fn(eiθ ), 0) = ρ( f (eiθ ), Pn(eiθ )/Qn(eiθ )).

For n > n0 and for eiθ ∈ En , (6.21) and (6.22) then yield

| fn(eiθ )| ≤ | f (eiθ )| + |Pn(eiθ )|/|Rn(eiθ )|
1 + | f (eiθ )||Pn(eiθ )|/|Rn(eiθ )|

≤ α + β

1 + αβ
= γ < 1.

Consequently

| fn(0)| ≤ 1

2π

∫
| fn(eiθ )|dθ ≤ (γ |En| + (1 − |En|))

≤
{

γ
|E |
2

+
(

1 − |E |
2

)}

= η < 1.

Take a subsequence { fn j } so that fn j (0) → ζ, |ζ | ≤ η < 1. Then

f (0) = lim
j

Pn j (0) + Qn j (0) fn j (0)

Rn j (0) + Sn j (0) fn j (0)
= P(0) + Q(0)ζ

R(0) + S(0)ζ
.

Since P(0)S(0) − Q(0)R(0) �= 0, we conclude from (6.20) that ζ = eiϕ, a
contradiction.

An interesting apparently unsolved problem is to determine whether or when
E∞ contains a Blaschke product. See page vii.
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Notes

The first systematic treatment of dual extremal problems is the pa-
per of Macintyre and Rogosinski [1950]. The functional analytic methods
were introduced by Havinson [1949,1951] and by Rogosinski and Shapiro
[1953]. Duren’s book [1970] contains a slightly different treatment and
some references to the older literature. See also Goluzin [1952] and Landau
[1916].

Section 2 is from the paper of Carleson and Jacobs [1972]. Kahane
[1974] discusses a number of related questions. An interesting open prob-
lem is to find intrinsic necessary and sufficient conditions for a function in
L∞ to have unique best approximation in H∞. Exercise 17 gives a partial
answer.

The primary references for Section 3 are Szegö [1920] and Helson and
Szegö [1960]. Exercises 8 and 14 outline results similar to the Helson–Szegö
theorem.

Most of the material in Sections 4 and 5 originates with Adamyan, Arov,
and Krein [1968], but the proofs in the text are considerably different from
their spectral theory approach. In [1971] Adamyan, Arov, and Krein extend
their results to the matrix valued case. Theorem 5.1 and Theorem 5.2 are from
deLeeuw and Rudin [1958].

Section 6 is from Nevanlinna’s paper [1929], which includes a number of
other classical results, all derived ultimately from Schwarz’s lemma. It is a
fundamental paper long overlooked. Schur’s [1917] treatment of the coefficient
problem is very similar. It is outlined in Exercise 21.

Exercises and Further Results

1. If f ∈ L p(�), 1 ≤ p ≤ ∞, then

inf
g∈H p

‖ f − g‖p = sup
G∈Hq

‖G‖q=1

∣
∣
∣
∣

∫
f G dx

∣
∣
∣
∣ .

2. Let f (z) be meromorphic on |z| < 1, and suppose that on some
annulus R < |z| < 1, f (z) is analytic and of class H 1 (i.e. | f (z)| possesses a
harmonic majorant). Then f (eiθ ) exists almost everywhere. Prove f (eiθ ) ≥ 0
almost everywhere if and only if f (z) is a rational function of the form

c
n∏

j=1

(z − α j )(1 − ᾱ j z)

/
n∏

j=1

(z − β j )(1 − β j z),

where |α j | ≤ 1, |β j | ≤ 1, c > 0.
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3. Let c0, c1, . . . , cN be given complex numbers and consider the max-
imum problem

M = sup
f ∈H∞
‖ f ‖≤1

∣
∣
∣
∣
∣

N∑

j=0

c j a j

∣
∣
∣
∣
∣
,

where f (z) = ∑
a j z j .

(a) The dual extremal problem is

M = inf
g∈H 1

0

‖k − g‖1,

where k(z) = ∑n
j=0 c j z− j . It is equivalent to the minimum problem

M = inf{‖h‖1 : h ∈ H 1 : h = cN + cN−1z + · · · + c0zN + · · · }.
(b) The original extremal problem has unique extremal function f0 and the

dual problem has unique minimizing function g0 Moreover

f0(z)(k(z) − g0(z)) = |k(z) − g0(z)|, |z| = 1,

so that

f0(z)(k(z) − g0(z)) = czq
n∏

j=1

(z − α j )(1 − ᾱ j z)

/

zN

with n + q = N , 0 < |α j | ≤ 1, c > 0. Reindexing α1, . . . , αn , there is s, 0 ≤
s ≤ n such that |α j | < 1, j ≤ s, and

f0(z) = γ zq
s∏

j=1

(
z − α j

1 − ᾱ j z

)

and

k(z) − g0(z) = cγ̄
n∏

j=1

(1 − ᾱ j z)2
n∏

s+1

(
z − α j

1 − ᾱ j z

)/

zN ,

where |γ | = 1.
(c) For |z| small write

(cN + cN−1z + · · · + c0zN )1/2 =
∞∑

j=0

λ j z
j

and set

PN (z) =
N∑

j=0

λ j z
j .
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Assume PN (z) has no zeros in |z| < 1. Then there exist α1, . . . , αn, n ≤ N ,

such that 0 < |α j | ≤ 1 and such that

PN (z) = λ0

n∏

j=1

(1 − ᾱ j z).

Then

z−N P2
N = cN z−N

n∏

j=1

(1 − ᾱ j z)2

has the form k − g, g ∈ H 1. Setting

f0(z) = c̄N

|cN | zN−n
n∏

j=1

(
z − α j

1 − ᾱ j z

)

,

we obtain f0 P2
N /zN ≥ 0 on |z| = 1. Consequently f0 is the extremal function,

k(z) − g0(z) = P2
N (z)/zN , and

M = ‖P2
N ‖1 =

N∑

j=0

|λ j |2.

(d) Landau [1913, 1916] determined the extremum M in the special case
c j = 1 by a different method. In this case PN = �N

0 λ j z j , where

λ j = (−1) j

(− 1
2

j

)

= (2 j )!

4 j ( j!)2
,

and by Wallis’s formula

M ∼ log N/π (N → ∞).

Thus M has the same order of magnitude as the Lebesgue constants ‖DN ‖1,

where DN = �N
−N ei jθ is Dirichlet’s kernel for partial sums.

The dual problem in part (a) was first treated by F. Riesz [1920] using a
variational argument.

4. A function f ∈ C(T ) is called badly approximable if its nearest
function g in H∞ satisfies g ≡ 0. Show f is badly approximable if and only
if | f (eiθ )| is a positive constant and f (eiθ ) has negative winding number (see
Poreda [1972] or Gamelin, Garnett, Rubel, and Shields [1976]).

5. Let g ∈ H∞ be the best approximation to f ∈ C(T ). It conjectured
that g is continuous if the conjugate function f̂ is continuous. (See page vii.)
The converse of this is false. Use Exercise 4 above to find a badly approx-
imable function whose conjugate function is not continuous (D. Sarason, un-
published).
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6. Let f ∈ C(T ), f �∈ H∞, let g ∈ H∞ be the best approximation to f,
and let F ∈ H 1

0 be a dual extremal function, so that

( f − g)F = ‖ f − g‖∞|F |
almost everywhere.

(a) F can be chosen so that F(z)/z is outer.
(b) If F1 ∈ H 1

0 is another dual extremal function, then F/F1 is a rational
function.

(c) F is unique if and only if z/F ∈ H 1. In that case z/F ∈ H p for all
p < ∞.

(d) More generally, if f ∈ L∞\H∞, if F exists, and if z/F ∈ H 1, then F
is unique.

(See deLeeuw and Rudin [1958] and Carleson and Jacobs [1972].)

7. If f ∈ H∞, then

dist( f, Ao) ≤ 2 dist( f, C(T )),

where Ao = H∞ ∩ C(T ) is the disc algebra. The constant 2 is sharp. (See
Davie, Gamelin, and Garnett [1973].)

�8. Let dμ = w dθ/2π + dμs be a positive measure on the circle. Then

inf
f ∈F

∫
|1 − Re f |2dμ =

(∫
w−1 dθ

2π

)−1

,

where F is the set of trigonometric polynomials �n>0 aneinθ (see Grenander
and Rosenblatt [1957]). The result is due to Kolmogoroff [1941].

9. Find two closed subspaces F and G of a Hilbert space such that

F ∩ G = {0}
but such that

1 = sup{|〈 f, g〉| : f ∈ F , g ∈ G, ‖ f ‖ = ‖g‖ = 1}.

10. If F and G are subspaces of L2(μ), then ρ = 1 if and only if

0 = inf

{∫
| f − g|2dμ : f ∈ F , g ∈ G; ‖ f ‖ ≥ 1, ‖g‖ ≥ 1

}

.

Hence the property ρ = 1 is unchanged if dμ is replaced by w dμ, w bounded
above and below.

11. If a weight function w satisfies the Helson–Szegö condition (3.3),
then for some ε > 0, w ∈ L1+ε and w−1 ∈ L1+ε.

12. Let w be a weight function. Assumeψ = (̃log w) is continuous except
for jumps at a finite number of points. Then w satisfies (3.3) if and only if each
jump is less than π (Helson and Szegö [1960]).
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13. Let α be real. There is a constant Kα such that
∫ π

−π

| p̃(θ )|2|θ |αdθ ≤ Kα

∫ π

−π

|p(θ )|2|θ |αdθ

for all trigonometric polynomials if and only if −1 < α < 1 (see Hardy and
Littlewood [1936]).

��14. Let F n be the set of all trigonometric polynomials �k≥nakeikθ and

let Gn = F n be the set of trigonometric polynomials of the form �k≥nbke−ikθ .
When μ is a positive finite measure on T write

ρn = sup

∣
∣
∣
∣

∫
f ḡ dμ

∣
∣
∣
∣ ,

where f ∈ F n, g ∈ Gn,
∫ | f |2dμ ≤ 1, and

∫ |g|2dμ ≤ 1. Wright

dμ = w dθ/2π + dμs

with dμs, singular to dθ .
(a) If dμs �= 0 or if log w /∈ L1, then ρn = 1 for all n.
(b) Now assume dμ = w dθ/2π with

ϕ = log w ∈ L1.

Let W be the set of weights w such that

lim
n→∞ ρn = 0,

where dμ = w dθ/2π . Then w ∈ W if and only if e−i ϕ̃ ∈ H∞ + C .
(c) H∞ + C is a closed subalgebra of L∞.
(d) Let W0 be the set of positive weights w such that, for every ε > 0,

ϕ = log w = r + s̃ + t

with ‖r‖∞ < ε, ‖s‖∞ < ε, and t ∈ C . Then W0 ⊂ W and w ∈ W if and only if
w = |p|2w0, where w0 ∈ W0 and p is a trigonometric polynomial. (The set log
W0 is the space VMO to be studied in Chapter VI.) (See Helson and Sarason
[1967].)

15. Let u be a unimodular function in L∞ and set

S u = {G ∈ H 1 : ‖G‖1 = 1, G/|G| = u}.
(a) There exist functions u for which S u = ∅.
(b) If F ∈ S u , and if 1/F ∈ H 1, then S u = {F}.
(c) If F ∈ S u = {F}, then for all α, |α| = 1, (z − α)−2 F(z) /∈ H 1. (See

deLeeuw and Rudin [1958].)

16. Let h ∈ L∞, |h| = 1 almost everywhere.
(a) If dist(h, H∞) < 1, then h = F/|F | for some F ∈ H 1. Moreover, the

outer factor of F is invertible in H 1. (See Lemma 5.4.)
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(b) If dist(h, H∞) < 1 but dist (h, H∞
0 ) = 1, then h = F̄/|F | for some

F ∈ H 1. (See Case 1 of the proof of Theorem 4.4.) It follows that
dist(h̄, H∞) < 1.

17. (a) Let h ∈ L∞. If the coset h + H∞ is an extreme point of ball
(L∞/H∞) then there is g ∈ H∞ such that |h + g| = 1 almost everywhere.

(b) Now suppose |h| = 1 almost everywhere. Then h + H∞ is an extreme
point of ball(L∞/H∞) if and only if ‖h + g‖ > 1 for all g ∈ H∞, g �= 0.
Thus the extreme points of ball(L∞/h∞) are the cosets containing exactly one
function of unit modulus (see Koosis [1971]).

(c) If |h| = 1 almost everywhere, then ‖h + g‖∞ > 1 for all g ∈ H∞, g �=
0, if and only if h cannot be written as F/|F |, F ∈ H 1. (See Lemmas 5.4
and 5.5.) This is a weak generalization of Exercise 5. If |h| = 1, then h is
badly approximable by H∞(‖h − g‖ > 1 if g ∈ H∞, g �= 0) if and only if h
is not the argument of an H 1 function. Example 4.2 shows there exist badly
approximable functions not having constant modulus.

(d) L∞/H∞ is a dual space. Hence ball(L∞/H∞) is the weak-star closed
convex hull of the set of cosets {h + H∞ : |h| = 1, h badly approximable}.

18. Let F ∈ H 1, ‖F‖1 = 1. Then every g ∈ H∞ such that

‖F/|F | − g‖∞ ≤ 1

is of the form (5.10) if and only if S F/|F | = {F}.
19. Let f ∈ H∞, ‖ f ‖∞ = 1. Then f is an extreme point of ball(H∞)

if and only if

∫
log(1 − | f (eiθ )|)dθ = −∞

(see deLeeuw and Rudin [1958]).

20. In the notation of Section 6, and with ck = z̄kw
(k−1)
k , An(z) has degree

at most n − 1 and Bn(z) has degree n. When eiϕ is a unimodular constant, the
polynomials An(z) + Bn(z)eiϕ and Cn(z) + Dn(z)eiϕ have no common zero.
Thus

f (z) = An(z) + Bn(z)eiϕ

Cn(z) + Dn(z)eiϕ

is a Blaschke product of degree n.

�21. Fix complex numbers c0, c1, . . . and set

En = { f ∈ B : f (z) = c0 + c1z + · · · + cnzn + · · · }.

Write γ0 = c0 and assume |γ0| ≤ 1.
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(a) If |γ0| = 1 then E0 contains exactly one function, f = γ0. Suppose
|γ0| < 1 and write f ∈ E0

f = z f1 + γ0

1 + γ̄0z f1

,(E.1)

with f1 ∈ B . So E0 is in one-to-one correspondence with B . Then f ∈ E1 if
and only if f1(0) = γ1 = c1/(1 − |c0|2). In particular E1 �= ∅ if and only if
|γ1| ≤ 1, and E1 consists of exactly one function if and only if |γ1| = 1.

(b) Continue by induction. We obtain γ0, γ1, . . . , γn, . . . . If |γ0| <

1, |γ1| < 1, . . . , |γn| < 1, then En is in one-to-one correspondence with B
through the formulas f0 = f ,

fk−1 = z fk + γk−1

1 + γ̄k−1z fk
, 1 ≤ k ≤ n,

fk ∈ β. If |γk | = 1 but |γ j | < 1, j < k, then Ek consists of exactly one func-
tion, a Blaschke product of degree k.

(c) Suppose En �= ∅. Then the (n + 1)th coefficients cn+1 of the functions
in En fill a closed disc with radius

ωn = (1 − |γ0|) · · · (1 − |γn|).(E.2)

(Use (E.1) and induction.)
(d) Suppose

⋂
En �= ∅. Then of course

⋂
En = { f }, f = �∞

0 cnzn . Prove

lim
n→∞ ωn = exp

1

2π

∫
log(1 − | f |2) dθ.

(Hint: By (E.1) and (E.2) we have, on |z| = 1,

1 − | f |2 = (1 − |γ0|2)(1 − | f1|2)

|1 + γ̄0 f1|2 = ωn(1 − | fn+1|2)
∏n

j=0 |1 + γ̄ j z f j+1|2 .

Because the denominator has no zeros on D, this gives

exp
1

2π

∫
log(1 − | f |2)dθ = ωn exp

1

2π

∫
log(1 − | fn+1|2)dθ ≤ ωn.

For the reverse inequality use Szegös theorem. For ε > 0 there is P(z) =
1 + b1z + · · · + bN zN such that

∫
|P|2(1 − | f |2)

dθ

2π
≤ ε + exp

1

2π

∫
log(1 − | f |2)dθ.

Let f ∗ ∈ En be obtained by setting fn+1 = 0. Then by Szegös theorem

ωn = exp

∫
log(1 − | f ∗|2)

dθ

2π
≤

∫
|P|2(1 − | f |∗2)

dθ

2π
.
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By the Parseval relation,

lim
n→∞

∫
|P|2(1 − | f ∗|2)

dθ

2π
≤

∫
|P|2(1 − | f |2)

dθ

2π
.

(e) Let An be the matrix
⎡

⎢
⎢
⎣

c0 c1 · · · cn

0 c0 cn−1

...
...

0 · · · 0 c0

⎤

⎥
⎥
⎦

and let In be the (n + 1) × (n + 1) identity matrix. Then En �= ∅ if and only if
In − A∗

n An is nonnegative definite. If In − A∗
n An is positive definite, then En

is infinite. More precisely,

det(In − A∗
n An) = ω0 ω1 · · · ωn.

(See Schur [1917], except for part (d), which is due to Boyd [1979].)



V

Some Uniform Algebra

This chapter develops the background from uniform algebra theory which
will be needed for our analysis of H∞ below. Our treatment is quite brief. For
a complete picture of the general theory the reader is referred to the books of
Browder [1969], Gamelin [1969], and Stout [1971].

However, two topics special to H∞ will be covered in detail. In Section
2 we prove Marshall’s theorem that the Blaschke products generate H∞. In
Section 5, three theorems on the predual of H∞ are proved by representing
linear functionals as measures on the Šilov boundary of H∞.

1. Maximal Ideal Spaces

A Banach algebra is a complex algebra A which is also a Banach space
under a norm satisfying

‖ f g‖ ≤ ‖ f ‖ ‖g‖, f, g ∈ A.(1.1)

We always assume that A is commutative ( f g = g f, f, g ∈ A) and that there is
a unit 1 ∈ A(1 · f = f, f ∈ A). The correspondence λ → λ · 1 identifies the
complex field � as a subalgebra of A. We say f ∈ A is invertible if there is
g ∈ A such that g f = 1. The unique inverse is denoted by g = f −1. Write

A−1 = { f ∈ A : f −1 exists}
for the set of invertible elements of A. A complex homomorphism, or multi-
plicative linear functional, is a nonzero homomorphism m : A → � from A
into the complex numbers. Trivially m(1) = 1.

Theorem 1.1. Every complex homomorphism of A is a continuous linear
functional with norm at most one,

‖m‖ = sup
‖ f ‖≤1

|m( f )| ≤ 1.

176
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Proof. Because m is linear, we only have to prove that ‖m‖ ≤ 1. If m is
unbounded, or if ‖m‖ > 1, then there is f ∈ A such that ‖ f ‖ < 1 but such
that m( f ) = 1. By (1.1) the series

∞∑

n=0

f n

is norm convergent. Its sum satisfies

(1 − f )
∞∑

n=0

f n = 1,(1.2)

so that 1 − f ∈ A−1. But then

1 = m(1) = m((1 − f )−1)(m(1) − m( f )) = 0,

a contradiction.

Theorem 1.2. Suppose M is a maximal ( proper) ideal in A. Then M is the
kernel of a complex homomorphism m : A → �.

Proof. There are two steps. First we show M is closed. Now, if the closure
M̄ of M is proper, that is, if M̄ �= A, then M̄ is also an ideal in A. Therefore M
is closed if M̄ �= A, because M is maximal. However, if g ∈ M , then g �∈ A−1

and (1.2), applied to f = 1 − g, shows that ‖1 − g‖ ≥ 1. Hence 1 �∈ M̄ and
M is closed.

The second step is to show the quotient algebra B = A/M satisfies

B = � · 1,

where 1 = 1 + M now denotes the unit in B. The quotient mapping will then
define the complex homomorphism with kernel M. Since M is maximal, B =
A/M is a field, and since M is closed, B is complete in the quotient norm

‖ f + M‖ = inf
g∈M

‖ f + g‖,

which also satisfies (1.1).
Suppose there exists f ∈ B\� · 1. Then f − λ ∈ B−1 for all λ ∈ �, because

B is a field. On the disc |λ − λ0| < 1/‖( f − λ0)−1‖, the series

∞∑

n=0

(λ − λ0)n(( f − λ0)−1)n+1(1.3)

converges in norm to ( f − λ)−1, because of the identity

1

f − λ
= 1

( f − λ0)

1

[1 − (λ − λ0)/( f − λ0)]
.
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Clearly f −1 �= 0, and by the Hahn–Banach theorem there is a bounded linear
functional L on B such that ‖L‖ = 1 and

L( f −1) �= 0.(1.4)

Since (1.3) is norm convergent and since ‖L‖ = 1, we have

F(λ) = L(( f − λ)−1) =
∞∑

n=0

L((( f − λ0)−1)n+1)(λ − λ0)n,

when |λ − λ0| < 1/‖( f − λ0)−1‖. Becauseλ0 is arbitrary, this means that F(λ)
is an entire analytic function. Now for |λ| large, (1.2) yields

‖( f − λ)−1‖ = 1

|λ|

∥
∥
∥
∥
∥

(

1 − f

λ

)−1
∥
∥
∥
∥
∥

≤ 1

|λ|
∞∑

n=0

‖ f ‖n

|λ|n .

Consequently,

|F(λ)| = |L(( f − λ)−1)| ≤ C/|λ|, |λ| large,

and by Liouville’s theorem F ≡ 0. Hence

L( f −1) = F(0) = 0,

contradicting (1.4).

The set MA of complex homomorphisms of A is called the spectrum or
maximal ideal space of A. By Theorem 1.1, MA is contained in the unit ball
of the dual Banach space A∗. Give MA the weak-star topology of A∗, in
which a basic neighborhood V of m0 ∈ MA is determined by ε > 0 and by
f1, f2, . . . , fn ∈ A:

V = {m ∈ MA : |m( f j ) − m0( f j )| < ε, 1 ≤ j ≤ n}.
This topology onMA is called the Gelfand topology. With the Gelfand topology
MA is a weak-star closed subset of ball(A∗), because

MA = {m ∈ ball(A∗) : m( f g) = m( f )m(g), f, g ∈ A}.
By the Banach–Alaoglu theorem, which says ball(A∗) is weak-star compact,
MA is a compact Hausdorff space. Writing

f̂ (m) = m( f ), f ∈ A, m ∈ MA,

we have a homomorphism f → f̂ from A into C(MA), the algebra of con-
tinuous complex functions on MA. This homomorphism is called the Gelfand
transform. By Theorem 1.1, the Gelfand transfrom is norm decreasing:

‖ f̂ ‖ = sup
m∈MA

| f̂ (m)| ≤ ‖ f ‖.
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By Theorem 1.2, f ∈ A−1 if and only if f̂ (m) is nowhere zero. Indeed, if f �∈
A−1, then by Zorn’s lemma the ideal { f g : g ∈ A} is contained in a (proper)
maximal ideal.

The Banach algebra A is called a uniform algebra if the Gelfand transform
is an isometry, that is, if

‖ f̂ ‖ = ‖ f ‖, f ∈ A.

Theorem 1.3. The Gelfand transform is an isometry if and only if

‖ f 2‖ = ‖ f ‖2(1.5)

for all f ∈ A.

Proof. Since ‖ f̂ ‖ is a supremum, ‖ f̂ 2‖ = ‖ f̂ ‖2 and (1.5) holds for any uni-
form algebra.

Now assume (1.5). By Theorem 1.1, we have ‖ f̂ ‖ ≤ ‖ f ‖. To complete
the proof we take f ∈ A with ‖ f̂ ‖ = 1, we fix ε > 0, and we show ‖ f ‖ ≤
1 + ε. By Theorem 1.2, f − λ ∈ A−1 when |λ| > 1 = ‖ f̂ ‖. By (1.3) the A-
valued function ( f − λ)−1 is analytic on |λ| > 1. This means that whenever
L ∈ A∗, the scalar function F(λ) = L(( f − λ)−1) is analytic on |λ| > 1. By
compactness,

sup
|λ|=1+ε

‖( f − λ)−1‖ = K

is finite. By (1.2),

F(λ) = L

(
−1

λ

(

1 − f

λ

)−1
)

= −
∞∑

n=0

L( f n)

λn+1
, |λ| > ‖ f ‖.

This series must also represent F(λ) on |λ| > 1. Taking ‖L‖ = 1 we obtain
from Cauchy’s theorem,

L( f n) =
∣
∣
∣
∣−

1

2π i

∫

|λ|=1+ε

F(λ)λndλ

∣
∣
∣
∣ ≤ (1 + ε)n+1 K .

Consequently, by the Hahn–Banach theorem,

‖ f n‖ = sup
‖L‖=1

|L( f n)| ≤ (1 + ε)n+1 K .

Setting n = 2k and using (1.5), we conclude that

‖ f ‖ ≤ lim
k→∞

(K (1 + ε)2k+1)1/2k = 1 + ε,

as desired.

When A is a uniform algebra, the range Â of the Gelfand transform is a
uniformly closed subalgebra of C(MA), and Â is isometrically isomorphic to
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A. In that case we identify f with f̂ and write

f (m) = m( f ) = f̂ (m), f ∈ A, m ∈ M.

Thus we view A as a uniformly closed algebra of continuous functions on
MA. Note that A separates the points of MA and that A contains the constant
functions on MA.

Example 1. Suppose A is any algebra of continuous complex functions on a
compact Hausdorff space Y. If A has the uniform norm, ‖ f ‖ = supy∈Y | f (y)|
and if A is complete, then A is a uniform algebra. If A contains the constant
functions and separates the points of Y, then Y is homeomorphic to a closed
subset of MA, and we say that A is a uniform algebra on Y. This is the generic
example, because any uniform algebra A is clearly a uniform algebra on its
spectrum Y = MA. If A = C(Y ), then MA = Y . (See Exercise 5.)

Example 2. Let l∞ denote the space of bounded complex sequences. With the
norm ‖x‖ = supn |xn| and with the pointwise multiplication (xy)n = xn yn, l∞
is a uniform algebra, by Theorem 1.3. The maximal ideal space of l∞ has the
special name β�, the Stone–Čech compactification of the positive integers
�.

The Gelfand transform of l∞ is C(β�). To see this, note that if x ∈ l∞ is
real, that is, if xn ∈ � for all n, then x̂(m) is real on Ml∞ = β�, because then
(x − λ)−1 ∈ l∞ whenever Im λ �= 0. It now follows from the Stone–Weier-
strass theorem that l∞ = C(β�).

Since the functional mn(x) = xn is multiplicative on l∞, � can be identified
with a subset of β�, and the Gelfand topology is defined in such a way that
� is homeomorphic to its image in β�. Moreover, � is dense in β�, because
every function in C(β�) = l∞ is completely determined by its behavior on �.

The Stone–Čech compactification β� can also be characterized functorially.

Theorem 1.4. Let Y be a compact Hausdorff space and let τ : � → Y be a
continuous mapping. Then the mapping τ has a unique continuous extension
τ̃ : β� → Y .

If τ (�) is dense in Y and if the images of disjoint subsets of � have disjoint
closures in Y, then the extension τ̃ is a homeomorphism of β� onto Y.

Proof. The mapping

T : C(Y ) → l∞,

defined by T f (n) = f ◦ τ (n), is a homomorphism from C(Y ) into l∞. Because
T is continuous, the adjoint mapping T ∗ : (l∞)∗ → (C(Y ))∗ is weak-star to
weak-star continuous. If m ∈ (l∞)∗ is a multiplicative linear functional, that
is, if m ∈ β�, then since T ( f g) = T ( f )T (g), T ∗(m) is also a multiplicative
linear functional on C(Y ), and by Exercise 5, T ∗(m) ∈ Y = MC(Y ). Restricting
T ∗ to β�, we have a mapping τ̃ (m) = T ∗(m) from β� into Y, and by the
definition of T, τ̃ (n) = τ (n), n ∈ �. Since β� has the weak-star topology of
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(l∞)∗ and Y = MC(Y ) has the weak-star topology of (C(Y ))∗, the mapping τ̃

is continuous. Because � is dense in β�, τ̃ is the unique continuous extension
of τ to β�.

Now suppose that τ (S1) ∩ τ (S2) = ∅ wherever S1 ⊂ �, S2 ⊂ � and S1 ∩
S2 = ∅. Then there is f ∈ C(Y ) such that f = 1 on τ (S1) and f = 0 on τ (S2).
We can assume that S2 = �\S1, so that T f = χS1

. Because linear combinations
of characteristic functions are dense in l∞, this means the range of T is dense
in l∞. If we further assume that τ (�) is dense in Y, then we have ‖T f ‖ =
‖ f ‖, f ∈ C(Y ), and the mapping T is an isometry. Consequently the range of
T is norm closed in l∞. Hence the range of T is both dense and closed and T
maps C(Y ) onto l∞. Now because ‖T f ‖ = ‖ f ‖, the homomorphism T is one-
to-one, and so T is an algebra isomorphism from C(Y ) onto l∞. The adjoint
T ∗ then defines a homeomorphism from β� onto Y.

Theorem 1.4 determines the space β� up to a homeomorphism, because if
Z is another compact Hausdorff space and if Z contains a dense sequence {zn}
homeomorphic to � such that Theorem 1.4 holds with Z in place of β�, then
the correspondence

n ↔ zn

extends to a homeomorphism between β� and Z.
The space β� is extremely huge. It can be mapped onto any separable

compact Hausdorff space. No point of β�\� can be exhibited concretely.

Example 3. The space L∞ of essentially bounded, measurable functions on
the unit circle is a uniform algebra when it is given the pointwise multiplication
and the essential supremum norm

‖ f ‖ = inf{α : | f | ≤ α almost everywhere}.
We fix the notation X for the maximal ideal space of L∞, because this space
will be reappearing from time to time. Under the Gelfand transform, L∞ is
isomorphic to C(X ), the algebra of continuous complex functions on X. This
has the same proof as the corresponding result on l∞. If f ∈ L∞ is real,
then ( f − λ)−1 ∈ L∞ whenever Im λ �= 0, so that f̂ is real on X. The Stone-
Weierstrass theorem then shows that L∞ = C(X ).

Like β�\�, the space X is large and intractable. We cannot construct a single
point of X. Nevertheless, the space X is quite useful in the theory of bounded
analytic functions. Some of the intricacies of X are outlined in Exercise 8. See
Hoffman’s book [1962a] for further details.

Let A be a uniform algebra on MA. A closed subset K of MA is called a
boundary for A if

‖ f ‖ = sup
m∈K

| f (m)|

for all f ∈ A.
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Theorem 1.5. There is a smallest closed boundary K0, which is contained
in every boundary K.

This smallest boundary is called the Šilov boundary of A. Note that A is a
uniform algebra on its Šilov boundary.

Proof. Let K0 be the intersection of all boundaries. We must show K0 is a
boundary for A.

Lemma 1.6. Let f1, f2, . . . , fn ∈ A and set

U = {m : | f j (m)| < 1, j = 1, . . . , n}.
Then either U ∩ K �= ∅ for every boundary K, or else K\U is a boundary for
every boundary K.

Accepting Lemma 1.6 for a moment, we prove Theorem 1.5. Suppose f ∈ A
and | f | < 1 on K0. Set J = {m : | f (m)| ≥ 1}. If we show J = ∅ for every
such f, then we will have proved that K0 is a boundary. Since J ∩ K0 = ∅,
each m ∈ J has (by the definition of K0) a neighborhood U of the form in the
lemma such that U ∩ Km = ∅ for some boundary Km . Cover J by finitely many
such neighborhoods Ui , 1 ≤ i ≤ N . Then by the lemma, K\Ui is a boundary
whenever K is a boundary. Consequently, by induction

K1 = MA\
N⋃

i=1

Ui = ((MA\U1)\U2)\ . . . \UN )

is a boundary. Since | f | < 1 on K1, this means ‖ f ‖ < 1 and J = ∅, so that
K0 is a boundary for A.

Proof of Lemma 1.6. We suppose that K is a boundary but that K\U is not a
boundary, and we show that U intersects every boundary for A. By hypothesis
there is f ∈ A such that ‖ f ‖ = 1 but such that supK\U | f (m)| < 1. Replacing f
by a power f n , we can assume that supK\U | f (m)| < ε, where ε‖ f j‖ < 1, j =
1, . . . , n, and where f1, . . . , fn are the functions defining U. Then | f f j | < 1
on U by the definition of U, while | f f j | < 1 on K\U by the choice of ε. Since
K is a boundary, that means ‖ f f j‖ < 1, j = 1, . . . , n. Hence

{m : | f (m)| = 1} ⊂
n⋂

j=1

{m : | f j (m)| < 1} = U.

Since {m : | f (m)| = 1 = ‖ f ‖} meets every boundary, this implies that U also
meets every boundary.

Of course, if A = C(Y ), then A has Šilov boundary Y. A point x ∈ MA is a
peak point for A if there is f ∈ A such that

f (x) = 1,

| f (y)| < 1, y ∈ MA, y �= x .

Clearly, every peak point for A is in the Šilov boundary of A.
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Example 4. The disc algebra is the algebra of functions continuous on the
closed disc D and analytic on the open disc D. We reserve the notation Ao for
this algebra. With the supremum norm ‖ f ‖ = supz∈D | f (z)|, Ao is a uniform

algebra. Because analytic polynomials separate the points of D, Ao is a uniform
algebra on D. By the maximum principle, the unit circle T is a boundary for
Ao. If λ ∈ T , then f (z) = (1 + λ̄z)/2 satisfies f (λ) = 1, | f (z)| < 1, z �= λ.
Thus λ is a peak point for Ao and T is the Šilov boundary of Ao. The maximal
ideal space of Ao is D. (See Exercise 9.)

Example 5. H∞ is a uniform algebra with pointwise multiplication and with
the supremum norm

‖ f ‖ = sup
z∈D

| f (z)|.

We shall always write M for the maximal ideal space of H∞.
For each point ζ ∈ D there exists mζ ∈ M such that mζ (z) = ζ , where z

denotes the coordinate function, because (z − ζ ) /∈ (H∞)−1. Now whenever
f ∈ H∞, we have ( f − f (ζ ))/(z − ζ ) ∈ H∞, and

f = f (ζ ) + (z − ζ )

(
f − f (ζ )

z − ζ

)

.

But then

mζ ( f ) = f (ζ ) + mζ (z − ζ )mζ

(
f − f (ζ )

z − ζ

)

= f (ζ ),

so that the point mζ ∈ M is uniquely determined by the condition mζ (z) = ζ .
Hence

ζ → mζ

defines an embedding of D into M. By the definition of the topology of M,
this embedding is a homeomorphism. We now identify ζ with mζ and regard
D as a subset of M. Then D is an open subset of M because

D = {m ∈ M : |ẑ(m)| < 1}.
From now on we identify the uniform algebra H∞ with its Gelfand transform

and we think of H∞ as a subalgebra of C(M). There is no ambiguity in doing
this because by the discussion above

f̂ (mζ ) = f (ζ ), ζ ∈ D.

Now suppose |ζ | = 1. Then (z − ζ ) /∈ (H∞)−1 and there exist points m ∈ M

such that ẑ(m) = ζ . As we shall see in a moment, however, the fiber Mζ =
{m : ẑ(m) = ζ } is very large when ζ ∈ ∂D.

The Gelfand transform of the coordinate function z defines a map

ẑ : M → D̄.
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Having identified the open disc D with ẑ−1(D), we can write

M = D ∪
⋃

|ζ |=1

Mζ .

Thus we can imagine M as the open disc D with the large compact space
Mζ = ẑ−1(ζ ) lying above ζ ∈ ∂D. The fibers Mζ over points ζ ∈ ∂D are
homeomorphic to one another because the rotation τ (z) = ζ z, |ζ | = 1, induces
an automorphism f → f ◦ τ of H∞, and the adjoint of this automorphism
maps M1 onto Mζ .

To see just how large Mζ is, take ζ = 1 and consider the singular function
S(z) = exp((z + 1)/(z − 1)). In Chapter II we showed that the cluster set of
S(z) at ζ = 1 is the closed unit disc. That is, whenever |w| ≤ 1 there exists
a sequence {zn} in D such that zn → 1 and S(zn) → w. By the compactness
of M the sequence {zn} has a cluster point m ∈ M1 and S(m) = w. Hence S
maps M1 onto the closed unit disc.

Moreover, there exists a sequence {zn} in D such that lim zn = 1 and such
that every interpolation problem

f (zn) = αn, n = 1, 2, . . . ,

{αn} ∈ l∞, has solution f ∈ H∞. Such sequences, which are called interpo-
lating sequences, will be discussed in Chapter VII, and a simple example of
an interpolating sequence is given in Exercise 11. Here we only want to make
this observation: If {zn} is an interpolating sequence, then by Theorem 1.4 the
map n → zn extends to define a homeomorphism from β� onto the closure
of {zn} in M. Since limn zn = 1 (as a sequence in the plane), we now see that
M1 contains a homeomorphic copy of β�\�.

By Fatou’s theorem, H∞ is a closed subalgebra of L∞. Now H∞ sepa-
rates the points of X = ML∞ , because every real L∞ function has the form
u = log | f | with f ∈ (H∞)−1 (see Theorem 4.5, Chapter II), and because
u(m) = log | f (m)| when u and f are viewed as elements of C(X ). Hence by
compactness, the continuous map X → M, which is defined by restricting
each multiplicative linear functional on L∞ to H∞, is a homeomorphism. Ac-
cordingly, we think of X as a closed subset of M. Since the injection H∞ ⊂ L∞
is isometric, X is a boundary for H∞. Moreover, if K is a proper closed subset
of X, then since C(X ) = L∞ = log |(H∞)−1|, there is f ∈ H∞ such that

sup
K

log | f | < sup
X

log | f |,

and so K is not a boundary for H∞. We have proved the following theorem:

Theorem 1.7. The Šilov boundary of H∞ is X = ML∞ .

Every inner function has unit modulus on X, because it has unit modulus
when viewed as an element of L∞. So the singular function S(z) = exp((z +
1)/(z − 1)) satisfies |S| = 1 on X. Now S /∈ (H∞)−1, but S has no zeros on D.
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Therefore

M �= D ∪ X.

Carleson’s corona theorem states that D is dense in M. In other words, the
corona M\D̄ is empty. This famous result will be proved in Chapter VIII. For
the present we only translate its statement into classical language.

Theorem 1.8. The open disc D is dense in M if and only if the following
condition holds: if f1, . . . , fn ∈ H∞ and if

max
1≤ j≤n

| f j (z)| ≥ δ > 0(1.6)

for all z ∈ D, then there exist g1, . . . , gn ∈ H∞ such that

f1g1 + · · · + fngn = 1.(1.7)

Proof. Suppose D is dense in M. Then by continuity we have

max
1≤ j≤n

| f j (m)| ≥ δ

for all m ∈ M, so that { f1, . . . , fn} is contained in no proper ideal of H∞.
Hence the ideal J generated by { f1, . . . , fn} contains the constant 1. But

J = { f1g1 + · · · + fngn : g j ∈ H∞},
and so (1.7) holds.

Conversely, suppose D is not dense in M. Then some point m0 ∈ M has a
neighborhood disjoint from D. This neighborhood has the form

V =
n⋂

j=1

{m : | f j (m)| < δ},

where δ > 0, and where f1, . . . , fn ∈ H∞, f j (m0) = 0. The functions
f1, . . . , fn satisfy (1.6) because V ∩ D = ∅, but they do not satisfy (1.7)
with g1, . . . , gn ∈ H∞, because they all lie in the ideal { f : f (m0) = 0}.

For the disc algebra Ao the “corona theorem,” that MA = D, is a very easy
consequence of the Gelfand theory (see Exercise 9). Therefore, whenever (1.6)
holds for f1, . . . , fn ∈ Ao, there exist g1, . . . , gn ∈ Ao such that (1.7) holds.
Now suppose we knew the “corona theorem with bounds” for Ao. In other
words, suppose that whenever f1, . . . , fn ∈ Ao satisfied (1.6), we could find
g1, . . . , gn ∈ Ao that solved (1.7) and in addition satisfied

‖g j‖ ≤ C

(

n, δ, max
j

‖ f j‖
)

.(1.8)

Then the corona theorem for H∞ would follow by a simple normal families
argument: Given f1, . . . , fn ∈ H∞ having (1.6), and given r < 1, we could
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take g(r )
1 , . . . , g(r )

n in Ao such that

∑
f j (r z)g(r )

j (z) = 1, z ∈ D,

and such that ‖g(r )
j ‖∞ ≤ C(n, δ, max j ‖ f j‖). For some sequence rk → 1,

g j (z) = lim
k→∞

g(rk )
j (z)

would then provide H∞ solutions of (1.7). In other words, we would get the
corona theorem for H∞ if we had a proof of the easy “corona theorem” for Ao

that was constructive enough to include the bounds (1.8).

2. Inner Functions

Recall that a function u ∈ H∞ is an inner function if |u(eiθ )| = 1 almost
everywhere. Every Blaschke product is an inner function, and by Frostman’s
theorem, Theorem II.6.4, every inner function is the uniform limit of a sequence
of Blaschke products. In this section we prove that the inner functions, and
therefore the Blaschke products, generate H∞ as a uniform algebra.

Theorem 2.1 (Douglas–Rudin). Suppose U is a unimodular function in
L∞, |U (eiθ )| = 1 almost everywhere. For any ε > 0 there exist inner func-
tions u1, u2 in H∞ such that

‖U − u1/u2‖ < ε.

Before proving Theorem 2.1 let us consider the corresponding result for
continuous functions on the circle T. It can be proved in a few lines. Suppose
U ∈ C(T ), |U | ≡ 1. Write U = zn V 2, where n is an integer (the winding num-
ber of U) and V ∈ C(T ), |V | ≡ 1. By Weierstrass’s approximation theorem
there is a rational function h(z), analytic on T, such that

|V (z) − h(z)| < ε, z ∈ T .

Since |V | ≡ 1, we also have

|V (z) − (1/h(1/z̄))| < ε/(1 − ε), z ∈ T .

The rational function

g(z) = znh(z)/h(1/z̄)

is then a quotient of finite Blaschke products, because |g| ≡ 1 on T, and we
have

|U (z) − g(z)| < ε + ε/(1 − ε), z ∈ T .
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Proof of Theorem 2.1. Let E be a measurable subset of T with |E | > 0. We
may assume

U = αχE + βχT \E ,

where |α| = |β| = 1, α �= β, because the finite products of functions of this
form are norm dense in the set of unimodular L∞ functions.

Consider the circular arcs

A = {eiθ : |eiθ − α| ≤ ε/2}, B = {eiθ : |eiθ − β| ≤ ε/2}.
We may suppose |α − β| > 2ε, so that A ∩ B = ∅. Let 
 be the complement
of A ∪ B in the Riemann sphere. There exists r, 0 < r < 1, such that the
annulus

V = {r < |w| < 1/r}
can be mapped conformally onto 
. Moreover, the conformal mapping ϕ :
V → 
 extends continuously to V and

ϕ(|w| = r ) ⊂ A, ϕ(|w| = 1/r ) ⊂ B

(we can replace ϕ by ϕ(1/w) if necessary). See Ahlfors [1966, p. 247]. The
function ϕ is analytic on V except for a simple pole at some point p.

Now let h ∈ (H∞)−1 be an outer function such that |h| = rχE + (1/r )χT \E

almost everywhere. Then h(D) ⊂ V and

‖U − ϕ ◦ h‖ ≤ ε.

We shall show that ϕ ◦ h is a quotient of inner functions. Note that ϕ ◦ h is
meromorphic on D with poles only on the set h−1(p). The function ζ (w) =
w + 1/w maps V onto an ellipse W. Let G(ζ ) be a conformal mapping from W
to the unit disc, with G(ζ (p)) = 0. Then ψ(w) = G(ζ (w)) is analytic on V and
continuous on V̄ . Moreover, |ψ(w)| = 1 on ∂V and ψ(p) = 0. Consequently
u1 = (ϕψ) ◦ h and u2 = ψ ◦ h are inner functions for which we have

‖U − u1/u2‖∞ ≤ ε.

Another proof of Theorem 2.1 is given in Exercise 13. Recall that the Šilov
boundary of H∞ is X = ML∞ .

Theorem 2.2 (D. J. Newman). If m ∈ M, the maximal ideal space of H∞,
then the following conditions are equivalent:

(a) m ∈ X , the Šilov boundary,
(b) |u(m)| = 1 for every inner function u(z), and
(c) |B(m)| > 0 for every Blaschke product B(z).

Proof. Since X = ML∞ , and since every inner function is a unimodular L∞
function, (a) implies (b).



188 some uniform algebra Chap. V

Now suppose (b) holds. We show m can be extended to a multiplicative
linear functional on L∞. By Theorem 2.1, the algebra

I =
{

n∑

j=1

λ j u j v̄ : λ j ∈ �, v, u j inner functions

}

is norm dense in L∞. On I define

m̃

(
n∑

j=1

λ j u j v̄

)

=
n∑

j=1

λ j m(u j )m(v).

Then because of (b), m̃ is well defined, linear, and multiplicative on I and

∣
∣
∣
∣
∣
m̃

(
n∑

j=1

λ j u j v̄

)∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
m

(
n∑

j=1

λ j u j

)∣
∣
∣
∣
∣
≤

∥
∥
∥
∥
∥

n∑

j=1

λ j u j

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

n∑

j=1

λ j u j v̄

∥
∥
∥
∥
∥

.

Hence m̃ is bounded and m̃ has a unique continuous extension to L∞. So there
is x ∈ X such that m̃(g) = g(x), g ∈ I . We must show that m( f ) = f (x), f ∈
H∞. Choose g = ∑

λ j u j v̄ ∈ I such that ‖g − f ‖∞ < ε. Then

|m̃(g) − f (x)| = |g(x) − f (x)| < ε.

Since vg ∈ H∞, v f ∈ H∞, and |m(v)| = 1, we have

|m( f ) − m̃(g)| = |m(v)m( f ) − m(v)m̃(g)| = |m(v f ) − m(vg)| < ε,

by the definition of m̃. Therefore |m( f ) − f (x)| < 2ε and so m ∈ X .
Trivially, (b) implies (c). Now suppose (b) does not hold. Then |u(m)| < 1

for some inner function u(z), and by Frostman’s theorem, |B(m)| < 1 for some
Blaschke product B(z). We may assume that m is not the evaluation functional
for some point in D, so that |m(B0)| = 1 for every finite Blaschke product B0.
Thus B(z) is an infinite product

B(z) = zk
∞∏

j=1

−z̄ j

|z j |
z − z j

1 − z̄ j z
.

Choose n j → ∞ such that
∑

n j (1 − |z j |) < ∞, and form the Blaschke prod-
uct

B1(z) =
∞∏

j=1

(−z j

|z j |
z − z j

1 − z̄ j z

)n j

.

For N large we have

B1 = B(N )
0 B(N )

1 B(N )
2 ,
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where B(N )
0 is some finite Blaschke product, where

B(N )
1 =

∞∏

j=N

(−z j

|z j |
z − z j

1 − z̄ j z

)nN

,

and where B(N )
2 is a third Blaschke product. Since m /∈ D, |B(N )

0 (m)| = 1, and

|B(N )
1 (m)| = |B(m)|nN . Clearly |B(N )

2 (m)| ≤ 1, so that

|B1(m)| ≤ |B(m)|nN , N = 1, 2, . . . .

Therefore |B1(m)| = 0 and (c) implies (b).

Let S be a subset of a uniform algebra A. We say that S generates A if the
linear combinations of products of functions in S are norm dense in A. If S is
closed under multiplication, then S generates A if and only if A is the closed
linear span of S .

Theorem 2.3 (A. Bernard). Let A be a uniform algebra on a compact Haus-
dorff space Y and let

U = {u ∈ A : |u| = 1 on Y }
be the set of unimodular functions in A. If U generates A, then the unit ball of
A is the norm closed convex hull of U .

Proof. Let f ∈ A, ‖ f ‖ < 1. We can suppose f = ∑n
j=1 λ j u j , u j ∈ U , λ j ∈

�, because functions of this form are dense in ball(A). Write u = ∏n
j=1 u j ∈ U .

Then f̄ u ∈ A. Now

f = 1

2π

∫ 2π

0

f + eit u

1 + eit f̄ u
dt

at every point of Y. For each fixed eit the integrand is a function in U . Since
‖ f ‖ < 1, there is a sequence of Riemann sums which converges to the integral
uniformly in y ∈ Y . These sums are convex combinations of elements of U
and they converge in norm to f.

Corollary 2.4. The unit ball of the disc algebra A0 is the closed convex hull
of the set of finite Blaschke products.

Proof. The inner functions in A0 are the finite Blaschke products. They gen-
erate A0 because the polynomials are dense in A0.

Theorem 2.5 (Marshall). H∞ is generated by the Blaschke products.

Corollary 2.6. The unit ball of H∞ is the norm closed convex hull of the set
of Blaschke products.
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The corollary follows immediately from Theorem 2.5, from Theorem 2.3,
and from Frostman’s theorem. Notice that the Carathéodory result for point-
wise convergence (Chapter I, Theorem 2.1) is much easier than Corollary 2.6.

The proof of Theorem 2.5 is a clever combination of three ingredients: the
Douglas–Rudin theorem, Bernard’s trick from the proof of Theorem 2.3, and
the Nevanlinna theorem from Chapter IV. The proof brings out a connection be-
tween interpolation problems and approximation problems which is recurrent
throughout this theory.

Proof of Theorem 2.5. By Frostman’s theorem it is enough to prove that the
inner functions generate H∞. Let J be the closed subalgebra of H∞ generated
by the inner functions and set

N = { f ∈ H∞ : f̄ u ∈ H∞ for some inner function u}.
We must show J = H∞. We need two preliminary observations:

(i) If f = ∑
λ j u j is a linear combination of inner functions, then f ∈ N;

(ii) N ⊂ J .

To prove (i) let u = ∏
u j and note that

f̄ u =
n∑

j=1

λ̄ j

∏

k �= j

uk ∈ H∞.

The proof of (ii) uses Bernard’s idea from Theorem 2.3. Suppose f ∈
N, ‖ f ‖ < 1. If u is an inner function such that f̄ u ∈ H∞, then for all real
t, ( f + eitu)/(1 + eit f̄ u) is an inner function. Then the integral

f = 1

2π

∫ 2π

0

f + eit u

1 + eit f̄ u
dt

expresses f as a uniform limit of convex combinations of inner functions.
Now let f ∈ H∞. By the Douglas–Rudin theorem (Theorem 2.1) and by

Frostman’s theorem, there exist inner functions u1, . . . , un , and complex num-
bers λ1, . . . , λn , and there exists a Blaschke product B(z) such that

‖ f −
∑

λ j u j B̄‖ < ε.(2.1)

We next use Theorem 4.1, Chapter IV, to unwind the antiholomorphic factor
B̄. Let g = ∑

λ j u j . Then by (2.1)

‖B f − g‖ < ε,

so that |g(zn)| < ε at the zeros {zn} of B(z). By Chapter IV, Theorem 4.1, there
exists an inner function v(z) such that

εv(zn) = g(zn), n = 1, 2, . . . .
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Hence

g − εv = Bh

for some h ∈ H∞. Recalling that g = ∑
λ j u j , we see that Bh ∈ N because

of (i). Thus there is an inner function u(z) such that B̄h̄u ∈ H∞. Consequently
B B̄h̄u = h̄u ∈ H∞, so that h ∈ N, and from (ii) we conclude that h ∈ J . But
then

‖ f − h‖ = ‖B f − Bh‖ ≤ ‖B f − g‖ + ‖g − Bh‖
= ‖B f − g‖ + ε‖v‖ ≤ 2ε,

and therefore f ∈ J .

3. Analytic Discs in Fibers

Let {zn} be a Blaschke sequence in D,
∑

(1 − |zn|) < ∞. We assume
lim zn = 1. If B(z) is the Blaschke product with zeros {zn}, then

B ′(zn) = −zn

|zn|
1

1 − |zn|2
∏

k;k �=n

−zn

|zk |
zn − zk

1 − z̄k zn

and

(1 − |zn|2)|B ′(zn)| =
∏

k;k �=n

∣
∣
∣
∣

zn − zk

1 − z̄k zn

∣
∣
∣
∣ .

We replace {zn} by a subsequence such that

inf
n

∏

k;k �=n

∣
∣
∣
∣

zn − zk

1 − z̄k zn

∣
∣
∣
∣ = δ > 0,

which can easily be accomplished by a diagonalization process. Thus we as-
sume

inf
n

(1 − |zn|2)|B ′(zn)| = δ > 0.(3.1)

This condition will be very important to us later because it characterizes inter-
polating sequences. Here we are only going to use (3.1) to find non-constant
analytic maps from the open unit disc into the fiber M1 of M over z = 1. Let

Ln(ζ ) = ζ + zn

1 + z̄nζ
, |ζ | < 1.

Then f ◦ Ln ∈ H∞ whenever f ∈ H∞ and f ◦ Ln(0) = f (zn). We regard Ln

as a map fromD = {|ζ | < 1} into M. (The notationD = {|ζ | < 1} is used here
to distinguish the domain of Ln from its range D ⊂ M.) Now the space MD

of mappings (continuous or not) from D into M is a compact Hausdorff space
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in the product topology. From the sequence {Ln} ⊂ MD we take a convergent
subnet (Ln j ) with limit L ∈ MD . (Nets are needed because MD is not a metric
space.) We get a map

L : D → M

such that for all f ∈ H∞

f ◦ L(ζ ) = lim
j

f ◦ Ln j (ζ ) = lim
j

f

(
ζ + zn j

1 + z̄n j ζ

)

.(3.2)

Theorem 3.1. The mapping L : D → M has the following three properties:

(a) L(D ) ⊂ M1, the fiber of M over z = 1;
(b) L is an analytic mapping, that is, f ◦ L(ζ ) is analytic on D whenever

f ∈ H∞;
(c) the mapping L is not constant.

Proof. Take f (z) = z in (3.2). Then

ẑ(L(ζ )) = lim
j

(
ζ + zn j

1 + z̄n j ζ

)

= 1,

since lim zn = 1, and (a) holds. Property (b) follows from (3.2) and from the
fact that the limit of any bounded net of functions analytic on D is an analytic
function on D . It also follows from (3.2) that ( f ◦ L)′(ζ ) = lim j ( f ◦ Ln j )

′(ζ ),
whenever f ∈ H∞. Hence

(B ◦ L)′(0) = lim
j

(B ◦ Ln j )
′(0) = lim

j
B ′(zn j )L ′

n j
(0)

= lim
j

(1 − |zn j |2)B ′(zn j ),

so that by (3.1) we have

|(B ◦ L)′(0)| ≥ δ > 0.(3.3)

Hence B ◦ L is not constant and (c) holds.

We will see in Chapter X that L is actually 1 − 1 from D into M1 and that
M1 contains uncountably many pairwise disjoint such analytic discs L(D ).

By (3.3) and by Schwarz’s lemma (see Exercise 1, Chapter I), there exists
η = η(δ) > 0 such that L(ζ ) is one-to-one on |ζ | < η. Thus we have para-
matrized the set L(|ζ | < η) ⊂ M1 as a disc on which all functions in H∞ are
analytic. The set L(|ζ | < η) is called an analytic disc.

The following remarks may help to make the analytic disc L(|ζ | < η) a little
less mysterious. Consider the discs

�n =
{

z : ρ(z, zn) =
∣
∣
∣
∣

z − zn

1 − z̄nz

∣
∣
∣
∣ < η

}

= Ln(|ζ | < η).



Sect. 4 representing measures and orthogonal measures 193

Figure V.1. The hyperbolically congruent discs �n .

With respect to the Euclidean metric, the discs �n converge to the point z = 1.
But with respect to the hyperbolic metric, the discs �n are all congruent to
� = {|ζ | < η}. See Figure V.1. For f ∈ H∞, the functions

fn(ζ ) = f (Ln(ζ ))

form a normal family, and the behavior of f on �n is the same as the behavior
of fn on �. When f = B, f ′

n(0) = B ′(zn)(1 − |zn|2) and by (3.1) no limit of
{ fn} is constant on |ζ | < η. Because the maximal ideal space M = MH∞ is
compact, there is a net of indices (n j ) such that fn j = f (Ln j (ζ )) converges

for every f ∈ H∞. That is the same as saying that Ln j → L in the space MD .
Consequently, we can think of the net of discs (�n j ) as converging in M to a
limit set L(|ζ | < η). Because of (3.1) and (3.3) the limit set is a disc on which
B(z) is one-to-one, and on which all functions in H∞ are analytic.

4. Representing Measures and Orthogonal Measures

Theorem 4.1. Let A be a uniform algebra on a compact Hausdorff space Y
and let m ∈ MA. Then

‖m‖ = sup
‖ f ‖≤1

|m( f )| = 1.

There exists a positive Borel measure μ on Y such that μ(Y ) = 1 and such that

m( f ) =
∫

Y
f dμ, f ∈ A.(4.1)

A positive measure μ on Y for which (4.1) holds is called a representing
measure for m. Any representing measure is a probability measure, that is,
μ(Y ) = 1, because

∫
1 dμ = m(1) = 1.
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Proof. We have ‖m‖ ≤ 1 by Theorem 1.1. But since A is a uniform algebra we
also have ‖1‖ = 1, so that ‖m‖ ≥ |m(1)| = 1. Hence ‖m‖ = 1. By the Hahn–
Banach theorem, the linear functional m( f ) has a norm-preserving extension
to C(Y ), and by the Riesz representation theorem, this extension is given by
integration against a finite complex Borel measure on Y. Thus (4.1) holds for
some measure μ, and

1 = ‖μ‖ = sup

{∣
∣
∣
∣

∫
f dμ

∣
∣
∣
∣ : f ∈ C(Y ), ‖ f ‖ ≤ 1

}

.

But then ‖μ‖ = 1 = ∫
dμ, so that μ is positive and μ(Y ) = 1.

When using Theorem 4.1 one usually takes Y to be the Šilov boundary of
A. For example, let A be the disc algebra A0 and let Y = T , the unit circle.
The maximal ideal space is the closed disc D̄ (Exercise 9). When |z| = 1, the
representing measure is the point mass δz at z. When |z| < 1, the representing
measure is given by the Poisson kernel

dμ = 1

2π

1 − |z|2
|eiθ − z|2 dθ.

Each point in D has a unique representing measure on T because

Re f (z) =
∫

T
Re f dμ,

since μ is real, and because the real trigonometric polynomials, that is the real
parts of analytic polynomials, are dense in the space C�(T ) of real continuous
functions on T.

More generally, a uniform algebra A is called a Dirichlet algebra on Y if
Re A = {Re f : f ∈ A} is uniformly dense in C�(Y ). Thus every complex
homomorphism of a Dirichlet algebra has a unique representing measure on
Y. We say A is a logmodular algebra on Y if

log |A−1| = {log | f | : f ∈ A−1}
is dense in C�(Y ). Every Dirichlet algebra is a logmodular algebra, since
log |e f | = Re f . However, H∞ is not a Dirichlet algebra (see Exercise 15),
but H∞ is a logmodular algebra on its Šilov boundary X. Indeed, as we have
observed earlier, if u ∈ L∞

� , and if u(z) is its Poisson integral, then f (z) =
exp(u(z) + i ũ(z)) ∈ (H∞)−1 and log | f | = u almost everywhere.

Note that if A is a logmodular algebra on Y, then Y is the Šilov boundary of
A. The proof is the same as the proof of Theorem 1.7.

Theorem 4.2. Suppose A is a logmodular algebra on Y. Then each m ∈ MA

has unique representing measure on Y.
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Proof. Suppose μ1 and μ2 are representing measures on Y for m ∈ MA. Let
f ∈ A−1. Then since μ1 and μ2 are probability measures, we have

|m( f )| ≤
∫

| f | dμ1, |m( f −1)| ≤
∫

| f |−1 dμ2,

so that

1 ≤
∫

| f | dμ1

∫
| f |−1 dμ2.

By the density of log |A−1| in C�(Y ), this yields

1 ≤
∫

eu dμ1

∫
e−u dμ2, u ∈ C�(Y ).

Now fix u and define

h(t) =
∫

etu dμ1

∫
e−tu dμ2, t ∈ �.

Then h(0) = 1 and h(t) ≥ 1. Differentiating h(t) at t = 0, we obtain
∫

u dμ1 −
∫

u dμ2 = 0,

so that μ1 = μ2.

Since H∞ is a logmodular algebra, each m ∈ M has a unique repre-
senting measure μm on X. When m ∈ X the unique measure must be the
point mass δm . What is the measure on X representing f → f (0)? We have
f (0) = (1/2π )

∫
f (eiθ ) dθ, f ∈ H∞, but strictly speaking, dθ/2π is not a

measure on the big compact space X. However, the linear functional

L∞ � g →
∫

T
g dθ/2π,

does, by the Riesz representation theorem, determine a Borel probability mea-
sure μ0 on X, and μ0 is the representing measure we are seeking. If E ⊂ T
is a measurable set of positive measure, then χE is an idempotent (0 and 1
valued) function in L∞. Thus χ̂E assumes only the values 0 and 1, and there
is an open–closed subset Ẽ of X such that χ̂E = χẼ . Then

μ0(Ẽ) =
∫

X
χẼ dμ0 =

∫

T
χE dθ/2π.(4.2)

Because the simple functions are norm dense in L∞, the open–closed sets are
a base for the topology of X and (4.2) uniquely determines the Borel measure
μ0 on X.

Theorem 4.3. Let 0 < p ≤ ∞. Then the correspondence

χE → χẼ
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extends to a unique positive isometric linear operator S from L p(T, dθ/2π )
onto L p(X, μ0).

Proof. For f = ∑
α jχE j a simple function, we define S f = ∑

α jχẼ j
. This

is the only possible definition of a linear extension of the mapping χE → χẼ .
By (4.2), ‖S f ‖p = ‖ f ‖p, 0 < p ≤ ∞, and by density, S extends to a positive
isometric linear operator from L p(T, dθ/2π ) into L p(X, μ0).

We must show that S maps onto L p(X, μ0) It suffices to treat the case p = ∞,
because ‖S f ‖p = ‖ f ‖p and because L∞(μ0) is dense in L p(μ0), p < ∞. Let
g ∈ L∞(μ0). Take {gn} ⊂ C(X ) such that ‖gn‖∞ ≤ ‖g‖∞ and gn → g almost
everywhere with respect to μ0 Because C(X ) is the Gelfand transform of L∞,
and because simple functions are dense in L∞, we can suppose that gn = S( fn),
where fn ∈ L∞ is a simple function and ‖ fn‖∞ = ‖gn‖∞. Then because S is
an isometry, ‖ fn − fk‖2 = ‖gn − gk‖2, and { fn} converges in L2(dθ/2π ) to
a limit f. Then S( f ) = g. Moreover, f ∈ L∞ because ‖ fn‖∞ ≤ ‖g‖∞ and
because some subsequence of ‖ fn‖ converges to f almost everywhere.

When p = ∞, Theorem 4.3 shows that L∞(X, μ0) = C(X ), reflecting the
fact that X is very big and disconnected.

By Theorem 4.3 the representing measure on X for the point z ∈ D is
S(Pz)dμ0, where Pz is the Poisson kernel for z. By Theorem 4.3 and the
Radon–Nikodym theorem, the space of measures on X absolutely continuous
to μ0 can be identified with L1(dθ/2π ), and thus there is no real danger in
regarding Pz dθ/2π as a measure on X.

When A is a uniform algebra on a compact Hausdorff space Y, we write A⊥
for the space of finite complex Borel measures ν on Y which are orthogonal
to A,

∫

Y
f dν = 0, all f ∈ A.

Similarly, if m ∈ MA and if Am = { f ∈ A : f (m) = 0} is the corresponding
maximal ideal, then A⊥

m = {ν :
∫

f dν = 0, all f ∈ Am}. In particular, if
H∞

0 = { f ∈ H∞ : f (0) = 0}, then by Theorem 4.3 and the F. and M. Riesz
theorem, {ν ∈ (H∞

0 )⊥ : ν � μ0} can be identified with the space H 1.

Theorem 4.4. Let A be a uniform algebra on a compact Hausdorff space
Y and let m ∈ MA. Assume m has a unique representing measure μ on Y. If
ν ∈ A⊥

m and if ν = νa + νs is the Lebesgue decomposition of ν with respect to
μ, then νa ∈ A⊥

m and νs ∈ A⊥.

This is a generalization of the F. and M. Riesz theorem. However, even in
the case A = H∞ we cannot conclude that νs = 0 as we can with the classical
Riesz theorem. We can only obtain the weaker statement

∫
dνs = 0. For the

proof we need the following lemma:

Lemma 4.5. Assume m ∈ MA has unique representing measure μ on Y. Let
E ⊂ Y be an Fσ set such that μ(E) = 0. Then there are fn ∈ A such that
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(i) ‖ fn‖ ≤ 1,
(ii) fn(y) → 0, y ∈ E , and

(iii) fn → 1, almost everywhere dμ.

Proof. We need a preliminary observation. If u ∈ C�(Y ) then

sup{Re m( f ) : f ∈ A, Re f < u} = inf{Re m( f ) : f ∈ A, Re f > u}(4.3)

=
∫

u dμ.

To establish (4.3), consider the positive linear functional on Re A defined by

Re f → Re m( f ).

Each representing measure for m is a positive extension of this functional
to C�(Y ). By the proof of the Hahn–Banach theorem, this functional has a
positive extension whose value at u is any number between the supremum and
the infimum in (4.3). So when the representing measure is unique, we must
have equality in (4.3).

Write E = ⋃
En , with En compact and En ⊂ En+1. Take un ∈ C�(Y ) such

that

un(y) < 0, un(y) > n, y ∈ En,∫
undμ < 1/n2.

These are possible because μ(En) = 0. By (4.3) there are gn ∈ A such that

Re gn > un, Re gn(m) < 1/n2, Im gn(m) = 0.

Let fn = e−gn , then (i) holds for fn because Re gn > un > 0, and (ii) holds
because | fn(y)| ≤ e−un (y) < e−n, y ∈ En to prove (iii), note that

∫
|1 − fn|2dμ = 1 +

∫
| fn|2dμ − 2 Re fn(m)

≤ 2 − 2 Re e−gn (m)

≤ 2(1 − e−1/n2

) ≤ 2/n2,

because fn(m) = e−gm (m). Therefore fn → 1 almost everywhere dμ.

Proof of Theorem 4.4. Since νs is singular to μ there is an Fσ set E ⊂ Y such
that μ(E) = 0 but such that |νs|(Y\E) = 0. Let fn be as in the lemma and let
dνn = fn dν. Because Am is an ideal we have νn ∈ A⊥

m . By the lemma and by
dominated convergence νn converges weak-star to νa = ν − νs. Hence νa ∈ A⊥

m
and νs = ν − νa ∈ A⊥

m . Finally, by assertion (iii) of the lemma, fn(m) → 1, and
by assertion (ii),

∫
dνs = lim

∫
( fn(m) − fn)dνs = 0.

Therefore νs ∈ A⊥.
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As an application of Theorem 4.4, we reprove a result from Section 4,
Chapter IV: Let h0 ∈ L∞\H∞. If ‖h0 + H∞‖ < 1, there exists F ∈ H 1, F �=
0, such that

F/|F | ∈ h0 + H∞.(4.4)

Proof. As in the proof of Theorem IV.4.4, we choose h ∈ h0 + H∞, ‖h‖ = 1,
such that

∣
∣
∣
∣

1

2π

∫
h dθ

∣
∣
∣
∣ = sup

{∣
∣
∣
∣

1

2π

∫
g dθ

∣
∣
∣
∣ : g ∈ h0 + H∞, ‖g‖ ≤ 1

}

,

and we observe that dist(h, H∞
0 ) = 1 while dist (h, H∞) < 1. By duality there

are Fn ∈ H 1, ‖Fn‖1 ≤ 1, such that
∫

hFn
dθ

2π
→ 1(4.5)

but such that

inf
n

|Fn(0)| > 0.(4.6)

Let dνn = S(Fn)dμ0. Then νn ∈ (H∞
0 )⊥ and ‖νn‖ ≤ 1. Let ν be a weak-star

cluster point of {νn}. Then ν ∈ (H∞
0 )⊥, and by Theorem 4.4, dν = S(F) dμ0 +

dνs where F ∈ H 1 and νs ∈ (H∞)⊥. By (4.6), F �≡ 0, because
∫

dν �= 0, but∫
dνs = 0. We also have ‖ν‖ ≤ 1 and

∫
h dν = 1, by (4.5), so that ‖ν‖ = 1 and∫

h dν = ∫ |dν| = 1. Because νs singular to μ0, that means
∫

h dνa = ∫ |dνa|.
But then

∫
hF

dθ

2π
=

∫
|F | dθ

2π
,

so that h = F̄/|F | and (4.4) holds.

A word of caution. Because (H∞)⊥ contains measures singular to all repre-
senting measures (see Exercise 17), there is a dangerous curve in the above rea-
soning. Only because of (4.6) could we conclude that νa �= 0. In general, it can
happen that every weak-star cluster point of a sequence S(Fn) dμ0, Fn ∈ H 1,
is singular to μ0. In that case Fn(z) → 0, |z| < 1 (see Exercise 18 and Example
1.5, Chapter IV). However, there are some positive results along these lines
(see Gamelin [1973, 1974] and Bernard, Garnett, and Marshall [1977]).

5. The Space L1/H1
0

H∞ is the dual space of L1/H 1
0 , since H∞ = { f ∈ L∞ :

∫
f F dθ = 0, F ∈

H 1
0 }. The elements of L1/H 1

0 are the most useful linear functionals on H∞
because they have the concrete representation as integrable functions on T. In
this section we prove three theorems about the predual L1/H 1

0 .
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A closed subset P ⊂ X is a peak set for H∞ if there is f ∈ H∞ such that
f̂ ≡ 1 on P and | f̂ | < 1 on X\P . Our starting point is an elegant lemma of
Amar and Lederer [1971].

Lemma 5.1. Let ν be a finite complex Borel measure on X. Assume ν is
singular with respect to μ0. For any ε > 0 there is a peak set P ⊂ X such that
μ0(P) = 0 but such that |ν|(X\P) < ε.

Proof. By hypothesis, the total variation |ν| is singular to μ0 and there is a
compact set K ⊂ X such that

μ0(K ) = 0 and |ν|(X\K ) < ε.

Because the open–closed sets form a base for the topology of X, we can find
open–closed subsets Vn of X such that K ⊂ Vn+1 ⊂ Vn and such that

∑
nμ0(Vn) < ∞.(5.1)

Let un = nχVn . Since Vn is open–closed there is a measurable set En ⊂ T such
that Vn = {χ̂En = 1}, and we can think of un as an L∞ function, or better yet,
as the bounded harmonic function un(z) = n

∫
En

Pz(θ )dθ/2π . Let

gn(z) = un(z) + i ũn(z), G(z) =
∞∑

n=1

gn(z).

Then by (5.1), G(z) is a finite analytic function on D and Re G(z) > 0. Then

f (z) = G(z)

1 + G(z)

is in H∞, ‖ f ‖∞ ≤ 1, and

|1 − f (z)| =
∣
∣
∣
∣

1

1 + G(z)

∣
∣
∣
∣ ≤ 1

1 + un(z)
.

Consequently |1 − f (eiθ )| ≤ 1/(1 + n) almost everywhere on En , so that

|1 − f (x)| ≤ 1

1 + n
, x ∈ Vn.

The set P = {x : f (x) = 1} is a peak set, because g = (1 + f )/2 satisfies
g(x) = 1, x ∈ P , and |g(x)| < 1, x �∈ P . Moreover we have K ⊂ P because⋂

Vn ⊂ P , and hence

|ν|(X\P) ≤ |ν|(X\K ) < ε.

Theorem 5.2. (Mooney). Let {ϕn} be a sequence of integrable functions such
that

lim
n→∞

∫
f ϕn

dθ

2π
= L( f )
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exists for all f ∈ H∞. Then there exists ϕ ∈ L1 such that

L( f ) =
∫

f ϕ
dθ

2π
, f ∈ H∞.(5.2)

A linear functional on H∞ is called weakly continuous if it has the repre-
sentation (5.2). If F ∈ H 1

0 , then

∫
f (ϕ + F)

dθ

2π
=

∫
f ϕ

dθ

2π
, f ∈ H∞,

and so the set of weakly continuous linear functionals corresponds naturally to
L1/H 1

0 . Thus the theorem asserts that every weak Cauchy sequence in L1/H 1
0

has a weak limit in L1/H 1
0 . In other words, L1/H 1

0 is weakly sequentially
complete. The weak completeness of L1 has been established much earlier
(see Dunford and Schwartz [1958, p. 298]).

Proof. Write

Ln( f ) =
∫

f ϕn
dθ

2π
, f ∈ H∞.

By the uniform boundedness principle, supn ‖Ln‖ < ∞, and the limit L is a
bounded linear functional on H∞. By the Hahn–Banach theorem there is a
finite complex measure σ on X such that

L( f ) =
∫

f dσ, f ∈ H∞.

Write dσ = � dμ0 + dσs, with � ∈ L1(μ0) and σs singular to μ0. Then by
Theorem 4.3 there is ϕ ∈ L1 such that

∫
f � dμ0 =

∫
f ϕ

dθ

2π
, f ∈ L∞.

We are going to show that σs ∈ (H∞)⊥. This will mean that

L( f ) =
∫

f � dμ0 =
∫

f ϕ
dθ

2π
, f ∈ H∞,

which is the assertion of the theorem. Replacing ϕn by ϕn − ϕ, we assume that

L( f ) =
∫

X
f dσs, f ∈ H∞.

Suppose σs �∈ (H∞)⊥. Then there exists g ∈ H∞ such that
∫

g dσs �= 0.
Applying Lemma 5.1 with dν = g dσs, we get a peak set P ⊂ X such that

μ0(P) = 0
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but such that

ν(P) =
∫

P
g dσs �= 0.

Let f ∈ H∞ be a function peaking on P. Then

lim
k→∞

∫
f kdν = ν(P) �= 0,(5.3)

and

lim
k→∞

∫
f k gϕn

dθ

2π
= 0, n = 1, 2, . . .(5.4)

(because μ0(P) = 0 and f k(x) → 0, x ∈ X\P). On the other hand, we have

lim
n→∞

∫
f k gϕn

dθ

2π
= L( f k g) =

∫
f kdν.(5.5)

Inductively, we shall choose n j → ∞ and m j → ∞ in such a way that

h(z) =
∞∑

j=1

(−1) j f m j (z) ∈ H∞(5.6)

but such that {Ln j (hg)} does not converge. That will give a contradiction,
thereby proving the theorem.

Fix ε > 0. Take n1 = 1 and choose m1 so that
∣
∣
∣
∣

∫
f m1 gϕn1

dθ

2π

∣
∣
∣
∣ < ε and

∣
∣
∣
∣

∫
f m1 dν − ν(P)

∣
∣
∣
∣ <

ε

2
.

These are possible by (5.4) and (5.3). Assuming n1, . . . , nk−1 and
m1, . . . , mk−1 have been chosen, and writing

Lnk

(
k∑

j=1

(−1) j f m j g

)

=
k−1∑

j=1

∫
(−1) j f m j gϕnk

dθ

2π
+ (−1)k

∫
f mk gϕnk

dθ

2π

= Ak + Bk,

we first pick nk > nk−1 so that
∣
∣
∣
∣
∣
Ak −

k−1∑

j=1

(−1) j
∫

X
f m j dν

∣
∣
∣
∣
∣
< ε.(5.7)

This is possible because of (5.5). Having fixed nk , we then use (5.3) and (5.4)
to choose mk so that

|Bk | < ε
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and so that
∣
∣
∣
∣

∫
f mk dν − ν(P)

∣
∣
∣
∣ < ε.(5.8)

Notice that (5.7) and (5.8) imply

|Ak − Ak+1| ≥ ν(P) − 3ε.(5.9)

Since | f (z)| < 1, z ∈ D, and since μ0(P) = 0, we can make mk increase so
fast that (5.6) holds and so that by (5.4)

Ck =
∫ ∞∑

j=k+1

(−1) j f m j gϕnk

dθ

2π

satisfies |Ck | < ε, k = 1, 2, . . . . But then

Lnk (hg) = Ak + Bk + Ck,

and by (5.9)

|Lnk (hg) − Lnk+1
(hg)| ≥ (ν(P) − 3ε) − (|Bk | + |Bk+1| + |Ck | + |Ck+1|)

≥ ν(P) − 7ε.

Taking ε < ν(P)/7 now gives a contradiction.

Theorem 5.3. Let L be a bounded linear functional on H∞. Then the fol-
lowing conditions are equivalent:

(a) L is weakly continuous, there is ϕ ∈ L1 such that

L( f ) =
∫

f ϕ
dθ

2π
, f ∈ H∞,

(b) L is continuous under bounded pointwise convergence: If gn ∈
H∞, ‖gn‖ ≤ M and if gn(z) → g(z), z ∈ D, then L(gn) → L(g),

(c) If hk ∈ H∞ and if

∑
|hk(eiθ )| ≤ M < ∞(5.10)

almost everywhere, then

L
(∑

hk

)
=

∑
L(hk).(5.11)

Note that by (5.10),
∑

hk is a well-defined function in H∞.

Proof. It is clear that (a) implies (b). If ‖gn‖ ≤ M and if gn(z) → g(z), then
the only weak-star accumulation point of the sequence {gn} in L∞ = (L1)∗
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is g, because Poisson kernels are in L1. By the Banach–Alaoglu theorem, this
means gn → g weak-star, so that

∫
gnϕ dθ → ∫

gϕ dθ .
Trivially, (b) implies (c), because if (5.10) holds, the partial sums gn =∑n
k=1 hk(z) converge pointwise and boundedly to

∑∞
k=1 hk .

Now suppose L satisfies (c). Represent L by a measure σ on the space X and
write dσ = � dμ0 + dσs, with dσs singular to dμ0. Subtracting �dμ0, we
can assume σ = σs. Our task is to then use (c) to prove that σ ∈ (H∞)⊥.

Suppose there is g ∈ H∞ such that
∫

g dσ �= 0. Set dν = g dσ and choose
a peak set P ⊂ X such that μ0(P) = 0 but

|ν|(X\P) <

∣
∣
∣
∣

∫
g dσ

∣
∣
∣
∣(5.12)

by using Lemma 5.1. Let f ∈ H∞ be a function peaking on P. Replacing f by
1 − (1 − f )1/2, also a peaking function, we can assume that f has range in a
cone with vertex at 1, so that almost everywhere

| f (eiθ ) − 1|
1 − | f (eiθ )| ≤ A < ∞.

Define h0 = g, h j = f j g − f j−1g, j ≥ 1. Then
∑

h j = 0, while

∞∑

j=0

|h j | ≤ |g| + |g|
∞∑

j=1

| f | j−1| f − 1|

≤ |g|
( | f − 1|

1 − | f |
)

≤ A‖g‖∞ < ∞,

almost everywhere. But since f = 1 on P, dominated convergence yields

∞∑

j=1

L(h j ) =
∫

X\P

∞∑

j=1

f j−1(1 − f )g dσ =
∫

X\P
g dσ

so that by (5.12)
∣
∣
∣
∣
∣

∞∑

j=1

L(h j )

∣
∣
∣
∣
∣
≤ |ν|(X\P) <

∣
∣
∣
∣

∫
g dσ

∣
∣
∣
∣ .

Hence
∣
∣
∣
∣
∣

∞∑

j=0

L(h j )

∣
∣
∣
∣
∣
≥

∣
∣
∣
∣

∫
g dσ

∣
∣
∣
∣ − |ν|(X\P) > 0,

which contradicts (5.11).

Theorem 5.4. Let E be a complex Banach space with dual space E∗. If E∗ is
isometrically isomorphic to H∞, then E is isometrically isomorphic to L1/H 1

0 .
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In other words, H∞ has a unique isometric predual. The Banach space l1

does not have a unique isometric predual (see Bessaga and Pelczynski [1960]).

Proof. By hypothesis, there is a linear mapping T from H∞ into E∗ which
is isometric, ‖T ( f )‖E∗ = ‖ f ‖∞. The adjoint T ∗ : E∗∗ → (H∞)∗ maps E ⊂
E∗∗ isometrically onto the closed subspace T ∗(E) of (H∞)∗. We shall show
T ∗(E) coincides with L1/H 1

0 by verifying condition (c) of Theorem 5.3 for
L = T ∗(ϕ), ϕ ∈ E .

Suppose {hk} ⊂ H∞ satisfies (5.10) and let h = ∑∞
k=1 hk . By (5.10) and by

the logmodular property there is h0 ∈ H∞ such that

|h0| +
∞∑

k=1

|hk | = M + 1.(5.13)

Let ϕ∗ be any weak-star cluster point of bounded sequence {∑n
1 T (hk)} in E∗.

We shall be done provided we can show ϕ∗ = T (h), because we should then
have

L(h) = lim
n→∞

n∑

1

L(hk)

whenever L = T ∗(ϕ), ϕ ∈ E .
For any choice of constants {εk}, |εk | = 1, k = 1, 2, . . . , we have
∥
∥
∥
∥
∥

N∑

0

εk T (hk) + ϕ∗ −
N∑

1

T (hk)

∥
∥
∥
∥
∥

E

≤ lim
n→∞

∥
∥
∥
∥
∥

N∑

0

εk T (hk) +
n∑

N+1

T (hk)

∥
∥
∥
∥
∥

E

= lim
n→∞

∥
∥
∥
∥
∥

N∑

0

εkhk +
n∑

N+1

hk

∥
∥
∥
∥
∥

≤ M + 1,

because T is an isometry. Hence
∥
∥
∥
∥
∥

N∑

0

εkhk + T −1(ϕ∗) −
N∑

1

hk

∥
∥
∥
∥
∥

≤ M + 1,

and if for each eiθ we choose εk adroitly, we obtain

N∑

0

|hk(eiθ )| +
∣
∣
∣
∣
∣
T −1(ϕ∗)(eiθ ) −

N∑

1

hk(eiθ )

∣
∣
∣
∣
∣
≤ M + 1

almost everywhere. From (5.13) we conclude that

T −1(ϕ∗) =
∞∑

1

hk = h

almost everywhere, so that ϕ∗ = T (h).
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We have based the results in this section on Lemma 5.1 to illustrate the
power and beauty of the abstract techniques. These results can also be obtained
by classical methods which are perhaps easier and more informative. See
Exercises 19 and 20, for example.

Notes

The books of Browder [1969], Gamelin [1969], and Stout [1971] pro-
vide much more complete discussions of general uniform algebra theory,
and Hoffman [1962a] gives more details on the spectrum of L∞ and on the
fibers Mζ .

See Kelley [1955] for a different approach to Stone–Čech compactifica-
tions. The proof of Theorem 1.5 is from Hörmander [1966]. Theorem 2.1
is from Douglas and Rudin [1969]; the corresponding result for C(T ) was
noted in Helson and Sarason [1967]. Newman proved Theorem 2.2 in [1959b],
where he rediscovered a slightly weaker form of Frostman’s Theorem. Corol-
lary 2.4 is due to Fisher [1968]. See also Phelps [1965], Rudin [1969], and
Fisher [1971]. Theorem 2.5 was first published by Marshall in [1976a]. The
paper of Bernard, Garnett, and Marshall [1977] contains some generaliza-
tions and further references, as well as Bernard’s proof of Theorem 2.3. In
Marshall’s thesis [1976c] some of the ideas of Section 2 are carried further.
Analytic discs were first embedded in the fibers of M in the paper of Schark
[1961].

In Section 4 we have only touched the surface of the general theory of
abstract Hardy spaces. See Hoffman [1962b], Gamelin [1969], Lumer [1969],
Stout [1971], and the references therein, for the complete picture. The idea
of using the proof of the Hahn–Banach theorem, as in Lemma 4.5 and as in
Chapter IV, Theorem 4.3, comes from Lumer [1965].

See Amar and Lederer [1971] for Lemma 5.1 Mooney [1973] gave the first
proof of Theorem 5.2. The proof in the text is from Amar [1973]; the sliding
hump idea was introduced into this context by Kahane [1967]. Havin [1973]
published a more elementary proof outlined in Exercise 20. The implication
(c) ⇒ (a) in Theorem 5.3 is from Barbey [1975], and Theorem 5.4 is due to
Ando [1977]. See Havin [1974], Chaumat [1978], and Pelczynski [1977] for
more information on L1/H 1

0 .
The Banach space structure of H∞ is not yet well understood. In particular,

it is not known if H∞ has the Banach approximation property. That is, does
there exist a net {Tα} of bounded linear operators on H∞ such that Tα has fi-
nite dimensional range and such that ‖Tα f − f ‖∞ → 0 uniformly on compact
subsets of H∞? Cesàro means give the analogous result for weak-star conver-
gence and for norm convergence on the disc algebra. See Pelczynski [1977]
for details and for related open questions. Theorem 2.5 might be helpful for
this problem.
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Exercises and Further Results

1. The set A−1 of invertible elements of a Banach algebra with unit is
an open set on which f → f −1 is continuous. In fact, f → f −1 is analytic,
that is, it has a norm convergent power series expansion in a ball about each
f ∈ A−1.

2. Let A be the algebra of absolutely convergent Fourier series

f (eiθ ) =
∞∑

−∞
aneinθ

such that

‖ f ‖ =
∞∑

−∞
|an| < ∞.

With the pointwise multiplication of functions,

( f g)(eiθ ) = f (eiθ )g(eiθ ),

A is a commutative Banach algebra with unit.
(a) Prove that MA can be identified with the unit circle in the natural way.
(b) If f (eiθ ) has absolutely convergent Fourier series and if f (eiθ ) is

nowhere zero, then 1/ f has absolutely convergent Fourier series. This re-
sult is due to Wiener. Gelfand’s proof, using part (a) and Theorem 1.2, drew
considerable attention to Banach algebra theory.

(c) The range of the Gelfand map is not closed in C(T ). In particular, A is
not a uniform algebra under any equivalent norm.

(d) Obtain similar results for the algebra of absolutely convergent Taylor
series

f =
∞∑

n=0

λnzn, ‖ f ‖ =
∞∑

n=0

|λn|.

3. Let m1, m2, . . . , mn be distinct points in the spectrum of a Banach
algebra A and let α1, α2, . . . , αn be distinct complex numbers. Then there is
f ∈ A such that f̂ (m j ) = α j , j = 1, . . . , n.

4. If A is a Banach algebra and f ∈ A, then

‖ f̂ ‖ = lim
n→∞ ‖ f n‖1/n.

In particular, the limit exists. This is called the spectral radius formula.

5. The maximal ideal space of C(Y ) is Y. More generally, let A be a
uniform algebra and say f ∈ A is real if f − λ ∈ A−1 whenever Im λ �= 0. If
the real elements of A separate the points of MA, then A = C(MA).
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6. A sequence {pn} in the spectrum of a uniform algebra A is called an
interpolating sequence if

f (pn) = αn, n = 1, 2, . . . ,

has solution f ∈ A whenever {αn} ∈ l∞. If {pn} is an interpolating sequence,
then the mapping n → pn extends to define a homeomorphism from β� into
the closure of {pn} in MA. (See the proof of Theorem 1.4.)

7. Let A be a uniform algebra with maximal ideal space MA. Then A is
separable if and only if MA is metrizable.

8. Let X be the maximal ideal space of L∞.
(a) X is not metrizable. (Use Exercise 7 above.)
(b) X is extremely disconnected, that is, if U is an open subset of X, its

closure U is also open. This holds because every bounded subset of L∞
� has a

least upper bound.
(c) For |ζ | = 1, let Xζ = {m ∈ X : m(z) = ζ } be the fiber of X over ζ . Let

f ∈ L∞. Then w ∈ f̂ (Xζ ) if and only if

|{θ : |eiθ − ζ | < ε, | f (eiθ ) − w| < ε}| > 0

for all ε > 0.
�(d) If f̂ has a zero on Xα , then f̂ = 0 on a relatively open subset of Xα

(Hoffman [1962a]).

9. (a) Let m ∈ MAo , Ao the disc algebra, and let ζ = ẑ(m) = m(z).
Then |ζ | ≤ 1. If f (ζ ) = 0, then f can be uniformly approximated by function of
the form (z − ζ )g(z), g ∈ Ao, and hence m( f ) = 0. Consequently MAo = D.

(b) Ao consists of those f ∈ C(T ) such that

1

2π

∫ n

−π

eint f (eit )dt = 0, n = 1, 2, . . . .

(c) (Wermer’s maximality theorem) Let B be a closed subalgebra of
C(T ) containing Ao. Then either B = Ao or B = C(T ). If z ∈ B−1, then
z̄ ∈ B and B = C(T ). If z /∈ B−1 then there is m ∈ MB such that m(z) = 0.
Then

m( f ) = 1

2π

∫ n

−π

f (eiθ )dθ

because the restriction of m to Ao has a unique representing measure on T.
This means B = Ao, by part (b). (See Wermer [1953] and Hoffman and Singer
[1957].)

(d) Cohen [1961] gave an elementary proof of Wermer’s theorem. If B �=
Ao, there is f ∈ B such that

1

2π

∫
eiθ f (eiθ )dθ = 1.
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Write

z f = 1 + zp + zq + h

with p, q polynomials in Ao and with ‖h‖ ≤ 1
2
. Then zq − z̄q̄ is pure imagi-

nary, so that for δ > 0,

‖1 + δ(zq − z̄q̄)‖ ≤ (1 + δ2 M2)1/2,

where M = ‖zq − z̄q̄‖. But

δz̄q̄ = δ(z f − 1 − zp) − δh = δzg − δ − δh,

where g = f − p ∈ B. Consequently,

‖(1 + δ) − z(δg − δq)‖ = ‖1 + δ(zq − z̄q̄) − δh‖ ≤ (1 + δ2 M2)1/2 + δ/2.

If δ > 0 is small, this means z(g − δq) ∈ B−1, so that z ∈ B−1 and B = C(T ).

�10. A closed subset K of the spectrum of a uniform algebra A is called a
peak set if there exists f ∈ A such that f (x) = 1, x ∈ K , but | f (x)| < 1, x ∈
MA\K .

(a) A countable intersection of peak sets is again a peak set.
(b) Suppose E is an intersection of (perhaps uncountably many) peak sets.

If g ∈ A, then there exists G ∈ A such that G = g on E and ‖G‖ = sup{|g(x)| :
x ∈ E}.

(c) Consequently, if |λ| = 1,
{

x ∈ E : g(x) = λ sup
y∈E

|g(y)|
}

is either another intersection of peak sets or the empty set.
(d) By Zorn’s lemma, MA contains sets which are minimal intersections

of peak sets. By part (c), such a set consists of a single point, called a strong
boundary point.

(e) By part (c) the closure of the set of strong boundary points is the Šilov
boundary of A.

(See Bishop [1959].)

11. In the upper half plane let zn = i + 10n, n = 1, 2, . . . . Then {zn} is an
interpolating sequence for H∞. Suppose |αn| ≤ 1. Let

f1(z) = −4
∞∑

n=1

αn

(z − z̄n)2
.

Then ‖ f1‖ ≤ A and | f1(zn) − αn| ≤ λ < 1, n = 1, 2, . . . . Repeat with

f2 = −4
∞∑

n=1

(αn − f1(zn))

(z − z̄n)2
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and continue. We obtain f = ∑∞
k=1 fk, ‖ fk‖ ≤ Aλk−1, such that f (zn) =

αn, n = 1, 2, . . . .

�12. Let Mζ be the fiber of MH∞ at ζ ∈ ∂D, and let Cl( f, ζ ) be the cluster
set of f ∈ H∞ at ζ .

(a) Then Cl( f, ζ ) ⊂ f̂ (Mζ ).

(b) If f is continuous on D ∪ {ζ }, that is, if Cl( f, ζ ) = {λ}, then f̂ (Mζ ) =
λ. (Approximate f (z) − λ by (z − ζ )g(z), g ∈ H∞.)

(c) f̂ (Mζ ) ⊂ Cl( f, ζ ). Suppose 0 /∈ Cl( f, ζ ). Then there is a disc �̃ =
{|z − ζ | < 2δ}, δ > 0, such that | f (z)| > a > 0 on D ∩ �̃. Let ϕ ∈ C∞ satisfy

ϕ = 1 on � = {|z − ζ | < δ},
ϕ = 0 off �̃,

0 ≤ ϕ ≤ 1,
∣
∣
∣
∣
∂ϕ

∂z̄

∣
∣
∣
∣ = 1

2

∣
∣
∣
∣
∂ϕ

∂x
+ i

∂ϕ

∂y

∣
∣
∣
∣ ≤ 4

δ
.

By Green’s theorem,

G(w) = ϕ(w)

f (w)
+ 1

π

∫∫

D∩�̃

1

f (z)

∂ϕ

∂z̄

dx dy

z − w

is in H∞. Inspection of the integral shows that

g(w) = G(w) − 1/ f (w)

has an analytic extension to �. Thus g is continuous at ζ . Then by (b)

f (w)(G(w) − g(ζ )) ∈ H∞

has no zeros on Mζ , so that 0 /∈ f̂ (Mζ ). This proof works on arbitrary plane
domains. (See Gamelin [1970] and Garnett [1971a]; an easier proof for the
disc is in Chapter 10 of Hoffman [1962a].)

13. Here is another proof of Theorem 2.1. It was discovered by J. P. Rosay,
and independently by D. E. Marshall. Write [ f, g] for the closed subalgebra
of L∞ generated by f and g.

(a) Let E ⊂ T, |E | > 0, and let h = exp(χE + i χ̃E ). Then there exist inner
functions u1, u2 ∈ H∞ such that

[u1, u2] = [h, 1/h].

For the proof, notice that h maps D onto the annulus {1 < |w| < e}, so that

h1 = e1/2/h + h/e1/2

maps D onto an ellipse W1. Let G1 be a conformal map from W1 onto D.
Then u1 = G1 ◦ h1 is an inner function. On W 1, G1(w) is a uniform limit

of polynomials, and hence u1 ∈ [h, 1/h]. On D̄, G−1
1 is a uniform limit of
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polynomials, and so h1 ∈ [u1]. Now

h2 = e1/2/h − h/e1/2

maps D onto another ellipse W2. If G2 is a conformal map from W2 to D, then
u2 = G2 ◦ h2 is an inner function and u2 ∈ [h, 1/h], h2 ∈ [u2]. Consequently
[u1, u2] = [h, 1/h].

(b) It follows from (a) that L∞ is the closed algebra generated by the
quotients of inner functions.

(c) Let U be a unimodular function in L∞. Write U = V 2. By part (b) there
are inner functions v and u1, . . . , un and there are complex numbers λ1, . . . , λn

such that

‖V − v̄
∑

λ j u j‖∞ < ε.

Let u = ∏
u j , g = ∑

λ j u j ∈ H∞. Then ḡu ∈ H∞ and g = v1G, ḡu = v2G,
with G outer and v1, v2 inner. Then

‖V − v̄v1G‖ < ε and ‖1/V − uv̄/v2G‖∞ < ε/(1 − ε)

so that

‖U − uv1/v
2v2‖ < 2ε/(1 − ε).

14. Let

R = { f ∈ H∞ : f̄ u ∈ H∞ for some inner function u}.

Then f ∈ R if and only if f ∈ H∞ and f (eiθ ) is the nontangential limit
of a meromorphic function from the Nevanlinna class (quotients of bounded
analytic functions) on {|z| > 1}. Indeed, if f̄ u = g ∈ H∞, then

f (eiθ ) = lim
r→1

g(1/z̄)/u(1/z̄), z = reiθ , r > 1,

almost everywhere. For the converse note that {h ∈ H 2 : f̄ h ∈ H 2} is a non-
void invariant subspace of H 2 and use Beurling’s theorem. The function ez is
not in R. (See Shapiro [1968] and Douglas, Shapiro, and Shields [1970].)

15. H∞ is not a Dirichlet algebra on X. If g(eiθ ) = θ, −π ≤ θ < π , then

inf
f ∈H∞

‖g − Re f ‖ = π

because if ‖u − g‖ < π , then the Hilbert transform of u cannot be bounded at
θ = π . See Example 1.5, Chapter IV.
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16. Because each M ∈ MH∞ has a unique representing measure μm on
X,M is homeomorphic to the weak-star compact set of probability measures
on X satisfying

∫
fg dμ =

∫
f dμ

∫
g dμ, f, g ∈ H∞.

Consequently each u ∈ L∞ has a continuous extension to M defined by

u(m) =
∫

u dμm .

On D this extension reduces to the Poisson integral representation.

�17. (a) Let m be a multiplicative linear functional on a uniform algebra
A. Then m has a representing measure μm , supported on the Šilov boundary,
for which the subharmonicity inequality

log | f (m)| ≤
∫

Y
log | f |dμm, f ∈ A,(E.1)

holds. (Proof: Let Q be the set of u ∈ C�(Y ) for which there exists α > 0 and
f ∈ A, f (m) = 1, such that

u > α log | f |.
Then Q is a convex cone in C�(Y ) containing all strictly positive functions.
But 0 /∈ Q and the separation theorem for convex sets (Dunford and Schwartz
[1958 p. 417]) yields a probability measure μ on Y such that

∫
udμ ≥ 0 for

all u ∈ Q. It follows that μ is a representing measure μm for m and that (E.1)
holds (Bishop [1963]).)

(b) Let A be a logmodular algebra on its Šilov boundary Y and let μm be
the unique representing measure on Y for m ∈ MA. Then (E.1) holds for μm .
Suppose G ∈ L1(μm) is real and orthogonal to A,

∫

Y
f G dμm = 0, f ∈ A.

Then
∫

log |1 + G|dμm ≥ 0.

Indeed, if f ∈ A−1, then by (E.1)

∫
log | f |dμm = log | f (m)| = log

∣
∣
∣
∣

∫
f (1 + G)dμm

∣
∣
∣
∣

≤ log

∫
| f ||1 + G|dμm,
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so that
∫

u dμm ≤ log

∫
eu|1 + G| dμm, u ∈ C�(Y ).

Approximating

u = − log |1 + G| +
∫

log |1 + G| dμm

by functions from C�(Y ) then yields the desired inequality.
(c) If μ is a probability measure, if G ∈ L1(μ) is real, and if

∫
log |1 + tG| dμ = 0, t ∈ �,

then G = 0 almost everywhere. On the upper half plane,

U (z) =
∫

log |1 + zG| dμ

is harmonic and nonnegative. Show that limy→∞ U (iy)/y = 0 and conclude
that U (z) = 0. Hence

∫
log(1 + G2)dμ = 0 and G = 0 almost everywhere.

(Part (c) is due to R. Arens. See Hoffman [1962b] or Stout [1971] for more
details regarding parts (b) and (c).)

(d) From (b) and (c) we see that if μm is a representing measure for a
logmodular algebra A and if ν ∈ A⊥ is real and absolutely continuous to μm ,
then ν = 0. Since H∞ is not a Dirichlet algebra, there exists a real measure ν on
X orthogonal to X . This orthogonal measure is singular to every representing
measure. It can also be chosen to be an extreme point of the compact convex
set ball (H∞)⊥ (see Glicksberg [1967]).

18. If ν ∈ (H∞)⊥, then v is singular to μ0 if and only if

∫
z̄k dν = 0, k = 1, 2, . . . .

Let {Fn} be a bounded sequence in H 1
0 . Then every weak-star cluster point of

the sequence Fn dθ in (L∞)∗ is singular to μ0 if and only if Fn(z) → 0 for all
z ∈ D. By Example 1.5, Chapter IV, such sequences do exist.

19. In Theorem 5.3 the implication (b) ⇒ (a) has an easier proof. Let
L be a linear functional on H∞, and suppose L(gn) → L(g) whenever gn ∈
H∞, ‖gn‖ ≤ M , and gn(z) → g(z), z ∈ D. Let μ be a measure on the unit
circle such that

L( f ) =
∫

f dμ, f ∈ Ao = H∞ ∩ C(T ).
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Let E ⊂ T by any closed set such that |E | = 0. Then E is a peak set for Ao. If
f ∈ A0 peaks on E then f n(z) → 0, z ∈ D, so that

0 = lim
n→∞

∫
f n dμ0 = μ(E).

Hence μ is absolutely continuous, μ = ϕ dθ/2π, ϕ ∈ L1. Now let g ∈ H∞
and take gn(z) = g(rnz), where rn increases to 1. Then L(g) = limn L(gn) =
limn

∫
gnϕ dθ/2π = ∫

gϕ dθ/2π .

20. Havin proved Theorem 5.2 using the easy part of Theorem 5.3 (or
Exercise 19 above) and a variant of Lemma 4.5, Chapter IV. Give ball(H∞)
the L1 metric, d( f, g) = ∫ | f − g|dθ/2π . In this metric ball(H∞) is complete
and the functionals

Ln( f ) = 1

2π

∫
f ϕn dθ

are continuous. By the Baire category theorem, there exists b ∈ ball(H∞) at
which L( f ) = limn Ln( f ) is continuous with respect to this metric.

Suppose fk ∈ ball(H∞) satisfy fk → 0 almost everywhere. By Theorem
5.3, part (b), it is enough to show L( fk) → 0. Fix ε > 0 and set

Ek = {eiθ : | fk(eiθ )| > ε}.
Then |Ek | → 0. Let the functions gk(z) and the constants εk → 0 be as in
Lemma 4.5, Chapter IV. Then ‖1 − gk‖1 → 0, so that

d

(
gkb + (1 − gk) fk

1 + εk
, b

)

→ 0 and d

(
gkb

1 + εk
, b

)

→ 0.

The limit functional L is linear and bounded. Consequently,

L( fk) = L(gk fk) + L(gkb + (1 − gk) fk) − L(gkb)

and

lim
k→∞

|L( fk)| = lim
k→∞

L(gk fk) ≤ ‖L‖ lim
k→∞

‖gk fk‖∞.

But since supEk
|gk | → 0 and εk → 0, we have

lim
k→∞

‖gk fk‖∞ ≤ ε,

so that limk→∞ |L( fk)| ≤ ε‖L‖ (see Havin [1973]).

�21. (a) A point x in the unit ball of a Banach space B is an exposed
point of ball(B) if there is x∗ ∈ B∗ such that ‖x∗‖ = x∗(x) = 1 but such that
|x∗(y)| < 1, for all y ∈ ball(B), y �= x . A function f ∈ H∞ is an exposed
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point of ball(H∞) if and only if ‖ f ‖ = 1 and

|{eiθ : | f (eiθ )| = 1}| > 0.

Thus not every extreme point is an exposed point. (See Fisher [1969b] and
Amar and Lederer [1971]. The case of the disc algebra is discussed in Phelps
[1965].)

(b) By part (a) and by the theorem of Bishop and Phelps [1961], { f ∈
H∞ : | f | = ‖ f ‖ on a set of positive measure} is norm dense in H∞ (Fisher
[1969b]).



VI

Bounded Mean Oscillation

The space BMO of functions of bounded mean oscillation is the real dual
space of the real Banach space H 1. As a complex Banach space, H 1 has dual
L∞/H∞

0 , and so BMO has a close connection to H∞.
Moreover, some of the ideas developed in this chapter will be important to

us later. Among these ideas we single out three.

(i) The “stopping time argument” introduced with the Calderón–Zygmund
lemma in Section 2 to prove the John–Nirenberg theorem. The same stopping
time procedure will play an incisive role in the corona construction and its
applications.

(ii) The conformal invariance of BMO. This is the real reason underlying
the frequent occurence of BMO in the function theory. Closely related to
this invariance is the invariant property of Carleson measures described in
Section 3.

(iii) The Littlewood–Paley integral formula, which permits us to replace
certain line integrals by area integrals that are easier to estimate. This method is
used in Section 4 to prove the duality theorem; it will be used again in Chapters
VIII and IX.

The chapter ends with a discussion of weighted norm inequalities for conju-
gate functions. This result is then used to obtain a sharp estimate on the distance
from f ∈ L∞

R
to Re H∞. This last section of the chapter is a little more diffi-

cult than what we have done before, and its techniques, while very important
analysis, will not be used below. Thus less experienced readers might prefer
to read further into the book before digesting Section 6.

1. Preliminaries

A measurable function ϕ(t) on R is locally integrable, ϕ ∈ L1
loc if |ϕ| is

integrable over any compact set. If ϕ ∈ L1
loc and if I is a bounded interval,

215
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write

ϕI = 1

|I |
∫

I
ϕ dt

for the average of ϕ over I. If ϕ ∈ L1
loc, and if

sup
I

1

|I |
∫

I
|ϕ − ϕI | dt = ‖ϕ‖∗ < ∞,(1.1)

where the supremum is over all bounded intervals, then we say ϕ is of bounded
mean oscillation, ϕ ∈ BMO. The bound ‖ϕ‖∗ in (1.1) is the BMO norm of ϕ.
Because constant functions have BMO norm zero, we identify ϕ ∈ BMO with
ϕ + α, α constant, and we view BMO as a subset of L1

loc/{constants}. It is then
immediate from the definition that ‖ ‖∗ is a norm on BMO.

It is not important that we subtract exactly ϕI in (1.1). Suppose that for each
bounded interval I there is a constant αI such that

1

|I |
∫

I
|ϕ − αI | dt ≤ M.(1.2)

Then trivially |ϕI − αI | ≤ M , so that ‖ϕ‖∗ ≤ 2M .
It is clear that L∞ ⊂ BMO (or more precisely, that L∞/C ⊂ BMO), and

that for ϕ ∈ L∞,

‖ϕ‖∗ ≤ sup
I

(
1

|I |
∫

1

|ϕ − ϕI |2 dx

)1/2

≤ sup
I

(
1

|I |
∫

I
|ϕ|2 dx

)1/2

≤ ‖ϕ‖∞.

Since ‖ϕ − α‖∗ = ‖ϕ‖∗, α constant, this means

‖ϕ‖∗ ≤ inf
α

‖ϕ − α‖∞.

The function log |t | is an unbounded function in BMO. If −b < a < b, then

1

b − a

∫ b

a
| log |t | − log b| dt ≤ C,

and because log |t | is an even function we conclude that log |t | ∈ BMO. In a
sense to be made more precise in Section 2, log |t | is typical of the unbounded
functions in BMO. Notice that log |t |χ{t > 0}(t) is not in BMO, because condi-
tion (1.1) fails for small intervals centered at 0.

If ϕ ∈ BMO and if I and J are intervals such that I ⊂ J, |J | ≤ 2|I |, then

|ϕI − ϕJ | ≤ 1

|I |
∫

I
|ϕ − ϕJ | dt(1.3)

≤ 2

|J |
∫

J
|ϕ − ϕJ |dt ≤ 2‖ϕ‖∗.
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Lemma 1.1. Let ϕ ∈ BMO and let I and J be bounded intervals.

(a) If I ⊂ J and |J | > 2|I |, then

|ϕI − ϕJ | ≤ c log(|J |/|I |)‖ϕ‖∗.

(b) If |I | = |J |, then

|ϕI − ϕJ | ≤ c log(2 + dist(I, J )/|I |)‖ϕ‖∗.

Proof. For part (a) let

I = I1 ⊂ I2 ⊂ · · · ⊂ In = J,

where |Ik+1| ≤ 2|Ik | and where n ≤ c log(|J |/|I |). Then (1.3) gives

|ϕI − ϕJ | ≤ 2n‖ϕ‖∗ = c log(|J |/|I |)‖ϕ‖∗.

Part (b) follows from part (a) by letting K be the smallest interval containing
I and J and by comparing each of ϕI and ϕJ separately to ϕK .

Theorem 1.2. Let ϕ ∈ L1
loc. Then ϕ ∈ BMO if and only if

∫ |ϕ(t)|
1 + t2

dt < ∞(1.4)

and

sup
Imz>0

∫
|ϕ(t) − ϕ(z)|Pz(t)dt = A < ∞,(1.5)

where ϕ(z) = ∫
Pz(t)ϕ(t) dt is the Poisson integral of ϕ. There are constants

c1 and c2 such that

c1‖ϕ‖∗ ≤ A ≤ c2‖ϕ‖∗,

where A is the supremum in (1.5).

Condition (1.4) implies that
∫ |ϕ(t)|Pz(t)dt < ∞, so that ϕ(z) exists at each

point of H . Condition (1.5) is very similar to the definition (1.1) of BMO. The
only difference is that the Poisson kernel is used in (1.5) while the box kernel
(1/2y)χ{|t−x |<y}(t) appears in (1.1).

Proof. Suppose ϕ satisfies (1.4) and (1.5). Let I be a bounded interval, and
let z = x + iy, where x is the center of I and y = 1

2
|I |. Then

χI (t)

|I | ≤ π Py(x − t),

and by (1.5),

1

|I |
∫

I
|ϕ(t) − ϕ(z)|dt ≤ π A.

By (1.2) this means ‖ϕ‖∗ ≤ 2π A.
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Now assume ϕ ∈ BMO and let z = x + iy ∈ H . Let I0 be the interval {|t −
x | < y} and let Ik be the interval {|t − x | < 2k y}, k = 1, 2, . . . . Then |Ik | =
2k+1y and

Pz(t) ≤ C/y, t ∈ I0,

Pz(t) ≤ C/22k y, t ∈ Ik\Ik−1.

Also, Lemma 1.1 gives

|ϕIk − ϕI0
| ≤ ck ‖ϕ‖∗.

Consequently,

∫
|ϕ(t) − ϕI0

|Pz(t) dt ≤ c

y

∫

I0

|ϕ − ϕI0
| dt +

∞∑

k=1

c

22k y

∫

Ik\Ik−1

|ϕ − ϕIk | dt

+
∞∑

k=1

c

22k y

∫

Ik\Ik−1

|ϕIk − ϕI0
| dt

≤ 2c‖ϕ‖∗ +
∞∑

k=1

2c

2k
‖ϕ‖∗ +

∞∑

k=1

ck

2k
‖ϕ‖∗,

and hence
∫

|ϕ − ϕI0
|Pz(t) dt ≤ C‖ϕ‖∗.

This clearly implies (1.4). Moreover, this shows |ϕ(z) − ϕI0
| ≤ C‖ϕ‖∗ and

hence
∫

|ϕ − ϕ(z)|Pz(t) dt ≤ 2C‖ϕ‖∗.

There is also a BMO space of functions on the circle T. We shall immediately
see that this space is the image of BMO(R) under a conformal transformation.
Let ψ ∈ L1(T ). We say ψ ∈ BMO(T ) if

sup
I

1

|I |
∫

I
|ψ − ψI |dθ/2π = ‖ψ‖∗ < ∞,

where I denotes any arc on T, |I | = ∫
I dθ/2π is the length of I, and

ψI = 1

|I |
∫

I
ψ dθ/2π

is the average of ψ over I. The proof of Theorem 1.2 shows that

sup
z∈D

∫
|ψ(θ ) − ψ(z)|Pz(θ ) dθ/2π = B,(1.6)
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where ψ(z) = ∫
ψ Pzdθ/2π , defines an equivalent norm on BMO(T). That is,

c1‖ψ‖∗ ≤ B ≤ c2‖ψ‖∗(1.7)

for constants c1 and c2 (not necessarily the same as the constants in Theorem
1.2). Map D to the upper half plane by

z(w) = i
1 − w

1 + w
, w ∈ D.

For w = eiθ , θ �= π , write t(θ ) = z(w). Then as in Chapter I, Section 3,

Pw0
(θ )dθ/2π = Pz0

(t) dt

when z0 = z(w0), |w0| < 1. Consequently, if ϕ ∈ L1
loc(R) and if ψ(θ ) =

ϕ(t(θ )), then comparing (1.5) and (1.6) we see that ϕ ∈ BMO(R) if and only
if ψ ∈ BMO(T ). We also see that

c1‖ϕ‖∗ ≤ ‖ψ‖∗ ≤ c2‖ϕ‖∗(1.8)

for some constants c1 and c2.

Corollary 1.3. Under the conformal mapping

z = i
1 − w

1 + w
, |w| < 1,

BMO (R) and BMO(T ) are transformed into each other. The norms of ϕ ∈
BMO(R) and its image ψ ∈ BMO(T ) are related by (1.8).

Condition (1.6) also says that BMO(T) has an equivalent norm invariant
under Möbius transformations.

Corollary 1.4. Let ψ ∈ L1(T ) and let τ (z) be a Möbius transformation. Then
ψ ∈ BMO(T ) if and only if ψ◦τ ∈ BMO(T ). There is a constant C independent
of τ such that

‖ψ ◦ τ‖∗ ≤ C‖ψ‖∗.

Moreover, there are constants c1 and c2 such that

c1‖ψ‖∗ ≤ sup
τ

∫
|ψ◦τ − ψ◦τ (0)|dθ/2π ≤ c2‖ψ‖∗,(1.9)

where

ψ◦τ (0) =
∫

ψ◦τ dθ/2π.

Proof. Let

‖ψ‖′
∗ = sup

z∈D

∫
|ψ − ψ(z)|Pz(θ ) dθ/2π.
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By (1.6) and (1.7), ‖ψ‖′
∗ is an equivalent norm on BMO(T). Now the trans-

formation rule (3.1) from Chapter I shows that

‖ψ◦τ‖′
∗ = ‖ψ‖′

∗

for every Möbius transformation τ . That means ‖ψ◦τ‖∗ ≤ C‖ψ‖∗. The same
transformation rule also shows that

‖ψ‖′
∗ = sup

τ

∫
|ψ◦τ − ψ◦τ (0)|dθ/2π,

and hence (1.9) holds.

It is useful to interpret BMO in the following way. By (1.9) ψ ∈ BMO if
and only if the distances

inf
α

‖ψ◦τ − α‖L1(T )

have a bound not depending on the Möbius transformation τ . In this way ‖ ‖′
∗

can be viewed as a conformal invariant version of the norm of the quotient
space L1(T )/C. The conformal invariance of this norm suggests that BMO is
more closely related to L∞ than it is to any other L p space, p < ∞. These
observations also hold for BMO(R). Indeed, (1.5) shows that the norm on BMO
is not seriously increased by the mapping ϕ → ϕ◦τ , when τ (t) = (t − x)/y is a
conformal self-map ofH that fixes the point of ∞. The invariance of BMO (R)
under the full group of conformal self-maps of H follows from Corollaries 1.3
and 1.4. It can also be proved directly by examining ϕ(−1/t), ϕ ∈ BMO(R).

Theorem 1.5. If ϕ ∈ L∞, then the conjugate function ϕ̃ is in BMO, and

‖ϕ̃‖∗ ≤ C‖ϕ‖∞,

for some universal constant C.

Proof. Because of Corollary 1.3 it makes no difference whether we prove the
theorem on the line or on the circle. On the circle the proof is quite transparent if
we use Corollary 1.4. Let τ be any Möbius transformation. The normalization
ψ̃(0) = 0 in the definition of the conjugate function means that

(ψ◦τ )˜= ψ̃◦τ − ψ̃(τ (0)).

Parseval’s theorem and Hölder’s inequality then give

∫
|ψ̃◦τ (θ ) − ψ̃(τ (0))| dθ

2π
≤

{∫
|ψ̃◦τ (θ ) − ψ̃(τ (0))|2 dθ

2π

}1/2

≤
{∫

|ψ̃◦τ |2 dθ

2π

}1/2

≤ ‖ψ◦τ‖∞ = ‖ψ‖∞.

By (1.9) we obtain ‖ψ̃‖∗ ≤ C‖ψ‖∞.
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The real-variables proof of Theorem 1.5 is also instructive. We give the
argument on the line.

Let ϕ ∈ L∞(R) and let I be a fixed bounded interval on R. Let J = Ĩ be the
interval concentric with I having length |J | = 3|I |. Write ϕ = ϕ1 + ϕ2, where

ϕ1 = ϕχJ , ϕ2 = ϕ − ϕχJ .

Writing

Hϕ1(x) = lim
ε→0

1

π

∫

|x−t |>ε

ϕ1(t)

x − t
dt,

Hϕ2(x) = 1

π

∫

R\J
ϕ2(t)

(
1

x − t
− 1

x0 − t

)

dt,

when x ∈ I and x0 is the center of I, we have

ϕ̃ = Hϕ1 + Hϕ2 + c, x ∈ I,

where c is some unimportant constant depending on I. By (1.10) of Chapter III
and Hölder’s inequality,

1

|I |
∫

I
|Hϕ1|dx ≤

{
1

|I |
∫

I
|Hϕ1|2 dx

}1/2

≤ 1

|I |1/2
‖ϕ1‖2

≤
( |J |

|I |
)1/2

‖ϕ1‖∞ ≤ 31/2‖ϕ‖∞.

When x ∈ I and t �∈ J ,
∣
∣
∣
∣

1

x − t
− 1

x0 − t

∣
∣
∣
∣ ≤ C |I |

|x0 − t |2 ,

so that for x ∈ I ,

|Hϕ2(x)| ≤ C |I |
π

∫

R\J

|ϕ(t)|
|t − x0|2 dt ≤ C‖ϕ‖∞.

Consequently,

1

|I |
∫

I
|Hϕ2(x)|dx ≤ C‖ϕ‖∞,

and by (1.2) we see that ‖ϕ̃‖∗ ≤ (31/2 + C)‖ϕ‖∞.
Let σ be a finite signed measure on the upper half plane. The balayage or

sweep of σ is the function

Sσ (t) =
∫

Pz(t) dσ (z).
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Fubini’s theorem shows that Sσ (t) exists almost everywhere and that
∫

|Sσ (t)| dt ≤
∫

d|σ | = ‖σ‖.

The operator S is the adjoint of the operator f → f (z) = ∫
f (t)Pz(t) dt , since

if f ∈ L∞ (R), Fubini’s theorem gives
∫

f (z)dσ (z) =
∫

f (t)Sσ (t) dt.

Now let σ be a finite signed measure whose total variation |σ | is a Carleson
measure:

|σ |(Q) ≤ N (σ )h,(1.10)

where Q = {x0 < x < x0 + h, 0 < y < h}. Theorem II.3.9, on Carleson mea-
sures, then shows that

∣
∣
∣
∣

∫
f (t)Sσ (t) dt

∣
∣
∣
∣ ≤ N (σ )‖ f ‖H 1

whenever f ∈ H 1, but this as yet does not tell us much about the function
Sσ (t).

Theorem 1.6. If σ is a finite measure on the upper half plane and if |σ | is a
Carleson measure, then Sσ ∈ BMO and

‖Sσ‖∗ ≤ C N (σ ),

where N (σ ) is the constant in (1.10) and where C is some universal constant.

Proof. The argument is very similar to the real-variables proof of Theorem
1.5. Writing σ = σ+ − σ−, where |σ | = σ+ + σ−, σ+ ≥ 0, σ− ≥ 0, we can
suppose σ ≥ 0. Let I0 be a fixed interval and let In be the concentric interval
with length |In| = 2n|I0|, n = 1, 2, . . . . Let Qn be the square with base In:

Qn = {z : x ∈ In, 0 < y < |In|}.
Then

∫

I0

∫

Q1

Pz(t)dσ (z) dt ≤ σ (Q1) ≤ 2N (σ )|I0|.

For z ∈ Qn\Qn−1, n ≥ 2, and t ∈ I0, t0 ∈ I0, we have

|Pz(t) − Pz(t0)| ≤ c

22n|I0| .

Hence
∫

I0

∣
∣
∣
∣

∫

Qn\Qn−1

(Pz(t) − Pz(t0))dσ (z)

∣
∣
∣
∣ dt ≤ cσ (Qn)

22n
≤ cN (σ )|I0|

2n
.
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Summing, we see that by (1.2),

1

|I0|
∫

I0

|Sσ − (Sσ )I0
| dt ≤ C N (σ )

and ‖Sσ‖∗ ≤ C N (σ ).

In Theorem 1.6 we have assumed that |σ | is finite only so that we can be
sure that Sσ exists. The theorem is also true if |σ | is infinite but if

|σ |({y > y0}) = 0

for some y0. However, some hypothesis is required if the balayage defining
Sσ is to converge. If σ = ∑

2nδ2nl , then Sσ ≡ ∞.
The main theorem about BMO states that BMO is the dual space of the real

Banach space H 1. This theorem implies that every ϕ ∈ BMO has the form

ϕ = f + Hg, f, g ∈ L∞,

and thus gives the converse of Theorem 1.5. This theorem will be proved in
Section 4 after we discuss the John–Nirenberg theorem and introduce some
important quadratic integrals. Theorem 1.6 also has a converse, which is equiv-
alent to the converse of Theorem 1.5 (see Exercise 7).

2. The John–Nirenberg Theorem

Theorem 2.1. Let ϕ ∈ BMO(R) and let I be an interval. Then for any λ > 0,

|{t ∈ I : |ϕ(t) − ϕI | > λ}|
|I | ≤ C exp

( −cλ

‖ϕ‖∗

)

.(2.1)

The constants C and c do not depend on ϕ or λ.

Condition (2.1) says that the distribution of |ϕ − ϕI |, relative to the nor-
malized Lebesgue measure on I, is not worse than the distribution of log 1/t
relative to [0, 1]. The converse of the John–Nirenberg theorem is trivial, and
we see that in terms of distribution functions log |t | is typical of the unbounded
BMO functions.

The only reason a BMO function satisfies the very strong condition (2.1) is
that the BMO condition says something about the behavior of a function on all
subintervals of I. The key to the proof is a basic lemma due to Calderón and
Zygmund.

Lemma 2.2. Let I be a bounded interval, let u ∈ L1(I ) and let

α >
1

|I |
∫

I
|u| dt.
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Then there is a finite or infinite sequence {I j } of pairwise disjoint open
subintervals of I such that

|u| ≤ α almost everywhere on I\
⋃

I j ,(2.2)

α ≤ 1

|I j |
∫

I j

|u| dt < 2α,(2.3)

∑
|I j | ≤ 1

α

∫

I
|u| dt.(2.4)

Proof. We may assume I = (0, 1). Partition I into two intervals ω0 = (0, 1
2
)

and ω1 = ( 1
2
, 1). For each interval ω there are two cases.

Case(i) :
1

|ω|
∫

ω

|u| dt < α;

Case(ii) :
1

|ω|
∫

ω

|u| dt ≥ α.

Case (i) applies to the initial interval I by hypothesis. In Case (i) we partition
ω into two disjoint (open) subintervals of length |ω|/2. For each of these two
subintervals we apply Case (i) or Case (ii).

When we get a Case (i) interval we repeat the partition process. However,
whenever we reach a Case (ii) interval ω we stop and put ω in the sequence
{I j }, and we do not partition ω. Since no interval in {I j } is partitioned, the

selected intervals I j are pairwïse disjoint.
If x ∈ I\ ⋃

I j , then every dyadic interval containing x is a Case (i) interval.
By the theorem of Lebesgue on differentiating the integral, this means |u(x)| ≤
α for almost every x ∈ I\ ⋃

I j , and (2.2) holds.
Each selected interval I j is contained in a unique dyadic interval I ∗

j such
that |I ∗

j | = 2|I j |. The larger interval I ∗
j was not selected and hence was a Case

(i) interval. Therefore

α >
1

|I ∗
j |

∫

I ∗
j

|u| dt ≥ 1

2|I j |
∫

I j

|u| dt

and (2.3) holds.
Because the I j are pairwise disjoint Case (ii) intervals, we have

∑
|I j | ≤

∑ 1

α

∫

I j

|u| dt ≤ 1

α

∫

I
|u| dt

and (2.4) holds.

The intervals I j were selected according to the following rule: Among the
dyadic intervals ω = (k2−n, (k + 1)2−n) contained in (0, 1), select the maximal
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ω for which

1

|ω|
∫

ω

|u| dt ≥ α.

This method of selecting intervals is the simplest example of what is called a
stopping time argument. This is something probabilists often use more gen-
erally with martingales. We shall frequently use similar simple stopping time
arguments in the remaining chapters.

Proof of Theorem. The homogeneity in (2.1) is such that we can assume
‖ϕ‖∗ = 1. Fix an interval I and apply Lemma 2.2 to u = |ϕ − ϕI | with

α = 3
2
. We obtain intervals I (1)

j such that |ϕ − ϕI | ≤ 3
2

almost everywhere

on I\ ⋃
I (1)

j , such that

|ϕI (1)
j

− ϕI | < 3(2.5)

by (2.3), and such that
∑

|I (1)
j | ≤ 2

3
|I |(2.6)

by (2.4).

On each I (1)
j we again apply Lemma 2.2 to |ϕ − ϕI (1)

j
| with α = 3

2
. We obtain

intervals I (2)
j such that each I (2)

j is contained in some I (1)
j . By (2.5) and (2.2),

we have |ϕ − ϕI | < 3
2

+ 3 < 6 almost everywhere on I\ ⋃
I (2)

j . Also, by (2.3)
and (2.5) we have

|ϕI (2)
j

− ϕI | < 6

and by (2.4) and (2.6),
∑

j

|I (2)
j | ≤ 2

3

∑

j

|I (1)
j | ≤ (

2
3

)2 |I |.

Continue this process indefinitely. At stage n we get intervals I (n)
j such that

|ϕ − ϕI | < 3n almost everywhere on I\ ⋃
I (n)

j , and such that
∑

j

|I (n)
j | ≤ (

2
3

)n |I |.

If 3n < λ ≤ 3n + 3, n > 1, then

|{t ∈ I : |ϕ(t) − ϕI | > λ}| ≤
∑

|I (n)
j | ≤ (

2
3

)n |I | ≤ e−cλ|I |
for c = 1

6
log 3

2
. Thus (2.1) holds if λ ≥ 3.

If 0 < λ < 3, then trivially

|{t ∈ I : |ϕ(t) − ϕI | > λ}| ≤ |I | < e3ce−cλ|I |,
and taking C = e3c we obtain (2.1) for all λ.
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The John–Nirenberg theorem has a number of interesting corollaries, the
first being a magical reverse of Hölder’s inequality.

Corollary 2.3. Let ϕ ∈ L1
Ioc(R). If

sup
I

1

|I |
∫

I
|ϕ − ϕI | dt = ‖ϕ‖∗ < ∞,

then for any finite p > 1,

sup
I

(
1

|I |
∫

I
|ϕ − ϕI |p dt

)1/p

≤ Ap‖ϕ‖∗,

where the constant Ap depends only on p.

Proof. By hypothesis, ϕ ∈ BMO and we have (2.1) at our disposal. Fix I and
write

m(λ) = |{t ∈ I : |ϕ(t) − ϕI | > λ}|
|I |

for the distribution function of |ϕ − ϕI |. Then

1

|I |
∫

I
|ϕ − ϕI |p dt = p

∫ ∞

0

λp−1m(λ) dλ

and (2.1) yields

1

|I |
∫

I
|ϕ − ϕI |p dt ≤ Cp

∫ ∞

0

λp−1 exp
−cλ

‖ϕ‖∗
dλ = Cp�(p)

‖ϕ‖p
∗

cp
.

The constant in Corollary 2.3 has the form

Ap ∼ p A (p → ∞).

for some constant A. Indeed, with Stirling’s formula, the proof of the corollary
shows that Ap ≤ p A when p is large, and the remarks following Theorem 2.3
of Chapter III show that this estimate on Ap is sharp as p → ∞.

Corollary 2.4. Let ϕ ∈ L1
loc(R). Then ϕ ∈ BMO if and only if

∫ |ϕ(t)|2
1 + t2

dt < ∞

and

sup
Imz>0

∫
|ϕ − ϕ(z)|2 Pz(t) dt = B2 < ∞,(2.7)

where ϕ(z) is the Poisson integral of ϕ. There are constants c1 and c2 such that

c1‖ϕ‖∗ ≤ B1/2
2 ≤ c2‖ϕ‖∗,

where B2 is the supremum in (2.7).
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Before giving the proof we note the trivial but useful identity

inf
α

∫
|ϕ − α|2 Pz(t) dt =

∫
|ϕ − ϕ(z)|2 Pz(t) dt(2.8)

=
∫

|ϕ|2 Pz(t) dt − |ϕ(z)|2,

which holds because in the Hilbert space L2(Pz(t) dt) the orthogonal projection
of ϕ onto the constants is ϕ(z).

Proof. If the Poisson integral of |ϕ|2 converges, and if (2.7) holds, then
Hölder’s inequality and Theorem 1.2 show that ϕ ∈ BMO with

‖ϕ‖∗ ≤ c2 B1/2
2 .

The proof of the converse resembles the proof of Theorem 1.2. Suppose ϕ ∈
BMO and fix z = x + iy, y > 0. Let Ik be the interval {|t − x | < 2k y}, k =
0, 1, 2, . . . . Then |I0| = 2y and

Pz(t) ≤ c

y
, t ∈ I0,

Pz(t) ≤ c

22k y
, t ∈ Ik\Ik−1 k = 1, 2, . . . .

Also, by Lemma 1.1,

|ϕ − ϕI0
|2 ≤ 2|ϕ − ϕIk |2 + 2|ϕIK − ϕI0

|2 ≤ 2|ϕ − ϕIk |2 + 2c2k2‖ϕ‖2
∗.

Hence
∫

|ϕ − ϕI0
|2 Pz(t) dt ≤ 2c

|I0|
∫

I0

|ϕ − ϕI0
|2 dt

+
∞∑

k=1

2c

2k |Ik |
∫

Ik\Ik−1

|ϕ − ϕIk |2 dt

+
∞∑

k=1

2c2

2k |Ik |k2‖ϕ‖2
∗|Ik |

≤ C2
2‖ϕ‖2

∗
and (2.7) holds.

Corollary 2.5. If ϕ ∈ BMO, then the conjugate function ϕ̃ ∈ BMO, and

c1‖ϕ‖∗ ≤ ‖ϕ̃‖∗ ≤ c2‖ϕ‖∗

for some constants c1 and c2 not depending on ϕ.

Proof. By Corollary 2.4 it is enough to prove
∫

|ϕ̃ − ϕ̃(z)|2 Pz(t) dt =
∫

|ϕ − ϕ(z)|2 Pz(t) dt
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for any fixed z ∈ H . This reduces to the identity

1

2π

∫
|g̃|2 dθ = 1

2π

∫
|g|2 dθ,

g ∈ L2(T ),
∫

g dθ = 0, by means of the conformal mapping from H to D
that sends z to the origin.

3. Littlewood–Paley Integrals and Carleson Measures

We begin with a classical identity of Littlewood–Paley type. Let g(eiθ ) be
an integrable function on T = ∂D, and let g(z), z ∈ D, denote the Poisson
integral of g. The gradient ∇g(z) is the complex vector (∂g/∂x, ∂g/∂y) and its
squared length is

|∇g(z)|2 =
∣
∣
∣
∣
∂g

∂x

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂g

∂y

∣
∣
∣
∣

2

.

In this notation we have

|∇g(z)|2 = 2|g′(z)|2

if g(z) is analytic.
Let � be a plane domain with smooth boundary and let u(z) and v(z) be C2

functions on �. Then Green’s theorem states that

∫∫

�

(v �u − u �v) dx dy =
∫

∂�

(

v
∂u

∂n
− u

∂v

∂n

)

ds,

where � is the Laplacian, ∂/∂n is differentiation in the outward normal direc-
tion, and ds is arc length on ∂�.

Lemma 3.1. If g(eit ) ∈ L1(T ), and if g(0) = (1/2π )
∫

g(θ ) dθ is its mean
value, then

1

π

∫∫

D

|∇g(z)|2 log
1

|z|dx dy = 1

2π

∫
|g(eiθ ) − g(0)|2dθ.(3.1)

Proof. We may assume that g(0) = 0. Notice that

2|∇g(z)|2 = �(|g(z)|2).
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For r < 1, Green’s theorem, with u(z) = |g(z)|2 and v(z) = log(r/|z|), now
yields
∫∫

|z|<r

�(|g(z)|2) log
r

|z|dx dy =
∫

|z|=r
|g(z)|2 ds

r

− lim
ε→0

∫

|z|=ε

( |g(z)|2
ε

− log
r

ε

∂

∂|z| |g(z)|2
)

ds.

Since g(0) = 0 and since ∇g(z) is bounded in |z| < 1
2
, the above limit is zero,

and we have
∫∫

|z|<r

|∇g(z)|2 log
r

|z|dx dy = 1
2

∫
|g(reiθ )|2 dθ.

By monotone convergence the left side of this equality tends to
∫∫

D

|∇g(z)|2 log
1

|z|dx dy

as r → 1, while the right side has limit 1
2

∫ |g(eiθ )|2dθ . That proves the lemma.

A slightly different form of (3.1) is sometimes easier to use.

Lemma 3.2. If g(eiθ ) ∈ L1(T ), then

1

π

∫∫

D

|∇g(z)|2(1 − |z|2)dx dy ≤ 1

π

∫
|g(eiθ ) − g(0)|2dθ(3.2)

≤ C

π

∫∫

D

|∇g(z)|2(1 − |z|2)dx dy,

where C is some absolute constant.

Proof. The leftmost inequality in (3.2) follows from (3.1) and the simple fact
that 1 − |z|2 ≤ 2 log(1/|z|), |z| < 1. To prove the other inequality, suppose
that the integral on the right is finite and normalize g(z) so that

1

π

∫∫
|∇g(z)|2(1 − |z|2) dx dy = 1.

For |z| > 1
4
, we have the reverse inequality log(1/|z|) ≤ c1(1 − |z|2), which

yields

1

π

∫∫

1/4<|z|<1

|∇g(z)|2 log
1

|z|dx dy ≤ c1

π

∫∫

D

|∇g(z)|2(1 − |z|2) dx dy.



230 bounded mean oscillation Chap. VI

For |z| ≤ 1
4
, the subharmonicity of |∇g(z)|2 gives (ζ = ξ + iη)

|∇g(z)|2 ≤ 16

π

∫∫

|ζ−z|<1/4

|∇g(ζ )|2dξ dη

≤ 32

π

∫

|ζ |<1/2

|∇g(ζ )|2(1 − |ζ |2) dξ dη ≤ 32.

Hence

1

π

∫∫

|z|<1/4

|∇g(z)|2 log
1

|z|dx dy ≤ 32

π

∫∫

|z|<1/4

log
1

|z|dx dy = c2.

Using (3.1), we conclude that

1

2π

∫
|g(eiθ ) − g(0)|2 dθ ≤ c1 + c2

π

∫∫
|∇g(z)|2(1 − |z|2)dx dy

and (3.2) is proved.

It is also possible to use Fourier series to prove (3.2), and the Fourier
series proof gives the sharp constant C = 4 in (3.2). For some problems
(3.2) is preferable to (3.1) because of the logarithmic singularity in (3.1),
but the equality (3.1) has the advantage that it can be polarized, whereas (3.2)
cannot.

To study BMO we should use the conformally invariant forms of (3.1) and
(3.2). Let z0 ∈ D and let ϕ ∈ L1(T ). The identity

1

2π

∫
|ϕ − ϕ(z0)|2 Pz0

(θ )dθ = 1

π

∫∫

D

|∇ϕ(z)|2 log

∣
∣
∣
∣
1 − z̄0z

z − z0

∣
∣
∣
∣ dx dy(3.3)

has the same proof as (3.1). It can also be derived from (3.1) using the change

of variable z → (z − z0)/(1 − z̄0z), because the differential form

|∇ϕ(z)|2 dx dy

is a conformal invariant. Using the identity

1 −
∣
∣
∣
∣

z − z0

1 − z̄0z

∣
∣
∣
∣

2

= (1 − |z|2)(1 − |z0|2)

|1 − z̄0z|2 ,
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we similarly obtain

1

π

∫∫

D

|∇ϕ(z)|2 (1 − |z|2)(1 − |z0|2)

|1 − z̄0z|2 dx dy(3.4)

≤ 1

π

∫
|ϕ − ϕ(z0)|2 Pz0

(θ )dθ

≤ C

π

∫∫

D

|∇ϕ(z)|2 (1 − |z|2)(1 − |z0|2)

|1 − z̄0z|2 dx dy,

which is the invariant version of (3.2). Now by Corollary 2.4, ϕ ∈ BMO(T ) if
and only if

sup
z0∈D

1

2π

∫
|ϕ − ϕ(z0)|2 Pz0

(θ )dθ < ∞,

and the supremum of these expressions is the square of an equivalent norm on
BMO. Thus the supremum, over z0 ∈ D, of the double integral in either (3.3)
or (3.4) also determines a norm on BMO.

A positive measure λ on D is a Carleson measure if there is a constant N (λ)
such that

λ(S) ≤ N (λ)h(3.5)

for every sector

S = {reiθ : 1 − h ≤ r < 1, |θ − θ0| ≤ h}.
We include the case h = 1, so that λ(D) ≤ 4N (λ). From Chapters I and II
we know that λ is a Carleson measure if and only if

∫ | f (z)|p dλ ≤ C p‖ f ‖p
p

for all f ∈ L p, 1 < p < ∞, or for all f ∈ H p, 0 < p < ∞. Here we want to
notice the conformally invariant character of Carleson measures.

Lemma 3.3. A positive measure λ on the disc is a Carleson measure if and
only if

sup
z0∈D

∫
1 − |z0|2
|1 − z̄0z|2 dλ(z) = M < ∞.(3.6)

The constant M in (3.6) satisfies

C1 N (λ) ≤ M ≤ C2 N (λ)

for absolute constants C1 and C2.

Proof. Suppose (3.6) holds, and let S be any sector, S = {1 − h ≤ r < 1, |θ −
θ0| < h}. Since (3.6) with z0 = 0 shows thatλ(D) ≤ M , we can suppose h < 1

4
.
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Take z0 = (1 − 1
2
h)eiθ0 . For z ∈ S, we have

1 − |z0|2
|1 − z̄0z|2 ≥ C

1 − |z0|2 ,

and hence

λ(S) ≤ C1(1 − |z0|)
∫

1 − |z0|2
|1 − z̄0z|2 dλ ≤ C1 M(1 − |z0|) = C1 Mh/2.

Conversely, suppose λ is a Carleson measure and let z0 ∈ D. If |z0| < 3
4
, we

have the trivial estimate
∫

1 − |z0|2
|1 − z̄0z|2 dλ(z) ≤ Cλ(D) ≤ C ′N (λ).

If |z0| > 3
4
, we let

En = {z ∈ D : |z − (z0/|z0|)| < 2n(1 − |z0|)}.
Then by (3.5), λ(En) ≤ C N (λ)2n(1 − |z0|), n = 1, 2, . . . . We have

1 − |z0|2
|1 − z̄0z|2 ≤ C

1 − |z0| , z ∈ E1,

and for n ≥ 2,

1 − |z0|2
|1 − z̄0z|2 ≤ C

22n(1 − |z0|) , z ∈ En\En−1.

Consequently,

∫
1 − |z0|2
|1 − z̄0z|2 dλ ≤

∫

E1

1 − |z0|2
|1 − z̄0z|2 dλ(z) +

∞∑

n=2

∫

En\En−1

1 − |z0|2
|1 − z̄0z|2 dλ(z)

≤
∞∑

n=1

2Cλ(En)

22n(1 − |z0|) ≤ C ′N (λ)
∑

n

2−n = C ′N (λ),

and (3.6) is proved.

In the upper half plane, Carleson measures are defined by requiring that

λ({x0 ≤ x ≤ x0 + h, 0 < y ≤ h}) ≤ N (λ)h,(3.7)

which is (3.5) with squares instead of sectors. The analog of (3.6) is

sup
z0∈H

∫
y0

|z − z̄0|2 dλ(z) = M < ∞(3.8)

and the proof that (3.7) and (3.8) are equivalent, with bounds relating the con-
stants N (λ) and M, is geometrically even simpler than the proof of Lemma 3.3.

The next theorem, the main result of this section, is now virtually trivial.
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Theorem 3.4. Let ϕ ∈ L1(T ), and let

dλϕ = |∇ϕ(z)|2 log
1

|z|dx dy,

where ∇ϕ is the gradient of the Poisson integral ϕ(z). Then ϕ ∈ BMO(T ) if
and only if λϕ is a Carleson measure. There are universal constants C1 and
C2 such that

C1‖ϕ‖2
∗ ≤ N (λϕ) ≤ C2‖ϕ‖2

∗.

Proof. By Corollary 2.4 and by the inequalities (3.4), we know that ϕ ∈
BMO(T ) if and only if

sup
z0∈D

∫∫

D

|∇ϕ(z)|2 (1 − |z|2)(1 − |z0|2)

|1 − z̄0z|2 dx dy = M1 < ∞(3.9)

and that M1 ≈ ‖ϕ‖2
∗. By Lemma 3.3, (3.9) holds if and only if

dμϕ = |∇ϕ(z)|2(1 − |z|2) dx dy

is a Carleson measure, and N (μϕ) ≈ ‖ϕ‖2
∗. What remains to be proved are

that μϕ is a Carleson measure if and only if λϕ is a Carleson measure and that
N (λϕ) ≈ N (μϕ). Half of this task is trivial because the inequality 1 − |z|2 <

2 log(1/|z|) shows that μϕ ≤ 2λϕ . For |z| > 1
4

we have the reverse inequality

log(1/|z|) ≤ C(1 − |z|2),

which shows that

λϕ(S) ≤ Cμϕ(S)

for sectors S = {1 − h ≤ r < 1, |θ − θ0| < h} provided h ≤ 3
4
. This will give

N (λϕ) ≤ C N (μϕ) if we can prove

λϕ({|z| ≤ 1

4
}) ≤ Cμϕ({|z| ≤ 1

2
}) ≤ C N (μϕ).(3.10)

However, we already touched on (3.10) in the proof of Lemma 3.2. Because
|∇ϕ(z)|2 is subharmonic, we have

λϕ({|z| ≤ 1

4
}) ≤ C sup

|z|<1/4

|∇ϕ(z)|2 ≤ 32C

π

∫

|ζ |<1/2

|∇ϕ(ζ )|2(1 − |ζ |2) dξ dη

≤ C ′μϕ({|ζ | ≤ 1

2
}).

That gives (3.10) and therefore N (λϕ) ≤ C N (μϕ).

The measure λϕ with the logarithm will be used when we polarize the identity
(3.1) in the next section. The most important ingredient of Theorem 3.4 is the
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John–Nirenberg theorem, which makes it possible to characterize BMO using
quadratic expressions.

4. Fefferman’s Duality Theorem

Let us first digress briefly to find the dual space of H p(dt), 1 ≤ p < ∞.
This was done for the disc in Chapter IV, Section 1, and the argument for the
half plane is formally the same.

Lemma 4.1. If 1 ≤ p < ∞, if q = p/(p − 1), and if g ∈ Lq, then g ∈
(H p)⊥, that is,

∫
fg dt = 0(4.1)

for all f ∈ H p if and only if g ∈ Hq.

Proof. If g ∈ Hq , then by Hölder’s inequality f g ∈ H 1, and (4.1) follows
from Lemma II.3.7.

On the other hand if (4.1) holds then the Poisson integral of g is analytic on
H . Indeed, if z ∈ H and if z0 ∈ H is fixed, then

hz(t) = 1

z̄ − t
− 1

z̄0 − t

is in H p and

Pz − Pz0
= 1

2π i
(hz − h̄z).

Hence, by (4.1),

g(z) − g(z0) =
∫

g(t)(Pz(t) − Pz0
(t)) dt

= − 1

2π i

∫
g(t)

(
1

z − t
− 1

z0 − t

)

dt,

and g(z) is analytic. Theorem I.3.5 now implies that g ∈ H p.

With the Hahn–Banach theorem, the lemma yields

(H p)∗ = Lq/Hq , 1 ≤ p < ∞.(4.2)

In (4.2), the pairing between f ∈ H p and a coset g + Hq ∈ Lq/Hq is given
by

∫
f g dt.

Our object in this section is to represent (H p)∗ as a space of functions rather
than as a quotient space. Two Banach spaces X and Y are said to be isomorphic



Sect. 4 fefferman’s duality theorem 235

if there is a linear mapping T from X onto Y such that

c1‖x‖ ≤ ‖T x‖ ≤ c2‖x‖, x ∈ X.

The isomorphism T from X onto Y is called an isometry if ‖T x‖ = ‖x‖ for
all x ∈ X . When two spaces are isomorphic, one thinks of them as being the
same space with two different, but equivalent, norms.

What we are looking for is an isomorphism between (H p)∗ and some space
of functions. For 1 < p < ∞, the M. Riesz theorem on conjugate functions
gives the isomorphism we want.

Theorem 4.2. For 1 < p < ∞, (H p)∗ is isomorphic to H̄q , the space of
complex conjugates of functions in Hq. The isomorphism T : H̄q → (H p)∗ is
defined by

(T g)( f ) =
∫

f g dt, f ∈ H p, g ∈ H̄q .(4.3)

Proof. Since 1 < q < ∞, the Hilbert transform H is bounded on Lq . The
operator

S(g) = g − i Hg

is then also bounded on Lq . The kernel of S is Hq and the range of S is H̄q .
By the open mapping theorem, the induced mapping

S : Lq/Hq → H̄q

is an isomorphism. By (4.2), T = S−1 is an isomorphism of H̄q onto (H p)∗ =
Lq/Hq . When g ∈ H̄q , S(g + Hq ) = g, and hence (4.3) holds.

When p = 1, the above argument does not apply because the Riesz theorem
fails for L∞. We shall see that the function space isomorphic to (H 1)∗ =
L∞/H∞ is not H̄∞ but BMO.

It will be convenient to regard H 1 as a Banach space over the real numbers
only. Any complex Banach space X can of course be viewed as a real Banach
space. However, the complex linear functionals on X can be recovered from the
real linear functionals on X in a very simple way. If L is a real linear functional
on X, then

LC(x) = L(x) − i L(i x)

defines a complex linear functional on X, and

L(x) = Re LC(x).

Because ‖LC‖ = sup{Re LC(x) : ‖x‖ = 1}, the functionals L and LC have
the same norm. Hence, the correspondence L → LC is a real linear isometry
between the space of continuous real linear functionals on X and the real
Banach space of complex linear functionals on X.
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For example, when 1 < p < ∞, H p is isomorphic, as a real Banach space,
to L p

R
, the space of real L p functions. Again Riesz’s theorem provides the

isomorphism defined by

L p
R

� u → u + i Hu.

Any real linear functional on H p is therefore given by

L(u + i Hu) =
∫

uv dt

for a unique v ∈ Lq
R

. The corresponding complex linear functional is

LC(u + i Hu) =
∫

uv dt + i
∫

(Hu)v dt.

The identities
∫

(Hu)v dt = −
∫

u Hv dt,
∫

(Hu)(Hv) dt =
∫

uv dt,

which follow from Lemma 4.1 or from (1.9) and (1.10) of Chapter III, show
that

LC(u + i Hu) =
∫

(u + i Hu)g dt,

where g = (v − i Hv)/2 ∈ H̄q . This brings us back to (4.3), and we have, in
fact, merely rephrased the proof of Theorem 4.2. It is for the case p = 1 that
real linear functionals simplify the duality problem.

Now suppose p = 1. As a real Banach space, H 1 is isomorphic to the space

H 1
R

= {u ∈ L1
R

: Hu ∈ L1
R
}

provided that H 1
R

is given the graph norm

‖u‖H 1 = ‖u‖1 + ‖Hu‖1.

This norm is chosen so that

H 1 � f → Re f

is an isomorphism of H 1 onto H 1
R

.
Recall from Chapter II, Corollary 3.3, that the subset

A = {u ∈ H 1
R

: (1 + t2)|u + i Hu| ∈ L∞}
is norm dense in H 1

R
.

Lemma 4.3. Let L be a continuous real linear functional on H 1
R

. Then there
are ϕ1 and ϕ2 in L∞

R
such that

‖ϕ1‖∞ ≤ ‖L‖, ‖ϕ2‖∞ ≤ ‖L‖
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and such that

L(u) =
∫

(uϕ1 − (Hu)ϕ2) dt, u ∈ H 1
R
.(4.4)

If u ∈ A, then

L(u) =
∫

u(ϕ1 + Hϕ2) dt.(4.5)

Moreover, there is a unique real function ϕ ∈ BMO such that

‖ϕ‖∗ ≤ C‖L‖
for some universal constant C and such that

L(u) =
∫

uϕ dt, u ∈ A.(4.6)

By Theorems 1.2 and 1.5, the integrals in (4.5) and (4.6) are absolutely
convergent when u ∈ A.

Proof. The space H 1
R

is a closed subspace of L1
R

⊕ L1
R

when this latter space
is given the norm ‖(u, v)‖ = ‖u‖1 + ‖v‖1. Extend L to a bounded real linear
functional � on L1

R
⊕ L1

R
such that ‖�‖ = ‖L‖. Now � has the representation

�(u, v) =
∫

(uϕ1 − vϕ2) dt,

where (ϕ1, ϕ2) ∈ L∞
R

⊕ L∞
R

, and

‖�‖ = max(‖ϕ1‖∞, ‖ϕ2‖∞),

because of the choice of the norm on L1
R

⊕ L1
R

. Thus, ‖ϕ1‖∞ ≤ ‖L‖, ‖ϕ2‖∞ ≤
‖L‖, and (4.4) holds. Since

∫
(Hu)ϕ2 dt = −

∫
u(Hϕ2) dt

when u ∈ A and ϕ2 ∈ L∞, (4.5) follows from (4.4). Also the function

ϕ = ϕ1 + Hϕ2

is in BMO, and ‖ϕ‖∗ ≤ C‖L‖, by Theorem 1.5. Now (4.6) is obvious, since
it is just a restatement of (4.5).

It remains to show that ϕ is uniquely determined by L. The pair (ϕ1, ϕ2) ∈
L∞

R
⊕ L∞

R
corresponding to L is by no means unique. A pair (ϕ1, ϕ2) induces

the zero functional on H 1
R

if and only if
∫

u(ϕ1 + Hϕ2) dt = 0, u ∈ A.(4.7)
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Since any difference Pz(t) − Pz0
(t) of Poisson kernels is in A, this holds if and

only if ϕ1 + Hϕ2 has constant Poisson integral. Thus (4.7) occurs if and only
if ϕ1 + Hϕ2 is constant. Since constants have zero BMO norm, this means that
L gives rise to a unique BMO function ϕ such that (4.6) holds.

As an aside, we note that ϕ1 + Hϕ2 is constant if and only if ϕ1 + iϕ2 ∈ H∞.
Thus the proof of the lemma again shows that (H 1)∗ = L∞/H∞.

Theorem 4.4 (C. Fefferman). The dual space of H 1
R

is BMO. More precisely,
if ϕ ∈ BMO is real valued and if L is defined by

L(u) =
∫

uϕ dt, u ∈ A,(4.8)

then |L(u)| ≤ C1‖ϕ‖∗‖u‖H 1 . Conversely, if L ∈ (H 1
R

)∗, then there is a unique
real ϕ ∈ BMO with ‖ϕ‖∗ ≤ C‖L‖ such that (4.8) holds.

Although the integral in (4.8) makes sense only for u ∈ A, the density of A

in H 1
R

and the inequality |L(u)| ≤ C1‖ϕ‖∗‖u‖H 1 enable us now to regard each
ϕ ∈ BMO as a continuous linear functional on H 1

R
.

Proof. By Lemma 4.3, each L ∈ (H 1
R

)∗ yields a unique ϕ ∈ BMO with
‖ϕ‖∗ ≤ C‖L‖ such that (4.8) holds. The important thing that remains to be
proved is that

∣
∣
∣
∣

∫
uϕ dt

∣
∣
∣
∣ ≤ C1‖ϕ‖∗‖u‖H 1, u ∈ A,(4.9)

whenever ϕ ∈ BMO. The proof of the corresponding inequality on the unit
circle is a little less technical, and instead of (4.9) we prove

∣
∣
∣
∣

∫
uϕ

dθ

2π

∣
∣
∣
∣ ≤ C1‖ϕ‖∗‖u + i ũ‖1(4.10)

for u ∈ L2
R

(T ) and for ϕ ∈ BMO(T ) with
∫

ϕ dθ = 0. Now, if u ∈ A and if
ϕ ∈ BMO(R), then, with eiθ = (t − i)/(t + i), dθ = 2 dt/(1 + t2),

∫
uϕ dt = 1

2

∫
U (θ ) �(θ ) dt

where U (θ ) = (1 + t2) u(t) ∈ L2
R

(T) and �(θ ) = ϕ(t) ∈ BMO (T). Then

(U + iŨ )(eiθ ) = (u + i ũ)(t)

( −4eiθ

(eiθ − i)2

)

∈ H2

has mean value zero. Hence ‖U + iŨ‖1 = 2‖u + i ũ‖1 and by Corollary 1.3,
inequality (4.10) implies inequality (4.9).

Now, let u ∈ L2
R

(T ) and let ϕ ∈ BMO(T ). Notice that, by Corollary 2.4
and Corollary 1.3, the integral (4.10) converges absolutely. Let f = u + i Hu.
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Then f ∈ H 1, and

∫
uϕ

dθ

2π
= Re

∫
f ϕ

dθ

2π
.

The advantage of working with f instead of with u is that we may suppose that
f = g2, g ∈ H 2. Indeed, write f = B F , where B is a Blaschke product, F ∈
H 1 has no zeros in D, and ‖F‖1 = ‖ f ‖1. Write f1 = (B − 1)F and f2 = (B +
1)F . Then ‖ f1‖1 ≤ 2‖ f ‖1, ‖ f2‖1 ≤ 2‖ f ‖1, and f = ( f1 + f2)/2. Moreover
f1 and f2 have no zeros in D, so that f1 and f2 are both of the form g2, g ∈ H 2.
In estimating

∫
f ϕ dθ , we may replace f by f1 or by f2. Thus, we assume

f = g2, g ∈ H 2.
We can also assume ϕ(0) = 0. Polarization of the Littlewood–Paley identity,

Lemma 3.1, then yields

∫
f ϕ

dθ

2π
=

∫
( f − f (0))ϕ

dθ

2π
= 1

π

∫∫

D

(∇ f ) · (∇ϕ) log
1

|z|dx dy.

Since f (z) is analytic, we have

∇ f · ∇ϕ = fxϕx + fyϕy = f ′(z)(ϕx + iϕy) = 2g(z)g′(z)(ϕx + iϕy),

and so

|∇ f · ∇ϕ| ≤ 2|g(z)||g′(z)||∇ϕ(z)|.
The Cauchy–Schwarz inequality now gives us

∣
∣
∣
∣

∫
f ϕ

dθ

2π

∣
∣
∣
∣ ≤

⎛

⎝ 2

π

∫∫

D

|g′(z)|2 log
1

|z|dx dy

⎞

⎠

1/2

×
⎛

⎝ 2

π

∫∫

D

|g(z)|2|∇ϕ(z)|2 log
1

|z|dx dy

⎞

⎠

1/2

.

By Lemma 3.1, the first factor is

(
1

2π

∫
|g(eiθ ) − g(0)|2dθ

)1/2

= ‖ f ‖1/2
1 .

By Theorem 3.4 and by the disc version of the theorem on Carleson measures,

the second factor is bounded by C‖ϕ‖∗‖ f ‖1/2
1 . These give us (4.10), and the

theorem is proved.

To prove (4.9) without moving to the circle, see Exercise 6.
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The complex linear functional on H 1 determined by ϕ ∈ BMO by use of
(4.8) is

LC(u + i Hu) =
∫

(u + i Hu)ϕ dt

because Re(−i(u + i Hu)) = Hu. We now have a real linear isomorphism
between the complex Banach space (H 1)∗ and the real space of real BMO
functions. In order to regard BMO as a complex space isomorphic to (H 1)∗,
observe that

i LC(u + i Hu) = LC(−Hu + iu) =
∫

(−Hu + iu)ϕ dt.

By (4.5) and (4.6), the last integral equals
∫

(u + i Hu)Hϕ dt,

at least when u ∈ A. If we were to define multiplication by i on the space of real
BMO functions iϕ = Hϕ, then real BMO would become a complex Banach
space isomorphic to (H 1)∗, with the complex linear isomorphism from L∞/H∞
to real BMO given by L∞/H∞ � f → Re f + H (Im f ). This unusual notion
of complex scalar multiplication, which is brought about by identifying H 1

R

with H 1, is one reason that real linear functionals on H 1 are easier to discuss.

Corollary 4.5. If ϕ ∈ L1
loc, then ϕ ∈ BMO if and only if

ϕ = ϕ1 + Hϕ2 + α,(4.11)

where α is a constant and where ϕ1 and ϕ2 are L∞ functions. When ϕ ∈
BMO, ϕ1 and ϕ2 can be chosen so that

‖ϕ1‖∞ ≤ C‖ϕ‖∗, ‖ϕ2‖∞ ≤ C‖ϕ‖∗(4.12)

for some constant C.

Proof. This corollary is equivalent to the theorem. Theorem 1.5 tells us that
every function of the form (4.11) is in BMO that

‖ϕ‖∗ ≤ C(‖ϕ1‖∞ + ‖ϕ2‖∞).(4.13)

If ϕ ∈ BMO, then by (4.9), the functional L(u) = ∫
uϕ dt, u ∈ A, is bounded

against ‖u‖H 1 . By Lemma 4.3, there are ϕ1, ϕ2 ∈ L∞ such that

L(u) =
∫

u(ϕ1 + Hϕ2) dt.

As we observed after the proof of Lemma 4.3, this means that ϕ − (ϕ1 + Hϕ2)
has constant Poisson integral. Consequently (4.11) and (4.12) hold.

A constructive proof of (4.11), and hence of the duality theorem itself, will
be given in Chapter VIII.
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Because of (4.12) and (4.13), the expression

inf{‖ϕ1‖∞ + ‖ϕ2‖∞ : ϕ = ϕ1 + Hϕ2 + α}
defines a norm on BMO equivalent to ‖ϕ‖∗.

Corollary 4.6. Let f ∈ L∞. Then the distance

dist( f, H∞) = inf
g∈H∞

‖ f − g‖∞

satisfies

C1‖ f − i H f ‖∗ ≤ dist( f, H∞) ≤ C2‖ f − i H f ‖∗(4.14)

for some absolute constants C1 and C2.

Proof. By (4.2) and the Hahn–Banach theorem, we have

dist( f, H∞) = sup

{∣
∣
∣
∣

∫
f F dt

∣
∣
∣
∣ : F ∈ H 1, ‖F‖1 ≤ 1

}

.

By density, we may suppose F = u + i Hu, where u ∈ A. Then,
∫

f F dt =
∫

f u dt + i
∫

f Hu dt =
∫

( f − i H f )u dt.

Taking the real and imaginary parts of the last integral, we see that (4.14)
follows directly from the theorem.

Corollary 4.7. Let f ∈ L∞ be real valued. Then the distances

dist( f, Re H∞) = inf
g∈H∞

‖ f − Re g‖∞

and

dist∗(H f, L∞) = inf
ϕ∈L∞

‖H f − ϕ‖∗

satisfy

C1 dist( f, Re H∞) ≤ dist∗(H f, L∞) ≤ C2 dist( f, Re H∞)

for some absolute constants C1 and C2.

Proof. If g ∈ H∞, then Im g ∈ L∞ and H f − Im g = H ( f − Re g), so that
by Theorem 1.5,

‖H f − Im g‖∗ ≤ C2‖ f − Re g‖∗.

Thus, we have

dist∗(H f, L∞) ≤ C2 dist( f, Re H∞).
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The other inequality asserted in the corollary lies deeper and uses the duality
theorem. If ϕ ∈ L∞, then by Corollary 4.5,

H f − ϕ = ϕ1 + Hϕ2 + α,

where

‖ϕ1‖∞ + ‖ϕ2‖∞ ≤ C‖H f − ϕ‖∗.

Then

u = ϕ + ϕ1 + α ∈ L∞

and

Hu = Hϕ + Hϕ1 = ϕ2 − f,

so that g = −Hu + iu is in H∞. Also

‖ f − Re g‖∞ = ‖ f + Hu‖∞ = ‖ϕ2‖∞ ≤ C‖H f − ϕ‖∗.

Thus, we have

C1 dist( f, Re H∞) ≤ dist∗(H f, L∞),

and Corollary 4.7 is proved.

A method of estimating dist∗(ϕ, L∞) in terms of the exponential in-
tegrability of |ϕ − ϕI | will be given in Section 6.

5. Vanishing Mean Oscillation

Let ϕ ∈ L1
loc(R). For δ > 0, write

Mδ(ϕ) = sup
|I |<δ

1

|I |
∫

I
|ϕ − ϕI | dt,(5.1)

where I denotes an interval. Then ϕ ∈ BMO if and only if Mδ(ϕ) is bounded
and ‖ϕ‖∗ = limδ→∞ Mδ(ϕ). We say that ϕ has vanishing mean oscillation, ϕ ∈
VMO, if

(i) ϕ ∈ BMO and
(ii) M0(ϕ) = limδ→0 Mδ(ϕ) = 0.

It is easy to see that VMO is a closed subspace of BMO. The relation between
BMO and the subspace VMO is quite similar to the relation between L∞ and
its subspace of bounded uniformly continuous functions. Write UC for the
space of uniformly continuous functions on R and write BUC for L∞∩ UC.

Theorem 5.1. For a function ϕ ∈ BMO, the following conditions are equiv-
alent:
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(a) ϕ ∈ VMO.
(b) If ϕx (t) = ϕ(t − x) is the translation of ϕ by x units, then

lim
x→0

‖ϕx − ϕ‖∗ = 0.

(c) If ϕ(t, y) = Py ∗ ϕ is the Poisson integral of ϕ, then

lim
y→0

‖ϕ(t) − ϕ(t, y)‖∗ = 0.

(d) ϕ is in the BMO closure of UC ∩ BMO;

inf
g∈UC ∩ BMO

‖ϕ − g‖∗ = 0.

Proof. We verify the circle of implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).
Assume (a) holds. Let δ > 0 and partition R into intervals

I j = ( jδ/2, ( j + 1)δ/2), −∞ < j < ∞,

of length δ/2. By (5.1) we have

|ϕI j − ϕI j+1
| ≤ 2Mδ(ϕ).(5.2)

Define

h(t) =
∞∑

j=−∞
ϕI j χI j (t).

We first show that

‖ϕ − h‖∗ ≤ 5Mδ(ϕ).(5.3)

If |I | ≤ δ, then by (5.2) we have

1

|I |
∫

I
|h − hI | dt ≤ 4Mδ(ϕ),

so that

1

|I |
∫

I
|(ϕ − h) − (ϕ − h)I | dt ≤ 5Mδ(ϕ).

If |I | > δ and if J is the union of those I j such that I j ∩ I �= ∅, then |J | ≤ 2|I |.
Writing J = I1 ∪ I2 ∪ · · · ∪ IN , we have

1

|I |
∫

I
|(ϕ − h) − (ϕ − h)I | dt ≤ 2

|I |
∫

I
|ϕ − h| dt ≤ 4

|J |
∫

J
|ϕ − h| dt

≤ 4

N

N∑

j=1

1

|I j |
∫

I j

|ϕ − ϕI j | dt ≤ 4Mδ(ϕ),
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and (5.3) is proved. Now if |x | < δ, then by (5.2), ‖h − hx‖∞ ≤ 2Mδ(ϕ), so
that ‖h − hx‖∗ ≤ 2Mδ(ϕ). Consequently, if |x | < δ, then

‖ϕ − ϕx‖∗ ≤ ‖ϕ − h‖∗ + ‖h − hx‖∗ + ‖ϕx − hx‖∗
= 2‖ϕ − h‖∗ + ‖h − hx‖∗ ≤ 12Mδ(ϕ).

This proves that (a) implies (b).
Now assume (b) holds. Then

ϕ(t, y) =
∫

ϕ(t − x)Py(x) dx

is an average of the translates ϕx of ϕ. By (b), ‖ϕ − ϕx‖∗ is small if |x | is small,
say, if |x | < δ, while for any x, ‖ϕ − ϕx‖∗ ≤ 2‖ϕ‖∗. But when y is small, most
of the weight of Py(x) is given to |x | < δ, and this means that ‖ϕ(t) − ϕ(t, y)‖∗
is small. To be precise, by Fubini’s theorem we have

‖ϕ(t) − ϕ(t, y)‖∗ ≤
∫

|x |<δ

‖ϕ − ϕx‖∗ Py(x)dx + 2‖ϕ‖∗
∫

|x |>δ

Py(x) dx,

so that

lim
y→0

‖ϕ(t) − ϕ(t, y)‖∗ ≤ sup
|x |<δ

‖ϕ − ϕx‖∗.

Hence (b) implies (c).
To prove that (c) implies (d), we use the estimate

y|∇ϕ(x, y)| ≤ c‖ϕ‖∗,(5.4)

which is easy to prove. When ϕ ∈ L∞, (5.4) can be derived from Harnack’s
inequality and a change of scale, and the extension to ϕ ∈ BMO then follows
from Corollary 4.5. However, there is also an elementary proof of (5.4) using
Theorem 1.2 instead of the duality theorem. The simple inequality

y|∇ Py(x − t)| ≤ cPy(x − t),

in which the derivatives are taken with respect to x and y, combines with
Theorem 1.2 to give

y|∇ϕ(x, y)| ≤ y
∫

|ϕ(t) − ϕ(x, y)||∇ Py(x − t)| dt

≤ c
∫

|ϕ(t) − ϕ(x, y)|Py(x − t) dt ≤ c‖ϕ‖∗.

Now (5.4) shows that ϕ(x, y) is a uniformly continuous function of x. Because
ϕ(x, y) ∈ BMO, we see that (d) follows from (c).

It is trivial that (d) implies (a), because UC ∩ BMO ⊂ VMO and because
VMO is closed in BMO.
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Theorem 5.2. If ϕ is a locally integrable function on R, then ϕ ∈ VMO if
and only if

ϕ = ϕ1 + Hϕ2 + α,(5.5)

where ϕ1, ϕ2, ∈ BUC and where α is a constant. When ϕ ∈ VMO, ϕ1 and ϕ2

can be chosen in BUC so that (5.5) holds and so that

‖ϕ1‖∞ + ‖ϕ2‖∞ ≤ C‖ϕ‖∗,(5.6)

where C is a constant not depending on ϕ.

Proof. Suppose that ϕ has the form (5.5), with ϕ1, ϕ2 ∈ BUC. Then ϕ ∈
BMO, and for |x | small, ‖ϕ j − (ϕ j )x‖∞ < ε, j = 1, 2. Therefore

‖ϕ1 − (ϕ1)x‖∗ < ε and ‖(Hϕ2) − (Hϕ2)x‖∗ < ε

when |x | is small, so that by Theorem 5.1(b) ϕ ∈ VMO.
Conversely, if ϕ ∈ VMO, then by Corollary 4.5,

ϕ = u1 + Hu2 + α,

where ‖u1‖∞ ≤ C‖ϕ‖∗, ‖u2‖∞ ≤ C‖ϕ‖∗, and α is constant. By Theorem

5.1, there is y0 > 0 such that ‖ϕ(x) − ϕ(x, y0)‖∗ < ‖ϕ‖∗/2. Let ϕ
(1)
1 (x) =

u1(x, y0), ϕ
(1)
2 (x) = u2(x, y0). Then ϕ

(1)
j ∈ BUC,

‖ϕ(1)
j ‖∞ ≤ ‖u j‖∞ ≤ C‖ϕ‖∗, j = 1, 2,

and ϕ(x, y0) = ϕ
(1)
1 (x) + Hϕ

(1)
2 (x) + α, so that

‖ϕ − (ϕ
(1)
1 + Hϕ

(1)
2 + α)‖∗ = ‖ϕ(x) − ϕ(x, y0)‖∗ ≤ ‖ϕ‖∗/2.

Hence

R1 = ϕ − (ϕ
(1)
1 + Hϕ

(1)
2 + α) = (u1 − ϕ

(1)
1 ) + H (u2 − ϕ

(1)
2 )

is in VMO and ‖R1‖∗ ≤ ‖ϕ‖∗/2. Repeating the above argument with R1 and
iterating, we obtain

ϕ =
∞∑

k=1

ϕ
(k)
1 + H

( ∞∑

k=1

ϕ
(k)
2

)

+ α

with ϕ
(k)
1 ∈ BUC, ϕ

(k)
2 ∈ BUC, and
∑

k

‖ϕ(k)
1 ‖∞ +

∑

k

‖ϕ(k)
2 ‖∞ ≤ 4C‖ϕ‖∗.

That proves Theorem 5.2.

For the circle the proofs of Theorems 5.1 and 5.2 show that VMO is the
closure of C = C(T ) in BMO and that VMO = C + C̃ .
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In Chapter IX we shall see that VMO is an important tool in the study of the
algebra H∞ + C .

6. Weighted Norm Inequalities for Maximal Functions
and Conjugate Functions

Let 1 < p < ∞ and let μ be a positive Borel measure on R, finite on compact
sets. We consider two problems.

Problem 1. When is the Hardy–Littlewood maximal operator bounded on
L p(μ)? That is, when is there a constant Bp such that

∫
|M f |pdμ ≤ Bp

∫
| f |pdμ

for all measurable functions f (x), where

M f (x) = sup
x∈I

1

|I |
∫

I
| f | dt?

Problem 2. When is the Hilbert transform a bounded operator on L p(μ)?
That is, when is there a constant C p such that

∫
|H f |pdμ ≤ C p

∫
| f |pdμ

for all functions f ∈ L2(dx), where

H f (x) = lim
ε→0

1

π

∫

|x−t |>ε

f (t)

x − t
dt?

When dμ = dx we know that both operators are bounded for all p, 1 < p <

∞. In the case p = 2, the Helson–Szegö theorem, Theorem IV.3.4, provides
a necessary and sufficient condition that the Hilbert transform be bounded on
L2(μ). The condition is that μ must be absolutely continuous, dμ = w(x) dx ,
and the density w(x) must have the form

log w = u + Hv

with u ∈ L∞ and ‖v‖∞ < π/2.
The proof of this theorem was given in Chapter IV for the unit circle, but

by now the reader should have no difficulty transferring the theorem to the
line. For p �= 2 the Helson–Szegö method has not produced very satisfying
answers to Problem 2.

On the other hand, the real-variables approach to these problems taken by
Muckenhoupt and others has been quite successful. Pleasantly, both problems
have the same answer: The measure must be absolutely continuous

dμ = w(x) dx, w ∈ L1
loc,
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and the weight w(x) must satisfy the (Ap) condition,

sup
I

(
1

|I |
∫

I
w dx

) (
1

|I |
∫

I

(
1

w

)1/(p−1)

dx

)p−1

< ∞.(6.1)

Theorem 6.1. Let μ be a positive measure finite on compact sets, and let
1 < p < ∞. Then

∫
|M f |pdμ ≤ Bp

∫
| f |pdμ

with Bp independent of f if and only if μ is absolutely continuous, dμ =
w(x)dx, and the density w(x) satisfies (6.1).

Theorem 6.2. Let μ be a positive measure finite on compact sets and let
1 < p < ∞. Then

∫
|H f |pdμ ≤ C p

∫
| f |pdμ

with C p independent of f if and only if dμ = w(x) dx and the density w(x)
satisfies (6.1).

Before going further, let us try to understand how the (Ap) condition (6.1)
comes about.

Lemma 6.3. If 1 < p < ∞ and if μ is a positive measure on R such that
∫

|M f |pdμ ≤ C
∫

| f |pdμ

for all f, then μ is absolutely continuous, dμ = w(x) dx, and w(x) satisfies
the (Ap) condition (6.1).

Proof. Let E be a compact set with |E | = 0, let ε > 0, and let V be an open
neighborhood of E with μ(V \E) < ε. Then f = χV \E has

∫ | f |pdμ < ε. On
the other hand, M f (x) = 1 when x ∈ E because |E | = 0. Hence by hypothesis,

μ(E) ≤
∫

|M f |pdμ ≤ C‖ f ‖p
p ≤ Cε,

so that μ(E) = 0 and μ is absolutely continuous.
Write dμ = w(x)dx , when w(x) ∈ L1

loc and w(x) ≥ 0. Fix an interval I and
let f (x) = w(x)αχI (x), for some real α. Then

∫
| f |pdμ =

∫

I
w(x)1+pα dx,

and if x ∈ I ,

M f (x) ≥ 1

|I |
∫

I
f dt ≥ 1

|I |
∫

I
wα dt.



248 bounded mean oscillation Chap. VI

Approximating f (x) from below by bounded functions, we obtain
(∫

I
w dx

) (∫

I
wα dx

)p

≤ |I |p
∫

I
|M f |pdμ ≤ C |I |p

∫

I
w1+pα dx,

and taking α = −1/(p − 1) = 1 + pα, we conclude that

(∫

I
w dx

) (∫

I

(
1

w

)1/(p−1)

dx

)p−1

≤ C |I |p,

which is the (Ap) condition.

Lemma 6.4. If 1 < p < ∞ and if μ is a positive measure on R, finite on
compact sets, such that for all f

∫
|H f |pdμ ≤ C

∫
| f |pdμ,

then dμ = w(x)dx, where w(x) satisfies the (Ap) condition (6.1).

Proof. Testing the hypothesis of the lemma with f = χ[0,1], we see that
∫

dμ(x)

(1 + |x |)p
< ∞.(6.2)

Let g ∈ Lq (μ), q = p/(p − 1), be real. Then by the hypothesis and by duality,
there is h ∈ Lq (μ) such that

∫
(H f )g dμ =

∫
f h dμ, f ∈ L p(μ).

If f ∈ H 2 ∩ L p(μ), then H f = −i f and the above identity becomes
∫

f (g − ih) dμ = 0.(6.3)

By (6.2) and Hölder’s inequality,

dν(x) = (g − ih)(x) dμ(x)

x + i

is a finite measure, and by (6.3)
∫

(x − z)−1dν(x) = 0 on Im z < 0. The F
and M. Riesz theorem now implies that ν is absolutely continuous. Hence
g(x)dμ(x) = Re((x + i)dν(x)) is absolutely continuous. Since g ∈ Lq (μ) is
arbitrary, we conclude that μ is absolutely continuous.

Write dμ = w(x)dx . Let I be an interval, and split I into two equal pieces,
I = I1 ∪ I2, |I1| = |I2| = 1

2
|I |. Let f ≥ 0, f supported in I1. Then for x ∈ I2

we have

|H f (x)| = 1

π

∫

I1

f (t)

|x − t | dt ≥ 1

2π

∫

I1

f (t)

|I1| dt = 1

2π
f I1

.(6.4)
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Taking f = χI1
, we get

∫

I2

w dx ≤ C
∫

I1

w dx .

By symmetry we also have
∫

I1

w dx ≤ C
∫

I2

w dx .

Taking f = w(x)αχI1
in (6.4), we then get

(∫

I2

w dx

) (
1

|I1|
∫

I1

wα dx

)p

≤ C
∫

I1

w1+αp dx .

Setting α = −1/(p − 1) now gives

(∫

I1

w dx

) (
1

|I1|
∫

I1

(
1

w

)1/(p−1)

dx

)p

≤ C
∫

I1

(
1

w

)1/(p−1)

dx,

which is the (Ap) condition.

Thus (Ap) is a necessary condition in both Theorem 6.1 and Theorem 6.2.
Now suppose w satisfies (Ap) and write

ϕ = log w, ψ = log

((
1

w

)1/(p−1)
)

= −ϕ

p − 1
.

Then ϕ and ψ are locally integrable, because w and 1/w are. For any interval
I, we have

eϕI (eψI )p−1 = 1

trivially, so that (Ap) can be rewritten

sup
I

(
1

|I |
∫

I
eϕ−ϕI dx

) (
1

|I |
∫

I
eψ−ψI dx

)p−1

< ∞.(6.5)

By Jensen’s inequality,

1

|I |
∫

I
eϕ−ϕI dx ≥ 1 and

1

|I |
∫

I
eψ−ψI dx ≥ 1.

Consequently (Ap) holds if and only if each factor in (6.5) is bounded sepa-
rately, and we have the following lemma.

Lemma 6.5. Let w ≥ 0, and let ϕ = log w. Then w has (Ap), 1 < p < ∞,
if and only if

sup
I

1

|I |
∫

I
eϕ−ϕI dx < ∞
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and

sup
I

1

|I |
∫

I
e−(ϕ−ϕI )/(p−1)dx < ∞.

Thus if w has (Ap), then ϕ = log w ∈ BMO. Conversely if log w ∈ BMO,
then by the John–Nirenberg theorem, wδ has (Ap) for some δ > 0.

Before turning to the more difficult proof that (Ap) is sufficient, we men-
tion two corollaries. The case p = 2 of Theorem 6.2 can be merged with the
Helson–Szegö theorem to give concrete expressions for the BMO distance of
ϕ ∈ BMO to L∞ and for the distance from f ∈ L∞

R
to Re H∞. The reason is

that the Helson–Szegö condition is, by Theorem 6.2, equivalent to

(A2) : supI

(
1

|I |
∫

I
w dx

) (
1

|I |
∫

I

1

w
dx

)

< ∞.

If ϕ ∈ BMO, then ϕ = f + Hg + α with f ∈ L∞, g ∈ L∞, and α constant,
and

‖ϕ‖′ = inf{‖ f ‖∞ + ‖ f ‖∞ : ϕ = f + Hg + α}
defines a norm on BMO equivalent to ‖ϕ‖∗. With respect to ‖ ‖′ the distance
from ϕ to L∞ is

dist(ϕ, L∞) = inf
f ∈L∞

‖ϕ − f ‖′ = inf{‖g‖∞ : ϕ − Hg ∈ L∞}.

By the John–Nirenberg theorem there are ε > 0 and λ(ε) > 0 such that

sup
I

|{x ∈ I : |ϕ − ϕI | > λ}|
|I | ≤ e−λ/ε, λ > λ(ε).(6.6)

Write

ε(ϕ) = inf{ε > 0 : (6.6) holds}.
Clearly ε(ϕ) = 0 if ϕ ∈ L∞. The John–Nirenberg theorem shows that

ε(ϕ) ≤ C‖ϕ‖∗ ≤ C ′‖ϕ‖′.

Corollary 6.6. If ϕ ∈ BMO is real valued, then

dist(ϕ, L∞) = (π/2)ε(ϕ).

Proof. Condition (6.6) implies that

M = sup
I

1

|I |
∫

I
exp |Aϕ − AϕI |dx < ∞(6.7)

whenever A < 1/ε(ϕ), and Chebychev’s inequality shows that A ≤ 1/ε(ϕ)
whenever (6.7) holds for A. Thus

1/ε(ϕ) = sup{A : ϕ has (6.7)}.
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By (6.7) we have

1 ≤ 1

|I |
∫

I
e±A(ϕ−ϕI )dx ≤ M(6.8)

for any interval I. Conversely, since e|x | ≤ ex + e−x (6.8) implies (6.7). Thus
(6.8) is equivalent to (6.7). Hence by Lemma 6.5, (6.7) holds for A > 0 if and
only if the weight w = eAϕ satisfies the (A2) condition. We conclude that

1/ε(ϕ) = sup{A : eAϕ has (A2)}.
Because the (A2) condition is equivalent to the Helson–Szegö condition, we

now have

1/ε(ϕ) = sup{A : Aϕ = f + Hg, f ∈ L∞, ‖g‖∞ < π/2},
which is the same thing as

(π/2)ε(ϕ) = inf{‖g‖∞ : ϕ = f + Hg, f ∈ L∞}.
Corollary 6.7. If f ∈ L∞ is real valued, then

dist( f, Re H∞) = inf
F∈H∞

‖ f − Re F‖∞

satisfies

dist( f, Re H∞) = (π/2)ε(H f ).

Proof. This is immediate from Corollary 6.6 and the proof of
Corollary 4.7.

The distances in Corollaries 6.6 and 6.7 can also be related to the growth of
the local L p oscillations of ϕ(x) by means of the identity

ε(ϕ)

e
= lim

p→∞
1

p

(

sup
I

1

|I |
∫

I
|ϕ − ϕI |pdx

)1/p

.

Establishing this identity is a recreation left for the reader. See Exercise 17.
To show that (Ap) implies the boundedness of M and H on L p(w dx), we

need four consequences of

(Ap) : sup
I

(
1

|I |
∫

I
w dx

) (
1

|I |
∫

I

(
1

w

)1/(p−1)

dx

)p−1

< ∞.

The first two consequences are quite trivial.

Lemma 6.8. If 1 < p < ∞ and if w(x)′ satisfies (Ap), then

(a) w(x) satisfies (Ar ) for all r > p, and
(b) the weight (1/w)1/(p−1) satisfies (Aq ), where q = p/(p − 1).
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Proof. For (a) note that 1/(r − 1) < 1/(p − 1), so that by Hölder’s inequality

1

|I |
∫

I

(
1

w

)1/(r−1)

dx ≤
(

1

|I |
∫

I

(
1

w

)1/(p−1)

dx

)(p−1)/(r−1)

.

For (b) note that 1/(p − 1) = q − 1, so that if v = (1/w)1/(p − 1), then
(1/v)1/(q−1) = w.

The other two consequences of (Ap) lie deeper, but they can be derived from
a delightful inequality due to Gehring.

Theorem 6.9. Let p > 1. If v(x) ≥ 0, and if

(
1

|I |
∫

I
v pdx

)1/p

≤ K
1

|I |
∫

I
v dx(6.9)

for all subintervals of some interval I0, then

(
1

|I0|
∫

I0

vr dx

)1/r

≤ C(p, K , r )

(
1

|I0|
∫

I0

v dx

)

(6.10)

for p ≤ r < p + η, where η = η(p, K ) > 0.

The inequality reverse to (6.9), with constant 1, follows trivially from
Hölder’s inequality. Therefore the constant K in (6.9) must obviously sat-
isfy K ≤ 1. Theorem 6.9 is a close relative of the John–Nirenberg theorem
and, as with that theorem, it is crucial that (6.9) hold for many subintervals of
I0.

Proof. We can suppose that I0 = [0, 1] and that
∫

I0
v p dx = 1. For λ > 0

write

Eλ = {x ∈ I0 : v(x) > λ}.
What we are going to prove is the estimate

∫

Eλ

v p dx ≤ Aλp−1

∫

Eλ

v dx, λ ≤ 1,(6.11)

with some constant A = A(p, K ). But first let us observe how (6.11) easily
gives (6.10). For r > p we have

∫

E1

vr dx =
∫

E1

v pvr−pdx =
∫

E1

v p

(

1 + (r − p)

∫ v

1

λr−p−1dλ

)

dx

=
∫

E1

v pdx + (r − p)

∫ ∞

1

λr−p−1

∫

Eλ

v pdx dλ.



Sect. 6 weighted norm inequalities 253

By (6.11) the last term in the above expression does not exceed

A(r − p)

∫ ∞

1

λr−2

∫

Eλ

v dx dλ ≤ A(r − p)

∫

E1

v

∫ v

0

λr−2 dλ

= A
(r − p)

(r − 1)

∫

E1

vr dx .

Hence
(

1 − A(r − p)

(r − 1)

) ∫

E1

vr dx ≤
∫

E1

v p dx .

Taking A > 1, we have A(r − p)/(r − 1) < 1 if r < p + (p − 1)/(A − 1) =
p + η, η + 0. For such values of r we then have

∫

I0

vr dx ≤
∫

{v<1}
v p dx + Cr

∫

E1

v p dx .

Because of (6.9) and the normalizations I0| = 1,
∫

I0v
p dx = 1, this proves

(6.10) and the theorem.
To prove (6.11) we set β = 2Kλ > λ ≥ 1. Since trivially

∫

Eλ\Eβ

v p dx ≤ β p−1

∫

Eλ\Eβ

v dx ≤ (2K )p−1λp−1

∫

Eλ

v dx,(6.12)

proving (6.11) really amounts to making an estimate of
∫

Eβ
v p dx . By the

Calderón–Zygmund Lemma 2.2, there are pairwise disjoint subintervals {I j }
of I0 such that

β p ≤ 1

|I j |
∫

I j

v p dx < 2β p(6.13)

and such that v ≤ β almost everywhere on I0\
⋃

I j . So except for a set of
measure zero, we have Eβ ⊂ ⋃

I j . By (6.13) we have

∫

Eβ

v p dx ≤
∑

j

∫

I j

v p dx ≤ 2β p
∑

j

|I j |.(6.14)

By (6.9) and the other inequality in (6.13), we also have

β ≤
(

1

|I | j

∫

I j

v p dx

)1/p

≤ K

|I | j

∫

I j

v dx .

This means that

|I j | ≤ K

β

∫

I j

v dx ≤ K

β

∫

I j ∩Eλ

v dx + Kλ

β
|I j |,
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so that by our choice of β,

|I j | ≤ 1

λ

∫

I j ∩Eλ

v dx .

Substituting this inequality into (6.14) gives
∫

Eβ

v p dx ≤ 2β p

λ

∫

Eλ

v dx ≤ 2p+1 K pλp−1

∫

Eλ

v dx,

and with (6.12) this yields the desired inequality (6.11).

Corollary 6.10. If 1 < p < ∞ and if the weight w(x) satisfies the (Ap)
condition, then

(a) there are δ > 0 and C > 0 such that, for any interval I,
(

1

|I |
∫

I
w(x)1+δ dx

)1/(1+δ)

≤ C

|I |
∫

I
w(x) dx,(6.15)

(b) there is ε > 0 such that w(x) also satisfies the (Ap−ε) condition.

Proof. To prove part (a) we can assume that p > 2, because of Lemma 6.8(a).
The Cauchy–Schwarz inequality shows that

1 ≤
(

1

|I |
∫

I

(
1

w

)1/(p−1)

dx

) (
1

|I |
∫

I
w1/(p−1) dx

)

.

With this inequality (Ap) yields

1

|I |
∫

I
w dx ≤ K

(
1

|I |
∫

I
w1/(p−1) dx

)p−1

.

Since p − 1 > 1, we can now use Theorem 6.9 on the function v = w1/(p−1)

to obtain
(

1

|I |
∫

I
wr/(p−1) dx

)1/r

≤ C

(
1

|I |
∫

I
w dx

)1/(p−1)

for p − 1 < r < p − 1 + η, η > 0. Taking 1 + δ = r/(p − 1), we have
(6.15).

To prove part (b), we apply (6.15) to (1/w)1/(p−1), which is a weight function
satisfying condition (Aq ), q = p/(p − 1). We get

(
1

|I |
∫

I

(
1

w

)(1+δ)/(p−1)

dx

)(p−1)/(1+δ)

≤
(

C

|I |
∫

I

(
1

w

)1/(p−1)

dx

)p−1

.

Setting ε = (δ/(1 + δ))(p − 1) > 0, so that (p − ε) − 1 = (p − 1)/(1 + δ),
and multiplying both sides of the above inequality by (1/|I |) ∫

I w dx now
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yields

(
1

|I |
∫

I
w dx

) (
1

|I |
∫

I

(
1

w

)1/(p−ε−1)
)p−ε−1

≤ C

(
1

|I |
∫

I
w dx

) (
1

|I |
∫

I

(
1

w

)1/(p−1)

dx

)p−1

,

and w has (Ap−ε).

Another proof of (b), closer in spirit to the proof of the John–Nirenberg
theorem, is outlined in Exercise 15.

Proof of Theorem 6.1. We suppose w(x) has (Ap) and, writing dμ =
w(x) dx , we prove

∫
|M f |pdμ ≤ Bp

∫
| f |pdμ.

The converse of this was proved in Lemma 6.3.
Applying Hölder’s inequality to f w1/p and w−1/p and noting that q/p =

1/(p − 1), we have

1

|I |
∫

I
| f | dx ≤

(
1

|I |
∫

I
| f |pw dx

)1/p
(

1

|I |
∫

I

(
1

w

)1/(p−1)

dx

)(p−1)/p

.

The second factor can be estimated using (Ap) to yield

1

|I |
∫

I
| f | dx ≤ K

(
1

|I |
∫

I
w dx

)−1/p (
1

|I |
∫

I
| f |p dμ

)1/p

= K

(
1

μ(I )

∫

I
| f |pdμ

)1/p

;

since dμ = w(x) dx . Writing

Mμg(x) = sup
x∈I

1

μ(I )

∫

I
|g| dμ

and taking the supremum in the last inequality over all intervals I containing
x, we get

M f (x) ≤ K (Mμ(| f |p))1/p.(6.16)

The covering lemma (Lemma 1.4.4) applies to the measure μ, and the proof of
the maximal theorem (Theorem 1.4.3) can then be adapted without difficulty
to yield

∫
(Mμ(g))r dμ ≤ Cr

∫
|g|r dμ, 1 < r < ∞(6.17)
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(see Exercise 13, Chapter I). Now since w(x) also satisfies (Ap−ε), (6.16) can
be replaced by

M f (x) ≤ K ′Mμ(| f |p−ε)1/(p−ε).

Using this inequality and (6.17) with r = p/(p − ε), we obtain
∫

|M f |pdμ ≤ K ′
∫

(Mμ(| f |p−ε))p/(p−ε)dμ ≤ Cr K ′
∫

| f |pdμ,

which proves Theorem 6.1.

To prove the remaining half of Theorem 6.2 we need one more lemma and
one additional theorem. A measure dμ = w(x) dx is said to satisfy condition
(A∞) If

μ(E)/μ(I ) ≤ C(|E |/|I |)α(6.18)

whenever E is a Borel subset of an interval I. The constants C > 0 and α > 0
in (6.18) are supposed to be independent of E and I.

Lemma 6.11. If w(x) satisfies (Ap) for some p < ∞, then dμ = w(x) dx
satisfies (A∞).

Proof. For E ⊂ I , Hölder’s inequality and Corollary 6.10(a) give

μ(E)

|I | = 1

|I |
∫

E
w dx ≤

(
1

|I |
∫

I
w1+δ dx

)1/(1+δ) ( |E |
|I |

)δ/(1+δ)

≤
(

C

|I |
∫

I
w dx

) ( |E |
|I |

)δ/(1+δ)

= C
μ(I )

|I |
( |E |

|I |
)δ/(1+δ)

,

which is the (A∞) condition (6.18) with α = δ/(1 + δ).

Theorem 6.12. If a measure dμ = w(x) dx satisfies the (A∞) condition, and
if 1 < p < ∞, then

∫
|H f |pw dx ≤ C p

∫
|M f |pw dx .

Our objective, Theorem 6.2, follows directly from Lemma 6.11, Theorem
6.12, and Theorem 6.1. Our only unfinished business now is the proof of
Theorem 6.12.

Proof. The maximal Hilbert transform

H∗ f (x) = sup
ε

∣
∣
∣
∣

∫

|x−t |>ε

f (t)

x − t
dt

∣
∣
∣
∣

satisfies the weak-type inequality

|{x : H∗ f (x) > λ}| ≤ C

λ

∫
| f (x)| dx .(6.19)

by Exercise 11 of Chapter III.
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Combining (6.19) with the (A∞) condition, we shall show that when 0 <

γ < 1,

(6.20)

μ({x : H∗ f (x) > 2λ and M f (x) ≤ γ λ}) ≤ Aγ αμ{H∗ f (x) > λ},
where the constant A does not depend on γ . Now (6.20) easily implies the
theorem, because

∫
|H∗ f |p dμ = p2p

∫ ∞

0

λp−1μ({H∗ f (x) > 2λ}) dλ

≤ Ap2pγ α

∫ ∞

0

λp−1μ({x : H∗ f (x) > λ}) dλ

+p2p
∫ ∞

0

λp−1μ({x : M f (x) > γλ}) dλ

= A2pγ α

∫
|H∗ f |p dμ + 2pγ −p

∫
|M f |p dμ.

Choosing γ > 0 so small that A2pγ α < 1, we obtain
∫

|H∗ f |p dμ ≤ C p

∫
|M f |p dμ,

and since trivially |H f | ≤ H∗ f , this proves the theorem.
To prove (6.20), write the open set Uλ = {x : H∗ f (x) > λ} as the union of

disjoint open intervals {Jk}. Partition each Jk into closed intervals {I k
j } with

disjoint interiors such that

|I k
j | = dist(I k

j , R\Jk).

The family of intervals shown in Figure VI.1,

{I j } =
∞⋃

k=1

{I k
j },

is called the Whitney decomposition of Uλ because it has the three properties

Uλ =
⋃

j

I j ,

I 0
i ∩ I 0

j = ∅, i �= j,

dist(Ii , R\(Uλ) = |I j |.

Figure VI.1.
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The main step in the proof of (6.20) is to establish the inequality

|{x ∈ I j : H∗ f (x) > 2λ and M f (x) ≤ γ λ}| ≤ Bγ |I j |.(6.21)

Indeed, (6.21) and the (A∞) condition (6.18) then yield

μ({x ∈ I j : H∗ f (x) > 2λ and M f (x) ≤ γ λ}) ≤ C Bαγ αμ(I j ),

and (6.20) follows by summation over {I j }.
Thus the proof of Theorem 6.12 has been reduced by means of (A∞) to

proving (6.21), a condition not involving weight functions. No further relo-
cations of the proof are necessary, and we conclude with the proof of (6.21).
Because {I j } is the Whitney decomposition of Uλ, there is x j such that

dist(x j , I j ) = |I j | and H∗ f (x j ) ≤ λ.

We can suppose there is ξ j ∈ I j with M f (ξ j ) ≤ γ λ, because otherwise (6.21)
is trivial for I j . We can also suppose that γ is small, because (6.21) is obvious
if B γ > 1. Let Ĩ j be that interval concentric with I j having length | Ĩ j | = 3|I j |.
Then x j ∈ Ĩ j . Also, let I ∗

j = ˜̃I j be that concentric interval with |I ∗
j | = 9|I j |.

Write f = f1 + f2, where f1 = f χI ∗
j
, f2 = f χR\I ∗

j
. Since ξ j ∈ I ∗

j , we have

‖ f1‖1

|I ∗
j |

= 1

|I ∗
j |

∫

I ∗
j

| f | dx ≤ 2M f (ξ j ) ≤ 2γ λ,

so that (6.19) gives

|{x : H∗ f1(x) > λ/2}| ≤ (2C/λ)‖ f1‖1 ≤ 4Cγ |I ∗
j |.(6.22)

When x ∈ I j the integral H f2(x) has no singularity x, and for any ε > 0 we
have

∣
∣
∣
∣

d

dx

∫

|t−x |>ε

f2(t)

x − t
dt

∣
∣
∣
∣ ≤

∫

R\I ∗
j

| f (t)|
|x − t |2 dt

≤ C1

∫

|x−ξ j |>4|I j |

| f (s)|
|s − ξ |2 ds ≤ C2

|I j | M f (ξ j ),

because the last integral can be viewed as a sum of averages over intervals
centered of ξ j . Consequently,

H∗ f2(x) ≤ sup
ε

∣
∣
∣
∣
∣

∫

|x−t |>ε

f2(t)

x − t
dt −

∫

|x j −t |>ε

f2(t)

x j − t
dt

∣
∣
∣
∣
∣
+ H∗ f2(x j )

≤ C2

|I j | M f (ξ j )|x − x j | + H∗ f2(x j ) ≤ 3C2γ λ + H∗ f2(x j ).
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On the other hand, since dist(x j , R\I ∗
j ) = 3|I j |, H∗ f2(x j ) is not much larger

than H∗ f (x j ). To be precise, we have

H∗ f2(x j ) = sup
ε>3|I j |

∣
∣
∣
∣
∣

∫

|x j −t |>ε

f2(t) dt

x j − t

∣
∣
∣
∣
∣

≤ sup
ε>3|I j |

∣
∣
∣
∣
∣

∫

|x j −t |>ε

f (t)

x j − t
dt

∣
∣
∣
∣
∣
+ 1

3|I j |
∫

3|I j |<|x j −t |<6|I j |
| f (t)| dt.

The first of these integrals is bounded by H∗ f (x j ) ≤ λ, while the second
integral is bounded by C3 M f (x j ) ≤ C3γ λ. Hence we conclude that

H∗ f2(x) ≤ (3C2 + C3)γ λ + λ, x ∈ I j .(6.23)

Since H∗ f ≤ H∗ f1 + H∗ f2, (6.22) and (6.23) yield the inequality

|{x ∈ I j : H∗ f (x) > (3C2 + C3)γ λ + 3
2
λ}| ≤ |{x : H∗ f1(x) > 1

2
λ}|

≤ 12Cγ |I j |,
and this gives (6.21) when (3C2 + C3)γ < 1

2
.

Notes

There is now a sizeable literature on BMO, with connections to univalent
function theory, quasiconformal mappings, partial differential equations, and
probability. To a large extent it is the duality theorem and the conformal in-
variance that make BMO important in so many areas. Some of this literature
is cited in the bibliography.

The conformal invariance of BMO, which has been exploited by many au-
thors, seems first to have appeared in Garsia’s notes [1971]. Much of the
material in Sections 1–4 comes from the fundamental paper of Fefferman and
Stein [1972], where the duality theorem was first proved. Theorem 1.5 was
first proved by Spanne [1966] and independently by Stein [1967].

Theorem 2.1 is from John and Nirenberg [1961]. Its simple proof has wide
applications. Campanato [1963] and Meyers [1964] have given similar char-
acterizations of Hölder classes.

The proof of the duality theorem would have been considerably simpler had
it been the case that |∇ϕ(x)| dx dy were a Carleson measure whenever ϕ ∈
BMO (T). As explained in Exercise 9, this is not the case, even when ϕ is a
Blaschke product. The Littlewood–Paley expression

|∇ϕ(z)|2 log(1/|z|) dx dy

is a useful device for overcoming this difficulty. A different device, due to
Varopoulos [1977], is outlined in Exercises 12 and 13. The proof of the corona
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theorem provides yet another way around this difficulty (see Section 6 of
Chapter VIII).

With the exception of the Fourier transform, the Hilbert transform is perhaps
the most important operator in real or complex analysis. Much of the strength
of the duality theorem lies in the fact that it characterizes BMO(R) as the set of
functions of the form ϕ = u + Hv, u, v ∈ L∞. A more constructive proof of
this decomposition will be given in Chapter VIII.

The results on VMO and their applications in Chapter IX below are from
Sarason’s paper [1975].

Theorem 6.1 is due to Muckenhoupt [1972] and Theorem 6.2 was first proved
by Hunt, Muckenhoupt, and Wheeden [1973]. The absolute continuity of μ

had been established earlier by Forelli [1963]. The proofs of Theorem 6.1
and Theorem 6.2 in the text follow Coifman and Fefferman [1974]. Gehring’s
inequality in Theorem 6.9 is in essence a result about maximal functions (see
Gehring [1973]). Several other important inequalities hold when a weight
satisfies (Ap) (see Gundy and Wheeden [1974], Muckenhoupt and Wheeden
[1974]).

Nobody has ever found a direct proof of the equivalence of (A2) with
the Helson–Szegö condition. The papers of Garnett and Jones [1978], Jones
[1980b], Uchiyama [1981], and Varopoulos [1980] shed some light on this
problem and study the higher dimensional form of Corollary 6.6. A very in-
teresting related problem has been posed by Baernstein: If ϕ ∈ BMO satisfies

sup
I

(1/|I |)|{x ∈ I : |ϕ(x) − ϕI | > λ}| ≤ Ce−λ,

can ϕ(x) be written ϕ = u + Hv with u ∈ L∞ and ‖v‖∞ ≤ π/2? (See
Nikolski, Havin, and Kruschev [1978, p. 230], but also page vii above.)
The converse of Baernstein’s conjecture is quite easy (see Exercise 18).
Together, Theorem 6.2 and the Helson–Szegö theorem give another proof of the
H 1–BMO duality on the line.

Inequality (6.21) explains why the Hilbert transform and the maximal
function are often bounded on the same spaces. See Burkholder [1973] and
Burkholder and Gundy [1972] for more about inequalities of this type, which
are called “good λ inequalities.” The argument in the proof of (6.20) is a power-
ful method that evolved from the real-variables proof that the Hilbert transform
is weak type 1–1 (see Calderón and Zygmund [1952], Stein [1970]).

Most of the results in this chapter are really theorems about functions on
Euclidean space R

n or even on the spaces of homogeneous type introduced
by Coifman and Weiss [1971]. In fact, that is how the results are presented in
many of the papers cited above. To keep matters as simple as possible and to
keep in touch with the applications to follow, we have limited our discussion
to R

1 and T.
There are some beautiful connections among analytic BMO functions, uni-

valent functions, and Bloch functions. Some of these results are outlined in
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Exercises 22–25. Sarason’s notes [1979] and Baernstein’s lecture [1980] pro-
vide good surveys of this topic.

Exercises and Further Results

1. If ϕ ∈ BMO and if ϕ is real, then max(ϕ, 0) is in BMO.

2. BMO is complete.

3. (a) If ϕ ∈ BMO, χI ϕ ∈ BMO, and if

‖χI ϕ‖∗ ≤ C‖ϕ‖∗,

for every interval I, then ϕ is bounded and ‖ϕ‖∞ < C ′‖ϕ‖∗.
(b) If h is measurable on T, then hϕ ∈ BMO (T) for all ϕ ∈ BMO(T) if

and only if h ∈ L∞ and

sup
I

{
1

|I |
(

log
1

|I |
) ∫

I
|h − hI | dx

}

< ∞

(Stegenga [1976]).
(c) Formulate and prove a similar result on the line.
(d) Suppose ϕ ∈ BMO and suppose I is an interval such that ϕI = 0.
Let Ĩ be the interval concentric with I having length | Ĩ | = 3|I |. Then there

is ψ ∈ BMO such that ψ = ϕ on I, ψ = 0 on R\ Ĩ , and ‖ψ‖∗ ≤ C‖ϕ‖∗.
(Hint: Write I = ⋃∞

n=0 Jn where dist (Jn, ∂I ) = |Jn|, as in Figure VI.1. Sup-
pose |J0| > |Jn|, n �= 0, so that J0 is the middle third of I. For n > 0, let Kn

be the reflection of Jn across the nearest endpoint of I and set ψ(x) = ϕJn , x ∈
Kn, ψ(x) = 0, x /∈ I ∪ ⋃

Kn .)

4. Let f (x) be measurable on R. Suppose there exist α < 1
2

and λ > 0
such that for each interval I there is some constant aI such that

|{x ∈ I : | f (x) − aI | > λ}| ≤ α|I |.
Then f ∈ BMO. The proof is like that of the John-Nirenberg theorem. The
result is no longer true when 1

2
is replaced by a larger number (Stromberg

[1976]).

5. On the circle, (H 1
R

)∗ = BMO, with the pairing between u ∈ H 1
R

and
ϕ ∈ BMO(T ) given by

1

2π

∫
uϕ dθ,

provided constant BMO functions are not identified to zero, that is, provided
BMO is normed by

∣
∣
∣
∣

1

2π

∫
ϕ dθ

∣
∣
∣
∣ + ‖ϕ‖∗.
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With the same norm BMOA = H 2 ∩ BMO is the dual of the classical space
H 1 under the pairing

∫
f ϕ̄

dθ

2π
, f ∈ H 1, ϕ ∈ BMOA.

6. For ϕ ∈ L1( dt/(1 + t2)) write

∇ϕ(z) =
(

∂ϕ(z)

∂x
,
∂ϕ(z)

∂y

)

, z ∈ H ,

where ϕ(z) is the Poisson integral of ϕ(t).
(a) Show for ϕ ∈ L2,

∫

R

|ϕ(t)|2 dt = 2

∫∫

H

y|∇ϕ(z)|2 dx dy,

using either Green’s theorem or the Fourier transform.
(b) Prove ϕ ∈ BMO if and only if y|∇ϕ|2 dx dy is a Carleson measure

(not necessarily finite).
(c) If ϕ ∈ BMO and if f is a holomorphic function in H 1 having no zeros

in H , then
∫∫

H

y|∇ f · ∇ϕ| dx dy ≤ C‖ϕ‖∗‖ f ‖H 1 .

Moreover, if f ∈ A, then
∣
∣
∣
∣

∫
f (ı)ϕ(t) dt

∣
∣
∣
∣ =

∣
∣
∣
∣ lim

y→0

∫
f (x + iy)ϕ(x + iy) dx

∣
∣
∣
∣

≤ C
∫∫

H

y|∇ f · ∇ϕ| dx dy,

which proves the duality theorem on the line. Notice the last inequality does
not follow directly from part (a) by polarization because it is not assumed that
ϕ ∈ L2. However, when ϕ and f are continuous, the identity �(ϕ(z) f (z)) =
2∇ f (z) · ∇ϕ(z) and Green’s theorem yield

lim
R→∞

∫ R

−R
f (t)ϕ(t) dt = lim

R→∞
2

∫∫

H ∩{|z|<R|}
y∇ f (z) · ∇ϕ(z) dx dy.

7. (a) Let T be the space of two tailed sequences

F = { fn : −∞ < n < ∞}
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of measurable functions on R such that
∫

sup
n

| fn(x)| dx = ‖F‖ < ∞.

Under this norm T is a Banach space.
(b) Let T0 be the closure in T of the set of sequences F for which there

exists N = N (F) such that

fn = fN , n ≥ N ; fn = 0, n ≤ −N .

When F ∈ T0, limn→∞ fn = f exists in L1. The dual space of T0 consists of
sequences G = {gn : −∞ < n ≤ ∞} of L∞ functions with norm

‖G‖ =
∥
∥
∥
∥
∥
|g∞(x)| +

∞∑

−∞
|gn(x)|

∥
∥
∥
∥
∥

∞

under the pairing

〈F, G〉 =
∫

f∞(x)g∞(x) dx +
∞∑

−∞

∫
fn(x)gn(x) dx .

(c) Choose {yn : −∞ < n < ∞} such that

yn → 0 (n → ∞), yn → ∞ (n → −∞),

and

0 < yn − yn+1 ≤ min(y2
n , 1).

Let S : H 1
R

→ T be defined by

(S(u))n(x) = u(x, yn).

Then S maps H 1
R

onto a closed subspace of T0. (Use the vertical maximal
function

u+(x) = sup
y>0

|u(x, y)|.

(d) By parts (b) and (c), every bounded linear functional on H 1
R

has the
form

L(u) =
∫

u(x)g∞(x) dx +
∞∑

n=−∞

∫
u(x, yn)gn(x) dx

with

1

|I |
∫

I

(

|g∞(x)| +
∞∑

n=−∞
|gn(x)|

)

dx ≤ C‖L‖,



264 bounded mean oscillation Chap. VI

and conversely. With the duality theorem this gives the converse of Theorem
1.6. If ϕ ∈ BMO, then

ϕ(t) = g∞(t) +
∫

H
Py(x − t)dσ (x, y),

where |σ | is a Carleson measure. Here

dσ =
∞∑

−∞
gn(x) dsn,

where dsn is dx on the line {y = yn}. Note that |σ | is more than a Carleson
measure since

|σ |(I × (0, ∞)) ≤ C |I |.
This reflects the fact H 1 is determined by the vertical maximal function as well
as by the nontangential maximal function. The proof sketched above is due to
Fefferman (unpublished).

���(e) Carleson [1976] constructively obtained the decomposition

ϕ(t) = g∞(t) +
∞∑

−∞

∫
Pyn (x − t)gn(t) dt,

where |g∞| + ∑∞
−∞ |gn| ∈ L∞, for each ϕ ∈ BMO.

(f) Assuming the result in (e), prove the maximal function characterization
of H 1: If u ∈ L1 ∩ L2, then

‖Hu‖1 ≤ C‖u+‖1.

(Hint: Let g ∈ L2 ∩ L∞, ‖g‖∞ = 1, and let ϕ = Hg ∈ BMO. Then
∣
∣
∣
∣

∫
(Hu)g dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
uϕ dt

∣
∣
∣
∣ ≤ C‖u+‖1.

The left side has supremum ‖Hu‖1.)
(g) Derive the difficult half of the duality theorem from part (e).

8. Suppose f = ∑
n≥0 aneinθ is in H 1. Use duality to prove
∑

k>0

|a2k |2 ≤ C‖ f ‖2
1 (Paley)

and
∑

n≥0

|an|
n + 1

≤ C‖ f ‖1 (Hardy).

9. There exist BMO functions such that |∇u| dx dy is not a Carleson
measure. There is even a Blaschke product B(z) such that

∫∫
D |B ′(z)| dx dy =

∞.
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(a) Let f (eiθ ) = ∑
n≥1(1/n)ei2nθ . Then f ∈ BMO. Let An be the an-

nulus 1 − 2−n ≤ |z| ≤ 1 − 2−n−1. Then
∫∫

An
| f ′(z)| dx dy ≥ c/n. Writing

Re f = u1 + ũ2, show there is a bound harmonic function u(z) such that∫∫
D |∇u| dx dy = ∞. Then F = exp(u + i ũ) is an H∞ function with

∫∫
|F ′(z)| dx dy = ∞.

(b) If g(eiθ ) = ∑
anei2n0 , then g ∈ BMO if and only if

∑ |an|2 < ∞, but∫∫ |g′(z)| dx dy < ∞ if and only if
∑ |an| < ∞.

(c) If
∑ |an|2 < ∞ there is F ∈ H∞ such that F̂(2n) = an (see Fournier

[1974]). If
∑ |an|2 < ∞, but

∑ |an| = ∞ then
∫∫ |F ′(z)| dx dy = ∞.

(d) There exists a Blaschke product B(z) such that
∫∫

D

|B ′(z)| dx dy = ∞.

The earliest example is due to Rudin [1955b].

10. There exist f1(z) and f2(z) in H∞ such that
∫

�

(| f ′
1(z)| + | f ′

2(z)|) ds = ∞

for all smooth curves � in D terminating on ∂D. Consequently the mapping

z → (z, f1(z), f2(z))

embeds the unit disc into C
3. The embedded manifold is bounded and it is

complete in the metric of Euclidean arc length.
To construct f1 and f2, first take

ϕ(reiθ ) =
∞∑

n=1

r10n

n
cos(10nθ ).

Then

|∇ϕ(z)| ≥ 10n/100n on An ={9 · 10−n−1 ≤ 1−|z| ≤ 11 · 10−n−1},
so that

∫

�

|∇ϕ(z)| ds = ∞

for every curve � in D which terminates on ∂D. On the other hand, ϕ(z) is the
Poisson integral of ϕ(eiθ ) ∈ BMO. Write ϕ = u + ṽ and set f1 = eu+i ũ, f2 =
ev+i ṽ . This example is due to Jones [1979a]. See Yang [1977] for background
on this problem.
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11. An atom is a function a(x) supported on an interval I and satisfying
∫

a(x) dx = 0, |a(x)| ≤ 1/|I |.

If {a j } is a sequence of atoms and if
∑ |λ j | < ∞, then

f (x) =
∑

λ j a j ∈ H 1
R

and ‖ f ‖H 1 ≤ C
∑ |λ j |. Conversely, by the duality theorem every function in

H 1
R

has the above form with
∑ |λ j | ≤ C‖ f ‖H 1 . See Coifman [1974] or Latter

[1978] for direct proofs of the atomic decomposition, which in turn implies
the H 1−BMO duality.

12. (Dyadic BMO). A dyadic interval is an interval of the form ω =
( j2−n, ( j + 1)2−n) with n and j integers. For ϕ ∈ L1

loc, define

‖ϕ‖d = sup
ω

1

|ω|
∫

|ϕ − ϕω| dx,

the supremum taken only over dyadic intervals. The dyadic BMO space,
BMOd, consists of the functions ϕ with ‖ϕ‖d finite.

(a) BMO is a subset of BMOd, but there are functions in BMOd not in
BMO.

(b) If ϕ ∈ BMOd, then ϕ ∈ BMO if and only if

|ϕω1
− ϕω2

| ≤ A

whenever ω1 and ω2 are adjacent dyadic intervals of the same length. Then

C1‖ϕ‖∗ ≤ A + ‖ϕ‖d ≤ C2‖ϕ‖∗.

(c) Suppose ϕ ∈ BMOd has support [0, 1]. Then there exists a family G of
dyadic intervals ω such that

∑

ω⊂I
ω∈G

|ω| ≤ C‖ϕ‖d|I |(E.1)

for every dyadic interval I, and there exist weights αω, ω ∈ G, such that |αω| ≤
C‖ϕ‖d and such that

ϕ = ψ +
∑

ω∈G
αωχω

with ψ ∈ L∞, ‖ψ‖∞ ≤ C‖ϕ‖d. Conversely, every function of this form is in
BMOd. To prove the decomposition, mimic the proof of the John–Nirenberg

theorem. Suppose ‖ϕ‖d = 1. Take G = {I (n)
j } from that proof and take αω =

ϕI (n)
j

− ϕI (n−1)
k

, where I (n−1)
k ⊃ I (n)

j .
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(d) The dyadic maximal function is

f d(x) = sup
x∈ω

∣
∣
∣
∣

1

|ω|
∫

ω

f dt

∣
∣
∣
∣ ,

where the supremum is taken over dyadic intervals. The space H 1
d consists of

all f ∈ L1([0, 1]) for which

‖ f d‖1 =
∫ 1

0

| f d(x)| dx < ∞.

The norm in the dyadic H 1 space H 1
d is ‖ f d‖1. By part (c) the dual of H 1

d is
BMOd.

The dyadic spaces H 1
d and BMOd are special cases of the martingal H 1 and

BMO spaces (see Garsia [1973]). Technically, BMOd is much easier to work
with than BMO. For example, part (c) above is quite easy, but the direct proof
of the analogous result for BMO, Exercise 7(e), is rather difficult.

13. (a) Suppose ϕ ∈ BMO has support contained in [0, 1]. Then there
exists F(x, y) ∈ C∞(H ) such that |∇F(x, y)| dx dy is a Carleson measure

∫∫

Q

|∇F(x, y)| dx dy ≤ A‖ϕ‖∗h,(E.2)

Q = [a, a + h] × (0, h], such that

sup
y>0

|F(x, y)| ∈ L1(E.3)

and such that

ϕ(x) = lim
y→0

F(x, y) + ψ(x)(E.4)

with ‖ψ‖∞ ≤ C‖ϕ‖∗. By 12(c) we can suppose ϕ has the special form

ϕ(x) =
∑

w∈G
αωχω(x),

where the family G of dyadic intervals satisfies (E.1). Then (E.2) and (E.3)
hold for

F0(x, y) =
∑

ω∈G
αωχω(x)χ(0,|ω|)(y).

Although F0 is not in C∞, |∇F0(x, y)|, taken as a distribution, is a Carleson
measure. (To control |∂F0/∂x |, use 12(b) above.)
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The smooth function F(x, y) is a mollification of F0. Let h ∈ C∞(C) satisfy

h(z) ≥ 0;
∫

h dxdy = 1;

h(z) = 0, |z| > 1
2
.

Set hn(z) = 22nh(2nz), Fn(z) = F0(z)χ{2−n<y<2−n+1}(t), and write

F(z) =
∞∑

n=1

(hn ∗ Fn)(z).

Then F ∈ C∞(H ) satisfies (E.2)–(E.4) (Varopoulos [1977a]).
(b) Use the result in (a) to give another proof that (H 1

R
)∗ = BMO.

�14. (a) On the unit circle, the dual of VMO is H 1
R

.
(b) Let f ∈ BMO. Then f ∈ VMO if and only if

∫ a+h

a

∫ h

0

y|∇u(z)|2 dx dy = o(h)

uniformly in a ∈ R, where u(z) is the Poisson integral of f (t).

�15. (a) Suppose ψ ∈ BMO, ‖ψ‖∗ ≤ B0. If

sup
I

1

|I |
∫

eψ−ψI dx = B1 < ∞,

then there are δ = δ(B0, B1) > 0 and B2 = B2(B0, B1) such that

sup
I

1

|I |
∫

e(1+δ)(ψ−ψI ) dx ≤ B2.

The proof is a variation of the proof of the John–Nirenberg theorem. It is
enough to show there is α > 1 such that for n = 1, 2, . . .

|{x ∈ I : ψ(x) − ψI > nα}| ≤ e−(1+2δ)nα|I |(E.5)

for every interval I.
Take λ > 0 so that

|ψI − ψ j | ≤ 1
2
λ(E.6)

if I ⊂ J, |J | = 2|I |, and so that

|{x ∈ I : |ψ(x) − ψI | ≥ 1
2
λ}| ≥ 1

2
|I |(E.7)

for all I. Fix an interval I0 and assume I0 = [0, 1] and ψI0
= 0. For n ≥ 1, let

{In, j } be the maximal dyadic intervals inside I0 for which ψIn, j ≥ nλ. Then by
(E.6)

nλ ≤ ψIn, j ≤ (n + 1
2
)λ,
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and by (E.7) there exists En, j ⊂ I ′
n, j such that |En, j | ≥ 1

2
|In, j | and

ψ(x) ≥ (n − 1
2
)λ, x ∈ En, j .

Hence for any chosen interval Im,k we have
∑

n≥m

e−(m−n+1)λ
∑

In, j ⊂Im,k

|In, j |
|Im,k | ≤ 2

∑

n≥m

e−(m−n+1)λ|
⋃

En, j |/|Im,k |

≤ C

|Im,k |
∫ ∞

0

et |{x ∈ Im,k : ψ(x) − ψIm,k > t}| dt

= C

|Im,k |
∫

Im,k

eψ−ψIm,k dx ≤ B1.

In particular, whenever n ≥ m
∑

In, j ⊂Im,k

|In, j |
|Im,k | ≤ C B1e(m−n+1)λ.(E.8)

Let s be a positive integer, s > 2. For each Im,k we have n0, m < n0 ≤ m + s,
so that

e−(m−n0+1)λ
∑

In0, j ⊂Im,k

|In0, j |
|Im,k | ≤ C B1

s
,

because otherwise (E.8) would fail. Using (E.8) to compare
∑

Im+s, j
to

∑
In0

, j ,

we therefore obtain
∑

Im+s, j ⊂Im,k

|Im+s, j |
|Im,k | ≤ C B2

1

s
e(−s+2)λ.

Now choose s so that

C B2
1 e2λ/s ≤ 1

2
,

set α = sλ, and δ = (log 2)/2α. Then
∑

Im+s , j⊂ Im,k

|Im+s, j | ≤ e−(1+2δ)α|Im,k |,

and (E.5) follows upon iteration.
This argument is due to P. Jones. There are several interesting conse-

quences.
(b) If ψ ∈ BMO and if

sup
I

1

|I |
∫

I
eA/ψ−ψI | dx < ∞,(E.9)

then for some ε > 0

sup
I

1

|I |
∫

e(A+ε)|ψ−ψI | dx < ∞.
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Thus the set {A : (E.9) holds} does not contain its supremum.
(c) If w satisfies (Ap), then w satisfies (Ap−ε) for some ε > 0. (Use part

(a) and Lemma 6.5 with ψ = log((1/w)1/(p−1).)

16. Let H denote the Hilbert transform and let B denote the operator of
multiplication by a fixed function b(x), Bg(x) = b(x)g(x). The commutator
[B, H ] is defined by

[B, H ]g = B(Hg) − H (Bg) = b(x)(Hg)(x) − H (bg)(x).

Then [B, H ] is bounded on L2 if and only if b(x) ∈ BMO, and

C1‖b‖∗ ≤ ‖[B, H ]‖ ≤ C2‖b‖∗.

(Hint: Use duality and Riesz factorization; see Coifman, Rochberg, and Weiss
[1976].) The following proof that ‖[B, H ]‖ ≤ C‖b‖∗ is due to Rochberg. By
Section 6 there is δ > 0 such that whenever ‖b‖∗ ≤ δ, e2b has condition (A2).
Hence by Theorem 6.2.

T f (x) =
∫

e(b(x)−b(y))

x − y
f (y)dy

satisfies ‖T f ‖2 ≤ C‖ f ‖2 when ‖b‖∗ ≤ δ, since

‖T f ‖2
2 =

∫
e2b(x)|H (e−b f )(x)|2 dx ≤ C

∫
e2b(x)e−2b(x)| f (x)|2 dx .

For |z| = 1 the same holds for the operator Tz defined with zb in place of b.
However

1

2π i

∫

|z|=1

Tz f
dz

z2
=

∫
b(x) − b(y)

x − y
f (y)dy = [B, H ]( f ).

17. If μ is a probability measure and if f ≥ 0 is μ-measurable, then

lim
n→∞

1

n

(∫
| f |ndμ

)1/n

= 1

eA( f )
,

where

A( f ) = sup

{

A :

∫
eA f dμ < ∞

}

.

(Expand eA f into a power series and use the root test and Stirling’s
formula.)

18. (a) Suppose u ∈ L∞(T ), ‖u‖∞ ≤ π/2, and set f = e−i(u+i ũ). Then
| f (eiθ )| is weak L1, since Re f ≥ 0. Hence

|{θ : |ũ(eiθ )| > λ}| ≤ Ce−λ.
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By conformal invariance, that means

ωz({θ : |ũ(eiθ ) − ũ(z| > λ}) ≤ Ce−λ

for all z ∈ D, where ωz(E) = (1/2π )
∫

E Pzdθ . Consequently,

|{θ ∈ I : |ũ(eiθ ) − ũ(I ) > λ})| ≤ Ce−λ|I |
for every arc I.

(b) In a similar fashion, the Helson–Szegö condition implies the condition
(A2).

19. (a) Let μ be a locally finite positive Borel measure on R for which
the maximal function

Mμ(x) = sup
x∈I

μ(I )/|I |

is finite Lebesgue almost everywhere. Then log Mμ ∈ BMO (Coifman and
Rochberg [1980]).

(b) Let E be a subset of [0, 1] with |E | ≤ 4−1/ε. Then there exists ϕ ∈
BMO such that

0 ≤ ϕ ≤ 1.

ϕ = 1 on E, ϕ = 0 off [−1, 2],

‖ϕ‖∗ ≤ cε,

where c is an absolute constant. (Hint: Take ϕ = (α + β log M(χE ))+. A dif-
ferent proof is given by Garnett and Jones [1978].)

�20. (a) When f ∈ L1
loc(R), define

f #(x) = sup
x∈I

1

|I |
∫

I
| f − f I | dt.

Thus f ∈ BMO if and only if f # ∈ L∞. By the maximal theorem, ‖ f #‖p ≤
C p‖ f ‖p, 1 < p < ∞. Prove the converse:

‖ f ‖p ≤ C ′
p‖ f #‖p, 1 < p < ∞

(Fefferman and Stein [1972]).
(b) Suppose T is a mapping from L2(R) ∩ L∞(R) into measurable func-

tions on R such that

‖T f ‖2 ≤ A0‖ f ‖2, ‖T f ‖∗ ≤ A1‖ f ‖∗,

f ∈ L2 ∩ L∞. Then ‖T f ‖p ≤ Ap‖ f ‖p, 2 ≤ p < ∞. (Use (T f )# and the
Marcinkiewicz interpolation theorem.) Consequently the M. Riesz theorem
follows from Theorem 1.5.
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21. A positive locally integrable weight function w(x) is said to satisfy
condition (A1) if

sup
I

{(
1

|I |
∫

I
w dx

)

ess sup
x∈I

1

w(x)

}

< ∞.

(a) w(x) satisfies (A1, ) if and only if

Mw(x) ≤ Cw(x),

where M is the Hardy–Littlewood maximal function.
(b) If w(x) satisfies (A1), then w(x) satisfies (Ap) for all p > 1.
(c) w(x) satisfies (A1) if and only if the maximal function operator or the

Hilbert transform is weak-type 1–1 on L1(w dx) (Muckenhoupt [1972]; Hunt,
Muckenhoupt, and Wheeden [1973]).

(d) Let ϕ = log w. Then w has (A1) if and only if

sup
I

1

|I |
∫

I
eϕ−ϕI dx < ∞ and sup

I

(
ϕI − ess inf

x∈I
ϕ(x)

)
< ∞.

The space of functions satisfying the latter condition is called BLO, for bounded
lower oscillation. If ϕ ∈ BLO then ϕ ∈ BMO and so eεϕ has (A1) for some
ε > 0.

���(e) If w1 and w2 have (A1), then by Hölder’s inequality w =
w1w

1−p
2 has (Ap). The converse is also true but quite difficult. See Jones

[1980c]. With the Helson–Szegö theorem, the converse implies that if ‖v‖∞ <

1, then

Hv = u − Hu1 + Hu2,

where u ∈ L∞, ‖u j‖∞ ≤ 1, and Hu j ∈ BLO, j = 1, 2.
(f) If w satisfies A1, then w1+δ satisfies A1 for some δ > 0. (Use part (b)

and Corollary 6.10.)
(g) If μ is a positive Borel measure finite on compact sets such that

M(dμ) < ∞ almost everywhere and if 0 < α < 1, then (M(dμ))α has A1

(Coifman and Rochberg [1980]).
��(h) For any function w(x) ≥ 0 and for any s > 1, define

As(w) = M(Mws)1/s .

Then for 1 < p < ∞
∫

|H f |pw dx ≤ C p,s

∫
| f |p As(w) dx

(see Córdoba and Fefferman [1976]). It then follows easily from part (a) that
∫

|H f |pw dx ≤ C p

∫
| f |pw dx,

1 < p < ∞ if w satisfies (A1).
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22. On the unit circle let BMOA = H 2 ∩ BMO. If f ∈ BMOA then

inf
g∈I ∞

‖ f − g‖∗ ≤ C inf
g∈L∞

‖ f − g‖∗.

�23. (a) Let f (z) be a univalent function on the unit disc. If f (z) has no
zeros then log f (eiθ ) ∈ BMO. Moreover, if 0 < p < 1

2
, then | f (eiθ )|p satisfies

(A2) (Baernstein [1976]; see also Cima and Petersen [1976], Cima and Schober
[1976]).

(b) Let f (z) be analytic on D. Then f ∈ BMOA if and only if f =
α log g′(z), where α is a constant and g is a conformal mapping from D onto
a region bounded by a rectifiable Jordan curve � satisfying

l(w1, w2) ≤ c|w1 − w2|,
w1, w2 ∈ �, where l(w1, w2) is the shorter are on � joining w1 to w2 (Pom-
merenke [1977]). See also Pommerenke [1978] for a similar description of
VMOA.

�24. Let E be a closed set on the Riemann sphere, ∞ ∈ E . Then every
analytic function on D having values in C\E is in BMOA if and only if there
is r > 0 and δ > 0 such that

cap (E ∩ {|z − z0| < r}) > δ

for all z0 ∈ C\E . Here cap(S) denotes the logarithmic capacity of S (Hayman
and Pommerenke [1978]; Stegenga [1979]; Baernstein [1980] has yet another
proof).

25. The Bloch class B is the set of analytic functions f (z) on D for which

sup
z

(1 − |z|2)| f ′(z)| < ∞.

(a) If f (z) is analytic on D, then f ∈ B if and only if
{

f

(
z − w

1 − w̄z

)

: w ∈ D

}

is a normal family.
(b) BMOA ⊂ B.
(c) The function

∞∑

n=1

z2n

is in B but not in BMOA.
�(d) Let f (z) be analytic on D, and let F ′(z) = f (z). Then f ∈ B if and

only if F is in the Zygmund class �∗:

F(ei(θ+h)) + F(ei(θ−h)) − 2F(eiθ ) = O(h)
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(see Duren [1970], Zygmund [1968]). Since �∗ contains singular functions
(Kahane [1969]; Piranian [1966]; Duren, Shapiro, and Shields [1966]), we
have another proof that B �= BMOA.

(e) f (z) ∈ B if and only if f (z) = α log g′(z), where α is constant and
g(z) is univalent on D. (See Duren, Shapiro, and Shields [1966]; Pommerenke
[1970]. Compare with 23(b).)

(f) On the other hand, B does coincide with the analytic functions in BMO
of the unit disc defined by

1

πr2

∫

D∩{|z−z0|<r}
| f (z) − f (z0)| dx dy ≤ C,

|z0| < 1 (Coifman, Rochberg, and Weiss [1976]).
�(g) When f (z) is analytic in D, let n(w) be the number of solutions of

f (z) = w, z ∈ D. Suppose

sup
w0∈C

∫∫

|w−w0|<1

n(w) du dv < ∞,

w = u + iv. Then f ∈ BMOA if and only if f ∈ B, and f ∈ VMOA = H 2∩
VMO if and only if f ∈ B0, defined by

lim
|z|→1

(1 − |z|2)| f ′(z)| = 0

(see Pommerenke [1977]).
Anderson, Clunie, and Pommerenke [1974] give an excellent overview of

the theory of Bloch functions.
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Interpolating Sequences

A sequence {z j } in the disc or upper half plane is an interpolating sequence
if every interpolation problem

f (z j ) = a j , j = 1, 2, . . . ,

with {a j } bounded, has solution f (z) ∈ H∞. Interpolating sequences are very
interesting in their own right and they will play crucial roles in the analysis of
H∞ in the succeeding chapters. For example, they will be used in Chapter IX
to characterize the closed algebras between H∞ and L∞ and they will be sur-
prisingly important in the discussion of the maximal ideal space in Chapter X.

The notion of generations is introduced in this chapter. Similar to the stop-
ping times in the proof of the John–Nirenberg theorem, generations arise natu-
rally in several of the deeper proofs in this subject. They will be used frequently
in the next chapter. Some other important techniques are also introduced. These
include

(i) solving an extremal problem by a variational argument (this is done in
Section 2) and

(ii) using certain ideas borrowed from harmonic analysis, such as the aver-
aging process in the proof of Theorem 2.2 and the use of Khinchin’s inequality
in Section 4.

Two proofs of the interpolation theorem are given. Carleson’s original proof
by duality is in Section 1, because it sheds light on the geometry of interpolat-
ing sequences. Earl’s elementary proof, reminiscent of the Pick–Nevanlinna
theorem, is in Section 5.

1. Carleson’s Interpolation Theorem

Let {z j } be a sequence in the upper half plane. We want to determine when
every interpolation problem

f (z j ) = a j , j = 1, 2, . . . ,(1.1)

275
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with {a j } bounded, has a solution f (z) ∈ H∞. The sequence {z j } is called an
interpolating sequence if (1.1) has solution in H∞ for every {a j } ∈ l∞. If {z j }
is an interpolating sequence, then the linear operator T : H∞ → l∞ defined by
Tf( j) = f (z j ) is a bounded linear mapping of H∞ onto l∞. The open mapping
theorem then gives a constant M such that (1.1) has a solution f (z) with

‖ f ‖∞ ≤ M sup
j

|a j | = M‖a j‖∞.

The smallest such constant M is called the constant of interpolation

M = sup
‖a j ‖∞≤1

inf{‖ f ‖∞ : f ∈ H∞, f (z j ) = a j , j = 1, 2, . . . }.

Let z j and zk be distinct points in the interpolating sequence. Then there
exists f ∈ H∞ such that

f (z j ) = 0, f (zk) = 1, and ‖ f ‖∞ ≤ M.

By Schwarz’s lemma this means
∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ = ρ(z j , zk) ≥ | f (z j )/M − f (zk)/M |

|1 − f (zk) f (z j )/M2| = 1

M
,

and so
∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ a > 0, j �= k,(1.2)

with a = 1/M . A sequence is said to be separated if (1.2) holds with constant
a > 0 not depending on j and k. We have just proved that an interpolating
sequence is separated.

The above reasoning can be carried further to yield a necessary condi-
tion for interpolation that will also be a sufficient condition. Fix zk , let
f ∈ H∞, ‖ f ‖∞ ≤ M , interpolate the values

f (zk) = 1, f (z j ) = 0, j �= k.

Let B(k) be the Blaschke product with zeros {z j , j �= k}. Since f �= 0 this
product exists. Then f = B(k)g, where g ∈ H∞, and ‖g‖∞ ≤ M , so that

1 = | f (zk)| = |B(k)(zk)||g(zk)| ≤ M |B(k)(zk)|
and |B(k)(zk)| ≥ 1/M . Since zk is arbitrary, we conclude that

inf
k

∏

j, j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ δ > 0(1.3)

holds for an interpolating sequence {z j } with constant δ = 1/M . Carleson’s
theorem asserts that the necessary condition (1.3) conversely implies that {z j }
is an interpolating sequence.
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Before stating the theorem in full, let us interpret (1.3) geometrically. In the
unit disc (1.3) becomes

inf
k

∏

j, j �=k

∣
∣
∣
∣

zk − z j

1 − z̄ j zk

∣
∣
∣
∣ ≥ δ > 0.(1.4)

Let B(z) be the full Blaschke product

B(z) =
∞∏

j=1

−z̄ j

|z j |
(

z − z j

1 − z̄ j z

)

.

If we view zk as the origin by taking w = (z − zk)/(1 − z̄k z) as the coordinate
function on the disc, then the zeros of B are

w j = z j − zk

1 − z̄k z j
, j = 1, 2, . . . ,

and (1.4) holds if and only if for all k
∏

j, j �=k

|w j | ≥ δ.

Since 1 − |w| ≤ log 1/|w|, this gives
∑

j

(1 − |w j |) ≤ 1 + log 1/δ,(1.5)

and (1.4) holds if and only if the Blaschke sum (1.5) has a bound that does
not depend on which point zk is regarded as the origin. This fact, of course,
reflects the conformal invariance of the interpolation problem (1.1). With the
identity

1 −
∣
∣
∣
∣

z j − zk

1 − z̄k z j

∣
∣
∣
∣

2

= (1 − |zk |2)(1 − |z j |2)

|1 − z̄k z j |2 ,

from Section 1 of Chapter I, (1.5) gives

sup
k

∑

j

(1 − |zk |2)

|1 − z̄k z j |2 (1 − |z j |2) ≤ C(δ).

If this supremum were taken over all points in the disc instead of only over
sequence points, we should have

sup
z0∈D

∑

j

(1 − |z0|2)

|1 − z̄0z j |2 (1 − |z j |2) ≤ C ′(δ).(1.6)

By the conformally invariant description of Carleson measures (Chapter VI,
Lemma 3.3), (1.6) holds if and only if the measure

∑
(1 − |z j |)δz j
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is a Carleson measure on the disc. Now it is not very hard to see that (1.4) does
imply (1.6), and that conversely, if the sequence is separated, (1.6) implies (1.4).
(The complete arguments are given below during the proof of the theorem.)
This discussion does not prove the theorem, but it should clarify the connection
between Carleson measures and interpolation. Historically it was with the
interpolation theorem that Carleson measures first arose.

To state the theorem we return to the half plane.

Theorem 1.1. If {z j } is a sequence in the upper half plane, then the following
conditions are equivalent:

(a) The sequence is an interpolating sequence: Every interpolation problem

f (z j ) = a j , j = 1, 2, . . . ,

with {a j } ∈ l∞ has solution f ∈ H∞.
(b) There is δ > 0 such that

∏

j, j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ δ, k = 1, 2, . . . .(1.3)

(c) The points z j are separated,

ρ(z j , zk) =
∣
∣
∣
∣
z j − zk

z j − z̄k

∣
∣
∣
∣ ≥ a > 0, j �= k,

and there is a constant A such that for every square Q = {x0 ≤ x ≤ x0 +
�(Q), 0 < y ≤ �(Q)},

∑

z j ∈Q

y j ≤ A�(Q).(1.7)

The constant δ in (1.3) and the constant of interpolation

M = sup
‖a j ‖∞≤1

inf{‖ f ‖∞ : f (z j ) = a j , j = 1, 2, . . . , f ∈ H∞}

are related by the inequalities

1

δ
≤ M ≤ c

δ

(

1 + log
1

δ

)

,(1.8)

in which c is some absolute constant.

Except for the value of the numerical constant c, the upper bound given for
M in (1.8) is sharp. An example illustrating this will be given after the proof.

Of course, (1.7) says that
∑

y jδz j is a Carleson measure. Condition (c),
being more geometric, is in some ways more useful than (b). Before turning
to the proof we consider two examples. First, suppose the points z j lie on
a horizontal line {y j = y > 0}. Then (1.7) holds as soon as the points are
separated. So a horizontal sequence is an interpolating sequence if and only if
it is separated. This fact can also be derived from (1.3) without much difficulty.
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For the second example, suppose the points z j lie on the vertical line x = 0.
Then (1.7) holds if and only if

∑

y j ≤yk

y j ≤ Ayk, k = 1, 2, . . . ,

This condition is satisfied if the points are separated. If the y j are bounded
above and if the points are indexed so that y j+1 < y j , then this condition holds
if and only if the points tend to the boundary exponentially:

y j+1/y j ≤ α < 1.

Thus a vertical sequence is an interpolating sequence if and only if it is sep-
arated. Of course, not every separated sequence satisfies (1.7). A sequence
having only (1.2) need not be a Blaschke sequence; it could have subsequences
converging nontangentially to each point on the line.

Proof of Theorem 1.1. We have already seen that (a) implies (b), along with
the estimate M ≥ 1/δ.

There are two remaining steps in the proof. First we show that (b) and (c)
are equivalent. This is really only a matter of comparing infinite products to
infinite sums. Second, we must show that (b) and (c) together imply (a). This
will be done with a dual extremal problem.

To show that (b) and (c) are equivalent we need an elementary lemma.

Lemma 1.2. Let B(z) be the Blaschke product in the upper half plane with
zeros {z j }. Then

− log |B(z)|2 ≥
∑

j

4yy j

|z − z̄ j |2 , z = x + iy.(1.9)

Conversely, if

inf
j

ρ(z, z j ) = inf
j

∣
∣
∣
∣
z − z j

z − z̄ j

∣
∣
∣
∣ = a > 0,

then

− log |B(z)|2 ≤
(

1 + 2 log
1

a

) ∑ 4yy j

|z − z̄ j |2 .(1.10)

Proof. The inequality − log t ≥ 1 − t, t > 0, gives

− log

∣
∣
∣
∣
z − z j

z − z̄ j

∣
∣
∣
∣

2

≥ 1 −
∣
∣
∣
∣
z − z j

z − z̄ j

∣
∣
∣
∣

2

= 4yy j

|z − z̄ j |2 .

Summing now gives (1.9). The reverse inequality,

− log t ≤ −2 log a

1 − a2
(1 − t) ≤

(

1 + 2 log
1

a

)

(1 − t),

is valid for a2 < t < 1, and in a similar fashion it gives (1.10).
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Now suppose (c) holds. Then (1.7) and (3.8) of Chapter VI give

∑

j

4yk y j

|zk − z̄ j |2 =
∑

j

4yk y j

|z j − z̄k |2 ≤ C ′, k = 1, 2, . . . .(1.11)

For convenience we directly derive (1.11) from (1.7), essentially repeating the
proof of (3.8) of Chapter VI. Fix zk = xk + iyk and let Sn = {z ∈ H : |z −
xk | ≤ 2n yk}, n = 0, 1, 2, . . . . By (1.7),

∑
Sn

y j ≤ c2n+1 yk . When z j ∈ S0, we

have |z j − z̄k |2 ≥ y2
k , and when z j ∈ Sn\Sn−1, n ≥ 1, we have |z j − z̄k |2 ≥

22n−2 y2
k . Consequently,

∑

j

4yk y j

|z j − z̄k |2 ≤ 4
∑

z j ∈S0

y j

yk
+ 16

∞∑

n=1

(
∑

z j ∈Sn\Sn−1

y j

22n yk

)

≤ 8A + 32A
∞∑

1

2−n = A′.

Since inf j, j �=k |(zk − z j )/(zk − z̄ j )| ≥ a, we can now use (1.10) on the
Blaschke product B(k) with zeros {z j : j �= k} to obtain

∏

j, j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ δ = δ(a, A).

Hence (c) implies (b).
Now suppose (b) holds; that is, suppose

inf
k

∏

j, j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ δ.

Then trivially
∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ δ, j �= k,

and the points are separated. Using (1.9) with the Blaschke product B(k)(z)
formed by deleting one zero zk , we obtain

∑

j, j �=k

4y j yk

|zk − z̄ j |2 ≤ 2 log
1

δ
.

Consider a square

Q = {x0 ≤ x ≤ x0 + �(Q), 0 < y ≤ �(Q)}.
We first treat the special case in which the top half

T (Q) = {z ∈ Q : y > �(Q)/2}
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contains a sequence point zk . Then we have |zk − z̄ j |2 ≤ 5(�(Q))2, z j ∈ Q, so
that

y j ≤ 5(�(Q))2

4yk

4y j yk

|zk − z̄ j |2 ≤ 5�(Q)

2

4y j yk

|zk − z̄ j |2 .

Hence

∑

z j ∈Q

y j ≤ 5�(Q)

2

∑

j

4y j yk

|zk − z̄ j |2 ≤ 5�(Q)

2

(

1 + 2 log
1

δ

)

,

and (1.7) holds with A = c(1 + log(1/δ)) for squares Q such that T (Q) ∩
{zk} �= ∅.

To obtain (1.7) for all squares Q we use a stopping time argument. Let
Q = Q0 = {x0 ≤ x ≤ x0 + �(Q), 0 < y ≤ �(Q)}. Partition Q\T (Q) into two
squares Q1, of side �(Q)/2. Partition each Q1\T (Q1) into two squares Q2 of
side �(Q1)/2 and continue. At stage n we have 2n squares Qn of side 2−n�(Q)
whose top halves T (Qn) are all congruent to T (Q) in the hyperbolic metric.
These squares Qn have pairwise disjoint interiors and they cover {z ∈ Q : 0 <

y ≤ 2−n�(Q)}. Let Q1, Q2, . . . be those squares Qn such that

(i) T (Qn) ∩ {z j } �= ∅ and
(ii) Qn is contained in no larger square satisfying (i)

Then Q ∩ {z j } ⊂ Q1 ∪ Q2 ∪ · · · , and the projections of the selected squares
Qk onto the axis {y = 0} have pairwise disjoint interiors, so that

∑
�(Qk) ≤ �(Q).

See Figure VII. 1. We have already seen that (1.7) holds for each of the selected
squares Qk , with constant A = c(1 + log 1/δ). Summing over the Qk , we

Figure VII.1. The shaded squares Q1, Q2, . . . are maximal Qn for which T (Qn) ∩ {z j } �= 0.
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obtain

∑

z j ∈Q

y j ≤ c

(

1 + log
1

δ

)

�(Q),

which proves (1.7) in general. Hence (b) implies (c).
In order to get the sharp inequality (1.8) we must make use of the fact that

the constant A in (1.7) has the form

A ≤ c

(

1 + log
1

δ

)

.(1.12)

Now we must show that (b) and (c) imply (a). Let {a j } ∈ l∞, |a j | ≤ 1, and
consider the finite problem

f (z j ) = a j , 1 ≤ j ≤ n.(1.13)

Since the points are distinct it is trivial that the finite problem (1.13) has a
solution f (z) ∈ H∞. For example, take f (z) = p(z)/(z + i)n , where p(z) is
a polynomial of degree n. Let

Mn({a j }) = inf{‖ f ‖∞ : f ∈ H∞, f (z j ) = a j , 1 ≤ j ≤ n},
and let

Mn = sup
‖a j ‖∞≤1

Mn({a j }).

By normal families the theorem will be proved and inequality (1.8) will be
established if we show that

lim
n

Mn ≤ c

δ

(

1 + log
1

δ

)

.

Let

Bn(z) =
n∏

j=1

z − z j

z − z̄ j
.

For fixed {a j } let f0 ∈ H∞ be a solution of (1.13). Then

Mn({a j }) = inf{‖ f0 + Bng‖∞ : g ∈ H∞} = inf{‖ f0 B̄n + g‖∞ : g ∈ H∞}.
Since

H∞ =
{

g ∈ L∞ :

∫
gG dx = 0 for all G ∈ H 1

}

,

duality now gives

Mn({a j }) = sup

{∣
∣
∣
∣

∫
f0 B̄nG dx

∣
∣
∣
∣ : G ∈ H 1, ‖G‖1 ≤ 1

}

.
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Now by Cauchy’s theorem we have, for G ∈ H 1,

∫

�

f0 B̄nG dx =
∫

�

f0(x)G(x)

Bn(x)
dx = 2π i

n∑

j=1

f0(z j )G(z j )

B ′
n(z j )

.

(In the contour integral the large semicircles tending to infinity are disregarded
because we can take G(z) in the H 1 norm dense set of functions G1(z) with
|G1(z)| = O(|z|−2)). Since f0(z j ) = a j , j = 1, 2, . . . , n, this gives

Mn = sup
‖a j ‖∞≤1

sup

{

2π

∣
∣
∣
∣
∣

n∑

j=1

a j G(z j )

B ′
n(z j )

∣
∣
∣
∣
∣

: G ∈ H 1, ‖G‖1 ≤ 1

}

.

For fixed G(z), the {a j } can be chosen so that |a j | = 1 and so that

a j G(z j )/B ′
n(z j ) ≥ 0.

We therefore have

Mn = sup

{

2π

n∑

j=1

|G(z j )|
|B ′

n(z j )| : G ∈ H 1, ‖G‖1 ≤ 1

}

.(1.14)

Now

B ′
n(z j ) = −i

2y j

n∏

k=1
k �= j

(
z j − zk

z j − z̄k

)

,

and so (b) implies that

|B ′
n(z j )| ≥ δ/2y j .

Hence

Mn ≤ 4π

δ
sup

{
n∑

j=1

y j |G(z j )| : G ∈ H 1, ‖G‖1 ≤ 1

}

.

By condition (c), the measure
∑

y jδz j is a Carleson measure, and so by The-
orem II.3.9

sup

{
n∑

j=1

y j |G(z j )| : G ∈ H 1, ‖G‖1 ≤ 1

}

≤ C A,

where A is the constant from (1.7). Consequently

lim
n→∞ Mn ≤ 4πC A/δ

and (a) is proved.
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We have now shown that (a)–(c) are equivalent. Moreover, using the estimate
(1.12) of the constant A in (1.7), we get

M = lim
n

Mn ≤ c

δ

(

1 + log
1

δ

)

and (1.8) is proved.
Here is an example to show that (1.8) is sharp. Let ω = e2π i/N be a primitive

Nth root of unity. In the disc take the finite sequence

z j = rω j , j = 1, 2, . . . , N .

The two parameters N and r < 1 will be fixed later. The Blaschke product with
zeros z j is

B(z) = zN − r N

1 − r N zN
.

From (1.4) we have

δ = inf(1 − |z j |2)|B ′(z j )| = Nr N−1 1 − r2

1 − r2N
.

Consider the interpolation problem

f (z j ) = a j = ω− j .

By Theorem I.2.4 or by IV.1.8 this finite problem has a unique interpolating
function f (z) of minimal norm and

f (z) = m B1(z),

where B1 is a Blaschke product with at most N − 1 zeros. Since

z j+1 = ωz j , a j+1 = ω−1a j ,

the uniqueness implies that

f (z) = ω f (ωz).

Hence the zero set of B1(z) is invariant under multiplication by ω. As there are
at most N − 1 zeros, all the zeros are at z = 0, and

f (z) = mz p

with p ≤ N − 1. A simple calculation then gives

f (z) = r1−N zN−1.

Let r → 1 and N → ∞ in such a way that m = r1−N is fixed. Then

δ = Nm
1 − r2

m2 − r2
and lim

N→∞
N (1 − r2) = 2 log m,
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so that for large N

δ ≥ (log m)/m.

Consequently there exist finite interpolating sequences such that

M ≥ m ≥ 1

δ
log

1

δ
.

2. The Linear Operator of Interpolation

Let {z j } be an interpolating sequence in the upper half plane. In this section
we prove that there exist interpolating functions that depend linearly on the
interpolated values {a j }. This useful result is obtained through a nonlinear
extremal problem.

Theorem 2.1. Let {z j } be an interpolating sequence in the upper half plane,
and let

M = sup
‖a j ‖≤1

inf{‖ f ‖∞ : f ∈ H∞, f (z j ) = a j , j = 1, 2, . . . }

be the constant of interpolation. Then there are functions f j (z) ∈ H∞ such
that

f j (z j ) = 1, f j (zk) = 0, k �= j,(2.1)

and
∑

j

| f j (z)| ≤ M.(2.2)

Before proving this theorem let us give two applications. Suppose {a j } ∈ l∞.
By (2.2) the function

f (z) =
∑

j

a j f j (z)(2.3)

is in H∞, and by (2.1) this function interpolates

f (z j ) = a j , j = 1, 2, . . . .

Thus (2.3) produces interpolating functions that depend linearly on {a j }. With
(2.3) we have defined a linear operator S : l∞ → H∞ by S({a j }) = ∑

a j f j ,
and S is a linear operator of interpolation, which simply means that S is linear
and that

S({a j })(zk) = ak, k = 1, 2, 3, . . . .(2.4)

By (2.2) the operator S is bounded and ‖S‖ ≤ M . Since the constant M in (2.2)
is the constant of interpolation, we actually have ‖S‖ = M . Now any operator,
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linear or not, that satisfies (2.4) must have

sup
‖a j ‖∞≤1

‖S({a j })‖∞ ≥ M

because M is the constant of interpolation. Thus (2.3) solves all interpolation
problems (1.1) simultaneously with a linear operator whose norm is as small
as possible. The inequalities

‖a j‖∞ ≤ ‖S({a j })‖∞ ≤ M‖a j‖∞

show that the range S(l∞) is a closed subspace of H∞ and that, as a Banach
space, S(l∞) is isomorphic to l∞. The linear operator P : H∞ → S(l∞) de-
fined by

Pg =
∑

j

g(z j ) f j

is a bounded operator from H∞ onto S(l∞) such that P2 = P . By definition,
this means that P is a projection and that P(H∞) = S(l∞) is a complemented
subspace of H∞. (The complement is the kernel of P.) Hence Theorem 2.1
shows that H∞ contains a closed complemented subspace isomorphic to l∞.

The second application concerns interpolation by bounded analytic functions
having values in a Banach space. A function f (z) from an open set in the plane
to a Banach space Y is analytic if f (z) can be locally represented as a sum
of a power series that has coefficients in Y and that is absolutely convergent.
Equivalently, for each y∗ ∈ Y ∗, the complex valued function z → 〈y∗, f (z)〉 is
analytic. To quote Hoffman [1962a], “Any two reasonable-sounding definitions
of an analytic function with values in a Banach space are equivalent.”

Let {z j } be an interpolating sequence in the upper half plane. Let Y be a
Banach space and let {a j } be a bounded sequence in Y,

sup
j

‖a j‖Y < ∞.

If { f j } is the sequence of scalar-valued functions given by Theorem 2.1, then

f (z) =
∑

f j (z)a j

is an analytic function on the upper half plane with values in Y. By (2.1), f (z)
solves the interpolation problem

f (z j ) = a j , j = 1, 2, . . . ,

and by (2.2), f (z) is bounded:

‖ f ‖ = sup
z

‖ f (z)‖Y ≤ sup
z

∑
| f j (z)|‖a j‖Y ≤ M sup

j
‖a j‖Y .(2.5)

We conclude that {z j } is also an interpolating sequence for the Y-valued
bounded analytic functions. Conversely, it is trivial that an interpolating se-
quence for Y-valued H∞ functions is an interpolating sequence for scalar
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functions. Just interpolate scalar multiples of a fixed vector in Y. Inequality
(2.5) shows that the constant of interpolation is the same in the Banach space
case as it is in the scalar case.

Proof of Theorem 2.1. For λ1, λ2, . . . , λn ≥ 0, define the functional

ϕ(G) =
n∑

j=1

λ j |G(z j )|, G ∈ H 1,

and consider the extremal problem

mn = mn({λ j }) = sup{ϕ(G) : G ∈ H 1, ‖G‖1 ≤ 1}.(2.6)

This is a nonlinear problem to which the method of Chapter IV does not apply.
But we can use an older method, usually referred to as a variational argument.
There clearly exists an extremal function G0 for (2.6), and G0 must be an outer
function,

G0 = eU0+iŨ0 .

Let u(x) be a real compactly supported continuous function. Then for t ∈ �

Gt = G0etu+i t ũ

is another H 1 function and

mn‖Gt‖1 ≥ ϕ(Gt ),

with equality at t = 0. Write this inequality as mn‖Gt‖1 − ϕ(Gt ) ≥ 0 and
differentiate with respect to t at t = 0. We obtain

mn

∫
|G0(x)|u(x) dx =

n∑

j=1

λ j |G0(z j )|u(z j )

=
∫ ∑ λ j |G0(z j )|

π

y j

(x j − x)2 + y2
j

u(x) dx .

Because u(x) is arbitrary, this means

mn|G0(x)| = 1

π

∑

j

λ j |G0(z j )|y j

(x j − x)2 + y2
j

and we have almost everywhere

mn = 1

π

n∑

j=1

|G0(z j )|
|G0(x)|

λ j y j

(x − x j )2 + y2
j

.(2.7)

Now let

Bn(z) =
n∏

j=1

z − z j

z − z̄ j
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and put λ j = 2π |B ′
n(z j )|−1 in (2.6). Then (2.6) is the same as the extremal

problem (1.14) and

mn = Mn = sup
|a j |≤1

inf{‖ f ‖∞ : f ∈ H∞, f (z j ) = a j , 1 ≤ j ≤ n}.

From (2.7) we now have

Mn =
n∑

j=1

|G0(z j )|
|G0(x)|

1

|B ′
n(z j )|

2y j

|x − z j |2(2.8)

almost everywhere. Now set

f (n)
j (z) = G0(z j )

G0(z)

Bn(z)

B ′
n(z j )

2iy j

(z − z j )(z − z̄ j )
, j = 1, 2, . . . , n.

Then by (2.8),
∑

| f (n)
j (x)| = Mn

almost everywhere. The functions f (n)
j are in N+, because G0 is outer, and so

∑
| f (n)

j (z)| ≤
∑ ∫

| f (n)
j (t)|Pz(t) dt ≤ Mn.

Clearly f (n)
j (zk) = 0, k �= j, 1 ≤ k ≤ n. Calculating B ′

n(z j ) explicitly shows

that f (n)
j (z j ) = 1. Taking a limit as n → ∞, we obtain functions f j in H∞, j =

1, 2, . . . that satisfy (2.1) and (2.2).

Generally, it is not always the case that a linear operator of extension exists.
However, there is an elegant result from uniform algebra theory that implies
Theorem 2.1 with a poorer bound on

∑ | f j (z)|. The idea comes from harmonic
analysis.

Theorem 2.2. Let A be a uniform algebra on a compact space X. Let
{p1, p2, . . . , pn} be a finite set of points in X and let

M = sup
‖a j ‖∞≤1

inf{‖g‖ : g ∈ A, g(p j ) = a j , j = 1, 2, . . . , n}.

For any ε > 0 there are functions f1, f2, . . . , fn in A such that

f j (p j ) = 1, f j (pk) = 0, k �= j(2.9)

and such that

sup
x∈X

n∑

j=1

| f j (x)| ≤ M2 + ε.
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By normal families, Theorem 2.2 implies Theorem 2.1 except that the sharp
inequality (2.2) is replaced by the weaker

∞∑

j=1

| f j (z)| ≤ M2.

For a general uniform algebra it is not possible to extend Theorem 2.2 to infinite
interpolating sequences.

Proof. Let ω = e2π i/n be a primitive nth root of unity. Let g j (x) ∈ A, ‖g j‖ ≤
M + δ, where δ > 0, interpolate

g j (pk) = ω jk, k = 1, 2, . . . , n.

Set

f j (x) =
(

1

n

n∑

k=1

ω− jk gk(x)

)2

.

Then f j ∈ A and f j (p j ) = 1. Since
∑n

k=1 ω(l− j)k = 0 for l �= j, f j (pl) = 0 if
l �= j . Moreover

n∑

j=1

| f j (x)| = 1

n2

n∑

j=1

(
n∑

k=1

ω− jk gk(x)
n∑

l=1

ω jl gl(x)

)

= 1

n2

n∑

k=1

n∑

l=1

gk(x)gl(x)
n∑

j=1

ω(l−k) j

= 1

n2

n∑

k=1

n|gk(x)|2 ≤ (M + δ)2 ≤ M2 + ε

if δ is small.

3. Generations

Let {z j } be a sequence in the upper half plane. We assume that {z j } is
separated:

|z j − zk | ≥ by j , k �= j,(3.1)

with b > 0. This condition (3.1) is clearly equivalent to (1.2), but (3.1) is
slightly more convenient for our present purpose. Then the condition

∑

z j ∈Q

y j ≤ A�(Q)(3.2)

holds for every square Q = {x0 ≤ x ≤ x0 + �(Q), 0 < y ≤ �(Q)}, with con-
stant A independent of Q, if and only if {z j } is an interpolating sequence.
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Conditions like (3.2) will arise quite often in the rest of this book, and so we
pause here to analyze (3.2) carefully. Understanding the geometry of (3.2)
enables one to construct interpolating sequences very easily.

Let Q be any square with base on {y = 0} and let T (Q) = {z ∈ Q :
�(Q)/2 < y ≤ �(Q)} be the top half of Q. Partition Q\T (Q) into two squares
Q1 of side �(Q)/2. Continue, just as in the proof of Theorem 1.1. At stage n
there are 2n squares Qn of side 2−n�(Q) (see Fig. VII.1).

In the hyperbolic geometry each top half T (Qn) is congruent to T (Q). When
the sequence is separated, each top half T (Q) or T (Qn) can contain at most
C(b) points z j , where b is the constant in (3.1). Indeed, if T (Qn) is partitioned

into C(b) squares of side 2−(p+n)�(Q) with 2−p < b/2
√

2, then by (3.1) each
of these little squares can contain at most one point z j , because y j > �(Qn)/2.
(See Figure VII.2.)

Figure VII.2. Each little square in T (Qn) contains at most one point z j .

The first generation G1(Q) consists of those Qn ⊂ Q such that

(i) Qn �= Q,
(ii) T (Qn) ∩ {z j } �= ∅,

(iii) Qn is contained in no larger square satisfying (i) and (ii).

The squares Q1, Q2, . . . in G1(Q) have pairwise disjoint interiors that have
pairwise disjoint projections onto {y = 0}. Hence

∑

G1(Q)

l(Qk) ≤ �(Q).

Moreover

{z j : z j ∈ Q} ⊂ T (Q) ∪
⋃

G1(Q)

Qk .

The squares in G1(Q) are shaded in Figure VII.1. Now for each Qk ∈ G1(Q)
we define the first generation G1(Qk) in the same way. G1(Qk) consists of
those Qn properly contained in Qk such that T (Qn) ∩ {z j } �= ∅ and such that
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Qn is maximal. The second generation is

G2(Q) =
⋃

G1(Q)

G1(Qk).

The later generations G3(Q), G4(Q), . . . are defined recursively:

G p+1 =
⋃

G p(Q)

G1(Qk).

If z j ∈ Q, then either z j ∈ T (Q), or z j ∈ T (Qk) for some square Qk in some
generation G p(Q). In the second case y j is comparable to �(Qk). Write

tp =
∑

G p(Q)

�(Qk).

From the definitions it is clear that

tp+1 ≤ tp ≤ �(Q).

Theorem 3.1. Assume {z j } is a sequence of points in the upper half plane
satisfying the separation condition (3.1). Then {z j } is an interpolating sequence
if and only if, for any ε > 0, there is q such that for any square Q

tq =
∑

G p(Q)

�(Qk) ≤ ε�(Q).(3.3)

The smallest constant q such that (3.3) holds is related to the constant A in
(3.2) by

q ≤ 1 + 2A/ε and A ≤ C(b, ε, q),

where b is the constant in (3.1).

Proof. For z j ∈ T (Qn), we have

y j ≤ �(Qn) ≤ 2y j .

Each T (Qn) or T (Q) contains at most C(b) points z j and if Qk ∈ G p(Q), then
T (Qk) contains at least one point z j . Hence

∞∑

p=1

tp ≤ 2
∑

z j ∈Q

y j ≤ 2C(b)

(

�(Q) +
∞∑

p=1

tp

)

.

If interpolation holds, then we have (3.2), and so

qtq ≤
q∑

p=1

tp ≤ 2A�(Q).
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This gives (3.3) if q ≥ 2A/ε. Conversely, if (3.3) holds for all squares, then
the recursive definition of the generations gives

tp+q ≤ εtp, p = 1, 2, . . . ,

so that

Nq+q∑

Nq+1

tp ≤ εN
q∑

1

tp ≤ qεN �(Q).

Therefore

∑

z j ∈Q
y j ≤ C(b)

(

�(Q) +
∞∑

N=0

qεN �(Q)

)

≤ C(b)

(

1 + q

1 − ε

)

�(Q),

and we have (3.2).

4. Harmonic Interpolation

The proof we shall give of the next theorem requires a randomization tech-
nique that has been very useful in many other areas of analysis. Thus we
pause briefly to discuss Khinchin’s inequality before turning to the theorem
on harmonic interpolating sequences.

Given finitely many complex numbers α1, α2, . . . , αn , consider the 2n pos-
sible sums

n∑

j=1

±α j

obtained as the plus–minus signs vary in the 2n possible ways. Let p > 0.
Khinchin’s inequality is an estimate on the expectation

E

(∣
∣
∣
∣
∣

n∑

j=1

±α j

∣
∣
∣
∣
∣

p)

.

The expectation is the average value of | ∑ ±α j |p over the 2n choices of sign,
To be precise, let � be the set of 2n points

ω = (ω1, ω2, . . . , ωn),

where ω j = ±1. Define the probability μ on � so that each point ω has prob-
ability 2−n . Also define

X (ω) =
n∑

j=1

α jω j .
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Then X (ω) is a more rigorous expression for
∑ ±α j , and by definition

E

(∣
∣
∣
∣
∣

n∑

j=1

±α j

∣
∣
∣
∣
∣

p)

= 1

2n

∑

ω∈�

|X (ω)|p =
∫

�

|X (ω)|pdμ.

The following lemma is called Khinchin’s inequality.

Lemma 4.1. If 0 < p < ∞, then
(

E

(∣
∣
∣
∣
∣

n∑

j=1

±α j

∣
∣
∣
∣
∣

p))1/p

≤ C p

(∑
|α j |2

)1/2

,(4.1)

where C p is a constant that does not depend on n.

The important thing in (4.1) is that C p does not increase as n increases.
We prove Lemma 4.1 only in the easy case p ≤ 2 because we need only use
that case here. (See Zygmund [1968] for the complete proof and for other
applications.)

Proof for p≤ 2. The case p ≤ 2 is easier because it is only Hölder’s inequality
in disguise. Let X j (ω) = ω j , j = 1, 2, . . . , n. Then |X2

j (ω)| = 1, and for j �=
k,E(X j Xk) = 0 because X j Xk takes each value ±1 with probability 1

2
. This

means that {X1, X2, . . . , Xn} are orthonormal in L2(μ). Since X = α1 X1 +
α2 X2 + · · · + αn Xn and since p ≤ 2, Hölder’s inequality gives

(

E

∣
∣
∣
∣
∣

n∑

j=1

±α j

∣
∣
∣
∣
∣

p)1/p

=
(∫

|X (ω)|p dμ

)1/p

≤
(∫

|X (ω)|2 dμ

)1/2

=
(

n∑

j=1

|α j |2
)1/2

.

This proves (4.1) with C p = 1 when p ≤ 2.

Now let {z j } be a sequence in the upper half plane. We say that {z j } is a
harmonic interpolating sequence if every interpolation problem

u(z j ) = a j , j = 1, 2, . . . , {a j } ∈ l∞,(4.2)

can be solved with a bounded harmonic function u(z). Obviously every H∞
interpolating sequence is a harmonic interpolating sequence. Our theorem is
the converse.

Theorem 4.2. If {z j } is a harmonic interpolating sequence, then {z j } is an
interpolating sequence for H∞.

Proof. Since every bounded harmonic function is the Poisson integral of an
L∞ function, (4.2) holds if and only if there is an L∞ solution to every moment
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problem
∫

u(t)Pj (t) dt = a j , j = 1, 2, . . . , {a j } ∈ l∞,(4.3)

where

Pj (t) = 1

πy j

1

1 + ((t − x j )/y j )2

is the Poisson kernel for z j . We show that the geometric conditions (1.2) and
(1.7) hold if every moment problem (4.3) can be solved with u ∈ L∞. By
Theorem 1.1 this will mean that {z j } is an H∞ interpolating sequence.

To get started we need an inequality. Consider the linear operator T : L∞ →
l∞ defined by

T u( j) = u(z j ) =
∫

u(t)Pj (t) dt.

Since ‖Pj‖1 = 1, this operator is bounded. We are assuming T maps L∞
onto l∞. By the open mapping theorem, there is a constant M such that every
problem (4.3) has solution u such that

‖u‖∞ ≤ M sup
j

|a j |.(4.4)

The inequality we need is
∑

|λ j | ≤ M‖
∑

λ j Pj‖1,(4.5)

which is the dual formulation of (4.4). The equivalence of (4.4) and (4.5)
follows from the fact that a linear operator has closed range if and only if its
adjoint has closed range (Dunford and Schwartz [1958]). (T is the adjoint of
an operator from l1 to L1.) But (4.5) is also easily derived directly from (4.4).
Given λ1, λ2, . . . , λn , pick u ∈ L∞, ‖u‖∞ ≤ M , solving

∫
u(t)Pj (t) dt = λ̄ j/|λ j |, j = 1, 2, . . . , n.

Then

n∑

j=1

|λ j | =
∣
∣
∣
∣
∣

∫
u

n∑

j=1

λ j Pj dt

∣
∣
∣
∣
∣
≤ ‖u‖∞

∥
∥
∥
∥
∥

n∑

j=1

λ j Pj

∥
∥
∥
∥
∥

1

,

and (4.5) is proved.
If j �= k, then (4.5) gives ‖Pj − Pk‖1 ≥ 2/M . By Harnack’s inequality, for

example, this means that

|z j − zk |/y j ≥ b(M) > 0, j �= k,

and (1.2) holds for the sequence {z j }.
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The proof of (1.7) uses Khinchin’s inequality. Let Q be a square {x ∈ I, 0 <

y ≤ |I |}. Reindexing, let z1, z2, . . . , zn be finitely many points in the sequence
and in the square Q. Set λ j = ±y j , j = 1, 2, . . . , n. Then by (4.5)

n∑

j=1

y j ≤ M
∫ ∣

∣
∣
∣
∣

n∑

j=1

±yi Pj (t)

∣
∣
∣
∣
∣
dt.

Taking the expectation for each t ∈ �, we get from (4.1)

n∑

j=1

y j ≤ M
∫ (

n∑

j=1

y2
j P2

j (t)

)1/2

dt.(4.6)

Let Ĩ be that interval concentric with I but having length | Ĩ | = 3|I |. The right
side of (4.6) is

M
∫

Ĩ

(
n∑

j=1

y2
j P2

j

)1/2

dt + M
∫

�\ Ĩ

(
n∑

j=1

y2
j P2

j

)1/2

dt.

For the first integral the Cauchy–Schwarz inequality gives the bound

M | Ĩ |1/2

(∫

Ĩ

∑
y2

j P2
j dt

)1/2

≤ cM |I |1/2

(
n∑

j=1

y j

)1/2

because
∫

P2
j (t) dt = 1

y j

∫
P2(t) dt,

where P(t) = 1/π (1 + t2). For the outside integral we have the inequality

P2
j (t) ≤ cy2

j

(t − x0)4
, t /∈ Ĩ ,

where x0 is the center of I, because z j ∈ Q. Then for t /∈ Ĩ ,

( ∑
y2

j P2
j (t)

)1/2

≤ c
( ∑

y4
j

)1/2 1

(t − x0)2

≤ c|I |3/2
( ∑

y j

)1/2 1

(t − x0)2
.

Hence the second integral is bounded by

cM |I |3/2
( ∑

y j

)1/2
∫

�\ Ĩ

dt

(t − x0)2
≤ cM |I |1/2

(
n∑

j=1

y j

)1/2

.
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From (4.6) we now have
(

n∑

j=1

y j

)1/2

≤ 2cM |I |1/2,

and this gives (1.7).

In the proof of Theorem 4.2, we were able to conclude that there was in-
terpolation by bounded analytic functions only because the sequence satisfied
the geometric conditions (1.2) and (1.7). Harmonic functions were only used
to get the inequality (4.5). There is a generalization of Theorem 4.2, having
essentially the same proof, which makes no mention of harmonicity. Suppose
P (t) ∈ L1(�). We treat P (t) as a kernel by writing

P z(t) = 1

y
P

(
x − t

y

)

, z = x + iy, y > 0.

Since ‖P z‖1 = ‖P ‖1, the operator

T u(z) =
∫

u(t)P z(t) dt

is a bounded linear mapping from L∞ into the space of bounded (and
continuous, in fact) functions on the upper half plane. In the special case
P (t) = 1/π (1 + t2),P z is of course the Poisson kernel and the operator T
solves the Dirichlet problem.

Theorem 4.3. Let P (t) ∈ L1. Let {z j } be a sequence in the upper half plane.
If every interpolation problem

Tu(z j ) =
∫

u(t)P z j
(t) dt = a j , j = 1, 2, . . . ,(4.7)

for {a j } ∈ l∞ has solution u(t) ∈ L∞, then {z j } is an interpolating sequence
for H∞.

Proof. We shall use (4.7) to show that the distribution of the points {z j }
satisfies (1.2) and (1.7). Theorem 1.1 then permits us to conclude that {z j } is
an H∞ interpolating sequence.

By the open mapping theorem, every moment problem (4.7) has solution
u(t) with ‖u‖∞ ≤ M sup j |a j |, where the constant M does not depend on {a j }.
Then a duality argument, as in the proof of Theorem 4.2, gives us

n∑

j=1

|λ j | ≤ M

∥
∥
∥
∥
∥

n∑

j=1

λ jP z j

∥
∥
∥
∥
∥

1

(4.8)

for any λ1, λ2, . . . , λn . To simplify the estimates that need be made at the end
of the proof, choose a compactly supported continuous function K (t) such that

‖P − K‖1 < 1/2M.
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Writing

Kz j (t) = 1

y j
K

(
x j − t

y j

)

,

we have ‖P z j
− Kz j ‖1 < 1/2M by a change of scale. Hence (4.8) gives

n∑

j=1

|λ j | ≤ 2M

∥
∥
∥
∥
∥

n∑

j=1

λ j Kz j

∥
∥
∥
∥
∥

1

.(4.9)

For j �= k, (4.9) yields ‖Kzk − Kz j ‖ ≥ 1
M . Let x0 = (xk − x j )/y j , y0 =

yk/y j . Then a change of variables gives

‖Kzk − Kz j ‖1 =
∫ ∣

∣
∣
∣K (s) − 1

y0

K

(
s + x0

y0

)∣
∣
∣
∣ ds

≤ ‖K (s) − K (s + x0)‖1 +
∥
∥
∥
∥K (s + x0) − 1

y0

K

(
s + x0

y0

)∥
∥
∥
∥

1

= ‖K (s) − K (s + x0)‖1 +
∥
∥
∥
∥K (s) − 1

y0

K

(
s

y0

)∥
∥
∥
∥

1

.

Since K is continuous with compact support, there is δ > 0 such that ‖K (s) −
K (s + x0)‖1 ≤ 1/4M if |x0| < δ and such that

‖K (s) − (1/y0)K (s/y0)‖1 < 1/4M

if |1 − y0| < δ. We conclude that

max

( |x j − xk |
y j

,
|y j − yk |

y j

)

≥ δ,

so that |z j − zk | ≥ δy j and the points {z j } are separated.
The proof that the points {z j } satisfy (1.7) is now simpler than the argument

in Theorem 4.2 because the kernel K (t) has compact support. Khinchin’s
inequality and (4.9) give

n∑

j=1

y j ≤ 2M
∫ (

n∑

j=1

y2
j K 2

z j
(t)

)1/2

dt(4.10)

whenever z1, z2, . . . , zn are points from the sequence lying in a square Q =
{x ∈ I, 0 < y ≤ |I |}. Let A > 0 be such that K (t) = 0, |t | > A. Since z j ∈ Q,
this means that Kz j (t) = 0 if t /∈ J , where

J = {t : dist(t, I ) < A|I |}.
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The Cauchy–Schwarz inequality now yields

∫ (
n∑

j=1

y2
j K 2

z j
(t)

)1/2

dt ≤ |J |1/2

(∫ ∑
y2

j K 2
z j

(t)dt

)1/2

≤ |J |1/2
( ∑

y j

)1/2

‖K‖2

because
∫

K 2
z j

(t) dt = (1/y j )
∫

K 2(t)dt . From (4.10) we now obtain

(
n∑

j=1

y j

)1/2

≤ (2A + 1)1/22M‖K‖2|I |1/2,

and this gives (1.7).

In the proof just completed, condition (4.9) means that every interpolation
(4.7), with P zi

replaced by Kzi , has solution in L∞. This trick of replac-
ing one kernel, even the Poisson kernel, by another simpler kernel is often
helpful.

The converse of Theorem 4.3 is not true generally. If P (t) = χ(−1,1)(t), then
interpolation is not possible on the finite set {i, (1 + i)/2, (−1 + i)/2} because
the kernels for these points are linearly dependent.

The proof above of Theorem 4.2 is due to Varopoulos [1972], who has also
found another elegant proof of the same theorem. His second proof is based
on the roots of unity argument used in Theorem 2.2. We give the proof for the
more general Theorem 4.3 but with the extra hypothesis P ∈ L2. We know
that every bounded interpolation problem

u(z j ) = a j , j = 1, 2, . . . ,

has solution with

‖u‖∞ ≤ M sup
j

|a j |,

where M is a constant. From this it is trivial to verify (1.2) and our real task is
to establish (1.7). Fix a square Q = {x ∈ I, 0 < y ≤ |I |} and let z1, z2, . . . , zn

be finitely many sequence points in the square Q. Let u j ∈ L∞, ‖u j‖∞ ≤ M ,
interpolate

u j (zk) = ω jk, k = 1, 2, . . . , n,

where ω = e2π i/n . The functions

U j (z) = 1

n

n∑

l=1

ω− jlul(z)
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satisfy U j (z j ) = 1, j = 1, 2, . . . , n. The proof of Theorem 2.2 shows that

n∑

j=1

|U j (t)|2 ≤ M2 + ε(4.11)

almost everywhere on �. Let J be the interval

J = {t : dist(t, I ) ≤ cM |I |},
where c is chosen so that

∫

�\J
P z(t) dt < 1/2M

for all z ∈ Q. Then we have

1 ≤
∫

|U j (t)|P z j
(t) dt,

while by (4.11),
∫

�\J
|U j (t)|P z j

(t) dt ≤ M/2M = 1
2
.

Consequently, we have

1
2
≤

∫

J
|U j (t)|P z j

(t) dt ≤
(∫

J
|U j (t)|2 dt

)1/2

‖P z j
‖2

≤ c′

y1/2
j

(∫

J
|U j (t)|2 dt

)1/2

,

and

y j ≤ (4c′)2

∫

J
|U j (t)|2 dt.

Summing, we obtain by (4.11),

n∑

j=1

y j ≤ (4c′)2 M2|J | ≤ (4c′)2 M3c|I |,

and (1.7) is proved. The same reasoning also yields a proof of Theorem 4.3.
A refinement of Theorem 4.2 will be proved by a different method in

Chapter X.

5. Earl’s Elementary Proof

There is another proof of the main theorem (Theorem 1.1) that does not
use duality. This constructive proof, due to J. P. Earl, shows that when {z j } is
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an interpolating sequence there are interpolating functions of the form CB(z),
where B(z) is a Blaschke product and C is a constant. The Blaschke product
B(z) has simple zeros {ζ j } which are hyperbolically very close to the {z j }. It
follows that {ζ j } is also an interpolating sequence.

Theorem 5.1. Let {z j } be a sequence in the upper half plane such that
∏

j, j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ δ > 0, k = 1, 2, . . . .(5.1)

Then there is a constant K such that whenever {a j } ∈ l∞, there exists f (z) ∈
H∞ such that

f (z j ) = a j , j = 1, 2, . . . ,(5.2)

and such that

f (z) = K

(

sup
j

|a j |
)

B(z),(5.3)

where B(z) is a Blaschke product. The zeros {ζ j } of B(z) satisfy

ρ(ζ j , z j ) =
∣
∣
∣
∣
ζ j − z j

ζ j − z̄ j

∣
∣
∣
∣ ≤ δ

3

and
∏

j, j �=k

∣
∣
∣
∣
ζk − z j

ζk − z̄ j

∣
∣
∣
∣ ≥ δ

3
,(5.4)

so that {ζ j } is also an interpolating sequence.

The constant K obtained in the proof of Theorem 5.1 will not be the minimal
constant of interpolation. We get K = O(δ−2), while the constant of interpo-
lation has the bound M = O(δ−1 log(δ−1)).

Lemma 5.2. If 0 < α < βn < 1, then
∞∏

n=1

βn − α

1 − αβn
≥ (�βn) − α

1 − α�βn
.(5.5)

Proof. If B(z) is the Blaschke product with zeros βn , then the left side of
(5.5) is B(α). By Schwarz’s lemma

ρ(B(α), B(0)), ≤ α,

and the euclidean description of the disc {ρ(w, B(0)) ≤ α} from Chapter I,
Section 1, then gives

B(α) ≥ |B(0)| − α

1 − α|B(0)| ,

which is the right side of (5.5).
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Lemma 5.3. Let

0 < λ <
2λ

1 + λ2
< δ < 1

and let {z j } be a sequence in the upper half plane such that (5.1) holds. If {ζ j }
satisfies

ρ(ζ j , z j ) ≤ λ, j = 1, 2, . . . ,

then

∏

j, j �=k

∣
∣
∣
∣
ζk − ζ j

ζk − ζ̄ j

∣
∣
∣
∣ ≥ δ − 2λ/(1 + λ2)

1 − 2λδ/(1 + λ2)
.(5.6)

In particular, if ρ(ζ j , z j ) ≤ δ/3, j = 1/2, . . . , then

∏

j, j �=k

∣
∣
∣
∣
ζk − ζ j

ζk − ζ̄ j

∣
∣
∣
∣ ≥ δ

3
.

Proof. For j �= k, Lemma 1.4 of Chapter I gives

ρ(ζ j , ζk) ≥ ρ(ζ j , zk) − ρ(zk, ζk)

1 − ρ(zk, ζk)ρ(ζ j , zk)
≥ ρ(ζ j , zk) − λ

1 − λρ(ζ j , zk)

and

ρ(ζ j , zk) ≥ ρ(z j , zk) − λ

1 − λρ(z j , zk)
.

Writing α = 2λ/(1 + λ2), we now have

ρ(ζ j , ζk) ≥
(

ρ(z j , zk) − λ

1 − λρ(z j , zk)
− λ

)/(

1 − λ
ρ(z j , zk) − λ

1 − λρ(z j , zk)

)

= ρ(z j , zk) − α

1 − αρ(z j , zk)

when j �= k. Lemma 5.2 then yields

∏

j, j �=k

∣
∣
∣
∣
ζk − ζ j

ζk − ζ̄ j

∣
∣
∣
∣ =

∏

j, j �=k

ρ(ζ j , ζk) ≥ δ − α

1 − αδ
,

which is (5.6). When λ = δ/3 a calculation shows (δ − α)/(1 − αδ) > δ/3, so
that the final assertion of the lemma is true.

Fix λ = δ/3, and let � j be the closed disc defined by

� j = {ζ j : ρ(ζ j , z j ) ≤ δ/3}.
For ζ j ∈ � j , j = 1, 2, . . . , n, write

B(ζ1,ζ2,...,ζn )(z) =
n∏

j=1

(
z − ζ j

z − ζ̄ j

)
ζ̄ j

ζ j
.(5.7)
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Then B(ζ1,...,ζn ) is a finite Blaschke product normalized so that B(ζ1,...,ζn )(0) = 1
and so that

B(ζ1,...,ζn )(z̄) = (B(ζ1,...,ζn )(z))−1.

Consequently (ζ1, ζ2, . . . , ζn) = (ζ ′
1, ζ

′
2, . . . , ζ

′
n) if

B(ζ1,ζ2...,ζn )(z j ) = B(ζ ′
1,ζ

′
2...,ζ

′
n )(z j ), j = 1, 2, . . . , n,

because the difference of these two Blaschke products is a rational
function of degree at most 2n which vanishes at the 2n + 1 points
{0, z1, z2, . . . , zn, z1, z2, . . . , zn}.

The main step of the proof is the following lemma, in which it is shown that
if |a j | is small, every finite interpolation problem (5.2) can be solved with a
Blaschke product of the form (5.7).

Lemma 5.4. Suppose that for j = 1, 2, . . . , n,

|a j | <
δ

3
inf

ζk∈�k

n∏

k=1
k �= j

∣
∣
∣
∣
z j − ζk

z j − ζ̄k

∣
∣
∣
∣ .(5.8)

Then there are ζ j ∈ � j , j = 1, 2, . . . , n such that

B(ζ1,...,ζn )(z j ) = a j , j = 1, 2, . . . , n.

Proof. We use induction on n. For n = 1 we have the mapping

w = w(z1) = B(ζ1)(z1) =
(

z1 − ζ1

z1 − ζ̄1

)
ζ̄1

ζ1

from �1 into |w| ≤ δ/3. This mapping is one-to-one and δ�1 = {ζ1 :
ρ(ζ1, z1) = δ/3} is mapped into the circle |w| = δ/3. Even though w is not an-
alytic in ζ1, the argument principle can be used to show w(�1) covers the disc
|w| < δ/3. Since w(z1) = 0, the curve w(∂�1) has nonzero winding number
relative to w = 0. If |a1| < δ/3, then the same curve also has nonzero winding
number about a1. If a1 /∈ w(�1), then each curve w({ρ(ζ1, z1) = r}), 0 < r <

δ/3 has the same nonzero index relative to a1. This is impossible for r small.
Hence the lemma is true for n = 1.

Suppose the lemma is true for n − 1. For each ζn ∈ �n , we can, by the
induction hypothesis, find

ζ1 = ζ1(ζn), ζ2 = ζ2(ζn), . . . , ζn−1 = ζn−1(ζn),

with ζ j ∈ � j such that

B(ζ1,ζn ,...,ζn−1)(z j ) = a j

(
z j − ζ̄n

z j − ζn

)
ζn

ζ̄n
,
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because these values satisfy (5.8). The points ζ1, . . . , ζn−1 are unique and they
depend continuously on ζn . Now consider the mapping

w = w(ζn) =
(

zn − ζn

zn − ζ̄n

)
ζ̄n

ζn
B(ζ1,...,ζn−1)(zn),

which is continuous in ζn . The right side is the value at zn of a Blaschke
product of the form (5.7) which interpolates a j of z j , j ≤ n − 1, no matter
which ζn ∈ �n is chosen. We want to find ζn ∈ �n for which w(zn) = an .
By (5.8) we have |an| < inf{|w(ζn)| : ζn ∈ ∂�n}. Since w(zn) = 0, the curve
w(∂�n) has nonzero index relative to w = 0, and hence it also has nonzero
index relative to w = an . As in the case n = 1, this means there is ζn ∈ �n for
which w(ζn) = an . The lemma is proved.

Proof of Theorem 5.1. It is enough to show that if

|a j | ≤ δ

3

δ − δ/3

1 − δ2/3
= 2δ2

3(3 − δ2)
,

then there are ζ j ∈ � j , j = 1, 2, . . ., such that if B is the Blaschke product
with zeros ζ j , then

eiθ B(zk) = ak, k = 1, 2, 3, . . . ,

for some constant eiθ . By (5.7) and (5.8), and by Lemma 5.4, there are

ζ
(n)
1 , ζ

(n)
2 , . . . , ζ (n)

n such that ζ
(n)
j ∈ � j and

B(ζ
(n)
1 ,ζ

(n)
2 ,...,ζ

(n)
n )(zk) = ak, k = 1, 2, . . . , n.

By a change of scale we can assume i = √−1 /∈ ∪� j . Write

B(ζ
(n)
1 ,...,ζ

(n)
n )(z) = eiθn Bn(z),

where Bn(i) > 0. Take a subsequence nk so that

eiθnκ → eiθ , ζ
(nκ )
j → ζ j ∈ � j ,

for all j = 1, 2, . . .. Let B(z) be the Blaschke product with zeros ζ j , normalized
so that every subproduct is positive at z = i . We claim that

eiθ B(z j ) = a j , j = 1, 2, . . . .(5.9)

The proof of Lemma 5.3 shows that

lim
N→∞

inf
ζ j ∈� j

∏

j≥N

∣
∣
∣
∣
z − ζ j

z − ζ̄ j

∣
∣
∣
∣ = 1

uniformly on compact sets. Since the products are normalized to be positive
at z = i , this means that

Bnκ
(z) → B(z) (k → ∞),
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and so (5.9) holds. This gives (5.3) with K = 3(3 − δ2)/2δ2. By Lemma 5.3,
the zeros {ζ j } satisfy (5.4).

Notes

The proof in Section 1 follows Carleson’s original paper [1958] except
that the Carleson measure is treated differently. Hörmander’s paper [1967b]
clarifies the geometry of the problem. Shapiro and Shields [1961] and later
Amar [1977a] have approached interpolating sequences using Hilbert space.
The argument in Section 1 yields results when {z j } is not an interpolating
sequence (see Exercise 9 and Garnett [1977]). Interpolating sequences can
also be characterized in terms of H p (see Duren [1970] and Exercise 11). The
example showing M ≥ (1/δ) log(1/δ) is due to A. M. Gleason. Other recent
expositions of interpolation can be found in Havin and Vinogradov [1974] and
Sarason [1979].

Theorem 2.1 is due to Pehr Beurling (see Carleson [1962b]). A general
discussion of linear operators of interpolation is given by Davie [1972].
For Theorem 2.2, see Varopoulos [1971a] and Bernard [1971]. The source
of the idea is in harmonic analysis (see Drury [1970] and Varopoulos
[1970]).

Another proof of Theorem 4.2 is in Garnett [1971b]. See Garnett [1978] and
Exercise 12 for extensions of Theorem 4.2 to L p, p > 1, and to BMO.

Theorem 5.1 is due to Earl [1970], who has also found an elementary ap-
proach to Theorem 2.1 (Earl [1976]). P. Jones has sharpened Earl’s method to
obtain interpolating functions whose norms have the minimal order of magni-
tude (see Exercise 10).

There is an interesting open problem on harmonic interpolation in higher
dimensions. Consider the upper half plane �n+1

+ = {(x, y) : x ∈ �n, y > 0}.
Each bounded harmonic function on �n+1

+ is the Poisson integral of a function

in L∞(�n). If a sequence {p j } = {(x j , y j )} in R
n+1
+ is an interpolating sequence

for the bounded harmonic functions, then the analog of condition (c), Theorem
1.1, holds for {p j },

(i) |p j − pk |/y j ≥ a > 0, j �= k,

(ii)
∑

p j ∈Q
yn

j ≤ C�(Q)n

for every cube

Q = {(x, y) : |xi − x0
i | < �(Q)/2, i = 1, 2, . . . , n, 0 < y < �(Q)}.

This follows from the proof of Theorem 4.2. The unsolved problem is the con-
verse. Do (i) and (ii) characterize bounded harmonic interpolating sequences
in R

n+1
+ ? (See Carleson and Garnett [1975].)
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Exercises and Further Results

1. Let B(z) be the Blaschke product with zeros {z j } in H . Then {z j } is an
interpolating sequence if and only if

inf
j

y j |B ′(z j )| > 0.

2. If S and T are disjoint interpolating sequences, then S ∪ T is an interpo-
lating sequence if and only if

ρ(S, T ) = inf{ρ(z, w) : z ∈ S, w ∈ T } > 0.

3. If {z j } is an interpolating sequence in H and {a(n)
j }, n = 0, 1, 2, . . . , N ,

are finitely many sequences such that yn
j |a(n)

j | ≤ 1, then there is f ∈ H∞ such
that

f (n)(z j ) = a(n)
j , j = 1, 2, . . . , n = 0, 1, 2, . . . , N ,

where f (n) denotes the nth derivative.

4. Let B(z) be a Blaschke product with distinct zeros {z j } on an interpolating
sequence. If m ∈ MH∞ is such that B(m) = 0, then m is in the closure of the
zeros {z j } in the topology of MH∞ .

5. (Naftalevitch). If |z j | < 1 and if
∑

(1 − |z j |) < ∞, then there is an in-
terpolating sequence {w j } with |w j | = |z j |.

6. If {z j } is a sequence in the upper half plane and if
∑

y jδz j is a Carleson
measure, then {z j } is the union of finitely many interpolating sequences.

7. If {z j } is an interpolating sequence and if {w j } is a separated sequence—
that is, if {w j } satisfies (1.2)—and if

ρ(z j , w j ) < λ < 1,

then {w j } is an interpolating sequence.

8. Let X be a Banach space and let {z j } be a sequence of linear functionals
on X, ‖z j‖ = 1. Suppose that for every {a j } ∈ l∞ there is x ∈ X such that

|z j (x) − a j | ≤ 1
2
‖a j‖∞

and ‖x‖ ≤ K‖a j‖∞. Prove that {z j } is an interpolating sequence: That is,
prove that whenever {a j } ∈ l∞ there is x ∈ X such that

z j (x) = a j , j = 1, 2, . . . .

Now suppose that interpolation is possible whenever {a j } is an idempotent
sequence: For each j either a j = 0 or a j = 1. Then {z j } is again an interpolating
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sequence. (Use Baire category to show all idempotents can be interpolated by
a uniformly bounded set in X.)

9. Let {z j } be a sequence in the upper half plane, and let

δk =
∏

j, j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ , k = 1, 2, . . . .

Suppose δk > 0 but infk δk = 0. If |a j | ≤ δ j (1 + log 1/δ j )
−2, then there is f ∈

H∞ such that

f (z j ) = a j , j = 1, 2, . . . .

More generally, if h(t) is a positive decreasing function on [0, ∞), if

∫ ∞

0

h(t) dt < ∞,

and if

|a j | ≤ δ j h(1 + log 1/δ j ),

then the interpolation f (z j ) = a j , j = 1, 2, . . ., has solution f ∈ H∞. To
prove this show that

∑
(|a j |y j/δ j )δz j is a Carleson measure.

The result cited above is sharp. If h(t) is positive and decreasing on [0, ∞)
and if

∫ ∞
0

h(t)dt = ∞, then there is a separated sequence {z j } and values a j

such that

|a j | = δ j h(1 + log 1/δ j )

but such that interpolation is impossible. (See Garnett [1977] for details.)

10. If {z j } is an interpolating sequence with

inf
k

∏

j, j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ = δ > 0,

then {z j } can be partitioned into K log 1/δ subsequences such that for each
subsequence {w j },

inf
k

∏

j, j �=k

∣
∣
∣
∣
wk − w j

wk − w̄ j

∣
∣
∣
∣ = 1

2
,

where K is an absolute constant. If Y1, . . . , YN are these subsequences, if Bk

is the Blaschke product with zeros
⋃

j �=k Y j , and if fk interpolates a j/Bk(z j )

on Yk , then
∑

Bk fk is an interpolating function with norm less than

Cδ−1(log 1/δ) sup
j

|a j |.
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11. Let {z j } be a sequence in the upper half plane. For 0 < p < ∞, let Tp be
the linear operator defined on H p by

Tp f ( j) = y1/p
j f (z j ).

Then ‖Tp f ‖∞ ≤ C‖ f ‖p, f ∈ H p.
(a) If Tp is bounded from H p to l p, then

∑
y jδz j is a Carleson measure.

Using the closed graph theorem, obtain the same conclusion if Tp(H p) ⊂ l p.
(b) If Tp(H p) = l p, then {z j } is an H∞ interpolating sequence.
(c) If {z j } is an H∞ interpolating sequence, then Tp(H p) = l p, 0 < p <

∞. For p > 1, use a duality argument. For p ≤ 1 let Bk(z) be the Blaschke
product with zeros {z j , j �= k}. Then since

∑
yk |ak |p < ∞,

f (z) =
∞∑

k=1

Bk(z)

Bk(zk)

(
2iyk

(z − z̄k)

)2/p

ak

is in H p and f (zk) = ak, k = 1, 2, . . ..
(See Shapiro and Shields [1961].)

12. If p ≥ 1, the operator Tp of Exercise 11 has a natural extension to L p

defined using the Poisson kernel.

(a) If Tp(L p) = l p, then Tp is bounded from L p to l p and {z j } is an H∞
interpolating sequence.

(b) If 1 < p < ∞ and if Tp(L p) ⊃ l p, then {z j } is an H∞ interpolating
sequence. If T∞(BMO) ⊃ l∞, then {z j } is an interpolating sequence. This result
for p > 2 or for BMO follows from a modification of the proof of Theorem
4.2. Another argument is needed for p < 2. (See Garnett [1978] for details
and extensions.)

(c) If T1(L1) ⊃ l1, it need not follow that {z j } is an interpolating sequence.

13. (a) Prove Khinchin’s inequality for p = 4:
⎛

⎝E

⎛

⎝

∣
∣
∣
∣
∣

n∑

j=1

±α j

∣
∣
∣
∣
∣

4
⎞

⎠

⎞

⎠

1/4

≤ C4

(∑
|α j |2

)1/2

where C4 does not depend on n.
(b) Prove Khinchin’s inequality for all finite p > 2 by first considering the

case when p is an even integer.

14. A sequence {z j } in the disc is nontangentially dense if almost every
eiθ ∈ T is the nontangential limit of a subsequence of {z j }. For a discrete
sequence {z j } in the disc, the following are equivalent:

(i) {z j } is nontangentially dense.
(ii) For each point z ∈ D there are positive weights λ j such that

u(z) =
∑

j

λ j u(z j )

for each bounded harmonic function u(z).
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(iii) For some point z0 /∈ {z j } there are complex weights β j such that∑ |β j | < ∞ and

f (z0) =
∑

j

β j f (z j )

for all f ∈ H∞.
(See Brown, Shields, and Zeller [1960] and Hoffman and Rossi [1967].)

15. Let {z j } be an interpolating sequence in the disc and let {a j } ∈ �∞. Let
f ∈ H∞ interpolate

f (z j ) = a j , j = 1, 2, . . . ,

with ‖ f ‖∞ minimal.
(a) If lim a j = 0, then f is the unique interpolating function of minimal

norm. If also lim z j = 1 nontangentially, then f is a constant times a Blaschke
product.

(b) For some choices of {z j } and {a j }, there is no unique minimal norm
interpolating function.

(See ∅yma [1977].)



VIII

The Corona Construction

This chapter is an extensive discussion of Carleson’s corona theorem. Several
proofs of the theorem will be presented, because the ideas behind each proof
have proved useful for other problems. We first give T. Wolff’s recent, very el-
egant proof, which is based on Littlewood–Paley integrals and which employs
analyticity in a decisive way. Then we take up Carleson’s original proof. It con-
sists of a geometric construction that has led to many of the deeper results in this
theory and that applies to harmonic functions and to more general situations.

We begin with two theorems bounding solutions of certain inhomogeneous
Cauchy–Riemann equations. One of these theorems is then used in Section 2
to prove the corona theorem and a generalization.

Section 3 contains two theorems on minimum modulus. A simplified version
of the main construction is then used to establish a separation theorem about
Blaschke products. That theorem will have an important application in the next
chapter.

Carleson’s original proof is discussed in Section 5 and a less function-
theoretic alternate approach to the construction is given in Section 6. In Section
7 we circumvent the duality argument used in the original proof, thereby mak-
ing the corona proof quite constructive. At that point interpolating sequences
reappear to play a decisive role.

1. Inhomogeneous Cauchy–Riemann Equations

Define

∂

∂ z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)

.

Thus a function h(z) is analytic if and only if ∂h/∂ z̄ = 0. Let G(ζ ) be C1 and
bounded on the open disc D. We want to solve the inhomogeneous Cauchy–
Riemann equation

∂F

∂ z̄
= G(z), |z| < 1,(1.1)

309
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with a good bound on ‖F‖∞ = sup|z|=1 |F(z)|. For ζ = ξ + iη, write dζ =
dξ + i dη, d ζ̄ = dξ − i dη. If ϕ ∈ C∞ has compact support contained in D,
then by Green’s theorem

1

2π i

∫∫
∂ϕ

∂ζ̄

1

ζ − z
dζ ∧ d ζ̄ = − 1

2π i

∫∫
∂

∂ζ̄

(
ϕ(ζ )

ζ − z

)

d ζ̄ ∧ dζ

= lim
ε→0

1

2π i

∫

|ζ−z|=ε

ϕ(ζ )dζ

ζ − z
= ϕ(z).

So if (1.1) has solutions F(z) on |z| < 1, then one solution should be given by

F(z) = 1

2π i

∫∫

|ζ |<1

G(ζ )
1

ζ − z
dζ ∧ d ζ̄ .(1.2)

It is easy to see that the convolution F(z) defined by (1.2) is continuous on
the complex plane and that F(z) is C1 on the open disc. Moreover, F(z) is a
solution of (1.1). Indeed, if ϕ ∈ C∞ has compact support contained in the unit
disc, then

∫∫
F

∂ϕ

∂ z̄
dz ∧ dz̄ +

∫∫
ϕ

∂F

∂ z̄
dz ∧ dz̄ = −

∫∫
∂Fϕ

∂ z̄
d z̄ ∧ dz

= −
∫

|z|=1

Fϕ dz = 0,

and hence
∫∫

F
∂ϕ

∂ z̄
dz ∧ dz̄ = −

∫∫
ϕ

∂F

∂ z̄
dz ∧ dz̄.

If we also show that
∫∫

F
∂ϕ

∂ z̄
dz ∧ dz̄ = −

∫∫
ϕG dz ∧ dz̄,

then we can obtain (1.1) by letting ϕ run through the translates of an approxi-
mate identity. But by (1.2) and Fubini’s theorem,

∫∫
F

∂ϕ

∂ z̄
dz ∧ dz̄ =

∫∫

|ζ |<1

G(ζ )

( −1

2π i

∫∫
∂ϕ

∂ z̄

1

z − ζ
dz ∧ dz̄

)

dζ ∧ d ζ̄

= −
∫∫

|ζ |<1

G(ζ )ϕ(ζ )dζ ∧ d ζ̄ ,

and so (1.1) holds when F(z) is defined by (1.2).
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Now (1.2) does not give a unique solution of (1.1) on D = {|z| < 1}. But
any function b(z) continuous on D̄ and C1 on D that solves

∂b

∂ z̄
= G(z), |z| < 1,(1.3)

does have the form b(z) = F(z) + h(z), where h(z) is in the disc algebra
Ao = H∞ ∩ C(D̄), because ∂h/∂ z̄ = 0 on D. We want an estimate on the
minimal norm of such solutions b(z) of (1.3). Because we shall ultimately
study functions analytic on D, the norm of interest here is the supremum on
∂D,

‖b‖∞ = sup
|z|=1

|b(z)|.

We use duality and the theorem on Carleson measures to make two different
estimates on the minimal norm of solutions of (1.3).

Theorem 1.1. Assume that G(z) is bounded and C1on the disc D and that
|G|dx dy is a Carleson measure on D,

∫∫

S

|G|dx dy ≤ A	(S)(1.4)

for every sector

S = {reiθ : 1 − 	(S) < r < 1, |θ − θ0| < 	(S)}.
Then there is b(z) continuous on D̄ and C1 on D such that

∂b/∂ z̄ = G(z), |z| < 1,

and such that

‖b‖∞ = sup
|z|=1

|b(z)| ≤ C A,

with C an absolute constant.

In this theorem (and in the next theorem) it is not important that G be
bounded on D and the upper bound for |G(z)| does not occur in the estimate
of ‖b‖∞. We have assumed G is bounded only to ensure that (1.1) has at least
one bounded solution (see Exercise 1).

Proof. Let F(z) be the solution of (1.3) defined by (1.2). Then every solution
of (1.3) has the form

b(z) = F(z) + h(z), h ∈ Ao.

The minimal norm of such solutions is

inf
h∈Ao

‖F + h‖∞,
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the norm being the essential supremum ∂D. By duality,

inf
h∈Ao

‖F + h‖∞ = sup

{∣
∣
∣
∣

1

2π

∫ 2π

0

Fk dθ

∣
∣
∣
∣ : k ∈ H 1

0 , ‖k‖1 ≤ 1

}

= sup

{∣
∣
∣
∣

1

2π i

∫

|z|=1

F(z)k(z)dz

∣
∣
∣
∣ : k ∈ H 1, ‖k‖1 ≤ 1

}

.

(See Chapter IV, Theorem 1.3 and Lemma 1.6.)
By Green’s theorem and by continuity,

1

2π i

∫

|z|=1

F(z)k(z)dz = lim
r→1

1

2π i

∫

|z|=r
F(z)k(z)dz

= − 1

2π i

∫∫

|z|≤1

∂F

∂ z̄
k(z)dz ∧ dz̄,

since ∂k/∂ z̄ = 0. Consequently,

inf
h∈Ao

‖F + h‖∞ ≤ sup

⎧
⎪⎨

⎪⎩

1

π

∫∫

|z|<1

|G(z)||k(z)|dx dy : k ∈ H 1, ‖k‖1 ≤ 1

⎫
⎪⎬

⎪⎭
.

By the disc version of the theorem on Carleson measures, Theorem 3.8 of
Chapter II, there is a constant C1 so that

1

π

∫∫
|G(z)||k(z)|dx dy ≤ C1 A‖k‖1

whenever k ∈ H 1. Taking C > C1 we see (1.3) has solution b(z) = F(z) +
h(z), h ∈ Ao, such that ‖b‖∞ ≤ C A.

The second estimate involves ideas from the proof of the H 1–BMO duality.
Write

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)

.

Theorem 1.2 (Wolff). Assume that G(z) is bounded and C1 on the disc D
and assume that the two measures

|G|2 log(1/|z|)dx dy and |∂G/∂z| log(1/|z|)dx dy

are Carleson measures,
∫∫

S

|G|2 log
1

|z|dx dy ≤ B1	(S)(1.5)
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and
∫∫

S

∣
∣
∣
∣
∂G

∂z

∣
∣
∣
∣ log

1

|z|dx dy ≤ B2	(S)(1.6)

for every sector

S = {reiθ : 1 − 	(S) < r < 1, |θ − θ0| < 	(S)}.
Then there is b(z) continuous on D̄ and C1 on D such that

∂b/∂ z̄ = G(z), |z| < 1,

and such that

‖b‖∞ = sup
|z|=1

|b(z)| ≤ C1

√
B1 + C2 B2;

with C1 and C2 absolute constants.

Proof. As before, we have

inf

{

‖b‖∞ :
∂b

∂ z̄
= G

}

= sup

{∣
∣
∣
∣

1

2π

∫ 2π

0

Fk dθ

∣
∣
∣
∣ : k ∈ H 1

0 , ‖k‖1 ≤ 1

}

,

where F(z) is defined by (1.2). Since G ∈ C1, F is C1 on D, and since G is
bounded, F is continuous on D̄. We may suppose k(z) ∈ H 1

0 is smooth across
∂D. Then by Green’s theorem

1

2π

∫ 2π

0

F(eiθ )k(eiθ )dθ = 1

2π

∫∫

D

�(F(z)k(z)) log
1

|z|dx dy

= 2

π

∫∫

D

k(z)
∂G

∂z
log

1

|z|dx dy

+ 2

π

∫∫

D

k ′(z)G(z) log
1

|z|dx dy

= I1 + I2,

because �k = 0, �F = 4(∂/∂z)∂F/∂ z̄ = 4 ∂G/∂z, and ∇F · ∇k = F x kx +
Fyky = 4(∂F/∂ z̄)∂k/∂z = 4G(z)k ′(z). By (1.6) and the theorem on Carleson
measures,

|I1| ≤ C2 B2‖k‖1 ≤ C2 B2.

To estimate I2 we write k = (k1 + k2)/2 where k j ∈ H 1 is zero free and
‖k j‖1 ≤ 2. (See the proof of Theorem VI.4.4.) Then k j (z) = g2

j (z), g j ∈
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H 2, ‖g j‖2
2 ≤ 2, and

∣
∣
∣
∣
∣
∣

2

π

∫∫

D

k ′
j (z)G(z) log

1

|z|dx dy

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

4

π

∫∫

D

g j (z)g′
j (z)G(z) log

1

|z|dx dy

∣
∣
∣
∣
∣
∣

≤
⎛

⎝ 4

π

∫∫

D

|g′
j (z)|2 log

1

|z|dx dy

⎞

⎠

1/2

×
⎛

⎝4

π

∫∫

D

|g j (z)|2|G(z)|2 log
1

|z|dx dy

⎞

⎠

1/2

.

By (1.5) the second factor has bound (C B1‖g j‖2
2)1/2 ≤ C

√
B1‖g j‖2, and by

the Littlewood–Paley identity (Chapter VI, Lemma 3.1), the first factor is

⎛

⎝ 2

π

∫∫

D

|∇g j (z)|2 log
1

|z|dx dy

⎞

⎠

1/2

=
(

1

π

∫
|g j (e

iθ ) − g j (0)|2 dθ

)1/2

≤
√

2‖g j‖2.

Consequently I2 ≤ C1

√
B1 and Theorem 1.2 is proved.

Although Theorem 1.2 is less straightforward than Theorem 1.1, we shall
see that hypothesis (1.5) and (1.6) are sometimes easier to verify than (1.4).
On the other hand Theorem 1.1 is more powerful because (1.4) depends only
on |G| whereas (1.6) may hold for G(z) and not Ḡ(z).

2. The Corona Theorem

The unit disc D is homeomorphically embedded in the maximal ideal space
M of H∞. Carleson’s famous corona theorem asserts that D is dense in M. In
other words, the “corona” M\D̄ is the empty set. Because of the topology of
M, the theorem can be formulated in this way: If f1 f2, . . . , fn are functions
in H∞ such that

‖ f j‖∞ ≤ 1(2.1)

and

max
j

| f j (z)| ≥ δ > 0, z ∈ D,(2.2)

then f1, f2, . . . , fn lie in no maximal ideal of H∞. This means that the ideal
generated by { f1, f2, . . . , fn} contains the constant function 1, and there exist
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g1, g2, . . . , gn in H∞ such that

f1g1 + · · · + fngn = 1.(2.3)

Something formally stronger is true. There exist solutions g1, g2, . . . , gn of
(2.3) that have bounds depending only on the number n of functions and on the
constant δ in (2.2). This ostensibly stronger statement is actually equivalent to
the corona theorem itself (see Exercise 2 below).

Theorem 2.1. There is a constant C(n, δ) such that if f1, f2, . . . , fn are H∞
functions satisfying (2.1) and (2.2), then there are H∞ functions g1, g2, . . . , gn

such that (2.3) holds and such that

‖g j‖∞ ≤ C(n, δ), 1 ≤ j ≤ n.(2.4)

We refer to g1, g2, . . . , gn as corona solutions and to f1, f2, . . . , fn as
corona data. By normal families it is enough to find solutions satisfying (2.4)
when f1, f2, . . . , fn are analytic on a neighborhood of the closed disc.

Let us now reduce the corona theorem to the problem of solving certain in-
homogeneous Cauchy–Riemann equations. Assume f1, f2, . . . , fn are corona
data; that is, assume (2.1) and (2.2). Furthermore, assume that each f j (z)
is analytic on some neighborhood of D̄, j = 1, 2, . . . , n. Choose functions
ϕ1, ϕ2, . . . , ϕn of class C1 on D̄ such that

f1ϕ1 + · · · + fnϕn = 1, z ∈ D,

and such that

|ϕ j (z)| ≤ C1(n, δ), j = 1, 2, . . . , n.(2.5)

These can be easily accomplished using (2.1) and (2.2). For example, take

ϕ j (z) = f̄ j (z)/
∑

| fk(z)|2, j = 1, 2, . . . , n.(2.6)

The difficulty, of course, is that ϕ j (z) may not be analytic on D. To rectify that,
we write

g j (z) = ϕ j (z) +
n∑

k=1

a j,k(z) fk(z),(2.7)

with the functions a j,k(z) to be determined. We require that

a j,k(z) = −ak, j (z),(2.8)

which implies

f1g1 + f2g2 + · · · + fngn = 1 on D̄.

The alternating condition (2.8) will hold if

a j,k(z) = b j,k(z) − bk, j (z).
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If we also require that

∂b j,k

∂ z̄
= ϕ j

∂ϕk

∂ z̄
= G j,k(z), |z| < 1,(2.9)

then we get

∂g j

∂ z̄
= ∂ϕ j

∂ z̄
+

n∑

k=1

fk

(

ϕ j
∂ϕk

∂ z̄
− ϕk

∂ϕ j

∂ z̄

)

= ∂ϕ j

∂ z̄
+ ϕ j

∂

∂ z̄

n∑

k=1

fkϕk − ∂ϕ j

∂ z̄

n∑

k=1

fkϕk

= 0, |z| < 1,

because ∂ fk/∂ z̄ = 0,
∑

fkϕk = 1, and (∂/∂ z̄)
∑

fkϕk = 0. Therefore the
functions g j (z) defined by (2.6) and (2.8) are analytic solutions of (2.3). (See
the appendix to this chapter for a more systematic explanation of the passage
from ϕ j to g j .)

But we also need the bounds ‖g j‖∞ ≤ C(n, δ) (not just to obtain Theorem
2.1 but also to be able to invoke normal families in proving the corona theorem
itself). Since each ϕ j is bounded, a look at (2.7) shows we only have to estimate
|a j,k |, or better yet, |b j,k |. Thus the proof of Theorem 2.1 has been reduced to
the problem of finding solutions b j,k(z) of (2.9) that obey the estimate

|b j,k(z)| ≤ C2(n, δ), |z| < 1.(2.10)

We are going to solve this problem four different ways. In each case it is crucial
that the smooth solutions ϕ j be chosen adroitly. The first solution will be given
momentarily, the others occur in Sections 5–7.

Proof of Theorem 2.1 (Wolff). Set

ϕ j (z) = f̄ j (z)
/ n∑

l=1

| fl(z)|2, j = 1, 2, . . . , n.

By (2.2) the denominator is bounded below, so that ϕ j is C2 on D̄, |ϕ j (z)| ≤
δ−2, and f1ϕ1 + f2ϕ2 + · · · + fnϕn = 1 on D̄. By the above discussion, The-
orem 2.1 will be proved when we show the equations

∂b j,k

∂ z̄
= ϕ j

∂ϕk

∂ z̄
= G j,k(z), |z| < 1, 1 ≤ j, k ≤ n,

have solutions satisfying (2.10).
We use Theorem 1.2. It is clear that G j,k is bounded and C1 on D. Since

|ϕ j | ≤ δ−1, we have

|G j,k |2 log
1

|z| ≤ δ−2

∣
∣
∣
∣
∂ϕk

∂ z̄

∣
∣
∣
∣ log

1

|z| ,
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while since ∂ f̄l/∂ z̄ = f̄ ′
l , ∂ fl/∂ z̄ = 0,

∂ϕk

∂ z̄
= f̄ ′

k∑ | fl |2 − f̄k
∑

fl f̄ ′
l

(
∑ | fl |2)2

=
∑

fl( f̄l f̄ ′
k − f̄k f̄ ′

l )

(
∑ | fl |2)2

.

Thus by (2.2),

∣
∣
∣
∣
∂ϕk

∂ z̄

∣
∣
∣
∣

2

≤ 2(
∑ | fl |2)2

∑ | f ′
l |2

(
∑ | fl |2)4

≤ 2δ−4
∑

| f ′
l |2

and

|G j,k |2 ≤ 2δ−6
∑

| f ′
l |2.

By Theorem 3.4 of Chapter VI, dλl = | f ′
l |2 log(1/|z|)dx dy is a Carleson

measure with bounded constant N (λl) ≤ C‖ fl‖2
∞. Hence

|G j,k |2 log
1

|z|dx dy

is a Carleson measure and (1.5) holds with B1 ≤ Cnδ−6.
Also, because ∂ f̄l/∂z = (∂ fl/∂ z̄) = 0, we have

∂G j,k

∂z
= ∂ϕ j

∂z

∂ϕk

∂ z̄
+ ϕ j

∂2ϕk

∂z ∂ z̄

=
(− f̄ j

∑
f̄1 f ′

1

(
∑ | fl |2)2

) (∑
fl( f̄l f̄ ′

k − f̄k f̄ ′
l )

(
∑ | fl |2)2

)

+ f̄ j∑ | fl |2
(∑

f ′
l ( f̄l f̄ ′

k − f̄k f̄ ′
l )

(
∑ | fl |2)2

− 2(
∑

f ′
l f̄l)

∑
fl( f̄l f̄ ′

k − f̄k f̄ ′
l )

(
∑ | fl |2)3

)

.

All terms look roughly the same and we have

∣
∣
∣
∣
∂G j,k

∂z

∣
∣
∣
∣ ≤ C

∑
p,q | f ′

p|| f ′
q |

(
∑ | fl |2)2

≤ Cnδ−4
∑

| f ′
l |2.

Again using Theorem 3.4 of Chapter VI, we obtain (1.6) with B2 ≤ Cnδ−4. By
Theorem 1.2, we have (2.10) with C2(n, δ) ≤ Cn1/2δ−3 + Cnδ−4. That gives
(2.4) with

C(n, δ) ≤ C(n3/2δ−3 + n2δ−4).

Repeating the proof, but with Theorem 3.4 of Chapter VI replaced by the
following lemma, we can get the sharper estimate

C(n, δ) ≤ C(n3/2δ−2 + n2δ−3)

for the constant in (2.4). The lemma will also be used for Theorem 2.3 below.
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Lemma 2.2. If f ∈ H 2 and if f (eiθ ) ∈ BMO, then

| f ′(z)|2
| f (z)| log

1

|z|dx dy

is a Carleson measure on D with Carleson norm at most K‖ f ‖∗, where K is
some absolute constant.

Proof. By an approximation we can suppose f (z) is analytic on D̄. Then
f (z) has finitely many nonzero zeros z1, z2, . . . , zN in D. When f (z) �= 0, a
calculation yields

�(| f (z)|) = | f ′(z)|2/| f (z)|.
For small ε > 0 let �ε be the domain

�ε = D\
N⋃

j=0

� j ,

where �0 = {|z| ≤ ε}, � j = {|z − z j | ≤ ε}, j = 1, 2, . . . , N . Then by
Green’s theorem (see Section 3 of Chapter VI),
∫∫

�ε

| f ′(z)|2
| f (z)| log

1

|z|dx dy =
∫

| f (eiθ )|dθ

−
N∑

j=0

∫∫

∂� j

((
∂

∂n
| f |

)

log
1

|z| −| f | ∂

∂n
log

1

|z|
)

ds,

where ∂/∂n is the normal derivative outward from � j . Let ε tend to zero. For
j > 0 the boundary integrand remains bounded and the arc length tends to
zero. For j = 0 we get

− lim
ε→0

∫ 2π

0

| f (εeiθ )|dθ = −2π | f (0)|,

because the other integral over ∂�0 has limit zero. At z j , | f ′(z)|2/| f (z)| has
singularity at worst O(|z − z j |−1), which is area integrable. Therefore we
obtain

∫∫

D

| f ′(z)|2
| f (z)| log

1

|z|dx dy ≤
∫

| f (eiθ )|dθ − 2π | f (0)|(2.11)

≤
∫

| f (eiθ )| − f (0)|dθ.

Now the lemma is nothing but the conformally invariant formulation of
(2.11). Let

S = {reiθ : 1 − h ≤ r < 1, |θ − θ0| < h}.
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By (2.11) we can suppose h < 1
2
. Set z0 = (1 − h)eiθ0 and w = (z − z0)/

(1 − z̄0z). For z ∈ S we have

|1 − z̄0z|2
1 − |z0|2 ≤ ch,

and by (1.5) of Chapter I

log
1

|z| ≤ c(1 − |z|2) = c
(1 − |w|2)|1 − z̄0z|2

1 − |z0|2

≤ ch(1 − |w|2) ≤ ch log
1

|w| .

Since | f ′(z)|2dx dy = |g′(w)|2du dv, g(w) = f (z), w = u + iv, we obtain

∫∫

S

| f ′(z)|2
| f (z)| log

1

|z|dx dy ≤ ch
∫∫

D

|g′(w)|2
|g(w)| log

1

|w|du dv

≤ 2πch
∫

|g − g(0)|dθ ≤ C‖ f ‖∗h,

and the lemma is proved.

Now let f1, f2, . . . , fn be H∞ functions, and suppose g ∈ H∞ satisfies

|g(z)| ≤ | f1(z)| + · · · + | fn(z)|.(2.12)

In light of the corona theorem it is natural to ask if (2.12) implies that g ∈
J ( f1, f2, . . . , fn), the ideal generated by { f1, f2, . . . , fn}. In other words,
does it follow that

g = g1 f1 + · · · + gn fn

with g j ∈ H∞? Unfortunately, the answer is no (see Exercise 3). However, T.
Wolff has proved that

g3 ∈ J ( f1, f2, . . . , fn).

At this writing the question for g2 remains unresolved (see Exercise 4, but also
page vii).

Theorem 2.3. Suppose f1, f2, . . . , fn and g are H∞ functions for which
(2.12) holds. Then there are g1, g2, . . . , gn in H∞ such that

g3 = g1 f1 + · · · + gn fn.(2.13)

Proof. As in the proof of Theorem 2.1, we convert smooth solutions of (2.13)
into H∞ solutions, using Theorem 1.2 to control the norms of the correcting
functions. We assume ‖ f j‖ ≤ 1, ‖g‖ ≤ 1, and, by normal families, we can
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suppose g and f1, f2, . . . , fn are analytic on D̄ because we shall obtain a
priori bounds on the solutions g j . Set

ψ j = g f̄ j/
∑

| fl |2 = gϕ j , j = 1, 2, . . . , n.

Then ψ j is bounded, |ψ j | ≤ 1, and C∞ on D̄ (at a common zero of
f1, f2, . . . , fn examine the power series expansions) and

ψ1 f1 + · · · + ψn fn = g.

Suppose we can solve

∂b j,k

∂ z̄
= gψ j

∂ψk

∂ z̄
= g3G j,k, 1 ≤ j, k ≤ n,(2.14)

with

|b j,k | ≤ M.(2.15)

Then

g j = g2ψ j +
n∑

k=1

(b j,k − bk, j ) fk

satisfies

∑
g j f j = g2

∑
ψ j f j = g3

and

∂g j

∂ z̄
= g2 · ∂ψ j

∂ z̄
+

n∑

k=1

g fk

(

ψ j
∂ψk

∂ z̄
− ψk

∂ψ j

∂ z̄

)

= g2 ∂ψ j

∂ z̄
− g(

∑
fkψk)

∂ψ j

∂ z̄
+ gψ j

∂

∂ z̄

∑
fkψk = 0.

Moreover, |g j | ≤ 1 + 2Mn, so that g j ∈ H∞.
Looking back at the proof of Theorem 2.1, we see that

|g3G j,k |2 ≤ |g|6| f̄ j |2
(
∑ | fl |2)2

| ∑ fl( f̄l f̄ ′
k − f̄k f̄ ′

l )|2
(
∑ | fl |2)4

≤ C
∑

| f ′
l |2,

and so |g3G j,k |2 log(1/|z|)dx dy is a Carleson measure. Also,

∂

∂z
(g3G j,k) = 3g2g′G j,k + g3 ∂G j,k

∂z
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and

|g2g′G j,k | ≤ |g2||g′|| f̄ j |∑ | fl |2
| ∑ fl( f̄l f̄ ′

k − f̄k f̄ ′
l )

(
∑ | fl |2)2

|

≤ C(|g′|2 + ∑ | f ′
l |2)

(
∑ | fl |2)1/2

≤ C
|g′|2
|g| + C

∑ | f ′
l |2

| fl | ,

while
∣
∣
∣
∣g

3 ∂G j,k

∂z

∣
∣
∣
∣ ≤ C |g|3 ∑

p,q | f ′
p|| f ′

q |
(
∑ | fl |2)2

≤ Cn
∑ | f ′

l |2
| fl | ,

by the calculations in the proof of Theorem 2.1. Hence by Lemma 2.2,
∂/∂z(g3G j,k) is a Carleson measure with constant depending only on n, and
by Theorem 1.2, (2.14) has solutions satisfying (2.15).

Recently Gamelin [1981], and independently A. M. Davie, refined Wolff’s
proof still more, even removing the notion of Carleson measure (see Exercise
5).

There is a close connection between the corona theorem and the H 1–BMO
duality. The theorem was reduced to the question of finding functions b j,k such
that

∂b j,k

∂ z̄
= ϕ j

∂ϕk

∂ z̄
= G j,k, |z| < 1,(2.16)

and such that

‖b j,k‖∞ = sup
|z|=1

|b j,k(z)| ≤ C2(n, δ).

Let

Fj,k(z) = 1

2π i

∫∫

|ζ |<1

G j,k(ζ )
1

ζ − z
dζ ∧ d ζ̄(2.17)

be the solution of (2.16) given by the integral formula (1.2). Any solution
of (2.16) has the form b j,k = Fj,k − h j,k, h j,k ∈ H∞, and Corollary 4.6 of
Chapter VI gives

c1‖Fj,k − i F̃j,k‖∗ ≤ inf{‖b j,k‖∞ : b j,k satisfies (2.16)}
≤ c2‖Fj,k − i F̃j,k‖∗,

where F̃j,k denotes the conjugate function and where c1 and c2 are constants.
By (2.17), Fj,k(z) is analytic on |z| > 1, so that F̄j,k ∈ H∞, when F̄j,k is viewed
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as a function only on the circle {|z| = 1}. Also,
∫

F j,kdθ = 0 by (2.17). Hence

F̃ j,k = i F j,k and the minimal norm of solutions of (2.16) is comparable to 2
‖Fj,k‖∗. When ϕ j is defined by (2.6), the proofs of Theorems 2.1 and 1.2 show
by duality that ‖F j,k‖∗ is bounded. We will show later that ϕ j can be chosen
so that |G j,k |dx dy is a Carleson measure, and in that case one can directly
verify that ‖F j,k‖∗ ≤ C(n, δ).

The corona problem is equivalent to the problem of finding bounds
on solutions of equations like (2.16). To prove this, consider the prob-
lem of two functions f1 and f2, analytic on a neighborhood of D̄, that
satisfy

max(| f1(z)|, | f2(z)|) > δ > 0, |z| ≤ 1,

‖ f1‖ ≤ 1, ‖ f2‖ ≤ 1.

Let ϕ1 and ϕ2 be C∞ solutions of

ϕ1 f1 + ϕ2 f2 = 1

with ‖ϕ‖∞ ≤ C1(2, δ), j = 1, 2. If g1 and g2 are analytic solutions, then since
g1 f1 + g2 f2 = 1, we have

g1 = ϕ1 + f2

(
ϕ2 − g2

f1

)

, g2 = ϕ2 − f1

(
g1 − ϕ1

f2

)

.

The function

R = ϕ2 − g2

f1

= g1 − ϕ1

f2

has the bound ‖R‖∞ ≤ C2(2, δ) if and only if ‖g j‖ ≤ C(2, δ), j = 1, 2. Now

∂R

∂ z̄
= 1

f1

∂ϕ2

∂ z̄
= ( f1ϕ1 + f2ϕ2)

f1

∂ϕ2

∂ z̄

= ϕ1

∂ϕ2

∂ z̄
+ ϕ2

f1

∂

∂ z̄
(1 − f1ϕ1)

= ϕ1

∂ϕ2

∂ z̄
− ϕ2

∂ϕ1

∂ z̄
.

Thus bounded analytic solutions g1, g2 exist if and only if

∂R

∂ z̄
= ϕ

∂ϕ2

∂ z̄
− ϕ2

∂ϕ1

∂ z̄

can be solved with ‖R‖∞ ≤ C2(2, δ) whenever ϕ1 and ϕ2 are smooth bounded
corona solutions.
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3. Two Theorems on Minimum Modulus

Let u(z) be a bounded, complex-valued, harmonic function on the upper
half plane. Assume ‖u‖∞ ≤ 1. Let Q be a square with base on {y = 0}. For
0 < α < 1, set

Eα = {z ∈ Q : |u(z)| ≤ α}
and let

E∗
α = {x : x + iy ∈ Eα for some y > 0}

be the orthogonal projection of Eα onto {y = 0}. Denote by T (Q) the top half
of Q. Fix β > 0 and suppose there is z0 ∈ T (Q) such that |u(z0)| > β. See
Figure VIII.1. Since ‖u‖∞ ≤ 1, the Poisson integral representation shows that
for t ∈ Q∗ = {x : x + iy ∈ Q for some y > 0}, |u(t) − u(z0)| can be large
only when t is in a set of small measure, provided of course that 1 − β is
sufficiently small. This in turn implies that |E∗

α|/|Q∗| is small. This reasoning
is made precise in the proof of the following theorem.

Theorem 3.1. Let u(z) be harmonic in the upper half plane. Assume ‖u‖∞ ≤
1. If 0 < α < 1 and if 0 < ε < 1, then there is β = β(α, ε), 0 < β < 1, such
that if Q is any square with base on {y = 0}, then

sup
T (Q)

|u(z0)| ≥ β

implies

|E∗
α| ≤ ε	(Q).(3.1)

where 	(Q) = |Q∗| is the edge length of Q.

Figure VIII.1. The situation in Theorem 3.1.
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Proof. The appropriate tool for this proof is the vertical maximal function

f +(x) = sup
y>0

| f (x + iy)|,

where f (z) is a harmonic function on the upper half plane.
We may assume Q = {0 ≤ x ≤ 1, 0 < y ≤ 1}. Suppose z0 ∈ T (Q) has

|u(z0)| ≥ β. Then

(∫
|u(t) − u(z0)|Pz0

(t)dt

)2

≤
∫

|u(t) − u(z0)|2 Pz0
(t)dt(3.2)

=
∫

|u(t)|2 Pz0
(t)dt − |u(z0)|2

≤ 1 − β2.

Let I = [−1, 2] be the triple of the base of Q and let

f (t) = (u(t) − u(z0))χI (t).

Since |Pz0
| ≥ c1 on I, we have ‖ f ‖1 ≤ c−1

1 (1 − β2)1/2 by (3.2). Also, for z ∈ Q
but for t �∈ I, Pz(t)/Pz0

(t) ≤ c2, so that when z ∈ Eα ⊂ Q,

| f (z)| =
∣
∣
∣
∣

∫
f (t)Pz(t)dt

∣
∣
∣
∣

≥
∣
∣
∣
∣

∫
(u(t) − u(z0))Pz(t)dt

∣
∣
∣
∣ −

∫

�\I
|u(t) − u(z0)|Pz(t)dt

≥ (β − α) − c2

∫

�\I
|u(t) − u(z0)|Pz0

(t)dt

≥ (β − α) − c2(1 − β2)1/2 = γ,

again by (3.2). Since α is fixed, we can make γ > 0 by taking β sufficiently
close to one. Then E∗

α ⊂ {t : f +(t) > γ } and the weak-type estimate for f +
gives

|E∗
α| ≤ Cc−1

1 (1 − β2)1/2/γ.

We conclude that |E∗
α| < ε if 1 − β is sufficiently small.

In Theorem 3.1 it is necessary that β be large. For example, if u(t) = 1 −
χI (t), with I = [0, 1], then E∗

α = I for every α > 0, while supT (Q) |u(z0)| > 1
2

when Q is the unit square. Thus we must have β > 1
2

no matter how small we
take α. However, if the harmonic function is replaced by a bounded analytic
function f (z), then by exploiting the subharmonicity of log | f (z)|, we can fix
any β > 0 and find α = α(β) > 0 so that (3.1) still holds.

Theorem 3.2. Let f (z) be a bounded analytic function on the upper half
plane. Assume ‖ f ‖∞ ≤ 1. For 0 < β < 1 and for 0 < ε < 1, there exists
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α = α(β, ε), 0 < α < 1, such that for any square Q with base on {y = 0}
sup
T (Q)

| f (z)| ≥ β

implies

|E∗
α| < ε	(Q),

where E∗
α is the vertical projection onto {y = 0} of

Eα = {z ∈ Q : | f (z)| ≤ α}.
Proof. We again suppose that Q is the unit square {0 ≤ x ≤ 1, 0 < y ≤ 1}.
Write f = Bg, where B is a Blaschke product with zeros {z j }, and where g(z)
has no zeros, ‖g‖∞ ≤ 1. Then

Eα ⊂ Fα ∪ Gα,

where

Fα = {z ∈ Q : |B(z)| <
√

α} and Gα = {z ∈ Q : |g(z)| <
√

α}.
Clearly, E∗

α ⊂ F∗
α ∪ G∗

α . We estimate |F∗
α | and |G∗

α| separately.
To bound |G∗

α| we use Theorem 3.1 on the function u(z) = g(z)p, where
p > 0 will be determined in a moment. Fix α1 > 0 and take β1 = β ′

1(α1, ε/3)
so that Theorem 3.1 holds. Let p > 0 satisfy β p = β1. Applying Theorem 3.1
to g p, we obtain |G∗

α| < ε/3, provided that α p/2 ≤ α1.
The estimate of |F∗

α | is based on the fact that |B(z0)| > β for some z0 =
x0 + iy0 ∈ T (Q). By Lemma 1.2 of Chapter VII, this means

∑ 4y0 y j

|z0 − z̄ j |2 ≤ 2 log
1

β
.(3.3)

Let S = {z j : dist(z j , Q) < 1}. Then |z0 − z̄ j |2/4y0 ≤ 7 when z j ∈ S, and
hence

∑

z j ∈S

y j ≤ 14 log 1/β.(3.4)

We excise the discs

� j = {z : |z − z j | < (ε/6)(14 log 1/β)−1 y j }.
Taking ε small enough, we can assume � j ∩ Fα = ∅ when z j �∈ S, so that
Fα\ ⋃

� j = Fα\ ⋃
S � j . By (3.4) we have

∑

z j ∈S

|�∗
j | < ε/3,
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and so we only have to estimate the size of the projection of Fα\ ⋃
S � j . But

when z ∈ Fα\ ⋃
� j , Lemma 1.2 of Chapter VII also gives

log
1

α
≤ log

1

|B(z)|2 ≤ c(ε, β)
∑ 4yy j

|z − z̄ j |2 .

In this sum the main contribution comes from the z j ∈ S. Indeed, when z0 ∈
T (Q) and z j �∈ S (so that dist(z j , Q) > 1),

sup
z∈Q

yy j

|z − z̄ j |2 ≤ c1

y0 y j

|z0 − z̄ j |2 ,

and hence by (3.3)

sup
z∈Q

∑

z j �∈S

4yy j

|z − z̄ j |2 ≤ c1

∑ 4y0 y j

|z0 − z̄ j |2 ≤ 2c1 log
1

β
.

Taking α ≤ α0(β, ε), we conclude that

2

c(ε, β)
log

1

α
≤

∑

z j ∈S

4yy j

|z − z̄ j |2(3.5)

holds when z ∈ Fα\ ⋃
� j .

Using (3.5) we can estimate |(Fα\ ⋃
� j )

∗| in terms of a maximal function
in the same way as before. Consider the positive discrete measure

μ =
∑

z j ∈S

4y jδz j .

Then (3.5) gives
∫

y

|z − ζ̄ |2 dμ(ζ ) ≥ 2

c(ε, β)
log

1

α
(3.6)

for z ∈ Fα\ ⋃
� j , while on the other hand, (3.4) gives

∫
dμ ≤ 56 log

1

β
.

Project the mass μ vertically onto {y = 0}. This increases the integral in (3.6).
We obtain a positive measure σ on � such that

∫
dσ ≤ 56 log 1/β and such

that
∫

Pz(t)dσ (t) ≥ 2

πc(ε, β)
log

1

α

when z ∈ Fα\ ⋃
� j . Consequently,

(Fα\
⋃

� j )
∗ ⊂ {x : M(dσ ) > (2/πc(ε, β)) log 1/α},
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where M(dσ ) denotes the Hardy–Littlewood maximal function of σ . The
weak-type estimate for M(dσ ) now yields

|(Fα\
⋃

� j )
∗| ≤ Cπc(ε, β)

2

log 1/β

log 1/α
<

ε

3
,

provided α is sufficiently small.
We conclude that

|E∗
α| ≤ |G∗

α| +
∑

j

|�∗
j | + |(Fα\

⋃
� j )

∗| ≤ 3
ε

3
= ε

if α is small enough.

4. Interpolating Blaschke Products

A Blaschke product is called an interpolating Blaschke product if it has
distinct zeros and if these zeros form an interpolating sequence. We do not
know if the set of interpolating Blaschke products span a dense subspace of
H∞, as does the set of all Blaschke products (see page vii). However, the
interpolating Blaschke products do separate the points of the upper half plane
in a very strong way. The precise result is this.

Theorem 4.1. Let u(z) be a bounded harmonic function on the upper half
plane such that

|u(t)| = 1 almost everywhere on �.

Let δ > 0 and let 0 < α < 1. Then there exist β = β(α), 0 < β < 1, and an
interpolating Blaschke product B(z) such that

|B(z)| ≤ δ i f |u(z)| ≤ α(4.1)

and

|u(z)| ≤ β i f B(z) = 0.(4.2)

Moreover if B(z) has zeros {zk}, then

δ(B) = inf
B(zn )=0

∏

k,k �=n

∣
∣
∣
∣
zn − zk

zn − z̄k

∣
∣
∣
∣(4.3)

≥ δ0(α, β, δ) > 0.

The reader may find Theorem 4.1 acutely specialized. We have put the theorem
here for two reasons. First it will be an essential step in the description of the
closed subalgebras of L∞ containing H∞ given in the next chapter. The second
reason is pedagogical. Its proof using Theorem 3.1 above and generations like
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those introduced in the last chapter is an easier version of the construction
originally used to prove the corona theorem.

Before proving Theorem 4.1 we use it to derive Ziskind’s refinement of
Newman’s characterization of the Šilov boundary of H∞. (See Theorem 2.2
of Chapter V.)

Theorem 4.2. Let m be a complex homomorphism of H∞. Then m is in
the Šilov boundary of H∞ if and only if |m(B)| = 1 for every interpolating
Blaschke product B(z).

Proof. If m is in the Šilov boundary, then by Newman’s theorem |m(B)| = 1
for every Blaschke product B(z). What requires proof is the reverse implication.

If m is not in the Šilov boundary, then by Newman’s theorem there is a
Blaschke product B0(z) such that m(B0) = 0. Using Theorem 4.1 with u(z) =
B0(z) and with α = δ = 1

2
, we obtain an interpolating Blaschke product B(z)

such that |B(z)| ≤ 1
2

if |B0(z)| ≤ 1
2
. By the corona theorem there exists a net

(z j ) in the upper half plane that converges to m in the topology of M

lim
j

f (z j ) = m( f ), f ∈ H∞.

Because m(B0) = 0, we have |B0(z j )| ≤ 1
2

when the index j is sufficiently

large. Hence |B(z j )| ≤ 1
2

for large j and |m(B)| = lim j |B(z j )| ≤ 1
2
.

For some points m ∈ M not in the Šilov boundary it is not possible to find
an interpolating Blaschke product B(z) such that m(B) = 0. This is one of the
mysterious things about the maximal ideal space we shall take up later (see
Exercise 2(c) of Chapter X).

Proof of Theorem 4.1. Let Q be any closed square with base on {y = 0} and,
as before, let T (Q) denote the top half of Q. A simple comparison of Poisson
kernels shows that there is α′ = α′(α) < 1 such that whenever u(z) is harmonic
on the upper half plane and |u(z)| ≤ 1,

inf
T |(Q)

|u(z)| < α ⇒ sup
T (Q)

|u(z)| < α′.(4.4)

This constant α′(α) does not depend on the function u(z), or on the square Q,
because (4.4) is conformally invariant. Set

β = β(α′,
1

2
),

so that the conclusion of Theorem 3.1 holds with α′ and with ε = 1
2
.

For n = 1, 2, . . . , we form the 2n closed squares Qn contained in Q that have
side 	(Qn) = 2−n	(Q) and base on {y = 0}. The projections Q∗

n are chosen to
be a partition of Q∗. For special squares Q we have to single out certain of the
subsquares Qn using a stopping time argument. There are two cases.
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Case I: sup
T (Q)

|u(z)| ≥ β.

Define the first generation G1(Q) as the set of those Q j ⊂ Q such that

sup
T (Q j )

|u(z)| < α′

and Q j is maximal. Call these red squares. See Figure VIII.2. The squares in
G1(Q) have pairwise disjoint interiors. By Theorem 3.1 and our choice of β,

∑

G1(Q)

	(Q j ) ≤ 1

2
	(Q).(4.5)

By (4.4),

{z ∈ Q : |u(z)| < α} ⊂
⋃

G1(Q)

Q j .

Figure VIII.2. Case I: The six shaded squares form G1(Q). They are red squares.

Case II: sup
T (Q)

|u(z)| < β.

In this case the first generation G1(Q) consists of those Q j ⊂ Q such that

sup
T (Q j )

|u(z)| ≥ β

and Q j is maximal. Call these blue squares. See Figure VIII.3. The squares in
G1(Q) have pairwise disjoint interiors. Let

R (Q) = (int Q)\
⋃

G1(Q)

Q j .
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Figure VIII.3. Case II: The shaded squares form G1(Q). They are blue squares. In the region
R (Q) above the blue squares, |u(z)| < β.

Then R (Q) has rectifiable boundary and

length(∂R (Q)) ≤ 6	(Q)(4.6)

On R (Q) we have |u(z)| < β. Since u(z) has nontangential limits of absolute
value 1 almost everywhere, and since β < 1, we also have

|∂R (Q)| ∩ {y = 0}| = 0.(4.7)

Begin with the unit square Q0. Apply Case I or II to Q0, obtaining the
first generation G1 = {Q1

1, Q1
2, . . . }. To each Q1

j ∈ G1 we apply Case I or

II and get a new family G1(Q1
j ) of generation squares. Define the second

generation to be G2 = ⋃{G1(Q1
j ) : Q1

j ∈ G1} = {Q2
1, Q2

2, . . . }. Repeating
the process with G2 and continuing inductively, we obtain later generations
G p = {Q p

1 , Q p
2 , . . . }. Since α′ < β, we alternate between Case I and Case II

as we move from one generation to the next, and we apply the same case to all
squares in a given generation. In other words, each generation consists entirely
of red squares or blue squares, and the next generation consists only of squares
of the other color. By the construction,

{z ∈ Q0 : |u(z)| < α} ⊂
⋃

Case II

R (Q p
j ) ⊂ {z ∈ Q0 : |u(z)| < β}.(4.8)

Set

� = Q0 ∩
⋃

Case II

∂R (Q p
j ).

The important results of this construction are

(a) the arc length measure on � is a Carleson measure, and
(b) if B(z) is a bounded harmonic function on {y > 0} and if |B(z)| ≤ δ on

�, then |B(z)| ≤ δ on
⋃

Case II R (Q p
j ).
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To prove (a) it is enough to check that length (� ∩ Q) ≤ C	(Q) when Q =
Qn is a square from the decomposition of Q0, because any Q ⊂ Q0 can be
covered by two such Qn with 	(Qn) ≤ 2	(Q). So consider a square Q = Qn .
There is a smallest index p such that Q contains squares from G p. By (4.5)
and (4.6), squares from G p ∪ G p+1 ∪ · · · contribute no more than

∞∑

k=0

6	(Q)

2k
= 12	(Q)

to length(� ∩ Q). The rest of � ∩ Q comes from squares in G p−1 or G p−2,
but not both. Their contribution does not exceed 6	(Q). Altogether we have

length(� ∩ Q) ≤ 18	(Q)

and (a) holds.
To prove (b) it is enough to consider one setR (Q) and to show that |B(z)| ≤ δ

on R (Q) if |B(z)| ≤ δ on {y > 0} ∩ ∂R (Q). This follows from (4.7) and a
Phragmén–Lindelöf argument which we now outline. Because of (4.7), there
are positive harmonic functions Vn(z) on the upper half plane such that

lim
z→t

Vn(z) = +∞, t ∈ � ∩ ∂R (Q)

and such that

lim
n→∞ Vn(z) = 0, z ∈ H

(see Exercise 9 of Chapter I). When ζ ∈ ∂R (Q) we then have

lim
R (Q)�z→ζ

|B(z) + Vn(z)| ≤ δ + lim
R (Q)�z→ζ

Vn(z).

Indeed, if Im ζ > 0, this inequality follows from the continuity of B(z) + Vn(z),
whereas if Im ζ = 0 the inequality is obvious since limz→ζ Vn(z) = +∞. The
maximum principle for subharmonic functions now gives

|B(z) + Vn(z)| ≤ δ + Vn(z), z ∈ R (Q).

Sending n → ∞, we obtain (b).
It is now quite easy to find the interpolating Blaschke product B(z). Let

us first construct an interpolating Blaschke product B1(z) that has (4.2) and
that satisfies (4.1) only for points in the unit square Q0. Choose points {z j } in⋃

∂T (Qn), where Qn ranges through all squares in the decomposition of Q0,
including Q0 itself, so that

inf
j

ρ(z j , z) < δ, z ∈
⋃

∂T (Qn)(4.9)

and so that

ρ(z j , zk) ≥ η > 0, j �= k.(4.10)

That can be done as follows. Along each ∂T (Qn), mark off equally spaced
points, 2−N 	(Qn) units apart, including the corners of T (Qn). Let {z j } be
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the union, over {Qn}, of the sets of marked points. Then (4.10) holds, and if
N = N (δ) is large enough, (4.9) also holds. We let B1(z) be that Blaschke
product with zeros {z j : z j ∈ �} (see Figure VIII.4).

By (4.10) and condition (a), the zeros of B1(z) satisfy the geometric condition
(c) of Theorem 1.1 of Chapter VII. Hence these zeros form an interpolating
sequence, and because the estimates depend only on α, β and δ, (4.3) holds
for B1. By (4.8), (4.9), and condition (b), we have |B1(z)| < δ when z ∈ Q0

and when |u(z)| ≤ α. By (4.8) the zeros of B1(z) lie in {|u(z)| ≤ β}.

Figure VIII.4. The zeros of B1(z) when N = 2. Three regions R (Q) are shown.

We have found an interpolating Blaschke product B1 that satisfies (4.2) and
that satisfies (4.1) for points in Q0. To obtain (4.1) for all points in the up-
per half plane, choose a second interpolating Blaschke product B2(z) with
zeros {wk} such that B2 satisfies (4.2) and such that B2(z) satisfies (4.1), with
δ/2 instead of δ, for points z /∈ Q0. After a conformal mapping, the con-
struction of B2 is the same as the construction of B1. The product B = B1 B2

then satisfies (4.1) and (4.2). The zeros of B = B1 B2 form an interpolating
sequence if

inf
k, j

ρ(wk, z j ) > 0,

where {z j } denotes the zeros of B1. Let ε > 0. Remove from B2 any zero wk

for which

inf
j

ρ(wk, z j ) < ε.

The remaining product B = B1 B2 is then an interpolating Blaschke product
satisfying (4.2) and (4.3). Since the original product B2 satisfied (4.1) for
z /∈ Q0 with δ/2 in place of δ, the new product B = B1 B2 will still have (4.1)
if ε is sufficiently small.
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5. Carleson’s Construction

Theorem 5.1. Let δ > 0. If f (z) is analytic on D and if | f (z)| ≤ 1, then there
is ψ(z) ∈ C∞(D) such that

(a) 0 ≤ ψ(z) ≤ 1,
(b) ψ(z) = 1 if | f (z)| ≥ δ,
(c) ψ(z) = 0 if | f (z)| < ε = ε(δ), and
(d)

∫∫
s |∂ ψ/∂z̄|dx dy ≤ A(δ)	, for every sector

S = {z = reiθ : θ0 < θ < θ0 + 	, 1 − 	 < r < 1}.
The constants ε(δ) > 0 and A(δ) depend only on δ.

Notice that Theorem 2.1 follows easily from this result. Suppose
f1, f2, . . . , fn ∈ H∞ satisfy ‖ f j‖∞ ≤ 1 and

max
j

| f j (z)| ≥ δ > 0, z ∈ D.

For this δ and for each f j , Theorem 5.1 gives us a function ψ j . Set

ϕ j = ψ j/ f j

∑
ψl .

Then |ϕ j (z)| ≤ 1/ε, z ∈ D, and

ϕ1 f1 + · · · + ϕn fn = 1.

To replace the ϕ1 by H∞ functions we boundedly solve the equations

∂b j,k

∂ z̄
= ϕ j

∂ϕk

∂ z̄
, 1 ≤ j, k ≤ n.(5.1)

However, since

∂ϕk

∂ z̄
=

∑ (

ψl
∂ψk

∂ z̄
− ψk

∂ψl

∂ z̄

) /

fk(
∑

ψl)
2,

condition (d) and Theorem 1.1 ensure that (5.1) has bounded solutions.

Proof of Theorem 5.1. We do the construction in the upper half plane. In
fact, we only construct ψ in the unit square Q0 = {0 ≤ x ≤ 1, 0 < y ≤ 1}.
Simple conformal mappings and a partition of unity on D can then be used to
produce ψ on the disc.

For each dyadic square Q = { j2−k ≤ x ≤ ( j + 1)2−k, 0 ≤ y ≤ 2−k} con-
tained in Q0, we again let T (Q) denote the top half of Q, and we form the 2n

dyadic squares Qn contained in Q, having base on {y = 0}, and having side
	(Qn) = 2−n−k = 2−n	(Q). Thus Q\T (Q) is the union of the two squares Q1.

Let N = N (δ) be a positive integer. For each dyadic square Q of side 	(Q)
with base on {y = 0}, partition T (Q) into 22N−1 dyadic squares Sj of side
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	(Sj ) = 2∼N 	(Q). We call the Sj small squares. With respect to the hyperbolic,
metric small squares Sj from different T (Q) are roughly the same size. Let
S̃ j be the open square concentric with Sj having side 	(S̃ j ) = 3	(Sj ). By
Schwarz’s lemma we can choose N = N (δ) such that

sup
z,w∈S̃ j

| f (z) − f (w)| < 6 · 2−N < δ/10(5.2)

for each Sj . Taking N larger, we can also require that whenever Q is a square
with

sup
T (Q)

| f (z)| ≥ δ/2,

the vertical projection E∗ of

E = {z ∈ Q : | f (z)| < 2−N+2}
has

|E∗| ≤ 	(Q)/2(5.3)

This can be done using Theorem 3.2.
In Q0 we will define a region R as the union of certain small squares. This

region R will have the following two properties:

(i) If

inf
Sk

| f (z)| ≤ 2−N

and if Sk ⊂ Q0, then Sk ⊂ R .
(ii) If, on the other hand, Sk ⊂ R , then

sup
S̃k

| f (z)| < δ.

By (5.2) conditions (i) and (ii) are consistent. Setting ε = ε(δ) = 2−N , we
see that ∂R separates {z ∈ Q : | f (z)| ≥ δ} from {z ∈ Q : | f (z)| ≤ 2−N = ε}.
Condition (5.3) will show that arc length on ∂R is a Carleson measure with
constant A1(δ). This means that except for smoothness, the function ψ0 =
χQ0\R has the desired properties (a)–(d) on Q0. The final function ψ is a
mollification of ψ0 with respect to the hyperbolic metric.† To define R we
consider two cases. Let Q be any square in the decomposition of the unit
square Q0.

Case I: sup
T (Q)

| f (z)| ≥ δ/2.

† The smoothness of ψ is of no real importance. It is the price paid for avoiding distribution
derivatives. One can work directly with ψ0 using Cauchy’s theorem instead of Green’s theorem
in Theorem 1.1.
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Consider all Sj ⊂ Q for which

inf
Sj

| f (z)| ≤ 2−N

and such that Sj lies below no other small square with the same property. We
let A(Q) be the family of such Sj . By (5.2) and (5.3), we have

∑

A(Q)

	(Sj ) ≤ 1

2
	(Q),(5.4)

because the projections S∗
j of the squares Sj have pairwise disjoint interiors.

For each Sj ∈ A(Q) let Q(1)
j be the square with base S∗

j . Each Q(1)
j is a dyadic

square with base on {y = 0}, and the interiors of the squares Q(1)
j are pairwise

disjoint. Define the first generation

G1(Q) = {Q(1)
j : Sj ∈ A(Q)}.

Then by (5.4), we have

∑

G1(Q)

	(Q(1)
j ) ≤ 1

2
	(Q).(5.5)

Also let B(Sj ) be the set of Sk such that

S∗
k ⊂ S∗

j and 	(Sj ) ≤ inf
Sk

y ≤ inf
Sj

y.

Thus B(Sj ) consists of Sj and all Sk below Sj except those Sk contained in

Q(1)
j . (If we think of Sj as an elevator car on the top floor, then Q(1)

j is the
elevator car on the bottom floor, and B(Sj ) is a partition of the elevator shaft
with the bottom floor excluded. See Figure VIII.5.) Notice that

∑

Sk∈B(Sj )

	(Sk) ≤ 22N 	(Sj )(5.6)

because the very small Sk contained in Q(1)
j have been excluded. For z ∈ Q we

have | f (z)| > 2−N unless z ∈ ⋃
Q(1)

j or z ∈ Sk ∈ B(Sj ), for some Sj ∈ A(Q).
Define

R (Q) =
⋃

Sj ∈A(Q)

⋃ {

Sk ∈ B(Sj ) : inf
Sk

| f (z)| ≤ 2−N

}

.

If Sk ⊂ Q\ ⋃
Q(1)

j , and if infSk | f (z)| ≤ 2−N then Sk ⊂ R (Q). On the other
hand, by (5.2) supS̃k

| f (z)| < δ if Sk ⊂ R (Q). Thus (i) and (ii) hold for Sk ⊂
Q\ ⋃

Q(1)
j . By (5.4) and (5.6), ∂R (Q) satisfies

length (∂R (Q)) ≤ 22N+1	(Q).(5.7)
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Figure VIII.5. A case I square Q when N = 2. The first generation G1(Q) consists of the darkly
shaded squares. The squares Sk on which inf | f (z)| < 2−N in R (Q) are lightly shaded.

Case II: sup
T (Q)

| f (z)| < δ/2.

In this case the first generation G1(Q) consists of those Qn ⊂ Q such that

sup
Qn

| f (z)| ≥ δ/2

and Qn is maximal. The squares Q(1)
j in G1(Q) have pairwise disjoint interiors.

Let

R (Q) = Q\
⋃

G1(Q)

Q(1)
j .

In this case the picture is like Fig. VIII.3. On R (Q) we have | f (z)| ≤ δ/2, and
if Sk ⊂ R (Q), then by (5.2), supS̃k

| f (z)| < δ. Also, we have

	(∂R (Q)) ≤ 6	(Q) ≤ 22N+1	(Q).(5.8)

Starting with the unit square Q0, we apply either Case I or II, and form

the region R (Q0). Then apply either Case I or II to each square Q(1)
j in the

first generation G1 = G1(Q0). We obtain new regions R (Q(1)
j ) and a second
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generation

G2 =
⋃

G1

G1(Q(1)
j ),

which consists of all first generation descendants of squares from G1. Continue
this process indefinitely, obtaining succeeding generations G3, G4, . . . . Define

R = R (Q0) ∪
∞⋃

p=1

⋃
{R (Q(p)

j ) : Q(p)
j ∈ G p}.

By the construction, (i) and (ii) hold for Sk ⊂ Q0.

The same case need not apply to all the squares in a given generation G p,
but each first generation descendant of a Case II square is a Case I square. This
means that we never use Case II two times in succession. By (5.7), (5.8), and
especially (5.5), we see that arc length on ∂R is a Carleson measure. We have

	(Q ∩ ∂R ) ≤ 22N+1	(Q) + 22N+1
∑

{	(Q(p)
j ) : Q(p)

j ⊂ Q},
and, because generation squares are nested, (5.5) gives

∑
{	(Q(p)

j ) : Q(p)
j ⊂ Q} ≤ 2

∞∑

q=1

2−q	(Q) = 2	(Q).

Consequently we obtain

	(Q ∩ ∂R ) ≤ 3 · 22N+1	(Q).(5.9)

which shows that arc length on ∂R (Q) is a Carleson measure with constant
A = 3 · 22N+1 depending only on δ. Because we want a smooth function ψ(z)
we need a slightly different formulation of (5.9). For any Q let

E(Q) = {Sk : S̃k ∩ Q ∩ ∂R �= ∅}.

If Sk ∈ E(Q) and if
≈
Sk is concentric with Sk but nine times as large, then

	(Sk) ≤ c	(
≈
Sk ∩Q ∩ ∂R ),

because the only contribution to ∂R within
≈
Sk comes from squares Sj with

edge length 	(Sj ) ≥ 	(Sk)/2. No point lies in more than nine squares S̃k , so
that (5.9) yields

∑

E(Q)

	(Sk) ≤ c22N+1	(Q).(5.10)
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For each small square Sj , let ψ j ∈ C∞({y > 0}) satisfy

ψ j = 0 on Sj ,

ψ j ≡ 1 on {y > 0}\S̃ j ,

0 ≤ ψ j ≤ 1, |∇ψ j | ≤ c/	(Sj ).

Since no point lies in more than nine squares S̃ j , the function

ψ(z) =
∏

Sj ⊂R
ψ j (z)

is C∞ on the upper half plane, and

|∇ψ(z)| ≤ c/	(Sk), z ∈ Sk .(5.11)

Moreover ∇ψ(z) = 0 except on those squares S̃k with S̃k ∩ ∂R �= ∅. By (5.10)
and (5.11) this means that

∫∫

Q

|∇ψ |dx dy ≤ C2N+1	(Q)

for any square Q on {y = 0}. Hence |∇ψ |dx dy is a Carleson measure with
constant A(δ). Clearly 0 ≤ ψ ≤ 1, and (a) holds. By (i) and (ii), conditions (b)
and (c) hold for points in Q0.

6. Gradients of Bounded Harmonic Functions

Much of the difficulty with the corona theorem rests in the fact that when f ∈
H∞, | f ′(z)|dx dy need not be a Carleson measure. See Chapter VI, Exercise
9, for an example. The theorem in this section provides a detour around that
obstruction.

Theorem 6.1. Let u(z) be a bounded harmonic function on the upper half
plane H and let ε > 0. There exists a C∞ function ϕ(z) on H such that

|ϕ(z) − u(z)| < ε(6.1)

and such that |∇ϕ|dx dy is a Carleson measure,

∫∫

Q

|∇ϕ|dx dy ≤ Cε−6‖u‖5
∞	(Q),(6.2)

whenever Q = {a ≤ x ≤ a + 	(Q), 0 < y < 	(Q)}. The constant C in (6.2)
is independent of ε and u(z).
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This theorem is a compromise between something true, that y|∇u|2dx dy is
a Carleson measure, and something more desirable but false, that |∇u|dx dy
should be a Carleson measure. Theorem 5.1 is an immediate corollary. Let
f ∈ H∞, ‖ f ‖∞ ≤ 1, and let δ > 0. Take h ∈ C∞(�) with h(x) = 1, x >

3δ/4, h(x) = 0, x < δ/2 and with 0 ≤ h(x) ≤ 1. If ϕ is the C∞ function given
by Theorem 6.1 with ε = δ/4, then ψ = h ◦ ϕ has the properties asserted in
Theorem 5.1, with ε(δ) = δ/4.

The theorem holds more generally when u(z) is the Poisson integral of a
BMO function, and the BMO result, even with ε large, gives yet another proof
of the H 1–BMO duality (see Exercise 11). The proof of duality in Chapter VI
used the disc analog of the inequality

∫∫

Q

y|∇u|2 dx dy ≤ C‖u‖2
∗	(Q),(6.3)

which is much more accessible than (6.2). (See Chapter VI, Theorem 3.4, and
Exercise 5 of that chapter.)

Examples exist for which the function ϕ(z) in Theorem 6.1 cannot be a
harmonic function (see Exercise 12).

Theorem 6.1 includes a quantative formulation of Fatou’s theorem. Let u(z)
be a bounded harmonic function on {y > 0} and let ε > 0. For x ∈ �, let N ε(x)
denote the number of times u(x + iy) oscillates by ε units in the segment
0 < y < 1. To be precise, say N ε(x) ≥ n if there are

0 < y0 < y1 < y2 < · · · < yn ≤ 1

such that |u(x + iy j ) − u(x + iy j+1)| ≥ ε. Fatou’s theorem asserts that for
each ε > 0, N ε(x) < ∞ almost everywhere.

Corollary 6.2. If ε > 0, if u(z) is harmonic on {y > 0}, and if ‖u‖∞ ≤ 1,

then
∫

I
N ε(x)dx ≤ Cε−7

whenever I is an interval of unit length.

Proof. Let ϕ ∈ C∞ satisfy (6.1) and (6.2) with ε/2 in place of ε. If N ε(x) ≥ n,
then there are y0 < y1 < y2 < · · · < yn ≤ 1 such that |ϕ(x + iy j ) − ϕ(x +
iy j+1)| ≥ ε/3. Hence

∫ 1

0

∣
∣
∣
∣
∂ϕ

∂y
(x + iy)

∣
∣
∣
∣ dy ≥

n−1∑

j=0

∣
∣
∣
∣
∣

∫ y j+1

y j

∂ϕ

∂y
(x + iy)dy

∣
∣
∣
∣
∣
,

≥ nε/3,



340 the corona construction Chap. VIII

and so
∫ 1

0
|∂ϕ/∂y|dy ≥ N ε(x)ε/3. Then if |I | = 1, (6.2) gives

∫

I
N ε(x)dx ≤ 3/ε

∫

I

∫ 1

0

|∇ϕ|dy dx ≤ cε−7,

as desired.

This corollary is suggestive of the theorem on harmonic interpolation se-
quences, Theorem 4.2 of Chapter VII, because both results restrict the oscilla-
tions of a bounded harmonic function, and one can easily derive the harmonic
interpolation theorem from Corollary 6.2. The connection between Theorem
6.1 and harmonic interpolations will be discussed more fully in Chapter X.
Corollary 6.2 does not obviously follow from inequality (6.3). However, the
analogous result for averages over dyadic intervals, Lemma 6.4, is an easy
consequence of the martingale version of (6.3). See the remarks after the proof
of Lemma 6.4.

The constants ε−7 in Corollary 6.2 and ε−6 in (6.2) are not sharp. Dahlberg
[1980] recently obtained ε−1 in (6.2). His local theorem contains Theorem 6.1
and a similar result for Poisson integrals of L p functions, p ≥ 2. Dahlberg uses
the Lusin area integral for Lipschitz domains where we shall compare u(z) to
a simpler martingale.

Here is the strategy of the proof of Theorem 6.1. We know that y|∇u|2dx dy
is a Carleson measure. So at points where u(z) has large oscillation, that is,
where y|∇u| ≥ δ(ε), we have |∇u(z)| ≤ δ−1(ε)y|∇u|2. Thus the restriction of
|∇u(z)|dx dy to {z : y|∇u(z)| ≥ δ(ε)} is already a Carleson measure, and we
can take ϕ(z) = u(z) on that set. We are left with the set where u(z) has small
oscillation. Temporarily relaxing the requirement that ϕ ∈ C∞, we choose a
piecewise constant function ϕ(z) such that |ϕ(z) − u(z)| < ε at almost every
point where the oscillation is small, and such that ϕ(z) jumps by about ε

units when z crosses the edges of certain dyadic squares. These squares are
determined by a stopping time argument and they satisfy the nesting condition

∑

Q j ⊂Q

	(Q j ) ≤ C(ε)	(Q).

As a distribution, |∇ϕ| resembles arc length on the boundaries of the Q j , and
hence |∇ϕ| is a Carleson measure. Thus the idea is simply to flatten out the
small oscillations as much as possible.

It will be convenient to replace Poisson integrals by the averages of u(t)
over dyadic intervals.

Lemma 6.3. Let u(z) = Py ∗ u(x) be a bounded harmonic function on the
upper half plane and let I be an interval on �. Then for 0 < δ < 1

2
,

∣
∣
∣
∣

1

|I |
∫

I
u(t)dt − 1

|I |
∫

I
u(x + iδ|I |)dx

∣
∣
∣
∣ ≤ cδ log

1

δ
‖u‖∞,(6.4)

where the constant c does not depend on u(z), on δ, or on I.
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Proof. By a change of scale we can take I = [0, 1]. We can also assume
‖u‖∞ = 1. Then the left side of (6.4) has supremum ‖F‖1, where

F(t) = χI (t) −
∫

I
Pδ(x − t)dx .

If dist (t, I ) > δ, then

|F(t)| ≤ δ

π

∫

I

dx

(x − t)2
= δ

π

(
1

dist(t, I )
− 1

1 + dist(t, I )

)

.

Hence
∫

dist(t,I )>δ

|F(t)|dt ≤ 2δ

π

∫ ∞

δ

(
1

s
− 1

s + 1

)

= 2δ

π
log

(

1 + 1

δ

)

.

Since ‖F‖∞ ≤ 1 we also have
∫

|t |<δ

|F(t)|dt +
∫

|1−t |<δ

|F(t)|dt ≤ 4δ.

What remains is the interval J = (δ, 1 − δ). For t ∈ J ,

−F(t) =
∫ 0

−∞
Pδ(x − t)dx +

∫ ∞

1

Pδ(x − t)dx = G1(t) + G2(t)

and
∫

J
|G1(t)|dt =

∫

J
|G2(t)|dt ≤ δ

π

∫ 1−δ

δ

∫ 0

−∞

dx

(x − t)2
dt

<
δ

π

∫ 1−δ

δ

dt

t
≤ δ

π
log

1

δ
.

That establishes (6.4).

Now fix a dyadic interval I and fix a positive integer N. For k = 1, 2, . . . ,
partition I into 2Nk closed dyadic intervals Ik of length |Ik | = 2−Nk |I |. Fix
ε > 0 and let u(t) be an L∞ function defined on I. Define the first generation
G1 = G1(I ) to be the set of maximal Ik ⊂ I for which

|uIk − uI | ≥ ε.

The intervals in G1(I ) have pairwise disjoint interiors. For Ik ∈ G1(I ) define
G1(Ik) in the same way and set

G2 = G2(I ) =
⋃

{G1(Ik) : Ik ∈ G1}.
Later generations G3, G4, . . . are defined inductively, so each Ik ∈ G p+1 is
contained in a unique I j ∈ G p and |uIk − uI j | ≥ ε. Lebesgue’s theorem asserts
that almost every point lies in a finite number of generation intervals. We need
a quantitative formulation of that theorem.
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Lemma 6.4. For every ε > 0 and for every positive integer N,

∞∑

p=1

∑

I j ∈G p

|I j | ≤ ‖u‖2
∞

ε2
|I |.

Proof. Set G0 = {I } and set E p = I\ ⋃
G p

I j , p = 0, 1, 2, . . . . Define

Yp(t) = u(t)χE p (t) +
∑

G p

u I j χI j (t).

Then |Yp − Yp−1| ≥ ε on
⋃

G p
I j , and hence

∞∑

p=1

∑

G p

|I j | ≤ 1

ε2

∫

I

∞∑

p=1

|Yp − Yp−1|2 dt.

When Ik ∈ G p−1 we have

∫

Ik

Yp dt =
∫

Ik∩E p

u(t) dt +
∑

I j ⊂Ik
I j ∈G p

∫

I j

u I j dt

=
∫

Ik

u(t) dt = |Ik |uIk ,

and, since Yp−1 = uIk on Ik ,

∫

Ik

YpYp−1 dt = |Ik |u2
Ik

=
∫

Ik

Y 2
p−1 dt.

Similarly, because E p ⊃ E p−1 we have

∫

E p−1

YpYp−1 dt =
∫

E p−1

u2(t) dt =
∫

E p−1

Y 2
p−1 dt.

Consequently,

∫

I
YpYp−1 dt =

∫

I
Y 2

p−1 dt

and
∫

I
|Yp − Yp−1|2 dt =

∫

I
Y 2

p dt − 2

∫

I
YpYp−1 dt +

∫

I
Y 2

p−1 dt

=
∫

I
Y 2

p dt −
∫

I
Y 2

p−1 dt.
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Hence
∫

I

∞∑

p=1

|Yp − Yp−1|2 dt = lim
p→∞

∫

I
(|Yp|2 − |Y0|2) dt =

∫

I
u2 dt − u2

I |I |

≤ ‖u‖2
∞|I |,

and the lemma is proved.

Lemma 6.4 is really a theorem about martingales. One can view {Yp} as
a martingale restricted to a sequence of stopping times. In the proof above,
the dominant expression

∑ |Yp − Yp−1|2 is the square of the martingale
S-function. Curiously, the S-function is the analog for martingales of the
Littlewood–Paley expression y|∇u|2 dx dy.

Proof of Theorem 6.1. We first find a discontinuous functionϕ2(z) satisfying
(6.1) almost everywhere such that the distribution |∇ϕ2| is a Carleson measure.
This function will only be constructed in the unit square Q0 = {0 ≤ x ≤ 1, 0 <

y ≤ 1}. A partition of unity can be used to obtain a similar function on the
upper half plane. At the end we mollify the latter function into a C∞ function
satisfying (6.1) and (6.2).

Choose δ = 2−N so that we have

ε

8
< cδ log

1

δ
<

ε

4

in (6.4). For k = 1, 2, . . . , consider the 2Nk dyadic squares Qk of
the form Qk = { j2−Nk ≤ x ≤ ( j + 1)2−Nk, 0 < y ≤ 2−Nk}. Set S(Qk) =
Qk

∖ ⋃
Qk+1 = Qk ∩ {y > 2−N 	(Qk)}, and let Ik = Q∗

k be the vertical pro-
jection of Qk . Write

aQk (u) = 1

|Ik |
∫

Ik

u(x + i2−N |Ik |)dx

for the average of u(z) over the bottom edge of S(Qk). By Lemma 6.3 and by
the choice of N,

|aQk (u) − uIk | ≤ (ε/4)‖u‖∞(6.5)

holds for every harmonic function u(z).
We say S(Qk) is a blue rectangle if

sup
S(Qk )

|u(z) − u(w)| ≤ ε/4.(6.6)

A rectangle S(Qk) on which (6.6) fails is called a red rectangle. There are two
steps in the proof. In step I we approximate u(z) on the blue rectangles by a
piecewise constant function. In step II we correct the approximation on the red
rectangles.

We assume that ‖u‖∞ = 1 and that ε < 1.
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Step I: The zero generation G0 consists of the unit square Q0. The first
generation G1 = G1(Q0) consists of the maximal Qk ⊂ Q0 for which

|uIk − uI0
| ≥ ε/4.(6.7)

When Q j is in the first generation, G1(Q j ) is defined in the same manner.
The second generation G2 = G2(Q0) is

⋃{G1(Q j ) : Q j ∈ G1}, and the later
generations G3, G4, . . . are defined inductively. Except in that we are using
ε/4 instead of ε, the generations of squares here correspond naturally to the
generations of intervals Ik defined before Lemma 6.4. For each generation
square Q j we form the region

R (Q j ) = Q j
∖ ⋃

G1(Q j )

Qk .

Then by (6.7), R (Q j ) is a union of rectangles S(Qn) ⊂ Q j such that |uIn −
uI j | < ε/4. By (6.5) this means that

|aQn (u) − aQ j (u)| < 3ε/4,(6.8)

when S(Qn) ⊂ R (Q j ). Each S(Qn) is contained in a unique R (Q j ). When
two generation squares Q j and Qk are distinct, their regionsR (Q j ) andR (Qk)
have disjoint interiors. Relative to the open upper half plane, ∂R (Q j ) consists
of horizontal and vertical segments. The intersections of these segments from
one ∂R (Q j ) with any square Q have lengths summing to no more than 6	(Q).
See Figure VIII.6.

Figure VIII.6. The squares Qk if N = 3. The rectangle S(Q0) is blue. On the left a red rectangle
S(Q1) has been lightly shaded to indicate that supS(Q1) |u(z) − u(w)| > ε/4. The squares in the
first generation G1(Q0) are darkly shaded. For a point in the unshaded region, |u(z) − aQ0

(u)| <

ε. The region R (Q0) is the union of the unshaded region and the red rectangle.

For each generation square Q j , including the unit square Q0, define ϕ1(z) =
aQ j (u) on the interior R 0(Q j ) of R (Q j ). Thus

ϕ1(z) =
∞∑

p=0

∑

Q j∈G p

aQ j (u)χR 0(Q j )(z).

The set
⋃

∂R (Q j ), on which ϕ1 has not been defined, has area zero and can
be ignored because for now we are only trying to find ϕ(z) with |ϕ − u| < ε

almost everywhere.
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Suppose S(Qn) is a blue rectangle. Then by (6.6),

sup
S(Qn )

|u(z) − aQn (u)| ≤ ε/4 .

There is a unique generation square Q j such that S(Qn) ⊂ R (Q j ), and by
(6.8), |aQn (u) − aQ j (u)| < 3ε/4, so that

|ϕ1(z) − u(z)| < ε(6.9)

on S(Qn) ∩ R 0(Q j ). Therefore (6.9) holds almost everywhere on each blue
rectangle.

We are interested in |∇ϕ1| only as a distribution on the upper half plane,
where

∇ϕ1 =
(

∂ϕ1

∂x
,
∂ϕ1

∂y

)

=
∞∑

p=0

∑

Q j ∈G p

aQ j (u)

(
∂χR 0(Q j )

∂x
,
∂χR 0(Q j )

∂y

)

.

As a distribution on {y > 0}, ∂χR 0(Q j )/∂y is the measure −dx along the
top edge of Q j , plus the sum of the measures dx along the other horizontal
segments in {y > 0} ∩ ∂R (Q j ). Similarly, ∂χR 0(Q j )/∂x is a signed sum of the
measures dy on the vertical segments in ∂R (Q j ). Hence |∇χR 0(Q j )| is the arc
length measure on � j = {y > 0} ∩ ∂R (Q j ). Since |aQ j (u)| ≤ ‖u‖∞ = 1,

|∇ϕ1| ≤
∞∑

p=0

∑

Q j ∈G p

|∇χR (Q j )|

and
∫

Q
|∇ϕ1| ≤

∑
length (Q ∩ � j ),(6.10)

the sum being taken over all generation squares Q j .
We claim that

∑
length(Q ∩ � j ) ≤ Cε−2	(Q)(6.11)

for every square Q resting on y = 0. With (6.10), that proves ∇ϕ1 is a Car-
leson measure. In proving (6.11) we can assume that Q is a dyadic square
Q = { j2−n ≤ x ≤ ( j + 1)2−n, 0 < y ≤ 2−n}. Consider first those Q j such
that Q ∩ � j = Q ∩ ∂R (Q j ) ∩ {y > 0} �= ∅, but such that Q j �⊂ Q. If, in this
case, 	(Q j ) ≤ 	(Q), then Q ∩ � j is a segment along one vertical edge of
Q. These segments are pairwise disjoint, so that these Q j contribute at most
2	(Q) to the sum (6.11). There can be at most two squares Q j such that
	(Q j ) > 	(Q) and such that Q ∩ � j �= ∅. For each of these Q j we have length
(Q ∩ � j ) ≤ 6	(Q), so these squares contribute no more than 12	(Q) in (6.11).
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Now consider the generation squares Q j such that Q j ⊂ Q. By Lemma 6.4,

∑

Q j ⊂Q

length(Q ∩ � j ) ≤ 6
∑

Q j ⊂Q

	(Q j ) ≤ 6	(Q) + 16

ε2
	(Q).

Since ε < 1, we have inequality (6.11) and |∇ϕ1| is a Carleson measure.

Step II: We have found a function ϕ1(z) such that |∇ϕ1| is a Carleson measure,
such that ϕ1(z) is constant on the interior of each rectangle S(Qk) and such that
|ϕ1 − u| < ε almost everywhere on the blue rectangles S(Qk). Now we approx-
imate u(z) on the red rectangles, which are the S(Qk) = {x ∈ Ik, 2−N |Ik | <

y ≤ |Ik |} such that

sup
S(Qk )

|u(z) − u(w)| > ε/4.

Write

R =
⋃

red

{S(Qk)}

for the union of the red rectangles.
Let S(Qk) be a red rectangle and take z1, z2 ∈ S(Qk) such that |u(z1) −

u(z2)| > ε/4. At some point z0 on the segment joining z1 to z2 we have

|z1 − z2||∇u(z0)| > ε/4.

Since |z1 − z2| <
√

2	(Qk) < 2N+1 Im z0 = 2N+1 y0, this gives

2N+3 y0|∇u(z0)| > ε,

so that by the subharmonicity of |∇u|2,
∫∫

|z−z0|<y0/2

y|∇u|2dx dy ≥ 1

2
y0

∫∫

|z−z0|<y0/2

|∇u|2dx dy

≥ cε22−2N y0.

Letting S̃(Qk) = ⋃
z0∈S(Qk ){z : |z − z0| < Im z0/2}, we obtain

∫∫

S̃(Qk )

y|∇u|2dx dy ≥ cε22−3N 	(Qk) .(6.12)

No point lies in more than four regions S̃(Qk). Because y|∇u|2 is a Carleson
measure, (6.12) then yields

∑
{	(Qk): Qk ⊂ Q, S(Qk) red} ≤ cε−223N 	(Q)(6.13)

for every square Q. In particular, the arc length ∂R is a Carleson measure with
constant cε−223N .
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On the other hand, the inequality y|∇u| ≤ c yields
∫∫

S(Qk )

|∇u|dx dy ≤ c
∫∫

S(Qk )

dx dy

y
= cN	(Qk)(6.14)

for any rectangle S(Qk). When S(Qk) is red, (6.12) and (6.14) give
∫∫

S(Qk )

|∇u|dx dy ≤ cNε−223N
∫∫

S̃(Qk )

y|∇u|2dx dy,(6.15)

so that |∇u(z)|χR (z)dx dy is a Carleson measure with constant cNε−223N .
Now define

ϕ2(z) =
{

ϕ1(z), z �∈ R ,

u(z), z ∈ R .

Then |ϕ2(z) − u(z)| < ε almost everywhere on H . As a distribution

∇ϕ2 = χQ0\R ∇ϕ1 + χR ∇u + J,

where the remainder term J accounts for the jumps in ϕ2(z) as z crosses ∂R .
Since |ϕ2| < 1 + ε, J is a measure and |J | is dominated by 1 + ε times arc
length on ∂R. Thus by (6.13), |J | is a Carleson measure with constant C23N ε−2.
By (6.15), χR |∇u|dx dy is also a Carleson measure, with constant C N23N ε−2.
In the discussion of step I we showed |∇ϕ1| is a Carleson measure with constant
Cε−2. The integer N was chosen so that N2−N ∼ ε and the worst constant in
the three estimates comes from χR |∇u|dx dy. We obtain

∫

Q
|∇ϕ2|dx dy ≤ Cε−6	(Q)(6.16)

for every square Q.
We have built a function ϕ2 on the unit square Q0 such that |∇ϕ2| satisfies

(6.16) and such that |ϕ2 − u| < ε almost everywhere on Q0. Using a partition
of unity, it is now easy to get a function ϕ3 on H such that |ϕ3 − u| < ε almost
everywhere onH and such that |∇ϕ3| satisfies (6.16). A C∞ function satisfying
(6.1) and (6.2) can now be obtained by mollifying ϕ3. Let h(z) ∈ C∞(�2) be
such that h(z) ≥ 0,

∫
h(z)dx dy = 1 and h(z) = 0 if |z| ≥ 1. Assume also

that h(z) is radial, h(z) = h(|z|). For δ > 0, set hδ(z) = (1/δ2)h(z/δ). Then
ϕ3 ∗ hδ is C∞. If δ < Im z, then |ϕ3 ∗ hδ(z) − u(z)| < ε, because u ∗ hδ(z) =
u(z) since u is harmonic and hδ is radial. To keep δ < Im z, partition {y > 0}
into strips Tn = {2−n ≤ y ≤ 2−n+1} and set T̃n = Tn ∪ Tn+1 ∪ Tn−1. Choose
gn = gn(y) ∈ C∞ such that gn is supported on T̃n , such that 0 ≤ gn ≤ 1 and
|∇gn| = |∂gn/∂y| ≤ c2n , and such that

∑∞
−∞ gn = 1 on {y > 0}.

ϕ(z) =
∞∑

−∞
gn(y)(ϕ3 ∗ h2−n−2)(z)
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is C∞ and |ϕ(z) − u(z)| < ε. For z ∈ T̃n, ϕ3 ∗ h2−n−2(z) = ϕ3(z) if

dist(z, ∂R ∪
⋃

� j ) ≥ 2−n−2

because thenϕ3 is harmonic on |w − z| < 2−n−2. Thus we only have to estimate
|∇ϕ|dx dy on

V =
∞⋃

−∞
T̃n ∩ {

z : dist(z, ∂R ∪
⋃

� j ) < 2−n−2
}
.

Fix a dyadic square Q = { j2−p ≤ x ≤ ( j + 1)2−p, 0 < y ≤ 2−p}, p an inte-
ger. Then because

∇ϕ(z) =
∞∑

−∞
(ϕ3 ∗ h2−n−2 (z))∇gn(z) +

∞∑

−∞
gn(z)(∇ϕ3 ∗ h2−n−2 )(z),

we have

∫∫

Q∩V

|∇ϕ(z)|dx dy ≤ c
∞∑

n=p−1

2n|Q ∩ V ∩ T̃n|

+
∞∑

n=p−1

∫

Q∩T̃n

|∇ϕ3| ∗ h2−n−2 (z) dx dy.

Since |Q ∩ V ∩ T̃n| ≤ c2−n length (Q ∩ T̃n ∩ (∂R ∪ ⋃
� j )), the first sum is

bounded by cε−6	(Q). The second sum does not exceed

∞∑

n=p−1

∫

Wn

|∇ϕ3|,

where Wn = {z : dist(z, Q ∩ T̃n) ≤ 2−n−2}. These sets Wn are locally finite,
no point lies in more than five Wn . The union

⋃
n≥p−1 Wn is contained in a

square 16 times as large as Q. Hence

∞∑

n=p−1

∫

Wn

|∇ϕ| ≤ Cε−62−p.

Since 	(Q) = 2−p, we see that ϕ(z) satisfies (6.2). That completes the proof
of the theorem.
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7. A Constructive Solution of ∂b/∂z̄ = μ

To prove the corona theorem we used a duality argument to get the crucial
estimate

‖b‖∞ ≤ C sup
S

1

	(S)

∫

S
|G|dx dy(7.1)

for some solution of the equation

∂b/∂ z̄ = G(z), |z| < 1.

Recently Peter Jones found a direct way to obtain (7.1). His method simulta-
neously yields a constructive proof of the basic decomposition

ϕ = u + Hv, u, v ∈ L∞,(7.2)

of a BMO function. The construction is quite explicit and it should have further
applications.

Let μ be a Carleson measure on the upper half plane. Assume μ is positive
and normalized, so that

N (μ) = sup
Q

μ(Q)/	(Q) ≤ 1.

Jones solved

∂b/∂ z̄ = μ, Im z > 0,(7.3)

with |b(t)| ≤ C almost everywhere on �, by exploiting the relation between
Carleson measures and interpolating sequences. First consider a very special
case.

Case I: μ = ∑
α j y jδz j , where {z j } is a finite sequence of points such that

∏

j ; j �=k

∣
∣
∣
∣
zk − z j

zk − z̄ j

∣
∣
∣
∣ ≥ δ > 0(7.4)

with δ a fixed constant, and where 0 ≤ α j ≤ 1. Let B1(z) be the Blaschke
product with zeros {z j }. By Green’s theorem the distribution (∂/∂ z̄)(1/B1(z))
equals

∑

j

π

B ′
1(z j )

δz j =
∑

j

β j y jδz j ,

where 1 ≤ |β j | ≤ 1/δ. By Earl’s proof of the interpolation theorem (Theorem
5.1 of Chapter VII) there is a second Blaschke product B2(z) with zeros ζ j

satisfying

ρ(z j , ζ j ) ≤ δ/3
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such that

K δ−3 B2(z j ) = α j/β j ,

where K is an absolute constant. The rational function

b(z) = K δ−3(B2(z)/B1(z))

solves (7.3) and |b(t)| ≤ K δ−3 on �.

Case II: Again μ is a positive discrete measure with finite support, μ =∑
α j y jδz j , but N (μ) ≤ 1 and the coefficients α j are rational, α j = k j/N . The

main difference between Cases II and I is that here the constant δ in (7.4) may
be very small. Since N (μ) ≤ 1, we have 1 ≤ k j ≤ N . Relabeling the points
so that z j occurs with multiplicity k j , we have

μ = 1

N

∑
y jδz j .

The top half of any square Q resting on {y = 0} contains at most 2N points
z j , counting multiplicities, because N (μ) ≤ 1. We are going to partition {z j }
into 4N interpolating sequences having uniformly bounded constants. Write

Sn = {z j : 2−n−1 < y j ≤ 2−n}
and order the z j ∈ Sn according to increasing real parts Sn = {xk,n + iyk,n}
with

xk−1,n ≤ xk,n ≤ xk+1,n.

Split {z j } into 2N subsequences Y1, Y2, . . . , Y2N , evenly distributing the points
in each Sn . That is, put z j = xk,n + iyk,n in Yp if and only if k ≡ p mod(2N ).
Fix a dyadic square Q and let Mn(Q) be the number of points z j in Sn ∩ Q.
The subsequences have been chosen so that each set Yp ∩ Sn ∩ Q contains at
most

1 + Mn(Q)/2N

points z j . Consequently

∑

Yp∩Q

y j ≤
∑

2−n≤	(Q)

(

1 + Mn(Q)

2N

)

2−n

≤
∑

2−n≤	(Q)

2−n + 1

2N

∑

z j ∈Q

2y j

≤ 2	(Q) + μ(Q) ≤ 3	(Q).

Also, the points in Yp ∩ ⋃
n even Sn are very well separated. Two points from

one of these subsequences satisfy

|z j − zk | ≥ y j/2.
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Thus each Yp is the union of two interpolating sequences having large constants
δ in (7.4). By the very special case treated above, we have a rational function
bp(z) such that

∂bp

∂ z̄
=

∑

Yp

y jδz j

and |bp(t)| ≤ C ′, t ∈ �. Then

b(z) = 1

N

2N∑

p=1

bp(z)

is a solution of (7.3) and

|b(t)| ≤ C, t ∈ �,

with C independent of N.

Case III: Now let μ be any positive measure on H such that N (μ) ≤ 1.
There is a sequence {μn} of measures of the type treated in Case II such that

∫
ϕ dμn →

∫
ϕ dμ, ϕ ∈ C∞

0 (H ),

and such that
∫

| f |dμn →
∫

| f |dμ, f ∈ H 1.

(First restrict μ to a compact subset ofH . Then partitionH into hyperbolically
small squares and concentrate the mass of each square at its center.) Let bn(z) be
the solution of ∂bn/∂ z̄ = μn obtained in Case II. Then {bn(t)} converges weak-
star to b(t) ∈ L∞ and ‖b‖∞ ≤ C . Moreover, {bn(z)} converges to a distribution
solution of (7.3) on the upper half plane. For applications this distribution must
be reconciled with its boundary function b(t), but that is not a serious difficulty.
To avoid unimportant technicalities, let us move to the unit disc. Then bn(z) is
a rational function with no poles on ∂D, and by residues,

1

2π i

∫

|z|=1

f (z)bn(z)dz =
∫

D
f (z)dμn(z), f ∈ H 1.

Consequently we have

1

2π i

∫

|z|=1

f (z)b(z)dz =
∫

D
f (z)dμ(z), f ∈ H 1.(7.5)

Now (7.5) is an interpretation of ∂b/∂ z̄ = μ sufficient for our applications.
�

In the corona problem we had dμ = (1/π )G dx dy, with G ∈ C∞(D̄),
and by (1.2) we had a function F ∈ C(D̄) ∩ C∞(D), with ∂F/∂ z̄ = G(z).
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Then by Green’s theorem

1

2π i

∫

|z|=1

f (z)F(z)dz = 1

π

∫∫

D

f (z)G(z)dx dy.

By (7.5) this means h(eiθ ) = F(eiθ ) − b(eiθ ) ∈ H∞, and so

b(z) = F(z) − h(z)

is a smooth solution bounded on the disc that satisfies |b(eiθ )| ≤ C almost
everywhere. If we put such functions b(z) into (2.7) we obtain a proof of the
corona theorem without recourse to duality.

Jones’s approach is even more transparent in the notation of distribution
derivatives. Then our differential equation is

∂b/∂ z̄ = μ,

where μ can be taken absolutely continuous to arc length on a contour � of the
type constructed in Section 4 or 5. On � arc length is a Carleson measure and
the density defining μ is bounded above and below. In this case the interpolating
Blaschke products are easy to visualize; they resemble the Blaschke product
constructed in Section 4. The solution b(z) can be recognized as an average of
interpolating Blaschke products. (See the example at the end of this section.)

To prove the decomposition (7.2) let ϕ be a real function in BMO(T ), ‖ϕ‖∗ ≤
1. By Exercise 13 of Chapter VI, there exist ψ ∈ L∞, ‖ψ‖∞ ≤ A, and F(z) ∈
C∞(D) and g ∈ L1 such that

|F(reiθ )| ≤ g(eiθ ),

such that

ϕ(θ ) = ψ(θ ) + lim
r→1

F(reiθ ) = ψ(θ ) + F(θ ),

and such that |∇F |dx dy is a Carleson measure with N (|∇F |dx dy) ≤ A. Let
b(z) be the solution of

∂b

∂ z̄
= 1

π

∂F

∂ z̄
dx dy

given by Jones’s procedure. Then |b(θ )| ≤ C A and

ϕ = ψ + b + (F − b)

almost everywhere on T. Arguing formally for a moment, we have (F − b)∼ =
−i(F − b), because F − b is analytic, and so

ϕ = ψ + b + i F̃ − i b̃.

Taking real parts, we obtain

ϕ = (ψ + Re b) + (Im b)∼,
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which is (7.2). To make this reasoning precise, notice that by (7.5)

1

2π i

∫
znb(z)dz = 1

π

∫∫

D

zn ∂F

∂ z̄
dx dy.

On the other hand, since |F(reiθ )| ≤ g(θ ) ∈ L1, dominated convergence gives

1

2π i

∫
zn F(z)dz = 1

π

∫∫

D

zn ∂F

∂ z̄
dx dy.

Consequently F(eiθ ) − b(eiθ ) ∈ H 1, so that we really do have

(F − b)∼ = −i(F − b).

An attractive aspect of this approach to (7.2) is that the Varopoulos construc-
tion of F(z) is very explicit. The method in this section also gives a constructive
way of finding g ∈ H∞ such that

‖ f − g‖∞ ≤ C dist ( f, H∞)

when f ∈ L∞.
For an example, write x ∈ [0, 1] in base 5, x = ∑

αk5−k , and let ϕ(x) =∑
χEk (x), Ek = {x : αk = 1 or αk = 3}. Then ϕ ∈ BMO (see Figure VIII.7).

Figure VIII.7. The function ϕ(x).

If F(x, y) is constructed with pentadic squares instead of dyadic squares, then

F(x, y) =
∑

k

χEk (x)χ(0,5−k )(y).

Then ϕ(x) = limy→0 F(x, y) and |∇F | is bounded by arc length on the curves
in H pictured in Figure VIII.8. Cut these curves into segments of bounded hy-
perbolic length, uniformly parametrized by t, 0 < t < 1. For each t, let B1(t, z)
be the Blaschke product with one zero on each segment at position t. The zeros
of B1(t, z), form an interpolating sequence, with constant δ independent of t.
They are marked by crosses in Figure VIII.8, for t = 0.8, say. The bounded
solution of ∂b/∂ z̄ = ∂F/∂ z̄ is

b(x) = c
∫ 1

0

B2(t, x)

B1(t, x)
dt,
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Figure VIII.8. The zeros of B1(t, z) are marked by crosses; the zeros of B2(t, z) are marked by
dots.

where B2(t, x) is another interpolating Blaschke product. Its zeros are marked
with dots in the figure. The decomposition (7.2) is

ϕ(x) = Re b(x) + (Im b(x))∼.

Appendix: The Koszul Complex

The Koszul complex is a general algebraic mechanism that, in the case of
the corona problem, leads from smooth corona solutions ϕ1, . . . , ϕn to the
appropriate differential equations (2.9). In our setting the complex works as
follows. Let A be the ring of all analytic functions on D and let E be the ring
of all C∞ functions on D. Then A is a subring of E. Also let E(0,1) be the E
module of (0, 1) forms g dz̄, g ∈ E. For the case we are considering E(0,1)

is isomorphic to E, but it will be convenient to distinguish between functions
h(z) and differential forms g dz̄ of type (0, 1). Define

∂̄ : E → E(0,1)

by ∂̄h = (∂h/∂z̄)dz̄. Then A ⊂ E is the kernel of ∂̄.
Let R denote either A, or E, or E(0,1). Let �0(R ) = R and let �1(R ) be

the module of all expressions of the form

n∑

j=1

h j e j , h j ∈ R ,

where the e j are place markers. Thus �1(R ) is the direct sum of n copies of
R . Also let �2(R ) be the module of all expressions of the form

n∑

j,k=1

h j,ke j ∧ ek, h j,k ∈ R ,
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where we require that

e j ∧ ek = −ek ∧ e j ,(A.1)

a familiar condition in alternating linear algebra. Thus �2(R ) has dimension
n(n − 1)/2 over R . We define

∂̄ : �p(E ) → �p(E(0,1)), p = 0, 1, 2,

by differentiating the coefficients of the place markers e j or e j ∧ ek . That is,

∂̄
(∑

h j e j

)
=

∑
(∂̄h j )e j and ∂̄

(∑
h j,ke j ∧ ek

)
=

∑
∂̄h j,ke j ∧ ek .

Then �p(A) ⊂ �p(E ) is the kernel of ∂̄. Using (1.2), and a partition of unity if
our functions are not bounded, we see that for each p = 0, 1, 2 the ∂̄ mapping
is surjective. This means the sequence

0 → �p(A) → �p(E )
∂̄→ �p(E(0,1)) → 0

is exact; at each step the kernel of the outgoing map is the range of the incoming
map. Let τ ∈ �p(E ), p = 0, 1 and letω ∈ �q (R ), q = 0, 1, whereR is either
of the Emodules E or E(0,1). The wedge product τ ∧ ω ∈ �p+q (R ) is defined
by setting

f ∧ g = f g,

f ∧ ge j = f e j ∧ g = f ge j ,

f e j ∧ gek = f ge j ∧ ek,

and by requiring that τ ∧ ω be E-bilinear; that is, τ ∧ ω is to be E-linear in
each variable.

Now let f1, f2, . . . , fn be corona data. For p = 1, 2, define

J : �p(R ) → �p−1(R )

by

J (he j1 ∧ e j2 ∧ · · · ∧ e jp ) =
p∑

k=1

(−1)k+1 f jk he j1 ∧ · · · ∧ ê jk ∧ · · · ∧ e jp ,

where the circumflex over a marker e jk indicates that e jk is deleted. The mapping
J is then defined on the full module �p(R ) by requiring that J be R -linear.
The factors (−1)k+1 make the definition of J consistent with the alternating
condition (A.1). In particular

J

(
n∑

j=1

g j e j

)

=
n∑

j=1

f j g j .
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A simple calculation shows that J 2 = 0, and we have another sequence

�2(R )
J→ �1(R )

J→ R → 0.

Now let ϕ1, ϕ2, . . . , ϕn be any set of C∞ corona solutions. Then ϕ =∑
ϕ j e j ∈ �1(E ) and J (ϕ) = ∑

f jϕ j = 1. If λ ∈ �p(R ) and if J (λ) = 0,
then

J (ϕ ∧ λ) = J (ϕ) ∧ λ − ϕ ∧ J (λ) = λ.

Consequently the J-sequence is exact when R = E or R = E(0,1). Finally,
since the f j are analytic,

J ∂̄ = ∂̄J,

and we have the commutative diagram

In the diagram each column is exact and, except for the A-row, each row is
exact. We are seeking g = ∑

g j e j ∈ �1(A) such that J (g) = ∑
f j g j = 1.

We do have ϕ = ∑
ϕ j e j ∈ �1(E ) with J (ϕ) = 1, and a diagram chase will

now yield g and the differential equations (2.9). Since J ∂̄ϕ = ∂̄Jϕ = 0, ∂̄ϕ =
Jω for ω = ϕ ∧ ∂̄ϕ ∈ �2(E(0,1)). There is b = ∑

b j,ke j ∧ ek ∈ �2(E ) such
that ∂̄b = ω. This is precisely the system (2.9). Then ∂̄Jb = J ∂̄b = Jω =
∂̄ϕ, so that ∂̄(ϕ − Jb) = 0 and g = ϕ − Jb ∈ �1(A). Since J 2 = 0, we also
have

J (g) = J (ϕ − Jb) = 1.

The components of this vector g ∈ �1(A) are exactly the corona solutions
given by (2.7) and (2.8).
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For the corona problem on a domain in �n, n > 1, the Koszul complex
has longer rows and columns, but it does reduce the problem to a system of
differential equations.

Notes

Theorem 1.1 is in Carleson [1962a], while Theorem 1.2 is a recent idea
of Wolff’s [1980]. Theorem 2.1 is due to Carleson [1962a], but the line of
reasoning in Section 2 comes from Wolff [1980].

The connection between the corona theorem and differential equations and
the Koszul complex was noticed by Hörmander [1967a] (see also Carleson
[1970]), but the basic difficulties have remained the same as they were in
Carleson [1962a].

Theorem 3.2 is from Carleson’s exposition [1970]. The theorems in Section
3 can also be derived from a theorem on harmonic measures known as Hall’s
lemma. Let E be a compact subset of the upper half plane such that � = H \E
is connected, and let ω(z), z ∈ �, be the harmonic measure of E. Hall’s lemma
is the estimate

ω(z) ≥ 2

3

1

π

∫

Ê

y

(|x | + t)2 + y2
dt,

where Ê = {|z| : z ∈ E} is the angular projection of E onto the positive real
axis and where the Poisson kernel represents the image−|x | + iy of z = x + iy
under a folding. For the proof see Duren [1970] or Hall [1937]. By means of
elementary conformal mappings this inequality gives bounds on the lengths
of vertical projections. Hall’s lemma has certain advantages because it gives
simple relations between the numbers α and β of Theorems 3.1 and 3.2 (see
Exercise 7). On the other hand, the proof in the text illustrates the power of
maximal functions. Incidentally, the best constant to replace 2

3
in Hall’s lemma

is not known (Hayman [1974]).
Theorem 4.1 is due to Marshall [1976b]. Ziskind [1976] had obtained a

slightly weaker result in the course of proving Theorem 2.2. The construction of
the contour � originates in Carleson’s [1962a] fundamental paper. If � is taken
to be a level set, |u(z)| = v will not work and it is necessary to approximate
the level sets by shorter curves (see Exercise 8 below).

Theorem 6.1 is motivated by the work of Varopoulos [1977a, b]. The phi-
losophy that harmonic functions mimic very simple martingales is delightfully
expressed in Fefferman’s lecture [1974]. Dahlberg [1980] has improved upon
Theorem 6.1 substantially.

The results in Section 7 come from Jones [1980b]. The extension F(z), so
effective in the proof of (7.2), is due to Varopoulos [1977a]. Finding a construc-
tive proof of the euclidean space analog of (7.2) is an important open problem in
real analysis. As is often the case with higher-dimensional generalizations, the
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real question here is how to eliminate Blaschke products from the construction.
See page vii.

Exercises and Further Results

1. Let G(z) be continuous on the open unit disc. Suppose that on |z| <

1 − 1/n there is bn(z) ∈ C1 such that

∂bn/∂ z̄ = G

and |bn| ≤ K , with K independent of n. Then by a normal families argument
there is b(z) of class C1 such that ∂b/∂z̄ = G on |z| < 1.

2. (a) If G is a bounded function of compact support in the plane and if

F(z) = 1

2π i

∫∫
G(ζ )

ζ − z
dζ ∧ d ζ̄ ,

then F is bounded and continuous and ∂F/∂ z̄ = G in the distribution sense.
(b) Let f (z) be a bounded analytic function on an open set W in the complex

plane and let λ ∈ ∂W . Declare f = 0 on �\W . Let χ (z) ∈ C∞
0 have support

{|z − λ| < ε}. Suppose 0 ≤ χ ≤ 1, χ = 1 on {|z − λ| < ε/2}, and |∂χ/∂ z̄| ≤
c/ε. Then

F(z) = −1

2π i

∫∫
f (ζ ) − f (z)

ζ − z

∂χ

∂ζ̄
dζ ∧ d ζ̄ ,

has the following properties:

(i) ∂F/∂z̄ = χ∂ f/∂ z̄, as distributions,
(ii) F(z) is analytic on W ∪ {|z − λ| > ε},

(iii) |F(z)| ≤ C sup {| f (ζ )| : |ζ − λ| < ε, and
(iv) F(z) − f (z) is continuous on {|z − λ| < ε/2}.

(c) Let � be an open set in the plane and let f1, f2, . . ., fn ∈ H∞(�), the
bounded analytic functions on �. If there is a finite open cover {Uk}N

k=1 of

� and if there are g(k)
j ∈ H∞(� ∩ Uk) such that

∑
j f j g

(k)
j = 1 on � ∩ Uk ,

then there are g1, g2, . . . , gn ∈ H∞(�) such that
∑

f j g j = 1. Let χk ∈
C∞

0 (Uk),
∑

χk = 1 on �. Perturb the C∞ solutions ϕ j = ∑
k χk g(k)

j to get
analytic solutions g j . Use part (a) to solve the Cauchy–Riemann equations
(2.9).

(d) From the assumption that the disc is dense in M it follows that there ex-
ists a constant C(n, δ) such that every corona problem (2.1), (2.2) in the disc has
solutions satisfying ‖g j‖ ≤ C(n, δ). For the proof it is enough to establish the
corona theorem for the open set W = ⋃∞

k=1{−1 < x < 1, 2−k−1 < y < 2−k},
which is conformally equivalent to an infinite disjoint union of discs. So
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let f1, f2, . . . , fn ∈ H∞(W ) satisfy ‖ f ‖∞ ≤ 1, max j | f j (z)| ≥ δ, z ∈ W .
By the localization theorem in part (c) we only have to find solutions
on W ∩ {|z − λ| < η}, for some η > 0, for −1 ≤ λ ≤ 1. By part (b) there
is a bounded simply connected domain �λ containing W ∩ {|z − λ| < ε}
and there are F1, F2, . . . , Fn ∈ H∞(�λ) such that limz→λ Fj (z) − f j (z) = 0.
On �λ, F0(z) = z − λ and F1, . . . , Fn are corona data. From the solutions
G0, G1, . . . , Gn of

∑
Fj G j = 1, one can obtain solutions to the original prob-

lem on W ∩ {|z − λ| < η}.
�(e) There are constants C(n, δ, m) such that every corona problem (2.1),

(2.2) on every plane domain of connectivity m has solutions with ‖g j‖ ≤
C(n, δ, m).

Parts (c)–(e) are from Gamelin [1970], who also observed that the corona
theorem will hold for all plane domains if and only if the constants in (e) have
bounds not depending on m; see Behrens [1971] as well. Part (e) above is not
true for general uniform algebras (see Rosay [1968]).

3. Let f1, f2, . . . , fn ∈ H∞, ‖ f j‖ ≤ 1, and let g ∈ H∞ satisfy

|g(z)| ≤ max
j

| f j (z)|.

It does not follow that g is in the ideal generated by f1, f2, . . . , fn . If B1 and B2

are two Blaschke products with distinct zeros such that inf(|B1(z)| + |B2(z)|) =
0, then |B1 B2| ≤ max(|B1|2, |B2|2) but B1, B2 is not of the form g1 B2

1 + g2 B2
2 .

This example is due to Rao [1967].

4. Suppose g, f1, and f2 are H∞ functions, ‖g‖∞ ≤ 1, ‖ f j‖∞ ≤ 1, and
suppose

|g(z)| ≤ max(| f1(z)|, | f2(z)|).

Then g2 = g1 f1 + g2 f2 with g j ∈ H∞ if and only if

∂b

∂ z̄
= g2( f̄1 f̄ ′

2 − f̄ ′
1 f̄2)

(| f1|2 + | f2|2)2

has a solution bounded on ∂D.

5. Let f1, f2, . . . , fn be corona data. Then from (2.5),

ϕ j
∂ϕk

∂ z̄
= f̄ j

ψ3

∑

l �= j

fl( f̄l f̄ ′
k − f̄k f̄ ′

k),

where ψ = ∑ | f |2, and the analyticity of fl can be exploited to solve

∂b

∂ z̄
= ϕ j

∂ϕk

∂ z̄
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boundedly without recourse to Carleson measures. By duality and Green’s
theorem, as in the proof of Theorem 1.2, it is enough to bound

J1 =
∣
∣
∣
∣
∣
∣

∫∫

D

k ′(z)ϕ j (z)
∂ϕk

∂ z̄
log

1

|z|dx dy

∣
∣
∣
∣
∣
∣

and

J2 =
∣
∣
∣
∣
∣
∣

∫∫

D

k(z)
∂

∂z

(

ϕ j
∂ϕk

∂ z̄

)

log
1

|z|dx dy

∣
∣
∣
∣
∣
∣
,

where k ∈ H 1
0 , ‖k‖1 = 1. Writing k = (k1 + k2)/2 with k j zero free, we can

replace k(z) by g2(z) where g ∈ H 2, ‖g‖2
2 ≤ 2. Then J1 is dominated by a sum

of 2(n − 1) terms of the form

2δ−3

∫
|gg′ f̄ ′

l | log
1

|z|dx dy ≤ 2δ−3

(∫∫
|g′|2 log

1

|z|dx dy

)1/2

×
(∫∫

|g f ′
l |2 log

1

|z|dx dy

)1/2

.

By analyticity,

g f ′
l = (g fl)

′ − g′ fl,

the second factor is bounded by

(∫∫
|(g fl)

′|2 log
1

|z|dx dy

)1/2

+
(∫∫

|g′|2 log
1

|z|dx dy

)1/2

,

and J1 ≤ 2δ−3‖g‖2(‖g fl‖2 + ‖g‖2) ≤ 8δ−3. The form of (∂/∂z)(ϕ j∂ϕk/∂ z̄)
computed in the proof of Theorem 2.1 shows that J2 is dominated by a sum of
cn2 terms of the form

δ−4

∫∫
|g2 f ′

q f ′
p| log

1

|z|dx dy ≤ δ−4

(∫∫
|g f ′

p|2 log
1

|z|dx dy

)1/2

×
(∫∫

|g f ′
q |2 log

1

|z|dx dy

)1/2

Twice repeating the trick from above therefore yields J2 ≤ cn2δ−4 (see
Gamelin [1981]).

6. (a) In Theorem 3.1 the vertical projection can be replaced by a nontan-
gential projection. Let E (a)

α = {t : �a(t) ∩ Eα �= ∅}, where �a(t) is the cone
{z : |x − t | < ay}, a > 0. If ‖u‖∞ ≤ 1 and if supT (Q) |u(z)| ≥ β = β(α, ε, a),

then |E (a)
α | < ε.
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(b) For nontangential projections the situation with Theorem 3.2 is a
little more delicate. Let N be a fixed positive integer and let δ > 0. Let B(z)
be the Blaschke product with zeros

{ jδ/N + iδ, −∞ < j < ∞}.

Then B(z) has a zero in each cone �1/N (t) = {z : |x − t | < y/N }, t ∈ �. So
whatever α > 0 we choose, Eα = {|B(z)| < α} meets every cone �1/N (t).
However, when N is fixed

lim
δ→0

|B(i)| = e−2π N .

Thus if β < e−2π N , the conclusion of Theorem 3.2 does not hold for cones
with angle 2 tan−1(1/N ).

(c) However, if β > 0 is fixed, there exist N = N (β, ε) and α = α(β, ε)
such that if f ∈ H∞, ‖ f ‖∞ ≤ 1 and supT (Q) | f (z)| ≥ β then

|{t : �1/N (t) ∩ Eα �= ∅}| < ε.

7. Derive the following variant of Theorem 3.2 from Hall’s lemma. Let
R be the rectangle {0 ≤ x ≤ A, 0 < y ≤ 1}, and let 0 < β < 1. If f (z) ∈
H∞, ‖ f ‖ ≤ 1, and if | f (z0)| ≥ β at some point z0 in the top half of R, then,
provided A is sufficiently large, the vertical projection of

{z ∈ R : | f (z)| ≤ β7}

has measure not exceeding 0.9A. Obtain a similar result when log | f (z)| is
replaced by any negative subharmonic function.

8. Let u(z) be the bounded harmonic function on H with boundary values

u(t) =
{+1, 2n ≤ t < 2n + 1,

−1, 2n − 1 ≤ t < 2n,

n an integer. Arc length on the set {u = 0} is not a Carleson measure because
this set contains each vertical line {x = n}. So there is an outer function whose
modulus has a large level set. Let B(z) be the Blaschke product with zeros
{n + i : −∞ < n < ∞}. On the level set |B(z)| = e−2π arc length is not a
Carleson measure. Moving these functions to the disc, one obtains level sets
of infinite length. (See Piranian and Weitsman [1978] and Belna and Piranian
[1981] for similar examples.) Finding a function whose every level set has
infinite length is considerably more difficult. (See the paper of Jones [1980a].)

9. Use Corollary 6.2 to prove that a harmonic interpolating sequence is an
H∞ interpolating sequence.
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10. Let 1/ε be a positive integer and let

u(eiθ ) =
1/ε2∏

n=1

(1 + i(10ε cos 44n
θ )).

Then |u(eiθ )| ≤ C1, with C1 independent of ε. Let Nε(θ ) denote the number
of times the harmonic extension of u(eiθ ) oscillates by ε units on the radius
reiθ , 0 < r < 1. Then

∫ 2π

0

Nε(θ )dθ ≥ c2/ε
2,

with c2 independent of ε.

11. (a) If u(z) = Py ∗ u(x) with u(x) ∈ BMO and if 0 < δ < 1
2
, then for

every interval I,
∣
∣
∣
∣uI − 1

|I |
∫

I
u(x + iδ|I |)dx

∣
∣
∣
∣ ≤ Cδ log

1

δ
‖u‖∗,

where C is independent of u(z) and I.
(b) If ‖u‖∗ ≤ 1 and if 0 < ε < 1, then there is ϕ(z) ∈ C∞(y > 0) such that

|ϕ(z) − u(z)| < ε and

∫∫

Q

|∇ϕ|dx dy ≤ C(ε)	(Q).

The proof of Theorem 6.1 can be followed except that the BMO condition
must be used to control the jumps of ϕ1 and ϕ2.

(c) Use (b) with ε = 1 to show BMO is the dual of H 1
�.

12. Let 0 < ε < 1. Suppose that whenever u(z) is a bounded harmonic func-
tion in the disc, ‖u‖∞ ≤ 1, there exists a second harmonic function ϕ(z) such
that

|ϕ(z) − u(z)| ≤ ε and

∫∫
|∇ϕ|dx dy ≤ C(ε).

Then if f ∈ L1 has mean value zero,

‖ f ‖1 ≤ C ′ sup
|z|<1

(1 − |z|)|∇ f (z)|,

where ∇ f (z) denotes the gradient of the harmonic extension of f. The lat-
ter inequality fails when f (z) = ∑

k≤N z2k . This means the function ϕ(z) in
Theorem 6.1 cannot always be a harmonic function.

13. If G(z) is continuous on the closed upper half plane and if G(z) has
Compact support, then the methods of Section 7 yield a continuous function
b(z) such that ∂b/∂ z̄ = G and ‖b‖∞ ≤ C N (|G|dx dy), where N (μ) is the
Carleson norm of a measure μ.
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14. Given f ∈ L∞ use the methods of Section 7 to construct g ∈ H∞ such
that

‖ f − g‖ ≤ C dist( f, H∞),

with the constant C not dependent on f.

15. Let B be the smallest closed subalgebra of H∞ containing the functions
z and (1 − z)i . Then D is an open subset of MB , and |(1 − z)i | is bounded
below on D but (1 − z)−i /∈ B. Thus D is not dense in MB (Dawson [1975]).



IX

Douglas Algebras

We come to the beautiful theory, due to D. Sarason, S.-Y. Chang, and D. E.
Marshall, of the uniform algebras between H∞ and L∞. The results themselves
are very pleasing esthetically, and the proofs present an interesting blend of
the concrete and the abstract. The corona construction and the BMO duality
proof from Chapter VI provide the hard techniques, but the theory of maximal
ideals holds the proof together.

The local Fatou theorem, a fundamental result on harmonic functions, is
discussed in Section 5. This theorem could actually have been treated in the
first chapter. It occurs here, somewhat misplaced, for reasons of logistics.

1. The Douglas Problem

Let A be a uniformly closed subalgebra of L∞ containing H∞. For an
example, let B be any set of inner functions in H∞ and take A = [H∞, B̄ ],
the closed algebra generated by H∞ ∪ B̄ . Because f1b̄1 + f2b̄2 = ( f1b2 +
f2b1) b̄1b̄2 for f j ∈ H∞, b j ∈ B , A is simply the norm closure of

A = { f b̄n1

1 b̄n2

2 · · · b̄nk
k : f ∈ H∞, b1, . . . , bk ∈ B }.

Algebras of the form [H∞, B̄ ] are called Douglas algebras. The simplest
example [H∞, z̄] will be analyzed in Section 2. It is a beautiful theorem that
every closed algebra between H∞ and L∞ actually is a Douglas algebra.
This was conjectured by R. G. Douglas and proved by S.-Y. Chang and D. E.
Marshall, following influential earlier work of D. Sarason.

Given a closed algebra A with H∞ ⊂ A ⊂ L∞, write

B A = {b : b ∈ H∞, b inner, b−1 ∈ A}.
(In this chapter we use the lowercase b to denote an inner function. The more
usual symbol B will be reserved for an algebra between H∞ and L∞.) Then
B A is the largest set B for which we can have A = [H∞, B̄ ], and A is a
Douglas algebra if and only if A = [H∞, B̄ A]. When A = H∞,B A is the set
of unimodular constants and Douglas’ question is trivial. When A = L∞,B A

364
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is the set of all inner functions and L∞ = [H∞, B̄ A] by the Douglas–Rudin
theorem (Theorem V.2.1). Define A−1 = { f ∈ A : f −1 ∈ A} and

U A = {u ∈ A−1 : |u| = 1 almost everywhere}.
Theorem 1.1. If A is a closed subalgebra of L∞ containing H∞, then A is
generated by H∞ and U A. That is, A = [H∞,U A].

Proof. Let f ∈ A−1. Then log | f | ∈ L∞ and there is g ∈ (H∞)−1 such that
|g| = | f | almost everywhere. Then u = g−1 f is a unimodular function invert-
ible in A such that f = gu ∈ [H∞,U A]. Since every function A is the sum of
a constant and an invertible function, the theorem is proved.

Since A ⊂ L∞, b−1 = b̄ when b ∈ B A, and so B̄ A ⊂ U A. Solving the
Douglas problem therefore amounts to showing that when U A is cut down
to B̄ A, the algebra A will still be generated as an H∞ module.

Maximal ideal spaces will play a pivotal role in the proof of the Douglas
conjecture. Recall our notations M = MH∞ for the spectrum, or maximal
ideal space, of H∞ and X = ML∞ for the spectrum of L∞, which is also the
S̆ilov boundary of H∞.

Theorem 1.2. If A is a closed subalgebra of L∞ containing H∞, then its
maximal ideal space MA can be identified with a closed subset of M which
contains X, and X is the S̆ilov boundary of A.

Proof. We can identify X with a closed subset of MA because A is a closed
subalgebra of L∞ = C(X ) and, since A ⊃ H∞, A separates the points of X.
This means X is a closed boundary for A. But since A is a logmodular subalgebra
of C(X ) (Chapter V, Section 4), X is its Šilov boundary.

The natural restriction mapping π : MA → M is the identity mapping on
X. What we need to show is that π is one-to-one. The reason for this is that
each m ∈ MH∞ has a unique representing measure on X, by Theorem V.4.2.
Consider m1, m2 ∈ MA and let μ1, μ2 be their representing measures on X
with respect to the larger algebra A. If π (m1) = π (m2), then

∫
f dμ1 =

∫
f dμ2, f ∈ H∞.

So by the uniqueness of H∞ representing measures, μ1 = μ2 and
∫

X
g dμ1 =

∫

X
g dμ2, g ∈ A.

Hence m1 = m2 and π is 1–1. Because π is continuous and MA is compact,
π is a homeomorphism of MA onto a subset of M.

For m ∈ M, we write μm for its unique representing measure on X. If m ∈
MA, then of course μm is also its unique representing measure with respect to
A. By a compactness argument, the mapping m → μm is a homeomorphism
between M and a weak-star compact set of probability measures on X. When
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x ∈ X is naturally identified with the point mass δx , this homeomorphism is
the identity on X. By duality there is an isometry from L∞ = C(X ) into C(M),
and we can identify L∞ with its image in C(M) through the definition

f (m) =
∫

f dμm, f ∈ L∞.(1.1)

When m ∈ D, (1.1) is only the Poisson integral formula in disguise. The map-
ping (1.1) is not surjective and it is not multiplicative. In fact, Theorem 1.2
says that

MA = {m ∈ M : f (m)g(m) = ( f g)(m), all f, g ∈ A}(1.2)

whenever A is an algebra between H∞ and L∞. Consequently, if A and B are
algebras such that H∞ ⊂ B ⊂ A ⊂ L∞, then MA ⊂ MB .

Theorem 1.3. Let A be a closed subalgebra of L∞ containing H∞ and let
U ⊂ U A be a set of functions in A−1, unimodular on X, such that A = [H∞,U ].
Then

MA =
⋂

u∈U
{m ∈ M : |u(m)| = 1}.

Proof. Because A ⊂ L∞, we have u−1 = ū when u ∈ U A. We also have
ū(m) = u(m) whenever u ∈ L∞ and m ∈ M, because μm is real. There-
fore, if m ∈ M and u ∈ U A, then 1 = u(m)ū(m) = |u(m)|2. Conversely, if
|u(m)| = ‖u‖ = 1, then u = u(m) on the closed support of μm , because μm is
a probability measure. Thus if m satisfies |u(m)| = 1 for all u ∈ U , then the
restriction of A = [H∞,U ] to the closed support of μm coincides with the
same restriction of H∞. That means m is multiplicative on A.

By Theorem 1.3, distinct Douglas algebras have distinct maximal ideal
spaces, because the spectrum MA determines which inner functions are in
A−1. Thus a corollary of the Chang–Marshall theorem is that every closed
algebra between H∞ and L∞ is uniquely determined by its spectrum. A sim-
ilar situation exists with Wermer’s maximality theorem: An algebra between
the disc algebra Ao and C(T ) is either the disc algebra itself or C(T ). The
choice there depends on whether or not the inner function z is invertible in
the given algebra; that is, on whether or not the maximal ideal space contains
zero. Hoffman and Singer based a proof of Wermer’s theorem on just that
distinction. In our setting their argument yields the following result.

Theorem 1.4. If A is a closed subalgebra of L∞ containing H∞, then either
A = H∞ or A ⊃ [H∞, z̄].

Proof. If z ∈ A−1, then z̄ ∈ A and [H∞, z̄] ⊂ A. If z /∈ A−1 then z lies in some
maximal ideal of A, and there is m ∈ MA with z(m) = 0. Since MA ⊂ M,
the only possible such m is evaluation at the origin. Then by the uniqueness of
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representing measures, dθ/2π is multiplicative on A and

1

2π

∫
einθ f (θ )dθ = 0, n = 1, 2, . . . ,

for all f ∈ A. Hence A ⊂ H∞.

Now there are many algebras between H∞ and L∞, but each such algebra is
determined by its invertible inner functions (by the Chang–Marshall theorem)
or equivalently, by its maximal ideal space. The Chang–Marshall proof consists
of two steps.

(i) If A is a Douglas algebra, and if B is another algebra having the same
spectrum, then B = A.

(ii) Given an algebra B, H∞ ⊂ B ⊂ L∞, there is a Douglas algebra having
the same spectrum as B.

The proof of Theorem 1.4 consists of two similar steps and, in hindsight, it
can be said that the strategy underlying the Chang–Marshall proof originates
in the Hoffman–Singer argument about maximal ideals.

There are two C∗-algebras associated with an algebra A such that H∞ ⊂
A ⊂ L∞. The first is

Q A = A ∩ Ā,

the largest self-adjoint subalgebra of A. The second is

CA = [B A, B̄ A],

the self-adjoint algebra (or C∗-algebra) generated byB A, those inner functions
invertible in A. For A = H∞, Q A = CA = �, the space of complex numbers.
For A = L∞, Q A = L∞, and by the Douglas–Rudin theorem, CA = L∞ also.
However, in general Q A and CA do not coincide. Along with solving the
Douglas problem, we want to understand the C∗-algebras Q A and CA. Let us
first turn to the simplest special case, so that we may know what to expect in
the general case.

2. H∞ + C

Let C = C(T ) denote the continuous functions on the unit circle and let
H∞ + C = { f + g : f ∈ H∞, g ∈ C}, which is a linear subspace of L∞.

Lemma 2.1. H∞ + C is uniformly closed.

Proof. Recall from Theorem IV.1.6 that when g ∈ C

dist(g, H∞) = dist(g, Ao),

where Ao is the disc algebra. If h ∈ L∞ lies in the closure of H∞ + C , there
are fn ∈ H∞ and gn ∈ C such that ‖h − ( fn + gn)‖ < 2−n. Then dist((gn −
gn+1), H∞) < 2−n+1 and there are kn ∈ Ao such that ‖(gn − gn+1) −
kn‖∞ < 2−n+1. Write K1 = 0 and Kn = K1 + ·0 · +kn−1 for n > 1. Then
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Gn = gn + Kn ∈ C and ‖Gn − Gn+1‖∞ < 2−n+1. Hence {Gn} has a uni-
form limit g ∈ C . But then fn = Fn − Kn = ( fn + gn) − Gn is in H∞ and
{Fn} converges in norm to h − g. Since H∞ is closed, h − g ∈ H∞ and
h ∈ H∞ + C .

Theorem 2.2. H∞ + C is a closed subalgebra of L∞. In fact,

H∞ + C = [H∞, z̄].

The maximal ideal space of H∞ + C is M\D, the complement of the unit disc
in M.

Proof. The set of functions

f (z) +
N∑

1

ak z̄k, f ∈ H∞,

is, by definition, dense in [H∞, z̄]. By the Weierstrass theorem, this set is
also dense in H∞ + C . Because H∞ + C is closed, that means H∞ + C =
[H∞, z̄]. Theorem 1.3 then implies that M\D is the spectrum of H∞ + C .

Consequently H∞ + C is a Douglas algebra. An inner function b(z) is in-
vertible in H∞ + C if and only if |b(m)| > 0 on M\D, which happens if and
only if b(z) is a finite Blaschke product. Hence B H∞+C is the set of finite
Blaschke products, and the corresponding self-adjoint algebra CH∞+C coin-
cides with C.

Now let us determine Q H∞+C , which is called QC, the space of quasicon-
tinuous functions. The conformal mapping f (z) of D onto {0 < x < 1, −2 <

y < sin(1/x)} is an H∞ function with continuous real part but discontinu-
ous imaginary part. Then Im f ∈ H∞ + C , and because it is real valued, Im
f ∈ QC . Thus QC �= C .

Theorem 2.3. QC = L∞∩ VMO.

Proof. If f ∈ L∞∩ VMO, then by Chapter VI, Theorem 5.2 there are φ, ψ ∈
C such that f = φ + Hψ . But then Hψ ∈ L∞ and ψ + i Hψ ∈ H∞. Thus

f = −i(ψ + i Hψ) + (ϕ + iψ) ∈ H∞ + C.

The same holds for f̄ , so that f ∈ (H∞ + C) ∩ (H∞ + C) = QC .
Conversely suppose f ∈ H∞ + C is real valued. Then

f = (u + i Hu) + (v + iw),

with u + i Hu ∈ H∞ and v + iw ∈ C . Since f is real, Hu = −w ∈ C and
u = Hw. Therefore f = v + Hw, v ∈ C, w ∈ C , and f ∈ VMO. Because
QC is spanned by the real functions in H∞ + C we conclude that QC ⊂ L∞∩
VMO.

Corollary 2.4. Let f ∈ L∞ and let f (z) be its Poisson integral. If | f (z)|
extends continuously to D̄ then f ∈ QC.
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Proof. If 1 − |z| is small enough, and if eiθ is close to z/|z|, then by hypothesis
| f (eiθ )| is close to | f (z)|. Thus

1

2π

∫
| f (eiθ ) − f (z)|2 Pz(θ )dθ = 1

2π

∫
| f (eiθ )|2 Pz(θ )dθ − | f (z)|2 < ε

because Pz(θ )dθ/2π has most of its mass near z/|z|. This means f ∈ VMO,
and so f ∈ QC by Theorem 2.3.

Corollary 2.5. Let A be a closed subalgebra of L∞ containing H∞. If
MA = M\D, then A = H∞ + C.

Proof. It is clear that H∞ + C ⊂ A because z ∈ A−1. Now if f, g ∈ A, then

d(m) = ( f g)(m) − f (m)g(m)

is continuous on M and d(m) = 0 on MA = M\D. By continuity there is
δ > 0 such that

|( f g)(z) − f (z)g(z)| < ε, 1 − |z| < δ.(2.1)

Letting f = u, g = ū, u ∈ U A, we obtain |1 − |u(z)|2| < ε for 1 − |z| < δ.
Then by Corollary 2.4, U A ⊂ H∞ + C , and by Theorem 1.1, A ⊂ H∞ +
C .

Notice how the abstract condition MA = M\D was brought into the last
proof. It was converted into the more manageable condition (2.1) that the
Poisson integral is “asymptotically multiplicative” on A. Since by the corona
theorem, (2.1) is equivalent to the hypothesis MA ⊃ M\D, we see that if
H∞ ⊂ A ⊂ L∞ and if the Poisson integral is asymptotically multiplicative on
A, then either A = H∞ or A = H∞ + C .

Much of the proof of the Chang–Marshall theorem will amount to general-
izing Theorem 2.3 and Corollary 2.5 to arbitrary Douglas algebras.

3. The Chang–Marshall Theorem

Theorem 3.1. If B is a closed subalgebra of L∞ containing H∞, then there
is a set B of inner functions in H∞ such that

B = [H∞, B̄ ].

In other words, every uniform algebra between H∞ and L∞ is a Douglas
algebra. The proof of this theorem breaks up into two pieces. We reverse the
historical order, giving Marshall’s part first.

Theorem 3.2. If B is a uniform algebra with H∞ ⊂ B ⊂ L∞, then there is
a set B of interpolating Blaschke products such that

MB = M[H∞,B̄ ].
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The theorem says there is a Douglas algebra having the same spectrum
as B.

Lemma 3.3. If b(z) is an interpolating Blaschke product having zeros {zn}
in D and if m ∈ M is such that b(m) = 0, then m lies in the closure of {zn}
with respect to the topology of M.

Proof. Assuming the contrary, we have f1, f2, . . . , fk ∈ H∞, with fk(m) =
0, such that {zn} is disjoint from

k⋂

j=1

{z : | f j (z)| < 1}.

Then max j | f j (zn)| ≥ 1, n = 1, 2, . . . , and because {zn} is an interpolating
sequence, there are g1, g2, . . . , gk ∈ H∞ such that G = f1g1 + · · · + fk gk

satisfies G(zn) = 1, n = 1, 2, . . . Hence 1 = G + bh for some h ∈ H∞. But
since G(m) = 0, this is a contradiction.

Proof of Theorem 3.2. We have already done the hard work back in the proof
of Theorem VIII.4.1. For each u ∈ U B and for each α, 0 < α < 1, Theorem
VIII.4.1 gives us an interpolating Blaschke product bα,u such that when z ∈ D

|bα,u(z)| ≤ 1
2

if |u(z)| ≤ α(3.1)

and

|u(z)| ≤ β(α) < 1 if bα,u(z) = 0.(3.2)

Set B = {bα,u : u ∈ U B, 0 < α < 1}. We claim that [H∞, B̄ ] has the same
spectrum as B.

If bα,u(m) = 0, then by (3.2) and Lemma 3.3 |u(m)| ≤ β(α) < 1. This means
m /∈ MB by Theorem 1.3. Hence each bα,u is invertible in B, so that [H∞, B̄ ] ⊂
B and MB ⊂ M[H∞,B̄ ], by (1.2).

Now suppose m ∈ M[H∞,B̄ ]. By Theorem 1.3, |bα,u(m)| = 1 for all bα,u ∈
B . By the corona theorem there is a net (z j ) in D that converges to m. Conse-
quently lim j |bα,u(z j )| = 1 for each bα,u ∈ B , and (3.1) yields |u(m)| = 1 for
all u ∈ U B . Thus m ∈ MB , again by Theorem 1.3, and M[H∞,B̄ ] ⊂ MB .

We now turn to Chang’s half of Theorem 3.1.

Theorem 3.4. Let A and B be two subalgebras of L∞ containing H∞. Assume
that MA = MB and that A is a Douglas algebra. Then A = B.

Clearly, Theorems 3.2 and 3.4 prove the main result, Theorem 3.1. In fact,
something stronger is true, because Theorem 3.2 gives a family of interpolating
Blaschke products: Every uniform algebra A such that H∞ ⊂ A ⊂ L∞ is
generated by H∞ and the complex conjugates of a set of interpolating Blaschke
products.
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The proof of Theorem 3.4 depends on a characterization of a Douglas algebra
A = [H∞, B̄ ]in terms of Poisson integrals. For b(z) an inner function and for
0 < δ < 1, we define the region

Gδ(b) = {z : |b(z)| > 1 − δ}.
For example, Gδ(z) is the annulus 1 − δ < |z| < 1, while if b = exp((z +
1)/(z − 1)), Gδ(b) is the region between T and a disc in D tangent to T at
z = 1. When f ∈ L1(T ), let

dν f =
∣
∣
∣
∣
∂ f

∂ z̄

∣
∣
∣
∣

2

log
1

|z|dx dy.

A related measure, with |∂ f/∂ z̄|2 replaced by |∇ f |2, was denoted by λ f in
Chapter VI, Section 3. Since

|∇ f |2 = 2(|∂ f/∂z|2 + |∂ f/∂ z̄|2)

and since ∂ f/∂z = ∂ f̂ /∂ z̄, we have λ f = 2(ν f + ν f̄ ). In particular, when f is
real-valued, λ f and ν f are equivalent. From Chapter VI, Exercise 14, we know
that f ∈ VMO if and only if to each ε > 0 there corresponds δ, 0 < δ < 1,
such that when 0 < h < δ

λ f (S(θ0, h)) < εh,

where S(θ0, h) is the sector {reiθ : |θ − θ0| ≤ h, 1 − h ≤ r < 1}. Therefore,
by Theorem 2.3, QC = (H∞ + C) ∩ (H∞ + C) consists of those f ∈ L∞
such that

λ f (S(θ0, h)) < εh

when h < δ = δ(ε, f ). An arbitrary Douglas algebra is characterized by a
similar condition with {1 − δ < |z| < 1} replaced by some region Gδ(b), b ∈
B A. So that we may characterize A instead of the self-adjoint algebra Q A =
A ∩ Ā, we must also replace λ f by ν f .

Theorem 3.5. Let A = [H∞, B̄ A] be a Douglas algebra. When f ∈ L∞ the
following conditions are equivalent.

(i) f ∈ A.
(ii) For any ε > 0, there are b ∈ B A and δ, 0 < δ < 1, such that for all

z ∈ Gδ(b)

inf
g∈H 2

1

2π

∫
| f − g|2 Pz(θ )dθ < ε.(3.3)

(iii) For any ε > 0, there are b ∈ B A and δ, 0 < δ < 1, such that

ν f (Gδ(b) ∩ S(θ0, h)) < εh(3.4)

for every sector

S(θ0, h) = {reiθ : |θ − θ0| ≤ h, 1 − h ≤ r < 1}.
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Before proving this theorem we use it to derive Theorem 3.4.

Proof of Theorem 3.4. Let A be a Douglas algebra and let B be another
algebra, H∞ ⊂ B ⊂ L∞, such that MA = MB . By Theorem 1.3, we have
B̄ A ⊂ B, so that A = [H∞, B̄ A] ⊂ B.

To prove that B ⊂ A recall that B is generated by H∞ and U B , the unimod-
ular functions in B−1. We show u ∈ U B satisfies (3.3) for every ε > 0. Since
MA = MB , Theorem 1.3 implies |u(m)| = 1 on

MA =
⋂

b∈B A

{m : |b(m)| = 1}.

By compactness, this means |u| > 1 − ε/2 on some finite intersection of sets
{|b(m)| =}, b ∈ B A. Taking a product, we obtain a single b ∈ B A such that
|u(m)| > 1 − ε/2 when |b(m)| = 1. Consequently, there is δ > 0 such that
|u(z)| > 1 − ε/2 when z �∈ Gδ(b). But then

1

2π

∫
|u(θ ) − u(z)|2 Pz(θ )dθ = 1

2π

∫
|u(θ )|2 Pz(θ )dθ − |u(z)|2

= 1 − |u(z)|2 < ε,

when z ∈ Gδ(b). Thus (3.3) holds with g the constant function u(z). By The-
orem 3.5, B ⊂ A and Theorem 3.4 is proved.

Proof of Theorem 3.5. We show (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Assume (i) holds. Then there are b ∈ B A and h ∈ H∞ such that ‖ f −

b̄h‖∞ < ε. Fix z0 ∈ Gδ(b) and let g = b(z0)h. Then g ∈ H 2 and

1

2π

∫
|b̄h − g|2 Pz0

(θ )dθ ≤ ‖h‖2
∞

2π

∫
|b(θ ) − b(z0)|2 Pz0

(θ )dθ

= ‖h‖2
∞(1 − |b(z0)|2) ≤ 2δ‖h‖2

∞.

Consequently,

1

2π

∫
| f − g|2 Pz0

(θ ) dθ ≤ 2ε2 + 4δ‖h‖2
∞,

which gives (3.3) for ε < 1
2

if δ is small enough.
Now assume (ii) and choose b ∈ B A and δ, 0 < δ < 1, so that (3.3) holds.

For the moment suppose that Gδ(b) ∩ S(θ0, h) ⊂ {|z| > 1
4
}. By a stopping time

argument, which should by now be quite familiar, it is enough to prove (3.4)
for a sector whose inside half {|θ − θ0| ≤ h, 1 − h ≤ r < 1 − h/2} contains
a point z1 ∈ Gδ(b). (Otherwise partition the outside half of S(θ0, h) into two
sectors S(θ1, h/2) and continue, stopping at maximal sectors whose inside
halves meet Gδ(b).) Let k(z) = f (z) − g(z), where g ∈ H 2 is chosen to attain
the infimum (3.3) with respect to Pz1(θ ) dθ . Then k(z) is conjugate analytic
and k(z1) = 0, because in the Hilbert space L2(Pz1 dθ ), g is the orthogonal
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projection of f onto H 2. Consequently,

|∇k(z)|2 = 2|∂k/∂ z̄|2 = 2|∂ f/∂z̄|2,
and the Littlewood–Paley identity (3.3) of Chapter VI gives

1

2π

∫
| f − g|2 Pz1

(θ )dθ = 2

π

∫∫ ∣
∣
∣
∣
∂ f

∂ z̄

∣
∣
∣
∣

2

log

∣
∣
∣
∣
1 − z̄1z

z − z1

∣
∣
∣
∣ dx dy.(3.5)

On Gδ(b) ∩ S(θ0, h) ⊂ {|z| > 1
4
} we have the familiar inequalities

log
1

|z| ≤ C(1 − |z|2) ≤ Ch
(1 − |z|2)(1 − |z1|2)

|1 − z̄1z|2

= Ch

(

1 − |z − z1|2
|1 − z̄1z|2

)

≤ Ch log

∣
∣
∣
∣
z − z̄1z

z − z1

∣
∣
∣
∣ ,

so that by (3.5)

ν f (Gδ(b) ∩ S(θo,h)) =
∫∫

Gδ(b)∩S(θ0,h)

∣
∣
∣
∣
∂ f

∂ z̄

∣
∣
∣
∣

2

log
1

|z|dx dy

≤ Ch
∫

| f − g|2 Pz1
(θ ) dθ ≤ Cεh

by (3.3). That is (3.4), the inequality we wanted to prove.
There remains the rather uninteresting case Gδ(b) ∩ S(θ, h) ∩ {|z| ≤ 1

4
} �=

Ø. If b(z) is not constant, it can be replaced by bN (z), and Gδ(bN ) ⊂ {|z| > 1
4
}

if N is large. If b(z) is constant, then 0 ∈ Gδ(b) and (3.3) at z = 0 gives (3.4)
for sectors meeting {|z| ≤ 1

4
}. Thus (iii) follows from (ii).

We come to the main step, (iii) ⇒ (i). Let ε > 0, and fix b ∈ B A and
δ, 0 < δ < 1, so that we have (3.4). We estimate

dist( f, A) ≤ dist( f, b̄n H∞) = dist(bn f, H∞) = sup
F∈H1

0‖F‖1=1

1

2π

∫
f bn F dθ,

as we did in the proof of the H 1–BMO duality in Chapter VI, Section 4. Note
that when F ∈ H 1

(∇ f ) · (∇bn F) ≡ fx (bn F)x + fy(bn F)y = 2

(
∂ f

∂ z̄

)
∂

∂z
(bn F).

Since F(0) = 0, the polarized Littlewood–Paley identity now yields

1

2π

∫
f bn F dθ = 2

π

∫∫
∂ f

∂ z̄
bn ∂F

∂z
log

1

|z|dx dy(3.6)

+ 2

π

∫∫
∂ f

∂ z̄
nbn−1 ∂b

∂z
F(z) log

1

|z|dx dy.
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Writing F = b0 H , where b0 is a Blaschke product and H is zero free,
we have F = ((b0 − 1)H + (b0 + 1)H )/2 = (G2

1 + G2
2)/2, where G j ∈ H 2,

‖G j‖2
2 ≤ 2‖F‖1. Thus we can make the additional assumption F = G2,

G ∈ H 2, when we bound the right side of (3.6), which then becomes

4

π

∫∫

Gδ(b)

∂ f

∂ z̄
bnG(z)

∂G

∂z
log

1

|z|dx dy + 4

π

∫∫

D\Gδ(b)

∂ f

∂ z̄
bnG(z)

∂G

∂z
log

1

|z|dx dy

+ 2

π

∫∫

Gδ(b)

∂ f

∂ z̄

∂bn

∂z
G2(z) log

1

|z|dx dy

+ 2

π

∫∫

D\Gδ(b)

∂ f

∂ z̄
nbn−1 ∂b

∂z
G2(z) log

1

|z|dx dy

= I1 + I2 + I3 + I4.

Use the Cauchy–Schwarz inequality on each of I1, I2, I3, and I4. We obtain

I1 ≤ C

⎛

⎝
∫∫

Gδ(b)

∣
∣
∣
∣
∂ f

∂ z̄

∣
∣
∣
∣

2

|bnG|2 log
1

|z|dx dy

⎞

⎠

1/2 (∫∫ ∣
∣
∣
∣
∂G

∂z

∣
∣
∣
∣

2

log
1

|z|dx dy

)1/2

≤ C(ε‖bnG‖22 )1/2‖G‖2 = Cε1/2‖F‖1

by (3.4), the theorem on Carleson measures, and the Littlewood–Paley identity.
Similarly, we get

I2 ≤ C(1 − δ)n

⎛

⎝
∫∫

D

∣
∣
∣
∣
∂ f

∂ z̄

∣
∣
∣
∣

2

|G|2 log
1

|z|dx dy

⎞

⎠

1/2

×
⎛

⎝
∫∫

D

∣
∣
∣
∣
∂G

∂ z̄

∣
∣
∣
∣

2

log
1

|z|dx dy

⎞

⎠

1/2

≤ C(1 − δ)n(‖ f ‖∗‖G‖2)(‖G‖2)

≤ C(1 − δ)n‖ f ‖∞‖F‖1

by using Theorem 3.4 of Chapter VI instead of condition (3.4).
To estimate I3 and I4, let |G|2 log(1/|z|)dx dy be the measure in the Cauchy–

Schwarz inequality. Then we have

I3 ≤ C

⎛

⎝
∫∫

Gδ(b)

∣
∣
∣
∣
∂ f

∂ z̄

∣
∣
∣
∣

2

|G|2 log
1

|z|dx dy

⎞

⎠

1/2(∫∫ ∣
∣
∣
∣
∂bn

∂z

∣
∣
∣
∣

2

|G|2 log
1

|z|dx dy

)1/2

≤ C(ε‖G‖2
2)1/2(‖bn‖2

∗‖G‖2
2)1/2

≤ C1/2
ε ‖F‖1,
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using both (3.4) and Theorem 3.4 of Chapter VI. As with I2, we have

I4 ≤ Cn(1 − δ)n−1

⎛

⎝
∫∫

D

∣
∣
∣
∣
∂ f

∂ z̄

∣
∣
∣
∣

2

|G|2 log
1

|z|dx dy

⎞

⎠

1/2

×
⎛

⎝
∫∫

D

∣
∣
∣
∣
∂b

∂z

∣
∣
∣
∣

2

|G|2 log
1

|z|dx dy

⎞

⎠

1/2

≤ Cn(1 − δ)n−1(‖ f ‖∗‖G‖2)(‖b‖∗‖G‖2)

≤ Cn(1 − δ)n−1‖ f ‖∞‖F‖1,

this time twice using Chapter VI, Theorem 3.4.
Taken together, the estimates yield

dist( f, A) ≤ lim
n→∞(cε1/2+C(1 − δ)n−1‖ f ‖∞ + Cn(1 − δ)n−1‖ f ‖∞) = Cε1/2

and f ∈ A.

It is worth reflecting on the role played by the maximal ideal space in the
proof of Theorem 3.1. It is possible to merge the two parts of the proof and to
write down a proof that is almost free of Banach algebra theory (see Exercise
13). At present the only place where maximal ideal spaces are still needed is
when Lemma 3.3 is applied, and it is quite possible that there will be a future
proof containing no reference to Banach algebras. Such a constructive proof
is certainly worth finding, if only for the new ideas it should yield. However,
it is difficult to imagine a first proof of this theorem not using maximal ideals.
Banach algebra theory sets the framework on which the proof can be built, it
points out which inequalities one should aim for, and it provides the economy
of thought necessary for a long and difficult proof.

4. The Structure of Douglas Algebras

Many of Sarason’s results in Section 2 have generalizations to an arbitrary
Douglas algebra A. Because it is so close at hand, we begin with the analog
of Theorem 2.3. Recall that Q A = A ∩ Ā is the largest C∗-subalgebra of A,
and that B A = {b ∈ H∞ : b inner, b̄ ∈ A}. Define VMOA to be the set of f ∈
BMO such that to each ε > 0, there correspond δ, 0 < δ < 1, and b ∈ B A

such that

λ f (Gδ(b) ∩ S(θ0, h)) =
∫∫

Gδ(b)∩S(θ0,h)

|∇ f |2 log
1

|z|dx dy < εh(4.1)

for every sector S(θo, h). When A = H∞ + C, VMOA is just our old friend
VMO.
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Theorem 4.1. If A is a closed subalgebra of L∞ containing H∞, then

Q A = L∞ ∩ VMOA.

Proof. The theorem follows directly from Theorem 3.5. Since

λ f = 2(ν f + ν f̄ )

and ν f and ν f̄ are positive, (4.1) means that both f and f̄ satisfy condition

(3.4), and so f ∈ A ∩ Ā = Q A. Conversely, if f ∈ Q A and if ε > 0, then
there are b1 ∈ B A and δ1, 0 < δ1 < 1, for which f satisfies (3.4). There are
also b2 ∈ B A and δ1, 0 < δ2 <1, for which f̄ satisfies (3.4). Therefore (4.1)
holds with b = b1b2 and δ = min(δ1, δ2).

The space VMOA can also be described in terms of Hilbert space projections.
If f ∈ BMO, then f ∈ VMOA if and only if for each ε > 0 there exist b ∈ B A

and δ, 0 < δ < 1, such that

1

2π

∫
| f − f (z)|2 Pz(θ )dθ < ε(4.2)

for all z ∈ Gδ(b). The derivation of (4.2) is left as an exercise.
Recall the notation CA = [B A, B̄ A] for the C∗-algebra generated by B A.

Theorem 4.2. If A is a closed subalgebra of L∞ containing H∞, then

A = H∞ + CA.

We need a lemma, whose proof we postpone for a moment.

Lemma 4.3. Let u ∈ L∞ with |u| = 1 almost everywhere. If

dist(u, H∞) < 1(4.3)

but

dist(u, H∞
0 ) = 1,(4.4)

where H∞
0 = { f ∈ H∞ : f (0) = 0}, then

ū ∈ [H∞, u].

Proof of Theorem 4.2. When f ∈ CA we claim

dist( f, H∞) = dist( f, H∞ ∩ CA),(4.5)

generalizing Lemma 1.6 of Chapter IV. Clearly dist( f, H∞) ≤ dist( f, H∞ ∩
CA). Because (4.5) is trivial when dist( f, H∞) = 0, we can assume
dist( f, H∞) = 1 − ε for some small ε > 0. Since f ∈ CA, there is g =∑n

j=1 λ j b j , b j ∈ B A, and there is b0 ∈ B A such that ‖ f − b̄0g‖∞ < ε. Then

dist(b̄0g, H∞) < 1. Looking back at the theory of dual extremal problems,
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in particular at Case I in Theorem 4.3 of Chapter IV, we see there exists
u ∈ L∞, |u| = 1 almost everywhere, such that

u − b̄0g ∈ H∞,(4.6)

which means that dist(u, H∞) < 1, and such that

dist(u, H∞
0 ) = 1.(4.7)

By (4.6), b0u ∈ H∞—in fact b0u is an inner function—and u ∈ [H∞, b̄0] ⊂
A, so that by (4.7) and Lemma 4.3, ū ∈ A. Therefore b̄0ū ∈ A and b0u ∈ B A.
Hence u = b̄0(b0u) ∈ CA and u − b̄0g ∈ CA. That gives

dist( f, H∞ ∩ CA) ≤ ‖ f − (b̄0g − u)‖∞ ≤ ε + ‖u‖∞
≤ dist( f, H∞) + 2ε,

and (4.5) is established.
Now (4.5) implies that H∞ + CA is uniformly closed. This has the same

proof as Lemma 2.1, but for reasons of pedagogy we phrase the argument
differently. The natural injection

π : CA → A/H∞

has kernel H∞ ∩ CA and (4.5) shows that π (CA) is closed in A/H∞. Under
the quotient mapping A → A/H∞, π (CA) has inverse image H∞ + CA. Thus
H∞ + CA is closed in A.

To conclude the proof of Theorem 4.2 it now suffices to show that H∞ + CA

is dense in A, and because A is a Douglas algebra it is enough to show f =
b̄g ∈ H∞ + CA whenever b ∈ B A and g ∈ H∞. We suppose ‖ f ‖ < 1. Again
using Case I of Theorem 4.3 of Chapter IV, we have u ∈ L∞, |u| = 1 almost
everywhere, such that

u − f = u − b̄g ∈ H∞ and dist(u, H∞
0 ) = 1.(4.8)

Then bu is an inner function in H∞, and u ∈ A. By Lemma 4.3, ū ∈ [H∞, u] ⊂
A so that bu ∈ B A. But then u = b̄(bu) ∈ CA = [B A, B̄ A], and by (4.8) f =
b̄g ∈ H∞ + CA.

Proof of Lemma 4.3. Let f ∈ H∞ with ‖u − f ‖∞ = α < 1. We first show
infz | f (z)| ≥ 1 − α, which means that f is invertible in H∞. Now if z0 ∈ D
and if | f (z0)| < 1 − α, then

‖u − ( f − f (z0))‖ < 1.

Writing f (z) − f (z0) = (z − z0)g(z), g ∈ H∞, we then have, on |z| = 1,

∥
∥
∥
∥1 − ūz

|1 − z0 z̄|2
1 − z̄0z

g

∥
∥
∥
∥ = ‖u − (z − z0)g‖ < 1.
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For (1 − |z0|)2/(1 + |z0|)2 ≤ t ≤ 1, it follows easily that
∥
∥
∥
∥1 − t ūz

|1 − z0 z̄|2
1 − z̄0z

g

∥
∥
∥
∥ < 1,

because discs are convex. Setting t = (1 − |z0|)2/|1 − z0 z̄|2, we obtain
∥
∥
∥
∥u − z(1 − |z0|)2

1 − z̄0z
g

∥
∥
∥
∥ =

∥
∥
∥
∥1 − t ūz

|1 − z̄0z|2
1 − z̄0z

g

∥
∥
∥
∥ < 1,

which contradicts (4.4). Hence infz | f (z)| ≥ 1 − α, and f ∈ (H∞)−1.
Since |1 − ū f | ≤ α and since the disc {|1 − w| < α} is invariant under the

mapping

w → 1 − α2

w
,

we have
∣
∣
∣
∣1 − (1 − α2)u

f

∣
∣
∣
∣ =

∣
∣
∣
∣1 − (1 − α2)

ū f

∣
∣
∣
∣ < α.

Consequently, u/ f is invertible in [H∞, u], so that

ū = f −1(u/ f )−1 ∈ [H∞, u],

which is what we wanted to show.

Notice that the above proof gives more: If |u| = 1, if dist(u, H∞) = α < 1,
and if dist(u, H∞

0 ) = 1, then

dist(ū, H∞) = α.

Theorem 4.4. Let A be a closed subalgebra of L∞ containing H∞ and let
f ∈ BMO. Then the following conditions are equivalent:

(i) f ∈ VMOA,
(ii) f = u + ṽ, u, v ∈ Q A,

(iii) f = u + ṽ, u, v ∈ CA,

where ṽ denotes the Hilbert transform or conjugate function of v.

Proof. Clearly (iii) ⇒ (ii), and because VMOA is self-conjugate, Theorem
4.1 shows that (ii) ⇒ (i). To complete the proof we show (i) ⇒ (iii).

Lemma 4.5. If f ∈ BMO and if f satisfies (4.1) with respect to some b ∈ B A,
then when n is large

sup
F∈H1

0‖F‖1≤1

∣
∣
∣
∣

1

2π

∫
f (θ )bn(θ )F(θ )dθ

∣
∣
∣
∣ ≤ Cε1/2.(4.9)
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The proof of this lemma is exactly the same as the proof of Theorem 3.5. The
details are left as an exercise.

Let f ∈ VMOA. We may assume f is real valued. Write f = u + ṽ, with
u, v ∈ L∞. Then g = u + iv ∈ L∞ and, for any F ∈ H 1

0 ∩ L2,
∫

( f − g)F
dθ

2π
=

∫
(ṽ − iv)F

dθ

2π
= 0,

because ṽ − iv ∈ H 2. By the definition of VMOA, for every ε > 0 there cor-
responds b ∈ B A and δ, 0 < δ < 1, such that (4.1) holds. So by (4.9) and by
the density of H 1

0 ∩ L2 in H 1
0 , we have

sup
F∈H1

0‖F‖1≤1

∣
∣
∣
∣

∫
gbn F

dθ

2π

∣
∣
∣
∣ ≤ Cε1/2,

when n is large. This means

dist(g, [H∞, b̄]) ≤ Cε1/2,

and as ε is arbitrary, g ∈ A. But then by Theorem 4.2, g = h + k, h ∈ CA, k ∈
H∞, and

f − i f̃ = (u − i ũ) + (ṽ + iv) = g − i g̃ = h − i h̃,

because k − i k̃ = 0. Therefore

f = Re(h − i h̃),

and (iii) holds.

5. The Local Fatou Theorem and an Application

Let us leave Douglas algebras briefly to take up a basic but elementary result,
the local Fatou theorem. It was first proved by Privalov. See Exercise 10 of
Chapter II for a sketch of Privalov’s proof. The more general real variables
argument below is due to A. P. Calderón.

Let G be an open set in the upper half plane H . We say G is nontangentially
dense at a point t ∈ � if there exist α = α(t) > 0 and h = h(t) > 0 such that
G contains the truncated cone

�h
α(t) = {x + iy : |x − t | < αy, 0 < y < h}.

A function u(z) is nontangentially bounded at t if u(z) is defined and bounded
in some truncated cone �h

α(t). On the other hand, u(z) has a nontangential limit
at t if to every β > 0 there is h = h(β, t) > 0 such that u(z) is defined on �h

β(t)
and

lim
�h

β (t)�z→t
u(z) exists.
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Thus the notion of nontangential boundedness involves only one cone while
nontangential convergence refers to arbitrarily wide cones.

Theorem 5.1. Let E be a measurable subset of � and let G be a region in H ,
nontangentially dense at each point of E. Let u(z) be a harmonic function on
G, nontangentially bounded at each point of E. Then u(z) has a nontangential
limit at almost every point of E.

It is implicit in the conclusion of the theorem that G contains truncated
cones �h

β(t) with arbitrarily large β at almost every point t of E, whereas
the hypotheses only assert that G contains some cone of positive angle at
each t ∈ E . However, a simple geometric argument about points of density
will enable us to pass from narrow cones to wide cones. The real impact
of the theorem lies in the improvement to nontangential convergence over
nontangential boundedness. Only because of the application to follow has the
open set G been included in the theorem’s statement.

Proof. We may assume that E is bounded, E ⊂ [−A, A]. Let hn ↓ 0 and
αn ↓ 0. Then

E ⊂
∞⋃

n=1

{t ∈ [−A, A] : �hn
αn

(t) ⊂ G and |u(z)| ≤ n on �hn
αn

(t)}.

Since these sets increase with n, we can, after discarding a subset of small
measure, assume there exist α > 0, h > 0, and M > 0 such that for all t ∈ E

�h
α(t) ⊂ G and |u(z)| ≤ M, z ∈ �h

α(t).

Discarding another set of small measure, we can replace E by a compact subset
F.

Now let

R =
⋃

t∈F

�h
α(t).

If t0 is a point of density of F (i.e., if t0 is in the Lebesgue set of χF ) and if

β > 0, then there is h0 = h0(β, t0) such that �
h0

β (t0) ⊂ R . Indeed, let (x, y) ∈
�

h0

β (t0). If (x, y) /∈ R then the interval J = {t : |t − x | < αy} is disjoint from
F (see Figure IX.1). Since J is contained in I = {t : |t − t0| < (α + β)y},
this means

|I ∩ F |
|I | ≤ 1 − |J |

|I | = β

α + β
,

which is a contradiction when y < h0 and h0 is small. Hence R contains cones
of arbitrarily wide aperture at each Lebesgue point of F.
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Figure IX.1. (x, y) ∈ R if and only if J ∩ F �= Ø.

On R the harmonic function u(z) is defined and bounded, |u(z)| ≤ M . By
the preceding argument, we shall be done when we show

lim
z→t

z∈R ∩�β (t)

u(z) exists(5.1)

for any β and for almost every t ∈ F . Define

ϕn(t) =
{

u(t + i/n), t + i/n ∈ R ,

0, t + i/n /∈ R .

Then ϕn ∈ L∞, ‖ϕn‖∞ ≤ M , and {ϕn} has a weak-star accumulation point
ϕ ∈ L∞, ‖ϕ‖∞ ≤ M . Replace {ϕn} by a convergent subsequence and write

ϕ(z) =
∫

Pz(t)ϕ(t) dt = lim
n→∞

∫
Pz(t)ϕn(t) dt

= lim
n→∞ ϕn(z),

and

ψ(z) = u(z) − ϕ(z) = lim
n→∞(u(z + i/n) − ϕn(z))

= lim
n→∞ ψn(z).

Then ψ(z) is harmonic on R and |ψ | ≤ 2M . By a simple majorization we will
show

lim
z→t

z∈R ∩�β (t)

ψ(z) = 0(5.2)

almost everywhere on F. Since ϕ(z) has nontangential limit ϕ(t) almost every-
where, (5.2) implies (5.1) with limit ϕ(t). Let

k(z) = c

(

y +
∫

Pz(t)χ�\F (t)dt

)

,(5.3)

where c > 0 will be determined in a moment. Then k(z) has zero nontangential
limit almost everywhere on F. Hence (5.2) and the theorem will follow from
the estimate

|ψ(z)| ≤ k(z), z ∈ R .(5.4)



382 douglas algebras Chap. IX

Finally, (5.4) will hold if for all large n we have

|ψn(z)| ≤ k(z)(5.5)

on R n = R ∩ {y < h − 1/n}, which is that part of R on which ψn is
defined.

To ensure (5.5) we must choose the constant c in (5.3) so large that

k(z) ≥ 2M, z ∈ {y > 0} ∩ ∂R n.(5.6)

Taking c > 3M/h gives k(z) ≥ 2M when y ≥ h − 1/n, n large. At any other
z ∈ {y > 0} ∩ ∂R n , we have 0 < y < h, and the interval J = {t : |t − x | <

αy} falls in �\F . Then

k(z) ≥ c

π

∫

J

y

(x − t2) + y2
dt = 2c

π
arctan α,

and (5.6) holds if c is sufficiently large.
Now if (5.5) were to fail, there would be points z j ∈ R n such that

|ψn(z j )| ≥ a + k(z j )

for some constant a > 0. By the maximum principle, {z j } has an accumulation
point ζ ∈ ∂R n . It is impossible that Im ζ > 0 because

|ψn(z j )| ≤ 2M < a + k(ζ )

by (5.6). Hence Im ζ = 0 and ζ ∈ � ∩ ∂R = F . But then, since ϕn(t) = u(t +
i/n) on {|t − ζ | < α/n}, our function

ψn(z) = u(z + i/n) −
∫

Pz(t)ϕn(t)dt

is continuous at ζ and ψn(ζ ) = 0. Therefore limz→ζ ψn(z) = 0. This contra-
diction establishes (5.5) and the theorem is proved.

Now let b(z) be an inner function on the disc and let 0 < δ < 1. The region
Gδ(b) is nontangentially dense at almost every point of T, because |b(eiθ )| = 1
almost everywhere. If F(z) is a bounded analytic function on Gδ(b), we write
F ∈ H∞(Gδ(b)). By Theorem 5.1, F ∈ H∞(Gδ(b)) has a non-tangential limit
F(eiθ ) almost everywhere on T.

Theorem 5.2. Let A be a closed subalgebra of L∞ containing H∞ and let
f ∈ L∞. Then f ∈ A if and only if for each ε > 0, there are b ∈ B A and
δ, 0 < δ < 1, and F ∈ H∞(Gδ(b)) such that almost everywhere

| f (eiθ ) − F(eiθ )| < ε.

Proof. Let us do the easy half first. If f ∈ A then there are b ∈ B A and
g ∈ H∞ such that ‖ f − b̄g‖∞ < ε. Let F(z) = g(z)/b(z). For any δ, 0 < δ <

1, F ∈ H∞(Gδ(b)) and |F(eiθ ) − f (eiθ )| < ε almost everywhere.
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For the converse we use the corona construction. When b(z) is an inner
function and 0 < δ < 1 there is a region U ⊂ D with boundary � such that

{|b(z)| < 1 − δ} ⊂ U,(5.7)

U ⊂ {|b(z)| < η}, 0 < η < 1, η = η(δ),(5.8)

� is a countable union of rectifiable Jordan curves,(5.9)

arc length on � ∩ D is a Carleson measure.(5.10)

See Section 4, Chapter VIII. By (5.8), T ∩ ∂U has zero length. We can sup-
pose that every component of U contained in {|z| < r}, 0 < r < 1, is simply
connected. Indeed by the maximum principle filling in the holes in such a com-
ponent does not hurt (5.7)–(5.10). For any r < 1 there are finitely many com-
ponents of U contained in {|z| < r}. Let V = D\U . Then by (5.7), V ⊂ Gδ(b)
and F(z) ∈ H∞(V ). We want to use Cauchy’s theorem on ∂V . To avoid cum-
bersome technicalities we work instead with Vr = V ∩ {|z| < r}.

By duality,

dist( f, A) ≤ lim
n

dist( f, b̄n H∞)

= lim
n

sup
k∈H1

0‖k‖1=1

1

2π

∫
f (θ )bn(θ )k(θ )d(θ ),

and by hypothesis,
∣
∣
∣
∣

1

2π

∫
f (θ )bn(θ )k(θ )dθ

∣
∣
∣
∣ ≤ ε +

∣
∣
∣
∣

1

2π

∫
F(θ )bn(θ )k(θ )dθ

∣
∣
∣
∣.

Fix k ∈ H 1
0 , ‖k‖1 = 1. By dominated convergence and the maximal theorem,

1

2π

∫
F(θ )bn(θ )k(θ )dθ = lim

r→1

1

2π i

∫

{|z|=r}\U
F(z)bn(z)k(z)

dz

z
,

because by (5.8), |U ∩ {|z| = r}|→0(r →1). The domain Vr = V ∩ {|z| < r}
is finitely connected, and ∂Vr = (� ∩ {|z| < r}) ∪ ({|z| = r}\U ) = �r ∪ Jr .
With suitable orientations, Cauchy’s theorem now gives

1

2π i

∫

Jr

F(z)bn(z)k(z)
dz

z
= 1

2π i

∫

�r

F(z)bn(z)k(z)
dz

z
.

However, k(z)/z ∈ H 1 and ‖k(z)/z‖1 = 1, so that (5.8) and (5.10) yield
∣
∣
∣
∣

1

2π i

∫

�r

F(z)bn(z)
k(z)

z
dz

∣
∣
∣
∣ ≤ ‖F‖∞ηn

∫

�

∣
∣
∣
∣
k(z)

z

∣
∣
∣
∣

ds

2π

≤ C‖F‖∞ηn < ε

when n is large, and f ∈ A.
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With Theorems 5.2 and 3.5 we have three necessary and sufficient conditions
for a function f ∈ L∞ to belong to a Douglas algebra A. Each condition says
that, in some sense, f is almost an analytic function. It is clear what we mean
by that remark in the case of Theorem 5.2. In Theorem 3.5, condition
(ii) stipulates that f is close to H 2 in all the Hilbert spaces L2(P2, dθ ), z ∈
Gδ(b). Condition (iii) of Theorem 3.5 says that ∂ f/∂ z̄ is small on a region
Gδ(b), b ∈ B A. Thus we have three different descriptions of a Douglas alge-
bra in terms of analyticity. Each of these conditions can be reformulated to
give an upper and lower bound for dist ( f, A) (see Exercise 11).

Notes

Motivated by operator theory, Douglas formulated his conjecture in [1969].
With the corona theorem and Hoffman’s theorem (Chapter X), the solution of
Douglas’s problem is one of the major accomplishments of this theory. There
is so much structure to H∞ that very general conjectures, at first blush rather
suspect, turn out pleasantly to be true. It is difficult to overestimate Sarason’s
influence on Douglas’s problem, and we have followed his expositions ([1973,
1976, 1979]) closely.

Hoffman and Singer discuss their proof of Wermer’s theorem in [1957,
1960], and its relation to the Douglas problem was noted by Sarason in [1976].
Using Chang’s theorem, but anticipating Marshall’s theorem, S. Axler showed
that any algebra between H∞ and L∞ is determined by its spectrum.

The primary references for H∞ + C are by Sarason [1975, 1973]. It is
noteworthy how the careful analysis of an example like H∞ + C can lead to
a rich general theory.

The sources for Section 3 are Chang [1976] and Marshall [1976b]. Theorems
4.2 and 4.4 are due to Chang [1977a], and Theorem 5.2 and our proof of
Theorem 4.2 are from Chang and Garnett [1978].

Further developments related to the local Fatou theorem can be found in the
books of Stein [1970] and Stein and Weiss [1971].

The algebras H∞ ∩ CA have been studied by Chang and Marshall [1977].
When A = H∞ + C, H∞ ∩ CA is the disc algebra Ao, and when A =
L∞, H∞ ∩ CA reduces to H∞. Thus their theorems generalize results in this
chapter and the corresponding classical results for Ao. Chang and Marshall
show that the disc is dense in MH∞∩CA and that H∞ ∩ CA is generated by its in-
ner functions. The second result generalizes the theorems of Fisher [1968] and
Marshall [1976a]. They also prove that any algebra between CA and H∞ ∩ CA

is a Douglas algebra over H∞ ∩ CA, which by definition is an algebra obtained
by inverting certain inner functions in H∞ ∩ CA. Wermer’s maximality theo-
rem and Theorem 3.1 are special cases of this theorem. Chang and Marshall
also obtain the analog of Theorem 4.2 for algebras between CA and H∞ ∩ CA.

We have ignored the operator theoretic aspects of the Douglas problem.
We refer the reader to Sarason’s recent survey [1979] and to its extensive
bibliography.
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Exercises and Further Results

1. (a) Let B be a closed subalgebra of L∞ containing the disc algebra
Ao. Assume the linear functional φ0( f ) = f (0) has a unique norm-preserving
extension from Ao to B. Then either B ⊃ C or B ⊂ H∞. (Hint: If z̄ �∈ B, then
J = {z f : f ∈ B} has distance 1 from the constant 1. There is ϕ ∈ B∗ such
that ϕ(J ) = 0, ϕ(1) = 1, and ‖ϕ‖ = 1. From this conclude that B ⊂ H∞.)

�(b) If B is a closed subalgebra of L∞ containing Ao such that B contains
at least one Riemann integrable function not in H∞, then B ⊃ C . (Hint: ϕ0

has unique norm preserving extension to B if and only if

sup{Re ϕ0(g) : g ∈ Ao, Re g ≤ Re f }
= inf{Re ϕ0(g) : g ∈ Ao, Re g ≥ Re f }

for all f ∈ B.
(c) Let K be a closed nowhere dense subset of T of positive measure, and

let B be the closed subalgebra of L∞ generated by z and χK . Then z̄ �∈ B.
(See Lumer [1965] and Sarason [1973].) Part (a) generalizes Theorem 1.4,

while part (c) shows H∞ cannot be replaced by A0 in that theorem.

2. (a) Let E and F be closed subspaces of a Banach space X. Then
E + F is closed in X if and only if there is c > 0 such that

dist(x, F) ≤ c dist(x, E ∩ F)

for all x ∈ E .
(b) If E is a closed subspace of L∞ containing the constants and closed

under complex conjugation, then E + H (E) is closed in BMO if and only if
H∞ + E is closed in L∞. Here H (E) = {Hu : u ∈ E}, H being the Hilbert
transform or conjugate function. (See Chang [1977a].)

3. For |α| = 1, let Mα = {m ∈ M : m(z) = α} be the fiber of M over
α and let H∞|Mα be the restriction of H∞ to Mα . Then H∞|Mα is a closed
subalgebra of C(Mα) with Šilov boundary Xα = X ∩ Mα . If f ∈ L∞, then
f ∈ H∞ + C if and only if f |Xα ∈ H∞|Mα for every α. More generally

dist( f, H∞ + C) = sup
|α|=1

dist( f |Xα, H∞|Mα).

(Hint: An extreme point of the unit ball of (H∞ + C)⊥, a space of measures
on X, has support a single Xα .)

4. Let f ∈ H∞ + C . Then f is invertible on H∞ + C if and only if
| f (z)| ≥ δ > 0 on some annulus r < |z| < 1. Consequently each f ∈ (H∞ +
C)−1 has a well-defined winding number over T. Then

f ∈ (H∞ + C)−1
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if and only if

f = zngei(u+Hv),

where n is the winding number of f, g ∈ (H∞)−1, and u, v ∈ C (see Sarason
[1973]).

5. (a) Every f ∈ L∞ has the form f = b̄g, where b is a Blaschke
product and g ∈ H∞ + C . Every measurable subset of T is almost everywhere
the zero set of some function in H∞ + C (Axler [1977]).

(b) If {I j } is a sequence of arcs on T such that
∑ |I j | < ∞, then there

is ϕ ∈ VMO, ϕ ≥ 0, such that ϕI j → ∞.
(c) If f ∈ L∞, there is h ∈ Q A = QC ∩ H∞ such that h f n ∈ QC for

all n = 1, 2, . . . Consequently every measurable subset of T is almost every-
where the zero set of some QC function, and every Blaschke sequence is the
zeros of some QA function.

(d) Every unimodular function in H∞ + C is the product of an in-
ner function and a QC function, and every inner function is a Blaschke
product times a QC function. Consequently, if u ∈ L∞ is unimodular, then
u = (b1/b2)ei( f +g̃), where b1 and b2 are Blaschke products and f, g ∈ C .

Parts (b)–(d) are from T. Wolff [1979].

��6. If f ∈ L∞, there is a best approximation g ∈ H∞ + C ; that is, there
exists g ∈ H∞ + C such that

‖ f − g‖ = dist( f, H∞ + C).

Unless f ∈ H∞ + C , the best approximation is not unique. As a consequence,
for any α ∈ T there is h ∈ H∞ such that

sup
Xα

| f − h| = dist( f |Xα, H∞|Mα)

(see Axler, Berg, Jewell, and Shields [1979]). Luecking [1980] has a proof
using the theory of M-ideals. When H∞ + C is replaced by an arbitrary Dou-
glas algebra the existence of best approximations is an interesting presently
unsolved problem.

�7. This exercise outlines Sarason’s work on the algebra B1. His argu-
ments anticipated the solution of the Douglas problem, and we suggest the
reader work out the details below without relying on Section 3.

Let C1 denote the space of complex functions on the unit circle which
are continuous except possibly at z = 1 but which have one-sided limits
at z = 1. Let

B1 = [H∞, C1]

be the closed algebra generated by H∞ and C1.
(a) Let σ (eiθ ) = eiθ/2. Then B1 = [H∞, σ ].
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(b) For ε > 0 let Gε be the region bounded by the unit circle, and the curve
consisting of the circular arc{eiθ cos ε : ε ≤ |θ | ≤ π} and the two segments
[1, e±iε cos ε] (see Figure IX.2). If f, g ∈ B1, then

lim
ε→0

(

sup
Gε

| f (z)g(z) − ( f g)(z)|
)

= 0.

Figure IX.2. The region Gε .

(c) There is a constant K such that when h ∈ H∞

dist(hσ, H∞) ≤ K sup
0<x<1

|h(x)|.

(Hint: Use duality and Cauchy’s theorem on D\{0 < x < 1}. Actually one can
take K = 1.)

(d) If b(z) is an inner function such that sup0<x<1 |b(x)| < 1, then B1 ⊂
[H∞, b̄].

(e) Let f (z) = −1 + exp(2π i log(1 − z)). Then f ∈ B−1
1 . The inner factor

of f is the Blaschke product b(z) having zeros 1 − e−n, n ≥ 0. Then b ∈ B−1
1

and B1 = [H∞, b̄]. Thus B1 is a Douglas algebra.
(f) If g(z) ∈ H∞(Gε) for some ε > 0, then g(eiθ ) ∈ B1. (Hint: Use duality

and Cauchy’s theorem on Gε.)
(g) The maximal ideal space of B1 is

M+
1 ∪ M−

1 ∪
⋃

α∈T \{1}
Mα,

where Mα is the fiber z−1(α) of M at α, M± = {m : |m( f )| ≤ supX± | f̂ |},
X1 is the fiber of X = ML∞ at 1 and X± = X1 ∩ {σ̂ = ±1} where σ̂ is the
Gelfand transform of the jump function σ ∈ L∞.

(h) H∞ + C1 is closed, but it is not an algebra.
Part (h) is due to Chang [1977b]. The other parts, and more things about B1,

can be found in Sarason [1972].

8. On the real line let A1 be the closed algebra generated by H∞ and the
bounded uniformly continuous functions. Then A1 = [H∞, e−i x ]. If f ∈ A1,
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then f is invertible in A1 if and only if | f (z)| is bounded away from zero in
some strip {0 < y < α}. If b(z) is a Blaschke product whose zeros tend to ∞,
then the following are equivalent:

(i) b ∈ (A1)−1,
(ii) b(x) is uniformly continuous on �, and

(iii) b′(x) is bounded on �.

Assuming the Blaschke product b(z) is in (A1)−1, prove the following are
equivalent:

(1) A1 = [H∞, b̄],
(2) |b(z)| is bounded away from one in every half plane {y > a > 0}, and
(3) b′(x) is bounded away from zero on �.

(See Sarason [1973].)

9. If f ∈ L∞ is a nonconstant simple function, then there is an interpo-
lating Blaschke product b(z) such that

[H∞, f ] = [H∞, b]

(see Marshall [1976c]). It is not known which algebras have the form [H∞, b]
for a single interpolating Blaschke product.

10. Let A be a closed subalgebra of L∞ containing H∞ and let f ∈ BMO.
Show f ∈ VMOA if and only if for each ε > 0 there are b ∈ B A and δ, 0 <

δ < 1, such that

1

2π

∫
| f − f (z)|2 Pz(θ ) dθ < ε

for all z ∈ Gδ(b).

11. Let A be a closed subalgebra of L∞ containing H∞ and let f ∈ L∞.
(a) Let ε1 be the infimum of the set of ε > 0 for which there are b ∈ B A

and δ, 0 < δ < 1, such that

inf
g∈H 2

1

2π

∫
| f − g|2 Pz(θ )dθ < ε

for all z ∈ Gδ(b). Then

dist( f, A)∼ε
1/2
1 .

(b) Let ε2 be the infimum of the set of ε > 0 for which there are b ∈ B A

and δ, 0 < δ < 1, such that

v f (Gδ(b) ∩ S(θ0, h)) < εh.
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Then

dist( f, A)∼ε
1/2
2 .

(c) Let ε3 be the infimum of the set of ε > 0 for which there are b ∈
B A, δ, 0 < δ < 1, and F ∈ H∞(Gδ(b)) such that

| f (eiθ ) − F(eiθ )| < ε

almost everywhere. Then

dist( f, A) = ε3.

12. Prove Lemma 4.5.

13. The two steps of the proof of the Chang–Marshall theorem can
be intertwined to yield a proof less dependent on Banach algebras. In
particular, the corona theorem is not needed. The argument outlined below
is due to Jewell [1976]. Let B be a closed subalgebra of L∞ containing
H∞.

(a) For each u ∈ U B and each α, 0 < α < 1, there is an interpolating
Blaschke product bα,u satisfying (3.1) and (3.2).

(b) By Lemma 3.3, bα,u ∈ B−1.
(c) Let Gα,u = {z : |bα,u(z)| > 1

2
}. If 1 − α is small, then

lim
n→∞ dist(u, b

n
α,u H∞) < ε.

Consequently U B ⊂ [H∞, {bα,u}], which proves the Chang–Marshall
theorem.

14. If A is a Douglas algebra, then ball (A) is the norm closed convex hull
of {b1b2 : b1 is a Blaschke product and b2 ∈ B A is an interpolating Blaschke
product} (see D. Marshall [1976c]).

�15.
(a) Let A be a Douglas algebra, let u ∈ CA ∩ UA, and let ε > 0. Then there

are b1, b2 ∈ B A such that

‖u2 − b1b2‖∞ < ε

(see Marshall [1976c]). The generalization of the Douglas–Rudin theorem
that should be true here, stating that ‖u − b1b2‖∞ < ε, remains an open
problem.

(b) However, the conjecture above is true in an interesting special case. Let
E be an arbitrary subset of the circle T. Say f ∈ L∞

E if f ∈ L∞ and if, for each
α ∈ E, f can be redefined on a set of measure zero so as to become continuous
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at α. Any function in L∞
E can be approximated in the L∞ norm by functions

continuous on open neighborhoods of E. Now if u ∈ L∞
E is unimodular and

if ε > 0, then there are Blaschke products b1, b2 analytic across E such that
‖u − b1b2‖∞ < ε (see Davie, Gamelin, and Garnett[1973]).

(c) H∞ + L∞
E is a closed algebra, and part(b) shows that H∞ + L∞

E is a
Douglas algebra. Also, C(H∞+L∞

E ) = L∞
E .



X

Interpolating Sequences
and Maximal Ideals

We return to interpolating sequences and their Blaschke products, and in
particular to the surprising part they play in unraveling the maximal ideal
space of H∞. In this chapter three topics are discussed.

1. Analytic structure in M\D, and its relation to interpolating sequences.
This theory, due to Kenneth Hoffman, occupies Sections 1 and 2. The theory
rests on two factorization theorems for Blaschke products.

2. Two generalizations of the theorem that a harmonic interpolating se-
quence is an H∞ interpolating sequence. One of these generalizations is the
theorem that a sequence is an interpolating sequence if its closure in M is
homeomorphic to the Stone–Čech compactification of the integers. The key
to these generalizations is a real-variables argument determining when one
Poisson kernel can be approximated by convex combinations of other Poisson
kernels. This idea is developed in Sections 3 and 4.

3. A more recent theorem, due to Peter Jones, that refines the Douglas–
Rudin theorem. Here the analysis is not done on the upper half plane, but on
the boundary.

The three topics have little interdependence, and they can be studied sepa-
rately.

1. Analytic Discs in M

It will be convenient to think of two copies of the unit disc. First there
is D = {z : |z| < 1}, the natural domain of H∞ functions and an open dense
subset ofM = MH∞ . The second discD = {ζ : |ζ | < 1}will be the coordinate
space for many abstract discs in M, including D itself. Points of D will always

391
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be denoted ζ . When z ∈ D, the mapping Lz : D → D defined by

Lz(ζ ) = ζ + z

1 + z̄ζ

coordinatizes D so that z becomes the origin.
A continuous mapping F : D → M is analytic if f ◦F is analytic on D

whenever f ∈ H∞. An analytic disc in M is a one-to-one analytic map L :
D → M. With an analytic disc we do not distinguish between the map L and
its image L(D ). It is not required that L be a homeomorphism, and there are
natural examples where it cannot be one (see Exercise 8). The mappings Lz

above are examples of analytic discs. In this and the next section, we describe
all the analytic maps into M and we present Hoffman’s fascinating theory
connecting analytic discs to interpolating sequences. But first we need some
general facts about possible analytic structure in M.

The pseudohyperbolic distance between m1 ∈ M and m2 ∈ M is

ρ(m1, m2) = sup{| f (m2)| : f ∈ H∞, ‖ f ‖∞ ≤ 1, f (m1) = 0}.
On D this definition of ρ(m1, m2) coincides with the earlier one for ρ(z1, z2)
introduced in Chapter I, because if m j = z j ∈ D, then by Schwarz’s lemma

ρ(m1, m2) =
∣
∣
∣
∣

z1 − z2

1 − z̄2z1

∣
∣
∣
∣ .

Moreover, the distance ρ(m1, m2) on M retains many of the properties of
ρ(z1, z2). If f ∈ H∞, ‖ f ‖∞ ≤ 1, then

ρ( f (m1), f (m2)) ≤ ρ(m1, m2).

because g(z) = ( f (z) − f (m1))/(1 − f (m1) f (z)) satisfies ‖g‖∞ ≤ 1,
g(m1) = 0, and |g(m2)| = ρ( f (m1), f (m2)). Choosing { fn} such that
‖ fn‖∞ ≤ 1, fn(m1) = 0, and | fn(m2)| → ρ(m1, m2), we see that

ρ(m1, m2) = sup{ρ( f (m1), f (m2)) : f ∈ H∞, ‖ f ‖ ≤ 1}.
By Lemma 1.4 of Chapter I, we have

ρ(m0, m2) − ρ(m2, m1)

1 − ρ(m0, m2)ρ(m2, m1)
≤ ρ(m0, m1) ≤ ρ(m0, m2) + ρ(m2, m1)

1 + ρ(m0, m2)ρ(m2, m1)
(1.1)

m j ∈ M, j = 0, 1, 2. Indeed, the left-hand inequality follows from that lemma
by taking ρ( f (m0), f (m2)) close to ρ(m0, m2) and noting that (s − t)/(1 − st)
is decreasing in t when 0 ≤ s, t ≤ 1; while the right-hand inequality follows
by taking ρ( f (m0), f (m1)) close to ρ(m0, m1) and noting that (s + t)/(1 + st)
increases in both s and t when 0 ≤ s, t ≤ 1.

Clearly ρ(m1, m2) ≤ 1, and by (1.1) the relation

m1 ∼ m2 iff ρ(m1, m2) < 1
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is an equivalence relation on M. The corresponding equivalence classes are
called the Gleason parts of M. Write

P(m) = {m ′ ∈ M : ρ(m, m ′) < 1}
for the Gleason part containing m. If m ∈ X , the Šilov boundary, then P(m) =
{m}. Indeed, if m ′ 
= m, then its representing measure μm ′ clearly satisfies
μm ′({m}) 
= 1, and by the logmodular property there is f ∈ H∞, ‖ f ‖ = 1,
such that | f (m)| = 1 but

| f (m ′)| ≤
∫

| f |dμm ′ < 1,

which means that ρ(m, m ′) = 1. The open disc D is a nontrivial Gleason part,
because |z(m)| = 1 if m ∈ M\D.

Lemma 1.1. If F : D → M is an analytic mapping, then F(D ) is contained
in a single Gleason part.

Proof. This is just Schwarz’s lemma. If F : D → M is analytic and if m j =
F(ζ j ), ζ j ∈ D , j = 1, 2, then

ρ(m1, m2) = sup{| f ◦ F(ζ2)| : f ∈ H∞, ‖ f ‖∞ ≤ 1, f ◦ F(ζ1) = 0}
≤ sup{|g(ζ2)| : g ∈ H∞(D ), ‖g‖∞ ≤ 1, g(ζ1) = 0}
= ρ(ζ1, ζ2) < 1,

and m1 and m2 are in the same Gleason part.

Thus an analytic disc cannot pass through a one-point Gleason part. As we
have seen, each point of the Šilov boundary X comprises a single part, and
the disc D is a nondegenerate Gleason part and an analytic disc. So we are
searching for analytic structure in the remaining subset M\(X ∪ D), which is
a union of Gleason parts. Now, this set is not empty. Any accumulation point
m of the zeros of an infinite Blaschke product is a point in M\(X ∪ D). If the
zeros form an interpolating sequence, then this set of accumulation points is
homeomorphic to β�\�. Hence M\(X ∪ D) is very, very big.

A theorem from the general theory of logmodular algebras implies that each
Gleason part of M is either a one-point part or an analytic disc (see Hoffman
[1962b]). Because we shall ultimately obtain a more complete result in the
case of H∞, we shall not prove that general theorem. However, let us use it
to find some one-point parts in M\(X ∪ D). Suppose S(z) is a nonconstant
singular inner function. Then S(z) has roots Sα(z) for all α > 0 and ‖Sα‖ = 1.
This implies that

K = {m : S(m) = 0}
is a union of Gleason parts. Indeed if S(m) = 0, then

ρ(m, m ′) ≥ lim
α→0

|Sα(m ′)|,
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so that either ρ(m, m ′) = 1 or S(m ′) = 0. Because S−1 
∈ H∞, K 
= ∅, and
because |S| = 1 on X, K ⊂ M\(X ∪ D). The closure in C(K ) of H∞|K is
a uniform algebra A with maximal ideal space K. Then K contains a storng
boundary point for the algebra A (Chapter V, Exercise 10), and by the maximum
principle such a point cannot lie in an analytic disc for H∞|K . By the general
theorem quoted above, this means thatM\(X ∪ D) contains one-point Gleason
parts. Another route to this fact is given in Exercise 2.

One step in the argument above will be needed later. Recall that P(m) denotes
the Gleason part containing m ∈ M.

Lemma 1.2. Let m ∈ M and let g ∈ H∞ satisfy ‖g‖∞ ≤ 1 and g(m) = 0.
Suppose that for n = 2, 3, . . . there is a factorization

g = g(n)
1 g(n)

2 · · · g(n)
n

with g(n)
j ∈ H∞, ‖g(n)

j ‖∞ ≤ 1 and g(n)
j (m) = 0. Then g ≡ 0 on P(m).

Proof. For m ′ ∈ M, we have

|g(m ′)| ≤ lim
n→∞

n∏

j=1

|g(n)
j (m ′)| ≤ lim

n→∞(ρ(m, m ′))n,

so that g(m ′) = 0 if ρ(m, m ′) < 1.

The set MD of all mappings (continuous or not) from D into M is a compact
Hausdorff space in the product topology. In this topology a net (Fj ) has limit F
if and only if Fj (ζ ) → F(ζ ) for each ζ ∈ D , that is, if and only if f ◦ Fj (ζ ) →
f ◦ F(ζ ) for all f ∈ H∞ and all ζ ∈ D . Nets are forced upon us here because
MD is not a metric space. The notations (z j ) or (Fj ) for a net and {zn} for a
sequence will be used to distinguish nets from sequences. Our principal object
of study here is the set L ⊂ MD of maximal analytic discs in M. Maximal
means that the range L(D ) is contained in no larger analytic disc. It will turn
out that {αLz : z ∈ D, |α| = 1} is dense in L . This fact can be regarded as a
refinement of the corona theorem.

Nontrivial analytic maps into M\(X ∪ D) were exhibited in Chapter V by
the following reasoning. Let B(z) be an interpolating Blaschke product with
zeros S = {zn}. Then

inf
n

(1 − |zn|2)|B ′(zn)| = δ > 0.

Let m ∈ M\D be in the closure of S and let (z j ) be a subnet of S converg-
ing to m. Taking a finer subnet, we can be compactness suppose that (Lz j )

converges to a map Lm ∈ MD . Then Lm(0) = lim j Lz j (0) = m, and when
f ∈ H∞, f ◦ Lm(ζ ) = lim f ◦ Lz j (ζ ) is analytic on D . Moreover, Lm is not
a constant mapping, because

|(B ◦ Lm)′(0)| = lim |(B ◦ Lz j )
′(0)| = lim

j
(1 − |z2

j )|B ′(z j )| ≥ δ.
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That is as far as we went in Chapter V. Now let us study the mapping Lm more
carefully.

Because S is an interpolating sequence, its closure S̄ in M is homeomorphic
to β�, the Stone–Čech compactification of the positive integers. Consequently
any map from S into a compact Hausdorff space like MD can be uniquely
extended to a continuous map from S̄ to the same compact Hausdorff space
(see Chapter V, Theorem 1.4). For the map zn → Lzn this means Lm does not
depend on the choice of the subnet of {zn} converging to m. We have proved
the following:

Lemma 1.3. If S is an interpolating sequence and if m ∈ S̄, then there is a
unique nonconstant analytic map Lm ∈ MD such that whenever (z j ) is a net
in S coverging to m,

lim
j

Lz j = Lm .

To get more precise information about Lm we need two lemmas about
Blaschke products. The first lemma continues the theme of Chapter VII, Sec-
tion 5.

Lemma 1.4. Suppose B(z) is an interpolating Blaschke product with zeros
S = {zn}, and suppose

inf
n

(1 − |zn|2)|B ′(zn)| ≥ δ > 0.

There exist λ = λ(δ), 0 < λ < 1 and r = r (δ), 0 < r < 1 satisfying

lim
δ→1

λ(δ) = 1,(1.2)

lim
δ→1

r (δ) = 1,(1.3)

and having the following properties: The set B−1(�(0, r )) = {z : |B(z)| < r}
is the union of pairwise disjoint domains Vn, zn ∈ Vn, and

Vn ⊂ {z : ρ(z, zn) < λ}.(1.4)

B(z) maps each domain Vn univalently onto �(0, r ) = {w : |w| < r}. If
|w| < r , then

Bw(z) = B(z) − w

1 − w̄B(z)

is (a unimodular constant multiple of) an interpolating Blaschke product hav-
ing one zero in each Vn.

Proof. Let hn(ζ ) = B((ζ + zn)/(1 + z̄nζ )) = B ◦ Lzn (ζ ). Then ‖hn‖∞ =
1, hn(0) = 0, and |h′

n(0)| ≥ δ. By Schwarz’s lemma,

ρ

(
hn(ζ )

ζ
, h′

n(0)

)

≤ |ζ |,
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so that when |ζ | = λ = λ(δ) < δ,

|hn(ζ )|
|ζ | ≥ |h′

n(0)| − |ζ |
1 − |ζ ||h′

n(0)| ≥ δ − λ

1 − λδ
.

On |ζ | = λ this gives

|hn(ζ )| ≥ δ − λ

1 − λδ
λ = r = r (δ),(1.5)

and the argument principle shows that hn(ζ ) = w, |w| < r , has exactly one
solution in |ζ | < λ. Hence B(z) maps

Vn = Lzn (h−1
n (�(0, r )))

univalently onto �(0, r ), zn ∈ Vn , and (1.4) holds.
If there exists z ∈ Vn ∩ Vk, n 
= k, then by (1.4),

ρ(zn, zk) ≤ ρ(zn, z) + ρ(z, zk)

1 + ρ(zn, z)ρ(z, zk)
≤ 2λ

1 + λ2
.

Choosing λ = λ(δ) so that

λ <
2λ

1 + λ2
< δ(1.6)

thus ensures that Vn ∩ Vk = ∅, n 
= k. Also choosing λ so that λ = λ(δ) → 1
(δ → 1) and so that

δ − λ

1 − λδ
→ 1 (δ → 1),

we obtain

lim
δ→1

r (δ) = 1

in (1.5). Thus we have (1.2) and (1.3).
If |w| < r , then Bw(z) = (B(z) − w)/(1 − w̄B(z)) has one zero zn(w) in

each Vn and zn(w) is a holomorphic function of w. Let Aw(z) be the Blaschke
product having zeros zn(w). Then Bw = Awgw, ‖gw‖ ≤ 1. To prove Bw =
cAw, |c| = 1, we show |gw(0)| = 1. Now

|Bw(0)| = |gw(0)|
∞∏

n=1

|zn(w)|.

write

H (w) =
∞∏

n=1

z̄n

|zn| zn(w), |w| < r.



Sect. 1 analytic discs in M 397

This product converges on |w| < r because its partial products are bounded
and because it converges at w = 0. Also, since ‖gw‖ ≤ 1,

|H (w)| =
∞∏

n=1

|zn(w)| ≥ |Bw(0)| = |B(0) − w|
|1 − B(0)w| .(1.7)

Both sides of this inequality are moduli of functions analytic in w, and equality
holds at w = 0:

|H (0)| =
∏

|zn| = |B(0)|.
We can assume B(0) 
= 0. Then equality holds in (1.7) for all |w| < r , and
|gw(0)| = 1 except possibly when H (w) = 0, that is, when B(0) = w. How-
ever,

|gw(0)|−1 = |1 − B(0)w|
|B(0) − w| |H (w)|

is the modulus of a function meromorphic on |w| < r . Thus |gw(0)| = 1 for
all w and Bw(z) is unimodular constant times the Blaschke product Aw(z).

Since Bw(z) has the same zeros as Aw(z), Bw has no zeros outside
⋃

Vn ,
and so B−1(|w| < r ) = ⋃

Vn .
The zeros of Bw(z) are an interpolating sequence because, by Lemma 5.3

of Chapter VII, any sequence {ζn} with ρ(ζn, zn) < λ(δ) is an interpolating
sequence.

The second lemma employs a clever combinatorial argument due to W.
Mills.

Lemma 1.5. Let B(z) be a Blaschke product with distinct zeros {zn}. Then B
admits a factorization B = B1 B2 such that

i f B1(zn) = 0, then (1 − |zn|2)|B ′
1(zn)| ≥ |B2(zn)|;(1.8)

i f B2(zn) = 0, then (1 − |zn|2)|B ′
2(zn)| ≥ |B1(zn)|.(1.9)

Corollary 1.6. If B(z) is an interpolating Blaschke product with zeros {zn}
and if

δ(B) = inf
n

(1 − |zn|2)|B ′(zn)|,

then B has a factorization B = B1 B2 such that

δ(B j ) ≥ (δ(B))1/2, j = 1, 2.

Proof. The corollary is immediate from the lemma. If B1(zn) = 0, then by
(1.8),

(1 − |zn|2)|B ′(zn)| = (1 − |zn|2)|B ′
1(zn)||B2(zn)| ≤ {(1 − |zn|2)|B ′

1(zn)|}2

and δ(B1) ≥ (δ(B))1/2. By symmetry, we also have δ(B2) ≥ (δ(B))1/2.
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Proof of Lemma 1.5. Write

ak,n = log

∣
∣
∣
∣

zn − zk

1 − z̄k zn

∣
∣
∣
∣ , k 
= n; an,n = 0.

Then [ak,n] is a symmetric real matrix, ak,n = an,k , with zeros on the diagonal
and with absolutely summable rows. We claim there is a subset E of the positive
integers such that

(a) if n ∈ E , then
∑

k∈E

ak,n ≥
∑

k 
∈E

ak,n;

(b) if n 
∈ E , then
∑

k 
∈E

ak,n ≥
∑

k∈E

ak,n.

This will prove Lemma 1.5. If B1 has zeros {zn : n ∈ E} then by (a)

(1 − |zn|2)|B ′
1(zn)| =

∏

k∈E
k 
=n

∣
∣
∣
∣

zn − zk

1 − z̄k zn

∣
∣
∣
∣ ≥

∏

k 
∈E

∣
∣
∣
∣

zn − zk

1 − z̄k zn

∣
∣
∣
∣ = |B2(zn)|,

and (1.8) holds. Similarly, (1.9) follows from (b).
To establish (a) and (b), first suppose ak,n = 0 if k > N or n > N . Then

we have a finite problem and there is E ⊂ {1, 2, . . . , N } that maximizes the
function

h(E) =
∑

k∈E
n∈E

ak,n +
∑

k 
∈E
n 
∈E

ak,n.

Suppose n ∈ E and let F be the subset obtained by removing n from E. Then

h(F) = h(E) − 2
∑

k∈E

ak,n + 2
∑

k 
∈E

ak,n.

Since h(F) ≤ h(E), (a) holds; and since h(E) = h(E ′), where E’ is comple-
ment of E, (b) holds for the same reason.

For each N we have a subset EN ⊂ {1, 2, . . . , N } such that (a) and (b)
hold under the constraint k, n ≤ N . The space of subsets of � = {1, 2 . . . } is
compact in the product topology, in which a sequence {E j } has limit E if and
only if

n ∈ E ⇔ n ∈ E j , for all j ≥ j0(n).

(The correspondence E → χE , the characteristic function of E, makes the
space of subsets homeomorphic to the compact product space {0, 1}�.) Choose
a subsequence {EN j } of {En} which tends to a limit set E. Because

∑
k |an,k | <
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∞, we then have

∑

k∈E

ak,n −
∑

k 
∈E

ak,n = lim
j→∞

⎛

⎝
∑

k∈EN j

ak,n −
∑

k 
∈EN j
k≤N j

ak,n

⎞

⎠.

If n ∈ E , the limit is nonnegative, while if n 
∈ E , the limit is nonpositive.
Therefore (a) and (b) hold for the subset E.

We return to the analytic mapping Lm = lim Lz j , where (z j ) is a subnet of
the interpolating sequence S = {zn}, and lim z j = m.

Theorem 1.7. The mapping Lm is a one-to-one analytic mapping from D
onto P(m), the Gleason part containing m. For any r < 1 there is a Blaschke
product Br such that Br (m) = 0 and Br ◦ Lm is one-to-one on |ζ | < r . If (w j )
is any net in D converging to m, then

lim Lwi = Lm .

Proof. Let B(z) be the Blaschke product with zeros {zn}, and let

δ = δ(B) = inf
n

(1 − |zn|2)|B ′(zn)| > 0.

Then |(B ◦ Lm)′(0) = lim j |(B ◦ Lz j )
′(0)| ≥ δ. By Schwarz’s lemma, as in the

start of the proof of Lemma 1.4, B ◦ Lm is univalent on (B ◦ Lm)−1(|w| <

r (δ)). Since |B ◦ Lm(ζ )| ≤ |ζ |, this means B ◦ Lm and Lm are one-to-one on
|ζ | < r (δ).

Let r < 1. By (1.3) and Corollary 1.6, B(z) has a factorization B =
B1 B2 · · · BN with r (δ(Bk)) > r, k = 1, 2, . . . , N . We can replace (z j ) by a
subnet so that Bk(z j ) = 0 for some factor Bk not depending on z j . The above
argument then shows Bk ◦ Lm and Lm are one-to-one on |ζ | < r . This means
Lm is one-to-one on D .

By Lemma 1.1, Lm(D ) ⊂ P(m). We must show Lm maps D onto P(m).
Let m ′ ∈ P(m) so that ρ(m, m ′) < 1. By (1.2) and by Corollary 1.6, we can
assume that

ρ(m, m ′) < λ = λ(δ(B)),

and by (1.3) we can assume that |B(m ′)| < r (δ(B)). Hence by Lemma 1.4

B − B(m ′)
1 − B(m ′)B

is (a constant times) an interpolating Blaschke product with zeros z′
n , where

z′
n ∈ Vn . Then m ′ is in the closure of {z′

n} by Chapter IX, Lemma 3.3, and there
is a subnet {z′

n(i)} of {z′
n} converging to m ′. We claim

lim
i

zn(i) = m,(1.10)
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where zn(i) is the subnet of S determined by the rule z′
n(i) ∈ Vn(i). Let m ′′ be

any cluster point of zn(i). Then

ρ(m ′′, m ′) ≤ limρ(zn(i), z′
n(i)) ≤ λ(δ),

and by (1.6)

ρ(m, m ′′) ≤ λ(δ) + ρ(m, m ′)
1 + λ(δ)ρ(m, m ′)

≤ 2λ

1 + λ2
< δ(B).(1.11)

On the other hand, distinct cluster points m and m ′′ of S = {zn} must satisfy

ρ(m, m ′′) ≥ δ(B).(1.12)

This holds because there is a subset T ⊂ S whose closure contains m and not
m ′′. If BT is the Blaschke product with zeros T, then

ρ(m, m ′′) ≥ lim
zn 
∈T

|BT (zn)| ≥ δ(B).

Since (1.11) and (1.12) show m ′′ = m, (1.10) holds.
To summarize, we have

zn(i) → m, z′
n(i) → m ′, and zn(i) ∈ Vn(i).

There is ζi , |ζi | ≤ λ(δ), such that Lzn(i) (ζi ) = z′
n(i). We may suppose ζ1 →

ζ, |ζ | ≤ λ(δ). Then ρ(ζi , ζ ) → 0, while by Lemma 1.3, Lzn(i) → Lm . Con-
sequently,

Lm(ζ ) = lim
i

Lzn(i) (ζ ) = lim
i

Lzn(i) (ζi ) = lim
i

z′
n(i) = m ′,

and Lm(D ) = P(m).
If {wi } is any net in D converging to m, then lim B(wi ) = 0 and |B(wi )| <

r (δ(B)) for large i. By Lemma 1.4 there is n(i) such that wi ∈ Vn(i), for i large.
Since B is univalent on Vn(i),

ρ(wi , zn(i)) ≤ c|B(wi )| → 0.

Hence

ρ(Lwi (ζ ), Lzn(i) (ζ )) → 0, ζ ∈ D .(1.13)

In particular zn(i) → m, and by Lemma 1.3, Lzn(i) → Lm . Then (1.13) shows
that Lwi → Lm .

Incidentally, Theorem 1.7 leads to an interesting observation about the size
of M. If the Blaschke product corresponding to the interpolating sequence {zn}
satisfies

lim
n→∞(1 − |zn|2)|B ′(zn)| = 1,
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and if m ∈ M\D is in the closure of {zn}, then the map Lm is a homeomorphism
of D onto P(m) (see Exercise 8). Moreover, the mapping

f → f ◦ Lm(ζ )

is then an algebra isomorphism from H∞|P(m) onto H∞. This means that the
nowhere dense set P(m) is homeomorphic to M. Furthermore, P(m)\P(m)
also contains homeomorphic copies of M, and so on.

2. Hoffman’s Theorem

Hoffman proved that all analytic structure in M comes about in the manner
described in Section 1. In other words, every analytic disc in M\D has the form
Lm = lim Lz j , where (z j ) is a subnet of some interpolating sequence. In view
of the size and intractibility of M\D, this is a remarkable accomplishment.
Write

G = {m ∈ M : m is in the closure of some interpolating sequence}.
Exercise 2(d) provides a geometric glimpse of G. We know each m ∈ G lies in
an analytic disc. The key observation we must make is this: When m ∈ M\G,
the Gleason part P(m) is a singleton, P(m) = {m}. It follows by Lemma 1.1
that no nonconstant analytic mapping F : D → M can include m in its range.
Consequently, m lies in an analytic disc if and only if m ∈ G.

Our basic tool will be another factorization theorem for Blaschke products.
Let B(z) be a Blaschke product with zeros {zn}. For δ > 0, set

Kδ(B) =
∞⋂

n=1

{z : ρ(z, zn) ≥ δ}.

Theorem 2.1. For 0 < δ < 1 there are constants a = a(δ) and b = b(δ) such
that the Blaschke product B(z) has a nontrivial factorization B = B1 B2 such
that

a|B1(z)|1/b ≤ |B2(z)| ≤ 1

a
|B1(z)|b(2.1)

on Kδ(B). The factors B1 and B2 do not depend on δ.

Proof. We work in the upper half plane H . For z ∈ Kδ(B), we have

c(δ) log

∣
∣
∣
∣
z − z̄n

z − zn

∣
∣
∣
∣ ≤ 2yyn

|zn − z̄|2 ≤ log

∣
∣
∣
∣
z − z̄n

z − zn

∣
∣
∣
∣ ,

by the proof of Lemma VII. 1.2. We show there are constants C1 and C2 such
that every Blaschke sequence {zn} can be partitioned into two subsets S1 and
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S2 such that for z ∈ H ,

∑

S1

2yyn

|zn − z̄|2 ≤ C1 + C2

∑

S2

2yyn

|zn − z̄|2 ,(a)

∑

S2

2yyn

|zn − z̄|2 ≤ C1 + C2

∑

S1

2yyn

|zn − z̄|2 .(b)

Taking B1 with zeros S1 and B2 with zeros S2, we obtain (2.1) with a =
exp C2/C1 and b = c(δ)/C2, when z ∈ Kδ(B).

Choose λ, 0 < λ < 1, and form strips Tk = {z : λk+1 ≤ y < λk}, k an inte-
ger. Write the zn in Tk as the (possibly two-sided) sequence zk, j , j an integer,
so that x j ≤ xl if j < l. (The Blaschke condition ensures that only finitely
many zn’s from Tk can tie.) Put zk, j ∈ S1 if j is odd, zk, j ∈ S2 if j is even.

To prove (a) and (b) first consider the special case

yn = λk+1, all zn ∈ Tk .

Then we have

∣
∣
∣
∣
∣

∑

S1

−
∑

S2

∣
∣
∣
∣
∣
≤ 2

λ

(1 + λ)

(1 − λ)
(2.2)

for all z ∈ H . Indeed, when z is fixed, the terms from Tk have alternating signs
and moduli

2yλk+1

(x − xk, j )2 + (y + λk+1)2
.

These moduli are monotone in |x − xk, j | and tend to zero at infinity. Thus the
contribution from Tk to the left side of (2.2) consists of a two-sided alternating
series, which is dominated by the largest modulus of its terms. Hence

∣
∣
∣
∣
∣

∑

S1∩Tk

−
∑

S2∩Tk

∣
∣
∣
∣
∣
≤ 2yλk+1

(y + λk+1)2
.

Summation over k now gives (2.2), because if λn+1 < y ≤ λn , then

2yλk+1

(y + λk+1)2
≤ 2

λ

λk−n

(1 + λk−n)2

and

∞∑

j=−∞

λ j

(1 + λ j )2
=

∞∑

j=0

+
−1∑

j=−∞
≤ 1

1 − λ
+ λ

1 − λ

= 1 + λ

1 − λ
.
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Turning to the general case, we write z′
k, j = xk, j + iλk+1 and compare the

sums to those for the adjusted sequences S′
1 and S′

2. When y > 0 and zn ∈ Tk ,

2yyn

(x − xn)2 + (y + yn)2
≤ 1

λ

2yλk+1

(x − xn)2 + (y + λk+1)2

≤ 1

λ2

2yyn

(x − xn)2 + (y + yn)2
,

so that for p = 1, 2

∑

Sp

≤ 1

λ

∑

S′
p

≤ 1

λ2

∑

Sp

.

With (2.2), this yields

∑

S1

≤ 1

λ2

(1 + λ)

(1 − λ)
+ 1

λ2

∑

S2

and
∑

S2

≤ 2

λ2

(1 + λ)

(1 − λ)
+ 1

λ2

∑

S1

,

which are (a) and (b).

Theorem 2.2. Suppose m ∈ M\G. Let f ∈ H∞, ‖ f ‖∞ ≤ 1. If f (m) = 0
then f = f1 f2, f j ∈ H∞, with ‖ f j‖∞ ≤ 1 and f j (m) = 0.

Proof. First let us reduce the problem to the critical case where f (z) is a
Blaschke product with simple zeros. Write f = Bg where g ∈ H∞ has no
zeros and B(z) is a Blaschke product. If g(m) = 0, then f = (Bg1/2)(g1/2)
gives the desired factorization. So we can assume f (z) = B(z). Write B =
B1(B2)2 where B1, and B2 are Blaschke products and B1 has simple zeros.
If B2(m) = 0, then B = (B1 B2)(B2) and we are done. Thus we can assume
f (z) = B(z) is a Blaschke product with simple zeros.

Factor B = B1 B2 in accordance with Theorem 2.1. We may suppose
B1(m) = 0 but B2(m) 
= 0. Then by (2.1) m is not in the closure of the set
Kδ(B), for any δ > 0. This means m is in the closure of

S = {zn},
the zero sequence of B. Indeed, if (z j ) is a net in D converging to m, then by
Theorem 2.1 there are zn( j), B(zn( j)) = 0, such that ρ(z j , zn( j)) → 0, and this
implies that zn( j) also converges to m. The factorization B = B1 B2 splits S into
S1 ∪ S2, where Sj is the zero sequence for B j . Since B2(m) 
= 0, m is not in
the closure of S2. Therefore m lies in the closure of S1.

Now factor B1 = B1,1 B1,2 using Lemma 1.5. As before we can suppose
B1,1(m) = 0, B1,2(m) 
= 0. Fix ε < |B1,2(m)|. Then m is not in the closure of
{z : |B1,2(z)| < ε}, but m is in the closure of S1. Hence

T = {zn ∈ S1 : |B1,2(zn)| ≥ ε}
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captures m in its closure. But Lemma 1.5 shows that T is an interpolating
sequence, because

(1 − |zn|2)|B1,1(zn)| ≥ ε, zn ∈ T .

Therefore m lies in the closure of an interpolating sequence, contrary to the
hypothesis m ∈ M\G.

Corollary 2.3. If m ∈ M\G, then the Gleason part P(m) reduces to the
singleton {m}.
Proof. Suppose m ′ 
= m. We show m ′ 
∈ P(m). There is g ∈ H∞, ‖g‖∞ = 1,
with g(m) = 0 but g(m ′) 
= 0. For each n = 2, 3, . . . , Theorem 2.2 gives a
factorization

g = g(n)
1 g(n)

2 . . . g(n)
n ,

where g(n)
j ∈ H∞, ‖g(n)

j ‖∞ = 1, and g(n)
j (m) = 0. Hence m ′ 
∈ P(m) by

Lemma 1.2.

To summarize, we now have several characterizations of points in M\G.

Theorem 2.4. Let m ∈ M. The following are equivalent:

(i) The Gleason part P(m) is trivial.
(ii) If (z j ) is a net in D converging to m, then lim Lz j is a constant map

L(ζ ) = m.
(iii) m 
∈ G.
(iv) If f ∈ H∞, ‖ f ‖∞ ≤ 1, and f (m) = 0, then

f = f1 f2,

with f j ∈ H∞, ‖ f j‖∞ ≤ 1, and f j (m) = 0.
(v) The ideal Jm = { f ∈ H∞ : f (m) = 0} is the closure of its own square

J 2
m = {∑n

j=1 f j g j : f j , g j ∈ Jm}.
Conditions (iv) and (v) are the strongest and weakest ways, respectively, of

saying that Jm is equal to its own square.

Proof. Clearly (i) implies (ii), because any limit point of Lz j in MD is an
analytic map whose range must be contained in P(m) by Lemma 1.1. Lemma
1.3 shows that (ii) imples (iii). By Theorem 2.2, (iv) follows from (iii), and by
the proof of Corollary 2.3, (iv) implies (i). So except for (v), we have a logical
circle.

Trivially, (v) follows from (iv). To complete the proof, we show (v) implies
(iii). If (iii) fails then there is an analytic disc Lm with Lm(0) = m, and there
is a Blaschke product B(z) ∈ Jm such that (B ◦ Lm)′(0) 
= 0. But then the
continuous linear functional

f → ( f ◦ Lm)′(0)

annihilates J 2
m , so that J 2

m cannot be dense in Jm .
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We can now determine all the analytic structure in M. Recall that when
m ∈ G, there is an analytic disc Lm : D → P(m), Lm(0) = m. By Theorem
1.7 the map Lm is uniquely determined by m in the sense that whenever (wi )
is a net in D converging to m,

Lm = lim Lwi .

Theorem 2.5. Suppose F : D → M is a nonconstant analytic map. Let m =
F(0). Then m ∈ G and there is an analytic function τ : D → D , τ (0) = 0,
such that

F(ζ ) = Lm ◦ τ (ζ ), ζ ∈ D .(2.3)

In particular, if L is an analytic disc with range P(m), m = L(0), then there
is a constant α, |α| = 1, such that

L(ζ ) = Lm(αζ ), ζ ∈ D .

Proof. By Lemma 1.1, P(m) is nontrivial, because F is analytic but not
constant. Hence m ∈ G by Theorem 2.4, and we have the one-to-one analytic
mapping Lm . Now use (2.3) to define the function τ : D → D , τ (0) = 0. Our
task is to show that τ is analytic. For any r > 1 there is, by Theorem 1.7, a
Blaschke product Br (z) such that hr (ζ ) = Br ◦ Lm(ζ ) is univalent on |ζ | < r .
But then by (2.3)

τ (ζ ) = h−1
r ◦ Br ◦ F(ζ ), |ζ | < r,

so that τ is analytic on hr (|ζ | > r ). Since hr (0) = 0 and ‖hr‖∞ ≤ 1, this means
τ is analytic on |ζ | < r . Letting r → 1, we see that τ is analytic on D .

If F maps D one-to-one onto P(m), then τ is a univalent mapping from D
onto D with τ (0) = 0, so that by Schwarz’s lemma, τ (ζ ) = αζ , a constant,
|α| = 1.

Corollary 2.6. In the topology of MD , the set of analytic maps from D into
D is dense in the set of analytic maps from D into M. The set of maps

{

αLz(ζ ) = α
ζ + z

1 + z̄ζ
: z ∈ D, |α| = 1

}

is dense in the set L of maximal analytic discs in M.

Proof. Let F ∈ MD be an analytic map. If F is constant, the corona theorem
yields a net of constants in D converging to F. If F is not constant, then F
has the form (2.3) with Lm = lim Lzi . Then Fi (ζ ) = Lzi ◦ τ (ζ ) defines a net
converging to F.

If L is a maximal analytic disc in M, then L(D ) = P(m), m = L(0), and
there is α, |α| = 1, and a net (z j ) converging to m such that

L(ζ ) = Lm(αζ ) = lim
j

Lz j (αζ ) = α lim
j

L ᾱz j (ζ ).
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An equivalent formulation of Theorem 2.5, without the language of maximal
ideals, is given in Exercise 7.

3. Approximate Dependence between Kernels

Let {z j } be a sequence in the upper half plane. Assume {z j } is separated,
which means there is α > 0 such that

|z j − zk | ≥ αy j , k 
= j.

Then {z j } is an H∞ interpolating sequence if and only if

sup
Q

∑

z j ∈Q

y j

�(Q)
≤ A < ∞,(3.1)

where Q ranges through all squares of the form Q = {a ≤ x ≤ a + �(Q)}, 0 <

y ≤ �(Q)}. In this section and in Section 4 we prove that (3.1) holds if the
points {z j } can be separated, in either of two ways, by bounded harmonic
functions. These results generalize the theorem from Chapter VII, Section 4,
that a harmonic interpolating sequence is an H∞ interpolating sequence. The
proofs of these results are of independent interest, because each proof gives
a quantative formulation of Fatou’s theorem. The key idea, in Lemma 3.3, is
that when (3.1) fails the Poisson kernel for some point z j can be approximated
by a convex combination of the kernels representing the other points zk .

To begin we observe that if (3.1) fails for a separated sequence {z j } then
(3.1) also fails for a subsequence having a particularly convenient distribution.

Lemma 3.1. Let N be a positive integer, N ≡ 1 (mod 3). Let {z j } be a
separated sequence

|z j − zk | > αy j , k 
= j,(3.2)

with α > 0. Then {z j } can be partitioned into n0 = n0(α, N ) disjoint sub-
sequences Y1, Y2, . . . , Yn0

having the following properties: To each z j there
corresponds an interval I j with |I j | = 3N m, m an integer, such that

3N y j ≤ |I j | < 3N 2 y j(3.3)

and

dist(x j , ∂I j ) ≥ 1

3
|I j |, x j = Re z j ∈ I j .(3.4)

If z j and zk belong to the same subsequence Yi , and if I j ∩ Ik 
= Ø, then

I j ⊂ Ik or Ik ⊂ I j ,(3.5)

and if I j ⊂ Ik , then

|I j | ≤ N−3|Ik |(3.6)
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and I j is a member of the unique partition of Ik into |Ik |/|I j | subintervals of
length |I j |.

Two intervals I j and Ik from the same Yi are illustrated in Figure X.1.

Figure X.1. Two intervals from the same Yi .

Admittedly, this lemma is technical, and some readers may want to postpone
studying its proof until after seeing its applications. Conditions (3.3) and (3.4)
ensure that, for N large, �\I j has small harmonic measure at z j . Condition
(3.5) enables us to fit the points z j neatly into generations, while condition
(3.6) implies that when I j ⊂ Ik , the Poisson kernel for zk is almost constant
on I j .

Proof. Consider all intervals of the form

Jk,m = (k N m, (k + 3)N m),

with k and m integers. For fixed m the middle thirds of the Jk,m form a paving
of �. To each z j we let I j be that unique Jk,m such that x j ∈ [(k + 1)N m, (k +
2)N m), the middle third of Jk,m , and such that N m−2 < y j < N m−1. Then (3.3)
and (3.4) hold.

Divide the family {Jk,m} of intervals into three subfamilies according to
whether k is congruent to 0, 1, or 2 (mod 3). Within each subfamily the intervals
of each given length form a partition of �. Moreover, if Jp,n and Jq,m are any
two intervals from the same subfamily, and if |Jq,m | < |Jp,n|, then either

Jq,m ⊂ Jp,n or Jq,m ∩ Jp,n = ∅.

This holds because N ≡ 1 (mod 3). Write pN n = k N m, k = pN n−m . Since
n > m (because |Jp,n| > |Jq,m |), k is an integer. And since N n−m ≡ 1 (mod 3),
we have k ≡ p (mod 3). Hence pN n is an endpoint of an interval Jk,m from
the same subfamily. The same thing happens at the other endpoint (p + 3)N n

of Jp,n and so Jq,m cannot cross either end of Jp,n .
Divide the points {z j } into three subsequences according to whether I j =

Jk,m with k congruent to 0, 1, or 2 (mod 3). For z j and zk in the same subse-
quence we now have

I j ⊂ Ik, Ik ⊂ I j , or I j ∩ Ik = ∅,

and if I j ⊂ Ik , then I j occurs in the partition of Ik into subintervals of length
|I j |.

To get (3.6) we use the separation (3.2) to further partition {z j }. In
the hyperbolic metric, all rectangles of the form Rk,n = {k N n < x < (k +
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3)N n, 3N n−5 < y ≤ 3N n−1} are congruent. By (3.2) each such rectangle con-
tains at most n1 = n1(α, N ) sequence points z j . Partition each of our three sub-
sequences into n1 subsequences so that every rectangle Rk,n contains at most
one point from each subsequence. We then obtain n0 = 3n1, subsequences
Y1, . . . , Yn0

for which (3.5) and (3.6) hold.

By (3.5) the points z j in each subsequence Yi , and their corresponding inter-
vals I j , fit naturally into generations. When z j , zk ∈ Yi , we say zk ∈ G1(z j ),
and Ik ∈ G1(I j ), if Ik � I j and Ik is maximal. Successive generations, as al-
ways, are defined inductively:

G p(I j ) =
⋃

G p−1(I j )

G1(Ik).

Lemma 3.2. Suppose {z j } is a sequence of points satisfying (3.2). Let N be
given and let Y1, Y2, . . . , Yn0

, n0 = n0(α, N ), be the subsequences given by
Lemma 3.1. Let 0 < γ < 1 and let r be a positive integer. Then there exists
A = A(α, N , γ, r ) such that if (3.1) fails with constant A, that is, if

sup
Q

∑

z j ∈Q

y j

l(Q)
> A,

then there is a subsequence Yi and a point z j ∈ Yi such that

∑

Gr (I j )

|Ik |
|I j | > γ.

In a quantative way, this lemma says that to establish (3.1) it is enough to
work with the special sequences Yi .

Proof. If the contrary holds, then for every Yi and for every z j ∈ Yi , induction
gives

∑

Gq (I j )

|Ik |
|I j | ≤ γ n,

when nr ≤ q < (n + 1)r . Consequently,

∑

Ik ⊂I j
zk ∈Yi

|Ik |
|I j | ≤ r

1 − γ
.

Summing over the Yi then yields

∑

Ik⊂I

|Ik |
|I | ≤ n0r

1 − γ
,

and since yk/|Ik | is bounded above and below, this proves that (3.1) holds with
some constant A = A(α, N , γ, r ).
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Let N be large. Then by (3.3) and (3.4) I j contains most of the mass of the
Poisson kernel Pj corresponding to z j

∫

�\I j

Pj (t)dt ≤ 2

π

∫

t>N y j /3

y j

t2 + y2
j

dt ≤ c1

N
.

Partition I j into N 3 subintervals I j,l of length |I j,l | = N−3|I j | ≤ N−1 y j , and
form the step function

K j (t)
N 3∑

l=1

(

inf
I j,l

Pj

)

χI j,l (t).

Then K j (t) ≤ Pj (t) and K j constant on each Ik ∈ ⋃
Gq (I j ). If N is large,

‖Pj − K j‖1 is small,

‖Pj − K j‖1 ≤
∫

�\I j

Pj (t) dt +
N 3∑

l=1

∫

I j,l

(

Pj (t) − inf
I j,l

Pj

)

dt

≤ c1

N
+ 2

∫ ∞

0

(
Pj (t) − Pj

(
t + y j

N

))
dt ≤ c2

N
.

Fix ε > 0 and choose N = N (ε) so that

‖Pj = −K j‖1 < ε/8(3.7)

for each z j . See Figure X.2.

Figure X.2. The kernels Pj and K j .

Lemma 3.3. Suppose {z j } is a sequence of points satisfying (3.2). For ε >

0 and for N = N (ε), let Y1, Y2 . . . , Yn0
, n0 = n0(α, N ) be the subsequences
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given by Lemma 3.1. There exist β = β(ε), 0 < β < 1, and a positive integer
p = p(ε) such that if

∑

G p(I j )

|Ik |
|I j | ≥ β(3.8)

for some point z j ∈ Yi , then there exist convex weight λk, 0 ≤ λk < 1,
∑

λk =
1 such that

‖Pj − ∑
λk Pk‖1 < ε,(3.9)

λk = 0 if zk 
∈ G1(z j ) ∪ . . . ∪ G p(z j ),(3.10)

and

λk ≤ b|Ik |/|I j |,(3.11)

where b = b(N ) is a constant.

Proof. We are going to find weights λk satisfying (3.10) and (3.11) such that

0 ≤
∑

λk Kk ≤ K j

and such that

‖K j −
∑

λk Kk‖1 < ε/8.(3.12)

Replacing λk by λk/
∑

λi and using (3.7), we then obtain convex weights for
which we have (3.9)–(3.11).

Set f0(t) = K j (t). Then f0 has constant value f0(Ik) on each first generation
interval Ik ∈ G1(I j ). These intervals are disjoint and Kk is supported on Ik

Set λk = f0(Ik)/‖Kk‖∞, zk ∈ G1(z1), and f1 = f0 − ∑
G1λk Kk . Then 0 ≤

f1 ≤ f0, and f1 has constant value f1(Ik) on each Ik ∈ G2(I j ). Repeat the
construction using f1 in place of f0 and continue through p generations. At
stage q, fq−1 has constant value fq−1(Ik) on each Ik ∈ Gq (I j ), and we set

λk = fq−1(Ik)/‖Kk‖∞, zk ∈ Gq (z j )

fq = fq−1 −
∑

Gq (I j )

λk Kk = K j −
q∑

r=1

∑

Gr (I j )

λk Kk .

Then 0 ≤ fq ≤ fq−1 ≤ f0. See Figure X.3. By (3.4) we have fq−1(Ik) ≤
‖ f0‖∞ ≤ c1/|I j | while by (3.3) and (3.4), ‖Kk‖∞ ≥ c2/|Ik |. Hence λk ≤
b|Ik |/|I j | and (3.11) holds. We have (3.10) because the process is stopped
when f p has been constructed.

It remains to estimate‖K j − ∑
λk Kk‖1 = ∫

f p dt . Since‖Kk‖∞ ≥ c2/|Ik |,
(3.7) yields

∫
Kk

‖Kk‖∞
dt ≥ (1 − ε)|Ik |

c2

= (1 − δ)|Ik |,
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Figure X.3. For each Ik ∈ Gq , λk Kk ≤ fq−1(Ik ), but
∫

Ik
λk Kkdt ≥ δ

∫
Ik

fq−1dt .

with 0 < δ < 1. Consequently, when Ik ∈ Gq we have
∫

fq dt = |Ik | fq−1(Ik) − fq−1(Ik)

∫
Kk

‖Kk‖∞
dt

≤ δ|Ik | fq−1(Ik) = δ

∫

Ik

fq−1 dt.

Let E0 = I j , Eq = ⋃
Gq

Ik, q = 1, 2, . . . , p. Then E0 ⊃ E1 ⊃ . . . ⊃ E p, and

induction yields
∫

E p

f p dt ≤ δ

∫

E p

f p−1 dt ≤ δ

∫

E p−1

f p−1 dt

≤ δ p
∫

E0

f0 dt ≤ δ p.

Choose p so that δ p < ε/16. Recall that ‖ f p‖∞ ≤ ‖ f0‖∞ ≤ c1/|I j |, where c1

depends only on ε. Our hypothesis is that |E p|/|I j | ≥ β, for some β = β(ε)
yet to be determined. Now choose β = β(ε) so that (1 − β)c1 < ε/16. Then
we obtain ‖ f0‖∞|I j\E p| < ε/16 and

∫
f p dt ≤ δ p +

∫

I j\E p

f p dt ≤ δ p + ‖ f0‖∞|I j\E p| < ε/8,

so that (3.12) holds.

Theorem 3.4. Let {z j } be a sequence in the upper half plane. Assume there
are real valued harmonic functions {u j (z)} such that

(i) ‖u j‖∞ ≤ 1,
(ii) u j (z j ) ≥ δ > 0,

(iii) u j (zk) ≤ 0, k 
= j ,

where δ > 0 is independent of j. Then {z j } is an H∞ interpolating sequence.

The hypothesis of the theorem is reminiscent of the condition

inf
j

∏

k;k 
= j

∣
∣
∣
∣
z j − zk

z j − z̄k

∣
∣
∣
∣ = δ > 0
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characterizing interpolating sequences, but there seems to be no direct deriva-
tion of this condition from the theorem’s hypothesis. Note that the theorem
generalizes Theorem 4.2 of Chapter VII.

Proof. Clearly, the points are separated. The bounded function exp(u j + i ũ j )
separates z j from each other zk . We claim (3.1) holds. That will prove the
theorem. If (3.1) fails, then by Lemmas 3.2 and 3.3 there is a point z j and there
are weights λk ≥ 0, λ j = 0, such that ‖Pj − ∑

λk Pk‖1 < δ. But then

δ ≤ u j (z j ) −
∑

λku j (zk) =
∫

u j (Pj −
∑

λk Pk) dt

≤ ‖u j‖∞‖Pj −
∑

λk Pk‖1 < δ,

a contradiction.

Lemma 3.3 and Theorem 3.4 are also true with approximate identities more
general than the Poisson kernel (see Exercise 12).

4. Interpolating Sequences and Harmonic Separation

We continue the discussion of the preceding section. Our objective is another
characterization of interpolating sequences.

Theorem 4.1. Let {z j } be a sequence in the upper half plane. Then {z j } is
an interpolating sequence if disjoint subsets of {z j } have disjoint closures in
the maximal ideal space M of H∞.

Before getting into its proof, let us see what this theorem means. Notice
that the converse of the theorem is trivial. Is S and T are disjoint subsets of
an interpolating sequence, then there is f ∈ H∞ such that f (z j ) = 0 when
z j ∈ S and f (z j ) = 1 when z j ∈ T . With respect to M, the closures of S and
T lie in the disjoint closed sets { f = 0} and { f = 1} respectively. If we make
the additional assumption that the closure K of {zn} in M is a hull (i.e., if
m ∈ M\K , there is f ∈ H∞ such that f (m) 
= 0 but f ≡ 0 on K), then the
theorem follows from a general result of Šilov and Exercise 8 of Chapter VII
(see Hoffman [1962a]).

As we saw in Chapter V, M is homeomorphic to a weak-star compact subset
of the dual space (L∞)∗, and under that homeomorphism z j corresponds to
its Poisson kernel Pj . Hence the hypothesis of the theorem is that disjoint
subsets of {Pj } have disjoint weak-star closures in (L∞)∗. This hypothesis can
be reformulated two ways. First, it means that the weak-star closure of {Pj }
in (L∞)∗ is homeomorphic to β�, the Stone-Čech compactification of the
integers. Equivalently, the closure of {z j } in M is homeomorphic to β�. Thus
{z j } is an interpolating sequence if and only if its closure inM is homeomorphic
to β�.
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Secondly, every basic weak-star open subset V of (L∞)∗ is defined by a
real number α and by finitely many functions u1, u2, . . . , uM ∈ L∞ in the
following way:

V = Vα = {ϕ ∈ (L∞)∗ : ϕ(um) < α, 1 ≤ m ≤ M}.

Let S and T be subsets of {Pj } having disjoint weak-star closures in (L∞)∗. Each
point ϕ ∈ S̄, the weak-star closure of S, has a neighborhood Vα such that Vα ∩
T̄ = ∅. Since T̄ is compact there is β > α such that Vβ ∩ T̄ = ∅. Sinceϕ(1) =
1 when ϕ ∈ S̄ ∪ T̄ , we can take α = −1 and β > 1 by replacing each um by
aum + b, a and b constants. Covering S̄ by finitely many such neighborhoods

V (n)
−1 , 1 ≤ n ≤ K , we arrive at the following equivalent formulation of the

hypothesis:
Whenever S and T are disjoint subsets of {z j }, there are {u(n)

m } ∈ L∞, 1 ≤
n ≤ K , 1 ≤ m ≤ M such that

inf
n

sup
m

u(n)
m (z j ) ≤ −1 i f z j ∈ S,

inf
n

sup
m

u(n)
m (z j ) > +1 i f z j ∈ T .

(4.1)

Taking K = M = 1 in (4.1), we see that Theorem 4.1 also generalizes Theorem
4.2 of Chapter VII. Roughly speaking, Theorem 4.1 says that a sequence
satisfies (3.1) and (3.2) if any reasonable form of separation is possible with
bounded harmonic functions.

The proof of the theorem will focus on the concrete condition (4.1). It will
be crucial that the numbers K , M , and

B = sup
n,m

‖u(n)
m ‖∞

can be chosen not to depend on the subsets S and T of {z j }.
Lemma 4.2. If disjoint subsets of {z j } have disjoint closures in M, then (4.1)
holds with K, M, and B = supn,m ‖u(n)

m ‖∞ not depending on the subsets S and
T of {z j }.
Proof. We can suppose T = {z j }\S. The set L of all subsets S of {z j } is a
compact space in the product topology, in which a neighborhood V of a subset
S0 is determined by finitely many indices j1, j2, . . . , js by the rule

V = V (S0; j1, j2, . . . , js) = {S ∈ L : z jl ∈ S ⇔ z jl ∈ S0, 1 ≤ l ≤ s}.

For K , M , and B positive integers, let EK ,M,B = {S ∈ L : (4.1) holds with
bounds K , M , and B}. Then L = ⋃

EK ,M,B , and by normal families each set
EK ,M,B is closed in the product topology of L . By the Baire category theo-
rem, some EK ,M,B contains an open set V (S0; j1, j2, . . . , js). By the definition
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of the product topology this means that except for the finitely many points
z j1, z j2, . . . , z js , we have (4.1) with bounds on K , M , and B that do not
depend on the subsets S and T. Adjoining finitely many additional func-
tions u(n)

m to separate z j1, z j2, . . . , z js , we then obtain (4.1) with uniform
bounds.

We prove Theorem 4.1 using Lemma 3.3 and an iteration. Afterward we
shall indicate how an alternate proof can be based on Theorem 6.1 of Chapter
VIII.

Proof of Theorem 4.1. By Lemma 4.2 the points z j are separated, and (3.2)
holds withα = α(B). The problem now is to derive the Carleson condition (3.1)
from (4.1). Let ε = (4BK )−1, and take N = N (ε), p = p(ε), and β = β(ε)
in accordance with Lemma 3.3. Here is the strategy. If (3.1) fails, then a
subsequence Yi contains a point z0 such that

∑

Gr (z0)

|Ik |
|I0| > γ

with r = 2(BK + 1)p and with 1 − γ very small. This will mean that we have
(3.9) for z j in a large portion of Gq for a large number of indices q. When the
subsets S and T are chosen properly, this will contradict Lemma 4.2.

If there were ρ < 1 and q ≤ 2BK p such that for all Yi , and all z0 ∈ Yi

∑

Gq (z0)

⎧
⎨

⎩
|I j |
|I0| :

∑

G2 p(z j )

|Ik |
|I j | < β

⎫
⎬

⎭
> ρ,(4.2)

then

∑

Gq+2p(z0)

|Ik |
|I0| < ρβ + (1 − ρ)

for all z0 in all Y j . By Lemma 3.2 we should then have (3.1).
Assume (4.2) fails for a fixed point z0 ∈ Yi , for all q ≤ 2BK p and for ρ < 1

to be determined. Choose subsets S and T of {z j } so that z0 ∈ T and so that
for sp < q ≤ (s + 1)p, s ≥ 0, G p(z0) = Gq ⊂ S if s is even and Gq ⊂ T if s
is odd. Thus we alternate between S and T after every p generations.

Note that (4.1) is unchanged if we permute the indices {1, 2, . . . , K } or if,

for any fixed n, we permute the set of functions {u(n)
1 , u(n)

2 , . . . , u(n)
M }. So we can

assume u(n)
1 (z0) > 1 for 1 ≤ n ≤ K . Let v = ∑K

n=1 u(n)
1 . Then ‖v‖∞ ≤ BK ,

but v(z0) ≥ K . By Lemma 3.3 there are convex weights λ j ≥ 0 such that

p∑

1

∑

Gq (z0)

λ jv(z j ) > K − εBK = K − 1

4
.
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Since |v(z j )| ≤ BK , Chebychev’s inequality (for the measure
∑

λ jδz j ) then
yields

p∑

1

∑

Gq (z0)

{λ j : v(z j ) > K − 1
2
} ≥ 1

4BK
.

Then by (3.11) there is q1, 1 ≤ q1 ≤ p, and there is E1 ⊂ Gq1
, such thatv(z j ) ≥

K − 1
2

on E1 and such that

∑

E1

|I j |
|I0| ≥ 1

bp

1

4BK
= δ1,

where b is the constant in (3.11). Assume (4.2) fails with 1 − ρ < δ1/2. Then
there is F1 ⊂ E1 such that

∑

F1

|I j |
|I0| ≥ 1

2
δ1,

and for each z j ∈ F1

∑
G2p(z j )

|Ik |/|I j | ≥ β.

For z j ∈ F1 ⊂ S, we have (3.9) with weights λk attached only to points in
G p+1 ∪ · · · ∪ G2p ⊂ T , because if q1 < p we still have (3.8) when we delete
G1(z j ) ∪ · · · ∪ G p−q1(z j ). (It is for this reason that 2p occurs inside (4.2).)

Fix z j ∈ F1. Then z j ∈ S and we can permute the indices {1, 2, . . . , K }
so that u(1)

1 (z j ) < −1. This permutation depends on the point z j ∈ F1, but
that does not harm what we are going to do, because distinct z j ∈ F1 have

disjoint generations
⋃

Gq (z j ). set v′ = v − u(1)
1

∑K
2 u(n)

1 . Then ‖v′‖∞ < BK
but v′(z j ) > K + 1

2
. We have convex weights λk such that

2p−q1∑

p−q1+1

∑

Gq (z j )

λkv
′(zk) > K + 1

4
,

and Chebychev’s inequality now yields

2p−q1∑

p−q1+1

∑

Gq (z j )

{λk : v′(zk) > K } ≥ 1

4BK
.

Arguing as before using (3.11), we have q1(z j ), p < q1(z j ) ≤ 2p, and
E1(z j ) ⊂ Gq1(z j ) such that v′(zk) > K on E1(z j ) and such that

∑

E1(z j )

|Ik |
|I j | ≥ δ1.
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Summing over F1, we find there is an index q2, p < q2 ≥ 2p, and a set
E2 ⊂ Gq2

such that

∑

E2

|Ik |
|I0| ≥ δ1

p

∑

F1

|I j |
|I0| ≥ δ2

1

2p
= δ2,

and such that for each zk ∈ E2v
′(zk) > K (after a suitable permutation of

{1, 2, . . . , K }). We assume (4.2) fails with 1 − ρ < δ2/2. Then we have F2 ⊂
E2 such that

∑

F2

|Ik |
|I0| ≥ δ2

2

and such that for each zk ∈ F2,
∑

G2p(zk ) |I j |/|Ik | ≥ β.

Moreover, since F2 ⊂ T , for each zk ∈ F2 we can permute the set

{u(1)
1 , u(1)

2 , . . . , u(1)
m } so that u(1)

1 (zk) > 1. Then v(zk) = ∑k
n=1 u(n)

1 (zk) > K +
1. If (4.2) fails with 1 − ρ small enough, we can repeat the above argument
replacing z0 by each zk ∈ F2 and obtain a set F4 ⊂ Gq4

⊂ T such that

∑

F4

|I j |
|I0| ≥ 1

2
δ4

for some δ4 = δ4(δ2, p) and such that (after suitable permutations of u(n)
m )

v(z j ) > K + 2, z j ∈ F4.
Now if (4.2) fails with 1 − ρ extremely small, we can do the above ar-

gument (B − 1)K times. We then reach a point zk for which, after the
appropriate permutations of {u(n)

m }, v(zk) > BK . This contradiction proves
Theorem 4.1.

To derive Theorem 4.1 from Theorem 6.1 of Chapter VIII, partition the top
half of each dyadic square Q = {k2−n ≤ x ≤ (k + 1)2−n, 0 < y ≤ 2−n} into
22N−1 small squares Sj of side 2−n−N , If B = supm,n ‖u(n)

m ‖∞ is the bound
guaranteed by Lemma 4.2, choose N so that

sup
z,w∈Sj

|u(z) − u(w)| ≤ 1

2
(4.3)

whenever u(z) is harmonic and ‖u‖∞ ≤ B.

Fix a dyadic square Q. The first generation G1 = {S(1)
j } consists of those

small squares Sj ⊂ Q such that S(1)
j contains a sequence point z(1)

j but such

that S(1)
j lies below no other small square in Q having the same property. Choose

one sequence point z(1)
j in each S(1)

j and let F1 = {z(1)
j }. Let Q(1)

j be the dyadic

square having base the projection of S(1)
j onto {y = 0}. Then the dyadic squares

Q(1)
j have pairwise disjoint interiors.
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Inside each Q(1)
j select small squares S(2)

k in the same way. Write G1(S(1)
j )

and

G2 =
⋃

{G1(S(1)
j ) : S(1)

j ∈ G1}.
Choose one sequence point z(2)

k ∈ S(2)
k and set F2 = {z(2)

k : S(2)
k ∈ G2}. Form

new dyadic squares {Q(2)
k } by dropping the S(2)

k onto the axis. Continue the
process, obtaining the generations G3, G4, . . . , and the corresponding subsets
F3, F4, . . . , of the original sequence {z j }.

By Lemma 4.2, the points {z j } are separated. If R(p)
k is the rectangle, with

sides parallel to the axes, joining the top edge of Q(1)
k to the top edge of S(p)

k ,
then because the points are separated,

∑

z j ∈R(p)
k

y j ≤ C1�(S(p)
k ).

Consequently, {z j } is an interpolating sequence if and only if

∞∑

p=1

∑

G p

l(S(p)
k ) ≤ C2�(Q)(4.4)

for each dyadic square Q lying on {y = 0}. Because
∑

G1
�(S(1)

j ) ≤ �(Q), we

only need to estimate
∑∞

2 in (4.4).
Replace {z j } by the subsequence F1 ∪ F2 ∪ · · · . This does not change the

sum (4.4). Partition {z j } by setting

S =
⋃

{Fp : p odd}, T =
⋃

{Fp : p even}.
Then by (4.1) and (4.3) there exist finitely many bounded harmonic functions

u(n)
m such that whenever S(p)

k ∈ G1(S(p−1)
j ),

inf

{

max
m,n

|u(n)
m (z) − u(n)

m (w)| : z ∈ S(p)
k , w ∈ S(p−1)

j

}

≥ 1.

By Theorem 6.1 of Chapter VIII, there exist smooth functions ϕ(n)
m (z) such that

inf

{

max
m,n

|ϕ(n)
m (z) − u(n)

m (w)| : z ∈ S(p)
k , w ∈ S(p−1)

j

}

≥ 1
2
,(4.5)

and such that
∫∫

Q

∑

m,n

|∇ϕ(n)
m |dxdy ≤ C3�(Q)(4.6)

for each square Q resting on {y = 0}.
Let S(p)

k ∈ G p, p ≥ 2. Then S(p)
k ∈ G1(S(p−1)

j ) for some S(p−1)
j ∈ G p−1 and

S(p)
k lies below S(p−1)

k . Let T (p)
k be the rectangle, with sides parallel to the axes,



418 interpolating sequences and maximal ideals Chap. X

Figure X.4. Theorem VIII.6.1 implies Theorem 4.1.

joining the top edge of S(p)
k to the same dyadic interval on the bottom edge of

S(p−1)
j . The rectangles {T (p)

k } have pairwise disjoint interiors. See Figure X.4.
By (4.5),

∑

m,n

∫∫

T (p)
k

|∇ϕ(n)
m |dx dy ≥ max

m,n

∫∫

T (p)
k

∣
∣
∣
∣
∂ϕ(n)

m

∂y

∣
∣
∣
∣ dx dy

≥ 1
2
�(S(p)

k ),

and since the rectangles T (p)
k are disjoint, (4.4) now follows from (4.6).

Of the two proofs of Theorem 4.1, the second one looks more transparent,
but it is not perfectly clear which argument is stronger. For example, Theorem
3.4 does not seem to follow from Theorem VIII.6.1.

5. A Constructive Douglas–Rudin Theorem

Theorem 5.1. Suppose u ∈ L∞, |u| = 1 almost everywhere. Let ε < 0. Then
there exist interpolating Blaschke products B1(z) and B2(z) such that

‖u − B1/B2‖∞ < ε.
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This result refines the Douglas–Rudin theorem, Chapter V, Section 2. Before
proving the theorem, we mention one corollary and two related open problems.

Corollary 5.2. The interpolating Blaschke products separate the points of
the maximal ideal space M of H∞.

Proof. Let m1 and m2 be distinct points of M. There are three cases.

Case 1. m1 ∈ X and m2 ∈ X , where X = ML∞ is the Šilov boundary of
H∞. By Theorem 5.1, L∞ is the self-adjoint closed algebra generated by
the interpolating Blaschke products. Consequently the interpolating Blaschke
products separate the points of X = ML∞ .

In the remaining two cases we have m1 ∈ M\X or m2 ∈ M\X . By sym-
metry we can suppose m1 ∈ M\X . Recall the notation

G = {m ∈ M : m is in the closure of an interpolating sequence}.

Case 2. m1 ∈ G. Then there is an interpolating Blaschke product B(z) such
that B(m1) = 0. If also B(m2) = 0, then m1, and m2 are in the closure of
the zeros S of B(z), and there are disjoint subsets T1 and T2 of S such that
m1 ∈ T̄1, m2 ∈ T̄2. The Blaschke product with zeros T1 then separates m1 and
m2. (See, for instance, the conclusion of the proof of Theorem 1.7.)

Case 3. m1 
∈ X ∪ G. Then m1 and m2 are in different Gleason parts. For
every ε > 0 there is fε ∈ H∞ such that fε(m1) = 0, | fε(m2)| > 1 − ε, and
‖ fε‖ = 1. By Corollary 2.6 of Chapter V, there is an inner function uc ∈ H∞
such that uε(m1) = 0 and |uε(m2)| > 1 − ε. By Theorem 4.1 of Chapter VIII,
there is an interpolating Blaschke product Bε(z) such that

|Bε(z)| < 1
4

if |uε(z)| < 1
4
,(5.1)

|uε(z)| < β if Bε(z) = 0,(5.2)

where β = β
(

1
4

)
is some constant. Moreover,

δ(Bε) ≥ δ0,(5.3)

where δ0 > 0 is a constant independent of ε. Now we claim there is η(ε) →
0(ε → 0) such that

|Bε(z)| ≥ 1 − η(ε) if |uε(z)| ≥ 1 − ε.(5.4)

Accepting (5.4) for the moment, we choose ε so small that 1 − η(ε) ≥ 1
2
.

Then by (5.1) and the corona theorem, Bε(m1) ≤ 1
4
, while by (5.4) and the

corona theorem, |Bε(m2)| ≥ 1
2
. Thus the interpolating Blaschke product Bε

separates m1 and m2.
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To prove (5.4), we use some ideas from Section 3, Chapter VIII. Suppose
|uε(z)| > 1 − ε. Using a Möbius transformation, we can assume z = 0. Let

Eβ =
{

θ : inf
�(θ )

|uε(z)| < β

}

,

where �(θ ) denotes the cone

�(θ ) =
{

z :
|z − eiθ |
1 − |z| < 2

}

.

Write v(θ ) = |uε(eiθ ) − uε(0)|2. Then
∫

v(θ )dθ/2π = 1 − |uε(0)|2 < 2ε,
whereas if |uε(z)| < β, then

1

2π

∫
v(θ )Pz(θ )dθ ≥ |uε(z) − uε(0)|2 ≥ (1 − ε − β)2.

The weak-type estimate for the nontangential maximal function therefore
yields

|Eβ | ≤ 2cε

(1 − ε − β)2
.(5.5)

Write Eβ = ⋃
I j , where the I j are pairwise disjoint ares on ∂D and set

Sj = {reiθ : θ ∈ I j , 1 − |I j | < r < 1}.
By (5.2) the zeros {zn} of Bε(z) lie inside

⋃
Sj . Hence by (5.3) and (5.5)

∑
(1 − |zn|) ≤ C(δ0)

2cε

(1 − ε − β2)
.

Because β = β
(

1
4

)
fixed we conclude that |Bε(0)| ≥ 1 − η(ε), where η(ε) →

0(ε → 0). That establishes (5.4).

Problem 5.3. Do the interpolating Blaschke products generate H∞ as a
uniform algebra?

Problem 5.4. Can every Blaschke product be uniformly approximated by
interpolating Blaschke products?

Since the Blaschke products generate H∞, a yes answer to Problem 5.4
would imply a yes answer to Problem 5.3. See page vii.

The proof of Theorem 5.1 is different from the constructions we have dis-
cussed above.

Lemma 5.5. Let ε > 0, δ > 0, and η > 0. Suppose I1, I2, . . . , IK are pair-
wise disjoint closed bounded intervals on �, and suppose α1, α2, . . . , αK are
real numbers, 0 < α j < 2π . Then there exist finite Blaschke products B1(z)
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and B2(z), having simple zeros, such that
∑

j

|{x ∈ I j : |α j − ArgB1(x)/B2(x)| ≥ ε/2}| < η.(5.6)

and such that

0 < Arg B1(x)/B2(x) < δ x 
∈
⋃

I j .(5.7)

The zeros {zn} of B1(z) or of B2(z) satisfy

ρ(zn, zm) ≥ cε, n 
= m,(5.8)

with c some absolute constant, and

xn = Re zn ∈
⋃

j

I j .(5.9)

Moreover, if 0 < y < y0(ε, δ, K ), then the zeros zn may be chosen on the
horizontal line

yn = Im zn = y.

Here Arg w denotes the principal branch of the argument, 0 ≤ Arg w < 2π .

Proof. Because the intervals are pairwise disjoint, it is enough to prove this
lemma for one interval I (with η replaced by η/K , with ε replaced by ε/2, and
with δ replaced by min(δ/K , ε/2K )). Fix a closed interval I. After a translation
we can suppose

I = [−η/4, A + η/4].

Also fix α, 0 < α < 2π .
Let N be a positive integer, to be determined later, and consider the points

xk = k/N , 0 ≤ k ≤ k0 = [N A] − 1,

[t] denoting the greatest integer in t. Let

λ = α/2π N

and fix y > 0, also to be determined later. The zeros of B1(z) are

zk = xk + iy, 0 ≤ k ≤ k0,

and the zeros of B2(z) are

z∗
k = xk + λ + iy, 0 ≤ k ≤ k0

See Figure X.5. Because k0/N + λ < A, we have (5.9). We set

B1(z) =
k0∏

k=0

z − zk

z − z̄k
, B2(z) =

k0∏

k=0

z − z∗
k

z − z̄∗
k

,
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Figure X.5. Here α = 2π/3. The zeros of B2(z) are slightly to the right of the zeros of B1(z).

so that, modulo 2π ,

Arg
B1(x)

B2(x)
=

k0∑

k=0

(

Arg

(
x − zk

x − z̄k

)

− Arg

(
x − z∗

k

x − z̄∗
k

))

.

Note that

Arg

(
x − zk

x − z̄k

)

= π + 2 arctan

(
x − xk

y

)

= 2

∫ ∞

xk

yk

(x − t)2 + y2
k

dt.

Consequently,

Arg
B1(x)

B2(x)
= 2

k0∑

k=0

∫ xk+λ

xk

yk

(x − t)2 + y2
k

dt.(5.10)

Because the intervals of integration are pairwise disjoint, the right side of
(5.10) has value in (0, 2π ) and it is the principal branch of the argument.

Setting E = ⋃k0

k=0[xk, xk + λ], we see that

Arg
B1(x)

B2(x)
= 2π

∫
Py(x − t)χE (t) dt.

Since dist(E, �\I ) ≥ η/4, (5.10) yields

Arg
B1(x)

B2(x)
≤ 2

∫ ∞

η/4

y ds

s2 + y2
≤ c1 y

η
, x 
∈ I.

Therefore (5.7) will hold if

y ≤ c2 δη.(5.11)

Now let J = [η/4, A − η/4]. Then J ⊂ I and |I\J | = η. We shall have
(5.6) if we can get

|α − Arg B1(x)/B2(x)| < ε/2, x ∈ J.(5.12)

As a preliminary approximation set F = [0, xk0
+ 1/N ] and write

V (x) = α

n

∫

F

y

(s − t)2 + y2
dt.

Taking

N ≥ δ/η,(5.13)
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we have xk0
+ 1/N ≥ A − 1/N ≥ A − η/8, and dist(J, �\F) > η/8. Thus

as before

|V (x) − α| ≤ δ

π

∫ ∞

η/8

y ds

s2 + y2
≤ c3 y

η
, x ∈ J ′;

and

|V (x) − α| < ε/4, x ∈ J,

provided that

y ≤ c4εη.(5.14)

But now for any x ∈ �,
∣
∣
∣
∣V (x) − Arg

B1(x)

B2(x)

∣
∣
∣
∣ =

∣
∣
∣
∣
α

π

∫

F

y

(x − t)2 + y2
dt − 2

∫

E

y

(x − t)2 + y2
dt

∣
∣
∣
∣

≤
k0∑

k=0

∣
∣
∣
∣
α

π

∫ xk+1

xk

y dt

(x − t)2 + y2
− 2

∫ xk+λ

xk

y dt

(x − t)2 + y2

∣
∣
∣
∣(5.15)

=
k0∑

k=0

∣
∣
∣
∣

∫ xk+1

xk

gk(t)y

(x − t)2 + y2
dt

∣
∣
∣
∣ ,

where |gk(t)| ≤ 2 and
∫ xk+1

xk
gk(t)dt = 0. Consequently,

∣
∣
∣
∣

∫ xk+1

xk

gk(t)y

(x − t)2 + y2
dt

∣
∣
∣
∣ ≤ 2

N
max

xk≤t≤xk+1

(
y

(x − t)2 + y2

)

− 2

N
min

xk≤t≤xk+1

(
y

(x − t)2 + y2

)

,

and the right side of (5.15) is bounded by a two-sided telescoping sum. There-
fore

|V (x) − ArgB1(x)/B2(x)| ≤ 4/N y, 2

and we have (5.12) and also (5.6) if we take

N y = c5/ε.(5.16)

Our restrictions (5.11), (5.13), and (5.14) on the parameters y and N are
consistent with (5.16) and we can obtain (5.6) and (5.7) with arbitrarily small
y. Finally, by (5.16)

ρ(zn, zm) ≥ c6|xn − xm |/y ≥ cε, n 
= m,

and so (5.8) holds.
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Proof of Theorem 5.1. First consider the critical special case in which

v0 = Arg u

has support (−1, 1).

Step 1: Set η0 = 1, η1 = 1
4
. Choose pairwise disjoint closed intervals

I (1)
1 , I (1)

2 , . . . , I (1)
K1

, and choose real numbers α
(1)
1 , . . . , α

(1)
K1

, 0 < α
(1)
j < 2π ,

such that ∣
∣
∣
∣
∣

{

x :

∣
∣
∣
∣
∣
v0(x) −

K1∑

1

α
(1)
j χI (1)

j
(x)

∣
∣
∣
∣
∣
≥ ε

4

}∣
∣
∣
∣
∣
<

η1

2
.

That can be done because simple functions are dense in L∞ and because any
bounded measurable set can be approximated in measure by a finite union of

intervals. By Lemma 5.5 there are finite Blaschke products B(1)
1 (z) and B(1)

2 (z)
such that ∣

∣
∣
∣
∣

{

x :

∣
∣
∣
∣
∣

∑
α

(1)
j χI (1)

j
(x) − Arg

B(1)
1 (x)

B(1)
2 (x)

∣
∣
∣
∣
∣
≥ ε

2

}∣
∣
∣
∣
∣
<

η1

2
.

Hence

E1 = {x : |v0(x) − Arg B(1)
1 (x)/B(1)

2 (x)| > 3ε/4}
satisfies

|E1| < η1.

Moreover, the zeros z(1)
n = x (1)

n + iy(1)
n of B(1)

1 satisfy

ρ(z(1)
n , z(1)

m ) ≥ cε, n 
= m, and x (1)
n ∈

⋃
I (1)

j .

Fixing η2 < η1/4 sufficiently small, we can take

y(1)
n = η2, n = 1, 2, . . . .

The zeros of B(1)
2 have the same three properties.

Step 2: Let

v1(x) = Arg

(
u(x)B(1)

2 (x)

B(1)
1 (x)

)

χE1
(x).

Choose pairwise disjoint closed intervals I (2)
1 , . . . , I (2)

K2
and choose real num-

bers α
(2)
1 , α

(2)
2 , . . . , α

(2)
K2

such that
∑

|I (2)
j | ≤ 4|E1| < 4η1,

such that

∣
∣E1 �

( ⋃
I (2)

j

)∣∣ = ∣
∣E1\

⋃
I (2)

j

∣
∣ + ∣

∣
⋃

I (2)
j \E1

∣
∣ < η2/2,(5.17)
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and such that
∣
∣
∣
{

x : |v1(x) −
∑

α
(2)
j χI (2)

j
(x)| >

ε

8

}∣
∣
∣ ≤ η2

4
.(5.18)

By Lemma 5.5 there are finite Blaschke products B(2)
1 (z) and B(2)

2 (z) such that
∣
∣
∣
∣
∣

{

x :

∣
∣
∣
∣
∣

∑

j

α
(2)
j χI (2)

j
(x) − Arg

B(2)
1 (x)

B(2)
2 (x)

∣
∣
∣
∣
∣
>

ε

2

}∣
∣
∣
∣
∣
<

η2

4
,(5.19)

and such that

0 < Arg B(2)
1 (x)/B(2)

2 (x) < ε/8, x /∈
⋃

I (2)
j .(5.20)

Consider the set

E2 =
{

x :

∣
∣
∣
∣
∣
v0(x) − Arg

(
B(1)

1 (x)B(2)
1 (x)

B(1)
2 (x)B(2)

2 (x)

)∣
∣
∣
∣
∣
>

7ε

8

}

.

Then

E2 = [E2 ∩ E1 ∩ (
⋃

I (2)
j )] ∪ [E2\(E1 ∪ ⋃

I (2)
j )]

∪[E2 ∩ (E1 �(
⋃

I (2)
j ))]

On E1 ∩ (
⋃

I (2)
j ), (5.18) and (5.19) give us, modulo 2π ,

∣
∣
∣
∣
∣
v0(x) − Arg

(
B(1)

1 (x)B(2)
1 (x)

B(1)
2 (x)B(2)

2 (x)

)∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
v1 − Arg

(
B(2)

1 (x)

B(2)
2 (x)

)∣
∣
∣
∣
∣

<
ε

8
+ ε

2
= 5ε

8
,

except on a set of measure at most η2/2 Hence,
∣
∣
∣E2 ∩ E1 ∩

(⋃
I (2)

j

)∣
∣
∣ < η2/2

By (5.20), we have

E2\
(⋃

I (2)
j

)
⊂ E1.

so that

E2\
(

E1 ∪
⋃

I (2)
j

)
= ∅.

And by (5.17), we have
∣
∣
∣E2 ∩

(
E1�

(⋃
I (2)

j

))∣
∣
∣ < η2/2.
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We conclude that

|E2| < η2.

The zeros z(2)
n = x (2)

n + iy(2)
n of B(2)

1 satisfy

ρ(z(2)
n , z(2)

m ) ≥ cε, n 
= m,

x (2)
η ∈ ⋃

I (2)
i and y(2)

n = η3,

where 0 < η3 < η2/4 and η3 is as small as we like. The zeros of B(2)
2 and have

the same three properties.

Step p: By induction we obtain finite Blaschke products B(1)
1 (z), . . . , B(p)

1 (z)

and B(1)
2 (z), . . . , B(p)

2 (z) such that

E p =
{

x :

∣
∣
∣
∣
∣
v0(x) − Arg

(
B(1)

1 (x) · · · B(p)
1 (x)

B(1)
2 (x) · · · B(p)

2 (x)

)∣
∣
∣
∣
∣
> (1 − 2−p−1)ε

}

satisfies

|E p| < ηp ≤ 4−p.(5.21)

The induction step is the same as step 2 except that ε2−p−1 is used in the
analogs of (5.18) and (5.20) but ε/2 is always used in the analog of (5.19).
Thus Lemma 5.5 is applied at step p with δ = ε2−p−1, and with η = ηp/2, but
with the same ε.

Because we use the same ε at each stage, the zeros z(p)
n = x (p)

n + iy(p)
n of

B(p)
1 satisfy

ρ(z(p)
n , z(p)

m ) ≥ cε, m 
= n,(5.22)

with c not depending on p. These zeros also satisfy

x (p)
n ∈

⋃
I (p)

j ,(5.23)

where

|
⋃

I (p)
j | ≤ 4|E p−1| ≤ 4ηp−1(5.24)

and

y(p)
n = ηp+1 < ηp/4.(5.25)

Now set

B1(z) =
∞∏

p=1

B(p)
1 (z), B2(z) =

∞∏

p=1

B(p)
2 (z).
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Because the zeros remain in a bounded set, convergence factors are unnecessary
and the products converge if their assigned zeros satisfy

∑
yn < ∞. We show

more: The zeros given to B1(z) (and to B2(z)) are an interpolating sequence.

We consider B1(z) only. It has zeros
⋃∞

p=1{z(p)
n }. By (5.22) and (5.25) these

zeros are separated. Let Q be a square {a < x < a + h, 0 < y < h}. Since

y(p)
n ≤ η2, we can assume h < η2. Take q so that

ηq+1 ≤ h < ηq .

Then by (5.25),

∑

z(p)
n ∈Q

y(p)
n =

∞∑

p=q

ηp+1 Np(Q),

where Np(Q) is the number of z(p)
n inside Q. By (5.22) and (5.25),

|x (p)
n − x (p)

m | ≥ c1εηp+1,

so that by (5.23) and (5.24),

Np(Q) ≤ min(| ⋃ I (p)
j |, h)

c1εηp+1

≤ c2 min(4ηp−1, h)

εηp+1

.

Therefore, as ηp ≤ 4−p,

∑

z(p)
n ∈Q

y(p)
n ≤ c2

ε

∞∑

p=q+2

min(4ηp−1, h) ≤ 2c2

ε
h + c2

ε

∞∑

p=q+2

4ηp−1

≤ c3

ε
h

∞∑

k=0

4−k,

and
⋃ {z(p)

n } is an interpolating sequence. Thus B1(z) and B2(z) are interpo-
lating Blaschke products.

In L2(dx/(1 + x2)), the partial products (B(1)
1 · · · B(p)

1 · · · B(p)
1 )/(B(1)

2 · B(p)
2

converge to B1/B2. So a subsequence of the partial products converges to
B1/B2 almost everywhere. Hence by (5.21),

|v0(x) − Arg B1(x)/B2(x)| ≤ ε

almost everywhere.
For the general case write u = u1u2, where

u1(x) = 1, |x | > 1,

u2(x) = 1, |x | < 1.
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By the special case treated above we have interpolating Blaschke products
B1,1(z) and B2,1(z) such that

∣
∣
∣
∣u1 − B1,1(x)

B2,1(x)

∣
∣
∣
∣ <

ε

2

almost everywhere. Using the inversion z → −1/z, we also get interpolating
Blaschke products B1,2(z) and B2,2(z) such that

∣
∣
∣
∣u2(x) − B1,2(x)

B2,2(x)

∣
∣
∣
∣ <

ε

2

almost everywhere. The theorem will be proved if it can be arranged that
B1 = B1,1 B1,2 and B2 = B2,1 B2,2 are interpolating Blaschke products. For
that it is enough to bound below the pseudohyperbolic distance from the zeros
of B j,1 to the zeros of B j,2, j = 1, 2. The zeros of B1,1 and B2,1 lie in |x | < 1
and on horizontal lines y = ηp, p = 2, 3, . . . , with ηp+1 < ηp/4. The zeros
of B1,2 and B2,2 lie in |x | > 1 and in large circles tangent to � at z = 0. In
{y ≤ η2} these circles cut the lines {x = ±1} at heights y = yq , q = 1, 2, . . . .
By Lemma 5.5, we can take y1 and yq+1/yq as small as we please. Thus we
can ensure that

inf
p

|yq − ηq |
yq

≥ cε, q = 1, 2, . . . ,

which implies that the zeros of B1(z) and of B2(z) are interpolating
sequences.

Notes

Sections 1 and 2 are taken from Hoffman [1967]. Further results from his pa-
per are given in Exercises 1–8. Lemma 3.3 is due to Carleson [1972]. Theorem
4.1 is from Carleson and Garnett [1975], who also study harmonic interpola-
tion in �d+1

+ . Theorem 5.1 is in Jones [1981]. The idea behind Lemma 5.5 is
due to A. M. Davie (see Davie, Gamelin, and Garnett [1973]).

Exercises and Further Results

1. Let m ∈ M.

(a) We say m is a nontangential point if m is in the closure of some cone

�α(eiθ ) =
{

z :
|z − eiθ |
1 − |z| < α, |z| < 1

}

,

α > 1. Every nontangential point m is in the closure of an interpolating se-
quence, Consequently, m lies in an analytic disc. (Hint: There are finitely many
interpolating Blaschke products B1, . . . , BN and there is r > 0, r < r (δ(B j ))
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(see Lemma 1.4), such that

�α(eiθ ) ⊂
N⋃

j=1

{z : ρ(z, z j,k) < r},

where {z j,k} denotes the zeros of B j .)
(b) We say m is an orocycular point if m lies in the closure of the region be-

tween two circles tangent to the unit circle at the same point. Every orocycular
point lies in the closure of an interpolating sequence.

(c) Let r (θ ) be continuous and decreasing on 0 ≤ θ ≤ 1, r (0) = 1, and let
γ be the curve {r (θ )eiθ : 0 < θ ≤ 1}, terminating at z = 1. If m ∈ M is in the
closure of γ , then m lies in an analytic disc.

2. Let V be a disc in D tangent to the unit circle at one point eiθ , and let
V̄ be the closure of V in M.

(a) V̄ is disjoint from the Šilov boundary X.
(b) There exist points m ∈ V̄ not in the closure of any interpolating se-

quence. (Otherwise, for any ε > 0 we could, by compactness, cover V by
pseudohyperbolic discs {ρ(z, z j ) < ε} with {z j } a finite union of interpolating
sequences, thereby violating the geometric characterization of interpolating
sequences.)

(c) Thus there are one-point Gleason parts disjoint from the Šilov boundary.
(d) Part (b) and Exercise 1 can be generalized. Let S be any subset of D, and

let {z j } be any separated sequence in S such that
⋃{z : ρ(z, z j ) < 1

2
} covers

S. Then every point in the closure of S lies in an analytic disc if and only if∑
(1 − |z j |)δz j is a Carleson measure.

In the upper half plane, let Qn, j = { j2−n ≤ x ≤ ( j + 1)2−n, 2−n−1 ≤ y ≤
2−n}, −∞ < n < ∞, −∞ < j < ∞. Thus {Qn, j } is a paving of H by hy-
perbolically congruent rectangles. Let S be a subset of H and consider the
sequence {zk} consisting of the centers of those Qn, j such that Qn, j ∩ S 
= Ø.
Every point in the closure of S lies in an analytic disc if and only if {zk} is an
interpolating sequence.

3. The mapping z → Lz from D into MD has a unique continuous
extension to a mapping L from M into MD . If m ∈ G, the extension has value
Lm . If m /∈ G, then Lm(ζ ) = m, ζ ∈ D .

4. Let CM denote the complex algebra of bounded continuous functions
on D which admit continuous extensions to M.

(a) CM is the smallest uniformly closed algebra containing H∞ and H∞.
(b) CM is the smallest uniformly closed algebra containing the bounded

harmonic functions.
(c) If f ∈ H∞ and if α ∈ D, then

g(z) = f

(
α + z

1 + z̄α

)

∈ CM,
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and for n = 1, 2, . . . ,

hn(z) = (1 − |z|2)n f (n)(z) ∈ CM.

5. Let S ⊂ D and suppose that for some ε, 0 < ε < 1, the ε pseudohy-
perbolic neighborhood of S, {z : infS ρ(z, w) < ε} covers D. Then the closure
if S in M contains every point not in the closure of any interpolating sequence.
(Use the fact that P(m) = {m} for such a point.)

6. Let m ∈ M. A necessary and sufficient condition for m to be in the
closure of some interpolating sequence is the following. If E and F are subsets
of D and if m ∈ Ē ∩ F̄ , then ρ(E, F) = inf{ρ(z, w) : z ∈ E, w ∈ F} = 0.

7. Let T be an endomorphism from H∞ into H∞; that is, T is a (bounded)
linear operator from H∞ into H∞ satisfying

T ( f g) = T ( f )T (g).

Then there exists an analytic mapping τ : D → D, τ (0) = 0, and there exists
a net (zi ) in D such that

T f (z) = lim
i

f

(
τ (z) + zi

1 + z̄iτ (z)

)

.(E.1)

T f is not constant for some f ∈ H∞ if and only if either

(i) (zi ) can be chosen a constant, zi = ζ, ζ ∈ D, or
(ii) (zi ) can be chosen from some interpolating sequence.

Alternative (i) holds if and only if T is weak-star continuous.
Let H∞(V ) be the ring of bounded analytic functions on a Riemann

surface (or analytic space) V. If T : H∞(D) → H∞(V ) is a homomorphism,
then there is an analytic mapping τ : V → D and there is a net (zi ) in D such
that (E.1) holds.

8. (a) Let B(z) be a Blaschke product with zeros {zn} satisfying

lim
n→∞(1 − |zn|2)|B ′(zn)| = 1.

If m is in the closure of {zn} then the map Lm is a homeomorphism from D
onto P(m) (which has the usual Gelfand topology of M), and L−1

m is a constant
multiple of B.

(b) Turning to the upper half plane, let S be the two-sided sequence {zk =
k + i : k ∈ �}. Then S is an interpolating sequence. Thus each point m ∈ S̄\S
lies in an analytic disc. Call a subsequence {zkn } of S thin if |kn+1 − kn| → ∞.
If m is in the closure of a thin subsequence of S then Lm is a homeomorphism.
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(c) For zk = k + i ∈ H , the coordinate map (to the upper half plane) is

Lzk (ζ ) = k + i

(
1 + ζ

1 − ζ

)

, ζ ∈ D .

If F(z) = e2π i z , then

F ◦ Lzk (ζ ) = exp

(

−2π

(
1 + ζ

1 − ζ

))

is independent of k. Thus

F ◦ Lm(ζ ) = exp

(

−2π

(
1 + ζ

1 − ζ

))

for all m ∈ S̄, Let m, m ′ ∈ S̄\S. Then m and m ′ are in the same Gleason part
if and only if

Lm(ζ ) = Lm ′(ζ ′)

for some ζ, ζ ′ ∈ D . This means

i

(
1 + ζ ′

1 − ζ ′

)

= n + i

(
1 + ζ

1 − ζ

)

for some integer n, which is independent of ζ and ζ ′.
Let σ : S → S, σ (zk) = zk+1. Then σ extends to a homeomorphism of S̄\S

onto S̄\S, and we have m ′ = σ n(m). Conversely, if m ′ = σ n(m), then

m ′ = Lm

(
n

n + 2i

)

and m ′ ∈ P(m). Thus points m and m ′ of S̄\S lie in the same Gleason part if
and only if m and m ′ have the same orbit under the group G = {σ n : −∞ <

n < ∞}.
(d) Now let K be a closed subset of S̄\S that is invariant under G and

minimal among the closed invariant sets. K exists by Zorn’s lemma. If m ∈ K ,
then m is in the closure of {σ n(m)}∞n=1. Thus some subnet of

{Lm(n/(n + 2i))}∞n=1

converges to Lm(0) and Lm is not a homeomorphism. In light of part (b) we see
that if m is in the closure of a thin subsequence, then the closure of {σ n(m)}∞n=1

contains proper closed subsets invariant under G. See Hoffman [1967].

��9. Let τ be an analytic map from D into D. Then τ extends to a continuous
map from M into M defined by (τ (m)( f ) = m( f ◦ τ )).

(a) If τ (m) = m for some point m ∈ G, then infz∈D ρ(τ (z), z) = 0. For
the proof, suppose {zn} is an interpolating sequence such that m ∈ {zn}. For
ε > 0 small, the discs Kn = K (zn, ε) = {ρ(z, zn) < ε} are pairwise disjoint,
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and m is not in the closure of D\ ⋃∞
n=1 Kn . Consequently the relation f (zn) ∈

k j holds for infinitely many n, say for n ∈ S. Write T (n) = j when n ∈ S
and f (zn) ∈ K j . The problem is to show that T has a fixed point. Define
an equivalence relation in S by setting n1 ∼ n2 if T p(n1) = T q (n2) for some
nonnegative integers p and q. Note that n ∼ T (n) if n ∈ S and if T (n) ∈ S. Let
n∗ denote the least element of the equivalence class containing n. Let E be the
set of n ∈ S such that p + q is even, where p + q is the smallest such integer
such that T p(n) = T q (n∗). If T has no fixed point in S, then when n ∈ S and
T (n) ∈ S, exactly one of n and T (n) lies in E.

Let B(z) be the Blaschke product with zeros on S. Then B(m) = 0. Factor
B = B1 B2, where B1 has zeros {zn : n ∈ E} and B2 has zeros {zn : n ∈ S\E}.
When ε is small, the assumption that T has no fixed point now leads to a
contradiction.

(b) If τ has two fixed points in G lying in different fibers, then τ (z) = z.
(Use part (b) and Exercise 2 of Chapter I.)

(c) Let Mλ be the fiber of M at λ, |λ| = 1. Then τ fixed a point in G ∩ Mλ

if and only if the angular derivative of τ exists at λ and equals 1 there. (See
Exercise 7 of Chapter I for a discussion of angular derivatives.)

(d) τ maps the Šilov boundary into itself if and only if τ (z) is an inner
function.

(These results are due to Michael Behrens.)

10. Let m ∈ M and let f ∈ H∞, f (m) = 0. Then

lim
z→m

| f ′(z)|(1 − |z|2) = 0

if and only if f = f1 f2 with f j ∈ H∞, f j (m) = 0. (The only interesting case
is that in which f (z) is a Blaschke product, because both conditions hold
trivially if f 1/2 ∈ H∞. When m /∈ G, both conditions follow from Theorem
2.4. When m ∈ G, each condition means that ( f ◦ Lm)′(0) = 0.)

11. Let B0 be the class of analytic functions on D satisfying

lim
|z|→1

(1 − |z|2)| f ′(z)| = 0,

and let VMOA be the analytic functions of the form u + ṽ, u, v harmonic on
D and continuous on D̄. Here B stands for Bloch.

(a) VMOA ⊂ B0.
(b) f (z) ∈ H∞ ∩ B0 if and only if f (m) is constant on each Gleason part

in M\D. For this reason Behrens called this class COP, for constant on parts.
(c) Suppose g(z) is in the disc algebra. Then g(eiθ ) is in the Zygmund class

�∗, defined by

|g(θ + h) − g(θ − h) − 2g(θ )| = O(h)
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if and only if

sup
z

(1 − |z|2)|g′′(z)| < ∞.

(see Zygmund [1968, Vol. I]). Similarly, g′(z) ∈ B0 if and only if g(eiθ ) ∈ λ∗,
which is defined by

|g(θ + h) + g(θ − h) − 2g(θ )| = o(h).

(d) There exists a continuous increasing function F(θ ) on [0, 2π ] such that
F is singular, F ′(θ ) = 0 almost everywhere, but such that F ∈ λ∗ (see Kahane
[1969], Piranian [1966]). Thus F(θ ) = μ([0, θ ]) for some singular measure
μ, and the inner function determined by μ lies in H∞ ∩ B0. It follows that
H∞ ∩ B0 contains an infinite Blaschke product and that VMOA 
= B0.

Sarason has proposed the problem of characterizing the Blaschke products
in B0 in terms of the distribution of their zeros (see Nikolski, Havin, and
Kruschev [1978]).

12. Let P (t) ∈ L1(�) be nonnegative,
∫
P (t)dt = 1. Let {z j } be a se-

quence in the upper half plane and set

P j (t) = 1

y j
P

(
t − x j

y j

)

.

(a) Suppose there are real functions u j (t) ∈ L∞ such that ‖u j‖∞ ≤
1,

∫
u j (t)P j (t)dt > δ,

∫
u j (t)P k(t)dt ≤ 0, k 
= j , with δ independent of j.

Then {z j } is an interpolating sequence.
(b) If the weak-star closure of {P j } in (L∞)∗ homeomorphic β�, the

Stone–Čech compactification of the integers, then {z j } is an interpolating
sequence.
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Carathéodory, C.
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[1916] Über die Beschränkungen analytische Funktionen, welche durch vorgegebene

Funktionswerte bewirkt werden, Math. Ann. 77, 7–23.

Piranian, G.

[1966] Two monotonic, singular, uniformly almost smooth functions, Duke Math. J.
33, 255–262.

Piranian, G., Shields, A., and Wells, J. H.

[1967] Bounded analytic functions and absolutely continuous measures, Proc. Amer.
Math. Soc. 18, 818–826.

Piranian, G., and Weitsman, A.

[1978] Level sets of infinite length, Comment. Math. Helv. 53, 161–164.

Plessner, A. I.
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Bounded mean oscillation, see BMO

Box kernel, 22, 217

453
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Burkholder, Gundy, and Silverstein

theorem, 111

C

CA, 367, 376, 378

Calderón–Zygmund lemma, 223

Canonical Factorization theorem, 71

Capacity, 75, 273

Carathéodory theorem, 6, 89

Carleson, theorems of, 31, 61, 120, 122,

185, 278, 315

Carleson–Jacobs theorem, 134

Carleson measures, 30, 61, 231

and analytic disc, 429

and arc length, 330

and BMO, 221, 233, 259, 264, 267, 318

and Cauchy–Rieman equations, 311,

312, 349

and conformal invariance, 231

and gradients, 233, 259, 264, 267

and interpolating sequences, 278, 349

and Littlewood–Paley integrals, 233,

259

Carleson norm, 30

Cauchy–Riemann equations,

inhomogeneous, 309

Chang–Marshall theorem, 364, 369, 389

Chebychev inequality, 20

Cluster set, 76

and fiber, 209

Commutator, 270

Complemented subspace, 286

Complex homomorphism, 176

Cone �α(eiϕ), 23

Cone �α(t), 21

Conformal mappings

and Bloch functions, 273

and BMO, 273

boundary behavior, 89

Conjugate functions, 63, 98, 378

and BMO, 220, 227, 240

continuity of, 101, 122

and L p , 108

and L1, 106, 111

and L∞, 101, 109, 141, 220

in L p(μ), 247

in L2(μ), 144

maximal, 106

and maximal functions, 111

and VMO, 245

see also Hilbert transform

Conjugate Poisson kernel, 99, 105

Conjugation operator, 99

Constant of interpolation, 276, 284

Convolution, 11, 13

Corona, 314

Corona data, 315

Corona problem on plane domains,

358–359

Corona solutions, 315

Corona theorem, 185, 315

Cosets of L∞/H∞, 146, 151

Covering lemma, 24

D

Degree of finite Blaschke product, 6

de Leeuw–Rudin theorem, 151, 153

Derivatives of H p functions, 86, 265

see also Gradients of harmonic functions

Dilation, 13

Dini continuity, 101, 122, 134

Dirichlet algebra, 194, 210

Disc

euclidean, 3

noneuclidean, 2

Disc algebra, 120, 128, 131, 171, 183, 185,

189, 207, 219, 366, 384, 385

Distance

to Ao, 131

in BMO to L∞, 241, 250

to H p , 129, 168

to H∞, 130, 131, 142, 241, 363,

376

to H∞ + C , 385, 386

in L2(μ), 139, 171

to Re H∞, 241, 251

Distribution function, 20

Douglas algebras, 364, 369

characterizations, 371, 382

maximal ideal spaces, 365, 366

structure of, 375–379

and VMO, 375

Douglas problem, 364

Douglas–Rudin theorem, 192, 209, 365,

389

constructive, 418

Dual extremal function, 129, 130, 131

Dual extremal problem,128, 169, 282
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Dual space of

H p , 87, 234

H 1, 238

VMO, 268

Dyadic BMO, 266

Dyadic H 1, 267

Dyadic maximal function, 267

E

Earl’s construction, 299

Endomorphism of H∞, 430

Expectation, 293

Exposed point, 153, 213

Extremal function, 134, 146, 154, 166, 169

see also Best approximation;

Interpolating function

Extremal problem

dual, 128, 169, 282

nonlinear, 287

Extremely disconnected space, 207

Extreme point

of ball(H 1), 151

of ball(H∞), 173

F

Fatou theorem, 28, 120, 339

local, 90, 380

Fefferman–Stein theorems, 119, 271

Fefferman’s theorem, 238

constructively, 349

Fiber, 183, 207, 385

and cluster set, 209

Fiber algebra, 385

Fourier multiplier, 104

Fourier series, 103

of H p function, 56

Fourier transform, 59, 106

Frostman theorem, 75

G

Gehring’s inequality, 252

Gelfand topology, 178

Gelfand transform, 178

Generates, 189

Generations, 289, 415, 416

and corona construction, 335

and dependencies of kernals, 408

and gradients of functions, 341

and interpolating Blaschke products,

329

see also Stopping time argument

Geodesic, hyperbolic, 5, 39, 40

Gleason distance, 40

Gleason parts, 393

and analytic discs, 393, 399

homeomorphic to unit disc, 430

one point, 393, 404, 429

Good function, 125

Good λ inequality, 258, 260

Gradients of harmonic functions, 228, 233,

338, 362

and BMO, 262, 264

see also Derivatives of H p functions;

Littlewood–Paley integrals

Greatest common divisor (of family of

inner functions), 80

Greatest lower bound (of family of

measures), 80

Green’s potential, 75, 94

Green’s theorem, 228

H

H p , 48–51, 128

boundary behavior, 55–61, 185

derivatives from, 86

distance to, 129

dual spaces, 87, 235, 238

and extremal problems, 127–134

factorizations in, 53, 71, 84

Fourier series of, 56

Fourier transform of, 59

and harmonic majorants, 58

and interpolating sequences, 307

and maximal functions, 55, 115

real or positive functions in, 91–93

as sums of outer functions, 84

H 1
�, 236, 266

H 1, 48

and absolute continuity, 59

arguments of functions in, 153, 172

atomic decomposition, 266

and bounded variation, 89

and cosets of L∞/H∞, 147, 154, 198

dual space of, 238, 362

extreme points of ball, 151

as real Banach space, 235

see also H p
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H 2, 48, 79

see also H p

H∞, 48, 63, 364

analytic structure in maximal ideal

space, 191–193, 391–406

and Banach approximation property, 205

best approximation in, 130, 134, 168,

170–171

cosets of in L∞/H∞, 146, 154

distance to, 130, 131, 142, 241, 363, 376

exposed points of, 213

extreme points of, 173

ideals of, 82, 83, 183, 314, 319, 359

interpolations by, see Interpolating

functions; Interpolating sequences;

Interpolation problem

as logmodular algebra, 63, 194

maximal ideal space, 181–182, 314,

391–395, 419

measures orthogonal to, 131, 196, 198,

212

peak sets of, 199

predual of, 199–205, 212

representing measures for, 193–198,

211, 365

Šilov boundary of, 184

weakly continuous functionals on,

199–205, 212

weak-star closed ideals, 82

weak-star density of polynomials, 85

as uniform algebra, 183–191

H∞ + C , 132, 172, 367–369, 384, 386

invertible functions in, 385

maximal ideals of, 368

Hall’s lemma, 357, 361

Hardy–Littlewood inequality, 116

Hardy–Littlewood maximal functions, 21,

23, 246, 327

Hardy–Littlewood maximal theorem, 23

Hardy’s inequality, 89, 264

Hardy space, see H p

Harmonic conjugate, 63

see also Conjugate function

Harmonic function, 10

Harmonic interpolating sequence, 293,

304, 361, 411

Harmonic majorant, 36

Harmonic measure, 12, 40, 357

Helson–Szegö theorem, 141, 246, 250

Herglotz’s theorem, 19

Hilbert transform, 101, 123, 141, 144, 246,

256, 378, 385

see also Conjugate function

Hoffman’s theorem, 401, 404

Homogeneity of kernels, 13

Homomorphism, complex, 176

Hunt, Muckenhoupt, and Wheeden

theorem, 247, 260

I

Ideal

generated by { f1, . . . , fn}, 319, 359

maximal, 177

square of, 404

weak-star closed, 82

Inhomogeneous Cauchy–Riemann

equations, 309

and interpolating Blaschke products, 349

Inner factor, 74

Inner functions, 71, 75, 76

approximation by Blaschke product, 76

behavior of singularities, 77

and Douglas algebras, 369

generating H∞, 189

and ideals in H∞, 82

as interpolating functions, 145, 166

and invariant subspaces, 79

and L∞, 186

and Šilov boundary, 187

Integrable, locally, 215

Interpolating Blaschke products, 327, 395

and approximation problem, 420

and Douglas algebras, 369, 370, 388

factorization of, 397

and inhomogeneous Cauchy–Riemann

equations, 349

as interpolating functions, 300

maximal ideals containing, 370

and maximal ideal space, 419

and nontangential points, 428

perturbations of, 301, 395

and Šilov boundary, 328

Interpolating functions, 9, 132, 145, 159,

284, 308

parametrizations of, 155, 164

Interpolating sequences, 184, 208, 275

and analytic discs, 395, 404, 429
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and β�, 207, 412, 433

closures of, 370, 430

and general kernels, 433

harmonic, 293

and harmonic functions, 293, 411

and L p or BMO, 307

perturbations of, 301, 395

Interpolation, linear operator of, 285

Interpolation problem, 145, 159, 275

finite, 7, 132, 284

Invariant subspace

of H 2, 79

of H p and L p , 94

Invertibility, 176

Invertible function, 63

in H∞ + C , 385

Isometry, 235

Isomorphic Banach space, 234

J

Jensen formula, 52

Jensen’s inequality, 33

John–Nirenberg theorem, 223

Jones’s construction, 349

Julia’s lemma, 411

Jump theorem, 85, 123

K

Khinchin’s inequality, 293, 307

Kolmogoroff, theorems of, 118, 122, 171

Koszul complex, 354

L

L p , 12, 14, 31, 45, 56, 123, 128

and conjugate functions, 104, 106–108

and interpolating sequences, 307

and representing measures, 195

l∞, 180

complemented in H∞, 285

interpolation in, 276

L∞, 181, 186, 364

and conjugate functions, 101, 110, 139,

220

distance to, 241, 250

Laplacian, weak, 46

Least harmonic majorant, 36

and Nevanlinna class, 66

Lebesgue set, 44

Lebesgue’s theorem, 21

Level curves, 361

Lindelöf’s theorem, 88

Linearization, 124

Linear operator of interpolation, 285

Lipschitz classes, 102, 121

Lipschitz condition, 87

Littlewood–Paley identity, 228, 239, 262,

314, 373

Littlewood–Paley integrals, 228, 233, 259,

268, 343, 371

Littlewood’s theorem on subharmonic

functions, 94

Locally integrable function, 215

Logarithmic capacity, 75, 273

Logarithmic potential, 75

Logmodular algebra, 63, 194, 211

M

Marcinkiewicz interpolation theorem, 25

Marshall’s theorem, 189

Martingale S-function, 343

Maximal conjugate function, 106

see also Maximal Hilbert transform

Maximal function

dyadic, 267

Hardy–Littlewood, 21, 23, 246, 327

logarithm of, 271

of measure, 28

nontangental, see Nontangental maximal

function

vertical, 116, 324

Maximal Hilbert transform, 123, 256

Maximal ideal, 83, 177

Maximal ideal space, 178

of disc algebra, 207

of a Douglas algebra, 365–366

of H∞, 181–182, 314, 391–395, 419

of l∞, 180

of L∞, 181

Mean value property, 10

Minimum modulus, theorems on, 323, 357,

360, 361

Minkowski inequality for integrals, 14

Moduli of H p functions, 63

Modulus of continuity, 101, 134

Möbius transformation, 1
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Mooney’s theorem, 199

Morera’s theorem, 91

Muckenhoupt’s theorem, 247, 260

Multiplicative linear functional, 176

N

N , see Nevanlinna class

N+, 68, 71, 94

Net, 192

Nevanlinna class, 66, 72, 93, 94

Nevanlinna’s theorem, 145

Newman’s theorem, 187

Nontangential limits, 28, 90, 91, 379

of conjugate functions, 99

and Douglas algebras, 382

of H p functions, 55

characterizations of, 56, 84

moduli of, 61, 63

of inner functions, 78

on Lebesgue set, 44

of Poisson integrals of measures, 29

of singular functions, 73

of subharmonic functions, 96

Nontangentially bounded, 90, 379

Nontangentially dense, 307, 379

Nontangential maximal function, 27, 420

characterizes Re H p , 111

and H p , 55, 111

and N , 93

Nontangential oscillation, 29

Nontangential point, 428

O

Orocycle, 41, 73

Orocycular point, 459

Orthogonal measure, 131, 196, 198, 212

real, 213

Outer factor, 71, 74, 172

Outer functions, 64, 65, 81, 84, 94, 140,

142, 150, 151, 154, 155

and dual extremal functions, 171

and extreme points, 151

and invariant subspaces, 81

P

Paley’s inequality, 264

Paley–Wiener theorem, 84

Parametrizations

of cosets, 155

of interpolation functions, 155, 164

Partial sums of Fourier series, 104, 122

Peak interpolation set, 120

Peak point, 182

Peak set, 120, 121, 199, 208

Phragmén–Lindelöf argument, 331

Pick’s theorem, 2, 7, 38–39

Plessner point, 91

Plessner’s theorem, 91

Poincaré metric, 4

Point of density, 90

Poisson integral, 10–19

characterization, 17

mean convergence of, 15

Poisson integral formula, 11

Poisson kernels, 10–12

approximate relations between, 410

Fourier transform of, 60

Pommerenke’s theorem, 273

Potential

Green’s, 75, 94

logarithmic, 75

Predual of H∞, 198–205, 213

uniqueness of, 203

Privalov’s theorem, 91

Pseudohyperbolic distance, 2, 392

Q

Q A, 367, 375, 378

QC , 368, 386

Quadratic form, 7

Quasi-continuous function, 368

R

Range set, 77

Representing measure, 193

and Douglas algebras, 365

and subharmonicity inequality, 211

uniqueness on H∞, 195

Riemann surface, 48, 430

Riesz decomposition theorem for

subharmonic functions, 47, 96

Riesz factorization theorem, 53

Riesz, F. and M., theorem, 59, 62, 90, 120,

128

generalized, 196
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Riesz, M., theorem, 104, 108, 122

Rudin, theorem of, 120

S

Schur’s theorem, 38, 175

Schwarz’s lemma, 1

Semigroup property, 13

Separated sequence, 276, 406, 429

Shift operator, 78

Šilov boundary, 182, 184, 208

and Blaschke products, 187

and Douglas algebras, 365

and Gleason parts, 394, 429

of H∞, 184

and interpolating Blaschke products, 328

Singular function, 70

boundary behavior, 73

Smirnov’s theorem, 71, 83

Spectral radius formula, 206

Spectrum, 178

Stein–Weiss theorem, 110, 118, 123

Stone–Čech compactification, β�, 180,

395

and interpolating sequences, 412,

433

Stopping time arguments, 225, 328,

372

see also Generations

Strong boundary point, 208, 394

Strongly logmodular algebra, 63

Subharmonic function, 32–38, 45, 46,

94–97

Subharmonicity inequality, 32, 61

for representing measures, 211

Sweep, 221

Szegö’s theorem, 139

T

Tent, 31

Top half of Q, T (Q), 286

Translate, 15

Triangle inequality for pseudohyperbolic

distance, 4

U

Uniform algebra, 179

on Y, 180

Unimodular function, 145, 153, 172, 187,

189, 210, 365, 366, 376

Univalent function, 273, 274

see also Conformal mapping

Upper half plane, 5

Upper semicontinuous function, 32

V

VMO, 172, 242–246, 368, 386

and Carleson measures, 268

and conjugate functions, 245

dual space of, 268

and Littlewood–Paley integrals, 268

VMOA, 375, 388, 432

and conjugate functions, 378

Vanishing mean oscillation, see VMO

Variational argument, 287

Varopoulos extension, 268, 353

Vertical maximal function, 116, 324

W

Weak convergence in L1/H 1, 199

Weak Laplacian, 46

Weak L p function, 20

Weakly continuous functional, 200

Weak-star convergence, 15

Weak-star topology on H∞, 82

Weak-type 1–1, 23

Weight function, 171, 246–259

Wermer’s maximality theorem, 207, 366

Whitney decomposition, 257

Wiener’s theorem, 206

Wolff, theorem of, 312, 319, 357

Z

Zero set, 120, 122

Ziskind’s theorem, 328, 357

Zygmund class �∗, 273, 432

Zygmund’s theorem, 110, 118, 122




